licenses
sequencelengths
1
3
version
stringclasses
677 values
tree_hash
stringlengths
40
40
path
stringclasses
1 value
type
stringclasses
2 values
size
stringlengths
2
8
text
stringlengths
25
67.1M
package_name
stringlengths
2
41
repo
stringlengths
33
86
[ "MIT" ]
0.1.0
42d75e0b4f7cbdc29911175ddaa61f14293c6f19
code
1910
# Copyright (c) 2021 Idiap Research Institute, http://www.idiap.ch/ # Niccolò Antonello <[email protected]> export RightStringWeight """ `RightStringWeight(x)` | Set | ``\\oplus`` | ``\\otimes`` | ``\\bar{0}`` | ``\\bar{1}`` | |:-----------------------:|:----------------------:|:--------------:|:------------:|:------------:| |``L^*\\cup\\{\\infty\\}``| longest common suffix | ``\\cdot`` |``\\infty`` |``\\epsilon`` | where ``L^*`` is Kleene closure of the set of characters ``L`` and ``\\epsilon`` the empty string. """ struct RightStringWeight <: Semiring x::String iszero::Bool end RightStringWeight(x::String) = RightStringWeight(x,false) reversetype(::Type{S}) where {S <: RightStringWeight} = LeftStringWeight zero(::Type{RightStringWeight}) = RightStringWeight("",true) one(::Type{RightStringWeight}) = RightStringWeight("",false) # longest common suffix function lcs(a::RightStringWeight,b::RightStringWeight) if a.iszero return b elseif b.iszero return a else cnt = 0 for x in zip(reverse(a.x),reverse(b.x)) if x[1] == x[2] cnt +=1 else break end end return RightStringWeight(a.x[end-cnt+1:end]) end end *(a::T, b::T) where {T<:RightStringWeight}= ((a.iszero) | (b.iszero)) ? zero(T) : T(a.x * b.x) +(a::RightStringWeight, b::RightStringWeight) = lcs(a,b) function /(a::RightStringWeight, b::RightStringWeight) if b == zero(RightStringWeight) throw(ErrorException("Cannot divide by zero")) elseif a == zero(RightStringWeight) return a end return RightStringWeight(a.x[1:end-length(b.x)]) end reverse(a::RightStringWeight) = LeftStringWeight(reverse(a.x),a.iszero) #properties isidempotent(::Type{W}) where {W <: RightStringWeight} = true isright(::Type{W}) where {W <: RightStringWeight}= true isweaklydivisible(::Type{W}) where {W <: RightStringWeight}= true
FiniteStateTransducers
https://github.com/idiap/FiniteStateTransducers.jl.git
[ "MIT" ]
0.1.0
42d75e0b4f7cbdc29911175ddaa61f14293c6f19
code
2005
# Copyright (c) 2021 Idiap Research Institute, http://www.idiap.ch/ # Niccolò Antonello <[email protected]> # Semiring definitions abstract type Semiring end import Base: zero, one, +, *, / import Base: isapprox, parse, reverse, convert, get isapprox(a::T,b::T) where { T <: Semiring } = isapprox(a.x,b.x) reversetype(::Type{S}) where {S <: Semiring} = S reverse(a::S) where { S <: Semiring } = a reverseback(a::S) where { S <: Semiring } = a get(a::S) where { S <: Semiring } = a.x # properties """ `isleft(::Type{W})` Check if the semiring type `W` satisfies: ``\\forall a,b,c \\in \\mathbb{W} : c \\otimes(a \\oplus b) = c \\otimes a \\oplus c \\otimes b`` """ isleft(::Type{W}) where {W} = false # ∀ a,b,c: c*(a+b) = c*a + c*b """ `isright(::Type{W})` Check if the semiring type `W` satisfies: ``\\forall a,b,c \\in \\mathbb{W} : c \\otimes(a \\oplus b) = a \\otimes c \\oplus b \\otimes c`` """ isright(::Type{W}) where {W} = false # ∀ a,b,c: c*(a+b) = a*c + b*c """ `isweaklydivisible(::Type{W})` Check if the semiring type `W` satisfies: ``\\forall a,b \\in \\mathbb{W} \\ \\text{s.t.} \\ a \\oplus b \\neq \\bar{0} \\ \\exists z : x = (x \\oplus y ) \\otimes z`` """ isweaklydivisible(::Type{W}) where {W} = false # a+b ≂̸ 0: ∃ z s.t. x = (x+y)*z """ `ispath(::Type{W})` Check if the semiring type `W` satisfies: ``\\forall a,b \\in \\mathbb{W}: a \\oplus b = a \\lor a \\oplus b = b`` """ ispath(::Type{W}) where {W} = false # ∀ a,b: a+b = a or a+b=b """ `isidempotent(::Type{W})` Check if the semiring type `W` satisfies: ``\\forall a \\in \\mathbb{W}: a \\oplus a = a`` """ isidempotent(::Type{W}) where {W} = false # ∀ a: a+a = a """ `iscommulative(::Type{W})` Check if the semiring type `W` satisfies: ``\\forall a,b \\in \\mathbb{W}: a \\otimes b = b \\otimes a`` """ iscommulative(::Type{W}) where {W} = false # ∀ a,b: a*b = b*a iscomplete(::Type{W}) where {W} = false Base.show(io::IO, T::Semiring) = Base.show(io, T.x)
FiniteStateTransducers
https://github.com/idiap/FiniteStateTransducers.jl.git
[ "MIT" ]
0.1.0
42d75e0b4f7cbdc29911175ddaa61f14293c6f19
code
1475
# Copyright (c) 2021 Idiap Research Institute, http://www.idiap.ch/ # Niccolò Antonello <[email protected]> export TropicalWeight """ `TropicalWeight(x)` | Set | ``\\oplus``| ``\\otimes`` | ``\\bar{0}`` | ``\\bar{1}`` | |:-----------------------------------:|:----------:|:--------------:|:------------:|:------------:| |``\\mathbb{R}\\cup\\{\\pm\\infty\\}``| ``\\min`` | ``+`` |``\\infty`` | ``0`` | """ struct TropicalWeight{T <: AbstractFloat} <: Semiring x::T end zero(::Type{TropicalWeight{T}}) where T = TropicalWeight{T}(T(Inf)) one(::Type{TropicalWeight{T}}) where T = TropicalWeight{T}(zero(T)) *(a::TropicalWeight{T}, b::TropicalWeight{T}) where {T <: AbstractFloat} = TropicalWeight{T}(a.x + b.x) +(a::TropicalWeight{T}, b::TropicalWeight{T}) where {T <: AbstractFloat} = TropicalWeight{T}( min(a.x,b.x) ) /(a::TropicalWeight{T}, b::TropicalWeight{T}) where {T <: AbstractFloat} = TropicalWeight{T}( a.x-b.x ) # parsing parse(::Type{S},str) where {T, S <: TropicalWeight{T}} = S(parse(T,str)) #properties isidempotent(::Type{W}) where {W <: TropicalWeight} = true iscommulative(::Type{W}) where {W <: TropicalWeight} = true isleft(::Type{W}) where {W <: TropicalWeight}= true isright(::Type{W}) where {W <: TropicalWeight}= true isweaklydivisible(::Type{W}) where {W <: TropicalWeight}= true iscomplete(::Type{W}) where {W <: TropicalWeight}= true ispath(::Type{W}) where {W <: TropicalWeight}= true
FiniteStateTransducers
https://github.com/idiap/FiniteStateTransducers.jl.git
[ "MIT" ]
0.1.0
42d75e0b4f7cbdc29911175ddaa61f14293c6f19
code
2255
# example from http://openfst.org/twiki/bin/view/FST/ConcatDoc sym=Dict("$(Char(i))"=>i for i=97:122) A = WFST(sym) add_arc!(A,1=>2,"<eps>"=>"<eps>") add_arc!(A,2=>2,"a"=>"p", 2) add_arc!(A,2=>3,"b"=>"q", 3) add_arc!(A,3=>3,"c"=>"r", 4) add_arc!(A,3=>2,"<eps>"=>"<eps>", 5) initial!(A,1) final!(A,1) final!(A,3,5) #println(A) B = WFST(sym) add_arc!(B,1=>1,"a"=>"p",2) add_arc!(B,1=>2,"b"=>"q",3) add_arc!(B,2=>2,"c"=>"r",4) initial!(B,1) final!(B,2,5) #println(A) W,D = typeofweight(A),Int C = A*B #println(C) @test size(C) == (5,10) @test get_initial(C; single=false) == Dict(1=>one(W)) @test get_final(C; single=false) == Dict(5=>W(5)) @test C[1][1] == Arc{W,D}(0,0,one(W),2) @test C[1][2] == Arc{W,D}(0,0,one(W),4) @test C[2][1] == Arc{W,D}(sym["a"],sym["p"],W(2),2) @test C[2][2] == Arc{W,D}(sym["b"],sym["q"],W(3),3) @test C[3][1] == Arc{W,D}(sym["c"],sym["r"],W(4),3) @test C[3][2] == Arc{W,D}(0,0,W(5),2) @test C[3][3] == Arc{W,D}(0,0,W(5),4) @test C[4][1] == Arc{W,D}(sym["a"],sym["p"],W(2),4) @test C[4][2] == Arc{W,D}(sym["b"],sym["q"],W(3),5) @test C[5][1] == Arc{W,D}(sym["c"],sym["r"],W(4),5) B = WFST(sym,["z"]); initial!(B,1); final!(B,2) @test_throws ErrorException A*B B = WFST(["z"],sym); initial!(B,1); final!(B,2) @test_throws ErrorException A*B B = WFST(sym; W = ProbabilityWeight{Float32}); initial!(B,1); final!(B,2) @test_throws ErrorException A*B ### ### with deterministic acyclic WFSTs W = ProbabilityWeight{Float64} isym=Dict("$(Char(i))"=>i for i=97:122) osym=Dict(Char(i)=>i for i=97:122) A = WFST(isym,osym; W = W) add_arc!(A,1=>2,"a"=>'a',1) add_arc!(A,2=>4,"b"=>'b',2) add_arc!(A,2=>3,"c"=>'c',3) add_arc!(A,3=>4,"d"=>'d',4) add_arc!(A,1=>4,"e"=>'e',5) initial!(A,1) final!(A,3,6) final!(A,4,7) println(A) B = WFST(isym,osym; W = W) add_arc!(B,1=>2,"x"=>'x',8) add_arc!(B,1=>3,"y"=>'y',9) initial!(B,1) final!(B,2,10) final!(B,3,11) println(B) pas = collectpaths(A) pbs = collectpaths(B) C = A*B pcs = collectpaths(C) @test all([pa*pb in pcs for pa in pas, pb in pbs]) C = B*A pcs = collectpaths(C) @test all([pb*pa in pcs for pa in pas, pb in pbs]) C = A*A pcs = collectpaths(C) @test all([pa*pa in pcs for pa in pas, pb in pbs]) C = B*B pcs = collectpaths(C) @test all([pb*pb in pcs for pa in pas, pb in pbs])
FiniteStateTransducers
https://github.com/idiap/FiniteStateTransducers.jl.git
[ "MIT" ]
0.1.0
42d75e0b4f7cbdc29911175ddaa61f14293c6f19
code
986
# Copyright (c) 2021 Idiap Research Institute, http://www.idiap.ch/ # Niccolò Antonello <[email protected]> fst = WFST(["a","b","c"],["p","q","r"]) add_arc!(fst,1,1,"a","p",2) add_arc!(fst,1,2,"b","q",3) add_arc!(fst,2,2,"c","r",4) initial!(fst,1) final!(fst,2,5) fst_plus = closure(fst; star=false) println(fst_plus) fst_star = closure(fst; star=true) println(fst_star) @test isinitial(fst_star,3) @test isfinal(fst_star,3) @test isfinal(fst_star,2) W = typeofweight(fst) ilabels=["a","b","c"] o1,w1 = fst(ilabels) @test o1 == ["p","q","r"] @test w1 == W(2)*W(3)*W(4)*W(5) o2,w2 = fst_star([ilabels;ilabels]) @test o2 == [o1;o1] @test w2 == w1*w1 o3,w3 = fst_star([ilabels;ilabels]) @test o3 == o3 @test w2 == w3 o,w = fst([ilabels;ilabels]) @test w == zero(W) # fst star accepts empty string and returns the same with weight one o,w = fst_star(String[]) @test o == String[] @test w == one(W) # fst plus does not accept empty string o,w = fst_plus(String[]) @test w == zero(W)
FiniteStateTransducers
https://github.com/idiap/FiniteStateTransducers.jl.git
[ "MIT" ]
0.1.0
42d75e0b4f7cbdc29911175ddaa61f14293c6f19
code
4048
# Copyright (c) 2021 Idiap Research Institute, http://www.idiap.ch/ # Niccolò Antonello <[email protected]> # compose # using ex from Mohri et al. Speech recognition with FiniteStateTransducers L = String W = TropicalWeight{Float32} A = WFST(["a","b","c"]; W = W) add_arc!(A, 1, 2, "a", "b", 0.1) add_arc!(A, 2, 2, "c", "a", 0.3) add_arc!(A, 2, 4, "a", "a", 0.4) add_arc!(A, 1, 3, "b", "a", 0.2) add_arc!(A, 3, 4, "b", "b", 0.2) final!(A, 4, 0.6) initial!(A, 1) #println(A) size_A = size(A) B = WFST(get_isym(A); W = W) add_arc!(B, 1, 2, "b", "c", 0.3) add_arc!(B, 2, 3, "a", "b", 0.4) add_arc!(B, 3, 3, "a", "b", 0.6) final!(B, 3, 0.7) initial!(B, 1) size_B = size(B) #println(B) C = ∘(A,B; filter=Trivial) #println(C) @test size(A) == size_A @test size(B) == size_B @test isinitial(C,1) @test isfinal(C,4) @test get_weight(C,4) ≈ W(1.3) @test get_weight(C[1][1]) ≈ W(0.4) @test get_weight(C[2][1]) ≈ W(0.7) @test get_weight(C[2][2]) ≈ W(0.8) @test get_weight(C[3][1]) ≈ W(0.9) @test get_weight(C[3][2]) ≈ W(1.0) @test size(C) == (4,5) # using ex from http://openfst.org/twiki/bin/view/FST/ComposeDoc L = String W = TropicalWeight{Float64} A = WFST(["a","c"],["q","r","s"]; W=W) add_arc!(A, 1, 2, "a", "q", 1.0) add_arc!(A, 2, 2, "c", "s", 1.0) add_arc!(A, 1, 3, "a", "r", 2.5) initial!(A,1) final!(A,2,0) final!(A,3,2.5) #print(A) W = TropicalWeight{Float64} B = WFST(get_osym(A),["f","h","g","j"]; W=W) add_arc!(B, 1, 2, "q", "f", 1.0) add_arc!(B, 1, 3, "r", "h", 3.0) add_arc!(B, 2, 3, "s", "g", 2.5) add_arc!(B, 3, 3, "s", "j", 1.5) initial!(B,1) final!(B,3,2) #print(B) C = ∘(A,B,filter=Trivial) #println(C) @test isinitial(C,1) @test isfinal(C,3) @test isfinal(C,4) @test get_weight(C,3) ≈ W(4.5) @test get_weight(C,4) ≈ W(2.0) @test get_weight(C[1][1]) ≈ W(2.0) @test get_ilabel(C,1,1) == "a" @test get_olabel(C,1,1) == "f" @test get_nextstate(C[1][1]) == 2 @test get_weight(C[1][2]) ≈ W(5.5) @test get_ilabel(C,1,2) == "a" @test get_olabel(C,1,2) == "h" @test get_nextstate(C[1][2]) == 3 @test get_weight(C[2][1]) ≈ W(3.5) @test get_ilabel(C,2,1) == "c" @test get_olabel(C,2,1) == "g" @test get_nextstate(C[2][1]) == 4 @test get_weight(C[4][1]) ≈ W(2.5) @test get_ilabel(C,4,1) == "c" @test get_olabel(C,4,1) == "j" @test get_nextstate(C[4][1]) == 4 @test size(C) == (4,4) # using ex fig.8 (with different weights) from Mohri et al. Speech recognition with FiniteStateTransducers # with epsilon symbols A = txt2fst("openfst/A.fst", "openfst/sym.txt") B = txt2fst("openfst/B.fst", "openfst/sym.txt") # TODO add tests # for the moment we test equivalence of fst with sorted weights C = ∘(A,B;filter=Trivial) C_openfst = txt2fst("openfst/C_trivial.fst", "openfst/sym.txt") @test size(C) == size(C_openfst) w = sort([get_weight(a).x for a in get_arcs(C)]) w_openfst = sort([get(get_weight(a)) for a in get_arcs(C_openfst)]) @test all(w .== w_openfst) @test all(sort([values(C.finals)...]) .== sort([values(C_openfst.finals)...] )) #println(C) #println(C_openfst) C = ∘(A,B;filter=EpsMatch) C_openfst = txt2fst("openfst/C_match.fst", "openfst/sym.txt") @test size(C) == size(C_openfst) w = sort([get_weight(a).x for a in get_arcs(C)]) w_openfst = sort([get(get_weight(a)) for a in get_arcs(C_openfst)]) @test all(w .== w_openfst) @test all(sort([values(C.finals)...]) .== sort([values(C_openfst.finals)...] )) #println(C) #println(C_openfst) C = ∘(A,B;filter=EpsSeq) C_openfst = txt2fst("openfst/C_sequence.fst", "openfst/sym.txt") @test size(C) == size(C_openfst) w = sort([get_weight(a).x for a in get_arcs(C)]) w_openfst = sort([get(get_weight(a)) for a in get_arcs(C_openfst)]) @test all(w .== w_openfst) @test all(sort([values(C.finals)...]) .== sort([values(C_openfst.finals)...] )) #println(C) #println(C_openfst) ## L = txt2fst("openfst/L.fst", "openfst/chars.txt", "openfst/words.txt") #println(L) T = txt2fst("openfst/T.fst", "openfst/words.txt", "openfst/words.txt") #println(T) LT = ∘(L,T;filter=EpsSeq) #println(LT) @test size(LT) ==(11,10) @test_throws ErrorException T∘L # since A.osym != A.isym
FiniteStateTransducers
https://github.com/idiap/FiniteStateTransducers.jl.git
[ "MIT" ]
0.1.0
42d75e0b4f7cbdc29911175ddaa61f14293c6f19
code
538
# Copyright (c) 2021 Idiap Research Institute, http://www.idiap.ch/ # Niccolò Antonello <[email protected]> sym=Dict("$(Char(i))"=>i for i=97:122) A = WFST(sym) W = typeofweight(A) add_arc!(A,1,2,"a","a",1) add_arc!(A,1,3,"a","a",2) add_arc!(A,2,2,"b","b",3) add_arc!(A,3,3,"b","b",3) add_arc!(A,2,4,"c","c",5) add_arc!(A,3,4,"d","d",6) initial!(A,1) final!(A,4) println(A) @test is_deterministic(A) == false @test is_acceptor(A) D = determinize_fsa(A) #println(D) @test is_deterministic(D) @test size(D) == (3,4) # TODO add more tests
FiniteStateTransducers
https://github.com/idiap/FiniteStateTransducers.jl.git
[ "MIT" ]
0.1.0
42d75e0b4f7cbdc29911175ddaa61f14293c6f19
code
3416
# Copyright (c) 2021 Idiap Research Institute, http://www.idiap.ch/ # Niccolò Antonello <[email protected]> # DFS iterator test fst = WFST(Dict(1=>1)) add_arc!(fst, 1, 2, 1, 1, 1.0) add_arc!(fst, 1, 5, 1, 1, 1.0) add_arc!(fst, 1, 3, 1, 1, 1.0) add_arc!(fst, 2, 6, 1, 1, 1.0) add_arc!(fst, 2, 4, 1, 1, 1.0) add_arc!(fst, 5, 4, 1, 1, 1.0) add_arc!(fst, 3, 4, 1, 1, 1.0) add_arc!(fst, 3, 7, 1, 1, 1.0) initial!(fst,1) println(fst) println("DFS un-folded") println("Starting from state 1") dfs = FiniteStateTransducers.DFS(fst,1) dfs_it = Int[] completed_seq = Int[] for (p,s,n,d,e,a) in dfs println("$p,$s,$n") if d == true println("visiting first time $n (Gray)") push!(dfs_it,n) else if e println("completed state $s (Black)") push!(completed_seq,s) else println("node $n already visited") end end end @test completed_seq == [6,4,2,5,7,3,1] @test dfs_it == [2,6,4,5,3,7] L = Int fst = WFST(Dict(1=>1)) add_arc!(fst, 1, 2, 1, 1, 1.0) add_arc!(fst, 2, 3, 1, 1, 1.0) add_arc!(fst, 3, 1, 1, 1, 1.0) add_arc!(fst, 3, 4, 1, 1, 1.0) add_arc!(fst, 4, 5, 1, 1, 1.0) add_arc!(fst, 5, 6, 1, 1, 1.0) add_arc!(fst, 6, 7, 1, 1, 1.0) add_arc!(fst, 7, 8, 1, 1, 1.0) add_arc!(fst, 8, 5, 1, 1, 1.0) add_arc!(fst, 2, 9, 1, 1, 1.0) initial!(fst,1) final!(fst,8) println(fst) println(fst) scc, c, v = get_scc(fst) @test scc == [[1, 2, 3], [9], [4], [5, 6, 7, 8]] # is_visited test L = Int ϵ = get_eps(L) fst = WFST(Dict(i=>i for i=1:4)) add_arc!(fst, 1 => 2, 1=>1,rand() ) add_arc!(fst, 1 => 3, 1=>1, rand()) add_arc!(fst, 2 => 4, 1=>ϵ, rand()) add_arc!(fst, 2 => 3, ϵ=>ϵ, rand()) add_arc!(fst, 2 => 3, 2=>2, rand()) add_arc!(fst, 3 => 4, 3=>3, rand()) add_arc!(fst, 3 => 3, 4=>4, rand()) #print(fst) @test is_acceptor(fst) == false ## test rm_state! @test count_eps(get_ilabel,fst) == 1 @test count_eps(get_olabel,fst) == 2 rm_state!(fst,2) #print(fst) @test is_acceptor(fst) == true @test count_eps(get_ilabel,fst) == 0 @test count_eps(get_olabel,fst) == 0 @test size(fst) == (3,3) # test DFS against recursive I = O = Int32 fst = WFST(Dict(i=>i for i =1:5),Dict(100*i=>i for i =1:5)) w = randn(5) add_arc!(fst, 1, 1, 1, 100*1, w[1]) add_arc!(fst, 1, 2, 1, 100*1, w[1]) add_arc!(fst, 1, 3, 2, 100*2, w[2]) add_arc!(fst, 1, 4, 3, 100*3, w[3]) add_arc!(fst, 2, 4, 4, 100*4, w[4]) add_arc!(fst, 3, 4, 5, 100*5, w[5]) initial!(fst, 1) final!(fst, 4) # fst have all nodes connected v = FiniteStateTransducers.recursive_dfs(fst) @test all(v) fst2 = deepcopy(fst) add_arc!(fst2, 8, 10, 5, 100*5, w[5]) add_arc!(fst2, 8, 9, 5, 100*5, w[5]) add_arc!(fst2, 8, 8, 5, 100*5, w[5]) # fst2 5 < state <= 10 are not connected with previous ones add_arc!(fst2, 3, 11, 5, 100*5, w[5]) add_arc!(fst2, 11, 12, 5, 100*5, w[5]) add_arc!(fst2, 12, 12, 5, 100*5, w[5]) final!(fst2,12,w[1]) # fst2 state >= 11 are connected with first nodes v = FiniteStateTransducers.recursive_dfs(fst2) @test all(v[1:4]) @test all(.!v[5:10]) @test all(v[11:end]) # testing lazy version v = is_visited(fst) @test all(v) v = is_visited(fst2) @test all(v[1:4]) @test all(.!v[5:10]) @test all(v[11:end]) v = is_visited(fst2,8) @test all(v[8:10]) @test all(.!v[1:7]) @test all(.!v[11:end]) # connect tests #println(fst2) ## testing connect fst3 = connect(fst2) @test all(is_visited(fst3)) @test size(fst3) == (6,9) @test isfinal(fst3,6) @test isfinal(fst3,4) @test isinitial(fst3,1) @test get(get_weight(fst3,6)) ≈ w[1]
FiniteStateTransducers
https://github.com/idiap/FiniteStateTransducers.jl.git
[ "MIT" ]
0.1.0
42d75e0b4f7cbdc29911175ddaa61f14293c6f19
code
928
# Copyright (c) 2021 Idiap Research Institute, http://www.idiap.ch/ # Niccolò Antonello <[email protected]> # inverse ilab = 1:10 olab = [randstring(1) for i =1:10] fst = WFST(ilab,olab) add_arc!(fst, 1, 1, ilab[1] , olab[1] , rand()) add_arc!(fst, 1, 2, ilab[2] , olab[2] , rand()) add_arc!(fst, 2, 3, ilab[3] , olab[3] , rand()) add_arc!(fst, 2, 2, ilab[4] , olab[4] , rand()) add_arc!(fst, 3, 3, ilab[5] , olab[5] , rand()) add_arc!(fst, 3, 4, ilab[6] , olab[6] , rand()) add_arc!(fst, 4, 4, ilab[7] , olab[7] , rand()) add_arc!(fst, 4, 5, ilab[8] , olab[8] , rand()) add_arc!(fst, 5, 5, ilab[9] , olab[9] , rand()) add_arc!(fst, 5, 6, ilab[10], olab[10], rand()) initial!(fst,1) final!(fst,6,rand()) ifst = inv(fst) @test all([a in ilab for a in get_oalphabet(ifst)]) @test all([a in olab for a in get_ialphabet(ifst)]) @test isfinal(ifst,6) @test isinitial(ifst,1) @test get_weight(fst,6) == get_weight(ifst,6)
FiniteStateTransducers
https://github.com/idiap/FiniteStateTransducers.jl.git
[ "MIT" ]
0.1.0
42d75e0b4f7cbdc29911175ddaa61f14293c6f19
code
668
# Copyright (c) 2021 Idiap Research Institute, http://www.idiap.ch/ # Niccolò Antonello <[email protected]> isym=txt2sym("openfst/sym.txt") S = String fst = txt2fst("openfst/A.fst", isym) #println(fst) @test size(fst) == (5,4) fst = txt2fst("openfst/B.fst", "openfst/sym.txt") #println(fst) @test size(fst) == (4,3) fst = txt2fst("openfst/C_trivial.fst", "openfst/sym.txt") #println(fst) @test size(fst) == (8,11) fst = txt2fst("openfst/L.fst", "openfst/chars.txt", "openfst/words.txt") @test size(fst) == (14,18) #println(fst) ## TODO add many more tests dot = fst2dot(fst) # fst2pdf needs dot to be installed if success(`which dot`) fst2pdf(fst,"fst.pdf") end
FiniteStateTransducers
https://github.com/idiap/FiniteStateTransducers.jl.git
[ "MIT" ]
0.1.0
42d75e0b4f7cbdc29911175ddaa61f14293c6f19
code
2050
# Copyright (c) 2021 Idiap Research Institute, http://www.idiap.ch/ # Niccolò Antonello <[email protected]> # Path constructor isym = ["a","b","c","d"]; osym = ["α","β","γ","δ"]; W = ProbabilityWeight{Float32}; p = Path(isym,osym,["a","b","c"] => ["α","β","γ"], one(W)) @test get_weight(p) == one(W) FiniteStateTransducers.update_path!(p, 4, 4, 0.5) @test get_weight(p) == W(0.5) println(p) p = Path(isym,["a","b","c"] => ["c","b","a"]) println(p) @test typeofweight(p) == TropicalWeight{Float32} @test get_weight(p) == one(TropicalWeight{Float32}) isym = ["a","b","c","d","e"]; osym = ["α","β","γ","δ","ε"]; W = ProbabilityWeight{Float32} fst = WFST(isym,osym; W=W) w = randn(6) add_arc!(fst, 1, 2, "a", "α", w[1]) add_arc!(fst, 1, 3, "b", "β", w[2]) add_arc!(fst, 1, 4, "c", "γ", w[3]) add_arc!(fst, 2, 4, "d", "δ", w[4]) add_arc!(fst, 3, 4, "e", "ε", w[5]) initial!(fst, 1) wf = rand() final!(fst, 4, wf) paths = collectpaths(fst) for p in get_paths(fst) @test p in paths end @test length(paths) == 3 @test all( sort(get.(get_weight.(paths))) .≈ sort([w[1]*w[4]*wf, w[2]*w[5]*wf, w[3]*wf]) ) @test get_isequence(paths[1]) == ["c"] @test get_isequence(paths[2]) == ["a","d"] @test get_isequence(paths[3]) == ["b","e"] @test get_osequence(paths[1]) == ["γ"] @test get_osequence(paths[2]) == ["α","δ"] @test get_osequence(paths[3]) == ["β","ε"] # empty fst fst = WFST(Dict(1=>1); W = W) @test_throws ErrorException collectpaths(fst) @test_throws ErrorException get_paths(fst) # with eps I = O = Int32 isym = Dict(i=>i for i=1:5) osym = Dict(100*i=>i for i=1:5) fst = WFST(isym,osym; W = ProbabilityWeight{Float32}) w = randn(6) ϵ = get_eps(I) add_arc!(fst, 1, 2, 1, 100*1, w[1]) add_arc!(fst, 1, 3, 2, ϵ, w[2]) add_arc!(fst, 1, 4, ϵ, ϵ, w[3]) add_arc!(fst, 2, 4, 4, 100*4, w[4]) add_arc!(fst, 3, 4, 5, 100*5, w[5]) initial!(fst, 1) wf = rand() final!(fst, 4, wf) paths = collectpaths(fst) for p in get_paths(fst) @test p in paths end @test all( sort(get.(get_weight.(paths))) .≈ sort([w[1]*w[4]*wf, w[2]*w[5]*wf, w[3]*wf]) )
FiniteStateTransducers
https://github.com/idiap/FiniteStateTransducers.jl.git
[ "MIT" ]
0.1.0
42d75e0b4f7cbdc29911175ddaa61f14293c6f19
code
1210
# Copyright (c) 2021 Idiap Research Institute, http://www.idiap.ch/ # Niccolò Antonello <[email protected]> #proj ilab = 1:10 olab = [randstring(1) for i =1:10] fst = WFST(ilab,olab) add_arc!(fst, 1, 1, ilab[1] , olab[1] , rand()) add_arc!(fst, 1, 2, ilab[2] , olab[2] , rand()) add_arc!(fst, 2, 3, ilab[3] , olab[3] , rand()) add_arc!(fst, 2, 2, ilab[4] , olab[4] , rand()) add_arc!(fst, 3, 3, ilab[5] , olab[5] , rand()) add_arc!(fst, 3, 4, ilab[6] , olab[6] , rand()) add_arc!(fst, 4, 4, ilab[7] , olab[7] , rand()) add_arc!(fst, 4, 5, ilab[8] , olab[8] , rand()) add_arc!(fst, 5, 5, ilab[9] , olab[9] , rand()) add_arc!(fst, 5, 6, ilab[10], olab[10], rand()) initial!(fst,1) final!(fst,6,rand()) pfst = proj(get_ilabel,fst) @test isfinal(pfst,6) @test isinitial(pfst,1) @test is_acceptor(pfst) @test get_weight(fst,6) == get_weight(pfst,6) @test all([a in ilab for a in get_oalphabet(pfst)]) @test all([a in ilab for a in get_ialphabet(pfst)]) pfst = proj(get_olabel,fst) @test isfinal(pfst,6) @test isinitial(pfst,1) @test is_acceptor(pfst) @test get_weight(fst,6) == get_weight(pfst,6) @test all([a in olab for a in get_oalphabet(pfst)]) @test all([a in olab for a in get_ialphabet(pfst)])
FiniteStateTransducers
https://github.com/idiap/FiniteStateTransducers.jl.git
[ "MIT" ]
0.1.0
42d75e0b4f7cbdc29911175ddaa61f14293c6f19
code
2736
# Copyright (c) 2021 Idiap Research Institute, http://www.idiap.ch/ # Niccolò Antonello <[email protected]> # get_ialphabet, get_oalphabet ilabs = randn(10) olabs = [randstring(1) for i =1:10] isym = Dict( s=>i for (i,s) in enumerate(ilabs)) osym = Dict( s=>i for (i,s) in enumerate(olabs)) W = TropicalWeight{Float32} fst = WFST(isym,osym) @test typeofweight(fst) == W add_arc!(fst, 1, 1, ilabs[1] , olabs[1] , rand()) add_arc!(fst, 1, 2, ilabs[2] , olabs[2] , rand()) add_arc!(fst, 2, 3, ilabs[3] , olabs[3] , rand()) add_arc!(fst, 2, 2, ilabs[4] , olabs[4] , rand()) add_arc!(fst, 3, 3, ilabs[5] , olabs[5] , rand()) add_arc!(fst, 3, 4, ilabs[6] , olabs[6] , rand()) add_arc!(fst, 4, 4, ilabs[7] , olabs[7] , rand()) add_arc!(fst, 4, 5, ilabs[8] , olabs[8] , rand()) add_arc!(fst, 5, 5, ilabs[9] , olabs[9] , rand()) add_arc!(fst, 5, 6, ilabs[10], olabs[10], rand()) add_arc!(fst, 6, 6, ilabs[10], olabs[10], rand()) initial!(fst,1) final!(fst,6) @test length(fst.isym) == 10 @test length(fst.osym) == 10 ##println(fst) A = get_ialphabet(fst) B = get_oalphabet(fst) @test eltype(A) <: AbstractFloat @test eltype(B) <: String @test all(i in A for i in ilabs) @test all(o in B for o in olabs) ## count_eps/has_eps/is_acceptor isym = Dict(i=>i for i =1:5) fst = WFST(isym) ϵ = get_eps(Int) add_arc!(fst, 1, 2, 5, 1, 0.5) add_arc!(fst, 1, 3, 1, 1, rand()) add_arc!(fst, 2, 4, 1, ϵ, rand()) add_arc!(fst, 2, 3, 1, ϵ, rand()) add_arc!(fst, 2, 3, 2, 2, rand()) add_arc!(fst, 3, 4, 3, 3, rand()) add_arc!(fst, 3, 3, 4, 4, rand()) @test count_eps(get_ilabel,fst) == 0 @test count_eps(get_olabel,fst) == 2 @test has_eps(fst) == true @test has_eps(get_ilabel,fst) == false @test has_eps(get_olabel,fst) == true @test is_acceptor(fst) == false @test size(fst) == (4,7) fst = WFST(isym) add_arc!(fst, 1, 2, 1, 1, 0.5) add_arc!(fst, 2, 3, 2, 2, 0.5) @test is_acceptor(fst) == true # is_deterministic #ex form http://openfst.org/twiki/bin/view/FST/DeterminizeDoc sym=Dict("$(Char(i))"=>i for i=97:122) A = WFST(sym) add_arc!(A,1,2,"a","p",1) add_arc!(A,1,3,"a","q",2) add_arc!(A,2,4,"c","r",4) add_arc!(A,2,4,"c","r",5) add_arc!(A,3,4,"d","s",6) initial!(A,1) final!(A,4) #println(A) @test is_deterministic(A) == false B = WFST(sym) add_arc!(B,1,2,"a","<eps>",1) add_arc!(B,2,3,"c","p",4) add_arc!(B,3,5,"<eps>","r",0) add_arc!(B,2,4,"d","q",7) add_arc!(B,4,5,"<eps>","s",0) initial!(B,1) final!(B,5) #println(B) @test is_deterministic(B) == true # is_acyclic A = WFST(sym) add_arc!(A,1,2,"a","<eps>",1) add_arc!(A,2,3,"c","p",4) add_arc!(A,3,5,"<eps>","r",0) add_arc!(A,2,4,"d","q",7) add_arc!(A,4,5,"<eps>","s",0) initial!(A,1) final!(A,5) #println(A) @test is_acyclic(A) add_arc!(A,5,1,"a","s",0) @test !is_acyclic(A)
FiniteStateTransducers
https://github.com/idiap/FiniteStateTransducers.jl.git
[ "MIT" ]
0.1.0
42d75e0b4f7cbdc29911175ddaa61f14293c6f19
code
1277
# Copyright (c) 2021 Idiap Research Institute, http://www.idiap.ch/ # Niccolò Antonello <[email protected]> fst = WFST(["a","b","c","d","e","f"]) add_arc!(fst,1=>1,"a"=>"a",2) add_arc!(fst,1=>2,"a"=>"a",1) add_arc!(fst,2=>3,"b"=>"b",3) add_arc!(fst,2=>3,"c"=>"c",4) add_arc!(fst,3=>3,"d"=>"d",5) add_arc!(fst,3=>4,"d"=>"d",6) add_arc!(fst,4=>4,"f"=>"f",2) initial!(fst,1) final!(fst,2,3) final!(fst,4,2) #println(fst) sym = get_isym(fst) W = typeofweight(fst) D = Int rfst = reverse(fst) @test rfst[1][1] == Arc{W,D}(0,0,W(3),3) @test rfst[1][2] == Arc{W,D}(0,0,W(2),5) @test rfst[2][1] == Arc{W,D}(sym["a"],sym["a"],W(2),2) @test rfst[3][1] == Arc{W,D}(sym["a"],sym["a"],W(1),2) @test rfst[4][1] == Arc{W,D}(sym["b"],sym["b"],W(3),3) @test rfst[4][2] == Arc{W,D}(sym["c"],sym["c"],W(4),3) @test rfst[4][3] == Arc{W,D}(sym["d"],sym["d"],W(5),4) @test rfst[5][1] == Arc{W,D}(sym["d"],sym["d"],W(6),4) @test rfst[5][2] == Arc{W,D}(sym["f"],sym["f"],W(2),5) @test size(rfst) == (5,9) fst = WFST([1,2],["a","b"];W = LeftStringWeight) add_arc!(fst,1=>2,1=>"a","ciao") add_arc!(fst,2=>3,2=>"b","bello") initial!(fst,1) final!(fst,3) rfst = reverse(fst) #println(rfst) seq = [1,2] out, w = fst(seq) outr, wr = rfst(reverse(seq)) @test out == reverse(outr) @test w == reverse(wr)
FiniteStateTransducers
https://github.com/idiap/FiniteStateTransducers.jl.git
[ "MIT" ]
0.1.0
42d75e0b4f7cbdc29911175ddaa61f14293c6f19
code
827
# Copyright (c) 2021 Idiap Research Institute, http://www.idiap.ch/ # Niccolò Antonello <[email protected]> # example from http://openfst.org/twiki/bin/view/FST/RmEpsilonDoc W = TropicalWeight{Float64} A = WFST(Dict("a"=>1,"p"=>2),W = W) add_arc!(A,1,2,"<eps>","<eps>",1) add_arc!(A,2,3,"a","<eps>",2) add_arc!(A,2,3,"<eps>","p",3) add_arc!(A,2,3,"<eps>","<eps>",4) add_arc!(A,3,3,"<eps>","<eps>",5) add_arc!(A,3,4,"<eps>","<eps>",6) final!(A,4,7) initial!(A,1) # println(A) B = rm_eps(A) # println(B) @test isinitial(B,1) @test get_final_weight(B,1) == W(18) @test get_initial_weight(B,1) == one(W) @test isfinal(B,1) @test isfinal(B,2) @test get_final_weight(B,2) == W(13) @test B[1][1] == FiniteStateTransducers.Arc{W,Int}(1,0,W(3),2) @test B[1][2] == FiniteStateTransducers.Arc{W,Int}(0,2,W(4),2) @test size(B) == (2,2)
FiniteStateTransducers
https://github.com/idiap/FiniteStateTransducers.jl.git
[ "MIT" ]
0.1.0
42d75e0b4f7cbdc29911175ddaa61f14293c6f19
code
937
# Copyright (c) 2021 Idiap Research Institute, http://www.idiap.ch/ # Niccolò Antonello <[email protected]> using FiniteStateTransducers using Test, Random using DataStructures Random.seed!(123) @testset "FiniteStateTransducers.jl" begin @testset "Semirings" begin include("semirings.jl") end @testset "FiniteStateTransducers constructors and utils" begin include("wfst.jl") include("properties.jl") include("io_wfst.jl") end @testset "algorithms" begin include("paths.jl") #Paths, BFS, paths include("dfs.jl") #rm_state, DFS, get_scc, connect, rm_eps include("shortest_distance.jl") include("topsort.jl") include("rm_eps.jl") include("closure.jl") include("inv.jl") include("proj.jl") include("reverse.jl") include("compose.jl") include("cat.jl") include("determinize.jl") include("wfst2tr.jl") end end #@testset "FiniteStateTransducers.jl" begin #end
FiniteStateTransducers
https://github.com/idiap/FiniteStateTransducers.jl.git
[ "MIT" ]
0.1.0
42d75e0b4f7cbdc29911175ddaa61f14293c6f19
code
11070
# Copyright (c) 2021 Idiap Research Institute, http://www.idiap.ch/ # Niccolò Antonello <[email protected]> for T in [Float64, Float32] ################# # ProbabilityWeight semiring ################# a = ProbabilityWeight(rand(T)) b = ProbabilityWeight(rand(T)) c = ProbabilityWeight(rand(T)) d = ProbabilityWeight{T}(a) # check ProbabilityWeight(x::ProbabilityWeight) e = ProbabilityWeight{T}( ProbabilityWeight{T == Float64 ? Float32 : Float64}(get(a)) ) f = ProbabilityWeight{T}( rand(T == Float64 ? Float32 : Float64) ) @test typeof(e) == ProbabilityWeight{T} @test typeof(f) == ProbabilityWeight{T} @test (a*b).x == a.x*b.x @test (a + b).x == a.x + b.x @test (a/b).x == a.x/b.x @test reverse(a) == a @test FiniteStateTransducers.reverseback(a) == a o = one(ProbabilityWeight{T}) @test o.x == one(T) z = zero(ProbabilityWeight{T}) @test z.x == zero(T) # + commutative monoid @test (a+b)+c ≈ a+(b+c) @test a+z ≈ z+a ≈ a @test a+b ≈ b+a # * monoid @test (a*b)*c ≈ a*(b*c) @test a*o == o*a == a # identity @test a*z == z*a == z # annihilator # distribution over addition @test a*(b+c) ≈ (a*b)+(a*c) @test (a+b)*c ≈ (a*c)+(b*c) # division c = a*b @test a*(c/a) ≈ c @test (c/b)*b ≈ c # properties W = ProbabilityWeight{T} @test FiniteStateTransducers.isidempotent(W) == false @test FiniteStateTransducers.iscommulative(W) @test FiniteStateTransducers.isleft(W) @test FiniteStateTransducers.isright(W) @test FiniteStateTransducers.isweaklydivisible(W) @test FiniteStateTransducers.iscomplete(W) @test FiniteStateTransducers.ispath(W) == false @test FiniteStateTransducers.reversetype(W) == W a = parse(W,"1.0") @test a.x == T(1.0) ################# # LogWeight semiring ################# a = LogWeight(1) b = LogWeight(2) @test (a + b).x ≈ log(exp(a.x)+exp(b.x)) a = LogWeight(2) b = LogWeight(1) @test (a + b).x ≈ log(exp(a.x)+exp(b.x)) a = LogWeight(rand(T)) b = LogWeight(rand(T)) c = LogWeight(rand(T)) d = LogWeight{T}(a) # check ProbabilityWeight(x::ProbabilityWeight) e = LogWeight{T}( LogWeight{T == Float64 ? Float32 : Float64}(get(a)) ) @test typeof(e) == LogWeight{T} @test (a*b).x ≈ a.x + b.x @test (a + b).x ≈ log(exp(a.x)+exp(b.x)) @test (a / b).x ≈ log(exp(a.x)/exp(b.x)) @test reverse(a) == a @test FiniteStateTransducers.reverseback(a) == a o = one(LogWeight{T}) @test o.x == 0 z = zero(LogWeight{T}) @test z.x == T(log(0)) # + commutative monoid @test (a+b)+c ≈ a+(b+c) @test a+z ≈ z+a ≈ a @test a+b ≈ b+a # * monoid @test (a*b)*c ≈ a*(b*c) @test a*o == o*a == a # identity @test a*z == z*a == z # annihilator # distribution over addition @test a*(b+c) ≈ (a*b)+(a*c) @test (a+b)*c ≈ (a*c)+(b*c) # division c = a*b @test a*(c/a) ≈ c @test (c/b)*b ≈ c # properties W = LogWeight{T} @test FiniteStateTransducers.isidempotent(W) == false @test FiniteStateTransducers.iscommulative(W) @test FiniteStateTransducers.isleft(W) @test FiniteStateTransducers.isright(W) @test FiniteStateTransducers.isweaklydivisible(W) @test FiniteStateTransducers.iscomplete(W) @test FiniteStateTransducers.ispath(W) == false @test FiniteStateTransducers.reversetype(W) == W # parse a = parse(W,"1.0") @test a.x == T(1.0) ################# # NLogWeight semiring ################# a = NLogWeight(1) b = NLogWeight(2) @test (a + b).x ≈ -log(exp(-a.x)+exp(-b.x)) a = NLogWeight(2) b = NLogWeight(1) @test (a + b).x ≈ -log(exp(-a.x)+exp(-b.x)) a = NLogWeight(rand(T)) b = NLogWeight(rand(T)) c = NLogWeight(rand(T)) d = NLogWeight{T}(a) # check ProbabilityWeight(x::ProbabilityWeight) e = NLogWeight{T}( NLogWeight{T == Float64 ? Float32 : Float64}(get(a)) ) @test typeof(e) == NLogWeight{T} @test (a*b).x ≈ a.x + b.x @test (a + b).x ≈ -log(exp(-a.x)+exp(-b.x)) @test (a / b).x ≈ log(exp(a.x)/exp(b.x)) @test reverse(a) == a @test FiniteStateTransducers.reverseback(a) == a o = one(NLogWeight{T}) @test o.x == 0 z = zero(NLogWeight{T}) @test z.x == T(-log(0)) # + commutative monoid @test (a+b)+c ≈ a+(b+c) @test a+z ≈ z+a ≈ a @test a+b ≈ b+a # * monoid @test (a*b)*c ≈ a*(b*c) @test a*o == o*a == a # identity @test a*z == z*a == z # annihilator # distribution over addition @test a*(b+c) ≈ (a*b)+(a*c) @test (a+b)*c ≈ (a*c)+(b*c) # division c = a*b @test a*(c/a) ≈ c @test (c/b)*b ≈ c # properties W = NLogWeight{T} @test FiniteStateTransducers.isidempotent(W) == false @test FiniteStateTransducers.iscommulative(W) @test FiniteStateTransducers.isleft(W) @test FiniteStateTransducers.isright(W) @test FiniteStateTransducers.isweaklydivisible(W) @test FiniteStateTransducers.iscomplete(W) @test FiniteStateTransducers.ispath(W) == false @test FiniteStateTransducers.reversetype(W) == W # parse a = parse(W,"1.0") @test a.x == T(1.0) ################# # TropicalWeight semiring ################# a = TropicalWeight(rand(T)) b = TropicalWeight(rand(T)) c = TropicalWeight(rand(T)) d = TropicalWeight{T}(a) # check ProbabilityWeight(x::ProbabilityWeight) e = TropicalWeight{T}( TropicalWeight{T == Float64 ? Float32 : Float64}(get(a)) ) @test typeof(e) == TropicalWeight{T} @test (a*b).x == a.x + b.x @test (a + b).x == min(a.x,b.x) @test (a / b).x ≈ log(exp(a.x)/exp(b.x)) o = one(TropicalWeight{T}) @test o.x == 0 z = zero(TropicalWeight{T}) @test z.x == T(Inf) # + commutative monoid @test (a+b)+c ≈ a+(b+c) @test a+z ≈ z+a ≈ a @test a+b ≈ b+a # * monoid @test (a*b)*c ≈ a*(b*c) @test a*o == o*a == a # identity @test a*z == z*a == z # annihilator # distribution over addition @test a*(b+c) ≈ (a*b)+(a*c) @test (a+b)*c ≈ (a*c)+(b*c) # division c = a*b @test a*(c/a) ≈ c @test (c/b)*b ≈ c W = TropicalWeight{T} @test FiniteStateTransducers.isidempotent(W) @test FiniteStateTransducers.iscommulative(W) @test FiniteStateTransducers.isleft(W) @test FiniteStateTransducers.isright(W) @test FiniteStateTransducers.isweaklydivisible(W) @test FiniteStateTransducers.iscomplete(W) @test FiniteStateTransducers.ispath(W) @test FiniteStateTransducers.reversetype(W) == W # parse a = parse(W,"1.0") @test a.x == T(1.0) end a = BoolWeight(rand([true;false])) b = BoolWeight(rand([true;false])) c = BoolWeight(rand([true;false])) d = BoolWeight(a) # check ProbabilityWeight(x::ProbabilityWeight) @test (a*b).x == ( a.x && b.x) @test (a + b).x == ( a.x || b.x ) o = one(BoolWeight) @test o.x == true z = zero(BoolWeight) @test z.x == false @test_throws MethodError a/b # + commutative monoid @test (a+b)+c ≈ a+(b+c) @test a+z ≈ z+a ≈ a @test a+b ≈ b+a # * monoid @test (a*b)*c ≈ a*(b*c) @test a*o == o*a == a # identity @test a*z == z*a == z # annihilator # distribution over addition @test a*(b+c) ≈ (a*b)+(a*c) @test (a+b)*c ≈ (a*c)+(b*c) W = BoolWeight @test FiniteStateTransducers.isidempotent(W) @test FiniteStateTransducers.iscommulative(W) @test FiniteStateTransducers.isleft(W) @test FiniteStateTransducers.isright(W) @test FiniteStateTransducers.isweaklydivisible(W) == false @test FiniteStateTransducers.ispath(W) @test FiniteStateTransducers.reversetype(W) == W a = parse(W,"true") @test a.x == true ########################### ########################### ########################### a = LeftStringWeight("ciao") b = LeftStringWeight("caro") c = LeftStringWeight("mona") d = LeftStringWeight(a) # check ProbabilityWeight(x::ProbabilityWeight) @test (a*b).x == "ciaocaro" @test (a*c).x == "ciaomona" @test (a + b).x == "c" @test (a + c).x == "" o = one(LeftStringWeight) @test o.x == "" @test o.iszero == false z = zero(LeftStringWeight) @test z.x == "" @test z.iszero # + commutative monoid @test (a+b)+c == a+(b+c) @test a+z == z+a == a @test a+b == b+a # * monoid @test (a*b)*c == a*(b*c) @test a*o == o*a == a # identity @test a*z == z*a == z # annihilator # distribution over addition @test a*(b+c) == (a*b)+(a*c) # division c = a*b @test a*(c/a) == c @test (c/b)*b != c W = LeftStringWeight @test FiniteStateTransducers.isidempotent(W) @test FiniteStateTransducers.iscommulative(W) == false @test FiniteStateTransducers.isleft(W) @test FiniteStateTransducers.isright(W) == false @test FiniteStateTransducers.isweaklydivisible(W) @test FiniteStateTransducers.ispath(W) == false @test FiniteStateTransducers.reversetype(W) == RightStringWeight ########################### ########################### ########################### a = RightStringWeight("ciao") b = RightStringWeight("caro") c = RightStringWeight("mona") d = RightStringWeight(a) # check ProbabilityWeight(x::ProbabilityWeight) @test (a*b).x == "ciaocaro" @test (a*c).x == "ciaomona" @test (a + b).x == "o" @test (a + c).x == "" o = one(RightStringWeight) @test o.x == "" @test o.iszero == false z = zero(RightStringWeight) @test z.x == "" @test z.iszero # + commutative monoid @test (a+b)+c == a+(b+c) @test a+z == z+a == a @test a+b == b+a # * monoid @test (a*b)*c == a*(b*c) @test a*o == o*a == a # identity @test a*z == z*a == z # annihilator # distribution over addition @test (a+b)*c == (a*c)+(b*c) # division c = a*b @test a*(c/a) != c @test (c/b)*b == c W = RightStringWeight @test FiniteStateTransducers.isidempotent(W) @test FiniteStateTransducers.iscommulative(W) == false @test FiniteStateTransducers.isleft(W) == false @test FiniteStateTransducers.isright(W) @test FiniteStateTransducers.isweaklydivisible(W) @test FiniteStateTransducers.ispath(W) == false @test FiniteStateTransducers.reversetype(W) == LeftStringWeight ########################### ########################### ########################### W1, W2 = LeftStringWeight, TropicalWeight{Float64} a = ProductWeight(W1("ciao"),W2(1.0)) b = ProductWeight(W1("caro"),W2(2.0)) c = ProductWeight(W1("mona"),W2(3.0)) d = ProductWeight(a) # check ProbabilityWeight(x::ProbabilityWeight) dd = typeof(d)(a) @test (a*b) == ProductWeight(W1("ciaocaro"),W2(3.0)) @test (a*c) == ProductWeight(W1("ciaomona"),W2(4.0)) @test (a+b) == ProductWeight(W1("c"),W2(1.0)) @test (a+c) == ProductWeight(W1(""),W2(1.0)) W = typeof(a) o = one(W) @test get(o)[1] == one(W1) @test get(o)[2] == one(W2) z = zero(typeof(a)) @test get(z)[1] == zero(W1) @test get(z)[2] == zero(W2) # + commutative monoid @test (a+b)+c == a+(b+c) @test a+z == z+a == a @test a+b == b+a # * monoid @test (a*b)*c == a*(b*c) @test a*o == o*a == a # identity @test a*z == z*a == z # annihilator # distribution over addition @test a*(b+c) == (a*b)+(a*c) # division c = a*b @test a*(c/a) == c @test FiniteStateTransducers.isidempotent(W) @test FiniteStateTransducers.iscommulative(W) == false @test FiniteStateTransducers.isleft(W) @test FiniteStateTransducers.isright(W) == false @test FiniteStateTransducers.isweaklydivisible(W) @test FiniteStateTransducers.ispath(W) == false @test FiniteStateTransducers.reversetype(W) == ProductWeight{2,Tuple{RightStringWeight,TropicalWeight{Float64}}}
FiniteStateTransducers
https://github.com/idiap/FiniteStateTransducers.jl.git
[ "MIT" ]
0.1.0
42d75e0b4f7cbdc29911175ddaa61f14293c6f19
code
497
# Copyright (c) 2021 Idiap Research Institute, http://www.idiap.ch/ # Niccolò Antonello <[email protected]> fst = WFST(["a","b","c","d","f"]) add_arc!(fst,1,2,"a","a",3) add_arc!(fst,2,2,"b","b",2) add_arc!(fst,2,4,"c","c",4) add_arc!(fst,1,3,"d","d",5) add_arc!(fst,3,4,"f","f",4) initial!(fst,1) final!(fst,4,3) #println(fst) d = shortest_distance(fst) @test all(get.(d) .== Float32[0.0;3.0;5.0;7.0]) d = shortest_distance(fst;reversed=true) @test all(get.(d) .== Float32[10.0;7.0;7.0;3.0])
FiniteStateTransducers
https://github.com/idiap/FiniteStateTransducers.jl.git
[ "MIT" ]
0.1.0
42d75e0b4f7cbdc29911175ddaa61f14293c6f19
code
811
# Copyright (c) 2021 Idiap Research Institute, http://www.idiap.ch/ # Niccolò Antonello <[email protected]> W = TropicalWeight{Float64} sym=Dict("$(Char(i))"=>i for i=97:122) fst = WFST(sym; W = W) add_arc!(fst,1,3,"<eps>","<eps>",one(W)) add_arc!(fst,3,6,"f","f",one(W)) add_arc!(fst,6,4,"d","d",one(W)) add_arc!(fst,1,4,"a","a",one(W)) add_arc!(fst,4,5,"c","c",one(W)) add_arc!(fst,5,7,"b","b",one(W)) add_arc!(fst,7,2,"a","a",one(W)) add_arc!(fst,5,2,"b","b",one(W)) initial!(fst,1) final!(fst,2) println(fst) perm = topsortperm(fst) @test perm == [1,3,6,4,5,7,2] sorted_fst = topsort(fst) @test size(sorted_fst) == size(fst) @test topsortperm(sorted_fst) == [1,2,3,4,5,6,7] @test isfinal(sorted_fst,7) # fails if fst has cycles add_arc!(fst,2,1,"z","z",one(W)) @test_throws ErrorException topsort(fst)
FiniteStateTransducers
https://github.com/idiap/FiniteStateTransducers.jl.git
[ "MIT" ]
0.1.0
42d75e0b4f7cbdc29911175ddaa61f14293c6f19
code
4255
# Copyright (c) 2021 Idiap Research Institute, http://www.idiap.ch/ # Niccolò Antonello <[email protected]> # weighted arc definition W = ProbabilityWeight{Float32} a1 = FiniteStateTransducers.Arc(1,1,W(0.5),2) a2 = FiniteStateTransducers.Arc(1,1,W(0.5),2) a3 = FiniteStateTransducers.Arc(1,1,W(0.8),2) @test a1 == a2 @test (a1 == a3) == false @test ==(a1,a3;check_weight=false) == true # WFST constructor isym = Dict(i=>i for i =1:5) fst = WFST(isym; W = W) add_states!(fst,4) # create 4 states @test length(fst) == 4 initial!(fst,1) @test 1 in get_initial(fst) @test isinitial(fst,1) == true final!(fst,4,0.5) final!(fst,3) @test 4 in keys(get_final(fst)) @test isfinal(fst,3) == true initial!(fst,1,W(0.2)) ### add arcs ϵ = get_eps(Int) add_arc!(fst, 1=>2, 5=>1) add_arc!(fst, 1, 3, 1, 1, rand()) add_arc!(fst, 2, 4, 1, ϵ, rand()) add_arc!(fst, 2, 3, 1, ϵ, rand()) add_arc!(fst, 2, 3, 2, 2, rand()) add_arc!(fst, 3, 4, 3, 3, rand()) add_arc!(fst, 3, 3, 4, 4, rand()) @test_throws ErrorException add_arc!(fst, 3, 3, 6, 6, rand()) println(fst) initial!(fst,2) rm_initial!(fst,1) @test get_initial(fst;single=true) == 2 rm_initial!(fst,2) @test_throws ErrorException get_initial(fst) rm_final!(fst,4) println(fst) rm_final!(fst,3) @test_throws ErrorException get_final(fst) ## testing linear wfst fst = linearfst([1,1,3,4],[1,2,3,4],rand(4),isym) @test size(fst) == (5,4) @test isinitial(fst,1) @test isfinal(fst,5) ### matrix2fsa Ns,Nt=3,10 sym=Dict("a"=>1,"b"=>2,"c"=>3) X = rand(Ns,Nt) fst = matrix2wfst(sym,X) #println(fst) @test size(fst) == (Nt+1,Ns*Nt) @test isinitial(fst,1) @test isfinal(fst,Nt+1) X[2,2] = Inf # this is a tropical zero so no arc should be added fst = matrix2wfst(sym,X; W = TropicalWeight{Float32}) @test size(fst) == (Nt+1,Ns*Nt-1) @test isinitial(fst,1) @test isfinal(fst,Nt+1) # transduce symbol seq isym=Dict(Char(i)=>i for i=97:122) osym=Dict(Char(i)=>i for i=97:122) W = ProbabilityWeight{Float64} A = WFST(isym,osym; W=W); add_arc!(A,1=>2,'h'=>'w',1) add_arc!(A,2=>3,'e'=>'o',1) add_arc!(A,3=>4,'l'=>'r',1) add_arc!(A,4=>5,'l'=>'l',1) add_arc!(A,5=>6,'o'=>'d',1) add_arc!(A,5=>6,'ϵ'=>'d',0.001) add_arc!(A,6=>6,'o'=>'ϵ',0.5) initial!(A,1) final!(A,6) #println(A) out,w = A(['h', 'e', 'l', 'l', 'o']) @test out == ['w', 'o', 'r', 'l', 'd'] @test w == one(W) out,w = A(['e', 'l']) @test isempty(out) @test w == zero(W) out,w = A(['h']) @test out == ['w'] @test w == zero(W) out,w = A(['h']) @test out == ['w'] @test w == zero(W) out,w = A(['h', 'e', 'l', 'l', 'o', 'o', 'o', 'o']) @test out == ['w', 'o', 'r', 'l', 'd'] @test w == W(0.5^3) # 3 times in self loop out,w = A(['h', 'e', 'l', 'l', 'ϵ', 'o', 'o', 'o']) @test out == ['w', 'o', 'r', 'l', 'd'] @test w == W(0.5^2) # 2 times in self loop out,w = A(['h', 'e', 'l', 'l']) @test out == ['w', 'o', 'r', 'l', 'd'] @test w == W(0.001) B = WFST(isym,osym; W=W); add_arc!(B,1=>2,'h'=>'n',1) add_arc!(B,2=>3,'e'=>'ϵ',1) add_arc!(B,3=>4,'ϵ'=>'ϵ',1) add_arc!(B,4=>5,'l'=>'ϵ',1) add_arc!(B,5=>6,'l'=>'ϵ',1) add_arc!(B,6=>7,'ϵ'=>'o',1) add_arc!(B,7=>7,'l'=>'ϵ',0.5) initial!(B,1) final!(B,7) out,w = B(['h', 'e', 'l', 'l']) @test out == ['n', 'o'] @test w == one(W) out,w = B(['h', 'e', 'l', 'l', 'l', 'l']) @test out == ['n', 'o'] @test w == W(0.5^2) # TODO not sure this should stay in this package #### fsa2transition ## transition matrix 3 state HMM with self loop in the middle #Ns,Nt = 3,5 #a = [1.0, 0.0, 0.0] #A = [ # 0.0 1.0 0.0; # 0.0 0.5 0.5; # 1.0 0.0 0.0; # ] # ## same topo with WFST #W = Float64 #H = WFST(W,String,String) # ## 3 state HMM #add_arc!(H,1,2,"a1","a",1.0) #add_arc!(H,2,3,"a2","<eps>",0.5) #add_arc!(H,2,2,"a2","<eps>",0.5) #add_arc!(H,3,4,"a3","<eps>",1.0) #add_arc!(H,3,1,"a3","<eps>",1.0) #initial!(H,1) #final!(H,4) ##println(H) # #A2 = fst2transition(H) #A = W.(A) #@test all( A .== Array(A2) ) #@test all( sum( A2, dims=2 ) .≈ 1.0 ) # #Nt = 10 #time2tr = fst2transition(H,Nt) ##println(time2tr) # #@test length(time2tr) == Nt-1 #@test all([ all(keys(tr) .<= length(get_isym(H)) ) for tr in time2tr]) # #H2 = deepcopy(H) #add_arc!(H2,1,2,"<eps>","a",1.0) #@test_throws ErrorException fst2transition(H2) # #H2 = deepcopy(H) #add_arc!(H2,2,2,"a2","<eps>",0.6) #@test_throws ErrorException fst2transition(H2)
FiniteStateTransducers
https://github.com/idiap/FiniteStateTransducers.jl.git
[ "MIT" ]
0.1.0
42d75e0b4f7cbdc29911175ddaa61f14293c6f19
code
561
# Copyright (c) 2021 Idiap Research Institute, http://www.idiap.ch/ # Niccolò Antonello <[email protected]> ### fsa2transition # transition matrix 3 state HMM with self loop in the middle H = WFST(["a1","a2","a3"],["a"]); add_arc!(H,1,2,"a1","a"); add_arc!(H,2,3,"a2","<eps>"); add_arc!(H,2,2,"a2","<eps>"); add_arc!(H,3,4,"a3","<eps>"); add_arc!(H,3,2,"a3","a"); initial!(H,1); final!(H,4) #println(H) Nt = 10; time2tr = wfst2tr(H,Nt) #println(time2tr) @test length(time2tr) == Nt-1 @test all([ all(keys(tr) .<= length(get_isym(H)) ) for tr in time2tr])
FiniteStateTransducers
https://github.com/idiap/FiniteStateTransducers.jl.git
[ "MIT" ]
0.1.0
42d75e0b4f7cbdc29911175ddaa61f14293c6f19
docs
997
# FiniteStateTransducers.jl [![](https://img.shields.io/badge/docs-stable-blue.svg)](https://idiap.github.io/FiniteStateTransducers.jl/stable/) [![](https://img.shields.io/badge/docs-dev-blue.svg)](https://idiap.github.io/FiniteStateTransducers.jl/dev/) [![codecov](https://codecov.io/gh/idiap/FiniteStateTransducers.jl/branch/main/graph/badge.svg?token=0W3034W0C3)](https://codecov.io/gh/idiap/FiniteStateTransducers.jl) Play with Weighted Finite State Transducers (WFSTs) using the Julia language. WFSTs provide a powerful framework that assigns a weight (e.g. probability) to conversions of symbol sequences. WFSTs are used in many applications such as speech recognition, natural language processing and machine learning. This package takes a lot of inspiration from [OpenFST](http://openfst.org/twiki/bin/view/FST/DeterminizeDoc). FiniteStateTransducers is still in an early development stage, see the documentation for currently available features and the issues for the missing ones.
