licenses
sequencelengths
1
3
version
stringclasses
677 values
tree_hash
stringlengths
40
40
path
stringclasses
1 value
type
stringclasses
2 values
size
stringlengths
2
8
text
stringlengths
25
67.1M
package_name
stringlengths
2
41
repo
stringlengths
33
86
[ "MIT" ]
0.2.1
6512022b637fc17c297bb3050ba2e6cdd50b6fa0
code
753
function Header(io::IOStream) seek(io, 0) offset = read(io, UInt32) header_length = read(io, UInt32) n_variants = read(io, UInt32) n_samples = read(io, UInt32) magic = read(io, 4) # check magic number @assert String(magic) == "bgen" || all(magic .== 0) "Magic number mismatch" seek(io, header_length) flags = read(io, UInt32) compression = flags & 0x03 layout = (flags & 0x3c) >> 2 has_sample_ids = convert(Bool, flags & 0x80000000 >> 31) Header(offset, header_length, n_variants, n_samples, compression, layout, has_sample_ids) end function Header(filename::String) io = open(filename) Header(io) end @inline function offset_first_variant(h::Header) return h.offset + 4 end
BGEN
https://github.com/OpenMendel/BGEN.jl.git
[ "MIT" ]
0.2.1
6512022b637fc17c297bb3050ba2e6cdd50b6fa0
code
6752
function Index(path::AbstractString) db = SQLite.DB(path) Index(path, db, [], [], [], []) end @inline function _check_idx(b::Bgen) @assert b.idx !== nothing "bgen index (.bgi) is needed" end function select_region(idx::Index, chrom::AbstractString; start=nothing, stop=nothing) if start === nothing && stop === nothing q = "SELECT file_start_position FROM Variant WHERE chromosome=?" params = (chrom,) elseif stop === nothing q = "SELECT file_start_position FROM Variant" * " WHERE chromosome=? AND position>=?" params = (chrom, start) else q = "SELECT file_start_position FROM Variant" * " WHERE chromosome=? AND position>=? AND position<=?" params = (chrom, start, stop) end r = (DBInterface.execute(idx.db, q, params) |> columntable)[1] end """ select_region(bgen, chrom; start=nothing, stop=nothing) Select variants from a region. Returns variant start offsets on the file. Returns a `BgenVariantIteratorFromOffsets` object. """ function select_region(b::Bgen, chrom::AbstractString; start=nothing, stop=nothing) _check_idx(b) offsets = select_region(b.idx, chrom; start=start, stop=stop) BgenVariantIteratorFromOffsets(b, offsets) end function variant_by_rsid(idx::Index, rsid::AbstractString; allele1=nothing, allele2=nothing, allow_multiple=false) q = "SELECT file_start_position, allele1, allele2 FROM Variant WHERE rsid= ?" params = (rsid,) r = (DBInterface.execute(idx.db, q, params) |> columntable)#[1] if length(r) == 0 error("variant with rsid $rsid not found") end if allow_multiple return r[1] end if allele1 === nothing && allele2 === nothing if length(r[1]) > 1 if !allow_multiple error("multiple variant matches with $rsid. Try to specify allele1 and allele2, or set allow_multiple=true.") end end return r[1][1] else firstidx = nothing lastidx = nothing if allele1 !== nothing && allele2 === nothing firstidx = findall(x -> x == allele1, r.allele1) if length(firstidx) > 1 error("Nonunique match with $rsid, allele1: $allele1.") elseif length(firstidx) == 0 error("No match with $rsid, allele1: $allele1.") end return r.file_start_position[firstidx[1]] elseif allele2 !== nothing && allele1 === nothing lastidx = findall(x -> x == allele2, r.allele2) if length(lastidx) > 1 error("Nonunique match with $rsid, allele2: $allele2.") elseif length(lastidx) == 0 error("No match with $rsid, allele2: $allele2.") end return r.file_start_position[lastidx[1]] else firstidx = findall(x -> x == allele1, r.allele1) lastidx = findall(x -> x == allele2, r.allele2) jointidx = intersect(firstidx, lastidx) if length(jointidx) > 1 error("Nonunique match with $rsid, allele1: $allele1, allele2: $allele2.") elseif length(jointidx) == 0 error("No match with $rsid, allele1: $allele1, allele2: $allele2.") end return r.file_start_position[jointidx[1]] end end end """ variant_by_rsid(bgen, rsid) Find a variant by rsid """ function variant_by_rsid(b::Bgen, rsid::AbstractString; allele1=nothing, allele2=nothing, varid=nothing) @assert !(varid !== nothing && (allele1 !== nothing || allele2 !== nothing)) "either define varid or alleles" _check_idx(b) offset = variant_by_rsid(b.idx, rsid; allele1=allele1, allele2=allele2, allow_multiple = varid !== nothing) if varid !== nothing vs = map(x -> BgenVariant(b, x), offset) v_idxs = findall(x -> x.varid == varid, vs) if length(v_idxs) > 1 error("Multiple matches.") elseif length(v_idxs) == 0 error("no matches.") else return vs[v_idxs[1]] end end return BgenVariant(b, offset) end function variant_by_pos(idx::Index, pos::Integer) q = "SELECT file_start_position FROM Variant WHERE position= ?" params = (pos,) r = (DBInterface.execute(idx.db, q, params) |> columntable)[1] if length(r) == 0 error("variant match at $pos not found") elseif length(r) > 1 error("multiple variant matches at $pos") end return r[1] end """ variant_by_pos(bgen, pos) Get the variant of bgen variant given `pos` in the index file """ function variant_by_pos(b::Bgen, pos::Integer) _check_idx(b) offset = variant_by_pos(b.idx, pos) return BgenVariant(b, offset) end function variant_by_index(idx::Index, first::Integer, last::Union{Nothing, Integer}=nothing) if last === nothing q = "SELECT file_start_position FROM Variant LIMIT 1 OFFSET ?" params = (first - 1,) else q = "SELECT file_start_position FROM Variant LIMIT ? OFFSET ?" params = (last - first + 1, first - 1) end r = (DBInterface.execute(idx.db, q, params) |> columntable)[1] return r end """ variant_by_index(bgen, n) get the `n`-th variant (1-based). """ function variant_by_index(b::Bgen, first::Integer, last::Union{Nothing, Integer}=nothing) _check_idx(b) if last === nothing offset = variant_by_index(b.idx, first)[1] return BgenVariant(b, offset) else offsets = variant_by_index(b.idx, first, last) return BgenVariantIteratorFromOffsets(b, offsets) end end function offsets(idx::Index) if length(idx.offsets) != 0 return idx.offsets end q = "SELECT file_start_position FROM Variant" r = (DBInterface.execute(idx.db, q) |> columntable)[1] resize!(idx.offsets, length(r)) idx.offsets .= r return r end function rsids(idx::Index) if length(idx.rsids) != 0 return idx.rsids end q = "SELECT rsid FROM Variant" r = (DBInterface.execute(idx.db, q) |> columntable)[1] resize!(idx.rsids, length(r)) idx.rsids .= r return r end function chroms(idx::Index) if length(idx.chroms) != 0 return idx.chroms end q = "SELECT chromosome FROM Variant" r = (DBInterface.execute(idx.db, q) |> columntable)[1] resize!(idx.chroms, length(r)) idx.chroms .= r return r end function positions(idx::Index) if length(idx.positions) != 0 return idx.positions end q = "SELECT position FROM Variant" r = (DBInterface.execute(idx.db, q) |> columntable)[1] resize!(idx.positions, length(r)) idx.positions .= r return r end
BGEN
https://github.com/OpenMendel/BGEN.jl.git
[ "MIT" ]
0.2.1
6512022b637fc17c297bb3050ba2e6cdd50b6fa0
code
4889
abstract type BgenVariantIterator <: VariantIterator end @inline function Base.eltype(vi::BgenVariantIterator) BgenVariant end """ BgenVariantIteratorFromStart(b::Bgen) Variant iterator that iterates from the beginning of the Bgen file """ struct BgenVariantIteratorFromStart <: BgenVariantIterator b::Bgen end function Base.iterate(vi::BgenVariantIteratorFromStart, state=offset_first_variant(vi.b)) if state >= vi.b.fsize return nothing else v = BgenVariant(vi.b, state) nextstate = v.next_var_offset return (v, nextstate) end end @inline function Base.length(vi::BgenVariantIteratorFromStart) vi.b.header.n_variants end @inline function Base.size(vi::BgenVariantIteratorFromStart) (vi.b.header.n_variants, ) end """ BgenVariantIteratorFromOffsets(b::Bgen, offsets::Vector{UInt}) BgenVariant iterator that iterates over a vector of offsets """ struct BgenVariantIteratorFromOffsets <: BgenVariantIterator b::Bgen offsets::Vector{UInt} end function Base.iterate(vi::BgenVariantIteratorFromOffsets, state=1) state > length(vi.offsets) ? nothing : (BgenVariant(vi.b, vi.offsets[state]), state + 1) end @inline function Base.length(vi::BgenVariantIteratorFromOffsets) length(vi.offsets) end @inline function Base.size(vi::BgenVariantIteratorFromOffsets) size(vi.offsets) end struct Filter{I, T} <: BgenVariantIterator itr::I min_maf::AbstractFloat min_hwe_pval::AbstractFloat min_info_score::AbstractFloat min_success_rate_per_variant::AbstractFloat rmask::Union{Nothing,BitVector} cmask::Union{Nothing,BitVector} decompressed::Union{Nothing, Vector{UInt8}} end """ BGEN.filter(itr; min_maf=NaN, min_hwe_pval=NaN, min_success_rate_per_variant=NaN, cmask=trues(n_variants(itr.b)), rmask=trues(n_variants(itr.b))) "Filtered" iterator for variants based on min_maf, min_hwe_pval, min_success_rate_per_variant, cmask, and rmask. """ filter(itr::BgenVariantIterator; T=Float32, min_maf=NaN, min_hwe_pval=NaN, min_info_score=NaN, min_success_rate_per_variant=NaN, cmask = trues(n_variants(itr.b)), rmask = nothing, decompressed = nothing) = Filter{typeof(itr), T}(itr, min_maf, min_hwe_pval, min_info_score, min_success_rate_per_variant, rmask, cmask, decompressed) function Base.iterate(f::Filter{I,T}, state...) where {I,T} io, h = f.itr.b.io, f.itr.b.header if state !== () y = Base.iterate(f.itr, state[1][2:end]...) cnt = state[1][1] else y = Base.iterate(f.itr) cnt = 1 end while y !== nothing v, s = y passed = true if !f.cmask[cnt] passed = false end if passed && (v.genotypes === nothing || v.genotypes.decompressed === nothing) decompressed = decompress(io, v, h; decompressed=f.decompressed) elseif passed decompressed = v.genotypes.decompressed end startidx = 1 if passed && v.genotypes === nothing p = parse_preamble(decompressed, h, v) v.genotypes = Genotypes{T}(p, decompressed) elseif passed p = v.genotypes.preamble end if passed && h.layout == 2 startidx += 10 + h.n_samples end if passed && !isnan(f.min_maf) current_maf = maf(p, v.genotypes.decompressed, startidx, h.layout, f.rmask) if current_maf < f.min_maf && passed passed = false end end if passed && !isnan(f.min_hwe_pval) hwe_pval = hwe(p, v.genotypes.decompressed, startidx, h.layout, f.rmask) if hwe_pval < f.min_hwe_pval passed = false end end if passed && !isnan(f.min_info_score) current_info_score = info_score(p, v.genotypes.decompressed, startidx, h.layout, f.rmask) if current_info_score < f.min_info_score && passed passed = false end end if passed && !isnan(f.min_success_rate_per_variant) successes = length(intersect(p.missings, (1:n_samples(f.itr.b)[f.rmask]))) success_rate = successes / count(f.rmask) if success_rate < f.min_success_rate_per_variant && passed passed = false end end cnt += 1 if passed return v, (cnt, s...) end y = iterate(f.itr, s...) end nothing end eltype(::Type{Filter{I,T}}) where {I,T} = BgenVariant IteratorEltype(::Type{Filter{I,T}}) where {I,T} = IteratorEltype(I) IteratorSize(::Type{<:Filter}) = SizeUnknown() reverse(f::Filter) = Filter(reverse(f.itr), f.min_maf, f.min_hwe_pval, f.min_info_score, f.min_success_rate_per_varinat, f.rmask, f.cmask, f.decompressed)
BGEN
https://github.com/OpenMendel/BGEN.jl.git
[ "MIT" ]
0.2.1
6512022b637fc17c297bb3050ba2e6cdd50b6fa0
code
407
""" minor_certain(freq, n_checked, z) Check if minor allele is certain. - `freq`: frequency of minor or major allele - `n_checked`: number of individuals checked so far - `z`: cutoff of "z" value, defaults to `5.0` """ function minor_certain(freq::Float64, n_checked::Integer, z::Float64=5.0) delta = z * sqrt(freq * (1-freq) / n_checked) return !(freq - delta < 0.5 && freq + delta > 0.5) end
BGEN
https://github.com/OpenMendel/BGEN.jl.git
[ "MIT" ]
0.2.1
6512022b637fc17c297bb3050ba2e6cdd50b6fa0
code
1087
function get_samples(io::IOStream, n_samples::Integer) sample_header_length = read(io, UInt32) sample_n_check = read(io, UInt32) if sample_n_check != 0 @assert n_samples == sample_n_check "Inconsistent number of samples" else @warn "Sample names unavailable. Do you have a separate '.sample' file?" end samples = String[] for i in 1:n_samples id_length = read(io, UInt16) id = read(io, id_length) push!(samples, String(id)) end samples end function get_samples(path::String, n_samples::Integer) @assert endswith(path, ".sample") "Extension of the file should be .sample" io = open(path) keys = split(readline(io)) # header key_idx = ("ID_1" in keys && "ID_2" in keys) ? 2 : 1 readline(io) # types samples = readlines(io) samples = map(x -> split(x, " ")[key_idx], samples) @assert length(samples) == n_samples "Inconsistent number of samples" close(io) samples end function get_samples(n_samples::Integer) samples = [string(i) for i in 1:n_samples] samples end
BGEN
https://github.com/OpenMendel/BGEN.jl.git
[ "MIT" ]
0.2.1
6512022b637fc17c297bb3050ba2e6cdd50b6fa0
code
1653
struct Header offset::UInt32 header_length::UInt32 n_variants::UInt32 n_samples::UInt32 compression::UInt8 layout::UInt8 has_sample_ids::Bool end const Samples = Vector{String} struct Index path::String db::SQLite.DB offsets::Vector{UInt64} rsids::Vector{String} chroms::Vector{String} positions::Vector{UInt32} end struct Preamble n_samples::UInt32 n_alleles::UInt16 phased::UInt8 min_ploidy::UInt8 max_ploidy::UInt8 ploidy::Union{UInt8, Vector{UInt8}} bit_depth::UInt8 max_probs::Int missings::Vector{Int} end mutable struct Genotypes{T} preamble::Preamble # Once parsed, it will not be destroyed unless Genotypes is destroyed decompressed::Union{Nothing,Vector{UInt8}} probs::Union{Nothing, Vector{T}} minor_idx::UInt8 # index of minor allele dose::Union{Nothing, Vector{T}} dose_mean_imputed::Bool minor_allele_dosage::Bool end mutable struct BgenVariant <: Variant offset::UInt64 geno_offset::UInt64 # to the start of genotype block next_var_offset::UInt64 geno_block_size::UInt32 n_samples::UInt32 varid::String rsid::String chrom::String pos::UInt32 n_alleles::UInt16 alleles::Vector{String} # length-1 for parsed one, empty array for not parsed yet or destroyed, genotypes::Union{Nothing, Genotypes} end struct Bgen <: GeneticData io::IOStream fsize::UInt64 header::Header samples::Samples idx::Union{Index, Nothing} # note: detailed information of variables stored in Variable struct, # accessed thru VariantIterator ref_first::Bool end
BGEN
https://github.com/OpenMendel/BGEN.jl.git
[ "MIT" ]
0.2.1
6512022b637fc17c297bb3050ba2e6cdd50b6fa0
code
11050
""" hwe(b::Bgen, v::BgenVariant; T=Float32, decompressed=nothing) hwe(p::Preamble, d::Vector{UInt8}, idx::Vector{<:Integer}, layout::UInt8, rmask::Union{Nothing, Vector{UInt16}}) Hardy-Weinberg equilibrium test for diploid biallelic case """ function hwe(p::Preamble, d::Vector{UInt8}, startidx::Integer, layout::UInt8, rmask::Union{Nothing, Vector{UInt16}}) @assert layout == 2 "hwe only supported for layout 2" @assert p.bit_depth == 8 && p.max_probs == 3 && p.max_ploidy == p.min_ploidy idx1 = startidx # "counts" times 255. n00 = 0 n01 = 0 n11 = 0 if p.n_samples >= 16 @inbounds for n in 1:16:(p.n_samples - p.n_samples % 16) idx_base = idx1 + ((n-1) >> 1) << 2 if rmask !== nothing rs = vload(Vec{16,UInt16}, rmask, n) if sum(rs) == 0 continue end end r = reinterpret(Vec{16, UInt16}, vload(Vec{32, UInt8}, d, idx_base)) first = (r & mask_odd) second = (r & mask_even) >> 8 third = 0x00ff - first - second if rmask !== nothing first = first * rs second = second * rs third = third * rs end n00 += sum(first) n01 += sum(second) n11 += sum(third) end end rem = p.n_samples % 16 if rem != 0 @inbounds for n in ((p.n_samples - rem) + 1) : p.n_samples rmask !== nothing && rmask[n] == 0 && continue idx_base = idx1 + ((n - 1) << 1) n00 += d[idx_base] n01 += d[idx_base + 1] n11 += 255 - d[idx_base] - d[idx_base + 1] end end @inbounds for n in p.missings rmask !== nothing && rmask[n] == 0 && continue idx_base = idx1 + ((n - 1) << 1) n00 -= d[idx_base] n01 -= d[idx_base + 1] n11 -= 255 - d[idx_base] - d[idx_base + 1] end n00 *= one_255th n01 *= one_255th n11 *= one_255th return hwe(n00, n01, n11) end @inline ccdf_chisq_1(x) = gamma_inc(convert(typeof(x), 1/2), x/2, 0)[2] """ hwe(n00, n01, n11) Hardy-Weinberg equilibrium test. `n00`, `n01`, `n11` are counts of homozygotes and heterozygoes respectively. Output is the p-value of type Float64. """ function hwe(n00::Real, n01::Real, n11::Real) n = n00 + n01 + n11 n == 0 && return 1.0 p0 = (n01 + 2n00) / 2n (p0 ≤ 0.0 || p0 ≥ 1.0) && return 1.0 p1 = 1 - p0 # Pearson's Chi-squared test e00 = n * p0 * p0 e01 = 2n * p0 * p1 e11 = n * p1 * p1 ts = (n00 - e00)^2 / e00 + (n01 - e01)^2 / e01 + (n11 - e11)^2 / e11 #pval = ccdf(Chisq(1), ts) pval = ccdf_chisq_1(ts) # TODO Fisher exact test return pval end """ maf(b::Bgen, v::BgenVariant; T=Float32, decompressed=nothing) maf(p::Preamble, d::Vector{UInt8}, idx::Vector{<:Integer}, layout::UInt8, rmask::Union{Nothing, Vector{UInt16}}) Minor-allele frequency for diploid biallelic case """ function maf(p::Preamble, d::Vector{UInt8}, startidx::Integer, layout::UInt8, rmask::Union{Nothing, Vector{UInt16}}) @assert layout == 2 "maf only supported for layout 2" @assert p.bit_depth == 8 && p.max_probs == 3 && p.max_ploidy == p.min_ploidy idx1 = startidx # "counts" times 255. dosage_total = 0 if p.n_samples >= 16 @inbounds for n in 1:16:(p.n_samples - p.n_samples % 16) idx_base = idx1 + ((n-1) >> 1) << 2 if rmask !== nothing rs = vload(Vec{16,UInt16}, rmask, n) if sum(rs) == 0 continue end end r = reinterpret(Vec{16, UInt16}, vload(Vec{32, UInt8}, d, idx_base)) first = (r & mask_odd) << 1 second = (r & mask_even) >> 8 s = first + second if rmask !== nothing s = s * rs end dosage_total += sum(s) end end rem = p.n_samples % 16 if rem != 0 @inbounds for n in ((p.n_samples - rem) + 1) : p.n_samples rmask !== nothing && rmask[n] == 0 && continue idx_base = idx1 + ((n - 1) << 1) dosage_total += 2 * d[idx_base] + d[idx_base + 1] end end @inbounds for n in p.missings rmask !== nothing && rmask[n] == 0 && continue idx_base = idx1 + ((n - 1) << 1) dosage_total -= 2 * d[idx_base] + d[idx_base + 1] end dosage_total *= one_255th dosage_total /= (rmask !== nothing ? sum(rmask) : p.n_samples - length(p.missings)) dosage_total < 1.0 ? dosage_total / 2 : 1 - dosage_total / 2 end """ info_score(b::Bgen, v::BgenVariant; T=Float32, decompressed=nothing) info_score(p::Preamble, d::Vector{UInt8}, idx::Vector{<:Integer}, layout::UInt8, rmask::Union{Nothing, Vector{UInt16}}) Information score of the variant. """ function info_score(p::Preamble, d::Vector{UInt8}, startidx::Integer, layout::UInt8, rmask::Union{Nothing, Vector{UInt16}}) @assert layout == 2 "info_score only supported for layout 2" @assert p.bit_depth == 8 && p.max_probs == 3 && p.max_ploidy == p.min_ploidy @assert length(p.missings) == 0 "current implementation does not allow missingness" idx1 = startidx # "counts" times 255. samples_cum = 0 mean_cum = 0.0 sumsq_cum = 0.0 dosage_sum = 0.0 dosage_sumsq = 0.0 rs = Vec{16,UInt16}((1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)) rs_float = Vec{16, Float32}((1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)) rs_float_ones = rs_float rs_floatarr = ones(Float32, 16) if p.n_samples >= 16 @inbounds for n in 1:16:(p.n_samples - p.n_samples % 16) idx_base = idx1 + ((n-1) >> 1) << 2 if rmask !== nothing rs = vload(Vec{16,UInt16}, rmask, n) if sum(rs) == 0 continue elseif sum(rs) == 16 rs_float = rs_float_ones else rs_floatarr .= @view(rmask[n:n+15]) rs_float = vload(Vec{16, Float32}, rs_floatarr, 1) end end r = reinterpret(Vec{16, UInt16}, vload(Vec{32, UInt8}, d, idx_base)) first = (r & mask_odd) << 1 second = (r & mask_even) >> 8 s = first + second if rmask !== nothing s = s * rs end dosage_float = one_255th * convert( Vec{16, Float32}, s) samples_new = sum(rs) sum_new = sum(dosage_float) samples_prev = samples_cum samples_cum = samples_cum + samples_new mean_new = sum_new / samples_new diff = dosage_float - mean_new if rmask !== nothing diff *= rs_float end sumsq_new = sum(diff ^ 2) delta = mean_new - mean_cum mean_cum += delta * samples_new / samples_cum sumsq_cum += sumsq_new + delta ^ 2 * samples_prev * samples_new / samples_cum end end rem = p.n_samples % 16 if rem != 0 @inbounds for n in ((p.n_samples - rem) + 1) : p.n_samples rmask !== nothing && rmask[n] == 0 && continue idx_base = idx1 + ((n - 1) << 1) dosage = one_255th * (2 * d[idx_base] + d[idx_base + 1]) delta = dosage - mean_cum samples_cum += 1 mean_cum += delta / samples_cum delta2 = dosage - mean_cum sumsq_cum += delta * delta2 end end n_samples = rmask !== nothing ? sum(rmask) : p.n_samples p = mean_cum / 2 v = sumsq_cum / (n_samples - 1) v / (2p * (1-p)) end function counts!(p::Preamble, d::Vector{UInt8}, startidx::Integer, layout::UInt8, rmask::Union{Nothing, Vector{UInt16}}; r::Union{Nothing,Vector{<:Integer}}=nothing, dosage::Bool=true) if dosage @assert layout == 2 "hwe only supported for layout 2" @assert p.bit_depth == 8 && p.max_probs == 3 && p.max_ploidy == p.min_ploidy idx1 = startidx if r !== nothing @assert length(r) == 512 fill!(r, 0) else r = zeros(UInt, 512) end rs = Vec{16,UInt16}((1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)) if p.n_samples >= 16 @inbounds for n in 1:16:(p.n_samples - p.n_samples % 16) idx_base = idx1 + ((n-1) >> 1) << 2 if rmask !== nothing rs = vload(Vec{16,UInt16}, rmask, n) if sum(rs) == 0 continue end end q = reinterpret(Vec{16, UInt16}, vload(Vec{32, UInt8}, d, idx_base)) first = (q & mask_odd) << 1 second = (q & mask_even) >> 8 s = first + second if rmask !== nothing s = s * rs end @inbounds for i in 1:16 if rs[i] != 0 ss = s[i] r[ss + 1] += 1 end end end end rem = p.n_samples % 16 if rem != 0 @inbounds for n in ((p.n_samples - rem) + 1) : p.n_samples rmask !== nothing && rmask[n] == 0 && continue idx_base = idx1 + ((n - 1) << 1) r[2 * d[idx_base] + d[idx_base + 1] + 1] += 1 end end # subtract back counts for missings @inbounds for n in p.missings rmask !== nothing && rmask[n] == 0 && continue idx_base = idx1 + ((n - 1) << 1) r[2 * d[idx_base] + d[idx_base + 1] + 1] -= 1 end r[end] = length(p.missings) else @error "counts for non-dosage not implemented yet" end r end for ftn in [:maf, :hwe, :info_score, :counts!] @eval begin function $(ftn)(b::Bgen, v::BgenVariant; T=Float32, decompressed=nothing, is_decompressed=false, rmask=nothing, kwargs...) io, h = b.io, b.header if (decompressed !== nothing && !is_decompressed) || (decompressed === nothing && (v.genotypes === nothing || v.genotypes.decompressed === nothing)) decompressed = decompress(io, v, h; decompressed=decompressed) else decompressed = v.genotypes.decompressed end startidx = 1 if v.genotypes === nothing p = parse_preamble(decompressed, h, v) v.genotypes = Genotypes{T}(p, decompressed) else p = v.genotypes.preamble end if h.layout == 2 startidx += 10 + h.n_samples end $(ftn)(p, decompressed, startidx, h.layout, rmask; kwargs...) end end end
BGEN
https://github.com/OpenMendel/BGEN.jl.git
[ "MIT" ]
0.2.1
6512022b637fc17c297bb3050ba2e6cdd50b6fa0
code
3197
""" BgenVariant(b::Bgen, offset::Integer) BgenVariant(io, offset, compression, layout, expected_n) Parse information of a single variant beginning from `offset`. """ function BgenVariant(io::IOStream, offset::Integer, compression::Integer, layout::Integer, expected_n::Integer) seek(io, offset) if eof(io) @error "reached end of file" end if layout == 1 n_samples = read(io, UInt32) else n_samples = expected_n end if n_samples != expected_n @error "number of samples does not match" end varid_len = read(io, UInt16) varid = String(read(io, varid_len)) rsid_len = read(io, UInt16) rsid = String(read(io, rsid_len)) chrom_len = read(io, UInt16) chrom = String(read(io, chrom_len)) pos = read(io, UInt32) if layout == 1 n_alleles = 2 else n_alleles = read(io, UInt16) end alleles = Array{String}(undef, n_alleles) for i in 1:n_alleles allele_len = read(io, UInt32) alleles_bytes = read(io, allele_len) alleles[i] = String(alleles_bytes) end if compression == 0 && layout == 1 geno_block_size = 6 * n_samples else geno_block_size = read(io, UInt32) end geno_offset = position(io) next_var_offset = geno_offset + geno_block_size BgenVariant(offset, geno_offset, next_var_offset, geno_block_size, n_samples, varid, rsid, chrom, pos, n_alleles, alleles, nothing) end function BgenVariant(b::Bgen, offset::Integer) h = b.header if offset >= b.fsize @error "reached end of file" end BgenVariant(b.io, offset, h.compression, h.layout, h.n_samples) end @inline n_samples(v::BgenVariant)::Int = v.n_samples @inline varid(v::BgenVariant) = v.varid @inline rsid(v::BgenVariant) = v.rsid @inline chrom(v::BgenVariant) = v.chrom @inline pos(v::BgenVariant)::Int = v.pos @inline n_alleles(v::BgenVariant)::Int = v.n_alleles @inline alleles(v::BgenVariant) = v.alleles # The following functions are valid only after calling `probabilities!()` # or `minor_allele_dosage!()` @inline phased(v::BgenVariant) = v.genotypes.preamble.phased @inline min_ploidy(v::BgenVariant) = v.genotypes.preamble.min_ploidy @inline max_ploidy(v::BgenVariant) = v.genotypes.preamble.max_ploidy @inline ploidy(v::BgenVariant) = v.genotypes.preamble.ploidy @inline bit_depth(v::BgenVariant) = v.genotypes.preamble.bit_depth @inline missings(v::BgenVariant) = v.genotypes.preamble.missings # The below are valid after calling `minor_allele_dosage!()` @inline function minor_allele(v::BgenVariant) midx = v.genotypes.minor_idx if midx == 0 @error "`minor_allele_dosage!()` must be called before `minor_allele()`" else v.alleles[v.genotypes.minor_idx] end end @inline function major_allele(v::BgenVariant) midx = v.genotypes.minor_idx if midx == 0 @error "`minor_allele_dosage!()` must be called before `minor_allele()`" else v.alleles[3 - midx] end end """ destroy_genotypes!(v::BgenVariant) Destroy any parsed genotype information. """ function clear!(v::BgenVariant) v.genotypes = nothing return end
BGEN
https://github.com/OpenMendel/BGEN.jl.git
[ "MIT" ]
0.2.1
6512022b637fc17c297bb3050ba2e6cdd50b6fa0
code
656
using BGEN using Statistics, Test, Printf using GeneticVariantBase const example_8bits = BGEN.datadir("example.8bits.bgen") const example_10bits = BGEN.datadir("example.10bits.bgen") const example_16bits = BGEN.datadir("example.16bits.bgen") const example_sample = BGEN.datadir("example.sample") include("utils.jl") const gen_data = load_gen_data() const vcf_data = load_vcf_data() const haps_data = load_haps_data() include("test_basics.jl") include("test_getters.jl") include("test_select_region.jl") include("test_index.jl") include("test_load_example_files.jl") include("test_minor_allele_dosage.jl") include("test_utils.jl") include("test_filter.jl")
BGEN
https://github.com/OpenMendel/BGEN.jl.git
[ "MIT" ]
0.2.1
6512022b637fc17c297bb3050ba2e6cdd50b6fa0
code
2107
@testset "basics" begin header_ref = BGEN.Header(example_10bits) @testset "header" begin header_test = BGEN.Header(example_10bits) @test header_test.offset == 0x0000178c # 6028 @test header_test.header_length == 0x00000014 # 20 @test header_test.n_variants == 0x000000c7 # 199 @test header_test.n_samples == 0x000001f4 # 500 @test header_test.compression == 1 @test header_test.layout == 2 @test header_test.has_sample_ids == 1 end @testset "samples_separate" begin n_samples = 500 samples_test2 = BGEN.get_samples(example_sample, n_samples) samples_correct = [(@sprintf "sample_%03d" i) for i in 1:n_samples] @test all(samples_correct .== samples_test2) samples_test3 = BGEN.get_samples(n_samples) @test all([string(i) for i in 1:n_samples] .== samples_test3) end bgen = BGEN.Bgen(example_10bits) @testset "bgen" begin @test bgen.fsize == 223646 @test bgen.header == header_ref n_samples = bgen.header.n_samples samples_correct = [(@sprintf "sample_%03d" i) for i in 1:n_samples] @test all(samples_correct .== bgen.samples) variants = parse_variants(bgen) var = variants[4] @test length(variants) == 199 @test var.offset == 0x0000000000002488 @test var.geno_offset == 0x00000000000024b1 @test var.next_var_offset == 0x0000000000002902 @test var.geno_block_size == 0x00000451 @test var.n_samples == 0x000001f4 @test var.varid == "SNPID_5" @test var.rsid == "RSID_5" @test var.chrom == "01" @test var.pos == 0x00001388 @test var.n_alleles == 2 @test all(var.alleles.== ["A", "G"]) end @testset "preamble" begin io, v, h = bgen.io, parse_variants(bgen)[1], bgen.header decompressed = BGEN.decompress(io, v, h) preamble = BGEN.parse_preamble(decompressed, h, v) @test preamble.phased == 0 @test preamble.min_ploidy == 2 @test preamble.max_ploidy == 2 @test all(preamble.ploidy .== 2) @test preamble.bit_depth == 10 @test preamble.max_probs == 3 @test length(preamble.missings) == 1 @test preamble.missings[1] == 1 end end
BGEN
https://github.com/OpenMendel/BGEN.jl.git
[ "MIT" ]
0.2.1
6512022b637fc17c297bb3050ba2e6cdd50b6fa0
code
2227
@testset "filter" begin b = Bgen(BGEN.datadir("example.8bits.bgen")) vidx = falses(b.header.n_variants) vidx[1:10] .= true BGEN.filter("test.bgen", b, vidx) b2 = Bgen("test.bgen"; sample_path="test.sample") @test all(b.samples .== b2.samples) for (v1, v2) in zip(iterator(b), iterator(b2)) # length of two iterators are different. # it stops when the shorter one (b2) ends. @test v1.varid == v2.varid @test v1.rsid == v2.rsid @test v1.chrom == v2.chrom @test v1.pos == v2.pos @test v1.n_alleles == v2.n_alleles @test all(v1.alleles .== v2.alleles) decompressed1 = BGEN.decompress(b.io, v1, b.header) decompressed2 = BGEN.decompress(b2.io, v2, b2.header) @test all(decompressed1 .== decompressed2) end sidx = falses(b.header.n_samples) sidx[1:10] .= true BGEN.filter("test2.bgen", b, trues(b.header.n_variants), sidx) b3 = Bgen("test2.bgen"; sample_path="test2.sample") for (v1, v3) in zip(iterator(b), iterator(b3)) @test v1.varid == v3.varid @test v1.rsid == v3.rsid @test v1.chrom == v3.chrom @test v1.pos == v3.pos @test v1.n_alleles == v3.n_alleles @test all(v1.alleles .== v3.alleles) @test isapprox(probabilities!(b, v1)[:, 1:10], probabilities!(b3, v3); nans=true) end b4 = Bgen(BGEN.datadir("complex.24bits.bgen")) BGEN.filter("test3.bgen", b4, trues(b4.header.n_variants), BitVector([false, false, true, true])) b5 = Bgen("test3.bgen"; sample_path = "test3.sample") for (v4, v5) in zip(iterator(b4), iterator(b5)) @test v4.varid == v5.varid @test v4.rsid == v5.rsid @test v4.chrom == v5.chrom @test v4.pos == v5.pos @test v4.n_alleles == v5.n_alleles @test all(v4.alleles .== v5.alleles) @test isapprox(probabilities!(b4, v4)[:, 3:4], probabilities!(b5, v5); nans=true) end close(b) close(b2) close(b3) close(b4) close(b5) rm("test.bgen", force=true) rm("test.sample", force=true) rm("test2.bgen", force=true) rm("test2.sample", force=true) rm("test3.bgen", force=true) rm("test3.sample", force=true) end
