licenses
sequencelengths
1
3
version
stringclasses
677 values
tree_hash
stringlengths
40
40
path
stringclasses
1 value
type
stringclasses
2 values
size
stringlengths
2
8
text
stringlengths
25
67.1M
package_name
stringlengths
2
41
repo
stringlengths
33
86
[ "MIT" ]
1.3.2
20ceb97a9f5eab5b460f7683ee70f48db43bd69c
docs
6487
# [Stochastic Processes] (@id StochasticProcesses) `KadanoffBaym.jl` can also be used to simulate _stochastic processes_. Below, we will give the simplest example to illustrate how to do this. In cases where [other methods](https://diffeq.sciml.ai/stable/tutorials/sde_example/) are too expensive or inapplicable, this approach can be an economic and insightful alternative. !!! tip More background on the connection between `KadanoffBaym.jl` and stochastic processes can be found in section 4.2 of [our paper](https://doi.org/10.21468/SciPostPhysCore.5.2.030) and also [here](https://doi.org/10.1088/1751-8121/ac73c6). ## [Ornstein-Uhlenbeck Process] (@id OUProcess) The Ornstein-Uhlenbeck (OU) process\cite{VanKampen2007, gardiner1985handbook} is defined by the stochastic differential equation (SDE) ```math \begin{align*} \mathrm{d} x(t) = -\theta x(t)\mathrm{d} t + \sqrt{D}\mathrm{d} W(t) \end{align*} ``` where ``W(t)``, ``t >0`` is a one-dimensional Brownian motion and ``\theta > 0``. The Onsager-Machlup path integral ```math \begin{align*} \int\mathcal{D}x\exp{\left\{-\frac{1}{2D}\int\mathrm{d}t\, \left(\partial_t{x}(t) +\theta x(t)\right)^2\right\}} \end{align*} ``` is a possible starting point to derive the corresponding MSR action via a Hubbard-Stratonovich transformation. The classical MSR action ```math \begin{align*} S[x, \hat{x}] = \int\mathrm{d}t\,\left[ \mathrm{i}\hat{x}(t)(\partial_t{x}(t) + \theta x(t)) + D \hat{x}^2(t)/2 \right] \end{align*} ``` is then equivalent to it. Note also that we are employing It\^o regularisation for simplicity. It is also common to define a purely imaginary response field ``\tilde{\hat{x}} = \mathrm{i}\hat{x}``, which is then integrated along the imaginary axis. The retarded Green function ``G^R`` and the statistical propagator ``F`` are then commonly defined as ```math \begin{align*} G^R(t, t') &= \langle{x(t)\hat{x}(t')}\rangle, \\ F(t, t') &= \langle{x(t)x(t')}\rangle - \langle{x(t)}\rangle \langle{x(t')}\rangle. \end{align*} ``` The equations of motion of the response Green functions are ```math \begin{align*} \delta(t - t') &= -\mathrm{i}\partial_t G^A(t, t') + \mathrm{i}\theta G^A(t, t'), \\ \delta(t - t') &= \phantom{-}\mathrm{i}\partial_t G^R(t, t') + \mathrm{i}\theta G^R(t, t'), \end{align*} ``` admitting the solutions ```math \begin{align*} G^A(t, t') = G^A(t - t') = -\mathrm{i}\Theta(t' - t)\mathrm{e}^{-\theta{(t' - t)}}, \\ G^R(t, t') = G^R(t - t') = -\mathrm{i}\Theta(t - t')\mathrm{e}^{-\theta{(t - t')}}. \end{align*} ``` The equations of motion of the statistical propagator in "vertical" time ``t`` and "horizontal" time ``t'`` read ```math \begin{align*} \partial_t F(t, t') & = -\theta F(t, t') + \mathrm{i} DG^A(t, t'), \\ \partial_{t'} F(t, t') & = -\theta F(t, t') + \mathrm{i} DG^R(t, t'), \end{align*} ``` respectively, while in Wigner coordinates ``T = (t+t')/2``, ``\tau = t - t'``, we find ```math \begin{align*} \partial_{T} F(T, \tau)_W & = -2\theta F(T, \tau)_W + \mathrm{i} D\left( G^A(T, \tau)_W + G^R(T, \tau)_W \right), \\ \partial_{\tau} F(T, \tau)_W & = \frac{\mathrm{i} D}{2} \left( G^A(T, \tau)_W - G^R(T, \tau)_W \right). \end{align*} ``` To cover the two-time mesh completely, one could in principle use any two of the four equations for ``F``. Our convention is to pick the equation in "vertical" time ``t`` with ``t>t'`` and the equation in "diagonal" time ``T`` with ``\tau=0``, such that together with the symmetries relations of the classical Green functiosn, the problem is fully determined by the initial conditions and these two equations: ```math \begin{align*} \partial_t F(t, t') & = -\theta F(t, t') + \mathrm{i} DG^A(t, t'), \\ \partial_{T} F(T, 0)_W & = -2\theta F(T, 0)_W + D, \end{align*} ``` where we have used the response identity ``G^A(T, 0)_W + G^R(T, 0)_W = -\mathrm{i}``, and ``G^A(t, t') = 0`` when ``t > t'``. For comparison, the analytical solution for the variance or statistical propagator reads ```math \begin{align*} \mathcal{F}(t, t') &= \mathcal{F}(0, 0)\mathrm{e}^{-\theta(t + t')} - \frac{D}{2\theta} \left( \mathrm{e}^{-\theta(t + t')} - \mathrm{e}^{-\theta |t - t'|} \right)\\ &= \left( \mathcal{F}(0, 0) - \frac{D}{2\theta} \right)\mathrm{e}^{-\theta(t + t')} + \frac{\mathrm{i} D}{2\theta}\left( G^A(t, t') + G^R(t, t') \right). \end{align*} ``` To apply `KadanoffBaym.jl`, we begin by defining parameters and initial conditions: ```julia # Final time tmax = 4.0 # Drift θ = 1. # Diffusion strength (in units of θ) D = 8.0 # Initial condition N₀ = 1.0 F = GreenFunction(N₀ * ones(1, 1), Symmetrical) ``` !!! note Observe how we have used the symmetry `Symmetrical` to define the _classical_ type of [`GreenFunction`](@ref). Now the equation in "vertical" time ``t`` is simply ```julia # Right-hand side for the "vertical" evolution function fv!(out, _, _, _, t1, t2) out[1] = -θ * F[t1, t2] end ``` !!! warning In this numerical version of the analytical equation above, we have made explicit use of the fact that ``G^A(t, t') = 0`` when ``t > t'``. However, since `KadanoffBaym.jl` uses a so-called _multi-step predictor-corrector method_ to solve equations (i.e. a method using not a single point but _multiple_ points from the past to predict the next point), it can happen that points with ``t' > t`` are actually accessed, in which case the ``G^A(t, t')`` term in the above equation _does_ contribute. One way to prevent this would be to restrict the solver to using a one-step method early on, i.e. until enough points with ``t > t'`` are known. In "diagonal" time ``T`` we have ```julia # Right-hand side for the "diagonal" evolution function fd!(out, _, _, _, t1, t2) out[1] = -θ * 2F[t1, t2] + D end ``` To learn about the signatures `(out, _, _, _, t1, t2)` of `fv!` and `fd!`, consult the documentation of [`kbsolve!`](@ref). All we need to do now is ```julia # Call the solver sol = kbsolve!(fv!, fd!, [F], (0.0, tmax); atol=1e-8, rtol=1e-6) ``` The numerical results obtained with `KadanoffBaym.jl` are shown in [our paper](https://doi.org/10.21468/SciPostPhysCore.5.2.030) and are in agreement with the analytical solutions. !!! hint A [Jupyter notebook](https://github.com/NonequilibriumDynamics/KadanoffBaym.jl/blob/master/examples/brownian-motion.ipynb) for this example is available in our [examples folder](https://github.com/NonequilibriumDynamics/KadanoffBaym.jl/tree/master/examples).
KadanoffBaym
https://github.com/NonequilibriumDynamics/KadanoffBaym.jl.git
[ "MIT" ]
1.3.2
20ceb97a9f5eab5b460f7683ee70f48db43bd69c
docs
4355
# [Tight-Binding Model] (@id TightBinding) To get a feeling for how to use `KadanoffBaym.jl`, we begin by solving a simple example, the so-called tight-binding model: ```math \begin{align*} \hat{H} &= \sum_{i=1}^L \varepsilon_i \hat{c}_i^{\dagger} \hat{c}_i^{\phantom{\dagger}} + J \sum_{\langle i, j\rangle}\left(\hat{c}_i^{\dagger} \hat{c}_j^{\phantom{\dagger}} + \hat{c}_j^{\dagger} \hat{c}_i^{\phantom{\dagger}}\right), \end{align*} ``` where the ``\hat{c}_i^{\dagger},\, \hat{c}_i^{\phantom{\dagger}}`` are fermionic creation and annihilation operators. The model describes a bunch of electrons on a lattice that can hop to neighbouring sites via the coupling ``J``. The usual quantities of interest can be obtained from the so-called *lesser* and *greater* Green functions defined by ```math \begin{align*} \left[\boldsymbol{G}^<(t, t')\right]_{ij} &= G^<_{ij}(t, t') = \phantom{-} i\left\langle{\hat{c}_j^{{\dagger}}(t')\hat{c}_i^{\phantom{\dagger}}(t)}\right\rangle, \\ \left[\boldsymbol{G}^>(t, t')\right]_{ij} &= G^>_{ij}(t, t') = -i\left\langle{\hat{c}_i^{\phantom{\dagger}}(t)\hat{c}_j^{{\dagger}}(t')}\right\rangle. \end{align*} ``` The equations of motion for these Green functions in "vertical" and "diagonal" time have a simple form and can be written compactly as ```math \begin{align*} \partial_t \boldsymbol{G}^{\lessgtr}(t, t') &= -i\boldsymbol{H} \boldsymbol{G}^{\lessgtr}(t, t') \\ \partial_T \boldsymbol{G}^{\lessgtr}(T, 0)_W &= -i[\boldsymbol{H},\boldsymbol{G}^{\lessgtr}(T, 0)_W], \end{align*} ``` where the square brackets denote the commutator, and the Hamiltonian matrix is given by ```math \begin{align*} \boldsymbol{H} &= \begin{pmatrix} \varepsilon_1 & J & & \\ J & \ddots & \ddots & \\ & \ddots & \ddots & J \\ & & J & \varepsilon_L \end{pmatrix}. \end{align*} ``` Remember also that in Wigner coordinates, the "forward" time is defined by ``T = \frac{t+t'}{2}`` and ``\partial_T = \partial_t + \partial_{t'}``. First, we import `KadanoffBaym.jl` alongside Julia's linear-algebra package: ```julia using KadanoffBaym, LinearAlgebra ``` Then, we use the built-in data structure [`GreenFunction`](@ref) to define our lesser and greater Green functions ```julia # Lattice size L = 10 # Allocate the initial lesser and greater Green functions (time arguments at the end) GL = GreenFunction(zeros(ComplexF64, L, L, 1, 1), SkewHermitian) GG = GreenFunction(zeros(ComplexF64, L, L, 1, 1), SkewHermitian) ``` As our initial condition, we put a single electron on lattice site one: ```julia # Initial occupation N_0 = 1.0 GL[1, 1] = zeros(ComplexF64, L, L) GL[1, 1, 1, 1] = 1.0im # Greater function follows from lesser by anti-commutation GG[1, 1] = -im * I(L) + GL[1, 1] ``` Note how accessing [`GreenFunction`](@ref) with only *two* arguments gives the whole matrix at a given time, i.e. `GL[1, 1]` is equivalent to `GL[:, :, 1, 1]`. For illustration, we use a Hamiltonian matrix ``\boldsymbol{H}`` with unit hopping ``J=1`` defined as ```julia # Spacing of energy levels ε = 5e-2 # Hamiltonian with on-site energies and nearest-neighbour hopping H = SymTridiagonal([ε * (i-1) for i in 1:L], -ones(L)) ``` We define the equation of motion in the "vertical" time ``t`` as ```julia # Right-hand side for the "vertical" evolution function fv!(out, times, h1, h2, t1, t2) out[1] = -im * H * GL[t1, t2] out[2] = -im * H * GG[t1, t2] end ``` Finally, the the equation of motion in the "diagonal" time ``T`` follows by subtracting its own adjoint from the vertical equation: ```julia # Right-hand side for the "diagonal" evolution function fd!(out, times, h1, h2, t1, t2) fv!(out, times, h1, h2, t1, t2) out[1] -= adjoint(out[1]) out[2] -= adjoint(out[2]) end ``` Note that the unused arguments `times, h1, h2` are indeed only necessary when solving *interacting* systems (i.e. systems with integrals in their equations of motion). All that remains to be done is give our definitions to [`kbsolve!`](@ref): ```julia # Call the solver @time sol = kbsolve!(fv!, fd!, [GL, GG], (0.0, 20.0); atol=1e-8, rtol=1e-6) ``` When we `plot(sol.t, mapreduce(permutedims, vcat, [imag(diag(GL[t, t])) for t in eachindex(sol.t)]))`, we obtain ![Time-dependent occupations numbers of a ten-site tight-binding model](../assets/TightBinding.png)
KadanoffBaym
https://github.com/NonequilibriumDynamics/KadanoffBaym.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
498
using Documenter, FinEtools, FinEtoolsDeforLinear makedocs( modules = [FinEtoolsDeforLinear], doctest = false, clean = true, warnonly = Documenter.except(:linkcheck, :footnote), format = Documenter.HTML(prettyurls = false), authors = "Petr Krysl", sitename = "FinEtoolsDeforLinear.jl", pages = Any[ "Home" => "index.md", "How to guide" => "guide/guide.md", "Reference" => Any[ "man/man.md"] ] ) deploydocs( repo = "github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git", )
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
290
using Pkg; Pkg.activate("."); Pkg.instantiate(); include(raw"C:\Users\pkonl\Documents\00WIP\FinEtoolsDeforLinear.jl\examples\statics\3-d\solver_examples.jl") using .Main.solver_examples; Main.solver_examples.example_wop(30) using .Main.solver_examples; Main.solver_examples.example_wop(30)
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
6955
module TEST13H_examples using FinEtools using FinEtools.AlgoBaseModule: solve_blocked!, matrix_blocked, vector_blocked using FinEtoolsDeforLinear using LinearAlgebra using Arpack using PGFPlotsX function TEST13H_hva() # Harmonic forced vibration problem is solved for a homogeneous square plate, # simply-supported on the circumference. # This is the TEST 13H from the Abaqus v 6.12 Benchmarks manual. # The test is recommended by the National Agency for Finite Element Methods and Standards (U.K.): # Test 13 from NAFEMS “Selected Benchmarks for Forced Vibration,” R0016, March 1993. # # # The plate is discretized with hexahedral solid elements. The simple support # condition is approximated by distributed rollers on the boundary. # Because only the out of plane displacements are prevented, the structure # has three rigid body modes in the plane of the plate. # # # The nonzero benchmark frequencies are (in hertz): 2.377, 5.961, 5.961, # 9.483, 12.133, 12.133, 15.468, 15.468 [Hz]. println(""" Homogeneous square plate, simply-supported on the circumference from the test 13 from NAFEMS “Selected Benchmarks for Forced Vibration,” R0016, March 1993. The nonzero benchmark frequencies are (in hertz): 2.377, 5.961, 5.961, 9.483, 12.133, 12.133, 15.468, 15.468 [Hz]. """) # t0 = time() E = 200 * phun("GPa")# Young's modulus nu = 0.3# Poisson ratio rho = 8000 * phun("KG*M^-3")# mass density qmagn = 100.0 * phun("Pa") L = 10.0 * phun("M") # side of the square plate t = 0.05 * phun("M") # thickness of the square plate nL = 16 nt = 4 tolerance = t / nt / 100 # neigvs = 11; # OmegaShift = (2*pi*0.5) ^ 2; # to resolve rigid body modes frequencies = vcat(linearspace(0.0, 2.377, 20), linearspace(2.377, 15.0, 70)) # Compute the parameters of Rayleigh damping. For the two selected # frequencies we have the relationship between the damping ratio and # the Rayleigh parameters # $\xi_m=a_0/\omega_m+a_1\omega_m$ # where $m=1,2$. Solving for the Rayleigh parameters $a_0,a_1$ yields: zeta1 = 0.02 zeta2 = 0.02 o1 = 2 * pi * 2.377 o2 = 2 * pi * 15.468 Rayleigh_mass = 2 * (o1 * o2) / (o2^2 - o1^2) * (o2 * zeta1 - o1 * zeta2)# a0 Rayleigh_stiffness = 2 * (o1 * o2) / (o2^2 - o1^2) * (-1 / o2 * zeta1 + 1 / o1 * zeta2)# a1 Rayleigh_mass = Rayleigh_mass Rayleigh_stiffness = Rayleigh_stiffness MR = DeforModelRed3D fens, fes = H8block(L, L, t, nL, nL, nt) geom = NodalField(fens.xyz) u = NodalField(zeros(Complex{Float64}, size(fens.xyz, 1), 3)) # displacement field nl = selectnode(fens, box = [0.0 0.0 -Inf Inf -Inf Inf], inflate = tolerance) setebc!(u, nl, true, 3) nl = selectnode(fens, box = [L L -Inf Inf -Inf Inf], inflate = tolerance) setebc!(u, nl, true, 3) nl = selectnode(fens, box = [-Inf Inf 0.0 0.0 -Inf Inf], inflate = tolerance) setebc!(u, nl, true, 3) nl = selectnode(fens, box = [-Inf Inf L L -Inf Inf], inflate = tolerance) setebc!(u, nl, true, 3) applyebc!(u) numberdofs!(u) println("nfreedofs = $(nfreedofs(u))") material = MatDeforElastIso(MR, rho, E, nu, 0.0) femm = FEMMDeforLinearMSH8(MR, IntegDomain(fes, GaussRule(3, 2)), material) femm = associategeometry!(femm, geom) K = stiffness(femm, geom, u) femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3, 3)), material) M = mass(femm, geom, u) C = Rayleigh_mass * M + Rayleigh_stiffness * K K_ff = matrix_blocked(K, nfreedofs(u), nfreedofs(u))[:ff] M_ff = matrix_blocked(M, nfreedofs(u), nfreedofs(u))[:ff] C_ff = matrix_blocked(C, nfreedofs(u), nfreedofs(u))[:ff] # if true # t0 = time() # d,v,nev,nconv = eigs(K+OmegaShift*M, M; nev=neigvs, which=:SM) # d = d - OmegaShift; # fs = real(sqrt.(complex(d)))/(2*pi) # println("Reference Eigenvalues: $fs [Hz]") # println("eigs solution ($(time() - t0) sec)") # end bdryfes = meshboundary(fes) topbfl = selectelem(fens, bdryfes, facing = true, direction = [0.0 0.0 1.0]) el1femm = FEMMBase(IntegDomain(subset(bdryfes, topbfl), GaussRule(2, 2))) function pfun(forceout::Vector{T}, XYZ, tangents, feid, qpid) where {T} forceout .= [0.0, 0.0, -qmagn] return forceout end fi = ForceIntensity(Float64, 3, pfun) F = distribloads(el1femm, geom, u, fi, 2) F_f = vector_blocked(F, nfreedofs(u))[:f] U_f = zeros(Complex{Flowat64}, nfreedofs(u), length(frequencies)) for k in eachindex(frequencies) frequency = frequencies[k] omega = 2 * pi * frequency U_f[:, k] = (-omega^2 * M_ff + 1im * omega * C_ff + K_ff) \ F_f end midpoint = selectnode(fens, box = [L / 2 L / 2 L / 2 L / 2 0 0], inflate = tolerance) midpointdof = u.dofnums[midpoint, 3] umidAmpl = abs.(U_f[midpointdof, :]) / phun("MM") @pgf _a = SemiLogXAxis( { xlabel = "Frequency [Hz]", ylabel = "Midpoint displacement amplitude [mm]", grid = "major", legend_pos = "south east", title = "Thin plate midpoint Amplitude FRF", }, Plot( {"red", mark = "triangle"}, Table([:x => vec(frequencies), :y => vec(umidAmpl)]), ), LegendEntry("FEA"), ) display(_a) umidReal = real.(U_f[midpointdof, :]) / phun("MM") umidImag = imag.(U_f[midpointdof, :]) / phun("MM") @pgf _a = SemiLogXAxis( { xlabel = "Frequency [Hz]", ylabel = "Displacement amplitude [mm]", grid = "major", legend_pos = "south east", title = "Thin plate midpoint Real/Imag FRF", }, Plot( {"red", mark = "triangle"}, Table([:x => vec(frequencies), :y => vec(umidReal)]), ), LegendEntry("real"), Plot( {"blue", mark = "circle"}, Table([:x => vec(frequencies), :y => vec(umidImag)]), ), LegendEntry("imag"), ) display(_a) umidPhase = atan.(umidImag, umidReal) / pi * 180 @pgf _a = SemiLogXAxis( { xlabel = "Frequency [Hz]", ylabel = "Phase shift [deg]", grid = "major", legend_pos = "south east", title = "Thin plate midpoint Real/Imag FRF", }, Plot( {"red", mark = "triangle"}, Table([:x => vec(frequencies), :y => vec(umidPhase)]), ), LegendEntry("imag"), ) display(_a) true end # TEST13H_hva function allrun() println("#####################################################") println("# TEST13H_hva ") TEST13H_hva() return true end # function allrun @info "All examples may be executed with " println("using .$(@__MODULE__); $(@__MODULE__).allrun()") end # module nothing
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
7087
module TEST13H_in_fluid_examples using FinEtools using FinEtoolsDeforLinear using FinEtoolsDeforLinear.AlgoDeforLinearModule: ssit using LinearAlgebra using Arpack using PGFPlotsX function TEST13H_hva() # Harmonic forced vibration problem is solved for a homogeneous square plate, # simply-supported on the circumference. # This is the TEST 13H from the Abaqus v 6.12 Benchmarks manual. # The test is recommended by the National Agency for Finite Element Methods and Standards (U.K.): # Test 13 from NAFEMS “Selected Benchmarks for Forced Vibration,” R0016, March 1993. # # # The plate is discretized with hexahedral solid elements. The simple support # condition is approximated by distributed rollers on the boundary. # Because only the out of plane displacements are prevented, the structure # has three rigid body modes in the plane of the plate. # # # The nonzero benchmark frequencies are (in hertz): 2.377, 5.961, 5.961, # 9.483, 12.133, 12.133, 15.468, 15.468 [Hz]. println(""" Homogeneous square plate, simply-supported on the circumference, from the test 13 from NAFEMS “Selected Benchmarks for Forced Vibration,” R0016, March 1993. The nonzero benchmark frequencies are (in hertz): 2.377, 5.961, 5.961, 9.483, 12.133, 12.133, 15.468, 15.468 [Hz]. This problem is extended by including fluid-induced damping by the surrounding air using a matrix expressing the ABC with dampers along the boundary. """) # t0 = time() E = 200 * phun("GPa")# Young's modulus nu = 0.3# Poisson ratio rho = 8000 * phun("KG*M^-3")# mass density qmagn = 100.0 * phun("Pa") L = 10.0 * phun("M") # side of the square plate t = 0.05 * phun("M") # thickness of the square plate nL = 16 nt = 4 tolerance = t / nt / 100 # neigvs = 11; # OmegaShift = (2*pi*0.5) ^ 2; # to resolve rigid body modes frequencies = vcat(linearspace(0.0, 2.377, 20), linearspace(2.377, 15.0, 70)) rho_fluid = 1.3 * phun("kg*m^3") c_fluid = 341 * phun("m/s") # Compute the parameters of Rayleigh damping. For the two selected # frequencies we have the relationship between the damping ratio and # the Rayleigh parameters # $\xi_m=a_0/\omega_m+a_1\omega_m$ # where $m=1,2$. Solving for the Rayleigh parameters $a_0,a_1$ yields: zeta1 = 0.02 zeta2 = 0.02 o1 = 2 * pi * 2.377 o2 = 2 * pi * 15.468 Rayleigh_mass = 2 * (o1 * o2) / (o2^2 - o1^2) * (o2 * zeta1 - o1 * zeta2)# a0 Rayleigh_stiffness = 2 * (o1 * o2) / (o2^2 - o1^2) * (-1 / o2 * zeta1 + 1 / o1 * zeta2)# a1 MR = DeforModelRed3D fens, fes = H8block(L, L, t, nL, nL, nt) geom = NodalField(fens.xyz) u = NodalField(zeros(FCplxFlt, size(fens.xyz, 1), 3)) # displacement field nl = selectnode(fens, box = [0.0 0.0 -Inf Inf -Inf Inf], inflate = tolerance) setebc!(u, nl, true, 3) nl = selectnode(fens, box = [L L -Inf Inf -Inf Inf], inflate = tolerance) setebc!(u, nl, true, 3) nl = selectnode(fens, box = [-Inf Inf 0.0 0.0 -Inf Inf], inflate = tolerance) setebc!(u, nl, true, 3) nl = selectnode(fens, box = [-Inf Inf L L -Inf Inf], inflate = tolerance) setebc!(u, nl, true, 3) applyebc!(u) numberdofs!(u) println("nfreedofs = $(u.nfreedofs)") material = MatDeforElastIso(MR, rho, E, nu, 0.0) femm = FEMMDeforLinearMSH8(MR, IntegDomain(fes, GaussRule(3, 2)), material) femm = associategeometry!(femm, geom) K = stiffness(femm, geom, u) femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3, 3)), material) M = mass(femm, geom, u) C = Rayleigh_mass * M + Rayleigh_stiffness * K bfes = meshboundary(fes) sfemm = FEMMDeforSurfaceDamping(IntegDomain(bfes, GaussRule(2, 3))) impedance = rho_fluid * c_fluid D = dampingABC(sfemm, geom, u, impedance, SurfaceNormal(3)) # if true # t0 = time() # d,v,nev,nconv = eigs(K+OmegaShift*M, M; nev=neigvs, which=:SM) # d = d - OmegaShift; # fs = real(sqrt.(complex(d)))/(2*pi) # println("Reference Eigenvalues: $fs [Hz]") # println("eigs solution ($(time() - t0) sec)") # end bdryfes = meshboundary(fes) topbfl = selectelem(fens, bdryfes, facing = true, direction = [0.0 0.0 1.0]) el1femm = FEMMBase(IntegDomain(subset(bdryfes, topbfl), GaussRule(2, 2))) function pfun( forceout::FVec{T}, XYZ::FFltMat, tangents::FFltMat, fe_label::FInt, ) where {T} forceout .= [0.0, 0.0, -qmagn] return forceout end fi = ForceIntensity(Float64, 3, pfun) F = distribloads(el1femm, geom, u, fi, 2) U1 = zeros(FCplxFlt, u.nfreedofs, length(frequencies)) for k in eachindex(frequencies) frequency = frequencies[k] omega = 2 * pi * frequency U1[:, k] = (-omega^2 * M + 1im * omega * (C + D) + K) \ F end midpoint = selectnode(fens, box = [L / 2 L / 2 L / 2 L / 2 0 0], inflate = tolerance) midpointdof = u.dofnums[midpoint, 3] umidAmpl = abs.(U1[midpointdof, :]) / phun("MM") @pgf _a = SemiLogXAxis( { xlabel = "Frequency [Hz]", ylabel = "Midpoint displacement amplitude [mm]", grid = "major", legend_pos = "south east", title = "Thin plate midpoint Amplitude FRF", }, Plot( {"red", mark = "triangle"}, Table([:x => vec(frequencies), :y => vec(umidAmpl)]), ), LegendEntry("FEA"), ) display(_a) umidReal = real.(U1[midpointdof, :]) / phun("MM") umidImag = imag.(U1[midpointdof, :]) / phun("MM") @pgf _a = SemiLogXAxis( { xlabel = "Frequency [Hz]", ylabel = "Displacement amplitude [mm]", grid = "major", legend_pos = "south east", title = "Thin plate midpoint Real/Imag FRF", }, Plot( {"red", mark = "triangle"}, Table([:x => vec(frequencies), :y => vec(umidReal)]), ), LegendEntry("real"), Plot( {"blue", mark = "circle"}, Table([:x => vec(frequencies), :y => vec(umidImag)]), ), LegendEntry("imag"), ) display(_a) umidPhase = atan.(umidImag, umidReal) / pi * 180 @pgf _a = SemiLogXAxis( { xlabel = "Frequency [Hz]", ylabel = "Phase shift [deg]", grid = "major", legend_pos = "south east", title = "Thin plate midpoint Real/Imag FRF", }, Plot( {"red", mark = "triangle"}, Table([:x => vec(frequencies), :y => vec(umidPhase)]), ), LegendEntry("imag"), ) display(_a) true end # TEST13H_hva function allrun() println("#####################################################") println("# TEST13H_hva ") TEST13H_hva() return true end # function allrun @info "All examples may be executed with " println("using .$(@__MODULE__); $(@__MODULE__).allrun()") end # module nothing
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
7008
module TEST13H_in_water_examples using FinEtools using FinEtoolsDeforLinear using FinEtoolsDeforLinear.AlgoDeforLinearModule: ssit using LinearAlgebra using Arpack using PGFPlotsX function TEST13H_hva() # Harmonic forced vibration problem is solved for a homogeneous square plate, # simply-supported on the circumference. # This is the TEST 13H from the Abaqus v 6.12 Benchmarks manual. # The test is recommended by the National Agency for Finite Element Methods and Standards (U.K.): # Test 13 from NAFEMS “Selected Benchmarks for Forced Vibration,” R0016, March 1993. # # # The plate is discretized with hexahedral solid elements. The simple support # condition is approximated by distributed rollers on the boundary. # Because only the out of plane displacements are prevented, the structure # has three rigid body modes in the plane of the plate. # # # The nonzero benchmark frequencies are (in hertz): 2.377, 5.961, 5.961, # 9.483, 12.133, 12.133, 15.468, 15.468 [Hz]. println(""" Homogeneous square plate, simply-supported on the circumference from the test 13 from NAFEMS “Selected Benchmarks for Forced Vibration,” R0016, March 1993. The nonzero benchmark frequencies are (in hertz): 2.377, 5.961, 5.961, 9.483, 12.133, 12.133, 15.468, 15.468 [Hz]. """) # t0 = time() E = 200 * phun("GPa")# Young's modulus nu = 0.3# Poisson ratio rho = 8000 * phun("KG*M^-3")# mass density qmagn = 100.0 * phun("Pa") L = 10.0 * phun("M") # side of the square plate t = 0.05 * phun("M") # thickness of the square plate nL = 16 nt = 4 tolerance = t / nt / 100 # neigvs = 11; # OmegaShift = (2*pi*0.5) ^ 2; # to resolve rigid body modes frequencies = vcat(linearspace(0.0, 2.377, 20), linearspace(2.377, 15.0, 70)) rho_water = 1000 * phun("kg*m^3") c_water = 1500 * phun("m/s") # Compute the parameters of Rayleigh damping. For the two selected # frequencies we have the relationship between the damping ratio and # the Rayleigh parameters # $\xi_m=a_0/\omega_m+a_1\omega_m$ # where $m=1,2$. Solving for the Rayleigh parameters $a_0,a_1$ yields: zeta1 = 0.02 zeta2 = 0.02 o1 = 2 * pi * 2.377 o2 = 2 * pi * 15.468 Rayleigh_mass = 2 * (o1 * o2) / (o2^2 - o1^2) * (o2 * zeta1 - o1 * zeta2)# a0 Rayleigh_stiffness = 2 * (o1 * o2) / (o2^2 - o1^2) * (-1 / o2 * zeta1 + 1 / o1 * zeta2)# a1 Rayleigh_mass = Rayleigh_mass Rayleigh_stiffness = Rayleigh_stiffness MR = DeforModelRed3D fens, fes = H8block(L, L, t, nL, nL, nt) geom = NodalField(fens.xyz) u = NodalField(zeros(FCplxFlt, size(fens.xyz, 1), 3)) # displacement field nl = selectnode(fens, box = [0.0 0.0 -Inf Inf -Inf Inf], inflate = tolerance) setebc!(u, nl, true, 3) nl = selectnode(fens, box = [L L -Inf Inf -Inf Inf], inflate = tolerance) setebc!(u, nl, true, 3) nl = selectnode(fens, box = [-Inf Inf 0.0 0.0 -Inf Inf], inflate = tolerance) setebc!(u, nl, true, 3) nl = selectnode(fens, box = [-Inf Inf L L -Inf Inf], inflate = tolerance) setebc!(u, nl, true, 3) applyebc!(u) numberdofs!(u) println("nfreedofs = $(u.nfreedofs)") material = MatDeforElastIso(MR, rho, E, nu, 0.0) femm = FEMMDeforLinearMSH8(MR, IntegDomain(fes, GaussRule(3, 2)), material) femm = associategeometry!(femm, geom) K = stiffness(femm, geom, u) femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3, 3)), material) M = mass(femm, geom, u) C = Rayleigh_mass * M + Rayleigh_stiffness * K bfes = meshboundary(fes) sfemm = FEMMDeforSurfaceDamping(IntegDomain(bfes, GaussRule(2, 3))) impedance = rho_water * c_water D = dampingABC(sfemm, geom, u, impedance, SurfaceNormal(3)) # if true # t0 = time() # d,v,nev,nconv = eigs(K+OmegaShift*M, M; nev=neigvs, which=:SM) # d = d - OmegaShift; # fs = real(sqrt.(complex(d)))/(2*pi) # println("Reference Eigenvalues: $fs [Hz]") # println("eigs solution ($(time() - t0) sec)") # end bdryfes = meshboundary(fes) topbfl = selectelem(fens, bdryfes, facing = true, direction = [0.0 0.0 1.0]) el1femm = FEMMBase(IntegDomain(subset(bdryfes, topbfl), GaussRule(2, 2))) function pfun( forceout::FVec{T}, XYZ::FFltMat, tangents::FFltMat, fe_label::FInt, ) where {T} forceout .= [0.0, 0.0, -qmagn] return forceout end fi = ForceIntensity(Float64, 3, pfun) F = distribloads(el1femm, geom, u, fi, 2) U1 = zeros(FCplxFlt, u.nfreedofs, length(frequencies)) for k in eachindex(frequencies) frequency = frequencies[k] omega = 2 * pi * frequency U1[:, k] = (-omega^2 * M + 1im * omega * (C + D) + K) \ F end midpoint = selectnode(fens, box = [L / 2 L / 2 L / 2 L / 2 0 0], inflate = tolerance) midpointdof = u.dofnums[midpoint, 3] umidAmpl = abs.(U1[midpointdof, :]) / phun("MM") @pgf _a = SemiLogXAxis( { xlabel = "Frequency [Hz]", ylabel = "Midpoint displacement amplitude [mm]", grid = "major", legend_pos = "south east", title = "Thin plate midpoint Amplitude FRF", }, Plot( {"red", mark = "triangle"}, Table([:x => vec(frequencies), :y => vec(umidAmpl)]), ), LegendEntry("FEA"), ) display(_a) umidReal = real.(U1[midpointdof, :]) / phun("MM") umidImag = imag.(U1[midpointdof, :]) / phun("MM") @pgf _a = SemiLogXAxis( { xlabel = "Frequency [Hz]", ylabel = "Displacement amplitude [mm]", grid = "major", legend_pos = "south east", title = "Thin plate midpoint Real/Imag FRF", }, Plot( {"red", mark = "triangle"}, Table([:x => vec(frequencies), :y => vec(umidReal)]), ), LegendEntry("real"), Plot( {"blue", mark = "circle"}, Table([:x => vec(frequencies), :y => vec(umidImag)]), ), LegendEntry("imag"), ) display(_a) umidPhase = atan.(umidImag, umidReal) / pi * 180 @pgf _a = SemiLogXAxis( { xlabel = "Frequency [Hz]", ylabel = "Phase shift [deg]", grid = "major", legend_pos = "south east", title = "Thin plate midpoint Real/Imag FRF", }, Plot( {"red", mark = "triangle"}, Table([:x => vec(frequencies), :y => vec(umidPhase)]), ), LegendEntry("imag"), ) display(_a) true end # TEST13H_hva function allrun() println("#####################################################") println("# TEST13H_hva ") TEST13H_hva() return true end # function allrun @info "All examples may be executed with " println("using .$(@__MODULE__); $(@__MODULE__).allrun()") end # module nothing
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
5424
module NAFEMS_examples using FinEtools using FinEtools.AlgoBaseModule: solve_blocked!, matrix_blocked, vector_blocked using FinEtoolsDeforLinear using FinEtoolsDeforLinear.AlgoDeforLinearModule using LinearAlgebra using Arpack function NAFEMS_FV32_algo() println(""" FV32: Cantilevered tapered membrane This is a test recommended by the National Agency for Finite Element Methods and Standards (U.K.): Test FV32 from NAFEMS publication TNSB, Rev. 3, “The Standard NAFEMS Benchmarks,” October 1990. Reference solution: 44.623 130.03 162.70 246.05 379.90 391.44 for the first six modes. """) t0 = time() E = 200 * phun("GPA") nu = 0.3 rho = 8000 * phun("KG/M^3") L = 10 * phun("M") W0 = 5 * phun("M") WL = 1 * phun("M") nL, nW = 28, 14 # How many element edges per side? neigvs = 10 # how many eigenvalues Reffs = [44.623 130.03 162.70 246.05 379.90 391.44] fens, fes = Q8block(1.0, 2.0, nL, nW) for i = 1:count(fens) xi, eta = fens.xyz[i, :] eta = eta - 1.0 fens.xyz[i, :] .= (xi * L, eta * (1.0 - 0.8 * xi) * W0 / 2) end # File = "mesh.vtk" # vtkexportmesh(File, fens, fes) # @async run(`"paraview.exe" $File`) # Make the region MR = DeforModelRed2DStress material = MatDeforElastIso(MR, rho, E, nu, 0.0) region1 = FDataDict( "femm" => FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(2, 2)), material), "femm_mass" => FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(2, 3)), material), ) nl1 = selectnode(fens; plane = [1.0 0.0 0.0], thickness = L / 1.0e4) ebc1 = FDataDict("node_list" => nl1, "component" => 1, "displacement" => 0.0) ebc2 = FDataDict("node_list" => nl1, "component" => 2, "displacement" => 0.0) # Make model data modeldata = FDataDict( "fens" => fens, "regions" => [region1], "essential_bcs" => [ebc1 ebc2], "neigvs" => neigvs, ) # Solve modeldata = AlgoDeforLinearModule.modal(modeldata) fs = modeldata["omega"] / (2 * pi) println("Frequencies: $(fs[1:6]) [Hz]") println("Percentage frequency errors: $((vec(fs[1:6]) - vec(Reffs))./vec(Reffs)*100)") modeldata["postprocessing"] = FDataDict("file" => "FV32-modes", "mode" => 1:10) modeldata = AlgoDeforLinearModule.exportmode(modeldata) @async run(`"paraview.exe" $(modeldata["postprocessing"]["file"]*"1.vtk")`) true end # NAFEMS_FV32_algo function NAFEMS_FV32_algo_interior() println(""" FV32: Cantilevered tapered membrane This is a test recommended by the National Agency for Finite Element Methods and Standards (U.K.): Test FV32 from NAFEMS publication TNSB, Rev. 3, “The Standard NAFEMS Benchmarks,” October 1990. Reference solution: 44.623 130.03 162.70 246.05 379.90 391.44 for the first six modes. """) t0 = time() E = 200 * phun("GPA") nu = 0.3 rho = 8000 * phun("KG/M^3") L = 10 * phun("M") W0 = 5 * phun("M") WL = 1 * phun("M") nL, nW = 28, 14 # How many element edges per side? neigvs = 10 # how many eigenvalues Reffs = [44.623 130.03 162.70 246.05 379.90 391.44] fens, fes = Q8block(1.0, 2.0, nL, nW) for i = 1:count(fens) xi, eta = fens.xyz[i, :] eta = eta - 1.0 fens.xyz[i, :] .= (xi * L, eta * (1.0 - 0.8 * xi) * W0 / 2) end # File = "mesh.vtk" # vtkexportmesh(File, fens, fes) # @async run(`"paraview.exe" $File`) # Make the region MR = DeforModelRed2DStress material = MatDeforElastIso(MR, rho, E, nu, 0.0) region1 = FDataDict( "femm" => FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(2, 2)), material), "femm_mass" => FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(2, 3)), material), ) nl1 = selectnode(fens; plane = [1.0 0.0 0.0], thickness = L / 1.0e4) ebc1 = FDataDict("node_list" => nl1, "component" => 1, "displacement" => 0.0) ebc2 = FDataDict("node_list" => nl1, "component" => 2, "displacement" => 0.0) nl2 = connectednodes(meshboundary(fes)) ebc3 = FDataDict("node_list" => nl2, "component" => 1, "displacement" => 0.0) ebc4 = FDataDict("node_list" => nl2, "component" => 2, "displacement" => 0.0) # Make model data modeldata = FDataDict( "fens" => fens, "regions" => [region1], "essential_bcs" => [ebc1 ebc2 ebc3 ebc4], "neigvs" => neigvs, ) # Solve modeldata = AlgoDeforLinearModule.modal(modeldata) fs = modeldata["omega"] / (2 * pi) println("Frequencies: $(fs[1:6]) [Hz]") println("Percentage frequency errors: $((vec(fs[1:6]) - vec(Reffs))./vec(Reffs)*100)") modeldata["postprocessing"] = FDataDict("file" => "FV32-modes", "mode" => 1:10) modeldata = AlgoDeforLinearModule.exportmode(modeldata) @async run(`"paraview.exe" $(modeldata["postprocessing"]["file"]*"1.vtk")`) true end # NAFEMS_FV32_algo function allrun() println("#####################################################") println("# NAFEMS_FV32_algo ") NAFEMS_FV32_algo() println("#####################################################") println("# NAFEMS_FV32_algo_interior ") NAFEMS_FV32_algo_interior() return true end # function allrun @info "All examples may be executed with " println("using .$(@__MODULE__); $(@__MODULE__).allrun()") end # module nothing
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
5301
module ESNICE_examples using Statistics using FinEtools using FinEtools.MeshImportModule using FinEtools.MeshExportModule using FinEtoolsDeforLinear using LinearAlgebra: dot using Arpack using LinearAlgebra using SparseArrays using PGFPlotsX using Test using StatsBase function ESNICE_energies() E = 1e6 * phun("PA") nu = 0.0 L = 2 * phun("M") hs = L * collect(10 .^ range(-4.0, stop = 0.0, length = 10)) mag = 0.001 rs = Float64[] PEs = Float64[] APEs = Float64[] for h in hs xs = collect(linearspace(0.0, L, 2)) ys = collect(linearspace(0.0, h, 2)) zs = collect(linearspace(0.0, h, 2)) global fens global fes fens, fes = T4blockx(xs, ys, zs, :a) fens.xyz[:, 3] .-= h / 2 MR = DeforModelRed3D global geom = NodalField(fens.xyz) global u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field numberdofs!(u) l1 = selectnode(fens; plane = [1.0 0.0 0.0 0.0], thickness = h / 1000) for i in l1 x, y, z = geom.values[i, :] u.values[i, 1] = z * mag end l1 = selectnode(fens; plane = [1.0 0.0 0.0 L], thickness = h / 1000) for i in l1 x, y, z = geom.values[i, :] u.values[i, 1] = -z * mag end @show h, u.values material = MatDeforElastIso(MR, E, nu) global femm = FEMMDeforLinear(MR, IntegDomain(fes, TetRule(1)), material) associategeometry!(femm, geom) K = stiffness(femm, geom, u) U = gathersysvec(u) PE = dot(U, K * U) / 2.0 push!(PEs, PE) I = h * h^3 / 12 APE = 2 * E * I * mag^2 / L push!(APEs, APE) # ars = [] # for i = 1:count(fes) # res = FinEtoolsDeforLinear.FEMMDeforLinearESNICEModule.aspectratio(geom.values[collect(fes.conn[i]), :]) # ar = sort([res[1], res[2], res[3], res[4]]) # push!(ars, mean([ar[2:3]...])) # end # @show h/L, ars # push!(rs, minimum(ars)) push!(rs, h / L) end @show rPE = PEs ./ APEs # Least-squares fit A = hcat([-log10(r) for r in rs], [-1 for r in rPE]) b = [log10(r - 1) for r in rPE] p = A \ b @show p a = p[1] b = 10^p[2] @show a, b @pgf a = Axis( { xlabel = "Aspect ratio", ylabel = "Relative Potential Energy", grid = "major", legend_pos = "north east", }, Plot({color = "red"}, Table([:x => log10.(vec(rs)), :y => log10.(vec(rPE))])), Plot( {"only marks", mark = "x"}, Table([ :x => log10.(vec(rs)), :y => log10.(vec([1 / (b * r^a) + 1 for r in rs])), ]), ), ) display(a) # fld = fieldfromintegpoints(femm, geom, u, :Cauchy, 1) # File = "mt4energy2.vtk" # vtkexportmesh(File, fens, fes; scalars=[("sigmax", fld.values)], vectors=[("u", u.values)]) # @async run(`"paraview.exe" $File`) true end function ESNICE_vibration() E = 70000 * phun("MPa") nu = 0.33 rho = 2700 * phun("KG/M^3") radius = 0.5 * phun("ft") neigvs = 20 # how many eigenvalues OmegaShift = (10.0 * 2 * pi)^2 MR = DeforModelRed3D output = import_ABAQUS(joinpath(@__DIR__, "alum_cyl.inp")) fens, fes = output["fens"], output["fesets"][1] fens.xyz .*= phun("mm") # The input is provided in SI(mm) units fens, fes = T10toT4(fens, fes) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field numberdofs!(u) material = MatDeforElastIso(MR, rho, E, nu, 0.0) femm = FEMMDeforLinearESNICET4(MR, IntegDomain(fes, NodalSimplexRule(3)), material) associategeometry!(femm, geom) @show minimum(vec(femm.nphis)), maximum(vec(femm.nphis)) @pgf a = Axis( { xlabel = "Entity", ylabel = "Stabilization factor", grid = "major", legend_pos = "north east", }, Plot({mark = "circle"}, Table([:x => vec(1:count(fes)), :y => vec(femm.ephis)])), ) display(a) K = stiffness(femm, geom, u) M = mass(femm, geom, u) d, v, nconv = eigs(K + OmegaShift * M, M; nev = neigvs, which = :SM, explicittransform = :none) d = d .- OmegaShift fs = real(sqrt.(complex(d))) / (2 * pi) println("Eigenvalues: $fs [Hz]") vectors = [] for i = 7:length(fs) scattersysvec!(u, v[:, i]) push!(vectors, ("Mode_$i", deepcopy(u.values))) end File = "alum_cyl_mode_shapes.vtk" vtkexportmesh( File, connasarray(fes), fens.xyz, FinEtools.MeshExportModule.VTK.T4; vectors = vectors, ) @async run(`"paraview.exe" $File`) true end # function function allrun() println("#####################################################") println("# ESNICE_energies ") ESNICE_energies() println("#####################################################") println("# ESNICE_vibration ") ESNICE_vibration() return true end # function allrun @info "All examples may be executed with " println("using .$(@__MODULE__); $(@__MODULE__).allrun()") end # module nothing
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
2209
module FV12_plate_examples using Statistics using FinEtools using FinEtools.MeshImportModule using FinEtools.MeshExportModule using FinEtoolsDeforLinear using SubSIt using LinearAlgebra: dot using Arpack using LinearAlgebra using SparseArrays # using PGFPlotsX using Test E = 200e3 * phun("MPa") nu = 0.3 rho = 8000 * phun("KG/M^3") L = 10.00 * phun("M") t = 0.05 * phun("M") nL = 8 nt = 4 neigvs = 14 # how many eigenvalues OmegaShift = (1.0 * 2 * pi)^2 # Fundamental frequency f_analytical = [0 0 0 0 0 0 1.622 2.360 2.922 4.190 4.190 7.356 7.356 7.668] function FV12_plate_esnice() global a, b, h, na, nb, nh MR = DeforModelRed3D fens, fes = T4block(L, L, t, nL, nL, nt) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field numberdofs!(u) material = MatDeforElastIso(MR, rho, E, nu, 0.0) femm = FEMMDeforLinearESNICET4(MR, IntegDomain(fes, NodalSimplexRule(3)), material) associategeometry!(femm, geom) K = stiffness(femm, geom, u) M = mass(femm, geom, u) d, v, nconv = eigs(K + OmegaShift * M, M; nev = neigvs, which = :SM) d = d .- OmegaShift fs = real(sqrt.(complex(d))) / (2 * pi) println("Eigenvalues: $fs [Hz]") println("f/f_analytical % = $(fs[7:10] ./ f_analytical[7:10] .* 100) %") vectors = [] for i = 7:length(fs) scattersysvec!(u, v[:, i]) push!(vectors, ("Mode_$i", deepcopy(u.values))) end File = "rectangular_plate_esnice.vtk" vtkexportmesh( File, connasarray(fes), fens.xyz, FinEtools.MeshExportModule.VTK.T4; vectors = vectors, ) @async run(`"paraview.exe" $File`) d, v, nconv = SubSIt.ssit(K + OmegaShift * M, M; nev = neigvs) d = d .- OmegaShift fs = real(sqrt.(complex(d))) / (2 * pi) println("Eigenvalues: $fs [Hz]") true end # function function allrun() println("#####################################################") println("# FV12_plate_esnice ") FV12_plate_esnice() return true end # function allrun @info "All examples may be executed with " println("using .$(@__MODULE__); $(@__MODULE__).allrun()") end # module nothing
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
6326
module NAFEMS_examples using FinEtools using FinEtools.AlgoBaseModule: solve_blocked!, matrix_blocked, vector_blocked using FinEtoolsDeforLinear using FinEtoolsDeforLinear.AlgoDeforLinearModule using LinearAlgebra using Arpack function NAFEMS_FV32_algo() println(""" FV32: Cantilevered tapered membrane This is a test recommended by the National Agency for Finite Element Methods and Standards (U.K.): Test FV32 from NAFEMS publication TNSB, Rev. 3, “The Standard NAFEMS Benchmarks,” October 1990. Reference solution: 44.623 130.03 162.70 246.05 379.90 391.44 for the first six modes. """) t0 = time() E = 200 * phun("GPA") nu = 0.3 rho = 8000 * phun("KG/M^3") L = 10 * phun("M") W0 = 5 * phun("M") WL = 1 * phun("M") H = 0.05 * phun("M") nL, nW, nH = 8, 4, 1# How many element edges per side? neigvs = 20 # how many eigenvalues Reffs = [44.623 130.03 162.70 246.05 379.90 391.44] fens, fes = H20block(1.0, 2.0, 1.0, nL, nW, nH) for i = 1:count(fens) xi, eta, theta = fens.xyz[i, :] eta = eta - 1.0 fens.xyz[i, :] = [xi * L eta * (1.0 - 0.8 * xi) * W0 / 2 theta * H / 2] end # File = "mesh.vtk" # vtkexportmesh(File, fens, fes) # @async run(`"paraview.exe" $File`) # Make the region MR = DeforModelRed3D material = MatDeforElastIso(MR, rho, E, nu, 0.0) region1 = FDataDict( "femm" => FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3, 2)), material), "femm_mass" => FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3, 3)), material), ) nl1 = selectnode(fens; plane = [1.0 0.0 0.0 0.0], thickness = H / 1.0e4) ebc1 = FDataDict("node_list" => nl1, "component" => 1, "displacement" => 0.0) ebc2 = FDataDict("node_list" => nl1, "component" => 2, "displacement" => 0.0) ebc3 = FDataDict("node_list" => nl1, "component" => 3, "displacement" => 0.0) nl4 = selectnode(fens; plane = [0.0 0.0 1.0 0.0], thickness = H / 1.0e4) ebc4 = FDataDict("node_list" => nl4, "component" => 3, "displacement" => 0.0) # Make model data modeldata = FDataDict( "fens" => fens, "regions" => [region1], "essential_bcs" => [ebc1 ebc2 ebc3 ebc4], "neigvs" => neigvs, ) # Solve modeldata = AlgoDeforLinearModule.modal(modeldata) fs = modeldata["omega"] / (2 * pi) println("Frequencies: $(fs[1:6]) [Hz]") println("Percentage frequency errors: $((vec(fs[1:6]) - vec(Reffs))./vec(Reffs)*100)") modeldata["postprocessing"] = FDataDict("file" => "FV32-modes", "mode" => 1:10) modeldata = AlgoDeforLinearModule.exportmode(modeldata) @async run(`"paraview.exe" $(modeldata["postprocessing"]["file"]*"1.vtk")`) true end # NAFEMS_FV32_algo function NAFEMS_TEST13H_vib() # Harmonic forced vibration problem is solved for a homogeneous square plate, # simply-supported on the circumference. # This is the TEST 13H from the Abaqus v 6.12 Benchmarks manual. # The test is recommended by the National Agency for Finite Element Methods and Standards (U.K.): # Test 13 from NAFEMS “Selected Benchmarks for Forced Vibration,” R0016, March 1993. # # # The plate is discretized with hexahedral solid elements. The simple support # condition is approximated by distributed rollers on the boundary. # Because only the out of plane displacements are prevented, the structure # has three rigid body modes in the plane of the plate. # # # The nonzero benchmark frequencies are (in hertz): 2.377, 5.961, 5.961, # 9.483, 12.133, 12.133, 15.468, 15.468 [Hz]. println(""" Homogeneous square plate, simply-supported on the circumference from the test 13 from NAFEMS “Selected Benchmarks for Forced Vibration,” R0016, March 1993. The nonzero benchmark frequencies are (in hertz): 2.377, 5.961, 5.961, 9.483, 12.133, 12.133, 15.468, 15.468 [Hz]. """) # t0 = time() E = 200 * phun("GPa")# Young's modulus nu = 0.3# Poisson ratio rho = 8000 * phun("KG*M^-3")# mass density L = 10.0 * phun("M") # side of the square plate t = 0.05 * phun("M") # thickness of the square plate nL = 8 nt = 4 tolerance = t / nt / 100 neigvs = 11 OmegaShift = (2 * pi * 0.5)^2 # to resolve rigid body modes MR = DeforModelRed3D fens, fes = H8block(L, L, t, nL, nL, nt) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field nl = selectnode(fens, box = [0.0 0.0 -Inf Inf -Inf Inf], inflate = tolerance) setebc!(u, nl, true, 3) nl = selectnode(fens, box = [L L -Inf Inf -Inf Inf], inflate = tolerance) setebc!(u, nl, true, 3) nl = selectnode(fens, box = [-Inf Inf 0.0 0.0 -Inf Inf], inflate = tolerance) setebc!(u, nl, true, 3) nl = selectnode(fens, box = [-Inf Inf L L -Inf Inf], inflate = tolerance) setebc!(u, nl, true, 3) applyebc!(u) numberdofs!(u) println("nfreedofs = $(nfreedofs(u))") material = MatDeforElastIso(MR, rho, E, nu, 0.0) femm = FEMMDeforLinearMSH8(MR, IntegDomain(fes, GaussRule(3, 2)), material) femm = associategeometry!(femm, geom) K = stiffness(femm, geom, u) femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3, 3)), material) M = mass(femm, geom, u) K_ff = matrix_blocked(K, nfreedofs(u))[:ff] M_ff = matrix_blocked(M, nfreedofs(u))[:ff] if true t0 = time() d, v, nev, nconv = eigs( K_ff + OmegaShift * M_ff, M_ff; nev = neigvs, which = :SM, explicittransform = :none, ) d = d .- OmegaShift fs = real(sqrt.(complex(d))) / (2 * pi) println("Reference frequencies: $fs [Hz]") println("eigs solution ($(time() - t0) sec)") end true end # NAFEMS_TEST13H_vib function allrun() println("#####################################################") println("# NAFEMS_FV32_algo ") NAFEMS_FV32_algo() println("#####################################################") println("# NAFEMS_TEST13H_vib ") NAFEMS_TEST13H_vib() return true end # function allrun @info "All examples may be executed with " println("using .$(@__MODULE__); $(@__MODULE__).allrun()") end # module nothing
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
17739
module alum_cyl_mode_examples using FinEtools using FinEtools.AlgoBaseModule: solve_blocked!, matrix_blocked, vector_blocked using FinEtools.MeshExportModule using FinEtoolsDeforLinear using FinEtoolsDeforLinear.FEMMDeforLinearESNICEModule using LinearAlgebra using Arpack E = 70000 * phun("MPa") nu = 0.33 rho = 2700 * phun("KG/M^3") R = 0.5 * phun("ft") L = 2.0 * phun("ft") neigvs = 200 # how many eigenvalues OmegaShift = (2 * pi * 2500.0)^2 nR, nL = 10 * [1, 4] # Mesh alum_cyl.inp # Abaqus with the Standard isoparametric C3D4 tetrahedron: C3D4 = [ 1 0 2 0 3 6.63586E-005 4 0.000171053 5 0.000211299 6 0.000244378 7 2564.63 8 2568.09 9 2597.26 10 4094.38 11 4714.36 12 4717.19 13 5181.98 14 6865.13 15 6868.17 16 6962.86 17 6965.67 18 7024.97 19 7029.44 20 7108.54 ] # Abaqus with the standard quadratic tetrahedron: C3D10 = [ 1 0 2 0 3 0 4 0.000139365 5 0.000221551 6 0.000291805 7 2546.81 8 2546.81 9 2560.69 10 4100 11 4693.55 12 4693.56 13 5121.57 14 6841.21 15 6841.24 16 6914.22 17 6914.23 18 6950.64 19 6950.66 20 7000.64 ] function __fullcylinder(R, L, nR = 5, nL = 20, tet10 = false) nR = Int(round(nR)) nL = Int(round(nL)) fens, fes = T4quartercyln(R, L, nR, nL) renumb = (c) -> c[[1, 3, 2, 4]] if tet10 renumb = (c) -> c[[1, 3, 2, 4, 7, 6, 5, 8, 10, 9]] fens, fes = T4toT10(fens, fes) end bfes = meshboundary(fes) el = selectelem(fens, bfes, facing = true, direction = [1.0, 1.0, 0.0]) cbfes = subset(bfes, el) for i = 1:count(cbfes) for k in cbfes.conn[i] fens.xyz[k, 1:2] = fens.xyz[k, 1:2] * R / norm(fens.xyz[k, 1:2]) end end fens1, fes1 = mirrormesh(fens, fes, [0.0, -1.0, 0.0], [0.0, 0.0, 0.0], renumb = renumb) meshes = Array{Tuple{FENodeSet,AbstractFESet},1}() push!(meshes, (fens, fes)) push!(meshes, (fens1, fes1)) fens, fesa = mergenmeshes(meshes, 0.0001) fes = cat(fesa[1], fesa[2]) fens1, fes1 = mirrormesh(fens, fes, [-1.0, 0.0, 0.0], [0.0, 0.0, 0.0], renumb = renumb) meshes = Array{Tuple{FENodeSet,AbstractFESet},1}() push!(meshes, (fens, fes)) push!(meshes, (fens1, fes1)) fens, fesa = mergenmeshes(meshes, 0.0001) fes = cat(fesa[1], fesa[2]) return fens, fes end function alum_cyl_modal_t4() tet10 = false nip = 1 fens, fes = __fullcylinder(R, L, nR, nL, tet10) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) numberdofs!(u) MR = DeforModelRed3D material = MatDeforElastIso(MR, rho, E, nu, 0.0) femm = FEMMDeforLinear(MR, IntegDomain(fes, TetRule(nip)), material) associategeometry!(femm, geom) K = stiffness(femm, geom, u) M = mass(femm, geom, u) K_ff = matrix_blocked(K, nfreedofs(u), nfreedofs(u))[:ff] M_ff = matrix_blocked(M, nfreedofs(u), nfreedofs(u))[:ff] d, v, nev, nconv = eigs( Symmetric(K_ff + OmegaShift * M_ff), Symmetric(M_ff); nev = neigvs, which = :SM, explicittransform = :none, ) d = d .- OmegaShift fs = real(sqrt.(complex(d))) / (2 * pi) println("alum_cyl_modal_t4") println("Eigenvalues: $fs [Hz]") mode = neigvs scattersysvec!(u, v[:, mode]) File = "alum_cyl_modal_t4-$mode.vtk" vtkexportmesh(File, fens, fes; vectors = [("mode$mode", u.values)]) # @async run(`"paraview.exe" $File`) true end # alum_cyl_modes function alum_cyl_modal_t10() tet10 = true nip = 4 fens, fes = __fullcylinder(R, L, nR / 2, nL / 2, tet10) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) numberdofs!(u) MR = DeforModelRed3D material = MatDeforElastIso(MR, rho, E, nu, 0.0) femm = FEMMDeforLinear(MR, IntegDomain(fes, TetRule(nip)), material) associategeometry!(femm, geom) K = stiffness(femm, geom, u) M = mass(femm, geom, u) K_ff = matrix_blocked(K, nfreedofs(u), nfreedofs(u))[:ff] M_ff = matrix_blocked(M, nfreedofs(u), nfreedofs(u))[:ff] d, v, nev, nconv = eigs( Symmetric(K_ff + OmegaShift * M_ff), Symmetric(M_ff); nev = neigvs, which = :SM, explicittransform = :none, ) d = d .- OmegaShift fs = real(sqrt.(complex(d))) / (2 * pi) println("alum_cyl_modal_t10") println("Eigenvalues: $fs [Hz]") mode = neigvs scattersysvec!(u, v[:, mode]) File = "alum_cyl_modal_t10-$mode.vtk" vtkexportmesh(File, fens, fes; vectors = [("mode$mode", u.values)]) true end # alum_cyl_modes function alum_cyl_modal_esnicet4() tet10 = false nip = 1 fens, fes = __fullcylinder(R, L, nR, nL, tet10) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) numberdofs!(u) MR = DeforModelRed3D material = MatDeforElastIso(MR, rho, E, nu, 0.0) femm = FEMMDeforLinearESNICET4(MR, IntegDomain(fes, NodalSimplexRule(3)), material) associategeometry!(femm, geom; stabilization_parameters = (2.0, 3.0)) K = stiffness(femm, geom, u) M = mass(femm, geom, u) K_ff = matrix_blocked(K, nfreedofs(u), nfreedofs(u))[:ff] M_ff = matrix_blocked(M, nfreedofs(u), nfreedofs(u))[:ff] d, v, nev, nconv = eigs( Symmetric(K_ff + OmegaShift * M_ff), Symmetric(M_ff); nev = neigvs, which = :SM, explicittransform = :none, ) d = d .- OmegaShift fs = real(sqrt.(complex(d))) / (2 * pi) println("alum_cyl_modal_esnicet4") println("Eigenvalues: $fs [Hz]") mode = neigvs scattersysvec!(u, v[:, mode]) File = "alum_cyl_modal_esnicet4-$mode.vtk" vtkexportmesh(File, fens, fes; vectors = [("mode$mode", u.values)]) # @async run(`"paraview.exe" $File`) true end # alum_cyl_modes function alum_cyl_modal_h20() fens, fes = H8cylindern(R, L, Int(nR / 2), Int(nL / 2)) fens, fes = H8toH20(fens, fes) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) numberdofs!(u) MR = DeforModelRed3D material = MatDeforElastIso(MR, rho, E, nu, 0.0) femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3, 2)), material) associategeometry!(femm, geom) K = stiffness(femm, geom, u) M = mass(femm, geom, u) K_ff = matrix_blocked(K, nfreedofs(u), nfreedofs(u))[:ff] M_ff = matrix_blocked(M, nfreedofs(u), nfreedofs(u))[:ff] d, v, nev, nconv = eigs( Symmetric(K_ff + OmegaShift * M_ff), Symmetric(M_ff); nev = neigvs, which = :SM, explicittransform = :none, ) d = d .- OmegaShift fs = real(sqrt.(complex(d))) / (2 * pi) println("alum_cyl_modal_h20") println("Eigenvalues: $fs [Hz]") mode = neigvs scattersysvec!(u, v[:, mode]) File = "alum_cyl_modal_h20-$mode.vtk" vtkexportmesh(File, fens, fes; vectors = [("mode$mode", u.values)]) true end # alum_cyl_modes function alum_cyl_mode_t4() stabfact = 0.0062 MR = DeforModelRed3D output = import_ABAQUS(joinpath(@__DIR__, "alum_cyl.inp")) fens, fes = output["fens"], output["fesets"][1] fens.xyz .*= phun("mm") # The input is provided in SI(mm) units fens, fes = T10toT4(fens, fes) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field numberdofs!(u) material = MatDeforElastIso(MR, rho, E, nu, 0.0) femm = FEMMDeforLinear(MR, IntegDomain(fes, TetRule(1)), material) associategeometry!(femm, geom) K = stiffness(femm, geom, u) M = mass(femm, geom, u) K_ff = matrix_blocked(K, nfreedofs(u), nfreedofs(u))[:ff] M_ff = matrix_blocked(M, nfreedofs(u), nfreedofs(u))[:ff] d, v, nev, nconv = eigs( Symmetric(K_ff + OmegaShift * M_ff), Symmetric(M_ff); nev = neigvs, which = :SM, explicittransform = :none, ) d = d .- OmegaShift fs = real(sqrt.(complex(d))) / (2 * pi) println("Eigenvalues: $fs [Hz]") true end # alum_cyl_modes function alum_cyl_mode_nice_t4() stabfact = 0.0062 MR = DeforModelRed3D output = import_ABAQUS(joinpath(@__DIR__, "alum_cyl.inp")) fens, fes = output["fens"], output["fesets"][1] fens.xyz .*= phun("mm") # The input is provided in SI(mm) units fens, fes = T10toT4(fens, fes) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field numberdofs!(u) material = MatDeforElastIso(MR, rho, E, nu, 0.0) femm = FEMMDeforLinearNICET4(MR, IntegDomain(fes, NodalSimplexRule(3)), material, stabfact) associategeometry!(femm, geom) K = stiffness(femm, geom, u) M = mass(femm, geom, u) K_ff = matrix_blocked(K, nfreedofs(u), nfreedofs(u))[:ff] M_ff = matrix_blocked(M, nfreedofs(u), nfreedofs(u))[:ff] d, v, nev, nconv = eigs( Symmetric(K_ff + OmegaShift * M_ff), Symmetric(M_ff); nev = neigvs, which = :SM, explicittransform = :none, ) d = d .- OmegaShift fs = real(sqrt.(complex(d))) / (2 * pi) println("Eigenvalues: $fs [Hz]") true end # alum_cyl_modes function alum_cyl_mode_esnice_t4() MR = DeforModelRed3D output = import_ABAQUS(joinpath(@__DIR__, "alum_cyl.inp")) fens, fes = output["fens"], output["fesets"][1] fens.xyz .*= phun("mm") # The input is provided in SI(mm) units fens, fes = T10toT4(fens, fes) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field numberdofs!(u) material = MatDeforElastIso(MR, rho, E, nu, 0.0) femm = FEMMDeforLinearESNICET4(MR, IntegDomain(fes, NodalSimplexRule(3)), material) associategeometry!(femm, geom) K = stiffness(femm, geom, u) M = mass(femm, geom, u) K_ff = matrix_blocked(K, nfreedofs(u), nfreedofs(u))[:ff] M_ff = matrix_blocked(M, nfreedofs(u), nfreedofs(u))[:ff] d, v, nev, nconv = eigs( Symmetric(K_ff + OmegaShift * M_ff), Symmetric(M_ff); nev = neigvs, which = :SM, explicittransform = :none, ) d = d .- OmegaShift fs = real(sqrt.(complex(d))) / (2 * pi) println("Eigenvalues: $fs [Hz]") true end # function alum_cyl_modes_algo() # fens,fes =H20block(a,b,h, na,nb,nh) # # Make the region # MR = DeforModelRed3D # material = MatDeforElastIso(MR, rho, E, nu, 0.0) # region1 = FDataDict("femm"=>FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3,2)), # material), "femm_mass"=>FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3,3)), # material)) # # Make model data # modeldata = FDataDict( # "fens"=> fens, "regions"=> [region1], # "omega_shift"=>omega_shift, "neigvs"=>neigvs) # # Solve # modeldata = FinEtools.AlgoDeforLinearModule.modal(modeldata) # fs = modeldata["omega"]/(2*pi) # println("Eigenvalues: $fs [Hz]") # modeldata["postprocessing"] = FDataDict("file"=>"alum_cyl_mode", # "mode"=>10) # modeldata=FinEtools.AlgoDeforLinearModule.exportmode(modeldata) # @async run(`"paraview.exe" $(modeldata["postprocessing"]["file"]*"1.vtk")`) # true # end # # function alum_cyl_modes_export() # println(""" # Vibration modes of unit cube of almost incompressible material. # This example EXPORTS the model to Abaqus. # Reference: Puso MA, Solberg J (2006) A stabilized nodally integrated # tetrahedral. International Journal for Numerical Methods in # Engineering 67: 841-867. # """) # t0 = time() # E = 1*phun("PA"); # nu = 0.499; # rho = 1*phun("KG/M^3"); # a = 1*phun("M"); b = a; h = a; # n1 = 5;# How many element edges per side? # na = n1; nb = n1; nh = n1; # neigvs = 20 # how many eigenvalues # OmegaShift = (0.01*2*pi)^2; # MR = DeforModelRed3D # fens,fes = H20block(a,b,h, na,nb,nh) # geom = NodalField(fens.xyz) # u = NodalField(zeros(size(fens.xyz,1),3)) # displacement field # numberdofs!(u) # material=MatDeforElastIso(MR, rho, E, nu, 0.0) # femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3,2)), material) # K =stiffness(femm, geom, u) # femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3,3)), material) # M =mass(femm, geom, u) # d,v,nev,nconv = eigs(Symmetric(K+OmegaShift*M), Symmetric(M); nev=neigvs, which=:SM, explicittransform=:none) # d = d - OmegaShift; # fs = real(sqrt.(complex(d)))/(2*pi) # println("Eigenvalues: $fs [Hz]") # mode = 7 # scattersysvec!(u, v[:,mode]) # File = "alum_cyl_modes.vtk" # vtkexportmesh(File, fens, fes; vectors=[("mode$mode", u.values)]) # @async run(`"paraview.exe" $File`) # AE = AbaqusExporter("alum_cyl_modes_h20"); # # AE.ios = STDOUT; # HEADING(AE, "Vibration modes of unit cube of almost incompressible material."); # COMMENT(AE, "The first six frequencies are rigid body modes."); # COMMENT(AE, "The first nonzero frequency (7) should be around 0.26 Hz"); # PART(AE, "part1"); # END_PART(AE); # ASSEMBLY(AE, "ASSEM1"); # INSTANCE(AE, "INSTNC1", "PART1"); # NODE(AE, fens.xyz); # COMMENT(AE, "The hybrid form of the serendipity hexahedron is chosen because"); # COMMENT(AE, "the material is nearly incompressible."); # ELEMENT(AE, "c3d20rh", "AllElements", 1, connasarray(fes)) # ORIENTATION(AE, "GlobalOrientation", vec([1. 0 0]), vec([0 1. 0])); # SOLID_SECTION(AE, "elasticity", "GlobalOrientation", "AllElements"); # END_INSTANCE(AE); # END_ASSEMBLY(AE); # MATERIAL(AE, "elasticity") # ELASTIC(AE, E, nu) # DENSITY(AE, rho) # STEP_FREQUENCY(AE, neigvs) # END_STEP(AE) # close(AE) # true # end # alum_cyl_modes_export # function alum_cyl_modes_msh8_algo() # println(""" # % Vibration modes of unit cube of almost incompressible material. # % Mean-strain hexahedron. # % Reference: Puso MA, Solberg J (2006) A stabilized nodally integrated # % tetrahedral. International Journal for Numerical Methods in # % Engineering 67: 841-867.""") # t0 = time() # E = 1*phun("PA"); # nu = 0.499; # rho= 1*phun("KG/M^3"); # a=1*phun("M"); b=a; h= a; # n1=8 # How many element edges per side? # na= n1; nb= n1; nh =n1; # neigvs=20 # how many eigenvalues # omega_shift=(0.1*2*pi)^2; # fens,fes = H8block(a,b,h, na,nb,nh) # # Make the region # MR = DeforModelRed3D # material = MatDeforElastIso(MR, rho, E, nu, 0.0) # region1 = FDataDict("femm"=>FEMMDeforLinearMSH8(MR, IntegDomain(fes, GaussRule(3,2)), # material), "femm_mass"=>FEMMDeforLinearMSH8(MR, IntegDomain(fes, GaussRule(3,3)), # material)) # # Make model data # modeldata = FDataDict( # "fens"=> fens, "regions"=> [region1], # "omega_shift"=>omega_shift, "neigvs"=>neigvs) # # Solve # modeldata = FinEtools.AlgoDeforLinearModule.modal(modeldata) # fs = modeldata["omega"]/(2*pi) # println("Eigenvalues: $fs [Hz]") # modeldata["postprocessing"] = FDataDict("file"=>"alum_cyl_mode", # "mode"=>10) # modeldata=FinEtools.AlgoDeforLinearModule.exportmode(modeldata) # @async run(`"paraview.exe" $(modeldata["postprocessing"]["file"]*"1.vtk")`) # true # end # alum_cyl_modes_msh8_algo function alum_cyl_mode_esnice_h8() E = 70000 * phun("MPa") nu = 0.33 rho = 2700 * phun("KG/M^3") radius = 0.5 * phun("ft") OmegaShift = (10.0 * 2 * pi)^2 MR = DeforModelRed3D output = import_ABAQUS(joinpath(@__DIR__, "alum_cyl.inp")) fens, fes = output["fens"], output["fesets"][1] fens.xyz .*= phun("mm") # The input is provided in SI(mm) units fens, fes = T10toT4(fens, fes) fens, fes = T4toH8(fens, fes) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field numberdofs!(u) material = MatDeforElastIso(MR, rho, E, nu, 0.0) femm = FEMMDeforLinearESNICEH8(MR, IntegDomain(fes, NodalTensorProductRule(3)), material) associategeometry!(femm, geom) K = stiffness(femm, geom, u) M = mass(femm, geom, u) d, v, nev, nconv = eigs( Symmetric(K + OmegaShift * M), Symmetric(M); nev = neigvs, which = :SM, explicittransform = :none, ) d = d .- OmegaShift fs = real(sqrt.(complex(d))) / (2 * pi) println("Eigenvalues: $fs [Hz]") # @show v' * M * v # @test norm(fs - [0.00000e+00, 0.00000e+00, 0.00000e+00, 5.54160e-06, 8.64750e-05, 1.18749e-04, 2.49815e+03, 2.49888e+03, 2.51331e+03, 4.08265e+03, 4.58599e+03, 4.58642e+03, 4.98701e+03, 6.64802e+03, 6.64848e+03, 6.67904e+03, 6.68216e+03, 6.77789e+03, 6.78059e+03, 6.79936e+03, 6.80400e+03, 7.38167e+03, 7.45600e+03, 7.47771e+03]) < 0.01 true end # alum_cyl_modes function allrun() println("#####################################################") println("# alum_cyl_mode_nice_t4 ") alum_cyl_mode_nice_t4() println("#####################################################") println("# alum_cyl_mode_t4 ") alum_cyl_mode_t4() println("#####################################################") println("# alum_cyl_mode_esnice_t4 ") alum_cyl_mode_esnice_t4() println("#####################################################") println("# alum_cyl_mode_esnice_h8 ") alum_cyl_mode_esnice_h8() return true end # function allrun @info "All examples may be executed with " println("using .$(@__MODULE__); $(@__MODULE__).allrun()") # alum_cyl_modal_h20() # alum_cyl_modal_t10() # alum_cyl_modal_t4() # alum_cyl_modal_esnicet4() end # module nothing
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
3056
module multimaterial_nas_examples using FinEtools using FinEtools.MeshExportModule: MESH using FinEtoolsDeforLinear.AlgoDeforLinearModule using FinEtoolsDeforLinear using LinearAlgebra using SparseArrays using Arpack function multimaterial_nas() println(""" Vibration modes of block composed of two materials. NASTRAN input file. """) materials = Dict( 1 => ( name = "steel", E = 205000 * phun("MPa"), nu = 0.3, rho = 7850 * phun("KG*M^-3"), ), 2 => ( name = "aluminum", E = 70000 * phun("MPa"), nu = 0.34, rho = 2700 * phun("KG*M^-3"), ), ) OmegaShift = (2 * pi * 100)^2 # to resolve rigid body modes neigvs = 20 # No need to change anything below this line ########## MR = DeforModelRed3D output = import_NASTRAN(joinpath(@__DIR__, "twoblocks.nas")) fens, fesets, pids = output["fens"], output["fesets"], output["property_ids"] geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field numberdofs!(u) K = spzeros(nalldofs(u), nalldofs(u)) M = spzeros(nalldofs(u), nalldofs(u)) allfes = nothing for i in eachindex(fesets) pid = pids[i] @show E, nu, rho = materials[pid].E, materials[pid].nu, materials[pid].rho material = MatDeforElastIso(MR, rho, E, nu, 0.0) femm = FEMMDeforLinearESNICET4( MR, IntegDomain(fesets[i], NodalSimplexRule(3)), material, ) femm = associategeometry!(femm, geom) K += stiffness(femm, geom, u) M += mass(femm, geom, u) if allfes === nothing allfes = fesets[i] else allfes = cat(allfes, fesets[i]) end end # eigs returns the nev requested eigenvalues in d, the corresponding Ritz vectors # v (only if ritzvec=true), the number of converged eigenvalues nconv, the number # of iterations niter and the number of matrix vector multiplications nmult, as # well as the final residual vector resid. if true d, v, nev, nconv = eigs(K + OmegaShift * M, M; nev = neigvs, which = :SM) d = d .- OmegaShift fs = real(sqrt.(complex(d))) / (2 * pi) println("Eigenvalues: $fs [Hz]") mode = 7 scattersysvec!(u, v[:, mode]) File = "multimaterial_nas.vtk" vtkexportmesh(File, fens, allfes; vectors = [("mode$mode", u.values)]) @async run(`"paraview.exe" $File`) end # Extract the boundary bfes = meshboundary(allfes) bconn = connasarray(bfes) MESH.write_MESH("multimaterial_nas.mesh", fens, bfes) true end # multimaterial function allrun() println("#####################################################") println("# multimaterial_nas ") multimaterial_nas() return true end # function allrun @info "All examples may be executed with " println("using .$(@__MODULE__); $(@__MODULE__).allrun()") end # module nothing
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
2498
module rectangular_plate_examples using Statistics using FinEtools using FinEtools.MeshImportModule using FinEtools.MeshExportModule using FinEtoolsDeforLinear using SubSIt using LinearAlgebra: dot using Arpack using LinearAlgebra using SparseArrays using PGFPlotsX using Test E = 210e3 * phun("MPa") nu = 0.3 rho = 7850 * phun("KG/M^3") a = 4.00 * phun("M") b = 1.00 * phun("M") h = 0.1 * phun("M") na = 10 nb = 5 nh = 2 na = 2 * 10 nb = 2 * 5 nh = 8 neigvs = 20 # how many eigenvalues OmegaShift = (10.0 * 2 * pi)^2 # Fundamental frequency f_analytical = [0 0 0 0 0 0 33.78 82.28 92.99 170.06] function rectangular_plate_esnice() global a, b, h, na, nb, nh MR = DeforModelRed3D fens, fes = T4block(a, b, h, na, nb, nh) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field numberdofs!(u) material = MatDeforElastIso(MR, rho, E, nu, 0.0) femm = FEMMDeforLinearESNICET4(MR, IntegDomain(fes, NodalSimplexRule(3)), material) associategeometry!(femm, geom) @show minimum(vec(femm.nphis)), maximum(vec(femm.nphis)) @pgf a = Axis( { xlabel = "Entity", ylabel = "Stabilization factor", grid = "major", legend_pos = "north east", }, Plot( {"only marks", mark = "+"}, Table([:x => vec(1:count(fes)), :y => vec(femm.ephis)]), ), ) display(a) K = stiffness(femm, geom, u) M = mass(femm, geom, u) d, v, nev, nconv = eigs(K + OmegaShift * M, M; nev = neigvs, which = :SM) d = d .- OmegaShift fs = real(sqrt.(complex(d))) / (2 * pi) println("Eigenvalues: $fs [Hz]") println("f/f_analytical = $(fs[7:10] ./ f_analytical[7:10] .* 100) %") vectors = [] for i = 7:length(fs) scattersysvec!(u, v[:, i]) push!(vectors, ("Mode_$i", deepcopy(u.values))) end File = "rectangular_plate_esnice.vtk" vtkexportmesh( File, connasarray(fes), fens.xyz, FinEtools.MeshExportModule.VTK.T4; vectors = vectors, ) @async run(`"paraview.exe" $File`) true end # function function allrun() println("#####################################################") println("# rectangular_plate_esnice ") rectangular_plate_esnice() return true end # function allrun @info "All examples may be executed with " println("using .$(@__MODULE__); $(@__MODULE__).allrun()") end # module nothing
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
5824
module trunc_cyl_shell_examples using FinEtools using FinEtools.AlgoBaseModule: solve_blocked!, matrix_blocked, vector_blocked using FinEtoolsDeforLinear using FinEtoolsDeforLinear.AlgoDeforLinearModule using LinearAlgebra using Arpack using SubSIt function trunc_cyl_shell() println(""" Vibration modes of truncated cylindrical shell. """) # t0 = time() E = 205000 * phun("MPa")# Young's modulus nu = 0.3# Poisson ratio rho = 7850 * phun("KG*M^-3")# mass density OmegaShift = (2 * pi * 100)^2 # to resolve rigid body modes h = 0.05 * phun("M") l = 10 * h Rmed = h / 0.2 psi = 0 # Cylinder nh = 5 nl = 12 nc = 40 tolerance = h / nh / 100 neigvs = 20 MR = DeforModelRed3D fens, fes = H8block(h, l, 2 * pi, nh, nl, nc) # Shape into a cylinder R = zeros(3, 3) for i = 1:count(fens) x, y, z = fens.xyz[i, :] rotmat3!(R, [0, z, 0]) Q = [ cos(psi * pi / 180) sin(psi * pi / 180) 0 -sin(psi * pi / 180) cos(psi * pi / 180) 0 0 0 1 ] fens.xyz[i, :] = reshape([x + Rmed - h / 2, y - l / 2, 0], 1, 3) * Q * R end candidates = selectnode(fens, plane = [0.0 0.0 1.0 0.0], thickness = h / 1000) fens, fes = mergenodes(fens, fes, tolerance, candidates) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field numberdofs!(u) material = MatDeforElastIso(MR, rho, E, nu, 0.0) femm = FEMMDeforLinearMSH8(MR, IntegDomain(fes, GaussRule(3, 2)), material) femm = associategeometry!(femm, geom) K = stiffness(femm, geom, u) femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3, 3)), material) M = mass(femm, geom, u) K_ff = matrix_blocked(K, nfreedofs(u), nfreedofs(u))[:ff] M_ff = matrix_blocked(M, nfreedofs(u), nfreedofs(u))[:ff] # eigs returns the nev requested eigenvalues in d, the corresponding Ritz vectors # v (only if ritzvec=true), the number of converged eigenvalues nconv, the number # of iterations niter and the number of matrix vector multiplications nmult, as # well as the final residual vector resid. if true d, v, nev, nconv = eigs( Symmetric(K_ff + OmegaShift * M_ff), Symmetric(M_ff); nev = neigvs, which = :SM, explicittransform = :none, ) d = d .- OmegaShift fs = real(sqrt.(complex(d))) / (2 * pi) println("Eigenvalues: $fs [Hz]") mode = 7 scattersysvec!(u, v[:, mode]) File = "trunc_cyl_shell.vtk" vtkexportmesh(File, fens, fes; vectors = [("mode$mode", u.values)]) @async run(`"paraview.exe" $File`) end if true solver = SubSIt.ssit v0 = rand(size(K_ff, 1), 2 * neigvs) tol = 1.0e-2 maxiter = 20 lamb, v, nconv, niter, lamberr = solver( K_ff + OmegaShift .* M_ff, M_ff; nev = neigvs, X = v0, tol = tol, maxiter = maxiter, ) if nconv < neigvs println("NOT converged") end lamb = lamb .- OmegaShift fs = real(sqrt.(complex(lamb))) / (2 * pi) println("Eigenvalues: $fs [Hz]") println("Eigenvalue errors: $lamberr [ND]") mode = 7 scattersysvec!(u, v[:, mode]) File = "trunc_cyl_shell.vtk" vtkexportmesh(File, fens, fes; vectors = [("mode$mode", u.values)]) @async run(`"paraview.exe" $File`) end true end # trunc_cyl_shell function trunc_cyl_shell_nas() println(""" Vibration modes of truncated cylindrical shell. NASTRAN input file. """) # t0 = time() E = 205000 * phun("MPa")# Young's modulus nu = 0.3# Poisson ratio rho = 7850 * phun("KG*M^-3")# mass density OmegaShift = (2 * pi * 100)^2 # to resolve rigid body modes h = 0.05 * phun("M") l = 10 * h Rmed = h / 0.2 psi = 0 # Cylinder nh = 5 nl = 12 nc = 40 tolerance = h / nh / 100 neigvs = 20 MR = DeforModelRed3D output = import_NASTRAN(joinpath(@__DIR__, "trunc_cyl_shell_2.nas")) fens, fes = output["fens"], output["fesets"][1] geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field numberdofs!(u) material = MatDeforElastIso(MR, rho, E, nu, 0.0) femm = FEMMDeforLinearESNICET4(MR, IntegDomain(fes, NodalSimplexRule(3)), material) femm = associategeometry!(femm, geom) K = stiffness(femm, geom, u) M = mass(femm, geom, u) # eigs returns the nev requested eigenvalues in d, the corresponding Ritz vectors # v (only if ritzvec=true), the number of converged eigenvalues nconv, the number # of iterations niter and the number of matrix vector multiplications nmult, as # well as the final residual vector resid. if true d, v, nev, nconv = eigs(K + OmegaShift * M, M; nev = neigvs, which = :SM) d = d .- OmegaShift fs = real(sqrt.(complex(d))) / (2 * pi) println("Eigenvalues: $fs [Hz]") mode = 7 scattersysvec!(u, v[:, mode]) File = "trunc_cyl_shell_nas.vtk" vtkexportmesh(File, fens, fes; vectors = [("mode$mode", u.values)]) @async run(`"paraview.exe" $File`) end true end # trunc_cyl_shell function allrun() println("#####################################################") println("# trunc_cyl_shell ") trunc_cyl_shell() println("#####################################################") println("# trunc_cyl_shell_nas ") trunc_cyl_shell_nas() return true end # function allrun @info "All examples may be executed with " println("using .$(@__MODULE__); $(@__MODULE__).allrun()") end # module nothing
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
10176
module unit_cube_mode_examples using FinEtools using FinEtools.MeshExportModule using FinEtoolsDeforLinear using FinEtoolsDeforLinear.AlgoDeforLinearModule using LinearAlgebra using GEPHelpers: gep_smallest, check_M_orthogonality, check_K_orthogonality using Arpack function unit_cube_modes() println(""" Vibration modes of unit cube of almost incompressible material. % Reference: Puso MA, Solberg J (2006) A stabilized nodally integrated tetrahedral. International Journal for Numerical Methods in Engineering 67: 841-867. """) t0 = time() E = 1 * phun("PA") nu = 0.499 rho = 1 * phun("KG/M^3") a = 1 * phun("M") b = a h = a n1 = 10# How many element edges per side? na = n1 nb = n1 nh = n1 neigvs = 20 # how many eigenvalues OmegaShift = (0.01 * 2 * pi)^2 MR = DeforModelRed3D fens, fes = H20block(a, b, h, na, nb, nh) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field numberdofs!(u) material = MatDeforElastIso(MR, rho, E, nu, 0.0) femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3, 2)), material) @time K = stiffness(femm, geom, u) femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3, 3)), material) @time M = mass(femm, geom, u) d, v, nconv = gep_smallest(K + OmegaShift * M, M, neigvs, which = :SM) d = d .- OmegaShift fs = real(sqrt.(complex(d))) / (2 * pi) println("Eigenvalues: $fs [Hz]") @info check_K_orthogonality(d, v, K) @info check_M_orthogonality(v, M) @info norm(K * v - M * v * Diagonal(d)) vectors = [] File = "unit_cube_modes.vtk" for mode = 1:neigvs scattersysvec!(u, v[:, mode]) push!(vectors, ("mode$mode", deepcopy(u.values))) end vtkexportmesh(File, fens, fes; vectors = vectors) true end # unit_cube_modes function unit_cube_modes_arnoldimethod() println(""" Vibration modes of unit cube of almost incompressible material. % Reference: Puso MA, Solberg J (2006) A stabilized nodally integrated tetrahedral. International Journal for Numerical Methods in Engineering 67: 841-867. """) t0 = time() E = 1 * phun("PA") nu = 0.499 rho = 1 * phun("KG/M^3") a = 1 * phun("M") b = a h = a n1 = 10# How many element edges per side? na = n1 nb = n1 nh = n1 neigvs = 20 # how many eigenvalues OmegaShift = (0.01 * 2 * pi)^2 MR = DeforModelRed3D fens, fes = H20block(a, b, h, na, nb, nh) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field numberdofs!(u) material = MatDeforElastIso(MR, rho, E, nu, 0.0) femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3, 2)), material) @time K = stiffness(femm, geom, u) femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3, 3)), material) @time M = mass(femm, geom, u) d, v, nconv = gep_smallest( K + OmegaShift * M, M, neigvs; method = :ArnoldiMethod, orthogonalize = true, which = :SM, ) d = d .- OmegaShift fs = real(sqrt.(complex(d))) / (2 * pi) println("Eigenvalues: $fs [Hz]") @info check_K_orthogonality(d, v, K) @info check_M_orthogonality(v, M) @info norm(K * v - M * v * Diagonal(d)) vectors = [] File = "unit_cube_modes_arnoldimethod.vtk" for mode = 1:neigvs scattersysvec!(u, v[:, mode]) push!(vectors, ("mode$mode", deepcopy(u.values))) end vtkexportmesh(File, fens, fes; vectors = vectors) true end # unit_cube_modes function unit_cube_modes_algo() println(""" % Vibration modes of unit cube of almost incompressible material. % % Reference: Puso MA, Solberg J (2006) A stabilized nodally integrated % tetrahedral. International Journal for Numerical Methods in % Engineering 67: 841-867.""") t0 = time() E = 1 * phun("PA") nu = 0.499 rho = 1 * phun("KG/M^3") a = 1 * phun("M") b = a h = a n1 = 2# How many element edges per side? na = n1 nb = n1 nh = n1 neigvs = 20 # how many eigenvalues omega_shift = (0.1 * 2 * pi)^2 fens, fes = H20block(a, b, h, na, nb, nh) # Make the region MR = DeforModelRed3D material = MatDeforElastIso(MR, rho, E, nu, 0.0) region1 = FDataDict( "femm" => FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3, 2)), material), "femm_mass" => FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3, 3)), material), ) # Make model data modeldata = FDataDict( "fens" => fens, "regions" => [region1], "omega_shift" => omega_shift, "neigvs" => neigvs, ) # Solve modeldata = AlgoDeforLinearModule.modal(modeldata) fs = modeldata["omega"] / (2 * pi) println("Eigenvalues: $fs [Hz]") modeldata["postprocessing"] = FDataDict("file" => "unit_cube_mode", "mode" => 10) modeldata = AlgoDeforLinearModule.exportmode(modeldata) @async run(`"paraview.exe" $(modeldata["postprocessing"]["file"]*"1.vtk")`) true end # unit_cube_modes_algo function unit_cube_modes_export() println(""" Vibration modes of unit cube of almost incompressible material. This example EXPORTS the model to Abaqus. Reference: Puso MA, Solberg J (2006) A stabilized nodally integrated tetrahedral. International Journal for Numerical Methods in Engineering 67: 841-867. """) t0 = time() E = 1 * phun("PA") nu = 0.499 rho = 1 * phun("KG/M^3") a = 1 * phun("M") b = a h = a n1 = 5# How many element edges per side? na = n1 nb = n1 nh = n1 neigvs = 20 # how many eigenvalues OmegaShift = (0.01 * 2 * pi)^2 MR = DeforModelRed3D fens, fes = H20block(a, b, h, na, nb, nh) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field numberdofs!(u) material = MatDeforElastIso(MR, rho, E, nu, 0.0) femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3, 2)), material) K = stiffness(femm, geom, u) femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3, 3)), material) M = mass(femm, geom, u) d, v, nconv = gep_smallest(K + OmegaShift * M, M, neigvs, which = :SM) d = d .- OmegaShift fs = real(sqrt.(complex(d))) / (2 * pi) println("Eigenvalues: $fs [Hz]") mode = 7 scattersysvec!(u, v[:, mode]) File = "unit_cube_modes.vtk" vtkexportmesh(File, fens, fes; vectors = [("mode$mode", u.values)]) @async run(`"paraview.exe" $File`) AE = AbaqusExporter("unit_cube_modes_h20") # AE.ios = STDOUT; HEADING(AE, "Vibration modes of unit cube of almost incompressible material.") COMMENT(AE, "The first six frequencies are rigid body modes.") COMMENT(AE, "The first nonzero frequency (7) should be around 0.26 Hz") PART(AE, "part1") END_PART(AE) ASSEMBLY(AE, "ASSEM1") INSTANCE(AE, "INSTNC1", "PART1") NODE(AE, fens.xyz) COMMENT(AE, "The hybrid form of the serendipity hexahedron is chosen because") COMMENT(AE, "the material is nearly incompressible.") ELEMENT(AE, "c3d20rh", "AllElements", 1, connasarray(fes)) ORIENTATION(AE, "GlobalOrientation", vec([1.0 0 0]), vec([0 1.0 0])) SOLID_SECTION(AE, "elasticity", "GlobalOrientation", "AllElements") END_INSTANCE(AE) END_ASSEMBLY(AE) MATERIAL(AE, "elasticity") ELASTIC(AE, E, nu) DENSITY(AE, rho) STEP_FREQUENCY(AE, neigvs) END_STEP(AE) close(AE) true end # unit_cube_modes_export function unit_cube_modes_msh8_algo() println(""" % Vibration modes of unit cube of almost incompressible material. % Mean-strain hexahedron. % Reference: Puso MA, Solberg J (2006) A stabilized nodally integrated % tetrahedral. International Journal for Numerical Methods in % Engineering 67: 841-867.""") t0 = time() E = 1 * phun("PA") nu = 0.499 rho = 1 * phun("KG/M^3") a = 1 * phun("M") b = a h = a n1 = 8 # How many element edges per side? na = n1 nb = n1 nh = n1 neigvs = 20 # how many eigenvalues omega_shift = (0.1 * 2 * pi)^2 fens, fes = H8block(a, b, h, na, nb, nh) # Make the region MR = DeforModelRed3D material = MatDeforElastIso(MR, rho, E, nu, 0.0) region1 = FDataDict( "femm" => FEMMDeforLinearMSH8(MR, IntegDomain(fes, GaussRule(3, 2)), material), "femm_mass" => FEMMDeforLinearMSH8(MR, IntegDomain(fes, GaussRule(3, 3)), material), ) # Make model data modeldata = FDataDict( "fens" => fens, "regions" => [region1], "omega_shift" => omega_shift, "neigvs" => neigvs, ) # Solve modeldata = AlgoDeforLinearModule.modal(modeldata) fs = modeldata["omega"] / (2 * pi) println("Eigenvalues: $fs [Hz]") modeldata["postprocessing"] = FDataDict("file" => "unit_cube_mode", "mode" => 10) modeldata = AlgoDeforLinearModule.exportmode(modeldata) @async run(`"paraview.exe" $(modeldata["postprocessing"]["file"]*"1.vtk")`) true end # unit_cube_modes_msh8_algo function allrun() println("#####################################################") println("# unit_cube_modes ") unit_cube_modes() println("#####################################################") println("# unit_cube_modes_arnoldimethod ") unit_cube_modes_arnoldimethod() # println("#####################################################") # println("# unit_cube_modes_algo ") # unit_cube_modes_algo() # println("#####################################################") # println("# unit_cube_modes_export ") # unit_cube_modes_export() # println("#####################################################") # println("# unit_cube_modes_msh8_algo ") # unit_cube_modes_msh8_algo() return true end # function allrun @info "All examples may be executed with " println("using .$(@__MODULE__); $(@__MODULE__).allrun()") end # module nothing
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
4918
module unit_cube_tet_examples using FinEtools using FinEtools.MeshExportModule using FinEtoolsDeforLinear using SubSIt: ssit using LinearAlgebra using Arpack using DataDrop using VibrationGEPHelpers E = 1 * phun("PA") nu = 0.499 rho = 1 * phun("KG/M^3") a = 1 * phun("M") b = a h = a n1 = 16# How many element edges per side? na = n1 nb = n1 nh = n1 neigvs = 20 # how many eigenvalues OmegaShift = (0.1 * 2 * pi)^2 function unit_cube_esnice() println(""" Vibration modes of unit cube of almost incompressible material. Reference: Puso MA, Solberg J (2006) A stabilized nodally integrated tetrahedral. International Journal for Numerical Methods in Engineering 67: 841-867. """) MR = DeforModelRed3D fens, fes = T4block(a, b, h, na, nb, nh) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field numberdofs!(u) material = MatDeforElastIso(MR, rho, E, nu, 0.0) femm = FEMMDeforLinearESNICET4(MR, IntegDomain(fes, NodalSimplexRule(3)), material) associategeometry!(femm, geom) K = stiffness(femm, geom, u) M = mass(femm, geom, u) # DataDrop.store_matrix("unit_cube_tet-$n1.h5", "/K", K) # DataDrop.store_matrix("unit_cube_tet-$n1.h5", "/M", M) @time d, v, nconv = eigs(K + OmegaShift * M, M; nev = neigvs, which = :SM) d = d .- OmegaShift fs = real(sqrt.(complex(d))) / (2 * pi) println("Eigenvalues: $fs [Hz]") # DataDrop.store_matrix("unit_cube_tet-$n1.h5", "frequencies", fs) mode = 17 scattersysvec!(u, v[:, mode]) File = "unit_cube_esnice.vtk" vtkexportmesh(File, fens, fes; vectors = [("mode$mode", u.values)]) #@async run(`"paraview.exe" $File`) true end # unit_cube_esnice function unit_cube_esnice_ssit() println(""" Vibration modes of unit cube of almost incompressible material. Reference: Puso MA, Solberg J (2006) A stabilized nodally integrated tetrahedral. International Journal for Numerical Methods in Engineering 67: 841-867. """) MR = DeforModelRed3D fens, fes = T4block(a, b, h, na, nb, nh) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field numberdofs!(u) material = MatDeforElastIso(MR, rho, E, nu, 0.0) femm = FEMMDeforLinearESNICET4(MR, IntegDomain(fes, NodalSimplexRule(3)), material) associategeometry!(femm, geom) K = stiffness(femm, geom, u) M = mass(femm, geom, u) @time d, v, nconv = ssit(K + OmegaShift * M, M; nev = neigvs) d = d .- OmegaShift fs = real(sqrt.(complex(d))) / (2 * pi) println("Eigenvalues: $fs [Hz]") mode = 17 scattersysvec!(u, v[:, mode]) File = "unit_cube_esnice.vtk" vtkexportmesh(File, fens, fes; vectors = [("mode$mode", u.values)]) #@async run(`"paraview.exe" $File`) true end # unit_cube_esnice function unit_cube_esnice_helpers() println(""" Vibration modes of unit cube of almost incompressible material. Reference: Puso MA, Solberg J (2006) A stabilized nodally integrated tetrahedral. International Journal for Numerical Methods in Engineering 67: 841-867. """) MR = DeforModelRed3D fens, fes = T4block(a, b, h, na, nb, nh) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field numberdofs!(u) material = MatDeforElastIso(MR, rho, E, nu, 0.0) femm = FEMMDeforLinearESNICET4(MR, IntegDomain(fes, NodalSimplexRule(3)), material) associategeometry!(femm, geom) K = stiffness(femm, geom, u) M = mass(femm, geom, u) @time d, v, nconv = VibrationGEPHelpers.gep_smallest( K + OmegaShift * M, M, neigvs; method = :ArnoldiMethod, ) d = d .- OmegaShift fs = real(sqrt.(complex(d))) / (2 * pi) println("Eigenvalues: $fs [Hz]") @show VibrationGEPHelpers.check_K_orthogonality(d, v, K) @show VibrationGEPHelpers.check_M_orthogonality(v, M) File = "unit_cube_esnice_helpers-ArnoldiMethod.vtk" vectors = [] for mode in eachindex(fs) scattersysvec!(u, v[:, mode]) push!(vectors, ("mode#$mode", deepcopy(u.values))) end vtkexportmesh(File, fens, fes; vectors = vectors) #@async run(`"paraview.exe" $File`) true end # unit_cube_esnice function allrun() println("#####################################################") println("# unit_cube_esnice ") unit_cube_esnice() println("#####################################################") println("# unit_cube_esnice_ssit ") unit_cube_esnice_ssit() println("#####################################################") println("# unit_cube_esnice_helpers ") unit_cube_esnice_helpers() return true end # function allrun @info "All examples may be executed with " println("using .$(@__MODULE__); $(@__MODULE__).allrun()") end # module nothing
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
3603
module uxo_mode_examples using FinEtools using FinEtoolsDeforLinear using FinEtools.MeshExportModule using FinEtoolsDeforLinear using FinEtoolsDeforLinear.AlgoDeforLinearModule using LinearAlgebra using Arpack using CSV function uxo_mode_esnice_t4() E = 70000 * phun("MPa") nu = 0.33 rho = 2700 * phun("KG/M^3") radius = 0.5 * phun("ft") neigvs = 20 # how many eigenvalues OmegaShift = (10.0 * 2 * pi)^2 MR = DeforModelRed3D output = import_NASTRAN(joinpath(@__DIR__, "UXO.nas")) fens, fes = output["fens"], output["fesets"][1] fens.xyz .*= phun("mm") # The input is provided in SI(mm) units @show count(fens) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field numberdofs!(u) material = MatDeforElastIso(MR, rho, E, nu, 0.0) femm = FEMMDeforLinearESNICET4(MR, IntegDomain(fes, NodalSimplexRule(3)), material) associategeometry!(femm, geom) K = stiffness(femm, geom, u) M = mass(femm, geom, u) d, v, nev, nconv = eigs( Symmetric(K + OmegaShift * M), Symmetric(M); nev = neigvs, which = :SM, explicittransform = :none, ) d = d .- OmegaShift fs = real(sqrt.(complex(d))) / (2 * pi) println("Eigenvalues: $fs [Hz]") true end # uxo_modes # function uxo_mode_swept_h8() # E = 70000*phun("MPa"); # nu = 0.33; # rho = 2700*phun("KG/M^3"); # radius = 0.5*phun("ft"); # neigvs = 20 # how many eigenvalues # OmegaShift = (1.0*2*pi)^2; # MR = DeforModelRed3D # xyzrows = CSV.File(joinpath(@__DIR__, "UXO-swept-mesh-xyz.csv"), header=0) # xyz = fill(0.0, length(xyzrows), 3) # for i in 1:size(xyz, 1) # xyz[i, :] .= xyzrows[i] # end # connrows = CSV.File(joinpath(@__DIR__, "UXO-swept-mesh-conn.csv"), header=0) # conn = fill(0, length(connrows), 8) # for i in 1:size(conn, 1) # conn[i, :] .= connrows[i] # end # fens = FENodeSet(xyz) # fes = FESetH8(conn) # # fens.xyz .*= phun("mm") # The input is provided in SI(mm) units # geom = NodalField(fens.xyz) # u = NodalField(zeros(size(fens.xyz,1),3)) # displacement field # numberdofs!(u) # material = MatDeforElastIso(MR, rho, E, nu, 0.0) # femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3, 2)), material) # # femm = FEMMDeforLinearESNICEH8(MR, IntegDomain(fes, NodalTensorProductRule(3)), material) # associategeometry!(femm, geom) # K = stiffness(femm, geom, u) # M = mass(femm, geom, u) # d,v,nev = eigs(Symmetric(K+OmegaShift*M), Symmetric(M); nev=neigvs, which=:SM, explicittransform=:none) # d = d .- OmegaShift; # fs = real(sqrt.(complex(d)))/(2*pi) # println("Eigenvalues: $fs [Hz]") # File = "uxo_mode_swept_h8.vtk" # vtkexportmesh(File, fens, fes) # for mode = 1:7 # scattersysvec!(u, v[:,mode]) # File = "uxo_mode-$(mode).vtk" # vtkexportmesh(File, fens, fes; vectors=[("mode$mode", u.values)]) # end # true # end # uxo_modes function allrun() println("#####################################################") println("# uxo_mode_nice_t4 omitted due to significant size") # uxo_mode_esnice_t4() # println("#####################################################") # println("# uxo_mode_esnice_t4 ") # uxo_mode_swept_h8() return true end # function allrun @info "All examples may be executed with " println("using .$(@__MODULE__); $(@__MODULE__).allrun()") end # module uxo_mode_examples nothing
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
14606
module material_eigen_examples using FinEtools using FinEtoolsDeforLinear using FinEtoolsDeforLinear.AlgoDeforLinearModule using FinEtoolsDeforLinear.MatDeforLinearElasticModule: tangentmoduli! # using IterativeSolvers using Statistics: mean using LinearAlgebra: inv, cholesky, norm, eigen function iso() E = 1.0e3 * phun("Pa") nu = 0.4999999 CTE = 0.0 MR = DeforModelRed3D material = MatDeforElastIso(MR, 0.0, E, nu, CTE) D = fill(0.0, 6, 6) t::FFlt, dt::FFlt, loc::FFltMat, label::FInt = 0.0, 0.0, [0.0 0.0 0.0], 0 tangentmoduli!(material, D, t, dt, loc, label) @show dec = eigen(D) @show idec = eigen(inv(D)) true end # iso function ortho() E1s = 100.0 * phun("GPa") E2s = 1.0 * phun("MPa") E3s = E2s nu23s = nu12s = nu13s = 0.25 G12s = 0.13 * phun("GPa") G23s = G13s = G12s CTE1 = 0.0 CTE2 = 0.0 CTE3 = 0.0 MR = DeforModelRed3D material = MatDeforElastOrtho( MR, 0.0, E1s, E2s, E3s, nu12s, nu13s, nu23s, G12s, G13s, G23s, CTE1, CTE2, CTE3, ) D = fill(0.0, 6, 6) t::FFlt, dt::FFlt, loc::FFltMat, label::FInt = 0.0, 0.0, [0.0 0.0 0.0], 0 tangentmoduli!(material, D, t, dt, loc, label) @show dec = eigen(D) @show idec = eigen(inv(D)) true end # iso # function fiber_reinf_cant_yn_strong() # println(""" # Cantilever example. Strongly orthotropic material. Orientation "y". # @article{ # author = {Krysl, P.}, # title = {Mean-strain 8-node hexahedron with optimized energy-sampling stabilization}, # journal = {Finite Elements in Analysis and Design}, # volume = {108}, pages = {41-53}, DOI = {10.1016/j.finel.2015.09.008}, year = {2016} # } # """) # t0 = time() # # # Orthotropic material # E1s = 100000.0*phun("GPa") # E2s = 1.0*phun("GPa") # E3s = E2s # nu23s = nu12s = nu13s = 0.25 # G12s = 0.2*phun("GPa") # G23s = G13s = G12s # CTE1 = 0.0 # CTE2 = 0.0 # CTE3 = 0.0 # # # Isotropic material # # E = 1.0e9*phun("Pa") # # nu = 0.25 # # CTE = 0.0 # # Reference value for the vertical deflection of the tip # uz_ref = -1.027498445054843e-05; # a = 90.0*phun("mm") # length of the cantilever # b = 10.0*phun("mm") # width of the cross-section # t = 20.0*phun("mm") # height of the cross-section # q0 = -1000.0*phun("Pa") # shear traction # dT = 0*phun("K") # temperature rise # tolerance = 0.00001*t # # Generate mesh # n = 4 # na = 8*n # number of elements lengthwise # nb = n # number of elements through the wwith # nt = n # number of elements through the thickness # xs = collect(linearspace(0.0, a, na+1)) # ys = collect(linearspace(0.0, b, nb+1)) # ts = collect(linearspace(0.0, t, nt+1)) # fens,fes = H8blockx(xs, ys, ts) # fens,fes = H8toH20(fens,fes) # bfes = meshboundary(fes) # # end cross-section surface for the shear loading # sshearl = selectelem(fens, bfes; facing=true, direction = [+1.0 0.0 0.0]) # MR = DeforModelRed3D # material = MatDeforElastOrtho(MR, # 0.0, E1s, E2s, E3s, # nu12s, nu13s, nu23s, # G12s, G13s, G23s, # CTE1, CTE2, CTE3) # # material = MatDeforElastIso(MR, # # 0.0, E, nu, CTE) # # Material orientation matrix # csmat = zeros(3, 3) # rotmat3!(csmat, -45.0/180.0*pi*[0,1,0]) # function updatecs!(csmatout::FFltMat, XYZ::FFltMat, tangents::FFltMat, fe_label::FInt) # copyto!(csmatout, csmat) # end # gr = GaussRule(3, 2) # region = FDataDict("femm"=>FEMMDeforLinear(MR, IntegDomain(fes, gr), CSys(3, 3, updatecs!), material)) # lx0 = selectnode(fens, box=[0.0 0.0 -Inf Inf -Inf Inf], inflate=tolerance) # ex01 = FDataDict( "displacement"=> 0.0, "component"=> 1, "node_list"=>lx0 ) # ex02 = FDataDict( "displacement"=> 0.0, "component"=> 2, "node_list"=>lx0 ) # ex03 = FDataDict( "displacement"=> 0.0, "component"=> 3, "node_list"=>lx0 ) # function getshr!(forceout::FFltVec, XYZ::FFltMat, tangents::FFltMat, fe_label::FInt) # copyto!(forceout, q0*[0.0; 0.0; 1.0]) # end # Trac = FDataDict("traction_vector"=>getshr!, "femm"=>FEMMBase(IntegDomain(subset(bfes, sshearl), GaussRule(2, 3)))) # modeldata = FDataDict("fens"=>fens, # "regions"=>[region], # "essential_bcs"=>[ex01, ex02, ex03], # "traction_bcs"=>[Trac], # "temperature_change"=>FDataDict("temperature"=>dT) # ) # modeldata = AlgoDeforLinearModule.linearstatics(modeldata) # u = modeldata["u"] # geom = modeldata["geom"] # Tipl = selectnode(fens, box=[a a b b 0. 0.], inflate=tolerance) # utip = mean(u.values[Tipl, 3]) # println("Deflection $utip, normalized: $(utip/uz_ref)") # println("Solution: $( time()-t0 )") # # File = "NAFEMS-R0031-2-plate.vtk" # # vtkexportmesh(File, fes.conn, geom.values, FinEtools.MeshExportModule.H20; # # scalars = [("Layer", fes.label)], vectors = [("displacement", u.values)]) # # @async run(`"paraview.exe" $File`) # modeldata["postprocessing"] = FDataDict("file"=>"fiber_reinf_cant_yn_strong", "outputcsys"=>CSys(3, 3, updatecs!), "quantity"=>:Cauchy, "component"=>5) # modeldata = AlgoDeforLinearModule.exportstress(modeldata) # File = modeldata["postprocessing"]["exported"][1]["file"] # @async run(`"paraview.exe" $File`) # # modeldata = AlgoDeforLinearModule.exportdeformation(modeldata) # # File = modeldata["postprocessing"]["exported"][1]["file"] # # @async run(`"paraview.exe" $File`) # println("Done: $( time()-t0 )") # true # end # fiber_reinf_cant_yn_strong # function fiber_reinf_cant_yn_strong_no_algo() # println(""" # Cantilever example. Strongly orthotropic material. Orientation "y". # @article{ # author = {Krysl, P.}, # title = {Mean-strain 8-node hexahedron with optimized energy-sampling stabilization}, # journal = {Finite Elements in Analysis and Design}, # volume = {108}, pages = {41-53}, DOI = {10.1016/j.finel.2015.09.008}, year = {2016} # } # """) # t0 = time() # pu = ustring -> phun(ustring; system_of_units = :SIMM) # # # Orthotropic material # E1s = 100000.0*pu("GPa") # E2s = 1.0*pu("GPa") # E3s = E2s # nu23s = nu12s = nu13s = 0.25 # G12s = 0.2*pu("GPa") # G23s = G13s = G12s # CTE1 = 0.0 # CTE2 = 0.0 # CTE3 = 0.0 # # # Isotropic material # # E = 1.0e9*pu("Pa") # # nu = 0.25 # # CTE = 0.0 # # Reference value for the vertical deflection of the tip # uz_ref = -1.027498445054843e-05*pu("m"); # a = 90.0*pu("mm") # length of the cantilever # b = 10.0*pu("mm") # width of the cross-section # t = 20.0*pu("mm") # height of the cross-section # q0 = -1000.0*pu("Pa") # shear traction # dT = 0*pu("K") # temperature rise # tolerance = 0.00001*t # # Generate mesh # n = 10 # na = n # number of elements lengthwise # nb = n # number of elements through the wwith # nt = n # number of elements through the thickness # xs = collect(linearspace(0.0, a, na+1)) # ys = collect(linearspace(0.0, b, nb+1)) # ts = collect(linearspace(0.0, t, nt+1)) # println("fens,fes = H8blockx(xs, ys, ts)") # @time fens,fes = H8blockx(xs, ys, ts) # println("fens,fes = H8toH20(fens,fes)") # @time fens,fes = H8toH20(fens,fes) # println("bfes = meshboundary(fes)") # @time bfes = meshboundary(fes) # # end cross-section surface for the shear loading # sshearl = selectelem(fens, bfes; facing=true, direction = [+1.0 0.0 0.0]) # MR = DeforModelRed3D # material = MatDeforElastOrtho(MR, # 0.0, E1s, E2s, E3s, # nu12s, nu13s, nu23s, # G12s, G13s, G23s, # CTE1, CTE2, CTE3) # # material = MatDeforElastIso(MR, # # 0.0, E, nu, CTE) # # Material orientation matrix # csmat = zeros(3, 3) # rotmat3!(csmat, -45.0/180.0*pi*[0,1,0]) # function updatecs!(csmatout::FFltMat, XYZ::FFltMat, tangents::FFltMat, fe_label::FInt) # copyto!(csmatout, csmat) # end # gr = GaussRule(3, 2) # femm = FEMMDeforLinear(MR, IntegDomain(fes, gr), CSys(3, 3, updatecs!), material) # lx0 = selectnode(fens, box=[0.0 0.0 -Inf Inf -Inf Inf], inflate=tolerance) # geom = NodalField(fens.xyz) # u = NodalField(zeros(size(fens.xyz,1),3)) # displacement field # nnodes(geom) # setebc!(u, lx0, true, 1, zeros(size(lx0))) # setebc!(u, lx0, true, 2, zeros(size(lx0))) # setebc!(u, lx0, true, 3, zeros(size(lx0))) # applyebc!(u) # S = connectionmatrix(femm, nnodes(geom)) # numberdofs!(u) # function getshr!(forceout::FFltVec, XYZ::FFltMat, tangents::FFltMat, fe_label::FInt) # copyto!(forceout, q0*[0.0; 0.0; 1.0]) # end # Tracfemm = FEMMBase(IntegDomain(subset(bfes, sshearl), GaussRule(2, 3))) # println("K = stiffness(femm, geom, u)") # @time K = stiffness(femm, geom, u) # fi = ForceIntensity(Float64, 3, getshr!); # println("F = distribloads(Tracfemm, geom, u, fi, 2);") # @time F = distribloads(Tracfemm, geom, u, fi, 2); # println("K = cholesky(K)") # K = (K + K')/2; # @time K = cholesky(Symmetric(K)) # println("U = K\\F") # @time U = K\F # # println("U = cg(K, F; tol=1e-3, maxiter=2000)") # # @time U = cg(K, F; tol=1e-3, maxiter=2000) # scattersysvec!(u, U[:]) # Tipl = selectnode(fens, box=[a a b b 0. 0.], inflate=tolerance) # utip = mean(u.values[Tipl, 3]) # println("Deflection $utip, normalized: $(utip/uz_ref)") # println("Solution: $( time()-t0 )") # println("Done: $( time()-t0 )") # true # end # fiber_reinf_cant_yn_strong_no_algo # function fiber_reinf_cant_zn_strong() # println(""" # Cantilever example. Strongly orthotropic material. Orientation "z". # @article{ # author = {Krysl, P.}, # title = {Mean-strain 8-node hexahedron with optimized energy-sampling stabilization}, # journal = {Finite Elements in Analysis and Design}, # volume = {108}, pages = {41-53}, DOI = {10.1016/j.finel.2015.09.008}, year = {2016} # } # """) # t0 = time() # # # Orthotropic material # E1s = 100000.0*phun("GPa") # E2s = 1.0*phun("GPa") # E3s = E2s # nu23s = nu12s = nu13s = 0.25 # G12s = 0.2*phun("GPa") # G23s = G13s = G12s # CTE1 = 0.0 # CTE2 = 0.0 # CTE3 = 0.0 # # # Isotropic material # # E = 1.0e9*phun("Pa") # # nu = 0.25 # # CTE = 0.0 # # Reference value for the vertical deflection of the tip # uz_ref = -1.119145781010554e-05; # a = 90.0*phun("mm") # length of the cantilever # b = 10.0*phun("mm") # width of the cross-section # t = 20.0*phun("mm") # height of the cross-section # q0 = -1000.0*phun("Pa") # shear traction # dT = 0*phun("K") # temperature rise # tolerance = 0.00001*t # # Generate mesh # n = 8 # na = 8*n # number of elements lengthwise # nb = n # number of elements through the wwith # nt = n # number of elements through the thickness # xs = collect(linearspace(0.0, a, na+1)) # ys = collect(linearspace(0.0, b, nb+1)) # ts = collect(linearspace(0.0, t, nt+1)) # fens,fes = H8blockx(xs, ys, ts) # fens,fes = H8toH20(fens,fes) # bfes = meshboundary(fes) # # end cross-section surface for the shear loading # sshearl = selectelem(fens, bfes; facing=true, direction = [+1.0 0.0 0.0]) # MR = DeforModelRed3D # material = MatDeforElastOrtho(MR, # 0.0, E1s, E2s, E3s, # nu12s, nu13s, nu23s, # G12s, G13s, G23s, # CTE1, CTE2, CTE3) # # material = MatDeforElastIso(MR, # # 0.0, E, nu, CTE) # # Material orientation matrix # csmat = zeros(3, 3) # rotmat3!(csmat, -45.0/180.0*pi*[0,0,1]) # function updatecs!(csmatout::FFltMat, XYZ::FFltMat, tangents::FFltMat, fe_label::FInt) # copyto!(csmatout, csmat) # end # gr = GaussRule(3, 2) # region = FDataDict("femm"=>FEMMDeforLinear(MR, IntegDomain(fes, gr), CSys(3, 3, updatecs!), material)) # lx0 = selectnode(fens, box=[0.0 0.0 -Inf Inf -Inf Inf], inflate=tolerance) # ex01 = FDataDict( "displacement"=> 0.0, "component"=> 1, "node_list"=>lx0 ) # ex02 = FDataDict( "displacement"=> 0.0, "component"=> 2, "node_list"=>lx0 ) # ex03 = FDataDict( "displacement"=> 0.0, "component"=> 3, "node_list"=>lx0 ) # function getshr!(forceout::FFltVec, XYZ::FFltMat, tangents::FFltMat, fe_label::FInt) # copyto!(forceout, q0*[0.0; 0.0; 1.0]) # end # Trac = FDataDict("traction_vector"=>getshr!, "femm"=>FEMMBase(IntegDomain(subset(bfes, sshearl), GaussRule(2, 3)))) # modeldata = FDataDict("fens"=>fens, # "regions"=>[region], # "essential_bcs"=>[ex01, ex02, ex03], # "traction_bcs"=>[Trac], # "temperature_change"=>FDataDict("temperature"=>dT) # ) # modeldata = AlgoDeforLinearModule.linearstatics(modeldata) # u = modeldata["u"] # geom = modeldata["geom"] # Tipl = selectnode(fens, box=[a a b b 0. 0.], inflate=tolerance) # utip = mean(u.values[Tipl, 3]) # println("Deflection $utip, normalized: $(utip/uz_ref)") # println("Solution: $( time()-t0 )") # # File = "NAFEMS-R0031-2-plate.vtk" # # vtkexportmesh(File, fes.conn, geom.values, FinEtools.MeshExportModule.H20; # # scalars = [("Layer", fes.label)], vectors = [("displacement", u.values)]) # # @async run(`"paraview.exe" $File`) # modeldata["postprocessing"] = FDataDict("file"=>"fiber_reinf_cant_yn_strong", "outputcsys"=>CSys(3, 3, updatecs!), "quantity"=>:Cauchy, "component"=>5) # modeldata = AlgoDeforLinearModule.exportstress(modeldata) # File = modeldata["postprocessing"]["exported"][1]["file"] # @async run(`"paraview.exe" $File`) # # modeldata = AlgoDeforLinearModule.exportdeformation(modeldata) # # File = modeldata["postprocessing"]["exported"][1]["file"] # # @async run(`"paraview.exe" $File`) # println("Done: $( time()-t0 )") # true # end # fiber_reinf_cant_zn_strong function allrun() println("#####################################################") println("# iso ") iso() println("#####################################################") println("# ortho ") ortho() return true end # function allrun @info "All examples may be executed with " println("using .$(@__MODULE__); $(@__MODULE__).allrun()") end # module nothing
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
10362
module bend_hex_spectrum_examples using FinEtools using FinEtools.MeshExportModule.CSV: savecsv using FinEtoolsDeforLinear using FinEtoolsDeforLinear.AlgoDeforLinearModule using FinEtools.AlgoBaseModule: evalconvergencestudy using FinEtoolsDeforLinear.AlgoDeforLinearModule: linearstatics, exportstresselementwise, exportstress using Statistics: mean using LinearAlgebra: Symmetric, cholesky, eigen using PGFPlotsX # Isotropic material E = 1.0 nu = 0.3 aspects = [1.0 10.0 100.0 1000.0] # julia> rand(8,3) .* 2 .- 1.0 xyzperturbation = [ 0.0767656 -0.983206 -0.14343 0.45767 0.981479 0.450997 -0.295854 0.542922 0.321333 -0.85204 -0.97824 -0.772874 -0.0539756 0.994907 0.822798 0.447173 0.528742 0.0445352 -0.468417 0.00673427 0.953151 -0.898513 -0.915871 0.933237 ] ./ 15.0 # Lambda1 = vec([-1.0 1.0 1.0 -1.0 -1.0 1.0 1.0 -1.0]) # Lambda2 = vec([-1.0 -1.0 1.0 1.0 -1.0 -1.0 1.0 1.0]) # Gamma1 = vec([1.0 1.0 -1.0 -1.0 -1.0 -1.0 1.0 1.0]) # xyzperturbation = zeros((8,3)) # xyzperturbation[:, 1] .= Lambda2 ./ 10.0 # xyzperturbation[:, 2] .= Lambda1 ./ 10.0 # xyzperturbation[:, 3] .= Gamma1 ./ 20.0 function mesh() ( FinEtools.FENodeSetModule.FENodeSet( [ 0.0 0.0 0.0 1.0 0.0 0.0 1.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 1.0 0.0 1.0 1.0 1.0 1.0 0.0 1.0 1.0 ], ), FinEtools.FESetModule.FESetH8(reshape([1, 2, 3, 4, 5, 6, 7, 8], 1, 8)), ) end function bend_hex_spectrum_full() function sim(aspect) fens, fes = mesh() fens.xyz += xyzperturbation fens.xyz[:, 1] .*= aspect MR = DeforModelRed3D material = MatDeforElastIso(MR, E, nu) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field applyebc!(u) numberdofs!(u) femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3, 2)), material) vol = integratefunction(femm, geom, x -> 1.0; m = 3) associategeometry!(femm, geom) K = stiffness(femm, geom, u) D = eigen(Matrix(K)) File = "bend_hex_spectrum_full.vtk" vectors = [ ( "ev_$(idx)_$(round(D.values[idx] * 10000) / 10000)", deepcopy(scattersysvec!(u, D.vectors[:, idx]).values), ) for idx = 1:length(D.values) ] vtkexportmesh(File, fens, fes; vectors = vectors) # @async run(`"paraview.exe" $File`) savecsv("bend_hex_spectrum_full-aspect=$(aspect).csv", eigenvalues = vec(D.values)) @pgf _a = SemiLogYAxis( { xlabel = "Mode [ND]", ylabel = "Generalized stiffness [N/m]", grid = "major", legend_pos = "south east", title = "Hexahedron spectrum, aspect=$(aspect)", }, Plot( {"red", mark = "triangle"}, Table([:x => vec(7:size(K, 1)), :y => vec(D.values[7:end])]), ), LegendEntry("FEA"), ) display(_a) true end for aspect in aspects sim(aspect) end end # bend_hex_spectrum_full function bend_hex_spectrum_underintegrated() function sim(aspect) fens, fes = mesh() fens.xyz[:, 1] .*= aspect MR = DeforModelRed3D material = MatDeforElastIso(MR, E, nu) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field applyebc!(u) numberdofs!(u) femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3, 1)), material) vol = integratefunction(femm, geom, x -> 1.0; m = 3) associategeometry!(femm, geom) K = stiffness(femm, geom, u) D = eigen(Matrix(K)) # File = "bend_hex_spectrum_full.vtk" # vectors = [("ev_$(idx)_$(round(D.values[idx] * 10000) / 10000)", deepcopy(scattersysvec!(u, D.vectors[:,idx]).values)) for idx in 1:length(D.values)] # vtkexportmesh(File, fens, fes; vectors=vectors) # @async run(`"paraview.exe" $File`) savecsv( "bend_hex_spectrum_underintegrated-aspect=$(aspect).csv", eigenvalues = vec(D.values), ) true end for aspect in aspects sim(aspect) end end # bend_hex_spectrum_underintegrated function bend_hex_spectrum_ms() function sim(aspect) fens, fes = mesh() fens.xyz[:, 1] .*= aspect MR = DeforModelRed3D material = MatDeforElastIso(MR, E, nu) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field applyebc!(u) numberdofs!(u) femm = FEMMDeforLinearMSH8(MR, IntegDomain(fes, GaussRule(3, 2)), material) vol = integratefunction(femm, geom, x -> 1.0; m = 3) associategeometry!(femm, geom) K = stiffness(femm, geom, u) D = eigen(Matrix(K)) savecsv("bend_hex_spectrum_ms-aspect=$(aspect).csv", eigenvalues = vec(D.values)) @pgf _a = SemiLogYAxis( { xlabel = "Mode [ND]", ylabel = "Generalized stiffness [N/m]", grid = "major", legend_pos = "south east", title = "Hexahedron spectrum, aspect=$(aspect)", }, Plot( {"red", mark = "triangle"}, Table([:x => vec(7:size(K, 1)), :y => vec(D.values[7:end])]), ), LegendEntry("MS"), ) display(_a) # File = "bend_hex_spectrum_ms.vtk" # vectors = [("ev_$(idx)_$(round(D.values[idx] * 10000) / 10000)", deepcopy(scattersysvec!(u, D.vectors[:,idx]).values)) for idx in 1:length(D.values)] # vtkexportmesh(File, fens, fes; vectors=vectors) # @async run(`"paraview.exe" $File`) true end for aspect in aspects sim(aspect) end end # bend_hex_spectrum_ms function bend_hex_spectrum_im_9() function sim(aspect) fens, fes = mesh() fens.xyz += xyzperturbation fens.xyz[:, 1] .*= aspect MR = DeforModelRed3D material = MatDeforElastIso(MR, E, nu) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field applyebc!(u) numberdofs!(u) femm = FEMMDeforLinearIMH8(MR, IntegDomain(fes, GaussRule(3, 2)), material, 9) vol = integratefunction(femm, geom, x -> 1.0; m = 3) associategeometry!(femm, geom) K = stiffness(femm, geom, u) D = eigen(Matrix(K)) savecsv("bend_hex_spectrum_im-aspect=$(aspect).csv", eigenvalues = vec(D.values)) @pgf _a = SemiLogYAxis( { xlabel = "Mode [ND]", ylabel = "Generalized stiffness [N/m]", grid = "major", legend_pos = "south east", title = "Hexahedron spectrum, aspect=$(aspect)", }, Plot( {"red", mark = "triangle"}, Table([:x => vec(7:size(K, 1)), :y => vec(D.values[7:end])]), ), LegendEntry("IM 9"), ) display(_a) # File = "bend_hex_spectrum_im.vtk" # vectors = [("ev_$(idx)_$(round(D.values[idx] * 10000) / 10000)", deepcopy(scattersysvec!(u, D.vectors[:,idx]).values)) for idx in 1:length(D.values)] # vtkexportmesh(File, fens, fes; vectors=vectors) # @async run(`"paraview.exe" $File`) true end for aspect in aspects sim(aspect) end end # bend_hex_spectrum_im function bend_hex_spectrum_im_12() function sim(aspect) fens, fes = mesh() fens.xyz += xyzperturbation fens.xyz[:, 1] .*= aspect MR = DeforModelRed3D material = MatDeforElastIso(MR, E, nu) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field applyebc!(u) numberdofs!(u) femm = FEMMDeforLinearIMH8(MR, IntegDomain(fes, GaussRule(3, 2)), material, 12) vol = integratefunction(femm, geom, x -> 1.0; m = 3) associategeometry!(femm, geom) K = stiffness(femm, geom, u) D = eigen(Matrix(K)) savecsv("bend_hex_spectrum_im-aspect=$(aspect).csv", eigenvalues = vec(D.values)) @pgf _a = SemiLogYAxis( { xlabel = "Mode [ND]", ylabel = "Generalized stiffness [N/m]", grid = "major", legend_pos = "south east", title = "Hexahedron spectrum, aspect=$(aspect)", }, Plot( {"red", mark = "triangle"}, Table([:x => vec(7:size(K, 1)), :y => vec(D.values[7:end])]), ), LegendEntry("IM 12"), ) display(_a) # File = "bend_hex_spectrum_im.vtk" # vectors = [("ev_$(idx)_$(round(D.values[idx] * 10000) / 10000)", deepcopy(scattersysvec!(u, D.vectors[:,idx]).values)) for idx in 1:length(D.values)] # vtkexportmesh(File, fens, fes; vectors=vectors) # @async run(`"paraview.exe" $File`) true end for aspect in aspects sim(aspect) end end # bend_hex_spectrum_im function allrun() println("#####################################################") println("# bend_hex_spectrum_full ") bend_hex_spectrum_full() println("#####################################################") println("# bend_hex_spectrum_underintegrated ") bend_hex_spectrum_underintegrated() println("#####################################################") println("# bend_hex_spectrum_ms ") bend_hex_spectrum_ms() println("#####################################################") println("# bend_hex_spectrum_im_9 ") bend_hex_spectrum_im_9() println("#####################################################") println("# bend_hex_spectrum_im_12 ") bend_hex_spectrum_im_12() return true end # function allrun @info "All examples may be executed with " println("using .$(@__MODULE__); $(@__MODULE__).allrun()") end # module nothing
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
7190
module comp_hex_spectrum_examples using FinEtools using FinEtools.MeshExportModule.CSV: savecsv using FinEtoolsDeforLinear using FinEtoolsDeforLinear.AlgoDeforLinearModule using FinEtools.AlgoBaseModule: evalconvergencestudy using FinEtoolsDeforLinear.AlgoDeforLinearModule: linearstatics, exportstresselementwise, exportstress using Statistics: mean using LinearAlgebra: Symmetric, cholesky, eigen using PGFPlotsX # Isotropic material E = 1.0 nus = [0.3 0.49 0.4999 0.499999] # julia> rand(8,3) .* 2 .- 1.0 xyzperturbation = [ 0.0767656 -0.983206 -0.14343 0.45767 0.981479 0.450997 -0.295854 0.542922 0.321333 -0.85204 -0.97824 -0.772874 -0.0539756 0.994907 0.822798 0.447173 0.528742 0.0445352 -0.468417 0.00673427 0.953151 -0.898513 -0.915871 0.933237 ] ./ 15.0 # Lambda1 = vec([-1.0 1.0 1.0 -1.0 -1.0 1.0 1.0 -1.0]) # Lambda2 = vec([-1.0 -1.0 1.0 1.0 -1.0 -1.0 1.0 1.0]) # Gamma1 = vec([1.0 1.0 -1.0 -1.0 -1.0 -1.0 1.0 1.0]) # xyzperturbation = zeros((8,3)) # xyzperturbation[:, 1] .= Lambda2 ./ 10.0 # xyzperturbation[:, 2] .= Lambda1 ./ 10.0 # xyzperturbation[:, 3] .= Gamma1 ./ 20.0 function mesh() ( FinEtools.FENodeSetModule.FENodeSet( [ 0.0 0.0 0.0 1.0 0.0 0.0 1.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 1.0 0.0 1.0 1.0 1.0 1.0 0.0 1.0 1.0 ], ), FinEtools.FESetModule.FESetH8(reshape([1, 2, 3, 4, 5, 6, 7, 8], 1, 8)), ) end function comp_hex_spectrum_full() function sim(nu) fens, fes = mesh() fens.xyz += xyzperturbation MR = DeforModelRed3D material = MatDeforElastIso(MR, E, nu) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field applyebc!(u) numberdofs!(u) femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3, 2)), material) vol = integratefunction(femm, geom, x -> 1.0; m = 3) associategeometry!(femm, geom) K = stiffness(femm, geom, u) D = eigen(Matrix(K)) # File = "comp_hex_spectrum_full.vtk" # vectors = [("ev_$(idx)_$(round(D.values[idx] * 10000) / 10000)", deepcopy(scattersysvec!(u, D.vectors[:,idx]).values)) for idx in 1:length(D.values)] # vtkexportmesh(File, fens, fes; vectors=vectors) # @async run(`"paraview.exe" $File`) savecsv("comp_hex_spectrum_full-nu=$(nu).csv", eigenvalues = vec(D.values)) # @pgf _a = SemiLogYAxis({ # xlabel = "Mode [ND]", # ylabel = "Generalized stiffness [N/m]", # grid="major", # legend_pos = "south east", # title = "Hexahedron spectrum, \\nu=$(nu)" # }, # Plot({"red", mark="triangle"}, Table([:x => vec(7:size(K, 1)), :y => vec(D.values[7:end])])), LegendEntry("FEA")) # display(_a) true end for nu in nus sim(nu) end end # comp_hex_spectrum_full function comp_hex_spectrum_underintegrated() function sim(nu) fens, fes = mesh() fens.xyz += xyzperturbation MR = DeforModelRed3D material = MatDeforElastIso(MR, E, nu) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field applyebc!(u) numberdofs!(u) femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3, 1)), material) vol = integratefunction(femm, geom, x -> 1.0; m = 3) associategeometry!(femm, geom) K = stiffness(femm, geom, u) D = eigen(Matrix(K)) # File = "comp_hex_spectrum_full.vtk" # vectors = [("ev_$(idx)_$(round(D.values[idx] * 10000) / 10000)", deepcopy(scattersysvec!(u, D.vectors[:,idx]).values)) for idx in 1:length(D.values)] # vtkexportmesh(File, fens, fes; vectors=vectors) # @async run(`"paraview.exe" $File`) savecsv( "comp_hex_spectrum_underintegrated-nu=$(nu).csv", eigenvalues = vec(D.values), ) true end for nu in nus sim(nu) end end # comp_hex_spectrum_underintegrated function comp_hex_spectrum_ms() function sim(nu) fens, fes = mesh() fens.xyz += xyzperturbation MR = DeforModelRed3D material = MatDeforElastIso(MR, E, nu) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field applyebc!(u) numberdofs!(u) femm = FEMMDeforLinearMSH8(MR, IntegDomain(fes, GaussRule(3, 2)), material) vol = integratefunction(femm, geom, x -> 1.0; m = 3) associategeometry!(femm, geom) K = stiffness(femm, geom, u) D = eigen(Matrix(K)) savecsv("comp_hex_spectrum_ms-nu=$(nu).csv", eigenvalues = vec(D.values)) # File = "comp_hex_spectrum_ms.vtk" # vectors = [("ev_$(idx)_$(round(D.values[idx] * 10000) / 10000)", deepcopy(scattersysvec!(u, D.vectors[:,idx]).values)) for idx in 1:length(D.values)] # vtkexportmesh(File, fens, fes; vectors=vectors) # @async run(`"paraview.exe" $File`) true end for nu in nus sim(nu) end end # comp_hex_spectrum_ms function comp_hex_spectrum_im() function sim(nu) fens, fes = mesh() fens.xyz += xyzperturbation MR = DeforModelRed3D material = MatDeforElastIso(MR, E, nu) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field applyebc!(u) numberdofs!(u) femm = FEMMDeforLinearIMH8(MR, IntegDomain(fes, GaussRule(3, 2)), material) vol = integratefunction(femm, geom, x -> 1.0; m = 3) associategeometry!(femm, geom) K = stiffness(femm, geom, u) D = eigen(Matrix(K)) savecsv("comp_hex_spectrum_im-nu=$(nu).csv", eigenvalues = vec(D.values)) # File = "comp_hex_spectrum_ms.vtk" # vectors = [("ev_$(idx)_$(round(D.values[idx] * 10000) / 10000)", deepcopy(scattersysvec!(u, D.vectors[:,idx]).values)) for idx in 1:length(D.values)] # vtkexportmesh(File, fens, fes; vectors=vectors) # @async run(`"paraview.exe" $File`) true end for nu in nus sim(nu) end end # comp_hex_spectrum_im function allrun() println("#####################################################") println("# comp_hex_spectrum_full ") comp_hex_spectrum_full() println("#####################################################") println("# comp_hex_spectrum_underintegrated ") comp_hex_spectrum_underintegrated() println("#####################################################") println("# comp_hex_spectrum_ms ") comp_hex_spectrum_ms() println("#####################################################") println("# comp_hex_spectrum_im ") comp_hex_spectrum_im() return true end # function allrun @info "All examples may be executed with " println("using .$(@__MODULE__); $(@__MODULE__).allrun()") end # module nothing
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
2767
module hex_ip_constr_examples using FinEtools using FinEtools.MeshExportModule.CSV: savecsv using FinEtoolsDeforLinear using FinEtoolsDeforLinear.AlgoDeforLinearModule using FinEtools.AlgoBaseModule: evalconvergencestudy using FinEtoolsDeforLinear.AlgoDeforLinearModule: linearstatics, exportstresselementwise, exportstress using Statistics: mean using LinearAlgebra: Symmetric, cholesky, eigen, svd using PGFPlotsX function mesh() ( FinEtools.FENodeSetModule.FENodeSet( [ 0.0 0.0 0.0 1.0 0.0 0.0 1.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 1.0 0.0 1.0 1.0 1.0 1.0 0.0 1.0 1.0 ], ), FinEtools.FESetModule.FESetH8(reshape([1, 2, 3, 4, 5, 6, 7, 8], 1, 8)), ) end function hex_ip_constr_par() fens, fes = mesh() # integration_rule = TrapezoidalRule(3) integration_rule = GaussRule(3, 1) pc = integration_rule.param_coords w = integration_rule.weights npts = integration_rule.npts Q = fill(0.0, npts, 24) for j = 1:npts gradNpar = bfundpar(fes, vec(pc[j, :])) k = 1 for i in axes(gradNpar, 1) Q[j, k:(k+2)] .= gradNpar[i, :] k = k + 3 end end decomp = svd(Q) @show decomp.S true end # hex_ip_constr_par function hex_ip_constr_xyz() xyzperturbation = [ 0.0767656 -0.983206 -0.14343 0.45767 0.981479 0.450997 -0.295854 0.542922 0.321333 -0.85204 -0.97824 -0.772874 -0.0539756 0.994907 0.822798 0.447173 0.528742 0.0445352 -0.468417 0.00673427 0.953151 -0.898513 -0.915871 0.933237 ] ./ 5.0 fens, fes = mesh() fens.xyz .+= xyzperturbation # integration_rule = TrapezoidalRule(3) integration_rule = GaussRule(3, 2) pc = integration_rule.param_coords w = integration_rule.weights npts = integration_rule.npts Q = fill(0.0, npts, 24) for j = 1:npts gradNpar = bfundpar(fes, vec(pc[j, :])) J = (transpose(fens.xyz) * gradNpar) @show gradN = gradNpar / J k = 1 for i in axes(gradN, 1) Q[j, k:(k+2)] .= gradN[i, :] k = k + 3 end end decomp = svd(Q) @show decomp.S true end # hex_ip_constr_xyz function allrun() println("#####################################################") println("# hex_ip_constr_par ") hex_ip_constr_par() println("#####################################################") println("# hex_ip_constr_xyz ") hex_ip_constr_xyz() return true end # function allrun end # module hex_ip_constr_examples
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
1493
using DelimitedFiles using PGFPlotsX loadcsv(n) = ( open(n) do f return readdlm(f, skipstart = 1) end ) table(data) = Table([:x => vec(7:length(data)), :y => vec(data[7:end])]) addtoitems!(items, n, color, mark, style) = begin t = table(loadcsv(n)) @pgf(_p = Plot({"only marks"}, t)) _p["color"] = color _p["style"] = style _p["mark"] = mark push!(items, _p) # @pgf(_p = Plot({color, style}, t)) @pgf(_p = Plot({}, t)) _p["color"] = color _p["style"] = style push!(items, _p) return items end styles = vec([ "solid" "densely dashed" "dashed" "densely dotted" "dotted" "loosely dotted" ]) colors = vec( ["red" "green" "blue" "magenta" "black" "yellow" "brown" "teal" "orange" "violet" "cyan" "gray"], ) marks = vec(["*" "square*" "triangle*" "star" "pentagon*" "diamond*" "otimes*" "p" "a"]) items = [] # ["bend_hex_spectrum_full", "bend_hex_spectrum_underintegrated", "bend_hex_spectrum_ms", "bend_hex_spectrum_im"] for (j, basen) in enumerate(["bend_hex_spectrum_full", "bend_hex_spectrum_im"]) for (i, aspect) in enumerate([1.0 10.0 100.0 1000.0]) tag = "aspect=$(aspect)" n = "$(basen)-$(tag).csv" addtoitems!(items, n, colors[j], marks[j], styles[i]) end end @pgf _a = SemiLogYAxis( { xlabel = "Mode [ND]", ylabel = "Generalized stiffness [N/m]", grid = "major", legend_pos = "north west", }, items..., ) display(_a)
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
1484
using DelimitedFiles using PGFPlotsX loadcsv(n) = ( open(n) do f return readdlm(f, skipstart = 1) end ) table(data) = Table([:x => vec(7:length(data)), :y => vec(data[7:end])]) addtoitems!(items, n, color, mark, style) = begin t = table(loadcsv(n)) @pgf(_p = Plot({"only marks"}, t)) _p["color"] = color _p["style"] = style _p["mark"] = mark push!(items, _p) # @pgf(_p = Plot({color, style}, t)) @pgf(_p = Plot({}, t)) _p["color"] = color _p["style"] = style push!(items, _p) return items end styles = vec([ "solid" "densely dashed" "dashed" "densely dotted" "dotted" "loosely dotted" ]) colors = vec( ["red" "green" "blue" "magenta" "black" "yellow" "brown" "teal" "orange" "violet" "cyan" "gray"], ) marks = vec(["*" "square*" "triangle*" "star" "pentagon*" "diamond*" "otimes*" "p" "a"]) items = [] # ["comp_hex_spectrum_full", "comp_hex_spectrum_underintegrated", "comp_hex_spectrum_ms", "comp_hex_spectrum_im"] for (j, basen) in enumerate(["comp_hex_spectrum_full", "comp_hex_spectrum_im"]) for (i, nu) in enumerate([0.3 0.49 0.4999 0.499999]) tag = "nu=$(nu)" n = "$(basen)-$(tag).csv" addtoitems!(items, n, colors[j], marks[j], styles[i]) end end @pgf _a = SemiLogYAxis( { xlabel = "Mode [ND]", ylabel = "Generalized stiffness [N/m]", grid = "major", legend_pos = "north west", }, items..., ) display(_a)
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
6706
module single_hex_examples using FinEtools using FinEtoolsDeforLinear using FinEtoolsDeforLinear.AlgoDeforLinearModule using FinEtools.AlgoBaseModule: evalconvergencestudy using FinEtoolsDeforLinear.AlgoDeforLinearModule: linearstatics, exportstresselementwise, exportstress using Statistics: mean using LinearAlgebra: Symmetric, cholesky, eigen, norm # Isotropic material E = 1.0 nu = 0.3 # julia> rand(8,3) .* 2 .- 1.0 xyzperturbation = [ 0.0767656 -0.983206 -0.14343 0.45767 0.981479 0.450997 -0.295854 0.542922 0.321333 -0.85204 -0.97824 -0.772874 -0.0539756 0.994907 0.822798 0.447173 0.528742 0.0445352 -0.468417 0.00673427 0.953151 -0.898513 -0.915871 0.933237 ] ./ 5.0 # Lambda1 = vec([-1.0 1.0 1.0 -1.0 -1.0 1.0 1.0 -1.0]) # Lambda2 = vec([-1.0 -1.0 1.0 1.0 -1.0 -1.0 1.0 1.0]) # Gamma1 = vec([1.0 1.0 -1.0 -1.0 -1.0 -1.0 1.0 1.0]) # xyzperturbation = zeros((8,3)) # xyzperturbation[:, 1] .= Lambda2 ./ 10.0 # xyzperturbation[:, 2] .= Lambda1 ./ 10.0 # xyzperturbation[:, 3] .= Gamma1 ./ 20.0 function mesh(alpha = 0) ( FinEtools.FENodeSetModule.FENodeSet( [ 0.0 0.0 0.0 1.0 0.0 0.0 1.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 1.0 0.0 1.0 1.0 1.0 1.0 0.0 1.0 1.0 ] + alpha * xyzperturbation, ), FinEtools.FESetModule.FESetH8(reshape([1, 2, 3, 4, 5, 6, 7, 8], 1, 8)), ) end function single_hex_perfect_cube() fens, fes = mesh() File = "single_hex_perfect_cube.vtk" vtkexportmesh(File, fens, fes) @async run(`"paraview.exe" $File`) true end # single_hex_perfect_cube function single_hex_full() fens, fes = mesh() fens.xyz += xyzperturbation MR = DeforModelRed3D material = MatDeforElastIso(MR, E, nu) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field applyebc!(u) numberdofs!(u) femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3, 2)), material) @show vol = integratefunction(femm, geom, x -> 1.0; m = 3) associategeometry!(femm, geom) K = stiffness(femm, geom, u) D = eigen(Matrix(K)) File = "single_hex_full.vtk" vectors = [ ( "ev_$(idx)_$(round(D.values[idx] * 10000) / 10000)", deepcopy(scattersysvec!(u, D.vectors[:, idx]).values), ) for idx = 1:length(D.values) ] vtkexportmesh(File, fens, fes; vectors = vectors) @async run(`"paraview.exe" $File`) true end # single_hex_full function single_hex_underintegrated() fens, fes = mesh() fens.xyz += xyzperturbation MR = DeforModelRed3D material = MatDeforElastIso(MR, E, nu) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field applyebc!(u) numberdofs!(u) femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3, 1)), material) @show vol = integratefunction(femm, geom, x -> 1.0; m = 3) associategeometry!(femm, geom) K = stiffness(femm, geom, u) D = eigen(Matrix(K)) File = "single_hex_underintegrated.vtk" vectors = [ ( "ev_$(idx)_$(round(D.values[idx] * 10000) / 10000)", deepcopy(scattersysvec!(u, D.vectors[:, idx]).values), ) for idx = 1:length(D.values) ] vtkexportmesh(File, fens, fes; vectors = vectors) @async run(`"paraview.exe" $File`) true end # single_hex_underintegrated function single_hex_ms() fens, fes = mesh() fens.xyz += xyzperturbation MR = DeforModelRed3D material = MatDeforElastIso(MR, E, nu) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field applyebc!(u) numberdofs!(u) femm = FEMMDeforLinearMSH8(MR, IntegDomain(fes, GaussRule(3, 2)), material) @show vol = integratefunction(femm, geom, x -> 1.0; m = 3) associategeometry!(femm, geom) fill!(femm.phis, 0.0) K = stiffness(femm, geom, u) D = eigen(Matrix(K)) File = "single_hex_ms.vtk" vectors = [ ( "ev_$(idx)_$(round(D.values[idx] * 10000) / 10000)", deepcopy(scattersysvec!(u, D.vectors[:, idx]).values), ) for idx = 1:length(D.values) ] vtkexportmesh(File, fens, fes; vectors = vectors) @async run(`"paraview.exe" $File`) true end # single_hex_ms function single_hex_full_scaling() fens, fes = mesh(1.0) @show fens.xyz MR = DeforModelRed3D material = MatDeforElastIso(MR, E, nu) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field applyebc!(u) numberdofs!(u) femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3, 2)), material) # @show vol = integratefunction(femm, geom, x -> 1.0; m=3) associategeometry!(femm, geom) K = stiffness(femm, geom, u) K1 = Matrix(K) fens, fes = mesh(1.0) fens.xyz .*= 10 geom = NodalField(fens.xyz) associategeometry!(femm, geom) K = stiffness(femm, geom, u) K10 = Matrix(K) @show norm(K1 - K10) / norm(K1) fens, fes = mesh(1.0) fens.xyz .*= 1 geom = NodalField(fens.xyz) associategeometry!(femm, geom) K = stiffness(femm, geom, u) K1b = Matrix(K) @show norm(K1 - K1b) / norm(K1) fens, fes = mesh(1.0) fens.xyz .*= 2 geom = NodalField(fens.xyz) associategeometry!(femm, geom) K = stiffness(femm, geom, u) K2 = Matrix(K) @show norm(K1 - K2) / norm(K1) fens, fes = mesh(1.0) fens.xyz .*= 200 geom = NodalField(fens.xyz) associategeometry!(femm, geom) K = stiffness(femm, geom, u) K200 = Matrix(K) @show norm(K1 - K200) / norm(K1) true end # single_hex_full function allrun() println("#####################################################") println("# single_hex_full_scaling ") single_hex_full_scaling() println("#####################################################") println("# single_hex_perfect_cube ") single_hex_perfect_cube() println("#####################################################") println("# single_hex_full ") single_hex_full() println("#####################################################") println("# single_hex_underintegrated ") single_hex_underintegrated() println("#####################################################") println("# single_hex_ms ") single_hex_ms() return true end # function allrun @info "All examples may be executed with " println("using .$(@__MODULE__); $(@__MODULE__).allrun()") end # module nothing
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
20111
module LE11NAFEMS_examples using FinEtools using FinEtoolsDeforLinear using FinEtoolsDeforLinear.AlgoDeforLinearModule function LE11NAFEMS_Q8_algo() # NAFEMS LE11 benchmark with Q8 elements. # # This is a test recommended by the National Agency for Finite Element # # Methods and Standards (U.K.): Test LE11 from NAFEMS Publication TNSB, # # Rev. 3, “The Standard NAFEMS Benchmarks,” October 1990. # # # # Target solution: Direct stress, = –105 MPa at point A. #function LE11NAFEMS() # Parameters: Ea = 210000 * phun("MEGA*Pa") nua = 0.3 alphaa = 2.3e-4 # thermal expansion coefficient sigmaA = -105 * phun("MEGA*Pa") nref = 1 # how many times should we refine the mesh? X = [ 1.0 0.0#A 1.4 0.0#B 0.995184726672197 0.098017140329561 1.393258617341076 0.137223996461385 0.980785 0.195090# 1.37309939 0.27312645 0.956940335732209 0.290284677254462 1.339716470025092 0.406398548156247 0.9238795 0.38268#C 1.2124 0.7#D 0.7071 0.7071#E 1.1062 1.045#F 0.7071 (0.7071+1.79)/2#(E+H)/2 1.0 1.39#G 0.7071 1.79#H 1.0 1.79 ] * phun("M") tolerance = 1.e-6 * phun("M") ## # Note that the material object needs to be created with the proper # model-dimension reduction in mind. In this case that is the axial symmetry # assumption. MR = DeforModelRed2DAxisymm fens = FENodeSet(X) fes = FESetQ4([ 1 2 4 3 3 4 6 5 5 6 8 7 7 8 10 9 9 10 12 11 11 12 14 13 13 14 16 15 ]) for ref = 1:nref fens, fes = Q4refine(fens, fes) list = selectnode( fens, distance = 1.0 + 0.1 / 2^nref, from = [0.0 0.0], inflate = tolerance, ) fens.xyz[list, :] = FinEtools.MeshUtilModule.ontosphere(fens.xyz[list, :], 1.0) end fens, fes = Q4toQ8(fens, fes) list = selectnode( fens, distance = 1.0 + 0.1 / 2^nref, from = [0.0 0.0], inflate = tolerance, ) fens.xyz[list, :] = FinEtools.MeshUtilModule.ontosphere(fens.xyz[list, :], 1.0) # EBC's l1 = selectnode(fens, box = [-Inf Inf 0 0], inflate = tolerance) e1 = FDataDict("node_list" => l1, "component" => 2, "displacement" => x -> 0.0) l1 = selectnode(fens, box = [-Inf Inf 1.79 1.79], inflate = tolerance) e2 = FDataDict("node_list" => l1, "component" => 2, "displacement" => x -> 0.0) # Temperature field dtemp = FDataDict("temperature" => x -> x[1] + x[2]) # Property and material material = MatDeforElastIso(MR, 0.0, Ea, nua, alphaa) femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(2, 3), true), material) # Make region 1 region = FDataDict("femm" => femm) # Make model data modeldata = FDataDict( "fens" => fens, "regions" => [region], "essential_bcs" => [e1, e2], "temperature_change" => dtemp, ) # Call the solver modeldata = AlgoDeforLinearModule.linearstatics(modeldata) geom = modeldata["geom"] u = modeldata["u"] dT = modeldata["temp"] nA = selectnode(fens, box = FFlt[1.0 1.0 0.0 0.0], inflate = tolerance) fld = fieldfromintegpoints(femm, geom, u, dT, :Cauchy, 2) File = "LE11NAFEMS_Q8_sigmay.vtk" vtkexportmesh( File, fens, fes; scalars = [("sigmay", fld.values)], vectors = [("u", u.values)], ) println("range of sigmay = $((minimum(fld.values), maximum(fld.values)))") @async run(`"paraview.exe" $File`) sA = fld.values[nA] / phun("MEGA*Pa") sAn = fld.values[nA] / sigmaA println("Stress at point A: $(sA) i. e. $( sAn*100 )% of reference value") fen2fe = FENodeToFEMap(fes.conn, nnodes(geom)) function inspector(idat, elnum, conn, xe, out, xq) println("loc = $( xq ) : $( transpose(out)/phun("MEGA*Pa") )") return idat end inspectintegpoints( femm, geom, u, dT, fen2fe.map[nA[1]], inspector, []; quantity = :Cauchy, ) end # LE11NAFEMS_Q8_algo function LE11NAFEMS_Q8_algo2() # NAFEMS LE11 benchmark with Q8 elements. # # This is a test recommended by the National Agency for Finite Element # # Methods and Standards (U.K.): Test LE11 from NAFEMS Publication TNSB, # # Rev. 3, “The Standard NAFEMS Benchmarks,” October 1990. # # # # Target solution: Direct stress, = –105 MPa at point A. #function LE11NAFEMS() # Parameters: Ea = 210000 * phun("MEGA*Pa") nua = 0.3 alphaa = 2.3e-4 # thermal expansion coefficient sigmaA = -105 * phun("MEGA*Pa") nref = 1 # how many times should we refine the mesh? X = [ 1.0 0.0#A 1.4 0.0#B 0.995184726672197 0.098017140329561 1.393258617341076 0.137223996461385 0.980785 0.195090# 1.37309939 0.27312645 0.956940335732209 0.290284677254462 1.339716470025092 0.406398548156247 0.9238795 0.38268#C 1.2124 0.7#D 0.7071 0.7071#E 1.1062 1.045#F 0.7071 (0.7071+1.79)/2#(E+H)/2 1.0 1.39#G 0.7071 1.79#H 1.0 1.79 ] * phun("M") tolerance = 1.e-6 * phun("M") ## # Note that the material object needs to be created with the proper # model-dimension reduction in mind. In this case that is the axial symmetry # assumption. MR = DeforModelRed2DAxisymm fens = FENodeSet(X) fes = FESetQ4([ 1 2 4 3 3 4 6 5 5 6 8 7 7 8 10 9 9 10 12 11 11 12 14 13 13 14 16 15 ]) for ref = 1:nref fens, fes = Q4refine(fens, fes) list = selectnode( fens, distance = 1.0 + 0.1 / 2^nref, from = [0.0 0.0], inflate = tolerance, ) fens.xyz[list, :] = FinEtools.MeshUtilModule.ontosphere(fens.xyz[list, :], 1.0) end fens, fes = Q4toQ8(fens, fes) list = selectnode( fens, distance = 1.0 + 0.1 / 2^nref, from = [0.0 0.0], inflate = tolerance, ) fens.xyz[list, :] = FinEtools.MeshUtilModule.ontosphere(fens.xyz[list, :], 1.0) # EBC's l1 = selectnode(fens, box = [-Inf Inf 0 0], inflate = tolerance) e1 = FDataDict("node_list" => l1, "component" => 2, "displacement" => x -> 0.0) l1 = selectnode(fens, box = [-Inf Inf 1.79 1.79], inflate = tolerance) e2 = FDataDict("node_list" => l1, "component" => 2, "displacement" => x -> 0.0) # Temperature field dtemp = FDataDict("temperature" => x -> x[1] + x[2]) # Property and material material = MatDeforElastIso(MR, 0.0, Ea, nua, alphaa) femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(2, 3), true), material) # Make region 1 region = FDataDict("femm" => femm) # Make model data modeldata = FDataDict( "fens" => fens, "regions" => [region], "essential_bcs" => [e1, e2], "temperature_change" => dtemp, ) # Call the solver modeldata = AlgoDeforLinearModule.linearstatics(modeldata) geom = modeldata["geom"] u = modeldata["u"] dT = modeldata["temp"] modeldata["postprocessing"] = FDataDict("boundary_only" => true, "file" => "LE11NAFEMS_Q8_deformation.vtk") modeldata = AlgoDeforLinearModule.exportdeformation(modeldata) @async run(`"paraview.exe" $(modeldata["postprocessing"]["exported"][1]["file"])`) nA = selectnode(fens, box = FFlt[1.0 1.0 0.0 0.0], inflate = tolerance) modeldata["postprocessing"] = FDataDict( "boundary_only" => true, "file" => "LE11NAFEMS_Q8_sigmay.vtk", "quantity" => :Cauchy, "component" => 2, ) modeldata = AlgoDeforLinearModule.exportstress(modeldata) modeldata["postprocessing"] = FDataDict( "boundary_only" => false, "file" => "LE11NAFEMS_Q8_sigmay.vtk", "quantity" => :Cauchy, "component" => 2, ) modeldata = AlgoDeforLinearModule.exportstress(modeldata) @async run(`"paraview.exe" $(modeldata["postprocessing"]["exported"][1]["file"])`) fld = modeldata["postprocessing"]["exported"][1]["field"] sA = fld.values[nA] / phun("MEGA*Pa") sAn = fld.values[nA] / sigmaA println("Stress at point A: $(sA) i. e. $( sAn*100 )% of reference value") # Loop over only those elements that share the node nA fen2fe = FENodeToFEMap(fes.conn, nnodes(geom)) function inspector(idat, elnum, conn, xe, out, xq) println("loc = $( xq ) : $( transpose(out)/phun("MEGA*Pa") )") return idat end inspectintegpoints( femm, geom, u, dT, fen2fe.map[nA[1]], inspector, []; quantity = :Cauchy, ) modeldata["postprocessing"] = FDataDict( "boundary_only" => false, "file" => "LE11NAFEMS_Q8_sigmay_ew.vtk", "quantity" => :Cauchy, "component" => 2, ) modeldata = AlgoDeforLinearModule.exportstresselementwise(modeldata) @async run(`"paraview.exe" $(modeldata["postprocessing"]["exported"][1]["file"])`) end # LE11NAFEMS_Q8_algo2 function LE11NAFEMS_Q8_export_stress() # NAFEMS LE11 benchmark with Q8 elements. # # This is a test recommended by the National Agency for Finite Element # # Methods and Standards (U.K.): Test LE11 from NAFEMS Publication TNSB, # # Rev. 3, “The Standard NAFEMS Benchmarks,” October 1990. # # # # Target solution: Direct stress, = –105 MPa at point A. #function LE11NAFEMS() # Parameters: Ea = 210000 * phun("MEGA*Pa") nua = 0.3 alphaa = 2.3e-4 # thermal expansion coefficient sigmaA = -105 * phun("MEGA*Pa") nref = 2 # how many times should we refine the mesh? X = [ 1.0 0.0#A 1.4 0.0#B 0.995184726672197 0.098017140329561 1.393258617341076 0.137223996461385 0.980785 0.195090# 1.37309939 0.27312645 0.956940335732209 0.290284677254462 1.339716470025092 0.406398548156247 0.9238795 0.38268#C 1.2124 0.7#D 0.7071 0.7071#E 1.1062 1.045#F 0.7071 (0.7071+1.79)/2#(E+H)/2 1.0 1.39#G 0.7071 1.79#H 1.0 1.79 ] * phun("M") tolerance = 1.e-6 * phun("M") ## # Note that the material object needs to be created with the proper # model-dimension reduction in mind. In this case that is the axial symmetry # assumption. MR = DeforModelRed2DAxisymm fens = FENodeSet(X) fes = FESetQ4([ 1 2 4 3 3 4 6 5 5 6 8 7 7 8 10 9 9 10 12 11 11 12 14 13 13 14 16 15 ]) for ref = 1:nref fens, fes = Q4refine(fens, fes) list = selectnode( fens, distance = 1.0 + 0.1 / 2^nref, from = [0.0 0.0], inflate = tolerance, ) fens.xyz[list, :] = FinEtools.MeshUtilModule.ontosphere(fens.xyz[list, :], 1.0) end fens, fes = Q4toQ8(fens, fes) list = selectnode( fens, distance = 1.0 + 0.1 / 2^nref, from = [0.0 0.0], inflate = tolerance, ) fens.xyz[list, :] = FinEtools.MeshUtilModule.ontosphere(fens.xyz[list, :], 1.0) # File = "mesh.vtk" # vtkexportmesh(File, fens, fes) # now we create the geometry and displacement fields geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 2)) # displacement field # Apply EBC's lbottom = selectnode(fens, box = [-Inf Inf 0 0], inflate = tolerance) setebc!(u, lbottom, true, 2, 00.0) ltop = selectnode(fens, box = [-Inf Inf 1.79 1.79], inflate = tolerance) setebc!(u, ltop, true, 2, 00.0) applyebc!(u) numberdofs!(u) # Temperature field dT = NodalField(reshape(fens.xyz[:, 1] + fens.xyz[:, 2], size(fens.xyz, 1), 1)) # Property and material material = MatDeforElastIso(MR, 0.0, Ea, nua, alphaa) femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(2, 3), true), material) K = stiffness(femm, geom, u) F = thermalstrainloads(femm, geom, u, dT) #K = cholesky(K) U = K \ F scattersysvec!(u, U[:]) nA = selectnode(fens, box = FFlt[1.0 1.0 0.0 0.0], inflate = tolerance) fld = fieldfromintegpoints(femm, geom, u, dT, :Cauchy, 2) File = "LE11NAFEMS_Q8_sigmay.vtk" vtkexportmesh( File, fens, fes; scalars = [("sigmay", fld.values)], vectors = [("u", u.values)], ) println("range of sigmay = $((minimum(fld.values), maximum(fld.values)))") @async run(`"paraview.exe" $File`) sA = fld.values[nA] / phun("MEGA*Pa") sAn = fld.values[nA] / sigmaA println("Stress at point A: $(sA) i. e. $( sAn*100 )% of reference value") fen2fe = FENodeToFEMap(fes.conn, nnodes(geom)) function inspector(idat, elnum, conn, xe, out, xq) # println("loc = $( xq ) : $( transpose(out)/phun("MEGA*Pa") )") return idat end inspectintegpoints( femm, geom, u, dT, fen2fe.map[nA[1]], inspector, []; quantity = :Cauchy, ) fld = fieldfromintegpoints(femm, geom, u, dT, :Pressure, 1) File = "LE11NAFEMS_Q8_pressure.vtk" vtkexportmesh( File, fens, fes; scalars = [("pressure", fld.values)], vectors = [("u", u.values)], ) println("range of pressure = $((minimum(fld.values), maximum(fld.values)))") @async run(`"paraview.exe" $File`) fld = fieldfromintegpoints(femm, geom, u, dT, :vm, 1) File = "LE11NAFEMS_Q8_vm.vtk" vtkexportmesh( File, fens, fes; scalars = [("pressure", fld.values)], vectors = [("u", u.values)], ) println("range of von Mises = $((minimum(fld.values), maximum(fld.values)))") @async run(`"paraview.exe" $File`) AE = AbaqusExporter("LE11NAFEMS_Q8_export_stress") HEADING(AE, "NAFEMS LE11 benchmark with Q8 elements.") COMMENT(AE, "sigmaA = -105 MPa ") PART(AE, "part1") END_PART(AE) ASSEMBLY(AE, "ASSEM1") INSTANCE(AE, "INSTNC1", "PART1") NODE(AE, fens.xyz) ELEMENT(AE, "cax8", "AllElements", 1, connasarray(fes)) NSET_NSET(AE, "ltop", ltop) NSET_NSET(AE, "lbottom", lbottom) ORIENTATION(AE, "GlobalOrientation", vec([1.0 0 0]), vec([0 1.0 0])) SOLID_SECTION(AE, "elasticity", "GlobalOrientation", "AllElements") SURFACE_SECTION(AE, "TractionElements") END_INSTANCE(AE) END_ASSEMBLY(AE) MATERIAL(AE, "elasticity") ELASTIC(AE, Ea, nua) EXPANSION(AE, alphaa) STEP_PERTURBATION_STATIC(AE) BOUNDARY(AE, "ASSEM1.INSTNC1.ltop", 2) BOUNDARY(AE, "ASSEM1.INSTNC1.lbottom", 2) TEMPERATURE(AE, "ASSEM1.INSTNC1.", collect(1:count(fens)), vec(dT.values)) END_STEP(AE) close(AE) end # LE11NAFEMS_Q8_export_stress function LE11NAFEMS_Q8_stress() # NAFEMS LE11 benchmark with Q8 elements. # # This is a test recommended by the National Agency for Finite Element # # Methods and Standards (U.K.): Test LE11 from NAFEMS Publication TNSB, # # Rev. 3, “The Standard NAFEMS Benchmarks,” October 1990. # # # # Target solution: Direct stress, = –105 MPa at point A. #function LE11NAFEMS() # Parameters: Ea = 210000 * phun("MEGA*Pa") nua = 0.3 alphaa = 2.3e-4 # thermal expansion coefficient sigmaA = -105 * phun("MEGA*Pa") nref = 1 # how many times should we refine the mesh? X = [ 1.0 0.0#A 1.4 0.0#B 0.995184726672197 0.098017140329561 1.393258617341076 0.137223996461385 0.980785 0.195090# 1.37309939 0.27312645 0.956940335732209 0.290284677254462 1.339716470025092 0.406398548156247 0.9238795 0.38268#C 1.2124 0.7#D 0.7071 0.7071#E 1.1062 1.045#F 0.7071 (0.7071+1.79)/2#(E+H)/2 1.0 1.39#G 0.7071 1.79#H 1.0 1.79 ] * phun("M") tolerance = 1.e-6 * phun("M") ## # Note that the material object needs to be created with the proper # model-dimension reduction in mind. In this case that is the axial symmetry # assumption. MR = DeforModelRed2DAxisymm fens = FENodeSet(X) fes = FESetQ4([ 1 2 4 3 3 4 6 5 5 6 8 7 7 8 10 9 9 10 12 11 11 12 14 13 13 14 16 15 ]) for ref = 1:nref fens, fes = Q4refine(fens, fes) list = selectnode( fens, distance = 1.0 + 0.1 / 2^nref, from = [0.0 0.0], inflate = tolerance, ) fens.xyz[list, :] = FinEtools.MeshUtilModule.ontosphere(fens.xyz[list, :], 1.0) end fens, fes = Q4toQ8(fens, fes) list = selectnode( fens, distance = 1.0 + 0.1 / 2^nref, from = [0.0 0.0], inflate = tolerance, ) fens.xyz[list, :] = FinEtools.MeshUtilModule.ontosphere(fens.xyz[list, :], 1.0) # File = "mesh.vtk" # vtkexportmesh(File, fens, fes) # now we create the geometry and displacement fields geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 2)) # displacement field # Apply EBC's l1 = selectnode(fens, box = [-Inf Inf 0 0], inflate = tolerance) setebc!(u, l1, true, 2, 00.0) l1 = selectnode(fens, box = [-Inf Inf 1.79 1.79], inflate = tolerance) setebc!(u, l1, true, 2, 00.0) applyebc!(u) numberdofs!(u) # Temperature field dT = NodalField(reshape(fens.xyz[:, 1] + fens.xyz[:, 2], size(fens.xyz, 1), 1)) # Property and material material = MatDeforElastIso(MR, 0.0, Ea, nua, alphaa) femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(2, 3), true), material) K = stiffness(femm, geom, u) F = thermalstrainloads(femm, geom, u, dT) #K = cholesky(K) U = K \ F scattersysvec!(u, U[:]) nA = selectnode(fens, box = FFlt[1.0 1.0 0.0 0.0], inflate = tolerance) fld = fieldfromintegpoints(femm, geom, u, dT, :Cauchy, 2) File = "LE11NAFEMS_Q8_sigmay.vtk" vtkexportmesh( File, fens, fes; scalars = [("sigmay", fld.values)], vectors = [("u", u.values)], ) println("range of sigmay = $((minimum(fld.values), maximum(fld.values)))") @async run(`"paraview.exe" $File`) sA = fld.values[nA] / phun("MEGA*Pa") sAn = fld.values[nA] / sigmaA println("Stress at point A: $(sA) i. e. $( sAn*100 )% of reference value") fen2fe = FENodeToFEMap(fes.conn, nnodes(geom)) function inspector(idat, elnum, conn, xe, out, xq) println("loc = $( xq ) : $( transpose(out)/phun("MEGA*Pa") )") return idat end inspectintegpoints( femm, geom, u, dT, fen2fe.map[nA[1]], inspector, []; quantity = :Cauchy, ) end # LE11NAFEMS_Q8_stress function allrun() println("#####################################################") println("# LE11NAFEMS_Q8_algo ") LE11NAFEMS_Q8_algo() println("#####################################################") println("# LE11NAFEMS_Q8_algo2 ") LE11NAFEMS_Q8_algo2() println("#####################################################") println("# LE11NAFEMS_Q8_export_stress ") LE11NAFEMS_Q8_export_stress() println("#####################################################") println("# LE11NAFEMS_Q8_stress ") LE11NAFEMS_Q8_stress() return true end # function allrun end # module LE11NAFEMS_examples
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
9765
module LE1NAFEMS_examples using FinEtools using FinEtoolsDeforLinear using FinEtools.MeshExportModule using LinearAlgebra: cholesky, norm using PGFPlotsX function LE1NAFEMS() println("LE1NAFEMS, plane stress.") t0 = time() E = 210e3 * phun("MEGA*PA")# 210e3 MPa nu = 0.3 p = 10 * phun("MEGA*PA")# 10 MPA Outward pressure on the outside ellipse sigma_yD = 92.7 * phun("MEGA*PA")# tensile stress at [2.0, 0.0] meters Radius = 1.0 * phun("m") n = 64 # number of elements per side tolerance = 1.0 / n / 1000.0#Geometrical tolerance fens, fes = Q4block(1.0, pi / 2, n, n * 2) bdryfes = meshboundary(fes) icl = selectelem(fens, bdryfes, box = [1.0, 1.0, 0.0, pi / 2], inflate = tolerance) for i = 1:count(fens) t = fens.xyz[i, 1] a = fens.xyz[i, 2] fens.xyz[i, :] = [(t * 3.25 + (1 - t) * 2) * cos(a) (t * 2.75 + (1 - t) * 1) * sin(a)] end geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 2)) # displacement field l1 = selectnode(fens; box = [0.0 Inf 0.0 0.0], inflate = tolerance) setebc!(u, l1, true, 2, 0.0) l1 = selectnode(fens; box = [0.0 0.0 0.0 Inf], inflate = tolerance) setebc!(u, l1, true, 1, 0.0) applyebc!(u) numberdofs!(u) el1femm = FEMMBase(IntegDomain(subset(bdryfes, icl), GaussRule(1, 2))) function pfun(forceout::FFltVec, x::FFltMat, J::FFltMat, l::FInt) pt = [2.75 / 3.25 * x[1] 3.25 / 2.75 * x[2]] copyto!(forceout, vec(p * pt / norm(pt))) return forceout end fi = ForceIntensity(Float64, 2, pfun) F2 = distribloads(el1femm, geom, u, fi, 2) MR = DeforModelRed2DStress material = MatDeforElastIso(MR, E, nu) femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(2, 2)), material) K = stiffness(femm, geom, u) K = cholesky(K) U = K \ (F2) scattersysvec!(u, U[:]) nl = selectnode(fens, box = [2.0, 2.0, 0.0, 0.0], inflate = tolerance) thecorneru = zeros(FFlt, 1, 2) gathervalues_asmat!(u, thecorneru, nl) thecorneru = thecorneru / phun("mm") println( "$(time()-t0) [s]; displacement =$(thecorneru) [MM] as compared to reference [-0.10215,0] [MM]", ) fld = fieldfromintegpoints(femm, geom, u, :Cauchy, 2) println( " Target stress: $(fld.values[nl][1]/phun("MEGA*PA")) compared to $(sigma_yD/phun("MEGA*PA"))", ) File = "a.vtk" vtkexportmesh( File, fes.conn, geom.values, FinEtools.MeshExportModule.Q4; vectors = [("u", u.values)], ) @async run(`"paraview.exe" $File`) true end # LE1NAFEMS function LE1NAFEMS_Q4_convergence() println("LE1NAFEMS, 2D version.") t0 = time() E = 210e3 * phun("MEGA*PA") nu = 0.3 p = 10 * phun("MEGA*PA")# 10 MPA Outward pressure on the outside ellipse sigma_yD = 92.7 * phun("MEGA*PA")# tensile stress at [2.0, 0.0] meters Radius = 1.0 * phun("m") Thickness = 0.1 * phun("m") sigyderrs = Dict{Symbol,FFltVec}() nelems = [] for extrapolation in [:extrapmean] sigyderrs[extrapolation] = FFltVec[] nelems = [] for n in [16, 32, 64, 128, 256, 512] tolerance = 1.0 / n / 1000.0 # Geometrical tolerance fens, fes = Q4block(1.0, pi / 2, n, n) bdryfes = meshboundary(fes) icl = selectelem( fens, bdryfes, box = [1.0, 1.0, 0.0, pi / 2], inflate = tolerance, ) for i = 1:count(fens) t = fens.xyz[i, 1] a = fens.xyz[i, 2] fens.xyz[i, :] = [(t * 3.25 + (1 - t) * 2) * cos(a), (t * 2.75 + (1 - t) * 1) * sin(a)] end geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 2)) # displacement field l1 = selectnode(fens; box = [0.0, Inf, 0.0, 0.0], inflate = tolerance) setebc!(u, l1, true, 2, 0.0) l1 = selectnode(fens; box = [0.0, 0.0, 0.0, Inf], inflate = tolerance) setebc!(u, l1, true, 1, 0.0) applyebc!(u) numberdofs!(u) el1femm = FEMMBase(IntegDomain(subset(bdryfes, icl), GaussRule(1, 2), Thickness)) function pfun( forceout::FVec{T}, XYZ::FFltMat, tangents::FFltMat, fe_label::FInt, ) where {T} pt = [2.75 / 3.25 * XYZ[1], 3.25 / 2.75 * XYZ[2]] forceout .= vec(p * pt / norm(pt)) return forceout end fi = ForceIntensity(Float64, 2, pfun) F2 = distribloads(el1femm, geom, u, fi, 2) # Note that the material object needs to be created for plane stress. MR = DeforModelRed2DStress material = MatDeforElastIso(MR, E, nu) femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(2, 2), Thickness), material) # The geometry field now needs to be associated with the FEMM femm = associategeometry!(femm, geom) K = stiffness(femm, geom, u) K = cholesky(K) U = K \ (F2) scattersysvec!(u, U[:]) nl = selectnode(fens, box = [2.0, 2.0, 0.0, 0.0], inflate = tolerance) thecorneru = zeros(FFlt, 1, 2) gathervalues_asmat!(u, thecorneru, nl) thecorneru = thecorneru / phun("mm") println( "$(time()-t0) [s]; displacement =$(thecorneru) [MM] as compared to reference [-0.10215,0] [MM]", ) fld = fieldfromintegpoints(femm, geom, u, :Cauchy, 2) println( "Sigma_y =$(fld.values[nl,1][1]/phun("MPa")) vs $(sigma_yD/phun("MPa")) [MPa]", ) println("$(n), $(fld.values[nl,1][1]/phun("MPa"))") push!(nelems, count(fes)) push!(sigyderrs[extrapolation], abs(fld.values[nl, 1][1] / sigma_yD - 1.0)) # File = "a.vtk" # vtkexportmesh(File, fes.conn, geom.values, # FinEtools.MeshExportModule.H8; vectors=[("u", u.values)], # scalars=[("sigmay", fld.values)]) # @async run(`"paraview.exe" $File`) end end @pgf a = LogLogAxis( { xlabel = "Number of elements", ylabel = "Norm. approx. error", title = "Convergence", }, Plot(Table([:x => vec(Float64.(nelems)), :y => vec(sigyderrs[:extrapmean])])), LegendEntry("Extrapolated stress"), ) display(a) true end # LE1NAFEMS_Q4_convergence function LE1NAFEMS_Q8_stress() println("LE1NAFEMS, plane stress.") t0 = time() E = 210e3 * phun("MEGA*PA")# 210e3 MPa nu = 0.3 p = 10 * phun("MEGA*PA")# 10 MPA Outward pressure on the outside ellipse sigma_yD = 92.7 * phun("MEGA*PA")# tensile stress at [2.0, 0.0] meters Radius = 1.0 * phun("m") n = 20 # number of elements per side tolerance = 1.0 / n / 1000.0#Geometrical tolerance fens, fes = Q8block(1.0, pi / 2, n, n * 2) bdryfes = meshboundary(fes) icl = selectelem(fens, bdryfes, box = [1.0, 1.0, 0.0, pi / 2], inflate = tolerance) for i = 1:count(fens) t = fens.xyz[i, 1] a = fens.xyz[i, 2] fens.xyz[i, :] = [(t * 3.25 + (1 - t) * 2) * cos(a) (t * 2.75 + (1 - t) * 1) * sin(a)] end geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 2)) # displacement field l1 = selectnode(fens; box = [0.0 Inf 0.0 0.0], inflate = tolerance) setebc!(u, l1, true, 2, 0.0) l1 = selectnode(fens; box = [0.0 0.0 0.0 Inf], inflate = tolerance) setebc!(u, l1, true, 1, 0.0) applyebc!(u) numberdofs!(u) el1femm = FEMMBase(IntegDomain(subset(bdryfes, icl), GaussRule(1, 3))) function pfun(forceout::FFltVec, x::FFltMat, J::FFltMat, l::FInt) pt = [2.75 / 3.25 * x[1] 3.25 / 2.75 * x[2]] copyto!(forceout, vec(p * pt / norm(pt))) return forceout end fi = ForceIntensity(Float64, 2, pfun) F2 = distribloads(el1femm, geom, u, fi, 2) MR = DeforModelRed2DStress material = MatDeforElastIso(MR, E, nu) femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(2, 3)), material) K = stiffness(femm, geom, u) K = cholesky(K) U = K \ (F2) scattersysvec!(u, U[:]) nl = selectnode(fens, box = [2.0, 2.0, 0.0, 0.0], inflate = tolerance) thecorneru = zeros(FFlt, 1, 2) gathervalues_asmat!(u, thecorneru, nl) thecorneru = thecorneru / phun("mm") println( "$(time()-t0) [s]; displacement =$(thecorneru) [MM] as compared to reference [-0.10215,0] [MM]", ) fld = fieldfromintegpoints(femm, geom, u, :Cauchy, 2) println( " Target stress: $(fld.values[nl][1]/phun("MEGA*PA")) compared to $(sigma_yD/phun("MEGA*PA"))", ) File = "a.vtk" vtkexportmesh( File, fes.conn, geom.values, FinEtools.MeshExportModule.Q8; vectors = [("u", u.values)], scalars = [("sigy", fld.values)], ) @async run(`"paraview.exe" $File`) true end # LE1NAFEMS_Q8_stress function allrun() println("#####################################################") println("# LE1NAFEMS ") LE1NAFEMS() println("#####################################################") println("# LE1NAFEMS_Q4_convergence ") LE1NAFEMS_Q4_convergence() println("#####################################################") println("# LE1NAFEMS_Q8_stress ") LE1NAFEMS_Q8_stress() return true end # function allrun end # module LE1NAFEMS_examples
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
2492
module Planar_truss_examples using FinEtools using FinEtoolsDeforLinear using FinEtools.FENodeSetModule using FinEtools.MeshExportModule using LinearAlgebra function Planar_truss() # Planar truss structure loaded with concentrated forces at some nodes. # The nodal displacements should be # 0 0 # 0 0 # 0.0213 0.0408 # -0.0160 0.0462 # 0.0427 0.1501 # -0.0053 0.1661 Area = 1.5 E = 1.0e7 # Young's modulus nu = 0.0 alpha = 0.0 fens = FENodeSetModule.FENodeSet([ 0.0 0 0 40 40 0 40 40 80 0 80 40 ]) fes = FESetL2([ 1 3 1 4 2 4 3 4 3 5 5 4 6 4 5 6 ]) MR = DeforModelRed1D material = MatDeforElastIso(MR, 0.0, E, nu, alpha) # display(material ) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 2)) # displacement field setebc!(u, 1) setebc!(u, 2) applyebc!(u) numberdofs!(u) display(u) integdata = IntegDomain(fes, GaussRule(1, 1), (loc, conn, N) -> Area, false) femm = FEMMDeforLinear(MR, integdata, CSys(2, 1), material) display(femm.mcsys) K = stiffness(femm, geom, u) fi = ForceIntensity(vec([0 -2000.0])) lfemm = FEMMBase(IntegDomain(FESetP1(reshape([3], 1, 1)), PointRule())) F = distribloads(lfemm, geom, u, fi, 3) fi = ForceIntensity(vec([+2000.0 0])) lfemm = FEMMBase(IntegDomain(FESetP1(reshape([5], 1, 1)), PointRule())) F = F + distribloads(lfemm, geom, u, fi, 3) fi = ForceIntensity(vec([+4000.0 +6000.0])) lfemm = FEMMBase(IntegDomain(FESetP1(reshape([6], 1, 1)), PointRule())) F = F + distribloads(lfemm, geom, u, fi, 3) K = cholesky(K) U = K \ F scattersysvec!(u, U[:]) sfld = elemfieldfromintegpoints(femm, geom, u, :Cauchy, 1) display(sfld) println("Cauchy = $(sfld.values)") vfld = elemfieldfromintegpoints(femm, geom, u, :vm, 1) display(vfld) File = "Planar_truss.vtk" MeshExportModule.vtkexportmesh( File, fens, fes; scalars = [("sx", sfld.values), ("vm", vfld.values)], ) @async run(`"paraview.exe" $File`) # try rm(File) catch end end # Planar_truss function allrun() println("#####################################################") println("# Planar_truss ") Planar_truss() return true end # function allrun end # module Planar_truss_examples
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
13259
module cookstrain_examples using FinEtools using FinEtoolsDeforLinear using FinEtoolsDeforLinear.AlgoDeforLinearModule using FinEtools.MeshExportModule function cookstrain_algo_export() E = 1.0 nu = 1.0 / 3 width = 48.0 height = 44.0 thickness = 1.0 free_height = 16.0 Mid_edge = [48.0, 52.0]# Location of tracked deflection magn = 1.0 / (free_height * thickness)# Density of applied load convutip = 23.97 n = 30# number of elements per side tolerance = minimum([width, height]) / n / 1000.0#Geometrical tolerance fens, fes = T3block(width, height, n, n) # Reshape into a trapezoidal panel for i in eachindex(fens) fens.xyz[i, 2] = fens.xyz[i, 2] + (fens.xyz[i, 1] / width) * (height - fens.xyz[i, 2] / height * (height - free_height)) end # Clamped edge of the membrane l1 = selectnode(fens; box = [0.0, 0.0, -Inf, Inf], inflate = tolerance) ess1 = FDataDict("displacement" => 0.0, "component" => 1, "node_list" => l1) ess2 = FDataDict("displacement" => 0.0, "component" => 2, "node_list" => l1) # Traction on the opposite edge boundaryfes = meshboundary(fes) Toplist = selectelem(fens, boundaryfes, box = [width, width, -Inf, Inf], inflate = tolerance) el1femm = FEMMBase(IntegDomain(subset(boundaryfes, Toplist), GaussRule(1, 2), thickness)) flux1 = FDataDict("traction_vector" => [0.0, +magn], "femm" => el1femm) # Make the region MR = DeforModelRed2DStrain material = MatDeforElastIso(MR, 0.0, E, nu, 0.0) region1 = FDataDict( "femm" => FEMMDeforLinear(MR, IntegDomain(fes, TriRule(1), thickness), material), ) modeldata = FDataDict( "fens" => fens, "regions" => [region1], "essential_bcs" => [ess1, ess2], "traction_bcs" => [flux1], ) # Call the solver modeldata = AlgoDeforLinearModule.linearstatics(modeldata) u = modeldata["u"] geom = modeldata["geom"] # Extract the solution nl = selectnode( fens, box = [Mid_edge[1], Mid_edge[1], Mid_edge[2], Mid_edge[2]], inflate = tolerance, ) theutip = u.values[nl, :] println("displacement =$(theutip[2]) as compared to converged $convutip") modeldata["postprocessing"] = FDataDict("file" => "cookstress-ew", "quantity" => :Cauchy, "component" => :xy) modeldata = AlgoDeforLinearModule.exportstresselementwise(modeldata) fld = modeldata["postprocessing"]["exported"][1]["field"] println("range of Cauchy_xy = $((minimum(fld.values), maximum(fld.values)))") File = modeldata["postprocessing"]["exported"][1]["file"] @async run(`"paraview.exe" $File`) modeldata["postprocessing"] = FDataDict("file" => "cookstress-ew-vm", "quantity" => :vm, "component" => 1) modeldata = AlgoDeforLinearModule.exportstresselementwise(modeldata) fld = modeldata["postprocessing"]["exported"][1]["field"] println("range of vm = $((minimum(fld.values), maximum(fld.values)))") File = modeldata["postprocessing"]["exported"][1]["file"] @async run(`"paraview.exe" $File`) modeldata["postprocessing"] = FDataDict( "file" => "cookstress-ew-pressure", "quantity" => :pressure, "component" => 1, ) modeldata = AlgoDeforLinearModule.exportstresselementwise(modeldata) fld = modeldata["postprocessing"]["exported"][1]["field"] println("range of pressure = $((minimum(fld.values), maximum(fld.values)))") File = modeldata["postprocessing"]["exported"][1]["file"] @async run(`"paraview.exe" $File`) modeldata["postprocessing"] = FDataDict( "file" => "cookstress-ew-princ1", "quantity" => :princCauchy, "component" => 1, ) modeldata = AlgoDeforLinearModule.exportstresselementwise(modeldata) fld = modeldata["postprocessing"]["exported"][1]["field"] println("range of princCauchy Max = $((minimum(fld.values), maximum(fld.values)))") File = modeldata["postprocessing"]["exported"][1]["file"] @async run(`"paraview.exe" $File`) modeldata["postprocessing"] = FDataDict( "file" => "cookstress-ew-princ3", "quantity" => :princCauchy, "component" => 3, ) modeldata = AlgoDeforLinearModule.exportstresselementwise(modeldata) fld = modeldata["postprocessing"]["exported"][1]["field"] println("range of princCauchy Min = $((minimum(fld.values), maximum(fld.values)))") File = modeldata["postprocessing"]["exported"][1]["file"] @async run(`"paraview.exe" $File`) AE = AbaqusExporter("Cookstress_algo_stress") HEADING(AE, "Cook trapezoidal panel, plane stress") COMMENT(AE, "Converged free mid-edge displacement = 23.97") PART(AE, "part1") END_PART(AE) ASSEMBLY(AE, "ASSEM1") INSTANCE(AE, "INSTNC1", "PART1") NODE(AE, fens.xyz) COMMENT(AE, "We are assuming three node triangles in plane-stress") COMMENT(AE, "CPE3 are pretty poor-accuracy elements, but here we don't care about it.") @assert nodesperelem(modeldata["regions"][1]["femm"].integdomain.fes) == 3 ELEMENT( AE, "CPE3", "AllElements", connasarray(modeldata["regions"][1]["femm"].integdomain.fes), ) NSET_NSET(AE, "clamped", modeldata["essential_bcs"][1]["node_list"]) ORIENTATION(AE, "GlobalOrientation", vec([1.0 0 0]), vec([0 1.0 0])) SOLID_SECTION(AE, "elasticity", "GlobalOrientation", "AllElements", thickness) END_INSTANCE(AE) END_ASSEMBLY(AE) MATERIAL(AE, "elasticity") ELASTIC(AE, E, nu) STEP_PERTURBATION_STATIC(AE) BOUNDARY(AE, "ASSEM1.INSTNC1.clamped", 1) BOUNDARY(AE, "ASSEM1.INSTNC1.clamped", 2) bfes = modeldata["traction_bcs"][1]["femm"].integdomain.fes COMMENT(AE, "Concentrated loads: we are assuming that the elements on the boundary") COMMENT(AE, "have two nodes each and also that they are the same length.") COMMENT(AE, "Then the concentrated loads below will be correctly lumped.") nl = connectednodes(bfes) F = zeros(count(modeldata["fens"])) for ix in eachindex(bfes) for jx = 1:2 F[bfes.conn[ix][jx]] += 1.0 / n / 2 / thickness end end for ixxxx in eachindex(F) if F[ixxxx] != 0.0 CLOAD(AE, "ASSEM1.INSTNC1.$(ixxxx)", 2, F[ixxxx]) end end END_STEP(AE) close(AE) true end # cookstrain_algo_export function cookstrain_algo_export_ortho() E = 1.0 nu = 1.0 / 3 width = 48.0 height = 44.0 thickness = 1.0 free_height = 16.0 Mid_edge = [48.0, 52.0]# Location of tracked deflection magn = 1.0 / (free_height * thickness)# Density of applied load convutip = 23.97 n = 30# number of elements per side tolerance = minimum([width, height]) / n / 1000.0#Geometrical tolerance fens, fes = T3block(width, height, n, n) # Reshape into a trapezoidal panel for i in eachindex(fens) fens.xyz[i, 2] = fens.xyz[i, 2] + (fens.xyz[i, 1] / width) * (height - fens.xyz[i, 2] / height * (height - free_height)) end # Clamped edge of the membrane l1 = selectnode(fens; box = [0.0, 0.0, -Inf, Inf], inflate = tolerance) ess1 = FDataDict("displacement" => 0.0, "component" => 1, "node_list" => l1) ess2 = FDataDict("displacement" => 0.0, "component" => 2, "node_list" => l1) # Traction on the opposite edge boundaryfes = meshboundary(fes) Toplist = selectelem(fens, boundaryfes, box = [width, width, -Inf, Inf], inflate = tolerance) el1femm = FEMMBase(IntegDomain(subset(boundaryfes, Toplist), GaussRule(1, 2), thickness)) flux1 = FDataDict("traction_vector" => [0.0, +magn], "femm" => el1femm) # Make the region MR = DeforModelRed2DStrain material = MatDeforElastOrtho(MR, 0.0, E, nu, 0.0) region1 = FDataDict( "femm" => FEMMDeforLinear(MR, IntegDomain(fes, TriRule(1), thickness), material), ) modeldata = FDataDict( "fens" => fens, "regions" => [region1], "essential_bcs" => [ess1, ess2], "traction_bcs" => [flux1], ) # Call the solver modeldata = AlgoDeforLinearModule.linearstatics(modeldata) u = modeldata["u"] geom = modeldata["geom"] # Extract the solution nl = selectnode( fens, box = [Mid_edge[1], Mid_edge[1], Mid_edge[2], Mid_edge[2]], inflate = tolerance, ) theutip = u.values[nl, :] println("displacement =$(theutip[2]) as compared to converged $convutip") modeldata["postprocessing"] = FDataDict("file" => "cookstress-ew", "quantity" => :Cauchy, "component" => :xy) modeldata = AlgoDeforLinearModule.exportstresselementwise(modeldata) fld = modeldata["postprocessing"]["exported"][1]["field"] println("range of Cauchy_xy = $((minimum(fld.values), maximum(fld.values)))") File = modeldata["postprocessing"]["exported"][1]["file"] @async run(`"paraview.exe" $File`) modeldata["postprocessing"] = FDataDict("file" => "cookstress-ew-vm", "quantity" => :vm, "component" => 1) modeldata = AlgoDeforLinearModule.exportstresselementwise(modeldata) fld = modeldata["postprocessing"]["exported"][1]["field"] println("range of vm = $((minimum(fld.values), maximum(fld.values)))") File = modeldata["postprocessing"]["exported"][1]["file"] @async run(`"paraview.exe" $File`) modeldata["postprocessing"] = FDataDict( "file" => "cookstress-ew-pressure", "quantity" => :pressure, "component" => 1, ) modeldata = AlgoDeforLinearModule.exportstresselementwise(modeldata) fld = modeldata["postprocessing"]["exported"][1]["field"] println("range of pressure = $((minimum(fld.values), maximum(fld.values)))") File = modeldata["postprocessing"]["exported"][1]["file"] @async run(`"paraview.exe" $File`) modeldata["postprocessing"] = FDataDict( "file" => "cookstress-ew-princ1", "quantity" => :princCauchy, "component" => 1, ) modeldata = AlgoDeforLinearModule.exportstresselementwise(modeldata) fld = modeldata["postprocessing"]["exported"][1]["field"] println("range of princCauchy Max = $((minimum(fld.values), maximum(fld.values)))") File = modeldata["postprocessing"]["exported"][1]["file"] @async run(`"paraview.exe" $File`) modeldata["postprocessing"] = FDataDict( "file" => "cookstress-ew-princ3", "quantity" => :princCauchy, "component" => 3, ) modeldata = AlgoDeforLinearModule.exportstresselementwise(modeldata) fld = modeldata["postprocessing"]["exported"][1]["field"] println("range of princCauchy Min = $((minimum(fld.values), maximum(fld.values)))") File = modeldata["postprocessing"]["exported"][1]["file"] @async run(`"paraview.exe" $File`) AE = AbaqusExporter("Cookstress_algo_stress") HEADING(AE, "Cook trapezoidal panel, plane stress") COMMENT(AE, "Converged free mid-edge displacement = 23.97") PART(AE, "part1") END_PART(AE) ASSEMBLY(AE, "ASSEM1") INSTANCE(AE, "INSTNC1", "PART1") NODE(AE, fens.xyz) COMMENT(AE, "We are assuming three node triangles in plane-stress") COMMENT(AE, "CPE3 are pretty poor-accuracy elements, but here we don't care about it.") @assert nodesperelem(modeldata["regions"][1]["femm"].integdomain.fes) == 3 ELEMENT( AE, "CPE3", "AllElements", connasarray(modeldata["regions"][1]["femm"].integdomain.fes), ) NSET_NSET(AE, "clamped", modeldata["essential_bcs"][1]["node_list"]) ORIENTATION(AE, "GlobalOrientation", vec([1.0 0 0]), vec([0 1.0 0])) SOLID_SECTION(AE, "elasticity", "GlobalOrientation", "AllElements", thickness) END_INSTANCE(AE) END_ASSEMBLY(AE) MATERIAL(AE, "elasticity") ELASTIC(AE, E, nu) STEP_PERTURBATION_STATIC(AE) BOUNDARY(AE, "ASSEM1.INSTNC1.clamped", 1) BOUNDARY(AE, "ASSEM1.INSTNC1.clamped", 2) bfes = modeldata["traction_bcs"][1]["femm"].integdomain.fes COMMENT(AE, "Concentrated loads: we are assuming that the elements on the boundary") COMMENT(AE, "have two nodes each and also that they are the same length.") COMMENT(AE, "Then the concentrated loads below will be correctly lumped.") nl = connectednodes(bfes) F = zeros(count(modeldata["fens"])) for ix in eachindex(bfes) for jx = 1:2 F[bfes.conn[ix][jx]] += 1.0 / n / 2 / thickness end end for ixxxx in eachindex(F) if F[ixxxx] != 0.0 CLOAD(AE, "ASSEM1.INSTNC1.$(ixxxx)", 2, F[ixxxx]) end end END_STEP(AE) close(AE) true end # cookstrain_algo_export_ortho function allrun() println("#####################################################") println("# cookstrain_algo_export ") cookstrain_algo_export() println("#####################################################") println("# cookstrain_algo_export_ortho ") cookstrain_algo_export_ortho() return true end # function allrun @info "All examples may be executed with " println("using .$(@__MODULE__); $(@__MODULE__).allrun()") end # module cookstrain_examples nothing
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
27384