FiniteStateTransducers
https://github.com/idiap/FiniteStateTransducers.jl.git
[ "MIT" ]
0.1.0
42d75e0b4f7cbdc29911175ddaa61f14293c6f19
docs
2743
# [Introduction](@id intro) ## Weighted Finite State Transducers Weighted finite state transducers (WFSTs) are graphs capable of translating an input sequence of symbols to an output sequence of symbols and associate a particular weight to this conversion. Firstly we define the input and output symbols: ```julia julia> isym = [s for s in "hello"]; julia> osym = [s for s in "world"]; ``` We can construct a WFST by adding arcs, where each arc has an input label, an output label and a weight (which is typically defined in a particular [semiring](@ref weights)): ```julia julia> using FiniteStateTransducers julia> W = ProbabilityWeight{Float64} # weight type julia> A = WFST(isym,osym; W=W); # empty wfst julia> add_arc!(A,1=>2,'h'=>'w',1); # arc from state 1 to 2 with in label 'h' and out label 'w' and weight 1 julia> add_arc!(A,2=>3,'e'=>'o',1); # arc from state 2 to 3 with in label 'e' and out label 'w' and weight 0.5 julia> add_arc!(A,3=>4,'l'=>'r',1); julia> add_arc!(A,4=>5,'l'=>'l',1); julia> add_arc!(A,5=>6,'o'=>'d',1); julia> initial!(A,1); final!(A,6) # set initial and final state WFST #states: 6, #arcs: 5, #isym: 4, #osym: 5 |1/1.0| h:w/1.0 → (2) (2) e:o/1.0 → (3) (3) l:r/1.0 → (4) (4) l:l/1.0 → (5) (5) o:d/1.0 → (6) ((6/1.0)) ``` We can now plug the input sequence `['h','e','l','l','o']` into the WFST: ```julia julia> A(['h','e','l','l','o']) (['w', 'o', 'r', 'l', 'd'], 1.0) ``` The input sequence is translated into `['w', 'o', 'r', 'l', 'd']` with probability `1.0`. A sequence that cannot be accepted will return a null probability instead: ```julia julia> A(['h','e','l','l']) (['w', 'o', 'r', 'l'], 0.0) ``` We could modify the WFST by adding an arc with an epsilon label, which is special symbol ϵ that can be skipped (see Sec. [Epsilon label](@ref) for more info): ```julia julia> add_arc!(A,5=>6,'ϵ'=>'d',0.001); julia> A(['h','e','l','l']) (['w', 'o', 'r', 'l', 'd'], 0.001) ``` Here we used a small probability for this epsilon arc and this results in a low probability of the transduced output sequence. In fact the resulting probability of a sequence is the product of the weights of the arcs that were accessed (see [Paths](@ref)). !!! note The method `(transduce::WFST)(ilabels::Vector)` transduce the sequence of `ilabel` using the WFST `fst` requires the WFST to be input deterministic, see [`is_deterministic`](@ref). See [[1]](@ref references) for a good tutorial on WFST with the focus on speech recognition. ## [References](@id references) - [1] [Mohri, Mehryar and Pereira, Fernando and Riley, Michael, "Speech Recognition with Weighted Finite-State Transducers," Springer Handb. Speech Process. 2008](http://www.openfst.org/twiki/pub/FST/FstBackground/hbka.pdf)
FiniteStateTransducers
https://github.com/idiap/FiniteStateTransducers.jl.git
[ "MIT" ]
0.1.0
42d75e0b4f7cbdc29911175ddaa61f14293c6f19
docs
1139
# [Weights](@id weights) The weights of WFSTs typically belong to particular [semirings](https://en.wikipedia.org/wiki/Semiring). The two binary operations ``\oplus`` and ``\otimes`` are exported as `+` and `*`. The null element ``\bar{0}`` and unity element ``\bar{1}`` can be obtained using the functions `zero(W)` and `one(W)` where `W<:Semiring`. ## Semirings ```@docs ProbabilityWeight LogWeight NLogWeight TropicalWeight BoolWeight LeftStringWeight RightStringWeight ProductWeight ``` Use `get` to extract the contained object by the semiring: ```julia julia> w = TropicalWeight{Float32}(2.3) 2.3f0 julia> typeof(w), typeof(get(w)) (TropicalWeight{Float32}, Float32) ``` ## Semiring properties Some algorithms are only available for WFST's whose weights belong to semirings that satisfies certain properties. A list of these properties follows: ```@docs FiniteStateTransducers.iscommulative FiniteStateTransducers.isleft FiniteStateTransducers.isright FiniteStateTransducers.isweaklydivisible FiniteStateTransducers.ispath FiniteStateTransducers.isidempotent ``` Notice that these functions are not exported by the package.
FiniteStateTransducers
https://github.com/idiap/FiniteStateTransducers.jl.git
[ "MIT" ]
0.1.0
42d75e0b4f7cbdc29911175ddaa61f14293c6f19
docs
4238
# WFSTs internals ## Formal definition Formally a WFSTs over the semiring ``\mathbb{W}`` is the tuple ``(\mathcal{A},\mathcal{B},Q,I,F,E,\lambda,\rho)`` where: * ``\mathcal{A}`` is the input alphabet (set of input labels) * ``\mathcal{B}`` is the output alphabet (set of output labels) * ``Q`` is a set of states (usually integers) * ``I \subseteq Q`` is the set of initial states * ``F \subseteq Q`` is the set of final states * ``E \subseteq Q \times \mathcal{A} \cup \{ \epsilon \} \times \mathcal{B} \cup \{ \epsilon \} \times \mathbb{W} \times Q`` is a set of arcs (transitions) where an element consist of the tuple (starting state,input label, output label, weigth, destination state) * ``\lambda : I \rightarrow \mathbb{W}`` a function that maps initial states to a weight * ``\rho : F \rightarrow \mathbb{W}`` a function that maps final states to a weight ## Constructors and modifiers ```@docs WFST add_arc! add_states! initial! final! rm_final! rm_initial! ``` ## Internal access ```@docs get_isym get_iisym get_osym get_iosym get_states get_initial get_initial_weight get_final get_final_weight get_ialphabet get_oalphabet get_arcs ``` ## Arcs ```@docs Arc get_ilabel get_olabel get_weight get_nextstate ``` ## Paths ```@docs Path get_isequence get_osequence ``` ## Tour of the internals Let's build a simple WFST and check out its internals: ```julia julia> using FiniteStateTransducers julia> A = WFST(["hello","world"],[:ciao,:mondo]); julia> add_arc!(A,1=>2,"hello"=>:ciao); julia> add_arc!(A,1=>3,"world"=>:mondo); julia> add_arc!(A,2=>3,"world"=>:mondo); julia> initial!(A,1); julia> final!(A,3) WFST #states: 3, #arcs: 3, #isym: 2, #osym: 2 |1/0.0f0| hello:ciao/0.0f0 → (2) world:mondo/0.0f0 → (3) (2) world:mondo/0.0f0 → (3) ((3/0.0f0)) ``` For this simple WFST the states consists of an `Array` of `Array`s containing `Arc`: ```julia julia> get_states(A) 3-element Array{Array{FiniteStateTransducers.Arc{TropicalWeight{Float32},Int64},1},1}: [1:1/0.0f0 → (2), 2:2/0.0f0 → (3)] [2:2/0.0f0 → (3)] [] ``` As it can be seen the first state has two arcs, second state only one and the final state none. A state can also be accessed as follows: ```julia julia> A[2] 1-element Array{FiniteStateTransducers.Arc{TropicalWeight{Float32},Int64},1}: 2:2/0.0f0 → (3) ``` Here the arc's input/output labels are displayed as integers. We would expect `world:mondo/0.0f0 → (3)` instead of `2:2/0.0f0 → (3)`. This is due to fact that, contrary to the formal definition, labels are not stored directly in the arcs but an index is used instead, which corresponds to the input/output symbol table: ```julia julia> get_isym(A) Dict{String,Int64} with 2 entries: "hello" => 1 "world" => 2 julia> get_osym(A) Dict{Symbol,Int64} with 2 entries: :mondo => 2 :ciao => 1 ``` Another difference is in the definition of ``I``, ``F``, ``\lambda`` and ``\rho``. These are also represented by dictionaries that can be accessed using the functions [`get_initial`](@ref) and [`get_final`](@ref). ```julia julia> get_final(A) Dict{Int64,TropicalWeight{Float32}} with 1 entry: 3 => 0.0 ``` ## Epsilon label ```@docs iseps get_eps ``` By default `0` indicates the epsilon label which is not present in the symbol table. Currently the following epsilon symbols are reserved for the following types: | Type | Label | |:--------:|:---------:| | `Char` | `'ϵ'` | | `String` | `"<eps>"` | | `Int` | `0` | We can define a particular type by extending the functions [`iseps`](@ref) and [`get_eps`](@ref). For example if we want to introduce an epsilon symbol for the type `Symbol`: ``` julia> FiniteStateTransducers.iseps(x::Symbol) = x == :eps; julia> FiniteStateTransducers.get_eps(x::Type{Symbol}) = :eps; julia> add_arc!(A,3=>3,"world"=>:eps) WFST #states: 3, #arcs: 5, #isym: 2, #osym: 2 |1/0.0f0| hello:ciao/0.0f0 → (2) world:mondo/0.0f0 → (3) (2) world:mondo/0.0f0 → (3) ((3/0.0f0)) world:ϵ/0.0f0 → (3) julia> A[3] 1-element Array{Arc{TropicalWeight{Float32},Int64},1}: 2:0/0.0f0 → (3) ``` ## Properties ```@docs length size isinitial isfinal typeofweight has_eps count_eps is_acceptor is_acyclic is_deterministic ``` ## Other constructors ```@docs linearfst matrix2wfst ```
FiniteStateTransducers
https://github.com/idiap/FiniteStateTransducers.jl.git
[ "MIT" ]
0.1.0
42d75e0b4f7cbdc29911175ddaa61f14293c6f19
docs
593
## Arcmap ```@docs arcmap inv proj ``` ## Closure ```@docs closure closure! ``` ## Composition ```@docs ∘ Trivial EpsMatch EpsSeq ``` ## Concatenation ```@docs * ``` ## Connect ```@docs connect connect! ``` ## Determinize ```@docs determinize_fsa ``` ## Epsilon Removal ```@docs rm_eps rm_eps! ``` ## Iterators ```@docs BFS get_paths collectpaths DFS is_visited ``` ## Reverse ```@docs reverse ``` ## Shortest Distance ```@docs shortest_distance ``` ## Topological sort ```@docs topsort topsortperm get_scc ``` ## WFST label transition extraction ```@docs wfst2tr ```
FiniteStateTransducers
https://github.com/idiap/FiniteStateTransducers.jl.git
[ "MIT" ]
0.1.0
42d75e0b4f7cbdc29911175ddaa61f14293c6f19
docs
61
# Input/output ```@docs txt2fst txt2sym fst2dot fst2pdf ```
FiniteStateTransducers
https://github.com/idiap/FiniteStateTransducers.jl.git
[ "MIT" ]
0.1.0
42d75e0b4f7cbdc29911175ddaa61f14293c6f19
docs
995
# FiniteStateTransducers.jl Play with Weighted Finite State Transducers (WFSTs) using the Julia language. WFSTs provide a powerful framework that assigns a weight (e.g. probability) to conversions of symbol sequences. WFSTs are used in many applications such as speech recognition, natural language processing and machine learning. This package takes a lot of inspiration from [OpenFST](http://openfst.org/twiki/bin/view/FST/DeterminizeDoc). FiniteStateTransducers is still in an early development stage, see the documentation for currently available features and issues for the missing ones. ## Installation To install the package, simply issue the following command in the Julia REPL: ```julia ] add FiniteStateTransducers ``` ## Acknowledgements This work was developed under the supsrvision of Prof. Dr. Hervé Bourlard and supported by the Swiss National Science Foundation under the project "Sparse and hierarchical Structures for Speech Modeling" (SHISSM) (no. 200021.175589).
FiniteStateTransducers
https://github.com/idiap/FiniteStateTransducers.jl.git
[ "MPL-2.0" ]
0.1.0
58ea3a2f7602427c371dd2494ba46e072332ede7
code
352
using Documenter, ParametricLP makedocs( sitename = "ParametricLP", modules = [ParametricLP], clean = true, format = Documenter.HTML(prettyurls = get(ENV, "CI", nothing) == "true"), pages = ["ParametricLP" => "index.md", "API Reference" => "api.md"], ) deploydocs(repo = "github.com/adow031/ParametricLP.jl.git", devurl = "docs")
ParametricLP
https://github.com/adow031/ParametricLP.jl.git
[ "MPL-2.0" ]
0.1.0
58ea3a2f7602427c371dd2494ba46e072332ede7
code
1366
## This example is based on the model used to illustrate JuMP's sensitivity report ## https://jump.dev/JuMP.jl/stable/tutorials/linear/lp_sensitivity/ using HiGHS, Plots, ParametricLP, JuMP model = Model(HiGHS.Optimizer) set_silent(model) @variable(model, x >= 0) @variable(model, 0 <= y <= 3) @variable(model, z <= 1) @variable(model, p[1:2]) @objective(model, Min, 12x + 20y - z) @constraint(model, c1, 6x + 8y >= p[1]) @constraint(model, c2, 7x + 12y >= p[2]) @constraint(model, c3, x + y <= 20) box = ((0.0, 150.0), (0.0, 155.0)) regions, πs = find_regions(model, p, box) clims = (minimum([min(π[c1], π[c2]) for π in πs]), maximum([max(π[c1], π[c2]) for π in πs])) p1 = plot( [Shape(r) for r in regions], fill_z = permutedims([π[c1] for π in πs]), legend = false, colorbar = false, clims = clims, color = cgrad([:green, :yellow, :red]), ); p2 = plot( [Shape(r) for r in regions], fill_z = permutedims([π[c2] for π in πs]), legend = false, colorbar = false, clims = clims, color = cgrad([:green, :yellow, :red]), ); h1 = scatter( [0, 0], [1, 1], zcolor = collect(clims), xlims = (1, 1.1), label = "", yshowaxis = false, c = cgrad([:green, :yellow, :red]), framestyle = :none, ); l = @layout [grid(1, 2) a{0.06w}] plot(p1, p2, h1, layout = l, size = (940, 380), link = :all)
ParametricLP
https://github.com/adow031/ParametricLP.jl.git
[ "MPL-2.0" ]
0.1.0
58ea3a2f7602427c371dd2494ba46e072332ede7
code
1598
using HiGHS, Plots, ParametricLP, JuMP function get_model(line_capacity::Float64) model = JuMP.Model(HiGHS.Optimizer) set_silent(model) @variable(model, x >= 0) @variable(model, y >= 0) @variable(model, -line_capacity <= f <= line_capacity) @variable(model, p[1:2]) @variable(model, 0 <= T[1:3, 1:2] <= 1) nd1 = @constraint(model, sum(T[i, 1] for i in 1:3) + x - f == 3) nd2 = @constraint(model, sum(T[i, 2] for i in 1:3) + y + f == 2) @constraint(model, x <= p[1]) @constraint(model, y <= p[2]) @objective(model, Min, sum((i + (j - 1) / 2) * T[i, j] for i in 1:3, j in 1:2)) return model, p, [nd1, nd2] end model, p, cons = get_model(0.5) box = ((0.0, 4.0), (0.0, 4.0)) regions, πs = find_regions(model, p, box) clims = ( minimum([min(π[cons[1]], π[cons[2]]) for π in πs]), maximum([max(π[cons[1]], π[cons[2]]) for π in πs]), ) p1 = plot( [Shape(r) for r in regions], fill_z = permutedims([π[cons[1]] for π in πs]), legend = false, colorbar = false, clims = clims, color = cgrad([:grey, :yellow, :red]), ); p2 = plot( [Shape(r) for r in regions], fill_z = permutedims([π[cons[2]] for π in πs]), legend = false, colorbar = false, clims = clims, color = cgrad([:grey, :yellow, :red]), ); h1 = scatter( [0, 0], [1, 1], zcolor = collect(clims), xlims = (1, 1.1), label = "", yshowaxis = false, c = cgrad([:grey, :yellow, :red]), framestyle = :none, ); l = @layout [grid(1, 2) a{0.06w}] plot(p1, p2, h1, layout = l, size = (940, 380), link = :all)
ParametricLP
https://github.com/adow031/ParametricLP.jl.git
[ "MPL-2.0" ]
0.1.0
58ea3a2f7602427c371dd2494ba46e072332ede7
code
280
using JuliaFormatter function format_code() i = 0 while i < 10 if format(dirname(@__DIR__)) return true end i += 1 end return false end if format_code() @info("Formatting complete") else @info("Formatting failed") end
ParametricLP
https://github.com/adow031/ParametricLP.jl.git
[ "MPL-2.0" ]
0.1.0
58ea3a2f7602427c371dd2494ba46e072332ede7
code
123
module ParametricLP using JuMP, MathOptInterface include("utilities.jl") include("regions.jl") export find_regions end
ParametricLP
https://github.com/adow031/ParametricLP.jl.git
[ "MPL-2.0" ]
0.1.0
58ea3a2f7602427c371dd2494ba46e072332ede7
code
7332
function find_region( model::JuMP.Model, parameters::Vector{VariableRef}, box::Tuple{Tuple{Float64,Float64},Tuple{Float64,Float64}}, point::Tuple{Float64,Float64}, ϵ = 0.01, ) fix(parameters[1], point[1]) fix(parameters[2], point[2]) optimize!(model) if termination_status(model) != MOI.OPTIMAL unfix(parameters[1]) unfix(parameters[2]) return Tuple{Float64,Float64}[], Tuple{Float64,Float64}[], Dict() end sfm = JuMP._standard_form_matrix(model) sfb = JuMP._standard_form_basis(model, sfm) cons = all_constraints(model, include_variable_in_set_constraints = false) π = Dict(zip(cons, dual.(cons))) reverselookup = Dict{Int,VariableRef}() bounds = Dict{Int,Tuple{Float64,Float64}}() newcons = ConstraintRef[] for index in eachindex(sfm.bounds) reverselookup[index] = JuMP.constraint_object(sfm.bounds[index]).func end vars = all_variables(model) solution = Dict(zip(vars, value.(vars))) for i in eachindex(sfb.bounds) if sfb.bounds[i] != MathOptInterface.BASIC && reverselookup[i] ∉ parameters var = reverselookup[i] lb = has_lower_bound(var) ? lower_bound(var) : -Inf ub = has_upper_bound(var) ? upper_bound(var) : Inf bounds[i] = (lb, ub) fix(var, solution[var], force = true) end end for i in eachindex(sfb.constraints) if sfb.constraints[i] != MathOptInterface.BASIC constr_set = MOI.get(model, MOI.ConstraintSet(), sfm.constraints[i]) rhs = nothing if typeof(constr_set) <: MOI.GreaterThan rhs = constr_set.lower elseif typeof(constr_set) <: MOI.LessThan rhs = constr_set.upper end if rhs !== nothing con = @constraint(model, 0 == rhs) for (var, val) in JuMP.constraint_object(sfm.constraints[i]).func.terms set_normalized_coefficient(con, var, val) end push!(newcons, con) end end end unfix(parameters[1]) unfix(parameters[2]) set_lower_bound(parameters[1], box[1][1]) set_upper_bound(parameters[1], box[1][2]) set_lower_bound(parameters[2], box[2][1]) set_upper_bound(parameters[2], box[2][2]) original_obj = objective_function(model) corners = Tuple{Float64,Float64}[] for sgn in [-1, 1] for direction in [:pos, :neg] nextvalue = 0.0 while true @objective(model, Min, nextvalue * parameters[1] + sgn * parameters[2]) optimize!(model) if termination_status(model) == MOI.OPTIMAL push!(corners, Tuple(value.(parameters))) report = JuMP.lp_sensitivity_report(model) if direction == :pos && report.objective[parameters[1]][2] != Inf nextvalue += report.objective[parameters[1]][2] + ϵ elseif direction == :neg && report.objective[parameters[1]][1] != -Inf nextvalue += report.objective[parameters[1]][1] - ϵ else break end else break end end end end unique!(fix_minus_zero, corners) if length(corners) == 1 seeds = [ (corners[1][1] + ϵ * i[1], corners[1][2] + ϵ * i[2]) for i in [(-1, -1), (-1, 1), (1, -1), (1, 1)] ] else c = ( sum(corners[i][1] for i in eachindex(corners)), sum(corners[i][2] for i in eachindex(corners)), ) ./ length(corners) sort!( corners, lt = (x, y) -> atan(x[1] - c[1], x[2] - c[2]) < atan(y[1] - c[1], y[2] - c[2]), ) offsets = [ ( (corners[i][2] - corners[i%length(corners)+1][2]), (corners[i%length(corners)+1][1] - corners[i][1]), ) .* ( ϵ / sqrt( (corners[i][1] - corners[i%length(corners)+1][1])^2 + (corners[i%length(corners)+1][2] - corners[i][2])^2, ) ) for i in eachindex(corners) ] seeds = [ ( corners[i][1] + corners[i%length(corners)+1][1] + 2 * offsets[i][1], corners[i][2] + corners[i%length(corners)+1][2] + 2 * offsets[i][2], ) ./ 2 for i in eachindex(corners) ] end for c in newcons delete(model, c) end for (index, bound) in bounds var = reverselookup[index] unfix(var) if bound[1] != -Inf set_lower_bound(var, bound[1]) end if bound[2] != Inf set_upper_bound(var, bound[2]) end end delete_lower_bound(parameters[1]) delete_upper_bound(parameters[1]) delete_lower_bound(parameters[2]) delete_upper_bound(parameters[2]) set_objective(model, MOI.MIN_SENSE, original_obj) return corners, seeds, π end """ find_regions( model::JuMP.Model, parameters::Vector{VariableRef}, box::Tuple{Tuple{Float64,Float64},Tuple{Float64,Float64}}, ϵ = 0.01, ) This function finds all the optimal bases and their corresponding regions in terms of two `parameters` in a linear programming `model`. ### Required arguments `model` is a `JuMP.Model` linear programme, defined in a way where two of the right-hand side values are replaced by variables. `parameters` is a vector of two variables that appear on the right-hand side of the two constraints that we wish to explore parametrically. `box` is a Tuple of Tuples, this defines the minimum and maximum value for each of the `parameters` described above. ### Optional arguments `ϵ` is a tolerance value used when ensuring that we find an adjacent basis. """ function find_regions( model::JuMP.Model, parameters::Vector{VariableRef}, box::Tuple{Tuple{Float64,Float64},Tuple{Float64,Float64}}, ϵ = 0.01, ) πs = [] regions = Vector{Tuple{Float64,Float64}}[] seeds_list = [ (box[1][1], box[2][1]), (box[1][2], box[2][1]), (box[1][2], box[2][2]), (box[1][1], box[2][2]), ] while length(seeds_list) > 0 seed = pop!(seeds_list) duplicate = !insidePolygon( [ (box[1][1], box[2][1]), (box[1][2], box[2][1]), (box[1][2], box[2][2]), (box[1][1], box[2][2]), ], seed, ) if duplicate == false for i in eachindex(regions) if insidePolygon(regions[i], seed) duplicate = true break end end if !duplicate corners, seeds, π = find_region(model, parameters, box, seed, ϵ) if length(corners) != 0 push!(regions, corners) push!(πs, π) seeds_list = [seeds_list; seeds] end end end end return regions, πs end
ParametricLP
https://github.com/adow031/ParametricLP.jl.git
[ "MPL-2.0" ]
0.1.0
58ea3a2f7602427c371dd2494ba46e072332ede7
code
1493
function insidePolygon(corners, point) check_sign = 0.0 if length(corners) == 1 if point[1] != corners[1][1] || point[2] != corners[1][2] return false else return true end end for k in eachindex(corners) if k == length(corners) current_poly = (corners[1][1] - corners[k][1], corners[1][2] - corners[k][2]) else current_poly = (corners[k+1][1] - corners[k][1], corners[k+1][2] - corners[k][2]) end point_vect = (point[1] - corners[k][1], point[2] - corners[k][2]) current_sign = cross_product(current_poly, point_vect) if check_sign == 0.0 check_sign = current_sign elseif check_sign != current_sign && current_sign != 0.0 return false end end return true end function cross_product(v1::Tuple{Float64,Float64}, v2::Tuple{Float64,Float64}) val = v1[1] * v2[2] - v1[2] * v2[1] # This could theoretically cause an early termination of the algorithm, but # in practice prevents infinite loops. if abs(val) < 1e-8 val = 0.0 end return sign(val) end function fix_minus_zero(x::Tuple{Float64,Float64}) if x[1] == 0.0 if x[2] == -0.0 return (0.0, 0.0) else return (0.0, x[2]) end else if x[2] == -0.0 return (x[1], 0.0) else return (x[1], x[2]) end end end
ParametricLP
https://github.com/adow031/ParametricLP.jl.git
[ "MPL-2.0" ]
0.1.0
58ea3a2f7602427c371dd2494ba46e072332ede7
code
1428
using Test, ParametricLP, JuMP, HiGHS function get_model() model = JuMP.Model(HiGHS.Optimizer) set_silent(model) @variable(model, x >= 0) @variable(model, y >= 0) @variable(model, p[1:2]) @variable(model, 0 <= T[1:3] <= 1) con = @constraint(model, sum(T[i] for i in 1:3) + x + y == 5) @constraint(model, x <= p[1]) @constraint(model, y <= p[2]) @objective(model, Min, sum(i * T[i] for i in 1:3)) return model, p, con end model, p, con = get_model() box = ((0.0, 4.0), (0.0, 4.0)) regions, πs = find_regions(model, p, box) @testset "Utility Tests" begin @test ParametricLP.insidePolygon([(0.0, 0.0), (1.0, 0.0), (0.0, 1.0)], (0.25, 0.25)) == true @test ParametricLP.insidePolygon([(0.0, 0.0), (1.0, 0.0), (0.0, 1.0)], (0.6, 0.25)) == true @test ParametricLP.insidePolygon([(0.0, 0.0), (1.0, 0.0), (0.0, 1.0)], (0.8, 0.25)) == false @test ParametricLP.cross_product((1.0, 0.2), (-0.5, 0.5)) == 1.0 @test ParametricLP.cross_product((1.0, 0.2), (0.5, -0.5)) == -1.0 @test ParametricLP.cross_product((1.0, 0.2), (0.5, 0.1)) == 0.0 end @testset "Region Tests" begin @test length(regions) == 4 @test πs[1][con] == 1.0 @test πs[2][con] == 2.0 @test πs[3][con] == 3.0 @test πs[4][con] == 0.0 @test sum([v[1] + v[2] for v in regions[1]]) == 18.0 @test sum([v[1] + v[2] for v in regions[3]]) == 10.0 end
ParametricLP
https://github.com/adow031/ParametricLP.jl.git
[ "MPL-2.0" ]
0.1.0
58ea3a2f7602427c371dd2494ba46e072332ede7
docs
1404
| **Documentation** | **Build Status** | **Coverage** | |:-----------------:|:--------------------:|:----------------:| | [![][docs-latest-img]][docs-latest-url] | [![Build Status][build-img]][build-url] | [![Codecov branch][codecov-img]][codecov-url] # ParametricLP.jl This package utilises JuMP to define a two-dimensional parametric representation of the dual solution of a linear programme, as a function of the two right-hand side values. If you use this package for academic work, please cite this paper: M. Habibian et al. Co-optimization of demand response and interruptible load reserve offers for a price-making major consumer. Energy Systems, 11, pp. 45-71, (2020). ## Example There is an example based on a two-node electricity dispatch problem provided in the examples folder. ## Issues This package has not yet been extensively tested. If you encounter any problems when using this package, submit an issue. [build-img]: https://github.com/adow031/ParametricLP.jl/workflows/CI/badge.svg?branch=main [build-url]: https://github.com/adow031/ParametricLP.jl/actions?query=workflow%3ACI [codecov-img]: https://codecov.io/github/adow031/ParametricLP.jl/coverage.svg?branch=main [codecov-url]: https://codecov.io/github/adow031/ParametricLP.jl?branch=main [docs-latest-img]: https://img.shields.io/badge/docs-latest-blue.svg [docs-latest-url]: https://adow031.github.io/ParametricLP.jl
ParametricLP
https://github.com/adow031/ParametricLP.jl.git
[ "MPL-2.0" ]
0.1.0
58ea3a2f7602427c371dd2494ba46e072332ede7
docs
92
# API Reference ## ParametricLP Exported Functions ```@docs ParametricLP.find_regions ```
ParametricLP
https://github.com/adow031/ParametricLP.jl.git
[ "MPL-2.0" ]
0.1.0
58ea3a2f7602427c371dd2494ba46e072332ede7
docs
181
```@meta CurrentModule = ParametricLP DocTestSetup = quote using ParametricLP end ``` # ParametricLP.jl ## Installation `] add https://github.com/adow031/ParametricLP.jl.git`
ParametricLP
https://github.com/adow031/ParametricLP.jl.git
[ "MIT" ]
0.1.0
ac648f8005b4c75583b150be2073edc67433bb0c
code
295
module BitVectorExtensions export rshift, rshift!, lshift, lshift! import Base: BitVector, copy_chunks!, get_chunks_id, _msk64, glue_src_bitchunks, _div64, _mod64, copy_chunks_rtol! const _msk128 = ~UInt128(0) include("constructor_unsigned.jl") include("shifts.jl") include("utils.jl") end
BitVectorExtensions
https://github.com/andrewjradcliffe/BitVectorExtensions.jl.git
[ "MIT" ]
0.1.0
ac648f8005b4c75583b150be2073edc67433bb0c
code
2186
## Constructors from Unsigned ## @noinline throw_invalid_nbits(n::Integer) = throw(ArgumentError("length must be ≤ 128, got $n")) """ BitVector(x::Unsigned, n::Integer) Construct a `BitVector` of length 0 ≤ `n` ≤ 128 from an unsigned integer. If `n < 8sizeof(x)`, only the first `n` bits, numbering from the right, will be preserved; this is equivalent to `m = 8sizeof(x) - n; BitVector(x << m >> m, n)`. If `n > 8sizeof(x)`, the leading bit positions (reading left to right) are zero-filled analogously to unsigned integer literals. # Examples ```jldoctest julia> B = BitVector(0b101, 4) 4-element BitVector: 1 0 1 0 julia> B == BitVector((true, false, true, false)) true julia> B == BitVector(0xf5, 4) true julia> BitVector(0xff, 0) 0-element BitVector julia> m = 8sizeof(0xf5) - 3 5 julia> BitVector(0xf5 << m >> m, 3) == BitVector(0xf5, 3) true julia> BitVector(0b110, 8sizeof(0b110) - leading_zeros(0b110)) 3-element BitVector: 0 1 1 ``` """ function BitVector(x::Unsigned, n::Integer) n ≤ 128 || throw_invalid_nbits(n) B = BitVector(undef, n) Bc = B.chunks n != 0 && (Bc[1] = _msk64 >> (64 - n) & x) n > 64 && (Bc[2] = ~_msk64) return B end """ BitVector(x::Unsigned) Construct a `BitVector` of length `8sizeof(x)` from an unsigned integer following the [LSB 0 bit numbering scheme](https://en.wikipedia.org/wiki/Bit_numbering) (except 1-indexed). Leading bit positions are zero-filled analogously to unsigned integer literals. # Examples ```jldoctest julia> BitVector(0b10010100) 8-element BitVector: 0 0 1 0 1 0 0 1 julia> BitVector(0b10100) 8-element BitVector: 0 0 1 0 1 0 0 0 julia> BitVector(0xff) == trues(8) true ``` """ BitVector(x::Unsigned) = BitVector(x, 8 * sizeof(x)) function BitVector(x::UInt128) B = BitVector(undef, 128) Bc = B.chunks Bc[1] = x % UInt64 Bc[2] = x >> 64 % UInt64 return B end function BitVector(x::UInt128, n::Integer) n ≤ 128 || throw_invalid_nbits(n) B = BitVector(undef, n) if n != 0 Bc = B.chunks y = _msk128 >> (128 - n) & x Bc[1] = y % UInt64 n > 64 && (Bc[2] = y >> 64 % UInt64) end return B end
BitVectorExtensions
https://github.com/andrewjradcliffe/BitVectorExtensions.jl.git
[ "MIT" ]
0.1.0
ac648f8005b4c75583b150be2073edc67433bb0c
code
5633
# Necessary for avoiding a copy on rshift! when dest===src # -- several of the bitshifts involving ld0 can probably be eliminated. function copy_chunks_rshift!(dest::Vector{UInt64}, pos_d::Int, src::Vector{UInt64}, pos_s::Int, numbits::Int) numbits == 0 && return if dest === src && pos_d > pos_s return copy_chunks_rtol!(dest, pos_d, pos_s, numbits) end kd0, ld0 = get_chunks_id(pos_d) kd1, ld1 = get_chunks_id(pos_d + numbits - 1) ks0, ls0 = get_chunks_id(pos_s) ks1, ls1 = get_chunks_id(pos_s + numbits - 1) delta_kd = kd1 - kd0 delta_ks = ks1 - ks0 u = _msk64 if delta_kd == 0 msk_d0 = ~(u << ld0) | (u << (ld1+1)) else msk_d0 = ~(u << ld0) msk_d1 = (u << (ld1+1)) end if delta_ks == 0 msk_s0 = (u << ls0) & ~(u << (ls1+1)) else msk_s0 = (u << ls0) end chunk_s0 = glue_src_bitchunks(src, ks0, ks1, msk_s0, ls0) dest[kd0] = ((chunk_s0 << ld0) & ~msk_d0) if delta_kd == 0 for i = kd0+1:length(dest) dest[i] = ~_msk64 end return end for i = 1 : kd1 - kd0 - 1 chunk_s1 = glue_src_bitchunks(src, ks0 + i, ks1, msk_s0, ls0) chunk_s = (chunk_s0 >>> (64 - ld0)) | (chunk_s1 << ld0) dest[kd0 + i] = chunk_s chunk_s0 = chunk_s1 end if ks1 >= ks0 + delta_kd chunk_s1 = glue_src_bitchunks(src, ks0 + delta_kd, ks1, msk_s0, ls0) else chunk_s1 = UInt64(0) end chunk_s = (chunk_s0 >>> (64 - ld0)) | (chunk_s1 << ld0) dest[kd1] = (chunk_s & ~msk_d1) for i = kd1+1:length(dest) dest[i] = ~_msk64 end return end @inline function _msk_rtol!(dest::Vector{UInt64}, i::Int) kd1, ld1 = get_chunks_id(i) dest[kd1] &= (_msk64 << (ld1+1)) for k = kd1-1:-1:1 dest[k] = ~_msk64 end return end function rshift!(dest::BitVector, src::BitVector, i::Int) length(dest) == length(src) || throw(ArgumentError("destination and source should be of same size")) n = length(dest) abs(i) < n || return fill!(dest, false) i == 0 && return (src === dest ? src : copyto!(dest, src)) if i > 0 # right copy_chunks_rshift!(dest.chunks, 1, src.chunks, i+1, n-i) else # left i = -i copy_chunks_rshift!(dest.chunks, i+1, src.chunks, 1, n-i) _msk_rtol!(dest.chunks, i) end return dest end """ rshift!(dest::BitVector, src::BitVector, i::Integer) Shift the elements of `src` right by `n` bit positions, filling with `false` values, storing the result in `dest`. If `n < 0`, elements are shifted to the left. See also: [`rshift`](@ref), [`lshift!`](@ref) # Examples ```jldoctest julia> B = BitVector((false, false, false)); julia> rshift!(B, BitVector((true, true, true,)), 2) 3-element BitVector: 1 0 0 julia> rshift!(B, BitVector((true, true, true,)), -2) 3-element BitVector: 0 0 1 ``` """ rshift!(dest::BitVector, src::BitVector, i::Integer) = rshift!(dest, src, Int(i)) """ rshift!(B::BitVector, i::Integer) Shift the elements of `B` right by `n` bit positions, filling with `false` values. If `n < 0`, elements are shifted to the left. # Examples ```jldoctest julia> B = BitVector((true, true, true)); julia> rshift!(B, 2) 3-element BitVector: 1 0 0 julia> rshift!(B, 1) 3-element BitVector: 0 0 0 ``` """ rshift!(B::BitVector, i::Integer) = rshift!(B, B, i) # Same as (<<)(B::BitVector, i::UInt) """ rshift(B::BitVector, n::Integer) Return `B` with the elements shifted right by `n` bit positions, filling with `false` values. If `n < 0`, elements are shifted to the left. See also: [`rshift!`](@ref), [`lshift`](@ref) # Examples ```jldoctest julia> B = BitVector([true, false, true, false, false]) 5-element BitVector: 1 0 1 0 0 julia> rshift(B, 1) == B << 1 # Notice opposite behavior true julia> rshift(B, 2) 5-element BitVector: 1 0 0 0 0 ``` """ rshift(B::BitVector, i::Integer) = rshift!(similar(B), B, i) """ lshift!(dest::BitVector, src::BitVector, i::Integer) Shift the elements of `src` left by `n` bit positions, filling with `false` values, storing the result in `dest`. If `n < 0`, elements are shifted to the right. See also: [`lshift`](@ref), [`rshift!`](@ref) # Examples ```jldoctest julia> B = BitVector((false, false, false)); julia> lshift!(B, BitVector((true, true, true,)), 2) 3-element BitVector: 0 0 1 julia> lshift!(B, BitVector((true, true, true,)), -2) 3-element BitVector: 1 0 0 ``` """ lshift!(dest::BitVector, src::BitVector, i::Integer) = rshift!(dest, src, -i) lshift!(dest::BitVector, src::BitVector, i::Unsigned) = rshift!(dest, src, -Int(i)) """ lshift!(B::BitVector, i::Integer) Shift the elements of `B` left by `n` bit positions, filling with `false` values. If `n < 0`, elements are shifted to the right. # Examples ```jldoctest julia> B = BitVector((true, true, true)); julia> lshift!(B, 2) 3-element BitVector: 0 0 1 julia> lshift!(B, 1) 3-element BitVector: 0 0 0 """ lshift!(B::BitVector, i::Integer) = lshift!(B, B, i) # Same as (>>>)(B::BitVector, i::UInt) """ lshift(B::BitVector, n::Integer) Return `B` with the elements shifted left by `n` bit positions, filling with `false` values. If `n < 0`, elements are shifted to the right. See also: [`rshift`](@ref) # Examples ```jldoctest julia> B = BitVector([true, false, true, false, false]) 5-element BitVector: 1 0 1 0 0 julia> lshift(B, 1) == B >> 1 # Notice opposite behavior true julia> lshift(B, 2) 5-element BitVector: 0 0 1 0 1 ``` """ lshift(B::BitVector, i::Integer) = lshift!(similar(B), B, i)
BitVectorExtensions
https://github.com/andrewjradcliffe/BitVectorExtensions.jl.git
[ "MIT" ]
0.1.0
ac648f8005b4c75583b150be2073edc67433bb0c
code
284
function bitonehot(I::Vector{Int}, n::Int) b = falses(n) for i ∈ I b[i] = true end b end bitonehot(I::Vector{Int}) = bitonehot(I, maximum(I)) function sum_to_int(b::BitVector) s = 0 for i ∈ eachindex(b) s += b[i] * 2^(i - 1) end s end
BitVectorExtensions
https://github.com/andrewjradcliffe/BitVectorExtensions.jl.git
[ "MIT" ]
0.1.0
ac648f8005b4c75583b150be2073edc67433bb0c
code
1683
@testset "construct BitVector from Unsigned" begin # truncation for u in (0x12, 0x1234, 0x12345678, 0x123456789abcdef, 0x0f1e2d3c4b5a69780123456789abcdef) sz = 8sizeof(u) for n = 0:sz m = sz - n @test BitVector(u, n) == BitVector(u << m >> m, n) end end # (bit)reverse for u in (0x12, 0x1234, 0x12345678, 0x123456789abcdef, 0x0f1e2d3c4b5a69780123456789abcdef) for T in (UInt8, UInt16, UInt32, UInt64) t = u % T b = BitVector(t) rb = reverse(b) @test rb.chunks[1] == bitreverse(t) end end b = BitVector(UInt128(0xf5)) rb = reverse(b) @test rb.chunks[1] == 0x0000000000000000 @test rb.chunks[2] == bitreverse(UInt128(0xf5)) >> 64 % UInt64 # there and back again is = [1,5,32] @test bitonehot(is) == BitVector(0x80000011) is = [1,4,6,8] @test bitonehot(is) == BitVector(0xa9) # rotation -- somewhat excessive since circshift is already the same as bitrotate. # (it's correct by construction, but a desirable property) for u in (0x12, 0x1234, 0x12345678, 0x123456789abcdef, 0x0f1e2d3c4b5a69780123456789abcdef) b = BitVector(u) sz = 8sizeof(u) for n = -sz:sz @test circshift(b, n) == BitVector(bitrotate(u, n)) end end # other properties for u in (0xf5, 0xf0, 0x0f, 0x10, 0x01, 0x12, 0x1234, 0x12345678, 0x123456789abcdef, 0x0f1e2d3c4b5a69780123456789abcdef) B = BitVector(u) @test sum(B) == count_ones(u) @test findfirst(B) == trailing_zeros(u) + 1 @test findlast(B) == 8sizeof(u) - leading_zeros(u) end end
BitVectorExtensions
https://github.com/andrewjradcliffe/BitVectorExtensions.jl.git
[ "MIT" ]
0.1.0
ac648f8005b4c75583b150be2073edc67433bb0c
code
196
using BitVectorExtensions using Test using BitVectorExtensions: bitonehot using Random @testset "BitVectorExtensions.jl" begin include("constructor_unsigned.jl") include("shifts.jl") end
BitVectorExtensions
https://github.com/andrewjradcliffe/BitVectorExtensions.jl.git
[ "MIT" ]
0.1.0
ac648f8005b4c75583b150be2073edc67433bb0c
code
5111
@testset "BitVector l/r-shift[!] tests" begin b = BitVector(0x123456789abcdef) for i = -65:65 r = rshift(b, i) @test r.chunks[1] == 0x123456789abcdef >> i l = lshift(b, i) @test l.chunks[1] == 0x123456789abcdef << i # test vs. extant behavior of shift operators @test r == b << i @test l == b >> i end b = BitVector(0x0f1e2d3c4b5a69780123456789abcdef) for i = -129:129 r = rshift(b, i) @test r.chunks[1] == 0x0f1e2d3c4b5a69780123456789abcdef >> i % UInt64 @test r.chunks[2] == 0x0f1e2d3c4b5a69780123456789abcdef >> i >> 64 % UInt64 l = lshift(b, i) @test l.chunks[1] == 0x0f1e2d3c4b5a69780123456789abcdef << i % UInt64 @test l.chunks[2] == 0x0f1e2d3c4b5a69780123456789abcdef << i >> 64 % UInt64 # test vs. extant behavior of shift operators @test r == b << i @test l == b >> i end # With truncation @test rshift(BitVector(0x123456789abcdef, 20), 10) == BitVector(0xbcdef >> 10, 20) @test lshift(BitVector(0x123456789abcdef, 20), 10) == BitVector(0xbcdef << 10, 20) # Mutation: into self and into another dest b = BitVector(0xffffffffffffffff) @test_throws ArgumentError rshift!(b, falses(3), 2) @test_throws ArgumentError lshift!(b, falses(3), 2) for n in (64, 65, 79, 127, 128, 129, 158, 191, 192, 193, 1023, 1024, 1025) b = trues(n) t = trues(n) c = similar(b) # push bits off one by one for i = n-1:-1:0 rshift!(b, 1) rshift!(c, t, n-i) @test sum(b) == i == sum(c) end # place bit at right-most, then walk it to left-most, then back again b .= false b[1] = true for r = (2:1:n, -(n-1):1:-1) for i = r rshift!(b, signbit(i) ? 1 : -1) @test b[abs(i)] end end rshift!(b, t, 0) @test all(b) @test b.chunks !== t.chunks for i in (1, 2, 3, 4, 5, 17, 24, 37, 63, 64) rshift!(b, t, 0) rshift!(b, i) rshift!(c, t, i) @test sum(b) == n - i == sum(c) end for i = n-2:n rshift!(b, t, 0) rshift!(b, i) rshift!(c, t, i) @test sum(b) == n - i == sum(c) end for i = 64:64:n-1 rshift!(b, t, 0) rshift!(b, i) rshift!(c, t, i) @test sum(b) == n - i == sum(c) rshift!(b, t, 0) rshift!(b, i - 1) rshift!(c, t, i - 1) @test sum(b) == n - (i - 1) == sum(c) rshift!(b, t, 0) rshift!(b, i + 1) rshift!(c, t, i + 1) @test sum(b) == n - (i + 1) == sum(c) end # b = bitrand(n) t = deepcopy(b) rshift!(b, t, 0) @test b.chunks !== t.chunks for i in (1, 2, 3, 4, 5, 17, 24, 37, 63, 64, n, n + 1) rshift!(b, t, 0) rshift!(b, i) rshift!(c, t, i) @test sum(b) == sum(t[i+1:n]) == sum(c) @test b == rshift(t, i) == rshift(t, i) end end for n in (64, 65, 79, 127, 128, 129, 158, 191, 192, 193, 1023, 1024, 1025) b = trues(n) t = trues(n) c = similar(b) # push bits off one by one for i = n-1:-1:0 lshift!(b, 1) lshift!(c, t, n-i) @test sum(b) == i == sum(c) end # place bit at left-most, then walk it to right-most, then back again b .= false b[end] = true for r = (-(n-1):1:-1, 2:1:n) for i = r lshift!(b, signbit(i) ? -1 : 1) @test b[abs(i)] end end lshift!(b, t, 0) @test all(b) @test b.chunks !== t.chunks for i in (1, 2, 3, 4, 5, 17, 24, 37, 63, 64) lshift!(b, t, 0) lshift!(b, i) lshift!(c, t, i) @test sum(b) == n - i == sum(c) end for i = n-2:n lshift!(b, t, 0) lshift!(b, i) lshift!(c, t, i) @test sum(b) == n - i == sum(c) end for i = 64:64:n-1 lshift!(b, t, 0) lshift!(b, i) lshift!(c, t, i) @test sum(b) == n - i == sum(c) lshift!(b, t, 0) lshift!(b, i - 1) lshift!(c, t, i - 1) @test sum(b) == n - (i - 1) == sum(c) lshift!(b, t, 0) lshift!(b, i + 1) lshift!(c, t, i + 1) @test sum(b) == n - (i + 1) == sum(c) end # b = bitrand(n) t = deepcopy(b) lshift!(b, t, 0) @test b.chunks !== t.chunks for i in (1, 2, 3, 4, 5, 17, 24, 37, 63, 64, n, n + 1) lshift!(b, t, 0) lshift!(b, i) lshift!(c, t, i) @test sum(b) == sum(t[1:n-i]) == sum(c) @test b == (t >> i) @test b == lshift(t, i) == lshift(t, i) end end end
BitVectorExtensions
https://github.com/andrewjradcliffe/BitVectorExtensions.jl.git
[ "MIT" ]
0.1.0
ac648f8005b4c75583b150be2073edc67433bb0c
docs
975
# BitVectorExtensions ## Installation ```julia using Pkg Pkg.add("BitVectorExtensions") ``` ## Description This [PR](https://github.com/JuliaLang/julia/pull/45728) as a standalone. The constructor from `Unsigned` exhibits type piracy, so beware. Preface: there are two distinct concepts here -- a constructor for `BitVector` from unsigned integers, and `l/r-shift[!]` methods which match the corresponding shifts on bit indices. These methods may be useful if you find the motivation (or need) to work with raw bits, then later wish to use these raw bits as indices, in which case the most natural abstraction is a `BitVector`. Admittedly a niche application (from the perspective of those fortunate souls not forced into bit-twiddling by pure efficiency concerns), but why roll your own abstraction over raw bits when `Base` provides such a rich interface with well-tested methods? Or, perhaps someone seeking to store the contents of a `BitVector` in a text format.