BGEN
https://github.com/OpenMendel/BGEN.jl.git
[ "MIT" ]
0.2.1
6512022b637fc17c297bb3050ba2e6cdd50b6fa0
code
792
@testset "getters" begin b = BGEN.Bgen(example_8bits) @test fsize(b) == 128746 @test all(samples(b) .== b.samples) @test n_samples(b) == 500 @test n_variants(b) == 199 @test compression(b) == "Zlib" v = first(iterator(b; from_bgen_start=true)) @test n_samples(v::Variant) == 500 @test varid(v::Variant) == "SNPID_2" @test rsid(v::Variant) == "RSID_2" @test chrom(v::Variant) == "01" @test pos(v::Variant) == 2000 @test n_alleles(v::Variant) == 2 @test length(alleles(v::Variant)) == 2 @test all(alleles(v) .== ["A", "G"]) minor_allele_dosage!(b, v) @test phased(v) == 0 @test min_ploidy(v) == 2 @test max_ploidy(v) == 2 @test all(ploidy(v) .== 2) @test bit_depth(v) == 8 @test length(missings(v)) == 1 @test missings(v)[1] == 1 @test minor_allele(v) == "A" @test major_allele(v) == "G" end
BGEN
https://github.com/OpenMendel/BGEN.jl.git
[ "MIT" ]
0.2.1
6512022b637fc17c297bb3050ba2e6cdd50b6fa0
code
987
@testset "index" begin @testset "index_opens" begin @test Bgen(BGEN.datadir("example.15bits.bgen")).idx === nothing @test Bgen(BGEN.datadir("example.16bits.bgen")).idx !== nothing end @testset "index_region" begin chrom = "01" start = 5000 stop = 50000 b = Bgen(BGEN.datadir("example.16bits.bgen")) idx = b.idx @test length(select_region(b, chrom)) == length(gen_data) @test length(select_region(b, "02")) == 0 @test length(select_region(b, chrom; start=start * 100, stop=stop * 100)) == 0 after_pos_offsets = select_region(b, chrom; start=start) @test length(after_pos_offsets) == length(filter(x -> x.pos >= start, gen_data)) in_region_offsets = select_region(b, chrom; start=start, stop=stop) @test length(in_region_offsets) == length(filter(x -> start <= x.pos <= stop, gen_data)) @test rsid(variant_by_rsid(b, "RSID_10")) == "RSID_10" @test rsid(variant_by_index(b, 4)) == "RSID_3" end end
BGEN
https://github.com/OpenMendel/BGEN.jl.git
[ "MIT" ]
0.2.1
6512022b637fc17c297bb3050ba2e6cdd50b6fa0
code
2840
@testset "example files" begin @testset "bit depths" begin for i in 1:32 b = Bgen(BGEN.datadir("example.$(i)bits.bgen"); idx_path = nothing) v = parse_variants(b) for (j, (v1, v2)) in enumerate(zip(v, gen_data)) @test v1.chrom == v2.chrom @test v1.varid == v2.varid @test v1.rsid == v2.rsid @test v1.pos == v2.pos @test all(v1.alleles .== v2.alleles) @test array_equal(v2.probs, probabilities!(b, v1), i) end end end @testset "zstd" begin b = Bgen(BGEN.datadir("example.16bits.zstd.bgen"); idx_path = nothing) v = parse_variants(b) for (j, (v1, v2)) in enumerate(zip(v, gen_data)) @test v1.chrom == v2.chrom @test v1.varid == v2.varid @test v1.rsid == v2.rsid @test v1.pos == v2.pos @test all(v1.alleles .== v2.alleles) @test array_equal(v2.probs, probabilities!(b, v1), 16) end end @testset "v11" begin b = Bgen(BGEN.datadir("example.v11.bgen"); idx_path = nothing) v = parse_variants(b) for (j, (v1, v2)) in enumerate(zip(v, gen_data)) @test v1.chrom == v2.chrom @test v1.varid == v2.varid @test v1.rsid == v2.rsid @test v1.pos == v2.pos @test all(v1.alleles .== v2.alleles) @test array_equal(v2.probs, probabilities!(b, v1), 16) end end @testset "haplotypes" begin b = Bgen(BGEN.datadir("haplotypes.bgen"); idx_path = nothing) v = parse_variants(b) for (j, (v1, v2)) in enumerate(zip(v, haps_data)) @test v1.chrom == v2.chrom @test v1.varid == v2.varid @test v1.rsid == v2.rsid @test v1.pos == v2.pos @test all(v1.alleles .== v2.alleles) @test array_equal(v2.probs, probabilities!(b, v1), 16) end end @testset "complex" begin b = Bgen(BGEN.datadir("complex.bgen"); idx_path = nothing) v = parse_variants(b) for (j, (v1, v2)) in enumerate(zip(v, vcf_data)) @test v1.chrom == v2.chrom @test v1.varid == v2.varid @test v1.rsid == v2.rsid @test v1.pos == v2.pos @test all(v1.alleles .== v2.alleles) @test array_equal(v2.probs, probabilities!(b, v1), 16) end end @testset "complex bit depths" begin for i in 1:32 b = Bgen(BGEN.datadir("complex.$(i)bits.bgen"); idx_path = nothing) v = parse_variants(b) for (j, (v1, v2)) in enumerate(zip(v, vcf_data)) @test v1.chrom == v2.chrom @test v1.varid == v2.varid @test v1.rsid == v2.rsid @test v1.pos == v2.pos @test all(v1.alleles .== v2.alleles) @test array_equal(v2.probs, probabilities!(b, v1), i) end end end @testset "null" begin @test_throws SystemError Bgen(BGEN.datadir("Hello_World.bgen")) end end
BGEN
https://github.com/OpenMendel/BGEN.jl.git
[ "MIT" ]
0.2.1
6512022b637fc17c297bb3050ba2e6cdd50b6fa0
code
3961
@testset "minor allele dosage" begin @testset "slow" begin path = BGEN.datadir("example.16bits.zstd.bgen") b = Bgen(path) for v in iterator(b) probs = probabilities!(b, v) dose = minor_allele_dosage!(b, v) # dosages for each allele a1 = probs[1, :] .* 2 .+ probs[2, :] a2 = probs[3, :] .* 2 .+ probs[2, :] dose_correct = sum(a1[.!isnan.(a1)]) < sum(a2[.!isnan.(a2)]) ? a1 : a2 minor_allele_index = sum(a1[.!isnan.(a1)]) < sum(a2[.!isnan.(a2)]) ? 1 : 2 @test v.genotypes.minor_idx == minor_allele_index @test all(isapprox.(dose, dose_correct; atol=2e-7, nans=true)) end end @testset "fast" begin path = BGEN.datadir("example.8bits.bgen") b = Bgen(path) for v in iterator(b) probs = probabilities!(b, v) dose = minor_allele_dosage!(b, v) # dosages for each allele a1 = probs[1, :] .* 2 .+ probs[2, :] a2 = probs[3, :] .* 2 .+ probs[2, :] dose_correct = sum(a1[.!isnan.(a1)]) < sum(a2[.!isnan.(a2)]) ? a1 : a2 minor_allele_index = sum(a1[.!isnan.(a1)]) < sum(a2[.!isnan.(a2)]) ? 1 : 2 @test v.genotypes.minor_idx == minor_allele_index @test all(isapprox.(dose, dose_correct; atol=2e-7, nans=true)) end end @testset "v11" begin path = BGEN.datadir("example.v11.bgen") b = Bgen(path) for v in iterator(b) probs = probabilities!(b, v) dose = minor_allele_dosage!(b, v) # dosages for each allele a1 = probs[1, :] .* 2 .+ probs[2, :] a2 = probs[3, :] .* 2 .+ probs[2, :] dose_correct = sum(a1[.!isnan.(a1)]) < sum(a2[.!isnan.(a2)]) ? a1 : a2 minor_allele_index = sum(a1[.!isnan.(a1)]) < sum(a2[.!isnan.(a2)]) ? 1 : 2 @test v.genotypes.minor_idx == minor_allele_index @test all(isapprox.(dose, dose_correct; atol=7e-5, nans=true)) end end @testset "multiple_calls" begin b = Bgen( BGEN.datadir("example.8bits.bgen"); sample_path=BGEN.datadir("example.sample"), idx_path=BGEN.datadir("example.8bits.bgen.bgi") ) # second allele minor v = variant_by_rsid(b, "RSID_110") @test isapprox(mean(minor_allele_dosage!(b, v)), 0.9621725f0) @test isapprox(mean(minor_allele_dosage!(b, v)), 0.9621725f0) @test isapprox(mean(first_allele_dosage!(b, v)), 2 - 0.9621725f0) @test isapprox(mean(minor_allele_dosage!(b, v)), 0.9621725f0) clear!(v) @test isapprox(mean(first_allele_dosage!(b, v)), 2 - 0.9621725f0) @test isapprox(mean(minor_allele_dosage!(b, v)), 0.9621725f0) clear!(v) @test isapprox(mean(BGEN.ref_allele_dosage!(b, v)), 2 - 0.9621725f0) @test isapprox(mean(BGEN.alt_allele_dosage!(b, v)), 0.9621725f0) # first allele minor v = variant_by_rsid(b, "RSID_198") @test isapprox(mean(minor_allele_dosage!(b, v)), 0.48411763f0) @test isapprox(mean(minor_allele_dosage!(b, v)), 0.48411763f0) @test isapprox(mean(first_allele_dosage!(b, v)), 0.48411763f0) @test isapprox(mean(minor_allele_dosage!(b, v)), 0.48411763f0) clear!(v) @test isapprox(mean(first_allele_dosage!(b, v)), 0.48411763f0) @test isapprox(mean(minor_allele_dosage!(b, v)), 0.48411763f0) clear!(v) @test isapprox(mean(BGEN.ref_allele_dosage!(b, v)), 0.48411763f0) @test isapprox(mean(BGEN.alt_allele_dosage!(b, v)), 2 - 0.48411763f0) clear!(v) @test isapprox(mean(GeneticVariantBase.alt_dosages!(Vector{Float32}(undef, n_samples(b)), b, v)), 2 - 0.48411763f0) end @testset "mean_impute" begin path = BGEN.datadir("example.8bits.bgen") b = Bgen(path) v = first(iterator(b; from_bgen_start=true)) m = minor_allele_dosage!(b, v; mean_impute=true) @test isapprox(m[1], 0.3958112303037447) end @testset "haplotypes" begin path = BGEN.datadir("haplotypes.bgen") b = Bgen(path) for v in iterator(b) probs = probabilities!(b, v) dose = first_allele_dosage!(b, v) dose_correct = probs[1, :] .+ probs[3, :] @test all(isapprox.(dose, dose_correct)) end end end
BGEN
https://github.com/OpenMendel/BGEN.jl.git
[ "MIT" ]
0.2.1
6512022b637fc17c297bb3050ba2e6cdd50b6fa0
code
1480
@testset "select_region" begin @testset "select_region_null" begin chrom, start, stop = "01", 5000, 50000 b = Bgen(example_16bits) @test b.idx !== nothing @test length(select_region(b, "02")) == 0 end @testset "select_whole_chrom" begin chrom, start, stop = "01", 5000, 50000 b = Bgen(example_16bits) lt = (x, y) -> isless((x.chrom, x.pos), (y.chrom, y.pos)) variants = collect(select_region(b, chrom)) for (x, y) in zip(sort(variants; lt=lt), sort(gen_data; lt=lt)) @test (x.rsid, x.chrom, x.pos) == (y.rsid, y.chrom, y.pos) end end @testset "select_after_position" begin chrom, start, stop = "01", 5000, 50000 b = Bgen(example_16bits) lt = (x, y) -> isless((x.chrom, x.pos), (y.chrom, y.pos)) variants = collect(select_region(b, chrom; start=start)) gen_data_f = filter(x -> x.pos >= start, gen_data) for (x, y) in zip(sort(variants; lt=lt), sort(gen_data_f; lt=lt)) @test (x.rsid, x.chrom, x.pos) == (y.rsid, y.chrom, y.pos) end end @testset "select_in_region" begin chrom, start, stop = "01", 5000, 50000 b = Bgen(example_16bits) lt = (x, y) -> isless((x.chrom, x.pos), (y.chrom, y.pos)) variants = collect(select_region(b, chrom; start=start, stop=stop)) gen_data_f = filter(x -> start <= x.pos <= stop, gen_data) for (x, y) in zip(sort(variants; lt=lt), sort(gen_data_f; lt=lt)) @test (x.rsid, x.chrom, x.pos) == (y.rsid, y.chrom, y.pos) end end end
BGEN
https://github.com/OpenMendel/BGEN.jl.git
[ "MIT" ]
0.2.1
6512022b637fc17c297bb3050ba2e6cdd50b6fa0
code
582
@testset "utils" begin @testset "counts" begin path = BGEN.datadir("example.8bits.bgen") b = Bgen(path) for v in iterator(b) cnt = counts!(b, v) dose = first_allele_dosage!(b, v) correct_cnt = zeros(Int, 512) for v in dose if !isnan(v) ind = convert(Int, round(v * 255)) + 1 correct_cnt[ind] += 1 end end correct_cnt[512] = count(isnan.(dose)) @test all(cnt .== correct_cnt) end end end
BGEN
https://github.com/OpenMendel/BGEN.jl.git
[ "MIT" ]
0.2.1
6512022b637fc17c297bb3050ba2e6cdd50b6fa0
code
3922
struct GenVariant chrom::String varid::String rsid::String pos::UInt alleles::Vector{String} probs::Matrix{Float64} ploidy::Vector{UInt8} end """ load_gen_data() load data from "example.gen" """ function load_gen_data() variants = GenVariant[] open(BGEN.datadir("example.gen")) do io for l in readlines(io) tokens = split(l) chrom, varid, rsid, pos, ref, alt = tokens[1:6] pos = parse(UInt, pos) probs = reshape(parse.(Float64, tokens[7:end]), 3, :) nan_col_idx = transpose(sum(probs; dims=1)) .== 0 for (i, v) in enumerate(nan_col_idx) if v probs[:, i] .= NaN end end push!(variants, GenVariant(chrom, varid, rsid, pos, [ref, alt], probs, [])) end end variants end """ parse_vcf_samples(format, samples) Parse sample data from VCF. """ function parse_vcf_samples(format, samples) samples = [Dict(zip(split(format, ":"), split(x, ":"))) for x in samples] ks = Dict([("GT", r"[/|]"), ("GP", ","), ("HP", ",")]) samples2 = [Dict{String, Vector{SubString{String}}}() for x in samples] for (x, y) in zip(samples, samples2) for k in keys(x) y[k] = split(x[k], ks[k]) end end probs = [occursin("GP", format) ? x["GP"] : x["HP"] for x in samples2] probs = map(x -> parse.(Float64, x), probs) max_len = maximum(length(x) for x in probs) probs_out = Matrix{Float64}(undef, max_len, length(samples)) fill!(probs_out, NaN) for i in 1:length(probs) probs_out[1:length(probs[i]), i] .= probs[i] end ploidy = [length(y["GT"]) for y in samples2] probs_out, ploidy end """ load_vcf_data() Load data from "complex.vcf" for comparison """ function load_vcf_data() variants = GenVariant[] open(BGEN.datadir("complex.vcf")) do io for l in readlines(io) if startswith(l, "#") continue end tokens = split(l) chrom, pos, varid, ref, alts = tokens[1:5] pos = parse(UInt, pos) format = tokens[9] samples = tokens[10:end] varid = split(varid, ",") if length(varid) > 1 rsid, varid = varid else rsid, varid = varid[1], "" end probs, ploidy = parse_vcf_samples(format, samples) var = GenVariant(string(chrom), varid, string(rsid), pos, vcat(String[ref], split(alts, ",")), probs, ploidy) push!(variants, var) end end variants end """ load_haps_data() Load data from "haplotypes.haps" for comparison. """ function load_haps_data() variants = GenVariant[] open(BGEN.datadir("haplotypes.haps")) do io for l in readlines(io) tokens = split(l) chrom, varid, rsid, pos, ref, alt = tokens[1:6] pos = parse(UInt, pos) probs = tokens[7:end] probs = [x == "0" ? [1.0, 0.0] : [0.0, 1.0] for x in probs] probs = [probs[pos:pos+1] for pos in 1:2:length(probs)] probs = [hcat(x[1], x[2]) for x in probs] probs = hcat(probs...) probs = reshape(probs, 4, :) var = GenVariant(chrom, varid, rsid, pos, [ref, alt], probs, []) push!(variants, var) end end variants end """ epsilon(bit_depth) Max difference expected for the bit depth """ @inline function epsilon(bit_depth) return 2 / (2 ^ (bit_depth - 1)) end """ array_equal(truth, parsed, bit_depth) check if the two arrays are sufficiently equal """ @inline function array_equal(truth, parsed, bit_depth) eps_abs = 3.2e-5 all(isapprox.(truth, parsed; atol=max(eps_abs, epsilon(bit_depth)), nans=true)) end
BGEN
https://github.com/OpenMendel/BGEN.jl.git
[ "MIT" ]
0.2.1
6512022b637fc17c297bb3050ba2e6cdd50b6fa0
docs
2381
# BGEN.jl [![](https://img.shields.io/badge/docs-latest-blue.svg)](https://OpenMendel.github.io/BGEN.jl/dev) [![](https://img.shields.io/badge/docs-stable-blue.svg)](https://OpenMendel.github.io/BGEN.jl/stable) [![codecov](https://codecov.io/gh/OpenMendel/BGEN.jl/branch/main/graph/badge.svg?token=W28QPREGC7)](https://codecov.io/gh/OpenMendel/BGEN.jl) [![build Actions Status](https://github.com/OpenMendel/BGEN.jl/workflows/CI/badge.svg)](https://github.com/OpenMendel/BGEN.jl/actions) Routines for reading compressed storage of genotyped or imputed markers [*Genome-wide association studies (GWAS)*](https://en.wikipedia.org/wiki/Genome-wide_association_study) data with imputed markers are often saved in the [**BGEN format**](https://www.well.ox.ac.uk/~gav/bgen_format/) or `.bgen` file. It can store both hard calls and imputed data, unphased genotypes and phased haplotypes. Each variant is compressed separately to make indexing simple. An index file (`.bgen.bgi`) may be provided to access each variant easily. [UK Biobank](https://www.ukbiobank.ac.uk/) uses this format for genome-wide imputed genotypes. ## Installation This package requires Julia v1.0 or later, which can be obtained from https://julialang.org/downloads/ or by building Julia from the sources in the https://github.com/JuliaLang/julia repository. This package is registered in the default Julia package registry, and can be installed through standard package installation procedure: e.g., running the following code in Julia REPL. ```julia using Pkg pkg"add BGEN" ``` ## Citation If you use [OpenMendel](https://openmendel.github.io) analysis packages in your research, please cite the following reference in the resulting publications: *Zhou H, Sinsheimer JS, Bates DM, Chu BB, German CA, Ji SS, Keys KL, Kim J, Ko S, Mosher GD, Papp JC, Sobel EM, Zhai J, Zhou JJ, Lange K. OPENMENDEL: a cooperative programming project for statistical genetics. Hum Genet. 2020 Jan;139(1):61-71. doi: 10.1007/s00439-019-02001-z. Epub 2019 Mar 26. PMID: 30915546; PMCID: [PMC6763373](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6763373/).* ## Acknowledgments Current implementation incorporates ideas in a [bgen Python package](https://github.com/jeremymcrae/bgen). This project has been supported by the National Institutes of Health under awards R01GM053275, R01HG006139, R25GM103774, and 1R25HG011845.
BGEN
https://github.com/OpenMendel/BGEN.jl.git
[ "MIT" ]
0.2.1
6512022b637fc17c297bb3050ba2e6cdd50b6fa0
docs
33436
# BGEN.jl Routines for reading compressed storage of genotyped or imputed markers ## The BGEN Format [*Genome-wide association studies (GWAS)*](https://en.wikipedia.org/wiki/Genome-wide_association_study) data with imputed markers are often saved in the [**BGEN format**](https://www.well.ox.ac.uk/~gav/bgen_format/) or `.bgen` file. Used in: * Wellcome Trust Case-Control Consortium 2 * the MalariaGEN project * the ALSPAC study * [__UK Biobank__](https://enkre.net/cgi-bin/code/bgen/wiki/?name=BGEN+in+the+UK+Biobank): for genome-wide imputed genotypes and phased haplotypes ### Features * Can store both hard-calls and imputed data * Can store both phased haplotypes and phased genotypes * Efficient variable-precision bit reapresntations * Per-variant compression $\rightarrow$ easy to index * Supported compression method: [zlib](http://www.zlib.net/) and [Zstandard](https://facebook.github.io/zstd/). * Index files are often provided as `.bgen.bgi` files, which are plain [SQLite3](http://www.sqlite.org) databases. Time to list variant identifying information (genomic location, ID and alleles): 18,496 samples, 121,668 SNPs (image source: https://www.well.ox.ac.uk/~gav/bgen_format/images/bgen_comparison.png) ![](https://www.well.ox.ac.uk/~gav/bgen_format/images/bgen_comparison.png) _Plink 1 format (`.bed`/`.bim`/`.fam`) has the list of variants as a separate file (`.bim`), effectively zero time._ ### Structure A header block followed by a series of [variant data block - (compressed) genotype data block] pairs. * Header block * number of variants and samples * compression method (none, zlib or zstandard) * version of layout * Only "layout 2" is discussed below. "Layout 1" is also supported. * sample identifiers (optional) * Variant data block * variant id * genomic position (chromosome, bp coordinate) * list of alleles * Genotype data block (often compressed) * ploidy of each sample (may vary sample-by-sample) * if the genotype data are phased * precision ($B$, number of bits to represent probabilities) * probabilitiy data (e.g. an unsigned $B$-bit integer $x$ represents the probability of ($\frac{x}{2^{B}-1}$) _`BGEN.jl` provides tools for iterating over the variants and parsing genotype data efficiently. It has been optimized for UK Biobank's zlib-compressed, 8-bit byte-aligned, all-diploid, all-biallelic datafiles._ ## Installation This package requires Julia v1.0 or later, which can be obtained from https://julialang.org/downloads/ or by building Julia from the sources in the https://github.com/JuliaLang/julia repository. The package can be installed by running the following code: ```julia using Pkg pkg"add BGEN" ``` In order to run the examples below, the `Glob` package is also needed. ```julia pkg"add Glob" ``` ```julia versioninfo() ``` Julia Version 1.8.5 Commit 17cfb8e65ea (2023-01-08 06:45 UTC) Platform Info: OS: macOS (arm64-apple-darwin21.5.0) CPU: 8 × Apple M2 WORD_SIZE: 64 LIBM: libopenlibm LLVM: libLLVM-13.0.1 (ORCJIT, apple-m1) Threads: 1 on 4 virtual cores ```julia using BGEN, Glob ``` ## Example Data The example datafiles are stored in `/data` directory of this repository. It can be accessed through the function `BGEN.datadir()`. These files come from [the reference implementation](https://enkre.net/cgi-bin/code/bgen/dir?ci=trunk) for the BGEN format. ```julia Glob.glob("*", BGEN.datadir()) ``` 79-element Vector{String}: "/Users/kose/.julia/dev/BGEN/src/../data/LICENSE.md" "/Users/kose/.julia/dev/BGEN/src/../data/complex.10bits.bgen" "/Users/kose/.julia/dev/BGEN/src/../data/complex.11bits.bgen" "/Users/kose/.julia/dev/BGEN/src/../data/complex.12bits.bgen" "/Users/kose/.julia/dev/BGEN/src/../data/complex.13bits.bgen" "/Users/kose/.julia/dev/BGEN/src/../data/complex.14bits.bgen" "/Users/kose/.julia/dev/BGEN/src/../data/complex.15bits.bgen" "/Users/kose/.julia/dev/BGEN/src/../data/complex.16bits.bgen" "/Users/kose/.julia/dev/BGEN/src/../data/complex.17bits.bgen" "/Users/kose/.julia/dev/BGEN/src/../data/complex.18bits.bgen" "/Users/kose/.julia/dev/BGEN/src/../data/complex.19bits.bgen" "/Users/kose/.julia/dev/BGEN/src/../data/complex.1bits.bgen" "/Users/kose/.julia/dev/BGEN/src/../data/complex.20bits.bgen" ⋮ "/Users/kose/.julia/dev/BGEN/src/../data/example.6bits.bgen" "/Users/kose/.julia/dev/BGEN/src/../data/example.7bits.bgen" "/Users/kose/.julia/dev/BGEN/src/../data/example.8bits.bgen" "/Users/kose/.julia/dev/BGEN/src/../data/example.8bits.bgen.bgi" "/Users/kose/.julia/dev/BGEN/src/../data/example.9bits.bgen" "/Users/kose/.julia/dev/BGEN/src/../data/example.gen" "/Users/kose/.julia/dev/BGEN/src/../data/example.sample" "/Users/kose/.julia/dev/BGEN/src/../data/example.v11.bgen" "/Users/kose/.julia/dev/BGEN/src/../data/examples.16bits.bgen" "/Users/kose/.julia/dev/BGEN/src/../data/haplotypes.bgen" "/Users/kose/.julia/dev/BGEN/src/../data/haplotypes.bgen.bgi" "/Users/kose/.julia/dev/BGEN/src/../data/haplotypes.haps" There are three different datasets with different format versions, compressions, or number of bits to represent probability values. - `example.*.bgen`: imputed genotypes. - `haplotypes.bgen`: phased haplotypes. - `complex.*.bgen`: includes imputed genotypes and phased haplotypes, and multiallelic genotypes. Some of the `.bgen` files are indexed with `.bgen.bgi` files: ```julia Glob.glob("*.bgen.bgi", BGEN.datadir()) ``` 4-element Vector{String}: "/Users/kose/.julia/dev/BGEN/src/../data/complex.bgen.bgi" "/Users/kose/.julia/dev/BGEN/src/../data/example.16bits.bgen.bgi" "/Users/kose/.julia/dev/BGEN/src/../data/example.8bits.bgen.bgi" "/Users/kose/.julia/dev/BGEN/src/../data/haplotypes.bgen.bgi" Sample identifiers may be either contained in the `.bgen` file, or is listed in an external `.sample` file. ```julia Glob.glob("*.sample", BGEN.datadir()) ``` 2-element Vector{String}: "/Users/kose/.julia/dev/BGEN/src/../data/complex.sample" "/Users/kose/.julia/dev/BGEN/src/../data/example.sample" ## Type `Bgen` The type `Bgen` is the fundamental type for `.bgen`-formatted files. It can be created using the following line. ```julia b = Bgen(BGEN.datadir("example.8bits.bgen"); sample_path=BGEN.datadir("example.sample"), idx_path=BGEN.datadir("example.8bits.bgen.bgi")) ``` Bgen(IOStream(<file /Users/kose/.julia/dev/BGEN/src/../data/example.8bits.bgen>), 0x000000000001f6ea, BGEN.Header(0x0000178c, 0x00000014, 0x000000c7, 0x000001f4, 0x01, 0x02, true), ["sample_001", "sample_002", "sample_003", "sample_004", "sample_005", "sample_006", "sample_007", "sample_008", "sample_009", "sample_010" … "sample_491", "sample_492", "sample_493", "sample_494", "sample_495", "sample_496", "sample_497", "sample_498", "sample_499", "sample_500"], Index("/Users/kose/.julia/dev/BGEN/src/../data/example.8bits.bgen.bgi", SQLite.DB("/Users/kose/.julia/dev/BGEN/src/../data/example.8bits.bgen.bgi"), UInt64[], String[], String[], UInt32[])) The first argument is the path to the `.bgen` file. The optional keyword argument `sample_path` defines the location of the `.sample` file. The second optional keyword argument `idx_path` determines the location of `.bgen.bgi` file. When a `Bgen` object is created, information in the header is parsed, and the index files are loaded if provided. You may retrieve basic information as follows. Variants are not yet parsed, and will be discussed later. - `io(b::Bgen)`: IOStream for the bgen file. You may also close this stream using `close(b::Bgen)`. - `fsize(b::Bgen)`: the size of the bgen file. - `samples(b::Bgen)`: the list of sample names. - `n_samples(b::Bgen)`: number of samples in the file. - `n_variants(b::Bgen)`: number of variants - `compression(b::Bgen)`: the method each genotype block is compressed. It is either "None", "Zlib", or "Zstd". ```julia io(b) ``` IOStream(<file /Users/kose/.julia/dev/BGEN/src/../data/example.8bits.bgen>) ```julia fsize(b) ``` 128746 ```julia samples(b) ``` 500-element Vector{String}: "sample_001" "sample_002" "sample_003" "sample_004" "sample_005" "sample_006" "sample_007" "sample_008" "sample_009" "sample_010" "sample_011" "sample_012" "sample_013" ⋮ "sample_489" "sample_490" "sample_491" "sample_492" "sample_493" "sample_494" "sample_495" "sample_496" "sample_497" "sample_498" "sample_499" "sample_500" ```julia n_samples(b) ``` 500 ```julia n_variants(b) ``` 199 ```julia compression(b) ``` "Zlib" One may also access the list of RSIDs, chromosomes, and positions in chromosome of each variant stored using functions `rsids()`, `chroms()`, and `positions()`, respectively. ```julia rsids(b) ``` 199-element Vector{String}: "RSID_101" "RSID_2" "RSID_102" "RSID_3" "RSID_103" "RSID_4" "RSID_104" "RSID_5" "RSID_105" "RSID_6" "RSID_106" "RSID_7" "RSID_107" ⋮ "RSID_194" "RSID_95" "RSID_195" "RSID_96" "RSID_196" "RSID_97" "RSID_197" "RSID_98" "RSID_198" "RSID_99" "RSID_199" "RSID_200" ```julia chroms(b) ``` 199-element Vector{String}: "01" "01" "01" "01" "01" "01" "01" "01" "01" "01" "01" "01" "01" ⋮ "01" "01" "01" "01" "01" "01" "01" "01" "01" "01" "01" "01" ```julia positions(b) ``` 199-element Vector{Int64}: 1001 2000 2001 3000 3001 4000 4001 5000 5001 6000 6001 7000 7001 ⋮ 94001 95000 95001 96000 96001 97000 97001 98000 98001 99000 99001 100001 ## `Variant` and `VariantIterator` As noted earlier, genotype information of each variant is compressed separately in `.bgen` files. The offsets (starting points in bgen file) of the genotypes may or may not be indexed by an external `.bgen.bgi` file. Thus, two ways to iterate over variants is provided through the function `iterator(b; offsets=nothing, from_bgen_start=false)`. - If `offsets` is provided, or `.bgen.bgi` is provided and `from_bgen_start` is `false`, it returns a `VariantIteratorFromOffsets`, iterating over the list of offsets. - Otherwise, it returns a `VariantIteratorFromStart`, iterating from the start of bgen file to the end of it sequentially. `VariantIteratorFromOffsets` and `VariantIteratorFromStart` are the subtypes of `VariantIterator`. Each element of `VariantIterator` is a `Variant`, containing the information of variants. We have following utility functions to access its information. - `n_samples(v::Variant)` - `varid(v::Variant)` - `rsid(v::Variant)` - `chrom(v::Variant)` - `pos(v::Variant)` - `n_alleles(v::Variant)`: number of alleles. - `alleles(v::Variant)`: list of alleles. Merely the basic information of a variant is parsed for creating a `Variant` object. Nothing is decompressed, and genotype probabilities are not yet parsed yet. Decompression happens lazily, and is delayed until when we try to compute genotype probabilites or minor allele dosages (to be discussed later). Since `.bgen.bgi` file is provided, the following order is based on the index file, sorted by genomic location. ```julia for v in iterator(b) # println(rsid(v)) end ``` RSID_101 RSID_2 RSID_102 RSID_3 RSID_103 RSID_4 RSID_104 RSID_5 RSID_105 RSID_6 RSID_106 RSID_7 RSID_107 RSID_8 RSID_108 RSID_9 RSID_109 RSID_10 RSID_100 RSID_110 RSID_11 RSID_111 RSID_12 RSID_112 RSID_13 RSID_113 RSID_14 RSID_114 RSID_15 RSID_115 RSID_16 RSID_116 RSID_17 RSID_117 RSID_18 RSID_118 RSID_19 RSID_119 RSID_20 RSID_120 RSID_21 RSID_121 RSID_22 RSID_122 RSID_23 RSID_123 RSID_24 RSID_124 RSID_25 RSID_125 RSID_26 RSID_126 RSID_27 RSID_127 RSID_28 RSID_128 RSID_29 RSID_129 RSID_30 RSID_130 RSID_31 RSID_131 RSID_32 RSID_132 RSID_33 RSID_133 RSID_34 RSID_134 RSID_35 RSID_135 RSID_36 RSID_136 RSID_37 RSID_137 RSID_38 RSID_138 RSID_39 RSID_139 RSID_40 RSID_140 RSID_41 RSID_141 RSID_42 RSID_142 RSID_43 RSID_143 RSID_44 RSID_144 RSID_45 RSID_145 RSID_46 RSID_146 RSID_47 RSID_147 RSID_48 RSID_148 RSID_49 RSID_149 RSID_50 RSID_150 RSID_51 RSID_151 RSID_52 RSID_152 RSID_53 RSID_153 RSID_54 RSID_154 RSID_55 RSID_155 RSID_56 RSID_156 RSID_57 RSID_157 RSID_58 RSID_158 RSID_59 RSID_159 RSID_60 RSID_160 RSID_61 RSID_161 RSID_62 RSID_162 RSID_63 RSID_163 RSID_64 RSID_164 RSID_65 RSID_165 RSID_66 RSID_166 RSID_67 RSID_167 RSID_68 RSID_168 RSID_69 RSID_169 RSID_70 RSID_170 RSID_71 RSID_171 RSID_72 RSID_172 RSID_73 RSID_173 RSID_74 RSID_174 RSID_75 RSID_175 RSID_76 RSID_176 RSID_77 RSID_177 RSID_78 RSID_178 RSID_79 RSID_179 RSID_80 RSID_180 RSID_81 RSID_181 RSID_82 RSID_182 RSID_83 RSID_183 RSID_84 RSID_184 RSID_85 RSID_185 RSID_86 RSID_186 RSID_87 RSID_187 RSID_88 RSID_188 RSID_89 RSID_189 RSID_90 RSID_190 RSID_91 RSID_191 RSID_92 RSID_192 RSID_93 RSID_193 RSID_94 RSID_194 RSID_95 RSID_195 RSID_96 RSID_196 RSID_97 RSID_197 RSID_98 RSID_198 RSID_99 RSID_199 RSID_200 Setting `from_bgen_start=true` forces the iterator to iterate in the order of appearence in the bgen file. This may be different from the order in the index file. ```julia for v in iterator(b; from_bgen_start=true) println(rsid(v)) end ``` RSID_2 RSID_3 RSID_4 RSID_5 RSID_6 RSID_7 RSID_8 RSID_9 RSID_10 RSID_11 RSID_12 RSID_13 RSID_14 RSID_15 RSID_16 RSID_17 RSID_18 RSID_19 RSID_20 RSID_21 RSID_22 RSID_23 RSID_24 RSID_25 RSID_26 RSID_27 RSID_28 RSID_29 RSID_30 RSID_31 RSID_32 RSID_33 RSID_34 RSID_35 RSID_36 RSID_37 RSID_38 RSID_39 RSID_40 RSID_41 RSID_42 RSID_43 RSID_44 RSID_45 RSID_46 RSID_47 RSID_48 RSID_49 RSID_50 RSID_51 RSID_52 RSID_53 RSID_54 RSID_55 RSID_56 RSID_57 RSID_58 RSID_59 RSID_60 RSID_61 RSID_62 RSID_63 RSID_64 RSID_65 RSID_66 RSID_67 RSID_68 RSID_69 RSID_70 RSID_71 RSID_72 RSID_73 RSID_74 RSID_75 RSID_76 RSID_77 RSID_78 RSID_79 RSID_80 RSID_81 RSID_82 RSID_83 RSID_84 RSID_85 RSID_86 RSID_87 RSID_88 RSID_89 RSID_90 RSID_91 RSID_92 RSID_93 RSID_94 RSID_95 RSID_96 RSID_97 RSID_98 RSID_99 RSID_100 RSID_101 RSID_102 RSID_103 RSID_104 RSID_105 RSID_106 RSID_107 RSID_108 RSID_109 RSID_110 RSID_111 RSID_112 RSID_113 RSID_114 RSID_115 RSID_116 RSID_117 RSID_118 RSID_119 RSID_120 RSID_121 RSID_122 RSID_123 RSID_124 RSID_125 RSID_126 RSID_127 RSID_128 RSID_129 RSID_130 RSID_131 RSID_132 RSID_133 RSID_134 RSID_135 RSID_136 RSID_137 RSID_138 RSID_139 RSID_140 RSID_141 RSID_142 RSID_143 RSID_144 RSID_145 RSID_146 RSID_147 RSID_148 RSID_149 RSID_150 RSID_151 RSID_152 RSID_153 RSID_154 RSID_155 RSID_156 RSID_157 RSID_158 RSID_159 RSID_160 RSID_161 RSID_162 RSID_163 RSID_164 RSID_165 RSID_166 RSID_167 RSID_168 RSID_169 RSID_170 RSID_171 RSID_172 RSID_173 RSID_174 RSID_175 RSID_176 RSID_177 RSID_178 RSID_179 RSID_180 RSID_181 RSID_182 RSID_183 RSID_184 RSID_185 RSID_186 RSID_187 RSID_188 RSID_189 RSID_190 RSID_191 RSID_192 RSID_193 RSID_194 RSID_195 RSID_196 RSID_197 RSID_198 RSID_199 RSID_200 With the presence of `.bgen.bgi` index file, one may select variants on a certain region using the function `select_region(b, chrom; start=nothing, stop=nothing)`. The following shows that all 199 variants in