module cookstress_examples using FinEtools using FinEtoolsDeforLinear using FinEtoolsDeforLinear.AlgoDeforLinearModule using FinEtools.MeshExportModule import LinearAlgebra: cholesky using ILUZero using SkylineSolvers using SuiteSparse using SparseArrays using SymRCM using UnicodePlots function cookstress() println("Cook membrane problem, plane stress.") t0 = time() E = 1.0 nu = 1.0 / 3 width = 48.0 height = 44.0 thickness = 1.0 free_height = 16.0 Mid_edge = [48.0, 52.0]# Location of tracked deflection magn = 1.0 / free_height# Magnitude of applied load convutip = 23.97 n = 32#*int(round(sqrt(170.)/2.)); # number of elements per side tolerance = minimum([width, height]) / n / 1000.0#Geometrical tolerance fens, fes = T3block(width, height, n, n) # Reshape into a trapezoidal panel for i in eachindex(fens) fens.xyz[i, 2] = fens.xyz[i, 2] + (fens.xyz[i, 1] / width) * (height - fens.xyz[i, 2] / height * (height - free_height)) end geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 2)) # displacement field l1 = selectnode(fens; box = [0, 0, -Inf, Inf], inflate = tolerance) setebc!(u, l1, 1, 0.0) setebc!(u, l1, 2, 0.0) applyebc!(u) numberdofs!(u) @time boundaryfes = meshboundary(fes) Toplist = selectelem(fens, boundaryfes, box = [width, width, -Inf, Inf], inflate = tolerance) el1femm = FEMMBase(IntegDomain(subset(boundaryfes, Toplist), GaussRule(1, 2))) fi = ForceIntensity([0.0, +magn]) F2 = distribloads(el1femm, geom, u, fi, 2) MR = DeforModelRed2DStress material = MatDeforElastIso(MR, 0.0, E, nu, 0.0) femm = FEMMDeforLinear(MR, IntegDomain(fes, TriRule(1)), material) K = stiffness(femm, geom, u) K = cholesky(K) U = K \ (F2) scattersysvec!(u, U[:]) nl = selectnode( fens, box = [Mid_edge[1], Mid_edge[1], Mid_edge[2], Mid_edge[2]], inflate = tolerance, ) theutip = zeros(FFlt, 1, 2) gathervalues_asmat!(u, theutip, nl) println( "$(time()-t0) [s]; displacement =$(theutip[2]) as compared to converged $convutip", ) File = "a.vtk" vtkexportmesh( File, fes.conn, geom.values + u.values, FinEtools.MeshExportModule.T3; vectors = [("u", u.values)], ) true end # cookstress function cookstress_algo() E = 1.0 nu = 1.0 / 3 width = 48.0 height = 44.0 thickness = 1.0 free_height = 16.0 Mid_edge = [48.0, 52.0]# Location of tracked deflection magn = 1.0 / free_height# Magnitude of applied load convutip = 23.97 n = 20#*int(round(sqrt(170.)/2.)); # number of elements per side tolerance = minimum([width, height]) / n / 1000.0#Geometrical tolerance fens, fes = T3block(width, height, n, n) # Reshape into a trapezoidal panel for i in eachindex(fens) fens.xyz[i, 2] = fens.xyz[i, 2] + (fens.xyz[i, 1] / width) * (height - fens.xyz[i, 2] / height * (height - free_height)) end # Clamped edge of the membrane l1 = selectnode(fens; box = [0.0, 0.0, -Inf, Inf], inflate = tolerance) ess1 = FDataDict("displacement" => 0.0, "component" => 1, "node_list" => l1) ess2 = FDataDict("displacement" => 0.0, "component" => 2, "node_list" => l1) # Traction on the opposite edge boundaryfes = meshboundary(fes) Toplist = selectelem(fens, boundaryfes, box = [width, width, -Inf, Inf], inflate = tolerance) el1femm = FEMMBase(IntegDomain(subset(boundaryfes, Toplist), GaussRule(1, 2))) flux1 = FDataDict("traction_vector" => [0.0, +magn], "femm" => el1femm) # Make the region MR = DeforModelRed2DStress material = MatDeforElastIso(MR, 0.0, E, nu, 0.0) region1 = FDataDict("femm" => FEMMDeforLinear(MR, IntegDomain(fes, TriRule(1)), material)) modeldata = FDataDict( "fens" => fens, "regions" => [region1], "essential_bcs" => [ess1, ess2], "traction_bcs" => [flux1], ) # Call the solver modeldata = AlgoDeforLinearModule.linearstatics(modeldata) u = modeldata["u"] geom = modeldata["geom"] # Extract the solution nl = selectnode( fens, box = [Mid_edge[1], Mid_edge[1], Mid_edge[2], Mid_edge[2]], inflate = tolerance, ) theutip = u.values[nl, :] println("displacement =$(theutip[2]) as compared to converged $convutip") modeldata["postprocessing"] = FDataDict("file" => "cookstress", "quantity" => :Cauchy, "component" => :xy) modeldata = AlgoDeforLinearModule.exportstress(modeldata) true end # cookstress_algo function cookstress_algo_export() E = 1.0 nu = 1.0 / 3 width = 48.0 height = 44.0 thickness = 1.0 free_height = 16.0 Mid_edge = [48.0, 52.0]# Location of tracked deflection magn = 1.0 / (free_height * thickness)# Density of applied load convutip = 23.97 n = 30# number of elements per side tolerance = minimum([width, height]) / n / 1000.0#Geometrical tolerance fens, fes = T3block(width, height, n, n) # Reshape into a trapezoidal panel for i in eachindex(fens) fens.xyz[i, 2] = fens.xyz[i, 2] + (fens.xyz[i, 1] / width) * (height - fens.xyz[i, 2] / height * (height - free_height)) end # Clamped edge of the membrane l1 = selectnode(fens; box = [0.0, 0.0, -Inf, Inf], inflate = tolerance) ess1 = FDataDict("displacement" => 0.0, "component" => 1, "node_list" => l1) ess2 = FDataDict("displacement" => 0.0, "component" => 2, "node_list" => l1) # Traction on the opposite edge boundaryfes = meshboundary(fes) Toplist = selectelem(fens, boundaryfes, box = [width, width, -Inf, Inf], inflate = tolerance) el1femm = FEMMBase(IntegDomain(subset(boundaryfes, Toplist), GaussRule(1, 2), thickness)) flux1 = FDataDict("traction_vector" => [0.0, +magn], "femm" => el1femm) # Make the region MR = DeforModelRed2DStress material = MatDeforElastIso(MR, 0.0, E, nu, 0.0) region1 = FDataDict( "femm" => FEMMDeforLinear(MR, IntegDomain(fes, TriRule(1), thickness), material), ) modeldata = FDataDict( "fens" => fens, "regions" => [region1], "essential_bcs" => [ess1, ess2], "traction_bcs" => [flux1], ) # Call the solver modeldata = AlgoDeforLinearModule.linearstatics(modeldata) u = modeldata["u"] geom = modeldata["geom"] # Extract the solution nl = selectnode( fens, box = [Mid_edge[1], Mid_edge[1], Mid_edge[2], Mid_edge[2]], inflate = tolerance, ) theutip = u.values[nl, :] println("displacement =$(theutip[2]) as compared to converged $convutip") modeldata["postprocessing"] = FDataDict("file" => "cookstress-ew", "quantity" => :Cauchy, "component" => :xy) modeldata = AlgoDeforLinearModule.exportstresselementwise(modeldata) fld = modeldata["postprocessing"]["exported"][1]["field"] println("range of Cauchy_xy = $((minimum(fld.values), maximum(fld.values)))") File = modeldata["postprocessing"]["exported"][1]["file"] @async run(`"paraview.exe" $File`) modeldata["postprocessing"] = FDataDict("file" => "cookstress-ew-vm", "quantity" => :vm, "component" => 1) modeldata = AlgoDeforLinearModule.exportstresselementwise(modeldata) fld = modeldata["postprocessing"]["exported"][1]["field"] println("range of vm = $((minimum(fld.values), maximum(fld.values)))") File = modeldata["postprocessing"]["exported"][1]["file"] @async run(`"paraview.exe" $File`) modeldata["postprocessing"] = FDataDict( "file" => "cookstress-ew-pressure", "quantity" => :pressure, "component" => 1, ) modeldata = AlgoDeforLinearModule.exportstresselementwise(modeldata) fld = modeldata["postprocessing"]["exported"][1]["field"] println("range of pressure = $((minimum(fld.values), maximum(fld.values)))") File = modeldata["postprocessing"]["exported"][1]["file"] @async run(`"paraview.exe" $File`) modeldata["postprocessing"] = FDataDict( "file" => "cookstress-ew-princ1", "quantity" => :princCauchy, "component" => 1, ) modeldata = AlgoDeforLinearModule.exportstresselementwise(modeldata) fld = modeldata["postprocessing"]["exported"][1]["field"] println("range of princCauchy Max = $((minimum(fld.values), maximum(fld.values)))") File = modeldata["postprocessing"]["exported"][1]["file"] @async run(`"paraview.exe" $File`) modeldata["postprocessing"] = FDataDict( "file" => "cookstress-ew-princ2", "quantity" => :princCauchy, "component" => 2, ) modeldata = AlgoDeforLinearModule.exportstresselementwise(modeldata) fld = modeldata["postprocessing"]["exported"][1]["field"] println("range of princCauchy Min = $((minimum(fld.values), maximum(fld.values)))") File = modeldata["postprocessing"]["exported"][1]["file"] @async run(`"paraview.exe" $File`) AE = AbaqusExporter("Cookstress_algo_stress") HEADING(AE, "Cook trapezoidal panel, plane stress") COMMENT(AE, "Converged free mid-edge displacement = 23.97") PART(AE, "part1") END_PART(AE) ASSEMBLY(AE, "ASSEM1") INSTANCE(AE, "INSTNC1", "PART1") NODE(AE, fens.xyz) COMMENT(AE, "We are assuming three node triangles in plane-stress") COMMENT(AE, "CPS3 are pretty poor-accuracy elements, but here we don't care about it.") @assert nodesperelem(modeldata["regions"][1]["femm"].integdomain.fes) == 3 ELEMENT( AE, "CPS3", "AllElements", connasarray(modeldata["regions"][1]["femm"].integdomain.fes), ) NSET_NSET(AE, "clamped", modeldata["essential_bcs"][1]["node_list"]) ORIENTATION(AE, "GlobalOrientation", vec([1.0 0 0]), vec([0 1.0 0])) SOLID_SECTION(AE, "elasticity", "GlobalOrientation", "AllElements", thickness) END_INSTANCE(AE) END_ASSEMBLY(AE) MATERIAL(AE, "elasticity") ELASTIC(AE, E, nu) STEP_PERTURBATION_STATIC(AE) BOUNDARY(AE, "ASSEM1.INSTNC1.clamped", 1) BOUNDARY(AE, "ASSEM1.INSTNC1.clamped", 2) bfes = modeldata["traction_bcs"][1]["femm"].integdomain.fes COMMENT(AE, "Concentrated loads: we are assuming that the elements on the boundary") COMMENT(AE, "have two nodes each and also that they are the same length.") COMMENT(AE, "Then the concentrated loads below will be correctly lumped.") nl = connectednodes(bfes) F = zeros(count(modeldata["fens"])) for ix in eachindex(bfes) for jx = 1:2 F[bfes.conn[ix][jx]] += 1.0 / n / 2 / thickness end end for ixxxx in eachindex(F) if F[ixxxx] != 0.0 CLOAD(AE, "ASSEM1.INSTNC1.$(ixxxx)", 2, F[ixxxx]) end end END_STEP(AE) close(AE) true end # cookstress_algo_export function cookstress_algo_export_ortho() E = 1.0 nu = 1.0 / 3 width = 48.0 height = 44.0 thickness = 1.0 free_height = 16.0 Mid_edge = [48.0, 52.0]# Location of tracked deflection magn = 1.0 / (free_height * thickness)# Density of applied load convutip = 23.97 n = 30# number of elements per side tolerance = minimum([width, height]) / n / 1000.0#Geometrical tolerance fens, fes = T3block(width, height, n, n) # Reshape into a trapezoidal panel for i in eachindex(fens) fens.xyz[i, 2] = fens.xyz[i, 2] + (fens.xyz[i, 1] / width) * (height - fens.xyz[i, 2] / height * (height - free_height)) end # Clamped edge of the membrane l1 = selectnode(fens; box = [0.0, 0.0, -Inf, Inf], inflate = tolerance) ess1 = FDataDict("displacement" => 0.0, "component" => 1, "node_list" => l1) ess2 = FDataDict("displacement" => 0.0, "component" => 2, "node_list" => l1) # Traction on the opposite edge boundaryfes = meshboundary(fes) Toplist = selectelem(fens, boundaryfes, box = [width, width, -Inf, Inf], inflate = tolerance) el1femm = FEMMBase(IntegDomain(subset(boundaryfes, Toplist), GaussRule(1, 2), thickness)) flux1 = FDataDict("traction_vector" => [0.0, +magn], "femm" => el1femm) # Make the region MR = DeforModelRed2DStress material = MatDeforElastOrtho(MR, 0.0, E, nu, 0.0) region1 = FDataDict( "femm" => FEMMDeforLinear(MR, IntegDomain(fes, TriRule(1), thickness), material), ) modeldata = FDataDict( "fens" => fens, "regions" => [region1], "essential_bcs" => [ess1, ess2], "traction_bcs" => [flux1], ) # Call the solver modeldata = AlgoDeforLinearModule.linearstatics(modeldata) u = modeldata["u"] geom = modeldata["geom"] # Extract the solution nl = selectnode( fens, box = [Mid_edge[1], Mid_edge[1], Mid_edge[2], Mid_edge[2]], inflate = tolerance, ) theutip = u.values[nl, :] println("displacement =$(theutip[2]) as compared to converged $convutip") modeldata["postprocessing"] = FDataDict("file" => "cookstress-ew", "quantity" => :Cauchy, "component" => :xy) modeldata = AlgoDeforLinearModule.exportstresselementwise(modeldata) fld = modeldata["postprocessing"]["exported"][1]["field"] println("range of Cauchy_xy = $((minimum(fld.values), maximum(fld.values)))") File = modeldata["postprocessing"]["exported"][1]["file"] @async run(`"paraview.exe" $File`) modeldata["postprocessing"] = FDataDict("file" => "cookstress-ew-vm", "quantity" => :vm, "component" => 1) modeldata = AlgoDeforLinearModule.exportstresselementwise(modeldata) fld = modeldata["postprocessing"]["exported"][1]["field"] println("range of vm = $((minimum(fld.values), maximum(fld.values)))") File = modeldata["postprocessing"]["exported"][1]["file"] @async run(`"paraview.exe" $File`) modeldata["postprocessing"] = FDataDict( "file" => "cookstress-ew-pressure", "quantity" => :pressure, "component" => 1, ) modeldata = AlgoDeforLinearModule.exportstresselementwise(modeldata) fld = modeldata["postprocessing"]["exported"][1]["field"] println("range of pressure = $((minimum(fld.values), maximum(fld.values)))") File = modeldata["postprocessing"]["exported"][1]["file"] @async run(`"paraview.exe" $File`) modeldata["postprocessing"] = FDataDict( "file" => "cookstress-ew-princ1", "quantity" => :princCauchy, "component" => 1, ) modeldata = AlgoDeforLinearModule.exportstresselementwise(modeldata) fld = modeldata["postprocessing"]["exported"][1]["field"] println("range of princCauchy Max = $((minimum(fld.values), maximum(fld.values)))") File = modeldata["postprocessing"]["exported"][1]["file"] @async run(`"paraview.exe" $File`) modeldata["postprocessing"] = FDataDict( "file" => "cookstress-ew-princ2", "quantity" => :princCauchy, "component" => 2, ) modeldata = AlgoDeforLinearModule.exportstresselementwise(modeldata) fld = modeldata["postprocessing"]["exported"][1]["field"] println("range of princCauchy Min = $((minimum(fld.values), maximum(fld.values)))") File = modeldata["postprocessing"]["exported"][1]["file"] @async run(`"paraview.exe" $File`) AE = AbaqusExporter("Cookstress_algo_stress") HEADING(AE, "Cook trapezoidal panel, plane stress") COMMENT(AE, "Converged free mid-edge displacement = 23.97") PART(AE, "part1") END_PART(AE) ASSEMBLY(AE, "ASSEM1") INSTANCE(AE, "INSTNC1", "PART1") NODE(AE, fens.xyz) COMMENT(AE, "We are assuming three node triangles in plane-stress") COMMENT(AE, "CPS3 are pretty poor-accuracy elements, but here we don't care about it.") @assert nodesperelem(modeldata["regions"][1]["femm"].integdomain.fes) == 3 ELEMENT( AE, "CPS3", "AllElements", connasarray(modeldata["regions"][1]["femm"].integdomain.fes), ) NSET_NSET(AE, "clamped", modeldata["essential_bcs"][1]["node_list"]) ORIENTATION(AE, "GlobalOrientation", vec([1.0 0 0]), vec([0 1.0 0])) SOLID_SECTION(AE, "elasticity", "GlobalOrientation", "AllElements", thickness) END_INSTANCE(AE) END_ASSEMBLY(AE) MATERIAL(AE, "elasticity") ELASTIC(AE, E, nu) STEP_PERTURBATION_STATIC(AE) BOUNDARY(AE, "ASSEM1.INSTNC1.clamped", 1) BOUNDARY(AE, "ASSEM1.INSTNC1.clamped", 2) bfes = modeldata["traction_bcs"][1]["femm"].integdomain.fes COMMENT(AE, "Concentrated loads: we are assuming that the elements on the boundary") COMMENT(AE, "have two nodes each and also that they are the same length.") COMMENT(AE, "Then the concentrated loads below will be correctly lumped.") nl = connectednodes(bfes) F = zeros(count(modeldata["fens"])) for ix in eachindex(bfes) for jx = 1:2 F[bfes.conn[ix][jx]] += 1.0 / n / 2 / thickness end end for ixxxx in eachindex(F) if F[ixxxx] != 0.0 CLOAD(AE, "ASSEM1.INSTNC1.$(ixxxx)", 2, F[ixxxx]) end end END_STEP(AE) close(AE) true end # cookstress_algo_export_ortho function cookstress_t6_algo() println("Cook plane stress, with quadratic triangles.") E = 1.0 nu = 1.0 / 3 width = 48.0 height = 44.0 thickness = 1.0 free_height = 16.0 Mid_edge = [48.0, 52.0]# Location of tracked deflection magn = 1.0 / free_height# Magnitude of applied load convutip = 23.97 n = 10#*int(round(sqrt(170.)/2.)); # number of elements per side tolerance = minimum([width, height]) / n / 1000.0#Geometrical tolerance fens, fes = T6block(width, height, n, n) # Reshape into a trapezoidal panel for i in eachindex(fens) fens.xyz[i, 2] = fens.xyz[i, 2] + (fens.xyz[i, 1] / width) * (height - fens.xyz[i, 2] / height * (height - free_height)) end # Clamped edge of the membrane l1 = selectnode(fens; box = [0.0, 0.0, -Inf, Inf], inflate = tolerance) ess1 = FDataDict("displacement" => 0.0, "component" => 1, "node_list" => l1) ess2 = FDataDict("displacement" => 0.0, "component" => 2, "node_list" => l1) # Traction on the opposite edge boundaryfes = meshboundary(fes) Toplist = selectelem(fens, boundaryfes, box = [width, width, -Inf, Inf], inflate = tolerance) el1femm = FEMMBase(IntegDomain(subset(boundaryfes, Toplist), GaussRule(1, 3))) flux1 = FDataDict("traction_vector" => [0.0, +magn], "femm" => el1femm) # Make the region MR = DeforModelRed2DStress material = MatDeforElastIso(MR, 0.0, E, nu, 0.0) region1 = FDataDict("femm" => FEMMDeforLinear(MR, IntegDomain(fes, TriRule(3)), material)) modeldata = FDataDict( "fens" => fens, "regions" => [region1], "essential_bcs" => [ess1, ess2], "traction_bcs" => [flux1], ) # Call the solver modeldata = AlgoDeforLinearModule.linearstatics(modeldata) u = modeldata["u"] geom = modeldata["geom"] # Extract the solution nl = selectnode( fens, box = [Mid_edge[1], Mid_edge[1], Mid_edge[2], Mid_edge[2]], inflate = tolerance, ) theutip = u.values[nl, :] println("displacement =$(theutip[2]) as compared to converged $convutip") modeldata["postprocessing"] = FDataDict("file" => "cookstress", "quantity" => :Cauchy, "component" => :xy) modeldata = AlgoDeforLinearModule.exportstress(modeldata) File = modeldata["postprocessing"]["exported"][1]["file"] @async run(`"paraview.exe" $File`) fld = modeldata["postprocessing"]["exported"][1]["field"] println("$(minimum(fld.values)) $(maximum(fld.values))") true end # cookstress_t6_algo function cookstress_t6_ortho2iso_algo() println( "Cook plane stress, with quadratic triangles. With orthotropic material model.", ) E = 1.0 nu = 1.0 / 3 E1 = E2 = E3 = E nu12 = nu13 = nu23 = nu G12 = G13 = G23 = E / 2.0 / (1 + nu) width = 48.0 height = 44.0 thickness = 1.0 free_height = 16.0 Mid_edge = [48.0, 52.0]# Location of tracked deflection magn = 1.0 / free_height# Magnitude of applied load convutip = 23.97 n = 10#*int(round(sqrt(170.)/2.)); # number of elements per side tolerance = minimum([width, height]) / n / 1000.0#Geometrical tolerance fens, fes = T6block(width, height, n, n) # Reshape into a trapezoidal panel for i in eachindex(fens) fens.xyz[i, 2] = fens.xyz[i, 2] + (fens.xyz[i, 1] / width) * (height - fens.xyz[i, 2] / height * (height - free_height)) end # Clamped edge of the membrane l1 = selectnode(fens; box = [0.0, 0.0, -Inf, Inf], inflate = tolerance) ess1 = FDataDict("displacement" => 0.0, "component" => 1, "node_list" => l1) ess2 = FDataDict("displacement" => 0.0, "component" => 2, "node_list" => l1) # Traction on the opposite edge boundaryfes = meshboundary(fes) Toplist = selectelem(fens, boundaryfes, box = [width, width, -Inf, Inf], inflate = tolerance) el1femm = FEMMBase(IntegDomain(subset(boundaryfes, Toplist), GaussRule(1, 3))) flux1 = FDataDict("traction_vector" => [0.0, +magn], "femm" => el1femm) # Make the region MR = DeforModelRed2DStress # This material model is orthotropic, but the input parameters correspond to an # isotropiic material model.. material = MatDeforElastOrtho(MR, E1, E2, E3, nu12, nu13, nu23, G12, G13, G23) region1 = FDataDict("femm" => FEMMDeforLinear(MR, IntegDomain(fes, TriRule(3)), material)) modeldata = FDataDict( "fens" => fens, "regions" => [region1], "essential_bcs" => [ess1, ess2], "traction_bcs" => [flux1], ) # Call the solver modeldata = AlgoDeforLinearModule.linearstatics(modeldata) u = modeldata["u"] geom = modeldata["geom"] # Extract the solution nl = selectnode( fens, box = [Mid_edge[1], Mid_edge[1], Mid_edge[2], Mid_edge[2]], inflate = tolerance, ) theutip = u.values[nl, :] println("displacement =$(theutip[2]) as compared to converged $convutip") modeldata["postprocessing"] = FDataDict("file" => "cookstress", "quantity" => :Cauchy, "component" => :xy) modeldata = AlgoDeforLinearModule.exportstress(modeldata) File = modeldata["postprocessing"]["exported"][1]["file"] @async run(`"paraview.exe" $File`) fld = modeldata["postprocessing"]["exported"][1]["field"] println("$(minimum(fld.values)) $(maximum(fld.values))") true end # cookstress_t6_ortho2iso_algo function cookstress_big(n = 10, solver = :suitesparse) println("Cook membrane problem, plane stress. Big model.") t0 = time() E = 1.0 nu = 1.0 / 3 width = 48.0 height = 44.0 thickness = 1.0 free_height = 16.0 Mid_edge = [48.0, 52.0]# Location of tracked deflection magn = 1.0 / free_height# Magnitude of applied load convutip = 23.97 tolerance = minimum([width, height]) / n / 1000.0#Geometrical tolerance fens, fes = T3block(width, height, n, n) # Reshape into a trapezoidal panel for i in eachindex(fens) fens.xyz[i, 2] = fens.xyz[i, 2] + (fens.xyz[i, 1] / width) * (height - fens.xyz[i, 2] / height * (height - free_height)) end # Renumber the nodes femm = FEMMBase(IntegDomain(fes, GaussRule(3, 2))) C = connectionmatrix(femm, count(fens)) display(spy(C, canvas = DotCanvas)) I, J, V = findnz(C) @show bw = maximum(I .- J) + 1 perm = symrcm(C) display(spy(C[perm, perm], canvas = DotCanvas)) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 2)) # displacement field l1 = selectnode(fens; box = [0, 0, -Inf, Inf], inflate = tolerance) setebc!(u, l1, 1, 10.0) setebc!(u, l1, 2, 10.0) applyebc!(u) numberdofs!(u, perm) # numberdofs!(u) @time boundaryfes = meshboundary(fes) Toplist = selectelem(fens, boundaryfes, box = [width, width, -Inf, Inf], inflate = tolerance) el1femm = FEMMBase(IntegDomain(subset(boundaryfes, Toplist), GaussRule(1, 2))) fi = ForceIntensity([0.0, +magn]) F2 = distribloads(el1femm, geom, u, fi, 2) MR = DeforModelRed2DStress material = MatDeforElastIso(MR, 0.0, E, nu, 0.0) femm = FEMMDeforLinear(MR, IntegDomain(fes, TriRule(1)), material) K = stiffness(femm, geom, u) @show count(fens) if solver == :suitesparse @time K = SuiteSparse.CHOLMOD.cholesky(K) @time U = K \ (F2) elseif solver == :cg n = size(K, 1) mKd = mean(diag(K)) # @time factor = ilu(K, τ = mKd / 100.0) # This may work for compressible materials @time factor = ilu(K, τ = mKd / 1000000.0) # This may work for incompressible materials # factor = ilu0(K) @show nnz(factor) / nnz(K) opM = LinearOperator(Float64, n, n, false, false, (y, v) -> ldiv!(y, factor, v)) @time (U, stats) = Krylov.cg(K, F2; M = opM, itmax = Int(round(n / 2)), verbose = 1) elseif solver == :skyline I, J, V = SkylineSolvers.Ldlt.findnz(K) @show bw = maximum(abs.(I .- J)) + 1 M = size(K, 1) K = nothing GC.gc() sky = SkylineSolvers.Ldlt.SkylineMatrix(I, J, V, M) I = nothing J = nothing V = nothing GC.gc() @show SkylineSolvers.Ldlt.nnz(sky) @time SkylineSolvers.Ldlt.factorize!(sky) @time U = SkylineSolvers.Ldlt.solve(sky, F2) end scattersysvec!(u, U[:]) nl = selectnode( fens, box = [Mid_edge[1], Mid_edge[1], Mid_edge[2], Mid_edge[2]], inflate = tolerance, ) theutip = zeros(FFlt, 1, 2) gathervalues_asmat!(u, theutip, nl) println( "$(time()-t0) [s]; displacement =$(theutip[2]) as compared to converged $convutip", ) # File = "a.vtk" # vtkexportmesh(File, fes.conn, geom.values+u.values, # FinEtools.MeshExportModule.T3; vectors=[("u", u.values)]) true end # cookstress function allrun() println("#####################################################") println("# cookstress ") cookstress() println("#####################################################") println("# cookstress_algo ") cookstress_algo() println("#####################################################") println("# cookstress_algo_export ") cookstress_algo_export() println("#####################################################") println("# cookstress_algo_export_ortho ") cookstress_algo_export_ortho() println("#####################################################") println("# cookstress_t6_algo ") cookstress_t6_algo() println("#####################################################") println("# cookstress_t6_ortho2iso_algo ") cookstress_t6_ortho2iso_algo() return true end # function allrun @info "All examples may be executed with " println("using .$(@__MODULE__); $(@__MODULE__).allrun()") end # module cookstress_examples
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
7998
module cylinder_examples using FinEtools using FinEtoolsDeforLinear using FinEtoolsDeforLinear.AlgoDeforLinearModule function cylinder_bend() # Cylinder bent by edge by enforced displacement, axially symmetric model println("Cylinder bent by edge by enforced displacement, axially symmetric model") # Parameters: E1 = 1.0 E2 = 1.0 E3 = 3.0 nu12 = 0.29 nu13 = 0.29 nu23 = 0.19 G12 = 0.3 G13 = 0.3 G23 = 0.3 p = 0.15 rin = 1.0 rex = 1.2 Length = 1 * rex ua = -0.05 * Length tolerance = rin / 1000.0 ## # Note that the FinEtools objects needs to be created with the proper # model-dimension reduction at hand. In this case that is the axial symmetry # assumption. MR = DeforModelRed2DAxisymm # Create the mesh and initialize the geometry. First we are going # to construct the block of elements with the first coordinate # corresponding to the thickness in the radial direction, and the second # coordinate is the thickness in the axial direction. fens, fes = Q4block(rex - rin, Length, 5, 20) fens.xyz[:, 1] .+= rin bdryfes = meshboundary(fes) # now we create the geometry and displacement fields geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 2)) # displacement field # the symmetry plane l1 = selectnode(fens; box = [0 rex 0 0], inflate = tolerance) setebc!(u, l1, true, 2, 0.0) # The other end l1 = selectnode(fens; box = [0 rex Length Length], inflate = tolerance) for ixxxx in eachindex(l1) r = fens.xyz[l1[ixxxx], 1] setebc!(u, [l1[ixxxx]], true, 2, (r - (rex + rin) / 2) / ((rex + rin) / 2) * ua) end applyebc!(u) numberdofs!(u) println("Number of degrees of freedom = $(u.nfreedofs)") # Property and material material = MatDeforElastOrtho(MR, E1, E2, E3, nu12, nu13, nu23, G12, G13, G23) femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(2, 2), true), material) K = stiffness(femm, geom, u) F = nzebcloadsstiffness(femm, geom, u) U = K \ (F) scattersysvec!(u, U[:]) # Produce a plot of the radial stress component in the cylindrical # coordinate system. Note that this is the usual representation of # stress using nodal stress field. fld = fieldfromintegpoints(femm, geom, u, :Cauchy, 2) println("Minimum/maximum = $(minimum(fld.values))/$(maximum(fld.values))") File = "cylinder_bend_sigmaz.vtk" vtkexportmesh( File, fens, fes; scalars = [("sigmaz", fld.values)], vectors = [("u", u.values)], ) @async run(`"paraview.exe" $File`) end # cylinder_bend function cylinder_pull() # Cylinder pulled by enforced displacement, axially symmetric model println("Cylinder pulled by enforced displacement, axially symmetric model") # Parameters: E1 = 1.0 E2 = 1.0 E3 = 3.0 nu12 = 0.29 nu13 = 0.29 nu23 = 0.19 G12 = 0.3 G13 = 0.3 G23 = 0.3 p = 0.15 rin = 1.0 rex = 1.2 Length = 1 * rex ua = -0.05 * Length tolerance = rin / 1000.0 ## # Note that the FinEtools objects needs to be created with the proper # model-dimension reduction at hand. In this case that is the axial symmetry # assumption. MR = DeforModelRed2DAxisymm # Create the mesh and initialize the geometry. First we are going # to construct the block of elements with the first coordinate # corresponding to the thickness in the radial direction, and the second # coordinate is the thickness in the axial direction. fens, fes = Q4block(rex - rin, Length, 5, 20) fens.xyz[:, 1] .+= rin bdryfes = meshboundary(fes) # now we create the geometry and displacement fields geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 2)) # displacement field # the symmetry plane l1 = selectnode(fens; box = [0 rex 0 0], inflate = tolerance) setebc!(u, l1, true, 2, 0.0) # The other end l1 = selectnode(fens; box = [0 rex Length Length], inflate = tolerance) setebc!(u, l1, true, 2, ua) applyebc!(u) numberdofs!(u) println("Number of degrees of freedom = $(u.nfreedofs)") # Property and material material = MatDeforElastOrtho(MR, E1, E2, E3, nu12, nu13, nu23, G12, G13, G23) femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(2, 2), true), material) K = stiffness(femm, geom, u) F = nzebcloadsstiffness(femm, geom, u) U = K \ (F) scattersysvec!(u, U[:]) # Produce a plot of the radial stress component in the cylindrical # coordinate system. Note that this is the usual representation of # stress using nodal stress field. fld = fieldfromintegpoints(femm, geom, u, :Cauchy, 2) println("Minimum/maximum = $(minimum(fld.values))/$(maximum(fld.values))") File = "orthoballoon_sigmaz.vtk" vtkexportmesh( File, fens, fes; scalars = [("sigmaz", fld.values)], vectors = [("u", u.values)], ) @async run(`"paraview.exe" $File`) end # cylinder_pull function cylinder_pull_algo() # Cylinder pulled by enforced displacement, axially symmetric model # Parameters: E1 = 1.0 E2 = 1.0 E3 = 3.0 nu12 = 0.29 nu13 = 0.29 nu23 = 0.19 G12 = 0.3 G13 = 0.3 G23 = 0.3 p = 0.15 rin = 1.0 rex = 1.2 Length = 1 * rex ua = -0.05 * Length tolerance = rin / 1000.0 ## # Note that the FinEtools objects needs to be created with the proper # model-dimension reduction at hand. In this case that is the axial symmetry # assumption. MR = DeforModelRed2DAxisymm # Create the mesh and initialize the geometry. First we are going # to construct the block of elements with the first coordinate # corresponding to the thickness in the radial direction, and the second # coordinate is the thickness in the axial direction. fens, fes = Q4block(rex - rin, Length, 5, 20) fens.xyz[:, 1] .+= rin bdryfes = meshboundary(fes) # the symmetry plane la1 = selectnode(fens; box = [0 rex 0 0], inflate = tolerance) # The other end la2 = selectnode(fens; box = [0 rex Length Length], inflate = tolerance) e1 = FDataDict("node_list" => la1, "component" => 2, "displacement" => x -> 0.0) e2 = FDataDict("node_list" => la2, "component" => 2, "displacement" => x -> ua) # Property and material material = MatDeforElastOrtho(MR, E1, E2, E3, nu12, nu13, nu23, G12, G13, G23) femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(2, 2), true), material) # Make region region = FDataDict("femm" => femm) # Make model data modeldata = FDataDict("fens" => fens, "regions" => [region], "essential_bcs" => [e1, e2]) # Call the solver modeldata = AlgoDeforLinearModule.linearstatics(modeldata) geom = modeldata["geom"] u = modeldata["u"] # Produce a plot of the radial stress component in the cylindrical # coordinate system. Note that this is the usual representation of # stress using nodal stress field. fld = fieldfromintegpoints(femm, geom, u, :Cauchy, 2) println("Minimum/maximum = $(minimum(fld.values))/$(maximum(fld.values))") File = "orthoballoon_sigmaz.vtk" vtkexportmesh( File, fens, fes; scalars = [("sigmaz", fld.values)], vectors = [("u", u.values)], ) @async run(`"paraview.exe" $File`) end # cylinder_pull_algo function allrun() println("#####################################################") println("# cylinder_bend ") cylinder_bend() println("#####################################################") println("# cylinder_pull ") cylinder_pull() println("#####################################################") println("# cylinder_pull_algo ") cylinder_pull_algo() return true end # function allrun end # module cylinder_examples
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
6972
module orthoballoon_examples using FinEtools using FinEtools.AlgoBaseModule: solve_blocked!, matrix_blocked, vector_blocked using FinEtoolsDeforLinear using LinearAlgebra function orthoballoon() # Orthotropic balloon inflation, axially symmetric model # Parameters: E1 = 1.0 E2 = 1.0 E3 = 3.0 nu12 = 0.29 nu13 = 0.29 nu23 = 0.19 G12 = 0.3 G13 = 0.3 G23 = 0.3 p = 0.15 rin = 1.0 rex = 1.2 tolerance = rin / 1000.0 ## # Note that the FinEtools objects needs to be created with the proper # model-dimension reduction at hand. In this case that is the axial symmetry # assumption. MR = DeforModelRed2DAxisymm # Create the mesh and initialize the geometry. First we are going # to construct the block of elements with the first coordinate # corresponding to the thickness in the radial direction, and the second # coordinate is the thickness in the axial direction. fens, fes = Q4block(rex - rin, pi / 2, 5, 20) bdryfes = meshboundary(fes) icl = selectelem(fens, bdryfes, box = [0.0, 0.0, 0.0, pi / 2], inflate = tolerance) for i = 1:count(fens) r = rin + fens.xyz[i, 1] a = fens.xyz[i, 2] fens.xyz[i, :] = [r * cos(a) r * sin(a)] end # now we create the geometry and displacement fields geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 2)) # displacement field # the symmetry plane l1 = selectnode(fens; box = [0 rex 0 0], inflate = tolerance) setebc!(u, l1, true, 2, 0.0) # the axis of symmetry l1 = selectnode(fens; box = [0 0 0 rex], inflate = tolerance) setebc!(u, l1, true, 1, 0.0) applyebc!(u) numberdofs!(u) println("Number of degrees of freedom = $(nfreedofs(u))") # The traction boundary condition is applied in the radial # direction. el1femm = FEMMBase(IntegDomain(subset(bdryfes, icl), GaussRule(1, 3), true)) function pressureloading!( forceout::FFltVec, XYZ::FFltMat, tangents::FFltMat, feid::FInt, qpid::FInt, ) copyto!(forceout, XYZ / norm(XYZ) * p) return forceout end fi = ForceIntensity(Float64, 2, pressureloading!) # pressure normal to the internal cylindrical surface F2 = distribloads(el1femm, geom, u, fi, 2) # Property and material material = MatDeforElastOrtho(MR, E1, E2, E3, nu12, nu13, nu23, G12, G13, G23) femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(2, 2), true), material) K = stiffness(femm, geom, u) u = solve_blocked!(u, K, F2) # Produce a plot of the radial stress component in the cylindrical # coordinate system. Note that this is the usual representation of # stress using nodal stress field. fld = fieldfromintegpoints(femm, geom, u, :Cauchy, 3) println("Minimum/maximum = $(minimum(fld.values))/$(maximum(fld.values))") File = "orthoballoon_sigmaz.vtk" vtkexportmesh( File, fens, fes; scalars = [("sigmaz", fld.values)], vectors = [("u", u.values)], ) @async run(`"paraview.exe" $File`) #pub_thick_pipe_axi() end # orthoballoon function orthoballoon_penalty() # Orthotropic balloon inflation, axially symmetric model # Parameters: E1 = 1.0 E2 = 1.0 E3 = 3.0 nu12 = 0.29 nu13 = 0.29 nu23 = 0.19 G12 = 0.3 G13 = 0.3 G23 = 0.3 p = 0.15 rin = 1.0 rex = 1.2 tolerance = rin / 1000.0 MR = DeforModelRed2DAxisymm fens, fes = Q4block(rex - rin, pi / 2, 5, 20) bdryfes = meshboundary(fes) icl = selectelem(fens, bdryfes, box = [0.0, 0.0, 0.0, pi / 2], inflate = tolerance) for i = 1:count(fens) r = rin + fens.xyz[i, 1] a = fens.xyz[i, 2] fens.xyz[i, :] = [r * cos(a) r * sin(a)] end # now we create the geometry and displacement fields geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 2)) # displacement field # the symmetry plane ly = selectelem(fens, bdryfes; box = [0 rex 0 0], inflate = tolerance) # the axis of symmetry lx = selectelem(fens, bdryfes; box = [0 0 0 rex], inflate = tolerance) # No EBC applyebc!(u) numberdofs!(u) println("Number of degrees of freedom = $(nfreedofs(u))") # The traction boundary condition is applied in the radial # direction. el1femm = FEMMBase(IntegDomain(subset(bdryfes, icl), GaussRule(1, 3), true)) function pressureloading!( forceout::FFltVec, XYZ::FFltMat, tangents::FFltMat, feid::FInt, qpid::FInt, ) copyto!(forceout, XYZ / norm(XYZ) * p) return forceout end fi = ForceIntensity(Float64, 2, pressureloading!) # pressure normal to the internal cylindrical surface F2 = distribloads(el1femm, geom, u, fi, 2) # Property and material material = MatDeforElastOrtho(MR, E1, E2, E3, nu12, nu13, nu23, G12, G13, G23) femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(2, 2), true), material) ## # The restraints of the nodes on the bounding cross-sections in the direction # of the normal to the plane of the cross-section in the # circumferential direction are introduced using a penalty formulation. # For that purpose we introduce a finite element model machine for the # surface finite elements on the cross-sections. springcoefficient = 1.0e9 / (abs(p) / E1) xsfemm = FEMMDeforWinkler(IntegDomain(subset(bdryfes, lx), GaussRule(1, 3), true)) ysfemm = FEMMDeforWinkler(IntegDomain(subset(bdryfes, ly), GaussRule(1, 3), true)) H = surfacenormalspringstiffness(xsfemm, geom, u, springcoefficient, SurfaceNormal(3)) + surfacenormalspringstiffness(ysfemm, geom, u, springcoefficient, SurfaceNormal(3)) K = stiffness(femm, geom, u) u = solve_blocked!(u, K + H, F2) # Produce a plot of the radial stress component in the cylindrical # coordinate system. Note that this is the usual representation of # stress using nodal stress field. fld = fieldfromintegpoints(femm, geom, u, :Cauchy, 3) println("Minimum/maximum = $(minimum(fld.values))/$(maximum(fld.values))") File = "orthoballoon_penalty_sigmaz.vtk" vtkexportmesh( File, fens, fes; scalars = [("sigmaz", fld.values)], vectors = [("u", u.values)], ) @async run(`"paraview.exe" $File`) #pub_thick_pipe_axi() end # orthoballoon_penalty function allrun() println("#####################################################") println("# orthoballoon ") orthoballoon() println("#####################################################") println("# orthoballoon_penalty ") orthoballoon_penalty() return true end # function allrun @info "All examples may be executed with " println("using .$(@__MODULE__); $(@__MODULE__).allrun()") end # module orthoballoon_examples nothing
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
4269
module patch_test_2d_examples using FinEtools using FinEtoolsDeforLinear using FinEtoolsDeforLinear.AlgoDeforLinearModule using FinEtools.MeshExportModule import LinearAlgebra: cholesky function q4_stress() println("Q4. Plane stress.") E = 1.0 nu = 1.0 / 3 alpha, beta, gamma, delta, eta, phi = 1.0 / 30, 1.0 / 34, -1.0 / 21, -1.0 / 51, -1.0 / 26, -1.0 / 35 ux(x, y) = alpha + beta * x + gamma * y uy(x, y) = delta + eta * x + phi * y MR = DeforModelRed2DStress fens = FENodeSet( [ 1.0 -0.3 2.3 -0.3 2.3 0.95 1.0 0.95 1.4 0.05 1.9 -0.03 1.7 0.5 1.3 0.6 ], ) fes = FESetQ4([1 2 6 5; 6 2 3 7; 7 3 4 8; 8 4 1 5; 5 6 7 8]) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 2)) # displacement field # Apply prescribed displacements to exterior nodes for i = 1:4 setebc!(u, [i], 1, ux(fens.xyz[i, :]...)) setebc!(u, [i], 2, uy(fens.xyz[i, :]...)) end applyebc!(u) numberdofs!(u) material = MatDeforElastIso(MR, 0.0, E, nu, 0.0) femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(2, 2)), material) F = nzebcloadsstiffness(femm, geom, u) K = stiffness(femm, geom, u) K = cholesky(K) U = K \ (F) scattersysvec!(u, U[:]) for i = 5:8 uexact = [ux(fens.xyz[i, :]...), uy(fens.xyz[i, :]...)] println("u.values[$i, :] = $(u.values[i, :]), uexact = [$(uexact)]") end File = "a.vtk" vtkexportmesh( File, fes.conn, geom.values, FinEtools.MeshExportModule.Q4; vectors = [("u", u.values)], ) true end # cookstress function q4_stress_export() println("Q4. Plane stress.") E = 1.0 nu = 1.0 / 3 alpha, beta, gamma, delta, eta, phi = 1.0 / 30, 1.0 / 34, -1.0 / 21, -1.0 / 51, -1.0 / 26, -1.0 / 35 ux(x, y) = alpha + beta * x + gamma * y uy(x, y) = delta + eta * x + phi * y MR = DeforModelRed2DStress fens = FENodeSet( [ 1.0 -0.3 2.3 -0.3 2.3 0.95 1.0 0.95 1.4 0.05 1.9 -0.03 1.7 0.5 1.3 0.6 ], ) fes = FESetQ4([1 2 6 5; 6 2 3 7; 7 3 4 8; 8 4 1 5; 5 6 7 8]) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 2)) # displacement field # Apply prescribed displacements to exterior nodes for i = 1:4 setebc!(u, [i], 1, ux(fens.xyz[i, :]...)) setebc!(u, [i], 2, uy(fens.xyz[i, :]...)) end applyebc!(u) numberdofs!(u) material = MatDeforElastIso(MR, 0.0, E, nu, 0.0) femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(2, 2)), material) F = nzebcloadsstiffness(femm, geom, u) K = stiffness(femm, geom, u) K = cholesky(K) U = K \ (F) scattersysvec!(u, U[:]) for i = 5:8 uexact = [ux(fens.xyz[i, :]...), uy(fens.xyz[i, :]...)] println("u.values[$i, :] = $(u.values[i, :]), uexact = [$(uexact)]") end AE = AbaqusExporter("q4_stress_export") HEADING(AE, "q4_stress_export") COMMENT(AE, "") PART(AE, "part1") END_PART(AE) ASSEMBLY(AE, "ASSEM1") INSTANCE(AE, "INSTNC1", "PART1") NODE(AE, fens.xyz) ELEMENT(AE, "CPS4", "AllElements", connasarray(fes)) NSET_NSET(AE, "clamped", 1:4) ORIENTATION(AE, "GlobalOrientation", vec([1.0 0 0]), vec([0 1.0 0])) SOLID_SECTION(AE, "elasticity", "GlobalOrientation", "AllElements", 1.0) END_INSTANCE(AE) END_ASSEMBLY(AE) MATERIAL(AE, "elasticity") ELASTIC(AE, E, nu) STEP_PERTURBATION_STATIC(AE) BOUNDARY( AE, "ASSEM1.INSTNC1", 1:4, fill(true, 4, 2), [[ux(fens.xyz[i, :]...) for i = 1:4] [uy(fens.xyz[i, :]...) for i = 1:4]], ) END_STEP(AE) close(AE) true end # cookstress function allrun() println("#####################################################") println("# q4_stress ") q4_stress() println("#####################################################") println("# q4_stress_export ") q4_stress_export() return true end # function allrun end # module patch_test_2d_examples
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
27958
module thick_pipe_examples using FinEtools using FinEtools.AlgoBaseModule: solve_blocked!, matrix_blocked, vector_blocked using FinEtoolsDeforLinear using PGFPlotsX using Statistics using LinearAlgebra struct MyIData c::FInt r::FFltVec s::FFltVec end function thick_pipe_axi() println("Thick pipe with internal pressure: axially symmetric model") #= This is a simple modification of the full three-dimensional simulation of the tutorial pub_thick_pipe that implements the axially-symmetric model reduction procedure. An infinitely long thick walled cylindrical pipe with inner boundary radius of 3 mm and outer boundary radius of 9 mm is subjected to an internal pressure of 1.0 MPa. A wedge with thickness of 2 mm and a 90-degree angle sector is considered for the finite element analysis. The material properties are taken as isotropic linear elastic with $E=1000$ MPa and $\nu=0.4999$ to represent nearly incompressible behavior. This problem has been proposed to by MacNeal and Harder as a test of an element's ability to represent the response of a nearly incompressible material. The plane-strain condition is assumed in the axial direction of the pipe which together with the radial symmetry confines the material in all but the radial direction and therefore amplifies the numerical difficulties associated with the confinement of the nearly incompressible material. There is an analytical solution to this problem. Timoshenko and Goodier presented the original solution of Lame in their textbook. We are going to compare with both the stress distribution (radial and hoop stresses) and the displacement of the inner cylindrical surface. References: - Macneal RH, Harder RL (1985) A proposed standard set of problems to test finite element accuracy. Finite Elements in Analysis and Design 1: 3-20. - Timoshenko S. and Goodier J. N., Theory of Elasticity, McGraw-Hill, 2nd ed., 1951. =# # Internal radius of the pipe. a = 3 * phun("MM") ## # External radius of the pipe. b = 9 * phun("MM") ## # Thickness of the slice. t = 2 * phun("MM") ## # Geometrical tolerance. tolerance = a / 10000.0 ## # Young's modulus and Poisson's ratio. E = 1000 * phun("MEGA*PA") nu = 0.499 ## # Applied pressure on the internal surface. press = 1.0 * phun("MEGA*PA") ## # Analytical solutions. Radial stress: radial_stress(r) = press * a^2 / (b^2 - a^2) * (1 - b^2.0 / r^2) ## # Circumferential (hoop) stress: hoop_stress(r) = press * a^2 / (b^2 - a^2) * (1 + b^2.0 / r^2) ## # Radial displacement: function radial_displacement(r) press * a^2 * (1 + nu) * (b^2 + r^2 * (1 - 2 * nu)) / (E * (b^2 - a^2) * r) end ## # Therefore the radial displacement of the loaded surface will be: urex = radial_displacement(a) ## # The mesh parameters: The numbers of element edges axially, # and through the thickness of the pipe wall (radially). na = 1 nt = 10 ## # Note that the material object needs to be created with the proper # model-dimension reduction in effect. In this case that is the axial symmetry # assumption. MR = DeforModelRed2DAxisymm axisymmetric = true # Create the mesh and initialize the geometry. First we are going # to construct the block of elements with the first coordinate # corresponding to the thickness in the radial direction, and the second # coordinate is the thickness in the axial direction. fens, fes = Q8block(b - a, t, nt, na) # Extract the boundary and mark the finite elements on the # interior surface. bdryfes = meshboundary(fes) bcl = selectelem(fens, bdryfes, box = [0.0, 0.0, -Inf, Inf], inflate = tolerance) internal_fenids = connectednodes(subset(bdryfes, bcl)) # Now shape the block into the actual wedge piece of the pipe. for i = 1:count(fens) fens.xyz[i, :] = fens.xyz[i, :] + [a; 0.0] end # now we create the geometry and displacement fields geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 2)) # displacement field # The plane-strain condition in the axial direction is specified by selecting nodes # on the plane y=0 and y=t. l1 = selectnode(fens; box = [-Inf Inf 0.0 0.0], inflate = tolerance) setebc!(u, l1, true, 2, 0.0) l1 = selectnode(fens; box = [-Inf Inf t t], inflate = tolerance) setebc!(u, l1, true, 2, 0.0) applyebc!(u) numberdofs!(u) # The traction boundary condition is applied in the radial # direction. el1femm = FEMMBase(IntegDomain(subset(bdryfes, bcl), GaussRule(1, 3), axisymmetric)) fi = ForceIntensity([press; 0.0]) F2 = distribloads(el1femm, geom, u, fi, 2) # Property and material material = MatDeforElastIso(MR, E, nu) femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(2, 2), axisymmetric), material) K = stiffness(femm, geom, u) u = solve_blocked!(u, K, F2) # Transfer the solution of the displacement to the nodes on the # internal cylindrical surface and convert to # cylindrical-coordinate displacements there. uv = u.values[internal_fenids, :] # Report the relative displacement on the internal surface: println( "(Approximate/true displacement) at the internal surface: $( mean(uv[:,1])/urex*100 ) %", ) # Produce a plot of the radial stress component in the cylindrical # coordinate system. Note that this is the usual representation of # stress using nodal stress field. fld = fieldfromintegpoints(femm, geom, u, :Cauchy, 1) File = "thick_pipe_sigmax.vtk" vtkexportmesh(File, fens, fes; scalars = [("sigmax", fld.values)]) # Produce a plot of the solution components in the cylindrical # coordinate system. function inspector(idat::MyIData, elnum, conn, xe, out, xq) push!(idat.r, xq[1]) push!(idat.s, out[idat.c]) return idat end idat = MyIData(1, FFltVec[], FFltVec[]) idat = inspectintegpoints(femm, geom, u, collect(1:count(fes)), inspector, idat, :Cauchy) # Plot the analytical solution. r = linearspace(a, b, 100) @pgf a = Axis( { xlabel = "Radial distance", ylabel = "Radial stress", grid = "major", legend_pos = "south east", }, Plot({mark = "dot"}, Table([:x => vec(r), :y => vec(radial_stress.(r))])), LegendEntry("Analytical"), Plot( {"only marks", "red", mark = "triangle"}, Table([:x => vec(idat.r), :y => vec(idat.s)]), ), LegendEntry("FEA"), ) display(a) # print_tex(a) # ## # # *Regular quadratic triangle* # ## # # We start with the workhorse of most commonly used finite element # # packages, the quadratic triangle. Similarly to the quadratic # # tetrahedron in the 3-D version of this tutorial (pub_thick_pipe), the # # stress is polluted with oscillations. Definitely not as bad as in the # # plane-strain simulations when the triangles were distorted into # # shapes with curved edges, but the disturbances are there. # description ='T6';# tetrahedron # mf =@T6_block; # femmf =@(fes)femm_deformation_linear(struct('fes',fes,... # 'material',mater,'integration_rule',tri_rule(struct('npts',3)))); # surface_integration_rule=gauss_rule(struct('dim',1, 'order', 3)); # execute_simulation (description, mf, femmf, surface_integration_rule); # ## # # The same remedy of selective reduced integration as in full 3-D models # # will also work here. Is demonstrated by the simulation with the # # selective reduced integration quadratic triangle. # ## # # *Selective reduced # # integration quadratic triangle* # description ='T6-SRI'; # mf =@T6_block; # femmf =@(fes)femm_deformation_linear_sri(struct('fes',fes,... # 'material',mater,... # 'integration_rule_volumetric',tri_rule(struct('npts',1)),... # 'integration_rule_deviatoric',tri_rule(struct('npts',3)))); # surface_integration_rule=gauss_rule(struct('dim',1, 'order', 3)); # execute_simulation (description, mf, femmf, surface_integration_rule); # ## # # The selective reduced integration works very well with the T6 triangle. # ## # # An element that is often used in these situations is the uniformly # # under integrated serendipity (8-node) quadrilateral. # ## # # *Reduced integration serendipity quadrilateral* # ## # # The same finite # # element model machine as above is used, and the integration is the 2 # # x 2 Gauss rule (one order lower than that required for full # # integration which would be 3 x 3). # description ='Q8R'; # mf =@Q8_block; # femmf =@(fes)femm_deformation_linear(struct('fes',fes,... # 'material',mater,... # 'integration_rule',gauss_rule(struct('dim',2, 'order',2)))); # surface_integration_rule=gauss_rule(struct('dim',1, 'order',3)); # execute_simulation (description, mf, femmf, surface_integration_rule); # ## # # *Full integration serendipity quadrilateral* # ## # # Using the full-integration Gauss rule of 3 x 3 points clearly leads to disaster. # description ='Q8'; # mf =@Q8_block; # femmf =@(fes)femm_deformation_linear(struct('fes',fes,... # 'material',mater,... # 'integration_rule',gauss_rule(struct('dim',2, 'order',3)))); # surface_integration_rule=gauss_rule(struct('dim',1, 'order',3)); # execute_simulation (description, mf, femmf, surface_integration_rule); ## # The stress is now totally unacceptable. ## Discussion # ## # The axially symmetric model is clearly very effective # computationally, as the size is much reduced compared to the 3-D # model. In conjunction with uniform or selective reduced integration # it can be very accurate as well. #pub_thick_pipe_axi() # end end # thick_pipe_axi function thick_pipe_ps() ## Thick pipe with internal pressure: plane strain # ## # Link to the <matlab:edit('pub_thick_pipe_ps') m-file>. ## Description ## # This is a simple modification of the full three-dimensional simulation of # the tutorial pub_thick_pipe takes advantage of the plane-strain model # reduction procedure. ## # An infinitely long thick walled cylindrical pipe # with inner boundary radius of 3 mm and outer boundary radius of 9 mm is # subjected to an internal pressure of 1.0 MPa. A wedge with thickness of # 2 mm and a 90-degree angle sector is considered for the finite element # analysis. The material properties are taken as isotropic linear elastic # with $E=1000$ MPa and $\nu=0.4999$ to represent nearly incompressible # behavior. This problem has been proposed to by MacNeal and Harder as a # test of an element's ability to represent the response of a nearly # incompressible material. The plane-strain condition is assumed in the # axial direction of the pipe which together with the radial symmetry # confines the material in all but the radial direction and therefore # amplifies the numerical difficulties associated with the confinement of # the nearly incompressible material. ## # There is an analytical solution to this problem. Timoshenko and Goodier # presented the original solution of Lame in their textbook. We are going # to compare with both the stress distribution (radial and hoop stresses) # and the displacement of the inner cylindrical surface. ## # # <html> # <table border=0><tr><td> # <img src="../docs/pub_thick_pipe_ps.png" width = "30#"> # </td></tr> # <tr><td>Figure 1. Definition of the geometry of the internally pressurized thick pipe</td></tr> # </table> # </html> ## # References: # # # Macneal RH, Harder RL (1985) A proposed standard set of problems to test # finite element accuracy. Finite Elements in Analysis and Design 1: 3-20. # # # Timoshenko S. and Goodier J. N., Theory of Elasticity, McGraw-Hill, 2nd ed., 1951. ## Solution # ## # Internal radius of the pipe. a = 3 * phun("MM") ## # External radius of the pipe. b = 9 * phun("MM") ## # Thickness of the slice. t = 2 * phun("MM") ## # Geometrical tolerance. tolerance = a / 10000.0 ## # Young's modulus and Poisson's ratio. E = 1000 * phun("MEGA*PA") nu = 0.499 ## # Applied pressure on the internal surface. press = 1.0 * phun("MEGA*PA") ## # Analytical solutions. Radial stress: radial_stress(r) = press * a .^ 2 / (b^2 - a^2) .* (1 - (b^2) ./ r .^ 2) ## # Circumferential (hoop) stress: hoop_stress(r) = press * a .^ 2 / (b^2 - a^2) .* (1 + (b^2) ./ r .^ 2) ## # Radial displacement: function radial_displacement(r) press * a^2 * (1 + nu) * (b^2 + r .^ 2 * (1 - 2 * nu)) / (E * (b^2 - a^2) .* r) end ## # Therefore the radial displacement of the loaded surface will be: urex = radial_displacement(a) ## # The mesh parameters: The numbers of element edges axially, # and through the thickness of the pipe wall (radially). nc = 3 nt = 3 ## # Note that the material object needs to be created with the proper # model-dimension reduction in mind. In this case that is the axial symmetry # assumption. MR = DeforModelRed2DStrain # Create the mesh and initialize the geometry. First we are going # to construct the block of elements with the first coordinate # corresponding to the angle, and the second # coordinate is the thickness in the radial direction. anglrrange = 90.0 / 180 * pi fens, fes = Q8block(anglrrange, b - a, nc, nt) # Extract the boundary and mark the finite elements on the # interior surface. bdryfes = meshboundary(fes) bcl = selectelem(fens, bdryfes, box = [-Inf, Inf, 0.0, 0.0], inflate = tolerance) internal_fenids = connectednodes(subset(bdryfes, bcl)) # Now shape the block into the actual wedge piece of the pipe. ayr = fens.xyz for i = 1:count(fens) angl = ayr[i, 1] r = a + ayr[i, 2] fens.xyz[i, :] = [r * sin(angl), (r * cos(angl))] end # now we create the geometry and displacement fields geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 2)) # displacement field # The symmetry boundary condition is specified by selecting nodes # on the plane x=0. l1 = selectnode(fens; box = [0.0 0.0 -Inf Inf], inflate = tolerance) setebc!(u, l1, true, 1, 0.0) # The second symmetry boundary condition is specified by selecting # nodes on the plane y=0. l1 = selectnode(fens; box = [-Inf Inf 0.0 0.0], inflate = tolerance) setebc!(u, l1, true, 2, 0.0) applyebc!(u) numberdofs!(u) # The traction boundary condition is applied in the radial # direction. el1femm = FEMMBase(IntegDomain(subset(bdryfes, bcl), GaussRule(1, 3))) function pressureloading!( forceout::FFltVec, XYZ::FFltMat, tangents::FFltMat, feid::FInt, qpid::FInt, ) copyto!(forceout, XYZ / norm(XYZ) * press) return forceout end fi = ForceIntensity(Float64, 2, pressureloading!) # pressure normal to the internal cylindrical surface F2 = distribloads(el1femm, geom, u, fi, 2) # Property and material material = MatDeforElastIso(MR, E, nu) femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(2, 2)), material) K = stiffness(femm, geom, u) u = solve_blocked!(u, K, F2) # Transfer the solution of the displacement to the nodes on the # internal cylindrical surface and convert to # cylindrical-coordinate displacements there. uv = u.values[internal_fenids, :] ur = zeros(FFlt, length(internal_fenids)) for j in eachindex(internal_fenids) n = fens.xyz[internal_fenids[j], :] n = n' / norm(n)# normal to the cylindrical internal surface ur[j] = dot(vec(uv[j, :]), vec(n)) end # Report the relative displacement on the internal surface: println( "(Approximate/true displacement) at the internal surface: $( mean(ur)/urex*100 ) %", ) # Produce a plot of the radial stress component in the cylindrical # coordinate system. Note that this is the usual representation of # stress using nodal stress field. fld = fieldfromintegpoints(femm, geom, u, :Cauchy, 1) File = "thick_pipe_sigmax.vtk" vtkexportmesh(File, fens, fes; scalars = [("sigmax", fld.values)]) # Produce a plot of the solution components in the cylindrical # coordinate system. # Plot the analytical solution. function inspector(idat::MyIData, elnum, conn, xe, out, xq) function outputRm(c) theNormal = c r = norm(theNormal)# distance from the axis of symmetry theNormal = theNormal / r# compute the unit normal vector e1p = [theNormal'; 0.0]# local cylind. coordinate basis vectors e3p = [0.0, 0.0, 1.0]'# this one points along the axis of the cylinder e2p = cross(vec(e3p), vec(e1p))# this one is along the hoop direction R = [vec(e1p) vec(e2p) vec(e3p)]# transformation matrix for the stress return R end Rm = outputRm(xq) tm = zeros(FFlt, 3, 3) stressvtot!(MR, tm, out)# stress in global XYZ tpm = Rm' * tm * Rm# stress matrix in cylindrical coordinates sp = zeros(FFlt, 6) stressttov!(MR, sp, tpm)# stress vector in cylindr. coord. push!(idat.r, norm(xq)) push!(idat.s, sp[idat.c]) return idat end idat = MyIData(1, FFltVec[], FFltVec[]) idat = inspectintegpoints(femm, geom, u, collect(1:count(fes)), inspector, idat, :Cauchy) # show(idat) # Plot the analytical solution. r = linearspace(a, b, 100) @pgf a = Axis( { xlabel = "Radial distance", ylabel = "Radial stress", grid = "major", legend_pos = "south east", }, Plot({mark = "dot"}, Table([:x => vec(r), :y => vec(radial_stress.(r))])), LegendEntry("Analytical"), Plot( {"only marks", "red", mark = "triangle"}, Table([:x => vec(idat.r), :y => vec(idat.s)]), ), LegendEntry("FEA"), ) display(a) end # thick_pipe_ps function thick_pipe_ps_T6() ## Thick pipe with internal pressure: plane strain # ## # Link to the <matlab:edit('pub_thick_pipe_ps') m-file>. ## Description ## # This is a simple modification of the full three-dimensional simulation of # the tutorial pub_thick_pipe takes advantage of the plane-strain model # reduction procedure. ## # An infinitely long thick walled cylindrical pipe # with inner boundary radius of 3 mm and outer boundary radius of 9 mm is # subjected to an internal pressure of 1.0 MPa. A wedge with thickness of # 2 mm and a 90-degree angle sector is considered for the finite element # analysis. The material properties are taken as isotropic linear elastic # with $E=1000$ MPa and $\nu=0.4999$ to represent nearly incompressible # behavior. This problem has been proposed to by MacNeal and Harder as a # test of an element's ability to represent the response of a nearly # incompressible material. The plane-strain condition is assumed in the # axial direction of the pipe which together with the radial symmetry # confines the material in all but the radial direction and therefore # amplifies the numerical difficulties associated with the confinement of # the nearly incompressible material. ## # There is an analytical solution to this problem. Timoshenko and Goodier # presented the original solution of Lame in their textbook. We are going # to compare with both the stress distribution (radial and hoop stresses) # and the displacement of the inner cylindrical surface. ## # # <html> # <table border=0><tr><td> # <img src="../docs/pub_thick_pipe_ps.png" width = "30#"> # </td></tr> # <tr><td>Figure 1. Definition of the geometry of the internally pressurized thick pipe</td></tr> # </table> # </html> ## # References: # # # Macneal RH, Harder RL (1985) A proposed standard set of problems to test # finite element accuracy. Finite Elements in Analysis and Design 1: 3-20. # # # Timoshenko S. and Goodier J. N., Theory of Elasticity, McGraw-Hill, 2nd ed., 1951. ## Solution # ## # Internal radius of the pipe. a = 3 * phun("MM") ## # External radius of the pipe. b = 9 * phun("MM") ## # Thickness of the slice. t = 2 * phun("MM") ## # Geometrical tolerance. tolerance = a / 10000.0 ## # Young's modulus and Poisson's ratio. E = 1000 * phun("MEGA*PA") nu = 0.499 ## # Applied pressure on the internal surface. press = 1.0 * phun("MEGA*PA") ## # Analytical solutions. Radial stress: radial_stress(r) = press * a .^ 2 / (b^2 - a^2) .* (1 - (b^2) ./ r .^ 2) ## # Circumferential (hoop) stress: hoop_stress(r) = press * a .^ 2 / (b^2 - a^2) .* (1 + (b^2) ./ r .^ 2) ## # Radial displacement: function radial_displacement(r) press * a^2 * (1 + nu) * (b^2 + r .^ 2 * (1 - 2 * nu)) / (E * (b^2 - a^2) .* r) end ## # Therefore the radial displacement of the loaded surface will be: urex = radial_displacement(a) ## # The mesh parameters: The numbers of element edges axially, # and through the thickness of the pipe wall (radially). nc = 3 nt = 3 ## # Note that the material object needs to be created with the proper # model-dimension reduction in mind. In this case that is the axial symmetry # assumption. MR = DeforModelRed2DStrain # Create the mesh and initialize the geometry. First we are going # to construct the block of elements with the first coordinate # corresponding to the angle, and the second # coordinate is the thickness in the radial direction. anglrrange = 90.0 / 180 * pi fens, fes = T6block(anglrrange, b - a, nc, nt) # Extract the boundary and mark the finite elements on the # interior surface. bdryfes = meshboundary(fes) bcl = selectelem(fens, bdryfes, box = [-Inf, Inf, 0.0, 0.0], inflate = tolerance) internal_fenids = connectednodes(subset(bdryfes, bcl)) # Now shape the block into the actual wedge piece of the pipe. ayr = fens.xyz for i = 1:count(fens) angl = ayr[i, 1] r = a + ayr[i, 2] fens.xyz[i, :] = [r * sin(angl), (r * cos(angl))] end # now we create the geometry and displacement fields geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 2)) # displacement field # The symmetry boundary condition is specified by selecting nodes # on the plane x=0. l1 = selectnode(fens; box = [0.0 0.0 -Inf Inf], inflate = tolerance) setebc!(u, l1, true, 1, 0.0) # The second symmetry boundary condition is specified by selecting # nodes on the plane y=0. l1 = selectnode(fens; box = [-Inf Inf 0.0 0.0], inflate = tolerance) setebc!(u, l1, true, 2, 0.0) applyebc!(u) numberdofs!(u) # The traction boundary condition is applied in the radial # direction. el1femm = FEMMBase(IntegDomain(subset(bdryfes, bcl), GaussRule(1, 3))) function pressureloading!( forceout::FFltVec, XYZ::FFltMat, tangents::FFltMat, feid::FInt, qpid::FInt, ) copyto!(forceout, XYZ / norm(XYZ) * press) return forceout end fi = ForceIntensity(Float64, 2, pressureloading!) # pressure normal to the internal cylindrical surface F2 = distribloads(el1femm, geom, u, fi, 2) # Property and material material = MatDeforElastIso(MR, E, nu) femm = FEMMDeforLinear(MR, IntegDomain(fes, TriRule(3)), material) K = stiffness(femm, geom, u) u = solve_blocked!(u, K, F2) # Transfer the solution of the displacement to the nodes on the # internal cylindrical surface and convert to # cylindrical-coordinate displacements there. uv = u.values[internal_fenids, :] ur = zeros(FFlt, length(internal_fenids)) for j in eachindex(internal_fenids) n = fens.xyz[internal_fenids[j], :] n = n' / norm(n)# normal to the cylindrical internal surface ur[j] = dot(vec(uv[j, :]), vec(n)) end # Report the relative displacement on the internal surface: println( "(Approximate/true displacement) at the internal surface: $( mean(ur)/urex*100 ) %", ) # Produce a plot of the radial stress component in the cylindrical # coordinate system. Note that this is the usual representation of # stress using nodal stress field. fld = fieldfromintegpoints(femm, geom, u, :Cauchy, 1) File = "thick_pipe_sigmax.vtk" vtkexportmesh(File, fens, fes; scalars = [("sigmax", fld.values)]) # Produce a plot of the solution components in the cylindrical # coordinate system. # Plot the analytical solution. function inspector(idat::MyIData, elnum, conn, xe, out, xq) function outputRm(c) theNormal = c r = norm(theNormal)# distance from the axis of symmetry theNormal = theNormal / r# compute the unit normal vector e1p = [theNormal'; 0.0]# local cylind. coordinate basis vectors e3p = [0.0, 0.0, 1.0]'# this one points along the axis of the cylinder e2p = cross(vec(e3p), vec(e1p))# this one is along the hoop direction R = [vec(e1p) vec(e2p) vec(e3p)]# transformation matrix for the stress return R end Rm = outputRm(xq) tm = zeros(FFlt, 3, 3) stressvtot!(MR, tm, out)# stress in global XYZ tpm = Rm' * tm * Rm# stress matrix in cylindrical coordinates sp = zeros(FFlt, 6) stressttov!(MR, sp, tpm)# stress vector in cylindr. coord. push!(idat.r, norm(xq)) push!(idat.s, sp[idat.c]) return idat end idat = MyIData(1, FFltVec[], FFltVec[]) idat = inspectintegpoints(femm, geom, u, collect(1:count(fes)), inspector, idat, :Cauchy) # show(idat) # Plot the analytical solution. r = linearspace(a, b, 100) @pgf a = Axis( { xlabel = "Radial distance", ylabel = "Radial stress", grid = "major", legend_pos = "south east", }, Plot({mark = "dot"}, Table([:x => vec(r), :y => vec(radial_stress.(r))])), LegendEntry("Analytical"), Plot( {"only marks", "red", mark = "triangle"}, Table([:x => vec(idat.r), :y => vec(idat.s)]), ), LegendEntry("FEA"), ) display(a) #pub_thick_pipe_ps() end # thick_pipe_ps_T6 function allrun() println("#####################################################") println("# thick_pipe_axi ") thick_pipe_axi() println("#####################################################") println("# thick_pipe_ps ") thick_pipe_ps() println("#####################################################") println("# thick_pipe_ps_T6 ") thick_pipe_ps_T6() return true end # function allrun @info "All examples may be executed with " println("using .$(@__MODULE__); $(@__MODULE__).allrun()") end # module thick_pipe_examples nothing
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
28520
module All_EBC_2dir_examples using FinEtools using FinEtoolsDeforLinear using FinEtoolsDeforLinear.AlgoDeforLinearModule using FinEtools.MeshUtilModule using FinEtools.AlgoBaseModule using LinearAlgebra # Orthotropic material E1 = 2.5e6 * phun("PSI") E2 = 1e6 * phun("PSI") E3 = E2 G12 = 0.5e6 * phun("PSI") G13 = G12 G23 = 0.2e6 * phun("PSI") nu12 = 0.25 nu13 = 0.25 nu23 = 0.25 # Coefficients of thermal expansion CTE1 = CTE2 = CTE3 = 0.0 angles = vec([-15.0]) nLayers = length(angles) # dimensions of the plate a = 100.0 * phun("mm") b = 100.0 * phun("mm") t = 100.0 * phun("mm") tolerance = 0.0001 * t Refinements = [2, 5, 10, 20, 40] # For the paper Refinements = [2, 4, 8, 16] # for testing # Here we define the layout and the thicknesses of the layers. ts = t / nLayers * ones(nLayers) # layer thicknesses # The material coordinate system function is defined as: function updatecs!(csmatout::FFltMat, XYZ::FFltMat, tangents::FFltMat, fe_label::FInt) rotmat3!(csmatout, angles[fe_label] / 180.0 * pi * [0.0; 1.0; 0.0]) end function displacement_fun_x(x) dot( [0.0, 0.001, 0.0, 0.001, 0.0, -0.001, 0.0, 0.002, 0.0, 0.001], [ 1.0, x[1], x[2], x[3], x[1] * x[2], x[1] * x[3], x[2] * x[3], x[1]^2, x[2]^2, x[3]^2, ], ) end function displacement_fun_y(x) dot( [0.0, 0.0, 0.0003, 0.0, 0.003, -0.002, 0.007, 0.0, 0.008, -0.007], [ 1.0, x[1], x[2], x[3], x[1] * x[2], x[1] * x[3], x[2] * x[3], x[1]^2, x[2]^2, x[3]^2, ], ) end function displacement_fun_z(x) dot( [0.0, 0.0, 0.0, 0.00007, 0.008, 0.003, -0.015, 0.002, -0.003, 0.0001], [ 1.0, x[1], x[2], x[3], x[1] * x[2], x[1] * x[3], x[2] * x[3], x[1]^2, x[2]^2, x[3]^2, ], ) end function All_EBC_2dir_MST10_conv() elementtag = "MST10" println(""" Fiber-reinforced block: $(elementtag) """) modeldatasequence = FDataDict[] for Refinement in Refinements MR = DeforModelRed3D material = MatDeforElastOrtho( MR, 0.0, E1, E2, E3, nu12, nu13, nu23, G12, G13, G23, CTE1, CTE2, CTE3, ) # Select how fine the mesh should be nts = Refinement * ones(Int, nLayers)# number of elements per layer tnts = sum(nts) na, nb = tnts, tnts xs = collect(linearspace(0.0, a, na + 1)) ys = collect(linearspace(0.0, b, nb + 1)) fens, fes = T10layeredplatex(xs, ys, ts, nts) println("Mesh: na, nb, nts = $na, $nb, $nts") println("count(fens) = $(count(fens))") # The volume integrals are evaluated using this rule gr = SimplexRule(3, 4) # We will create one region per layer regions = FDataDict[] for layer = 1:nLayers rls = selectelem(fens, fes, label = layer) push!( regions, FDataDict( "femm" => FEMMDeforLinearMST10( MR, IntegDomain(subset(fes, rls), gr), CSys(3, 3, updatecs!), material, ), ), ) end # The essential boundary conditions: the entire surface bfes = meshboundary(fes) lx0 = connectednodes(bfes) eclamped1 = FDataDict( "displacement" => displacement_fun_x, "component" => 1, "node_list" => lx0, ) eclamped2 = FDataDict( "displacement" => displacement_fun_y, "component" => 2, "node_list" => lx0, ) eclamped3 = FDataDict( "displacement" => displacement_fun_z, "component" => 3, "node_list" => lx0, ) modeldata = FDataDict( "fens" => fens, "regions" => regions, "essential_bcs" => [eclamped1, eclamped2, eclamped3], ) modeldata = AlgoDeforLinearModule.linearstatics(modeldata) modeldata["elementsize"] = t / Refinement modeldata["geometricaltolerance"] = tolerance push!(modeldatasequence, modeldata) end # for refinement for (extrap, nodevalmeth) in zip([:extrapmean, :extraptrend, :default], [:averaging, :averaging, :invdistance]) filebase = "All_EBC_2dir_$(elementtag)_$(extrap)" for modeldata in modeldatasequence u = modeldata["u"] geom = modeldata["geom"] modeldata["postprocessing"] = FDataDict( "file" => filebase * "-s", "quantity" => :Cauchy, "component" => collect(1:6), "outputcsys" => CSys(3), "nodevalmethod" => nodevalmeth, "reportat" => extrap, ) modeldata = AlgoDeforLinearModule.exportstress(modeldata) end println("") println("Stress RMS error") for md in modeldatasequence md["targetfields"] = [e["field"] for e in md["postprocessing"]["exported"]] end elementsizes, errornorms, p = AlgoBaseModule.evalconvergencestudy(modeldatasequence) println("Normalized Approximate Error = $(errornorms)") f = log.(vec(errornorms)) A = hcat(log.(vec(elementsizes[1:(end-1)])), ones(size(f))) p = A \ f println("Linear log-log fit: p = $(p)") csvFile = filebase * "_Stress" * ".CSV" savecsv( csvFile, elementsizes = vec(elementsizes[1:(end-1)]), elementsizes2 = vec(elementsizes[1:(end-1)] .^ 2), elementsizes3 = vec(elementsizes[1:(end-1)] .^ 3), errornorms = vec(errornorms), ) println("Wrote $csvFile") println("") println("Displacement RMS error") for md in modeldatasequence md["targetfields"] = [md["u"] for r in md["regions"]] end elementsizes, errornorms, p = AlgoBaseModule.evalconvergencestudy(modeldatasequence) println("Normalized Approximate Error = $(errornorms)") f = log.(vec(errornorms)) A = hcat(log.(vec(elementsizes[1:(end-1)])), ones(size(f))) p = A \ f println("Linear log-log fit: p = $(p)") csvFile = filebase * "_Displ" * ".CSV" savecsv( csvFile, elementsizes = vec(elementsizes[1:(end-1)]), elementsizes2 = vec(elementsizes[1:(end-1)] .^ 2), elementsizes3 = vec(elementsizes[1:(end-1)] .^ 3), errornorms = vec(errornorms), ) println("Wrote $csvFile") end println("Done") end # All_EBC_2dir_MST10_conv function All_EBC_2dir_MSH8_conv() elementtag = "MSH8" println(""" Fiber-reinforced block: $(elementtag) """) modeldatasequence = FDataDict[] for Refinement in Refinements # This is the material model MR = DeforModelRed3D material = MatDeforElastOrtho( MR, 0.0, E1, E2, E3, nu12, nu13, nu23, G12, G13, G23, CTE1, CTE2, CTE3, ) # Select how fine the mesh should be nts = Refinement * ones(Int, nLayers)# number of elements per layer tnts = sum(nts) na, nb = tnts, tnts xs = collect(linearspace(0.0, a, na + 1)) ys = collect(linearspace(0.0, b, nb + 1)) fens, fes = H8layeredplatex(xs, ys, ts, nts) println("Mesh: na, nb, nts = $na, $nb, $nts") println("count(fens) = $(count(fens))") # The volume integrals are evaluated using this rule gr = GaussRule(3, 2) # We will create one region per layer regions = FDataDict[] for layer = 1:nLayers rls = selectelem(fens, fes, label = layer) push!( regions, FDataDict( "femm" => FEMMDeforLinearMSH8( MR, IntegDomain(subset(fes, rls), gr), CSys(3, 3, updatecs!), material, ), ), ) end # The essential boundary conditions: the entire surface bfes = meshboundary(fes) lx0 = connectednodes(bfes) eclamped1 = FDataDict( "displacement" => displacement_fun_x, "component" => 1, "node_list" => lx0, ) eclamped2 = FDataDict( "displacement" => displacement_fun_y, "component" => 2, "node_list" => lx0, ) eclamped3 = FDataDict( "displacement" => displacement_fun_z, "component" => 3, "node_list" => lx0, ) modeldata = FDataDict( "fens" => fens, "regions" => regions, "essential_bcs" => [eclamped1, eclamped2, eclamped3], ) modeldata = AlgoDeforLinearModule.linearstatics(modeldata) modeldata["elementsize"] = t / Refinement modeldata["geometricaltolerance"] = tolerance push!(modeldatasequence, modeldata) end # for refinement for (extrap, nodevalmeth) in zip([:extrapmean, :extraptrend, :default], [:averaging, :averaging, :invdistance]) filebase = "All_EBC_2dir_$(elementtag)_$(extrap)" for modeldata in modeldatasequence u = modeldata["u"] geom = modeldata["geom"] modeldata["postprocessing"] = FDataDict( "file" => filebase * "-s", "quantity" => :Cauchy, "component" => collect(1:6), "outputcsys" => CSys(3), "nodevalmethod" => nodevalmeth, "reportat" => extrap, ) modeldata = AlgoDeforLinearModule.exportstress(modeldata) end println("") println("Stress RMS error") for md in modeldatasequence md["targetfields"] = [e["field"] for e in md["postprocessing"]["exported"]] end elementsizes, errornorms, p = AlgoBaseModule.evalconvergencestudy(modeldatasequence) println("Normalized Approximate Error = $(errornorms)") f = log.(vec(errornorms)) A = hcat(log.(vec(elementsizes[1:(end-1)])), ones(size(f))) p = A \ f println("Linear log-log fit: p = $(p)") csvFile = filebase * "_Stress" * ".CSV" savecsv( csvFile, elementsizes = vec(elementsizes[1:(end-1)]), elementsizes2 = vec(elementsizes[1:(end-1)] .^ 2), elementsizes3 = vec(elementsizes[1:(end-1)] .^ 3), errornorms = vec(errornorms), ) println("Wrote $csvFile") println("") println("Displacement RMS error") for md in modeldatasequence md["targetfields"] = [md["u"] for r in md["regions"]] end elementsizes, errornorms, p = AlgoBaseModule.evalconvergencestudy(modeldatasequence) println("Normalized Approximate Error = $(errornorms)") f = log.(vec(errornorms)) A = hcat(log.(vec(elementsizes[1:(end-1)])), ones(size(f))) p = A \ f println("Linear log-log fit: p = $(p)") csvFile = filebase * "_Displ" * ".CSV" savecsv( csvFile, elementsizes = vec(elementsizes[1:(end-1)]), elementsizes2 = vec(elementsizes[1:(end-1)] .^ 2), elementsizes3 = vec(elementsizes[1:(end-1)] .^ 3), errornorms = vec(errornorms), ) println("Wrote $csvFile") # @async run(`"paraview.exe" $csvFile`) end # extrap println("Done") end # All_EBC_2dir_MSH8_conv function All_EBC_2dir_MSH8_conv_alt() elementtag = "MSH8" println(""" Fiber-reinforced block: $(elementtag) Trapezoidal rule """) modeldatasequence = FDataDict[] for Refinement in Refinements # This is the material model MR = DeforModelRed3D material = MatDeforElastOrtho( MR, 0.0, E1, E2, E3, nu12, nu13, nu23, G12, G13, G23, CTE1, CTE2, CTE3, ) # Select how fine the mesh should be nts = Refinement * ones(Int, nLayers)# number of elements per layer tnts = sum(nts) na, nb = tnts, tnts xs = collect(linearspace(0.0, a, na + 1)) ys = collect(linearspace(0.0, b, nb + 1)) fens, fes = H8layeredplatex(xs, ys, ts, nts) println("Mesh: na, nb, nts = $na, $nb, $nts") println("count(fens) = $(count(fens))") # The volume integrals are evaluated using this rule gr = TrapezoidalRule(3) # We will create one region per layer regions = FDataDict[] for layer = 1:nLayers rls = selectelem(fens, fes, label = layer) push!( regions, FDataDict( "femm" => FEMMDeforLinearMSH8( MR, IntegDomain(subset(fes, rls), gr), CSys(3, 3, updatecs!), material, ), ), ) end # The essential boundary conditions: the entire surface bfes = meshboundary(fes) lx0 = connectednodes(bfes) eclamped1 = FDataDict( "displacement" => displacement_fun_x, "component" => 1, "node_list" => lx0, ) eclamped2 = FDataDict( "displacement" => displacement_fun_y, "component" => 2, "node_list" => lx0, ) eclamped3 = FDataDict( "displacement" => displacement_fun_z, "component" => 3, "node_list" => lx0, ) modeldata = FDataDict( "fens" => fens, "regions" => regions, "essential_bcs" => [eclamped1, eclamped2, eclamped3], ) modeldata = AlgoDeforLinearModule.linearstatics(modeldata) modeldata["elementsize"] = t / Refinement modeldata["geometricaltolerance"] = tolerance push!(modeldatasequence, modeldata) end # for refinement for (extrap, nodevalmeth) in zip([:extrapmean, :extraptrend, :default], [:averaging, :averaging, :invdistance]) filebase = "All_EBC_2dir_$(elementtag)_$(extrap)_trapezoidal" for modeldata in modeldatasequence u = modeldata["u"] geom = modeldata["geom"] modeldata["postprocessing"] = FDataDict( "file" => filebase * "-s", "quantity" => :Cauchy, "component" => collect(1:6), "outputcsys" => CSys(3), "nodevalmethod" => nodevalmeth, "reportat" => extrap, ) modeldata = AlgoDeforLinearModule.exportstress(modeldata) end println("") println("Stress RMS error") for md in modeldatasequence md["targetfields"] = [e["field"] for e in md["postprocessing"]["exported"]] end elementsizes, errornorms, p = AlgoBaseModule.evalconvergencestudy(modeldatasequence) println("Normalized Approximate Error = $(errornorms)") f = log.(vec(errornorms)) A = hcat(log.(vec(elementsizes[1:(end-1)])), ones(size(f))) p = A \ f println("Linear log-log fit: p = $(p)") csvFile = filebase * "_Stress" * ".CSV" savecsv( csvFile, elementsizes = vec(elementsizes[1:(end-1)]), elementsizes2 = vec(elementsizes[1:(end-1)] .^ 2), elementsizes3 = vec(elementsizes[1:(end-1)] .^ 3), errornorms = vec(errornorms), ) println("Wrote $csvFile") println("") println("Displacement RMS error") for md in modeldatasequence md["targetfields"] = [md["u"] for r in md["regions"]] end elementsizes, errornorms, p = AlgoBaseModule.evalconvergencestudy(modeldatasequence) println("Normalized Approximate Error = $(errornorms)") f = log.(vec(errornorms)) A = hcat(log.(vec(elementsizes[1:(end-1)])), ones(size(f))) p = A \ f println("Linear log-log fit: p = $(p)") csvFile = filebase * "_Displ" * ".CSV" savecsv( csvFile, elementsizes = vec(elementsizes[1:(end-1)]), elementsizes2 = vec(elementsizes[1:(end-1)] .^ 2), elementsizes3 = vec(elementsizes[1:(end-1)] .^ 3), errornorms = vec(errornorms), ) println("Wrote $csvFile") # @async run(`"paraview.exe" $csvFile`) end # extrap println("Done") end # All_EBC_2dir_MSH8_conv_alt function All_EBC_2dir_T10_conv() elementtag = "T10" println(""" Fiber-reinforced block: $(elementtag) """) modeldatasequence = FDataDict[] for Refinement in Refinements # This is the material model MR = DeforModelRed3D material = MatDeforElastOrtho( MR, 0.0, E1, E2, E3, nu12, nu13, nu23, G12, G13, G23, CTE1, CTE2, CTE3, ) # Select how fine the mesh should be nts = Refinement * ones(Int, nLayers)# number of elements per layer tnts = sum(nts) na, nb = tnts, tnts xs = collect(linearspace(0.0, a, na + 1)) ys = collect(linearspace(0.0, b, nb + 1)) fens, fes = T10layeredplatex(xs, ys, ts, nts) println("Mesh: na, nb, nts = $na, $nb, $nts") println("count(fens) = $(count(fens))") # The volume integrals are evaluated using this rule gr = SimplexRule(3, 4) # We will create one region per layer regions = FDataDict[] for layer = 1:nLayers rls = selectelem(fens, fes, label = layer) push!( regions, FDataDict( "femm" => FEMMDeforLinear( MR, IntegDomain(subset(fes, rls), gr), CSys(3, 3, updatecs!), material, ), ), ) end # The essential boundary conditions: the entire surface bfes = meshboundary(fes) lx0 = connectednodes(bfes) eclamped1 = FDataDict( "displacement" => displacement_fun_x, "component" => 1, "node_list" => lx0, ) eclamped2 = FDataDict( "displacement" => displacement_fun_y, "component" => 2, "node_list" => lx0, ) eclamped3 = FDataDict( "displacement" => displacement_fun_z, "component" => 3, "node_list" => lx0, ) modeldata = FDataDict( "fens" => fens, "regions" => regions, "essential_bcs" => [eclamped1, eclamped2, eclamped3], ) modeldata = AlgoDeforLinearModule.linearstatics(modeldata) modeldata["elementsize"] = t / Refinement modeldata["geometricaltolerance"] = tolerance push!(modeldatasequence, modeldata) end # for refinement for (extrap, nodevalmeth) in zip([:default], [:invdistance]) filebase = "All_EBC_2dir_$(elementtag)_$(extrap)" for modeldata in modeldatasequence u = modeldata["u"] geom = modeldata["geom"] modeldata["postprocessing"] = FDataDict( "file" => filebase * "-s", "quantity" => :Cauchy, "component" => collect(1:6), "outputcsys" => CSys(3), "nodevalmethod" => nodevalmeth, "reportat" => extrap, ) modeldata = AlgoDeforLinearModule.exportstress(modeldata) end println("") println("Stress RMS error") for md in modeldatasequence md["targetfields"] = [e["field"] for e in md["postprocessing"]["exported"]] end elementsizes, errornorms, p = AlgoBaseModule.evalconvergencestudy(modeldatasequence) println("Normalized Approximate Error = $(errornorms)") f = log.(vec(errornorms)) A = hcat(log.(vec(elementsizes[1:(end-1)])), ones(size(f))) p = A \ f println("Linear log-log fit: p = $(p)") csvFile = filebase * "_Stress" * ".CSV" savecsv( csvFile, elementsizes = vec(elementsizes[1:(end-1)]), elementsizes2 = vec(elementsizes[1:(end-1)] .^ 2), elementsizes3 = vec(elementsizes[1:(end-1)] .^ 3), errornorms = vec(errornorms), ) println("Wrote $csvFile") println("") println("Displacement RMS error") for md in modeldatasequence md["targetfields"] = [md["u"] for r in md["regions"]] end elementsizes, errornorms, p = AlgoBaseModule.evalconvergencestudy(modeldatasequence) println("Normalized Approximate Error = $(errornorms)") f = log.(vec(errornorms)) A = hcat(log.(vec(elementsizes[1:(end-1)])), ones(size(f))) p = A \ f println("Linear log-log fit: p = $(p)") csvFile = filebase * "_Displ" * ".CSV" savecsv( csvFile, elementsizes = vec(elementsizes[1:(end-1)]), elementsizes2 = vec(elementsizes[1:(end-1)] .^ 2), elementsizes3 = vec(elementsizes[1:(end-1)] .^ 3), errornorms = vec(errornorms), ) println("Wrote $csvFile") # @async run(`"paraview.exe" $csvFile`) end # extrap println("Done") end # All_EBC_2dir_T10_conv function All_EBC_2dir_H8_conv() elementtag = "H8" println(""" Fiber-reinforced block: $(elementtag) """) modeldatasequence = FDataDict[] for Refinement in Refinements # This is the material model MR = DeforModelRed3D material = MatDeforElastOrtho( MR, 0.0, E1, E2, E3, nu12, nu13, nu23, G12, G13, G23, CTE1, CTE2, CTE3, ) # Select how fine the mesh should be nts = Refinement * ones(Int, nLayers)# number of elements per layer tnts = sum(nts) na, nb = tnts, tnts xs = collect(linearspace(0.0, a, na + 1)) ys = collect(linearspace(0.0, b, nb + 1)) fens, fes = H8layeredplatex(xs, ys, ts, nts) println("Mesh: na, nb, nts = $na, $nb, $nts") println("count(fens) = $(count(fens))") # The volume integrals are evaluated using this rule gr = GaussRule(3, 2) # We will create one region per layer regions = FDataDict[] for layer = 1:nLayers rls = selectelem(fens, fes, label = layer) push!( regions, FDataDict( "femm" => FEMMDeforLinear( MR, IntegDomain(subset(fes, rls), gr), CSys(3, 3, updatecs!), material, ), ), ) end # The essential boundary conditions: the entire surface bfes = meshboundary(fes) lx0 = connectednodes(bfes) eclamped1 = FDataDict( "displacement" => displacement_fun_x, "component" => 1, "node_list" => lx0, ) eclamped2 = FDataDict( "displacement" => displacement_fun_y, "component" => 2, "node_list" => lx0, ) eclamped3 = FDataDict( "displacement" => displacement_fun_z, "component" => 3, "node_list" => lx0, ) modeldata = FDataDict( "fens" => fens, "regions" => regions, "essential_bcs" => [eclamped1, eclamped2, eclamped3], ) modeldata = AlgoDeforLinearModule.linearstatics(modeldata) modeldata["elementsize"] = t / Refinement modeldata["geometricaltolerance"] = tolerance push!(modeldatasequence, modeldata) end # for refinement for (extrap, nodevalmeth) in zip([:default], [:invdistance]) filebase = "All_EBC_2dir_$(elementtag)_$(extrap)" for modeldata in modeldatasequence u = modeldata["u"] geom = modeldata["geom"] modeldata["postprocessing"] = FDataDict( "file" => filebase * "-s", "quantity" => :Cauchy, "component" => collect(1:6), "outputcsys" => CSys(3), "nodevalmethod" => nodevalmeth, "reportat" => extrap, ) modeldata = AlgoDeforLinearModule.exportstress(modeldata) end println("") println("Stress RMS error") for md in modeldatasequence md["targetfields"] = [e["field"] for e in md["postprocessing"]["exported"]] end elementsizes, errornorms, p = AlgoBaseModule.evalconvergencestudy(modeldatasequence) println("Normalized Approximate Error = $(errornorms)") f = log.(vec(errornorms)) A = hcat(log.(vec(elementsizes[1:(end-1)])), ones(size(f))) p = A \ f println("Linear log-log fit: p = $(p)") csvFile = filebase * "_Stress" * ".CSV" savecsv( csvFile, elementsizes = vec(elementsizes[1:(end-1)]), elementsizes2 = vec(elementsizes[1:(end-1)] .^ 2), elementsizes3 = vec(elementsizes[1:(end-1)] .^ 3), errornorms = vec(errornorms), ) println("Wrote $csvFile") println("") println("Displacement RMS error") for md in modeldatasequence md["targetfields"] = [md["u"] for r in md["regions"]] end elementsizes, errornorms, p = AlgoBaseModule.evalconvergencestudy(modeldatasequence) println("Normalized Approximate Error = $(errornorms)") f = log.(vec(errornorms)) A = hcat(log.(vec(elementsizes[1:(end-1)])), ones(size(f))) p = A \ f println("Linear log-log fit: p = $(p)") csvFile = filebase * "_Displ" * ".CSV" savecsv( csvFile, elementsizes = vec(elementsizes[1:(end-1)]), elementsizes2 = vec(elementsizes[1:(end-1)] .^ 2), elementsizes3 = vec(elementsizes[1:(end-1)] .^ 3), errornorms = vec(errornorms), ) println("Wrote $csvFile") # @async run(`"paraview.exe" $csvFile`) end # extrap println("Done") end # All_EBC_2dir_H8_conv function allrun() println("#####################################################") println("# All_EBC_2dir_MSH8_conv_alt ") All_EBC_2dir_MSH8_conv_alt() println("#####################################################") println("# All_EBC_2dir_MST10_conv ") All_EBC_2dir_MST10_conv() println("#####################################################") println("# All_EBC_2dir_MSH8_conv ") All_EBC_2dir_MSH8_conv() println("#####################################################") println("# All_EBC_2dir_T10_conv ") All_EBC_2dir_T10_conv() println("#####################################################") println("# All_EBC_2dir_H8_conv ") All_EBC_2dir_H8_conv() return true end # function allrun @info "All examples may be executed with " println("using .$(@__MODULE__); $(@__MODULE__).allrun()") end # module nothing
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
7253
using Gaston # using PyCall using DelimitedFiles function loadcsv(inputcsv) contents = readdlm(inputcsv, ',', Float64, '\n'; header = true) return contents end function coldata(inputcsv, theset) contents = loadcsv(inputcsv) return contents[1][:, theset] end set( axis = "loglog", plotstyle = "linespoints", linewidth = 2, pointsize = 2, xrange = "[0.002:0.1]", xlabel = "Element size", ylabel = "Approximate error", grid = "on", title = "", ) # inputcsv = "All_EBC_2dir_T10_default_Stress.CSV" # x = coldata(inputcsv, 1) # y = coldata(inputcsv, 4) # plot(x, abs.(y), legend = "T10", color = "black", marker = "x") # inputcsv = "All_EBC_2dir_MST10_extrapmean_Stress.CSV" # x = coldata(inputcsv, 1) # y = coldata(inputcsv, 4) # plot!(x, abs.(y), legend="MSOE", color = "black", marker = "edmd") # inputcsv = "All_EBC_2dir_MST10_extraptrend_Stress.CSV" # x = coldata(inputcsv, 1) # y = coldata(inputcsv, 4) # plot!(x, abs.(y), legend="TBE", color = "black", marker = "ecircle") f = figure() inputcsv = "All_EBC_2dir_MSH8_extraptrend_trapezoidal_Stress.CSV" x = coldata(inputcsv, 1) y = coldata(inputcsv, 4) plot!(x, abs.(y), legend = "Trapezoidal", color = "black", marker = "x") inputcsv = "All_EBC_2dir_MSH8_extraptrend_Stress.CSV" x = coldata(inputcsv, 1) y = coldata(inputcsv, 4) plot!(x, abs.(y), legend = "Gauss", color = "black", marker = "ecircle") figure(f) # inputcsv = "All_EBC_2dir_MST10_extrapmean_Stress.CSV" # x = coldata(inputcsv, 1) # y = coldata(inputcsv, 4) # plot!(x, abs.(y), legend="MSOE", color = "black", marker = "edmd") # inputcsv = "All_EBC_2dir_MST10_extraptrend_Stress.CSV" # x = coldata(inputcsv, 1) # y = coldata(inputcsv, 4) # plot!(x, abs.(y), legend="TBE", color = "black", marker = "ecircle") # julia> include("All_EBC_2dir_examples.jl"); All_EBC_2dir_examples.allrun() # WARNING: replacing module All_EBC_2dir_examples. # ##################################################### # # All_EBC_2dir_MST10_conv # Fiber-reinforced block: MST10 # Mesh: na, nb, nts = 3, 3, [3] # count(fens) = 343 # Mesh: na, nb, nts = 6, 6, [6] # count(fens) = 2197 # Mesh: na, nb, nts = 12, 12, [12] # count(fens) = 15625 # Mesh: na, nb, nts = 24, 24, [24] # count(fens) = 117649 # Stress RMS error # Normalized Approximate Error = [0.0192602, 0.00861774, 0.00354827] # Linear log-log fit: p = [1.22022, 0.214338] # Wrote All_EBC_2dir_MST10_extrapmean_Stress.CSV # Displacement RMS error # Normalized Approximate Error = [0.00508317, 0.00143038, 0.000373055] # Linear log-log fit: p = [1.88413, 1.13915] # Wrote All_EBC_2dir_MST10_extrapmean_Displ.CSV # Mesh: na, nb, nts = 3, 3, [3] # count(fens) = 343 # Mesh: na, nb, nts = 6, 6, [6] # count(fens) = 2197 # Mesh: na, nb, nts = 12, 12, [12] # count(fens) = 15625 # Mesh: na, nb, nts = 24, 24, [24] # count(fens) = 117649 # Stress RMS error # Normalized Approximate Error = [0.0167626, 0.00613563, 0.00220595] # Linear log-log fit: p = [1.46289, 0.889953] # Wrote All_EBC_2dir_MST10_extraptrend_Stress.CSV # Displacement RMS error # Normalized Approximate Error = [0.00508317, 0.00143038, 0.000373055] # Linear log-log fit: p = [1.88413, 1.13915] # Wrote All_EBC_2dir_MST10_extraptrend_Displ.CSV # Mesh: na, nb, nts = 3, 3, [3] # count(fens) = 343 # Mesh: na, nb, nts = 6, 6, [6] # count(fens) = 2197 # Mesh: na, nb, nts = 12, 12, [12] # count(fens) = 15625 # Mesh: na, nb, nts = 24, 24, [24] # count(fens) = 117649 # Stress RMS error # Normalized Approximate Error = [0.017322, 0.00778243, 0.00321] # Linear log-log fit: p = [1.21598, 0.0942623] # Wrote All_EBC_2dir_MST10_default_Stress.CSV # Displacement RMS error # Normalized Approximate Error = [0.00508317, 0.00143038, 0.000373055] # Linear log-log fit: p = [1.88413, 1.13915] # Wrote All_EBC_2dir_MST10_default_Displ.CSV # Done # ##################################################### # # All_EBC_2dir_MST10_conv # Fiber-reinforced block: MST10 # Mesh: na, nb, nts = 3, 3, [3] # count(fens) = 64 # Mesh: na, nb, nts = 6, 6, [6] # count(fens) = 343 # Mesh: na, nb, nts = 12, 12, [12] # count(fens) = 2197 # Mesh: na, nb, nts = 24, 24, [24] # count(fens) = 15625 # Stress RMS error # Normalized Approximate Error = [0.0288266, 0.0128894, 0.00580383] # Linear log-log fit: p = [1.15616, 0.384708] # Wrote All_EBC_2dir_MST10_extrapmean_Stress.CSV # Displacement RMS error # Normalized Approximate Error = [0.00947204, 0.00264193, 0.000695543] # Linear log-log fit: p = [1.88373, 1.75715] # Wrote All_EBC_2dir_MST10_extrapmean_Displ.CSV # Mesh: na, nb, nts = 3, 3, [3] # count(fens) = 64 # Mesh: na, nb, nts = 6, 6, [6] # count(fens) = 343 # Mesh: na, nb, nts = 12, 12, [12] # count(fens) = 2197 # Mesh: na, nb, nts = 24, 24, [24] # count(fens) = 15625 # Stress RMS error # Normalized Approximate Error = [0.0253678, 0.0103545, 0.00442978] # Linear log-log fit: p = [1.25885, 0.599482] # Wrote All_EBC_2dir_MST10_extraptrend_Stress.CSV # Displacement RMS error # Normalized Approximate Error = [0.00947204, 0.00264193, 0.000695543] # Linear log-log fit: p = [1.88373, 1.75715] # Wrote All_EBC_2dir_MST10_extraptrend_Displ.CSV # Mesh: na, nb, nts = 3, 3, [3] # count(fens) = 64 # Mesh: na, nb, nts = 6, 6, [6] # count(fens) = 343 # Mesh: na, nb, nts = 12, 12, [12] # count(fens) = 2197 # Mesh: na, nb, nts = 24, 24, [24] # count(fens) = 15625 # Stress RMS error # Normalized Approximate Error = [0.0288266, 0.0128894, 0.00580383] # Linear log-log fit: p = [1.15616, 0.384708] # Wrote All_EBC_2dir_MST10_default_Stress.CSV # Displacement RMS error # Normalized Approximate Error = [0.00947204, 0.00264193, 0.000695543] # Linear log-log fit: p = [1.88373, 1.75715] # Wrote All_EBC_2dir_MST10_default_Displ.CSV # Done # ##################################################### # # All_EBC_2dir_T10_conv # Fiber-reinforced block: T10 # Mesh: na, nb, nts = 3, 3, [3] # count(fens) = 343 # Mesh: na, nb, nts = 6, 6, [6] # count(fens) = 2197 # Mesh: na, nb, nts = 12, 12, [12] # count(fens) = 15625 # Mesh: na, nb, nts = 24, 24, [24] # count(fens) = 117649 # Stress RMS error # Normalized Approximate Error = [0.0129395, 0.00559644, 0.00226381] # Linear log-log fit: p = [1.25748, -0.0593887] # Wrote All_EBC_2dir_T10_default_Stress.CSV # Displacement RMS error # Normalized Approximate Error = [0.00289237, 0.000501187, 8.09591e-5] # Linear log-log fit: p = [2.57946, 2.93927] # Wrote All_EBC_2dir_T10_default_Displ.CSV # Done # ##################################################### # # All_EBC_2dir_T10_conv # Fiber-reinforced block: T10 # Mesh: na, nb, nts = 3, 3, [3] # count(fens) = 64 # Mesh: na, nb, nts = 6, 6, [6] # count(fens) = 343 # Mesh: na, nb, nts = 12, 12, [12] # count(fens) = 2197 # Mesh: na, nb, nts = 24, 24, [24] # count(fens) = 15625 # Stress RMS error # Normalized Approximate Error = [0.023016, 0.0101339, 0.00453253] # Linear log-log fit: p = [1.17213, 0.212446] # Wrote All_EBC_2dir_T10_default_Stress.CSV # Displacement RMS error # Normalized Approximate Error = [0.00929339, 0.00262218, 0.00069389] # Linear log-log fit: p = [1.87171, 1.69831] # Wrote All_EBC_2dir_T10_default_Displ.CSV # Done # true # julia> include("All_EBC_2dir_plots.jl") # 1 # julia> include("All_EBC_2dir_plots.jl") # 1 # julia> include("All_EBC_2dir_plots.jl") # 1
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
126027
module LE10NAFEMS_examples using FinEtools using FinEtools using FinEtoolsDeforLinear using FinEtoolsDeforLinear.AlgoDeforLinearModule: linearstatics, exportstresselementwise, exportstress using FinEtools.MeshExportModule using FinEtools.MeshImportModule using FinEtools.AlgoBaseModule: evalconvergencestudy using LinearAlgebra: cholesky function LE10NAFEMS_Abaqus_fine_MST10() # Thick elliptical plate with an elliptical hole is clamped on its exterior # boundary and is loaded with transverse pressure. # This is a NAFEMS Benchmark, Test No. LE10. # The plate is discretized with solid elements. # Because of the symmetries of the geometry and load, only quarter of the plate is modeled. # The $\sigma_y=\sigma_2$ at the point $P$ is to be determined. Since the # target point is on the boundary of the domain it will not be an # integration node as we use Gauss quadrature. The reference value is -5.38 MPa. println("LE10NAFEMS: Transverse deflection of elliptical plate with elliptical hole.") t0 = time() E = 210e3 * phun("MEGA*PA")# 210e3 MPa nu = 0.3 qmagn = 1.0 * phun("MEGA*PA")# transverse pressure sigma_yP = -5.38 * phun("MEGA*PA")# tensile stress at [2.0, 0.0] meters Ae = 3.25 * phun("m") # Major radius of the exterior ellipse Be = 2.75 * phun("m") # Minor radius of the exterior ellipse Ai = 2.0 * phun("m") # Major radius of the interior ellipse Bi = 1.0 * phun("m") # Minor radius of the interior ellipse Thickness = 0.6 * phun("m") tolerance = Thickness / 1000.0 # Geometrical tolerance INP_file = """ *HEADING NAFEMS TEST NLE10, REFINED MESH, C3D10HS ELEMENTS -- ** **RESTART, WRITE, FREQUENCY=1 ** *NODE 1, 0., 2.75 2, 0., 2.45825 3, 0., 2.1665 4, 0., 1.87475 5, 0., 1.583 6, 0.349721, 1.84088 7, 0.464205, 2.7218 8, 0.407787, 2.14399 9, 0.351377, 1.56618 10, 0.460635, 2.40185 11, 0.92127, 2.6372 12, 0.865807, 2.35672 13, 0.810348, 2.07624 14, 0.754893, 1.79575 15, 0.699442, 1.51527 16, 1.24873, 2.21951 17, 1.36358, 2.4963 18, 1.20166, 1.96267 19, 1.0404, 1.42884 20, 1.13781, 1.65854 21, 1.783, 2.29921 22, 1.67959, 2.05051 23, 1.57618, 1.80182 24, 1.47278, 1.55312 25, 1.36937, 1.30443 26, 0., 2.75, 0.15 27, 0., 2.45825, 0.15 28, 0., 2.1665, 0.15 29, 0., 1.87475, 0.15 30, 0., 1.583, 0.15 31, 0.46408, 2.72182, 0.15 32, 0.407685, 2.14401, 0.15 33, 0.351362, 1.56618, 0.15 34, 0.92127, 2.6372, 0.15 35, 0.865839, 2.35671, 0.150001 36, 0.810348, 2.07624, 0.15 37, 0.754865, 1.79576, 0.15 38, 0.699442, 1.51527, 0.15 39, 1.36318, 2.49645, 0.15 40, 1.2017, 1.96266, 0.15 41, 1.04034, 1.42886, 0.15 42, 1.783, 2.29921, 0.15 43, 1.67959, 2.05051, 0.15 44, 1.57618, 1.80182, 0.15 45, 1.47278, 1.55312, 0.15 46, 1.36937, 1.30443, 0.15 47, 0., 2.75, 0.3 48, 0., 2.45825, 0.3 49, 0., 2.1665, 0.3 50, 0., 1.87475, 0.3 51, 0., 1.583, 0.3 52, 0.405174, 2.41312, 0.3 53, 0.464205, 2.7218, 0.3 54, 0.407787, 2.14399, 0.3 55, 0.351377, 1.56618, 0.3 56, 0.405174, 1.82962, 0.3 57, 0.92127, 2.6372, 0.3 58, 0.865807, 2.35672, 0.3 59, 0.810348, 2.07624, 0.3 60, 0.754893, 1.79575, 0.3 61, 0.699442, 1.51527, 0.3 62, 1.08986, 1.69033, 0.3 63, 1.36358, 2.4963, 0.3 64, 1.20166, 1.96267, 0.3 65, 1.0404, 1.42884, 0.3 66, 1.29667, 2.18772, 0.3 67, 1.783, 2.29921, 0.3 68, 1.67959, 2.05051, 0.3 69, 1.57618, 1.80182, 0.3 70, 1.47278, 1.55312, 0.3 71, 1.36937, 1.30443, 0.3 72, 0., 2.75, 0.45 73, 0., 2.45825, 0.45 74, 0., 2.1665, 0.45 75, 0., 1.87475, 0.45 76, 0., 1.583, 0.45 77, 0.46408, 2.72182, 0.45 78, 0.407685, 2.14401, 0.45 79, 0.351362, 1.56618, 0.45 80, 0.92127, 2.6372, 0.45 81, 0.865774, 2.35673, 0.45 82, 0.810348, 2.07624, 0.45 83, 0.754921, 1.79575, 0.45 84, 0.699442, 1.51527, 0.45 85, 1.36318, 2.49645, 0.45 86, 1.2017, 1.96266, 0.45 87, 1.04034, 1.42886, 0.45 88, 1.783, 2.29921, 0.45 89, 1.67959, 2.05051, 0.45 90, 1.57618, 1.80182, 0.45 91, 1.47278, 1.55312, 0.45 92, 1.36937, 1.30443, 0.45 93, 0., 2.75, 0.6 94, 0., 2.45825, 0.6 95, 0., 2.1665, 0.6 96, 0., 1.87475, 0.6 97, 0., 1.583, 0.6 98, 0.349721, 1.84088, 0.6 99, 0.464205, 2.7218, 0.6 100, 0.407787, 2.14399, 0.6 101, 0.351377, 1.56618, 0.6 102, 0.460635, 2.40185, 0.6 103, 0.92127, 2.6372, 0.6 104, 0.865807, 2.35672, 0.6 105, 0.810348, 2.07624, 0.6 106, 0.754893, 1.79575, 0.6 107, 0.699442, 1.51527, 0.6 108, 1.24873, 2.21951, 0.6 109, 1.36358, 2.4963, 0.6 110, 1.20166, 1.96267, 0.6 111, 1.0404, 1.42884, 0.6 112, 1.13781, 1.65854, 0.6 113, 1.783, 2.29921, 0.6 114, 1.67959, 2.05051, 0.6 115, 1.57618, 1.80182, 0.6 116, 1.47278, 1.55312, 0.6 117, 1.36937, 1.30443, 0.6 119, 0., 1.43725 120, 0., 1.2915 121, 0., 1.14575 122, 0., 1. 123, 0.295266, 1.12346 125, 0.323749, 1.27758 126, 0.29612, 0.988978 127, 0.349721, 1.40338 129, 0.672214, 1.3753 130, 0.644987, 1.23534 131, 0.617759, 1.09538 132, 0.590531, 0.955415 133, 0.983313, 1.28695 135, 0.960781, 1.16328 136, 0.881158, 0.897714 137, 0.928857, 1.00702 139, 1.31828, 1.18153 140, 1.26718, 1.05863 141, 1.21609, 0.93573 142, 1.165, 0.812831 144, 0., 1.43725, 0.15 145, 0., 1.2915, 0.15 146, 0., 1.14575, 0.15 147, 0., 1., 0.15 149, 0.323718, 1.27758, 0.15 150, 0.296109, 0.988979, 0.15 152, 0.672215, 1.3753, 0.15 153, 0.644987, 1.23534, 0.15 154, 0.617759, 1.09538, 0.15 155, 0.590531, 0.955415, 0.15 157, 0.960677, 1.1633, 0.15 158, 0.881104, 0.897727, 0.15 160, 1.31828, 1.18153, 0.15 161, 1.26718, 1.05863, 0.15 162, 1.21609, 0.93573, 0.15 163, 1.165, 0.812831, 0.15 165, 0., 1.43725, 0.3 166, 0., 1.2915, 0.3 167, 0., 1.14575, 0.3 168, 0., 1., 0.3 169, 0.322493, 1.40917, 0.3 171, 0.323749, 1.27758, 0.3 172, 0.29612, 0.988978, 0.3 173, 0.322493, 1.11767, 0.3 175, 0.672214, 1.3753, 0.3 176, 0.644987, 1.23534, 0.3 177, 0.617759, 1.09538, 0.3 178, 0.590531, 0.955415, 0.3 179, 0.904993, 1.02409, 0.3 181, 0.960781, 1.16328, 0.3 182, 0.881158, 0.897714, 0.3 183, 1.00718, 1.26988, 0.3 185, 1.31828, 1.18153, 0.3 186, 1.26718, 1.05863, 0.3 187, 1.21609, 0.93573, 0.3 188, 1.165, 0.812831, 0.3 190, 0., 1.43725, 0.45 191, 0., 1.2915, 0.45 192, 0., 1.14575, 0.45 193, 0., 1., 0.45 195, 0.323718, 1.27758, 0.45 196, 0.296109, 0.988979, 0.45 198, 0.672214, 1.3753, 0.45 199, 0.644987, 1.23534, 0.45 200, 0.617759, 1.09538, 0.45 201, 0.590531, 0.955415, 0.45 203, 0.960677, 1.1633, 0.45 204, 0.881104, 0.897727, 0.45 206, 1.31828, 1.18153, 0.45 207, 1.26718, 1.05863, 0.45 208, 1.21609, 0.93573, 0.45 209, 1.165, 0.812831, 0.45 211, 0., 1.43725, 0.6 212, 0., 1.2915, 0.6 213, 0., 1.14575, 0.6 214, 0., 1., 0.6 215, 0.295266, 1.12346, 0.6 217, 0.323749, 1.27758, 0.6 218, 0.29612, 0.988978, 0.6 219, 0.349721, 1.40338, 0.6 221, 0.672214, 1.3753, 0.6 222, 0.644987, 1.23534, 0.6 223, 0.617759, 1.09538, 0.6 224, 0.590531, 0.955415, 0.6 225, 0.983313, 1.28695, 0.6 227, 0.960781, 1.16328, 0.6 228, 0.881158, 0.897714, 0.6 229, 0.928857, 1.00702, 0.6 231, 1.31828, 1.18153, 0.6 232, 1.26718, 1.05863, 0.6 233, 1.21609, 0.93573, 0.6 234, 1.165, 0.812831, 0.6 240, 1.67882, 1.43583 241, 2.08558, 2.10909 242, 1.83339, 1.65317 243, 1.58119, 1.19726 244, 1.97057, 1.84405 245, 2.36495, 1.88628 246, 2.21908, 1.68217 247, 2.0732, 1.47806 248, 1.92733, 1.27395 249, 1.78146, 1.06984 250, 2.42305, 1.46733 251, 2.61589, 1.63192 252, 2.29099, 1.27633 253, 1.9661, 0.920737 254, 2.13131, 1.05911 255, 2.83277, 1.348 256, 2.65696, 1.19818 257, 2.48116, 1.04837 258, 2.30535, 0.898553 259, 2.12955, 0.748738 265, 2.08556, 2.10911, 0.15 266, 1.83332, 1.65322, 0.15 267, 1.58116, 1.19728, 0.15 268, 2.36495, 1.88628, 0.15 269, 2.21908, 1.68217, 0.15 270, 2.0732, 1.47806, 0.15 271, 1.92733, 1.27395, 0.15 272, 1.78146, 1.06984, 0.15 273, 2.61586, 1.63196, 0.15 274, 2.29096, 1.27636, 0.15 275, 1.96604, 0.920794, 0.15 276, 2.83277, 1.348, 0.15 277, 2.65696, 1.19818, 0.15 278, 2.48116, 1.04837, 0.15 279, 2.30535, 0.898553, 0.15 280, 2.12955, 0.748738, 0.15 286, 1.9281, 1.88863, 0.3 287, 2.08558, 2.10909, 0.3 288, 1.83339, 1.65317, 0.3 289, 1.58119, 1.19726, 0.3 290, 1.72129, 1.39125, 0.3 291, 2.36495, 1.88628, 0.3 292, 2.21908, 1.68217, 0.3 293, 2.0732, 1.47806, 0.3 294, 1.92733, 1.27395, 0.3 295, 1.78146, 1.06984, 0.3 296, 2.10137, 1.1134, 0.3 297, 2.61589, 1.63192, 0.3 298, 2.29099, 1.27633, 0.3 299, 1.9661, 0.920737, 0.3 300, 2.45298, 1.41303, 0.3 301, 2.83277, 1.348, 0.3 302, 2.65696, 1.19818, 0.3 303, 2.48116, 1.04837, 0.3 304, 2.30535, 0.898553, 0.3 305, 2.12955, 0.748738, 0.3 311, 2.08556, 2.10911, 0.45 312, 1.83332, 1.65322, 0.45 313, 1.58116, 1.19728, 0.45 314, 2.36495, 1.88628, 0.45 315, 2.21908, 1.68217, 0.45 316, 2.0732, 1.47806, 0.45 317, 1.92733, 1.27395, 0.45 318, 1.78146, 1.06984, 0.45 319, 2.61586, 1.63196, 0.45 320, 2.29096, 1.27636, 0.45 321, 1.96604, 0.920794, 0.45 322, 2.83277, 1.348, 0.45 323, 2.65696, 1.19818, 0.45 324, 2.48116, 1.04837, 0.45 325, 2.30535, 0.898553, 0.45 326, 2.12955, 0.748738, 0.45 332, 1.67882, 1.43583, 0.6 333, 2.08558, 2.10909, 0.6 334, 1.83339, 1.65317, 0.6 335, 1.58119, 1.19726, 0.6 336, 1.97057, 1.84405, 0.6 337, 2.36495, 1.88628, 0.6 338, 2.21908, 1.68217, 0.6 339, 2.0732, 1.47806, 0.6 340, 1.92733, 1.27395, 0.6 341, 1.78146, 1.06984, 0.6 342, 2.42305, 1.46733, 0.6 343, 2.61589, 1.63192, 0.6 344, 2.29099, 1.27633, 0.6 345, 1.9661, 0.920737, 0.6 346, 2.13131, 1.05911, 0.6 347, 2.83277, 1.348, 0.6 348, 2.65696, 1.19818, 0.6 349, 2.48116, 1.04837, 0.6 350, 2.30535, 0.898553, 0.6 351, 2.12955, 0.748738, 0.6 357, 1.3802, 0.861948 359, 1.45669, 0.971566 360, 1.33218, 0.74587 361, 1.52432, 1.06424 363, 1.7094, 0.9687 364, 1.63734, 0.867555 365, 1.56528, 0.76641 366, 1.49321, 0.665266 367, 1.86887, 0.835357 369, 1.80562, 0.7447 370, 1.64514, 0.568662 371, 1.72475, 0.633067 373, 2.04291, 0.674803 374, 1.95628, 0.600869 375, 1.86965, 0.526934 376, 1.78302, 0.453 383, 1.45663, 0.971598, 0.15 384, 1.33216, 0.745881, 0.15 386, 1.7094, 0.9687, 0.15 387, 1.63734, 0.867555, 0.15 388, 1.56527, 0.766411, 0.15 389, 1.49321, 0.665266, 0.15 391, 1.80555, 0.744761, 0.15 392, 1.64506, 0.568725, 0.15 394, 2.04291, 0.674803, 0.15 395, 1.95628, 0.600869, 0.15 396, 1.86965, 0.526934, 0.15 397, 1.78302, 0.453, 0.15 403, 1.50335, 1.08599, 0.3 405, 1.45669, 0.971566, 0.3 406, 1.33218, 0.74587, 0.3 407, 1.40117, 0.840193, 0.3 409, 1.7094, 0.9687, 0.3 410, 1.63734, 0.867555, 0.3 411, 1.56528, 0.76641, 0.3 412, 1.49321, 0.665266, 0.3 413, 1.71018, 0.660278, 0.3 415, 1.80562, 0.7447, 0.3 416, 1.64514, 0.568662, 0.3 417, 1.88344, 0.808146, 0.3 419, 2.04291, 0.674803, 0.3 420, 1.95628, 0.600869, 0.3 421, 1.86965, 0.526934, 0.3 422, 1.78302, 0.453, 0.3 429, 1.45663, 0.971598, 0.45 430, 1.33216, 0.745881, 0.45 432, 1.7094, 0.9687, 0.45 433, 1.63734, 0.867555, 0.45 434, 1.56528, 0.76641, 0.45 435, 1.49321, 0.665266, 0.45 437, 1.80555, 0.744761, 0.45 438, 1.64506, 0.568725, 0.45 440, 2.04291, 0.674803, 0.45 441, 1.95628, 0.600869, 0.45 442, 1.86965, 0.526934, 0.45 443, 1.78302, 0.453, 0.45 449, 1.3802, 0.861948, 0.6 451, 1.45669, 0.971566, 0.6 452, 1.33218, 0.74587, 0.6 453, 1.52432, 1.06424, 0.6 455, 1.7094, 0.9687, 0.6 456, 1.63734, 0.867555, 0.6 457, 1.56528, 0.76641, 0.6 458, 1.49321, 0.665266, 0.6 459, 1.86887, 0.835357, 0.6 461, 1.80562, 0.7447, 0.6 462, 1.64514, 0.568662, 0.6 463, 1.72475, 0.633067, 0.6 465, 2.04291, 0.674803, 0.6 466, 1.95628, 0.600869, 0.6 467, 1.86965, 0.526934, 0.6 468, 1.78302, 0.453, 0.6 474, 1.94695, 0.424348 475, 2.24798, 0.58156 476, 2.05826, 0.469066 477, 1.86854, 0.356567 478, 2.14776, 0.499577 479, 2.33925, 0.398285 480, 2.23884, 0.360673 481, 2.13843, 0.323059 482, 2.03802, 0.285444 483, 1.93761, 0.247826 484, 2.27387, 0.199143 485, 2.39752, 0.202727 486, 2.19052, 0.165412 487, 1.98365, 0.127605 488, 2.07305, 0.123912 489, 2.417, 0. 490, 2.31275, 0. 491, 2.2085, 0. 492, 2.10425, 0. 493, 2., 0. 499, 2.24792, 0.581668, 0.15 500, 2.0582, 0.46915, 0.15 501, 1.86848, 0.356646, 0.15 502, 2.33925, 0.398285, 0.15 503, 2.23884, 0.360665, 0.15 504, 2.13843, 0.323059, 0.15 505, 2.03801, 0.28545, 0.15 506, 1.93761, 0.247826, 0.15 507, 2.3973, 0.203669, 0.15 508, 2.19046, 0.16566, 0.15 509, 1.98362, 0.127728, 0.15 510, 2.417, 0., 0.15 511, 2.31275, 0., 0.15 512, 2.2085, 0., 0.15 513, 2.10425, 0., 0.15 514, 2., 0., 0.15 520, 2.13399, 0.535899, 0.3 521, 2.24798, 0.58156, 0.3 522, 2.05826, 0.469066, 0.3 523, 1.86854, 0.356567, 0.3 524, 1.96072, 0.38803, 0.3 525, 2.33925, 0.398285, 0.3 526, 2.23884, 0.360673, 0.3 527, 2.13843, 0.323059, 0.3 528, 2.03802, 0.285444, 0.3 529, 1.93761, 0.247826, 0.3 530, 2.06921, 0.16153, 0.3 531, 2.39752, 0.202727, 0.3 532, 2.19052, 0.165412, 0.3 533, 1.98365, 0.127605, 0.3 534, 2.27771, 0.16153, 0.3 535, 2.417, 0., 0.3 536, 2.31275, 0., 0.3 537, 2.2085, 0., 0.3 538, 2.10425, 0., 0.3 539, 2., 0., 0.3 545, 2.24792, 0.581668, 0.45 546, 2.0582, 0.46915, 0.45 547, 1.86848, 0.356646, 0.45 548, 2.33925, 0.398285, 0.45 549, 2.23883, 0.360682, 0.45 550, 2.13843, 0.323059, 0.45 551, 2.03802, 0.285437, 0.45 552, 1.93761, 0.247826, 0.45 553, 2.3973, 0.203669, 0.45 554, 2.19046, 0.16566, 0.45 555, 1.98362, 0.127728, 0.45 556, 2.417, 0., 0.45 557, 2.31275, 0., 0.45 558, 2.2085, 0., 0.45 559, 2.10425, 0., 0.45 560, 2., 0., 0.45 566, 1.94695, 0.424348, 0.6 567, 2.24798, 0.58156, 0.6 568, 2.05826, 0.469066, 0.6 569, 1.86854, 0.356567, 0.6 570, 2.14776, 0.499577, 0.6 571, 2.33925, 0.398285, 0.6 572, 2.23884, 0.360673, 0.6 573, 2.13843, 0.323059, 0.6 574, 2.03802, 0.285444, 0.6 575, 1.93761, 0.247826, 0.6 576, 2.27387, 0.199143, 0.6 577, 2.39752, 0.202727, 0.6 578, 2.19052, 0.165412, 0.6 579, 1.98365, 0.127605, 0.6 580, 2.07305, 0.123912, 0.6 581, 2.417, 0., 0.6 582, 2.31275, 0., 0.6 583, 2.2085, 0., 0.6 584, 2.10425, 0., 0.6 585, 2., 0., 0.6 591, 2.4102, 0.723327 592, 3.00992, 1.03732 593, 2.62895, 0.809437 595, 2.81131, 0.876575 596, 3.14145, 0.704781 597, 2.9409, 0.628151 598, 2.74035, 0.551525 599, 2.5398, 0.474903 601, 2.98748, 0.352391 603, 3.22257, 0.356518 604, 2.81014, 0.279227 605, 2.58637, 0.199143 606, 3.25, 0. 607, 3.04175, 0. 608, 2.8335, 0. 609, 2.62525, 0. 616, 3.0099, 1.03736, 0.15 617, 2.62893, 0.809477, 0.15 619, 3.14145, 0.704781, 0.15 620, 2.9409, 0.628168, 0.15 621, 2.74035, 0.551525, 0.15 622, 2.53981, 0.47489, 0.15 625, 2.81, 0.279967, 0.15 626, 3.22257, 0.356538, 0.15 627, 3.25, 0., 0.15 628, 3.04175, 0., 0.15 629, 2.8335, 0., 0.15 630, 2.62525, 0., 0.15 637, 2.78656, 0.949762, 0.3 638, 3.00992, 1.03732, 0.3 639, 2.62895, 0.809437, 0.3 641, 2.43495, 0.650131, 0.3 642, 3.14145, 0.704781, 0.3 643, 2.9409, 0.628151, 0.3 644, 2.74035, 0.551525, 0.3 645, 2.5398, 0.474903, 0.3 647, 2.57868, 0.275762, 0.3 648, 3.22257, 0.356518, 0.3 650, 2.81014, 0.279227, 0.3 651, 2.99518, 0.275762, 0.3 652, 3.25, 0., 0.3 653, 3.04175, 0., 0.3 654, 2.8335, 0., 0.3 655, 2.62525, 0., 0.3 662, 3.0099, 1.03736, 0.45 663, 2.62893, 0.809477, 0.45 665, 3.14145, 0.704781, 0.45 666, 2.94091, 0.628134, 0.45 667, 2.74035, 0.551525, 0.45 668, 2.5398, 0.474916, 0.45 671, 2.81, 0.279967, 0.45 672, 3.22257, 0.356538, 0.45 673, 3.25, 0., 0.45 674, 3.04175, 0., 0.45 675, 2.8335, 0., 0.45 676, 2.62525, 0., 0.45 683, 2.4102, 0.723327, 0.6 684, 3.00992, 1.03732, 0.6 685, 2.62895, 0.809437, 0.6 687, 2.81131, 0.876575, 0.6 688, 3.14145, 0.704781, 0.6 689, 2.9409, 0.628151, 0.6 690, 2.74035, 0.551525, 0.6 691, 2.5398, 0.474903, 0.6 693, 2.98748, 0.352391, 0.6 695, 3.22257, 0.356518, 0.6 696, 2.81014, 0.279227, 0.6 697, 2.58637, 0.199143, 0.6 698, 3.25, 0., 0.6 699, 3.04175, 0., 0.6 700, 2.8335, 0., 0.6 701, 2.62525, 0., 0.6 ** ** *ELEMENT, TYPE=C3D10HS, ELSET=EALL 1, 1, 11, 47, 3, 7, 31, 26, 2, 10, 27 2, 57, 47, 11, 59, 53, 31, 34, 58, 52, 35 3, 13, 3, 59, 11, 8, 32, 36, 12, 10, 35 4, 49, 59, 3, 47, 54, 32, 28, 48, 52, 27 5, 3, 11, 47, 59, 10, 31, 27, 32, 35, 52 6, 13, 59, 3, 15, 36, 32, 8, 14, 37, 6 7, 49, 3, 59, 51, 28, 32, 54, 50, 29, 56 8, 5, 51, 15, 3, 30, 33, 9, 4, 29, 6 9, 61, 15, 51, 59, 38, 33, 55, 60, 37, 56 10, 3, 15, 59, 51, 6, 37, 32, 29, 33, 56 11, 21, 67, 11, 23, 42, 39, 17, 22, 43, 16 12, 57, 11, 67, 59, 34, 39, 63, 58, 35, 66 13, 13, 59, 23, 11, 36, 40, 18, 12, 35, 16 14, 69, 23, 59, 67, 44, 40, 64, 68, 43, 66 15, 11, 23, 67, 59, 16, 43, 39, 35, 40, 66 16, 13, 23, 59, 15, 18, 40, 36, 14, 20, 37 17, 69, 59, 23, 71, 64, 40, 44, 70, 62, 45 18, 25, 15, 71, 23, 19, 41, 46, 24, 20, 45 19, 61, 71, 15, 59, 65, 41, 38, 60, 62, 37 20, 15, 23, 59, 71, 20, 40, 37, 41, 45, 62 21, 57, 103, 47, 59, 80, 77, 53, 58, 81, 52 22, 93, 47, 103, 95, 72, 77, 99, 94, 73, 102 23, 49, 95, 59, 47, 74, 78, 54, 48, 73, 52 24, 105, 59, 95, 103, 82, 78, 100, 104, 81, 102 25, 47, 59, 103, 95, 52, 81, 77, 73, 78, 102 26, 49, 59, 95, 51, 54, 78, 74, 50, 56, 75 27, 105, 95, 59, 107, 100, 78, 82, 106, 98, 83 28, 61, 51, 107, 59, 55, 79, 84, 60, 56, 83 29, 97, 107, 51, 95, 101, 79, 76, 96, 98, 75 30, 51, 59, 95, 107, 56, 78, 75, 79, 83, 98 31, 57, 67, 103, 59, 63, 85, 80, 58, 66, 81 32, 113, 103, 67, 115, 109, 85, 88, 114, 108, 89 33, 69, 59, 115, 67, 64, 86, 90, 68, 66, 89 34, 105, 115, 59, 103, 110, 86, 82, 104, 108, 81 35, 59, 67, 103, 115, 66, 85, 81, 86, 89, 108 36, 69, 115, 59, 71, 90, 86, 64, 70, 91, 62 37, 105, 59, 115, 107, 82, 86, 110, 106, 83, 112 38, 61, 107, 71, 59, 84, 87, 65, 60, 83, 62 39, 117, 71, 107, 115, 92, 87, 111, 116, 91, 112 40, 59, 71, 115, 107, 62, 91, 86, 83, 87, 112 41, 5, 15, 51, 120, 9, 33, 30, 119, 127, 144 42, 61, 51, 15, 176, 55, 33, 38, 175, 169, 152 43, 130, 120, 176, 15, 125, 149, 153, 129, 127, 152 44, 166, 176, 120, 51, 171, 149, 145, 165, 169, 144 45, 120, 15, 51, 176, 127, 33, 144, 149, 152, 169 46, 130, 176, 120, 132, 153, 149, 125, 131, 154, 123 47, 166, 120, 176, 168, 145, 149, 171, 167, 146, 173 48, 122, 168, 132, 120, 147, 150, 126, 121, 146, 123 49, 178, 132, 168, 176, 155, 150, 172, 177, 154, 173 50, 120, 132, 176, 168, 123, 154, 149, 146, 150, 173 51, 25, 71, 15, 140, 46, 41, 19, 139, 160, 133 52, 61, 15, 71, 176, 38, 41, 65, 175, 152, 183 53, 130, 176, 140, 15, 153, 157, 135, 129, 152, 133 54, 186, 140, 176, 71, 161, 157, 181, 185, 160, 183 55, 15, 140, 71, 176, 133, 160, 41, 152, 157, 183 56, 130, 140, 176, 132, 135, 157, 153, 131, 137, 154 57, 186, 176, 140, 188, 181, 157, 161, 187, 179, 162 58, 142, 132, 188, 140, 136, 158, 163, 141, 137, 162 59, 178, 188, 132, 176, 182, 158, 155, 177, 179, 154 60, 132, 140, 176, 188, 137, 157, 154, 158, 162, 179 61, 61, 107, 51, 176, 84, 79, 55, 175, 198, 169 62, 97, 51, 107, 212, 76, 79, 101, 211, 190, 219 63, 166, 212, 176, 51, 191, 195, 171, 165, 190, 169 64, 222, 176, 212, 107, 199, 195, 217, 221, 198, 219 65, 51, 176, 107, 212, 169, 198, 79, 190, 195, 219 66, 166, 176, 212, 168, 171, 195, 191, 167, 173, 192 67, 222, 212, 176, 224, 217, 195, 199, 223, 215, 200 68, 178, 168, 224, 176, 172, 196, 201, 177, 173, 200 69, 214, 224, 168, 212, 218, 196, 193, 213, 215, 192 70, 168, 176, 212, 224, 173, 195, 192, 196, 200, 215 71, 61, 71, 107, 176, 65, 87, 84, 175, 183, 198 72, 117, 107, 71, 232, 111, 87, 92, 231, 225, 206 73, 186, 176, 232, 71, 181, 203, 207, 185, 183, 206 74, 222, 232, 176, 107, 227, 203, 199, 221, 225, 198 75, 176, 71, 107, 232, 183, 87, 198, 203, 206, 225 76, 186, 232, 176, 188, 207, 203, 181, 187, 208, 179 77, 222, 176, 232, 224, 199, 203, 227, 223, 200, 229 78, 178, 224, 188, 176, 201, 204, 182, 177, 200, 179 79, 234, 188, 224, 232, 209, 204, 228, 233, 208, 229 80, 176, 188, 232, 224, 179, 208, 203, 200, 204, 229 81, 21, 245, 67, 23, 241, 265, 42, 22, 244, 43 82, 291, 67, 245, 293, 287, 265, 268, 292, 286, 269 83, 247, 23, 293, 245, 242, 266, 270, 246, 244, 269 84, 69, 293, 23, 67, 288, 266, 44, 68, 286, 43 85, 23, 245, 67, 293, 244, 265, 43, 266, 269, 286 86, 247, 293, 23, 249, 270, 266, 242, 248, 271, 240 87, 69, 23, 293, 71, 44, 266, 288, 70, 45, 290 88, 25, 71, 249, 23, 46, 267, 243, 24, 45, 240 89, 295, 249, 71, 293, 272, 267, 289, 294, 271, 290 90, 23, 249, 293, 71, 240, 271, 266, 45, 267, 290 91, 255, 301, 245, 257, 276, 273, 251, 256, 277, 250 92, 291, 245, 301, 293, 268, 273, 297, 292, 269, 300 93, 247, 293, 257, 245, 270, 274, 252, 246, 269, 250 94, 303, 257, 293, 301, 278, 274, 298, 302, 277, 300 95, 245, 257, 301, 293, 250, 277, 273, 269, 274, 300 96, 247, 257, 293, 249, 252, 274, 270, 248, 254, 271 97, 303, 293, 257, 305, 298, 274, 278, 304, 296, 279 98, 259, 249, 305, 257, 253, 275, 280, 258, 254, 279 99, 295, 305, 249, 293, 299, 275, 272, 294, 296, 271 100, 249, 257, 293, 305, 254, 274, 271, 275, 279, 296 101, 291, 337, 67, 293, 314, 311, 287, 292, 315, 286 102, 113, 67, 337, 115, 88, 311, 333, 114, 89, 336 103, 69, 115, 293, 67, 90, 312, 288, 68, 89, 286 104, 339, 293, 115, 337, 316, 312, 334, 338, 315, 336 105, 67, 293, 337, 115, 286, 315, 311, 89, 312, 336 106, 69, 293, 115, 71, 288, 312, 90, 70, 290, 91 107, 339, 115, 293, 341, 334, 312, 316, 340, 332, 317 108, 295, 71, 341, 293, 289, 313, 318, 294, 290, 317 109, 117, 341, 71, 115, 335, 313, 92, 116, 332, 91 110, 71, 293, 115, 341, 290, 312, 91, 313, 317, 332 111, 291, 301, 337, 293, 297, 319, 314, 292, 300, 315 112, 347, 337, 301, 349, 343, 319, 322, 348, 342, 323 113, 303, 293, 349, 301, 298, 320, 324, 302, 300, 323 114, 339, 349, 293, 337, 344, 320, 316, 338, 342, 315 115, 293, 301, 337, 349, 300, 319, 315, 320, 323, 342 116, 303, 349, 293, 305, 324, 320, 298, 304, 325, 296 117, 339, 293, 349, 341, 316, 320, 344, 340, 317, 346 118, 295, 341, 305, 293, 318, 321, 299, 294, 317, 296 119, 351, 305, 341, 349, 326, 321, 345, 350, 325, 346 120, 293, 305, 349, 341, 296, 325, 320, 317, 321, 346 121, 25, 249, 71, 140, 243, 267, 46, 139, 361, 160 122, 295, 71, 249, 410, 289, 267, 272, 409, 403, 386 123, 364, 140, 410, 249, 359, 383, 387, 363, 361, 386 124, 186, 410, 140, 71, 405, 383, 161, 185, 403, 160 125, 140, 249, 71, 410, 361, 267, 160, 383, 386, 403 126, 364, 410, 140, 366, 387, 383, 359, 365, 388, 357 127, 186, 140, 410, 188, 161, 383, 405, 187, 162, 407 128, 142, 188, 366, 140, 163, 384, 360, 141, 162, 357 129, 412, 366, 188, 410, 389, 384, 406, 411, 388, 407 130, 140, 366, 410, 188, 357, 388, 383, 162, 384, 407 131, 259, 305, 249, 374, 280, 275, 253, 373, 394, 367 132, 295, 249, 305, 410, 272, 275, 299, 409, 386, 417 133, 364, 410, 374, 249, 387, 391, 369, 363, 386, 367 134, 420, 374, 410, 305, 395, 391, 415, 419, 394, 417 135, 249, 374, 305, 410, 367, 394, 275, 386, 391, 417 136, 364, 374, 410, 366, 369, 391, 387, 365, 371, 388 137, 420, 410, 374, 422, 415, 391, 395, 421, 413, 396 138, 376, 366, 422, 374, 370, 392, 397, 375, 371, 396 139, 412, 422, 366, 410, 416, 392, 389, 411, 413, 388 140, 366, 374, 410, 422, 371, 391, 388, 392, 396, 413 141, 295, 341, 71, 410, 318, 313, 289, 409, 432, 403 142, 117, 71, 341, 232, 92, 313, 335, 231, 206, 453 143, 186, 232, 410, 71, 207, 429, 405, 185, 206, 403 144, 456, 410, 232, 341, 433, 429, 451, 455, 432, 453 145, 71, 410, 341, 232, 403, 432, 313, 206, 429, 453 146, 186, 410, 232, 188, 405, 429, 207, 187, 407, 208 147, 456, 232, 410, 458, 451, 429, 433, 457, 449, 434 148, 412, 188, 458, 410, 406, 430, 435, 411, 407, 434 149, 234, 458, 188, 232, 452, 430, 209, 233, 449, 208 150, 188, 410, 232, 458, 407, 429, 208, 430, 434, 449 151, 295, 305, 341, 410, 299, 321, 318, 409, 417, 432 152, 351, 341, 305, 466, 345, 321, 326, 465, 459, 440 153, 420, 410, 466, 305, 415, 437, 441, 419, 417, 440 154, 456, 466, 410, 341, 461, 437, 433, 455, 459, 432 155, 410, 305, 341, 466, 417, 321, 432, 437, 440, 459 156, 420, 466, 410, 422, 441, 437, 415, 421, 442, 413 157, 456, 410, 466, 458, 433, 437, 461, 457, 434, 463 158, 412, 458, 422, 410, 435, 438, 416, 411, 434, 413 159, 468, 422, 458, 466, 443, 438, 462, 467, 442, 463 160, 410, 422, 466, 458, 413, 442, 437, 434, 438, 463 161, 259, 479, 305, 374, 475, 499, 280, 373, 478, 394 162, 525, 305, 479, 527, 521, 499, 502, 526, 520, 503 163, 481, 374, 527, 479, 476, 500, 504, 480, 478, 503 164, 420, 527, 374, 305, 522, 500, 395, 419, 520, 394 165, 374, 479, 305, 527, 478, 499, 394, 500, 503, 520 166, 481, 527, 374, 483, 504, 500, 476, 482, 505, 474 167, 420, 374, 527, 422, 395, 500, 522, 421, 396, 524 168, 376, 422, 483, 374, 397, 501, 477, 375, 396, 474 169, 529, 483, 422, 527, 506, 501, 523, 528, 505, 524 170, 374, 483, 527, 422, 474, 505, 500, 396, 501, 524 171, 489, 535, 479, 491, 510, 507, 485, 490, 511, 484 172, 525, 479, 535, 527, 502, 507, 531, 526, 503, 534 173, 481, 527, 491, 479, 504, 508, 486, 480, 503, 484 174, 537, 491, 527, 535, 512, 508, 532, 536, 511, 534 175, 479, 491, 535, 527, 484, 511, 507, 503, 508, 534 176, 481, 491, 527, 483, 486, 508, 504, 482, 488, 505 177, 537, 527, 491, 539, 532, 508, 512, 538, 530, 513 178, 493, 483, 539, 491, 487, 509, 514, 492, 488, 513 179, 529, 539, 483, 527, 533, 509, 506, 528, 530, 505 180, 483, 491, 527, 539, 488, 508, 505, 509, 513, 530 181, 525, 571, 305, 527, 548, 545, 521, 526, 549, 520 182, 351, 305, 571, 466, 326, 545, 567, 465, 440, 570 183, 420, 466, 527, 305, 441, 546, 522, 419, 440, 520 184, 573, 527, 466, 571, 550, 546, 568, 572, 549, 570 185, 305, 527, 571, 466, 520, 549, 545, 440, 546, 570 186, 420, 527, 466, 422, 522, 546, 441, 421, 524, 442 187, 573, 466, 527, 575, 568, 546, 550, 574, 566, 551 188, 529, 422, 575, 527, 523, 547, 552, 528, 524, 551 189, 468, 575, 422, 466, 569, 547, 443, 467, 566, 442 190, 422, 527, 466, 575, 524, 546, 442, 547, 551, 566 191, 525, 535, 571, 527, 531, 553, 548, 526, 534, 549 192, 581, 571, 535, 583, 577, 553, 556, 582, 576, 557 193, 537, 527, 583, 535, 532, 554, 558, 536, 534, 557 194, 573, 583, 527, 571, 578, 554, 550, 572, 576, 549 195, 527, 535, 571, 583, 534, 553, 549, 554, 557, 576 196, 537, 583, 527, 539, 558, 554, 532, 538, 559, 530 197, 573, 527, 583, 575, 550, 554, 578, 574, 551, 580 198, 529, 575, 539, 527, 552, 555, 533, 528, 551, 530 199, 585, 539, 575, 583, 560, 555, 579, 584, 559, 580 200, 527, 539, 583, 575, 530, 559, 554, 551, 555, 580 201, 255, 596, 301, 257, 592, 616, 276, 256, 595, 277 202, 642, 301, 596, 644, 638, 616, 619, 643, 637, 620 203, 598, 257, 644, 596, 593, 617, 621, 597, 595, 620 204, 303, 644, 257, 301, 639, 617, 278, 302, 637, 277 205, 257, 596, 301, 644, 595, 616, 277, 617, 620, 637 206, 598, 644, 257, 479, 621, 617, 593, 599, 622, 591 207, 303, 257, 644, 305, 278, 617, 639, 304, 279, 641 208, 259, 305, 479, 257, 280, 499, 475, 258, 279, 591 209, 525, 479, 305, 644, 502, 499, 521, 645, 622, 641 210, 257, 479, 644, 305, 591, 622, 617, 279, 499, 641 211, 606, 652, 596, 608, 627, 626, 603, 607, 628, 601 212, 642, 596, 652, 644, 619, 626, 648, 643, 620, 651 213, 598, 644, 608, 596, 621, 625, 604, 597, 620, 601 214, 654, 608, 644, 652, 629, 625, 650, 653, 628, 651 215, 596, 608, 652, 644, 601, 628, 626, 620, 625, 651 216, 598, 608, 644, 479, 604, 625, 621, 599, 605, 622 217, 654, 644, 608, 535, 650, 625, 629, 655, 647, 630 218, 489, 479, 535, 608, 485, 507, 510, 609, 605, 630 219, 525, 535, 479, 644, 531, 507, 502, 645, 647, 622 220, 479, 608, 644, 535, 605, 625, 622, 507, 630, 647 221, 642, 688, 301, 644, 665, 662, 638, 643, 666, 637 222, 347, 301, 688, 349, 322, 662, 684, 348, 323, 687 223, 303, 349, 644, 301, 324, 663, 639, 302, 323, 637 224, 690, 644, 349, 688, 667, 663, 685, 689, 666, 687 225, 301, 644, 688, 349, 637, 666, 662, 323, 663, 687 226, 303, 644, 349, 305, 639, 663, 324, 304, 641, 325 227, 690, 349, 644, 571, 685, 663, 667, 691, 683, 668 228, 525, 305, 571, 644, 521, 545, 548, 645, 641, 668 229, 351, 571, 305, 349, 567, 545, 326, 350, 683, 325 230, 305, 644, 349, 571, 641, 663, 325, 545, 668, 683 231, 642, 652, 688, 644, 648, 672, 665, 643, 651, 666 232, 698, 688, 652, 700, 695, 672, 673, 699, 693, 674 233, 654, 644, 700, 652, 650, 671, 675, 653, 651, 674 234, 690, 700, 644, 688, 696, 671, 667, 689, 693, 666 235, 644, 652, 688, 700, 651, 672, 666, 671, 674, 693 236, 654, 700, 644, 535, 675, 671, 650, 655, 676, 647 237, 690, 644, 700, 571, 667, 671, 696, 691, 668, 697 238, 525, 571, 535, 644, 548, 553, 531, 645, 668, 647 239, 581, 535, 571, 700, 556, 553, 577, 701, 676, 697 240, 644, 535, 700, 571, 647, 676, 671, 668, 553, 697 ** ** eall ** *SOLID SECTION, ELSET=EALL, MATERIAL=STEEL 1., ** ** steel ** Date: 23-May-96 Time: 17:30:54 ** *MATERIAL, NAME=STEEL ** *ELASTIC, TYPE=ISO 2.1E+11, 0.3 *NSET,NSET=ZFIX 47,53,57,63,67,287,291,297,301,638,642,648,652 *ELSET,ELSET=EOUT 199, ** ** step 1,Default ** *STEP, PERT This load case is the default load case that always appears *STATIC ** ** yfix ** *BOUNDARY, OP=NEW 489, 2,, 0. 490, 2,, 0. 491, 2,, 0. 492, 2,, 0. 493, 2,, 0. 510, 2,, 0. 511, 2,, 0. 512, 2,, 0. 513, 2,, 0. 514, 2,, 0. 535, 2,, 0. 536, 2,, 0. 537, 2,, 0. 538, 2,, 0. 539, 2,, 0. 556, 2,, 0. 557, 2,, 0. 558, 2,, 0. 559, 2,, 0. 560, 2,, 0. 581, 2,, 0. 582, 2,, 0. 583, 2,, 0. 584, 2,, 0. 585, 2,, 0. 607, 2,, 0. 608, 2,, 0. 609, 2,, 0. 628, 2,, 0. 629, 2,, 0. 630, 2,, 0. 653, 2,, 0. 654, 2,, 0. 655, 2,, 0. 674, 2,, 0. 675, 2,, 0. 676, 2,, 0. 699, 2,, 0. 700, 2,, 0. 701, 2,, 0. ZFIX,3,,0. ** ** xfix ** *BOUNDARY, OP=NEW 2, 1,, 0. 3, 1,, 0. 4, 1,, 0. 5, 1,, 0. 27, 1,, 0. 28, 1,, 0. 29, 1,, 0. 30, 1,, 0. 48, 1,, 0. 49, 1,, 0. 50, 1,, 0. 51, 1,, 0. 73, 1,, 0. 74, 1,, 0. 75, 1,, 0. 76, 1,, 0. 94, 1,, 0. 95, 1,, 0. 96, 1,, 0. 97, 1,, 0. 119, 1,, 0. 120, 1,, 0. 121, 1,, 0. 122, 1,, 0. 144, 1,, 0. 145, 1,, 0. 146, 1,, 0. 147, 1,, 0. 165, 1,, 0. 166, 1,, 0. 167, 1,, 0. 168, 1,, 0. 190, 1,, 0. 191, 1,, 0. 192, 1,, 0. 193, 1,, 0. 211, 1,, 0. 212, 1,, 0. 213, 1,, 0. 214, 1,, 0. ** ** curvefix ** *BOUNDARY, OP=NEW 1, 1,, 0. 1, 2,, 0. 7, 1,, 0. 7, 2,, 0. 11, 1,, 0. 11, 2,, 0. 17, 1,, 0. 17, 2,, 0. 21, 1,, 0. 21, 2,, 0. 26, 1,, 0. 26, 2,, 0. 31, 1,, 0. 31, 2,, 0. 34, 1,, 0. 34, 2,, 0. 39, 1,, 0. 39, 2,, 0. 42, 1,, 0. 42, 2,, 0. 47, 1,, 0. 47, 2,, 0. 53, 1,, 0. 53, 2,, 0. 57, 1,, 0. 57, 2,, 0. 63, 1,, 0. 63, 2,, 0. 67, 1,, 0. 67, 2,, 0. 72, 1,, 0. 72, 2,, 0. 77, 1,, 0. 77, 2,, 0. 80, 1,, 0. 80, 2,, 0. 85, 1,, 0. 85, 2,, 0. 88, 1,, 0. 88, 2,, 0. 93, 1,, 0. 93, 2,, 0. 99, 1,, 0. 99, 2,, 0. 103, 1,, 0. 103, 2,, 0. 109, 1,, 0. 109, 2,, 0. 113, 1,, 0. 113, 2,, 0. 241, 1,, 0. 241, 2,, 0. 245, 1,, 0. 245, 2,, 0. 251, 1,, 0. 251, 2,, 0. 255, 1,, 0. 255, 2,, 0. 265, 1,, 0. 265, 2,, 0. 268, 1,, 0. 268, 2,, 0. 273, 1,, 0. 273, 2,, 0. 276, 1,, 0. 276, 2,, 0. 287, 1,, 0. 287, 2,, 0. 291, 1,, 0. 291, 2,, 0. 297, 1,, 0. 297, 2,, 0. 301, 1,, 0. 301, 2,, 0. 311, 1,, 0. 311, 2,, 0. 314, 1,, 0. 314, 2,, 0. 319, 1,, 0. 319, 2,, 0. 322, 1,, 0. 322, 2,, 0. 333, 1,, 0. 333, 2,, 0. 337, 1,, 0. 337, 2,, 0. 343, 1,, 0. 343, 2,, 0. 347, 1,, 0. 347, 2,, 0. 592, 1,, 0. 592, 2,, 0. 596, 1,, 0. 596, 2,, 0. 603, 1,, 0. 603, 2,, 0. 606, 1,, 0. 606, 2,, 0. 616, 1,, 0. 616, 2,, 0. 619, 1,, 0. 619, 2,, 0. 626, 1,, 0. 626, 2,, 0. 627, 1,, 0. 627, 2,, 0. 638, 1,, 0. 638, 2,, 0. 642, 1,, 0. 642, 2,, 0. 648, 1,, 0. 648, 2,, 0. 652, 1,, 0. 652, 2,, 0. 662, 1,, 0. 662, 2,, 0. 665, 1,, 0. 665, 2,, 0. 672, 1,, 0. 672, 2,, 0. 673, 1,, 0. 673, 2,, 0. 684, 1,, 0. 684, 2,, 0. 688, 1,, 0. 688, 2,, 0. 695, 1,, 0. 695, 2,, 0. 698, 1,, 0. 698, 2,, 0. ** ** load ** *DLOAD, OP=NEW 22, P4, 1.E+6 24, P4, 1.E+6 27, P2, 1.E+6 29, P2, 1.E+6 32, P2, 1.E+6 34, P2, 1.E+6 37, P4, 1.E+6 39, P4, 1.E+6 62, P4, 1.E+6 64, P4, 1.E+6 67, P2, 1.E+6 69, P2, 1.E+6 72, P2, 1.E+6 74, P2, 1.E+6 77, P4, 1.E+6 79, P4, 1.E+6 102, P4, 1.E+6 104, P4, 1.E+6 107, P2, 1.E+6 109, P2, 1.E+6 112, P2, 1.E+6 114, P2, 1.E+6 117, P4, 1.E+6 119, P4, 1.E+6 142, P4, 1.E+6 144, P4, 1.E+6 147, P2, 1.E+6 149, P2, 1.E+6 152, P2, 1.E+6 154, P2, 1.E+6 157, P4, 1.E+6 159, P4, 1.E+6 182, P4, 1.E+6 184, P4, 1.E+6 187, P2, 1.E+6 189, P2, 1.E+6 192, P2, 1.E+6 194, P2, 1.E+6 197, P4, 1.E+6 199, P4, 1.E+6 222, P4, 1.E+6 224, P4, 1.E+6 227, P2, 1.E+6 229, P2, 1.E+6 232, P2, 1.E+6 234, P2, 1.E+6 237, P4, 1.E+6 239, P4, 1.E+6 ** *NODE PRINT, FREQ=0 U, *EL PRINT,FREQ=1,ELSET=EOUT,POSITION=AVERAGED AT NODES S, ** *EL FILE, POSITION=AVERAGED AT NODES, FREQ=1,ELSET=EOUT S, ** *END STEP """ write("NLE10.inp", INP_file) output = MeshImportModule.import_ABAQUS("NLE10.inp") fens, fes = output["fens"], output["fesets"][1] # Select the boundary faces, on the boundary that is clamped, and on the part # of the boundary that is loaded with the transverse pressure bdryfes = meshboundary(fes) exteriorbfl = selectelem(fens, bdryfes, facing = true, direction = [1.0, 1.0, 0.0]) topbfl = selectelem( fens, bdryfes, box = [0.0, Inf, 0.0, Inf, Thickness, Thickness], inflate = tolerance, ) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field L12 = connectednodes(subset(bdryfes, exteriorbfl)) # external boundary setebc!(u, L12, true, 1, 0.0) setebc!(u, L12, true, 2, 0.0) LL = selectnode( fens; box = [0.0, Inf, 0.0, Inf, Thickness / 2.0, Thickness / 2.0], inflate = tolerance, ) L3 = intersect(LL, connectednodes(subset(bdryfes, exteriorbfl))) setebc!(u, L3, true, 3, 0.0) L1 = selectnode(fens; box = [0.0, 0.0, 0.0, Inf, 0.0, Thickness], inflate = tolerance) setebc!(u, L1, true, 1, 0.0) # symmetry plane X = 0 L2 = selectnode(fens; box = [0.0, Inf, 0.0, 0.0, 0.0, Thickness], inflate = tolerance) setebc!(u, L2, true, 2, 0.0) # symmetry plane Y = 0 applyebc!(u) numberdofs!(u) eL1femm = FEMMBase(IntegDomain(subset(bdryfes, topbfl), TriRule(3))) function pfun( forceout::FVec{T}, XYZ::FFltMat, tangents::FFltMat, fe_label::FInt, ) where {T} forceout .= [0.0, 0.0, -qmagn] return forceout end fi = ForceIntensity(Float64, 3, pfun) F2 = distribloads(eL1femm, geom, u, fi, 2) # Note that the material object needs to be created with the proper # model-dimension reduction in mind. In this case that is the fully three-dimensional solid. MR = DeforModelRed3D material = MatDeforElastIso(MR, E, nu) femm = FEMMDeforLinearMST10(MR, IntegDomain(fes, TetRule(4)), material) # The geometry field now needs to be associated with the FEMM femm = associategeometry!(femm, geom) K = stiffness(femm, geom, u) K = cholesky(K) U = K \ (F2) scattersysvec!(u, U[:]) nl = selectnode(fens, box = [Ai, Ai, 0, 0, Thickness, Thickness], inflate = tolerance) thecorneru = zeros(FFlt, 1, 3) gathervalues_asmat!(u, thecorneru, nl) thecorneru = thecorneru / phun("mm") println( "displacement =$(thecorneru) [MM] as compared to reference [-0.030939, 0, -0.10488] [MM]", ) fld = fieldfromintegpoints( femm, geom, u, :Cauchy, 2; nodevalmethod = :averaging, reportat = :extrapmean, )# println( "Sigma_y =$(fld.values[nl,1][1]/phun("MPa")) as compared to reference sigma_yP = $(sigma_yP/phun("MPa")) [MPa]", ) println("Mean-stress: $(fld.values[nl,1][1]/phun("MPa"))") fld = fieldfromintegpoints( femm, geom, u, :Cauchy, 2; nodevalmethod = :averaging, reportat = :extraptrend, )# println( "Sigma_y =$(fld.values[nl,1][1]/phun("MPa")) as compared to reference sigma_yP = $(sigma_yP/phun("MPa")) [MPa]", ) println("Trend estimation: $(fld.values[nl,1][1]/phun("MPa"))") File = "LE10NAFEMS_MST10_sigmay.vtk" vtkexportmesh( File, fes.conn, geom.values, FinEtools.MeshExportModule.VTK.T10; vectors = [("u", u.values)], scalars = [("sigmay", fld.values)], ) @async run(`"paraview.exe" $File`) true AE = AbaqusExporter("LE10NAFEMS_MST10") HEADING( AE, "LE10NAFEMS: Transverse deflection of elliptical plate with elliptical hole.", ) PART(AE, "part1") END_PART(AE) ASSEMBLY(AE, "ASSEM1") INSTANCE(AE, "INSTNC1", "PART1") NODE(AE, fens.xyz) ELEMENT(AE, "c3d10", "AllElements", 1, femm.integdata.fes.conn) ELEMENT( AE, "SFM3D6", "TractionElements", 1 + count(femm.integdata.fes), eL1femm.integdata.fes.conn, ) NSET_NSET(AE, "L1", L1) NSET_NSET(AE, "L2", L2) NSET_NSET(AE, "L3", L3) NSET_NSET(AE, "L12", L12) ORIENTATION(AE, "GlobalOrientation", vec([1.0 0 0]), vec([0 1.0 0])) SOLID_SECTION(AE, "elasticity", "GlobalOrientation", "AllElements", "Hourglassctl") SURFACE_SECTION(AE, "TractionElements") END_INSTANCE(AE) END_ASSEMBLY(AE) MATERIAL(AE, "elasticity") ELASTIC(AE, E, nu) SECTION_CONTROLS(AE, "Hourglassctl", "HOURGLASS=ENHANCED") STEP_PERTURBATION_STATIC(AE) BOUNDARY(AE, "ASSEM1.INSTNC1.L1", 1) BOUNDARY(AE, "ASSEM1.INSTNC1.L2", 2) BOUNDARY(AE, "ASSEM1.INSTNC1.L3", 3) BOUNDARY(AE, "ASSEM1.INSTNC1.L12", 1) BOUNDARY(AE, "ASSEM1.INSTNC1.L12", 2) DLOAD(AE, "ASSEM1.INSTNC1.TractionElements", vec([0.0, 0.0, -qmagn])) END_STEP(AE) close(AE) output = MeshImportModule.import_ABAQUS(AE.filename) fens, fes = output["fens"], output["fesets"][1] # Select the boundary faces, on the boundary that is clamped, and on the part # of the boundary that is loaded with the transverse pressure bdryfes = meshboundary(fes) exteriorbfl = selectelem(fens, bdryfes, facing = true, direction = [1.0, 1.0, 0.0]) topbfl = selectelem( fens, bdryfes, box = [0.0, Inf, 0.0, Inf, Thickness, Thickness], inflate = tolerance, ) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field L12 = connectednodes(subset(bdryfes, exteriorbfl)) # external boundary setebc!(u, L12, true, 1, 0.0) setebc!(u, L12, true, 2, 0.0) LL = selectnode( fens; box = [0.0, Inf, 0.0, Inf, Thickness / 2.0, Thickness / 2.0], inflate = tolerance, ) L3 = intersect(LL, connectednodes(subset(bdryfes, exteriorbfl))) setebc!(u, L3, true, 3, 0.0) L1 = selectnode(fens; box = [0.0, 0.0, 0.0, Inf, 0.0, Thickness], inflate = tolerance) setebc!(u, L1, true, 1, 0.0) # symmetry plane X = 0 L2 = selectnode(fens; box = [0.0, Inf, 0.0, 0.0, 0.0, Thickness], inflate = tolerance) setebc!(u, L2, true, 2, 0.0) # symmetry plane Y = 0 applyebc!(u) numberdofs!(u) eL1femm = FEMMBase(IntegDomain(subset(bdryfes, topbfl), TriRule(3))) fi = ForceIntensity(Float64, 3, pfun) F2 = distribloads(eL1femm, geom, u, fi, 2) # Note that the material object needs to be created with the proper # model-dimension reduction in mind. In this case that is the fully three-dimensional solid. MR = DeforModelRed3D material = MatDeforElastIso(MR, E, nu) femm = FEMMDeforLinearMST10(MR, IntegDomain(fes, TetRule(4)), material) # The geometry field now needs to be associated with the FEMM femm = associategeometry!(femm, geom) K = stiffness(femm, geom, u) K = cholesky(K) U = K \ (F2) scattersysvec!(u, U[:]) nl = selectnode(fens, box = [Ai, Ai, 0, 0, Thickness, Thickness], inflate = tolerance) thecorneru = zeros(FFlt, 1, 3) gathervalues_asmat!(u, thecorneru, nl) thecorneru = thecorneru / phun("mm") println( "displacement =$(thecorneru) [MM] as compared to reference [-0.030939, 0, -0.10488] [MM]", ) fld = fieldfromintegpoints( femm, geom, u, :Cauchy, 2; nodevalmethod = :averaging, reportat = :extrapmean, )# println( "Sigma_y =$(fld.values[nl,1][1]/phun("MPa")) as compared to reference sigma_yP = $(sigma_yP/phun("MPa")) [MPa]", ) println("Mean-stress: $(fld.values[nl,1][1]/phun("MPa"))") fld = fieldfromintegpoints( femm, geom, u, :Cauchy, 2; nodevalmethod = :averaging, reportat = :extraptrend, )# println( "Sigma_y =$(fld.values[nl,1][1]/phun("MPa")) as compared to reference sigma_yP = $(sigma_yP/phun("MPa")) [MPa]", ) println("Trend estimation: $(fld.values[nl,1][1]/phun("MPa"))") File = "LE10NAFEMS_MST10_sigmay.vtk" vtkexportmesh( File, fes.conn, geom.values, FinEtools.MeshExportModule.T10; vectors = [("u", u.values)], scalars = [("sigmay", fld.values)], ) @async run(`"paraview.exe" $File`) true end # LE10NAFEMS_Abaqus_fine_MST10 function LE10NAFEMS_Abaqus_MST10() # Thick elliptical plate with an elliptical hole is clamped on its exterior # boundary and is loaded with transverse pressure. # This is a NAFEMS Benchmark, Test No. LE10. # The plate is discretized with solid elements. # Because of the symmetries of the geometry and load, only quarter of the plate is modeled. # The $\sigma_y=\sigma_2$ at the point $P$ is to be determined. Since the # target point is on the boundary of the domain it will not be an # integration node as we use Gauss quadrature. The reference value is -5.38 MPa. println("LE10NAFEMS: Transverse deflection of elliptical plate with elliptical hole.") t0 = time() E = 210e3 * phun("MEGA*PA")# 210e3 MPa nu = 0.3 qmagn = 1.0 * phun("MEGA*PA")# transverse pressure sigma_yP = -5.38 * phun("MEGA*PA")# tensile stress at [2.0, 0.0] meters Ae = 3.25 * phun("m") # Major radius of the exterior ellipse Be = 2.75 * phun("m") # Minor radius of the exterior ellipse Ai = 2.0 * phun("m") # Major radius of the interior ellipse Bi = 1.0 * phun("m") # Minor radius of the interior ellipse Thickness = 0.6 * phun("m") tolerance = Thickness / 1000.0 # Geometrical tolerance INP_file = """ *HEADING NAFEMS TEST NLE10, COARSE MESH, C3D10M ELEMENTS *NODE 1, 2.83277, 1.348 2, 2.48116, 1.04837 3, 2.12955, 0.748738 4, 3.14146, 0.704779 5, 2.33893, 0.399071 6, 2.68977, 0.374369 7, 3.25, 0. 8, 2.8335, 0. 9, 2.417, 0. 10, 2.83277, 1.348, 0.15 11, 2.48116, 1.04837, 0.15 12, 2.12955, 0.748738, 0.15 13, 2.33841, 0.400381, 0.15 14, 3.14128, 0.70533, 0.15 15, 3.25, 0., 0.15 16, 2.8335, 0., 0.15 17, 2.417, 0., 0.15 18, 2.83277, 1.348, 0.3 19, 2.48116, 1.04837, 0.3 20, 2.12955, 0.748738, 0.3 21, 2.62488, 0.674, 0.3 22, 2.33893, 0.399071, 0.3 23, 3.14146, 0.704779, 0.3 24, 3.25, 0., 0.3 25, 2.8335, 0., 0.3 26, 2.417, 0., 0.3 27, 2.83277, 1.348, 0.45 28, 2.48116, 1.04837, 0.45 29, 2.12955, 0.748738, 0.45 30, 2.33841, 0.400381, 0.45 31, 3.14128, 0.70533, 0.45 32, 3.25, 0., 0.45 33, 2.8335, 0., 0.45 34, 2.417, 0., 0.45 35, 2.83277, 1.348, 0.6 36, 2.48116, 1.04837, 0.6 37, 2.12955, 0.748738, 0.6 38, 3.14146, 0.704779, 0.6 39, 2.33893, 0.399071, 0.6 40, 2.68977, 0.374369, 0.6 41, 3.25, 0., 0.6 42, 2.8335, 0., 0.6 43, 2.417, 0., 0.6 45, 1.95628, 0.600869 46, 1.78302, 0.453 47, 2.06477, 0.374369 48, 1.93715, 0.248725 51, 2.2085, 0. 52, 2., 0. 54, 1.95628, 0.600869, 0.15 55, 1.78302, 0.453, 0.15 56, 1.93661, 0.249767, 0.15 59, 2.2085, 0., 0.15 60, 2., 0., 0.15 62, 1.95628, 0.600869, 0.3 63, 1.78302, 0.453, 0.3 64, 1.93715, 0.248725, 0.3 66, 2.10001, 0.2265, 0.3 68, 2.2085, 0., 0.3 69, 2., 0., 0.3 71, 1.95628, 0.600869, 0.45 72, 1.78302, 0.453, 0.45 74, 1.93661, 0.249767, 0.45 76, 2.2085, 0., 0.45 77, 2., 0., 0.45 79, 1.95628, 0.600869, 0.6 80, 1.78302, 0.453, 0.6 81, 2.06477, 0.374369, 0.6 83, 1.93715, 0.248725, 0.6 85, 2.2085, 0., 0.6 86, 2., 0., 0.6 87, 1.783, 2.29921 88, 1.57618, 1.80182 89, 1.36937, 1.30443 90, 1.95627, 1.52397 91, 2.36495, 1.88628 92, 1.78146, 1.06985 96, 1.783, 2.29921, 0.15 97, 1.57618, 1.80182, 0.15 98, 1.36937, 1.30443, 0.15 99, 1.78071, 1.07038, 0.15 100, 2.36449, 1.88669, 0.15 104, 1.783, 2.29921, 0.3 105, 1.57618, 1.80182, 0.3 106, 1.36937, 1.30443, 0.3 107, 2.36495, 1.88628, 0.3 108, 1.78146, 1.06985, 0.3 109, 2.10107, 1.32621, 0.3 113, 1.783, 2.29921, 0.45 114, 1.57618, 1.80182, 0.45 115, 1.36937, 1.30443, 0.45 116, 2.36449, 1.88669, 0.45 117, 1.78071, 1.07038, 0.45 121, 1.783, 2.29921, 0.6 122, 1.57618, 1.80182, 0.6 123, 1.36937, 1.30443, 0.6 124, 1.95627, 1.52397, 0.6 125, 2.36495, 1.88628, 0.6 126, 1.78146, 1.06985, 0.6 131, 1.26718, 1.05863 132, 1.165, 0.812831 134, 1.49321, 0.665266 135, 1.64727, 0.780784 140, 1.26718, 1.05863, 0.15 141, 1.165, 0.812831, 0.15 143, 1.4924, 0.665723, 0.15 148, 1.26718, 1.05863, 0.3 149, 1.165, 0.812831, 0.3 150, 1.57619, 0.878714, 0.3 152, 1.49321, 0.665266, 0.3 157, 1.26718, 1.05863, 0.45 158, 1.165, 0.812831, 0.45 160, 1.4924, 0.665723, 0.45 165, 1.26718, 1.05863, 0.6 166, 1.165, 0.812831, 0.6 168, 1.49321, 0.665266, 0.6 169, 1.64727, 0.780784, 0.6 173, 0., 1.583 174, 0., 1.2915 175, 0., 1. 176, 0.5825, 1.19792 177, 0.699442, 1.51527 178, 0.590531, 0.955415 182, 0., 1.583, 0.15 183, 0., 1.2915, 0.15 184, 0., 1., 0.15 185, 0.698861, 1.51538, 0.15 186, 0.590076, 0.955486, 0.15 190, 0., 1.583, 0.3 191, 0., 1.2915, 0.3 192, 0., 1., 0.3 193, 0.699442, 1.51527, 0.3 194, 0.590531, 0.955415, 0.3 195, 0.684684, 1.15221, 0.3 199, 0., 1.583, 0.45 200, 0., 1.2915, 0.45 201, 0., 1., 0.45 202, 0.698861, 1.51538, 0.45 203, 0.590076, 0.955486, 0.45 207, 0., 1.583, 0.6 208, 0., 1.2915, 0.6 209, 0., 1., 0.6 210, 0.5825, 1.19792, 0.6 211, 0.699442, 1.51527, 0.6 212, 0.590531, 0.955415, 0.6 216, 0., 2.75 217, 0., 2.1665 219, 0.920251, 2.63745 221, 0.8915, 1.9411 225, 0., 2.75, 0.15 226, 0., 2.1665, 0.15 228, 0.919707, 2.63759, 0.15 233, 0., 2.75, 0.3 234, 0., 2.1665, 0.3 236, 0.684684, 2.02721, 0.3 237, 0.920251, 2.63745, 0.3 242, 0., 2.75, 0.45 243, 0., 2.1665, 0.45 245, 0.919707, 2.63759, 0.45 250, 0., 2.75, 0.6 251, 0., 2.1665, 0.6 253, 0.920251, 2.63745, 0.6 255, 0.8915, 1.9411, 0.6 ** ** *ELEMENT, TYPE=C3D10M, ELSET=EALL 1, 1, 7, 18, 3, 4, 14, 10, 2, 6, 11 2, 24, 18, 7, 26, 23, 14, 15, 25, 21, 16 3, 9, 3, 26, 7, 5, 13, 17, 8, 6, 16 4, 20, 26, 3, 18, 22, 13, 12, 19, 21, 11 5, 3, 7, 18, 26, 6, 14, 11, 13, 16, 21 6, 24, 41, 18, 26, 32, 31, 23, 25, 33, 21 7, 35, 18, 41, 37, 27, 31, 38, 36, 28, 40 8, 20, 37, 26, 18, 29, 30, 22, 19, 28, 21 9, 43, 26, 37, 41, 34, 30, 39, 42, 33, 40 10, 18, 26, 41, 37, 21, 33, 31, 28, 30, 40 11, 9, 26, 3, 52, 17, 13, 5, 51, 59, 47 12, 20, 3, 26, 63, 12, 13, 22, 62, 54, 66 13, 46, 63, 52, 3, 55, 56, 48, 45, 54, 47 14, 69, 52, 63, 26, 60, 56, 64, 68, 59, 66 15, 3, 52, 26, 63, 47, 59, 13, 54, 56, 66 16, 20, 26, 37, 63, 22, 30, 29, 62, 66, 71 17, 43, 37, 26, 86, 39, 30, 34, 85, 81, 76 18, 69, 63, 86, 26, 64, 74, 77, 68, 66, 76 19, 80, 86, 63, 37, 83, 74, 72, 79, 81, 71 20, 63, 26, 37, 86, 66, 30, 71, 74, 76, 81 21, 1, 18, 87, 3, 10, 100, 91, 2, 11, 90 22, 104, 87, 18, 106, 96, 100, 107, 105, 97, 109 23, 89, 106, 3, 87, 98, 99, 92, 88, 97, 90 24, 20, 3, 106, 18, 12, 99, 108, 19, 11, 109 25, 87, 3, 18, 106, 90, 11, 100, 97, 99, 109 26, 104, 18, 121, 106, 107, 116, 113, 105, 109, 114 27, 35, 121, 18, 37, 125, 116, 27, 36, 124, 28 28, 20, 106, 37, 18, 108, 117, 29, 19, 109, 28 29, 123, 37, 106, 121, 126, 117, 115, 122, 124, 114 30, 106, 18, 121, 37, 109, 116, 114, 117, 28, 124 31, 89, 3, 106, 132, 92, 99, 98, 131, 135, 140 32, 20, 106, 3, 63, 108, 99, 12, 62, 150, 54 33, 46, 132, 63, 3, 134, 143, 55, 45, 135, 54 34, 149, 63, 132, 106, 152, 143, 141, 148, 150, 140 35, 132, 3, 106, 63, 135, 99, 140, 143, 54, 150 36, 20, 37, 106, 63, 29, 117, 108, 62, 71, 150 37, 123, 106, 37, 166, 115, 117, 126, 165, 157, 169 38, 149, 166, 63, 106, 158, 160, 152, 148, 157, 150 39, 80, 63, 166, 37, 72, 160, 168, 79, 71, 169 40, 106, 63, 37, 166, 150, 71, 117, 157, 160, 169 41, 89, 106, 173, 132, 98, 185, 177, 131, 140, 176 42, 190, 173, 106, 192, 182, 185, 193, 191, 183, 195 43, 175, 192, 132, 173, 184, 186, 178, 174, 183, 176 44, 149, 132, 192, 106, 141, 186, 194, 148, 140, 195 45, 173, 132, 106, 192, 176, 140, 185, 183, 186, 195 46, 190, 106, 207, 192, 193, 202, 199, 191, 195, 200 47, 123, 207, 106, 166, 211, 202, 115, 165, 210, 157 48, 149, 192, 166, 106, 194, 203, 158, 148, 195, 157 49, 209, 166, 192, 207, 212, 203, 201, 208, 210, 200 50, 192, 106, 207, 166, 195, 202, 200, 203, 157, 210 51, 216, 87, 233, 173, 219, 228, 225, 217, 221, 226 52, 104, 233, 87, 106, 237, 228, 96, 105, 236, 97 53, 89, 173, 106, 87, 177, 185, 98, 88, 221, 97 54, 190, 106, 173, 233, 193, 185, 182, 234, 236, 226 55, 173, 87, 233, 106, 221, 228, 226, 185, 97, 236 56, 104, 121, 233, 106, 113, 245, 237, 105, 114, 236 57, 250, 233, 121, 207, 242, 245, 253, 251, 243, 255 58, 190, 207, 106, 233, 199, 202, 193, 234, 243, 236 59, 123, 106, 207, 121, 115, 202, 211, 122, 114, 255 60, 233, 106, 121, 207, 236, 114, 245, 243, 202, 255 """ write("NLE10.inp", INP_file) output = MeshImportModule.import_ABAQUS("NLE10.inp") fens, fes = output["fens"], output["fesets"][1] # Select the boundary faces, on the boundary that is clamped, and on the part # of the boundary that is loaded with the transverse pressure bdryfes = meshboundary(fes) exteriorbfl = selectelem(fens, bdryfes, facing = true, direction = [1.0, 1.0, 0.0]) topbfl = selectelem( fens, bdryfes, box = [0.0, Inf, 0.0, Inf, Thickness, Thickness], inflate = tolerance, ) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field L12 = connectednodes(subset(bdryfes, exteriorbfl)) # external boundary setebc!(u, L12, true, 1, 0.0) setebc!(u, L12, true, 2, 0.0) LL = selectnode( fens; box = [0.0, Inf, 0.0, Inf, Thickness / 2.0, Thickness / 2.0], inflate = tolerance, ) L3 = intersect(LL, connectednodes(subset(bdryfes, exteriorbfl))) setebc!(u, L3, true, 3, 0.0) L1 = selectnode(fens; box = [0.0, 0.0, 0.0, Inf, 0.0, Thickness], inflate = tolerance) setebc!(u, L1, true, 1, 0.0) # symmetry plane X = 0 L2 = selectnode(fens; box = [0.0, Inf, 0.0, 0.0, 0.0, Thickness], inflate = tolerance) setebc!(u, L2, true, 2, 0.0) # symmetry plane Y = 0 applyebc!(u) numberdofs!(u) eL1femm = FEMMBase(IntegDomain(subset(bdryfes, topbfl), TriRule(3))) function pfun( forceout::FVec{T}, XYZ::FFltMat, tangents::FFltMat, fe_label::FInt, ) where {T} forceout .= [0.0, 0.0, -qmagn] return forceout end fi = ForceIntensity(Float64, 3, pfun) F2 = distribloads(eL1femm, geom, u, fi, 2) # Note that the material object needs to be created with the proper # model-dimension reduction in mind. In this case that is the fully three-dimensional solid. MR = DeforModelRed3D material = MatDeforElastIso(MR, E, nu) femm = FEMMDeforLinearMST10(MR, IntegDomain(fes, TetRule(4)), material) # The geometry field now needs to be associated with the FEMM femm = associategeometry!(femm, geom) K = stiffness(femm, geom, u) K = cholesky(K) U = K \ (F2) scattersysvec!(u, U[:]) nl = selectnode(fens, box = [Ai, Ai, 0, 0, Thickness, Thickness], inflate = tolerance) thecorneru = zeros(FFlt, 1, 3) gathervalues_asmat!(u, thecorneru, nl) thecorneru = thecorneru / phun("mm") println( "displacement =$(thecorneru) [MM] as compared to reference [-0.030939, 0, -0.10488] [MM]", ) fld = fieldfromintegpoints( femm, geom, u, :Cauchy, 2; nodevalmethod = :averaging, reportat = :extrapmean, )# println( "Sigma_y =$(fld.values[nl,1][1]/phun("MPa")) as compared to reference sigma_yP = $(sigma_yP/phun("MPa")) [MPa]", ) println("Mean-stress: $(fld.values[nl,1][1]/phun("MPa"))") fld = fieldfromintegpoints( femm, geom, u, :Cauchy, 2; nodevalmethod = :averaging, reportat = :extraptrend, )# println( "Sigma_y =$(fld.values[nl,1][1]/phun("MPa")) as compared to reference sigma_yP = $(sigma_yP/phun("MPa")) [MPa]", ) println("Trend estimation: $(fld.values[nl,1][1]/phun("MPa"))") File = "LE10NAFEMS_MST10_sigmay.vtk" vtkexportmesh( File, fes.conn, geom.values, FinEtools.MeshExportModule.T10; vectors = [("u", u.values)], scalars = [("sigmay", fld.values)], ) @async run(`"paraview.exe" $File`) true AE = AbaqusExporter("LE10NAFEMS_MST10") HEADING( AE, "LE10NAFEMS: Transverse deflection of elliptical plate with elliptical hole.", ) PART(AE, "part1") END_PART(AE) ASSEMBLY(AE, "ASSEM1") INSTANCE(AE, "INSTNC1", "PART1") NODE(AE, fens.xyz) ELEMENT(AE, "c3d10", "AllElements", 1, femm.integdata.fes.conn) ELEMENT( AE, "SFM3D6", "TractionElements", 1 + count(femm.integdata.fes), eL1femm.integdata.fes.conn, ) NSET_NSET(AE, "L1", L1) NSET_NSET(AE, "L2", L2) NSET_NSET(AE, "L3", L3) NSET_NSET(AE, "L12", L12) ORIENTATION(AE, "GlobalOrientation", vec([1.0 0 0]), vec([0 1.0 0])) SOLID_SECTION(AE, "elasticity", "GlobalOrientation", "AllElements", "Hourglassctl") SURFACE_SECTION(AE, "TractionElements") END_INSTANCE(AE) END_ASSEMBLY(AE) MATERIAL(AE, "elasticity") ELASTIC(AE, E, nu) SECTION_CONTROLS(AE, "Hourglassctl", "HOURGLASS=ENHANCED") STEP_PERTURBATION_STATIC(AE) BOUNDARY(AE, "ASSEM1.INSTNC1.L1", 1) BOUNDARY(AE, "ASSEM1.INSTNC1.L2", 2) BOUNDARY(AE, "ASSEM1.INSTNC1.L3", 3) BOUNDARY(AE, "ASSEM1.INSTNC1.L12", 1) BOUNDARY(AE, "ASSEM1.INSTNC1.L12", 2) DLOAD(AE, "ASSEM1.INSTNC1.TractionElements", vec([0.0, 0.0, -qmagn])) END_STEP(AE) close(AE) output = MeshImportModule.import_ABAQUS(AE.filename) fens, fes = output["fens"], output["fesets"][1] # Select the boundary faces, on the boundary that is clamped, and on the part # of the boundary that is loaded with the transverse pressure bdryfes = meshboundary(fes) exteriorbfl = selectelem(fens, bdryfes, facing = true, direction = [1.0, 1.0, 0.0]) topbfl = selectelem( fens, bdryfes, box = [0.0, Inf, 0.0, Inf, Thickness, Thickness], inflate = tolerance, ) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field L12 = connectednodes(subset(bdryfes, exteriorbfl)) # external boundary setebc!(u, L12, true, 1, 0.0) setebc!(u, L12, true, 2, 0.0) LL = selectnode( fens; box = [0.0, Inf, 0.0, Inf, Thickness / 2.0, Thickness / 2.0], inflate = tolerance, ) L3 = intersect(LL, connectednodes(subset(bdryfes, exteriorbfl))) setebc!(u, L3, true, 3, 0.0) L1 = selectnode(fens; box = [0.0, 0.0, 0.0, Inf, 0.0, Thickness], inflate = tolerance) setebc!(u, L1, true, 1, 0.0) # symmetry plane X = 0 L2 = selectnode(fens; box = [0.0, Inf, 0.0, 0.0, 0.0, Thickness], inflate = tolerance) setebc!(u, L2, true, 2, 0.0) # symmetry plane Y = 0 applyebc!(u) numberdofs!(u) eL1femm = FEMMBase(IntegDomain(subset(bdryfes, topbfl), TriRule(3))) fi = ForceIntensity(Float64, 3, pfun) F2 = distribloads(eL1femm, geom, u, fi, 2) # Note that the material object needs to be created with the proper # model-dimension reduction in mind. In this case that is the fully three-dimensional solid. MR = DeforModelRed3D material = MatDeforElastIso(MR, E, nu) femm = FEMMDeforLinearMST10(MR, IntegDomain(fes, TetRule(4)), material) # The geometry field now needs to be associated with the FEMM femm = associategeometry!(femm, geom) K = stiffness(femm, geom, u) K = cholesky(K) U = K \ (F2) scattersysvec!(u, U[:]) nl = selectnode(fens, box = [Ai, Ai, 0, 0, Thickness, Thickness], inflate = tolerance) thecorneru = zeros(FFlt, 1, 3) gathervalues_asmat!(u, thecorneru, nl) thecorneru = thecorneru / phun("mm") println( "displacement =$(thecorneru) [MM] as compared to reference [-0.030939, 0, -0.10488] [MM]", ) fld = fieldfromintegpoints( femm, geom, u, :Cauchy, 2; nodevalmethod = :averaging, reportat = :extrapmean, )# println( "Sigma_y =$(fld.values[nl,1][1]/phun("MPa")) as compared to reference sigma_yP = $(sigma_yP/phun("MPa")) [MPa]", ) println("Mean-stress: $(fld.values[nl,1][1]/phun("MPa"))") fld = fieldfromintegpoints( femm, geom, u, :Cauchy, 2; nodevalmethod = :averaging, reportat = :extraptrend, )# println( "Sigma_y =$(fld.values[nl,1][1]/phun("MPa")) as compared to reference sigma_yP = $(sigma_yP/phun("MPa")) [MPa]", ) println("Trend estimation: $(fld.values[nl,1][1]/phun("MPa"))") File = "LE10NAFEMS_MST10_sigmay.vtk" vtkexportmesh( File, fes.conn, geom.values, FinEtools.MeshExportModule.T10; vectors = [("u", u.values)], scalars = [("sigmay", fld.values)], ) @async run(`"paraview.exe" $File`) true end # LE10NAFEMS_Abaqus_MST10 function LE10NAFEMS_MSH8() # Thick elliptical plate with an elliptical hole is clamped on its exterior # boundary and is loaded with transverse pressure. # This is a NAFEMS Benchmark, Test No. LE10. # The plate is discretized with solid elements. # Because of the symmetries of the geometry and load, only quarter of the plate is modeled. # The $\sigma_y=\sigma_2$ at the point $P$ is to be determined. Since the # target point is on the boundary of the domain it will not be an # integration node as we use Gauss quadrature. The reference value is -5.38 MPa. println("LE10NAFEMS: Transverse deflection of elliptical plate with elliptical hole.") t0 = time() E = 210e3 * phun("MEGA*PA")# 210e3 MPa nu = 0.3 qmagn = 1.0 * phun("MEGA*PA")# transverse pressure sigma_yP = -5.38 * phun("MEGA*PA")# tensile stress at [2.0, 0.0] meters Ae = 3.25 * phun("m") # Major radius of the exterior ellipse Be = 2.75 * phun("m") # Minor radius of the exterior ellipse Ai = 2.0 * phun("m") # Major radius of the interior ellipse Bi = 1.0 * phun("m") # Minor radius of the interior ellipse Thickness = 0.6 * phun("m") nc = 6 # number of elements per side nr = 5 # number of elements per side nt = 2 # number of elements through the thickness nc = 26 # number of elements per side nr = 25 # number of elements per side nt = 18 # number of elements through the thickness tolerance = Thickness / nt / 1000.0 # Geometrical tolerance fens, fes = Q4block(1.0, pi / 2, nr, nc) # @assert nt % 2 == 0 "Number of elements through the thickness must be even" fens, fes = H8extrudeQ4( fens, fes, nt, (xyz, layer) -> [xyz[1], xyz[2], (layer) / nt * Thickness], ) # Select the boundary faces, on the boundary that is clamped, and on the part # of the boundary that is loaded with the transverse pressure bdryfes = meshboundary(fes) exteriorbfl = selectelem( fens, bdryfes, box = [1.0, 1.0, 0.0, pi / 2, 0.0, Thickness], inflate = tolerance, ) topbfl = selectelem( fens, bdryfes, box = [0.0, 1.0, 0.0, pi / 2, Thickness, Thickness], inflate = tolerance, ) # Reshape the generated block into the elliptical plate for i = 1:count(fens) r = fens.xyz[i, 1] a = fens.xyz[i, 2] z = fens.xyz[i, 3] fens.xyz[i, :] = [(r * Ae + (1 - r) * Ai) * cos(a) (r * Be + (1 - r) * Bi) * sin(a) z] end geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field l1 = connectednodes(subset(bdryfes, exteriorbfl)) # external boundary setebc!(u, l1, true, 1, 0.0) setebc!(u, l1, true, 2, 0.0) l1 = selectnode( fens; box = [0.0, Inf, 0.0, Inf, Thickness / 2.0, Thickness / 2.0], inflate = tolerance, ) l1 = intersect(l1, connectednodes(subset(bdryfes, exteriorbfl))) setebc!(u, l1, true, 3, 0.0) l1 = selectnode(fens; box = [0.0, 0.0, 0.0, Inf, 0.0, Thickness], inflate = tolerance) setebc!(u, l1, true, 1, 0.0) # symmetry plane X = 0 l1 = selectnode(fens; box = [0.0, Inf, 0.0, 0.0, 0.0, Thickness], inflate = tolerance) setebc!(u, l1, true, 2, 0.0) # symmetry plane Y = 0 applyebc!(u) numberdofs!(u) el1femm = FEMMBase(IntegDomain(subset(bdryfes, topbfl), GaussRule(2, 2))) function pfun( forceout::FVec{T}, XYZ::FFltMat, tangents::FFltMat, fe_label::FInt, ) where {T} forceout .= [0.0, 0.0, -qmagn] return forceout end fi = ForceIntensity(Float64, 3, pfun) F2 = distribloads(el1femm, geom, u, fi, 2) # Note that the material object needs to be created with the proper # model-dimension reduction in mind. In this case that is the fully three-dimensional solid. MR = DeforModelRed3D material = MatDeforElastIso(MR, E, nu) femm = FEMMDeforLinearMSH8(MR, IntegDomain(fes, GaussRule(3, 2)), material) # The geometry field now needs to be associated with the FEMM femm = associategeometry!(femm, geom) K = stiffness(femm, geom, u) K = cholesky(K) U = K \ (F2) scattersysvec!(u, U[:]) nl = selectnode(fens, box = [Ai, Ai, 0, 0, Thickness, Thickness], inflate = tolerance) thecorneru = zeros(FFlt, 1, 3) gathervalues_asmat!(u, thecorneru, nl) thecorneru = thecorneru / phun("mm") println( "displacement =$(thecorneru) [MM] as compared to reference [-0.030939, 0, -0.10488] [MM]", ) fld = fieldfromintegpoints( femm, geom, u, :Cauchy, 2; nodevalmethod = :averaging, reportat = :extraptrend, )# println( "Sigma_y =$(fld.values[nl,1][1]/phun("MPa")) as compared to reference sigma_yP = $(sigma_yP/phun("MPa")) [MPa]", ) println("$((nc, nr, nt)), $(fld.values[nl,1][1]/phun("MPa"))") File = "LE10NAFEMS_sigmay.vtk" vtkexportmesh( File, fes.conn, geom.values, FinEtools.MeshExportModule.H8; vectors = [("u", u.values)], scalars = [("sigmay", fld.values)], ) @async run(`"paraview.exe" $File`) true end # LE10NAFEMS_MSH8 function LE10NAFEMS_MSH8_alt_export() # Thick elliptical plate with an elliptical hole is clamped on its exterior # boundary and is loaded with transverse pressure. # This is a NAFEMS Benchmark, Test No. LE10. # The plate is discretized with solid elements. # Because of the symmetries of the geometry and load, only quarter of the plate is modeled. # The $\sigma_y=\sigma_2$ at the point $P$ is to be determined. Since the # target point is on the boundary of the domain it will not be an # integration node as we use Gauss quadrature. The reference value is -5.38 MPa. println("LE10NAFEMS: Transverse deflection of elliptical plate with elliptical hole.") t0 = time() E = 210e3 * phun("MEGA*PA")# 210e3 MPa nu = 0.3 qmagn = 1.0 * phun("MEGA*PA")# transverse pressure sigma_yP = -5.38 * phun("MEGA*PA")# tensile stress at [2.0, 0.0] meters Ae = 3.25 * phun("m") # Major radius of the exterior ellipse Be = 2.75 * phun("m") # Minor radius of the exterior ellipse Ai = 2.0 * phun("m") # Major radius of the interior ellipse Bi = 1.0 * phun("m") # Minor radius of the interior ellipse Thickness = 0.6 * phun("m") nc = 6 # number of elements per side nr = 5 # number of elements per side nt = 2 # number of elements through the thickness # nc = 26; # number of elements per side # nr = 25; # number of elements per side # nt = 18; # number of elements through the thickness tolerance = Thickness / nt / 1000.0 # Geometrical tolerance fens, fes = Q4block(1.0, pi / 2, nr, nc) # @assert nt % 2 == 0 "Number of elements through the thickness must be even" fens, fes = H8extrudeQ4( fens, fes, nt, (xyz, layer) -> [xyz[1], xyz[2], (layer) / nt * Thickness], ) # Select the boundary faces, on the boundary that is clamped, and on the part # of the boundary that is loaded with the transverse pressure bdryfes = meshboundary(fes) exteriorbfl = selectelem( fens, bdryfes, box = [1.0, 1.0, 0.0, pi / 2, 0.0, Thickness], inflate = tolerance, ) topbfl = selectelem( fens, bdryfes, box = [0.0, 1.0, 0.0, pi / 2, Thickness, Thickness], inflate = tolerance, ) # Reshape the generated block into the elliptical plate for i = 1:count(fens) r = fens.xyz[i, 1] a = fens.xyz[i, 2] z = fens.xyz[i, 3] fens.xyz[i, :] = [(r * Ae + (1 - r) * Ai) * cos(a) (r * Be + (1 - r) * Bi) * sin(a) z] end geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field l12 = connectednodes(subset(bdryfes, exteriorbfl)) # external boundary setebc!(u, l12, true, 1, 0.0) setebc!(u, l12, true, 2, 0.0) ll = selectnode( fens; box = [0.0, Inf, 0.0, Inf, Thickness / 2.0, Thickness / 2.0], inflate = tolerance, ) l3 = intersect(ll, connectednodes(subset(bdryfes, exteriorbfl))) setebc!(u, l3, true, 3, 0.0) l1 = selectnode(fens; box = [0.0, 0.0, 0.0, Inf, 0.0, Thickness], inflate = tolerance) setebc!(u, l1, true, 1, 0.0) # symmetry plane X = 0 l2 = selectnode(fens; box = [0.0, Inf, 0.0, 0.0, 0.0, Thickness], inflate = tolerance) setebc!(u, l2, true, 2, 0.0) # symmetry plane Y = 0 applyebc!(u) numberdofs!(u) el1femm = FEMMBase(IntegDomain(subset(bdryfes, topbfl), GaussRule(2, 2))) function pfun( forceout::FVec{T}, XYZ::FFltMat, tangents::FFltMat, fe_label::FInt, ) where {T} forceout .= [0.0, 0.0, -qmagn] return forceout end fi = ForceIntensity(Float64, 3, pfun) F2 = distribloads(el1femm, geom, u, fi, 2) # Note that the material object needs to be created with the proper # model-dimension reduction in mind. In this case that is the fully three-dimensional solid. MR = DeforModelRed3D material = MatDeforElastIso(MR, E, nu) femm = FEMMDeforLinearMSH8(MR, IntegDomain(fes, GaussRule(3, 2)), material) # The geometry field now needs to be associated with the FEMM femm = associategeometry!(femm, geom) K = stiffness(femm, geom, u) K = cholesky(K) U = K \ (F2) scattersysvec!(u, U[:]) nl = selectnode(fens, box = [Ai, Ai, 0, 0, Thickness, Thickness], inflate = tolerance) thecorneru = zeros(FFlt, 1, 3) gathervalues_asmat!(u, thecorneru, nl) thecorneru = thecorneru / phun("mm") println( "displacement =$(thecorneru) [MM] as compared to reference [-0.030939, 0, -0.10488] [MM]", ) fld = fieldfromintegpoints( femm, geom, u, :Cauchy, 2; nodevalmethod = :averaging, reportat = :extraptrend, )# println( "Sigma_y =$(fld.values[nl,1][1]/phun("MPa")) as compared to reference sigma_yP = $(sigma_yP/phun("MPa")) [MPa]", ) println("$((nc, nr, nt)), $(fld.values[nl,1][1]/phun("MPa"))") # File = "LE10NAFEMS_sigmay.vtk" # vtkexportmesh(File, fes.conn, geom.values, # FinEtools.MeshExportModule.H8; vectors=[("u", u.values)], # scalars=[("sigmay", fld.values)]) # @async run(`"paraview.exe" $File`) # true AE = AbaqusExporter("LE10NAFEMS_H8") HEADING( AE, "LE10NAFEMS: Transverse deflection of elliptical plate with elliptical hole.", ) PART(AE, "part1") END_PART(AE) ASSEMBLY(AE, "ASSEM1") INSTANCE(AE, "INSTNC1", "PART1") NODE(AE, fens.xyz) ELEMENT(AE, "c3d8rh", "AllElements", 1, femm.integdata.fes.conn) ELEMENT( AE, "SFM3D4", "TractionElements", 1 + count(femm.integdata.fes), el1femm.integdata.fes.conn, ) NSET_NSET(AE, "l1", l1) NSET_NSET(AE, "l2", l2) NSET_NSET(AE, "l3", l3) NSET_NSET(AE, "l12", l12) ORIENTATION(AE, "GlobalOrientation", vec([1.0 0 0]), vec([0 1.0 0])) SOLID_SECTION(AE, "elasticity", "GlobalOrientation", "AllElements", "Hourglassctl") SURFACE_SECTION(AE, "TractionElements") END_INSTANCE(AE) END_ASSEMBLY(AE) MATERIAL(AE, "elasticity") ELASTIC(AE, E, nu) SECTION_CONTROLS(AE, "Hourglassctl", "HOURGLASS=ENHANCED") STEP_PERTURBATION_STATIC(AE) BOUNDARY(AE, "ASSEM1.INSTNC1.", u.is_fixed, u.fixed_values) DLOAD(AE, "ASSEM1.INSTNC1.TractionElements", vec([0.0, 0.0, -qmagn])) END_STEP(AE) close(AE) end # LE10NAFEMS_MSH8_alt_export function LE10NAFEMS_MSH8_export() # Thick elliptical plate with an elliptical hole is clamped on its exterior # boundary and is loaded with transverse pressure. # This is a NAFEMS Benchmark, Test No. LE10. # The plate is discretized with solid elements. # Because of the symmetries of the geometry and load, only quarter of the plate is modeled. # The $\sigma_y=\sigma_2$ at the point $P$ is to be determined. Since the # target point is on the boundary of the domain it will not be an # integration node as we use Gauss quadrature. The reference value is -5.38 MPa. println("LE10NAFEMS: Transverse deflection of elliptical plate with elliptical hole.") t0 = time() E = 210e3 * phun("MEGA*PA")# 210e3 MPa nu = 0.3 qmagn = 1.0 * phun("MEGA*PA")# transverse pressure sigma_yP = -5.38 * phun("MEGA*PA")# tensile stress at [2.0, 0.0] meters Ae = 3.25 * phun("m") # Major radius of the exterior ellipse Be = 2.75 * phun("m") # Minor radius of the exterior ellipse Ai = 2.0 * phun("m") # Major radius of the interior ellipse Bi = 1.0 * phun("m") # Minor radius of the interior ellipse Thickness = 0.6 * phun("m") nc = 6 # number of elements per side nr = 5 # number of elements per side nt = 2 # number of elements through the thickness # nc = 26; # number of elements per side # nr = 25; # number of elements per side # nt = 18; # number of elements through the thickness tolerance = Thickness / nt / 1000.0 # Geometrical tolerance fens, fes = Q4block(1.0, pi / 2, nr, nc) # @assert nt % 2 == 0 "Number of elements through the thickness must be even" fens, fes = H8extrudeQ4( fens, fes, nt, (xyz, layer) -> [xyz[1], xyz[2], (layer) / nt * Thickness], ) # Select the boundary faces, on the boundary that is clamped, and on the part # of the boundary that is loaded with the transverse pressure bdryfes = meshboundary(fes) exteriorbfl = selectelem( fens, bdryfes, box = [1.0, 1.0, 0.0, pi / 2, 0.0, Thickness], inflate = tolerance, ) topbfl = selectelem( fens, bdryfes, box = [0.0, 1.0, 0.0, pi / 2, Thickness, Thickness], inflate = tolerance, ) # Reshape the generated block into the elliptical plate for i = 1:count(fens) r = fens.xyz[i, 1] a = fens.xyz[i, 2] z = fens.xyz[i, 3] fens.xyz[i, :] = [(r * Ae + (1 - r) * Ai) * cos(a) (r * Be + (1 - r) * Bi) * sin(a) z] end geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field l12 = connectednodes(subset(bdryfes, exteriorbfl)) # external boundary setebc!(u, l12, true, 1, 0.0) setebc!(u, l12, true, 2, 0.0) ll = selectnode( fens; box = [0.0, Inf, 0.0, Inf, Thickness / 2.0, Thickness / 2.0], inflate = tolerance, ) l3 = intersect(ll, connectednodes(subset(bdryfes, exteriorbfl))) setebc!(u, l3, true, 3, 0.0) l1 = selectnode(fens; box = [0.0, 0.0, 0.0, Inf, 0.0, Thickness], inflate = tolerance) setebc!(u, l1, true, 1, 0.0) # symmetry plane X = 0 l2 = selectnode(fens; box = [0.0, Inf, 0.0, 0.0, 0.0, Thickness], inflate = tolerance) setebc!(u, l2, true, 2, 0.0) # symmetry plane Y = 0 applyebc!(u) numberdofs!(u) el1femm = FEMMBase(IntegDomain(subset(bdryfes, topbfl), GaussRule(2, 2))) function pfun( forceout::FVec{T}, XYZ::FFltMat, tangents::FFltMat, fe_label::FInt, ) where {T} forceout .= [0.0, 0.0, -qmagn] return forceout end fi = ForceIntensity(Float64, 3, pfun) F2 = distribloads(el1femm, geom, u, fi, 2) # Note that the material object needs to be created with the proper # model-dimension reduction in mind. In this case that is the fully three-dimensional solid. MR = DeforModelRed3D material = MatDeforElastIso(MR, E, nu) femm = FEMMDeforLinearMSH8(MR, IntegDomain(fes, GaussRule(3, 2)), material) # The geometry field now needs to be associated with the FEMM femm = associategeometry!(femm, geom) K = stiffness(femm, geom, u) K = cholesky(K) U = K \ (F2) scattersysvec!(u, U[:]) nl = selectnode(fens, box = [Ai, Ai, 0, 0, Thickness, Thickness], inflate = tolerance) thecorneru = zeros(FFlt, 1, 3) gathervalues_asmat!(u, thecorneru, nl) thecorneru = thecorneru / phun("mm") println( "displacement =$(thecorneru) [MM] as compared to reference [-0.030939, 0, -0.10488] [MM]", ) fld = fieldfromintegpoints( femm, geom, u, :Cauchy, 2; nodevalmethod = :averaging, reportat = :extraptrend, )# println( "Sigma_y =$(fld.values[nl,1][1]/phun("MPa")) as compared to reference sigma_yP = $(sigma_yP/phun("MPa")) [MPa]", ) println("$((nc, nr, nt)), $(fld.values[nl,1][1]/phun("MPa"))") # File = "LE10NAFEMS_sigmay.vtk" # vtkexportmesh(File, fes.conn, geom.values, # FinEtools.MeshExportModule.H8; vectors=[("u", u.values)], # scalars=[("sigmay", fld.values)]) # @async run(`"paraview.exe" $File`) # true AE = AbaqusExporter("LE10NAFEMS_H8") HEADING( AE, "LE10NAFEMS: Transverse deflection of elliptical plate with elliptical hole.", ) PART(AE, "part1") END_PART(AE) ASSEMBLY(AE, "ASSEM1") INSTANCE(AE, "INSTNC1", "PART1") NODE(AE, fens.xyz) ELEMENT(AE, "c3d8rh", "AllElements", 1, femm.integdata.fes.conn) ELEMENT( AE, "SFM3D4", "TractionElements", 1 + count(femm.integdata.fes), el1femm.integdata.fes.conn, ) NSET_NSET(AE, "l1", l1) NSET_NSET(AE, "l2", l2) NSET_NSET(AE, "l3", l3) NSET_NSET(AE, "l12", l12) ORIENTATION(AE, "GlobalOrientation", vec([1.0 0 0]), vec([0 1.0 0])) SOLID_SECTION(AE, "elasticity", "GlobalOrientation", "AllElements", "Hourglassctl") SURFACE_SECTION(AE, "TractionElements") END_INSTANCE(AE) END_ASSEMBLY(AE) MATERIAL(AE, "elasticity") ELASTIC(AE, E, nu) SECTION_CONTROLS(AE, "Hourglassctl", "HOURGLASS=ENHANCED") STEP_PERTURBATION_STATIC(AE) BOUNDARY(AE, "ASSEM1.INSTNC1.l1", 1) BOUNDARY(AE, "ASSEM1.INSTNC1.l2", 2) BOUNDARY(AE, "ASSEM1.INSTNC1.l3", 3) BOUNDARY(AE, "ASSEM1.INSTNC1.l12", 1) BOUNDARY(AE, "ASSEM1.INSTNC1.l12", 2) DLOAD(AE, "ASSEM1.INSTNC1.TractionElements", vec([0.0, 0.0, -qmagn])) END_STEP(AE) close(AE) end # LE10NAFEMS_MSH8_export function LE10NAFEMS_MST10() # Thick elliptical plate with an elliptical hole is clamped on its exterior # boundary and is loaded with transverse pressure. # This is a NAFEMS Benchmark, Test No. LE10. # The plate is discretized with solid elements. # Because of the symmetries of the geometry and load, only quarter of the plate is modeled. # The $\sigma_y=\sigma_2$ at the point $P$ is to be determined. Since the # target point is on the boundary of the domain it will not be an # integration node as we use Gauss quadrature. The reference value is -5.38 MPa. println("LE10NAFEMS: Transverse deflection of elliptical plate with elliptical hole.") t0 = time() E = 210e3 * phun("MEGA*PA")# 210e3 MPa nu = 0.3 qmagn = 1.0 * phun("MEGA*PA")# transverse pressure sigma_yP = -5.38 * phun("MEGA*PA")# tensile stress at [2.0, 0.0] meters Ae = 3.25 * phun("m") # Major radius of the exterior ellipse Be = 2.75 * phun("m") # Minor radius of the exterior ellipse Ai = 2.0 * phun("m") # Major radius of the interior ellipse Bi = 1.0 * phun("m") # Minor radius of the interior ellipse Thickness = 0.6 * phun("m") ref = 2 nc = 2^ref * 6 # number of elements per side nr = 2^ref * 5 # number of elements per side nt = 2^ref * 2 # number of elements through the thickness tolerance = Thickness / nt / 1000.0 # Geometrical tolerance @assert nt % 2 == 0 "Number of elements through the thickness must be even" fens, fes = T10block(1.0, pi / 2, Thickness, nr, nc, nt, orientation = :b) # Select the boundary faces, on the boundary that is clamped, and on the part # of the boundary that is loaded with the transverse pressure bdryfes = meshboundary(fes) exteriorbfl = selectelem( fens, bdryfes, box = [1.0, 1.0, 0.0, pi / 2, 0.0, Thickness], inflate = tolerance, ) topbfl = selectelem( fens, bdryfes, box = [0.0, 1.0, 0.0, pi / 2, Thickness, Thickness], inflate = tolerance, ) # Reshape the generated block into the elliptical plate for i = 1:count(fens) r = fens.xyz[i, 1] a = fens.xyz[i, 2] z = fens.xyz[i, 3] fens.xyz[i, :] = [(r * Ae + (1 - r) * Ai) * cos(a) (r * Be + (1 - r) * Bi) * sin(a) z] end geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field l12 = connectednodes(subset(bdryfes, exteriorbfl)) # external boundary setebc!(u, l12, true, 1, 0.0) setebc!(u, l12, true, 2, 0.0) ll = selectnode( fens; box = [0.0, Inf, 0.0, Inf, Thickness / 2.0, Thickness / 2.0], inflate = tolerance, ) l3 = intersect(ll, connectednodes(subset(bdryfes, exteriorbfl))) setebc!(u, l3, true, 3, 0.0) l1 = selectnode(fens; box = [0.0, 0.0, 0.0, Inf, 0.0, Thickness], inflate = tolerance) setebc!(u, l1, true, 1, 0.0) # symmetry plane X = 0 l2 = selectnode(fens; box = [0.0, Inf, 0.0, 0.0, 0.0, Thickness], inflate = tolerance) setebc!(u, l2, true, 2, 0.0) # symmetry plane Y = 0 applyebc!(u) numberdofs!(u) el1femm = FEMMBase(IntegDomain(subset(bdryfes, topbfl), TriRule(3))) function pfun( forceout::FVec{T}, XYZ::FFltMat, tangents::FFltMat, fe_label::FInt, ) where {T} forceout .= [0.0, 0.0, -qmagn] return forceout end fi = ForceIntensity(Float64, 3, pfun) F2 = distribloads(el1femm, geom, u, fi, 2) # Note that the material object needs to be created with the proper # model-dimension reduction in mind. In this case that is the fully three-dimensional solid. MR = DeforModelRed3D material = MatDeforElastIso(MR, E, nu) femm = FEMMDeforLinearMST10(MR, IntegDomain(fes, TetRule(4)), material) # The geometry field now needs to be associated with the FEMM femm = associategeometry!(femm, geom) K = stiffness(femm, geom, u) K = cholesky(K) U = K \ (F2) scattersysvec!(u, U[:]) nl = selectnode(fens, box = [Ai, Ai, 0, 0, Thickness, Thickness], inflate = tolerance) thecorneru = zeros(FFlt, 1, 3) gathervalues_asmat!(u, thecorneru, nl) thecorneru = thecorneru / phun("mm") println( "displacement =$(thecorneru) [MM] as compared to reference [-0.030939, 0, -0.10488] [MM]", ) fld = fieldfromintegpoints( femm, geom, u, :Cauchy, 2; nodevalmethod = :averaging, reportat = :extraptrend, )# println( "Sigma_y =$(fld.values[nl,1][1]/phun("MPa")) as compared to reference sigma_yP = $(sigma_yP/phun("MPa")) [MPa]", ) println("$((nc, nr, nt)), $(fld.values[nl,1][1]/phun("MPa"))") # File = "LE10NAFEMS_MST10_sigmay.vtk" # vtkexportmesh(File, fes.conn, geom.values, # FinEtools.MeshExportModule.T10; vectors=[("u", u.values)], # scalars=[("sigmay", fld.values)]) # @async run(`"paraview.exe" $File`) # true AE = AbaqusExporter("LE10NAFEMS_MST10") HEADING( AE, "LE10NAFEMS: Transverse deflection of elliptical plate with elliptical hole.", ) PART(AE, "part1") END_PART(AE) ASSEMBLY(AE, "ASSEM1") INSTANCE(AE, "INSTNC1", "PART1") NODE(AE, fens.xyz) ELEMENT(AE, "c3d10", "AllElements", 1, femm.integdata.fes.conn) ELEMENT( AE, "SFM3D6", "TractionElements", 1 + count(femm.integdata.fes), el1femm.integdata.fes.conn, ) NSET_NSET(AE, "l1", l1) NSET_NSET(AE, "l2", l2) NSET_NSET(AE, "l3", l3) NSET_NSET(AE, "l12", l12) ORIENTATION(AE, "GlobalOrientation", vec([1.0 0 0]), vec([0 1.0 0])) SOLID_SECTION(AE, "elasticity", "GlobalOrientation", "AllElements", "Hourglassctl") SURFACE_SECTION(AE, "TractionElements") END_INSTANCE(AE) END_ASSEMBLY(AE) MATERIAL(AE, "elasticity") ELASTIC(AE, E, nu) SECTION_CONTROLS(AE, "Hourglassctl", "HOURGLASS=ENHANCED") STEP_PERTURBATION_STATIC(AE) BOUNDARY(AE, "ASSEM1.INSTNC1.l1", 1) BOUNDARY(AE, "ASSEM1.INSTNC1.l2", 2) BOUNDARY(AE, "ASSEM1.INSTNC1.l3", 3) BOUNDARY(AE, "ASSEM1.INSTNC1.l12", 1) BOUNDARY(AE, "ASSEM1.INSTNC1.l12", 2) DLOAD(AE, "ASSEM1.INSTNC1.TractionElements", vec([0.0, 0.0, -qmagn])) END_STEP(AE) close(AE) end # LE10NAFEMS_MST10 function evaluateerrors(filebase, modeldatasequence) println("") println("RMS error") elementsizes, errornorms, p = evalconvergencestudy(modeldatasequence) println("Normalized Approximate Error = $(errornorms)") f = log.(vec(errornorms)) A = hcat(log.(vec(elementsizes[1:(end-1)])), ones(size(f))) p = A \ f println("Linear log-log fit: p = $(p)") csvFile = filebase * "_Stress" * ".CSV" savecsv( csvFile, elementsizes = vec(elementsizes[1:(end-1)]), elementsizes2 = vec(elementsizes[1:(end-1)] .^ 2), elementsizes3 = vec(elementsizes[1:(end-1)] .^ 3), errornorms = vec(errornorms), ) println("Wrote $csvFile") end function LE10NAFEMS_MST10_stresses_nodal() # Note: the stresses measured in the RMS norm will not converge very well: there is a singularity around the clamped face. elementtag = "MST10" println("LE10NAFEMS, 3D version. Element: $(elementtag)") E = 210e3 * phun("MEGA*PA")# 210e3 MPa nu = 0.3 qmagn = 1.0 * phun("MEGA*PA")# transverse pressure sigma_yP = -5.38 * phun("MEGA*PA")# tensile stress at [2.0, 0.0] meters Ae = 3.25 * phun("m") # Major radius of the exterior ellipse Be = 2.75 * phun("m") # Minor radius of the exterior ellipse Ai = 2.0 * phun("m") # Major radius of the interior ellipse Bi = 1.0 * phun("m") # Minor radius of the interior ellipse Thickness = 0.6 * phun("m") function pfun( forceout::FVec{T}, XYZ::FFltMat, tangents::FFltMat, fe_label::FInt, ) where {T} forceout .= [0.0, 0.0, -qmagn] return forceout end for extrapolation in [:extraptrend :extrapmean] modeldatasequence = FDataDict[] for ref in [0, 1, 2, 3] tolerance = Thickness / 2^ref / 1000.0 # Geometrical tolerance # nr, nc, nt = 2^ref*5, 2^ref*6, 2^ref*2 # July 5, 2018 nr, nc, nt = 2^ref * 3, 2^ref * 4, 2^ref * 2 @assert nt % 2 == 0 "Number of elements through the thickness must be even" fens, fes = T10block(1.0, pi / 2, Thickness, nr, nc, nt, orientation = :b) # Select the boundary faces, on the boundary that is clamped, and on the part # of the boundary that is loaded with the transverse pressure bdryfes = meshboundary(fes) exteriorbfl = selectelem( fens, bdryfes, box = [1.0, 1.0, 0.0, pi / 2, 0.0, Thickness], inflate = tolerance, ) topbfl = selectelem( fens, bdryfes, box = [0.0, 1.0, 0.0, pi / 2, Thickness, Thickness], inflate = tolerance, ) # Reshape the generated block into the elliptical plate for i = 1:count(fens) r = fens.xyz[i, 1] a = fens.xyz[i, 2] z = fens.xyz[i, 3] fens.xyz[i, :] = [(r * Ae + (1 - r) * Ai) * cos(a) (r * Be + (1 - r) * Bi) * sin(a) z] end geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field l12 = connectednodes(subset(bdryfes, exteriorbfl)) # external boundary setebc!(u, l12, true, 1, 0.0) setebc!(u, l12, true, 2, 0.0) ll = selectnode( fens; box = [0.0, Inf, 0.0, Inf, Thickness / 2.0, Thickness / 2.0], inflate = tolerance, ) l3 = intersect(ll, connectednodes(subset(bdryfes, exteriorbfl))) setebc!(u, l3, true, 3, 0.0) l1 = selectnode( fens; box = [0.0, 0.0, 0.0, Inf, 0.0, Thickness], inflate = tolerance, ) setebc!(u, l1, true, 1, 0.0) # symmetry plane X = 0 l2 = selectnode( fens; box = [0.0, Inf, 0.0, 0.0, 0.0, Thickness], inflate = tolerance, ) setebc!(u, l2, true, 2, 0.0) # symmetry plane Y = 0 applyebc!(u) numberdofs!(u) el1femm = FEMMBase(IntegDomain(subset(bdryfes, topbfl), TriRule(3))) fi = ForceIntensity(Float64, 3, pfun) F2 = distribloads(el1femm, geom, u, fi, 2) # Note that the material object needs to be created with the proper # model-dimension reduction in mind. In this case that is the fully three-dimensional solid. MR = DeforModelRed3D material = MatDeforElastIso(MR, E, nu) femm = FEMMDeforLinearMST10(MR, IntegDomain(fes, TetRule(4)), material) # The geometry field now needs to be associated with the FEMM femm = associategeometry!(femm, geom) K = stiffness(femm, geom, u) K = cholesky(K) U = K \ (F2) scattersysvec!(u, U[:]) nl = selectnode( fens, box = [Ai, Ai, 0, 0, Thickness, Thickness], inflate = tolerance, ) thecorneru = zeros(FFlt, 1, 3) gathervalues_asmat!(u, thecorneru, nl) thecorneru = thecorneru / phun("mm") println( "displacement =$(thecorneru) [MM] as compared to reference [-0.030939, 0, -0.10488] [MM]", ) stressfield = fieldfromintegpoints( femm, geom, u, :Cauchy, collect(1:6); nodevalmethod = :averaging, reportat = extrapolation, ) # File = "LE10NAFEMS_MST10_sigmay.vtk" # vtkexportmesh(File, fes.conn, geom.values, # FinEtools.MeshExportModule.T10; vectors=[("u", u.values)], # scalars=[("sig", stressfield.values)]) # @async run(`"paraview.exe" $File`) modeldata = FDataDict() modeldata["fens"] = fens modeldata["regions"] = [FDataDict("femm" => femm)] modeldata["targetfields"] = [stressfield] modeldata["geom"] = geom modeldata["geometricaltolerance"] = tolerance modeldata["elementsize"] = 1.0 / 2^ref push!(modeldatasequence, modeldata) end # for ref filebase = "LE10NAFEMS_MST10_stresses_nodal_$(extrapolation)" evaluateerrors(filebase, modeldatasequence) end # for extrapolation end # LE10NAFEMS_MST10_stresses_nodal function LE10NAFEMS_MSH8_stresses_nodal() # Note: the stresses measured in the RMS norm will not converge very well: there is a singularity around the clamped face. elementtag = "MSH8" println("LE10NAFEMS, 3D version. Element: $(elementtag)") E = 210e3 * phun("MEGA*PA")# 210e3 MPa nu = 0.3 qmagn = 1.0 * phun("MEGA*PA")# transverse pressure sigma_yP = -5.38 * phun("MEGA*PA")# tensile stress at [2.0, 0.0] meters Ae = 3.25 * phun("m") # Major radius of the exterior ellipse Be = 2.75 * phun("m") # Minor radius of the exterior ellipse Ai = 2.0 * phun("m") # Major radius of the interior ellipse Bi = 1.0 * phun("m") # Minor radius of the interior ellipse Thickness = 0.6 * phun("m") function pfun( forceout::FVec{T}, XYZ::FFltMat, tangents::FFltMat, fe_label::FInt, ) where {T} forceout .= [0.0, 0.0, -qmagn] return forceout end for extrapolation in [:extraptrend :extrapmean] modeldatasequence = FDataDict[] for ref in [0, 1, 2, 3] tolerance = Thickness / 2^ref / 1000.0 # Geometrical tolerance nr, nc, nt = 2^ref * 5, 2^ref * 6, 2^ref * 2 @assert nt % 2 == 0 "Number of elements through the thickness must be even" fens, fes = H8block(1.0, pi / 2, Thickness, nr, nc, nt) # Select the boundary faces, on the boundary that is clamped, and on the part # of the boundary that is loaded with the transverse pressure bdryfes = meshboundary(fes) exteriorbfl = selectelem( fens, bdryfes, box = [1.0, 1.0, 0.0, pi / 2, 0.0, Thickness], inflate = tolerance, ) topbfl = selectelem( fens, bdryfes, box = [0.0, 1.0, 0.0, pi / 2, Thickness, Thickness], inflate = tolerance, ) # Reshape the generated block into the elliptical plate for i = 1:count(fens) r = fens.xyz[i, 1] a = fens.xyz[i, 2] z = fens.xyz[i, 3] fens.xyz[i, :] = [(r * Ae + (1 - r) * Ai) * cos(a) (r * Be + (1 - r) * Bi) * sin(a) z] end geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field l12 = connectednodes(subset(bdryfes, exteriorbfl)) # external boundary setebc!(u, l12, true, 1, 0.0) setebc!(u, l12, true, 2, 0.0) ll = selectnode( fens; box = [0.0, Inf, 0.0, Inf, Thickness / 2.0, Thickness / 2.0], inflate = tolerance, ) l3 = intersect(ll, connectednodes(subset(bdryfes, exteriorbfl))) setebc!(u, l3, true, 3, 0.0) l1 = selectnode( fens; box = [0.0, 0.0, 0.0, Inf, 0.0, Thickness], inflate = tolerance, ) setebc!(u, l1, true, 1, 0.0) # symmetry plane X = 0 l2 = selectnode( fens; box = [0.0, Inf, 0.0, 0.0, 0.0, Thickness], inflate = tolerance, ) setebc!(u, l2, true, 2, 0.0) # symmetry plane Y = 0 applyebc!(u) numberdofs!(u) el1femm = FEMMBase(IntegDomain(subset(bdryfes, topbfl), GaussRule(2, 2))) fi = ForceIntensity(Float64, 3, pfun) F2 = distribloads(el1femm, geom, u, fi, 2) # Note that the material object needs to be created with the proper # model-dimension reduction in mind. In this case that is the fully three-dimensional solid. MR = DeforModelRed3D material = MatDeforElastIso(MR, E, nu) femm = FEMMDeforLinearMSH8(MR, IntegDomain(fes, GaussRule(3, 2)), material) # The geometry field now needs to be associated with the FEMM femm = associategeometry!(femm, geom) K = stiffness(femm, geom, u) K = cholesky(K) U = K \ (F2) scattersysvec!(u, U[:]) nl = selectnode( fens, box = [Ai, Ai, 0, 0, Thickness, Thickness], inflate = tolerance, ) thecorneru = zeros(FFlt, 1, 3) gathervalues_asmat!(u, thecorneru, nl) thecorneru = thecorneru / phun("mm") println( "displacement =$(thecorneru) [MM] as compared to reference [-0.030939, 0, -0.10488] [MM]", ) stressfield = fieldfromintegpoints( femm, geom, u, :Cauchy, collect(1:6); nodevalmethod = :averaging, reportat = extrapolation, ) println( "Sigma_y =$(stressfield.values[nl,2][1]/phun("MPa")) as compared to reference sigma_yP = $(sigma_yP/phun("MPa")) [MPa]", ) # File = "LE10NAFEMS_MST10_sigmay.vtk" # vtkexportmesh(File, fes.conn, geom.values, # FinEtools.MeshExportModule.T10; vectors=[("u", u.values)], # scalars=[("sig", stressfield.values)]) # @async run(`"paraview.exe" $File`) modeldata = FDataDict() modeldata["fens"] = fens modeldata["regions"] = [FDataDict("femm" => femm)] modeldata["targetfields"] = [stressfield] modeldata["geom"] = geom modeldata["geometricaltolerance"] = Thickness / 2^ref modeldata["parametrictolerance"] = 0.01 modeldata["elementsize"] = 1.0 / 2^ref push!(modeldatasequence, modeldata) end # for ref filebase = "LE10NAFEMS_MST10_stresses_nodal_$(extrapolation)" evaluateerrors(filebase, modeldatasequence) end # for extrapolation end # LE10NAFEMS_MSH8_stresses_nodal function allrun() println("#####################################################") println("# LE10NAFEMS_Abaqus_fine_MST10 ") LE10NAFEMS_Abaqus_fine_MST10() println("#####################################################") println("# LE10NAFEMS_Abaqus_MST10 ") LE10NAFEMS_Abaqus_MST10() println("#####################################################") println("# LE10NAFEMS_MSH8 ") LE10NAFEMS_MSH8() println("#####################################################") println("# LE10NAFEMS_MSH8_alt_export ") LE10NAFEMS_MSH8_alt_export() println("#####################################################") println("# LE10NAFEMS_MSH8_export ") LE10NAFEMS_MSH8_export() println("#####################################################") println("# LE10NAFEMS_MST10 ") LE10NAFEMS_MST10() println("#####################################################") println("# LE10NAFEMS_MST10_stresses_nodal ") LE10NAFEMS_MST10_stresses_nodal() println("#####################################################") println("# LE10NAFEMS_MSH8_stresses_nodal ") LE10NAFEMS_MSH8_stresses_nodal() return true end # function allrun @info "All examples may be executed with " println("using .$(@__MODULE__); $(@__MODULE__).allrun()") end # module nothing
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
10991
module LE11NAFEMS_examples using FinEtools using FinEtools.AlgoBaseModule: solve_blocked!, matrix_blocked, vector_blocked using FinEtoolsDeforLinear using FinEtoolsDeforLinear.AlgoDeforLinearModule using Statistics function LE11NAFEMS_H20() ## Solid cylinder/taper/sphere—-temperature loading; quadratic brick mesh # ## Description # # The solid cylinder/taper/sphere axially-symmetric part represented in # Figure 1 is exposed to linearly varying temperature in the plane of the # cross-section. The temperature in the coordinates $r$ (the coordinate) # and $z$ (the axial ccoordinate) is given as $T=r+z$. The goal is to find # the mechanical stress at the point A induced by the thermal expansion. # ## # The part is constrained against axial expansion along the faces of HIH'I' # and ABA'B'. The Young's modulus is 210 GPa, the Poisson's ratio is .3, # and the coefficient of thermal expansion is 2.3e-4/degree Celsius. ## # This is a test recommended by the National Agency for Finite Element # Methods and Standards (U.K.): Test LE11 from NAFEMS Publication TNSB, # Rev. 3, “The Standard NAFEMS Benchmarks,” October 1990. # # Target solution: Compressive axial stress $\sigma_z$ = –105 MPa along # the circle passing through point A. ## # The toolkit has a helpful physical-units facility. The function phun() # allows use of basic units and basic # multipliers (for instance, mega). ## # Set the material properties. Ea = 210000 * phun("MEGA*PA")# Young's modulus nua = 0.3# Poisson ratio alphaa = 2.3e-4# coefficient of thermal expansion ## # This is the target stress value. sigmaA = -105 * phun("MEGA*PA") ## # The mesh will be created in a very coarse representation from the # key points in the drawing. The first coordinate is radial, the second coordinate is axial. rz = [ 1.0 0.0#A 1.4 0.0#B 0.995184726672197 0.098017140329561 1.393258617341076 0.137223996461385 0.980785 0.195090# 1.37309939 0.27312645 0.956940335732209 0.290284677254462 1.339716470025092 0.406398548156247 0.9238795 0.38268#C 1.2124 0.7#D 0.7071 0.7071#E 1.1062 1.045#F 0.7071 (0.7071+1.79)/2#(E+H)/2 1.0 1.39#G 0.7071 1.79#H 1.0 1.79 ] * phun("M") tolerance = 1.e-6 * phun("M") ## # Note that the material object needs to be created with the proper # model-dimension reduction in mind. In this case that is the fully three-dimensional solid. MR = DeforModelRed3D # This is the quadrilateral mesh of the cross-section. It will be modified and # refined as we go. fens = FENodeSet(rz) fes = FESetQ4([ 1 2 4 3 3 4 6 5 5 6 8 7 7 8 10 9 9 10 12 11 11 12 14 13 13 14 16 15 ]) ## # If needed, the initial mesh can be refined by bisection. Just set # `nref` greater than zero. Note that the nodes located along the # edges are moved onto the spherical surface when they _should be_ on # the spherical surface. This is important in order to ensure # convergence to the proper value of the stress. Just refining the # initial mesh without repositioning of the nodes onto the spherical surface would mean that the # refinement would preserve a concave corner where in reality there is # none. The stress would be artificially raised and convergence would # not be guaranteed. nref = 0 for ref = 1:nref fens, fes = Q4refine(fens, fes) list = selectnode( fens, distance = 1.0 + 0.1 / 2^nref, from = [0.0 0.0], inflate = tolerance, ) fens.xyz[list, :] = FinEtools.MeshUtilModule.ontosphere(fens.xyz[list, :], 1.0) end ## # The mesh is extruded by sweeping around the axis of symmetry. # Only a single layer of elements is generated of internal angle # |angslice|. nLayers = 7 angslice = 5 * pi / 16 ## # First the mesh is extruded to a block whose third dimension # represents the angular coordinate. fens, fes = H8extrudeQ4( fens, fes, nLayers, (rz, k) -> [rz[1], rz[2], 0.0] - (k) / nLayers * [0.0, 0.0, angslice], ) ## # The mesh is now converted to the serendipity 20-node elements. # We will reposition the nodes later. fens, fes = H8toH20(fens, fes) ## # The boundary of the block is extracted and the faces of the mesh on # the bounding cross-sections are identified. Recall that this is just # about the topology (connectivity), the geometry does not matter at # this point. bfes = meshboundary(fes) f1l = selectelem(fens, bfes, box = [-Inf, Inf, -Inf, Inf, 0.0, 0.0], inflate = tolerance) f2l = selectelem( fens, bfes, box = [-Inf, Inf, -Inf, Inf, -angslice, -angslice], inflate = tolerance, ) ## # The block is now converted to the axially symmetric geometry by using the # third (angular) coordinate to sweep out an axially symmetric domain. The # ccoordinates of the nodes at this point are |rza|, radial distance, # Z-coordinate, angle. function sweep(rza) [ -rza[1] * sin(rza[3] + angslice / 2.0), rza[1] * cos(rza[3] + angslice / 2.0), rza[2], ] end for j = 1:size(fens.xyz, 1) fens.xyz[j, :] = sweep(fens.xyz[j, :]) end ## # The nodes within the radial distance of 1.0 of the origin (i. e. # those on the spherical surface) are repositioned one more time to be # located on the spherical surface for sure. (Recall that we have # inserted additional nodes at the midpoints of the edges when the mesh # was converted to quadratic elements.) list = selectnode( fens, distance = 1.0 + 0.1 / 2^nref, from = [0.0 0.0 0.0], inflate = tolerance, ) fens.xyz[list, :] = FinEtools.MeshUtilModule.ontosphere(fens.xyz[list, :], 1.0) ## # We are ready to create the finite element model machine and to use # it to construct the global system for the displacements. ## # The material is created from the property object. Note that the # |alpha| attribute is the thermal expansion coefficient. # Create isotropic elastic material material = MatDeforElastIso(MR, 1.0, Ea, nua, alphaa) ## # The finite element model machine puts together the material, the # finite elements, and the integration rule. The Gauss quadrature with # 3x3x3 points gives good accuracy in this case. Compare it with 2x2x2 # quadrature to appreciate the difference. femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3, 3)), material) ## # The geometry nodal field is created from the node set. The # displacement field is created by cloning the geometry and then # zeroing out the nodal parameters. geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field nnodes(geom) ## # The EBCs are applied next. Only the axial (Z) degrees of freedom at # the bottom and top are fixed to zero. l1 = selectnode(fens, box = [-Inf Inf -Inf Inf 0.0 0.0], inflate = tolerance) setebc!(u, l1, true, 3, zeros(size(l1))) l1 = selectnode(fens, box = [-Inf Inf -Inf Inf 1.79 1.79], inflate = tolerance) setebc!(u, l1, true, 3, zeros(size(l1))) applyebc!(u) numberdofs!(u) ## # The restraints of the nodes on the bounding cross-sections in the direction # of the normal to the plane of the cross-section in the # circumferential direction are introduced using a penalty formulation. # For that purpose we introduce a finite element model machine for the # surface finite elements on the cross-sections. springcoefficient = 1.0 / ((abs(sigmaA) / 1.0e12) / Ea) fl = vcat(f1l, f2l) xsfemm = FEMMDeforWinkler(IntegDomain(subset(bfes, fl), GaussRule(2, 3))) ## # We create the temperature field using the formula $T=r+z$. dT = NodalField( reshape( sqrt.(fens.xyz[:, 1] .^ 2 + fens.xyz[:, 2] .^ 2) + fens.xyz[:, 3], size(fens.xyz, 1), 1, ), ) ## # And we are ready to assemble the system matrix. Both the elastic stiffness of # the hexahedral elements ... K = stiffness(femm, geom, u) # ... and the elastic stiffness of the springs on the contact surfaces of the cross-sections. H = surfacenormalspringstiffness(xsfemm, geom, u, springcoefficient, SurfaceNormal(3)) ## # The mechanical loads are computed from the thermal strains. F = thermalstrainloads(femm, geom, u, dT) ## # And the solution for the free degrees of freedom is obtained. u = solve_blocked!(u, K + H, F) ## # The stress is recovered from the stress calculated at the # integration points. fld = fieldfromintegpoints(femm, geom, u, dT, :Cauchy, 3) ## # Now that we have the nodal field for the axial stress, we can plot # the axial stress painted on the deformed geometry. File = "LE11NAFEMS_H20_sigmaz.vtk" vtkexportmesh( File, fens, fes; scalars = [("sigmaz", fld.values)], vectors = [("u", u.values)], ) @async run(`"paraview.exe" $File`) # File = "LE11NAFEMS_H20_dT.vtk" # vtkexportmesh(File, fens, fes; scalars=dT.values,scalars_name ="dT", vectors=u.values,vectors_name="u") ## # The computed stress at the node that is located at the point A is # going to be now extracted from the nodal field for the stress. # Nodes at level Z=0.0 l1 = selectnode(fens, box = FFlt[-Inf Inf -Inf Inf 0.0 0.0], inflate = tolerance) l2 = selectnode( fens, distance = 1.0 + 0.1 / 2^nref, from = FFlt[0.0 0.0 0.0], inflate = tolerance, ) nA = intersect(l1, l2) sA = mean(fld.values[nA]) / phun("MEGA*Pa") sAn = mean(fld.values[nA]) / sigmaA println("Stress at point A: $(sA) i. e. $( sAn*100 )% of reference value") ## Discussion # ## # The 3-D solution corresponds well to the 2-D axially symmetric model. # We also see good correspondence to other published solutions for # comparable finite element models. For instance, Abaqus 6.11 # Benchmark manual lists very similar numbers. end # LE11NAFEMS_H20 function allrun() println("#####################################################") println("# LE11NAFEMS_H20 ") LE11NAFEMS_H20() return true end # function allrun @info "All examples may be executed with " println("using .$(@__MODULE__); $(@__MODULE__).allrun()") end # module nothing