BitVectorExtensions
https://github.com/andrewjradcliffe/BitVectorExtensions.jl.git
[ "MIT" ]
0.5.1
15b96cd9e90eaa8d256266aed59fd13fd1c8f181
code
327
# Copied this from Documenter.jl # Only run coverage from linux nightly build on travis. get(ENV, "TRAVIS_OS_NAME", "") == "linux" || exit() get(ENV, "TRAVIS_JULIA_VERSION", "") == "nightly" || exit() using Coverage cd(joinpath(dirname(@__FILE__), "..")) do Codecov.submit(Codecov.process_folder()) end
Autologistic
https://github.com/kramsretlow/Autologistic.jl.git
[ "MIT" ]
0.5.1
15b96cd9e90eaa8d256266aed59fd13fd1c8f181
code
504
push!(LOAD_PATH,"../src/") using Autologistic using Graphs, DataFrames, CSV, Plots using Documenter DocMeta.setdocmeta!(Autologistic, :DocTestSetup, :(using Autologistic); recursive=true) makedocs( sitename = "Autologistic.jl", modules = [Autologistic], pages = [ "index.md", "Background.md", "Design.md", "BasicUsage.md", "Examples.md", "api.md" ] ) deploydocs( repo = "github.com/kramsretlow/Autologistic.jl.git", )
Autologistic
https://github.com/kramsretlow/Autologistic.jl.git
[ "MIT" ]
0.5.1
15b96cd9e90eaa8d256266aed59fd13fd1c8f181
code
5562
""" ALRsimple An autologistic regression model with "simple smoothing": the unary parameter is of type `LinPredUnary`, and the pairwise parameter is of type `SimplePairwise`. # Constructors ALRsimple(unary::LinPredUnary, pairwise::SimplePairwise; Y::Union{Nothing,<:VecOrMat} = nothing, centering::CenteringKinds = none, coding::Tuple{Real,Real} = (-1,1), labels::Tuple{String,String} = ("low","high"), coordinates::SpatialCoordinates = [(0.0,0.0) for i=1:size(unary,1)] ) ALRsimple(graph::SimpleGraph{Int}, X::Float2D3D; Y::VecOrMat = Array{Bool,2}(undef,nv(graph),size(X,3)), β::Vector{Float64} = zeros(size(X,2)), λ::Float64 = 0.0, centering::CenteringKinds = none, coding::Tuple{Real,Real} = (-1,1), labels::Tuple{String,String} = ("low","high"), coordinates::SpatialCoordinates = [(0.0,0.0) for i=1:nv(graph)] ) # Arguments - `Y`: the array of dichotomous responses. Any array with 2 unique values will work. If the array has only one unique value, it must equal one of the coding values. The supplied object will be internally represented as a Boolean array. - `β`: the regression coefficients. - `λ`: the association parameter. - `centering`: controls what form of centering to use. - `coding`: determines the numeric coding of the dichotomous responses. - `labels`: a 2-tuple of text labels describing the meaning of `Y`. The first element is the label corresponding to the lower coding value. - `coordinates`: an array of 2- or 3-tuples giving spatial coordinates of each vertex in the graph. # Examples ```jldoctest julia> using Graphs julia> X = rand(10,3); #-predictors julia> Y = rand([-2, 3], 10); #-responses julia> g = Graph(10,20); #-graph julia> u = LinPredUnary(X); julia> p = SimplePairwise(g); julia> model1 = ALRsimple(u, p, Y=Y); julia> model2 = ALRsimple(g, X, Y=Y); julia> all([getfield(model1, fn)==getfield(model2, fn) for fn in fieldnames(ALRsimple)]) true ``` """ mutable struct ALRsimple{C<:CenteringKinds, R<:Real, S<:SpatialCoordinates} <: AbstractAutologisticModel responses::Array{Bool,2} unary::LinPredUnary pairwise::SimplePairwise centering::C coding::Tuple{R,R} labels::Tuple{String,String} coordinates::S function ALRsimple(y, u, p, c::C, cod::Tuple{R,R}, lab, coords::S) where {C,R,S} if !(size(y) == size(u) == size(p)[[1,3]]) error("ALRsimple: inconsistent sizes of Y, unary, and pairwise") end if cod[1] >= cod[2] error("ALRsimple: must have coding[1] < coding[2]") end if lab[1] == lab[2] error("ALRsimple: labels must be different") end new{C,R,S}(y,u,p,c,cod,lab,coords) end end # === Constructors ============================================================= # Construct from pre-constructed unary and pairwise types. function ALRsimple(unary::LinPredUnary, pairwise::SimplePairwise; Y::Union{Nothing,<:VecOrMat}=nothing, centering::CenteringKinds=none, coding::Tuple{Real,Real}=(-1,1), labels::Tuple{String,String}=("low","high"), coordinates::SpatialCoordinates=[(0.0,0.0) for i=1:size(unary,1)]) (n, m) = size(unary) if Y==nothing Y = Array{Bool,2}(undef, n, m) else Y = makebool(Y, coding) end return ALRsimple(Y,unary,pairwise,centering,coding,labels,coordinates) end # Construct from a graph and an X matrix. function ALRsimple(graph::SimpleGraph{Int}, X::Float2D3D; Y::VecOrMat=Array{Bool,2}(undef,nv(graph),size(X,3)), β::Vector{Float64}=zeros(size(X,2)), λ::Float64=0.0, centering::CenteringKinds=none, coding::Tuple{Real,Real}=(-1,1), labels::Tuple{String,String}=("low","high"), coordinates::SpatialCoordinates=[(0.0,0.0) for i=1:nv(graph)]) u = LinPredUnary(X, β) p = SimplePairwise(λ, graph, size(X,3)) return ALRsimple(makebool(Y,coding),u,p,centering,coding,labels,coordinates) end # ============================================================================== # === show methods ============================================================= function show(io::IO, ::MIME"text/plain", m::ALRsimple) print(io, "Autologistic regression model of type ALRsimple with parameter vector [β; λ].\n", "Fields:\n", showfields(m,2)) end function showfields(m::ALRsimple, leadspaces=0) spc = repeat(" ", leadspaces) return spc * "responses $(size2string(m.responses)) Bool array\n" * spc * "unary $(size2string(m.unary)) LinPredUnary with fields:\n" * showfields(m.unary, leadspaces+15) * spc * "pairwise $(size2string(m.pairwise)) SimplePairwise with fields:\n" * showfields(m.pairwise, leadspaces+15) * spc * "centering $(m.centering)\n" * spc * "coding $(m.coding)\n" * spc * "labels $(m.labels)\n" * spc * "coordinates $(size2string(m.coordinates)) vector of $(eltype(m.coordinates))\n" end # ==============================================================================
Autologistic
https://github.com/kramsretlow/Autologistic.jl.git
[ "MIT" ]
0.5.1
15b96cd9e90eaa8d256266aed59fd13fd1c8f181
code
11957
""" ALfit A type to hold estimation output for autologistic models. Fitting functions return an object of this type. Depending on the fitting method, some fields might not be set. Fields that are not used are set to `nothing` or to zero-dimensional arrays. The fields are: * `estimate`: A vector of parameter estimates. * `se`: A vector of standard errors for the estimates. * `pvalues`: A vector of p-values for testing the null hypothesis that the parameters equal zero (one-at-a time hypothesis tests). * `CIs`: A vector of 95% confidence intervals for the parameters (a vector of 2-tuples). * `optim`: the output of the call to `optimize` used to get the estimates. * `Hinv` (used by `fit_ml!`): The inverse of the Hessian matrix of the objective function, evaluated at the estimate. * `nboot` (`fit_pl!`): number of bootstrap samples to use for error estimation. * `kwargs` (`fit_pl!`): holds extra keyword arguments passed in the call to the fitting function. * `bootsamples` (`fit_pl!`): the bootstrap samples. * `bootestimates` (`fit_pl!`): the bootstrap parameter estimates. * `convergence`: either a Boolean indicating optimization convergence ( for `fit_ml!`), or a vector of such values for the optimizations done to estimate bootstrap replicates. The empty constructor `ALfit()` will initialize an object with all fields empty, so the needed fields can be filled afterwards. """ mutable struct ALfit estimate::Vector{Float64} se::Vector{Float64} pvalues::Vector{Float64} CIs::Vector{Tuple{Float64,Float64}} optim Hinv::Array{Float64,2} nboot::Int kwargs bootsamples bootestimates convergence end # Constructor with no arguments - for object creation. Initialize everything to empty or # nothing. ALfit() = ALfit(zeros(Float64,0), zeros(Float64,0), zeros(Float64,0), Vector{Tuple{Float64,Float64}}(undef,0), nothing, zeros(Float64,0,0), 0, nothing, nothing, nothing, nothing) # === show methods ============================================================= show(io::IO, f::ALfit) = print(io, "ALfit") function show(io::IO, ::MIME"text/plain", f::ALfit) print(io, "Autologistic model fitting results. Its non-empty fields are:\n", showfields(f,2), "Use summary(fit; [parnames, sigdigits]) to see a table of estimates.\n", "For pseudolikelihood, use oneboot() and addboot!() to add bootstrap after the fact.") end function showfields(f::ALfit, leadspaces=0) spc = repeat(" ", leadspaces) out = "" if length(f.estimate) > 0 out *= spc * "estimate " * "$(size2string(f.estimate)) vector of parameter estimates\n" end if length(f.se) > 0 out *= spc * "se " * "$(size2string(f.se)) vector of standard errors\n" end if length(f.pvalues) > 0 out *= spc * "pvalues " * "$(size2string(f.pvalues)) vector of 2-sided p-values\n" end if length(f.CIs) > 0 out *= spc * "CIs " * "$(size2string(f.CIs)) vector of 95% confidence intervals (as tuples)\n" end if f.optim !== nothing out *= spc * "optim " * "the output of the call to optimize()\n" end if length(f.Hinv) > 0 out *= spc * "Hinv " * "the inverse of the Hessian, evaluated at the optimum\n" end if f.nboot > 0 out *= spc * "nboot " * "the number of bootstrap replicates drawn\n" end if f.kwargs !== nothing out *= spc * "kwargs " * "extra keyword arguments passed to sample()\n" end if f.bootsamples !== nothing out *= spc * "bootsamples " * "$(size2string(f.bootsamples)) array of bootstrap replicates\n" end if f.bootestimates !== nothing out *= spc * "bootestimates " * "$(size2string(f.bootestimates)) array of bootstrap estimates\n" end if f.convergence !== nothing if length(f.convergence) == 1 out *= spc * "convergence " * "$(f.convergence)\n" else out *= spc * "convergence " * "$(size2string(f.convergence)) vector of convergence flags " * "($(sum(f.convergence .== false)) false)\n" end end if out == "" out = spc * "(all fields empty)\n" end return out end # ============================================================================== # Line up all strings in rows 2:end of a column of String matrix S, so that a certain # character (e.g. decimal point or comma) aligns. Do this by prepending spaces. # After processing, text will line up but strings still might not be all the same length. function align!(S, col, char) nrow = size(S,1) locs = findfirst.(isequal(char), S[2:nrow,col]) # If no char found - make all strings same length if all(locs .== nothing) lengths = length.(S[2:nrow,col]) maxlength = maximum(lengths) for i = 2:nrow S[i,col] = repeat(" ", maxlength - lengths[i-1]) * S[i,col] end return end # Otherwise, align the characters maxloc = any(locs .== nothing) ? maximum(length.(S[2:nrow,col])) : maximum(locs) for i = 2:nrow if locs[i-1] == nothing continue end S[i,col] = repeat(" ", maxloc - locs[i-1]) * S[i,col] end end function summary(io::IO, f::ALfit; parnames=nothing, sigdigits=3) npar = length(f.estimate) if npar==0 println(io, "No estimates to tabulate") return end if parnames != nothing && length(parnames) !== npar error("parnames vector is not the correct length") end # Create the matrix of strings, and add header row and "p-values" and "CIs" columns # (only include the "p-value" column if it's a ML estimate). if f.bootestimates == nothing out = Matrix{String}(undef, npar+1, 5) out[1,:] = ["name", "est", "se", "p-value", "95% CI"] out[2:npar+1, 4] = length(f.pvalues)==0 ? ["" for i=1:npar] : string.(round.(f.pvalues,sigdigits=sigdigits)) out[2:npar+1, 5] = length(f.CIs)==0 ? ["" for i=1:npar] : [string(round.((f.CIs[i][1], f.CIs[i][2]),sigdigits=sigdigits)) for i=1:npar] align!(out, 4, '.') align!(out, 5, ',') else out = Matrix{String}(undef, npar+1, 4) out[1,:] = ["name", "est", "se", "95% CI"] out[2:npar+1, 4] = length(f.CIs)==0 ? ["" for i=1:npar] : [string(round.((f.CIs[i][1], f.CIs[i][2]),sigdigits=sigdigits)) for i=1:npar] align!(out, 4, ',') end # Fill in the other columns for i = 2:npar+1 out[i,1] = parnames==nothing ? "parameter $(i-1)" : parnames[i-1] end out[2:npar+1, 2] = string.(round.(f.estimate,sigdigits=sigdigits)) out[2:npar+1, 3] = length(f.se)==0 ? ["" for i=1:npar] : string.(round.(f.se,sigdigits=sigdigits)) align!(out, 2, '.') align!(out, 3, '.') nrow, ncol = size(out) colwidths = [maximum(length.(out[:,i])) for i=1:ncol] for i = 1:nrow for j = 1:ncol print(io, out[i,j], repeat(" ", colwidths[j]-length(out[i,j]))) if j < ncol print(io, " ") else print(io, "\n") end end end end function summary(f::ALfit; parnames=nothing, sigdigits=3) summary(stdout, f; parnames=parnames, sigdigits=sigdigits) end """ addboot!(fit::ALfit, bootsamples::Array{Float64,3}, bootestimates::Array{Float64,2}, convergence::Vector{Bool}) Add parametric bootstrap information in arrays `bootsamples`, `bootestimates`, and `convergence` to model fitting information `fit`. If `fit` already contains bootstrap data, the new data is appended to the existing data, and statistics are recomputed. # Examples ```jldoctest julia> using Random; julia> Random.seed!(1234); julia> G = makegrid4(4,3).G; julia> Y=[[fill(-1,4); fill(1,8)] [fill(-1,3); fill(1,9)] [fill(-1,5); fill(1,7)]]; julia> model = ALRsimple(G, ones(12,1,3), Y=Y); julia> fit = fit_pl!(model, start=[-0.4, 1.1]); julia> samps = zeros(12,3,10); julia> ests = zeros(2,10); julia> convs = fill(false, 10); julia> for i = 1:10 temp = oneboot(model, start=[-0.4, 1.1]) samps[:,:,i] = temp.sample ests[:,i] = temp.estimate convs[i] = temp.convergence end julia> addboot!(fit, samps, ests, convs) julia> summary(fit) name est se 95% CI parameter 1 -0.39 0.442 (-1.09, 0.263) parameter 2 1.1 0.279 (-0.00664, 0.84) ``` """ function addboot!(fit::ALfit, bootsamples::Array{Float64,3}, bootestimates::Array{Float64,2}, convergence::Vector{Bool}) if size(bootsamples,2) == 1 bootsamples = dropdims(bootsamples, dims=2) end if fit.bootsamples != nothing fit.bootsamples = cat(fit.bootsamples, bootsamples, dims=ndims(bootsamples)) fit.bootestimates = [fit.bootestimates bootestimates] fit.convergence = [fit.convergence; convergence] else fit.bootsamples = bootsamples fit.bootestimates = bootestimates fit.convergence = convergence end ix = findall(convergence) if length(ix) < length(convergence) println("NOTE: $(length(convergence) - length(ix)) entries have convergence==false.", " Omitting these in calculations.") end npar = size(bootestimates,1) fit.se = std(fit.bootestimates[:,ix], dims=2)[:] fit.CIs = [(0.0, 0.0) for i=1:npar] for i = 1:npar fit.CIs[i] = (quantile(bootestimates[i,ix],0.025), quantile(bootestimates[i,ix],0.975)) end end """ addboot!(fit::ALfit, bootresults::Array{T,1}) where T <: NamedTuple{(:sample, :estimate, :convergence)} An `addboot!` method taking bootstrap data as an array of named tuples. Tuples are of the form produced by `oneboot`. # Examples ```jldoctest julia> using Random; julia> Random.seed!(1234); julia> G = makegrid4(4,3).G; julia> Y=[[fill(-1,4); fill(1,8)] [fill(-1,3); fill(1,9)] [fill(-1,5); fill(1,7)]]; julia> model = ALRsimple(G, ones(12,1,3), Y=Y); julia> fit = fit_pl!(model, start=[-0.4, 1.1]); julia> boots = [oneboot(model, start=[-0.4, 1.1]) for i = 1:10]; julia> addboot!(fit, boots) julia> summary(fit) name est se 95% CI parameter 1 -0.39 0.442 (-1.09, 0.263) parameter 2 1.1 0.279 (-0.00664, 0.84) ``` """ function addboot!(fit::ALfit, bootresults::Array{T,1}) where T <: NamedTuple{(:sample, :estimate, :convergence)} nboot = length(bootresults) npar = length(bootresults[1].estimate) n = size(bootresults[1].sample, 1) m = size(bootresults[1].sample, 2) #n,m = size(...) won't work (sample may be 1D or 2D) bootsamples = Array{Float64}(undef, n, m, nboot) bootestimates = Array{Float64}(undef, npar, nboot) convergence = Array{Bool}(undef, nboot) for i = 1:nboot bootsamples[:,:,i] = bootresults[i].sample bootestimates[:,i] = bootresults[i].estimate convergence[i] = bootresults[i].convergence end addboot!(fit, bootsamples, bootestimates, convergence) end
Autologistic
https://github.com/kramsretlow/Autologistic.jl.git
[ "MIT" ]
0.5.1
15b96cd9e90eaa8d256266aed59fd13fd1c8f181
code
6615
""" ALfull An autologistic model with a `FullUnary` unary parameter type and a `FullPairwise` pairwise parameter type. This model has the maximum number of unary parameters (one parameter per variable per observation), and an association matrix with one parameter per edge in the graph. # Constructors ALfull(unary::FullUnary, pairwise::FullPairwise; Y::Union{Nothing,<:VecOrMat}=nothing, centering::CenteringKinds=none, coding::Tuple{Real,Real}=(-1,1), labels::Tuple{String,String}=("low","high"), coordinates::SpatialCoordinates=[(0.0,0.0) for i=1:size(unary,1)] ) ALfull(graph::SimpleGraph{Int}, alpha::Float1D2D, lambda::Vector{Float64}; Y::VecOrMat=Array{Bool,2}(undef,nv(graph),size(alpha,2)), centering::CenteringKinds=none, coding::Tuple{Real,Real}=(-1,1), labels::Tuple{String,String}=("low","high"), coordinates::SpatialCoordinates=[(0.0,0.0) for i=1:nv(graph)] ) ALfull(graph::SimpleGraph{Int}, count::Int=1; Y::VecOrMat=Array{Bool,2}(undef,nv(graph),count), centering::CenteringKinds=none, coding::Tuple{Real,Real}=(-1,1), labels::Tuple{String,String}=("low","high"), coordinates::SpatialCoordinates=[(0.0,0.0) for i=1:nv(graph)] ) # Arguments - `Y`: the array of dichotomous responses. Any array with 2 unique values will work. If the array has only one unique value, it must equal one of th coding values. The supplied object will be internally represented as a Boolean array. - `centering`: controls what form of centering to use. - `coding`: determines the numeric coding of the dichotomous responses. - `labels`: a 2-tuple of text labels describing the meaning of `Y`. The first element is the label corresponding to the lower coding value. - `coordinates`: an array of 2- or 3-tuples giving spatial coordinates of each vertex in the graph. # Examples ```jldoctest julia> g = Graph(10, 20); #-graph (20 edges) julia> alpha = zeros(10, 4); #-unary parameter values julia> lambda = rand(20); #-pairwise parameter values julia> Y = rand([0, 1], 10, 4); #-responses julia> u = FullUnary(alpha); julia> p = FullPairwise(g, 4); julia> setparameters!(p, lambda); julia> model1 = ALfull(u, p, Y=Y); julia> model2 = ALfull(g, alpha, lambda, Y=Y); julia> model3 = ALfull(g, 4, Y=Y); julia> setparameters!(model3, [alpha[:]; lambda]); julia> all([getfield(model1, fn)==getfield(model2, fn)==getfield(model3, fn) for fn in fieldnames(ALfull)]) true ``` """ mutable struct ALfull{C<:CenteringKinds, R<:Real, S<:SpatialCoordinates} <: AbstractAutologisticModel responses::Array{Bool,2} unary::FullUnary pairwise::FullPairwise centering::C coding::Tuple{R,R} labels::Tuple{String,String} coordinates::S function ALfull(y, u, p, c::C, cod::Tuple{R,R}, lab, coords::S) where {C,R,S} if !(size(y) == size(u) == size(p)[[1,3]]) error("ALfull: inconsistent sizes of Y, unary, and pairwise") end if cod[1] >= cod[2] error("ALfull: must have coding[1] < coding[2]") end if lab[1] == lab[2] error("ALfull: labels must be different") end new{C,R,S}(y,u,p,c,cod,lab,coords) end end # === Constructors ============================================================= # Construct from pre-constructed unary and pairwise types. function ALfull(unary::FullUnary, pairwise::FullPairwise; Y::Union{Nothing,<:VecOrMat}=nothing, centering::CenteringKinds=none, coding::Tuple{Real,Real}=(-1,1), labels::Tuple{String,String}=("low","high"), coordinates::SpatialCoordinates=[(0.0,0.0) for i=1:size(unary,1)]) (n, m) = size(unary) if Y==nothing Y = Array{Bool,2}(undef, n, m) else Y = makebool(Y,coding) end return ALfull(Y,unary,pairwise,centering,coding,labels,coordinates) end # Construct from a graph, an array of unary parameters, and a vector of pairwise parameters. function ALfull(graph::SimpleGraph{Int}, alpha::Float1D2D, lambda::Vector{Float64}; Y::VecOrMat=Array{Bool,2}(undef,nv(graph),size(alpha,2)), centering::CenteringKinds=none, coding::Tuple{Real,Real}=(-1,1), labels::Tuple{String,String}=("low","high"), coordinates::SpatialCoordinates=[(0.0,0.0) for i=1:nv(graph)]) u = FullUnary(alpha) p = FullPairwise(graph, size(alpha,2)) setparameters!(p, lambda) return ALfull(makebool(Y,coding),u,p,centering,coding,labels,coordinates) end # Construct from a graph and a number of observations function ALfull(graph::SimpleGraph{Int}, count::Int=1; Y::VecOrMat=Array{Bool,2}(undef,nv(graph),count), centering::CenteringKinds=none, coding::Tuple{Real,Real}=(-1,1), labels::Tuple{String,String}=("low","high"), coordinates::SpatialCoordinates=[(0.0,0.0) for i=1:nv(graph)]) u = FullUnary(nv(graph),count) p = FullPairwise(graph, count) return ALfull(makebool(Y,coding),u,p,centering,coding,labels,coordinates) end # ============================================================================== # === show methods ============================================================= function show(io::IO, ::MIME"text/plain", m::ALfull) print(io, "Autologistic model of type ALfull with parameter vector [α; Λ].\n", "Fields:\n", showfields(m,2)) end function showfields(m::ALfull, leadspaces=0) spc = repeat(" ", leadspaces) return spc * "responses $(size2string(m.responses)) Bool array\n" * spc * "unary $(size2string(m.unary)) FullUnary with fields:\n" * showfields(m.unary, leadspaces+15) * spc * "pairwise $(size2string(m.pairwise)) FullPairwise with fields:\n" * showfields(m.pairwise, leadspaces+15) * spc * "centering $(m.centering)\n" * spc * "coding $(m.coding)\n" * spc * "labels $(m.labels)\n" * spc * "coordinates $(size2string(m.coordinates)) vector of $(eltype(m.coordinates))\n" end # ==============================================================================
Autologistic
https://github.com/kramsretlow/Autologistic.jl.git
[ "MIT" ]
0.5.1
15b96cd9e90eaa8d256266aed59fd13fd1c8f181
code
6588
""" ALsimple An autologistic model with a `FullUnary` unary parameter type and a `SimplePairwise` pairwise parameter type. This model has the maximum number of unary parameters (one parameter per variable per observation), and a single association parameter. # Constructors ALsimple(unary::FullUnary, pairwise::SimplePairwise; Y::Union{Nothing,<:VecOrMat} = nothing, centering::CenteringKinds = none, coding::Tuple{Real,Real} = (-1,1), labels::Tuple{String,String} = ("low","high"), coordinates::SpatialCoordinates = [(0.0,0.0) for i=1:size(unary,1)] ) ALsimple(graph::SimpleGraph{Int}, alpha::Float1D2D; Y::VecOrMat = Array{Bool,2}(undef,nv(graph),size(alpha,2)), λ::Float64 = 0.0, centering::CenteringKinds = none, coding::Tuple{Real,Real} = (-1,1), labels::Tuple{String,String} = ("low","high"), coordinates::SpatialCoordinates = [(0.0,0.0) for i=1:nv(graph)] ) ALsimple(graph::SimpleGraph{Int}, count::Int = 1; Y::VecOrMat = Array{Bool,2}(undef,nv(graph),size(alpha,2)), λ::Float64=0.0, centering::CenteringKinds=none, coding::Tuple{Real,Real}=(-1,1), labels::Tuple{String,String}=("low","high"), coordinates::SpatialCoordinates=[(0.0,0.0) for i=1:nv(graph)] ) # Arguments - `Y`: the array of dichotomous responses. Any array with 2 unique values will work. If the array has only one unique value, it must equal one of th coding values. The supplied object will be internally represented as a Boolean array. - `λ`: the association parameter. - `centering`: controls what form of centering to use. - `coding`: determines the numeric coding of the dichotomous responses. - `labels`: a 2-tuple of text labels describing the meaning of `Y`. The first element is the label corresponding to the lower coding value. - `coordinates`: an array of 2- or 3-tuples giving spatial coordinates of each vertex in the graph. # Examples ```jldoctest julia> alpha = zeros(10, 4); #-unary parameter values julia> Y = rand([0, 1], 10, 4); #-responses julia> g = Graph(10, 20); #-graph julia> u = FullUnary(alpha); julia> p = SimplePairwise(g, 4); julia> model1 = ALsimple(u, p, Y=Y); julia> model2 = ALsimple(g, alpha, Y=Y); julia> model3 = ALsimple(g, 4, Y=Y); julia> all([getfield(model1, fn)==getfield(model2, fn)==getfield(model3, fn) for fn in fieldnames(ALsimple)]) true ``` """ mutable struct ALsimple{C<:CenteringKinds, R<:Real, S<:SpatialCoordinates} <: AbstractAutologisticModel responses::Array{Bool,2} unary::FullUnary pairwise::SimplePairwise centering::C coding::Tuple{R,R} labels::Tuple{String,String} coordinates::S function ALsimple(y, u, p, c::C, cod::Tuple{R,R}, lab, coords::S) where {C,R,S} if !(size(y) == size(u) == size(p)[[1,3]]) error("ALsimple: inconsistent sizes of Y, unary, and pairwise") end if cod[1] >= cod[2] error("ALsimple: must have coding[1] < coding[2]") end if lab[1] == lab[2] error("ALsimple: labels must be different") end new{C,R,S}(y,u,p,c,cod,lab,coords) end end # === Constructors ============================================================= # Construct from pre-constructed unary and pairwise types. function ALsimple(unary::FullUnary, pairwise::SimplePairwise; Y::Union{Nothing,<:VecOrMat}=nothing, centering::CenteringKinds=none, coding::Tuple{Real,Real}=(-1,1), labels::Tuple{String,String}=("low","high"), coordinates::SpatialCoordinates=[(0.0,0.0) for i=1:size(unary,1)]) (n, m) = size(unary) if Y==nothing Y = Array{Bool,2}(undef, n, m) else Y = makebool(Y,coding) end return ALsimple(Y,unary,pairwise,centering,coding,labels,coordinates) end # Construct from a graph and an array of unary parameters. function ALsimple(graph::SimpleGraph{Int}, alpha::Float1D2D; Y::VecOrMat=Array{Bool,2}(undef,nv(graph),size(alpha,2)), λ::Float64=0.0, centering::CenteringKinds=none, coding::Tuple{Real,Real}=(-1,1), labels::Tuple{String,String}=("low","high"), coordinates::SpatialCoordinates=[(0.0,0.0) for i=1:nv(graph)]) u = FullUnary(alpha) p = SimplePairwise(λ, graph, size(alpha,2)) return ALsimple(makebool(Y,coding),u,p,centering,coding,labels,coordinates) end # Construct from a graph and a number of observations function ALsimple(graph::SimpleGraph{Int}, count::Int=1; Y::VecOrMat=Array{Bool,2}(undef,nv(graph),count), λ::Float64=0.0, centering::CenteringKinds=none, coding::Tuple{Real,Real}=(-1,1), labels::Tuple{String,String}=("low","high"), coordinates::SpatialCoordinates=[(0.0,0.0) for i=1:nv(graph)]) u = FullUnary(nv(graph),count) p = SimplePairwise(λ, graph, count) return ALsimple(makebool(Y,coding),u,p,centering,coding,labels,coordinates) end # ============================================================================== # === show methods ============================================================= function show(io::IO, ::MIME"text/plain", m::ALsimple) print(io, "Autologistic model of type ALsimple with parameter vector [α; λ].\n", "Fields:\n", showfields(m,2)) end function showfields(m::ALsimple, leadspaces=0) spc = repeat(" ", leadspaces) return spc * "responses $(size2string(m.responses)) Bool array\n" * spc * "unary $(size2string(m.unary)) FullUnary with fields:\n" * showfields(m.unary, leadspaces+15) * spc * "pairwise $(size2string(m.pairwise)) SimplePairwise with fields:\n" * showfields(m.pairwise, leadspaces+15) * spc * "centering $(m.centering)\n" * spc * "coding $(m.coding)\n" * spc * "labels $(m.labels)\n" * spc * "coordinates $(size2string(m.coordinates)) vector of $(eltype(m.coordinates))\n" end # ==============================================================================
Autologistic
https://github.com/kramsretlow/Autologistic.jl.git
[ "MIT" ]
0.5.1
15b96cd9e90eaa8d256266aed59fd13fd1c8f181
code
1898
module Autologistic using Graphs: Graph, SimpleGraph, nv, ne, adjacency_matrix, edges, add_edge! using LinearAlgebra: norm, diag, triu, I using SparseArrays: SparseMatrixCSC, sparse, spzeros using CSV: read using Optim: optimize, Options, converged, BFGS using Distributions: Normal, cdf using SharedArrays: SharedArray using Random: seed!, rand, randn using Distributed: @distributed, workers using Statistics: mean, std, quantile using DataFrames import Base: show, getindex, setindex!, summary, size, IndexStyle, length import Distributions: sample export #----- types ----- AbstractAutologisticModel, AbstractPairwiseParameter, AbstractUnaryParameter, ALfit, ALfull, ALRsimple, ALsimple, FullPairwise, FullUnary, SpatialCoordinates, LinPredUnary, SimplePairwise, #----- enums ----- CenteringKinds, none, expectation, onehalf, SamplingMethods, Gibbs, perfect_reuse_samples, perfect_reuse_seeds, perfect_read_once, perfect_bounding_chain, #----- functions ----- addboot!, centeringterms, conditionalprobabilities, fit_ml!, fit_pl!, fullPMF, getparameters, getpairwiseparameters, getunaryparameters, loglikelihood, makegrid4, makegrid8, makebool, makecoded, makespatialgraph, marginalprobabilities, negpotential, oneboot, pseudolikelihood, sample, setparameters!, setunaryparameters!, setpairwiseparameters! include("common.jl") include("ALfit_type.jl") include("abstractautologisticmodel_type.jl") include("abstractunaryparameter_type.jl") include("abstractpairwiseparameter_type.jl") include("fullpairwise_type.jl") include("fullunary_type.jl") include("linpredunary_type.jl") include("simplepairwise_type.jl") include("ALsimple_type.jl") include("ALfull_type.jl") include("ALRsimple_type.jl") include("samplers.jl") end # module
Autologistic
https://github.com/kramsretlow/Autologistic.jl.git
[ "MIT" ]
0.5.1
15b96cd9e90eaa8d256266aed59fd13fd1c8f181
code
31131
""" AbstractAutologisticModel Abstract type representing autologistic models. All concrete subtypes should have the following fields: * `responses::Array{Bool,2}` -- The binary observations. Rows are for nodes in the graph, and columns are for independent (vector) observations. It is a 2D array even if there is only one observation. * `unary<:AbstractUnaryParameter` -- Specifies the unary part of the model. * `pairwise<:AbstractPairwiseParameter` -- Specifies the pairwise part of the model (including the graph). * `centering<:CenteringKinds` -- Specifies the form of centering used, if any. * `coding::Tuple{T,T} where T<:Real` -- Gives the numeric coding of the responses. * `labels::Tuple{String,String}` -- Provides names for the high and low states. * `coordinates<:SpatialCoordinates` -- Provides 2D or 3D coordinates for each vertex in the graph. This type has the following functions defined, considered part of the type's interface. They cover most operations one will want to perform. Concrete subtypes should not have to define custom overrides unless more specialized or efficient algorithms exist for the subtype. * `getparameters` and `setparameters!` * `getunaryparameters` and `setunaryparameters!` * `getpairwiseparameters` and `setpairwiseparameters!` * `centeringterms` * `negpotential`, `pseudolikelihood`, and `loglikelihood` * `fullPMF`, `marginalprobabilities`, and `conditionalprobabilities` * `fit_pl!` and `fit_ml!` * `sample` and `oneboot` * `showfields` # Examples ```jldoctest julia> M = ALsimple(Graph(4,4)); julia> typeof(M) ALsimple{CenteringKinds,Int64,Nothing} julia> isa(M, AbstractAutologisticModel) true ``` """ abstract type AbstractAutologisticModel end # === Getting/setting parameters =============================================== """ getparameters(x) A generic function for extracting the parameters from an autologistic model, a unary term, or a pairwise term. Parameters are always returned as an `Array{Float64,1}`. If `typeof(x) <: AbstractAutologisticModel`, the returned vector is partitioned with the unary parameters first. """ getparameters(M::AbstractAutologisticModel) = [getparameters(M.unary); getparameters(M.pairwise)] """ getunaryparameters(M::AbstractAutologisticModel) Extracts the unary parameters from an autologistic model. Parameters are always returned as an `Array{Float64,1}`. """ getunaryparameters(M::AbstractAutologisticModel) = getparameters(M.unary) """ getpairwiseparameters(M::AbstractAutologisticModel) Extracts the pairwise parameters from an autologistic model. Parameters are always returned as an `Array{Float64,1}`. """ getpairwiseparameters(M::AbstractAutologisticModel) = getparameters(M.pairwise) """ setparameters!(x, newpars::Vector{Float64}) A generic function for setting the parameter values of an autologistic model, a unary term, or a pairwise term. Parameters are always passed as an `Array{Float64,1}`. If `typeof(x) <: AbstractAutologisticModel`, the `newpars` is assumed partitioned with the unary parameters first. """ function setparameters!(M::AbstractAutologisticModel, newpars::Vector{Float64}) p, q = (length(getunaryparameters(M)), length(getpairwiseparameters(M))) @assert length(newpars) == p + q "newpars has wrong length" setparameters!(M.unary, newpars[1:p]) setparameters!(M.pairwise, newpars[p+1:p+q]) return newpars end """ setunaryparameters!(M::AbstractAutologisticModel, newpars::Vector{Float64}) Sets the unary parameters of autologistic model `M` to the values in `newpars`. """ function setunaryparameters!(M::AbstractAutologisticModel, newpars::Vector{Float64}) setparameters!(M.unary, newpars) end """ setpairwiseparameters!(M::AbstractAutologisticModel, newpars::Vector{Float64}) Sets the pairwise parameters of autologistic model `M` to the values in `newpars`. """ function setpairwiseparameters!(M::AbstractAutologisticModel, newpars::Vector{Float64}) setparameters!(M.pairwise, newpars) end # ============================================================================== # === Show Methods============================================================== show(io::IO, m::AbstractAutologisticModel) = print(io, "$(typeof(m))") function show(io::IO, ::MIME"text/plain", m::AbstractAutologisticModel) print(io, "Autologistic model of type $(typeof(m)), \n", "with $(size(m.unary,1)) vertices, $(size(m.unary, 2)) ", "$(size(m.unary,2)==1 ? "observation" : "observations") ", "and fields:\n", showfields(m,2)) end function showfields(m::AbstractAutologisticModel, leadspaces=0) return repeat(" ", leadspaces) * "(**Autologistic.showfields not implemented for $(typeof(m))**)\n" end # ============================================================================== """ centeringterms(M::AbstractAutologisticModel, kind::Union{Nothing,CenteringKinds}=nothing) Returns an `Array{Float64,2}` of the same dimension as `M.unary`, giving the centering adjustments for autologistic model `M`. `centeringterms(M,kind)` returns the centering adjustment that would be used if centering were of type `kind`. # Examples ```jldoctest julia> G = makegrid8(2,2).G; julia> X = [ones(4) [-2; -1; 1; 2]]; julia> M1 = ALRsimple(G, X, β=[-1.0, 2.0]); #-No centering (default) julia> M2 = ALRsimple(G, X, β=[-1.0, 2.0], centering=expectation); #-Centered model julia> [centeringterms(M1) centeringterms(M2) centeringterms(M1, onehalf)] 4×3 Array{Float64,2}: 0.0 -0.999909 0.5 0.0 -0.995055 0.5 0.0 0.761594 0.5 0.0 0.995055 0.5 ``` """ function centeringterms(M::AbstractAutologisticModel, kind::Union{Nothing,CenteringKinds}=nothing) k = kind==nothing ? M.centering : kind if k == none return fill(0.0, size(M.unary)) elseif k == onehalf return fill(0.5, size(M.unary)) elseif k == expectation lo, hi = M.coding α = M.unary[:,:] num = lo*exp.(lo*α) + hi*exp.(hi*α) denom = exp.(lo*α) + exp.(hi*α) return num./denom else error("centering kind not recognized") end end """ pseudolikelihood(M::AbstractAutologisticModel) Computes the negative log pseudolikelihood for autologistic model `M`. Returns a `Float64`. # Examples ```jldoctest julia> X = [1.1 2.2 1.0 2.0 2.1 1.2 3.0 0.3]; julia> Y = [0; 0; 1; 0]; julia> M3 = ALRsimple(makegrid4(2,2)[1], cat(X,X,dims=3), Y=cat(Y,Y,dims=2), β=[-0.5, 1.5], λ=1.25, centering=expectation); julia> pseudolikelihood(M3) 12.333549445795818 ``` """ function pseudolikelihood(M::AbstractAutologisticModel) out = 0.0 Y = makecoded(M) mu = centeringterms(M) lo, hi = M.coding # Loop through observations for j = 1:size(Y)[2] y = Y[:,j]; #-Current observation's values. α = M.unary[:,j] #-Current observation's unary parameters. μ = mu[:,j] #-Current observation's centering terms. Λ = M.pairwise[:,:,j] #-Current observation's assoc. matrix. s = α + Λ*(y - μ) #-(λ-weighted) neighbour sums + unary. logPL = sum(y.*s - log.(exp.(lo*s) + exp.(hi*s))) out = out - logPL #-Subtract this rep's log PL from total. end return out end function pslik!(θ::Vector{Float64}, M::AbstractAutologisticModel) setparameters!(M, θ) return pseudolikelihood(M) end """ oneboot(M::AbstractAutologisticModel; start=zeros(length(getparameters(M))), verbose::Bool=false, kwargs... ) Performs one parametric bootstrap replication from autologistic model `M`: draw a random sample from `M`, use that sample as the responses, and re-fit the model. Returns a named tuple `(:sample, :estimate, :convergence)`, where `:sample` holds the random sample, `:estimate` holds the parameter estimates, and `:convergence` holds a `bool` indicating whether or not the optimization converged. The parameters of `M` remain unchanged by calling `oneboot`. # Arguments - `start`: starting parameter values to use for optimization - `verbose`: should progress information be written to the console? - `kwargs...`: extra keyword arguments that are passed to `optimize()` or `sample()`, as appropriate. # Examples ```jldoctest julia> G = makegrid4(4,3).G; julia> model = ALRsimple(G, ones(12,1), Y=[fill(-1,4); fill(1,8)]); julia> theboot = oneboot(model, method=Gibbs, burnin=250); julia> fieldnames(typeof(theboot)) (:sample, :estimate, :convergence)``` """ function oneboot(M::AbstractAutologisticModel; start=zeros(length(getparameters(M))), verbose::Bool=false, kwargs...) oldY = M.responses; oldpar = getparameters(M) optimargs, sampleargs = splitkw(kwargs) yboot = sample(M; verbose=verbose, sampleargs...) M.responses = makebool(yboot, M.coding) thisfit = fit_pl!(M; start=start, verbose=verbose, kwargs...) M.responses = oldY setparameters!(M, oldpar) return (sample=yboot, estimate=thisfit.estimate, convergence=thisfit.convergence) end """ oneboot(M::AbstractAutologisticModel, params::Vector{Float64}; start=zeros(length(getparameters(M))), verbose::Bool=false, kwargs... ) Computes one bootstrap replicate using model `M`, but using parameters `params` for generating samples, instead of `getparameters(M)`. """ function oneboot(M::AbstractAutologisticModel, params::Vector{Float64}; start=zeros(length(getparameters(M))), verbose::Bool=false, kwargs...) oldpar = getparameters(M) out = oneboot(M; start=start, verbose=verbose, kwargs...) setparameters!(M, oldpar) return out end """ fit_pl!(M::AbstractAutologisticModel; start=zeros(length(getparameters(M))), verbose::Bool=false, nboot::Int = 0, kwargs...) Fit autologistic model `M` using maximum pseudolikelihood. # Arguments - `start`: initial value to use for optimization. - `verbose`: should progress information be printed to the console? - `nboot`: number of samples to use for parametric bootstrap error estimation. If `nboot=0` (the default), no bootstrap is run. - `kwargs...` extra keyword arguments that are passed on to `optimize()` or `sample()`, as appropriate. # Examples ```jldoctest julia> Y=[[fill(-1,4); fill(1,8)] [fill(-1,3); fill(1,9)] [fill(-1,5); fill(1,7)]]; julia> model = ALRsimple(makegrid4(4,3).G, ones(12,1,3), Y=Y); julia> fit = fit_pl!(model, start=[-0.4, 1.1]); julia> summary(fit) name est se p-value 95% CI parameter 1 -0.39 parameter 2 1.1 ``` """ function fit_pl!(M::AbstractAutologisticModel; start=zeros(length(getparameters(M))), verbose::Bool=false, nboot::Int = 0, kwargs...) originalparameters = getparameters(M) npar = length(originalparameters) ret = ALfit() ret.kwargs = kwargs optimargs, sampleargs = splitkw(kwargs) opts = Options(; optimargs...) if verbose println("-- Finding the maximum pseudolikelihood estimate --") println("Calling Optim.optimize with BFGS method...") end out = try optimize(θ -> pslik!(θ,M), start, BFGS(), opts) catch err err end ret.optim = out if typeof(out)<:Exception || !converged(out) setparameters!(M, originalparameters) @warn "Optim.optimize did not succeed. Model parameters have not been changed." ret.convergence = false return ret else setparameters!(M, out.minimizer) ret.estimate = out.minimizer ret.convergence = true end if verbose println("-- Parametric bootstrap variance estimation --") if nboot == 0 println("nboot==0. Skipping the bootstrap. Returning point estimates only.") end end if nboot > 0 if length(workers()) > 1 if verbose println("Attempting parallel bootstrap with $(length(workers())) workers.") end n, m = size(M.responses) bootsamples = SharedArray{Float64}(n, m, nboot) bootestimates = SharedArray{Float64}(npar, nboot) convresults = SharedArray{Bool}(nboot) @sync @distributed for i = 1:nboot bootout = oneboot(M; start=start, kwargs...) bootsamples[:,:,i] = bootout.sample bootestimates[:,i] = bootout.estimate convresults[i] = bootout.convergence end addboot!(ret, Array(bootsamples), Array(bootestimates), Array(convresults)) else if verbose print("bootstrap iteration 1") end bootresults = Array{NamedTuple{(:sample, :estimate, :convergence)}}(undef,nboot) for i = 1:nboot bootresults[i] = oneboot(M; start=start, kwargs...) if verbose print(mod(i,10)==0 ? i : "|") end end if verbose print("\n") end addboot!(ret, bootresults) end end return ret end # TODO: consider if the main line of linear algebra can be sped up. """ negpotential(M::AbstractAutologisticModel) Returns an m-vector of `Float64` negpotential values, where m is the number of observations found in `M.responses`. # Examples ```jldoctest julia> M = ALsimple(makegrid4(3,3).G, ones(9)); julia> f = fullPMF(M); julia> exp(negpotential(M)[1])/f.partition ≈ exp(loglikelihood(M)) true ``` """ function negpotential(M::AbstractAutologisticModel) Y = makecoded(M) m = size(Y,2) out = Array{Float64}(undef, m) α = M.unary[:,:] μ = centeringterms(M) for j = 1:m Λ = M.pairwise[:,:,j] out[j] = Y[:,j]'*α[:,j] - Y[:,j]'*Λ*μ[:,j] + Y[:,j]'*Λ*Y[:,j]/2 end return out end """ fullPMF(M::AbstractAutologisticModel; indices=1:size(M.unary,2), force::Bool=false ) Compute the PMF of an AbstractAutologisticModel, and return a `NamedTuple` `(:table, :partition)`. For an AbstractAutologisticModel with ``n`` variables and ``m`` observations, `:table` is a ``2^n×(n+1)×m`` array of `Float64`. Each page of the 3D array holds a probability table for an observation. Each row of the table holds a specific configuration of the responses, with the corresponding probability in the last column. In the ``m=1`` case, `:table` is a 2D array. Output `:partition` is a vector of normalizing constant (a.k.a. partition function) values. In the ``m=1`` case, it is a scalar `Float64`. # Arguments - `indices`: indices of specific observations from which to obtain the output. By default, all observations are used. - `force`: calling the function with ``n>20`` will throw an error unless `force=true`. # Examples ```jldoctest julia> M = ALRsimple(Graph(3,0),ones(3,1)); julia> pmf = fullPMF(M); julia> pmf.table 8×4 Array{Float64,2}: -1.0 -1.0 -1.0 0.125 -1.0 -1.0 1.0 0.125 -1.0 1.0 -1.0 0.125 -1.0 1.0 1.0 0.125 1.0 -1.0 -1.0 0.125 1.0 -1.0 1.0 0.125 1.0 1.0 -1.0 0.125 1.0 1.0 1.0 0.125 julia> pmf.partition 8.0 ``` """ function fullPMF(M::AbstractAutologisticModel; indices=1:size(M.unary,2), force::Bool=false) n, m = size(M.unary) nc = 2^n if n>20 && !force error("Attempting to tabulate a PMF with more than 2^20 configurations." * "\nIf you really want to do this, set force=true.") end if minimum(indices)<1 || maximum(indices)>m error("observation index out of bounds") end lo = M.coding[1] hi = M.coding[2] T = zeros(nc, n+1, length(indices)) configs = zeros(nc,n) partition = zeros(m) for i in 1:n inner = [repeat([lo],Int(nc/2^i)); repeat([hi],Int(nc/2^i))] configs[:,i] = repeat(inner , 2^(i-1) ) end for i in 1:length(indices) r = indices[i] T[:,1:n,i] = configs α = M.unary[:,r] Λ = M.pairwise[:,:,r] μ = centeringterms(M)[:,r] unnormalized = mapslices(v -> exp.(v'*α - v'*Λ*μ + v'*Λ*v/2), configs, dims=2) partition[i] = sum(unnormalized) T[:,n+1,i] = unnormalized / partition[i] end if length(indices)==1 T = dropdims(T,dims=3) partition = partition[1] end return (table=T, partition=partition) end """ loglikelihood(M::AbstractAutologisticModel; force::Bool=false ) Compute the natural logarithm of the likelihood for autologistic model `M`. This will throw an error for models with more than 20 vertices, unless `force=true`. # Examples ```jldoctest julia> model = ALRsimple(makegrid4(2,2)[1], ones(4,2,3), centering = expectation, coding = (0,1), Y = repeat([true, true, false, false],1,3)); julia> setparameters!(model, [1.0, 1.0, 1.0]); julia> loglikelihood(model) -11.86986109487605 ``` """ function loglikelihood(M::AbstractAutologisticModel; force::Bool=false) parts = fullPMF(M, force=force).partition return sum(negpotential(M) .- log.(parts)) end function negloglik!(θ::Vector{Float64}, M::AbstractAutologisticModel; force::Bool=false) setparameters!(M,θ) return -loglikelihood(M, force=force) end """ fit_ml!(M::AbstractAutologisticModel; start=zeros(length(getparameters(M))), verbose::Bool=false, force::Bool=false, kwargs... ) Fit autologistic model `M` using maximum likelihood. Will fail for models with more than 20 vertices, unless `force=true`. Use `fit_pl!` for larger models. # Arguments - `start`: initial value to use for optimization. - `verbose`: should progress information be printed to the console? - `force`: set to `true` to force computation of the likelihood for large models. - `kwargs...` extra keyword arguments that are passed on to `optimize()`. # Examples ```jldoctest julia> G = makegrid4(4,3).G; julia> model = ALRsimple(G, ones(12,1), Y=[fill(-1,4); fill(1,8)]); julia> mle = fit_ml!(model); julia> summary(mle) name est se p-value 95% CI parameter 1 0.0791 0.163 0.628 (-0.241, 0.399) parameter 2 0.425 0.218 0.0511 (-0.00208, 0.852) ``` """ function fit_ml!(M::AbstractAutologisticModel; start=zeros(length(getparameters(M))), verbose::Bool=false, force::Bool=false, kwargs...) originalparameters = getparameters(M) npar = length(originalparameters) ret = ALfit() ret.kwargs = kwargs opts = Options(; kwargs...) if verbose println("Calling Optim.optimize with BFGS method...") end out = try optimize(θ -> negloglik!(θ,M,force=force), start, BFGS(), opts) catch err err end ret.optim = out if typeof(out)<:Exception || !converged(out) setparameters!(M, originalparameters) @warn "Optim.optimize did not succeed. Model parameters have not been changed." ret.convergence = false return ret end if verbose println("Approximating the Hessian at the MLE...") end H = hess(θ -> negloglik!(θ,M), out.minimizer) if verbose println("Getting standard errors...") end Hinv = inv(H) SE = sqrt.(diag(Hinv)) pvals = zeros(npar) CIs = [(0.0, 0.0) for i=1:npar] for i = 1:npar N = Normal(0,SE[i]) pvals[i] = 2*(1 - cdf(N, abs(out.minimizer[i]))) CIs[i] = out.minimizer[i] .+ (quantile(N,0.025), quantile(N,0.975)) end setparameters!(M, out.minimizer) ret.estimate = out.minimizer ret.se = SE ret.pvalues = pvals ret.CIs = CIs ret.Hinv = Hinv ret.convergence = true if verbose println("...completed successfully.") end return ret end """ marginalprobabilities(M::AbstractAutologisticModel; indices=1:size(M.unary,2), force::Bool=false ) Compute the marginal probability that variables in autologistic model `M` takes the high state. For a model with n vertices and m observations, returns an n-by-m array (or an n-vector if m==1). The [i,j]th element is the marginal probability of the high state in the ith variable at the jth observation. This function computes the exact marginals. For large models, approximate the marginal probabilities by sampling, e.g. `sample(M, ..., average=true)`. # Arguments - `indices`: used to return only the probabilities for certain observations. - `force`: the function will throw an error for n > 20 unless `force=true`. # Examples ```jldoctest julia> M = ALsimple(Graph(3,0), [[-1.0; 0.0; 1.0] [-1.0; 0.0; 1.0]]) julia> marginalprobabilities(M) 3×2 Array{Float64,2}: 0.119203 0.119203 0.5 0.5 0.880797 0.880797 ``` """ function marginalprobabilities(M::AbstractAutologisticModel; indices=1:size(M.unary,2), force::Bool=false) n, m = size(M.unary) nc = 2^n if n>20 && !force error("Attempting to tabulate a PMF with more than 2^20 configurations." * "\nIf you really want to do this, set force=true.") end if minimum(indices)<1 || maximum(indices)>m error("observation index out of bounds") end hi = M.coding[2] out = zeros(n,length(indices)) tbl = fullPMF(M).table for j = 1:length(indices) r = indices[j] for i = 1:n out[i,j] = sum(mapslices(x -> x[i]==hi ? x[n+1] : 0.0, tbl[:,:,r], dims=2)) end end if length(indices) == 1 return vec(out) end return out end # TODO: look for speed gains """ conditionalprobabilities(M::AbstractAutologisticModel; vertices=1:size(M.unary)[1], indices=1:size(M.unary,2)) Compute the conditional probability that variables in autologistic model `M` take the high state, given the current values of all of their neighbors. If `vertices` or `indices` are provided, the results are only computed for the desired variables & observations. Otherwise results are computed for all variables and observations. # Examples ```jldoctest julia> Y = [ones(9) zeros(9)]; julia> G = makegrid4(3,3).G; julia> model = ALsimple(G, ones(9,2), Y=Y, λ=0.5); #-Variables on a 3×3 grid, 2 obs. julia> conditionalprobabilities(model, vertices=5) #-Cond. probs. of center vertex. 1×2 Array{Float64,2}: 0.997527 0.119203 julia> conditionalprobabilities(model, indices=2) #-Cond probs, 2nd observation. 9×1 Array{Float64,2}: 0.5 0.26894142136999516 0.5 0.26894142136999516 0.11920292202211756 0.26894142136999516 0.5 0.26894142136999516 0.5 ``` """ function conditionalprobabilities(M::AbstractAutologisticModel; vertices=1:size(M.unary,1), indices=1:size(M.unary,2)) n, m = size(M.unary) if minimum(vertices)<1 || maximum(vertices)>n error("vertices index out of bounds") end if minimum(indices)<1 || maximum(indices)>m error("observation index out of bounds") end out = zeros(Float64, length(vertices), length(indices)) Y = makecoded(M) μ = centeringterms(M) lo, hi = M.coding adjlist = M.pairwise.G.fadjlist for j = 1:length(indices) r = indices[j] for i = 1:length(vertices) v = vertices[i] # get neighbor sum ns = 0.0 for ix in adjlist[v] ns = ns + M.pairwise[v,ix,r] * (Y[ix,r] - μ[ix,r]) end # get cond prob loval = exp(lo*(M.unary[v,r] + ns)) hival = exp(hi*(M.unary[v,r] + ns)) if hival == Inf out[i,j] = 1.0 else out[i,j] = hival / (loval + hival) end end end return out end """ sample(M::AbstractAutologisticModel, k::Int = 1; method::SamplingMethods = Gibbs, indices = 1:size(M.unary,2), average::Bool = false, config = nothing, burnin::Int = 0, skip::Int = 0, verbose::Bool = false ) Draws `k` random samples from autologistic model `M`. For a model with `n` vertices in its graph, the return value is: - When `average=false`, an `n` × `length(indices)` × `k` array, with singleton dimensions dropped. This array holds the random samples. - When `average=true`, an `n` × `length(indices)` array, with singleton dimensions dropped. This array holds the estimated marginal probabilities of observing the "high" level at each vertex. # Arguments - `method`: a member of the enum [`SamplingMethods`](@ref), specifying which sampling method will be used. The default is Gibbs sampling. Where feasible, it is recommended to use one of the perfect sampling alternatives. See [`SamplingMethods`](@ref) for more. - `indices`: gives the indices of the observation to use for sampling. If the model has more than one observation, then `k` samples are drawn for each observation's parameter settings. Use `indices` to restrict the samples to a subset of observations. - `average`: controls the form of the output. When `average=true`, the return value is the proportion of "high" samples at each vertex. (Note that this is **not** actually the arithmetic average of the samples, unless the coding is (0,1). Rather, it is an estimate of the probability of getting a "high" outcome.) When `average=false`, the full set of samples is returned. - `config`: allows a starting configuration of the random variables to be provided. Only used if `method=Gibbs`. Any vector of the correct length, with two unique values, can be used as `config`. By default a random configuration is used. - `burnin`: specifies the number of initial samples to discard from the results. Only used if `method=Gibbs`. - `skip`: specifies how many samples to throw away between returned samples. Only used if `method=Gibbs`. - `verbose`: controls output to the console. If `true`, intermediate information about sampling progress is printed to the console. Otherwise no output is shown. # Examples ```jldoctest julia> M = ALsimple(Graph(4,4)); julia> M.coding = (-2,3); julia> r = sample(M,10); julia> size(r) (4, 10) julia> sort(unique(r)) 2-element Array{Float64,1}: -2.0 3.0 ``` """ function sample(M::AbstractAutologisticModel, k::Int = 1; method::SamplingMethods = Gibbs, indices=1:size(M.unary,2), average::Bool = false, config = nothing, burnin::Int = 0, skip::Int = 0, verbose::Bool = false) #NOTE: if keyword argument list changes in future, need to update the tuple # samplenames inside splitkw() to match. # Create storage object n, m = size(M.unary) nidx = length(indices) if k < 1 error("k must be positive") end if minimum(indices) < 1 || maximum(indices) > m error("indices must be between 1 and the number of observations") end if burnin < 0 error("burnin must be nonnegative") end if average out = zeros(Float64, n, nidx) else out = zeros(Float64, n, nidx, k) end if method ∈ (perfect_read_once, perfect_reuse_samples, perfect_reuse_seeds) && any(M.pairwise .< 0) @warn "The chosen pefect sampling method isn't theoretically justified for\n" * "negative pairwise values. Samples might still be similar to Gibbs sampling\n" * "draws. Consider the pefect_bounding_chain method." end # Call the sampling function for each index. Give details if verbose=true. for i = 1:nidx if verbose println("== Sampling observation $(indices[i]) ==") end out[:,i,:] = sample_one_index(M, k, method=method, index=indices[i], average=average, config=config, burnin=burnin, skip=skip, verbose=verbose) end # Return if average if nidx==1 out = dropdims(out,dims=2) end else if nidx==1 && k==1 out = dropdims(out,dims=(2,3)) elseif nidx==1 out = dropdims(out,dims=2) elseif k == 1 out = dropdims(out,dims=3) end end return out end function sample_one_index(M::AbstractAutologisticModel, k::Int = 1; method::SamplingMethods = Gibbs, index::Int = 1, average::Bool = false, config = nothing, burnin::Int = 0, skip::Int = 0, verbose::Bool = false) lo = Float64(M.coding[1]) hi = Float64(M.coding[2]) Λ = M.pairwise[:,:,index] α = M.unary[:,index] μ = centeringterms(M)[:,index] n = length(α) adjlist = M.pairwise.G.fadjlist if method == Gibbs if config == nothing Y = rand([lo, hi], n) else Y = vec(makecoded(makebool(config, M.coding), M.coding)) end return gibbssample(lo, hi, Y, Λ, adjlist, α, μ, n, k, average, burnin, skip, verbose) elseif method == perfect_reuse_samples return cftp_reuse_samples(lo, hi, Λ, adjlist, α, μ, n, k, average, verbose) elseif method == perfect_reuse_seeds return cftp_reuse_seeds(lo, hi, Λ, adjlist, α, μ, n, k, average, verbose) elseif method == perfect_bounding_chain return cftp_bounding_chain(lo, hi, Λ, adjlist, α, μ, n, k, average, verbose) elseif method == perfect_read_once return cftp_read_once(lo, hi, Λ, adjlist, α, μ, n, k, average, verbose) end end """ makecoded(M::AbstractAutologisticModel) A convenience method for `makecoded(M.responses, M.coding)`. Use it to retrieve a model's responses in coded form. # Examples ```jldoctest julia> M = ALRsimple(Graph(4,3), rand(4,2), Y=[true, false, false, true], coding=(-1,1)); julia> makecoded(M) 4×1 Array{Float64,2}: 1.0 -1.0 -1.0 1.0 ``` """ function makecoded(M::AbstractAutologisticModel) return makecoded(M.responses, M.coding) end