the bgen file are located on chromosome 01. ```julia length(select_region(b, "01")) ``` 199 We can see that the first variant since position 5000 at chromosome 01 is "RSID_5": ```julia first(select_region(b, "01"; start=5000)) ``` Variant(0x0000000000001ef8, 0x0000000000001f21, 0x0000000000002169, 0x00000248, 0x000001f4, "SNPID_5", "RSID_5", "01", 0x00001388, 0x0002, ["A", "G"], nothing) And that the number of variants in chr01:5000-50000 is 92. ```julia length(select_region(b, "01"; start=5000, stop=50000)) ``` 92 Finally, one may use the `parse_variants()` function to retrieve the variant information as a `Vector{Variant}`. This is equivalent to calling `collect()` on the corresponding `VariantIterator`. It takes the same arguments as `iterator()`. This keeps all the information of variants in-memory. If the size of bgen file is too large, you might want to avoid this. ```julia variants = parse_variants(b; from_bgen_start=true) ``` 199-element Vector{Variant}: Variant(0x0000000000001790, 0x00000000000017b9, 0x0000000000001a82, 0x000002c9, 0x000001f4, "SNPID_2", "RSID_2", "01", 0x000007d0, 0x0002, ["A", "G"], nothing) Variant(0x0000000000001a82, 0x0000000000001aab, 0x0000000000001ced, 0x00000242, 0x000001f4, "SNPID_3", "RSID_3", "01", 0x00000bb8, 0x0002, ["A", "G"], nothing) Variant(0x0000000000001ced, 0x0000000000001d16, 0x0000000000001ef8, 0x000001e2, 0x000001f4, "SNPID_4", "RSID_4", "01", 0x00000fa0, 0x0002, ["A", "G"], nothing) Variant(0x0000000000001ef8, 0x0000000000001f21, 0x0000000000002169, 0x00000248, 0x000001f4, "SNPID_5", "RSID_5", "01", 0x00001388, 0x0002, ["A", "G"], nothing) Variant(0x0000000000002169, 0x0000000000002192, 0x0000000000002389, 0x000001f7, 0x000001f4, "SNPID_6", "RSID_6", "01", 0x00001770, 0x0002, ["A", "G"], nothing) Variant(0x0000000000002389, 0x00000000000023b2, 0x00000000000025df, 0x0000022d, 0x000001f4, "SNPID_7", "RSID_7", "01", 0x00001b58, 0x0002, ["A", "G"], nothing) Variant(0x00000000000025df, 0x0000000000002608, 0x00000000000027a4, 0x0000019c, 0x000001f4, "SNPID_8", "RSID_8", "01", 0x00001f40, 0x0002, ["A", "G"], nothing) Variant(0x00000000000027a4, 0x00000000000027cd, 0x00000000000029de, 0x00000211, 0x000001f4, "SNPID_9", "RSID_9", "01", 0x00002328, 0x0002, ["A", "G"], nothing) Variant(0x00000000000029de, 0x0000000000002a09, 0x0000000000002c43, 0x0000023a, 0x000001f4, "SNPID_10", "RSID_10", "01", 0x00002710, 0x0002, ["A", "G"], nothing) Variant(0x0000000000002c43, 0x0000000000002c6e, 0x0000000000002e8a, 0x0000021c, 0x000001f4, "SNPID_11", "RSID_11", "01", 0x00002af8, 0x0002, ["A", "G"], nothing) Variant(0x0000000000002e8a, 0x0000000000002eb5, 0x00000000000030e0, 0x0000022b, 0x000001f4, "SNPID_12", "RSID_12", "01", 0x00002ee0, 0x0002, ["A", "G"], nothing) Variant(0x00000000000030e0, 0x000000000000310b, 0x0000000000003375, 0x0000026a, 0x000001f4, "SNPID_13", "RSID_13", "01", 0x000032c8, 0x0002, ["A", "G"], nothing) Variant(0x0000000000003375, 0x00000000000033a0, 0x00000000000035dd, 0x0000023d, 0x000001f4, "SNPID_14", "RSID_14", "01", 0x000036b0, 0x0002, ["A", "G"], nothing) ⋮ Variant(0x000000000001d991, 0x000000000001d9be, 0x000000000001dc12, 0x00000254, 0x000001f4, "SNPID_189", "RSID_189", "01", 0x00015ba9, 0x0002, ["A", "G"], nothing) Variant(0x000000000001dc12, 0x000000000001dc3f, 0x000000000001ddf2, 0x000001b3, 0x000001f4, "SNPID_190", "RSID_190", "01", 0x00015f91, 0x0002, ["A", "G"], nothing) Variant(0x000000000001ddf2, 0x000000000001de1f, 0x000000000001e011, 0x000001f2, 0x000001f4, "SNPID_191", "RSID_191", "01", 0x00016379, 0x0002, ["A", "G"], nothing) Variant(0x000000000001e011, 0x000000000001e03e, 0x000000000001e214, 0x000001d6, 0x000001f4, "SNPID_192", "RSID_192", "01", 0x00016761, 0x0002, ["A", "G"], nothing) Variant(0x000000000001e214, 0x000000000001e241, 0x000000000001e407, 0x000001c6, 0x000001f4, "SNPID_193", "RSID_193", "01", 0x00016b49, 0x0002, ["A", "G"], nothing) Variant(0x000000000001e407, 0x000000000001e434, 0x000000000001e6c9, 0x00000295, 0x000001f4, "SNPID_194", "RSID_194", "01", 0x00016f31, 0x0002, ["A", "G"], nothing) Variant(0x000000000001e6c9, 0x000000000001e6f6, 0x000000000001e8e1, 0x000001eb, 0x000001f4, "SNPID_195", "RSID_195", "01", 0x00017319, 0x0002, ["A", "G"], nothing) Variant(0x000000000001e8e1, 0x000000000001e90e, 0x000000000001ec86, 0x00000378, 0x000001f4, "SNPID_196", "RSID_196", "01", 0x00017701, 0x0002, ["A", "G"], nothing) Variant(0x000000000001ec86, 0x000000000001ecb3, 0x000000000001ef8b, 0x000002d8, 0x000001f4, "SNPID_197", "RSID_197", "01", 0x00017ae9, 0x0002, ["A", "G"], nothing) Variant(0x000000000001ef8b, 0x000000000001efb8, 0x000000000001f183, 0x000001cb, 0x000001f4, "SNPID_198", "RSID_198", "01", 0x00017ed1, 0x0002, ["A", "G"], nothing) Variant(0x000000000001f183, 0x000000000001f1b0, 0x000000000001f3d4, 0x00000224, 0x000001f4, "SNPID_199", "RSID_199", "01", 0x000182b9, 0x0002, ["A", "G"], nothing) Variant(0x000000000001f3d4, 0x000000000001f401, 0x000000000001f6ea, 0x000002e9, 0x000001f4, "SNPID_200", "RSID_200", "01", 0x000186a1, 0x0002, ["A", "G"], nothing) If the index file (`.bgi`) is provided, the users may search for certain RSID in a BGEN file. ```julia v = variant_by_rsid(b, "RSID_10") ``` Variant(0x00000000000029de, 0x0000000000002a09, 0x0000000000002c43, 0x0000023a, 0x000001f4, "SNPID_10", "RSID_10", "01", 0x00002710, 0x0002, ["A", "G"], nothing) Also, the users may look for the `n`-th (1-based) variant with respect to genomic location. ```julia v = variant_by_index(b, 4) ``` Variant(0x0000000000001a82, 0x0000000000001aab, 0x0000000000001ced, 0x00000242, 0x000001f4, "SNPID_3", "RSID_3", "01", 0x00000bb8, 0x0002, ["A", "G"], nothing) ## Genotype/haplotype probabilities and minor allele dosage The genotype information is decompressed and parsed when probability data is needed. The parsing is triggered by a call to one of: - `probabilities!(b::Bgen, v::Variant; T=Float64)` : probability of each genotype/haplotype. - `first_allele_dosage!(b::Bgen, v::Variant; T=Float64`) : dosage of the first allele for a biallelic variant. The first allele listed is often the alternative allele, but it depends on project-wise convention. For example, the first allele is the reference allele for the UK Biobank project. - `minor_allele_dosage!(b::Bgen, v::Variant; T=Float64)` : minor allele dosage for a biallelic variant. Once parsed, the results are cached and loaded on any subsequent calls. After that, one may access genotype information using the following functions, as well as `probabilities!()` and `minor_allele_dosage!()`: - `phased(v::Variant)`: if the stored data is phased - `min_ploidy(v::Variant)`: minimum ploidy across the samples - `max_ploidy(v::Variant)`: maximum ploidy across the samples - `ploidy(v::Variant)` : Vector of ploidy for each sample - `bit_depth(v::Variant)` : number of bits used to represent a probability value - `missings(v::Variant)` : list of samples data is missing These functions are allowed after calling `minor_allele_dosage!()`: - `minor_allele(v::Variant)` - `major_allele(v::Variant)` If the data are not phased, `probabilities!(b, v)[i, j]` represents the probability of genotype `i` for sample `j`. Each column sums up to one. The genotypes are in [colex-order](https://en.wikipedia.org/wiki/Lexicographic_order#Colexicographic_order) of allele counts. For example, for three alleles with ploidy 3: | row index | allele counts | genotype | |---:|:---:|:---:| | 1 | (3, 0, 0) | 111 | | 2 | (2, 1, 0) | 112 | | 3 | (1, 2, 0) | 122 | | 4 | (0, 3, 0) | 222 | | 5 | (2, 0, 1) | 113 | | 6 | (1, 1, 1) | 123 | | 7 | (0, 2, 1) | 223 | | 8 | (1, 0, 2) | 133 | | 9 | (0, 1, 2) | 233 | | 10 | (0, 0, 3) | 333 | ```julia probabilities!(b, variants[1]) ``` 3×500 Matrix{Float32}: NaN 0.027451 0.0156863 0.0235294 … 0.0156863 0.921569 0.00392157 NaN 0.00784314 0.0509804 0.933333 0.027451 0.0509804 0.984314 NaN 0.964706 0.933333 0.0431373 0.956863 0.027451 0.0117647 Genotype data for sample 1 is missing in this case. ```julia missings(variants[1]) ``` 1-element Vector{Int64}: 1 On the other hand, if the data are phased, `probabilities!(b, v)[i, j]` represents the probability that haplotype `(i - 1) ÷ n_alleles + 1` has allele `(i - 1) % n_alleles + 1` for sample `j`, where `n_alleles` is the number of alleles. The below is an example of phased probabilities. i.e., each column represents each sample, and each group of `n_alleles` rows represent the allele probabilities for each haplotype. In this case, ploidy is `[1, 2, 2, 2]`, thus indexes `[3:4, 1]` are invalid, and is filled with `NaN`. ```julia b2 = Bgen(BGEN.datadir("complex.bgen")) vs = parse_variants(b2) p = probabilities!(b2, vs[3]) ``` 4×4 Matrix{Float32}: 1.0 0.0 1.0 1.0 0.0 1.0 0.0 0.0 NaN 0.0 1.0 0.0 NaN 1.0 0.0 1.0 This variant has two possible alleles (allele 1: "A" and allele 2: "G"), and all the samples are diploids except for the first one, which is monoploid. It corresponds to a line of VCF file: ``` #CHROM POS ID REF ALT QUAL FILTER INFO FORMAT sample_0 sample_1 sample_2 sample_3 01 3 V3 A G . . . GT:HP 0:1,0 1|1:0,1,0,1 0|0:1,0,1,0 0|1:1,0,0,1 ``` So the first sample is monoploid of A, the second sample is homozygote A|A, the third sample is homozygote G|G, and the last sample is heterozygote A|G (phased). We can confirm the phasedness and ploidy of each sample as follows. ```julia phased(vs[3]) ``` 0x01 ```julia ploidy(vs[3]) ``` 4-element Vector{UInt8}: 0x01 0x02 0x02 0x02 ```julia alleles(vs[3]) ``` 2-element Vector{String}: "A" "G" For biallelic genotype data, `first_allele_dosage!(b, v)` and `minor_allele_dosage!(b, v)` can be computed. It also supports phased data. ```julia first_allele_dosage!(b, variants[1]) ``` 500-element Vector{Float32}: NaN 0.0627451 0.08235294 0.9803922 0.09019608 0.14117648 1.0745099 0.054901965 0.10980393 0.121568635 0.14117648 0.21568629 0.08235294 ⋮ 0.09411766 0.10196079 0.027450982 0.96470594 0.0 1.0117648 0.043137256 0.0627451 1.0431373 0.05882353 1.8941176 0.99215686 ```julia minor_allele_dosage!(b, variants[1]) ``` 500-element Vector{Float32}: NaN 0.0627451 0.08235294 0.9803922 0.09019608 0.14117648 1.0745099 0.054901965 0.10980393 0.121568635 0.14117648 0.21568629 0.08235294 ⋮ 0.09411766 0.10196079 0.027450982 0.96470594 0.0 1.0117648 0.043137256 0.0627451 1.0431373 0.05882353 1.8941176 0.99215686 ```julia phased(variants[1]) ``` 0x00 ```julia n_alleles(variants[1]) ``` 2 ```julia minor_allele(variants[1]) ``` "A" ```julia major_allele(variants[1]) ``` "G" `first_allele_dosage!()` and `minor_allele_dosage!()` support a keyword argument `mean_impute`, which imputes missing value with the mean of the non-missing values. ```julia dose = first_allele_dosage!(b, variants[1]; T=Float64, mean_impute=true) ``` 500-element Vector{Float32}: 0.39581063 0.0627451 0.08235294 0.9803922 0.09019608 0.14117648 1.0745099 0.054901965 0.10980393 0.121568635 0.14117648 0.21568629 0.08235294 ⋮ 0.09411766 0.10196079 0.027450982 0.96470594 0.0 1.0117648 0.043137256 0.0627451 1.0431373 0.05882353 1.8941176 0.99215686 The function `hardcall(d; threshold=0.1)` can be used to convert the dosage vectors to hard-called genotypes, returning a `Vector{UInt8}` array of values `0x00`, `0x01`, `0x02`, or `0x09` (for missing). The function `hardcall!(c, d; threshold=0.1)` can be used to fill in a preallocated integer array `c`. `threshold` determines the maximum distance between the hard genotypes and the dosage values. For example, if `threshold = 0.1`, dosage value in `[0, 0.1)` gives the hard call `0x00`, a value in `(0.9, 1,1)` gives `0x01`, and a value in `(1.9, 2.0]` gives `0x02`. Any other values give `0x09`. ```julia c = hardcall(dose; threshold=0.1) ``` 500-element Vector{UInt8}: 0x09 0x00 0x00 0x01 0x00 0x09 0x01 0x00 0x09 0x09 0x09 0x09 0x00 ⋮ 0x00 0x09 0x00 0x01 0x00 0x01 0x00 0x00 0x01 0x00 0x09 0x01 ```julia calls = Vector{UInt8}(undef, length(dose)) hardcall!(calls, dose; threshold = 0.1) ``` 500-element Vector{UInt8}: 0x09 0x00 0x00 0x01 0x00 0x09 0x01 0x00 0x09 0x09 0x09 0x09 0x00 ⋮ 0x00 0x09 0x00 0x01 0x00 0x01 0x00 0x00 0x01 0x00 0x09 0x01 ## Filtering Filtering based on `BitVector` for samples and variants is supported through `BGEN.filter` function if bit depth of each variant is a multiple of 8. The syntax is: ```julia BGEN.filter(dest::AbstractString, b::Bgen, variant_mask::BitVector, sample_mask::BitVector=trues(length(b.samples)); dest_sample = dest[1:end-5] * ".sample", sample_path=nothing, sample_names=b.samples, offsets=nothing, from_bgen_start=false) ``` - `dest` is the output path of the resulting `.bgen` file. - `b` is a `Bgen` instance. - `variant_mask` is a `BitVector` for determining whether to include each variant in the output file. - `sample_mask` is a `BitVector` for determining whether to include each sample in the output file. - `dest_sample` is the location of the output `.sample` file. - `sample_path` is the location of the `.sample` file of the input BGEN file. - `sample_names` is the names of the sample in the input BGEN file. - `offsets` and `from_bgen_start` are the arguments for the `iterator` method. It only supports layout 2, and the output is always compressed in ZSTD. The sample names are stored in a separate .sample file, but not in the output .bgen file. An example of choosing first 10 variants: ```julia b = Bgen(BGEN.datadir("example.8bits.bgen")) vidx = falses(b.header.n_variants) vidx[1:10] .= true BGEN.filter("test.bgen", b, vidx) b2 = Bgen("test.bgen"; sample_path="test.sample") @assert all(b.samples .== b2.samples) for (v1, v2) in zip(iterator(b), iterator(b2)) # length of two iterators are different. # it stops when the shorter one (b2) ends. @assert v1.varid == v2.varid @assert v1.rsid == v2.rsid @assert v1.chrom == v2.chrom @assert v1.pos == v2.pos @assert v1.n_alleles == v2.n_alleles @assert all(v1.alleles .== v2.alleles) decompressed1 = BGEN.decompress(b.io, v1, b.header) decompressed2 = BGEN.decompress(b2.io, v2, b2.header) @assert all(decompressed1 .== decompressed2) end ``` An example of choosing last two samples out of four samples: ```julia b3 = Bgen(BGEN.datadir("complex.24bits.bgen")) BGEN.filter("test2.bgen", b3, trues(b3.header.n_variants), BitVector([false, false, true, true])) b4 = Bgen("test2.bgen"; sample_path = "test2.sample") for (v3, v4) in zip(iterator(b3), iterator(b4)) @assert v3.varid == v4.varid @assert v3.rsid == v4.rsid @assert v3.chrom == v4.chrom @assert v3.pos == v4.pos @assert v3.n_alleles == v4.n_alleles @assert all(v3.alleles .== v4.alleles) @assert isapprox(probabilities!(b3, v3)[:, 3:4], probabilities!(b4, v4); nans=true) end ``` ```julia rm("test.bgen", force=true) rm("test.sample", force=true) rm("test2.bgen", force=true) rm("test2.sample", force=true) ```
BGEN
https://github.com/OpenMendel/BGEN.jl.git
[ "MIT" ]
0.1.3
5f5a59cab6b3920d0b98dbebbb3f3f0477441546
code
7929
using ContinuousTimePolicyGradients using DiffEqFlux, ComponentArrays, LinearAlgebra, JLD2, OrdinaryDiffEq using Plots function main(maxiters_1::Int, maxiters_2::Int, Δt_save::Float32; p_NN_0 = nothing, k_a_val = 10.0) # model + problem parameters (aₐ, aₙ, bₙ, cₙ, dₙ, aₘ, bₘ, cₘ, dₘ) = Float32.([-0.3, 19.373, -31.023, -9.717, -1.948, 40.44, -64.015, 2.922, -11.803]) (m, I_yy, S, d, ωₐ, ζₐ) = Float32.([204.02, 247.439, 0.0409, 0.2286, 150.0, 0.7]) (g, ρ₀, H, γₐ, Rₐ, T₀, λ) = Float32.([9.8, 1.225, 8435.0, 1.4, 286.0, 288.15, 0.0065]) (a_max, α_max, δ_max, δ̇_max, q_max, M_max, h_max) = Float32.([100.0, deg2rad(30), deg2rad(25), 1.5, deg2rad(60), 4, 11E3]) (k_a, k_q, k_δ, k_δ̇, k_R) = Float32.([k_a_val, 0.0, 0.01, 0.1, 1E-4]) # dynamic model dim_x = 7 function dynamics_plant(t, x, u) (h, V, α, q, θ, δ, δ̇) = x δ_c = u[1] ρ = ρ₀ * exp(-h / H) Vₛ = sqrt(γₐ * Rₐ * (T₀ - λ * h)) M = V / Vₛ γ = θ - α Q = 0.5f0 * ρ * V^2 C_A = aₐ C_N = aₙ * α^3 + bₙ * α * abs(α) + cₙ * (2.0f0 - M / 3.0f0) * α + dₙ * δ C_M = aₘ * α^3 + bₘ * α * abs(α) + cₘ * (-7.0f0 + 8.0f0 * M / 3.0f0) * α + dₘ * δ α̇ = Q * S / m / V * (C_N * cos(α) - C_A * sin(α)) + g / V * cos(γ) + q dx = [V * sin(γ); Q * S / m * (C_N * sin(α) + C_A * cos(α)) - g * sin(γ); α̇; Q * S * d / I_yy * C_M; q; δ̇; -ωₐ^2 * (δ - δ_c) - 2.0f0 * ζₐ * ωₐ * δ̇] return dx end dim_x_c = 2 function dynamics_controller(t, x_c, y, r, p_NN, policy_NN) (a_z, h, V, M, α, q, γ) = y a_z_cmd = r[1] x_int = x_c[1] x_ref = x_c[2] y_NN = (K_A, K_I, K_R) = policy_NN([ abs(α) / α_max; M / M_max; h / h_max], p_NN) # dx_ref = [-36.6667f0 -13.8889f0; 8.0f0 0.0f0] * x_ref + [4.0f0; 0.0f0] * a_z_cmd # a_z_ref = [-1.0083f0 3.4722f0] * x_ref dx_ref = (a_z_cmd - x_ref) / 0.2f0 a_z_ref = x_ref dx_c = [K_A * (a_z_cmd - a_z) + q + (a_z_cmd + g * cos(γ)) / V; dx_ref] u = [K_I * x_int + K_R * q; a_z_ref] return dx_c, u, y_NN end function dynamics_sensor(t, x) (h, V, α, q, θ, δ, _) = x ρ = ρ₀ * exp(-h / H) Vₛ = sqrt(γₐ * Rₐ * (T₀ - λ * h)) M = V / Vₛ Q = 0.5f0 * ρ * V^2 γ = θ - α C_A = aₐ C_N = aₙ * α^3 + bₙ * α * abs(α) + cₙ * (2.0f0 - M / 3.0f0) * α + dₙ * δ a_z = Q * S / m * (C_N * cos(α) - C_A * sin(α)) y = [a_z; h; V; M; α; q; γ] return y end # cost definition function cost_running(t, x, y, u, r) q = x[4] δ̇ = x[7] a_z = y[1] δ_c = u[1] a_z_ref = u[2] a_z_cmd = r[1] return k_a * ((a_z - a_z_ref) / abs(a_z_cmd))^2 + k_δ̇ * (δ̇ / δ̇_max)^2 + k_δ * (δ_c / δ_max)^2 + k_q * (q / q_max)^2 end function cost_terminal(x_f, r) # a_z_cmd = r[1] # y = dynamics_sensor(3.0f0, x_f) # a_z = y[1] # return ((a_z - a_z_cmd) / (1.0f0 + a_z_cmd))^2 return 0.0f0 end function cost_regularisor(p_NN) return k_R * norm(p_NN)^2 # return 0.0f0 end # NN construction dim_NN_hidden = 10 dim_NN_input = 3 dim_K = 3 K_lb = Float32.(0.001*ones(3)) K_ub = Float32[4, 0.2, 2] policy_NN = FastChain( FastDense(dim_NN_input, dim_NN_hidden, tanh), FastDense(dim_NN_hidden, dim_NN_hidden, tanh), FastDense(dim_NN_hidden, dim_K), (x, p) -> (K_ub - K_lb) .* σ.(x) .+ K_lb ) # scenario definition ensemble = [ (; x₀ = Float32[h₀; V₀; α₀; zeros(4)], r = Float32[a_z_cmd]) for h₀ = 5E3:1E3:8E3 for V₀ = 7E2:1E2:9E2 for α₀ = -0.3:0.1:0 for a_z_cmd = filter(!iszero, 0:5E1:1E2) ] t_span = Float32.((0.0, 3.0)) t_save = t_span[1]:Δt_save:t_span[2] scenario = (; ensemble = ensemble, t_span = t_span, t_save = t_save, dim_x = dim_x, dim_x_c = dim_x_c) # NN training (result, fwd_ensemble_sol, loss_history) = CTPG_train(dynamics_plant, dynamics_controller, dynamics_sensor, cost_running, cost_terminal, cost_regularisor, policy_NN, scenario; sense_alg = InterpolatingAdjoint(autojacvec = ReverseDiffVJP(true)), ensemble_alg = EnsembleThreads(), maxiters_1 = maxiters_1, maxiters_2 = maxiters_2, opt_2 = BFGS(initial_stepnorm = 0.0001f0), i_nominal = 1, p_NN_0 = p_NN_0, progress_plot = false) # solve_alg = Euler(), dt=0.001f0 return result, policy_NN, fwd_ensemble_sol, loss_history end ## execute optimisation and simulation @time (result, policy_NN, fwd_ensemble_sol, loss_history) = main(1000, 1500, 0.01f0; k_a_val = 100.0) # re-execute optimisation and simulation # p_NN_prev = result.u # @time (result, policy_NN, fwd_ensemble_sol, loss_history) = main(10, 1000, 0.01f0; k_a_val = 100.0, p_NN_0 = p_NN_prev) # save results jldsave("DS_base.jld2"; result, fwd_ensemble_sol, loss_history) # p_NN_base = result.u # jldsave("p_NN_loss_base.jld2"; p_NN_base, loss_history) # plot simulation results # (result, fwd_ensemble_sol, loss_history) = load(".jld2", "result", "fwd_ensemble_sol", "loss_history") x_names = ["\$h\$" "\$V\$" "\$\\alpha\$" "\$q\$" "\$\\theta\$" "\$\\delta\$" "\$\\dot{\\delta}\$"] vars_x = 1:6 # [1,2,3, (1,2), (2,3)] u_names = ["\$\\delta_{c}\$"] vars_u = 1 y_names = ["\$a_{z}\$"] vars_y = 1 y_NN_names = ["\$K_A\$" "\$K_I\$" "\$K_R\$"] vars_y_NN = 1:3 (f_x, f_u, f_y, f_y_NN, f_L) = view_result([], fwd_ensemble_sol, loss_history; x_names = x_names, vars_x = vars_x, u_names = u_names, vars_u = vars_u, y_names = y_names, vars_y = vars_y, y_NN_names = y_NN_names, vars_y_NN = vars_y_NN, linealpha = 0.6) # plot gain surfaces # (p_NN_base) = load("p_NN_loss_base.jld2", "p_NN_base") (a_max, α_max, δ_max, δ̇_max, q_max, M_max, h_max) = Float32.([100.0, deg2rad(30), deg2rad(25), 1.5, deg2rad(60), 4, 11E3]) # dim_NN_hidden = 10 # dim_NN_input = 3 # dim_K = 3 # K_lb = Float32.(0.001*ones(3)) # K_ub = Float32[4, 0.2, 2] # policy_NN = FastChain( # FastDense(dim_NN_input, dim_NN_hidden, tanh), # FastDense(dim_NN_hidden, dim_NN_hidden, tanh), # FastDense(dim_NN_hidden, dim_K), # (x, p) -> (K_ub - K_lb) .* σ.(x) .+ K_lb # ) for h in 5E3:1E3:8E3 α_list = 0:1E-3:0.3 M_list = 0.5:0.1:3.0 func_K_A(α, M) = policy_NN([abs(α) / α_max; M / M_max; h / h_max], result.u)[1] func_K_I(α, M) = policy_NN([abs(α) / α_max; M / M_max; h / h_max], result.u)[2] func_K_R(α, M) = policy_NN([abs(α) / α_max; M / M_max; h / h_max], result.u)[3] f_K_A = plot(α_list, M_list, func_K_A, st=:surface, label = :false, zlabel = "\$K_{A}\$", xlabel = "\$\\left|\\alpha\\right|\$", ylabel = "\$M\$") display(f_K_A) savefig(f_K_A, "f_K_A_$(Int64(h)).pdf") f_K_I = plot(α_list, M_list, func_K_I, st=:surface, label = :false, zlabel = "\$K_{I}\$", xlabel = "\$\\left|\\alpha\\right|\$", ylabel = "\$M\$") display(f_K_I) savefig(f_K_I, "f_K_I_$(Int64(h)).pdf") f_K_R = plot(α_list, M_list, func_K_R, st=:surface, label = :false, zlabel = "\$K_{R}\$", xlabel = "\$\\left|\\alpha\\right|\$", ylabel = "\$M\$") display(f_K_R) savefig(f_K_R, "f_K_R_$(Int64(h)).pdf") end # Learning curve # using Plots, JLD2 # loss_base = load("DS_base.jld2", "loss_history") # loss_unscaled = load("DS_unscaled.jld2", "loss_history") # loss_discrete = load("DS_discrete.jld2", "loss_history") # f_J = plot([[loss_base], [loss_unscaled], [loss_discrete]], label = ["base" "unscaled" "discrete"], xlabel = "iteration", ylabel = "cost \$J\$", yaxis = :log10) # savefig(f_J, "f_J.pdf")
ContinuousTimePolicyGradients
https://github.com/nhcho91/ContinuousTimePolicyGradients.jl.git
[ "MIT" ]
0.1.3
5f5a59cab6b3920d0b98dbebbb3f3f0477441546
code
222
module ContinuousTimePolicyGradients using LinearAlgebra, Statistics using OrdinaryDiffEq, DiffEqFlux, GalacticOptim using UnPack, Plots export CTPG_train, view_result include("construct_CTPG.jl") end
ContinuousTimePolicyGradients
https://github.com/nhcho91/ContinuousTimePolicyGradients.jl.git
[ "MIT" ]
0.1.3
5f5a59cab6b3920d0b98dbebbb3f3f0477441546
code
15534
""" CTPG_train(dynamics_plant::Function, dynamics_controller::Function, cost_running::Function, cost_terminal::Function, cost_regularisor::Function, policy_NN, scenario; solve_alg = Tsit5(), sense_alg = InterpolatingAdjoint(autojacvec = ZygoteVJP()), ensemble_alg = EnsembleThreads(), opt_1 = ADAM(0.01), opt_2 = LBFGS(), maxiters_1 = 100, maxiters_2 = 100, progress_plot = true, solve_kwargs...) `CTPG_train()` provides a high-level interface for optimisation of the neural networks inside an ODE-represented dynamics based on Continuous-Time Policy Gradient (CTPG) methods that belong to the adjoint sensitivity analysis techniques. The code implemented and the default values for keyword arguments are specified considering training of a neural controller as the main application. In the context herein, a neural controller refers to a dynamic controller that incorporates neural-network-represented components at some points in its mathematical description. The code utilises the functionalities provided by the [DiffEqFlux.jl](https://github.com/SciML/DiffEqFlux.jl) and [DiffEqSensitivity.jl](https://github.com/SciML/DiffEqSensitivity.jl) packages, and the Automatic Differentiation (AD) capabilities provided by the [Zygote.jl](https://github.com/FluxML/Zygote.jl) package that is integrated in DiffEqFlux.jl. `CTPG_train()` presumes the consistency of the functions provided as its input arguments with the AD tool, hence, the dynamics and cost functions should maintain their transparence against AD tools. The optimisation (training) problem minimises the cost function defined over deterministic samples of the initial plant state `x₀` and the reference `r` by performing ensemble simulation based on parallelised computation. The signals are defined as described below: - `t`: time - `x`: plant state - `y`: plant output (= sensor output) - `x_c`: controller state - `u`: plant input (= controller output) - `r`: exogenous reference - `x_aug`: augmented forward dynamics state (= `[x; x_c; ∫cost_running]`) - `p_NN`: neural network parameter The arguments should be provided as explained below: - `dynamics_plant`: Describes the dynamics of the plant to be controlled. Input arguments `x` and `u` should be of Vector type. - `dynamics_controller`: Describes the dynamics of the controller that includes neural networks components. Input arguments `x_c`, `y`, `r`, and `p_NN` should be of Vector type. - `dynamics_sensor`: Describes the dynamics of the sensor that measures output variables fed to the controller. Input arguments `x` should be of Vector type: - `cost_running`: Describes the running cost defined as the integrand of the Lagrange-form continuous functional. Input arguments `x`, `y`, `u`, and `r` should be of Vector type. - `cost_terminal`: Describes the terminal cost defined as the Mayer-form problem cost function. Defines a Bolza-form problem along with `cost_running`. Input arguments `x_f` and `r` should be of Vector type. - `cost_regularisor`: Describes the regularisation term appended to the cost (loss) function. Input argument `p_NN` should be of Vector type. - `policy_NN`: The neural networks entering into the controller dynamics. DiffEqFlux-based FastChain is recommended for its construction. - `scenario`: Contains the parameters related with the ensemble-based training scenarios. - `ensemble`: A vector of the initial plant state `x₀` and the reference `r` constituting the trajectory realisations. - `t_span`: Time span for forward-pass integration - `t_save`: Array of time points to be saved while solving ODE. Typically defined as `t_save = t_span[1]:Δt_save:t_span[2]` - `dim_x`: `length(x)` - `dim_x_c`: `length(x_c)` The keyword arguments should be provided as explained below: - `solve_alg`: The algorithm used for solving ODEs. Default value is `Tsit5()` - `sense_alg`: The algorithm used for adjoint sensitivity analysis. Default value is `InterpolatingAdjoint(autojacvec = ZygoteVJP())`, because the control problems usually render the `BacksolveAdjoint()` unstable. The vjp choice `autojacvec = ReverseDiffVJP(true)` is usually faster than `ZygoteVJP()`, when the ODE function does not have any branching inside. Please refer to the [DiffEqFlux documentation](https://diffeqflux.sciml.ai/dev/ControllingAdjoints/) for further details. - `ensemble_alg`: The algorithm used for handling ensemble of ODEs. Default value is `EnsembleThreads()` for multi-threaded computation in CPU. - `opt_1`: The algorithm used for the first phase of optimisation which rapidly delivers the parameter to a favourable region around a local minimum. Default value is `ADAM(0.01)`. - `opt_2`: The algorithm used for the second phase of opitmisaiton. Defalut value is `LBFGS()` which refines the result of the first phase to find a more precise minimum. Please refer to the [DiffEqFlux documentation](https://diffeqflux.sciml.ai/dev/sciml_train/) for further details about two-phase composition of optimisers. - `maxiters_1`: The maximum number of iterations allowed for the first phase of optimisation with `opt_1`. Defalut value is `100`. - `maxiters_2`: The maximum number of iterations allowed for the second phase of optimisation with `opt_2`. Defalut value is `100`. - `progress_plot`: The indicator to plot the state history for a nominal condition among the ensemble during the learning process. Default value is `true`. - `i_nominal`: The index to select the case to plot using `progress_plot` during optimisation process from the `ensemble` defined in `scenario`. Defalut value is `nothing`. - `p_NN_0`: Initial value of the NN parameters supplied by the user to bypass random initialisation of `p_NN` or to continue optimisation from the previous result. Defalut value is `nothing`. - `solve_kwargs...`: Additional keyword arguments that are passed onto the ODE solver. `CTPG_train()` returns the following outputs: - `result`: The final result of parameter optimisation. - `fwd_ensemble_sol`: The ensemble solution of forward simulation using the final neural network parameters. - `loss_history`: The history of loss function evaluated at each iteration. """ function CTPG_train(dynamics_plant::Function, dynamics_controller::Function, dynamics_sensor::Function, cost_running::Function, cost_terminal::Function, cost_regularisor::Function, policy_NN, scenario; solve_alg = Tsit5(), sense_alg = InterpolatingAdjoint(autojacvec = ZygoteVJP()), ensemble_alg = EnsembleThreads(), opt_1 = ADAM(0.01), opt_2 = LBFGS(), maxiters_1 = 100, maxiters_2 = 100, progress_plot = true, i_nominal = nothing, p_NN_0 = nothing, solve_kwargs...) # scenario parameters @unpack ensemble, t_span, t_save, dim_x, dim_x_c = scenario dim_ensemble = length(ensemble) mean_factor = Float32(1 / dim_ensemble) dim_t_save = length(t_save) if isnothing(i_nominal) i_nominal = max(round(Int, dim_ensemble / 2), 1) end # NN parameters initialisation if isnothing(p_NN_0) p_NN_0 = initial_params(policy_NN) end # augmented dynamics function fwd_dynamics(r) return function (x_aug, p_NN, t) x = x_aug[1:dim_x] x_c = x_aug[dim_x+1:end-1] # ∫cost_running = x_aug[end] y = dynamics_sensor(t, x) (dx_c, u, _) = dynamics_controller(t, x_c, y, r, p_NN, policy_NN) dx = dynamics_plant(t, x, u) return [dx; dx_c; cost_running(t, x, y, u, r)] end end # ODE problem construction prob_base = ODEProblem(fwd_dynamics(ensemble[i_nominal].r), [ensemble[i_nominal].x₀; zeros(Float32, dim_x_c + 1)], t_span, p_NN_0) function generate_probs(p_NN) return function (prob, i, repeat) remake(prob, f = fwd_dynamics(ensemble[i].r), u0 = [ensemble[i].x₀; zeros(Float32, dim_x_c + 1)], p = p_NN) end end if dim_ensemble == 1 prob_mtk = modelingtoolkitize(prob_base) prob_base = ODEProblem(prob_mtk, [], t_span, jac = true) ensemble_alg = EnsembleSerial() end # loss function definition function loss(p_NN) ensemble_prob = EnsembleProblem(prob_base, prob_func = generate_probs(p_NN)) fwd_ensemble_sol_full = solve(ensemble_prob, solve_alg, ensemble_alg, saveat = t_save, trajectories = dim_ensemble, sensealg = sense_alg; solve_kwargs...) # version 1: mean(sol[end]) # sol_length = Float32.([max(1,length(fwd_ensemble_sol_full[i])) for i in 1:dim_ensemble]) # sol_length_ratio = maximum(sol_length)./sol_length # loss_val = mean([fwd_ensemble_sol_full[i][end][end] + cost_terminal(fwd_ensemble_sol_full[i][end][1:dim_x], ensemble[i].r) for i in 1:dim_ensemble] .