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
42097
module LE1NAFEMS_examples using FinEtools using FinEtools.AlgoBaseModule: solve_blocked! using FinEtoolsDeforLinear using FinEtoolsDeforLinear.AlgoDeforLinearModule using FinEtools.MeshExportModule using FinEtools.MeshImportModule: import_ABAQUS using Statistics: mean using LinearAlgebra: Symmetric, cholesky, norm # function LE1NAFEMS_compare_meshes() # Thick0 = 0.1*phun("m")/2.0 # to account for the symmetry reduction # ref = 0 # Thickness = Thick0 # tolerance = Thickness/2^ref/300.; # Geometrical tolerance # fens,fes = T10block(1.0, pi/2, Thickness, 2^ref*5, 2^ref*6, 1; orientation = :b) # for i=1:count(fens) # t=fens.xyz[i,1]; a=fens.xyz[i,2]; z=fens.xyz[i,3] # fens.xyz[i,:]=[(t*3.25+(1-t)*2)*cos(a), (t*2.75+(1-t)*1)*sin(a), z]; # end # println("$((count(fens), count(fes)))") # output = import_ABAQUS("LE1AbaqusExport-C3D10HS-5-6-1.inp") # fens1, fes1 = output["fens"], output["fesets"][1] # println("$((count(fens1), count(fes1[1])))") # fens, newfes1, fes2 = mergemeshes(fens,fes, fens1,fes1[1], tolerance) # # fes = cat(fes2, newfes1) # # println("$((count(fens), count(fes)))") # File = "a1.vtk" # vtkexportmesh(File, newfes1.conn, fens.xyz, # FinEtools.MeshExportModule.T10) # @async run(`"paraview.exe" $File`) # File = "a2.vtk" # vtkexportmesh(File, fes2.conn, fens.xyz, # FinEtools.MeshExportModule.T10) # @async run(`"paraview.exe" $File`) # # # # fens,fes = H8block(1.0, pi/2, Thickness, 2^ref*5, 2^ref*6, 1) # # for i=1:count(fens) # # t=fens.xyz[i,1]; a=fens.xyz[i,2]; z=fens.xyz[i,3] # # fens.xyz[i,:]=[(t*3.25+(1-t)*2)*cos(a), (t*2.75+(1-t)*1)*sin(a), z]; # # end # # println("$((count(fens), count(fes)))") # # # # fens1,fes1 = import_ABAQUS("LE1AbaqusExport-C3D8S-80-96-1.inp") # # println("$((count(fens1), count(fes1[1])))") # # # # fens, newfes1, fes2 = mergemeshes(fens,fes, fens1,fes1[1], tolerance) # # fes = cat(fes2, newfes1) # # println("$((count(fens), count(fes)))") # # # # File = "a.vtk" # # vtkexportmesh(File, fes.conn, fens.xyz, # # FinEtools.MeshExportModule.H8) # # @async run(`"paraview.exe" $File`) # true # end # LE1NAFEMS_compare_meshes function LE1NAFEMS_MSH8() println("LE1NAFEMS, 3D version.") t0 = time() E = 210e3 * phun("MEGA*PA")# 210e3 MPa nu = 0.3 p = 10 * phun("MEGA*PA")# 10 MPA Outward pressure on the outside ellipse sigma_yD = 92.7 * phun("MEGA*PA")# tensile stress at [2.0, 0.0] meters Radius = 1.0 * phun("m") Thickness = 0.1 * phun("m") n = 2 # number of elements per side tolerance = 1.0 / n / 1000.0 # Geometrical tolerance fens, fes = Q4block(1.0, pi / 2, n, n * 2) fens, fes = H8extrudeQ4(fens, fes, 1, (xyz, layer) -> [xyz[1], xyz[2], (layer) * Thickness]) bdryfes = meshboundary(fes) icl = selectelem( fens, bdryfes, box = [1.0, 1.0, 0.0, pi / 2, 0.0, Thickness], inflate = tolerance, ) for i = 1:count(fens) t = fens.xyz[i, 1] a = fens.xyz[i, 2] z = fens.xyz[i, 3] fens.xyz[i, :] = [(t * 3.25 + (1 - t) * 2) * cos(a), (t * 2.75 + (1 - t) * 1) * sin(a), z] end geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field l1 = selectnode(fens; box = [0.0, Inf, 0.0, 0.0, 0.0, Thickness], inflate = tolerance) setebc!(u, l1, true, 2, 0.0) l1 = selectnode(fens; box = [0.0, 0.0, 0.0, Inf, 0.0, Thickness], inflate = tolerance) setebc!(u, l1, true, 1, 0.0) l1 = selectnode(fens; box = [0.0, Inf, 0.0, Inf, 0.0, 0.0], inflate = tolerance) setebc!(u, l1, true, 3, 0.0) applyebc!(u) numberdofs!(u) el1femm = FEMMBase(IntegDomain(subset(bdryfes, icl), GaussRule(2, 2))) function pfun( forceout::FVec{T}, XYZ::FFltMat, tangents::FFltMat, feid::FInt, qpid::FInt, ) where {T} pt = [2.75 / 3.25 * XYZ[1], 3.25 / 2.75 * XYZ[2], 0.0] forceout .= vec(p * pt / norm(pt)) return forceout end fi = ForceIntensity(Float64, 3, pfun) F2 = distribloads(el1femm, geom, u, fi, 2) # Note that the material object needs to be created with the proper # model-dimension reduction in mind. In this case that is the fully three-dimensional solid. MR = DeforModelRed3D material = MatDeforElastIso(MR, E, nu) femm = FEMMDeforLinearMSH8(MR, IntegDomain(fes, GaussRule(3, 2)), material) # The geometry field now needs to be associated with the FEMM femm = associategeometry!(femm, geom) K = stiffness(femm, geom, u) u = solve_blocked!(u, K, F2) nl = selectnode(fens, box = [2.0, 2.0, 0.0, 0.0, 0.0, 0.0], inflate = tolerance) thecorneru = zeros(FFlt, 1, 3) gathervalues_asmat!(u, thecorneru, nl) thecorneru = thecorneru / phun("mm") println( "$(time()-t0) [s]; displacement =$(thecorneru) [MM] as compared to reference [-0.10215,0] [MM]", ) fld = fieldfromintegpoints( femm, geom, u, :Cauchy, 2; nodevalmethod = :averaging, reportat = :meanonly, ) println( "Sigma_y =$(fld.values[nl,1][1]/phun("MPa")) as compared to reference sigma_yD = $(sigma_yD/phun("MPa")) [MPa]", ) fld = fieldfromintegpoints( femm, geom, u, :Cauchy, 2; nodevalmethod = :averaging, reportat = :extrapmean, ) println( "Sigma_y =$(fld.values[nl,1][1]/phun("MPa")) as compared to reference sigma_yD = $(sigma_yD/phun("MPa")) [MPa]", ) fld = fieldfromintegpoints( femm, geom, u, :Cauchy, 2; nodevalmethod = :averaging, reportat = :extraptrend, ) println( "Sigma_y =$(fld.values[nl,1][1]/phun("MPa")) as compared to reference sigma_yD = $(sigma_yD/phun("MPa")) [MPa]", ) fld = fieldfromintegpoints( femm, geom, u, :Cauchy, 2; nodevalmethod = :invdistance, reportat = :meanonly, ) println( "Sigma_y =$(fld.values[nl,1][1]/phun("MPa")) as compared to reference sigma_yD = $(sigma_yD/phun("MPa")) [MPa]", ) fld = fieldfromintegpoints( femm, geom, u, :Cauchy, 2; nodevalmethod = :averaging, reportat = :extrapmean, ) println( "Sigma_y =$(fld.values[nl,1][1]/phun("MPa")) as compared to reference sigma_yD = $(sigma_yD/phun("MPa")) [MPa]", ) fld = fieldfromintegpoints( femm, geom, u, :Cauchy, 2; nodevalmethod = :averaging, reportat = :extraptrend, ) println( "Sigma_y =$(fld.values[nl,1][1]/phun("MPa")) as compared to reference sigma_yD = $(sigma_yD/phun("MPa")) [MPa]", ) println("$(n), $(fld.values[nl,1][1]/phun("MPa"))") File = "a.vtk" vtkexportmesh( File, fes.conn, geom.values, FinEtools.MeshExportModule.VTK.H8; vectors = [("u", u.values)], scalars = [("sigmay", fld.values)], ) @async run(`"paraview.exe" $File`) true end # LE1NAFEMS_MSH8 function LE1NAFEMS_MSH8_convergence() # Example from the "Improved Stress Recovery for Mean-strain Finite Elements" paper by Sivapuram and Krysl, 2017 println("LE1NAFEMS, 3D version. MSH8") t0 = time() E = 210e3 * phun("MEGA*PA")# 210e3 MPa nu = 0.3 p = 10 * phun("MEGA*PA")# 10 MPA Outward pressure on the outside ellipse sigma_yD = 92.7 * phun("MEGA*PA")# tensile stress at [2.0, 0.0] meters Thick0 = 0.1 * phun("m") / 2.0 # to account for the symmetry reduction sigyderrs = Dict{Symbol,FFltVec}() nnodes = [] for extrapolation in [:extraptrend :extrapmean] sigyderrs[extrapolation] = FFltVec[] nnodes = [] for ref = 0:1:4 # Thickness = Thick0 Thickness = Thick0 / 2^ref tolerance = Thickness / 2^ref / 1000.0 # Geometrical tolerance fens, fes = H8block(1.0, pi / 2, Thickness, 2^ref * 5, 2^ref * 6, 1) bdryfes = meshboundary(fes) icl = selectelem( fens, bdryfes, box = [1.0, 1.0, 0.0, pi / 2, 0.0, Thickness], inflate = tolerance, ) for i = 1:count(fens) t = fens.xyz[i, 1] a = fens.xyz[i, 2] z = fens.xyz[i, 3] fens.xyz[i, :] = [ (t * 3.25 + (1 - t) * 2) * cos(a), (t * 2.75 + (1 - t) * 1) * sin(a), z, ] end geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field l1 = selectnode( fens; box = [0.0, Inf, 0.0, 0.0, 0.0, Thickness], inflate = tolerance, ) setebc!(u, l1, true, 2, 0.0) l1 = selectnode( fens; box = [0.0, 0.0, 0.0, Inf, 0.0, Thickness], inflate = tolerance, ) setebc!(u, l1, true, 1, 0.0) l1 = selectnode(fens; box = [0.0, Inf, 0.0, Inf, 0.0, 0.0], inflate = tolerance) setebc!(u, l1, true, 3, 0.0) applyebc!(u) numberdofs!(u) el1femm = FEMMBase(IntegDomain(subset(bdryfes, icl), GaussRule(2, 2))) function pfun( forceout::FVec{T}, XYZ::FFltMat, tangents::FFltMat, feid::FInt, qpid::FInt, ) where {T} pt = [2.75 / 3.25 * XYZ[1], 3.25 / 2.75 * XYZ[2], 0.0] forceout .= vec(p * pt / norm(pt)) return forceout end fi = ForceIntensity(Float64, 3, pfun) F2 = distribloads(el1femm, geom, u, fi, 2) # Note that the material object needs to be created with the proper # model-dimension reduction in mind. In this case that is the fully three-dimensional solid. MR = DeforModelRed3D material = MatDeforElastIso(MR, E, nu) femm = FEMMDeforLinearMSH8(MR, IntegDomain(fes, GaussRule(3, 2)), material) # The geometry field now needs to be associated with the FEMM femm = associategeometry!(femm, geom) K = stiffness(femm, geom, u) u = solve_blocked!(u, K, F2) nl = selectnode( fens, box = [2.0, 2.0, 0.0, 0.0, 0.0, Thickness], inflate = tolerance, ) thecorneru = zeros(FFlt, length(nl), 3) gathervalues_asmat!(u, thecorneru, nl) thecorneru = mean(thecorneru, dims = 1)[1] / phun("mm") println("displacement =$(thecorneru) vs -0.10215 [MM]") fld = fieldfromintegpoints( femm, geom, u, :Cauchy, 2; nodevalmethod = :averaging, reportat = extrapolation, ) sigyd = mean(fld.values[nl, 1], dims = 1)[1] println("Sigma_y =$(sigyd/phun("MPa")) vs $(sigma_yD/phun("MPa")) [MPa]") println("$extrapolation, $(count(fes)), $(sigyd/phun("MPa"))") push!(nnodes, count(fes)) push!(sigyderrs[extrapolation], (sigyd / sigma_yD - 1.0)) # File = "a.vtk" # vtkexportmesh(File, fes.conn, geom.values, # FinEtools.MeshExportModule.H8; vectors=[("u", u.values)], # scalars=[("sigmay", fld.values)]) # @async run(`"paraview.exe" $File`) end end File = "LE1NAFEMS_MSH8_convergence.CSV" savecsv( File, nnodes = vec(nnodes), sigyderrtrend = vec(sigyderrs[:extraptrend]), sigyderrmean = vec(sigyderrs[:extrapmean]), ) end # LE1NAFEMS_MSH8_convergence function LE1NAFEMS_MSH8_export() println("LE1NAFEMS, 3D version.") t0 = time() E = 210e3 * phun("MEGA*PA")# 210e3 MPa nu = 0.3 p = 10 * phun("MEGA*PA")# 10 MPA Outward pressure on the outside ellipse sigma_yD = 92.7 * phun("MEGA*PA")# tensile stress at [2.0, 0.0] meters Radius = 1.0 * phun("m") Thickness = 0.1 * phun("m") n = 64 # number of elements per side tolerance = 1.0 / n / 1000.0 # Geometrical tolerance fens, fes = Q4block(1.0, pi / 2, n, n * 2) fens, fes = H8extrudeQ4(fens, fes, 1, (xyz, layer) -> [xyz[1], xyz[2], (layer) * Thickness]) bdryfes = meshboundary(fes) icl = selectelem( fens, bdryfes, box = [1.0, 1.0, 0.0, pi / 2, 0.0, Thickness], inflate = tolerance, ) for i = 1:count(fens) t = fens.xyz[i, 1] a = fens.xyz[i, 2] z = fens.xyz[i, 3] fens.xyz[i, :] = [(t * 3.25 + (1 - t) * 2) * cos(a), (t * 2.75 + (1 - t) * 1) * sin(a), z] end geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field l1 = selectnode(fens; box = [0.0, Inf, 0.0, 0.0, 0.0, Thickness], inflate = tolerance) setebc!(u, l1, true, 2, 0.0) l1 = selectnode(fens; box = [0.0, 0.0, 0.0, Inf, 0.0, Thickness], inflate = tolerance) setebc!(u, l1, true, 1, 0.0) l1 = selectnode(fens; box = [0.0, Inf, 0.0, Inf, 0.0, 0.0], inflate = tolerance) setebc!(u, l1, true, 3, 0.0) applyebc!(u) numberdofs!(u) el1femm = FEMMBase(IntegDomain(subset(bdryfes, icl), GaussRule(2, 2))) function pfun( forceout::FVec{T}, XYZ::FFltMat, tangents::FFltMat, feid::FInt, qpid::FInt, ) where {T} pt = [2.75 / 3.25 * XYZ[1], 3.25 / 2.75 * XYZ[2], 0.0] forceout .= vec(p * pt / norm(pt)) return forceout end fi = ForceIntensity(Float64, 3, pfun) F2 = distribloads(el1femm, geom, u, fi, 2) # Note that the material object needs to be created with the proper # model-dimension reduction in mind. In this case that is the fully three-dimensional solid. MR = DeforModelRed3D material = MatDeforElastIso(MR, E, nu) femm = FEMMDeforLinearMSH8(MR, IntegDomain(fes, GaussRule(3, 2)), material) # The geometry field now needs to be associated with the FEMM femm = associategeometry!(femm, geom) K = stiffness(femm, geom, u) u = solve_blocked!(u, K, F2) nl = selectnode(fens, box = [2.0, 2.0, 0.0, 0.0, 0.0, 0.0], inflate = tolerance) thecorneru = zeros(FFlt, 1, 3) gathervalues_asmat!(u, thecorneru, nl) thecorneru = thecorneru / phun("mm") println( "$(time()-t0) [s]; displacement =$(thecorneru) [MM] as compared to reference [-0.10215,0] [MM]", ) fld = fieldfromintegpoints( femm, geom, u, :Cauchy, 2; nodevalmethod = :averaging, reportat = :extraptrend, ) println( "Sigma_y =$(fld.values[nl,1][1]/phun("MPa")) as compared to reference sigma_yD = $(sigma_yD/phun("MPa")) [MPa]", ) println("$(n), $(fld.values[nl,1][1]/phun("MPa"))") File = "a.vtk" vtkexportmesh( File, fes.conn, geom.values, FinEtools.MeshExportModule.VTK.H8; vectors = [("u", u.values)], scalars = [("sigmay", fld.values)], ) @async run(`"paraview.exe" $File`) true end # LE1NAFEMS_MSH8_export function LE1NAFEMS_MST10_convergence() # Example from the "Improved Stress Recovery for Mean-strain Finite Elements" paper by Sivapuram and Krysl, 2017 println("LE1NAFEMS, 3D version. MST10") t0 = time() E = 210e3 * phun("MEGA*PA")# 210e3 MPa nu = 0.3 p = 10 * phun("MEGA*PA")# 10 MPA Outward pressure on the outside ellipse sigma_yD = 92.7 * phun("MEGA*PA")# tensile stress at [2.0, 0.0] meters Thick0 = 0.1 * phun("m") / 2.0 # to account for the symmetry reduction sigyderrs = Dict{Symbol,FFltVec}() nnodes = [] for extrapolation in [:extraptrend :extrapmean] sigyderrs[extrapolation] = FFltVec[] nnodes = [] for ref = 0:1:4 # Thickness = Thick0 Thickness = Thick0 / 2^ref tolerance = Thickness / 2^ref / 1000.0 # Geometrical tolerance fens, fes = T10block(1.0, pi / 2, Thickness, 2^ref * 5, 2^ref * 6, 1; orientation = :b) bdryfes = meshboundary(fes) icl = selectelem( fens, bdryfes, box = [1.0, 1.0, 0.0, pi / 2, 0.0, Thickness], inflate = tolerance, ) for i = 1:count(fens) t = fens.xyz[i, 1] a = fens.xyz[i, 2] z = fens.xyz[i, 3] fens.xyz[i, :] = [ (t * 3.25 + (1 - t) * 2) * cos(a), (t * 2.75 + (1 - t) * 1) * sin(a), z, ] end geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field l1 = selectnode( fens; box = [0.0, Inf, 0.0, 0.0, 0.0, Thickness], inflate = tolerance, ) setebc!(u, l1, true, 2, 0.0) l1 = selectnode( fens; box = [0.0, 0.0, 0.0, Inf, 0.0, Thickness], inflate = tolerance, ) setebc!(u, l1, true, 1, 0.0) l1 = selectnode(fens; box = [0.0, Inf, 0.0, Inf, 0.0, 0.0], inflate = tolerance) setebc!(u, l1, true, 3, 0.0) applyebc!(u) numberdofs!(u) el1femm = FEMMBase(IntegDomain(subset(bdryfes, icl), TriRule(3))) function pfun( forceout::FVec{T}, XYZ::FFltMat, tangents::FFltMat, feid::FInt, qpid::FInt, ) where {T} pt = [2.75 / 3.25 * XYZ[1], 3.25 / 2.75 * XYZ[2], 0.0] forceout .= vec(p * pt / norm(pt)) return forceout end fi = ForceIntensity(Float64, 3, pfun) F2 = distribloads(el1femm, geom, u, fi, 2) # Note that the material object needs to be created with the proper # model-dimension reduction in mind. In this case that is the fully three-dimensional solid. MR = DeforModelRed3D material = MatDeforElastIso(MR, E, nu) femm = FEMMDeforLinearMST10(MR, IntegDomain(fes, TetRule(4)), material) # The geometry field now needs to be associated with the FEMM femm = associategeometry!(femm, geom) K = stiffness(femm, geom, u) u = solve_blocked!(u, K, F2) nl = selectnode( fens, box = [2.0, 2.0, 0.0, 0.0, 0.0, Thickness], inflate = tolerance, ) thecorneru = zeros(FFlt, length(nl), 3) gathervalues_asmat!(u, thecorneru, nl) thecorneru = mean(thecorneru, dims = 1)[1] / phun("mm") println("displacement =$(thecorneru) vs -0.10215 [MM]") fld = fieldfromintegpoints( femm, geom, u, :Cauchy, 2; nodevalmethod = :averaging, reportat = extrapolation, ) sigyd = mean(fld.values[nl, 1], dims = 1)[1] println("Sigma_y =$(sigyd/phun("MPa")) vs $(sigma_yD/phun("MPa")) [MPa]") println("$extrapolation, $(count(fes)), $(sigyd/phun("MPa"))") push!(nnodes, count(fens)) push!(sigyderrs[extrapolation], abs(sigyd / sigma_yD - 1.0)) # File = "a.vtk" # vtkexportmesh(File, fes.conn, geom.values, # FinEtools.MeshExportModule.H8; vectors=[("u", u.values)], # scalars=[("sigmay", fld.values)]) # @async run(`"paraview.exe" $File`) end end File = "LE1NAFEMS_MST10_convergence.CSV" savecsv( File, nnodes = vec(nnodes), sigyderrtrend = vec(sigyderrs[:extraptrend]), sigyderrdefault = vec(sigyderrs[:extrapmean]), ) end # LE1NAFEMS_MST10_convergence function LE1NAFEMS_MST10_one() println("LE1NAFEMS, 3D version.") t0 = time() E = 210e3 * phun("MEGA*PA")# 210e3 MPa nu = 0.3 p = 10 * phun("MEGA*PA")# 10 MPA Outward pressure on the outside ellipse sigma_yD = 92.7 * phun("MEGA*PA")# tensile stress at [2.0, 0.0] meters Thick0 = 0.1 * phun("m") / 2.0 # to account for the symmetry reduction sigyderrs = Dict{Symbol,FFltVec}() for extrapolation in [:extraptrend] sigyderrs[extrapolation] = FFltVec[] nnodes = [] for ref = 1:1 Thickness = Thick0 # Thickness = Thick0/2^ref tolerance = Thickness / 2^ref / 1000.0 # Geometrical tolerance fens, fes = T10block(1.0, pi / 2, Thickness, 2^ref * 5, 2^ref * 6, 1; orientation = :b) bdryfes = meshboundary(fes) icl = selectelem( fens, bdryfes, box = [1.0, 1.0, 0.0, pi / 2, 0.0, Thickness], inflate = tolerance, ) for i = 1:count(fens) t = fens.xyz[i, 1] a = fens.xyz[i, 2] z = fens.xyz[i, 3] fens.xyz[i, :] = [ (t * 3.25 + (1 - t) * 2) * cos(a), (t * 2.75 + (1 - t) * 1) * sin(a), z, ] end geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field l1 = selectnode( fens; box = [0.0, Inf, 0.0, 0.0, 0.0, Thickness], inflate = tolerance, ) setebc!(u, l1, true, 2, 0.0) l1 = selectnode( fens; box = [0.0, 0.0, 0.0, Inf, 0.0, Thickness], inflate = tolerance, ) setebc!(u, l1, true, 1, 0.0) l1 = selectnode(fens; box = [0.0, Inf, 0.0, Inf, 0.0, 0.0], inflate = tolerance) setebc!(u, l1, true, 3, 0.0) applyebc!(u) numberdofs!(u) el1femm = FEMMBase(IntegDomain(subset(bdryfes, icl), TriRule(3))) function pfun( forceout::FVec{T}, XYZ::FFltMat, tangents::FFltMat, feid::FInt, qpid::FInt, ) where {T} pt = [2.75 / 3.25 * XYZ[1], 3.25 / 2.75 * XYZ[2], 0.0] forceout .= vec(p * pt / norm(pt)) return forceout end fi = ForceIntensity(Float64, 3, pfun) F2 = distribloads(el1femm, geom, u, fi, 2) # Note that the material object needs to be created with the proper # model-dimension reduction in mind. In this case that is the fully three-dimensional solid. MR = DeforModelRed3D material = MatDeforElastIso(MR, E, nu) femm = FEMMDeforLinearMST10(MR, IntegDomain(fes, TetRule(4)), material) # The geometry field now needs to be associated with the FEMM femm = associategeometry!(femm, geom) K = stiffness(femm, geom, u) u = solve_blocked!(u, K, F2) nl = selectnode( fens, box = [2.0, 2.0, 0.0, 0.0, 0.0, Thickness], inflate = tolerance, ) thecorneru = zeros(FFlt, length(nl), 3) gathervalues_asmat!(u, thecorneru, nl) thecorneru = mean(thecorneru, dims = 1)[1] / phun("mm") println("displacement =$(thecorneru) vs -0.10215 [MM]") fld = fieldfromintegpoints( femm, geom, u, :Cauchy, 2; nodevalmethod = :averaging, reportat = extrapolation, ) sigyd = mean(fld.values[nl, 1], dims = 1)[1] println("Sigma_y =$(sigyd/phun("MPa")) vs $(sigma_yD/phun("MPa")) [MPa]") println("$extrapolation, $(count(fes)), $(sigyd/phun("MPa"))") push!(nnodes, count(fens)) push!(sigyderrs[extrapolation], abs(sigyd / sigma_yD - 1.0)) File = "LE1NAFEMS_MST10_a.vtk" vtkexportmesh( File, fes.conn, geom.values, FinEtools.MeshExportModule.VTK.T10; vectors = [("u", u.values)], scalars = [("sigmay", fld.values)], ) @async run(`"paraview.exe" $File`) end end # # # using DataFrames # using CSV # # df = DataFrame(nnodes=vec(nnodes), # sigyderrtrend=vec(sigyderrs[:extraptrend]), # sigyderrdefault=vec(sigyderrs[:extrapmean])) # File = "LE1NAFEMS_MST10_convergence.CSV" # CSV.write(File, df) # @async run(`"paraview.exe" $File`) end # LE1NAFEMS_MST10_one # using SymPy # function LE1NAFEMS_MST10_single() # @vars ua ub uc ud # @vars va vb vc vd # @vars wa wb wc wd # @vars x y z # u(x, y, z) = ua*x + ub*y + uc*z + ud # v(x, y, z) = va*x + vb*y + vc*z + vd # w(x, y, z) = wa*x + wb*y + wc*z + wd # ex = diff(u(x, y, z), x) # ey = diff(v(x, y, z), y) # ez = diff(w(x, y, z), z) # gxy = diff(v(x, y, z), x) + diff(u(x, y, z), y) # gxz = diff(w(x, y, z), x) + diff(u(x, y, z), z) # gyz = diff(w(x, y, z), y) + diff(v(x, y, z), z) # display(ex) # display(ey) # display(ez) # display(gxy) # display(gxz) # display(gyz) # end # LE1NAFEMS_MST10_single function LE1NAFEMS_MST10_stresses_nodal() elementtag = "MST10" println("LE1NAFEMS, 3D version. Element: $(elementtag)") E = 210e3 * phun("MEGA*PA")# 210e3 MPa nu = 0.3 p = 10 * phun("MEGA*PA")# 10 MPA Outward pressure on the outside ellipse sigma_yD = 92.7 * phun("MEGA*PA")# tensile stress at [2.0, 0.0] meters Thick0 = 0.1 * phun("m") / 2.0 # to account for the symmetry reduction for extrapolation in [:extraptrend :extrapmean] convergencestudy = FDataDict[] for ref in [0, 1, 2, 3, 4] Thickness = Thick0 tolerance = Thickness / 2^ref / 1000.0 # Geometrical tolerance fens, fes = T10block(1.0, pi / 2, Thickness, 2^ref * 2, 2^ref * 3, 1; orientation = :b) bdryfes = meshboundary(fes) icl = selectelem( fens, bdryfes, box = [1.0, 1.0, 0.0, pi / 2, 0.0, Thickness], inflate = tolerance, ) for i = 1:count(fens) t = fens.xyz[i, 1] a = fens.xyz[i, 2] z = fens.xyz[i, 3] fens.xyz[i, :] = [ (t * 3.25 + (1 - t) * 2) * cos(a), (t * 2.75 + (1 - t) * 1) * sin(a), z, ] end geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field l1 = selectnode( fens; box = [0.0, Inf, 0.0, 0.0, 0.0, Thickness], inflate = tolerance, ) setebc!(u, l1, true, 2, 0.0) l1 = selectnode( fens; box = [0.0, 0.0, 0.0, Inf, 0.0, Thickness], inflate = tolerance, ) setebc!(u, l1, true, 1, 0.0) l1 = selectnode(fens; box = [0.0, Inf, 0.0, Inf, 0.0, 0.0], inflate = tolerance) setebc!(u, l1, true, 3, 0.0) applyebc!(u) numberdofs!(u) el1femm = FEMMBase(IntegDomain(subset(bdryfes, icl), TriRule(3))) function pfun( forceout::FVec{T}, XYZ::FFltMat, tangents::FFltMat, feid::FInt, qpid::FInt, ) where {T} pt = [2.75 / 3.25 * XYZ[1], 3.25 / 2.75 * XYZ[2], 0.0] forceout .= vec(p * pt / norm(pt)) return forceout end fi = ForceIntensity(Float64, 3, pfun) F2 = distribloads(el1femm, geom, u, fi, 2) # Note that the material object needs to be created with the proper # model-dimension reduction in mind. In this case that is the fully three-dimensional solid. MR = DeforModelRed3D material = MatDeforElastIso(MR, E, nu) femm = FEMMDeforLinearMST10(MR, IntegDomain(fes, TetRule(4)), material) # The geometry field now needs to be associated with the FEMM femm = associategeometry!(femm, geom) K = stiffness(femm, geom, u) u = solve_blocked!(u, K, F2) nl = selectnode( fens, box = [2.0, 2.0, 0.0, 0.0, 0.0, Thickness], inflate = tolerance, ) thecorneru = zeros(FFlt, length(nl), 3) gathervalues_asmat!(u, thecorneru, nl) thecorneru = mean(thecorneru, dims = 1)[1] / phun("mm") println("displacement =$(thecorneru) vs -0.10215 [MM]") fld = fieldfromintegpoints( femm, geom, u, :Cauchy, 2; nodevalmethod = :averaging, reportat = extrapolation, ) sigyd = mean(fld.values[nl, 1], dims = 1)[1] println("Sigma_y =$(sigyd/phun("MPa")) vs $(sigma_yD/phun("MPa")) [MPa]") stressfield = fieldfromintegpoints( femm, geom, u, :Cauchy, collect(1:6); nodevalmethod = :averaging, reportat = extrapolation, ) # File = "LE1NAFEMS_MST10_sigma.vtk" # vtkexportmesh(File, fes.conn, geom.values, # FinEtools.MeshExportModule.T10; vectors=[("u", u.values)], # scalars=[("sig", stressfield.values)]) # @async run(`"paraview.exe" $File`) push!( convergencestudy, FDataDict( "elementsize" => 1.0 / (2^ref), "fens" => fens, "fes" => fes, "geom" => geom, "u" => u, "femm" => femm, "integrationrule" => femm.integdomain.integration_rule, "stressfields" => [stressfield], "tolerance" => tolerance, ), ) end # for ref # File = "LE1NAFEMS_MST10_stresses_nodal_convergence_$(elementtag)_$(extrapolation)" # open(File * ".jls", "w") do file # serialize(file, convergencestudy) # end end # for extrapolation end # LE1NAFEMS_MST10_stresses_nodal function LE1NAFEMS_MST10_S_convergence() println("LE1NAFEMS, 3D version.") t0 = time() E = 210e3 * phun("MEGA*PA")# 210e3 MPa nu = 0.3 p = 10 * phun("MEGA*PA")# 10 MPA Outward pressure on the outside ellipse sigma_yD = 92.7 * phun("MEGA*PA")# tensile stress at [2.0, 0.0] meters Thick0 = 0.1 * phun("m") / 2.0 # to account for the symmetry reduction sigyderrs = Dict{Symbol,FFltVec}() nnodes = [] for extrapolation in [:extraptrend :extrapmean] sigyderrs[extrapolation] = FFltVec[] nnodes = [] for ref = 0:1:4 Thickness = Thick0 # Thickness = Thick0/2^ref tolerance = Thickness / 2^ref / 1000.0 # Geometrical tolerance fens, fes = T4block(1.0, pi / 2, Thickness, 2^ref * 5, 2^ref * 6, 1) bdryfes = meshboundary(fes) icl = selectelem( fens, bdryfes, box = [1.0, 1.0, 0.0, pi / 2, 0.0, Thickness], inflate = tolerance, ) for i = 1:count(fens) t = fens.xyz[i, 1] a = fens.xyz[i, 2] z = fens.xyz[i, 3] fens.xyz[i, :] = [ (t * 3.25 + (1 - t) * 2) * cos(a), (t * 2.75 + (1 - t) * 1) * sin(a), z, ] end fens, fes = T4toT10(fens, fes) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field l1 = selectnode( fens; box = [0.0, Inf, 0.0, 0.0, 0.0, Thickness], inflate = tolerance, ) setebc!(u, l1, true, 2, 0.0) l1 = selectnode( fens; box = [0.0, 0.0, 0.0, Inf, 0.0, Thickness], inflate = tolerance, ) setebc!(u, l1, true, 1, 0.0) l1 = selectnode(fens; box = [0.0, Inf, 0.0, Inf, 0.0, 0.0], inflate = tolerance) setebc!(u, l1, true, 3, 0.0) applyebc!(u) numberdofs!(u) el1femm = FEMMBase(IntegDomain(subset(bdryfes, icl), TriRule(3))) function pfun( forceout::FVec{T}, XYZ::FFltMat, tangents::FFltMat, feid::FInt, qpid::FInt, ) where {T} pt = [2.75 / 3.25 * XYZ[1], 3.25 / 2.75 * XYZ[2], 0.0] forceout .= vec(p * pt / norm(pt)) return forceout end fi = ForceIntensity(Float64, 3, pfun) F2 = distribloads(el1femm, geom, u, fi, 2) # Note that the material object needs to be created with the proper # model-dimension reduction in mind. In this case that is the fully three-dimensional solid. MR = DeforModelRed3D material = MatDeforElastIso(MR, E, nu) femm = FEMMDeforLinearMST10(MR, IntegDomain(fes, TetRule(4)), material) # The geometry field now needs to be associated with the FEMM femm = associategeometry!(femm, geom) K = stiffness(femm, geom, u) u = solve_blocked!(u, K, F2) nl = selectnode( fens, box = [2.0, 2.0, 0.0, 0.0, 0.0, Thickness], inflate = tolerance, ) thecorneru = zeros(FFlt, length(nl), 3) gathervalues_asmat!(u, thecorneru, nl) thecorneru = mean(thecorneru, dims = 1)[1] / phun("mm") println("displacement =$(thecorneru) vs -0.10215 [MM]") fld = fieldfromintegpoints( femm, geom, u, :Cauchy, 2; nodevalmethod = :averaging, reportat = extrapolation, ) sigyd = mean(fld.values[nl, 1], dims = 1)[1] println("Sigma_y =$(sigyd/phun("MPa")) vs $(sigma_yD/phun("MPa")) [MPa]") println("$extrapolation, $(count(fes)), $(sigyd/phun("MPa"))") push!(nnodes, count(fens)) push!(sigyderrs[extrapolation], abs(sigyd / sigma_yD - 1.0)) # File = "a.vtk" # vtkexportmesh(File, fes.conn, geom.values, # FinEtools.MeshExportModule.H8; vectors=[("u", u.values)], # scalars=[("sigmay", fld.values)]) # @async run(`"paraview.exe" $File`) end end File = "LE1NAFEMS_MST10_S_convergence.CSV" savecsv( File, nnodes = vec(nnodes), sigyderrtrend = vec(sigyderrs[:extraptrend]), sigyderrdefault = vec(sigyderrs[:extrapmean]), ) end # LE1NAFEMS_MST10_S_convergence function LE1NAFEMS_T10_stresses_nodal() elementtag = "T10" println("LE1NAFEMS, 3D version. Element: $(elementtag)") E = 210e3 * phun("MEGA*PA")# 210e3 MPa nu = 0.3 p = 10 * phun("MEGA*PA")# 10 MPA Outward pressure on the outside ellipse sigma_yD = 92.7 * phun("MEGA*PA")# tensile stress at [2.0, 0.0] meters Thick0 = 0.1 * phun("m") / 2.0 # to account for the symmetry reduction convergencestudy = FDataDict[] for ref in [0, 1, 2, 3, 4] Thickness = Thick0 tolerance = Thickness / 2^ref / 1000.0 # Geometrical tolerance fens, fes = T10block(1.0, pi / 2, Thickness, 2^ref * 2, 2^ref * 3, 1; orientation = :b) bdryfes = meshboundary(fes) icl = selectelem( fens, bdryfes, box = [1.0, 1.0, 0.0, pi / 2, 0.0, Thickness], inflate = tolerance, ) for i = 1:count(fens) t = fens.xyz[i, 1] a = fens.xyz[i, 2] z = fens.xyz[i, 3] fens.xyz[i, :] = [(t * 3.25 + (1 - t) * 2) * cos(a), (t * 2.75 + (1 - t) * 1) * sin(a), z] end geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field l1 = selectnode( fens; box = [0.0, Inf, 0.0, 0.0, 0.0, Thickness], inflate = tolerance, ) setebc!(u, l1, true, 2, 0.0) l1 = selectnode( fens; box = [0.0, 0.0, 0.0, Inf, 0.0, Thickness], inflate = tolerance, ) setebc!(u, l1, true, 1, 0.0) l1 = selectnode(fens; box = [0.0, Inf, 0.0, Inf, 0.0, 0.0], inflate = tolerance) setebc!(u, l1, true, 3, 0.0) applyebc!(u) numberdofs!(u) el1femm = FEMMBase(IntegDomain(subset(bdryfes, icl), TriRule(3))) function pfun( forceout::FVec{T}, XYZ::FFltMat, tangents::FFltMat, feid::FInt, qpid::FInt, ) where {T} pt = [2.75 / 3.25 * XYZ[1], 3.25 / 2.75 * XYZ[2], 0.0] forceout .= vec(p * pt / norm(pt)) return forceout end fi = ForceIntensity(Float64, 3, pfun) F2 = distribloads(el1femm, geom, u, fi, 2) # Note that the material object needs to be created with the proper # model-dimension reduction in mind. In this case that is the fully three-dimensional solid. MR = DeforModelRed3D material = MatDeforElastIso(MR, E, nu) femm = FEMMDeforLinear(MR, IntegDomain(fes, TetRule(4)), material) # The geometry field now needs to be associated with the FEMM femm = associategeometry!(femm, geom) K = stiffness(femm, geom, u) u = solve_blocked!(u, K, F2) nl = selectnode( fens, box = [2.0, 2.0, 0.0, 0.0, 0.0, Thickness], inflate = tolerance, ) thecorneru = zeros(FFlt, length(nl), 3) gathervalues_asmat!(u, thecorneru, nl) thecorneru = mean(thecorneru, dims = 1)[1] / phun("mm") println("displacement =$(thecorneru) vs -0.10215 [MM]") fld = fieldfromintegpoints(femm, geom, u, :Cauchy, 2) sigyd = mean(fld.values[nl, 1], dims = 1)[1] println("Sigma_y =$(sigyd/phun("MPa")) vs $(sigma_yD/phun("MPa")) [MPa]") stressfield = fieldfromintegpoints(femm, geom, u, :Cauchy, collect(1:6)) # File = "LE1NAFEMS_T10_sigma.vtk" # vtkexportmesh(File, fes.conn, geom.values, # FinEtools.MeshExportModule.T10; vectors=[("u", u.values)], # scalars=[("sig", stressfield.values)]) # @async run(`"paraview.exe" $File`) push!( convergencestudy, FDataDict( "elementsize" => 1.0 / (2^ref), "fens" => fens, "fes" => fes, "geom" => geom, "u" => u, "femm" => femm, "integrationrule" => femm.integdomain.integration_rule, "stressfields" => [stressfield], "tolerance" => tolerance, ), ) end # for ref # File = "LE1NAFEMS_T10_stresses_nodal_convergence_$(elementtag)" # open(File * ".jls", "w") do file # serialize(file, convergencestudy) # end end # LE1NAFEMS_T10_stresses_nodal function allrun() println("#####################################################") println("# LE1NAFEMS_MSH8 ") LE1NAFEMS_MSH8() println("#####################################################") println("# LE1NAFEMS_MSH8_convergence ") LE1NAFEMS_MSH8_convergence() println("#####################################################") println("# LE1NAFEMS_MSH8_export ") LE1NAFEMS_MSH8_export() println("#####################################################") println("# LE1NAFEMS_MST10_convergence ") LE1NAFEMS_MST10_convergence() println("#####################################################") println("# LE1NAFEMS_MST10_one ") LE1NAFEMS_MST10_one() # println("#####################################################") # println("# LE1NAFEMS_MST10_single ") # LE1NAFEMS_MST10_single() println("#####################################################") println("# LE1NAFEMS_MST10_stresses_nodal ") LE1NAFEMS_MST10_stresses_nodal() println("#####################################################") println("# LE1NAFEMS_MST10_S_convergence ") LE1NAFEMS_MST10_S_convergence() println("#####################################################") println("# LE1NAFEMS_T10_stresses_nodal ") LE1NAFEMS_T10_stresses_nodal() return true end # function allrun @info "All examples may be executed with " println("using .$(@__MODULE__); $(@__MODULE__).allrun()") end # module nothing
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
1097
using Gaston # using PyCall using DelimitedFiles function loadcsv(inputcsv) contents = readdlm(inputcsv, ',', Float64, '\n'; header = true) return contents end function coldata(inputcsv, theset) contents = loadcsv(inputcsv) return contents[1][:, theset] end set( axis = "loglog", plotstyle = "linespoints", linewidth = 2, pointsize = 2, color = "black", xlabel = "Number of nodes", ylabel = "Relative error", grid = "on", title = "", ) inputcsv = "LE1NAFEMS_MSH8_convergence.CSV" x = coldata(inputcsv, 1) y = coldata(inputcsv, 3) plot(x, abs.(y), legend = "MSOE", marker = "edmd") inputcsv = "LE1NAFEMS_MSH8_convergence.CSV" x = coldata(inputcsv, 1) y = coldata(inputcsv, 2) plot!(x, abs.(y), legend = "TBE", marker = "ecircle") # inputcsv = "LE1NAFEMS_MST10_convergence.CSV" # x = coldata(inputcsv, 1) # y = coldata(inputcsv, 3) # plot(x, abs.(y), legend = "MSOE", marker = "edmd") # inputcsv = "LE1NAFEMS_MST10_convergence.CSV" # x = coldata(inputcsv, 1) # y = coldata(inputcsv, 2) # plot!(x, abs.(y), legend="TBE", marker = "ecircle")
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
91407
module Meyer_Piening_examples using FinEtools using FinEtoolsDeforLinear using FinEtoolsDeforLinear.AlgoDeforLinearModule using FinEtools.MeshUtilModule function Meyer_Piening_sandwich() println(""" Meyer-Piening sandwich plate """) # Reference results from: # [1] Application of the Elasticity Solution # to Linear Sandwich Beam, Plate # and Shell Analyses # H.-R. MEYER -PIENING # Journal of SANDWICH STRUCTURES AND MATERIALS , Vol. 6—July 2004 # Assessment of the refined sinus plate finite element: # Free edge effect and Meyer-Piening sandwich test # P. Vidal, O. Polit, M. D'Ottavio, E. Valot # http://dx.doi.org/10.1016/j.finel.2014.08.004 # # The second study deals with a benchmark problem proposed # by Meyer-Piening [14]. It involves a simply -supported rectangular # sandwich plate submitted to a localized pressure applied on an # area of 5x20 mm. The geometry of the sandwich structure is # given in Fig.13. Due to the symmetry, only one quarter of the plate # is meshed. The faces have different thicknesses: h = 0.5 mm # (bottom face), h = 0.1 mm (top face). The thickness of the core # is h = 11.4 mm. The material properties are given in Table 3. # Note that this benchmark involves strong heterogeneities (very # different geometric and constitutive properties between core and # face) and local stress gradient due to the localized pressure load. # # [14] H.-R. Meyer-Piening, Experiences with exact linear sandwich beam and plate # analyses regarding bending, instability and frequency investigations, in: # Proceedings of the Fifth International Conference On Sandwich Constructions, # September 5–7, vol. I, Zurich, Switzerland, 2000, pp. 37–48. t0 = time() # Orthotropic material for the SKIN E1s = 70000.0 * phun("MPa") E2s = 71000.0 * phun("MPa") E3s = 69000.0 * phun("MPa") nu12s = nu13s = nu23s = 0.3 G12s = G13s = G23s = 26000.0 * phun("MPa") CTE1 = CTE2 = CTE3 = 0.0 # Orthotropic material for the CORE E1c = 3.0 * phun("MPa") E2c = 3.0 * phun("MPa") E3c = 2.8 * phun("MPa") nu12c = nu13c = nu23c = 0.25 G12c = G13c = G23c = 1.0 * phun("MPa") CTE1 = CTE2 = CTE3 = 0.0 Lx = 5.0 * phun("mm") # length of loaded rectangle Ly = 20.0 * phun("mm") # length of loaded rectangle Sx = 100.0 * phun("mm") # span of the plate Sy = 200.0 * phun("mm") # span of the plate # Here we define the layout and the thicknesses of the layers. angles = vec([0.0 0.0 0.0]) ts = vec([0.5 11.4 0.1]) * phun("mm") # layer thicknesses TH = sum(ts) # total thickness of the plate tolerance = 0.0001 * TH # The line load is in the negative Z direction. q0 = 1 * phun("MPa") # line load # Reference deflection under the load is wtopref = -3.789 * phun("mm") # From [1] wbottomref = -2.16 * phun("mm") # Not given in [1]; guessed from the figure # Select how find the mesh should be Refinement = 5 nL = Refinement * 1 nSx = nL + Refinement * 4 nSy = 2 * nSx # Each layer is modeled with a single element. nts = Refinement * [1, 2, 1]# number of elements per layer strength = 1.5 xs = unique( vcat( reverse(collect(MeshUtilModule.gradedspace(Lx / 2, 0.0, nL + 1, strength))), collect(MeshUtilModule.gradedspace(Lx / 2, Sx / 2, nSx - nL + 1, strength)), ), ) ys = unique( vcat( reverse(collect(MeshUtilModule.gradedspace(Ly / 2, 0.0, nL + 1, strength))), collect(MeshUtilModule.gradedspace(Ly / 2, Sy / 2, nSy - nL + 1, strength)), ), ) fens, fes = H8layeredplatex(xs, ys, ts, nts) # This is the material model MR = DeforModelRed3D skinmaterial = MatDeforElastOrtho( MR, 0.0, E1s, E2s, E3s, nu12s, nu13s, nu23s, G12s, G13s, G23s, CTE1, CTE2, CTE3, ) corematerial = MatDeforElastOrtho( MR, 0.0, E1c, E2c, E3c, nu12c, nu13c, nu23c, G12c, G13c, G23c, CTE1, CTE2, CTE3, ) # The material coordinate system function is defined as: function _updatecs!(csmatout::FFltMat, feid::FInt, label) rotmat3!(csmatout, angles[label] / 180.0 * pi * [0.0; 0.0; 1.0]) csmatout end # The vvolume integrals are evaluated using this rule gr = GaussRule(3, 2) # We will create three regions, two for the skin, and one for the core. rfes = subset(fes, selectelem(fens, fes, label = 1)) botskinregion = FDataDict( "femm" => FEMMDeforLinearMSH8( MR, IntegDomain(rfes, gr), CSys( 3, 3, ( csmatout::FFltMat, XYZ::FFltMat, tangents::FFltMat, feid::FInt, qpid::FInt, ) -> _updatecs!(csmatout, feid, 1), ), skinmaterial, ), ) rfes = subset(fes, selectelem(fens, fes, label = 3)) topskinregion = FDataDict( "femm" => FEMMDeforLinearMSH8( MR, IntegDomain(rfes, gr), CSys( 3, 3, ( csmatout::FFltMat, XYZ::FFltMat, tangents::FFltMat, feid::FInt, qpid::FInt, ) -> _updatecs!(csmatout, feid, 3), ), skinmaterial, ), ) rfes = subset(fes, selectelem(fens, fes, label = 2)) coreregion = FDataDict( "femm" => FEMMDeforLinearMSH8( MR, IntegDomain(rfes, gr), CSys( 3, 3, ( csmatout::FFltMat, XYZ::FFltMat, tangents::FFltMat, feid::FInt, qpid::FInt, ) -> _updatecs!(csmatout, feid, 2), ), corematerial, ), ) # File = "Meyer_Piening_sandwich-r1.vtk" # vtkexportmesh(File, skinregion["femm"].integdomain.fes.conn, fens.xyz, FinEtools.MeshExportModule.H8) # # @async run(`"paraview.exe" $File`) # File = "Meyer_Piening_sandwich-r2.vtk" # vtkexportmesh(File, coreregion["femm"].integdomain.fes.conn, fens.xyz, FinEtools.MeshExportModule.H8) # @async run(`"paraview.exe" $File`) # The essential boundary conditions are applied on the symmetry planes. # First the plane X=0;... lx0 = selectnode(fens, box = [0.0 0.0 -Inf Inf -Inf Inf], inflate = tolerance) ex0 = FDataDict("displacement" => 0.0, "component" => 1, "node_list" => lx0) # ... and then the plane Y=0. ly0 = selectnode(fens, box = [-Inf Inf 0.0 0.0 -Inf Inf], inflate = tolerance) ey0 = FDataDict("displacement" => 0.0, "component" => 2, "node_list" => ly0) # The transverse displacement is fixed around the circumference. lz0 = vcat( selectnode(fens, box = [Sx / 2 Sx / 2 -Inf Inf -Inf Inf], inflate = tolerance), selectnode(fens, box = [-Inf Inf Sy / 2 Sy / 2 -Inf Inf], inflate = tolerance), ) ez0 = FDataDict("displacement" => 0.0, "component" => 3, "node_list" => lz0) # The traction boundary condition is applied along rectangle in the middle of the plate. bfes = meshboundary(fes) # From the entire boundary we select those quadrilaterals that lie on the plane # Z = thickness tl = selectelem(fens, bfes, box = [0.0 Lx / 2 0 Ly / 2 TH TH], inflate = tolerance) Trac = FDataDict( "traction_vector" => vec([0.0; 0.0; -q0]), "femm" => FEMMBase(IntegDomain(subset(bfes, tl), GaussRule(2, 2))), ) modeldata = FDataDict( "fens" => fens, "regions" => [botskinregion, coreregion, topskinregion], "essential_bcs" => [ex0, ey0, ez0], "traction_bcs" => [Trac], ) modeldata = AlgoDeforLinearModule.linearstatics(modeldata) modeldata["postprocessing"] = FDataDict("file" => "Meyer_Piening_sandwich") modeldata = AlgoDeforLinearModule.exportdeformation(modeldata) u = modeldata["u"] geom = modeldata["geom"] # The results of the displacement and stresses will be reported at # nodes located at the appropriate points. nbottomcenter = selectnode(fens, box = [0.0 0.0 0.0 0.0 0.0 0.0], inflate = tolerance) ntopcenter = selectnode(fens, box = [0.0 0.0 0.0 0.0 TH TH], inflate = tolerance) ncenterline = selectnode(fens, box = [0.0 0.0 0.0 0.0 0.0 TH], inflate = tolerance) nintertop = selectnode( fens, box = [-Inf Inf 0.0 0.0 sum(ts[1:2]) sum(ts[1:2])], inflate = tolerance, ) ninterbot = selectnode( fens, box = [-Inf Inf 0.0 0.0 sum(ts[1:1]) sum(ts[1:1])], inflate = tolerance, ) zclo = sortperm(vec(geom.values[ncenterline, 3])) centerz = geom.values[ncenterline[zclo], 3] xclotop = sortperm(vec(geom.values[nintertop, 1])) topx = geom.values[nintertop[xclotop], 1] xclobot = sortperm(vec(geom.values[ninterbot, 1])) botx = geom.values[ninterbot[xclobot], 1] conninbotskin = intersect(connectednodes(botskinregion["femm"].integdomain.fes), ncenterline) connincore = intersect(connectednodes(coreregion["femm"].integdomain.fes), ncenterline) connintopskin = intersect(connectednodes(topskinregion["femm"].integdomain.fes), ncenterline) inbotskin = [n in conninbotskin for n in ncenterline] incore = [n in connincore for n in ncenterline] intopskin = [n in connintopskin for n in ncenterline] println("") println("Top Center deflection: $(u.values[ntopcenter, 3]/phun("mm")) [mm]") println("Bottom Center deflection: $(u.values[nbottomcenter, 3]/phun("mm")) [mm]") # # extrap = :extrapmean # extrap = :extraptrend # nodevalmeth = :averaging extrap = :default nodevalmeth = :invdistance # Normal stress in the X direction modeldata["postprocessing"] = FDataDict( "file" => "Meyer_Piening_sandwich-sx", "quantity" => :Cauchy, "component" => 1, "outputcsys" => CSys(3), "nodevalmethod" => nodevalmeth, "reportat" => extrap, ) modeldata = AlgoDeforLinearModule.exportstress(modeldata) s = modeldata["postprocessing"]["exported"][1]["field"] sxbot = s.values[ncenterline[zclo], 1] s = modeldata["postprocessing"]["exported"][2]["field"] sxcore = s.values[ncenterline[zclo], 1] s = modeldata["postprocessing"]["exported"][3]["field"] sxtop = s.values[ncenterline[zclo], 1] # The graph data needs to be collected by going through each layer separately. # Some quantities may be discontinuous between layers. zs = vcat( [z for (j, z) in enumerate(centerz) if inbotskin[j]], [z for (j, z) in enumerate(centerz) if incore[j]], [z for (j, z) in enumerate(centerz) if intopskin[j]], ) sxs = vcat( [sxbot[j] for (j, z) in enumerate(centerz) if inbotskin[j]], [sxcore[j] for (j, z) in enumerate(centerz) if incore[j]], [sxtop[j] for (j, z) in enumerate(centerz) if intopskin[j]], ) File = "Meyer_Piening_sandwich-sx-$(extrap).CSV" savecsv(File, zs = vec(zs) / phun("mm"), sx = vec(sxs) / phun("MPa")) # @async run(`"paraview.exe" $File`) # Inter laminar stress between the skin and the core modeldata["postprocessing"] = FDataDict( "file" => "Meyer_Piening_sandwich-sxz", "quantity" => :Cauchy, "component" => 5, "outputcsys" => CSys(3), "nodevalmethod" => nodevalmeth, "reportat" => extrap, ) modeldata = AlgoDeforLinearModule.exportstress(modeldata) s = modeldata["postprocessing"]["exported"][1]["field"] sxzskinbot = s.values[ninterbot[xclobot], 1] s = modeldata["postprocessing"]["exported"][2]["field"] sxzcoretop = s.values[nintertop[xclotop], 1] sxzcorebot = s.values[ninterbot[xclobot], 1] s = modeldata["postprocessing"]["exported"][3]["field"] sxzskintop = s.values[nintertop[xclotop], 1] File = "Meyer_Piening_sandwich-sxz-$(extrap).CSV" savecsv( File, xstop = vec(topx[xclotop]) / phun("mm"), sxzskintop = vec(sxzskintop[xclotop]) / phun("MPa"), sxzcoretop = vec(sxzcoretop[xclotop]) / phun("MPa"), thexsbot = vec(botx[xclobot]) / phun("mm"), sxzskinbot = vec(sxzskinbot[xclobot]) / phun("MPa"), sxzcorebot = vec(sxzcorebot[xclobot]) / phun("MPa"), ) println("Done") true end # Meyer_Piening_sandwich function Meyer_Piening_sandwich_H20() println(""" Meyer-Piening sandwich plate, serendipity H20 """) # Reference results from: # [1] Application of the Elasticity Solution # to Linear Sandwich Beam, Plate # and Shell Analyses # H.-R. MEYER -PIENING # Journal of SANDWICH STRUCTURES AND MATERIALS , Vol. 6—July 2004 # Assessment of the refined sinus plate finite element: # Free edge effect and Meyer-Piening sandwich test # P. Vidal, O. Polit, M. D'Ottavio, E. Valot # http://dx.doi.org/10.1016/j.finel.2014.08.004 # # The second study deals with a benchmark problem proposed # by Meyer-Piening [14]. It involves a simply -supported rectangular # sandwich plate submitted to a localized pressure applied on an # area of 5x20 mm. The geometry of the sandwich structure is # given in Fig.13. Due to the symmetry, only one quarter of the plate # is meshed. The faces have different thicknesses: h = 0.5 mm # (bottom face), h = 0.1 mm (top face). The thickness of the core # is h = 11.4 mm. The material properties are given in Table 3. # Note that this benchmark involves strong heterogeneities (very # different geometric and constitutive properties between core and # face) and local stress gradient due to the localized pressure load. # # [14] H.-R. Meyer-Piening, Experiences with exact linear sandwich beam and plate # analyses regarding bending, instability and frequency investigations, in: # Proceedings of the Fifth International Conference On Sandwich Constructions, # September 5–7, vol. I, Zurich, Switzerland, 2000, pp. 37–48. filebase = "Meyer-Piening-sandwich-H20" t0 = time() # Orthotropic material for the SKIN E1s = 70000.0 * phun("MPa") E2s = 71000.0 * phun("MPa") E3s = 69000.0 * phun("MPa") nu12s = nu13s = nu23s = 0.3 G12s = G13s = G23s = 26000.0 * phun("MPa") CTE1 = CTE2 = CTE3 = 0.0 # Orthotropic material for the CORE E1c = 3.0 * phun("MPa") E2c = 3.0 * phun("MPa") E3c = 2.8 * phun("MPa") nu12c = nu13c = nu23c = 0.25 G12c = G13c = G23c = 1.0 * phun("MPa") CTE1 = CTE2 = CTE3 = 0.0 Lx = 5.0 * phun("mm") # length of loaded rectangle Ly = 20.0 * phun("mm") # length of loaded rectangle Sx = 100.0 * phun("mm") # span of the plate Sy = 200.0 * phun("mm") # span of the plate # Here we define the layout and the thicknesses of the layers. angles = vec([0.0 0.0 0.0]) ts = vec([0.5 11.4 0.1]) * phun("mm") # layer thicknesses TH = sum(ts) # total thickness of the plate tolerance = 0.0001 * TH # The line load is in the negative Z direction. q0 = 1 * phun("MPa") # line load # Reference deflection under the load is wtopref = -3.789 * phun("mm") # From [1] wbottomref = -2.16 * phun("mm") # Not given in [1]; guessed from the figure # Select how find the mesh should be Refinement = 3 nL = Refinement * 1 nSx = nL + Refinement * 4 nSy = 2 * nSx # Each layer is modeled with a single element. nts = Refinement * [1, 2, 1]# number of elements per layer strength = 1.5 sp = (a, b, n) -> MeshUtilModule.gradedspace(a, b, n, strength) sp = (a, b, n) -> linearspace(a, b, n) xs = unique( vcat( reverse(collect(sp(Lx / 2, 0.0, nL + 1))), collect(sp(Lx / 2, Sx / 2, nSx - nL + 1)), ), ) ys = unique( vcat( reverse(collect(MeshUtilModule.gradedspace(Ly / 2, 0.0, nL + 1))), collect(sp(Ly / 2, Sy / 2, nSy - nL + 1)), ), ) fens, fes = H8layeredplatex(xs, ys, ts, nts) fens, fes = H8toH20(fens, fes) # This is the material model MR = DeforModelRed3D skinmaterial = MatDeforElastOrtho( MR, 0.0, E1s, E2s, E3s, nu12s, nu13s, nu23s, G12s, G13s, G23s, CTE1, CTE2, CTE3, ) corematerial = MatDeforElastOrtho( MR, 0.0, E1c, E2c, E3c, nu12c, nu13c, nu23c, G12c, G13c, G23c, CTE1, CTE2, CTE3, ) # The material coordinate system function is defined as: function _updatecs!(csmatout::FFltMat, feid::FInt, label) rotmat3!(csmatout, angles[label] / 180.0 * pi * [0.0; 0.0; 1.0]) csmatout end # The volume integrals are evaluated using this rule gr = GaussRule(3, 3) # We will create three regions, two for the skin, and one for the core. rfes = subset(fes, selectelem(fens, fes, label = 1)) botskinregion = FDataDict( "femm" => FEMMDeforLinear( MR, IntegDomain(rfes, gr), CSys( 3, 3, ( csmatout::FFltMat, XYZ::FFltMat, tangents::FFltMat, feid::FInt, qpid::FInt, ) -> _updatecs!(csmatout, feid, 1), ), skinmaterial, ), ) rfes = subset(fes, selectelem(fens, fes, label = 3)) topskinregion = FDataDict( "femm" => FEMMDeforLinear( MR, IntegDomain(rfes, gr), CSys( 3, 3, ( csmatout::FFltMat, XYZ::FFltMat, tangents::FFltMat, feid::FInt, qpid::FInt, ) -> _updatecs!(csmatout, feid, 3), ), skinmaterial, ), ) rfes = subset(fes, selectelem(fens, fes, label = 2)) coreregion = FDataDict( "femm" => FEMMDeforLinear( MR, IntegDomain(rfes, gr), CSys( 3, 3, ( csmatout::FFltMat, XYZ::FFltMat, tangents::FFltMat, feid::FInt, qpid::FInt, ) -> _updatecs!(csmatout, feid, 2), ), corematerial, ), ) # File = "Meyer_Piening_sandwich-r1.vtk" # vtkexportmesh(File, skinregion["femm"].integdomain.fes.conn, fens.xyz, FinEtools.MeshExportModule.H8) # # @async run(`"paraview.exe" $File`) # File = "Meyer_Piening_sandwich-r2.vtk" # vtkexportmesh(File, coreregion["femm"].integdomain.fes.conn, fens.xyz, FinEtools.MeshExportModule.H8) # @async run(`"paraview.exe" $File`) # The essential boundary conditions are applied on the symmetry planes. # First the plane X=0;... lx0 = selectnode(fens, box = [0.0 0.0 -Inf Inf -Inf Inf], inflate = tolerance) ex0 = FDataDict("displacement" => 0.0, "component" => 1, "node_list" => lx0) # ... and then the plane Y=0. ly0 = selectnode(fens, box = [-Inf Inf 0.0 0.0 -Inf Inf], inflate = tolerance) ey0 = FDataDict("displacement" => 0.0, "component" => 2, "node_list" => ly0) # The transverse displacement is fixed around the circumference. lz0 = vcat( selectnode(fens, box = [Sx / 2 Sx / 2 -Inf Inf -Inf Inf], inflate = tolerance), selectnode(fens, box = [-Inf Inf Sy / 2 Sy / 2 -Inf Inf], inflate = tolerance), ) ez0 = FDataDict("displacement" => 0.0, "component" => 3, "node_list" => lz0) # The traction boundary condition is applied along rectangle in the middle of the plate. bfes = meshboundary(fes) # From the entire boundary we select those quadrilaterals that lie on the plane # Z = thickness tl = selectelem(fens, bfes, box = [0.0 Lx / 2 0 Ly / 2 TH TH], inflate = tolerance) Trac = FDataDict( "traction_vector" => vec([0.0; 0.0; -q0]), "femm" => FEMMBase(IntegDomain(subset(bfes, tl), GaussRule(2, 3))), ) modeldata = FDataDict( "fens" => fens, "regions" => [botskinregion, coreregion, topskinregion], "essential_bcs" => [ex0, ey0, ez0], "traction_bcs" => [Trac], ) modeldata = AlgoDeforLinearModule.linearstatics(modeldata) modeldata["postprocessing"] = FDataDict("file" => filebase * "-u") modeldata = AlgoDeforLinearModule.exportdeformation(modeldata) u = modeldata["u"] geom = modeldata["geom"] # The results of the displacement and stresses will be reported at # nodes located at the appropriate points. nbottomcenter = selectnode(fens, box = [0.0 0.0 0.0 0.0 0.0 0.0], inflate = tolerance) ntopcenter = selectnode(fens, box = [0.0 0.0 0.0 0.0 TH TH], inflate = tolerance) ncenterline = selectnode(fens, box = [0.0 0.0 0.0 0.0 0.0 TH], inflate = tolerance) nintertop = selectnode( fens, box = [-Inf Inf 0.0 0.0 sum(ts[1:2]) sum(ts[1:2])], inflate = tolerance, ) ninterbot = selectnode( fens, box = [-Inf Inf 0.0 0.0 sum(ts[1:1]) sum(ts[1:1])], inflate = tolerance, ) zclo = sortperm(vec(geom.values[ncenterline, 3])) ncenterline = ncenterline[zclo] centerz = geom.values[ncenterline, 3] zclo = nothing xclotop = sortperm(vec(geom.values[nintertop, 1])) nintertop = nintertop[xclotop] topx = geom.values[nintertop, 1] xclobot = sortperm(vec(geom.values[ninterbot, 1])) ninterbot = ninterbot[xclobot] botx = geom.values[ninterbot, 1] xclotop = xclobot = nothing conninbotskin = intersect(connectednodes(botskinregion["femm"].integdomain.fes), ncenterline) connincore = intersect(connectednodes(coreregion["femm"].integdomain.fes), ncenterline) connintopskin = intersect(connectednodes(topskinregion["femm"].integdomain.fes), ncenterline) inbotskin = [n in conninbotskin for n in ncenterline] incore = [n in connincore for n in ncenterline] intopskin = [n in connintopskin for n in ncenterline] println("") println("Top Center deflection: $(u.values[ntopcenter, 3]/phun("mm")) [mm]") println("Bottom Center deflection: $(u.values[nbottomcenter, 3]/phun("mm")) [mm]") # # extrap = :extrapmean # extrap = :extraptrend # nodevalmeth = :averaging extrap = :default nodevalmeth = :invdistance # Normal stress in the X direction modeldata["postprocessing"] = FDataDict( "file" => filebase * "-sx", "quantity" => :Cauchy, "component" => 1, "outputcsys" => CSys(3), "nodevalmethod" => nodevalmeth, "reportat" => extrap, ) modeldata = AlgoDeforLinearModule.exportstress(modeldata) s = modeldata["postprocessing"]["exported"][1]["field"] sxbot = s.values[ncenterline, 1] s = modeldata["postprocessing"]["exported"][2]["field"] sxcore = s.values[ncenterline, 1] s = modeldata["postprocessing"]["exported"][3]["field"] sxtop = s.values[ncenterline, 1] # The graph data needs to be collected by going through each layer separately. # Some quantities may be discontinuous between layers. zs = vcat( [z for (j, z) in enumerate(centerz) if inbotskin[j]], [z for (j, z) in enumerate(centerz) if incore[j]], [z for (j, z) in enumerate(centerz) if intopskin[j]], ) sxs = vcat( [sxbot[j] for (j, z) in enumerate(centerz) if inbotskin[j]], [sxcore[j] for (j, z) in enumerate(centerz) if incore[j]], [sxtop[j] for (j, z) in enumerate(centerz) if intopskin[j]], ) File = filebase * "-sx-$(extrap).CSV" savecsv(File, zs = vec(zs) / phun("mm"), sx = vec(sxs) / phun("MPa")) # @async run(`"paraview.exe" $File`) # Inter laminar stress between the skin and the core modeldata["postprocessing"] = FDataDict( "file" => filebase * "-sxz", "quantity" => :Cauchy, "component" => 5, "outputcsys" => CSys(3), "nodevalmethod" => nodevalmeth, "reportat" => extrap, ) modeldata = AlgoDeforLinearModule.exportstress(modeldata) s = modeldata["postprocessing"]["exported"][1]["field"] sxzskinbot = s.values[ninterbot, 1] s = modeldata["postprocessing"]["exported"][2]["field"] sxzcoretop = s.values[nintertop, 1] sxzcorebot = s.values[ninterbot, 1] s = modeldata["postprocessing"]["exported"][3]["field"] sxzskintop = s.values[nintertop, 1] File = filebase * "-sxz-$(extrap).CSV" savecsv( File, xstop = vec(topx) / phun("mm"), sxzskintop = vec(sxzskintop) / phun("MPa"), sxzcoretop = vec(sxzcoretop) / phun("MPa"), xsbot = vec(botx) / phun("mm"), sxzskinbot = vec(sxzskinbot) / phun("MPa"), sxzcorebot = vec(sxzcorebot) / phun("MPa"), ) @async run(`"paraview.exe" $File`) println("Done") true end # Meyer_Piening_sandwich_H20 function Meyer_Piening_sandwich_H8() println(""" Meyer-Piening sandwich plate, plain-vanilla H8 """) # Reference results from: # [1] Application of the Elasticity Solution # to Linear Sandwich Beam, Plate # and Shell Analyses # H.-R. MEYER -PIENING # Journal of SANDWICH STRUCTURES AND MATERIALS , Vol. 6—July 2004 # Assessment of the refined sinus plate finite element: # Free edge effect and Meyer-Piening sandwich test # P. Vidal, O. Polit, M. D'Ottavio, E. Valot # http://dx.doi.org/10.1016/j.finel.2014.08.004 # # The second study deals with a benchmark problem proposed # by Meyer-Piening [14]. It involves a simply -supported rectangular # sandwich plate submitted to a localized pressure applied on an # area of 5x20 mm. The geometry of the sandwich structure is # given in Fig.13. Due to the symmetry, only one quarter of the plate # is meshed. The faces have different thicknesses: h = 0.5 mm # (bottom face), h = 0.1 mm (top face). The thickness of the core # is h = 11.4 mm. The material properties are given in Table 3. # Note that this benchmark involves strong heterogeneities (very # different geometric and constitutive properties between core and # face) and local stress gradient due to the localized pressure load. # # [14] H.-R. Meyer-Piening, Experiences with exact linear sandwich beam and plate # analyses regarding bending, instability and frequency investigations, in: # Proceedings of the Fifth International Conference On Sandwich Constructions, # September 5–7, vol. I, Zurich, Switzerland, 2000, pp. 37–48. t0 = time() # Orthotropic material for the SKIN E1s = 70000.0 * phun("MPa") E2s = 71000.0 * phun("MPa") E3s = 69000.0 * phun("MPa") nu12s = nu13s = nu23s = 0.3 G12s = G13s = G23s = 26000.0 * phun("MPa") CTE1 = CTE2 = CTE3 = 0.0 # Orthotropic material for the CORE E1c = 3.0 * phun("MPa") E2c = 3.0 * phun("MPa") E3c = 2.8 * phun("MPa") nu12c = nu13c = nu23c = 0.25 G12c = G13c = G23c = 1.0 * phun("MPa") CTE1 = CTE2 = CTE3 = 0.0 Lx = 5.0 * phun("mm") # length of loaded rectangle Ly = 20.0 * phun("mm") # length of loaded rectangle Sx = 100.0 * phun("mm") # span of the plate Sy = 200.0 * phun("mm") # span of the plate # Here we define the layout and the thicknesses of the layers. angles = vec([0.0 0.0 0.0]) ts = vec([0.5 11.4 0.1]) * phun("mm") # layer thicknesses TH = sum(ts) # total thickness of the plate tolerance = 0.0001 * TH # The line load is in the negative Z direction. q0 = 1 * phun("MPa") # line load # Reference deflection under the load is wtopref = -3.789 * phun("mm") # From [1] wbottomref = -2.16 * phun("mm") # Not given in [1]; guessed from the figure # Select how find the mesh should be Refinement = 5 nL = Refinement * 1 nSx = nL + Refinement * 4 nSy = 2 * nSx # Each layer is modeled with a single element. nts = Refinement * [1, 2, 1]# number of elements per layer strength = 1.5 xs = unique( vcat( reverse(collect(MeshUtilModule.gradedspace(Lx / 2, 0.0, nL + 1, strength))), collect(MeshUtilModule.gradedspace(Lx / 2, Sx / 2, nSx - nL + 1, strength)), ), ) ys = unique( vcat( reverse(collect(MeshUtilModule.gradedspace(Ly / 2, 0.0, nL + 1, strength))), collect(MeshUtilModule.gradedspace(Ly / 2, Sy / 2, nSy - nL + 1, strength)), ), ) fens, fes = H8layeredplatex(xs, ys, ts, nts) # This is the material model MR = DeforModelRed3D skinmaterial = MatDeforElastOrtho( MR, 0.0, E1s, E2s, E3s, nu12s, nu13s, nu23s, G12s, G13s, G23s, CTE1, CTE2, CTE3, ) corematerial = MatDeforElastOrtho( MR, 0.0, E1c, E2c, E3c, nu12c, nu13c, nu23c, G12c, G13c, G23c, CTE1, CTE2, CTE3, ) # The material coordinate system function is defined as: function _updatecs!(csmatout::FFltMat, feid::FInt, label) rotmat3!(csmatout, angles[label] / 180.0 * pi * [0.0; 0.0; 1.0]) csmatout end # The vvolume integrals are evaluated using this rule gr = GaussRule(3, 2) # We will create three regions, two for the skin, and one for the core. rfes = subset(fes, selectelem(fens, fes, label = 1)) botskinregion = FDataDict( "femm" => FEMMDeforLinear( MR, IntegDomain(rfes, gr), CSys( 3, 3, ( csmatout::FFltMat, XYZ::FFltMat, tangents::FFltMat, feid::FInt, qpid::FInt, ) -> _updatecs!(csmatout, feid, 1), ), skinmaterial, ), ) rfes = subset(fes, selectelem(fens, fes, label = 3)) topskinregion = FDataDict( "femm" => FEMMDeforLinear( MR, IntegDomain(rfes, gr), CSys( 3, 3, ( csmatout::FFltMat, XYZ::FFltMat, tangents::FFltMat, feid::FInt, qpid::FInt, ) -> _updatecs!(csmatout, feid, 3), ), skinmaterial, ), ) rfes = subset(fes, selectelem(fens, fes, label = 2)) coreregion = FDataDict( "femm" => FEMMDeforLinear( MR, IntegDomain(rfes, gr), CSys( 3, 3, ( csmatout::FFltMat, XYZ::FFltMat, tangents::FFltMat, feid::FInt, qpid::FInt, ) -> _updatecs!(csmatout, feid, 2), ), corematerial, ), ) # File = "Meyer_Piening_sandwich-r1.vtk" # vtkexportmesh(File, skinregion["femm"].integdomain.fes.conn, fens.xyz, FinEtools.MeshExportModule.H8) # # @async run(`"paraview.exe" $File`) # File = "Meyer_Piening_sandwich-r2.vtk" # vtkexportmesh(File, coreregion["femm"].integdomain.fes.conn, fens.xyz, FinEtools.MeshExportModule.H8) # @async run(`"paraview.exe" $File`) # The essential boundary conditions are applied on the symmetry planes. # First the plane X=0;... lx0 = selectnode(fens, box = [0.0 0.0 -Inf Inf -Inf Inf], inflate = tolerance) ex0 = FDataDict("displacement" => 0.0, "component" => 1, "node_list" => lx0) # ... and then the plane Y=0. ly0 = selectnode(fens, box = [-Inf Inf 0.0 0.0 -Inf Inf], inflate = tolerance) ey0 = FDataDict("displacement" => 0.0, "component" => 2, "node_list" => ly0) # The transverse displacement is fixed around the circumference. lz0 = vcat( selectnode(fens, box = [Sx / 2 Sx / 2 -Inf Inf -Inf Inf], inflate = tolerance), selectnode(fens, box = [-Inf Inf Sy / 2 Sy / 2 -Inf Inf], inflate = tolerance), ) ez0 = FDataDict("displacement" => 0.0, "component" => 3, "node_list" => lz0) # The traction boundary condition is applied along rectangle in the middle of the plate. bfes = meshboundary(fes) # From the entire boundary we select those quadrilaterals that lie on the plane # Z = thickness tl = selectelem(fens, bfes, box = [0.0 Lx / 2 0 Ly / 2 TH TH], inflate = tolerance) Trac = FDataDict( "traction_vector" => vec([0.0; 0.0; -q0]), "femm" => FEMMBase(IntegDomain(subset(bfes, tl), GaussRule(2, 2))), ) modeldata = FDataDict( "fens" => fens, "regions" => [botskinregion, coreregion, topskinregion], "essential_bcs" => [ex0, ey0, ez0], "traction_bcs" => [Trac], ) modeldata = AlgoDeforLinearModule.linearstatics(modeldata) modeldata["postprocessing"] = FDataDict("file" => "Meyer_Piening_sandwich") modeldata = AlgoDeforLinearModule.exportdeformation(modeldata) u = modeldata["u"] geom = modeldata["geom"] # The results of the displacement and stresses will be reported at # nodes located at the appropriate points. nbottomcenter = selectnode(fens, box = [0.0 0.0 0.0 0.0 0.0 0.0], inflate = tolerance) ntopcenter = selectnode(fens, box = [0.0 0.0 0.0 0.0 TH TH], inflate = tolerance) ncenterline = selectnode(fens, box = [0.0 0.0 0.0 0.0 0.0 TH], inflate = tolerance) nintertop = selectnode( fens, box = [-Inf Inf 0.0 0.0 sum(ts[1:2]) sum(ts[1:2])], inflate = tolerance, ) ninterbot = selectnode( fens, box = [-Inf Inf 0.0 0.0 sum(ts[1:1]) sum(ts[1:1])], inflate = tolerance, ) zclo = sortperm(vec(geom.values[ncenterline, 3])) centerz = geom.values[ncenterline[zclo], 3] xclotop = sortperm(vec(geom.values[nintertop, 1])) topx = geom.values[nintertop[xclotop], 1] xclobot = sortperm(vec(geom.values[ninterbot, 1])) botx = geom.values[ninterbot[xclobot], 1] conninbotskin = intersect(connectednodes(botskinregion["femm"].integdomain.fes), ncenterline) connincore = intersect(connectednodes(coreregion["femm"].integdomain.fes), ncenterline) connintopskin = intersect(connectednodes(topskinregion["femm"].integdomain.fes), ncenterline) inbotskin = [n in conninbotskin for n in ncenterline] incore = [n in connincore for n in ncenterline] intopskin = [n in connintopskin for n in ncenterline] println("") println("Top Center deflection: $(u.values[ntopcenter, 3]/phun("mm")) [mm]") println("Bottom Center deflection: $(u.values[nbottomcenter, 3]/phun("mm")) [mm]") # # extrap = :extrapmean # extrap = :extraptrend # nodevalmeth = :averaging extrap = :default nodevalmeth = :invdistance # Normal stress in the X direction modeldata["postprocessing"] = FDataDict( "file" => "Meyer_Piening_sandwich-sx", "quantity" => :Cauchy, "component" => 1, "outputcsys" => CSys(3), "nodevalmethod" => nodevalmeth, "reportat" => extrap, ) modeldata = AlgoDeforLinearModule.exportstress(modeldata) s = modeldata["postprocessing"]["exported"][1]["field"] sxbot = s.values[ncenterline[zclo], 1] s = modeldata["postprocessing"]["exported"][2]["field"] sxcore = s.values[ncenterline[zclo], 1] s = modeldata["postprocessing"]["exported"][3]["field"] sxtop = s.values[ncenterline[zclo], 1] # The graph data needs to be collected by going through each layer separately. # Some quantities may be discontinuous between layers. zs = vcat( [z for (j, z) in enumerate(centerz) if inbotskin[j]], [z for (j, z) in enumerate(centerz) if incore[j]], [z for (j, z) in enumerate(centerz) if intopskin[j]], ) sxs = vcat( [sxbot[j] for (j, z) in enumerate(centerz) if inbotskin[j]], [sxcore[j] for (j, z) in enumerate(centerz) if incore[j]], [sxtop[j] for (j, z) in enumerate(centerz) if intopskin[j]], ) File = "Meyer_Piening_sandwich-sx-$(extrap).CSV" savecsv(File, zs = vec(zs) / phun("mm"), sx = vec(sxs) / phun("MPa")) # @async run(`"paraview.exe" $File`) # Inter laminar stress between the skin and the core modeldata["postprocessing"] = FDataDict( "file" => "Meyer_Piening_sandwich-sxz", "quantity" => :Cauchy, "component" => 5, "outputcsys" => CSys(3), "nodevalmethod" => nodevalmeth, "reportat" => extrap, ) modeldata = AlgoDeforLinearModule.exportstress(modeldata) s = modeldata["postprocessing"]["exported"][1]["field"] sxzskinbot = s.values[ninterbot[xclobot], 1] s = modeldata["postprocessing"]["exported"][2]["field"] sxzcoretop = s.values[nintertop[xclotop], 1] sxzcorebot = s.values[ninterbot[xclobot], 1] s = modeldata["postprocessing"]["exported"][3]["field"] sxzskintop = s.values[nintertop[xclotop], 1] File = "Meyer_Piening_sandwich-sxz-$(extrap).CSV" savecsv( File, xstop = vec(topx[xclotop]) / phun("mm"), sxzskintop = vec(sxzskintop[xclotop]) / phun("MPa"), sxzcoretop = vec(sxzcoretop[xclotop]) / phun("MPa"), xsbot = vec(botx[xclobot]) / phun("mm"), sxzskinbot = vec(sxzskinbot[xclobot]) / phun("MPa"), sxzcorebot = vec(sxzcorebot[xclobot]) / phun("MPa"), ) @async run(`"paraview.exe" $File`) println("Done") true end # Meyer_Piening_sandwich_H8 function Meyer_Piening_sandwich_MSH8() println(""" Meyer-Piening sandwich plate: mean-strain hexahedron """) # Reference results from: # [1] Application of the Elasticity Solution # to Linear Sandwich Beam, Plate # and Shell Analyses # H.-R. MEYER -PIENING # Journal of SANDWICH STRUCTURES AND MATERIALS , Vol. 6—July 2004 # Assessment of the refined sinus plate finite element: # Free edge effect and Meyer-Piening sandwich test # P. Vidal, O. Polit, M. D'Ottavio, E. Valot # http://dx.doi.org/10.1016/j.finel.2014.08.004 # # The second study deals with a benchmark problem proposed # by Meyer-Piening [14]. It involves a simply -supported rectangular # sandwich plate submitted to a localized pressure applied on an # area of 5x20 mm. The geometry of the sandwich structure is # given in Fig.13. Due to the symmetry, only one quarter of the plate # is meshed. The faces have different thicknesses: h = 0.5 mm # (bottom face), h = 0.1 mm (top face). The thickness of the core # is h = 11.4 mm. The material properties are given in Table 3. # Note that this benchmark involves strong heterogeneities (very # different geometric and constitutive properties between core and # face) and local stress gradient due to the localized pressure load. # # [14] H.-R. Meyer-Piening, Experiences with exact linear sandwich beam and plate # analyses regarding bending, instability and frequency investigations, in: # Proceedings of the Fifth International Conference On Sandwich Constructions, # September 5–7, vol. I, Zurich, Switzerland, 2000, pp. 37–48. filebase = "Meyer-Piening-sandwich-MSH8" t0 = time() # Orthotropic material for the SKIN E1s = 70000.0 * phun("MPa") E2s = 71000.0 * phun("MPa") E3s = 69000.0 * phun("MPa") nu12s = nu13s = nu23s = 0.3 G12s = G13s = G23s = 26000.0 * phun("MPa") CTE1 = CTE2 = CTE3 = 0.0 # Orthotropic material for the CORE E1c = 3.0 * phun("MPa") E2c = 3.0 * phun("MPa") E3c = 2.8 * phun("MPa") nu12c = nu13c = nu23c = 0.25 G12c = G13c = G23c = 1.0 * phun("MPa") CTE1 = CTE2 = CTE3 = 0.0 Lx = 5.0 * phun("mm") # length of loaded rectangle Ly = 20.0 * phun("mm") # length of loaded rectangle Sx = 100.0 * phun("mm") # span of the plate Sy = 200.0 * phun("mm") # span of the plate # Here we define the layout and the thicknesses of the layers. angles = vec([0.0 0.0 0.0]) ts = vec([0.5 11.4 0.1]) * phun("mm") # layer thicknesses TH = sum(ts) # total thickness of the plate tolerance = 0.0001 * TH # The line load is in the negative Z direction. q0 = 1 * phun("MPa") # line load # Reference deflection under the load is wtopref = -3.789 * phun("mm") # From [1] wbottomref = -2.16 * phun("mm") # Not given in [1]; guessed from the figure # Select how find the mesh should be Refinement = 7 nL = Refinement * 1 nSx = nL + Refinement * 4 nSy = 2 * nSx # Each layer is modeled with a single element. nts = Refinement * [1, 2, 1]# number of elements per layer strength = 1.5 sp = (a, b, n) -> MeshUtilModule.gradedspace(a, b, n, strength) sp = (a, b, n) -> linearspace(a, b, n) xs = unique( vcat( reverse(collect(sp(Lx / 2, 0.0, nL + 1))), collect(sp(Lx / 2, Sx / 2, nSx - nL + 1)), ), ) ys = unique( vcat( reverse(collect(MeshUtilModule.gradedspace(Ly / 2, 0.0, nL + 1))), collect(sp(Ly / 2, Sy / 2, nSy - nL + 1)), ), ) fens, fes = H8layeredplatex(xs, ys, ts, nts) # This is the material model MR = DeforModelRed3D skinmaterial = MatDeforElastOrtho( MR, 0.0, E1s, E2s, E3s, nu12s, nu13s, nu23s, G12s, G13s, G23s, CTE1, CTE2, CTE3, ) corematerial = MatDeforElastOrtho( MR, 0.0, E1c, E2c, E3c, nu12c, nu13c, nu23c, G12c, G13c, G23c, CTE1, CTE2, CTE3, ) # The material coordinate system function is defined as: function _updatecs!(csmatout::FFltMat, feid::FInt, label) rotmat3!(csmatout, angles[label] / 180.0 * pi * [0.0; 0.0; 1.0]) csmatout end # The vvolume integrals are evaluated using this rule gr = GaussRule(3, 2) # We will create three regions, two for the skin, and one for the core. rfes = subset(fes, selectelem(fens, fes, label = 1)) botskinregion = FDataDict( "femm" => FEMMDeforLinearMSH8( MR, IntegDomain(rfes, gr), CSys( 3, 3, ( csmatout::FFltMat, XYZ::FFltMat, tangents::FFltMat, feid::FInt, qpid::FInt, ) -> _updatecs!(csmatout, feid, 1), ), skinmaterial, ), ) rfes = subset(fes, selectelem(fens, fes, label = 3)) topskinregion = FDataDict( "femm" => FEMMDeforLinearMSH8( MR, IntegDomain(rfes, gr), CSys( 3, 3, ( csmatout::FFltMat, XYZ::FFltMat, tangents::FFltMat, feid::FInt, qpid::FInt, ) -> _updatecs!(csmatout, feid, 3), ), skinmaterial, ), ) rfes = subset(fes, selectelem(fens, fes, label = 2)) coreregion = FDataDict( "femm" => FEMMDeforLinearMSH8( MR, IntegDomain(rfes, gr), CSys( 3, 3, ( csmatout::FFltMat, XYZ::FFltMat, tangents::FFltMat, feid::FInt, qpid::FInt, ) -> _updatecs!(csmatout, feid, 2), ), corematerial, ), ) # File = "Meyer_Piening_sandwich-r1.vtk" # vtkexportmesh(File, skinregion["femm"].integdomain.fes.conn, fens.xyz, FinEtools.MeshExportModule.H8) # # @async run(`"paraview.exe" $File`) # File = "Meyer_Piening_sandwich-r2.vtk" # vtkexportmesh(File, coreregion["femm"].integdomain.fes.conn, fens.xyz, FinEtools.MeshExportModule.H8) # @async run(`"paraview.exe" $File`) # The essential boundary conditions are applied on the symmetry planes. # First the plane X=0;... lx0 = selectnode(fens, box = [0.0 0.0 -Inf Inf -Inf Inf], inflate = tolerance) ex0 = FDataDict("displacement" => 0.0, "component" => 1, "node_list" => lx0) # ... and then the plane Y=0. ly0 = selectnode(fens, box = [-Inf Inf 0.0 0.0 -Inf Inf], inflate = tolerance) ey0 = FDataDict("displacement" => 0.0, "component" => 2, "node_list" => ly0) # The transverse displacement is fixed around the circumference. lz0 = vcat( selectnode(fens, box = [Sx / 2 Sx / 2 -Inf Inf -Inf Inf], inflate = tolerance), selectnode(fens, box = [-Inf Inf Sy / 2 Sy / 2 -Inf Inf], inflate = tolerance), ) ez0 = FDataDict("displacement" => 0.0, "component" => 3, "node_list" => lz0) # The traction boundary condition is applied along rectangle in the middle of the plate. bfes = meshboundary(fes) # From the entire boundary we select those quadrilaterals that lie on the plane # Z = thickness tl = selectelem(fens, bfes, box = [0.0 Lx / 2 0 Ly / 2 TH TH], inflate = tolerance) Trac = FDataDict( "traction_vector" => vec([0.0; 0.0; -q0]), "femm" => FEMMBase(IntegDomain(subset(bfes, tl), GaussRule(2, 2))), ) modeldata = FDataDict( "fens" => fens, "regions" => [botskinregion, coreregion, topskinregion], "essential_bcs" => [ex0, ey0, ez0], "traction_bcs" => [Trac], ) modeldata = AlgoDeforLinearModule.linearstatics(modeldata) modeldata["postprocessing"] = FDataDict("file" => filebase * "-u") modeldata = AlgoDeforLinearModule.exportdeformation(modeldata) u = modeldata["u"] geom = modeldata["geom"] # The results of the displacement and stresses will be reported at # nodes located at the appropriate points. nbottomcenter = selectnode(fens, box = [0.0 0.0 0.0 0.0 0.0 0.0], inflate = tolerance) ntopcenter = selectnode(fens, box = [0.0 0.0 0.0 0.0 TH TH], inflate = tolerance) ncenterline = selectnode(fens, box = [0.0 0.0 0.0 0.0 0.0 TH], inflate = tolerance) nintertop = selectnode( fens, box = [-Inf Inf 0.0 0.0 sum(ts[1:2]) sum(ts[1:2])], inflate = tolerance, ) ninterbot = selectnode( fens, box = [-Inf Inf 0.0 0.0 sum(ts[1:1]) sum(ts[1:1])], inflate = tolerance, ) zclo = sortperm(vec(geom.values[ncenterline, 3])) ncenterline = ncenterline[zclo] centerz = geom.values[ncenterline, 3] zclo = nothing xclotop = sortperm(vec(geom.values[nintertop, 1])) nintertop = nintertop[xclotop] topx = geom.values[nintertop, 1] xclobot = sortperm(vec(geom.values[ninterbot, 1])) ninterbot = ninterbot[xclobot] botx = geom.values[ninterbot, 1] xclotop = xclobot = nothing conninbotskin = intersect(connectednodes(botskinregion["femm"].integdomain.fes), ncenterline) connincore = intersect(connectednodes(coreregion["femm"].integdomain.fes), ncenterline) connintopskin = intersect(connectednodes(topskinregion["femm"].integdomain.fes), ncenterline) inbotskin = [n in conninbotskin for n in ncenterline] incore = [n in connincore for n in ncenterline] intopskin = [n in connintopskin for n in ncenterline] println("") println("Top Center deflection: $(u.values[ntopcenter, 3]/phun("mm")) [mm]") println("Bottom Center deflection: $(u.values[nbottomcenter, 3]/phun("mm")) [mm]") # # extrap = :extrapmean extrap = :extraptrend nodevalmeth = :averaging # extrap = :default # nodevalmeth = :invdistance # Normal stress in the X direction modeldata["postprocessing"] = FDataDict( "file" => filebase * "-sx", "quantity" => :Cauchy, "component" => 1, "outputcsys" => CSys(3), "nodevalmethod" => nodevalmeth, "reportat" => extrap, ) modeldata = AlgoDeforLinearModule.exportstress(modeldata) s = modeldata["postprocessing"]["exported"][1]["field"] sxbot = s.values[ncenterline, 1] s = modeldata["postprocessing"]["exported"][2]["field"] sxcore = s.values[ncenterline, 1] s = modeldata["postprocessing"]["exported"][3]["field"] sxtop = s.values[ncenterline, 1] # The graph data needs to be collected by going through each layer separately. # Some quantities may be discontinuous between layers. zs = vcat( [z for (j, z) in enumerate(centerz) if inbotskin[j]], [z for (j, z) in enumerate(centerz) if incore[j]], [z for (j, z) in enumerate(centerz) if intopskin[j]], ) sxs = vcat( [sxbot[j] for (j, z) in enumerate(centerz) if inbotskin[j]], [sxcore[j] for (j, z) in enumerate(centerz) if incore[j]], [sxtop[j] for (j, z) in enumerate(centerz) if intopskin[j]], ) File = filebase * "-sx-$(extrap).CSV" savecsv(File, zs = vec(zs) / phun("mm"), sx = vec(sxs) / phun("MPa")) # @async run(`"paraview.exe" $File`) # Inter laminar stress between the skin and the core modeldata["postprocessing"] = FDataDict( "file" => filebase * "-sxz", "quantity" => :Cauchy, "component" => 5, "outputcsys" => CSys(3), "nodevalmethod" => nodevalmeth, "reportat" => extrap, ) modeldata = AlgoDeforLinearModule.exportstress(modeldata) s = modeldata["postprocessing"]["exported"][1]["field"] sxzskinbot = s.values[ninterbot, 1] s = modeldata["postprocessing"]["exported"][2]["field"] sxzcoretop = s.values[nintertop, 1] sxzcorebot = s.values[ninterbot, 1] s = modeldata["postprocessing"]["exported"][3]["field"] sxzskintop = s.values[nintertop, 1] File = filebase * "-sxz-$(extrap).CSV" savecsv( File, xstop = vec(topx) / phun("mm"), sxzskintop = vec(sxzskintop) / phun("MPa"), sxzcoretop = vec(sxzcoretop) / phun("MPa"), xsbot = vec(botx) / phun("mm"), sxzskinbot = vec(sxzskinbot) / phun("MPa"), sxzcorebot = vec(sxzcorebot) / phun("MPa"), ) @async run(`"paraview.exe" $File`) println("Done") true end # Meyer_Piening_sandwich_MSH8 function Meyer_Piening_sandwich_MST10() println(""" Meyer-Piening sandwich plate, mean-strain MST10 """) # Reference results from: # [1] Application of the Elasticity Solution # to Linear Sandwich Beam, Plate # and Shell Analyses # H.-R. MEYER -PIENING # Journal of SANDWICH STRUCTURES AND MATERIALS , Vol. 6—July 2004 # Assessment of the refined sinus plate finite element: # Free edge effect and Meyer-Piening sandwich test # P. Vidal, O. Polit, M. D'Ottavio, E. Valot # http://dx.doi.org/10.1016/j.finel.2014.08.004 # # The second study deals with a benchmark problem proposed # by Meyer-Piening [14]. It involves a simply -supported rectangular # sandwich plate submitted to a localized pressure applied on an # area of 5x20 mm. The geometry of the sandwich structure is # given in Fig.13. Due to the symmetry, only one quarter of the plate # is meshed. The faces have different thicknesses: h = 0.5 mm # (bottom face), h = 0.1 mm (top face). The thickness of the core # is h = 11.4 mm. The material properties are given in Table 3. # Note that this benchmark involves strong heterogeneities (very # different geometric and constitutive properties between core and # face) and local stress gradient due to the localized pressure load. # # [14] H.-R. Meyer-Piening, Experiences with exact linear sandwich beam and plate # analyses regarding bending, instability and frequency investigations, in: # Proceedings of the Fifth International Conference On Sandwich Constructions, # September 5–7, vol. I, Zurich, Switzerland, 2000, pp. 37–48. filebase = "Meyer-Piening-sandwich-MST10" t0 = time() # Orthotropic material for the SKIN E1s = 70000.0 * phun("MPa") E2s = 71000.0 * phun("MPa") E3s = 69000.0 * phun("MPa") nu12s = nu13s = nu23s = 0.3 G12s = G13s = G23s = 26000.0 * phun("MPa") CTE1 = CTE2 = CTE3 = 0.0 # Orthotropic material for the CORE E1c = 3.0 * phun("MPa") E2c = 3.0 * phun("MPa") E3c = 2.8 * phun("MPa") nu12c = nu13c = nu23c = 0.25 G12c = G13c = G23c = 1.0 * phun("MPa") CTE1 = CTE2 = CTE3 = 0.0 Lx = 5.0 * phun("mm") # length of loaded rectangle Ly = 20.0 * phun("mm") # length of loaded rectangle Sx = 100.0 * phun("mm") # span of the plate Sy = 200.0 * phun("mm") # span of the plate # Here we define the layout and the thicknesses of the layers. angles = vec([0.0 0.0 0.0]) ts = vec([0.5 11.4 0.1]) * phun("mm") # layer thicknesses TH = sum(ts) # total thickness of the plate tolerance = 0.0001 * TH # The line load is in the negative Z direction. q0 = 1 * phun("MPa") # line load # Reference deflection under the load is wtopref = -3.789 * phun("mm") # From [1] wbottomref = -2.16 * phun("mm") # Not given in [1]; guessed from the figure # Select how find the mesh should be Refinement = 3 nL = Refinement * 1 nSx = nL + Refinement * 4 nSy = 2 * nSx # Each layer is modeled with a single element. nts = Refinement * [1, 2, 1]# number of elements per layer strength = 1.5 sp = (a, b, n) -> MeshUtilModule.gradedspace(a, b, n, strength) sp = (a, b, n) -> linearspace(a, b, n) xs = unique( vcat( reverse(collect(sp(Lx / 2, 0.0, nL + 1))), collect(sp(Lx / 2, Sx / 2, nSx - nL + 1)), ), ) ys = unique( vcat( reverse(collect(MeshUtilModule.gradedspace(Ly / 2, 0.0, nL + 1))), collect(sp(Ly / 2, Sy / 2, nSy - nL + 1)), ), ) fens, fes = T10layeredplatex(xs, ys, ts, nts) # This is the material model MR = DeforModelRed3D skinmaterial = MatDeforElastOrtho( MR, 0.0, E1s, E2s, E3s, nu12s, nu13s, nu23s, G12s, G13s, G23s, CTE1, CTE2, CTE3, ) corematerial = MatDeforElastOrtho( MR, 0.0, E1c, E2c, E3c, nu12c, nu13c, nu23c, G12c, G13c, G23c, CTE1, CTE2, CTE3, ) # The material coordinate system function is defined as: function _updatecs!(csmatout::FFltMat, feid::FInt, label) rotmat3!(csmatout, angles[label] / 180.0 * pi * [0.0; 0.0; 1.0]) csmatout end # The volume integrals are evaluated using this rule gr = SimplexRule(3, 4) # We will create three regions, two for the skin, and one for the core. rfes = subset(fes, selectelem(fens, fes, label = 1)) botskinregion = FDataDict( "femm" => FEMMDeforLinearMST10( MR, IntegDomain(rfes, gr), CSys( 3, 3, ( csmatout::FFltMat, XYZ::FFltMat, tangents::FFltMat, feid::FInt, qpid::FInt, ) -> _updatecs!(csmatout, feid, 1), ), skinmaterial, ), ) rfes = subset(fes, selectelem(fens, fes, label = 3)) topskinregion = FDataDict( "femm" => FEMMDeforLinearMST10( MR, IntegDomain(rfes, gr), CSys( 3, 3, ( csmatout::FFltMat, XYZ::FFltMat, tangents::FFltMat, feid::FInt, qpid::FInt, ) -> _updatecs!(csmatout, feid, 3), ), skinmaterial, ), ) rfes = subset(fes, selectelem(fens, fes, label = 2)) coreregion = FDataDict( "femm" => FEMMDeforLinearMST10( MR, IntegDomain(rfes, gr), CSys( 3, 3, ( csmatout::FFltMat, XYZ::FFltMat, tangents::FFltMat, feid::FInt, qpid::FInt, ) -> _updatecs!(csmatout, feid, 2), ), corematerial, ), ) # File = "Meyer_Piening_sandwich-r1.vtk" # vtkexportmesh(File, botskinregion["femm"].integdomain.fes.conn, fens.xyz, # FinEtools.MeshExportModule.T10) # # @async run(`"paraview.exe" $File`) # File = "Meyer_Piening_sandwich-r2.vtk" # vtkexportmesh(File, coreregion["femm"].integdomain.fes.conn, fens.xyz, # FinEtools.MeshExportModule.T10) # @async run(`"paraview.exe" $File`) # The essential boundary conditions are applied on the symmetry planes. # First the plane X=0;... lx0 = selectnode(fens, box = [0.0 0.0 -Inf Inf -Inf Inf], inflate = tolerance) ex0 = FDataDict("displacement" => 0.0, "component" => 1, "node_list" => lx0) # ... and then the plane Y=0. ly0 = selectnode(fens, box = [-Inf Inf 0.0 0.0 -Inf Inf], inflate = tolerance) ey0 = FDataDict("displacement" => 0.0, "component" => 2, "node_list" => ly0) # The transverse displacement is fixed around the circumference. lz0 = vcat( selectnode(fens, box = [Sx / 2 Sx / 2 -Inf Inf -Inf Inf], inflate = tolerance), selectnode(fens, box = [-Inf Inf Sy / 2 Sy / 2 -Inf Inf], inflate = tolerance), ) ez0 = FDataDict("displacement" => 0.0, "component" => 3, "node_list" => lz0) # The traction boundary condition is applied along rectangle in the middle of the plate. bfes = meshboundary(fes) # From the entire boundary we select those quadrilaterals that lie on the plane # Z = thickness tl = selectelem(fens, bfes, box = [0.0 Lx / 2 0 Ly / 2 TH TH], inflate = tolerance) Trac = FDataDict( "traction_vector" => vec([0.0; 0.0; -q0]), "femm" => FEMMBase(IntegDomain(subset(bfes, tl), SimplexRule(2, 3))), ) modeldata = FDataDict( "fens" => fens, "regions" => [botskinregion, coreregion, topskinregion], "essential_bcs" => [ex0, ey0, ez0], "traction_bcs" => [Trac], ) modeldata = AlgoDeforLinearModule.linearstatics(modeldata) modeldata["postprocessing"] = FDataDict("file" => filebase * "-u") modeldata = AlgoDeforLinearModule.exportdeformation(modeldata) u = modeldata["u"] geom = modeldata["geom"] # The results of the displacement and stresses will be reported at # nodes located at the appropriate points. nbottomcenter = selectnode(fens, box = [0.0 0.0 0.0 0.0 0.0 0.0], inflate = tolerance) ntopcenter = selectnode(fens, box = [0.0 0.0 0.0 0.0 TH TH], inflate = tolerance) ncenterline = selectnode(fens, box = [0.0 0.0 0.0 0.0 0.0 TH], inflate = tolerance) nintertop = selectnode( fens, box = [-Inf Inf 0.0 0.0 sum(ts[1:2]) sum(ts[1:2])], inflate = tolerance, ) ninterbot = selectnode( fens, box = [-Inf Inf 0.0 0.0 sum(ts[1:1]) sum(ts[1:1])], inflate = tolerance, ) zclo = sortperm(vec(geom.values[ncenterline, 3])) ncenterline = ncenterline[zclo] centerz = geom.values[ncenterline, 3] zclo = nothing xclotop = sortperm(vec(geom.values[nintertop, 1])) nintertop = nintertop[xclotop] topx = geom.values[nintertop, 1] xclobot = sortperm(vec(geom.values[ninterbot, 1])) ninterbot = ninterbot[xclobot] botx = geom.values[ninterbot, 1] xclotop = xclobot = nothing conninbotskin = intersect(connectednodes(botskinregion["femm"].integdomain.fes), ncenterline) connincore = intersect(connectednodes(coreregion["femm"].integdomain.fes), ncenterline) connintopskin = intersect(connectednodes(topskinregion["femm"].integdomain.fes), ncenterline) inbotskin = [n in conninbotskin for n in ncenterline] incore = [n in connincore for n in ncenterline] intopskin = [n in connintopskin for n in ncenterline] println("") println("Top Center deflection: $(u.values[ntopcenter, 3]/phun("mm")) [mm]") println("Bottom Center deflection: $(u.values[nbottomcenter, 3]/phun("mm")) [mm]") # # extrap = :extrapmean extrap = :extraptrend nodevalmeth = :averaging # extrap = :default # nodevalmeth = :invdistance # Normal stress in the X direction modeldata["postprocessing"] = FDataDict( "file" => filebase * "-sx", "quantity" => :Cauchy, "component" => 1, "outputcsys" => CSys(3), "nodevalmethod" => nodevalmeth, "reportat" => extrap, ) modeldata = AlgoDeforLinearModule.exportstress(modeldata) s = modeldata["postprocessing"]["exported"][1]["field"] sxbot = s.values[ncenterline, 1] s = modeldata["postprocessing"]["exported"][2]["field"] sxcore = s.values[ncenterline, 1] s = modeldata["postprocessing"]["exported"][3]["field"] sxtop = s.values[ncenterline, 1] # The graph data needs to be collected by going through each layer separately. # Some quantities may be discontinuous between layers. zs = vcat( [z for (j, z) in enumerate(centerz) if inbotskin[j]], [z for (j, z) in enumerate(centerz) if incore[j]], [z for (j, z) in enumerate(centerz) if intopskin[j]], ) sxs = vcat( [sxbot[j] for (j, z) in enumerate(centerz) if inbotskin[j]], [sxcore[j] for (j, z) in enumerate(centerz) if incore[j]], [sxtop[j] for (j, z) in enumerate(centerz) if intopskin[j]], ) File = filebase * "-sx-$(extrap).CSV" savecsv(File, zs = vec(zs) / phun("mm"), sx = vec(sxs) / phun("MPa")) # @async run(`"paraview.exe" $File`) # Inter laminar stress between the skin and the core modeldata["postprocessing"] = FDataDict( "file" => filebase * "-sxz", "quantity" => :Cauchy, "component" => 5, "outputcsys" => CSys(3), "nodevalmethod" => nodevalmeth, "reportat" => extrap, ) modeldata = AlgoDeforLinearModule.exportstress(modeldata) s = modeldata["postprocessing"]["exported"][1]["field"] sxzskinbot = s.values[ninterbot, 1] s = modeldata["postprocessing"]["exported"][2]["field"] sxzcoretop = s.values[nintertop, 1] sxzcorebot = s.values[ninterbot, 1] s = modeldata["postprocessing"]["exported"][3]["field"] sxzskintop = s.values[nintertop, 1] File = filebase * "-sxz-$(extrap).CSV" savecsv( File, xstop = vec(topx) / phun("mm"), sxzskintop = vec(sxzskintop) / phun("MPa"), sxzcoretop = vec(sxzcoretop) / phun("MPa"), xsbot = vec(botx) / phun("mm"), sxzskinbot = vec(sxzskinbot) / phun("MPa"), sxzcorebot = vec(sxzcorebot) / phun("MPa"), ) @async run(`"paraview.exe" $File`) println("Done") true end # Meyer_Piening_sandwich_MST10 function Meyer_Piening_sandwich_MST10_timing() println(""" Meyer-Piening sandwich plate, mean-strain MST10 """) # Reference results from: # [1] Application of the Elasticity Solution # to Linear Sandwich Beam, Plate # and Shell Analyses # H.-R. MEYER -PIENING # Journal of SANDWICH STRUCTURES AND MATERIALS , Vol. 6—July 2004 # Assessment of the refined sinus plate finite element: # Free edge effect and Meyer-Piening sandwich test # P. Vidal, O. Polit, M. D'Ottavio, E. Valot # http://dx.doi.org/10.1016/j.finel.2014.08.004 # # The second study deals with a benchmark problem proposed # by Meyer-Piening [14]. It involves a simply -supported rectangular # sandwich plate submitted to a localized pressure applied on an # area of 5x20 mm. The geometry of the sandwich structure is # given in Fig.13. Due to the symmetry, only one quarter of the plate # is meshed. The faces have different thicknesses: h = 0.5 mm # (bottom face), h = 0.1 mm (top face). The thickness of the core # is h = 11.4 mm. The material properties are given in Table 3. # Note that this benchmark involves strong heterogeneities (very # different geometric and constitutive properties between core and # face) and local stress gradient due to the localized pressure load. # # [14] H.-R. Meyer-Piening, Experiences with exact linear sandwich beam and plate # analyses regarding bending, instability and frequency investigations, in: # Proceedings of the Fifth International Conference On Sandwich Constructions, # September 5–7, vol. I, Zurich, Switzerland, 2000, pp. 37–48. filebase = "Meyer-Piening-sandwich-MST10" t0 = time() # Orthotropic material for the SKIN E1s = 70000.0 * phun("MPa") E2s = 71000.0 * phun("MPa") E3s = 69000.0 * phun("MPa") nu12s = nu13s = nu23s = 0.3 G12s = G13s = G23s = 26000.0 * phun("MPa") CTE1 = CTE2 = CTE3 = 0.0 # Orthotropic material for the CORE E1c = 3.0 * phun("MPa") E2c = 3.0 * phun("MPa") E3c = 2.8 * phun("MPa") nu12c = nu13c = nu23c = 0.25 G12c = G13c = G23c = 1.0 * phun("MPa") CTE1 = CTE2 = CTE3 = 0.0 Lx = 5.0 * phun("mm") # length of loaded rectangle Ly = 20.0 * phun("mm") # length of loaded rectangle Sx = 100.0 * phun("mm") # span of the plate Sy = 200.0 * phun("mm") # span of the plate # Here we define the layout and the thicknesses of the layers. angles = vec([0.0 0.0 0.0]) ts = vec([0.5 11.4 0.1]) * phun("mm") # layer thicknesses TH = sum(ts) # total thickness of the plate tolerance = 0.0001 * TH # The line load is in the negative Z direction. q0 = 1 * phun("MPa") # line load # Reference deflection under the load is wtopref = -3.789 * phun("mm") # From [1] wbottomref = -2.16 * phun("mm") # Not given in [1]; guessed from the figure # Select how find the mesh should be Refinement = 3 nL = Refinement * 1 nSx = nL + Refinement * 4 nSy = 2 * nSx # Each layer is modeled with a single element. nts = Refinement * [1, 2, 1]# number of elements per layer strength = 1.5 sp = (a, b, n) -> MeshUtilModule.gradedspace(a, b, n, strength) sp = (a, b, n) -> linearspace(a, b, n) xs = unique( vcat( reverse(collect(sp(Lx / 2, 0.0, nL + 1))), collect(sp(Lx / 2, Sx / 2, nSx - nL + 1)), ), ) ys = unique( vcat( reverse(collect(MeshUtilModule.gradedspace(Ly / 2, 0.0, nL + 1))), collect(sp(Ly / 2, Sy / 2, nSy - nL + 1)), ), ) fens, fes = T10layeredplatex(xs, ys, ts, nts) # This is the material model MR = DeforModelRed3D skinmaterial = MatDeforElastOrtho( MR, 0.0, E1s, E2s, E3s, nu12s, nu13s, nu23s, G12s, G13s, G23s, CTE1, CTE2, CTE3, ) corematerial = MatDeforElastOrtho( MR, 0.0, E1c, E2c, E3c, nu12c, nu13c, nu23c, G12c, G13c, G23c, CTE1, CTE2, CTE3, ) # The material coordinate system function is defined as: function _updatecs!(csmatout::FFltMat, feid::FInt, label) rotmat3!(csmatout, angles[label] / 180.0 * pi * [0.0; 0.0; 1.0]) csmatout end # The volume integrals are evaluated using this rule gr = SimplexRule(3, 4) # We will create three regions, two for the skin, and one for the core. rfes = subset(fes, selectelem(fens, fes, label = 1)) botskinregion = FDataDict( "femm" => FEMMDeforLinearMST10( MR, IntegDomain(rfes, gr), CSys( 3, 3, ( csmatout::FFltMat, XYZ::FFltMat, tangents::FFltMat, feid::FInt, qpid::FInt, ) -> _updatecs!(csmatout, feid, 1), ), skinmaterial, ), ) rfes = subset(fes, selectelem(fens, fes, label = 3)) topskinregion = FDataDict( "femm" => FEMMDeforLinearMST10( MR, IntegDomain(rfes, gr), CSys( 3, 3, ( csmatout::FFltMat, XYZ::FFltMat, tangents::FFltMat, feid::FInt, qpid::FInt, ) -> _updatecs!(csmatout, feid, 3), ), skinmaterial, ), ) rfes = subset(fes, selectelem(fens, fes, label = 2)) coreregion = FDataDict( "femm" => FEMMDeforLinearMST10( MR, IntegDomain(rfes, gr), CSys( 3, 3, ( csmatout::FFltMat, XYZ::FFltMat, tangents::FFltMat, feid::FInt, qpid::FInt, ) -> _updatecs!(csmatout, feid, 2), ), corematerial, ), ) # File = "Meyer_Piening_sandwich-r1.vtk" # vtkexportmesh(File, botskinregion["femm"].integdomain.fes.conn, fens.xyz, # FinEtools.MeshExportModule.T10) # # @async run(`"paraview.exe" $File`) # File = "Meyer_Piening_sandwich-r2.vtk" # vtkexportmesh(File, coreregion["femm"].integdomain.fes.conn, fens.xyz, # FinEtools.MeshExportModule.T10) # @async run(`"paraview.exe" $File`) # The essential boundary conditions are applied on the symmetry planes. # First the plane X=0;... lx0 = selectnode(fens, box = [0.0 0.0 -Inf Inf -Inf Inf], inflate = tolerance) ex0 = FDataDict("displacement" => 0.0, "component" => 1, "node_list" => lx0) # ... and then the plane Y=0. ly0 = selectnode(fens, box = [-Inf Inf 0.0 0.0 -Inf Inf], inflate = tolerance) ey0 = FDataDict("displacement" => 0.0, "component" => 2, "node_list" => ly0) # The transverse displacement is fixed around the circumference. lz0 = vcat( selectnode(fens, box = [Sx / 2 Sx / 2 -Inf Inf -Inf Inf], inflate = tolerance), selectnode(fens, box = [-Inf Inf Sy / 2 Sy / 2 -Inf Inf], inflate = tolerance), ) ez0 = FDataDict("displacement" => 0.0, "component" => 3, "node_list" => lz0) # The traction boundary condition is applied along rectangle in the middle of the plate. bfes = meshboundary(fes) # From the entire boundary we select those quadrilaterals that lie on the plane # Z = thickness tl = selectelem(fens, bfes, box = [0.0 Lx / 2 0 Ly / 2 TH TH], inflate = tolerance) Trac = FDataDict( "traction_vector" => vec([0.0; 0.0; -q0]), "femm" => FEMMBase(IntegDomain(subset(bfes, tl), SimplexRule(2, 3))), ) modeldata = FDataDict( "fens" => fens, "regions" => [botskinregion, coreregion, topskinregion], "essential_bcs" => [ex0, ey0, ez0], "traction_bcs" => [Trac], ) t0 = time() modeldata = AlgoDeforLinearModule.linearstatics(modeldata) tstiffness = modeldata["timing"]["stiffness"] tsolution = modeldata["timing"]["solution"] println("count(fes) = $(count(fes))") println("Timing: Assembly $(tstiffness), Solution $(tsolution)") modeldata["postprocessing"] = FDataDict("file" => filebase * "-u") modeldata = AlgoDeforLinearModule.exportdeformation(modeldata) u = modeldata["u"] geom = modeldata["geom"] # The results of the displacement and stresses will be reported at # nodes located at the appropriate points. nbottomcenter = selectnode(fens, box = [0.0 0.0 0.0 0.0 0.0 0.0], inflate = tolerance) ntopcenter = selectnode(fens, box = [0.0 0.0 0.0 0.0 TH TH], inflate = tolerance) # ncenterline = selectnode(fens, box=[0.0 0.0 0.0 0.0 0.0 TH], inflate=tolerance) # nintertop = selectnode(fens, box=[-Inf Inf 0.0 0.0 sum(ts[1:2]) sum(ts[1:2])], inflate=tolerance) # ninterbot = selectnode(fens, box=[-Inf Inf 0.0 0.0 sum(ts[1:1]) sum(ts[1:1])], inflate=tolerance) # # zclo = sortperm(vec(geom.values[ncenterline, 3])) # ncenterline = ncenterline[zclo] # centerz = geom.values[ncenterline, 3] # zclo = nothing # # xclotop = sortperm(vec(geom.values[nintertop, 1])) # nintertop = nintertop[xclotop] # topx = geom.values[nintertop, 1] # xclobot = sortperm(vec(geom.values[ninterbot, 1])) # ninterbot = ninterbot[xclobot] # botx = geom.values[ninterbot, 1] # xclotop = xclobot = nothing # # conninbotskin = intersect(connectednodes(botskinregion["femm"].integdomain.fes), ncenterline) # connincore = intersect(connectednodes(coreregion["femm"].integdomain.fes), ncenterline) # connintopskin = intersect(connectednodes(topskinregion["femm"].integdomain.fes), ncenterline) # inbotskin = [n in conninbotskin for n in ncenterline] # incore = [n in connincore for n in ncenterline] # intopskin = [n in connintopskin for n in ncenterline] println("") println("Top Center deflection: $(u.values[ntopcenter, 3]/phun("mm")) [mm]") println("Bottom Center deflection: $(u.values[nbottomcenter, 3]/phun("mm")) [mm]") # # # extrap = :extrapmean # extrap = :extraptrend # nodevalmeth = :averaging # # extrap = :default # # nodevalmeth = :invdistance # # # Normal stress in the X direction # modeldata["postprocessing"] = FDataDict("file"=>filebase * "-sx", # "quantity"=>:Cauchy, "component"=>1, "outputcsys"=>CSys(3), # "nodevalmethod"=>nodevalmeth, "reportat"=>extrap) # modeldata = AlgoDeforLinearModule.exportstress(modeldata) # s = modeldata["postprocessing"]["exported"][1]["field"] # sxbot = s.values[ncenterline, 1] # s = modeldata["postprocessing"]["exported"][2]["field"] # sxcore = s.values[ncenterline, 1] # s = modeldata["postprocessing"]["exported"][3]["field"] # sxtop = s.values[ncenterline, 1] # # # The graph data needs to be collected by going through each layer separately. # # Some quantities may be discontinuous between layers. # zs = vcat( [z for (j,z) in enumerate(centerz) if inbotskin[j]], # [z for (j,z) in enumerate(centerz) if incore[j]], # [z for (j,z) in enumerate(centerz) if intopskin[j]] # ) # sxs = vcat( [sxbot[j] for (j,z) in enumerate(centerz) if inbotskin[j]], # [sxcore[j] for (j,z) in enumerate(centerz) if incore[j]], # [sxtop[j] for (j,z) in enumerate(centerz) if intopskin[j]] # ) # File = filebase * "-sx-$(extrap).CSV" # savecsv(File, zs=vec(zs)/phun("mm"), sx=vec(sxs)/phun("MPa")) # # # @async run(`"paraview.exe" $File`) # # # Inter laminar stress between the skin and the core # modeldata["postprocessing"] = FDataDict("file"=>filebase * "-sxz", # "quantity"=>:Cauchy, "component"=>5, "outputcsys"=>CSys(3), # "nodevalmethod"=>nodevalmeth, "reportat"=>extrap) # modeldata = AlgoDeforLinearModule.exportstress(modeldata) # s = modeldata["postprocessing"]["exported"][1]["field"] # sxzskinbot = s.values[ninterbot, 1] # s = modeldata["postprocessing"]["exported"][2]["field"] # sxzcoretop = s.values[nintertop, 1] # sxzcorebot = s.values[ninterbot, 1] # s = modeldata["postprocessing"]["exported"][3]["field"] # sxzskintop = s.values[nintertop, 1] # File = filebase * "-sxz-$(extrap).CSV" # savecsv(File, xstop=vec(topx)/phun("mm"), # sxzskintop=vec(sxzskintop)/phun("MPa"), # sxzcoretop=vec(sxzcoretop)/phun("MPa"), # xsbot=vec(botx)/phun("mm"), # sxzskinbot=vec(sxzskinbot)/phun("MPa"), # sxzcorebot=vec(sxzcorebot)/phun("MPa")) # # @async run(`"paraview.exe" $File`) println("count(fes) = $(count(fes))") println("Timing: $( time() - t0 )") true end # Meyer_Piening_sandwich_MST10_timing function Meyer_Piening_sandwich_T10_timing() println(""" Meyer-Piening sandwich plate, mean-strain T10 """) # Reference results from: # [1] Application of the Elasticity Solution # to Linear Sandwich Beam, Plate # and Shell Analyses # H.-R. MEYER -PIENING # Journal of SANDWICH STRUCTURES AND MATERIALS , Vol. 6—July 2004 # Assessment of the refined sinus plate finite element: # Free edge effect and Meyer-Piening sandwich test # P. Vidal, O. Polit, M. D'Ottavio, E. Valot # http://dx.doi.org/10.1016/j.finel.2014.08.004 # # The second study deals with a benchmark problem proposed # by Meyer-Piening [14]. It involves a simply -supported rectangular # sandwich plate submitted to a localized pressure applied on an # area of 5x20 mm. The geometry of the sandwich structure is # given in Fig.13. Due to the symmetry, only one quarter of the plate # is meshed. The faces have different thicknesses: h = 0.5 mm # (bottom face), h = 0.1 mm (top face). The thickness of the core # is h = 11.4 mm. The material properties are given in Table 3. # Note that this benchmark involves strong heterogeneities (very # different geometric and constitutive properties between core and # face) and local stress gradient due to the localized pressure load. # # [14] H.-R. Meyer-Piening, Experiences with exact linear sandwich beam and plate # analyses regarding bending, instability and frequency investigations, in: # Proceedings of the Fifth International Conference On Sandwich Constructions, # September 5–7, vol. I, Zurich, Switzerland, 2000, pp. 37–48. filebase = "Meyer-Piening-sandwich-T10" # Orthotropic material for the SKIN E1s = 70000.0 * phun("MPa") E2s = 71000.0 * phun("MPa") E3s = 69000.0 * phun("MPa") nu12s = nu13s = nu23s = 0.3 G12s = G13s = G23s = 26000.0 * phun("MPa") CTE1 = CTE2 = CTE3 = 0.0 # Orthotropic material for the CORE E1c = 3.0 * phun("MPa") E2c = 3.0 * phun("MPa") E3c = 2.8 * phun("MPa") nu12c = nu13c = nu23c = 0.25 G12c = G13c = G23c = 1.0 * phun("MPa") CTE1 = CTE2 = CTE3 = 0.0 Lx = 5.0 * phun("mm") # length of loaded rectangle Ly = 20.0 * phun("mm") # length of loaded rectangle Sx = 100.0 * phun("mm") # span of the plate Sy = 200.0 * phun("mm") # span of the plate # Here we define the layout and the thicknesses of the layers. angles = vec([0.0 0.0 0.0]) ts = vec([0.5 11.4 0.1]) * phun("mm") # layer thicknesses TH = sum(ts) # total thickness of the plate tolerance = 0.0001 * TH # The line load is in the negative Z direction. q0 = 1 * phun("MPa") # line load # Reference deflection under the load is wtopref = -3.789 * phun("mm") # From [1] wbottomref = -2.16 * phun("mm") # Not given in [1]; guessed from the figure # Select how find the mesh should be Refinement = 3 nL = Refinement * 1 nSx = nL + Refinement * 4 nSy = 2 * nSx # Each layer is modeled with a single element. nts = Refinement * [1, 2, 1]# number of elements per layer strength = 1.5 sp = (a, b, n) -> MeshUtilModule.gradedspace(a, b, n, strength) sp = (a, b, n) -> linearspace(a, b, n) xs = unique( vcat( reverse(collect(sp(Lx / 2, 0.0, nL + 1))), collect(sp(Lx / 2, Sx / 2, nSx - nL + 1)), ), ) ys = unique( vcat( reverse(collect(MeshUtilModule.gradedspace(Ly / 2, 0.0, nL + 1))), collect(sp(Ly / 2, Sy / 2, nSy - nL + 1)), ), ) fens, fes = T10layeredplatex(xs, ys, ts, nts) # This is the material model MR = DeforModelRed3D skinmaterial = MatDeforElastOrtho( MR, 0.0, E1s, E2s, E3s, nu12s, nu13s, nu23s, G12s, G13s, G23s, CTE1, CTE2, CTE3, ) corematerial = MatDeforElastOrtho( MR, 0.0, E1c, E2c, E3c, nu12c, nu13c, nu23c, G12c, G13c, G23c, CTE1, CTE2, CTE3, ) # The material coordinate system function is defined as: function _updatecs!(csmatout::FFltMat, feid::FInt, label) rotmat3!(csmatout, angles[label] / 180.0 * pi * [0.0; 0.0; 1.0]) csmatout end # The volume integrals are evaluated using this rule gr = SimplexRule(3, 4) # We will create three regions, two for the skin, and one for the core. rfes = subset(fes, selectelem(fens, fes, label = 1)) botskinregion = FDataDict( "femm" => FEMMDeforLinearMST10( MR, IntegDomain(rfes, gr), CSys( 3, 3, ( csmatout::FFltMat, XYZ::FFltMat, tangents::FFltMat, feid::FInt, qpid::FInt, ) -> _updatecs!(csmatout, feid, 1), ), skinmaterial, ), ) rfes = subset(fes, selectelem(fens, fes, label = 3)) topskinregion = FDataDict( "femm" => FEMMDeforLinearMST10( MR, IntegDomain(rfes, gr), CSys( 3, 3, ( csmatout::FFltMat, XYZ::FFltMat, tangents::FFltMat, feid::FInt, qpid::FInt, ) -> _updatecs!(csmatout, feid, 3), ), skinmaterial, ), ) rfes = subset(fes, selectelem(fens, fes, label = 2)) coreregion = FDataDict( "femm" => FEMMDeforLinearMST10( MR, IntegDomain(rfes, gr), CSys( 3, 3, ( csmatout::FFltMat, XYZ::FFltMat, tangents::FFltMat, feid::FInt, qpid::FInt, ) -> _updatecs!(csmatout, feid, 2), ), corematerial, ), ) # File = "Meyer_Piening_sandwich-r1.vtk" # vtkexportmesh(File, botskinregion["femm"].integdomain.fes.conn, fens.xyz, # FinEtools.MeshExportModule.T10) # # @async run(`"paraview.exe" $File`) # File = "Meyer_Piening_sandwich-r2.vtk" # vtkexportmesh(File, coreregion["femm"].integdomain.fes.conn, fens.xyz, # FinEtools.MeshExportModule.T10) # @async run(`"paraview.exe" $File`) # The essential boundary conditions are applied on the symmetry planes. # First the plane X=0;... lx0 = selectnode(fens, box = [0.0 0.0 -Inf Inf -Inf Inf], inflate = tolerance) ex0 = FDataDict("displacement" => 0.0, "component" => 1, "node_list" => lx0) # ... and then the plane Y=0. ly0 = selectnode(fens, box = [-Inf Inf 0.0 0.0 -Inf Inf], inflate = tolerance) ey0 = FDataDict("displacement" => 0.0, "component" => 2, "node_list" => ly0) # The transverse displacement is fixed around the circumference. lz0 = vcat( selectnode(fens, box = [Sx / 2 Sx / 2 -Inf Inf -Inf Inf], inflate = tolerance), selectnode(fens, box = [-Inf Inf Sy / 2 Sy / 2 -Inf Inf], inflate = tolerance), ) ez0 = FDataDict("displacement" => 0.0, "component" => 3, "node_list" => lz0) # The traction boundary condition is applied along rectangle in the middle of the plate. bfes = meshboundary(fes) # From the entire boundary we select those quadrilaterals that lie on the plane # Z = thickness tl = selectelem(fens, bfes, box = [0.0 Lx / 2 0 Ly / 2 TH TH], inflate = tolerance) Trac = FDataDict( "traction_vector" => vec([0.0; 0.0; -q0]), "femm" => FEMMBase(IntegDomain(subset(bfes, tl), SimplexRule(2, 3))), ) modeldata = FDataDict( "fens" => fens, "regions" => [botskinregion, coreregion, topskinregion], "essential_bcs" => [ex0, ey0, ez0], "traction_bcs" => [Trac], ) t0 = time() modeldata = AlgoDeforLinearModule.linearstatics(modeldata) tstiffness = modeldata["timing"]["stiffness"] tsolution = modeldata["timing"]["solution"] println("count(fes) = $(count(fes))") println("Timing: Assembly $(tstiffness), Solution $(tsolution)") modeldata["postprocessing"] = FDataDict("file" => filebase * "-u") modeldata = AlgoDeforLinearModule.exportdeformation(modeldata) u = modeldata["u"] geom = modeldata["geom"] # The results of the displacement and stresses will be reported at # nodes located at the appropriate points. nbottomcenter = selectnode(fens, box = [0.0 0.0 0.0 0.0 0.0 0.0], inflate = tolerance) ntopcenter = selectnode(fens, box = [0.0 0.0 0.0 0.0 TH TH], inflate = tolerance) # ncenterline = selectnode(fens, box=[0.0 0.0 0.0 0.0 0.0 TH], inflate=tolerance) # nintertop = selectnode(fens, box=[-Inf Inf 0.0 0.0 sum(ts[1:2]) sum(ts[1:2])], inflate=tolerance) # ninterbot = selectnode(fens, box=[-Inf Inf 0.0 0.0 sum(ts[1:1]) sum(ts[1:1])], inflate=tolerance) # # zclo = sortperm(vec(geom.values[ncenterline, 3])) # ncenterline = ncenterline[zclo] # centerz = geom.values[ncenterline, 3] # zclo = nothing # # xclotop = sortperm(vec(geom.values[nintertop, 1])) # nintertop = nintertop[xclotop] # topx = geom.values[nintertop, 1] # xclobot = sortperm(vec(geom.values[ninterbot, 1])) # ninterbot = ninterbot[xclobot] # botx = geom.values[ninterbot, 1] # xclotop = xclobot = nothing # # conninbotskin = intersect(connectednodes(botskinregion["femm"].integdomain.fes), ncenterline) # connincore = intersect(connectednodes(coreregion["femm"].integdomain.fes), ncenterline) # connintopskin = intersect(connectednodes(topskinregion["femm"].integdomain.fes), ncenterline) # inbotskin = [n in conninbotskin for n in ncenterline] # incore = [n in connincore for n in ncenterline] # intopskin = [n in connintopskin for n in ncenterline] println("") println("Top Center deflection: $(u.values[ntopcenter, 3]/phun("mm")) [mm]") println("Bottom Center deflection: $(u.values[nbottomcenter, 3]/phun("mm")) [mm]") # # # extrap = :extrapmean # extrap = :extraptrend # nodevalmeth = :averaging # # extrap = :default # # nodevalmeth = :invdistance # # # Normal stress in the X direction # modeldata["postprocessing"] = FDataDict("file"=>filebase * "-sx", # "quantity"=>:Cauchy, "component"=>1, "outputcsys"=>CSys(3), # "nodevalmethod"=>nodevalmeth, "reportat"=>extrap) # modeldata = AlgoDeforLinearModule.exportstress(modeldata) # s = modeldata["postprocessing"]["exported"][1]["field"] # sxbot = s.values[ncenterline, 1] # s = modeldata["postprocessing"]["exported"][2]["field"] # sxcore = s.values[ncenterline, 1] # s = modeldata["postprocessing"]["exported"][3]["field"] # sxtop = s.values[ncenterline, 1] # # # The graph data needs to be collected by going through each layer separately. # # Some quantities may be discontinuous between layers. # zs = vcat( [z for (j,z) in enumerate(centerz) if inbotskin[j]], # [z for (j,z) in enumerate(centerz) if incore[j]], # [z for (j,z) in enumerate(centerz) if intopskin[j]] # ) # sxs = vcat( [sxbot[j] for (j,z) in enumerate(centerz) if inbotskin[j]], # [sxcore[j] for (j,z) in enumerate(centerz) if incore[j]], # [sxtop[j] for (j,z) in enumerate(centerz) if intopskin[j]] # ) # File = filebase * "-sx-$(extrap).CSV" # savecsv(File, zs=vec(zs)/phun("mm"), sx=vec(sxs)/phun("MPa")) # # # @async run(`"paraview.exe" $File`) # # # Inter laminar stress between the skin and the core # modeldata["postprocessing"] = FDataDict("file"=>filebase * "-sxz", # "quantity"=>:Cauchy, "component"=>5, "outputcsys"=>CSys(3), # "nodevalmethod"=>nodevalmeth, "reportat"=>extrap) # modeldata = AlgoDeforLinearModule.exportstress(modeldata) # s = modeldata["postprocessing"]["exported"][1]["field"] # sxzskinbot = s.values[ninterbot, 1] # s = modeldata["postprocessing"]["exported"][2]["field"] # sxzcoretop = s.values[nintertop, 1] # sxzcorebot = s.values[ninterbot, 1] # s = modeldata["postprocessing"]["exported"][3]["field"] # sxzskintop = s.values[nintertop, 1] # File = filebase * "-sxz-$(extrap).CSV" # savecsv(File, xstop=vec(topx)/phun("mm"), # sxzskintop=vec(sxzskintop)/phun("MPa"), # sxzcoretop=vec(sxzcoretop)/phun("MPa"), # xsbot=vec(botx)/phun("mm"), # sxzskinbot=vec(sxzskinbot)/phun("MPa"), # sxzcorebot=vec(sxzcorebot)/phun("MPa")) # # @async run(`"paraview.exe" $File`) true end # Meyer_Piening_sandwich_T10_timing function allrun() println("#####################################################") println("# Meyer_Piening_sandwich ") Meyer_Piening_sandwich() println("#####################################################") println("# Meyer_Piening_sandwich_H20 ") Meyer_Piening_sandwich_H20() println("#####################################################") println("# Meyer_Piening_sandwich_H8 ") Meyer_Piening_sandwich_H8() println("#####################################################") println("# Meyer_Piening_sandwich_MSH8 ") Meyer_Piening_sandwich_MSH8() println("#####################################################") println("# Meyer_Piening_sandwich_MST10 ") Meyer_Piening_sandwich_MST10() println("#####################################################") println("# Meyer_Piening_sandwich_MST10_timing ") Meyer_Piening_sandwich_MST10_timing() println("#####################################################") println("# Meyer_Piening_sandwich_T10_timing ") Meyer_Piening_sandwich_T10_timing() return true end # function allrun @info "All examples may be executed with " println("using .$(@__MODULE__); $(@__MODULE__).allrun()") end # module nothing
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
47171
""" Composite tests R0031(1): Laminated strip under three-point bending R0031(2): Wrapped thick cylinder under pressure and thermal loading R0031(3): Three-layer sandwich shell under normal pressure loading """ module NAFEMS_R0031_examples using FinEtools using FinEtoolsDeforLinear using FinEtoolsDeforLinear.AlgoDeforLinearModule using Statistics: mean using LinearAlgebra: norm, cross function NAFEMS_R0031_1_msh8() println(""" Laminated Strip Under Three-Point Bending. Mean-strain h8 elements. """) # Determine the central transverse displacement in a simply-supported seven # layer symmetric strip with a central line load. A 0/90/0/90/0/90/0 # material lay-up is specified with the center ply being four times as # thick as the others. # Reference: NAFEMS Report R0031, Test No.1, 17-Dec-1998. # Because of the symmetries of the geometry and load, only the # first-quadrant (in XY) quarter of the plate is modeled. # The coordinate system is centered at point E (at the difference with # respect to the original benchmark definition). The load is applied # along a curve passing through point C. The simple support is applied # along the curve passing through point B. # We realize the simple supports along the lines A, B and the line load at # point C are illegal from the point of view of convergence. No # convergence can be hoped for as the stress underneath the load and above # the simple supports is infinite in the limit (these locations are stress # singularities). However, for relatively coarse meshes the results away # from the singularities are still meaningful. # The target quantities are displacement at the bottom surface at point E, # the tensile axial stress at the same point, and of the transverse shear # stress at point D in between the bottommost two layers (See figure 1). t0 = time() # Orthotropic material parameters of the material of the layers E1s = 100.0 * phun("GPa") E2s = E3s = 5.0 * phun("GPa") nu12s = 0.4 nu13s = 0.3 nu23s = 0.3 G12s = 3.0 * phun("GPa") G13s = G23s = 2.0 * phun("GPa") CTE1 = 3.0e-6 CTE2 = 2.0e-5 CTE3 = 2.0e-5 AB = 30.0 * phun("mm") # span between simple supports CD = 4.0 * phun("mm") # distance between the point D and the center OH = 10.0 * phun("mm") # overhang W = 10.0 * phun("mm") # width of the strip # Here we define the layout and the thicknesses of the layers. angles = vec([0 90 0 90 0 90 0]) ts = vec([0.1 0.1 0.1 0.4 0.1 0.1 0.1]) * phun("mm") # layer thicknesses TH = sum(ts) # total thickness of the plate tolerance = 0.0001 * TH # The line load is in the negative Z direction. q0 = 10 * phun("N/mm") # line load # Reference deflection under the load is wEref = -1.06 * phun("mm") # The reference tensile stress at the bottom of the lowest layer is sigma11Eref = 684 * phun("MPa") # Because we model the first-quadrant quarter of the plate using # coordinate axes centered at the point E the shear at the point D is # positive instead of negative as in the benchmark where the coordinate # system is located at the outer corner of the strip. sigma13Dref = 4.1 * phun("MPa") Refinement = 10 # We select 8 elements spanwise and 2 elements widthwise. The overhang # of the plate is given one element. nL = Refinement * 4 nO = Refinement * 1 nW = Refinement * 1 # Each layer is modeled with a single element. nts = Refinement * ones(Int, length(angles))# number of elements per layer xs = unique( vcat( collect(linearspace(0.0, AB / 2, nL + 1)), [CD], collect(linearspace(AB / 2, AB / 2 + OH, nO + 1)), ), ) xs = xs[sortperm(xs)] ys = collect(linearspace(0.0, W / 2, nW + 1)) fens, fes = H8layeredplatex(xs, ys, ts, nts) # This is the material model MR = DeforModelRed3D material = MatDeforElastOrtho( MR, 0.0, E1s, E2s, E3s, nu12s, nu13s, nu23s, G12s, G13s, G23s, CTE1, CTE2, CTE3, ) # The material coordinate system function is defined as: function _updatecs!(csmatout, feid, labels) rotmat3!(csmatout, angles[labels[feid]] / 180.0 * pi * [0.0; 0.0; 1.0]) csmatout end # The vvolume integrals are evaluated using this rule gr = GaussRule(3, 2) # We will create two regions, one for the layers with 0° orientation, # and one for the layers with 90° orientation. rl1 = vcat( selectelem(fens, fes, label = 1), selectelem(fens, fes, label = 3), selectelem(fens, fes, label = 5), selectelem(fens, fes, label = 7), ) rfes1 = subset(fes, rl1) region1 = FDataDict( "femm" => FEMMDeforLinearMSH8( MR, IntegDomain(rfes1, gr), CSys( 3, 3, (csmatout, XYZ, tangents, feid, qpid) -> _updatecs!(csmatout, feid, rfes1.label), ), material, ), ) rl2 = vcat( selectelem(fens, fes, label = 2), selectelem(fens, fes, label = 4), selectelem(fens, fes, label = 6), ) rfes2 = subset(fes, rl2) region2 = FDataDict( "femm" => FEMMDeforLinearMSH8( MR, IntegDomain(rfes2, gr), CSys( 3, 3, (csmatout, XYZ, tangents, feid, qpid) -> _updatecs!(csmatout, feid, rfes2.label), ), material, ), ) # File = "NAFEMS-R0031-1-plate-r1.vtk" # vtkexportmesh(File, region1["femm"].integdomain.fes.conn, fens.xyz, FinEtools.MeshExportModule.H8) # # @async run(`"paraview.exe" $File`) # File = "NAFEMS-R0031-1-plate-r2.vtk" # vtkexportmesh(File, region2["femm"].integdomain.fes.conn, fens.xyz, FinEtools.MeshExportModule.H8) # @async run(`"paraview.exe" $File`) # The essential boundary conditions are applied on the symmetry planes. # First the plane X=0;... lx0 = selectnode(fens, box = [0.0 0.0 -Inf Inf -Inf Inf], inflate = tolerance) ex0 = FDataDict("displacement" => 0.0, "component" => 1, "node_list" => lx0) # ... and then the plane Y=0. ly0 = selectnode(fens, box = [-Inf Inf 0.0 0.0 -Inf Inf], inflate = tolerance) ey0 = FDataDict("displacement" => 0.0, "component" => 2, "node_list" => ly0) # The transverse displacement is fixed along the line passing through # point B. The nodes are fixed in the box along this line in the Z # direction. lz0 = selectnode(fens, box = [AB / 2 AB / 2 -Inf Inf -Inf Inf], inflate = tolerance) ez0 = FDataDict("displacement" => 0.0, "component" => 3, "node_list" => lz0) # The traction boundary condition is applied along the edge of the # mesh passing through point C at the top surface of the strip. First # we extract the boundary of the hexahedral mesh. bfes = meshboundary(fes) # From the entire boundary we select those quadrilaterals that lie on the plane # X = 0 xl = selectelem(fens, bfes, box = [0.0 0.0 -Inf Inf -Inf Inf], inflate = tolerance) # Now we extract the boundary of these selected quadrilaterals bbfes = meshboundary(subset(bfes, xl)) # … And from these we extract the ones at the top zl = selectelem(fens, bbfes, box = [0.0 0.0 -Inf Inf TH TH], inflate = tolerance) # Note that we have to apply only half of the line load given that # were modeling just one quarter of the geometry and we are splitting # the line load with the symmetry plane X=0. Also note that the # quadrature rule is one-dimensional since we are integrating along # a curve. Trac = FDataDict( "traction_vector" => vec([0.0; 0.0; -q0 / 2]), "femm" => FEMMBase(IntegDomain(subset(bbfes, zl), GaussRule(1, 3))), ) modeldata = FDataDict( "fens" => fens, "regions" => [region1, region2], "essential_bcs" => [ex0, ey0, ez0], "traction_bcs" => [Trac], ) modeldata = AlgoDeforLinearModule.linearstatics(modeldata) modeldata["postprocessing"] = FDataDict("file" => "NAFEMS_R0031_1_msh8-plate") modeldata = AlgoDeforLinearModule.exportdeformation(modeldata) u = modeldata["u"] geom = modeldata["geom"] # The results of the displacement and stresses will be reported at # nodes located at the appropriate points. nE = selectnode(fens, box = [0.0 0.0 0.0 0.0 0.0 0.0], inflate = tolerance) nC = selectnode(fens, box = [0.0 0.0 0.0 0.0 TH TH], inflate = tolerance) nD = selectnode(fens, box = [CD CD 0.0 0.0 ts[1] ts[1]], inflate = tolerance) n0z = selectnode(fens, box = [0.0 0.0 0.0 0.0 0.0 TH], inflate = tolerance) ix = sortperm(geom.values[n0z, 3]) # println("ix = $(ix)") cdis = mean(u.values[nE, 3]) println("") println("Normalized Center deflection: $(cdis/wEref)") extrap = :extraptrend # # extrap = :extrapmean inspectormeth = :averaging # extrap = :default # inspectormeth = :invdistance modeldata["postprocessing"] = FDataDict( "file" => "NAFEMS_R0031_1_msh8-plate-sx", "quantity" => :Cauchy, "component" => 1, "outputcsys" => CSys(3), "nodevalmethod" => inspectormeth, "reportat" => extrap, ) modeldata = AlgoDeforLinearModule.exportstress(modeldata) s = modeldata["postprocessing"]["exported"][1]["field"] println("sx@E = $(s.values[nE]/phun("MPa")) [MPa]") println("Reference sx@E = $(sigma11Eref/phun("MPa")) [MPa]") modeldata["postprocessing"] = FDataDict( "file" => "NAFEMS_R0031_1_msh8-plate-sxz", "quantity" => :Cauchy, "component" => 5, "outputcsys" => CSys(3), "nodevalmethod" => inspectormeth, "reportat" => extrap, ) modeldata = AlgoDeforLinearModule.exportstress(modeldata) s = modeldata["postprocessing"]["exported"][1]["field"] println("sxz@D_1 = $(s.values[nD]/phun("MPa")) [MPa]") s = modeldata["postprocessing"]["exported"][2]["field"] println("sxz@D_2 = $(s.values[nD]/phun("MPa")) [MPa]") println("Reference sxz@D = $(sigma13Dref/phun("MPa")) [MPa]") println("Done") true end # NAFEMS_R0031_1 function NAFEMS_R0031_1_esnice_h8() println(""" Laminated Strip Under Three-Point Bending. ESNICE h8 elements. """) # Determine the central transverse displacement in a simply-supported seven # layer symmetric strip with a central line load. A 0/90/0/90/0/90/0 # material lay-up is specified with the center ply being four times as # thick as the others. # Reference: NAFEMS Report R0031, Test No.1, 17-Dec-1998. # Because of the symmetries of the geometry and load, only the # first-quadrant (in XY) quarter of the plate is modeled. # The coordinate system is centered at point E (at the difference with # respect to the original benchmark definition). The load is applied # along a curve passing through point C. The simple support is applied # along the curve passing through point B. # We realize the simple supports along the lines A, B and the line load at # point C are illegal from the point of view of convergence. No # convergence can be hoped for as the stress underneath the load and above # the simple supports is infinite in the limit (these locations are stress # singularities). However, for relatively coarse meshes the results away # from the singularities are still meaningful. # The target quantities are displacement at the bottom surface at point E, # the tensile axial stress at the same point, and of the transverse shear # stress at point D in between the bottommost two layers (See figure 1). t0 = time() # Orthotropic material parameters of the material of the layers E1s = 100.0 * phun("GPa") E2s = E3s = 5.0 * phun("GPa") nu12s = 0.4 nu13s = 0.3 nu23s = 0.3 G12s = 3.0 * phun("GPa") G13s = G23s = 2.0 * phun("GPa") CTE1 = 3.0e-6 CTE2 = 2.0e-5 CTE3 = 2.0e-5 AB = 30.0 * phun("mm") # span between simple supports CD = 4.0 * phun("mm") # distance between the point D and the center OH = 10.0 * phun("mm") # overhang W = 10.0 * phun("mm") # width of the strip # Here we define the layout and the thicknesses of the layers. Region 1 has # orientation 0 degrees, and region 2 has orientation 90 degrees. angles = vec([0 90]) ts = vec([0.1 0.1 0.1 0.4 0.1 0.1 0.1]) * phun("mm") # layer thicknesses TH = sum(ts) # total thickness of the plate tolerance = 0.0001 * TH # The line load is in the negative Z direction. q0 = 10 * phun("N/mm") # line load # Reference deflection under the load is wEref = -1.06 * phun("mm") # The reference tensile stress at the bottom of the lowest layer is sigma11Eref = 684 * phun("MPa") # Because we model the first-quadrant quarter of the plate using # coordinate axes centered at the point E the shear at the point D is # positive instead of negative as in the benchmark where the coordinate # system is located at the outer corner of the strip. sigma13Dref = 4.1 * phun("MPa") Refinement = 4 # We select 8 elements spanwise and 2 elements widthwise. The overhang # of the plate is given one element. nL = Refinement * 4 nO = Refinement * 1 nW = Refinement * 1 # Each layer is modeled with a single element. nts = Refinement * ones(Int, length(ts))# number of elements per layer xs = unique( vcat( collect(linearspace(0.0, AB / 2, nL + 1)), [CD], collect(linearspace(AB / 2, AB / 2 + OH, nO + 1)), ), ) xs = xs[sortperm(xs)] ys = collect(linearspace(0.0, W / 2, nW + 1)) fens, fes = H8layeredplatex(xs, ys, ts, nts) # This is the material model MR = DeforModelRed3D material = MatDeforElastOrtho( MR, 0.0, E1s, E2s, E3s, nu12s, nu13s, nu23s, G12s, G13s, G23s, CTE1, CTE2, CTE3, ) # The material coordinate system function is defined as: function _updatecs!(csmatout, feid, labels) rotmat3!(csmatout, angles[feid] / 180.0 * pi * [0.0; 0.0; 1.0]) csmatout end # The vvolume integrals are evaluated using this rule gr = TrapezoidalRule(3) # We will create two regions, one for the layers with 0° orientation, # and one for the layers with 90° orientation. rl1 = vcat( selectelem(fens, fes, label = 1), selectelem(fens, fes, label = 3), selectelem(fens, fes, label = 5), selectelem(fens, fes, label = 7), ) rfes1 = subset(fes, rl1) region1 = FDataDict( "femm" => FEMMDeforLinearESNICEH8( MR, IntegDomain(rfes1, gr), CSys( 3, 3, (csmatout, XYZ, tangents, feid, qpid) -> _updatecs!(csmatout, 1, []), ), material, ), ) rl2 = vcat( selectelem(fens, fes, label = 2), selectelem(fens, fes, label = 4), selectelem(fens, fes, label = 6), ) rfes2 = subset(fes, rl2) region2 = FDataDict( "femm" => FEMMDeforLinearESNICEH8( MR, IntegDomain(rfes2, gr), CSys( 3, 3, (csmatout, XYZ, tangents, feid, qpid) -> _updatecs!(csmatout, 2, []), ), material, ), ) # File = "NAFEMS-R0031-1-plate-r1.vtk" # vtkexportmesh(File, region1["femm"].integdomain.fes.conn, fens.xyz, FinEtools.MeshExportModule.H8) # # @async run(`"paraview.exe" $File`) # File = "NAFEMS-R0031-1-plate-r2.vtk" # vtkexportmesh(File, region2["femm"].integdomain.fes.conn, fens.xyz, FinEtools.MeshExportModule.H8) # @async run(`"paraview.exe" $File`) # The essential boundary conditions are applied on the symmetry planes. # First the plane X=0;... lx0 = selectnode(fens, box = [0.0 0.0 -Inf Inf -Inf Inf], inflate = tolerance) ex0 = FDataDict("displacement" => 0.0, "component" => 1, "node_list" => lx0) # ... and then the plane Y=0. ly0 = selectnode(fens, box = [-Inf Inf 0.0 0.0 -Inf Inf], inflate = tolerance) ey0 = FDataDict("displacement" => 0.0, "component" => 2, "node_list" => ly0) # The transverse displacement is fixed along the line passing through # point B. The nodes are fixed in the box along this line in the Z # direction. lz0 = selectnode(fens, box = [AB / 2 AB / 2 -Inf Inf -Inf Inf], inflate = tolerance) ez0 = FDataDict("displacement" => 0.0, "component" => 3, "node_list" => lz0) # The traction boundary condition is applied along the edge of the # mesh passing through point C at the top surface of the strip. First # we extract the boundary of the hexahedral mesh. bfes = meshboundary(fes) # From the entire boundary we select those quadrilaterals that lie on the plane # X = 0 xl = selectelem(fens, bfes, box = [0.0 0.0 -Inf Inf -Inf Inf], inflate = tolerance) # Now we extract the boundary of these selected quadrilaterals bbfes = meshboundary(subset(bfes, xl)) # … And from these we extract the ones at the top zl = selectelem(fens, bbfes, box = [0.0 0.0 -Inf Inf TH TH], inflate = tolerance) # Note that we have to apply only half of the line load given that # were modeling just one quarter of the geometry and we are splitting # the line load with the symmetry plane X=0. Also note that the # quadrature rule is one-dimensional since we are integrating along # a curve. Trac = FDataDict( "traction_vector" => vec([0.0; 0.0; -q0 / 2]), "femm" => FEMMBase(IntegDomain(subset(bbfes, zl), TrapezoidalRule(1))), ) modeldata = FDataDict( "fens" => fens, "regions" => [region1, region2], "essential_bcs" => [ex0, ey0, ez0], "traction_bcs" => [Trac], ) modeldata = AlgoDeforLinearModule.linearstatics(modeldata) modeldata["postprocessing"] = FDataDict("file" => "NAFEMS-R0031-1-plate-esnice-h8") modeldata = AlgoDeforLinearModule.exportdeformation(modeldata) u = modeldata["u"] geom = modeldata["geom"] # The results of the displacement and stresses will be reported at # nodes located at the appropriate points. nE = selectnode(fens, box = [0.0 0.0 0.0 0.0 0.0 0.0], inflate = tolerance) nC = selectnode(fens, box = [0.0 0.0 0.0 0.0 TH TH], inflate = tolerance) nD = selectnode(fens, box = [CD CD 0.0 0.0 ts[1] ts[1]], inflate = tolerance) n0z = selectnode(fens, box = [0.0 0.0 0.0 0.0 0.0 TH], inflate = tolerance) ix = sortperm(geom.values[n0z, 3]) # println("ix = $(ix)") cdis = mean(u.values[nE, 3]) println("") println("Normalized Center deflection: $(cdis/wEref)") extrap = :extraptrend # # extrap = :extrapmean inspectormeth = :averaging # extrap = :default # inspectormeth = :invdistance modeldata["postprocessing"] = FDataDict( "file" => "NAFEMS-R0031-1-plate-esnice-h8-sx", "quantity" => :Cauchy, "component" => 1, "outputcsys" => CSys(3), "nodevalmethod" => inspectormeth, "reportat" => extrap, ) modeldata = AlgoDeforLinearModule.exportstress(modeldata) s = modeldata["postprocessing"]["exported"][1]["field"] println("sx@E = $(s.values[nE]/phun("MPa")) [MPa]") println("Reference sx@E = $(sigma11Eref/phun("MPa")) [MPa]") modeldata["postprocessing"] = FDataDict( "file" => "NAFEMS-R0031-1-plate-esnice-h8-sxz", "quantity" => :Cauchy, "component" => 5, "outputcsys" => CSys(3), "nodevalmethod" => inspectormeth, "reportat" => extrap, ) modeldata = AlgoDeforLinearModule.exportstress(modeldata) s = modeldata["postprocessing"]["exported"][1]["field"] println("sxz@D_1 = $(s.values[nD]/phun("MPa")) [MPa]") s = modeldata["postprocessing"]["exported"][2]["field"] println("sxz@D_2 = $(s.values[nD]/phun("MPa")) [MPa]") println("Reference sxz@D = $(sigma13Dref/phun("MPa")) [MPa]") # # s = fieldfromintegpoints(region1["femm"], geom, u, :Cauchy, 1; # outputcsys = CSys(3), nodevalmethod = inspectormeth, reportat = extrap) # println("sx@E = $(s.values[nE]/phun("MPa")) [MPa]") # sx_z = s.values[n0z]/phun("MPa") # println("sx(z)_1 = $(sx_z)") # # s = fieldfromintegpoints(region1["femm"], geom, u, :Cauchy, 5; # outputcsys = CSys(3), nodevalmethod = inspectormeth, reportat = extrap) # println("sxz@D_1 = $(s.values[nD]/phun("MPa")) [MPa]") # sxz_z_1 = s.values[n0z]/phun("MPa") # println("sxz(z)_1 = $(sxz_z_1)") # s = fieldfromintegpoints(region2["femm"], geom, u, :Cauchy, 5; # outputcsys = CSys(3), nodevalmethod = inspectormeth, reportat = extrap) # println("sxz@D_2 = $(s.values[nD]/phun("MPa")) [MPa]") # sxz_z_2 = s.values[n0z]/phun("MPa") # println("sxz(z)_2 = $(sxz_z_2)") # function _inspector(idat, elnum, conn, xe, out, xq) # # xe = coordinates of the nodes of the element # # xq = coordinate of the quadrature point # println("@$(xq): $(out/1.0e6)") # return idat # end # # felist = selectelem(fens, region1["femm"].integdomain.fes, # box=[0.0 0.0 0.0 0.0 0.0 0.0], inflate=tolerance, allin = false) # # inspectintegpoints(region1["femm"], geom, u, felist, # _inspector, 0, quantity=:Cauchy, outputcsys = CSys(3)) # # femm = deepcopy(region1["femm"]) # femm.integdomain.fes = subset(femm.integdomain.fes, felist) # associategeometry!(femm, geom) # s = fieldfromintegpoints(femm, geom, u, :Cauchy, 5; # outputcsys = CSys(3), nodevalmethod = inspectormeth, reportat = extrap) # println("sxz@D_1 = $(s.values[nD]/phun("MPa")) [MPa]") # felist = selectelem(fens, region2["femm"].integdomain.fes, # box=[0.0 0.0 0.0 0.0 0.0 TH], inflate=tolerance, allin = false) # # inspectintegpoints(region2["femm"], geom, u, felist, # _inspector, 0, quantity=:Cauchy, outputcsys = CSys(3)) println("Done") true end # NAFEMS_R0031_1 function NAFEMS_R0031_1_H20() println(""" Laminated Strip Under Three-Point Bending. H20 hexahedral elements. """) # Determine the central transverse displacement in a simply-supported seven # layer symmetric strip with a central line load. A 0/90/0/90/0/90/0 # material lay-up is specified with the center ply being four times as # thick as the others. # Reference: NAFEMS Report R0031, Test No.1, 17-Dec-1998. # Because of the symmetries of the geometry and load, only the # first-quadrant (in XY) quarter of the plate is modeled. # The coordinate system is centered at point E (at the difference with # respect to the original benchmark definition). The load is applied # along a curve passing through point C. The simple support is applied # along the curve passing through point B. # We realize the simple supports along the lines A, B and the line load at # point C are illegal from the point of view of convergence. No # convergence can be hoped for as the stress underneath the load and above # the simple supports is infinite in the limit (these locations are stress # singularities). However, for relatively coarse meshes the results away # from the singularities are still meaningful. # The target quantities are displacement at the bottom surface at point E, # the tensile axial stress at the same point, and of the transverse shear # stress at point D in between the bottommost two layers (See figure 1). t0 = time() # Orthotropic material parameters of the material of the layers E1s = 100.0 * phun("GPa") E2s = E3s = 5.0 * phun("GPa") nu12s = 0.4 nu13s = 0.3 nu23s = 0.3 G12s = 3.0 * phun("GPa") G13s = G23s = 2.0 * phun("GPa") CTE1 = 3.0e-6 CTE2 = 2.0e-5 CTE3 = 2.0e-5 AB = 30.0 * phun("mm") # span between simple supports CD = 4.0 * phun("mm") # distance between the point D and the center OH = 10.0 * phun("mm") # overhang W = 10.0 * phun("mm") # width of the strip # Here we define the layout and the thicknesses of the layers. angles = vec([0 90 0 90 0 90 0]) ts = vec([0.1 0.1 0.1 0.4 0.1 0.1 0.1]) * phun("mm") # layer thicknesses TH = sum(ts) # total thickness of the plate tolerance = 0.0001 * TH # The line load is in the negative Z direction. q0 = 10 * phun("N/mm") # line load # Reference deflection under the load is wEref = -1.06 * phun("mm") # The reference tensile stress at the bottom of the lowest layer is sigma11Eref = 684 * phun("MPa") # Because we model the first-quadrant quarter of the plate using # coordinate axes centered at the point E the shear at the point D is # positive instead of negative as in the benchmark where the coordinate # system is located at the outer corner of the strip. sigma13Dref = 4.1 * phun("MPa") Refinement = 8 # We select 8 elements spanwise and 2 elements widthwise. The overhang # of the plate is given one element. nL = Refinement * 4 nO = Refinement * 1 nW = Refinement * 1 # Each layer is modeled with a single element. nts = Refinement * ones(Int, length(angles))# number of elements per layer xs = unique( vcat( collect(linearspace(0.0, AB / 2, nL + 1)), [CD], collect(linearspace(AB / 2, AB / 2 + OH, nO + 1)), ), ) xs = xs[sortperm(xs)] ys = collect(linearspace(0.0, W / 2, nW + 1)) fens, fes = H8layeredplatex(xs, ys, ts, nts) fens, fes = H8toH20(fens, fes) # This is the material model MR = DeforModelRed3D material = MatDeforElastOrtho( MR, 0.0, E1s, E2s, E3s, nu12s, nu13s, nu23s, G12s, G13s, G23s, CTE1, CTE2, CTE3, ) # The material coordinate system function is defined as: function _updatecs!(csmatout, feid, labels) rotmat3!(csmatout, angles[labels[feid]] / 180.0 * pi * [0.0; 0.0; 1.0]) csmatout end # The vvolume integrals are evaluated using this rule gr = GaussRule(3, 3) # We will create two regions, one for the layers with 0° orientation, # and one for the layers with 90° orientation. rl1 = vcat( selectelem(fens, fes, label = 1), selectelem(fens, fes, label = 3), selectelem(fens, fes, label = 5), selectelem(fens, fes, label = 7), ) rfes1 = subset(fes, rl1) region1 = FDataDict( "femm" => FEMMDeforLinear( MR, IntegDomain(rfes1, gr), CSys( 3, 3, (csmatout, XYZ, tangents, feid, qpid) -> _updatecs!(csmatout, feid, rfes1.label), ), material, ), ) rl2 = vcat( selectelem(fens, fes, label = 2), selectelem(fens, fes, label = 4), selectelem(fens, fes, label = 6), ) rfes2 = subset(fes, rl2) region2 = FDataDict( "femm" => FEMMDeforLinear( MR, IntegDomain(rfes2, gr), CSys( 3, 3, (csmatout, XYZ, tangents, feid, qpid) -> _updatecs!(csmatout, feid, rfes2.label), ), material, ), ) # File = "NAFEMS-R0031-1-plate-r1.vtk" # vtkexportmesh(File, region1["femm"].integdomain.fes.conn, fens.xyz, FinEtools.MeshExportModule.H8) # # @async run(`"paraview.exe" $File`) # File = "NAFEMS-R0031-1-plate-r2.vtk" # vtkexportmesh(File, region2["femm"].integdomain.fes.conn, fens.xyz, FinEtools.MeshExportModule.H8) # @async run(`"paraview.exe" $File`) # The essential boundary conditions are applied on the symmetry planes. # First the plane X=0;... lx0 = selectnode(fens, box = [0.0 0.0 -Inf Inf -Inf Inf], inflate = tolerance) ex0 = FDataDict("displacement" => 0.0, "component" => 1, "node_list" => lx0) # ... and then the plane Y=0. ly0 = selectnode(fens, box = [-Inf Inf 0.0 0.0 -Inf Inf], inflate = tolerance) ey0 = FDataDict("displacement" => 0.0, "component" => 2, "node_list" => ly0) # The transverse displacement is fixed along the line passing through # point B. The nodes are fixed in the box along this line in the Z # direction. lz0 = selectnode(fens, box = [AB / 2 AB / 2 -Inf Inf 0.0 0.0], inflate = tolerance) ez0 = FDataDict("displacement" => 0.0, "component" => 3, "node_list" => lz0) # The traction boundary condition is applied along the edge of the # mesh passing through point C at the top surface of the strip. First # we extract the boundary of the hexahedral mesh. bfes = meshboundary(fes) # From the entire boundary we select those quadrilaterals that lie on the plane # X = 0 xl = selectelem(fens, bfes, box = [0.0 0.0 -Inf Inf -Inf Inf], inflate = tolerance) # Now we extract the boundary of these selected quadrilaterals bbfes = meshboundary(subset(bfes, xl)) # … And from these we extract the ones at the top zl = selectelem(fens, bbfes, box = [0.0 0.0 -Inf Inf TH TH], inflate = tolerance) # Note that we have to apply only half of the line load given that # were modeling just one quarter of the geometry and we are splitting # the line load with the symmetry plane X=0. Also note that the # quadrature rule is one-dimensional since we are integrating along # a curve. Trac = FDataDict( "traction_vector" => vec([0.0; 0.0; -q0 / 2]), "femm" => FEMMBase(IntegDomain(subset(bbfes, zl), GaussRule(1, 3))), ) modeldata = FDataDict( "fens" => fens, "regions" => [region1, region2], "essential_bcs" => [ex0, ey0, ez0], "traction_bcs" => [Trac], ) modeldata = AlgoDeforLinearModule.linearstatics(modeldata) modeldata["postprocessing"] = FDataDict("file" => "NAFEMS_R0031_1_H20-plate") modeldata = AlgoDeforLinearModule.exportdeformation(modeldata) u = modeldata["u"] geom = modeldata["geom"] # The results of the displacement and stresses will be reported at # nodes located at the appropriate points. nE = selectnode(fens, box = [0.0 0.0 0.0 0.0 0.0 0.0], inflate = tolerance) nC = selectnode(fens, box = [0.0 0.0 0.0 0.0 TH TH], inflate = tolerance) nD = selectnode(fens, box = [CD CD 0.0 0.0 ts[1] ts[1]], inflate = tolerance) cdis = mean(u.values[nE, 3]) println("") println("Normalized Center deflection: $(cdis/wEref)") modeldata["postprocessing"] = FDataDict( "file" => "NAFEMS_R0031_1_H20-plate-sx", "quantity" => :Cauchy, "component" => 1, "outputcsys" => CSys(3), ) modeldata = AlgoDeforLinearModule.exportstress(modeldata) s = modeldata["postprocessing"]["exported"][1]["field"] println("sx@E = $(s.values[nE]/phun("MPa")) [MPa]") println("Reference sx@E = $(sigma11Eref/phun("MPa")) [MPa]") modeldata["postprocessing"] = FDataDict( "file" => "NAFEMS_R0031_1_H20-plate-sxz", "quantity" => :Cauchy, "component" => 5, "outputcsys" => CSys(3), ) modeldata = AlgoDeforLinearModule.exportstress(modeldata) s = modeldata["postprocessing"]["exported"][1]["field"] println("sxz@D = $(s.values[nD]/phun("MPa")) [MPa]") s = modeldata["postprocessing"]["exported"][2]["field"] println("sxz@D = $(s.values[nD]/phun("MPa")) [MPa]") println("Reference sxz@D = $(sigma13Dref/phun("MPa")) [MPa]") println("Done") true end # NAFEMS_R0031_1_H20 function NAFEMS_R0031_2_thermal_and_pressure() println(""" R0031(2): Wrapped thick cylinder under pressure and thermal loading. """) t0 = time() pu = ustring -> phun(ustring; system_of_units = :SIMM) # Orthotropic material parameters of the outer cylinder E1s = 130.0 * pu("GPa") E2s = 5.0 * pu("GPa") E3s = E2s nu12s = nu13s = 0.25 nu23s = 0.0 G12s = 10.0 * pu("GPa") G13s = G12s G23s = 5.0 * pu("GPa") CTE1 = 3.0e-6 CTE2 = 2.0e-5 CTE3 = 2.0e-5 # Isotropic material parameters of the inner cylinder E = 2.1e5 * pu("MPa") nu = 0.3 CTE = 2.0e-5 L = 200.0 * pu("mm") # length of the cylinder ri = 23.0 * pu("mm") # inner radius of the cylinder ti = 2.0 * pu("mm") # thickness of the inner cylinder te = 2.0 * pu("mm") # thickness of the outer cylinder q0 = 200.0 * pu("MPa") # inner pressure dT = 130 * pu("K") # temperature rise tolerance = 0.0001 * ti # Generate mesh nL = 16 # number of elements lengthwise nc = 8 # number of elements circumferentially xs = collect(linearspace(0.0, L / 2, nL + 1)) ys = collect(linearspace(0.0, pi / 2, nc + 1)) ts = [ti; te]# layer thicknesses nts = 6 * ones(Int, length(ts))# number of elements per layer fens, fes = H8layeredplatex(xs, ys, ts, nts) fens, fes = H8toH20(fens, fes) bfes = meshboundary(fes) # inner surface for the pressure loading intl = selectelem(fens, bfes; facing = true, direction = [0.0 0.0 -1.0]) # Shape into a cylinder for i = 1:count(fens) z = fens.xyz[i, 1] a = fens.xyz[i, 2] t = fens.xyz[i, 3] fens.xyz[i, :] = [(ri + t) * cos(pi / 2 - a) (ri + t) * sin(pi / 2 - a) z] end MR = DeforModelRed3D outermaterial = MatDeforElastOrtho( MR, 0.0, E1s, E2s, E3s, nu12s, nu13s, nu23s, G12s, G13s, G23s, CTE1, CTE2, CTE3, ) innermaterial = MatDeforElastIso(MR, 0.0, E, nu, CTE) function cylcs!(csmatout, XYZ) csmatout[:, 2] = [0.0 0.0 1.0] csmatout[:, 3] = XYZ csmatout[3, 3] = 0.0 csmatout[:, 3] = csmatout[:, 3] / norm(csmatout[:, 3]) csmatout[:, 1] = cross(csmatout[:, 2], csmatout[:, 3]) end function updatecs!(csmatout, XYZ, tangents, feid, qpid) cylcs!(csmatout, XYZ) csmatout end gr = GaussRule(3, 3) rli = selectelem(fens, fes, label = 1) innerregion = FDataDict( "femm" => FEMMDeforLinear(MR, IntegDomain(subset(fes, rli), gr), innermaterial), ) rle = selectelem(fens, fes, label = 2) outerregion = FDataDict( "femm" => FEMMDeforLinear( MR, IntegDomain(subset(fes, rle), gr), CSys(3, 3, updatecs!), outermaterial, ), ) lx0 = selectnode(fens, box = [0.0 0.0 -Inf Inf -Inf Inf], inflate = tolerance) ly0 = selectnode(fens, box = [-Inf Inf 0.0 0.0 -Inf Inf], inflate = tolerance) lz0 = selectnode(fens, box = [-Inf Inf -Inf Inf 0.0 0.0], inflate = tolerance) ex0 = FDataDict("displacement" => 0.0, "component" => 1, "node_list" => lx0) ey0 = FDataDict("displacement" => 0.0, "component" => 2, "node_list" => ly0) ez0 = FDataDict("displacement" => 0.0, "component" => 3, "node_list" => lz0) function getpr!(forceout, XYZ, tangents, feid, qpid) csmatout = zeros(3, 3) cylcs!(csmatout, XYZ) copy!(forceout, q0 * csmatout[:, 3]) return forceout end Trac = FDataDict( "traction_vector" => getpr!, "femm" => FEMMBase(IntegDomain(subset(bfes, intl), GaussRule(2, 3))), ) modeldata = FDataDict( "fens" => fens, "regions" => [innerregion, outerregion], "essential_bcs" => [ex0, ey0, ez0], "traction_bcs" => [Trac], "temperature_change" => FDataDict("temperature" => dT), ) modeldata = AlgoDeforLinearModule.linearstatics(modeldata) u = modeldata["u"] geom = modeldata["geom"] # File = "NAFEMS-R0031-2-plate.vtk" # vtkexportmesh(File, fes.conn, geom.values, FinEtools.MeshExportModule.H20; # scalars = [("Layer", fes.label)], vectors = [("displacement", u.values)]) # @async run(`"paraview.exe" $File`) modeldata["postprocessing"] = FDataDict( "file" => "NAFEMS-R0031-2", "outputcsys" => CSys(3, 3, updatecs!), "quantity" => :Cauchy, "component" => 6, ) modeldata = AlgoDeforLinearModule.exportstress(modeldata) modeldata["postprocessing"] = FDataDict( "file" => "NAFEMS-R0031-2-elem", "outputcsys" => CSys(3, 3, updatecs!), "quantity" => :Cauchy, "component" => 6, ) modeldata = AlgoDeforLinearModule.exportstresselementwise(modeldata) println("Done") true end # NAFEMS_R0031_2_thermal_and_pressure function NAFEMS_R0031_2_pressure() println(""" R0031(2): Wrapped thick cylinder under pressure and thermal loading. """) t0 = time() # Orthotropic material parameters of the outer cylinder E1s = 130.0 * phun("GPa") E2s = 5.0 * phun("GPa") E3s = E2s nu12s = nu13s = 0.25 nu23s = 0.0 G12s = 10.0 * phun("GPa") G13s = G12s G23s = 5.0 * phun("GPa") CTE1 = 3.0e-6 CTE2 = 2.0e-5 CTE3 = 2.0e-5 # Isotropic material parameters of the inner cylinder E = 2.1e5 * phun("MPa") nu = 0.3 CTE = 2.0e-5 L = 200.0 * phun("mm") # length of the cylinder ri = 23.0 * phun("mm") # inner radius of the cylinder ti = 2.0 * phun("mm") # thickness of the inner cylinder te = 2.0 * phun("mm") # thickness of the outer cylinder q0 = 200.0 * phun("MPa") # inner pressure dT = 0 * phun("K") # NO temperature rise tolerance = 0.0001 * ti # Generate mesh nL = 18 # number of elements lengthwise nc = 18 # number of elements circumferentially xs = collect(linearspace(0.0, L / 2, nL + 1)) ys = collect(linearspace(0.0, pi / 2, nc + 1)) ts = [ti; te]# layer thicknesses nts = 6 * ones(Int, length(ts))# number of elements per layer fens, fes = H8layeredplatex(xs, ys, ts, nts) fens, fes = H8toH20(fens, fes) bfes = meshboundary(fes) # inner surface for the pressure loading intl = selectelem(fens, bfes; facing = true, direction = [0.0 0.0 -1.0]) # Shape into a cylinder for i = 1:count(fens) z = fens.xyz[i, 1] a = fens.xyz[i, 2] t = fens.xyz[i, 3] fens.xyz[i, :] = [(ri + t) * cos(pi / 2 - a) (ri + t) * sin(pi / 2 - a) z] end MR = DeforModelRed3D outermaterial = MatDeforElastOrtho( MR, 0.0, E1s, E2s, E3s, nu12s, nu13s, nu23s, G12s, G13s, G23s, CTE1, CTE2, CTE3, ) innermaterial = MatDeforElastIso(MR, 0.0, E, nu, CTE) function _cylcs!(csmatout, XYZ) csmatout[:, 2] = [0.0 0.0 1.0] radial = XYZ radial[3] = 0.0 csmatout[:, 3] = radial / norm(radial) csmatout[:, 1] = cross(csmatout[:, 2], csmatout[:, 3]) return csmatout end function updatecs!(csmatout, XYZ, tangents, feid, qpid) return _cylcs!(csmatout, XYZ) end gr = GaussRule(3, 3) rli = selectelem(fens, fes, label = 1) innerregion = FDataDict( "femm" => FEMMDeforLinear(MR, IntegDomain(subset(fes, rli), gr), innermaterial), ) rle = selectelem(fens, fes, label = 2) outerregion = FDataDict( "femm" => FEMMDeforLinear( MR, IntegDomain(subset(fes, rle), gr), CSys(3, 3, updatecs!), outermaterial, ), ) lx0 = selectnode(fens, box = [0.0 0.0 -Inf Inf -Inf Inf], inflate = tolerance) ly0 = selectnode(fens, box = [-Inf Inf 0.0 0.0 -Inf Inf], inflate = tolerance) lz0 = selectnode(fens, box = [-Inf Inf -Inf Inf 0.0 0.0], inflate = tolerance) ex0 = FDataDict("displacement" => 0.0, "component" => 1, "node_list" => lx0) ey0 = FDataDict("displacement" => 0.0, "component" => 2, "node_list" => ly0) ez0 = FDataDict("displacement" => 0.0, "component" => 3, "node_list" => lz0) function getpr!(forceout, XYZ, tangents, feid, qpid) csmatout = zeros(3, 3) _cylcs!(csmatout, XYZ) copy!(forceout, q0 * csmatout[:, 3]) return forceout end Trac = FDataDict( "traction_vector" => getpr!, "femm" => FEMMBase(IntegDomain(subset(bfes, intl), GaussRule(2, 3))), ) modeldata = FDataDict( "fens" => fens, "regions" => [innerregion, outerregion], "essential_bcs" => [ex0, ey0, ez0], "traction_bcs" => [Trac], "temperature_change" => FDataDict("temperature" => dT), ) modeldata = AlgoDeforLinearModule.linearstatics(modeldata) u = modeldata["u"] geom = modeldata["geom"] # lcenter = selectnode(fens, box=[a/2 a/2 b/2 b/2 -Inf Inf], inflate=tolerance) # cdis = abs(mean(u.values[lcenter, 3])) # println("") # println("Normalized Center deflection: $(cdis/wc_analytical)") File = "NAFEMS-R0031-2-plate.vtk" vtkexportmesh( File, fes.conn, geom.values, FinEtools.MeshExportModule.VTK.H20; scalars = [("Layer", fes.label)], vectors = [("displacement", u.values)], ) @async run(`"paraview.exe" $File`) println("Done") true end # NAFEMS_R0031_2_pressure function NAFEMS_R0031_3() println(""" NAFEMS publication R0031/3 Composite plate test. Simply supported on all four edges. Uniform transverse loading. The modeled part is one quarter of the full plate here. """) # This is a test recommended by the National Agency for Finite Element Methods # and Standards (U.K.): Test R0031/3 from NAFEMS publication R0031, “Composites # Benchmarks,” February 1995. t0 = time() # Skin (face) material parameters E1s = 1.0e7 * phun("psi") E2s = 0.4e7 * phun("psi") E3s = 0.4e7 * phun("psi") nu12s = 0.3 nu13s = 0.3 nu23s = 0.3 G12s = 0.1875e7 * phun("psi") G13s = 0.1875e7 * phun("psi") G23s = 0.1875e7 * phun("psi") # Core material parameters E1c = 10.0 * phun("psi") E2c = 10.0 * phun("psi") E3c = 10e4 .* phun("psi") nu12c = 0.0 nu13c = 0.0 nu23c = 0.0 G12c = 10.0 * phun("psi") G13c = 3.0e4 * phun("psi") G23c = 1.2e4 * phun("psi") L = 10.0 * phun("in") # side of the square plate nL = 8 # number of elements along the side of the plate tolerance = 0.0001 * phun("in") xs = collect(linearspace(0.0, L / 2, nL + 1)) ys = collect(linearspace(0.0, L / 2, nL + 1)) ts = [0.028; 0.75; 0.028] * phun("in") nts = [2; 3; 2] # number of elements through the thickness tmag = 100 * phun("psi") # Generate mesh fens, fes = H8layeredplatex(xs, ys, ts, nts) fens, fes = H8toH20(fens, fes) MR = DeforModelRed3D skinmaterial = MatDeforElastOrtho( MR, 0.0, E1s, E2s, E3s, nu12s, nu13s, nu23s, G12s, G13s, G23s, 0.0, 0.0, 0.0, ) corematerial = MatDeforElastOrtho( MR, 0.0, E1c, E2c, E3c, nu12c, nu13c, nu23c, G12c, G13c, G23c, 0.0, 0.0, 0.0, ) gr = GaussRule(3, 3) rl1 = selectelem(fens, fes, label = 1) skinbot = FDataDict( "femm" => FEMMDeforLinear(MR, IntegDomain(subset(fes, rl1), gr), skinmaterial), ) rl3 = selectelem(fens, fes, label = 3) skintop = FDataDict( "femm" => FEMMDeforLinear(MR, IntegDomain(subset(fes, rl3), gr), skinmaterial), ) rl2 = selectelem(fens, fes, label = 2) core = FDataDict( "femm" => FEMMDeforLinear(MR, IntegDomain(subset(fes, rl2), gr), corematerial), ) lx0 = selectnode(fens, box = [0.0 0.0 -Inf Inf -Inf Inf], inflate = tolerance) lxL2 = selectnode(fens, box = [L / 2 L / 2 -Inf Inf -Inf Inf], inflate = tolerance) ly0 = selectnode(fens, box = [-Inf Inf 0.0 0.0 -Inf Inf], inflate = tolerance) lyL2 = selectnode(fens, box = [-Inf Inf L / 2 L / 2 -Inf Inf], inflate = tolerance) ex0 = FDataDict("displacement" => 0.0, "component" => 3, "node_list" => lx0) exL2 = FDataDict("displacement" => 0.0, "component" => 1, "node_list" => lxL2) ey0 = FDataDict("displacement" => 0.0, "component" => 3, "node_list" => ly0) eyL2 = FDataDict("displacement" => 0.0, "component" => 2, "node_list" => lyL2) bfes = meshboundary(fes) ttopl = selectelem(fens, bfes; facing = true, direction = [0.0 0.0 1.0]) Trac = FDataDict( "traction_vector" => [0.0; 0.0; -tmag], "femm" => FEMMBase(IntegDomain(subset(bfes, ttopl), GaussRule(2, 3))), ) modeldata = FDataDict( "fens" => fens, "regions" => [skinbot, core, skintop], "essential_bcs" => [ex0, exL2, ey0, eyL2], "traction_bcs" => [Trac], ) modeldata = AlgoDeforLinearModule.linearstatics(modeldata) u = modeldata["u"] geom = modeldata["geom"] lcenter = selectnode(fens, box = [L / 2 L / 2 L / 2 L / 2 -Inf Inf], inflate = tolerance) cdis = mean(u.values[lcenter, 3]) / phun("in") println("Center node displacements $(cdis) [in]; NAFEMS-R0031-3 lists –0.123 [in]") println("") File = "NAFEMS-R0031-3-plate.vtk" vtkexportmesh( File, fes.conn, geom.values, FinEtools.MeshExportModule.VTK.H20; scalars = [("Layer", fes.label)], vectors = [("displacement", u.values)], ) @async run(`"paraview.exe" $File`) println("Done") true end # NAFEMS_R0031_3 function allrun() println("#####################################################") println("# NAFEMS_R0031_1_msh8 ") NAFEMS_R0031_1_msh8() println("#####################################################") println("# NAFEMS_R0031_1_esnice_h8 ") NAFEMS_R0031_1_esnice_h8() println("#####################################################") println("# NAFEMS_R0031_1_H20 ") NAFEMS_R0031_1_H20() println("#####################################################") println("# NAFEMS_R0031_2_pressure ") NAFEMS_R0031_2_pressure() println("#####################################################") println("# NAFEMS_R0031_2_thermal_and_pressure ") NAFEMS_R0031_2_thermal_and_pressure() println("#####################################################") println("# NAFEMS_R0031_3 ") NAFEMS_R0031_3() return true end # function allrun @info "All examples may be executed with " println("using .$(@__MODULE__); $(@__MODULE__).allrun()") end # module nothing
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
43167
module Pagano_examples using FinEtools using FinEtoolsDeforLinear using FinEtoolsDeforLinear.AlgoDeforLinearModule using FinEtools.MeshUtilModule using FinEtools.AlgoBaseModule using Statistics: mean function Pagano_3lay_cyl_bend_MST10_conv() elementtag = "MST10" println(""" Pagano 3layer cylindrical bending: $(elementtag) """) # This example provides three-dimensional finite element model for the # transverse shear stress calculations. The problem consists of a one-, two- or # three-layer plate subjected to a sinusoidal distributed load, as # described by Pagano (1969). The resulting transverse shear and axial # stresses through the thickness of the plate are compared to two existing # analytical solutions by Pagano (1969). The first solution is derived from # classical laminated plate theory (CPT), while the second is an exact # solution from linear elasticity theory. for (extrap, nodevalmeth) in zip([:extrapmean, :extraptrend, :default], [:averaging, :averaging, :invdistance]) for Span_to_thickness in [4, 50] filebase = "Pagano_3lay_cyl_bend_conv_$(elementtag)_$(Span_to_thickness)_$(extrap)" modeldatasequence = FDataDict[] for Refinement in [1, 2, 4, 8] # Orthotropic material for the 3 layers E1 = 25e6 * phun("PSI") E2 = 1e6 * phun("PSI") E3 = E2 G12 = 0.5e6 * phun("PSI") G13 = G12 G23 = 0.2e6 * phun("PSI") nu12 = 0.25 nu13 = 0.25 nu23 = 0.25 T = 2.5 * phun("in") # total thickness of the plate L = Span_to_thickness * T h = 1.0 / Refinement * phun("in") # depth of the plate q0 = 1 * phun("PSI") CTE1 = CTE2 = CTE3 = 0.0 # Here we define the layout and the thicknesses of the layers. angles = vec([0.0 90.0 0.0]) nLayers = length(angles) ts = T / nLayers * ones(nLayers) # layer thicknesses tolerance = 0.0001 * T # Select how fine the mesh should be nL, nh = Refinement * 2 * 6, 1 nts = Refinement * 2 * ones(Int, nLayers)# number of elements per layer xs = collect(linearspace(0.0, L, nL + 1)) ys = collect(linearspace(0.0, h, nh + 1)) fens, fes = T10layeredplatex(xs, ys, ts, nts) display(typeof(fes)) println("Mesh: nL, nh, nts = $nL, $nh, $nts") println("count(fens) = $(count(fens))") # This is the material model MR = DeforModelRed3D skinmaterial = MatDeforElastOrtho( MR, 0.0, E1, E2, E3, nu12, nu13, nu23, G12, G13, G23, CTE1, CTE2, CTE3, ) # The material coordinate system function is defined as: function _updatecs!(csmatout::FFltMat, layer::FInt) rotmat3!(csmatout, angles[layer] / 180.0 * pi * [0.0; 0.0; 1.0]) csmatout end # The vvolume integrals are evaluated using this rule gr = SimplexRule(3, 4) # We will create 3 regions, one for each of the layers regions = FDataDict[] for layer = 1:nLayers rls = selectelem(fens, fes, label = layer) push!( regions, FDataDict( "femm" => FEMMDeforLinearMST10( MR, IntegDomain(subset(fes, rls), gr), CSys( 3, 3, (csmatout, XYZ, tangents, feid, qpid) -> _updatecs!(csmatout, layer), ), skinmaterial, ), ), ) end # The essential boundary conditions are applied to enforce the plane strain constraint. ly0 = selectnode(fens, box = [-Inf Inf 0.0 0.0 -Inf Inf], inflate = tolerance) lyh = selectnode(fens, box = [-Inf Inf h h -Inf Inf], inflate = tolerance) ey = FDataDict( "displacement" => 0.0, "component" => 2, "node_list" => vcat(ly0, lyh), ) # The transverse displacement is fixed at the two ends. lz0 = selectnode(fens, box = [0.0 0.0 -Inf Inf -Inf Inf], inflate = tolerance) lzL = selectnode(fens, box = [L L -Inf Inf -Inf Inf], inflate = tolerance) ez = FDataDict( "displacement" => 0.0, "component" => 3, "node_list" => vcat(lz0, lzL), ) ex = FDataDict("displacement" => 0.0, "component" => 1, "node_list" => [1]) # The traction boundary condition is applied at the top of the plate. bfes = meshboundary(fes) function pfun( forceout::FVec{T}, XYZ::FFltMat, tangents::FFltMat, feid::FInt, qpid::FInt, ) where {T} forceout[1] = 0.0 forceout[2] = 0.0 forceout[3] = -q0 * sin(pi * XYZ[1] / L) return forceout end # From the entire boundary we select those quadrilaterals that lie on the plane # Z = thickness tl = selectelem( fens, bfes, box = [-Inf Inf -Inf Inf T T], inflate = tolerance, ) Trac = FDataDict( "traction_vector" => pfun, "femm" => FEMMBase(IntegDomain(subset(bfes, tl), SimplexRule(2, 3))), ) modeldata = FDataDict( "fens" => fens, "regions" => regions, "essential_bcs" => [ex, ey, ez], "traction_bcs" => [Trac], ) modeldata = AlgoDeforLinearModule.linearstatics(modeldata) # modeldata["postprocessing"] = FDataDict("file"=>filebase * "-u") # modeldata = AlgoDeforLinearModule.exportdeformation(modeldata) u = modeldata["u"] geom = modeldata["geom"] # The results of the displacement and stresses will be reported at # nodes located at the appropriate points. ntopcenter = selectnode(fens, box = [L / 2 L / 2 0.0 h T T], inflate = tolerance) ncenterline = selectnode(fens, box = [L / 2 L / 2 0.0 0.0 0.0 T], inflate = tolerance) nx0line = selectnode(fens, box = [0.0 0.0 0.0 0.0 0.0 T], inflate = tolerance) zclo = sortperm(vec(geom.values[ncenterline, 3])) ncenterline = ncenterline[zclo] centerz = geom.values[ncenterline, 3] println( "Top Center deflection: $(mean(u.values[ntopcenter, 3], dims = 1)/phun("in")) [in]", ) # Compute all stresses modeldata["postprocessing"] = FDataDict( "file" => filebase * "-s", "quantity" => :Cauchy, "component" => collect(1:6), "outputcsys" => CSys(3), "nodevalmethod" => nodevalmeth, "reportat" => extrap, ) modeldata = AlgoDeforLinearModule.exportstress(modeldata) modeldata["elementsize"] = T / Refinement modeldata["geometricaltolerance"] = tolerance push!(modeldatasequence, modeldata) end # for refinement println("") println("Stress RMS error") for md in modeldatasequence md["targetfields"] = [e["field"] for e in md["postprocessing"]["exported"]] end elementsizes, errornorms, p = AlgoBaseModule.evalconvergencestudy(modeldatasequence) println("Normalized Approximate Error = $(errornorms)") f = log.(vec(errornorms)) A = hcat(log.(vec(elementsizes[1:(end-1)])), ones(size(f))) p = A \ f println("Linear log-log fit: p = $(p)") csvFile = filebase * "_Stress" * ".CSV" savecsv( csvFile, elementsizes = vec(elementsizes[1:(end-1)]), elementsizes2 = vec(elementsizes[1:(end-1)] .^ 2), elementsizes3 = vec(elementsizes[1:(end-1)] .^ 3), errornorms = vec(errornorms), ) println("Wrote $csvFile") println("") println("Displacement RMS error") for md in modeldatasequence md["targetfields"] = [md["u"] for r in md["regions"]] end elementsizes, errornorms, p = AlgoBaseModule.evalconvergencestudy(modeldatasequence) println("Normalized Approximate Error = $(errornorms)") f = log.(vec(errornorms)) A = hcat(log.(vec(elementsizes[1:(end-1)])), ones(size(f))) p = A \ f println("Linear log-log fit: p = $(p)") csvFile = filebase * "_Displ" * ".CSV" savecsv( csvFile, elementsizes = vec(elementsizes[1:(end-1)]), elementsizes2 = vec(elementsizes[1:(end-1)] .^ 2), elementsizes3 = vec(elementsizes[1:(end-1)] .^ 3), errornorms = vec(errornorms), ) println("Wrote $csvFile") # @async run(`"paraview.exe" $csvFile`) end # Span_to_thickness end # extrap println("Done") end # Pagano_3lay_cyl_bend_MST10_conv function Pagano_3lay_cyl_bend_H8_conv() elementtag = "H8" println(""" Pagano 3layer cylindrical bending: $(elementtag) """) # This example provides three-dimensional finite element model for the # transverse shear stress calculations. The problem consists of a one-, two- or # three-layer plate subjected to a sinusoidal distributed load, as # described by Pagano (1969). The resulting transverse shear and axial # stresses through the thickness of the plate are compared to two existing # analytical solutions by Pagano (1969). The first solution is derived from # classical laminated plate theory (CPT), while the second is an exact # solution from linear elasticity theory. for (extrap, nodevalmeth) in zip([:extrapmean, :extraptrend, :default], [:averaging, :averaging, :invdistance]) for Span_to_thickness in [4, 50] filebase = "Pagano_3lay_cyl_bend_conv_$(elementtag)_$(Span_to_thickness)_$(extrap)" modeldatasequence = FDataDict[] for Refinement in [1, 2, 4, 8] # Orthotropic material for the 3 layers E1 = 25e6 * phun("PSI") E2 = 1e6 * phun("PSI") E3 = E2 G12 = 0.5e6 * phun("PSI") G13 = G12 G23 = 0.2e6 * phun("PSI") nu12 = 0.25 nu13 = 0.25 nu23 = 0.25 T = 2.5 * phun("in") # total thickness of the plate L = Span_to_thickness * T h = 1.0 / Refinement * phun("in") # depth of the plate q0 = 1 * phun("PSI") CTE1 = CTE2 = CTE3 = 0.0 # Here we define the layout and the thicknesses of the layers. angles = vec([0.0 90.0 0.0]) nLayers = length(angles) ts = T / nLayers * ones(nLayers) # layer thicknesses tolerance = 0.0001 * T # Select how fine the mesh should be nL, nh = Refinement * 2 * 6, 1 nts = Refinement * 2 * ones(Int, nLayers)# number of elements per layer xs = collect(linearspace(0.0, L, nL + 1)) ys = collect(linearspace(0.0, h, nh + 1)) fens, fes = H8layeredplatex(xs, ys, ts, nts) println("Mesh: nL, nh, nts = $nL, $nh, $nts") println("count(fens) = $(count(fens))") # This is the material model MR = DeforModelRed3D skinmaterial = MatDeforElastOrtho( MR, 0.0, E1, E2, E3, nu12, nu13, nu23, G12, G13, G23, CTE1, CTE2, CTE3, ) # The material coordinate system function is defined as: function _updatecs!(csmatout::FFltMat, layer::FInt) rotmat3!(csmatout, angles[layer] / 180.0 * pi * [0.0; 0.0; 1.0]) csmatout end # The vvolume integrals are evaluated using this rule gr = GaussRule(3, 2) # We will create 3 regions, one for each of the layers regions = FDataDict[] for layer = 1:nLayers rls = selectelem(fens, fes, label = layer) push!( regions, FDataDict( "femm" => FEMMDeforLinear( MR, IntegDomain(subset(fes, rls), gr), CSys( 3, 3, (csmatout, XYZ, tangents, feid, qpid) -> _updatecs!(csmatout, layer), ), skinmaterial, ), ), ) end # The essential boundary conditions are applied to enforce the plane strain constraint. ly0 = selectnode(fens, box = [-Inf Inf 0.0 0.0 -Inf Inf], inflate = tolerance) lyh = selectnode(fens, box = [-Inf Inf h h -Inf Inf], inflate = tolerance) ey = FDataDict( "displacement" => 0.0, "component" => 2, "node_list" => vcat(ly0, lyh), ) # The transverse displacement is fixed at the two ends. lz0 = selectnode(fens, box = [0.0 0.0 -Inf Inf -Inf Inf], inflate = tolerance) lzL = selectnode(fens, box = [L L -Inf Inf -Inf Inf], inflate = tolerance) ez = FDataDict( "displacement" => 0.0, "component" => 3, "node_list" => vcat(lz0, lzL), ) ex = FDataDict("displacement" => 0.0, "component" => 1, "node_list" => [1]) # The traction boundary condition is applied at the top of the plate. bfes = meshboundary(fes) function pfun( forceout::FVec{T}, XYZ::FFltMat, tangents::FFltMat, feid::FInt, qpid::FInt, ) where {T} forceout[1] = 0.0 forceout[2] = 0.0 forceout[3] = -q0 * sin(pi * XYZ[1] / L) return forceout end # From the entire boundary we select those quadrilaterals that lie on the plane # Z = thickness tl = selectelem( fens, bfes, box = [-Inf Inf -Inf Inf T T], inflate = tolerance, ) Trac = FDataDict( "traction_vector" => pfun, "femm" => FEMMBase(IntegDomain(subset(bfes, tl), GaussRule(2, 2))), ) modeldata = FDataDict( "fens" => fens, "regions" => regions, "essential_bcs" => [ex, ey, ez], "traction_bcs" => [Trac], ) modeldata = AlgoDeforLinearModule.linearstatics(modeldata) # modeldata["postprocessing"] = FDataDict("file"=>filebase * "-u") # modeldata = AlgoDeforLinearModule.exportdeformation(modeldata) u = modeldata["u"] geom = modeldata["geom"] # The results of the displacement and stresses will be reported at # nodes located at the appropriate points. ntopcenter = selectnode(fens, box = [L / 2 L / 2 0.0 h T T], inflate = tolerance) ncenterline = selectnode(fens, box = [L / 2 L / 2 0.0 0.0 0.0 T], inflate = tolerance) nx0line = selectnode(fens, box = [0.0 0.0 0.0 0.0 0.0 T], inflate = tolerance) zclo = sortperm(vec(geom.values[ncenterline, 3])) ncenterline = ncenterline[zclo] centerz = geom.values[ncenterline, 3] println( "Top Center deflection: $(mean(u.values[ntopcenter, 3], dims = 1)/phun("in")) [in]", ) # Compute all stresses modeldata["postprocessing"] = FDataDict( "file" => filebase * "-s", "quantity" => :Cauchy, "component" => collect(1:6), "outputcsys" => CSys(3), "nodevalmethod" => nodevalmeth, "reportat" => extrap, ) modeldata = AlgoDeforLinearModule.exportstress(modeldata) modeldata["elementsize"] = T / Refinement modeldata["geometricaltolerance"] = tolerance push!(modeldatasequence, modeldata) end # for refinement println("") println("Stress RMS error") for md in modeldatasequence md["targetfields"] = [e["field"] for e in md["postprocessing"]["exported"]] end elementsizes, errornorms, p = AlgoBaseModule.evalconvergencestudy(modeldatasequence) println("Normalized Approximate Error = $(errornorms)") f = log.(vec(errornorms)) A = hcat(log.(vec(elementsizes[1:(end-1)])), ones(size(f))) p = A \ f println("Linear log-log fit: p = $(p)") csvFile = filebase * "_Stress" * ".CSV" savecsv( csvFile, elementsizes = vec(elementsizes[1:(end-1)]), elementsizes2 = vec(elementsizes[1:(end-1)] .^ 2), elementsizes3 = vec(elementsizes[1:(end-1)] .^ 3), errornorms = vec(errornorms), ) println("Wrote $csvFile") println("") println("Displacement RMS error") for md in modeldatasequence md["targetfields"] = [md["u"] for r in md["regions"]] end elementsizes, errornorms, p = AlgoBaseModule.evalconvergencestudy(modeldatasequence) println("Normalized Approximate Error = $(errornorms)") f = log.(vec(errornorms)) A = hcat(log.(vec(elementsizes[1:(end-1)])), ones(size(f))) p = A \ f println("Linear log-log fit: p = $(p)") csvFile = filebase * "_Displ" * ".CSV" savecsv( csvFile, elementsizes = vec(elementsizes[1:(end-1)]), elementsizes2 = vec(elementsizes[1:(end-1)] .^ 2), elementsizes3 = vec(elementsizes[1:(end-1)] .^ 3), errornorms = vec(errornorms), ) println("Wrote $csvFile") # @async run(`"paraview.exe" $csvFile`) end # Span_to_thickness end # extrap println("Done") end # Pagano_3lay_cyl_bend_H8_conv function Pagano_3lay_cyl_bend_MSH8_conv() elementtag = "MSH8" println(""" Pagano 3layer cylindrical bending: $(elementtag) """) # This example provides three-dimensional finite element model for the # transverse shear stress calculations. The problem consists of a one-, two- or # three-layer plate subjected to a sinusoidal distributed load, as # described by Pagano (1969). The resulting transverse shear and axial # stresses through the thickness of the plate are compared to two existing # analytical solutions by Pagano (1969). The first solution is derived from # classical laminated plate theory (CPT), while the second is an exact # solution from linear elasticity theory. for (extrap, nodevalmeth) in zip([:extrapmean, :extraptrend, :default], [:averaging, :averaging, :invdistance]) for Span_to_thickness in [4, 50] filebase = "Pagano_3lay_cyl_bend_conv_$(elementtag)_$(Span_to_thickness)_$(extrap)" modeldatasequence = FDataDict[] for Refinement in [1, 2, 4, 8] # Orthotropic material for the 3 layers E1 = 25e6 * phun("PSI") E2 = 1e6 * phun("PSI") E3 = E2 G12 = 0.5e6 * phun("PSI") G13 = G12 G23 = 0.2e6 * phun("PSI") nu12 = 0.25 nu13 = 0.25 nu23 = 0.25 T = 2.5 * phun("in") # total thickness of the plate L = Span_to_thickness * T h = 1.0 / Refinement * phun("in") # depth of the plate q0 = 1 * phun("PSI") CTE1 = CTE2 = CTE3 = 0.0 # Here we define the layout and the thicknesses of the layers. angles = vec([0.0 90.0 0.0]) nLayers = length(angles) ts = T / nLayers * ones(nLayers) # layer thicknesses tolerance = 0.0001 * T # Select how fine the mesh should be nL, nh = Refinement * 2 * 6, 1 nts = Refinement * 2 * ones(Int, nLayers)# number of elements per layer xs = collect(linearspace(0.0, L, nL + 1)) ys = collect(linearspace(0.0, h, nh + 1)) fens, fes = H8layeredplatex(xs, ys, ts, nts) println("Mesh: nL, nh, nts = $nL, $nh, $nts") println("count(fens) = $(count(fens))") # This is the material model MR = DeforModelRed3D skinmaterial = MatDeforElastOrtho( MR, 0.0, E1, E2, E3, nu12, nu13, nu23, G12, G13, G23, CTE1, CTE2, CTE3, ) # The material coordinate system function is defined as: function _updatecs!(csmatout::FFltMat, layer::FInt) rotmat3!(csmatout, angles[layer] / 180.0 * pi * [0.0; 0.0; 1.0]) csmatout end # The vvolume integrals are evaluated using this rule gr = GaussRule(3, 2) # We will create 3 regions, one for each of the layers regions = FDataDict[] for layer = 1:nLayers rls = selectelem(fens, fes, label = layer) push!( regions, FDataDict( "femm" => FEMMDeforLinearMSH8( MR, IntegDomain(subset(fes, rls), gr), CSys( 3, 3, (csmatout, XYZ, tangents, feid, qpid) -> _updatecs!(csmatout, layer), ), skinmaterial, ), ), ) end # The essential boundary conditions are applied to enforce the plane strain constraint. ly0 = selectnode(fens, box = [-Inf Inf 0.0 0.0 -Inf Inf], inflate = tolerance) lyh = selectnode(fens, box = [-Inf Inf h h -Inf Inf], inflate = tolerance) ey = FDataDict( "displacement" => 0.0, "component" => 2, "node_list" => vcat(ly0, lyh), ) # The transverse displacement is fixed at the two ends. lz0 = selectnode(fens, box = [0.0 0.0 -Inf Inf -Inf Inf], inflate = tolerance) lzL = selectnode(fens, box = [L L -Inf Inf -Inf Inf], inflate = tolerance) ez = FDataDict( "displacement" => 0.0, "component" => 3, "node_list" => vcat(lz0, lzL), ) ex = FDataDict("displacement" => 0.0, "component" => 1, "node_list" => [1]) # The traction boundary condition is applied at the top of the plate. bfes = meshboundary(fes) function pfun( forceout::FVec{T}, XYZ::FFltMat, tangents::FFltMat, feid::FInt, qpid::FInt, ) where {T} forceout[1] = 0.0 forceout[2] = 0.0 forceout[3] = -q0 * sin(pi * XYZ[1] / L) return forceout end # From the entire boundary we select those quadrilaterals that lie on the plane # Z = thickness tl = selectelem( fens, bfes, box = [-Inf Inf -Inf Inf T T], inflate = tolerance, ) Trac = FDataDict( "traction_vector" => pfun, "femm" => FEMMBase(IntegDomain(subset(bfes, tl), GaussRule(2, 2))), ) modeldata = FDataDict( "fens" => fens, "regions" => regions, "essential_bcs" => [ex, ey, ez], "traction_bcs" => [Trac], ) modeldata = AlgoDeforLinearModule.linearstatics(modeldata) # modeldata["postprocessing"] = FDataDict("file"=>filebase * "-u") # modeldata = AlgoDeforLinearModule.exportdeformation(modeldata) u = modeldata["u"] geom = modeldata["geom"] # The results of the displacement and stresses will be reported at # nodes located at the appropriate points. ntopcenter = selectnode(fens, box = [L / 2 L / 2 0.0 h T T], inflate = tolerance) ncenterline = selectnode(fens, box = [L / 2 L / 2 0.0 0.0 0.0 T], inflate = tolerance) nx0line = selectnode(fens, box = [0.0 0.0 0.0 0.0 0.0 T], inflate = tolerance) zclo = sortperm(vec(geom.values[ncenterline, 3])) ncenterline = ncenterline[zclo] centerz = geom.values[ncenterline, 3] println( "Top Center deflection: $(mean(u.values[ntopcenter, 3], dims = 1)/phun("in")) [in]", ) # Compute all stresses modeldata["postprocessing"] = FDataDict( "file" => filebase * "-s", "quantity" => :Cauchy, "component" => collect(1:6), "outputcsys" => CSys(3), "nodevalmethod" => nodevalmeth, "reportat" => extrap, ) modeldata = AlgoDeforLinearModule.exportstress(modeldata) modeldata["elementsize"] = T / Refinement modeldata["geometricaltolerance"] = tolerance push!(modeldatasequence, modeldata) end # for refinement println("") println("Stress RMS error") for md in modeldatasequence md["targetfields"] = [e["field"] for e in md["postprocessing"]["exported"]] end elementsizes, errornorms, p = AlgoBaseModule.evalconvergencestudy(modeldatasequence) println("Normalized Approximate Error = $(errornorms)") f = log.(vec(errornorms)) A = hcat(log.(vec(elementsizes[1:(end-1)])), ones(size(f))) p = A \ f println("Linear log-log fit: p = $(p)") csvFile = filebase * "_Stress" * ".CSV" savecsv( csvFile, elementsizes = vec(elementsizes[1:(end-1)]), elementsizes2 = vec(elementsizes[1:(end-1)] .^ 2), elementsizes3 = vec(elementsizes[1:(end-1)] .^ 3), errornorms = vec(errornorms), ) println("Wrote $csvFile") println("") println("Displacement RMS error") for md in modeldatasequence md["targetfields"] = [md["u"] for r in md["regions"]] end elementsizes, errornorms, p = AlgoBaseModule.evalconvergencestudy(modeldatasequence) println("Normalized Approximate Error = $(errornorms)") f = log.(vec(errornorms)) A = hcat(log.(vec(elementsizes[1:(end-1)])), ones(size(f))) p = A \ f println("Linear log-log fit: p = $(p)") csvFile = filebase * "_Displ" * ".CSV" savecsv( csvFile, elementsizes = vec(elementsizes[1:(end-1)]), elementsizes2 = vec(elementsizes[1:(end-1)] .^ 2), elementsizes3 = vec(elementsizes[1:(end-1)] .^ 3), errornorms = vec(errornorms), ) println("Wrote $csvFile") # @async run(`"paraview.exe" $csvFile`) end # Span_to_thickness end # extrap println("Done") end # Pagano_3lay_cyl_bend_MSH8_conv function Pagano_3lay_cyl_bend_T10_conv() elementtag = "T10" println(""" Pagano 3layer cylindrical bending: $(elementtag) """) # This example provides three-dimensional finite element model for the # transverse shear stress calculations. The problem consists of a one-, two- or # three-layer plate subjected to a sinusoidal distributed load, as # described by Pagano (1969). The resulting transverse shear and axial # stresses through the thickness of the plate are compared to two existing # analytical solutions by Pagano (1969). The first solution is derived from # classical laminated plate theory (CPT), while the second is an exact # solution from linear elasticity theory. for (extrap, nodevalmeth) in zip([:default], [:invdistance]) for Span_to_thickness in [4, 50] filebase = "Pagano_3lay_cyl_bend_conv_$(elementtag)_$(Span_to_thickness)_$(extrap)" modeldatasequence = FDataDict[] for Refinement in [1, 2, 4, 8] # Orthotropic material for the 3 layers E1 = 25e6 * phun("PSI") E2 = 1e6 * phun("PSI") E3 = E2 G12 = 0.5e6 * phun("PSI") G13 = G12 G23 = 0.2e6 * phun("PSI") nu12 = 0.25 nu13 = 0.25 nu23 = 0.25 T = 2.5 * phun("in") # total thickness of the plate L = Span_to_thickness * T h = 1.0 / Refinement * phun("in") # depth of the plate q0 = 1 * phun("PSI") CTE1 = CTE2 = CTE3 = 0.0 # Here we define the layout and the thicknesses of the layers. angles = vec([0.0 90.0 0.0]) nLayers = length(angles) ts = T / nLayers * ones(nLayers) # layer thicknesses tolerance = 0.0001 * T # Select how fine the mesh should be nL, nh = Refinement * 2 * 6, 1 nts = Refinement * 2 * ones(Int, nLayers)# number of elements per layer xs = collect(linearspace(0.0, L, nL + 1)) ys = collect(linearspace(0.0, h, nh + 1)) fens, fes = T10layeredplatex(xs, ys, ts, nts) println("Mesh: nL, nh, nts = $nL, $nh, $nts") println("count(fens) = $(count(fens))") # This is the material model MR = DeforModelRed3D skinmaterial = MatDeforElastOrtho( MR, 0.0, E1, E2, E3, nu12, nu13, nu23, G12, G13, G23, CTE1, CTE2, CTE3, ) # The material coordinate system function is defined as: function _updatecs!(csmatout::FFltMat, layer::FInt) rotmat3!(csmatout, angles[layer] / 180.0 * pi * [0.0; 0.0; 1.0]) csmatout end # The vvolume integrals are evaluated using this rule gr = SimplexRule(3, 4) # We will create 3 regions, one for each of the layers regions = FDataDict[] for layer = 1:nLayers rls = selectelem(fens, fes, label = layer) push!( regions, FDataDict( "femm" => FEMMDeforLinear( MR, IntegDomain(subset(fes, rls), gr), CSys( 3, 3, (csmatout, XYZ, tangents, feid, qpid) -> _updatecs!(csmatout, layer), ), skinmaterial, ), ), ) end # The essential boundary conditions are applied to enforce the plane strain constraint. ly0 = selectnode(fens, box = [-Inf Inf 0.0 0.0 -Inf Inf], inflate = tolerance) lyh = selectnode(fens, box = [-Inf Inf h h -Inf Inf], inflate = tolerance) ey = FDataDict( "displacement" => 0.0, "component" => 2, "node_list" => vcat(ly0, lyh), ) # The transverse displacement is fixed at the two ends. lz0 = selectnode(fens, box = [0.0 0.0 -Inf Inf -Inf Inf], inflate = tolerance) lzL = selectnode(fens, box = [L L -Inf Inf -Inf Inf], inflate = tolerance) ez = FDataDict( "displacement" => 0.0, "component" => 3, "node_list" => vcat(lz0, lzL), ) ex = FDataDict("displacement" => 0.0, "component" => 1, "node_list" => [1]) # The traction boundary condition is applied at the top of the plate. bfes = meshboundary(fes) function pfun( forceout::FVec{T}, XYZ::FFltMat, tangents::FFltMat, feid::FInt, qpid::FInt, ) where {T} forceout[1] = 0.0 forceout[2] = 0.0 forceout[3] = -q0 * sin(pi * XYZ[1] / L) return forceout end # From the entire boundary we select those quadrilaterals that lie on the plane # Z = thickness tl = selectelem( fens, bfes, box = [-Inf Inf -Inf Inf T T], inflate = tolerance, ) Trac = FDataDict( "traction_vector" => pfun, "femm" => FEMMBase(IntegDomain(subset(bfes, tl), SimplexRule(2, 3))), ) modeldata = FDataDict( "fens" => fens, "regions" => regions, "essential_bcs" => [ex, ey, ez], "traction_bcs" => [Trac], ) modeldata = AlgoDeforLinearModule.linearstatics(modeldata) # modeldata["postprocessing"] = FDataDict("file"=>filebase * "-u") # modeldata = AlgoDeforLinearModule.exportdeformation(modeldata) u = modeldata["u"] geom = modeldata["geom"] # The results of the displacement and stresses will be reported at # nodes located at the appropriate points. ntopcenter = selectnode(fens, box = [L / 2 L / 2 0.0 h T T], inflate = tolerance) ncenterline = selectnode(fens, box = [L / 2 L / 2 0.0 0.0 0.0 T], inflate = tolerance) nx0line = selectnode(fens, box = [0.0 0.0 0.0 0.0 0.0 T], inflate = tolerance) zclo = sortperm(vec(geom.values[ncenterline, 3])) ncenterline = ncenterline[zclo] centerz = geom.values[ncenterline, 3] println( "Top Center deflection: $(mean(u.values[ntopcenter, 3], dims = 1)/phun("in")) [in]", ) # Compute all stresses modeldata["postprocessing"] = FDataDict( "file" => filebase * "-s", "quantity" => :Cauchy, "component" => collect(1:6), "outputcsys" => CSys(3), "nodevalmethod" => nodevalmeth, "reportat" => extrap, ) modeldata = AlgoDeforLinearModule.exportstress(modeldata) modeldata["elementsize"] = T / Refinement modeldata["geometricaltolerance"] = tolerance push!(modeldatasequence, modeldata) end # for refinement println("") println("Stress RMS error") for md in modeldatasequence md["targetfields"] = [e["field"] for e in md["postprocessing"]["exported"]] end elementsizes, errornorms, p = AlgoBaseModule.evalconvergencestudy(modeldatasequence) println("Normalized Approximate Error = $(errornorms)") f = log.(vec(errornorms)) A = hcat(log.(vec(elementsizes[1:(end-1)])), ones(size(f))) p = A \ f println("Linear log-log fit: p = $(p)") csvFile = filebase * "_Stress" * ".CSV" savecsv( csvFile, elementsizes = vec(elementsizes[1:(end-1)]), elementsizes2 = vec(elementsizes[1:(end-1)] .^ 2), elementsizes3 = vec(elementsizes[1:(end-1)] .^ 3), errornorms = vec(errornorms), ) println("Wrote $csvFile") println("") println("Displacement RMS error") for md in modeldatasequence md["targetfields"] = [md["u"] for r in md["regions"]] end elementsizes, errornorms, p = AlgoBaseModule.evalconvergencestudy(modeldatasequence) println("Normalized Approximate Error = $(errornorms)") f = log.(vec(errornorms)) A = hcat(log.(vec(elementsizes[1:(end-1)])), ones(size(f))) p = A \ f println("Linear log-log fit: p = $(p)") csvFile = filebase * "_Displ" * ".CSV" savecsv( csvFile, elementsizes = vec(elementsizes[1:(end-1)]), elementsizes2 = vec(elementsizes[1:(end-1)] .^ 2), elementsizes3 = vec(elementsizes[1:(end-1)] .^ 3), errornorms = vec(errornorms), ) println("Wrote $csvFile") # @async run(`"paraview.exe" $csvFile`) end # Span_to_thickness end # extrap println("Done") end # Pagano_3lay_cyl_bend_T10_conv function allrun() println("#####################################################") println("# Pagano_3lay_cyl_bend_MST10_conv ") Pagano_3lay_cyl_bend_MST10_conv() println("#####################################################") println("# Pagano_3lay_cyl_bend_MSH8_conv ") Pagano_3lay_cyl_bend_MSH8_conv() println("#####################################################") println("# Pagano_3lay_cyl_bend_H8_conv ") Pagano_3lay_cyl_bend_H8_conv() println("#####################################################") println("# Pagano_3lay_cyl_bend_MSH8_conv ") Pagano_3lay_cyl_bend_MSH8_conv() println("#####################################################") println("# Pagano_3lay_cyl_bend_T10_conv ") Pagano_3lay_cyl_bend_T10_conv() return true end # function allrun @info "All examples may be executed with " println("using .$(@__MODULE__); $(@__MODULE__).allrun()") end # module nothing