Autologistic
https://github.com/kramsretlow/Autologistic.jl.git
[ "MIT" ]
0.5.1
15b96cd9e90eaa8d256266aed59fd13fd1c8f181
code
2584
""" AbstractPairwiseParameter Abstract type representing the pairwise part of an autologistic regression model. All concrete subtypes should have the following fields: * `G::SimpleGraph{Int}` -- The graph for the model. * `count::Int` -- The number of observations. In addition to `getindex()` and `setindex!()`, any concrete subtype `P<:AbstractPairwiseParameter` should also have the following methods defined: * `getparameters(P)`, returning a Vector{Float64} * `setparameters!(P, newpar::Vector{Float64})` for setting parameter values. Note that indexing is performance-critical and should be implemented carefully in subtypes. The intention is that each subtype should implement a different way of parameterizing the association matrix. The way parameters are stored and values computed is up to the subtypes. This type inherits from `AbstractArray{Float64, 3}`. The third index is to allow for multiple observations. `P[:,:,r]` should return the association matrix of the rth observation in an appropriate subtype of AbstractMatrix. It is not intended that the third index will be used for range or vector indexing like `P[:,:,1:5]` (though this may work due to AbstractArray fallbacks). # Examples ```jldoctest julia> M = ALsimple(Graph(4,4)); julia> typeof(M.pairwise) SimplePairwise julia> isa(M.pairwise, AbstractPairwiseParameter) true ``` """ abstract type AbstractPairwiseParameter <: AbstractArray{Float64, 3} end IndexStyle(::Type{<:AbstractPairwiseParameter}) = IndexCartesian() #---- fallback methods -------------- size(p::AbstractPairwiseParameter) = (nv(p.G), nv(p.G), p.count) function getindex(p::AbstractPairwiseParameter, I::AbstractVector, J::AbstractVector) error("getindex not implemented for $(typeof(p))") end function show(io::IO, p::AbstractPairwiseParameter) r, c, m = size(p) str = "$(size2string(p)) $(typeof(p))" print(io, str) end function show(io::IO, ::MIME"text/plain", p::AbstractPairwiseParameter) r, c, m = size(p) if m==1 str = " with $(r) vertices.\n" else str = "\nwith $(r) vertices and $(m) observations.\n" end print(io, "Autologistic pairwise parameter Λ of type $(typeof(p)), ", "$(size2string(p)) array\n", "Fields:\n", showfields(p,2), "Use indexing (e.g. mypairwise[:,:,:]) to see Λ values.") end function showfields(p::AbstractPairwiseParameter, leadspaces=0) return repeat(" ", leadspaces) * "(**Autologistic.showfields not implemented for $(typeof(p))**)\n" end
Autologistic
https://github.com/kramsretlow/Autologistic.jl.git
[ "MIT" ]
0.5.1
15b96cd9e90eaa8d256266aed59fd13fd1c8f181
code
1694
""" AbstractUnaryParameter Abstract type representing the unary part of an autologistic regression model. This type inherits from AbstractArray{Float64, 2}. The first dimension is for vertices/variables in the graph, and the second dimension is for observations. It is two-dimensional even if there is only one observation. Implementation details are left to concrete subtypes, and will depend on how the unary terms are parametrized. Note that indexing is performance-critical. Concrete subtypes should implement `getparameters`, `setparameters!`, and `showfields`. # Examples ```jldoctest julia> M = ALsimple(Graph(4,4)); julia> typeof(M.unary) FullUnary julia> isa(M.unary, AbstractUnaryParameter) true ``` """ abstract type AbstractUnaryParameter <: AbstractArray{Float64, 2} end IndexStyle(::Type{<:AbstractUnaryParameter}) = IndexCartesian() function show(io::IO, u::AbstractUnaryParameter) r, c = size(u) str = "$(r)×$(c) $(typeof(u))" print(io, str) end function show(io::IO, ::MIME"text/plain", u::AbstractUnaryParameter) r, c = size(u) if c==1 str = "\n$(size2string(u)) array with average value $(round(mean(u), digits=3)).\n" else str = " $(size2string(u)) array.\n" end print(io, "Autologistic unary parameter α of type $(typeof(u)),", str, "Fields:\n", showfields(u,2), "Use indexing (e.g. myunary[:,:]) to see α values.") end function showfields(u::AbstractUnaryParameter, leadspaces=0) return repeat(" ", leadspaces) * "(**Autologistic.showfields not implemented for $(typeof(u))**)\n" end
Autologistic
https://github.com/kramsretlow/Autologistic.jl.git
[ "MIT" ]
0.5.1
15b96cd9e90eaa8d256266aed59fd13fd1c8f181
code
11622
# Type Aliases """ Type alias for `Union{Array{T,1}, Array{T,2}} where T` """ const VecOrMat = Union{Array{T,1}, Array{T,2}} where T """ Type alias for `Union{Array{Float64,1},Array{Float64,2}}` """ const Float1D2D = Union{Array{Float64,1},Array{Float64,2}} """ Type alias for `Union{Array{Float64,2},Array{Float64,3}}` """ const Float2D3D = Union{Array{Float64,2},Array{Float64,3}} """ Type alias for `Union{Array{NTuple{2,T},1},Array{NTuple{3,T},1}} where T<:Real` """ const SpatialCoordinates = Union{Array{NTuple{2,T},1},Array{NTuple{3,T},1}} where T<:Real # somewhat arbitrary constants in sampling algorithms const maxepoch = 40 #used in cftp_reuse_seeds const ntestchains = 15 #used in blocksize_estimate # Enumerations """ CenteringKinds An enumeration to facilitate choosing a form of centering for the model. Available choices are: - `none`: no centering (centering adjustment equals zero). - `expectation`: the centering adjustment is the expected value of the response under the assumption of independence (this is what has been used in the "centered autologistic model"). - `onehalf`: a constant value of centering adjustment equal to 0.5 (this produces the "symmetric autologistic model" when used with 0,1 coding). The default/recommended model has centering of `none` with (-1, 1) coding. # Examples ```jldoctest julia> CenteringKinds Enum CenteringKinds: none = 0 expectation = 1 onehalf = 2 ``` """ @enum CenteringKinds none expectation onehalf """ SamplingMethods An enumeration to facilitate choosing a method for random sampling from autologistic models. Available choices are: - `Gibbs`: Gibbs sampling. - `perfect_bounding_chain`: Perfect sampling, using a bounding chain algorithm. - `perfect_reuse_samples`: Perfect sampling. CFTP implemented by reusing random numbers. - `perfect_reuse_seeds`: Perfect sampling. CFTP implemented by reusing RNG seeds. - `perfect_read_once`: Perfect sampling. Read-once CFTP implementation. All of the perfect sampling methods are implementations of coupling from the past (CFTP). `perfect_bounding_chain` uses a bounding chain approach that holds even when Λ contains negative elements; the other three options rely on a monotonicity argument that requires Λ to have only positive elements (though they should work similar to Gibbs sampling in that case). Different perfect sampling implementations might work best for different models, and parameter settings exist where perfect sampling coalescence might take a prohibitively long time. For these reasons, Gibbs sampling is the default in `sample`. # Examples ```jldoctest julia> SamplingMethods Enum SamplingMethods: Gibbs = 0 perfect_reuse_samples = 1 perfect_reuse_seeds = 2 perfect_read_once = 3 perfect_bounding_chain = 4 ``` """ @enum SamplingMethods Gibbs perfect_reuse_samples perfect_reuse_seeds perfect_read_once perfect_bounding_chain """ makebool(v::VecOrMat, vals=nothing) Makes a 2D array of Booleans out of a 1- or 2-D input. The 2nd argument `vals` optionally can be a 2-tuple (low, high) specifying the two possible values in `v` (useful for the case where all elements of `v` take one value or the other). - If `v` has more than 2 unique values, throws an error. - If `v` has exactly 2 unique values, use those to set the coding (ignore `vals`). - If `v` has 1 unique value, use `vals` to determine if it's the high or low value (throw an error if the single value isn't in `vals`). # Examples ```jldoctest julia> makebool([1.0 2.0; 1.0 2.0]) 2×2 Array{Bool,2}: false true false true julia> makebool(["yes", "no", "no"]) 3×1 Array{Bool,2}: true false false julia> [makebool([1, 1, 1], (-1,1)) makebool([1, 1, 1], (1, 2))] 3×2 Array{Bool,2}: true false true false true false ``` """ function makebool(v::VecOrMat, vals=nothing) if ndims(v)==1 v = v[:,:] #**convet to 2D, not sure the logic behind [:,:] index end if typeof(v) == Array{Bool,2} return v end (nrow, ncol) = size(v) out = Array{Bool}(undef, nrow, ncol) nv = length(unique(v)) if nv > 2 error("The input has more than two values.") elseif nv == 2 lower = minimum(v) elseif typeof(vals) <: NTuple{2} && v[1] in vals lower = vals[1] else error("One unique value. Could not assign true or false.") end for i in 1:nrow for j in 1:ncol v[i,j]==lower ? out[i,j] = false : out[i,j] = true end end return out end """ makecoded(b::VecOrMat, coding::Tuple{Real,Real}) Convert Boolean responses into coded values. The first argument is boolean. Returns a 2D array of Float64. # Examples ```jldoctest julia> makecoded([true, false, false, true], (-1, 1)) 4×1 Array{Float64,2}: 1.0 -1.0 -1.0 1.0 ``` """ function makecoded(b::VecOrMat, coding::Tuple{Real,Real}) lo = Float64(coding[1]) hi = Float64(coding[2]) if ndims(b)==1 b = b[:,:] end n, m = size(b) out = Array{Float64,2}(undef, n, m) for j = 1:m for i = 1:n out[i,j] = b[i,j] ? hi : lo end end return out end """ makegrid4(r::Int, c::Int, xlim::Tuple{Real,Real}=(0.0,1.0), ylim::Tuple{Real,Real}=(0.0,1.0)) Returns a named tuple `(:G, :locs)`, where `:G` is a graph, and `:locs` is an array of numeric tuples. Vertices of `:G` are laid out in a rectangular, 4-connected grid with `r` rows and `c` columns. The tuples in `:locs` contain the spatial coordinates of each vertex. Optional arguments `xlim` and `ylim` determine the bounds of the rectangular layout. # Examples ```jldoctest julia> out4 = makegrid4(11, 21, (-1,1), (-10,10)); julia> nv(out4.G) == 11*21 #231 true julia> ne(out4.G) == 11*20 + 21*10 #430 true julia> out4.locs[11*10 + 6] == (0.0, 0.0) #location of center vertex. true ``` """ function makegrid4(r::Int, c::Int, xlim::Tuple{Real,Real}=(0.0,1.0), ylim::Tuple{Real,Real}=(0.0,1.0)) # Create graph with r*c vertices, no edges G = Graph(r*c) # loop through vertices. Number vertices columnwise. for i in 1:r*c if mod(i,r) !== 1 # N neighbor add_edge!(G,i,i-1) end if i <= (c-1)*r # E neighbor add_edge!(G,i,i+r) end if mod(i,r) !== 0 # S neighbor add_edge!(G,i,i+1) end if i > r # W neighbor add_edge!(G,i,i-r) end end rngx = range(xlim[1], stop=xlim[2], length=c) rngy = range(ylim[1], stop=ylim[2], length=r) locs = [(rngx[i], rngy[j]) for i in 1:c for j in 1:r] return (G=G, locs=locs) end """ makegrid8(r::Int, c::Int, xlim::Tuple{Real,Real}=(0.0,1.0), ylim::Tuple{Real,Real}=(0.0,1.0)) Returns a named tuple `(:G, :locs)`, where `:G` is a graph, and `:locs` is an array of numeric tuples. Vertices of `:G` are laid out in a rectangular, 8-connected grid with `r` rows and `c` columns. The tuples in `:locs` contain the spatial coordinates of each vertex. Optional arguments `xlim` and `ylim` determine the bounds of the rectangular layout. # Examples ```jldoctest julia> out8 = makegrid8(11, 21, (-1,1), (-10,10)); julia> nv(out8.G) == 11*21 #231 true julia> ne(out8.G) == 11*20 + 21*10 + 2*20*10 #830 true julia> out8.locs[11*10 + 6] == (0.0, 0.0) #location of center vertex. true ``` """ function makegrid8(r::Int, c::Int, xlim::Tuple{Real,Real}=(0.0,1.0), ylim::Tuple{Real,Real}=(0.0,1.0)) # Create the 4-connected graph G, locs = makegrid4(r, c, xlim, ylim) # loop through vertices and add the diagonal edges. for i in 1:r*c if (mod(i,r) !== 1) && (i<=(c-1)*r) # NE neighbor add_edge!(G,i,i+r-1) end if (mod(i,r) !== 0) && (i <= (c-1)*r) # SE neighbor add_edge!(G,i,i+r+1) end if (mod(i,r) !== 0) && (i > r) # SW neighbor add_edge!(G,i,i-r+1) end if (mod(i,r) !== 1) && (i > r) # NW neighbor add_edge!(G,i,i-r-1) end end return (G=G, locs=locs) end """ makespatialgraph(coords::C, δ::Real) where C<:SpatialCoordinates Returns a named tuple `(:G, :locs)`, where `:G` is a graph, and `:locs` is an array of numeric tuples. Each element of `coords` is a 2- or 3-tuple of spatial coordinates, and this argument is returned unchanged as `:locs`. The graph `:G` has `length(coords)` vertices, with edges connecting every pair of vertices within Euclidean distance `δ` of each other. # Examples ```jldoctest julia> c = [(Float64(i), Float64(j)) for i = 1:5 for j = 1:5]; julia> out = makespatialgraph(c, sqrt(2)); julia> out.G {25, 72} undirected simple Int64 graph julia> length(out.locs) 25 ``` """ function makespatialgraph(coords::C, δ::Real) where C<:SpatialCoordinates #Replace coords by an equivalent tuple of Float64, for consistency n = length(coords) locs = [Float64.(coords[i]) for i = 1:n] #Make the graph and add edges G = Graph(n) for i in 1:n for j in i+1:n if norm(locs[i] .- locs[j]) <= δ add_edge!(G,i,j) end end end return (G=G, locs=locs) end """ `Autologistic.datasets(name::String)` Open data sets for demonstrations of Autologistic regression. Returns the data set as a `DataFrame`. """ function datasets(name::String) if name=="pigmentosa" dfpath = joinpath(dirname(pathof(Autologistic)), "..", "assets", "pigmentosa.csv") return read(dfpath, DataFrame) elseif name=="hydrocotyle" dfpath = joinpath(dirname(pathof(Autologistic)), "..", "assets", "hydrocotyle.csv") return read(dfpath, DataFrame) else error("Name is not one of the available options.") end end # Make size into strings like 10×5×2 (for use in show methods) function size2string(x::T) where T<:AbstractArray d = size(x) n = length(d) if n ==1 return "$(d[1])-element" else str = "$(d[1])" for i = 2:n str *= "×" str *= "$(d[i])" end return str end end # Approximate the Hessian of fcn at the point x, using a step width h. # Uses the O(h^2) central difference approximation. # Intended for obtaining standard errors from ML fitting. function hess(fcn, x, h=1e-6) n = length(x) H = zeros(n,n) hI = h*Matrix(1.0I,n,n) #ith column of hI has h in ith position, 0 elsewhere. # Fill up the top half of the matrix for i = 1:n for j = i:n h1 = hI[:,i] h2 = hI[:,j]; H[i,j] = (fcn(x+h1+h2)-fcn(x+h1-h2)-fcn(x-h1+h2)+fcn(x-h1-h2)) / (4*h^2) end end # Fill the bottom half of H (use symmetry), and return return H + triu(H,1)' end # Takes a named tuple (arising from keyword argument list) and produces two named tuples: # one with the arguments for optimise(), and one for arguments to sample() # Usage: optimargs, sampleargs = splitkw(keyword_tuple) splitkw = function(kwargs) optimnames = fieldnames(typeof(Options())) samplenames = (:method, :indices, :average, :config, :burnin, :verbose) optimargs = Dict{Symbol,Any}() sampleargs = Dict{Symbol,Any}() for (symb, val) in pairs(kwargs) if symb in optimnames push!(optimargs, symb => val) end if symb in samplenames push!(sampleargs, symb => val) end end return (;optimargs...), (;sampleargs...) end
Autologistic
https://github.com/kramsretlow/Autologistic.jl.git
[ "MIT" ]
0.5.1
15b96cd9e90eaa8d256266aed59fd13fd1c8f181
code
6123
""" FullPairwise A type representing an association matrix with a "saturated" parametrization--one parameter for each edge in the graph. In this type, the association matrix for each observation is a symmetric matrix with the same pattern of nonzeros as the graph's adjacency matrix, but with arbitrary values in those locations. The package convention is to provide parameters as a vector of `Float64`. So `getparameters` and `setparameters!` use a vector of `ne(G)` values that correspond to the nonzero locations in the upper triangle of the adjacency matrix, in the same (lexicographic) order as `edges(G)`. The association matrix is stored as a `SparseMatrixCSC{Float64,Int64}` in the field Λ. This type does not allow for different observations to have different association matricse. So while `size` returns a 3-dimensional result, the third index is ignored when accessing the array's elements. # Constructors FullPairwise(G::SimpleGraph, count::Int=1) FullPairwise(n::Int, count::Int=1) FullPairwise(λ::Real, G::SimpleGraph) FullPairwise(λ::Real, G::SimpleGraph, count::Int) FullPairwise(λ::Vector{Float64}, G::SimpleGraph) If provide only a graph, set λ = zeros(nv(G)). If provide only an integer, set λ to zeros and make a totally disconnected graph. If provide a graph and a scalar, convert the scalar to a vector of the right length. # Examples ```jldoctest julia> g = makegrid4(2,2).G; julia> λ = [1.0, 2.0, -1.0, -2.0]; julia> p = FullPairwise(λ, g); julia> typeof(p.Λ) SparseArrays.SparseMatrixCSC{Float64,Int64} julia> Matrix(p[:,:]) 4×4 Array{Float64,2}: 0.0 1.0 2.0 0.0 1.0 0.0 0.0 -1.0 2.0 0.0 0.0 -2.0 0.0 -1.0 -2.0 0.0 ``` """ mutable struct FullPairwise <: AbstractPairwiseParameter λ::Vector{Float64} G::SimpleGraph{Int} count::Int Λ::SparseMatrixCSC{Float64,Int64} function FullPairwise(lam, g, m) if length(lam) !== ne(g) error("FullPairwise: length(λ) must equal the number of edges in the graph.") end if m < 1 error("FullPairwise: count must be positive") end vv1 = Vector{Int64}(undef, ne(g)) vv2 = Vector{Int64}(undef, ne(g)) i = 1 for e in edges(g) vv1[i] = e.src vv2[i] = e.dst i += 1 end Λ = sparse([vv1; vv2], [vv2; vv1], [lam; lam], nv(g), nv(g)) new(lam, g, m, Λ) end end # Constructors # - If provide only a graph, set λ = zeros(nv(graph)). # - If provide only an integer, set λ to zeros and make a totally disconnected graph. # - If provide a graph and a scalar, convert the scalar to a vector of the right length. FullPairwise(G::SimpleGraph, count::Int=1) = FullPairwise(zeros(ne(G)), G, count) FullPairwise(n::Int, count::Int=1) = FullPairwise(0, SimpleGraph(n), count) FullPairwise(λ::Real, G::SimpleGraph) = FullPairwise((Float64)(λ)*ones(ne(G)), G, 1) FullPairwise(λ::Real, G::SimpleGraph, count::Int) = FullPairwise((Float64)(λ)*ones(ne(G)), G, count) FullPairwise(λ::Vector{Float64}, G::SimpleGraph) = FullPairwise(λ, G, 1) #---- AbstractArray methods ---- (following sparsematrix.jl) # getindex - implementations getindex(p::FullPairwise, i::Int, j::Int) = p.Λ[i, j] getindex(p::FullPairwise, i::Int) = p.Λ[i] getindex(p::FullPairwise, ::Colon, ::Colon) = p.Λ getindex(p::FullPairwise, I::AbstractArray) = p.Λ[I] getindex(p::FullPairwise, I::AbstractVector, J::AbstractVector) = p.Λ[I,J] # getindex - translations getindex(p::FullPairwise, I::Tuple{Integer, Integer}) = p[I[1], I[2]] getindex(p::FullPairwise, I::Tuple{Integer, Integer, Integer}) = p[I[1], I[2]] getindex(p::FullPairwise, i::Int, j::Int, r::Int) = p[i,j] getindex(p::FullPairwise, ::Colon, ::Colon, ::Colon) = p[:,:] getindex(p::FullPairwise, ::Colon, ::Colon, r::Int) = p[:,:] getindex(p::FullPairwise, ::Colon, j) = p[1:size(p.Λ,1), j] getindex(p::FullPairwise, i, ::Colon) = p[i, 1:size(p.Λ,2)] getindex(p::FullPairwise, ::Colon, j, r) = p[:,j] getindex(p::FullPairwise, i, ::Colon, r) = p[i,:] getindex(p::FullPairwise, I::AbstractVector{Bool}, J::AbstractRange{<:Integer}) = p[findall(I),J] getindex(p::FullPairwise, I::AbstractRange{<:Integer}, J::AbstractVector{Bool}) = p[I,findall(J)] getindex(p::FullPairwise, I::Integer, J::AbstractVector{Bool}) = p[I,findall(J)] getindex(p::FullPairwise, I::AbstractVector{Bool}, J::Integer) = p[findall(I),J] getindex(p::FullPairwise, I::AbstractVector{Bool}, J::AbstractVector{Bool}) = p[findall(I),findall(J)] getindex(p::FullPairwise, I::AbstractVector{<:Integer}, J::AbstractVector{Bool}) = p[I,findall(J)] getindex(p::FullPairwise, I::AbstractVector{Bool}, J::AbstractVector{<:Integer}) = p[findall(I),J] # setindex! setindex!(p::FullPairwise, i::Int, j::Int) = error("Pairwise values cannot be set directly. Use setparameters! instead.") setindex!(p::FullPairwise, i::Int, j::Int, k::Int) = error("Pairwise values cannot be set directly. Use setparameters! instead.") setindex!(p::FullPairwise, i::Int) = error("Pairwise values cannot be set directly. Use setparameters! instead.") #---- AbstractPairwiseParameter interface methods ---- # For getparameters(), update p.λ before returning the parameters (to avoid case # where Λ is manually replaced without updating the parameter vector). # For separameters!() update Λ whenever the parameters change. function getparameters(p::FullPairwise) i = 1 for e in edges(p.G) p.λ[i] = p.Λ[e.src,e.dst] i += 1 end return p.λ end function setparameters!(p::FullPairwise, newpar::Vector{Float64}) i = 1 for e in edges(p.G) p.λ[i] = newpar[i] p.Λ[e.src,e.dst] = newpar[i] p.Λ[e.dst,e.src] = newpar[i] i += 1 end end #---- to be used in show methods ---- function showfields(p::FullPairwise, leadspaces=0) spc = repeat(" ", leadspaces) return spc * "λ edge-ordered vector of association parameter values\n" * spc * "G the graph ($(nv(p.G)) vertices, $(ne(p.G)) edges)\n" * spc * "count $(p.count) (the number of observations)\n" * spc * "Λ $(size2string(p.Λ)) SparseMatrixCSC (the association matrix)\n" end
Autologistic
https://github.com/kramsretlow/Autologistic.jl.git
[ "MIT" ]
0.5.1
15b96cd9e90eaa8d256266aed59fd13fd1c8f181
code
2764
""" FullUnary The unary part of an autologistic model, with one parameter per vertex per observation. The type has only a single field, for holding an array of parameters. # Constructors FullUnary(alpha::Array{Float64,1}) FullUnary(n::Int) #-initializes parameters to zeros FullUnary(n::Int, m::Int) #-initializes parameters to zeros # Examples ```jldoctest julia> u = FullUnary(5, 3); julia> u[:,:] 5×3 Array{Float64,2}: 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ``` """ mutable struct FullUnary <: AbstractUnaryParameter α::Array{Float64,2} end # Constructors function FullUnary(alpha::Array{Float64,1}) return FullUnary( reshape(alpha, (length(alpha),1)) ) end FullUnary(n::Int) = FullUnary(zeros(Float64,n,1)) FullUnary(n::Int,m::Int) = FullUnary(zeros(Float64,n,m)) #---- AbstractArray methods ---- size(u::FullUnary) = size(u.α) length(u::FullUnary) = length(u.α) # getindex - implementations getindex(u::FullUnary, I::AbstractArray) = u.α[I] getindex(u::FullUnary, i::Int, j::Int) = u.α[i,j] getindex(u::FullUnary, ::Colon, ::Colon) = u.α getindex(u::FullUnary, I::AbstractVector, J::AbstractVector) = u.α[I,J] # getindex - translations getindex(u::FullUnary, I::Tuple{Integer, Integer}) = u[I[1], I[2]] getindex(u::FullUnary, ::Colon, j::Int) = u[1:size(u.α,1), j] getindex(u::FullUnary, i::Int, ::Colon) = u[i, 1:size(u.α,2)] getindex(u::FullUnary, I::AbstractRange{<:Integer}, J::AbstractVector{Bool}) = u[I,findall(J)] getindex(u::FullUnary, I::AbstractVector{Bool}, J::AbstractRange{<:Integer}) = u[findall(I),J] getindex(u::FullUnary, I::Integer, J::AbstractVector{Bool}) = u[I,findall(J)] getindex(u::FullUnary, I::AbstractVector{Bool}, J::Integer) = u[findall(I),J] getindex(u::FullUnary, I::AbstractVector{Bool}, J::AbstractVector{Bool}) = u[findall(I),findall(J)] getindex(u::FullUnary, I::AbstractVector{<:Integer}, J::AbstractVector{Bool}) = u[I,findall(J)] getindex(u::FullUnary, I::AbstractVector{Bool}, J::AbstractVector{<:Integer}) = u[findall(I),J] # setindex! setindex!(u::FullUnary, v::Real, I::Vararg{Int,2}) = (u.α[CartesianIndex(I)] = v) #---- AbstractUnaryParameter interface ---- getparameters(u::FullUnary) = dropdims(reshape(u, length(u), 1), dims=2) function setparameters!(u::FullUnary, newpars::Vector{Float64}) # Note, not implementing subsetting etc., can only replace the whole vector. if length(newpars) != length(u) error("incorrect parameter vector length") end u.α = reshape(newpars, size(u)) end #---- to be used in show methods ---- function showfields(u::FullUnary, leadspaces=0) spc = repeat(" ", leadspaces) return spc * "α $(size2string(u.α)) array (unary parameter values)\n" end
Autologistic
https://github.com/kramsretlow/Autologistic.jl.git
[ "MIT" ]
0.5.1
15b96cd9e90eaa8d256266aed59fd13fd1c8f181
code
4276
""" LinPredUnary The unary part of an autologistic model, parametrized as a regression linear predictor. Its fields are `X`, an n-by-p-by-m matrix (n obs, p predictors, m observations), and `β`, a p-vector of parameters (the same for all observations). # Constructors LinPredUnary(X::Matrix{Float64}, β::Vector{Float64}) LinPredUnary(X::Matrix{Float64}) LinPredUnary(X::Array{Float64, 3}) LinPredUnary(n::Int,p::Int) LinPredUnary(n::Int,p::Int,m::Int) Any quantities not provided in the constructors are initialized to zeros. # Examples ```jldoctest julia> u = LinPredUnary(ones(5,3,2), [1.0, 2.0, 3.0]); julia> u[:,:] 5×2 Array{Float64,2}: 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 ``` """ struct LinPredUnary <: AbstractUnaryParameter X::Array{Float64, 3} β::Vector{Float64} function LinPredUnary(x, beta) if size(x)[2] != length(beta) error("LinPredUnary: X and β dimensions are inconsistent") end new(x, beta) end end # Constructors function LinPredUnary(X::Matrix{Float64}, β::Vector{Float64}) (n,p) = size(X) return LinPredUnary(reshape(X,(n,p,1)), β) end function LinPredUnary(X::Matrix{Float64}) (n,p) = size(X) return LinPredUnary(reshape(X,(n,p,1)), zeros(Float64,p)) end function LinPredUnary(X::Array{Float64, 3}) (n,p,m) = size(X) return LinPredUnary(X, zeros(Float64,p)) end function LinPredUnary(n::Int,p::Int) X = zeros(Float64,n,p,1) return LinPredUnary(X, zeros(Float64,p)) end function LinPredUnary(n::Int,p::Int,m::Int) X = zeros(Float64,n,p,m) return LinPredUnary(X, zeros(Float64,p)) end #---- AbstractArray methods ---- size(u::LinPredUnary) = (size(u.X,1), size(u.X,3)) # getindex - implementations function getindex(u::LinPredUnary, ::Colon, ::Colon) n, p, m = size(u.X) out = zeros(n,m) for r = 1:m for i = 1:n for j = 1:p out[i,r] = out[i,r] + u.X[i,j,r] * u.β[j] end end end return out end function getindex(u::LinPredUnary, I::AbstractArray) out = u[:,:] return out[I] end getindex(u::LinPredUnary, i::Int, r::Int) = sum(u.X[i,:,r] .* u.β) function getindex(u::LinPredUnary, ::Colon, r::Int) n, p, m = size(u.X) out = zeros(n) for i = 1:n for j = 1:p out[i] = out[i] + u.X[i,j,r] * u.β[j] end end return out end function getindex(u::LinPredUnary, I::AbstractVector, R::AbstractVector) out = zeros(length(I),length(R)) for r in 1:length(R) for i in 1:length(I) for j = 1:size(u.X,2) out[i,r] = out[i,r] + u.X[I[i],j,R[r]] * u.β[j] end end end return out end # getindex- translations getindex(u::LinPredUnary, I::Tuple{Integer, Integer}) = u[I[1], I[2]] getindex(u::LinPredUnary, i::Int, ::Colon) = u[i, 1:size(u.X,3)] getindex(u::LinPredUnary, I::AbstractRange{<:Integer}, J::AbstractVector{Bool}) = u[I,findall(J)] getindex(u::LinPredUnary, I::AbstractVector{Bool}, J::AbstractRange{<:Integer}) = u[findall(I),J] getindex(u::LinPredUnary, I::Integer, J::AbstractVector{Bool}) = u[I,findall(J)] getindex(u::LinPredUnary, I::AbstractVector{Bool}, J::Integer) = u[findall(I),J] getindex(u::LinPredUnary, I::AbstractVector{Bool}, J::AbstractVector{Bool}) = u[findall(I),findall(J)] getindex(u::LinPredUnary, I::AbstractVector{<:Integer}, J::AbstractVector{Bool}) = u[I,findall(J)] getindex(u::LinPredUnary, I::AbstractVector{Bool}, J::AbstractVector{<:Integer}) = u[findall(I),J] # setindex! setindex!(u::LinPredUnary, v::Real, i::Int, j::Int) = error("Values of $(typeof(u)) must be set using setparameters!().") #---- AbstractUnaryParameter interface ---- getparameters(u::LinPredUnary) = u.β function setparameters!(u::LinPredUnary, newpars::Vector{Float64}) u.β[:] = newpars end #---- to be used in show methods ---- function showfields(u::LinPredUnary, leadspaces=0) spc = repeat(" ", leadspaces) return spc * "X $(size2string(u.X)) array (covariates)\n" * spc * "β $(size2string(u.β)) vector (regression coefficients)\n" end
Autologistic
https://github.com/kramsretlow/Autologistic.jl.git
[ "MIT" ]
0.5.1
15b96cd9e90eaa8d256266aed59fd13fd1c8f181
code
14088
# Neighbor sum of a certain variable. Note, writing the neighbor sum as a loop rather # than an inner product saved lots of memory allocations. function nbrsum(Λ, Y, μ, row, nbr)::Float64 out = 0.0 for ix in nbr out = out + Λ[row,ix] * (Y[ix] - μ[ix]) end return out end # conditional probabilities of a certain variable condprob(α, ns, lo, hi, ix)::Float64 = 1 / (1 + exp((lo-hi)*(α[ix] + ns))) # Take a single step of Gibbs sampling, and update variables in-place. function gibbsstep!(Y, lo, hi, Λ, adjlist, α, μ, n) ns = 0.0 p_i = 0.0 for i = 1:n ns = nbrsum(Λ, Y, μ, i, adjlist[i]) p_i = condprob(α, ns, lo, hi, i) if rand() < p_i Y[i] = hi else Y[i] = lo end end end # Run Gibbs sampling. function gibbssample(lo::Float64, hi::Float64, Y::Vector{Float64}, Λ::SparseMatrixCSC{Float64,Int}, adjlist::Array{Array{Int64,1},1}, α::Vector{Float64}, μ::Vector{Float64}, n::Int, k::Int, average::Bool, burnin::Int, skip::Int, verbose::Bool) temp = average ? zeros(Float64, n) : zeros(Float64, n, k) if verbose print("\nStarting burnin...") end for j = 1:burnin gibbsstep!(Y, lo, hi, Λ, adjlist, α, μ, n) end if verbose print(" complete\n") end for j = 1:k gibbsstep!(Y, lo, hi, Λ, adjlist, α, μ, n) if average # Performance tip: looping here saves memory allocations. (perhaps until we get # an operator like .+=) for i in 1:n temp[i] = temp[i] + Y[i] end else for i in 1:n temp[i,j] = Y[i] end end if j != k for s = 1:skip gibbsstep!(Y, lo, hi, Λ, adjlist, α, μ, n) end end if verbose println("finished draw $(j) of $(k)") end end if average return map(x -> (x - k*lo)/(k*(hi-lo)), temp) else return temp end end # Run CFTP epochs from the jth one forward to time zero. function runepochs!(j, times, Y, seeds, lo, hi, Λ, adjlist, α, μ, n) for epoch = j:-1:0 seed!(seeds[j+1]) for t = times[j+1,1] : times[j+1,2] gibbsstep!(Y, lo, hi, Λ, adjlist, α, μ, n) end end end function cftp_reuse_seeds(lo::Float64, hi::Float64, Λ::SparseMatrixCSC{Float64,Int}, adjlist::Array{Array{Int64,1},1}, α::Vector{Float64}, μ::Vector{Float64}, n::Int, k::Int, average::Bool, verbose::Bool) # Keep track of the seeds used. seeds(j) will hold the seed used to generate samples # in "epochs" j = 0, 1, 2, ... going backwards in time from time zero. The 0th epoch # covers time steps -T + 1 to 0, and the jth epoch covers steps -(2^j)T+1 to -2^(j-1)T. # We'll cap j at maxepoch. temp = average ? zeros(Float64, n) : zeros(Float64, n, k) T = 2 #-Initial number of time steps to go back. seeds = [UInt32[1] for i = 1:maxepoch+1] times = [-T * 2 .^(0:maxepoch) .+ 1 [0; -T * 2 .^(0:maxepoch-1)]] L = zeros(n) H = zeros(n) goodcount = k for rep = 1:k seeds .= [[rand(UInt32)] for i = 1:maxepoch+1] coalesce = false j = 0 while !coalesce && j <= maxepoch fill!(L, lo) fill!(H, hi) runepochs!(j, times, L, seeds, lo, hi, Λ, adjlist, α, μ, n) runepochs!(j, times, H, seeds, lo, hi, Λ, adjlist, α, μ, n) coalesce = L==H if verbose println("Started from -$(times[j+1,1]): $(sum(H .!= L)) elements different.") end j = j + 1 end if !coalesce @warn "Sampler did not coalesce in replicate $(rep)." L .= fill(NaN, n) goodcount -= 1 end if average && coalesce for i in 1:n temp[i] = temp[i] + L[i] end else for i in 1:n temp[i,rep] = L[i] end end if verbose println("finished draw $(rep) of $(k)") end end if average return map(x -> (x - goodcount*lo)/(goodcount*(hi-lo)), temp) else return temp end end function cftp_reuse_samples(lo::Float64, hi::Float64, Λ::SparseMatrixCSC{Float64,Int}, adjlist::Array{Array{Int64,1},1}, α::Vector{Float64}, μ::Vector{Float64}, n::Int, k::Int, average::Bool, verbose::Bool) temp = average ? zeros(Float64, n) : zeros(Float64, n, k) L = zeros(n) H = zeros(n) ns = 0.0 p_i = 0.0 # We use matrix U to hold all the uniform random numbers needed to compute the # lower and upper chains as stochastic recursive sequences. In this matrix each column # holds the n random variates needed to do a full Gibbs sampling update of the # variables in the graph. We think of the columns as going backwards in time to the # right: column one is time 0, column 2 is time -1, ... column T+1 is time -T. So to # run the chains in forward time we go from right to left. for rep = 1:k T = 2 #-T tracks how far back in time we start. Our sample is from time 0. U = rand(n,1) #-Holds needed random numbers (this matrix will grow) coalesce = false while ~coalesce fill!(L, lo) fill!(H, hi) U = [U rand(n,T)] for t = T+1:-1:1 #-Column t corresponds to time -(t-1). for i = 1:n # The lower chain ns = nbrsum(Λ, L, μ, i, adjlist[i]) p_i = condprob(α, ns, lo, hi, i) if U[i,t] < p_i L[i] = hi else L[i] = lo end # The upper chain ns = nbrsum(Λ, H, μ, i, adjlist[i]) p_i = condprob(α, ns, lo, hi, i) if U[i,t] < p_i H[i] = hi else H[i] = lo end end end coalesce = L==H if verbose println("Started from -$(T): $(sum(H .!= L)) elements different.") end T = 2*T end if average for i in 1:n temp[i] = temp[i] + L[i] end else for i in 1:n temp[i,rep] = L[i] end end if verbose println("finished draw $(rep) of $(k)") end end if average return map(x -> (x - k*lo)/(k*(hi-lo)), temp) else return temp end end function cftp_read_once(lo::Float64, hi::Float64, Λ::SparseMatrixCSC{Float64,Int}, adjlist::Array{Array{Int64,1},1}, α::Vector{Float64}, μ::Vector{Float64}, n::Int, k::Int, average::Bool, verbose::Bool) blocksize = blocksize_estimate(lo, hi, Λ, adjlist, α, μ, n) temp = average ? zeros(Float64, n) : zeros(Float64, n, k) L = zeros(n) H = zeros(n) Y = rand([lo, hi], n) U = zeros(n, blocksize) oldY = zeros(n) for rep = 0:k #-Run from zero because 1st draw is discarded. coalesce = false while ~coalesce copyto!(oldY, Y) fill!(L, lo) fill!(H, hi) for i = 1:n #-Performance: assigning to U in a loop uses 0 allocations. for j = 1:blocksize U[i,j] = rand() end end gibbsstep_block!(Y, U, lo, hi, Λ, adjlist, α, μ) gibbsstep_block!(L, U, lo, hi, Λ, adjlist, α, μ) gibbsstep_block!(H, U, lo, hi, Λ, adjlist, α, μ) coalesce = L==H if verbose println("Sample $(rep) coalesced? $(coalesce).") end end if rep > 0 if average for i in 1:n temp[i] = temp[i] + oldY[i] end else for i in 1:n temp[i,rep] = oldY[i] end end end end if average return map(x -> (x - k*lo)/(k*(hi-lo)), temp) else return temp end end function gibbsstep_block!(Z, U, lo, hi, Λ, adjlist, α, μ) ns = 0.0 p_i = 0.0 n, T = size(U) for t = 1:T for i = 1:n ns = nbrsum(Λ, Z, μ, i, adjlist[i]) p_i = condprob(α, ns, lo, hi, i) if U[i,t] < p_i Z[i] = hi else Z[i] = lo end end end end # Estimate the block size to use for read-once CFTP. Run 15 chains forward until they # coalesce. Return a quantile of the sample of run lengths as the recommended block size. function blocksize_estimate(lo, hi, Λ, adjlist, α, μ, n) coalesce_times = zeros(Int, ntestchains) L = zeros(n) H = zeros(n) U = zeros(n,1) for rep = 1:ntestchains coalesce = false fill!(L, lo) fill!(H, hi) count = one(Int) while ~coalesce # Performance note: for filling U with random numbers, could i) loop through U # and fill each element; ii) assign with rand(n,1) on the RHS; or iii) use # copyto!. Option i) uses no allocations, but empirically seems slower. Option # iii) seems fastest but requires allocation to produce the rand(n,1). copyto!(U, rand(n,1)) gibbsstep_block!(L, U, lo, hi, Λ, adjlist, α, μ) gibbsstep_block!(H, U, lo, hi, Λ, adjlist, α, μ) coalesce = L==H count = count + 1 end coalesce_times[rep] = count end return Int(round(quantile(coalesce_times, 0.6))) end function cftp_bounding_chain(lo::Float64, hi::Float64, Λ::SparseMatrixCSC{Float64,Int}, adjlist::Array{Array{Int64,1},1}, α::Vector{Float64}, μ::Vector{Float64}, n::Int, k::Int, average::Bool, verbose::Bool) temp = average ? zeros(Float64, n) : zeros(Float64, n, k) BC = Vector{Int}(undef,n) # The algorithm is similar to cftp_reuse_samples in that we save the generated random # variates. But in this method compute probability bounds on each variable to update # a bounding chain until it coalesces. for rep = 1:k T = 2 #-T tracks how far back in time we start. Our sample is from time 0. U = rand(n,1) #-Holds needed random numbers (this matrix will grow) coalesce = false while ~coalesce # Initialize the bounding chain. The state of the chain is represented by a vector of # length n, where each element can take values in the set {0, 1, 2}, where: # - 0 inidicates that the single label "lo" is in the bounding chain for that vertex. # - 1 indicates that the single label "hi" is in the bounding chain for that vertex. # - 2 indicates that both labels {"lo", "hi"} are in the bounding chain. BC = fill(2,n) U = [U rand(n,T)] for t = T+1:-1:1 #-Column t corresponds to time -(t-1). for i = 1:n ss = 0.0 #"as small as possible" neighbor sum sl = 0.0 #"as large as possible" neighbor sum for j in adjlist[i] λij = Λ[i,j] if BC[j] == 2 if λij < 0 ss = ss + λij * (hi - μ[j]) sl = sl + λij * (lo - μ[j]) else ss = ss + λij * (lo - μ[j]) sl = sl + λij * (hi - μ[j]) end elseif BC[j] == 1 ss = ss + λij * (hi - μ[j]) sl = sl + λij * (hi - μ[j]) else ss = ss + λij * (lo - μ[j]) sl = sl + λij * (lo - μ[j]) end end pss = 1 / ( 1 + exp((lo-hi)*(α[i] + ss)) ) psl = 1 / ( 1 + exp((lo-hi)*(α[i] + sl)) ) check1 = U[i,t] < pss check2 = U[i,t] < psl if check1 && check2 BC[i] = 1 elseif check1 || check2 BC[i] = 2 else BC[i] = 0 end end end coalesce = all(BC .!= 2) if verbose println("Started from -$(T): $(sum(BC .== 2)) elements not coalesced.") end T = 2*T end vals = [lo, hi] if average for i in 1:n temp[i] = temp[i] + vals[BC[i] + 1] end else for i in 1:n temp[i,rep] = vals[BC[i] + 1] end end if verbose println("finished draw $(rep) of $(k)") end end if average return map(x -> (x - k*lo)/(k*(hi-lo)), temp) else return temp end end
Autologistic
https://github.com/kramsretlow/Autologistic.jl.git
[ "MIT" ]
0.5.1
15b96cd9e90eaa8d256266aed59fd13fd1c8f181
code
4566
""" SimplePairwise Pairwise association matrix, parametrized as a scalar parameter times the adjacency matrix. # Constructors SimplePairwise(G::SimpleGraph, count::Int=1) SimplePairwise(n::Int, count::Int=1) SimplePairwise(λ::Real, G::SimpleGraph) SimplePairwise(λ::Real, G::SimpleGraph, count::Int) If provide only a graph, set λ = 0. If provide only an integer, set λ = 0 and make a totally disconnected graph. If provide a graph and a scalar, convert the scalar to a length-1 vector. Every observation must have the same association matrix in this case. So while we internally treat it like an n-by-n-by-m matrix, just return a 2D n-by-n matrix to the user. # Examples ```jldoctests julia> g = makegrid4(2,2).G; julia> λ = 1.0; julia> p = SimplePairwise(λ, g, 4); #-4 observations julia> size(p) (4, 4, 4) julia> Matrix(p[:,:,:]) 4×4 Array{Float64,2}: 0.0 1.0 1.0 0.0 1.0 0.0 0.0 1.0 1.0 0.0 0.0 1.0 0.0 1.0 1.0 0.0 ``` """ mutable struct SimplePairwise <: AbstractPairwiseParameter λ::Vector{Float64} G::SimpleGraph{Int} count::Int A::SparseMatrixCSC{Float64,Int64} function SimplePairwise(lam, g, m) if length(lam) !== 1 error("SimplePairwise: λ must have length 1") end if m < 1 error("SimplePairwise: count must be positive") end new(lam, g, m, adjacency_matrix(g, Float64)) end end # Constructors # - If provide only a graph, set λ = 0. # - If provide only an integer, set λ = 0 and make a totally disconnected graph. # - If provide a graph and a scalar, convert the scalar to a length-1 vector. SimplePairwise(G::SimpleGraph, count::Int=1) = SimplePairwise([0.0], G, count) SimplePairwise(n::Int, count::Int=1) = SimplePairwise(0, SimpleGraph(n), count) SimplePairwise(λ::Real, G::SimpleGraph) = SimplePairwise([(Float64)(λ)], G, 1) SimplePairwise(λ::Real, G::SimpleGraph, count::Int) = SimplePairwise([(Float64)(λ)], G, count) #---- AbstractArray methods ---- (following sparsematrix.jl) # getindex - implementations getindex(p::SimplePairwise, i::Int, j::Int) = p.λ[1] * p.A[i, j] getindex(p::SimplePairwise, i::Int) = p.λ[1] * p.A[i] getindex(p::SimplePairwise, ::Colon, ::Colon) = p.λ[1] * p.A getindex(p::SimplePairwise, I::AbstractArray) = p.λ[1] * p.A[I] getindex(p::SimplePairwise, I::AbstractVector, J::AbstractVector) = p.λ[1] * p.A[I,J] # getindex - translations getindex(p::SimplePairwise, I::Tuple{Integer, Integer}) = p[I[1], I[2]] getindex(p::SimplePairwise, I::Tuple{Integer, Integer, Integer}) = p[I[1], I[2]] getindex(p::SimplePairwise, i::Int, j::Int, r::Int) = p[i,j] getindex(p::SimplePairwise, ::Colon, ::Colon, ::Colon) = p[:,:] getindex(p::SimplePairwise, ::Colon, ::Colon, r::Int) = p[:,:] getindex(p::SimplePairwise, ::Colon, j) = p[1:size(p.A,1), j] getindex(p::SimplePairwise, i, ::Colon) = p[i, 1:size(p.A,2)] getindex(p::SimplePairwise, ::Colon, j, r) = p[:,j] getindex(p::SimplePairwise, i, ::Colon, r) = p[i,:] getindex(p::SimplePairwise, I::AbstractVector{Bool}, J::AbstractRange{<:Integer}) = p[findall(I),J] getindex(p::SimplePairwise, I::AbstractRange{<:Integer}, J::AbstractVector{Bool}) = p[I,findall(J)] getindex(p::SimplePairwise, I::Integer, J::AbstractVector{Bool}) = p[I,findall(J)] getindex(p::SimplePairwise, I::AbstractVector{Bool}, J::Integer) = p[findall(I),J] getindex(p::SimplePairwise, I::AbstractVector{Bool}, J::AbstractVector{Bool}) = p[findall(I),findall(J)] getindex(p::SimplePairwise, I::AbstractVector{<:Integer}, J::AbstractVector{Bool}) = p[I,findall(J)] getindex(p::SimplePairwise, I::AbstractVector{Bool}, J::AbstractVector{<:Integer}) = p[findall(I),J] # setindex! setindex!(p::SimplePairwise, i::Int, j::Int) = error("Pairwise values cannot be set directly. Use setparameters! instead.") setindex!(p::SimplePairwise, i::Int, j::Int, k::Int) = error("Pairwise values cannot be set directly. Use setparameters! instead.") setindex!(p::SimplePairwise, i::Int) = error("Pairwise values cannot be set directly. Use setparameters! instead.") #---- AbstractPairwiseParameter interface methods ---- getparameters(p::SimplePairwise) = p.λ function setparameters!(p::SimplePairwise, newpar::Vector{Float64}) p.λ = newpar end #---- to be used in show methods ---- function showfields(p::SimplePairwise, leadspaces=0) spc = repeat(" ", leadspaces) return spc * "λ $(p.λ) (association parameter)\n" * spc * "G the graph ($(nv(p.G)) vertices, $(ne(p.G)) edges)\n" * spc * "count $(p.count) (the number of observations)\n" * spc * "A $(size2string(p.A)) SparseMatrixCSC (the adjacency matrix)\n" end
Autologistic
https://github.com/kramsretlow/Autologistic.jl.git
[ "MIT" ]
0.5.1
15b96cd9e90eaa8d256266aed59fd13fd1c8f181
code
16723