* sol_length_ratio) + cost_regularisor(p_NN) # version 2: mean(Array[end]) # loss_val = mean([(Array(fwd_ensemble_sol_full[i])[end,end] + cost_terminal(Array(fwd_ensemble_sol_full[i])[1:dim_x,end], ensemble[i].r)) for i in 1:dim_ensemble] .* sol_length_ratio) + cost_regularisor(p_NN) # version 3: scalar operation (best for code robustness as it can handle divergent case in ensemble) loss_val = 0.0f0 for i in 1:dim_ensemble fwd_sol = Array(fwd_ensemble_sol_full[i]) if size(fwd_sol,2) > dim_t_save fwd_sol = fwd_sol[:,1:dim_t_save] end if size(fwd_sol,2) == dim_t_save x_aug_f = fwd_sol[:,end] loss_val += (x_aug_f[end] + cost_terminal(x_aug_f[1:dim_x], ensemble[i].r)) * mean_factor else loss_val += 1000.0f0 end end loss_val += cost_regularisor(p_NN) return loss_val, fwd_ensemble_sol_full end # learning progress callback setup loss_history = fill(NaN32, maxiters_1 + maxiters_2 + 2) iterator_learning = 1 cb_progress = function (p_NN_val, loss_val, fwd_ensemble_sol_full; plot_val = progress_plot) @show (loss_val, iterator_learning); loss_history[iterator_learning] = loss_val if plot_val fwd_ensemble_sol = Array(fwd_ensemble_sol_full[i_nominal]) display(scatter(fwd_ensemble_sol[1:dim_x, :]', label = :false, plot_title = "System State: Learning Iteration $(iterator_learning)", layout = (dim_x, 1), size = (700, 200 * dim_x))) end iterator_learning += 1 return false end # NN training if maxiters_1 <= 0 result_coarse = (; u = p_NN_0) else result_coarse = DiffEqFlux.sciml_train(loss, p_NN_0, opt_1; cb = cb_progress, maxiters = maxiters_1) end if maxiters_2 <= 0 result = result_coarse else result = DiffEqFlux.sciml_train(loss, result_coarse.u, opt_2; cb = cb_progress, maxiters = maxiters_2) end # Forward solution for optimised p_NN function eval_IO(r, p_NN) # Evaluation of input u, output y, and NN output y_NN at each t return function (t, x_aug) x = x_aug[1:dim_x] x_c = x_aug[dim_x+1:end-1] y = dynamics_sensor(t, x) (_, u, y_NN) = dynamics_controller(t, x_c, y, r, p_NN, policy_NN) return (; u = u, y = y, y_NN = y_NN) end end function generate_savedata(p_NN) return function (sol, i) IO = eval_IO(ensemble[i].r, p_NN).(sol.t, sol.u) return ((; sol = sol, u = [u for (u, y, y_NN) in IO], y = [y for (u, y, y_NN) in IO], y_NN = [y_NN for (u, y, y_NN) in IO]), false) end end fwd_ensemble_sol = solve(EnsembleProblem(prob_base, prob_func = generate_probs(result.u), output_func = generate_savedata(result.u)), solve_alg, ensemble_alg, saveat = t_save, trajectories = dim_ensemble, sensealg = sense_alg; solve_kwargs...) loss_history = filter(!isnan, loss_history) return result, fwd_ensemble_sol, loss_history end function view_result(i_plot_list, fwd_ensemble_sol, loss_history, save_fig = true; vars_x = nothing, x_names = [], vars_u = nothing, u_names = [], vars_y = nothing, y_names = [], vars_y_NN = nothing, y_NN_names = [], plot_kwargs...) # labels, variables to be plotted, and layouts setting (dim_x_aug, dim_u, dim_y, dim_y_NN) = (length(fwd_ensemble_sol[1].sol[1]), length(fwd_ensemble_sol[1].u[1]), length(fwd_ensemble_sol[1].y[1]), length(fwd_ensemble_sol[1].y_NN[1])) (xlabel_t, ylabel_x, ylabel_u, ylabel_y, ylabel_y_NN) = ("\$t\$", "state", "input", "output", "NN output") if ~isnothing(vars_x) layout_x = (length(vars_x), 1) if ~isempty(x_names) ylabel_x = x_names[vars_x'] end else layout_x = (dim_x_aug - 1, 1) vars_x = 1:dim_x_aug-1 end if ~isnothing(vars_u) layout_u = (length(vars_u), 1) if ~isempty(u_names) ylabel_u = u_names[vars_u'] end else layout_u = (dim_u, 1) vars_u = 1:dim_u end if ~isnothing(vars_y) layout_y = (length(vars_y), 1) if ~isempty(y_names) ylabel_y = y_names[vars_y'] end else layout_y = (dim_y, 1) vars_y = 1:dim_y end if ~isnothing(vars_y_NN) layout_y_NN = (length(vars_y_NN), 1) if ~isempty(y_NN_names) ylabel_y_NN = y_NN_names[vars_y_NN'] end else layout_y_NN = (dim_y_NN, 1) vars_y_NN = 1:dim_y_NN end # plotting if isempty(i_plot_list) i_plot_list = 1:length(fwd_ensemble_sol) end (f_x, f_u, f_y, f_y_NN) = (plot(), plot(), plot(), plot()) for i in i_plot_list # data preprocessing @unpack sol, u, y, y_NN = fwd_ensemble_sol[i] @unpack t = sol u = reduce(vcat, u') # hcat(u...)' y = reduce(vcat, y') # hcat(y...)' y_NN = reduce(vcat, y_NN') # hcat(y_NN...)' if i == first(i_plot_list) f_x = plot(sol, vars = vars_x, layout = layout_x, label = :false, xlabel = xlabel_t, ylabel = ylabel_x, size = (800, 160 * length(vars_x)); plot_kwargs...) f_u = plot(t, u[:, vars_u], layout = layout_u, label = :false, xlabel = xlabel_t, ylabel = ylabel_u; plot_kwargs...) f_y = plot(t, y[:, vars_y], layout = layout_y, label = :false, xlabel = xlabel_t, ylabel = ylabel_y; plot_kwargs...) f_y_NN = plot(t, y_NN[:, vars_y_NN], layout = layout_y_NN, label = :false, xlabel = xlabel_t, ylabel = ylabel_y_NN; plot_kwargs...) else plot!(f_x, sol, vars = vars_x, layout = layout_x, label = :false, xlabel = xlabel_t, ylabel = ylabel_x, size = (800, 160 * length(vars_x)); plot_kwargs...) plot!(f_u, t, u[:, vars_u], layout = layout_u, label = :false, xlabel = xlabel_t, ylabel = ylabel_u; plot_kwargs...) plot!(f_y, t, y[:, vars_y], layout = layout_y, label = :false, xlabel = xlabel_t, ylabel = ylabel_y; plot_kwargs...) plot!(f_y_NN, t, y_NN[:, vars_y_NN], layout = layout_y_NN, label = :false, xlabel = xlabel_t, ylabel = ylabel_y_NN; plot_kwargs...) end end f_L = plot(loss_history, label = :false, xlabel = "iteration", ylabel = "\$L\$"; plot_kwargs...) display(f_x) display(f_u) display(f_y) display(f_y_NN) display(f_L) if save_fig savefig(f_x, "f_x.pdf") savefig(f_u, "f_u.pdf") savefig(f_y, "f_y.pdf") savefig(f_y_NN, "f_y_NN.pdf") savefig(f_L, "f_L.pdf") end return f_x, f_u, f_y, f_y_NN, f_L end
ContinuousTimePolicyGradients
https://github.com/nhcho91/ContinuousTimePolicyGradients.jl.git
[ "MIT" ]
0.1.3
5f5a59cab6b3920d0b98dbebbb3f3f0477441546
code
131
using ContinuousTimePolicyGradients using Test @testset "ContinuousTimePolicyGradients.jl" begin # Write your tests here. end
ContinuousTimePolicyGradients
https://github.com/nhcho91/ContinuousTimePolicyGradients.jl.git
[ "MIT" ]
0.1.3
5f5a59cab6b3920d0b98dbebbb3f3f0477441546
code
5805
using OrdinaryDiffEq, DiffEqFlux, Plots # model + problem parameters (aₐ, aₙ, bₙ, cₙ, dₙ, aₘ, bₘ, cₘ, dₘ) = Float32.([-0.3, 19.373, -31.023, -9.717, -1.948, 40.44, -64.015, 2.922, -11.803]) (m, I_yy, S, d, ωₐ, ζₐ) = Float32.([204.02, 247.439, 0.0409, 0.2286, 150.0, 0.7]) (g, ρ₀, H, γₐ, Rₐ, T₀, λ) = Float32.([9.8, 1.225, 8435.0, 1.4, 286.0, 288.15, 0.0065]) (a_max, α_max, δ_max, q_max, M_max, h_max) = Float32.([100.0, deg2rad(30), deg2rad(25), deg2rad(5), 4, 11E3]) (k_a, k_δ, k_R) = Float32.([1.0, 0.1, 0.00001]) t_span = (0.0f0, 3.0f0) x₀ = Float32.([10E3; 900; zeros(7)]) a_z_cmd = 100.0f0 # cost function L(a_z, a_z_cmd, δ_c) = k_a * ((a_z - a_z_cmd) / a_max)^2 + k_δ * (δ_c / δ_max)^2 # + k_q * (q / q_max)^2 ϕ(a_z, a_z_cmd) = ((a_z - a_z_cmd) / a_max)^2 R(p_NN) = k_R * p_NN' * p_NN # NN construction dim_hidden = 64 (K_lb, K_ub) = Float32.([-0.3, 0]) Π = FastChain( FastDense(3, dim_hidden, tanh), FastDense(dim_hidden, dim_hidden, tanh), FastDense(dim_hidden, 3), (x, p) -> (K_ub - K_lb) * σ.(x) .+ K_lb ) p_NN = initial_params(Π) # plant + controller dynamics + running cost integrator function fwd_dynamics_model(x, p_NN, t) (h, V, α, q, θ, δ, δ̇, x_c, _) = x ρ = ρ₀ * exp(-h / H) Vₛ = sqrt(γₐ * Rₐ * (T₀ - λ * h)) M = V / Vₛ γ = θ - α Q = 0.5f0 * ρ * V^2 C_A = aₐ C_N = aₙ * α^3 + bₙ * α * abs(α) + cₙ * (2.0f0 - M / 3.0f0) * α + dₙ * δ C_M = aₘ * α^3 + bₘ * α * abs(α) + cₘ * (-7.0f0 + 8.0f0 * M / 3.0f0) * α + dₘ * δ # K_A, K_I, K_R = min.( Π([α / α_max; M / M_max; h / h_max], p_NN) , K_ub) K_A, K_I, K_R = Π([α / α_max; M / M_max; h / h_max], p_NN) δ_c = -K_I * x_c - K_R * q α̇ = Q * S / m / V * (C_N * cos(α) - C_A * sin(α)) + g / V * cos(γ) + q a_z = V * (q - α̇) return dx = [V * sin(γ); Q * S / m * (C_N * sin(α) + C_A * cos(α)) - g * sin(γ); α̇; Q * S * d / I_yy * C_M; q; δ̇; -ωₐ^2 * (δ - δ_c) - 2.0f0 * ζₐ * ωₐ * δ̇; -K_A * (a_z - a_z_cmd) + q - a_z_cmd / V; L(a_z, a_z_cmd, δ_c)] end function eval_output(x) (h, V, α, q, θ, δ, _, _, _) = x ρ = ρ₀ * exp(-h / H) Vₛ = sqrt(γₐ * Rₐ * (T₀ - λ * h)) M = V / Vₛ γ = θ - α Q = 0.5f0 * ρ * V^2 C_A = aₐ C_N = aₙ * α^3 + bₙ * α * abs(α) + cₙ * (2.0f0 - M / 3.0f0) * α + dₙ * δ α̇ = Q * S / m / V * (C_N * cos(α) - C_A * sin(α)) + g / V * cos(γ) + q return V * (q - α̇) end function eval_tune_params(p_NN) return function (x) (h, V, α) = x[1:3] Vₛ = sqrt(γₐ * Rₐ * (T₀ - λ * h)) M = V / Vₛ # return min.( Π([α / α_max; M / M_max; h / h_max], p_NN) , K_ub) return Π([α / α_max; M / M_max; h / h_max], p_NN) end end # ODE problem prob = ODEProblem(fwd_dynamics_model, x₀, t_span) # loss construction function loss(p_NN) # InterpolatingAdjoint(autojacvec = ReverseDiffVJP(true)) also works well for ODE function defined in IIP form # InterpolatingAdjoint(autojacvec = ZygoteVJP()) requires ODE function defined in OOP form fwd_sol = Array(solve(prob, Tsit5(), p = p_NN, saveat = 0.01f0; sensealg = InterpolatingAdjoint(autojacvec = ZygoteVJP() ))) return ϕ(eval_output(fwd_sol[:, end]), a_z_cmd) + R(p_NN) + fwd_sol[end, end], fwd_sol end # learning progress callback setup # cb_progress = function (p, loss_val) cb_progress = function (p, loss_val, pred) println("Loss = $loss_val\n") display(scatter([vec(mapslices(eval_output, pred, dims = 1)) rad2deg.(pred[3:4, :]')], ylabel = ["\$a_{z} [m/s^{2}]\$" "\$\\alpha [deg]\$" "\$q [deg/s]\$"], label = :false, layout = (3, 1))) return false end function view_result(p_NN) fwd_sol = solve(prob, Tsit5(), p = p_NN, reltol = 1e-8, abstol = 1e-8, saveat = 0.01) a_z = eval_output.(fwd_sol.u) K = eval_tune_params(p_NN).(fwd_sol.u) f_aq = plot(fwd_sol.t, [a_z rad2deg.(fwd_sol[4,:])], label = :false, xlabel = "\$t [s]\$", ylabel = ["\$a_{z} [m/s^{2}]\$" "\$q [deg/s]\$"], layout = (2, 1)) f_K = plot(fwd_sol.t, hcat(K...)', xlabel = "\$t [s]\$", ylabel = ["\$K_{A}\$" "\$K_{I}\$" "\$K_{R}\$"], label = :false, layout = (3, 1)) display(plot(f_aq, f_K, layout = (1, 2))) f_hVα = plot(fwd_sol.t, [fwd_sol[1:2,:]' rad2deg.(fwd_sol[3,:])], label = :false, xlabel = "\$t [s]\$", ylabel = ["\$h [m]\$" "\$V [m/s]\$" "\$\\alpha [deg]\$"], layout = (3, 1)) display(f_hVα) return fwd_sol end # view pre-training result view_result(p_NN) ## NN training println("1st Phase\n") # res1 = DiffEqFlux.sciml_train(loss, p_NN; cb = cb_progress, maxiters = 100) res1 = DiffEqFlux.sciml_train(loss, p_NN, ADAM(0.01); cb = cb_progress, maxiters = 50) fwd_sol = view_result(res1.u) println("2nd Phase\n") res2 = DiffEqFlux.sciml_train(loss, res1.u, LBFGS(); cb = cb_progress, maxiters = 30) fwd_sol = view_result(res2.u) ## Validation p_NN_final = res2.u t_span = (0.0f0, 10.0f0) prob = ODEProblem(fwd_dynamics_model, x₀, t_span) function view_result(p_NN) fwd_sol = solve(prob, Tsit5(), p = p_NN, reltol = 1e-8, abstol = 1e-8, saveat = 0.01) a_z = eval_output.(fwd_sol.u) K = eval_tune_params(p_NN).(fwd_sol.u) f_aq = plot(fwd_sol.t, [a_z rad2deg.(fwd_sol[4,:])], label = :false, xlabel = "\$t [s]\$", ylabel = ["\$a_{z} [m/s^{2}]\$" "\$q [deg/s]\$"], layout = (2, 1)) f_K = plot(fwd_sol.t, hcat(K...)', xlabel = "\$t [s]\$", ylabel = ["\$K_{A}\$" "\$K_{I}\$" "\$K_{R}\$"], label = :false, layout = (3, 1)) display(plot(f_aq, f_K, layout = (1, 2))) f_hVα = plot(fwd_sol.t, [fwd_sol[1:2,:]' rad2deg.(fwd_sol[3,:])], label = :false, xlabel = "\$t [s]\$", ylabel = ["\$h [m]\$" "\$V [m/s]\$" "\$\\alpha [deg]\$"], layout = (3, 1)) display(f_hVα) return fwd_sol end view_result(p_NN_final)
ContinuousTimePolicyGradients
https://github.com/nhcho91/ContinuousTimePolicyGradients.jl.git
[ "MIT" ]
0.1.3
5f5a59cab6b3920d0b98dbebbb3f3f0477441546
code
4690
using DiffEqFlux, OrdinaryDiffEq, Plots # model + problem parameters (aₐ, aₙ, bₙ, cₙ, dₙ, aₘ, bₘ, cₘ, dₘ) = Float32.([-0.3, 19.373, -31.023, -9.717, -1.948, 40.44, -64.015, 2.922, -11.803]) (m, I_yy, S, d, ωₐ, ζₐ) = Float32.([204.02, 247.439, 0.0409, 0.2286, 150.0, 0.7]) (g, ρ₀, H, γₐ, Rₐ, T₀, λ) = Float32.([9.8, 1.225, 8435.0, 1.4, 286.0, 288.15, 0.0065]) (a_max, α_max, δ_max, q_max, M_max, h_max) = Float32.([100.0, deg2rad(30), deg2rad(25), deg2rad(5), 4, 11E3]) (k_a, k_δ, k_R) = Float32.([10000.0, 0.01, 0.001]) t_span = (0.0f0, 3.0f0) x₀ = Float32.([5E3; 900; zeros(7)]) a_z_cmd = 50.0f0 # cost function L(a_z, a_z_cmd, δ_c) = k_a * ((a_z - a_z_cmd) / a_max)^2 + k_δ * (δ_c / δ_max)^2 # + k_q * (q / q_max)^2 ϕ(a_z, a_z_cmd) = ((a_z - a_z_cmd) / a_max)^2 R(p_NN) = k_R * p_NN' * p_NN # NN construction dim_hidden = 64 (K_lb, K_ub) = Float32.([-0.2, 0]) Π = Chain( Dense(3, dim_hidden, tanh), Dense(dim_hidden, dim_hidden, tanh), Dense(dim_hidden, 3) # u -> (K_ub - K_lb) * σ.(u) .+ K_lb ) (p_NN, restruct) = Flux.destructure(Π) # plant + controller dynamics function fwd_dynamics_model!(dx, x, p_NN, t) (h, V, α, q, θ, δ, δ̇, x_c, _) = x ρ = ρ₀ * exp(-h / H) Vₛ = sqrt(γₐ * Rₐ * (T₀ - λ * h)) M = V / Vₛ γ = θ - α Q = 0.5f0 * ρ * V^2 C_A = aₐ C_N = aₙ * α^3 + bₙ * α * abs(α) + cₙ * (2.0f0 - M / 3.0f0) * α + dₙ * δ C_M = aₘ * α^3 + bₘ * α * abs(α) + cₘ * (-7.0f0 + 8.0f0 * M / 3.0f0) * α + dₘ * δ K_A, K_I, K_R = min.( restruct(p_NN)([α / α_max; M / M_max; h / h_max]) , K_ub ) δ_c = -K_I * x_c - K_R * q α̇ = Q * S / m / V * (C_N * cos(α) - C_A * sin(α)) + g / V * cos(γ) + q a_z = V * (q - α̇) dx[1] = V * sin(γ) dx[2] = Q * S / m * (C_N * sin(α) + C_A * cos(α)) - g * sin(γ) dx[3] = α̇ dx[4] = Q * S * d / I_yy * C_M dx[5] = q dx[6] = δ̇ dx[7] = -ωₐ^2 * (δ - δ_c) - 2.0f0 * ζₐ * ωₐ * δ̇ dx[8] = -K_A * (a_z - a_z_cmd) + q - a_z_cmd / V dx[9] = L(a_z, a_z_cmd, δ_c) end function eval_output(x) (h, V, α, q, θ, δ, _, _, _) = x ρ = ρ₀ * exp(-h / H) Vₛ = sqrt(γₐ * Rₐ * (T₀ - λ * h)) M = V / Vₛ γ = θ - α Q = 0.5f0 * ρ * V^2 C_A = aₐ C_N = aₙ * α^3 + bₙ * α * abs(α) + cₙ * (2.0f0 - M / 3.0f0) * α + dₙ * δ α̇ = Q * S / m / V * (C_N * cos(α) - C_A * sin(α)) + g / V * cos(γ) + q return V * (q - α̇) end function eval_tune_params(p_NN) return function (x) (h, V, α) = x[1:3] Vₛ = sqrt(γₐ * Rₐ * (T₀ - λ * h)) M = V / Vₛ return min.( restruct(p_NN)([α / α_max; M / M_max; h / h_max]) , K_ub ) end end # ODE problem prob = ODEProblem(fwd_dynamics_model!, x₀, t_span) # loss construction function loss() fwd_sol = Array(solve(prob, Tsit5(), p = p_NN, reltol = 1e-4, abstol = 1e-8, saveat = 0.1; sensealg = InterpolatingAdjoint(autojacvec = ZygoteVJP()))) # fwd_sol = Array(solve(prob, Tsit5(), p = p_NN, saveat = 0.1; sensealg = InterpolatingAdjoint(autojacvec = ZygoteVJP()))) return ϕ(eval_output(fwd_sol[:, end]), a_z_cmd) + R(p_NN) + fwd_sol[end, end] #, fwd_sol end # learning progress callback setup cb_progress = function () # cb_progress = function (p, loss_val, pred) loss_val = loss() println("Loss = $loss_val\n") # display(scatter([vec(mapslices(eval_output, pred, dims = 1)) rad2deg.(pred[3:4, :]')], ylabel = ["\$a_{z} [m/s^{2}]\$" "\$\\alpha [deg]\$" "\$q [deg/s]\$"], label = :false, layout = (3, 1))) return false end function view_result(p_NN) fwd_sol = solve(prob, Tsit5(), p = p_NN, reltol = 1e-8, abstol = 1e-8, saveat = 0.01) a_z = eval_output.(fwd_sol.u) K = eval_tune_params(p_NN).(fwd_sol.u) f_aq = plot(fwd_sol.t, [a_z rad2deg.(fwd_sol[4,:])], label = :false, xlabel = "\$t [s]\$", ylabel = ["\$a_{z} [m/s^{2}]\$" "\$q [deg/s]\$"], layout = (2, 1)) f_K = plot(fwd_sol.t, hcat(K...)', xlabel = "\$t [s]\$", ylabel = ["\$K_{A}\$" "\$K_{I}\$" "\$K_{R}\$"], label = :false, layout = (3, 1)) display(plot(f_aq, f_K, layout = (1, 2))) f_hVα = plot(fwd_sol.t, [fwd_sol[1:2,:]' rad2deg.(fwd_sol[3,:])], label = :false, xlabel = "\$t [s]\$", ylabel = ["\$h [m]\$" "\$V [m/s]\$" "\$\\alpha [deg]\$"], layout = (3, 1)) display(f_hVα) return fwd_sol end # view pre-training result view_result(p_NN) ## NN training println("1st Phase\n") data = Iterators.repeated((), 2000) Flux.train!(loss, Flux.params(p_NN), data, ADAM(0.5); cb = cb_progress) ## println("2nd Phase\n") Flux.train!(loss, Flux.params(p_NN), data, ADAM(); cb = cb_progress) ## println("3rd Phase\n") Flux.train!(loss, Flux.params(p_NN), data, Nesterov(); cb = cb_progress) # view post-training result fwd_sol = view_result(p_NN)
ContinuousTimePolicyGradients
https://github.com/nhcho91/ContinuousTimePolicyGradients.jl.git
[ "MIT" ]
0.1.3
5f5a59cab6b3920d0b98dbebbb3f3f0477441546
code
6693
using ContinuousTimePolicyGradients using DiffEqFlux, ComponentArrays, LinearAlgebra, JLD2, OrdinaryDiffEq using Plots function main(maxiters_1::Int, maxiters_2::Int, Δt_save::Float32; p_NN_0 = nothing, k_a_val = 10.0) # model + problem parameters (aₐ, aₙ, bₙ, cₙ, dₙ, aₘ, bₘ, cₘ, dₘ) = Float32.([-0.3, 19.373, -31.023, -9.717, -1.948, 40.44, -64.015, 2.922, -11.803]) (m, I_yy, S, d, ωₐ, ζₐ) = Float32.([204.02, 247.439, 0.0409, 0.2286, 150.0, 0.7]) (g, ρ₀, H, γₐ, Rₐ, T₀, λ) = Float32.([9.8, 1.225, 8435.0, 1.4, 286.0, 288.15, 0.0065]) (a_max, α_max, δ_max, δ̇_max, q_max, M_max, h_max) = Float32.([100.0, deg2rad(30), deg2rad(25), 1.5, deg2rad(60), 4, 11E3]) (k_a, k_q, k_δ, k_δ̇, k_R) = Float32.([k_a_val, 0.0, 0.0, 0.1, 1E-3]) # dynamic model dim_x = 7 function dynamics_plant(t, x, u) (h, V, α, q, θ, δ, δ̇) = x δ_c = u[1] ρ = ρ₀ * exp(-h / H) Vₛ = sqrt(γₐ * Rₐ * (T₀ - λ * h)) M = V / Vₛ γ = θ - α Q = 0.5f0 * ρ * V^2 C_A = aₐ C_N = aₙ * α^3 + bₙ * α * abs(α) + cₙ * (2.0f0 - M / 3.0f0) * α + dₙ * δ C_M = aₘ * α^3 + bₘ * α * abs(α) + cₘ * (-7.0f0 + 8.0f0 * M / 3.0f0) * α + dₘ * δ α̇ = Q * S / m / V * (C_N * cos(α) - C_A * sin(α)) + g / V * cos(γ) + q dx = [V * sin(γ); Q * S / m * (C_N * sin(α) + C_A * cos(α)) - g * sin(γ); α̇; Q * S * d / I_yy * C_M; q; δ̇; -ωₐ^2 * (δ - δ_c) - 2.0f0 * ζₐ * ωₐ * δ̇] return dx end dim_x_c = 2 function dynamics_controller(t, x_c, y, r, p_NN, policy_NN) (A_z, h, V, M, α, q, γ) = y A_z_cmd = r[1] x_int = x_c[1] x_ref = x_c[2] y_NN = (K_A, K_I, K_R) = policy_NN([α / α_max; M / M_max; h / h_max], p_NN) # dx_ref = [-36.6667f0 -13.8889f0; 8.0f0 0.0f0] * x_ref + [4.0f0; 0.0f0] * A_z_cmd # A_z_ref = [-1.0083f0 3.4722f0] * x_ref dx_ref = (A_z_cmd - x_ref) / 0.2f0 A_z_ref = x_ref δ_trim = -(aₘ * α^3 + bₘ * α * abs(α) + cₘ * (-7.0f0 + 8.0f0 * M / 3.0f0) * α) / dₘ dx_c = [K_A * (A_z_cmd - A_z) + q + (A_z + g * cos(γ)) / V; dx_ref] u = [K_I * x_int + K_R * q + δ_trim; A_z_ref] return dx_c, u, y_NN end function dynamics_sensor(t, x) (h, V, α, q, θ, δ, _) = x ρ = ρ₀ * exp(-h / H) Vₛ = sqrt(γₐ * Rₐ * (T₀ - λ * h)) M = V / Vₛ γ = θ - α Q = 0.5f0 * ρ * V^2 C_A = aₐ C_N = aₙ * α^3 + bₙ * α * abs(α) + cₙ * (2.0f0 - M / 3.0f0) * α + dₙ * δ A_z = Q * S / m * (C_N * cos(α) - C_A * sin(α)) y = [A_z; h; V; M; α; q; γ] return y end # cost definition function cost_running(t, x, y, u, r) q = x[4] δ̇ = x[7] a_z = y[1] δ_c = u[1] a_z_ref = u[2] a_z_cmd = r[1] return k_a * ((a_z - a_z_ref) / (exp(-2.0f0*a_z_cmd) + a_z_cmd))^2 + k_δ̇ * (δ̇ / δ̇_max)^2 + k_δ * (δ_c / δ_max)^2 + k_q * (q / q_max)^2 end function cost_terminal(x_f, r) # a_z_cmd = r[1] # y = dynamics_sensor(3.0f0, x_f) # a_z = y[1] # return ((a_z - a_z_cmd) / (1.0f0 + a_z_cmd))^2 return 0.0f0 end function cost_regularisor(p_NN) return k_R * norm(p_NN)^2 # return 0.0f0 end # NN construction dim_NN_hidden = 64 dim_NN_input = 3 dim_K = 3 K_lb = zeros(Float32, 3) K_ub = Float32[4,0.2,4] policy_NN = FastChain( FastDense(dim_NN_input, dim_NN_hidden, tanh), FastDense(dim_NN_hidden, dim_NN_hidden, tanh), FastDense(dim_NN_hidden, dim_K), (x, p) -> (K_ub - K_lb) .* σ.(x) .+ K_lb ) # scenario definition ensemble = [ (; x₀ = Float32[h₀; V₀; zeros(5)], r = Float32[A_z_cmd]) for h₀ = 5E3 #:1E3:8E3 for V₀ = 7E2 #:1E2:9E2 for A_z_cmd = 0:2E1:1E2 ] t_span = Float32.((0.0, 3.0)) t_save = t_span[1]:Δt_save:t_span[2] scenario = (; ensemble = ensemble, t_span = t_span, t_save = t_save, dim_x = dim_x, dim_x_c = dim_x_c) # NN training (result, fwd_ensemble_sol, loss_history) = CTPG_train(dynamics_plant, dynamics_controller, dynamics_sensor, cost_running, cost_terminal, cost_regularisor, policy_NN, scenario; sense_alg = InterpolatingAdjoint(autojacvec = ReverseDiffVJP(true)), ensemble_alg = EnsembleThreads(), maxiters_1 = maxiters_1, maxiters_2 = maxiters_2, opt_2 = BFGS(initial_stepnorm = 0.0001), i_nominal = 1, p_NN_0 = p_NN_0, progress_plot = false) return result, policy_NN, fwd_ensemble_sol, loss_history end ## execute optimisation and simulation @time (result, policy_NN, fwd_ensemble_sol, loss_history) = main(1000, 500, 0.01f0; k_a_val = 200.0) ## save results # p_NN_prev = result.u # @time (result, policy_NN, fwd_ensemble_sol, loss_history) = main(1, 1000, 0.01f0; k_a_val = 50.0, p_NN_0 = p_NN_prev) jldsave("DS_autopilot_13.jld2"; result, fwd_ensemble_sol, loss_history) # plot results # (fwd_ensemble_sol, loss_history) = load(".jld2", "fwd_ensemble_sol", "loss_history") x_names = ["\$h\$" "\$V\$" "\$\\alpha\$" "\$q\$" "\$\\theta\$" "\$\\delta\$" "\$\\dot{\\delta}\$"] vars_x = 1:6 # [1,2,3, (1,2), (2,3)] u_names = ["\$\\delta_{c}\$"] vars_u = 1 y_names = ["\$a_{z}\$"] vars_y = 1 y_NN_names = ["\$K_A\$" "\$K_I\$" "\$K_R\$"] vars_y_NN = 1:3 (f_x, f_u, f_y, f_y_NN, f_L) = view_result([], fwd_ensemble_sol, loss_history; x_names = x_names, vars_x = vars_x, u_names = u_names, vars_u = vars_u, y_names = y_names, vars_y = vars_y, y_NN_names = y_NN_names, vars_y_NN = vars_y_NN, linealpha = 0.6) (a_max, α_max, δ_max, δ̇_max, q_max, M_max, h_max) = Float32.([100.0, deg2rad(30), deg2rad(25), 1.5, deg2rad(60), 4, 11E3]) h = 5000.0 α_list = 0:1E-3:deg2rad(45) M_list = 2.0:0.1:3.0 func_K_A(α, M) = policy_NN([α / α_max; M / M_max; h / h_max], result.u)[1] func_K_I(α, M) = policy_NN([α / α_max; M / M_max; h / h_max], result.u)[2] func_K_R(α, M) = policy_NN([α / α_max; M / M_max; h / h_max], result.u)[3] f_K_A = plot(α_list, M_list, func_K_A, st=:surface, label = :false, title = "K_A", xlabel = "\$\\alpha\$", ylabel = "\$M\$") f_K_I = plot(α_list, M_list, func_K_I, st=:surface, label = :false, title = "K_I", xlabel = "\$\\alpha\$", ylabel = "\$M\$") f_K_R = plot(α_list, M_list, func_K_R, st=:surface, label = :false, title = "K_R", xlabel = "\$\\alpha\$", ylabel = "\$M\$") display(f_K_A) display(f_K_I) display(f_K_R)
ContinuousTimePolicyGradients
https://github.com/nhcho91/ContinuousTimePolicyGradients.jl.git
[ "MIT" ]
0.1.3
5f5a59cab6b3920d0b98dbebbb3f3f0477441546
code
1849
using ComponentArrays using DiffEqFlux, DifferentialEquations, Plots using UnPack """ To test whether `ComponentArray` (exported from `ComponentArrays`) is compatible with AD (auto-diff) systems. Borrowed from DiffEqFlux.jl documentation: https://diffeqflux.sciml.ai/stable/examples/neural_ode_flux/ """ function main() # u0 = Float32[2.; 0.] u0 = ComponentArray(a=2.0, b=0.0) datasize = 30 tspan = (0.0f0,1.5f0) function trueODEfunc(du,u,p,t) true_A = [-0.1 2.0; -2.0 -0.1] @unpack a, b = u tmp = ([a^3, b^3]'true_A)' du.a, du.b = tmp end t = range(tspan[1],tspan[2],length=datasize) prob = ODEProblem(trueODEfunc,u0,tspan) ode_data = Array(solve(prob,Tsit5(),saveat=t)) dudt2 = Chain(x -> x.^3, Dense(2,50,tanh), Dense(50,2)) p,re = Flux.destructure(dudt2) # use this p as the initial condition! dudt(u,p,t) = re(p)(u) # need to restructure for backprop! prob = ODEProblem(dudt,u0,tspan) function predict_n_ode() Array(solve(prob,Tsit5(),u0=u0,p=p,saveat=t)) end function loss_n_ode() pred = predict_n_ode() loss = sum(abs2,ode_data .- pred) loss end loss_n_ode() # n_ode.p stores the initial parameters of the neural ODE cb = function (;doplot=false) # callback function to observe training pred = predict_n_ode() display(sum(abs2,ode_data .- pred)) # plot current prediction against data pl = scatter(t,ode_data[1,:],label="data") scatter!(pl,t,pred[1,:],label="prediction") display(plot(pl)) return false end # Display the ODE with the initial parameter values. cb() data = Iterators.repeated((), 1000) Flux.train!(loss_n_ode, Flux.params(u0,p), data, ADAM(0.05), cb = cb) end
ContinuousTimePolicyGradients
https://github.com/nhcho91/ContinuousTimePolicyGradients.jl.git
[ "MIT" ]
0.1.3
5f5a59cab6b3920d0b98dbebbb3f3f0477441546
code
28319
# Test: ODESystem built with ModelingToolkit + Ensemble Simulation with DifferentialEquations + Optimisation with DiffEqFlux using DiffEqFlux, DifferentialEquations, Plots, Statistics, ModelingToolkit ann = FastChain(FastDense(1,32,tanh), FastDense(32,32,tanh), FastDense(32,1)) dim_p = DiffEqFlux.paramlength(ann) @variables t x1(t) x2(t) @parameters p_NN[1:dim_p] D = Differential(t) deqs = [D(x1) ~ x2 D(x2) ~ ann([t],p_NN)[1]^3] sys = ODESystem(deqs, t, [x1, x2], p_NN; name = :sys) # sys = ODESystem(deqs, iv, dvs, ps; ) # sys_simplified = structural_simplify(sys) # ---> not working u0 = [x1 => -4f0, x2 => 0f0] p_NN_0 = initial_params(ann) p = [p_NN[i] => p_NN_0[i] for i in 1:dim_p] tspan = (0.0f0, 8.0f0) prob = ODEProblem(sys, u0, tspan, p; jac = true) @time sol = solve(prob, Tsit5(), saveat = 0.1f0) # ---> not working ##-------- using DiffEqFlux, DifferentialEquations, Plots, Statistics, ModelingToolkit dim_h = 32 tspan = (0.0f0,8.0f0) ann = FastChain(FastDense(1,32,tanh), FastDense(32,32,tanh), FastDense(32,1)) θ = initial_params(ann) function dxdt_(dx,x,p,t) x1, x2 = x dx[1] = x[2] dx[2] = ann([t],p)[1]^3 end x0 = [-4f0, 0f0] prob = ODEProblem(dxdt_,x0,tspan,θ) sys = structural_simplify(modelingtoolkitize(prob)) prob_mtk = ODEProblem(sys, [], tspan, jac = true) @time sol = solve(prob_mtk, Tsit5(), saveat = 0.1f0) # ---> working #------------ ts = Float32.(collect(0.0:0.01:tspan[2])) function predict_adjoint(θ) Array(solve(prob_mtk,Tsit5(),p=θ,saveat=ts,sensealg=InterpolatingAdjoint(autojacvec=ZygoteVJP()))) end function loss_adjoint(θ) x = predict_adjoint(θ) mean(abs2,4.0 .- x[1,:]) + 2mean(abs2,x[2,:]) + mean(abs2,[first(ann([t],θ)) for t in ts])/10 end l = loss_adjoint(θ) cb = function (θ,l) println(l) # p = plot(solve(remake(prob,p=θ),Tsit5(),saveat=0.01),ylim=(-6,6),lw=3) # plot!(p,ts,[first(ann([t],θ)) for t in ts],label="u(t)",lw=3) # display(p) return false end # Display the ODE with the current parameter values. cb(θ,l) loss1 = loss_adjoint(θ) res1 = DiffEqFlux.sciml_train(loss_adjoint, θ, ADAM(0.005), cb = cb,maxiters=100) res2 = DiffEqFlux.sciml_train(loss_adjoint, res1.u, BFGS(initial_stepnorm=0.01), cb = cb,maxiters=100, allow_f_increases = false) ## ------------------------------------------------------------------------------------ using ModelingToolkit function decay(;name) @parameters t a @variables x(t) f(t) D = Differential(t) ODESystem([ D(x) ~ -a*x + f ]; name=name) end @named decay1 = decay() @named decay2 = decay() @parameters t D = Differential(t) connected = compose(ODESystem([ decay2.f ~ decay1.x D(decay1.f) ~ 0 ], t; name=:connected), decay1, decay2) equations(connected) #4-element Vector{Equation}: # Differential(t)(decay1₊f(t)) ~ 0 # decay2₊f(t) ~ decay1₊x(t) # Differential(t)(decay1₊x(t)) ~ decay1₊f(t) - (decay1₊a*(decay1₊x(t))) # Differential(t)(decay2₊x(t)) ~ decay2₊f(t) - (decay2₊a*(decay2₊x(t))) simplified_sys = structural_simplify(connected) equations(simplified_sys) #3-element Vector{Equation}: # Differential(t)(decay1₊f(t)) ~ 0 # Differential(t)(decay1₊x(t)) ~ decay1₊f(t) - (decay1₊a*(decay1₊x(t))) # Differential(t)(decay2₊x(t)) ~ decay1₊x(t) - (decay2₊a*(decay2₊x(t))) x0 = [ decay1.x => 1.0 decay1.f => 0.0 decay2.x => 1.0 ] p = [ decay1.a => 0.1 decay2.a => 0.2 ] using DifferentialEquations prob = ODEProblem(simplified_sys, x0, (0.0, 100.0), p) sol = solve(prob, Tsit5()) sol[decay2.f] ## ------------------------------------------------------------------------------------ using DifferentialEquations, DiffEqFlux pa = [1.0] u0 = [3.0] θ = [u0;pa] function model1(θ,ensemble) prob = ODEProblem((u, p, t) -> 1.01u .* p, [θ[1]], (0.0, 1.0), [θ[2]]) function prob_func(prob, i, repeat) remake(prob, u0 = 0.5 .+ i/100 .* prob.u0) end ensemble_prob = EnsembleProblem(prob, prob_func = prob_func) sim = solve(ensemble_prob, Tsit5(), ensemble, saveat = 0.1, trajectories = 100) end # loss function loss_serial(θ) = sum(abs2,1.0.-Array(model1(θ,EnsembleSerial()))) loss_threaded(θ) = sum(abs2,1.0.-Array(model1(θ,EnsembleThreads()))) cb = function (θ,l) # callback function to observe training @show l false end opt = ADAM(0.1) l1 = loss_serial(θ) res_serial = DiffEqFlux.sciml_train(loss_serial, θ, opt; cb = cb, maxiters=100) res_threads = DiffEqFlux.sciml_train(loss_threaded, θ, opt; cb = cb, maxiters=100) ## ------------------------------------------------------------------------------------ using DifferentialEquations prob = ODEProblem((u,p,t)->1.01*[u[2];u[1]],[0.5, 1.0],(0.0,1.0)) function prob_func(prob,i,repeat) remake(prob,u0=rand()*prob.u0) end ensemble_prob = EnsembleProblem(prob,prob_func=prob_func) sim = solve(ensemble_prob,Tsit5(),EnsembleThreads(),trajectories=100) ## ------------------------------------------------------------------------------------ using DifferentialEquations, Plots, GalacticOptim function lotka_volterra!(du,u,p,t) rab, wol = u α,β,γ,δ=p du[1] = drab = α*rab - β*rab*wol du[2] = dwol = γ*rab*wol - δ*wol nothing end u0 = [1.0,1.0] tspan = (0.0,10.0) p = [1.5,1.0,3.0,1.0] prob = ODEProblem(lotka_volterra!,u0,tspan,p) sol = solve(prob,saveat=0.1) plot(sol) dataset = Array(sol) scatter!(sol.t,dataset') tmp_prob = remake(prob, p=[1.2,0.8,2.5,0.8]) tmp_sol = solve(tmp_prob) plot(tmp_sol) scatter!(sol.t,dataset') function loss(p) tmp_prob = remake(prob, p=p) tmp_sol = solve(tmp_prob,Tsit5(),saveat=0.1) if tmp_sol.retcode == :Success return sum(abs2,Array(tmp_sol) - dataset) else return 1E10 end end # function loss(p) # tmp_prob = remake(prob, p=p) # tmp_sol = solve(tmp_prob,Tsit5(),saveat=0.1) # if size(tmp_sol) == size(dataset) # return sum(abs2,Array(tmp_sol) .