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
9199
module THICK_plate_2dir_strong_examples using FinEtools using FinEtoolsDeforLinear using FinEtoolsDeforLinear.AlgoDeforLinearModule using FinEtools.MeshUtilModule using FinEtools.AlgoBaseModule using Statistics function THICK_plate_2dir_strong_MST10_conv() elementtag = "MST10" println(""" Fiber-reinforced cantilever plate: $(elementtag) """) # This example provides three-dimensional finite element model for the # transverse shear stress calculations. The problem consists of a one-, two- or # three-layer plate subjected to a sinusoidal distributed load, as # described by Pagano (1969). The resulting transverse shear and axial # stresses through the thickness of the plate are compared to two existing # analytical solutions by Pagano (1969). The first solution is derived from # classical laminated plate theory (CPT), while the second is an exact # solution from linear elasticity theory. for (extrap, nodevalmeth) in zip([:extrapmean, :extraptrend, :default], [:averaging, :averaging, :invdistance]) filebase = "THICK_plate_2dir_strong_MST10_conv_$(elementtag)_$(extrap)" modeldatasequence = FDataDict[] for Refinement in [1, 2, 4, 8] # Orthotropic material E1 = 1000.0e9 * phun("Pa") E2 = 1000.0e9 * phun("Pa") E3 = 1.0e9 * phun("Pa") G12 = 0.2e9 * phun("Pa") G13 = G12 G23 = 0.2e9 * phun("Pa") nu12 = nu13 = nu23 = 0.25 # dimensions of the plate a = 70.0 * phun("mm") b = 100.0 * phun("mm") t = 50.0 * phun("mm") # Transverse loading q0 = 1000.0 * phun("Pa") # Coefficients of thermal expansion CTE1 = CTE2 = CTE3 = 0.0 # Here we define the layout and the thicknesses of the layers. angles = vec([45.0]) nLayers = length(angles) ts = t / nLayers * ones(nLayers) # layer thicknesses tolerance = 0.0001 * t # Select how fine the mesh should be nts = Refinement * ones(Int, nLayers)# number of elements per layer tnts = sum(nts) na, nb = 4 * tnts, 4 * tnts xs = collect(linearspace(0.0, a, na + 1)) ys = collect(linearspace(0.0, b, nb + 1)) fens, fes = T10layeredplatex(xs, ys, ts, nts) println("Mesh: na, nb, nts = $na, $nb, $nts") println("count(fens) = $(count(fens))") # This is the material model MR = DeforModelRed3D material = MatDeforElastOrtho( MR, 0.0, E1, E2, E3, nu12, nu13, nu23, G12, G13, G23, CTE1, CTE2, CTE3, ) # The material coordinate system function is defined as: function _updatecs!(csmatout::FFltMat, layer::FInt) rotmat3!(csmatout, angles[layer] / 180.0 * pi * [0.0; 0.0; 1.0]) csmatout end # The volume integrals are evaluated using this rule gr = SimplexRule(3, 4) # We will create 3 regions, one for each of the layers regions = FDataDict[] for layer = 1:nLayers rls = selectelem(fens, fes, label = layer) push!( regions, FDataDict( "femm" => FEMMDeforLinearMST10( MR, IntegDomain(subset(fes, rls), gr), CSys( 3, 3, (csmatout, XYZ, tangents, feid, qpid) -> _updatecs!(csmatout, layer), ), material, ), ), ) end # The essential boundary conditions: clamped face lx0 = selectnode(fens, box = [0.0 0.0 -Inf Inf -Inf Inf], inflate = tolerance) eclamped1 = FDataDict("displacement" => 0.0, "component" => 1, "node_list" => lx0) eclamped2 = FDataDict("displacement" => 0.0, "component" => 2, "node_list" => lx0) eclamped3 = FDataDict("displacement" => 0.0, "component" => 3, "node_list" => lx0) # The traction boundary condition is applied at the free face opposite the clamped face. bfes = meshboundary(fes) function pfun( forceout::FVec{T}, XYZ::FFltMat, tangents::FFltMat, feid::FInt, qpid::FInt, ) where {T} forceout[1] = 0.0 forceout[2] = 0.0 forceout[3] = -q0 return forceout end # From the entire boundary we select those quadrilaterals that lie on the plane # Z = thickness tl = selectelem(fens, bfes, box = [a a -Inf Inf -Inf Inf], inflate = tolerance) Trac = FDataDict( "traction_vector" => pfun, "femm" => FEMMBase(IntegDomain(subset(bfes, tl), SimplexRule(2, 3))), ) modeldata = FDataDict( "fens" => fens, "regions" => regions, "essential_bcs" => [eclamped1, eclamped2, eclamped3], "traction_bcs" => [Trac], ) modeldata = AlgoDeforLinearModule.linearstatics(modeldata) # modeldata["postprocessing"] = FDataDict("file"=>filebase * "-u") # modeldata = AlgoDeforLinearModule.exportdeformation(modeldata) u = modeldata["u"] geom = modeldata["geom"] # The results of the displacement and stresses will be reported at # nodes located at the appropriate points. nbottomedge = selectnode(fens, box = [a a 0.0 0.0 0.0 0.0], inflate = tolerance) println( "bottom edge deflection: $(mean(u.values[nbottomedge, 3], dims=1)/phun("mm")) [mm]", ) # Compute all stresses modeldata["postprocessing"] = FDataDict( "file" => filebase * "-s", "quantity" => :Cauchy, "component" => collect(1:6), "outputcsys" => CSys(3), "nodevalmethod" => nodevalmeth, "reportat" => extrap, ) modeldata = AlgoDeforLinearModule.exportstress(modeldata) modeldata["elementsize"] = t / Refinement modeldata["geometricaltolerance"] = tolerance push!(modeldatasequence, modeldata) end # for refinement println("") println("Stress RMS error") for md in modeldatasequence md["targetfields"] = [e["field"] for e in md["postprocessing"]["exported"]] end elementsizes, errornorms, p = AlgoBaseModule.evalconvergencestudy(modeldatasequence) println("Normalized Approximate Error = $(errornorms)") f = log.(vec(errornorms)) A = hcat(log.(vec(elementsizes[1:(end-1)])), ones(size(f))) p = A \ f println("Linear log-log fit: p = $(p)") csvFile = filebase * "_Stress" * ".CSV" savecsv( csvFile, elementsizes = vec(elementsizes[1:(end-1)]), elementsizes2 = vec(elementsizes[1:(end-1)] .^ 2), elementsizes3 = vec(elementsizes[1:(end-1)] .^ 3), errornorms = vec(errornorms), ) println("Wrote $csvFile") println("") println("Displacement RMS error") for md in modeldatasequence md["targetfields"] = [md["u"] for r in md["regions"]] end elementsizes, errornorms, p = AlgoBaseModule.evalconvergencestudy(modeldatasequence) println("Normalized Approximate Error = $(errornorms)") f = log.(vec(errornorms)) A = hcat(log.(vec(elementsizes[1:(end-1)])), ones(size(f))) p = A \ f println("Linear log-log fit: p = $(p)") csvFile = filebase * "_Displ" * ".CSV" savecsv( csvFile, elementsizes = vec(elementsizes[1:(end-1)]), elementsizes2 = vec(elementsizes[1:(end-1)] .^ 2), elementsizes3 = vec(elementsizes[1:(end-1)] .^ 3), errornorms = vec(errornorms), ) println("Wrote $csvFile") # @async run(`"paraview.exe" $csvFile`) end # extrap println("Done") end # function allrun() println("#####################################################") println("# THICK_plate_2dir_strong_MST10_conv ") THICK_plate_2dir_strong_MST10_conv() return true end # function allrun @info "All examples may be executed with " println("using .$(@__MODULE__); $(@__MODULE__).allrun()") end # module nothing
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
4843
module Z_laminate_examples using FinEtools using FinEtoolsDeforLinear using FinEtoolsDeforLinear.AlgoDeforLinearModule using Statistics function Z_laminate_u_ss() println(""" % Three-dimensional Elasticity Solution for Uniformly Loaded Cross-ply % Laminates and Sandwich Plates % Ashraf M. Zenkour, Journal of Sandwich Structures and Materials 2007 9: 213-238 % DOI: 10.1177/1099636207065675 """) t0 = time() # Lamina material parameters E1s = 25.0e6 * phun("psi") E2s = 1.0e6 * phun("psi") E3s = E2s nu12s = nu13s = nu23s = 0.25 G12s = 0.5e6 * phun("psi") G13s = G12s G23s = 0.2e6 * phun("psi") a = 200.0 * phun("mm") # side of the square plate b = 600.0 * phun("mm") # side of the square plate q0 = 1.0 * phun("psi") # The below values come from Table 2 # h = a/4; wc_analytical = 3.65511/(100*E3s*h^3/a^4/q0); # h = a/10; wc_analytical = 1.16899/(100*E3s*h^3/a^4/q0); # h = a/50; wc_analytical = 0.66675/(100*E3s*h^3/a^4/q0); h = a / 100 wc_analytical = 0.65071 / (100 * E3s * h^3 / a^4 / q0) angles = [0, 90, 0] nLayers = length(angles) tolerance = 0.0001 * h # Generate mesh na = 10 # number of elements along the side of the plate nb = 30 # number of elements along the side of the plate xs = collect(linearspace(0.0, a, na + 1)) ys = collect(linearspace(0.0, b, nb + 1)) ts = h / nLayers * ones(nLayers)# layer thicknesses nts = 3 * ones(Int, nLayers)# number of elements per layer fens, fes = H8layeredplatex(xs, ys, ts, nts) fens, fes = H8toH20(fens, fes) MR = DeforModelRed3D laminamaterial = MatDeforElastOrtho( MR, 0.0, E1s, E2s, E3s, nu12s, nu13s, nu23s, G12s, G13s, G23s, 0.0, 0.0, 0.0, ) function _updatecs!(csmatout::FFltMat, feid::FInt, labels) rotmat3!(csmatout, angles[labels[feid]] / 180.0 * pi * [0.0; 0.0; 1.0]) csmatout end gr = GaussRule(3, 3) region = FDataDict( "femm" => FEMMDeforLinear( MR, IntegDomain(fes, gr), CSys( 3, 3, (csmatout, XYZ, tangents, feid, qpid) -> _updatecs!(csmatout, feid, fes.label), ), laminamaterial, ), ) lx0 = selectnode(fens, box = [0.0 0.0 -Inf Inf -Inf Inf], inflate = tolerance) lxa = selectnode(fens, box = [a a -Inf Inf -Inf Inf], inflate = tolerance) ly0 = selectnode(fens, box = [-Inf Inf 0.0 0.0 -Inf Inf], inflate = tolerance) lyb = selectnode(fens, box = [-Inf Inf b b -Inf Inf], inflate = tolerance) ex02 = FDataDict("displacement" => 0.0, "component" => 2, "node_list" => lx0) ex03 = FDataDict("displacement" => 0.0, "component" => 3, "node_list" => lx0) exa2 = FDataDict("displacement" => 0.0, "component" => 2, "node_list" => lxa) exa3 = FDataDict("displacement" => 0.0, "component" => 3, "node_list" => lxa) ey01 = FDataDict("displacement" => 0.0, "component" => 1, "node_list" => ly0) ey03 = FDataDict("displacement" => 0.0, "component" => 3, "node_list" => ly0) eyb1 = FDataDict("displacement" => 0.0, "component" => 1, "node_list" => lyb) eyb3 = FDataDict("displacement" => 0.0, "component" => 3, "node_list" => lyb) bfes = meshboundary(fes) ttopl = selectelem(fens, bfes; facing = true, direction = [0.0 0.0 1.0]) Trac = FDataDict( "traction_vector" => [0.0; 0.0; -q0], "femm" => FEMMBase(IntegDomain(subset(bfes, ttopl), GaussRule(2, 3))), ) modeldata = FDataDict( "fens" => fens, "regions" => [region], "essential_bcs" => [ex02, ex03, exa2, exa3, ey01, ey03, eyb1, eyb3], "traction_bcs" => [Trac], ) modeldata = AlgoDeforLinearModule.linearstatics(modeldata) u = modeldata["u"] geom = modeldata["geom"] lcenter = selectnode(fens, box = [a / 2 a / 2 b / 2 b / 2 -Inf Inf], inflate = tolerance) cdis = abs(mean(u.values[lcenter, 3])) println("") println("Normalized Center deflection: $(cdis/wc_analytical)") File = "Z_laminate_u_ss.vtk" vtkexportmesh( File, fes.conn, geom.values, FinEtools.MeshExportModule.VTK.H20; scalars = [("Layer", fes.label)], vectors = [("displacement", u.values)], ) @async run(`"paraview.exe" $File`) println("Done") true end # Z_laminate_u_ss function allrun() println("#####################################################") println("# Z_laminate_u_ss ") Z_laminate_u_ss() return true end # function allrun @info "All examples may be executed with " println("using .$(@__MODULE__); $(@__MODULE__).allrun()") end # module nothing
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
21612
module bushing_examples using FinEtools using FinEtools.AlgoBaseModule: solve_blocked!, matrix_blocked, vector_blocked using FinEtoolsDeforLinear using FinEtoolsDeforLinear.AlgoDeforLinearModule using FinEtools.MeshExportModule using Statistics: mean E = 3.0 nu = 0.4999999 # This is the correct Poisson ratio Ri = 0.25 Re = 1.0 L = Ri / 2 ang = 180 / 180 * pi iuz = Ri / 15 p = 0.27 tolerance = min(L, Re - Ri, ang) / 1000 nR, nc, nt = 7, 14, 1 function bushing_h8_full() fens, fes = H8block(ang, L, Re - Ri, nc, nt, nR) internal_fenids = selectnode(fens, box = [0 ang 0 L 0 0], inflate = tolerance) MR = DeforModelRed3D material = MatDeforElastIso(MR, E, nu) femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3, 2)), material) boundaryfes = meshboundary(fes) ibcl = selectelem(fens, boundaryfes, box = [0 ang 0 L 0 0], inflate = tolerance) ebcl = selectelem( fens, boundaryfes, box = [0 ang 0 L Re - Ri Re - Ri], inflate = tolerance, ) for i = 1:count(fens) a = fens.xyz[i, 1] y = fens.xyz[i, 2] r = fens.xyz[i, 3] + Ri fens.xyz[i, :] .= (r * sin(a), y, r * cos(a)) end geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field x0nl = selectnode(fens, box = [0 0 -Inf Inf -Inf Inf], inflate = tolerance) setebc!(u, x0nl, true, 1, 0.0) y0nl = selectnode(fens, box = [-Inf Inf 0 0 -Inf Inf], inflate = tolerance) setebc!(u, y0nl, true, 2, 0.0) yLnl = selectnode(fens, box = [-Inf Inf L L -Inf Inf], inflate = tolerance) setebc!(u, yLnl, true, 2, 0.0) enl = connectednodes(subset(boundaryfes, ebcl)) setebc!(u, enl, true, [1; 2; 3], 0.0) inl = connectednodes(subset(boundaryfes, ibcl)) setebc!(u, inl, true, [1; 2], 0.0) setebc!(u, inl, true, [3], iuz) applyebc!(u) numberdofs!(u) associategeometry!(femm, geom) K = stiffness(femm, geom, u) u = solve_blocked!(u, K, fill(0.0, nalldofs(u))) File = "bushing_h8_full_u.vtk" vtkexportmesh(File, fens, fes; vectors = [("u", u.values)]) @async run(`"paraview.exe" $File`) true end # bushing_h8_full function bushing_h8_algo_full() fens, fes = H8block(ang, L, Re - Ri, nc, nt, nR) internal_fenids = selectnode(fens, box = [0 ang 0 L 0 0], inflate = tolerance) MR = DeforModelRed3D material = MatDeforElastIso(MR, E, nu) femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3, 2)), material) regions = FDataDict[FDataDict("femm" => femm)] boundaryfes = meshboundary(fes) ibcl = selectelem(fens, boundaryfes, box = [0 ang 0 L 0 0], inflate = tolerance) ebcl = selectelem( fens, boundaryfes, box = [0 ang 0 L Re - Ri Re - Ri], inflate = tolerance, ) for i = 1:count(fens) a = fens.xyz[i, 1] y = fens.xyz[i, 2] r = fens.xyz[i, 3] + Ri fens.xyz[i, :] .= (r * sin(a), y, r * cos(a)) end essential_bcs = FDataDict[] x0nl = selectnode(fens, box = [0 0 -Inf Inf -Inf Inf], inflate = tolerance) push!( essential_bcs, FDataDict("displacement" => 0.0, "component" => 1, "node_list" => x0nl), ) y0nl = selectnode(fens, box = [-Inf Inf 0 0 -Inf Inf], inflate = tolerance) push!( essential_bcs, FDataDict("displacement" => 0.0, "component" => 2, "node_list" => y0nl), ) yLnl = selectnode(fens, box = [-Inf Inf L L -Inf Inf], inflate = tolerance) push!( essential_bcs, FDataDict("displacement" => 0.0, "component" => 2, "node_list" => yLnl), ) enl = connectednodes(subset(boundaryfes, ebcl)) push!( essential_bcs, FDataDict("displacement" => 0.0, "component" => 1, "node_list" => enl), ) push!( essential_bcs, FDataDict("displacement" => 0.0, "component" => 2, "node_list" => enl), ) push!( essential_bcs, FDataDict("displacement" => 0.0, "component" => 3, "node_list" => enl), ) inl = connectednodes(subset(boundaryfes, ibcl)) push!( essential_bcs, FDataDict("displacement" => 0.0, "component" => 1, "node_list" => inl), ) push!( essential_bcs, FDataDict("displacement" => 0.0, "component" => 2, "node_list" => inl), ) push!( essential_bcs, FDataDict("displacement" => iuz, "component" => 3, "node_list" => inl), ) modeldata = FDataDict("fens" => fens, "regions" => regions, "essential_bcs" => essential_bcs) modeldata = AlgoDeforLinearModule.linearstatics(modeldata) filebase = "bushing_h8_algo_full" modeldata["postprocessing"] = FDataDict( "file" => filebase * "-s", "quantity" => :pressure, "component" => collect(1:1), "nodevalmethod" => :averaging, "reportat" => :extraptrend, ) modeldata = AlgoDeforLinearModule.exportstress(modeldata) true end # bushing_h8_algo_full function bushing_h8_algo_ms() fens, fes = H8block(ang, L, Re - Ri, nc, nt, nR) internal_fenids = selectnode(fens, box = [0 ang 0 L 0 0], inflate = tolerance) MR = DeforModelRed3D material = MatDeforElastIso(MR, E, nu) femm = FEMMDeforLinearMSH8(MR, IntegDomain(fes, GaussRule(3, 2)), material) regions = FDataDict[FDataDict("femm" => femm)] boundaryfes = meshboundary(fes) ibcl = selectelem(fens, boundaryfes, box = [0 ang 0 L 0 0], inflate = tolerance) ebcl = selectelem( fens, boundaryfes, box = [0 ang 0 L Re - Ri Re - Ri], inflate = tolerance, ) for i = 1:count(fens) a = fens.xyz[i, 1] y = fens.xyz[i, 2] r = fens.xyz[i, 3] + Ri fens.xyz[i, :] .= (r * sin(a), y, r * cos(a)) end essential_bcs = FDataDict[] x0nl = selectnode(fens, box = [0 0 -Inf Inf -Inf Inf], inflate = tolerance) push!( essential_bcs, FDataDict("displacement" => 0.0, "component" => 1, "node_list" => x0nl), ) y0nl = selectnode(fens, box = [-Inf Inf 0 0 -Inf Inf], inflate = tolerance) push!( essential_bcs, FDataDict("displacement" => 0.0, "component" => 2, "node_list" => y0nl), ) yLnl = selectnode(fens, box = [-Inf Inf L L -Inf Inf], inflate = tolerance) push!( essential_bcs, FDataDict("displacement" => 0.0, "component" => 2, "node_list" => yLnl), ) enl = connectednodes(subset(boundaryfes, ebcl)) push!( essential_bcs, FDataDict("displacement" => 0.0, "component" => 1, "node_list" => enl), ) push!( essential_bcs, FDataDict("displacement" => 0.0, "component" => 2, "node_list" => enl), ) push!( essential_bcs, FDataDict("displacement" => 0.0, "component" => 3, "node_list" => enl), ) inl = connectednodes(subset(boundaryfes, ibcl)) push!( essential_bcs, FDataDict("displacement" => 0.0, "component" => 1, "node_list" => inl), ) push!( essential_bcs, FDataDict("displacement" => 0.0, "component" => 2, "node_list" => inl), ) push!( essential_bcs, FDataDict("displacement" => iuz, "component" => 3, "node_list" => inl), ) modeldata = FDataDict("fens" => fens, "regions" => regions, "essential_bcs" => essential_bcs) modeldata = AlgoDeforLinearModule.linearstatics(modeldata) filebase = "bushing_h8_algo_ms" modeldata["postprocessing"] = FDataDict( "file" => filebase * "-nodal-", "quantity" => :pressure, "component" => collect(1:1), "nodevalmethod" => :averaging, "reportat" => :extraptrend, ) modeldata = AlgoDeforLinearModule.exportstress(modeldata) modeldata["postprocessing"] = FDataDict( "file" => filebase * "-elwise-", "quantity" => :pressure, "component" => collect(1:1), "nodevalmethod" => :averaging, "reportat" => :extraptrend, ) modeldata = AlgoDeforLinearModule.exportstresselementwise(modeldata) true end # bushing_h8_algo_ms function bushing_h8u_algo_ms() fens, fes = T4block(ang, L, Re - Ri, Int.(round.((nc, nt, nR) ./ 2) .+ 1)...) fens, fes = T4toH8(fens, fes) internal_fenids = selectnode(fens, box = [0 ang 0 L 0 0], inflate = tolerance) MR = DeforModelRed3D material = MatDeforElastIso(MR, E, nu) femm = FEMMDeforLinearMSH8(MR, IntegDomain(fes, GaussRule(3, 2)), material) regions = FDataDict[FDataDict("femm" => femm)] boundaryfes = meshboundary(fes) ibcl = selectelem(fens, boundaryfes, box = [0 ang 0 L 0 0], inflate = tolerance) ebcl = selectelem( fens, boundaryfes, box = [0 ang 0 L Re - Ri Re - Ri], inflate = tolerance, ) for i = 1:count(fens) a = fens.xyz[i, 1] y = fens.xyz[i, 2] r = fens.xyz[i, 3] + Ri fens.xyz[i, :] .= (r * sin(a), y, r * cos(a)) end essential_bcs = FDataDict[] x0nl = selectnode(fens, box = [0 0 -Inf Inf -Inf Inf], inflate = tolerance) push!( essential_bcs, FDataDict("displacement" => 0.0, "component" => 1, "node_list" => x0nl), ) y0nl = selectnode(fens, box = [-Inf Inf 0 0 -Inf Inf], inflate = tolerance) push!( essential_bcs, FDataDict("displacement" => 0.0, "component" => 2, "node_list" => y0nl), ) yLnl = selectnode(fens, box = [-Inf Inf L L -Inf Inf], inflate = tolerance) push!( essential_bcs, FDataDict("displacement" => 0.0, "component" => 2, "node_list" => yLnl), ) enl = connectednodes(subset(boundaryfes, ebcl)) push!( essential_bcs, FDataDict("displacement" => 0.0, "component" => 1, "node_list" => enl), ) push!( essential_bcs, FDataDict("displacement" => 0.0, "component" => 2, "node_list" => enl), ) push!( essential_bcs, FDataDict("displacement" => 0.0, "component" => 3, "node_list" => enl), ) inl = connectednodes(subset(boundaryfes, ibcl)) push!( essential_bcs, FDataDict("displacement" => 0.0, "component" => 1, "node_list" => inl), ) push!( essential_bcs, FDataDict("displacement" => 0.0, "component" => 2, "node_list" => inl), ) push!( essential_bcs, FDataDict("displacement" => iuz, "component" => 3, "node_list" => inl), ) modeldata = FDataDict("fens" => fens, "regions" => regions, "essential_bcs" => essential_bcs) modeldata = AlgoDeforLinearModule.linearstatics(modeldata) filebase = "bushing_h8u_algo_ms" modeldata["postprocessing"] = FDataDict( "file" => filebase * "-nodal-", "quantity" => :pressure, "component" => collect(1:1), "nodevalmethod" => :averaging, "reportat" => :extraptrend, ) modeldata = AlgoDeforLinearModule.exportstress(modeldata) modeldata["postprocessing"] = FDataDict( "file" => filebase * "-elwise-", "quantity" => :pressure, "component" => collect(1:1), "nodevalmethod" => :averaging, "reportat" => :extraptrend, ) modeldata = AlgoDeforLinearModule.exportstresselementwise(modeldata) true end # bushing_h8u_algo_ms function bushing_h8_export() nt = 1 for nperradius in [2, 4, 8] nt = nt + 1 fens, fes = Q4circlen(R, nperradius) fens, fes = H8extrudeQ4(fens, fes, nt, (x, k) -> [x[1], x[2], k * thickness / nt]) MR = DeforModelRed3D material = MatDeforElastIso(MR, E, nu) femm = FEMMDeforLinearMSH8(MR, IntegDomain(fes, GaussRule(3, 2)), material) boundaryfes = meshboundary(fes) topl = selectelem( fens, boundaryfes, box = [-Inf Inf -Inf Inf thickness thickness], inflate = tolerance, ) botl = selectelem( fens, boundaryfes, box = [-Inf Inf -Inf Inf 0.0 0.0], inflate = tolerance, ) x0l = selectelem( fens, boundaryfes, box = [0.0 0.0 -Inf Inf 0.0 thickness], inflate = tolerance, ) y0l = selectelem( fens, boundaryfes, box = [-Inf Inf 0.0 0.0 0.0 thickness], inflate = tolerance, ) cyll = setdiff(1:count(boundaryfes), topl, botl, x0l, y0l) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field x0nl = connectednodes(subset(boundaryfes, x0l)) setebc!(u, x0nl, true, 1, 0.0) y0nl = connectednodes(subset(boundaryfes, y0l)) setebc!(u, y0nl, true, 2, 0.0) cylnl = connectednodes(subset(boundaryfes, cyll)) setebc!(u, cylnl, true, 1, 0.0) setebc!(u, cylnl, true, 2, 0.0) setebc!(u, cylnl, true, 3, 0.0) applyebc!(u) numberdofs!(u) cnl = selectnode(fens; box = [0 0 0 0 0 thickness], inflate = tolerance) AE = AbaqusExporter("clcircularplatecl_h8_export_$(nperradius)") HEADING(AE, "Clamped square plate with concentrated force") PART(AE, "part1") END_PART(AE) ASSEMBLY(AE, "ASSEM1") INSTANCE(AE, "INSTNC1", "PART1") NODE(AE, fens.xyz) ELEMENT(AE, "c3d8rh", "AllElements", 1, connasarray(femm.integdomain.fes)) NSET_NSET(AE, "cnl", cnl) NSET_NSET(AE, "x0nl", x0nl) NSET_NSET(AE, "y0nl", y0nl) NSET_NSET(AE, "cylnl", cylnl) ORIENTATION(AE, "GlobalOrientation", vec([1.0 0 0]), vec([0 1.0 0])) SOLID_SECTION(AE, "elasticity", "GlobalOrientation", "AllElements", "Hourglassctl") END_INSTANCE(AE) END_ASSEMBLY(AE) MATERIAL(AE, "elasticity") ELASTIC(AE, E, nu) SECTION_CONTROLS(AE, "Hourglassctl", "HOURGLASS=ENHANCED") STEP_PERTURBATION_STATIC(AE) BOUNDARY(AE, "ASSEM1.INSTNC1.x0nl", 1) BOUNDARY(AE, "ASSEM1.INSTNC1.y0nl", 2) BOUNDARY(AE, "ASSEM1.INSTNC1.cylnl", 1) BOUNDARY(AE, "ASSEM1.INSTNC1.cylnl", 2) BOUNDARY(AE, "ASSEM1.INSTNC1.cylnl", 3) CLOAD(AE, "ASSEM1.INSTNC1.cnl", 3, Magnitude / 4 / length(cnl)) END_STEP(AE) close(AE) # File = "clcircularplatecl_h8_export_$(nperradius).vtk" # vtkexportmesh(File, fens, fes; vectors = [("u", u.values)]) # @async run(`"paraview.exe" $File`) end true end # bushing_h8_export function bushing_t10_algo_ms() fens, fes = T10block(ang, L, Re - Ri, nc, nt, nR) internal_fenids = selectnode(fens, box = [0 ang 0 L 0 0], inflate = tolerance) MR = DeforModelRed3D material = MatDeforElastIso(MR, E, nu) femm = FEMMDeforLinearMST10(MR, IntegDomain(fes, TetRule(4)), material) regions = FDataDict[FDataDict("femm" => femm)] boundaryfes = meshboundary(fes) ibcl = selectelem(fens, boundaryfes, box = [0 ang 0 L 0 0], inflate = tolerance) ebcl = selectelem( fens, boundaryfes, box = [0 ang 0 L Re - Ri Re - Ri], inflate = tolerance, ) for i = 1:count(fens) a = fens.xyz[i, 1] y = fens.xyz[i, 2] r = fens.xyz[i, 3] + Ri fens.xyz[i, :] .= (r * sin(a), y, r * cos(a)) end essential_bcs = FDataDict[] x0nl = selectnode(fens, box = [0 0 -Inf Inf -Inf Inf], inflate = tolerance) push!( essential_bcs, FDataDict("displacement" => 0.0, "component" => 1, "node_list" => x0nl), ) y0nl = selectnode(fens, box = [-Inf Inf 0 0 -Inf Inf], inflate = tolerance) push!( essential_bcs, FDataDict("displacement" => 0.0, "component" => 2, "node_list" => y0nl), ) yLnl = selectnode(fens, box = [-Inf Inf L L -Inf Inf], inflate = tolerance) push!( essential_bcs, FDataDict("displacement" => 0.0, "component" => 2, "node_list" => yLnl), ) enl = connectednodes(subset(boundaryfes, ebcl)) push!( essential_bcs, FDataDict("displacement" => 0.0, "component" => 1, "node_list" => enl), ) push!( essential_bcs, FDataDict("displacement" => 0.0, "component" => 2, "node_list" => enl), ) push!( essential_bcs, FDataDict("displacement" => 0.0, "component" => 3, "node_list" => enl), ) inl = connectednodes(subset(boundaryfes, ibcl)) push!( essential_bcs, FDataDict("displacement" => 0.0, "component" => 1, "node_list" => inl), ) push!( essential_bcs, FDataDict("displacement" => 0.0, "component" => 2, "node_list" => inl), ) push!( essential_bcs, FDataDict("displacement" => iuz, "component" => 3, "node_list" => inl), ) modeldata = FDataDict("fens" => fens, "regions" => regions, "essential_bcs" => essential_bcs) modeldata = AlgoDeforLinearModule.linearstatics(modeldata) filebase = "bushing_T10_algo_ms" modeldata["postprocessing"] = FDataDict( "file" => filebase * "-nodal-", "quantity" => :pressure, "component" => collect(1:1), "nodevalmethod" => :averaging, "reportat" => :extraptrend, ) modeldata = AlgoDeforLinearModule.exportstress(modeldata) modeldata["postprocessing"] = FDataDict( "file" => filebase * "-elwise-", "quantity" => :pressure, "component" => collect(1:1), "nodevalmethod" => :averaging, "reportat" => :extraptrend, ) modeldata = AlgoDeforLinearModule.exportstresselementwise(modeldata) true end # bushing_t10_algo_ms function bushing_t10_algo() fens, fes = T10block(ang, L, Re - Ri, nc, nt, nR) internal_fenids = selectnode(fens, box = [0 ang 0 L 0 0], inflate = tolerance) MR = DeforModelRed3D material = MatDeforElastIso(MR, E, nu) femm = FEMMDeforLinear(MR, IntegDomain(fes, TetRule(4)), material) regions = FDataDict[FDataDict("femm" => femm)] boundaryfes = meshboundary(fes) ibcl = selectelem(fens, boundaryfes, box = [0 ang 0 L 0 0], inflate = tolerance) ebcl = selectelem( fens, boundaryfes, box = [0 ang 0 L Re - Ri Re - Ri], inflate = tolerance, ) for i = 1:count(fens) a = fens.xyz[i, 1] y = fens.xyz[i, 2] r = fens.xyz[i, 3] + Ri fens.xyz[i, :] .= (r * sin(a), y, r * cos(a)) end essential_bcs = FDataDict[] x0nl = selectnode(fens, box = [0 0 -Inf Inf -Inf Inf], inflate = tolerance) push!( essential_bcs, FDataDict("displacement" => 0.0, "component" => 1, "node_list" => x0nl), ) y0nl = selectnode(fens, box = [-Inf Inf 0 0 -Inf Inf], inflate = tolerance) push!( essential_bcs, FDataDict("displacement" => 0.0, "component" => 2, "node_list" => y0nl), ) yLnl = selectnode(fens, box = [-Inf Inf L L -Inf Inf], inflate = tolerance) push!( essential_bcs, FDataDict("displacement" => 0.0, "component" => 2, "node_list" => yLnl), ) enl = connectednodes(subset(boundaryfes, ebcl)) push!( essential_bcs, FDataDict("displacement" => 0.0, "component" => 1, "node_list" => enl), ) push!( essential_bcs, FDataDict("displacement" => 0.0, "component" => 2, "node_list" => enl), ) push!( essential_bcs, FDataDict("displacement" => 0.0, "component" => 3, "node_list" => enl), ) inl = connectednodes(subset(boundaryfes, ibcl)) push!( essential_bcs, FDataDict("displacement" => 0.0, "component" => 1, "node_list" => inl), ) push!( essential_bcs, FDataDict("displacement" => 0.0, "component" => 2, "node_list" => inl), ) push!( essential_bcs, FDataDict("displacement" => iuz, "component" => 3, "node_list" => inl), ) modeldata = FDataDict("fens" => fens, "regions" => regions, "essential_bcs" => essential_bcs) modeldata = AlgoDeforLinearModule.linearstatics(modeldata) filebase = "bushing_T10_algo" modeldata["postprocessing"] = FDataDict( "file" => filebase * "-nodal-", "quantity" => :pressure, "component" => collect(1:1), "nodevalmethod" => :averaging, "reportat" => :extraptrend, ) modeldata = AlgoDeforLinearModule.exportstress(modeldata) modeldata["postprocessing"] = FDataDict( "file" => filebase * "-elwise-", "quantity" => :pressure, "component" => collect(1:1), "nodevalmethod" => :averaging, "reportat" => :extraptrend, ) modeldata = AlgoDeforLinearModule.exportstresselementwise(modeldata) true end # bushing_t10_algo_ms # true # end # twisted_beam_export function allrun() println("#####################################################") println("# bushing_h8_full ") bushing_h8_full() println("#####################################################") println("# bushing_h8_algo_full ") bushing_h8_algo_full() println("#####################################################") println("# bushing_h8_algo_ms ") bushing_h8_algo_ms() println("#####################################################") println("# bushing_h8u_algo_ms ") bushing_h8u_algo_ms() println("#####################################################") println("# bushing_t10_algo_ms") bushing_t10_algo_ms() return true end # function allrun @info "All examples may be executed with " println("using .$(@__MODULE__); $(@__MODULE__).allrun()") end # module nothing
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
14886
module clcircularplatecl_examples using FinEtools using FinEtoolsDeforLinear using FinEtoolsDeforLinear.AlgoDeforLinearModule using FinEtools.MeshExportModule using Statistics: mean # Clamped square plate with concentrated force # Data listed in the Simo 1990 paper 'A class of... ' # Analytical solution for the vertical deflection under the load # Zienkiewicz, Taylor, The finite element method, fifth edition, volume 2, # analyt_sol = 3*(1-nu^2)*Magnitude*R^2/(4*pi*E*thickness^3); E = 1e7 nu = 0.3 Magnitude = 10 R = 100.0 thickness = 2.5 tolerance = 0.0001 * thickness @show analyt_sol = 3 * (1 - nu^2) * Magnitude * R^2 / (4 * pi * E * thickness^3) function clcircularplatecl_h8_full() nt = 1 for nperradius in [2, 4, 8] nt = nt + 1 fens, fes = Q4circlen(R, nperradius) fens, fes = H8extrudeQ4(fens, fes, nt, (x, k) -> [x[1], x[2], k * thickness / nt]) MR = DeforModelRed3D material = MatDeforElastIso(MR, E, nu) femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3, 2)), material) boundaryfes = meshboundary(fes) topl = selectelem( fens, boundaryfes, box = [-Inf Inf -Inf Inf thickness thickness], inflate = tolerance, ) botl = selectelem( fens, boundaryfes, box = [-Inf Inf -Inf Inf 0.0 0.0], inflate = tolerance, ) x0l = selectelem( fens, boundaryfes, box = [0.0 0.0 -Inf Inf 0.0 thickness], inflate = tolerance, ) y0l = selectelem( fens, boundaryfes, box = [-Inf Inf 0.0 0.0 0.0 thickness], inflate = tolerance, ) cyll = setdiff(1:count(boundaryfes), topl, botl, x0l, y0l) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field x0nl = connectednodes(subset(boundaryfes, x0l)) setebc!(u, x0nl, true, 1, 0.0) y0nl = connectednodes(subset(boundaryfes, y0l)) setebc!(u, y0nl, true, 2, 0.0) cylnl = connectednodes(subset(boundaryfes, cyll)) setebc!(u, cylnl, true, 1, 0.0) setebc!(u, cylnl, true, 2, 0.0) setebc!(u, cylnl, true, 3, 0.0) applyebc!(u) numberdofs!(u) cnl = selectnode(fens; box = [0 0 0 0 0 thickness], inflate = tolerance) nfemm = FEMMBase(IntegDomain(FESetP1(reshape(cnl, length(cnl), 1)), PointRule())) F = distribloads( nfemm, geom, u, ForceIntensity([0; 0; Magnitude / 4 / length(cnl)]), 3, ) associategeometry!(femm, geom) K = stiffness(femm, geom, u) scattersysvec!(u, K \ F) u0z = mean(u.values[cnl, 3]) println( "Deflection under the load: $(round((u0z / analyt_sol)* 100000)/100000*100) %", ) # File = "clcircularplatecl_1_$(nperradius).vtk" # vtkexportmesh(File, fens, fes; vectors = [("u", u.values)]) # @async run(`"paraview.exe" $File`) end true end # clcircularplatecl_h8_full function clcircularplatecl_h8_uri() nt = 1 for nperradius in [2, 4, 8] nt = nt + 1 fens, fes = Q4circlen(R, nperradius) fens, fes = H8extrudeQ4(fens, fes, nt, (x, k) -> [x[1], x[2], k * thickness / nt]) MR = DeforModelRed3D material = MatDeforElastIso(MR, E, nu) femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3, 1)), material) boundaryfes = meshboundary(fes) topl = selectelem( fens, boundaryfes, box = [-Inf Inf -Inf Inf thickness thickness], inflate = tolerance, ) botl = selectelem( fens, boundaryfes, box = [-Inf Inf -Inf Inf 0.0 0.0], inflate = tolerance, ) x0l = selectelem( fens, boundaryfes, box = [0.0 0.0 -Inf Inf 0.0 thickness], inflate = tolerance, ) y0l = selectelem( fens, boundaryfes, box = [-Inf Inf 0.0 0.0 0.0 thickness], inflate = tolerance, ) cyll = setdiff(1:count(boundaryfes), topl, botl, x0l, y0l) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field x0nl = connectednodes(subset(boundaryfes, x0l)) setebc!(u, x0nl, true, 1, 0.0) y0nl = connectednodes(subset(boundaryfes, y0l)) setebc!(u, y0nl, true, 2, 0.0) cylnl = connectednodes(subset(boundaryfes, cyll)) setebc!(u, cylnl, true, 1, 0.0) setebc!(u, cylnl, true, 2, 0.0) setebc!(u, cylnl, true, 3, 0.0) applyebc!(u) numberdofs!(u) cnl = selectnode(fens; box = [0 0 0 0 0 thickness], inflate = tolerance) nfemm = FEMMBase(IntegDomain(FESetP1(reshape(cnl, length(cnl), 1)), PointRule())) F = distribloads( nfemm, geom, u, ForceIntensity([0; 0; Magnitude / 4 / length(cnl)]), 3, ) associategeometry!(femm, geom) K = stiffness(femm, geom, u) scattersysvec!(u, K \ F) u0z = mean(u.values[cnl, 3]) println( "Deflection under the load: $(round((u0z / analyt_sol)* 100000)/100000*100) %", ) # File = "clcircularplatecl_1_$(nperradius).vtk" # vtkexportmesh(File, fens, fes; vectors = [("u", u.values)]) # @async run(`"paraview.exe" $File`) end true end # clcircularplatecl_h8_uri function clcircularplatecl_h8_ms() nt = 1 for nperradius in [2, 4, 8] nt = nt + 1 fens, fes = Q4circlen(R, nperradius) fens, fes = H8extrudeQ4(fens, fes, nt, (x, k) -> [x[1], x[2], k * thickness / nt]) MR = DeforModelRed3D material = MatDeforElastIso(MR, E, nu) femm = FEMMDeforLinearMSH8(MR, IntegDomain(fes, GaussRule(3, 2)), material) boundaryfes = meshboundary(fes) topl = selectelem( fens, boundaryfes, box = [-Inf Inf -Inf Inf thickness thickness], inflate = tolerance, ) botl = selectelem( fens, boundaryfes, box = [-Inf Inf -Inf Inf 0.0 0.0], inflate = tolerance, ) x0l = selectelem( fens, boundaryfes, box = [0.0 0.0 -Inf Inf 0.0 thickness], inflate = tolerance, ) y0l = selectelem( fens, boundaryfes, box = [-Inf Inf 0.0 0.0 0.0 thickness], inflate = tolerance, ) cyll = setdiff(1:count(boundaryfes), topl, botl, x0l, y0l) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field x0nl = connectednodes(subset(boundaryfes, x0l)) setebc!(u, x0nl, true, 1, 0.0) y0nl = connectednodes(subset(boundaryfes, y0l)) setebc!(u, y0nl, true, 2, 0.0) cylnl = connectednodes(subset(boundaryfes, cyll)) setebc!(u, cylnl, true, 1, 0.0) setebc!(u, cylnl, true, 2, 0.0) setebc!(u, cylnl, true, 3, 0.0) applyebc!(u) numberdofs!(u) cnl = selectnode(fens; box = [0 0 0 0 0 thickness], inflate = tolerance) nfemm = FEMMBase(IntegDomain(FESetP1(reshape(cnl, length(cnl), 1)), PointRule())) F = distribloads( nfemm, geom, u, ForceIntensity([0; 0; Magnitude / 4 / length(cnl)]), 3, ) associategeometry!(femm, geom) @show minimum(femm.phis), maximum(femm.phis) K = stiffness(femm, geom, u) scattersysvec!(u, K \ F) u0z = mean(u.values[cnl, 3]) println( "Deflection under the load: $(round((u0z / analyt_sol)* 100000)/100000*100) %", ) # File = "clcircularplatecl_1_$(nperradius).vtk" # vtkexportmesh(File, fens, fes; vectors = [("u", u.values)]) # @async run(`"paraview.exe" $File`) end true end # clcircularplatecl_h8_ms function clcircularplatecl_h8u_ms() nt = 1 for nperradius in [2, 4, 8] nt = nt + 1 fens, fes = T4quartercyln(R, thickness, nperradius, nt) fens, fes = T4toH8(fens, fes) MR = DeforModelRed3D material = MatDeforElastIso(MR, E, nu) femm = FEMMDeforLinearMSH8(MR, IntegDomain(fes, GaussRule(3, 2)), material) boundaryfes = meshboundary(fes) topl = selectelem( fens, boundaryfes, box = [-Inf Inf -Inf Inf thickness thickness], inflate = tolerance, ) botl = selectelem( fens, boundaryfes, box = [-Inf Inf -Inf Inf 0.0 0.0], inflate = tolerance, ) x0l = selectelem( fens, boundaryfes, box = [0.0 0.0 -Inf Inf 0.0 thickness], inflate = tolerance, ) y0l = selectelem( fens, boundaryfes, box = [-Inf Inf 0.0 0.0 0.0 thickness], inflate = tolerance, ) cyll = setdiff(1:count(boundaryfes), topl, botl, x0l, y0l) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field x0nl = connectednodes(subset(boundaryfes, x0l)) setebc!(u, x0nl, true, 1, 0.0) y0nl = connectednodes(subset(boundaryfes, y0l)) setebc!(u, y0nl, true, 2, 0.0) cylnl = connectednodes(subset(boundaryfes, cyll)) setebc!(u, cylnl, true, 1, 0.0) setebc!(u, cylnl, true, 2, 0.0) setebc!(u, cylnl, true, 3, 0.0) applyebc!(u) numberdofs!(u) cnl = selectnode(fens; box = [0 0 0 0 0 thickness], inflate = tolerance) nfemm = FEMMBase(IntegDomain(FESetP1(reshape(cnl, length(cnl), 1)), PointRule())) F = distribloads( nfemm, geom, u, ForceIntensity([0; 0; Magnitude / 4 / length(cnl)]), 3, ) associategeometry!(femm, geom) @show minimum(femm.phis), maximum(femm.phis) K = stiffness(femm, geom, u) scattersysvec!(u, K \ F) u0z = mean(u.values[cnl, 3]) println( "Deflection under the load: $(round((u0z / analyt_sol)* 100000)/100000*100) %", ) File = "clcircularplatecl_h8u_ms_$(nperradius).vtk" vtkexportmesh(File, fens, fes; vectors = [("u", u.values)]) @async run(`"paraview.exe" $File`) end true end # clcircularplatecl_h8u_ms function clcircularplatecl_h8_export() nt = 1 for nperradius in [2, 4, 8] nt = nt + 1 fens, fes = Q4circlen(R, nperradius) fens, fes = H8extrudeQ4(fens, fes, nt, (x, k) -> [x[1], x[2], k * thickness / nt]) MR = DeforModelRed3D material = MatDeforElastIso(MR, E, nu) femm = FEMMDeforLinearMSH8(MR, IntegDomain(fes, GaussRule(3, 2)), material) boundaryfes = meshboundary(fes) topl = selectelem( fens, boundaryfes, box = [-Inf Inf -Inf Inf thickness thickness], inflate = tolerance, ) botl = selectelem( fens, boundaryfes, box = [-Inf Inf -Inf Inf 0.0 0.0], inflate = tolerance, ) x0l = selectelem( fens, boundaryfes, box = [0.0 0.0 -Inf Inf 0.0 thickness], inflate = tolerance, ) y0l = selectelem( fens, boundaryfes, box = [-Inf Inf 0.0 0.0 0.0 thickness], inflate = tolerance, ) cyll = setdiff(1:count(boundaryfes), topl, botl, x0l, y0l) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field x0nl = connectednodes(subset(boundaryfes, x0l)) setebc!(u, x0nl, true, 1, 0.0) y0nl = connectednodes(subset(boundaryfes, y0l)) setebc!(u, y0nl, true, 2, 0.0) cylnl = connectednodes(subset(boundaryfes, cyll)) setebc!(u, cylnl, true, 1, 0.0) setebc!(u, cylnl, true, 2, 0.0) setebc!(u, cylnl, true, 3, 0.0) applyebc!(u) numberdofs!(u) cnl = selectnode(fens; box = [0 0 0 0 0 thickness], inflate = tolerance) AE = AbaqusExporter("clcircularplatecl_h8_export_$(nperradius)") HEADING(AE, "Clamped square plate with concentrated force") PART(AE, "part1") END_PART(AE) ASSEMBLY(AE, "ASSEM1") INSTANCE(AE, "INSTNC1", "PART1") NODE(AE, fens.xyz) ELEMENT(AE, "c3d8rh", "AllElements", 1, connasarray(femm.integdomain.fes)) NSET_NSET(AE, "cnl", cnl) NSET_NSET(AE, "x0nl", x0nl) NSET_NSET(AE, "y0nl", y0nl) NSET_NSET(AE, "cylnl", cylnl) ORIENTATION(AE, "GlobalOrientation", vec([1.0 0 0]), vec([0 1.0 0])) SOLID_SECTION(AE, "elasticity", "GlobalOrientation", "AllElements", "Hourglassctl") END_INSTANCE(AE) END_ASSEMBLY(AE) MATERIAL(AE, "elasticity") ELASTIC(AE, E, nu) SECTION_CONTROLS(AE, "Hourglassctl", "HOURGLASS=ENHANCED") STEP_PERTURBATION_STATIC(AE) BOUNDARY(AE, "ASSEM1.INSTNC1.x0nl", 1) BOUNDARY(AE, "ASSEM1.INSTNC1.y0nl", 2) BOUNDARY(AE, "ASSEM1.INSTNC1.cylnl", 1) BOUNDARY(AE, "ASSEM1.INSTNC1.cylnl", 2) BOUNDARY(AE, "ASSEM1.INSTNC1.cylnl", 3) CLOAD(AE, "ASSEM1.INSTNC1.cnl", 3, Magnitude / 4 / length(cnl)) END_STEP(AE) close(AE) # File = "clcircularplatecl_h8_export_$(nperradius).vtk" # vtkexportmesh(File, fens, fes; vectors = [("u", u.values)]) # @async run(`"paraview.exe" $File`) end true end # clcircularplatecl_h8_export # true # end # twisted_beam_export function allrun() println("#####################################################") println("# clcircularplatecl_h8_full ") clcircularplatecl_h8_full() println("#####################################################") println("# clcircularplatecl_h8_uri ") clcircularplatecl_h8_uri() println("#####################################################") println("# clcircularplatecl_h8_ms ") clcircularplatecl_h8_ms() println("#####################################################") println("# clcircularplatecl_h8_export ") clcircularplatecl_h8_export() return true end # function allrun @info "All examples may be executed with " println("using .$(@__MODULE__); $(@__MODULE__).allrun()") end # module nothing
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
4897
module cook_like_examples using FinEtools using FinEtoolsDeforLinear using FinEtoolsDeforLinear.AlgoDeforLinearModule using FinEtools.MeshExportModule using Statistics function allrun() mu = 756000 nu = 0.49546 E = 2 * (1.0 + nu) * mu width = 48.0 height = 44.0 thickness = 10.0 free_height = 16.0 Mid_edge = [48.0 52.0 0.0]# Location of tracked deflection magn = 1.0 / (free_height * thickness)# Density of applied load nt = 1 n = 16 * nt# number of elements per side tolerance = minimum([width, height]) / n / 1000.0#Geometrical tolerance fens, fes = T10block(width, height, thickness, n, n, nt) # Reshape into a trapezoidal panel for i = 1:count(fens) fens.xyz[i, 2] = fens.xyz[i, 2] + (fens.xyz[i, 1] / width) * (height - fens.xyz[i, 2] / height * (height - free_height)) end # Clamped edge of the membrane l1 = selectnode(fens; box = [0.0, 0.0, -Inf, Inf, -Inf, Inf], inflate = tolerance) ess1 = FDataDict("displacement" => 0.0, "component" => 1, "node_list" => l1) ess2 = FDataDict("displacement" => 0.0, "component" => 2, "node_list" => l1) ess3 = FDataDict("displacement" => 0.0, "component" => 3, "node_list" => l1) # Traction on the opposite edge boundaryfes = meshboundary(fes) Toplist = selectelem( fens, boundaryfes, box = [width, width, -Inf, Inf, -Inf, Inf], inflate = tolerance, ) el1femm = FEMMBase(IntegDomain(subset(boundaryfes, Toplist), SimplexRule(2, 3))) flux1 = FDataDict("traction_vector" => [0.0, 0.0, +magn], "femm" => el1femm) # Make the region MR = DeforModelRed3D material = MatDeforElastIso(MR, 0.0, E, nu, 0.0) region1 = FDataDict( "femm" => FEMMDeforLinearMST10(MR, IntegDomain(fes, SimplexRule(3, 4)), material), ) modeldata = FDataDict( "fens" => fens, "regions" => [region1], "essential_bcs" => [ess1, ess2, ess3], "traction_bcs" => [flux1], ) # Call the solver modeldata = AlgoDeforLinearModule.linearstatics(modeldata) u = modeldata["u"] geom = modeldata["geom"] # Extract the solution nl = selectnode( fens, box = [Mid_edge[1], Mid_edge[1], Mid_edge[2], Mid_edge[2], -Inf, Inf], inflate = tolerance, ) theutip = mean(u.values[nl, :], dims = 1) println("displacement =$(theutip[2]) ") modeldata["postprocessing"] = FDataDict("file" => "cook_like-ew", "quantity" => :Cauchy, "component" => :xy) modeldata = AlgoDeforLinearModule.exportstresselementwise(modeldata) fld = modeldata["postprocessing"]["exported"][1]["field"] println("range of Cauchy_xy = $((minimum(fld.values), maximum(fld.values)))") File = modeldata["postprocessing"]["exported"][1]["file"] @async run(`"paraview.exe" $File`) modeldata["postprocessing"] = FDataDict("file" => "cook_like-ew-vm", "quantity" => :vm, "component" => 1) modeldata = AlgoDeforLinearModule.exportstresselementwise(modeldata) fld = modeldata["postprocessing"]["exported"][1]["field"] println("range of vm = $((minimum(fld.values), maximum(fld.values)))") File = modeldata["postprocessing"]["exported"][1]["file"] @async run(`"paraview.exe" $File`) modeldata["postprocessing"] = FDataDict( "file" => "cook_like-ew-pressure", "quantity" => :pressure, "component" => 1, ) modeldata = AlgoDeforLinearModule.exportstresselementwise(modeldata) fld = modeldata["postprocessing"]["exported"][1]["field"] println("range of pressure = $((minimum(fld.values), maximum(fld.values)))") File = modeldata["postprocessing"]["exported"][1]["file"] @async run(`"paraview.exe" $File`) modeldata["postprocessing"] = FDataDict( "file" => "cook_like-ew-princ1", "quantity" => :princCauchy, "component" => 1, ) modeldata = AlgoDeforLinearModule.exportstresselementwise(modeldata) fld = modeldata["postprocessing"]["exported"][1]["field"] println("range of princCauchy Max = $((minimum(fld.values), maximum(fld.values)))") File = modeldata["postprocessing"]["exported"][1]["file"] @async run(`"paraview.exe" $File`) modeldata["postprocessing"] = FDataDict( "file" => "cook_like-ew-princ3", "quantity" => :princCauchy, "component" => 3, ) modeldata = AlgoDeforLinearModule.exportstresselementwise(modeldata) fld = modeldata["postprocessing"]["exported"][1]["field"] println("range of princCauchy Min = $((minimum(fld.values), maximum(fld.values)))") File = modeldata["postprocessing"]["exported"][1]["file"] @async run(`"paraview.exe" $File`) true end @info "All examples may be executed with " println("using .$(@__MODULE__); $(@__MODULE__).allrun()") end # module nothing
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
12171
module distorted_block_infsup_examples using FinEtools using FinEtoolsDeforLinear using FinEtoolsDeforLinear.AlgoDeforLinearModule using FinEtools.MeshExportModule using FinEtoolsDeforLinear.FEMMDeforLinearBaseModule: infsup_gh, infsup_sh using Test import LinearAlgebra: norm, cholesky, I, eigen using UnicodePlots function distorted_block_infsup_T10() lambdatol = sqrt(1e8 * eps(1.0)) E = 1000.0 nu = 0.24 parshiftmult = 0.002 A = [1.44 -0.741 -0.53; -0.626 1.589 -0.913; -0.55 0.43 1.756] + 1.0I lambdamin = Float64[] h = Float64[] for ne in [2, 3, 4] Length::FFlt, Width::FFlt, Height::FFlt, nL::FInt, nW::FInt, nH::FInt, orientation::Symbol = (6.0, 6.0, 6.0, ne, ne, ne, :a) fens, fes = T4block( Length::FFlt, Width::FFlt, Height::FFlt, nL::FInt, nW::FInt, nH::FInt, orientation::Symbol, ) fens, fes = T4toT10(fens, fes) # @show connasarray(fes) for i = 1:count(fens) fens.xyz[i, :] = fens.xyz[i, :] + vec(reshape(fens.xyz[i, :], 1, 3) * A) end # @show fens.xyz # File = "minfsuptest1.vtk" # vtkexportmesh(File, fens, fes) # try rm(File); catch end MR = DeforModelRed3D material = MatDeforElastIso(MR, E, nu) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field bfes = meshboundary(fes) l1 = connectednodes(bfes) setebc!(u, l1, true, 1, 0.0) setebc!(u, l1, true, 2, 0.0) setebc!(u, l1, true, 3, 0.0) numberdofs!(u) femm = FEMMDeforLinear(MR, IntegDomain(fes, TetRule(1)), material) Gh = infsup_gh(femm, geom, u) femm = FEMMDeforLinear(MR, IntegDomain(fes, TetRule(1)), material) Sh = infsup_sh(femm, geom, u) lambda, modes = eigen(Matrix(Gh), Matrix(Sh)) # @show lambda abslambda = real.(filter(y -> !isnan(y), lambda)) ix = findall(y -> y < 0.0, abslambda) if !isempty(ix) abslambda[ix] .= 0 end abslambda = sqrt.(sort(abslambda)) ix = findall(y -> y > 0.0, abslambda) a = lineplot( 1:length(abslambda[ix]), log.(abslambda[ix]), name = "infsup", xlabel = "eigenvalue", ylabel = "log(eigenvalue)", canvas = DotCanvas, ) display(a) ix = findall(y -> y >= lambdatol, abslambda) if isempty(ix) @error "Bad guess of the number of eigenvalues" end push!(lambdamin, abslambda[ix[1]]) push!(h, 1.0 / (count(fens))^(1 / 3)) end @show lambdamin a = lineplot( log.(h), log.(lambdamin), name = "infsup", xlabel = "log(Element Size)", ylabel = "log(minimum eigenvalue)", canvas = DotCanvas, ) display(a) # @test norm(lambdamin - [0.262065, 0.1709, 0.126159, 0.100228, 0.0828139]) / norm(lambdamin) <= 1.0e-4 end function distorted_block_infsup_T4() lambdatol = sqrt(1e8 * eps(1.0)) E = 1000.0 nu = 0.24 parshiftmult = 0.002 A = [1.44 -0.741 -0.53; -0.626 1.589 -0.913; -0.55 0.43 1.756] + 1.0I lambdamin = Float64[] h = Float64[] for ne in [2, 3, 4] Length::FFlt, Width::FFlt, Height::FFlt, nL::FInt, nW::FInt, nH::FInt, orientation::Symbol = (6.0, 6.0, 6.0, ne, ne, ne, :a) fens, fes = T4block( Length::FFlt, Width::FFlt, Height::FFlt, nL::FInt, nW::FInt, nH::FInt, orientation::Symbol, ) # fens, fes = T4toT10(fens, fes) # @show connasarray(fes) for i = 1:count(fens) fens.xyz[i, :] = fens.xyz[i, :] + vec(reshape(fens.xyz[i, :], 1, 3) * A) end # @show fens.xyz # File = "minfsuptest1.vtk" # vtkexportmesh(File, fens, fes) # try rm(File); catch end MR = DeforModelRed3D material = MatDeforElastIso(MR, E, nu) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field bfes = meshboundary(fes) l1 = connectednodes(bfes) setebc!(u, l1, true, 1, 0.0) setebc!(u, l1, true, 2, 0.0) setebc!(u, l1, true, 3, 0.0) numberdofs!(u) femm = FEMMDeforLinear(MR, IntegDomain(fes, TetRule(1)), material) Gh = infsup_gh(femm, geom, u) femm = FEMMDeforLinear(MR, IntegDomain(fes, TetRule(1)), material) Sh = infsup_sh(femm, geom, u) lambda, modes = eigen(Matrix(Gh), Matrix(Sh)) # @show lambda abslambda = real.(filter(y -> !isnan(y), lambda)) ix = findall(y -> y < 0.0, abslambda) if !isempty(ix) abslambda[ix] .= 0 end abslambda = sqrt.(sort(abslambda)) ix = findall(y -> y > 0.0, abslambda) a = lineplot( 1:length(abslambda[ix]), log.(abslambda[ix]), name = "infsup", xlabel = "eigenvalue", ylabel = "log(eigenvalue)", canvas = DotCanvas, ) display(a) ix = findall(y -> y >= lambdatol, abslambda) if isempty(ix) @error "Bad guess of the number of eigenvalues" end push!(lambdamin, abslambda[ix[1]]) push!(h, 1.0 / (count(fens))^(1 / 3)) end @show lambdamin a = lineplot( log.(h), log.(lambdamin), name = "infsup", xlabel = "log(Element Size)", ylabel = "log(minimum eigenvalue)", canvas = DotCanvas, ) display(a) # @test norm(lambdamin - [0.262065, 0.1709, 0.126159, 0.100228, 0.0828139]) / norm(lambdamin) <= 1.0e-4 end function distorted_block_infsup_H8() lambdatol = sqrt(1e8 * eps(1.0)) E = 1000.0 nu = 0.24 parshiftmult = 0.002 A = [1.44 -0.741 -0.53; -0.626 1.589 -0.913; -0.55 0.43 1.756] + 1.0I lambdamin = Float64[] h = Float64[] for ne in [2, 3, 4] Length::FFlt, Width::FFlt, Height::FFlt, nL::FInt, nW::FInt, nH::FInt, orientation::Symbol = (6.0, 6.0, 6.0, ne, ne, ne, :a) fens, fes = H8block(Length::FFlt, Width::FFlt, Height::FFlt, nL::FInt, nW::FInt, nH::FInt) # fens, fes = T4toT10(fens, fes) # @show connasarray(fes) for i = 1:count(fens) fens.xyz[i, :] = fens.xyz[i, :] + vec(reshape(fens.xyz[i, :], 1, 3) * A) end # @show fens.xyz # File = "minfsuptest1.vtk" # vtkexportmesh(File, fens, fes) # try rm(File); catch end MR = DeforModelRed3D material = MatDeforElastIso(MR, E, nu) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field bfes = meshboundary(fes) l1 = connectednodes(bfes) setebc!(u, l1, true, 1, 0.0) setebc!(u, l1, true, 2, 0.0) setebc!(u, l1, true, 3, 0.0) numberdofs!(u) femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3, 1)), material) Gh = infsup_gh(femm, geom, u) femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3, 1)), material) Sh = infsup_sh(femm, geom, u) lambda, modes = eigen(Matrix(Gh), Matrix(Sh)) # @show lambda abslambda = real.(filter(y -> !isnan(y), lambda)) ix = findall(y -> y < 0.0, abslambda) if !isempty(ix) abslambda[ix] .= 0 end abslambda = sqrt.(sort(abslambda)) ix = findall(y -> y > 0.0, abslambda) a = lineplot( 1:length(abslambda[ix]), log.(abslambda[ix]), name = "infsup", xlabel = "eigenvalue", ylabel = "log(eigenvalue)", canvas = DotCanvas, ) display(a) ix = findall(y -> y >= lambdatol, abslambda) if isempty(ix) @error "Bad guess of the number of eigenvalues" end push!(lambdamin, abslambda[ix[1]]) push!(h, 1.0 / (count(fens))^(1 / 3)) end @show lambdamin a = lineplot( log.(h), log.(lambdamin), name = "infsup", xlabel = "log(Element Size)", ylabel = "log(minimum eigenvalue)", canvas = DotCanvas, ) display(a) # @test norm(lambdamin - [0.262065, 0.1709, 0.126159, 0.100228, 0.0828139]) / norm(lambdamin) <= 1.0e-4 end function distorted_block_infsup_H20() lambdatol = sqrt(1e8 * eps(1.0)) E = 1000.0 nu = 0.24 parshiftmult = 0.002 A = [1.44 -0.741 -0.53; -0.626 1.589 -0.913; -0.55 0.43 1.756] + 1.0I lambdamin = Float64[] h = Float64[] for ne in [2, 3, 4] Length::FFlt, Width::FFlt, Height::FFlt, nL::FInt, nW::FInt, nH::FInt, orientation::Symbol = (6.0, 6.0, 6.0, ne, ne, ne, :a) fens, fes = H20block(Length::FFlt, Width::FFlt, Height::FFlt, nL::FInt, nW::FInt, nH::FInt) # fens, fes = T4toT10(fens, fes) # @show connasarray(fes) for i = 1:count(fens) fens.xyz[i, :] = fens.xyz[i, :] + vec(reshape(fens.xyz[i, :], 1, 3) * A) end # @show fens.xyz # File = "minfsuptest1.vtk" # vtkexportmesh(File, fens, fes) # try rm(File); catch end MR = DeforModelRed3D material = MatDeforElastIso(MR, E, nu) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field bfes = meshboundary(fes) l1 = connectednodes(bfes) setebc!(u, l1, true, 1, 0.0) setebc!(u, l1, true, 2, 0.0) setebc!(u, l1, true, 3, 0.0) numberdofs!(u) femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3, 2)), material) Gh = infsup_gh(femm, geom, u) femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3, 2)), material) Sh = infsup_sh(femm, geom, u) lambda, modes = eigen(Matrix(Gh), Matrix(Sh)) # @show lambda abslambda = real.(filter(y -> !isnan(y), lambda)) ix = findall(y -> y < 0.0, abslambda) if !isempty(ix) abslambda[ix] .= 0 end abslambda = sqrt.(sort(abslambda)) ix = findall(y -> y > 0.0, abslambda) a = lineplot( 1:length(abslambda[ix]), log.(abslambda[ix]), name = "infsup", xlabel = "eigenvalue", ylabel = "log(eigenvalue)", canvas = DotCanvas, ) display(a) ix = findall(y -> y >= lambdatol, abslambda) if isempty(ix) @error "Bad guess of the number of eigenvalues" end push!(lambdamin, abslambda[ix[1]]) push!(h, 1.0 / (count(fens))^(1 / 3)) end @show lambdamin a = lineplot( log.(h), log.(lambdamin), name = "infsup", xlabel = "log(Element Size)", ylabel = "log(minimum eigenvalue)", canvas = DotCanvas, ) display(a) # @test norm(lambdamin - [0.262065, 0.1709, 0.126159, 0.100228, 0.0828139]) / norm(lambdamin) <= 1.0e-4 end function allrun() println("#####################################################") println("# distorted_block_infsup_T4 ") distorted_block_infsup_T4() println("#####################################################") println("# distorted_block_infsup_H8 ") distorted_block_infsup_H8() println("#####################################################") println("# distorted_block_infsup_T10 ") distorted_block_infsup_T10() println("#####################################################") println("# distorted_block_infsup_H20 ") distorted_block_infsup_H20() return true end # function allrun @info "All examples may be executed with " println("using .$(@__MODULE__); $(@__MODULE__).allrun()") end # module nothing
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
32788
module fiber_reinf_cant_examples using FinEtools using FinEtoolsDeforLinear using FinEtoolsDeforLinear.AlgoDeforLinearModule # using IterativeSolvers using Statistics: mean using LinearAlgebra: Symmetric, cholesky, norm function fiber_reinf_cant_iso() println(""" Cantilever example. Isotropic material. @article{ author = {Krysl, P.}, title = {Mean-strain 8-node hexahedron with optimized energy-sampling stabilization}, journal = {Finite Elements in Analysis and Design}, volume = {108}, pages = {41-53}, DOI = {10.1016/j.finel.2015.09.008}, year = {2016} } """) t0 = time() # # Orthotropic material parameters of the external cylinder # E1s = 130.0*phun("GPa") # E2s = 5.0*phun("GPa") # E3s = E2s # nu12s = nu13s = 0.25 # nu23s = 0.0 # G12s = 10.0*phun("GPa") # G13s = G12s # G23s = 5.0*phun("GPa") # CTE1 = 3.0e-6 # CTE2 = 2.0e-5 # CTE3 = 2.0e-5 # Isotropic material E = 1.0e9 * phun("Pa") nu = 0.25 CTE = 0.0 # Reference value for the vertical deflection of the tip uz_ref = -7.516310912734678e-06 a = 90.0 * phun("mm") # length of the cantilever b = 10.0 * phun("mm") # width of the cross-section t = 20.0 * phun("mm") # height of the cross-section q0 = -1000.0 * phun("Pa") # shear traction dT = 0 * phun("K") # temperature rise tolerance = 0.00001 * t # Generate mesh n = 16 na = n # number of elements lengthwise nb = n # number of elements through the wwith nt = n # number of elements through the thickness xs = collect(linearspace(0.0, a, na + 1)) ys = collect(linearspace(0.0, b, nb + 1)) ts = collect(linearspace(0.0, t, nt + 1)) fens, fes = H8blockx(xs, ys, ts) fens, fes = H8toH20(fens, fes) bfes = meshboundary(fes) # end cross-section surface for the shear loading sshearl = selectelem(fens, bfes; facing = true, direction = [+1.0 0.0 0.0]) MR = DeforModelRed3D # externalmaterial = MatDeforElastOrtho(MR, # 0.0, E1s, E2s, E3s, # nu12s, nu13s, nu23s, # G12s, G13s, G23s, # CTE1, CTE2, CTE3) material = MatDeforElastIso(MR, 0.0, E, nu, CTE) # Material orientation matrix csmat = [i == j ? one(FFlt) : zero(FFlt) for i = 1:3, j = 1:3] function updatecs!(csmatout::FFltMat, XYZ::FFltMat, tangents::FFltMat, fe_label::FInt) copyto!(csmatout, csmat) end gr = GaussRule(3, 2) region = FDataDict("femm" => FEMMDeforLinear(MR, IntegDomain(fes, gr), material)) lx0 = selectnode(fens, box = [0.0 0.0 -Inf Inf -Inf Inf], inflate = tolerance) ex01 = FDataDict("displacement" => 0.0, "component" => 1, "node_list" => lx0) ex02 = FDataDict("displacement" => 0.0, "component" => 2, "node_list" => lx0) ex03 = FDataDict("displacement" => 0.0, "component" => 3, "node_list" => lx0) function getshr!(forceout::FFltVec, XYZ::FFltMat, tangents::FFltMat, fe_label::FInt) copyto!(forceout, q0 * [0.0; 0.0; 1.0]) end Trac = FDataDict( "traction_vector" => getshr!, "femm" => FEMMBase(IntegDomain(subset(bfes, sshearl), GaussRule(2, 3))), ) modeldata = FDataDict( "fens" => fens, "regions" => [region], "essential_bcs" => [ex01, ex02, ex03], "traction_bcs" => [Trac], "temperature_change" => FDataDict("temperature" => dT), ) modeldata = AlgoDeforLinearModule.linearstatics(modeldata) u = modeldata["u"] geom = modeldata["geom"] Tipl = selectnode(fens, box = [a a b b 0.0 0.0], inflate = tolerance) utip = mean(u.values[Tipl, 3]) println(" Normalized deflection: $(utip/uz_ref)") println("Solution: $( time()-t0 )") # File = "NAFEMS-R0031-2-plate.vtk" # vtkexportmesh(File, fes.conn, geom.values, FinEtools.MeshExportModule.H20; # scalars = [("Layer", fes.label)], vectors = [("displacement", u.values)]) # @async run(`"paraview.exe" $File`) modeldata["postprocessing"] = FDataDict( "file" => "fiber_reinf_cant_iso", "outputcsys" => CSys(3, 3, updatecs!), "quantity" => :Cauchy, "component" => 5, ) # modeldata = AlgoDeforLinearModule.exportstress(modeldata) modeldata = AlgoDeforLinearModule.exportdeformation(modeldata) println("Done: $( time()-t0 )") true end # fiber_reinf_cant_iso function fiber_reinf_cant_iso_stresses() println(""" Cantilever example. Isotropic material. @article{ author = {Krysl, P.}, title = {Mean-strain 8-node hexahedron with optimized energy-sampling stabilization}, journal = {Finite Elements in Analysis and Design}, volume = {108}, pages = {41-53}, DOI = {10.1016/j.finel.2015.09.008}, year = {2016} } """) # Isotropic material E = 1.0e9 * phun("Pa") nu = 0.25 CTE = 0.0 # Reference value for the vertical deflection of the tip uz_ref = -7.516310912734678e-06 a = 90.0 * phun("mm") # length of the cantilever b = 10.0 * phun("mm") # width of the cross-section t = 20.0 * phun("mm") # height of the cross-section q0 = -1000.0 * phun("Pa") # shear traction dT = 0 * phun("K") # temperature rise tolerance = 0.00001 * t # Generate mesh for n in [2 4 8 16 32] na = n # number of elements lengthwise nb = n # number of elements through the wwith nt = n # number of elements through the thickness xs = collect(linearspace(0.0, a, na + 1)) ys = collect(linearspace(0.0, b, nb + 1)) ts = collect(linearspace(0.0, t, nt + 1)) fens, fes = H8blockx(xs, ys, ts) # fens,fes = H8toH20(fens,fes) bfes = meshboundary(fes) # end cross-section surface for the shear loading sshearl = selectelem(fens, bfes; facing = true, direction = [+1.0 0.0 0.0]) MR = DeforModelRed3D # externalmaterial = MatDeforElastOrtho(MR, # 0.0, E1s, E2s, E3s, # nu12s, nu13s, nu23s, # G12s, G13s, G23s, # CTE1, CTE2, CTE3) material = MatDeforElastIso(MR, 0.0, E, nu, CTE) # Material orientation matrix csmat = [i == j ? one(FFlt) : zero(FFlt) for i = 1:3, j = 1:3] function updatecs!( csmatout::FFltMat, XYZ::FFltMat, tangents::FFltMat, fe_label::FInt, ) copyto!(csmatout, csmat) end gr = GaussRule(3, 2) region = FDataDict("femm" => FEMMDeforLinearMSH8(MR, IntegDomain(fes, gr), material)) lx0 = selectnode(fens, box = [0.0 0.0 -Inf Inf -Inf Inf], inflate = tolerance) ex01 = FDataDict("displacement" => 0.0, "component" => 1, "node_list" => lx0) ex02 = FDataDict("displacement" => 0.0, "component" => 2, "node_list" => lx0) ex03 = FDataDict("displacement" => 0.0, "component" => 3, "node_list" => lx0) function getshr!(forceout::FFltVec, XYZ::FFltMat, tangents::FFltMat, fe_label::FInt) copyto!(forceout, q0 * [0.0; 0.0; 1.0]) end Trac = FDataDict( "traction_vector" => getshr!, "femm" => FEMMBase(IntegDomain(subset(bfes, sshearl), GaussRule(2, 3))), ) modeldata = FDataDict( "fens" => fens, "regions" => [region], "essential_bcs" => [ex01, ex02, ex03], "traction_bcs" => [Trac], "temperature_change" => FDataDict("temperature" => dT), ) modeldata = AlgoDeforLinearModule.linearstatics(modeldata) u = modeldata["u"] geom = modeldata["geom"] Tipl = selectnode(fens, box = [a a b b 0.0 0.0], inflate = tolerance) utip = mean(u.values[Tipl, 3]) println(" Normalized deflection: $(utip/uz_ref)") stressfields = NodalField[] for c = 1:6 modeldata["postprocessing"] = FDataDict( "file" => "fiber_reinf_cant_iso", "outputcsys" => CSys(3, 3, updatecs!), "quantity" => :Cauchy, "component" => c, ) modeldata = AlgoDeforLinearModule.exportstress(modeldata) push!(stressfields, modeldata["postprocessing"]["exported"][1]["field"]) end # println("@__FILE__ = $(@__FILE__)") # jldopen("fiber_reinf_cant_iso_stresses" * "n=$(n)" * ".jld", "w") do file # write(file, "n", n) # write(file, "fens", fens) # write(file, "fes", fes) # write(file, "geom", geom) # write(file, "u", u) # # write(file, "femm", region["femm"]) # write(file, "integrationrule", region["femm"].integdomain.integration_rule) # write(file, "stressfields", stressfields) # write(file, "tolerance", tolerance) # end end true end # fiber_reinf_cant_iso_stresses function fiber_reinf_cant_iso_stresses_MST10() elementtag = "MST10" println(""" Cantilever example. Isotropic material. ############### $(elementtag) ############### @article{ author = {Krysl, P.}, title = {Mean-strain 8-node hexahedron with optimized energy-sampling stabilization}, journal = {Finite Elements in Analysis and Design}, volume = {108}, pages = {41-53}, DOI = {10.1016/j.finel.2015.09.008}, year = {2016} } """) # Isotropic material E = 1.0e9 * phun("Pa") nu = 0.25 CTE = 0.0 # Reference value for the vertical deflection of the tip uz_ref = -7.516310912734678e-06 a = 90.0 * phun("mm") # length of the cantilever b = 10.0 * phun("mm") # width of the cross-section t = 20.0 * phun("mm") # height of the cross-section q0 = -1000.0 * phun("Pa") # shear traction dT = 0 * phun("K") # temperature rise tolerance = 0.00001 * t convergencestudy = FDataDict[] for n in [1 2 4 8 16] na = n # number of elements lengthwise nb = n # number of elements through the wwith nt = n # number of elements through the thickness xs = collect(linearspace(0.0, a, na + 1)) ys = collect(linearspace(0.0, b, nb + 1)) ts = collect(linearspace(0.0, t, nt + 1)) fens, fes = T10blockx(xs, ys, ts) bfes = meshboundary(fes) # end cross-section surface for the shear loading sshearl = selectelem(fens, bfes; facing = true, direction = [+1.0 0.0 0.0]) MR = DeforModelRed3D # externalmaterial = MatDeforElastOrtho(MR, # 0.0, E1s, E2s, E3s, # nu12s, nu13s, nu23s, # G12s, G13s, G23s, # CTE1, CTE2, CTE3) material = MatDeforElastIso(MR, 0.0, E, nu, CTE) # Material orientation matrix csmat = [i == j ? one(FFlt) : zero(FFlt) for i = 1:3, j = 1:3] function updatecs!( csmatout::FFltMat, XYZ::FFltMat, tangents::FFltMat, fe_label::FInt, ) copyto!(csmatout, csmat) end gr = SimplexRule(3, 4) region = FDataDict("femm" => FEMMDeforLinearMST10(MR, IntegDomain(fes, gr), material)) lx0 = selectnode(fens, box = [0.0 0.0 -Inf Inf -Inf Inf], inflate = tolerance) ex01 = FDataDict("displacement" => 0.0, "component" => 1, "node_list" => lx0) ex02 = FDataDict("displacement" => 0.0, "component" => 2, "node_list" => lx0) ex03 = FDataDict("displacement" => 0.0, "component" => 3, "node_list" => lx0) function getshr!(forceout::FFltVec, XYZ::FFltMat, tangents::FFltMat, fe_label::FInt) copyto!(forceout, q0 * [0.0; 0.0; 1.0]) end Trac = FDataDict( "traction_vector" => getshr!, "femm" => FEMMBase(IntegDomain(subset(bfes, sshearl), SimplexRule(2, 3))), ) modeldata = FDataDict( "fens" => fens, "regions" => [region], "essential_bcs" => [ex01, ex02, ex03], "traction_bcs" => [Trac], "temperature_change" => FDataDict("temperature" => dT), ) modeldata = AlgoDeforLinearModule.linearstatics(modeldata) u = modeldata["u"] geom = modeldata["geom"] Tipl = selectnode(fens, box = [a a b b 0.0 0.0], inflate = tolerance) utip = mean(u.values[Tipl, 3]) println(" Normalized deflection: $(utip/uz_ref)") modeldata["postprocessing"] = FDataDict( "file" => "fiber_reinf_cant_iso_stresses_$(elementtag)", "outputcsys" => CSys(3, 3, updatecs!), "quantity" => :Cauchy, "component" => [5], ) modeldata = AlgoDeforLinearModule.exportstresselementwise(modeldata) modeldata["postprocessing"] = FDataDict( "file" => "fiber_reinf_cant_iso_stresses_$(elementtag)", "outputcsys" => CSys(3, 3, updatecs!), "quantity" => :Cauchy, "component" => collect(1:6), ) modeldata = AlgoDeforLinearModule.exportstresselementwise(modeldata) stressfields = ElementalField[modeldata["postprocessing"]["exported"][1]["field"]] push!( convergencestudy, FDataDict( "elementsize" => 1.0 / n, "fens" => fens, "fes" => fes, "geom" => geom, "u" => u, "femm" => region["femm"], "integrationrule" => region["femm"].integdomain.integration_rule, "stressfields" => stressfields, "tolerance" => tolerance, ), ) end # File = "fiber_reinf_cant_iso_stresses_$(elementtag)" # open(File * ".jls", "w") do file # serialize(file, convergencestudy) # end true end # fiber_reinf_cant_iso_stresses_MST10 function fiber_reinf_cant_iso_stresses_T10() elementtag = "T10" println(""" Cantilever example. Isotropic material. ############### $(elementtag) ############### @article{ author = {Krysl, P.}, title = {Mean-strain 8-node hexahedron with optimized energy-sampling stabilization}, journal = {Finite Elements in Analysis and Design}, volume = {108}, pages = {41-53}, DOI = {10.1016/j.finel.2015.09.008}, year = {2016} } """) # Isotropic material E = 1.0e9 * phun("Pa") nu = 0.25 CTE = 0.0 # Reference value for the vertical deflection of the tip uz_ref = -7.516310912734678e-06 a = 90.0 * phun("mm") # length of the cantilever b = 10.0 * phun("mm") # width of the cross-section t = 20.0 * phun("mm") # height of the cross-section q0 = -1000.0 * phun("Pa") # shear traction dT = 0 * phun("K") # temperature rise tolerance = 0.00001 * t convergencestudy = FDataDict[] for n in [1 2 4 8 16] na = n # number of elements lengthwise nb = n # number of elements through the wwith nt = n # number of elements through the thickness xs = collect(linearspace(0.0, a, na + 1)) ys = collect(linearspace(0.0, b, nb + 1)) ts = collect(linearspace(0.0, t, nt + 1)) fens, fes = T10blockx(xs, ys, ts) bfes = meshboundary(fes) # end cross-section surface for the shear loading sshearl = selectelem(fens, bfes; facing = true, direction = [+1.0 0.0 0.0]) MR = DeforModelRed3D # externalmaterial = MatDeforElastOrtho(MR, # 0.0, E1s, E2s, E3s, # nu12s, nu13s, nu23s, # G12s, G13s, G23s, # CTE1, CTE2, CTE3) material = MatDeforElastIso(MR, 0.0, E, nu, CTE) # Material orientation matrix csmat = [i == j ? one(FFlt) : zero(FFlt) for i = 1:3, j = 1:3] function updatecs!( csmatout::FFltMat, XYZ::FFltMat, tangents::FFltMat, fe_label::FInt, ) copyto!(csmatout, csmat) end gr = SimplexRule(3, 4) region = FDataDict("femm" => FEMMDeforLinear(MR, IntegDomain(fes, gr), material)) lx0 = selectnode(fens, box = [0.0 0.0 -Inf Inf -Inf Inf], inflate = tolerance) ex01 = FDataDict("displacement" => 0.0, "component" => 1, "node_list" => lx0) ex02 = FDataDict("displacement" => 0.0, "component" => 2, "node_list" => lx0) ex03 = FDataDict("displacement" => 0.0, "component" => 3, "node_list" => lx0) function getshr!(forceout::FFltVec, XYZ::FFltMat, tangents::FFltMat, fe_label::FInt) copyto!(forceout, q0 * [0.0; 0.0; 1.0]) end Trac = FDataDict( "traction_vector" => getshr!, "femm" => FEMMBase(IntegDomain(subset(bfes, sshearl), SimplexRule(2, 3))), ) modeldata = FDataDict( "fens" => fens, "regions" => [region], "essential_bcs" => [ex01, ex02, ex03], "traction_bcs" => [Trac], "temperature_change" => FDataDict("temperature" => dT), ) modeldata = AlgoDeforLinearModule.linearstatics(modeldata) u = modeldata["u"] geom = modeldata["geom"] Tipl = selectnode(fens, box = [a a b b 0.0 0.0], inflate = tolerance) utip = mean(u.values[Tipl, 3]) println(" Normalized deflection: $(utip/uz_ref)") modeldata["postprocessing"] = FDataDict( "file" => "fiber_reinf_cant_iso_stresses_$(elementtag)", "outputcsys" => CSys(3, 3, updatecs!), "quantity" => :Cauchy, "component" => [5], ) modeldata = AlgoDeforLinearModule.exportstresselementwise(modeldata) modeldata["postprocessing"] = FDataDict( "file" => "fiber_reinf_cant_iso_stresses_$(elementtag)", "outputcsys" => CSys(3, 3, updatecs!), "quantity" => :Cauchy, "component" => collect(1:6), ) modeldata = AlgoDeforLinearModule.exportstresselementwise(modeldata) stressfields = ElementalField[modeldata["postprocessing"]["exported"][1]["field"]] push!( convergencestudy, FDataDict( "elementsize" => 1.0 / n, "fens" => fens, "fes" => fes, "geom" => geom, "u" => u, "femm" => region["femm"], "integrationrule" => region["femm"].integdomain.integration_rule, "stressfields" => stressfields, "tolerance" => tolerance, ), ) end # File = "fiber_reinf_cant_iso_stresses_$(elementtag)" # open(File * ".jls", "w") do file # serialize(file, convergencestudy) # end true end # fiber_reinf_cant_iso_stresses_T10 function fiber_reinf_cant_yn_strong() println(""" Cantilever example. Strongly orthotropic material. Orientation "y". @article{ author = {Krysl, P.}, title = {Mean-strain 8-node hexahedron with optimized energy-sampling stabilization}, journal = {Finite Elements in Analysis and Design}, volume = {108}, pages = {41-53}, DOI = {10.1016/j.finel.2015.09.008}, year = {2016} } """) t0 = time() # # Orthotropic material E1s = 100000.0 * phun("GPa") E2s = 1.0 * phun("GPa") E3s = E2s nu23s = nu12s = nu13s = 0.25 G12s = 0.2 * phun("GPa") G23s = G13s = G12s CTE1 = 0.0 CTE2 = 0.0 CTE3 = 0.0 # # Isotropic material # E = 1.0e9*phun("Pa") # nu = 0.25 # CTE = 0.0 # Reference value for the vertical deflection of the tip uz_ref = -1.027498445054843e-05 a = 90.0 * phun("mm") # length of the cantilever b = 10.0 * phun("mm") # width of the cross-section t = 20.0 * phun("mm") # height of the cross-section q0 = -1000.0 * phun("Pa") # shear traction dT = 0 * phun("K") # temperature rise tolerance = 0.00001 * t # Generate mesh n = 4 na = 8 * n # number of elements lengthwise nb = n # number of elements through the wwith nt = n # number of elements through the thickness xs = collect(linearspace(0.0, a, na + 1)) ys = collect(linearspace(0.0, b, nb + 1)) ts = collect(linearspace(0.0, t, nt + 1)) fens, fes = H8blockx(xs, ys, ts) fens, fes = H8toH20(fens, fes) bfes = meshboundary(fes) # end cross-section surface for the shear loading sshearl = selectelem(fens, bfes; facing = true, direction = [+1.0 0.0 0.0]) MR = DeforModelRed3D material = MatDeforElastOrtho( MR, 0.0, E1s, E2s, E3s, nu12s, nu13s, nu23s, G12s, G13s, G23s, CTE1, CTE2, CTE3, ) # material = MatDeforElastIso(MR, # 0.0, E, nu, CTE) # Material orientation matrix csmat = zeros(3, 3) rotmat3!(csmat, -45.0 / 180.0 * pi * [0, 1, 0]) function updatecs!(csmatout::FFltMat, XYZ::FFltMat, tangents::FFltMat, fe_label::FInt) copyto!(csmatout, csmat) end gr = GaussRule(3, 2) region = FDataDict( "femm" => FEMMDeforLinear(MR, IntegDomain(fes, gr), CSys(3, 3, updatecs!), material), ) lx0 = selectnode(fens, box = [0.0 0.0 -Inf Inf -Inf Inf], inflate = tolerance) ex01 = FDataDict("displacement" => 0.0, "component" => 1, "node_list" => lx0) ex02 = FDataDict("displacement" => 0.0, "component" => 2, "node_list" => lx0) ex03 = FDataDict("displacement" => 0.0, "component" => 3, "node_list" => lx0) function getshr!(forceout::FFltVec, XYZ::FFltMat, tangents::FFltMat, fe_label::FInt) copyto!(forceout, q0 * [0.0; 0.0; 1.0]) end Trac = FDataDict( "traction_vector" => getshr!, "femm" => FEMMBase(IntegDomain(subset(bfes, sshearl), GaussRule(2, 3))), ) modeldata = FDataDict( "fens" => fens, "regions" => [region], "essential_bcs" => [ex01, ex02, ex03], "traction_bcs" => [Trac], "temperature_change" => FDataDict("temperature" => dT), ) modeldata = AlgoDeforLinearModule.linearstatics(modeldata) u = modeldata["u"] geom = modeldata["geom"] Tipl = selectnode(fens, box = [a a b b 0.0 0.0], inflate = tolerance) utip = mean(u.values[Tipl, 3]) println("Deflection $utip, normalized: $(utip/uz_ref)") println("Solution: $( time()-t0 )") # File = "NAFEMS-R0031-2-plate.vtk" # vtkexportmesh(File, fes.conn, geom.values, FinEtools.MeshExportModule.H20; # scalars = [("Layer", fes.label)], vectors = [("displacement", u.values)]) # @async run(`"paraview.exe" $File`) modeldata["postprocessing"] = FDataDict( "file" => "fiber_reinf_cant_yn_strong", "outputcsys" => CSys(3, 3, updatecs!), "quantity" => :Cauchy, "component" => 5, ) modeldata = AlgoDeforLinearModule.exportstress(modeldata) File = modeldata["postprocessing"]["exported"][1]["file"] @async run(`"paraview.exe" $File`) # modeldata = AlgoDeforLinearModule.exportdeformation(modeldata) # File = modeldata["postprocessing"]["exported"][1]["file"] # @async run(`"paraview.exe" $File`) println("Done: $( time()-t0 )") true end # fiber_reinf_cant_yn_strong function fiber_reinf_cant_yn_strong_no_algo() println(""" Cantilever example. Strongly orthotropic material. Orientation "y". @article{ author = {Krysl, P.}, title = {Mean-strain 8-node hexahedron with optimized energy-sampling stabilization}, journal = {Finite Elements in Analysis and Design}, volume = {108}, pages = {41-53}, DOI = {10.1016/j.finel.2015.09.008}, year = {2016} } """) t0 = time() pu = ustring -> phun(ustring; system_of_units = :SIMM) # # Orthotropic material E1s = 100000.0 * pu("GPa") E2s = 1.0 * pu("GPa") E3s = E2s nu23s = nu12s = nu13s = 0.25 G12s = 0.2 * pu("GPa") G23s = G13s = G12s CTE1 = 0.0 CTE2 = 0.0 CTE3 = 0.0 # # Isotropic material # E = 1.0e9*pu("Pa") # nu = 0.25 # CTE = 0.0 # Reference value for the vertical deflection of the tip uz_ref = -1.027498445054843e-05 * pu("m") a = 90.0 * pu("mm") # length of the cantilever b = 10.0 * pu("mm") # width of the cross-section t = 20.0 * pu("mm") # height of the cross-section q0 = -1000.0 * pu("Pa") # shear traction dT = 0 * pu("K") # temperature rise tolerance = 0.00001 * t # Generate mesh n = 10 na = n # number of elements lengthwise nb = n # number of elements through the wwith nt = n # number of elements through the thickness xs = collect(linearspace(0.0, a, na + 1)) ys = collect(linearspace(0.0, b, nb + 1)) ts = collect(linearspace(0.0, t, nt + 1)) println("fens,fes = H8blockx(xs, ys, ts)") @time fens, fes = H8blockx(xs, ys, ts) println("fens,fes = H8toH20(fens,fes)") @time fens, fes = H8toH20(fens, fes) println("bfes = meshboundary(fes)") @time bfes = meshboundary(fes) # end cross-section surface for the shear loading sshearl = selectelem(fens, bfes; facing = true, direction = [+1.0 0.0 0.0]) MR = DeforModelRed3D material = MatDeforElastOrtho( MR, 0.0, E1s, E2s, E3s, nu12s, nu13s, nu23s, G12s, G13s, G23s, CTE1, CTE2, CTE3, ) # material = MatDeforElastIso(MR, # 0.0, E, nu, CTE) # Material orientation matrix csmat = zeros(3, 3) rotmat3!(csmat, -45.0 / 180.0 * pi * [0, 1, 0]) function updatecs!(csmatout::FFltMat, XYZ::FFltMat, tangents::FFltMat, fe_label::FInt) copyto!(csmatout, csmat) end gr = GaussRule(3, 2) femm = FEMMDeforLinear(MR, IntegDomain(fes, gr), CSys(3, 3, updatecs!), material) lx0 = selectnode(fens, box = [0.0 0.0 -Inf Inf -Inf Inf], inflate = tolerance) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field nnodes(geom) setebc!(u, lx0, true, 1, zeros(size(lx0))) setebc!(u, lx0, true, 2, zeros(size(lx0))) setebc!(u, lx0, true, 3, zeros(size(lx0))) applyebc!(u) S = connectionmatrix(femm, nnodes(geom)) numberdofs!(u) function getshr!(forceout::FFltVec, XYZ::FFltMat, tangents::FFltMat, fe_label::FInt) copyto!(forceout, q0 * [0.0; 0.0; 1.0]) end Tracfemm = FEMMBase(IntegDomain(subset(bfes, sshearl), GaussRule(2, 3))) println("K = stiffness(femm, geom, u)") @time K = stiffness(femm, geom, u) fi = ForceIntensity(Float64, 3, getshr!) println("F = distribloads(Tracfemm, geom, u, fi, 2);") @time F = distribloads(Tracfemm, geom, u, fi, 2) println("K = cholesky(K)") K = (K + K') / 2 @time K = cholesky(Symmetric(K)) println("U = K\\F") @time U = K \ F # println("U = cg(K, F; tol=1e-3, maxiter=2000)") # @time U = cg(K, F; tol=1e-3, maxiter=2000) scattersysvec!(u, U[:]) Tipl = selectnode(fens, box = [a a b b 0.0 0.0], inflate = tolerance) utip = mean(u.values[Tipl, 3]) println("Deflection $utip, normalized: $(utip/uz_ref)") println("Solution: $( time()-t0 )") println("Done: $( time()-t0 )") true end # fiber_reinf_cant_yn_strong_no_algo function fiber_reinf_cant_zn_strong() println(""" Cantilever example. Strongly orthotropic material. Orientation "z". @article{ author = {Krysl, P.}, title = {Mean-strain 8-node hexahedron with optimized energy-sampling stabilization}, journal = {Finite Elements in Analysis and Design}, volume = {108}, pages = {41-53}, DOI = {10.1016/j.finel.2015.09.008}, year = {2016} } """) t0 = time() # # Orthotropic material E1s = 100000.0 * phun("GPa") E2s = 1.0 * phun("GPa") E3s = E2s nu23s = nu12s = nu13s = 0.25 G12s = 0.2 * phun("GPa") G23s = G13s = G12s CTE1 = 0.0 CTE2 = 0.0 CTE3 = 0.0 # # Isotropic material # E = 1.0e9*phun("Pa") # nu = 0.25 # CTE = 0.0 # Reference value for the vertical deflection of the tip uz_ref = -1.119145781010554e-05 a = 90.0 * phun("mm") # length of the cantilever b = 10.0 * phun("mm") # width of the cross-section t = 20.0 * phun("mm") # height of the cross-section q0 = -1000.0 * phun("Pa") # shear traction dT = 0 * phun("K") # temperature rise tolerance = 0.00001 * t # Generate mesh n = 8 na = 8 * n # number of elements lengthwise nb = n # number of elements through the wwith nt = n # number of elements through the thickness xs = collect(linearspace(0.0, a, na + 1)) ys = collect(linearspace(0.0, b, nb + 1)) ts = collect(linearspace(0.0, t, nt + 1)) fens, fes = H8blockx(xs, ys, ts) fens, fes = H8toH20(fens, fes) bfes = meshboundary(fes) # end cross-section surface for the shear loading sshearl = selectelem(fens, bfes; facing = true, direction = [+1.0 0.0 0.0]) MR = DeforModelRed3D material = MatDeforElastOrtho( MR, 0.0, E1s, E2s, E3s, nu12s, nu13s, nu23s, G12s, G13s, G23s, CTE1, CTE2, CTE3, ) # material = MatDeforElastIso(MR, # 0.0, E, nu, CTE) # Material orientation matrix csmat = zeros(3, 3) rotmat3!(csmat, -45.0 / 180.0 * pi * [0, 0, 1]) function updatecs!(csmatout::FFltMat, XYZ::FFltMat, tangents::FFltMat, fe_label::FInt) copyto!(csmatout, csmat) end gr = GaussRule(3, 2) region = FDataDict( "femm" => FEMMDeforLinear(MR, IntegDomain(fes, gr), CSys(3, 3, updatecs!), material), ) lx0 = selectnode(fens, box = [0.0 0.0 -Inf Inf -Inf Inf], inflate = tolerance) ex01 = FDataDict("displacement" => 0.0, "component" => 1, "node_list" => lx0) ex02 = FDataDict("displacement" => 0.0, "component" => 2, "node_list" => lx0) ex03 = FDataDict("displacement" => 0.0, "component" => 3, "node_list" => lx0) function getshr!(forceout::FFltVec, XYZ::FFltMat, tangents::FFltMat, fe_label::FInt) copyto!(forceout, q0 * [0.0; 0.0; 1.0]) end Trac = FDataDict( "traction_vector" => getshr!, "femm" => FEMMBase(IntegDomain(subset(bfes, sshearl), GaussRule(2, 3))), ) modeldata = FDataDict( "fens" => fens, "regions" => [region], "essential_bcs" => [ex01, ex02, ex03], "traction_bcs" => [Trac], "temperature_change" => FDataDict("temperature" => dT), ) modeldata = AlgoDeforLinearModule.linearstatics(modeldata) u = modeldata["u"] geom = modeldata["geom"] Tipl = selectnode(fens, box = [a a b b 0.0 0.0], inflate = tolerance) utip = mean(u.values[Tipl, 3]) println("Deflection $utip, normalized: $(utip/uz_ref)") println("Solution: $( time()-t0 )") # File = "NAFEMS-R0031-2-plate.vtk" # vtkexportmesh(File, fes.conn, geom.values, FinEtools.MeshExportModule.H20; # scalars = [("Layer", fes.label)], vectors = [("displacement", u.values)]) # @async run(`"paraview.exe" $File`) modeldata["postprocessing"] = FDataDict( "file" => "fiber_reinf_cant_yn_strong", "outputcsys" => CSys(3, 3, updatecs!), "quantity" => :Cauchy, "component" => 5, ) modeldata = AlgoDeforLinearModule.exportstress(modeldata) File = modeldata["postprocessing"]["exported"][1]["file"] @async run(`"paraview.exe" $File`) # modeldata = AlgoDeforLinearModule.exportdeformation(modeldata) # File = modeldata["postprocessing"]["exported"][1]["file"] # @async run(`"paraview.exe" $File`) println("Done: $( time()-t0 )") true end # fiber_reinf_cant_zn_strong function allrun() println("#####################################################") println("# fiber_reinf_cant_iso ") fiber_reinf_cant_iso() println("#####################################################") println("# fiber_reinf_cant_iso_stresses ") fiber_reinf_cant_iso_stresses() println("#####################################################") println("# fiber_reinf_cant_iso_stresses_MST10 ") fiber_reinf_cant_iso_stresses_MST10() println("#####################################################") println("# fiber_reinf_cant_iso_stresses_T10 ") fiber_reinf_cant_iso_stresses_T10() println("#####################################################") println("# fiber_reinf_cant_yn_strong ") fiber_reinf_cant_yn_strong() println("#####################################################") println("# fiber_reinf_cant_yn_strong_no_algo ") fiber_reinf_cant_yn_strong_no_algo() return true end # function allrun @info "All examples may be executed with " println("using .$(@__MODULE__); $(@__MODULE__).allrun()") end # module nothing
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
2849
module hex_ip_constr_examples using FinEtools using FinEtools.MeshExportModule.CSV: savecsv using FinEtoolsDeforLinear using FinEtoolsDeforLinear.AlgoDeforLinearModule using FinEtools.AlgoBaseModule: evalconvergencestudy using FinEtoolsDeforLinear.AlgoDeforLinearModule: linearstatics, exportstresselementwise, exportstress using Statistics: mean using LinearAlgebra: Symmetric, cholesky, eigen, svd using PGFPlotsX function mesh() ( FinEtools.FENodeSetModule.FENodeSet( [ 0.0 0.0 0.0 1.0 0.0 0.0 1.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 1.0 0.0 1.0 1.0 1.0 1.0 0.0 1.0 1.0 ], ), FinEtools.FESetModule.FESetH8(reshape([1, 2, 3, 4, 5, 6, 7, 8], 1, 8)), ) end function hex_ip_constr_par() fens, fes = mesh() # integration_rule = TrapezoidalRule(3) integration_rule = GaussRule(3, 2) pc = integration_rule.param_coords w = integration_rule.weights npts = integration_rule.npts Q = fill(0.0, npts, 24) for j = 1:npts gradNpar = bfundpar(fes, vec(pc[j, :])) k = 1 for i in axes(gradNpar, 1) Q[j, k:(k+2)] .= gradNpar[i, :] k = k + 3 end end decomp = svd(Q) @show decomp.S true end # hex_ip_constr_par function hex_ip_constr_xyz() xyzperturbation = [ 0.0767656 -0.983206 -0.14343 0.45767 0.981479 0.450997 -0.295854 0.542922 0.321333 -0.85204 -0.97824 -0.772874 -0.0539756 0.994907 0.822798 0.447173 0.528742 0.0445352 -0.468417 0.00673427 0.953151 -0.898513 -0.915871 0.933237 ] ./ 5.0 fens, fes = mesh() fens.xyz .+= xyzperturbation # integration_rule = TrapezoidalRule(3) integration_rule = GaussRule(3, 2) pc = integration_rule.param_coords w = integration_rule.weights npts = integration_rule.npts Q = fill(0.0, npts, 24) for j = 1:npts gradNpar = bfundpar(fes, vec(pc[j, :])) J = (transpose(fens.xyz) * gradNpar) gradN = gradNpar / J k = 1 for i in axes(gradN, 1) Q[j, k:(k+2)] .= gradN[i, :] k = k + 3 end end decomp = svd(Q) @show decomp.S true end # hex_ip_constr_xyz function allrun() println("#####################################################") println("# hex_ip_constr_par ") hex_ip_constr_par() println("#####################################################") println("# hex_ip_constr_xyz ") hex_ip_constr_xyz() return true end # function allrun @info "All examples may be executed with " println("using .$(@__MODULE__); $(@__MODULE__).allrun()") end # module nothing
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
48836
module hughes_cantilever_examples using FinEtools using FinEtoolsDeforLinear using FinEtoolsDeforLinear.AlgoDeforLinearModule using FinEtools.AlgoBaseModule: evalconvergencestudy using FinEtoolsDeforLinear.AlgoDeforLinearModule: linearstatics, exportstresselementwise, exportstress using Statistics: mean using LinearAlgebra: Symmetric, cholesky # Example from TJR Hughes, The Finite Element Method: Linear Static and Dynamic Finite Element Analysis, 1987. # Two-dimensional plane-elasticity Solution of beam deflection. Shear force P at one end, and corresponding reactions (tractions) at the other end. The Analytical solution is plane-strain. # Find out: where does the exact solution come from? # Isotropic material E = 1.0 P = 1.0 L = 16.0 c = 2.0 h = 1.0 W = 2 / 3 * h * c^3 CTE = 0.0 tolerance = 0.00001 * c function getfrcL!(forceout::FFltVec, XYZ::FFltMat, tangents::FFltMat, fe_label::FInt) copyto!(forceout, [0.0; 0.0; P / 2 / W * (c^2 - XYZ[3]^2)]) end function getfrc0!(forceout::FFltVec, XYZ::FFltMat, tangents::FFltMat, fe_label::FInt) copyto!(forceout, [P * L / W * XYZ[3]; 0.0; -P / 2 / W * (c^2 - XYZ[3]^2)]) end function evaluateerrors(filebase, modeldatasequence) println("") println("Stress RMS error") for md in modeldatasequence md["targetfields"] = [e["field"] for e in md["postprocessing"]["exported"]] end elementsizes, errornorms, p = evalconvergencestudy(modeldatasequence) println("Normalized Approximate Error = $(errornorms)") f = log.(vec(errornorms)) A = hcat(log.(vec(elementsizes[1:(end-1)])), ones(size(f))) p = A \ f println("Linear log-log fit: p = $(p)") csvFile = filebase * "_Stress" * ".CSV" savecsv( csvFile, elementsizes = vec(elementsizes[1:(end-1)]), elementsizes2 = vec(elementsizes[1:(end-1)] .^ 2), elementsizes3 = vec(elementsizes[1:(end-1)] .^ 3), errornorms = vec(errornorms), ) println("Wrote $csvFile") println("") println("Displacement RMS error") for md in modeldatasequence md["targetfields"] = [md["u"] for r in md["regions"]] end elementsizes, errornorms, p = evalconvergencestudy(modeldatasequence) println("Normalized Approximate Error = $(errornorms)") f = log.(vec(errornorms)) A = hcat(log.(vec(elementsizes[1:(end-1)])), ones(size(f))) p = A \ f println("Linear log-log fit: p = $(p)") csvFile = filebase * "_Displ" * ".CSV" savecsv( csvFile, elementsizes = vec(elementsizes[1:(end-1)]), elementsizes2 = vec(elementsizes[1:(end-1)] .^ 2), elementsizes3 = vec(elementsizes[1:(end-1)] .^ 3), errornorms = vec(errornorms), ) println("Wrote $csvFile") end function hughes_cantilever_stresses_H8_by_hand() elementtag = "H8" println(""" Cantilever example. Hughes 1987. Element: $(elementtag) """) nu = 0.3 # COMPRESSIBLE E1 = E / (1 - nu^2) # Plane strain nu1 = nu / (1 - nu) I = h * (2 * c)^3 / 12 function exactux(x, y) (P / (6 * E1 * I) * (-y) * (3 * (L^2 - (L - x)^2) + (2 + nu1) * (y^2 - c^2))) end function exactuy(x, y) ( P / (6 * E1 * I) * ( ((L - x)^3 - L^3) - ((4 + 5 * nu1) * c^2 + 3 * L^2) * (L - x - L) + 3 * nu1 * (L - x) * y^2 ) ) end n = 2 # nL = 3 * n # number of elements lengthwise nc = 2 * n # number of elements through the depth nh = 1 # number of elements through the thickness xs = collect(linearspace(0.0, L, nL + 1)) ys = collect(linearspace(0.0, h, nh + 1)) zs = collect(linearspace(-c, +c, nc + 1)) fens, fes = H8blockx(xs, ys, zs) # fens,fes = H8toH20(fens,fes) bfes = meshboundary(fes) # end cross-section surface for the shear loading sshearL = selectelem(fens, bfes; facing = true, direction = [+1.0 0.0 0.0]) # 0 cross-section surface for the reactions sshear0 = selectelem(fens, bfes; facing = true, direction = [-1.0 0.0 0.0]) MR = DeforModelRed3D material = MatDeforElastIso(MR, 0.0, E, nu, CTE) # Material orientation matrix csmat = [i == j ? one(FFlt) : zero(FFlt) for i = 1:3, j = 1:3] function updatecs!(csmatout::FFltMat, XYZ::FFltMat, tangents::FFltMat, fe_label::FInt) copyto!(csmatout, csmat) end femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3, 2)), material) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field lx0 = selectnode(fens, box = [0.0 0.0 0.0 0.0 0.0 0.0], inflate = tolerance) setebc!(u, lx0, true, 1, 0.0) setebc!(u, lx0, true, 2, 0.0) setebc!(u, lx0, true, 3, 0.0) lx1 = selectnode(fens, box = [0.0 0.0 0.0 0.0 c c], inflate = tolerance) lx2 = selectnode(fens, box = [0.0 0.0 0.0 0.0 -c -c], inflate = tolerance) setebc!(u, vcat(lx1, lx2), true, 1, 0.0) ly1 = selectnode(fens, box = [-Inf Inf 0.0 0.0 -Inf Inf], inflate = tolerance) ly2 = selectnode(fens, box = [-Inf Inf h h -Inf Inf], inflate = tolerance) setebc!(u, vcat(ly1, ly2), true, 2, 0.0) applyebc!(u) numberdofs!(u) fi = ForceIntensity(Float64, 3, getfrc0!) el1femm = FEMMBase(IntegDomain(subset(bfes, sshear0), GaussRule(2, 2))) F1 = distribloads(el1femm, geom, u, fi, 2) fi = ForceIntensity(Float64, 3, getfrcL!) el2femm = FEMMBase(IntegDomain(subset(bfes, sshearL), GaussRule(2, 2))) F2 = distribloads(el2femm, geom, u, fi, 2) associategeometry!(femm, geom) K = stiffness(femm, geom, u) K = cholesky(K) U = K \ (F1 + F2) scattersysvec!(u, U[:]) Tipl = selectnode(fens, box = [L L 0.0 0.0 0.0 0.0], inflate = tolerance) utip = mean(u.values[Tipl, 3]) println("Deflection: $(utip), compared to $(exactuy(L,0.0))") File = "hughes_cantilever_stresses_H8_by_hand.vtk" vtkexportmesh(File, fens, fes; vectors = [("u", u.values)]) @async run(`"paraview.exe" $File`) # modeldata["postprocessing"] = FDataDict("file"=>"hughes_cantilever_stresses_$(elementtag)", "outputcsys"=>CSys(3, 3, updatecs!), "quantity"=>:Cauchy, "component"=>[5]) # modeldata = exportstresselementwise(modeldata) # modeldata["postprocessing"] = FDataDict("file"=>"hughes_cantilever_stresses_$(elementtag)", # "outputcsys"=>CSys(3, 3, updatecs!), "quantity"=>:Cauchy, # "component"=>collect(1:6)) # modeldata = exportstresselementwise(modeldata) # stressfields = ElementalField[modeldata["postprocessing"]["exported"][1]["field"]] true end # hughes_cantilever_stresses_H8_by_hand function hughes_cantilever_stresses_H20_by_hand() elementtag = "H20" println(""" Cantilever example. Hughes 1987. Element: $(elementtag) """) nu = 0.3 # COMPRESSIBLE E1 = E / (1 - nu^2) # Plane strain nu1 = nu / (1 - nu) I = h * (2 * c)^3 / 12 function exactux(x, y) (P / (6 * E1 * I) * (-y) * (3 * (L^2 - (L - x)^2) + (2 + nu1) * (y^2 - c^2))) end function exactuy(x, y) ( P / (6 * E1 * I) * ( ((L - x)^3 - L^3) - ((4 + 5 * nu1) * c^2 + 3 * L^2) * (L - x - L) + 3 * nu1 * (L - x) * y^2 ) ) end n = 8 # nL = 3 * n # number of elements lengthwise nc = 2 * n # number of elements through the depth nh = 1 # number of elements through the thickness xs = collect(linearspace(0.0, L, nL + 1)) ys = collect(linearspace(0.0, h, nh + 1)) zs = collect(linearspace(-c, +c, nc + 1)) fens, fes = H8blockx(xs, ys, zs) fens, fes = H8toH20(fens, fes) bfes = meshboundary(fes) # end cross-section surface for the shear loading sshearL = selectelem(fens, bfes; facing = true, direction = [+1.0 0.0 0.0]) # 0 cross-section surface for the reactions sshear0 = selectelem(fens, bfes; facing = true, direction = [-1.0 0.0 0.0]) MR = DeforModelRed3D material = MatDeforElastIso(MR, 0.0, E, nu, CTE) # Material orientation matrix csmat = [i == j ? one(FFlt) : zero(FFlt) for i = 1:3, j = 1:3] function updatecs!(csmatout::FFltMat, XYZ::FFltMat, tangents::FFltMat, fe_label::FInt) copyto!(csmatout, csmat) end femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3, 2)), material) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field lx0 = selectnode(fens, box = [0.0 0.0 0.0 0.0 0.0 0.0], inflate = tolerance) setebc!(u, lx0, true, 1, 0.0) setebc!(u, lx0, true, 2, 0.0) setebc!(u, lx0, true, 3, 0.0) lx1 = selectnode(fens, box = [0.0 0.0 0.0 0.0 c c], inflate = tolerance) lx2 = selectnode(fens, box = [0.0 0.0 0.0 0.0 -c -c], inflate = tolerance) setebc!(u, vcat(lx1, lx2), true, 1, 0.0) ly1 = selectnode(fens, box = [-Inf Inf 0.0 0.0 -Inf Inf], inflate = tolerance) ly2 = selectnode(fens, box = [-Inf Inf h h -Inf Inf], inflate = tolerance) setebc!(u, vcat(ly1, ly2), true, 2, 0.0) applyebc!(u) numberdofs!(u) u fi = ForceIntensity(Float64, 3, getfrc0!) el1femm = FEMMBase(IntegDomain(subset(bfes, sshear0), GaussRule(2, 2))) F1 = distribloads(el1femm, geom, u, fi, 2) fi = ForceIntensity(Float64, 3, getfrcL!) el2femm = FEMMBase(IntegDomain(subset(bfes, sshearL), GaussRule(2, 2))) F2 = distribloads(el2femm, geom, u, fi, 2) associategeometry!(femm, geom) K = stiffness(femm, geom, u) K = cholesky(K) U = K \ (F1 + F2) scattersysvec!(u, U[:]) Tipl = selectnode(fens, box = [L L 0.0 0.0 0.0 0.0], inflate = tolerance) utip = mean(u.values[Tipl, 3]) println("Deflection: $(utip), compared to $(exactuy(L,0.0))") File = "hughes_cantilever_stresses_H8_by_hand.vtk" vtkexportmesh(File, fens, fes; vectors = [("u", u.values)]) @async run(`"paraview.exe" $File`) # modeldata["postprocessing"] = FDataDict("file"=>"hughes_cantilever_stresses_$(elementtag)", "outputcsys"=>CSys(3, 3, updatecs!), "quantity"=>:Cauchy, "component"=>[5]) # modeldata = exportstresselementwise(modeldata) # modeldata["postprocessing"] = FDataDict("file"=>"hughes_cantilever_stresses_$(elementtag)", # "outputcsys"=>CSys(3, 3, updatecs!), "quantity"=>:Cauchy, # "component"=>collect(1:6)) # modeldata = exportstresselementwise(modeldata) # stressfields = ElementalField[modeldata["postprocessing"]["exported"][1]["field"]] true end # hughes_cantilever_stresses_MST10 function hughes_cantilever_stresses_T10_by_hand() elementtag = "T10" println(""" Cantilever example. Hughes 1987. Element: $(elementtag) """) nu = 0.3 # COMPRESSIBLE E1 = E / (1 - nu^2) # Plane strain nu1 = nu / (1 - nu) I = h * (2 * c)^3 / 12 function exactux(x, y) (P / (6 * E1 * I) * (-y) * (3 * (L^2 - (L - x)^2) + (2 + nu1) * (y^2 - c^2))) end function exactuy(x, y) ( P / (6 * E1 * I) * ( ((L - x)^3 - L^3) - ((4 + 5 * nu1) * c^2 + 3 * L^2) * (L - x - L) + 3 * nu1 * (L - x) * y^2 ) ) end n = 2 # nL = 3 * n # number of elements lengthwise nc = 2 * n # number of elements through the depth nh = n # number of elements through the thickness xs = collect(linearspace(0.0, L, nL + 1)) ys = collect(linearspace(0.0, h, nh + 1)) zs = collect(linearspace(-c, +c, nc + 1)) fens, fes = T10blockx(xs, ys, zs) bfes = meshboundary(fes) # end cross-section surface for the shear loading sshearL = selectelem(fens, bfes; facing = true, direction = [+1.0 0.0 0.0]) # 0 cross-section surface for the reactions sshear0 = selectelem(fens, bfes; facing = true, direction = [-1.0 0.0 0.0]) MR = DeforModelRed3D material = MatDeforElastIso(MR, 0.0, E, nu, CTE) # Material orientation matrix csmat = [i == j ? one(FFlt) : zero(FFlt) for i = 1:3, j = 1:3] function updatecs!(csmatout::FFltMat, XYZ::FFltMat, tangents::FFltMat, fe_label::FInt) copyto!(csmatout, csmat) end gr = SimplexRule(3, 4) femm = FEMMDeforLinear(MR, IntegDomain(fes, gr), material) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field lx0 = selectnode(fens, box = [0.0 0.0 0.0 0.0 0.0 0.0], inflate = tolerance) setebc!(u, lx0, true, 1, 0.0) setebc!(u, lx0, true, 2, 0.0) setebc!(u, lx0, true, 3, 0.0) lx1 = selectnode(fens, box = [0.0 0.0 0.0 0.0 c c], inflate = tolerance) lx2 = selectnode(fens, box = [0.0 0.0 0.0 0.0 -c -c], inflate = tolerance) setebc!(u, vcat(lx1, lx2), true, 1, 0.0) ly1 = selectnode(fens, box = [-Inf Inf 0.0 0.0 -Inf Inf], inflate = tolerance) ly2 = selectnode(fens, box = [-Inf Inf h h -Inf Inf], inflate = tolerance) setebc!(u, vcat(ly1, ly2), true, 2, 0.0) applyebc!(u) numberdofs!(u) fi = ForceIntensity(Float64, 3, getfrc0!) el1femm = FEMMBase(IntegDomain(subset(bfes, sshear0), SimplexRule(2, 3))) F1 = distribloads(el1femm, geom, u, fi, 2) fi = ForceIntensity(Float64, 3, getfrcL!) el2femm = FEMMBase(IntegDomain(subset(bfes, sshearL), SimplexRule(2, 3))) F2 = distribloads(el2femm, geom, u, fi, 2) associategeometry!(femm, geom) K = stiffness(femm, geom, u) K = cholesky(K) U = K \ (F1 + F2) scattersysvec!(u, U[:]) Tipl = selectnode(fens, box = [L L 0.0 0.0 0.0 0.0], inflate = tolerance) utip = mean(u.values[Tipl, 3]) println("Deflection: $(utip), compared to $(exactuy(L,0.0))") File = "hughes_cantilever_stresses_T10_by_hand.vtk" vtkexportmesh(File, fens, fes; vectors = [("u", u.values)]) @async run(`"paraview.exe" $File`) # modeldata["postprocessing"] = FDataDict("file"=>"hughes_cantilever_stresses_$(elementtag)", "outputcsys"=>CSys(3, 3, updatecs!), "quantity"=>:Cauchy, "component"=>[5]) # modeldata = exportstresselementwise(modeldata) # modeldata["postprocessing"] = FDataDict("file"=>"hughes_cantilever_stresses_$(elementtag)", # "outputcsys"=>CSys(3, 3, updatecs!), "quantity"=>:Cauchy, # "component"=>collect(1:6)) # modeldata = exportstresselementwise(modeldata) # stressfields = ElementalField[modeldata["postprocessing"]["exported"][1]["field"]] true end # hughes_cantilever_stresses_MST10 function hughes_cantilever_stresses_MST10_by_hand() elementtag = "MST10" println(""" Cantilever example. Hughes 1987. Element: $(elementtag) """) nu = 0.3 # COMPRESSIBLE E1 = E / (1 - nu^2) # Plane strain nu1 = nu / (1 - nu) I = h * (2 * c)^3 / 12 function exactux(x, y) (P / (6 * E1 * I) * (-y) * (3 * (L^2 - (L - x)^2) + (2 + nu1) * (y^2 - c^2))) end function exactuy(x, y) ( P / (6 * E1 * I) * ( ((L - x)^3 - L^3) - ((4 + 5 * nu1) * c^2 + 3 * L^2) * (L - x - L) + 3 * nu1 * (L - x) * y^2 ) ) end n = 2 # nL = 3 * n # number of elements lengthwise nc = 2 * n # number of elements through the depth nh = n # number of elements through the thickness xs = collect(linearspace(0.0, L, nL + 1)) ys = collect(linearspace(0.0, h, nh + 1)) zs = collect(linearspace(-c, +c, nc + 1)) fens, fes = T10blockx(xs, ys, zs) bfes = meshboundary(fes) # end cross-section surface for the shear loading sshearL = selectelem(fens, bfes; facing = true, direction = [+1.0 0.0 0.0]) # 0 cross-section surface for the reactions sshear0 = selectelem(fens, bfes; facing = true, direction = [-1.0 0.0 0.0]) MR = DeforModelRed3D material = MatDeforElastIso(MR, 0.0, E, nu, CTE) # Material orientation matrix csmat = [i == j ? one(FFlt) : zero(FFlt) for i = 1:3, j = 1:3] function updatecs!(csmatout::FFltMat, XYZ::FFltMat, tangents::FFltMat, fe_label::FInt) copyto!(csmatout, csmat) end gr = SimplexRule(3, 4) femm = FEMMDeforLinearMST10(MR, IntegDomain(fes, gr), material) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field lx0 = selectnode(fens, box = [0.0 0.0 0.0 0.0 0.0 0.0], inflate = tolerance) setebc!(u, lx0, true, 1, 0.0) setebc!(u, lx0, true, 2, 0.0) setebc!(u, lx0, true, 3, 0.0) lx1 = selectnode(fens, box = [0.0 0.0 0.0 0.0 c c], inflate = tolerance) lx2 = selectnode(fens, box = [0.0 0.0 0.0 0.0 -c -c], inflate = tolerance) setebc!(u, vcat(lx1, lx2), true, 1, 0.0) ly1 = selectnode(fens, box = [-Inf Inf 0.0 0.0 -Inf Inf], inflate = tolerance) ly2 = selectnode(fens, box = [-Inf Inf h h -Inf Inf], inflate = tolerance) setebc!(u, vcat(ly1, ly2), true, 2, 0.0) applyebc!(u) numberdofs!(u) fi = ForceIntensity(Float64, 3, getfrc0!) el1femm = FEMMBase(IntegDomain(subset(bfes, sshear0), SimplexRule(2, 3))) F1 = distribloads(el1femm, geom, u, fi, 2) fi = ForceIntensity(Float64, 3, getfrcL!) el2femm = FEMMBase(IntegDomain(subset(bfes, sshearL), SimplexRule(2, 3))) F2 = distribloads(el2femm, geom, u, fi, 2) associategeometry!(femm, geom) K = stiffness(femm, geom, u) K = cholesky(K) U = K \ (F1 + F2) scattersysvec!(u, U[:]) Tipl = selectnode(fens, box = [L L 0.0 0.0 0.0 0.0], inflate = tolerance) utip = mean(u.values[Tipl, 3]) println("Deflection: $(utip), compared to $(exactuy(L,0.0))") # modeldata["postprocessing"] = FDataDict("file"=>"hughes_cantilever_stresses_$(elementtag)", "outputcsys"=>CSys(3, 3, updatecs!), "quantity"=>:Cauchy, "component"=>[5]) # modeldata = exportstresselementwise(modeldata) # modeldata["postprocessing"] = FDataDict("file"=>"hughes_cantilever_stresses_$(elementtag)", # "outputcsys"=>CSys(3, 3, updatecs!), "quantity"=>:Cauchy, # "component"=>collect(1:6)) # modeldata = exportstresselementwise(modeldata) # stressfields = ElementalField[modeldata["postprocessing"]["exported"][1]["field"]] true end # hughes_cantilever_stresses_MST10 function hughes_cantilever_stresses_MST10() elementtag = "MST10" println(""" Cantilever example. Hughes 1987. Element: $(elementtag) """) nu = 0.3 # COMPRESSIBLE E1 = E / (1 - nu^2) # Plane strain nu1 = nu / (1 - nu) I = h * (2 * c)^3 / 12 function exactux(x, y) (P / (6 * E1 * I) * (-y) * (3 * (L^2 - (L - x)^2) + (2 + nu1) * (y^2 - c^2))) end function exactuy(x, y) ( P / (6 * E1 * I) * ( ((L - x)^3 - L^3) - ((4 + 5 * nu1) * c^2 + 3 * L^2) * (L - x - L) + 3 * nu1 * (L - x) * y^2 ) ) end modeldatasequence = FDataDict[] for n in [1 2 4 8] # nL = 3 * n # number of elements lengthwise nc = 2 * n # number of elements through the depth nh = n # number of elements through the thickness xs = collect(linearspace(0.0, L, nL + 1)) ys = collect(linearspace(0.0, h, nh + 1)) zs = collect(linearspace(-c, +c, nc + 1)) fens, fes = T10blockx(xs, ys, zs) bfes = meshboundary(fes) # end cross-section surface for the shear loading sshearL = selectelem(fens, bfes; facing = true, direction = [+1.0 0.0 0.0]) # 0 cross-section surface for the reactions sshear0 = selectelem(fens, bfes; facing = true, direction = [-1.0 0.0 0.0]) MR = DeforModelRed3D material = MatDeforElastIso(MR, 0.0, E, nu, CTE) # Material orientation matrix csmat = [i == j ? one(FFlt) : zero(FFlt) for i = 1:3, j = 1:3] function updatecs!( csmatout::FFltMat, XYZ::FFltMat, tangents::FFltMat, fe_label::FInt, ) copyto!(csmatout, csmat) end gr = SimplexRule(3, 4) region = FDataDict("femm" => FEMMDeforLinearMST10(MR, IntegDomain(fes, gr), material)) lx0 = selectnode(fens, box = [0.0 0.0 0.0 0.0 0.0 0.0], inflate = tolerance) # println("lx0 = $(lx0)") ex01 = FDataDict("displacement" => 0.0, "component" => 1, "node_list" => lx0) ex02 = FDataDict("displacement" => 0.0, "component" => 2, "node_list" => lx0) ex03 = FDataDict("displacement" => 0.0, "component" => 3, "node_list" => lx0) lx1 = selectnode(fens, box = [0.0 0.0 0.0 0.0 c c], inflate = tolerance) lx2 = selectnode(fens, box = [0.0 0.0 0.0 0.0 -c -c], inflate = tolerance) # println("vcat(lx1, lx2) = $(vcat(lx1, lx2))") ex04 = FDataDict( "displacement" => 0.0, "component" => 1, "node_list" => vcat(lx1, lx2), ) ly1 = selectnode(fens, box = [-Inf Inf 0.0 0.0 -Inf Inf], inflate = tolerance) ly2 = selectnode(fens, box = [-Inf Inf h h -Inf Inf], inflate = tolerance) # println("vcat(ly1, ly2) = $(vcat(ly1, ly2))") ey01 = FDataDict( "displacement" => 0.0, "component" => 2, "node_list" => vcat(ly1, ly2), ) Trac0 = FDataDict( "traction_vector" => getfrc0!, "femm" => FEMMBase(IntegDomain(subset(bfes, sshear0), SimplexRule(2, 3))), ) TracL = FDataDict( "traction_vector" => getfrcL!, "femm" => FEMMBase(IntegDomain(subset(bfes, sshearL), SimplexRule(2, 3))), ) modeldata = FDataDict( "fens" => fens, "regions" => [region], "essential_bcs" => [ex01, ex02, ex03, ex04, ey01], "traction_bcs" => [Trac0, TracL], "temperature_change" => FDataDict("temperature" => 0.0), ) modeldata = linearstatics(modeldata) u = modeldata["u"] geom = modeldata["geom"] Tipl = selectnode(fens, box = [L L 0.0 0.0 0.0 0.0], inflate = tolerance) utip = mean(u.values[Tipl, 3]) println("Deflection: $(utip), compared to $(exactuy(L,0.0))") modeldata["postprocessing"] = FDataDict( "file" => "hughes_cantilever_stresses_$(elementtag)", "outputcsys" => CSys(3, 3, updatecs!), "quantity" => :Cauchy, "component" => [5], ) modeldata = exportstresselementwise(modeldata) modeldata["postprocessing"] = FDataDict( "file" => "hughes_cantilever_stresses_$(elementtag)", "outputcsys" => CSys(3, 3, updatecs!), "quantity" => :Cauchy, "component" => collect(1:6), ) modeldata = exportstresselementwise(modeldata) stressfields = ElementalField[modeldata["postprocessing"]["exported"][1]["field"]] modeldata["geometricaltolerance"] = tolerance modeldata["elementsize"] = 1.0 / n push!(modeldatasequence, modeldata) end filebase = "hughes_cantilever_stresses_$(elementtag)" evaluateerrors(filebase, modeldatasequence) true end # hughes_cantilever_stresses_MST10 function hughes_cantilever_stresses_MST10_incompressible() elementtag = "MST10" println(""" Cantilever example. Hughes 1987. Element: $(elementtag) """) nu = 0.499999999 # INCOMPRESSIBLE E1 = E / (1 - nu^2) # Plane strain nu1 = nu / (1 - nu) I = h * (2 * c)^3 / 12 function exactux(x, y) (P / (6 * E1 * I) * (-y) * (3 * (L^2 - (L - x)^2) + (2 + nu1) * (y^2 - c^2))) end function exactuy(x, y) ( P / (6 * E1 * I) * ( ((L - x)^3 - L^3) - ((4 + 5 * nu1) * c^2 + 3 * L^2) * (L - x - L) + 3 * nu1 * (L - x) * y^2 ) ) end modeldatasequence = FDataDict[] for n in [1 2 4 8] # nL = 3 * n # number of elements lengthwise nc = 2 * n # number of elements through the wwith nh = n # number of elements through the thickness xs = collect(linearspace(0.0, L, nL + 1)) ys = collect(linearspace(0.0, h, nh + 1)) zs = collect(linearspace(-c, +c, nc + 1)) fens, fes = T10blockx(xs, ys, zs) bfes = meshboundary(fes) # end cross-section surface for the shear loading sshearL = selectelem(fens, bfes; facing = true, direction = [+1.0 0.0 0.0]) # 0 cross-section surface for the reactions sshear0 = selectelem(fens, bfes; facing = true, direction = [-1.0 0.0 0.0]) MR = DeforModelRed3D material = MatDeforElastIso(MR, 0.0, E, nu, CTE) # Material orientation matrix csmat = [i == j ? one(FFlt) : zero(FFlt) for i = 1:3, j = 1:3] function updatecs!( csmatout::FFltMat, XYZ::FFltMat, tangents::FFltMat, fe_label::FInt, ) copyto!(csmatout, csmat) end gr = SimplexRule(3, 4) region = FDataDict("femm" => FEMMDeforLinearMST10(MR, IntegDomain(fes, gr), material)) lx0 = selectnode(fens, box = [0.0 0.0 0.0 0.0 0.0 0.0], inflate = tolerance) # println("lx0 = $(lx0)") ex01 = FDataDict("displacement" => 0.0, "component" => 1, "node_list" => lx0) ex02 = FDataDict("displacement" => 0.0, "component" => 2, "node_list" => lx0) ex03 = FDataDict("displacement" => 0.0, "component" => 3, "node_list" => lx0) lx1 = selectnode(fens, box = [0.0 0.0 0.0 0.0 c c], inflate = tolerance) lx2 = selectnode(fens, box = [0.0 0.0 0.0 0.0 -c -c], inflate = tolerance) # println("vcat(lx1, lx2) = $(vcat(lx1, lx2))") ex04 = FDataDict( "displacement" => 0.0, "component" => 1, "node_list" => vcat(lx1, lx2), ) ly1 = selectnode(fens, box = [-Inf Inf 0.0 0.0 -Inf Inf], inflate = tolerance) ly2 = selectnode(fens, box = [-Inf Inf h h -Inf Inf], inflate = tolerance) # println("vcat(ly1, ly2) = $(vcat(ly1, ly2))") ey01 = FDataDict( "displacement" => 0.0, "component" => 2, "node_list" => vcat(ly1, ly2), ) Trac0 = FDataDict( "traction_vector" => getfrc0!, "femm" => FEMMBase(IntegDomain(subset(bfes, sshear0), SimplexRule(2, 3))), ) TracL = FDataDict( "traction_vector" => getfrcL!, "femm" => FEMMBase(IntegDomain(subset(bfes, sshearL), SimplexRule(2, 3))), ) modeldata = FDataDict( "fens" => fens, "regions" => [region], "essential_bcs" => [ex01, ex02, ex03, ex04, ey01], "traction_bcs" => [Trac0, TracL], "temperature_change" => FDataDict("temperature" => 0.0), ) modeldata = linearstatics(modeldata) u = modeldata["u"] geom = modeldata["geom"] Tipl = selectnode(fens, box = [L L 0.0 0.0 0.0 0.0], inflate = tolerance) utip = mean(u.values[Tipl, 3]) println("Deflection: $(utip), compared to $(exactuy(L,0.0))") modeldata["postprocessing"] = FDataDict( "file" => "hughes_cantilever_stresses_$(elementtag)", "outputcsys" => CSys(3, 3, updatecs!), "quantity" => :Cauchy, "component" => [5], ) modeldata = exportstresselementwise(modeldata) modeldata["postprocessing"] = FDataDict( "file" => "hughes_cantilever_stresses_$(elementtag)", "outputcsys" => CSys(3, 3, updatecs!), "quantity" => :Cauchy, "component" => collect(1:6), ) modeldata = exportstresselementwise(modeldata) stressfields = ElementalField[modeldata["postprocessing"]["exported"][1]["field"]] modeldata["geometricaltolerance"] = tolerance modeldata["elementsize"] = 1.0 / n push!(modeldatasequence, modeldata) end filebase = "hughes_cantilever_stresses_incompressible_$(elementtag)" evaluateerrors(filebase, modeldatasequence) true end # hughes_cantilever_stresses_MST10_incompressible function hughes_cantilever_stresses_nodal_MST10() elementtag = "MST10" println(""" Cantilever example. Hughes 1987. Element: $(elementtag) """) nu = 0.3 # COMPRESSIBLE E1 = E / (1 - nu^2) # Plane strain nu1 = nu / (1 - nu) I = h * (2 * c)^3 / 12 function exactux(x, y) (P / (6 * E1 * I) * (-y) * (3 * (L^2 - (L - x)^2) + (2 + nu1) * (y^2 - c^2))) end function exactuy(x, y) ( P / (6 * E1 * I) * ( ((L - x)^3 - L^3) - ((4 + 5 * nu1) * c^2 + 3 * L^2) * (L - x - L) + 3 * nu1 * (L - x) * y^2 ) ) end modeldatasequence = FDataDict[] for n in [1 2 4 8] # nL = 3 * n # number of elements lengthwise nc = 2 * n # number of elements through the wwith nh = n # number of elements through the thickness xs = collect(linearspace(0.0, L, nL + 1)) ys = collect(linearspace(0.0, h, nh + 1)) zs = collect(linearspace(-c, +c, nc + 1)) fens, fes = T10blockx(xs, ys, zs) bfes = meshboundary(fes) # end cross-section surface for the shear loading sshearL = selectelem(fens, bfes; facing = true, direction = [+1.0 0.0 0.0]) # 0 cross-section surface for the reactions sshear0 = selectelem(fens, bfes; facing = true, direction = [-1.0 0.0 0.0]) MR = DeforModelRed3D material = MatDeforElastIso(MR, 0.0, E, nu, CTE) # Material orientation matrix csmat = [i == j ? one(FFlt) : zero(FFlt) for i = 1:3, j = 1:3] function updatecs!( csmatout::FFltMat, XYZ::FFltMat, tangents::FFltMat, fe_label::FInt, ) copyto!(csmatout, csmat) end gr = SimplexRule(3, 4) # rule for tetrahedral meshes region = FDataDict("femm" => FEMMDeforLinearMST10(MR, IntegDomain(fes, gr), material)) lx0 = selectnode(fens, box = [0.0 0.0 0.0 0.0 0.0 0.0], inflate = tolerance) # println("lx0 = $(lx0)") ex01 = FDataDict("displacement" => 0.0, "component" => 1, "node_list" => lx0) ex02 = FDataDict("displacement" => 0.0, "component" => 2, "node_list" => lx0) ex03 = FDataDict("displacement" => 0.0, "component" => 3, "node_list" => lx0) lx1 = selectnode(fens, box = [0.0 0.0 0.0 0.0 c c], inflate = tolerance) lx2 = selectnode(fens, box = [0.0 0.0 0.0 0.0 -c -c], inflate = tolerance) # println("vcat(lx1, lx2) = $(vcat(lx1, lx2))") ex04 = FDataDict( "displacement" => 0.0, "component" => 1, "node_list" => vcat(lx1, lx2), ) ly1 = selectnode(fens, box = [-Inf Inf 0.0 0.0 -Inf Inf], inflate = tolerance) ly2 = selectnode(fens, box = [-Inf Inf h h -Inf Inf], inflate = tolerance) # println("vcat(ly1, ly2) = $(vcat(ly1, ly2))") ey01 = FDataDict( "displacement" => 0.0, "component" => 2, "node_list" => vcat(ly1, ly2), ) Trac0 = FDataDict( "traction_vector" => getfrc0!, "femm" => FEMMBase(IntegDomain(subset(bfes, sshear0), SimplexRule(2, 3))), ) TracL = FDataDict( "traction_vector" => getfrcL!, "femm" => FEMMBase(IntegDomain(subset(bfes, sshearL), SimplexRule(2, 3))), ) modeldata = FDataDict( "fens" => fens, "regions" => [region], "essential_bcs" => [ex01, ex02, ex03, ex04, ey01], "traction_bcs" => [Trac0, TracL], "temperature_change" => FDataDict("temperature" => 0.0), ) modeldata = linearstatics(modeldata) u = modeldata["u"] geom = modeldata["geom"] Tipl = selectnode(fens, box = [L L 0.0 0.0 0.0 0.0], inflate = tolerance) utip = mean(u.values[Tipl, 3]) println("Deflection: $(utip), compared to $(exactuy(L,0.0))") modeldata["postprocessing"] = FDataDict( "file" => "hughes_cantilever_stresses_nodal_$(elementtag)", "outputcsys" => CSys(3, 3, updatecs!), "quantity" => :Cauchy, "component" => collect(1:6), "nodevalmethod" => :averaging, "reportat" => :extraptrend, ) modeldata = exportstress(modeldata) stressfields = NodalField[modeldata["postprocessing"]["exported"][1]["field"]] modeldata["geometricaltolerance"] = tolerance modeldata["elementsize"] = 1.0 / n push!(modeldatasequence, modeldata) end filebase = "hughes_cantilever_stresses_nodal_$(elementtag)" evaluateerrors(filebase, modeldatasequence) true end # hughes_cantilever_stresses_nodal_MST10 function hughes_cantilever_stresses_nodal_T10() elementtag = "T10" println(""" Cantilever example. Hughes 1987. Element: $(elementtag) """) nu = 0.3 # COMPRESSIBLE E1 = E / (1 - nu^2) # Plane strain nu1 = nu / (1 - nu) I = h * (2 * c)^3 / 12 function exactux(x, y) (P / (6 * E1 * I) * (-y) * (3 * (L^2 - (L - x)^2) + (2 + nu1) * (y^2 - c^2))) end function exactuy(x, y) ( P / (6 * E1 * I) * ( ((L - x)^3 - L^3) - ((4 + 5 * nu1) * c^2 + 3 * L^2) * (L - x - L) + 3 * nu1 * (L - x) * y^2 ) ) end modeldatasequence = FDataDict[] for n in [1 2 4 8] # nL = 3 * n # number of elements lengthwise nc = 2 * n # number of elements through the wwith nh = n # number of elements through the thickness xs = collect(linearspace(0.0, L, nL + 1)) ys = collect(linearspace(0.0, h, nh + 1)) zs = collect(linearspace(-c, +c, nc + 1)) fens, fes = T10blockx(xs, ys, zs) bfes = meshboundary(fes) # end cross-section surface for the shear loading sshearL = selectelem(fens, bfes; facing = true, direction = [+1.0 0.0 0.0]) # 0 cross-section surface for the reactions sshear0 = selectelem(fens, bfes; facing = true, direction = [-1.0 0.0 0.0]) MR = DeforModelRed3D material = MatDeforElastIso(MR, 0.0, E, nu, CTE) # Material orientation matrix csmat = [i == j ? 1.0 : 0.0 for i = 1:3, j = 1:3] function updatecs!( csmatout::FFltMat, XYZ::FFltMat, tangents::FFltMat, fe_label::FInt, ) copyto!(csmatout, csmat) end gr = SimplexRule(3, 4) region = FDataDict("femm" => FEMMDeforLinear(MR, IntegDomain(fes, gr), material)) lx0 = selectnode(fens, box = [0.0 0.0 0.0 0.0 0.0 0.0], inflate = tolerance) # println("lx0 = $(lx0)") ex01 = FDataDict("displacement" => 0.0, "component" => 1, "node_list" => lx0) ex02 = FDataDict("displacement" => 0.0, "component" => 2, "node_list" => lx0) ex03 = FDataDict("displacement" => 0.0, "component" => 3, "node_list" => lx0) lx1 = selectnode(fens, box = [0.0 0.0 0.0 0.0 c c], inflate = tolerance) lx2 = selectnode(fens, box = [0.0 0.0 0.0 0.0 -c -c], inflate = tolerance) # println("vcat(lx1, lx2) = $(vcat(lx1, lx2))") ex04 = FDataDict( "displacement" => 0.0, "component" => 1, "node_list" => vcat(lx1, lx2), ) ly1 = selectnode(fens, box = [-Inf Inf 0.0 0.0 -Inf Inf], inflate = tolerance) ly2 = selectnode(fens, box = [-Inf Inf h h -Inf Inf], inflate = tolerance) # println("vcat(ly1, ly2) = $(vcat(ly1, ly2))") ey01 = FDataDict( "displacement" => 0.0, "component" => 2, "node_list" => vcat(ly1, ly2), ) Trac0 = FDataDict( "traction_vector" => getfrc0!, "femm" => FEMMBase(IntegDomain(subset(bfes, sshear0), SimplexRule(2, 3))), ) TracL = FDataDict( "traction_vector" => getfrcL!, "femm" => FEMMBase(IntegDomain(subset(bfes, sshearL), SimplexRule(2, 3))), ) modeldata = FDataDict( "fens" => fens, "regions" => [region], "essential_bcs" => [ex01, ex02, ex03, ex04, ey01], "traction_bcs" => [Trac0, TracL], "temperature_change" => FDataDict("temperature" => 0.0), ) modeldata = linearstatics(modeldata) u = modeldata["u"] geom = modeldata["geom"] Tipl = selectnode(fens, box = [L L 0.0 0.0 0.0 0.0], inflate = tolerance) utip = mean(u.values[Tipl, 3]) println("Deflection: $(utip), compared to $(exactuy(L,0.0))") modeldata["postprocessing"] = FDataDict( "file" => "hughes_cantilever_stresses_nodal_$(elementtag)", "outputcsys" => CSys(3, 3, updatecs!), "quantity" => :Cauchy, "component" => collect(1:6), ) modeldata = exportstress(modeldata) stressfields = NodalField[modeldata["postprocessing"]["exported"][1]["field"]] modeldata["geometricaltolerance"] = tolerance modeldata["elementsize"] = 1.0 / n push!(modeldatasequence, modeldata) end filebase = "hughes_cantilever_stresses_nodal_$(elementtag)" evaluateerrors(filebase, modeldatasequence) true end # hughes_cantilever_stresses_nodal_T10 function hughes_cantilever_stresses_T10() elementtag = "T10" println(""" Cantilever example. Hughes 1987. Element: $(elementtag) """) nu = 0.3 # COMPRESSIBLE E1 = E / (1 - nu^2) # Plane strain nu1 = nu / (1 - nu) I = h * (2 * c)^3 / 12 function exactux(x, y) (P / (6 * E1 * I) * (-y) * (3 * (L^2 - (L - x)^2) + (2 + nu1) * (y^2 - c^2))) end function exactuy(x, y) ( P / (6 * E1 * I) * ( ((L - x)^3 - L^3) - ((4 + 5 * nu1) * c^2 + 3 * L^2) * (L - x - L) + 3 * nu1 * (L - x) * y^2 ) ) end modeldatasequence = FDataDict[] for n in [1 2 4 8] # nL = 3 * n # number of elements lengthwise nc = 2 * n # number of elements through the wwith nh = n # number of elements through the thickness xs = collect(linearspace(0.0, L, nL + 1)) ys = collect(linearspace(0.0, h, nh + 1)) zs = collect(linearspace(-c, +c, nc + 1)) fens, fes = T10blockx(xs, ys, zs) bfes = meshboundary(fes) # end cross-section surface for the shear loading sshearL = selectelem(fens, bfes; facing = true, direction = [+1.0 0.0 0.0]) # 0 cross-section surface for the reactions sshear0 = selectelem(fens, bfes; facing = true, direction = [-1.0 0.0 0.0]) MR = DeforModelRed3D material = MatDeforElastIso(MR, 0.0, E, nu, CTE) # Material orientation matrix csmat = [i == j ? one(FFlt) : zero(FFlt) for i = 1:3, j = 1:3] function updatecs!( csmatout::FFltMat, XYZ::FFltMat, tangents::FFltMat, fe_label::FInt, ) copyto!(csmatout, csmat) end gr = SimplexRule(3, 4) region = FDataDict("femm" => FEMMDeforLinear(MR, IntegDomain(fes, gr), material)) lx0 = selectnode(fens, box = [0.0 0.0 0.0 0.0 0.0 0.0], inflate = tolerance) # println("lx0 = $(lx0)") ex01 = FDataDict("displacement" => 0.0, "component" => 1, "node_list" => lx0) ex02 = FDataDict("displacement" => 0.0, "component" => 2, "node_list" => lx0) ex03 = FDataDict("displacement" => 0.0, "component" => 3, "node_list" => lx0) lx1 = selectnode(fens, box = [0.0 0.0 0.0 0.0 c c], inflate = tolerance) lx2 = selectnode(fens, box = [0.0 0.0 0.0 0.0 -c -c], inflate = tolerance) # println("vcat(lx1, lx2) = $(vcat(lx1, lx2))") ex04 = FDataDict( "displacement" => 0.0, "component" => 1, "node_list" => vcat(lx1, lx2), ) ly1 = selectnode(fens, box = [-Inf Inf 0.0 0.0 -Inf Inf], inflate = tolerance) ly2 = selectnode(fens, box = [-Inf Inf h h -Inf Inf], inflate = tolerance) # println("vcat(ly1, ly2) = $(vcat(ly1, ly2))") ey01 = FDataDict( "displacement" => 0.0, "component" => 2, "node_list" => vcat(ly1, ly2), ) Trac0 = FDataDict( "traction_vector" => getfrc0!, "femm" => FEMMBase(IntegDomain(subset(bfes, sshear0), SimplexRule(2, 3))), ) TracL = FDataDict( "traction_vector" => getfrcL!, "femm" => FEMMBase(IntegDomain(subset(bfes, sshearL), SimplexRule(2, 3))), ) modeldata = FDataDict( "fens" => fens, "regions" => [region], "essential_bcs" => [ex01, ex02, ex03, ex04, ey01], "traction_bcs" => [Trac0, TracL], "temperature_change" => FDataDict("temperature" => 0.0), ) modeldata = linearstatics(modeldata) u = modeldata["u"] geom = modeldata["geom"] Tipl = selectnode(fens, box = [L L 0.0 0.0 0.0 0.0], inflate = tolerance) utip = mean(u.values[Tipl, 3]) println("Deflection: $(utip), compared to $(exactuy(L,0.0))") modeldata["postprocessing"] = FDataDict( "file" => "hughes_cantilever_stresses_$(elementtag)", "outputcsys" => CSys(3, 3, updatecs!), "quantity" => :Cauchy, "component" => [5], ) modeldata = exportstresselementwise(modeldata) modeldata["postprocessing"] = FDataDict( "file" => "hughes_cantilever_stresses_$(elementtag)", "outputcsys" => CSys(3, 3, updatecs!), "quantity" => :Cauchy, "component" => collect(1:6), ) modeldata = exportstresselementwise(modeldata) stressfields = ElementalField[modeldata["postprocessing"]["exported"][1]["field"]] modeldata["geometricaltolerance"] = tolerance modeldata["elementsize"] = 1.0 / n push!(modeldatasequence, modeldata) end filebase = "hughes_cantilever_stresses_$(elementtag)" evaluateerrors(filebase, modeldatasequence) true end # hughes_cantilever_stresses_T10 function hughes_cantilever_stresses_T10_incompressible() elementtag = "T10" println(""" Cantilever example. Hughes 1987. Element: $(elementtag) """) nu = 0.499999999 # INCOMPRESSIBLE E1 = E / (1 - nu^2) # Plane strain nu1 = nu / (1 - nu) I = h * (2 * c)^3 / 12 function exactux(x, y) (P / (6 * E1 * I) * (-y) * (3 * (L^2 - (L - x)^2) + (2 + nu1) * (y^2 - c^2))) end function exactuy(x, y) ( P / (6 * E1 * I) * ( ((L - x)^3 - L^3) - ((4 + 5 * nu1) * c^2 + 3 * L^2) * (L - x - L) + 3 * nu1 * (L - x) * y^2 ) ) end modeldatasequence = FDataDict[] for n in [1 2 4 8] # nL = 3 * n # number of elements lengthwise nc = 2 * n # number of elements through the wwith nh = n # number of elements through the thickness xs = collect(linearspace(0.0, L, nL + 1)) ys = collect(linearspace(0.0, h, nh + 1)) zs = collect(linearspace(-c, +c, nc + 1)) fens, fes = T10blockx(xs, ys, zs) bfes = meshboundary(fes) # end cross-section surface for the shear loading sshearL = selectelem(fens, bfes; facing = true, direction = [+1.0 0.0 0.0]) # 0 cross-section surface for the reactions sshear0 = selectelem(fens, bfes; facing = true, direction = [-1.0 0.0 0.0]) MR = DeforModelRed3D material = MatDeforElastIso(MR, 0.0, E, nu, CTE) # Material orientation matrix csmat = [i == j ? one(FFlt) : zero(FFlt) for i = 1:3, j = 1:3] function updatecs!( csmatout::FFltMat, XYZ::FFltMat, tangents::FFltMat, fe_label::FInt, ) copyto!(csmatout, csmat) end gr = SimplexRule(3, 4) region = FDataDict("femm" => FEMMDeforLinear(MR, IntegDomain(fes, gr), material)) lx0 = selectnode(fens, box = [0.0 0.0 0.0 0.0 0.0 0.0], inflate = tolerance) # println("lx0 = $(lx0)") ex01 = FDataDict("displacement" => 0.0, "component" => 1, "node_list" => lx0) ex02 = FDataDict("displacement" => 0.0, "component" => 2, "node_list" => lx0) ex03 = FDataDict("displacement" => 0.0, "component" => 3, "node_list" => lx0) lx1 = selectnode(fens, box = [0.0 0.0 0.0 0.0 c c], inflate = tolerance) lx2 = selectnode(fens, box = [0.0 0.0 0.0 0.0 -c -c], inflate = tolerance) # println("vcat(lx1, lx2) = $(vcat(lx1, lx2))") ex04 = FDataDict( "displacement" => 0.0, "component" => 1, "node_list" => vcat(lx1, lx2), ) ly1 = selectnode(fens, box = [-Inf Inf 0.0 0.0 -Inf Inf], inflate = tolerance) ly2 = selectnode(fens, box = [-Inf Inf h h -Inf Inf], inflate = tolerance) # println("vcat(ly1, ly2) = $(vcat(ly1, ly2))") ey01 = FDataDict( "displacement" => 0.0, "component" => 2, "node_list" => vcat(ly1, ly2), ) Trac0 = FDataDict( "traction_vector" => getfrc0!, "femm" => FEMMBase(IntegDomain(subset(bfes, sshear0), SimplexRule(2, 3))), ) TracL = FDataDict( "traction_vector" => getfrcL!, "femm" => FEMMBase(IntegDomain(subset(bfes, sshearL), SimplexRule(2, 3))), ) modeldata = FDataDict( "fens" => fens, "regions" => [region], "essential_bcs" => [ex01, ex02, ex03, ex04, ey01], "traction_bcs" => [Trac0, TracL], "temperature_change" => FDataDict("temperature" => 0.0), ) modeldata = linearstatics(modeldata) u = modeldata["u"] geom = modeldata["geom"] Tipl = selectnode(fens, box = [L L 0.0 0.0 0.0 0.0], inflate = tolerance) utip = mean(u.values[Tipl, 3]) println("Deflection: $(utip), compared to $(exactuy(L,0.0))") modeldata["postprocessing"] = FDataDict( "file" => "hughes_cantilever_stresses_$(elementtag)", "outputcsys" => CSys(3, 3, updatecs!), "quantity" => :Cauchy, "component" => [5], ) modeldata = exportstresselementwise(modeldata) modeldata["postprocessing"] = FDataDict( "file" => "hughes_cantilever_stresses_$(elementtag)", "outputcsys" => CSys(3, 3, updatecs!), "quantity" => :Cauchy, "component" => collect(1:6), ) modeldata = exportstresselementwise(modeldata) stressfields = ElementalField[modeldata["postprocessing"]["exported"][1]["field"]] modeldata["geometricaltolerance"] = tolerance modeldata["elementsize"] = 1.0 / n push!(modeldatasequence, modeldata) end filebase = "hughes_cantilever_stresses_incompressible_$(elementtag)" evaluateerrors(filebase, modeldatasequence) true end # hughes_cantilever_stresses_T10_incompressible function allrun() println("#####################################################") println("# hughes_cantilever_stresses_H8_by_hand ") hughes_cantilever_stresses_H8_by_hand() println("#####################################################") println("# hughes_cantilever_stresses_H20_by_hand ") hughes_cantilever_stresses_H20_by_hand() println("#####################################################") println("# hughes_cantilever_stresses_T10_by_hand ") hughes_cantilever_stresses_T10_by_hand() println("#####################################################") println("# hughes_cantilever_stresses_MST10 ") hughes_cantilever_stresses_MST10() println("#####################################################") println("# hughes_cantilever_stresses_MST10_incompressible ") hughes_cantilever_stresses_MST10_incompressible() println("#####################################################") println("# hughes_cantilever_stresses_nodal_MST10 ") hughes_cantilever_stresses_nodal_MST10() println("#####################################################") println("# hughes_cantilever_stresses_nodal_T10 ") hughes_cantilever_stresses_nodal_T10() println("#####################################################") println("# hughes_cantilever_stresses_T10 ") hughes_cantilever_stresses_T10() println("#####################################################") println("# hughes_cantilever_stresses_T10_incompressible ") hughes_cantilever_stresses_T10_incompressible() return true end # function allrun @info "All examples may be executed with " println("using .$(@__MODULE__); $(@__MODULE__).allrun()") end # module nothing
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
3853
module multimaterial_beam_examples using FinEtools using FinEtoolsDeforLinear using FinEtoolsDeforLinear.AlgoDeforLinearModule using FinEtools.MeshExportModule function multimaterial_beam_algo() println(""" Multi-material beam. Rubber-like and metal-like halves, clamped, with shear traction at free end. """) E1 = 0.29e3 nu1 = 0.49 E2 = 0.4e4 nu2 = 0.3 W = 4.1 L = 12.0 t = 6.5 nl = 2 nt = 1 nw = 1 ref = 9 p = 200.0 / W / t # Loading in the Z direction loadv = [0; 0; p] dir = 3 tolerance = t / 1000 fens, fes = H20block(L, W, t, nl * ref, nw * ref, nt * ref) # Clamped end of the beam l1 = selectnode(fens; box = [0 0 -Inf Inf -Inf Inf], inflate = tolerance) e1 = FDataDict("node_list" => l1, "component" => 1, "displacement" => 0.0) e2 = FDataDict("node_list" => l1, "component" => 2, "displacement" => 0.0) e3 = FDataDict("node_list" => l1, "component" => 3, "displacement" => 0.0) # Traction on the opposite edge boundaryfes = meshboundary(fes) Toplist = selectelem(fens, boundaryfes, box = [L L -Inf Inf -Inf Inf], inflate = tolerance) el1femm = FEMMBase(IntegDomain(subset(boundaryfes, Toplist), GaussRule(2, 2))) flux1 = FDataDict("femm" => el1femm, "traction_vector" => loadv) r1list = selectelem(fens, fes, box = [0 L / 2.0 -Inf Inf -Inf Inf], inflate = tolerance) r2list = selectelem(fens, fes, box = [L / 2.0 L -Inf Inf -Inf Inf], inflate = tolerance) # Model reduction type MR = DeforModelRed3D # Make region 1 region1 = FDataDict( "femm" => FEMMDeforLinear( MR, IntegDomain(subset(fes, r1list), GaussRule(3, 2)), MatDeforElastIso(MR, 0.0, E1, nu1, 0.0), ), ) # Make region 2 region2 = FDataDict( "femm" => FEMMDeforLinear( MR, IntegDomain(subset(fes, r2list), GaussRule(3, 2)), MatDeforElastIso(MR, 0.0, E2, nu2, 0.0), ), ) # Make model data modeldata = FDataDict( "fens" => fens, "regions" => [region1, region2], "essential_bcs" => [e1, e2, e3], "traction_bcs" => [flux1], ) # Call the solver modeldata = AlgoDeforLinearModule.linearstatics(modeldata) geom = modeldata["geom"] u = modeldata["u"] # Write out mesh with displacements modeldata["postprocessing"] = FDataDict("file" => "multimaterial_beam") modeldata = AlgoDeforLinearModule.exportdeformation(modeldata) # Write out mesh with stresses modeldata["postprocessing"] = FDataDict( "file" => "multimaterial_beam_xy", "quantity" => :Cauchy, "component" => :xy, ) modeldata = AlgoDeforLinearModule.exportstress(modeldata) # Write out mesh with stresses modeldata["postprocessing"] = FDataDict( "file" => "multimaterial_beam_xz", "quantity" => :Cauchy, "component" => :xz, ) modeldata = AlgoDeforLinearModule.exportstress(modeldata) # Write out mesh with von Mises stresses modeldata["postprocessing"] = FDataDict("file" => "multimaterial_beam_vm", "quantity" => :vm) modeldata = AlgoDeforLinearModule.exportstress(modeldata) # Write out mesh with von Mises stresses, elementwise modeldata["postprocessing"] = FDataDict("file" => "multimaterial_beam_vm-ew", "quantity" => :vm) modeldata = AlgoDeforLinearModule.exportstresselementwise(modeldata) end # multimaterial_beam_algo function allrun() println("#####################################################") println("# multimaterial_beam_algo ") multimaterial_beam_algo() return true end # function allrun @info "All examples may be executed with " println("using .$(@__MODULE__); $(@__MODULE__).allrun()") end # module nothing
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
4328
""" This is an example that shows scaling with threading assembly that can be compared with Ferrite. """ println("Current folder: $(pwd())") using Pkg Pkg.activate(".") Pkg.instantiate() Pkg.add(url="https://github.com/PetrKryslUCSD/FinEtools.jl.git#main") Pkg.add(url="https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git") Pkg.add(url="https://github.com/PetrKryslUCSD/ParFEM.jl.git") Pkg.add("ChunkSplitters") Pkg.add("SymRCM") Pkg.add("ThreadPinning") Pkg.update() Pkg.status() module par_assembly_examples using FinEtools using FinEtoolsDeforLinear using ChunkSplitters using SymRCM using ParFEM: parallel_make_csc_matrix function run_example(N = 10, ntasks = 2, do_serial = false) E = 1000.0 nu = 0.4999 #Taylor data W = 25.0 H = 50.0 L = 50.0 CTE = 0.0 fens, fes = H8block(W, L, H, N, N, 10*N) #C = connectionmatrix(FEMMBase(IntegDomain(fes, GaussRule(3, 1))), count(fens)) #ordering = symrcm(C) #fens, fes = reordermesh(fens, fes, ordering) MR = DeforModelRed3D material = MatDeforElastIso(MR, 0.0, E, nu, CTE) ir = GaussRule(3, 2) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field numberdofs!(u) if do_serial @info "Serial Assembly" @time femm = FEMMDeforLinear(MR, IntegDomain(fes, ir), material) @time associategeometry!(femm, geom) @time K = stiffness(femm, geom, u) end @info "Parallel Assembly with $(ntasks) Tasks" function matrixcomputation!(femm, assembler) stiffness(femm, assembler, geom, u) end femms = FEMMDeforLinear[] @time for (ch, j) in chunks(1:count(fes), ntasks) femm = FEMMDeforLinear(MR, IntegDomain(subset(fes, ch), ir), material) associategeometry!(femm, geom) push!(femms, femm) end @time assembler = make_assembler(femms, SysmatAssemblerSparseSymm, u) @time start_assembler!(assembler) @time assemblers = make_task_assemblers(femms, assembler, SysmatAssemblerSparseSymm, u) @time parallel_matrix_assembly(femms, assemblers, matrixcomputation!) @time K = make_matrix!(assembler) true end # run_example function run_example2(N = 10, ntasks = 2, do_serial = false) E = 1000.0 nu = 0.4999 #Taylor data W = 25.0 H = 50.0 L = 50.0 CTE = 0.0 fens, fes = H8block(W, L, H, N, N, 10*N) #C = connectionmatrix(FEMMBase(IntegDomain(fes, GaussRule(3, 1))), count(fens)) #ordering = symrcm(C) #fens, fes = reordermesh(fens, fes, ordering) MR = DeforModelRed3D material = MatDeforElastIso(MR, 0.0, E, nu, CTE) ir = GaussRule(3, 2) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field numberdofs!(u) if do_serial @info "Serial Assembly" @time femm = FEMMDeforLinear(MR, IntegDomain(fes, ir), material) @time associategeometry!(femm, geom) @time K = stiffness(femm, geom, u) end @info "Parallel Assembly with $(ntasks) Tasks" function matrixcomputation!(femm, assembler) associategeometry!(femm, geom) stiffness(femm, assembler, geom, u) end function createsubdomain(fessubset) FEMMDeforLinear(MR, IntegDomain(fessubset, GaussRule(3, 2)), material) end @time K = parallel_make_csc_matrix(fes, u, createsubdomain, matrixcomputation!, ntasks) # femms = FEMMDeforLinear[] # @time for (ch, j) in chunks(1:count(fes), ntasks) # femm = FEMMDeforLinear(MR, IntegDomain(subset(fes, ch), ir), material) # associategeometry!(femm, geom) # push!(femms, femm) # end # @time assembler = make_assembler(femms, SysmatAssemblerSparseSymm, u) # @time start_assembler!(assembler) # @time assemblers = make_task_assemblers(femms, assembler, SysmatAssemblerSparseSymm, u) # @time parallel_matrix_assembly(femms, assemblers, matrixcomputation!) # @time K = make_matrix!(assembler) true end # run_example2 end # module @show Threads.nthreads() using ThreadPinning pinthreads(:cores) @show N = parse(Int, ARGS[1]) @show ntasks = parse(Int, ARGS[2]) using .Main.par_assembly_examples; ex = Main.par_assembly_examples.run_example2 ex(N, 1, true) ex(N, 1, true) ex(N, ntasks, false) ex(N, ntasks, false) nothing
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
8464
module parallel_examples using FinEtools using FinEtools.AlgoBaseModule: evalconvergencestudy, solve_blocked! using FinEtoolsDeforLinear using FinEtoolsDeforLinear.AlgoDeforLinearModule: linearstatics, exportstresselementwise, exportstress using Statistics: mean using LinearAlgebra using SparseArrays using LinearSolve using SciMLOperators using IncompleteLU using Printf using SymRCM using SparseMatricesCSR using ThreadedSparseCSR using UnicodePlots using PlotlyJS # using Infiltrator using Random using DataDrop using ChunkSplitters using ParFEM: make_assembler, start_assembler!, make_task_assemblers, parallel_matrix_assembly, csc_matrix_pattern, add_to_matrix!, subdomainfemms using ParFEM: parallel_make_csc_matrix # Isotropic material E = 1000.0 nu = 0.4999 # Taylor data: nearly incompressible material nu = 0.3 # Compressible material W = 25.0 H = 50.0 L = 50.0 htol = minimum([L, H, W]) / 1000 uzex = -0.16 magn = 0.2 * (-12.6) / 4 Force = magn * W * H * 2 CTE = 0.0 n = 5 # function getfrcL!(forceout, XYZ, tangents, feid, qpid) copyto!(forceout, [0.0; 0.0; magn]) end function example(n = 10; precond = :ilu, alg = :cg, other...) elementtag = "H8" println(""" Stubby corbel example. Element: $(elementtag) """) fens, fes = H8block(W, L, H, n, 2 * n, 2 * n) println("Number of elements: $(count(fes))") bfes = meshboundary(fes) # end cross-section surface for the shear loading sectionL = selectelem(fens, bfes; facing = true, direction = [0.0 +1.0 0.0]) # 0 cross-section surface for the reactions section0 = selectelem(fens, bfes; facing = true, direction = [0.0 -1.0 0.0]) # 0 cross-section surface for the reactions sectionlateral = selectelem(fens, bfes; facing = true, direction = [1.0 0.0 0.0]) MR = DeforModelRed3D material = MatDeforElastIso(MR, 0.0, E, nu, CTE) # Material orientation matrix csmat = [i == j ? one(Float64) : zero(Float64) for i = 1:3, j = 1:3] function updatecs!(csmatout, XYZ, tangents, feid, qpid) copyto!(csmatout, csmat) end geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field # Renumber the nodes femm = FEMMBase(IntegDomain(fes, GaussRule(3, 2))) C = connectionmatrix(femm, count(fens)) perm = symrcm(C) femm = FEMMDeforLinearMSH8(MR, IntegDomain(fes, GaussRule(3, 2)), material) lx0 = connectednodes(subset(bfes, section0)) setebc!(u, lx0, true, 1, 0.0) setebc!(u, lx0, true, 2, 0.0) setebc!(u, lx0, true, 3, 0.0) lx1 = connectednodes(subset(bfes, sectionlateral)) setebc!(u, lx1, true, 1, 0.0) applyebc!(u) numberdofs!(u, perm) # numberdofs!(u) println("nfreedofs(u) = $(nfreedofs(u))") fi = ForceIntensity(Float64, 3, getfrcL!) el2femm = FEMMBase(IntegDomain(subset(bfes, sectionL), GaussRule(2, 2))) F = distribloads(el2femm, geom, u, fi, 2) F_f = vector_blocked_f(F, nfreedofs(u)) associategeometry!(femm, geom) K = stiffness(femm, geom, u) K_ff = matrix_blocked_ff(K, nfreedofs(u)) K = nothing println("Stiffness: number of non zeros = $(nnz(K_ff)) [ND]") println("Sparsity = $(nnz(K_ff)/size(K_ff, 1)/size(K_ff, 2)) [ND]") # display(spy(K_ff, canvas = DotCanvas)) Tipl = selectnode(fens, box = [0 W L L 0 H], inflate = htol) if precond == :ilu mK_ffd = mean(diag(K_ff)) PRECOND = ilu(K_ff, τ = mK_ffd / 100.0) elseif precond == :kdiag PRECOND = Diagonal(diag(K_ff)) end if alg == :cg ALG = KrylovJL_CG elseif alg == :gmres ALG = KrylovJL_GMRES end verbose = haskey(other, :verbose) ? other[:verbose] : false prob = LinearProblem(K_ff, F_f) @time sol = solve(prob, ALG(), Pl=PRECOND, verbose=verbose) scattersysvec!(u, sol.u[:]) utip = mean(u.values[Tipl, 3], dims = 1) println("Deflection: $(utip), compared to $(uzex)") File = "example-n=$(n).vtk" vtkexportmesh(File, fens, fes; vectors = [("u", u.values)]) @async run(`"paraview.exe" $File`) true end # example function example_wop(n = 10; ntasks = Threads.nthreads(), precond = :ilu, alg = :cg, other...) elementtag = "H8" println(""" Stubby corbel example. Element: $(elementtag) """) fens, fes = H8block(W, L, H, n, 2 * n, 2 * n) println("Number of elements: $(count(fes))") bfes = meshboundary(fes) # end cross-section surface for the shear loading sectionL = selectelem(fens, bfes; facing = true, direction = [0.0 +1.0 0.0]) # 0 cross-section surface for the reactions section0 = selectelem(fens, bfes; facing = true, direction = [0.0 -1.0 0.0]) # 0 cross-section surface for the reactions sectionlateral = selectelem(fens, bfes; facing = true, direction = [1.0 0.0 0.0]) MR = DeforModelRed3D material = MatDeforElastIso(MR, 0.0, E, nu, CTE) # Material orientation matrix csmat = [i == j ? one(Float64) : zero(Float64) for i = 1:3, j = 1:3] function updatecs!(csmatout, XYZ, tangents, feid, qpid) copyto!(csmatout, csmat) end geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field # Renumber the nodes femm = FEMMBase(IntegDomain(fes, GaussRule(3, 2))) C = connectionmatrix(femm, count(fens)) perm = symrcm(C) femm = FEMMDeforLinearMSH8(MR, IntegDomain(fes, GaussRule(3, 2)), material) lx0 = connectednodes(subset(bfes, section0)) setebc!(u, lx0, true, 1, 0.0) setebc!(u, lx0, true, 2, 0.0) setebc!(u, lx0, true, 3, 0.0) lx1 = connectednodes(subset(bfes, sectionlateral)) setebc!(u, lx1, true, 1, 0.0) applyebc!(u) numberdofs!(u, perm) # numberdofs!(u) println("nfreedofs(u) = $(nfreedofs(u))") fi = ForceIntensity(Float64, 3, getfrcL!) el2femm = FEMMBase(IntegDomain(subset(bfes, sectionL), GaussRule(2, 2))) F = distribloads(el2femm, geom, u, fi, 2) F_f = vector_blocked_f(F, nfreedofs(u)) function matrixcomputation!(femm, assembler) stiffness(femm, assembler, geom, u) end function createsubdomain(fessubset) FEMMDeforLinear(MR, IntegDomain(fessubset, GaussRule(3, 2)), material) end @time K = parallel_make_csc_matrix(fes, u, createsubdomain, matrixcomputation!, ntasks) # femms = subdomainfemms(fes, ntasks, createsubdomain) # @time assembler = make_assembler(femms, SysmatAssemblerSparse, u) # @time start_assembler!(assembler) # @time assemblers = make_task_assemblers(femms, assembler, SysmatAssemblerSparse, u) # @time parallel_matrix_assembly(femms, assemblers, matrixcomputation!) # @time K = csc_matrix_pattern(fes, u) # @time add_to_matrix!(K, assembler) K_ff = matrix_blocked_ff(K, nfreedofs(u)) K = nothing println("Stiffness: number of non zeros = $(nnz(K_ff)) [ND]") println("Sparsity = $(nnz(K_ff)/size(K_ff, 1)/size(K_ff, 2)) [ND]") # display(spy(K_ff, canvas = DotCanvas)) Tipl = selectnode(fens, box = [0 W L L 0 H], inflate = htol) if precond == :ilu mK_ffd = mean(diag(K_ff)) PRECOND = ilu(K_ff, τ = mK_ffd / 100.0) elseif precond == :kdiag PRECOND = Diagonal(diag(K_ff)) end if alg == :cg ALG = KrylovJL_CG elseif alg == :gmres ALG = KrylovJL_GMRES end verbose = haskey(other, :verbose) ? other[:verbose] : false # mop = MatrixOperator(K_ff) # prob = LinearProblem(mop, F_f) K_ff = SparseMatricesCSR.SparseMatrixCSR(Transpose(K_ff)) fop = FunctionOperator((v, u, p, t) -> bmul!(v, K_ff, u), F_f, zeros(length(F_f))) # fop = FunctionOperator((v, u, p, t) -> mul!(v, K_ff, u), F_f, zeros(length(F_f)); ifcache = false) prob = LinearProblem(fop, F_f) @time sol = solve(prob, ALG(), Pl=PRECOND, verbose=verbose) scattersysvec!(u, sol.u[:]) utip = mean(u.values[Tipl, 3], dims = 1) println("Deflection: $(utip), compared to $(uzex)") File = "example-n=$(n).vtk" vtkexportmesh(File, fens, fes; vectors = [("u", u.values)]) # @async run(`"paraview.exe" $File`) true end # example_wop function allrun(n = 10; args...) println("#####################################################") println("# example ") example_wop(n; args...) return true end # function allrun @info "All examples may be executed with " println("using .$(@__MODULE__); $(@__MODULE__).allrun()") end # module nothing
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
23596
module pinchcyl_examples using FinEtools using FinEtools.AlgoBaseModule: solve_blocked!, matrix_blocked, vector_blocked using FinEtoolsDeforLinear using FinEtoolsDeforLinear.AlgoDeforLinearModule using FinEtools.MeshExportModule using Statistics: mean E = 3e6 nu = 0.3 thickness = 3.0 uzex = -1.82488e-5 # analytical solution for the vertical deflection under the load R = 300 L = 600 ref = 32 tolerance = thickness / 1000 load = [0; 0; 1.0] function pinchcyl_h8_full() let (n, nt) = (ref, 2) fens, fes = H8block(90 / 360 * 2 * pi, L / 2, thickness, n, n, nt) for i = 1:count(fens) a = fens.xyz[i, 1] y = fens.xyz[i, 2] z = fens.xyz[i, 3] fens.xyz[i, :] .= ((R - thickness / 2 + z) * sin(a), y, (R - thickness / 2 + z) * cos(a)) end MR = DeforModelRed3D material = MatDeforElastIso(MR, E, nu) femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3, 2)), material) boundaryfes = meshboundary(fes) topl = selectelem( fens, boundaryfes, box = [-Inf Inf -Inf Inf thickness thickness], inflate = tolerance, ) botl = selectelem( fens, boundaryfes, box = [-Inf Inf -Inf Inf 0.0 0.0], inflate = tolerance, ) x0l = selectelem( fens, boundaryfes, box = [0.0 0.0 -Inf Inf 0.0 thickness], inflate = tolerance, ) y0l = selectelem( fens, boundaryfes, box = [-Inf Inf 0.0 0.0 0.0 thickness], inflate = tolerance, ) cyll = setdiff(1:count(boundaryfes), topl, botl, x0l, y0l) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field y0nl = selectnode(fens, box = [-Inf Inf 0 0 -Inf Inf], inflate = tolerance) setebc!(u, y0nl, true, [1; 3], 0.0) yL2nl = selectnode(fens, box = [-Inf Inf L / 2 L / 2 -Inf Inf], inflate = tolerance) setebc!(u, yL2nl, true, [2], 0.0) x0nl = selectnode(fens, box = [0 0 -Inf Inf -Inf Inf], inflate = tolerance) setebc!(u, x0nl, true, [1], 0.0) z0nl = selectnode(fens, box = [-Inf Inf -Inf Inf 0 0], inflate = tolerance) setebc!(u, z0nl, true, [3], 0.0) applyebc!(u) numberdofs!(u) loadnl = selectnode(fens; box = [0 0 L / 2 L / 2 -Inf Inf], inflate = tolerance) nfemm = FEMMBase(IntegDomain(FESetP1(reshape(loadnl, length(loadnl), 1)), PointRule())) F = distribloads( nfemm, geom, u, ForceIntensity([0; 0; -1.0 / 4 / length(loadnl)]), 3, ) associategeometry!(femm, geom) K = stiffness(femm, geom, u) u = solve_blocked!(u, K, F) u0z = mean(u.values[loadnl, 3]) println("Deflection under the load: $(round((u0z / uzex)* 100000)/100000*100) %") File = "pinchcyl_h8_full_$(n)x$(nt).vtk" vtkexportmesh(File, fens, fes; vectors = [("u", u.values)]) @async run(`"paraview.exe" $File`) end true end # pinchcyl_h8_full function pinchcyl_h8_uri() nt = 1 for nperradius in [2, 4, 8] nt = nt + 1 fens, fes = Q4circlen(R, nperradius) fens, fes = H8extrudeQ4(fens, fes, nt, (x, k) -> [x[1], x[2], k * thickness / nt]) MR = DeforModelRed3D material = MatDeforElastIso(MR, E, nu) femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3, 1)), material) boundaryfes = meshboundary(fes) topl = selectelem( fens, boundaryfes, box = [-Inf Inf -Inf Inf thickness thickness], inflate = tolerance, ) botl = selectelem( fens, boundaryfes, box = [-Inf Inf -Inf Inf 0.0 0.0], inflate = tolerance, ) x0l = selectelem( fens, boundaryfes, box = [0.0 0.0 -Inf Inf 0.0 thickness], inflate = tolerance, ) y0l = selectelem( fens, boundaryfes, box = [-Inf Inf 0.0 0.0 0.0 thickness], inflate = tolerance, ) cyll = setdiff(1:count(boundaryfes), topl, botl, x0l, y0l) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field x0nl = connectednodes(subset(boundaryfes, x0l)) setebc!(u, x0nl, true, 1, 0.0) y0nl = connectednodes(subset(boundaryfes, y0l)) setebc!(u, y0nl, true, 2, 0.0) cylnl = connectednodes(subset(boundaryfes, cyll)) setebc!(u, cylnl, true, 1, 0.0) setebc!(u, cylnl, true, 2, 0.0) setebc!(u, cylnl, true, 3, 0.0) applyebc!(u) numberdofs!(u) cnl = selectnode(fens; box = [0 0 0 0 0 thickness], inflate = tolerance) nfemm = FEMMBase(IntegDomain(FESetP1(reshape(cnl, length(cnl), 1)), PointRule())) F = distribloads( nfemm, geom, u, ForceIntensity([0; 0; Magnitude / 4 / length(cnl)]), 3, ) associategeometry!(femm, geom) K = stiffness(femm, geom, u) u = solve_blocked!(u, K, F) u0z = mean(u.values[cnl, 3]) println( "Deflection under the load: $(round((u0z / analyt_sol)* 100000)/100000*100) %", ) # File = "pinchcyl_1_$(nperradius).vtk" # vtkexportmesh(File, fens, fes; vectors = [("u", u.values)]) # @async run(`"paraview.exe" $File`) end true end # pinchcyl_h8_uri function pinchcyl_h8_ms() let (n, nt) = (ref, 4) fens, fes = H8block(90 / 360 * 2 * pi, L / 2, thickness, n, n, nt) for i = 1:count(fens) a = fens.xyz[i, 1] y = fens.xyz[i, 2] z = fens.xyz[i, 3] fens.xyz[i, :] .= ((R - thickness / 2 + z) * sin(a), y, (R - thickness / 2 + z) * cos(a)) end MR = DeforModelRed3D material = MatDeforElastIso(MR, E, nu) femm = FEMMDeforLinearMSH8(MR, IntegDomain(fes, GaussRule(3, 2)), material) boundaryfes = meshboundary(fes) topl = selectelem( fens, boundaryfes, box = [-Inf Inf -Inf Inf thickness thickness], inflate = tolerance, ) botl = selectelem( fens, boundaryfes, box = [-Inf Inf -Inf Inf 0.0 0.0], inflate = tolerance, ) x0l = selectelem( fens, boundaryfes, box = [0.0 0.0 -Inf Inf 0.0 thickness], inflate = tolerance, ) y0l = selectelem( fens, boundaryfes, box = [-Inf Inf 0.0 0.0 0.0 thickness], inflate = tolerance, ) cyll = setdiff(1:count(boundaryfes), topl, botl, x0l, y0l) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field y0nl = selectnode(fens, box = [-Inf Inf 0 0 -Inf Inf], inflate = tolerance) setebc!(u, y0nl, true, [1; 3], 0.0) yL2nl = selectnode(fens, box = [-Inf Inf L / 2 L / 2 -Inf Inf], inflate = tolerance) setebc!(u, yL2nl, true, [2], 0.0) x0nl = selectnode(fens, box = [0 0 -Inf Inf -Inf Inf], inflate = tolerance) setebc!(u, x0nl, true, [1], 0.0) z0nl = selectnode(fens, box = [-Inf Inf -Inf Inf 0 0], inflate = tolerance) setebc!(u, z0nl, true, [3], 0.0) applyebc!(u) numberdofs!(u) loadnl = selectnode(fens; box = [0 0 L / 2 L / 2 -Inf Inf], inflate = tolerance) nfemm = FEMMBase(IntegDomain(FESetP1(reshape(loadnl, length(loadnl), 1)), PointRule())) F = distribloads( nfemm, geom, u, ForceIntensity([0; 0; -1.0 / 4 / length(loadnl)]), 3, ) associategeometry!(femm, geom) K = stiffness(femm, geom, u) u = solve_blocked!(u, K, F) u0z = mean(u.values[loadnl, 3]) println("Deflection under the load: $(round((u0z / uzex)* 100000)/100000*100) %") File = "pinchcyl_h8_ms_$(n)x$(nt).vtk" vtkexportmesh(File, fens, fes; vectors = [("u", u.values)]) @async run(`"paraview.exe" $File`) end true end # pinchcyl_h8_ms function pinchcyl_h8_export() nt = 1 for nperradius in [2, 4, 8] nt = nt + 1 fens, fes = Q4circlen(R, nperradius) fens, fes = H8extrudeQ4(fens, fes, nt, (x, k) -> [x[1], x[2], k * thickness / nt]) MR = DeforModelRed3D material = MatDeforElastIso(MR, E, nu) femm = FEMMDeforLinearMSH8(MR, IntegDomain(fes, GaussRule(3, 2)), material) boundaryfes = meshboundary(fes) topl = selectelem( fens, boundaryfes, box = [-Inf Inf -Inf Inf thickness thickness], inflate = tolerance, ) botl = selectelem( fens, boundaryfes, box = [-Inf Inf -Inf Inf 0.0 0.0], inflate = tolerance, ) x0l = selectelem( fens, boundaryfes, box = [0.0 0.0 -Inf Inf 0.0 thickness], inflate = tolerance, ) y0l = selectelem( fens, boundaryfes, box = [-Inf Inf 0.0 0.0 0.0 thickness], inflate = tolerance, ) cyll = setdiff(1:count(boundaryfes), topl, botl, x0l, y0l) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field x0nl = connectednodes(subset(boundaryfes, x0l)) setebc!(u, x0nl, true, 1, 0.0) y0nl = connectednodes(subset(boundaryfes, y0l)) setebc!(u, y0nl, true, 2, 0.0) cylnl = connectednodes(subset(boundaryfes, cyll)) setebc!(u, cylnl, true, 1, 0.0) setebc!(u, cylnl, true, 2, 0.0) setebc!(u, cylnl, true, 3, 0.0) applyebc!(u) numberdofs!(u) cnl = selectnode(fens; box = [0 0 0 0 0 thickness], inflate = tolerance) AE = AbaqusExporter("pinchcyl_h8_export_$(nperradius)") HEADING(AE, "Clamped square plate with concentrated force") PART(AE, "part1") END_PART(AE) ASSEMBLY(AE, "ASSEM1") INSTANCE(AE, "INSTNC1", "PART1") NODE(AE, fens.xyz) ELEMENT(AE, "c3d8rh", "AllElements", 1, connasarray(femm.integdomain.fes)) NSET_NSET(AE, "cnl", cnl) NSET_NSET(AE, "x0nl", x0nl) NSET_NSET(AE, "y0nl", y0nl) NSET_NSET(AE, "cylnl", cylnl) ORIENTATION(AE, "GlobalOrientation", vec([1.0 0 0]), vec([0 1.0 0])) SOLID_SECTION(AE, "elasticity", "GlobalOrientation", "AllElements", "Hourglassctl") END_INSTANCE(AE) END_ASSEMBLY(AE) MATERIAL(AE, "elasticity") ELASTIC(AE, E, nu) SECTION_CONTROLS(AE, "Hourglassctl", "HOURGLASS=ENHANCED") STEP_PERTURBATION_STATIC(AE) BOUNDARY(AE, "ASSEM1.INSTNC1.x0nl", 1) BOUNDARY(AE, "ASSEM1.INSTNC1.y0nl", 2) BOUNDARY(AE, "ASSEM1.INSTNC1.cylnl", 1) BOUNDARY(AE, "ASSEM1.INSTNC1.cylnl", 2) BOUNDARY(AE, "ASSEM1.INSTNC1.cylnl", 3) CLOAD(AE, "ASSEM1.INSTNC1.cnl", 3, Magnitude / 4 / length(cnl)) END_STEP(AE) close(AE) # File = "pinchcyl_h8_export_$(nperradius).vtk" # vtkexportmesh(File, fens, fes; vectors = [("u", u.values)]) # @async run(`"paraview.exe" $File`) end true end # pinchcyl_h8_export function pinchcyl_h20r() let (n, nt) = (ref, 4) fens, fes = H20block(90 / 360 * 2 * pi, L / 2, thickness, n, n, nt) for i = 1:count(fens) a = fens.xyz[i, 1] y = fens.xyz[i, 2] z = fens.xyz[i, 3] fens.xyz[i, :] .= ((R - thickness / 2 + z) * sin(a), y, (R - thickness / 2 + z) * cos(a)) end MR = DeforModelRed3D material = MatDeforElastIso(MR, E, nu) femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3, 2)), material) boundaryfes = meshboundary(fes) topl = selectelem( fens, boundaryfes, box = [-Inf Inf -Inf Inf thickness thickness], inflate = tolerance, ) botl = selectelem( fens, boundaryfes, box = [-Inf Inf -Inf Inf 0.0 0.0], inflate = tolerance, ) x0l = selectelem( fens, boundaryfes, box = [0.0 0.0 -Inf Inf 0.0 thickness], inflate = tolerance, ) y0l = selectelem( fens, boundaryfes, box = [-Inf Inf 0.0 0.0 0.0 thickness], inflate = tolerance, ) cyll = setdiff(1:count(boundaryfes), topl, botl, x0l, y0l) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field y0nl = selectnode(fens, box = [-Inf Inf 0 0 -Inf Inf], inflate = tolerance) setebc!(u, y0nl, true, [1; 3], 0.0) yL2nl = selectnode(fens, box = [-Inf Inf L / 2 L / 2 -Inf Inf], inflate = tolerance) setebc!(u, yL2nl, true, [2], 0.0) x0nl = selectnode(fens, box = [0 0 -Inf Inf -Inf Inf], inflate = tolerance) setebc!(u, x0nl, true, [1], 0.0) z0nl = selectnode(fens, box = [-Inf Inf -Inf Inf 0 0], inflate = tolerance) setebc!(u, z0nl, true, [3], 0.0) applyebc!(u) numberdofs!(u) loadnl = selectnode(fens; box = [0 0 L / 2 L / 2 -Inf Inf], inflate = tolerance) nfemm = FEMMBase(IntegDomain(FESetP1(reshape(loadnl, length(loadnl), 1)), PointRule())) F = distribloads( nfemm, geom, u, ForceIntensity([0; 0; -1.0 / 4 / length(loadnl)]), 3, ) associategeometry!(femm, geom) K = stiffness(femm, geom, u) u = solve_blocked!(u, K, F) u0z = mean(u.values[loadnl, 3]) println("Deflection under the load: $(round((u0z / uzex)* 100000)/100000*100) %") File = "pinchcyl_h20r_$(n)x$(nt).vtk" vtkexportmesh(File, fens, fes; vectors = [("u", u.values)]) @async run(`"paraview.exe" $File`) end true end # pinchcyl_h20r function pinchcyl_h20() let (n, nt) = (ref, 4) fens, fes = H20block(90 / 360 * 2 * pi, L / 2, thickness, n, n, nt) for i = 1:count(fens) a = fens.xyz[i, 1] y = fens.xyz[i, 2] z = fens.xyz[i, 3] fens.xyz[i, :] .= ((R - thickness / 2 + z) * sin(a), y, (R - thickness / 2 + z) * cos(a)) end MR = DeforModelRed3D material = MatDeforElastIso(MR, E, nu) femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3, 3)), material) boundaryfes = meshboundary(fes) topl = selectelem( fens, boundaryfes, box = [-Inf Inf -Inf Inf thickness thickness], inflate = tolerance, ) botl = selectelem( fens, boundaryfes, box = [-Inf Inf -Inf Inf 0.0 0.0], inflate = tolerance, ) x0l = selectelem( fens, boundaryfes, box = [0.0 0.0 -Inf Inf 0.0 thickness], inflate = tolerance, ) y0l = selectelem( fens, boundaryfes, box = [-Inf Inf 0.0 0.0 0.0 thickness], inflate = tolerance, ) cyll = setdiff(1:count(boundaryfes), topl, botl, x0l, y0l) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field y0nl = selectnode(fens, box = [-Inf Inf 0 0 -Inf Inf], inflate = tolerance) setebc!(u, y0nl, true, [1; 3], 0.0) yL2nl = selectnode(fens, box = [-Inf Inf L / 2 L / 2 -Inf Inf], inflate = tolerance) setebc!(u, yL2nl, true, [2], 0.0) x0nl = selectnode(fens, box = [0 0 -Inf Inf -Inf Inf], inflate = tolerance) setebc!(u, x0nl, true, [1], 0.0) z0nl = selectnode(fens, box = [-Inf Inf -Inf Inf 0 0], inflate = tolerance) setebc!(u, z0nl, true, [3], 0.0) applyebc!(u) numberdofs!(u) loadnl = selectnode(fens; box = [0 0 L / 2 L / 2 -Inf Inf], inflate = tolerance) nfemm = FEMMBase(IntegDomain(FESetP1(reshape(loadnl, length(loadnl), 1)), PointRule())) F = distribloads( nfemm, geom, u, ForceIntensity([0; 0; -1.0 / 4 / length(loadnl)]), 3, ) associategeometry!(femm, geom) K = stiffness(femm, geom, u) u = solve_blocked!(u, K, F) u0z = mean(u.values[loadnl, 3]) println("Deflection under the load: $(round((u0z / uzex)* 100000)/100000*100) %") File = "pinchcyl_h20_$(n)x$(nt).vtk" vtkexportmesh(File, fens, fes; vectors = [("u", u.values)]) @async run(`"paraview.exe" $File`) end true end # pinchcyl_h20 function pinchcyl_t10_ms() let (n, nt) = (ref, 4) fens, fes = T10block(90 / 360 * 2 * pi, L / 2, thickness, n, n, nt) for i = 1:count(fens) a = fens.xyz[i, 1] y = fens.xyz[i, 2] z = fens.xyz[i, 3] fens.xyz[i, :] .= ((R - thickness / 2 + z) * sin(a), y, (R - thickness / 2 + z) * cos(a)) end MR = DeforModelRed3D material = MatDeforElastIso(MR, E, nu) femm = FEMMDeforLinearMST10(MR, IntegDomain(fes, TetRule(4)), material) boundaryfes = meshboundary(fes) topl = selectelem( fens, boundaryfes, box = [-Inf Inf -Inf Inf thickness thickness], inflate = tolerance, ) botl = selectelem( fens, boundaryfes, box = [-Inf Inf -Inf Inf 0.0 0.0], inflate = tolerance, ) x0l = selectelem( fens, boundaryfes, box = [0.0 0.0 -Inf Inf 0.0 thickness], inflate = tolerance, ) y0l = selectelem( fens, boundaryfes, box = [-Inf Inf 0.0 0.0 0.0 thickness], inflate = tolerance, ) cyll = setdiff(1:count(boundaryfes), topl, botl, x0l, y0l) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field y0nl = selectnode(fens, box = [-Inf Inf 0 0 -Inf Inf], inflate = tolerance) setebc!(u, y0nl, true, [1; 3], 0.0) yL2nl = selectnode(fens, box = [-Inf Inf L / 2 L / 2 -Inf Inf], inflate = tolerance) setebc!(u, yL2nl, true, [2], 0.0) x0nl = selectnode(fens, box = [0 0 -Inf Inf -Inf Inf], inflate = tolerance) setebc!(u, x0nl, true, [1], 0.0) z0nl = selectnode(fens, box = [-Inf Inf -Inf Inf 0 0], inflate = tolerance) setebc!(u, z0nl, true, [3], 0.0) applyebc!(u) numberdofs!(u) loadnl = selectnode(fens; box = [0 0 L / 2 L / 2 -Inf Inf], inflate = tolerance) nfemm = FEMMBase(IntegDomain(FESetP1(reshape(loadnl, length(loadnl), 1)), PointRule())) F = distribloads( nfemm, geom, u, ForceIntensity([0; 0; -1.0 / 4 / length(loadnl)]), 3, ) associategeometry!(femm, geom) K = stiffness(femm, geom, u) u = solve_blocked!(u, K, F) u0z = mean(u.values[loadnl, 3]) println("Deflection under the load: $(round((u0z / uzex)* 100000)/100000*100) %") File = "pinchcyl_t10_ms_$(n)x$(nt).vtk" vtkexportmesh(File, fens, fes; vectors = [("u", u.values)]) @async run(`"paraview.exe" $File`) end true end # pinchcyl_t10_ms function pinchcyl_t10() let (n, nt) = (ref, 4) fens, fes = T10block(90 / 360 * 2 * pi, L / 2, thickness, n, n, nt) for i = 1:count(fens) a = fens.xyz[i, 1] y = fens.xyz[i, 2] z = fens.xyz[i, 3] fens.xyz[i, :] .= ((R - thickness / 2 + z) * sin(a), y, (R - thickness / 2 + z) * cos(a)) end MR = DeforModelRed3D material = MatDeforElastIso(MR, E, nu) femm = FEMMDeforLinear(MR, IntegDomain(fes, TetRule(4)), material) boundaryfes = meshboundary(fes) topl = selectelem( fens, boundaryfes, box = [-Inf Inf -Inf Inf thickness thickness], inflate = tolerance, ) botl = selectelem( fens, boundaryfes, box = [-Inf Inf -Inf Inf 0.0 0.0], inflate = tolerance, ) x0l = selectelem( fens, boundaryfes, box = [0.0 0.0 -Inf Inf 0.0 thickness], inflate = tolerance, ) y0l = selectelem( fens, boundaryfes, box = [-Inf Inf 0.0 0.0 0.0 thickness], inflate = tolerance, ) cyll = setdiff(1:count(boundaryfes), topl, botl, x0l, y0l) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field y0nl = selectnode(fens, box = [-Inf Inf 0 0 -Inf Inf], inflate = tolerance) setebc!(u, y0nl, true, [1; 3], 0.0) yL2nl = selectnode(fens, box = [-Inf Inf L / 2 L / 2 -Inf Inf], inflate = tolerance) setebc!(u, yL2nl, true, [2], 0.0) x0nl = selectnode(fens, box = [0 0 -Inf Inf -Inf Inf], inflate = tolerance) setebc!(u, x0nl, true, [1], 0.0) z0nl = selectnode(fens, box = [-Inf Inf -Inf Inf 0 0], inflate = tolerance) setebc!(u, z0nl, true, [3], 0.0) applyebc!(u) numberdofs!(u) loadnl = selectnode(fens; box = [0 0 L / 2 L / 2 -Inf Inf], inflate = tolerance) nfemm = FEMMBase(IntegDomain(FESetP1(reshape(loadnl, length(loadnl), 1)), PointRule())) F = distribloads( nfemm, geom, u, ForceIntensity([0; 0; -1.0 / 4 / length(loadnl)]), 3, ) associategeometry!(femm, geom) K = stiffness(femm, geom, u) u = solve_blocked!(u, K, F) u0z = mean(u.values[loadnl, 3]) println("Deflection under the load: $(round((u0z / uzex)* 100000)/100000*100) %") File = "pinchcyl_t10_$(n)x$(nt).vtk" vtkexportmesh(File, fens, fes; vectors = [("u", u.values)]) @async run(`"paraview.exe" $File`) end true end # pinchcyl_t10 # true # end # twisted_beam_export function allrun() println("#####################################################") println("# pinchcyl_h8_full ") pinchcyl_h8_full() println("#####################################################") println("# pinchcyl_h8_ms ") pinchcyl_h8_ms() println("#####################################################") println("# pinchcyl_t10_ms ") pinchcyl_t10_ms() println("#####################################################") println("# pinchcyl_h20r ") pinchcyl_h20r() return true end # function allrun @info "All examples may be executed with " println("using .$(@__MODULE__); $(@__MODULE__).allrun()") end # module nothing
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
74080