using Test using Graphs, LinearAlgebra using Autologistic println("Running tests:") @testset "FullUnary constructors and interfaces" begin M = [1.1 4.4 7.7 2.2 5.5 8.8 3.3 4.4 9.9] u1 = FullUnary(M[:,1]) u2 = FullUnary(M) @test sprint(io -> show(io,u1)) == "3×1 FullUnary" @test u1[2] == 2.2 @test u2[2,3] == 8.8 @test size(u1) == (3,1) @test size(u2) == (3,3) @test getparameters(u1) == [1.1; 2.2; 3.3] setparameters!(u1, [0.1, 0.2, 0.3]) setparameters!(u2, [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]) u1[2] = 2.22 u2[2,3] = 8.88 u3 = FullUnary(10) u4 = FullUnary(10,4) @test size(u3) == (10,1) @test size(u4) == (10,4) end @testset "LinPredUnary constructors and interfaces" begin X1 = [1.0 2.0 3.0 1.0 4.0 5.0 1.0 6.0 7.0 1.0 8.0 9.0] X = cat(X1, 2*X1, dims=3) beta = [1.0, 2.0, 3.0] u1 = LinPredUnary(X, beta) u2 = LinPredUnary(X1, beta) u3 = LinPredUnary(X1) u4 = LinPredUnary(X) u5 = LinPredUnary(4, 3) u6 = LinPredUnary(4, 3, 2) Xbeta = [14.0 28.0 24.0 48.0 34.0 68.0 44.0 88.0] X1beta = reshape(Xbeta[:,1], (4,1)) @test size(u1) == size(u4) == size(u6) == (4,2) @test size(u2) == size(u3) == size(u5) == (4,1) @test u1[3,2] == u1[7] == 68.0 @test u1[[1 2; 2 2]] == [14.0 24.0; 24.0 24.0] @test getparameters(u1) == beta setparameters!(u1, [2.0, 3.0, 4.0]) @test getparameters(u1) == [2.0, 3.0, 4.0] @test_throws Exception LinPredUnary(X, [1,2]) end @testset "SimplePairwise constructors and interfaces" begin n = 10 m = 3 λ = 1.0 G = Graph(n, Int(floor(n*(n-1)/4))) p1 = SimplePairwise([λ], G, m) p2 = SimplePairwise(G) p3 = SimplePairwise(G, m) p4 = SimplePairwise(n) p5 = SimplePairwise(n, m) p6 = SimplePairwise(λ, G) p7 = SimplePairwise(λ, G, m) @test sprint(io -> show(io,p1)) == "10×10×3 SimplePairwise" @test any(i -> (i!==(n,n,m)), [size(j) for j in [p1, p2, p3, p4, p5, p6, p7]]) @test p1[2,2,2] == p1[2,2] == λ*adjacency_matrix(G,Float64)[2,2] setparameters!(p1, [2.0]) @test getparameters(p1) == [2.0] @test_throws Exception SimplePairwise([1,2],G,m) @test_throws Exception SimplePairwise([1],G,0) end @testset "FullPairwise constructors and interfaces" begin nvert = 10 nedge = 20 m = 3 G = Graph(nvert, nedge) λ = rand(-1.1:0.2:1.1, nedge) p1 = FullPairwise(λ, G, m) p2 = FullPairwise(G) p3 = FullPairwise(G, m) p4 = FullPairwise(nvert) p5 = FullPairwise(nvert, m) p6 = FullPairwise(λ, G) p7 = FullPairwise(λ, G, m) @test any(i -> (i!==(nvert,nvert,m)), [size(j) for j in [p1, p2, p3, p4, p5, p6, p7]]) @test (adjacency_matrix(G) .!= 0) == (p1.Λ .!= 0) @test p1[2,2,2] == p1[2,2] newpar = rand(-1.1:0.2:1.1, nedge) setparameters!(p1, newpar) @test (adjacency_matrix(G) .!= 0) == (p1.Λ .!= 0) fromΛ = [] for i = 1:nvert for j = i+1:nvert if p1.Λ[i,j] != 0 push!(fromΛ, p1.Λ[i,j]) end end end @test newpar == p1.λ == fromΛ == getparameters(p1) end @testset "ALRsimple constructors" begin for r in [1 5] (n, p, m) = (100, 4, r) X = rand(n,p,m) β = [1.0, 2.0, 3.0, 4.0] Y = makebool(round.(rand(n,m)), (0.0, 1.0)) unary = LinPredUnary(X, β) pairwise = SimplePairwise(n, m) coords = [(rand(),rand()) for i=1:n] m1 = ALRsimple(Y, unary, pairwise, none, (-1.0,1.0), ("low","high"), coords) m2 = ALRsimple(unary, pairwise) m3 = ALRsimple(Graph(n, Int(floor(n*(n-1)/4))), X, Y=Y, β=β, λ = 1.0) @test getparameters(m3) == [β; 1.0] @test getunaryparameters(m3) == β @test getpairwiseparameters(m3) == [1.0] setparameters!(m1, [1.1, 2.2, 3.3, 4.4, -1.0]) setunaryparameters!(m2, [1.1, 2.2, 3.3, 4.4]) setpairwiseparameters!(m2, [-1.0]) @test getparameters(m1) == getparameters(m2) == [1.1, 2.2, 3.3, 4.4, -1.0] end end @testset "ALsimple constructors" begin for r in [1 5] (n, m) = (100, r) alpha = rand(n, m) Y = makebool(round.(rand(n, m)), (0.0, 1.0)) unary = FullUnary(alpha) pairwise = SimplePairwise(n, m) coords = [(rand(), rand()) for i=1:n] G = Graph(n, Int(floor(n*(n-1)/4))) m1 = ALsimple(Y, unary, pairwise, none, (-1.0,1.0), ("low","high"), coords) m2 = ALsimple(unary, pairwise) m3 = ALsimple(G, alpha, λ=1.0) m4 = ALsimple(G, m) @test getparameters(m1) == [alpha[:]; 0.0] @test getparameters(m2) == [alpha[:]; 0.0] @test getparameters(m3) == [alpha[:]; 1.0] @test size(m4.unary) == (n, m) @test getunaryparameters(m1) == alpha[:] @test getpairwiseparameters(m3) == [1.0] setunaryparameters!(m3, 2*alpha[:]) setpairwiseparameters!(m3, [2.0]) setparameters!(m4, [2*alpha[:]; 2.0]) @test getparameters(m3) == getparameters(m4) == [2*alpha[:]; 2.0] end end @testset "ALfull constructors" begin g = Graph(10, 20); alpha = zeros(10, 4); lambda = rand(20); Y = rand([0, 1], 10, 4); u = FullUnary(alpha); p = FullPairwise(g, 4); setparameters!(p, lambda) model1 = ALfull(u, p, Y=Y); model2 = ALfull(g, alpha, lambda, Y=Y); model3 = ALfull(g, 4, Y=Y); setparameters!(model3, [alpha[:]; lambda]) @test all([getfield(model1, fn)==getfield(model2, fn)==getfield(model3, fn) for fn in fieldnames(ALfull)]) @test getparameters(model1) == [alpha[:]; lambda] @test getunaryparameters(model1) == alpha[:] @test getpairwiseparameters(model1) == lambda @test size(model2.unary) == (10, 4) @test size(model2.pairwise) == (10, 10, 4) setparameters!(model3, [2 .* alpha[:]; 2 .* lambda]) setunaryparameters!(model2, 2 .* alpha[:]) setpairwiseparameters!(model2, 2 .* lambda) @test getparameters(model3) ≈ getparameters(model2) ≈ [2*alpha[:]; 2*lambda] end @testset "Helper functions" begin # --- makebool() --- y1 = [false, false, true] y2 = [1 2; 1 2] y3 = [1.0 2.0; 1.0 2.0] y4 = ["yes", "no", "no"] y5 = ones(10,3) @test makebool(y1) == reshape([false, false, true], (3,1)) @test makebool(y2) == makebool(y3) == [false true; false true] @test makebool(y4) == reshape([true, false, false], (3,1)) @test makebool(y5, (0,1)) == fill(true, 10, 3) @test makebool(y5, (1,2)) == fill(false, 10, 3) # --- makecoded() --- M1 = ALRsimple(Graph(4,3), rand(4,2), Y=[true, false, false, true], coding=(-1,1)) @test makecoded(M1) == reshape([1, -1, -1, 1], (4,1)) @test makecoded([true, false, false, true], M1.coding) == reshape([1, -1, -1, 1], (4,1)) # --- makegrid4() and makegrid8() --- out4 = makegrid4(11, 21, (-1,1), (-10,10)) @test out4.locs[11*10 + 6] == (0.0, 0.0) @test nv(out4.G) == 11*21 @test ne(out4.G) == 11*20 + 21*10 out8 = makegrid8(11, 21, (-1,1), (-10,10)) @test out8.locs[11*10 + 6] == (0.0, 0.0) @test nv(out8.G) == 11*21 @test ne(out8.G) == 11*20 + 21*10 + 2*20*10 # --- makespatialgraph() --- coords = [(Float64(i), Float64(j)) for i = 1:5 for j = 1:5] out = makespatialgraph(coords, sqrt(2)) @test ne(out.G) == 2*4*5 + 2*4*4 # --- hess() --- fcn(x) = x[1]^2 + 2x[2]^2 + x[1]*x[2] H = Autologistic.hess(fcn, [1, 1]) @test isapprox(H, [[2; 1] [1; 4]], atol=0.001) end @testset "almodel_functions" begin # --- centeringterms() --- M1 = ALRsimple(Graph(4,3), rand(4,2), Y=[true, false, false, true], coding=(-1,1)) @test centeringterms(M1) == zeros(4,1) @test centeringterms(M1, onehalf) == ones(4,1)./2 @test centeringterms(M1, expectation) == zeros(4,1) M2 = ALRsimple(makegrid4(2,2)[1], ones(4,2,3), β = [1.0, 1.0], centering = expectation, coding = (0,1), Y = repeat([true, true, false, false],1,3)) @test centeringterms(M2) ≈ ℯ^2/(1+ℯ^2) .* ones(4,3) # --- negpotential(), loglikelihood(), and negloglik!--- setpairwiseparameters!(M2, [1.0]) @test negpotential(M2) ≈ 1.4768116880884703 * ones(3,1) @test loglikelihood(M2) ≈ -11.86986109487605 @test Autologistic.negloglik!([1.0, 1.0, 1.0], M2) ≈ 11.86986109487605 M = ALsimple(makegrid4(3,3).G, ones(9)) f = fullPMF(M) @test exp(negpotential(M)[1])/f.partition ≈ exp(loglikelihood(M)) # --- pseudolikelihood() --- X = [1.1 2.2 1.0 2.0 2.1 1.2 3.0 0.3] Y = [0; 0; 1; 0] M3 = ALRsimple(makegrid4(2,2)[1], cat(X,X,dims=3), Y=cat(Y,Y,dims=2), β=[-0.5, 1.5], λ=1.25, centering=expectation) @test pseudolikelihood(M3) ≈ 12.333549445795818 # --- fullPMF() --- M4 = ALRsimple(Graph(3,0), reshape([-1. 0. 1. -1. 0. 1.],(3,1,2)), β=[1.0]) pmf = fullPMF(M4) probs = [0.0524968; 0.387902; 0.0524968; 0.387902; 0.00710467; 0.0524968; 0.00710467; 0.0524968] @test pmf.partition ≈ 19.04878276433453 * ones(2) @test pmf.table[:,4,1] == pmf.table[:,4,2] @test isapprox(pmf.table[:,4,1], probs, atol=1e-6) # --- marginalprobabilities() --- truemp = [0.1192029 0.1192029; 0.5 0.5; 0.8807971 0.8807971] @test isapprox(marginalprobabilities(M4), truemp, atol=1e-6) @test isapprox(marginalprobabilities(M4,indices=2), truemp[:,2], atol=1e-6) # --- conditionalprobabilities() --- lam = 0.5 a, b, c = (-1.2, 0.25, 1.5) y1, y2, y3 = (-1.0, 1.0, 1.0) ns1, ns2, ns3 = lam .* (y2+y3, y1+y3, y1+y2) cp1 = exp(a+ns1) / (exp(-(a+ns1)) + exp(a+ns1)) cp2 = exp(b+ns2) / (exp(-(b+ns2)) + exp(b+ns2)) cp3 = exp(c+ns3) / (exp(-(c+ns3)) + exp(c+ns3)) M = ALsimple(FullUnary([a, b, c]), SimplePairwise(lam, Graph(3,3)), Y=[y1,y2,y3]) @test isapprox(conditionalprobabilities(M), [cp1, cp2, cp3]) @test isapprox(conditionalprobabilities(M, vertices=[1,3]), [cp1, cp3]) Y = [ones(9) zeros(9)] model = ALsimple(makegrid4(3,3).G, ones(9,2), Y=Y, λ=0.5) @test isapprox(conditionalprobabilities(model, vertices=5), [0.997527377 0.119202922]) @test isapprox(conditionalprobabilities(model, indices=2), [0.5; 0.26894142; 0.5; 0.2689414213; 0.119202922; 0.26894142; 0.5; 0.26894142; 0.5]) end @testset "samplers" begin M5 = ALRsimple(makegrid4(4,4)[1], rand(16,1)) out1 = sample(M5, 10000, average=false) @test all(x->isapprox(x,0.5,atol=0.05), sum(out1.==1, dims=2)/10000) out2 = sample(M5, 10000, average=true, burnin=100, config=rand([1,2], 16)) @test all(x->isapprox(x,0.5,atol=0.05), out2) M6 = ALRsimple(makegrid4(3,3)[1], rand(9,2)) setparameters!(M6, [-0.5, 0.5, 0.2]) marg = marginalprobabilities(M6) out3 = sample(M6, 10000, method=perfect_read_once, average=true) out4 = sample(M6, 10000, method=perfect_reuse_samples, average=true) out5 = sample(M6, 10000, method=perfect_reuse_seeds, average=true) out6 = sample(M6, 10000, method=perfect_bounding_chain, average=true) @test isapprox(out3, marg, atol=0.04, norm=x->norm(x,Inf)) @test isapprox(out4, marg, atol=0.04, norm=x->norm(x,Inf)) @test isapprox(out5, marg, atol=0.04, norm=x->norm(x,Inf)) @test isapprox(out6, marg, atol=0.04, norm=x->norm(x,Inf)) tbl = fullPMF(M6).table checkthree(x) = all(x[1:3] .== -1.0) threelow = sum(mapslices(x -> checkthree(x) ? x[10] : 0.0, tbl, dims=2)) out7 = sample(M6, 10000, method=perfect_read_once, average=false) est7 = sum(mapslices(x -> checkthree(x) ? 1.0/10000.0 : 0.0, out7, dims=1)) out8 = sample(M6, 10000, method=perfect_reuse_samples, average=false) est8 = sum(mapslices(x -> checkthree(x) ? 1.0/10000.0 : 0.0, out8, dims=1)) out9 = sample(M6, 10000, method=perfect_reuse_seeds, average=false) est9 = sum(mapslices(x -> checkthree(x) ? 1.0/10000.0 : 0.0, out9, dims=1)) out10 = sample(M6, 10000, method=perfect_bounding_chain, average=false) est10 = sum(mapslices(x -> checkthree(x) ? 1.0/10000.0 : 0.0, out10, dims=1)) @test isapprox(est7, threelow, atol=0.03) @test isapprox(est8, threelow, atol=0.03) @test isapprox(est9, threelow, atol=0.03) @test isapprox(est10, threelow, atol=0.03) nobs = 4 M7 = ALRsimple(makegrid8(3,3)[1], rand(9,2,nobs)) setparameters!(M7, [-0.5, 0.5, 0.2]) out11 = sample(M7, 100) @test size(out11) == (9, nobs, 100) out12 = sample(M7, 100, average=true) @test size(out12) == (9, nobs) out13 = sample(M7, 10, indices=1:2) @test size(out13) == (9, 2, 10) out14 = sample(M7, 1, indices=nobs) @test size(out14) == (9,) out15 = sample(M7, 1, indices=1:3) @test size(out15) == (9, 3) marg = marginalprobabilities(M7) out16 = sample(M7, 10000, method=perfect_read_once, average=true) @test isapprox(out16[:], marg[:], atol=0.03, norm=x->norm(x,Inf)) M8 = ALsimple(complete_graph(10), zeros(10)) samp = sample(M8, 10000, method=Gibbs, skip=2, average=true) @test isapprox(samp, fill(0.5, 10), atol=0.03, norm=x->norm(x,Inf)) end @testset "ML and PL Estimation" begin G = makegrid4(4,3).G model = ALRsimple(G, ones(12,1), Y=[fill(-1,4); fill(1,8)]) mle = fit_ml!(model) @test isapprox(mle.estimate, [0.07915; 0.4249], atol=0.001) mle2 = fit_ml!(model, start=[0.07; 0.4], verbose=true, iterations=30, show_trace=true) @test isapprox(mle2.estimate, [0.07915; 0.4249], atol=0.001) @test isapprox(mle2.pvalues, [0.6279; 0.0511], atol=0.001) mleERR = fit_ml!(model, start=[1000, 1000]) @test typeof(mleERR.optim) <: Exception tup1, tup2 = Autologistic.splitkw((method=Gibbs, iterations=1000, average=true, show_trace=false)) @test tup1 == (show_trace = false, iterations = 1000) @test tup2 == (method = Gibbs, average = true) oldY = model.responses oldpar = getparameters(model) theboot = oneboot(model, method=Gibbs) @test model.responses == oldY @test getparameters(model) == oldpar theboot2 = oneboot(model, [0.1,0.02]) @test getparameters(model) == oldpar @test keys(theboot) == keys(theboot2) == (:sample, :estimate, :convergence) @test map(x -> size(x), values(theboot)) == ((12,), (2,), ()) Y=[[fill(-1,4); fill(1,8)] [fill(-1,3); fill(1,9)] [fill(-1,5); fill(1,7)]] model2 = ALRsimple(G, ones(12,1,3), Y=Y) fit = fit_pl!(model2, start=[-0.4, 1.1]) @test isapprox(fit.estimate, [-0.390104; 1.10103], atol=0.001) fitERR = fit_pl!(model2, start=[1000, 1000]) @test typeof(fitERR.optim) <: Exception boots1 = [oneboot(model2, start=[-0.4, 1.1]) for i = 1:10] samps = zeros(12,3,10) ests = zeros(2,10) convs = fill(false, 10) for i = 1:10 samps[:,:,i] = boots1[i].sample ests[:,i] = boots1[i].estimate convs[i] = boots1[i].convergence end addboot!(fit, boots1) addboot!(fit, samps, ests, convs) @test size(fit.bootsamples) == (12,3,20) @test length(fit.convergence) == 20 @test fit.bootestimates[:,1:10] == fit.bootestimates[:,11:20] G3 = makegrid4(7,7) model3 = ALRsimple(G3.G, [-ones(15,1); ones(34,1)]) Y = ones(49) Y[[3, 5, 7, 12, 14, 17, 18, 22, 23, 24, 25, 27, 30, 31, 34, 35, 36, 37, 40, 43, 44, 45, 46, 48, 49]] .= -1.0 model3.responses = makebool(Y) fit = fit_pl!(model3, start=[-0.25, -0.06], nboot=100) @test isapprox(fit.estimate, [-0.26976, -0.06015], atol=0.001) end @testset "ALfit type" begin tst = ALfit() @test Autologistic.showfields(tst) == "(all fields empty)\n" tst.estimate = rand(10) @test Autologistic.showfields(tst) == "estimate 10-element vector of parameter estimates\n" sm = ["yes" "no" "maybe"; "1.2345" "123.45" "12345"; "12.345" "1.2345" "12345"] Autologistic.align!(sm, 1, '.') Autologistic.align!(sm, 2, '.') Autologistic.align!(sm, 3, 'x') @test sm[:,1] == ["yes"; " 1.2345"; "12.345"] @test sm[:,2] == ["no"; "123.45"; " 1.2345"] @test sm[:,3] == ["maybe"; "12345"; "12345"] end
Autologistic
https://github.com/kramsretlow/Autologistic.jl.git
[ "MIT" ]
0.5.1
15b96cd9e90eaa8d256266aed59fd13fd1c8f181
docs
2915
# Autologistic [![](https://img.shields.io/badge/docs-stable-blue.svg)](https://kramsretlow.github.io/Autologistic.jl/stable) [![](https://img.shields.io/badge/docs-dev-blue.svg)](https://kramsretlow.github.io/Autologistic.jl/dev) [![Build Status](https://travis-ci.com/kramsretlow/Autologistic.jl.svg?branch=master)](https://travis-ci.com/kramsretlow/Autologistic.jl) [![codecov](https://codecov.io/gh/kramsretlow/Autologistic.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/kramsretlow/Autologistic.jl) A Julia package for computing with the autologistic (Ising) probability model and performing autologistic regression. Autologistic regression is like an extension of logistic regression that allows the binary responses to be correlated. An undirected graph is used to encode the association structure among the responses. The package follows the treatment of this model given in the paper [Better Autologistic Regression](https://doi.org/10.3389/fams.2017.00024). As described in that paper, different variants of "the" autologistic regression model are actually different probability models. One reason this package was created was to allow researchers to compare the performance of the different model variants. You can create different variants of the model easily and fit them using either maximum likelihood (for small-n cases) or maximum pseudolikelihood (for large-n cases). At present only the most common "simple" form of the model--with a single parameter controlling the association strength everywhere in graph--is implemented. But the package is designed to be extensible. In future different ways of parametrizing the association could be added. Much more detail is provided in the [documentation](https://kramsretlow.github.io/Autologistic.jl/stable). **NOTE:** As of `v0.5.0`, `Autologistic.jl` uses `Graphs.jl` to represent its graphs. Prior versions used the predecessor package `LightGraphs.jl`. You may need to update earlier code if you were supplying graphs into autologistic types. ```julia # To get a feeling for the package facilities. # The package uses Graphs.jl for graphs. using Autologistic, Graphs g = Graph(100, 400) #-Create a random graph (100 vertices, 400 edges) X = [ones(100) rand(100,3)] #-A matrix of predictors. Y = rand([0, 1], 100) #-A vector of binary responses. model = ALRsimple(g, X, Y=Y) #-Create autologistic regression model # Estimate parameters using pseudolikelihood. Do parametric bootstrap # for error estimation. Draw bootstrap samples using perfect sampling. fit = fit_pl!(model, nboot=2000, method=perfect_read_once) # Draw samples from the fitted model and get the average to estimate # the marginal probability distribution. Use a different perfect sampling # algorithm. marginal = sample(model, 1000, method=perfect_bounding_chain, average=true) ```
Autologistic
https://github.com/kramsretlow/Autologistic.jl.git
[ "MIT" ]
0.5.1
15b96cd9e90eaa8d256266aed59fd13fd1c8f181
docs
7931
# Background This section provides a brief overview of the autologistic model, to establish some conventions and terminology that will help you to make appropriate use of `Autologistic.jl`. The package is concerned with the analysis of dichotomous data: categorical observations that can take two possible values (low or high, alive or dead, present or absent, etc.). It is common to refer to such data as binary, and to use numeric values 0 and 1 to represent the two states. We do not have to use 0 and 1, however: any other pair of numbers could be used instead. This might seem like a small detail, but for autologistic regression models, the choice of numeric coding is very important. The pair of values used to represent the two states is called the **coding**. !!! note "Important Fact 1" For ALR models, two otherwise-identical models that differ only in their coding will generally **not** be equivalent probability models. Changing the coding fundamentally changes the model. For [a variety of reasons](https://doi.org/10.3389/fams.2017.00024), the ``(-1,1)`` coding is strongly recommended, and is used by default. When responses are independent (conditional on the covariates), logistic regression is the most common model. For cases where the independence assumption might not hold—responses are correlated, even after including covariate effects—autologistic models are a useful option. They revert to logistic regression models when their association parameters are set to zero. ## The Autologistic (AL) Model Let ``\mathbf{Y}`` be a vector of ``n`` dichotomous random variables, expressed using any chosen coding. The AL model is a probability model for the joint distribution of the variables. Under the AL model, the joint probability mass function (PMF) of the random vector is: ```math \Pr(\mathbf{Y}=\mathbf{y}) \propto \exp\left(\mathbf{y}^T\boldsymbol{\alpha} - \mathbf{y}^T\boldsymbol{\Lambda}\boldsymbol{\mu} + \frac{1}{2}\mathbf{y}^T\boldsymbol{\Lambda}\mathbf{y}\right) ``` The model is only specified up to a proportionality constant. The proportionality constant (sometimes called the "partition function") is intractable for even moderately large ``n``: evaluating it requires computing the right hand side of the above equation for ``2^n`` possible configurations of the dichotomous responses. Inside the exponential above, there are three terms: * The first term is the **unary** term, and ``\mathbf{\alpha}`` is called the **unary parameter**. It summarizes each variable's endogenous tendency to take the "high" state. Larger positive ``\alpha_i`` values make random variable ``Y_i`` more likely to take the "high" value. Note that in practical models, ``\mathbf{\alpha}`` could be expressed in terms of some other parameters. * The second term is an optional **centering** term, and the value ``\mu_i`` is called the centering adjustment for variable ``i``. The package includes different options for centering, in the [`CenteringKinds`](@ref) enumeration. Setting centering to `none` will set the centering adjustment to zero; setting centering to `expectation` will use the centering adjustment of the "centered autologistic model" that has appeared in the literature (e.g. [here](https://link.springer.com/article/10.1198/jabes.2009.07032) and [here](https://doi.org/10.1002/env.1102)). !!! note "Important Fact 2" Just as with coding, changing an un-centered model to a centered one is not a minor change. It produces a different probability model entirely. There is evidence that [centering has drawbacks](https://doi.org/10.3389/fams.2017.00024), so the uncentered model is used by default. * The third term is the **pairwise** term, which handles the association between the random variables. Parameter ``\boldsymbol{\Lambda}`` is a symmetric matrix. If it has a nonzero entry at position ``(i,j)``, then variables ``i`` and ``j`` share an edge in the graph associated with the model, and the value of the entry controls the strength of association between those two variables. ``\boldsymbol{\Lambda}`` can be parametrized in different ways. The simplest and most common option is to let ``\boldsymbol{\Lambda} = \lambda\mathbf{A}``, where ``\mathbf{A}`` is the adjacency matrix of the graph. This "simple pairwise" option has only a single association parameter, ``\lambda``. The autogologistic model is a [probabilistic graphical model](https://en.wikipedia.org/wiki/Graphical_model), more specifically a [Markov random field](https://en.wikipedia.org/wiki/Markov_random_field), meaning it has an undirected graph that encodes conditional probability relationships among the variables. `Autologistic.jl` uses `Graphs.jl` to represent the graph. ## The Autologistic Regression (ALR) Model The AL model becomes an ALR model when the unary parameter is written as a linear predictor: ```math \Pr(\mathbf{Y}=\mathbf{y}) \propto \exp\left(\mathbf{y}^T\mathbf{X}\boldsymbol{\beta} - \mathbf{y}^T\boldsymbol{\Lambda}\boldsymbol{\mu} + \frac{1}{2}\mathbf{y}^T\boldsymbol{\Lambda}\mathbf{y}\right) ``` where ``\mathbf{X}`` is a matrix of predictors/covariates, and ``\boldsymbol{\beta}`` is a vector of regression coefficients. Note that because the responses are correlated, we treat each vector ``\mathbf{y}`` as a single observation, consisting of a set of "variables," "vertices," or "responses." If the number of variables is large enough, the model can be fit with only one observation. With more than one observation, we can write the data as ``(\mathbf{y}_1, \mathbf{X}_1), \ldots (\mathbf{y}_m, \mathbf{X}_m)``. Each observation is a vector with its own matrix of predictor values. ## The Symmetric Model and Logistic Regression Autologistic models can be expressed in a conditional log odds form. Let ``\pi_i`` be the probability that variable ``i`` takes the high level, conditional on the values of all of its neighbors. Then the AL model implies ```math \text{logit}(\pi_i) = (h-\ell)(\alpha_i + \sum_{j\sim i}\lambda_{ij}(y_j - \mu_j)), ``` where ``(\ell, h)`` is the coding, ``\lambda_{ij}`` is the ``(i,j)``th element of ``\Lambda``, and ``j\sim i`` means "all variables that are neighbors of ``i``". The conditional form illustrates the link between ALR models and logistic regression. In the ALR model, ``\alpha_i = \mathbf{X}_i\boldsymbol{\beta}``. If all ``\lambda_{ij}=0`` and the coding is ``(0,1)``, the model becomes a logistic regression model. If we fit an ALR model to a data set, it is natural to wonder how the regression coefficients compare to the logistic regression model, which assumes independence. Unfortunately, the coefficients of the preferred "symmetric" ALR model are not immediately comparable to logistic regression coefficients, because it uses ``(-1,1)`` coding. It is not hard to make the model comparable, however. !!! note "The symmetric ALR model with (0,1) coding" The symmetric ALR model with ``(-1, 1)`` coding is equivalent to a model with ``(0,1)`` coding and a constant centering adjustment of 0.5. If the original symmetric model has coefficients ``(β, Λ)``, the transformed model with ``(0,1)`` coding has coefficients ``(2β, 4Λ)``. The transformed model's coefficients can be directly compared to logistic regression effect sizes. This means there are two ways to compare the symmetric ALR model to a logistic regression model. Either 1. (recommended) Fit the ``(-1,1)`` `ALRsimple` model and transform the parameters, or 2. Fit an `ALRsimple` model with `coding=(0,1)` and `centering=onehalf`. Both of the above options are illustrated in the [Comparison to logistic regression](@ref) section of the [Examples](@ref) in this manual.
Autologistic
https://github.com/kramsretlow/Autologistic.jl.git
[ "MIT" ]
0.5.1
15b96cd9e90eaa8d256266aed59fd13fd1c8f181
docs
3796
# Basic Usage Typical usage of the package will involve the following three steps: **1. Create a model object.** All particular AL/ALR models are instances of subtypes of [`AbstractAutologisticModel`](@ref). Each subtype is defined by a particular choice for the parametrization of the unary and pairwise parts. At present the options are: * [`ALfull`](@ref): A model with type [`FullUnary`](@ref) as the unary part, and type [`FullPairwise`](@ref) as the pairwise part (parameters ``α, Λ``). * [`ALsimple`](@ref): A model with type [`FullUnary`](@ref) as the unary part, and type [`SimplePairwise`](@ref) as the pairwise part (parameters ``α, λ``). * [`ALRsimple`](@ref): A model with type [`LinPredUnary`](@ref) as the unary part, and type [`SimplePairwise`](@ref) as the pairwise part (parameters ``β, λ``). The first two types above are mostly for research or exploration purposes. Most users doing data analysis will use the `ALRsimple` model. Each of the above types have various constructors defined. For example, `ALRsimple(G, X)` will create an `ALRsimple` model with graph `G` and predictor matrix `X`. Type, e.g., `?ALRsimple` at the REPL to see the constructors. Any of the above model types can be used with any of the supported forms of centering, and with any desired coding. Centering and coding can be set at the time of construction, or the `centering` and `coding` fields of the type can be mutated to change the default choices. **2. Set parameters.** Depending on the constructor used, the model just initialized will have either default parameter values or user-specified parameter values. Usually it will be desired to choose some appropriate values from data. * [`fit_ml!`](@ref) uses maximum likelihood to estimate the parameters. It is only useful for cases where the number of vertices in the graph is small. * [`fit_pl!`](@ref) uses pseudolikelihood to estimate the parameters. * [`setparameters!`](@ref), [`setunaryparameters!`](@ref), and [`setpairwiseparameters!`](@ref) can be used to set the parameters of the model directly. * [`getparameters`](@ref), [`getunaryparameters`](@ref), and [`getpairwiseparameters`](@ref) can be used to retrieve the parameter values. Changing the parameters directly, through the fields of the model object, is discouraged. It is preferable for safety to use the above get and set functions. **3. Inference and exploration.** After parameter estimation, one typically wants to use the fitted model to answer inference questions, make plots, and so on. For small-graph cases: * [`fit_ml!`](@ref) returns p-values and 95% confidence intervals that can be used directly. * [`fullPMF`](@ref), [`conditionalprobabilities`](@ref), [`marginalprobabilities`](@ref) can be used to get desired quantities from the fitted distribution. * [`sample`](@ref) can be used to draw random samples from the fitted distribution. For large-graph cases: * If using [`fit_pl!`](@ref), argument `nboot` can be used to do inference by parametric bootstrap at the time of fitting. * After fitting, `oneboot` and `addboot` can be used to create and add parametric bootstrap replicates after the fact. * Sampling can be used to estimate desired quantities like marginal probabilities. The [`sample`](@ref) function implements Gibbs sampling as well as several perfect sampling algorithms. Estimation by `fit_ml!` or `fit_pl!` returns an object of type `ALfit`, which holds the parameter estimates and other information. Plotting can be done using standard Julia capabilities. The [Examples](@ref) section shows how to make a few relevant plots. The [Examples](@ref) section demonstrates the usage of all of the above capabilities.
Autologistic
https://github.com/kramsretlow/Autologistic.jl.git
[ "MIT" ]
0.5.1
15b96cd9e90eaa8d256266aed59fd13fd1c8f181
docs
4615
# Design of the Package The package was created to satisfy the following goals: * To make it easy for researchers to compare the different variants of the AL/ALR models (different combinations of coding and centering), to test the claim that the symmetric model is superior to the other alternatives. * To facilitate analysis of real-world data sets with correlated binary responses, hopefully with good performance. * To create a code base that is fairly easy to extend as new extensions on AL/ALR models are developed. These goals guided the design of the package, which is briefly described here. ## Type Hierarchy Three abstract types are used to define a type hierarchy that will hopefully allow the codebase to be easily extensible. The type `AbstractAutologisticModel` is the top-level type for AL/ALR models. Most of the functions for computing with AL/ALR models are defined to operate on this type, so that concrete subtypes should not have to re-implement them. The `AbstractAutologisticModel` interface requires subtypes to have a number of fields. Two of them are `unary` and `pairwise`, which must inherit from `AbstractUnaryParameter` and `AbstractPairwiseParameter`, respectively. These two abstract types define interfaces for the unary and pairwise parts of the model. Concrete subtypes of these two types represent different ways of parametrizing the unary and pairwise terms. For example, the most useful ALR model implemented in the package is the model with a linear predictor as the unary parameter (``\boldsymbol{\alpha}=\mathbf{X}\boldsymbol{\beta}``), and the "simple pairwise" assumption for the pairwise term (``\boldsymbol{\Lambda} = \lambda\mathbf{A}``). This model has type `ALRsimple`, with unary type `LinPredUnary` and pairwise type `SimplePairwise`. A model of this type can be instantiated with any desired coding, and different forms of centering. With this design, adding a new type of AL/ALR model with a different parametrization involves * Creating `NewUnaryType <: AbstractUnaryParameter` * Creating `NewPairwiseType <: AbstractPairwiseParameter` * Creating `NewModelType <: AbstractAutologisticModel`, including instances of the two new types as its `unary` and `pairwise` fields. This process should not be too cumbersome, as the unary and pairwise interfaces mainly require implementing indexing and show methods. Sampling, computation of probabilities, handling of centering, etc., is handled by fallback methods in the abstract types. ## Important Notes Here are a few points to be aware of in using the package. For this list, let `M` be a an AL or ALR model type. * Responses are stored in `M.responses` as arrays of type `Bool`. * The coding is stored separately in `M.coding`. Not storing the responses as a numeric type makes it easier to maintain consistency when working with models that might have different codings. * Use functions `makebool` and `makecoded` to get to and from coded/boolean forms of the responses. * Parameters are always represented as **vectors** of `Float64`. If we get all the model's parameters, they are in a single vector with unary parameters first and pairwise parameters at the end. * The above is true even when the parameter only has length 1, as with the `SimplePairwise` type. So you need to use square brackets, as in `setparameters!(MyPairwise, [1.0])`, when setting the parameters in that case. * The package uses [Graphs.jl](https://github.com/JuliaGraphs/Graphs.jl) for representing graphs, and [Optim.jl](https://github.com/JuliaNLSolvers/Optim.jl) for optimization. ## Random Sampling Random sampling is particularly important for AL/ALR models, because (except for very small models), it isn't possible to evaluate the normalized PMF. Monte Carlo approaches to estimation and inference are common with these models. The `sample` function is provided for random sampling from an AL/ALR model. The function takes a `method` argument, which specifies the sampling algorithm to use. Use `?SamplingMethods` at the REPL to see the available options. The default sampling method is Gibbs sampling, since that method will always work. But there are several perfect (exact) sampling options provided in the package. Depending on the model's parameters, perfect sampling will either work just fine, or be prohibitively slow. It is recommended to use one of the perfect sampling methods if possible. The different sampling algorithms can be compared for efficiency in particular cases.
Autologistic
https://github.com/kramsretlow/Autologistic.jl.git
[ "MIT" ]
0.5.1
15b96cd9e90eaa8d256266aed59fd13fd1c8f181
docs
24247
# Examples These examples demonstrate most of the functionality of the package, its typical usage, and how to make some plots you might want to use. The examples: * [The Ising Model](@ref) shows how to use the package to explore the autologistic probability distribution, without concern about covariates or parameter estimation. * [Clustered Binary Data (Small ``n``)](@ref) shows how to use the package for regression analysis when the graph is small enough to permit computation of the normalizing constant. In this case standard maximum likelihood methods of inference can be used. * [Spatial Binary Regression](@ref) shows how to use the package for autologistic regression analysis for larger, spatially-referenced graphs. In this case pseudolikelihood is used for estimation, and a (possibly parallelized) parametric bootstrap is used for inference. ## The Ising Model The term "Ising model" is usually used to refer to a Markov random field of dichotomous random variables on a regular lattice. The graph is such that each variable shares an edge only with its nearest neighbors in each dimension. It's a traditional model for magnetic spins, where the coding ``(-1,1)`` is usually used. There's one parameter per vertex (a "local magnetic field") that increases or decreases the chance of getting a ``+1`` state at that vertex; and there's a single pairwise parameter that controls the strength of interaction between neighbor states. In our terminology it's just an autologistic model with the appropriate graph. Specifically, it's an `ALsimple` model: one with `FullUnary` type unary parameter, and `SimplePairwise` type pairwise parameter. We can create such a model once we have the graph. For example, let's create the model on a 30-by-30 lattice: ```@example Ising using Autologistic, Random Random.seed!(8888) n = 30 G = makegrid4(n, n, (-1,1), (-1,1)) α = randn(n^2) M1 = ALsimple(G.G, α) nothing # hide ``` Above, the line `G = makegrid4(n, n, (-1,1), (-1,1))` produces an n-by-n graph with vertices positioned over the square extending from ``-1`` to ``1`` in both directions. It returns a tuple; `G.G` is the graph, and `G.locs` is an array of tuples giving the spatial coordinates of each vertex. `M1 = ALsimple(G.G, α)` creates the model. The unary parameters `α` were intialized to Gaussian white noise. By default the pairwise parameter is set to zero, which implies independence of the variables. Typing `M1` at the REPL shows information about the model. It's an `ALsimple` type with one observation of length 900. ```@repl Ising M1 ``` The `conditionalprobabilities` function returns the probablity of observing a ``+1`` state at each vertex, conditional on the vertex's neighbor values. These can be visualized as an image, using a `heatmap` (from [Plots.jl](https://github.com/JuliaPlots/Plots.jl)): ```@example Ising using Plots condprobs = conditionalprobabilities(M1) hm = heatmap(reshape(condprobs, n, n), c=:grays, aspect_ratio=1, title="probability of +1 under independence") plot(hm) ``` Since the association parameter is zero, there are no neighborhood effects. The above conditional probabilities are equal to the marginal probabilities. Next, set the association parameters to 0.75, a fairly strong association level, to introduce a neighbor effect. ```@example Ising setpairwiseparameters!(M1, [0.75]) nothing # hide ``` We can also generalize the Ising model by allowing the pairwise parameters to be different for each edge of the graph. The `ALfull` type represents such a model, which has a `FullUnary` type unary parameter, and a `FullPairwise` type pairwise parameter. For this example, let each edge's pairwise parameter be equal to the average distance of its two vertices from the origin. ```@example Ising using LinearAlgebra, Graphs λ = [norm((G.locs[e.src] .+ G.locs[e.dst])./2) for e in edges(G.G)] M2 = ALfull(G.G, α, λ) ``` A quick way to compare models with nonzero association is to observe random samples from the models. The `sample` function can be used to do this. For this example, use perfect sampling using a bounding chain algorithm. ```@example Ising s1 = sample(M1, method=perfect_bounding_chain) s2 = sample(M2, method=perfect_bounding_chain) nothing #hide ``` Other options are available for sampling. The enumeration [`SamplingMethods`](@ref) lists them. The samples we have just drawn can also be visualized using `heatmap`: ```@example Ising pl1 = heatmap(reshape(s1, n, n), c=:grays, colorbar=false, title="ALsimple model"); pl2 = heatmap(reshape(s2, n, n), c=:grays, colorbar=false, title="ALfull model"); plot(pl1, pl2, size=(800,400), aspect_ratio=1) ``` In these plots, black indicates the low state, and white the high state. A lot of local clustering is occurring in the samples due to the neighbor effects. For the `ALfull` model, clustering is greater farther from the center of the square. To see the long-run differences between the two models, we can look at the marginal probabilities. They can be estimated by drawing many samples and averaging them (note that running this code chunk can take a few minutes): ```julia marg1 = sample(M1, 500, method=perfect_bounding_chain, verbose=true, average=true) marg2 = sample(M2, 500, method=perfect_bounding_chain, verbose=true, average=true) pl3 = heatmap(reshape(marg1, n, n), c=:grays, colorbar=false, title="ALsimple model"); pl4 = heatmap(reshape(marg2, n, n), c=:grays, colorbar=false, title="ALfull model"); plot(pl3, pl4, size=(800,400), aspect_ratio=1) savefig("marginal-probs.png") ``` The figure `marginal-probs.png` looks like this: ![marginal-probs.png](assets/marginal-probs.png) The differences between the two marginal distributions are due to the different association structures, because the unary parts of the two models are the same. The `ALfull` model has stronger association near the edges of the square, and weaker association near the center. The `ALsimple` model has a moderate association level throughout. As a final demonstration, perform Gibbs sampling for model `M2`, starting from a random state. Display a gif animation of the progress. ```julia nframes = 150 gibbs_steps = sample(M2, nframes, method=Gibbs) anim = @animate for i = 1:nframes heatmap(reshape(gibbs_steps[:,i], n, n), c=:grays, colorbar=false, aspect_ratio=1, title="Gibbs sampling: step $(i)") end gif(anim, "ising_gif.gif", fps=10) ``` ![ising_gif.gif](assets/ising_gif.gif) ## Clustered Binary Data (Small ``n``) The *retinitis pigmentosa* data set (obtained from [this source](https://sites.google.com/a/channing.harvard.edu/bernardrosner/channing/regression-method-when-the-eye-is-the-unit-of-analysis)) is an opthalmology data set. The data comes from 444 patients that had both eyes examined. The data can be loaded with `Autologistic.datasets`: ```@repl pigmentosa using Autologistic, DataFrames, Graphs df = Autologistic.datasets("pigmentosa"); first(df, 6) describe(df) ``` The response for each eye is **va**, an indicator of poor visual acuity (coded 0 = no, 1 = yes in the data set). Seven covariates were also recorded for each eye: * **aut_dom**: autosomal dominant (0=no, 1=yes) * **aut_rec**: autosomal recessive (0=no, 1=yes) * **sex_link**: sex-linked (0=no, 1=yes) * **age**: age (years, range 6-80) * **sex**: gender (0=female, 1=male) * **psc**: posterior subscapsular cataract (0=no, 1=yes) * **eye**: which eye is it? (0=left, 1=right) The last four factors are relevant clinical observations, and the first three are genetic factors. The data set also includes an **ID** column with an ID number specific to each patient. Eyes with the same ID come from the same person. The natural unit of analysis is the eye, but pairs of observations from the same patient are "clustered" because the occurrence of acuity loss in the left and right eye is probably correlated. We can model each person's two **va** outcomes as two dichotomous random variables with a 2-vertex, 1-edge graph. ```@repl pigmentosa G = Graph(2,1) ``` Each of the 444 bivariate observations has this graph, and each has its own set of covariates. If we include all seven predictors, plus intercept, in our model, we have 2 variables per observation, 8 predictors, and 444 observations. Before creating the model we need to re-structure the covariates. The data in `df` has one row per eye, with the variable `ID` indicating which eyes belong to the same patient. We need to rearrange the responses (`Y`) and the predictors (`X`) into arrays suitable for our autologistic models, namely: * `Y` is ``2 \times 444`` with one observation per column. * `X` is ``2 \times 8 \times 444`` with one ``2 \times 8`` matrix of predictors for each observation. The first column of each predictor matrix is an intercept column, and columns 2 through 8 are for `aut_dom`, `aut_rec`, `sex_link`, `age`, `sex`, `psc`, and `eye`, respectively. ```@example pigmentosa X = Array{Float64,3}(undef, 2, 8, 444); Y = Array{Float64,2}(undef, 2, 444); for i in 1:2:888 patient = Int((i+1)/2) X[1,:,patient] = [1 permutedims(Vector(df[i,2:8]))] X[2,:,patient] = [1 permutedims(Vector(df[i+1,2:8]))] Y[:,patient] = convert(Array, df[i:i+1, 9]) end ``` For example, patient 100 had responses ```@repl pigmentosa Y[:,100] ``` Indicating visual acuity loss in the left eye, but not in the right. The predictors for this individual are ```@repl pigmentosa X[:,:,100] ``` Now we can create our autologistic regression model. ```@example pigmentosa model = ALRsimple(G, X, Y=Y) ``` This creates a model with the "simple pairwise" structure, using a single association parameter. The default is to use no centering adjustment, and to use coding ``(-1,1)`` for the responses. This "symmetric" version of the model is recommended for [a variety of reasons](https://doi.org/10.3389/fams.2017.00024). Using different coding or centering choices is only recommended if you have a thorough understanding of what you are doing; but if you wish to use different choices, this can easily be done using keyword arguments. For example, `ALRsimple(G, X, Y=Y, coding=(0,1), centering=expectation)` creates the "centered autologistic model" that has appeared in the literature (e.g., [here](https://link.springer.com/article/10.1198/jabes.2009.07032) and [here](https://doi.org/10.1002/env.1102)). The model has nine parameters (eight regression coefficients plus the association parameter). All parameters are initialized to zero: ```@repl pigmentosa getparameters(model) ``` When we call `getparameters`, the vector returned always has the unary parameters first, with the pairwise parameter(s) appended at the end. Because there are only two vertices in the graph, we can use the full likelihood (`fit_ml!` function) to do parameter estimation. This function returns a structure with the estimates as well as standard errors, p-values, and 95% confidence intervals for the parameter estimates. ```@example pigmentosa out = fit_ml!(model) ``` To view the estimation results, use `summary`: ```@example pigmentosa summary(out, parnames = ["icept", "aut_dom", "aut_rec", "sex_link", "age", "sex", "psc", "eye", "λ"]) ``` From this we see that the association parameter is fairly large (0.818), supporting the idea that the left and right eyes are associated. It is also highly statistically significant. Among the covariates, `sex_link`, `age`, and `psc` are all statistically significant. ## Spatial Binary Regression ALR models are natural candidates for analysis of spatial binary data, where locations in the same neighborhood are more likely to have the same outcome than sites that are far apart. The [hydrocotyle data](https://doi.org/10.1016/j.ecolmodel.2007.04.024) provide a typical example. The response in this data set is the presence/absence of a certain plant species in a grid of 2995 regions covering Germany. The data set is included in Autologistic.jl: ```@repl hydro using Autologistic, DataFrames, Graphs df = Autologistic.datasets("hydrocotyle") ``` In the data frame, the variables `X` and `Y` give the spatial coordinates of each region (in dimensionless integer units), `obs` gives the presence/absence data (1 = presence), and `altitude` and `temperature` are covariates. We will use an `ALRsimple` model for these data. The graph can be formed using [`makespatialgraph`](@ref): ```@example hydro locations = [(df.X[i], df.Y[i]) for i in 1:size(df,1)] g = makespatialgraph(locations, 1.0) nothing # hide ``` `makespatialgraph` creates the graph by adding edges between any vertices with Euclidean distance smaller than a cutoff distance (Graphs.jl has a `euclidean_graph` function that does the same thing). For these data arranged on a grid, a threshold of 1.0 will make a 4-nearest-neighbors lattice. Letting the threshold be `sqrt(2)` would make an 8-nearest-neighbors lattice. We can visualize the graph, the responses, and the predictors using [GraphRecipes.jl](https://github.com/JuliaPlots/GraphRecipes.jl) (there are [several other](https://juliagraphs.org/Graphs.jl/stable/plotting/) options for plotting graphs as well). ```@example hydro using GraphRecipes, Plots # Function to convert a value to a gray shade makegray(x, lo, hi) = RGB([(x-lo)/(hi-lo) for i=1:3]...) # Function to plot the graph with node shading determined by v. # Plot each node as a square and don't show the edges. function myplot(v, lohi=nothing) colors = lohi==nothing ? makegray.(v, minimum(v), maximum(v)) : makegray.(v, lohi[1], lohi[2]) return graphplot(g.G, x=df.X, y=df.Y, background_color = :lightblue, marker = :square, markersize=2, markerstrokewidth=0, markercolor = colors, yflip = true, linecolor=nothing) end # Make the plot plot(myplot(df.obs), myplot(df.altitude), myplot(df.temperature), layout=(1,3), size=(800,300), titlefontsize=8, title=hcat("Species Presence (white = yes)", "Altitude (lighter = higher)", "Temperature (lighter = higher)")) ``` ### Constructing the model We can see that the species primarily is found at low-altitude locations. To model the effect of altitude and temperature on species presence, construct an `ALRsimple` model. ```@example hydro # Autologistic.jl reqiures predictors to be a matrix of Float64 Xmatrix = Array{Float64}([ones(2995) df.altitude df.temperature]) # Create the model hydro = ALRsimple(g.G, Xmatrix, Y=df.obs) ``` The model `hydro` has four parameters: three regression coefficients (interceept, altitude, and temperature) plus an association parameter. It is a "symmetric" autologistic model, because it has a coding symmetric around zero and no centering term. ### Fitting the model by pseudolikelihood With 2995 nodes in the graph, the likelihood is intractable for this case. Use `fit_pl!` to do parameter estimation by pseudolikelihood instead. The fitting function uses the BFGS algorithm via [`Optim.jl`](http://julianlsolvers.github.io/Optim.jl/stable/). Any of Optim's [general options](http://julianlsolvers.github.io/Optim.jl/stable/#user/config/) can be passed to `fit_pl!` to control the optimization. We have found that `allow_f_increases` often aids convergence. It is used here: ```@repl hydro fit1 = fit_pl!(hydro, allow_f_increases=true) parnames = ["intercept", "altitude", "temperature", "association"]; summary(fit1, parnames=parnames) ``` `fit_pl!` mutates the model object by setting its parameters to the optimal values. It also returns an object, of type `ALfit`, which holds information about the result. Calling `summary(fit1)` produces a summary table of the estimates. For now there are no standard errors. This will be addressed below. To quickly visualize the quality of the fitted model, we can use sampling to get the marginal probabilities, and to observe specific samples. ```@example hydro # Average 500 samples to estimate marginal probability of species presence marginal1 = sample(hydro, 500, method=perfect_bounding_chain, average=true) # Draw 2 random samples for visualizing generated data. draws = sample(hydro, 2, method=perfect_bounding_chain) # Plot them plot(myplot(marginal1, (0,1)), myplot(draws[:,1]), myplot(draws[:,2]), layout=(1,3), size=(800,300), titlefontsize=8, title=["Marginal Probability" "Random sample 1" "Random Sample 2"]) ``` In the above code, perfect sampling was used to draw samples from the fitted distribution. The marginal plot shows consistency with the observed data, and the two generated data sets show a level of spatial clustering similar to the observed data. ### Error estimation 1: bootstrap after the fact A parametric bootstrap can be used to get an estimate of the precision of the estimates returned by `fit_pl!`. The function [`oneboot`](@ref) has been included in the package to facilitate this. Each call of `oneboot` draws a random sample from the fitted distribution, then re-fits the model using this sample as the responses. It returns a named tuple giving the sample, the parameter estimates, and a convergence flag. Any extra keyword arguments are passed on to `sample` or `optimize` as appropriate to control the process. ```@repl hydro # Do one bootstrap replication for demonstration purposes. oneboot(hydro, allow_f_increases=true, method=perfect_bounding_chain) ``` An array of the tuples produced by `oneboot` can be fed to [`addboot!`](@ref) to update the fitting summary with precision estimates: ```julia nboot = 2000 boots = [oneboot(hydro, allow_f_increases=true, method=perfect_bounding_chain) for i=1:nboot] addboot!(fit1, boots) ``` At the time of writing, this took about 5.7 minutes on the author's workstation. After adding the bootstrap information, the fitting results look like this: ``` julia> summary(fit1,parnames=parnames) name est se 95% CI intercept -0.192 0.319 (-0.858, 0.4) altitude -0.0573 0.015 (-0.0887, -0.0296) temperature 0.0498 0.0361 (-0.0163, 0.126) association 0.361 0.018 (0.326, 0.397) ``` Confidence intervals for altitude and the association parameter both exclude zero, so we conclude that they are statistically significant. ### Error estimation 2: (parallel) bootstrap when fitting Alternatively, the bootstrap inference procedure can be done at the same time as fitting by providing the keyword argument `nboot` (which specifies the number of bootstrap samples to generate) when calling `fit_pl!`. If you do this, **and** you have more than one worker process available, then the bootstrap will be done in parallel across the workers (using an `@distributed for` loop). This makes it easy to achieve speed gains from parallelism on multicore workstations. ```julia using Distributed # needed for parallel computing addprocs(6) # create 6 worker processes @everywhere using Autologistic # workers need the package loaded fit2 = fit_pl!(hydro, nboot=2000, allow_f_increases=true, method=perfect_bounding_chain) ``` In this case the 2000 bootstrap replications took about 1.1 minutes on the same 6-core workstation. The output object `fit2` already includes the confidence intervals: ``` julia> summary(fit2, parnames=parnames) name est se 95% CI intercept -0.192 0.33 (-0.9, 0.407) altitude -0.0573 0.0157 (-0.0897, -0.0297) temperature 0.0498 0.0372 (-0.0169, 0.13) association 0.361 0.0179 (0.327, 0.396) ``` For parallel computing of the bootstrap in other settings (eg. on a cluster), it should be fairly simple implement in a script, using the `oneboot`/`addboot!` approach of the previous section. ### Comparison to logistic regression If we ignore spatial association, and just fit the model with ordinary logistic regression, we get the following result: ```@example hydro using GLM LR = glm(@formula(obs ~ altitude + temperature), df, Bernoulli(), LogitLink()); coef(LR) ``` As mentioned in [The Symmetric Model and Logistic Regression](@ref), the logistic regression coefficients are not directly comparable to the ALR coefficients, because the ALR model uses ``(-1, 1)`` coding. If we want to make the parameters comparable, we can either transform the symmetric model's parameters, or fit the transformed symmetric model (a model with ``(0,1)`` coding and `centering=onehalf`). The parameter transformation is done as follows: ```@example hydro transformed_pars = [2*getunaryparameters(hydro); 4*getpairwiseparameters(hydro)] ``` We see that the association parameter is large (1.45), but the regression parameters are small compared to the logistic regression model. This is typical: ignoring spatial association tends to result in overestimation of the regression effects. We can fit the transformed model directly, to illustrate that the result is the same: ```@example hydro same_as_hydro = ALRsimple(g.G, Xmatrix, Y=df.obs, coding=(0,1), centering=onehalf) fit3 = fit_pl!(same_as_hydro, allow_f_increases=true) fit3.estimate ``` We see that the parameter estimates from `same_as_hydro` are equal to the `hydro` estimates after transformation. ### Comparison to the centered model The centered autologistic model can be easily constructed for comparison with the symmetric one. We can start with a copy of the symmetric model we have already created. The pseudolikelihood function for the centered model is not convex. Three different local optima were found. For this demonstration we are using the `start` argument to let optimization start from a point close to the best minimum found. ```julia centered_hydro = deepcopy(hydro) centered_hydro.coding = (0,1) centered_hydro.centering = expectation fit4 = fit_pl!(centered_hydro, nboot=2000, start=[-1.7, -0.17, 0.0, 1.5], allow_f_increases=true, method=perfect_bounding_chain) ``` ``` julia> summary(fit4, parnames=parnames) name est se 95% CI intercept -2.29 1.07 (-4.6, -0.345) altitude -0.16 0.0429 (-0.258, -0.088) temperature 0.0634 0.115 (-0.138, 0.32) association 1.51 0.0505 (1.42, 1.61) julia> round.([fit3.estimate fit4.estimate], digits=3) 4×2 Array{Float64,2}: -0.383 -2.29 -0.115 -0.16 0.1 0.063 1.446 1.506 ``` The main difference between the symmetric ALR model and the centered one is the intercept, which changes from -0.383 to -2.29 when changing to the centered model. This is not a small difference. To see this, compare what the two models predict in the absence of spatial association. ```julia # Change models to have association parameters equal to zero # Remember parameters are always Array{Float64,1}. setpairwiseparameters!(centered_hydro, [0.0]) setpairwiseparameters!(hydro, [0.0]) # Sample to estimate marginal probabilities centered_marg = sample(centered_hydro, 500, method=perfect_bounding_chain, average=true) symmetric_marg = sample(hydro, 500, method=perfect_bounding_chain, average=true) # Plot to compare plot(myplot(centered_marg, (0,1)), myplot(symmetric_marg, (0,1)), layout=(1,2), size=(500,300), titlefontsize=8, title=["Centered Model" "Symmetric Model"]) ``` ![noassociation.png](assets/noassociation.png) If we remove the spatial association term, the centered model predicts a very low probability of seeing the plant anywhere--including in locations with low elevation, where the plant is plentiful in reality. This is a manifestation of a problem with the centered model, where parameter interpretability is lost when association becomes strong.