- dataset) # else # return Inf # end # end using DiffEqFlux pinit = [1.2,0.8,2.5,0.8] res = DiffEqFlux.sciml_train(loss,pinit,ADAM(), maxiters = 100) # res = DiffEqFlux.sciml_train(loss,pinit,BFGS(), maxiters = 100) ### errors! #try Newton method of optimization res = DiffEqFlux.sciml_train(loss,pinit,BFGS()) ## ------------------------------------------------------------------------------------ # compatibility of modelingtoolkitize and ensemble parellel simulation using DifferentialEquations, ModelingToolkit function rober(du,u,p,t) y₁,y₂,y₃ = u k₁,k₂,k₃ = p du[1] = -k₁*y₁+k₃*y₂*y₃ du[2] = k₁*y₁-k₂*y₂^2-k₃*y₂*y₃ du[3] = k₂*y₂^2 nothing end function prob_func(prob,i,repeat) p_i = collect(prob.p) p_i[1] = 1E-2 * i remake(prob,p=p_i) # remake(prob,u0=rand()*prob.u0) end prob = ODEProblem(rober,[1.0,0.0,0.0],(0.0,1e1),(0.04,3e7,1e4)) sys = modelingtoolkitize(prob) prob_jac = ODEProblem(sys,[],(0.0,1e1),jac=true) ensemble_prob = EnsembleProblem(prob,prob_func=prob_func) ensemble_prob_jac = EnsembleProblem(prob_jac,prob_func=prob_func) @time sim = solve(ensemble_prob,Tsit5(),EnsembleSerial(),trajectories=10) @time sim_jac = solve(ensemble_prob_jac,Tsit5(),EnsembleSerial(),trajectories=10) # conclusion 1) sim_jac is faster than sim if ensemble algorithm is EnsembleSerial(). # ---> sim_jac is even slower than sim when EnsembleThreads() is used. # conclusion 2) sim_jac[i].prob.p is determined as intended by prob_func even though the modelingtoolkitized system is used. ## ------------------------------------------------------------------------------------ using Flux d = Dense(5,2) p1 = d.weight, d.bias p2 = Flux.params(d) p1[1] == p2[1] p2[1] == p2[2] m = Chain(Dense(10,5), Dense(5,2)) x = rand(10) # m(x) == m[2](m[1](x)) # loss(ŷ, y) p, re = Flux.destructure(m) m(x) - re(p)(x) ## ------------------------------------------------------------------------------------ using Flux W = rand(2, 5) b = rand(2) predict(x) = (W * x) .+ b loss(x, y) = sum((predict(x) .- y).^2) x, y = rand(5), rand(2) # Dummy data l = loss(x, y) # ~ 3 θ = params(W, b) grads = gradient(() -> loss(x, y), θ) using Flux.Optimise: update! η = 0.1 # Learning Rate for p in (W, b) update!(p, η * grads[p]) end opt = Descent(0.1) # Gradient descent with learning rate 0.1 for p in (W, b) update!(opt, p, grads[p]) end ## ------------------------------------------------------------------------------------ # Comparison between the automatic differentiation results for ForwardDiffSensitivity and InterpolatingAdjoint using DiffEqSensitivity, OrdinaryDiffEq, Zygote, LinearAlgebra, QuadGK function fiip(du,u,p,t) du[1] = dx = p[1]*u[1] - p[2]*u[1]*u[2] du[2] = dy = -p[3]*u[2] + p[4]*u[1]*u[2] du[3] = u[2]^2 end p = [1.5,1.0,3.0,1.0] u0 = [1.0;1.0;0.0] prob = ODEProblem(fiip,u0,(0.0,10.0),p) # y_sense = solve(prob,Tsit5(),u0=u0,p=p,saveat=0.1;sensealg = InterpolatingAdjoint(autojacvec=ZygoteVJP())) # loss(u0,p) = sum(solve(prob,Tsit5(),u0=u0,p=p,saveat=0.1,abstol=1e-14,reltol=1e-14)) # loss_adjoint(u0,p) = sum(solve(prob,Tsit5(),u0=u0,p=p,saveat=0.1,abstol=1e-14,reltol=1e-14;sensealg = InterpolatingAdjoint())) function loss(u0,p) y = Array(solve(prob,Tsit5(),u0=u0,p=p,saveat=0.1,abstol=1e-14,reltol=1e-14)) return y[3,end] end function loss_adjoint(u0,p) y = Array(solve(prob,Tsit5(),u0=u0,p=p,saveat=0.1,abstol=1e-14,reltol=1e-14;sensealg = InterpolatingAdjoint())) return y[3,end] end function loss_discrete(u0,p) y = Array(solve(prob,Tsit5(),u0=u0,p=p,saveat=0.1,abstol=1e-14,reltol=1e-14;sensealg = InterpolatingAdjoint())) # return quadgk((t) -> (y(t)[2])^2, 0.0, 10.0)[1] # atol=1e-14,rtol=1e-10) # this is incorrect and not working return 0.1*sum(y[2,:].^2) end function loss_adjoint_Bolza(u0,p) y = Array(solve(prob,Tsit5(),u0=u0,p=p,abstol=1e-14,reltol=1e-14;sensealg = InterpolatingAdjoint())) return y[3,end] + 100.0*y[1:2,end]'*y[1:2,end] end du01,dp1 = Zygote.gradient(loss,u0,p) du02,dp2 = Zygote.gradient(loss_adjoint,u0,p) du03,dp3 = Zygote.gradient(loss_discrete,u0,p) du04,dp4 = Zygote.gradient(loss_adjoint_Bolza,u0,p) # Comparison between the results of automatic differentiation and continuous adjoint sensitivity analysis method y = solve(prob,Tsit5(),u0=u0,p=p,abstol=1e-14,reltol=1e-14;sensealg = InterpolatingAdjoint()) bwd_sol = solve(ODEAdjointProblem(y, InterpolatingAdjoint(), (out, x, p, t, i) -> (out[:] = [200.0*y[end][1:2]; 1]'), [10.0]), Tsit5(), # dense = false, save_everystep = false, save_start = false, # saveat = 0.1, abstol=1e-14,reltol=1e-14) du05, dp5 = bwd_sol[end][1:length(u0)], -bwd_sol[end][1+length(u0):end] isapprox(du04, du05) isapprox(dp4, dp5) ## ------------------------------------------------------------------------------------ # Comparison between forward and adjoint sensitivity calculation results using DiffEqSensitivity, OrdinaryDiffEq, Zygote function f(du,u,p,t) du[1] = dx = p[1]*u[1] - p[2]*u[1]*u[2] du[2] = dy = -p[3]*u[2] + u[1]*u[2] end p = [1.5,1.0,3.0] u0 = [1.0;1.0] prob = ODEProblem(f,u0,(0.0,10.0),p) sol = solve(prob,Vern9(),abstol=1e-10,reltol=1e-10) g(u,p,t) = (sum(u).^2) ./ 2 + p'*p / 2 function dgdu(out,u,p,t) out[1]= u[1] + u[2] out[2]= u[1] + u[2] end function dgdp_s(out,u,p,t) out[1] = p[1] out[2] = p[2] out[3] = p[3] end function dgdp_v1(out,u,p,t) out .= p end function dgdp_v2(out,u,p,t) out = p end function dgdp_v3(out,u,p,t) out = p' end res1 = adjoint_sensitivities(sol,Vern9(),g,nothing,abstol=1e-8, reltol=1e-8,iabstol=1e-8,ireltol=1e-8) # this is incorrect res2 = adjoint_sensitivities(sol,Vern9(),g,nothing,dgdu,abstol=1e-8, reltol=1e-8,iabstol=1e-8,ireltol=1e-8) # this is incorrect res3 = adjoint_sensitivities(sol,Vern9(),g,nothing,(dgdu,dgdp_s),abstol=1e-8, reltol=1e-8,iabstol=1e-8,ireltol=1e-8) # this is correct res4 = adjoint_sensitivities(sol,Vern9(),g,nothing,(dgdu,dgdp_v1),abstol=1e-8, reltol=1e-8,iabstol=1e-8,ireltol=1e-8) # this is correct res5 = adjoint_sensitivities(sol,Vern9(),g,nothing,(dgdu,dgdp_v2),abstol=1e-8, reltol=1e-8,iabstol=1e-8,ireltol=1e-8) # this is incorrect res6 = adjoint_sensitivities(sol,Vern9(),g,nothing,(dgdu,dgdp_v3),abstol=1e-8, reltol=1e-8,iabstol=1e-8,ireltol=1e-8) # this is incorrect using ForwardDiff, Calculus using QuadGK function G(p) tmp_prob = remake(prob,p=p) sol = solve(tmp_prob,Vern9(),abstol=1e-14,reltol=1e-14) res,err = quadgk((t)-> (sum(sol(t)).^2)./2 + p'*p/2,0.0,10.0,atol=1e-14,rtol=1e-10) res end res7 = ForwardDiff.gradient(G,p) res8 = Calculus.gradient(G,p) # res9 = Zygote.gradient(G,p) # not working ## ------------------------------------------------------------------------------------ ## ------------------------------------------------------------------------------------ ## ------------------------------------------------------------------------------------ # Samuel Aintworth's code import DiffEqBase import DiffEqSensitivity: solve, ODEProblem, ODEAdjointProblem, InterpolatingAdjoint import Zygote import Statistics: mean function extract_loss_and_xT(fwd_sol) fwd_sol[end][1], fwd_sol[end][2:end] end """Returns a differentiable loss function that rolls out a policy in an environment and calculates its cost.""" function ppg_goodies(dynamics, cost, policy, T) function aug_dynamics(z, policy_params, t) x = @view z[2:end] u = policy(x, t, policy_params) [cost(x, u); dynamics(x, u)] end function loss_pullback(x0, policy_params, solvealg, solve_kwargs) z0 = vcat(0.0, x0) fwd_sol = solve( ODEProblem(aug_dynamics, z0, (0, T), policy_params), solvealg, u0 = z0, p = policy_params; solve_kwargs..., ) function _adjoint_solve(g_zT, sensealg; kwargs...) # See https://diffeq.sciml.ai/stable/analysis/sensitivity/#Syntax-1 # and https://github.com/SciML/DiffEqSensitivity.jl/blob/master/src/local_sensitivity/sensitivity_interface.jl#L9. solve( ODEAdjointProblem( fwd_sol, sensealg, (out, x, p, t, i) -> (out[:] = g_zT), [T], ), solvealg; kwargs..., ) end # This is the pullback using the augmented system and a discrete # gradient input at time T. Alternatively one could use the continuous # adjoints on the non-augmented system although this seems to be slower # and a less stable feature. function pullback(g_zT, sensealg::InterpolatingAdjoint) bwd_sol = _adjoint_solve( g_zT, sensealg, dense = false, save_everystep = false, save_start = false, # reltol = 1e-3, # abstol = 1e-3, ) # The first z_dim elements of bwd_sol.u are the gradient wrt z0, # next however many are the gradient wrt policy_params. p = fwd_sol.prob.p l = p === nothing || p === DiffEqBase.NullParameters() ? 0 : length(fwd_sol.prob.p) g_x0 = bwd_sol[end][1:length(fwd_sol.prob.u0)] # We do exactly as many f calls as there are function calls in the # forward pass, and in the backward pass we don't need to call f, # but instead we call ∇f. ( g = -bwd_sol[end][(1:l).+length(fwd_sol.prob.u0)], nf = 0, n∇ₓf = bwd_sol.destats.nf, n∇ᵤf = bwd_sol.destats.nf, ) end fwd_sol, pullback end function ez_loss_and_grad( x0, policy_params, solvealg, sensealg; fwd_solve_kwargs = Dict(), ) # @info "fwd" fwd_sol, vjp = loss_pullback(x0, policy_params, solvealg, fwd_solve_kwargs) # @info "bwd" bwd = vjp(vcat(1, zero(x0)), sensealg) loss, _ = extract_loss_and_xT(fwd_sol) # @info "fin" loss, bwd.g, (nf = fwd_sol.destats.nf + bwd.nf, n∇ₓf = bwd.n∇ₓf, n∇ᵤf = bwd.n∇ᵤf) end function _aggregate_batch_results(res) ( mean(loss for (loss, _, _) in res), mean(g for (_, g, _) in res), ( nf = sum(info.nf for (_, _, info) in res), n∇ₓf = sum(info.n∇ₓf for (_, _, info) in res), n∇ᵤf = sum(info.n∇ᵤf for (_, _, info) in res), ), ) end function ez_loss_and_grad_many( x0_batch, policy_params, solvealg, sensealg; fwd_solve_kwargs = Dict(), ) # Using tmap here gives a segfault. See https://github.com/tro3/ThreadPools.jl/issues/18. _aggregate_batch_results( map(x0_batch) do x0 ez_loss_and_grad( x0, policy_params, solvealg, sensealg, fwd_solve_kwargs = fwd_solve_kwargs, ) end, ) end ( aug_dynamics = aug_dynamics, loss_pullback = loss_pullback, ez_loss_and_grad = ez_loss_and_grad, ez_loss_and_grad_many = ez_loss_and_grad_many, ez_euler_bptt = ez_euler_bptt, ez_euler_loss_and_grad_many = ez_euler_loss_and_grad_many, ) end function policy_dynamics!(dx, x, policy_params, t) u = policy(x, policy_params) dx .= dynamics(x, u) end function cost_functional(x, policy_params, t) cost(x, policy(x, policy_params)) end # See https://github.com/SciML/DiffEqSensitivity.jl/issues/302 for context. dcost_tuple = ( (out, u, p, t) -> begin ū, _, _ = Zygote.gradient(cost_functional, u, p, t) out .= ū end, (out, u, p, t) -> begin _, p̄, _ = Zygote.gradient(cost_functional, u, p, t) out .= p̄ end, ) function gold_standard_gradient(x0, policy_params) # Actual/gold standard evaluation. Using high-fidelity Vern9 method with # small tolerances. We want to use Float64s for maximum accuracy. Also 1e-14 # is recommended as the minimum allowable tolerance here: https://docs.sciml.ai/stable/basics/faq/#How-to-get-to-zero-error-1. x0_f64 = convert(Array{Float64}, x0) policy_params_f64 = convert(Array{Float64}, policy_params) fwd_sol = solve( ODEProblem(policy_dynamics!, x0, (0, T), policy_params), Vern9(), u0 = x0_f64, p = policy_params_f64, abstol = 1e-14, reltol = 1e-14, ) # Note that specifying dense = false is essential for getting acceptable # performance. save_everystep = false is another small win. bwd_sol = solve( ODEAdjointProblem( fwd_sol, InterpolatingAdjoint(), cost_functional, nothing, dcost_tuple, ), Vern9(), dense = false, save_everystep = false, abstol = 1e-14, reltol = 1e-14, ) @assert typeof(fwd_sol.u) == Array{Array{Float64,1},1} @assert typeof(bwd_sol.u) == Array{Array{Float64,1},1} # Note that the backwards solution includes the gradient on x0, as well as # policy_params. The full ODESolution things can't be serialized easily # since they `policy_dynamics!` and shit... (xT = fwd_sol.u[end], g = bwd_sol.u[end]) end function eval_interp(x0, policy_params, abstol, reltol) fwd_sol = solve( ODEProblem(policy_dynamics!, x0, (0, T), policy_params), Tsit5(), u0 = x0, p = policy_params, abstol = abstol, reltol = reltol, ) bwd_sol = solve( ODEAdjointProblem( fwd_sol, InterpolatingAdjoint(), cost_functional, nothing, dcost_tuple, ), Tsit5(), dense = false, save_everystep = false, abstol = abstol, reltol = reltol, ) @assert typeof(fwd_sol.u) == Array{Array{floatT,1},1} @assert typeof(bwd_sol.u) == Array{Array{floatT,1},1} # Note that g includes the x0 gradient and the gradient on parameters. # We do exactly as many f calls as there are function calls in the forward # pass, and in the backward pass we don't need to call f, but instead we # call ∇f. ( xT = fwd_sol.u[end], g = bwd_sol.u[end], nf = fwd_sol.destats.nf, n∇f = bwd_sol.destats.nf, ) end ## ------------------------------------------------------------------------------------ # using DiffEqFlux, DifferentialEquations, Plots # using ComponentArrays # using FSimBase # for apply_inputs # u0 = Float32[2.; 0.] # u0_aug = vcat(u0, zeros(1)) # datasize = 30 # tspan = (0.0f0,1.5f0) # L(u) = u' * u # running cost # function trueODEfunc(dx,x,p,t; a) # true_A = [-0.1 2.0; -2.0 -0.1] # dx[1:2, :] .= ((x[1:2, :] .^ 3)'true_A)' + a # dx[3, :] = L(x[1:2, :]) # end # t = range(tspan[1],tspan[2],length=datasize) # # prob = ODEProblem(trueODEfunc,u0,tspan) # # prob = ODEProblem(trueODEfunc,u0_aug,tspan) # # ode_data = Array(solve(prob,Tsit5(),saveat=t)) # # dudt2 = Chain(x -> x.^3, # # Dense(2,50,tanh), # # Dense(50,2)) # # p,re = Flux.destructure(dudt2) # use this p as the initial condition! # # dudt(u,p,t) = re(p)(u) # need to restructure for backprop! # # prob = ODEProblem(dudt,u0_aug,tspan) # controller2 = Chain(u -> u.^3, # Dense(2,50,tanh), # Dense(50,2)) # p,re = Flux.destructure(controller2) # controller(u, p, t) = re(p)(u) # prob = ODEProblem(apply_inputs(trueODEfunc; a=(x, p, t) -> controller(x[1:2], p, t)),u0_aug,tspan) # function predict_n_ode() # Array(solve(prob,Tsit5(),u0=u0_aug,p=p,saveat=t)) # it seems that the output should be an Array # end # function loss_n_ode() # pred = predict_n_ode() # # loss = sum(abs2,ode_data .- pred) # loss = pred[end][end] # to make it scalar for gradient calculation # loss # end # loss_n_ode() # n_ode.p stores the initial parameters of the neural ODE # cb = function (;doplot=false) # callback function to observe training # pred = predict_n_ode() # @show pred[end][end] # # display(sum(abs2,ode_data .- pred)) # # # plot current prediction against data # # pl = scatter(t,ode_data[1,:],label="data") # # scatter!(pl,t,pred[1,:],label="prediction") # # display(plot(pl)) # return false # end # # Display the ODE with the initial parameter values. # cb() # data = Iterators.repeated((), 1000) # # Flux.train!(loss_n_ode, Flux.params(u0,p), data, ADAM(0.05), cb = cb) # Flux.train!(loss_n_ode, Flux.params(p), data, ADAM(0.05), cb = cb) # # #------------------------------------------------------------------------------- # using DiffEqFlux, DifferentialEquations, Plots, Statistics # tspan = (0.0f0,8.0f0) # ann = FastChain(FastDense(1,32,tanh), FastDense(32,32,tanh), FastDense(32,1)) # θ = initial_params(ann) # function dxdt_(dx,x,p,t) # x1, x2 = x # dx[1] = x[2] # dx[2] = ann([t],p)[1]^3 # end # x0 = [-4f0,0f0] # ts = Float32.(collect(0.0:0.01:tspan[2])) # prob = ODEProblem(dxdt_,x0,tspan,θ) # solve(prob,Vern9(),abstol=1e-10,reltol=1e-10) # ## # function predict_adjoint(θ) # Array(solve(prob,Vern9(),p=θ,saveat=ts,sensealg=InterpolatingAdjoint(autojacvec=ReverseDiffVJP(true)))) # end # function loss_adjoint(θ) # x = predict_adjoint(θ) # mean(abs2,4.0 .- x[1,:]) + 2mean(abs2,x[2,:]) + mean(abs2,[first(ann([t],θ)) for t in ts])/10 # end # l = loss_adjoint(θ) # cb = function (θ,l) # println(l) # p = plot(solve(remake(prob,p=θ),Tsit5(),saveat=0.01),ylim=(-6,6),lw=3) # plot!(p,ts,[first(ann([t],θ)) for t in ts],label="u(t)",lw=3) # display(p) # return false # end # # Display the ODE with the current parameter values. # cb(θ,l) # loss1 = loss_adjoint(θ) # res1 = DiffEqFlux.sciml_train(loss_adjoint, θ, ADAM(0.005), cb = cb,maxiters=100) # res2 = DiffEqFlux.sciml_train(loss_adjoint, res1.u, # BFGS(initial_stepnorm=0.01), cb = cb,maxiters=100, # allow_f_increases = false) ##------------------------------------------------------------------------------- using DiffEqFlux, DiffEqSensitivity, DifferentialEquations, Plots, Statistics tspan = (0.0f0,8.0f0) ann = FastChain(FastDense(1,32,tanh), FastDense(32,32,tanh), FastDense(32,1)) θ = initial_params(ann) function dxdt_(x,p,t) x1, x2 = x return dx = [x2; ann([t],p)[1]^3] end x0 = [-4f0,0f0] ts = Float32.(collect(0.0:0.01:tspan[2])) prob = ODEProblem(dxdt_,x0,tspan,θ) # solve(prob,Vern9(),abstol=1e-10,reltol=1e-10) # function predict_adjoint(θ) # Array(solve(prob,Vern9(),p=θ,saveat=0.01f0,sensealg=InterpolatingAdjoint())) # end function loss_adjoint_test(θ) # x = predict_adjoint(θ) x = Array(solve(prob,Tsit5(),p=θ,saveat=0.01f0,sensealg=InterpolatingAdjoint( autojacvec = ZygoteVJP() ))) mean(abs2,4.0f0 .- x[1,:]) + 2mean(abs2,x[2,:]) + mean(abs2,[first(ann([t],θ)) for t in ts])/10.0f0 end l = loss_adjoint_test(θ) cb = function (θ,l) println(l) p = plot(solve(remake(prob,p=θ),Tsit5(),saveat=0.01),ylim=(-6,6),lw=3) plot!(p,ts,[first(ann([t],θ)) for t in ts],label="u(t)",lw=3) display(p) return false end # Display the ODE with the current parameter values. cb(θ,l) loss1 = loss_adjoint_test(θ) res1 = DiffEqFlux.sciml_train(loss_adjoint_test, θ, ADAM(0.005); cb = cb, maxiters=100) res2 = DiffEqFlux.sciml_train(loss_adjoint_test, res1.u, BFGS(initial_stepnorm=0.01), cb = cb,maxiters=100, allow_f_increases = false) ## ------------------------------------------------------------------------- using OrdinaryDiffEq, DiffEqFlux pa = [1.0] u0 = [3.0] θ = [u0;pa] function model1(θ,ensemble) prob = ODEProblem((u, p, t) -> 1.01u .* p, [θ[1]], (0.0, 1.0), [θ[2]]) function prob_func(prob, i, repeat) remake(prob, u0 = 0.5 .+ i/100 .* prob.u0) end ensemble_prob = EnsembleProblem(prob, prob_func = prob_func) sim = solve(ensemble_prob, Tsit5(), ensemble, saveat = 0.1, trajectories = 100, sensealg = InterpolatingAdjoint(autojacvec = ZygoteVJP())) end # loss function loss_serial(θ) = sum(abs2,1.0.-Array(model1(θ,EnsembleSerial()))) loss_threaded(θ) = sum(abs2,1.0.-Array(model1(θ,EnsembleThreads()))) prob_base = ODEProblem((u, p, t) -> 1.01u .* p, [θ[1]], (0.0, 1.0), [θ[2]]) function prob_gen(prob, i, repeat) remake(prob, u0 = 0.5 .+ i/100 .* prob.u0) end function loss_test(θ) prob = remake(prob_base, u0 = [θ[1]], p = [θ[2]]) fwd_ensemble_sol = Array( solve(EnsembleProblem(prob, prob_func = prob_gen), Tsit5(), EnsembleThreads(), saveat = 0.1, trajectories = 100, sensealg = InterpolatingAdjoint(autojacvec = ZygoteVJP()))) loss_val = sum(abs2, 1.0 .- fwd_ensemble_sol) return loss_val end cb = function (θ,l) # callback function to observe training @show l false end opt = ADAM(0.1) l1 = loss_serial(θ) # res_serial = DiffEqFlux.sciml_train(loss_serial, θ, opt; cb = cb, maxiters=100) # res_threads = DiffEqFlux.sciml_train(loss_threaded, θ, opt; cb = cb, maxiters=100) res_test = DiffEqFlux.sciml_train(loss_test, θ, opt; cb = cb, maxiters = 100) ## ---------------- using DiffEqGPU, OrdinaryDiffEq function lorenz(du,u,p,t) du[1] = p[1]*(u[2]-u[1]) du[2] = u[1]*(p[2]-u[3]) - u[2] du[3] = u[1]*u[2] - p[3]*u[3] end u0 = Float32[1.0;0.0;0.0] tspan = (0.0f0,100.0f0) p = [10.0f0,28.0f0,8/3f0] prob = ODEProblem(lorenz,u0,tspan,p) prob_func = (prob,i,repeat) -> remake(prob,p=rand(Float32,3).*p) monteprob = EnsembleProblem(prob, prob_func = prob_func, safetycopy=false) @time sol = solve(monteprob,Tsit5(),EnsembleGPUArray(),trajectories=10000,saveat=1.0f0) ## ------------------- using OrdinaryDiffEq, Flux, Optim, DiffEqFlux, DiffEqSensitivity model_gpu = Chain(Dense(2, 50, tanh), Dense(50, 2)) |> gpu p, re = Flux.destructure(model_gpu) dudt!(u, p, t) = re(p)(u) # Simulation interval and intermediary points tspan = (0.0, 10.0) tsteps = 0.0:0.1:10.0 u0 = Float32[2.0; 0.0] |> gpu prob_gpu = ODEProblem(dudt!, u0, tspan, p) # Runs on a GPU sol_gpu = solve(prob_gpu, Tsit5(), saveat = tsteps)
ContinuousTimePolicyGradients
https://github.com/nhcho91/ContinuousTimePolicyGradients.jl.git
[ "MIT" ]
0.1.3
5f5a59cab6b3920d0b98dbebbb3f3f0477441546
code
100
# Ask how to manage the Julia development environments to [JinraeKim](https://github.com/JinraeKim)
ContinuousTimePolicyGradients
https://github.com/nhcho91/ContinuousTimePolicyGradients.jl.git
[ "MIT" ]
0.1.3
5f5a59cab6b3920d0b98dbebbb3f3f0477441546
code
1203
using LinearAlgebra # ; similar to `import numpy` in Python using Random # import LinearAlgebra # different from `using LinearAlgebra` """ Julia functions receive two types of arguments: arguments (args) and keyword arguments (kwargs) """ function args_and_kwargs(args...; kwargs...) # args... is similar to `*args` in Python @show args @show kwargs end """ `Random` and `LinearAlgebra` are basic packages provided by Julia. Run REPL (Julia session) by e.g. `julia -q`. Type `include("test/julia-tutorials/basic.jl")` in the REPL to read this script. To run `main`, type `main()` in the REPL. To reflect the updated codes without re-`include`, use `includet` with [Revise.jl](https://github.com/timholy/Revise.jl). I highly recommend you to read Revise.jl's documentation. """ function main(; seed=2021) Random.seed!(seed) # how to control the random seed args_and_kwargs(1, 2; a=1, b=2) # args = (1, 2), kwargs = Base.Pairs(:a => 1, :b => 2) x = [1, 2, 3] y = [4, 5, 6] @show dot(x, y) # LinearAlgebra.dot; 1*4 + 2*5 + 3*6 = 32 nothing # similar to `None` in Python; the output of the last line is automatically returned if there is no `return` command end
ContinuousTimePolicyGradients
https://github.com/nhcho91/ContinuousTimePolicyGradients.jl.git
[ "MIT" ]
0.1.3
5f5a59cab6b3920d0b98dbebbb3f3f0477441546
code
457
using Plots using Transducers: Map # using Transducers.Map as Map """ `Transducers.jl` is a very useful data-manipulation tool. It deals with "iterator" very effectively. """ function main() ts = 0:0.01:1 xs = ts |> Map(t -> 2*t) |> collect # Transducers.Map fig = plot(ts, xs) # Plots.plot savefig("example.png") # save the current figure savefig(fig, "example.pdf") # or, specify which figure you will save display(fig) end
ContinuousTimePolicyGradients
https://github.com/nhcho91/ContinuousTimePolicyGradients.jl.git
[ "MIT" ]
0.1.3
5f5a59cab6b3920d0b98dbebbb3f3f0477441546
code
1546
using FlightSims # Based on DifferentialEquations.jl (DiffEq.jl); highly recommend you to read docs of DiffEq.jl const FSim = FlightSims # similar to `import numpy as np` in Python using ComponentArrays # to abstract your state or any data (very useful as it acts as a usual array) using UnPack struct MyEnv <: AbstractEnv # FlightSims.AbstractEnv end function State(env::MyEnv) return function (x1::Number, x2::Number) x = ComponentArray(x1=x1, x2=x2) # access them as x.x1, x.x2 end end """ Double integrator example """ function Dynamics!(env::MyEnv) @Loggable function dynamics!(dx, x, p, t; u) # FlightSims.@Loggable is for data saving @unpack x1, x2 = x # x1 = x.x1, x2 = x.x2 @log x1, x2 @log u dx.x1 = x2 dx.x2 = u end end function main() env = MyEnv() x10, x20 = 1.0, 2.0 # initial state x0 = State(env)(x10, x20) # encode them to use conveniently tf = 1.0 # terminal time Δt = 0.01 my_controller(x, p, t) = -2*x.x1 simulator = Simulator( x0, apply_inputs(Dynamics!(env); u=my_controller), tf=tf, ) @time df = solve(simulator; savestep=Δt) # @time will shows the elapsed time ts = df.time x1s = df.sol |> Map(datum -> datum.x1) |> collect x2s = df.sol |> Map(datum -> datum.x2) |> collect fig_x1 = plot(ts, x1s) fig_x2 = plot(ts, x2s) fig = plot(fig_x1, fig_x2; layout=(2, 1)) display(fig) end
ContinuousTimePolicyGradients
https://github.com/nhcho91/ContinuousTimePolicyGradients.jl.git
[ "MIT" ]
0.1.3
5f5a59cab6b3920d0b98dbebbb3f3f0477441546
docs
7699
# ContinuousTimePolicyGradients ContinuousTimePolicyGradients.jl is a package for development and implementation of continuous-time policy gradient (CTPG) methods. ## Notes - This package is WIP; may include verbose tutorials for Julia, DifferentialEquations.jl, etc. - Thanks to [Namhoon Cho](https://github.com/nhcho91) for the shared materials and the initial efforts to investigate CTPG methods. - Similar packages written in Julia focusing on control policy optimisation based on continuous-time adjoint sensitivity method include - [ctpg](https://github.com/samuela/ctpg) developed by Samuel Ainsworth - [control_neuralode](https://github.com/IlyaOrson/control_neuralode) developed by Ilya Orson ## Citation ContinuousTimePolicyGradients.jl has been developed considering control tasks as the main application. The CTPG method for cost gradient computation can be utilised to perform policy optimisation in the setup of either background planning (offline control law learning) or decision-time planning (online control profile optimisation). The following paper addresses the optimisation of structured neural controller using CTPG with the flight vehicle normal acceleration tracking controller as an illustrating example. Please consider citing the paper if you find this package useful. - Namhoon Cho, and Hyo-Sang Shin, "Optimisation of Structured Neural Controller Based on Continuous-Time Policy Gradient," [arXiv:2201.06262](https://arxiv.org/abs/2201.06262), January 2022. ## High-Level Training Interface: `CTPG_train()` ```julia CTPG_train(dynamics_plant::Function, dynamics_controller::Function, cost_running::Function, cost_terminal::Function, cost_regularisor::Function, policy_NN, scenario; solve_alg = Tsit5(), sense_alg = InterpolatingAdjoint(autojacvec = ZygoteVJP()), ensemble_alg = EnsembleThreads(), opt_1 = ADAM(0.01), opt_2 = LBFGS(), maxiters_1 = 100, maxiters_2 = 100, progress_plot = true, solve_kwargs...) ``` `CTPG_train()` provides a high-level interface for optimisation of the neural networks inside an ODE-represented dynamics based on Continuous-Time Policy Gradient (CTPG) methods that belong to the adjoint sensitivity analysis techniques. The code implemented and the default values for keyword arguments are specified considering training of a neural controller as the main application. In the context herein, a neural controller refers to a dynamic controller that incorporates neural-network-represented components at some points in its mathematical description. The code utilises the functionalities provided by the [DiffEqFlux.jl](https://github.com/SciML/DiffEqFlux.jl) and [DiffEqSensitivity.jl](https://github.com/SciML/DiffEqSensitivity.jl) packages, and the Automatic Differentiation (AD) capabilities provided by the [Zygote.jl](https://github.com/FluxML/Zygote.jl) package that is integrated in DiffEqFlux.jl. `CTPG_train()` presumes the consistency of the functions provided as its input arguments with the AD tool, hence, the dynamics and cost functions should maintain their transparence against AD tools. The optimisation (training) problem minimises the cost function defined over deterministic samples of the initial plant state `x₀` and the reference `r` by performing ensemble simulation based on parallelised computation. The signals are defined as described below: - `t`: time - `x`: plant state - `y`: plant output (= sensor output) - `x_c`: controller state - `u`: plant input (= controller output) - `r`: exogenous reference - `x_aug`: augmented forward dynamics state (= `[x; x_c; ∫cost_running]`) - `p_NN`: neural network parameter The arguments should be provided as explained below: - `dynamics_plant`: Describes the dynamics of the plant to be controlled. Input arguments `x` and `u` should be of Vector type. - `dynamics_controller`: Describes the dynamics of the controller that includes neural networks components. Input arguments `x_c`, `y`, `r`, and `p_NN` should be of Vector type. - `dynamics_sensor`: Describes the dynamics of the sensor that measures output variables fed to the controller. Input arguments `x` should be of Vector type: - `cost_running`: Describes the running cost defined as the integrand of the Lagrange-form continuous functional. Input arguments `x`, `y`, `u`, and `r` should be of Vector type. - `cost_terminal`: Describes the terminal cost defined as the Mayer-form problem cost function. Defines a Bolza-form problem along with `cost_running`. Input arguments `x_f` and `r` should be of Vector type. - `cost_regularisor`: Describes the regularisation term appended to the cost (loss) function. Input argument `p_NN` should be of Vector type. - `policy_NN`: The neural networks entering into the controller dynamics. DiffEqFlux-based FastChain is recommended for its construction. - `scenario`: Contains the parameters related with the ensemble-based training scenarios. - `ensemble`: A vector of the initial plant state `x₀` and the reference `r` constituting the trajectory realisations. - `t_span`: Time span for forward-pass integration - `t_save`: Array of time points to be saved while solving ODE. Typically defined as `t_save = t_span[1]:Δt_save:t_span[2]` - `dim_x`: `length(x)` - `dim_x_c`: `length(x_c)` The keyword arguments should be provided as explained below: - `solve_alg`: The algorithm used for solving ODEs. Default value is `Tsit5()` - `sense_alg`: The algorithm used for adjoint sensitivity analysis. Default value is `InterpolatingAdjoint(autojacvec = ZygoteVJP())`, because the control problems usually render the `BacksolveAdjoint()` unstable. The vjp choice `autojacvec = ReverseDiffVJP(true)` is usually faster than `ZygoteVJP()`, when the ODE function does not have any branching inside. Please refer to the [DiffEqFlux documentation](https://diffeqflux.sciml.ai/dev/ControllingAdjoints/) for further details. - `ensemble_alg`: The algorithm used for handling ensemble of ODEs. Default value is `EnsembleThreads()` for multi-threaded computation in CPU. - `opt_1`: The algorithm used for the first phase of optimisation which rapidly delivers the parameter to a favourable region around a local minimum. Default value is `ADAM(0.01)`. - `opt_2`: The algorithm used for the second phase of opitmisaiton. Defalut value is `LBFGS()` which refines the result of the first phase to find a more precise minimum. Please refer to the [DiffEqFlux documentation](https://diffeqflux.sciml.ai/dev/sciml_train/) for further details about two-phase composition of optimisers. - `maxiters_1`: The maximum number of iterations allowed for the first phase of optimisation with `opt_1`. Defalut value is `100`. - `maxiters_2`: The maximum number of iterations allowed for the second phase of optimisation with `opt_2`. Defalut value is `100`. - `progress_plot`: The indicator to plot the state history for a nominal condition among the ensemble during the learning process. Default value is `true`. - `i_nominal`: The index to select the case to plot using `progress_plot` during optimisation process from the `ensemble` defined in `scenario`. Defalut value is `nothing`. - `p_NN_0`: Initial value of the NN parameters supplied by the user to bypass random initialisation of `p_NN` or to continue optimisation from the previous result. Defalut value is `nothing`. - `solve_kwargs...`: Additional keyword arguments that are passed onto the ODE solver. `CTPG_train()` returns the following outputs: - `result`: The final result of parameter optimisation. - `fwd_ensemble_sol`: The ensemble solution of forward simulation using the final neural network parameters. - `loss_history`: The history of loss function evaluated at each iteration.