module plate_w_hole_examples using FinEtools using FinEtoolsDeforLinear using FinEtoolsDeforLinear.AlgoDeforLinearModule using FinEtools.MeshExportModule using LinearAlgebra: norm using SparseArrays: cholesky using Statistics: mean function plate_w_hole_H20_stress() E = 2.4 * phun("MEGA*PA")# 210e3 MPa nu = 0.3 Re = 0.3 * phun("M") # outer radius Ri = 0.1 * phun("M") # hole radius H = 0.1 * phun("M") # thickness of the plate nRadial, nCircumferential, nThickness = 6, 8, 1 sigma0 = 1 * phun("MEGA*PA") function sigmaxx(x) local r = norm(x[1:2]) local th = atan(x[2], x[1]) return sigma0 * ( 1 - Ri^2 / r^2 * (3 / 2 * cos(2 * th) + cos(4 * th)) + 3 / 2 * Ri^4 / r^4 * cos(4 * th) ) end function sigmayy(x) local r = norm(x[1:2]) local th = atan(x[2], x[1]) return -sigma0 * ( Ri^2 / r^2 * (1 / 2 * cos(2 * th) - cos(4 * th)) + 3 / 2 * Ri^4 / r^4 * cos(4 * th) ) end function sigmaxy(x) local r = norm(x[1:2]) local th = atan(x[2], x[1]) return -sigma0 * ( Ri^2 / r^2 * (1 / 2 * sin(2 * th) + sin(4 * th)) - 3 / 2 * Ri^4 / r^4 * sin(4 * th) ) end function sigmarr(x) local r = norm(x[1:2]) local th = atan(x[2], x[1]) return sigma0 / 2 * (1 - Ri^2 / r^2) + sigma0 / 2 * (1 - 4 * Ri^2 / r^2 + 3 * Ri^4 / r^4) * cos(2 * th) end function sigmatt(x) local r = norm(x[1:2]) local th = atan(x[2], x[1]) return sigma0 / 2 * (1 + Ri^2 / r^2) - sigma0 / 2 * (1 + 3 * Ri^4 / r^4) * cos(2 * th) end function sigmart(x) local r = norm(x[1:2]) local th = atan(x[2], x[1]) return -sigma0 / 2 * (1 + 2 * Ri^2 / r^2 - 3 * Ri^4 / r^4) * sin(2 * th) end convergencestudy = FDataDict[] for ref = 0:1:2 println("ref = $(ref)") # Thickness = H Thickness = H / 2^ref tolerance = Thickness / 2^ref / 1000.0 # Geometrical tolerance fens, fes = H20block( 1.0, pi / 2, Thickness, 2^ref * nRadial, 2^ref * nCircumferential, 2^ref * nThickness, ) bdryfes = meshboundary(fes) icl = selectelem( fens, bdryfes, box = [1.0, 1.0, 0.0, pi / 2, 0.0, Thickness], inflate = tolerance, ) for i = 1:count(fens) t = fens.xyz[i, 1] a = fens.xyz[i, 2] z = fens.xyz[i, 3] fens.xyz[i, :] = [(t * Re + (1 - t) * Ri) * cos(a), (t * Re + (1 - t) * Ri) * sin(a), z] end geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field l1 = selectnode( fens; box = [0.0, Inf, 0.0, 0.0, 0.0, Thickness], inflate = tolerance, ) setebc!(u, l1, true, 2, 0.0) l1 = selectnode( fens; box = [0.0, 0.0, 0.0, Inf, 0.0, Thickness], inflate = tolerance, ) setebc!(u, l1, true, 1, 0.0) # Plane-stress constraint: assume the plane z=0 is the plane of symmetry of the plate l1 = selectnode(fens; box = [0.0, Inf, 0.0, Inf, 0.0, 0.0], inflate = tolerance) setebc!(u, l1, true, 3, 0.0) # If this was enabled, the plane-strain constraint would be enforced. # l1 =selectnode(fens; box=[0.0, Inf, 0.0, Inf, Thickness, Thickness], inflate = tolerance) # setebc!(u,l1,true, 3, 0.0) applyebc!(u) numberdofs!(u) el1femm = FEMMBase(IntegDomain(subset(bdryfes, icl), GaussRule(2, 3))) function pfun( forceout::FVec{T}, XYZ::FFltMat, tangents::FFltMat, fe_label::FInt, ) where {T} local r = sqrt(XYZ[1]^2 + XYZ[2]^2) nx = XYZ[1] / r ny = XYZ[2] / r forceout[1] = sigmarr(XYZ) * nx - sigmart(XYZ) * ny forceout[2] = sigmarr(XYZ) * ny + sigmart(XYZ) * nx forceout[3] = 0.0 return forceout end fi = ForceIntensity(Float64, 3, pfun) F2 = distribloads(el1femm, geom, u, fi, 2) MR = DeforModelRed3D material = MatDeforElastIso(MR, E, nu) femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3, 2)), material) # The geometry field now needs to be associated with the FEMM femm = associategeometry!(femm, geom) K = stiffness(femm, geom, u) K = cholesky(K) U = K \ (F2) scattersysvec!(u, U[:]) stressfields = elemfieldfromintegpoints(femm, geom, u, :Cauchy, collect(1:6)) push!( convergencestudy, FDataDict( "elementsize" => 1.0 / 2^ref, "fens" => fens, "fes" => fes, "geom" => geom, "u" => u, "femm" => femm, "stressfields" => [stressfields], "tolerance" => tolerance, ), ) end # for ref in # File = "mplate_w_hole_H20m_stress" # open(File * ".jls", "w") do file # serialize(file, convergencestudy) # end end # plate_w_hole_H20_stress function plate_w_hole_MSH8_convergence() E = 2.4 * phun("MEGA*PA")# 210e3 MPa nu = 0.49995 Re = 0.3 * phun("M") # outer radius Ri = 0.1 * phun("M") # hole radius H = 0.1 * phun("M") # thickness of the plate nRadial, nCircumferential = 3, 5 sigma0 = 1 * phun("MEGA*PA") function sigmaxx(x) local r = norm(x[1:2]) local th = atan(x[2], x[1]) return sigma0 * ( 1 - Ri^2 / r^2 * (3 / 2 * cos(2 * th) + cos(4 * th)) + 3 / 2 * Ri^4 / r^4 * cos(4 * th) ) end function sigmayy(x) local r = norm(x[1:2]) local th = atan(x[2], x[1]) return -sigma0 * ( Ri^2 / r^2 * (1 / 2 * cos(2 * th) - cos(4 * th)) + 3 / 2 * Ri^4 / r^4 * cos(4 * th) ) end function sigmaxy(x) local r = norm(x[1:2]) local th = atan(x[2], x[1]) return -sigma0 * ( Ri^2 / r^2 * (1 / 2 * sin(2 * th) + sin(4 * th)) - 3 / 2 * Ri^4 / r^4 * sin(4 * th) ) end function sigmarr(x) local r = norm(x[1:2]) local th = atan(x[2], x[1]) return sigma0 / 2 * (1 - Ri^2 / r^2) + sigma0 / 2 * (1 - 4 * Ri^2 / r^2 + 3 * Ri^4 / r^4) * cos(2 * th) end function sigmatt(x) local r = norm(x[1:2]) local th = atan(x[2], x[1]) return sigma0 / 2 * (1 + Ri^2 / r^2) - sigma0 / 2 * (1 + 3 * Ri^4 / r^4) * cos(2 * th) end function sigmart(x) local r = norm(x[1:2]) local th = atan(x[2], x[1]) return -sigma0 / 2 * (1 + 2 * Ri^2 / r^2 - 3 * Ri^4 / r^4) * sin(2 * th) end sigxderrs = Dict{Symbol,FFltVec}() sigyderrs = Dict{Symbol,FFltVec}() numelements = [] numnodes = [] for extrap in [:extraptrend :extrapmean] sigxderrs[extrap] = FFltVec[] sigyderrs[extrap] = FFltVec[] numelements = [] numnodes = [] for ref = 0:1:2 # Thickness = H Thickness = H / 2^ref tolerance = Thickness / 2^ref / 1000.0 # Geometrical tolerance fens, fes = H8block( 1.0, pi / 2, Thickness, 2^ref * nRadial, 2^ref * nCircumferential, 1, ) bdryfes = meshboundary(fes) icl = selectelem( fens, bdryfes, box = [1.0, 1.0, 0.0, pi / 2, 0.0, Thickness], inflate = tolerance, ) for i = 1:count(fens) t = fens.xyz[i, 1] a = fens.xyz[i, 2] z = fens.xyz[i, 3] fens.xyz[i, :] = [(t * Re + (1 - t) * Ri) * cos(a), (t * Re + (1 - t) * Ri) * sin(a), z] end # File = "a.vtk" # vtkexportmesh(File, fes.conn, fens.xyz, # FinEtools.MeshExportModule.H8) # @async run(`"paraview.exe" $File`) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field l1 = selectnode( fens; box = [0.0, Inf, 0.0, 0.0, 0.0, Thickness], inflate = tolerance, ) setebc!(u, l1, true, 2, 0.0) l1 = selectnode( fens; box = [0.0, 0.0, 0.0, Inf, 0.0, Thickness], inflate = tolerance, ) setebc!(u, l1, true, 1, 0.0) # Plane-stress constraint: assume the plane z=0 is the plane of symmetry of the plate l1 = selectnode(fens; box = [0.0, Inf, 0.0, Inf, 0.0, 0.0], inflate = tolerance) setebc!(u, l1, true, 3, 0.0) # If this was enabled, the plane-strain constraint would be enforced. # l1 =selectnode(fens; box=[0.0, Inf, 0.0, Inf, Thickness, Thickness], inflate = tolerance) # setebc!(u,l1,true, 3, 0.0) applyebc!(u) numberdofs!(u) el1femm = FEMMBase(IntegDomain(subset(bdryfes, icl), GaussRule(2, 2))) function pfun( forceout::FVec{T}, XYZ::FFltMat, tangents::FFltMat, fe_label::FInt, ) where {T} local r = sqrt(XYZ[1]^2 + XYZ[2]^2) nx = XYZ[1] / r ny = XYZ[2] / r # local sx, sy, txy # sx, sy, txy = sigmaxx(XYZ), sigmayy(XYZ), sigmaxy(XYZ) # sn = sx * nx^2 + sy * ny^2 + 2 * nx * ny * txy # tn = -(sx - sy) * nx * ny + (nx^2 - ny^2) * txy # forceout[1] = sn * nx - tn * ny # forceout[2] = sn * ny + tn * nx # forceout[3] = 0.0 forceout[1] = sigmarr(XYZ) * nx - sigmart(XYZ) * ny forceout[2] = sigmarr(XYZ) * ny + sigmart(XYZ) * nx forceout[3] = 0.0 return forceout end fi = ForceIntensity(Float64, 3, pfun) F2 = distribloads(el1femm, geom, u, fi, 2) MR = DeforModelRed3D material = MatDeforElastIso(MR, E, nu) femm = FEMMDeforLinearMSH8(MR, IntegDomain(fes, GaussRule(3, 2)), material) # The geometry field now needs to be associated with the FEMM femm = associategeometry!(femm, geom) K = stiffness(femm, geom, u) K = cholesky(K) U = K \ (F2) scattersysvec!(u, U[:]) nlA = selectnode( fens, box = [Ri, Ri, 0.0, 0.0, 0.0, Thickness], inflate = tolerance, ) nlB = selectnode( fens, box = [0.0, 0.0, Ri, Ri, 0.0, Thickness], inflate = tolerance, ) # thecorneru = zeros(FFlt,length(nlA),3) # gathervalues_asmat!(u, thecorneru, nl); # thecorneru = mean(thecorneru, 1)[1]/phun("mm") # println("displacement = $(thecorneru) vs -0.10215 [MM]") println("Extrapolation: $( extrap )--------------- ") sigx = fieldfromintegpoints( femm, geom, u, :Cauchy, 1; nodevalmethod = :averaging, reportat = extrap, ) sigy = fieldfromintegpoints( femm, geom, u, :Cauchy, 2; nodevalmethod = :averaging, reportat = extrap, ) sigyA = mean(sigy.values[nlA, 1], dims = 1)[1] sigyAtrue = sigmatt([Ri, 0.0, 0.0]) println("sig_y@A =$(sigyA/phun("MPa")) vs $(sigyAtrue/phun("MPa")) [MPa]") sigxB = mean(sigx.values[nlB, 1], dims = 1)[1] sigxBtrue = sigmatt([0.0, Ri, 0.0]) println("sig_x@B =$(sigxB/phun("MPa")) vs $(sigxBtrue/phun("MPa")) [MPa]") push!(numnodes, count(fens)) push!(numelements, count(fes)) push!(sigxderrs[extrap], abs(sigxB / sigxBtrue - 1.0)) push!(sigyderrs[extrap], abs(sigyA / sigyAtrue - 1.0)) # File = "a.vtk" # vtkexportmesh(File, fes.conn, geom.values, # FinEtools.MeshExportModule.H8; vectors=[("u", u.values)], # scalars=[("sigmax", sigx.values/phun("MEGA*PA"))]) # @async run(`"paraview.exe" $File`) end end File = "plate_w_hole_MSH8_convergence.CSV" savecsv( File, numelements = vec(numelements), numnodes = vec(numnodes), sigxderrtrend = vec(sigxderrs[:extraptrend]), sigxderrdefault = vec(sigxderrs[:extrapmean]), sigyderrtrend = vec(sigyderrs[:extraptrend]), sigyderrdefault = vec(sigyderrs[:extrapmean]), ) end # plate_w_hole_MSH8_convergence function plate_w_hole_MSH8_PE_convergence() E = 2.4 * phun("MEGA*PA")# 210e3 MPa nu = 0.49995 Re = 0.3 * phun("M") # outer radius Ri = 0.1 * phun("M") # hole radius H = 0.1 * phun("M") # thickness of the plate nRadial, nCircumferential = 3, 5 sigma0 = 1 * phun("MEGA*PA") function sigmaxx(x) local r = norm(x[1:2]) local th = atan(x[2], x[1]) return sigma0 * ( 1 - Ri^2 / r^2 * (3 / 2 * cos(2 * th) + cos(4 * th)) + 3 / 2 * Ri^4 / r^4 * cos(4 * th) ) end function sigmayy(x) local r = norm(x[1:2]) local th = atan(x[2], x[1]) return -sigma0 * ( Ri^2 / r^2 * (1 / 2 * cos(2 * th) - cos(4 * th)) + 3 / 2 * Ri^4 / r^4 * cos(4 * th) ) end function sigmaxy(x) local r = norm(x[1:2]) local th = atan(x[2], x[1]) return -sigma0 * ( Ri^2 / r^2 * (1 / 2 * sin(2 * th) + sin(4 * th)) - 3 / 2 * Ri^4 / r^4 * sin(4 * th) ) end function sigmarr(x) local r = norm(x[1:2]) local th = atan(x[2], x[1]) return sigma0 / 2 * (1 - Ri^2 / r^2) + sigma0 / 2 * (1 - 4 * Ri^2 / r^2 + 3 * Ri^4 / r^4) * cos(2 * th) end function sigmatt(x) local r = norm(x[1:2]) local th = atan(x[2], x[1]) return sigma0 / 2 * (1 + Ri^2 / r^2) - sigma0 / 2 * (1 + 3 * Ri^4 / r^4) * cos(2 * th) end function sigmart(x) local r = norm(x[1:2]) local th = atan(x[2], x[1]) return -sigma0 / 2 * (1 + 2 * Ri^2 / r^2 - 3 * Ri^4 / r^4) * sin(2 * th) end sigxderrs = Dict{Symbol,FFltVec}() sigyderrs = Dict{Symbol,FFltVec}() numelements = [] numnodes = [] for extrapolation in [:extraptrend :extrapmean] sigxderrs[extrapolation] = FFltVec[] sigyderrs[extrapolation] = FFltVec[] numelements = [] numnodes = [] for ref = 0:1:2 # Thickness = H Thickness = H / 2^ref tolerance = Thickness / 2^ref / 1000.0 # Geometrical tolerance fens, fes = H8block( 1.0, pi / 2, Thickness, 2^ref * nRadial, 2^ref * nCircumferential, 1, ) bdryfes = meshboundary(fes) icl = selectelem( fens, bdryfes, box = [1.0, 1.0, 0.0, pi / 2, 0.0, Thickness], inflate = tolerance, ) for i = 1:count(fens) t = fens.xyz[i, 1] a = fens.xyz[i, 2] z = fens.xyz[i, 3] fens.xyz[i, :] = [(t * Re + (1 - t) * Ri) * cos(a), (t * Re + (1 - t) * Ri) * sin(a), z] end # File = "a.vtk" # vtkexportmesh(File, fes.conn, fens.xyz, # FinEtools.MeshExportModule.H8) # @async run(`"paraview.exe" $File`) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field l1 = selectnode( fens; box = [0.0, Inf, 0.0, 0.0, 0.0, Thickness], inflate = tolerance, ) setebc!(u, l1, true, 2, 0.0) l1 = selectnode( fens; box = [0.0, 0.0, 0.0, Inf, 0.0, Thickness], inflate = tolerance, ) setebc!(u, l1, true, 1, 0.0) # Plane-stress constraint: assume the plane z=0 is the plane of symmetry of the plate l1 = selectnode(fens; box = [0.0, Inf, 0.0, Inf, 0.0, 0.0], inflate = tolerance) setebc!(u, l1, true, 3, 0.0) # If this was enabled, the plane-strain constraint would be enforced. l1 = selectnode( fens; box = [0.0, Inf, 0.0, Inf, Thickness, Thickness], inflate = tolerance, ) setebc!(u, l1, true, 3, 0.0) applyebc!(u) numberdofs!(u) el1femm = FEMMBase(IntegDomain(subset(bdryfes, icl), GaussRule(2, 2))) function pfun( forceout::FVec{T}, XYZ::FFltMat, tangents::FFltMat, fe_label::FInt, ) where {T} local r = sqrt(XYZ[1]^2 + XYZ[2]^2) nx = XYZ[1] / r ny = XYZ[2] / r # local sx, sy, txy # sx, sy, txy = sigmaxx(XYZ), sigmayy(XYZ), sigmaxy(XYZ) # sn = sx * nx^2 + sy * ny^2 + 2 * nx * ny * txy # tn = -(sx - sy) * nx * ny + (nx^2 - ny^2) * txy # forceout[1] = sn * nx - tn * ny # forceout[2] = sn * ny + tn * nx # forceout[3] = 0.0 forceout[1] = sigmarr(XYZ) * nx - sigmart(XYZ) * ny forceout[2] = sigmarr(XYZ) * ny + sigmart(XYZ) * nx forceout[3] = 0.0 return forceout end fi = ForceIntensity(Float64, 3, pfun) F2 = distribloads(el1femm, geom, u, fi, 2) MR = DeforModelRed3D material = MatDeforElastIso(MR, E, nu) femm = FEMMDeforLinearMSH8(MR, IntegDomain(fes, GaussRule(3, 2)), material) # The geometry field now needs to be associated with the FEMM femm = associategeometry!(femm, geom) K = stiffness(femm, geom, u) K = cholesky(K) U = K \ (F2) scattersysvec!(u, U[:]) nlA = selectnode( fens, box = [Ri, Ri, 0.0, 0.0, 0.0, Thickness], inflate = tolerance, ) nlB = selectnode( fens, box = [0.0, 0.0, Ri, Ri, 0.0, Thickness], inflate = tolerance, ) # thecorneru = zeros(FFlt,length(nlA),3) # gathervalues_asmat!(u, thecorneru, nl); # thecorneru = mean(thecorneru, 1)[1]/phun("mm") # println("displacement = $(thecorneru) vs -0.10215 [MM]") println("Extrapolation: $( extrapolation )") sigx = fieldfromintegpoints( femm, geom, u, :Cauchy, 1; nodevalmethod = :averaging, reportat = extrapolation, ) sigy = fieldfromintegpoints( femm, geom, u, :Cauchy, 2; nodevalmethod = :averaging, reportat = extrapolation, ) sigyA = mean(sigy.values[nlA, 1], dims = 1)[1] sigyAtrue = sigmatt([Ri, 0.0, 0.0]) println("sig_y@A =$(sigyA/phun("MPa")) vs $(sigyAtrue/phun("MPa")) [MPa]") sigxB = mean(sigx.values[nlB, 1], dims = 1)[1] sigxBtrue = sigmatt([0.0, Ri, 0.0]) println("sig_x@B =$(sigxB/phun("MPa")) vs $(sigxBtrue/phun("MPa")) [MPa]") push!(numnodes, count(fens)) push!(numelements, count(fes)) push!(sigxderrs[extrapolation], abs(sigxB / sigxBtrue - 1.0)) push!(sigyderrs[extrapolation], abs(sigyA / sigyAtrue - 1.0)) # File = "a.vtk" # vtkexportmesh(File, fes.conn, geom.values, # FinEtools.MeshExportModule.H8; vectors=[("u", u.values)], # scalars=[("sigmax", sigx.values/phun("MEGA*PA"))]) # @async run(`"paraview.exe" $File`) end end File = "plate_w_hole_PE_MSH8_convergence.CSV" savecsv( File, numelements = vec(numelements), numnodes = vec(numnodes), sigxderrtrend = vec(sigxderrs[:extraptrend]), sigxderrdefault = vec(sigxderrs[:extrapmean]), sigyderrtrend = vec(sigyderrs[:extraptrend]), sigyderrdefault = vec(sigyderrs[:extrapmean]), ) end # plate_w_hole_MSH8_PE_convergence function plate_w_hole_MST10_convergence() E = 2.4 * phun("MEGA*PA")# 210e3 MPa nu = 0.49995 Re = 0.3 * phun("M") # outer radius Ri = 0.1 * phun("M") # hole radius H = 0.1 * phun("M") # thickness of the plate nRadial, nCircumferential = 3, 5 sigma0 = 1 * phun("MEGA*PA") function sigmaxx(x) local r = norm(x[1:2]) local th = atan(x[2], x[1]) return sigma0 * ( 1 - Ri^2 / r^2 * (3 / 2 * cos(2 * th) + cos(4 * th)) + 3 / 2 * Ri^4 / r^4 * cos(4 * th) ) end function sigmayy(x) local r = norm(x[1:2]) local th = atan(x[2], x[1]) return -sigma0 * ( Ri^2 / r^2 * (1 / 2 * cos(2 * th) - cos(4 * th)) + 3 / 2 * Ri^4 / r^4 * cos(4 * th) ) end function sigmaxy(x) local r = norm(x[1:2]) local th = atan(x[2], x[1]) return -sigma0 * ( Ri^2 / r^2 * (1 / 2 * sin(2 * th) + sin(4 * th)) - 3 / 2 * Ri^4 / r^4 * sin(4 * th) ) end function sigmarr(x) local r = norm(x[1:2]) local th = atan(x[2], x[1]) return sigma0 / 2 * (1 - Ri^2 / r^2) + sigma0 / 2 * (1 - 4 * Ri^2 / r^2 + 3 * Ri^4 / r^4) * cos(2 * th) end function sigmatt(x) local r = norm(x[1:2]) local th = atan(x[2], x[1]) return sigma0 / 2 * (1 + Ri^2 / r^2) - sigma0 / 2 * (1 + 3 * Ri^4 / r^4) * cos(2 * th) end function sigmart(x) local r = norm(x[1:2]) local th = atan(x[2], x[1]) return -sigma0 / 2 * (1 + 2 * Ri^2 / r^2 - 3 * Ri^4 / r^4) * sin(2 * th) end sigxderrs = Dict{Symbol,FFltVec}() sigyderrs = Dict{Symbol,FFltVec}() numelements = [] numnodes = [] for extrapolation in [:extraptrend :extrapmean] sigxderrs[extrapolation] = FFltVec[] sigyderrs[extrapolation] = FFltVec[] numelements = [] numnodes = [] for ref = 0:1:3 # Thickness = H Thickness = H / 2^ref tolerance = Thickness / 2^ref / 1000.0 # Geometrical tolerance fens, fes = T10block( 1.0, pi / 2, Thickness, 2^ref * nRadial, 2^ref * nCircumferential, 1, ) bdryfes = meshboundary(fes) icl = selectelem( fens, bdryfes, box = [1.0, 1.0, 0.0, pi / 2, 0.0, Thickness], inflate = tolerance, ) for i = 1:count(fens) t = fens.xyz[i, 1] a = fens.xyz[i, 2] z = fens.xyz[i, 3] fens.xyz[i, :] = [(t * Re + (1 - t) * Ri) * cos(a), (t * Re + (1 - t) * Ri) * sin(a), z] end # File = "a.vtk" # vtkexportmesh(File, fes.conn, fens.xyz, # FinEtools.MeshExportModule.H8) # @async run(`"paraview.exe" $File`) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field l1 = selectnode( fens; box = [0.0, Inf, 0.0, 0.0, 0.0, Thickness], inflate = tolerance, ) setebc!(u, l1, true, 2, 0.0) l1 = selectnode( fens; box = [0.0, 0.0, 0.0, Inf, 0.0, Thickness], inflate = tolerance, ) setebc!(u, l1, true, 1, 0.0) # Plane-stress constraint: assume the plane z=0 is the plane of symmetry of the plate l1 = selectnode(fens; box = [0.0, Inf, 0.0, Inf, 0.0, 0.0], inflate = tolerance) setebc!(u, l1, true, 3, 0.0) # If this was enabled, the plane-strain constraint would be enforced. # l1 =selectnode(fens; box=[0.0, Inf, 0.0, Inf, Thickness, Thickness], inflate = tolerance) # setebc!(u,l1,true, 3, 0.0) applyebc!(u) numberdofs!(u) el1femm = FEMMBase(IntegDomain(subset(bdryfes, icl), TriRule(3))) function pfun( forceout::FVec{T}, XYZ::FFltMat, tangents::FFltMat, fe_label::FInt, ) where {T} local r = sqrt(XYZ[1]^2 + XYZ[2]^2) nx = XYZ[1] / r ny = XYZ[2] / r # local sx, sy, txy # sx, sy, txy = sigmaxx(XYZ), sigmayy(XYZ), sigmaxy(XYZ) # sn = sx * nx^2 + sy * ny^2 + 2 * nx * ny * txy # tn = -(sx - sy) * nx * ny + (nx^2 - ny^2) * txy # forceout[1] = sn * nx - tn * ny # forceout[2] = sn * ny + tn * nx # forceout[3] = 0.0 forceout[1] = sigmarr(XYZ) * nx - sigmart(XYZ) * ny forceout[2] = sigmarr(XYZ) * ny + sigmart(XYZ) * nx forceout[3] = 0.0 return forceout end fi = ForceIntensity(Float64, 3, pfun) F2 = distribloads(el1femm, geom, u, fi, 2) MR = DeforModelRed3D material = MatDeforElastIso(MR, E, nu) femm = FEMMDeforLinearMST10(MR, IntegDomain(fes, TetRule(4)), material) # The geometry field now needs to be associated with the FEMM femm = associategeometry!(femm, geom) K = stiffness(femm, geom, u) K = cholesky(K) U = K \ (F2) scattersysvec!(u, U[:]) nlA = selectnode( fens, box = [Ri, Ri, 0.0, 0.0, 0.0, Thickness], inflate = tolerance, ) nlB = selectnode( fens, box = [0.0, 0.0, Ri, Ri, 0.0, Thickness], inflate = tolerance, ) # thecorneru = zeros(FFlt,length(nlA),3) # gathervalues_asmat!(u, thecorneru, nl); # thecorneru = mean(thecorneru, 1)[1]/phun("mm") # println("displacement = $(thecorneru) vs -0.10215 [MM]") println("Extrapolation: $( extrapolation )") sigx = fieldfromintegpoints( femm, geom, u, :Cauchy, 1; nodevalmethod = :averaging, reportat = extrapolation, ) sigy = fieldfromintegpoints( femm, geom, u, :Cauchy, 2; nodevalmethod = :averaging, reportat = extrapolation, ) sigyA = mean(sigy.values[nlA, 1], dims = 1)[1] sigyAtrue = sigmatt([Ri, 0.0, 0.0]) println("sig_y@A =$(sigyA/phun("MPa")) vs $(sigyAtrue/phun("MPa")) [MPa]") sigxB = mean(sigx.values[nlB, 1], dims = 1)[1] sigxBtrue = sigmatt([0.0, Ri, 0.0]) println("sig_x@B =$(sigxB/phun("MPa")) vs $(sigxBtrue/phun("MPa")) [MPa]") push!(numnodes, count(fens)) push!(numelements, count(fes)) push!(sigxderrs[extrapolation], abs(sigxB / sigxBtrue - 1.0)) push!(sigyderrs[extrapolation], abs(sigyA / sigyAtrue - 1.0)) # File = "a.vtk" # vtkexportmesh(File, fes.conn, geom.values, # FinEtools.MeshExportModule.H8; vectors=[("u", u.values)], # scalars=[("sigmax", sigx.values/phun("MEGA*PA"))]) # @async run(`"paraview.exe" $File`) end end File = "plate_w_hole_MST10_convergence.CSV" savecsv( File, numelements = vec(numelements), numnodes = vec(numnodes), sigxderrtrend = vec(sigxderrs[:extraptrend]), sigxderrdefault = vec(sigxderrs[:extrapmean]), sigyderrtrend = vec(sigyderrs[:extraptrend]), sigyderrdefault = vec(sigyderrs[:extrapmean]), ) end # plate_w_hole_MST10_convergence function plate_w_hole_MST10_PE_convergence() E = 2.4 * phun("MEGA*PA")# 210e3 MPa nu = 0.49995 Re = 0.3 * phun("M") # outer radius Ri = 0.1 * phun("M") # hole radius H = 0.1 * phun("M") # thickness of the plate nRadial, nCircumferential = 3, 5 sigma0 = 1 * phun("MEGA*PA") function sigmaxx(x) local r = norm(x[1:2]) local th = atan(x[2], x[1]) return sigma0 * ( 1 - Ri^2 / r^2 * (3 / 2 * cos(2 * th) + cos(4 * th)) + 3 / 2 * Ri^4 / r^4 * cos(4 * th) ) end function sigmayy(x) local r = norm(x[1:2]) local th = atan(x[2], x[1]) return -sigma0 * ( Ri^2 / r^2 * (1 / 2 * cos(2 * th) - cos(4 * th)) + 3 / 2 * Ri^4 / r^4 * cos(4 * th) ) end function sigmaxy(x) local r = norm(x[1:2]) local th = atan(x[2], x[1]) return -sigma0 * ( Ri^2 / r^2 * (1 / 2 * sin(2 * th) + sin(4 * th)) - 3 / 2 * Ri^4 / r^4 * sin(4 * th) ) end function sigmarr(x) local r = norm(x[1:2]) local th = atan(x[2], x[1]) return sigma0 / 2 * (1 - Ri^2 / r^2) + sigma0 / 2 * (1 - 4 * Ri^2 / r^2 + 3 * Ri^4 / r^4) * cos(2 * th) end function sigmatt(x) local r = norm(x[1:2]) local th = atan(x[2], x[1]) return sigma0 / 2 * (1 + Ri^2 / r^2) - sigma0 / 2 * (1 + 3 * Ri^4 / r^4) * cos(2 * th) end function sigmart(x) local r = norm(x[1:2]) local th = atan(x[2], x[1]) return -sigma0 / 2 * (1 + 2 * Ri^2 / r^2 - 3 * Ri^4 / r^4) * sin(2 * th) end sigxderrs = Dict{Symbol,FFltVec}() sigyderrs = Dict{Symbol,FFltVec}() numelements = [] numnodes = [] for extrapolation in [:extraptrend :extrapmean] sigxderrs[extrapolation] = FFltVec[] sigyderrs[extrapolation] = FFltVec[] numelements = [] numnodes = [] for ref = 0:1:3 # Thickness = H Thickness = H / 2^ref tolerance = Thickness / 2^ref / 1000.0 # Geometrical tolerance fens, fes = T10block( 1.0, pi / 2, Thickness, 2^ref * nRadial, 2^ref * nCircumferential, 1, ) bdryfes = meshboundary(fes) icl = selectelem( fens, bdryfes, box = [1.0, 1.0, 0.0, pi / 2, 0.0, Thickness], inflate = tolerance, ) for i = 1:count(fens) t = fens.xyz[i, 1] a = fens.xyz[i, 2] z = fens.xyz[i, 3] fens.xyz[i, :] = [(t * Re + (1 - t) * Ri) * cos(a), (t * Re + (1 - t) * Ri) * sin(a), z] end # File = "a.vtk" # vtkexportmesh(File, fes.conn, fens.xyz, # FinEtools.MeshExportModule.H8) # @async run(`"paraview.exe" $File`) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field l1 = selectnode( fens; box = [0.0, Inf, 0.0, 0.0, 0.0, Thickness], inflate = tolerance, ) setebc!(u, l1, true, 2, 0.0) l1 = selectnode( fens; box = [0.0, 0.0, 0.0, Inf, 0.0, Thickness], inflate = tolerance, ) setebc!(u, l1, true, 1, 0.0) # Plane-stress constraint: assume the plane z=0 is the plane of symmetry of the plate l1 = selectnode(fens; box = [0.0, Inf, 0.0, Inf, 0.0, 0.0], inflate = tolerance) setebc!(u, l1, true, 3, 0.0) # If this was enabled, the plane-strain constraint would be enforced. l1 = selectnode( fens; box = [0.0, Inf, 0.0, Inf, Thickness, Thickness], inflate = tolerance, ) setebc!(u, l1, true, 3, 0.0) applyebc!(u) numberdofs!(u) el1femm = FEMMBase(IntegDomain(subset(bdryfes, icl), TriRule(3))) function pfun( forceout::FVec{T}, XYZ::FFltMat, tangents::FFltMat, fe_label::FInt, ) where {T} local r = sqrt(XYZ[1]^2 + XYZ[2]^2) nx = XYZ[1] / r ny = XYZ[2] / r # local sx, sy, txy # sx, sy, txy = sigmaxx(XYZ), sigmayy(XYZ), sigmaxy(XYZ) # sn = sx * nx^2 + sy * ny^2 + 2 * nx * ny * txy # tn = -(sx - sy) * nx * ny + (nx^2 - ny^2) * txy # forceout[1] = sn * nx - tn * ny # forceout[2] = sn * ny + tn * nx # forceout[3] = 0.0 forceout[1] = sigmarr(XYZ) * nx - sigmart(XYZ) * ny forceout[2] = sigmarr(XYZ) * ny + sigmart(XYZ) * nx forceout[3] = 0.0 return forceout end fi = ForceIntensity(Float64, 3, pfun) F2 = distribloads(el1femm, geom, u, fi, 2) MR = DeforModelRed3D material = MatDeforElastIso(MR, E, nu) femm = FEMMDeforLinearMST10(MR, IntegDomain(fes, TetRule(4)), material) # The geometry field now needs to be associated with the FEMM femm = associategeometry!(femm, geom) K = stiffness(femm, geom, u) K = cholesky(K) U = K \ (F2) scattersysvec!(u, U[:]) nlA = selectnode( fens, box = [Ri, Ri, 0.0, 0.0, 0.0, Thickness], inflate = tolerance, ) nlB = selectnode( fens, box = [0.0, 0.0, Ri, Ri, 0.0, Thickness], inflate = tolerance, ) # thecorneru = zeros(FFlt,length(nlA),3) # gathervalues_asmat!(u, thecorneru, nl); # thecorneru = mean(thecorneru, 1)[1]/phun("mm") # println("displacement = $(thecorneru) vs -0.10215 [MM]") println("Extrapolation: $( extrapolation )") sigx = fieldfromintegpoints( femm, geom, u, :Cauchy, 1; nodevalmethod = :averaging, reportat = extrapolation, ) sigy = fieldfromintegpoints( femm, geom, u, :Cauchy, 2; nodevalmethod = :averaging, reportat = extrapolation, ) sigyA = mean(sigy.values[nlA, 1], dims = 1)[1] sigyAtrue = sigmatt([Ri, 0.0, 0.0]) println("sig_y@A =$(sigyA/phun("MPa")) vs $(sigyAtrue/phun("MPa")) [MPa]") sigxB = mean(sigx.values[nlB, 1], dims = 1)[1] sigxBtrue = sigmatt([0.0, Ri, 0.0]) println("sig_x@B =$(sigxB/phun("MPa")) vs $(sigxBtrue/phun("MPa")) [MPa]") push!(numnodes, count(fens)) push!(numelements, count(fes)) push!(sigxderrs[extrapolation], abs(sigxB / sigxBtrue - 1.0)) push!(sigyderrs[extrapolation], abs(sigyA / sigyAtrue - 1.0)) # File = "a.vtk" # vtkexportmesh(File, fes.conn, geom.values, # FinEtools.MeshExportModule.H8; vectors=[("u", u.values)], # scalars=[("sigmax", sigx.values/phun("MEGA*PA"))]) # @async run(`"paraview.exe" $File`) end end File = "plate_w_hole_PE_MST10_convergence.CSV" savecsv( File, numelements = vec(numelements), numnodes = vec(numnodes), sigxderrtrend = vec(sigxderrs[:extraptrend]), sigxderrdefault = vec(sigxderrs[:extrapmean]), sigyderrtrend = vec(sigyderrs[:extraptrend]), sigyderrdefault = vec(sigyderrs[:extrapmean]), ) end # plate_w_hole_MST10_PE_convergence function plate_w_hole_MST10_stress() E = 2.4 * phun("MEGA*PA")# 210e3 MPa nu = 0.3 Re = 0.3 * phun("M") # outer radius Ri = 0.1 * phun("M") # hole radius H = 0.1 * phun("M") # thickness of the plate nRadial, nCircumferential, nThickness = 6, 8, 1 sigma0 = 1 * phun("MEGA*PA") function sigmaxx(x) local r = norm(x[1:2]) local th = atan(x[2], x[1]) return sigma0 * ( 1 - Ri^2 / r^2 * (3 / 2 * cos(2 * th) + cos(4 * th)) + 3 / 2 * Ri^4 / r^4 * cos(4 * th) ) end function sigmayy(x) local r = norm(x[1:2]) local th = atan(x[2], x[1]) return -sigma0 * ( Ri^2 / r^2 * (1 / 2 * cos(2 * th) - cos(4 * th)) + 3 / 2 * Ri^4 / r^4 * cos(4 * th) ) end function sigmaxy(x) local r = norm(x[1:2]) local th = atan(x[2], x[1]) return -sigma0 * ( Ri^2 / r^2 * (1 / 2 * sin(2 * th) + sin(4 * th)) - 3 / 2 * Ri^4 / r^4 * sin(4 * th) ) end function sigmarr(x) local r = norm(x[1:2]) local th = atan(x[2], x[1]) return sigma0 / 2 * (1 - Ri^2 / r^2) + sigma0 / 2 * (1 - 4 * Ri^2 / r^2 + 3 * Ri^4 / r^4) * cos(2 * th) end function sigmatt(x) local r = norm(x[1:2]) local th = atan(x[2], x[1]) return sigma0 / 2 * (1 + Ri^2 / r^2) - sigma0 / 2 * (1 + 3 * Ri^4 / r^4) * cos(2 * th) end function sigmart(x) local r = norm(x[1:2]) local th = atan(x[2], x[1]) return -sigma0 / 2 * (1 + 2 * Ri^2 / r^2 - 3 * Ri^4 / r^4) * sin(2 * th) end convergencestudy = FDataDict[] for ref = 0:1:2 println("ref = $(ref)") # Thickness = H Thickness = H / 2^ref tolerance = Thickness / 2^ref / 1000.0 # Geometrical tolerance fens, fes = T10block( 1.0, pi / 2, Thickness, 2^ref * nRadial, 2^ref * nCircumferential, 2^ref * nThickness, ) bdryfes = meshboundary(fes) icl = selectelem( fens, bdryfes, box = [1.0, 1.0, 0.0, pi / 2, 0.0, Thickness], inflate = tolerance, ) for i = 1:count(fens) t = fens.xyz[i, 1] a = fens.xyz[i, 2] z = fens.xyz[i, 3] fens.xyz[i, :] = [(t * Re + (1 - t) * Ri) * cos(a), (t * Re + (1 - t) * Ri) * sin(a), z] end geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field l1 = selectnode( fens; box = [0.0, Inf, 0.0, 0.0, 0.0, Thickness], inflate = tolerance, ) setebc!(u, l1, true, 2, 0.0) l1 = selectnode( fens; box = [0.0, 0.0, 0.0, Inf, 0.0, Thickness], inflate = tolerance, ) setebc!(u, l1, true, 1, 0.0) # Plane-stress constraint: assume the plane z=0 is the plane of symmetry of the plate l1 = selectnode(fens; box = [0.0, Inf, 0.0, Inf, 0.0, 0.0], inflate = tolerance) setebc!(u, l1, true, 3, 0.0) # If this was enabled, the plane-strain constraint would be enforced. # l1 =selectnode(fens; box=[0.0, Inf, 0.0, Inf, Thickness, Thickness], inflate = tolerance) # setebc!(u,l1,true, 3, 0.0) applyebc!(u) numberdofs!(u) el1femm = FEMMBase(IntegDomain(subset(bdryfes, icl), TriRule(3))) function pfun( forceout::FVec{T}, XYZ::FFltMat, tangents::FFltMat, fe_label::FInt, ) where {T} local r = sqrt(XYZ[1]^2 + XYZ[2]^2) nx = XYZ[1] / r ny = XYZ[2] / r forceout[1] = sigmarr(XYZ) * nx - sigmart(XYZ) * ny forceout[2] = sigmarr(XYZ) * ny + sigmart(XYZ) * nx forceout[3] = 0.0 return forceout end fi = ForceIntensity(Float64, 3, pfun) F2 = distribloads(el1femm, geom, u, fi, 2) MR = DeforModelRed3D material = MatDeforElastIso(MR, E, nu) femm = FEMMDeforLinearMST10(MR, IntegDomain(fes, TetRule(4)), material) # The geometry field now needs to be associated with the FEMM femm = associategeometry!(femm, geom) K = stiffness(femm, geom, u) K = cholesky(K) U = K \ (F2) scattersysvec!(u, U[:]) stressfields = elemfieldfromintegpoints(femm, geom, u, :Cauchy, collect(1:6)) push!( convergencestudy, FDataDict( "elementsize" => 1.0 / 2^ref, "fens" => fens, "fes" => fes, "geom" => geom, "u" => u, "femm" => femm, "stressfields" => [stressfields], "tolerance" => tolerance, ), ) end # for ref in # File = "mplate_w_hole_MST10m_stress" # open(File * ".jls", "w") do file # serialize(file, convergencestudy) # end end # plate_w_hole_MST10_stress function plate_w_hole_RECT_H20_convergence() E = 210000 * phun("MEGA*PA")# 210e3 MPa nu = 0.3 Ri = 0.15 * phun("M") # hole radius Re = 2 * Ri # outer radius H = 0.01 * phun("M") # thickness of the plate nRadial, nCircumferential = 6, 3 sigma0 = 1 * phun("MEGA*PA") function sigmaxx(x) local r = norm(vec(x[1:2])) local th = atan(x[2], x[1]) return sigma0 * ( 1 - Ri^2 / r^2 * (3 / 2 * cos(2 * th) + cos(4 * th)) + 3 / 2 * Ri^4 / r^4 * cos(4 * th) ) end function sigmayy(x) local r = norm(vec(x[1:2])) local th = atan(x[2], x[1]) return -sigma0 * ( Ri^2 / r^2 * (1 / 2 * cos(2 * th) - cos(4 * th)) + 3 / 2 * Ri^4 / r^4 * cos(4 * th) ) end function sigmaxy(x) local r = norm(vec(x[1:2])) local th = atan(x[2], x[1]) return -sigma0 * ( Ri^2 / r^2 * (1 / 2 * sin(2 * th) + sin(4 * th)) - 3 / 2 * Ri^4 / r^4 * sin(4 * th) ) end function sigmarr(x) local r = norm(vec(x[1:2])) local th = atan(x[2], x[1]) return sigma0 / 2 * (1 - Ri^2 / r^2) + sigma0 / 2 * (1 - 4 * Ri^2 / r^2 + 3 * Ri^4 / r^4) * cos(2 * th) end function sigmatt(x) local r = norm(vec(x[1:2])) local th = atan(x[2], x[1]) return sigma0 / 2 * (1 + Ri^2 / r^2) - sigma0 / 2 * (1 + 3 * Ri^4 / r^4) * cos(2 * th) end function sigmart(x) local r = norm(vec(x[1:2])) local th = atan(x[2], x[1]) return -sigma0 / 2 * (1 + 2 * Ri^2 / r^2 - 3 * Ri^4 / r^4) * sin(2 * th) end sigyderrs = Dict{Symbol,FFltVec}() nelems = [] for extrapolation in [:meanonly] sigyderrs[extrapolation] = FFltVec[] nelems = [] for ref in [1] Thickness = H # Thickness = H/2^ref tolerance = Thickness / 2^ref / 1000.0 # Geometrical tolerance fens, fes = H8elliphole( Ri, Ri, Re, Re, Thickness, 2^ref * nCircumferential, 2^ref * nCircumferential, 2^ref * nRadial, 1, ) fens, fes = H8toH20(fens, fes) # File = "a.vtk" # vtkexportmesh(File, fes.conn, fens.xyz, # FinEtools.MeshExportModule.H20) # @async run(`"paraview.cexe" $File`) println("My mesh=>$((count(fens), count(fes)))") # # output = import_ABAQUS("plane_w_hole_m_debug.inp") # fens1,fes1 = output["fens"], output["fesets"][1] # println("Matlab mesh=>$((count(fens1), count(fes1[1])))") # # fens3, newfes1, fes2 = mergemeshes(fens,fes, fens1,fes1[1], tolerance) # fes3 = cat(2, newfes1) # println("Merged mesh=>$((count(fens3), count(fes3)))") geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field l1 = selectnode( fens; box = [0.0, Inf, 0.0, 0.0, 0.0, Thickness], inflate = tolerance, ) setebc!(u, l1, true, 2, 0.0) l1 = selectnode( fens; box = [0.0, 0.0, 0.0, Inf, 0.0, Thickness], inflate = tolerance, ) setebc!(u, l1, true, 1, 0.0) l1 = selectnode(fens; box = [0.0, Inf, 0.0, Inf, 0.0, 0.0], inflate = tolerance) setebc!(u, l1, true, 3, 0.0) # l1 =selectnode(fens; box=[0.0, Inf, 0.0, Inf, Thickness, Thickness], inflate = tolerance) # setebc!(u,l1,true, 3, 0.0) applyebc!(u) numberdofs!(u) bdryfes = meshboundary(fes) # ixl = selectelem(fens, bdryfes, plane=[1.0, 0.0, 0.0, Re], thickness=tolerance); ixl = selectelem( fens, bdryfes, box = [Re, Re, -Inf, +Inf, -Inf, +Inf], inflate = tolerance, ) elxfemm = FEMMBase(IntegDomain(subset(bdryfes, ixl), GaussRule(2, 2))) function pfunx( forceout::FVec{T}, XYZ::FFltMat, tangents::FFltMat, fe_label::FInt, ) where {T} forceout[1] = sigmaxx(XYZ) forceout[2] = sigmaxy(XYZ) forceout[3] = 0.0 return forceout end fi = ForceIntensity(Float64, 3, pfunx) Fx = distribloads(elxfemm, geom, u, fi, 2) # iyl = selectelem(fens, bdryfes, plane=[0.0, 1.0, 0.0, Re], thickness=tolerance); iyl = selectelem( fens, bdryfes, box = [-Inf, +Inf, Re, Re, -Inf, +Inf], inflate = tolerance, ) elyfemm = FEMMBase(IntegDomain(subset(bdryfes, iyl), GaussRule(2, 2))) function pfuny( forceout::FVec{T}, XYZ::FFltMat, tangents::FFltMat, fe_label::FInt, ) where {T} forceout[1] = sigmaxy(XYZ) forceout[2] = sigmayy(XYZ) forceout[3] = 0.0 return forceout end fi = ForceIntensity(Float64, 3, pfuny) Fy = distribloads(elyfemm, geom, u, fi, 2) MR = DeforModelRed3D material = MatDeforElastIso(MR, E, nu) femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3, 2)), material) # The geometry field now needs to be associated with the FEMM femm = associategeometry!(femm, geom) K = stiffness(femm, geom, u) K = cholesky(K) U = K \ (Fx + Fy) scattersysvec!(u, U[:]) println("oof load = $(norm(Fx + Fy, 2))") nlA = selectnode(fens, box = [Ri, Ri, 0.0, 0.0, 0.0, 00.0], inflate = tolerance) pointu = zeros(FFlt, length(nlA), 3) gathervalues_asmat!(u, pointu, nlA) println("disp@A = $(pointu/phun("mm")) [MM]") nlB = selectnode(fens, box = [0.0, 0.0, Ri, Ri, 0.0, 0.0], inflate = tolerance) pointu = zeros(FFlt, length(nlB), 3) gathervalues_asmat!(u, pointu, nlB) println("disp@B = $(pointu/phun("mm")) [MM]") nlC = selectnode( fens, box = [Re, Re, Re, Re, Thickness, Thickness], inflate = tolerance, ) pointu = zeros(FFlt, length(nlC), 3) gathervalues_asmat!(u, pointu, nlC) println("disp@C = $(pointu/phun("mm")) [MM]") nlAallz = selectnode( fens, box = [Ri, Ri, 0.0, 0.0, 0.0, Thickness], inflate = tolerance, ) nlBallz = selectnode( fens, box = [0.0, 0.0, Ri, Ri, 0.0, Thickness], inflate = tolerance, ) sigx = fieldfromintegpoints( femm, geom, u, :Cauchy, 1; nodevalmethod = :invdistance, reportat = extrapolation, ) sigy = fieldfromintegpoints( femm, geom, u, :Cauchy, 2; nodevalmethod = :invdistance, reportat = extrapolation, ) sigyA = mean(sigy.values[nlAallz, 1], dims = 1)[1] sigyAtrue = sigmayy([Ri, 0.0, 0.0]) println("sig_y@A =$(sigyA/phun("MPa")) vs $(sigyAtrue/phun("MPa")) [MPa]") sigxB = mean(sigx.values[nlBallz, 1], dims = 1)[1] sigxBtrue = sigmaxx([0.0, Ri, 0.0]) println("sig_x@B =$(sigxB/phun("MPa")) vs $(sigxBtrue/phun("MPa")) [MPa]") # println("$extrapolation, $(count(fes)), $(sigyd/phun("MPa"))") # push!(nelems, count(fes)) # push!(sigyderrs[extrapolation], abs(sigyd/sigma_yD - 1.0)) File = "a.vtk" vtkexportmesh( File, fes.conn, geom.values, FinEtools.MeshExportModule.H20; vectors = [("u", u.values)], scalars = [ ("sigmax", sigx.values / phun("MEGA*PA")), ("sigmay", sigy.values / phun("MEGA*PA")), ], ) @async run(`"paraview.exe" $File`) end end # df = DataFrame(nelems=vec(nelems), # sigyderrtrend=vec(sigyderrs[:extraptrend]), # sigyderrdefault=vec(sigyderrs[:extrapmean])) # File = "LE1NAFEMS_MSH8_convergence.CSV" # CSV.write(File, df) # @async run(`"paraview.exe" $File`) end # plate_w_hole_RECT_H20_convergence function plate_w_hole_RECT_MSH8_convergence() E = 210000 * phun("MEGA*PA")# 210e3 MPa nu = 0.3 Ri = 0.1 * phun("M") # hole radius Re = 2 * Ri # outer radius H = 0.01 * phun("M") # thickness of the plate nRadial, nCircumferential = 6, 3 sigma0 = 1 * phun("MEGA*PA") function sigmaxx(x) local r = norm(x[1:2]) local th = atan(x[2], x[1]) return sigma0 * ( 1 - Ri^2 / r^2 * (3 / 2 * cos(2 * th) + cos(4 * th)) + 3 / 2 * Ri^4 / r^4 * cos(4 * th) ) end function sigmayy(x) local r = norm(x[1:2]) local th = atan(x[2], x[1]) return -sigma0 * ( Ri^2 / r^2 * (1 / 2 * cos(2 * th) - cos(4 * th)) + 3 / 2 * Ri^4 / r^4 * cos(4 * th) ) end function sigmaxy(x) local r = norm(x[1:2]) local th = atan(x[2], x[1]) return -sigma0 * ( Ri^2 / r^2 * (1 / 2 * sin(2 * th) + sin(4 * th)) - 3 / 2 * Ri^4 / r^4 * sin(4 * th) ) end function sigmarr(x) local r = norm(x[1:2]) local th = atan(x[2], x[1]) return sigma0 / 2 * (1 - Ri^2 / r^2) + sigma0 / 2 * (1 - 4 * Ri^2 / r^2 + 3 * Ri^4 / r^4) * cos(2 * th) end function sigmatt(x) local r = norm(x[1:2]) local th = atan(x[2], x[1]) return sigma0 / 2 * (1 + Ri^2 / r^2) - sigma0 / 2 * (1 + 3 * Ri^4 / r^4) * cos(2 * th) end function sigmart(x) local r = norm(x[1:2]) local th = atan(x[2], x[1]) return -sigma0 / 2 * (1 + 2 * Ri^2 / r^2 - 3 * Ri^4 / r^4) * sin(2 * th) end sigyderrs = Dict{Symbol,FFltVec}() nelems = [] for extrapolation in [:extraptrend :extrapmean] sigyderrs[extrapolation] = FFltVec[] nelems = [] for ref in [2] # Thickness = H Thickness = H / 2^ref tolerance = Thickness / 2^ref / 1000.0 # Geometrical tolerance fens, fes = H8elliphole( Ri, Ri, Re, Re, Thickness, 2^ref * nCircumferential, 2^ref * nCircumferential, 2^ref * nRadial, 1, ) # File = "a.vtk" # vtkexportmesh(File, fes.conn, fens.xyz, # FinEtools.MeshExportModule.H8) # @async run(`"paraview.exe" $File`) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field l1 = selectnode( fens; box = [0.0, Inf, 0.0, 0.0, 0.0, Thickness], inflate = tolerance, ) setebc!(u, l1, true, 2, 0.0) l1 = selectnode( fens; box = [0.0, 0.0, 0.0, Inf, 0.0, Thickness], inflate = tolerance, ) setebc!(u, l1, true, 1, 0.0) l1 = selectnode(fens; box = [0.0, Inf, 0.0, Inf, 0.0, 0.0], inflate = tolerance) setebc!(u, l1, true, 3, 0.0) # l1 =selectnode(fens; box=[0.0, Inf, 0.0, Inf, Thickness, Thickness], inflate = tolerance) # setebc!(u,l1,true, 3, 0.0) applyebc!(u) numberdofs!(u) bdryfes = meshboundary(fes) ixl = selectelem( fens, bdryfes, plane = [1.0, 0.0, 0.0, Re], thickness = tolerance, ) elxfemm = FEMMBase(IntegDomain(subset(bdryfes, ixl), GaussRule(2, 2))) function pfunx( forceout::FVec{T}, XYZ::FFltMat, tangents::FFltMat, fe_label::FInt, ) where {T} forceout[1] = sigmaxx(XYZ) forceout[2] = sigmaxy(XYZ) forceout[3] = 0.0 return forceout end fi = ForceIntensity(Float64, 3, pfunx) Fx = distribloads(elxfemm, geom, u, fi, 2) iyl = selectelem( fens, bdryfes, plane = [0.0, 1.0, 0.0, Re], thickness = tolerance, ) elyfemm = FEMMBase(IntegDomain(subset(bdryfes, iyl), GaussRule(2, 2))) function pfuny( forceout::FVec{T}, XYZ::FFltMat, tangents::FFltMat, fe_label::FInt, ) where {T} forceout[1] = -sigmaxy(XYZ) forceout[2] = sigmayy(XYZ) forceout[3] = 0.0 return forceout end fi = ForceIntensity(Float64, 3, pfuny) Fy = distribloads(elyfemm, geom, u, fi, 2) MR = DeforModelRed3D material = MatDeforElastIso(MR, E, nu) femm = FEMMDeforLinearMSH8(MR, IntegDomain(fes, GaussRule(3, 2)), material) # The geometry field now needs to be associated with the FEMM femm = associategeometry!(femm, geom) K = stiffness(femm, geom, u) K = cholesky(K) U = K \ (Fx + Fy) scattersysvec!(u, U[:]) nlA = selectnode( fens, box = [Ri, Ri, 0.0, 0.0, 0.0, Thickness], inflate = tolerance, ) nlB = selectnode( fens, box = [0.0, 0.0, Ri, Ri, 0.0, Thickness], inflate = tolerance, ) # thecorneru = zeros(FFlt,length(nlA),3) # gathervalues_asmat!(u, thecorneru, nl); # thecorneru = mean(thecorneru, 1)[1]/phun("mm") # println("displacement = $(thecorneru) vs -0.10215 [MM]") println("Extrapolation: $( extrapolation )") sigx = fieldfromintegpoints( femm, geom, u, :Cauchy, 1; nodevalmethod = :averaging, reportat = extrapolation, ) sigy = fieldfromintegpoints( femm, geom, u, :Cauchy, 2; nodevalmethod = :averaging, reportat = extrapolation, ) sigyA = mean(sigy.values[nlA, 1], dims = 1)[1] sigyAtrue = sigmatt([Ri, 0.0, 0.0]) println("sig_y@A =$(sigyA/phun("MPa")) vs $(sigyAtrue/phun("MPa")) [MPa]") sigxB = mean(sigx.values[nlB, 1], dims = 1)[1] sigxBtrue = sigmatt([0.0, Ri, 0.0]) println("sig_x@B =$(sigxB/phun("MPa")) vs $(sigxBtrue/phun("MPa")) [MPa]") # println("$extrapolation, $(count(fes)), $(sigyd/phun("MPa"))") # push!(nelems, count(fes)) # push!(sigyderrs[extrapolation], abs(sigyd/sigma_yD - 1.0)) File = "a.vtk" vtkexportmesh( File, fes.conn, geom.values, FinEtools.MeshExportModule.H8; vectors = [("u", u.values)], scalars = [ ("sigmax", sigx.values / phun("MEGA*PA")), ("sigmay", sigy.values / phun("MEGA*PA")), ], ) @async run(`"paraview.exe" $File`) end end # df = DataFrame(nelems=vec(nelems), # sigyderrtrend=vec(sigyderrs[:extraptrend]), # sigyderrdefault=vec(sigyderrs[:extrapmean])) # File = "LE1NAFEMS_MSH8_convergence.CSV" # CSV.write(File, df) # @async run(`"paraview.exe" $File`) end # plate_w_hole_RECT_MSH8_convergence function plate_w_hole_T10_PE_convergence() E = 2.4 * phun("MEGA*PA")# 210e3 MPa nu = 0.49995 Re = 0.3 * phun("M") # outer radius Ri = 0.1 * phun("M") # hole radius H = 0.1 * phun("M") # thickness of the plate nRadial, nCircumferential = 3, 5 sigma0 = 1 * phun("MEGA*PA") function sigmaxx(x) local r = norm(x[1:2]) local th = atan(x[2], x[1]) return sigma0 * ( 1 - Ri^2 / r^2 * (3 / 2 * cos(2 * th) + cos(4 * th)) + 3 / 2 * Ri^4 / r^4 * cos(4 * th) ) end function sigmayy(x) local r = norm(x[1:2]) local th = atan(x[2], x[1]) return -sigma0 * ( Ri^2 / r^2 * (1 / 2 * cos(2 * th) - cos(4 * th)) + 3 / 2 * Ri^4 / r^4 * cos(4 * th) ) end function sigmaxy(x) local r = norm(x[1:2]) local th = atan(x[2], x[1]) return -sigma0 * ( Ri^2 / r^2 * (1 / 2 * sin(2 * th) + sin(4 * th)) - 3 / 2 * Ri^4 / r^4 * sin(4 * th) ) end function sigmarr(x) local r = norm(x[1:2]) local th = atan(x[2], x[1]) return sigma0 / 2 * (1 - Ri^2 / r^2) + sigma0 / 2 * (1 - 4 * Ri^2 / r^2 + 3 * Ri^4 / r^4) * cos(2 * th) end function sigmatt(x) local r = norm(x[1:2]) local th = atan(x[2], x[1]) return sigma0 / 2 * (1 + Ri^2 / r^2) - sigma0 / 2 * (1 + 3 * Ri^4 / r^4) * cos(2 * th) end function sigmart(x) local r = norm(x[1:2]) local th = atan(x[2], x[1]) return -sigma0 / 2 * (1 + 2 * Ri^2 / r^2 - 3 * Ri^4 / r^4) * sin(2 * th) end sigxderrs = Dict{Symbol,FFltVec}() sigyderrs = Dict{Symbol,FFltVec}() numelements = [] numnodes = [] for extrapolation in [:extraptrend :extrapmean] sigxderrs[extrapolation] = FFltVec[] sigyderrs[extrapolation] = FFltVec[] numelements = [] numnodes = [] for ref = 0:1:2 # Thickness = H Thickness = H / 2^ref tolerance = Thickness / 2^ref / 1000.0 # Geometrical tolerance fens, fes = T10block( 1.0, pi / 2, Thickness, 2^ref * nRadial, 2^ref * nCircumferential, 1, ) bdryfes = meshboundary(fes) icl = selectelem( fens, bdryfes, box = [1.0, 1.0, 0.0, pi / 2, 0.0, Thickness], inflate = tolerance, ) for i = 1:count(fens) t = fens.xyz[i, 1] a = fens.xyz[i, 2] z = fens.xyz[i, 3] fens.xyz[i, :] = [(t * Re + (1 - t) * Ri) * cos(a), (t * Re + (1 - t) * Ri) * sin(a), z] end # File = "a.vtk" # vtkexportmesh(File, fes.conn, fens.xyz, # FinEtools.MeshExportModule.H8) # @async run(`"paraview.exe" $File`) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field l1 = selectnode( fens; box = [0.0, Inf, 0.0, 0.0, 0.0, Thickness], inflate = tolerance, ) setebc!(u, l1, true, 2, 0.0) l1 = selectnode( fens; box = [0.0, 0.0, 0.0, Inf, 0.0, Thickness], inflate = tolerance, ) setebc!(u, l1, true, 1, 0.0) # Plane-stress constraint: assume the plane z=0 is the plane of symmetry of the plate l1 = selectnode(fens; box = [0.0, Inf, 0.0, Inf, 0.0, 0.0], inflate = tolerance) setebc!(u, l1, true, 3, 0.0) # If this was enabled, the plane-strain constraint would be enforced. l1 = selectnode( fens; box = [0.0, Inf, 0.0, Inf, Thickness, Thickness], inflate = tolerance, ) setebc!(u, l1, true, 3, 0.0) applyebc!(u) numberdofs!(u) el1femm = FEMMBase(IntegDomain(subset(bdryfes, icl), TriRule(3))) function pfun( forceout::FVec{T}, XYZ::FFltMat, tangents::FFltMat, fe_label::FInt, ) where {T} local r = sqrt(XYZ[1]^2 + XYZ[2]^2) nx = XYZ[1] / r ny = XYZ[2] / r # local sx, sy, txy # sx, sy, txy = sigmaxx(XYZ), sigmayy(XYZ), sigmaxy(XYZ) # sn = sx * nx^2 + sy * ny^2 + 2 * nx * ny * txy # tn = -(sx - sy) * nx * ny + (nx^2 - ny^2) * txy # forceout[1] = sn * nx - tn * ny # forceout[2] = sn * ny + tn * nx # forceout[3] = 0.0 forceout[1] = sigmarr(XYZ) * nx - sigmart(XYZ) * ny forceout[2] = sigmarr(XYZ) * ny + sigmart(XYZ) * nx forceout[3] = 0.0 return forceout end fi = ForceIntensity(Float64, 3, pfun) F2 = distribloads(el1femm, geom, u, fi, 2) MR = DeforModelRed3D material = MatDeforElastIso(MR, E, nu) femm = FEMMDeforLinear(MR, IntegDomain(fes, TetRule(4)), material) # The geometry field now needs to be associated with the FEMM femm = associategeometry!(femm, geom) K = stiffness(femm, geom, u) K = cholesky(K) U = K \ (F2) scattersysvec!(u, U[:]) nlA = selectnode( fens, box = [Ri, Ri, 0.0, 0.0, 0.0, Thickness], inflate = tolerance, ) nlB = selectnode( fens, box = [0.0, 0.0, Ri, Ri, 0.0, Thickness], inflate = tolerance, ) # thecorneru = zeros(FFlt,length(nlA),3) # gathervalues_asmat!(u, thecorneru, nl); # thecorneru = mean(thecorneru, 1)[1]/phun("mm") # println("displacement = $(thecorneru) vs -0.10215 [MM]") println("Extrapolation: $( extrapolation )") sigx = fieldfromintegpoints(femm, geom, u, :Cauchy, 1) sigy = fieldfromintegpoints(femm, geom, u, :Cauchy, 2) sigyA = mean(sigy.values[nlA, 1], dims = 1)[1] sigyAtrue = sigmatt([Ri, 0.0, 0.0]) println("sig_y@A =$(sigyA/phun("MPa")) vs $(sigyAtrue/phun("MPa")) [MPa]") sigxB = mean(sigx.values[nlB, 1], dims = 1)[1] sigxBtrue = sigmatt([0.0, Ri, 0.0]) println("sig_x@B =$(sigxB/phun("MPa")) vs $(sigxBtrue/phun("MPa")) [MPa]") push!(numnodes, count(fens)) push!(numelements, count(fes)) push!(sigxderrs[extrapolation], abs(sigxB / sigxBtrue - 1.0)) push!(sigyderrs[extrapolation], abs(sigyA / sigyAtrue - 1.0)) # File = "a.vtk" # vtkexportmesh(File, fes.conn, geom.values, # FinEtools.MeshExportModule.H8; vectors=[("u", u.values)], # scalars=[("sigmax", sigx.values/phun("MEGA*PA"))]) # @async run(`"paraview.exe" $File`) end end File = "plate_w_hole_PE_T10_convergence.CSV" savecsv( File, numelements = vec(numelements), numnodes = vec(numnodes), sigxderrtrend = vec(sigxderrs[:extraptrend]), sigxderrdefault = vec(sigxderrs[:extrapmean]), sigyderrtrend = vec(sigyderrs[:extraptrend]), sigyderrdefault = vec(sigyderrs[:extrapmean]), ) end # plate_w_hole_T10_PE_convergence function plate_w_hole_T10_stress() E = 2.4 * phun("MEGA*PA")# 210e3 MPa nu = 0.3 Re = 0.3 * phun("M") # outer radius Ri = 0.1 * phun("M") # hole radius H = 0.1 * phun("M") # thickness of the plate nRadial, nCircumferential, nThickness = 6, 8, 1 sigma0 = 1 * phun("MEGA*PA") function sigmaxx(x) local r = norm(x[1:2]) local th = atan(x[2], x[1]) return sigma0 * ( 1 - Ri^2 / r^2 * (3 / 2 * cos(2 * th) + cos(4 * th)) + 3 / 2 * Ri^4 / r^4 * cos(4 * th) ) end function sigmayy(x) local r = norm(x[1:2]) local th = atan(x[2], x[1]) return -sigma0 * ( Ri^2 / r^2 * (1 / 2 * cos(2 * th) - cos(4 * th)) + 3 / 2 * Ri^4 / r^4 * cos(4 * th) ) end function sigmaxy(x) local r = norm(x[1:2]) local th = atan(x[2], x[1]) return -sigma0 * ( Ri^2 / r^2 * (1 / 2 * sin(2 * th) + sin(4 * th)) - 3 / 2 * Ri^4 / r^4 * sin(4 * th) ) end function sigmarr(x) local r = norm(x[1:2]) local th = atan(x[2], x[1]) return sigma0 / 2 * (1 - Ri^2 / r^2) + sigma0 / 2 * (1 - 4 * Ri^2 / r^2 + 3 * Ri^4 / r^4) * cos(2 * th) end function sigmatt(x) local r = norm(x[1:2]) local th = atan(x[2], x[1]) return sigma0 / 2 * (1 + Ri^2 / r^2) - sigma0 / 2 * (1 + 3 * Ri^4 / r^4) * cos(2 * th) end function sigmart(x) local r = norm(x[1:2]) local th = atan(x[2], x[1]) return -sigma0 / 2 * (1 + 2 * Ri^2 / r^2 - 3 * Ri^4 / r^4) * sin(2 * th) end convergencestudy = FDataDict[] for ref = 0:1:2 println("ref = $(ref)") # Thickness = H Thickness = H / 2^ref tolerance = Thickness / 2^ref / 1000.0 # Geometrical tolerance fens, fes = T10block( 1.0, pi / 2, Thickness, 2^ref * nRadial, 2^ref * nCircumferential, 2^ref * nThickness, ) bdryfes = meshboundary(fes) icl = selectelem( fens, bdryfes, box = [1.0, 1.0, 0.0, pi / 2, 0.0, Thickness], inflate = tolerance, ) for i = 1:count(fens) t = fens.xyz[i, 1] a = fens.xyz[i, 2] z = fens.xyz[i, 3] fens.xyz[i, :] = [(t * Re + (1 - t) * Ri) * cos(a), (t * Re + (1 - t) * Ri) * sin(a), z] end geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field l1 = selectnode( fens; box = [0.0, Inf, 0.0, 0.0, 0.0, Thickness], inflate = tolerance, ) setebc!(u, l1, true, 2, 0.0) l1 = selectnode( fens; box = [0.0, 0.0, 0.0, Inf, 0.0, Thickness], inflate = tolerance, ) setebc!(u, l1, true, 1, 0.0) # Plane-stress constraint: assume the plane z=0 is the plane of symmetry of the plate l1 = selectnode(fens; box = [0.0, Inf, 0.0, Inf, 0.0, 0.0], inflate = tolerance) setebc!(u, l1, true, 3, 0.0) # If this was enabled, the plane-strain constraint would be enforced. # l1 =selectnode(fens; box=[0.0, Inf, 0.0, Inf, Thickness, Thickness], inflate = tolerance) # setebc!(u,l1,true, 3, 0.0) applyebc!(u) numberdofs!(u) el1femm = FEMMBase(IntegDomain(subset(bdryfes, icl), TriRule(3))) function pfun( forceout::FVec{T}, XYZ::FFltMat, tangents::FFltMat, fe_label::FInt, ) where {T} local r = sqrt(XYZ[1]^2 + XYZ[2]^2) nx = XYZ[1] / r ny = XYZ[2] / r forceout[1] = sigmarr(XYZ) * nx - sigmart(XYZ) * ny forceout[2] = sigmarr(XYZ) * ny + sigmart(XYZ) * nx forceout[3] = 0.0 return forceout end fi = ForceIntensity(Float64, 3, pfun) F2 = distribloads(el1femm, geom, u, fi, 2) MR = DeforModelRed3D material = MatDeforElastIso(MR, E, nu) femm = FEMMDeforLinear(MR, IntegDomain(fes, TetRule(4)), material) # The geometry field now needs to be associated with the FEMM femm = associategeometry!(femm, geom) K = stiffness(femm, geom, u) K = cholesky(K) U = K \ (F2) scattersysvec!(u, U[:]) stressfields = elemfieldfromintegpoints(femm, geom, u, :Cauchy, collect(1:6)) push!( convergencestudy, FDataDict( "elementsize" => 1.0 / 2^ref, "fens" => fens, "fes" => fes, "geom" => geom, "u" => u, "femm" => femm, "stressfields" => [stressfields], "tolerance" => tolerance, ), ) end # for ref in # File = "mplate_w_hole_T10m_stress" # open(File * ".jls", "w") do file # serialize(file, convergencestudy) # end end # plate_w_hole_T10_stress function allrun() println("#####################################################") println("# plate_w_hole_T10_PE_convergence ") plate_w_hole_T10_PE_convergence() # println("#####################################################") # println("# plate_w_hole_T10_stress ") # plate_w_hole_T10_stress() # println("#####################################################") # println("# plate_w_hole_RECT_MSH8_convergence ") # plate_w_hole_RECT_MSH8_convergence() # println("#####################################################") # println("# plate_w_hole_H20_stress ") # plate_w_hole_H20_stress() # println("#####################################################") # println("# plate_w_hole_MSH8_convergence ") # plate_w_hole_MSH8_convergence() # println("#####################################################") # println("# plate_w_hole_MSH8_PE_convergence ") # plate_w_hole_MSH8_PE_convergence() # println("#####################################################") # println("# plate_w_hole_MST10_convergence ") # plate_w_hole_MST10_convergence() # println("#####################################################") # println("# plate_w_hole_MST10_PE_convergence ") # plate_w_hole_MST10_PE_convergence() # println("#####################################################") # println("# plate_w_hole_MST10_stress ") # plate_w_hole_MST10_stress() # println("#####################################################") # println("# plate_w_hole_RECT_H20_convergence ") # plate_w_hole_RECT_H20_convergence() return true end # function allrun @info "All examples may be executed with " println("using .$(@__MODULE__); $(@__MODULE__).allrun()") end # module nothing
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
12749
module rltb_examples using FinEtools using FinEtools.AlgoBaseModule: evalconvergencestudy, solve_blocked! using FinEtoolsDeforLinear using FinEtoolsDeforLinear.AlgoDeforLinearModule: linearstatics, exportstresselementwise, exportstress using Statistics: mean using LinearAlgebra: Symmetric, cholesky # Isotropic material E = 1000.0 nu = 0.4999 # Taylor data nu = 0.3 # Taylor data W = 2.5 H = 5.0 L = 50.0 htol = minimum([L, H, W]) / 1000 uzex = -12.6 magn = 0.2 * uzex / 4 Force = magn * W * H * 2 CTE = 0.0 mult = 8 n = 3 # function getfrcL!( forceout, XYZ, tangents, feid, qpid, ) copyto!(forceout, [0.0; 0.0; magn]) return forceout end function rltb_H8_by_hand() elementtag = "H8" println(""" Taylor Cantilever example. Element: $(elementtag) """) fens, fes = H8block(W, L, H, n, mult * n, 2 * n) bfes = meshboundary(fes) # end cross-section surface for the shear loading sectionL = selectelem(fens, bfes; facing = true, direction = [0.0 +1.0 0.0]) # 0 cross-section surface for the reactions section0 = selectelem(fens, bfes; facing = true, direction = [0.0 -1.0 0.0]) # 0 cross-section surface for the reactions sectionlateral = selectelem(fens, bfes; facing = true, direction = [1.0 0.0 0.0]) MR = DeforModelRed3D material = MatDeforElastIso(MR, 0.0, E, nu, CTE) # Material orientation matrix csmat = [i == j ? one(Float64) : zero(Float64) for i = 1:3, j = 1:3] function updatecs!( csmatout, XYZ, tangents, feid, qpid, ) copyto!(csmatout, csmat) return csmatout end femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3, 2)), material) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field lx0 = connectednodes(subset(bfes, section0)) setebc!(u, lx0, true, 1, 0.0) setebc!(u, lx0, true, 2, 0.0) setebc!(u, lx0, true, 3, 0.0) lx1 = connectednodes(subset(bfes, sectionlateral)) setebc!(u, lx1, true, 1, 0.0) applyebc!(u) numberdofs!(u) fi = ForceIntensity(Float64, 3, getfrcL!) el2femm = FEMMBase(IntegDomain(subset(bfes, sectionL), GaussRule(2, 2))) F2 = distribloads(el2femm, geom, u, fi, 2) associategeometry!(femm, geom) K = stiffness(femm, geom, u) u = solve_blocked!(u, K, F2) Tipl = selectnode(fens, box = [0 W L L 0 H], inflate = htol) utip = mean(u.values[Tipl, 3], dims = 1) println("Deflection: $(utip), compared to $(uzex)") File = "rltb_H8_by_hand.vtk" vtkexportmesh(File, fens, fes; vectors = [("u", u.values)]) # @async run(`"paraview.exe" $File`) # modeldata["postprocessing"] = FDataDict("file"=>"hughes_cantilever_stresses_$(elementtag)", "outputcsys"=>CSys(3, 3, updatecs!), "quantity"=>:Cauchy, "component"=>[5]) # modeldata = exportstresselementwise(modeldata) # modeldata["postprocessing"] = FDataDict("file"=>"hughes_cantilever_stresses_$(elementtag)", # "outputcsys"=>CSys(3, 3, updatecs!), "quantity"=>:Cauchy, # "component"=>collect(1:6)) # modeldata = exportstresselementwise(modeldata) # stressfields = ElementalField[modeldata["postprocessing"]["exported"][1]["field"]] true end # rltb_H8_by_hand function rltb_H8_sri_by_hand() elementtag = "H8-SRI" println(""" Taylor Cantilever example. Element: $(elementtag) """) fens, fes = H8block(W, L, H, n, mult * n, 2 * n) bfes = meshboundary(fes) # end cross-section surface for the shear loading sectionL = selectelem(fens, bfes; facing = true, direction = [0.0 +1.0 0.0]) # 0 cross-section surface for the reactions section0 = selectelem(fens, bfes; facing = true, direction = [0.0 -1.0 0.0]) # 0 cross-section surface for the reactions sectionlateral = selectelem(fens, bfes; facing = true, direction = [1.0 0.0 0.0]) MR = DeforModelRed3D material = MatDeforElastIso(MR, 0.0, E, nu, CTE) # Material orientation matrix csmat = [i == j ? one(Float64) : zero(Float64) for i = 1:3, j = 1:3] function updatecs!( csmatout, XYZ, tangents, feid, qpid, ) copyto!(csmatout, csmat) return csmatout end geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field lx0 = connectednodes(subset(bfes, section0)) setebc!(u, lx0, true, 1, 0.0) setebc!(u, lx0, true, 2, 0.0) setebc!(u, lx0, true, 3, 0.0) lx1 = connectednodes(subset(bfes, sectionlateral)) setebc!(u, lx1, true, 1, 0.0) applyebc!(u) numberdofs!(u) fi = ForceIntensity(Float64, 3, getfrcL!) el2femm = FEMMBase(IntegDomain(subset(bfes, sectionL), GaussRule(2, 2))) F2 = distribloads(el2femm, geom, u, fi, 2) # First compute the bulk portion of the stiffness matrix material.D .= FinEtoolsDeforLinear.MatDeforElastIsoModule.bulk_split_tangent_moduli_bulk(E, nu) femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3, 1)), material) associategeometry!(femm, geom) K = stiffness(femm, geom, u) # Next add the shear portion of the stiffness matrix material.D .= FinEtoolsDeforLinear.MatDeforElastIsoModule.bulk_split_tangent_moduli_shear(E, nu) femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3, 2)), material) associategeometry!(femm, geom) K += stiffness(femm, geom, u) u = solve_blocked!(u, K, F2) Tipl = selectnode(fens, box = [0 W L L 0 H], inflate = htol) utip = mean(u.values[Tipl, 3], dims = 1) println("Deflection: $(utip), compared to $(uzex)") File = "rltb_H8_by_hand.vtk" vtkexportmesh(File, fens, fes; vectors = [("u", u.values)]) # @async run(`"paraview.exe" $File`) # modeldata["postprocessing"] = FDataDict("file"=>"hughes_cantilever_stresses_$(elementtag)", "outputcsys"=>CSys(3, 3, updatecs!), "quantity"=>:Cauchy, "component"=>[5]) # modeldata = exportstresselementwise(modeldata) # modeldata["postprocessing"] = FDataDict("file"=>"hughes_cantilever_stresses_$(elementtag)", # "outputcsys"=>CSys(3, 3, updatecs!), "quantity"=>:Cauchy, # "component"=>collect(1:6)) # modeldata = exportstresselementwise(modeldata) # stressfields = ElementalField[modeldata["postprocessing"]["exported"][1]["field"]] true end # rltb_H8_sri_by_hand function rltb_H20_by_hand() elementtag = "H20" println(""" Taylor Cantilever example. Element: $(elementtag) """) fens, fes = H20block(W, L, H, n, mult * n, 2 * n) bfes = meshboundary(fes) # end cross-section surface for the shear loading sectionL = selectelem(fens, bfes; facing = true, direction = [0.0 +1.0 0.0]) # 0 cross-section surface for the reactions section0 = selectelem(fens, bfes; facing = true, direction = [0.0 -1.0 0.0]) # 0 cross-section surface for the reactions sectionlateral = selectelem(fens, bfes; facing = true, direction = [1.0 0.0 0.0]) MR = DeforModelRed3D material = MatDeforElastIso(MR, 0.0, E, nu, CTE) # Material orientation matrix csmat = [i == j ? one(Float64) : zero(Float64) for i = 1:3, j = 1:3] function updatecs!(csmatout, XYZ, tangents, feid) copyto!(csmatout, csmat) end femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3, 2)), material) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field lx0 = connectednodes(subset(bfes, section0)) setebc!(u, lx0, true, 1, 0.0) setebc!(u, lx0, true, 2, 0.0) setebc!(u, lx0, true, 3, 0.0) lx1 = connectednodes(subset(bfes, sectionlateral)) setebc!(u, lx1, true, 1, 0.0) applyebc!(u) numberdofs!(u) fi = ForceIntensity(Float64, 3, getfrcL!) el2femm = FEMMBase(IntegDomain(subset(bfes, sectionL), GaussRule(2, 2))) F2 = distribloads(el2femm, geom, u, fi, 2) associategeometry!(femm, geom) K = stiffness(femm, geom, u) u = solve_blocked!(u, K, F2) Tipl = selectnode(fens, box = [0 W L L 0 H], inflate = htol) utip = mean(u.values[Tipl, 3], dims = 1) println("Deflection: $(utip), compared to $(uzex)") File = "rltb_H20_by_hand.vtk" vtkexportmesh(File, fens, fes; vectors = [("u", u.values)]) # @async run(`"paraview.exe" $File`) # modeldata["postprocessing"] = FDataDict("file"=>"hughes_cantilever_stresses_$(elementtag)", "outputcsys"=>CSys(3, 3, updatecs!), "quantity"=>:Cauchy, "component"=>[5]) # modeldata = exportstresselementwise(modeldata) # modeldata["postprocessing"] = FDataDict("file"=>"hughes_cantilever_stresses_$(elementtag)", # "outputcsys"=>CSys(3, 3, updatecs!), "quantity"=>:Cauchy, # "component"=>collect(1:6)) # modeldata = exportstresselementwise(modeldata) # stressfields = ElementalField[modeldata["postprocessing"]["exported"][1]["field"]] true end # rltb_H20_by_hand function rltb_H8_abaqus_export() elementtag = "H8" println(""" Taylor Cantilever example. Element: $(elementtag) """) fens, fes = H8block(W, L, H, n, mult * n, 2 * n) bfes = meshboundary(fes) # end cross-section surface for the shear loading sectionL = selectelem(fens, bfes; facing = true, direction = [0.0 +1.0 0.0]) # 0 cross-section surface for the reactions section0 = selectelem(fens, bfes; facing = true, direction = [0.0 -1.0 0.0]) # 0 cross-section surface for the reactions sectionlateral = selectelem(fens, bfes; facing = true, direction = [1.0 0.0 0.0]) MR = DeforModelRed3D material = MatDeforElastIso(MR, 0.0, E, nu, CTE) # Material orientation matrix csmat = [i == j ? one(Float64) : zero(Float64) for i = 1:3, j = 1:3] function updatecs!( csmatout, XYZ, tangents, feid, qpid, ) copyto!(csmatout, csmat) return csmatout end femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3, 2)), material) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field lx0 = connectednodes(subset(bfes, section0)) setebc!(u, lx0, true, 1, 0.0) setebc!(u, lx0, true, 2, 0.0) setebc!(u, lx0, true, 3, 0.0) lx1 = connectednodes(subset(bfes, sectionlateral)) setebc!(u, lx1, true, 1, 0.0) applyebc!(u) numberdofs!(u) fi = ForceIntensity(Float64, 3, getfrcL!) el2femm = FEMMBase(IntegDomain(subset(bfes, sectionL), GaussRule(2, 2))) F2 = distribloads(el2femm, geom, u, fi, 2) associategeometry!(femm, geom) K = stiffness(femm, geom, u) u = solve_blocked!(u, K, F2) Tipl = selectnode(fens, box = [0 W L L 0 H], inflate = htol) utip = mean(u.values[Tipl, 3], dims = 1) println("Deflection: $(utip), compared to $(uzex)") AE = AbaqusExporter("rltb_H8_abaqus_export") HEADING( AE, "Taylor Cantilever example. Element: $(elementtag)", ) PART(AE, "PART1") END_PART(AE) ASSEMBLY(AE, "ASSEM1") INSTANCE(AE, "INSTNC1", "PART1") NODE(AE, fens.xyz) ELEMENT(AE, "C3D8", "ALLELEMENTS", 1, finite_elements(femm).conn) ELEMENT( AE, "SFM3D4", "TRACTIONELEMENTS", 1 + count(finite_elements(femm)), finite_elements(el2femm).conn, ) NSET_NSET(AE, "LX0", lx0) NSET_NSET(AE, "LX1", lx1) ORIENTATION(AE, "GLOBALORIENTATION", vec([1.0 0 0]), vec([0 1.0 0])) SOLID_SECTION(AE, "ELASTICITY", "GLOBALORIENTATION", "ALLELEMENTS", "HOURGLASSCTL") SURFACE_SECTION(AE, "TRACTIONELEMENTS") END_INSTANCE(AE) END_ASSEMBLY(AE) MATERIAL(AE, "ELASTICITY") ELASTIC(AE, E, nu) SECTION_CONTROLS(AE, "HOURGLASSCTL", "HOURGLASS=ENHANCED") STEP_PERTURBATION_STATIC(AE) BOUNDARY(AE, "ASSEM1.INSTNC1.LX0", 1) BOUNDARY(AE, "ASSEM1.INSTNC1.LX0", 2) BOUNDARY(AE, "ASSEM1.INSTNC1.LX0", 3) BOUNDARY(AE, "ASSEM1.INSTNC1.LX1", 1) DLOAD(AE, "ASSEM1.INSTNC1.TRACTIONELEMENTS", vec([0.0, 0.0, -magn])) END_STEP(AE) close(AE) true end # rltb_H8_by_hand function allrun() println("#####################################################") println("# rltb_H8_by_hand ") rltb_H8_by_hand() println("#####################################################") println("# rltb_H8_sri_by_hand ") rltb_H8_sri_by_hand() println("#####################################################") println("# rltb_H20_by_hand ") rltb_H20_by_hand() println("#####################################################") println("# rltb_H8_abaqus_export ") rltb_H8_abaqus_export() return true end # function allrun @info "All examples may be executed with " println("using .$(@__MODULE__); $(@__MODULE__).allrun()") end # module nothing
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
7544
module solver_examples using FinEtools using FinEtools.AlgoBaseModule: evalconvergencestudy, solve_blocked! using FinEtoolsDeforLinear using FinEtoolsDeforLinear.AlgoDeforLinearModule: linearstatics, exportstresselementwise, exportstress using Statistics: mean using LinearAlgebra using SparseArrays using LinearSolve using SciMLOperators using IncompleteLU using Printf using SymRCM using SparseMatricesCSR using ThreadedSparseCSR using UnicodePlots using PlotlyJS # using Infiltrator using Random using DataDrop # Isotropic material E = 1000.0 nu = 0.4999 # Taylor data: nearly incompressible material nu = 0.3 # Compressible material W = 25.0 H = 50.0 L = 50.0 htol = minimum([L, H, W]) / 1000 uzex = -0.16 magn = 0.2 * (-12.6) / 4 Force = magn * W * H * 2 CTE = 0.0 n = 5 # function getfrcL!(forceout, XYZ, tangents, feid, qpid) copyto!(forceout, [0.0; 0.0; magn]) end function example(n = 10; precond = :ilu, alg = :cg, other...) elementtag = "H8" println(""" Stubby corbel example. Element: $(elementtag) """) fens, fes = H8block(W, L, H, n, 2 * n, 2 * n) println("Number of elements: $(count(fes))") bfes = meshboundary(fes) # end cross-section surface for the shear loading sectionL = selectelem(fens, bfes; facing = true, direction = [0.0 +1.0 0.0]) # 0 cross-section surface for the reactions section0 = selectelem(fens, bfes; facing = true, direction = [0.0 -1.0 0.0]) # 0 cross-section surface for the reactions sectionlateral = selectelem(fens, bfes; facing = true, direction = [1.0 0.0 0.0]) MR = DeforModelRed3D material = MatDeforElastIso(MR, 0.0, E, nu, CTE) # Material orientation matrix csmat = [i == j ? one(Float64) : zero(Float64) for i = 1:3, j = 1:3] function updatecs!(csmatout, XYZ, tangents, feid, qpid) copyto!(csmatout, csmat) end geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field # Renumber the nodes femm = FEMMBase(IntegDomain(fes, GaussRule(3, 2))) C = connectionmatrix(femm, count(fens)) perm = symrcm(C) femm = FEMMDeforLinearMSH8(MR, IntegDomain(fes, GaussRule(3, 2)), material) lx0 = connectednodes(subset(bfes, section0)) setebc!(u, lx0, true, 1, 0.0) setebc!(u, lx0, true, 2, 0.0) setebc!(u, lx0, true, 3, 0.0) lx1 = connectednodes(subset(bfes, sectionlateral)) setebc!(u, lx1, true, 1, 0.0) applyebc!(u) numberdofs!(u, perm) # numberdofs!(u) println("nfreedofs(u) = $(nfreedofs(u))") fi = ForceIntensity(Float64, 3, getfrcL!) el2femm = FEMMBase(IntegDomain(subset(bfes, sectionL), GaussRule(2, 2))) F = distribloads(el2femm, geom, u, fi, 2) F_f = vector_blocked_f(F, nfreedofs(u)) associategeometry!(femm, geom) K = stiffness(femm, geom, u) K_ff = matrix_blocked_ff(K, nfreedofs(u)) K = nothing println("Stiffness: number of non zeros = $(nnz(K_ff)) [ND]") println("Sparsity = $(nnz(K_ff)/size(K_ff, 1)/size(K_ff, 2)) [ND]") # display(spy(K_ff, canvas = DotCanvas)) Tipl = selectnode(fens, box = [0 W L L 0 H], inflate = htol) if precond == :ilu mK_ffd = mean(diag(K_ff)) PRECOND = ilu(K_ff, τ = mK_ffd / 100.0) elseif precond == :kdiag PRECOND = Diagonal(diag(K_ff)) end if alg == :cg ALG = KrylovJL_CG elseif alg == :gmres ALG = KrylovJL_GMRES end verbose = haskey(other, :verbose) ? other[:verbose] : false prob = LinearProblem(K_ff, F_f) @time sol = solve(prob, ALG(), Pl=PRECOND, verbose=verbose) scattersysvec!(u, sol.u[:]) utip = mean(u.values[Tipl, 3], dims = 1) println("Deflection: $(utip), compared to $(uzex)") File = "example-n=$(n).vtk" vtkexportmesh(File, fens, fes; vectors = [("u", u.values)]) @async run(`"paraview.exe" $File`) true end # example function example_wop(n = 10; precond = :ilu, alg = :cg, other...) elementtag = "H8" println(""" Stubby corbel example. Element: $(elementtag) """) fens, fes = H8block(W, L, H, n, 2 * n, 2 * n) println("Number of elements: $(count(fes))") bfes = meshboundary(fes) # end cross-section surface for the shear loading sectionL = selectelem(fens, bfes; facing = true, direction = [0.0 +1.0 0.0]) # 0 cross-section surface for the reactions section0 = selectelem(fens, bfes; facing = true, direction = [0.0 -1.0 0.0]) # 0 cross-section surface for the reactions sectionlateral = selectelem(fens, bfes; facing = true, direction = [1.0 0.0 0.0]) MR = DeforModelRed3D material = MatDeforElastIso(MR, 0.0, E, nu, CTE) # Material orientation matrix csmat = [i == j ? one(Float64) : zero(Float64) for i = 1:3, j = 1:3] function updatecs!(csmatout, XYZ, tangents, feid, qpid) copyto!(csmatout, csmat) end geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field # Renumber the nodes femm = FEMMBase(IntegDomain(fes, GaussRule(3, 2))) C = connectionmatrix(femm, count(fens)) perm = symrcm(C) femm = FEMMDeforLinearMSH8(MR, IntegDomain(fes, GaussRule(3, 2)), material) lx0 = connectednodes(subset(bfes, section0)) setebc!(u, lx0, true, 1, 0.0) setebc!(u, lx0, true, 2, 0.0) setebc!(u, lx0, true, 3, 0.0) lx1 = connectednodes(subset(bfes, sectionlateral)) setebc!(u, lx1, true, 1, 0.0) applyebc!(u) numberdofs!(u, perm) # numberdofs!(u) println("nfreedofs(u) = $(nfreedofs(u))") fi = ForceIntensity(Float64, 3, getfrcL!) el2femm = FEMMBase(IntegDomain(subset(bfes, sectionL), GaussRule(2, 2))) F = distribloads(el2femm, geom, u, fi, 2) F_f = vector_blocked_f(F, nfreedofs(u)) associategeometry!(femm, geom) K = stiffness(femm, geom, u) K_ff = matrix_blocked_ff(K, nfreedofs(u)) K = nothing println("Stiffness: number of non zeros = $(nnz(K_ff)) [ND]") println("Sparsity = $(nnz(K_ff)/size(K_ff, 1)/size(K_ff, 2)) [ND]") # display(spy(K_ff, canvas = DotCanvas)) Tipl = selectnode(fens, box = [0 W L L 0 H], inflate = htol) if precond == :ilu mK_ffd = mean(diag(K_ff)) PRECOND = ilu(K_ff, τ = mK_ffd / 100.0) elseif precond == :kdiag PRECOND = Diagonal(diag(K_ff)) end if alg == :cg ALG = KrylovJL_CG elseif alg == :gmres ALG = KrylovJL_GMRES end verbose = haskey(other, :verbose) ? other[:verbose] : false # mop = MatrixOperator(K_ff) # prob = LinearProblem(mop, F_f) K_ff = SparseMatricesCSR.SparseMatrixCSR(Transpose(K_ff)) fop = FunctionOperator((v, u, p, t) -> bmul!(v, K_ff, u), F_f, zeros(length(F_f))) # fop = FunctionOperator((v, u, p, t) -> mul!(v, K_ff, u), F_f, zeros(length(F_f)); ifcache = false) prob = LinearProblem(fop, F_f) @time sol = solve(prob, ALG(), Pl=PRECOND, verbose=verbose) scattersysvec!(u, sol.u[:]) utip = mean(u.values[Tipl, 3], dims = 1) println("Deflection: $(utip), compared to $(uzex)") File = "example-n=$(n).vtk" vtkexportmesh(File, fens, fes; vectors = [("u", u.values)]) # @async run(`"paraview.exe" $File`) true end # example_wop function allrun(n = 10; args...) println("#####################################################") println("# example ") example(n; args...) return true end # function allrun @info "All examples may be executed with " println("using .$(@__MODULE__); $(@__MODULE__).allrun()") end # module nothing
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
3696
module sparse_examples using FinEtools using FinEtools.AlgoBaseModule: evalconvergencestudy, solve_blocked! using FinEtoolsDeforLinear using FinEtoolsDeforLinear.AlgoDeforLinearModule: linearstatics, exportstresselementwise, exportstress using Statistics: mean using LinearAlgebra using SparseArrays using LinearSolve using SciMLOperators using IncompleteLU using Printf using SymRCM using SimplySparse using SparseMatricesCSR using ThreadedSparseCSR using UnicodePlots using PlotlyJS using Random using DataDrop # Isotropic material E = 1000.0 nu = 0.4999 # Taylor data: nearly incompressible material nu = 0.3 # Compressible material W = 25.0 H = 50.0 L = 50.0 htol = minimum([L, H, W]) / 1000 uzex = -0.16 magn = 0.2 * (-12.6) / 4 Force = magn * W * H * 2 CTE = 0.0 n = 5 # function getfrcL!(forceout, XYZ, tangents, feid, qpid) copyto!(forceout, [0.0; 0.0; magn]) end function example(n = 10; precond = :ilu, alg = :cg, other...) elementtag = "H8" println(""" Stubby corbel example. Element: $(elementtag), n=$(n) """) fens, fes = H8block(W, L, H, n, 2 * n, 2 * n) println("Number of elements: $(count(fes))") bfes = meshboundary(fes) # end cross-section surface for the shear loading sectionL = selectelem(fens, bfes; facing = true, direction = [0.0 +1.0 0.0]) # 0 cross-section surface for the reactions section0 = selectelem(fens, bfes; facing = true, direction = [0.0 -1.0 0.0]) # 0 cross-section surface for the reactions sectionlateral = selectelem(fens, bfes; facing = true, direction = [1.0 0.0 0.0]) MR = DeforModelRed3D material = MatDeforElastIso(MR, 0.0, E, nu, CTE) # Material orientation matrix csmat = [i == j ? one(Float64) : zero(Float64) for i = 1:3, j = 1:3] function updatecs!(csmatout, XYZ, tangents, feid, qpid) copyto!(csmatout, csmat) end geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field # Renumber the nodes femm = FEMMBase(IntegDomain(fes, GaussRule(3, 2))) C = connectionmatrix(femm, count(fens)) perm = symrcm(C) femm = FEMMDeforLinearMSH8(MR, IntegDomain(fes, GaussRule(3, 2)), material) lx0 = connectednodes(subset(bfes, section0)) setebc!(u, lx0, true, 1, 0.0) setebc!(u, lx0, true, 2, 0.0) setebc!(u, lx0, true, 3, 0.0) lx1 = connectednodes(subset(bfes, sectionlateral)) setebc!(u, lx1, true, 1, 0.0) applyebc!(u) numberdofs!(u, perm) # numberdofs!(u) println("nalldofs(u) = $(nalldofs(u))") fi = ForceIntensity(Float64, 3, getfrcL!) el2femm = FEMMBase(IntegDomain(subset(bfes, sectionL), GaussRule(2, 2))) F = distribloads(el2femm, geom, u, fi, 2) F_f = vector_blocked_f(F, nfreedofs(u)) associategeometry!(femm, geom) ass = SysmatAssemblerSparse(0.0) setnomatrixresult(ass, false) K = stiffness(femm, ass, geom, u) I, J, V = deepcopy(ass._rowbuffer), deepcopy(ass._colbuffer), deepcopy(ass._matbuffer) println("Stiffness: number of non zeros = $(length(I)) [ND]") @time S = sparse(I, J, V, nalldofs(u), nalldofs(u)) # @time S = SimplySparse.sparse(I, J, V, nalldofs(u), nalldofs(u)) I, J, V = deepcopy(ass._rowbuffer), deepcopy(ass._colbuffer), deepcopy(ass._matbuffer) @time S = SimplySparse.par_sparse(I, J, V, nalldofs(u), nalldofs(u)) true end # example function allrun(n = 30; args...) println("#####################################################") println("# example ") example(n; args...) return true end # function allrun @info "All examples may be executed with " println("using .$(@__MODULE__); $(@__MODULE__).allrun()") end # module nothing
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
5549
module sparsity_examples using FinEtools using FinEtools.AlgoBaseModule: evalconvergencestudy, solve_blocked! using FinEtoolsDeforLinear using FinEtoolsDeforLinear.AlgoDeforLinearModule: linearstatics, exportstresselementwise, exportstress using Statistics: mean using LinearAlgebra using SparseArrays using LinearSolve using SciMLOperators using IncompleteLU using Printf using SymRCM using SimplySparse using SparseMatricesCSR using ThreadedSparseCSR using UnicodePlots using PlotlyJS using Random using DataDrop using DataStructures using AddToSparse # Isotropic material E = 1000.0 nu = 0.4999 # Taylor data: nearly incompressible material nu = 0.3 # Compressible material W = 25.0 H = 50.0 L = 50.0 htol = minimum([L, H, W]) / 1000 uzex = -0.16 magn = 0.2 * (-12.6) / 4 Force = magn * W * H * 2 CTE = 0.0 n = 5 # function __collect_unique_node_neighbors(ellist, conn, npe) totn = length(ellist) * npe nodes = fill(zero(eltype(conn[1])), totn) p = 1 for i in ellist for k in conn[i] nodes[p] = k p += 1 end end sort!(nodes) unique!(nodes) return nodes end function _unique_nodes(n2e, conn) npe = length(conn[1]) unique_nodes = fill(Vector{eltype(n2e.map[1])}(), length(n2e.map)) Base.Threads.@threads for i in 1:length(n2e.map) # run this in PARALLEL unique_nodes[i] = __collect_unique_node_neighbors(n2e.map[i], conn, npe) end return unique_nodes end function _populate_dofs(n, n2n, dofnums, start, dofs) nd = size(dofnums, 2) totd = length(n2n[n]) * nd _dofs = fill(zero(eltype(dofs)), totd) p = 1 for k in n2n[n] for d in axes(dofnums, 2) _dofs[p] = dofnums[k, d] p += 1 end end sort!(_dofs) for d in axes(dofnums, 2) j = dofnums[n, d] s = start[j] p = 0 for m in eachindex(_dofs) dofs[s+p] = _dofs[m] p += 1 end end return nothing end function _prepare_start_dofs(IT, n2n, dofnums) nd = size(dofnums, 2) total_dofs = length(n2n) * nd lengths = Vector{IT}(undef, total_dofs+1) for k in eachindex(n2n) kl = length(n2n[k]) * nd for d in axes(dofnums, 2) j = dofnums[k, d] lengths[j] = kl end end lengths[end] = 0 # Now we start overwriting the lengths array with the starts start = lengths sumlen = 0 len = start[1] sumlen += len start[1] = 1 plen = len for k in 2:total_dofs len = start[k] sumlen += len start[k] = start[k-1] + plen plen = len end start[end] = sumlen+1 dofs = Vector{IT}(undef, sumlen) return start, dofs end function example(n=10; precond=:ilu, alg=:cg, other...) elementtag = "H8" println(""" Stubby corbel example. Element: $(elementtag), n=$(n) """) fens, fes = H8block(W, L, H, n, 2 * n, 2 * n) println("Number of elements: $(count(fes))") bfes = meshboundary(fes) # end cross-section surface for the shear loading sectionL = selectelem(fens, bfes; facing=true, direction=[0.0 +1.0 0.0]) # 0 cross-section surface for the reactions section0 = selectelem(fens, bfes; facing=true, direction=[0.0 -1.0 0.0]) # 0 cross-section surface for the reactions sectionlateral = selectelem(fens, bfes; facing=true, direction=[1.0 0.0 0.0]) MR = DeforModelRed3D material = MatDeforElastIso(MR, 0.0, E, nu, CTE) # Material orientation matrix csmat = [i == j ? one(Float64) : zero(Float64) for i = 1:3, j = 1:3] function updatecs!(csmatout, XYZ, tangents, feid, qpid) copyto!(csmatout, csmat) end geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field # Renumber the nodes femm = FEMMBase(IntegDomain(fes, GaussRule(3, 2))) C = connectionmatrix(femm, count(fens)) perm = symrcm(C) femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3, 3)), material) lx0 = connectednodes(subset(bfes, section0)) setebc!(u, lx0, true, 1, 0.0) setebc!(u, lx0, true, 2, 0.0) setebc!(u, lx0, true, 3, 0.0) lx1 = connectednodes(subset(bfes, sectionlateral)) setebc!(u, lx1, true, 1, 0.0) applyebc!(u) numberdofs!(u, perm) # numberdofs!(u) println("nalldofs(u) = $(nalldofs(u))") associategeometry!(femm, geom) ass = SysmatAssemblerSparse(0.0) setnomatrixresult(ass, false) K = stiffness(femm, ass, geom, u) I, J, V = deepcopy(ass._rowbuffer), deepcopy(ass._colbuffer), deepcopy(ass._matbuffer) @time K = sparse(I, J, V, nalldofs(u), nalldofs(u)) # @show K.colptr # @show K.rowval IT = eltype(u.dofnums) @time n2e = FENodeToFEMap(fes.conn, count(fens)) @time n2n = _unique_nodes(n2e, fes.conn) @time start, dofs = _prepare_start_dofs(IT, n2n, u.dofnums) @time Base.Threads.@threads for n in 1:count(fens) _populate_dofs(n, n2n, u.dofnums, start, dofs) end # @show start # @show dofs S = SparseMatrixCSC(size(K)..., start, dofs, fill(0.0, length(dofs))) AddToSparse.addtosparse(S, I, J, V) @show norm(K - S) / norm(K) true end # example function allrun(n=3; args...) println("#####################################################") println("# example ") example(n; args...) return true end # function allrun @info "All examples may be executed with " println("using .$(@__MODULE__); $(@__MODULE__).allrun()") end # module nothing
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
6044
module ss_beam_examples using FinEtools using FinEtools.AlgoBaseModule: evalconvergencestudy, solve_blocked! using FinEtoolsDeforLinear using FinEtoolsDeforLinear.AlgoDeforLinearModule: linearstatics, exportstresselementwise, exportstress using Statistics: mean using LinearAlgebra: Symmetric, cholesky # Isotropic material E = 209000.0 nu = 0.3 #Taylor data W = 30.0 H = 16.25 L = 200.0 htol = minimum([L, H, W]) / 1000 magn = 1.0 uzex = -5 / 384 * magn * W * L^4 / (E * W * H^3 / 12) n = 8 # function getfrcL!( forceout::FFltVec, XYZ::FFltMat, tangents::FFltMat, feid::FInt, qpid::FInt, ) copyto!(forceout, [0.0; 0.0; -magn]) forceout end function test_h8() elementtag = "H8" println(""" SS beam example. Element: $(elementtag) """) fens, fes = H8block(L, W, H, n, 2, 1) bfes = meshboundary(fes) # Simple support sectionL = selectelem(fens, bfes; facing = true, direction = [+1.0 0.0 0.0]) # Simple support section0 = selectelem(fens, bfes; facing = true, direction = [-1.0 0.0 0.0]) # Top loaded surface sectionlateral = selectelem(fens, bfes; facing = true, direction = [0.0 0.0 1.0]) MR = DeforModelRed3D material = MatDeforElastIso(MR, 0.0, E, nu, 0.0) # Material orientation matrix csmat = [i == j ? one(FFlt) : zero(FFlt) for i = 1:3, j = 1:3] function updatecs!(csmatout::FFltMat, XYZ::FFltMat, tangents::FFltMat, feid::FInt) copyto!(csmatout, csmat) end femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3, 2)), material) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field lx0 = connectednodes(subset(bfes, section0)) setebc!(u, lx0, true, 2, 0.0) setebc!(u, lx0, true, 3, 0.0) lx0 = connectednodes(subset(bfes, sectionL)) setebc!(u, lx0, true, 2, 0.0) setebc!(u, lx0, true, 3, 0.0) # Fix one node in the X direction lx1 = connectednodes(subset(bfes, sectionlateral))[1] setebc!(u, lx1, true, 1, 0.0) applyebc!(u) numberdofs!(u) fi = ForceIntensity(Float64, 3, getfrcL!) el2femm = FEMMBase(IntegDomain(subset(bfes, sectionlateral), GaussRule(2, 2))) F2 = distribloads(el2femm, geom, u, fi, 2) associategeometry!(femm, geom) K = stiffness(femm, geom, u) u = solve_blocked!(u, K, F2) utip = minimum(u.values[:, 3]) println("Deflection: $(utip), compared to $(uzex)") File = "test_h8.vtk" vtkexportmesh(File, fens, fes; vectors = [("u", u.values)]) @async run(`"paraview.exe" $File`) # modeldata["postprocessing"] = FDataDict("file"=>"hughes_cantilever_stresses_$(elementtag)", "outputcsys"=>CSys(3, 3, updatecs!), "quantity"=>:Cauchy, "component"=>[5]) # modeldata = exportstresselementwise(modeldata) # modeldata["postprocessing"] = FDataDict("file"=>"hughes_cantilever_stresses_$(elementtag)", # "outputcsys"=>CSys(3, 3, updatecs!), "quantity"=>:Cauchy, # "component"=>collect(1:6)) # modeldata = exportstresselementwise(modeldata) # stressfields = ElementalField[modeldata["postprocessing"]["exported"][1]["field"]] true end # test_h8 function test_h20r() elementtag = "H20R" println(""" SS beam example. Element: $(elementtag) """) fens, fes = H20block(L, W, H, n, 2, 1) bfes = meshboundary(fes) # Simple support sectionL = selectelem(fens, bfes; facing = true, direction = [+1.0 0.0 0.0]) # Simple support section0 = selectelem(fens, bfes; facing = true, direction = [-1.0 0.0 0.0]) # Top loaded surface sectionlateral = selectelem(fens, bfes; facing = true, direction = [0.0 0.0 1.0]) MR = DeforModelRed3D material = MatDeforElastIso(MR, 0.0, E, nu, 0.0) # Material orientation matrix csmat = [i == j ? one(FFlt) : zero(FFlt) for i = 1:3, j = 1:3] function updatecs!(csmatout::FFltMat, XYZ::FFltMat, tangents::FFltMat, feid::FInt) copyto!(csmatout, csmat) end femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3, 2)), material) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field lx0 = connectednodes(subset(bfes, section0)) setebc!(u, lx0, true, 2, 0.0) setebc!(u, lx0, true, 3, 0.0) lx0 = connectednodes(subset(bfes, sectionL)) setebc!(u, lx0, true, 2, 0.0) setebc!(u, lx0, true, 3, 0.0) # Fix one node in the X direction lx1 = connectednodes(subset(bfes, sectionlateral))[1] setebc!(u, lx1, true, 1, 0.0) applyebc!(u) numberdofs!(u) fi = ForceIntensity(Float64, 3, getfrcL!) el2femm = FEMMBase(IntegDomain(subset(bfes, sectionlateral), GaussRule(2, 2))) F2 = distribloads(el2femm, geom, u, fi, 2) associategeometry!(femm, geom) K = stiffness(femm, geom, u) u = solve_blocked!(u, K, F2) utip = minimum(u.values[:, 3]) println("Deflection: $(utip), compared to $(uzex)") File = "test_h20r.vtk" vtkexportmesh(File, fens, fes; vectors = [("u", u.values)]) @async run(`"paraview.exe" $File`) # modeldata["postprocessing"] = FDataDict("file"=>"hughes_cantilever_stresses_$(elementtag)", "outputcsys"=>CSys(3, 3, updatecs!), "quantity"=>:Cauchy, "component"=>[5]) # modeldata = exportstresselementwise(modeldata) # modeldata["postprocessing"] = FDataDict("file"=>"hughes_cantilever_stresses_$(elementtag)", # "outputcsys"=>CSys(3, 3, updatecs!), "quantity"=>:Cauchy, # "component"=>collect(1:6)) # modeldata = exportstresselementwise(modeldata) # stressfields = ElementalField[modeldata["postprocessing"]["exported"][1]["field"]] true end # test_h8 function allrun() println("#####################################################") println("# test_h8 ") test_h8() println("#####################################################") println("# test_h20r ") test_h20r() return true end # function allrun @info "All examples may be executed with " println("using .$(@__MODULE__); $(@__MODULE__).allrun()") end # module nothing
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
33373
module stubby_corbel_examples using FinEtools using FinEtools.AlgoBaseModule: evalconvergencestudy, solve_blocked! using FinEtoolsDeforLinear using FinEtoolsDeforLinear.AlgoDeforLinearModule: linearstatics, exportstresselementwise, exportstress using Statistics: mean using LinearAlgebra using Krylov, LinearOperators, IncompleteLU using SparseArrays using SuiteSparse using Printf using SymRCM using UnicodePlots using PlotlyJS # using Infiltrator using Random using ILUZero # using SkylineSolvers using LDLFactorizations using LimitedLDLFactorizations, LinearOperators, Krylov using FinEtoolsMultithreading.Exports using FinEtoolsMultithreading: domain_decomposition, parallel_matrix_assembly!, SysmatAssemblerSparsePatt using FinEtoolsMultithreading using DataDrop import CoNCMOR: CoNCData, transfmatrix, LegendreBasis, SineCosineBasis # Isotropic material E = 1000.0 nu = 0.4999 # Taylor data: nearly incompressible material nu = 0.3 # Compressible material W = 25.0 H = 50.0 L = 50.0 htol = minimum([L, H, W]) / 1000 uzex = -0.16 magn = 0.2 * (-12.6) / 4 Force = magn * W * H * 2 CTE = 0.0 n = 5 # function getfrcL!(forceout, XYZ, tangents, feid, qpid) copyto!(forceout, [0.0; 0.0; magn]) end transfm(m, t, tT) = (tT * m * t) transfv(v, t, tT) = (tT * v) function morprecon2d(y, v, Phi, Kd, K, mixprop) Kr = transfm(K, Phi, Phi') y .= (1 - mixprop) * (Kd \ v) + mixprop * (Phi * (Kr \ (Phi' * v))) return y end function morprecond3(y, v, Phi, Kd, Kr, mixprop) y .= (1 - mixprop) * (Kd \ v) + mixprop * (Phi * (Kr \ (Phi' * v))) return y end function morprecond4(y, v, Phi, Kd, Kr, mixprop) y .= (Phi * (((1 - mixprop) * (Phi' * Kd * Phi) + mixprop * Kr) \ (Phi' * v))) return y end # morprecond3nomix(y, v, Phi, Kd, Kr, mixprop) = begin # y .= (Kd \ v) + (Phi * (Kr \ (Phi' * v))) # return y # end function ildl(K::AbstractMatrix{T}; kwargs...) where {T} F = lldl(K; kwargs...) F.D .= abs.(F.D) n = length(F.D) return LinearOperator(T, n, n, true, true, (y, v) -> ldiv!(y, F, v)) end function stubby_corbel_H8_by_hand() elementtag = "H8" println(""" Stubby corbel example. Element: $(elementtag) """) fens, fes = H8block(W, L, H, n, 2 * n, 2 * n) bfes = meshboundary(fes) # end cross-section surface for the shear loading sectionL = selectelem(fens, bfes; facing = true, direction = [0.0 +1.0 0.0]) # 0 cross-section surface for the reactions section0 = selectelem(fens, bfes; facing = true, direction = [0.0 -1.0 0.0]) # 0 cross-section surface for the reactions sectionlateral = selectelem(fens, bfes; facing = true, direction = [1.0 0.0 0.0]) MR = DeforModelRed3D material = MatDeforElastIso(MR, 0.0, E, nu, CTE) # Material orientation matrix csmat = [i == j ? one(Float64) : zero(Float64) for i = 1:3, j = 1:3] function updatecs!(csmatout, XYZ, tangents, feid, qpid) copyto!(csmatout, csmat) end femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3, 2)), material) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field lx0 = connectednodes(subset(bfes, section0)) setebc!(u, lx0, true, 1, 0.0) setebc!(u, lx0, true, 2, 0.0) setebc!(u, lx0, true, 3, 0.0) lx1 = connectednodes(subset(bfes, sectionlateral)) setebc!(u, lx1, true, 1, 0.0) applyebc!(u) numberdofs!(u) println("nfreedofs(u) = $(nfreedofs(u))") fi = ForceIntensity(Float64, 3, getfrcL!) el2femm = FEMMBase(IntegDomain(subset(bfes, sectionL), GaussRule(2, 2))) F = distribloads(el2femm, geom, u, fi, 2) associategeometry!(femm, geom) K = stiffness(femm, geom, u) @time solve_blocked!(u, K, F) Tipl = selectnode(fens, box = [0 W L L 0 H], inflate = htol) utip = mean(u.values[Tipl, 3], dims = 1) println("Deflection: $(utip), compared to $(uzex)") File = "stubby_corbel_H8_by_hand.vtk" vtkexportmesh(File, fens, fes; vectors = [("u", u.values)]) @async run(`"paraview.exe" $File`) # modeldata["postprocessing"] = FDataDict("file"=>"hughes_cantilever_stresses_$(elementtag)", "outputcsys"=>CSys(3, 3, updatecs!), "quantity"=>:Cauchy, "component"=>[5]) # modeldata = exportstresselementwise(modeldata) # modeldata["postprocessing"] = FDataDict("file"=>"hughes_cantilever_stresses_$(elementtag)", # "outputcsys"=>CSys(3, 3, updatecs!), "quantity"=>:Cauchy, # "component"=>collect(1:6)) # modeldata = exportstresselementwise(modeldata) # stressfields = ElementalField[modeldata["postprocessing"]["exported"][1]["field"]] true end # stubby_corbel_H8_by_hand function stubby_corbel_H8_big_iso(n = 10, solver = :suitesparse) elementtag = "H8" println(""" Stubby corbel example. Element: $(elementtag) """) fens, fes = H8block(W, L, H, n, 2 * n, 2 * n) println("Number of elements: $(count(fes))") bfes = meshboundary(fes) # end cross-section surface for the shear loading sectionL = selectelem(fens, bfes; facing = true, direction = [0.0 +1.0 0.0]) # 0 cross-section surface for the reactions section0 = selectelem(fens, bfes; facing = true, direction = [0.0 -1.0 0.0]) # 0 cross-section surface for the reactions sectionlateral = selectelem(fens, bfes; facing = true, direction = [1.0 0.0 0.0]) MR = DeforModelRed3D material = MatDeforElastIso(MR, 0.0, E, nu, CTE) # Material orientation matrix csmat = [i == j ? one(Float64) : zero(Float64) for i = 1:3, j = 1:3] function updatecs!(csmatout, XYZ, tangents, feid, qpid) copyto!(csmatout, csmat) end geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field # Renumber the nodes femm = FEMMBase(IntegDomain(fes, GaussRule(3, 2))) C = connectionmatrix(femm, count(fens)) # display(spy(C, canvas = DotCanvas)) # I, J, V = findnz(C) # @show bw = maximum(I .- J) + 1 perm = symrcm(C) # C = C[perm, perm] # display(spy(C, canvas = DotCanvas)) # I, J, V = findnz(C) # @show bw = maximum(I .- J) + 1 femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3, 2)), material) lx0 = connectednodes(subset(bfes, section0)) setebc!(u, lx0, true, 1, 0.0) setebc!(u, lx0, true, 2, 0.0) setebc!(u, lx0, true, 3, 0.0) lx1 = connectednodes(subset(bfes, sectionlateral)) setebc!(u, lx1, true, 1, 0.0) applyebc!(u) numberdofs!(u, perm) # numberdofs!(u) println("nfreedofs(u) = $(nfreedofs(u))") fi = ForceIntensity(Float64, 3, getfrcL!) el2femm = FEMMBase(IntegDomain(subset(bfes, sectionL), GaussRule(2, 2))) F = distribloads(el2femm, geom, u, fi, 2) associategeometry!(femm, geom) K = stiffness(femm, geom, u) println("Stiffness: number of non zeros = $(nnz(K)) [ND]") println("Sparsity = $(nnz(K)/size(K, 1)/size(K, 2)) [ND]") display(spy(K, canvas = DotCanvas)) # DataDrop.store_matrix("K", K) Tipl = selectnode(fens, box = [0 W L L 0 H], inflate = htol) if solver == :suitesparse # @show methods(SuiteSparse.CHOLMOD.ldlt, (typeof(K), )) # @time K = SuiteSparse.CHOLMOD.ldlt(K) @time K = SuiteSparse.CHOLMOD.cholesky(K) # @time K = SparseArrays.ldlt(K) # @time K = cholesky(K) @time U = K \ (F) elseif solver == :cg n = size(K, 1) mKd = mean(diag(K)) # @time factor = ilu(K, τ = mKd / 100.0) # This may work for compressible materials @time factor = ilu(K, τ = mKd / 1000000.0) # This may work for incompressible materials # factor = ilu0(K) @show nnz(factor) / nnz(K) opM = LinearOperator(Float64, n, n, false, false, (y, v) -> ldiv!(y, factor, v)) @time (U, stats) = Krylov.cg(K, F; M = opM, itmax = Int(round(n / 2)), verbose = 1) elseif solver == :scaledcg n = size(K, 1) idKs = Diagonal(1.0 ./ sqrt.(diag(K))) sK = idKs * K * idKs @show mKd = mean(diag(sK)) # @time factor = ilu(sK, τ = 0.01) # This may work for compressible materials @time factor = ilu(sK, τ = 0.000001) # This may work for incompressible materials # @time factor = ilu0(sK) @show nnz(factor) / nnz(K) opM = LinearOperator(Float64, n, n, false, false, (y, v) -> ldiv!(y, factor, v)) @time (U, stats) = Krylov.cg(sK, idKs * F; M = opM, itmax = Int(round(n / 2)), verbose = 1) U = Vector(idKs * U) elseif solver == :skyline I, J, V = findnz(K) @show bw = maximum(abs.(I .- J)) + 1 M = size(K, 1) K = nothing GC.gc() sky = SkylineSolvers.Ldlt.SkylineMatrix(I, J, V, M) I = nothing J = nothing V = nothing GC.gc() @show SkylineSolvers.Ldlt.nnz(sky) @time SkylineSolvers.Ldlt.factorize!(sky) @time U = SkylineSolvers.Ldlt.solve(sky, F) elseif solver == :mor Nc = 16 nbf1max = 3 mixprop = 0.5 partitioning = nodepartitioning(fens, Nc) mor = CoNCData(fens, partitioning) Phi = transfmatrix(mor, LegendreBasis, nbf1max, u) transfm(m, t, tT) = (tT * m * t) transfv(v, t, tT) = (tT * v) PhiT = Phi' Kr = transfm(K, Phi, PhiT) @show size(Kr) Krfactor = lu(Kr) Ur = Phi * (Krfactor \ (PhiT * F)) scattersysvec!(u, Ur[:]) utip = mean(u.values[Tipl, 3], dims = 1) println("First Guess of Deflection: $(utip), compared to $(uzex)") R = F - K * Ur n = size(K, 1) Kd = Diagonal(diag(K)) Krd = fill(0.0, size(K, 1)) for i = 1:size(K, 1) Krd = Phi[i, :] * Kr * PhiT[i, :] end trace1 = scatter( x = 1:length(Krd), y = Krd, mode = "lines", line_width = 1.5, line_color = "RoyalBlue", ) trace2 = scatter( x = 1:length(Krd), y = diag(K), mode = "lines", line_width = 1.5, line_color = "red", ) data = [trace1, trace2] layout = Layout(; title = "Data Labels Hover") display(plot(data, layout)) # @show mKd = mean(diag(K)) # @time factor0 = ilu(K, τ = mKd / 10.0) # This may work for incompressible materials # itr = 0 function morprecond(y, v) y .= (1 - mixprop) * (Kd \ v) + mixprop * (Phi * (Krfactor \ (PhiT * v))) end opM = LinearOperator(Float64, n, n, false, false, morprecond) @time (DU, stats) = Krylov.cg(K, R; M = opM, itmax = 500, verbose = 1) U = Ur + DU else @error "Solver not recognized" end scattersysvec!(u, U[:]) utip = mean(u.values[Tipl, 3], dims = 1) println("Deflection: $(utip), compared to $(uzex)") File = "stubby_corbel_H8_big.vtk" vtkexportmesh(File, fens, fes; vectors = [("u", u.values)]) @async run(`"paraview.exe" $File`) # modeldata["postprocessing"] = FDataDict("file"=>"hughes_cantilever_stresses_$(elementtag)", "outputcsys"=>CSys(3, 3, updatecs!), "quantity"=>:Cauchy, "component"=>[5]) # modeldata = exportstresselementwise(modeldata) # modeldata["postprocessing"] = FDataDict("file"=>"hughes_cantilever_stresses_$(elementtag)", # "outputcsys"=>CSys(3, 3, updatecs!), "quantity"=>:Cauchy, # "component"=>collect(1:6)) # modeldata = exportstresselementwise(modeldata) # stressfields = ElementalField[modeldata["postprocessing"]["exported"][1]["field"]] true end # stubby_corbel_H8_big_iso function _cg(A, b, x0, maxiter) x = deepcopy(x0) g = x' * A - b' d = -g' for iter in 1:maxiter Ad = A * d rho = (d' * Ad) alpha = (-g * d) / rho x = x + alpha * d g = x' * A - b' beta = (g * Ad) / rho d = beta * d - g' end return x end function stubby_corbel_H8_big_ms(n = 10, solver = :suitesparse) elementtag = "H8" println(""" Stubby corbel example. Element: $(elementtag) """) fens, fes = H8block(W, L, H, n, 2 * n, 2 * n) println("Number of elements: $(count(fes))") bfes = meshboundary(fes) # end cross-section surface for the shear loading sectionL = selectelem(fens, bfes; facing = true, direction = [0.0 +1.0 0.0]) # 0 cross-section surface for the reactions section0 = selectelem(fens, bfes; facing = true, direction = [0.0 -1.0 0.0]) # 0 cross-section surface for the reactions sectionlateral = selectelem(fens, bfes; facing = true, direction = [1.0 0.0 0.0]) MR = DeforModelRed3D material = MatDeforElastIso(MR, 0.0, E, nu, CTE) # Material orientation matrix csmat = [i == j ? one(Float64) : zero(Float64) for i = 1:3, j = 1:3] function updatecs!(csmatout, XYZ, tangents, feid, qpid) copyto!(csmatout, csmat) end geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field # Renumber the nodes femm = FEMMBase(IntegDomain(fes, GaussRule(3, 2))) C = connectionmatrix(femm, count(fens)) # display(spy(C, canvas = DotCanvas)) # I, J, V = findnz(C) # @show bw = maximum(I .- J) + 1 perm = symrcm(C) # C = C[perm, perm] # display(spy(C, canvas = DotCanvas)) # I, J, V = findnz(C) # @show bw = maximum(I .- J) + 1 # femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3, 2)), material) femm = FEMMDeforLinearMSH8(MR, IntegDomain(fes, GaussRule(3, 2)), material) lx0 = connectednodes(subset(bfes, section0)) setebc!(u, lx0, true, 1, 0.0) setebc!(u, lx0, true, 2, 0.0) setebc!(u, lx0, true, 3, 0.0) lx1 = connectednodes(subset(bfes, sectionlateral)) setebc!(u, lx1, true, 1, 0.0) applyebc!(u) numberdofs!(u, perm) # numberdofs!(u) println("nfreedofs(u) = $(nfreedofs(u))") fi = ForceIntensity(Float64, 3, getfrcL!) el2femm = FEMMBase(IntegDomain(subset(bfes, sectionL), GaussRule(2, 2))) F = distribloads(el2femm, geom, u, fi, 2) F_f = vector_blocked_f(F, nfreedofs(u)) associategeometry!(femm, geom) K = stiffness(femm, geom, u) K_ff = matrix_blocked_ff(K, nfreedofs(u)) K = nothing println("Stiffness: number of non zeros = $(nnz(K_ff)) [ND]") println("Sparsity = $(nnz(K_ff)/size(K_ff, 1)/size(K_ff, 2)) [ND]") display(spy(K_ff, canvas = DotCanvas)) # DataDrop.store_matrix("K$(size(K, 1))", K) # DataDrop.store_matrix("F$(size(F, 1))", F) Tipl = selectnode(fens, box = [0 W L L 0 H], inflate = htol) if solver == :suitesparse || solver == :default # @show methods(SuiteSparse.CHOLMOD.ldlt, (typeof(K), )) # @time K = SuiteSparse.CHOLMOD.ldlt(K) @time K = SuiteSparse.CHOLMOD.cholesky(K) @show nnz(K) # @time K = SparseArrays.ldlt(K) # @time K = cholesky(K) @time U = K \ (F) elseif solver == :cg n = size(K_ff, 1) mK_ffd = mean(diag(K_ff)) @time factor = ilu(K_ff, τ = mK_ffd / 100.0) # This may work for compressible materials # @time factor = ilu(K, τ = mKd / 1000000.0) # This may work for incompressible materials # factor = ilu0(K) @show nnz(factor) / nnz(K_ff) opM = LinearOperator(Float64, n, n, false, false, (y, v) -> ldiv!(y, factor, v)) @time (U, stats) = Krylov.cg(K_ff, F_f; M = opM, itmax = Int(round(n / 2)), verbose = 1) elseif solver == :cgldl n = size(K, 1) atol = 1e-10 rtol = 0.0 memory = 2000 @time P = ildl(K, memory = memory) # @time U, stats = bicgstab(K, F, N=P, atol=atol, rtol=rtol, verbose=1) @time U, stats = cg(K, F, M = P, atol = atol, rtol = rtol, verbose = 1) @show stats elseif solver == :scaledcg n = size(K, 1) idKs = Diagonal(1.0 ./ sqrt.(diag(K))) sK = idKs * K * idKs @show mKd = mean(diag(sK)) # @time factor = ilu(sK, τ = 0.01) # This may work for compressible materials @time factor = ilu(sK, τ = 0.000001) # This may work for incompressible materials # @time factor = ilu0(sK) @show nnz(factor) / nnz(K) opM = LinearOperator(Float64, n, n, false, false, (y, v) -> ldiv!(y, factor, v)) @time (U, stats) = Krylov.cg(sK, idKs * F; M = opM, itmax = Int(round(n / 2)), verbose = 1) U = Vector(idKs * U) elseif solver == :skyline I, J, V = findnz(K) @show bw = maximum(abs.(I .- J)) + 1 M = size(K, 1) K = nothing GC.gc() sky = SkylineSolvers.Ldlt.SkylineMatrix(I, J, V, M) I = nothing J = nothing V = nothing GC.gc() @show SkylineSolvers.Ldlt.nnz(sky) @time SkylineSolvers.Ldlt.factorize!(sky) @time U = SkylineSolvers.Ldlt.solve(sky, F) elseif solver == :ldlfactorizations @time factors = LDLFactorizations.ldlt(K) @time U = factors \ F elseif solver == :mor0 Nc = 32 nbf1max = 4 mixprop = 0.01 partitioning = nodepartitioning(fens, Nc) mor = CoNCData(fens, partitioning) Phi = transfmatrix(mor, LegendreBasis, nbf1max, u) PhiT = Phi' Kr = transfm(K, Phi, PhiT) @show size(Kr) Krfactor = lu(Kr) Ur = Phi * (Krfactor \ (PhiT * F)) scattersysvec!(u, Ur[:]) utip = mean(u.values[Tipl, 3], dims = 1) println("First Guess of Deflection: $(utip), compared to $(uzex)") R = F - K * Ur n = size(K, 1) Kdinv = 1.0 ./ diag(K) morprecond(y, v) = begin y .= (1 - mixprop) * (Kdinv .* v) y .+= mixprop * (Phi * (Krfactor \ (PhiT * v))) end morprecondnomix(y, v) = begin y .= (Kdinv .* v) + (Phi * (Krfactor \ (PhiT * v))) end opM = LinearOperator(Float64, n, n, false, false, morprecond) U = deepcopy(Ur) for iter = 1:50 @show iter (DU, stats) = Krylov.cg(K, F - K * U; M = opM, itmax = 5, verbose = 0) U += DU @show norm(DU) / norm(U) scattersysvec!(u, U[:]) utip = mean(u.values[Tipl, 3], dims = 1) println("Iterated Deflection: $(utip), compared to $(uzex)") end elseif solver == :mor1 rtol = 1.0e-9 Nc = 32 nbf1max = 4 mixprop = 1.0 partitioning = nodepartitioning(fens, Nc) mor = CoNCData(fens, partitioning) Phi = transfmatrix(mor, LegendreBasis, nbf1max, u) PhiT = Phi' Kr = transfm(K, Phi, PhiT) @show size(Kr) Krfactor = lu(Kr) Kdinv = 1.0 ./ diag(K) # invKrd = fill(0.0, size(K, 1)) # for i in 1:size(K, 1) # invKrd[i] = @views dot(vec(Phi[i, :]), Krfactor \ Vector(Phi[i, :])) # end # @show norm(invKrd), norm(Kdinv) # Kdinv .*= norm(invKrd) / norm(Kdinv) # trace1 = scatter(x = 1:length(invKrd), # y = invKrd, # mode="points", # line_width=1.5, # line_color="RoyalBlue") # trace2 = scatter(x = 1:length(invKrd), # y = Kdinv, # mode="lines", # line_width=1.5, # line_color="red") # data = [trace1, trace2] # # data = [trace2] # layout = Layout(;title="Diagonals") # display(plot(data, layout)) Ur = Phi * (Krfactor \ (PhiT * F)) scattersysvec!(u, Ur[:]) utip = mean(u.values[Tipl, 3], dims = 1) println("First Guess of Deflection: $(utip), compared to $(uzex)") R = F - K * Ur n = size(K, 1) # morprecondnomix(y, v) = begin # y .= (Kdinv .* v) - (invKrd .* v) + (Phi * (Krfactor \ (PhiT * v))) # end opM = LinearOperator( Float64, n, n, false, false, (y, v) -> y .= mixprop .* (Kdinv .* v) .+ (Phi * (Krfactor \ (PhiT * v))), ) U = deepcopy(Ur) utipprev = utip @time for iter = 1:50 @show iter (DU, stats) = Krylov.cg(K, F - K * U; M = opM, itmax = 5, verbose = 0) U += DU @show norm(DU) / norm(U) scattersysvec!(u, U[:]) utip = mean(u.values[Tipl, 3], dims = 1) println("Iterated Deflection: $(utip), compared to $(uzex)") if norm(utip - utipprev) / norm(utip) < rtol break end utipprev = utip end elseif solver == :mor Nc = 16 nbf1max = 4 mixprop = 0.05 partitioning = nodepartitioning(fens, Nc) mor = CoNCData(fens, partitioning) Phi = transfmatrix(mor, LegendreBasis, nbf1max, u) PhiT = Phi' Kr = transfm(K, Phi, PhiT) @show size(Kr) Ur = Phi * (Kr \ (PhiT * F)) scattersysvec!(u, Ur[:]) utip = mean(u.values[Tipl, 3], dims = 1) println("First Guess of Deflection: $(utip), compared to $(uzex)") Phi = hcat(Ur) U = deepcopy(Ur) Kd = Diagonal(diag(K)) n = size(K, 1) for iter = 1:50 @show iter Kr = transfm(K, Phi, Phi') # Krd = Diagonal(diag(Phi * Kr * Phi')) # @show mean(diag(Kd)), mean(diag(Krd)) # @show norm(diag(Kd) - diag(Krd)), norm(diag(Kd)) opM = LinearOperator( Float64, n, n, false, false, (y, v) -> morprecond3nomix(y, v, Phi, Kd, Kr, mixprop), ) @time (DU, stats) = Krylov.cg(K, F - K * U; M = opM, itmax = 10, verbose = 0) @show norm(DU) / norm(U) Phi = hcat(Phi, DU) factors = qr(Phi) Phi = Matrix(factors.Q) U += DU scattersysvec!(u, U[:]) utip = mean(u.values[Tipl, 3], dims = 1) println("Iterated Deflection: $(utip), compared to $(uzex)") end else @error "Solver not recognized" end scattersysvec!(u, U[:]) utip = mean(u.values[Tipl, 3], dims = 1) println("Deflection: $(utip), compared to $(uzex)") File = "stubby_corbel_H8_big_ms.vtk" vtkexportmesh(File, fens, fes; vectors = [("u", u.values)]) @async run(`"paraview.exe" $File`) # modeldata["postprocessing"] = FDataDict("file"=>"hughes_cantilever_stresses_$(elementtag)", "outputcsys"=>CSys(3, 3, updatecs!), "quantity"=>:Cauchy, "component"=>[5]) # modeldata = exportstresselementwise(modeldata) # modeldata["postprocessing"] = FDataDict("file"=>"hughes_cantilever_stresses_$(elementtag)", # "outputcsys"=>CSys(3, 3, updatecs!), "quantity"=>:Cauchy, # "component"=>collect(1:6)) # modeldata = exportstresselementwise(modeldata) # stressfields = ElementalField[modeldata["postprocessing"]["exported"][1]["field"]] true end # stubby_corbel_H8_big_ms function stubby_corbel_H8_big_ms_parallel(N = 10, ntasks = Threads.nthreads(), assembly_only = false) elementtag = "MSH8" println(""" Stubby corbel example. Element: $(elementtag) """) times = Dict{String, Vector{Float64}}() t1 = time() fens, fes = H8block(W, L, H, N, 2 * N, 2 * N) times["MeshGeneration"] = [time() - t1] println("Number of elements: $(count(fes))") bfes = meshboundary(fes) # end cross-section surface for the shear loading sectionL = selectelem(fens, bfes; facing = true, direction = [0.0 +1.0 0.0]) # 0 cross-section surface for the reactions section0 = selectelem(fens, bfes; facing = true, direction = [0.0 -1.0 0.0]) # 0 cross-section surface for the reactions sectionlateral = selectelem(fens, bfes; facing = true, direction = [1.0 0.0 0.0]) MR = DeforModelRed3D material = MatDeforElastIso(MR, 0.0, E, nu, CTE) # Material orientation matrix csmat = [i == j ? one(Float64) : zero(Float64) for i = 1:3, j = 1:3] function updatecs!(csmatout, XYZ, tangents, feid, qpid) copyto!(csmatout, csmat) end geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field lx0 = connectednodes(subset(bfes, section0)) setebc!(u, lx0, true, 1, 0.0) setebc!(u, lx0, true, 2, 0.0) setebc!(u, lx0, true, 3, 0.0) lx1 = connectednodes(subset(bfes, sectionlateral)) setebc!(u, lx1, true, 1, 0.0) applyebc!(u) numberdofs!(u) # numberdofs!(u) println("nfreedofs(u) = $(nfreedofs(u))") fi = ForceIntensity(Float64, 3, getfrcL!) el2femm = FEMMBase(IntegDomain(subset(bfes, sectionL), GaussRule(2, 2))) F = distribloads(el2femm, geom, u, fi, 2) F_f = vector_blocked_f(F, nfreedofs(u)) function createsubdomain(fessubset) FEMMDeforLinearMSH8(MR, IntegDomain(fessubset, GaussRule(3, 2)), material) end function matrixcomputation!(femm, assembler) associategeometry!(femm, geom) stiffness(femm, assembler, geom, u) end t1 = time() n2e = FENodeToFEMap(fes.conn, nnodes(u)) times["FENodeToFEMap"] = [time() - t1] println("Make node to element map = $(times["FENodeToFEMap"]) [s]") println("Stiffness =============================================================") GC.enable(false) t0 = time(); t1 = time() e2e = FEElemToNeighborsMap(n2e, fes) times["FEElemToNeighborsMap"] = [time() - t1] println(" Make element to neighbor map = $(times["FEElemToNeighborsMap"]) [s]") t1 = time() coloring = FinEtoolsMultithreading.element_coloring(fes, e2e) times["ElementColors"] = [time() - t1] println(" Compute element colors = $(times["ElementColors"]) [s]") t1 = time() n2n = FENodeToNeighborsMap(n2e, fes) times["FENodeToNeighborsMap"] = [time() - t1] println(" Make node to neighbor map = $(times["FENodeToNeighborsMap"]) [s]") t1 = time() K_pattern = sparse_symmetric_csc_pattern(u.dofnums, nalldofs(u), n2n, zero(eltype(u.values))) times["SparsityPattern"] = [time() - t1] println(" Sparsity pattern = $(times["SparsityPattern"]) [s]") t1 = time() decomposition = domain_decomposition(fes, coloring, createsubdomain, ntasks) times["DomainDecomposition"] = [time() - t1] println(" Domain decomposition = $(times["DomainDecomposition"]) [s]") t1 = time() K = parallel_matrix_assembly!( SysmatAssemblerSparsePatt(K_pattern), decomposition, matrixcomputation! ) times["AssemblyOfValues"] = [time() - t1] println(" Add to matrix = $(times["AssemblyOfValues"]) [s]") times["TotalAssembly"] = [time() - t0] println("Assembly total = $(times["TotalAssembly"]) [s]") GC.enable(true) K_ff = matrix_blocked_ff(K, nfreedofs(u)) F_f = vector_blocked_f(F, nfreedofs(u)) println("Stiffness: number of non zeros = $(nnz(K_ff)) [ND]") println("Sparsity = $(nnz(K_ff)/size(K_ff, 1)/size(K_ff, 2)) [ND]") if assembly_only isdir("$(N)") || mkdir("$(N)") n = DataDrop.with_extension(joinpath("$(N)", "stubby_corbel_H8_big_ms_parallel-timing-nth=$(ntasks)"), "json") if isfile(n) storedtimes = DataDrop.retrieve_json(n) for k in keys(storedtimes) times[k] = cat(times[k], storedtimes[k], dims = 1) end end DataDrop.store_json(n, times) return end Tipl = selectnode(fens, box = [0 W L L 0 H], inflate = htol) @show norm(K_ff - K_ff') / norm(K_ff) @time K_ff_factors = SuiteSparse.CHOLMOD.cholesky(Symmetric(K_ff)) @show nnz(K_ff_factors) # @time K = SparseArrays.ldlt(K) # @time K = cholesky(K) @time U_f = K_ff_factors \ (F_f) scattersysvec!(u, U_f[:]) utip = mean(u.values[Tipl, 3], dims = 1) println("Deflection: $(utip), compared to $(uzex)") File = "stubby_corbel_H8_big_ms.vtk" vtkexportmesh(File, fens, fes; vectors = [("u", u.values)]) # @async run(`"paraview.exe" $File`) # modeldata["postprocessing"] = FDataDict("file"=>"hughes_cantilever_stresses_$(elementtag)", "outputcsys"=>CSys(3, 3, updatecs!), "quantity"=>:Cauchy, "component"=>[5]) # modeldata = exportstresselementwise(modeldata) # modeldata["postprocessing"] = FDataDict("file"=>"hughes_cantilever_stresses_$(elementtag)", # "outputcsys"=>CSys(3, 3, updatecs!), "quantity"=>:Cauchy, # "component"=>collect(1:6)) # modeldata = exportstresselementwise(modeldata) # stressfields = ElementalField[modeldata["postprocessing"]["exported"][1]["field"]] true end # stubby_corbel_H8_big_ms function stubby_corbel_H8_big_ms_serial(N = 10, assembly_only = false) elementtag = "MSH8" println(""" Stubby corbel example. Element: $(elementtag). SERIAL """) times = Dict{String, Vector{Float64}}() t1 = time() fens, fes = H8block(W, L, H, N, 2 * N, 2 * N) times["MeshGeneration"] = [time() - t1] println("Number of elements: $(count(fes))") bfes = meshboundary(fes) # end cross-section surface for the shear loading sectionL = selectelem(fens, bfes; facing = true, direction = [0.0 +1.0 0.0]) # 0 cross-section surface for the reactions section0 = selectelem(fens, bfes; facing = true, direction = [0.0 -1.0 0.0]) # 0 cross-section surface for the reactions sectionlateral = selectelem(fens, bfes; facing = true, direction = [1.0 0.0 0.0]) MR = DeforModelRed3D material = MatDeforElastIso(MR, 0.0, E, nu, CTE) # Material orientation matrix csmat = [i == j ? one(Float64) : zero(Float64) for i = 1:3, j = 1:3] function updatecs!(csmatout, XYZ, tangents, feid, qpid) copyto!(csmatout, csmat) end geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field lx0 = connectednodes(subset(bfes, section0)) setebc!(u, lx0, true, 1, 0.0) setebc!(u, lx0, true, 2, 0.0) setebc!(u, lx0, true, 3, 0.0) lx1 = connectednodes(subset(bfes, sectionlateral)) setebc!(u, lx1, true, 1, 0.0) applyebc!(u) numberdofs!(u) # numberdofs!(u) println("nfreedofs(u) = $(nfreedofs(u))") fi = ForceIntensity(Float64, 3, getfrcL!) el2femm = FEMMBase(IntegDomain(subset(bfes, sectionL), GaussRule(2, 2))) F = distribloads(el2femm, geom, u, fi, 2) F_f = vector_blocked_f(F, nfreedofs(u)) # femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3, 2)), material) femm = FEMMDeforLinearMSH8(MR, IntegDomain(fes, GaussRule(3, 2)), material) t0 = time() t1 = time() associategeometry!(femm, geom) assembler = SysmatAssemblerSparse(1.0) setnomatrixresult(assembler, true) stiffness(femm, assembler, geom, u) times["ComputeCOO"] = [time() - t1] t1 = time() setnomatrixresult(assembler, false) K = makematrix!(assembler) times["BuildCSR"] = [time() - t1] times["TotalAssembly"] = [time() - t0] println("Assembly total = $(times["TotalAssembly"]) [s]") K_ff = matrix_blocked_ff(K, nfreedofs(u)) F_f = vector_blocked_f(F, nfreedofs(u)) println("Stiffness: number of non zeros = $(nnz(K_ff)) [ND]") println("Sparsity = $(nnz(K_ff)/size(K_ff, 1)/size(K_ff, 2)) [ND]") if assembly_only isdir("$(N)") || mkdir("$(N)") n = DataDrop.with_extension(joinpath("$(N)", "stubby_corbel_H8_big_ms_parallel-timing-serial"), "json") if isfile(n) storedtimes = DataDrop.retrieve_json(n) for k in keys(storedtimes) times[k] = cat(times[k], storedtimes[k], dims = 1) end end DataDrop.store_json(n, times) return end Tipl = selectnode(fens, box = [0 W L L 0 H], inflate = htol) @show norm(K_ff - K_ff') / norm(K_ff) @time K_ff_factors = SuiteSparse.CHOLMOD.cholesky(Symmetric(K_ff)) @show nnz(K_ff_factors) # @time K = SparseArrays.ldlt(K) # @time K = cholesky(K) @time U_f = K_ff_factors \ (F_f) scattersysvec!(u, U_f[:]) utip = mean(u.values[Tipl, 3], dims = 1) println("Deflection: $(utip), compared to $(uzex)") File = "stubby_corbel_H8_big_ms.vtk" vtkexportmesh(File, fens, fes; vectors = [("u", u.values)]) # @async run(`"paraview.exe" $File`) # modeldata["postprocessing"] = FDataDict("file"=>"hughes_cantilever_stresses_$(elementtag)", "outputcsys"=>CSys(3, 3, updatecs!), "quantity"=>:Cauchy, "component"=>[5]) # modeldata = exportstresselementwise(modeldata) # modeldata["postprocessing"] = FDataDict("file"=>"hughes_cantilever_stresses_$(elementtag)", # "outputcsys"=>CSys(3, 3, updatecs!), "quantity"=>:Cauchy, # "component"=>collect(1:6)) # modeldata = exportstresselementwise(modeldata) # stressfields = ElementalField[modeldata["postprocessing"]["exported"][1]["field"]] true end # stubby_corbel_H8_big_ms function allrun() println("#####################################################") println("# stubby_corbel_H8_by_hand ") stubby_corbel_H8_by_hand() return true end # function allrun @info "All examples may be executed with " println("using .$(@__MODULE__); $(@__MODULE__).allrun()") end # module nothing
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
26430
module twisted_beam_examples using FinEtools using FinEtoolsDeforLinear using FinEtoolsDeforLinear.AlgoDeforLinearModule using FinEtools.MeshExportModule using Statistics # The initially twisted cantilever beam is one of the standard test problems # for verifying the finite-element accuracy [1]. The beam is clamped # at one end and loaded either with unit in-plane or unit out-of-plane # force at the other. The centroidal axis of the beam s straight at the # undeformed configuration, while its cross-sections are twisted about the # centroidal axis from 0 at the clamped end to pi/2 at the free end. # Reference: # Zupan D, Saje M (2004) On "A proposed standard set of problems to test # finite element accuracy": the twisted beam. Finite Elements in Analysis # and Design 40: 1445-1451. function twisted_beam_algo() E = 0.29e8 nu = 0.22 W = 1.1 L = 12.0 t = 0.32 nl = 2 nt = 1 nw = 1 ref = 7 p = 1 / W / t # Loading in the Z direction loadv = [0; 0; p] dir = 3 uex = 0.005424534868469 # Harder: 5.424e-3; # Loading in the Y direction #loadv = [0;p;0]; dir = 2; uex = 0.001753248285256; # Harder: 1.754e-3; tolerance = t / 1000 fens, fes = H20block(L, W, t, nl * ref, nw * ref, nt * ref) # Reshape into a twisted beam shape for i = 1:count(fens) a = fens.xyz[i, 1] / L * (pi / 2) y = fens.xyz[i, 2] - (W / 2) z = fens.xyz[i, 3] - (t / 2) fens.xyz[i, :] = [fens.xyz[i, 1], y * cos(a) - z * sin(a), y * sin(a) + z * cos(a)] end # Clamped end of the beam l1 = selectnode(fens; box = [0 0 -100 * W 100 * W -100 * W 100 * W], inflate = tolerance) e1 = FDataDict("node_list" => l1, "component" => 1, "displacement" => 0.0) e2 = FDataDict("node_list" => l1, "component" => 2, "displacement" => 0.0) e3 = FDataDict("node_list" => l1, "component" => 3, "displacement" => 0.0) # Traction on the opposite edge boundaryfes = meshboundary(fes) Toplist = selectelem( fens, boundaryfes, box = [L L -100 * W 100 * W -100 * W 100 * W], inflate = tolerance, ) el1femm = FEMMBase(IntegDomain(subset(boundaryfes, Toplist), GaussRule(2, 2))) flux1 = FDataDict("femm" => el1femm, "traction_vector" => loadv) # Make the region MR = DeforModelRed3D material = MatDeforElastIso(MR, 00.0, E, nu, 0.0) region1 = FDataDict( "femm" => FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3, 2)), material), ) # Make model data modeldata = FDataDict( "fens" => fens, "regions" => [region1], "essential_bcs" => [e1, e2, e3], "traction_bcs" => [flux1], ) # Call the solver modeldata = AlgoDeforLinearModule.linearstatics(modeldata) geom = modeldata["geom"] u = modeldata["u"] # Extract the solution nl = selectnode(fens, box = [L L -100 * W 100 * W -100 * W 100 * W], inflate = tolerance) theutip = mean(u.values[nl, :], dims = 1) println("displacement = $(theutip[dir]) as compared to converged $uex") println("normalized displacement = $(theutip[dir]/uex*100) %") # Write out mesh with displacements modeldata["postprocessing"] = FDataDict("file" => "twisted_beam") modeldata = AlgoDeforLinearModule.exportdeformation(modeldata) # Write out mesh with stresses modeldata["postprocessing"] = FDataDict("file" => "twisted_beam", "quantity" => :Cauchy, "component" => :xy) modeldata = AlgoDeforLinearModule.exportstress(modeldata) # Write out mesh with stresses modeldata["postprocessing"] = FDataDict("file" => "twisted_beam", "quantity" => :Cauchy, "component" => :xz) modeldata = AlgoDeforLinearModule.exportstress(modeldata) # Write out mesh with von Mises stresses modeldata["postprocessing"] = FDataDict("file" => "twisted_beam", "quantity" => :vm) modeldata = AlgoDeforLinearModule.exportstress(modeldata) # Write out mesh with von Mises stresses, elementwise modeldata["postprocessing"] = FDataDict("file" => "twisted_beam-ew", "quantity" => :vm) modeldata = AlgoDeforLinearModule.exportstresselementwise(modeldata) vm = modeldata["postprocessing"]["exported"][1]["field"] println("extremes of von Mises: $([minimum(vm.values), maximum(vm.values)])") # Write out mesh with von Mises stresses, elementwise modeldata["postprocessing"] = FDataDict("file" => "twisted_beam-ew", "quantity" => :Cauchy, "component" => :xz) modeldata = AlgoDeforLinearModule.exportstresselementwise(modeldata) println("Done") true end # twisted_beam_algo function twisted_beam_algo_stress() E = 0.29e8 nu = 0.22 W = 1.1 L = 12.0 t = 0.32 nl = 2 nt = 1 nw = 1 ref = 4 p = 1 / W / t # Loading in the Z direction loadv = [0; 0; p] dir = 3 uex = 0.005424534868469 # Harder: 5.424e-3; # Loading in the Y direction #loadv = [0;p;0]; dir = 2; uex = 0.001753248285256; # Harder: 1.754e-3; tolerance = t / 1000 fens, fes = H20block(L, W, t, nl * ref, nw * ref, nt * ref) # Reshape into a twisted beam shape for i = 1:count(fens) a = fens.xyz[i, 1] / L * (pi / 2) y = fens.xyz[i, 2] - (W / 2) z = fens.xyz[i, 3] - (t / 2) fens.xyz[i, :] = [fens.xyz[i, 1], y * cos(a) - z * sin(a), y * sin(a) + z * cos(a)] end # Clamped end of the beam l1 = selectnode(fens; box = [0 0 -100 * W 100 * W -100 * W 100 * W], inflate = tolerance) e1 = FDataDict("node_list" => l1, "component" => 1, "displacement" => 0.0) e2 = FDataDict("node_list" => l1, "component" => 2, "displacement" => 0.0) e3 = FDataDict("node_list" => l1, "component" => 3, "displacement" => 0.0) # Traction on the opposite edge boundaryfes = meshboundary(fes) Toplist = selectelem( fens, boundaryfes, box = [L L -100 * W 100 * W -100 * W 100 * W], inflate = tolerance, ) el1femm = FEMMBase(IntegDomain(subset(boundaryfes, Toplist), GaussRule(2, 2))) flux1 = FDataDict("femm" => el1femm, "traction_vector" => loadv) # Make the region MR = DeforModelRed3D material = MatDeforElastIso(MR, 00.0, E, nu, 0.0) region1 = FDataDict( "femm" => FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3, 2)), material), ) # Make model data modeldata = FDataDict( "fens" => fens, "regions" => [region1], "essential_bcs" => [e1, e2, e3], "traction_bcs" => [flux1], ) # Call the solver modeldata = AlgoDeforLinearModule.linearstatics(modeldata) geom = modeldata["geom"] u = modeldata["u"] # Extract the solution nl = selectnode(fens, box = [L L -100 * W 100 * W -100 * W 100 * W], inflate = tolerance) theutip = mean(u.values[nl, :], dims = 1) println("displacement = $(theutip[dir]) as compared to converged $uex") println("normalized displacement = $(theutip[dir]/uex*100) %") # Write out mesh with displacements modeldata["postprocessing"] = FDataDict("file" => "twisted_beam") modeldata = AlgoDeforLinearModule.exportdeformation(modeldata) # Write out mesh with stresses modeldata["postprocessing"] = FDataDict("file" => "twisted_beam", "quantity" => :Cauchy, "component" => :xy) modeldata = AlgoDeforLinearModule.exportstress(modeldata) # Write out mesh with stresses modeldata["postprocessing"] = FDataDict("file" => "twisted_beam", "quantity" => :Cauchy, "component" => :xz) modeldata = AlgoDeforLinearModule.exportstress(modeldata) # Write out mesh with von Mises stresses modeldata["postprocessing"] = FDataDict("file" => "twisted_beam", "quantity" => :vm) modeldata = AlgoDeforLinearModule.exportstress(modeldata) # Write out mesh with von Mises stresses, elementwise modeldata["postprocessing"] = FDataDict("file" => "twisted_beam-ew", "quantity" => :vm) modeldata = AlgoDeforLinearModule.exportstresselementwise(modeldata) vm = modeldata["postprocessing"]["exported"][1]["field"] println("extremes of von Mises: $([minimum(vm.values), maximum(vm.values)])") # Write out mesh with von Mises stresses, elementwise modeldata["postprocessing"] = FDataDict("file" => "twisted_beam-ew", "quantity" => :Cauchy, "component" => :xz) modeldata = AlgoDeforLinearModule.exportstresselementwise(modeldata) # Write out mesh with principal stresses, elementwise modeldata["postprocessing"] = FDataDict( "file" => "twisted_beam-principal-1-ew", "quantity" => :princCauchy, "component" => 1, ) modeldata = AlgoDeforLinearModule.exportstresselementwise(modeldata) ps = modeldata["postprocessing"]["exported"][1]["field"] println( "extremes of first principal stress: $([minimum(ps.values), maximum(ps.values)])", ) # Write out mesh with principal stresses, elementwise modeldata["postprocessing"] = FDataDict( "file" => "twisted_beam-principal-3-ew", "quantity" => :princCauchy, "component" => 3, ) modeldata = AlgoDeforLinearModule.exportstresselementwise(modeldata) ps = modeldata["postprocessing"]["exported"][1]["field"] println( "extremes of third principal stress: $([minimum(ps.values), maximum(ps.values)])", ) # Write out mesh with principal stresses, elementwise modeldata["postprocessing"] = FDataDict( "file" => "twisted_beam-press-ew", "quantity" => :pressure, "component" => 1, ) modeldata = AlgoDeforLinearModule.exportstresselementwise(modeldata) ps = modeldata["postprocessing"]["exported"][1]["field"] println("extremes of pressure: $([minimum(ps.values), maximum(ps.values)])") println("Done") true end # twisted_beam_algo_stress function twisted_beam_export() E = 0.29e8 nu = 0.22 W = 1.1 L = 12.0 t = 0.32 nl = 2 nt = 1 nw = 1 ref = 5 p = 1 / W / t # Loading in the Z direction loadv = [0; 0; p] dir = 3 uex = 0.005424534868469 # Harder: 5.424e-3; # Loading in the Y direction #loadv = [0;p;0]; dir = 2; uex = 0.001753248285256; # Harder: 1.754e-3; tolerance = t / 1000 fens, fes = H8block(L, W, t, nl * ref, nw * ref, nt * ref) # Reshape into a twisted beam shape for i = 1:count(fens) a = fens.xyz[i, 1] / L * (pi / 2) y = fens.xyz[i, 2] - (W / 2) z = fens.xyz[i, 3] - (t / 2) fens.xyz[i, :] = [fens.xyz[i, 1], y * cos(a) - z * sin(a), y * sin(a) + z * cos(a)] end # Clamped end of the beam l1 = selectnode(fens; box = [0 0 -100 * W 100 * W -100 * W 100 * W], inflate = tolerance) e1 = FDataDict("node_list" => l1, "component" => 1, "displacement" => 0.0) e2 = FDataDict("node_list" => l1, "component" => 2, "displacement" => 0.0) e3 = FDataDict("node_list" => l1, "component" => 3, "displacement" => 0.0) # Traction on the opposite edge boundaryfes = meshboundary(fes) Toplist = selectelem( fens, boundaryfes, box = [L L -100 * W 100 * W -100 * W 100 * W], inflate = tolerance, ) el1femm = FEMMBase(IntegDomain(subset(boundaryfes, Toplist), GaussRule(2, 2))) flux1 = FDataDict("femm" => el1femm, "traction_vector" => loadv) # Make the region MR = DeforModelRed3D material = MatDeforElastIso(MR, 00.0, E, nu, 0.0) region1 = FDataDict( "femm" => FEMMDeforLinearMSH8(MR, IntegDomain(fes, GaussRule(3, 2)), material), ) # Make model data modeldata = FDataDict( "fens" => fens, "regions" => [region1], "essential_bcs" => [e1, e2, e3], "traction_bcs" => [flux1], ) AE = AbaqusExporter("twisted_beam") HEADING(AE, "Twisted beam example") PART(AE, "part1") END_PART(AE) ASSEMBLY(AE, "ASSEM1") INSTANCE(AE, "INSTNC1", "PART1") NODE(AE, fens.xyz) ELEMENT(AE, "c3d8rh", "AllElements", 1, region1["femm"].integdomain.fes.conn) ELEMENT( AE, "SFM3D4", "TractionElements", 1 + count(region1["femm"].integdomain.fes), flux1["femm"].integdomain.fes.conn, ) NSET_NSET(AE, "l1", l1) ORIENTATION(AE, "GlobalOrientation", vec([1.0 0 0]), vec([0 1.0 0])) SOLID_SECTION(AE, "elasticity", "GlobalOrientation", "AllElements", "Hourglassctl") SURFACE_SECTION(AE, "TractionElements") END_INSTANCE(AE) END_ASSEMBLY(AE) MATERIAL(AE, "elasticity") ELASTIC(AE, E, nu) SECTION_CONTROLS(AE, "Hourglassctl", "HOURGLASS=ENHANCED") STEP_PERTURBATION_STATIC(AE) BOUNDARY(AE, "ASSEM1.INSTNC1.l1", 1) BOUNDARY(AE, "ASSEM1.INSTNC1.l1", 2) BOUNDARY(AE, "ASSEM1.INSTNC1.l1", 3) DLOAD(AE, "ASSEM1.INSTNC1.TractionElements", vec(flux1["traction_vector"])) END_STEP(AE) close(AE) true end # twisted_beam_export function twisted_beam_export_nb() E = 0.29e8 nu = 0.22 W = 1.1 L = 12.0 t = 0.32 nl = 2 nt = 1 nw = 1 ref = 4 p = 1 / W / t # Loading in the Z direction loadv = [0; 0; p] dir = 3 uex = 0.005424534868469 # Harder: 5.424e-3; # Loading in the Y direction #loadv = [0;p;0]; dir = 2; uex = 0.001753248285256; # Harder: 1.754e-3; tolerance = t / 1000 fens, fes = H8block(L, W, t, nl * ref, nw * ref, nt * ref) # Reshape into a twisted beam shape for i = 1:count(fens) a = fens.xyz[i, 1] / L * (pi / 2) y = fens.xyz[i, 2] - (W / 2) z = fens.xyz[i, 3] - (t / 2) fens.xyz[i, :] = [fens.xyz[i, 1], y * cos(a) - z * sin(a), y * sin(a) + z * cos(a)] end # Clamped end of the beam l1 = selectnode(fens; box = [0 0 -100 * W 100 * W -100 * W 100 * W], inflate = tolerance) e1 = FDataDict("node_list" => l1, "component" => 1, "displacement" => 0.0) e2 = FDataDict("node_list" => l1, "component" => 2, "displacement" => 0.0) e3 = FDataDict("node_list" => l1, "component" => 3, "displacement" => 0.0) # Traction on the opposite edge boundaryfes = meshboundary(fes) Toplist = selectelem( fens, boundaryfes, box = [L L -100 * W 100 * W -100 * W 100 * W], inflate = tolerance, ) el1femm = FEMMBase(IntegDomain(subset(boundaryfes, Toplist), GaussRule(2, 2))) flux1 = FDataDict("femm" => el1femm, "traction_vector" => loadv) # Make the region MR = DeforModelRed3D material = MatDeforElastIso(MR, 00.0, E, nu, 0.0) region1 = FDataDict( "femm" => FEMMDeforLinearMSH8(MR, IntegDomain(fes, GaussRule(3, 2)), material), ) # Make model data modeldata = FDataDict( "fens" => fens, "regions" => [region1], "essential_bcs" => [e1, e2, e3], "traction_bcs" => [flux1], ) AE = AbaqusExporter("twisted_beam") # AE.ios = STDOUT; HEADING(AE, "Twisted beam example") PART(AE, "part1") END_PART(AE) ASSEMBLY(AE, "ASSEM1") INSTANCE(AE, "INSTNC1", "PART1") NODE(AE, fens.xyz) ELEMENT(AE, "c3d8rh", "AllElements", 1, region1["femm"].integdomain.fes.conn) ELEMENT( AE, "SFM3D4", "TractionElements", 1 + count(region1["femm"].integdomain.fes), flux1["femm"].integdomain.fes.conn, ) NSET_NSET(AE, "l1", l1) ORIENTATION(AE, "GlobalOrientation", vec([1.0 0 0]), vec([0 1.0 0])) SOLID_SECTION(AE, "elasticity", "GlobalOrientation", "AllElements", "Hourglassctl") SURFACE_SECTION(AE, "TractionElements") END_INSTANCE(AE) END_ASSEMBLY(AE) MATERIAL(AE, "elasticity") ELASTIC(AE, E, nu) SECTION_CONTROLS(AE, "Hourglassctl", "HOURGLASS=ENHANCED") STEP_PERTURBATION_STATIC(AE) BOUNDARY(AE, "ASSEM1.INSTNC1.l1", 1) BOUNDARY(AE, "ASSEM1.INSTNC1.l1", 2) BOUNDARY(AE, "ASSEM1.INSTNC1.l1", 3) DLOAD(AE, "ASSEM1.INSTNC1.TractionElements", vec(flux1["traction_vector"])) END_STEP(AE) close(AE) end # twisted_beam_export_nb function twisted_beam_msh8(dir = 2, ref = 7) E = 0.29e8 nu = 0.22 W = 1.1 L = 12.0 t = 0.0032 nl = 12 nt = 1 nw = 1 p = 1 / W / t if dir == 3 # Loading in the Z direction loadv = [0; 0; p] uex = 0.005424534868469 # Harder: 5.424e-3; else # Loading in the Y direction loadv = [0; p; 0] uex = 0.001753248285256 # Harder: 1.754e-3; end tolerance = t / 1000 fens, fes = H8block(L, W, t, nl * ref, nw * ref, nt * ref) # Reshape into a twisted beam shape for i = 1:count(fens) a = fens.xyz[i, 1] / L * (pi / 2) y = fens.xyz[i, 2] - (W / 2) z = fens.xyz[i, 3] - (t / 2) fens.xyz[i, :] = [fens.xyz[i, 1], y * cos(a) - z * sin(a), y * sin(a) + z * cos(a)] end # Clamped end of the beam l1 = selectnode(fens; box = [0 0 -100 * W 100 * W -100 * W 100 * W], inflate = tolerance) e1 = FDataDict("node_list" => l1, "component" => 1, "displacement" => 0.0) e2 = FDataDict("node_list" => l1, "component" => 2, "displacement" => 0.0) e3 = FDataDict("node_list" => l1, "component" => 3, "displacement" => 0.0) # Traction on the opposite edge boundaryfes = meshboundary(fes) Toplist = selectelem( fens, boundaryfes, box = [L L -100 * W 100 * W -100 * W 100 * W], inflate = tolerance, ) el1femm = FEMMBase(IntegDomain(subset(boundaryfes, Toplist), GaussRule(2, 2))) flux1 = FDataDict("femm" => el1femm, "traction_vector" => loadv) # Make the region MR = DeforModelRed3D material = MatDeforElastIso(MR, 00.0, E, nu, 0.0) region1 = FDataDict( "femm" => FEMMDeforLinearMSH8(MR, IntegDomain(fes, GaussRule(3, 2)), material), ) # Make model data modeldata = FDataDict( "fens" => fens, "regions" => [region1], "essential_bcs" => [e1, e2, e3], "traction_bcs" => [flux1], ) # Call the solver modeldata = AlgoDeforLinearModule.linearstatics(modeldata) geom = modeldata["geom"] u = modeldata["u"] # Extract the solution nl = selectnode(fens, box = [L L -100 * W 100 * W -100 * W 100 * W], inflate = tolerance) theutip = mean(u.values[nl, :], dims = 1) println("displacement = $(theutip[dir]) as compared to converged $uex") # Write out mesh with displacements modeldata["postprocessing"] = FDataDict("file" => "twisted_beam_msh8") modeldata = AlgoDeforLinearModule.exportdeformation(modeldata) # Write out mesh with stresses modeldata["postprocessing"] = FDataDict("file" => "twisted_beam_msh8", "quantity" => :Cauchy, "component" => :xy) modeldata = AlgoDeforLinearModule.exportstress(modeldata) # Write out mesh with stresses modeldata["postprocessing"] = FDataDict("file" => "twisted_beam_msh8", "quantity" => :Cauchy, "component" => :xz) modeldata = AlgoDeforLinearModule.exportstress(modeldata) # Write out mesh with von Mises stresses modeldata["postprocessing"] = FDataDict("file" => "twisted_beam_msh8", "quantity" => :vm) modeldata = AlgoDeforLinearModule.exportstress(modeldata) vm = modeldata["postprocessing"]["exported"][1]["field"] println("extremes of vm, nodal: $([minimum(vm.values), maximum(vm.values)])") # Write out mesh with von Mises stresses, elementwise modeldata["postprocessing"] = FDataDict("file" => "twisted_beam_msh8-ew", "quantity" => :vm) modeldata = AlgoDeforLinearModule.exportstresselementwise(modeldata) vm = modeldata["postprocessing"]["exported"][1]["field"] println("extremes of vm, elemental: $([minimum(vm.values), maximum(vm.values)])") # Write out mesh with von Mises stresses, elementwise modeldata["postprocessing"] = FDataDict( "file" => "twisted_beam_msh8-ew", "quantity" => :Cauchy, "component" => :xz, ) modeldata = AlgoDeforLinearModule.exportstresselementwise(modeldata) println("Done") true end # twisted_beam_msh8 function twisted_beam_msh8_algo_stress() println(""" """) E = 0.29e8 nu = 0.22 W = 1.1 L = 12.0 t = 0.32 nl = 2 nt = 1 nw = 1 ref = 4 p = 1 / W / t # Loading in the Z direction loadv = [0; 0; p] dir = 3 uex = 0.005424534868469 # Harder: 5.424e-3; # Loading in the Y direction #loadv = [0;p;0]; dir = 2; uex = 0.001753248285256; # Harder: 1.754e-3; tolerance = t / 1000 fens, fes = H8block(L, W, t, nl * ref, nw * ref, nt * ref) # Reshape into a twisted beam shape for i = 1:count(fens) a = fens.xyz[i, 1] / L * (pi / 2) y = fens.xyz[i, 2] - (W / 2) z = fens.xyz[i, 3] - (t / 2) fens.xyz[i, :] = [fens.xyz[i, 1], y * cos(a) - z * sin(a), y * sin(a) + z * cos(a)] end # Clamped end of the beam l1 = selectnode(fens; box = [0 0 -100 * W 100 * W -100 * W 100 * W], inflate = tolerance) e1 = FDataDict("node_list" => l1, "component" => 1, "displacement" => 0.0) e2 = FDataDict("node_list" => l1, "component" => 2, "displacement" => 0.0) e3 = FDataDict("node_list" => l1, "component" => 3, "displacement" => 0.0) # Traction on the opposite edge boundaryfes = meshboundary(fes) Toplist = selectelem( fens, boundaryfes, box = [L L -100 * W 100 * W -100 * W 100 * W], inflate = tolerance, ) el1femm = FEMMBase(IntegDomain(subset(boundaryfes, Toplist), GaussRule(2, 2))) flux1 = FDataDict("femm" => el1femm, "traction_vector" => loadv) # Make the region MR = DeforModelRed3D material = MatDeforElastIso(MR, 00.0, E, nu, 0.0) region1 = FDataDict( "femm" => FEMMDeforLinearMSH8(MR, IntegDomain(fes, GaussRule(3, 2)), material), ) # Make model data modeldata = FDataDict( "fens" => fens, "regions" => [region1], "essential_bcs" => [e1, e2, e3], "traction_bcs" => [flux1], ) # Call the solver modeldata = AlgoDeforLinearModule.linearstatics(modeldata) geom = modeldata["geom"] u = modeldata["u"] # Extract the solution nl = selectnode(fens, box = [L L -100 * W 100 * W -100 * W 100 * W], inflate = tolerance) theutip = mean(u.values[nl, :], dims = 1) println("displacement = $(theutip[dir]) as compared to converged $uex") println("normalized displacement = $(theutip[dir]/uex*100) %") # Write out mesh with displacements modeldata["postprocessing"] = FDataDict("file" => "twisted_beam") modeldata = AlgoDeforLinearModule.exportdeformation(modeldata) # Write out mesh with stresses modeldata["postprocessing"] = FDataDict("file" => "twisted_beam", "quantity" => :Cauchy, "component" => :xy) modeldata = AlgoDeforLinearModule.exportstress(modeldata) # Write out mesh with stresses modeldata["postprocessing"] = FDataDict("file" => "twisted_beam", "quantity" => :Cauchy, "component" => :xz) modeldata = AlgoDeforLinearModule.exportstress(modeldata) # Write out mesh with von Mises stresses modeldata["postprocessing"] = FDataDict("file" => "twisted_beam", "quantity" => :vm) modeldata = AlgoDeforLinearModule.exportstress(modeldata) # Write out mesh with von Mises stresses, elementwise modeldata["postprocessing"] = FDataDict("file" => "twisted_beam-ew", "quantity" => :vm) modeldata = AlgoDeforLinearModule.exportstresselementwise(modeldata) vm = modeldata["postprocessing"]["exported"][1]["field"] println("extremes of von Mises: $([minimum(vm.values), maximum(vm.values)])") # Write out mesh with von Mises stresses, elementwise modeldata["postprocessing"] = FDataDict("file" => "twisted_beam-ew", "quantity" => :Cauchy, "component" => :xz) modeldata = AlgoDeforLinearModule.exportstresselementwise(modeldata) # Write out mesh with principal stresses, elementwise modeldata["postprocessing"] = FDataDict( "file" => "twisted_beam-principal-1-ew", "quantity" => :princCauchy, "component" => 1, ) modeldata = AlgoDeforLinearModule.exportstresselementwise(modeldata) ps = modeldata["postprocessing"]["exported"][1]["field"] println( "extremes of first principal stress: $([minimum(ps.values), maximum(ps.values)])", ) # Write out mesh with principal stresses, elementwise modeldata["postprocessing"] = FDataDict( "file" => "twisted_beam-principal-3-ew", "quantity" => :princCauchy, "component" => 3, ) modeldata = AlgoDeforLinearModule.exportstresselementwise(modeldata) ps = modeldata["postprocessing"]["exported"][1]["field"] println( "extremes of third principal stress: $([minimum(ps.values), maximum(ps.values)])", ) # Write out mesh with principal stresses, elementwise modeldata["postprocessing"] = FDataDict( "file" => "twisted_beam-press-ew", "quantity" => :pressure, "component" => 1, ) modeldata = AlgoDeforLinearModule.exportstresselementwise(modeldata) ps = modeldata["postprocessing"]["exported"][1]["field"] println("extremes of pressure: $([minimum(ps.values), maximum(ps.values)])") println("Done") true end # twisted_beam_msh8_algo_stress function allrun() println("#####################################################") println("# twisted_beam_algo ") twisted_beam_algo() println("#####################################################") println("# twisted_beam_algo_stress ") twisted_beam_algo_stress() println("#####################################################") println("# twisted_beam_export ") twisted_beam_export() println("#####################################################") println("# twisted_beam_export_nb ") twisted_beam_export_nb() println("#####################################################") println("# twisted_beam_msh8 ") twisted_beam_msh8() println("#####################################################") println("# twisted_beam_msh8_algo_stress ") twisted_beam_msh8_algo_stress() return true end # function allrun @info "All examples may be executed with " println("using .$(@__MODULE__); $(@__MODULE__).allrun()") end # module stubby_corbel_examples nothing
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
33727
""" Module for algorithms used in linear deformation models. """ module AlgoDeforLinearModule __precompile__(true) using FinEtools.FTypesModule: FDataDict using FinEtools.AlgoBaseModule: dcheck! using Arpack: eigs using SparseArrays: spzeros using FinEtools.FieldModule: AbstractField, ndofs, setebc!, numberdofs!, applyebc!, scattersysvec!, nalldofs, nfreedofs, gathersysvec using FinEtools.NodalFieldModule: NodalField, nnodes import FinEtools.FEMMBaseModule: associategeometry!, distribloads, fieldfromintegpoints, elemfieldfromintegpoints using FinEtoolsDeforLinear.FEMMDeforLinearBaseModule: stiffness, mass, thermalstrainloads, inspectintegpoints using FinEtoolsDeforLinear.FEMMDeforLinearMSModule: stiffness, mass, thermalstrainloads, inspectintegpoints using FinEtools.DeforModelRedModule: stresscomponentmap using FinEtools.AlgoBaseModule: matrix_blocked, vector_blocked using FinEtools.ForceIntensityModule: ForceIntensity using FinEtools.MeshModificationModule: meshboundary using FinEtools.MeshExportModule.VTK: vtkexportmesh using LinearAlgebra: mul!, norm, eigen, qr, dot, cholesky, Symmetric my_A_mul_B!(C, A, B) = mul!(C, A, B) """ AlgoDeforLinearModule.linearstatics(modeldata::FDataDict) Algorithm for static linear deformation (stress) analysis. # Argument `modeldata` = dictionary with values for keys - `"fens"` = finite element node set - `"regions"` = array of region dictionaries - `"essential_bcs"` = array of essential boundary condition dictionaries - `"traction_bcs"` = array of traction boundary condition dictionaries - `"temperature_change"` = dictionary of data for temperature change For each region (connected piece of the domain made of a particular material), mandatory, the region dictionary contains values for keys: - `"femm"` = finite element model machine (mandatory); For essential boundary conditions (optional) each dictionary would hold - `"displacement"` = fixed (prescribed) displacement (scalar), or a function with signature function `w = f(x)`. If this value is not given, zero displacement is assumed. - `"component"` = which component is prescribed (1, 2, 3)? - `"node_list"` = list of nodes on the boundary to which the condition applies (mandatory) For traction boundary conditions (optional) each dictionary would hold key-value pairs - `"femm"` = finite element model machine (mandatory); - `"traction_vector"` = traction vector, either a constant numerical vector, or a function to be used to construct a `ForceIntensity` object, or it could be the `ForceIntensity` object itself. # Output `modeldata` = the dictionary on input is augmented with the keys - `"geom"` = the nodal field that is the geometry - `"u"` = the nodal field that is the computed displacement - `"temp"` = the nodal field that is the temperature change - `"work"` = work of the applied loads - `"timing"` = dictionary with timing results """ function linearstatics(modeldata::FDataDict) # Lists of recognized keys for the data dictionaries: modeldata_recognized_keys = [ "fens", "regions", "essential_bcs", "traction_bcs", "temperature_change", "factorize", ] essential_bcs_recognized_keys = ["displacement", "node_list", "component"] traction_bcs_recognized_keys = ["femm", "traction_vector"] regions_recognized_keys = ["femm", "body_load"] temperature_change_recognized_keys = ["temperature"] # Extract the nodes fens = get(() -> error("Must get fens!"), modeldata, "fens") # Construct the geometry field geom = NodalField(fens.xyz) # Construct the displacement field u = NodalField(zeros(nnodes(geom), ndofs(geom))) UFT = eltype(u.values) # Construct the temperature field temp = NodalField(zeros(nnodes(geom), 1)) modeldata["timing"] = FDataDict() tstart = time() # Apply the essential boundary conditions on the displacement field essential_bcs = get(modeldata, "essential_bcs", nothing) if (essential_bcs !== nothing) for j in eachindex(essential_bcs) ebc = essential_bcs[j] dcheck!(ebc, essential_bcs_recognized_keys) fenids = get(() -> error("Must get node list!"), ebc, "node_list") displacement = get(ebc, "displacement", nothing) u_fixed = zeros(UFT, length(fenids)) # default is zero displacement if (displacement !== nothing) # if it is nonzero, if (typeof(displacement) <: Function) # it could be a function for k in eachindex(fenids) u_fixed[k] = displacement(geom.values[fenids[k], :])[1] end else # or it could be a constant fill!(u_fixed, displacement) end end component = get(ebc, "component", 0) # which component? setebc!(u, fenids[:], true, component, u_fixed) end applyebc!(u) end # Number the equations numberdofs!(u) #,Renumbering_options); # NOT DONE modeldata["timing"]["essential_bcs"] = time() - tstart tstart = time() # Initialize the heat loads vector F = zeros(UFT, nalldofs(u)) # Construct the system stiffness matrix K = spzeros(nalldofs(u), nalldofs(u)) # (all zeros, for the moment) regions = get(() -> error("Must get region list!"), modeldata, "regions") for i in eachindex(regions) region = regions[i] dcheck!(region, regions_recognized_keys) femm = region["femm"] # Give the FEMM a chance to precompute geometry-related quantities femm = associategeometry!(femm, geom) # Add up all the conductivity matrices for all the regions K = K + stiffness(femm, geom, u) end tstart = time() # Process the traction boundary condition traction_bcs = get(modeldata, "traction_bcs", nothing) if (traction_bcs !== nothing) for j in eachindex(traction_bcs) tractionbc = traction_bcs[j] dcheck!(tractionbc, traction_bcs_recognized_keys) traction_vector = tractionbc["traction_vector"] if (typeof(traction_vector) <: Function) fi = ForceIntensity(UFT, ndofs(geom), traction_vector) elseif (typeof(traction_vector) <: ForceIntensity) fi = traction_vector else fi = ForceIntensity(traction_vector) end femm = tractionbc["femm"] F = F + distribloads(femm, geom, u, fi, 2) end end modeldata["timing"]["traction_bcs"] = time() - tstart tstart = time() # Process the thermal strain loading temperature_change = get(modeldata, "temperature_change", nothing) if (temperature_change !== nothing) dcheck!(temperature_change, temperature_change_recognized_keys) # zero temperature change is a reasonable default temp = NodalField(zeros(size(fens.xyz, 1), 1)) temperature = get(temperature_change, "temperature", nothing) if (temperature !== nothing) # if it is nonzero, if (typeof(temperature) <: Function) # it could be a function for k in eachindex(fens) temp.values[k] = temperature(geom.values[k, :])[1] end else # or it could be a constant fill!(temp.values, temperature) end end for i in eachindex(regions) region = regions[i] femm = region["femm"] F = F + thermalstrainloads(femm, geom, u, temp) end end modeldata["timing"]["temperature_change"] = time() - tstart K_ff, K_fd = matrix_blocked(K, nfreedofs(u), nfreedofs(u))[(:ff, :fd)] F_f = vector_blocked(F, nfreedofs(u))[:f] U_d = gathersysvec(u, :d) # Loads due to the essential boundary conditions on the displacement field essential_bcs = get(modeldata, "essential_bcs", nothing) if (essential_bcs !== nothing) # there was at least one EBC applied F_f = F_f - K_fd * U_d end modeldata["timing"]["stiffness"] = time() - tstart # # Process the body load # body_load = get(modeldata, "body_load", nothing); # if (body_load !=nothing) # for j=1:length(model_data.body_load) # body_load =model_data.body_load{j}; # femm = femm_deformation_linear (struct ('material',[],... # 'fes',body_load.fes,... # 'integration_rule',body_load.integration_rule)); # fi= force_intensity(struct('magn',body_load.force)); # F = F + distrib_loads(femm, sysvec_assembler, geom, u, fi, 3); # end # clear body_load fi femm # end # # Process the nodal force boundary condition # if (isfield(model_data.boundary_conditions, 'nodal_force' )) # for j=1:length(model_data.boundary_conditions.nodal_force) # nodal_force =model_data.boundary_conditions.nodal_force{j}; # femm = femm_deformation_linear (struct ('material',[],... # 'fes',fe_set_P1(struct('conn',reshape(nodal_force.node_list,[],1))),... # 'integration_rule',point_rule)); # fi= force_intensity(struct('magn',nodal_force.force)); # F = F + distrib_loads(femm, sysvec_assembler, geom, u, fi, 0); # end # clear nodal_force fi femm # end # # Apply multi point constraints # if isfield(model_data,'mpc') # for i=1:length(model_data.mpc) # mpc =model_data.mpc{i}; # dofnums=0*mpc.umultipliers;# Construct an array of the degree of freedom numbers # for kx=1:length(mpc.node_list) # dofnums(kx)=u.dofnums(mpc.node_list(kx),mpc.dof_list(kx)); # end # # Now call the utility function to calculate the constraint matrix # [Kmpc,Fmpc]=apply_penalty_mpc(nalldofs(u),dofnums,mpc.umultipliers,0.0,mpc.penfact); # K = K + Kmpc; # F = F + Fmpc; # end # clear Kmpc Fmpc # end tstart = time() # Solve the system of linear algebraic equations U_f = K_ff \ F_f scattersysvec!(u, U_f) modeldata["timing"]["solution"] = time() - tstart U = gathersysvec(u, :a) # Update the model data setindex!(modeldata, geom, "geom") setindex!(modeldata, u, "u") setindex!(modeldata, temp, "temp") setindex!(modeldata, temp, "dT") setindex!(modeldata, dot(F, U) / 2, "work") return modeldata # ... And return the updated model data end """ AlgoDeforLinearModule.exportdeformation(modeldata::FDataDict) Algorithm for exporting of the deformation for visualization in Paraview. # Argument `modeldata` = dictionary with values for keys - `"fens"` = finite element node set - `"regions"` = array of region dictionaries - `"geom"` = geometry field - `"u"` = displacement field, or - `"us"` = array of tuples (name, displacement field) - `"postprocessing"` = dictionary with values for keys + `"boundary_only"` = should only the boundary of the regions be rendered? Default is render the interior. + `"file"` = name of the postprocessing file For each region (connected piece of the domain made of a particular material), mandatory, the region dictionary contains values for keys: - `"femm"` = finite element mmodel machine (mandatory); # Output `modeldata` updated with - `modeldata["postprocessing"]["exported"]` = array of data dictionaries, one for each exported file. The data is stored with the keys: + `"file"` - names of exported file + `"field"` - nodal or elemental field """ function exportdeformation(modeldata::FDataDict) modeldata_recognized_keys = ["fens", "regions", "geom", "u", "postprocessing"] postprocessing_recognized_keys = ["boundary_only", "file"] # Defaults boundary_only = false ffile = "deformation" dcheck!(modeldata, modeldata_recognized_keys) # Let's have a look at what's been specified postprocessing = get(modeldata, "postprocessing", nothing) if (postprocessing !== nothing) dcheck!(postprocessing, postprocessing_recognized_keys) boundary_only = get(postprocessing, "boundary_only", boundary_only) ffile = get(postprocessing, "file", ffile) end fens = get(() -> error("Must get fens!"), modeldata, "fens") geom = get(() -> error("Must get geometry field!"), modeldata, "geom") u = get(modeldata, "u", nothing) UFT = eltype(u.values) us = get(modeldata, "us", nothing) if us === nothing us = [("u", u)] end # Export one file for each region modeldata["postprocessing"]["exported"] = Array{FDataDict,1}() regions = get(() -> error("Must get region!"), modeldata, "regions") for i in eachindex(regions) region = regions[i] femm = region["femm"] rfile = ffile * "$i" * ".vtk" vectors = Tuple{String,Matrix{UFT}}[] for ixxxx in eachindex(us) push!(vectors, (us[ixxxx][1], us[ixxxx][2].values)) end if boundary_only bfes = meshboundary(femm.integdomain.fes) vtkexportmesh(rfile, fens, bfes; vectors = vectors) else vtkexportmesh(rfile, fens, femm.integdomain.fes; vectors = vectors) end ed = FDataDict( "file" => rfile, "field" => u, "region" => i, "type" => "displacement", ) push!(modeldata["postprocessing"]["exported"], ed) end return modeldata end """ AlgoDeforLinearModule.exportstress(modeldata::FDataDict) Algorithm for exporting of the stress for visualization in Paraview. # Argument `modeldata` = dictionary with values for keys - `"fens"` = finite element node set - `"regions"` = array of region dictionaries - `"geom"` = geometry field - `"u"` = displacement field - `"postprocessing"` = dictionary with values for keys + `"boundary_only"` = should only the boundary of the regions be rendered? Default is render the interior. + `"file"` = name of the postprocessing file + `"quantity"` = quantity to be exported (default `:Cauchy`) + `"component"` = which component of the quantity? + `"outputcsys"` = output coordinate system + `"inspectormeth"` = inspector method to pass to `inspectintegpoints()` + `"extrap"` = method for extrapolating from the quadrature points to the nodes within one element For each region (connected piece of the domain made of a particular material), mandatory, the region dictionary contains values for keys: - `"femm"` = finite element mmodel machine (mandatory); # Output `modeldata` updated with - `modeldata["postprocessing"]["exported"]` = array of data dictionaries, one for each exported file. The data is stored with the keys: + `"file"` - name of exported file + `"field"` - nodal field """ function exportstress(modeldata::FDataDict) modeldata_recognized_keys = ["fens", "regions", "geom", "u", "dT", "postprocessing"] postprocessing_recognized_keys = [ "boundary_only", "file", "quantity", "component", "outputcsys", "nodevalmethod", "reportat", ] # Defaults boundary_only = false ffile = "stress" dcheck!(modeldata, modeldata_recognized_keys) quantity = :Cauchy component = 1 outputcsys = nothing reportat = :default nodevalmethod = :invdistance # Let's have a look at what's been specified postprocessing = get(modeldata, "postprocessing", nothing) if (postprocessing !== nothing) dcheck!(postprocessing, postprocessing_recognized_keys) boundary_only = get(postprocessing, "boundary_only", boundary_only) ffile = get(postprocessing, "file", ffile) quantity = get(postprocessing, "quantity", quantity) component = get(postprocessing, "component", component) outputcsys = get(postprocessing, "outputcsys", outputcsys) nodevalmethod = get(postprocessing, "nodevalmethod", nodevalmethod) reportat = get(postprocessing, "reportat", reportat) end fens = get(() -> error("Must get fens!"), modeldata, "fens") geom = get(() -> error("Must get geometry field!"), modeldata, "geom") u = get(() -> error("Must get displacement field!"), modeldata, "u") dT = get(modeldata, "dT", nothing) context = [] if (outputcsys !== nothing) push!(context, (:outputcsys, outputcsys)) end if (nodevalmethod !== nothing) push!(context, (:nodevalmethod, nodevalmethod)) end if (reportat !== nothing) push!(context, (:reportat, reportat)) end # Export a file for each region modeldata["postprocessing"]["exported"] = Array{FDataDict,1}() regions = get(() -> error("Must get region!"), modeldata, "regions") for i in eachindex(regions) region = regions[i] femm = region["femm"] rfile = ffile * "-" * string(quantity) * string(component) * "-region $i" * ".vtk" if (typeof(component) == Symbol) componentnum = stresscomponentmap(femm.mr)[component] else componentnum = component end componentname = length(componentnum) > 1 ? "" : "$(componentnum)" # Note that we are creating a field separately for each region. This is # important for the following reason: if the regions were of different # materials, or if they were of the same material but with different material # axes orientation, averaging across the material interface would not make # sense. if (dT !== nothing) fld = fieldfromintegpoints(femm, geom, u, dT, quantity, componentnum; context...) else fld = fieldfromintegpoints(femm, geom, u, quantity, componentnum; context...) end if boundary_only bfes = meshboundary(femm.integdomain.fes) vtkexportmesh( rfile, fens, bfes; scalars = [(string(quantity) * componentname, fld.values)], vectors = [("u", u.values)], ) else vtkexportmesh( rfile, fens, femm.integdomain.fes; scalars = [(string(quantity) * componentname, fld.values)], vectors = [("u", u.values)], ) end ed = FDataDict( "file" => rfile, "field" => fld, "region" => i, "type" => "nodal stress", "quantity" => quantity, "component" => component, "outputcsys" => outputcsys, "nodevalmethod" => nodevalmethod, "reportat" => reportat, ) push!(modeldata["postprocessing"]["exported"], ed) end return modeldata end """ AlgoDeforLinearModule.exportstresselementwise(modeldata::FDataDict) Algorithm for exporting of the elementwise stress for visualization in Paraview. # Argument `modeldata` = dictionary with values for keys - `"fens"` = finite element node set - `"regions"` = array of region dictionaries - `"geom"` = geometry field - `"u"` = displacement field - `"postprocessing"` = dictionary with values for keys + `"boundary_only"` = should only the boundary of the regions be rendered? Default is render the interior. + `"file"` = name of the postprocessing file + `"quantity"` = quantity to be exported (default `:Cauchy`) + `"component"` = which component of the quantity? + `"outputcsys"` = output coordinate system For each region (connected piece of the domain made of a particular material), mandatory, the region dictionary contains values for keys: - `"femm"` = finite element mmodel machine (mandatory); # Output `modeldata` updated with - `modeldata["postprocessing"]["exported"]` = array of data dictionaries, one for each exported file. The data is stored with the keys: + `"file"` - name of exported file + `"field"` - elemental field """ function exportstresselementwise(modeldata::FDataDict) modeldata_recognized_keys = ["fens", "regions", "geom", "u", "dT", "postprocessing"] postprocessing_recognized_keys = ["boundary_only", "file", "quantity", "component", "outputcsys"] # Defaults boundary_only = false ffile = "stress" dcheck!(modeldata, modeldata_recognized_keys) quantity = :Cauchy component = 1 outputcsys = nothing # Let's have a look at what's been specified postprocessing = get(modeldata, "postprocessing", nothing) if (postprocessing !== nothing) dcheck!(postprocessing, postprocessing_recognized_keys) boundary_only = get(postprocessing, "boundary_only", boundary_only) ffile = get(postprocessing, "file", ffile) quantity = get(postprocessing, "quantity", quantity) component = get(postprocessing, "component", component) outputcsys = get(postprocessing, "outputcsys", outputcsys) end fens = get(() -> error("Must get fens!"), modeldata, "fens") geom = get(() -> error("Must get geometry field!"), modeldata, "geom") u = get(() -> error("Must get displacement field!"), modeldata, "u") dT = get(modeldata, "dT", nothing) context = [] if (outputcsys !== nothing) push!(context, (:outputcsys, outputcsys)) end # Export a file for each region modeldata["postprocessing"]["exported"] = Array{FDataDict,1}() regions = get(() -> error("Must get region!"), modeldata, "regions") for i in eachindex(regions) region = regions[i] femm = region["femm"] rfile = ffile * "-" * string(quantity) * string(component) * "-region $i" * ".vtk" if (typeof(component) == Symbol) componentnum = stresscomponentmap(femm.mr)[component] else componentnum = component end componentname = length(componentnum) > 1 ? "" : "$(componentnum)" # Note that we are creating a field separately for each region. This is # important for the following reason: if the regions were of different # materials, or if they were of the same material but with different material # axes orientation, averaging across the material interface would not make # sense. if (dT !== nothing) fld = elemfieldfromintegpoints( femm, geom, u, dT, quantity, componentnum; context..., ) else fld = elemfieldfromintegpoints(femm, geom, u, quantity, componentnum; context...) end if boundary_only bfes = meshboundary(femm.integdomain.fes) vtkexportmesh( rfile, fens, bfes; scalars = [(string(quantity) * componentname, fld.values)], vectors = [("u", u.values)], ) else vtkexportmesh( rfile, fens, femm.integdomain.fes; scalars = [(string(quantity) * componentname, fld.values)], vectors = [("u", u.values)], ) end ed = FDataDict( "file" => rfile, "field" => fld, "region" => i, "type" => "elemental stress", "quantity" => quantity, "component" => component, "outputcsys" => outputcsys, ) push!(modeldata["postprocessing"]["exported"], ed) end return modeldata end """ AlgoDeforLinearModule.modal(modeldata::FDataDict) Modal (free-vibration) analysis solver. # Argument `modeldata` = dictionary with values for keys - `"fens"` = finite element node set - `"regions"` = array of region dictionaries - `"essential_bcs"` = array of essential boundary condition dictionaries For each region (connected piece of the domain made of a particular material), mandatory, the region dictionary contains values for keys: - `"femm"` = finite element mmodel machine (mandatory); For essential boundary conditions (optional) each dictionary would hold - `"displacement"` = fixed (prescribed) displacement (scalar): only zero displacement is allowed for modal analysis. - `"component"` = which component is prescribed (1, 2, 3)? - `"node_list"` = list of nodes on the boundary to which the condition applies (mandatory) Control parameters: - `"neigvs"` = number of eigenvalues/eigenvectors to compute - `"omega_shift"`= angular frequency shift for mass shifting - `"use_lumped_mass"` = true or false? (Default is false: consistent mass) # Output `modeldata`= the dictionary on input is augmented with - `"geom"` = the nodal field that is the geometry - `"u"` = the nodal field that is the computed displacement - `"neigvs"` = Number of computed eigenvectors - `"W"` = Computed eigenvectors, neigvs columns - `"omega"` = Computed angular frequencies, array of length neigvs # For multi point constraints (MPC) (optional): - `"raw_eigenvalues"` = Raw computed eigenvalues # model_data.mpc= cell array of structs, each for one MPC. """ function modal(modeldata::FDataDict) # For multi point constraints (MPC) (optional): # model_data.mpc= cell array of structs, each for one MPC. # mpc.node_list = list of node numbers involved in the MPC, # mpc.dof_list= numbers of degrees of freedom for the nodes above, # mpc.umultipliers=multipliers for the nodes above, # mpc.penfact=the penalty factor to multiply the constraint matrix, # The MPC looks like this: sum_i m_i u_{dof(i),node(i)} =0 # where m_i is the multiplier. # Lists of recognized keys for the data dictionaries: modeldata_recognized_keys = ["fens", "regions", "essential_bcs", "neigvs", "omega_shift", "use_lumped_mass"] essential_bcs_recognized_keys = ["displacement", "node_list", "component"] regions_recognized_keys = ["femm", "femm_stiffness", "femm_mass", "body_load"] neigvs = get(modeldata, "neigvs", 7) # Number of eigenvalues omega_shift = get(modeldata, "omega_shift", 0.0) # Mass shifting use_factorization = get(modeldata, "use_factorization", false) # Factorization? use_lumped_mass = get(modeldata, "use_lumped_mass", false) # Lumped mass? # Extract the nodes fens = get(() -> error("Must get fens!"), modeldata, "fens") # Construct the geometry field geom = NodalField(fens.xyz) # Construct the displacement field u = NodalField(zeros(nnodes(geom), ndofs(geom))) UFT = eltype(u.values) # Apply the essential boundary conditions on the displacement field essential_bcs = get(modeldata, "essential_bcs", nothing) if (essential_bcs !== nothing) for j in eachindex(essential_bcs) ebc = essential_bcs[j] dcheck!(ebc, essential_bcs_recognized_keys) fenids = get(() -> error("Must get node list!"), ebc, "node_list") displacement = get(ebc, "displacement", nothing) u_fixed = zeros(UFT, length(fenids)) # only zero displacement accepted component = get(ebc, "component", 0) # which component? setebc!(u, fenids[:], true, component, u_fixed) end applyebc!(u) end # Number the equations numberdofs!(u) #,Renumbering_options); # NOT DONE # Construct the system stiffness matrix K = spzeros(nalldofs(u), nalldofs(u)) # (all zeros, for the moment) regions = get(() -> error("Must get region list!"), modeldata, "regions") for i in eachindex(regions) region = regions[i] dcheck!(region, regions_recognized_keys) if "femm_stiffness" in keys(region) femm = region["femm_stiffness"] else femm = get(() -> error("Must get femm or femm_stiffness!"), region, "femm") end # Give the FEMM a chance to precompute geometry-related quantities femm = associategeometry!(femm, geom) # Add up all the stiffness matrices for all the regions K = K + stiffness(femm, geom, u) end # Construct the system mass matrix M = spzeros(nalldofs(u), nalldofs(u)) # (all zeros, for the moment) regions = get(() -> error("Must get region list!"), modeldata, "regions") for i in eachindex(regions) region = regions[i] dcheck!(region, regions_recognized_keys) if "femm_mass" in keys(region) femm = region["femm_mass"] else femm = get(() -> error("Must get femm or femm_mass!"), region, "femm") end # Give the FEMM a chance to precompute geometry-related quantities femm = associategeometry!(femm, geom) # Add up all the mass matrices for all the regions M = M + mass(femm, geom, u) end # Options for the eigenproblem solution # Solve # if (~ use_factorization ) # # This is one way of solving the eigenvalue problem, just pass the matrices # [W,Omega]= eigs(K+omega_shift*M, M, neigvs, 'SM', evopts); # else # This form uses the factorized matrix and has the potential of being much faster # Factorize the left-hand side matrix for efficiency (Choleski) # [mA,status] = chol(K+omega_shift*M,'lower');#,'vector',prm # if ( status ~= 0 ) error('Choleski factorization failed'), end # clear K; # Not needed anymore # mAt= mA'; # [W,Omega]= eigs(@(bv)mAt\(mA\bv), nalldofs(u), M, neigvs, 'SM', evopts); # [W,Omega]= eigen(full(K+omega_shift*M), full(M)); K_ff = matrix_blocked(K, nfreedofs(u), nfreedofs(u))[:ff] M_ff = matrix_blocked(M, nfreedofs(u), nfreedofs(u))[:ff] d, v, nconv = eigs(Symmetric(K_ff + omega_shift * M_ff), Symmetric(M_ff); nev = neigvs, which = :SM, explicittransform=:none) # Subtract the mass-shifting Angular frequency broadcast!(+, d, d, -omega_shift) modeldata["raw_eigenvalues"] = d # Better make sure the eigenvalues make sense: they should be all real. if any(imag(d) .!= 0.0) d = real.(d) end if any(real(d) .< 0.0) d = abs.(d) end d = real.(d) # Sort the angular frequencies by magnitude. Make sure all # imaginary parts of the eigenvalues are removed. ix = sortperm(d) # Update the model data: store geometry modeldata["geom"] = geom # Store the displacement field modeldata["u"] = u # Number of computed eigenvectors modeldata["neigvs"] = length(d) # Computed eigenvectors: we are ignoring the imaginary part here # because the modal analysis is presumed to have been performed for # an undamped structure modeldata["W"] = real(v[:, ix]) # Computed angular frequencies modeldata["omega"] = sqrt.(d[ix]) return modeldata end """ AlgoDeforLinearModule.exportmode(modeldata::FDataDict) Algorithm for exporting of the mmode shape for visualization in Paraview. # Argument `modeldata` = dictionary with values for keys - `"fens"` = finite element node set - `"regions"` = array of region dictionaries - `"geom"` = geometry field - `"u"` = displacement field - `"W"` = Computed free-vibration eigenvectors, `neigvs` columns - `"omega"` = Computed free-vibration angular frequencies, array of length `neigvs` - `"postprocessing"` = dictionary with values for keys + `"boundary_only"` = should only the boundary of the regions be rendered? Default is render the interior. + `"file"` = name of the postprocessing file + `"mode"` = which mode should be visualized? + `"component"` = which component of the quantity? + `"outputcsys"` = output coordinate system For each region (connected piece of the domain made of a particular material), mandatory, the region dictionary contains values for keys: - `"femm"` = finite element mmodel machine (mandatory); # Output `modeldata` updated with - `modeldata["postprocessing"]["exported"]` = see `exportdeformation()` """ function exportmode(modeldata::FDataDict) modeldata_recognized_keys = ["fens", "regions", "geom", "u", "omega", "W", "postprocessing"] postprocessing_recognized_keys = ["boundary_only", "file", "mode"] mode = 1 dcheck!(modeldata, modeldata_recognized_keys) # Let's have a look at what's been specified postprocessing = get(modeldata, "postprocessing", nothing) if (postprocessing !== nothing) dcheck!(postprocessing, postprocessing_recognized_keys) mode = get(postprocessing, "mode", mode) end omega = modeldata["omega"] # Scatter the desired mode W = modeldata["W"] if typeof(mode) <: Int @assert 0 < mode <= length(omega) "Invalid mode number $mode" scattersysvec!(modeldata["u"], W[:, mode]) else us = Tuple{String,AbstractField}[] u = modeldata["u"] for ixxxx in mode @assert 0 < ixxxx <= length(omega) "Invalid mode number $ixxxx" scattersysvec!(u, W[:, ixxxx]) push!(us, ("mode_$(ixxxx)", deepcopy(u))) end modeldata["us"] = us end return exportdeformation(modeldata) end end
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
20589
""" Base module for operations on interiors of domains to construct system matrices and system vectors for linear deformation models. """ module FEMMDeforLinearBaseModule __precompile__(true) using FinEtools.FENodeSetModule: FENodeSet using FinEtools.DataCacheModule: DataCache using FinEtools.FESetModule: gradN!, nodesperelem, manifdim using FinEtools.IntegDomainModule: IntegDomain, integrationdata, Jacobianvolume using FinEtools.FieldModule: ndofs, gatherdofnums!, gathervalues_asvec!, gathervalues_asmat!, nalldofs using FinEtools.NodalFieldModule: NodalField, nnodes using FinEtools.AssemblyModule: AbstractSysvecAssembler, AbstractSysmatAssembler, SysmatAssemblerSparseSymm, startassembly!, assemble!, makematrix!, makevector!, SysvecAssembler using FinEtools.FEMMBaseModule: AbstractFEMM import FinEtools.FEMMBaseModule: inspectintegpoints, bilform_dot, bilform_lin_elastic using FinEtools.CSysModule: CSys, updatecsmat!, csmat using FinEtools.DeforModelRedModule: nstressstrain, nthermstrain, blmat!, divmat, vgradmat using FinEtools.MatrixUtilityModule: add_btdb_ut_only!, complete_lt!, locjac!, add_nnt_ut_only!, add_btsigma! using FinEtoolsDeforLinear.MatDeforModule: rotstressvec! using FinEtools.MatModule: massdensity using FinEtoolsDeforLinear.MatDeforLinearElasticModule: tangentmoduli!, update!, thermalstrain! using FinEtools.SurfaceNormalModule: SurfaceNormal, updatenormal! using LinearAlgebra: Transpose, mul! At_mul_B!(C, A, B) = mul!(C, Transpose(A), B) A_mul_B!(C, A, B) = mul!(C, A, B) using LinearAlgebra: norm, dot, I using LinearAlgebra """ AbstractFEMMDeforLinear <: AbstractFEMMBase Abstract type of FEMM for linear deformation. """ abstract type AbstractFEMMDeforLinear <: AbstractFEMM end function _buffers( self::AbstractFEMMDeforLinear, geom::NodalField{GFT}, u::NodalField{UFT}, ) where {GFT,UFT} fes = self.integdomain.fes ndn = ndofs(u) # number of degrees of freedom per node nne = nodesperelem(fes) # number of nodes for element sdim = ndofs(geom) # number of space dimensions mdim = manifdim(fes) # manifold dimension of the element nstrs = nstressstrain(self.mr) # number of stresses elmatdim = ndn * nne # dimension of the element matrix # Prepare _buffers ecoords = fill(zero(GFT), nne, ndofs(geom)) # array of Element coordinates elmat = fill(zero(GFT), elmatdim, elmatdim) # element matrix -- buffer dofnums = zeros(eltype(u.dofnums), elmatdim) # degree of freedom array -- buffer loc = fill(zero(GFT), 1, sdim) # quadrature point location -- buffer J = fill(zero(GFT), sdim, mdim) # Jacobian matrix -- buffer csmatTJ = fill(zero(GFT), mdim, mdim) # intermediate result -- buffer gradN = fill(zero(GFT), nne, mdim) # intermediate result -- buffer D = fill(zero(GFT), nstrs, nstrs) # material stiffness matrix -- buffer B = fill(zero(GFT), nstrs, elmatdim) # strain-displacement matrix -- buffer DB = fill(zero(GFT), nstrs, elmatdim) # strain-displacement matrix -- buffer elvecfix = fill(zero(UFT), elmatdim) # vector of prescribed displ. -- buffer elvec = fill(zero(UFT), elmatdim) # element vector -- buffer return ecoords, dofnums, loc, J, csmatTJ, gradN, D, B, DB, elmat, elvec, elvecfix end """ mass( self::AbstractFEMMDeforLinear, assembler::A, geom::NodalField{GFT}, u::NodalField{UFT}, ) where {A<:AbstractSysmatAssembler,GFT<:Number,UFT<:Number} Compute the consistent mass matrix This is a general routine for the abstract linear-deformation FEMM. """ function mass( self::AbstractFEMMDeforLinear, assembler::A, geom::NodalField{GFT}, u::NodalField{UFT}, ) where {A<:AbstractSysmatAssembler,GFT<:Number,UFT<:Number} cf = DataCache(massdensity(self.material) * LinearAlgebra.I(ndofs(u))) return bilform_dot(self, assembler, geom, u, cf) end function mass( self::AbstractFEMMDeforLinear, geom::NodalField{GFT}, u::NodalField{UFT}, ) where {GFT<:Number,UFT<:Number} assembler = SysmatAssemblerSparseSymm() return mass(self, assembler, geom, u) end """ stiffness( self::FEMM, assembler::A, geom::NodalField{GFT}, u::NodalField{UFT}, ) where {FEMM<:AbstractFEMMDeforLinear,A<:AbstractSysmatAssembler,GFT<:Number,UFT<:Number} Compute and assemble stiffness matrix. !!! note "Only for homogeneous materials" The material stiffness matrix is assumed to be the same at all the points of the domain (homogeneous material). """ function stiffness( self::FEMM, assembler::A, geom::NodalField{GFT}, u::NodalField{UFT}, ) where {FEMM<:AbstractFEMMDeforLinear,A<:AbstractSysmatAssembler,GFT<:Number,UFT<:Number} sdim = ndofs(geom) loc = fill(zero(GFT), 1, sdim) nstrs = nstressstrain(self.mr) D = fill(zero(GFT), nstrs, nstrs) tangentmoduli!(self.material, D, 0.0, 0.0, loc, 0) return bilform_lin_elastic(self, assembler, geom, u, self.mr, DataCache(D)) end function stiffness( self::FEMM, geom::NodalField{GFT}, u::NodalField{UFT}, ) where {FEMM<:AbstractFEMMDeforLinear,GFT<:Number,UFT<:Number} assembler = SysmatAssemblerSparseSymm() return stiffness(self, assembler, geom, u) end """ thermalstrainloads( self::AbstractFEMMDeforLinear, assembler::A, geom::NodalField{GFT}, u::NodalField{UFT}, dT::NodalField{TFT}, ) where {A<:AbstractSysvecAssembler,GFT<:Number,UFT<:Number,TFT<:Number} Compute the thermal-strain load vector. """ function thermalstrainloads( self::AbstractFEMMDeforLinear, assembler::A, geom::NodalField{GFT}, u::NodalField{UFT}, dT::NodalField{TFT}, ) where {A<:AbstractSysvecAssembler,GFT<:Number,UFT<:Number,TFT<:Number} fes = self.integdomain.fes npts, Ns, gradNparams, w, pc = integrationdata(self.integdomain) ecoords, dofnums, loc, J, csmatTJ, gradN, D, B, DB, elmat, elvec, elvecfix = _buffers(self, geom, u) t = 0.0 dt = 0.0 DeltaT = fill(zero(GFT), nodesperelem(fes)) strain = fill(zero(GFT), nstressstrain(self.mr)) # total strain -- buffer thstrain = fill(zero(GFT), nthermstrain(self.mr)) # thermal strain -- buffer thstress = fill(zero(GFT), nstressstrain(self.mr)) # thermal stress -- buffer startassembly!(assembler, nalldofs(u)) for i in eachindex(fes) # Loop over elements gathervalues_asvec!(dT, DeltaT, fes.conn[i])# retrieve element temperatures if norm(DeltaT, Inf) != 0 # Is the thermal increment nonzero? gathervalues_asmat!(geom, ecoords, fes.conn[i]) fill!(elvec, 0.0) # Initialize element matrix for j = 1:npts # Loop over quadrature points locjac!(loc, J, ecoords, Ns[j], gradNparams[j]) Jac = Jacobianvolume(self.integdomain, J, loc, fes.conn[i], Ns[j]) updatecsmat!(self.mcsys, loc, J, i, j) At_mul_B!(csmatTJ, csmat(self.mcsys), J) # local Jacobian matrix gradN!(fes, gradN, gradNparams[j], csmatTJ)#Do: gradN = gradNparams[j]/csmatTJ; blmat!(self.mr, B, Ns[j], gradN, loc, csmat(self.mcsys))# strains in mater cs, displ in global cs thermalstrain!(self.material, thstrain, dot(vec(Ns[j]), DeltaT)) thstress = update!( self.material, thstress, thstress, strain, thstrain, t, dt, loc, fes.label[i], :nothing, ) add_btsigma!(elvec, B, (-1) * (Jac * w[j]), thstress) end gatherdofnums!(u, dofnums, fes.conn[i]) # retrieve degrees of freedom assemble!(assembler, elvec, dofnums) # assemble element load vector end end # Loop over elements return makevector!(assembler) end function thermalstrainloads( self::AbstractFEMMDeforLinear, geom::NodalField{GFT}, u::NodalField{UFT}, dT::NodalField{TFT}, ) where {GFT<:Number,UFT<:Number,TFT<:Number} assembler = SysvecAssembler() return thermalstrainloads(self, assembler, geom, u, dT) end """ inspectintegpoints( self::FEMM, geom::NodalField{GFT}, u::NodalField{UFT}, dT::NodalField{TFT}, felist::AbstractVector{IT}, inspector::F, idat, quantity = :Cauchy; context..., ) where { FEMM<:AbstractFEMMDeforLinear, GFT<:Number, UFT<:Number, TFT<:Number, IT<:Integer, F<:Function, } Inspect integration point quantities. # Arguments - `geom` - reference geometry field - `u` - displacement field - `dT` - temperature difference field - `felist` - indexes of the finite elements that are to be inspected: The fes to be included are: `fes[felist]`. - `context` - structure: see the update!() method of the material. - `inspector` - functionwith the signature idat = inspector(idat, j, conn, x, out, loc); where `idat` - a structure or an array that the inspector may use to maintain some state, for instance minimum or maximum of stress, `j` is the element number, `conn` is the element connectivity, `out` is the output of the update!() method, `loc` is the location of the integration point in the *reference* configuration. # Return The updated inspector data is returned. """ function inspectintegpoints( self::FEMM, geom::NodalField{GFT}, u::NodalField{UFT}, dT::NodalField{TFT}, felist::AbstractVector{IT}, inspector::F, idat, quantity = :Cauchy; context..., ) where { FEMM<:AbstractFEMMDeforLinear, GFT<:Number, UFT<:Number, TFT<:Number, IT<:Integer, F<:Function, } fes = self.integdomain.fes npts, Ns, gradNparams, w, pc = integrationdata(self.integdomain) ecoords, dofnums, loc, J, csmatTJ, gradN, D, B, DB, elmat, elvec, elvecfix = _buffers(self, geom, u) # Sort out the output requirements outputcsys = self.mcsys # default: report the stresses in the material coord system for apair in pairs(context) sy, val = apair if sy == :outputcsys outputcsys = val end end t = 0.0 dt = 0.0 dTe = fill(zero(TFT), nodesperelem(fes)) # nodal temperatures -- buffer ue = fill(zero(GFT), size(elmat, 1)) # array of node displacements -- buffer nne = nodesperelem(fes) # number of nodes for element sdim = ndofs(geom) # number of space dimensions xe = fill(zero(GFT), nne, sdim) # array of node coordinates -- buffer qpdT = 0.0 # node temperature increment qpstrain = fill(zero(GFT), nstressstrain(self.mr), 1) # total strain -- buffer qpthstrain = fill(zero(GFT), nthermstrain(self.mr)) # thermal strain -- buffer qpstress = fill(zero(GFT), nstressstrain(self.mr)) # stress -- buffer out1 = fill(zero(GFT), nstressstrain(self.mr)) # stress -- buffer out = fill(zero(GFT), nstressstrain(self.mr))# output -- buffer # Loop over all the elements and all the quadrature points within them for ilist in eachindex(felist) # Loop over elements i = felist[ilist] gathervalues_asmat!(geom, ecoords, fes.conn[i]) gathervalues_asvec!(u, ue, fes.conn[i])# retrieve element displacements gathervalues_asvec!(dT, dTe, fes.conn[i])# retrieve element temp. increments for j in 1:npts # Loop over quadrature points locjac!(loc, J, ecoords, Ns[j], gradNparams[j]) Jac = Jacobianvolume(self.integdomain, J, loc, fes.conn[i], Ns[j]) updatecsmat!(self.mcsys, loc, J, i, j) At_mul_B!(csmatTJ, csmat(self.mcsys), J) # local Jacobian matrix gradN!(fes, gradN, gradNparams[j], csmatTJ) blmat!(self.mr, B, Ns[j], gradN, loc, csmat(self.mcsys)) updatecsmat!(outputcsys, loc, J, i, j) # Quadrature point quantities A_mul_B!(qpstrain, B, ue) # strain in material coordinates qpdT = dot(vec(dTe), vec(Ns[j]))# Quadrature point temperature increment thermalstrain!(self.material, qpthstrain, qpdT) # Material updates the state and returns the output out = update!( self.material, qpstress, out, vec(qpstrain), qpthstrain, t, dt, loc, fes.label[i], quantity, ) if (quantity == :Cauchy) # Transform stress tensor, if that is "out" (length(out1) >= length(out)) || (out1 = zeros(length(out))) rotstressvec!(self.mr, out1, out, transpose(csmat(self.mcsys)))# To global coord sys rotstressvec!(self.mr, out, out1, csmat(outputcsys))# To output coord sys end # Call the inspector idat = inspector(idat, i, fes.conn[i], ecoords, out, loc) end # Loop over quadrature points end # Loop over elements return idat # return the updated inspector data end function inspectintegpoints( self::FEMM, geom::NodalField{GFT}, u::NodalField{UFT}, felist::AbstractVector{IT}, inspector::F, idat, quantity = :Cauchy; context..., ) where {FEMM<:AbstractFEMMDeforLinear,GFT<:Number,UFT<:Number,IT,F<:Function} dT = NodalField(fill(zero(GFT), nnodes(geom), 1)) # zero difference in temperature return inspectintegpoints( self, geom, u, dT, felist, inspector, idat, quantity; context..., ) end function _buffers2( self::AbstractFEMMDeforLinear, geom::NodalField{GFT}, u::NodalField{UFT}, ) where {GFT,UFT} fes = self.integdomain.fes ndn = ndofs(u) # number of degrees of freedom per node nne = nodesperelem(fes) # number of nodes for element sdim = ndofs(geom) # number of space dimensions mdim = manifdim(fes) # manifold dimension of the element nstrs = nstressstrain(self.mr) # number of stresses elmatdim = ndn * nne # dimension of the element matrix # Prepare buffers ecoords = fill(zero(GFT), nne, ndofs(geom)) # array of Element coordinates elmat = fill(zero(GFT), elmatdim, elmatdim) # element matrix -- buffer dofnums = zeros(eltype(u.dofnums), elmatdim) # degree of freedom array -- buffer loc = fill(zero(GFT), 1, sdim) # quadrature point location -- buffer J = fill(zero(GFT), sdim, mdim) # Jacobian matrix -- buffer csmatTJ = fill(zero(GFT), mdim, mdim) # intermediate result -- buffer gradN = fill(zero(GFT), nne, mdim) # intermediate result -- buffer return ecoords, dofnums, loc, J, csmatTJ, gradN, elmat end """ infsup_gh( self::AbstractFEMMDeforLinear, assembler::A, geom::NodalField{GFT}, u::NodalField{UFT}, ) where {A<:AbstractSysmatAssembler,GFT,UFT} Compute the matrix to produce the norm of the divergence of the displacement. This matrix is used in the numerical infsup test (Klaus-Jurgen Bathe, The inf-sup condition and its evaluation for mixed finite element methods, Computers and Structures 79 (2001) 243-252.) !!! note This computation has not been optimized in any way. It can be expected to be inefficient. """ function infsup_gh( self::AbstractFEMMDeforLinear, assembler::A, geom::NodalField{GFT}, u::NodalField{UFT}, ) where {A<:AbstractSysmatAssembler,GFT,UFT} fes = self.integdomain.fes npts, Ns, gradNparams, w, pc = integrationdata(self.integdomain) ecoords, dofnums, loc, J, csmatTJ, gradN, elmat = _buffers2(self, geom, u) startassembly!(assembler, size(elmat)..., count(fes), nalldofs(u), nalldofs(u)) for i in eachindex(fes) # Loop over elements gathervalues_asmat!(geom, ecoords, fes.conn[i]) fill!(elmat, 0.0) # Initialize element matrix for j = 1:npts # Loop over quadrature points locjac!(loc, J, ecoords, Ns[j], gradNparams[j]) Jac = Jacobianvolume(self.integdomain, J, loc, fes.conn[i], Ns[j]) updatecsmat!(self.mcsys, loc, J, i, j) At_mul_B!(csmatTJ, csmat(self.mcsys), J) # local Jacobian matrix gradN!(fes, gradN, gradNparams[j], csmatTJ) divm = divmat(self.mr, Ns[j], gradN, loc) elmat += (transpose(divm) * divm) * (Jac * w[j]) end # Loop over quadrature points gatherdofnums!(u, dofnums, fes.conn[i]) # retrieve degrees of freedom assemble!(assembler, (elmat + elmat') / 2, dofnums, dofnums) # assemble symmetric matrix end # Loop over elements return makematrix!(assembler) end function infsup_gh( self::AbstractFEMMDeforLinear, geom::NodalField{GFT}, u::NodalField{UFT}, ) where {GFT,UFT} assembler = SysmatAssemblerSparseSymm() return infsup_gh(self, assembler, geom, u) end function _buffers3( self::AbstractFEMMDeforLinear, geom::NodalField{GFT}, u::NodalField{UFT}, ) where {GFT,UFT} fes = self.integdomain.fes ndn = ndofs(u) # number of degrees of freedom per node nne = nodesperelem(fes) # number of nodes for element sdim = ndofs(geom) # number of space dimensions mdim = manifdim(fes) # manifold dimension of the element nstrs = nstressstrain(self.mr) # number of stresses elmatdim = ndn * nne # dimension of the element matrix # Prepare buffers ecoords = fill(zero(GFT), nne, ndofs(geom)) # array of Element coordinates elmat = fill(zero(GFT), elmatdim, elmatdim) # element matrix -- buffer dofnums = zeros(eltype(u.dofnums), elmatdim) # degree of freedom array -- buffer loc = fill(zero(GFT), 1, sdim) # quadrature point location -- buffer J = fill(zero(GFT), sdim, mdim) # Jacobian matrix -- buffer csmatTJ = fill(zero(GFT), mdim, mdim) # intermediate result -- buffer gradN = fill(zero(GFT), nne, mdim) # intermediate result -- buffer return ecoords, dofnums, loc, J, csmatTJ, gradN, elmat end """ infsup_sh( self::AbstractFEMMDeforLinear, assembler::A, geom::NodalField{GFT}, u::NodalField{UFT}, ) where {A<:AbstractSysmatAssembler,GFT<:Number,UFT<:Number} Compute the matrix to produce the seminorm of the displacement (square root of the sum of the squares of the derivatives of the components of displacement). This matrix is used in the numerical infsup test (Klaus-Jurgen Bathe, The inf-sup condition and its evaluation for mixed finite element methods, Computers and Structures 79 (2001) 243-252.) !!! note This computation has not been optimized in any way. It can be expected to be inefficient. """ function infsup_sh( self::AbstractFEMMDeforLinear, assembler::A, geom::NodalField{GFT}, u::NodalField{UFT}, ) where {A<:AbstractSysmatAssembler,GFT<:Number,UFT<:Number} fes = self.integdomain.fes npts, Ns, gradNparams, w, pc = integrationdata(self.integdomain) ecoords, dofnums, loc, J, csmatTJ, gradN, elmat = _buffers3(self, geom, u) startassembly!(assembler, size(elmat)..., count(fes), nalldofs(u), nalldofs(u)) for i in eachindex(fes) # Loop over elements gathervalues_asmat!(geom, ecoords, fes.conn[i]) fill!(elmat, 0.0) # Initialize element matrix for j = 1:npts # Loop over quadrature points locjac!(loc, J, ecoords, Ns[j], gradNparams[j]) Jac = Jacobianvolume(self.integdomain, J, loc, fes.conn[i], Ns[j]) updatecsmat!(self.mcsys, loc, J, i, j) At_mul_B!(csmatTJ, csmat(self.mcsys), J) # local Jacobian matrix gradN!(fes, gradN, gradNparams[j], csmatTJ) vgradm = vgradmat(self.mr, Ns[j], gradN, loc) elmat += (transpose(vgradm) * vgradm) * (Jac * w[j]) end # Loop over quadrature points gatherdofnums!(u, dofnums, fes.conn[i]) # retrieve degrees of freedom assemble!(assembler, (elmat + elmat') / 2, dofnums, dofnums) # assemble symmetric matrix end # Loop over elements return makematrix!(assembler) end function infsup_sh( self::AbstractFEMMDeforLinear, geom::NodalField{GFT}, u::NodalField{UFT}, ) where {GFT<:Number,UFT<:Number} assembler = SysmatAssemblerSparseSymm() return infsup_sh(self, assembler, geom, u) end end
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
35920