Autologistic
https://github.com/kramsretlow/Autologistic.jl.git
[ "MIT" ]
0.5.1
15b96cd9e90eaa8d256266aed59fd13fd1c8f181
docs
324
# Reference ```@meta CurrentModule = Autologistic DocTestSetup = :(using Autologistic, Graphs) ``` ## Index ```@index ``` ## Types and Constructors ```@autodocs Modules = [Autologistic] Order = [:type, :constant] ``` ## Methods ```@autodocs Modules = [Autologistic] Order = [:function] ```
Autologistic
https://github.com/kramsretlow/Autologistic.jl.git
[ "MIT" ]
0.5.1
15b96cd9e90eaa8d256266aed59fd13fd1c8f181
docs
1523
# Introduction The `Autologistic.jl` package provides tools for analyzing correlated binary data using autologistic (AL) or autologistic regression (ALR) models. The AL model is a multivariate probability distribution for dichotomous (two-valued) categorical responses. The ALR models incorporate covariate effects into this distribution and are therefore more useful for data analysis. The ALR model is potentially useful for any situation involving correlated binary responses. It can be described in a few ways. It is: * An extension of logistic regression to handle non-independent responses. * A Markov random field model for dichotomous random variables, with covariate effects. * An extension of the Ising model to handle different graph structures and to include covariate effects. * The quadratic exponential binary (QEB) distribution, incorporating covariate effects. This package follows the treatment of this model given in the paper [Better Autologistic Regression](https://doi.org/10.3389/fams.2017.00024). Please refer to that article for in-depth discussion of the model, and please cite it if you use this package in your research. The [Background](@ref) section in this manual also provides an overview of the model. ## Contents ```@contents Pages = ["index.md", "Background.md", "Design.md", "BasicUsage.md", "Examples.md", "api.md"] Depth = 2 ``` ## Reference Index The following topics are documented in the [Reference](@ref) section: ```@index ```
Autologistic
https://github.com/kramsretlow/Autologistic.jl.git
[ "Apache-2.0" ]
0.4.0
0736fd885e445c13b7b58e31d1ccc37a4950f7df
code
22182
### A Pluto.jl notebook ### # v0.19.42 using Markdown using InteractiveUtils # ╔═╡ 2f721887-6dee-4b53-ae33-2c0a4b79ff37 # ╠═╡ show_logs = false begin using Pkg; Pkg.activate(".") using Revise using PlutoUI # left right layout function leftright(a, b; width=600) HTML(""" <style> table.nohover tr:hover td { background-color: white !important; }</style> <table width=$(width)px class="nohover" style="border:none"> <tr> <td>$(html(a))</td> <td>$(html(b))</td> </tr></table> """) end # up down layout function updown(a, b; width=nothing) HTML("""<table class="nohover" style="border:none" $(width === nothing ? "" : "width=$(width)px")> <tr> <td>$(html(a))</td> </tr> <tr> <td>$(html(b))</td> </tr></table> """) end PlutoUI.TableOfContents() end # ╔═╡ 39bcea18-00b6-42ca-a1f2-53655f31fea7 using UnitDiskMapping, Graphs, GenericTensorNetworks, LinearAlgebra # ╔═╡ 98459516-4833-4e4a-916f-d5ea3e657ceb # Visualization setup. # To make the plots dark-mode friendly, we use white-background color. using UnitDiskMapping.LuxorGraphPlot.Luxor, LuxorGraphPlot # ╔═╡ eac6ceda-f5d4-11ec-23db-b7b4d00eaddf md"# Unit Disk Mapping" # ╔═╡ bbe26162-1ab7-4224-8870-9504b7c3aecf md"## Generic Unweighted Mapping The generic unweighted mapping aims to reduce a generic unweighted Maximum Independent Set (MIS) problem to one on a defected King's graph. Check [our paper (link to be added)]() for the mapping scheme. " # ╔═╡ b23f0215-8751-4105-aa7e-2c26e629e909 md"Let the source graph be the Petersen graph." # ╔═╡ 7518d763-17a4-4c6e-bff0-941852ec1ccf graph = smallgraph(:petersen) # ╔═╡ 0302be92-076a-4ebe-8d6d-4b352a77cfce LuxorGraphPlot.show_graph(graph) # ╔═╡ 417b18f6-6a8f-45fb-b979-6ec9d12c6246 md"We can use the `map_graph` function to map the unweighted MIS problem on the Petersen graph to one on a defected King's graph." # ╔═╡ c7315578-8bb0-40a0-a2a3-685a80674c9c unweighted_res = map_graph(graph; vertex_order=MinhThiTrick()); # ╔═╡ 3f605eac-f587-40b2-8fac-8223777d3fad md"Here, the keyword argument `vertex_order` can be a vector of vertices in a specified order, or the method to compute the path decomposition that generates an order. The `MinhThiTrick()` method is an exact path decomposition solver, which is suited for small graphs (where number of vertices <= 50). The `Greedy()` method finds the vertex order much faster and works in all cases, but may not be optimal. A good vertex order can reduce the depth of the mapped graph." # ╔═╡ e5382b61-6387-49b5-bae8-0389fbc92153 md"The return value contains the following fields:" # ╔═╡ ae5c8359-6bdb-4a2a-8b54-cd2c7d2af4bd fieldnames(unweighted_res |> typeof) # ╔═╡ 56bdcaa6-c8b9-47de-95d4-6e95204af0f2 md"The field `grid_graph` is the mapped grid graph." # ╔═╡ 520fbc23-927c-4328-8dc6-5b98853fb90d LuxorGraphPlot.show_graph(unweighted_res.grid_graph) # ╔═╡ af162d39-2da9-4a06-9cde-8306e811ba7a unweighted_res.grid_graph.size # ╔═╡ 96ca41c0-ac77-404c-ada3-0cdc4a426e44 md"The field `lines` is a vector of copy gadgets arranged in a `⊢` shape. These copy gadgets form a *crossing lattice*, in which two copy lines cross each other whenever their corresponding vertices in the source graph are connected by an edge. ``` vslot ↓ | ← vstart | |------- ← hslot | ↑ ← vstop hstop ``` " # ╔═╡ 5dfa8a74-26a5-45c4-a80c-47ba4a6a4ae9 unweighted_res.lines # ╔═╡ a64c2094-9a51-4c45-b9d1-41693c89a212 md"The field `mapping_history` contains the rewrite rules applied to the crossing lattice. They contain important information for mapping a solution back." # ╔═╡ 52b904ad-6fb5-4a7e-a3db-ae7aff32be51 unweighted_res.mapping_history # ╔═╡ ef828107-08ce-4d91-ba56-2b2c7862aa50 md"The field `mis_overhead` is the difference between ``\alpha(G_M) - \alpha(G_S)``, where ``G_M`` and ``G_S`` are the mapped and source graph." # ╔═╡ acd7107c-c739-4ee7-b0e8-6383c54f714f unweighted_res.mis_overhead # ╔═╡ 94feaf1f-77ea-4d6f-ba2f-2f9543e8c1bd md"We can solve the mapped graph with [`GenericTensorNetworks`](https://queracomputing.github.io/GenericTensorNetworks.jl/dev/)." # ╔═╡ f084b98b-097d-4b33-a0d3-0d0a981f735e res = solve(GenericTensorNetwork(IndependentSet(SimpleGraph(unweighted_res.grid_graph))), SingleConfigMax())[] # ╔═╡ 86457b4e-b83e-4bf5-9d82-b5e14c055b4b md"You might want to read [the documentation page of `GenericTensorNetworks`](https://queracomputing.github.io/GenericTensorNetworks.jl/dev/) for a detailed explanation on this function. Here, we just visually check the solution configuration." # ╔═╡ 4abb86dd-67e2-46f4-ae6c-e97952b23fdc show_config(unweighted_res.grid_graph, res.c.data) # ╔═╡ 5ec5e23a-6904-41cc-b2dc-659da9556d20 md"By mapping the result back, we get a solution for the original Petersen graph. Its maximum independent set size is 4." # ╔═╡ 773ce349-ba72-426c-849d-cfb511773756 # The solution obtained by solving the mapped graph original_configs = map_config_back(unweighted_res, res.c.data) # ╔═╡ 7d921205-5133-40c0-bfa6-f76713dd4972 # Confirm that the solution from the mapped graph gives us # a maximum independent set for the original graph UnitDiskMapping.is_independent_set(graph, original_configs) # ╔═╡ 3273f936-a182-4ed0-9662-26aab489776b md"## Generic Weighted Mapping" # ╔═╡ 5e4500f5-beb6-4ef9-bd42-41dc13b60bce md"A Maximum Weight Independent Set (MWIS) problem on a general graph can be mapped to one on the defected King's graph. The first step is to do the same mapping as above but adding a new positional argument `Weighted()` as the first argument of `map_graph`. Let us still use the Petersen graph as an example." # ╔═╡ 2fa704ee-d5c1-4205-9a6a-34ba0195fecf weighted_res = map_graph(Weighted(), graph; vertex_order=MinhThiTrick()); # ╔═╡ 27acc8be-2db8-4322-85b4-230fdddac043 md"The return value is similar to that for the unweighted mapping generated above, except each node in the mapped graph can have a weight 1, 2 or 3. Note here, we haven't added the weights in the original graph." # ╔═╡ b8879b2c-c6c2-47e2-a989-63a00c645676 show_grayscale(weighted_res.grid_graph) # ╔═╡ 1262569f-d091-40dc-a431-cbbe77b912ab md""" The "pins" of the mapped graph have a one-to-one correspondence to the vertices in the source graph. """ # ╔═╡ d5a64013-b7cc-412b-825d-b9d8f0737248 show_pins(weighted_res) # ╔═╡ 3c46e050-0f93-42af-a6ff-1a83e7d0f6da md"The weights in the original graph can be added to the pins of this grid graph using the `map_weights` function. The added weights must be smaller than 1." # ╔═╡ 39cbb6fc-1c55-42dd-bbf6-54e06f5c7048 source_weights = rand(10) # ╔═╡ 41840a24-596e-4d93-9468-35329d57b0ce mapped_weights = map_weights(weighted_res, source_weights) # ╔═╡ f77293c4-e5c3-4f14-95a2-ac9688fa3ba1 md"Now that we have both the graph and the weights, let us solve the mapped problem!" # ╔═╡ cf910d3e-3e3c-42ef-acf3-d0990d6227ac wmap_config = let graph, _ = graph_and_weights(weighted_res.grid_graph) collect(Int, solve(GenericTensorNetwork(IndependentSet(graph, mapped_weights)), SingleConfigMax())[].c.data ) end # ╔═╡ d0648123-65fc-4dd7-8c0b-149b67920d8b show_config(weighted_res.grid_graph, wmap_config) # ╔═╡ fdc0fd6f-369e-4f1b-b105-672ae4229f02 md"By reading the configurations of the pins, we obtain a solution for the source graph." # ╔═╡ 317839b5-3c30-401f-970c-231c204331b5 # The solution obtained by solving the mapped graph map_config_back(weighted_res, wmap_config) # ╔═╡ beb7c0e5-6221-4f20-9166-2bd56902be1b # Directly solving the source graph collect(Int, solve(GenericTensorNetwork(IndependentSet(graph, source_weights)), SingleConfigMax())[].c.data ) # ╔═╡ cf7e88cb-432e-4e3a-ae8b-8fa12689e485 md"## QUBO problem" # ╔═╡ d16a6f2e-1ae2-47f1-8496-db6963800fd2 md"### Generic QUBO mapping" # ╔═╡ b5d95984-cf8d-4bce-a73a-8eb2a7c6b830 md""" A QUBO problem can be specified as the following energy model: ```math E(z) = -\sum_{i<j} J_{ij} z_i z_j + \sum_i h_i z_i ``` """ # ╔═╡ 2d1eb5cb-183d-4c4e-9a14-53fa08cbb156 n = 6 # ╔═╡ 5ce3e8c9-e78e-4444-b502-e91b4bda5678 J = triu(randn(n, n) * 0.001, 1); J += J' # ╔═╡ 828cf2a9-9178-41ae-86d3-e14d8c909c39 h = randn(n) * 0.001 # ╔═╡ 09db490e-961a-4c64-bcc5-5c111bfd3b7a md"Now, let us do the mapping on an ``n \times n`` crossing lattice." # ╔═╡ 081d1eee-96b1-4e76-8b8c-c0d4e5bdbaed qubo = UnitDiskMapping.map_qubo(J, h); # ╔═╡ 7974df7d-c390-4706-b7ba-6bde4409510d md"The mapping result contains two fields, the `grid_graph` and the `pins`. After finding the ground state of the mapped independent set problem, the configuration of the spin glass can be read directly from the pins. The following graph plots the pins in red color." # ╔═╡ e6aeeeb4-704c-4ba4-abc2-29c4029e276d qubo_graph, qubo_weights = UnitDiskMapping.graph_and_weights(qubo.grid_graph) # ╔═╡ 8467e950-7302-4930-8698-8e7b523556a6 show_pins(qubo) # ╔═╡ 6976c82f-90f0-4091-b13d-af463fe75c8b md"One can also check the weights using the gray-scale plot." # ╔═╡ 95539e68-c1ea-4a6c-9406-2696d62b8461 show_grayscale(qubo.grid_graph) # ╔═╡ 5282ca54-aa98-4d51-aaf9-af20eae5cc81 md"By solving this maximum independent set problem, we will get the following configuration." # ╔═╡ ef149d9a-6aa9-4f34-b936-201b9d77543c qubo_mapped_solution = collect(Int, solve(GenericTensorNetwork(IndependentSet(qubo_graph, qubo_weights)), SingleConfigMax())[].c.data) # ╔═╡ 4ea4f26e-746d-488e-9968-9fc584c04bcf show_config(qubo.grid_graph, qubo_mapped_solution) # ╔═╡ b64500b6-99b6-497b-9096-4bab4ddbec8d md"This solution can be mapped to a solution for the source graph by reading the configurations on the pins." # ╔═╡ cca6e2f8-69c5-4a3a-9f97-699b4868c4b9 # The solution obtained by solving the mapped graph map_config_back(qubo, collect(Int, qubo_mapped_solution)) # ╔═╡ 80757735-8e73-4cae-88d0-9fe3d3e539c0 md"This solution is consistent with the exact solution:" # ╔═╡ 7dd900fc-9531-4bd6-8b6d-3aac3d5a2386 # Directly solving the source graph, due to the convention issue, we flip the signs of `J` and `h` collect(Int, solve(GenericTensorNetwork(spin_glass_from_matrix(-J, -h)), SingleConfigMax())[].c.data) # ╔═╡ 13f952ce-642a-4396-b574-00ea6584008c md"### QUBO problem on a square lattice" # ╔═╡ fcc22a84-011f-48ed-bc0b-41f4058b92fd md"We define some coupling strengths and onsite energies on a $n \times n$ square lattice." # ╔═╡ e7be21d1-971b-45fd-aa83-591d43262567 square_coupling = [[(i,j,i,j+1,0.01*randn()) for i=1:n, j=1:n-1]..., [(i,j,i+1,j,0.01*randn()) for i=1:n-1, j=1:n]...]; # ╔═╡ 1702a65f-ad54-4520-b2d6-129c0576d708 square_onsite = vec([(i, j, 0.01*randn()) for i=1:n, j=1:n]); # ╔═╡ 49ad22e7-e859-44d4-8179-e088e1159d04 md"Then we use `map_qubo_square` to reduce the QUBO problem on a square lattice to the MIS problem on a grid graph." # ╔═╡ 32910090-9a42-475a-8e83-f9712f8fe551 qubo_square = UnitDiskMapping.map_qubo_square(square_coupling, square_onsite); # ╔═╡ 7b5fcd3b-0f0a-44c3-9bf6-1dc042585322 show_grayscale(qubo_square.grid_graph) # ╔═╡ 3ce74e3a-43f4-47a5-8dde-1d49e54e7eab md"You can see each coupling is replaced by the following `XOR` gadget" # ╔═╡ 8edabda9-c49b-407e-bae8-1a71a1fe19b4 show_grayscale(UnitDiskMapping.gadget_qubo_square(Int), texts=["x$('₀'+i)" for i=1:8]) # ╔═╡ 3ec7c034-4cb6-4b9f-96fb-c6dc428475bb md"Where dark nodes have weight 2 and light nodes have weight 1. It corresponds to the boolean equation ``x_8 = \neg (x_1 \veebar x_5)``; hence we can add ferromagnetic couplings as negative weights and anti-ferromagnetic couplings as positive weights. On-site terms are added directly to the pins." # ╔═╡ 494dfca2-af57-4dd9-9825-b28269641359 show_pins(qubo_square) # ╔═╡ ca1d7917-58e2-4b7d-8671-ced548ccfe89 md"Let us solve the independent set problem on the mapped graph." # ╔═╡ 30c33553-3b4d-4eff-b34c-7ac0579650f7 square_graph, square_weights = UnitDiskMapping.graph_and_weights(qubo_square.grid_graph); # ╔═╡ 5c25abb7-e3ee-4104-9a82-eb4aa4e773d2 config_square = collect(Int, solve(GenericTensorNetwork(IndependentSet(square_graph, square_weights)), SingleConfigMax())[].c.data); # ╔═╡ 4cec7232-8fbc-4ac1-96bb-6c7fea5fe117 md"We will get the following configuration." # ╔═╡ 9bc9bd86-ffe3-48c1-81c0-c13f132e0dc1 show_config(qubo_square.grid_graph, config_square) # ╔═╡ 9b0f051b-a107-41f2-b7b9-d6c673b7f93b md"By reading out the configurations at pins, we can get a solution of the source QUBO problem." # ╔═╡ d4c5240c-e70f-45f5-859f-1399c57511b0 r1 = map_config_back(qubo_square, config_square) # ╔═╡ ffa9ad39-64e0-4655-b04e-23f57490d326 md"It can be easily checked by examining the exact result." # ╔═╡ dfd4418e-19f0-42f2-87c5-69eacf2024ac let # solve QUBO directly g2 = SimpleGraph(n*n) Jd = Dict{Tuple{Int,Int}, Float64}() for (i,j,i2,j2,J) in square_coupling edg = (i+(j-1)*n, i2+(j2-1)*n) Jd[edg] = J add_edge!(g2, edg...) end Js, hs = Float64[], zeros(Float64, nv(g2)) for e in edges(g2) push!(Js, Jd[(e.src, e.dst)]) end for (i,j,h) in square_onsite hs[i+(j-1)*n] = h end collect(Int, solve(GenericTensorNetwork(SpinGlass(g2, -Js, -hs)), SingleConfigMax())[].c.data) end # ╔═╡ 9db831d6-7f10-47be-93d3-ebc892c4b3f2 md"## Factorization problem" # ╔═╡ e69056dd-0052-4d1e-aef1-30411d416c82 md"The building block of the array multiplier can be mapped to the following gadget:" # ╔═╡ 13e3525b-1b8e-4f65-8742-21d8ba4fdbe3 let graph, pins = UnitDiskMapping.multiplier() texts = fill("", length(graph.nodes)) texts[pins] .= ["x$i" for i=1:length(pins)] show_grayscale(graph) end # ╔═╡ 025b38e1-d334-46b6-bf88-f7b426e8dc97 md""" Let us denote the input and output pins as ``x_{1-8} \in \{0, 1\}``. The above gadget implements the following equations: ```math \begin{align} x_1 + x_2 x_3 + x_4 = x_5 + 2 x_7,\\ x_2 = x_6,\\ x_3 = x_8. \end{align} ``` """ # ╔═╡ 76ab8044-78ec-41b5-b11a-df4e7e009e64 md"One can call `map_factoring(M, N)` to map a factoring problem to the array multiplier grid of size (M, N). In the following example of (2, 2) array multiplier, the input integers are ``p = 2p_2+p_1`` and ``q= 2q_2+q_1``, and the output integer is ``m = 4m_3+2m_2+m_1``. The maximum independent set corresponds to the solution of ``pq = m``" # ╔═╡ b3c5283e-15fc-48d6-b58c-b26d70e5f5a4 mres = UnitDiskMapping.map_factoring(2, 2); # ╔═╡ adbae5f0-6fe9-4a97-816b-004e47b15593 show_pins(mres) # ╔═╡ 2e13cbad-8110-4cbc-8890-ecbefe1302dd md"To solve this factoring problem, one can use the following statement:" # ╔═╡ e5da7214-0e69-4b5a-a65e-ed92d0616c71 multiplier_output = UnitDiskMapping.solve_factoring(mres, 6) do g, ws collect(Int, solve(GenericTensorNetwork(IndependentSet(g, ws)), SingleConfigMax())[].c.data) end # ╔═╡ 9dc01591-5c37-4d83-b640-83280513941e md"This function consists of the following steps:" # ╔═╡ 41d9b8fd-dd18-4270-803f-bd6206845788 md"1. We first modify the graph by inspecting the fixed values, i.e., the output `m` and `0`s: * If a vertex is fixed to 1, remove it and its neighbors, * If a vertex is fixed to 0, remove this vertex. The resulting grid graph is " # ╔═╡ b8b5aff0-2ed3-4237-9b9d-9eb0bf2f2878 mapped_grid_graph, remaining_vertices = let g, ws = graph_and_weights(mres.grid_graph) mg, vmap = UnitDiskMapping.set_target(g, [mres.pins_zeros..., mres.pins_output...], 6 << length(mres.pins_zeros)) GridGraph(mres.grid_graph.size, mres.grid_graph.nodes[vmap], mres.grid_graph.radius), vmap end; # ╔═╡ 97cf8ee8-dba3-4b0b-b0ba-97002bc0f028 show_graph(mapped_grid_graph) # ╔═╡ 0a8cec9c-7b9d-445b-abe3-237f16fdd9ad md"2. Then, we solve this new grid graph." # ╔═╡ 57f7e085-9589-4a6c-ac14-488ea9924692 config_factoring6 = let mg, mw = graph_and_weights(mapped_grid_graph) solve(GenericTensorNetwork(IndependentSet(mg, mw)), SingleConfigMax())[].c.data end; # ╔═╡ 4c7d72f1-688a-4a70-8ce6-a4801127bb9a show_config(mapped_grid_graph, config_factoring6) # ╔═╡ 77bf7e4a-1237-4b24-bb31-dc8a30756834 md"3. It is straightforward to read out the results from the above configuration. The solution should be either (2, 3) or (3, 2)." # ╔═╡ 5a79eba5-3031-4e21-836e-961a9d939862 let cfg = zeros(Int, length(mres.grid_graph.nodes)) cfg[remaining_vertices] .= config_factoring6 bitvectors = cfg[mres.pins_input1], cfg[mres.pins_input2] UnitDiskMapping.asint.(bitvectors) end # ╔═╡ 27c2ba44-fcee-4647-910e-ae16f430b87d md"## Logic Gates" # ╔═╡ d577e515-f3cf-4f27-b0b5-a94cb38abf1a md"Let us define a helper function for visualization." # ╔═╡ c17bca17-a00a-4118-a212-d21da09af9b5 parallel_show(gate) = leftright(show_pins(Gate(gate)), show_grayscale(gate_gadget(Gate(gate))[1], wmax=2)); # ╔═╡ 6aee2288-1934-4fc5-9a9c-f45b7ce4e767 md"1. NOT gate: ``y_1 =\neg x_1``" # ╔═╡ fadded74-8a89-4348-88f6-50d12cde6234 parallel_show(:NOT) # ╔═╡ 0b28fab8-eb04-46d9-aa19-82e4bab45eb9 md"2. NXOR gate: ``y_1 =\neg (x_1 \veebar x_2)``. Notice this negated XOR gate is used in the square lattice QUBO mapping." # ╔═╡ 791b9fde-1df2-4239-8372-2e3dd36d6f34 parallel_show(:NXOR) # ╔═╡ 60ef4369-831d-413e-bcc2-e088697b6ba4 md"3. NOR gate: ``y_1 =\neg (x_1 \vee x_2)``" # ╔═╡ f46c3993-e01d-47fb-873a-c608e0d49d83 parallel_show(:NOR) # ╔═╡ d3779618-f61f-4874-93f1-94e78bb21c94 md"4. AND gate: ``y_1 =x_1 \wedge x_2``" # ╔═╡ 330a5f6c-601f-47e6-8294-e6af89818d7d parallel_show(:AND) # ╔═╡ 36173fe2-784f-472a-9cab-03f2a0a2b725 md"Since most logic gates have 3 pins, it is natural to embed a circuit to a 3D unit disk graph by taking the z direction as the time. In a 2D grid, one needs to do the general weighted mapping in order to create a unit disk boolean circuit." # ╔═╡ Cell order: # ╟─eac6ceda-f5d4-11ec-23db-b7b4d00eaddf # ╟─2f721887-6dee-4b53-ae33-2c0a4b79ff37 # ╠═39bcea18-00b6-42ca-a1f2-53655f31fea7 # ╠═98459516-4833-4e4a-916f-d5ea3e657ceb # ╟─bbe26162-1ab7-4224-8870-9504b7c3aecf # ╟─b23f0215-8751-4105-aa7e-2c26e629e909 # ╠═7518d763-17a4-4c6e-bff0-941852ec1ccf # ╠═0302be92-076a-4ebe-8d6d-4b352a77cfce # ╟─417b18f6-6a8f-45fb-b979-6ec9d12c6246 # ╠═c7315578-8bb0-40a0-a2a3-685a80674c9c # ╟─3f605eac-f587-40b2-8fac-8223777d3fad # ╟─e5382b61-6387-49b5-bae8-0389fbc92153 # ╠═ae5c8359-6bdb-4a2a-8b54-cd2c7d2af4bd # ╟─56bdcaa6-c8b9-47de-95d4-6e95204af0f2 # ╠═520fbc23-927c-4328-8dc6-5b98853fb90d # ╠═af162d39-2da9-4a06-9cde-8306e811ba7a # ╟─96ca41c0-ac77-404c-ada3-0cdc4a426e44 # ╠═5dfa8a74-26a5-45c4-a80c-47ba4a6a4ae9 # ╟─a64c2094-9a51-4c45-b9d1-41693c89a212 # ╠═52b904ad-6fb5-4a7e-a3db-ae7aff32be51 # ╟─ef828107-08ce-4d91-ba56-2b2c7862aa50 # ╠═acd7107c-c739-4ee7-b0e8-6383c54f714f # ╟─94feaf1f-77ea-4d6f-ba2f-2f9543e8c1bd # ╠═f084b98b-097d-4b33-a0d3-0d0a981f735e # ╟─86457b4e-b83e-4bf5-9d82-b5e14c055b4b # ╠═4abb86dd-67e2-46f4-ae6c-e97952b23fdc # ╟─5ec5e23a-6904-41cc-b2dc-659da9556d20 # ╠═773ce349-ba72-426c-849d-cfb511773756 # ╠═7d921205-5133-40c0-bfa6-f76713dd4972 # ╟─3273f936-a182-4ed0-9662-26aab489776b # ╟─5e4500f5-beb6-4ef9-bd42-41dc13b60bce # ╠═2fa704ee-d5c1-4205-9a6a-34ba0195fecf # ╟─27acc8be-2db8-4322-85b4-230fdddac043 # ╠═b8879b2c-c6c2-47e2-a989-63a00c645676 # ╟─1262569f-d091-40dc-a431-cbbe77b912ab # ╠═d5a64013-b7cc-412b-825d-b9d8f0737248 # ╟─3c46e050-0f93-42af-a6ff-1a83e7d0f6da # ╠═39cbb6fc-1c55-42dd-bbf6-54e06f5c7048 # ╠═41840a24-596e-4d93-9468-35329d57b0ce # ╟─f77293c4-e5c3-4f14-95a2-ac9688fa3ba1 # ╠═cf910d3e-3e3c-42ef-acf3-d0990d6227ac # ╠═d0648123-65fc-4dd7-8c0b-149b67920d8b # ╟─fdc0fd6f-369e-4f1b-b105-672ae4229f02 # ╠═317839b5-3c30-401f-970c-231c204331b5 # ╠═beb7c0e5-6221-4f20-9166-2bd56902be1b # ╟─cf7e88cb-432e-4e3a-ae8b-8fa12689e485 # ╟─d16a6f2e-1ae2-47f1-8496-db6963800fd2 # ╟─b5d95984-cf8d-4bce-a73a-8eb2a7c6b830 # ╠═2d1eb5cb-183d-4c4e-9a14-53fa08cbb156 # ╠═5ce3e8c9-e78e-4444-b502-e91b4bda5678 # ╠═828cf2a9-9178-41ae-86d3-e14d8c909c39 # ╟─09db490e-961a-4c64-bcc5-5c111bfd3b7a # ╠═081d1eee-96b1-4e76-8b8c-c0d4e5bdbaed # ╟─7974df7d-c390-4706-b7ba-6bde4409510d # ╠═e6aeeeb4-704c-4ba4-abc2-29c4029e276d # ╠═8467e950-7302-4930-8698-8e7b523556a6 # ╟─6976c82f-90f0-4091-b13d-af463fe75c8b # ╠═95539e68-c1ea-4a6c-9406-2696d62b8461 # ╟─5282ca54-aa98-4d51-aaf9-af20eae5cc81 # ╠═ef149d9a-6aa9-4f34-b936-201b9d77543c # ╠═4ea4f26e-746d-488e-9968-9fc584c04bcf # ╟─b64500b6-99b6-497b-9096-4bab4ddbec8d # ╠═cca6e2f8-69c5-4a3a-9f97-699b4868c4b9 # ╟─80757735-8e73-4cae-88d0-9fe3d3e539c0 # ╠═7dd900fc-9531-4bd6-8b6d-3aac3d5a2386 # ╟─13f952ce-642a-4396-b574-00ea6584008c # ╟─fcc22a84-011f-48ed-bc0b-41f4058b92fd # ╠═e7be21d1-971b-45fd-aa83-591d43262567 # ╠═1702a65f-ad54-4520-b2d6-129c0576d708 # ╟─49ad22e7-e859-44d4-8179-e088e1159d04 # ╠═32910090-9a42-475a-8e83-f9712f8fe551 # ╠═7b5fcd3b-0f0a-44c3-9bf6-1dc042585322 # ╟─3ce74e3a-43f4-47a5-8dde-1d49e54e7eab # ╠═8edabda9-c49b-407e-bae8-1a71a1fe19b4 # ╟─3ec7c034-4cb6-4b9f-96fb-c6dc428475bb # ╠═494dfca2-af57-4dd9-9825-b28269641359 # ╟─ca1d7917-58e2-4b7d-8671-ced548ccfe89 # ╠═30c33553-3b4d-4eff-b34c-7ac0579650f7 # ╠═5c25abb7-e3ee-4104-9a82-eb4aa4e773d2 # ╟─4cec7232-8fbc-4ac1-96bb-6c7fea5fe117 # ╠═9bc9bd86-ffe3-48c1-81c0-c13f132e0dc1 # ╟─9b0f051b-a107-41f2-b7b9-d6c673b7f93b # ╠═d4c5240c-e70f-45f5-859f-1399c57511b0 # ╟─ffa9ad39-64e0-4655-b04e-23f57490d326 # ╠═dfd4418e-19f0-42f2-87c5-69eacf2024ac # ╟─9db831d6-7f10-47be-93d3-ebc892c4b3f2 # ╟─e69056dd-0052-4d1e-aef1-30411d416c82 # ╠═13e3525b-1b8e-4f65-8742-21d8ba4fdbe3 # ╟─025b38e1-d334-46b6-bf88-f7b426e8dc97 # ╟─76ab8044-78ec-41b5-b11a-df4e7e009e64 # ╠═b3c5283e-15fc-48d6-b58c-b26d70e5f5a4 # ╠═adbae5f0-6fe9-4a97-816b-004e47b15593 # ╟─2e13cbad-8110-4cbc-8890-ecbefe1302dd # ╠═e5da7214-0e69-4b5a-a65e-ed92d0616c71 # ╟─9dc01591-5c37-4d83-b640-83280513941e # ╟─41d9b8fd-dd18-4270-803f-bd6206845788 # ╠═b8b5aff0-2ed3-4237-9b9d-9eb0bf2f2878 # ╠═97cf8ee8-dba3-4b0b-b0ba-97002bc0f028 # ╟─0a8cec9c-7b9d-445b-abe3-237f16fdd9ad # ╠═57f7e085-9589-4a6c-ac14-488ea9924692 # ╠═4c7d72f1-688a-4a70-8ce6-a4801127bb9a # ╟─77bf7e4a-1237-4b24-bb31-dc8a30756834 # ╠═5a79eba5-3031-4e21-836e-961a9d939862 # ╟─27c2ba44-fcee-4647-910e-ae16f430b87d # ╟─d577e515-f3cf-4f27-b0b5-a94cb38abf1a # ╠═c17bca17-a00a-4118-a212-d21da09af9b5 # ╟─6aee2288-1934-4fc5-9a9c-f45b7ce4e767 # ╠═fadded74-8a89-4348-88f6-50d12cde6234 # ╟─0b28fab8-eb04-46d9-aa19-82e4bab45eb9 # ╠═791b9fde-1df2-4239-8372-2e3dd36d6f34 # ╟─60ef4369-831d-413e-bcc2-e088697b6ba4 # ╠═f46c3993-e01d-47fb-873a-c608e0d49d83 # ╟─d3779618-f61f-4874-93f1-94e78bb21c94 # ╠═330a5f6c-601f-47e6-8294-e6af89818d7d # ╟─36173fe2-784f-472a-9cab-03f2a0a2b725
UnitDiskMapping
https://github.com/QuEraComputing/UnitDiskMapping.jl.git
[ "Apache-2.0" ]
0.4.0
0736fd885e445c13b7b58e31d1ccc37a4950f7df
code
8574
### A Pluto.jl notebook ### # v0.19.42 using Markdown using InteractiveUtils # ╔═╡ f55dbf80-8425-11ee-2e7d-4d1ad4f693af # ╠═╡ show_logs = false begin using Pkg; Pkg.activate(".") using Revise using PlutoUI # left right layout function leftright(a, b; width=600) HTML(""" <style> table.nohover tr:hover td { background-color: white !important; }</style> <table width=$(width)px class="nohover" style="border:none"> <tr> <td>$(html(a))</td> <td>$(html(b))</td> </tr></table> """) end # up down layout function updown(a, b; width=nothing) HTML("""<table class="nohover" style="border:none" $(width === nothing ? "" : "width=$(width)px")> <tr> <td>$(html(a))</td> </tr> <tr> <td>$(html(b))</td> </tr></table> """) end PlutoUI.TableOfContents() end # ╔═╡ be011e30-74e6-49cd-b45a-288972dc5f18 using UnitDiskMapping, Graphs # for mapping graphs to a King's subgraph (KSG) # ╔═╡ 31250cb9-6f3a-429a-975d-752cb7c07883 using GenericTensorNetworks # for solving the maximum independent sets # ╔═╡ 9017a42c-9791-4933-84a4-9ff509967323 md""" # Unweighted KSG reduction of the independent set problem """ # ╔═╡ f0e7c030-4e43-4356-a5bb-717a7f382a17 md"""This notebook contains examples from the paper, "Computer-Assisted Gadget Design and Problem Reduction of Unweighted Maximum Independent Set".""" # ╔═╡ cb4a9655-6df2-46b3-8969-8b6f2db7c59a md""" ## Example 1: The 5-vertex graph The five vertex demo graph in the paper. """ # ╔═╡ 956a5c3a-b8c6-4040-9553-3b4e2337b163 md"#### Step 1: Prepare a source graph." # ╔═╡ d858f57e-1706-4b73-bc23-53f7af073b0c # the demo graph in the main text function demograph() g = SimpleGraph(5) for (i, j) in [(1, 2), (2, 4), (3, 4), (1, 3), (4, 5), (1, 5)] add_edge!(g, i, j) end return g end # ╔═╡ a3a86c62-ee6e-4a3b-99b3-c484de3b5220 g5 = demograph() # ╔═╡ e6170e72-0804-401e-b9e5-65b8ee7d7edb show_graph(g5) # ╔═╡ 625bdcf4-e37e-4bb8-bd1a-907cdcc5fe24 md""" #### Step 2: Map the source graph to an unweighted King's subgraph (KSG) The vertex order is optimized with the Branching path decomposition algorithm (MinhThi's Trick) """ # ╔═╡ f9e57a6b-1186-407e-a8b1-cb8f31a17bd2 g5res = UnitDiskMapping.map_graph(g5; vertex_order=MinhThiTrick()) # ╔═╡ e64e7ca4-b297-4c74-8699-bec4b4fbb843 md"Visualize the mapped KSG graph in terminal" # ╔═╡ 0a860597-0610-48f6-b1ee-711939712de4 print(g5res.grid_graph) # ╔═╡ eeae7074-ee21-44fc-9605-3555acb84cee md"or in a plotting plane" # ╔═╡ 3fa6052b-74c2-453d-a473-68f4b3ca0490 show_graph(g5res.grid_graph) # ╔═╡ 942e8dfb-b89d-4f2d-b1db-f4636d4e5de6 md"#### Step 3: Solve the MIS size of the mapped graph" # ╔═╡ 766018fa-81bd-4c37-996a-0cf77b0909af md"The independent set size can be obtained by solving the `SizeMax()` property using the [generic tensor network](https://github.com/QuEraComputing/GenericTensorNetworks.jl) method." # ╔═╡ 67fd2dd2-5add-4402-9618-c9b7c7bfe95b missize_g5_ksg = solve(GenericTensorNetwork(IndependentSet(SimpleGraph(g5res.grid_graph))), SizeMax())[] # ╔═╡ aaee9dbc-5b9c-41b1-b0d4-35d2cac7c773 md"The predicted MIS size for the source graph is:" # ╔═╡ 114e2c42-aaa3-470b-a267-e5a7c6b08607 missize_g5_ksg.n - g5res.mis_overhead # ╔═╡ e6fa2404-cbe9-4f9b-92a0-0d6fdb649c44 md""" One of the best solutions can be obtained by solving the `SingleConfigMax()` property. """ # ╔═╡ 0142f661-0855-45b4-852a-78f560e98c67 mis_g5_ksg = solve(GenericTensorNetwork(IndependentSet(SimpleGraph(g5res.grid_graph))), SingleConfigMax())[].c.data # ╔═╡ fa046f3c-fd7d-4e91-b3f5-fc4591d3cae2 md"Plot the solution" # ╔═╡ 0cbcd2a6-b8ae-47ff-8541-963b9dae700a show_config(g5res.grid_graph, mis_g5_ksg) # ╔═╡ 4734dc0b-0770-4f84-8046-95a74104936f md"#### Step 4: Map the KSG solution back" # ╔═╡ 0f27de9f-2e06-4d5e-b96f-b7c7fdadabca md"In the following, we will show how to obtain an MIS of the source graph from that of its KSG reduction." # ╔═╡ fc968df0-832b-44c9-8335-381405b92199 mis_g5 = UnitDiskMapping.map_config_back(g5res, collect(mis_g5_ksg)) # ╔═╡ 29458d07-b2b2-49af-a696-d0cb0ad35481 md"Show that the overhead in the MIS size is correct" # ╔═╡ fa4888b2-fc67-4285-8305-da655c42a898 md"Verify the result:" # ╔═╡ e84102e8-d3f2-4f91-87be-dba8e81462fb # the extracted solution is an independent set UnitDiskMapping.is_independent_set(g5, mis_g5) # ╔═╡ 88ec52b3-73fd-4853-a69b-442f5fd2e8f7 # and its size is maximized count(isone, mis_g5) # ╔═╡ 5621bb2a-b1c6-4f0d-921e-980b2ce849d5 solve(GenericTensorNetwork(IndependentSet(g5)), SizeMax())[].n # ╔═╡ 1fe6c679-2962-4c1b-8b12-4ceb77ed9e0f md""" ## Example 2: The Petersen graph We just quickly go through a second example, the Petersen graph. """ # ╔═╡ ea379863-95dd-46dd-a0a3-0a564904476a petersen = smallgraph(:petersen) # ╔═╡ d405e7ec-50e3-446c-8d19-18f1a66c1e3b show_graph(petersen) # ╔═╡ 409b03d1-384b-48d3-9010-8079cbf66dbf md"We first map it to a grid graph (unweighted)." # ╔═╡ a0e7da6b-3b71-43d4-a1da-f1bd953e4b50 petersen_res = UnitDiskMapping.map_graph(petersen) # ╔═╡ 4f1f0ca0-dd2a-4768-9b4e-80813c9bb544 md"The MIS size of the petersen graph is 4." # ╔═╡ bf97a268-cd96-4dbc-83c6-10eb1b03ddcc missize_petersen = solve(GenericTensorNetwork(IndependentSet(petersen)), SizeMax())[] # ╔═╡ 2589f112-5de5-4c98-bcd1-138b6143cd30 md" The MIS size of the mapped KSG graph is much larger" # ╔═╡ 1b946455-b152-4d6f-9968-7dc6e22d171a missize_petersen_ksg = solve(GenericTensorNetwork(IndependentSet(SimpleGraph(petersen_res.grid_graph))), SizeMax())[] # ╔═╡ 4e7f7d9e-fae4-46d2-b95d-110d36b691d9 md"The difference in the MIS size is:" # ╔═╡ d0e49c1f-457d-4b61-ad0e-347afb029114 petersen_res.mis_overhead # ╔═╡ 03d8adb3-0bf4-44e6-9b0a-fffc90410cfc md"Find an MIS of the mapped KSG and map it back an MIS on the source graph." # ╔═╡ 0d08cb1a-f7f3-4d63-bd70-78103db086b3 mis_petersen_ksg = solve(GenericTensorNetwork(IndependentSet(SimpleGraph(petersen_res.grid_graph))), SingleConfigMax())[].c.data # ╔═╡ c27d8aed-c81f-4eb7-85bf-a4ed88c2537f mis_petersen = UnitDiskMapping.map_config_back(petersen_res, collect(mis_petersen_ksg)) # ╔═╡ 20f81eef-12d3-4f2a-9b91-ccf2705685ad md"""The obtained solution is an independent set and its size is maximized.""" # ╔═╡ 0297893c-c978-4818-aae8-26e60d8c9e9e UnitDiskMapping.is_independent_set(petersen, mis_petersen) # ╔═╡ 5ffe0e4f-bd2c-4d3e-98ca-61673a7e5230 count(isone, mis_petersen) # ╔═╡ 8c1d46e8-dc36-41bd-9d9b-5a72c380ef26 md"The number printed should be consistent with the MIS size of the petersen graph." # ╔═╡ Cell order: # ╟─f55dbf80-8425-11ee-2e7d-4d1ad4f693af # ╟─9017a42c-9791-4933-84a4-9ff509967323 # ╟─f0e7c030-4e43-4356-a5bb-717a7f382a17 # ╠═be011e30-74e6-49cd-b45a-288972dc5f18 # ╠═31250cb9-6f3a-429a-975d-752cb7c07883 # ╟─cb4a9655-6df2-46b3-8969-8b6f2db7c59a # ╟─956a5c3a-b8c6-4040-9553-3b4e2337b163 # ╠═d858f57e-1706-4b73-bc23-53f7af073b0c # ╠═a3a86c62-ee6e-4a3b-99b3-c484de3b5220 # ╠═e6170e72-0804-401e-b9e5-65b8ee7d7edb # ╟─625bdcf4-e37e-4bb8-bd1a-907cdcc5fe24 # ╠═f9e57a6b-1186-407e-a8b1-cb8f31a17bd2 # ╟─e64e7ca4-b297-4c74-8699-bec4b4fbb843 # ╠═0a860597-0610-48f6-b1ee-711939712de4 # ╟─eeae7074-ee21-44fc-9605-3555acb84cee # ╠═3fa6052b-74c2-453d-a473-68f4b3ca0490 # ╟─942e8dfb-b89d-4f2d-b1db-f4636d4e5de6 # ╟─766018fa-81bd-4c37-996a-0cf77b0909af # ╠═67fd2dd2-5add-4402-9618-c9b7c7bfe95b # ╟─aaee9dbc-5b9c-41b1-b0d4-35d2cac7c773 # ╠═114e2c42-aaa3-470b-a267-e5a7c6b08607 # ╟─e6fa2404-cbe9-4f9b-92a0-0d6fdb649c44 # ╠═0142f661-0855-45b4-852a-78f560e98c67 # ╟─fa046f3c-fd7d-4e91-b3f5-fc4591d3cae2 # ╠═0cbcd2a6-b8ae-47ff-8541-963b9dae700a # ╟─4734dc0b-0770-4f84-8046-95a74104936f # ╟─0f27de9f-2e06-4d5e-b96f-b7c7fdadabca # ╠═fc968df0-832b-44c9-8335-381405b92199 # ╟─29458d07-b2b2-49af-a696-d0cb0ad35481 # ╟─fa4888b2-fc67-4285-8305-da655c42a898 # ╠═e84102e8-d3f2-4f91-87be-dba8e81462fb # ╠═88ec52b3-73fd-4853-a69b-442f5fd2e8f7 # ╠═5621bb2a-b1c6-4f0d-921e-980b2ce849d5 # ╟─1fe6c679-2962-4c1b-8b12-4ceb77ed9e0f # ╠═ea379863-95dd-46dd-a0a3-0a564904476a # ╠═d405e7ec-50e3-446c-8d19-18f1a66c1e3b # ╟─409b03d1-384b-48d3-9010-8079cbf66dbf # ╠═a0e7da6b-3b71-43d4-a1da-f1bd953e4b50 # ╟─4f1f0ca0-dd2a-4768-9b4e-80813c9bb544 # ╠═bf97a268-cd96-4dbc-83c6-10eb1b03ddcc # ╟─2589f112-5de5-4c98-bcd1-138b6143cd30 # ╠═1b946455-b152-4d6f-9968-7dc6e22d171a # ╟─4e7f7d9e-fae4-46d2-b95d-110d36b691d9 # ╠═d0e49c1f-457d-4b61-ad0e-347afb029114 # ╟─03d8adb3-0bf4-44e6-9b0a-fffc90410cfc # ╠═0d08cb1a-f7f3-4d63-bd70-78103db086b3 # ╠═c27d8aed-c81f-4eb7-85bf-a4ed88c2537f # ╟─20f81eef-12d3-4f2a-9b91-ccf2705685ad # ╠═0297893c-c978-4818-aae8-26e60d8c9e9e # ╠═5ffe0e4f-bd2c-4d3e-98ca-61673a7e5230 # ╟─8c1d46e8-dc36-41bd-9d9b-5a72c380ef26
UnitDiskMapping
https://github.com/QuEraComputing/UnitDiskMapping.jl.git
[ "Apache-2.0" ]
0.4.0
0736fd885e445c13b7b58e31d1ccc37a4950f7df
code
2584
using UnitDiskMapping, GenericTensorNetworks, Graphs function mapped_entry_to_compact(s::Pattern) locs, g, pins = mapped_graph(s) a = solve(IndependentSet(g; openvertices=pins), SizeMax()) b = mis_compactify!(copy(a)) n = length(a) d = Dict{Int,Int}() # the mapping from bad to good for i=1:n val_a = a[i] if iszero(b[i]) && !iszero(val_a) bs_a = i-1 for j=1:n # search for the entry b[j] compactify a[i] bs_b = j-1 if b[j] == val_a && (bs_b & bs_a) == bs_b # find you! d[bs_a] = bs_b break end end else d[i-1] = i-1 end end return d end # from mapped graph bounary configuration to compact bounary configuration function source_entry_to_configs(s::Pattern) locs, g, pins = source_graph(s) a = solve(IndependentSet(g, openvertices=pins), ConfigsMax()) d = Dict{Int,Vector{BitVector}}() # the mapping from bad to good for i=1:length(a) d[i-1] = [BitVector(s) for s in a[i].c.data] end return d end function compute_mis_overhead(s) locs1, g1, pins1 = source_graph(s) locs2, g2, pins2 = mapped_graph(s) m1 = mis_compactify!(solve(IndependentSet(g1, openvertices=pins1), SizeMax())) m2 = mis_compactify!(solve(IndependentSet(g2, openvertices=pins2), SizeMax())) @assert nv(g1) == length(locs1) && nv(g2) == length(locs2) sig, diff = UnitDiskMapping.is_diff_by_const(GenericTensorNetworks.content.(m1), GenericTensorNetworks.content.(m2)) @assert sig return diff end # from bounary configuration to MISs. function generate_mapping(s::Pattern) d1 = mapped_entry_to_compact(s) d2 = source_entry_to_configs(s) diff = compute_mis_overhead(s) s = """function mapped_entry_to_compact(::$(typeof(s))) return Dict($(collect(d1))) end function source_entry_to_configs(::$(typeof(s))) return Dict($(collect(d2))) end mis_overhead(::$(typeof(s))) = $(-Int(diff)) """ end function dump_mapping_to_julia(filename, patterns) s = join([generate_mapping(p) for p in patterns], "\n\n") open(filename, "w") do f write(f, "# Do not modify this file, because it is automatically generated by `project/createmap.jl`\n\n" * s) end end dump_mapping_to_julia(joinpath(@__DIR__, "..", "src", "extracting_results.jl"), (Cross{false}(), Cross{true}(), Turn(), WTurn(), Branch(), BranchFix(), TrivialTurn(), TCon(), BranchFixB(), EndTurn(), UnitDiskMapping.simplifier_ruleset...))