ContinuousTimePolicyGradients
https://github.com/nhcho91/ContinuousTimePolicyGradients.jl.git
[ "MIT" ]
0.1.0
c4d32b57c53388212c110e15fa38e1c4cc6e2b1a
code
640
using MotifPvalue using Documenter DocMeta.setdocmeta!(MotifPvalue, :DocTestSetup, :(using MotifPvalue); recursive=true) makedocs(; modules=[MotifPvalue], authors="Shane Kuei Hsien Chu ([email protected])", repo="https://github.com/kchu25/MotifPvalue.jl/blob/{commit}{path}#{line}", sitename="MotifPvalue.jl", format=Documenter.HTML(; prettyurls=get(ENV, "CI", "false") == "true", canonical="https://kchu25.github.io/MotifPvalue.jl", assets=String[], ), pages=[ "Home" => "index.md", ], ) deploydocs(; repo="github.com/kchu25/MotifPvalue.jl.git", devbranch="main", )
MotifPvalue
https://github.com/kchu25/MotifPvalue.jl.git
[ "MIT" ]
0.1.0
c4d32b57c53388212c110e15fa38e1c4cc6e2b1a
code
374
module MotifPvalue #### Dependencies ################## using DataStructures #################################### #### Exported methods and types #### export score2pvalue, pval2score #################################### #### Load files #################### include("helpers.jl") include("score2pval.jl") include("pval2score.jl") #################################### end
MotifPvalue
https://github.com/kchu25/MotifPvalue.jl.git
[ "MIT" ]
0.1.0
c4d32b57c53388212c110e15fa38e1c4cc6e2b1a
code
4508
#= Best possible score of a PWM # Input `pwm::Matrix{Real}`: a 4 x m matrix # Output the best possible score this matrix can get =# function best_score(pwm::Matrix{T}) where T <: Real sum(maximum(pwm[:,i]) for i = 1:size(pwm,2)); end function best_score(pwm_col::Vector{T}) where T <: Real maximum(pwm_col); end #= Worst possible score of a PWM # Input `pwm::Matrix{Real}`: a 4 x m matrix # Output the worst possible score this matrix can get =# function worst_score(pwm::Matrix{T}) where T <: Real sum(minimum(pwm[:,i]) for i = 1:size(pwm,2)); end function worst_score(pwm_col::Vector{T}) where T <: Real minimum(pwm_col); end #= Return a column-permuted PWM that minimize the score range so that δ₁ ≥ δ₂ ≥ … ≥ δₘ where δᵢ = best_score(pwm[:,i])-worst_score(pwm[:,i]). # Input `pwm::Matrix{Real}`: a 4 x m matrix # Output a column-permuted pwm =# function min_score_range(pwm::Matrix{T}) where T <: Real pwm[:,sortperm([best_score(pwm[:,i])-worst_score(pwm[:,i]) for i = 1:size(pwm,2)],rev=true)]; end #= "Round the PWM" # Input `pwm::Matrix{Real}`: a 4 x m matrix `granularity`: a small positive real number e.g. 0.01 or 0.001, etc. # Output a rounded pwm of the input pwm =# function round_pwm(pwm::Matrix{T}, granularity::Real) where T <: Real floor.(pwm ./ granularity) * granularity; end #= The maximum error induced by the rounded pwm M_ϵ (see definition 3 in https://almob.biomedcentral.com/articles/10.1186/1748-7188-2-15; this is the quantity E) # Input `pwm::Matrix{Real}`: a 4 x m matrix `granularity`: # Output A positve real number that's the maximum error induced by the rounded pwm M_ϵ =# function calc_E(pwm, pwm_rounded) sum(maximum(pwm[:,i]-pwm_rounded[:,i]) for i = size(pwm)); end #= Note: Use a nested dictionary to represent the distribution Q Since Q is used to reference the probability of (M[1…i],score), the keys in the first layer is i, and the value in the first layer are dictionaries with scores as keys and probability as values call create_Q(m) to initialize such a distribution Q where m is the "width" of the PWM =# create_Q(m::Integer) = Dict{Int16,SortedDict{Float64,Float64}}(i==0 ? i=>SortedDict(0=>1) : i=>SortedDict() for i=0:m); #= Input: pwm: a 4 x m matrix α, β: score interval [α, β] bg: 4 x 1 vector that specifies the multinomial genomic background; default to flat background. Output: Q: a probability mass table e.g. Q[m] shows all the weights of P[pwm_score = η] for α ≤ η ≤ β =# function score_distribution(pwm_::Matrix{T}, α::Real, β::Real, bg=[.25,.25,.25,.25]) where T <: Real m = size(pwm_,2); Q = create_Q(m); @inbounds for i = 1:m bs = i+1 > m ? 0 : best_score(pwm_[:,i+1:m]); ws = i+1 > m ? 0 : worst_score(pwm_[:,i+1:m]); for score in keys(Q[i-1]) for j = 1:4 t = score + pwm_[j,i]; if α - bs ≤ t ≤ β - ws if haskey(Q[i], t) Q[i][t] += Q[i-1][score]*bg[j]; else Q[i][t] = Q[i-1][score]*bg[j]; end end end end end return Q end #= Return the probability of the background model that has score ≥ α with respect to the input pwm Input: pwm: a 4 x m matrix α: a score threshold bg: 4 x 1 vector that specifies the multinomial genomic background; default to flat background. Output: pval: the probability that the background can have score ≥ α with respect to pwm =# function fast_pvalue(pwm::Matrix{T}, α::Real, bg=[.25,.25,.25,.25]) where T <: Real m = size(pwm,2); Q = create_Q(m); pval = 0f0; @inbounds for i = 1:m bs = i+1 > m ? 0 : best_score(pwm[:,i+1:m]); ws = i+1 > m ? 0 : worst_score(pwm[:,i+1:m]); for (score,_) in Q[i-1] for j = 1:4 t = score + pwm[j,i]; if α - ws ≤ t pval = pval + Q[i-1][score]*bg[j]; elseif α - bs ≤ t if haskey(Q[i], t) Q[i][t] += Q[i-1][score]*bg[j]; else Q[i][t] = Q[i-1][score]*bg[j]; end end end end end return pval end # return the sum of all the weights Q_sum(Q_m::SortedDict{Float64,Float64}) = sum(v for v in values(Q_m));
MotifPvalue
https://github.com/kchu25/MotifPvalue.jl.git
[ "MIT" ]
0.1.0
c4d32b57c53388212c110e15fa38e1c4cc6e2b1a
code
2676
function find_largest_α(Q_m::SortedDict{T,T}, pval::T) where T <: Real q_sum = Q_sum(Q_m); largest_k = nothing; for (k,v) in Q_m if q_sum ≥ pval largest_k = k; else return k end q_sum -= v; end return largest_k end function pval_w_Qm(Qm::SortedDict{T,T}, α::Real) where T <: Real pval = 0; for (k,v) in Qm if k ≥ α pval += v; end end return pval end function find_δ(Q_m::SortedDict{T,T}, pval_ϵ::Real, pval::Real) where T <: Real q_sum_plus_pval_ϵ = Q_sum(Q_m)+pval_ϵ; largest_δ = nothing; for (k,v) in Q_m if q_sum_plus_pval_ϵ ≥ pval largest_δ = k; else return k end q_sum_plus_pval_ϵ -= v; end return largest_δ end """ pval2score(pwm, pval, ϵ=1e-1, k=10, bg=[.25,.25,.25,.25]) Returns the highest score(M,pval) of a `pwm` such that p-value is greater or equal to `pval`. Input: * `pwm`: a 4 x m matrix * `pval`: a p-value; e.g. pval = 1e-3 * `ϵ`: initial granularity (optional) * `k`: Refinement parameter (optional) * `bg`: multinomial background (optional) Output * `α`: the highest score-threshold """ function pval2score(pwm::Matrix{T}, pval::Real, ϵ=1e-1, k=10, bg=[.25,.25,.25,.25]) where T <: Real @assert size(pwm,1) == 4 "The input matrix must have 4 and only 4 rows" mpwm = min_score_range(pwm); m = size(pwm, 2); pwm_ϵ = round_pwm(mpwm, ϵ); E = calc_E(mpwm, pwm_ϵ); Q = create_Q(m); Q = score_distribution(pwm_ϵ,worst_score(pwm_ϵ),Inf,bg); α = find_largest_α(Q[m], pval); @inbounds while !(pval_w_Qm(Q[m], α-E) ≈ pval_w_Qm(Q[m], α)) # println("err: ", pval_w_Qm(Q[m], α-E) - pval_w_Qm(Q[m], α)); ϵ = ϵ/k; pwm_ϵ = round_pwm(mpwm, ϵ); E = calc_E(mpwm, pwm_ϵ); Q = create_Q(m); Q = score_distribution(pwm_ϵ,α-E,α+E,bg); #= note: Sometimes the score range is simply too small and hence the score_distribution subroutine cannot find any scores within the range [α-E, α+E]. This happens when the error of the round matrix, E, is very small (see definition 3 in Touzet and Varre's paper: https://almob.biomedcentral.com/articles/10.1186/1748-7188-2-15) When this happens we return α+E, so that we don't underestimate the score for the threshold for the input p-value. =# if isempty(Q[m]) α = α + E; break; end pval_ϵ = fast_pvalue(pwm_ϵ,α+E); δ = find_δ(Q[m],pval_ϵ,pval); α = δ; end return α; end
MotifPvalue
https://github.com/kchu25/MotifPvalue.jl.git
[ "MIT" ]
0.1.0
c4d32b57c53388212c110e15fa38e1c4cc6e2b1a
code
2071
#= Helper function for score2pvalue. Find the lowest score s such that P-value(M_ϵ,s) = P-value(M_ϵ,s-E). Input: Q_m: a sorted dict E: the max column-wise error between matrix M and M_ϵ Output: =# function find_s(Q_m::SortedDict{Float64,Float64}, E::Real) keys_ = collect(keys(Q_m)); ℓ = length(keys_); if ℓ > 1 for i = 1:(ℓ-1) @inbounds if keys_[i]+E < keys_[i+1] return keys_[i]; end end end return nothing end """ score2pvalue(pwm, α, ϵ=1e-1, k=100, bg=[.25,.25,.25,.25]) Returns P-value(M,α) of a `pwm` with a given threshold `α`. Input: * `pwm`: a 4 x m matrix * `α`: the score * `ϵ`: initial granularity (optional) * `k`: Refinement parameter (optional) * `bg`: multinomial background (optional) Output: * `pval`: p-value """ function score2pvalue(pwm::Matrix{T}, α::Real, ϵ=1e-1, k=100, bg=[.25,.25,.25,.25]) where T <: Real @assert size(pwm,1) == 4 "The input matrix must have 4 and only 4 rows" mpwm = min_score_range(pwm); m = size(mpwm,2); β = best_score(mpwm)+1; pval = 0; s = 0; i = 1; @inbounds while !(α ≈ s) # println(α-s) ϵ = i == 1 ? ϵ : ϵ/k; i+=1; # isinf(ϵ) || isnan(ϵ) && (println(i); break); pwm_ϵ = round_pwm(mpwm, ϵ); # any(isnan.(pwm_ϵ)) && (println(i); break); E = calc_E(mpwm, pwm_ϵ); Q = create_Q(m); Q = score_distribution(pwm_ϵ, α-E, β, bg); #= note: Sometimes the score range is small (i.e. β-(α-E) is very small) and hence we won't be able to find such s. In such case, we return the calculated p-value. Note that this p-value is an underestimate. To get a more accurate result, set k to be a larger number, e.g. k=100. =# s = find_s(Q[m],E); if !isnothing(s) for (k,v) in Q[m] pval += k ≥ s ? v : 0; end β = s; else break; end end return pval end
MotifPvalue
https://github.com/kchu25/MotifPvalue.jl.git
[ "MIT" ]
0.1.0
c4d32b57c53388212c110e15fa38e1c4cc6e2b1a
code
95
using MotifPvalue using Test @testset "MotifPvalue.jl" begin # Write your tests here. end
MotifPvalue
https://github.com/kchu25/MotifPvalue.jl.git
[ "MIT" ]
0.1.0
c4d32b57c53388212c110e15fa38e1c4cc6e2b1a
docs
2009
# MotifPvalue [![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://kchu25.github.io/MotifPvalue.jl/stable) [![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://kchu25.github.io/MotifPvalue.jl/dev) [![Build Status](https://github.com/kchu25/MotifPvalue.jl/actions/workflows/CI.yml/badge.svg?branch=main)](https://github.com/kchu25/MotifPvalue.jl/actions/workflows/CI.yml?query=branch%3Amain) [![Coverage](https://codecov.io/gh/kchu25/MotifPvalue.jl/branch/main/graph/badge.svg)](https://codecov.io/gh/kchu25/MotifPvalue.jl) # Introduction This package provides two useful subroutines: * Given a score threshold `α`, `score2pvalue` calculates the p-value, i.e. the probability of a set of strings generated from a specfied background model such that each string in this set can attain a score higher than or equal to `α` with respect to the input `pwm`. * Given a p-value `pval`, `pval2score` calculates the highest score `α` such that `score2pvalue(pwm,α)` is larger than or equal to `pval`. By default, the background model is specified as i.i.d discrete uniform. This is an implementation of: Efficient and accurate P-value computation for Position Weight Matrices by Touzet et al. https://almob.biomedcentral.com/articles/10.1186/1748-7188-2-15 # Basic examples using MotifPvalue # An example PWM pwm = [-2.86995 1.3814 1.36906 -4.88479 -4.19164 -4.88479 1.36607 -5.57793 -0.336375 1.38238; 1.36707 -5.57793 -2.86995 -0.294869 -4.88479 1.34492 -3.49849 1.26497 -2.1768 -4.88479; -5.57793 -4.47899 -5.57793 1.11923 -3.78584 -5.57793 -4.88479 -5.57793 0.798703 -5.57793; -4.19164 -5.57793 -4.88479 -1.68576 1.375 -1.88885 -3.17976 -0.798616 -0.0526305 -5.57793]; # Compute pvalue with pwm and score = 4 score2pvalue(pwm, 4) > 0.00020599365234375 # Compute the score-threshold for p-value 1e-4 pval2score(pwm, 1e-4) > 5.010000000000001
MotifPvalue
https://github.com/kchu25/MotifPvalue.jl.git
[ "MIT" ]
0.1.0
c4d32b57c53388212c110e15fa38e1c4cc6e2b1a
docs
189
```@meta CurrentModule = MotifPvalue ``` # MotifPvalue Documentation for [MotifPvalue](https://github.com/kchu25/MotifPvalue.jl). ```@index ``` ```@autodocs Modules = [MotifPvalue] ```
MotifPvalue
https://github.com/kchu25/MotifPvalue.jl.git
[ "MIT" ]
0.29.0
6653c51ac7bb1b0f10bf4ab5576f6f00fe7f4cf8
code
1407
#! format: off using SimpleWorkflows using Documenter DocMeta.setdocmeta!(SimpleWorkflows, :DocTestSetup, :(using SimpleWorkflows); recursive=true) makedocs(; modules=[SimpleWorkflows], authors="singularitti <[email protected]>", repo="https://github.com/MineralsCloud/SimpleWorkflows.jl/blob/{commit}{path}#{line}", sitename="SimpleWorkflows.jl", format=Documenter.HTML(; prettyurls=get(ENV, "CI", "false") == "true", canonical="https://MineralsCloud.github.io/SimpleWorkflows.jl", edit_link="main", assets=String[], ), pages=[ "Home" => "index.md", "Manual" => [ "Installation Guide" => "man/installation.md", "Portability" => "man/portability.md", "Troubleshooting" => "man/troubleshooting.md", ], "Reference" => Any[ "Public API" => "lib/public.md", "Internals" => map( s -> "lib/internals/$(s)", sort(readdir(joinpath(@__DIR__, "src/lib/internals"))) ), ], "Developer Docs" => [ "Contributing" => "developers/contributing.md", "Style Guide" => "developers/style-guide.md", "Design Principles" => "developers/design-principles.md", ], ], ) deploydocs(; repo="github.com/MineralsCloud/SimpleWorkflows.jl", devbranch="main", )
SimpleWorkflows
https://github.com/MineralsCloud/SimpleWorkflows.jl.git
[ "MIT" ]
0.29.0
6653c51ac7bb1b0f10bf4ab5576f6f00fe7f4cf8
code
3475
module SimpleWorkflows using EasyJobsBase: AbstractJob, eachparent, eachchild using Graphs: DiGraph, add_edge!, nv, is_cyclic, is_directed, is_connected, has_edge, topological_sort_by_dfs export Workflow abstract type AbstractWorkflow end # Create a `Workflow` from a list of `AbstractJob`s and a graph representing their relations. struct Workflow{T} <: AbstractWorkflow jobs::Vector{T} graph::DiGraph{Int} function Workflow{T}(jobs, graph) where {T} @assert !is_cyclic(graph) "`graph` must be acyclic!" @assert is_directed(graph) "`graph` must be directed!" @assert is_connected(graph) "`graph` must be connected!" @assert nv(graph) == length(jobs) "`graph` has different size from `jobs`!" @assert allunique(jobs) "at least two jobs are identical!" return new(jobs, graph) end end Workflow(jobs::AbstractVector{T}, graph) where {T} = Workflow{T}(jobs, graph) """ Workflow(jobs::AbstractJob...) Create a `Workflow` from a given series of `AbstractJob`s. The list of `AbstractJob`s does not have to be complete, our algorithm will find all connected `AbstractJob`s automatically. """ function Workflow(jobs::AbstractJob...) jobsfound = convert(Vector{AbstractJob}, collect(jobs)) # Need to relax type constraints to contain different types of jobs for job in jobsfound neighbors = union(eachparent(job), eachchild(job)) for neighbor in neighbors if neighbor ∉ jobsfound push!(jobsfound, neighbor) # This will alter `all_possible_jobs` dynamically end end end n = length(jobsfound) graph = DiGraph(n) dict = IdDict(zip(jobsfound, 1:n)) for (i, job) in enumerate(jobsfound) for parent in eachparent(job) if !has_edge(graph, dict[parent], i) add_edge!(graph, dict[parent], i) end end for child in eachchild(job) if !has_edge(graph, i, dict[child]) add_edge!(graph, i, dict[child]) end end end return Workflow(topological_sort(jobsfound, graph)...) end Workflow(jobs::AbstractVector) = Workflow(jobs...) function topological_sort(jobs, graph) order = topological_sort_by_dfs(graph) sorted_jobs = collect(jobs[order]) n = length(sorted_jobs) new_graph = DiGraph(n) dict = IdDict(zip(sorted_jobs, 1:n)) # You must sort the graph too for `DependentJob`s to run in the correct order! for (i, job) in enumerate(sorted_jobs) for parent in eachparent(job) if !has_edge(new_graph, dict[parent], i) add_edge!(new_graph, dict[parent], i) end end for child in eachchild(job) if !has_edge(new_graph, i, dict[child]) add_edge!(new_graph, i, dict[child]) end end end return sorted_jobs, new_graph end Base.indexin(jobs, wf::Workflow) = Base.indexin(jobs, collect(wf)) Base.in(job::AbstractJob, wf::Workflow) = job in wf.jobs Base.iterate(wf::Workflow, state=firstindex(wf)) = iterate(wf.jobs, state) Base.eltype(::Type{Workflow{T}}) where {T} = T Base.length(wf::Workflow) = length(wf.jobs) Base.getindex(wf::Workflow, i) = getindex(wf.jobs, i) Base.firstindex(wf::Workflow) = 1 Base.lastindex(wf::Workflow) = length(wf.jobs) include("operations.jl") include("run.jl") include("status.jl") include("show.jl") end
SimpleWorkflows
https://github.com/MineralsCloud/SimpleWorkflows.jl.git
[ "MIT" ]
0.29.0
6653c51ac7bb1b0f10bf4ab5576f6f00fe7f4cf8
code
459
import EasyJobsBase: chain!, →, ← for (func, (op₁, op₂)) in zip((:chain!,), ((:→, :←),)) @eval begin $func(x::AbstractWorkflow, y::AbstractWorkflow) = $func(last(x), first(y)) $func(x::AbstractWorkflow, y::AbstractWorkflow, z::AbstractWorkflow...) = foldr($func, (x, y, z...)) $op₁(x::AbstractWorkflow, y::AbstractWorkflow) = $func(x, y) $op₂(y::AbstractWorkflow, x::AbstractWorkflow) = $op₁(x, y) end end
SimpleWorkflows
https://github.com/MineralsCloud/SimpleWorkflows.jl.git
[ "MIT" ]
0.29.0
6653c51ac7bb1b0f10bf4ab5576f6f00fe7f4cf8
code
4248
using Graphs: indegree, rem_vertices! import EasyJobsBase: run!, execute! export run!, execute! abstract type Executor end struct SerialExecutor <: Executor maxattempts::UInt64 interval::Real delay::Real wait::Bool end function SerialExecutor(; maxattempts=1, interval=1, delay=0, wait=false) @assert maxattempts >= 1 @assert interval >= zero(interval) @assert delay >= zero(delay) return SerialExecutor(maxattempts, interval, delay, wait) end struct AsyncExecutor <: Executor maxattempts::UInt64 interval::Real delay::Real wait::Bool end function AsyncExecutor(; maxattempts=1, interval=1, delay=0, wait=false) @assert maxattempts >= 1 @assert interval >= zero(interval) @assert delay >= zero(delay) return AsyncExecutor(maxattempts, interval, delay, wait) end """ run!(wf::Workflow; maxattempts=5, interval=1, delay=0) Run a `Workflow` with maximum number of attempts, with each attempt separated by a few seconds. """ run!(wf::AbstractWorkflow; kwargs...) = execute!(wf, AsyncExecutor(; kwargs...)) """ execute!(workflow::AbstractWorkflow, exec::Executor) Executes the jobs from the workflow of the provided Executor instance. The function will attempt to execute all the jobs up to `exec.maxattempts` times. If all jobs have succeeded, the function will stop immediately. Otherwise, it will wait for a duration equal to `exec.interval` before the next attempt. """ function execute!(wf::AbstractWorkflow, exec::Executor) task = if issucceeded(wf) @task wf # Just return the job if it has succeeded else sleep(exec.delay) @task dispatch!(wf, exec) end schedule(task) if exec.wait wait(task) end return task end function dispatch!(wf::AbstractWorkflow, exec::SerialExecutor) for _ in Base.OneTo(exec.maxattempts) for job in Iterators.filter(!issucceeded, wf) run!(job; maxattempts=1, interval=0, delay=0, wait=true) # Must wait for serial execution end issucceeded(wf) ? break : sleep(exec.interval) end return wf end function dispatch!(wf::AbstractWorkflow, exec::AsyncExecutor) for _ in Base.OneTo(exec.maxattempts) jobs, graph = copy(wf.jobs), copy(wf.graph) run_kahn_algo!(jobs, graph) issucceeded(wf) ? break : sleep(exec.interval) end return wf end # This function `run_kahn_algo!` is an implementation of Kahn's algorithm for job scheduling. # `graph` is a directed acyclic graph representing dependencies between jobs. # `execs` is a list of executors that can run the jobs. function run_kahn_algo!(jobs, graph) # Do not export! # Check if `execs` is empty and if there are no vertices in the `graph`. # This is the base case of the recursion, if there are no jobs left to execute and no # vertices in the graph, the function will stop its execution. if isempty(jobs) && iszero(nv(graph)) # Stopping criterion return nothing elseif length(jobs) == nv(graph) # Find all vertices with zero in-degree in the graph, these vertices have no prerequisites # and can be executed immediately. They are put in a queue. queue = findall(iszero, indegree(graph)) # For each executor in the `queue`, start the job execution. # The `@sync` macro ensures that the main program waits until all async blocks are done. @sync for job in jobs[queue] # Run the jobs with no prerequisites in parallel since they are in the same level. @async run!(job; maxattempts=1, interval=0, delay=0, wait=true) end # Remove the vertices corresponding to the executed jobs from the graph. # This also changes the indegree of the remaining vertices. rem_vertices!(graph, queue; keep_order=true) # Remove the executed jobs from the list. deleteat!(jobs, queue) # Recursively call the `run_kahn_algo!` with the updated jobs list and graph. # This will continue the execution with the remaining jobs that are now without prerequisites. return run_kahn_algo!(jobs, graph) else throw(ArgumentError("something went wrong when running Kahn's algorithm!")) end end
SimpleWorkflows
https://github.com/MineralsCloud/SimpleWorkflows.jl.git
[ "MIT" ]
0.29.0
6653c51ac7bb1b0f10bf4ab5576f6f00fe7f4cf8
code
1562
using Dates: format using EasyJobsBase: ispending, isrunning, starttimeof, endtimeof, timecostof, printf using Graphs: ne # See https://docs.julialang.org/en/v1/manual/types/#man-custom-pretty-printing function Base.show(io::IO, wf::Workflow) if get(io, :compact, false) print(IOContext(io, :limit => true, :compact => true), summary(wf)) else njobs, nedges = nv(wf.graph), ne(wf.graph) print(io, summary(wf), '(', njobs, " jobs, ", nedges, " edges)") end end function Base.show(io::IO, ::MIME"text/plain", wf::Workflow) println(io, summary(wf)) for (i, job) in enumerate(wf) println(io, " [", i, "] ", "id: ", job.id) if !isempty(job.description) print(io, ' '^5, "description: ") show(io, job.description) println(io) end print(io, ' '^5, "core: ") printf(io, job.core) print(io, '\n', ' '^5, "status: ") printstyled(io, getstatus(job); bold=true) if !ispending(job) print( io, '\n', ' '^5, "from: ", format(starttimeof(job), "dd-u-YYYY HH:MM:SS.s"), '\n', ' '^5, "to: ", ) if isrunning(job) print(io, "still running...") else println(io, format(endtimeof(job), "dd-u-YYYY HH:MM:SS.s")) print(io, ' '^5, "uses: ", timecostof(job)) end end println(io) end end
SimpleWorkflows
https://github.com/MineralsCloud/SimpleWorkflows.jl.git
[ "MIT" ]
0.29.0
6653c51ac7bb1b0f10bf4ab5576f6f00fe7f4cf8
code
2098
import EasyJobsBase: getstatus, ispending, isrunning, isexited, issucceeded, isfailed, filterpending, filterrunning, filterexited, filtersucceeded, filterfailed export getstatus, ispending, isrunning, isexited, issucceeded, isfailed, filterpending, filterrunning, filterexited, filtersucceeded, filterfailed """ ispending(wf::AbstractWorkflow) Check if all jobs in the `AbstractWorkflow` are in a pending state. Return `true` if all jobs are pending, otherwise, return `false`. """ ispending(wf::AbstractWorkflow) = all(ispending, wf) """ isrunning(wf::AbstractWorkflow) Check if any job in the `AbstractWorkflow` is currently running. Return `true` if at least one job is running, otherwise, return `false`. """ isrunning(wf::AbstractWorkflow) = any(isrunning, wf) """ isexited(wf::AbstractWorkflow) Check if all jobs in the `AbstractWorkflow` have exited. Return `true` if all jobs have exited, otherwise, return `false`. """ isexited(wf::AbstractWorkflow) = all(isexited, wf) """ issucceeded(wf::AbstractWorkflow) Check if all jobs in the `AbstractWorkflow` have successfully completed. Return `true` if all jobs have succeeded, otherwise, return `false`. """ issucceeded(wf::AbstractWorkflow) = all(issucceeded, wf) """ isfailed(wf::AbstractWorkflow) Check if any job in the `AbstractWorkflow` has failed, given that all jobs have exited. Return `true` if any job has failed after all jobs have exited, otherwise, return `false`. """ isfailed(wf::AbstractWorkflow) = isexited(wf) && any(isfailed, wf) # See https://docs.julialang.org/en/v1/manual/documentation/#Advanced-Usage for (func, adj) in zip( (:filterpending, :filterrunning, :filterexited, :filtersucceeded, :filterfailed), ("pending", "running", "exited", "succeeded", "failed"), ) name = string(func) @eval begin """ $($name)(wf::AbstractWorkflow) Filter only the $($adj) jobs in a `Workflow`. """ $func(wf::Workflow) = $func(collect(wf)) end end
SimpleWorkflows
https://github.com/MineralsCloud/SimpleWorkflows.jl.git
[ "MIT" ]
0.29.0
6653c51ac7bb1b0f10bf4ab5576f6f00fe7f4cf8
code
1110
@testset "Test joining two `Workflow`s" begin function f₁() println("Start job `i`!") return sleep(5) end function f₂(n) println("Start job `j`!") sleep(n) return exp(2) end function f₃(n) println("Start job `k`!") return sleep(n) end function f₄() println("Start job `l`!") return run(`sleep 3`) end function f₅(n, x) println("Start job `m`!") sleep(n) return sin(x) end function f₆(n; x=1) println("Start job `n`!") sleep(n) cos(x) return run(`pwd` & `ls`) end i = Job(Thunk(f₁); username="me", name="i") j = Job(Thunk(f₂, 3); username="he", name="j") k = Job(Thunk(f₃, 6); name="k") l = Job(Thunk(f₄); name="l", username="me") m = Job(Thunk(f₅, 3, 1); name="m") n = Job(Thunk(f₆, 1; x=3); username="she", name="n") i → j i → k j → k l → m l → n m → n wf₁ = Workflow(k) wf₂ = Workflow(n) wf₁ → wf₂ wf = Workflow(k) @test unique(wf) == collect(wf) run!(wf) end
SimpleWorkflows
https://github.com/MineralsCloud/SimpleWorkflows.jl.git
[ "MIT" ]
0.29.0
6653c51ac7bb1b0f10bf4ab5576f6f00fe7f4cf8
code
3793
using Thinkers: Thunk using EasyJobsBase: Job, ConditionalJob, ArgDependentJob, run!, getresult, → @testset "Test running a `Workflow`" begin function f₁() println("Start job `i`!") sleep(5) println("End job `i`!") return nothing end function f₂(n) println("Start job `j`!") sleep(n) a = exp(2) println("End job `j`!") return a end function f₃(n) println("Start job `k`!") sleep(n) println("End job `k`!") return nothing end function f₄() println("Start job `l`!") p = run(`sleep 3`) println("End job `l`!") return p end function f₅(n, x) println("Start job `m`!") sleep(n) a = sin(x) println("End job `m`!") return a end function f₆(n; x=1) println("Start job `n`!") sleep(n) p = run(`pwd` & `ls`) println("End job `n`!") return p end i = Job(Thunk(f₁); username="me", name="i") j = Job(Thunk(f₂, 3); username="he", name="j") k = Job(Thunk(f₃, 6); name="k") l = Job(Thunk(f₄); name="l", username="me") m = Job(Thunk(f₅, 3, 1); name="m") n = Job(Thunk(f₆, 1; x=3); username="she", name="n") i → l j → k → m → n j → l k → n wf = Workflow(k) @test unique(wf) == collect(wf) @test Set(wf) == Set([i, k, j, l, n, m]) run!(wf; wait=true) @test Set(wf) == Set([i, k, j, l, n, m]) # Test they are still the same for job in (i, j, k, l, n, m) @test job in wf end @test issucceeded(wf) @test something(getresult(i)) === nothing @test something(getresult(j)) == 7.38905609893065 @test something(getresult(k)) === nothing @test something(getresult(l)) isa Base.Process @test something(getresult(m)) == 0.8414709848078965 @test something(getresult(n)) isa Base.ProcessChain end @testset "Test running a `Workflow` with `ConditionalJob`s" begin f₁(x) = write("file", string(x)) f₂() = read("file", String) h = Job(Thunk(sleep, 3); username="me", name="h") i = Job(Thunk(f₁, 1001); username="me", name="i") j = ConditionalJob(Thunk(map, f₂); username="he", name="j") [h, i] .→ Ref(j) wf = Workflow(j) @test unique(wf) == collect(wf) run!(wf; wait=true) @test issucceeded(wf) @test getresult(j) == Some("1001") end @testset "Test running a `Workflow` with `ArgDependentJob`s" begin f₁(x) = x^2 f₂(y) = y + 1 f₃(z) = z / 2 i = Job(Thunk(f₁, 5); username="me", name="i") j = ArgDependentJob(Thunk(f₂, 3); username="he", name="j") k = ArgDependentJob(Thunk(f₃, 6); username="she", name="k") i → j → k wf = Workflow(k) @test unique(wf) == collect(wf) @test indexin([i, j, k], wf) == 1:3 run!(wf; wait=true) for job in (i, j, k) @test job in wf end @test issucceeded(wf) @test getresult(i) == Some(25) @test getresult(j) == Some(26) @test getresult(k) == Some(13.0) end @testset "Test running a `Workflow` with a `ArgDependentJob` with more than one parent" begin f₁(x) = x^2 f₂(y) = y + 1 f₃(z) = z / 2 f₄(iter) = sum(iter) i = Job(Thunk(f₁, 5); username="me", name="i") j = Job(Thunk(f₂, 3); username="he", name="j") k = Job(Thunk(f₃, 6); username="she", name="k") l = ArgDependentJob(Thunk(f₄, ()); username="she", name="me") for job in (i, j, k) job → l end wf = Workflow(k) @test unique(wf) == collect(wf) run!(wf; wait=true) for job in (i, j, k) @test job in wf end @test issucceeded(wf) @test getresult(i) == Some(25) @test getresult(j) == Some(4) @test getresult(k) == Some(3.0) @test getresult(l) == Some(32.0) end
SimpleWorkflows
https://github.com/MineralsCloud/SimpleWorkflows.jl.git
[ "MIT" ]
0.29.0
6653c51ac7bb1b0f10bf4ab5576f6f00fe7f4cf8
code
124
using SimpleWorkflows using Test @testset "SimpleWorkflow.jl" begin include("run.jl") include("operations.jl") end
SimpleWorkflows
https://github.com/MineralsCloud/SimpleWorkflows.jl.git
[ "MIT" ]
0.29.0
6653c51ac7bb1b0f10bf4ab5576f6f00fe7f4cf8
docs
5215
# Contributor Covenant Code of Conduct ## Our Pledge We as members, contributors, and leaders pledge to make participation in our community a harassment-free experience for everyone, regardless of age, body size, visible or invisible disability, ethnicity, sex characteristics, gender identity and expression, level of experience, education, socio-economic status, nationality, personal appearance, race, religion, or sexual identity and orientation. We pledge to act and interact in ways that contribute to an open, welcoming, diverse, inclusive, and healthy community. ## Our Standards Examples of behavior that contributes to a positive environment for our community include: * Demonstrating empathy and kindness toward other people * Being respectful of differing opinions, viewpoints, and experiences * Giving and gracefully accepting constructive feedback * Accepting responsibility and apologizing to those affected by our mistakes, and learning from the experience * Focusing on what is best not just for us as individuals, but for the overall community Examples of unacceptable behavior include: * The use of sexualized language or imagery, and sexual attention or advances of any kind * Trolling, insulting or derogatory comments, and personal or political attacks * Public or private harassment * Publishing others' private information, such as a physical or email address, without their explicit permission * Other conduct which could reasonably be considered inappropriate in a professional setting ## Enforcement Responsibilities Community leaders are responsible for clarifying and enforcing our standards of acceptable behavior and will take appropriate and fair corrective action in response to any behavior that they deem inappropriate, threatening, offensive, or harmful. Community leaders have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits, issues, and other contributions that are not aligned to this Code of Conduct, and will communicate reasons for moderation decisions when appropriate. ## Scope This Code of Conduct applies within all community spaces, and also applies when an individual is officially representing the community in public spaces. Examples of representing our community include using an official e-mail address, posting via an official social media account, or acting as an appointed representative at an online or offline event. ## Enforcement Instances of abusive, harassing, or otherwise unacceptable behavior may be reported to the community leaders responsible for enforcement at @singularitti. All complaints will be reviewed and investigated promptly and fairly. All community leaders are obligated to respect the privacy and security of the reporter of any incident. ## Enforcement Guidelines Community leaders will follow these Community Impact Guidelines in determining the consequences for any action they deem in violation of this Code of Conduct: ### 1. Correction **Community Impact**: Use of inappropriate language or other behavior deemed unprofessional or unwelcome in the community. **Consequence**: A private, written warning from community leaders, providing clarity around the nature of the violation and an explanation of why the behavior was inappropriate. A public apology may be requested. ### 2. Warning **Community Impact**: A violation through a single incident or series of actions. **Consequence**: A warning with consequences for continued behavior. No interaction with the people involved, including unsolicited interaction with those enforcing the Code of Conduct, for a specified period of time. This includes avoiding interactions in community spaces as well as external channels like social media. Violating these terms may lead to a temporary or permanent ban. ### 3. Temporary Ban **Community Impact**: A serious violation of community standards, including sustained inappropriate behavior. **Consequence**: A temporary ban from any sort of interaction or public communication with the community for a specified period of time. No public or private interaction with the people involved, including unsolicited interaction with those enforcing the Code of Conduct, is allowed during this period. Violating these terms may lead to a permanent ban. ### 4. Permanent Ban **Community Impact**: Demonstrating a pattern of violation of community standards, including sustained inappropriate behavior, harassment of an individual, or aggression toward or disparagement of classes of individuals. **Consequence**: A permanent ban from any sort of public interaction within the community. ## Attribution This Code of Conduct is adapted from the [Contributor Covenant][homepage], version 2.0, available at https://www.contributor-covenant.org/version/2/0/code_of_conduct.html. Community Impact Guidelines were inspired by [Mozilla's code of conduct enforcement ladder](https://github.com/mozilla/diversity). [homepage]: https://www.contributor-covenant.org For answers to common questions about this code of conduct, see the FAQ at https://www.contributor-covenant.org/faq. Translations are available at https://www.contributor-covenant.org/translations.
SimpleWorkflows
https://github.com/MineralsCloud/SimpleWorkflows.jl.git
[ "MIT" ]
0.29.0
6653c51ac7bb1b0f10bf4ab5576f6f00fe7f4cf8
docs
5468
<div align="center"> <img src="https://raw.githubusercontent.com/MineralsCloud/SimpleWorkflows.jl/main/docs/src/assets/logo.png" height="200"><br> </div> # SimpleWorkflows | **Documentation** | **Build Status** | **Others** | | :--------------------------------------------------------------------------------: | :--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------------------------: | | [![Stable][docs-stable-img]][docs-stable-url] [![Dev][docs-dev-img]][docs-dev-url] | [![Build Status][gha-img]][gha-url] [![Build Status][appveyor-img]][appveyor-url] [![Build Status][cirrus-img]][cirrus-url] [![pipeline status][gitlab-img]][gitlab-url] [![Coverage][codecov-img]][codecov-url] | [![GitHub license][license-img]][license-url] [![Code Style: Blue][style-img]][style-url] | [docs-stable-img]: https://img.shields.io/badge/docs-stable-blue.svg [docs-stable-url]: https://MineralsCloud.github.io/SimpleWorkflows.jl/stable [docs-dev-img]: https://img.shields.io/badge/docs-dev-blue.svg [docs-dev-url]: https://MineralsCloud.github.io/SimpleWorkflows.jl/dev [gha-img]: https://github.com/MineralsCloud/SimpleWorkflows.jl/workflows/CI/badge.svg [gha-url]: https://github.com/MineralsCloud/SimpleWorkflows.jl/actions [appveyor-img]: https://ci.appveyor.com/api/projects/status/github/MineralsCloud/SimpleWorkflows.jl?svg=true [appveyor-url]: https://ci.appveyor.com/project/singularitti/SimpleWorkflows-jl [cirrus-img]: https://api.cirrus-ci.com/github/MineralsCloud/SimpleWorkflows.jl.svg [cirrus-url]: https://cirrus-ci.com/github/MineralsCloud/SimpleWorkflows.jl [gitlab-img]: https://gitlab.com/singularitti/SimpleWorkflows.jl/badges/main/pipeline.svg [gitlab-url]: https://gitlab.com/singularitti/SimpleWorkflows.jl/-/pipelines [codecov-img]: https://codecov.io/gh/MineralsCloud/SimpleWorkflows.jl/branch/main/graph/badge.svg [codecov-url]: https://codecov.io/gh/MineralsCloud/SimpleWorkflows.jl [license-img]: https://img.shields.io/github/license/MineralsCloud/SimpleWorkflows.jl [license-url]: https://github.com/MineralsCloud/SimpleWorkflows.jl/blob/main/LICENSE [style-img]: https://img.shields.io/badge/code%20style-blue-4495d1.svg [style-url]: https://github.com/invenia/BlueStyle The code, which is [hosted on GitHub](https://github.com/MineralsCloud/SimpleWorkflows.jl), is tested using various continuous integration services for its validity. This repository is created and maintained by [@singularitti](https://github.com/singularitti), and contributions are highly welcome. ## Package features Build workflows from jobs. Run, monitor, and get results from them. This package takes inspiration from packages like [JobSchedulers](https://github.com/cihga39871/JobSchedulers.jl) and [Dispatcher](https://github.com/invenia/Dispatcher.jl) (unmaintained). Please [cite this package](https://doi.org/10.1016/j.cpc.2022.108515) as: Q. Zhang, C. Gu, J. Zhuang et al., `express`: extensible, high-level workflows for swifter *ab initio* materials modeling, *Computer Physics Communications*, 108515, doi: https://doi.org/10.1016/j.cpc.2022.108515. The BibTeX format is: ```bibtex @article{ZHANG2022108515, title = {express: extensible, high-level workflows for swifter ab initio materials modeling}, journal = {Computer Physics Communications}, pages = {108515}, year = {2022}, issn = {0010-4655}, doi = {https://doi.org/10.1016/j.cpc.2022.108515}, url = {https://www.sciencedirect.com/science/article/pii/S001046552200234X}, author = {Qi Zhang and Chaoxuan Gu and Jingyi Zhuang and Renata M. Wentzcovitch}, keywords = {automation, workflow, high-level, high-throughput, data lineage} } ``` We also have an [arXiv prepint](https://arxiv.org/abs/2109.11724). ## Installation The package can be installed with the Julia package manager. From [the Julia REPL](https://docs.julialang.org/en/v1/stdlib/REPL/), type `]` to enter the [Pkg mode](https://docs.julialang.org/en/v1/stdlib/REPL/#Pkg-mode) and run: ```julia-repl pkg> add SimpleWorkflows ``` Or, equivalently, via [`Pkg.jl`](https://pkgdocs.julialang.org/v1/): ```julia julia> import Pkg; Pkg.add("SimpleWorkflows") ``` ## Documentation - [**STABLE**][docs-stable-url] — **documentation of the most recently tagged version.** - [**DEV**][docs-dev-url] — _documentation of the in-development version._ ## Project status The package is developed for and tested against Julia `v1.6` and above on Linux, macOS, and Windows. ## Questions and contributions You can post usage questions on [our discussion page](https://github.com/MineralsCloud/SimpleWorkflows.jl/discussions). We welcome contributions, feature requests, and suggestions. If you encounter any problems, please open an [issue](https://github.com/MineralsCloud/SimpleWorkflows.jl/issues). The [Contributing](@ref) page has a few guidelines that should be followed when opening pull requests and contributing code.