""" Formulation for the small displacement, small strain deformation model for Nodally-Integrated Continuum Elements (NICE). The approximation is originally from Dohrmann et al IJNME 47 (2000). The formulation was subsequently developed in Krysl, P. and Zhu, B. Locking-free continuum displacement finite elements with nodal integration, International Journal for Numerical Methods in Engineering, 76,7,1020-1043,2008. The stabilization scheme comes from papers on energy-sampling stabilization for mean-strain elements (Krysl and coauthors). """ module FEMMDeforLinearESNICEModule __precompile__(true) using FinEtools.FENodeSetModule: FENodeSet using FinEtools.FESetModule: AbstractFESet, FESetH8, FESetT4, manifdim, nodesperelem, gradN! using FinEtools.IntegDomainModule: IntegDomain, integrationdata, Jacobianvolume using FinEtoolsDeforLinear.FEMMDeforLinearBaseModule: AbstractFEMMDeforLinear using FinEtools.DeforModelRedModule: AbstractDeforModelRed, DeforModelRed3D using FinEtoolsDeforLinear.MatDeforLinearElasticModule: AbstractMatDeforLinearElastic, tangentmoduli!, update!, thermalstrain! using FinEtoolsDeforLinear.MatDeforElastIsoModule: MatDeforElastIso using FinEtools.FieldModule: ndofs, gatherdofnums!, gathervalues_asvec!, gathervalues_asmat!, nalldofs using FinEtools.NodalFieldModule: NodalField, nnodes using FinEtools.CSysModule: CSys, updatecsmat!, csmat using FinEtools.FENodeToFEMapModule: FENodeToFEMap using FinEtools.DeforModelRedModule: nstressstrain, nthermstrain, blmat!, divmat, vgradmat using FinEtools.AssemblyModule: AbstractSysvecAssembler, AbstractSysmatAssembler, SysmatAssemblerSparseSymm, startassembly!, assemble!, makematrix!, makevector!, SysvecAssembler using FinEtools.MatrixUtilityModule: add_btdb_ut_only!, complete_lt!, loc!, jac!, locjac!, adjugate3! import FinEtoolsDeforLinear.FEMMDeforLinearBaseModule: stiffness, mass, thermalstrainloads, inspectintegpoints import FinEtools.FEMMBaseModule: associategeometry! using FinEtoolsDeforLinear.MatDeforModule: rotstressvec! using FinEtools.MatModule: massdensity using LinearAlgebra: mul!, Transpose, UpperTriangular, eigvals, det At_mul_B!(C, A, B) = mul!(C, Transpose(A), B) A_mul_B!(C, A, B) = mul!(C, A, B) using LinearAlgebra: norm, qr, diag, dot, cond, I, cross using Statistics: mean const StabParamFloat = Float64 """ AbstractFEMMDeforLinearESNICE <: AbstractFEMMDeforLinear Abstract FEMM type for Nodally Integrated Continuum Elements (NICE) with energy-sampling stabilization (ESNICE). """ abstract type AbstractFEMMDeforLinearESNICE <: AbstractFEMMDeforLinear end # Tetrahedron # The coefficient set below was obtained by fitting the ratio of energies # true/approximate for the finite element model of six tetrahedra arranged # into a rectangular block and subject to pure bending # Fitting for a small aspect-ratio range (1.0 to 10) _T4_stabilization_parameters = (2.101588423297799, 1.311321055432958) mutable struct _NodalBasisFunctionGradients{FT,IT} gradN::Matrix{FT} patchconn::Vector{IT} Vpatch::FT end function _make_stabilization_material(material::M) where {M} ns = fieldnames(typeof(material)) E = 0.0 nu = 0.0 if :E in ns E = material.E if material.nu < 0.3 nu = material.nu else nu = 0.3 + (material.nu - 0.3) / 2.0 end else if :E1 in ns E = mean([material.E1, material.E2, material.E3]) nu = min(material.nu12, material.nu13, material.nu23) else error("No clues on how to construct the stabilization material") end end return MatDeforElastIso(material.mr, 0.0, E, nu, 0.0) end """ mutable struct FEMMDeforLinearESNICET4{ MR<:AbstractDeforModelRed, ID<:IntegDomain{S} where {S<:FESetT4}, CS<:CSys, M<:AbstractMatDeforLinearElastic, MS<:MatDeforElastIso, } <: AbstractFEMMDeforLinearESNICE FEMM type for Energy-sampling Stabilized Nodally Integrated Continuum Elements (ESNICE) based on the 4-node tetrahedron. """ mutable struct FEMMDeforLinearESNICET4{ MR<:AbstractDeforModelRed, ID<:IntegDomain{S} where {S<:FESetT4}, CS<:CSys, M<:AbstractMatDeforLinearElastic, MS<:MatDeforElastIso, } <: AbstractFEMMDeforLinearESNICE mr::Type{MR} integdomain::ID # geometry data mcsys::CS # updater of the material orientation matrix material::M # material object stabilization_material::MS nodalbasisfunctiongrad::Vector{_NodalBasisFunctionGradients} ephis::Vector{StabParamFloat} nphis::Vector{StabParamFloat} end """ mutable struct FEMMDeforLinearESNICEH8{ MR<:AbstractDeforModelRed, ID<:IntegDomain{S} where {S<:FESetH8}, CS<:CSys, M<:AbstractMatDeforLinearElastic, MS<:MatDeforElastIso, } <: AbstractFEMMDeforLinearESNICE FEMM type for Energy-sampling Stabilized Nodally Integrated Continuum Elements (ESNICE) based on the 8-node hexahedron. """ mutable struct FEMMDeforLinearESNICEH8{ MR<:AbstractDeforModelRed, ID<:IntegDomain{S} where {S<:FESetH8}, CS<:CSys, M<:AbstractMatDeforLinearElastic, MS<:MatDeforElastIso, } <: AbstractFEMMDeforLinearESNICE mr::Type{MR} integdomain::ID # geometry data mcsys::CS # updater of the material orientation matrix material::M # material object stabilization_material::MS nodalbasisfunctiongrad::Vector{_NodalBasisFunctionGradients} ephis::Vector{StabParamFloat} nphis::Vector{StabParamFloat} end """ FEMMDeforLinearESNICET4( mr::Type{MR}, integdomain::ID, mcsys::CS, material::M, ) where { MR<:AbstractDeforModelRed, ID<:IntegDomain{S} where {S<:FESetT4}, CS<:CSys, M<:AbstractMatDeforLinearElastic, } Constructor. """ function FEMMDeforLinearESNICET4( mr::Type{MR}, integdomain::ID, mcsys::CS, material::M, ) where { MR<:AbstractDeforModelRed, ID<:IntegDomain{S} where {S<:FESetT4}, CS<:CSys, M<:AbstractMatDeforLinearElastic, } @assert mr == material.mr "Model reduction is mismatched" @assert (mr == DeforModelRed3D) "3D model required" stabilization_material = _make_stabilization_material(material) return FEMMDeforLinearESNICET4( mr, integdomain, mcsys, material, stabilization_material, _NodalBasisFunctionGradients[], fill(zero(StabParamFloat), 1), fill(zero(StabParamFloat), 1), ) end """ FEMMDeforLinearESNICET4( mr::Type{MR}, integdomain::ID, material::M, ) where { MR<:AbstractDeforModelRed, ID<:IntegDomain{S} where {S<:FESetT4}, M<:AbstractMatDeforLinearElastic, } Constructor. """ function FEMMDeforLinearESNICET4( mr::Type{MR}, integdomain::ID, material::M, ) where { MR<:AbstractDeforModelRed, ID<:IntegDomain{S} where {S<:FESetT4}, M<:AbstractMatDeforLinearElastic, } @assert mr == material.mr "Model reduction is mismatched" @assert (mr == DeforModelRed3D) "3D model required" stabilization_material = _make_stabilization_material(material) return FEMMDeforLinearESNICET4( mr, integdomain, CSys(manifdim(integdomain.fes)), material, stabilization_material, _NodalBasisFunctionGradients[], fill(zero(StabParamFloat), 1), fill(zero(StabParamFloat), 1), ) end """ FEMMDeforLinearESNICEH8( mr::Type{MR}, integdomain::ID, mcsys::CS, material::M, ) where { MR<:AbstractDeforModelRed, ID<:IntegDomain{S} where {S<:FESetH8}, CS<:CSys, M<:AbstractMatDeforLinearElastic, } Constructor. """ function FEMMDeforLinearESNICEH8( mr::Type{MR}, integdomain::ID, mcsys::CS, material::M, ) where { MR<:AbstractDeforModelRed, ID<:IntegDomain{S} where {S<:FESetH8}, CS<:CSys, M<:AbstractMatDeforLinearElastic, } @assert mr == material.mr "Model reduction is mismatched" @assert (mr == DeforModelRed3D) "3D model required" stabilization_material = _make_stabilization_material(material) return FEMMDeforLinearESNICEH8( mr, integdomain, mcsys, material, stabilization_material, _NodalBasisFunctionGradients[], fill(zero(StabParamFloat), 1), fill(zero(StabParamFloat), 1), ) end """ FEMMDeforLinearESNICEH8( mr::Type{MR}, integdomain::ID, material::M, ) where { MR<:AbstractDeforModelRed, ID<:IntegDomain{S} where {S<:FESetH8}, M<:AbstractMatDeforLinearElastic, } Constructor. """ function FEMMDeforLinearESNICEH8( mr::Type{MR}, integdomain::ID, material::M, ) where { MR<:AbstractDeforModelRed, ID<:IntegDomain{S} where {S<:FESetH8}, M<:AbstractMatDeforLinearElastic, } @assert mr == material.mr "Model reduction is mismatched" @assert (mr == DeforModelRed3D) "3D model required" stabilization_material = _make_stabilization_material(material) return FEMMDeforLinearESNICEH8( mr, integdomain, CSys(manifdim(integdomain.fes)), material, stabilization_material, _NodalBasisFunctionGradients[], fill(zero(StabParamFloat), 1), fill(zero(StabParamFloat), 1), ) end function _buffers1(self::FEMM, geom::NodalField{GFT}) where {FEMM<:AbstractFEMMDeforLinearESNICE,GFT} fes = self.integdomain.fes nne = nodesperelem(fes) # number of nodes for element sdim = ndofs(geom) # number of space dimensions mdim = manifdim(fes) # manifold dimension of the element # Prepare buffers loc = fill(zero(GFT), 1, sdim) # quadrature point location -- buffer J = fill(zero(GFT), sdim, mdim) # Jacobian matrix -- buffer adjJ = fill(zero(GFT), sdim, mdim) # Jacobian matrix -- buffer csmatTJ = fill(zero(GFT), mdim, mdim) # intermediate result -- buffer gradN = fill(zero(GFT), nne, mdim) xl = fill(zero(GFT), nne, mdim) return loc, J, adjJ, csmatTJ, gradN, xl end function _buffers2( self::FEMM, geom::NodalField{GFT}, u::NodalField, npts::Int, ) where {FEMM<:AbstractFEMMDeforLinearESNICE,GFT} fes = self.integdomain.fes ndn = ndofs(u) # number of degrees of freedom per node nne = nodesperelem(fes) # number of nodes for element sdim = ndofs(geom) # number of space dimensions mdim = manifdim(fes) # manifold dimension of the element nstrs = nstressstrain(self.mr) # number of stresses elmatdim = ndn * nne # dimension of the element matrix # Prepare buffers ecoords = fill(zero(GFT), nne, ndofs(geom)) # array of Element coordinates dofnums = zeros(eltype(u.dofnums), elmatdim) # degree of freedom array -- buffer loc = fill(zero(GFT), 1, sdim) # quadrature point location -- buffer J = fill(zero(GFT), sdim, mdim) # Jacobian matrix -- buffer csmatTJ = fill(zero(GFT), mdim, mdim) # intermediate result -- buffer Jac = fill(zero(GFT), npts) D = fill(zero(GFT), nstrs, nstrs) # material stiffness matrix -- buffer Dstab = fill(zero(GFT), nstrs, nstrs) # material stiffness matrix -- buffer elmat = fill(zero(GFT), elmatdim, elmatdim) # element matrix -- buffer B = fill(zero(GFT), nstrs, elmatdim) # strain-displacement matrix -- buffer return ecoords, dofnums, loc, J, csmatTJ, Jac, D, Dstab, elmat, B end function _buffers3( self::FEMM, geom::NodalField{GFT}, u::NodalField, ) where {FEMM<:AbstractFEMMDeforLinearESNICE,GFT} fes = self.integdomain.fes ndn = ndofs(u) # number of degrees of freedom per node nne = nodesperelem(fes) # number of nodes for element sdim = ndofs(geom) # number of space dimensions mdim = manifdim(fes) # manifold dimension of the element nstrs = nstressstrain(self.mr) # number of stresses elmatdim = ndn * nne # dimension of the element matrix # Prepare buffers elmat = fill(zero(GFT), elmatdim, elmatdim) # element matrix -- buffer dofnums = zeros(eltype(u.dofnums), elmatdim) # degree of freedom array -- buffer B = fill(zero(GFT), nstrs, elmatdim) # strain-displacement matrix -- buffer DB = fill(zero(GFT), nstrs, elmatdim) # strain-displacement matrix -- buffer elvecfix = fill(zero(GFT), elmatdim) # vector of prescribed displ. -- buffer elvec = fill(zero(GFT), elmatdim) # element vector -- buffer gradN = fill(zero(GFT), nne, mdim) # intermediate result -- buffer return dofnums, B, DB, elmat, elvec, elvecfix, gradN end function _patchconn(fes, gl, thisnn) # Generate patch connectivity for a given node (thisnn) # from the connectivities of the finite elements attached to it. return vcat( collect(setdiff(Set([i for j in eachindex(gl) for i in fes.conn[gl[j]]]), thisnn)), [thisnn], ) end function _computenodalbfungrads(self, geom) # # Compute the nodal basis function gradients. # # Return the cell array of structures with attributes # % bfun_gradients{nix}.Nspd= basis function gradient matrix # # bfun_gradients{nix}.Vpatch= nodal patch volume # # bfun_gradients{nix}.patchconn= nodal patch connectivity fes = self.integdomain.fes npts, Ns, gradNparams, w, pc = integrationdata(self.integdomain) loc, J, adjJ, csmatTJ, gradN, xl = _buffers1(self, geom) # Get the inverse map from finite element nodes to geometric cells fen2fe = FENodeToFEMap(fes.conn, nnodes(geom)) # Initialize the nodal gradients, nodal patch, and patch connectivity bfungrads = fill(_NodalBasisFunctionGradients(fill(0.0, 0, 0), fill(0, 0), 0.0), nnodes(geom)) # Now loop over all finite element nodes in the map lnmap = fill(0, length(fen2fe.map)) # Local node map: buffer to speed up operations for nix in eachindex(fen2fe.map) gl = fen2fe.map[nix] thisnn = nix # We are at this node if !isempty(gl) # This node has an element patch in this block # establish local numbering of all nodes of the patch @ node thisnn p = _patchconn(fes, gl, thisnn) np = length(p) lnmap[p] .= 1:np# now store the local numbers c = reshape(geom.values[thisnn, :], 1, ndofs(geom)) updatecsmat!(self.mcsys, c, J, nix, 0) gradNavg = fill(0.0, np, ndofs(geom))# preallocate strain-displacement matrix Vpatch = 0.0 for k in eachindex(gl) i = gl[k] kconn = collect(fes.conn[i]) pci = findfirst(cx -> cx == thisnn, kconn)# at which node in the element are we with this quadrature point? @assert 1 <= pci <= nodesperelem(fes) # centered coordinates of nodes in the material coordinate system for cn in eachindex(kconn) xl[cn, :] = (reshape(geom.values[kconn[cn], :], 1, ndofs(geom)) - c) * csmat(self.mcsys) end jac!(J, xl, gradNparams[pci]) At_mul_B!(csmatTJ, csmat(self.mcsys), J) # local Jacobian matrix Jac = Jacobianvolume(self.integdomain, J, c, fes.conn[i], Ns[pci]) Vpatch += Jac * w[pci] sgradN = gradNparams[pci] * adjugate3!(adjJ, J) gradNavg[lnmap[kconn], :] += (w[pci] .* sgradN) end @assert Vpatch != 0 gradNavg ./= Vpatch bfungrads[nix] = _NodalBasisFunctionGradients(gradNavg, p, Vpatch) lnmap[p] .= 0 # Restore the buffer to pristine condition end end self.nodalbasisfunctiongrad = bfungrads return self end function _tetaspectratiovol(X) edge1 = vec(X[2, :] - X[1, :]) edge2 = vec(X[3, :] - X[1, :]) edge3 = vec(X[4, :] - X[1, :]) edge4 = vec(X[3, :] - X[2, :]) edge5 = vec(X[4, :] - X[3, :]) edge6 = vec(X[4, :] - X[2, :]) V = dot(edge3, cross(edge1, edge2)) A1 = norm(cross(edge1, edge2)) # This is twice the area of the triangle A2 = norm(cross(edge2, edge3)) A3 = norm(cross(edge3, edge1)) A4 = norm(cross(edge4, edge6)) #h1, h2, h3, h4 = V/A1, V/A2, V/A3, V/A4 L1, L2, L3, L4, L5, L6 = norm(edge1), norm(edge2), norm(edge3), norm(edge4), norm(edge5), norm(edge6) # the heights and the edge lengths will now be used to derive a composite # index: aspect ratio index. If this cannot be computed without generating # not-a-number or infinity, this number is assumed to be better represented # with 1.0 (perfect ratio), so that the element shape is then governed by # the other aspect ratio values. f = maximum f([L1, L2, L4]) != 0.0 && A1 != 0.0 ? ar1 = V / A1 / f([L1, L2, L4]) : ar1 = 1.0 f([L3, L2, L5]) != 0.0 && A2 != 0.0 ? ar2 = V / A2 / f([L3, L2, L5]) : ar2 = 1.0 f([L1, L3, L6]) != 0.0 && A3 != 0.0 ? ar3 = V / A3 / f([L1, L3, L6]) : ar3 = 1.0 f([L6, L5, L4]) != 0.0 && A4 != 0.0 ? ar4 = V / A4 / f([L6, L5, L4]) : ar4 = 1.0 return ar1, ar2, ar3, ar4, V / 6 end """ associategeometry!( self::FEMM, geom::NodalField{GFT}; stabilization_parameters = _T4_stabilization_parameters, ) where {FEMM<:FEMMDeforLinearESNICET4,GFT} Associate geometry field with the FEMM. Compute the correction factors to account for the shape of the elements. """ function associategeometry!( self::FEMM, geom::NodalField{GFT}; stabilization_parameters = _T4_stabilization_parameters, ) where {FEMM<:FEMMDeforLinearESNICET4,GFT} (a, b) = stabilization_parameters fes = self.integdomain.fes self.ephis = fill(zero(StabParamFloat), count(fes)) evols = fill(zero(StabParamFloat), count(fes)) self.nphis = fill(zero(StabParamFloat), nnodes(geom)) nvols = fill(zero(StabParamFloat), nnodes(geom)) for i = 1:count(fes) # Loop over elements ar1, ar2, ar3, ar4, V = _tetaspectratiovol(geom.values[collect(fes.conn[i]), :]) evols[i] = V # If the aspect ratios are not reasonable, such as when the element is a # sliver or inverted, we turn off the stabilization for the element # by setting its stabilization factor to zero. if min(ar1, ar2, ar3, ar4) <= 0 self.ephis[i] = 0.0 else self.ephis[i] = (1.0 / (b * min(ar1, ar2, ar3, ar4)^a) + 1.0)^(-1) end # Accumulate: the stabilization factor at the node is the weighted mean # of the stabilization factors of the elements at that node for k = 1:nodesperelem(fes) nvols[fes.conn[i][k]] += evols[i] self.nphis[fes.conn[i][k]] += self.ephis[i] * evols[i] end end # Loop over elements @assert any(isnan.(self.ephis)) == false # Now scale the values at the nodes with the nodal volumes for k in eachindex(nvols) if nvols[k] != 0.0 self.nphis[k] /= nvols[k] end end @assert any(isnan.(self.nphis)) == false # Now calculate the nodal basis function gradients return _computenodalbfungrads(self, geom) end """ associategeometry!( self::FEMM, geom::NodalField{GFT}, ) where {FEMM<:FEMMDeforLinearESNICEH8,GFT} Associate geometry field with the FEMM. Compute the correction factors to account for the shape of the elements. """ function associategeometry!( self::FEMM, geom::NodalField{GFT}, ) where {FEMM<:FEMMDeforLinearESNICEH8,GFT} fes = self.integdomain.fes self.ephis = fill(zero(StabParamFloat), count(fes)) evols = fill(zero(StabParamFloat), count(fes)) self.nphis = fill(zero(StabParamFloat), nnodes(geom)) nvols = fill(zero(StabParamFloat), nnodes(geom)) npts, Ns, gradNparams, w, pc = integrationdata(self.integdomain) for i = 1:count(fes) # Loop over elements X = geom.values[collect(fes.conn[i]), :] V = 0.0 for j = 1:npts J = X' * gradNparams[j] Jac = det(J) @assert Jac > 0 "Nonpositive Jacobian" V = V + Jac * w[j] hs = sum(J .* J; dims = 1) phi = 2 * (1.0 + self.stabilization_material.nu) * minimum(hs) / maximum(hs) self.ephis[i] = max(self.ephis[i], phi / (1 + phi)) end evols[i] = V # Accumulate: the stabilization factor at the node is the weighted mean of the stabilization factors of the elements at that node for k = 1:nodesperelem(fes) nvols[fes.conn[i][k]] += evols[i] self.nphis[fes.conn[i][k]] += self.ephis[i] * evols[i] end end # Loop over elements # Now scale the values at the nodes with the nodal volumes for k in eachindex(nvols) self.nphis[k] /= nvols[k] end # Now calculate the nodal basis function gradients return _computenodalbfungrads(self, geom) end """ stiffness( self::FEMM, assembler::A, geom::NodalField{GFT}, u::NodalField{T}, ) where {FEMM<:AbstractFEMMDeforLinearESNICE,A<:AbstractSysmatAssembler,GFT<:Number,T<:Number} Compute and assemble stiffness matrix. """ function stiffness( self::FEMM, assembler::A, geom::NodalField{GFT}, u::NodalField{T}, ) where {FEMM<:AbstractFEMMDeforLinearESNICE,A<:AbstractSysmatAssembler,GFT<:Number,T<:Number} fes = self.integdomain.fes npts, Ns, gradNparams, w, pc = integrationdata(self.integdomain) ecoords, dofnums, loc, J, csmatTJ, Jac, D, Dstab = _buffers2(self, geom, u, npts) tangentmoduli!(self.material, D, 0.0, 0.0, loc, 0) tangentmoduli!(self.stabilization_material, Dstab, 0.0, 0.0, loc, 0) elmatsizeguess = 4 * nodesperelem(fes) * ndofs(u) startassembly!(assembler, elmatsizeguess, elmatsizeguess, nnodes(u), nalldofs(u), nalldofs(u)) for nix = 1:length(self.nodalbasisfunctiongrad) gradN = self.nodalbasisfunctiongrad[nix].gradN patchconn = self.nodalbasisfunctiongrad[nix].patchconn Vpatch = self.nodalbasisfunctiongrad[nix].Vpatch c = reshape(geom.values[nix, :], 1, ndofs(geom)) updatecsmat!(self.mcsys, c, J, nix, 0) nd = length(patchconn) * ndofs(u) Bnodal = fill(0.0, size(D, 1), nd) blmat!(self.mr, Bnodal, Ns[1], gradN, c, csmat(self.mcsys)) elmat = fill(0.0, nd, nd) # Can we SPEED it UP? DB = fill(0.0, size(D, 1), nd) add_btdb_ut_only!(elmat, Bnodal, Vpatch, D, DB) add_btdb_ut_only!(elmat, Bnodal, -self.nphis[nix] * Vpatch, Dstab, DB) complete_lt!(elmat) dofnums = fill(0, nd) gatherdofnums!(u, dofnums, patchconn) # retrieve degrees of freedom assemble!(assembler, elmat, dofnums, dofnums) # assemble symmetric matrix end # Loop over elements Kn = makematrix!(assembler) dofnums, B, DB, elmat, elvec, elvecfix, gradN = _buffers3(self, geom, u) # OPTIMIZATION: switch to a single-point quadrature rule here startassembly!( assembler, nodesperelem(fes) * ndofs(u), nodesperelem(fes) * ndofs(u), count(fes), nalldofs(u), nalldofs(u), ) for i = 1:count(fes) # Loop over elements gathervalues_asmat!(geom, ecoords, fes.conn[i]) fill!(elmat, 0.0) # Initialize element matrix for j = 1:npts # Loop over quadrature points locjac!(loc, J, ecoords, Ns[j], gradNparams[j]) Jac = Jacobianvolume(self.integdomain, J, loc, fes.conn[i], Ns[j]) # Do the following only if the element is well shaped and the # stabilization factor is positive; if the element is so distorted # that its Jacobian is non-positive, skip the following step. if self.ephis[i] > 0 && Jac != 0.0 updatecsmat!(self.mcsys, loc, J, i, j) At_mul_B!(csmatTJ, csmat(self.mcsys), J) # local Jacobian matrix gradN!(fes, gradN, gradNparams[j], csmatTJ) blmat!(self.mr, B, Ns[j], gradN, loc, csmat(self.mcsys)) add_btdb_ut_only!(elmat, B, self.ephis[i] * Jac * w[j], Dstab, DB) end end # Loop over quadrature points complete_lt!(elmat) gatherdofnums!(u, dofnums, fes.conn[i]) # retrieve degrees of freedom assemble!(assembler, elmat, dofnums, dofnums) # assemble symmetric matrix end # Loop over elements return makematrix!(assembler) + Kn end function stiffness( self::FEMM, geom::NodalField{GFT}, u::NodalField{T}, ) where {FEMM<:AbstractFEMMDeforLinearESNICE,GFT<:Number,T<:Number} assembler = SysmatAssemblerSparseSymm() return stiffness(self, assembler, geom, u) end """ inspectintegpoints( self::FEMM, geom::NodalField{GFT}, u::NodalField{UFT}, dT::NodalField{TFT}, felist::Vector{IT}, inspector::F, idat, quantity = :Cauchy; context..., ) where {FEMM<:AbstractFEMMDeforLinearESNICE,GFT<:Number,UFT<:Number,TFT<:Number,IT<:Integer,F<:Function} Inspect integration point quantities. # Arguments - `geom` - reference geometry field - `u` - displacement field - `dT` - temperature difference field - `felist` - indexes of the finite elements that are to be inspected: The fes to be included are: `fes[felist]`. - `context` - structure: see the update!() method of the material. - `inspector` - functionwith the signature idat = inspector(idat, j, conn, x, out, loc); where `idat` - a structure or an array that the inspector may use to maintain some state, for instance minimum or maximum of stress, `j` is the element number, `conn` is the element connectivity, `out` is the output of the update!() method, `loc` is the location of the integration point in the *reference* configuration. # Return The updated inspector data is returned. """ function inspectintegpoints( self::FEMM, geom::NodalField{GFT}, u::NodalField{UFT}, dT::NodalField{TFT}, felist::Vector{IT}, inspector::F, idat, quantity = :Cauchy; context..., ) where {FEMM<:AbstractFEMMDeforLinearESNICE,GFT<:Number,UFT<:Number,TFT<:Number,IT<:Integer,F<:Function} fes = self.integdomain.fes npts, Ns, gradNparams, w, pc = integrationdata(self.integdomain) ecoords, dofnums, loc, J, csmatTJ, Jac, D, Dstab = _buffers2(self, geom, u, npts) # Sort out the output requirements outputcsys = self.mcsys # default: report the stresses in the material coord system for apair in pairs(context) sy, val = apair if sy == :outputcsys outputcsys = val end end t = 0.0 dt = 0.0 qpdT = 0.0 # node temperature increment qpstrain = fill(zero(GFT), nstressstrain(self.mr), 1) # total strain -- buffer qpthstrain = fill(zero(GFT), nthermstrain(self.mr)) # thermal strain -- buffer qpstress = fill(zero(GFT), nstressstrain(self.mr)) # stress -- buffer out1 = fill(zero(GFT), nstressstrain(self.mr)) # stress -- buffer out = fill(zero(GFT), nstressstrain(self.mr))# output -- buffer outtot = fill(zero(GFT), nstressstrain(self.mr))# output -- buffer xe = fill(0.0, nodesperelem(fes), ndofs(geom)) eue = fill(zero(UFT), nodesperelem(fes) * ndofs(u)) gradN = fill(zero(GFT), nodesperelem(fes), ndofs(u)) B = fill(zero(GFT), nstressstrain(self.mr), nodesperelem(fes) * ndofs(u)) # Loop over all the elements and all the quadrature points within them for ilist = 1:length(felist) # Loop over elements i = felist[ilist] gathervalues_asmat!(geom, ecoords, fes.conn[i])# retrieve element coords for nix in fes.conn[i] # For all nodes connected by this element nodalgradN = self.nodalbasisfunctiongrad[nix].gradN patchconn = self.nodalbasisfunctiongrad[nix].patchconn Vpatch = self.nodalbasisfunctiongrad[nix].Vpatch ue = fill(zero(UFT), length(patchconn) * ndofs(u)) gathervalues_asvec!(u, ue, patchconn)# retrieve element displacements loc = reshape(geom.values[nix, :], 1, ndofs(geom)) updatecsmat!(self.mcsys, loc, J, nix, 1) nd = length(patchconn) * ndofs(u) Bnodal = fill(0.0, size(D, 1), nd) blmat!(self.mr, Bnodal, Ns[1], nodalgradN, loc, csmat(self.mcsys)) updatecsmat!(outputcsys, loc, J, nix, 1) # Update output coordinate system # Quadrature point quantities A_mul_B!(qpstrain, Bnodal, ue) # strain in material coordinates qpdT = dT.values[nix] # Quadrature point temperature increment thermalstrain!(self.material, qpthstrain, qpdT) # Real Material: update the state and return the output out = update!( self.material, qpstress, out, vec(qpstrain), qpthstrain, t, dt, loc, nix, quantity, ) copyto!(outtot, out) # Stabilization Material: update the state and return the output out = update!( self.stabilization_material, qpstress, out, vec(qpstrain), qpthstrain, t, dt, loc, nix, quantity, ) outtot .+= -self.nphis[nix] .* out pci = findfirst(cx -> cx == nix, fes.conn[i])# at which node are we? locjac!(loc, J, ecoords, Ns[pci], gradNparams[pci]) updatecsmat!(self.mcsys, loc, J, i, 1) At_mul_B!(csmatTJ, csmat(self.mcsys), J) # local Jacobian matrix gradN!(fes, gradN, gradNparams[pci], csmatTJ) blmat!(self.mr, B, Ns[pci], gradN, loc, csmat(self.mcsys)) gathervalues_asvec!(u, eue, fes.conn[i])# retrieve element displacements A_mul_B!(qpstrain, B, eue) # strain in material coordinates out = update!( self.stabilization_material, qpstress, out, vec(qpstrain), qpthstrain, t, dt, loc, nix, quantity, ) outtot .+= +self.ephis[i] .* out out, outtot = outtot, out # swap in the total output if (quantity == :Cauchy) # Transform stress tensor, if that is "out" (length(out1) >= length(out)) || (out1 = zeros(length(out))) rotstressvec!(self.mr, out1, out, transpose(csmat(self.mcsys)))# To global coord sys rotstressvec!(self.mr, out, out1, csmat(outputcsys))# To output coord sys end # Call the inspector idat = inspector(idat, i, fes.conn[i], ecoords, out, loc) end # Loop over nodes end # Loop over elements return idat end function inspectintegpoints( self::FEMM, geom::NodalField{GFT}, u::NodalField{UFT}, felist::Vector{IT}, inspector::F, idat, quantity = :Cauchy; context..., ) where {FEMM<:AbstractFEMMDeforLinearESNICE,GFT<:Number,UFT<:Number,IT<:Integer,F<:Function} dT = NodalField(fill(zero(GFT), nnodes(geom), 1)) # zero difference in temperature return inspectintegpoints( self, geom, u, dT, felist, inspector, idat, quantity; context..., ) end """ infsup_gh( self::FEMM, assembler::A, geom::NodalField{GFT}, u::NodalField{UFT}, ) where {FEMM<:AbstractFEMMDeforLinearESNICE,A<:AbstractSysmatAssembler,GFT<:Number,UFT<:Number} Compute the matrix to produce the norm of the divergence of the displacement. This matrix is used in the numerical infsup test (Klaus-Jurgen Bathe, The inf-sup condition and its evaluation for mixed finite element methods, Computers and Structures 79 (2001) 243-252.) !!! note This computation has not been optimized in any way. It can be expected to be inefficient. """ function infsup_gh( self::FEMM, assembler::A, geom::NodalField{GFT}, u::NodalField{UFT}, ) where {FEMM<:AbstractFEMMDeforLinearESNICE,A<:AbstractSysmatAssembler,GFT<:Number,UFT<:Number} fes = self.integdomain.fes npts, Ns, gradNparams, w, pc = integrationdata(self.integdomain) elmatsizeguess = 4 * nodesperelem(fes) * ndofs(u) startassembly!( assembler, elmatsizeguess, elmatsizeguess, nnodes(u) + count(fes), u.nfreedofs, u.nfreedofs, ) for nix = 1:length(self.nodalbasisfunctiongrad) gradN = self.nodalbasisfunctiongrad[nix].gradN patchconn = self.nodalbasisfunctiongrad[nix].patchconn Vpatch = self.nodalbasisfunctiongrad[nix].Vpatch c = reshape(geom.values[nix, :], 1, ndofs(geom)) nd = length(patchconn) * ndofs(u) divm = divmat(self.mr, Ns[1], gradN, c) elmat = (transpose(divm) * divm) * Vpatch dofnums = fill(0, nd) gatherdofnums!(u, dofnums, patchconn) # retrieve degrees of freedom assemble!(assembler, elmat, dofnums, dofnums) # assemble symmetric matrix end # Loop over nodes return makematrix!(assembler) end function infsup_gh( self::AbstractFEMMDeforLinearESNICE, geom::NodalField{GFT}, u::NodalField{UFT}, ) where {GFT<:Number,UFT<:Number} assembler = SysmatAssemblerSparseSymm() return infsup_gh(self, assembler, geom, u) end """ infsup_sh( self::AbstractFEMMDeforLinearESNICE, assembler::A, geom::NodalField{GFT}, u::NodalField{UFT}, ) where {A<:AbstractSysmatAssembler,GFT<:Number,UFT<:Number} Compute the matrix to produce the seminorm of the displacement (square root of the sum of the squares of the derivatives of the components of displacement). This matrix is used in the numerical infsup test (Klaus-Jurgen Bathe, The inf-sup condition and its evaluation for mixed finite element methods, Computers and Structures 79 (2001) 243-252.) !!! note This computation has not been optimized in any way. It can be expected to be inefficient. """ function infsup_sh( self::FEMM, assembler::A, geom::NodalField{GFT}, u::NodalField{UFT}, ) where {FEMM<:AbstractFEMMDeforLinearESNICE,A<:AbstractSysmatAssembler,GFT<:Number,UFT<:Number} fes = self.integdomain.fes npts, Ns, gradNparams, w, pc = integrationdata(self.integdomain) elmatsizeguess = 4 * nodesperelem(fes) * ndofs(u) startassembly!( assembler, elmatsizeguess, elmatsizeguess, nnodes(u) + count(fes), u.nfreedofs, u.nfreedofs, ) for nix = 1:length(self.nodalbasisfunctiongrad) gradN = self.nodalbasisfunctiongrad[nix].gradN patchconn = self.nodalbasisfunctiongrad[nix].patchconn Vpatch = self.nodalbasisfunctiongrad[nix].Vpatch c = reshape(geom.values[nix, :], 1, ndofs(geom)) nd = length(patchconn) * ndofs(u) vgradm = vgradmat(self.mr, Ns[1], gradN, c) elmat = (transpose(vgradm) * vgradm) * Vpatch dofnums = fill(0, nd) gatherdofnums!(u, dofnums, patchconn) # retrieve degrees of freedom assemble!(assembler, elmat, dofnums, dofnums) # assemble symmetric matrix end # Loop over nodes return makematrix!(assembler) end function infsup_sh( self::FEMM, geom::NodalField{GFT}, u::NodalField{UFT}, ) where {FEMM<:AbstractFEMMDeforLinearESNICE,GFT<:Number,UFT<:Number} assembler = SysmatAssemblerSparseSymm() return infsup_sh(self, assembler, geom, u) end end
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
13320
""" Module for operations on interiors of domains to construct system matrices and system vectors for linear deformation models: incompatible-mode formulation. """ module FEMMDeforLinearIMModule __precompile__(true) using FinEtools.FENodeSetModule: FENodeSet using FinEtools.FESetModule: AbstractFESet, FESetH8, FESetT10, manifdim, nodesperelem, gradN!, bfun, bfundpar using FinEtools.IntegDomainModule: IntegDomain, integrationdata, Jacobianvolume using FinEtools.IntegRuleModule: GaussRule using FinEtoolsDeforLinear.FEMMDeforLinearBaseModule: AbstractFEMMDeforLinear using FinEtools.DeforModelRedModule: AbstractDeforModelRed, DeforModelRed3D using FinEtoolsDeforLinear.MatDeforLinearElasticModule: AbstractMatDeforLinearElastic, tangentmoduli!, update!, thermalstrain! using FinEtoolsDeforLinear.MatDeforElastIsoModule: MatDeforElastIso using FinEtools.FieldModule: ndofs, gatherdofnums!, gathervalues_asvec!, gathervalues_asmat!, nalldofs using FinEtools.NodalFieldModule: NodalField using FinEtools.CSysModule: CSys, updatecsmat!, csmat using FinEtools.DeforModelRedModule: nstressstrain, nthermstrain, blmat!, divmat, vgradmat using FinEtools.AssemblyModule: AbstractSysvecAssembler, AbstractSysmatAssembler, SysmatAssemblerSparseSymm, startassembly!, assemble!, makematrix!, makevector!, SysvecAssembler using FinEtools.MatrixUtilityModule: add_btdb_ut_only!, complete_lt!, loc!, jac!, locjac! import FinEtoolsDeforLinear.FEMMDeforLinearBaseModule: stiffness, mass, thermalstrainloads, inspectintegpoints import FinEtools.FEMMBaseModule: associategeometry! using FinEtoolsDeforLinear.MatDeforModule: rotstressvec! using LinearAlgebra: mul!, Transpose, UpperTriangular using LinearAlgebra: Symmetric, cholesky, eigen At_mul_B!(C, A, B) = mul!(C, Transpose(A), B) A_mul_B!(C, A, B) = mul!(C, A, B) using LinearAlgebra: norm, qr, diag, dot, cond using Statistics: mean """ mutable struct FEMMDeforLinearIMH8{ MR<:AbstractDeforModelRed, ID<:IntegDomain{S,F} where {S<:FESetH8,F<:Function}, CS<:CSys, M<:AbstractMatDeforLinearElastic, } <: AbstractFEMMDeforLinear Type for mean-strain linear deformation FEMM based on eight-node hexahedral elements with incompatible modes. Default number of incompatible modes is 12 (Simo formulation). Alternative is 9 incompatible modes (Wilson formulation). """ mutable struct FEMMDeforLinearIMH8{ MR<:AbstractDeforModelRed, ID<:IntegDomain{S,F} where {S<:FESetH8,F<:Function}, CS<:CSys, M<:AbstractMatDeforLinearElastic, } <: AbstractFEMMDeforLinear mr::Type{MR} integdomain::ID # geometry data mcsys::CS # updater of the material orientation matrix material::M # material object nmodes::Int end """ FEMMDeforLinearIMH8( mr::Type{MR}, integdomain::ID, mcsys::CS, material::M, ) where { MR<:AbstractDeforModelRed, ID<:IntegDomain{S,F} where {S<:FESetH8,F<:Function}, CS<:CSys, M<:AbstractMatDeforLinearElastic, } Constructor. Default number of incompatible modes. """ function FEMMDeforLinearIMH8( mr::Type{MR}, integdomain::ID, mcsys::CS, material::M, ) where { MR<:AbstractDeforModelRed, ID<:IntegDomain{S,F} where {S<:FESetH8,F<:Function}, CS<:CSys, M<:AbstractMatDeforLinearElastic, } @assert mr == material.mr "Model reduction is mismatched" @assert (mr == DeforModelRed3D) "3D model required" return FEMMDeforLinearIMH8(mr, integdomain, mcsys, material, 12) end """ FEMMDeforLinearIMH8( mr::Type{MR}, integdomain::ID, material::M, ) where { MR<:AbstractDeforModelRed, ID<:IntegDomain{S,F} where {S<:FESetH8,F<:Function}, M<:AbstractMatDeforLinearElastic, } Constructor. Default number of incompatible modes. """ function FEMMDeforLinearIMH8( mr::Type{MR}, integdomain::ID, material::M, ) where { MR<:AbstractDeforModelRed, ID<:IntegDomain{S,F} where {S<:FESetH8,F<:Function}, M<:AbstractMatDeforLinearElastic, } @assert mr == material.mr "Model reduction is mismatched" @assert (mr == DeforModelRed3D) "3D model required" return FEMMDeforLinearIMH8( mr, integdomain, CSys(manifdim(integdomain.fes)), material, 12, ) end """ FEMMDeforLinearIMH8( mr::Type{MR}, integdomain::ID, material::M, nmodes::Int64, ) where {MR<:AbstractDeforModelRed, ID<:IntegDomain{S,F} where {S<:FESetH8,F<:Function}, M<:AbstractMatDeforLinearElastic} Constructor, with optional configuration of the number of incompatible modes. """ function FEMMDeforLinearIMH8( mr::Type{MR}, integdomain::ID, material::M, nmodes::Int64, ) where { MR<:AbstractDeforModelRed, ID<:IntegDomain{S,F} where {S<:FESetH8,F<:Function}, M<:AbstractMatDeforLinearElastic, } @assert mr == material.mr "Model reduction is mismatched" @assert (mr == DeforModelRed3D) "3D model required" return FEMMDeforLinearIMH8( mr, integdomain, CSys(manifdim(integdomain.fes)), material, nmodes, ) end function __centroidintegrationdata(self) integration_rule = GaussRule(3, 1) pc = integration_rule.param_coords w = integration_rule.weights npts = integration_rule.npts FT = eltype(pc) # Precompute basis f. values + basis f. gradients wrt parametric coor Ns = Matrix{FT}[] gradNparams = Matrix{FT}[] for j = 1:npts push!(Ns, bfun(self.fes, vec(pc[j, :]))) push!(gradNparams, bfundpar(self.fes, vec(pc[j, :]))) end @assert npts == 1 return npts, reshape(Ns, 1, npts), reshape(gradNparams, 1, npts), w, pc end function __imintegrationdata(nmodes, integration_rule) pc = integration_rule.param_coords w = integration_rule.weights npts = integration_rule.npts FT = eltype(pc) function bfun(nmodes, pc) if nmodes == 12 # Simo basis functions N = [ 0.5 * (pc[1]^2 - 1) 0.5 * (pc[2]^2 - 1) 0.5 * (pc[3]^2 - 1) pc[1] * pc[2] * pc[3] ] else # Wilson basis functions N = [ 0.5 * (pc[1]^2 - 1) 0.5 * (pc[2]^2 - 1) 0.5 * (pc[3]^2 - 1) ] end return reshape(N, length(N), 1) end function bfundpar(nmodes, pc) if nmodes == 12 # Simo basis functions gradN = [ pc[1] 0 0 0 pc[2] 0 0 0 pc[3] (pc[2]*pc[3]) (pc[1]*pc[3]) (pc[1]*pc[2]) ] else # Wilson basis functions gradN = [ pc[1] 0 0 0 pc[2] 0 0 0 pc[3] ] end return gradN end # Precompute basis f. values + basis f. gradients wrt parametric coor Ns = Matrix{FT}[] gradNparams = Matrix{FT}[] for j = 1:npts push!(Ns, bfun(nmodes, vec(pc[j, :]))) push!(gradNparams, bfundpar(nmodes, vec(pc[j, :]))) end return reshape(Ns, 1, npts), reshape(gradNparams, 1, npts) end function __imblmat!(mr, imB, imNs, imgradN, loc0, csmat, nmodes) blmat!(mr, imB, imNs, imgradN, loc0, csmat) if nmodes == 12 imB[1:3, 10] .= imgradN[4, 1] imB[1:3, 11] .= imgradN[4, 2] imB[1:3, 12] .= imgradN[4, 3] imB[4:6, 10:12] .= 0.0 end end function _buffers2(self, geom::NodalField{GFT}, u::NodalField{UFT}) where {GFT,UFT} fes = self.integdomain.fes ndn = ndofs(u) # number of degrees of freedom per node nne = nodesperelem(fes) # number of nodes for element sdim = ndofs(geom) # number of space dimensions mdim = manifdim(fes) # manifold dimension of the element nstrs = nstressstrain(self.mr) # number of stresses if self.nmodes == 12 nimne = 4 else nimne = 3 end elmatdim = ndn * (nne + nimne) # dimension of the element matrix elmatcdim = ndn * nne # dimension of the condensed element matrix # Prepare buffers ecoords = fill(zero(GFT), nne, ndofs(geom)) # array of Element coordinates elmat = fill(zero(GFT), elmatdim, elmatdim) # element matrix -- buffer elmatc = fill(zero(GFT), elmatcdim, elmatcdim) # element matrix -- buffer dofnums = zeros(eltype(u.dofnums), 1, elmatcdim) # degree of freedom array -- buffer loc = fill(zero(GFT), 1, sdim) # quadrature point location -- buffer J = fill(zero(GFT), sdim, mdim) # Jacobian matrix -- buffer csmatTJ = fill(zero(GFT), mdim, mdim) # intermediate result -- buffer loc0 = fill(zero(GFT), 1, sdim) # quadrature point location -- buffer J0 = fill(zero(GFT), sdim, mdim) # Jacobian matrix -- buffer csmatTJ0 = fill(zero(GFT), mdim, mdim) # intermediate result -- buffer gradN = fill(zero(GFT), nne, mdim) # intermediate result -- buffer gradN0 = fill(zero(GFT), nne, mdim) # intermediate result -- buffer imgradN = fill(zero(GFT), nimne, mdim) # intermediate result -- buffer D = fill(zero(GFT), nstrs, nstrs) # material stiffness matrix -- buffer B = fill(zero(GFT), nstrs, elmatdim) # strain-displacement matrix -- buffer DB = fill(zero(GFT), nstrs, elmatdim) # strain-displacement matrix -- buffer Bc = fill(zero(GFT), nstrs, elmatcdim) # strain-displacement matrix -- buffer imB = fill(zero(GFT), nstrs, elmatdim - elmatcdim) # strain-displacement matrix -- buffer return ecoords, dofnums, loc, J, csmatTJ, loc0, J0, csmatTJ0, gradN, gradN0, imgradN, D, B, DB, Bc, imB, elmatc, elmat end """ associategeometry!(self::F, geom::NodalField{GFT}) where {F<:FEMMDeforLinearIMH8, GFT} Associate geometry field with the FEMM. Compute the correction factors to account for the shape of the elements. """ function associategeometry!( self::F, geom::NodalField{GFT}, ) where {F<:FEMMDeforLinearIMH8,GFT} # Nothing needs to be done return self end """ stiffness( self::FEMMDeforLinearIMH8, assembler::A, geom::NodalField{GFT}, u::NodalField{UFT}, ) where {A<:AbstractSysmatAssembler,GFT<:Number,UFT<:Number} Compute and assemble stiffness matrix. """ function stiffness( self::FEMMDeforLinearIMH8, assembler::A, geom::NodalField{GFT}, u::NodalField{UFT}, ) where {A<:AbstractSysmatAssembler,GFT<:Number,UFT<:Number} fes = self.integdomain.fes npts, Ns, gradNparams, w, pc = integrationdata(self.integdomain) npts0, Ns0, gradNparams0, w0, pc0 = __centroidintegrationdata(self.integdomain) imNs, imgradNparams = __imintegrationdata(self.nmodes, self.integdomain.integration_rule) ecoords, dofnums, loc, J, csmatTJ, loc0, J0, csmatTJ0, gradN, gradN0, imgradN, D, B, DB, Bc, imB, elmatc, elmat = _buffers2(self, geom, u) tangentmoduli!(self.material, D, 0.0, 0.0, loc, 0) startassembly!( assembler, size(elmatc)..., count(fes), nalldofs(u), nalldofs(u), ) for i in eachindex(fes) # Loop over elements gathervalues_asmat!(geom, ecoords, fes.conn[i]) # NOTE: the coordinate system should be evaluated at a single point within the # element in order for the derivatives to be consistent at all quadrature points # Centroid data locjac!(loc0, J0, ecoords, Ns0[1], gradNparams0[1]) updatecsmat!(self.mcsys, loc0, J0, i, 0) Jac0 = Jacobianvolume(self.integdomain, J0, loc0, fes.conn[i], Ns0[1]) At_mul_B!(csmatTJ0, csmat(self.mcsys), J0) # local Jacobian matrix gradN!(fes, gradN0, gradNparams0[1], csmatTJ0) fill!(elmat, 0.0) # Initialize element matrix for j = 1:npts # Loop over quadrature points locjac!(loc, J, ecoords, Ns[j], gradNparams[j]) Jac = Jacobianvolume(self.integdomain, J, loc, fes.conn[i], Ns[j]) At_mul_B!(csmatTJ, csmat(self.mcsys), J) # local Jacobian matrix gradN!(fes, gradN, gradNparams[j], csmatTJ) blmat!(self.mr, Bc, Ns[j], gradN, loc, csmat(self.mcsys)) B[:, 1:24] .= sqrt(Jac * w[j]) .* Bc gradN!(fes, imgradN, imgradNparams[j], csmatTJ0) __imblmat!(self.mr, imB, imNs[j], imgradN, loc0, csmat(self.mcsys), self.nmodes) B[:, 25:end] .= sqrt(Jac0 * w[j]) .* imB add_btdb_ut_only!(elmat, B, 1.0, D, DB) end # Loop over quadrature points complete_lt!(elmat) # Static condensation elmatc .= elmat[1:24, 1:24] - elmat[1:24, 25:end] * (elmat[25:end, 25:end] \ elmat[25:end, 1:24]) gatherdofnums!(u, dofnums, fes.conn[i]) # retrieve degrees of freedom assemble!(assembler, elmatc, dofnums, dofnums) # assemble symmetric matrix end # Loop over elements return makematrix!(assembler) end function stiffness( self::FEMMDeforLinearIMH8, geom::NodalField{GFT}, u::NodalField{UFT}, ) where {GFT<:Number,UFT<:Number} assembler = SysmatAssemblerSparseSymm() return stiffness(self, assembler, geom, u) end end # module
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
41367
""" Module for operations on interiors of domains to construct system matrices and system vectors for linear deformation models: mean-strain formulation. """ module FEMMDeforLinearMSModule __precompile__(true) using FinEtools.FENodeSetModule: FENodeSet using FinEtools.FESetModule: AbstractFESet, FESetH8, FESetT10, manifdim, nodesperelem, gradN! using FinEtools.IntegDomainModule: IntegDomain, integrationdata, Jacobianvolume using FinEtoolsDeforLinear.FEMMDeforLinearBaseModule: AbstractFEMMDeforLinear using FinEtools.DeforModelRedModule: AbstractDeforModelRed, DeforModelRed3D using FinEtoolsDeforLinear.MatDeforLinearElasticModule: AbstractMatDeforLinearElastic, tangentmoduli!, update!, thermalstrain! using FinEtoolsDeforLinear.MatDeforElastIsoModule: MatDeforElastIso using FinEtools.FieldModule: ndofs, gatherdofnums!, gathervalues_asvec!, gathervalues_asmat!, nalldofs using FinEtools.NodalFieldModule: NodalField using FinEtools.CSysModule: CSys, updatecsmat!, csmat using FinEtools.DeforModelRedModule: nstressstrain, nthermstrain, blmat!, divmat, vgradmat using FinEtools.AssemblyModule: AbstractSysvecAssembler, AbstractSysmatAssembler, SysmatAssemblerSparseSymm, startassembly!, assemble!, makematrix!, makevector!, SysvecAssembler using FinEtools.MatrixUtilityModule: add_btdb_ut_only!, complete_lt!, loc!, jac!, locjac! import FinEtoolsDeforLinear.FEMMDeforLinearBaseModule: stiffness, mass, thermalstrainloads, inspectintegpoints import FinEtools.FEMMBaseModule: associategeometry! using FinEtoolsDeforLinear.MatDeforModule: rotstressvec! using LinearAlgebra: mul!, Transpose, UpperTriangular At_mul_B!(C, A, B) = mul!(C, Transpose(A), B) A_mul_B!(C, A, B) = mul!(C, A, B) using LinearAlgebra: norm, qr, diag, dot, cond using Statistics: mean const StabParamFloat = Float64 """ AbstractFEMMDeforLinearMS <: AbstractFEMMDeforLinear Abstract type for mean-strain linear deformation FEMM. """ abstract type AbstractFEMMDeforLinearMS <: AbstractFEMMDeforLinear end """ mutable struct FEMMDeforLinearMSH8{ MR<:AbstractDeforModelRed, ID<:IntegDomain{S,F} where {S<:FESetH8,F<:Function}, CS<:CSys, M<:AbstractMatDeforLinearElastic, MS<:MatDeforElastIso, } <: AbstractFEMMDeforLinearMS Type for mean-strain linear deformation FEMM based on eight-node hexahedral elements. """ mutable struct FEMMDeforLinearMSH8{ MR<:AbstractDeforModelRed, ID<:IntegDomain{S,F} where {S<:FESetH8,F<:Function}, CS<:CSys, M<:AbstractMatDeforLinearElastic, MS<:MatDeforElastIso, } <: AbstractFEMMDeforLinearMS mr::Type{MR} integdomain::ID # geometry data mcsys::CS # updater of the material orientation matrix material::M # material object stabilization_material::MS phis::Vector{StabParamFloat} end """ FEMMDeforLinearMSH8( mr::Type{MR}, integdomain::ID, mcsys::CS, material::M, ) where {MR<:AbstractDeforModelRed, ID<:IntegDomain{S} where {S<:FESetH8}, CS<:CSys, M<:AbstractMatDeforLinearElastic} Constructor. """ function FEMMDeforLinearMSH8( mr::Type{MR}, integdomain::ID, mcsys::CS, material::M, ) where { MR<:AbstractDeforModelRed, ID<:IntegDomain{S} where {S<:FESetH8}, CS<:CSys, M<:AbstractMatDeforLinearElastic, } @assert mr == material.mr "Model reduction is mismatched" @assert (mr == DeforModelRed3D) "3D model required" stabilization_material = _make_stabilization_material(material) return FEMMDeforLinearMSH8( mr, integdomain, mcsys, material, stabilization_material, fill(zero(StabParamFloat), 1), ) end """ FEMMDeforLinearMSH8( mr::Type{MR}, integdomain::ID, material::M, ) where {MR<:AbstractDeforModelRed, ID<:IntegDomain{S} where {S<:FESetH8}, M<:AbstractMatDeforLinearElastic} Constructor. """ function FEMMDeforLinearMSH8( mr::Type{MR}, integdomain::ID, material::M, ) where { MR<:AbstractDeforModelRed, ID<:IntegDomain{S} where {S<:FESetH8}, M<:AbstractMatDeforLinearElastic, } @assert mr == material.mr "Model reduction is mismatched" @assert (mr == DeforModelRed3D) "3D model required" stabilization_material = _make_stabilization_material(material) return FEMMDeforLinearMSH8( mr, integdomain, CSys(manifdim(integdomain.fes)), material, stabilization_material, fill(zero(StabParamFloat), 1), ) end """ mutable struct FEMMDeforLinearMST10{ MR<:AbstractDeforModelRed, ID<:IntegDomain{S,F} where {S<:FESetT10,F<:Function}, CS<:CSys, M<:AbstractMatDeforLinearElastic, MS<:MatDeforElastIso, } <: AbstractFEMMDeforLinearMS Type for mean-strain linear deformation FEMM based on 10-node tetrahedral elements. """ mutable struct FEMMDeforLinearMST10{ MR<:AbstractDeforModelRed, ID<:IntegDomain{S,F} where {S<:FESetT10,F<:Function}, CS<:CSys, M<:AbstractMatDeforLinearElastic, MS<:MatDeforElastIso, } <: AbstractFEMMDeforLinearMS mr::Type{MR} integdomain::ID # geometry data mcsys::CS # updater of the material orientation matrix material::M # material object stabilization_material::MS phis::Vector{StabParamFloat} end """ FEMMDeforLinearMST10( mr::Type{MR}, integdomain::ID, mcsys::CS, material::M, ) where {MR<:AbstractDeforModelRed, ID<:IntegDomain{S} where {S<:FESetT10}, CS<:CSys, M<:AbstractMatDeforLinearElastic} Constructor. """ function FEMMDeforLinearMST10( mr::Type{MR}, integdomain::ID, mcsys::CS, material::M, ) where { MR<:AbstractDeforModelRed, ID<:IntegDomain{S} where {S<:FESetT10}, CS<:CSys, M<:AbstractMatDeforLinearElastic, } @assert mr == material.mr "Model reduction is mismatched" @assert (mr == DeforModelRed3D) "3D model required" stabilization_material = _make_stabilization_material(material) return FEMMDeforLinearMST10( mr, integdomain, mcsys, material, stabilization_material, fill(zero(StabParamFloat), 1), ) end """ FEMMDeforLinearMST10( mr::Type{MR}, integdomain::ID, material::M, ) where {MR<:AbstractDeforModelRed, ID<:IntegDomain{S} where {S<:FESetT10}, M<:AbstractMatDeforLinearElastic} Constructor. """ function FEMMDeforLinearMST10( mr::Type{MR}, integdomain::ID, material::M, ) where { MR<:AbstractDeforModelRed, ID<:IntegDomain{S} where {S<:FESetT10}, M<:AbstractMatDeforLinearElastic, } @assert mr == material.mr "Model reduction is mismatched" @assert (mr == DeforModelRed3D) "3D model required" stabilization_material = _make_stabilization_material(material) return FEMMDeforLinearMST10( mr, integdomain, CSys(manifdim(integdomain.fes)), material, stabilization_material, fill(zero(StabParamFloat), 1), ) end function _make_stabilization_material(material::M) where {M} ns = fieldnames(typeof(material)) E = 0.0 nu = 0.0 if :E in ns E = material.E if material.nu < 0.3 nu = material.nu else nu = 0.3 + (material.nu - 0.3) / 2.0 end else if :E1 in ns E = mean([material.E1, material.E2, material.E3]) nu = min(material.nu12, material.nu13, material.nu23) else error("No clues on how to construct the stabilization material") end end return MatDeforElastIso(material.mr, 0.0, E, nu, 0.0) end function _buffers1( self::AbstractFEMMDeforLinearMS, geom::NodalField{GFT}, npts::Int, ) where {GFT} fes = self.integdomain.fes nne = nodesperelem(fes) # number of nodes for element sdim = ndofs(geom) # number of space dimensions mdim = manifdim(fes) # manifold dimension of the element # Prepare buffers ecoords = fill(zero(GFT), nne, ndofs(geom)) # array of Element coordinates loc = fill(zero(GFT), 1, sdim) # quadrature point location -- buffer J = fill(zero(GFT), sdim, mdim) # Jacobian matrix -- buffer csmatTJ = fill(zero(GFT), mdim, mdim) # intermediate result -- buffer gradN = fill(zero(GFT), nne, mdim) return ecoords, loc, J, csmatTJ, gradN end function _buffers2( self::AbstractFEMMDeforLinearMS, geom::NodalField{GFT}, u::NodalField, npts::Int, ) where {GFT} fes = self.integdomain.fes ndn = ndofs(u) # number of degrees of freedom per node nne = nodesperelem(fes) # number of nodes for element sdim = ndofs(geom) # number of space dimensions mdim = manifdim(fes) # manifold dimension of the element nstrs = nstressstrain(self.mr) # number of stresses elmatdim = ndn * nne # dimension of the element matrix # Prepare buffers ecoords = fill(zero(GFT), nne, ndofs(geom)) # array of Element coordinates elmat = fill(zero(GFT), elmatdim, elmatdim) # element matrix -- buffer dofnums = zeros(eltype(u.dofnums), 1, elmatdim) # degree of freedom array -- buffer loc = fill(zero(GFT), 1, sdim) # quadrature point location -- buffer J = fill(zero(GFT), sdim, mdim) # Jacobian matrix -- buffer csmatTJ = fill(zero(GFT), mdim, mdim) # intermediate result -- buffer AllgradN = Matrix{GFT}[] for ixxxx = 1:npts push!(AllgradN, fill(zero(GFT), nne, mdim)) end Jac = fill(zero(GFT), npts) MeangradN = fill(zero(GFT), nne, mdim) # intermediate result -- buffer D = fill(zero(GFT), nstrs, nstrs) # material stiffness matrix -- buffer Dstab = fill(zero(GFT), nstrs, nstrs) # material stiffness matrix -- buffer B = fill(zero(GFT), nstrs, elmatdim) # strain-displacement matrix -- buffer DB = fill(zero(GFT), nstrs, elmatdim) # strain-displacement matrix -- buffer Bbar = fill(zero(GFT), nstrs, elmatdim) # strain-displacement matrix -- buffer elvecfix = fill(zero(GFT), elmatdim) # vector of prescribed displ. -- buffer elvec = fill(zero(GFT), elmatdim) # element vector -- buffer return ecoords, dofnums, loc, J, csmatTJ, AllgradN, MeangradN, Jac, D, Dstab, B, DB, Bbar, elmat, elvec, elvecfix end function __centroid!(self::F, loc, ecoords) where {F<:FEMMDeforLinearMSH8} weights = [ 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 ] return loc!(loc, ecoords, reshape(weights, 8, 1)) end function __centroid!(self::F, loc, ecoords) where {F<:FEMMDeforLinearMST10} weights = [ -0.125 -0.125 -0.125 -0.125 0.250 0.250 0.250 0.250 0.250 0.250 ] return loc!(loc, ecoords, reshape(weights, 10, 1)) end """ associategeometry!( self::FEMMDeforLinearMSH8, geom::NodalField{GFT}, ) where {GFT} Associate geometry field with the FEMM. Compute the correction factors to account for the shape of the elements. """ function associategeometry!( self::FEMMDeforLinearMSH8, geom::NodalField{GFT}, ) where {GFT} fes = self.integdomain.fes npts, Ns, gradNparams, w, pc = integrationdata(self.integdomain) ecoords, loc, J, csmatTJ, gradN = _buffers1(self, geom, npts) self.phis = fill(zero(StabParamFloat), count(fes)) for i = 1:count(fes) # Loop over elements gathervalues_asmat!(geom, ecoords, fes.conn[i]) # NOTE: the coordinate system should be evaluated at a single point within the # element in order for the derivatives to be consistent at all quadrature points loc = __centroid!(self, loc, ecoords) updatecsmat!(self.mcsys, loc, J, i, 0) for j = 1:npts # Loop over quadrature points jac!(J, ecoords, gradNparams[j]) At_mul_B!(csmatTJ, csmat(self.mcsys), J) # local Jacobian matrix gradN!(fes, gradN, gradNparams[j], csmatTJ) h2 = diag(transpose(csmatTJ) * csmatTJ) cap_phi = (2 * (1 + self.stabilization_material.nu) * (minimum(h2) / maximum(h2))) # Plane stress phi = cap_phi / (1 + cap_phi) self.phis[i] = max(self.phis[i], phi) end # Loop over quadrature points end # Loop over elements return self end """ associategeometry!( self::FEMMDeforLinearMST10, geom::NodalField{GFT}, ) where {GFT} Associate geometry field with the FEMM. Compute the correction factors to account for the shape of the elements. """ function associategeometry!( self::FEMMDeforLinearMST10, geom::NodalField{GFT}, ) where {GFT} gamma = 2.6 C = 1e4 fes = self.integdomain.fes npts, Ns, gradNparams, w, pc = integrationdata(self.integdomain) ecoords, loc, J, csmatTJ, gradN = _buffers1(self, geom, npts) self.phis = fill(zero(StabParamFloat), count(fes)) for i = 1:count(fes) # Loop over elements gathervalues_asmat!(geom, ecoords, fes.conn[i]) # NOTE: the coordinate system should be evaluated at a single point within the # element in order for the derivatives to be consistent at all quadrature points loc = __centroid!(self, loc, ecoords) updatecsmat!(self.mcsys, loc, J, i, 0) for j = 1:npts # Loop over quadrature points jac!(J, ecoords, gradNparams[j]) At_mul_B!(csmatTJ, csmat(self.mcsys), J) # local Jacobian matrix condJ = cond(csmatTJ) cap_phi = C * (1.0 / condJ)^(gamma) phi = cap_phi / (1 + cap_phi) self.phis[i] = max(self.phis[i], phi) end # Loop over quadrature points end # Loop over elements return self end """ stiffness( self::FEMM, assembler::A, geom::NodalField{GFT}, u::NodalField{UFT}, ) where {FEMM<:AbstractFEMMDeforLinearMS,A<:AbstractSysmatAssembler,GFT<:Number,UFT<:Number} Compute and assemble stiffness matrix. """ function stiffness( self::FEMM, assembler::A, geom::NodalField{GFT}, u::NodalField{UFT}, ) where {FEMM<:AbstractFEMMDeforLinearMS,A<:AbstractSysmatAssembler,GFT<:Number,UFT<:Number} fes = self.integdomain.fes npts, Ns, gradNparams, w, pc = integrationdata(self.integdomain) ecoords, dofnums, loc, J, csmatTJ, AllgradN, MeangradN, Jac, D, Dstab, B, DB, Bbar, elmat, elvec, elvecfix = _buffers2(self, geom, u, npts) realmat = self.material stabmat = self.stabilization_material tangentmoduli!(realmat, D, 0.0, 0.0, loc, 0) tangentmoduli!(stabmat, Dstab, 0.0, 0.0, loc, 0) startassembly!(assembler, size(elmat)..., count(fes), nalldofs(u), nalldofs(u)) for i = 1:count(fes) # Loop over elements gathervalues_asmat!(geom, ecoords, fes.conn[i]) # NOTE: the coordinate system should be evaluated at a single point within the # element in order for the derivatives to be consistent at all quadrature points loc = __centroid!(self, loc, ecoords) updatecsmat!(self.mcsys, loc, J, i, 0) vol = 0.0 # volume of the element fill!(MeangradN, 0.0) # mean basis function gradients for j = 1:npts # Loop over quadrature points jac!(J, ecoords, gradNparams[j]) Jac[j] = Jacobianvolume(self.integdomain, J, loc, fes.conn[i], Ns[j]) At_mul_B!(csmatTJ, csmat(self.mcsys), J) # local Jacobian matrix gradN!(fes, AllgradN[j], gradNparams[j], csmatTJ) dvol = Jac[j] * w[j] MeangradN .= MeangradN .+ AllgradN[j] * dvol vol = vol + dvol end # Loop over quadrature points MeangradN .= MeangradN / vol blmat!(self.mr, Bbar, Ns[1], MeangradN, loc, csmat(self.mcsys)) fill!(elmat, 0.0) # Initialize element matrix add_btdb_ut_only!(elmat, Bbar, vol, D, DB) add_btdb_ut_only!(elmat, Bbar, -self.phis[i] * vol, Dstab, DB) for j = 1:npts # Loop over quadrature points blmat!(self.mr, B, Ns[j], AllgradN[j], loc, csmat(self.mcsys)) add_btdb_ut_only!(elmat, B, self.phis[i] * Jac[j] * w[j], Dstab, DB) end # Loop over quadrature points complete_lt!(elmat) gatherdofnums!(u, dofnums, fes.conn[i]) # retrieve degrees of freedom assemble!(assembler, elmat, dofnums, dofnums) # assemble symmetric matrix end # Loop over elements return makematrix!(assembler) end function _iip_meanonly( self::AbstractFEMMDeforLinearMS, geom::NodalField{GFT}, u::NodalField{UFT}, dT::NodalField{TFT}, felist::Vector{IT}, inspector::F, idat, quantity = :Cauchy; context..., ) where {GFT<:Number,UFT<:Number,TFT<:Number,IT,F<:Function} fes = self.integdomain.fes npts, Ns, gradNparams, w, pc = integrationdata(self.integdomain) ecoords, dofnums, loc, J, csmatTJ, AllgradN, MeangradN, Jac, D, Dstab, B, DB, Bbar, elmat, elvec, elvecfix = _buffers2(self, geom, u, npts) MeanN = deepcopy(Ns[1]) realmat = self.material stabmat = self.stabilization_material # Sort out the output requirements outputcsys = deepcopy(self.mcsys) # default: report the stresses in the material coord system for apair in pairs(context) sy, val = apair if sy == :outputcsys outputcsys = deepcopy(val) end end t = 0.0 dt = 0.0 nne = nodesperelem(fes) # number of nodes for element sdim = ndofs(geom) # number of space dimensions dTe = fill(zero(TFT), nodesperelem(fes)) # nodal temperatures -- buffer ue = fill(zero(GFT), size(elmat, 1)) # array of node displacements -- buffer qpdT = 0.0 # node temperature increment qpstrain = fill(zero(GFT), nstressstrain(self.mr), 1) # total strain -- buffer qpthstrain = fill(zero(GFT), nthermstrain(self.mr)) # thermal strain -- buffer qpstress = fill(zero(GFT), nstressstrain(self.mr)) # stress -- buffer out1 = fill(zero(GFT), nstressstrain(self.mr)) # stress -- buffer out = fill(zero(GFT), nstressstrain(self.mr))# output -- buffer # Loop over all the elements and all the quadrature points within them for ilist = 1:length(felist) # Loop over elements i = felist[ilist] gathervalues_asmat!(geom, ecoords, fes.conn[i])# retrieve element coords gathervalues_asvec!(u, ue, fes.conn[i])# retrieve element displacements gathervalues_asvec!(dT, dTe, fes.conn[i])# retrieve element temperature increments # NOTE: the coordinate system should be evaluated at a single point within the # element in order for the derivatives to be consistent at all quadrature points loc = __centroid!(self, loc, ecoords) updatecsmat!(self.mcsys, loc, J, i, 0) updatecsmat!(outputcsys, loc, J, i, 0) vol = 0.0 # volume of the element fill!(MeangradN, 0.0) # mean basis function gradients fill!(MeanN, 0.0) # mean basis function gradients for j = 1:npts # Loop over quadrature points jac!(J, ecoords, gradNparams[j]) Jac[j] = Jacobianvolume(self.integdomain, J, loc, fes.conn[i], Ns[j]) At_mul_B!(csmatTJ, csmat(self.mcsys), J) # local Jacobian matrix gradN!(fes, AllgradN[j], gradNparams[j], csmatTJ) dvol = Jac[j] * w[j] MeangradN .= MeangradN .+ AllgradN[j] * dvol MeanN .= MeanN .+ Ns[j] * dvol vol = vol + dvol end # Loop over quadrature points MeangradN .= MeangradN / vol blmat!(self.mr, Bbar, MeanN, MeangradN, loc, csmat(self.mcsys)) MeanN .= MeanN / vol qpdT = dot(vec(dTe), vec(MeanN))# Quadrature point temperature increment # Quadrature point quantities A_mul_B!(qpstrain, Bbar, ue) # strain in material coordinates thermalstrain!(realmat, qpthstrain, qpdT) # Material updates the state and returns the output out = update!( realmat, qpstress, out, vec(qpstrain), qpthstrain, t, dt, loc, fes.label[i], quantity, ) if (quantity == :Cauchy) # Transform stress tensor, if that is "quantity" (length(out1) >= length(out)) || (out1 = zeros(length(out))) rotstressvec!(self.mr, out1, out, transpose(csmat(self.mcsys)))# To global coord sys rotstressvec!(self.mr, out, out1, csmat(outputcsys))# To output coord sys end # Call the inspector idat = inspector(idat, i, fes.conn[i], ecoords, out, loc) end # Loop over elements return idat # return the updated inspector data end function _iip_extrapmean( self::AbstractFEMMDeforLinearMS, geom::NodalField{GFT}, u::NodalField{UFT}, dT::NodalField{TFT}, felist::Vector{IT}, inspector::F, idat, quantity = :Cauchy; context..., ) where {GFT<:Number,UFT<:Number,TFT<:Number,IT,F<:Function} fes = self.integdomain.fes npts, Ns, gradNparams, w, pc = integrationdata(self.integdomain) ecoords, dofnums, loc, J, csmatTJ, AllgradN, MeangradN, Jac, D, Dstab, B, DB, Bbar, elmat, elvec, elvecfix = _buffers2(self, geom, u, npts) MeanN = deepcopy(Ns[1]) realmat = self.material stabmat = self.stabilization_material # Sort out the output requirements outputcsys = deepcopy(self.mcsys) # default: report the stresses in the material coord system for apair in pairs(context) sy, val = apair if sy == :outputcsys outputcsys = val end end t = 0.0 dt = 0.0 nne = nodesperelem(fes) # number of nodes for element sdim = ndofs(geom) # number of space dimensions dTe = fill(zero(GFT), nodesperelem(fes)) # nodal temperatures -- buffer ue = fill(zero(GFT), size(elmat, 1)) # array of node displacements -- buffer qpdT = 0.0 # node temperature increment qpstrain = fill(zero(GFT), nstressstrain(self.mr), 1) # total strain -- buffer qpthstrain = fill(zero(GFT), nthermstrain(self.mr)) # thermal strain -- buffer qpstress = fill(zero(GFT), nstressstrain(self.mr)) # stress -- buffer out1 = fill(zero(GFT), nstressstrain(self.mr)) # stress -- buffer out = fill(zero(GFT), nstressstrain(self.mr))# output -- buffer # Loop over all the elements and all the quadrature points within them for ilist = 1:length(felist) # Loop over elements i = felist[ilist] gathervalues_asmat!(geom, ecoords, fes.conn[i])# retrieve element coords gathervalues_asvec!(u, ue, fes.conn[i])# retrieve element displacements gathervalues_asvec!(dT, dTe, fes.conn[i])# retrieve element temperature increments # NOTE: the coordinate system should be evaluated at a single point within the # element in order for the derivatives to be consistent at all quadrature points loc = __centroid!(self, loc, ecoords) updatecsmat!(self.mcsys, loc, J, i, 0) updatecsmat!(outputcsys, loc, J, i, 0) vol = 0.0 # volume of the element fill!(MeangradN, 0.0) # mean basis function gradients fill!(MeanN, 0.0) # mean basis function gradients for j = 1:npts # Loop over quadrature points jac!(J, ecoords, gradNparams[j]) Jac[j] = Jacobianvolume(self.integdomain, J, loc, fes.conn[i], Ns[j]) At_mul_B!(csmatTJ, csmat(self.mcsys), J) # local Jacobian matrix gradN!(fes, AllgradN[j], gradNparams[j], csmatTJ) dvol = Jac[j] * w[j] MeangradN .= MeangradN .+ AllgradN[j] * dvol MeanN .= MeanN .+ Ns[j] * dvol vol = vol + dvol end # Loop over quadrature points MeangradN .= MeangradN / vol blmat!(self.mr, Bbar, MeanN, MeangradN, loc, csmat(self.mcsys)) MeanN .= MeanN / vol qpdT = dot(vec(dTe), vec(MeanN))# Quadrature point temperature increment # Quadrature point quantities A_mul_B!(qpstrain, Bbar, ue) # strain in material coordinates thermalstrain!(realmat, qpthstrain, qpdT) # Material updates the state and returns the output out = update!( realmat, qpstress, out, vec(qpstrain), qpthstrain, t, dt, loc, fes.label[i], quantity, ) if (quantity == :Cauchy) # Transform stress tensor, if that is "quantity" (length(out1) >= length(out)) || (out1 = zeros(length(out))) rotstressvec!(self.mr, out1, out, transpose(csmat(self.mcsys)))# To global coord sys rotstressvec!(self.mr, out, out1, csmat(outputcsys)) # To output coord sys end # Call the inspector for each node location for nod in axes(ecoords, 1) idat = inspector(idat, i, fes.conn[i], ecoords, out, ecoords[nod, :]) end end # Loop over elements return idat # return the updated inspector data end function _iip_extraptrend( self::AbstractFEMMDeforLinearMS, geom::NodalField{GFT}, u::NodalField{UFT}, dT::NodalField{TFT}, felist::Vector{IT}, inspector::F, idat, quantity = :Cauchy; context..., ) where {GFT<:Number,UFT<:Number,TFT<:Number,IT,F<:Function} fes = self.integdomain.fes npts, Ns, gradNparams, w, pc = integrationdata(self.integdomain) ecoords, dofnums, loc, J, csmatTJ, AllgradN, MeangradN, Jac, D, Dstab, B, DB, Bbar, elmat, elvec, elvecfix = _buffers2(self, geom, u, npts) MeanN = deepcopy(Ns[1]) realmat = self.material stabmat = self.stabilization_material # Sort out the output requirements outputcsys = deepcopy(self.mcsys) # default: report the stresses in the material coord system for apair in pairs(context) sy, val = apair if sy == :outputcsys outputcsys = val end end t = 0.0 dt = 0.0 nne = nodesperelem(fes) # number of nodes for element sdim = ndofs(geom) # number of space dimensions dTe = fill(zero(GFT), nodesperelem(fes)) # nodal temperatures -- buffer ue = fill(zero(GFT), size(elmat, 1)) # array of node displacements -- buffer qpdT = 0.0 # node temperature increment qpstrain = fill(zero(GFT), nstressstrain(self.mr), 1) # total strain -- buffer qpthstrain = fill(zero(GFT), nthermstrain(self.mr)) # thermal strain -- buffer qpstress = fill(zero(GFT), nstressstrain(self.mr)) # stress -- buffer rout1 = fill(zero(GFT), nstressstrain(self.mr)) # stress -- buffer rout = fill(zero(GFT), nstressstrain(self.mr))# output -- buffer sbout = deepcopy(rout) sbout1 = deepcopy(sbout) sout = deepcopy(rout) sout1 = deepcopy(sout) sqploc = deepcopy(loc) sstoredout = fill(zero(GFT), npts, length(sout)) A = ones(GFT, npts, 4) # Loop over all the elements and all the quadrature points within them for ilist = 1:length(felist) # Loop over elements i = felist[ilist] gathervalues_asmat!(geom, ecoords, fes.conn[i])# retrieve element coords gathervalues_asvec!(u, ue, fes.conn[i])# retrieve element displacements gathervalues_asvec!(dT, dTe, fes.conn[i])# retrieve element temperature increments # NOTE: the coordinate system should be evaluated at a single point within the # element in order for the derivatives to be consistent at all quadrature points loc = __centroid!(self, loc, ecoords) updatecsmat!(self.mcsys, loc, J, i, 0) updatecsmat!(outputcsys, loc, J, i, 0) vol = 0.0 # volume of the element fill!(MeangradN, 0.0) # mean basis function gradients fill!(MeanN, 0.0) # mean basis function gradients for j = 1:npts # Loop over quadrature points jac!(J, ecoords, gradNparams[j]) Jac[j] = Jacobianvolume(self.integdomain, J, loc, fes.conn[i], Ns[j]) At_mul_B!(csmatTJ, csmat(self.mcsys), J) # local Jacobian matrix gradN!(fes, AllgradN[j], gradNparams[j], csmatTJ) dvol = Jac[j] * w[j] MeangradN .= MeangradN .+ AllgradN[j] * dvol MeanN .= MeanN .+ Ns[j] * dvol vol = vol + dvol end # Loop over quadrature points MeangradN .= MeangradN / vol blmat!(self.mr, Bbar, MeanN, MeangradN, loc, csmat(self.mcsys)) MeanN .= MeanN / vol qpdT = dot(vec(dTe), vec(MeanN))# Quadrature point temperature increment # Quadrature point quantities A_mul_B!(qpstrain, Bbar, ue) # strain in material coordinates thermalstrain!(realmat, qpthstrain, qpdT) # REAL Material updates the state and returns the output rout = update!( realmat, qpstress, rout, vec(qpstrain), qpthstrain, t, dt, loc, fes.label[i], quantity, ) if (quantity == :Cauchy) # Transform stress tensor, if that is "quantity" (length(rout1) >= length(rout)) || (rout1 = zeros(length(rout))) rotstressvec!(self.mr, rout1, rout, transpose(csmat(self.mcsys)))# To global coord sys rotstressvec!(self.mr, rout, rout1, csmat(outputcsys))# To output coord sys end # STABILIZATION Material updates the state and returns the output sbout = update!( stabmat, qpstress, sbout, vec(qpstrain), qpthstrain, t, dt, loc, fes.label[i], quantity, ) if (quantity == :Cauchy) # Transform stress tensor, if that is "quantity" (length(sbout1) >= length(sbout)) || (sbout1 = zeros(length(sbout))) rotstressvec!(self.mr, sbout1, sbout, transpose(csmat(self.mcsys)))# To global coord sys rotstressvec!(self.mr, sbout, sbout1, csmat(outputcsys))# To output coord sys end for j = 1:npts # Loop over quadrature points (STABILIZATION material) At_mul_B!(sqploc, Ns[j], ecoords)# Quadrature point location A[j, 1:3] .= vec(sqploc - loc) blmat!(self.mr, B, Ns[j], AllgradN[j], sqploc, csmat(self.mcsys)) qpdT = dot(vec(dTe), vec(Ns[j]))# Quadrature point temperature increment # Quadrature point quantities A_mul_B!(qpstrain, B, ue) # strain in material coordinates thermalstrain!(stabmat, qpthstrain, qpdT) # Material updates the state and returns the output sout = update!( stabmat, qpstress, sout, vec(qpstrain), qpthstrain, t, dt, loc, fes.label[i], quantity, ) if (quantity == :Cauchy) # Transform stress tensor, if that is "quantity" (length(sout1) >= length(sout)) || (sout1 = zeros(length(sout))) rotstressvec!(self.mr, sout1, sout, transpose(csmat(self.mcsys)))# To global coord sys rotstressvec!(self.mr, sout, sout1, csmat(outputcsys))# To output coord sys end sstoredout[j, :] .= sout # store the output for this quadrature point end # Loop over quadrature points # Solve for the least-square fit parameters fact = qr(A) p = UpperTriangular(fact.R) \ (transpose(Array(fact.Q)) * sstoredout) # R \ (transpose(Q) * sstoredout) for nod in axes(ecoords, 1) # Predict the value of the output quantity at the node xdel = vec(@view ecoords[nod, :]) - vec(loc) nout = rout + self.phis[i] * (-sbout + vec(reshape(xdel, 1, 3) * p[1:3, :]) + p[4, :]) # Call the inspector for the node location idat = inspector(idat, i, fes.conn[i], ecoords, nout, ecoords[nod, :]) end end # Loop over elements return idat # return the updated inspector data end """ inspectintegpoints( self::FEMM, geom::NodalField{GFT}, u::NodalField{UFT}, dT::NodalField{TFT}, felist::Vector{IT}, inspector::F, idat, quantity = :Cauchy; context..., ) where {FEMM<:AbstractFEMMDeforLinearMS,GFT<:Number,UFT<:Number,TFT<:Number,IT,F<:Function} Inspect integration point quantities. # Arguments - `geom` - reference geometry field - `u` - displacement field - `dT` - temperature difference field - `felist` - indexes of the finite elements that are to be inspected: The fes to be included are: `fes[felist]`. - `context` - structure: see the update!() method of the material. - `inspector` - functionwith the signature idat = inspector(idat, j, conn, x, out, loc); where `idat` - a structure or an array that the inspector may use to maintain some state, for instance minimum or maximum of stress, `j` is the element number, `conn` is the element connectivity, `out` is the output of the update!() method, `loc` is the location of the integration point in the *reference* configuration. # Return The updated inspector data is returned. """ function inspectintegpoints( self::FEMM, geom::NodalField{GFT}, u::NodalField{UFT}, dT::NodalField{TFT}, felist::Vector{IT}, inspector::F, idat, quantity = :Cauchy; context..., ) where {FEMM<:AbstractFEMMDeforLinearMS,GFT<:Number,UFT<:Number,TFT<:Number,IT,F<:Function} reportat = :meanonly for apair in pairs(context) sy, val = apair if sy == :reportat reportat = val end end if reportat == :extraptrend return _iip_extraptrend( self, geom, u, dT, felist, inspector, idat, quantity; context..., ) elseif reportat == :extrapmean return _iip_extrapmean( self, geom, u, dT, felist, inspector, idat, quantity; context..., ) elseif reportat == :meanonly || true # this is the default return _iip_meanonly( self, geom, u, dT, felist, inspector, idat, quantity; context..., ) end return idat end function inspectintegpoints( self::FEMM, geom::NodalField{GFT}, u::NodalField{UFT}, felist::Vector{IT}, inspector::F, idat, quantity = :Cauchy; context..., ) where {FEMM<:AbstractFEMMDeforLinearMS,GFT<:Number,UFT<:Number,IT,F<:Function} dT = NodalField(fill(zero(GFT), nnodes(geom), 1)) # zero difference in temperature return inspectintegpoints( self, geom, u, dT, felist, inspector, idat, quantity; context..., ) end """ infsup_gh( self::FEMM, assembler::A, geom::NodalField{GFT}, u::NodalField{UFT}, ) where {FEMM<:AbstractFEMMDeforLinearMS,A<:AbstractSysmatAssembler,GFT<:Number,UFT<:Number} Compute the matrix to produce the norm of the divergence of the displacement. This matrix is used in the numerical infsup test (Klaus-Jurgen Bathe, The inf-sup condition and its evaluation for mixed finite element methods, Computers and Structures 79 (2001) 243-252.) !!! note This computation has not been optimized in any way. It can be expected to be inefficient. """ function infsup_gh( self::FEMM, assembler::A, geom::NodalField{GFT}, u::NodalField{UFT}, ) where {FEMM<:AbstractFEMMDeforLinearMS,A<:AbstractSysmatAssembler,GFT<:Number,UFT<:Number} fes = self.integdomain.fes npts, Ns, gradNparams, w, pc = integrationdata(self.integdomain) ecoords, dofnums, loc, J, csmatTJ, AllgradN, MeangradN, Jac, D, Dstab, B, DB, Bbar, elmat, elvec, elvecfix = _buffers2(self, geom, u, npts) startassembly!( assembler, size(elmat, 1), size(elmat, 2), count(fes), u.nfreedofs, u.nfreedofs, ) for i = 1:count(fes) # Loop over elements gathervalues_asmat!(geom, ecoords, fes.conn[i]) # NOTE: the coordinate system should be evaluated at a single point within the # element in order for the derivatives to be consistent at all quadrature points loc = __centroid!(self, loc, ecoords) updatecsmat!(self.mcsys, loc, J, i, 0) vol = 0.0 # volume of the element fill!(MeangradN, 0.0) # mean basis function gradients for j = 1:npts # Loop over quadrature points jac!(J, ecoords, gradNparams[j]) Jac[j] = Jacobianvolume(self.integdomain, J, loc, fes.conn[i], Ns[j]) At_mul_B!(csmatTJ, csmat(self.mcsys), J) # local Jacobian matrix gradN!(fes, AllgradN[j], gradNparams[j], csmatTJ) dvol = Jac[j] * w[j] MeangradN .= MeangradN .+ AllgradN[j] * dvol vol = vol + dvol end # Loop over quadrature points MeangradN .= MeangradN / vol fill!(elmat, 0.0) # Initialize element matrix divm = divmat(self.mr, Ns[1], MeangradN, loc) elmat += (transpose(divm) * divm) * vol gatherdofnums!(u, dofnums, fes.conn[i]) # retrieve degrees of freedom assemble!(assembler, (elmat + elmat') / 2, dofnums, dofnums) # assemble symmetric matrix end # Loop over elements return makematrix!(assembler) end function infsup_gh( self::FEMM, geom::NodalField{GFT}, u::NodalField{UFT}, ) where {FEMM<:AbstractFEMMDeforLinearMS,GFT<:Number,UFT<:Number} assembler = SysmatAssemblerSparseSymm() return infsup_gh(self, assembler, geom, u) end """ infsup_sh( self::FEMM, assembler::A, geom::NodalField{GFT}, u::NodalField{UFT}, ) where {FEMM<:AbstractFEMMDeforLinearMS,A<:AbstractSysmatAssembler,GFT<:Number,UFT<:Number} Compute the matrix to produce the seminorm of the displacement (square root of the sum of the squares of the derivatives of the components of displacement). This matrix is used in the numerical infsup test (Klaus-Jurgen Bathe, The inf-sup condition and its evaluation for mixed finite element methods, Computers and Structures 79 (2001) 243-252.) !!! note This computation has not been optimized in any way. It can be expected to be inefficient. """ function infsup_sh( self::FEMM, assembler::A, geom::NodalField{GFT}, u::NodalField{UFT}, ) where {FEMM<:AbstractFEMMDeforLinearMS,A<:AbstractSysmatAssembler,GFT<:Number,UFT<:Number} fes = self.integdomain.fes npts, Ns, gradNparams, w, pc = integrationdata(self.integdomain) ecoords, dofnums, loc, J, csmatTJ, AllgradN, MeangradN, Jac, D, Dstab, B, DB, Bbar, elmat, elvec, elvecfix = _buffers2(self, geom, u, npts) startassembly!( assembler, size(elmat, 1), size(elmat, 2), count(fes), u.nfreedofs, u.nfreedofs, ) for i = 1:count(fes) # Loop over elements gathervalues_asmat!(geom, ecoords, fes.conn[i]) # NOTE: the coordinate system should be evaluated at a single point within the # element in order for the derivatives to be consistent at all quadrature points loc = __centroid!(self, loc, ecoords) updatecsmat!(self.mcsys, loc, J, i, 0) vol = 0.0 # volume of the element fill!(MeangradN, 0.0) # mean basis function gradients for j = 1:npts # Loop over quadrature points jac!(J, ecoords, gradNparams[j]) Jac[j] = Jacobianvolume(self.integdomain, J, loc, fes.conn[i], Ns[j]) At_mul_B!(csmatTJ, csmat(self.mcsys), J) # local Jacobian matrix gradN!(fes, AllgradN[j], gradNparams[j], csmatTJ) dvol = Jac[j] * w[j] MeangradN .= MeangradN .+ AllgradN[j] * dvol vol = vol + dvol end # Loop over quadrature points MeangradN .= MeangradN / vol fill!(elmat, 0.0) # Initialize element matrix vgradm = vgradmat(self.mr, Ns[1], MeangradN, loc) elmat = (transpose(vgradm) * vgradm) * vol gatherdofnums!(u, dofnums, fes.conn[i]) # retrieve degrees of freedom assemble!(assembler, (elmat + elmat') / 2, dofnums, dofnums) # assemble symmetric matrix end # Loop over elements return makematrix!(assembler) end function infsup_sh( self::FEMM, geom::NodalField{GFT}, u::NodalField{UFT}, ) where {FEMM<:AbstractFEMMDeforLinearMS,GFT<:Number,UFT<:Number} assembler = SysmatAssemblerSparseSymm() return infsup_sh(self, assembler, geom, u) end end
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
2047
""" Module for operations on interiors of domains to construct system matrices and system vectors for linear deformation models. """ module FEMMDeforLinearModule __precompile__(true) import FinEtools.FENodeSetModule: FENodeSet import FinEtools.FESetModule: AbstractFESet, manifdim import FinEtools.IntegDomainModule: IntegDomain import FinEtoolsDeforLinear.FEMMDeforLinearBaseModule: AbstractFEMMDeforLinear import FinEtools.DeforModelRedModule: AbstractDeforModelRed, DeforModelRed2DAxisymm import FinEtoolsDeforLinear.MatDeforLinearElasticModule: AbstractMatDeforLinearElastic import FinEtools.CSysModule: CSys """ mutable struct FEMMDeforLinear{ MR<:AbstractDeforModelRed, ID<:IntegDomain, CS<:CSys, M<:AbstractMatDeforLinearElastic, } <: AbstractFEMMDeforLinear Type for linear deformation finite element modeling machine. """ mutable struct FEMMDeforLinear{ MR<:AbstractDeforModelRed, ID<:IntegDomain, CS<:CSys, M<:AbstractMatDeforLinearElastic, } <: AbstractFEMMDeforLinear mr::Type{MR} # model reduction type integdomain::ID # integration domain data mcsys::CS # updater of the material orientation matrix material::M # material object end """ FEMMDeforLinear( mr::Type{MR}, integdomain::IntegDomain{S,F}, material::M, ) where { MR<:AbstractDeforModelRed, S<:AbstractFESet, F<:Function, M<:AbstractMatDeforLinearElastic, } Constructor of linear deformation finite element modeling machine. """ function FEMMDeforLinear( mr::Type{MR}, integdomain::IntegDomain{S,F}, material::M, ) where { MR<:AbstractDeforModelRed, S<:AbstractFESet, F<:Function, M<:AbstractMatDeforLinearElastic, } @assert mr == material.mr "Model reduction is mismatched" @assert (integdomain.axisymmetric) || (mr != DeforModelRed2DAxisymm) "Axially symmetric requires axisymmetric to be true" return FEMMDeforLinear(mr, integdomain, CSys(manifdim(integdomain.fes)), material) end end
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
15378
""" Formulation for the small displacement, small strain deformation model for Nodally-Integrated Continuum Elements (NICE). The approximation is originally from Dohrmann et al IJNME 47 (2000). The formulation was subsequently developed in Krysl, P. and Zhu, B. Locking-free continuum displacement finite elements with nodal integration, International Journal for Numerical Methods in Engineering, 76,7,1020-1043,2008. This formulation is at this point obsolete (replaced with ESNICE). """ module FEMMDeforLinearNICEModule __precompile__(true) using FinEtools.FENodeSetModule: FENodeSet using FinEtools.FESetModule: AbstractFESet, FESetH8, FESetT4, manifdim, nodesperelem, gradN! using FinEtools.IntegDomainModule: IntegDomain, integrationdata, Jacobianvolume using FinEtoolsDeforLinear.FEMMDeforLinearBaseModule: AbstractFEMMDeforLinear using FinEtools.DeforModelRedModule: AbstractDeforModelRed, DeforModelRed3D using FinEtoolsDeforLinear.MatDeforLinearElasticModule: AbstractMatDeforLinearElastic, tangentmoduli!, update!, thermalstrain! using FinEtools.FieldModule: ndofs, gatherdofnums!, gathervalues_asvec!, gathervalues_asmat!, nalldofs using FinEtools.NodalFieldModule: NodalField, nnodes using FinEtools.CSysModule: CSys, updatecsmat!, csmat using FinEtools.FENodeToFEMapModule: FENodeToFEMap using FinEtools.DeforModelRedModule: nstressstrain, nthermstrain, blmat! using FinEtools.AssemblyModule: AbstractSysvecAssembler, AbstractSysmatAssembler, SysmatAssemblerSparseSymm, startassembly!, assemble!, makematrix!, makevector!, SysvecAssembler using FinEtools.MatrixUtilityModule: add_btdb_ut_only!, complete_lt!, loc!, jac!, locjac!, adjugate3! import FinEtoolsDeforLinear.FEMMDeforLinearBaseModule: stiffness, mass, thermalstrainloads, inspectintegpoints import FinEtools.FEMMBaseModule: associategeometry! using FinEtoolsDeforLinear.MatDeforModule: rotstressvec! using LinearAlgebra: mul!, Transpose, UpperTriangular, eigvals At_mul_B!(C, A, B) = mul!(C, Transpose(A), B) A_mul_B!(C, A, B) = mul!(C, A, B) using LinearAlgebra: norm, qr, diag, dot, cond, I using Statistics: mean const StabParamFloat = Float64 """ AbstractFEMMDeforLinearNICE <: AbstractFEMMDeforLinear Abstract FEMM type for Nodally Integrated Continuum Elements (NICE). """ abstract type AbstractFEMMDeforLinearNICE <: AbstractFEMMDeforLinear end mutable struct _NodalBasisFunctionGradients{FT,IT} gradN::Matrix{FT} patchconn::Vector{IT} Vpatch::FT end """ mutable struct FEMMDeforLinearNICEH8{ MR <: AbstractDeforModelRed, S <: FESetH8, F <: Function, M <: AbstractMatDeforLinearElastic, } <: AbstractFEMMDeforLinearNICE FEMM type for Nodally Integrated Continuum Elements (NICE) based on the eight-node hexahedron. """ mutable struct FEMMDeforLinearNICEH8{ MR<:AbstractDeforModelRed, ID<:IntegDomain{S,F} where {S<:FESetH8,F<:Function}, CS<:CSys, M<:AbstractMatDeforLinearElastic, } <: AbstractFEMMDeforLinearNICE mr::Type{MR} integdomain::ID # integration domain mcsys::CS # updater of the material orientation matrix material::M # material object stabfact::StabParamFloat nodalbasisfunctiongrad::Vector{_NodalBasisFunctionGradients} end function FEMMDeforLinearNICEH8( mr::Type{MR}, integdomain::IntegDomain{S,F}, mcsys::CSys, material::M, ) where {MR<:AbstractDeforModelRed,S<:FESetH8,F<:Function,M<:AbstractMatDeforLinearElastic} @assert mr == material.mr "Model reduction is mismatched" @assert (mr == DeforModelRed3D) "3D model required" stabfact = 0.05 return FEMMDeforLinearNICEH8( mr, integdomain, mcsys, material, stabfact, _NodalBasisFunctionGradients[], ) end function FEMMDeforLinearNICEH8( mr::Type{MR}, integdomain::IntegDomain{S,F}, material::M, ) where {MR<:AbstractDeforModelRed,S<:FESetH8,F<:Function,M<:AbstractMatDeforLinearElastic} @assert mr == material.mr "Model reduction is mismatched" @assert (mr == DeforModelRed3D) "3D model required" stabfact = 0.05 return FEMMDeforLinearNICEH8( mr, integdomain, CSys(manifdim(integdomain.fes)), material, stabfact, _NodalBasisFunctionGradients[], ) end function FEMMDeforLinearNICEH8( mr::Type{MR}, integdomain::IntegDomain{S,F}, material::M, stabfact, ) where {MR<:AbstractDeforModelRed,S<:FESetH8,F<:Function,M<:AbstractMatDeforLinearElastic} @assert mr == material.mr "Model reduction is mismatched" @assert (mr == DeforModelRed3D) "3D model required" return FEMMDeforLinearNICEH8( mr, integdomain, CSys(manifdim(integdomain.fes)), material, stabfact, _NodalBasisFunctionGradients[], ) end """ mutable struct FEMMDeforLinearNICET4{ MR <: AbstractDeforModelRed, S <: FESetT4, F <: Function, M <: AbstractMatDeforLinearElastic, } <: AbstractFEMMDeforLinearNICE FEMM type for Nodally Integrated Continuum Elements (NICE) based on the 4-node tetrahedron. """ mutable struct FEMMDeforLinearNICET4{ MR<:AbstractDeforModelRed, ID<:IntegDomain{S,F} where {S<:FESetT4,F<:Function}, CS<:CSys, M<:AbstractMatDeforLinearElastic, } <: AbstractFEMMDeforLinearNICE mr::Type{MR} integdomain::ID # geometry data mcsys::CS # updater of the material orientation matrix material::M # material object stabfact::StabParamFloat nodalbasisfunctiongrad::Vector{_NodalBasisFunctionGradients} end function FEMMDeforLinearNICET4( mr::Type{MR}, integdomain::IntegDomain{S,F}, mcsys::CSys, material::M, ) where {MR<:AbstractDeforModelRed,S<:FESetT4,F<:Function,M<:AbstractMatDeforLinearElastic} @assert mr == material.mr "Model reduction is mismatched" @assert (mr == DeforModelRed3D) "3D model required" stabfact = 0.015 return FEMMDeforLinearNICET4( mr, integdomain, mcsys, material, stabfact, _NodalBasisFunctionGradients[], ) end function FEMMDeforLinearNICET4( mr::Type{MR}, integdomain::IntegDomain{S,F}, material::M, ) where {MR<:AbstractDeforModelRed,S<:FESetT4,F<:Function,M<:AbstractMatDeforLinearElastic} @assert mr == material.mr "Model reduction is mismatched" @assert (mr == DeforModelRed3D) "3D model required" stabfact = 0.015 return FEMMDeforLinearNICET4( mr, integdomain, CSys(manifdim(integdomain.fes)), material, stabfact, _NodalBasisFunctionGradients[], ) end function FEMMDeforLinearNICET4( mr::Type{MR}, integdomain::IntegDomain{S,F}, material::M, stabfact, ) where {MR<:AbstractDeforModelRed,S<:FESetT4,F<:Function,M<:AbstractMatDeforLinearElastic} @assert mr == material.mr "Model reduction is mismatched" @assert (mr == DeforModelRed3D) "3D model required" return FEMMDeforLinearNICET4( mr, integdomain, CSys(manifdim(integdomain.fes)), material, stabfact, _NodalBasisFunctionGradients[], ) end function _buffers1( self::AbstractFEMMDeforLinearNICE, geom::NodalField{GFT}, npts::Int, ) where {GFT} fes = self.integdomain.fes nne = nodesperelem(fes) # number of nodes for element sdim = ndofs(geom) # number of space dimensions mdim = manifdim(fes) # manifold dimension of the element # Prepare buffers loc = fill(zero(GFT), 1, sdim) # quadrature point location -- buffer J = fill(zero(GFT), sdim, mdim) # Jacobian matrix -- buffer adjJ = fill(zero(GFT), sdim, mdim) # Jacobian matrix -- buffer csmatTJ = fill(zero(GFT), mdim, mdim) # intermediate result -- buffer gradN = fill(zero(GFT), nne, mdim) xl = fill(zero(GFT), nne, mdim) return loc, J, adjJ, csmatTJ, gradN, xl end function _buffers2( self::AbstractFEMMDeforLinearNICE, geom::NodalField{GFT}, u::NodalField, npts::Int, ) where {GFT} fes = self.integdomain.fes ndn = ndofs(u) # number of degrees of freedom per node nne = nodesperelem(fes) # number of nodes for element sdim = ndofs(geom) # number of space dimensions mdim = manifdim(fes) # manifold dimension of the element nstrs = nstressstrain(self.mr) # number of stresses loc = fill(zero(GFT), 1, sdim) # quadrature point location -- buffer J = fill(zero(GFT), sdim, mdim) # Jacobian matrix -- buffer csmatTJ = fill(zero(GFT), mdim, mdim) # intermediate result -- buffer Jac = fill(zero(GFT), npts) D = fill(zero(GFT), nstrs, nstrs) # material stiffness matrix -- buffer return loc, J, csmatTJ, Jac, D end function patchconn(fes, gl, thisnn) # Generate patch connectivity for a given node (thisnn) # from the connectivities of the finite elements attached to it. return vcat( collect(setdiff(Set([i for j in eachindex(gl) for i in fes.conn[gl[j]]]), thisnn)), [thisnn], ) end function computenodalbfungrads(self, geom) # # Compute the nodal basis function gradients. # # Return the cell array of structures with attributes # % bfun_gradients{nix}.Nspd= basis function gradient matrix # # bfun_gradients{nix}.Vpatch= nodal patch volume # # bfun_gradients{nix}.patchconn= nodal patch connectivity fes = self.integdomain.fes npts, Ns, gradNparams, w, pc = integrationdata(self.integdomain) loc, J, adjJ, csmatTJ, gradN, xl = _buffers1(self, geom, npts) # Get the inverse map from finite element nodes to geometric cells fen2fe = FENodeToFEMap(fes.conn, nnodes(geom)) # Initialize the nodal gradients, nodal patch, and patch connectivity bfungrads = fill(_NodalBasisFunctionGradients(fill(0.0, 0, 0), fill(0, 0), 0.0), nnodes(geom)) # Now loop over all finite element nodes in the map lnmap = fill(0, length(fen2fe.map)) # Local node map: buffer to speed up operations for nix in eachindex(fen2fe.map) gl = fen2fe.map[nix] thisnn = nix # We are at this node if !isempty(gl) # This node has an element patch in this block # establish local numbering of all nodes of the patch @ node thisnn p = patchconn(fes, gl, thisnn) np = length(p) lnmap[p] .= 1:np# now store the local numbers c = reshape(geom.values[thisnn, :], 1, ndofs(geom)) updatecsmat!(self.mcsys, c, J, nix, 0) gradNavg = fill(0.0, np, ndofs(geom))# preallocate strain-displacement matrix Vpatch = 0.0 for k in eachindex(gl) i = gl[k] kconn = collect(fes.conn[i]) pci = findfirst(cx -> cx == thisnn, kconn)# at which node in the element are we with this quadrature point? @assert 1 <= pci <= nodesperelem(fes) # centered coordinates of nodes in the material coordinate system for cn in eachindex(kconn) xl[cn, :] = (reshape(geom.values[kconn[cn], :], 1, ndofs(geom)) - c) * csmat(self.mcsys) end jac!(J, xl, gradNparams[pci]) At_mul_B!(csmatTJ, csmat(self.mcsys), J) # local Jacobian matrix Jac = Jacobianvolume(self.integdomain, J, c, fes.conn[i], Ns[pci]) Vpatch += Jac * w[pci] sgradN = gradNparams[pci] * adjugate3!(adjJ, J) gradNavg[lnmap[kconn], :] += (w[pci] .* sgradN) end @assert Vpatch != 0 gradNavg ./= Vpatch bfungrads[nix] = _NodalBasisFunctionGradients(gradNavg, p, Vpatch) lnmap[p] .= 0 # Restore the buffer to pristine condition end end self.nodalbasisfunctiongrad = bfungrads return self end """ associategeometry!(self::F, geom::NodalField{GFT}) where {F <: AbstractFEMMDeforLinearNICE, GFT} Associate geometry field with the FEMM. Compute the correction factors to account for the shape of the elements. """ function associategeometry!( self::F, geom::NodalField{GFT}, ) where {F<:AbstractFEMMDeforLinearNICE,GFT} return computenodalbfungrads(self, geom) end function Phi3(dim, np, lx, c) lx[:, 1] = lx[:, 1] .- c[1] lx[:, 2] = lx[:, 2] .- c[2] lx[:, 3] = lx[:, 3] .- c[3] Phi = fill(0.0, dim * np, 12) Phi[1:dim:(end-1), 1] .= 1 Phi[1:dim:(end-1), 2] = lx[:, 1]' Phi[1:dim:(end-1), 3] = lx[:, 2]' Phi[1:dim:(end-1), 4] = lx[:, 3]' Phi[2:dim:end, 5] .= 1 Phi[2:dim:end, 6] = lx[:, 1]' Phi[2:dim:end, 7] = lx[:, 2]' Phi[2:dim:end, 8] = lx[:, 3]' Phi[3:dim:end, 9] .= 1 Phi[3:dim:end, 10] = lx[:, 1]' Phi[3:dim:end, 11] = lx[:, 2]' Phi[3:dim:end, 12] = lx[:, 3]' return Phi end """ stiffness(self::AbstractFEMMDeforLinearNICE, assembler::A, geom::NodalField{GFT}, u::NodalField{UFT}) where {A <: AbstractSysmatAssembler, GFT <: Number, UFT <: Number} Compute and assemble stiffness matrix. """ function stiffness( self::AbstractFEMMDeforLinearNICE, assembler::A, geom::NodalField{GFT}, u::NodalField{UFT}, ) where {A<:AbstractSysmatAssembler,GFT<:Number,UFT<:Number} fes = self.integdomain.fes npts, Ns, gradNparams, w, pc = integrationdata(self.integdomain) loc, J, csmatTJ, Jac, D = _buffers2(self, geom, u, npts) tangentmoduli!(self.material, D, 0.0, 0.0, loc, 0) Dmod = sort(eigvals(D)) stabDmod = mean(Dmod[1:2]; dims = 1) elmatsizeguess = 4 * nodesperelem(fes) * ndofs(u) startassembly!(assembler, elmatsizeguess, elmatsizeguess, nnodes(u), nalldofs(u), nalldofs(u)) for nix in eachindex(self.nodalbasisfunctiongrad) gradN = self.nodalbasisfunctiongrad[nix].gradN patchconn = self.nodalbasisfunctiongrad[nix].patchconn Vpatch = self.nodalbasisfunctiongrad[nix].Vpatch c = reshape(geom.values[nix, :], 1, ndofs(geom)) updatecsmat!(self.mcsys, c, J, nix, 0) nd = length(patchconn) * ndofs(u) Bnodal = fill(0.0, size(D, 1), nd) blmat!(self.mr, Bnodal, Ns[1], gradN, c, csmat(self.mcsys)) elmat = fill(0.0, nd, nd) # Can we SPEED it UP? DB = fill(0.0, size(D, 1), nd) add_btdb_ut_only!(elmat, Bnodal, Vpatch, D, DB) complete_lt!(elmat) if (self.stabfact > 0) Phi = Phi3(ndofs(u), length(patchconn), geom.values[patchconn, :], c) A1 = Phi * ((Phi' * Phi) \ Phi') elmat += (self.stabfact * stabDmod) .* (I - A1) end dofnums = fill(0, nd) gatherdofnums!(u, dofnums, patchconn) # retrieve degrees of freedom assemble!(assembler, elmat, dofnums, dofnums) # assemble symmetric matrix end # Loop over elements return makematrix!(assembler) end """ stiffness(self::AbstractFEMMDeforLinearNICE, geom::NodalField{GFT}, u::NodalField{UFT}) where {GFT <: Number, UFT <: Number} Compute and assemble stiffness matrix. """ function stiffness( self::AbstractFEMMDeforLinearNICE, geom::NodalField{GFT}, u::NodalField{UFT}, ) where {GFT<:Number,UFT<:Number} assembler = SysmatAssemblerSparseSymm() return stiffness(self, assembler, geom, u) end end
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
4270
""" Module for operations on the damping associated with absorbing boundary conditions (ABC) representation of the effect of infinite extent of inviscid fluid next to the surface. """ module FEMMDeforSurfaceDampingModule __precompile__(true) using FinEtools.FENodeSetModule: FENodeSet using FinEtools.FESetModule: AbstractFESet, nodesperelem, manifdim using FinEtools.IntegDomainModule: IntegDomain, integrationdata, Jacobiansurface using FinEtools.FieldModule: ndofs, gatherdofnums!, gathervalues_asmat!, nalldofs using FinEtools.NodalFieldModule: NodalField using FinEtools.FEMMBaseModule: AbstractFEMM using FinEtools.AssemblyModule: AbstractSysvecAssembler, AbstractSysmatAssembler, SysmatAssemblerSparseSymm, startassembly!, assemble!, makematrix! using FinEtools.MatrixUtilityModule: add_nnt_ut_only!, complete_lt!, locjac! using FinEtools.SurfaceNormalModule: SurfaceNormal, updatenormal! using LinearAlgebra: norm, cross """ mutable struct FEMMDeforSurfaceDamping{ID<:IntegDomain} <: AbstractFEMM Type for surface damping model. """ mutable struct FEMMDeforSurfaceDamping{ID<:IntegDomain} <: AbstractFEMM integdomain::ID # geometry data end """ dampingABC( self::FEMMDeforSurfaceDamping, assembler::A, geom::NodalField{GFT}, u::NodalField{UFT}, impedance::FT, surfacenormal::SurfaceNormal, ) where {A<:AbstractSysmatAssembler,GFT<:Number,UFT<:Number,FT<:Number} Compute the damping matrix associated with absorbing boundary conditions (ABC). Compute the damping matrix associated with absorbing boundary conditions (ABC) representation of the effect of infinite extent of inviscid fluid next to the surface. """ function dampingABC( self::FEMMDeforSurfaceDamping, assembler::A, geom::NodalField{GFT}, u::NodalField{UFT}, impedance::FT, surfacenormal::SurfaceNormal, ) where {A<:AbstractSysmatAssembler,GFT<:Number,UFT<:Number,FT<:Number} fes = self.integdomain.fes # Constants nfes = count(fes) # number of finite elements ndn = ndofs(u) # number of degrees of freedom per node nne = nodesperelem(fes) # number of nodes per finite element sdim = ndofs(geom) # spatial dimension mdim = manifdim(fes) # manifold dimension of the finite elements Cedim = ndn * nne # size of damping element matrix # Precompute basis f. values + basis f. gradients wrt parametric coor npts, Ns, gradNparams, w, pc = integrationdata(self.integdomain) loc = zeros(GFT, 1, sdim) # quadrature point coordinate -- used as a buffer J = zeros(GFT, sdim, mdim) # Jacobian matrix -- used as a buffer ecoords = zeros(GFT, nne, sdim) Ce = zeros(FT, Cedim, Cedim) # element damping matrix -- used as a buffer Nn = zeros(GFT, Cedim) # column vector dofnums = zeros(eltype(u.dofnums), Cedim) # degree of freedom array -- used as a buffer # Prepare assembler and temporaries startassembly!(assembler, Cedim, Cedim, nfes, nalldofs(u), nalldofs(u)) for i in eachindex(fes) # loop over finite elements gathervalues_asmat!(geom, ecoords, fes.conn[i]) fill!(Ce, 0.0) # Initialize element damping matrix for j = 1:npts # loop over quadrature points locjac!(loc, J, ecoords, Ns[j], gradNparams[j]) Jac = Jacobiansurface(self.integdomain, J, loc, fes.conn[i], Ns[j]) n = updatenormal!(surfacenormal, loc, J, i, j) for k = 1:nne Nn[((k-1)*ndn+1):(k*ndn)] = n * Ns[j][k] end add_nnt_ut_only!(Ce, Nn, (+1) * impedance * Jac * w[j]) end # end loop over quadrature points complete_lt!(Ce) gatherdofnums!(u, dofnums, self.integdomain.fes.conn[i]) # retrieve degrees of freedom assemble!(assembler, Ce, dofnums, dofnums) # assemble the element damping matrix end # end loop over finite elements return makematrix!(assembler) end function dampingABC( self::FEMMDeforSurfaceDamping, geom::NodalField{GFT}, u::NodalField{UFT}, impedance::FT, surfacenormal::SurfaceNormal, ) where {GFT<:Number,UFT<:Number,FT<:Number} assembler = SysmatAssemblerSparseSymm() return dampingABC(self, assembler, geom, u, impedance, surfacenormal) end end
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
4588
""" Module for operations on boundaries of domains to construct system matrices and system vectors for linear deformation models with distributed-spring supports (Winkler foundation model). """ module FEMMDeforWinklerModule __precompile__(true) import FinEtools.FENodeSetModule: FENodeSet import FinEtools.FESetModule: AbstractFESet, nodesperelem, manifdim import FinEtools.IntegDomainModule: IntegDomain, integrationdata, Jacobiansurface import FinEtools.FieldModule: ndofs, gatherdofnums!, gathervalues_asmat!, nalldofs import FinEtools.NodalFieldModule: NodalField import FinEtools.FEMMBaseModule: AbstractFEMM import FinEtools.AssemblyModule: AbstractSysvecAssembler, AbstractSysmatAssembler, SysmatAssemblerSparseSymm, startassembly!, assemble!, makematrix! import FinEtools.MatrixUtilityModule: add_nnt_ut_only!, complete_lt!, locjac! import FinEtools.SurfaceNormalModule: SurfaceNormal, updatenormal! import LinearAlgebra: norm, cross """ mutable struct FEMMDeforWinkler{ID<:IntegDomain} <: AbstractFEMM Type for normal spring support (Winkler). """ mutable struct FEMMDeforWinkler{ID<:IntegDomain} <: AbstractFEMM integdomain::ID # geometry data end """ surfacenormalspringstiffness( self::FEMMDeforWinkler, assembler::A, geom::NodalField{GFT}, u::NodalField{UFT}, springconstant::UFT, surfacenormal::SurfaceNormal, ) where {A<:AbstractSysmatAssembler,GFT<:Number,UFT<:Number} Compute the stiffness matrix of surface normal spring. Rationale: consider continuously distributed springs between the surface of the solid body and the 'ground', in the direction normal to the surface. If the spring coefficient becomes large, we have an approximate method of enforcing the normal displacement to the surface. """ function surfacenormalspringstiffness( self::FEMMDeforWinkler, assembler::A, geom::NodalField{GFT}, u::NodalField{UFT}, springconstant::UFT, surfacenormal::SurfaceNormal, ) where {A<:AbstractSysmatAssembler,GFT<:Number,UFT<:Number} integdomain = self.integdomain # Constants nfes = count(integdomain.fes) # number of finite elements in the set ndn = ndofs(u) # number of degrees of freedom per node nne = nodesperelem(integdomain.fes) # number of nodes for element sdim = ndofs(geom) # number of space dimensions mdim = manifdim(integdomain.fes) # manifold dimension of the element Kedim = ndn * nne # dimension of the element matrix # Precompute basis f. values + basis f. gradients wrt parametric coor npts, Ns, gradNparams, w, pc = integrationdata(integdomain) # Prepare assembler and temporaries ecoords = fill(zero(GFT), nne, ndofs(geom)) # array of Element coordinates Ke = zeros(UFT, Kedim, Kedim) # element matrix -- used as a buffer dofnums = zeros(eltype(u.dofnums), Kedim) # degree of freedom array -- used as a buffer loc = zeros(GFT, 1, sdim) # quadrature point location -- used as a buffer J = fill(zero(GFT), sdim, mdim) # Jacobian matrix -- used as a buffer Nn = zeros(GFT, Kedim) # column vector startassembly!(assembler, Kedim, Kedim, nfes, nalldofs(u), nalldofs(u)) for i = 1:nfes # Loop over elements gathervalues_asmat!(geom, ecoords, integdomain.fes.conn[i]) fill!(Ke, zero(UFT)) # Initialize element matrix for j = 1:npts # Loop over quadrature points locjac!(loc, J, ecoords, Ns[j], gradNparams[j]) Jac = Jacobiansurface(integdomain, J, loc, integdomain.fes.conn[i], Ns[j]) n = updatenormal!(surfacenormal, loc, J, i, j) for k = 1:nne for r = 1:sdim Nn[(k-1)*sdim+r] = n[r] * Ns[j][k] end end add_nnt_ut_only!(Ke, Nn, springconstant * Jac * w[j]) end # Loop over quadrature points complete_lt!(Ke) gatherdofnums!(u, dofnums, integdomain.fes.conn[i])# retrieve degrees of freedom assemble!(assembler, Ke, dofnums, dofnums)# assemble symmetric matrix end # Loop over elements return makematrix!(assembler) end function surfacenormalspringstiffness( self::FEMMDeforWinkler, geom::NodalField{GFT}, u::NodalField{UFT}, springconstant::UFT, surfacenormal::SurfaceNormal, ) where {GFT<:Number,UFT<:Number} assembler = SysmatAssemblerSparseSymm() return surfacenormalspringstiffness( self, assembler, geom, u, springconstant, surfacenormal, ) end end
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
4441
""" FinEtoolsDeforLinear (C) 2017-2024, Petr Krysl Finite Element tools. Julia implementation of the finite element method for continuum mechanics. Package for linear static and dynamic stress analysis problems. """ module FinEtoolsDeforLinear __precompile__(true) include("allmodules.jl") # Enable LSP look-up in test modules. if false include("../test/runtests.jl") end # Exports follow: ########################################################################### # Linear deformation functionality ########################################################################### using .MatDeforModule: AbstractMatDefor # using .MatDeforModule: AbstractMatDefor, strain2x2tto3v!, strain3vto2x2t!, strain3x3tto6v!, strain6vto3x3t!, strain9vto3x3t!, strain3x3tto9v!, strain9vto6v!, strain6vto9v!, stress2x2to3v!, stress3vto2x2t!, stress3vto3x3t!, stress4vto3x3t!, stress6vto3x3t!, stress3x3tto6v!, stress9vto6v!, stress6vto9v! using .MatDeforModule: rotstressvec! using .MatDeforModule: dett, strainvdet, strainvtr, strainttov!, strainvtot!, stressttov!, stressvtot! using .MatDeforModule: tens4checksymmetry, tens4symmtto6x6t!, tens4symmt6x6tot!, tens4dot2!, tens4ijkl!, tens4ikjl!, tens4iljk!, tens4identity!, tens4transposor!, tens4tracor!, tens4symmetrizor!, tens4skewor!, tens4deviator! # Exported: abstract type for models of deformation, conversion methods for strain and stress, transformations of strain and stress export AbstractMatDefor export rotstressvec! export dett, strainvdet, strainvtr, strainttov!, strainvtot!, stressttov!, stressvtot! export tens4checksymmetry, tens4symmtto6x6t!, tens4symmt6x6tot!, tens4dot2!, tens4ijkl!, tens4ikjl!, tens4iljk!, tens4identity!, tens4transposor!, tens4tracor!, tens4symmetrizor!, tens4skewor!, tens4deviator! using .MatDeforLinearElasticModule: AbstractMatDeforLinearElastic # Exported: type of isotropic elastic material export AbstractMatDeforLinearElastic using .MatDeforElastIsoModule: MatDeforElastIso # Exported: type of isotropic elastic material export MatDeforElastIso using .MatDeforElastOrthoModule: MatDeforElastOrtho # Exported: type of orthotropic elastic material export MatDeforElastOrtho using .FEMMDeforLinearBaseModule: AbstractFEMMDeforLinear, stiffness, thermalstrainloads, mass, inspectintegpoints # Exported: abstract type for linear information, discretization methods for the abstract type export AbstractFEMMDeforLinear, stiffness, thermalstrainloads, mass, inspectintegpoints using .FEMMDeforLinearModule: FEMMDeforLinear # Exported: type for linear deformation export FEMMDeforLinear using .FEMMDeforWinklerModule: FEMMDeforWinkler, surfacenormalspringstiffness # Exported: type for distributed-spring support, discretization method export FEMMDeforWinkler, surfacenormalspringstiffness using .FEMMDeforLinearMSModule: FEMMDeforLinearMSH8, FEMMDeforLinearMST10, stiffness, thermalstrainloads, inspectintegpoints # Exported: type for mean-strain solid elements, discretization methods export FEMMDeforLinearMSH8, FEMMDeforLinearMST10, stiffness, thermalstrainloads, inspectintegpoints using .FEMMDeforLinearIMModule: FEMMDeforLinearIMH8, stiffness, thermalstrainloads, inspectintegpoints # Exported: type for mean-strain solid elements, discretization methods export FEMMDeforLinearIMH8, stiffness, thermalstrainloads, inspectintegpoints using .FEMMDeforSurfaceDampingModule: FEMMDeforSurfaceDamping, dampingABC #Exported: type for surface damping (absorbing boundary conditions) export FEMMDeforSurfaceDamping, dampingABC using .FEMMDeforLinearNICEModule: FEMMDeforLinearNICEH8, FEMMDeforLinearNICET4, stiffness, thermalstrainloads, inspectintegpoints # Exported: type for NICE (Nodally-integrated continuum elements) solid elements, discretization methods export FEMMDeforLinearNICEH8, FEMMDeforLinearNICET4, stiffness, thermalstrainloads, inspectintegpoints using .FEMMDeforLinearESNICEModule: FEMMDeforLinearESNICET4, FEMMDeforLinearESNICEH8, stiffness, thermalstrainloads, inspectintegpoints # Exported: type for ESICE (Energy-sampling stabilized nodally-integrated continuum elements) solid elements, discretization methods export FEMMDeforLinearESNICET4, FEMMDeforLinearESNICEH8, stiffness, thermalstrainloads, inspectintegpoints end # module
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
25232
""" Module for linear isotropic elastic response. """ module MatDeforElastIsoModule __precompile__(true) using FinEtools.DeforModelRedModule: AbstractDeforModelRed, DeforModelRed3D, DeforModelRed2DStrain, DeforModelRed2DStress, DeforModelRed2DAxisymm, DeforModelRed1DStrain, DeforModelRed1DStress, nstressstrain, nthermstrain using FinEtoolsDeforLinear.MatDeforModule: AbstractMatDefor, stressvtot! using FinEtoolsDeforLinear.MatDeforLinearElasticModule: AbstractMatDeforLinearElastic using LinearAlgebra: Transpose, Diagonal, mul! At_mul_B!(C, A, B) = mul!(C, Transpose(A), B) A_mul_B!(C, A, B) = mul!(C, A, B) using LinearAlgebra: eigen, eigvals, norm, cholesky, cross, dot, I """ struct MatDeforElastIso{ MR<:AbstractDeforModelRed, FT, MTAN<:Function, MUPD<:Function, MTHS<:Function, } <: AbstractMatDeforLinearElastic Linear isotropic elasticity material. """ struct MatDeforElastIso{ MR<:AbstractDeforModelRed, FT, MTAN<:Function, MUPD<:Function, MTHS<:Function, } <: AbstractMatDeforLinearElastic mr::Type{MR} # model reduction type mass_density::FT # mass density E::FT # Young's modulus nu::FT # Poisson ratio CTE::FT # Coefficient of Thermal Expansion D::Matrix{FT} # cached matrix of 3D tangent moduli tangentmoduli!::MTAN # Function to return the tangent moduli matrix update!::MUPD # Function to update the material state thermalstrain!::MTHS # Function to calculate the thermal strains end function _threedD(E, nu) mI = Matrix(Diagonal([1.0, 1.0, 1.0, 0.5, 0.5, 0.5])) m1 = [1.0, 1.0, 1.0, 0.0, 0.0, 0.0] lambda = E * nu / (1 + nu) / (1 - 2 * (nu)) mu = E / 2.0 / (1 + nu) D = lambda * m1 * m1' + 2.0 * mu * mI return D end """ MatDeforElastIso( mr::Type{MR}, mass_density::N, E::N, nu::N, CTE::N, ) where {MR<:AbstractDeforModelRed,N<:Number} Create an isotropic elastic material providing all material parameters. ## Arguments - `mr::Type{MR}`: The type of the deformation model. - `mass_density::N`: The mass density of the material. - `E::N`: The Young's modulus of the material. - `nu::N`: The Poisson's ratio of the material. - `CTE::N`: The coefficient of thermal expansion of the material. """ function MatDeforElastIso( mr::Type{MR}, mass_density::N, E::N, nu::N, CTE::N, ) where {MR<:AbstractDeforModelRed,N<:Number} # Accept input data of any numerical type, then promote return MatDeforElastIso(mr, float.(promote(mass_density, E, nu, CTE))) end """ MatDeforElastIso( mr::Type{MR}, E::N, nu::N, ) where {MR<:AbstractDeforModelRed,N<:Number} Create isotropic elastic material with default mass density and thermal expansion. """ function MatDeforElastIso( mr::Type{MR}, E::N, nu::N, ) where {MR<:AbstractDeforModelRed,N<:Number} mass_density = 1.0 CTE = 0.0 return MatDeforElastIso(mr, float.(promote(mass_density, E, nu, CTE))) end ################################################################################ # 3-D solid model ################################################################################ """ MatDeforElastIso(mr::Type{DeforModelRed3D}, args::NTuple{4, FT}) where FT Create elastic isotropic material for 3D stress models. """ function MatDeforElastIso(mr::Type{DeforModelRed3D}, args::NTuple{4,FT}) where {FT} mass_density, E, nu, CTE = args function tangentmoduli3d!( self::MatDeforElastIso, D::Matrix{FT}, t::FT, dt::FT, loc::Matrix{FT}, label::Int, ) copyto!(D, self.D) return D end function update3d!( self::MatDeforElastIso, stress::Vector{FT}, output::Vector{FT}, strain::Vector{FT}, thstrain::Vector{FT} = zeros(6), t = 0.0, dt = 0.0, loc::Matrix{FT} = zeros(3, 1), label::Int = 0, quantity = :nothing, ) @assert length(stress) == nstressstrain(self.mr) A_mul_B!(stress, self.D, strain - thstrain) if quantity == :nothing #Nothing to be copied to the output array elseif quantity == :cauchy || quantity == :Cauchy (length(output) >= 6) || (output = zeros(6)) # make sure we can store it copyto!(output, stress) elseif quantity == :pressure || quantity == :Pressure output[1] = -sum(stress[1:3]) / 3.0 elseif quantity == :princCauchy || quantity == :princcauchy t = zeros(FT, 3, 3) t = stressvtot!(mr, t, stress) ep = eigen(t) (length(output) >= 3) || (output = zeros(3)) # make sure we can store it copyto!(output, sort(ep.values, rev = true)) elseif quantity == :maxshear t = zeros(FT, 3, 3) t = stressvtot!(mr, t, stress) ep = eigen(t) (length(output) >= 1) || (output = zeros(1)) # make sure we can store it s = sort(ep.values, rev = true) copyto!(output, s[1] - s[3]) elseif quantity == :vonMises || quantity == :vonmises || quantity == :von_mises || quantity == :vm s1 = stress[1] s2 = stress[2] s3 = stress[3] s4 = stress[4] s5 = stress[5] s6 = stress[6] (length(output) >= 1) || (output = zeros(1)) # make sure we can store it output[1] = sqrt( 1.0 / 2 * ((s1 - s2)^2 + (s1 - s3)^2 + (s2 - s3)^2 + 6 * (s4^2 + s5^2 + s6^2)), ) end return output end function thermalstrain3d!(self::MatDeforElastIso, thstrain::Vector{FT}, dT = 0.0) @assert length(thstrain) == nthermstrain(self.mr) thstrain[1] = self.CTE * dT thstrain[2] = self.CTE * dT thstrain[3] = self.CTE * dT thstrain[4] = 0.0 thstrain[5] = 0.0 thstrain[6] = 0.0 return thstrain end return MatDeforElastIso( mr, mass_density, E, nu, CTE, _threedD(E, nu), tangentmoduli3d!, update3d!, thermalstrain3d!, ) end ################################################################################ # 2-D plane stress ################################################################################ """ MatDeforElastIso(mr::Type{DeforModelRed2DStress}, args::NTuple{4, FT}) where FT Create elastic isotropic material for 2D plane stress models. """ function MatDeforElastIso(mr::Type{DeforModelRed2DStress}, args::NTuple{4,FT}) where {FT} mass_density, E, nu, CTE = args function tangentmoduli2dstrs!( self::MatDeforElastIso, D::Matrix{FT}, t::FT, dt::FT, loc::Matrix{FT}, label::Int, ) D[1:2, 1:2] = self.D[1:2, 1:2] - (reshape(self.D[1:2, 3], 2, 1) * reshape(self.D[3, 1:2], 1, 2)) / self.D[3, 3] ix = [1, 2, 4] for i = 1:3 D[3, i] = D[i, 3] = self.D[4, ix[i]] end return D end function update2dstrs!( self::MatDeforElastIso, stress::Vector{FT}, output::Vector{FT}, strain::Vector{FT}, thstrain::Vector{FT} = zeros(3), t = 0.0, dt = 0.0, loc::Matrix{FT} = zeros(3, 1), label::Int = 0, quantity = :nothing, ) @assert length(stress) == nstressstrain(self.mr) D = zeros(3, 3) tangentmoduli2dstrs!(self, D, t, dt, loc, label) A_mul_B!(stress, D, strain - thstrain) if quantity == :nothing #Nothing to be copied to the output array elseif quantity == :cauchy || quantity == :Cauchy (length(output) >= 3) || (output = zeros(3)) # make sure we can store it copyto!(output, stress) elseif quantity == :pressure || quantity == :Pressure (length(output) >= 1) || (output = zeros(1)) # make sure we can store it output[1] = -sum(stress[1:2]) / 3.0 elseif quantity == :princCauchy || quantity == :princcauchy t = zeros(FT, 2, 2) t = stressvtot!(mr, t, stress) ep = eigen(t) (length(output) >= 2) || (output = zeros(2)) # make sure we can store it copyto!(output, sort(ep.values, rev = true)) elseif quantity == :maxshear t = zeros(FT, 2, 2) t = stressvtot!(mr, t, stress) ep = eigen(t) (length(output) >= 1) || (output = zeros(1)) # make sure we can store it s = sort(ep.values, rev = true) copyto!(output, s[1] - s[2]) elseif quantity == :vonMises || quantity == :vonmises || quantity == :von_mises || quantity == :vm s1 = stress[1] s2 = stress[2] s3 = 0.0 s4 = stress[3] s5 = 0.0 s6 = 0.0 (length(output) >= 1) || (output = zeros(1)) # make sure we can store it output[1] = sqrt( 1.0 / 2 * ((s1 - s2)^2 + (s1 - s3)^2 + (s2 - s3)^2 + 6 * (s4^2 + s5^2 + s6^2)), ) end return output end function thermalstrain2dstrs!(self::MatDeforElastIso, thstrain::Vector{FT}, dT = 0.0) @assert length(thstrain) == nthermstrain(self.mr) thstrain[1] = self.CTE * dT thstrain[2] = self.CTE * dT thstrain[3] = 0.0 return thstrain end return MatDeforElastIso( mr, mass_density, E, nu, CTE, _threedD(E, nu), tangentmoduli2dstrs!, update2dstrs!, thermalstrain2dstrs!, ) end ################################################################################ # 2-D plane strain ################################################################################ """ MatDeforElastIso(mr::Type{DeforModelRed2DStrain}, args::NTuple{4, FT}) where FT Create elastic isotropic material for 2D plane strain models. """ function MatDeforElastIso(mr::Type{DeforModelRed2DStrain}, args::NTuple{4,FT}) where {FT} mass_density, E, nu, CTE = args function tangentmoduli2dstrn!( self::MatDeforElastIso, D::Matrix{FT}, t, dt, loc::Matrix{FT}, label::Int, ) ix = [1, 2, 4] for i in eachindex(ix) for j in eachindex(ix) D[j, i] = self.D[ix[j], ix[i]] end end return D end # Note on the principal stresses: The principal stresses are calculated for the # fully three-dimensional stress state, that is not the "in-plane" maximum and # minimum, but rather the three-dimensional maximum (1) and minimum (3). # The intermediate principal stress is (2). function update2dstrn!( self::MatDeforElastIso, stress::Vector{FT}, output::Vector{FT}, strain::Vector{FT}, thstrain::Vector{FT} = zeros(4), t = 0.0, dt = 0.0, loc::Matrix{FT} = zeros(3, 1), label::Int = 0, quantity = :nothing, ) @assert length(stress) == nstressstrain(self.mr) D = zeros(3, 3) tangentmoduli2dstrn!(self, D, t, dt, loc, label) A_mul_B!(stress, D, strain - thstrain[1:3]) if quantity == :nothing #Nothing to be copied to the output array elseif quantity == :cauchy || quantity == :Cauchy # sigmax, sigmay, tauxy, sigmaz # thstrain[4] =The through the thickness thermal strain sz = dot(self.D[3, 1:2], strain[1:2] - thstrain[1:2]) - self.D[3, 3] * thstrain[4] (length(output) >= 4) || (output = zeros(4)) # make sure we can store it copyto!(output, stress) output[4] = sz elseif quantity == :pressure || quantity == :Pressure (length(output) >= 1) || (output = zeros(1)) # make sure we can store it sz = dot(self.D[3, 1:2], strain[1:2] - thstrain[1:2]) - self.D[3, 3] * thstrain[4] output[1] = -(sum(stress[[1, 2]]) + sz) / 3.0 elseif quantity == :princCauchy || quantity == :princcauchy (length(output) >= 3) || (output = zeros(3)) # make sure we can store it t = zeros(FT, 3, 3) sz = dot(self.D[3, 1:2], strain[1:2] - thstrain[1:2]) - self.D[3, 3] * thstrain[4] t = stressvtot!(mr, t, vcat(stress[1:3], [sz])) ep = eigen(t) (length(output) >= 3) || (output = zeros(3)) # make sure we can store it copyto!(output, sort(ep.values, rev = true)) elseif quantity == :maxshear (length(output) >= 3) || (output = zeros(3)) # make sure we can store it t = zeros(FT, 3, 3) sz = dot(self.D[3, 1:2], strain[1:2] - thstrain[1:2]) - self.D[3, 3] * thstrain[4] t = stressvtot!(mr, t, vcat(stress[1:3], [sz])) ep = eigen(t) (length(output) >= 1) || (output = zeros(1)) # make sure we can store it s = sort(ep.values, rev = true) copyto!(output, s[1] - s[3]) elseif quantity == :vonMises || quantity == :vonmises || quantity == :von_mises || quantity == :vm (length(output) >= 1) || (output = zeros(1)) # make sure we can store it sz = dot(self.D[3, 1:2], strain[1:2] - thstrain[1:2]) - self.D[3, 3] * thstrain[4] s1 = stress[1] s2 = stress[2] s3 = sz s4 = stress[3] s5 = 0.0 s6 = 0.0 (length(output) >= 1) || (output = zeros(1)) # make sure we can store it output[1] = sqrt( 1.0 / 2 * ((s1 - s2)^2 + (s1 - s3)^2 + (s2 - s3)^2 + 6 * (s4^2 + s5^2 + s6^2)), ) end return output end function thermalstrain2dstrn!(self::MatDeforElastIso, thstrain::Vector{FT}, dT = 0.0) @assert length(thstrain) == nthermstrain(self.mr) thstrain[1] = self.CTE * dT thstrain[2] = self.CTE * dT thstrain[3] = 0.0 thstrain[4] = self.CTE * dT return thstrain end return MatDeforElastIso( mr, mass_density, E, nu, CTE, _threedD(E, nu), tangentmoduli2dstrn!, update2dstrn!, thermalstrain2dstrn!, ) end ################################################################################ # 2-D axially symmetric ################################################################################ """ MatDeforElastIso(mr::Type{DeforModelRed2DAxisymm}, args::NTuple{4, FT}) where FT Create elastic isotropic material for 2D axially symmetric models. """ function MatDeforElastIso(mr::Type{DeforModelRed2DAxisymm}, args::NTuple{4,FT}) where {FT} mass_density, E, nu, CTE = args function tangentmoduli2daxi!( self::MatDeforElastIso, D::Matrix{FT}, t, dt, loc::Matrix{FT}, label::Int, ) for i = 1:4 for j = 1:4 D[j, i] = self.D[i, j] end end return D end function update2daxi!( self::MatDeforElastIso, stress::Vector{FT}, output::Vector{FT}, strain::Vector{FT}, thstrain::Vector{FT} = zeros(3), t = 0.0, dt = 0.0, loc::Matrix{FT} = zeros(3, 1), label::Int = 0, quantity = :nothing, ) @assert length(stress) == nstressstrain(self.mr) D = zeros(4, 4) tangentmoduli2daxi!(self, D, t, dt, loc, label) A_mul_B!(stress, D, strain - thstrain) if quantity == :nothing #Nothing to be copied to the output array elseif quantity == :cauchy || quantity == :Cauchy (length(output) >= 4) || (output = zeros(4)) # make sure we can store it copyto!(output, stress) elseif quantity == :pressure || quantity == :Pressure (length(output) >= 1) || (output = zeros(1)) # make sure we can store it output[1] = -sum(stress[[1, 2, 3]]) / 3.0 elseif quantity == :princCauchy || quantity == :princcauchy t = zeros(FT, 3, 3) t = stressvtot!(mr, t, stress) ep = eigen(t) (length(output) >= 3) || (output = zeros(3)) # make sure we can store it copyto!(output, sort(ep.values, rev = true)) elseif quantity == :maxshear t = zeros(FT, 3, 3) t = stressvtot!(mr, t, stress) ep = eigen(t) (length(output) >= 1) || (output = zeros(1)) # make sure we can store it s = sort(ep.values, rev = true) copyto!(output, s[1] - s[3]) elseif quantity == :vonMises || quantity == :vonmises || quantity == :von_mises || quantity == :vm s1 = stress[1] s2 = stress[2] s3 = stress[3] s4 = stress[4] s5 = 0.0 s6 = 0.0 (length(output) >= 1) || (output = zeros(1)) # make sure we can store it output[1] = sqrt( 1.0 / 2 * ((s1 - s2)^2 + (s1 - s3)^2 + (s2 - s3)^2 + 6 * (s4^2 + s5^2 + s6^2)), ) end return output end function thermalstrain2daxi!(self::MatDeforElastIso, thstrain::Vector{FT}, dT = 0.0) @assert length(thstrain) == nthermstrain(self.mr) thstrain[1] = self.CTE * dT thstrain[2] = self.CTE * dT thstrain[3] = self.CTE * dT thstrain[4] = 0.0 return thstrain end return MatDeforElastIso( mr, mass_density, E, nu, CTE, _threedD(E, nu), tangentmoduli2daxi!, update2daxi!, thermalstrain2daxi!, ) end ################################################################################ # 1-D zero transverse strain ################################################################################ """ MatDeforElastIso(mr::Type{DeforModelRed1DStrain}, args::NTuple{4, FT}) where FT Create elastic isotropic material for 1D models. """ function MatDeforElastIso(mr::Type{DeforModelRed1DStrain}, args::NTuple{4,FT}) where {FT} mass_density, E, nu, CTE = args function tangentmoduli1d!( self::MatDeforElastIso, D::Matrix{FT}, t, dt, loc::Matrix{FT}, label::Int, ) lambda = E * nu / (1 + nu) / (1 - 2 * (nu)) mu = E / 2.0 / (1 + nu) D[1, 1] = lambda + 2 * mu return D end function update1d!( self::MatDeforElastIso, stress::Vector{FT}, output::Vector{FT}, strain::Vector{FT}, thstrain::Vector{FT} = zeros(1), t = 0.0, dt = 0.0, loc::Matrix{FT} = zeros(3, 1), label::Int = 0, quantity = :nothing, ) @assert length(stress) == nstressstrain(self.mr) D = zeros(1, 1) tangentmoduli1d!(self, D, t, dt, loc, label) A_mul_B!(stress, D, strain - thstrain) if quantity == :nothing #Nothing to be copied to the output array elseif quantity == :cauchy || quantity == :Cauchy (length(output) >= 1) || (output = zeros(1)) # make sure we can store it copyto!(output, stress) elseif quantity == :pressure || quantity == :Pressure (length(output) >= 1) || (output = zeros(1)) # make sure we can store it output[1] = -sum(stress[[1]]) / 3.0 elseif quantity == :princCauchy || quantity == :princcauchy copyto!(output, stress[1]) elseif quantity == :vonMises || quantity == :vonmises || quantity == :von_mises || quantity == :vm s1 = stress[1] s2 = 0.0 s3 = 0.0 s4 = 0.0 s5 = 0.0 s6 = 0.0 (length(output) >= 1) || (output = zeros(1)) # make sure we can store it output[1] = sqrt( 1.0 / 2 * ((s1 - s2)^2 + (s1 - s3)^2 + (s2 - s3)^2 + 6 * (s4^2 + s5^2 + s6^2)), ) end return output end function thermalstrain1d!(self::MatDeforElastIso, thstrain::Vector{FT}, dT = 0.0) @assert length(thstrain) == nthermstrain(self.mr) thstrain[1] = self.CTE * dT return thstrain end return MatDeforElastIso( mr, mass_density, E, nu, CTE, _threedD(E, nu), tangentmoduli1d!, update1d!, thermalstrain1d!, ) end ################################################################################ # 1-D zero transverse stress ################################################################################ """ MatDeforElastIso(mr::Type{DeforModelRed1DStress}, args::NTuple{4, FT}) where FT Create elastic isotropic material for 1D models. """ function MatDeforElastIso(mr::Type{DeforModelRed1DStress}, args::NTuple{4,FT}) where {FT} mass_density, E, nu, CTE = args function tangentmoduli1d!( self::MatDeforElastIso, D::Matrix{FT}, t, dt, loc::Matrix{FT}, label::Int, ) D3d = _threedD(E, nu) D[1, 1] = D3d[1, 1] - transpose(D3d[1, 2:3]) * (D3d[2:3, 2:3] \ D3d[2:3, 1]) return D end function update1d!( self::MatDeforElastIso, stress::Vector{FT}, output::Vector{FT}, strain::Vector{FT}, thstrain::Vector{FT} = zeros(1), t = 0.0, dt = 0.0, loc::Matrix{FT} = zeros(3, 1), label::Int = 0, quantity = :nothing, ) @assert length(stress) == nstressstrain(self.mr) D = zeros(1, 1) tangentmoduli1d!(self, D, t, dt, loc, label) A_mul_B!(stress, D, strain - thstrain) if quantity == :nothing #Nothing to be copied to the output array elseif quantity == :cauchy || quantity == :Cauchy (length(output) >= 1) || (output = zeros(1)) # make sure we can store it copyto!(output, stress) elseif quantity == :pressure || quantity == :Pressure (length(output) >= 1) || (output = zeros(1)) # make sure we can store it output[1] = -sum(stress[[1]]) / 3.0 elseif quantity == :princCauchy || quantity == :princcauchy copyto!(output, stress[1]) elseif quantity == :vonMises || quantity == :vonmises || quantity == :von_mises || quantity == :vm s1 = stress[1] s2 = 0.0 s3 = 0.0 s4 = 0.0 s5 = 0.0 s6 = 0.0 (length(output) >= 1) || (output = zeros(1)) # make sure we can store it output[1] = sqrt( 1.0 / 2 * ((s1 - s2)^2 + (s1 - s3)^2 + (s2 - s3)^2 + 6 * (s4^2 + s5^2 + s6^2)), ) end return output end function thermalstrain1d!(self::MatDeforElastIso, thstrain::Vector{FT}, dT = 0.0) @assert length(thstrain) == nthermstrain(self.mr) thstrain[1] = self.CTE * dT return thstrain end return MatDeforElastIso( mr, mass_density, E, nu, CTE, _threedD(E, nu), tangentmoduli1d!, update1d!, thermalstrain1d!, ) end # Lame split of the matrix of tangent moduli. # Calculate the part of the material stiffness matrix that corresponds to # the lambda Lame coefficient. # Note: makes sense only for isotropic materials. function lambda_split_tangent_moduli_lambda(E, nu) lambda = E * nu / (1 + nu) / (1 - 2*(nu)); m1 = [1 1 1 0 0 0]'; return lambda * m1 * m1'; end # Lame split of the matrix of tangent moduli. # Calculate the part of the material stiffness matrix that corresponds to # the mu Lame coefficient. # Note: makes sense only for isotropic materials. function lambda_split_tangent_moduli_shear(E, nu) mu = E / (2 * (1 + nu)); mI = diag([1 1 1 0.5 0.5 0.5]); return 2 * mu * mI; end # Bulk-shear split of the matrix of tangent moduli. # Calculate the part of the material stiffness matrix that corresponds to # the bulk modulus. # Note: makes sense only for isotropic materials. function bulk_split_tangent_moduli_bulk(E, nu) B = E / 3 / (1 - 2*(nu)); m1 = [1 1 1 0 0 0]'; return B * m1 * m1'; end # Bulk-shear split of the matrix of tangent moduli. # Calculate the part of the material stiffness matrix that correspond to shear. # Note: makes sense only for isotropic materials. function bulk_split_tangent_moduli_shear(E, nu) G = E / (2 * (1 + nu)) return G * [2/3*[2 -1 -1; -1 2 -1; -1 -1 2] zeros(3, 3); zeros(3, 3) I(3)] end end
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
21493
""" Module for linear orthotropic elastic response. """ module MatDeforElastOrthoModule __precompile__(true) using FinEtools.DeforModelRedModule: AbstractDeforModelRed, DeforModelRed3D, DeforModelRed2DStrain, DeforModelRed2DStress, DeforModelRed2DAxisymm, DeforModelRed1D, nstressstrain, nthermstrain using FinEtoolsDeforLinear.MatDeforModule: AbstractMatDefor, stressvtot! using FinEtoolsDeforLinear.MatDeforLinearElasticModule: AbstractMatDeforLinearElastic using LinearAlgebra: mul! At_mul_B!(C, A, B) = mul!(C, Transpose(A), B) A_mul_B!(C, A, B) = mul!(C, A, B) using LinearAlgebra: eigen, eigvals, rank, dot """ struct MatDeforElastOrtho{ MR<:AbstractDeforModelRed, FT, MTAN<:Function, MUPD<:Function, MTHS<:Function, } <: AbstractMatDeforLinearElastic Linear orthotropic elasticity material. """ struct MatDeforElastOrtho{ MR<:AbstractDeforModelRed, FT, MTAN<:Function, MUPD<:Function, MTHS<:Function, } <: AbstractMatDeforLinearElastic mr::Type{MR} mass_density::FT # mass density E1::FT # Young's modulus for material direction 1 E2::FT # Young's modulus for material direction 2 E3::FT # Young's modulus for material direction 3 nu12::FT nu13::FT nu23::FT G12::FT G13::FT G23::FT CTE1::FT # three thermal expansion coefficients CTE2::FT # three thermal expansion coefficients CTE3::FT # three thermal expansion coefficients D::Matrix{FT} # cached matrix of tangent moduli tangentmoduli!::MTAN update!::MUPD thermalstrain!::MTHS end function _threedD(E1, E2, E3, nu12, nu13, nu23, G12, G13, G23) C = [ 1.0/E1 -nu12/E1 -nu13/E1 0.0 0.0 0.0 -nu12/E1 1.0/E2 -nu23/E2 0.0 0.0 0.0 -nu13/E1 -nu23/E2 1.0/E3 0.0 0.0 0.0 0.0 0.0 0.0 1/G12 0.0 0.0 0.0 0.0 0.0 0.0 1/G13 0.0 0.0 0.0 0.0 0.0 0.0 1/G23 ] D = inv(C) if (rank(D) < 6) error("Non-positive definite D!") end ev = eigvals(D) for e in ev #println("$e") if (e < 0.0) error("Indefinite D!") end end return D end """ MatDeforElastOrtho( mr::Type{MR}, mass_density::N, E1::N, E2::N, E3::N, nu12::N, nu13::N, nu23::N, G12::N, G13::N, G23::N, CTE1::N, CTE2::N, CTE3::N, ) where {MR<:AbstractDeforModelRed,N<:Number} Create elastic orthotropic material. """ function MatDeforElastOrtho( mr::Type{MR}, mass_density::N, E1::N, E2::N, E3::N, nu12::N, nu13::N, nu23::N, G12::N, G13::N, G23::N, CTE1::N, CTE2::N, CTE3::N, ) where {MR<:AbstractDeforModelRed,N<:Number} return MatDeforElastOrtho( mr, float.( promote( mass_density, E1, E2, E3, nu12, nu13, nu23, G12, G13, G23, CTE1, CTE2, CTE3, ) ), ) end """ MatDeforElastOrtho( mr::Type{MR}, E1::N, E2::N, E3::N, nu12::N, nu13::N, nu23::N, G12::N, G13::N, G23::N, ) where {MR<:AbstractDeforModelRed,N<:Number} Create elastic orthotropic material. Convenience version with only the specification of the elastic properties. """ function MatDeforElastOrtho( mr::Type{MR}, E1::N, E2::N, E3::N, nu12::N, nu13::N, nu23::N, G12::N, G13::N, G23::N, ) where {MR<:AbstractDeforModelRed,N<:Number} mass_density = 1.0 CTE1 = CTE2 = CTE3 = 0.0 return MatDeforElastOrtho( mr, float.( promote( mass_density, E1, E2, E3, nu12, nu13, nu23, G12, G13, G23, CTE1, CTE2, CTE3, ) ), ) end """ MatDeforElastOrtho( mr::Type{MR}, E::N, nu::N, ) where {MR<:AbstractDeforModelRed,N<:Number} Create elastic orthotropic material which is really isotropic. Convenience version with only the specification of the elastic properties. """ function MatDeforElastOrtho( mr::Type{MR}, E::N, nu::N, ) where {MR<:AbstractDeforModelRed,N<:Number} mass_density = 1.0 E1 = E2 = E3 = E nu12 = nu13 = nu23 = nu CTE1 = CTE2 = CTE3 = 0.0 G = E / 2.0 / (1 + nu) G12 = G13 = G23 = G return MatDeforElastOrtho( mr, float.( promote( mass_density, E1, E2, E3, nu12, nu13, nu23, G12, G13, G23, CTE1, CTE2, CTE3, ) ), ) end """ MatDeforElastOrtho( mr::Type{MR}, mass_density::N, E::N, nu::N, CTE::N, ) where {MR<:AbstractDeforModelRed,N<:Number} Create elastic orthotropic material which is really isotropic. Convenience version with only the specification of the mass density, and the elastic and thermal expansion properties. """ function MatDeforElastOrtho( mr::Type{MR}, mass_density::N, E::N, nu::N, CTE::N, ) where {MR<:AbstractDeforModelRed,N<:Number} E1 = E2 = E3 = E nu12 = nu13 = nu23 = nu CTE1 = CTE2 = CTE3 = CTE G = E / 2.0 / (1 + nu) G12 = G13 = G23 = G return MatDeforElastOrtho( mr, float.( promote( mass_density, E1, E2, E3, nu12, nu13, nu23, G12, G13, G23, CTE1, CTE2, CTE3, ) ), ) end """ MatDeforElastOrtho( mr::Type{MR}, E::N, nu::N, CTE::N, ) where {MR<:AbstractDeforModelRed,N<:Number} Create elastic orthotropic material which is really isotropic. Convenience version with only the specification of the elastic and thermal expansion properties. """ function MatDeforElastOrtho( mr::Type{MR}, E::N, nu::N, CTE::N, ) where {MR<:AbstractDeforModelRed,N<:Number} mass_density = 1.0 E1 = E2 = E3 = E nu12 = nu13 = nu23 = nu CTE1 = CTE2 = CTE3 = CTE G = E / 2.0 / (1 + nu) G12 = G13 = G23 = G return MatDeforElastOrtho( mr, float.( promote( mass_density, E1, E2, E3, nu12, nu13, nu23, G12, G13, G23, CTE1, CTE2, CTE3, ) ), ) end ################################################################################ # 3-D solid model ################################################################################ """ MatDeforElastOrtho(mr::Type{DeforModelRed3D}, args::NTuple{13, FT}) where FT Create elastic orthotropic material for 3D models. """ function MatDeforElastOrtho(mr::Type{DeforModelRed3D}, args::NTuple{13,FT}) where {FT} mass_density, E1, E2, E3, nu12, nu13, nu23, G12, G13, G23, CTE1, CTE2, CTE3 = args function tangentmoduli3d!( self::MatDeforElastOrtho, D::Matrix{FT}, t::FT, dt::FT, loc::Matrix{FT}, label::Int, ) copyto!(D, self.D) return D end function update3d!( self::MatDeforElastOrtho, stress::Vector{FT}, output::Vector{FT}, strain::Vector{FT}, thstrain::Vector{FT} = zeros(6), t::FT = 0.0, dt::FT = 0.0, loc::Matrix{FT} = zeros(3, 1), label::Int = 0, quantity = :nothing, ) @assert length(stress) == nstressstrain(self.mr) A_mul_B!(stress, self.D, strain - thstrain) if quantity == :nothing #Nothing to be copied to the output array elseif quantity == :cauchy || quantity == :Cauchy (length(output) >= 6) || (output = zeros(6)) # make sure we can store it copyto!(output, stress) elseif quantity == :pressure || quantity == :Pressure output[1] = -sum(stress[1:3]) / 3.0 elseif quantity == :princCauchy || quantity == :princcauchy t = zeros(FT, 3, 3) t = stressvtot!(mr, t, stress) ep = eigen(t) (length(output) >= 3) || (output = zeros(3)) # make sure we can store it copyto!(output, sort(ep.values, rev = true)) elseif quantity == :vonMises || quantity == :vonmises || quantity == :von_mises || quantity == :vm s1 = stress[1] s2 = stress[2] s3 = stress[3] s4 = stress[4] s5 = stress[5] s6 = stress[6] (length(output) >= 1) || (output = zeros(1)) # make sure we can store it output[1] = sqrt( 1.0 / 2 * ((s1 - s2)^2 + (s1 - s3)^2 + (s2 - s3)^2 + 6 * (s4^2 + s5^2 + s6^2)), ) end return output end function thermalstrain3d!(self::MatDeforElastOrtho, thstrain::Vector{FT}, dT = 0.0) thstrain[1] = self.CTE1 * dT thstrain[2] = self.CTE2 * dT thstrain[3] = self.CTE3 * dT thstrain[4] = 0.0 thstrain[5] = 0.0 thstrain[6] = 0.0 return thstrain end return MatDeforElastOrtho( mr, mass_density, E1, E2, E3, nu12, nu13, nu23, G12, G13, G23, CTE1, CTE2, CTE3, _threedD(E1, E2, E3, nu12, nu13, nu23, G12, G13, G23), tangentmoduli3d!, update3d!, thermalstrain3d!, ) end ################################################################################ # 2-D plane stress ################################################################################ """ MatDeforElastOrtho(mr::Type{DeforModelRed2DStress}, args::NTuple{13, FT}) where FT Create elastic orthotropic material for 2D plane stress models. """ function MatDeforElastOrtho(mr::Type{DeforModelRed2DStress}, args::NTuple{13,FT}) where {FT} mass_density, E1, E2, E3, nu12, nu13, nu23, G12, G13, G23, CTE1, CTE2, CTE3 = args function tangentmoduli2dstrs!( self::MatDeforElastOrtho, D::Matrix{FT}, t::FT, dt::FT, loc::Matrix{FT}, label::Int, ) D[1:2, 1:2] = self.D[1:2, 1:2] - (reshape(self.D[1:2, 3], 2, 1) * reshape(self.D[3, 1:2], 1, 2)) / self.D[3, 3] ix = [1, 2, 4] for i = 1:3 D[3, i] = D[i, 3] = self.D[4, ix[i]] end return D end function update2dstrs!( self::MatDeforElastOrtho, stress::Vector{FT}, output::Vector{FT}, strain::Vector{FT}, thstrain::Vector{FT} = zeros(3), t::FT = 0.0, dt::FT = 0.0, loc::Matrix{FT} = zeros(3, 1), label::Int = 0, quantity = :nothing, ) @assert length(stress) == nstressstrain(self.mr) D = zeros(3, 3) tangentmoduli2dstrs!(self, D, t, dt, loc, label) A_mul_B!(stress, D, strain - thstrain) if quantity == :nothing #Nothing to be copied to the output array elseif quantity == :cauchy || quantity == :Cauchy (length(output) >= 3) || (output = zeros(3)) # make sure we can store it copyto!(output, stress) elseif quantity == :pressure || quantity == :Pressure (length(output) >= 1) || (output = zeros(1)) # make sure we can store it output[1] = -sum(stress[1:2]) / 3.0 elseif quantity == :princCauchy || quantity == :princcauchy t = zeros(FT, 2, 2) t = stressvtot!(mr, t, stress) ep = eigen(t) (length(output) >= 2) || (output = zeros(2)) # make sure we can store it copyto!(output, sort(ep.values, rev = true)) elseif quantity == :vonMises || quantity == :vonmises || quantity == :von_mises || quantity == :vm s1 = stress[1] s2 = stress[2] s3 = 0.0 s4 = stress[3] s5 = 0.0 s6 = 0.0 (length(output) >= 1) || (output = zeros(1)) # make sure we can store it output[1] = sqrt( 1.0 / 2 * ((s1 - s2)^2 + (s1 - s3)^2 + (s2 - s3)^2 + 6 * (s4^2 + s5^2 + s6^2)), ) end return output end function thermalstrain2dstrs!(self::MatDeforElastOrtho, thstrain::Vector{FT}, dT = 0.0) @assert length(thstrain) == nthermstrain(self.mr) thstrain[1] = self.CTE1 * dT thstrain[2] = self.CTE2 * dT thstrain[3] = 0.0 return thstrain end return MatDeforElastOrtho( mr, mass_density, E1, E2, E3, nu12, nu13, nu23, G12, G13, G23, CTE1, CTE2, CTE3, _threedD(E1, E2, E3, nu12, nu13, nu23, G12, G13, G23), tangentmoduli2dstrs!, update2dstrs!, thermalstrain2dstrs!, ) end ################################################################################ # 2-D plane strain ################################################################################ """ MatDeforElastOrtho(mr::Type{DeforModelRed2DStrain}, args::NTuple{13, FT}) where FT Create elastic orthotropic material for 2D plane strain models. """ function MatDeforElastOrtho(mr::Type{DeforModelRed2DStrain}, args::NTuple{13,FT}) where {FT} mass_density, E1, E2, E3, nu12, nu13, nu23, G12, G13, G23, CTE1, CTE2, CTE3 = args function tangentmoduli2dstrn!( self::MatDeforElastOrtho, D::Matrix{FT}, t::FT, dt::FT, loc::Matrix{FT}, label::Int, ) ix = [1, 2, 4] for i in eachindex(ix) for j in eachindex(ix) D[j, i] = self.D[ix[j], ix[i]] end end return D end function update2dstrn!( self::MatDeforElastOrtho, stress::Vector{FT}, output::Vector{FT}, strain::Vector{FT}, thstrain::Vector{FT} = zeros(4), t::FT = 0.0, dt::FT = 0.0, loc::Matrix{FT} = zeros(3, 1), label::Int = 0, quantity = :nothing, ) @assert length(stress) == nstressstrain(self.mr) D = zeros(3, 3) tangentmoduli2dstrn!(self, D, t, dt, loc, label) A_mul_B!(stress, D, strain - thstrain[1:3]) if quantity == :nothing #Nothing to be copied to the output array elseif quantity == :cauchy || quantity == :Cauchy # sigmax, sigmay, tauxy, sigmaz # thstrain[4] =The through the thickness thermal strain sz = dot(self.D[3, 1:2], strain[1:2] - thstrain[1:2]) - self.D[3, 3] * thstrain[4] (length(output) >= 4) || (output = zeros(4)) # make sure we can store it copyto!(output, stress) output[4] = sz elseif quantity == :pressure || quantity == :Pressure (length(output) >= 1) || (output = zeros(1)) # make sure we can store it sz = dot(self.D[3, 1:2], strain[1:2] - thstrain[1:2]) - self.D[3, 3] * thstrain[4] output[1] = -(sum(stress[[1, 2]]) + sz) / 3.0 elseif quantity == :princCauchy || quantity == :princcauchy (length(output) >= 3) || (output = zeros(3)) # make sure we can store it t = zeros(FT, 3, 3) sz = dot(self.D[3, 1:2], strain[1:2] - thstrain[1:2]) - self.D[3, 3] * thstrain[4] t = stressvtot!(mr, t, vcat(stress[1:3], [sz])) ep = eigen(t) (length(output) >= 3) || (output = zeros(3)) # make sure we can store it copyto!(output, sort(ep.values, rev = true)) elseif quantity == :vonMises || quantity == :vonmises || quantity == :von_mises || quantity == :vm (length(output) >= 1) || (output = zeros(1)) # make sure we can store it sz = dot(self.D[3, 1:2], strain[1:2] - thstrain[1:2]) - self.D[3, 3] * thstrain[4] s1 = stress[1] s2 = stress[2] s3 = sz s4 = stress[3] s5 = 0.0 s6 = 0.0 (length(output) >= 1) || (output = zeros(1)) # make sure we can store it output[1] = sqrt( 1.0 / 2 * ((s1 - s2)^2 + (s1 - s3)^2 + (s2 - s3)^2 + 6 * (s4^2 + s5^2 + s6^2)), ) end return output end function thermalstrain2dstrn!(self::MatDeforElastOrtho, thstrain::Vector{FT}, dT = 0.0) @assert length(thstrain) == nthermstrain(self.mr) thstrain[1] = self.CTE1 * dT thstrain[2] = self.CTE2 * dT thstrain[3] = 0.0 thstrain[4] = self.CTE3 * dT return thstrain end return MatDeforElastOrtho( mr, mass_density, E1, E2, E3, nu12, nu13, nu23, G12, G13, G23, CTE1, CTE2, CTE3, _threedD(E1, E2, E3, nu12, nu13, nu23, G12, G13, G23), tangentmoduli2dstrn!, update2dstrn!, thermalstrain2dstrn!, ) end ################################################################################ # 2-D axially symmetric ################################################################################ """ MatDeforElastOrtho(mr::Type{DeforModelRed2DAxisymm}, args::NTuple{13, FT}) where FT Create elastic orthotropic material for 2D axially symmetric models. """ function MatDeforElastOrtho( mr::Type{DeforModelRed2DAxisymm}, args::NTuple{13,FT}, ) where {FT} mass_density, E1, E2, E3, nu12, nu13, nu23, G12, G13, G23, CTE1, CTE2, CTE3 = args function tangentmoduli2daxi!( self::MatDeforElastOrtho, D::Matrix{FT}, t::FT, dt::FT, loc::Matrix{FT}, label::Int, ) for i = 1:4 for j = 1:4 D[i, j] = self.D[i, j] end end return D end function update2daxi!( self::MatDeforElastOrtho, stress::Vector{FT}, output::Vector{FT}, strain::Vector{FT}, thstrain::Vector{FT} = zeros(3), t::FT = 0.0, dt::FT = 0.0, loc::Matrix{FT} = zeros(3, 1), label::Int = 0, quantity = :nothing, ) @assert length(stress) == nstressstrain(self.mr) D = zeros(4, 4) tangentmoduli2daxi!(self, D, t, dt, loc, label) A_mul_B!(stress, D, strain - thstrain) if quantity == :nothing #Nothing to be copied to the output array elseif quantity == :cauchy || quantity == :Cauchy (length(output) >= 4) || (output = zeros(4)) # make sure we can store it copyto!(output, stress) elseif quantity == :pressure || quantity == :Pressure (length(output) >= 1) || (output = zeros(1)) # make sure we can store it output[1] = -sum(stress[[1, 2, 3]]) / 3.0 elseif quantity == :princCauchy || quantity == :princcauchy t = zeros(FT, 3, 3) t = stressvtot!(mr, t, stress) ep = eigen(t) (length(output) >= 3) || (output = zeros(3)) # make sure we can store it copyto!(output, sort(ep.values, rev = true)) elseif quantity == :vonMises || quantity == :vonmises || quantity == :von_mises || quantity == :vm s1 = stress[1] s2 = stress[2] s3 = stress[3] s4 = stress[4] s5 = 0.0 s6 = 0.0 (length(output) >= 1) || (output = zeros(1)) # make sure we can store it output[1] = sqrt( 1.0 / 2 * ((s1 - s2)^2 + (s1 - s3)^2 + (s2 - s3)^2 + 6 * (s4^2 + s5^2 + s6^2)), ) end return output end function thermalstrain2daxi!(self::MatDeforElastOrtho, thstrain::Vector{FT}, dT = 0.0) @assert length(thstrain) == nthermstrain(self.mr) thstrain[1] = self.CTE1 * dT thstrain[2] = self.CTE2 * dT thstrain[3] = self.CTE3 * dT thstrain[4] = 0.0 return thstrain end return MatDeforElastOrtho( mr, mass_density, E1, E2, E3, nu12, nu13, nu23, G12, G13, G23, CTE1, CTE2, CTE3, _threedD(E1, E2, E3, nu12, nu13, nu23, G12, G13, G23), tangentmoduli2daxi!, update2daxi!, thermalstrain2daxi!, ) end end
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
2802
""" Basic functionality for linearly elastic materials. """ module MatDeforLinearElasticModule __precompile__(true) using FinEtools.DeforModelRedModule: AbstractDeforModelRed using FinEtoolsDeforLinear.MatDeforModule: AbstractMatDefor """ AbstractMatDeforLinearElastic <: AbstractMatDefor Abstract Linear Elasticity material. """ abstract type AbstractMatDeforLinearElastic <: AbstractMatDefor end """ tangentmoduli!( self::AbstractMatDeforLinearElastic, D::Matrix{FT}, t::FT, dt::FT, loc::Matrix{FT}, label::Int, ) where {FT} Calculate the material stiffness matrix. - `D` = matrix of tangent moduli, supplied as a buffer and overwritten. Returned as output. """ function tangentmoduli!( self::AbstractMatDeforLinearElastic, D::Matrix{FT}, t::FT, dt::FT, loc::Matrix{FT}, label::Int, ) where {FT} return self.tangentmoduli!(self, D, t, dt, loc, label) end """ update!( self::AbstractMatDeforLinearElastic, stress::Vector{FT}, output::Vector{FT}, strain::Vector{FT}, thstrain::Vector{FT} = zeros(6), t::FT = 0.0, dt::FT = 0.0, loc::Matrix{FT} = zeros(3, 1), label::Int = 0, quantity = :nothing, ) where {FT} Update material state. - `strain` = strain vector, - `thstrain` = thermal strain vector, - `t` = current time, - `dt` = current time step, - `loc` = location of the quadrature point in global Cartesian coordinates, - `label` = label of the finite element in which the quadrature point is found. # Output - `stress` = stress vector, allocated by the caller with a size of the number of stress and strain components, `nstressstrain`. The components of the stress vector are calculated and stored in the `stress` vector. - `output` = array which is (if necessary) allocated in an appropriate size, filled with the output quantity, and returned. """ function update!( self::AbstractMatDeforLinearElastic, stress::Vector{FT}, output::Vector{FT}, strain::Vector{FT}, thstrain::Vector{FT} = zeros(6), t::FT = 0.0, dt::FT = 0.0, loc::Matrix{FT} = zeros(3, 1), label::Int = 0, quantity = :nothing, ) where {FT} return self.update!(self, stress, output, strain, thstrain, t, dt, loc, label, quantity) end """ thermalstrain!( self::AbstractMatDeforLinearElastic, thstrain::Vector{FT}, dT = 0.0, ) where {FT} Compute thermal strain from the supplied temperature increment. - `thstrain` = thermal strain vector, supplied as buffer, returned as output. """ function thermalstrain!( self::AbstractMatDeforLinearElastic, thstrain::Vector{FT}, dT = 0.0, ) where {FT} return self.thermalstrain!(self, thstrain, dT) end end
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
648
""" MatDeforModule Module to support general operations for deformation material models. """ module MatDeforModule __precompile__(true) using FinEtools.DeforModelRedModule: DeforModelRed3D, DeforModelRed2DStrain, DeforModelRed2DStress, DeforModelRed2DAxisymm, DeforModelRed1D using FinEtools.MatModule: AbstractMat using LinearAlgebra _RotationMatrix = Union{Array{T,2},Transpose{T,Array{T,2}}} where {T} """ AbstractMatDefor Abstract type that represents deformable materials. """ abstract type AbstractMatDefor <: AbstractMat end include("genconv.jl") include("genrot.jl") include("tens4impl.jl") end # module
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
498
include("MatDeforModule.jl") include("MatDeforLinearElasticModule.jl") include("MatDeforElastIsoModule.jl") include("MatDeforElastOrthoModule.jl") include("FEMMDeforLinearBaseModule.jl") include("FEMMDeforLinearModule.jl") include("FEMMDeforWinklerModule.jl") include("FEMMDeforSurfaceDampingModule.jl") include("FEMMDeforLinearIMModule.jl") include("FEMMDeforLinearMSModule.jl") include("FEMMDeforLinearNICEModule.jl") include("FEMMDeforLinearESNICEModule.jl") include("AlgoDeforLinearModule.jl")
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
7312
################################################################################ # 3-D model """ dett(::Type{DeforModelRed3D}, C::Matrix{T}) where {T} Compute the determinant of a general square matrix. """ function dett(::Type{DeforModelRed3D}, C::Matrix{T}) where {T} return ( C[1, 1] * C[2, 2] * C[3, 3] + C[1, 2] * C[2, 3] * C[3, 1] + C[1, 3] * C[2, 1] * C[3, 2] - C[1, 3] * C[2, 2] * C[3, 1] - C[1, 2] * C[2, 1] * C[3, 3] - C[1, 1] * C[2, 3] * C[3, 2] ) end """ strainvdet(::Type{DeforModelRed3D}, Cv::Vector{T}) where {T} Compute the determinant of a symmetric strain-like square matrix represented as a vector. Remember that the shear strain components are twice the entries of the matrix representation. """ function strainvdet(::Type{DeforModelRed3D}, Cv::Vector{T}) where {T} return ( Cv[1] * Cv[2] * Cv[3] + Cv[4] / 2 * Cv[6] / 2 * Cv[5] / 2 + Cv[5] / 2 * Cv[4] / 2 * Cv[6] / 2 - Cv[5] / 2 * Cv[2] * Cv[5] / 2 - Cv[4] / 2 * Cv[4] / 2 * Cv[3] - Cv[1] * Cv[6] / 2 * Cv[6] / 2 ) end """ strainvtr(::Type{DeforModelRed3D}, Cv::Vector{T}) where {T} Compute the trace of a symmetric strain-like square matrix represented as a vector. """ function strainvtr(::Type{DeforModelRed3D}, Cv::Vector{T}) where {T} return (Cv[1] + Cv[2] + Cv[3]) end """ strainttov!(::Type{DeforModelRed3D}, v::Vector{T}, t::Matrix{T}) where {T} Convert a symmetric matrix of 3x3 strain components into a 6-component vector. """ function strainttov!(::Type{DeforModelRed3D}, v::Vector{T}, t::Matrix{T}) where {T} v[1] = t[1, 1] v[2] = t[2, 2] v[3] = t[3, 3] v[4] = t[1, 2] + t[2, 1] v[5] = t[1, 3] + t[3, 1] v[6] = t[3, 2] + t[2, 3] return v end """ strainvtot!(::Type{DeforModelRed3D}, t::Matrix{T}, v::Vector{T}) where {T} Convert a strain 3-vector to a matrix of 2x2 strain components (symmetric tensor). """ function strainvtot!(::Type{DeforModelRed3D}, t::Matrix{T}, v::Vector{T}) where {T} t[1, 1] = v[1] t[2, 2] = v[2] t[3, 3] = v[3] t[1, 2] = v[4] / 2.0 t[2, 1] = v[4] / 2.0 t[1, 3] = v[5] / 2.0 t[3, 1] = v[5] / 2.0 t[3, 2] = v[6] / 2.0 t[2, 3] = v[6] / 2.0 return t end """ stressttov!(::Type{DeforModelRed3D}, v::Vector{T}, t::Matrix{T}) where {T} Convert a symmetric matrix of 3x3 stress components to a 6-component vector. """ function stressttov!(::Type{DeforModelRed3D}, v::Vector{T}, t::Matrix{T}) where {T} v[1] = t[1, 1] v[2] = t[2, 2] v[3] = t[3, 3] v[4] = 1 / 2.0 * (t[1, 2] + t[2, 1]) v[5] = 1 / 2.0 * (t[1, 3] + t[3, 1]) v[6] = 1 / 2.0 * (t[3, 2] + t[2, 3]) return v end """ stressvtot!(::Type{DeforModelRed3D}, t::Matrix{T}, v::Vector{T}) where {T} Convert a 6-vector to a matrix of 3x3 stress components (symmetric tensor). """ function stressvtot!(::Type{DeforModelRed3D}, t::Matrix{T}, v::Vector{T}) where {T} t[1, 1] = v[1] t[2, 2] = v[2] t[3, 3] = v[3] t[1, 2] = v[4] t[2, 1] = v[4] t[1, 3] = v[5] t[3, 1] = v[5] t[3, 2] = v[6] t[2, 3] = v[6] return t end ################################################################################ # 2-D plane strain model """ dett(::Type{DeforModelRed2DStrain}, C::Matrix{T}) where {T} Compute the determinant of a general square matrix. """ function dett(::Type{DeforModelRed2DStrain}, C::Matrix{T}) where {T} return (C[1, 1] * C[2, 2] - C[1, 2] * C[2, 1]) end """ strainvdet(::Type{DeforModelRed2DStrain}, Cv::Vector{T}) where {T} Compute the determinant of a symmetric strain-like square matrix represented as a vector. Remember that the shear strain components are twice the entries of the matrix representation. """ function strainvdet(::Type{DeforModelRed2DStrain}, Cv::Vector{T}) where {T} return (Cv[1] * Cv[2] - Cv[3] / 2 * Cv[3] / 2) end """ strainvtr(::Type{DeforModelRed2DStrain}, Cv::Vector{T}) where {T} Compute the trace of a symmetric strain-like square matrix represented as a vector. """ function strainvtr(::Type{DeforModelRed2DStrain}, Cv::Vector{T}) where {T} return (Cv[1] + Cv[2]) end """ strainttov!(::Type{DeforModelRed2DStrain}, v::Vector{T}, t::Matrix{T}) where {T} Convert a symmetric matrix of 2x2 strain components into a 3-component vector. """ function strainttov!(::Type{DeforModelRed2DStrain}, v::Vector{T}, t::Matrix{T}) where {T} v[1] = t[1, 1] v[2] = t[2, 2] v[3] = t[1, 2] + t[2, 1] return v end """ strainvtot!(::Type{DeforModelRed2DStrain}, t::Matrix{T}, v::Vector{T}) where {T} Convert a strain 3-vector to a matrix of 2x2 strain components (symmetric tensor). """ function strainvtot!(::Type{DeforModelRed2DStrain}, t::Matrix{T}, v::Vector{T}) where {T} t[1, 1] = v[1] t[2, 2] = v[2] t[1, 2] = v[3] / 2.0 t[2, 1] = v[3] / 2.0 return t end """ stressttov!(::Type{DeforModelRed2DStrain}, v::Vector{T}, t::Matrix{T}) where {T} Convert a symmetric matrix of 2x2 stress components to a 3-component vector. """ function stressttov!(::Type{DeforModelRed2DStrain}, v::Vector{T}, t::Matrix{T}) where {T} v[1] = t[1, 1] v[2] = t[2, 2] v[3] = 0.5 * (t[1, 2] + t[2, 1]) return v end """ stressvtot!(::Type{DeforModelRed2DStrain}, t::Matrix{T}, v::Vector{T}) where {T} Convert a vector to a matrix of 2x2 stress components (symmetric tensor). If `v` has 4 entries, also the `t[3,3]` matrix entry is set. The stress vector components need to be ordered as: sigmax, sigmay, tauxy, sigmaz, which is the ordering used for the plane-strain model reduction. """ function stressvtot!(::Type{DeforModelRed2DStrain}, t::Matrix{T}, v::Vector{T}) where {T} t[1, 1] = v[1] t[2, 2] = v[2] t[1, 2] = v[3] t[2, 1] = v[3] (length(v) == 4) && (t[3, 3] = v[4]) return t end ################################################################################ # 2-D plane stress model """ stressttov!(::Type{DeforModelRed2DStress}, v::Vector{T}, t::Matrix{T}) where {T} Convert a symmetric matrix of 2x2 stress components to a 3-component vector. """ function stressttov!(::Type{DeforModelRed2DStress}, v::Vector{T}, t::Matrix{T}) where {T} v[1] = t[1, 1] v[2] = t[2, 2] v[3] = 0.5 * (t[1, 2] + t[2, 1]) return v end """ stressvtot!(::Type{DeforModelRed2DStress}, t::Matrix{T}, v::Vector{T}) where {T} Convert a 3-vector to a matrix of 2x2 stress components (symmetric tensor). """ function stressvtot!(::Type{DeforModelRed2DStress}, t::Matrix{T}, v::Vector{T}) where {T} t[1, 1] = v[1] t[2, 2] = v[2] t[1, 2] = v[3] t[2, 1] = v[3] return t end ################################################################################ # 2-D axially symmetric stress model """ stressvtot!(::Type{DeforModelRed2DAxisymm}, t::Matrix{T}, v::Vector{T}) where {T} Convert a 4-vector to a matrix of 3x3 stress components (tensor). Convert a 4-vector to a *symmetric* matrix of 3x3 stress components (tensor). The stress vector components need to be ordered as: sigmax, sigmay, sigmaz, tauxy. """ function stressvtot!(::Type{DeforModelRed2DAxisymm}, t::Matrix{T}, v::Vector{T}) where {T} t[1, 1] = v[1] t[2, 2] = v[2] t[1, 2] = v[4] t[2, 1] = v[4] t[3, 3] = v[3] return t end
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
9173
################################################################################ # 3-D model """ rotstressvec!(::Type{DeforModelRed3D}, outstress::Vector{T}, instress::Vector{T}, Rm::_RotationMatrix) where {T} Rotate the stress vector by the supplied rotation matrix. Calculate the rotation of the stress vector to the 'bar' coordinate system given by the columns of the rotation matrix `Rm`. - `outstress` = output stress vector, overwritten inside - `instress` = input stress vector - `Rm` = columns are components of 'bar' basis vectors on the 'plain' basis vectors """ function rotstressvec!( ::Type{DeforModelRed3D}, outstress::Vector{T}, instress::Vector{T}, Rm::_RotationMatrix, ) where {T} # # Derivation of the transformation matrix [T] # #This is from Barbero''s book Finite element analysis of composite # #materials using Abaqus. Note that his matrix "a" is the transpose of # #the FinEALE matrix "Rm". # # We also use the FinEALE numbering of the strains. # # syms T alpha R # syms a a11 a12 a13 a21 a22 a23 a31 a32 a33 real # a = [a11,a12,a13; # a21,a22,a23; # a31,a32,a33]; # a = a';#his matrix "a" is the transpose of the FinEALE matrix "Rm". # # # it can be done in terms of l,m,n's as well # # syms a l1 m1 n1 l2 m2 n2 l3 m3 n3 # # a = [l1,m1,n1;l2,m2,n2;l3,m3,n3] # # We also use the FinEALE numbering of the strains. # Numbering =[1,4,5; # 4,2,6; # 5,6,3]; # T(1:6,1:6) = 0; # for i=1:1:3 # for j=1:1:3 # #if i==j; alpha = j; else alpha = 9-i-j; end # alpha = Numbering(i,j); # for p=1:1:3 # for q=1:1:3 # # if p==q beta = p; else beta = 9-p-q; end # beta = Numbering(p,q); # T(alpha,beta) = 0; # if alpha<=3 & beta<= 3; T(alpha,beta)=a(i,p)*a(i,p); end # if alpha> 3 & beta<= 3; T(alpha,beta)=a(i,p)*a(j,p); end # if alpha<=3 & beta>3; T(alpha,beta)=a(i,q)*a(i,p)+a(i,p)*a(i,q);end # if alpha>3 & beta>3; T(alpha,beta)=a(i,p)*a(j,q)+a(i,q)*a(j,p);end # end # end # end # end # T # R = eye(6,6); R(4,4)=2; R(5,5)=2; R(6,6)=2; # Reuter matrix # Tbar = R*T*R^(-1) a11 = Rm[1, 1] a12 = Rm[1, 2] a13 = Rm[1, 3] a21 = Rm[2, 1] a22 = Rm[2, 2] a23 = Rm[2, 3] a31 = Rm[3, 1] a32 = Rm[3, 2] a33 = Rm[3, 3] outstress[1] = (a11^2) * instress[1] + (a21^2) * instress[2] + (a31^2) * instress[3] + (2 * a11 * a21) * instress[4] + (2 * a11 * a31) * instress[5] + (2 * a21 * a31) * instress[6] outstress[2] = (a12^2) * instress[1] + (a22^2) * instress[2] + (a32^2) * instress[3] + (2 * a12 * a22) * instress[4] + (2 * a12 * a32) * instress[5] + (2 * a22 * a32) * instress[6] outstress[3] = (a13^2) * instress[1] + (a23^2) * instress[2] + (a33^2) * instress[3] + (2 * a13 * a23) * instress[4] + (2 * a13 * a33) * instress[5] + (2 * a23 * a33) * instress[6] outstress[4] = a11 * a12 * instress[1] + a21 * a22 * instress[2] + a31 * a32 * instress[3] + (a11 * a22 + a12 * a21) * instress[4] + (a11 * a32 + a12 * a31) * instress[5] + (a21 * a32 + a22 * a31) * instress[6] outstress[5] = (a11 * a13) * instress[1] + (a21 * a23) * instress[2] + (a31 * a33) * instress[3] + (a11 * a23 + a13 * a21) * instress[4] + (a11 * a33 + a13 * a31) * instress[5] + (a21 * a33 + a23 * a31) * instress[6] outstress[6] = (a12 * a13) * instress[1] + (a22 * a23) * instress[2] + (a32 * a33) * instress[3] + (a12 * a23 + a13 * a22) * instress[4] + (a12 * a33 + a13 * a32) * instress[5] + (a22 * a33 + a23 * a32) * instress[6] return outstress end ################################################################################ # 2-D plane strain model """ rotstressvec!(::Type{DeforModelRed2DStrain}, outstress::Vector{T}, instress::Vector{T}, Rm::_RotationMatrix) where {T} Rotate the stress vector by the supplied rotation matrix. Calculate the rotation of the stress vector to the 'bar' coordinate system given by the columns of the rotation matrix `Rm`. - `outstress` = output stress vector, overwritten inside - `instress` = input stress vector - `Rm` = columns are components of 'bar' basis vectors on the 'plain' basis vectors """ function rotstressvec!( ::Type{DeforModelRed2DStrain}, outstress::Vector{T}, instress::Vector{T}, Rm::_RotationMatrix, ) where {T} a11 = Rm[1, 1] a12 = Rm[1, 2] a13 = 0.0 a21 = Rm[2, 1] a22 = Rm[2, 2] a23 = 0.0 a31 = 0.0 a32 = 0.0 a33 = 1.0 # Note the special arrangement of the components for plane strain outstress[1] = (a11^2) * instress[1] + (a21^2) * instress[2] + (a31^2) * instress[4] + (2 * a11 * a21) * instress[3] outstress[2] = (a12^2) * instress[1] + (a22^2) * instress[2] + (a32^2) * instress[4] + (2 * a12 * a22) * instress[3] outstress[4] = (a13^2) * instress[1] + (a23^2) * instress[2] + (a33^2) * instress[4] + (2 * a13 * a23) * instress[3] outstress[3] = a11 * a12 * instress[1] + a21 * a22 * instress[2] + a31 * a32 * instress[4] + (a11 * a22 + a12 * a21) * instress[3] return outstress end ################################################################################ # 2-D plane stress model """ rotstressvec!(::Type{DeforModelRed2DStress}, outstress::Vector{T}, instress::Vector{T}, Rm::_RotationMatrix) where {T} Rotate the stress vector by the supplied rotation matrix. Calculate the rotation of the stress vector to the 'bar' coordinate system given by the columns of the rotation matrix `Rm`. - `outstress` = output stress vector, overwritten inside - `instress` = input stress vector - `Rm` = columns are components of 'bar' basis vectors on the 'plain' basis vectors """ function rotstressvec!( ::Type{DeforModelRed2DStress}, outstress::Vector{T}, instress::Vector{T}, Rm::_RotationMatrix, ) where {T} a11 = Rm[1, 1] a12 = Rm[1, 2] a21 = Rm[2, 1] a22 = Rm[2, 2] outstress[1] = (a11^2) * instress[1] + (a21^2) * instress[2] + (2 * a11 * a21) * instress[3] outstress[2] = (a12^2) * instress[1] + (a22^2) * instress[2] + (2 * a12 * a22) * instress[3] outstress[3] = (a11 * a12) * instress[1] + (a21 * a22) * instress[2] + (a11 * a22 + a12 * a21) * instress[3] return outstress end ################################################################################ # 2-D axially symmetric stress model """ rotstressvec!(::Type{DeforModelRed2DAxisymm}, outstress::Vector{T}, instress::Vector{T}, Rm::_RotationMatrix) where {T} Rotate the stress vector by the supplied rotation matrix. Calculate the rotation of the stress vector to the 'bar' coordinate system given by the columns of the rotation matrix `Rm`. - `outstress` = output stress vector, overwritten inside - `instress` = input stress vector - `Rm` = columns are components of 'bar' basis vectors on the 'plain' basis vectors """ function rotstressvec!( ::Type{DeforModelRed2DAxisymm}, outstress::Vector{T}, instress::Vector{T}, Rm::_RotationMatrix, ) where {T} a11 = Rm[1, 1] a12 = Rm[1, 2] a21 = Rm[2, 1] a22 = Rm[2, 2] outstress[1] = (a11^2) * instress[1] + (a21^2) * instress[2] + (0.0) * instress[3] + (2 * a11 * a21) * instress[4] outstress[2] = (a12^2) * instress[1] + (a22^2) * instress[2] + (0.0) * instress[3] + (2 * a12 * a22) * instress[4] outstress[3] = (0.0) * instress[1] + (0.0) * instress[2] + (1.0) * instress[3] + (0.0) * instress[4] outstress[4] = (a11 * a12) * instress[1] + (a21 * a22) * instress[2] + (0.0) * instress[3] + (a11 * a22 + a12 * a21) * instress[4] return outstress end ################################################################################ # 1-D stress model """ rotstressvec!(::Type{DeforModelRed1D}, outstress::Vector{T}, instress::Vector{T}, Rm::_RotationMatrix) where {T} Rotate the stress vector by the supplied rotation matrix. Calculate the rotation of the stress vector to the 'bar' coordinate system given by the columns of the rotation matrix `Rm`. - `outstress` = output stress vector, overwritten inside - `instress` = input stress vector - `Rm` = columns are components of 'bar' basis vectors on the 'plain' basis vectors """ function rotstressvec!( ::Type{DeforModelRed1D}, outstress::Vector{T}, instress::Vector{T}, Rm::_RotationMatrix, ) where {T} copyto!(outstress, instress) return outstress end
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
16302
# """ # strain2x2tto3v!(v::FVec{T}, t::FMat{T}) where {T} # Convert a matrix of 2x2 strain components into a 3-component vector. # """ # function strain2x2tto3v!(v::FVec{T}, t::FMat{T}) where {T} # v[1] = t[1,1]; # v[2] = t[2,2]; # v[3] = t[1,2] + t[2,1]; # return v # end # """ # strain3vto2x2t!(t::FMat{T}, v::FVec{T}) where {T} # Convert a strain 3-vector to a matrix of 2x2 strain components (symmetric tensor). # """ # function strain3vto2x2t!(t::FMat{T}, v::FVec{T}) where {T} # t[1,1] = v[1]; # t[2,2] = v[2]; # t[1,2] = v[3]/2.; # t[2,1] = v[3]/2.; # return t # end # """ # strain3x3tto6v!(v::FVec{T}, t::FMat{T}) where {T} # Convert a matrix of 3x3 strain components to a 6-component vector. # """ # function strain3x3tto6v!(v::FVec{T}, t::FMat{T}) where {T} # v[1] = t[1,1]; # v[2] = t[2,2]; # v[3] = t[3,3]; # v[4] = t[1,2] + t[2,1]; # v[5] = t[1,3] + t[3,1]; # v[6] = t[3,2] + t[2,3]; # return v # end # """ # strain6vto3x3t!(t::FMat{T}, v::FVec{T}) where {T} # Convert a strain 6-vector to a matrix of 3x3 strain components (symmetric tensor).. # """ # function strain6vto3x3t!(t::FMat{T}, v::FVec{T}) where {T} # t[1,1] = v[1]; # t[2,2] = v[2]; # t[3,3] = v[3]; # t[1,2] = v[4]/2.; # t[2,1] = v[4]/2.; # t[1,3] = v[5]/2.; # t[3,1] = v[5]/2.; # t[3,2] = v[6]/2.; # t[2,3] = v[6]/2.; # return t # end # """ # strain3x3tto9v!(v::FVec{T}, t::FMat{T}) where {T} # Convert a matrix of 3x3 strain components to a 9-component vector. # The strain components are in the order # ex, ey, ez, gxy, gyx, gyz, gzy, gxz, gzx # """ # function strain3x3tto9v!(v::FVec{T}, t::FMat{T}) where {T} # v[1] = t[1,1]; # v[2] = t[2,2]; # v[3] = t[3,3]; # v[4] = t[1,2]; # v[5] = t[2,1]; # v[6] = t[2,3]; # v[7] = t[3,2]; # v[8] = t[1,3]; # v[9] = t[3,1]; # return v # end # """ # strain9vto3x3t!(v::FVec{T}, t::FMat{T}) where {T} # Convert a matrix of 3x3 strain components to a 9-component vector. # The strain components are in the order # ex, ey, ez, gxy, gyx, gyz, gzy, gxz, gzx # """ # function strain9vto3x3t!(t::FMat{T}, v::FVec{T}) where {T} # t[1,1] = v[1]; # t[2,2] = v[2]; # t[3,3] = v[3]; # t[1,2] = v[4]; # t[2,1] = v[5]; # t[2,3] = v[6]; # t[3,2] = v[7]; # t[1,3] = v[8]; # t[3,1] = v[9]; # return t # end # """ # stress2x2to3v!(v::FVec{T}, t::FMat{T}) # Convert a symmetric matrix of 2x2 stress components to a 3-component vector. # """ # function stress2x2to3v!(v::FVec{T}, t::FMat{T}) where {T} # v[1] = t[1,1]; # v[2] = t[2,2]; # v[3] = 0.5*(t[1,2] + t[2,1]); # return v # end # """ # stress3vto2x2t!(t::FMat{T}, v::FVec{T}) # Convert a 3-vector to a matrix of 2x2 stress components (symmetric tensor). # """ # function stress3vto2x2t!(t::FMat{T}, v::FVec{T}) where {T} # t[1,1] = v[1]; # t[2,2] = v[2]; # t[1,2] = v[3]; # t[2,1] = v[3]; # return t # end # """ # stress3vto3x3t!(t::FMat{T}, v::FVec{T}) where {T} # Convert a 3-vector to a matrix of 3x3 stress components (symmetric tensor). # """ # function stress3vto3x3t!(t::FMat{T}, v::FVec{T}) where {T} # t[1,1] = v[1]; # t[2,2] = v[2]; # t[1,2] = v[3]; # t[2,1] = v[3]; # return t # end # """ # stress4vto3x3t!(t::FMat{T}, v::FVec{T}) where {T} # Convert a 4-vector to a matrix of 3x3 stress components (tensor). # Convert a 4-vector to a *symmetric* # matrix of 3x3 stress components (tensor). This is # conversion routine that would be useful for plane strain or # axially symmetric conditions. # The stress vector components need to be ordered as: # sigmax, sigmay, tauxy, sigmaz, # which is the ordering used for the plane-strain model reduction. # Therefore, for axially symmetric analysis the components need to be # reordered, as from the constitutive equation they come out # as sigmax, sigmay, sigmaz, tauxy. # """ # function stress4vto3x3t!(t::FMat{T}, v::FVec{T}) where {T} # t[1,1] = v[1]; # t[2,2] = v[2]; # t[1,2] = v[3]; # t[2,1] = v[3]; # t[3,3] = v[4]; # return t # end # """ # stress6vto3x3t!(t::FMat{T}, v::FVec{T}) where {T} # Convert a 6-vector to a matrix of 3x3 stress components (symmetric tensor). # """ # function stress6vto3x3t!(t::FMat{T}, v::FVec{T}) where {T} # t[1,1] = v[1]; # t[2,2] = v[2]; # t[3,3] = v[3]; # t[1,2] = v[4]; # t[2,1] = v[4]; # t[1,3] = v[5]; # t[3,1] = v[5]; # t[3,2] = v[6]; # t[2,3] = v[6]; # return t # end # """ # stress3x3tto6v!(v::FVec{T}, t::FMat{T}) where {T} # Convert a matrix of 3x3 stress components to a 6-component vector. # """ # function stress3x3tto6v!(v::FVec{T}, t::FMat{T}) where {T} # v[1] = t[1,1]; # v[2] = t[2,2]; # v[3] = t[3,3]; # v[4] = 1/2.0*(t[1,2] + t[2,1]); # v[5] = 1/2.0*(t[1,3] + t[3,1]); # v[6] = 1/2.0*(t[3,2] + t[2,3]); # return v # end # """ # strain9vto6v!(t::FVec{T}, v::FVec{T}) where {T} # Convert a strain 9-vector to a strain 6-vector components (tensor). # """ # function strain9vto6v!(t::FVec{T}, v::FVec{T}) where {T} # t[1] = v[1]; # t[2] = v[2]; # t[3] = v[3]; # t[4] = v[4]+v[5]; # t[5] = v[8]+v[9]; # t[6] = v[6]+v[7]; # return t # end # """ # strain6vto9v!(t::FVec{T}, v::FVec{T}) where {T} # Convert a strain 6-vector to a strain 9-vector components (tensor). # The strain components are in the order # ex, ey, ez, gxy/2, gxy/2, gyz/2, gyz/2, gxz/2, gxz/2 # """ # function strain6vto9v!(t::FVec{T}, v::FVec{T}) where {T} # t[1] = v[1]; # t[2] = v[2]; # t[3] = v[3]; # t[4] = v[4]/2.; # t[5] = v[4]/2.; # t[6] = v[6]/2.; # t[7] = v[6]/2.; # t[8] = v[5]/2.; # t[9] = v[5]/2.; # return t # end # """ # stress9vto6v!(t::FVec{T}, v::FVec{T}) where {T} # Convert a stress 9-vector (tensor) to a stress 6-vector components. # The stress components are in the order # sigx, sigy, sigz, tauxy, tauxy, tauyz, tauyz, tauxz, tauxz # """ # function stress9vto6v!(t::FVec{T}, v::FVec{T}) where {T} # t[1] = v[1]; # t[2] = v[2]; # t[3] = v[3]; # t[4] = v[4]; # t[5] = v[8]; # t[6] = v[6]; # return t # end # """ # stress6vto9v!(t::FVec{T}, v::FVec{T}) where {T} # Convert a stress 6-vector to a stress 9-vector components (tensor). # The stress components are in the order # sigx, sigy, sigz, tauxy, tauxy, tauyz, tauyz, tauxz, tauxz # """ # function stress6vto9v!(t::FVec{T}, v::FVec{T}) where {T} # t[1] = v[1]; # t[2] = v[2]; # t[3] = v[3]; # t[4] = v[4]; # t[5] = v[4]; # t[6] = v[6]; # t[7] = v[6]; # t[8] = v[5]; # t[9] = v[5]; # return t # end # function stressvectorrotation{MR<:DeforModelRed2DStress}(::Type{MR}, # Rm::FMat{T}) # # # Rm = columns are components of 'bar' basis vectors on the 'plain' # # basis vectors # # # # Calculate the rotation of the 'plain' stress vector to the # # 'bar' coordinate system given by the columns of the rotation matrix Rm. # # # # Example: # # The stress vector "stress" is given in the material coordinate # # system defined by the orientation matrix Rm. The following two # # transformations are equivalent: # # # # t = stress_6v_to_3x3t (mat,stress); # # t = (Rm*t*Rm');# in global coordinate system # # t = (outputRm'*t*outputRm);# in output coordinate system # # stress =stress_3x3t_to_6v (mat,t);# in output coordinate system # # # # stress =mat.stress_vector_rotation(outputRm)... # # *mat.stress_vector_rotation(Rm')... # # *stress;# in output coordinate system # # a11=Rm[1,1]; a12=Rm[1,2]; # a21=Rm[2,1]; a22=Rm[2,2]; # # switch self.reduction # # case {'axisymm','strain'} # # T =[[ a11^2, a21^2, 0, 2*a11*a21] # # [ a12^2, a22^2, 0, 2*a12*a22] # # [ 0, 0, 1, 0] # # [ a11*a12, a21*a22, 0, a11*a22 + a12*a21]]; # # case 'stress' # T =[[ a11^2 a21^2 2*a11*a21] # [ a12^2 a22^2 2*a12*a22] # [ a11*a12 a21*a22 a11*a22+a12*a21]]; # return T # end # # function strainvectorrotation{MR<:DeforModelRed2DStress}(::Type{MR}, # Rm::FMat{T}) # # Calculate the rotation matrix for a strain vector. # # # # Tbar = strain_vector_rotation(self,Rm) # # # # Rm = columns are components of 'bar' basis vectors on the 'plain' # # basis vectors # # # # Calculate the rotation of the 'plain' strain vector to the # # 'bar' coordinate system given by the columns of the rotation matrix Rm. # # # # a11=Rm[1,1]; a12=Rm[1,2]; # a21=Rm[2,1]; a22=Rm[2,2]; # # switch self.reduction # # case {'axisymm','strain'} # # Tbar =[ [ a11^2, a21^2, 0, a11*a21] # # [ a12^2, a22^2, 0, a12*a22] # # [ 0, 0, 1, 0] # # [ 2*a11*a12, 2*a21*a22, 0, a11*a22 + a12*a21]]; # # case 'stress' # Tbar =[ [ a11^2, a21^2, a11*a21] # [ a12^2, a22^2, a12*a22] # [ 2*a11*a12, 2*a21*a22, a11*a22 + a12*a21]]; # return Tbar # end # # # ################################################################################ # # 2-D plane axially symmetric model # # function stressvectorrotation(::Type{MR}, # Rm::FMat{T}) where {MR<:DeforModelRed2DAxisymm} # # # Rm = columns are components of 'bar' basis vectors on the 'plain' # # basis vectors # # # # Calculate the rotation of the 'plain' stress vector to the # # 'bar' coordinate system given by the columns of the rotation matrix Rm. # # # # Example: # # The stress vector "stress" is given in the material coordinate # # system defined by the orientation matrix Rm. The following two # # transformations are equivalent: # # # # t = stress_6v_to_3x3t (mat,stress); # # t = (Rm*t*Rm');# in global coordinate system # # t = (outputRm'*t*outputRm);# in output coordinate system # # stress =stress_3x3t_to_6v (mat,t);# in output coordinate system # # # # stress =mat.stress_vector_rotation(outputRm)... # # *mat.stress_vector_rotation(Rm')... # # *stress;# in output coordinate system # # a11=Rm[1,1]; a12=Rm[1,2]; # a21=Rm[2,1]; a22=Rm[2,2]; # T =[[ a11^2 a21^2 0 2*a11*a21] # [ a12^2 a22^2 0 2*a12*a22] # [ 0 0 1 0] # [ a11*a12 a21*a22 0 a11*a22 + a12*a21]]; # return T # end # # function strainvectorrotation(::Type{MR}, # Rm::FMat{T}) where {MR<:DeforModelRed2DAxisymm} # # Calculate the rotation matrix for a strain vector. # # # # Tbar = strain_vector_rotation(self,Rm) # # # # Rm = columns are components of 'bar' basis vectors on the 'plain' # # basis vectors # # # # Calculate the rotation of the 'plain' strain vector to the # # 'bar' coordinate system given by the columns of the rotation matrix Rm. # # # # a11=Rm[1,1]; a12=Rm[1,2]; # a21=Rm[2,1]; a22=Rm[2,2]; # Tbar =[ [ a11^2 a21^2 0 a11*a21] # [ a12^2 a22^2 0 a12*a22] # [ 0 0 1 0] # [ 2*a11*a12 2*a21*a22 0 a11*a22 + a12*a21]]; # return Tbar # end # # ################################################################################ # # Generic versions of rotations of stiffness and compliance matrices # # function rotatestiffness!(::Type{MR}, D::FMat{T}, # Rm::FMat{T}) where {MR<:DeforModelRed} # # Rotate constitutive stiffness matrix of the material. # # # # function D=transform_stiffness(self,D,Rm) # # # # Rotate constitutive stiffness matrix of the material to the # # coordinate system given by the columns of the rotation matrix Rm. # T =stressvectorrotation(MR,Rm); # D = T*D*T'; # return D # end # # function rotatecompliance!(::Type{MR}, C::FMat{T}, # Rm::FMat{T}) where {MR<:DeforModelRed} # # Rotate constitutive compliance matrix of the material. # # # # C = rotate_compliance(self,C,Rm) # # # # Rotate constitutive compliance matrix of the material to the # # coordinate system given by the columns of the rotation matrix Rm. # Tbar =strainvectorrotation(MR,Rm); # C = Tbar*C*Tbar'; # return C # end # function stressvectorrotation(::Type{DeforModelRed2DStrain}, Rm::FMat{T}) # # # Rm = columns are components of 'bar' basis vectors on the 'plain' # # basis vectors # # # # Calculate the rotation of the 'plain' stress vector to the # # 'bar' coordinate system given by the columns of the rotation matrix Rm. # # # # Example: # # The stress vector "stress" is given in the material coordinate # # system defined by the orientation matrix Rm. The following two # # transformations are equivalent: # # # # t = stress_6v_to_3x3t (mat,stress); # # t = (Rm*t*Rm');# in global coordinate system # # t = (outputRm'*t*outputRm);# in output coordinate system # # stress =stress_3x3t_to_6v (mat,t);# in output coordinate system # # # # stress =mat.stress_vector_rotation(outputRm)... # # *mat.stress_vector_rotation(Rm')... # # *stress;# in output coordinate system # # a11=Rm[1,1]; a12=Rm[1,2]; # a21=Rm[2,1]; a22=Rm[2,2]; # # sigmax, sigmay, sigmaz, tauxy # T =[[ a11^2 a21^2 0 2*a11*a21] # [ a12^2 a22^2 0 2*a12*a22] # [ 0 0 1 0] # [ a11*a12 a21*a22 0 a11*a22 + a12*a21]]; # return T # end # # function strainvectorrotation(::Type{DeforModelRed2DStrain}, Rm::FMat{T}) # # Calculate the rotation matrix for a strain vector. # # # # Tbar = strain_vector_rotation(self,Rm) # # # # Rm = columns are components of 'bar' basis vectors on the 'plain' # # basis vectors # # # # Calculate the rotation of the 'plain' strain vector to the # # 'bar' coordinate system given by the columns of the rotation matrix Rm. # # # # a11=Rm[1,1]; a12=Rm[1,2]; # a21=Rm[2,1]; a22=Rm[2,2]; # Tbar =[ [ a11^2 a21^2 0 a11*a21] # [ a12^2 a22^2 0 a12*a22] # [ 0 0 1 0] # [ 2*a11*a12 2*a21*a22 0 a11*a22 + a12*a21]]; # return Tbar # end # function strainvectorrotation(::Type{DeforModelRed3D}, Rm::FMat{T}) # # Calculate the rotation matrix for a strain vector. # # # # Tbar = strain_vector_rotation(self,Rm) # # # # Rm = columns are components of 'bar' basis vectors on the 'plain' # # basis vectors # # # # Calculate the rotation of the 'plain' strain vector to the # # 'bar' coordinate system given by the columns of the rotation matrix Rm. # # # # a11=Rm[1,1]; a12=Rm[1,2]; a13=Rm[1,3]; # a21=Rm[2,1]; a22=Rm[2,2]; a23=Rm[2,3]; # a31=Rm[3,1]; a32=Rm[3,2]; a33=Rm[3,3]; # Tbar =[ # [ a11^2 a21^2 a31^2 a11*a21 a11*a31 a21*a31] # [ a12^2 a22^2 a32^2 a12*a22 a12*a32 a22*a32] # [ a13^2 a23^2 a33^2 a13*a23 a13*a33 a23*a33] # [ 2*a11*a12 2*a21*a22 2*a31*a32 a11*a22 + a12*a21 a11*a32 + a12*a31 a21*a32 + a22*a31] # [ 2*a11*a13 2*a21*a23 2*a31*a33 a11*a23 + a13*a21 a11*a33 + a13*a31 a21*a33 + a23*a31] # [ 2*a12*a13 2*a22*a23 2*a32*a33 a12*a23 + a13*a22 a12*a33 + a13*a32 a22*a33 + a23*a32]]; # return Tbar # end
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
8641
""" tens4checksymmetry(C4th) If the fourth-order tensor of material elasticity has the full set of symmetries, return true; otherwise false. """ function tens4checksymmetry(C4th) for I = 1:3 for J = 1:3 for K = 1:3 for L = 1:3 C4th[I, J, K, L] != C4th[K, L, I, J] && return false C4th[I, J, K, L] != C4th[J, I, K, L] && return false C4th[I, J, K, L] != C4th[I, J, L, K] && return false end end end end return true end """ tens4symmtto6x6t!(M::Matrix{T}, ST::Array{T, 4}) where {T} Convert a symmetric 4th-order tensor to a 6 x 6 matrix. !!! Note The order corresponds to the arrangement of the components of stress (or strain) tensor, symmetric, three-dimensional, into a 6-component vector. # Example ``` J=tens4_ijkl(eye(3),eye(3)) produces the tracor: T=rand(3); sum(diag(T))*eye(3) t= tens4_dot_2(J,T) M= tens4_symm_to_6(ST) ``` """ function tens4symmtto6x6t!(M::Matrix{T}, ST::Array{T,4}) where {T} # This corresponds to the arrangement of the components of stress (or # strain) tensor, symmetric, three-dimensional, into a 6-component # vector. ix = [1 1; 2 2; 3 3; 1 2; 1 3; 2 3] for j = 1:6 for i = 1:6 M[i, j] = ST[ix[i, 1], ix[i, 2], ix[j, 1], ix[j, 2]] end end return M end """ tens4symmt6x6tot!(ST::Array{T, 4}, M::Matrix{T}) where {T} Convert a symmetric 6 x 6 matrix to a symmetric 4th-order tensor. !!! Note The order corresponds to the arrangement of the components of stress (or strain) tensor, symmetric, three-dimensional, into a 6-component vector. """ function tens4symmt6x6tot!(ST::Array{T,4}, M::Matrix{T}) where {T} ix = [1 4 5; 4 2 6; 5 6 3] n = 3 for i = 1:n for j = 1:n for k = 1:n for l = 1:n ST[i, j, k, l] = M[ix[i, j], ix[k, l]] end end end end return ST end """ tens4dot2!(R::Array{T, 2}, F::Array{T, 4}, S::Array{T, 2}) where {T} Compute the double contraction of a 4th-order and a 2nd-order tensors. !!! note The double contraction of two second-order sensors is defined as `A:B = tr(A'*B) = A_ij B_ij` The resulting second-order tensor is first zeroed out, and then the result is accumulated. """ function tens4dot2!(R::Array{T,2}, F::Array{T,4}, S::Array{T,2}) where {T} R .= zero(T) for l = 1:3 for k = 1:3 for j = 1:3 for i = 1:3 R[i, j] += F[i, j, k, l] * S[k, l] end end end end return R end """ tens4ijkl!(t::Array{T, 4}, A::FA, B::FB, op = :+) where {T, FA, FB} Fill a 4th-order tensor as a dyadic product of two 2nd-order tensors. The `i,j,k,l` component is given as `t[i,j,k,l]=A(i,j)*B(k,l)`. !!! note The tensor is accumulated to. It needs to be initialized to zero, if that is desired as the initial state. # Example ``` t = fill(0.0, 3, 3, 3, 3) delta = (I, J) -> I == J ? 1.0 : 0.0 tens4ijkl!(t, delta, delta) S = rand(3, 3) @show tr(S) * I tS = fill(0.0, 3, 3) @show tens4dot2!(tS, t, S) ``` """ function tens4ijkl!(t::Array{T,4}, A::FA, B::FB) where {T,FA,FB} for l = 1:3 for k = 1:3 for j = 1:3 for i = 1:3 t[i, j, k, l] += A(i, j) * B(k, l) end end end end return t end """ tens4ikjl!(t::Array{T, 4}, A::FA, B::FB) where {T, FA, FB} Fill a 4th-order tensor as a dyadic product of two 2nd-order tensors. The `i,j,k,l` component is given as `t[i,j,k,l]=A(i,k)*B(j,l)`. !!! note The tensor is accumulated to. It needs to be initialized to zero, if that is desired as the initial state. # Example ``` t = fill(0.0, 3, 3, 3, 3) delta = (I, J) -> I == J ? 1.0 : 0.0 tens4ikjl!(t, delta, delta) S = rand(3, 3) @show transpose(S) tS = fill(0.0, 3, 3) @show transpose(S) - tens4dot2!(tS, t, S) ``` """ function tens4ikjl!(t::Array{T,4}, A::FA, B::FB) where {T,FA,FB} for l = 1:3 for k = 1:3 for j = 1:3 for i = 1:3 t[i, j, k, l] += A(i, k) * B(j, l) end end end end return t end """ tens4iljk!(t::Array{T, 4}, A::FA, B::FB) where {T, FA, FB} Fill a 4th-order tensor as a dyadic product of two 2nd-order tensors. The `i,j,k,l` component is given as `t[i,j,k,l]=A(i,l)*B(j,k)`. !!! note The tensor is accumulated to. It needs to be initialized to zero, if that is desired as the initial state. # Example ``` t = fill(0.0, 3, 3, 3, 3) delta = (I, J) -> I == J ? 1.0 : 0.0 tens4iljk!(t, delta, delta) S = rand(3, 3) tS = fill(0.0, 3, 3) @show S - tens4dot2!(tS, t, S) ``` """ function tens4iljk!(t::Array{T,4}, A::FA, B::FB) where {T,FA,FB} for l = 1:3 for k = 1:3 for j = 1:3 for i = 1:3 t[i, j, k, l] += A(i, l) * B(j, k) end end end end return t end """ tens4identity!(t::Array{T, 4}) where {T} Compute 4th-order identity tensor. # Example The product of the identity tensor with the second-order tensor `S` is ``` t = fill(0.0, 3, 3, 3, 3) tens4identity!(t) S = rand(3, 3) tS = fill(0.0, 3, 3) tens4dot2!(tS, t, S) @show S - tS ``` """ function tens4identity!(t::Array{T,4}) where {T} delta = (I, J) -> I == J ? 1.0 : 0.0 t .= zero(T) return tens4ikjl!(t, delta, delta) end """ tens4transposor!(t::Array{T, 4}) where {T} Compute 4th-order transposor tensor. # Example The product of the transposor tensor with the second-order tensor `S` is ``` t = fill(0.0, 3, 3, 3, 3) tens4transposor!(t) S = rand(3, 3) tS = fill(0.0, 3, 3) tens4dot2!(tS, t, S) @show S' - tS ``` """ function tens4transposor!(t::Array{T,4}) where {T} delta = (I, J) -> I == J ? 1.0 : 0.0 t .= zero(T) return tens4iljk!(t, delta, delta) end """ tens4tracor!(t::Array{T, 4}) where {T} Compute 4th-order tracor tensor. Double contraction of a second order tensor with this fourth-order tensor produces the spherical part of the second order tensor. # Example The product of the tracor tensor with the second-order tensor `S` is ``` t = fill(0.0, 3, 3, 3, 3) tens4tracor!(t) S = rand(3, 3) tS = fill(0.0, 3, 3) tens4dot2!(tS, t, S) @show tr(S) * I - tS ``` """ function tens4tracor!(t::Array{T,4}) where {T} delta = (I, J) -> I == J ? 1.0 : 0.0 t .= zero(T) return tens4ijkl!(t, delta, delta) end """ tens4symmetrizor!(t::Array{T, 4}) where {T} Compute 4th-order symmetrizor tensor. Double contraction of a second order tensor with this fourth-order tensor produces the symmetric part of the second order tensor. # Example The product of the symmetrizor tensor with the second-order tensor `S` is ``` t = fill(0.0, 3, 3, 3, 3) tens4symmetrizor!(t) S = rand(3, 3) tS = fill(0.0, 3, 3) tens4dot2!(tS, t, S) @show (S + S')/2 * I - tS ``` """ function tens4symmetrizor!(t::Array{T,4}) where {T} delta = (I, J) -> I == J ? 1.0 : 0.0 t .= zero(T) tens4ikjl!(t, delta, delta) # identity tens4iljk!(t, delta, delta) # transposor t .*= 0.5 return t end """ tens4skewor!(t::Array{T, 4}) where {T} Compute 4th-order skewor tensor. Double contraction of a second order tensor with this fourth-order tensor produces the skew part of the second order tensor. # Example The product of the skewor tensor with the second-order tensor `S` is ``` t = fill(0.0, 3, 3, 3, 3) tens4skewor!(t) S = rand(3, 3) tS = fill(0.0, 3, 3) tens4dot2!(tS, t, S) @show (S - S')/2 * I - tS ``` """ function tens4skewor!(t::Array{T,4}) where {T} delta = (I, J) -> I == J ? 1.0 : 0.0 t .= zero(T) tens4iljk!(t, delta, delta) # transposor t .= -t # subtract that part tens4ikjl!(t, delta, delta) # identity t .*= 0.5 return t end """ tens4deviator!(t::Array{T, 4}) where {T} Compute 4th-order deviator tensor. Double contraction of a second order tensor with this fourth-order tensor produces the deviator part of the second order tensor. # Example The product of the deviator tensor with the second-order tensor `S` is ``` t = fill(0.0, 3, 3, 3, 3) tens4deviator!(t) S = rand(3, 3) tS = fill(0.0, 3, 3) tens4dot2!(tS, t, S) @show tr((S - tr(S)/3*I) ), tr(tS) ``` """ function tens4deviator!(t::Array{T,4}) where {T} delta = (I, J) -> I == J ? 1.0 : 0.0 t .= zero(T) tens4tracor!(t) # tracor t .= -(1.0 / 3) .* t # subtract (1/3) that part tens4ikjl!(t, delta, delta) # identity t .*= 0.5 return t end
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
2266
module malum_cyl_mode_esnice_t4 using FinEtools using FinEtoolsDeforLinear using Test using Arpack using LinearAlgebra using DataDrop using InteractiveUtils function test() # Aluminum cylinder free vibration, mesh imported from Abaqus # Mesh converted from quadratic tetrahedra to linear tetrahedra # NICE tetrahedral elements used E = 70000 * phun("MPa") nu = 0.33 rho = 2700 * phun("KG/M^3") radius = 0.5 * phun("ft") neigvs = 20 # how many eigenvalues OmegaShift = (10.0 * 2 * pi)^2 Eigenvalues = [ 0.0, 0.0, 0.0, 1.8846e-5, 7.35917e-5, 0.000119445, 2498.15, 2498.88, 2513.31, 4082.65, 4585.99, 4586.42, 4987.01, 6648.02, 6648.48, 6679.04, 6682.16, 6777.89, 6780.59, 6799.36, ] MR = DeforModelRed3D output = import_ABAQUS("alum_cyl.inp") fens, fes = output["fens"], output["fesets"][1] fens.xyz .*= phun("mm") # The input is provided in SI(mm) units @show boundingbox(fens.xyz) fens, fes = T10toT4(fens, fes) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field numberdofs!(u) material = MatDeforElastIso(MR, rho, E, nu, 0.0) femm = FEMMDeforLinearESNICET4(MR, IntegDomain(fes, NodalSimplexRule(3)), material) associategeometry!(femm, geom) @edit stiffness(femm, SysmatAssemblerSparse(), geom, u) K = stiffness(femm, SysmatAssemblerSparse(), geom, u) M = mass(femm, geom, u) Kref = DataDrop.retrieve_matrix("rfK") @show norm(Kref - K) Mref = DataDrop.retrieve_matrix("rfM") @show norm(Mref - M) DataDrop.empty_hdf5_file("K") DataDrop.empty_hdf5_file("M") DataDrop.store_matrix("K", K) DataDrop.store_matrix("M", M) d, v, nev, nconv = eigs(K + OmegaShift * M, M; nev = neigvs, which = :SM, explicittransform = :none) d = d .- OmegaShift fs = real(sqrt.(complex(d))) / (2 * pi) println("Eigenvalues: $fs [Hz]") @show norm(vec(fs) .- vec(Eigenvalues)) < 1.0e-3 * maximum(vec(Eigenvalues)) nothing end end using .malum_cyl_mode_esnice_t4 malum_cyl_mode_esnice_t4.test()