UnitDiskMapping
https://github.com/QuEraComputing/UnitDiskMapping.jl.git
[ "Apache-2.0" ]
0.4.0
0736fd885e445c13b7b58e31d1ccc37a4950f7df
code
2912
using UnitDiskMapping, UnitDiskMapping.TikzGraph using UnitDiskMapping: safe_get using GenericTensorNetworks, Graphs function all_configurations(p::Pattern) mlocs, mg, mpins = mapped_graph(p) gp = IndependentSet(mg, openvertices=mpins) res = solve(gp, ConfigsMax()) configs = [] for element in res for bs in element.c.data push!(configs, bs) end end mats = Matrix{Int}[] @show configs for config in configs m, n = size(p) mat = zeros(Int, m, n) for (loc, c) in zip(mlocs, config) if !iszero(c) mat[loc.x, loc.y] = true end end if rotr90(mat) ∉ mats && rotl90(mat) ∉ mats && rot180(mat) ∉ mats && mat[end:-1:1,:] ∉ mats && mat[:,end:-1:1] ∉ mats && # reflect x, y Matrix(mat') ∉ mats && mat[end:-1:1,end:-1:1] ∉ mats # reflect diag, offdiag push!(mats, mat) end end return mats end function viz_matrix!(c, mat0, mat, dx, dy) m, n = size(mat) for i=1:m for j=1:n x, y = j+dx, i+dy cell = mat0[i,j] if isempty(cell) #Node(x, y; fill="black", minimum_size="0.01cm") >> c elseif cell.doubled filled = iszero(safe_get(mat, i,j-1)) && iszero(safe_get(mat,i,j+1)) Node(x+0.4, y; fill=filled ? "black" : "white", minimum_size="0.4cm") >> c filled = iszero(safe_get(mat, i-1,j)) && iszero(safe_get(mat,i+1,j)) Node(x, y+0.4; fill=filled ? "black" : "white", minimum_size="0.4cm") >> c else Node(x, y; fill=mat[i,j] > 0 ? "black" : "white", minimum_size="0.4cm") >> c end end end end function vizback(p; filename) configs = all_configurations(p) smat = source_matrix(p) mmat = mapped_matrix(p) slocs, sg, spins = source_graph(p) mlocs, mg, mpins = mapped_graph(p) m, n = size(p) img = canvas() do c for (ic, mconfig) in enumerate(configs) if ic % 2 == 0 dx = 2n+3 else dx = 0 end dy = -(m+1)*((ic-1) ÷ 2 -1) Mesh(1+dx, n+dx, 1+dy, m+dy) >> c viz_bonds!(c, mlocs, mg, dx, dy) viz_matrix!(c, mmat, mconfig, dx, dy) PlainText(n+1+dx, m/2+0.5+dy, "\$\\rightarrow\$") >> c sconfig = UnitDiskMapping.map_config_back!(p, 1, 1, mconfig) dx += n+1 Mesh(1+dx, n+dx, 1+dy, m+dy) >> c viz_bonds!(c, slocs, sg, dx, dy) viz_matrix!(c, smat, sconfig, dx, dy) end end writepdf(filename, img) end function viz_bonds!(c, locs, g, dx, dy) for e in edges(g) a = locs[e.src] b = locs[e.dst] Line((a.y+dx, a.x+dy), (b.y+dx, b.x+dy); line_width="2pt") >> c end end
UnitDiskMapping
https://github.com/QuEraComputing/UnitDiskMapping.jl.git
[ "Apache-2.0" ]
0.4.0
0736fd885e445c13b7b58e31d1ccc37a4950f7df
code
1086
using UnitDiskMapping.TikzGraph function routine(centerx, centery, width, height, text; kwargs...) Node(centerx, centery, shape="rectangle", rounded_corners = "0.5ex", minimum_width="$(width)cm", minimum_height="$(height)cm", line_width="1pt", minimum_size="", text=text, kwargs...) end # aspect = width/height function decision(centerx, centery, width, height, text; kwargs...) Node(centerx, centery, shape="diamond", minimum_size="$(height)cm", aspect=width/height, text=text, line_width="1pt", kwargs...) end function arrow(nodes...; kwargs...) Line(nodes...; arrow="->", line_width="1pt", kwargs...) end function draw_flowchart() canvas(libs=["shapes"]) do c n1 = routine(0.0, 0.0, 3, 1, "input graph") >> c n2 = decision(0.0, -3, 3, 1, "satisfies the crossing criteria") >> c n3 = decision(0.0, -6, 3, 1, "has a same tropical tensor") >> c arrow(n1, n2) >> c arrow(n2, n3; annotate="T") >> c arrow(n2, (3.0, -3.0), (3.0, 0.0), n1; annotate="F") >> c end end writepdf("_local/flowchart.tex", draw_flowchart())
UnitDiskMapping
https://github.com/QuEraComputing/UnitDiskMapping.jl.git
[ "Apache-2.0" ]
0.4.0
0736fd885e445c13b7b58e31d1ccc37a4950f7df
code
1926
using UnitDiskMapping.TikzGraph, Graphs using UnitDiskMapping: crossing_ruleset, Pattern, source_graph, mapped_graph function command_graph!(canvas, locs, graph, pins, dx, dy, r, name) for (i,loc) in enumerate(locs) if count(==(loc), locs) == 2 Node(loc[1]+dx, loc[2]+dy, fill="black", draw="none", id="$name$i", minimum_size="0cm") >> canvas Node(loc[1]+dx+0.4, loc[2]+dy, fill="black", draw="none", id="$name$i-A", minimum_size="$(r)cm") >> canvas Node(loc[1]+dx, loc[2]+dy+0.4, fill="black", draw="none", id="$name$i-B", minimum_size="$(r)cm") >> canvas else Node(loc[1]+dx, loc[2]+dy, fill=i∈pins ? "red" : "black", draw="none", id="$name$i", minimum_size="$(r)cm") >> canvas end end for e in edges(graph) Line("$name$(e.src)", "$name$(e.dst)"; line_width=1.0) >> canvas end end function viz_gadget(p::Pattern) locs1, g1, pin1 = source_graph(p) locs2, g2, pin2 = mapped_graph(p) Gy, Gx = size(p) locs1 = map(l->(l[2]-1, Gy-l[1]), locs1) locs2 = map(l->(l[2]-1, Gy-l[1]), locs2) Wx, Wy = 11, Gy xmid, ymid = Wx/2-0.5, Wy/2-0.5 dx1, dy1 = xmid-Gx, 0 dx2, dy2 = xmid+1, 0 return canvas(; props=Dict("scale"=>"0.8")) do c BoundingBox(-1,Wx-1,-1,Wy-1) >> c Mesh(dx1, Gx+dx1-1, dy1, Gy+dy1-1; step="1cm", draw=rgbcolor!(c, 200,200,200), line_width=0.5) >> c command_graph!(c, locs1, g1, pin1, dx1, dy1, 0.3, "s") Mesh(dx2, Gx+dx2-1, dy2, Gy+dy2-1; step="1cm", draw=rgbcolor!(c, 200,200,200), line_width=0.03) >> c command_graph!(c, locs2, g2, pin2, dx2, dy2, 0.3, "d") PlainText(xmid, ymid, "\$\\mathbf{\\rightarrow}\$") >> c end end function pattern2tikz(folder::String) for p in crossing_ruleset writepdf(joinpath(folder, string(typeof(p).name.name)*"-udg.tex"), viz_gadget(p)) end end pattern2tikz(joinpath("_local"))
UnitDiskMapping
https://github.com/QuEraComputing/UnitDiskMapping.jl.git
[ "Apache-2.0" ]
0.4.0
0736fd885e445c13b7b58e31d1ccc37a4950f7df
code
1092
using UnitDiskMapping, Graphs, Random using Comonicon using DelimitedFiles include("readgraphs.jl") # map all connected non-isomorphic graphs @cast function mapall(n::Int) graphs = load_g6(joinpath(dirname(@__DIR__), "data", "graph$n.g6")) for g in graphs if is_connected(g) result = map_graph(g) end end end @cast function sample(graphname::String; seed::Int=2) folder=joinpath(@__DIR__, "data") if !isdir(folder) mkpath(folder) end sizes = 10:10:100 Random.seed!(seed) res_sizes = Int[] for n in sizes g = if graphname == "Erdos-Renyi" erdos_renyi(n, 0.3) elseif graphname == "3-Regular" random_regular_graph(n, 3) else error("graph name $graphname not defined!") end res = map_graph(g; vertex_order=Greedy()) m = length(res.grid_graph.nodes) @info "size $n, mapped graph size $m." push!(res_sizes, m) end filename = "$graphname-$seed.dat" writedlm(joinpath(folder, filename), res_sizes) end @main
UnitDiskMapping
https://github.com/QuEraComputing/UnitDiskMapping.jl.git
[ "Apache-2.0" ]
0.4.0
0736fd885e445c13b7b58e31d1ccc37a4950f7df
code
1400
############################ G6 graphs ########################### # NOTE: this script is copied from GraphIO.jl function _g6StringToGraph(s::AbstractString) V = Vector{UInt8}(s) (nv, rest) = _g6_Np(V) bitvec = _g6_Rp(rest) ixs = Vector{Int}[] n = 0 for i in 2:nv, j in 1:(i - 1) n += 1 if bitvec[n] push!(ixs, [j, i]) end end return nv, ixs end function _g6_Rp(bytevec::Vector{UInt8}) x = BitVector() for byte in bytevec bits = _int2bv(byte - 63, 6) x = vcat(x, bits) end return x end function _int2bv(n::Int, k::Int) bitstr = lstrip(bitstring(n), '0') l = length(bitstr) padding = k - l bv = falses(k) for i = 1:l bv[padding + i] = (bitstr[i] == '1') end return bv end function _g6_Np(N::Vector{UInt8}) if N[1] < 0x7e return (Int(N[1] - 63), N[2:end]) elseif N[2] < 0x7e return (_bv2int(_g6_Rp(N[2:4])), N[5:end]) else return(_bv2int(_g6_Rp(N[3:8])), N[9:end]) end end function load_g6(filename) res = SimpleGraph{Int}[] open(filename) do f while !eof(f) line = readline(f) nv, ixs0 = _g6StringToGraph(line) push!(res, ixs2graph(nv, ixs0)) end end return res end function ixs2graph(n::Int, ixs) g = SimpleGraph(n) for (i, j) in ixs add_edge!(g, i, j) end return g end
UnitDiskMapping
https://github.com/QuEraComputing/UnitDiskMapping.jl.git
[ "Apache-2.0" ]
0.4.0
0736fd885e445c13b7b58e31d1ccc37a4950f7df
code
4129
const SHOW_WEIGHT = Ref(false) # The static one for unweighted cells struct ONE end Base.one(::Type{ONE}) = ONE() Base.show(io::IO, ::ONE) = print(io, "1") Base.show(io::IO, ::MIME"text/plain", ::ONE) = print(io, "1") ############################ Cell ############################ # Cell does not have coordinates abstract type AbstractCell{WT} end Base.show(io::IO, x::AbstractCell) = print_cell(io, x; show_weight=SHOW_WEIGHT[]) Base.show(io::IO, ::MIME"text/plain", cl::AbstractCell) = Base.show(io, cl) # SimpleCell struct SimpleCell{WT} <: AbstractCell{WT} occupied::Bool weight::WT SimpleCell(; occupied=true) = new{ONE}(occupied, ONE()) SimpleCell(x::Union{Real,ONE}; occupied=true) = new{typeof(x)}(occupied, x) SimpleCell{T}(x::Real; occupied=true) where T = new{T}(occupied, T(x)) end get_weight(sc::SimpleCell) = sc.weight Base.empty(::Type{SimpleCell{WT}}) where WT = SimpleCell(one(WT); occupied=false) Base.isempty(sc::SimpleCell) = !sc.occupied function print_cell(io::IO, x::AbstractCell; show_weight=false) if x.occupied print(io, show_weight ? "$(get_weight(x))" : "●") else print(io, "⋅") end end Base.:+(a::SimpleCell{T}, b::SimpleCell{T}) where T<:Real = a.occupied ? (b.occupied ? SimpleCell(a.weight + b.weight) : a) : b Base.:-(a::SimpleCell{T}, b::SimpleCell{T}) where T<:Real = a.occupied ? (b.occupied ? SimpleCell(a.weight - b.weight) : a) : -b Base.:-(b::SimpleCell{T}) where T<:Real = b.occupied ? SimpleCell(-b.weight) : b Base.zero(::Type{SimpleCell{T}}) where T = SimpleCell(one(T); occupied=false) WeightedSimpleCell{T<:Real} = SimpleCell{T} UnWeightedSimpleCell = SimpleCell{ONE} ############################ Node ############################ # The node used in unweighted graph struct Node{WT} loc::Tuple{Int,Int} weight::WT end Node(x::Real, y::Real) = Node((Int(x), Int(y)), ONE()) Node(x::Real, y::Real, w::Real) = Node((Int(x), Int(y)), w) Node(xy::Vector{Int}) = Node(xy...) Node(xy::Tuple{Int,Int}) = Node(xy, ONE()) getxy(p::Node) = p.loc chxy(n::Node, loc) = Node(loc, n.weight) Base.iterate(p::Node, i) = Base.iterate(p.loc, i) Base.iterate(p::Node) = Base.iterate(p.loc) Base.length(p::Node) = 2 Base.getindex(p::Node, i::Int) = p.loc[i] offset(p::Node, xy) = chxy(p, getxy(p) .+ xy) const WeightedNode{T<:Real} = Node{T} const UnWeightedNode = Node{ONE} ############################ GridGraph ############################ # GridGraph struct GridGraph{NT<:Node} size::Tuple{Int,Int} nodes::Vector{NT} radius::Float64 end function Base.show(io::IO, grid::GridGraph) println(io, "$(typeof(grid)) (radius = $(grid.radius))") print_grid(io, grid; show_weight=SHOW_WEIGHT[]) end Base.size(gg::GridGraph) = gg.size Base.size(gg::GridGraph, i::Int) = gg.size[i] function graph_and_weights(grid::GridGraph) return unit_disk_graph(getfield.(grid.nodes, :loc), grid.radius), getfield.(grid.nodes, :weight) end function Graphs.SimpleGraph(grid::GridGraph{Node{ONE}}) return unit_disk_graph(getfield.(grid.nodes, :loc), grid.radius) end coordinates(grid::GridGraph) = getfield.(grid.nodes, :loc) # printing function for Grid graphs function print_grid(io::IO, grid::GridGraph{Node{WT}}; show_weight=false) where WT print_grid(io, cell_matrix(grid); show_weight) end function print_grid(io::IO, content::AbstractMatrix; show_weight=false) for i=1:size(content, 1) for j=1:size(content, 2) print_cell(io, content[i,j]; show_weight) print(io, " ") end if i!=size(content, 1) println(io) end end end function cell_matrix(gg::GridGraph{Node{WT}}) where WT mat = fill(empty(SimpleCell{WT}), gg.size) for node in gg.nodes mat[node.loc...] = SimpleCell(node.weight) end return mat end function GridGraph(m::AbstractMatrix{SimpleCell{WT}}, radius::Real) where WT nodes = Node{WT}[] for j=1:size(m, 2) for i=1:size(m, 1) if !isempty(m[i, j]) push!(nodes, Node((i,j), m[i,j].weight)) end end end return GridGraph(size(m), nodes, radius) end
UnitDiskMapping
https://github.com/QuEraComputing/UnitDiskMapping.jl.git
[ "Apache-2.0" ]
0.4.0
0736fd885e445c13b7b58e31d1ccc37a4950f7df
code
1635
# Copyright 2021 QuEra Computing Inc. All rights reserved. module UnitDiskMapping using Graphs using LuxorGraphPlot using LuxorGraphPlot.Luxor.Colors # Basic types export UnWeighted, Weighted export Cell, AbstractCell, SimpleCell export Node, WeightedNode, UnWeightedNode export graph_and_weights, GridGraph, coordinates # dragon drop methods export map_factoring, map_qubo, map_qubo_square, map_simple_wmis, solve_factoring, multiplier export QUBOResult, WMISResult, SquareQUBOResult, FactoringResult # logic gates export Gate, gate_gadget # plotting methods export show_grayscale, show_pins, show_config # path-width optimized mapping export MappingResult, map_graph, map_config_back, map_weights, trace_centers, print_config export MappingGrid, embed_graph, apply_crossing_gadgets!, apply_simplifier_gadgets!, unapply_gadgets! # gadgets export Pattern, Corner, Turn, Cross, TruncatedTurn, EndTurn, Branch, TrivialTurn, BranchFix, WTurn, TCon, BranchFixB, RotatedGadget, ReflectedGadget, rotated_and_reflected, WeightedGadget export vertex_overhead, source_graph, mapped_graph, mis_overhead export @gg # utils export is_independent_set, unitdisk_graph # path decomposition export pathwidth, PathDecompositionMethod, MinhThiTrick, Greedy @deprecate Branching MinhThiTrick include("utils.jl") include("Core.jl") include("pathdecomposition/pathdecomposition.jl") include("copyline.jl") include("dragondrop.jl") include("multiplier.jl") include("logicgates.jl") include("gadgets.jl") include("mapping.jl") include("weighted.jl") include("simplifiers.jl") include("extracting_results.jl") include("visualize.jl") end
UnitDiskMapping
https://github.com/QuEraComputing/UnitDiskMapping.jl.git
[ "Apache-2.0" ]
0.4.0
0736fd885e445c13b7b58e31d1ccc37a4950f7df
code
4815
# vslot # ↓ # | ← vstart # | # |------- ← hslot # | ↑ ← vstop # hstop struct CopyLine vertex::Int vslot::Int hslot::Int vstart::Int vstop::Int hstop::Int # there is no hstart end function Base.show(io::IO, cl::CopyLine) print(io, "$(typeof(cl)) $(cl.vertex): vslot → [$(cl.vstart):$(cl.vstop),$(cl.vslot)], hslot → [$(cl.hslot),$(cl.vslot):$(cl.hstop)]") end Base.show(io::IO, ::MIME"text/plain", cl::CopyLine) = Base.show(io, cl) # create copy lines using path decomposition # `g` is the graph, # `ordered_vertices` is a vector of vertices. function create_copylines(g::SimpleGraph, ordered_vertices::AbstractVector{Int}) slots = zeros(Int, nv(g)) hslots = zeros(Int, nv(g)) rmorder = remove_order(g, ordered_vertices) # assign hslots for (i, (v, rs)) in enumerate(zip(ordered_vertices, rmorder)) # update slots islot = findfirst(iszero, slots) slots[islot] = v hslots[i] = islot for r in rs slots[findfirst(==(r), slots)] = 0 end end vstarts = zeros(Int, nv(g)) vstops = zeros(Int, nv(g)) hstops = zeros(Int, nv(g)) for (i, v) in enumerate(ordered_vertices) relevant_hslots = [hslots[j] for j=1:i if has_edge(g, ordered_vertices[j], v) || v == ordered_vertices[j]] relevant_vslots = [i for i=1:nv(g) if has_edge(g, ordered_vertices[i], v) || v == ordered_vertices[i]] vstarts[i] = minimum(relevant_hslots) vstops[i] = maximum(relevant_hslots) hstops[i] = maximum(relevant_vslots) end return [CopyLine(ordered_vertices[i], i, hslots[i], vstarts[i], vstops[i], hstops[i]) for i=1:nv(g)] end # -1 means no line struct Block top::Int bottom::Int left::Int right::Int connected::Int # -1 for not exist, 0 for not, 1 for yes. end Base.show(io::IO, ::MIME"text/plain", block::Block) = Base.show(io, block) function Base.show(io::IO, block::Block) print(io, "$(get_row_string(block, 1))\n$(get_row_string(block, 2))\n$(get_row_string(block, 3))") end function get_row_string(block::Block, i) _s(x::Int) = x == -1 ? '⋅' : (x < 10 ? '0'+x : 'a'+(x-10)) if i == 1 return " ⋅ $(_s(block.top)) ⋅" elseif i==2 return " $(_s(block.left)) $(block.connected == -1 ? '⋅' : (block.connected == 1 ? '●' : '○')) $(_s(block.right))" elseif i==3 return " ⋅ $(_s(block.bottom)) ⋅" end end function crossing_lattice(g, ordered_vertices) lines = create_copylines(g, ordered_vertices) ymin = minimum(l->l.vstart, lines) ymax = maximum(l->l.vstop, lines) xmin = minimum(l->l.vslot, lines) xmax = maximum(l->l.hstop, lines) return CrossingLattice(xmax-xmin+1, ymax-ymin+1, lines, g) end struct CrossingLattice <: AbstractArray{Block, 2} width::Int height::Int lines::Vector{CopyLine} graph::SimpleGraph{Int} end Base.size(lattice::CrossingLattice) = (lattice.height, lattice.width) function Base.getindex(d::CrossingLattice, i::Int, j::Int) if !(1<=i<=d.width || 1<=j<=d.height) throw(BoundsError(d, (i, j))) end left = right = top = bottom = -1 for line in d.lines # vertical slot if line.vslot == j if line.vstart == line.vstop == i # a row elseif line.vstart == i # starting @assert bottom == -1 bottom = line.vertex elseif line.vstop == i # stopping @assert top == -1 top = line.vertex elseif line.vstart < i < line.vstop # middle @assert top == -1 @assert bottom == -1 top = bottom = line.vertex end end # horizontal slot if line.hslot == i if line.vslot == line.hstop == j # a col elseif line.vslot == j @assert right == -1 right = line.vertex elseif line.hstop == j @assert left == -1 left = line.vertex elseif line.vslot < j < line.hstop @assert left == -1 @assert right == -1 left = right = line.vertex end end end h = left == -1 ? right : left v = top == -1 ? bottom : top return Block(top, bottom, left, right, (v == -1 || h == -1) ? -1 : has_edge(d.graph, h, v)) end Base.show(io::IO, ::MIME"text/plain", d::CrossingLattice) = Base.show(io, d) function Base.show(io::IO, d::CrossingLattice) for i=1:d.height for k=1:3 for j=1:d.width print(io, get_row_string(d[i,j], k), " ") end i == d.height && k==3 || println() end i == d.height || println() end end
UnitDiskMapping
https://github.com/QuEraComputing/UnitDiskMapping.jl.git
[ "Apache-2.0" ]
0.4.0
0736fd885e445c13b7b58e31d1ccc37a4950f7df
code
11254
# Glue multiple blocks into a whole # `DI` and `DJ` are the overlap in row and columns between two adjacent blocks. function glue(grid::AbstractMatrix{<:AbstractMatrix{SimpleCell{T}}}, DI::Int, DJ::Int) where T @assert size(grid, 1) > 0 && size(grid, 2) > 0 nrow = sum(x->size(x, 1)-DI, grid[:,1]) + DI ncol = sum(x->size(x, 2)-DJ, grid[1,:]) + DJ res = zeros(SimpleCell{T}, nrow, ncol) ioffset = 0 for i=1:size(grid, 1) joffset = 0 for j=1:size(grid, 2) chunk = grid[i, j] res[ioffset+1:ioffset+size(chunk, 1), joffset+1:joffset+size(chunk, 2)] .+= chunk joffset += size(chunk, 2) - DJ j == size(grid, 2) && (ioffset += size(chunk, 1)-DI) end end return res end """ map_qubo(J::AbstractMatrix, h::AbstractVector) -> QUBOResult Map a QUBO problem to a weighted MIS problem on a defected King's graph, where a QUBO problem is defined by the following Hamiltonian ```math E(z) = -\\sum_{i<j} J_{ij} z_i z_j + \\sum_i h_i z_i ``` !!! note The input coupling strength and onsite energies must be << 1. A QUBO gadget is ``` ⋅ ⋅ ● ⋅ ● A B ⋅ ⋅ C D ● ⋅ ● ⋅ ⋅ ``` where `A`, `B`, `C` and `D` are weights of nodes that defined as ```math \\begin{align} A = -J_{ij} + 4\\\\ B = J_{ij} + 4\\\\ C = J_{ij} + 4\\\\ D = -J_{ij} + 4 \\end{align} ``` The rest nodes: `●` have weights 2 (boundary nodes have weights ``1 - h_i``). """ function map_qubo(J::AbstractMatrix{T1}, h::AbstractVector{T2}) where {T1, T2} T = promote_type(T1, T2) n = length(h) @assert size(J) == (n, n) "The size of coupling matrix `J`: $(size(J)) not consistent with size of onsite term `h`: $(size(h))" d = crossing_lattice(complete_graph(n), 1:n) d = CrossingLattice(d.width, d.height, d.lines, SimpleGraph(n)) chunks = render_grid(T, d) # add coupling for i=1:n-1 for j=i+1:n a = J[i,j] chunks[i, j][2:3, 2:3] .+= SimpleCell.([-a a; a -a]) end end grid = glue(chunks, 0, 0) # add one extra row # make the grid larger by one unit gg, pins = post_process_grid(grid, h, -h) mis_overhead = (n - 1) * n * 4 + n - 4 return QUBOResult(gg, pins, mis_overhead) end """ map_qubo_restricted(coupling::AbstractVector) -> RestrictedQUBOResult Map a nearest-neighbor restricted QUBO problem to a weighted MIS problem on a grid graph, where the QUBO problem can be specified by a vector of `(i, j, i', j', J)`. ```math E(z) = -\\sum_{(i,j)\\in E} J_{ij} z_i z_j ``` A FM gadget is ``` - ⋅ + ⋅ ⋅ ⋅ + ⋅ - ⋅ ⋅ ⋅ ⋅ 4 ⋅ ⋅ ⋅ ⋅ + ⋅ - ⋅ ⋅ ⋅ - ⋅ + ``` where `+`, `-` and `4` are weights of nodes `+J`, `-J` and `4J`. ``` - ⋅ + ⋅ ⋅ ⋅ + ⋅ - ⋅ ⋅ ⋅ 4 ⋅ 4 ⋅ ⋅ ⋅ + ⋅ - ⋅ ⋅ ⋅ - ⋅ + ``` """ function map_qubo_restricted(coupling::AbstractVector{Tuple{Int,Int,Int,Int,T}}) where {T} m, n = max(maximum(x->x[1], coupling), maximum(x->x[3], coupling)), max(maximum(x->x[2], coupling), maximum(x->x[4], coupling)) hchunks = [zeros(SimpleCell{T}, 3, 9) for i=1:m, j=1:n-1] vchunks = [zeros(SimpleCell{T}, 9, 3) for i=1:m-1, j=1:n] # add coupling for (i, j, i2, j2, J) in coupling @assert (i2, j2) == (i, j+1) || (i2, j2) == (i+1, j) if (i2, j2) == (i, j+1) hchunks[i, j] .+= cell_matrix(gadget_qubo_restricted(J)) else vchunks[i, j] .+= rotr90(cell_matrix(gadget_qubo_restricted(J))) end end grid = glue(hchunks, -3, 3) .+ glue(vchunks, 3, -3) return RestrictedQUBOResult(GridGraph(grid, 2.01*sqrt(2))) end function gadget_qubo_restricted(J::T) where T a = abs(J) return GridGraph((3, 9), [ Node((1,1), -a), Node((3,1), -a), Node((1,9), -a), Node((3,9), -a), Node((1,3), a), Node((3,3), a), Node((1,7), a), Node((3,7), a), (J > 0 ? [Node((2,5), 4a)] : [Node((2,4), 4a), Node((2,6), 4a)])... ], 2.01*sqrt(2)) end """ map_qubo_square(coupling::AbstractVector, onsite::AbstractVector) -> SquareQUBOResult Map a QUBO problem on square lattice to a weighted MIS problem on a grid graph, where the QUBO problem can be specified by * a vector coupling of `(i, j, i', j', J)`, s.t. (i', j') == (i, j+1) or (i', j') = (i+1, j). * a vector of onsite term `(i, j, h)`. ```math E(z) = -\\sum_{(i,j)\\in E} J_{ij} z_i z_j + h_i z_i ``` The gadget for suqare lattice QUBO problem is as follows ``` ⋅ ⋅ ⋅ ⋅ ● ⋅ ⋅ ⋅ ⋅ ○ ⋅ ● ⋅ ⋅ ⋅ ● ⋅ ○ ⋅ ⋅ ⋅ ● ⋅ ● ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ○ ⋅ ⋅ ⋅ ⋅ ``` where white circles have weight 1 and black circles have weight 2. The unit distance is `2.3`. """ function map_qubo_square(coupling::AbstractVector{Tuple{Int,Int,Int,Int,T1}}, onsite::AbstractVector{Tuple{Int,Int,T2}}) where {T1,T2} T = promote_type(T1, T2) m, n = max(maximum(x->x[1], coupling), maximum(x->x[3], coupling)), max(maximum(x->x[2], coupling), maximum(x->x[4], coupling)) hchunks = [zeros(SimpleCell{T}, 4, 9) for i=1:m, j=1:n-1] vchunks = [zeros(SimpleCell{T}, 9, 4) for i=1:m-1, j=1:n] # add coupling sumJ = zero(T) for (i, j, i2, j2, J) in coupling @assert (i2, j2) == (i, j+1) || (i2, j2) == (i+1, j) if (i2, j2) == (i, j+1) hchunks[i, j] .+= cell_matrix(gadget_qubo_square(T)) hchunks[i, j][4, 5] -= SimpleCell(T(2J)) else vchunks[i, j] .+= rotr90(cell_matrix(gadget_qubo_square(T))) vchunks[i, j][5, 1] -= SimpleCell(T(2J)) end sumJ += J end # right shift by 2 grid = glue(hchunks, -4, 1) grid = pad(grid; left=2, right=1) # down shift by 1 grid2 = glue(vchunks, 1, -4) grid2 = pad(grid2; top=1, bottom=2) grid .+= grid2 # add onsite terms sumh = zero(T) for (i, j, h) in onsite grid[(i-1)*8+2, (j-1)*8+3] -= SimpleCell(T(2h)) sumh += h end overhead = 5 * length(coupling) - sumJ - sumh gg = GridGraph(grid, 2.3) pins = Int[] for (i, j, h) in onsite push!(pins, findfirst(n->n.loc == ((i-1)*8+2, (j-1)*8+3), gg.nodes)) end return SquareQUBOResult(gg, pins, overhead) end function pad(m::AbstractMatrix{T}; top::Int=0, bottom::Int=0, left::Int=0, right::Int=0) where T if top != 0 padt = zeros(T, 0, size(m, 2)) m = vglue([padt, m], -top) end if bottom != 0 padb = zeros(T, 0, size(m, 2)) m = vglue([m, padb], -bottom) end if left != 0 padl = zeros(T, size(m, 1), 0) m = hglue([padl, m], -left) end if right != 0 padr = zeros(T, size(m, 1), 0) m = hglue([m, padr], -right) end return m end vglue(mats, i::Int) = glue(reshape(mats, :, 1), i, 0) hglue(mats, j::Int) = glue(reshape(mats, 1, :), 0, j) function gadget_qubo_square(::Type{T}) where T DI = 1 DJ = 2 one = T(1) two = T(2) return GridGraph((4, 9), [ Node((1+DI,1), one), Node((1+DI,1+DJ), two), Node((DI,3+DJ), two), Node((1+DI,5+DJ), two), Node((1+DI,5+2DJ), one), Node((2+DI,2+DJ), two), Node((2+DI,4+DJ), two), Node((3+DI,3+DJ), one), ], 2.3) end """ map_simple_wmis(graph::SimpleGraph, weights::AbstractVector) -> WMISResult Map a weighted MIS problem to a weighted MIS problem on a defected King's graph. !!! note The input coupling strength and onsite energies must be << 1. This method does not provide path decomposition based optimization, check [`map_graph`](@ref) for the path decomposition optimized version. """ function map_simple_wmis(graph::SimpleGraph, weights::AbstractVector{T}) where {T} n = length(weights) @assert nv(graph) == n d = crossing_lattice(complete_graph(n), 1:n) d = CrossingLattice(d.width, d.height, d.lines, graph) chunks = render_grid(T, d) grid = glue(chunks, 0, 0) # add one extra row # make the grid larger by one unit gg, pins = post_process_grid(grid, weights, zeros(T, length(weights))) mis_overhead = (n - 1) * n * 4 + n - 4 - 2*ne(graph) return WMISResult(gg, pins, mis_overhead) end function render_grid(::Type{T}, cl::CrossingLattice) where T n = nv(cl.graph) z = empty(SimpleCell{T}) one = SimpleCell(T(1)) two = SimpleCell(T(2)) four = SimpleCell(T(4)) # replace chunks # for pure crossing, they are # ● # ● ● ● # ● ● ● # ● # for crossing with edge, they are # ● # ● ● ● # ● ● # ● return map(zip(CartesianIndices(cl), cl)) do (ci, block) if block.bottom != -1 && block.left != -1 # NOTE: for border vertices, we set them to weight 1. if has_edge(cl.graph, ci.I...) [z (block.top == -1 ? one : two) z z; (ci.I[2]==2 ? one : two) two two z; z two z (block.right == -1 ? one : two); z (ci.I[1] == n-1 ? one : two) z z] else [z z (block.top == -1 ? one : two) z; (ci.I[2]==2 ? one : two) four four z; z four four (block.right == -1 ? one : two); z (ci.I[1] == n-1 ? one : two) z z] end elseif block.top != -1 && block.right != -1 # the L turn m = fill(z, 4, 4) m[1, 3] = m[2, 4] = two m else # do nothing fill(z, 4, 4) end end end # h0 and h1 are offset of energy for 0 state and 1 state. function post_process_grid(grid::Matrix{SimpleCell{T}}, h0, h1) where T n = length(h0) mat = grid[1:end-4, 5:end] mat[2, 1] += SimpleCell{T}(h0[1]) # top left mat[size(mat, 1),size(mat, 2)-2] += SimpleCell{T}(h1[end]) # bottom right for j=1:length(h0)-1 # top side offset = mat[1, j*4-1].occupied ? 1 : 2 @assert mat[1, j*4-offset].occupied mat[1, j*4-offset] += SimpleCell{T}(h0[1+j]) # right side offset = mat[j*4-1,size(mat,2)].occupied ? 1 : 2 @assert mat[j*4-offset,size(mat,2)].occupied mat[j*4-offset,size(mat, 2)] += SimpleCell{T}(h1[j]) end # generate GridGraph from matrix locs = [Node(ci.I, mat[ci].weight) for ci in findall(x->x.occupied, mat)] gg = GridGraph(size(mat), locs, 1.5) # find pins pins = [findfirst(x->x.loc == (2, 1), locs)] for i=1:n-1 push!(pins, findfirst(x->x.loc == (1, i*4-1) || x.loc == (1,i*4-2), locs)) end return gg, pins end struct QUBOResult{NT} grid_graph::GridGraph{NT} pins::Vector{Int} mis_overhead::Int end function map_config_back(res::QUBOResult, cfg) return 1 .- cfg[res.pins] end struct WMISResult{NT} grid_graph::GridGraph{NT} pins::Vector{Int} mis_overhead::Int end function map_config_back(res::WMISResult, cfg) return cfg[res.pins] end struct RestrictedQUBOResult{NT} grid_graph::GridGraph{NT} end function map_config_back(res::RestrictedQUBOResult, cfg) end struct SquareQUBOResult{NT} grid_graph::GridGraph{NT} pins::Vector{Int} mis_overhead::Float64 end function map_config_back(res::SquareQUBOResult, cfg) return cfg[res.pins] end
UnitDiskMapping
https://github.com/QuEraComputing/UnitDiskMapping.jl.git
[ "Apache-2.0" ]
0.4.0
0736fd885e445c13b7b58e31d1ccc37a4950f7df
code
5587
# Do not modify this file, because it is automatically generated by `project/createmap.jl` function mapped_entry_to_compact(::Cross{false}) return Dict([5 => 4, 12 => 4, 8 => 0, 1 => 0, 0 => 0, 6 => 0, 11 => 11, 9 => 9, 14 => 2, 3 => 2, 7 => 2, 4 => 4, 13 => 13, 15 => 11, 2 => 2, 10 => 2]) end function source_entry_to_configs(::Cross{false}) return Dict(Pair{Int64, Vector{BitVector}}[5 => [[1, 0, 1, 0, 0, 0, 1, 0, 1], [1, 0, 0, 1, 0, 0, 1, 0, 1]], 12 => [[0, 0, 1, 0, 1, 0, 1, 0, 1], [0, 1, 0, 0, 1, 0, 1, 0, 1]], 8 => [[0, 0, 1, 0, 1, 0, 0, 1, 0], [0, 1, 0, 0, 1, 0, 0, 1, 0], [0, 0, 1, 0, 1, 0, 1, 0, 0], [0, 1, 0, 0, 1, 0, 1, 0, 0]], 1 => [[1, 0, 1, 0, 0, 0, 0, 1, 0], [1, 0, 0, 1, 0, 0, 0, 1, 0], [1, 0, 1, 0, 0, 0, 1, 0, 0], [1, 0, 0, 1, 0, 0, 1, 0, 0]], 0 => [[0, 1, 0, 1, 0, 0, 0, 1, 0], [0, 1, 0, 1, 0, 0, 1, 0, 0]], 6 => [[0, 1, 0, 1, 0, 1, 0, 0, 1]], 11 => [[1, 0, 1, 0, 1, 1, 0, 1, 0]], 9 => [[1, 0, 1, 0, 1, 0, 0, 1, 0], [1, 0, 1, 0, 1, 0, 1, 0, 0]], 14 => [[0, 0, 1, 0, 1, 1, 0, 0, 1], [0, 1, 0, 0, 1, 1, 0, 0, 1]], 3 => [[1, 0, 1, 0, 0, 1, 0, 1, 0], [1, 0, 0, 1, 0, 1, 0, 1, 0]], 7 => [[1, 0, 1, 0, 0, 1, 0, 0, 1], [1, 0, 0, 1, 0, 1, 0, 0, 1]], 4 => [[0, 1, 0, 1, 0, 0, 1, 0, 1]], 13 => [[1, 0, 1, 0, 1, 0, 1, 0, 1]], 15 => [[1, 0, 1, 0, 1, 1, 0, 0, 1]], 2 => [[0, 1, 0, 1, 0, 1, 0, 1, 0]], 10 => [[0, 0, 1, 0, 1, 1, 0, 1, 0], [0, 1, 0, 0, 1, 1, 0, 1, 0]]]) end mis_overhead(::Cross{false}) = -1 function mapped_entry_to_compact(::Cross{true}) return Dict([5 => 5, 12 => 12, 8 => 0, 1 => 0, 0 => 0, 6 => 6, 11 => 11, 9 => 9, 14 => 14, 3 => 3, 7 => 7, 4 => 0, 13 => 13, 15 => 15, 2 => 0, 10 => 10]) end function source_entry_to_configs(::Cross{true}) return Dict(Pair{Int64, Vector{BitVector}}[5 => [], 12 => [[0, 0, 1, 0, 0, 1]], 8 => [[0, 0, 1, 0, 1, 0]], 1 => [[1, 0, 0, 0, 1, 0]], 0 => [[0, 1, 0, 0, 1, 0]], 6 => [[0, 1, 0, 1, 0, 1]], 11 => [[1, 0, 1, 1, 0, 0]], 9 => [[1, 0, 1, 0, 1, 0]], 14 => [[0, 0, 1, 1, 0, 1]], 3 => [[1, 0, 0, 1, 0, 0]], 7 => [], 4 => [[0, 1, 0, 0, 0, 1]], 13 => [], 15 => [], 2 => [[0, 1, 0, 1, 0, 0]], 10 => [[0, 0, 1, 1, 0, 0]]]) end mis_overhead(::Cross{true}) = -1 function mapped_entry_to_compact(::Turn) return Dict([0 => 0, 2 => 0, 3 => 3, 1 => 0]) end function source_entry_to_configs(::Turn) return Dict(Pair{Int64, Vector{BitVector}}[0 => [[0, 1, 0, 1, 0]], 2 => [[0, 1, 0, 0, 1], [0, 0, 1, 0, 1]], 3 => [[1, 0, 1, 0, 1]], 1 => [[1, 0, 1, 0, 0], [1, 0, 0, 1, 0]]]) end mis_overhead(::Turn) = -1 function mapped_entry_to_compact(::WTurn) return Dict([0 => 0, 2 => 0, 3 => 3, 1 => 0]) end function source_entry_to_configs(::WTurn) return Dict(Pair{Int64, Vector{BitVector}}[0 => [[1, 0, 1, 0, 0]], 2 => [[0, 0, 0, 1, 1], [1, 0, 0, 0, 1]], 3 => [[0, 1, 0, 1, 1]], 1 => [[0, 1, 0, 1, 0], [0, 1, 1, 0, 0]]]) end mis_overhead(::WTurn) = -1 function mapped_entry_to_compact(::Branch) return Dict([0 => 0, 4 => 0, 5 => 5, 6 => 6, 2 => 0, 7 => 7, 3 => 3, 1 => 0]) end function source_entry_to_configs(::Branch) return Dict(Pair{Int64, Vector{BitVector}}[0 => [[0, 1, 0, 1, 0, 0, 1, 0]], 4 => [[0, 0, 1, 0, 0, 1, 0, 1], [0, 1, 0, 0, 0, 1, 0, 1], [0, 1, 0, 1, 0, 0, 0, 1]], 5 => [[1, 0, 1, 0, 0, 1, 0, 1]], 6 => [[0, 0, 1, 0, 1, 1, 0, 1], [0, 1, 0, 0, 1, 1, 0, 1]], 2 => [[0, 0, 1, 0, 1, 0, 1, 0], [0, 1, 0, 0, 1, 0, 1, 0], [0, 0, 1, 0, 1, 1, 0, 0], [0, 1, 0, 0, 1, 1, 0, 0]], 7 => [[1, 0, 1, 0, 1, 1, 0, 1]], 3 => [[1, 0, 1, 0, 1, 0, 1, 0], [1, 0, 1, 0, 1, 1, 0, 0]], 1 => [[1, 0, 1, 0, 0, 0, 1, 0], [1, 0, 1, 0, 0, 1, 0, 0], [1, 0, 0, 1, 0, 0, 1, 0]]]) end mis_overhead(::Branch) = -1 function mapped_entry_to_compact(::BranchFix) return Dict([0 => 0, 2 => 2, 3 => 1, 1 => 1]) end function source_entry_to_configs(::BranchFix) return Dict(Pair{Int64, Vector{BitVector}}[0 => [[0, 1, 0, 1, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 1, 0, 1, 0]], 2 => [[0, 1, 0, 1, 0, 1]], 3 => [[1, 0, 0, 1, 0, 1], [1, 0, 1, 0, 0, 1]], 1 => [[1, 0, 1, 0, 1, 0]]]) end mis_overhead(::BranchFix) = -1 function mapped_entry_to_compact(::TrivialTurn) return Dict([0 => 0, 2 => 2, 3 => 3, 1 => 1]) end function source_entry_to_configs(::TrivialTurn) return Dict(Pair{Int64, Vector{BitVector}}[0 => [[0, 0]], 2 => [[0, 1]], 3 => [], 1 => [[1, 0]]]) end mis_overhead(::TrivialTurn) = 0 function mapped_entry_to_compact(::TCon) return Dict([0 => 0, 4 => 0, 5 => 5, 6 => 6, 2 => 2, 7 => 7, 3 => 3, 1 => 0]) end function source_entry_to_configs(::TCon) return Dict(Pair{Int64, Vector{BitVector}}[0 => [[0, 0, 1, 0]], 4 => [[0, 0, 0, 1]], 5 => [[1, 0, 0, 1]], 6 => [[0, 1, 0, 1]], 2 => [[0, 1, 1, 0]], 7 => [], 3 => [], 1 => [[1, 0, 0, 0]]]) end mis_overhead(::TCon) = 0 function mapped_entry_to_compact(::BranchFixB) return Dict([0 => 0, 2 => 2, 3 => 3, 1 => 1]) end function source_entry_to_configs(::BranchFixB) return Dict(Pair{Int64, Vector{BitVector}}[0 => [[0, 0, 1, 0], [0, 1, 0, 0]], 2 => [[0, 0, 1, 1]], 3 => [[1, 0, 0, 1]], 1 => [[1, 1, 0, 0]]]) end mis_overhead(::BranchFixB) = -1 function mapped_entry_to_compact(::EndTurn) return Dict([0 => 0, 1 => 1]) end function source_entry_to_configs(::EndTurn) return Dict(Pair{Int64, Vector{BitVector}}[0 => [[0, 0, 1], [0, 1, 0]], 1 => [[1, 0, 1]]]) end mis_overhead(::EndTurn) = -1 function mapped_entry_to_compact(::UnitDiskMapping.DanglingLeg) return Dict([0 => 0, 1 => 1]) end function source_entry_to_configs(::UnitDiskMapping.DanglingLeg) return Dict(Pair{Int64, Vector{BitVector}}[0 => [[1, 0, 0], [0, 1, 0]], 1 => [[1, 0, 1]]]) end mis_overhead(::UnitDiskMapping.DanglingLeg) = -1
UnitDiskMapping
https://github.com/QuEraComputing/UnitDiskMapping.jl.git
[ "Apache-2.0" ]
0.4.0
0736fd885e445c13b7b58e31d1ccc37a4950f7df
code
11075
""" ### Provides 1. visualization of mapping 2. the script for generating backward mapping (project/createmap.jl) 3. the script for tikz visualization (project/vizgadget.jl) """ abstract type Pattern end """ ### Properties * size * cross_location * source: (locs, graph, pins/auto) * mapped: (locs, graph/auto, pins/auto) ### Requires 1. equivalence in MIS-compact tropical tensor (you can check it with tests), 2. the size is <= [-2, 2] x [-2, 2] at the cross (not checked, requires cross offset information), 3. ancillas does not appear at the boundary (not checked), """ abstract type CrossPattern <: Pattern end function source_matrix(p::Pattern) m, n = size(p) locs, _, _ = source_graph(p) a = locs2matrix(m, n, locs) if iscon(p) for i in connected_nodes(p) connect_cell!(a, locs[i]...) end end return a end function mapped_matrix(p::Pattern) m, n = size(p) locs, _, _ = mapped_graph(p) locs2matrix(m, n, locs) end function locs2matrix(m, n, locs::AbstractVector{NT}) where NT <: Node a = fill(empty(cell_type(NT)), m, n) for loc in locs add_cell!(a, loc) end return a end function Base.match(p::Pattern, matrix, i, j) a = source_matrix(p) m, n = size(a) all(ci->safe_get(matrix, i+ci.I[1]-1, j+ci.I[2]-1) == a[ci], CartesianIndices((m, n))) end function unmatch(p::Pattern, matrix, i, j) a = mapped_matrix(p) m, n = size(a) all(ci->safe_get(matrix, i+ci.I[1]-1, j+ci.I[2]-1) == a[ci], CartesianIndices((m, n))) end function safe_get(matrix, i, j) m, n = size(matrix) (i<1 || i>m || j<1 || j>n) && return 0 return matrix[i, j] end function safe_set!(matrix, i, j, val) m, n = size(matrix) if i<1 || i>m || j<1 || j>n @assert val == 0 else matrix[i, j] = val end return val end Base.show(io::IO, ::MIME"text/plain", p::Pattern) = Base.show(io, p) function Base.show(io::IO, p::Pattern) print_grid(io, source_matrix(p)) println(io) println(io, " "^(size(p)[2]-1) * "↓") print_grid(io, mapped_matrix(p)) end function apply_gadget!(p::Pattern, matrix, i, j) a = mapped_matrix(p) m, n = size(a) for ci in CartesianIndices((m, n)) safe_set!(matrix, i+ci.I[1]-1, j+ci.I[2]-1, a[ci]) # e.g. the Truncated gadget requires safe set end return matrix end function unapply_gadget!(p, matrix, i, j) a = source_matrix(p) m, n = size(a) for ci in CartesianIndices((m, n)) safe_set!(matrix, i+ci.I[1]-1, j+ci.I[2]-1, a[ci]) # e.g. the Truncated gadget requires safe set end return matrix end struct Cross{CON} <: CrossPattern end iscon(::Cross{CON}) where {CON} = CON # ⋅ ● ⋅ # ◆ ◉ ● # ⋅ ◆ ⋅ function source_graph(::Cross{true}) locs = Node.([(2,1), (2,2), (2,3), (1,2), (2,2), (3,2)]) g = simplegraph([(1,2), (2,3), (4,5), (5,6), (1,6)]) return locs, g, [1,4,6,3] end # ⋅ ● ⋅ # ● ● ● # ⋅ ● ⋅ function mapped_graph(::Cross{true}) locs = Node.([(2,1), (2,2), (2,3), (1,2), (3,2)]) locs, unitdisk_graph(locs, 1.5), [1,4,5,3] end Base.size(::Cross{true}) = (3, 3) cross_location(::Cross{true}) = (2,2) connected_nodes(::Cross{true}) = [1, 6] # ⋅ ⋅ ● ⋅ ⋅ # ● ● ◉ ● ● # ⋅ ⋅ ● ⋅ ⋅ # ⋅ ⋅ ● ⋅ ⋅ function source_graph(::Cross{false}) locs = Node.([(2,1), (2,2), (2,3), (2,4), (2,5), (1,3), (2,3), (3,3), (4,3)]) g = simplegraph([(1,2), (2,3), (3,4), (4,5), (6,7), (7,8), (8,9)]) return locs, g, [1,6,9,5] end # ⋅ ⋅ ● ⋅ ⋅ # ● ● ● ● ● # ⋅ ● ● ● ⋅ # ⋅ ⋅ ● ⋅ ⋅ function mapped_graph(::Cross{false}) locs = Node.([(2,1), (2,2), (2,3), (2,4), (2,5), (1,3), (3,3), (4,3), (3, 2), (3,4)]) locs, unitdisk_graph(locs, 1.5), [1,6,8,5] end Base.size(::Cross{false}) = (4, 5) cross_location(::Cross{false}) = (2,3) struct Turn <: CrossPattern end iscon(::Turn) = false # ⋅ ● ⋅ ⋅ # ⋅ ● ⋅ ⋅ # ⋅ ● ● ● # ⋅ ⋅ ⋅ ⋅ function source_graph(::Turn) locs = Node.([(1,2), (2,2), (3,2), (3,3), (3,4)]) g = simplegraph([(1,2), (2,3), (3,4), (4,5)]) return locs, g, [1,5] end # ⋅ ● ⋅ ⋅ # ⋅ ⋅ ● ⋅ # ⋅ ⋅ ⋅ ● # ⋅ ⋅ ⋅ ⋅ function mapped_graph(::Turn) locs = Node.([(1,2), (2,3), (3,4)]) locs, unitdisk_graph(locs, 1.5), [1,3] end Base.size(::Turn) = (4, 4) cross_location(::Turn) = (3,2) struct Branch <: CrossPattern end # ⋅ ● ⋅ ⋅ # ⋅ ● ⋅ ⋅ # ⋅ ● ● ● # ⋅ ● ● ⋅ # ⋅ ● ⋅ ⋅ function source_graph(::Branch) locs = Node.([(1,2), (2,2), (3,2),(3,3),(3,4),(4,3),(4,2),(5,2)]) g = simplegraph([(1,2), (2,3), (3, 4), (4,5), (4,6), (6,7), (7,8)]) return locs, g, [1, 5, 8] end # ⋅ ● ⋅ ⋅ # ⋅ ⋅ ● ⋅ # ⋅ ● ⋅ ● # ⋅ ⋅ ● ⋅ # ⋅ ● ⋅ ⋅ function mapped_graph(::Branch) locs = Node.([(1,2), (2,3), (3,2),(3,4),(4,3),(5,2)]) return locs, unitdisk_graph(locs, 1.5), [1,4,6] end Base.size(::Branch) = (5, 4) cross_location(::Branch) = (3,2) iscon(::Branch) = false struct BranchFix <: CrossPattern end # ⋅ ● ⋅ ⋅ # ⋅ ● ● ⋅ # ⋅ ● ● ⋅ # ⋅ ● ⋅ ⋅ function source_graph(::BranchFix) locs = Node.([(1,2), (2,2), (2,3),(3,3),(3,2),(4,2)]) g = simplegraph([(1,2), (2,3), (3,4),(4,5), (5,6)]) return locs, g, [1, 6] end # ⋅ ● ⋅ ⋅ # ⋅ ● ⋅ ⋅ # ⋅ ● ⋅ ⋅ # ⋅ ● ⋅ ⋅ function mapped_graph(::BranchFix) locs = Node.([(1,2),(2,2),(3,2),(4,2)]) return locs, unitdisk_graph(locs, 1.5), [1, 4] end Base.size(::BranchFix) = (4, 4) cross_location(::BranchFix) = (2,2) iscon(::BranchFix) = false struct WTurn <: CrossPattern end # ⋅ ⋅ ⋅ ⋅ # ⋅ ⋅ ● ● # ⋅ ● ● ⋅ # ⋅ ● ⋅ ⋅ function source_graph(::WTurn) locs = Node.([(2,3), (2,4), (3,2),(3,3),(4,2)]) g = simplegraph([(1,2), (1,4), (3,4),(3,5)]) return locs, g, [2, 5] end # ⋅ ⋅ ⋅ ⋅ # ⋅ ⋅ ⋅ ● # ⋅ ⋅ ● ⋅ # ⋅ ● ⋅ ⋅ function mapped_graph(::WTurn) locs = Node.([(2,4),(3,3),(4,2)]) return locs, unitdisk_graph(locs, 1.5), [1, 3] end Base.size(::WTurn) = (4, 4) cross_location(::WTurn) = (2,2) iscon(::WTurn) = false struct BranchFixB <: CrossPattern end # ⋅ ⋅ ⋅ ⋅ # ⋅ ⋅ ● ⋅ # ⋅ ● ● ⋅ # ⋅ ● ⋅ ⋅ function source_graph(::BranchFixB) locs = Node.([(2,3),(3,2),(3,3),(4,2)]) g = simplegraph([(1,3), (2,3), (2,4)]) return locs, g, [1, 4] end # ⋅ ⋅ ⋅ ⋅ # ⋅ ⋅ ⋅ ⋅ # ⋅ ● ⋅ ⋅ # ⋅ ● ⋅ ⋅ function mapped_graph(::BranchFixB) locs = Node.([(3,2),(4,2)]) return locs, unitdisk_graph(locs, 1.5), [1, 2] end Base.size(::BranchFixB) = (4, 4) cross_location(::BranchFixB) = (2,2) iscon(::BranchFixB) = false struct TCon <: CrossPattern end # ⋅ ◆ ⋅ ⋅ # ◆ ● ⋅ ⋅ # ⋅ ● ⋅ ⋅ function source_graph(::TCon) locs = Node.([(1,2), (2,1), (2,2),(3,2)]) g = simplegraph([(1,2), (1,3), (3,4)]) return locs, g, [1,2,4] end connected_nodes(::TCon) = [1, 2] # ⋅ ● ⋅ ⋅ # ● ⋅ ● ⋅ # ⋅ ● ⋅ ⋅ function mapped_graph(::TCon) locs = Node.([(1,2),(2,1),(2,3),(3,2)]) return locs, unitdisk_graph(locs, 1.5), [1,2,4] end Base.size(::TCon) = (3,4) cross_location(::TCon) = (2,2) iscon(::TCon) = true struct TrivialTurn <: CrossPattern end # ⋅ ◆ # ◆ ⋅ function source_graph(::TrivialTurn) locs = Node.([(1,2), (2,1)]) g = simplegraph([(1,2)]) return locs, g, [1,2] end # ⋅ ● # ● ⋅ function mapped_graph(::TrivialTurn) locs = Node.([(1,2),(2,1)]) return locs, unitdisk_graph(locs, 1.5), [1,2] end Base.size(::TrivialTurn) = (2,2) cross_location(::TrivialTurn) = (2,2) iscon(::TrivialTurn) = true connected_nodes(::TrivialTurn) = [1, 2] struct EndTurn <: CrossPattern end # ⋅ ● ⋅ ⋅ # ⋅ ● ● ⋅ # ⋅ ⋅ ⋅ ⋅ function source_graph(::EndTurn) locs = Node.([(1,2), (2,2), (2,3)]) g = simplegraph([(1,2), (2,3)]) return locs, g, [1] end # ⋅ ● ⋅ ⋅ # ⋅ ⋅ ⋅ ⋅ # ⋅ ⋅ ⋅ ⋅ function mapped_graph(::EndTurn) locs = Node.([(1,2)]) return locs, unitdisk_graph(locs, 1.5), [1] end Base.size(::EndTurn) = (3,4) cross_location(::EndTurn) = (2,2) iscon(::EndTurn) = false ############## Rotation and Flip ############### struct RotatedGadget{GT} <: Pattern gadget::GT n::Int end function Base.size(r::RotatedGadget) m, n = size(r.gadget) return r.n%2==0 ? (m, n) : (n, m) end struct ReflectedGadget{GT} <: Pattern gadget::GT mirror::String end function Base.size(r::ReflectedGadget) m, n = size(r.gadget) return r.mirror == "x" || r.mirror == "y" ? (m, n) : (n, m) end for T in [:RotatedGadget, :ReflectedGadget] @eval function source_graph(r::$T) locs, graph, pins = source_graph(r.gadget) center = cross_location(r.gadget) locs = map(loc->offset(loc, _get_offset(r)), _apply_transform.(Ref(r), locs, Ref(center))) return locs, graph, pins end @eval function mapped_graph(r::$T) locs, graph, pins = mapped_graph(r.gadget) center = cross_location(r.gadget) locs = map(loc->offset(loc, _get_offset(r)), _apply_transform.(Ref(r), locs, Ref(center))) return locs, graph, pins end @eval cross_location(r::$T) = cross_location(r.gadget) .+ _get_offset(r) @eval function _get_offset(r::$T) m, n = size(r.gadget) a, b = _apply_transform.(Ref(r), Node.([(1,1), (m,n)]), Ref(cross_location(r.gadget))) return 1-min(a[1], b[1]), 1-min(a[2], b[2]) end @eval iscon(r::$T) = iscon(r.gadget) @eval connected_nodes(r::$T) = connected_nodes(r.gadget) @eval vertex_overhead(p::$T) = vertex_overhead(p.gadget) @eval function mapped_entry_to_compact(r::$T) return mapped_entry_to_compact(r.gadget) end @eval function source_entry_to_configs(r::$T) return source_entry_to_configs(r.gadget) end @eval mis_overhead(p::$T) = mis_overhead(p.gadget) end for T in [:RotatedGadget, :ReflectedGadget] @eval _apply_transform(r::$T, node::Node, center) = chxy(node, _apply_transform(r, getxy(node), center)) end function _apply_transform(r::RotatedGadget, loc::Tuple{Int,Int}, center) for _=1:r.n loc = rotate90(loc, center) end return loc end function _apply_transform(r::ReflectedGadget, loc::Tuple{Int,Int}, center) loc = if r.mirror == "x" reflectx(loc, center) elseif r.mirror == "y" reflecty(loc, center) elseif r.mirror == "diag" reflectdiag(loc, center) elseif r.mirror == "offdiag" reflectoffdiag(loc, center) else throw(ArgumentError("reflection direction $(r.direction) is not defined!")) end return loc end function vertex_overhead(p::Pattern) nv(mapped_graph(p)[2]) - nv(source_graph(p)[1]) end function mapped_boundary_config(p::Pattern, config) _boundary_config(mapped_graph(p)[3], config) end function source_boundary_config(p::Pattern, config) _boundary_config(source_graph(p)[3], config) end function _boundary_config(pins, config) res = 0 for (i,p) in enumerate(pins) res += Int(config[p]) << (i-1) end return res end function rotated_and_reflected(p::Pattern) patterns = Pattern[p] source_matrices = [source_matrix(p)] for pi in [[RotatedGadget(p, i) for i=1:3]..., [ReflectedGadget(p, axis) for axis in ["x", "y", "diag", "offdiag"]]...] m = source_matrix(pi) if m ∉ source_matrices push!(patterns, pi) push!(source_matrices, m) end end return patterns end
UnitDiskMapping
https://github.com/QuEraComputing/UnitDiskMapping.jl.git
[ "Apache-2.0" ]
0.4.0
0736fd885e445c13b7b58e31d1ccc37a4950f7df
code
3804
struct Gate{SYM} end Gate(x::Symbol) = Gate{x}() autosize(locs) = maximum(first, locs), maximum(last, locs) function gate_gadget(::Gate{:NOT}) locs = [(1, 1), (3, 1)] weights = fill(1, 2) inputs, outputs = [1], [2] return GridGraph(autosize(locs), Node.(locs, weights), 2.3), inputs, outputs end function gate_gadget(::Gate{:NOR}) locs = [(2, 1), (1, 3), (2, 5), (4, 2), (4, 4)] weights = fill(1, 5) inputs, outputs = [1, 3], [2] return GridGraph(autosize(locs), Node.(locs, weights), 2.3), inputs, outputs end function gate_gadget(::Gate{:OR}) locs = [(3, 1), (2, 3), (3, 5), (5, 2), (5, 4), (1,3)] weights = fill(1, 6) weights[2] = 2 inputs, outputs = [1,3], [6] return GridGraph(autosize(locs), Node.(locs, weights), 2.3), inputs, outputs end function gate_gadget(::Gate{:NXOR}) locs = [(2,1), (1,3), (2, 5), (3, 2), (3, 4), (4, 3)] weights = [1, 2, 1, 2, 2, 1] inputs, outputs = [1,3], [6] return GridGraph(autosize(locs), Node.(locs, weights), 2.3), inputs, outputs end function gate_gadget(::Gate{:XOR}) locs = [(2,1), (1,3), (2, 5), (3, 2), (3, 4), (4, 3), (6, 3)] weights = [1, 2, 1, 2, 2, 2, 1] inputs, outputs = [1,3], [7] return GridGraph(autosize(locs), Node.(locs, weights), 2.3), inputs, outputs end function gate_gadget(::Gate{:AND}) u = 1 locs = [(-3u, 0), (-u, 0), (0, -u), (0, u), (2u, -u), (2u, u)] locs = map(loc->loc .+ (2u+1, u+1), locs) weights = fill(1, 6) weights[2] = 2 inputs, outputs = [1,6], [3] return GridGraph(autosize(locs), Node.(locs, weights), 2.3), inputs, outputs end # inputs are mutually disconnected # full adder struct VertexScheduler count::Base.RefValue{Int} circuit::Vector{Pair{Gate,Vector{Int}}} edges::Vector{Tuple{Int,Int}} weights::Vector{Int} end VertexScheduler() = VertexScheduler(Ref(0), Pair{Gate,Vector{Int}}[], Tuple{Int,Int}[], Int[]) function newvertices!(vs::VertexScheduler, k::Int=1) vs.count[] += k append!(vs.weights, zeros(Int,k)) return vs.count[]-k+1:vs.count[] end function apply!(g::Gate{SYM}, vs::VertexScheduler, a::Int, b::Int) where SYM locs, edges, weights, inputs, outputs = gadget(g) vertices = newvertices!(vs, length(locs)-2) out = vertices[end] # map locations mapped_locs = zeros(Int, length(locs)) mapped_locs[inputs] .= [a, b] mapped_locs[outputs] .= [out] mapped_locs[setdiff(1:length(locs), inputs ∪ outputs)] .= vertices[1:end-1] # map edges for (i, j) in edges push!(vs.edges, (mapped_locs[i], mapped_locs[j])) end # add weights vs.weights[mapped_locs] .+= weights # update circuit push!(vs.circuit, g => [inputs..., outputs...]) return out end function logicgate_multiplier() c = VertexScheduler() x0, x1, x2, x3 = newvertices!(c, 4) x12 = apply!(Gate(:AND), c, x1, x2) x4 = apply!(Gate(:XOR), c, x0, x12) x5 = apply!(Gate(:XOR), c, x3, x4) # 5 is sum x6 = apply!(Gate(:AND), c, x3, x4) x7 = apply!(Gate(:AND), c, x0, x12) x8 = apply!(Gate(:OR), c, x6, x7) return c, [x0, x1, x2, x3], [x8, x5] end truth_table(solver, gate::Gate) = truth_table(solver, gate_gadget(gate)...) function truth_table(misenumerator, grid_graph::GridGraph, inputs, outputs) g, ws = graph_and_weights(grid_graph) res = misenumerator(g, ws) # create a k-v pair d = Dict{Int,Int}() for config in res input = sum(i->config[inputs[i]]<<(i-1), 1:length(inputs)) output = sum(i->config[outputs[i]]<<(i-1), 1:length(outputs)) if !haskey(d,input) d[input] = output else @assert d[input] == output end end @assert length(d) == 1<<length(inputs) return [d[i] for i=0:1<<length(inputs)-1] end