SimpleWorkflows
https://github.com/MineralsCloud/SimpleWorkflows.jl.git
[ "MIT" ]
0.29.0
6653c51ac7bb1b0f10bf4ab5576f6f00fe7f4cf8
docs
631
* **Please check if the PR fulfills these requirements** - [ ] The commit message follows our guidelines - [ ] Tests for the changes have been added (for bug fixes / features) - [ ] Docs have been added / updated (for bug fixes / features) * **What kind of change does this PR introduce?** (Bug fix, feature, docs update, ...) * **What is the current behavior?** (You can also link to an open issue here) * **What is the new behavior (if this is a feature change)?** * **Does this PR introduce a breaking change?** (What changes might users need to make in their application due to this PR?) * **Other information**:
SimpleWorkflows
https://github.com/MineralsCloud/SimpleWorkflows.jl.git
[ "MIT" ]
0.29.0
6653c51ac7bb1b0f10bf4ab5576f6f00fe7f4cf8
docs
748
--- name: Bug report about: Create a report to help us improve title: '' labels: bug assignees: singularitti --- **Describe the bug** A clear and concise description of what the bug is. **To Reproduce** Steps to reproduce the behavior: 1. Go to '...' 2. Click on '....' 3. Scroll down to '....' 4. See error 5. Run code ```julia using Pkg ``` **Expected behavior** A clear and concise description of what you expected to happen. **Screenshots** If applicable, paste screenshots to help explain your problem. **Desktop (please complete the following information):** - OS: [e.g. macOS 12.5.1] - Julia version: [e.g. 1.6.7, 1.7.3] - Package version: [e.g. 2.0.0] **Additional context** Add any other context about the problem here.
SimpleWorkflows
https://github.com/MineralsCloud/SimpleWorkflows.jl.git
[ "MIT" ]
0.29.0
6653c51ac7bb1b0f10bf4ab5576f6f00fe7f4cf8
docs
614
--- name: Feature request about: Suggest an idea for this project title: '' labels: enhancement assignees: singularitti --- **Is your feature request related to a problem? Please describe.** A clear and concise description of what the problem is. Ex. I'm always frustrated when [...] **Describe the solution you'd like** A clear and concise description of what you want to happen. **Describe alternatives you've considered** A clear and concise description of any alternative solutions or features you've considered. **Additional context** Add any other context or screenshots about the feature request here.
SimpleWorkflows
https://github.com/MineralsCloud/SimpleWorkflows.jl.git
[ "MIT" ]
0.29.0
6653c51ac7bb1b0f10bf4ab5576f6f00fe7f4cf8
docs
3387
# SimpleWorkflows Documentation for [SimpleWorkflows](https://github.com/MineralsCloud/SimpleWorkflows.jl). See the [Index](@ref main-index) for the complete list of documented functions and types. The code, which is [hosted on GitHub](https://github.com/MineralsCloud/SimpleWorkflows.jl), is tested using various continuous integration services for its validity. This repository is created and maintained by [@singularitti](https://github.com/singularitti), and contributions are highly welcome. ## Package features Build workflows from jobs. Run, monitor, and get results from them. This package takes inspiration from packages like [JobSchedulers](https://github.com/cihga39871/JobSchedulers.jl) and [Dispatcher](https://github.com/invenia/Dispatcher.jl) (unmaintained). Please [cite this package](https://doi.org/10.1016/j.cpc.2022.108515) as: Q. Zhang, C. Gu, J. Zhuang et al., `express`: extensible, high-level workflows for swifter *ab initio* materials modeling, *Computer Physics Communications*, 108515, doi: https://doi.org/10.1016/j.cpc.2022.108515. The BibTeX format is: ```bibtex @article{ZHANG2022108515, title = {express: extensible, high-level workflows for swifter ab initio materials modeling}, journal = {Computer Physics Communications}, pages = {108515}, year = {2022}, issn = {0010-4655}, doi = {https://doi.org/10.1016/j.cpc.2022.108515}, url = {https://www.sciencedirect.com/science/article/pii/S001046552200234X}, author = {Qi Zhang and Chaoxuan Gu and Jingyi Zhuang and Renata M. Wentzcovitch}, keywords = {automation, workflow, high-level, high-throughput, data lineage} } ``` We also have an [arXiv prepint](https://arxiv.org/abs/2109.11724). ## Installation The package can be installed with the Julia package manager. From [the Julia REPL](https://docs.julialang.org/en/v1/stdlib/REPL/), type `]` to enter the [Pkg mode](https://docs.julialang.org/en/v1/stdlib/REPL/#Pkg-mode) and run: ```julia-repl pkg> add SimpleWorkflows ``` Or, equivalently, via [`Pkg.jl`](https://pkgdocs.julialang.org/v1/): ```@repl import Pkg; Pkg.add("SimpleWorkflows") ``` ## Documentation - [**STABLE**](https://MineralsCloud.github.io/SimpleWorkflows.jl/stable) — **documentation of the most recently tagged version.** - [**DEV**](https://MineralsCloud.github.io/SimpleWorkflows.jl/dev) — _documentation of the in-development version._ ## Project status The package is developed for and tested against Julia `v1.6` and above on Linux, macOS, and Windows. ## Questions and contributions You can post usage questions on [our discussion page](https://github.com/MineralsCloud/SimpleWorkflows.jl/discussions). We welcome contributions, feature requests, and suggestions. If you encounter any problems, please open an [issue](https://github.com/MineralsCloud/SimpleWorkflows.jl/issues). The [Contributing](@ref) page has a few guidelines that should be followed when opening pull requests and contributing code. ## Manual outline ```@contents Pages = [ "man/installation.md", "man/portability.md", "man/troubleshooting.md", "developers/contributing.md", "developers/style-guide.md", "developers/design-principles.md", ] Depth = 3 ``` ## Library outline ```@contents Pages = ["lib/public.md", "lib/internals.md"] ``` ### [Index](@id main-index) ```@index Pages = ["lib/public.md"] ```
SimpleWorkflows
https://github.com/MineralsCloud/SimpleWorkflows.jl.git
[ "MIT" ]
0.29.0
6653c51ac7bb1b0f10bf4ab5576f6f00fe7f4cf8
docs
8766
# Contributing ```@contents Pages = ["contributing.md"] Depth = 2 ``` Welcome! This document explains some ways you can contribute to SimpleWorkflows. ## Code of conduct This project and everyone participating in it is governed by the [Contributor Covenant Code of Conduct](https://github.com/MineralsCloud/.github/blob/main/CODE_OF_CONDUCT.md). By participating, you are expected to uphold this code. ## Join the community forum First up, join the [community forum](https://github.com/MineralsCloud/SimpleWorkflows.jl/discussions). The forum is a good place to ask questions about how to use SimpleWorkflows. You can also use the forum to discuss possible feature requests and bugs before raising a GitHub issue (more on this below). Aside from asking questions, the easiest way you can contribute to SimpleWorkflows is to help answer questions on the forum! ## Improve the documentation Chances are, if you asked (or answered) a question on the community forum, then it is a sign that the [documentation](https://MineralsCloud.github.io/SimpleWorkflows.jl/dev/) could be improved. Moreover, since it is your question, you are probably the best-placed person to improve it! The docs are written in Markdown and are built using [`Documenter.jl`](https://github.com/JuliaDocs/Documenter.jl). You can find the source of all the docs [here](https://github.com/MineralsCloud/SimpleWorkflows.jl/tree/main/docs). If your change is small (like fixing typos or one or two sentence corrections), the easiest way to do this is via GitHub's online editor. (GitHub has [help](https://help.github.com/articles/editing-files-in-another-user-s-repository/) on how to do this.) If your change is larger or touches multiple files, you will need to make the change locally and then use Git to submit a [pull request](https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/about-pull-requests). (See [Contribute code to SimpleWorkflows](@ref) below for more on this.) ## File a bug report Another way to contribute to SimpleWorkflows is to file [bug reports](https://github.com/MineralsCloud/SimpleWorkflows.jl/issues/new?template=bug_report.md). Make sure you read the info in the box where you write the body of the issue before posting. You can also find a copy of that info [here](https://github.com/MineralsCloud/SimpleWorkflows.jl/blob/main/.github/ISSUE_TEMPLATE/bug_report.md). !!! tip If you're unsure whether you have a real bug, post on the [community forum](https://github.com/MineralsCloud/SimpleWorkflows.jl/discussions) first. Someone will either help you fix the problem or let you know the most appropriate place to open a bug report. ## Contribute code to SimpleWorkflows Finally, you can also contribute code to SimpleWorkflows! !!! warning If you do not have experience with Git, GitHub, and Julia development, the first steps can be a little daunting. However, there are lots of tutorials available online, including: - [GitHub](https://guides.github.com/activities/hello-world/) - [Git and GitHub](https://try.github.io/) - [Git](https://git-scm.com/book/en/v2) - [Julia package development](https://docs.julialang.org/en/v1/stdlib/Pkg/#Developing-packages-1) Once you are familiar with Git and GitHub, the workflow for contributing code to SimpleWorkflows is similar to the following: ### Step 1: decide what to work on The first step is to find an [open issue](https://github.com/MineralsCloud/SimpleWorkflows.jl/issues) (or open a new one) for the problem you want to solve. Then, _before_ spending too much time on it, discuss what you are planning to do in the issue to see if other contributors are fine with your proposed changes. Getting feedback early can improve code quality and avoid time spent writing code that does not get merged into SimpleWorkflows. !!! tip At this point, remember to be patient and polite; you may get a _lot_ of comments on your issue! However, do not be afraid! Comments mean that people are willing to help you improve the code that you are contributing to SimpleWorkflows. ### Step 2: fork SimpleWorkflows Go to [https://github.com/MineralsCloud/SimpleWorkflows.jl](https://github.com/MineralsCloud/SimpleWorkflows.jl) and click the "Fork" button in the top-right corner. This will create a copy of SimpleWorkflows under your GitHub account. ### Step 3: install SimpleWorkflows locally Similar to [Installation Guide](@ref), open the Julia REPL and run: ```@repl using Pkg Pkg.update() Pkg.develop("SimpleWorkflows") ``` Then the package will be cloned to your local machine. On *nix systems, the default path is `~/.julia/dev/SimpleWorkflows` unless you modify the [`JULIA_DEPOT_PATH`](http://docs.julialang.org/en/v1/manual/environment-variables/#JULIA_DEPOT_PATH-1) environment variable. If you're on Windows, this will be `C:\\Users\\<my_name>\\.julia\\dev\\SimpleWorkflows`. In the following text, we will call it `PKGROOT`. Go to `PKGROOT`, start a new Julia session, and run ```@repl using Pkg Pkg.instantiate() ``` to instantiate the project. ### Step 4: checkout a new branch !!! note In the following, replace any instance of `GITHUB_ACCOUNT` with your GitHub username. The next step is to check out a development branch. In a terminal (or command prompt on Windows), run: ```bash $ cd ~/.julia/dev/SimpleWorkflows $ git remote add GITHUB_ACCOUNT https://github.com/GITHUB_ACCOUNT/SimpleWorkflows.jl.git $ git checkout main $ git pull $ git checkout -b my_new_branch ``` ### Step 5: make changes Now make any changes to the source code inside the `~/.julia/dev/SimpleWorkflows` directory. Make sure you: - Follow our [Style Guide](@ref) and [Run JuliaFormatter](@ref). - Add tests and documentation for any changes or new features. !!! tip When you change the source code, you will need to restart Julia for the changes to take effect. If this is a pain, install [`Revise.jl`](https://github.com/timholy/Revise.jl). ### Step 6a: test your code changes To test that your changes work, run the SimpleWorkflows test-suite by opening Julia and running: ```julia-repl julia> cd(joinpath(DEPOT_PATH[1], "dev", "SimpleWorkflows")) julia> using Pkg julia> Pkg.activate(".") Activating new project at `~/.julia/dev/SimpleWorkflows` julia> Pkg.test() ``` !!! warning Running the tests might take a long time. !!! tip If you are using `Revise.jl`, you can also run the tests by calling `include`: ```julia-repl include("test/runtests.jl") ``` This can be faster if you want to re-run the tests multiple times. ### Step 6b: test your documentation changes Open Julia, then run: ```julia-repl julia> cd(joinpath(DEPOT_PATH[1], "dev", "SimpleWorkflows", "docs")) julia> using Pkg julia> Pkg.activate(".") Activating new project at `~/.julia/dev/SimpleWorkflows/docs` julia> include("src/make.jl") ``` After a while, a folder `PKGROOT/docs/build` will appear. Open `PKGROOT/docs/build/index.html` with your favorite browser, and have fun! !!! warning Building the documentation might take a long time. !!! tip If there's a problem with the tests that you don't know how to fix, don't worry. Continue to step 5, and one of the SimpleWorkflows contributors will comment on your pull request, telling you how to fix things. ### Step 7: make a pull request Once you've made changes, you're ready to push the changes to GitHub. Run: ```bash $ cd ~/.julia/dev/SimpleWorkflows $ git add . $ git commit -m "A descriptive message of the changes" $ git push -u GITHUB_ACCOUNT my_new_branch ``` Then go to [our pull request page](https://github.com/MineralsCloud/SimpleWorkflows.jl/pulls) and follow the instructions that pop up to open a pull request. ### Step 8: respond to comments At this point, remember to be patient and polite; you may get a _lot_ of comments on your pull request! However, do not be afraid! A lot of comments means that people are willing to help you improve the code that you are contributing to SimpleWorkflows. To respond to the comments, go back to step 5, make any changes, test the changes in step 6, and then make a new commit in step 7. Your PR will automatically update. ### Step 9: cleaning up Once the PR is merged, clean-up your Git repository, ready for the next contribution! ```bash $ cd ~/.julia/dev/SimpleWorkflows $ git checkout main $ git pull ``` !!! note If you have suggestions to improve this guide, please make a pull request! It's particularly helpful if you do this after your first pull request because you'll know all the parts that could be explained better. Thanks for contributing to SimpleWorkflows!
SimpleWorkflows
https://github.com/MineralsCloud/SimpleWorkflows.jl.git
[ "MIT" ]
0.29.0
6653c51ac7bb1b0f10bf4ab5576f6f00fe7f4cf8
docs
15417
# Design Principles ```@contents Pages = ["design-principles.md"] Depth = 2 ``` We adopt some [SciML](https://sciml.ai/) design [guidelines](https://github.com/SciML/SciMLStyle) here. Please read them before contributing! ## Consistency vs adherence According to PEP8: > A style guide is about consistency. Consistency with this style guide is important. > Consistency within a project is more important. Consistency within one module or function is the most important. > > However, know when to be inconsistent—sometimes style guide recommendations just aren't > applicable. When in doubt, use your best judgment. Look at other examples and decide what > looks best. And don’t hesitate to ask! ## Community contribution guidelines For a comprehensive set of community contribution guidelines, refer to [ColPrac](https://github.com/SciML/ColPrac). A relevant point to highlight is that one PR should do one thing. In the context of style, this means that PRs which update the style of a package's code should not be mixed with fundamental code contributions. This separation makes it easier to ensure that large style improvement are isolated from substantive (and potentially breaking) code changes. ## Open source contributions are allowed to start small and grow over time If the standard for code contributions is that every PR needs to support every possible input type that anyone can think of, the barrier would be too high for newcomers. Instead, the principle is to be as correct as possible to begin with, and grow the generic support over time. All recommended functionality should be tested, any known generality issues should be documented in an issue (and with a `@test_broken` test when possible). ## Generic code is preferred unless code is known to be specific For example, the code: ```@repl function f(A, B) for i in 1:length(A) A[i] = A[i] + B[i] end end ``` would not be preferred for two reasons. One is that it assumes `A` uses one-based indexing, which would fail in cases like [`OffsetArrays.jl`](https://github.com/JuliaArrays/OffsetArrays.jl) and [`FFTViews.jl`](https://github.com/JuliaArrays/FFTViews.jl). Another issue is that it requires indexing, while not all array types support indexing (for example, [`CuArrays.jl`](https://github.com/JuliaGPU/CuArrays.jl)). A more generic compatible implementation of this function would be to use broadcast, for example: ```@repl function f(A, B) @. A = A + B end ``` which would allow support for a wider variety of array types. ## Internal types should match the types used by users when possible If `f(A)` takes the input of some collections and computes an output from those collections, then it should be expected that if the user gives `A` as an `Array`, the computation should be done via `Array`s. If `A` was a `CuArray`, then it should be expected that the computation should be internally done using a `CuArray` (or appropriately error if not supported). For these reasons, constructing arrays via generic methods, like `similar(A)`, is preferred when writing `f` instead of using non-generic constructors like `Array(undef,size(A))` unless the function is documented as being non-generic. ## Trait definition and adherence to generic interface is preferred when possible Julia provides many interfaces, for example: - [Iteration](https://docs.julialang.org/en/v1/manual/interfaces/#man-interface-iteration) - [Indexing](https://docs.julialang.org/en/v1/manual/interfaces/#Indexing) - [Broadcasting](https://docs.julialang.org/en/v1/manual/interfaces/#man-interfaces-broadcasting) Those interfaces should be followed when possible. For example, when defining broadcast overloads, one should implement a `BroadcastStyle` as suggested by the documentation instead of simply attempting to bypass the broadcast system via `copyto!` overloads. When interface functions are missing, these should be added to an interface package, like [`ArrayInterface.jl`](https://github.com/JuliaArrays/ArrayInterface.jl). Such traits should be declared and used when appropriate. For example, if a line of code requires mutation, the trait `ArrayInterface.ismutable(A)` should be checked before attempting to mutate, and informative error messages should be written to capture the immutable case (or, an alternative code which does not mutate should be given). One example of this principle is demonstrated in the generation of Jacobian matrices. In many scientific applications, one may wish to generate a Jacobian cache from the user's input `u0`. A naive way to generate this Jacobian is `J = similar(u0,length(u0),length(u0))`. However, this will generate a Jacobian `J` such that `J isa Matrix`. ## Macros should be limited and only be used for syntactic sugar Macros define new syntax, and for this reason they tend to be less composable than other coding styles and require prior familiarity to be easily understood. One principle to keep in mind is, "can the person reading the code easily picture what code is being generated?". For example, a user of [`Soss.jl`](https://github.com/cscherrer/Soss.jl) may not know what code is being generated by: ```julia @model (x, α) begin σ ~ Exponential() β ~ Normal() y ~ For(x) do xj Normal(α + β * xj, σ) end return y end ``` and thus using such a macro as the interface is not preferred when possible. However, a macro like [`@muladd`](https://github.com/SciML/MuladdMacro.jl) is trivial to picture on a code (it recursively transforms `a*b + c` to `muladd(a,b,c)` for more [accuracy and efficiency](https://en.wikipedia.org/wiki/Multiply-accumulate_operation)), so using such a macro for example: ```julia-repl julia> @macroexpand(@muladd k3 = f(t + c3 * dt, @. uprev + dt * (a031 * k1 + a032 * k2))) :(k3 = f((muladd)(c3, dt, t), (muladd).(dt, (muladd).(a032, k2, (*).(a031, k1)), uprev))) ``` is recommended. Some macros in this category are: - `@inbounds` - [`@muladd`](https://github.com/SciML/MuladdMacro.jl) - `@view` - [`@named`](https://github.com/SciML/ModelingToolkit.jl) - `@.` - [`@..`](https://github.com/YingboMa/FastBroadcast.jl) Some performance macros, like `@simd`, `@threads`, or [`@turbo` from `LoopVectorization.jl`](https://github.com/JuliaSIMD/LoopVectorization.jl), make an exception in that their generated code may be foreign to many users. However, they still are classified as appropriate uses as they are syntactic sugar since they do (or should) not change the behavior of the program in measurable ways other than performance. ## Errors should be caught as early as possible, and error messages should be made contextually clear for newcomers Whenever possible, defensive programming should be used to check for potential errors before they are encountered deeper within a package. For example, if one knows that `f(u0,p)` will error unless `u0` is the size of `p`, this should be caught at the start of the function to throw a domain specific error, for example "parameters and initial condition should be the same size". ## Subpackaging and interface packages is preferred over conditional modules via Requires.jl `Requires.jl` should be avoided at all costs. If an interface package exists, such as [`ChainRulesCore.jl`](https://github.com/JuliaDiff/ChainRulesCore.jl) for defining automatic differentiation rules without requiring a dependency on the whole `ChainRules.jl` system, or [`RecipesBase.jl`](https://github.com/JuliaPlots/RecipesBase.jl) which allows for defining `Plots.jl` plot recipes without a dependency on `Plots.jl`, a direct dependency on these interface packages is preferred. Otherwise, instead of resorting to a conditional dependency using `Requires.jl`, it is preferred one creates subpackages, i.e. smaller independent packages kept within the same GitHub repository with independent versioning and package management. An example of this is seen in [`Optimization.jl`](https://github.com/SciML/Optimization.jl) which has subpackages like [`OptimizationBBO.jl`](https://github.com/SciML/Optimization.jl/tree/master/lib/OptimizationBBO) for `BlackBoxOptim.jl` support. Some important interface packages to be aware of include: - [`ChainRulesCore.jl`](https://github.com/JuliaDiff/ChainRulesCore.jl) - [`RecipesBase.jl`](https://github.com/JuliaPlots/RecipesBase.jl) - [`ArrayInterface.jl`](https://github.com/JuliaArrays/ArrayInterface.jl) - [`CommonSolve.jl`](https://github.com/SciML/CommonSolve.jl) - [`SciMLBase.jl`](https://github.com/SciML/SciMLBase.jl) ## Functions should either attempt to be non-allocating and reuse caches, or treat inputs as immutable Mutating codes and non-mutating codes fall into different worlds. When a code is fully immutable, the compiler can better reason about dependencies, optimize the code, and check for correctness. However, many times a code making the fullest use of mutation can outperform even what the best compilers of today can generate. That said, the worst of all worlds is when code mixes mutation with non-mutating code. Not only is this a mishmash of coding styles, it has the potential non-locality and compiler proof issues of mutating code while not fully benefiting from the mutation. ## Out-of-place and immutability is preferred when sufficient performant Mutation is used to get more performance by decreasing the amount of heap allocations. However, if it's not helpful for heap allocations in a given spot, do not use mutation. Mutation is scary and should be avoided unless it gives an immediate benefit. For example, if matrices are sufficiently large, then `A*B` is as fast as `mul!(C,A,B)`, and thus writing `A*B` is preferred (unless the rest of the function is being careful about being fully non-allocating, in which case this should be `mul!` for consistency). Similarly, when defining types, using `struct` is preferred to `mutable struct` unless mutating the `struct` is a common occurrence. Even if mutating the `struct` is a common occurrence, see whether using [`Setfield.jl`](https://github.com/jw3126/Setfield.jl) is sufficient. The compiler will optimize the construction of immutable `struct`s, and thus this can be more efficient if it's not too much of a code hassle. ## Tests should attempt to cover a wide gamut of input types Code coverage numbers are meaningless if one does not consider the input types. For example, one can hit all the code with `Array`, but that does not test whether `CuArray` is compatible! Thus, it's always good to think of coverage not in terms of lines of code but in terms of type coverage. A good list of number types to think about are: - `Float64` - `Float32` - `Complex` - [`Dual`](https://github.com/JuliaDiff/ForwardDiff.jl) - `BigFloat` Array types to think about testing are: - `Array` - [`OffsetArray`](https://github.com/JuliaArrays/OffsetArrays.jl) - [`CuArray`](https://github.com/JuliaGPU/CUDA.jl) ## When in doubt, a submodule should become a subpackage or separate package Each package should focus on one core idea. If there's something separate enough to be a submodule, could it instead be a separate well-tested and documented package to be used by other packages? Most likely yes. ## Globals should be avoided whenever possible Global variables should be avoided whenever possible. When required, global variables should be constants and have an all uppercase name separated with underscores (e.g. `MY_CONSTANT`). They should be defined at the top of the file, immediately after imports and exports but before an `__init__` function. If you truly want mutable global style behavior you may want to look into mutable containers. ## Type-stable and type-grounded code is preferred wherever possible Type-stable and type-grounded code helps the compiler create not only more optimized code, but also faster to compile code. Always keep containers well-typed, functions specializing on the appropriate arguments, and types concrete. ## Closures should be avoided whenever possible Closures can cause accidental type instabilities that are difficult to track down and debug; in the long run it saves time to always program defensively and avoid writing closures in the first place, even when a particular closure would not have been problematic. A similar argument applies to reading code with closures; if someone is looking for type instabilities, this is faster to do when code does not contain closures. See examples [here](https://discourse.julialang.org/t/are-closures-should-be-avoided-whenever-possible-still-valid-in-julia-v1-9/95893/5). Furthermore, if you want to update variables in an outer scope, do so explicitly with `Ref`s or self defined `struct`s. ## Numerical functionality should use the appropriate generic numerical interfaces While you can use `A\b` to do a linear solve inside a package, that does not mean that you should. This interface is only sufficient for performing factorizations, and so that limits the scaling choices, the types of `A` that can be supported, etc. Instead, linear solves within packages should use `LinearSolve.jl`. Similarly, nonlinear solves should use `NonlinearSolve.jl`. Optimization should use `Optimization.jl`. Etc. This allows the full generic choice to be given to the user without depending on every solver package (effectively recreating the generic interfaces within each package). ## Functions should capture one underlying principle Functions mean one thing. Every dispatch of `+` should be "the meaning of addition on these types". While in theory you could add dispatches to `+` that mean something different, that will fail in generic code for which `+` means addition. Thus, for generic code to work, code needs to adhere to one meaning for each function. Every dispatch should be an instantiation of that meaning. ## Internal choices should be exposed as options whenever possible Whenever possible, numerical values and choices within scripts should be exposed as options to the user. This promotes code reusability beyond the few cases the author may have expected. ## Prefer code reuse over rewrites whenever possible If a package has a function you need, use the package. Add a dependency if you need to. If the function is missing a feature, prefer to add that feature to said package and then add it as a dependency. If the dependency is potentially troublesome, for example because it has a high load time, prefer to spend time helping said package fix these issues and add the dependency. Only when it does not seem possible to make the package "good enough" should using the package be abandoned. If it is abandoned, consider building a new package for this functionality as you need it, and then make it a dependency. ## Prefer to not shadow functions In Julia, two functions can share the same name if they belong to different namespaces. For example, `X.f` and `Y.f` can be two different functions, with different dispatches, but the same name. This should be avoided whenever possible. Instead of creating `MyPackage.sort`, consider adding dispatches to `Base.sort` for your types if these new dispatches match the underlying principle of the function. If they don't, it would be preferable to use a different name. While using `MyPackage.sort` is not conflicting, it is going to be confusing for most people unfamiliar with your code, so `MyPackage.special_sort` would be more helpful to newcomers reading the code.
SimpleWorkflows
https://github.com/MineralsCloud/SimpleWorkflows.jl.git
[ "MIT" ]
0.29.0
6653c51ac7bb1b0f10bf4ab5576f6f00fe7f4cf8
docs
2309
# Style Guide This section describes the coding style rules that apply to our code and that we recommend you to use it also. In some cases, our style guide diverges from Julia's official [Style Guide](https://docs.julialang.org/en/v1/manual/style-guide/) (Please read it!). All such cases will be explicitly noted and justified. Our style guide adopts many recommendations from the [BlueStyle](https://github.com/invenia/BlueStyle). Please read the [BlueStyle](https://github.com/invenia/BlueStyle) before contributing to this package. If these guidelines are not followed, your pull requests may not be accepted. !!! info The style guide is always a work in progress, and not all SimpleWorkflows code follows the rules. When modifying SimpleWorkflows, please fix the style violations of the surrounding code (i.e., leave the code tidier than when you started). If large changes are needed, consider separating them into another pull request. ## Formatting ### Run JuliaFormatter SimpleWorkflows uses [JuliaFormatter](https://github.com/domluna/JuliaFormatter.jl) as an auto-formatting tool. We use the options contained in [`.JuliaFormatter.toml`](https://github.com/MineralsCloud/SimpleWorkflows.jl/blob/main/.JuliaFormatter.toml). To format your code, `cd` to the SimpleWorkflows directory, then run: ```julia-repl julia> using Pkg julia> Pkg.add("JuliaFormatter") julia> using JuliaFormatter: format julia> format("docs"); format("src"); format("test") ``` !!! info A continuous integration check verifies that all PRs made to SimpleWorkflows have passed the formatter. The following sections outline extra style guide points that are not fixed automatically by JuliaFormatter. ### Use the Julia extension for Visual Studio Code Please use [Visual Studio Code](https://code.visualstudio.com/) with the [Julia extension](https://marketplace.visualstudio.com/items?itemName=julialang.language-julia) to edit, format, and test your code. For the time being, we do not recommend using editors other than Visual Studio Code to edit your code. This extension already has [JuliaFormatter](https://github.com/domluna/JuliaFormatter.jl) integrated. So to format your code, follow the steps listed [here](https://www.julia-vscode.org/docs/stable/userguide/formatter/).
SimpleWorkflows
https://github.com/MineralsCloud/SimpleWorkflows.jl.git
[ "MIT" ]
0.29.0
6653c51ac7bb1b0f10bf4ab5576f6f00fe7f4cf8
docs
322
# Public API ## Contents ```@contents Pages = ["public.md"] Depth = 2 ``` ## Index ```@index Pages = ["public.md"] ``` ## Public interface ```@docs Workflow run! execute! getstatus eachstatus ispending isrunning isexited issucceeded isfailed filterpending filterrunning filterexited filtersucceeded filterfailed ```
SimpleWorkflows
https://github.com/MineralsCloud/SimpleWorkflows.jl.git
[ "MIT" ]
0.29.0
6653c51ac7bb1b0f10bf4ab5576f6f00fe7f4cf8
docs
5303
# Installation Guide ```@contents Pages = ["installation.md"] Depth = 2 ``` Here are the installation instructions for package [SimpleWorkflows](https://github.com/MineralsCloud/SimpleWorkflows.jl). If you have trouble installing it, please refer to our [Troubleshooting](@ref) page for more information. ## Install Julia First, you should install [Julia](https://julialang.org/). We recommend downloading it from [its official website](https://julialang.org/downloads/). Please follow the detailed instructions on its website if you have to [build Julia from source](https://docs.julialang.org/en/v1/devdocs/build/build/). Some computing centers provide preinstalled Julia. Please contact your administrator for more information in that case. Here's some additional information on [how to set up Julia on HPC clusters](https://juliahpc.github.io/JuliaOnHPCClusters/). If you have [Homebrew](https://brew.sh/) installed, [open the Terminal app](https://support.apple.com/guide/terminal/open-or-quit-terminal-apd5265185d-f365-44cb-8b09-71a064a42125/mac) and type ```bash brew install julia ``` to install it as a [formula](https://docs.brew.sh/Formula-Cookbook). If you are also using [macOS](https://en.wikipedia.org/wiki/MacOS) and want to install it as a prebuilt binary app, type ```bash brew install --cask julia ``` instead. If you want to install multiple Julia versions in the same operating system, a recommended way is to use a version manager such as [Juliaup](https://github.com/JuliaLang/juliaup). First, [install Juliaup](https://github.com/JuliaLang/juliaup#installation). Then, run ```bash juliaup add release juliaup default release ``` to configure the `julia` command to start the latest stable version of Julia (this is also the default value). Here is a [short video introduction to Juliaup](https://youtu.be/14zfdbzq5BM) made by its authors. ### Which version should I pick? You can install the current stable release or the long-term support (LTS) release. - The current stable release is the latest release of Julia. It has access to newer features, and is likely faster. - The long-term support release is an older version of Julia that has continued to receive bug and security fixes. However, it may not have the latest features or performance improvements. For most users, you should install the current stable release, and whenever Julia releases a new version of the current stable release, you should update your version of Julia. Note that any code you write on one version of the current stable release will continue to work on all subsequent releases. For users in restricted software environments (e.g., your enterprise IT controls what software you can install), you may be better off installing the long-term support release because you will not have to update Julia as frequently. Versions above `v1.3`, especially the latest stable ones, are strongly recommended. This package is highly unlikely to work on `v1.0` and earlier versions. Since the Julia team has set `v1.6` as the LTS release, we will gradually drop support for versions below `v1.6`. Julia and Julia packages support multiple operating systems and CPU architectures; check [this table](https://julialang.org/downloads/#supported_platforms) to see if it can be installed on your machine. For Mac computers with M-series processors, this package and its dependencies may not work. Please install the Intel-compatible version of Julia (for macOS x86-64) if any platform-related error occurs. ## Install the package Now I am using macOS as a standard platform to explain the following steps: 1. Open the Terminal app, and type `julia` to start an interactive session (known as the [REPL](https://docs.julialang.org/en/v1/stdlib/REPL/)). 2. Run the following commands and wait for them to finish: ```julia-repl julia> using Pkg julia> Pkg.update() julia> Pkg.add("SimpleWorkflows") ``` 3. Run ```julia-repl julia> using SimpleWorkflows ``` and have fun! 4. Please keep the Julia session active while using it. Restarting the session may take some time. If you want to install the latest in-development (probably buggy) version of SimpleWorkflows, type ```@repl using Pkg Pkg.update() pkg"add https://github.com/MineralsCloud/SimpleWorkflows.jl" ``` in the second step above. ## Update the package Please [watch](https://docs.github.com/en/account-and-profile/managing-subscriptions-and-notifications-on-github/setting-up-notifications/configuring-notifications#configuring-your-watch-settings-for-an-individual-repository) our [GitHub repository](https://github.com/MineralsCloud/SimpleWorkflows.jl) for new releases. Once we release a new version, you can update SimpleWorkflows by typing ```@repl using Pkg Pkg.update("SimpleWorkflows") Pkg.gc() ``` in the Julia REPL. ## Uninstall and then reinstall the package Sometimes errors may occur if the package is not properly installed. In this case, you may want to uninstall and reinstall the package. Here is how to do that: 1. To uninstall, in a Julia session, run ```julia-repl julia> using Pkg julia> Pkg.rm("SimpleWorkflows") julia> Pkg.gc() ``` 2. Press `Ctrl+D` to quit the current session. Start a new Julia session and reinstall SimpleWorkflows.
SimpleWorkflows
https://github.com/MineralsCloud/SimpleWorkflows.jl.git
[ "MIT" ]
0.29.0
6653c51ac7bb1b0f10bf4ab5576f6f00fe7f4cf8
docs
1548
# How to save and recover the status of a workflow? Suppose you have a `Workflow` object defined with the following code: ```@repl wf using SimpleWorkflows.Thunks: Thunk using SimpleWorkflows: Job, Workflow, run!, → function f₁() println("Start job `i`!") sleep(5) end function f₂(n) println("Start job `j`!") sleep(n) exp(2) end function f₃(n) println("Start job `k`!") sleep(n) end function f₄() println("Start job `l`!") run(`sleep 3`) end function f₅(n, x) println("Start job `m`!") sleep(n) sin(x) end function f₆(n; x = 1) println("Start job `n`!") sleep(n) cos(x) run(`pwd` & `ls`) end i = Job(Thunk(f₁, ()); user = "me", desc = "i") j = Job(Thunk(f₂, 3); user = "he", desc = "j") k = Job(Thunk(f₃, 6); desc = "k") l = Job(Thunk(f₄, ()); desc = "l", user = "me") m = Job(Thunk(f₅, 3, 1); desc = "m") n = Job(Thunk(f₆, 1; x = 3); user = "she", desc = "n") i → l j → k → m → n j → l k → n wf = Workflow(k) ``` To save the `Workflow` instance to disk while running in case it failed or is interrupted, use the `serialize` function. ```@repl wf using Serialization: serialize wf = serialize("wf.jls", wf) run!(wf) ``` After the above steps are finished, a `saved.jls` file is saved to your local file system. Then you can close the current Julia session and restart it (which resembles an interrupted remote session, for example). To reload the workflow, run: ```julia-repl julia> using SimpleWorkflows julia> using Serialization: deserialize julia> deserialize("wf.jls") ``` And voilà!
SimpleWorkflows
https://github.com/MineralsCloud/SimpleWorkflows.jl.git
[ "MIT" ]
0.29.0
6653c51ac7bb1b0f10bf4ab5576f6f00fe7f4cf8
docs
2095
# Troubleshooting ```@contents Pages = ["troubleshooting.md"] Depth = 2 ``` This page collects some possible errors you may encounter along with tips on how to fix them. If you have some questions about how to use this code, you are welcome to [discuss with us](https://github.com/MineralsCloud/SimpleWorkflows.jl/discussions). If you have additional tips, please either [report an issue](https://github.com/MineralsCloud/SimpleWorkflows.jl/issues/new) or [submit a pull request](https://github.com/MineralsCloud/SimpleWorkflows.jl/compare) with suggestions. ## Cannot find the Julia executable Make sure you have Julia installed in your environment. Please download the latest [stable version](https://julialang.org/downloads/#current_stable_release) for your platform. If you are using a *nix system, the recommended way is to use [Juliaup](https://github.com/JuliaLang/juliaup). If you do not want to install Juliaup or you are using other platforms that Julia supports, download the corresponding binaries. Then, create a symbolic link to the Julia executable. If the path is not in your [`$PATH` environment variable](https://en.wikipedia.org/wiki/PATH_(variable)), export it to your `$PATH`. Some clusters, like [Comet](https://www.sdsc.edu/support/user_guides/comet.html), or [Expanse](https://www.sdsc.edu/services/hpc/expanse/index.html), already have Julia installed as a module, you may just `module load julia` to use it. If not, either install by yourself or contact your administrator. See [Installation Guide](@ref) for more information. ## Julia starts slow First, we recommend you download the latest version of Julia. Usually, the newest version has the best performance. If you need to use Julia for a simple, one-time task, you can start the Julia REPL with ```bash julia --compile=min ``` to minimize compilation or ```bash julia --optimize=0 ``` to minimize optimizations, or just use both. Or you could make a system image and run with ```bash julia --sysimage custom-image.so ``` See [Fredrik Ekre's talk](https://youtu.be/IuwxE3m0_QQ?t=313) for details.