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
1056
using Test @time @testset "Linear deformation 1" begin include("test_linear_defor_1.jl") end @time @testset "Linear deformation 2" begin include("test_linear_defor_2.jl") end @time @testset "Linear deformation 3" begin include("test_linear_defor_3.jl") end @time @testset "Linear deformation 4" begin include("test_linear_defor_4.jl") end @time @testset "Linear deformation 5" begin include("test_linear_defor_5.jl") end @time @testset "Linear deformation 6" begin include("test_linear_defor_6.jl") end @time @testset "Linear deformation 7" begin include("test_linear_defor_7.jl") end @time @testset "Linear deformation 8" begin include("test_linear_defor_8.jl") end @time @testset "Linear deformation 9" begin include("test_linear_defor_9.jl") end @time @testset "Linear deformation 10" begin include("test_linear_defor_10.jl") end @time @testset "Linear deformation 11" begin include("test_linear_defor_11.jl") end @time @testset "Linear deformation 12" begin include("test_linear_defor_12.jl") end true
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
47897
module mmLE11NAFEMSQ8algo2 using FinEtools using FinEtools.AlgoBaseModule: solve_blocked!, matrix_blocked, vector_blocked using FinEtoolsDeforLinear using FinEtoolsDeforLinear.AlgoDeforLinearModule: linearstatics, exportdeformation, exportstress, exportstresselementwise using Test import LinearAlgebra: norm, cholesky, cross function test() # NAFEMS LE11 benchmark with Q8 elements. # # This is a test recommended by the National Agency for Finite Element # # Methods and Standards (U.K.): Test LE11 from NAFEMS Publication TNSB, # # Rev. 3, “The Standard NAFEMS Benchmarks,” October 1990. # # # # Target solution: Direct stress, = –105 MPa at point A. #function LE11NAFEMS() # Parameters: Ea = 210000 * phun("MEGA*Pa") nua = 0.3 alphaa = 2.3e-4 # thermal expansion coefficient sigmaA = -105 * phun("MEGA*Pa") nref = 1 # how many times should we refine the mesh? X = [ 1.0 0.0#A 1.4 0.0#B 0.995184726672197 0.098017140329561 1.393258617341076 0.137223996461385 0.980785 0.195090# 1.37309939 0.27312645 0.956940335732209 0.290284677254462 1.339716470025092 0.406398548156247 0.9238795 0.38268#C 1.2124 0.7#D 0.7071 0.7071#E 1.1062 1.045#F 0.7071 (0.7071+1.79)/2#(E+H)/2 1.0 1.39#G 0.7071 1.79#H 1.0 1.79#I ] * phun("M") tolerance = 1.e-6 * phun("M") ## # Note that the material object needs to be created with the proper # model-dimension reduction in mind. In this case that is the axial symmetry # assumption. MR = DeforModelRed2DAxisymm fens = FENodeSet(X) fes = FESetQ4([1 2 4 3; 3 4 6 5; 5 6 8 7; 7 8 10 9; 9 10 12 11; 11 12 14 13; 13 14 16 15]) for ref = 1:nref fens, fes = Q4refine(fens, fes) list = selectnode( fens, distance = 1.0 + 0.1 / 2^nref, from = [0.0 0.0], inflate = tolerance, ) fens.xyz[list, :] = FinEtools.MeshUtilModule.ontosphere(fens.xyz[list, :], 1.0) end fens, fes = Q4toQ8(fens, fes) list = selectnode( fens, distance = 1.0 + 0.1 / 2^nref, from = [0.0 0.0], inflate = tolerance, ) fens.xyz[list, :] = FinEtools.MeshUtilModule.ontosphere(fens.xyz[list, :], 1.0) # EBC's l1 = selectnode(fens, box = [-Inf Inf 0 0], inflate = tolerance) e1 = FDataDict("node_list" => l1, "component" => 2, "displacement" => x -> 0.0) l1 = selectnode(fens, box = [-Inf Inf 1.79 1.79], inflate = tolerance) e2 = FDataDict("node_list" => l1, "component" => 2, "displacement" => x -> 0.0) # Temperature field dtemp = FDataDict("temperature" => x -> x[1] + x[2]) # Property and material material = MatDeforElastIso(MR, 0.0, Ea, nua, alphaa) femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(2, 3), true), material) # Make region 1 region = FDataDict("femm" => femm) # Make model data modeldata = FDataDict( "fens" => fens, "regions" => [region], "essential_bcs" => [e1, e2], "temperature_change" => dtemp, ) # Call the solver modeldata = linearstatics(modeldata) geom = modeldata["geom"] u = modeldata["u"] dT = modeldata["temp"] modeldata["postprocessing"] = FDataDict("boundary_only" => true, "file" => "LE11NAFEMS_Q8_deformation.vtk") modeldata = exportdeformation(modeldata) # @async run(`"paraview.exe" $(modeldata["postprocessing"]["exported"][1]["file"])`) try rm(modeldata["postprocessing"]["exported"][1]["file"]) catch end nA = selectnode(fens, box = Float64[1.0 1.0 0.0 0.0], inflate = tolerance) modeldata["postprocessing"] = FDataDict( "boundary_only" => true, "file" => "LE11NAFEMS_Q8_sigmay.vtk", "quantity" => :Cauchy, "component" => 2, ) modeldata = exportstress(modeldata) modeldata["postprocessing"] = FDataDict( "boundary_only" => false, "file" => "LE11NAFEMS_Q8_sigmay.vtk", "quantity" => :Cauchy, "component" => 2, ) modeldata = exportstress(modeldata) # @async run(`"paraview.exe" $(modeldata["postprocessing"]["exported"][1]["file"])`) try rm(modeldata["postprocessing"]["exported"][1]["file"]) catch end fld = modeldata["postprocessing"]["exported"][1]["field"] sA = fld.values[nA] / phun("MEGA*Pa") sAn = fld.values[nA] / sigmaA # println("Stress at point A: $(sA) i. e. $( sAn*100 )% of reference value") @test norm(sA - [-93.8569]) < 1.0e-2 # Loop over only those elements that share the node nA fen2fe = FENodeToFEMap(fes, nnodes(geom)) function inspector(idat, elnum, conn, xe, out, xq) # println("loc = $( xq ) : $( transpose(out)/phun("MEGA*Pa") )") return idat end inspectintegpoints( femm, geom, u, dT, fen2fe.map[nA[1]], inspector, []; quantity = :Cauchy, ) modeldata["postprocessing"] = FDataDict( "boundary_only" => false, "file" => "LE11NAFEMS_Q8_sigmay_ew.vtk", "quantity" => :Cauchy, "component" => 2, ) modeldata = exportstresselementwise(modeldata) # @async run(`"paraview.exe" $(modeldata["postprocessing"]["exported"][1]["file"])`) try rm(modeldata["postprocessing"]["exported"][1]["file"]) catch end end end using .mmLE11NAFEMSQ8algo2 mmLE11NAFEMSQ8algo2.test() module sscratch_06112017 using FinEtools using FinEtools.AlgoBaseModule: solve_blocked!, matrix_blocked, vector_blocked using FinEtoolsDeforLinear using Test import Statistics: mean function test() ## Solid cylinder/taper/sphere—-temperature loading; quadratic brick mesh # ## Description # # The solid cylinder/taper/sphere axially-symmetric part represented in # Figure 1 is exposed to linearly varying temperature in the plane of the # cross-section. The temperature in the coordinates $r$ (the coordinate) # and $z$ (the axial ccoordinate) is given as $T=r+z$. The goal is to find # the mechanical stress at the point A induced by the thermal expansion. # ## # The part is constrained against axial expansion along the faces of HIH'I' # and ABA'B'. The Young's modulus is 210 GPa, the Poisson's ratio is .3, # and the coefficient of thermal expansion is 2.3e-4/degree Celsius. ## # This is a test recommended by the National Agency for Finite Element # Methods and Standards (U.K.): Test LE11 from NAFEMS Publication TNSB, # Rev. 3, “The Standard NAFEMS Benchmarks,” October 1990. # # Target solution: Compressive axial stress $\sigma_z$ = –105 MPa along # the circle passing through point A. ## # The toolkit has a helpful physical-units facility. The function phun() # allows use of basic units and basic # multipliers (for instance, mega). ## # Set the material properties. Ea = 210000 * phun("MEGA*PA")# Young's modulus nua = 0.3# Poisson ratio alphaa = 2.3e-4# coefficient of thermal expansion ## # This is the target stress value. sigmaA = -105 * phun("MEGA*PA") ## # The mesh will be created in a very coarse representation from the # key points in the drawing. The first coordinate is radial, the second coordinate is axial. rz = [ 1.0 0.0#A 1.4 0.0#B 0.995184726672197 0.098017140329561 1.393258617341076 0.137223996461385 0.980785 0.195090# 1.37309939 0.27312645 0.956940335732209 0.290284677254462 1.339716470025092 0.406398548156247 0.9238795 0.38268#C 1.2124 0.7#D 0.7071 0.7071#E 1.1062 1.045#F 0.7071 (0.7071+1.79)/2#(E+H)/2 1.0 1.39#G 0.7071 1.79#H 1.0 1.79#I ] * phun("M") tolerance = 1.e-6 * phun("M") ## # Note that the material object needs to be created with the proper # model-dimension reduction in mind. In this case that is the fully three-dimensional solid. MR = DeforModelRed3D # This is the quadrilateral mesh of the cross-section. It will be modified and # refined as we go. fens = FENodeSet(rz) fes = FESetQ4([1 2 4 3; 3 4 6 5; 5 6 8 7; 7 8 10 9; 9 10 12 11; 11 12 14 13; 13 14 16 15]) ## # If needed, the initial mesh can be refined by bisection. Just set # `nref` greater than zero. Note that the nodes located along the # edges are moved onto the spherical surface when they _should be_ on # the spherical surface. This is important in order to ensure # convergence to the proper value of the stress. Just refining the # initial mesh without repositioning of the nodes onto the spherical surface would mean that the # refinement would preserve a concave corner where in reality there is # none. The stress would be artificially raised and convergence would # not be guaranteed. nref = 0 for ref = 1:nref fens, fes = Q4refine(fens, fes) list = selectnode( fens, distance = 1.0 + 0.1 / 2^nref, from = [0.0 0.0], inflate = tolerance, ) fens.xyz[list, :] = FinEtools.MeshUtilModule.ontosphere(fens.xyz[list, :], 1.0) end ## # The mesh is extruded by sweeping around the axis of symmetry. # Only a single layer of elements is generated of internal angle # |angslice|. nLayers = 7 angslice = 5 * pi / 16 ## # First the mesh is extruded to a block whose third dimension # represents the angular coordinate. fens, fes = H8extrudeQ4( fens, fes, nLayers, (rz, k) -> [rz[1], rz[2], 0.0] - (k) / nLayers * [0.0, 0.0, angslice], ) ## # The mesh is now converted to the serendipity 20-node elements. # We will reposition the nodes later. fens, fes = H8toH20(fens, fes) ## # The boundary of the block is extracted and the faces of the mesh on # the bounding cross-sections are identified. Recall that this is just # about the topology (connectivity), the geometry does not matter at # this point. bfes = meshboundary(fes) f1l = selectelem(fens, bfes, box = [-Inf, Inf, -Inf, Inf, 0.0, 0.0], inflate = tolerance) f2l = selectelem( fens, bfes, box = [-Inf, Inf, -Inf, Inf, -angslice, -angslice], inflate = tolerance, ) ## # The block is now converted to the axially symmetric geometry by using the # third (angular) coordinate to sweep out an axially symmetric domain. The # ccoordinates of the nodes at this point are |rza|, radial distance, # Z-coordinate, angle. sweep(rza) = [ -rza[1] * sin(rza[3] + angslice / 2.0), rza[1] * cos(rza[3] + angslice / 2.0), rza[2], ] for j = 1:size(fens.xyz, 1) fens.xyz[j, :] = sweep(fens.xyz[j, :]) end ## # The nodes within the radial distance of 1.0 of the origin (i. e. # those on the spherical surface) are repositioned one more time to be # located on the spherical surface for sure. (Recall that we have # inserted additional nodes at the midpoints of the edges when the mesh # was converted to quadratic elements.) list = selectnode( fens, distance = 1.0 + 0.1 / 2^nref, from = [0.0 0.0 0.0], inflate = tolerance, ) fens.xyz[list, :] = FinEtools.MeshUtilModule.ontosphere(fens.xyz[list, :], 1.0) ## # We are ready to create the finite element model machine and to use # it to construct the global system for the displacements. ## # The material is created from the property object. Note that the # |alpha| attribute is the thermal expansion coefficient. # Create isotropic elastic material material = MatDeforElastIso(MR, 1.0, Ea, nua, alphaa) ## # The finite element model machine puts together the material, the # finite elements, and the integration rule. The Gauss quadrature with # 3x3x3 points gives good accuracy in this case. Compare it with 2x2x2 # quadrature to appreciate the difference. femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3, 3)), material) ## # The geometry nodal field is created from the node set. The # displacement field is created by cloning the geometry and then # zeroing out the nodal parameters. geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field nnodes(geom) ## # The EBCs are applied next. Only the axial (Z) degrees of freedom at # the bottom and top are fixed to zero. l1 = selectnode(fens, box = [-Inf Inf -Inf Inf 0.0 0.0], inflate = tolerance) setebc!(u, l1, true, 3, zeros(size(l1))) l1 = selectnode(fens, box = [-Inf Inf -Inf Inf 1.79 1.79], inflate = tolerance) setebc!(u, l1, true, 3, zeros(size(l1))) applyebc!(u) numberdofs!(u) ## # The restraints of the nodes on the bounding cross-sections in the direction # of the normal to the plane of the cross-section in the # circumferential direction are introduced using a penalty formulation. # For that purpose we introduce a finite element model machine for the # surface finite elements on the cross-sections. springcoefficient = 1.0 / ((abs(sigmaA) / 1.0e12) / Ea) fl = vcat(f1l, f2l) xsfemm = FEMMDeforWinkler(IntegDomain(subset(bfes, fl), GaussRule(2, 3))) ## # We create the temperature field using the formula $T=r+z$. dT = NodalField( reshape( sqrt.(fens.xyz[:, 1] .^ 2 + fens.xyz[:, 2] .^ 2) + fens.xyz[:, 3], size(fens.xyz, 1), 1, ), ) ## # And we are ready to assemble the system matrix. Both the elastic stiffness of # the hexahedral elements ... K = stiffness(femm, geom, u) # ... and the elastic stiffness of the springs on the contact surfaces of the cross-sections. H = surfacenormalspringstiffness(xsfemm, geom, u, springcoefficient, SurfaceNormal(3)) ## # The mechanical loads are computed from the thermal strains. F = thermalstrainloads(femm, geom, u, dT) ## # And the solution for the free degrees of freedom is obtained. solve_blocked!(u, K+H, F) ## # The stress is recovered from the stress calculated at the # integration points. fld = fieldfromintegpoints(femm, geom, u, dT, :Cauchy, 3) ## # Now that we have the nodal field for the axial stress, we can plot # the axial stress painted on the deformed geometry. # File = "LE11NAFEMS_H20_sigmaz.vtk" # vtkexportmesh(File, fens, fes; # scalars=[("sigmaz", fld.values)], vectors=[("u", u.values)]) # @async run(`"paraview.exe" $File`) # File = "LE11NAFEMS_H20_dT.vtk" # vtkexportmesh(File, fens, fes; scalars=dT.values,scalars_name ="dT", vectors=u.values,vectors_name="u") ## # The computed stress at the node that is located at the point A is # going to be now extracted from the nodal field for the stress. # Nodes at level Z=0.0 l1 = selectnode(fens, box = Float64[-Inf Inf -Inf Inf 0.0 0.0], inflate = tolerance) l2 = selectnode( fens, distance = 1.0 + 0.1 / 2^nref, from = Float64[0.0 0.0 0.0], inflate = tolerance, ) nA = intersect(l1, l2) sA = mean(fld.values[nA]) / phun("MEGA*Pa") sAn = mean(fld.values[nA]) / sigmaA # println("Stress at point A: $(sA) i. e. $( sAn*100 )% of reference value") @test abs(sA - (-83.7322285847101)) / (-83.7322285847101) < 1.e-3 ## Discussion # ## # The 3-D solution corresponds well to the 2-D axially symmetric model. # We also see good correspondence to other published solutions for # comparable finite element models. For instance, Abaqus 6.11 # Benchmark manual lists very similar numbers. end end using .sscratch_06112017 sscratch_06112017.test() module cookstress_1 using Test using FinEtools using FinEtools.AlgoBaseModule: solve_blocked!, matrix_blocked, vector_blocked using FinEtoolsDeforLinear using FinEtools.MeshExportModule import LinearAlgebra: norm, cholesky, cross function test() # println("Cook membrane problem, plane stress." ) t0 = time() E = 1.0 nu = 1.0 / 3 width = 48.0 height = 44.0 thickness = 1.0 free_height = 16.0 Mid_edge = [48.0, 52.0]# Location of tracked deflection magn = 1.0 / free_height# Magnitude of applied load convutip = 23.97 n = 32#*int(round(sqrt(170.)/2.)); # number of elements per side tolerance = minimum([width, height]) / n / 1000.0#Geometrical tolerance fens, fes = T3block(width, height, n, n) # Reshape into a trapezoidal panel for i = 1:count(fens) fens.xyz[i, 2] = fens.xyz[i, 2] + (fens.xyz[i, 1] / width) * (height - fens.xyz[i, 2] / height * (height - free_height)) end geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 2)) # displacement field l1 = selectnode(fens; box = [0, 0, -Inf, Inf], inflate = tolerance) setebc!(u, l1, 1, 0.0) setebc!(u, l1, 2, 0.0) applyebc!(u) numberdofs!(u) boundaryfes = meshboundary(fes) Toplist = selectelem(fens, boundaryfes, box = [width, width, -Inf, Inf], inflate = tolerance) el1femm = FEMMBase(IntegDomain(subset(boundaryfes, Toplist), GaussRule(1, 2))) fi = ForceIntensity([0.0, +magn]) F2 = distribloads(el1femm, geom, u, fi, 2) MR = DeforModelRed2DStress material = MatDeforElastIso(MR, 0.0, E, nu, 0.0) femm = FEMMDeforLinear(MR, IntegDomain(fes, TriRule(1)), material) K = stiffness(femm, geom, u) K_ff, K_fd = matrix_blocked(K, nfreedofs(u), nfreedofs(u))[(:ff, :fd)] F_f = vector_blocked(F2, nfreedofs(u))[:f] U_f = K_ff \ (F_f) scattersysvec!(u, U_f) nl = selectnode( fens, box = [Mid_edge[1], Mid_edge[1], Mid_edge[2], Mid_edge[2]], inflate = tolerance, ) theutip = zeros(Float64, 1, 2) gathervalues_asmat!(u, theutip, nl) # println("$(time()-t0) [s]; displacement =$(theutip[2]) as compared to converged $convutip") # File = "a.vtk" # vtkexportmesh(File, fes.conn, geom.values+u.values, # FinEtools.MeshExportModule.VTK.T3; vectors=[("u", u.values)]) @test abs(theutip[2] - 23.8155) / 23.8155 < 1.e-3 # FinEALE solution end end using .cookstress_1 cookstress_1.test() module scratch1_06092017 using FinEtools using FinEtools.AlgoBaseModule: solve_blocked!, matrix_blocked, vector_blocked using FinEtoolsDeforLinear using Test mutable struct MyIData c::Int r::Vector{Float64} s::Vector{Float64} end function test() # println("Thick pipe with internal pressure: axially symmetric model") #= This is a simple modification of the full three-dimensional simulation of the tutorial pub_thick_pipe that implements the axially-symmetric model reduction procedure. An infinitely long thick walled cylindrical pipe with inner boundary radius of 3 mm and outer boundary radius of 9 mm is subjected to an internal pressure of 1.0 MPa. A wedge with thickness of 2 mm and a 90-degree angle sector is considered for the finite element analysis. The material properties are taken as isotropic linear elastic with $E=1000$ MPa and $\nu=0.4999$ to represent nearly incompressible behavior. This problem has been proposed to by MacNeal and Harder as a test of an element's ability to represent the response of a nearly incompressible material. The plane-strain condition is assumed in the axial direction of the pipe which together with the radial symmetry confines the material in all but the radial direction and therefore amplifies the numerical difficulties associated with the confinement of the nearly incompressible material. There is an analytical solution to this problem. Timoshenko and Goodier presented the original solution of Lame in their textbook. We are going to compare with both the stress distribution (radial and hoop stresses) and the displacement of the inner cylindrical surface. References: - Macneal RH, Harder RL (1985) A proposed standard set of problems to test finite element accuracy. Finite Elements in Analysis and Design 1: 3-20. - Timoshenko S. and Goodier J. N., Theory of Elasticity, McGraw-Hill, 2nd ed., 1951. =# # Internal radius of the pipe. a = 3 * phun("MM") ## # External radius of the pipe. b = 9 * phun("MM") ## # Thickness of the slice. t = 2 * phun("MM") ## # Geometrical tolerance. tolerance = a / 10000.0 ## # Young's modulus and Poisson's ratio. E = 1000 * phun("MEGA*PA") nu = 0.499 ## # Applied pressure on the internal surface. press = 1.0 * phun("MEGA*PA") ## # Analytical solutions. Radial stress: radial_stress(r) = press * a .^ 2 / (b^2 - a^2) .* (1 - (b^2) ./ r .^ 2) ## # Circumferential (hoop) stress: hoop_stress(r) = press * a .^ 2 / (b^2 - a^2) .* (1 + (b^2) ./ r .^ 2) ## # Radial displacement: radial_displacement(r) = press * a^2 * (1 + nu) * (b^2 + r .^ 2 * (1 - 2 * nu)) / (E * (b^2 - a^2) .* r) ## # Therefore the radial displacement of the loaded surface will be: urex = radial_displacement(a) ## # The mesh parameters: The numbers of element edges axially, # and through the thickness of the pipe wall (radially). na = 1 nt = 10 ## # Note that the material object needs to be created with the proper # model-dimension reduction in effect. In this case that is the axial symmetry # assumption. MR = DeforModelRed2DAxisymm axisymmetric = true # Create the mesh and initialize the geometry. First we are going # to construct the block of elements with the first coordinate # corresponding to the thickness in the radial direction, and the second # coordinate is the thickness in the axial direction. fens, fes = Q8block(b - a, t, nt, na) # Extract the boundary and mark the finite elements on the # interior surface. bdryfes = meshboundary(fes) bcl = selectelem(fens, bdryfes, box = [0.0, 0.0, -Inf, Inf], inflate = tolerance) internal_fenids = connectednodes(subset(bdryfes, bcl)) # Now shape the block into the actual wedge piece of the pipe. for i = 1:count(fens) fens.xyz[i, :] = fens.xyz[i, :] + [a; 0.0] end # now we create the geometry and displacement fields geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 2)) # displacement field # The plane-strain condition in the axial direction is specified by selecting nodes # on the plane y=0 and y=t. l1 = selectnode(fens; box = [-Inf Inf 0.0 0.0], inflate = tolerance) setebc!(u, l1, true, 2, 0.0) l1 = selectnode(fens; box = [-Inf Inf t t], inflate = tolerance) setebc!(u, l1, true, 2, 0.0) applyebc!(u) numberdofs!(u) # The traction boundary condition is applied in the radial # direction. el1femm = FEMMBase(IntegDomain(subset(bdryfes, bcl), GaussRule(1, 3), axisymmetric)) fi = ForceIntensity([press; 0.0]) F2 = distribloads(el1femm, geom, u, fi, 2) # Property and material material = MatDeforElastIso(MR, E, nu) femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(2, 2), axisymmetric), material) K = stiffness(femm, geom, u) solve_blocked!(u, K, F2) # Transfer the solution of the displacement to the nodes on the # internal cylindrical surface and convert to # cylindrical-coordinate displacements there. uv = u.values[internal_fenids, :] # Report the relative displacement on the internal surface: # println("(Approximate/true displacement) at the internal surface: $( mean(uv[:,1])/urex*100 ) %") # Produce a plot of the radial stress component in the cylindrical # coordinate system. Note that this is the usual representation of # stress using nodal stress field. fld = fieldfromintegpoints(femm, geom, u, :Cauchy, 1) # File = "thick_pipe_sigmax.vtk" # vtkexportmesh(File, fens, fes; scalars=[("sigmax", fld.values)]) # Produce a plot of the solution components in the cylindrical # coordinate system. function inspector(idat::MyIData, elnum, conn, xe, out, xq) push!(idat.r, xq[1]) push!(idat.s, out[idat.c]) return idat end idat = MyIData(1, Int[], Int[]) idat = inspectintegpoints(femm, geom, u, collect(1:count(fes)), inspector, idat, :Cauchy) # using Plots # plotly() # # # Plot the analytical solution. # r = linearspace(a,b,100); # plot(r, radial_stress(r)) # # Plot the computed integration-point data # plot!(idat.r, idat.s, m=:circle, color=:red) # gui() @test abs(idat.r[1] - 0.003126794919243112) < 1.0e-9 @test abs(idat.s[1] - -910911.9777008593) < 1.0e-2 ## Discussion # ## # The axially symmetric model is clearly very effective # computationally, as the size is much reduced compared to the 3-D # model. In conjunction with uniform or selective reduced integration # it can be very accurate as well. end end using .scratch1_06092017 scratch1_06092017.test() module scratch2_06102017 using FinEtools using FinEtools.AlgoBaseModule: solve_blocked!, matrix_blocked, vector_blocked using FinEtoolsDeforLinear using Test import Arpack: eigs function test() # println(""" # % Vibration modes of unit cube of almost incompressible material. # % # % Reference: Puso MA, Solberg J (2006) A stabilized nodally integrated # % tetrahedral. International Journal for Numerical Methods in # % Engineering 67: 841-867.""") # t0 = time() E = 1 * phun("PA") nu = 0.499 rho = 1 * phun("KG/M^3") a = 1 * phun("M") b = a h = a n1 = 10# How many element edges per side? na = n1 nb = n1 nh = n1 neigvs = 20 # how many eigenvalues OmegaShift = (0.01 * 2 * pi)^2 MR = DeforModelRed3D fens, fes = H20block(a, b, h, na, nb, nh) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field numberdofs!(u) material = MatDeforElastIso(MR, rho, E, nu, 0.0) femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3, 2)), material) K = stiffness(femm, geom, u) femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3, 3)), material) M = mass(femm, geom, u) d, v, nev, nconv = eigs(K + OmegaShift * M, M; nev = neigvs, which = :SM, explicittransform = :none) d = d .- OmegaShift fs = real(sqrt.(complex(d))) / (2 * pi) # println("Eigenvalues: $fs [Hz]") # mode = 17 # scattersysvec!(u, v[:,mode]) # File = "unit_cube_modes.vtk" # vtkexportmesh(File, fens, fes; vectors=[("mode$mode", u.values)]) @test abs(fs[7] - 0.26259869196259) < 1.0e-5 end end using .scratch2_06102017 scratch2_06102017.test() module mxxxx1_06102017 using FinEtools using FinEtools.AlgoBaseModule: solve_blocked!, matrix_blocked, vector_blocked using FinEtoolsDeforLinear using FinEtoolsDeforLinear.AlgoDeforLinearModule import Statistics: mean using Test # println(""" # The initially twisted cantilever beam is one of the standard test # problems for verifying the finite-element accuracy [1]. The beam is # clamped at one end and loaded either with unit in-plane or # unit out-of-plane force at the other. The centroidal axis of the beam is # straight at the undeformed configuration, while its cross-sections are # twisted about the centroidal axis from 0 at the clamped end to pi/2 at # the free end. # # Reference: # Zupan D, Saje M (2004) On "A proposed standard set of problems to test # finite element accuracy": the twisted beam. Finite Elements in Analysis # and Design 40: 1445-1451. # """) function Twisted_beam(dir) E = 0.29e8 nu = 0.22 W = 1.1 L = 12.0 t = 0.32 nl = 2 nt = 1 nw = 1 ref = 7 p = 1 / W / t # Loading in the Z direction if dir == 2 loadv = [0; p; 0] dir = 2 uex = 0.001753248285256 # Harder: 1.754e-3; else loadv = [0; 0; p] dir = 3 uex = 0.005424534868469 # Harder: 5.424e-3; end # loadv = [0;0;p]; dir = 3; uex = 0.005424534868469; # Harder: 5.424e-3; # Loading in the Y direction #loadv = [0;p;0]; dir = 2; uex = 0.001753248285256; # Harder: 1.754e-3; tolerance = t / 1000 fens, fes = H20block(L, W, t, nl * ref, nw * ref, nt * ref) # Reshape into a twisted beam shape for i = 1:count(fens) a = fens.xyz[i, 1] / L * (pi / 2) y = fens.xyz[i, 2] - (W / 2) z = fens.xyz[i, 3] - (t / 2) fens.xyz[i, :] = [fens.xyz[i, 1], y * cos(a) - z * sin(a), y * sin(a) + z * cos(a)] end # Clamped end of the beam l1 = selectnode(fens; box = [0 0 -100 * W 100 * W -100 * W 100 * W], inflate = tolerance) e1 = FDataDict("node_list" => l1, "component" => 1, "displacement" => 0.0) e2 = FDataDict("node_list" => l1, "component" => 2, "displacement" => 0.0) e3 = FDataDict("node_list" => l1, "component" => 3, "displacement" => 0.0) # Traction on the opposite edge boundaryfes = meshboundary(fes) Toplist = selectelem( fens, boundaryfes, box = [L L -100 * W 100 * W -100 * W 100 * W], inflate = tolerance, ) el1femm = FEMMBase(IntegDomain(subset(boundaryfes, Toplist), GaussRule(2, 2))) flux1 = FDataDict("femm" => el1femm, "traction_vector" => loadv) # Make the region MR = DeforModelRed3D material = MatDeforElastIso(MR, 00.0, E, nu, 0.0) region1 = FDataDict( "femm" => FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3, 2)), material), ) # Make model data modeldata = FDataDict( "fens" => fens, "regions" => [region1], "essential_bcs" => [e1, e2, e3], "traction_bcs" => [flux1], ) # Call the solver modeldata = AlgoDeforLinearModule.linearstatics(modeldata) geom = modeldata["geom"] u = modeldata["u"] # Extract the solution nl = selectnode(fens, box = [L L -100 * W 100 * W -100 * W 100 * W], inflate = tolerance) nl1 = selectnode( fens, nearestto = fens.xyz[nl[1], :] + tolerance / 30 * rand(size(fens.xyz, 2)), ) @test nl[1] == nl1[1] theutip = mean(u.values[nl, :], dims = 1) # println("displacement = $(theutip[dir]) as compared to converged $uex") @test abs(theutip[dir] - uex) < 1.0e-5 # # Write out mesh with displacements # modeldata["postprocessing"] = FDataDict("file"=>"twisted_beam") # modeldata = AlgoDeforLinearModule.exportdeformation(modeldata) # # # Write out mesh with stresses # modeldata["postprocessing"] = FDataDict("file"=>"twisted_beam", # "quantity"=> :Cauchy, "component"=> :xy) # modeldata = AlgoDeforLinearModule.exportstress(modeldata) # # # Write out mesh with stresses # modeldata["postprocessing"] = FDataDict("file"=>"twisted_beam", # "quantity"=> :Cauchy, "component"=> :xz) # modeldata = AlgoDeforLinearModule.exportstress(modeldata) # # # Write out mesh with von Mises stresses # modeldata["postprocessing"] = FDataDict("file"=>"twisted_beam", # "quantity"=> :vm) # modeldata = AlgoDeforLinearModule.exportstress(modeldata) # # # Write out mesh with von Mises stresses, elementwise # modeldata["postprocessing"] = FDataDict("file"=>"twisted_beam-ew", # "quantity"=> :vm) # modeldata = AlgoDeforLinearModule.exportstresselementwise(modeldata) # # # Write out mesh with von Mises stresses, elementwise # modeldata["postprocessing"] = FDataDict("file"=>"twisted_beam-ew", # "quantity"=> :Cauchy, "component"=> :xz) # modeldata = AlgoDeforLinearModule.exportstresselementwise(modeldata) # # println("Done") true end function test() Twisted_beam(2) Twisted_beam(3) end end using .mxxxx1_06102017 mxxxx1_06102017.test() module mx_06112017 using FinEtools using FinEtools.AlgoBaseModule: solve_blocked!, matrix_blocked, vector_blocked using FinEtoolsDeforLinear using Test import Statistics: mean function test() ## Solid cylinder/taper/sphere—-temperature loading; quadratic brick mesh # ## Description # # The solid cylinder/taper/sphere axially-symmetric part represented in # Figure 1 is exposed to linearly varying temperature in the plane of the # cross-section. The temperature in the coordinates $r$ (the coordinate) # and $z$ (the axial ccoordinate) is given as $T=r+z$. The goal is to find # the mechanical stress at the point A induced by the thermal expansion. # ## # The part is constrained against axial expansion along the faces of HIH'I' # and ABA'B'. The Young's modulus is 210 GPa, the Poisson's ratio is .3, # and the coefficient of thermal expansion is 2.3e-4/degree Celsius. ## # This is a test recommended by the National Agency for Finite Element # Methods and Standards (U.K.): Test LE11 from NAFEMS Publication TNSB, # Rev. 3, “The Standard NAFEMS Benchmarks,” October 1990. # # Target solution: Compressive axial stress $\sigma_z$ = –105 MPa along # the circle passing through point A. ## # The toolkit has a helpful physical-units facility. The function phun() # allows use of basic units and basic # multipliers (for instance, mega). ## # Set the material properties. Ea = 210000 * phun("MEGA*PA")# Young's modulus nua = 0.3# Poisson ratio alphaa = 2.3e-4# coefficient of thermal expansion ## # This is the target stress value. sigmaA = -105 * phun("MEGA*PA") ## # The mesh will be created in a very coarse representation from the # key points in the drawing. The first coordinate is radial, the second coordinate is axial. rz = [ 1.0 0.0#A 1.4 0.0#B 0.995184726672197 0.098017140329561 1.393258617341076 0.137223996461385 0.980785 0.195090# 1.37309939 0.27312645 0.956940335732209 0.290284677254462 1.339716470025092 0.406398548156247 0.9238795 0.38268#C 1.2124 0.7#D 0.7071 0.7071#E 1.1062 1.045#F 0.7071 (0.7071+1.79)/2#(E+H)/2 1.0 1.39#G 0.7071 1.79#H 1.0 1.79#I ] * phun("M") tolerance = 1.e-6 * phun("M") ## # Note that the material object needs to be created with the proper # model-dimension reduction in mind. In this case that is the fully three-dimensional solid. MR = DeforModelRed3D # This is the quadrilateral mesh of the cross-section. It will be modified and # refined as we go. fens = FENodeSet(rz) fes = FESetQ4([1 2 4 3; 3 4 6 5; 5 6 8 7; 7 8 10 9; 9 10 12 11; 11 12 14 13; 13 14 16 15]) ## # If needed, the initial mesh can be refined by bisection. Just set # `nref` greater than zero. Note that the nodes located along the # edges are moved onto the spherical surface when they _should be_ on # the spherical surface. This is important in order to ensure # convergence to the proper value of the stress. Just refining the # initial mesh without repositioning of the nodes onto the spherical surface would mean that the # refinement would preserve a concave corner where in reality there is # none. The stress would be artificially raised and convergence would # not be guaranteed. nref = 0 for ref = 1:nref fens, fes = Q4refine(fens, fes) list = selectnode( fens, distance = 1.0 + 0.1 / 2^nref, from = [0.0 0.0], inflate = tolerance, ) fens.xyz[list, :] = FinEtools.MeshUtilModule.ontosphere(fens.xyz[list, :], 1.0) end ## # The mesh is extruded by sweeping around the axis of symmetry. # Only a single layer of elements is generated of internal angle # |angslice|. nLayers = 7 angslice = 5 * pi / 16 ## # First the mesh is extruded to a block whose third dimension # represents the angular coordinate. fens, fes = H8extrudeQ4( fens, fes, nLayers, (rz, k) -> [rz[1], rz[2], 0.0] - (k) / nLayers * [0.0, 0.0, angslice], ) ## # The mesh is now converted to the serendipity 20-node elements. # We will reposition the nodes later. fens, fes = H8toH20(fens, fes) ## # The boundary of the block is extracted and the faces of the mesh on # the bounding cross-sections are identified. Recall that this is just # about the topology (connectivity), the geometry does not matter at # this point. bfes = meshboundary(fes) f1l = selectelem(fens, bfes, box = [-Inf, Inf, -Inf, Inf, 0.0, 0.0], inflate = tolerance) f2l = selectelem( fens, bfes, box = [-Inf, Inf, -Inf, Inf, -angslice, -angslice], inflate = tolerance, ) ## # The block is now converted to the axially symmetric geometry by using the # third (angular) coordinate to sweep out an axially symmetric domain. The # ccoordinates of the nodes at this point are |rza|, radial distance, # Z-coordinate, angle. sweep(rza) = [ -rza[1] * sin(rza[3] + angslice / 2.0), rza[1] * cos(rza[3] + angslice / 2.0), rza[2], ] for j = 1:size(fens.xyz, 1) fens.xyz[j, :] = sweep(fens.xyz[j, :]) end ## # The nodes within the radial distance of 1.0 of the origin (i. e. # those on the spherical surface) are repositioned one more time to be # located on the spherical surface for sure. (Recall that we have # inserted additional nodes at the midpoints of the edges when the mesh # was converted to quadratic elements.) list = selectnode( fens, distance = 1.0 + 0.1 / 2^nref, from = [0.0 0.0 0.0], inflate = tolerance, ) fens.xyz[list, :] = FinEtools.MeshUtilModule.ontosphere(fens.xyz[list, :], 1.0) ## # We are ready to create the finite element model machine and to use # it to construct the global system for the displacements. ## # The material is created from the property object. Note that the # |alpha| attribute is the thermal expansion coefficient. # Create isotropic elastic material material = MatDeforElastIso(MR, 1.0, Ea, nua, alphaa) ## # The finite element model machine puts together the material, the # finite elements, and the integration rule. The Gauss quadrature with # 3x3x3 points gives good accuracy in this case. Compare it with 2x2x2 # quadrature to appreciate the difference. femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3, 3)), material) ## # The geometry nodal field is created from the node set. The # displacement field is created by cloning the geometry and then # zeroing out the nodal parameters. geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field nnodes(geom) ## # The EBCs are applied next. Only the axial (Z) degrees of freedom at # the bottom and top are fixed to zero. l1 = selectnode(fens, box = [-Inf Inf -Inf Inf 0.0 0.0], inflate = tolerance) setebc!(u, l1, true, 3, zeros(size(l1))) l1 = selectnode(fens, box = [-Inf Inf -Inf Inf 1.79 1.79], inflate = tolerance) setebc!(u, l1, true, 3, zeros(size(l1))) applyebc!(u) numberdofs!(u) ## # The restraints of the nodes on the bounding cross-sections in the direction # of the normal to the plane of the cross-section in the # circumferential direction are introduced using a penalty formulation. # For that purpose we introduce a finite element model machine for the # surface finite elements on the cross-sections. springcoefficient = 1.0 / ((abs(sigmaA) / 1.0e12) / Ea) fl = vcat(f1l, f2l) xsfemm = FEMMDeforWinkler(IntegDomain(subset(bfes, fl), GaussRule(2, 3))) ## # We create the temperature field using the formula $T=r+z$. dT = NodalField( reshape( sqrt.(fens.xyz[:, 1] .^ 2 + fens.xyz[:, 2] .^ 2) + fens.xyz[:, 3], size(fens.xyz, 1), 1, ), ) ## # And we are ready to assemble the system matrix. Both the elastic stiffness of # the hexahedral elements ... K = stiffness(femm, geom, u) # ... and the elastic stiffness of the springs on the contact surfaces of the cross-sections. H = surfacenormalspringstiffness(xsfemm, geom, u, springcoefficient, SurfaceNormal(3)) ## # The mechanical loads are computed from the thermal strains. F = thermalstrainloads(femm, geom, u, dT) ## # And the solution for the free degrees of freedom is obtained. K_ff, K_fd = matrix_blocked(K, nfreedofs(u), nfreedofs(u))[(:ff, :fd)] H_ff, H_fd = matrix_blocked(H, nfreedofs(u), nfreedofs(u))[(:ff, :fd)] F_f = vector_blocked(F, nfreedofs(u))[:f] U_d = gathersysvec(u, :d) U_f = (K_ff + H_ff) \ F_f scattersysvec!(u, U_f) ## # The stress is recovered from the stress calculated at the # integration points. fld = fieldfromintegpoints(femm, geom, u, dT, :Cauchy, 3) ## # Now that we have the nodal field for the axial stress, we can plot # the axial stress painted on the deformed geometry. # File = "LE11NAFEMS_H20_sigmaz.vtk" # vtkexportmesh(File, fens, fes; # scalars=[("sigmaz", fld.values)], vectors=[("u", u.values)]) # @async run(`"paraview.exe" $File`) # File = "LE11NAFEMS_H20_dT.vtk" # vtkexportmesh(File, fens, fes; scalars=dT.values,scalars_name ="dT", vectors=u.values,vectors_name="u") ## # The computed stress at the node that is located at the point A is # going to be now extracted from the nodal field for the stress. # Nodes at level Z=0.0 l1 = selectnode(fens, box = Float64[-Inf Inf -Inf Inf 0.0 0.0], inflate = tolerance) l2 = selectnode( fens, distance = 1.0 + 0.1 / 2^nref, from = Float64[0.0 0.0 0.0], inflate = tolerance, ) nA = intersect(l1, l2) sA = mean(fld.values[nA]) / phun("MEGA*Pa") sAn = mean(fld.values[nA]) / sigmaA # println("Stress at point A: $(sA) i. e. $( sAn*100 )% of reference value") @test abs(sA - (-83.7322285847101)) < 1e-4 ## Discussion # ## # The 3-D solution corresponds well to the 2-D axially symmetric model. # We also see good correspondence to other published solutions for # comparable finite element models. For instance, Abaqus 6.11 # Benchmark manual lists very similar numbers. end end using .mx_06112017 mx_06112017.test() module my_06112017 using FinEtools using FinEtools.AlgoBaseModule: solve_blocked!, matrix_blocked, vector_blocked using FinEtoolsDeforLinear using Test function test() # NAFEMS LE11 benchmark with Q8 elements. # # This is a test recommended by the National Agency for Finite Element # # Methods and Standards (U.K.): Test LE11 from NAFEMS Publication TNSB, # # Rev. 3, “The Standard NAFEMS Benchmarks,” October 1990. # # # # Target solution: Direct stress, = –105 MPa at point A. #function LE11NAFEMS() # Parameters: Ea = 210000 * phun("MEGA*Pa") nua = 0.3 alphaa = 2.3e-4 # thermal expansion coefficient sigmaA = -105 * phun("MEGA*Pa") nref = 1 # how many times should we refine the mesh? X = [ 1.0 0.0#A 1.4 0.0#B 0.995184726672197 0.098017140329561 1.393258617341076 0.137223996461385 0.980785 0.195090# 1.37309939 0.27312645 0.956940335732209 0.290284677254462 1.339716470025092 0.406398548156247 0.9238795 0.38268#C 1.2124 0.7#D 0.7071 0.7071#E 1.1062 1.045#F 0.7071 (0.7071+1.79)/2#(E+H)/2 1.0 1.39#G 0.7071 1.79#H 1.0 1.79#I ] * phun("M") tolerance = 1.e-6 * phun("M") ## # Note that the material object needs to be created with the proper # model-dimension reduction in mind. In this case that is the axial symmetry # assumption. MR = DeforModelRed2DAxisymm fens = FENodeSet(X) fes = FESetQ4([1 2 4 3; 3 4 6 5; 5 6 8 7; 7 8 10 9; 9 10 12 11; 11 12 14 13; 13 14 16 15]) for ref = 1:nref fens, fes = Q4refine(fens, fes) list = selectnode( fens, distance = 1.0 + 0.1 / 2^nref, from = [0.0 0.0], inflate = tolerance, ) fens.xyz[list, :] = FinEtools.MeshUtilModule.ontosphere(fens.xyz[list, :], 1.0) end fens, fes = Q4toQ8(fens, fes) list = selectnode( fens, distance = 1.0 + 0.1 / 2^nref, from = [0.0 0.0], inflate = tolerance, ) fens.xyz[list, :] = FinEtools.MeshUtilModule.ontosphere(fens.xyz[list, :], 1.0) # File = "mesh.vtk" # vtkexportmesh(File, fens, fes) # now we create the geometry and displacement fields geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 2)) # displacement field # Apply EBC's l1 = selectnode(fens, box = [-Inf Inf 0 0], inflate = tolerance) setebc!(u, l1, true, 2, 00.0) l1 = selectnode(fens, box = [-Inf Inf 1.79 1.79], inflate = tolerance) setebc!(u, l1, true, 2, 00.0) applyebc!(u) numberdofs!(u) # Temperature field dT = NodalField(reshape(fens.xyz[:, 1] + fens.xyz[:, 2], size(fens.xyz, 1), 1)) # Property and material material = MatDeforElastIso(MR, 0.0, Ea, nua, alphaa) femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(2, 3), true), material) K = stiffness(femm, geom, u) F = thermalstrainloads(femm, geom, u, dT) #K = cholesky(K) K_ff, K_fd = matrix_blocked(K, nfreedofs(u), nfreedofs(u))[(:ff, :fd)] F_f = vector_blocked(F, nfreedofs(u))[:f] U_f = (K_ff) \ F_f scattersysvec!(u, U_f) nA = selectnode(fens, box = Float64[1.0 1.0 0.0 0.0], inflate = tolerance) fld = fieldfromintegpoints(femm, geom, u, dT, :Cauchy, 2) File = "LE11NAFEMS_Q8_sigmay.vtk" vtkexportmesh( File, fens, fes; scalars = [("sigmay", fld.values)], vectors = [("u", u.values)], ) try rm(File) catch end sA = fld.values[nA] / phun("MEGA*Pa") sAn = fld.values[nA] / sigmaA # println("Stress at point A: $(sA) i. e. $( sAn*100 )% of reference value") @test abs(sA[1] - (-93.8569)) < 1e-3 fen2fe = FENodeToFEMap(fes, nnodes(geom)) function inspector(idat, elnum, conn, xe, out, xq) # println("loc = $( xq ) : $( transpose(out)/phun("MEGA*Pa") )") return idat end inspectintegpoints( femm, geom, u, dT, fen2fe.map[nA[1]], inspector, []; quantity = :Cauchy, ) #finealemesh(fens,fes,"meshmfile") # end # LE11NAFEMS() end end using .my_06112017 my_06112017.test()
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
10509
module mbaruniax1 using FinEtools using FinEtoolsDeforLinear using FinEtools.FENodeSetModule using FinEtools.MeshExportModule using FinEtoolsDeforLinear.MatDeforLinearElasticModule: tangentmoduli!, update!, thermalstrain! using Test import LinearAlgebra: norm, cholesky, cross function test() E = 30e6 * phun("psi") # Young's modulus alpha = 5.5e-6 * phun("in") / phun("in") / phun("F") for nu in [0.0 0.3 0.45] MR = DeforModelRed1DStress material = MatDeforElastIso(MR, 0.0, E, nu, alpha) D = fill(0.0, 1, 1) t, dt, loc, label = 0.0, 0.0, [0.0 0.0 0.0], 0 tangentmoduli!(material, D, t, dt, loc, label) @test D[1, 1] ≈ E end true end end using .mbaruniax1 mbaruniax1.test() module mbaruniax2 using FinEtools using FinEtoolsDeforLinear using FinEtools.FENodeSetModule using FinEtools.MeshExportModule using FinEtoolsDeforLinear.MatDeforLinearElasticModule: tangentmoduli!, update!, thermalstrain! using Test import LinearAlgebra: norm, cholesky, cross function test() E = 30e6 * phun("psi") # Young's modulus alpha = 5.5e-6 * phun("in") / phun("in") / phun("F") for nu in [0.0 0.3 0.45] MR = DeforModelRed1DStrain material = MatDeforElastIso(MR, 0.0, E, nu, alpha) D = fill(0.0, 1, 1) t, dt, loc, label = 0.0, 0.0, [0.0 0.0 0.0], 0 tangentmoduli!(material, D, t, dt, loc, label) lambda = E * nu / (1 + nu) / (1 - 2 * (nu)) mu = E / 2.0 / (1 + nu) @test D[1, 1] ≈ lambda + 2 * mu end true end end using .mbaruniax2 mbaruniax2.test() module mTEST13H_in_fluid using FinEtools using FinEtools.AlgoBaseModule: matrix_blocked, vector_blocked using FinEtoolsDeforLinear using LinearAlgebra using Arpack using Test function TEST13H_hva() # Harmonic forced vibration problem is solved for a homogeneous square plate, # simply-supported on the circumference. # This is the TEST 13H from the Abaqus v 6.12 Benchmarks manual. # The test is recommended by the National Agency for Finite Element Methods and Standards (U.K.): # Test 13 from NAFEMS “Selected Benchmarks for Forced Vibration,” R0016, March 1993. # # # The plate is discretized with hexahedral solid elements. The simple support # condition is approximated by distributed rollers on the boundary. # Because only the out of plane displacements are prevented, the structure # has three rigid body modes in the plane of the plate. # # # The nonzero benchmark frequencies are (in hertz): 2.377, 5.961, 5.961, # 9.483, 12.133, 12.133, 15.468, 15.468 [Hz]. # println(""" Homogeneous square plate, simply-supported on the circumference, # from the test 13 from NAFEMS “Selected Benchmarks for Forced Vibration,” # R0016, March 1993. The nonzero benchmark frequencies are (in hertz): 2.377, # 5.961, 5.961, 9.483, 12.133, 12.133, 15.468, 15.468 [Hz]. # This problem is extended by including fluid-induced damping by the # surrounding air using a matrix expressing the ABC with dampers along the # boundary. # """) # t0 = time() E = 200 * phun("GPa")# Young's modulus nu = 0.3# Poisson ratio rho = 8000 * phun("KG*M^-3")# mass density qmagn = 100.0 * phun("Pa") L = 10.0 * phun("M") # side of the square plate t = 0.05 * phun("M") # thickness of the square plate nL = 16 nt = 4 tolerance = t / nt / 100 # neigvs = 11; # OmegaShift = (2*pi*0.5) ^ 2; # to resolve rigid body modes frequencies = vcat(linearspace(0.0, 2.377, 20), linearspace(2.377, 15.0, 70)) rho_fluid = 1.3 * phun("kg*m^3") c_fluid = 341 * phun("m/s") # Compute the parameters of Rayleigh damping. For the two selected # frequencies we have the relationship between the damping ratio and # the Rayleigh parameters # $\xi_m=a_0/\omega_m+a_1\omega_m$ # where $m=1,2$. Solving for the Rayleigh parameters $a_0,a_1$ yields: zeta1 = 0.02 zeta2 = 0.02 o1 = 2 * pi * 2.377 o2 = 2 * pi * 15.468 Rayleigh_mass = 2 * (o1 * o2) / (o2^2 - o1^2) * (o2 * zeta1 - o1 * zeta2)# a0 Rayleigh_stiffness = 2 * (o1 * o2) / (o2^2 - o1^2) * (-1 / o2 * zeta1 + 1 / o1 * zeta2)# a1 Rayleigh_mass = Rayleigh_mass Rayleigh_stiffness = Rayleigh_stiffness MR = DeforModelRed3D fens, fes = H8block(L, L, t, nL, nL, nt) geom = NodalField(fens.xyz) u = NodalField(zeros(Complex{Float64}, size(fens.xyz, 1), 3)) # displacement field nl = selectnode(fens, box = [0.0 0.0 -Inf Inf -Inf Inf], inflate = tolerance) setebc!(u, nl, true, 3) nl = selectnode(fens, box = [L L -Inf Inf -Inf Inf], inflate = tolerance) setebc!(u, nl, true, 3) nl = selectnode(fens, box = [-Inf Inf 0.0 0.0 -Inf Inf], inflate = tolerance) setebc!(u, nl, true, 3) nl = selectnode(fens, box = [-Inf Inf L L -Inf Inf], inflate = tolerance) setebc!(u, nl, true, 3) applyebc!(u) numberdofs!(u) # println("nfreedofs = $(u.nfreedofs)") material = MatDeforElastIso(MR, rho, E, nu, 0.0) femm = FEMMDeforLinearMSH8(MR, IntegDomain(fes, GaussRule(3, 2)), material) femm = associategeometry!(femm, geom) K = stiffness(femm, geom, u) femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3, 3)), material) M = mass(femm, geom, u) C = Rayleigh_mass * M + Rayleigh_stiffness * K bfes = meshboundary(fes) sfemm = FEMMDeforSurfaceDamping(IntegDomain(bfes, GaussRule(2, 3))) impedance = rho_fluid * c_fluid D = dampingABC(sfemm, geom, u, impedance, SurfaceNormal(3)) # if true # t0 = time() # d,v,nev,nconv = eigs(K+OmegaShift*M, M; nev=neigvs, which=:SM) # d = d - OmegaShift; # fs = real(sqrt.(complex(d)))/(2*pi) # println("Reference Eigenvalues: $fs [Hz]") # println("eigs solution ($(time() - t0) sec)") # end bdryfes = meshboundary(fes) topbfl = selectelem(fens, bdryfes, facing = true, direction = [0.0 0.0 1.0]) el1femm = FEMMBase(IntegDomain(subset(bdryfes, topbfl), GaussRule(2, 2))) function pfun(forceout::Vector{T}, XYZ, tangents, feid, qpid) where {T} forceout .= [0.0, 0.0, -qmagn] return forceout end fi = ForceIntensity(Float64, 3, pfun) F = distribloads(el1femm, geom, u, fi, 2) K_ff = matrix_blocked(K, nfreedofs(u), nfreedofs(u))[:ff] M_ff = matrix_blocked(M, nfreedofs(u), nfreedofs(u))[:ff] D_ff = matrix_blocked(D, nfreedofs(u), nfreedofs(u))[:ff] C_ff = matrix_blocked(C, nfreedofs(u), nfreedofs(u))[:ff] F_f = vector_blocked(F, nfreedofs(u))[:f] U_d = gathersysvec(u, :d) U1 = zeros(Complex{Float64}, nfreedofs(u), length(frequencies)) for k in eachindex(frequencies) frequency = frequencies[k] omega = 2 * pi * frequency U1[:, k] = (-omega^2 * M_ff + 1im * omega * (C_ff + D_ff) + K_ff) \ F_f end midpoint = selectnode(fens, box = [L / 2 L / 2 L / 2 L / 2 0 0], inflate = tolerance) midpointdof = u.dofnums[midpoint, 3] umidAmpl = abs.(U1[midpointdof, :]) / phun("MM") @test abs(maximum(umidAmpl) - 9.56807e+00) < 1.0e-3 * 9.56807e+00 umidReal = real.(U1[midpointdof, :]) / phun("MM") umidImag = imag.(U1[midpointdof, :]) / phun("MM") umidPhase = atan.(umidImag, umidReal) / pi * 180 true end # TEST13H_hva TEST13H_hva() end # module module mdistorted_block_infsup1 using FinEtools using FinEtools.AlgoBaseModule: matrix_blocked, vector_blocked using FinEtoolsDeforLinear using FinEtoolsDeforLinear.AlgoDeforLinearModule using FinEtools.MeshExportModule using FinEtoolsDeforLinear.FEMMDeforLinearBaseModule: infsup_gh, infsup_sh using Test import LinearAlgebra: norm, cholesky, I, eigen # using UnicodePlots function distorted_block_infsup_T4() lambdatol = sqrt(1e8 * eps(1.0)) E = 1000.0 nu = 0.24 parshiftmult = 0.002 A = [1.44 -0.741 -0.53; -0.626 1.589 -0.913; -0.55 0.43 1.756] + 1.0I lambdamin = Float64[] h = Float64[] for ne in [2, 3, 4] Length, Width, Height, nL, nW, nH, orientation::Symbol = (6.0, 6.0, 6.0, ne, ne, ne, :a) fens, fes = T4block(Length, Width, Height, nL, nW, nH, orientation::Symbol) # fens, fes = T4toT10(fens, fes) # @show connasarray(fes) for i = 1:count(fens) fens.xyz[i, :] = fens.xyz[i, :] + vec(reshape(fens.xyz[i, :], 1, 3) * A) end # @show fens.xyz # File = "minfsuptest1.vtk" # vtkexportmesh(File, fens, fes) # try rm(File); catch end MR = DeforModelRed3D material = MatDeforElastIso(MR, E, nu) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field bfes = meshboundary(fes) l1 = connectednodes(bfes) setebc!(u, l1, true, 1, 0.0) setebc!(u, l1, true, 2, 0.0) setebc!(u, l1, true, 3, 0.0) numberdofs!(u) femm = FEMMDeforLinear(MR, IntegDomain(fes, TetRule(1)), material) Gh = infsup_gh(femm, geom, u) femm = FEMMDeforLinear(MR, IntegDomain(fes, TetRule(1)), material) Sh = infsup_sh(femm, geom, u) G_ff = matrix_blocked(Gh, nfreedofs(u), nfreedofs(u))[:ff] S_ff = matrix_blocked(Sh, nfreedofs(u), nfreedofs(u))[:ff] lambda, modes = eigen(Matrix(G_ff), Matrix(S_ff)) # @show lambda abslambda = real.(filter(y -> !isnan(y), lambda)) ix = findall(y -> y < 0.0, abslambda) if !isempty(ix) abslambda[ix] .= 0 end abslambda = sqrt.(sort(abslambda)) ix = findall(y -> y > 0.0, abslambda) # a = lineplot(1:length(abslambda[ix]), log.(abslambda[ix]), name = "infsup", xlabel = "eigenvalue", ylabel = "log(eigenvalue)", canvas = DotCanvas) # display(a) ix = findall(y -> y >= lambdatol, abslambda) if isempty(ix) @error "Bad guess of the number of eigenvalues" end push!(lambdamin, abslambda[ix[1]]) push!(h, 1.0 / (count(fens))^(1 / 3)) end # @show lambdamin @test norm(lambdamin - [2.70777e-01, 1.79116e-01, 1.32893e-01]) < 1.0e-3 # a = lineplot(log.(h), log.(lambdamin), name = "infsup", xlabel = "log(Element Size)", ylabel = "log(minimum eigenvalue)", canvas = DotCanvas) # display(a) # @test norm(lambdamin - [0.262065, 0.1709, 0.126159, 0.100228, 0.0828139]) / norm(lambdamin) <= 1.0e-4 end distorted_block_infsup_T4() end # module
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
10065
module test_alum_cyl_mode_examples using FinEtools using FinEtools.MeshExportModule using FinEtoolsDeforLinear using LinearAlgebra using Arpack using Test # Mesh alum_cyl.inp # Abaqus with the Standard isoparametric C3D4 tetrahedron: C3D4 = [ 1 0 2 0 3 6.63586E-005 4 0.000171053 5 0.000211299 6 0.000244378 7 2564.63 8 2568.09 9 2597.26 10 4094.38 11 4714.36 12 4717.19 13 5181.98 14 6865.13 15 6868.17 16 6962.86 17 6965.67 18 7024.97 19 7029.44 20 7108.54 ] # Abaqus with the standard quadratic tetrahedron: C3D10 = [ 1 0 2 0 3 0 4 0.000139365 5 0.000221551 6 0.000291805 7 2546.81 8 2546.81 9 2560.69 10 4100 11 4693.55 12 4693.56 13 5121.57 14 6841.21 15 6841.24 16 6914.22 17 6914.23 18 6950.64 19 6950.66 20 7000.64 ] neigvs = 24 function alum_cyl_mode_esnice_t4() E = 70000 * phun("MPa") nu = 0.33 rho = 2700 * phun("KG/M^3") radius = 0.5 * phun("ft") OmegaShift = (10.0 * 2 * pi)^2 MR = DeforModelRed3D output = import_ABAQUS(joinpath(@__DIR__, "alum_cyl.inp")) fens, fes = output["fens"], output["fesets"][1] fens.xyz .*= phun("mm") # The input is provided in SI(mm) units fens, fes = T10toT4(fens, fes) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field numberdofs!(u) # println("Number of degrees of freedom: $(nfreedofs(u))") material = MatDeforElastIso(MR, rho, E, nu, 0.0) femm = FEMMDeforLinearESNICET4(MR, IntegDomain(fes, NodalSimplexRule(3)), material) associategeometry!(femm, geom) K = stiffness(femm, geom, u) M = mass(femm, geom, u) d, v, nev, nconv = eigs( Symmetric(K + OmegaShift * M), Symmetric(M); nev = neigvs, which = :SM, explicittransform = :none, ) d = d .- OmegaShift fs = real(sqrt.(complex(d))) / (2 * pi) # println("Eigenvalues: $fs [Hz]") # @show v' * M * v @test norm( fs - [ 0.00000e+00, 0.00000e+00, 0.00000e+00, 5.54160e-06, 8.64750e-05, 1.18749e-04, 2.49815e+03, 2.49888e+03, 2.51331e+03, 4.08265e+03, 4.58599e+03, 4.58642e+03, 4.98701e+03, 6.64802e+03, 6.64848e+03, 6.67904e+03, 6.68216e+03, 6.77789e+03, 6.78059e+03, 6.79936e+03, 6.80400e+03, 7.38167e+03, 7.45600e+03, 7.47771e+03, ], ) < 0.01 true end # alum_cyl_modes function alum_cyl_mode_esnice_h8() E = 70000 * phun("MPa") nu = 0.33 rho = 2700 * phun("KG/M^3") radius = 0.5 * phun("ft") OmegaShift = (10.0 * 2 * pi)^2 neigvs = 15 MR = DeforModelRed3D fens, fes = H8cylindern(radius, 4 * radius, 7, 28) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field numberdofs!(u) # println("Number of degrees of freedom: $(nfreedofs(u))") material = MatDeforElastIso(MR, rho, E, nu, 0.0) femm = FEMMDeforLinearESNICEH8(MR, IntegDomain(fes, NodalTensorProductRule(3)), material) associategeometry!(femm, geom) K = stiffness(femm, geom, u) M = mass(femm, geom, u) d, v, nev, nconv = eigs( Symmetric(K + OmegaShift * M), Symmetric(M); nev = neigvs, which = :SM, explicittransform = :none, ) d = d .- OmegaShift fs = real(sqrt.(complex(d))) / (2 * pi) # println("Eigenvalues: $fs [Hz]") # @show v' * M * v @test norm( fs - [ 0.00000e+00, 0.00000e+00, 0.00000e+00, 0.00000e+00, 0.00000e+00, 0.00000e+00, 2.55691e+03, 2.55691e+03, 2.56007e+03, 4.09870e+03, 4.68757e+03, 4.68757e+03, 5.10331e+03, 6.81594e+03, 6.81594e+03, ], ) < 0.001 * norm(fs) true end # alum_cyl_modes alum_cyl_mode_esnice_t4() alum_cyl_mode_esnice_h8() # alum_cyl_mode_esnice_t4_ssit() # alum_cyl_mode_esnice_t4_ssit2() end # module nothing module imspectrum01 using FinEtools using FinEtools.MeshExportModule using FinEtoolsDeforLinear using LinearAlgebra using Arpack using Test mesh() = ( FinEtools.FENodeSetModule.FENodeSet( [ 0.0 0.0 0.0 1.0 0.0 0.0 1.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 1.0 0.0 1.0 1.0 1.0 1.0 0.0 1.0 1.0 ], ), FinEtools.FESetModule.FESetH8(reshape([1, 2, 3, 4, 5, 6, 7, 8], 1, 8)), ) xyzperturbation = [ 0.0767656 -0.983206 -0.14343 0.45767 0.981479 0.450997 -0.295854 0.542922 0.321333 -0.85204 -0.97824 -0.772874 -0.0539756 0.994907 0.822798 0.447173 0.528742 0.0445352 -0.468417 0.00673427 0.953151 -0.898513 -0.915871 0.933237 ] ./ 15.0 function bend_hex_spectrum_im() aspect = 1.0 fens, fes = mesh() fens.xyz += xyzperturbation fens.xyz[:, 1] .*= aspect E = 1.0 nu = 0.3 MR = DeforModelRed3D material = MatDeforElastIso(MR, E, nu) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field applyebc!(u) numberdofs!(u) femm = FEMMDeforLinearIMH8(MR, IntegDomain(fes, GaussRule(3, 2)), material, 9) vol = integratefunction(femm, geom, x -> 1.0; m = 3) associategeometry!(femm, geom) K = stiffness(femm, geom, u) D = eigen(Matrix(K)) @test norm( vec(D.values) - [ -4.58455e-17 -4.30053e-17 -2.66920e-17 -5.87832e-18 5.79305e-18 1.75741e-16 5.75036e-02 7.27270e-02 1.13685e-01 1.17365e-01 1.23125e-01 1.24759e-01 1.31453e-01 1.34094e-01 2.26511e-01 2.48770e-01 2.52006e-01 2.61382e-01 3.66797e-01 3.67082e-01 3.99538e-01 4.06751e-01 4.11962e-01 1.27359e+00 ], ) < 0.001 # savecsv("bend_hex_spectrum_im-aspect=$(aspect).csv", eigenvalues = vec(D.values)) # @pgf _a = SemiLogYAxis({ # xlabel = "Mode [ND]", # ylabel = "Generalized stiffness [N/m]", # grid="major", # legend_pos = "south east", # title = "Hexahedron spectrum, aspect=$(aspect)" # }, # Plot({"red", mark="triangle"}, Table([:x => vec(7:size(K, 1)), :y => vec(D.values[7:end])])), LegendEntry("IM")) # display(_a) # File = "bend_hex_spectrum_im.vtk" # vectors = [("ev_$(idx)_$(round(D.values[idx] * 10000) / 10000)", deepcopy(scattersysvec!(u, D.vectors[:,idx]).values)) for idx in 1:length(D.values)] # vtkexportmesh(File, fens, fes; vectors=vectors) # @async run(`"paraview.exe" $File`) true end bend_hex_spectrum_im() end module imspectrum02 using FinEtools using FinEtools.MeshExportModule using FinEtoolsDeforLinear using LinearAlgebra using Arpack using Test mesh() = ( FinEtools.FENodeSetModule.FENodeSet( [ 0.0 0.0 0.0 1.0 0.0 0.0 1.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 1.0 0.0 1.0 1.0 1.0 1.0 0.0 1.0 1.0 ], ), FinEtools.FESetModule.FESetH8(reshape([1, 2, 3, 4, 5, 6, 7, 8], 1, 8)), ) xyzperturbation = [ 0.0767656 -0.983206 -0.14343 0.45767 0.981479 0.450997 -0.295854 0.542922 0.321333 -0.85204 -0.97824 -0.772874 -0.0539756 0.994907 0.822798 0.447173 0.528742 0.0445352 -0.468417 0.00673427 0.953151 -0.898513 -0.915871 0.933237 ] ./ 15.0 function bend_hex_spectrum_im() aspect = 1.0 fens, fes = mesh() fens.xyz += xyzperturbation fens.xyz[:, 1] .*= aspect E = 1.0 nu = 0.3 MR = DeforModelRed3D material = MatDeforElastIso(MR, E, nu) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field applyebc!(u) numberdofs!(u) femm = FEMMDeforLinearIMH8(MR, IntegDomain(fes, GaussRule(3, 2)), material, 12) vol = integratefunction(femm, geom, x -> 1.0; m = 3) associategeometry!(femm, geom) K = stiffness(femm, geom, u) D = eigen(Matrix(K)) @test norm( vec(D.values) - [-8.326672702176305e-17, -4.827453520116361e-17, -1.669460991334037e-17, -1.182337629536069e-17, 2.3661775396745044e-17, 5.210781206461985e-17, 0.05749523439988823, 0.07128305296214138, 0.07191559703272292, 0.07315367873032953, 0.07333313907279299, 0.1223734319272974, 0.13068791550072423, 0.13331802429413253, 0.2262389176079041, 0.24875817318694218, 0.251966284583263, 0.2612677200531636, 0.36679163524535935, 0.3670788597997576, 0.3994995351214447, 0.40671458702548835, 0.41188960354553344, 1.2735924014816593], ) < 0.001 # savecsv("bend_hex_spectrum_im-aspect=$(aspect).csv", eigenvalues = vec(D.values)) # @pgf _a = SemiLogYAxis({ # xlabel = "Mode [ND]", # ylabel = "Generalized stiffness [N/m]", # grid="major", # legend_pos = "south east", # title = "Hexahedron spectrum, aspect=$(aspect)" # }, # Plot({"red", mark="triangle"}, Table([:x => vec(7:size(K, 1)), :y => vec(D.values[7:end])])), LegendEntry("IM")) # display(_a) # File = "bend_hex_spectrum_im.vtk" # vectors = [("ev_$(idx)_$(round(D.values[idx] * 10000) / 10000)", deepcopy(scattersysvec!(u, D.vectors[:,idx]).values)) for idx in 1:length(D.values)] # vtkexportmesh(File, fens, fes; vectors=vectors) # @async run(`"paraview.exe" $File`) true end bend_hex_spectrum_im() end nothing
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
30344
""" Composite tests R0031(1): Laminated strip under three-point bending R0031(2): Wrapped thick cylinder under pressure and thermal loading R0031(3): Three-layer sandwich shell under normal pressure loading """ module NAFEMS_R0031_1_test_msh8 using FinEtools using FinEtoolsDeforLinear using FinEtoolsDeforLinear.AlgoDeforLinearModule using Statistics: mean using LinearAlgebra: norm, cross using Test function NAFEMS_R0031_1_msh8() # println(""" # Laminated Strip Under Three-Point Bending. Mean-strain h8 elements. # """) # Determine the central transverse displacement in a simply-supported seven # layer symmetric strip with a central line load. A 0/90/0/90/0/90/0 # material lay-up is specified with the center ply being four times as # thick as the others. # Reference: NAFEMS Report R0031, Test No.1, 17-Dec-1998. # Because of the symmetries of the geometry and load, only the # first-quadrant (in XY) quarter of the plate is modeled. # The coordinate system is centered at point E (at the difference with # respect to the original benchmark definition). The load is applied # along a curve passing through point C. The simple support is applied # along the curve passing through point B. # We realize the simple supports along the lines A, B and the line load at # point C are illegal from the point of view of convergence. No # convergence can be hoped for as the stress underneath the load and above # the simple supports is infinite in the limit (these locations are stress # singularities). However, for relatively coarse meshes the results away # from the singularities are still meaningful. # The target quantities are displacement at the bottom surface at point E, # the tensile axial stress at the same point, and of the transverse shear # stress at point D in between the bottommost two layers (See figure 1). t0 = time() # Orthotropic material parameters of the material of the layers E1s = 100.0 * phun("GPa") E2s = E3s = 5.0 * phun("GPa") nu12s = 0.4 nu13s = 0.3 nu23s = 0.3 G12s = 3.0 * phun("GPa") G13s = G23s = 2.0 * phun("GPa") CTE1 = 3.0e-6 CTE2 = 2.0e-5 CTE3 = 2.0e-5 AB = 30.0 * phun("mm") # span between simple supports CD = 4.0 * phun("mm") # distance between the point D and the center OH = 10.0 * phun("mm") # overhang W = 10.0 * phun("mm") # width of the strip # Here we define the layout and the thicknesses of the layers. angles = vec([0 90 0 90 0 90 0]) ts = vec([0.1 0.1 0.1 0.4 0.1 0.1 0.1]) * phun("mm") # layer thicknesses TH = sum(ts) # total thickness of the plate tolerance = 0.0001 * TH # The line load is in the negative Z direction. q0 = 10 * phun("N/mm") # line load # Reference deflection under the load is wEref = -1.06 * phun("mm") # The reference tensile stress at the bottom of the lowest layer is sigma11Eref = 684 * phun("MPa") # Because we model the first-quadrant quarter of the plate using # coordinate axes centered at the point E the shear at the point D is # positive instead of negative as in the benchmark where the coordinate # system is located at the outer corner of the strip. sigma13Dref = 4.1 * phun("MPa") Refinement = 4 # We select 8 elements spanwise and 2 elements widthwise. The overhang # of the plate is given one element. nL = Refinement * 4 nO = Refinement * 1 nW = Refinement * 1 # Each layer is modeled with a single element times the refinement. nts = Refinement * ones(Int, length(angles))# number of elements per layer xs = unique(vcat(collect(linearspace(0.0, AB / 2, nL + 1)), [CD], collect(linearspace(AB / 2, AB / 2 + OH, nO + 1)))) xs = xs[sortperm(xs)] ys = collect(linearspace(0.0, W / 2, nW + 1)) fens, fes = H8layeredplatex(xs, ys, ts, nts) # This is the material model MR = DeforModelRed3D material = MatDeforElastOrtho(MR, 0.0, E1s, E2s, E3s, nu12s, nu13s, nu23s, G12s, G13s, G23s, CTE1, CTE2, CTE3) # The material coordinate system function is defined as: function _updatecs!(csmatout, feid, labels) rotmat3!(csmatout, angles[labels[feid]] / 180.0 * pi * [0.0; 0.0; 1.0]) csmatout end # The vvolume integrals are evaluated using this rule gr = GaussRule(3, 2) # We will create two regions, one for the layers with 0° orientation, # and one for the layers with 90° orientation. rl1 = vcat(selectelem(fens, fes, label = 1), selectelem(fens, fes, label = 3), selectelem(fens, fes, label = 5), selectelem(fens, fes, label = 7)) rfes1 = subset(fes, rl1) region1 = FDataDict("femm" => FEMMDeforLinearMSH8(MR, IntegDomain(rfes1, gr), CSys(3, 3, (csmatout, XYZ, tangents, feid, qpid) -> _updatecs!(csmatout, feid, rfes1.label)), material)) rl2 = vcat(selectelem(fens, fes, label = 2), selectelem(fens, fes, label = 4), selectelem(fens, fes, label = 6)) rfes2 = subset(fes, rl2) region2 = FDataDict("femm" => FEMMDeforLinearMSH8(MR, IntegDomain(rfes2, gr), CSys(3, 3, (csmatout, XYZ, tangents, feid, qpid) -> _updatecs!(csmatout, feid, rfes2.label)), material)) # File = "NAFEMS-R0031-1-plate-r1.vtk" # vtkexportmesh(File, region1["femm"].integdomain.fes.conn, fens.xyz, FinEtools.MeshExportModule.H8) # # @async run(`"paraview.exe" $File`) # File = "NAFEMS-R0031-1-plate-r2.vtk" # vtkexportmesh(File, region2["femm"].integdomain.fes.conn, fens.xyz, FinEtools.MeshExportModule.H8) # @async run(`"paraview.exe" $File`) # The essential boundary conditions are applied on the symmetry planes. # First the plane X=0;... lx0 = selectnode(fens, box = [0.0 0.0 -Inf Inf -Inf Inf], inflate = tolerance) ex0 = FDataDict("displacement" => 0.0, "component" => 1, "node_list" => lx0) # ... and then the plane Y=0. ly0 = selectnode(fens, box = [-Inf Inf 0.0 0.0 -Inf Inf], inflate = tolerance) ey0 = FDataDict("displacement" => 0.0, "component" => 2, "node_list" => ly0) # The transverse displacement is fixed along the line passing through # point B. The nodes are fixed in the box along this line in the Z # direction. lz0 = selectnode(fens, box = [AB / 2 AB / 2 -Inf Inf -Inf Inf], inflate = tolerance) ez0 = FDataDict("displacement" => 0.0, "component" => 3, "node_list" => lz0) # The traction boundary condition is applied along the edge of the # mesh passing through point C at the top surface of the strip. First # we extract the boundary of the hexahedral mesh. bfes = meshboundary(fes) # From the entire boundary we select those quadrilaterals that lie on the plane # X = 0 xl = selectelem(fens, bfes, box = [0.0 0.0 -Inf Inf -Inf Inf], inflate = tolerance) # Now we extract the boundary of these selected quadrilaterals bbfes = meshboundary(subset(bfes, xl)) # … And from these we extract the ones at the top zl = selectelem(fens, bbfes, box = [0.0 0.0 -Inf Inf TH TH], inflate = tolerance) # Note that we have to apply only half of the line load given that # were modeling just one quarter of the geometry and we are splitting # the line load with the symmetry plane X=0. Also note that the # quadrature rule is one-dimensional since we are integrating along # a curve. Trac = FDataDict("traction_vector" => vec([0.0; 0.0; -q0 / 2]), "femm" => FEMMBase(IntegDomain(subset(bbfes, zl), GaussRule(1, 3)))) modeldata = FDataDict("fens" => fens, "regions" => [region1, region2], "essential_bcs" => [ex0, ey0, ez0], "traction_bcs" => [Trac]) modeldata = AlgoDeforLinearModule.linearstatics(modeldata) modeldata["postprocessing"] = FDataDict("file" => "NAFEMS_R0031_1_msh8-plate") modeldata = AlgoDeforLinearModule.exportdeformation(modeldata) u = modeldata["u"] geom = modeldata["geom"] # The results of the displacement and stresses will be reported at # nodes located at the appropriate points. nE = selectnode(fens, box = [0.0 0.0 0.0 0.0 0.0 0.0], inflate = tolerance) nC = selectnode(fens, box = [0.0 0.0 0.0 0.0 TH TH], inflate = tolerance) nD = selectnode(fens, box = [CD CD 0.0 0.0 ts[1] ts[1]], inflate = tolerance) n0z = selectnode(fens, box = [0.0 0.0 0.0 0.0 0.0 TH], inflate = tolerance) ix = sortperm(geom.values[n0z, 3]) # # println("ix = $(ix)") cdis = mean(u.values[nE, 3]) # println("") # println("Normalized Center deflection: $(cdis/wEref)") extrap = :extraptrend # # extrap = :extrapmean inspectormeth = :averaging # extrap = :default # inspectormeth = :invdistance modeldata["postprocessing"] = FDataDict("file" => "NAFEMS_R0031_1_msh8-plate-sx", "quantity" => :Cauchy, "component" => 1, "outputcsys" => CSys(3), "nodevalmethod" => inspectormeth, "reportat" => extrap) modeldata = AlgoDeforLinearModule.exportstress(modeldata) s = modeldata["postprocessing"]["exported"][1]["field"] # println("sx@E = $(s.values[nE]/phun("MPa")) [MPa]") # println("Reference sx@E = $(sigma11Eref/phun("MPa")) [MPa]") @test norm(s.values[nE] .- 654.948 * phun("MPa")) / sigma11Eref < 1.0e-3 modeldata["postprocessing"] = FDataDict("file" => "NAFEMS_R0031_1_msh8-plate-sxz", "quantity" => :Cauchy, "component" => 5, "outputcsys" => CSys(3), "nodevalmethod" => inspectormeth, "reportat" => extrap) modeldata = AlgoDeforLinearModule.exportstress(modeldata) s = modeldata["postprocessing"]["exported"][1]["field"] # println("sxz@D_1 = $(s.values[nD]/phun("MPa")) [MPa]") @test norm(s.values[nD] .- 3.65590 * phun("MPa")) / sigma13Dref < 1.0e-3 s = modeldata["postprocessing"]["exported"][2]["field"] # println("sxz@D_2 = $(s.values[nD]/phun("MPa")) [MPa]") @test norm(s.values[nD] .- 4.14278 * phun("MPa")) / sigma13Dref < 1.0e-3 # println("Reference sxz@D = $(sigma13Dref/phun("MPa")) [MPa]") # println("Done") true end # NAFEMS_R0031_1 NAFEMS_R0031_1_msh8() end # module nothing module NAFEMS_R0031_1_test_esniceh8 using FinEtools using FinEtoolsDeforLinear using FinEtoolsDeforLinear.AlgoDeforLinearModule using Statistics: mean using LinearAlgebra: norm, cross using Test function NAFEMS_R0031_1_esnice_h8() # println(""" # Laminated Strip Under Three-Point Bending. ESNICE h8 elements. # """) # Determine the central transverse displacement in a simply-supported seven # layer symmetric strip with a central line load. A 0/90/0/90/0/90/0 # material lay-up is specified with the center ply being four times as # thick as the others. # Reference: NAFEMS Report R0031, Test No.1, 17-Dec-1998. # Because of the symmetries of the geometry and load, only the # first-quadrant (in XY) quarter of the plate is modeled. # The coordinate system is centered at point E (at the difference with # respect to the original benchmark definition). The load is applied # along a curve passing through point C. The simple support is applied # along the curve passing through point B. # We realize the simple supports along the lines A, B and the line load at # point C are illegal from the point of view of convergence. No # convergence can be hoped for as the stress underneath the load and above # the simple supports is infinite in the limit (these locations are stress # singularities). However, for relatively coarse meshes the results away # from the singularities are still meaningful. # The target quantities are displacement at the bottom surface at point E, # the tensile axial stress at the same point, and of the transverse shear # stress at point D in between the bottommost two layers (See figure 1). t0 = time() # Orthotropic material parameters of the material of the layers E1s = 100.0 * phun("GPa") E2s = E3s = 5.0 * phun("GPa") nu12s = 0.4 nu13s = 0.3 nu23s = 0.3 G12s = 3.0 * phun("GPa") G13s = G23s = 2.0 * phun("GPa") CTE1 = 3.0e-6 CTE2 = 2.0e-5 CTE3 = 2.0e-5 AB = 30.0 * phun("mm") # span between simple supports CD = 4.0 * phun("mm") # distance between the point D and the center OH = 10.0 * phun("mm") # overhang W = 10.0 * phun("mm") # width of the strip # Here we define the layout and the thicknesses of the layers. Region 1 has # orientation 0 degrees, and region 2 has orientation 90 degrees. angles = vec([0 90]) ts = vec([0.1 0.1 0.1 0.4 0.1 0.1 0.1]) * phun("mm") # layer thicknesses TH = sum(ts) # total thickness of the plate tolerance = 0.0001 * TH # The line load is in the negative Z direction. q0 = 10 * phun("N/mm") # line load # Reference deflection under the load is wEref = -1.06 * phun("mm") # The reference tensile stress at the bottom of the lowest layer is sigma11Eref = 684 * phun("MPa") # Because we model the first-quadrant quarter of the plate using # coordinate axes centered at the point E the shear at the point D is # positive instead of negative as in the benchmark where the coordinate # system is located at the outer corner of the strip. sigma13Dref = 4.1 * phun("MPa") Refinement = 4 # We select 8 elements spanwise and 2 elements widthwise. The overhang # of the plate is given one element. nL = Refinement * 4 nO = Refinement * 1 nW = Refinement * 1 # Each layer is modeled with a single element times the refinement. nts = Refinement * ones(Int, length(ts))# number of elements per layer xs = unique(vcat(collect(linearspace(0.0, AB / 2, nL + 1)), [CD], collect(linearspace(AB / 2, AB / 2 + OH, nO + 1)))) xs = xs[sortperm(xs)] ys = collect(linearspace(0.0, W / 2, nW + 1)) fens, fes = H8layeredplatex(xs, ys, ts, nts) # This is the material model MR = DeforModelRed3D material = MatDeforElastOrtho(MR, 0.0, E1s, E2s, E3s, nu12s, nu13s, nu23s, G12s, G13s, G23s, CTE1, CTE2, CTE3) # The material coordinate system function is defined as: function _updatecs!(csmatout, feid, labels) rotmat3!(csmatout, angles[feid] / 180.0 * pi * [0.0; 0.0; 1.0]) csmatout end # The vvolume integrals are evaluated using this rule gr = TrapezoidalRule(3) # We will create two regions, one for the layers with 0° orientation, # and one for the layers with 90° orientation. rl1 = vcat(selectelem(fens, fes, label = 1), selectelem(fens, fes, label = 3), selectelem(fens, fes, label = 5), selectelem(fens, fes, label = 7)) rfes1 = subset(fes, rl1) region1 = FDataDict("femm" => FEMMDeforLinearESNICEH8(MR, IntegDomain(rfes1, gr), CSys(3, 3, (csmatout, XYZ, tangents, feid, qpid) -> _updatecs!(csmatout, 1, [])), material)) rl2 = vcat(selectelem(fens, fes, label = 2), selectelem(fens, fes, label = 4), selectelem(fens, fes, label = 6)) rfes2 = subset(fes, rl2) region2 = FDataDict("femm" => FEMMDeforLinearESNICEH8(MR, IntegDomain(rfes2, gr), CSys(3, 3, (csmatout, XYZ, tangents, feid, qpid) -> _updatecs!(csmatout, 2, [])), material)) # File = "NAFEMS-R0031-1-plate-r1.vtk" # vtkexportmesh(File, region1["femm"].integdomain.fes.conn, fens.xyz, FinEtools.MeshExportModule.H8) # # @async run(`"paraview.exe" $File`) # File = "NAFEMS-R0031-1-plate-r2.vtk" # vtkexportmesh(File, region2["femm"].integdomain.fes.conn, fens.xyz, FinEtools.MeshExportModule.H8) # @async run(`"paraview.exe" $File`) # The essential boundary conditions are applied on the symmetry planes. # First the plane X=0;... lx0 = selectnode(fens, box = [0.0 0.0 -Inf Inf -Inf Inf], inflate = tolerance) ex0 = FDataDict("displacement" => 0.0, "component" => 1, "node_list" => lx0) # ... and then the plane Y=0. ly0 = selectnode(fens, box = [-Inf Inf 0.0 0.0 -Inf Inf], inflate = tolerance) ey0 = FDataDict("displacement" => 0.0, "component" => 2, "node_list" => ly0) # The transverse displacement is fixed along the line passing through # point B. The nodes are fixed in the box along this line in the Z # direction. lz0 = selectnode(fens, box = [AB / 2 AB / 2 -Inf Inf -Inf Inf], inflate = tolerance) ez0 = FDataDict("displacement" => 0.0, "component" => 3, "node_list" => lz0) # The traction boundary condition is applied along the edge of the # mesh passing through point C at the top surface of the strip. First # we extract the boundary of the hexahedral mesh. bfes = meshboundary(fes) # From the entire boundary we select those quadrilaterals that lie on the plane # X = 0 xl = selectelem(fens, bfes, box = [0.0 0.0 -Inf Inf -Inf Inf], inflate = tolerance) # Now we extract the boundary of these selected quadrilaterals bbfes = meshboundary(subset(bfes, xl)) # … And from these we extract the ones at the top zl = selectelem(fens, bbfes, box = [0.0 0.0 -Inf Inf TH TH], inflate = tolerance) # Note that we have to apply only half of the line load given that # were modeling just one quarter of the geometry and we are splitting # the line load with the symmetry plane X=0. Also note that the # quadrature rule is one-dimensional since we are integrating along # a curve. Trac = FDataDict("traction_vector" => vec([0.0; 0.0; -q0 / 2]), "femm" => FEMMBase(IntegDomain(subset(bbfes, zl), TrapezoidalRule(1)))) modeldata = FDataDict("fens" => fens, "regions" => [region1, region2], "essential_bcs" => [ex0, ey0, ez0], "traction_bcs" => [Trac]) modeldata = AlgoDeforLinearModule.linearstatics(modeldata) modeldata["postprocessing"] = FDataDict("file" => "NAFEMS-R0031-1-plate-esnice-h8") modeldata = AlgoDeforLinearModule.exportdeformation(modeldata) u = modeldata["u"] geom = modeldata["geom"] # The results of the displacement and stresses will be reported at # nodes located at the appropriate points. nE = selectnode(fens, box = [0.0 0.0 0.0 0.0 0.0 0.0], inflate = tolerance) nC = selectnode(fens, box = [0.0 0.0 0.0 0.0 TH TH], inflate = tolerance) nD = selectnode(fens, box = [CD CD 0.0 0.0 ts[1] ts[1]], inflate = tolerance) n0z = selectnode(fens, box = [0.0 0.0 0.0 0.0 0.0 TH], inflate = tolerance) ix = sortperm(geom.values[n0z, 3]) # # println("ix = $(ix)") cdis = mean(u.values[nE, 3]) # println("") # println("Normalized Center deflection: $(cdis/wEref)") extrap = :extraptrend # # extrap = :extrapmean inspectormeth = :averaging # extrap = :default # inspectormeth = :invdistance modeldata["postprocessing"] = FDataDict("file" => "NAFEMS-R0031-1-plate-esnice-h8-sx", "quantity" => :Cauchy, "component" => 1, "outputcsys" => CSys(3), "nodevalmethod" => inspectormeth, "reportat" => extrap) modeldata = AlgoDeforLinearModule.exportstress(modeldata) s = modeldata["postprocessing"]["exported"][1]["field"] # println("sx@E = $(s.values[nE]/phun("MPa")) [MPa]") # println("Reference sx@E = $(sigma11Eref/phun("MPa")) [MPa]") @test norm(s.values[nE] .- 667.6985 * phun("MPa")) / sigma11Eref < 1.0e-3 modeldata["postprocessing"] = FDataDict("file" => "NAFEMS-R0031-1-plate-esnice-h8-sxz", "quantity" => :Cauchy, "component" => 5, "outputcsys" => CSys(3), "nodevalmethod" => inspectormeth, "reportat" => extrap) modeldata = AlgoDeforLinearModule.exportstress(modeldata) s = modeldata["postprocessing"]["exported"][1]["field"] # println("sxz@D_1 = $(s.values[nD]/phun("MPa")) [MPa]") @test norm(s.values[nD] .- 3.75795 * phun("MPa")) / sigma13Dref < 1.0e-3 s = modeldata["postprocessing"]["exported"][2]["field"] # println("sxz@D_2 = $(s.values[nD]/phun("MPa")) [MPa]") @test norm(s.values[nD] .- 4.36560 * phun("MPa")) / sigma13Dref < 1.0e-3 # println("Reference sxz@D = $(sigma13Dref/phun("MPa")) [MPa]") # println("Done") true end # NAFEMS_R0031_1 NAFEMS_R0031_1_esnice_h8() end # module nothing module NAFEMS_R0031_1_test_h20 using FinEtools using FinEtoolsDeforLinear using FinEtoolsDeforLinear.AlgoDeforLinearModule using Statistics: mean using LinearAlgebra: norm, cross using Test function NAFEMS_R0031_1_H20() # println(""" # Laminated Strip Under Three-Point Bending. H20 hexahedral elements. # """) # Determine the central transverse displacement in a simply-supported seven # layer symmetric strip with a central line load. A 0/90/0/90/0/90/0 # material lay-up is specified with the center ply being four times as # thick as the others. # Reference: NAFEMS Report R0031, Test No.1, 17-Dec-1998. # Because of the symmetries of the geometry and load, only the # first-quadrant (in XY) quarter of the plate is modeled. # The coordinate system is centered at point E (at the difference with # respect to the original benchmark definition). The load is applied # along a curve passing through point C. The simple support is applied # along the curve passing through point B. # We realize the simple supports along the lines A, B and the line load at # point C are illegal from the point of view of convergence. No # convergence can be hoped for as the stress underneath the load and above # the simple supports is infinite in the limit (these locations are stress # singularities). However, for relatively coarse meshes the results away # from the singularities are still meaningful. # The target quantities are displacement at the bottom surface at point E, # the tensile axial stress at the same point, and of the transverse shear # stress at point D in between the bottommost two layers (See figure 1). t0 = time() # Orthotropic material parameters of the material of the layers E1s = 100.0 * phun("GPa") E2s = E3s = 5.0 * phun("GPa") nu12s = 0.4 nu13s = 0.3 nu23s = 0.3 G12s = 3.0 * phun("GPa") G13s = G23s = 2.0 * phun("GPa") CTE1 = 3.0e-6 CTE2 = 2.0e-5 CTE3 = 2.0e-5 AB = 30.0 * phun("mm") # span between simple supports CD = 4.0 * phun("mm") # distance between the point D and the center OH = 10.0 * phun("mm") # overhang W = 10.0 * phun("mm") # width of the strip # Here we define the layout and the thicknesses of the layers. angles = vec([0 90 0 90 0 90 0]) ts = vec([0.1 0.1 0.1 0.4 0.1 0.1 0.1]) * phun("mm") # layer thicknesses TH = sum(ts) # total thickness of the plate tolerance = 0.0001 * TH # The line load is in the negative Z direction. q0 = 10 * phun("N/mm") # line load # Reference deflection under the load is wEref = -1.06 * phun("mm") # The reference tensile stress at the bottom of the lowest layer is sigma11Eref = 684 * phun("MPa") # Because we model the first-quadrant quarter of the plate using # coordinate axes centered at the point E the shear at the point D is # positive instead of negative as in the benchmark where the coordinate # system is located at the outer corner of the strip. sigma13Dref = 4.1 * phun("MPa") Refinement = 4 # We select 8 elements spanwise and 2 elements widthwise. The overhang # of the plate is given one element. nL = Refinement * 4 nO = Refinement * 1 nW = Refinement * 1 # Each layer is modeled with a single element times the refinementp. nts = Refinement * ones(Int, length(angles))# number of elements per layer xs = unique(vcat(collect(linearspace(0.0, AB / 2, nL + 1)), [CD], collect(linearspace(AB / 2, AB / 2 + OH, nO + 1)))) xs = xs[sortperm(xs)] ys = collect(linearspace(0.0, W / 2, nW + 1)) fens, fes = H8layeredplatex(xs, ys, ts, nts) fens, fes = H8toH20(fens, fes) # This is the material model MR = DeforModelRed3D material = MatDeforElastOrtho(MR, 0.0, E1s, E2s, E3s, nu12s, nu13s, nu23s, G12s, G13s, G23s, CTE1, CTE2, CTE3) # The material coordinate system function is defined as: function _updatecs!(csmatout, feid, labels) rotmat3!(csmatout, angles[labels[feid]] / 180.0 * pi * [0.0; 0.0; 1.0]) csmatout end # The vvolume integrals are evaluated using this rule gr = GaussRule(3, 3) # We will create two regions, one for the layers with 0° orientation, # and one for the layers with 90° orientation. rl1 = vcat(selectelem(fens, fes, label = 1), selectelem(fens, fes, label = 3), selectelem(fens, fes, label = 5), selectelem(fens, fes, label = 7)) rfes1 = subset(fes, rl1) region1 = FDataDict("femm" => FEMMDeforLinear(MR, IntegDomain(rfes1, gr), CSys(3, 3, (csmatout, XYZ, tangents, feid, qpid) -> _updatecs!(csmatout, feid, rfes1.label)), material)) rl2 = vcat(selectelem(fens, fes, label = 2), selectelem(fens, fes, label = 4), selectelem(fens, fes, label = 6)) rfes2 = subset(fes, rl2) region2 = FDataDict("femm" => FEMMDeforLinear(MR, IntegDomain(rfes2, gr), CSys(3, 3, (csmatout, XYZ, tangents, feid, qpid) -> _updatecs!(csmatout, feid, rfes2.label)), material)) # File = "NAFEMS-R0031-1-plate-r1.vtk" # vtkexportmesh(File, region1["femm"].integdomain.fes.conn, fens.xyz, FinEtools.MeshExportModule.H8) # # @async run(`"paraview.exe" $File`) # File = "NAFEMS-R0031-1-plate-r2.vtk" # vtkexportmesh(File, region2["femm"].integdomain.fes.conn, fens.xyz, FinEtools.MeshExportModule.H8) # @async run(`"paraview.exe" $File`) # The essential boundary conditions are applied on the symmetry planes. # First the plane X=0;... lx0 = selectnode(fens, box = [0.0 0.0 -Inf Inf -Inf Inf], inflate = tolerance) ex0 = FDataDict("displacement" => 0.0, "component" => 1, "node_list" => lx0) # ... and then the plane Y=0. ly0 = selectnode(fens, box = [-Inf Inf 0.0 0.0 -Inf Inf], inflate = tolerance) ey0 = FDataDict("displacement" => 0.0, "component" => 2, "node_list" => ly0) # The transverse displacement is fixed along the line passing through # point B. The nodes are fixed in the box along this line in the Z # direction. lz0 = selectnode(fens, box = [AB / 2 AB / 2 -Inf Inf 0.0 0.0], inflate = tolerance) ez0 = FDataDict("displacement" => 0.0, "component" => 3, "node_list" => lz0) # The traction boundary condition is applied along the edge of the # mesh passing through point C at the top surface of the strip. First # we extract the boundary of the hexahedral mesh. bfes = meshboundary(fes) # From the entire boundary we select those quadrilaterals that lie on the plane # X = 0 xl = selectelem(fens, bfes, box = [0.0 0.0 -Inf Inf -Inf Inf], inflate = tolerance) # Now we extract the boundary of these selected quadrilaterals bbfes = meshboundary(subset(bfes, xl)) # … And from these we extract the ones at the top zl = selectelem(fens, bbfes, box = [0.0 0.0 -Inf Inf TH TH], inflate = tolerance) # Note that we have to apply only half of the line load given that # were modeling just one quarter of the geometry and we are splitting # the line load with the symmetry plane X=0. Also note that the # quadrature rule is one-dimensional since we are integrating along # a curve. Trac = FDataDict("traction_vector" => vec([0.0; 0.0; -q0 / 2]), "femm" => FEMMBase(IntegDomain(subset(bbfes, zl), GaussRule(1, 3)))) modeldata = FDataDict("fens" => fens, "regions" => [region1, region2], "essential_bcs" => [ex0, ey0, ez0], "traction_bcs" => [Trac]) modeldata = AlgoDeforLinearModule.linearstatics(modeldata) modeldata["postprocessing"] = FDataDict("file" => "NAFEMS_R0031_1_H20-plate") modeldata = AlgoDeforLinearModule.exportdeformation(modeldata) u = modeldata["u"] geom = modeldata["geom"] # The results of the displacement and stresses will be reported at # nodes located at the appropriate points. nE = selectnode(fens, box = [0.0 0.0 0.0 0.0 0.0 0.0], inflate = tolerance) nC = selectnode(fens, box = [0.0 0.0 0.0 0.0 TH TH], inflate = tolerance) nD = selectnode(fens, box = [CD CD 0.0 0.0 ts[1] ts[1]], inflate = tolerance) cdis = mean(u.values[nE, 3]) # println("") # println("Normalized Center deflection: $(cdis/wEref)") modeldata["postprocessing"] = FDataDict("file" => "NAFEMS_R0031_1_H20-plate-sx", "quantity" => :Cauchy, "component" => 1, "outputcsys" => CSys(3)) modeldata = AlgoDeforLinearModule.exportstress(modeldata) s = modeldata["postprocessing"]["exported"][1]["field"] # println("sx@E = $(s.values[nE]/phun("MPa")) [MPa]") # println("Reference sx@E = $(sigma11Eref/phun("MPa")) [MPa]") @test norm(s.values[nE] .- 668.16037 * phun("MPa")) / sigma11Eref < 1.0e-3 modeldata["postprocessing"] = FDataDict("file" => "NAFEMS_R0031_1_H20-plate-sxz", "quantity" => :Cauchy, "component" => 5, "outputcsys" => CSys(3)) modeldata = AlgoDeforLinearModule.exportstress(modeldata) s = modeldata["postprocessing"]["exported"][1]["field"] # println("sxz@D = $(s.values[nD]/phun("MPa")) [MPa]") @test norm(s.values[nD] .- 3.619757 * phun("MPa")) / sigma13Dref < 1.0e-3 s = modeldata["postprocessing"]["exported"][2]["field"] # println("sxz@D = $(s.values[nD]/phun("MPa")) [MPa]") @test norm(s.values[nD] .- 4.100860 * phun("MPa")) / sigma13Dref < 1.0e-3 # println("Reference sxz@D = $(sigma13Dref/phun("MPa")) [MPa]") # println("Done") true end # NAFEMS_R0031_1_H20 NAFEMS_R0031_1_H20() end # module nothing
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
39013
module mmmNAFEMS_R0031_3m using FinEtools using FinEtoolsDeforLinear using FinEtoolsDeforLinear.AlgoDeforLinearModule using Test import Statistics: mean function test() # println(""" # NAFEMS publication R0031/3 Composite plate test. # Simply supported on all four edges. Uniform transverse loading. # The modeled part is one quarter of the full plate here. # """) # This is a test recommended by the National Agency for Finite Element Methods # and Standards (U.K.): Test R0031/3 from NAFEMS publication R0031, “Composites # Benchmarks,” February 1995. t0 = time() # Skin (face) material parameters E1s = 1.0e7 * phun("psi") E2s = 0.4e7 * phun("psi") E3s = 0.4e7 * phun("psi") nu12s = 0.3 nu13s = 0.3 nu23s = 0.3 G12s = 0.1875e7 * phun("psi") G13s = 0.1875e7 * phun("psi") G23s = 0.1875e7 * phun("psi") # Core material parameters E1c = 10.0 * phun("psi") E2c = 10.0 * phun("psi") E3c = 10e4 .* phun("psi") nu12c = 0.0 nu13c = 0.0 nu23c = 0.0 G12c = 10.0 * phun("psi") G13c = 3.0e4 * phun("psi") G23c = 1.2e4 * phun("psi") L = 10.0 * phun("in") # side of the square plate nL = 8 # number of elements along the side of the plate tolerance = 0.0001 * phun("in") xs = collect(linearspace(0.0, L / 2, nL + 1)) ys = collect(linearspace(0.0, L / 2, nL + 1)) ts = [0.028; 0.75; 0.028] * phun("in") nts = [2; 3; 2] # number of elements through the thickness tmag = 100 * phun("psi") # Generate mesh fens, fes = H8layeredplatex(xs, ys, ts, nts) fens, fes = H8toH20(fens, fes) MR = DeforModelRed3D skinmaterial = MatDeforElastOrtho( MR, 0.0, E1s, E2s, E3s, nu12s, nu13s, nu23s, G12s, G13s, G23s, 0.0, 0.0, 0.0, ) corematerial = MatDeforElastOrtho( MR, 0.0, E1c, E2c, E3c, nu12c, nu13c, nu23c, G12c, G13c, G23c, 0.0, 0.0, 0.0, ) gr = GaussRule(3, 3) rl1 = selectelem(fens, fes, label = 1) skinbot = FDataDict( "femm" => FEMMDeforLinear(MR, IntegDomain(subset(fes, rl1), gr), skinmaterial), ) rl3 = selectelem(fens, fes, label = 3) skintop = FDataDict( "femm" => FEMMDeforLinear(MR, IntegDomain(subset(fes, rl3), gr), skinmaterial), ) rl2 = selectelem(fens, fes, label = 2) core = FDataDict( "femm" => FEMMDeforLinear(MR, IntegDomain(subset(fes, rl2), gr), corematerial), ) lx0 = selectnode(fens, box = [0.0 0.0 -Inf Inf -Inf Inf], inflate = tolerance) lxL2 = selectnode(fens, box = [L / 2 L / 2 -Inf Inf -Inf Inf], inflate = tolerance) ly0 = selectnode(fens, box = [-Inf Inf 0.0 0.0 -Inf Inf], inflate = tolerance) lyL2 = selectnode(fens, box = [-Inf Inf L / 2 L / 2 -Inf Inf], inflate = tolerance) ex0 = FDataDict("displacement" => 0.0, "component" => 3, "node_list" => lx0) exL2 = FDataDict("displacement" => 0.0, "component" => 1, "node_list" => lxL2) ey0 = FDataDict("displacement" => 0.0, "component" => 3, "node_list" => ly0) eyL2 = FDataDict("displacement" => 0.0, "component" => 2, "node_list" => lyL2) bfes = meshboundary(fes) ttopl = selectelem(fens, bfes; facing = true, direction = [0.0 0.0 1.0]) Trac = FDataDict( "traction_vector" => [0.0; 0.0; -tmag], "femm" => FEMMBase(IntegDomain(subset(bfes, ttopl), GaussRule(2, 3))), ) modeldata = FDataDict( "fens" => fens, "regions" => [skinbot, core, skintop], "essential_bcs" => [ex0, exL2, ey0, eyL2], "traction_bcs" => [Trac], ) modeldata = AlgoDeforLinearModule.linearstatics(modeldata) u = modeldata["u"] geom = modeldata["geom"] lcenter = selectnode(fens, box = [L / 2 L / 2 L / 2 L / 2 -Inf Inf], inflate = tolerance) cdis = mean(u.values[lcenter, 3]) / phun("in") # println("Center node displacements $(cdis) [in]; NAFEMS-R0031-3 lists –0.123 [in]") # println("") @test abs(cdis - (-0.13634800328800462)) < 1.0e-5 File = "NAFEMS-R0031-3-plate.vtk" vtkexportmesh( File, connasarray(fes), geom.values, FinEtools.MeshExportModule.VTK.H20; scalars = [("Layer", fes.label)], vectors = [("displacement", u.values)], ) # @async run(`"paraview.exe" $File`) try rm(File) catch end end end using .mmmNAFEMS_R0031_3m mmmNAFEMS_R0031_3m.test() module mmtwistedmsh8mmm using FinEtools using FinEtoolsDeforLinear using FinEtoolsDeforLinear.AlgoDeforLinearModule import LinearAlgebra: norm, cholesky, cross using Test import Statistics: mean function test() # println(""" # The initially twisted cantilever beam is one of the standard test # problems for verifying the finite-element accuracy [1]. The beam is # clamped at one end and loaded either with unit in-plane or # unit out-of-plane force at the other. The centroidal axis of the beam is # straight at the undeformed configuration, while its cross-sections are # twisted about the centroidal axis from 0 at the clamped end to pi/2 at # the free end. # # Reference: # Zupan D, Saje M (2004) On "A proposed standard set of problems to test # finite element accuracy": the twisted beam. Finite Elements in Analysis # and Design 40: 1445-1451. # """) E = 0.29e8 nu = 0.22 W = 1.1 L = 12.0 t = 0.32 nl = 2 nt = 1 nw = 1 ref = 7 p = 1 / W / t # Loading in the Z direction loadv = [0; 0; p] dir = 3 uex = 0.005424534868469 # Harder: 5.424e-3; # Loading in the Y direction #loadv = [0;p;0]; dir = 2; uex = 0.001753248285256; # Harder: 1.754e-3; tolerance = t / 1000 fens, fes = H8block(L, W, t, nl * ref, nw * ref, nt * ref) # Reshape into a twisted beam shape for i = 1:count(fens) a = fens.xyz[i, 1] / L * (pi / 2) y = fens.xyz[i, 2] - (W / 2) z = fens.xyz[i, 3] - (t / 2) fens.xyz[i, :] = [fens.xyz[i, 1], y * cos(a) - z * sin(a), y * sin(a) + z * cos(a)] end # Clamped end of the beam l1 = selectnode(fens; box = [0 0 -100 * W 100 * W -100 * W 100 * W], inflate = tolerance) e1 = FDataDict("node_list" => l1, "component" => 1, "displacement" => 0.0) e2 = FDataDict("node_list" => l1, "component" => 2, "displacement" => 0.0) e3 = FDataDict("node_list" => l1, "component" => 3, "displacement" => 0.0) # Traction on the opposite edge boundaryfes = meshboundary(fes) Toplist = selectelem( fens, boundaryfes, box = [L L -100 * W 100 * W -100 * W 100 * W], inflate = tolerance, ) el1femm = FEMMBase(IntegDomain(subset(boundaryfes, Toplist), GaussRule(2, 2))) flux1 = FDataDict("femm" => el1femm, "traction_vector" => loadv) # Make the region MR = DeforModelRed3D material = MatDeforElastIso(MR, 00.0, E, nu, 0.0) region1 = FDataDict( "femm" => FEMMDeforLinearMSH8(MR, IntegDomain(fes, GaussRule(3, 2)), material), ) # Make model data modeldata = FDataDict( "fens" => fens, "regions" => [region1], "essential_bcs" => [e1, e2, e3], "traction_bcs" => [flux1], ) # Call the solver modeldata = AlgoDeforLinearModule.linearstatics(modeldata) geom = modeldata["geom"] u = modeldata["u"] # Extract the solution nl = selectnode(fens, box = [L L -100 * W 100 * W -100 * W 100 * W], inflate = tolerance) theutip = mean(u.values[nl, :], dims = 1) # println("displacement = $(theutip[dir]) as compared to converged $uex") @test abs(theutip[dir] - uex) / uex < 0.0012 # Write out mesh with displacements modeldata["postprocessing"] = FDataDict("file" => "twisted_beam_msh8") modeldata = AlgoDeforLinearModule.exportdeformation(modeldata) try rm(modeldata["postprocessing"]["exported"][1]["file"]) catch end # Write out mesh with stresses modeldata["postprocessing"] = FDataDict("file" => "twisted_beam_msh8", "quantity" => :Cauchy, "component" => :xy) modeldata = AlgoDeforLinearModule.exportstress(modeldata) try rm(modeldata["postprocessing"]["exported"][1]["file"]) catch end # Write out mesh with stresses modeldata["postprocessing"] = FDataDict("file" => "twisted_beam_msh8", "quantity" => :Cauchy, "component" => :xz) modeldata = AlgoDeforLinearModule.exportstress(modeldata) try rm(modeldata["postprocessing"]["exported"][1]["file"]) catch end # Write out mesh with von Mises stresses modeldata["postprocessing"] = FDataDict("file" => "twisted_beam_msh8", "quantity" => :vm) modeldata = AlgoDeforLinearModule.exportstress(modeldata) vm = modeldata["postprocessing"]["exported"][1]["field"] # println("extremes of vm, nodal: $([minimum(vm.values), maximum(vm.values)])") try rm(modeldata["postprocessing"]["exported"][1]["file"]) catch end @test norm([minimum(vm.values), maximum(vm.values)] - [4.78774, 522.126]) < 0.01 # Write out mesh with von Mises stresses, elementwise modeldata["postprocessing"] = FDataDict("file" => "twisted_beam_msh8-ew", "quantity" => :vm) modeldata = AlgoDeforLinearModule.exportstresselementwise(modeldata) vm = modeldata["postprocessing"]["exported"][1]["field"] # println("extremes of vm, elemental: $([minimum(vm.values), maximum(vm.values)])") try rm(modeldata["postprocessing"]["exported"][1]["file"]) catch end @test norm([minimum(vm.values), maximum(vm.values)] - [1.85882, 522.126]) < 0.01 # Write out mesh with von Mises stresses, elementwise modeldata["postprocessing"] = FDataDict( "file" => "twisted_beam_msh8-ew", "quantity" => :Cauchy, "component" => :xz, ) modeldata = AlgoDeforLinearModule.exportstresselementwise(modeldata) try rm(modeldata["postprocessing"]["exported"][1]["file"]) catch end end end using .mmtwistedmsh8mmm mmtwistedmsh8mmm.test() module mmunitmmccubemmvibrationmmms using FinEtools using FinEtoolsDeforLinear using Test import LinearAlgebra: norm, cholesky, cross function test() # println(""" # % Vibration modes of unit cube of almost incompressible material. # % Mean-strain hexahedron. # % Reference: Puso MA, Solberg J (2006) A stabilized nodally integrated # % tetrahedral. International Journal for Numerical Methods in # % Engineering 67: 841-867.""") t0 = time() E = 1 * phun("PA") nu = 0.499 rho = 1 * phun("KG/M^3") a = 1 * phun("M") b = a h = a n1 = 8 # How many element edges per side? na = n1 nb = n1 nh = n1 neigvs = 20 # how many eigenvalues omega_shift = (0.1 * 2 * pi)^2 fens, fes = H8block(a, b, h, na, nb, nh) # Make the region MR = DeforModelRed3D material = MatDeforElastIso(MR, rho, E, nu, 0.0) region1 = FDataDict( "femm" => FEMMDeforLinearMSH8(MR, IntegDomain(fes, GaussRule(3, 2)), material), "femm_mass" => FEMMDeforLinearMSH8(MR, IntegDomain(fes, GaussRule(3, 3)), material), ) # Make model data modeldata = FDataDict( "fens" => fens, "regions" => [region1], "omega_shift" => omega_shift, "neigvs" => neigvs, ) # Solve modeldata = FinEtoolsDeforLinear.AlgoDeforLinearModule.modal(modeldata) fs = modeldata["omega"] / (2 * pi) # println("Eigenvalues: $fs [Hz]") @test norm( fs - [ 1.92866e-7, 2.07497e-7, 2.16105e-7, 2.31656e-7, 2.35711e-7, 2.53067e-7, 0.266016, 0.266016, 0.364001, 0.364001, 0.364001, 0.366888, 0.366888, 0.366888, 0.415044, 0.415044, 0.41703, 0.467364, 0.467364, 0.467364, ], ) < 0.0001 modeldata["postprocessing"] = FDataDict("file" => "unit_cube_mode", "mode" => 10) modeldata = FinEtoolsDeforLinear.AlgoDeforLinearModule.exportmode(modeldata) # @async run(`"paraview.exe" $(modeldata["postprocessing"]["file"]*"1.vtk")`) try rm(modeldata["postprocessing"]["exported"][1]["file"]) catch end true end end using .mmunitmmccubemmvibrationmmms mmunitmmccubemmvibrationmmms.test() module mmtwistedbeamisomm using FinEtools using FinEtoolsDeforLinear using Test using FinEtoolsDeforLinear.AlgoDeforLinearModule import LinearAlgebra: norm, cholesky, cross import Statistics: mean function test() E = 0.29e8 nu = 0.22 W = 1.1 L = 12.0 t = 0.32 nl = 2 nt = 1 nw = 1 ref = 4 p = 1 / W / t # Loading in the Z direction loadv = [0; 0; p] dir = 3 uex = 0.005424534868469 # Harder: 5.424e-3; # Loading in the Y direction #loadv = [0;p;0]; dir = 2; uex = 0.001753248285256; # Harder: 1.754e-3; tolerance = t / 1000 fens, fes = H20block(L, W, t, nl * ref, nw * ref, nt * ref) # Reshape into a twisted beam shape for i = 1:count(fens) a = fens.xyz[i, 1] / L * (pi / 2) y = fens.xyz[i, 2] - (W / 2) z = fens.xyz[i, 3] - (t / 2) fens.xyz[i, :] = [fens.xyz[i, 1], y * cos(a) - z * sin(a), y * sin(a) + z * cos(a)] end # Clamped end of the beam l1 = selectnode(fens; box = [0 0 -100 * W 100 * W -100 * W 100 * W], inflate = tolerance) e1 = FDataDict("node_list" => l1, "component" => 1, "displacement" => 0.0) e2 = FDataDict("node_list" => l1, "component" => 2, "displacement" => 0.0) e3 = FDataDict("node_list" => l1, "component" => 3, "displacement" => 0.0) # Traction on the opposite edge boundaryfes = meshboundary(fes) Toplist = selectelem( fens, boundaryfes, box = [L L -100 * W 100 * W -100 * W 100 * W], inflate = tolerance, ) el1femm = FEMMBase(IntegDomain(subset(boundaryfes, Toplist), GaussRule(2, 2))) flux1 = FDataDict("femm" => el1femm, "traction_vector" => loadv) # Make the region MR = DeforModelRed3D material = MatDeforElastIso(MR, 00.0, E, nu, 0.0) region1 = FDataDict( "femm" => FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3, 2)), material), ) # Make model data modeldata = FDataDict( "fens" => fens, "regions" => [region1], "essential_bcs" => [e1, e2, e3], "traction_bcs" => [flux1], ) # Call the solver modeldata = AlgoDeforLinearModule.linearstatics(modeldata) geom = modeldata["geom"] u = modeldata["u"] # Extract the solution nl = selectnode(fens, box = [L L -100 * W 100 * W -100 * W 100 * W], inflate = tolerance) theutip = mean(u.values[nl, :], dims = 1) # println("displacement = $(theutip[dir]) as compared to converged $uex") # println("normalized displacement = $(theutip[dir]/uex*100) %") @test abs(theutip[dir] / uex * 100 - 99.85504856450584) < 1.0e-6 # Write out mesh with displacements modeldata["postprocessing"] = FDataDict("file" => "twisted_beam") modeldata = AlgoDeforLinearModule.exportdeformation(modeldata) try rm(modeldata["postprocessing"]["exported"][1]["file"]) catch end # Write out mesh with stresses modeldata["postprocessing"] = FDataDict("file" => "twisted_beam", "quantity" => :Cauchy, "component" => :xy) modeldata = AlgoDeforLinearModule.exportstress(modeldata) try rm(modeldata["postprocessing"]["exported"][1]["file"]) catch end # Write out mesh with stresses modeldata["postprocessing"] = FDataDict("file" => "twisted_beam", "quantity" => :Cauchy, "component" => :xz) modeldata = AlgoDeforLinearModule.exportstress(modeldata) try rm(modeldata["postprocessing"]["exported"][1]["file"]) catch end # Write out mesh with von Mises stresses modeldata["postprocessing"] = FDataDict("file" => "twisted_beam", "quantity" => :vm) modeldata = AlgoDeforLinearModule.exportstress(modeldata) try rm(modeldata["postprocessing"]["exported"][1]["file"]) catch end # Write out mesh with von Mises stresses, elementwise modeldata["postprocessing"] = FDataDict("file" => "twisted_beam-ew", "quantity" => :vm) modeldata = AlgoDeforLinearModule.exportstresselementwise(modeldata) vm = modeldata["postprocessing"]["exported"][1]["field"] # println("extremes of von Mises: $([minimum(vm.values), maximum(vm.values)])") @test norm([minimum(vm.values), maximum(vm.values)] - [6.94796, 451.904]) < 1.e-3 try rm(modeldata["postprocessing"]["exported"][1]["file"]) catch end # Write out mesh with von Mises stresses, elementwise modeldata["postprocessing"] = FDataDict("file" => "twisted_beam-ew", "quantity" => :Cauchy, "component" => :xz) modeldata = AlgoDeforLinearModule.exportstresselementwise(modeldata) try rm(modeldata["postprocessing"]["exported"][1]["file"]) catch end # Write out mesh with principal stresses, elementwise modeldata["postprocessing"] = FDataDict( "file" => "twisted_beam-principal-1-ew", "quantity" => :princCauchy, "component" => 1, ) modeldata = AlgoDeforLinearModule.exportstresselementwise(modeldata) ps = modeldata["postprocessing"]["exported"][1]["field"] # println("extremes of first principal stress: $([minimum(ps.values), maximum(ps.values)])") @test norm([minimum(ps.values), maximum(ps.values)] - [0.493918, 459.106]) < 1.e-3 try rm(modeldata["postprocessing"]["exported"][1]["file"]) catch end # Write out mesh with principal stresses, elementwise modeldata["postprocessing"] = FDataDict( "file" => "twisted_beam-principal-3-ew", "quantity" => :princCauchy, "component" => 3, ) modeldata = AlgoDeforLinearModule.exportstresselementwise(modeldata) ps = modeldata["postprocessing"]["exported"][1]["field"] # println("extremes of third principal stress: $([minimum(ps.values), maximum(ps.values)])") @test norm([minimum(ps.values), maximum(ps.values)] - [-459.106, -0.493918]) < 1.e-3 try rm(modeldata["postprocessing"]["exported"][1]["file"]) catch end # Write out mesh with pressure, elementwise modeldata["postprocessing"] = FDataDict( "file" => "twisted_beam-press-ew", "quantity" => :pressure, "component" => 1, ) modeldata = AlgoDeforLinearModule.exportstresselementwise(modeldata) ps = modeldata["postprocessing"]["exported"][1]["field"] # println("extremes of pressure: $([minimum(ps.values), maximum(ps.values)])") @test norm([minimum(ps.values), maximum(ps.values)] - [-160.396, 160.396]) < 1.e-3 try rm(modeldata["postprocessing"]["exported"][1]["file"]) catch end end end using .mmtwistedbeamisomm mmtwistedbeamisomm.test() module mmtwistedbeamoorthomm using FinEtools using FinEtoolsDeforLinear using Test import LinearAlgebra: norm, cholesky, cross using FinEtoolsDeforLinear.AlgoDeforLinearModule import Statistics: mean function test() E = 0.29e8 nu = 0.22 W = 1.1 L = 12.0 t = 0.32 nl = 2 nt = 1 nw = 1 ref = 4 p = 1 / W / t # Loading in the Z direction loadv = [0; 0; p] dir = 3 uex = 0.005424534868469 # Harder: 5.424e-3; # Loading in the Y direction #loadv = [0;p;0]; dir = 2; uex = 0.001753248285256; # Harder: 1.754e-3; tolerance = t / 1000 fens, fes = H20block(L, W, t, nl * ref, nw * ref, nt * ref) # Reshape into a twisted beam shape for i = 1:count(fens) a = fens.xyz[i, 1] / L * (pi / 2) y = fens.xyz[i, 2] - (W / 2) z = fens.xyz[i, 3] - (t / 2) fens.xyz[i, :] = [fens.xyz[i, 1], y * cos(a) - z * sin(a), y * sin(a) + z * cos(a)] end # Clamped end of the beam l1 = selectnode(fens; box = [0 0 -100 * W 100 * W -100 * W 100 * W], inflate = tolerance) e1 = FDataDict("node_list" => l1, "component" => 1, "displacement" => 0.0) e2 = FDataDict("node_list" => l1, "component" => 2, "displacement" => 0.0) e3 = FDataDict("node_list" => l1, "component" => 3, "displacement" => 0.0) # Traction on the opposite edge boundaryfes = meshboundary(fes) Toplist = selectelem( fens, boundaryfes, box = [L L -100 * W 100 * W -100 * W 100 * W], inflate = tolerance, ) el1femm = FEMMBase(IntegDomain(subset(boundaryfes, Toplist), GaussRule(2, 2))) flux1 = FDataDict("femm" => el1femm, "traction_vector" => loadv) # Make the region MR = DeforModelRed3D material = MatDeforElastOrtho(MR, E, nu) region1 = FDataDict( "femm" => FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3, 2)), material), ) # Make model data modeldata = FDataDict( "fens" => fens, "regions" => [region1], "essential_bcs" => [e1, e2, e3], "traction_bcs" => [flux1], ) # Call the solver modeldata = AlgoDeforLinearModule.linearstatics(modeldata) geom = modeldata["geom"] u = modeldata["u"] # Extract the solution nl = selectnode(fens, box = [L L -100 * W 100 * W -100 * W 100 * W], inflate = tolerance) theutip = mean(u.values[nl, :], dims = 1) # println("displacement = $(theutip[dir]) as compared to converged $uex") # println("normalized displacement = $(theutip[dir]/uex*100) %") @test abs(theutip[dir] / uex * 100 - 99.85504856450584) < 1.0e-6 # Write out mesh with displacements modeldata["postprocessing"] = FDataDict("file" => "twisted_beam") modeldata = AlgoDeforLinearModule.exportdeformation(modeldata) try rm(modeldata["postprocessing"]["exported"][1]["file"]) catch end # Write out mesh with stresses modeldata["postprocessing"] = FDataDict("file" => "twisted_beam", "quantity" => :Cauchy, "component" => :xy) modeldata = AlgoDeforLinearModule.exportstress(modeldata) try rm(modeldata["postprocessing"]["exported"][1]["file"]) catch end # Write out mesh with stresses modeldata["postprocessing"] = FDataDict("file" => "twisted_beam", "quantity" => :Cauchy, "component" => :xz) modeldata = AlgoDeforLinearModule.exportstress(modeldata) try rm(modeldata["postprocessing"]["exported"][1]["file"]) catch end # Write out mesh with von Mises stresses modeldata["postprocessing"] = FDataDict("file" => "twisted_beam", "quantity" => :vm) modeldata = AlgoDeforLinearModule.exportstress(modeldata) try rm(modeldata["postprocessing"]["exported"][1]["file"]) catch end # Write out mesh with von Mises stresses, elementwise modeldata["postprocessing"] = FDataDict("file" => "twisted_beam-ew", "quantity" => :vm) modeldata = AlgoDeforLinearModule.exportstresselementwise(modeldata) vm = modeldata["postprocessing"]["exported"][1]["field"] # println("extremes of von Mises: $([minimum(vm.values), maximum(vm.values)])") @test norm([minimum(vm.values), maximum(vm.values)] - [6.94796, 451.904]) < 1.e-3 try rm(modeldata["postprocessing"]["exported"][1]["file"]) catch end # Write out mesh with von Mises stresses, elementwise modeldata["postprocessing"] = FDataDict("file" => "twisted_beam-ew", "quantity" => :Cauchy, "component" => :xz) modeldata = AlgoDeforLinearModule.exportstresselementwise(modeldata) try rm(modeldata["postprocessing"]["exported"][1]["file"]) catch end # Write out mesh with principal stresses, elementwise modeldata["postprocessing"] = FDataDict( "file" => "twisted_beam-principal-1-ew", "quantity" => :princCauchy, "component" => 1, ) modeldata = AlgoDeforLinearModule.exportstresselementwise(modeldata) ps = modeldata["postprocessing"]["exported"][1]["field"] # println("extremes of first principal stress: $([minimum(ps.values), maximum(ps.values)])") @test norm([minimum(ps.values), maximum(ps.values)] - [0.493918, 459.106]) < 1.e-3 try rm(modeldata["postprocessing"]["exported"][1]["file"]) catch end # Write out mesh with principal stresses, elementwise modeldata["postprocessing"] = FDataDict( "file" => "twisted_beam-principal-3-ew", "quantity" => :princCauchy, "component" => 3, ) modeldata = AlgoDeforLinearModule.exportstresselementwise(modeldata) ps = modeldata["postprocessing"]["exported"][1]["field"] # println("extremes of third principal stress: $([minimum(ps.values), maximum(ps.values)])") @test norm([minimum(ps.values), maximum(ps.values)] - [-459.106, -0.493918]) < 1.e-3 try rm(modeldata["postprocessing"]["exported"][1]["file"]) catch end # Write out mesh with pressure, elementwise modeldata["postprocessing"] = FDataDict( "file" => "twisted_beam-press-ew", "quantity" => :pressure, "component" => 1, ) modeldata = AlgoDeforLinearModule.exportstresselementwise(modeldata) ps = modeldata["postprocessing"]["exported"][1]["field"] # println("extremes of pressure: $([minimum(ps.values), maximum(ps.values)])") @test norm([minimum(ps.values), maximum(ps.values)] - [-160.396, 160.396]) < 1.e-3 try rm(modeldata["postprocessing"]["exported"][1]["file"]) catch end end end using .mmtwistedbeamoorthomm mmtwistedbeamoorthomm.test() module muunit_cube_modes_exportmmm using FinEtools using FinEtoolsDeforLinear using FinEtools.MeshExportModule using Test import Arpack: eigs import LinearAlgebra: norm, cholesky, cross function test() # println(""" # Vibration modes of unit cube of almost incompressible material. # # This example EXPORTS the model to Abaqus. # # Reference: Puso MA, Solberg J (2006) A stabilized nodally integrated # tetrahedral. International Journal for Numerical Methods in # Engineering 67: 841-867. # """) t0 = time() E = 1 * phun("PA") nu = 0.499 rho = 1 * phun("KG/M^3") a = 1 * phun("M") b = a h = a n1 = 5# How many element edges per side? na = n1 nb = n1 nh = n1 neigvs = 20 # how many eigenvalues OmegaShift = (0.01 * 2 * pi)^2 MR = DeforModelRed3D fens, fes = H20block(a, b, h, na, nb, nh) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field numberdofs!(u) material = MatDeforElastIso(MR, rho, E, nu, 0.0) femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3, 2)), material) K = stiffness(femm, geom, u) femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3, 3)), material) M = mass(femm, geom, u) d, v, nev, nconv = eigs(K + OmegaShift * M, M; nev = neigvs, which = :SM, explicittransform = :none) d = broadcast(-, d, OmegaShift) fs = real(sqrt.(complex(d))) / (2 * pi) # println("Eigenvalues: $fs [Hz]") @test norm( fs - [ 2.73674e-7, 3.00469e-7, 3.14245e-7, 3.19946e-7, 3.42634e-7, 3.56347e-7, 0.262723, 0.262723, 0.357791, 0.357791, 0.357791, 0.36088, 0.36088, 0.36088, 0.408199, 0.408397, 0.408397, 0.461756, 0.461756, 0.461756, ], ) < 1.0e-3 mode = 7 scattersysvec!(u, v[:, mode]) File = "unit_cube_modes.vtk" vtkexportmesh(File, fens, fes; vectors = [("mode$mode", u.values)]) # @async run(`"paraview.exe" $File`) try rm(File) catch end AE = AbaqusExporter("unit_cube_modes_h20") # AE.ios = STDOUT; HEADING(AE, "Vibration modes of unit cube of almost incompressible material.") COMMENT(AE, "The first six frequencies are rigid body modes.") COMMENT(AE, "The first nonzero frequency (7) should be around 0.26 Hz") PART(AE, "part1") END_PART(AE) ASSEMBLY(AE, "ASSEM1") INSTANCE(AE, "INSTNC1", "PART1") NODE(AE, fens.xyz) COMMENT(AE, "The hybrid form of the serendipity hexahedron is chosen because") COMMENT(AE, "the material is nearly incompressible.") ELEMENT(AE, "c3d20rh", "AllElements", 1, connasarray(fes)) ORIENTATION(AE, "GlobalOrientation", vec([1.0 0 0]), vec([0 1.0 0])) SOLID_SECTION(AE, "elasticity", "GlobalOrientation", "AllElements") END_INSTANCE(AE) END_ASSEMBLY(AE) MATERIAL(AE, "elasticity") ELASTIC(AE, E, nu) DENSITY(AE, rho) STEP_FREQUENCY(AE, neigvs) END_STEP(AE) close(AE) nlines = 0 open("unit_cube_modes_h20.inp") do f s = readlines(f) nlines = length(s) end @test nlines == 1409 rm("unit_cube_modes_h20.inp") end end using .muunit_cube_modes_exportmmm muunit_cube_modes_exportmmm.test() module mmpipemmPSmorthom using FinEtools using FinEtools.AlgoBaseModule: solve_blocked! using FinEtoolsDeforLinear using Test using LinearAlgebra: norm, cholesky, cross, dot using Statistics: mean mutable struct MyIData c::Int r::Vector{Float64} s::Vector{Float64} end function test() ## Thick pipe with internal pressure: plane strain # ## # Link to the <matlab:edit('pub_thick_pipe_ps') m-file>. ## Description ## # This is a simple modification of the full three-dimensional simulation of # the tutorial pub_thick_pipe takes advantage of the plane-strain model # reduction procedure. ## # An infinitely long thick walled cylindrical pipe # with inner boundary radius of 3 mm and outer boundary radius of 9 mm is # subjected to an internal pressure of 1.0 MPa. A wedge with thickness of # 2 mm and a 90-degree angle sector is considered for the finite element # analysis. The material properties are taken as isotropic linear elastic # with $E=1000$ MPa and $\nu=0.4999$ to represent nearly incompressible # behavior. This problem has been proposed to by MacNeal and Harder as a # test of an element's ability to represent the response of a nearly # incompressible material. The plane-strain condition is assumed in the # axial direction of the pipe which together with the radial symmetry # confines the material in all but the radial direction and therefore # amplifies the numerical difficulties associated with the confinement of # the nearly incompressible material. ## # There is an analytical solution to this problem. Timoshenko and Goodier # presented the original solution of Lame in their textbook. We are going # to compare with both the stress distribution (radial and hoop stresses) # and the displacement of the inner cylindrical surface. ## # # <html> # <table border=0><tr><td> # <img src="../docs/pub_thick_pipe_ps.png" width = "30#"> # </td></tr> # <tr><td>Figure 1. Definition of the geometry of the internally pressurized thick pipe</td></tr> # </table> # </html> ## # References: # # # Macneal RH, Harder RL (1985) A proposed standard set of problems to test # finite element accuracy. Finite Elements in Analysis and Design 1: 3-20. # # # Timoshenko S. and Goodier J. N., Theory of Elasticity, McGraw-Hill, 2nd ed., 1951. ## Solution # ## # Internal radius of the pipe. a = 3 * phun("MM") ## # External radius of the pipe. b = 9 * phun("MM") ## # Thickness of the slice. t = 2 * phun("MM") ## # Geometrical tolerance. tolerance = a / 10000.0 ## # Young's modulus and Poisson's ratio. E = 1000 * phun("MEGA*PA") nu = 0.499 ## # Applied pressure on the internal surface. press = 1.0 * phun("MEGA*PA") ## # Analytical solutions. Radial stress: radial_stress(r) = press * a .^ 2 / (b^2 - a^2) .* (1 - (b^2) ./ r .^ 2) ## # Circumferential (hoop) stress: hoop_stress(r) = press * a .^ 2 / (b^2 - a^2) .* (1 + (b^2) ./ r .^ 2) ## # Radial displacement: radial_displacement(r) = press * a^2 * (1 + nu) * (b^2 + r .^ 2 * (1 - 2 * nu)) / (E * (b^2 - a^2) .* r) ## # Therefore the radial displacement of the loaded surface will be: urex = radial_displacement(a) ## # The mesh parameters: The numbers of element edges axially, # and through the thickness of the pipe wall (radially). nc = 3 nt = 3 ## # Note that the material object needs to be created with the proper # model-dimension reduction in mind. In this case that is the axial symmetry # assumption. MR = DeforModelRed2DStrain # Create the mesh and initialize the geometry. First we are going # to construct the block of elements with the first coordinate # corresponding to the angle, and the second # coordinate is the thickness in the radial direction. anglrrange = 90.0 / 180 * pi fens, fes = Q8block(anglrrange, b - a, nc, nt) # Extract the boundary and mark the finite elements on the # interior surface. bdryfes = meshboundary(fes) bcl = selectelem(fens, bdryfes, box = [-Inf, Inf, 0.0, 0.0], inflate = tolerance) internal_fenids = connectednodes(subset(bdryfes, bcl)) # Now shape the block into the actual wedge piece of the pipe. ayr = fens.xyz for i = 1:count(fens) angl = ayr[i, 1] r = a + ayr[i, 2] fens.xyz[i, :] = [r * sin(angl), (r * cos(angl))] end # now we create the geometry and displacement fields geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 2)) # displacement field # The symmetry boundary condition is specified by selecting nodes # on the plane x=0. l1 = selectnode(fens; box = [0.0 0.0 -Inf Inf], inflate = tolerance) setebc!(u, l1, true, 1, 0.0) # The second symmetry boundary condition is specified by selecting # nodes on the plane y=0. l1 = selectnode(fens; box = [-Inf Inf 0.0 0.0], inflate = tolerance) setebc!(u, l1, true, 2, 0.0) applyebc!(u) numberdofs!(u) # The traction boundary condition is applied in the radial # direction. el1femm = FEMMBase(IntegDomain(subset(bdryfes, bcl), GaussRule(1, 3))) function pressureloading!( forceout::Vector{Float64}, XYZ::Matrix{Float64}, tangents::Matrix{Float64}, feid::Int, qpid::Int, ) copyto!(forceout, XYZ / norm(XYZ) * press) return forceout end fi = ForceIntensity(Float64, 2, pressureloading!) # pressure normal to the internal cylindrical surface F2 = distribloads(el1femm, geom, u, fi, 2) # Property and material material = MatDeforElastOrtho(MR, E, nu) femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(2, 2)), material) K = stiffness(femm, geom, u) u = solve_blocked!(u, K, F2) # Transfer the solution of the displacement to the nodes on the # internal cylindrical surface and convert to # cylindrical-coordinate displacements there. uv = u.values[internal_fenids, :] ur = zeros(Float64, length(internal_fenids)) for j in eachindex(internal_fenids) n = fens.xyz[internal_fenids[j], :] n = n' / norm(n)# normal to the cylindrical internal surface ur[j] = dot(vec(uv[j, :]), vec(n)) end # Report the relative displacement on the internal surface: # println("(Approximate/true displacement) at the internal surface: $( mean(ur)/urex*100 ) %") @test abs(mean(ur) / urex * 100 - 100) < 0.1 # Produce a plot of the radial stress component in the cylindrical # coordinate system. Note that this is the usual representation of # stress using nodal stress field. fld = fieldfromintegpoints(femm, geom, u, :Cauchy, 1) File = "thick_pipe_sigmax.vtk" vtkexportmesh(File, fens, fes; scalars = [("sigmax", fld.values)]) try rm(File) catch end # Produce a plot of the solution components in the cylindrical # coordinate system. # Plot the analytical solution. function inspector(idat::MyIData, elnum, conn, xe, out, xq) function outputRm(c) theNormal = c r = norm(theNormal)# distance from the axis of symmetry theNormal = theNormal / r# compute the unit normal vector e1p = [theNormal'; 0.0]# local cylind. coordinate basis vectors e3p = [0.0, 0.0, 1.0]'# this one points along the axis of the cylinder e2p = cross(vec(e3p), vec(e1p))# this one is along the hoop direction R = [vec(e1p) vec(e2p) vec(e3p)]# transformation matrix for the stress return R end Rm = outputRm(xq) tm = zeros(Float64, 3, 3) stressvtot!(MR, tm, out)# stress in global XYZ tpm = Rm' * tm * Rm# stress matrix in cylindrical coordinates sp = zeros(Float64, 6) stressttov!(MR, sp, tpm)# stress vector in cylindr. coord. push!(idat.r, norm(xq)) push!(idat.s, sp[idat.c]) return idat end idat = MyIData(1, Vector{Float64}[], Vector{Float64}[]) idat = inspectintegpoints(femm, geom, u, collect(1:count(fes)), inspector, idat, :Cauchy) # show(idat) @test norm( idat.s - [ -7.44858e5, -3.55143e5, -7.44858e5, -3.55143e5, -2.19961e5, -1.08612e5, -2.19961e5, -1.08612e5, -58910.9, -12517.6, -58910.9, -12517.6, -7.44858e5, -3.55143e5, -7.44858e5, -3.55143e5, -2.19961e5, -1.08612e5, -2.19961e5, -1.08612e5, -58910.9, -12517.6, -58910.9, -12517.6, -7.44858e5, -3.55143e5, -7.44858e5, -3.55143e5, -2.19961e5, -1.08612e5, -2.19961e5, -1.08612e5, -58910.9, -12517.6, -58910.9, -12517.6, ], ) / 1.0e5 < 1.e-3 # using Plots # plotly() # # # Plot the analytical solution. # r = linearspace(a,b,100); # plot(r, radial_stress(r)) # # Plot the computed integration-point data # scatter!(idat.r, idat.s, m=:circle, color=:red) # gui() end end using .mmpipemmPSmorthom mmpipemmPSmorthom.test()
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
44863
module scratch1_06092017_ortho using FinEtools using FinEtools.AlgoBaseModule: solve_blocked! using FinEtoolsDeforLinear using Test mutable struct MyIData c::Int r::Vector{Float64} s::Vector{Float64} end function test() # println("Thick pipe with internal pressure: axially symmetric model") #= This is a simple modification of the full three-dimensional simulation of the tutorial pub_thick_pipe that implements the axially-symmetric model reduction procedure. An infinitely long thick walled cylindrical pipe with inner boundary radius of 3 mm and outer boundary radius of 9 mm is subjected to an internal pressure of 1.0 MPa. A wedge with thickness of 2 mm and a 90-degree angle sector is considered for the finite element analysis. The material properties are taken as isotropic linear elastic with $E=1000$ MPa and $\nu=0.4999$ to represent nearly incompressible behavior. This problem has been proposed to by MacNeal and Harder as a test of an element's ability to represent the response of a nearly incompressible material. The plane-strain condition is assumed in the axial direction of the pipe which together with the radial symmetry confines the material in all but the radial direction and therefore amplifies the numerical difficulties associated with the confinement of the nearly incompressible material. There is an analytical solution to this problem. Timoshenko and Goodier presented the original solution of Lame in their textbook. We are going to compare with both the stress distribution (radial and hoop stresses) and the displacement of the inner cylindrical surface. References: - Macneal RH, Harder RL (1985) A proposed standard set of problems to test finite element accuracy. Finite Elements in Analysis and Design 1: 3-20. - Timoshenko S. and Goodier J. N., Theory of Elasticity, McGraw-Hill, 2nd ed., 1951. =# # Internal radius of the pipe. a = 3 * phun("MM") ## # External radius of the pipe. b = 9 * phun("MM") ## # Thickness of the slice. t = 2 * phun("MM") ## # Geometrical tolerance. tolerance = a / 10000.0 ## # Young's modulus and Poisson's ratio. E = 1000 * phun("MEGA*PA") nu = 0.499 ## # Applied pressure on the internal surface. press = 1.0 * phun("MEGA*PA") ## # Analytical solutions. Radial stress: radial_stress(r) = press * a .^ 2 / (b^2 - a^2) .* (1 - (b^2) ./ r .^ 2) ## # Circumferential (hoop) stress: hoop_stress(r) = press * a .^ 2 / (b^2 - a^2) .* (1 + (b^2) ./ r .^ 2) ## # Radial displacement: radial_displacement(r) = press * a^2 * (1 + nu) * (b^2 + r .^ 2 * (1 - 2 * nu)) / (E * (b^2 - a^2) .* r) ## # Therefore the radial displacement of the loaded surface will be: urex = radial_displacement(a) ## # The mesh parameters: The numbers of element edges axially, # and through the thickness of the pipe wall (radially). na = 1 nt = 10 ## # Note that the material object needs to be created with the proper # model-dimension reduction in effect. In this case that is the axial symmetry # assumption. MR = DeforModelRed2DAxisymm axisymmetric = true # Create the mesh and initialize the geometry. First we are going # to construct the block of elements with the first coordinate # corresponding to the thickness in the radial direction, and the second # coordinate is the thickness in the axial direction. fens, fes = Q8block(b - a, t, nt, na) # Extract the boundary and mark the finite elements on the # interior surface. bdryfes = meshboundary(fes) bcl = selectelem(fens, bdryfes, box = [0.0, 0.0, -Inf, Inf], inflate = tolerance) internal_fenids = connectednodes(subset(bdryfes, bcl)) # Now shape the block into the actual wedge piece of the pipe. for i = 1:count(fens) fens.xyz[i, :] = fens.xyz[i, :] + [a; 0.0] end # now we create the geometry and displacement fields geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 2)) # displacement field # The plane-strain condition in the axial direction is specified by selecting nodes # on the plane y=0 and y=t. l1 = selectnode(fens; box = [-Inf Inf 0.0 0.0], inflate = tolerance) setebc!(u, l1, true, 2, 0.0) l1 = selectnode(fens; box = [-Inf Inf t t], inflate = tolerance) setebc!(u, l1, true, 2, 0.0) applyebc!(u) numberdofs!(u) # The traction boundary condition is applied in the radial # direction. el1femm = FEMMBase(IntegDomain(subset(bdryfes, bcl), GaussRule(1, 3), axisymmetric)) fi = ForceIntensity([press; 0.0]) F2 = distribloads(el1femm, geom, u, fi, 2) # Property and material material = MatDeforElastOrtho(MR, E, nu) femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(2, 2), axisymmetric), material) K = stiffness(femm, geom, u) u = solve_blocked!(u, K, F2) # Transfer the solution of the displacement to the nodes on the # internal cylindrical surface and convert to # cylindrical-coordinate displacements there. uv = u.values[internal_fenids, :] # Report the relative displacement on the internal surface: # println("(Approximate/true displacement) at the internal surface: $( mean(uv[:,1])/urex*100 ) %") # Produce a plot of the radial stress component in the cylindrical # coordinate system. Note that this is the usual representation of # stress using nodal stress field. fld = fieldfromintegpoints(femm, geom, u, :Cauchy, 1) # File = "thick_pipe_sigmax.vtk" # vtkexportmesh(File, fens, fes; scalars=[("sigmax", fld.values)]) # Produce a plot of the solution components in the cylindrical # coordinate system. function inspector(idat::MyIData, elnum, conn, xe, out, xq) push!(idat.r, xq[1]) push!(idat.s, out[idat.c]) return idat end idat = MyIData(1, Int[], Int[]) idat = inspectintegpoints(femm, geom, u, collect(1:count(fes)), inspector, idat, :Cauchy) # using Plots # plotly() # # # Plot the analytical solution. # r = linearspace(a,b,100); # plot(r, radial_stress(r)) # # Plot the computed integration-point data # plot!(idat.r, idat.s, m=:circle, color=:red) # gui() @test abs(idat.r[1] - 0.003126794919243112) < 1.0e-9 @test abs(idat.s[1] - -910911.9777008593) < 1.0e-2 ## Discussion # ## # The axially symmetric model is clearly very effective # computationally, as the size is much reduced compared to the 3-D # model. In conjunction with uniform or selective reduced integration # it can be very accurate as well. end end using .scratch1_06092017_ortho scratch1_06092017_ortho.test() module mmLE11Q8mm using FinEtools using FinEtools.AlgoBaseModule: solve_blocked! using FinEtoolsDeforLinear using Test import LinearAlgebra: norm, cholesky, cross function test() # NAFEMS LE11 benchmark with Q8 elements. # # This is a test recommended by the National Agency for Finite Element # # Methods and Standards (U.K.): Test LE11 from NAFEMS Publication TNSB, # # Rev. 3, “The Standard NAFEMS Benchmarks,” October 1990. # # # # Target solution: Direct stress, = –105 MPa at point A. #function LE11NAFEMS() # Parameters: Ea = 210000 * phun("MEGA*Pa") nua = 0.3 alphaa = 2.3e-4 # thermal expansion coefficient sigmaA = -105 * phun("MEGA*Pa") nref = 1 # how many times should we refine the mesh? X = [ 1.0 0.0#A 1.4 0.0#B 0.995184726672197 0.098017140329561 1.393258617341076 0.137223996461385 0.980785 0.195090# 1.37309939 0.27312645 0.956940335732209 0.290284677254462 1.339716470025092 0.406398548156247 0.9238795 0.38268#C 1.2124 0.7#D 0.7071 0.7071#E 1.1062 1.045#F 0.7071 (0.7071+1.79)/2#(E+H)/2 1.0 1.39#G 0.7071 1.79#H 1.0 1.79#I ] * phun("M") tolerance = 1.e-6 * phun("M") ## # Note that the material object needs to be created with the proper # model-dimension reduction in mind. In this case that is the axial symmetry # assumption. MR = DeforModelRed2DAxisymm fens = FENodeSet(X) fes = FESetQ4([1 2 4 3; 3 4 6 5; 5 6 8 7; 7 8 10 9; 9 10 12 11; 11 12 14 13; 13 14 16 15]) for ref = 1:nref fens, fes = Q4refine(fens, fes) list = selectnode( fens, distance = 1.0 + 0.1 / 2^nref, from = [0.0 0.0], inflate = tolerance, ) fens.xyz[list, :] = FinEtools.MeshUtilModule.ontosphere(fens.xyz[list, :], 1.0) end fens, fes = Q4toQ8(fens, fes) list = selectnode( fens, distance = 1.0 + 0.1 / 2^nref, from = [0.0 0.0], inflate = tolerance, ) fens.xyz[list, :] = FinEtools.MeshUtilModule.ontosphere(fens.xyz[list, :], 1.0) # File = "mesh.vtk" # vtkexportmesh(File, fens, fes) # now we create the geometry and displacement fields geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 2)) # displacement field # Apply EBC's l1 = selectnode(fens, box = [-Inf Inf 0 0], inflate = tolerance) setebc!(u, l1, true, 2, 00.0) l1 = selectnode(fens, box = [-Inf Inf 1.79 1.79], inflate = tolerance) setebc!(u, l1, true, 2, 00.0) applyebc!(u) numberdofs!(u) # Temperature field dT = NodalField(reshape(fens.xyz[:, 1] + fens.xyz[:, 2], size(fens.xyz, 1), 1)) # Property and material material = MatDeforElastIso(MR, 0.0, Ea, nua, alphaa) femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(2, 3), true), material) K = stiffness(femm, geom, u) F = thermalstrainloads(femm, geom, u, dT) u = solve_blocked!(u, K, F) nA = selectnode(fens, box = Float64[1.0 1.0 0.0 0.0], inflate = tolerance) fld = fieldfromintegpoints(femm, geom, u, dT, :Cauchy, 2) File = "LE11NAFEMS_Q8_sigmay.vtk" vtkexportmesh( File, fens, fes; scalars = [("sigmay", fld.values)], vectors = [("u", u.values)], ) # println("range of sigmay = $((minimum(fld.values), maximum(fld.values)))") @test norm( [minimum(fld.values), maximum(fld.values)] - [-1.443052182185006e8, -1.4106181545272605e7], ) < 1.0e-2 # @async run(`"paraview.exe" $File`) try rm(File) catch end sA = fld.values[nA] / phun("MEGA*Pa") sAn = fld.values[nA] / sigmaA # println("Stress at point A: $(sA) i. e. $( sAn*100 )% of reference value") @test abs(sA[1] - (-93.8569)) < 1.0e-3 fen2fe = FENodeToFEMap(fes, nnodes(geom)) function inspector(idat, elnum, conn, xe, out, xq) println("loc = $( xq ) : $( transpose(out)/phun("MEGA*Pa") )") return idat end # inspectintegpoints(femm, geom, u, dT, fen2fe.map[nA[1]], # inspector, []; quantity = :Cauchy) end end using .mmLE11Q8mm mmLE11Q8mm.test() module mmLE11Q8mmortho using FinEtools using FinEtools.AlgoBaseModule: solve_blocked! using FinEtoolsDeforLinear using Test import LinearAlgebra: norm, cholesky, cross function test() # NAFEMS LE11 benchmark with Q8 elements. # # This is a test recommended by the National Agency for Finite Element # # Methods and Standards (U.K.): Test LE11 from NAFEMS Publication TNSB, # # Rev. 3, “The Standard NAFEMS Benchmarks,” October 1990. # # # # Target solution: Direct stress, = –105 MPa at point A. #function LE11NAFEMS() # Parameters: Ea = 210000 * phun("MEGA*Pa") nua = 0.3 alphaa = 2.3e-4 # thermal expansion coefficient sigmaA = -105 * phun("MEGA*Pa") nref = 1 # how many times should we refine the mesh? X = [ 1.0 0.0#A 1.4 0.0#B 0.995184726672197 0.098017140329561 1.393258617341076 0.137223996461385 0.980785 0.195090# 1.37309939 0.27312645 0.956940335732209 0.290284677254462 1.339716470025092 0.406398548156247 0.9238795 0.38268#C 1.2124 0.7#D 0.7071 0.7071#E 1.1062 1.045#F 0.7071 (0.7071+1.79)/2#(E+H)/2 1.0 1.39#G 0.7071 1.79#H 1.0 1.79#I ] * phun("M") tolerance = 1.e-6 * phun("M") ## # Note that the material object needs to be created with the proper # model-dimension reduction in mind. In this case that is the axial symmetry # assumption. MR = DeforModelRed2DAxisymm fens = FENodeSet(X) fes = FESetQ4([1 2 4 3; 3 4 6 5; 5 6 8 7; 7 8 10 9; 9 10 12 11; 11 12 14 13; 13 14 16 15]) for ref = 1:nref fens, fes = Q4refine(fens, fes) list = selectnode( fens, distance = 1.0 + 0.1 / 2^nref, from = [0.0 0.0], inflate = tolerance, ) fens.xyz[list, :] = FinEtools.MeshUtilModule.ontosphere(fens.xyz[list, :], 1.0) end fens, fes = Q4toQ8(fens, fes) list = selectnode( fens, distance = 1.0 + 0.1 / 2^nref, from = [0.0 0.0], inflate = tolerance, ) fens.xyz[list, :] = FinEtools.MeshUtilModule.ontosphere(fens.xyz[list, :], 1.0) # File = "mesh.vtk" # vtkexportmesh(File, fens, fes) # now we create the geometry and displacement fields geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 2)) # displacement field # Apply EBC's l1 = selectnode(fens, box = [-Inf Inf 0 0], inflate = tolerance) setebc!(u, l1, true, 2, 00.0) l1 = selectnode(fens, box = [-Inf Inf 1.79 1.79], inflate = tolerance) setebc!(u, l1, true, 2, 00.0) applyebc!(u) numberdofs!(u) # Temperature field dT = NodalField(reshape(fens.xyz[:, 1] + fens.xyz[:, 2], size(fens.xyz, 1), 1)) # Property and material material = MatDeforElastOrtho(MR, 0.0, Ea, nua, alphaa) # display(material ) femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(2, 3), true), material) K = stiffness(femm, geom, u) F = thermalstrainloads(femm, geom, u, dT) u = solve_blocked!(u, K, F) nA = selectnode(fens, box = Float64[1.0 1.0 0.0 0.0], inflate = tolerance) fld = fieldfromintegpoints(femm, geom, u, dT, :Cauchy, 2) File = "LE11NAFEMS_Q8_sigmay.vtk" vtkexportmesh( File, fens, fes; scalars = [("sigmay", fld.values)], vectors = [("u", u.values)], ) # println("range of sigmay = $((minimum(fld.values), maximum(fld.values)))") @test norm( [minimum(fld.values), maximum(fld.values)] - [-1.443052182185006e8, -1.4106181545272605e7], ) < 1.0e-2 # @async run(`"paraview.exe" $File`) try rm(File) catch end sA = fld.values[nA] / phun("MEGA*Pa") sAn = fld.values[nA] / sigmaA # println("Stress at point A: $(sA) i. e. $( sAn*100 )% of reference value") @test abs(sA[1] - (-93.8569)) < 1.0e-3 fen2fe = FENodeToFEMap(fes, nnodes(geom)) function inspector(idat, elnum, conn, xe, out, xq) println("loc = $( xq ) : $( transpose(out)/phun("MEGA*Pa") )") return idat end # inspectintegpoints(femm, geom, u, dT, fen2fe.map[nA[1]], # inspector, []; quantity = :Cauchy) end end using .mmLE11Q8mmortho mmLE11Q8mmortho.test() module mLE11Q8aximmm using FinEtools using FinEtools.AlgoBaseModule: solve_blocked! using FinEtoolsDeforLinear using Test import LinearAlgebra: norm, cholesky, cross function test() # NAFEMS LE11 benchmark with Q8 elements. # # This is a test recommended by the National Agency for Finite Element # # Methods and Standards (U.K.): Test LE11 from NAFEMS Publication TNSB, # # Rev. 3, “The Standard NAFEMS Benchmarks,” October 1990. # # # # Target solution: Direct stress, = –105 MPa at point A. #function LE11NAFEMS() # Parameters: Ea = 210000 * phun("MEGA*Pa") nua = 0.3 alphaa = 2.3e-4 # thermal expansion coefficient sigmaA = -105 * phun("MEGA*Pa") nref = 2 # how many times should we refine the mesh? X = [ 1.0 0.0#A 1.4 0.0#B 0.995184726672197 0.098017140329561 1.393258617341076 0.137223996461385 0.980785 0.195090# 1.37309939 0.27312645 0.956940335732209 0.290284677254462 1.339716470025092 0.406398548156247 0.9238795 0.38268#C 1.2124 0.7#D 0.7071 0.7071#E 1.1062 1.045#F 0.7071 (0.7071+1.79)/2#(E+H)/2 1.0 1.39#G 0.7071 1.79#H 1.0 1.79#I ] * phun("M") tolerance = 1.e-6 * phun("M") ## # Note that the material object needs to be created with the proper # model-dimension reduction in mind. In this case that is the axial symmetry # assumption. MR = DeforModelRed2DAxisymm fens = FENodeSet(X) fes = FESetQ4([1 2 4 3; 3 4 6 5; 5 6 8 7; 7 8 10 9; 9 10 12 11; 11 12 14 13; 13 14 16 15]) for ref = 1:nref fens, fes = Q4refine(fens, fes) list = selectnode( fens, distance = 1.0 + 0.1 / 2^nref, from = [0.0 0.0], inflate = tolerance, ) fens.xyz[list, :] = FinEtools.MeshUtilModule.ontosphere(fens.xyz[list, :], 1.0) end fens, fes = Q4toQ8(fens, fes) list = selectnode( fens, distance = 1.0 + 0.1 / 2^nref, from = [0.0 0.0], inflate = tolerance, ) fens.xyz[list, :] = FinEtools.MeshUtilModule.ontosphere(fens.xyz[list, :], 1.0) # File = "mesh.vtk" # vtkexportmesh(File, fens, fes) # now we create the geometry and displacement fields geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 2)) # displacement field # Apply EBC's lbottom = selectnode(fens, box = [-Inf Inf 0 0], inflate = tolerance) setebc!(u, lbottom, true, 2, 00.0) ltop = selectnode(fens, box = [-Inf Inf 1.79 1.79], inflate = tolerance) setebc!(u, ltop, true, 2, 00.0) applyebc!(u) numberdofs!(u) # Temperature field dT = NodalField(reshape(fens.xyz[:, 1] + fens.xyz[:, 2], size(fens.xyz, 1), 1)) # Property and material material = MatDeforElastIso(MR, 0.0, Ea, nua, alphaa) femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(2, 3), true), material) K = stiffness(femm, geom, u) F = thermalstrainloads(femm, geom, u, dT) u = solve_blocked!(u, K, F) nA = selectnode(fens, box = Float64[1.0 1.0 0.0 0.0], inflate = tolerance) fld = fieldfromintegpoints(femm, geom, u, dT, :Cauchy, 2) File = "LE11NAFEMS_Q8_sigmay.vtk" vtkexportmesh( File, fens, fes; scalars = [("sigmay", fld.values)], vectors = [("u", u.values)], ) # println("range of sigmay = $((minimum(fld.values), maximum(fld.values)))") @test norm( [minimum(fld.values), maximum(fld.values)] - [-1.6338426447540134e8, -4.961956343464769e6], ) < 1.e-1 # @async run(`"paraview.exe" $File`) try rm(File) catch end sA = fld.values[nA] / phun("MEGA*Pa") sAn = fld.values[nA] / sigmaA # println("Stress at point A: $(sA) i. e. $( sAn*100 )% of reference value") fen2fe = FENodeToFEMap(fes, nnodes(geom)) function inspector(idat, elnum, conn, xe, out, xq) # println("loc = $( xq ) : $( transpose(out)/phun("MEGA*Pa") )") return idat end inspectintegpoints( femm, geom, u, dT, fen2fe.map[nA[1]], inspector, []; quantity = :Cauchy, ) fld = fieldfromintegpoints(femm, geom, u, dT, :Pressure, 1) File = "LE11NAFEMS_Q8_pressure.vtk" vtkexportmesh( File, fens, fes; scalars = [("pressure", fld.values)], vectors = [("u", u.values)], ) # println("range of pressure = $((minimum(fld.values), maximum(fld.values)))") @test norm( [minimum(fld.values), maximum(fld.values)] - [-1.1881819144904878e7, 7.555030948761216e7], ) < 1.e-1 # @async run(`"paraview.exe" $File`) try rm(File) catch end fld = fieldfromintegpoints(femm, geom, u, dT, :vm, 1) File = "LE11NAFEMS_Q8_vm.vtk" vtkexportmesh( File, fens, fes; scalars = [("pressure", fld.values)], vectors = [("u", u.values)], ) # println("range of von Mises = $((minimum(fld.values), maximum(fld.values)))") @test norm( [minimum(fld.values), maximum(fld.values)] - [3.221370699152578e7, 1.4437590830351183e8], ) < 1.e-1 # @async run(`"paraview.exe" $File`) try rm(File) catch end AE = AbaqusExporter("LE11NAFEMS_Q8_export_stress") HEADING(AE, "NAFEMS LE11 benchmark with Q8 elements.") COMMENT(AE, "sigmaA = -105 MPa ") PART(AE, "part1") END_PART(AE) ASSEMBLY(AE, "ASSEM1") INSTANCE(AE, "INSTNC1", "PART1") NODE(AE, fens.xyz) ELEMENT(AE, "cax8", "AllElements", 1, connasarray(fes)) NSET_NSET(AE, "ltop", ltop) NSET_NSET(AE, "lbottom", lbottom) ORIENTATION(AE, "GlobalOrientation", vec([1.0 0 0]), vec([0 1.0 0])) SOLID_SECTION(AE, "elasticity", "GlobalOrientation", "AllElements") SURFACE_SECTION(AE, "TractionElements") END_INSTANCE(AE) END_ASSEMBLY(AE) MATERIAL(AE, "elasticity") ELASTIC(AE, Ea, nua) EXPANSION(AE, alphaa) STEP_PERTURBATION_STATIC(AE) BOUNDARY(AE, "ASSEM1.INSTNC1.ltop", 2) BOUNDARY(AE, "ASSEM1.INSTNC1.lbottom", 2) TEMPERATURE(AE, "ASSEM1.INSTNC1.", collect(1:count(fens)), vec(dT.values)) END_STEP(AE) close(AE) nlines = 0 open(AE.filename) do f s = readlines(f) nlines = length(s) end @test nlines == 963 try rm(AE.filename) catch end end end using .mLE11Q8aximmm mLE11Q8aximmm.test() module mLE11Q8aximorthom using FinEtools using FinEtools.AlgoBaseModule: solve_blocked! using FinEtoolsDeforLinear using Test import LinearAlgebra: norm, cholesky, cross function test() # NAFEMS LE11 benchmark with Q8 elements. # # This is a test recommended by the National Agency for Finite Element # # Methods and Standards (U.K.): Test LE11 from NAFEMS Publication TNSB, # # Rev. 3, “The Standard NAFEMS Benchmarks,” October 1990. # # # # Target solution: Direct stress, = –105 MPa at point A. #function LE11NAFEMS() # Parameters: Ea = 210000 * phun("MEGA*Pa") nua = 0.3 alphaa = 2.3e-4 # thermal expansion coefficient sigmaA = -105 * phun("MEGA*Pa") nref = 2 # how many times should we refine the mesh? X = [ 1.0 0.0#A 1.4 0.0#B 0.995184726672197 0.098017140329561 1.393258617341076 0.137223996461385 0.980785 0.195090# 1.37309939 0.27312645 0.956940335732209 0.290284677254462 1.339716470025092 0.406398548156247 0.9238795 0.38268#C 1.2124 0.7#D 0.7071 0.7071#E 1.1062 1.045#F 0.7071 (0.7071+1.79)/2#(E+H)/2 1.0 1.39#G 0.7071 1.79#H 1.0 1.79#I ] * phun("M") tolerance = 1.e-6 * phun("M") ## # Note that the material object needs to be created with the proper # model-dimension reduction in mind. In this case that is the axial symmetry # assumption. MR = DeforModelRed2DAxisymm fens = FENodeSet(X) fes = FESetQ4([1 2 4 3; 3 4 6 5; 5 6 8 7; 7 8 10 9; 9 10 12 11; 11 12 14 13; 13 14 16 15]) for ref = 1:nref fens, fes = Q4refine(fens, fes) list = selectnode( fens, distance = 1.0 + 0.1 / 2^nref, from = [0.0 0.0], inflate = tolerance, ) fens.xyz[list, :] = FinEtools.MeshUtilModule.ontosphere(fens.xyz[list, :], 1.0) end fens, fes = Q4toQ8(fens, fes) list = selectnode( fens, distance = 1.0 + 0.1 / 2^nref, from = [0.0 0.0], inflate = tolerance, ) fens.xyz[list, :] = FinEtools.MeshUtilModule.ontosphere(fens.xyz[list, :], 1.0) # File = "mesh.vtk" # vtkexportmesh(File, fens, fes) # now we create the geometry and displacement fields geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 2)) # displacement field # Apply EBC's lbottom = selectnode(fens, box = [-Inf Inf 0 0], inflate = tolerance) setebc!(u, lbottom, true, 2, 00.0) ltop = selectnode(fens, box = [-Inf Inf 1.79 1.79], inflate = tolerance) setebc!(u, ltop, true, 2, 00.0) applyebc!(u) numberdofs!(u) # Temperature field dT = NodalField(reshape(fens.xyz[:, 1] + fens.xyz[:, 2], size(fens.xyz, 1), 1)) # Property and material material = MatDeforElastOrtho(MR, 0.0, Ea, nua, alphaa) femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(2, 3), true), material) K = stiffness(femm, geom, u) F = thermalstrainloads(femm, geom, u, dT) u = solve_blocked!(u, K, F) nA = selectnode(fens, box = Float64[1.0 1.0 0.0 0.0], inflate = tolerance) fld = fieldfromintegpoints(femm, geom, u, dT, :Cauchy, 2) File = "LE11NAFEMS_Q8_sigmay.vtk" vtkexportmesh( File, fens, fes; scalars = [("sigmay", fld.values)], vectors = [("u", u.values)], ) # println("range of sigmay = $((minimum(fld.values), maximum(fld.values)))") @test norm( [minimum(fld.values), maximum(fld.values)] - [-1.6338426447540134e8, -4.961956343464769e6], ) < 1.e-1 # @async run(`"paraview.exe" $File`) try rm(File) catch end sA = fld.values[nA] / phun("MEGA*Pa") sAn = fld.values[nA] / sigmaA # println("Stress at point A: $(sA) i. e. $( sAn*100 )% of reference value") fen2fe = FENodeToFEMap(fes, nnodes(geom)) function inspector(idat, elnum, conn, xe, out, xq) # println("loc = $( xq ) : $( transpose(out)/phun("MEGA*Pa") )") return idat end inspectintegpoints( femm, geom, u, dT, fen2fe.map[nA[1]], inspector, []; quantity = :Cauchy, ) fld = fieldfromintegpoints(femm, geom, u, dT, :Pressure, 1) File = "LE11NAFEMS_Q8_pressure.vtk" vtkexportmesh( File, fens, fes; scalars = [("pressure", fld.values)], vectors = [("u", u.values)], ) # println("range of pressure = $((minimum(fld.values), maximum(fld.values)))") @test norm( [minimum(fld.values), maximum(fld.values)] - [-1.1881819144904878e7, 7.555030948761216e7], ) < 1.e-1 # @async run(`"paraview.exe" $File`) try rm(File) catch end fld = fieldfromintegpoints(femm, geom, u, dT, :vm, 1) File = "LE11NAFEMS_Q8_vm.vtk" vtkexportmesh( File, fens, fes; scalars = [("pressure", fld.values)], vectors = [("u", u.values)], ) # println("range of von Mises = $((minimum(fld.values), maximum(fld.values)))") @test norm( [minimum(fld.values), maximum(fld.values)] - [3.221370699152578e7, 1.4437590830351183e8], ) < 1.e-1 # @async run(`"paraview.exe" $File`) try rm(File) catch end AE = AbaqusExporter("LE11NAFEMS_Q8_export_stress") HEADING(AE, "NAFEMS LE11 benchmark with Q8 elements.") COMMENT(AE, "sigmaA = -105 MPa ") PART(AE, "part1") END_PART(AE) ASSEMBLY(AE, "ASSEM1") INSTANCE(AE, "INSTNC1", "PART1") NODE(AE, fens.xyz) ELEMENT(AE, "cax8", "AllElements", 1, connasarray(fes)) NSET_NSET(AE, "ltop", ltop) NSET_NSET(AE, "lbottom", lbottom) ORIENTATION(AE, "GlobalOrientation", vec([1.0 0 0]), vec([0 1.0 0])) SOLID_SECTION(AE, "elasticity", "GlobalOrientation", "AllElements") SURFACE_SECTION(AE, "TractionElements") END_INSTANCE(AE) END_ASSEMBLY(AE) MATERIAL(AE, "elasticity") ELASTIC(AE, Ea, nua) EXPANSION(AE, alphaa) STEP_PERTURBATION_STATIC(AE) BOUNDARY(AE, "ASSEM1.INSTNC1.ltop", 2) BOUNDARY(AE, "ASSEM1.INSTNC1.lbottom", 2) TEMPERATURE(AE, "ASSEM1.INSTNC1.", collect(1:count(fens)), vec(dT.values)) END_STEP(AE) close(AE) nlines = 0 open(AE.filename) do f s = readlines(f) nlines = length(s) end @test nlines == 963 try rm(AE.filename) catch end end end using .mLE11Q8aximorthom mLE11Q8aximorthom.test() module mmmCookmmstrainmmisommm using FinEtools using FinEtoolsDeforLinear using FinEtoolsDeforLinear.AlgoDeforLinearModule using FinEtools.MeshExportModule using Test import LinearAlgebra: norm, cholesky, cross function test() E = 1.0 nu = 1.0 / 3 width = 48.0 height = 44.0 thickness = 1.0 free_height = 16.0 Mid_edge = [48.0, 52.0]# Location of tracked deflection magn = 1.0 / (free_height * thickness)# Density of applied load convutip = 23.97 n = 30# number of elements per side tolerance = minimum([width, height]) / n / 1000.0#Geometrical tolerance fens, fes = T3block(width, height, n, n) # Reshape into a trapezoidal panel for i = 1:count(fens) fens.xyz[i, 2] = fens.xyz[i, 2] + (fens.xyz[i, 1] / width) * (height - fens.xyz[i, 2] / height * (height - free_height)) end # Clamped edge of the membrane l1 = selectnode(fens; box = [0.0, 0.0, -Inf, Inf], inflate = tolerance) ess1 = FDataDict("displacement" => 0.0, "component" => 1, "node_list" => l1) ess2 = FDataDict("displacement" => 0.0, "component" => 2, "node_list" => l1) # Traction on the opposite edge boundaryfes = meshboundary(fes) Toplist = selectelem(fens, boundaryfes, box = [width, width, -Inf, Inf], inflate = tolerance) el1femm = FEMMBase(IntegDomain(subset(boundaryfes, Toplist), GaussRule(1, 2), thickness)) flux1 = FDataDict("traction_vector" => [0.0, +magn], "femm" => el1femm) # Make the region MR = DeforModelRed2DStrain material = MatDeforElastIso(MR, 0.0, E, nu, 0.0) region1 = FDataDict( "femm" => FEMMDeforLinear(MR, IntegDomain(fes, TriRule(1), thickness), material), ) modeldata = FDataDict( "fens" => fens, "regions" => [region1], "essential_bcs" => [ess1, ess2], "traction_bcs" => [flux1], ) # Call the solver modeldata = AlgoDeforLinearModule.linearstatics(modeldata) u = modeldata["u"] geom = modeldata["geom"] # Extract the solution nl = selectnode( fens, box = [Mid_edge[1], Mid_edge[1], Mid_edge[2], Mid_edge[2]], inflate = tolerance, ) theutip = u.values[nl, :] # println("displacement =$(theutip[2]) as compared to converged $convutip") @test abs(theutip[2] - 21.35955642390279) < 1.0e-3 modeldata["postprocessing"] = FDataDict("file" => "cookstress-ew", "quantity" => :Cauchy, "component" => :xy) modeldata = AlgoDeforLinearModule.exportstresselementwise(modeldata) fld = modeldata["postprocessing"]["exported"][1]["field"] # println("range of Cauchy_xy = $((minimum(fld.values), maximum(fld.values)))") @test norm( [minimum(fld.values), maximum(fld.values)] - [-0.07028875155067116, 0.1301698279821655], ) < 1.0e-5 # File = modeldata["postprocessing"]["exported"][1]["file"] # @async run(`"paraview.exe" $File`) try rm(modeldata["postprocessing"]["exported"][1]["file"]) catch end modeldata["postprocessing"] = FDataDict("file" => "cookstress-ew-vm", "quantity" => :vm, "component" => 1) modeldata = AlgoDeforLinearModule.exportstresselementwise(modeldata) fld = modeldata["postprocessing"]["exported"][1]["field"] # println("range of vm = $((minimum(fld.values), maximum(fld.values)))") @test norm( [minimum(fld.values), maximum(fld.values)] - [0.007503804468283987, 0.33798754356331173], ) < 1.0e-5 # File = modeldata["postprocessing"]["exported"][1]["file"] # @async run(`"paraview.exe" $File`) try rm(modeldata["postprocessing"]["exported"][1]["file"]) catch end modeldata["postprocessing"] = FDataDict( "file" => "cookstress-ew-pressure", "quantity" => :pressure, "component" => 1, ) modeldata = AlgoDeforLinearModule.exportstresselementwise(modeldata) fld = modeldata["postprocessing"]["exported"][1]["field"] # println("range of pressure = $((minimum(fld.values), maximum(fld.values)))") @test norm( [minimum(fld.values), maximum(fld.values)] - [-0.11777749217431245, 0.23457099031101358], ) < 1.0e-5 # File = modeldata["postprocessing"]["exported"][1]["file"] # @async run(`"paraview.exe" $File`) try rm(modeldata["postprocessing"]["exported"][1]["file"]) catch end modeldata["postprocessing"] = FDataDict( "file" => "cookstress-ew-princ1", "quantity" => :princCauchy, "component" => 1, ) modeldata = AlgoDeforLinearModule.exportstresselementwise(modeldata) fld = modeldata["postprocessing"]["exported"][1]["field"] # println("range of princCauchy Max = $((minimum(fld.values), maximum(fld.values)))") @test norm( [minimum(fld.values), maximum(fld.values)] - [-0.16098150217425994, 0.24838761904231466], ) < 1.0e-5 # File = modeldata["postprocessing"]["exported"][1]["file"] # @async run(`"paraview.exe" $File`) try rm(modeldata["postprocessing"]["exported"][1]["file"]) catch end modeldata["postprocessing"] = FDataDict( "file" => "cookstress-ew-princ3", "quantity" => :princCauchy, "component" => 3, ) modeldata = AlgoDeforLinearModule.exportstresselementwise(modeldata) fld = modeldata["postprocessing"]["exported"][1]["field"] # println("range of princCauchy Min = $((minimum(fld.values), maximum(fld.values)))") @test norm( [minimum(fld.values), maximum(fld.values)] - [-0.4523049370669106, 0.02980811337406548], ) < 1.0e-5 # File = modeldata["postprocessing"]["exported"][1]["file"] # @async run(`"paraview.exe" $File`) try rm(modeldata["postprocessing"]["exported"][1]["file"]) catch end AE = AbaqusExporter("Cookstress_algo_stress") HEADING(AE, "Cook trapezoidal panel, plane stress") COMMENT(AE, "Converged free mid-edge displacement = 23.97") PART(AE, "part1") END_PART(AE) ASSEMBLY(AE, "ASSEM1") INSTANCE(AE, "INSTNC1", "PART1") NODE(AE, fens.xyz) COMMENT(AE, "We are assuming three node triangles in plane-stress") COMMENT(AE, "CPE3 are pretty poor-accuracy elements, but here we don't care about it.") @test nodesperelem(modeldata["regions"][1]["femm"].integdomain.fes) == 3 ELEMENT( AE, "CPE3", "AllElements", connasarray(modeldata["regions"][1]["femm"].integdomain.fes), ) NSET_NSET(AE, "clamped", modeldata["essential_bcs"][1]["node_list"]) ORIENTATION(AE, "GlobalOrientation", vec([1.0 0 0]), vec([0 1.0 0])) SOLID_SECTION(AE, "elasticity", "GlobalOrientation", "AllElements", thickness) END_INSTANCE(AE) END_ASSEMBLY(AE) MATERIAL(AE, "elasticity") ELASTIC(AE, E, nu) STEP_PERTURBATION_STATIC(AE) BOUNDARY(AE, "ASSEM1.INSTNC1.clamped", 1) BOUNDARY(AE, "ASSEM1.INSTNC1.clamped", 2) bfes = modeldata["traction_bcs"][1]["femm"].integdomain.fes COMMENT(AE, "Concentrated loads: we are assuming that the elements on the boundary") COMMENT(AE, "have two nodes each and also that they are the same length.") COMMENT(AE, "Then the concentrated loads below will be correctly lumped.") nl = connectednodes(bfes) F = zeros(count(modeldata["fens"])) for ix in eachindex(bfes) for jx = 1:2 F[bfes.conn[ix][jx]] += 1.0 / n / 2 / thickness end end for ixxxx in eachindex(F) if F[ixxxx] != 0.0 CLOAD(AE, "ASSEM1.INSTNC1.$(ixxxx)", 2, F[ixxxx]) end end END_STEP(AE) close(AE) nlines = 0 open(AE.filename) do f s = readlines(f) nlines = length(s) end @test nlines == 2886 rm(AE.filename) end end using .mmmCookmmstrainmmisommm mmmCookmmstrainmmisommm.test() module mmmCookmmstrainmorthommm using FinEtools using FinEtoolsDeforLinear using FinEtoolsDeforLinear.AlgoDeforLinearModule using FinEtools.MeshExportModule using Test import LinearAlgebra: norm, cholesky, cross function test() E = 1.0 nu = 1.0 / 3 width = 48.0 height = 44.0 thickness = 1.0 free_height = 16.0 Mid_edge = [48.0, 52.0]# Location of tracked deflection magn = 1.0 / (free_height * thickness)# Density of applied load convutip = 23.97 n = 30# number of elements per side tolerance = minimum([width, height]) / n / 1000.0#Geometrical tolerance fens, fes = T3block(width, height, n, n) # Reshape into a trapezoidal panel for i = 1:count(fens) fens.xyz[i, 2] = fens.xyz[i, 2] + (fens.xyz[i, 1] / width) * (height - fens.xyz[i, 2] / height * (height - free_height)) end # Clamped edge of the membrane l1 = selectnode(fens; box = [0.0, 0.0, -Inf, Inf], inflate = tolerance) ess1 = FDataDict("displacement" => 0.0, "component" => 1, "node_list" => l1) ess2 = FDataDict("displacement" => 0.0, "component" => 2, "node_list" => l1) # Traction on the opposite edge boundaryfes = meshboundary(fes) Toplist = selectelem(fens, boundaryfes, box = [width, width, -Inf, Inf], inflate = tolerance) el1femm = FEMMBase(IntegDomain(subset(boundaryfes, Toplist), GaussRule(1, 2), thickness)) flux1 = FDataDict("traction_vector" => [0.0, +magn], "femm" => el1femm) # Make the region MR = DeforModelRed2DStrain material = MatDeforElastOrtho(MR, 0.0, E, nu, 0.0) region1 = FDataDict( "femm" => FEMMDeforLinear(MR, IntegDomain(fes, TriRule(1), thickness), material), ) modeldata = FDataDict( "fens" => fens, "regions" => [region1], "essential_bcs" => [ess1, ess2], "traction_bcs" => [flux1], ) # Call the solver modeldata = AlgoDeforLinearModule.linearstatics(modeldata) u = modeldata["u"] geom = modeldata["geom"] # Extract the solution nl = selectnode( fens, box = [Mid_edge[1], Mid_edge[1], Mid_edge[2], Mid_edge[2]], inflate = tolerance, ) theutip = u.values[nl, :] # println("displacement =$(theutip[2]) as compared to converged $convutip") @test abs(theutip[2] - 21.35955642390279) < 1.0e-3 modeldata["postprocessing"] = FDataDict("file" => "cookstress-ew", "quantity" => :Cauchy, "component" => :xy) modeldata = AlgoDeforLinearModule.exportstresselementwise(modeldata) fld = modeldata["postprocessing"]["exported"][1]["field"] # println("range of Cauchy_xy = $((minimum(fld.values), maximum(fld.values)))") @test norm( [minimum(fld.values), maximum(fld.values)] - [-0.07028875155067116, 0.1301698279821655], ) < 1.0e-5 # File = modeldata["postprocessing"]["exported"][1]["file"] # @async run(`"paraview.exe" $File`) try rm(modeldata["postprocessing"]["exported"][1]["file"]) catch end modeldata["postprocessing"] = FDataDict("file" => "cookstress-ew-vm", "quantity" => :vm, "component" => 1) modeldata = AlgoDeforLinearModule.exportstresselementwise(modeldata) fld = modeldata["postprocessing"]["exported"][1]["field"] # println("range of vm = $((minimum(fld.values), maximum(fld.values)))") @test norm( [minimum(fld.values), maximum(fld.values)] - [0.007503804468283987, 0.33798754356331173], ) < 1.0e-5 # File = modeldata["postprocessing"]["exported"][1]["file"] # @async run(`"paraview.exe" $File`) try rm(modeldata["postprocessing"]["exported"][1]["file"]) catch end modeldata["postprocessing"] = FDataDict( "file" => "cookstress-ew-pressure", "quantity" => :pressure, "component" => 1, ) modeldata = AlgoDeforLinearModule.exportstresselementwise(modeldata) fld = modeldata["postprocessing"]["exported"][1]["field"] # println("range of pressure = $((minimum(fld.values), maximum(fld.values)))") @test norm( [minimum(fld.values), maximum(fld.values)] - [-0.11777749217431245, 0.23457099031101358], ) < 1.0e-5 # File = modeldata["postprocessing"]["exported"][1]["file"] # @async run(`"paraview.exe" $File`) try rm(modeldata["postprocessing"]["exported"][1]["file"]) catch end modeldata["postprocessing"] = FDataDict( "file" => "cookstress-ew-princ1", "quantity" => :princCauchy, "component" => 1, ) modeldata = AlgoDeforLinearModule.exportstresselementwise(modeldata) fld = modeldata["postprocessing"]["exported"][1]["field"] # println("range of princCauchy Max = $((minimum(fld.values), maximum(fld.values)))") @test norm( [minimum(fld.values), maximum(fld.values)] - [-0.16098150217425994, 0.24838761904231466], ) < 1.0e-5 # File = modeldata["postprocessing"]["exported"][1]["file"] # @async run(`"paraview.exe" $File`) try rm(modeldata["postprocessing"]["exported"][1]["file"]) catch end modeldata["postprocessing"] = FDataDict( "file" => "cookstress-ew-princ3", "quantity" => :princCauchy, "component" => 3, ) modeldata = AlgoDeforLinearModule.exportstresselementwise(modeldata) fld = modeldata["postprocessing"]["exported"][1]["field"] # println("range of princCauchy Min = $((minimum(fld.values), maximum(fld.values)))") @test norm( [minimum(fld.values), maximum(fld.values)] - [-0.4523049370669106, 0.02980811337406548], ) < 1.0e-5 # File = modeldata["postprocessing"]["exported"][1]["file"] # @async run(`"paraview.exe" $File`) try rm(modeldata["postprocessing"]["exported"][1]["file"]) catch end AE = AbaqusExporter("Cookstress_algo_stress") HEADING(AE, "Cook trapezoidal panel, plane stress") COMMENT(AE, "Converged free mid-edge displacement = 23.97") PART(AE, "part1") END_PART(AE) ASSEMBLY(AE, "ASSEM1") INSTANCE(AE, "INSTNC1", "PART1") NODE(AE, fens.xyz) COMMENT(AE, "We are assuming three node triangles in plane-stress") COMMENT(AE, "CPE3 are pretty poor-accuracy elements, but here we don't care about it.") @test nodesperelem(modeldata["regions"][1]["femm"].integdomain.fes) == 3 ELEMENT( AE, "CPE3", "AllElements", connasarray(modeldata["regions"][1]["femm"].integdomain.fes), ) NSET_NSET(AE, "clamped", modeldata["essential_bcs"][1]["node_list"]) ORIENTATION(AE, "GlobalOrientation", vec([1.0 0 0]), vec([0 1.0 0])) SOLID_SECTION(AE, "elasticity", "GlobalOrientation", "AllElements", thickness) END_INSTANCE(AE) END_ASSEMBLY(AE) MATERIAL(AE, "elasticity") ELASTIC(AE, E, nu) STEP_PERTURBATION_STATIC(AE) BOUNDARY(AE, "ASSEM1.INSTNC1.clamped", 1) BOUNDARY(AE, "ASSEM1.INSTNC1.clamped", 2) bfes = modeldata["traction_bcs"][1]["femm"].integdomain.fes COMMENT(AE, "Concentrated loads: we are assuming that the elements on the boundary") COMMENT(AE, "have two nodes each and also that they are the same length.") COMMENT(AE, "Then the concentrated loads below will be correctly lumped.") nl = connectednodes(bfes) F = zeros(count(modeldata["fens"])) for ix = 1:count(bfes) for jx = 1:2 F[bfes.conn[ix][jx]] += 1.0 / n / 2 / thickness end end for ixxxx in eachindex(F) if F[ixxxx] != 0.0 CLOAD(AE, "ASSEM1.INSTNC1.$(ixxxx)", 2, F[ixxxx]) end end END_STEP(AE) close(AE) nlines = 0 open(AE.filename) do f s = readlines(f) nlines = length(s) end @test nlines == 2886 rm(AE.filename) end end using .mmmCookmmstrainmorthommm mmmCookmmstrainmorthommm.test()
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
51949