UnitDiskMapping
https://github.com/QuEraComputing/UnitDiskMapping.jl.git
[ "Apache-2.0" ]
0.4.0
0736fd885e445c13b7b58e31d1ccc37a4950f7df
code
15556
# UnWeighted mode struct UnWeighted end # Weighted mode struct Weighted end Base.@kwdef struct MCell{WT} <: AbstractCell{WT} occupied::Bool = true doubled::Bool = false connected::Bool = false weight::WT = ONE() end MCell(x::SimpleCell) = MCell(; occupied=x.occupied, weight=x.weight) const UnWeightedMCell = MCell{ONE} const WeightedMCell{T<:Real} = MCell{T} Base.isempty(cell::MCell) = !cell.occupied Base.empty(::Type{MCell{WT}}) where WT = MCell(occupied=false, weight=one(WT)) function print_cell(io::IO, x::UnWeightedMCell; show_weight=false) if x.occupied if x.doubled print(io, "◉") elseif x.connected print(io, "◆") else print(io, "●") end else print(io, "⋅") end end function print_cell(io::IO, x::WeightedMCell; show_weight=false) if x.occupied if x.doubled if x.weight == 2 print(io, "◉") else print(io, "?") end elseif x.connected if x.weight == 1 print(io, "◇") elseif x.weight == 2 print(io, "◆") else print(io, "?") end elseif x.weight >= 3 print(io, show_weight ? "$(x.weight)" : "▴") elseif x.weight == 2 print(io, "●") elseif x.weight == 1 print(io, "○") elseif x.weight == 0 print(io, "∅") else print(io, "?") end else print(io, "⋅") end end struct MappingGrid{CT<:AbstractCell} lines::Vector{CopyLine} padding::Int content::Matrix{CT} end Base.:(==)(ug::MappingGrid{CT}, ug2::MappingGrid{CT}) where CT = ug.lines == ug2.lines && ug.content == ug2.content Base.size(ug::MappingGrid, args...) = size(ug.content, args...) padding(ug::MappingGrid) = ug.padding coordinates(ug::MappingGrid) = [ci.I for ci in findall(!isempty, ug.content)] function add_cell!(m::AbstractMatrix{<:MCell}, node::UnWeightedNode) i, j = node if isempty(m[i,j]) m[i, j] = MCell() else @assert !(m[i, j].doubled) && !(m[i, j].connected) m[i, j] = MCell(doubled=true) end end function connect_cell!(m::AbstractMatrix{<:MCell}, i::Int, j::Int) if m[i, j] !== MCell() error("can not connect at [$i,$j] of type $(m[i,j])") end m[i, j] = MCell(connected=true) end function Graphs.SimpleGraph(ug::MappingGrid) if any(x->x.doubled || x.connected, ug.content) error("This mapping is not done yet!") end return unitdisk_graph(coordinates(ug), 1.5) end function GridGraph(ug::MappingGrid) if any(x->x.doubled || x.connected, ug.content) error("This mapping is not done yet!") end return GridGraph(size(ug), [Node((i,j), ug.content[i,j].weight) for (i, j) in coordinates(ug)], 1.5) end Base.show(io::IO, ug::MappingGrid) = print_grid(io, ug.content) Base.copy(ug::MappingGrid) = MappingGrid(ug.lines, ug.padding, copy(ug.content)) # TODO: # 1. check if the resulting graph is a unit-disk # 2. other simplification rules const crossing_ruleset = (Cross{false}(), Turn(), WTurn(), Branch(), BranchFix(), TCon(), TrivialTurn(), RotatedGadget(TCon(), 1), ReflectedGadget(Cross{true}(), "y"), ReflectedGadget(TrivialTurn(), "y"), BranchFixB(), EndTurn(), ReflectedGadget(RotatedGadget(TCon(), 1), "y")) get_ruleset(::UnWeighted) = crossing_ruleset function apply_crossing_gadgets!(mode, ug::MappingGrid) ruleset = get_ruleset(mode) tape = Tuple{Pattern,Int,Int}[] n = length(ug.lines) for j=1:n # start from 0 because there can be one empty padding column/row. for i=1:n for pattern in ruleset x, y = crossat(ug, i, j) .- cross_location(pattern) .+ (1,1) if match(pattern, ug.content, x, y) apply_gadget!(pattern, ug.content, x, y) push!(tape, (pattern, x, y)) break end end end end return ug, tape end function apply_simplifier_gadgets!(ug::MappingGrid; ruleset, nrepeat::Int=10) tape = Tuple{Pattern,Int,Int}[] for _ in 1:nrepeat, pattern in ruleset for j=0:size(ug, 2) # start from 0 because there can be one empty padding column/row. for i=0:size(ug, 1) if match(pattern, ug.content, i, j) apply_gadget!(pattern, ug.content, i, j) push!(tape, (pattern, i, j)) end end end end return ug, tape end function unapply_gadgets!(ug::MappingGrid, tape, configurations) for (pattern, i, j) in Base.Iterators.reverse(tape) @assert unmatch(pattern, ug.content, i, j) for c in configurations map_config_back!(pattern, i, j, c) end unapply_gadget!(pattern, ug.content, i, j) end cfgs = map(configurations) do c map_config_copyback!(ug, c) end return ug, cfgs end # returns a vector of configurations function _map_config_back(s::Pattern, config) d1 = mapped_entry_to_compact(s) d2 = source_entry_to_configs(s) # get the pin configuration bc = mapped_boundary_config(s, config) return d2[d1[bc]] end function map_config_back!(p::Pattern, i, j, configuration) m, n = size(p) locs, graph, pins = mapped_graph(p) config = [configuration[i+loc[1]-1, j+loc[2]-1] for loc in locs] newconfig = rand(_map_config_back(p, config)) # clear canvas for i_=i:i+m-1, j_=j:j+n-1 safe_set!(configuration,i_,j_, 0) end locs0, graph0, pins0 = source_graph(p) for (k, loc) in enumerate(locs0) configuration[i+loc[1]-1,j+loc[2]-1] += newconfig[k] end return configuration end function map_config_copyback!(ug::MappingGrid, c::AbstractMatrix) res = zeros(Int, length(ug.lines)) for line in ug.lines locs = copyline_locations(nodetype(ug), line; padding=ug.padding) count = 0 for (iloc, loc) in enumerate(locs) gi, ci = ug.content[loc...], c[loc...] if gi.doubled if ci == 2 count += 1 elseif ci == 0 count += 0 else # ci = 1 if c[locs[iloc-1]...] == 0 && c[locs[iloc+1]...] == 0 count += 1 end end elseif !isempty(gi) count += ci else error("check your grid at location ($(locs...))!") end end res[line.vertex] = count - (length(locs) ÷ 2) end return res end function remove_order(g::AbstractGraph, vertex_order::AbstractVector{Int}) addremove = [Int[] for _=1:nv(g)] adjm = adjacency_matrix(g) counts = zeros(Int, nv(g)) totalcounts = sum(adjm; dims=1) removed = Int[] for (i, v) in enumerate(vertex_order) counts .+= adjm[:,v] for j=1:nv(g) # to avoid repeated remove! if j ∉ removed && counts[j] == totalcounts[j] push!(addremove[max(i, findfirst(==(j), vertex_order))], j) push!(removed, j) end end end return addremove end function center_location(tc::CopyLine; padding::Int) s = 4 I = s*(tc.hslot-1)+padding+2 J = s*(tc.vslot-1)+padding+1 return I, J end # NT is node type function copyline_locations(::Type{NT}, tc::CopyLine; padding::Int) where NT s = 4 nline = 0 I, J = center_location(tc; padding=padding) locations = NT[] # grow up start = I+s*(tc.vstart-tc.hslot)+1 if tc.vstart < tc.hslot nline += 1 end for i=I:-1:start # even number of nodes up push!(locations, node(NT, i, J, 1+(i!=start))) # half weight on last node end # grow down stop = I+s*(tc.vstop-tc.hslot)-1 if tc.vstop > tc.hslot nline += 1 end for i=I:stop # even number of nodes down if i == I push!(locations, node(NT, i+1, J+1, 2)) else push!(locations, node(NT, i, J, 1+(i!=stop))) end end # grow right stop = J+s*(tc.hstop-tc.vslot)-1 if tc.hstop > tc.vslot nline += 1 end for j=J+2:stop # even number of nodes right push!(locations, node(NT, I, j, 1 + (j!=stop))) # half weight on last node end push!(locations, node(NT, I, J+1, nline)) # center node return locations end nodetype(::MappingGrid{MCell{WT}}) where WT = Node{WT} cell_type(::Type{Node{WT}}) where WT = MCell{WT} nodetype(::UnWeighted) = UnWeightedNode node(::Type{<:UnWeightedNode}, i, j, w) = Node(i, j) function ugrid(mode, g::SimpleGraph, vertex_order::AbstractVector{Int}; padding=2, nrow=nv(g)) @assert padding >= 2 # create an empty canvas n = nv(g) s = 4 N = (n-1)*s+1+2*padding M = nrow*s+1+2*padding u = fill(empty(mode isa Weighted ? MCell{Int} : MCell{ONE}), M, N) # add T-copies copylines = create_copylines(g, vertex_order) for tc in copylines for loc in copyline_locations(nodetype(mode), tc; padding=padding) add_cell!(u, loc) end end ug = MappingGrid(copylines, padding, u) for e in edges(g) I, J = crossat(ug, e.src, e.dst) connect_cell!(ug.content, I, J-1) if !isempty(ug.content[I-1, J]) connect_cell!(ug.content, I-1, J) else connect_cell!(ug.content, I+1, J) end end return ug end function crossat(ug::MappingGrid, v, w) i, j = findfirst(x->x.vertex==v, ug.lines), findfirst(x->x.vertex==w, ug.lines) i, j = minmax(i, j) hslot = ug.lines[i].hslot s = 4 return (hslot-1)*s+2+ug.padding, (j-1)*s+1+ug.padding end """ embed_graph([mode,] g::SimpleGraph; vertex_order=MinhThiTrick()) Embed graph `g` into a unit disk grid, where the optional argument `mode` can be `Weighted()` or `UnWeighted`. The `vertex_order` can be a vector or one of the following inputs * `Greedy()` fast but non-optimal. * `MinhThiTrick()` slow but optimal. """ embed_graph(g::SimpleGraph; vertex_order=MinhThiTrick()) = embed_graph(UnWeighted(), g; vertex_order) function embed_graph(mode, g::SimpleGraph; vertex_order=MinhThiTrick()) if vertex_order isa AbstractVector L = PathDecomposition.Layout(g, collect(vertex_order[end:-1:1])) else L = pathwidth(g, vertex_order) end # we reverse the vertex order of the pathwidth result, # because this order corresponds to the vertex-seperation. ug = ugrid(mode, g, L.vertices[end:-1:1]; padding=2, nrow=L.vsep+1) return ug end function mis_overhead_copylines(ug::MappingGrid{WC}) where {WC} sum(ug.lines) do line mis_overhead_copyline(WC <: WeightedMCell ? Weighted() : UnWeighted(), line) end end function mis_overhead_copyline(w::W, line::CopyLine) where W if W === Weighted s = 4 return (line.hslot - line.vstart) * s + (line.vstop - line.hslot) * s + max((line.hstop - line.vslot) * s - 2, 0) else locs = copyline_locations(nodetype(w), line; padding=2) @assert length(locs) % 2 == 1 return length(locs) ÷ 2 end end ##### Interfaces ###### struct MappingResult{NT} grid_graph::GridGraph{NT} lines::Vector{CopyLine} padding::Int mapping_history::Vector{Tuple{Pattern,Int,Int}} mis_overhead::Int end """ map_graph([mode=UnWeighted(),] g::SimpleGraph; vertex_order=MinhThiTrick(), ruleset=[...]) Map a graph to a unit disk grid graph that being "equivalent" to the original graph, and return a `MappingResult` instance. Here "equivalent" means a maximum independent set in the grid graph can be mapped back to a maximum independent set of the original graph in polynomial time. Positional Arguments ------------------------------------- * `mode` is optional, it can be `Weighted()` (default) or `UnWeighted()`. * `g` is a graph instance, check the documentation of [`Graphs`](https://juliagraphs.org/Graphs.jl/dev/) for details. Keyword Arguments ------------------------------------- * `vertex_order` specifies the order finding algorithm for vertices. Different vertex orders have different path width, i.e. different depth of mapped grid graph. It can be a vector or one of the following inputs * `Greedy()` fast but not optimal. * `MinhThiTrick()` slow but optimal. * `ruleset` specifies and extra set of optimization patterns (not the crossing patterns). """ function map_graph(g::SimpleGraph; vertex_order=MinhThiTrick(), ruleset=default_simplifier_ruleset(UnWeighted())) map_graph(UnWeighted(), g; ruleset=ruleset, vertex_order=vertex_order) end function map_graph(mode, g::SimpleGraph; vertex_order=MinhThiTrick(), ruleset=default_simplifier_ruleset(mode)) ug = embed_graph(mode, g; vertex_order=vertex_order) mis_overhead0 = mis_overhead_copylines(ug) ug, tape = apply_crossing_gadgets!(mode, ug) ug, tape2 = apply_simplifier_gadgets!(ug; ruleset=ruleset) mis_overhead1 = isempty(tape) ? 0 : sum(x->mis_overhead(x[1]), tape) mis_overhead2 = isempty(tape2) ? 0 : sum(x->mis_overhead(x[1]), tape2) return MappingResult(GridGraph(ug), ug.lines, ug.padding, vcat(tape, tape2) , mis_overhead0 + mis_overhead1 + mis_overhead2) end """ map_configs_back(res::MappingResult, configs::AbstractVector) Map MIS solutions for the mapped graph to a solution for the source graph. """ function map_configs_back(res::MappingResult, configs::AbstractVector) cs = map(configs) do cfg c = zeros(Int, size(res.grid_graph)) for (i, n) in enumerate(res.grid_graph.nodes) c[n.loc...] = cfg[i] end c end return _map_configs_back(res, cs) end """ map_config_back(map_result, config) Map a solution `config` for the mapped MIS problem to a solution for the source problem. """ function map_config_back(res::MappingResult, cfg) return map_configs_back(res, [cfg])[] end function _map_configs_back(r::MappingResult{UnWeightedNode}, configs::AbstractVector{<:AbstractMatrix}) cm = cell_matrix(r.grid_graph) ug = MappingGrid(r.lines, r.padding, MCell.(cm)) unapply_gadgets!(ug, r.mapping_history, copy.(configs))[2] end default_simplifier_ruleset(::UnWeighted) = vcat([rotated_and_reflected(rule) for rule in simplifier_ruleset]...) default_simplifier_ruleset(::Weighted) = weighted.(default_simplifier_ruleset(UnWeighted())) print_config(mr::MappingResult, config::AbstractMatrix) = print_config(stdout, mr, config) function print_config(io::IO, mr::MappingResult, config::AbstractMatrix) content = cell_matrix(mr.grid_graph) @assert size(content) == size(config) for i=1:size(content, 1) for j=1:size(content, 2) cell = content[i, j] if !isempty(cell) if !iszero(config[i,j]) print(io, "●") else print(io, "○") end else if !iszero(config[i,j]) error("configuration not valid, there is not vertex at location $((i,j)).") end print(io, "⋅") end print(io, " ") end if i!=size(content, 1) println(io) end end end
UnitDiskMapping
https://github.com/QuEraComputing/UnitDiskMapping.jl.git
[ "Apache-2.0" ]
0.4.0
0736fd885e445c13b7b58e31d1ccc37a4950f7df
code
4262
const multiplier_locs_and_weights = [ ((0, -3), 1), # x0 ((2, -1), 2), ((8, 0), 1), # x1 ((1, 1), 3), ((3, 1), 3), ((0, 2), 1), # x7 ((5, 2), 2), ((7, 2), 3), ((9, 2), 3), ((11, 2), 1), # x2 ((1, 3), 3), ((3, 3), 3), ((7, 4), 4), ((9, 4), 3), ((1, 5), 2), ((3, 6), 2), ((5, 6), 2), ((8, 6), 2), ((2, 7), 3), ((4, 7), 2), ((8, 7), 2), ((0, 8), 1), # x6 ((11, 8), 1), # x3 ((2, 9), 3), ((4, 9), 2), ((7, 9), 3), ((9, 9), 3), ((3, 10), 2), ((5, 10), 2), ((7, 10), 3), ((9, 10), 3), ((1, 11), 2), ((8, 12), 2), ((3, 13), 2), ((5, 14), 2), ((7, 14), 3), ((9, 14), 3), ((11, 15), 1), # x4 ((7, 16), 3), ((9, 16), 3), ((8, 18), 1), # x5 ] """ multiplier() Returns the multiplier as a `SimpleGridGraph` instance and a vector of `pins`. The logic gate constraints on `pins` are * x1 + x2*x3 + x4 == x5 + 2*x7 * x2 == x6 * x3 == x8 """ function multiplier() xmin = minimum(x->x[1][1], multiplier_locs_and_weights) xmax = maximum(x->x[1][1], multiplier_locs_and_weights) ymin = minimum(x->x[1][2], multiplier_locs_and_weights) ymax = maximum(x->x[1][2], multiplier_locs_and_weights) nodes = [Node(loc[2]-ymin+1, loc[1]-xmin+1, w) for (loc, w) in multiplier_locs_and_weights] pins = [1,3,10,23,38,41,22,6] return GridGraph((ymax-ymin+1, xmax-xmin+1), nodes, 2*sqrt(2)*1.01), pins end """ map_factoring(M::Int, N::Int) Setup a factoring circuit with M-bit `q` register (second input) and N-bit `p` register (first input). The `m` register size is (M+N-1), which stores the output. Call [`solve_factoring`](@ref) to solve a factoring problem with the mapping result. """ function map_factoring(M::Int, N::Int) block, pin = multiplier() m, n = size(block) .- (4, 1) G = glue(fill(cell_matrix(block), (M,N)), 4, 1) WIDTH = 3 leftside = zeros(eltype(G), size(G,1), WIDTH) for i=1:M-1 for (a, b) in [(12, WIDTH), (14,1), (16,1), (18, 2), (14,1), (16,1), (18, 2), (19,WIDTH)] leftside[(i-1)*m+a, b] += SimpleCell(1) end end G = glue(reshape([leftside, G], 1, 2), 0, 1) gg = GridGraph(G, block.radius) locs = getfield.(gg.nodes, :loc) coo(i, j) = ((i-1)*m, (j-1)*n+WIDTH-1) pinloc(i, j, index) = findfirst(==(block.nodes[pin[index]].loc .+ coo(i, j)), locs) pp = [pinloc(1, j, 2) for j=N:-1:1] pq = [pinloc(i, N, 3) for i=1:M] pm = [ [pinloc(i, N, 5) for i=1:M]..., [pinloc(M, j, 5) for j=N-1:-1:1]..., pinloc(M,1,7) ] p0 = [ [pinloc(1, j, 1) for j=1:N]..., [pinloc(i, N, 4) for i=1:M]..., ] return FactoringResult(gg, pp, pq, pm, p0) end struct FactoringResult{NT} grid_graph::GridGraph{NT} pins_input1::Vector{Int} pins_input2::Vector{Int} pins_output::Vector{Int} pins_zeros::Vector{Int} end function map_config_back(res::FactoringResult, cfg) return asint(cfg[res.pins_input1]), asint(cfg[res.pins_input2]) end # convert vector to integer asint(v::AbstractVector) = sum(i->v[i]<<(i-1), 1:length(v)) """ solve_factoring(missolver, mres::FactoringResult, x::Int) -> (Int, Int) Solve a factoring problem by solving the mapped weighted MIS problem on a unit disk grid graph. It returns (a, b) such that ``a b = x`` holds. `missolver(graph, weights)` should return a vector of integers as the solution. """ function solve_factoring(missolver, mres::FactoringResult, target::Int) g, ws = graph_and_weights(mres.grid_graph) mg, vmap = set_target(g, [mres.pins_zeros..., mres.pins_output...], target << length(mres.pins_zeros)) res = missolver(mg, ws[vmap]) cfg = zeros(Int, nv(g)) cfg[vmap] .= res return map_config_back(mres, cfg) end function set_target(g::SimpleGraph, pins::AbstractVector, target::Int) vs = collect(vertices(g)) for (i, p) in enumerate(pins) bitval = (target >> (i-1)) & 1 if bitval == 1 # remove pin and its neighbor vs = setdiff(vs, neighbors(g, p) ∪ [p]) else # remove pin vs = setdiff(vs, [p]) end end return induced_subgraph(g, vs) end
UnitDiskMapping
https://github.com/QuEraComputing/UnitDiskMapping.jl.git
[ "Apache-2.0" ]
0.4.0
0736fd885e445c13b7b58e31d1ccc37a4950f7df
code
4480
""" ### Properties * size * source: (locs, graph/auto, pins/auto) * mapped: (locs, graph/auto, pins/auto) ### Requires 1. equivalence in MIS-compact tropical tensor (you can check it with tests), 2. ancillas does not appear at the boundary (not checked), """ abstract type SimplifyPattern <: Pattern end iscon(s::SimplifyPattern) = false cross_location(s::SimplifyPattern) = size(s) .÷ 2 function source_locations end function mapped_locations end function mapped_graph(p::SimplifyPattern) locs = mapped_locations(p) return locs, unitdisk_graph(locs, 1.5), vertices_on_boundary(locs, size(p)...) end function source_graph(p::SimplifyPattern) locs = source_locations(p) return locs, unitdisk_graph(locs, 1.5), vertices_on_boundary(locs, size(p)...) end function vertices_on_boundary(locs, m, n) findall(loc->loc[1]==1 || loc[1]==m || loc[2]==1 || loc[2]==n, locs) end vertices_on_boundary(gg::GridGraph) = vertices_on_boundary(gg.nodes, gg.size...) #################### Macros ###############################3 function gridgraphfromstring(mode::Union{Weighted, UnWeighted}, str::String; radius) item_array = Vector{Tuple{Bool,Int}}[] for line in split(str, "\n") items = [item for item in split(line, " ") if !isempty(item)] list = if mode isa Weighted # TODO: the weighted version need to be tested! Consider removing it! @assert all(item->item ∈ (".", "⋅", "@", "●", "o", "◯") || (length(item)==1 && isdigit(item[1])), items) map(items) do item if item ∈ ("@", "●") true, 2 elseif item ∈ ("o", "◯") true, 1 elseif item ∈ (".", "⋅") false, 0 else true, parse(Int, item) end end else @assert all(item->item ∈ (".", "⋅", "@", "●"), items) map(items) do item item ∈ ("@", "●") ? (true, 1) : (false, 0) end end if !isempty(list) push!(item_array, list) end end @assert all(==(length(item_array[1])), length.(item_array)) mat = permutedims(hcat(item_array...), (2,1)) # generate GridGraph from matrix locs = [_to_node(mode, ci.I, mat[ci][2]) for ci in findall(first, mat)] return GridGraph(size(mat), locs, radius) end _to_node(::UnWeighted, loc::Tuple{Int,Int}, w::Int) = Node(loc) _to_node(::Weighted, loc::Tuple{Int,Int}, w::Int) = Node(loc, w) function gg_func(mode, expr) @assert expr.head == :(=) name = expr.args[1] pair = expr.args[2] @assert pair.head == :(call) && pair.args[1] == :(=>) g1 = gridgraphfromstring(mode, pair.args[2]; radius=1.5) g2 = gridgraphfromstring(mode, pair.args[3]; radius=1.5) @assert g1.size == g2.size @assert g1.nodes[vertices_on_boundary(g1)] == g2.nodes[vertices_on_boundary(g2)] return quote struct $(esc(name)) <: SimplifyPattern end Base.size(::$(esc(name))) = $(g1.size) $UnitDiskMapping.source_locations(::$(esc(name))) = $(g1.nodes) $UnitDiskMapping.mapped_locations(::$(esc(name))) = $(g2.nodes) $(esc(name)) end end macro gg(expr) gg_func(UnWeighted(), expr) end # # How to add a new simplification rule # 1. specify a gadget like the following. Use either `o` and `●` to specify a vertex, # either `.` or `⋅` to specify a placeholder. @gg DanglingLeg = """ ⋅ ⋅ ⋅ ⋅ ● ⋅ ⋅ ● ⋅ ⋅ ● ⋅ """=>""" ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ● ⋅ """ # 2. add your gadget to simplifier ruleset. const simplifier_ruleset = SimplifyPattern[DanglingLeg()] # set centers (vertices with weight 1) for the weighted version source_centers(::WeightedGadget{DanglingLeg}) = [(2,2)] mapped_centers(::WeightedGadget{DanglingLeg}) = [(4,2)] # 3. run the script `project/createmap` to generate `mis_overhead` and other informations required # for mapping back. (Note: will overwrite the source file `src/extracting_results.jl`) # simple rules for crossing gadgets for (GT, s1, m1, s3, m3) in [ (:(DanglingLeg), [1], [1], [], []), ] @eval function weighted(g::$GT) slocs, sg, spins = source_graph(g) mlocs, mg, mpins = mapped_graph(g) sw, mw = fill(2, length(slocs)), fill(2, length(mlocs)) sw[$(s1)] .= 1 sw[$(s3)] .= 3 mw[$(m1)] .= 1 mw[$(m3)] .= 3 return weighted(g, sw, mw) end end
UnitDiskMapping
https://github.com/QuEraComputing/UnitDiskMapping.jl.git
[ "Apache-2.0" ]
0.4.0
0736fd885e445c13b7b58e31d1ccc37a4950f7df
code
1898
function simplegraph(edgelist::AbstractVector{Tuple{Int,Int}}) nv = maximum(x->max(x...), edgelist) g = SimpleGraph(nv) for (i,j) in edgelist add_edge!(g, i, j) end return g end for OP in [:rotate90, :reflectx, :reflecty, :reflectdiag, :reflectoffdiag] @eval function $OP(loc, center) dx, dy = $OP(loc .- center) return (center[1]+dx, center[2]+dy) end end function rotate90(loc) return -loc[2], loc[1] end function reflectx(loc) loc[1], -loc[2] end function reflecty(loc) -loc[1], loc[2] end function reflectdiag(loc) -loc[2], -loc[1] end function reflectoffdiag(loc) loc[2], loc[1] end function unitdisk_graph(locs::AbstractVector, unit::Real) n = length(locs) g = SimpleGraph(n) for i=1:n, j=i+1:n if sum(abs2, locs[i] .- locs[j]) < unit ^ 2 add_edge!(g, i, j) end end return g end function is_independent_set(g::SimpleGraph, config) for e in edges(g) if config[e.src] == config[e.dst] == 1 return false end end return true end function is_diff_by_const(t1::AbstractArray{T}, t2::AbstractArray{T}) where T <: Real x = NaN for (a, b) in zip(t1, t2) if isinf(a) && isinf(b) continue end if isinf(a) || isinf(b) return false, 0 end if isnan(x) x = (a - b) elseif x != a - b return false, 0 end end return true, x end """ unit_disk_graph(locs::AbstractVector, unit::Real) Create a unit disk graph with locations specified by `locs` and unit distance `unit`. """ function unit_disk_graph(locs::AbstractVector, unit::Real) n = length(locs) g = SimpleGraph(n) for i=1:n, j=i+1:n if sum(abs2, locs[i] .- locs[j]) < unit ^ 2 add_edge!(g, i, j) end end return g end
UnitDiskMapping
https://github.com/QuEraComputing/UnitDiskMapping.jl.git
[ "Apache-2.0" ]
0.4.0
0736fd885e445c13b7b58e31d1ccc37a4950f7df
code
4380
# normalized to minimum weight and maximum weight function LuxorGraphPlot.show_graph(gg::GridGraph; format = :svg, filename = nothing, padding_left = 10, padding_right = 10, padding_top = 10, padding_bottom = 10, show_number = false, config = GraphDisplayConfig(), texts = nothing, vertex_colors=nothing, ) texts !== nothing && show_number && @warn "not showing number due to the manually specified node texts." # plot! unit = 33.0 coos = coordinates(gg) xmin, xmax = extrema(first.(coos)) ymin, ymax = extrema(last.(coos)) nodestore() do ns filledlocs = map(coo->circle!((unit * (coo[2] - 1), -unit * (coo[1] - 1)), config.vertex_size), coos) emptylocs, edges = [], [] for i=xmin:xmax, j=ymin:ymax (i, j) ∉ coos && push!(emptylocs, circle!(((j-1) * unit, -(i-1) * unit), config.vertex_size/10)) end for e in Graphs.edges(graph_and_weights(gg)[1]) i, j = e.src, e.dst push!(edges, Connection(filledlocs[i], filledlocs[j])) end with_nodes(ns; format, filename, padding_bottom, padding_left, padding_right, padding_top, background=config.background) do config2 = copy(config) config2 = GraphDisplayConfig(; vertex_color="#333333", vertex_stroke_color="transparent") texts = texts===nothing && show_number ? string.(1:length(filledlocs)) : texts LuxorGraphPlot.render_nodes(filledlocs, config; texts, vertex_colors) LuxorGraphPlot.render_edges(edges, config) LuxorGraphPlot.render_nodes(emptylocs, config2; texts=nothing) end end end function show_grayscale(gg::GridGraph; wmax=nothing, kwargs...) _, ws0 = graph_and_weights(gg) ws = tame_weights.(ws0) if wmax === nothing wmax = maximum(abs, ws) end cmap = Colors.colormap("RdBu", 200) # 0 -> 100 # wmax -> 200 # wmin -> 1 vertex_colors= [cmap[max(1, round(Int, 100+w/wmax*100))] for w in ws] show_graph(gg; vertex_colors, kwargs...) end tame_weights(w::ONE) = 1.0 tame_weights(w::Real) = w function show_pins(gg::GridGraph, color_pins::AbstractDict; kwargs...) vertex_colors=String[] texts=String[] for i=1:length(gg.nodes) c, t = haskey(color_pins, i) ? color_pins[i] : ("white", "") push!(vertex_colors, c) push!(texts, t) end show_graph(gg; vertex_colors, texts, kwargs...) end function show_pins(mres::FactoringResult; kwargs...) color_pins = Dict{Int,Tuple{String,String}}() for (i, pin) in enumerate(mres.pins_input1) color_pins[pin] = ("green", "p$('₀'+i)") end for (i, pin) in enumerate(mres.pins_input2) color_pins[pin] = ("blue", "q$('₀'+i)") end for (i, pin) in enumerate(mres.pins_output) color_pins[pin] = ("red", "m$('₀'+i)") end for (i, pin) in enumerate(mres.pins_zeros) color_pins[pin] = ("gray", "0") end show_pins(mres.grid_graph, color_pins; kwargs...) end for TP in [:QUBOResult, :WMISResult, :SquareQUBOResult] @eval function show_pins(mres::$TP; kwargs...) color_pins = Dict{Int,Tuple{String,String}}() for (i, pin) in enumerate(mres.pins) color_pins[pin] = ("red", "v$('₀'+i)") end show_pins(mres.grid_graph, color_pins; kwargs...) end end function show_config(gg::GridGraph, config; kwargs...) vertex_colors=[iszero(c) ? "white" : "red" for c in config] show_graph(gg; vertex_colors, kwargs...) end function show_pins(mres::MappingResult{<:WeightedNode}; kwargs...) locs = getfield.(mres.grid_graph.nodes, :loc) center_indices = map(loc->findfirst(==(loc), locs), trace_centers(mres)) color_pins = Dict{Int,Tuple{String,String}}() for (i, pin) in enumerate(center_indices) color_pins[pin] = ("red", "v$('₀'+i)") end show_pins(mres.grid_graph, color_pins; kwargs...) end function show_pins(gate::Gate; kwargs...) grid_graph, inputs, outputs = gate_gadget(gate) color_pins = Dict{Int,Tuple{String,String}}() for (i, pin) in enumerate(inputs) color_pins[pin] = ("red", "x$('₀'+i)") end for (i, pin) in enumerate(outputs) color_pins[pin] = ("blue", "y$('₀'+i)") end show_pins(grid_graph, color_pins; kwargs...) end
UnitDiskMapping
https://github.com/QuEraComputing/UnitDiskMapping.jl.git
[ "Apache-2.0" ]
0.4.0
0736fd885e445c13b7b58e31d1ccc37a4950f7df
code
6242
struct WeightedGadget{GT, WT} <: Pattern gadget::GT source_weights::Vector{WT} mapped_weights::Vector{WT} end const WeightedGadgetTypes = Union{WeightedGadget, RotatedGadget{<:WeightedGadget}, ReflectedGadget{<:WeightedGadget}} function add_cell!(m::AbstractMatrix{<:WeightedMCell}, node::WeightedNode) i, j = node if isempty(m[i,j]) m[i, j] = MCell(weight=node.weight) else @assert !(m[i, j].doubled) && !(m[i, j].connected) && m[i,j].weight == node.weight m[i, j] = MCell(doubled=true, weight=node.weight) end end function connect_cell!(m::AbstractMatrix{<:WeightedMCell}, i::Int, j::Int) if !m[i, j].occupied || m[i,j].doubled || m[i,j].connected error("can not connect at [$i,$j] of type $(m[i,j])") end m[i, j] = MCell(connected=true, weight=m[i,j].weight) end nodetype(::Weighted) = WeightedNode{Int} node(::Type{<:WeightedNode}, i, j, w) = Node(i, j, w) weighted(c::Pattern, source_weights, mapped_weights) = WeightedGadget(c, source_weights, mapped_weights) unweighted(w::WeightedGadget) = w.gadget weighted(r::RotatedGadget, source_weights, mapped_weights) = RotatedGadget(weighted(r.gadget, source_weights, mapped_weights), r.n) weighted(r::ReflectedGadget, source_weights, mapped_weights) = ReflectedGadget(weighted(r.gadget, source_weights, mapped_weights), r.mirror) weighted(r::RotatedGadget) = RotatedGadget(weighted(r.gadget), r.n) weighted(r::ReflectedGadget) = ReflectedGadget(weighted(r.gadget), r.mirror) unweighted(r::RotatedGadget) = RotatedGadget(unweighted(r.gadget), r.n) unweighted(r::ReflectedGadget) = ReflectedGadget(unweighted(r.gadget), r.mirror) mis_overhead(w::WeightedGadget) = mis_overhead(w.gadget) * 2 function source_graph(r::WeightedGadget) raw = unweighted(r) locs, g, pins = source_graph(raw) return [_mul_weight(loc, r.source_weights[i]) for (i, loc) in enumerate(locs)], g, pins end function mapped_graph(r::WeightedGadget) raw = unweighted(r) locs, g, pins = mapped_graph(raw) return [_mul_weight(loc, r.mapped_weights[i]) for (i, loc) in enumerate(locs)], g, pins end _mul_weight(node::UnWeightedNode, factor) = Node(node..., factor) for (T, centerloc) in [(:Turn, (2, 3)), (:Branch, (2, 3)), (:BranchFix, (3, 2)), (:BranchFixB, (3, 2)), (:WTurn, (3, 3)), (:EndTurn, (1, 2))] @eval source_centers(::WeightedGadget{<:$T}) = [cross_location($T()) .+ (0, 1)] @eval mapped_centers(::WeightedGadget{<:$T}) = [$centerloc] end # default to having no source center! source_centers(::WeightedGadget) = Tuple{Int,Int}[] mapped_centers(::WeightedGadget) = Tuple{Int,Int}[] for T in [:(RotatedGadget{<:WeightedGadget}), :(ReflectedGadget{<:WeightedGadget})] @eval function source_centers(r::$T) cross = cross_location(r.gadget) return map(loc->loc .+ _get_offset(r), _apply_transform.(Ref(r), source_centers(r.gadget), Ref(cross))) end @eval function mapped_centers(r::$T) cross = cross_location(r.gadget) return map(loc->loc .+ _get_offset(r), _apply_transform.(Ref(r), mapped_centers(r.gadget), Ref(cross))) end end Base.size(r::WeightedGadget) = size(unweighted(r)) cross_location(r::WeightedGadget) = cross_location(unweighted(r)) iscon(r::WeightedGadget) = iscon(unweighted(r)) connected_nodes(r::WeightedGadget) = connected_nodes(unweighted(r)) vertex_overhead(r::WeightedGadget) = vertex_overhead(unweighted(r)) """ map_weights(r::MappingResult{WeightedNode}, source_weights) Map the weights in the source graph to weights in the mapped graph, returns a vector. """ function map_weights(r::MappingResult{<:WeightedNode{T1}}, source_weights::AbstractVector{T}) where {T1,T} if !all(w -> 0 <= w <= 1, source_weights) error("all weights must be in range [0, 1], got: $(source_weights)") end weights = promote_type(T1,T).(getfield.(r.grid_graph.nodes, :weight)) locs = getfield.(r.grid_graph.nodes, :loc) center_indices = map(loc->findfirst(==(loc), locs), trace_centers(r)) weights[center_indices] .+= source_weights return weights end # mapping configurations back function move_center(w::WeightedGadgetTypes, nodexy, offset) for (sc, mc) in zip(source_centers(w), mapped_centers(w)) if offset == sc return nodexy .+ mc .- sc # found end end error("center not found, source center = $(source_centers(w)), while offset = $(offset)") end trace_centers(r::MappingResult) = trace_centers(r.lines, r.padding, r.mapping_history) function trace_centers(lines, padding, tape) center_locations = map(x->center_location(x; padding) .+ (0, 1), lines) for (gadget, i, j) in tape m, n = size(gadget) for (k, centerloc) in enumerate(center_locations) offset = centerloc .- (i-1,j-1) if 1<=offset[1] <= m && 1<=offset[2] <= n center_locations[k] = move_center(gadget, centerloc, offset) end end end return center_locations[sortperm(getfield.(lines, :vertex))] end function _map_configs_back(r::MappingResult{<:WeightedNode}, configs::AbstractVector) center_locations = trace_centers(r) res = [zeros(Int, length(r.lines)) for i=1:length(configs)] for (ri, c) in zip(res, configs) for (i, loc) in enumerate(center_locations) ri[i] = c[loc...] end end return res end # simple rules for crossing gadgets for (GT, s1, m1, s3, m3) in [(:(Cross{true}), [], [], [], []), (:(Cross{false}), [], [], [], []), (:(WTurn), [], [], [], []), (:(BranchFix), [], [], [], []), (:(Turn), [], [], [], []), (:(TrivialTurn), [1, 2], [1, 2], [], []), (:(BranchFixB), [1], [1], [], []), (:(EndTurn), [3], [1], [], []), (:(TCon), [2], [2], [], []), (:(Branch), [], [], [4], [2]), ] @eval function weighted(g::$GT) slocs, sg, spins = source_graph(g) mlocs, mg, mpins = mapped_graph(g) sw, mw = fill(2, length(slocs)), fill(2, length(mlocs)) sw[$(s1)] .= 1 sw[$(s3)] .= 3 mw[$(m1)] .= 1 mw[$(m3)] .= 3 return weighted(g, sw, mw) end end const crossing_ruleset_weighted = weighted.(crossing_ruleset) get_ruleset(::Weighted) = crossing_ruleset_weighted
UnitDiskMapping
https://github.com/QuEraComputing/UnitDiskMapping.jl.git
[ "Apache-2.0" ]
0.4.0
0736fd885e445c13b7b58e31d1ccc37a4950f7df
code
1363
# Reference # ---------------------------- # Coudert, D., Mazauric, D., & Nisse, N. (2014). # Experimental evaluation of a branch and bound algorithm for computing pathwidth. # https://doi.org/10.1007/978-3-319-07959-2_5 function branch_and_bound(G::AbstractGraph) branch_and_bound!(G, Layout(G, Int[]), Layout(G, collect(vertices(G))), Dict{Layout{Int},Bool}()) end # P is the prefix # vs is its vertex seperation of L function branch_and_bound!(G::AbstractGraph, P::Layout, L::Layout, vP::Dict) V = collect(vertices(G)) if (vsep(P) < vsep(L)) && !haskey(vP, P) P2 = greedy_exact(G, P) vsep_P2 = vsep(P2) if sort(vertices(P2)) == V && vsep_P2 < vsep(L) return P2 else current = vsep(L) remaining = vcat(P2.neighbors, P2.disconnected) vsep_order = sortperm([vsep_updated(G, P2, x) for x in remaining]) for v in remaining[vsep_order] # by increasing values of vsep(P2 ⊙ v) if vsep_updated(G, P2, v) < vsep(L) L3 = branch_and_bound!(G, ⊙(G, P2, v), L, vP) if vsep(L3) < vsep(L) L = L3 end end end # update Layout table vP[P] = !(vsep(L) < current && vsep(P) == vsep(L)) end end return L end
UnitDiskMapping
https://github.com/QuEraComputing/UnitDiskMapping.jl.git
[ "Apache-2.0" ]
0.4.0
0736fd885e445c13b7b58e31d1ccc37a4950f7df
code
1165
function greedy_exact(G::AbstractGraph, P) keepgoing = true while keepgoing keepgoing = false for list in (P.disconnected, P.neighbors) for v in list if all(nb->nb ∈ P.vertices || nb ∈ P.neighbors, neighbors(G, v)) P = ⊙(G, P, v) keepgoing = true end end end for v in P.neighbors if count(nb -> nb ∉ P.vertices && nb ∉ P.neighbors, neighbors(G, v)) == 1 P = ⊙(G, P, v) keepgoing = true end end end return P end function greedy_decompose(G::AbstractGraph) P = Layout(G, Int[]) while true P = greedy_exact(G, P) if !isempty(P.neighbors) P = greedy_step(G, P, P.neighbors) elseif !isempty(P.disconnected) P = greedy_step(G, P, P.disconnected) else break end end return P end function greedy_step(G, P, list) layouts = [⊙(G, P, v) for v in list] costs = vsep.(layouts) best_cost = minimum(costs) return layouts[rand(findall(==(best_cost), costs))] end
UnitDiskMapping
https://github.com/QuEraComputing/UnitDiskMapping.jl.git
[ "Apache-2.0" ]
0.4.0
0736fd885e445c13b7b58e31d1ccc37a4950f7df
code
3413
module PathDecomposition using Graphs export pathwidth, PathDecompositionMethod, MinhThiTrick, Greedy struct Layout{T} vertices::Vector{T} vsep::Int neighbors::Vector{T} disconnected::Vector{T} end Base.hash(layout::Layout) = hash(layout.vertices) function Base.:(==)(l::Layout, m::Layout) l.vsep == m.vsep && l.vertices == m.vertices end function Layout(g::SimpleGraph, vertices) vs, nbs = vsep_and_neighbors(g, vertices) Layout(vertices, vs, nbs, setdiff(1:nv(g), nbs ∪ vertices)) end function vsep_and_neighbors(G::SimpleGraph, vertices::AbstractVector{T}) where T vs, nbs = 0, T[] for i=1:length(vertices) S = vertices[1:i] nbs = [v for v in setdiff(Graphs.vertices(G), S) if any(s->has_edge(G, v, s), S)] vsi = length(nbs) if vsi > vs vs = vsi end end return vs, nbs end vsep(layout::Layout) = layout.vsep vsep_last(layout::Layout) = length(layout.neighbors) function vsep_updated(G::SimpleGraph, layout::Layout{T}, v::T) where T vs = vsep_last(layout) if v ∈ layout.neighbors vs -= 1 end for w in neighbors(G, v) if w ∉ layout.vertices && w ∉ layout.neighbors vs += 1 end end vs = max(vs, layout.vsep) return vs end function vsep_updated_neighbors(G::SimpleGraph, layout::Layout{T}, v::T) where T vs = vsep_last(layout) nbs = copy(layout.neighbors) disc = copy(layout.disconnected) if v ∈ nbs deleteat!(nbs, findfirst(==(v), nbs)) vs -= 1 else deleteat!(disc, findfirst(==(v), disc)) end for w in neighbors(G, v) if w ∉ layout.vertices && w ∉ nbs vs += 1 push!(nbs, w) deleteat!(disc, findfirst(==(w), disc)) end end vs = max(vs, layout.vsep) return vs, nbs, disc end # update the Layout by a single vertex function ⊙(G::SimpleGraph, layout::Layout{T}, v::T) where T vertices = [layout.vertices..., v] vs_new, neighbors_new, disconnected = vsep_updated_neighbors(G, layout, v) vs_new = max(layout.vsep, vs_new) return Layout(vertices, vs_new, neighbors_new, disconnected) end Graphs.vertices(layout::Layout) = layout.vertices ##### Interfaces ##### abstract type PathDecompositionMethod end """ MinhThiTrick <: PathDecompositionMethod A path decomposition method based on the Branching method. In memory of Minh-Thi Nguyen, one of the main developers of this method. She left us in a truck accident at her 24 years old. - https://www.cbsnews.com/boston/news/cyclist-killed-minh-thi-nguyen-cambridge-bike-safety/ """ struct MinhThiTrick <: PathDecompositionMethod end """ Greedy <: PathDecompositionMethod A path decomposition method based on the Greedy method. """ Base.@kwdef struct Greedy <: PathDecompositionMethod nrepeat::Int = 10 end """ pathwidth(g::AbstractGraph, method) Compute the optimal path decomposition of graph `g`, returns a `Layout` instance. `method` can be * Greedy(; nrepeat=10) * MinhThiTrick """ function pathwidth(g::AbstractGraph, ::MinhThiTrick) return branch_and_bound(g) end function pathwidth(g::AbstractGraph, method::Greedy) res = Layout{Int}[] for _ = 1:method.nrepeat push!(res, greedy_decompose(g)) end return res[argmin(vsep.(res))] end include("greedy.jl") include("branching.jl") end using .PathDecomposition
UnitDiskMapping
https://github.com/QuEraComputing/UnitDiskMapping.jl.git
[ "Apache-2.0" ]
0.4.0
0736fd885e445c13b7b58e31d1ccc37a4950f7df
code
246
using UnitDiskMapping, Test, Graphs @testset "crossing lattice" begin d = UnitDiskMapping.crossing_lattice(complete_graph(10), 1:10) @test size(d) == (10,10) @test d[1,1] == UnitDiskMapping.Block(-1, -1, -1, 1, -1) println(d) end
UnitDiskMapping
https://github.com/QuEraComputing/UnitDiskMapping.jl.git
[ "Apache-2.0" ]
0.4.0
0736fd885e445c13b7b58e31d1ccc37a4950f7df
code
3549
using Test, UnitDiskMapping using GenericTensorNetworks, Graphs using GenericTensorNetworks.OMEinsum.LinearAlgebra: triu using Random @testset "qubo" begin n = 7 H = -randn(n) * 0.05 J = triu(randn(n, n) * 0.001, 1); J += J' qubo = UnitDiskMapping.map_qubo(J, H) @test show_pins(qubo) !== nothing println(qubo) graph, weights = UnitDiskMapping.graph_and_weights(qubo.grid_graph) r1 = solve(GenericTensorNetwork(IndependentSet(graph, weights)), SingleConfigMax())[] J2 = vcat([Float64[J[i,j] for j=i+1:n] for i=1:n]...) # note the different sign convention of J r2 = solve(GenericTensorNetwork(SpinGlass(complete_graph(n), -J2, H)), SingleConfigMax())[] @test r1.n - qubo.mis_overhead ≈ r2.n @test r1.n % 1 ≈ r2.n % 1 c1 = map_config_back(qubo, r1.c.data) @test spinglass_energy(complete_graph(n), c1; J=-J2, h=H) ≈ spinglass_energy(complete_graph(n), r2.c.data; J=-J2, h=H) #display(MappingGrid(UnitDiskMapping.CopyLine[], 0, qubo)) end @testset "simple wmis" begin for graphname in [:petersen, :bull, :cubical, :house, :diamond] @show graphname g0 = smallgraph(graphname) n = nv(g0) w0 = ones(n) * 0.01 wmis = UnitDiskMapping.map_simple_wmis(g0, w0) graph, weights = UnitDiskMapping.graph_and_weights(wmis.grid_graph) r1 = solve(GenericTensorNetwork(IndependentSet(graph, weights)), SingleConfigMax())[] r2 = solve(GenericTensorNetwork(IndependentSet(g0, w0)), SingleConfigMax())[] @test r1.n - wmis.mis_overhead ≈ r2.n @test r1.n % 1 ≈ r2.n % 1 c1 = map_config_back(wmis, r1.c.data) @test sum(c1 .* w0) == r2.n end end @testset "restricted qubo" begin n = 5 coupling = [ [(i,j,i,j+1,rand([-1,1])) for i=1:n, j=1:n-1]..., [(i,j,i+1,j,rand([-1,1])) for i=1:n-1, j=1:n]... ] qubo = UnitDiskMapping.map_qubo_restricted(coupling) graph, weights = UnitDiskMapping.graph_and_weights(qubo.grid_graph) r1 = solve(GenericTensorNetwork(IndependentSet(graph, weights)), SingleConfigMax())[] weights = Int[] g2 = SimpleGraph(n*n) for (i,j,i2,j2,J) in coupling add_edge!(g2, (i-1)*n+j, (i2-1)*n+j2) push!(weights, J) end r2 = solve(GenericTensorNetwork(SpinGlass(g2, -weights)), SingleConfigMax())[] @show r1, r2 end @testset "square qubo" begin Random.seed!(4) m, n = 6, 6 coupling = [ [(i,j,i,j+1,0.01*randn()) for i=1:m, j=1:n-1]..., [(i,j,i+1,j,0.01*randn()) for i=1:m-1, j=1:n]... ] onsite = vec([(i, j, 0.01*randn()) for i=1:m, j=1:n]) qubo = UnitDiskMapping.map_qubo_square(coupling, onsite) graph, weights = UnitDiskMapping.graph_and_weights(qubo.grid_graph) r1 = solve(GenericTensorNetwork(IndependentSet(graph, weights)), SingleConfigMax())[] # solve spin glass directly g2 = SimpleGraph(m*n) Jd = Dict{Tuple{Int,Int}, Float64}() for (i,j,i2,j2,J) in coupling edg = (i+(j-1)*m, i2+(j2-1)*m) Jd[edg] = J add_edge!(g2, edg...) end Js, hs = Float64[], zeros(Float64, nv(g2)) for e in edges(g2) push!(Js, Jd[(e.src, e.dst)]) end for (i,j,h) in onsite hs[i+(j-1)*m] = h end r2 = solve(GenericTensorNetwork(SpinGlass(g2, -Js, hs)), SingleConfigMax())[] @test r1.n - qubo.mis_overhead ≈ r2.n c1 = map_config_back(qubo, collect(Int,r1.c.data)) c2 = collect(r2.c.data) @test spinglass_energy(g2, c1; J=-Js, h=hs) ≈ spinglass_energy(g2, c2; J=-Js, h=hs) end
UnitDiskMapping
https://github.com/QuEraComputing/UnitDiskMapping.jl.git
[ "Apache-2.0" ]
0.4.0
0736fd885e445c13b7b58e31d1ccc37a4950f7df
code
1030
using UnitDiskMapping, Test using GenericTensorNetworks @testset "map results back" begin for s in [UnitDiskMapping.crossing_ruleset..., UnitDiskMapping.simplifier_ruleset...] _, g0, pins0 = source_graph(s) locs, g, pins = mapped_graph(s) d1 = UnitDiskMapping.mapped_entry_to_compact(s) d2 = UnitDiskMapping.source_entry_to_configs(s) m = solve(GenericTensorNetwork(IndependentSet(g), openvertices=pins), ConfigsMax()) t = solve(GenericTensorNetwork(IndependentSet(g0), openvertices=pins0), SizeMax()) for i in eachindex(m) for v in m[i].c.data bc = UnitDiskMapping.mapped_boundary_config(s, v) compact_bc = d1[bc] sc = d2[compact_bc] for sbc in sc ss = UnitDiskMapping.source_boundary_config(s, sbc) @test ss == compact_bc @test count(isone, sbc) == Int(t[compact_bc+1].n) end end end end end
UnitDiskMapping
https://github.com/QuEraComputing/UnitDiskMapping.jl.git
[ "Apache-2.0" ]
0.4.0
0736fd885e445c13b7b58e31d1ccc37a4950f7df
code
1119
using UnitDiskMapping, Test using GenericTensorNetworks using GenericTensorNetworks: content using Graphs @testset "gadgets" begin for s in [UnitDiskMapping.crossing_ruleset..., UnitDiskMapping.simplifier_ruleset...] println("Testing gadget:\n$s") locs1, g1, pins1 = source_graph(s) locs2, g2, pins2 = mapped_graph(s) @assert length(locs1) == nv(g1) m1 = mis_compactify!(solve(GenericTensorNetwork(IndependentSet(g1), openvertices=pins1), SizeMax())) m2 = mis_compactify!(solve(GenericTensorNetwork(IndependentSet(g2), openvertices=pins2), SizeMax())) @test nv(g1) == length(locs1) && nv(g2) == length(locs2) sig, diff = UnitDiskMapping.is_diff_by_const(content.(m1), content.(m2)) @test diff == -mis_overhead(s) @test sig end end @testset "rotated_and_reflected" begin @test length(rotated_and_reflected(UnitDiskMapping.DanglingLeg())) == 4 @test length(rotated_and_reflected(Cross{false}())) == 4 @test length(rotated_and_reflected(Cross{true}())) == 4 @test length(rotated_and_reflected(BranchFixB())) == 8 end
UnitDiskMapping
https://github.com/QuEraComputing/UnitDiskMapping.jl.git
[ "Apache-2.0" ]
0.4.0
0736fd885e445c13b7b58e31d1ccc37a4950f7df
code
595
using UnitDiskMapping, Test using GenericTensorNetworks @testset "gates" begin for (f, gate) in [(!, :NOT), (⊻, :XOR), ((a, b)->a && b, :AND), ((a, b)->a || b, :OR), ((a, b)->!(a || b), :NOR), ((a, b)->!(a ⊻ b), :NXOR)] @info gate g, inputs, outputs = gate_gadget(Gate(gate)) @test UnitDiskMapping.truth_table(Gate(gate)) do graph, weights collect.(Int, solve(GenericTensorNetwork(IndependentSet(graph, weights)), ConfigsMax())[].c.data) end == [f([x>>(i-1) & 1 == 1 for i=1:length(inputs)]...) for x in 0:1<<length(inputs)-1] end end
UnitDiskMapping
https://github.com/QuEraComputing/UnitDiskMapping.jl.git