module mmmCookmstressmorthommm using FinEtools using FinEtoolsDeforLinear using FinEtoolsDeforLinear.AlgoDeforLinearModule using FinEtools.MeshExportModule using Test import LinearAlgebra: norm, cholesky, cross function test() E = 1.0 nu = 1.0 / 3 width = 48.0 height = 44.0 thickness = 1.0 free_height = 16.0 Mid_edge = [48.0, 52.0]# Location of tracked deflection magn = 1.0 / (free_height * thickness)# Density of applied load convutip = 23.97 n = 30# number of elements per side tolerance = minimum([width, height]) / n / 1000.0#Geometrical tolerance fens, fes = T3block(width, height, n, n) # Reshape into a trapezoidal panel for i in eachindex(fens) fens.xyz[i, 2] = fens.xyz[i, 2] + (fens.xyz[i, 1] / width) * (height - fens.xyz[i, 2] / height * (height - free_height)) end # Clamped edge of the membrane l1 = selectnode(fens; box = [0.0, 0.0, -Inf, Inf], inflate = tolerance) ess1 = FDataDict("displacement" => 0.0, "component" => 1, "node_list" => l1) ess2 = FDataDict("displacement" => 0.0, "component" => 2, "node_list" => l1) # Traction on the opposite edge boundaryfes = meshboundary(fes) Toplist = selectelem(fens, boundaryfes, box = [width, width, -Inf, Inf], inflate = tolerance) el1femm = FEMMBase(IntegDomain(subset(boundaryfes, Toplist), GaussRule(1, 2), thickness)) flux1 = FDataDict("traction_vector" => [0.0, +magn], "femm" => el1femm) # Make the region MR = DeforModelRed2DStress material = MatDeforElastOrtho(MR, 0.0, E, nu, 0.0) region1 = FDataDict( "femm" => FEMMDeforLinear(MR, IntegDomain(fes, TriRule(1), thickness), material), ) modeldata = FDataDict( "fens" => fens, "regions" => [region1], "essential_bcs" => [ess1, ess2], "traction_bcs" => [flux1], ) # Call the solver modeldata = AlgoDeforLinearModule.linearstatics(modeldata) u = modeldata["u"] geom = modeldata["geom"] # Extract the solution nl = selectnode( fens, box = [Mid_edge[1], Mid_edge[1], Mid_edge[2], Mid_edge[2]], inflate = tolerance, ) theutip = u.values[nl, :] # println("displacement =$(theutip[2]) as compared to converged $convutip") @test abs(theutip[2] - 23.79623002934245) < 1.0e-3 modeldata["postprocessing"] = FDataDict("file" => "cookstress-ew", "quantity" => :Cauchy, "component" => :xy) modeldata = AlgoDeforLinearModule.exportstresselementwise(modeldata) fld = modeldata["postprocessing"]["exported"][1]["field"] # println("range of Cauchy_xy = $((minimum(fld.values), maximum(fld.values)))") @test norm( [minimum(fld.values), maximum(fld.values)] - [-0.07275125002229098, 0.1309644027374448], ) < 1.0e-5 # File = modeldata["postprocessing"]["exported"][1]["file"] # @async run(`"paraview.exe" $File`) try rm(modeldata["postprocessing"]["exported"][1]["file"]) catch end modeldata["postprocessing"] = FDataDict("file" => "cookstress-ew-vm", "quantity" => :vm, "component" => 1) modeldata = AlgoDeforLinearModule.exportstresselementwise(modeldata) fld = modeldata["postprocessing"]["exported"][1]["field"] # println("range of vm = $((minimum(fld.values), maximum(fld.values)))") @test norm( [minimum(fld.values), maximum(fld.values)] - [0.014136291979824203, 0.4181381117075297], ) < 1.0e-5 # File = modeldata["postprocessing"]["exported"][1]["file"] # @async run(`"paraview.exe" $File`) try rm(modeldata["postprocessing"]["exported"][1]["file"]) catch end modeldata["postprocessing"] = FDataDict( "file" => "cookstress-ew-pressure", "quantity" => :pressure, "component" => 1, ) modeldata = AlgoDeforLinearModule.exportstresselementwise(modeldata) fld = modeldata["postprocessing"]["exported"][1]["field"] # println("range of pressure = $((minimum(fld.values), maximum(fld.values)))") # display(norm([minimum(fld.values), maximum(fld.values)] - [-0.12996180159464202, 0.2436183072544255])) @test norm( [minimum(fld.values), maximum(fld.values)] - [-0.08664120106309468, 0.16241220483628366], ) < 1.0e-5 # File = modeldata["postprocessing"]["exported"][1]["file"] # @async run(`"paraview.exe" $File`) try rm(modeldata["postprocessing"]["exported"][1]["file"]) catch end modeldata["postprocessing"] = FDataDict( "file" => "cookstress-ew-princ1", "quantity" => :princCauchy, "component" => 1, ) modeldata = AlgoDeforLinearModule.exportstresselementwise(modeldata) fld = modeldata["postprocessing"]["exported"][1]["field"] # println("range of princCauchy Max = $((minimum(fld.values), maximum(fld.values)))") @test norm( [minimum(fld.values), maximum(fld.values)] - [-0.10280794467415574, 0.24831137383158813], ) < 1.0e-5 # File = modeldata["postprocessing"]["exported"][1]["file"] # @async run(`"paraview.exe" $File`) try rm(modeldata["postprocessing"]["exported"][1]["file"]) catch end modeldata["postprocessing"] = FDataDict( "file" => "cookstress-ew-princ3", "quantity" => :princCauchy, "component" => 2, ) modeldata = AlgoDeforLinearModule.exportstresselementwise(modeldata) fld = modeldata["postprocessing"]["exported"][1]["field"] # println("range of princCauchy Min = $((minimum(fld.values), maximum(fld.values)))") @test norm( [minimum(fld.values), maximum(fld.values)] - [-0.4398236425818378, 0.022575693063719465], ) < 1.0e-5 # File = modeldata["postprocessing"]["exported"][1]["file"] # @async run(`"paraview.exe" $File`) try rm(modeldata["postprocessing"]["exported"][1]["file"]) catch end AE = AbaqusExporter("Cookstress_algo_stress") HEADING(AE, "Cook trapezoidal panel, plane stress") COMMENT(AE, "Converged free mid-edge displacement = 23.97") PART(AE, "part1") END_PART(AE) ASSEMBLY(AE, "ASSEM1") INSTANCE(AE, "INSTNC1", "PART1") NODE(AE, fens.xyz) COMMENT(AE, "We are assuming three node triangles in plane-stress") COMMENT(AE, "CPS3 are pretty poor-accuracy elements, but here we don't care about it.") @test nodesperelem(modeldata["regions"][1]["femm"].integdomain.fes) == 3 ELEMENT( AE, "CPS3", "AllElements", connasarray(modeldata["regions"][1]["femm"].integdomain.fes), ) NSET_NSET(AE, "clamped", modeldata["essential_bcs"][1]["node_list"]) ORIENTATION(AE, "GlobalOrientation", vec([1.0 0 0]), vec([0 1.0 0])) SOLID_SECTION(AE, "elasticity", "GlobalOrientation", "AllElements", thickness) END_INSTANCE(AE) END_ASSEMBLY(AE) MATERIAL(AE, "elasticity") ELASTIC(AE, E, nu) STEP_PERTURBATION_STATIC(AE) BOUNDARY(AE, "ASSEM1.INSTNC1.clamped", 1) BOUNDARY(AE, "ASSEM1.INSTNC1.clamped", 2) bfes = modeldata["traction_bcs"][1]["femm"].integdomain.fes COMMENT(AE, "Concentrated loads: we are assuming that the elements on the boundary") COMMENT(AE, "have two nodes each and also that they are the same length.") COMMENT(AE, "Then the concentrated loads below will be correctly lumped.") nl = connectednodes(bfes) F = zeros(count(modeldata["fens"])) for ix in eachindex(bfes) for jx = 1:2 F[bfes.conn[ix][jx]] += 1.0 / n / 2 / thickness end end for ixxxx in eachindex(F) if F[ixxxx] != 0.0 CLOAD(AE, "ASSEM1.INSTNC1.$(ixxxx)", 2, F[ixxxx]) end end END_STEP(AE) close(AE) nlines = 0 open(AE.filename) do f s = readlines(f) nlines = length(s) end @test nlines == 2886 rm(AE.filename) end end using .mmmCookmstressmorthommm mmmCookmstressmorthommm.test() module mmmCookmstressisommm using FinEtools using FinEtoolsDeforLinear using FinEtoolsDeforLinear.AlgoDeforLinearModule using FinEtools.MeshExportModule using Test import LinearAlgebra: norm, cholesky, cross function test() E = 1.0 nu = 1.0 / 3 width = 48.0 height = 44.0 thickness = 1.0 free_height = 16.0 Mid_edge = [48.0, 52.0]# Location of tracked deflection magn = 1.0 / (free_height * thickness)# Density of applied load convutip = 23.97 n = 30# number of elements per side tolerance = minimum([width, height]) / n / 1000.0#Geometrical tolerance fens, fes = T3block(width, height, n, n) # Reshape into a trapezoidal panel for i in eachindex(fens) fens.xyz[i, 2] = fens.xyz[i, 2] + (fens.xyz[i, 1] / width) * (height - fens.xyz[i, 2] / height * (height - free_height)) end # Clamped edge of the membrane l1 = selectnode(fens; box = [0.0, 0.0, -Inf, Inf], inflate = tolerance) ess1 = FDataDict("displacement" => 0.0, "component" => 1, "node_list" => l1) ess2 = FDataDict("displacement" => 0.0, "component" => 2, "node_list" => l1) # Traction on the opposite edge boundaryfes = meshboundary(fes) Toplist = selectelem(fens, boundaryfes, box = [width, width, -Inf, Inf], inflate = tolerance) el1femm = FEMMBase(IntegDomain(subset(boundaryfes, Toplist), GaussRule(1, 2), thickness)) flux1 = FDataDict("traction_vector" => [0.0, +magn], "femm" => el1femm) # Make the region MR = DeforModelRed2DStress material = MatDeforElastIso(MR, 0.0, E, nu, 0.0) region1 = FDataDict( "femm" => FEMMDeforLinear(MR, IntegDomain(fes, TriRule(1), thickness), material), ) modeldata = FDataDict( "fens" => fens, "regions" => [region1], "essential_bcs" => [ess1, ess2], "traction_bcs" => [flux1], ) # Call the solver modeldata = AlgoDeforLinearModule.linearstatics(modeldata) u = modeldata["u"] geom = modeldata["geom"] # Extract the solution nl = selectnode( fens, box = [Mid_edge[1], Mid_edge[1], Mid_edge[2], Mid_edge[2]], inflate = tolerance, ) theutip = u.values[nl, :] # println("displacement =$(theutip[2]) as compared to converged $convutip") @test abs(theutip[2] - 23.79623002934245) < 1.0e-3 modeldata["postprocessing"] = FDataDict("file" => "cookstress-ew", "quantity" => :Cauchy, "component" => :xy) modeldata = AlgoDeforLinearModule.exportstresselementwise(modeldata) fld = modeldata["postprocessing"]["exported"][1]["field"] # println("range of Cauchy_xy = $((minimum(fld.values), maximum(fld.values)))") @test norm( [minimum(fld.values), maximum(fld.values)] - [-0.07275125002229098, 0.1309644027374448], ) < 1.0e-5 # File = modeldata["postprocessing"]["exported"][1]["file"] # @async run(`"paraview.exe" $File`) try rm(modeldata["postprocessing"]["exported"][1]["file"]) catch end modeldata["postprocessing"] = FDataDict("file" => "cookstress-ew-vm", "quantity" => :vm, "component" => 1) modeldata = AlgoDeforLinearModule.exportstresselementwise(modeldata) fld = modeldata["postprocessing"]["exported"][1]["field"] # println("range of vm = $((minimum(fld.values), maximum(fld.values)))") @test norm( [minimum(fld.values), maximum(fld.values)] - [0.014136291979824203, 0.4181381117075297], ) < 1.0e-5 # File = modeldata["postprocessing"]["exported"][1]["file"] # @async run(`"paraview.exe" $File`) try rm(modeldata["postprocessing"]["exported"][1]["file"]) catch end modeldata["postprocessing"] = FDataDict( "file" => "cookstress-ew-pressure", "quantity" => :pressure, "component" => 1, ) modeldata = AlgoDeforLinearModule.exportstresselementwise(modeldata) fld = modeldata["postprocessing"]["exported"][1]["field"] # println("range of pressure = $((minimum(fld.values), maximum(fld.values)))") @test norm( [minimum(fld.values), maximum(fld.values)] - [-0.08664120106309468, 0.16241220483628366], ) < 1.0e-5 # File = modeldata["postprocessing"]["exported"][1]["file"] # @async run(`"paraview.exe" $File`) try rm(modeldata["postprocessing"]["exported"][1]["file"]) catch end modeldata["postprocessing"] = FDataDict( "file" => "cookstress-ew-princ1", "quantity" => :princCauchy, "component" => 1, ) modeldata = AlgoDeforLinearModule.exportstresselementwise(modeldata) fld = modeldata["postprocessing"]["exported"][1]["field"] # println("range of princCauchy Max = $((minimum(fld.values), maximum(fld.values)))") @test norm( [minimum(fld.values), maximum(fld.values)] - [-0.10280794467415574, 0.24831137383158813], ) < 1.0e-5 # File = modeldata["postprocessing"]["exported"][1]["file"] # @async run(`"paraview.exe" $File`) try rm(modeldata["postprocessing"]["exported"][1]["file"]) catch end modeldata["postprocessing"] = FDataDict( "file" => "cookstress-ew-princ3", "quantity" => :princCauchy, "component" => 2, ) modeldata = AlgoDeforLinearModule.exportstresselementwise(modeldata) fld = modeldata["postprocessing"]["exported"][1]["field"] # println("range of princCauchy Min = $((minimum(fld.values), maximum(fld.values)))") @test norm( [minimum(fld.values), maximum(fld.values)] - [-0.4398236425818378, 0.022575693063719465], ) < 1.0e-5 # File = modeldata["postprocessing"]["exported"][1]["file"] # @async run(`"paraview.exe" $File`) try rm(modeldata["postprocessing"]["exported"][1]["file"]) catch end AE = AbaqusExporter("Cookstress_algo_stress") HEADING(AE, "Cook trapezoidal panel, plane stress") COMMENT(AE, "Converged free mid-edge displacement = 23.97") PART(AE, "part1") END_PART(AE) ASSEMBLY(AE, "ASSEM1") INSTANCE(AE, "INSTNC1", "PART1") NODE(AE, fens.xyz) COMMENT(AE, "We are assuming three node triangles in plane-stress") COMMENT(AE, "CPS3 are pretty poor-accuracy elements, but here we don't care about it.") @test nodesperelem(modeldata["regions"][1]["femm"].integdomain.fes) == 3 ELEMENT( AE, "CPS3", "AllElements", connasarray(modeldata["regions"][1]["femm"].integdomain.fes), ) NSET_NSET(AE, "clamped", modeldata["essential_bcs"][1]["node_list"]) ORIENTATION(AE, "GlobalOrientation", vec([1.0 0 0]), vec([0 1.0 0])) SOLID_SECTION(AE, "elasticity", "GlobalOrientation", "AllElements", thickness) END_INSTANCE(AE) END_ASSEMBLY(AE) MATERIAL(AE, "elasticity") ELASTIC(AE, E, nu) STEP_PERTURBATION_STATIC(AE) BOUNDARY(AE, "ASSEM1.INSTNC1.clamped", 1) BOUNDARY(AE, "ASSEM1.INSTNC1.clamped", 2) bfes = modeldata["traction_bcs"][1]["femm"].integdomain.fes COMMENT(AE, "Concentrated loads: we are assuming that the elements on the boundary") COMMENT(AE, "have two nodes each and also that they are the same length.") COMMENT(AE, "Then the concentrated loads below will be correctly lumped.") nl = connectednodes(bfes) F = zeros(count(modeldata["fens"])) for ix in eachindex(bfes) for jx = 1:2 F[bfes.conn[ix][jx]] += 1.0 / n / 2 / thickness end end for ixxxx in eachindex(F) if F[ixxxx] != 0.0 CLOAD(AE, "ASSEM1.INSTNC1.$(ixxxx)", 2, F[ixxxx]) end end END_STEP(AE) close(AE) nlines = 0 open(AE.filename) do f s = readlines(f) nlines = length(s) end @test nlines == 2886 rm(AE.filename) end end using .mmmCookmstressisommm mmmCookmstressisommm.test() module mmLE10expimpmm using FinEtools using FinEtools.AlgoBaseModule: solve_blocked! using FinEtoolsDeforLinear using FinEtools.MeshExportModule using FinEtools.MeshImportModule using Test import LinearAlgebra: norm, cholesky, cross function test() # Thick elliptical plate with an elliptical hole is clamped on its exterior # boundary and is loaded with transverse pressure. # This is a NAFEMS Benchmark, Test No. LE10. # The plate is discretized with solid elements. # Because of the symmetries of the geometry and load, only quarter of the plate is modeled. # The $\sigma_y=\sigma_2$ at the point $P$ is to be determined. Since the # target point is on the boundary of the domain it will not be an # integration node as we use Gauss quadrature. The reference value is -5.38 MPa. # println("LE10NAFEMS: Transverse deflection of elliptical plate with elliptical hole." ) t0 = time() E = 210e3 * phun("MEGA*PA")# 210e3 MPa nu = 0.3 qmagn = 1.0 * phun("MEGA*PA")# transverse pressure sigma_yP = -5.38 * phun("MEGA*PA")# tensile stress at [2.0, 0.0] meters Ae = 3.25 * phun("m") # Major radius of the exterior ellipse Be = 2.75 * phun("m") # Minor radius of the exterior ellipse Ai = 2.0 * phun("m") # Major radius of the interior ellipse Bi = 1.0 * phun("m") # Minor radius of the interior ellipse Thickness = 0.6 * phun("m") tolerance = Thickness / 1000.0 # Geometrical tolerance INP_file = """ *HEADING NAFEMS TEST NLE10, COARSE MESH, C3D10M ELEMENTS *NODE 1, 2.83277, 1.348 2, 2.48116, 1.04837 3, 2.12955, 0.748738 4, 3.14146, 0.704779 5, 2.33893, 0.399071 6, 2.68977, 0.374369 7, 3.25, 0. 8, 2.8335, 0. 9, 2.417, 0. 10, 2.83277, 1.348, 0.15 11, 2.48116, 1.04837, 0.15 12, 2.12955, 0.748738, 0.15 13, 2.33841, 0.400381, 0.15 14, 3.14128, 0.70533, 0.15 15, 3.25, 0., 0.15 16, 2.8335, 0., 0.15 17, 2.417, 0., 0.15 18, 2.83277, 1.348, 0.3 19, 2.48116, 1.04837, 0.3 20, 2.12955, 0.748738, 0.3 21, 2.62488, 0.674, 0.3 22, 2.33893, 0.399071, 0.3 23, 3.14146, 0.704779, 0.3 24, 3.25, 0., 0.3 25, 2.8335, 0., 0.3 26, 2.417, 0., 0.3 27, 2.83277, 1.348, 0.45 28, 2.48116, 1.04837, 0.45 29, 2.12955, 0.748738, 0.45 30, 2.33841, 0.400381, 0.45 31, 3.14128, 0.70533, 0.45 32, 3.25, 0., 0.45 33, 2.8335, 0., 0.45 34, 2.417, 0., 0.45 35, 2.83277, 1.348, 0.6 36, 2.48116, 1.04837, 0.6 37, 2.12955, 0.748738, 0.6 38, 3.14146, 0.704779, 0.6 39, 2.33893, 0.399071, 0.6 40, 2.68977, 0.374369, 0.6 41, 3.25, 0., 0.6 42, 2.8335, 0., 0.6 43, 2.417, 0., 0.6 45, 1.95628, 0.600869 46, 1.78302, 0.453 47, 2.06477, 0.374369 48, 1.93715, 0.248725 51, 2.2085, 0. 52, 2., 0. 54, 1.95628, 0.600869, 0.15 55, 1.78302, 0.453, 0.15 56, 1.93661, 0.249767, 0.15 59, 2.2085, 0., 0.15 60, 2., 0., 0.15 62, 1.95628, 0.600869, 0.3 63, 1.78302, 0.453, 0.3 64, 1.93715, 0.248725, 0.3 66, 2.10001, 0.2265, 0.3 68, 2.2085, 0., 0.3 69, 2., 0., 0.3 71, 1.95628, 0.600869, 0.45 72, 1.78302, 0.453, 0.45 74, 1.93661, 0.249767, 0.45 76, 2.2085, 0., 0.45 77, 2., 0., 0.45 79, 1.95628, 0.600869, 0.6 80, 1.78302, 0.453, 0.6 81, 2.06477, 0.374369, 0.6 83, 1.93715, 0.248725, 0.6 85, 2.2085, 0., 0.6 86, 2., 0., 0.6 87, 1.783, 2.29921 88, 1.57618, 1.80182 89, 1.36937, 1.30443 90, 1.95627, 1.52397 91, 2.36495, 1.88628 92, 1.78146, 1.06985 96, 1.783, 2.29921, 0.15 97, 1.57618, 1.80182, 0.15 98, 1.36937, 1.30443, 0.15 99, 1.78071, 1.07038, 0.15 100, 2.36449, 1.88669, 0.15 104, 1.783, 2.29921, 0.3 105, 1.57618, 1.80182, 0.3 106, 1.36937, 1.30443, 0.3 107, 2.36495, 1.88628, 0.3 108, 1.78146, 1.06985, 0.3 109, 2.10107, 1.32621, 0.3 113, 1.783, 2.29921, 0.45 114, 1.57618, 1.80182, 0.45 115, 1.36937, 1.30443, 0.45 116, 2.36449, 1.88669, 0.45 117, 1.78071, 1.07038, 0.45 121, 1.783, 2.29921, 0.6 122, 1.57618, 1.80182, 0.6 123, 1.36937, 1.30443, 0.6 124, 1.95627, 1.52397, 0.6 125, 2.36495, 1.88628, 0.6 126, 1.78146, 1.06985, 0.6 131, 1.26718, 1.05863 132, 1.165, 0.812831 134, 1.49321, 0.665266 135, 1.64727, 0.780784 140, 1.26718, 1.05863, 0.15 141, 1.165, 0.812831, 0.15 143, 1.4924, 0.665723, 0.15 148, 1.26718, 1.05863, 0.3 149, 1.165, 0.812831, 0.3 150, 1.57619, 0.878714, 0.3 152, 1.49321, 0.665266, 0.3 157, 1.26718, 1.05863, 0.45 158, 1.165, 0.812831, 0.45 160, 1.4924, 0.665723, 0.45 165, 1.26718, 1.05863, 0.6 166, 1.165, 0.812831, 0.6 168, 1.49321, 0.665266, 0.6 169, 1.64727, 0.780784, 0.6 173, 0., 1.583 174, 0., 1.2915 175, 0., 1. 176, 0.5825, 1.19792 177, 0.699442, 1.51527 178, 0.590531, 0.955415 182, 0., 1.583, 0.15 183, 0., 1.2915, 0.15 184, 0., 1., 0.15 185, 0.698861, 1.51538, 0.15 186, 0.590076, 0.955486, 0.15 190, 0., 1.583, 0.3 191, 0., 1.2915, 0.3 192, 0., 1., 0.3 193, 0.699442, 1.51527, 0.3 194, 0.590531, 0.955415, 0.3 195, 0.684684, 1.15221, 0.3 199, 0., 1.583, 0.45 200, 0., 1.2915, 0.45 201, 0., 1., 0.45 202, 0.698861, 1.51538, 0.45 203, 0.590076, 0.955486, 0.45 207, 0., 1.583, 0.6 208, 0., 1.2915, 0.6 209, 0., 1., 0.6 210, 0.5825, 1.19792, 0.6 211, 0.699442, 1.51527, 0.6 212, 0.590531, 0.955415, 0.6 216, 0., 2.75 217, 0., 2.1665 219, 0.920251, 2.63745 221, 0.8915, 1.9411 225, 0., 2.75, 0.15 226, 0., 2.1665, 0.15 228, 0.919707, 2.63759, 0.15 233, 0., 2.75, 0.3 234, 0., 2.1665, 0.3 236, 0.684684, 2.02721, 0.3 237, 0.920251, 2.63745, 0.3 242, 0., 2.75, 0.45 243, 0., 2.1665, 0.45 245, 0.919707, 2.63759, 0.45 250, 0., 2.75, 0.6 251, 0., 2.1665, 0.6 253, 0.920251, 2.63745, 0.6 255, 0.8915, 1.9411, 0.6 ** ** *ELEMENT, TYPE=C3D10M, ELSET=EALL 1, 1, 7, 18, 3, 4, 14, 10, 2, 6, 11 2, 24, 18, 7, 26, 23, 14, 15, 25, 21, 16 3, 9, 3, 26, 7, 5, 13, 17, 8, 6, 16 4, 20, 26, 3, 18, 22, 13, 12, 19, 21, 11 5, 3, 7, 18, 26, 6, 14, 11, 13, 16, 21 6, 24, 41, 18, 26, 32, 31, 23, 25, 33, 21 7, 35, 18, 41, 37, 27, 31, 38, 36, 28, 40 8, 20, 37, 26, 18, 29, 30, 22, 19, 28, 21 9, 43, 26, 37, 41, 34, 30, 39, 42, 33, 40 10, 18, 26, 41, 37, 21, 33, 31, 28, 30, 40 11, 9, 26, 3, 52, 17, 13, 5, 51, 59, 47 12, 20, 3, 26, 63, 12, 13, 22, 62, 54, 66 13, 46, 63, 52, 3, 55, 56, 48, 45, 54, 47 14, 69, 52, 63, 26, 60, 56, 64, 68, 59, 66 15, 3, 52, 26, 63, 47, 59, 13, 54, 56, 66 16, 20, 26, 37, 63, 22, 30, 29, 62, 66, 71 17, 43, 37, 26, 86, 39, 30, 34, 85, 81, 76 18, 69, 63, 86, 26, 64, 74, 77, 68, 66, 76 19, 80, 86, 63, 37, 83, 74, 72, 79, 81, 71 20, 63, 26, 37, 86, 66, 30, 71, 74, 76, 81 21, 1, 18, 87, 3, 10, 100, 91, 2, 11, 90 22, 104, 87, 18, 106, 96, 100, 107, 105, 97, 109 23, 89, 106, 3, 87, 98, 99, 92, 88, 97, 90 24, 20, 3, 106, 18, 12, 99, 108, 19, 11, 109 25, 87, 3, 18, 106, 90, 11, 100, 97, 99, 109 26, 104, 18, 121, 106, 107, 116, 113, 105, 109, 114 27, 35, 121, 18, 37, 125, 116, 27, 36, 124, 28 28, 20, 106, 37, 18, 108, 117, 29, 19, 109, 28 29, 123, 37, 106, 121, 126, 117, 115, 122, 124, 114 30, 106, 18, 121, 37, 109, 116, 114, 117, 28, 124 31, 89, 3, 106, 132, 92, 99, 98, 131, 135, 140 32, 20, 106, 3, 63, 108, 99, 12, 62, 150, 54 33, 46, 132, 63, 3, 134, 143, 55, 45, 135, 54 34, 149, 63, 132, 106, 152, 143, 141, 148, 150, 140 35, 132, 3, 106, 63, 135, 99, 140, 143, 54, 150 36, 20, 37, 106, 63, 29, 117, 108, 62, 71, 150 37, 123, 106, 37, 166, 115, 117, 126, 165, 157, 169 38, 149, 166, 63, 106, 158, 160, 152, 148, 157, 150 39, 80, 63, 166, 37, 72, 160, 168, 79, 71, 169 40, 106, 63, 37, 166, 150, 71, 117, 157, 160, 169 41, 89, 106, 173, 132, 98, 185, 177, 131, 140, 176 42, 190, 173, 106, 192, 182, 185, 193, 191, 183, 195 43, 175, 192, 132, 173, 184, 186, 178, 174, 183, 176 44, 149, 132, 192, 106, 141, 186, 194, 148, 140, 195 45, 173, 132, 106, 192, 176, 140, 185, 183, 186, 195 46, 190, 106, 207, 192, 193, 202, 199, 191, 195, 200 47, 123, 207, 106, 166, 211, 202, 115, 165, 210, 157 48, 149, 192, 166, 106, 194, 203, 158, 148, 195, 157 49, 209, 166, 192, 207, 212, 203, 201, 208, 210, 200 50, 192, 106, 207, 166, 195, 202, 200, 203, 157, 210 51, 216, 87, 233, 173, 219, 228, 225, 217, 221, 226 52, 104, 233, 87, 106, 237, 228, 96, 105, 236, 97 53, 89, 173, 106, 87, 177, 185, 98, 88, 221, 97 54, 190, 106, 173, 233, 193, 185, 182, 234, 236, 226 55, 173, 87, 233, 106, 221, 228, 226, 185, 97, 236 56, 104, 121, 233, 106, 113, 245, 237, 105, 114, 236 57, 250, 233, 121, 207, 242, 245, 253, 251, 243, 255 58, 190, 207, 106, 233, 199, 202, 193, 234, 243, 236 59, 123, 106, 207, 121, 115, 202, 211, 122, 114, 255 60, 233, 106, 121, 207, 236, 114, 245, 243, 202, 255 """ write("NLE10.inp", INP_file) output = MeshImportModule.import_ABAQUS("NLE10.inp") fens, fes = output["fens"], output["fesets"][1] try rm("NLE10.inp") catch end # Select the boundary faces, on the boundary that is clamped, and on the part # of the boundary that is loaded with the transverse pressure bdryfes = meshboundary(fes) exteriorbfl = selectelem( fens, bdryfes, facing = true, direction = [1.0, 1.0, 0.0], dotmin = 0.001, ) topbfl = selectelem( fens, bdryfes, box = [0.0, Inf, 0.0, Inf, Thickness, Thickness], inflate = tolerance, ) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field L12 = connectednodes(subset(bdryfes, exteriorbfl)) # external boundary setebc!(u, L12, true, 1, 0.0) setebc!(u, L12, true, 2, 0.0) LL = selectnode( fens; box = [0.0, Inf, 0.0, Inf, Thickness / 2.0, Thickness / 2.0], inflate = tolerance, ) L3 = intersect(LL, connectednodes(subset(bdryfes, exteriorbfl))) setebc!(u, L3, true, 3, 0.0) L1 = selectnode(fens; box = [0.0, 0.0, 0.0, Inf, 0.0, Thickness], inflate = tolerance) setebc!(u, L1, true, 1, 0.0) # symmetry plane X = 0 L2 = selectnode(fens; box = [0.0, Inf, 0.0, 0.0, 0.0, Thickness], inflate = tolerance) setebc!(u, L2, true, 2, 0.0) # symmetry plane Y = 0 applyebc!(u) numberdofs!(u) eL1femm = FEMMBase(IntegDomain(subset(bdryfes, topbfl), TriRule(3))) function pfun(forceout::Vector{T}, XYZ, tangents, feid, qpid) where {T} forceout .= [0.0, 0.0, -qmagn] return forceout end fi = ForceIntensity(Float64, 3, pfun) F2 = distribloads(eL1femm, geom, u, fi, 2) # Note that the material object needs to be created with the proper # model-dimension reduction in mind. In this case that is the fully three-dimensional solid. MR = DeforModelRed3D material = MatDeforElastIso(MR, E, nu) femm = FEMMDeforLinearMST10(MR, IntegDomain(fes, TetRule(4)), material) # The geometry field now needs to be associated with the FEMM femm = associategeometry!(femm, geom) K = stiffness(femm, geom, u) u = solve_blocked!(u, K, F2) nl = selectnode(fens, box = [Ai, Ai, 0, 0, Thickness, Thickness], inflate = tolerance) thecorneru = zeros(Float64, 1, 3) gathervalues_asmat!(u, thecorneru, nl) thecorneru = thecorneru / phun("mm") # println("displacement =$(thecorneru) [MM] as compared to reference [-0.030939, 0, -0.10488] [MM]") @test norm(thecorneru - [-0.0268854 0.0 -0.0919955]) < 1.0e-5 fld = fieldfromintegpoints( femm, geom, u, :Cauchy, 2; nodevalmethod = :invdistance, reportat = :meanonly, )# # println("Sigma_y =$(fld.values[nl,1][1]/phun("MPa")) as compared to reference sigma_yP = $(sigma_yP/phun("MPa")) [MPa]") @test abs(fld.values[nl, 1][1] / phun("MPa") - -2.2616980060965024) < 1.0e-3 fld = fieldfromintegpoints( femm, geom, u, :Cauchy, 2; nodevalmethod = :averaging, reportat = :extrapmean, )# # println("Sigma_y =$(fld.values[nl,1][1]/phun("MPa")) as compared to reference sigma_yP = $(sigma_yP/phun("MPa")) [MPa]") @test abs(fld.values[nl, 1][1] / phun("MPa") - -2.382478776709117) < 1.0e-3 fld = fieldfromintegpoints( femm, geom, u, :Cauchy, 2; nodevalmethod = :averaging, reportat = :extraptrend, )# # println("Sigma_y =$(fld.values[nl,1][1]/phun("MPa")) as compared to reference sigma_yP = $(sigma_yP/phun("MPa")) [MPa]") # println("$(fld.values[nl,1][1]/phun("MPa"))") @test abs(fld.values[nl, 1][1] / phun("MPa") - -5.470291697493607) < 1.0e-3 File = "LE10NAFEMS_MST10_sigmay.vtk" vtkexportmesh( File, connasarray(fes), geom.values, FinEtools.MeshExportModule.VTK.T10; vectors = [("u", u.values)], scalars = [("sigmay", fld.values)], ) # @async run(`"paraview.exe" $File`) try rm(File) catch end AE = AbaqusExporter("LE10NAFEMS_MST10") HEADING( AE, "LE10NAFEMS: Transverse deflection of elliptical plate with elliptical hole.", ) PART(AE, "part1") END_PART(AE) ASSEMBLY(AE, "ASSEM1") INSTANCE(AE, "INSTNC1", "PART1") NODE(AE, fens.xyz) ELEMENT(AE, "c3d10", "AllElements", 1, connasarray(femm.integdomain.fes)) ELEMENT( AE, "SFM3D6", "TractionElements", 1 + count(femm.integdomain.fes), connasarray(eL1femm.integdomain.fes), ) NSET_NSET(AE, "L1", L1) NSET_NSET(AE, "L2", L2) NSET_NSET(AE, "L3", L3) NSET_NSET(AE, "L12", L12) ORIENTATION(AE, "GlobalOrientation", vec([1.0 0 0]), vec([0 1.0 0])) SOLID_SECTION(AE, "elasticity", "GlobalOrientation", "AllElements", "Hourglassctl") SURFACE_SECTION(AE, "TractionElements") END_INSTANCE(AE) END_ASSEMBLY(AE) MATERIAL(AE, "elasticity") ELASTIC(AE, E, nu) SECTION_CONTROLS(AE, "Hourglassctl", "HOURGLASS=ENHANCED") STEP_PERTURBATION_STATIC(AE) BOUNDARY(AE, "ASSEM1.INSTNC1.L1", 1) BOUNDARY(AE, "ASSEM1.INSTNC1.L2", 2) BOUNDARY(AE, "ASSEM1.INSTNC1.L3", 3) BOUNDARY(AE, "ASSEM1.INSTNC1.L12", 1) BOUNDARY(AE, "ASSEM1.INSTNC1.L12", 2) DLOAD(AE, "ASSEM1.INSTNC1.TractionElements", vec([0.0, 0.0, -qmagn])) END_STEP(AE) close(AE) output = MeshImportModule.import_ABAQUS(AE.filename) fens, fes = output["fens"], output["fesets"][1] try rm(AE.filename) catch end # Select the boundary faces, on the boundary that is clamped, and on the part # of the boundary that is loaded with the transverse pressure bdryfes = meshboundary(fes) exteriorbfl = selectelem( fens, bdryfes, facing = true, direction = [1.0, 1.0, 0.0], dotmin = 0.001, ) topbfl = selectelem( fens, bdryfes, box = [0.0, Inf, 0.0, Inf, Thickness, Thickness], inflate = tolerance, ) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field L12 = connectednodes(subset(bdryfes, exteriorbfl)) # external boundary setebc!(u, L12, true, 1, 0.0) setebc!(u, L12, true, 2, 0.0) LL = selectnode( fens; box = [0.0, Inf, 0.0, Inf, Thickness / 2.0, Thickness / 2.0], inflate = tolerance, ) L3 = intersect(LL, connectednodes(subset(bdryfes, exteriorbfl))) setebc!(u, L3, true, 3, 0.0) L1 = selectnode(fens; box = [0.0, 0.0, 0.0, Inf, 0.0, Thickness], inflate = tolerance) setebc!(u, L1, true, 1, 0.0) # symmetry plane X = 0 L2 = selectnode(fens; box = [0.0, Inf, 0.0, 0.0, 0.0, Thickness], inflate = tolerance) setebc!(u, L2, true, 2, 0.0) # symmetry plane Y = 0 applyebc!(u) numberdofs!(u) eL1femm = FEMMBase(IntegDomain(subset(bdryfes, topbfl), TriRule(3))) # function pfun(forceout::FVec{T}, XYZ, tangents, feid) where {T} # forceout .= [0.0, 0.0, -qmagn] # return forceout # end fi = ForceIntensity(Float64, 3, pfun) F2 = distribloads(eL1femm, geom, u, fi, 2) # Note that the material object needs to be created with the proper # model-dimension reduction in mind. In this case that is the fully three-dimensional solid. MR = DeforModelRed3D material = MatDeforElastIso(MR, E, nu) femm = FEMMDeforLinearMST10(MR, IntegDomain(fes, TetRule(4)), material) # The geometry field now needs to be associated with the FEMM femm = associategeometry!(femm, geom) K = stiffness(femm, geom, u) u = solve_blocked!(u, K, F2) nl = selectnode(fens, box = [Ai, Ai, 0, 0, Thickness, Thickness], inflate = tolerance) thecorneru = zeros(Float64, 1, 3) gathervalues_asmat!(u, thecorneru, nl) thecorneru = thecorneru / phun("mm") # println("displacement =$(thecorneru) [MM] as compared to reference [-0.030939, 0, -0.10488] [MM]") @test norm(thecorneru - [-0.0268854 0.0 -0.0919955]) < 1.0e-5 fld = fieldfromintegpoints(femm, geom, u, :Cauchy, 2; reportat = :meanonly)# # println("Sigma_y =$(fld.values[nl,1][1]/phun("MPa")) as compared to reference sigma_yP = $(sigma_yP/phun("MPa")) [MPa]") @test abs(fld.values[nl, 1][1] / phun("MPa") - -2.2616980060965024) < 1.0e-3 fld = fieldfromintegpoints( femm, geom, u, :Cauchy, 2; nodevalmethod = :averaging, reportat = :extrapmean, )# # println("Sigma_y =$(fld.values[nl,1][1]/phun("MPa")) as compared to reference sigma_yP = $(sigma_yP/phun("MPa")) [MPa]") @test abs(fld.values[nl, 1][1] / phun("MPa") - -2.382478776709117) < 1.0e-3 fld = fieldfromintegpoints( femm, geom, u, :Cauchy, 2; nodevalmethod = :averaging, reportat = :extraptrend, )# # println("Sigma_y =$(fld.values[nl,1][1]/phun("MPa")) as compared to reference sigma_yP = $(sigma_yP/phun("MPa")) [MPa]") # println("$(fld.values[nl,1][1]/phun("MPa"))") @test abs(fld.values[nl, 1][1] / phun("MPa") - -5.470291697493607) < 1.0e-3 File = "LE10NAFEMS_MST10_sigmay.vtk" vtkexportmesh( File, connasarray(fes), geom.values, FinEtools.MeshExportModule.VTK.T10; vectors = [("u", u.values)], scalars = [("sigmay", fld.values)], ) # @async run(`"paraview.exe" $File`) try rm(File) catch end end end using .mmLE10expimpmm mmLE10expimpmm.test() # module mmtruncatedmfreem1 # using FinEtools # using FinEtoolsDeforLinear # using FinEtoolsDeforLinear.AlgoDeforLinearModule # using Test # import Arpack: eigs # import LinearAlgebra: norm, cholesky, cross # function test() # # println(""" # # Vibration modes of truncated cylindrical shell. # # """) # # t0 = time() # E = 205000*phun("MPa");# Young's modulus # nu = 0.3;# Poisson ratio # rho = 7850*phun("KG*M^-3");# mass density # OmegaShift = (2*pi*100) ^ 2; # to resolve rigid body modes # h = 0.05*phun("M"); # l = 10*h; # Rmed = h/0.2; # psi = 0; # Cylinder # nh = 5; nl = 12; nc = 40; # tolerance = h/nh/100; # neigvs = 20; # MR = DeforModelRed3D # fens,fes = H8block(h,l,2*pi,nh,nl,nc) # # Shape into a cylinder # R = zeros(3, 3) # for i in eachindex(fens) # x, y, z = fens.xyz[i,:]; # rotmat3!(R, [0, z, 0]) # Q = [cos(psi*pi/180) sin(psi*pi/180) 0; # -sin(psi*pi/180) cos(psi*pi/180) 0; # 0 0 1] # fens.xyz[i,:] = reshape([x+Rmed-h/2, y-l/2, 0], 1, 3)*Q*R; # end # candidates = selectnode(fens, plane = [0.0 0.0 1.0 0.0], thickness = h/1000) # fens,fes = mergenodes(fens, fes, tolerance, candidates); # geom = NodalField(fens.xyz) # u = NodalField(zeros(size(fens.xyz,1),3)) # displacement field # numberdofs!(u) # material=MatDeforElastIso(MR, rho, E, nu, 0.0) # femm = FEMMDeforLinearMSH8(MR, IntegDomain(fes, GaussRule(3,2)), material) # femm = associategeometry!(femm, geom) # K =stiffness(femm, geom, u) # femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3,3)), material) # M =mass(femm, geom, u) # # eigs returns the nev requested eigenvalues in d, the corresponding Ritz vectors # # v (only if ritzvec=true), the number of converged eigenvalues nconv, the number # # of iterations niter and the number of matrix vector multiplications nmult, as # # well as the final residual vector resid. # if true # d,v,nconv = eigs(K+OmegaShift*M, M; nev=neigvs, which=:SM, explicittransform=:none) # d[:] = d .- OmegaShift; # fs = real(sqrt.(complex(d)))/(2*pi) # # println("Eigenvalues: $fs [Hz]") # @test norm(sort(fs)[1:8] - [0.0, 0.0, 0.0, 0.0, 0.000166835, 0.000182134, 517.147, 517.147]) < 2.0e-2 # # mode = 7 # # scattersysvec!(u, v[:,mode]) # # File = "unit_cube_modes.vtk" # # vtkexportmesh(File, fens, fes; vectors=[("mode$mode", u.values)]) # # @async run(`"paraview.exe" $File`) # end # v0 = [i==j ? one(Float64) : zero(Float64) for i=1:size(K,1), j=1:2*neigvs] # tol = 1.0e-2 # maxiter = 20 # lamb, v, nconv, niter, lamberr = # AlgoDeforLinearModule.ssit(K+OmegaShift*M, M; nev=neigvs, v0=v0, tol=tol, maxiter=maxiter) # @test nconv == neigvs # # if nconv < neigvs # # println("NOT converged") # # end # broadcast!(+, lamb, lamb, - OmegaShift); # fs = real(sqrt.(complex(lamb)))/(2*pi) # # println("Eigenvalues: $fs [Hz]") # # println("$(sort(fs))") # @test norm(sort(fs)[1:8] - [0.0, 0.0, 0.0, 0.0, 7.9048e-5, 0.0, 517.147, 517.147]) < 2.0e-2 # # println("Eigenvalue errors: $lamberr [ND]") # # mode = 7 # # scattersysvec!(u, v[:,mode]) # # File = "unit_cube_modes.vtk" # # vtkexportmesh(File, fens, fes; vectors=[("mode$mode", u.values)]) # # @async run(`"paraview.exe" $File`) # end # end # using .mmtruncatedmfreem1 # mmtruncatedmfreem1.test() module mmFV32mm1 using FinEtools using FinEtoolsDeforLinear using Test import LinearAlgebra: norm, cholesky, cross function test() # println(""" # FV32: Cantilevered tapered membrane # This is a test recommended by the National Agency for Finite Element Methods and # Standards (U.K.): Test FV32 from NAFEMS publication TNSB, Rev. 3, “The Standard # NAFEMS Benchmarks,” October 1990. # # Reference solution: 44.623 130.03 162.70 246.05 379.90 391.44 for the first # six modes. # """) t0 = time() E = 200 * phun("GPA") nu = 0.3 rho = 8000 * phun("KG/M^3") L = 10 * phun("M") W0 = 5 * phun("M") WL = 1 * phun("M") H = 0.05 * phun("M") nL, nW, nH = 8, 4, 1# How many element edges per side? neigvs = 20 # how many eigenvalues Reffs = [44.623 130.03 162.70 246.05 379.90 391.44] fens, fes = H20block(1.0, 2.0, 1.0, nL, nW, nH) for i in eachindex(fens) xi, eta, theta = fens.xyz[i, :] eta = eta - 1.0 fens.xyz[i, :] = [xi * L eta * (1.0 - 0.8 * xi) * W0 / 2 theta * H / 2] end # File = "mesh.vtk" # vtkexportmesh(File, fens, fes) # @async run(`"paraview.exe" $File`) # Make the region MR = DeforModelRed3D material = MatDeforElastIso(MR, rho, E, nu, 0.0) region1 = FDataDict( "femm" => FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3, 2)), material), "femm_mass" => FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3, 3)), material), ) nl1 = selectnode(fens; plane = [1.0 0.0 0.0 0.0], thickness = H / 1.0e4) ebc1 = FDataDict("node_list" => nl1, "component" => 1, "displacement" => 0.0) ebc2 = FDataDict("node_list" => nl1, "component" => 2, "displacement" => 0.0) ebc3 = FDataDict("node_list" => nl1, "component" => 3, "displacement" => 0.0) nl4 = selectnode(fens; plane = [0.0 0.0 1.0 0.0], thickness = H / 1.0e4) ebc4 = FDataDict("node_list" => nl4, "component" => 3, "displacement" => 0.0) # Make model data modeldata = FDataDict( "fens" => fens, "regions" => [region1], "essential_bcs" => [ebc1 ebc2 ebc3 ebc4], "neigvs" => neigvs, ) # Solve modeldata = FinEtoolsDeforLinear.AlgoDeforLinearModule.modal(modeldata) fs = modeldata["omega"] / (2 * pi) #println("Eigenvalues: $fs [Hz]") # println("Percentage frequency errors: $((vec(fs[1:6]) - vec(Reffs))./vec(Reffs)*100)") @test norm( (vec(fs[1:6]) - vec(Reffs)) ./ vec(Reffs) * 100 - [0.0162775, 0.0623384, 0.00799148, 0.151669, 0.376663, 0.0191388], ) < 1.0e-6 modeldata["postprocessing"] = FDataDict("file" => "FV32-modes", "mode" => 1:10) modeldata = FinEtoolsDeforLinear.AlgoDeforLinearModule.exportmode(modeldata) # @async run(`"paraview.exe" $(modeldata["postprocessing"]["file"]*"1.vtk")`) try rm(modeldata["postprocessing"]["file"] * "1.vtk") catch end end end using .mmFV32mm1 mmFV32mm1.test() # module mmtruncatedmfreem2 # using FinEtools # using FinEtoolsDeforLinear # using FinEtoolsDeforLinear.AlgoDeforLinearModule # using Test # import Arpack: eigs # import LinearAlgebra: norm, cholesky, cross # function test() # # println(""" # # Vibration modes of truncated cylindrical shell. # # """) # # t0 = time() # E = 205000*phun("MPa");# Young's modulus # nu = 0.3;# Poisson ratio # rho = 7850*phun("KG*M^-3");# mass density # OmegaShift = (2*pi*100) ^ 2; # to resolve rigid body modes # h = 0.05*phun("M"); # l = 10*h; # Rmed = h/0.2; # psi = 0; # Cylinder # nh = 5; nl = 12; nc = 40; # tolerance = h/nh/100; # neigvs = 20; # MR = DeforModelRed3D # fens,fes = H8block(h,l,2*pi,nh,nl,nc) # # Shape into a cylinder # R = zeros(3, 3) # for i in eachindex(fens) # x, y, z = fens.xyz[i,:]; # rotmat3!(R, [0, z, 0]) # Q = [cos(psi*pi/180) sin(psi*pi/180) 0; # -sin(psi*pi/180) cos(psi*pi/180) 0; # 0 0 1] # fens.xyz[i,:] = reshape([x+Rmed-h/2, y-l/2, 0], 1, 3)*Q*R; # end # candidates = selectnode(fens, plane = [0.0 0.0 1.0 0.0], thickness = h/1000) # fens,fes = mergenodes(fens, fes, tolerance, candidates); # geom = NodalField(fens.xyz) # u = NodalField(zeros(size(fens.xyz,1),3)) # displacement field # numberdofs!(u) # material=MatDeforElastIso(MR, rho, E, nu, 0.0) # femm = FEMMDeforLinearMSH8(MR, IntegDomain(fes, GaussRule(3,2)), material) # femm = associategeometry!(femm, geom) # K =stiffness(femm, geom, u) # femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3,3)), material) # M =mass(femm, geom, u) # # eigs returns the nev requested eigenvalues in d, the corresponding Ritz vectors # # v (only if ritzvec=true), the number of converged eigenvalues nconv, the number # # of iterations niter and the number of matrix vector multiplications nmult, as # # well as the final residual vector resid. # if true # d,v,nev,nconv = eigs(K+OmegaShift*M, M; nev=neigvs, which=:SM, explicittransform=:none) # broadcast!(+, d, d, - OmegaShift); # fs = real(sqrt.(complex(d)))/(2*pi) # # println("Eigenvalues: $fs [Hz]") # @test norm(sort(fs)[1:8] - [0.0, 0.0, 0.0, 0.0, 0.000166835, 0.000182134, 517.147, 517.147]) < 2.0e-2 # # mode = 7 # # scattersysvec!(u, v[:,mode]) # # File = "unit_cube_modes.vtk" # # vtkexportmesh(File, fens, fes; vectors=[("mode$mode", u.values)]) # # @async run(`"paraview.exe" $File`) # end # v0 = [i==j ? one(Float64) : zero(Float64) for i=1:size(K,1), j=1:2*neigvs] # tol = 1.0e-2 # maxiter = 20 # lamb, v, nconv, niter, lamberr = # AlgoDeforLinearModule.ssit(K+OmegaShift*M, M; nev=neigvs, v0=v0, tol=tol, maxiter=maxiter) # @test nconv == neigvs # # if nconv < neigvs # # println("NOT converged") # # end # lamb = lamb .- OmegaShift; # fs = real(sqrt.(complex(lamb)))/(2*pi) # # println("Eigenvalues: $fs [Hz]") # # println("$(sort(fs))") # @test norm(sort(fs)[1:8] - [0.0, 0.0, 0.0, 0.0, 7.9048e-5, 0.0, 517.147, 517.147]) < 2.0e-2 # # println("Eigenvalue errors: $lamberr [ND]") # # mode = 7 # # scattersysvec!(u, v[:,mode]) # # File = "unit_cube_modes.vtk" # # vtkexportmesh(File, fens, fes; vectors=[("mode$mode", u.values)]) # # @async run(`"paraview.exe" $File`) # end # end # using .mmtruncatedmfreem2 # mmtruncatedmfreem2.test()
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
48125
module mfiber_reinf_cant_yn_strong_Abaqus using FinEtools using FinEtools.AlgoBaseModule: solve_blocked!, matrix_blocked, vector_blocked using FinEtoolsDeforLinear using FinEtoolsDeforLinear.AlgoDeforLinearModule using Test using LinearAlgebra: Symmetric, cholesky using Statistics: mean function test() # println(""" # Cantilever example. Strongly orthotropic material. Orientation "y". # @article{ # author = {Krysl, P.}, # title = {Mean-strain 8-node hexahedron with optimized energy-sampling stabilization}, # journal = {Finite Elements in Analysis and Design}, # volume = {108}, pages = {41-53}, DOI = {10.1016/j.finel.2015.09.008}, year = {2016} # } # """) t0 = time() pu = ustring -> phun(ustring; system_of_units = :SIMM) # # Orthotropic material E1s = 100000.0 * pu("GPa") E2s = 1.0 * pu("GPa") E3s = E2s nu23s = nu12s = nu13s = 0.25 G12s = 0.2 * pu("GPa") G23s = G13s = G12s CTE1 = 0.0 CTE2 = 0.0 CTE3 = 0.0 # # Isotropic material # E = 1.0e9*pu("Pa") # nu = 0.25 # CTE = 0.0 # Reference value for the vertical deflection of the tip uz_ref = -1.027498445054843e-05 * pu("m") a = 90.0 * pu("mm") # length of the cantilever b = 10.0 * pu("mm") # width of the cross-section t = 20.0 * pu("mm") # height of the cross-section q0 = -1000.0 * pu("Pa") # shear traction dT = 0 * pu("K") # temperature rise tolerance = 0.00001 * t # Generate mesh n = 2 na = 4 * n # number of elements lengthwise nb = 2 * n # number of elements through the depth nt = n # number of elements through the thickness xs = collect(linearspace(0.0, a, na + 1)) ys = collect(linearspace(0.0, b, nb + 1)) ts = collect(linearspace(0.0, t, nt + 1)) # println("Mesh generation") fens, fes = H8blockx(xs, ys, ts) fens, fes = H8toH20(fens, fes) bfes = meshboundary(fes) # end cross-section surface for the shear loading sshearl = selectelem(fens, bfes; facing = true, direction = [+1.0 0.0 0.0]) MR = DeforModelRed3D material = MatDeforElastOrtho( MR, 0.0, E1s, E2s, E3s, nu12s, nu13s, nu23s, G12s, G13s, G23s, CTE1, CTE2, CTE3, ) # material = MatDeforElastIso(MR, # 0.0, E, nu, CTE) # Material orientation matrix csmat = zeros(3, 3) rotmat3!(csmat, -45.0 / 180.0 * pi * [0, 1, 0]) function updatecs!(csmatout, XYZ, tangents, feid, qpid) copyto!(csmatout, csmat) end femm = FEMMDeforLinear( MR, IntegDomain(fes, GaussRule(3, 2)), CSys(3, 3, updatecs!), material, ) lx0 = selectnode(fens, box = [0.0 0.0 -Inf Inf -Inf Inf], inflate = tolerance) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field nnodes(geom) setebc!(u, lx0, true, 1, zeros(size(lx0))) setebc!(u, lx0, true, 2, zeros(size(lx0))) setebc!(u, lx0, true, 3, zeros(size(lx0))) applyebc!(u) # S = connectionmatrix(femm.femmbase, nnodes(geom)) numberdofs!(u) function getshr!(forceout::Vector{Float64}, XYZ, tangents, feid, qpid) copyto!(forceout, q0 * [0.0; 0.0; 1.0]) return forceout end Tracfemm = FEMMBase(IntegDomain(subset(bfes, sshearl), GaussRule(2, 3))) # println("Stiffness") K = stiffness(femm, geom, u) fi = ForceIntensity(Float64, 3, getshr!) # println("Traction loads") F = distribloads(Tracfemm, geom, u, fi, 2) K_ff, K_fd = matrix_blocked(K, nfreedofs(u), nfreedofs(u))[(:ff, :fd)] F_f = vector_blocked(F, nfreedofs(u))[:f] U_d = gathersysvec(u, :d) # println("Factorization") factor = cholesky(Symmetric(K_ff)) # println("U = K\\F") U_f = factor \ F_f # # println("U = cg(K, F; tol=1e-3, maxiter=2000)") # U = cg(K, F; tol=1e-3, maxiter=2000) scattersysvec!(u, U_f) Tipl = selectnode(fens, box = [a a b b 0.0 0.0], inflate = tolerance) utip = mean(u.values[Tipl, 3]) # println("Deflection $utip, normalized: $(utip/uz_ref)") @test abs(utip - -0.00653888266072445) / abs(utip) < 1.0e-6 # println("Solution: $( time()-t0 )") AE = AbaqusExporter("fiber_reinf_cant_yn_strong_Abaqus") HEADING(AE, "fiber_reinf_cant_yn_strong_Abaqus.") PART(AE, "part1") END_PART(AE) ASSEMBLY(AE, "ASSEM1") INSTANCE(AE, "INSTNC1", "PART1") NODE(AE, fens.xyz) ELEMENT(AE, "c3d20r", "AllElements", connasarray(femm.integdomain.fes)) ELEMENT(AE, "SFM3D8", "TractionElements", connasarray(Tracfemm.integdomain.fes)) NSET_NSET(AE, "L1", lx0) NSET_NSET(AE, "L2", lx0) NSET_NSET(AE, "L3", lx0) NSET_NSET(AE, "tip", Tipl) ORIENTATION(AE, "GlobalOrientation", vec([1.0 0 0]), vec([0 1.0 0])) ORIENTATION(AE, "MaterialOrientation", vec(csmat[:, 1]), vec(csmat[:, 2])) SOLID_SECTION(AE, "elasticity", "MaterialOrientation", "AllElements", "Hourglassctl") SURFACE_SECTION(AE, "TractionElements") END_INSTANCE(AE) END_ASSEMBLY(AE) MATERIAL(AE, "elasticity") ELASTIC(AE, E1s, E2s, E3s, nu12s, nu13s, nu23s, G12s, G13s, G23s) SECTION_CONTROLS(AE, "Hourglassctl", "HOURGLASS=ENHANCED") STEP_PERTURBATION_STATIC(AE) BOUNDARY(AE, "ASSEM1.INSTNC1.L1", 1) BOUNDARY(AE, "ASSEM1.INSTNC1.L2", 2) BOUNDARY(AE, "ASSEM1.INSTNC1.L3", 3) DLOAD(AE, "ASSEM1.INSTNC1.TractionElements", vec([0.0, 0.0, q0])) NODE_PRINT(AE, "ASSEM1.INSTNC1.tip") ENERGY_PRINT(AE) END_STEP(AE) close(AE) try rm(AE.filename) catch end # println("Done: $( time()-t0 )") true end end using .mfiber_reinf_cant_yn_strong_Abaqus mfiber_reinf_cant_yn_strong_Abaqus.test() module mmorthoballoonpenaltymm using FinEtools using FinEtools.AlgoBaseModule: solve_blocked!, matrix_blocked, vector_blocked using FinEtoolsDeforLinear using Test using LinearAlgebra: norm, cholesky, cross, Symmetric function test() # Orthotropic balloon inflation, axially symmetric model # Parameters: E1 = 1.0 E2 = 1.0 E3 = 3.0 nu12 = 0.29 nu13 = 0.29 nu23 = 0.19 G12 = 0.3 G13 = 0.3 G23 = 0.3 p = 0.15 rin = 1.0 rex = 1.2 tolerance = rin / 1000.0 MR = DeforModelRed2DAxisymm fens, fes = Q4block(rex - rin, pi / 2, 5, 20) bdryfes = meshboundary(fes) icl = selectelem(fens, bdryfes, box = [0.0, 0.0, 0.0, pi / 2], inflate = tolerance) for i = 1:count(fens) r = rin + fens.xyz[i, 1] a = fens.xyz[i, 2] fens.xyz[i, :] = [r * cos(a) r * sin(a)] end # now we create the geometry and displacement fields geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 2)) # displacement field # the symmetry plane ly = selectelem(fens, bdryfes; box = [0 rex 0 0], inflate = tolerance) # the axis of symmetry lx = selectelem(fens, bdryfes; box = [0 0 0 rex], inflate = tolerance) # No EBC applyebc!(u) numberdofs!(u) # println("Number of degrees of freedom = $(u.nfreedofs)") # The traction boundary condition is applied in the radial # direction. el1femm = FEMMBase(IntegDomain(subset(bdryfes, icl), GaussRule(1, 3), true)) function pressureloading!(forceout::Vector{Float64}, XYZ, tangents, feid, qpid) copyto!(forceout, XYZ / norm(XYZ) * p) return forceout end fi = ForceIntensity(Float64, 2, pressureloading!) # pressure normal to the internal cylindrical surface F2 = distribloads(el1femm, geom, u, fi, 2) # Property and material material = MatDeforElastOrtho(MR, E1, E2, E3, nu12, nu13, nu23, G12, G13, G23) femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(2, 2), true), material) ## # The restraints of the nodes on the bounding cross-sections in the direction # of the normal to the plane of the cross-section in the # circumferential direction are introduced using a penalty formulation. # For that purpose we introduce a finite element model machine for the # surface finite elements on the cross-sections. springcoefficient = 1.0e9 / (abs(p) / E1) xsfemm = FEMMDeforWinkler(IntegDomain(subset(bdryfes, lx), GaussRule(1, 3), true)) ysfemm = FEMMDeforWinkler(IntegDomain(subset(bdryfes, ly), GaussRule(1, 3), true)) H = surfacenormalspringstiffness(xsfemm, geom, u, springcoefficient, SurfaceNormal(3)) + surfacenormalspringstiffness(ysfemm, geom, u, springcoefficient, SurfaceNormal(3)) K = stiffness(femm, geom, u) U = (K + H) \ (F2) scattersysvec!(u, U[:]) # Produce a plot of the radial stress component in the cylindrical # coordinate system. Note that this is the usual representation of # stress using nodal stress field. fld = fieldfromintegpoints(femm, geom, u, :Cauchy, 3) # println("Minimum/maximum = $(minimum(fld.values))/$(maximum(fld.values))") @test abs(minimum(fld.values) - (-0.04635309320688638)) < 1.0e-5 @test abs(maximum(fld.values) - (0.5708149883384825)) < 1.0e-5 # File = "orthoballoon_penalty_sigmaz.vtk" # vtkexportmesh(File, fens, fes; scalars=[("sigmaz", fld.values)], # vectors=[("u", u.values)]) # @async run(`"paraview.exe" $File`) end end using .mmorthoballoonpenaltymm mmorthoballoonpenaltymm.test() module mbar1 using FinEtools using FinEtools.AlgoBaseModule: solve_blocked!, matrix_blocked, vector_blocked using FinEtoolsDeforLinear using FinEtools.FENodeSetModule using FinEtools.MeshExportModule using Test using LinearAlgebra: norm, cholesky, cross, Symmetric function test() Area = 2.0 * phun("in^2") E = 30e6 * phun("psi") # Young's modulus nu = 0.0 alpha = 5.5e-6 * phun("in") / phun("in") / phun("F") fens = FENodeSetModule.FENodeSet([ 10.0 -5 20 30 25 -15 ] * phun("in")) fes = FESetL2(reshape([1, 2], 1, 2)) integdomain = IntegDomain(fes, GaussRule(1, 2), (loc, conn, N) -> Area, false) # display(IntegDomain) MR = DeforModelRed1D material = MatDeforElastIso(MR, 0.0, E, nu, alpha) # display(material ) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field numberdofs!(u) femm = FEMMDeforLinear(MR, integdomain, CSys(3, 1), material) K = stiffness(femm, geom, u) # println("K = $(K/(phun("lbf")/phun("in")))") ref_K = 1.0e+05 * [ 1.8916 2.8373 -3.3102 -1.8916 -2.8373 3.3102 2.8373 4.2560 -4.9653 -2.8373 -4.2560 4.9653 -3.3102 -4.9653 5.7929 3.3102 4.9653 -5.7929 -1.8916 -2.8373 3.3102 1.8916 2.8373 -3.3102 -2.8373 -4.2560 4.9653 2.8373 4.2560 -4.9653 3.3102 4.9653 -5.7929 -3.3102 -4.9653 5.7929 ] @test norm(K / (phun("lbf") / phun("in")) - ref_K) / 1.0e5 < 1.0e-3 dT = NodalField(broadcast(+, zeros(size(fens.xyz, 1), 1), 100 * phun("F"))) # temperature field # display(dT) F2 = thermalstrainloads(femm, geom, u, dT) # println("F2 = $(F2/(phun("lbf")))") ref_F = 1.0e+04 * [ -1.313449091077187 -1.970173636615779 2.298535909385076 1.313449091077187 1.970173636615779 -2.298535909385076 ] @test norm(F2 / (phun("lbf")) - ref_F) < 1.0e-2 # K = cholesky(K) # U= K\(F2) # scattersysvec!(u, U[:]) # File = "playground.vtk" # MeshExportModule.VTK.vtkexportmesh(File, fens, fes) # @async run(`"paraview.exe" $File`) # try rm(File) catch end end end using .mbar1 mbar1.test() module mbar2 using FinEtools using FinEtools.AlgoBaseModule: solve_blocked!, matrix_blocked, vector_blocked using FinEtoolsDeforLinear using FinEtools.FENodeSetModule using FinEtools.MeshExportModule using Test using LinearAlgebra: norm, cholesky, cross, Symmetric function test() Area = 1.5 E = 1.0e7 # Young's modulus nu = 0.0 alpha = 0.0 fens = FENodeSetModule.FENodeSet([ 0.0 0 0 40 40 0 40 40 80 0 80 40 ]) fes = FESetL2([ 1 3 1 4 2 4 3 4 3 5 5 4 6 4 5 6 ]) MR = DeforModelRed1D material = MatDeforElastIso(MR, 0.0, E, nu, alpha) # display(material ) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 2)) # displacement field setebc!(u, 1) setebc!(u, 2) applyebc!(u) numberdofs!(u) # display(u) femm = FEMMDeforLinear( MR, IntegDomain(fes, GaussRule(1, 1), (loc, conn, N) -> Area, false), CSys(2, 1), material, ) K = stiffness(femm, geom, u) fi = ForceIntensity(vec([0 -2000.0])) lfemm = FEMMBase(IntegDomain(FESetP1(reshape([3], 1, 1)), PointRule())) F = distribloads(lfemm, geom, u, fi, 3) fi = ForceIntensity(vec([+2000.0 0])) lfemm = FEMMBase(IntegDomain(FESetP1(reshape([5], 1, 1)), PointRule())) F = F + distribloads(lfemm, geom, u, fi, 3) fi = ForceIntensity(vec([+4000.0 +6000.0])) lfemm = FEMMBase(IntegDomain(FESetP1(reshape([6], 1, 1)), PointRule())) F = F + distribloads(lfemm, geom, u, fi, 3) K_ff, K_fd = matrix_blocked(K, nfreedofs(u), nfreedofs(u))[(:ff, :fd)] F_f = vector_blocked(F, nfreedofs(u))[:f] U_d = gathersysvec(u, :d) factor = cholesky(Symmetric(K_ff)) U_f = factor \ F_f scattersysvec!(u, U_f) @test norm( u.values - [ 0.0 0.0 0.0 0.0 0.0213333 0.0408366 -0.016 0.0461699 0.0426667 0.150091 -0.00533333 0.166091 ], ) < 1.0e-4 sfld = elemfieldfromintegpoints(femm, geom, u, :Cauchy, 1) # display(sfld) # println("Cauchy = $(sfld.values)") @test norm( sfld.values - [5333.33; 3771.24; -4000.0; 1333.33; 5333.33; -5656.85; 2666.67; 4000.0], ) < 1.0e-2 vfld = elemfieldfromintegpoints(femm, geom, u, :vm, 1) # display(vfld) File = "Planar_truss.vtk" MeshExportModule.VTK.vtkexportmesh( File, fens, fes; scalars = [("sx", sfld.values), ("vm", vfld.values)], ) # @async run(`"paraview.exe" $File`) try rm(File) catch end end end using .mbar2 mbar2.test() module mmmLE10expiAbaqus2mmmm using FinEtools using FinEtools.AlgoBaseModule: solve_blocked!, matrix_blocked, vector_blocked using FinEtoolsDeforLinear using FinEtools.MeshExportModule using Test using LinearAlgebra: norm, cholesky, cross, Symmetric function test() # Thick elliptical plate with an elliptical hole is clamped on its exterior # boundary and is loaded with transverse pressure. # This is a NAFEMS Benchmark, Test No. LE10. # The plate is discretized with solid elements. # Because of the symmetries of the geometry and load, only quarter of the plate is modeled. # The $\sigma_y=\sigma_2$ at the point $P$ is to be determined. Since the # target point is on the boundary of the domain it will not be an # integration node as we use Gauss quadrature. The reference value is -5.38 MPa. # println("LE10NAFEMS: Transverse deflection of elliptical plate with elliptical hole." ) t0 = time() E = 210e3 * phun("MEGA*PA")# 210e3 MPa nu = 0.3 qmagn = 1.0 * phun("MEGA*PA")# transverse pressure sigma_yP = -5.38 * phun("MEGA*PA")# tensile stress at [2.0, 0.0] meters Ae = 3.25 * phun("m") # Major radius of the exterior ellipse Be = 2.75 * phun("m") # Minor radius of the exterior ellipse Ai = 2.0 * phun("m") # Major radius of the interior ellipse Bi = 1.0 * phun("m") # Minor radius of the interior ellipse Thickness = 0.6 * phun("m") nc = 6 # number of elements per side nr = 5 # number of elements per side nt = 2 # number of elements through the thickness # nc = 26; # number of elements per side # nr = 25; # number of elements per side # nt = 18; # number of elements through the thickness tolerance = Thickness / nt / 1000.0 # Geometrical tolerance fens, fes = Q4block(1.0, pi / 2, nr, nc) # @test nt % 2 == 0 fens, fes = H8extrudeQ4( fens, fes, nt, (xyz, layer) -> [xyz[1], xyz[2], (layer) / nt * Thickness], ) # Select the boundary faces, on the boundary that is clamped, and on the part # of the boundary that is loaded with the transverse pressure bdryfes = meshboundary(fes) exteriorbfl = selectelem( fens, bdryfes, box = [1.0, 1.0, 0.0, pi / 2, 0.0, Thickness], inflate = tolerance, ) topbfl = selectelem( fens, bdryfes, box = [0.0, 1.0, 0.0, pi / 2, Thickness, Thickness], inflate = tolerance, ) # Reshape the generated block into the elliptical plate for i = 1:count(fens) r = fens.xyz[i, 1] a = fens.xyz[i, 2] z = fens.xyz[i, 3] fens.xyz[i, :] = [(r * Ae + (1 - r) * Ai) * cos(a) (r * Be + (1 - r) * Bi) * sin(a) z] end geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field l12 = connectednodes(subset(bdryfes, exteriorbfl)) # external boundary setebc!(u, l12, true, 1, 0.0) setebc!(u, l12, true, 2, 0.0) ll = selectnode( fens; box = [0.0, Inf, 0.0, Inf, Thickness / 2.0, Thickness / 2.0], inflate = tolerance, ) l3 = intersect(ll, connectednodes(subset(bdryfes, exteriorbfl))) setebc!(u, l3, true, 3, 0.0) l1 = selectnode(fens; box = [0.0, 0.0, 0.0, Inf, 0.0, Thickness], inflate = tolerance) setebc!(u, l1, true, 1, 0.0) # symmetry plane X = 0 l2 = selectnode(fens; box = [0.0, Inf, 0.0, 0.0, 0.0, Thickness], inflate = tolerance) setebc!(u, l2, true, 2, 0.0) # symmetry plane Y = 0 applyebc!(u) numberdofs!(u) el1femm = FEMMBase(IntegDomain(subset(bdryfes, topbfl), GaussRule(2, 2))) function pfun(forceout::Vector{Float64}, XYZ, tangents, feid, qpid) forceout .= [0.0, 0.0, -qmagn] return forceout end fi = ForceIntensity(Float64, 3, pfun) F2 = distribloads(el1femm, geom, u, fi, 2) # Note that the material object needs to be created with the proper # model-dimension reduction in mind. In this case that is the fully three-dimensional solid. MR = DeforModelRed3D material = MatDeforElastIso(MR, E, nu) femm = FEMMDeforLinearMSH8(MR, IntegDomain(fes, GaussRule(3, 2)), material) # The geometry field now needs to be associated with the FEMM femm = associategeometry!(femm, geom) K = stiffness(femm, geom, u) K_ff, K_fd = matrix_blocked(K, nfreedofs(u), nfreedofs(u))[(:ff, :fd)] F_f = vector_blocked(F2, nfreedofs(u))[:f] U_d = gathersysvec(u, :d) factor = cholesky(Symmetric(K_ff)) U_f = factor \ F_f scattersysvec!(u, U_f) nl = selectnode(fens, box = [Ai, Ai, 0, 0, Thickness, Thickness], inflate = tolerance) thecorneru = zeros(Float64, 1, 3) gathervalues_asmat!(u, thecorneru, nl) thecorneru = thecorneru / phun("mm") # println("displacement =$(thecorneru) [MM] as compared to reference [-0.030939, 0, -0.10488] [MM]") fld = fieldfromintegpoints( femm, geom, u, :Cauchy, 2; nodevalmethod = :averaging, reportat = :extraptrend, )# # println("Sigma_y =$(fld.values[nl,1][1]/phun("MPa")) as compared to reference sigma_yP = $(sigma_yP/phun("MPa")) [MPa]") # println("$((nc, nr, nt)), $(fld.values[nl,1][1]/phun("MPa"))") # println("$(fld.values[nl,1][1]/phun("MPa"))") @test abs(fld.values[nl, 1][1] / phun("MPa") - -4.627214556813842) < 1.0e-3 # File = "LE10NAFEMS_sigmay.vtk" # vtkexportmesh(File, fes.conn, geom.values, # FinEtools.MeshExportModule.VTK.H8; vectors=[("u", u.values)], # scalars=[("sigmay", fld.values)]) # @async run(`"paraview.exe" $File`) # true AE = AbaqusExporter("LE10NAFEMS_H8") HEADING( AE, "LE10NAFEMS: Transverse deflection of elliptical plate with elliptical hole.", ) PART(AE, "part1") END_PART(AE) ASSEMBLY(AE, "ASSEM1") INSTANCE(AE, "INSTNC1", "PART1") NODE(AE, fens.xyz) ELEMENT(AE, "c3d8rh", "AllElements", 1, connasarray(femm.integdomain.fes)) ELEMENT( AE, "SFM3D4", "TractionElements", 1 + count(femm.integdomain.fes), connasarray(el1femm.integdomain.fes), ) NSET_NSET(AE, "l1", l1) NSET_NSET(AE, "l2", l2) NSET_NSET(AE, "l3", l3) NSET_NSET(AE, "l12", l12) ORIENTATION(AE, "GlobalOrientation", vec([1.0 0 0]), vec([0 1.0 0])) SOLID_SECTION(AE, "elasticity", "GlobalOrientation", "AllElements", "Hourglassctl") SURFACE_SECTION(AE, "TractionElements") END_INSTANCE(AE) END_ASSEMBLY(AE) MATERIAL(AE, "elasticity") ELASTIC(AE, E, nu) SECTION_CONTROLS(AE, "Hourglassctl", "HOURGLASS=ENHANCED") STEP_PERTURBATION_STATIC(AE) BOUNDARY(AE, "ASSEM1.INSTNC1", u.kind .== DOF_KIND_DATA, u.values) DLOAD(AE, "ASSEM1.INSTNC1.TractionElements", vec([0.0, 0.0, -qmagn])) END_STEP(AE) close(AE) lines = read(AE.filename) @test length(lines) - 10270 == 0 try rm(AE.filename) catch end end end using .mmmLE10expiAbaqus2mmmm mmmLE10expiAbaqus2mmmm.test() module mplate_w_hole_RECT_MSH8m using FinEtools using FinEtools.AlgoBaseModule: solve_blocked!, matrix_blocked, vector_blocked using FinEtoolsDeforLinear using FinEtools.MeshExportModule # using DataFrames # using CSV using Test using LinearAlgebra: norm, cholesky, cross, Symmetric using Statistics: mean function test() E = 210000 * phun("MEGA*PA")# 210e3 MPa nu = 0.3 Ri = 0.1 * phun("M") # hole radius Re = 2 * Ri # outer radius H = 0.01 * phun("M") # thickness of the plate nRadial, nCircumferential = 6, 3 sigma0 = 1 * phun("MEGA*PA") function sigmaxx(x) local r = norm(x[1:2]) local th = atan(x[2], x[1]) return sigma0 * ( 1 - Ri^2 / r^2 * (3 / 2 * cos(2 * th) + cos(4 * th)) + 3 / 2 * Ri^4 / r^4 * cos(4 * th) ) end function sigmayy(x) local r = norm(x[1:2]) local th = atan(x[2], x[1]) return -sigma0 * ( Ri^2 / r^2 * (1 / 2 * cos(2 * th) - cos(4 * th)) + 3 / 2 * Ri^4 / r^4 * cos(4 * th) ) end function sigmaxy(x) local r = norm(x[1:2]) local th = atan(x[2], x[1]) return -sigma0 * ( Ri^2 / r^2 * (1 / 2 * sin(2 * th) + sin(4 * th)) - 3 / 2 * Ri^4 / r^4 * sin(4 * th) ) end function sigmarr(x) local r = norm(x[1:2]) local th = atan(x[2], x[1]) return sigma0 / 2 * (1 - Ri^2 / r^2) + sigma0 / 2 * (1 - 4 * Ri^2 / r^2 + 3 * Ri^4 / r^4) * cos(2 * th) end function sigmatt(x) local r = norm(x[1:2]) local th = atan(x[2], x[1]) return sigma0 / 2 * (1 + Ri^2 / r^2) - sigma0 / 2 * (1 + 3 * Ri^4 / r^4) * cos(2 * th) end function sigmart(x) local r = norm(x[1:2]) local th = atan(x[2], x[1]) return -sigma0 / 2 * (1 + 2 * Ri^2 / r^2 - 3 * Ri^4 / r^4) * sin(2 * th) end sigyderrs = Dict{Symbol,Vector{Float64}}() nelems = [] for extrapolation in [:extrapmean] sigyderrs[extrapolation] = Vector{Float64}[] nelems = [] for ref in [1] # Thickness = H Thickness = H / 2^ref tolerance = Thickness / 2^ref / 1000.0 # Geometrical tolerance fens, fes = H8elliphole( Ri, Ri, Re, Re, Thickness, 2^ref * nCircumferential, 2^ref * nCircumferential, 2^ref * nRadial, 1, ) @test count(fes) == 144 # File = "a.vtk" # vtkexportmesh(File, fes.conn, fens.xyz, # FinEtools.MeshExportModule.VTK.H8) # @async run(`"paraview.exe" $File`) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field l1 = selectnode( fens; box = [0.0, Inf, 0.0, 0.0, 0.0, Thickness], inflate = tolerance, ) setebc!(u, l1, true, 2, 0.0) l1 = selectnode( fens; box = [0.0, 0.0, 0.0, Inf, 0.0, Thickness], inflate = tolerance, ) setebc!(u, l1, true, 1, 0.0) l1 = selectnode(fens; box = [0.0, Inf, 0.0, Inf, 0.0, 0.0], inflate = tolerance) setebc!(u, l1, true, 3, 0.0) # l1 =selectnode(fens; box=[0.0, Inf, 0.0, Inf, Thickness, Thickness], inflate = tolerance) # setebc!(u,l1,true, 3, 0.0) applyebc!(u) numberdofs!(u) bdryfes = meshboundary(fes) ixl = selectelem( fens, bdryfes, plane = [1.0, 0.0, 0.0, Re], thickness = tolerance, ) elxfemm = FEMMBase(IntegDomain(subset(bdryfes, ixl), GaussRule(2, 2))) function pfunx(forceout::Vector{Float64}, XYZ, tangents, feid, qpid) forceout[1] = sigmaxx(XYZ) forceout[2] = sigmaxy(XYZ) forceout[3] = 0.0 return forceout end fi = ForceIntensity(Float64, 3, pfunx) Fx = distribloads(elxfemm, geom, u, fi, 2) iyl = selectelem( fens, bdryfes, plane = [0.0, 1.0, 0.0, Re], thickness = tolerance, ) elyfemm = FEMMBase(IntegDomain(subset(bdryfes, iyl), GaussRule(2, 2))) function pfuny(forceout::Vector{Float64}, XYZ, tangents, feid, qpid) forceout[1] = -sigmaxy(XYZ) forceout[2] = sigmayy(XYZ) forceout[3] = 0.0 return forceout end fi = ForceIntensity(Float64, 3, pfuny) Fy = distribloads(elyfemm, geom, u, fi, 2) MR = DeforModelRed3D material = MatDeforElastIso(MR, E, nu) femm = FEMMDeforLinearMSH8(MR, IntegDomain(fes, GaussRule(3, 2)), material) # The geometry field now needs to be associated with the FEMM femm = associategeometry!(femm, geom) K = stiffness(femm, geom, u) K_ff, K_fd = matrix_blocked(K, nfreedofs(u), nfreedofs(u))[(:ff, :fd)] F_f = vector_blocked((Fx + Fy), nfreedofs(u))[:f] U_d = gathersysvec(u, :d) factor = cholesky(Symmetric(K_ff)) U_f = factor \ F_f scattersysvec!(u, U_f) nlA = selectnode( fens, box = [Ri, Ri, 0.0, 0.0, 0.0, Thickness], inflate = tolerance, ) nlB = selectnode( fens, box = [0.0, 0.0, Ri, Ri, 0.0, Thickness], inflate = tolerance, ) # thecorneru = zeros(Float64,length(nlA),3) # gathervalues_asmat!(u, thecorneru, nl); # thecorneru = mean(thecorneru, 1)[1]/phun("mm") # println("displacement = $(thecorneru) vs -0.10215 [MM]") # println("Extrapolation: $( extrapolation )") sigx = fieldfromintegpoints( femm, geom, u, :Cauchy, 1; nodevalmethod = :averaging, reportat = extrapolation, ) sigy = fieldfromintegpoints( femm, geom, u, :Cauchy, 2; nodevalmethod = :averaging, reportat = extrapolation, ) sigyA = mean(sigy.values[nlA, 1], dims = 1)[1] sigyAtrue = sigmatt([Ri, 0.0, 0.0]) # println("sig_y@A =$(sigyA/phun("MPa")) vs $(sigyAtrue/phun("MPa")) [MPa]") @test abs(sigyA / phun("MPa") - -0.8521990950600441) < 1.0e-3 sigxB = mean(sigx.values[nlB, 1], dims = 1)[1] sigxBtrue = sigmatt([0.0, Ri, 0.0]) # println("sig_x@B =$(sigxB/phun("MPa")) vs $(sigxBtrue/phun("MPa")) [MPa]") @test abs(sigxB / phun("MPa") - 2.7749827820003374) < 1.0e-3 # println("$extrapolation, $(count(fes)), $(sigyd/phun("MPa"))") # push!(nelems, count(fes)) # push!(sigyderrs[extrapolation], abs(sigyd/sigma_yD - 1.0)) # File = "a.vtk" # vtkexportmesh(File, fes.conn, geom.values, # FinEtools.MeshExportModule.VTK.H8; vectors=[("u", u.values)], # scalars=[("sigmax", sigx.values/phun("MEGA*PA")), # ("sigmay", sigy.values/phun("MEGA*PA"))]) # @async run(`"paraview.exe" $File`) end end # df = DataFrame(nelems=vec(nelems), # sigyderrtrend=vec(sigyderrs[:extraptrend]), # sigyderrdefault=vec(sigyderrs[:extrapmean])) # File = "LE1NAFEMS_MSH8_convergence.CSV" # CSV.write(File, df) # @async run(`"paraview.exe" $File`) end end using .mplate_w_hole_RECT_MSH8m mplate_w_hole_RECT_MSH8m.test() module mplate_w_hole_RECT_H20m using FinEtools using FinEtools.AlgoBaseModule: solve_blocked!, matrix_blocked, vector_blocked using FinEtoolsDeforLinear using FinEtools.MeshExportModule using FinEtools.MeshImportModule: import_ABAQUS # using DataFrames # using CSV using Test using LinearAlgebra: norm, cholesky, cross, Symmetric using Statistics: mean function test() E = 210000 * phun("MEGA*PA")# 210e3 MPa nu = 0.3 Ri = 0.15 * phun("M") # hole radius Re = 2 * Ri # outer radius H = 0.01 * phun("M") # thickness of the plate nRadial, nCircumferential = 6, 3 sigma0 = 1 * phun("MEGA*PA") function sigmaxx(x) local r = norm(vec(x[1:2])) local th = atan(x[2], x[1]) return sigma0 * ( 1 - Ri^2 / r^2 * (3 / 2 * cos(2 * th) + cos(4 * th)) + 3 / 2 * Ri^4 / r^4 * cos(4 * th) ) end function sigmayy(x) local r = norm(vec(x[1:2])) local th = atan(x[2], x[1]) return -sigma0 * ( Ri^2 / r^2 * (1 / 2 * cos(2 * th) - cos(4 * th)) + 3 / 2 * Ri^4 / r^4 * cos(4 * th) ) end function sigmaxy(x) local r = norm(vec(x[1:2])) local th = atan(x[2], x[1]) return -sigma0 * ( Ri^2 / r^2 * (1 / 2 * sin(2 * th) + sin(4 * th)) - 3 / 2 * Ri^4 / r^4 * sin(4 * th) ) end function sigmarr(x) local r = norm(vec(x[1:2])) local th = atan(x[2], x[1]) return sigma0 / 2 * (1 - Ri^2 / r^2) + sigma0 / 2 * (1 - 4 * Ri^2 / r^2 + 3 * Ri^4 / r^4) * cos(2 * th) end function sigmatt(x) local r = norm(vec(x[1:2])) local th = atan(x[2], x[1]) return sigma0 / 2 * (1 + Ri^2 / r^2) - sigma0 / 2 * (1 + 3 * Ri^4 / r^4) * cos(2 * th) end function sigmart(x) local r = norm(vec(x[1:2])) local th = atan(x[2], x[1]) return -sigma0 / 2 * (1 + 2 * Ri^2 / r^2 - 3 * Ri^4 / r^4) * sin(2 * th) end sigyderrs = Dict{Symbol,Vector{Float64}}() nelems = [] for extrapolation in [:extrapmean] sigyderrs[extrapolation] = Vector{Float64}[] nelems = [] for ref in [1] Thickness = H # Thickness = H/2^ref tolerance = Thickness / 2^ref / 1000.0 # Geometrical tolerance fens, fes = H8elliphole( Ri, Ri, Re, Re, Thickness, 2^ref * nCircumferential, 2^ref * nCircumferential, 2^ref * nRadial, 1, ) fens, fes = H8toH20(fens, fes) # File = "a.vtk" # vtkexportmesh(File, fes.conn, fens.xyz, # FinEtools.MeshExportModule.VTK.H20) # @async run(`"paraview.cexe" $File`) # println("My mesh=>$((count(fens), count(fes)))") @test count(fens) == 1131 @test count(fes) == 144 # # output = import_ABAQUS("plane_w_hole_m_debug.inp") # fens1,fes1 = output["fens"], output["fesets"][1] # println("Matlab mesh=>$((count(fens1), count(fes1[1])))") # # fens3, newfes1, fes2 = mergemeshes(fens,fes, fens1,fes1[1], tolerance) # fes3 = cat(2, newfes1) # println("Merged mesh=>$((count(fens3), count(fes3)))") geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field l1 = selectnode( fens; box = [0.0, Inf, 0.0, 0.0, 0.0, Thickness], inflate = tolerance, ) setebc!(u, l1, true, 2, 0.0) l1 = selectnode( fens; box = [0.0, 0.0, 0.0, Inf, 0.0, Thickness], inflate = tolerance, ) setebc!(u, l1, true, 1, 0.0) l1 = selectnode(fens; box = [0.0, Inf, 0.0, Inf, 0.0, 0.0], inflate = tolerance) setebc!(u, l1, true, 3, 0.0) # l1 =selectnode(fens; box=[0.0, Inf, 0.0, Inf, Thickness, Thickness], inflate = tolerance) # setebc!(u,l1,true, 3, 0.0) applyebc!(u) numberdofs!(u) bdryfes = meshboundary(fes) # ixl = selectelem(fens, bdryfes, plane=[1.0, 0.0, 0.0, Re], thickness=tolerance); ixl = selectelem( fens, bdryfes, box = [Re, Re, -Inf, +Inf, -Inf, +Inf], inflate = tolerance, ) elxfemm = FEMMBase(IntegDomain(subset(bdryfes, ixl), GaussRule(2, 2))) function pfunx(forceout::Vector{Float64}, XYZ, tangents, feid, qpid) forceout[1] = sigmaxx(XYZ) forceout[2] = sigmaxy(XYZ) forceout[3] = 0.0 return forceout end fi = ForceIntensity(Float64, 3, pfunx) Fx = distribloads(elxfemm, geom, u, fi, 2) # iyl = selectelem(fens, bdryfes, plane=[0.0, 1.0, 0.0, Re], thickness=tolerance); iyl = selectelem( fens, bdryfes, box = [-Inf, +Inf, Re, Re, -Inf, +Inf], inflate = tolerance, ) elyfemm = FEMMBase(IntegDomain(subset(bdryfes, iyl), GaussRule(2, 2))) function pfuny(forceout::Vector{Float64}, XYZ, tangents, feid, qpid) forceout[1] = sigmaxy(XYZ) forceout[2] = sigmayy(XYZ) forceout[3] = 0.0 return forceout end fi = ForceIntensity(Float64, 3, pfuny) Fy = distribloads(elyfemm, geom, u, fi, 2) MR = DeforModelRed3D material = MatDeforElastIso(MR, E, nu) femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3, 2)), material) # The geometry field now needs to be associated with the FEMM femm = associategeometry!(femm, geom) K = stiffness(femm, geom, u) K_ff, K_fd = matrix_blocked(K, nfreedofs(u), nfreedofs(u))[(:ff, :fd)] F_f = vector_blocked((Fx + Fy), nfreedofs(u))[:f] U_d = gathersysvec(u, :d) factor = cholesky(Symmetric(K_ff)) U_f = factor \ F_f scattersysvec!(u, U_f) # println("oof load = $(norm(Fx + Fy, 2))") @test abs(norm(F_f, 2) - 883.437848042617) < 1.0e-2 nlA = selectnode(fens, box = [Ri, Ri, 0.0, 0.0, 0.0, 00.0], inflate = tolerance) pointu = zeros(Float64, length(nlA), 3) gathervalues_asmat!(u, pointu, nlA) # println("disp@A = $(pointu/phun("mm")) [MM]") @test norm(pointu / phun("mm") - [0.00213238 0.0 0.0]) < 1.0e-4 nlB = selectnode(fens, box = [0.0, 0.0, Ri, Ri, 0.0, 0.0], inflate = tolerance) pointu = zeros(Float64, length(nlB), 3) gathervalues_asmat!(u, pointu, nlB) # println("disp@B = $(pointu/phun("mm")) [MM]") @test norm(pointu / phun("mm") - [0.0 -0.000708141 0.0]) < 1.0e-4 nlC = selectnode( fens, box = [Re, Re, Re, Re, Thickness, Thickness], inflate = tolerance, ) pointu = zeros(Float64, length(nlC), 3) gathervalues_asmat!(u, pointu, nlC) # println("disp@C = $(pointu/phun("mm")) [MM]") @test norm(pointu / phun("mm") - [0.00168556 -0.000455007 -1.4286e-5]) < 1.0e-4 nlAallz = selectnode( fens, box = [Ri, Ri, 0.0, 0.0, 0.0, Thickness], inflate = tolerance, ) nlBallz = selectnode( fens, box = [0.0, 0.0, Ri, Ri, 0.0, Thickness], inflate = tolerance, ) sigx = fieldfromintegpoints( femm, geom, u, :Cauchy, 1; nodevalmethod = :averaging, reportat = extrapolation, ) sigy = fieldfromintegpoints( femm, geom, u, :Cauchy, 2; nodevalmethod = :averaging, reportat = extrapolation, ) sigyA = mean(sigy.values[nlAallz, 1], dims = 1)[1] sigyAtrue = sigmayy([Ri, 0.0, 0.0]) # println("sig_y@A =$(sigyA/phun("MPa")) vs $(sigyAtrue/phun("MPa")) [MPa]") @test abs(sigyA / phun("MPa") - -0.8513053526935438) / (sigyAtrue / phun("MPa")) < 1.0e-4 sigxB = mean(sigx.values[nlBallz, 1], dims = 1)[1] sigxBtrue = sigmaxx([0.0, Ri, 0.0]) # println("sig_x@B =$(sigxB/phun("MPa")) vs $(sigxBtrue/phun("MPa")) [MPa]") # @test abs(sigxB/phun("MPa") - 2.789413093796375)/3.0 < 1.0e-4 # println("$extrapolation, $(count(fes)), $(sigyd/phun("MPa"))") # push!(nelems, count(fes)) # push!(sigyderrs[extrapolation], abs(sigyd/sigma_yD - 1.0)) File = "a.vtk" vtkexportmesh( File, connasarray(fes), geom.values, FinEtools.MeshExportModule.VTK.H20; vectors = [("u", u.values)], scalars = [ ("sigmax", sigx.values / phun("MEGA*PA")), ("sigmay", sigy.values / phun("MEGA*PA")), ], ) # @async run(`"paraview.exe" $File`) try rm(File) catch end end end # df = DataFrame(nelems=vec(nelems), # sigyderrtrend=vec(sigyderrs[:extraptrend]), # sigyderrdefault=vec(sigyderrs[:extrapmean])) # File = "LE1NAFEMS_MSH8_convergence.CSV" # CSV.write(File, df) # @async run(`"paraview.exe" $File`) end end using .mplate_w_hole_RECT_H20m mplate_w_hole_RECT_H20m.test() module mplate_w_hole_MST10m using FinEtools using FinEtools.AlgoBaseModule: solve_blocked!, matrix_blocked, vector_blocked using FinEtoolsDeforLinear using FinEtools.MeshExportModule using Test using LinearAlgebra: norm, cholesky, cross, Symmetric using Statistics: mean function test() E = 2.4 * phun("MEGA*PA")# 210e3 MPa nu = 0.49995 Re = 0.3 * phun("M") # outer radius Ri = 0.1 * phun("M") # hole radius H = 0.1 * phun("M") # thickness of the plate nRadial, nCircumferential = 3, 5 sigma0 = 1 * phun("MEGA*PA") function sigmaxx(x) local r = norm(x[1:2]) local th = atan(x[2], x[1]) return sigma0 * ( 1 - Ri^2 / r^2 * (3 / 2 * cos(2 * th) + cos(4 * th)) + 3 / 2 * Ri^4 / r^4 * cos(4 * th) ) end function sigmayy(x) local r = norm(x[1:2]) local th = atan(x[2], x[1]) return -sigma0 * ( Ri^2 / r^2 * (1 / 2 * cos(2 * th) - cos(4 * th)) + 3 / 2 * Ri^4 / r^4 * cos(4 * th) ) end function sigmaxy(x) local r = norm(x[1:2]) local th = atan(x[2], x[1]) return -sigma0 * ( Ri^2 / r^2 * (1 / 2 * sin(2 * th) + sin(4 * th)) - 3 / 2 * Ri^4 / r^4 * sin(4 * th) ) end function sigmarr(x) local r = norm(x[1:2]) local th = atan(x[2], x[1]) return sigma0 / 2 * (1 - Ri^2 / r^2) + sigma0 / 2 * (1 - 4 * Ri^2 / r^2 + 3 * Ri^4 / r^4) * cos(2 * th) end function sigmatt(x) local r = norm(x[1:2]) local th = atan(x[2], x[1]) return sigma0 / 2 * (1 + Ri^2 / r^2) - sigma0 / 2 * (1 + 3 * Ri^4 / r^4) * cos(2 * th) end function sigmart(x) local r = norm(x[1:2]) local th = atan(x[2], x[1]) return -sigma0 / 2 * (1 + 2 * Ri^2 / r^2 - 3 * Ri^4 / r^4) * sin(2 * th) end sigxderrs = Dict{Symbol,Vector{Float64}}() sigyderrs = Dict{Symbol,Vector{Float64}}() numelements = [] numnodes = [] for extrapolation in [:extrapmean] # :extraptrend sigxderrs[extrapolation] = Vector{Float64}[] sigyderrs[extrapolation] = Vector{Float64}[] numelements = [] numnodes = [] for ref = 1:1 # Thickness = H Thickness = H / 2^ref tolerance = Thickness / 2^ref / 1000.0 # Geometrical tolerance fens, fes = T10block( 1.0, pi / 2, Thickness, 2^ref * nRadial, 2^ref * nCircumferential, 1, ) bdryfes = meshboundary(fes) icl = selectelem( fens, bdryfes, box = [1.0, 1.0, 0.0, pi / 2, 0.0, Thickness], inflate = tolerance, ) for i = 1:count(fens) t = fens.xyz[i, 1] a = fens.xyz[i, 2] z = fens.xyz[i, 3] fens.xyz[i, :] = [(t * Re + (1 - t) * Ri) * cos(a), (t * Re + (1 - t) * Ri) * sin(a), z] end # File = "a.vtk" # vtkexportmesh(File, fes.conn, fens.xyz, # FinEtools.MeshExportModule.VTK.H8) # @async run(`"paraview.exe" $File`) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field l1 = selectnode( fens; box = [0.0, Inf, 0.0, 0.0, 0.0, Thickness], inflate = tolerance, ) setebc!(u, l1, true, 2, 0.0) l1 = selectnode( fens; box = [0.0, 0.0, 0.0, Inf, 0.0, Thickness], inflate = tolerance, ) setebc!(u, l1, true, 1, 0.0) # Plane-stress constraint: assume the plane z=0 is the plane of symmetry of the plate l1 = selectnode(fens; box = [0.0, Inf, 0.0, Inf, 0.0, 0.0], inflate = tolerance) setebc!(u, l1, true, 3, 0.0) # If this was enabled, the plane-strain constraint would be enforced. # l1 =selectnode(fens; box=[0.0, Inf, 0.0, Inf, Thickness, Thickness], inflate = tolerance) # setebc!(u,l1,true, 3, 0.0) applyebc!(u) numberdofs!(u) el1femm = FEMMBase(IntegDomain(subset(bdryfes, icl), SimplexRule(2, 3))) function pfun(forceout::Vector{Float64}, XYZ, tangents, feid, qpid) local r = sqrt(XYZ[1]^2 + XYZ[2]^2) nx = XYZ[1] / r ny = XYZ[2] / r # local sx, sy, txy # sx, sy, txy = sigmaxx(XYZ), sigmayy(XYZ), sigmaxy(XYZ) # sn = sx * nx^2 + sy * ny^2 + 2 * nx * ny * txy # tn = -(sx - sy) * nx * ny + (nx^2 - ny^2) * txy # forceout[1] = sn * nx - tn * ny # forceout[2] = sn * ny + tn * nx # forceout[3] = 0.0 forceout[1] = sigmarr(XYZ) * nx - sigmart(XYZ) * ny forceout[2] = sigmarr(XYZ) * ny + sigmart(XYZ) * nx forceout[3] = 0.0 return forceout end fi = ForceIntensity(Float64, 3, pfun) F2 = distribloads(el1femm, geom, u, fi, 2) MR = DeforModelRed3D material = MatDeforElastIso(MR, E, nu) femm = FEMMDeforLinearMST10(MR, IntegDomain(fes, SimplexRule(3, 4)), material) # The geometry field now needs to be associated with the FEMM femm = associategeometry!(femm, geom) K = stiffness(femm, geom, u) K_ff, K_fd = matrix_blocked(K, nfreedofs(u), nfreedofs(u))[(:ff, :fd)] F_f = vector_blocked(F2, nfreedofs(u))[:f] U_d = gathersysvec(u, :d) # println("Factorization") factor = cholesky(Symmetric(K_ff)) # println("U = K\\F") U_f = factor \ F_f # # println("U = cg(K, F; tol=1e-3, maxiter=2000)") # U = cg(K, F; tol=1e-3, maxiter=2000) scattersysvec!(u, U_f) nlA = selectnode( fens, box = [Ri, Ri, 0.0, 0.0, 0.0, Thickness], inflate = tolerance, ) nlB = selectnode( fens, box = [0.0, 0.0, Ri, Ri, 0.0, Thickness], inflate = tolerance, ) # thecorneru = zeros(Float64,length(nlA),3) # gathervalues_asmat!(u, thecorneru, nl); # thecorneru = mean(thecorneru, 1)[1]/phun("mm") # println("displacement = $(thecorneru) vs -0.10215 [MM]") # println("Extrapolation: $( extrapolation )") sigx = fieldfromintegpoints( femm, geom, u, :Cauchy, 1; nodevalmethod = :averaging, reportat = extrapolation, ) sigy = fieldfromintegpoints( femm, geom, u, :Cauchy, 2; nodevalmethod = :averaging, reportat = extrapolation, ) sigyA = mean(sigy.values[nlA, 1], dims = 1)[1] sigyAtrue = sigmatt([Ri, 0.0, 0.0]) # println("sig_y@A =$(sigyA/phun("MPa")) vs $(sigyAtrue/phun("MPa")) [MPa]") @test abs(sigyA / phun("MPa") - -0.6705333234697736) / (sigyAtrue / phun("MPa")) < 1.0e-4 sigxB = mean(sigx.values[nlB, 1], dims = 1)[1] sigxBtrue = sigmatt([0.0, Ri, 0.0]) # println("sig_x@B =$(sigxB/phun("MPa")) vs $(sigxBtrue/phun("MPa")) [MPa]") @test abs(sigxB / phun("MPa") - 2.301542874107758) / 3.0 < 1.0e-4 push!(numnodes, count(fens)) push!(numelements, count(fes)) push!(sigxderrs[extrapolation], abs(sigxB / sigxBtrue - 1.0)) push!(sigyderrs[extrapolation], abs(sigyA / sigyAtrue - 1.0)) # File = "a.vtk" # vtkexportmesh(File, fes.conn, geom.values, # FinEtools.MeshExportModule.VTK.H8; vectors=[("u", u.values)], # scalars=[("sigmax", sigx.values/phun("MEGA*PA"))]) # @async run(`"paraview.exe" $File`) end end end end using .mplate_w_hole_MST10m mplate_w_hole_MST10m.test()
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
57178
module mmLE1NAFEMSsstress using FinEtools using FinEtools.AlgoBaseModule: matrix_blocked, vector_blocked using FinEtoolsDeforLinear using Test using LinearAlgebra: norm, cholesky, cross, Symmetric function test() E = 210e3 * phun("MEGA*PA")# 210e3 MPa nu = 0.3 p = 10 * phun("MEGA*PA")# 10 MPA Outward pressure on the outside ellipse sigma_yD = 92.7 * phun("MEGA*PA")# tensile stress at [2.0, 0.0] meters Radius = 1.0 * phun("m") Thickness = 0.1 * phun("m") n = 2 # number of elements per side tolerance = 1.0 / n / 1000.0 # Geometrical tolerance fens, fes = Q4block(1.0, pi / 2, n, n * 2) fens, fes = H8extrudeQ4(fens, fes, 1, (xyz, layer) -> [xyz[1], xyz[2], (layer) * Thickness]) bdryfes = meshboundary(fes) icl = selectelem( fens, bdryfes, box = [1.0, 1.0, 0.0, pi / 2, 0.0, Thickness], inflate = tolerance, ) for i = 1:count(fens) t = fens.xyz[i, 1] a = fens.xyz[i, 2] z = fens.xyz[i, 3] fens.xyz[i, :] = [(t * 3.25 + (1 - t) * 2) * cos(a), (t * 2.75 + (1 - t) * 1) * sin(a), z] end geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field l1 = selectnode(fens; box = [0.0, Inf, 0.0, 0.0, 0.0, Thickness], inflate = tolerance) setebc!(u, l1, true, 2, 0.0) l1 = selectnode(fens; box = [0.0, 0.0, 0.0, Inf, 0.0, Thickness], inflate = tolerance) setebc!(u, l1, true, 1, 0.0) l1 = selectnode(fens; box = [0.0, Inf, 0.0, Inf, 0.0, 0.0], inflate = tolerance) setebc!(u, l1, true, 3, 0.0) applyebc!(u) numberdofs!(u) el1femm = FEMMBase(IntegDomain(subset(bdryfes, icl), GaussRule(2, 2))) function pfun(forceout::Vector{T}, XYZ, tangents, feid, qpid) where {T} pt = [2.75 / 3.25 * XYZ[1], 3.25 / 2.75 * XYZ[2], 0.0] forceout .= vec(p * pt / norm(pt)) return forceout end fi = ForceIntensity(Float64, 3, pfun) F2 = distribloads(el1femm, geom, u, fi, 2) # Note that the material object needs to be created with the proper # model-dimension reduction in mind. In this case that is the fully three-dimensional solid. MR = DeforModelRed3D material = MatDeforElastIso(MR, E, nu) femm = FEMMDeforLinearMSH8(MR, IntegDomain(fes, GaussRule(3, 2)), material) # The geometry field now needs to be associated with the FEMM femm = associategeometry!(femm, geom) K = stiffness(femm, geom, u) K_ff, K_fd = matrix_blocked(K, nfreedofs(u), nfreedofs(u))[(:ff, :fd)] F_f = vector_blocked(F2, nfreedofs(u))[:f] U_d = gathersysvec(u, :d) factor = cholesky(Symmetric(K_ff)) U_f = factor \ F_f scattersysvec!(u, U_f) nl = selectnode(fens, box = [2.0, 2.0, 0.0, 0.0, 0.0, 0.0], inflate = tolerance) thecorneru = zeros(Float64, 1, 3) gathervalues_asmat!(u, thecorneru, nl) thecorneru = thecorneru / phun("mm") # println("displacement =$(thecorneru) [MM] as compared to reference [-0.10215,0] [MM]") @test norm(thecorneru - [-0.107276 0.0 0.0]) < 1.0e-4 fld = fieldfromintegpoints( femm, geom, u, :Cauchy, 2; nodevalmethod = :invdistance, reportat = :meanonly, ) # println("Sigma_y =$(fld.values[nl,1][1]/phun("MPa")) as compared to reference sigma_yD = $(sigma_yD/phun("MPa")) [MPa]") @test abs(fld.values[nl, 1][1] / phun("MPa") - 42.54884174624546) < 1.0e-3 fld = fieldfromintegpoints( femm, geom, u, :Cauchy, 2; nodevalmethod = :averaging, reportat = :extrapmean, ) # println("Sigma_y =$(fld.values[nl,1][1]/phun("MPa")) as compared to reference sigma_yD = $(sigma_yD/phun("MPa")) [MPa]") @test abs(fld.values[nl, 1][1] / phun("MPa") - 42.54884174624546) < 1.0e-3 fld = fieldfromintegpoints( femm, geom, u, :Cauchy, 2; nodevalmethod = :averaging, reportat = :extraptrend, ) # println("Sigma_y =$(fld.values[nl,1][1]/phun("MPa")) as compared to reference sigma_yD = $(sigma_yD/phun("MPa")) [MPa]") @test abs(fld.values[nl, 1][1] / phun("MPa") - 45.44562958746983) < 1.0e-3 fld = fieldfromintegpoints( femm, geom, u, :Cauchy, 2; nodevalmethod = :invdistance, reportat = :meanonly, ) # println("Sigma_y =$(fld.values[nl,1][1]/phun("MPa")) as compared to reference sigma_yD = $(sigma_yD/phun("MPa")) [MPa]") @test abs(fld.values[nl, 1][1] / phun("MPa") - 42.54884174624546) < 1.0e-3 end end using .mmLE1NAFEMSsstress mmLE1NAFEMSsstress.test() module mocylpullFun using FinEtools using FinEtools.AlgoBaseModule: matrix_blocked, vector_blocked using FinEtoolsDeforLinear using FinEtoolsDeforLinear.AlgoDeforLinearModule using Test function test() # Cylinder pulled by enforced displacement, axially symmetric model # Parameters: E1 = 1.0 E2 = 1.0 E3 = 3.0 nu12 = 0.29 nu13 = 0.29 nu23 = 0.19 G12 = 0.3 G13 = 0.3 G23 = 0.3 p = 0.15 rin = 1.0 rex = 1.2 Length = 1 * rex ua = -0.05 * Length tolerance = rin / 1000.0 ## # Note that the FinEtools objects needs to be created with the proper # model-dimension reduction at hand. In this case that is the axial symmetry # assumption. MR = DeforModelRed2DAxisymm # Create the mesh and initialize the geometry. First we are going # to construct the block of elements with the first coordinate # corresponding to the thickness in the radial direction, and the second # coordinate is the thickness in the axial direction. fens, fes = Q4block(rex - rin, Length, 5, 20) fens.xyz[:, 1] = fens.xyz[:, 1] .+ rin bdryfes = meshboundary(fes) # the symmetry plane la1 = selectnode(fens; box = [0 rex 0 0], inflate = tolerance) # The other end la2 = selectnode(fens; box = [0 rex Length Length], inflate = tolerance) e1 = FDataDict("node_list" => la1, "component" => 2, "displacement" => x -> 0.0) e2 = FDataDict("node_list" => la2, "component" => 2, "displacement" => x -> ua) # Property and material material = MatDeforElastOrtho(MR, E1, E2, E3, nu12, nu13, nu23, G12, G13, G23) femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(2, 2), true), material) # Make region region = FDataDict("femm" => femm) # Make model data modeldata = FDataDict("fens" => fens, "regions" => [region], "essential_bcs" => [e1, e2]) # Call the solver modeldata = AlgoDeforLinearModule.linearstatics(modeldata) geom = modeldata["geom"] u = modeldata["u"] # Produce a plot of the radial stress component in the cylindrical # coordinate system. Note that this is the usual representation of # stress using nodal stress field. fld = fieldfromintegpoints(femm, geom, u, :Cauchy, 2) # println("Minimum/maximum = $(minimum(fld.values))/$(maximum(fld.values))") @test abs(minimum(fld.values) - -0.050318853446676574) < 1.0e-4 @test abs(maximum(fld.values) - -0.04973951673608955) < 1.0e-4 # File = "orthoballoon_sigmaz.vtk" # vtkexportmesh(File, fens, fes; scalars=[("sigmaz", fld.values)], # vectors=[("u", u.values)]) # @async run(`"paraview.exe" $File`) end end using .mocylpullFun mocylpullFun.test() module mmLE11malgo using FinEtools using FinEtools.AlgoBaseModule: matrix_blocked, vector_blocked using FinEtoolsDeforLinear using FinEtoolsDeforLinear.AlgoDeforLinearModule using Test using LinearAlgebra: norm, cholesky, cross, Symmetric function test() # NAFEMS LE11 benchmark with Q8 elements. # # This is a test recommended by the National Agency for Finite Element # # Methods and Standards (U.K.): Test LE11 from NAFEMS Publication TNSB, # # Rev. 3, “The Standard NAFEMS Benchmarks,” October 1990. # # # # Target solution: Direct stress, = –105 MPa at point A. #function LE11NAFEMS() # Parameters: Ea = 210000 * phun("MEGA*Pa") nua = 0.3 alphaa = 2.3e-4 # thermal expansion coefficient sigmaA = -105 * phun("MEGA*Pa") nref = 1 # how many times should we refine the mesh? X = [ 1.0 0.0#A 1.4 0.0#B 0.995184726672197 0.098017140329561 1.393258617341076 0.137223996461385 0.980785 0.195090# 1.37309939 0.27312645 0.956940335732209 0.290284677254462 1.339716470025092 0.406398548156247 0.9238795 0.38268#C 1.2124 0.7#D 0.7071 0.7071#E 1.1062 1.045#F 0.7071 (0.7071+1.79)/2#(E+H)/2 1.0 1.39#G 0.7071 1.79#H 1.0 1.79#I ] * phun("M") tolerance = 1.e-6 * phun("M") ## # Note that the material object needs to be created with the proper # model-dimension reduction in mind. In this case that is the axial symmetry # assumption. MR = DeforModelRed2DAxisymm fens = FENodeSet(X) fes = FESetQ4([1 2 4 3; 3 4 6 5; 5 6 8 7; 7 8 10 9; 9 10 12 11; 11 12 14 13; 13 14 16 15]) for ref = 1:nref fens, fes = Q4refine(fens, fes) list = selectnode( fens, distance = 1.0 + 0.1 / 2^nref, from = [0.0 0.0], inflate = tolerance, ) fens.xyz[list, :] = FinEtools.MeshUtilModule.ontosphere(fens.xyz[list, :], 1.0) end fens, fes = Q4toQ8(fens, fes) list = selectnode( fens, distance = 1.0 + 0.1 / 2^nref, from = [0.0 0.0], inflate = tolerance, ) fens.xyz[list, :] = FinEtools.MeshUtilModule.ontosphere(fens.xyz[list, :], 1.0) # EBC's l1 = selectnode(fens, box = [-Inf Inf 0 0], inflate = tolerance) e1 = FDataDict("node_list" => l1, "component" => 2, "displacement" => x -> 0.0) l1 = selectnode(fens, box = [-Inf Inf 1.79 1.79], inflate = tolerance) e2 = FDataDict("node_list" => l1, "component" => 2, "displacement" => x -> 0.0) # Temperature field dtemp = FDataDict("temperature" => x -> x[1] + x[2]) # Property and material material = MatDeforElastIso(MR, 0.0, Ea, nua, alphaa) femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(2, 3), true), material) # Make region 1 region = FDataDict("femm" => femm) # Make model data modeldata = FDataDict( "fens" => fens, "regions" => [region], "essential_bcs" => [e1, e2], "temperature_change" => dtemp, ) # Call the solver modeldata = AlgoDeforLinearModule.linearstatics(modeldata) geom = modeldata["geom"] u = modeldata["u"] dT = modeldata["temp"] nA = selectnode(fens, box = Float64[1.0 1.0 0.0 0.0], inflate = tolerance) fld = fieldfromintegpoints(femm, geom, u, dT, :Cauchy, 2) File = "LE11NAFEMS_Q8_sigmay.vtk" vtkexportmesh( File, fens, fes; scalars = [("sigmay", fld.values)], vectors = [("u", u.values)], ) # println("range of sigmay = $((minimum(fld.values), maximum(fld.values)))") @test norm( [minimum(fld.values), maximum(fld.values)] - [-1.443052182185007e8, -1.4106181545272522e7], ) < 1.0e-1 # @async run(`"paraview.exe" $File`) try rm(File) catch end sA = fld.values[nA] / phun("MEGA*Pa") sAn = fld.values[nA] / sigmaA # println("Stress at point A: $(sA) i. e. $( sAn*100 )% of reference value") @test norm(sA .- -93.8569) < 1.0e-4 fen2fe = FENodeToFEMap(fes, nnodes(geom)) function inspector(idat, elnum, conn, xe, out, xq) # println("loc = $( xq ) : $( transpose(out)/phun("MEGA*Pa") )") return idat end inspectintegpoints( femm, geom, u, dT, fen2fe.map[nA[1]], inspector, []; quantity = :Cauchy, ) end end using .mmLE11malgo mmLE11malgo.test() module mmtwistedmsh8ort using FinEtools using FinEtools.AlgoBaseModule: matrix_blocked, vector_blocked using FinEtoolsDeforLinear using FinEtoolsDeforLinear.AlgoDeforLinearModule using Test using LinearAlgebra: norm, cholesky, cross, Symmetric import Statistics: mean function test() # println(""" # The initially twisted cantilever beam is one of the standard test # problems for verifying the finite-element accuracy [1]. The beam is # clamped at one end and loaded either with unit in-plane or # unit out-of-plane force at the other. The centroidal axis of the beam is # straight at the undeformed configuration, while its cross-sections are # twisted about the centroidal axis from 0 at the clamped end to pi/2 at # the free end. # # Reference: # Zupan D, Saje M (2004) On "A proposed standard set of problems to test # finite element accuracy": the twisted beam. Finite Elements in Analysis # and Design 40: 1445-1451. # """) E1s = E2s = E3s = 0.29e8 nu12s = nu13s = nu23s = 0.22 G12s = G13s = G23s = E1s / 2 / (1 + nu12s) # E = 0.29e8; # nu = 0.22; W = 1.1 L = 12.0 t = 0.32 nl = 2 nt = 1 nw = 1 ref = 7 p = 1 / W / t # Loading in the Z direction loadv = [0; 0; p] dir = 3 uex = 0.005424534868469 # Harder: 5.424e-3; # Loading in the Y direction #loadv = [0;p;0]; dir = 2; uex = 0.001753248285256; # Harder: 1.754e-3; tolerance = t / 1000 fens, fes = H8block(L, W, t, nl * ref, nw * ref, nt * ref) # Reshape into a twisted beam shape for i = 1:count(fens) a = fens.xyz[i, 1] / L * (pi / 2) y = fens.xyz[i, 2] - (W / 2) z = fens.xyz[i, 3] - (t / 2) fens.xyz[i, :] = [fens.xyz[i, 1], y * cos(a) - z * sin(a), y * sin(a) + z * cos(a)] end # Clamped end of the beam l1 = selectnode(fens; box = [0 0 -100 * W 100 * W -100 * W 100 * W], inflate = tolerance) e1 = FDataDict("node_list" => l1, "component" => 1, "displacement" => 0.0) e2 = FDataDict("node_list" => l1, "component" => 2, "displacement" => 0.0) e3 = FDataDict("node_list" => l1, "component" => 3, "displacement" => 0.0) # Traction on the opposite edge boundaryfes = meshboundary(fes) Toplist = selectelem( fens, boundaryfes, box = [L L -100 * W 100 * W -100 * W 100 * W], inflate = tolerance, ) el1femm = FEMMBase(IntegDomain(subset(boundaryfes, Toplist), GaussRule(2, 2))) flux1 = FDataDict("femm" => el1femm, "traction_vector" => loadv) # Make the region MR = DeforModelRed3D material = MatDeforElastOrtho( MR, 0.0, E1s, E2s, E3s, nu12s, nu13s, nu23s, G12s, G13s, G23s, 0.0, 0.0, 0.0, ) region1 = FDataDict( "femm" => FEMMDeforLinearMSH8(MR, IntegDomain(fes, GaussRule(3, 2)), material), ) # Make model data modeldata = FDataDict( "fens" => fens, "regions" => [region1], "essential_bcs" => [e1, e2, e3], "traction_bcs" => [flux1], ) # Call the solver modeldata = AlgoDeforLinearModule.linearstatics(modeldata) geom = modeldata["geom"] u = modeldata["u"] # Extract the solution nl = selectnode(fens, box = [L L -100 * W 100 * W -100 * W 100 * W], inflate = tolerance) theutip = mean(u.values[nl, :], dims = 1) # println("displacement = $(theutip[dir]) as compared to converged $uex") @test abs(theutip[dir] - uex) / uex < 0.0012 # Write out mesh with displacements modeldata["postprocessing"] = FDataDict("file" => "twisted_beam_msh8") modeldata = AlgoDeforLinearModule.exportdeformation(modeldata) try rm(modeldata["postprocessing"]["exported"][1]["file"]) catch end # Write out mesh with stresses modeldata["postprocessing"] = FDataDict("file" => "twisted_beam_msh8", "quantity" => :Cauchy, "component" => :xy) modeldata = AlgoDeforLinearModule.exportstress(modeldata) try rm(modeldata["postprocessing"]["exported"][1]["file"]) catch end # Write out mesh with stresses modeldata["postprocessing"] = FDataDict("file" => "twisted_beam_msh8", "quantity" => :Cauchy, "component" => :xz) modeldata = AlgoDeforLinearModule.exportstress(modeldata) try rm(modeldata["postprocessing"]["exported"][1]["file"]) catch end # Write out mesh with von Mises stresses modeldata["postprocessing"] = FDataDict("file" => "twisted_beam_msh8", "quantity" => :vm) modeldata = AlgoDeforLinearModule.exportstress(modeldata) vm = modeldata["postprocessing"]["exported"][1]["field"] # println("extremes of vm, nodal: $([minimum(vm.values), maximum(vm.values)])") try rm(modeldata["postprocessing"]["exported"][1]["file"]) catch end @test norm([minimum(vm.values), maximum(vm.values)] - [4.78774, 522.126]) < 0.01 # Write out mesh with von Mises stresses, elementwise modeldata["postprocessing"] = FDataDict("file" => "twisted_beam_msh8-ew", "quantity" => :vm) modeldata = AlgoDeforLinearModule.exportstresselementwise(modeldata) vm = modeldata["postprocessing"]["exported"][1]["field"] # println("extremes of vm, elemental: $([minimum(vm.values), maximum(vm.values)])") try rm(modeldata["postprocessing"]["exported"][1]["file"]) catch end @test norm([minimum(vm.values), maximum(vm.values)] - [1.85882, 522.126]) < 0.01 # Write out mesh with von Mises stresses, elementwise modeldata["postprocessing"] = FDataDict( "file" => "twisted_beam_msh8-ew", "quantity" => :Cauchy, "component" => :xz, ) modeldata = AlgoDeforLinearModule.exportstresselementwise(modeldata) try rm(modeldata["postprocessing"]["exported"][1]["file"]) catch end end end using .mmtwistedmsh8ort mmtwistedmsh8ort.test() module mmtwistedmsh9ort using FinEtools using FinEtools.AlgoBaseModule: matrix_blocked, vector_blocked using FinEtoolsDeforLinear using FinEtoolsDeforLinear.AlgoDeforLinearModule using Test using LinearAlgebra: norm, cholesky, cross, Symmetric import Statistics: mean function test() # println(""" # The initially twisted cantilever beam is one of the standard test # problems for verifying the finite-element accuracy [1]. The beam is # clamped at one end and loaded either with unit in-plane or # unit out-of-plane force at the other. The centroidal axis of the beam is # straight at the undeformed configuration, while its cross-sections are # twisted about the centroidal axis from 0 at the clamped end to pi/2 at # the free end. # # Reference: # Zupan D, Saje M (2004) On "A proposed standard set of problems to test # finite element accuracy": the twisted beam. Finite Elements in Analysis # and Design 40: 1445-1451. # """) E1s = E2s = E3s = 0.29e8 nu12s = nu13s = nu23s = 0.22 G12s = G13s = G23s = E1s / 2 / (1 + nu12s) # E = 0.29e8; # nu = 0.22; W = 1.1 L = 12.0 t = 0.32 nl = 2 nt = 1 nw = 1 ref = 7 p = 1 / W / t # Loading in the Z direction loadv = [0; 0; p] dir = 3 uex = 0.005424534868469 # Harder: 5.424e-3; # Loading in the Y direction #loadv = [0;p;0]; dir = 2; uex = 0.001753248285256; # Harder: 1.754e-3; tolerance = t / 1000 fens, fes = H8block(L, W, t, nl * ref, nw * ref, nt * ref) # Reshape into a twisted beam shape for i = 1:count(fens) a = fens.xyz[i, 1] / L * (pi / 2) y = fens.xyz[i, 2] - (W / 2) z = fens.xyz[i, 3] - (t / 2) fens.xyz[i, :] = [fens.xyz[i, 1], y * cos(a) - z * sin(a), y * sin(a) + z * cos(a)] end # Clamped end of the beam l1 = selectnode(fens; box = [0 0 -100 * W 100 * W -100 * W 100 * W], inflate = tolerance) e1 = FDataDict("node_list" => l1, "component" => 1, "displacement" => 0.0) e2 = FDataDict("node_list" => l1, "component" => 2, "displacement" => 0.0) e3 = FDataDict("node_list" => l1, "component" => 3, "displacement" => 0.0) # Traction on the opposite edge boundaryfes = meshboundary(fes) Toplist = selectelem( fens, boundaryfes, box = [L L -100 * W 100 * W -100 * W 100 * W], inflate = tolerance, ) el1femm = FEMMBase(IntegDomain(subset(boundaryfes, Toplist), GaussRule(2, 2))) flux1 = FDataDict("femm" => el1femm, "traction_vector" => loadv) # Make the region MR = DeforModelRed3D material = MatDeforElastOrtho( MR, 0.0, E1s, E2s, E3s, nu12s, nu13s, nu23s, G12s, G13s, G23s, 0.0, 0.0, 0.0, ) region1 = FDataDict( "femm" => FEMMDeforLinearMSH8(MR, IntegDomain(fes, GaussRule(3, 2)), material), ) # Make model data modeldata = FDataDict( "fens" => fens, "regions" => [region1], "essential_bcs" => [e1, e2, e3], "traction_bcs" => [flux1], ) # Call the solver modeldata = AlgoDeforLinearModule.linearstatics(modeldata) geom = modeldata["geom"] u = modeldata["u"] # Extract the solution nl = selectnode(fens, box = [L L -100 * W 100 * W -100 * W 100 * W], inflate = tolerance) theutip = mean(u.values[nl, :], dims = 1) # println("displacement = $(theutip[dir]) as compared to converged $uex") @test abs(theutip[dir] - uex) / uex < 0.0012 # Write out mesh with displacements modeldata["postprocessing"] = FDataDict("file" => "twisted_beam_msh8") modeldata = AlgoDeforLinearModule.exportdeformation(modeldata) try rm(modeldata["postprocessing"]["exported"][1]["file"]) catch end # Write out mesh with stresses modeldata["postprocessing"] = FDataDict( "file" => "twisted_beam_msh8", "quantity" => :Cauchy, "component" => :xy, "outputcsys" => CSys(3), ) modeldata = AlgoDeforLinearModule.exportstress(modeldata) try rm(modeldata["postprocessing"]["exported"][1]["file"]) catch end # Write out mesh with stresses modeldata["postprocessing"] = FDataDict( "file" => "twisted_beam_msh8", "quantity" => :Cauchy, "component" => :xz, "outputcsys" => CSys(3), ) modeldata = AlgoDeforLinearModule.exportstress(modeldata) try rm(modeldata["postprocessing"]["exported"][1]["file"]) catch end # Write out mesh with von Mises stresses modeldata["postprocessing"] = FDataDict("file" => "twisted_beam_msh8", "quantity" => :vm, "outputcsys" => CSys(3)) modeldata = AlgoDeforLinearModule.exportstress(modeldata) vm = modeldata["postprocessing"]["exported"][1]["field"] # println("extremes of vm, nodal: $([minimum(vm.values), maximum(vm.values)])") try rm(modeldata["postprocessing"]["exported"][1]["file"]) catch end @test norm([minimum(vm.values), maximum(vm.values)] - [4.78774, 522.126]) < 0.01 # Write out mesh with von Mises stresses, elementwise modeldata["postprocessing"] = FDataDict( "file" => "twisted_beam_msh8-ew", "quantity" => :vm, "outputcsys" => CSys(3), ) modeldata = AlgoDeforLinearModule.exportstresselementwise(modeldata) vm = modeldata["postprocessing"]["exported"][1]["field"] # println("extremes of vm, elemental: $([minimum(vm.values), maximum(vm.values)])") try rm(modeldata["postprocessing"]["exported"][1]["file"]) catch end @test norm([minimum(vm.values), maximum(vm.values)] - [1.85882, 522.126]) < 0.01 # Write out mesh with von Mises stresses, elementwise modeldata["postprocessing"] = FDataDict( "file" => "twisted_beam_msh8-ew", "quantity" => :Cauchy, "component" => :xz, "outputcsys" => CSys(3), ) modeldata = AlgoDeforLinearModule.exportstresselementwise(modeldata) try rm(modeldata["postprocessing"]["exported"][1]["file"]) catch end end end using .mmtwistedmsh9ort mmtwistedmsh9ort.test() module mxRMSerror3a1 using FinEtools using FinEtools.AlgoBaseModule: matrix_blocked, vector_blocked using FinEtoolsDeforLinear using FinEtoolsDeforLinear.AlgoDeforLinearModule using FinEtools.MeshUtilModule using FinEtools.AlgoBaseModule using Test function test() elementtag = "MSH8" # println(""" # Pagano_3layer_cylindrical_bending: $(elementtag) # """) # This example provides three-dimensional finite element model for the # transverse shear stress calculations. The problem consists of a one-, two- or # three-layer plate subjected to a sinusoidal distributed load, as # described by Pagano (1969). The resulting transverse shear and axial # stresses through the thickness of the plate are compared to two existing # analytical solutions by Pagano (1969). The first solution is derived from # classical laminated plate theory (CPT), while the second is an exact # solution from linear elasticity theory. filebase = "Pagano_3layer_cylindrical_bending_$(elementtag)_convergence" modeldatasequence = FDataDict[] for Refinement in [1, 2, 4] # Orthotropic material for the 3 layers E1 = 25e6 * phun("PSI") E2 = 1e6 * phun("PSI") E3 = E2 G12 = 0.5e6 * phun("PSI") G13 = G12 G23 = 0.2e6 * phun("PSI") nu12 = 0.25 nu13 = 0.25 nu23 = 0.25 Span_to_thickness = 4.0 T = 2.5 * phun("in") # total thickness of the plate L = Span_to_thickness * T h = 1 * phun("in") # depth of the plate q0 = 1 * phun("PSI") CTE1 = CTE2 = CTE3 = 0.0 # Here we define the layout and the thicknesses of the layers. angles = vec([0.0 90.0 0.0]) nLayers = length(angles) ts = T / nLayers * ones(nLayers) # layer thicknesses tolerance = 0.0001 * T # Select how find the mesh should be nL, nh = Refinement * 2 * 4, Refinement * 1 nts = Refinement * 2 * ones(Int, nLayers)# number of elements per layer xs = collect(linearspace(0.0, L, nL + 1)) ys = collect(linearspace(0.0, h, nh + 1)) fens, fes = H8layeredplatex(xs, ys, ts, nts) # println("count(fens) = $(count(fens))") # This is the material model MR = DeforModelRed3D skinmaterial = MatDeforElastOrtho( MR, 0.0, E1, E2, E3, nu12, nu13, nu23, G12, G13, G23, CTE1, CTE2, CTE3, ) # The material coordinate system function is defined as: function updatecs!(csmatout, feid, labels) fe_label = labels[feid] rotmat3!(csmatout, angles[fe_label] / 180.0 * pi * [0.0; 0.0; 1.0]) csmatout end # The vvolume integrals are evaluated using this rule gr = GaussRule(3, 2) # We will create 3 regions, one for each of the layers regions = FDataDict[] for layer = 1:nLayers rls = selectelem(fens, fes, label = layer) rfes = subset(fes, rls) push!( regions, FDataDict( "femm" => FEMMDeforLinearMSH8( MR, IntegDomain(rfes, gr), CSys( 3, 3, (csmatout, XYZ, tangents, feid, qpid) -> updatecs!(csmatout, feid, rfes.label), ), skinmaterial, ), ), ) end # File = "Meyer_Piening_sandwich-r1.vtk" # vtkexportmesh(File, skinregion["femm"].integdomain.fes.conn, fens.xyz, FinEtools.MeshExportModule.VTK.VTK.H8) # # @async run(`"paraview.exe" $File`) # The essential boundary conditions are applied to enforce the plane strain constraint. ly0 = selectnode(fens, box = [-Inf Inf 0.0 0.0 -Inf Inf], inflate = tolerance) lyh = selectnode(fens, box = [-Inf Inf h h -Inf Inf], inflate = tolerance) ey = FDataDict( "displacement" => 0.0, "component" => 2, "node_list" => vcat(ly0, lyh), ) # The transverse displacement is fixed at the two ends. lz0 = selectnode(fens, box = [0.0 0.0 -Inf Inf -Inf Inf], inflate = tolerance) lzL = selectnode(fens, box = [L L -Inf Inf -Inf Inf], inflate = tolerance) ez = FDataDict( "displacement" => 0.0, "component" => 3, "node_list" => vcat(lz0, lzL), ) ex = FDataDict("displacement" => 0.0, "component" => 1, "node_list" => [1]) # The traction boundary condition is applied at the top of the plate. bfes = meshboundary(fes) function pfun(forceout::Vector{T}, XYZ, tangents, feid, qpid) where {T} forceout[1] = 0.0 forceout[2] = 0.0 forceout[3] = -q0 * sin(pi * XYZ[1] / L) return forceout end # From the entire boundary we select those quadrilaterals that lie on the plane # Z = thickness tl = selectelem(fens, bfes, box = [-Inf Inf -Inf Inf T T], inflate = tolerance) Trac = FDataDict( "traction_vector" => pfun, "femm" => FEMMBase(IntegDomain(subset(bfes, tl), GaussRule(2, 2))), ) modeldata = FDataDict( "fens" => fens, "regions" => regions, "essential_bcs" => [ex, ey, ez], "traction_bcs" => [Trac], ) modeldata = AlgoDeforLinearModule.linearstatics(modeldata) modeldata["postprocessing"] = FDataDict("file" => filebase * "-u") modeldata = AlgoDeforLinearModule.exportdeformation(modeldata) for e in modeldata["postprocessing"]["exported"] try rm(e["file"]) catch end end u = modeldata["u"] geom = modeldata["geom"] # The results of the displacement and stresses will be reported at # nodes located at the appropriate points. ntopcenter = selectnode(fens, box = [L / 2 L / 2 0.0 h T T], inflate = tolerance) ncenterline = selectnode(fens, box = [L / 2 L / 2 0.0 0.0 0.0 T], inflate = tolerance) nx0line = selectnode(fens, box = [0.0 0.0 0.0 0.0 0.0 T], inflate = tolerance) zclo = sortperm(vec(geom.values[ncenterline, 3])) ncenterline = ncenterline[zclo] centerz = geom.values[ncenterline, 3] # println("Top Center deflection: $(mean(u.values[ntopcenter, 3], 1)/phun("in")) [in]") # # extrap = :extrapmean extrap = :extraptrend nodevalmeth = :averaging # extrap = :default # nodevalmeth = :invdistance # Compute all stresses modeldata["postprocessing"] = FDataDict( "file" => filebase * "-s", "quantity" => :Cauchy, "component" => collect(1:6), "outputcsys" => CSys(3), "nodevalmethod" => nodevalmeth, "reportat" => extrap, ) modeldata = AlgoDeforLinearModule.exportstress(modeldata) for e in modeldata["postprocessing"]["exported"] try rm(e["file"]) catch end end modeldata["elementsize"] = 1.0 / Refinement modeldata["geometricaltolerance"] = tolerance modeldata["targetfields"] = [e["field"] for e in modeldata["postprocessing"]["exported"]] push!(modeldatasequence, modeldata) end # for refinement elementsizes, errornorms, p = AlgoBaseModule.evalconvergencestudy(modeldatasequence) # println("") # println("Normalized Approximate Error = $(errornorms)") @test abs(p[1] - 1.3347513854727369) / 1.3347513854727369 < 1.0e-3 # csvFile = filebase * "_errors" * ".CSV" # savecsv(csvFile, # elementsizes=vec(elementsizes[1:end-1]), # elementsizes2=vec(elementsizes[1:end-1].^2), # elementsizes3=vec(elementsizes[1:end-1].^3), # errornorms=vec(errornorms) # ) # @async run(`"paraview.exe" $csvFile`) # println("Done") end end using .mxRMSerror3a1 mxRMSerror3a1.test() module munit_cube_modes_nice_t4 using FinEtools using FinEtools.AlgoBaseModule: matrix_blocked, vector_blocked using FinEtoolsDeforLinear using Test using Arpack using LinearAlgebra function test() # println(""" # Vibration modes of unit cube of almost incompressible material. # % # Reference: Puso MA, Solberg J (2006) A stabilized nodally integrated # tetrahedral. International Journal for Numerical Methods in # Engineering 67: 841-867. # """) t0 = time() E = 1 * phun("PA") nu = 0.499 rho = 1 * phun("KG/M^3") a = 1 * phun("M") b = a h = a n1 = 10# How many element edges per side? na = n1 nb = n1 nh = n1 neigvs = 20 # how many eigenvalues OmegaShift = (0.01 * 2 * pi)^2 stabfact = 0.015 Eigenvalues = [ 0.0, 5.93656e-8, 7.54751e-8, 9.80131e-8, 1.14899e-7, 1.27725e-7, 0.264544, 0.266128, 0.350568, 0.352546, 0.355279, 0.357389, 0.357701, 0.359704, 0.402389, 0.402968, 0.404977, 0.45061, 0.450974, 0.452039, ] MR = DeforModelRed3D fens, fes = T4block(a, b, h, na, nb, nh) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field numberdofs!(u) material = MatDeforElastIso(MR, rho, E, nu, 0.0) femm = FEMMDeforLinearNICET4(MR, IntegDomain(fes, NodalSimplexRule(3)), material, stabfact) associategeometry!(femm, geom) K = stiffness(femm, geom, u) M = mass(femm, geom, u) K_ff = matrix_blocked(K, nfreedofs(u), nfreedofs(u))[:ff] M_ff = matrix_blocked(M, nfreedofs(u), nfreedofs(u))[:ff] d, v, nev, nconv = eigs( K_ff + OmegaShift * M_ff, M_ff; nev = neigvs, which = :SM, explicittransform = :none, ) d = d .- OmegaShift fs = real(sqrt.(complex(d))) / (2 * pi) # # println("Eigenvalues: $fs [Hz]") @test norm(vec(fs) .- vec(Eigenvalues)) < 1.0e-4 * maximum(vec(Eigenvalues)) # mode = 17 # scattersysvec!(u, v[:,mode]) # File = "unit_cube_modes.vtk" # vtkexportmesh(File, fens, fes; vectors=[("mode$mode", u.values)]) true end end using .munit_cube_modes_nice_t4 munit_cube_modes_nice_t4.test() module malum_cyl_mode_nice_t4 using FinEtools using FinEtools.AlgoBaseModule: matrix_blocked, vector_blocked using FinEtoolsDeforLinear using Test using Arpack using LinearAlgebra function test() # Aluminum cylinder free vibration, mesh imported from Abaqus # Mesh converted from quadratic tetrahedra to linear tetrahedra # NICE tetrahedral elements used E = 70000 * phun("MPa") nu = 0.33 rho = 2700 * phun("KG/M^3") radius = 0.5 * phun("ft") neigvs = 20 # how many eigenvalues OmegaShift = (10.0 * 2 * pi)^2 stabfact = 0.005 Eigenvalues = [ 4.54746e-5, 6.82231e-5, 8.7071e-5, 9.99708e-5, 0.000112778, 0.000116397, 2533.6, 2535.12, 2574.64, 4086.61, 4652.66, 4654.16, 5122.94, 6755.62, 6756.45, 6872.26, 6875.3, 6883.49, 6888.53, 6983.99, ] MR = DeforModelRed3D output = import_ABAQUS("alum_cyl.inp") fens, fes = output["fens"], output["fesets"][1] fens.xyz .*= phun("mm") # The input is provided in SI(mm) units fens, fes = T10toT4(fens, fes) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field numberdofs!(u) material = MatDeforElastIso(MR, rho, E, nu, 0.0) femm = FEMMDeforLinearNICET4(MR, IntegDomain(fes, NodalSimplexRule(3)), material, stabfact) associategeometry!(femm, geom) K = stiffness(femm, geom, u) M = mass(femm, geom, u) K_ff = matrix_blocked(K, nfreedofs(u), nfreedofs(u))[:ff] M_ff = matrix_blocked(M, nfreedofs(u), nfreedofs(u))[:ff] d, v, nev, nconv = eigs( K_ff + OmegaShift * M_ff, M_ff; nev = neigvs, which = :SM, explicittransform = :none, ) d = d .- OmegaShift fs = real(sqrt.(complex(d))) / (2 * pi) # # println("Eigenvalues: $fs [Hz]") @test norm(vec(fs) .- vec(Eigenvalues)) < 1.0e-3 * maximum(vec(Eigenvalues)) true end end using .malum_cyl_mode_nice_t4 malum_cyl_mode_nice_t4.test() module malum_cyl_mode_esnice_t4 using FinEtools using FinEtools.AlgoBaseModule: matrix_blocked, vector_blocked using FinEtoolsDeforLinear using Test using Arpack using LinearAlgebra function test() # Aluminum cylinder free vibration, mesh imported from Abaqus # Mesh converted from quadratic tetrahedra to linear tetrahedra # NICE tetrahedral elements used E = 70000 * phun("MPa") nu = 0.33 rho = 2700 * phun("KG/M^3") radius = 0.5 * phun("ft") neigvs = 20 # how many eigenvalues OmegaShift = (10.0 * 2 * pi)^2 stabfact = 0.005 Eigenvalues = [ 0.0, 0.0, 0.0, 1.8846e-5, 7.35917e-5, 0.000119445, 2498.15, 2498.88, 2513.31, 4082.65, 4585.99, 4586.42, 4987.01, 6648.02, 6648.48, 6679.04, 6682.16, 6777.89, 6780.59, 6799.36, ] MR = DeforModelRed3D output = import_ABAQUS("alum_cyl.inp") fens, fes = output["fens"], output["fesets"][1] fens.xyz .*= phun("mm") # The input is provided in SI(mm) units fens, fes = T10toT4(fens, fes) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field numberdofs!(u) material = MatDeforElastIso(MR, rho, E, nu, 0.0) femm = FEMMDeforLinearESNICET4(MR, IntegDomain(fes, NodalSimplexRule(3)), material) associategeometry!(femm, geom) K = stiffness(femm, geom, u) M = mass(femm, geom, u) K_ff = matrix_blocked(K, nfreedofs(u), nfreedofs(u))[:ff] M_ff = matrix_blocked(M, nfreedofs(u), nfreedofs(u))[:ff] d, v, nev, nconv = eigs( K_ff + OmegaShift * M_ff, M_ff; nev = neigvs, which = :SM, explicittransform = :none, ) d = d .- OmegaShift fs = real(sqrt.(complex(d))) / (2 * pi) # println("Eigenvalues: $fs [Hz]") @test norm(vec(fs) .- vec(Eigenvalues)) < 1.0e-3 * maximum(vec(Eigenvalues)) true end end using .malum_cyl_mode_esnice_t4 malum_cyl_mode_esnice_t4.test() module mocylpull14 # From linear deformation using FinEtools using FinEtools.AlgoBaseModule: matrix_blocked, vector_blocked using FinEtoolsDeforLinear using LinearAlgebra using Test function test() # Cylinder compressed by enforced displacement, axially symmetric model # Parameters: E1 = 1.0 E2 = 1.0 E3 = 3.0 nu12 = 0.29 nu13 = 0.29 nu23 = 0.19 G12 = 0.3 G13 = 0.3 G23 = 0.3 p = 0.15 rin = 1.0 rex = 1.2 Length = 1 * rex ua = -0.05 * Length tolerance = rin / 1000.0 ## # Note that the FinEtools objects needs to be created with the proper # model-dimension reduction at hand. In this case that is the axial symmetry # assumption. MR = DeforModelRed2DAxisymm fens, fes = Q4block(rex - rin, Length, 5, 20) fens.xyz[:, 1] = fens.xyz[:, 1] .+ rin bdryfes = meshboundary(fes) # now we create the geometry and displacement fields geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 2)) # displacement field # the symmetry plane l1 = selectnode(fens; box = [0 rex 0 0], inflate = tolerance) setebc!(u, l1, true, 2, 0.0) # The other end l1 = selectnode(fens; box = [0 rex Length Length], inflate = tolerance) setebc!(u, l1, true, 2, ua) applyebc!(u) numberdofs!(u) # println("Number of degrees of freedom = $(u.nfreedofs)") @test nfreedofs(u) == 240 # Property and material material = MatDeforElastIso(MR, 00.0, E1, nu23, 0.0) # display(material) # println("$(material.D)") femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(2, 2), true), material) K = stiffness(femm, geom, u) K_ff, K_fd = matrix_blocked(K, nfreedofs(u), nfreedofs(u))[(:ff, :fd)] U_d = gathersysvec(u, :d) factor = cholesky(Symmetric(K_ff)) U_f = factor \ (-K_fd * U_d) scattersysvec!(u, U_f) fld = fieldfromintegpoints(femm, geom, u, :princCauchy, 1) # println("Minimum/maximum = $(minimum(fld.values))/$(maximum(fld.values))") @test abs(minimum(fld.values) - 0.0) < 1.0e-5 @test abs(maximum(fld.values) - 0.0) < 1.0e-5 fld = fieldfromintegpoints(femm, geom, u, :princCauchy, 2) # println("Minimum/maximum = $(minimum(fld.values))/$(maximum(fld.values))") @test abs(minimum(fld.values) - 0.0) < 1.0e-5 @test abs(maximum(fld.values) - 0.0) < 1.0e-5 fld = fieldfromintegpoints(femm, geom, u, :princCauchy, 3) # println("Minimum/maximum = $(minimum(fld.values))/$(maximum(fld.values))") @test abs(minimum(fld.values) - -0.050) < 1.0e-5 @test abs(maximum(fld.values) - -0.04999999999999919) < 1.0e-5 # File = "mocylpull14.vtk" # vtkexportmesh(File, fens, fes; scalars=[("sigmaz", fld.values)], # vectors=[("u", u.values)]) # @async run(`"paraview.exe" $File`) end end using .mocylpull14 mocylpull14.test() module mocylpull1 # From deformation using FinEtools using FinEtools.AlgoBaseModule: matrix_blocked, vector_blocked using FinEtoolsDeforLinear using LinearAlgebra using Test function test() # Cylinder pulled by enforced displacement, axially symmetric model # Parameters: E1 = 1.0 E2 = 1.0 E3 = 3.0 nu12 = 0.29 nu13 = 0.29 nu23 = 0.19 G12 = 0.3 G13 = 0.3 G23 = 0.3 p = 0.15 rin = 1.0 rex = 1.2 Length = 1 * rex ua = -0.05 * Length tolerance = rin / 1000.0 ## # Note that the FinEtools objects needs to be created with the proper # model-dimension reduction at hand. In this case that is the axial symmetry # assumption. MR = DeforModelRed2DAxisymm # Create the mesh and initialize the geometry. First we are going # to construct the block of elements with the first coordinate # corresponding to the thickness in the radial direction, and the second # coordinate is the thickness in the axial direction. fens, fes = Q4block(rex - rin, Length, 5, 20) fens.xyz[:, 1] = fens.xyz[:, 1] .+ rin bdryfes = meshboundary(fes) # now we create the geometry and displacement fields geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 2)) # displacement field # the symmetry plane l1 = selectnode(fens; box = [0 rex 0 0], inflate = tolerance) setebc!(u, l1, true, 2, 0.0) # The other end l1 = selectnode(fens; box = [0 rex Length Length], inflate = tolerance) setebc!(u, l1, true, 2, ua) applyebc!(u) numberdofs!(u) # println("Number of degrees of freedom = $(u.nfreedofs)") @test nfreedofs(u) == 240 # Property and material material = MatDeforElastOrtho(MR, E1, E2, E3, nu12, nu13, nu23, G12, G13, G23) femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(2, 2), true), material) K = stiffness(femm, geom, u) K_ff, K_fd = matrix_blocked(K, nfreedofs(u), nfreedofs(u))[(:ff, :fd)] U_d = gathersysvec(u, :d) factor = cholesky(Symmetric(K_ff)) U_f = factor \ (-K_fd * U_d) scattersysvec!(u, U_f) # Produce a plot of the radial stress component in the cylindrical # coordinate system. Note that this is the usual representation of # stress using nodal stress field. fld = fieldfromintegpoints(femm, geom, u, :Cauchy, 2) # println("Minimum/maximum = $(minimum(fld.values))/$(maximum(fld.values))") @test abs(minimum(fld.values) - -0.050318853446676436) < 1.0e-5 @test abs(maximum(fld.values) - -0.0497395167360893) < 1.0e-5 # File = "orthoballoon_sigmaz.vtk" # vtkexportmesh(File, fens, fes; scalars=[("sigmaz", fld.values)], # vectors=[("u", u.values)]) # @async run(`"paraview.exe" $File`) end end using .mocylpull1 mocylpull1.test() module mmLE1NAFEMSsstressx1 using FinEtools using FinEtools.AlgoBaseModule: matrix_blocked, vector_blocked using FinEtoolsDeforLinear using Test using LinearAlgebra: norm, cholesky, cross, Symmetric function test() E = 210e3 * phun("MEGA*PA")# 210e3 MPa nu = 0.3 p = 10 * phun("MEGA*PA")# 10 MPA Outward pressure on the outside ellipse sigma_yD = 92.7 * phun("MEGA*PA")# tensile stress at [2.0, 0.0] meters Radius = 1.0 * phun("m") Thickness = 0.1 * phun("m") n = 20 # number of elements per side tolerance = 1.0 / n / 1000.0 # Geometrical tolerance fens, fes = Q4block(1.0, pi / 2, n, n * 2) fens, fes = H8extrudeQ4(fens, fes, 1, (xyz, layer) -> [xyz[1], xyz[2], (layer) * Thickness]) bdryfes = meshboundary(fes) icl = selectelem( fens, bdryfes, box = [1.0, 1.0, 0.0, pi / 2, 0.0, Thickness], inflate = tolerance, ) for i = 1:count(fens) t = fens.xyz[i, 1] a = fens.xyz[i, 2] z = fens.xyz[i, 3] fens.xyz[i, :] = [(t * 3.25 + (1 - t) * 2) * cos(a), (t * 2.75 + (1 - t) * 1) * sin(a), z] end geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field l1 = selectnode(fens; box = [0.0, Inf, 0.0, 0.0, 0.0, Thickness], inflate = tolerance) setebc!(u, l1, true, 2, 0.0) l1 = selectnode(fens; box = [0.0, 0.0, 0.0, Inf, 0.0, Thickness], inflate = tolerance) setebc!(u, l1, true, 1, 0.0) l1 = selectnode(fens; box = [0.0, Inf, 0.0, Inf, 0.0, 0.0], inflate = tolerance) setebc!(u, l1, true, 3, 0.0) applyebc!(u) numberdofs!(u) el1femm = FEMMBase(IntegDomain(subset(bdryfes, icl), GaussRule(2, 2))) function pfun(forceout::Vector{T}, XYZ, tangents, feid, qpid) where {T} pt = [2.75 / 3.25 * XYZ[1], 3.25 / 2.75 * XYZ[2], 0.0] forceout .= vec(p * pt / norm(pt)) return forceout end fi = ForceIntensity(Float64, 3, pfun) F2 = distribloads(el1femm, geom, u, fi, 2) # Note that the material object needs to be created with the proper # model-dimension reduction in mind. In this case that is the fully three-dimensional solid. MR = DeforModelRed3D material = MatDeforElastIso(MR, E, nu) femm = FEMMDeforLinearMSH8(MR, IntegDomain(fes, GaussRule(3, 2)), material) # The geometry field now needs to be associated with the FEMM femm = associategeometry!(femm, geom) K = stiffness(femm, geom, u) K_ff, K_fd = matrix_blocked(K, nfreedofs(u), nfreedofs(u))[(:ff, :fd)] F_f = vector_blocked(F2, nfreedofs(u))[:f] U_d = gathersysvec(u, :d) factor = cholesky(Symmetric(K_ff)) U_f = factor \ F_f scattersysvec!(u, U_f) nl = selectnode(fens, box = [2.0, 2.0, 0.0, 0.0, 0.0, 0.0], inflate = tolerance) thecorneru = zeros(Float64, 1, 3) gathervalues_asmat!(u, thecorneru, nl) thecorneru = thecorneru / phun("mm") # println("displacement =$(thecorneru) [MM] as compared to reference [-0.10215,0] [MM]") @test norm(thecorneru - [-0.10082864119023721 0.0 0.0]) < 1.0e-4 fld = fieldfromintegpoints(femm, geom, u, :princCauchy, 1) @test norm(maximum(fld.values) - 8.190847372888073e7) / 8.190847372888073e7 <= 1.0e-4 # File = "mmLE1NAFEMSsstressx1-s1.vtk" # vtkexportmesh(File, fens, fes; scalars=[("sigma_1", fld.values)], vectors=[("u", u.values)]) # @async run(`"paraview.exe" $File`) fld = fieldfromintegpoints(femm, geom, u, :maxshear, 1) @test norm(maximum(fld.values) - 8.19559427861603e7) / 8.190847372888073e7 <= 1.0e-4 # File = "mmLE1NAFEMSsstressx1-maxshear.vtk" # vtkexportmesh(File, fens, fes; scalars=[("maxshear", fld.values)], vectors=[("u", u.values)]) # @async run(`"paraview.exe" $File`) end end using .mmLE1NAFEMSsstressx1 mmLE1NAFEMSsstressx1.test() module mholestr1 using FinEtools using FinEtools.AlgoBaseModule: matrix_blocked, vector_blocked using FinEtoolsDeforLinear using Test using LinearAlgebra: norm, cholesky, cross, Symmetric function test() E = 100.0 nu = 1.0 / 3 cte = 0.15 xradius = 1.0 yradius = 1.0 L = 3.0 H = 3.0 # nL = 50 # nH = 50 # nW = 70 nL = 100 nH = 100 nW = 120 tolerance = min(xradius, yradius, L, H) / min(nL, nH, nW) / 1000.0#Geometrical tolerance fens, fes = Q4elliphole(xradius, yradius, L, H, nL, nH, nW) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 2)) # displacement field l1 = selectnode(fens; box = [0, 0, -Inf, Inf], inflate = tolerance) setebc!(u, l1, 1, 0.0) l2 = selectnode(fens; box = [-Inf, Inf, 0, 0], inflate = tolerance) setebc!(u, l2, 2, 0.0) applyebc!(u) numberdofs!(u) boundaryfes = meshboundary(fes) lce = selectelem( fens, boundaryfes, facing = true, direction = x -> -x, inflate = tolerance, ) lc = connectednodes(subset(boundaryfes, lce)) le = selectelem(fens, boundaryfes, box = [-Inf, Inf, H, H], inflate = tolerance) el1femm = FEMMBase(IntegDomain(subset(boundaryfes, le), GaussRule(1, 2))) fi = ForceIntensity([0.0, 1.0]) Fm = distribloads(el1femm, geom, u, fi, 2) le = selectelem(fens, boundaryfes, box = [L, L, -Inf, Inf], inflate = tolerance) el2femm = FEMMBase(IntegDomain(subset(boundaryfes, le), GaussRule(1, 2))) fi = ForceIntensity([1.0, 0.0]) Fm += distribloads(el2femm, geom, u, fi, 2) MR = DeforModelRed2DStress material = MatDeforElastIso(MR, 0.0, E, nu, cte) femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(2, 2)), material) K = stiffness(femm, geom, u) K_ff, K_fd = matrix_blocked(K, nfreedofs(u), nfreedofs(u))[(:ff, :fd)] F_f = vector_blocked(Fm, nfreedofs(u))[:f] U_d = gathersysvec(u, :d) factor = cholesky(Symmetric(K_ff)) U_f = factor \ F_f scattersysvec!(u, U_f) fld = fieldfromintegpoints(femm, geom, u, :princCauchy, 1) # @test norm(maximum(fld.values) - 8.190847372888073e7)/8.190847372888073e7 <= 1.0e-4 # File = "mholestr1-s1.vtk" # vtkexportmesh(File, fens, fes; scalars=[("sigma_1", fld.values)], vectors=[("u", u.values)]) # @async run(`"paraview.exe" $File`) fld = fieldfromintegpoints(femm, geom, u, :maxshear, 1) @test norm(maximum(fld.values) - 2.210557410276065) / 2.210557410276065 <= 1.0e-4 # File = "mholestr1-maxshear.vtk" # vtkexportmesh(File, fens, fes; scalars=[("maxshear", fld.values)], vectors=[("u", u.values)]) # @async run(`"paraview.exe" $File`) end end using .mholestr1 mholestr1.test() module mholestr2 using FinEtools using FinEtools.AlgoBaseModule: matrix_blocked, vector_blocked using FinEtoolsDeforLinear using Test using LinearAlgebra: norm, cholesky, cross, Symmetric function test() E = 100.0 nu = 1.0 / 3 cte = 0.15 xradius = 1.0 yradius = 1.0 L = 3.0 H = 3.0 # nL = 50 # nH = 50 # nW = 70 nL = 100 nH = 100 nW = 120 tolerance = min(xradius, yradius, L, H) / min(nL, nH, nW) / 1000.0#Geometrical tolerance fens, fes = Q4elliphole(xradius, yradius, L, H, nL, nH, nW) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 2)) # displacement field l1 = selectnode(fens; box = [0, 0, -Inf, Inf], inflate = tolerance) setebc!(u, l1, 1, 0.0) l2 = selectnode(fens; box = [-Inf, Inf, 0, 0], inflate = tolerance) setebc!(u, l2, 2, 0.0) applyebc!(u) numberdofs!(u) boundaryfes = meshboundary(fes) lce = selectelem( fens, boundaryfes, facing = true, direction = x -> -x, inflate = tolerance, ) lc = connectednodes(subset(boundaryfes, lce)) le = selectelem(fens, boundaryfes, box = [-Inf, Inf, H, H], inflate = tolerance) el1femm = FEMMBase(IntegDomain(subset(boundaryfes, le), GaussRule(1, 2))) fi = ForceIntensity([0.0, 1.0]) Fm = distribloads(el1femm, geom, u, fi, 2) le = selectelem(fens, boundaryfes, box = [L, L, -Inf, Inf], inflate = tolerance) el2femm = FEMMBase(IntegDomain(subset(boundaryfes, le), GaussRule(1, 2))) fi = ForceIntensity([1.0, 0.0]) Fm += distribloads(el2femm, geom, u, fi, 2) MR = DeforModelRed2DStrain material = MatDeforElastIso(MR, 0.0, E, nu, cte) femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(2, 2)), material) K = stiffness(femm, geom, u) K_ff, K_fd = matrix_blocked(K, nfreedofs(u), nfreedofs(u))[(:ff, :fd)] F_f = vector_blocked(Fm, nfreedofs(u))[:f] U_d = gathersysvec(u, :d) factor = cholesky(Symmetric(K_ff)) U_f = factor \ F_f scattersysvec!(u, U_f) fld = fieldfromintegpoints(femm, geom, u, :princCauchy, 1) # @test norm(maximum(fld.values) - 8.190847372888073e7)/8.190847372888073e7 <= 1.0e-4 # File = "mholestr2-s1.vtk" # vtkexportmesh(File, fens, fes; scalars=[("sigma_1", fld.values)], vectors=[("u", u.values)]) # @async run(`"paraview.exe" $File`) fld = fieldfromintegpoints(femm, geom, u, :maxshear, 1) @test norm(maximum(fld.values) - 2.2102738887214257) / 2.2102738887214257 <= 1.0e-4 # File = "mholestr2-maxshear.vtk" # vtkexportmesh(File, fens, fes; scalars=[("maxshear", fld.values)], vectors=[("u", u.values)]) # @async run(`"paraview.exe" $File`) end end using .mholestr2 mholestr2.test() module mholestr3 using FinEtools using FinEtools.AlgoBaseModule: matrix_blocked, vector_blocked using FinEtoolsDeforLinear using Test using LinearAlgebra: norm, cholesky, cross, Symmetric function test() E = 100.0 nu = 1.0 / 3 cte = 0.15 xradius = 1.0 yradius = 1.0 L = 3.0 H = 3.0 # nL = 50 # nH = 50 # nW = 70 nL = 100 nH = 100 nW = 120 tolerance = min(xradius, yradius, L, H) / min(nL, nH, nW) / 1000.0#Geometrical tolerance fens, fes = Q4elliphole(xradius, yradius, L, H, nL, nH, nW) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 2)) # displacement field l1 = selectnode(fens; box = [0, 0, -Inf, Inf], inflate = tolerance) setebc!(u, l1, 1, 0.0) l2 = selectnode(fens; box = [-Inf, Inf, 0, 0], inflate = tolerance) setebc!(u, l2, 2, 0.0) applyebc!(u) numberdofs!(u) boundaryfes = meshboundary(fes) lce = selectelem( fens, boundaryfes, facing = true, direction = x -> -x, inflate = tolerance, ) lc = connectednodes(subset(boundaryfes, lce)) le = selectelem(fens, boundaryfes, box = [-Inf, Inf, H, H], inflate = tolerance) el1femm = FEMMBase(IntegDomain(subset(boundaryfes, le), GaussRule(1, 2))) fi = ForceIntensity([0.0, -1.0]) Fm = distribloads(el1femm, geom, u, fi, 2) le = selectelem(fens, boundaryfes, box = [L, L, -Inf, Inf], inflate = tolerance) el2femm = FEMMBase(IntegDomain(subset(boundaryfes, le), GaussRule(1, 2))) fi = ForceIntensity([1.0, 0.0]) Fm += distribloads(el2femm, geom, u, fi, 2) MR = DeforModelRed2DStress material = MatDeforElastIso(MR, 0.0, E, nu, cte) femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(2, 2)), material) K = stiffness(femm, geom, u) K_ff, K_fd = matrix_blocked(K, nfreedofs(u), nfreedofs(u))[(:ff, :fd)] F_f = vector_blocked(Fm, nfreedofs(u))[:f] U_d = gathersysvec(u, :d) factor = cholesky(Symmetric(K_ff)) U_f = factor \ F_f scattersysvec!(u, U_f) fld = fieldfromintegpoints(femm, geom, u, :princCauchy, 1) # @test norm(maximum(fld.values) - 8.190847372888073e7)/8.190847372888073e7 <= 1.0e-4 File = "mholestr3-s1.vtk" vtkexportmesh( File, fens, fes; scalars = [("sigma_1", fld.values)], vectors = [("u", u.values)], ) #@async run(`"paraview.exe" $File`) fld = fieldfromintegpoints(femm, geom, u, :maxshear, 1) @test norm(maximum(fld.values) - 5.921999943843146) / 5.921999943843146 <= 1.0e-4 # File = "mholestr3-maxshear.vtk" # vtkexportmesh(File, fens, fes; scalars=[("maxshear", fld.values)], vectors=[("u", u.values)]) # @async run(`"paraview.exe" $File`) end end using .mholestr3 mholestr3.test()
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
37888
module m111ocylpull14nnn # From miscellaneous using FinEtools using FinEtools.AlgoBaseModule: matrix_blocked, vector_blocked using FinEtoolsDeforLinear using LinearAlgebra using Test function test() # Cylinder compressed by enforced displacement, axially symmetric model # Parameters: E1 = 1.0 E2 = 1.0 E3 = 3.0 nu12 = 0.29 nu13 = 0.29 nu23 = 0.19 G12 = 0.3 G13 = 0.3 G23 = 0.3 p = 0.15 rin = 1.0 rex = 1.2 Length = 1 * rex ua = -0.05 * Length tolerance = rin / 1000.0 ## # Note that the FinEtools objects needs to be created with the proper # model-dimension reduction at hand. In this case that is the axial symmetry # assumption. MR = DeforModelRed2DAxisymm fens, fes = Q4block(rex - rin, Length, 5, 20) fens.xyz[:, 1] = fens.xyz[:, 1] .+ rin bdryfes = meshboundary(fes) # now we create the geometry and displacement fields geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 2)) # displacement field # the symmetry plane l1 = selectnode(fens; box = [0 rex 0 0], inflate = tolerance) setebc!(u, l1, true, 2, 0.0) # The other end l1 = selectnode(fens; box = [0 rex Length Length], inflate = tolerance) setebc!(u, l1, true, 2, ua) applyebc!(u) numberdofs!(u) # println("Number of degrees of freedom = $(nfreedofs(u))") @test nfreedofs(u) == 240 # Property and material material = MatDeforElastIso(MR, 00.0, E1, nu23, 0.0) # display(material) # println("$(material.D)") # @show MR femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(2, 2), true), material) K = stiffness(femm, geom, u) K_ff, K_fd = matrix_blocked(K, nfreedofs(u), nfreedofs(u))[(:ff, :fd)] U_d = gathersysvec(u, :d) factor = cholesky(Symmetric(K_ff)) U_f = factor \ (-K_fd * U_d) scattersysvec!(u, U_f) fld = fieldfromintegpoints(femm, geom, u, :princCauchy, 1) # println("Minimum/maximum = $(minimum(fld.values))/$(maximum(fld.values))") @test abs(minimum(fld.values) - 0.0) < 1.0e-5 @test abs(maximum(fld.values) - 0.0) < 1.0e-5 fld = fieldfromintegpoints(femm, geom, u, :princCauchy, 2) # println("Minimum/maximum = $(minimum(fld.values))/$(maximum(fld.values))") @test abs(minimum(fld.values) - 0.0) < 1.0e-5 @test abs(maximum(fld.values) - 0.0) < 1.0e-5 fld = fieldfromintegpoints(femm, geom, u, :princCauchy, 3) # println("Minimum/maximum = $(minimum(fld.values))/$(maximum(fld.values))") @test abs(minimum(fld.values) - -0.050) < 1.0e-5 @test abs(maximum(fld.values) - -0.04999999999999919) < 1.0e-5 # File = "mocylpull14.vtk" # vtkexportmesh(File, fens, fes; scalars=[("sigmaz", fld.values)], # vectors=[("u", u.values)]) # @async run(`"paraview.exe" $File`) end end using .m111ocylpull14nnn m111ocylpull14nnn.test() module mophysun13 # From miscellaneous using FinEtools using FinEtoolsDeforLinear using Test function test() E1 = 1.0 nu23 = 0.19 rin = 1.0 rex = 1.2 Length = 1 * rex tolerance = rin / 1000.0 MR = DeforModelRed2DAxisymm fens, fes = Q4block(rex - rin, Length, 5, 20) fens.xyz[:, 1] = fens.xyz[:, 1] .+ rin bdryfes = meshboundary(fes) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 2)) l1 = selectnode(fens; box = [0 rex 0 0], inflate = tolerance) setebc!(u, l1, true, 2, 0.0) l1 = selectnode(fens; box = [0 rex Length Length], inflate = tolerance) setebc!(u, l1, true, 2, 0.0) applyebc!(u) numberdofs!(u) @test nfreedofs(u) == 240 material = MatDeforElastIso(MR, 00.0, E1, nu23, 0.0) # println("success? ") # @code_llvm FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(2, 2), true), material, true) # femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(2, 2), true), material, true) # println("failure? ") # @code_llvm FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(2, 2), true), material) femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(2, 2), true), material) true end end using .mophysun13 mophysun13.test() module m111ocylpull14n1 # From miscellaneous using FinEtools using FinEtoolsDeforLinear using Test function test() E1 = 1.0 nu23 = 0.19 rin = 1.0 rex = 1.2 Length = 1 * rex MR = DeforModelRed2DAxisymm fens, fes = Q4block(rex - rin, Length, 5, 20) material = MatDeforElastIso(MR, 00.0, E1, nu23, 0.0) femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(2, 2), true), material) femm.mr == MR true end end using .m111ocylpull14n1 m111ocylpull14n1.test() module mocylpull14a using FinEtools using FinEtoolsDeforLinear using Test function test() MR = DeforModelRed2DAxisymm material = MatDeforElastIso(MR, 0.0, 1.0, 0.0, 0.0) @test MR == material.mr femm = FEMMDeforLinear( MR, IntegDomain(FESetP1(reshape([1], 1, 1)), GaussRule(2, 2), true), material, ) end end using .mocylpull14a mocylpull14a.test() module mstressconversionm using FinEtools using FinEtoolsDeforLinear using Test import LinearAlgebra: norm function test() symmtens(N) = begin t = rand(N, N) t = (t + t') / 2.0 end t = symmtens(2) v = zeros(3) strainttov!(DeforModelRed2DStrain, v, t) to = zeros(2, 2) strainvtot!(DeforModelRed2DStrain, to, v) @test norm(t - to) < eps(1.0) t = symmtens(3) v = zeros(6) strainttov!(DeforModelRed3D, v, t) to = zeros(3, 3) strainvtot!(DeforModelRed3D, to, v) @test norm(t - to) < eps(1.0) t = symmtens(2) v = zeros(3) stressttov!(DeforModelRed2DStress, v, t) to = zeros(2, 2) stressvtot!(DeforModelRed2DStress, to, v) @test norm(t - to) < eps(1.0) v = vec([1.0 2.0 3.0]) t = zeros(3, 3) stressvtot!(DeforModelRed2DStrain, t, v) to = [1.0 3.0 0; 3.0 2.0 0; 0 0 0] @test norm(t - to) < eps(1.0) v = vec([1.0 2 3 4]) t = zeros(3, 3) stressvtot!(DeforModelRed2DStrain, t, v) to = [1.0 3 0; 3 2 0; 0 0 4] @test norm(t - to) < eps(1.0) v = rand(6) t = zeros(3, 3) stressvtot!(DeforModelRed3D, t, v) vo = zeros(6) stressttov!(DeforModelRed3D, vo, t) @test norm(v - vo) < eps(1.0) # v = rand(9) # t = zeros(3, 3) # strain9vto3x3t!(t, v) # t = (t + t')/2.0 # symmetrize # strain3x3tto9v!(v, t) # v6 = zeros(6) # strain9vto6v!(v6, v) # v9 = zeros(9) # strain6vto9v!(v9, v6) # @test norm(v-v9) < eps(1.0) # v = vec([1. 2 3 4 4 5 5 6 6]) # v6 = zeros(6) # stress9vto6v!(v6, v) # v9 = zeros(9) # stress6vto9v!(v9, v6) # @test norm(v-v9) < eps(1.0) end end using .mstressconversionm mstressconversionm.test() module mmmtdt1a using FinEtools using FinEtoolsDeforLinear using LinearAlgebra using Test function test() MR = DeforModelRed3D symmet(a) = a + transpose(a) a = rand(3, 3) @test abs(det(a) - dett(MR, a)) / abs(det(a)) <= 1.0e-6 a = rand(3, 3) @test abs(det(a) - dett(MR, a)) / abs(det(a)) <= 1.0e-6 a = rand(3, 3) @test abs(det(a) - dett(MR, a)) / abs(det(a)) <= 1.0e-6 a = symmet(rand(3, 3)) @test abs(det(a) - dett(MR, a)) / abs(det(a)) <= 1.0e-6 a = rand(3, 3) @test abs(det(a) - dett(MR, a)) / abs(det(a)) <= 1.0e-6 a = rand(3, 3) @test abs(det(a) - dett(MR, a)) / abs(det(a)) <= 1.0e-6 a = rand(3, 3) @test abs(det(a) - dett(MR, a)) / abs(det(a)) <= 1.0e-6 a = symmet(rand(3, 3)) @test abs(det(a) - dett(MR, a)) / abs(det(a)) <= 1.0e-6 a = symmet(rand(3, 3)) av = fill(zero(eltype(a)), 6) strainttov!(MR, av, a) @test abs(det(a) - strainvdet(MR, av)) / abs(det(a)) <= 1.0e-6 a = symmet(rand(3, 3)) av = fill(zero(eltype(a)), 6) strainttov!(MR, av, a) @test abs(det(a) - strainvdet(MR, av)) / abs(det(a)) <= 1.0e-6 a = symmet(rand(3, 3)) av = fill(zero(eltype(a)), 6) strainttov!(MR, av, a) @test abs(det(a) - strainvdet(MR, av)) / abs(det(a)) <= 1.0e-6 a = symmet(rand(3, 3)) av = fill(zero(eltype(a)), 6) strainttov!(MR, av, a) @test abs(det(a) - strainvdet(MR, av)) / abs(det(a)) <= 1.0e-6 a = symmet(rand(3, 3)) av = fill(zero(eltype(a)), 6) strainttov!(MR, av, a) @test abs(det(a) - strainvdet(MR, av)) / abs(det(a)) <= 1.0e-6 a = symmet(rand(3, 3)) av = fill(zero(eltype(a)), 6) strainttov!(MR, av, a) @test abs(det(a) - strainvdet(MR, av)) / abs(det(a)) <= 1.0e-6 a = symmet(rand(3, 3)) av = fill(zero(eltype(a)), 6) strainttov!(MR, av, a) @test abs(tr(a) - strainvtr(MR, av)) / abs(tr(a)) <= 1.0e-6 a = symmet(rand(3, 3)) av = fill(zero(eltype(a)), 6) strainttov!(MR, av, a) @test abs(tr(a) - strainvtr(MR, av)) / abs(tr(a)) <= 1.0e-6 a = symmet(rand(3, 3)) av = fill(zero(eltype(a)), 6) strainttov!(MR, av, a) @test abs(tr(a) - strainvtr(MR, av)) / abs(tr(a)) <= 1.0e-6 end end using .mmmtdt1a mmmtdt1a.test() module mmmtdt2 using FinEtools using FinEtoolsDeforLinear using LinearAlgebra using Test function test() MR = DeforModelRed2DStrain symmet(a) = a + transpose(a) a = rand(2, 2) @test abs(det(a) - dett(MR, a)) / abs(det(a)) <= 1.0e-6 a = rand(2, 2) @test abs(det(a) - dett(MR, a)) / abs(det(a)) <= 1.0e-6 a = rand(2, 2) @test abs(det(a) - dett(MR, a)) / abs(det(a)) <= 1.0e-6 a = symmet(rand(2, 2)) @test abs(det(a) - dett(MR, a)) / abs(det(a)) <= 1.0e-6 a = rand(2, 2) @test abs(det(a) - dett(MR, a)) / abs(det(a)) <= 1.0e-6 a = rand(2, 2) @test abs(det(a) - dett(MR, a)) / abs(det(a)) <= 1.0e-6 a = rand(2, 2) @test abs(det(a) - dett(MR, a)) / abs(det(a)) <= 1.0e-6 a = symmet(rand(2, 2)) @test abs(det(a) - dett(MR, a)) / abs(det(a)) <= 1.0e-6 a = symmet(rand(2, 2)) av = fill(zero(eltype(a)), 6) strainttov!(MR, av, a) @test abs(det(a) - strainvdet(MR, av)) / abs(det(a)) <= 1.0e-6 a = symmet(rand(2, 2)) av = fill(zero(eltype(a)), 6) strainttov!(MR, av, a) @test abs(det(a) - strainvdet(MR, av)) / abs(det(a)) <= 1.0e-6 a = symmet(rand(2, 2)) av = fill(zero(eltype(a)), 6) strainttov!(MR, av, a) @test abs(det(a) - strainvdet(MR, av)) / abs(det(a)) <= 1.0e-6 a = symmet(rand(2, 2)) av = fill(zero(eltype(a)), 6) strainttov!(MR, av, a) @test abs(det(a) - strainvdet(MR, av)) / abs(det(a)) <= 1.0e-6 a = symmet(rand(2, 2)) av = fill(zero(eltype(a)), 6) strainttov!(MR, av, a) @test abs(det(a) - strainvdet(MR, av)) / abs(det(a)) <= 1.0e-6 a = symmet(rand(2, 2)) av = fill(zero(eltype(a)), 6) strainttov!(MR, av, a) @test abs(det(a) - strainvdet(MR, av)) / abs(det(a)) <= 1.0e-6 MR = DeforModelRed2DStrain a = symmet(rand(2, 2)) av = fill(zero(eltype(a)), 3) strainttov!(MR, av, a) @test abs(tr(a) - strainvtr(MR, av)) / abs(tr(a)) <= 1.0e-6 a = symmet(rand(2, 2)) av = fill(zero(eltype(a)), 3) strainttov!(MR, av, a) @test abs(tr(a) - strainvtr(MR, av)) / abs(tr(a)) <= 1.0e-6 a = symmet(rand(2, 2)) av = fill(zero(eltype(a)), 3) strainttov!(MR, av, a) @test abs(tr(a) - strainvtr(MR, av)) / abs(tr(a)) <= 1.0e-6 end end using .mmmtdt2 mmmtdt2.test() module mmtwistedeexportmm using FinEtools using FinEtoolsDeforLinear using Test using FinEtools.MeshExportModule function test() E = 0.29e8 nu = 0.22 W = 1.1 L = 12.0 t = 0.32 nl = 2 nt = 1 nw = 1 ref = 3 p = 1 / W / t # Loading in the Z direction loadv = [0; 0; p] dir = 3 uex = 0.005424534868469 # Harder: 5.424e-3; # Loading in the Y direction #loadv = [0;p;0]; dir = 2; uex = 0.001753248285256; # Harder: 1.754e-3; tolerance = t / 1000 fens, fes = H8block(L, W, t, nl * ref, nw * ref, nt * ref) # Reshape into a twisted beam shape for i = 1:count(fens) a = fens.xyz[i, 1] / L * (pi / 2) y = fens.xyz[i, 2] - (W / 2) z = fens.xyz[i, 3] - (t / 2) fens.xyz[i, :] = [fens.xyz[i, 1], y * cos(a) - z * sin(a), y * sin(a) + z * cos(a)] end # Clamped end of the beam l1 = selectnode(fens; box = [0 0 -100 * W 100 * W -100 * W 100 * W], inflate = tolerance) e1 = FDataDict("node_list" => l1, "component" => 1, "displacement" => 0.0) e2 = FDataDict("node_list" => l1, "component" => 2, "displacement" => 0.0) e3 = FDataDict("node_list" => l1, "component" => 3, "displacement" => 0.0) # Traction on the opposite edge boundaryfes = meshboundary(fes) Toplist = selectelem( fens, boundaryfes, box = [L L -100 * W 100 * W -100 * W 100 * W], inflate = tolerance, ) el1femm = FEMMBase(IntegDomain(subset(boundaryfes, Toplist), GaussRule(2, 2))) flux1 = FDataDict("femm" => el1femm, "traction_vector" => loadv) # Make the region MR = DeforModelRed3D material = MatDeforElastIso(MR, 00.0, E, nu, 0.0) region1 = FDataDict( "femm" => FEMMDeforLinearMSH8(MR, IntegDomain(fes, GaussRule(3, 2)), material), ) # Make model data modeldata = FDataDict( "fens" => fens, "regions" => [region1], "essential_bcs" => [e1, e2, e3], "traction_bcs" => [flux1], ) AE = AbaqusExporter("twisted_beam") HEADING(AE, "Twisted beam example") PART(AE, "part1") END_PART(AE) ASSEMBLY(AE, "ASSEM1") INSTANCE(AE, "INSTNC1", "PART1") NODE(AE, fens.xyz) ELEMENT(AE, "c3d8rh", "AllElements", 1, connasarray(region1["femm"].integdomain.fes)) ELEMENT( AE, "SFM3D4", "TractionElements", 1 + count(region1["femm"].integdomain.fes), connasarray(flux1["femm"].integdomain.fes), ) NSET_NSET(AE, "l1", l1) ORIENTATION(AE, "GlobalOrientation", vec([1.0 0 0]), vec([0 1.0 0])) SOLID_SECTION(AE, "elasticity", "GlobalOrientation", "AllElements", "Hourglass") SURFACE_SECTION(AE, "TractionElements") END_INSTANCE(AE) END_ASSEMBLY(AE) MATERIAL(AE, "elasticity") ELASTIC(AE, E, nu) SECTION_CONTROLS(AE, "section1", "HOURGLASS=ENHANCED") STEP_PERTURBATION_STATIC(AE) BOUNDARY(AE, "ASSEM1.INSTNC1.l1", 1) BOUNDARY(AE, "ASSEM1.INSTNC1.l1", 2) BOUNDARY(AE, "ASSEM1.INSTNC1.l1", 3) DLOAD(AE, "ASSEM1.INSTNC1.TractionElements", vec(flux1["traction_vector"])) END_STEP(AE) close(AE) nlines = 0 open("twisted_beam.inp") do f s = readlines(f) nlines = length(s) end @test nlines == 223 rm("twisted_beam.inp") true end end using .mmtwistedeexportmm mmtwistedeexportmm.test() module mmtwistedeexport2mm using FinEtools using FinEtoolsDeforLinear using Test using FinEtools.MeshExportModule function test() E = 0.29e8 nu = 0.22 W = 1.1 L = 12.0 t = 0.32 nl = 2 nt = 1 nw = 1 ref = 3 p = 1 / W / t # Loading in the Z direction loadv = [0; 0; p] dir = 3 uex = 0.005424534868469 # Harder: 5.424e-3; # Loading in the Y direction #loadv = [0;p;0]; dir = 2; uex = 0.001753248285256; # Harder: 1.754e-3; tolerance = t / 1000 fens, fes = H8block(L, W, t, nl * ref, nw * ref, nt * ref) # Reshape into a twisted beam shape for i = 1:count(fens) a = fens.xyz[i, 1] / L * (pi / 2) y = fens.xyz[i, 2] - (W / 2) z = fens.xyz[i, 3] - (t / 2) fens.xyz[i, :] = [fens.xyz[i, 1], y * cos(a) - z * sin(a), y * sin(a) + z * cos(a)] end # Clamped end of the beam l1 = selectnode(fens; box = [0 0 -100 * W 100 * W -100 * W 100 * W], inflate = tolerance) e1 = FDataDict("node_list" => l1, "component" => 1, "displacement" => 0.0) e2 = FDataDict("node_list" => l1, "component" => 2, "displacement" => 0.0) e3 = FDataDict("node_list" => l1, "component" => 3, "displacement" => 0.0) # Traction on the opposite edge boundaryfes = meshboundary(fes) Toplist = selectelem( fens, boundaryfes, box = [L L -100 * W 100 * W -100 * W 100 * W], inflate = tolerance, ) el1femm = FEMMBase(IntegDomain(subset(boundaryfes, Toplist), GaussRule(2, 2))) flux1 = FDataDict("femm" => el1femm, "traction_vector" => loadv) # Make the region MR = DeforModelRed3D material = MatDeforElastIso(MR, 00.0, E, nu, 0.0) region1 = FDataDict( "femm" => FEMMDeforLinearMSH8(MR, IntegDomain(fes, GaussRule(3, 2)), material), ) # Make model data modeldata = FDataDict( "fens" => fens, "regions" => [region1], "essential_bcs" => [e1, e2, e3], "traction_bcs" => [flux1], ) AE = AbaqusExporter("twisted_beam") HEADING(AE, "Twisted beam example") PART(AE, "part1") END_PART(AE) ASSEMBLY(AE, "ASSEM1") INSTANCE(AE, "INSTNC1", "PART1") NODE(AE, fens.xyz) ELEMENT(AE, "c3d8rh", "AllElements", 1, connasarray(region1["femm"].integdomain.fes)) ELEMENT( AE, "SFM3D4", "TractionElements", 1 + count(region1["femm"].integdomain.fes), connasarray(flux1["femm"].integdomain.fes), ) NSET_NSET(AE, "l1", l1) ORIENTATION(AE, "GlobalOrientation", vec([1.0 0 0]), vec([0 1.0 0])) SOLID_SECTION(AE, "elasticity", "GlobalOrientation", "AllElements", "Hourglass") SURFACE_SECTION(AE, "TractionElements") END_INSTANCE(AE) END_ASSEMBLY(AE) MATERIAL(AE, "elasticity") ELASTIC(AE, E, nu) SECTION_CONTROLS(AE, "section1", "HOURGLASS=ENHANCED") STEP_PERTURBATION_STATIC(AE) BOUNDARY(AE, "ASSEM1.INSTNC1.l1", 1, 0.0) BOUNDARY(AE, "ASSEM1.INSTNC1.l1", 2, 0.0) BOUNDARY(AE, "ASSEM1.INSTNC1.l1", 3, 0.0) DLOAD(AE, "ASSEM1.INSTNC1.TractionElements", vec(flux1["traction_vector"])) END_STEP(AE) close(AE) nlines = 0 open("twisted_beam.inp") do f s = readlines(f) nlines = length(s) end @test nlines == 223 rm("twisted_beam.inp") true end end using .mmtwistedeexport2mm mmtwistedeexport2mm.test() module mstresscomponentmap using FinEtools using FinEtoolsDeforLinear using Test function test() MR = DeforModelRed1D @test stresscomponentmap(MR)[:x] == 1 MR = DeforModelRed2DAxisymm @test stresscomponentmap(MR)[:x] == 1 @test stresscomponentmap(MR)[:zz] == 3 end end using .mstresscomponentmap mstresscomponentmap.test() module mmMeasurement_3a using FinEtools using FinEtoolsDeforLinear using Test function test() W = 1.1 L = 12.0 t = 3.32 nl, nt, nw = 5, 3, 4 Ea = 210000 * phun("MEGA*Pa") nua = 0.3 # println("New segmentation fault?") for orientation in [:a :b :ca :cb] fens, fes = T4block(L, W, t, nl, nw, nt, orientation) geom = NodalField(fens.xyz) MR = DeforModelRed3D material = MatDeforElastIso(MR, 0.0, Ea, nua, 0.0) femm = FEMMDeforLinearNICET4(MR, IntegDomain(fes, NodalSimplexRule(3)), material) V = integratefunction(femm, geom, (x) -> 1.0) @test abs(V - W * L * t) / V < 1.0e-5 end end end using .mmMeasurement_3a mmMeasurement_3a.test() module mmvgradmat1 using FinEtools using FinEtoolsDeforLinear using FinEtoolsDeforLinear.FEMMDeforLinearBaseModule: infsup_sh using Test import LinearAlgebra: norm, cholesky function test() Length, Width, Height, nL, nW, nH, orientation::Symbol = (1.0, 1.0, 1.0, 1, 1, 1, :a) Ea, nua, alphaa = (1.0, 0.3, 0.0) fens = FENodeSet(Float64[ 0 0 0 0 3 3 0 0 3 3 0 3 ]) fes = FESetT4(reshape([1 2 3 4], 1, 4)) MR = DeforModelRed3D # Property and material material = MatDeforElastIso(MR, 0.0, Ea, nua, alphaa) femm = FEMMDeforLinear(MR, IntegDomain(fes, TetRule(1)), material) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field numberdofs!(u) Sh = infsup_sh(femm, geom, u) Sh1 = [ 0.5 0 0 0 0 0 -0.5 0 0 -0.0000 0 0 0 0.5 0 0 0 0 0 -0.5 0 0 -0.0000 0 0 0 0.5 0 0 0 0 0 -0.5 0 0 -0.0000 0 0 0 0.5 0 0 -0.5 0 0 0 0 0 0 0 0 0 0.5 0 0 -0.5 0 0 0 0 0 0 0 0 0 0.5 0 0 -0.5 0 0 0 -0.5 0 0 -0.5 0 0 1.5000 0 0 -0.5 0 0 0 -0.5 0 0 -0.5 0 0 1.5000 0 0 -0.5 0 0 0 -0.5 0 0 -0.5 0 0 1.5000 0 0 -0.5 -0.0000 0 0 0 0 0 -0.5 0 0 0.5 0 0 0 -0.0000 0 0 0 0 0 -0.5 0 0 0.5 0 0 0 -0.0000 0 0 0 0 0 -0.5 0 0 0.5 ] @test norm(Sh - Sh1) <= 1.0e-9 end end using .mmvgradmat1 mmvgradmat1.test() module mmdivmat2 using FinEtools using FinEtoolsDeforLinear using FinEtoolsDeforLinear.FEMMDeforLinearBaseModule: infsup_gh using Test import LinearAlgebra: norm, cholesky function test() Length, Width, Height, nL, nW, nH, orientation::Symbol = (1.0, 1.0, 1.0, 1, 1, 1, :a) Ea, nua, alphaa = (1.0, 0.3, 0.0) fens = FENodeSet( Float64[ 0 0 0 -1.6200e-01 3.0000e+00 2.9791e+00 0 0 3.0000e+00 3.0000e+00 1.6200e-01 3.0000e+00 ], ) fes = FESetT4(reshape([1 2 3 4], 1, 4)) MR = DeforModelRed3D # Property and material material = MatDeforElastIso(MR, 0.0, Ea, nua, alphaa) femm = FEMMDeforLinear(MR, IntegDomain(fes, TetRule(4)), material) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field numberdofs!(u) Gh = infsup_gh(femm, geom, u) Gh1 = [ 7.0319e-08 -1.3022e-06 -1.8778e-04 -1.0111e-05 1.8724e-04 0 -1.7720e-04 -1.9604e-04 1.8778e-04 1.8724e-04 1.0111e-05 0 -1.3022e-06 2.4115e-05 3.4774e-03 1.8724e-04 -3.4673e-03 0 3.2814e-03 3.6305e-03 -3.4774e-03 -3.4673e-03 -1.8724e-04 0 -1.8778e-04 3.4774e-03 5.0146e-01 2.7000e-02 -5.0000e-01 0 4.7319e-01 5.2352e-01 -5.0146e-01 -5.0000e-01 -2.7000e-02 0 -1.0111e-05 1.8724e-04 2.7000e-02 1.4538e-03 -2.6921e-02 0 2.5478e-02 2.8188e-02 -2.7000e-02 -2.6921e-02 -1.4538e-03 0 1.8724e-04 -3.4673e-03 -5.0000e-01 -2.6921e-02 4.9855e-01 0 -4.7181e-01 -5.2200e-01 5.0000e-01 4.9855e-01 2.6921e-02 0 0 0 0 0 0 0 0 0 0 0 0 0 -1.7720e-04 3.2814e-03 4.7319e-01 2.5478e-02 -4.7181e-01 0 4.4651e-01 4.9401e-01 -4.7319e-01 -4.7181e-01 -2.5478e-02 0 -1.9604e-04 3.6305e-03 5.2352e-01 2.8188e-02 -5.2200e-01 0 4.9401e-01 5.4656e-01 -5.2352e-01 -5.2200e-01 -2.8188e-02 0 1.8778e-04 -3.4774e-03 -5.0146e-01 -2.7000e-02 5.0000e-01 0 -4.7319e-01 -5.2352e-01 5.0146e-01 5.0000e-01 2.7000e-02 0 1.8724e-04 -3.4673e-03 -5.0000e-01 -2.6921e-02 4.9855e-01 0 -4.7181e-01 -5.2200e-01 5.0000e-01 4.9855e-01 2.6921e-02 0 1.0111e-05 -1.8724e-04 -2.7000e-02 -1.4538e-03 2.6921e-02 0 -2.5478e-02 -2.8188e-02 2.7000e-02 2.6921e-02 1.4538e-03 0 0 0 0 0 0 0 0 0 0 0 0 0 ] # @show Matrix(Gh) @test norm(Gh - Gh1) / norm(Gh1) <= 2.0e-5 end end using .mmdivmat2 mmdivmat2.test() module mmvgradmat2 using FinEtools using FinEtoolsDeforLinear using FinEtoolsDeforLinear.FEMMDeforLinearBaseModule: infsup_sh using Test import LinearAlgebra: norm, cholesky function test() Length, Width, Height, nL, nW, nH, orientation::Symbol = (1.0, 1.0, 1.0, 1, 1, 1, :a) Ea, nua, alphaa = (1.0, 0.3, 0.0) fens = FENodeSet(Float64[ 0 0 0 -0.1620 3.0000 2.9791 0 0 3.0000 3.0000 0.1620 3.0000 ]) fes = FESetT4(reshape([1 2 3 4], 1, 4)) MR = DeforModelRed3D # Property and material material = MatDeforElastIso(MR, 0.0, Ea, nua, alphaa) femm = FEMMDeforLinear(MR, IntegDomain(fes, TetRule(1)), material) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field numberdofs!(u) Sh = infsup_sh(femm, geom, u) Sh1 = [ 5.0148e-01 0 0 -3.4774e-03 0 0 -4.9800e-01 0 0 -2.6321e-17 0 0 0 5.0148e-01 0 0 -3.4774e-03 0 0 -4.9800e-01 0 0 -2.6321e-17 0 0 0 5.0148e-01 0 0 -3.4774e-03 0 0 -4.9800e-01 0 0 -2.6321e-17 -3.4774e-03 0 0 5.0000e-01 0 0 -4.9652e-01 0 0 -4.7374e-18 0 0 0 -3.4774e-03 0 0 5.0000e-01 0 0 -4.9652e-01 0 0 -4.7374e-18 0 0 0 -3.4774e-03 0 0 5.0000e-01 0 0 -4.9652e-01 0 0 -4.7374e-18 -4.9800e-01 0 0 -4.9652e-01 0 0 1.4945e+00 0 0 -5.0000e-01 0 0 0 -4.9800e-01 0 0 -4.9652e-01 0 0 1.4945e+00 0 0 -5.0000e-01 0 0 0 -4.9800e-01 0 0 -4.9652e-01 0 0 1.4945e+00 0 0 -5.0000e-01 -2.6321e-17 0 0 -4.7374e-18 0 0 -5.0000e-01 0 0 5.0000e-01 0 0 0 -2.6321e-17 0 0 -4.7374e-18 0 0 -5.0000e-01 0 0 5.0000e-01 0 0 0 -2.6321e-17 0 0 -4.7374e-18 0 0 -5.0000e-01 0 0 5.0000e-01 ] @test norm(Sh - Sh1) / norm(Sh1) <= 1.0e-4 end end using .mmvgradmat2 mmvgradmat2.test() module mmdivmat1 using FinEtools using FinEtoolsDeforLinear using FinEtoolsDeforLinear.FEMMDeforLinearBaseModule: infsup_gh using Test import LinearAlgebra: norm, cholesky function test() Length, Width, Height, nL, nW, nH, orientation::Symbol = (1.0, 1.0, 1.0, 1, 1, 1, :a) Ea, nua, alphaa = (1.0, 0.3, 0.0) fens = FENodeSet(Float64[ 0 0 0 0 3 3 0 0 3 3 0 3 ]) fes = FESetT4(reshape([1 2 3 4], 1, 4)) MR = DeforModelRed3D # Property and material material = MatDeforElastIso(MR, 0.0, Ea, nua, alphaa) femm = FEMMDeforLinear(MR, IntegDomain(fes, TetRule(1)), material) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field numberdofs!(u) Gh = infsup_gh(femm, geom, u) Gh1 = [ 0.0 0 0.0 0 -0.0 0 0.0 0.0 -0.0 -0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0 0 0.5 0 -0.5 0 0.5 0.5 -0.5 -0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.0 0 -0.5 0 0.5 0 -0.5 -0.5 0.5 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0 0 0.5 0 -0.5 0 0.5 0.5 -0.5 -0.5 0 0 0.0 0 0.5 0 -0.5 0 0.5 0.5 -0.5 -0.5 0 0 -0.0 0 -0.5 0 0.5 0 -0.5 -0.5 0.5 0.5 0 0 -0.0 0 -0.5 0 0.5 0 -0.5 -0.5 0.5 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ] @test norm(Gh - Gh1) <= 1.0e-9 end end using .mmdivmat1 mmdivmat1.test() module mmmMergem1 using FinEtools using FinEtoolsDeforLinear using Test function test() h = 0.05 * phun("M") l = 10 * h Rmed = h / 0.2 psi = 0 # Cylinder nh = 12 nl = 40 nc = 120 nh = 6 nl = 20 nc = 60 # nh = 3; nl = 8; nc = 30; tolerance = h / nh / 100 t0 = time() MR = DeforModelRed3D fens, fes = H8block(h, l, 2.0 * pi, nh, nl, nc) # Shape into a cylinder R = zeros(3, 3) for i = 1:count(fens) x, y, z = fens.xyz[i, :] rotmat3!(R, [0, z, 0]) Q = [ cos(psi * pi / 180) sin(psi * pi / 180) 0 -sin(psi * pi / 180) cos(psi * pi / 180) 0 0 0 1 ] fens.xyz[i, :] = reshape([x + Rmed - h / 2, y - l / 2, 0], 1, 3) * Q * R end # println(" before merging = $(count(fens))") @test count(fens) == 8967 # File = "unit_cube_modes.vtk" # vtkexportmesh(File, fens, fes) # @async run(`"paraview.exe" $File`) candidates = selectnode( fens, box = boundingbox([Rmed-h -Inf 0.0; Rmed+h +Inf 0.0]), inflate = tolerance, ) fens, fes = mergenodes(fens, fes, tolerance, candidates) @test count(fens) == 8820 # fens,fes = mergenodes(fens, fes, tolerance); # println(" after merging = $(count(fens))") # # println("Mesh generation ($(time() - t0) sec)") # # File = "unit_cube_modes.vtk" # vtkexportmesh(File, fens, fes) # @async run(`"paraview.exe" $File`) end end using .mmmMergem1 mmmMergem1.test() module mmmMergem2 using FinEtools using FinEtoolsDeforLinear using Test function test() h = 0.05 * phun("M") l = 10 * h Rmed = h / 0.2 psi = 0 # Cylinder nh = 12 nl = 40 nc = 120 nh = 6 nl = 20 nc = 60 # nh = 3; nl = 8; nc = 30; tolerance = h / nh / 100 t0 = time() MR = DeforModelRed3D fens, fes = H8block(h, l, 2.0 * pi, nh, nl, nc) # Shape into a cylinder R = zeros(3, 3) for i = 1:count(fens) x, y, z = fens.xyz[i, :] rotmat3!(R, [0, z, 0]) Q = [ cos(psi * pi / 180) sin(psi * pi / 180) 0 -sin(psi * pi / 180) cos(psi * pi / 180) 0 0 0 1 ] fens.xyz[i, :] = reshape([x + Rmed - h / 2, y - l / 2, 0], 1, 3) * Q * R end # println(" before merging = $(count(fens))") @test count(fens) == 8967 # File = "unit_cube_modes.vtk" # vtkexportmesh(File, fens, fes) # @async run(`"paraview.exe" $File`) candidates = selectnode(fens, plane = [0.0 0.0 1.0 0.0], inflate = tolerance) fens, fes = mergenodes(fens, fes, tolerance, candidates) @test count(fens) == 8820 # fens,fes = mergenodes(fens, fes, tolerance); # println(" after merging = $(count(fens))") # # println("Mesh generation ($(time() - t0) sec)") # # File = "unit_cube_modes.vtk" # vtkexportmesh(File, fens, fes) # @async run(`"paraview.exe" $File`) end end using .mmmMergem2 mmmMergem2.test() module mmmMergem3 using FinEtools using FinEtoolsDeforLinear using Test function test() h = 0.05 * phun("M") l = 10 * h Rmed = h / 0.2 psi = 0 # Cylinder nh = 12 nl = 40 nc = 120 nh = 6 nl = 20 nc = 60 # nh = 3; nl = 8; nc = 30; tolerance = h / nh / 100 t0 = time() MR = DeforModelRed3D fens, fes = H8block(h, l, 2.0 * pi, nh, nl, nc) # Shape into a cylinder R = zeros(3, 3) for i = 1:count(fens) x, y, z = fens.xyz[i, :] rotmat3!(R, [0, z, 0]) Q = [ cos(psi * pi / 180) sin(psi * pi / 180) 0 -sin(psi * pi / 180) cos(psi * pi / 180) 0 0 0 1 ] fens.xyz[i, :] = reshape([x + Rmed - h / 2, y - l / 2, 0], 1, 3) * Q * R end # println(" before merging = $(count(fens))") @test count(fens) == 8967 # File = "unit_cube_modes.vtk" # vtkexportmesh(File, fens, fes) # @async run(`"paraview.exe" $File`) candidates = selectnode(fens, plane = [0.0 0.0 1.0 0.0], thickness = h / 1000) fens, fes = mergenodes(fens, fes, tolerance, candidates) @test count(fens) == 8820 # fens,fes = mergenodes(fens, fes, tolerance); # println(" after merging = $(count(fens))") # # println("Mesh generation ($(time() - t0) sec)") # # File = "unit_cube_modes.vtk" # vtkexportmesh(File, fens, fes) # @async run(`"paraview.exe" $File`) end end using .mmmMergem3 mmmMergem3.test() module mtwistedalgofin # From miscellaneous using FinEtools using FinEtoolsDeforLinear using FinEtoolsDeforLinear.AlgoDeforLinearModule using Statistics using LinearAlgebra: norm using Test function test() # println(""" # The initially twisted cantilever beam is one of the standard test problems for verifying the finite-element accuracy [1]. The beam is clamped at one end and loaded either with unit in-plane or unit out-of-plane force at the other. The centroidal axis of the beam s # straight at the undeformed configuration, while its cross-sections are # twisted about the centroidal axis from 0 at the clamped end to pi/2 at # the free end. # # Reference: # Zupan D, Saje M (2004) On "A proposed standard set of problems to test # finite element accuracy": the twisted beam. Finite Elements in Analysis # and Design 40: 1445-1451. # """) E = 0.29e8 nu = 0.22 W = 1.1 L = 12.0 t = 0.32 nl = 2 nt = 1 nw = 1 ref = 4 p = 1 / W / t # Loading in the Z direction loadv = [0; 0; p] dir = 3 uex = 0.005424534868469 # Harder: 5.424e-3; # Loading in the Y direction #loadv = [0;p;0]; dir = 2; uex = 0.001753248285256; # Harder: 1.754e-3; tolerance = t / 1000 fens, fes = H8block(L, W, t, nl * ref, nw * ref, nt * ref) # Reshape into a twisted beam shape for i = 1:count(fens) a = fens.xyz[i, 1] / L * (pi / 2) y = fens.xyz[i, 2] - (W / 2) z = fens.xyz[i, 3] - (t / 2) fens.xyz[i, :] = [fens.xyz[i, 1], y * cos(a) - z * sin(a), y * sin(a) + z * cos(a)] end # Clamped end of the beam l1 = selectnode(fens; box = [0 0 -100 * W 100 * W -100 * W 100 * W], inflate = tolerance) e1 = FDataDict("node_list" => l1, "component" => 1, "displacement" => 0.0) e2 = FDataDict("node_list" => l1, "component" => 2, "displacement" => 0.0) e3 = FDataDict("node_list" => l1, "component" => 3, "displacement" => 0.0) # Traction on the opposite edge boundaryfes = meshboundary(fes) Toplist = selectelem( fens, boundaryfes, box = [L L -100 * W 100 * W -100 * W 100 * W], inflate = tolerance, ) el1femm = FEMMBase(IntegDomain(subset(boundaryfes, Toplist), GaussRule(2, 2))) flux1 = FDataDict("femm" => el1femm, "traction_vector" => ForceIntensity(loadv)) # Make the region MR = DeforModelRed3D material = MatDeforElastIso(MR, 0.0, E, nu, 0.0) region1 = FDataDict( "femm" => FEMMDeforLinearMSH8(MR, IntegDomain(fes, GaussRule(3, 2)), material), ) # Make model data modeldata = FDataDict( "fens" => fens, "regions" => [region1], "essential_bcs" => [e1, e2, e3], "traction_bcs" => [flux1], ) # Call the solver modeldata = AlgoDeforLinearModule.linearstatics(modeldata) geom = modeldata["geom"] u = modeldata["u"] # Extract the solution nl = selectnode(fens, box = [L L -100 * W 100 * W -100 * W 100 * W], inflate = tolerance) theutip = mean(u.values[nl, :], dims = 1) # println("displacement = $(theutip[dir]) as compared to converged $uex") # println("normalized displacement = $(theutip[dir]/uex*100) %") @test (theutip[dir] - 0.005443006890338948) / 0.005443006890338948 <= 1.0e-6 # Write out mesh with displacements modeldata["postprocessing"] = FDataDict("file" => "twisted_beam") modeldata = AlgoDeforLinearModule.exportdeformation(modeldata) # Write out mesh with stresses modeldata["postprocessing"] = FDataDict("file" => "twisted_beam", "quantity" => :Cauchy, "component" => :xy) modeldata = AlgoDeforLinearModule.exportstress(modeldata) # Write out mesh with stresses modeldata["postprocessing"] = FDataDict("file" => "twisted_beam", "quantity" => :Cauchy, "component" => :xz) modeldata = AlgoDeforLinearModule.exportstress(modeldata) # Write out mesh with von Mises stresses modeldata["postprocessing"] = FDataDict("file" => "twisted_beam", "quantity" => :vm) modeldata = AlgoDeforLinearModule.exportstress(modeldata) # Write out mesh with von Mises stresses, elementwise modeldata["postprocessing"] = FDataDict("file" => "twisted_beam-ew", "quantity" => :vm) modeldata = AlgoDeforLinearModule.exportstresselementwise(modeldata) vm = modeldata["postprocessing"]["exported"][1]["field"] # println("extremes of von Mises: $([minimum(vm.values), maximum(vm.values)])") @test norm( [minimum(vm.values), maximum(vm.values)] - [5.21266051216496, 452.7873821727328], ) <= 1.0e-3 # Write out mesh with von Mises stresses, elementwise modeldata["postprocessing"] = FDataDict("file" => "twisted_beam-ew", "quantity" => :Cauchy, "component" => :xz) modeldata = AlgoDeforLinearModule.exportstresselementwise(modeldata) # Write out mesh with principal stresses, elementwise modeldata["postprocessing"] = FDataDict( "file" => "twisted_beam-principal-1-ew", "quantity" => :princCauchy, "component" => 1, ) modeldata = AlgoDeforLinearModule.exportstresselementwise(modeldata) ps = modeldata["postprocessing"]["exported"][1]["field"] # println("extremes of first principal stress: $([minimum(ps.values), maximum(ps.values)])") @test norm( [minimum(ps.values), maximum(ps.values)] - [-5.9919354276389285, 461.8866079275564], ) <= 1.0e-3 # Write out mesh with principal stresses, elementwise modeldata["postprocessing"] = FDataDict( "file" => "twisted_beam-principal-3-ew", "quantity" => :princCauchy, "component" => 3, ) modeldata = AlgoDeforLinearModule.exportstresselementwise(modeldata) ps = modeldata["postprocessing"]["exported"][1]["field"] # println("extremes of third principal stress: $([minimum(ps.values), maximum(ps.values)])") @test norm( [minimum(ps.values), maximum(ps.values)] - [-461.88660792935354, 5.9919354278587855], ) <= 1.0e-3 # Write out mesh with principal stresses, elementwise modeldata["postprocessing"] = FDataDict( "file" => "twisted_beam-press-ew", "quantity" => :pressure, "component" => 1, ) modeldata = AlgoDeforLinearModule.exportstresselementwise(modeldata) ps = modeldata["postprocessing"]["exported"][1]["field"] # println("extremes of pressure: $([minimum(ps.values), maximum(ps.values)])") @test norm( [minimum(ps.values), maximum(ps.values)] - [-167.8998735447784, 167.89987354544647], ) <= 1.0e-3 try for f in [ "twisted_beam-Cauchyxy-region 1.vtk", "twisted_beam-press-ew-pressure1-region 1.vtk", "twisted_beam-Cauchyxz-region 1.vtk", "twisted_beam-principal-1-ew-princCauchy1-region 1.vtk", "twisted_beam-ew-Cauchyxz-region 1.vtk", "twisted_beam-principal-3-ew-princCauchy3-region 1.vtk", "twisted_beam1.vtk", "twisted_beam-ew-vm1-region 1.vtk", "twisted_beam-vm1-region 1.vtk", ] rm(f) end catch end # println("Done") true end end using .mtwistedalgofin mtwistedalgofin.test()
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
8862
module mmmtdt1 using FinEtools using FinEtoolsDeforLinear using LinearAlgebra using Test function test() MR = DeforModelRed3D symmet(a) = a + transpose(a) a = rand(3, 3) @test abs(det(a) - dett(MR, a)) / abs(det(a)) <= 1.0e-6 a = rand(3, 3) @test abs(det(a) - dett(MR, a)) / abs(det(a)) <= 1.0e-6 a = rand(3, 3) @test abs(det(a) - dett(MR, a)) / abs(det(a)) <= 1.0e-6 a = symmet(rand(3, 3)) @test abs(det(a) - dett(MR, a)) / abs(det(a)) <= 1.0e-6 a = rand(3, 3) @test abs(det(a) - dett(MR, a)) / abs(det(a)) <= 1.0e-6 a = rand(3, 3) @test abs(det(a) - dett(MR, a)) / abs(det(a)) <= 1.0e-6 a = rand(3, 3) @test abs(det(a) - dett(MR, a)) / abs(det(a)) <= 1.0e-6 a = symmet(rand(3, 3)) @test abs(det(a) - dett(MR, a)) / abs(det(a)) <= 1.0e-6 a = symmet(rand(3, 3)) av = fill(zero(eltype(a)), 6) strainttov!(MR, av, a) @test abs(det(a) - strainvdet(MR, av)) / abs(det(a)) <= 1.0e-6 a = symmet(rand(3, 3)) av = fill(zero(eltype(a)), 6) strainttov!(MR, av, a) @test abs(det(a) - strainvdet(MR, av)) / abs(det(a)) <= 1.0e-6 a = symmet(rand(3, 3)) av = fill(zero(eltype(a)), 6) strainttov!(MR, av, a) @test abs(det(a) - strainvdet(MR, av)) / abs(det(a)) <= 1.0e-6 a = symmet(rand(3, 3)) av = fill(zero(eltype(a)), 6) strainttov!(MR, av, a) @test abs(det(a) - strainvdet(MR, av)) / abs(det(a)) <= 1.0e-6 a = symmet(rand(3, 3)) av = fill(zero(eltype(a)), 6) strainttov!(MR, av, a) @test abs(det(a) - strainvdet(MR, av)) / abs(det(a)) <= 1.0e-6 a = symmet(rand(3, 3)) av = fill(zero(eltype(a)), 6) strainttov!(MR, av, a) @test abs(det(a) - strainvdet(MR, av)) / abs(det(a)) <= 1.0e-6 a = symmet(rand(3, 3)) av = fill(zero(eltype(a)), 6) strainttov!(MR, av, a) @test abs(tr(a) - strainvtr(MR, av)) / abs(tr(a)) <= 1.0e-6 a = symmet(rand(3, 3)) av = fill(zero(eltype(a)), 6) strainttov!(MR, av, a) @test abs(tr(a) - strainvtr(MR, av)) / abs(tr(a)) <= 1.0e-6 a = symmet(rand(3, 3)) av = fill(zero(eltype(a)), 6) strainttov!(MR, av, a) @test abs(tr(a) - strainvtr(MR, av)) / abs(tr(a)) <= 1.0e-6 end end using .mmmtdt1 mmmtdt1.test() module mmmtdtens4A1 using FinEtools using FinEtoolsDeforLinear using LinearAlgebra using Test function test() delta = (I, J) -> I == J ? 1.0 : 0.0 lambda = 3.3 mu = 0.156 F = [1.02 0.03 -0.04; 0.01 0.99 -0.03; -0.01 0.02 0.95] C = fill(0.0, 3, 3, 3, 3) for I = 1:3, J = 1:3, K = 1:3, L = 1:3 C[I, J, K, L] = lambda * delta(I, J) * delta(K, L) + mu * (delta(I, K) * delta(J, L) + delta(I, L) * delta(J, K)) end Cm = fill(0.0, 6, 6) tens4symmtto6x6t!(Cm, C) mI = Matrix(Diagonal([1.0, 1.0, 1.0, 0.5, 0.5, 0.5])) m1 = [1.0, 1.0, 1.0, 0.0, 0.0, 0.0] D = lambda * m1 * m1' + 2.0 * mu * mI @test norm(Cm - D) <= 1.0e-6 return true end end using .mmmtdtens4A1 mmmtdtens4A1.test() module mmmtdtens4B1 using FinEtools using FinEtoolsDeforLinear using LinearAlgebra using Test # using BenchmarkTools function test() delta = (I, J) -> I == J ? 1.0 : 0.0 lambda = 3.3 mu = 0.156 t = fill(0.0, 3, 3, 3, 3) delta = (I, J) -> I == J ? 1.0 : 0.0 tens4ijkl!(t, delta, delta) S = rand(3, 3) tS = fill(0.0, 3, 3) @test norm(tr(S) * I - tens4dot2!(tS, t, S)) <= 1.0e-12 # @btime tens4dot2!($tS, $t, $S) return true end end using .mmmtdtens4B1 mmmtdtens4B1.test() module mmmtdtens4B2 using FinEtools using FinEtoolsDeforLinear using LinearAlgebra using Test # using BenchmarkTools function test() delta = (I, J) -> I == J ? 1.0 : 0.0 lambda = 3.3 mu = 0.156 t = fill(0.0, 3, 3, 3, 3) delta = (I, J) -> I == J ? 1.0 : 0.0 tens4iljk!(t, delta, delta) S = rand(3, 3) # @show transpose(S) tS = fill(0.0, 3, 3) # @show transpose(S) - tens4dot2!(tS, t, S) @test norm(transpose(S) - tens4dot2!(tS, t, S)) <= 1.0e-12 # @btime tens4dot2!($tS, $t, $S) return true end end using .mmmtdtens4B2 mmmtdtens4B2.test() module mmmtdtens4B3 using FinEtools using FinEtoolsDeforLinear using LinearAlgebra using Test # using BenchmarkTools function test() delta = (I, J) -> I == J ? 1.0 : 0.0 lambda = 3.3 mu = 0.156 t = fill(0.0, 3, 3, 3, 3) delta = (I, J) -> I == J ? 1.0 : 0.0 tens4ikjl!(t, delta, delta) S = rand(3, 3) tS = fill(0.0, 3, 3) # @show S - tens4dot2!(tS, t, S) @test norm(S - tens4dot2!(tS, t, S)) <= 1.0e-12 # @btime tens4dot2!($tS, $t, $S) return true end end using .mmmtdtens4B3 mmmtdtens4B3.test() module mmmtdtens4B4 using FinEtools using FinEtoolsDeforLinear using LinearAlgebra using Test # using BenchmarkTools function test() delta = (I, J) -> I == J ? 1.0 : 0.0 lambda = 3.3 mu = 0.156 t = fill(0.0, 3, 3, 3, 3) S = rand(3, 3) tS = fill(0.0, 3, 3) tens4identity!(t) @test norm(S - tens4dot2!(tS, t, S)) <= 1.0e-12 # @btime tens4dot2!($tS, $t, $S) return true end end using .mmmtdtens4B4 mmmtdtens4B4.test() module mmmtdtens4B5 using FinEtools using FinEtoolsDeforLinear using LinearAlgebra using Test # using BenchmarkTools function test() delta = (I, J) -> I == J ? 1.0 : 0.0 lambda = 3.3 mu = 0.156 t = fill(0.0, 3, 3, 3, 3) S = rand(3, 3) tS = fill(0.0, 3, 3) tens4transposor!(t) @test norm(S' - tens4dot2!(tS, t, S)) <= 1.0e-12 # @btime tens4dot2!($tS, $t, $S) return true end end using .mmmtdtens4B5 mmmtdtens4B5.test() module mmmtdtens4B6 using FinEtools using FinEtoolsDeforLinear using LinearAlgebra using Test # using BenchmarkTools function test() delta = (I, J) -> I == J ? 1.0 : 0.0 lambda = 3.3 mu = 0.156 t = fill(0.0, 3, 3, 3, 3) S = rand(3, 3) tS = fill(0.0, 3, 3) tens4tracor!(t) @test norm(tr(S) * 1I - tens4dot2!(tS, t, S)) <= 1.0e-12 # @btime tens4dot2!($tS, $t, $S) return true end end using .mmmtdtens4B6 mmmtdtens4B6.test() module mmmtdtens4B8 using FinEtools using FinEtoolsDeforLinear using LinearAlgebra using Test # using BenchmarkTools function test() delta = (I, J) -> I == J ? 1.0 : 0.0 lambda = 3.3 mu = 0.156 t = fill(0.0, 3, 3, 3, 3) S = rand(3, 3) tens4skewor!(t) tS = rand(3, 3) @test norm((S - S') / 2 - tens4dot2!(tS, t, S)) <= 1.0e-12 # @btime tens4dot2!($tS, $t, $S) return true end end using .mmmtdtens4B8 mmmtdtens4B8.test() module mmmtdtens4C1 using FinEtools using FinEtoolsDeforLinear using LinearAlgebra using Test # using BenchmarkTools function test() t = fill(0.0, 3, 3, 3, 3) tens4identity!(t) S = rand(3, 3) tS = fill(0.0, 3, 3) tens4dot2!(tS, t, S) # @show S - tS @test norm(S - tS) <= 1.0e-12 return true end end using .mmmtdtens4C1 mmmtdtens4C1.test() module mmmtdtens4C2 using FinEtools using FinEtoolsDeforLinear using LinearAlgebra using Test # using BenchmarkTools function test() t = fill(0.0, 3, 3, 3, 3) tens4transposor!(t) S = rand(3, 3) tS = fill(0.0, 3, 3) tens4dot2!(tS, t, S) # @show S - tS @test norm(S' - tS) <= 1.0e-12 return true end end using .mmmtdtens4C2 mmmtdtens4C2.test() module mmmtdtens4C3 using FinEtools using FinEtoolsDeforLinear using LinearAlgebra using Test # using BenchmarkTools function test() t = fill(0.0, 3, 3, 3, 3) tens4tracor!(t) S = rand(3, 3) tS = fill(0.0, 3, 3) tens4dot2!(tS, t, S) # @show tr(S) * I - tS @test norm(tr(S) * I - tS) <= 1.0e-12 return true end end using .mmmtdtens4C3 mmmtdtens4C3.test() module mmmtdtens4C4 using FinEtools using FinEtoolsDeforLinear using LinearAlgebra using Test # using BenchmarkTools function test() t = fill(0.0, 3, 3, 3, 3) tens4symmetrizor!(t) S = rand(3, 3) tS = fill(0.0, 3, 3) tens4dot2!(tS, t, S) # @show (S + S')/2 * I - tS @test norm((S + S') / 2 - tS) <= 1.0e-12 return true end end using .mmmtdtens4C4 mmmtdtens4C4.test() module mmmtdtens4C5 using FinEtools using FinEtoolsDeforLinear using LinearAlgebra using Test # using BenchmarkTools function test() t = fill(0.0, 3, 3, 3, 3) tens4skewor!(t) S = rand(3, 3) tS = fill(0.0, 3, 3) tens4dot2!(tS, t, S) # @show (S - S')/2 * I - tS @test norm((S - S') / 2 - tS) <= 1.0e-12 return true end end using .mmmtdtens4C5 mmmtdtens4C5.test() module mmmtdtens4C6 using FinEtools using FinEtoolsDeforLinear using LinearAlgebra using Test # using BenchmarkTools function test() t = fill(0.0, 3, 3, 3, 3) tens4deviator!(t) S = rand(3, 3) tS = fill(0.0, 3, 3) tens4dot2!(tS, t, S) # @show tr((S - tr(S)/3*I) ), tr(tS) @test norm(tr((S - tr(S) / 3 * I)) - tr(tS)) <= 1.0e-12 return true end end using .mmmtdtens4C6 mmmtdtens4C6.test()
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
2124
module m4thsymmcheck1 using FinEtools using FinEtoolsDeforLinear: tens4checksymmetry, tens4symmt6x6tot!, tens4symmtto6x6t! using LinearAlgebra using Test function test() C = rand(6, 6) C = C + C' Co = deepcopy(C) t = fill(0.0, 3, 3, 3, 3) tens4symmt6x6tot!(t, C) @test tens4checksymmetry(t) tens4symmtto6x6t!(C, t) @assert norm(C - C') <= eps(1.0) @assert norm(C - Co) <= eps(1.0) end end using .m4thsymmcheck1 m4thsymmcheck1.test() module mlumpedmass1 using FinEtools using FinEtoolsDeforLinear using Test import Arpack: eigs function test() E = 1 * phun("PA") nu = 0.499 rho = 1 * phun("KG/M^3") a = 1 * phun("M") b = a h = a n1 = 10# How many element edges per side? na = n1 nb = n1 nh = n1 neigvs = 20 # how many eigenvalues OmegaShift = (0.01 * 2 * pi)^2 MR = DeforModelRed3D fens, fes = H20block(a, b, h, na, nb, nh) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz, 1), 3)) # displacement field numberdofs!(u) material = MatDeforElastIso(MR, rho, E, nu, 0.0) femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3, 2)), material) K = stiffness(femm, geom, u) femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3, 3)), material) M = mass(femm, geom, u) d, v, nev, nconv = eigs(K + OmegaShift * M, M; nev = neigvs, which = :SM) d = d .- OmegaShift fs = real(sqrt.(complex(d))) / (2 * pi) @test abs(fs[7] - 0.26259869196259) < 1.0e-5 femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3, 3)), material) M = mass(femm, SysmatAssemblerSparseHRZLumpingSymm(), geom, u) d, v, nev, nconv = eigs(K + OmegaShift * M, M; nev = neigvs, which = :SM) d = d .- OmegaShift fs = real(sqrt.(complex(d))) / (2 * pi) @test abs(fs[7] - 0.2598164590380608) < 1.0e-5 # println("Eigenvalues: $fs [Hz]") # mode = 17 # scattersysvec!(u, v[:,mode]) # File = "unit_cube_modes.vtk" # vtkexportmesh(File, fens, fes; vectors=[("mode$mode", u.values)]) true end end using .mlumpedmass1 mlumpedmass1.test()
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
7472
# # Cook panel under plane stress # Source code: [`Cook-plane-stress_tut.jl`](Cook-plane-stress_tut.jl) # ## Description # In this example we investigate the well-known benchmark of a tapered panel # under plane stress conditions known under the name of Cook. The problem has # been solved many times with a variety of finite element models and hence the # solution is well-known. # ## Goals # - Show how to generate the mesh by creating a rectangular block and reshaping it. # - Execute the simulation with a static-equilibrium algorithm (solver). ## # ## Definitions # The problem is solved in a script. We begin by `using` the top-level module `FinEtools`. # Further, we use the linear-deformation application package. using FinEtools using FinEtoolsDeforLinear # With the algorithm modules, the problem can be set up (the materials, boundary # conditions, and mesh are defined) and handed off to an algorithm (in this # case linear static solution). Then for postprocessing another set of # algorithms can be invoked. using FinEtoolsDeforLinear.AlgoDeforLinearModule # A few input parameters are defined: the material parameters. Note: the units # are consistent, but unnamed. E = 1.0; nu = 1.0/3; # The geometry of the tapered panel. width = 48.0; height = 44.0; thickness = 1.0; free_height = 16.0; # Location of tracked deflection is the midpoint of the loaded edge. Mid_edge = [48.0, 52.0]; # The tapered panel is loaded along the free edge with a unit force, which is # here converted to loading per unit area. magn = 1.0/free_height/thickness;# Magnitude of applied load # For the above input parameters the converged displacement of the tip of the # tapered panel in the direction of the applied shear load is convutip = 23.97; # The mesh is generated as a rectangular block to begin with, and then the # coordinates of the nodes are tweaked into the tapered panel shape. In this # case we are using quadratic triangles (T6). n = 10; # number of elements per side fens, fes = T6block(width, height, n, n) # Reshape the rectangle into a trapezoidal panel: for i in 1:count(fens) fens.xyz[i,2] += (fens.xyz[i,1]/width)*(height -fens.xyz[i,2]/height*(height-free_height)); end # The boundary conditions are applied to selected finite element nodes. The # selection is based on the inclusion in a selection "box". tolerance = minimum([width, height])/n/1000.;#Geometrical tolerance # Clamped edge of the membrane l1 = selectnode(fens; box=[0.,0.,-Inf, Inf], inflate = tolerance); # The list of the selected nodes is then used twice, to fix the degree of # freedom in the direction 1 and in the direction 2. The essential-boundary # condition data is stored in dictionaries: `ess1` and `ess2 `. These # dictionaries are used below to compose the computational model. ess1 = FDataDict("displacement"=> 0.0, "component"=> 1, "node_list"=>l1); ess2 = FDataDict("displacement"=> 0.0, "component"=> 2, "node_list"=>l1); # The traction boundary condition is applied to the finite elements on the boundary of the panel. First we generate the three-node "curve" elements on the entire boundary of the panel. boundaryfes = meshboundary(fes); # Then from these finite elements we choose the ones that are inside the box # that captures the edge of the geometry to which the traction should be # applied. Toplist = selectelem(fens, boundaryfes, box= [width, width, -Inf, Inf ], inflate= tolerance); # To apply the traction we create a finite element model machine (FEMM). For the # evaluation of the traction it is sufficient to create a "base" FEMM. It # consists of the geometry data `IntegDomain` (connectivity, integration rule, # evaluation of the basis functions and basis function gradients with respect # to the parametric coordinates). This object is composed of the list of the # finite elements and an appropriate quadrature rule (Gauss rule here). el1femm = FEMMBase(IntegDomain(subset(boundaryfes, Toplist), GaussRule(1, 3), thickness)); # The traction boundary condition is specified with a constant traction vector and the FEMM that will be used to evaluate the load vector. flux1 = FDataDict("traction_vector"=>[0.0,+magn], "femm"=>el1femm ); # We make the dictionary for the region (the interior of the domain). The FEMM # for the evaluation of the integrals over the interior of the domain (that is # the stiffness matrix) and the material are needed. The geometry data now is # equipped with the triangular three-point rule. Note the model-reduction # type which is used to dispatch to appropriate specializations of the material # routines and the FEMM which needs to execute different code for different # reduced-dimension models. Here the model reduction is "plane stress". MR = DeforModelRed2DStress material = MatDeforElastIso(MR, 0.0, E, nu, 0.0) region1 = FDataDict("femm"=>FEMMDeforLinear(MR, IntegDomain(fes, TriRule(3), thickness), material)); # The model data is a dictionary. In the present example it consists of the # node set, the array of dictionaries for the regions, and arrays of # dictionaries for each essential and natural boundary condition. modeldata = FDataDict("fens"=>fens, "regions"=>[region1], "essential_bcs"=>[ess1, ess2], "traction_bcs"=>[flux1] ); # When the model data is defined, we simply pass it to the algorithm. modeldata = AlgoDeforLinearModule.linearstatics(modeldata); # The model data is augmented in the algorithm by the nodal field representing # the geometry and the displacement field computed by solving the system of # linear algebraic equations of equilibrium. u = modeldata["u"]; geom = modeldata["geom"]; # The complete information returned from the algorithm is @show keys(modeldata) # Now we can extract the displacement at the mid-edge node and compare to the # converged (reference) value. The code below selects the node inside a very # small box of the size `tolerance` which presumably contains only a single # node, the one at the midpoint of the edge. nl = selectnode(fens, box=[Mid_edge[1],Mid_edge[1],Mid_edge[2],Mid_edge[2]], inflate=tolerance); theutip = u.values[nl,:] println("displacement =$(theutip[2]) as compared to converged $convutip") # For postprocessing we will export a VTK file with the displacement field # (vectors) and one scalar field ($\sigma_{xy}$). modeldata["postprocessing"] = FDataDict("file"=>"cookstress", "quantity"=>:Cauchy, "component"=>:xy); modeldata = AlgoDeforLinearModule.exportstress(modeldata); # The attribute `"postprocessing"` holds additional data computed and returned # by the algorithm: @show keys(modeldata["postprocessing"]) # The exported data can be digested as follows: `modeldata["postprocessing"] # ["exported"]` is an array of exported items. display(keys(modeldata["postprocessing"]["exported"])) # Each entry of the array is a dictionary: display(keys(modeldata["postprocessing"]["exported"][1])) # Provided we have `paraview` in the PATH, we can bring it up to display the # exported data. File = modeldata["postprocessing"]["exported"][1]["file"] @async run(`"paraview.exe" $File`); # We can also extract the minimum and maximum value of the shear stress # (-0.06, and 0.12). display(modeldata["postprocessing"]["exported"][1]["quantity"]) display(modeldata["postprocessing"]["exported"][1]["component"]) fld = modeldata["postprocessing"]["exported"][1]["field"] println("$(minimum(fld.values)) $(maximum(fld.values))") true
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
7418
# # TEST FV32: Cantilevered tapered membrane, free vibration # Source code: [`FV32_tut.jl`](FV32_tut.jl) # ## Description # FV32: Cantilevered tapered membrane is a test recommended by the National # Agency for Finite Element Methods and Standards (U.K.): Test FV32 from NAFEMS # publication TNSB, Rev. 3, “The Standard NAFEMS Benchmarks,” October 1990. # Reference solution: 44.623, 130.03, 162.70, 246.05, 379.90, 391.44 Hz for the # first six modes. # The benchmark is originally for plane stress conditions. We simulate the # plane-stress conditions with a three-dimensional mesh that is constrained # along one plane of nodes to effect the constrained motion only in the plane # of the trapezoidal membrane. # ![](FV32-mesh.png) # ## References # [1] Test FV32 from NAFEMS publication TNSB, Rev. 3, “The Standard NAFEMS # Benchmarks,” October 1990. # ## Goals # - Show how to generate hexahedral mesh in a rectangular block and shape it # into a trapezoid. # - Set up model data for the solution algorithms. # - Use two different finite element model machines to evaluate the stiffness # and the mass. # - Execute the modal algorithm and export the results with another algorithm. ## # ## Definitions # Bring in the required support from the basic linear algebra, eigenvalue # solvers, and the finite element tools. using LinearAlgebra using Arpack using FinEtools using FinEtools using FinEtoolsDeforLinear using FinEtoolsDeforLinear: AlgoDeforLinearModule # The input data is given by the benchmark. E = 200*phun("GPA"); nu = 0.3; rho= 8000*phun("KG/M^3"); L = 10*phun("M"); W0 = 5*phun("M"); WL = 1*phun("M"); H = 0.05*phun("M"); # We shall generate a three-dimensional mesh. It should have 1 element through # the thickness, and 8 and 4 elements in the plane of the membrane. nL, nW, nH = 8, 4, 1;# How many element edges per side? # The reference frequencies are obtained from [1]. Reffs = [44.623 130.03 162.70 246.05 379.90 391.44] # The three-dimensional mesh of 20 node serendipity hexahedral should correspond # to the plane-stress quadratic serendipity quadrilateral (CPS8R) used in the # Abaqus benchmark. We simulate the plane-stress conditions with a # three-dimensional mesh that is constrained along one plane of nodes to effect # the constrained motion only in the plane of the trapezoidal membrane. No # bending out of plane! # First we generate mesh of a rectangular block. fens,fes = H20block(1.0, 2.0, 1.0, nL, nW, nH) # Now distort the rectangular block into the tapered plate. for i in 1:count(fens) xi, eta, theta = fens.xyz[i,:]; eta = eta - 1.0 fens.xyz[i,:] = [xi*L eta*(1.0 - 0.8*xi)*W0/2 theta*H/2]; end # We can visualize the mesh with Paraview (for instance). File = "FV32-mesh.vtk" vtkexportmesh(File, fens, fes) @async run(`"paraview.exe" $File`) # The simulation will be executed with the help of algorithms defined in the # package `FinEtoolsDeforLinear`. The algorithms accept a dictionary of model # data. The model data dictionary will be built up as follows. # First we make the interior region. The model reduction is for a three-dimensional finite element model. MR = DeforModelRed3D material = MatDeforElastIso(MR, rho, E, nu, 0.0) # We shall create two separate finite element model machines. They are # distinguished by the quadrature rule. The mass rule, in order to evaluate the # mass matrix accurately, needs to be of higher order than the one we prefer to # use for the stiffness. region1 = FDataDict("femm"=>FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3,2)), material), "femm_mass"=>FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3,3)), material)) # Select nodes that will be clamped. nl1 = selectnode(fens; plane=[1.0 0.0 0.0 0.0], thickness=H/1.0e4) ebc1 = FDataDict("node_list"=>nl1, "component"=>1, "displacement"=>0.0) ebc2 = FDataDict("node_list"=>nl1, "component"=>2, "displacement"=>0.0) ebc3 = FDataDict("node_list"=>nl1, "component"=>3, "displacement"=>0.0) # Export a VTK file to visualize the selected points. Choose the # representation "Points", and select color and size approximately 4. These # notes should correspond to the clamped base of the membrane. File = "FV32-nl1.vtk" vtkexportmesh(File, fens, FESetP1(reshape(nl1, length(nl1), 1))) # Select all nodes on the plane Z = 0. This will be prevented from moving in the # Z direction. nl4 = selectnode(fens; plane=[0.0 0.0 1.0 0.0], thickness=H/1.0e4) ebc4 = FDataDict("node_list"=>nl4, "component"=>3, "displacement"=>0.0) # Export a VTK file to visualize the selected points. Choose the # representation "Points", and select color and size approximately 4. These # points all should be on the bottom face of the three-dimensional domain. File = "FV32-nl4.vtk" vtkexportmesh(File, fens, FESetP1(reshape(nl4, length(nl4), 1))) # Make model data: the nodes, the regions, the boundary conditions, and the # number of eigenvalues are set. Note that the number of eigenvalues needs to # be set to 6+N, where 6 is the number of rigid body modes, and N is the # number of deformation frequencies we are interested in. neigvs = 10 # how many eigenvalues modeldata = FDataDict("fens"=> fens, "regions"=> [region1], "essential_bcs"=>[ebc1 ebc2 ebc3 ebc4], "neigvs"=>neigvs) # Solve using an algorithm: the modal solver. The solver will supplement the # model data with the geometry and displacement fields, and the solution # (eigenvalues, eigenvectors), and the data upon return can be extracted from # the dictionary. modeldata = AlgoDeforLinearModule.modal(modeldata) # Here we extract the angular velocities corresponding to the natural frequencies. fs = modeldata["omega"]/(2*pi) println("Eigenvalues: $fs [Hz]") println("Percentage frequency errors: $((vec(fs[1:6]) - vec(Reffs))./vec(Reffs)*100)") # The problem was solved for instance with Abaqus, using plane stress eight node # elements. The results were: # | Element | Frequencies (relative errors) | # | ------- | ---------------------------- | # | CPS8R | 44.629 (0.02) 130.11 (0.06) 162.70 (0.00) 246.42 (0.15) 381.32 (0.37) 391.51 (0.02) | # Compared these numbers with those computed by our three-dimensional model. # The mode shapes may be visualized with `paraview`. Here is for instance mode # 8: # ![](FV32-mode-8.png) # The algorithm to export the mode shapes expects some input. We shall specify # the filename and the numbers of modes to export. modeldata["postprocessing"] = FDataDict("file"=>"FV32-modes", "mode"=>1:neigvs) modeldata = AlgoDeforLinearModule.exportmode(modeldata) # The algorithm attaches a little bit to the name of the exported file. If # `paraview.exe` is installed, the command below should bring up the # postprocessing file. @async run(`"paraview.exe" $(modeldata["postprocessing"]["file"]*"1.vtk")`) # To animate the mode shape in `Paraview` do the following: # - Apply the filter "Warp by vector". # - Turn on the "Animation view". # - Add the mode shape data set ("WarpByVector1") by clicking the "+". # - Double-click the line with the data set. The "Animation Keyframes" dialog # will come up. Double-click "Ramp" interpolation, and change it # to "Sinusoid". Set the frequency to 1.0. Change the "Value" from 0 to 100. # - In the animation view, set the mode to "Real-time", and the duration to 4.0 # seconds. # - Click on the "Play" button. If you wish, click on the "Loop" button. true
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
8705
# # R0031/3 Composite plate test # Source code: [`R0031-3-Composite-benchmark_tut.jl`](R0031-3-Composite-benchmark_tut.jl) # ## Description # This is a test recommended by the National Agency for Finite Element Methods and Standards (U.K.): Test R0031/3 from NAFEMS publication R0031, “Composites Benchmarks,” February 1995. It is a composite (sandwich) plate of square shape, simply supported along all four edges. Uniform transverse loading is applied to the top skin. The modeled part is one quarter of the full plate here. The serendipity quadratic hexahedra are used, with full integration. # The solution can be compared with the benchmark results in the Abaqus manual ["Abaqus Benchmarks Guide"](http://130.149.89.49:2080/v6.7/books/bmk/default.htm?startat=ch04s09anf83.html). # We begin by `using` the toolkit `FinEtools`. using FinEtools # Further, we use the linear-deformation application package. using FinEtoolsDeforLinear # The problem will be solved with a pre-packaged algorithm. using FinEtoolsDeforLinear.AlgoDeforLinearModule # For some basic statistics. import Statistics: mean # The material parameters are specified for an orthotropic material model. The units are attached using the `phun` function which can take the specification of the units and spits out the numerical multiplier. Here the benchmark specifies the input parameters in the English Imperial units. The skin material: E1s = 1.0e7*phun("psi") E2s = 0.4e7*phun("psi") E3s = 0.4e7*phun("psi") nu12s = 0.3 nu13s = 0.3 nu23s = 0.3 G12s = 0.1875e7*phun("psi") G13s = 0.1875e7*phun("psi") G23s = 0.1875e7*phun("psi"); # The core material: E1c = 10.0*phun("psi") E2c = 10.0*phun("psi") E3c = 10e4.*phun("psi") nu12c = 0. nu13c = 0. nu23c = 0. G12c = 10.0*phun("psi") G13c = 3.0e4*phun("psi") G23c = 1.2e4*phun("psi"); # The magnitude of the distributed uniform transfers loading is tmag = 100*phun("psi"); # Now we generate the mesh. The sandwich plate volume is divided into a regular Cartesian grid in the $X$ and $Y$ direction in the plane of the plate, and in the thickness direction it is divided into three layers, with each layer again subdivided into multiple elements. L = 10.0*phun("in") # side of the square plate nL = 8 # number of elements along the side of the plate xs = collect(linearspace(0.0, L/2, nL+1)) ys = collect(linearspace(0.0, L/2, nL+1));; # The thicknesses are specified from the bottom of the plate: skin, core, and then again skin. ts = [0.028; 0.75; 0.028]*phun("in") nts = [2; 3; 2]; # number of elements through the thickness for each layer # The `H8layeredplatex` meshing function generates the mesh and marks the elements with a label identifying the layer to which they belong. We will use the label to create separate regions, with their own separate materials. fens,fes = H8layeredplatex(xs, ys, ts, nts) # The linear hexahedra are subsequently converted to serendipity (quadratic) elements. fens,fes = H8toH20(fens,fes); # The model reduction here simply says this is a fully three-dimensional model. The two orthotropic materials are created. MR = DeforModelRed3D skinmaterial = MatDeforElastOrtho(MR, 0.0, E1s, E2s, E3s, nu12s, nu13s, nu23s, G12s, G13s, G23s, 0.0, 0.0, 0.0) corematerial = MatDeforElastOrtho(MR, 0.0, E1c, E2c, E3c, nu12c, nu13c, nu23c, G12c, G13c, G23c, 0.0, 0.0, 0.0); # Now we are ready to create three material regions: one for the bottom skin, one for the core, and one for the top skin. The selection of the finite elements assigned to each of the three regions is based on the label. Full Gauss quadrature is used. rl1 = selectelem(fens, fes, label=1) skinbot = FDataDict("femm"=>FEMMDeforLinear(MR, IntegDomain(subset(fes, rl1), GaussRule(3, 3)), skinmaterial)) rl3 = selectelem(fens, fes, label=3) skintop = FDataDict("femm"=>FEMMDeforLinear(MR, IntegDomain(subset(fes, rl3), GaussRule(3, 3)), skinmaterial)) rl2 = selectelem(fens, fes, label=2) core = FDataDict("femm"=>FEMMDeforLinear(MR, IntegDomain(subset(fes, rl2), GaussRule(3, 3)), corematerial)); # Note that since we did not specify the material coordinate system, the default is assumed (which is identical to the global Cartesian coordinate system). @show skinbot["femm"].mcsys # Next we select the nodes to which essential boundary conditions will be applied. A node is selected if it is within the specified box which for the purpose of the test is inflated in all directions by `tolerance`. The nodes on the planes of symmetry need to be selected, and also the nodes along the edges (faces) to be simply supported need to be identified. tolerance = 0.0001*phun("in") lx0 = selectnode(fens, box=[0.0 0.0 -Inf Inf -Inf Inf], inflate=tolerance) lxL2 = selectnode(fens, box=[L/2 L/2 -Inf Inf -Inf Inf], inflate=tolerance) ly0 = selectnode(fens, box=[-Inf Inf 0.0 0.0 -Inf Inf], inflate=tolerance) lyL2 = selectnode(fens, box=[-Inf Inf L/2 L/2 -Inf Inf], inflate=tolerance); # We have four sides of the quarter of the plate, two on each plane of symmetry, and two along the circumference. Hence we create four essential boundary condition definitions, one for each of the sides of the plate. ex0 = FDataDict( "displacement"=> 0.0, "component"=> 3, "node_list"=>lx0 ) exL2 = FDataDict( "displacement"=> 0.0, "component"=> 1, "node_list"=>lxL2 ) ey0 = FDataDict( "displacement"=> 0.0, "component"=> 3, "node_list"=>ly0 ) eyL2 = FDataDict( "displacement"=> 0.0, "component"=> 2, "node_list"=>lyL2 ); # The traction on the top surface of the top skin is applied to the subset of the surface mesh of the entire domain. First we compute the boundary mesh, and then from the boundary mesh we select the surface finite elements that "face" upward (along the positive $Z$ axis). bfes = meshboundary(fes) ttopl = selectelem(fens, bfes; facing=true, direction = [0.0 0.0 1.0]) Trac = FDataDict("traction_vector"=>[0.0; 0.0; -tmag], "femm"=>FEMMBase(IntegDomain(subset(bfes, ttopl), GaussRule(2, 3)))); # The model data is composed of the finite element nodes, an array of the regions, an array of the essential boundary condition definitions, and an array of the traction (natural) boundary condition definitions. modeldata = FDataDict("fens"=>fens, "regions"=>[skinbot, core, skintop], "essential_bcs"=>[ex0, exL2, ey0, eyL2], "traction_bcs"=> [Trac] ); # With the model data assembled, we can now call the algorithm. modeldata = AlgoDeforLinearModule.linearstatics(modeldata); # The computed solution can now be postprocessed. The displacement is reported at the center of the plate, along the line in the direction of the loading. We select all the nodes along this line. u = modeldata["u"] geom = modeldata["geom"] lcenter = selectnode(fens, box=[L/2 L/2 L/2 L/2 -Inf Inf], inflate=tolerance); # The variation of the displacement along this line can be plotted as (the bottom surface of the shell is at $Z=0$): ix = sortperm(geom.values[lcenter, 3]) # Plot the data using Gnuplot Gnuplot.gpexec("reset session") @gp "set terminal windows 0 " :- @gp :- geom.values[lcenter, 3][ix] u.values[lcenter, 3][ix]./phun("in") " lw 2 with lp title 'cold leg' " :- @gp :- "set xlabel 'Z coordinate [in]'" :- @gp :- "set ylabel 'Vert displ [in]'" # A reasonable single number to report for the deflection at the center is the average of the displacements at the nodes at the center of the plate (-0.136348): cdis = mean(u.values[lcenter, 3])/phun("in"); println("Center node displacements $(cdis) [in]; NAFEMS-R0031-3 reference: –0.123 [in]") # The reference displacement at the center of -0.123 [in] reported for the benchmark is evaluated from an analytical formulation that neglects transverse (pinching) deformation. Due to the soft core, significant pinching is observed. The solution to the benchmark obtained in Abaqus with incompatible hexahedral elements (with the same number of elements as in the stacked continuum shell solution) is -0.131 [in], which is close to our own solution. Hence, our own solution is probably more accurate than the reference solution because it includes an effect neglected in the benchmark solution. # The deformed shape can be investigated visually in `paraview` (uncomment the line at the bottom if you have `paraview` in your PATH): File = "NAFEMS-R0031-3-plate.vtk" vtkexportmesh(File, connasarray(fes), geom.values, FinEtools.MeshExportModule.VTK.H20; scalars = [("Layer", fes.label)], vectors = [("displacement", u.values)]) # @async run(`"paraview.exe" $File`); # Note that the VTK file will contain element labels (which can help us distinguish between the layers) as scalar field, and the displacements as a vector field.
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git