SimpleWorkflows
https://github.com/MineralsCloud/SimpleWorkflows.jl.git
[ "MIT" ]
0.2.3
16d2a15e95e265b590603f62c33612fd64c963c2
code
771
module GlobalApproximationValueIteration using Base.Iterators: repeated # Stdlib imports using LinearAlgebra using Random using Printf # For function approximation using MultivariateStats using Flux # POMDPs imports using POMDPs using POMDPTools using POMDPLinter: @POMDP_require, @warn_requirements export GlobalFunctionApproximator, fit!, compute_value, LinearGlobalFunctionApproximator, NonlinearGlobalFunctionApproximator export GlobalApproximationValueIterationSolver, GlobalApproximationValueIterationPolicy, convert_featurevector, sample_state function sample_state end include("global_function_approximation.jl") include("linear_gfa.jl") include("nonlinear_gfa.jl") include("global_approximation_vi.jl") end # module
GlobalApproximationValueIteration
https://github.com/JuliaPOMDP/GlobalApproximationValueIteration.jl.git
[ "MIT" ]
0.2.3
16d2a15e95e265b590603f62c33612fd64c963c2
code
8744
mutable struct GlobalApproximationValueIterationSolver{GFA <: GlobalFunctionApproximator, RNG <: AbstractRNG, F} <: Solver gfa::GFA num_samples::Int64 belres::Float64 num_iterations::Int64 verbose::Bool rng::RNG is_mdp_generative::Bool n_generative_samples::Int64 fv_type::F end function GlobalApproximationValueIterationSolver(gfa::GFA; num_samples::Int64, belres::Float64=1e-3, max_iterations::Int64=1000, verbose::Bool=false, rng::RNG=Random.GLOBAL_RNG, is_mdp_generative::Bool=false, n_generative_samples::Int64=0, fv_type::F=Vector{Float64}) where {GFA <: GlobalFunctionApproximator, F, RNG <: AbstractRNG} return GlobalApproximationValueIterationSolver(gfa, num_samples, belres, max_iterations, verbose, rng, is_mdp_generative, n_generative_samples, fv_type) end function GlobalApproximationValueIterationSolver() throw(ArgumentError("GlobalApproximationValueIterationSolver needs a GlobalFunctionApproximator object for construction!")) end mutable struct GlobalApproximationValueIterationPolicy{GFA <: GlobalFunctionApproximator, RNG <: AbstractRNG, F} <: Policy gfa::GFA action_map::Vector mdp::Union{MDP,POMDP} is_mdp_generative::Bool n_generative_samples::Int64 fv_type::F rng::RNG end function GlobalApproximationValueIterationPolicy(mdp::Union{MDP,POMDP}, solver::GlobalApproximationValueIterationSolver) return GlobalApproximationValueIterationPolicy(deepcopy(solver.gfa), ordered_actions(mdp), mdp, solver.is_mdp_generative, solver.n_generative_samples, solver.fv_type, solver.rng) end function convert_featurevector(::Type{V}, s::S, mdp::Union{MDP,POMDP}) where {V <: AbstractArray, S} return convert_s(V, s, mdp) end # If global function approximator is non-linear, a default convert_s is required @POMDP_require convert_featurevector(t::Type{V} where {V <: AbstractArray}, s::S where S, mdp::Union{MDP,POMDP}) begin @req convert_s(::Type{V} where {V <: AbstractArray}, ::S, ::typeof(mdp)) end @POMDP_require solve(solver::GlobalApproximationValueIterationSolver, mdp::Union{MDP,POMDP}) begin P = typeof(mdp) S = statetype(P) A = actiontype(P) @req discount(::P) @subreq ordered_actions(mdp) @req actionindex(::P, ::A) @req actions(::P, ::S) as = actions(mdp) a = first(as) # Need to be able to sample states @req sample_state(::P, ::typeof(solver.rng)) # Have different requirements depending on whether solver MDP is generative or explicit if solver.is_mdp_generative @req gen(::P, ::S, ::A, ::typeof(solver.rng)) else @req transition(::P, ::S, ::A) ss = sample_state(mdp, solver.rng) dist = transition(mdp, ss, a) D = typeof(dist) @req support(::D) end # Feature vector conversion must be defined either directly or by default (through convert_s) @subreq convert_featurevector(solver.fv_type, sample_state(mdp, solver.rng), mdp) end function POMDPs.solve(solver::GlobalApproximationValueIterationSolver, mdp::Union{MDP,POMDP}) @warn_requirements solve(solver,mdp) # Ensure that generative model has a non-zero number of samples if solver.is_mdp_generative @assert solver.n_generative_samples > 0 end # Solver parameters belres = solver.belres num_iterations = solver.num_iterations num_samples = solver.num_samples discount_factor = discount(mdp) gfa_type = typeof(solver.gfa) # Initialize the policy policy = GlobalApproximationValueIterationPolicy(mdp, solver) total_time = 0.0 iter_time = 0.0 temp_s = sample_state(mdp, solver.rng) state_dim = length(convert_featurevector(solver.fv_type, temp_s, mdp)) for iter = 1:num_iterations residual = 0.0 # Setup input and outputs for fit functions state_matrix = zeros(eltype(solver.fv_type), num_samples, state_dim) val_vector = zeros(eltype(solver.fv_type), num_samples) iter_time = @elapsed begin # Loop over the chosen number of samples for approximation # and compute the current value function estimate at each sample for i = 1:num_samples s = sample_state(mdp, solver.rng) pt = convert_featurevector(solver.fv_type, s, mdp) state_matrix[i,:] = pt sub_aspace = actions(mdp,s) if isterminal(mdp, s) val_vector[i] = 0.0 else old_util = value(policy, s) max_util = -Inf # Compute the approximate Q value for each action and choose the best for a in sub_aspace iaction = actionindex(mdp,a) u = 0.0 if solver.is_mdp_generative for j in 1:solver.n_generative_samples sp, r = @gen(:sp,:r)(mdp, s, a, solver.rng) u += r if !isterminal(mdp,sp) sp_feature = convert_featurevector(solver.fv_type, sp, mdp) u += discount_factor*compute_value(policy.gfa, sp_feature) end end u = u / solver.n_generative_samples else dist = transition(mdp,s,a) for (sp, p) in weighted_iterator(dist) p == 0.0 ? continue : nothing r = reward(mdp, s, a, sp) u += p*r # Only interpolate sp if it is non-terminal if !isterminal(mdp,sp) sp_feature = convert_featurevector(solver.fv_type, sp, mdp) u += p * (discount_factor*compute_value(policy.gfa, sp_feature)) end end end max_util = (u > max_util) ? u : max_util util_diff = abs(max_util - old_util) util_diff > residual ? (residual = util_diff) : nothing end #action val_vector[i] = max_util end end # Now fit! fit!(policy.gfa, state_matrix, val_vector) end # time total_time += iter_time solver.verbose ? @printf("[Iteration %-4d] residual: %10.3G | iteration runtime: %10.3f ms, (%10.3G s total)\n", iter, residual, iter_time*1000.0, total_time) : nothing residual < belres ? break : nothing end return policy end function POMDPs.value(policy::GlobalApproximationValueIterationPolicy, s::S) where S s_point = convert_featurevector(policy.fv_type, s, policy.mdp) val = compute_value(policy.gfa, s_point) return val end # Not explicitly stored in policy - extract from value function interpolation function POMDPs.action(policy::GlobalApproximationValueIterationPolicy, s::S) where S mdp = policy.mdp best_a_idx = -1 max_util = -Inf sub_aspace = actions(mdp,s) discount_factor = discount(mdp) for a in sub_aspace iaction = actionindex(mdp, a) u = value(policy,s,a) if u > max_util max_util = u best_a_idx = iaction end end return policy.action_map[best_a_idx] end function POMDPs.value(policy::GlobalApproximationValueIterationPolicy, s::S, a::A) where {S,A} mdp = policy.mdp discount_factor = discount(mdp) u = 0.0 # As in solve(), do different things based on whether # mdp is generative or explicit if policy.is_mdp_generative for j in 1:policy.n_generative_samples sp, r = @gen(:sp,:r)(mdp, s, a, solver.rng) sp_point = convert_featurevector(policy.fv_type, sp, mdp) u += r + discount_factor*compute_value(policy.gfa, sp_point) end u = u / policy.n_generative_samples else dist = transition(mdp,s,a) for (sp, p) in weighted_iterator(dist) p == 0.0 ? continue : nothing r = reward(mdp, s, a, sp) u += p*r # Only interpolate sp if it is non-terminal if !isterminal(mdp,sp) sp_point = convert_featurevector(policy.fv_type, sp, mdp) u += p*(discount_factor*compute_value(policy.gfa, sp_point)) end end end return u end
GlobalApproximationValueIteration
https://github.com/JuliaPOMDP/GlobalApproximationValueIteration.jl.git
[ "MIT" ]
0.2.3
16d2a15e95e265b590603f62c33612fd64c963c2
code
709
abstract type GlobalFunctionApproximator end """ fit!(gfa::GlobalFunctionApproximator, dataset_input::AbstractMatrix, dataset_output::AbstractVector) Fit the global function approximator to the dataset using some optimization method and a chosen loss function. """ function fit! end """ compute_value(gfa::GlobalFunctionApproximator, v::AbstractVector) Return the value of the function at some query point v, based on the global function approximator compute_value(gfa::GlobalFunctionApproximator, v_list::AbstractVector{V}) where V <: AbstractVector{Float64} Return the value of the function for a list of query points, based on the global function approximator """ function compute_value end
GlobalApproximationValueIteration
https://github.com/JuliaPOMDP/GlobalApproximationValueIteration.jl.git
[ "MIT" ]
0.2.3
16d2a15e95e265b590603f62c33612fd64c963c2
code
572
mutable struct LinearGlobalFunctionApproximator{W <: AbstractArray} <: GlobalFunctionApproximator weights::W end function fit!(lgfa::LinearGlobalFunctionApproximator, dataset_input::AbstractMatrix{T}, dataset_output::AbstractArray{T}) where T # TODO: Since we are ASSIGNING to weights here, does templating even matter? Does the struct even matter? lgfa.weights = llsq(dataset_input, dataset_output, bias=false) end function compute_value(lgfa::LinearGlobalFunctionApproximator, v::AbstractArray{T}) where T return dot(lgfa.weights, v) end
GlobalApproximationValueIteration
https://github.com/JuliaPOMDP/GlobalApproximationValueIteration.jl.git
[ "MIT" ]
0.2.3
16d2a15e95e265b590603f62c33612fd64c963c2
code
828
mutable struct NonlinearGlobalFunctionApproximator{M,O,L} <: GlobalFunctionApproximator model::M optimizer::O loss::L end function fit!(ngfa::NonlinearGlobalFunctionApproximator, dataset_input::AbstractMatrix{T}, dataset_output::AbstractArray{T}) where T # Create loss function with loss type loss(x, y) = ngfa.loss(ngfa.model(x), y) # NOTE : Minibatch update; 1 update to model weights # data = repeated((param(transpose(dataset_input)), param(transpose(dataset_output))), 1) data = repeated((transpose(dataset_input), transpose(dataset_output)), 1) Flux.train!(loss, params(ngfa.model), data, ngfa.optimizer) end function compute_value(ngfa::NonlinearGlobalFunctionApproximator, state_vector::AbstractArray{T}) where T return Flux.data(ngfa.model(state_vector))[1] end
GlobalApproximationValueIteration
https://github.com/JuliaPOMDP/GlobalApproximationValueIteration.jl.git
[ "MIT" ]
0.2.3
16d2a15e95e265b590603f62c33612fd64c963c2
code
284
using Revise using POMDPModels using POMDPs using POMDPTools using StaticArrays using Random using DiscreteValueIteration using GlobalApproximationValueIteration using Flux using Statistics using Test include("test/test_with_nonlinear_gfa.jl") include("test/test_with_linear_gfa.jl")
GlobalApproximationValueIteration
https://github.com/JuliaPOMDP/GlobalApproximationValueIteration.jl.git
[ "MIT" ]
0.2.3
16d2a15e95e265b590603f62c33612fd64c963c2
code
354
using POMDPModels using POMDPs using POMDPTools using StaticArrays using Statistics using Random using DiscreteValueIteration using GlobalApproximationValueIteration using Test Random.seed!(1234) @testset "all" begin @testset "integration" begin include("test_with_linear_gfa.jl") include("test_with_nonlinear_gfa.jl") end end
GlobalApproximationValueIteration
https://github.com/JuliaPOMDP/GlobalApproximationValueIteration.jl.git
[ "MIT" ]
0.2.3
16d2a15e95e265b590603f62c33612fd64c963c2
code
4271
#= Construct a 100 x 100 grid and run discreteVI on it. Also run global approx VI where any integral point in the grid can be sampled. Compare the values at the integer grid points. Confirm that the max difference reduces with increasing number of samples. =# # Feature vector conversion # For point (x,y), fv is (1 x y xy x^2 y^2) function GlobalApproximationValueIteration.convert_featurevector(::Type{SVector{10, Float64}}, s::GWPos, mdp::SimpleGridWorld) x = s[1] y = s[2] v = SVector{10, Float64}(1, x, y, x*y, x^2, y^2, x^3, x^2*y, x*y^2, y^3) return v end # Sample a specific integral point in the grid function GlobalApproximationValueIteration.sample_state(mdp::SimpleGridWorld, rng::RNG=Random.GLOBAL_RNG) where {RNG <: AbstractRNG} x = rand(rng, 1:mdp.size[1]) y = rand(rng, 1:mdp.size[2]) return GWPos(x, y) end function test_absolute_error() rng = MersenneTwister(1234) # Set solver and grid world parameters MAX_ITERS = 500 NUM_SAMPLES = 1000 SIZE_X = 5 SIZE_Y = 5 REWARD_COV_PROB = 0.4 rewards = Dict{GWPos, Float64}() for x = 1:SIZE_X for y = 1:SIZE_Y if rand(rng) < REWARD_COV_PROB rewards[GWPos(x, y)] = 1 end end end # Create the MDP for a typical grid world mdp = SimpleGridWorld(size=(SIZE_X, SIZE_Y), rewards=rewards) # Create the linear function approximation with 10 weight parameters, initialized to zero lin_gfa = LinearGlobalFunctionApproximator(zeros(10)) # Initialize the global approximation solver with the linear approximator and solve the MDP to obtain the policy gfa_solver = GlobalApproximationValueIterationSolver(lin_gfa, num_samples=NUM_SAMPLES, max_iterations=MAX_ITERS, verbose=true, fv_type=SVector{10, Float64}) gfa_policy = solve(gfa_solver, mdp) error_arr = Vector{Float64}(undef, 0) for state in states(mdp) full_val = value(policy, state) approx_val = value(gfa_policy, state) abs_diff = abs(full_val - approx_val) push!(error_arr, abs_diff) end @show mean(error_arr) @show maximum(error_arr) return (mean(error_arr) < 0.04 && maximum(error_arr) < 0.35) end function test_relative_error() rng = MersenneTwister(2378) # Attempt to approximate globally with N samples and M iterations. As N increases, the average error should decrease MAX_ITERS = 500 NUM_SAMPLES_LOW = 30 NUM_SAMPLES_HI = 1000 # Grid probabilities SIZE_X = 5 SIZE_Y = 5 REWARD_COV_PROB = 0.4 # Generate a block of reward states from 40,40 to 60,60 rewards = Dict{GWPos, Float64}() for x = 1:SIZE_X for y = 1:SIZE_Y if rand(rng) < REWARD_COV_PROB rewards[GWPos(x, y)] = 1 end end end # Create MDP mdp = SimpleGridWorld(size=(SIZE_X, SIZE_Y), rewards=rewards) lin_gfa_1 = LinearGlobalFunctionApproximator(zeros(10)) lin_gfa_2 = LinearGlobalFunctionApproximator(zeros(10)) solver_low = GlobalApproximationValueIterationSolver(lin_gfa_1; num_samples=NUM_SAMPLES_LOW, max_iterations=MAX_ITERS, verbose=true, fv_type=SVector{10, Float64}) solver_hi = GlobalApproximationValueIterationSolver(lin_gfa_2; num_samples=NUM_SAMPLES_HI, max_iterations=MAX_ITERS, verbose=true, fv_type=SVector{10, Float64}) policy_low = solve(solver_low, mdp) policy_hi = solve(solver_hi, mdp) # Now solve with dicrete VI solver = ValueIterationSolver(max_iterations=1000, verbose=true) policy = solve(solver, mdp) err_arr_low = Vector{Float64}(undef, 0) err_arr_hi = Vector{Float64}(undef, 0) for state in states(mdp) full_val = value(policy, state) approx_val_low = value(policy_low, state) approx_val_hi = value(policy_hi, state) push!(err_arr_low, abs(full_val - approx_val_low)) push!(err_arr_hi, abs(full_val - approx_val_hi)) end @show mean(err_arr_low), mean(err_arr_hi) @show maximum(err_arr_low), maximum(err_arr_hi) return (mean(err_arr_low) > mean(err_arr_hi) && maximum(err_arr_low) > maximum(err_arr_hi)) end # @test test_absolute_error() == true @test test_relative_error() == true
GlobalApproximationValueIteration
https://github.com/JuliaPOMDP/GlobalApproximationValueIteration.jl.git
[ "MIT" ]
0.2.3
16d2a15e95e265b590603f62c33612fd64c963c2
code
2510
# Sample a specific integral point in the grid function GlobalApproximationValueIteration.sample_state(mdp::SimpleGridWorld, rng::RNG=Random.GLOBAL_RNG) where {RNG <: AbstractRNG} x = rand(rng, 1:mdp.size[1]) y = rand(rng, 1:mdp.size[2]) return GWPos(x, y) end function test_against_full_grid() rng = MersenneTwister(2378) # Attempt to approximate globally with N samples and M iterations. As N increases, the average error should decrease MAX_ITERS = 100 NUM_SAMPLES_LOW = 50 NUM_SAMPLES_HI = 500 # Grid probabilities SIZE_X = 10 SIZE_Y = 10 REWARD_COV_PROB = 0.3 # Generate a block of reward states from 40,40 to 60,60 rewards = Dict{GWPos, Float64}() for x = 1:SIZE_X for y = 1:SIZE_Y if rand(rng) < REWARD_COV_PROB rewards[GWPos(x, y)] = 10 end end end # Create MDP mdp = SimpleGridWorld(size=(SIZE_X, SIZE_Y), rewards=rewards) # Define learning model model1 = Chain( Dense(2, 10, relu), Dense(10, 5, relu), Dense(5, 1)) model2 = Chain( Dense(2, 10, relu), Dense(10, 5, relu), Dense(5, 1)) opt = Adam(0.001) nonlin_gfa_1 = NonlinearGlobalFunctionApproximator(model1, opt, Flux.mse) nonlin_gfa_2 = NonlinearGlobalFunctionApproximator(model2, opt, Flux.mse) solver_low = GlobalApproximationValueIterationSolver(nonlin_gfa_1; num_samples=NUM_SAMPLES_LOW, max_iterations=MAX_ITERS, verbose=true) solver_hi = GlobalApproximationValueIterationSolver(nonlin_gfa_2; num_samples=NUM_SAMPLES_HI, max_iterations=MAX_ITERS, verbose=true) policy_low = solve(solver_low, mdp) policy_hi = solve(solver_hi, mdp) # Now solve with dicrete VI solver = ValueIterationSolver(max_iterations=1000, verbose=true) policy = solve(solver, mdp) total_err_low = 0.0 total_err_hi = 0.0 for state in states(mdp) full_val = value(policy, state) approx_val_low = value(policy_low, state) approx_val_hi = value(policy_hi, state) total_err_low += abs(full_val-approx_val_low) total_err_hi += abs(full_val-approx_val_hi) end avg_err_low = total_err_low / length(states(mdp)) avg_err_hi = total_err_hi / length(states(mdp)) @show avg_err_low @show avg_err_hi return (avg_err_low > avg_err_hi) end @test_broken test_against_full_grid() == true
GlobalApproximationValueIteration
https://github.com/JuliaPOMDP/GlobalApproximationValueIteration.jl.git
[ "MIT" ]
0.2.3
16d2a15e95e265b590603f62c33612fd64c963c2
docs
4547
[![Build status](https://github.com/JuliaPOMDP/GlobalApproximationValueIteration.jl/workflows/CI/badge.svg)](https://github.com/JuliaPOMDP/GlobalApproximationValueIteration.jl/actions) [![Coverage Status](https://codecov.io/gh/JuliaPOMDP/GlobalApproximationValueIteration.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/JuliaPOMDP/GlobalApproximationValueIteration.jl?branch=master) # GlobalApproximationValueIteration.jl This package implements the Global Approximation Value Iteration algorithm in Julia for solving Markov Decision Processes (MDPs) with global function approximation. It is functionally very similar to the previously released [LocalApproximationValueIteration.jl](https://github.com/JuliaPOMDP/LocalApproximationValueIteration.jl) and interested users can refer to its README for more details. The user should define the POMDP problem according to the API in [POMDPs.jl](https://github.com/JuliaPOMDP/POMDPs.jl). Examples of problem definitions can be found in [POMDPModels.jl](https://github.com/JuliaPOMDP/POMDPModels.jl). ## Installation You need to have [POMDPs.jl](https://github.com/JuliaPOMDP/POMDPs.jl) already and the JuliaPOMDP registry added (see the README of POMDPs.jl). Thereafter, you can add GlobalApproximationValueIteration from the package manager ```julia using Pkg Pkg.add("GlobalApproximationValueIteration") ``` ## How it Works This solver is one example of _Approximate Dynamic Programming_, which tries to find approximately optimal value functions and policies for large or continuous state spaces. As the name suggests, global approximation value iteration tries to approximate the value function over the entire state space using a compact representation. The quality of the approximation varies with the kind of function approximation scheme used; this repository can accommodate both linear (with feature vectors) and nonlinear schemes. Please see **Section 4.5.1** of the book [Decision Making Under Uncertainty : Theory and Application](https://dl.acm.org/citation.cfm?id=2815660) and **Chapter 3** of [Markov Decision Processes in Artificial Intelligence](https://books.google.co.in/books?hl=en&lr=&id=2J8_-O4-ABIC&oi=fnd&pg=PT8&dq=markov+decision+processes+in+AI&ots=mcxpyqiv0X&sig=w-gF6nzm3JxgutcslIbUDD0dAXY) for more. ## State Space Representation The Global Approximation solver needs two things in particular from the state space of the MDP. First, it should be able to sample a state from the state space (whether discrete or continuous). During value iteration, in each step, the solver will sample several states, estimate the value at them and try to fit the approximation scheme. Second, a state instance should be representable as a _feature vector_ which will be used for linear or non-linear function approximation. In the default case, the `feature` can just be the vector encoding of the state (see *State Space Representation* in the [README](https://github.com/JuliaPOMDP/LocalApproximationValueIteration.jl) of LocalApproximationValueIteration.jl for more on this). ## Usage Please refer to the [README](https://github.com/JuliaPOMDP/LocalApproximationValueIteration.jl) of LocalApproximationValueIteration.jl as the usage of the global variant is very similar to that one. A simple example is also provided in the `test/` folder for each of linear and nonliner function approximation. `POMDPs.jl` has a macro `@requirements_info` that determines the functions necessary to use some solver on some specific MDP model. Other than the typical methods required for approximate value iteration and state space representation mentioned above, the solver also requires a `GlobalFunctionApproximator` object (see `src/global_function_approximation.jl` for details on the interface). We have also implemented two examplar approximations, linear and non-linear. The following code snippet from `test/test_with_linear_gfa.jl` is the most relevant chunk of code for using the solver correctly. ```julia # Create the MDP for a typical grid world mdp = SimpleGridWorld(size=(SIZE_X, SIZE_Y), rewards=rewards) # Create the linear function approximation with 10 weight parameters, initialized to zero lin_gfa = LinearGlobalFunctionApproximator(zeros(10)) # Initialize the global approximation solver with the linear approximator and solve the MDP to obtain the policy gfa_solver = GlobalApproximationValueIterationSolver(lin_gfa, num_samples=NUM_SAMPLES, max_iterations=MAX_ITERS, verbose=true, fv_type=SVector{10, Float64}) gfa_policy = solve(gfa_solver, mdp) ```
GlobalApproximationValueIteration
https://github.com/JuliaPOMDP/GlobalApproximationValueIteration.jl.git
[ "MIT" ]
0.6.1
dfab74c3efb21c6df589f30f7bbe5b9b8dbbe3c9
code
184
using Documenter, RasterDataSources makedocs( sitename = "RasterDataSources.jl", checkdocs = :all, ) deploydocs( repo = "github.com/EcoJulia/RasterDataSources.jl.git", )
RasterDataSources
https://github.com/EcoJulia/RasterDataSources.jl.git
[ "MIT" ]
0.6.1
dfab74c3efb21c6df589f30f7bbe5b9b8dbbe3c9
code
2616
module RasterDataSources @doc let path = joinpath(dirname(@__DIR__), "README.md") include_dependency(path) read(path, String) end RasterDataSources using Dates, HTTP, URIs, ZipFile, ASCIIrasters, DelimitedFiles import JSON.Parser as JP export WorldClim, CHELSA, EarthEnv, AWAP, ALWB, SRTM, MODIS export BioClim, BioClimPlus, Climate, Weather, Elevation, LandCover, HabitatHeterogeneity export Future, CMIP5, CMIP6 export RCP26, RCP45, RCP60, RCP85 export SSP126, SSP245, SSP370, SSP585 export ModisProduct export ECO4ESIPTJPL,ECO4WUE,GEDI03,GEDI04_B,MCD12Q1,MCD12Q2,MCD15A2H, MCD15A3H,MCD19A3,MCD43A,MCD43A1,MCD43A4,MCD64A1,MOD09A1,MOD11A2,MOD13Q1, MOD14A2,MOD15A2H,MOD16A2,MOD17A2H,MOD17A3HGF,MOD21A2,MOD44B,MYD09A1, MYD11A2,MYD13Q1,MYD14A2,MYD15A2H,MYD16A2,MYD17A2H,MYD17A3HGF,MYD21A2, SIF005,SIF_ANN,VNP09A1,VNP09H1,VNP13A1,VNP15A2H,VNP21A2,VNP22Q2, ECO4ESIPTJPL, ECO4WUE, GEDI03, GEDI04_B, MCD12Q1, MCD12Q2, MCD15A2H, MCD15A3H, MCD19A3, MCD43A, MCD43A1, MCD43A4, MCD64A1, MOD09A1, MOD11A2, MOD13Q1, MOD14A2, MOD15A2H, MOD16A2, MOD17A2H, MOD17A3HGF, MOD21A2, MOD44B, MYD09A1, MYD11A2, MYD13Q1, MYD14A2, MYD15A2H, MYD16A2, MYD17A2H, MYD17A3HGF, MYD21A2, SIF005, SIF_ANN, VNP09A1, VNP09H1, VNP13A1, VNP15A2H, VNP21A2, VNP22Q2 # Climate models from CMIP5 (used in CHELSA) export ACCESS1, BNUESM, CCSM4, CESM1BGC, CESM1CAM5, CMCCCMS, CMCCCM, CNRMCM5, CSIROMk3, CanESM2, FGOALS, FIOESM, GFDLCM3, GFDLESM2G, GFDLESM2M, GISSE2HCC, GISSE2H, GISSE2RCC, GISSE2R, HadGEM2AO, HadGEM2CC, IPSLCM5ALR, IPSLCM5AMR, MIROCESMCHEM, MIROCESM, MIROC5, MPIESMLR, MPIESMMR, MRICGCM3, MRIESM1, NorESM1M, BCCCSM1, Inmcm4 # Climate models from CMIP6 (used in WorldClim) export BCCCSM2MR, CNRMCM61, CNRMESM21, CanESM5, GFDLESM4, IPSLCM6ALR, MIROCES2L, MIROC6, MRIESM2 # Climate models from CMIP6 (CHELSA) export UKESM, MPIESMHR export Values, Deciles export getraster include("interface.jl") include("types.jl") include("shared.jl") include("worldclim/shared.jl") include("worldclim/bioclim.jl") include("worldclim/climate.jl") include("worldclim/weather.jl") include("worldclim/elevation.jl") include("chelsa/shared.jl") include("chelsa/climate.jl") include("chelsa/bioclim.jl") include("chelsa/future.jl") include("earthenv/shared.jl") include("earthenv/landcover.jl") include("earthenv/habitatheterogeneity.jl") include("awap/awap.jl") include("alwb/alwb.jl") include("srtm/srtm.jl") include("modis/shared.jl") include("modis/products.jl") include("modis/utilities.jl") include("modis/examples.jl") end # module
RasterDataSources
https://github.com/EcoJulia/RasterDataSources.jl.git
[ "MIT" ]
0.6.1
dfab74c3efb21c6df589f30f7bbe5b9b8dbbe3c9
code
4445
# Exported """ getraster(source::Type, [layer]; kw...) Download raster layers `layers` from the data `source`, returning a `String` for a single layer, or a `NamedTuple` for a `Tuple` of layers. `getraster` provides a standardised interface to download data sources, and return the filename/s of the selected files. RasterDataSources.jl aims to standardise an API for downloading many kinds of raster files from many sources, that can be wrapped by other packages (such as Rasters.jl and SimpleSDMLayers.jl) in a simple, regular way. As much as possible it will move towards having less source-specific keywords wherever possible. Similar datasets will behave in the same way so that they can be used interchangeably in the same code. # Arguments - `source`: defines the [`RasterDataSource`](@ref) and (if it there is more than one) the specific [`RasterDataSet`](@ref) from which to download data. - `layer`: choose the named `Symbol`/s or numbered `Int`/s (for `BioClim`) layer/s of the data source. If `layer` is not passed, all layers will be downloaded, returning a `NamedTuple` of filenames. # Keywords Keyword arguments specify subsets of a data set, such as by date or resolution. As much as possible these are standardised for all sources where they are relevent. - `date`: `DateTime` date, range of dates, or tuple of start and end dates. Usually for weather datasets. - `month`: month or range of months to download for climatic datasets, as `Integer`s from 1 to 12. - `res`: spatial resolion of the file, as a `String` with units, e.g. "10m". # Return values The return value is either a single `String`, a `Tuple/Array` of `String`, or a `Tuple/Array` of `Tuple/Array` of `String` --- depending on the arguments. If multiple layers are specified, this may return multiple filenames. If multiple months or dates are specified, this may also return multiple filenames. Keyword arguments depend on the specific data source. They may modify the return value, following a pattern: - `month` keywords of `AbstractArray` will return a `Vector{String}` or `Vector{<:NamedTuple}`. - `date` keywords of `AbstractArray` will return a `Vector{String}` or `Vector{<:NamedTuple}`. - `date` keywords of `Tuple{start,end}` will take all the dates between the start and end dates as a `Vector{String}` or `Vector{<:NamedTuple}`. Where `date` and `month` keywords coexist, `Vector{Vector{String}}` of `Vector{Vector{NamedTuple}}` is the result. `date` ranges are always the outer `Vector`, `month` the inner `Vector` with `layer` tuples as the inner `NamedTuple`. No other keywords can be `Vector`. This schema may be added to in future for datasets with additional axes, but should not change for the existing `RasterDataSource` types. """ function getraster end """ getraster(T::Type, layers::Union{Tuple,Int,Symbol}; kw...) """ function getraster end # Not exported, but relatively consistent and stable # These should be used for consistency accross all sources """ rastername(source::Type, [layer]; kw...) Returns the name of the file, without downloading it. Arguments are the same as for `getraster` Returns a `String` or multiple `Strings`. """ function rastername end """ rasterpath(source::Type, [layer]; kw...) Returns the name of the file, without downloading it. Arguments are the same as for `getraster` Returns a `String` or multiple `Strings`. """ function rasterpath end """ rasterurl(source::Type, [layer]; kw...) If the file has a single url, returns it without downloading. Arguments are the same as for `getraster`. Returns a URIs.jl `URI` or mulitiple `URI`s. """ function rasterurl end """ zipname(source::Type, [layer]; kw...) If the url is a zipped file, returns its name. Arguments are as the same for `getraster` where possible. Returns a `String` or multiple `Strings`. """ function zipname end """ zippath(source::Type, [layer]; kw...) If the url is a zipped file, returns its path when downloaded. (This may not exist after extraction with `getraster`) Arguments are the same as for `getraster` where possible. Returns a `String` or multiple `Strings`. """ function zippath end """ zipurl(source::Type, [layer]; kw...) If the url is a zipped file, returns its zip path without downloading. Arguments are the same as for `getraster` where possible. Returns a URIs.jl `URI` or mulitiple `URI`s. """ function zipurl end
RasterDataSources
https://github.com/EcoJulia/RasterDataSources.jl.git
[ "MIT" ]
0.6.1
dfab74c3efb21c6df589f30f7bbe5b9b8dbbe3c9
code
2711
# Vector layers are allowed, but converted to `Tuple` immediatedly. function getraster(T::Type, layers::AbstractArray; kw...) getraster(T, (layers...,); kw...) end # Without a layers argument, all layers are downloaded getraster(T::Type; kw...) = getraster(T, layers(T); kw...) """ getraster_keywords(::Type{<:RasterDataSource}) Trait for defining data source keywords, which returns a `NTuple{N,Symbol}`. The default fallback method returns `()`. """ getraster_keywords(::Type{<:RasterDataSource}) = () # Default assumption for `layerkeys` is that the layer # is the same as the layer key. This is not the case for # e.g. BioClim, where layers can be specified with Int. layerkeys(T::Type) = layers(T) layerkeys(T::Type, layers) = layers has_matching_layer_size(T) = true has_constant_dims(T) = true has_constant_metadata(T) = true date_sequence(T::Type, dates; kw...) = date_sequence(date_step(T), dates) date_sequence(step, date) = _date_sequence(step, date) _date_sequence(step, dates::AbstractArray) = dates _date_sequence(step, dates::NTuple{2}) = first(dates):step:last(dates) _date_sequence(step, date) = date:step:date function _maybe_download(uri::URI, filepath, headers = []) if !isfile(filepath) mkpath(dirname(filepath)) @info "Starting download for $uri" try HTTP.download(string(uri), filepath, headers) catch e # Remove anything that was downloaded before the error isfile(filepath) && rm(filepath) throw(e) end end filepath end function rasterpath() if haskey(ENV, "RASTERDATASOURCES_PATH") && isdir(ENV["RASTERDATASOURCES_PATH"]) ENV["RASTERDATASOURCES_PATH"] else error("You must set `ENV[\"RASTERDATASOURCES_PATH\"]` to a path in your system") end end function delete_rasters() # May need an "are you sure"? - this could be a lot of GB of data to lose ispath(rasterpath()) && rm(rasterpath()) end function delete_rasters(T::Type) ispath(rasterpath(T)) && rm(rasterpath(T)) end _check_res(T, res) = res in resolutions(T) || throw(ArgumentError("Resolution $res not in $(resolutions(T))")) _check_layer(T, layer) = layer in layers(T) || throw(ArgumentError("Layer $layer not in $(layers(T))")) _date2string(t, date) = Dates.format(date, _dateformat(t)) _string2date(t, d::AbstractString) = Date(d, _dateformat(t)) # Inner map over layers Tuple - month/date maps earlier # so we get Vectors of NamedTuples of filenames function _map_layers(T, layers, args...; kw...) filenames = map(layers) do l _getraster(T, l, args...; kw...) end keys = layerkeys(T, layers) return NamedTuple{keys}(filenames) end
RasterDataSources
https://github.com/EcoJulia/RasterDataSources.jl.git
[ "MIT" ]
0.6.1
dfab74c3efb21c6df589f30f7bbe5b9b8dbbe3c9
code
11702
""" RasterDataSource Abstract supertype for raster data collections. """ abstract type RasterDataSource end """ RasterDataSet Abstract supertype for datasets that belong to a [`RasterDataSource`](@ref). """ abstract type RasterDataSet end """ BioClim <: RasterDataSet BioClim datasets. Usually containing layers from `1:19`. These can also be accessed with `:bioX`, e.g. `:bio5`. They do not usually use `month` or `date` keywords, but may use `date` in past/future scenarios. Currently implemented for WorldClim and CHELSA as `WorldClim{BioClim}`, `CHELSA{BioClim}` and `CHELSA{Future{BioClim, args..}}`. See the [`getraster`](@ref) docs for implementation details. """ struct BioClim <: RasterDataSet end # Bioclim has standardised layers for all data sources layers(::Type{BioClim}) = values(bioclim_lookup) layerkeys(T::Type{BioClim}) = keys(bioclim_lookup) layerkeys(T::Type{BioClim}, layer) = bioclim_key(layer) layerkeys(T::Type{BioClim}, layers::Tuple) = map(l -> bioclim_key(l), layers) const bioclim_lookup = ( bio1 = 1, bio2 = 2, bio3 = 3, bio4 = 4, bio5 = 5, bio6 = 6, bio7 = 7, bio8 = 8, bio9 = 9, bio10 = 10, bio11 = 11, bio12 = 12, bio13 = 13, bio14 = 14, bio15 = 15, bio16 = 16, bio17 = 17, bio18 = 18, bio19 = 19, ) # We allow a range of bioclim keys, as they are listed with # a lot of variants on CHELSA and WorldClim bioclim_key(k::Symbol) = bioclim_key(string(k)) bioclim_key(k::AbstractString) = Symbol(replace(lowercase(k), "_" => "")) bioclim_key(k::Integer) = keys(bioclim_lookup)[k] bioclim_int(k::Integer) = k bioclim_int(k::Symbol) = bioclim_lookup[bioclim_key(k)] """ BioClimPlus <: RasterDataSet Extended BioClim datasets, available from CHELSA. More information on the CHELSA website: https://chelsa-climate.org/exchelsa-extended-bioclim/ Some of these are available as average annual maximum, minimum, mean, and range. Others have a single value, more like the regular BioClim variables. They do not usually use `month` or `date` keywords, but may use `date` in past/future scenarios. Currently implemented for CHELSA as `CHELSA{BioClim}` and `CHELSA{Future{BioClim, args..}}`, specifying layer names as `Symbol`s. See the [`getraster`](@ref) docs for implementation details. """ struct BioClimPlus <: RasterDataSet end const _BIOCLIMPLUS_MONTHLY = vec([Symbol("$(b)_$(m)") for b in (:hurs, :clt, :sfcWind, :vpd, :rsds, :pet_penman, :cmi), m in [:max, :min, :mean, :range]]) const _BIOCLIMPLUS_GDD = vec([Symbol("$b$d") for b in (:gdd, :gddlgd, :gdgfgd, :ngd), d in [0, 5, 10]]) const _BIOCLIMPLUS_OTHERS = (:fcf, :fgd, :lgd, :scd, :gsl, :gst, :gsp, :npp, :swb, :swe) const BIOCLIMPLUS_LAYERS = [ collect(layerkeys(BioClim)) _BIOCLIMPLUS_MONTHLY; _BIOCLIMPLUS_GDD; collect(_BIOCLIMPLUS_OTHERS); [Symbol("kg$i") for i in 0:5]; ] const BIOCLIMPLUS_LAYERS_FUTURE = [ collect(layerkeys(BioClim)); _BIOCLIMPLUS_GDD; collect(filter(!=(:swb), _BIOCLIMPLUS_OTHERS)) [Symbol("kg$i") for i in 0:5]; ] layers(::Type{BioClimPlus}) = BIOCLIMPLUS_LAYERS """ Climate <: RasterDataSet Climate datasets. These are usually months of the year, not specific dates, and use a `month` keyword in `getraster`. They also use `date` in past/future scenarios. Currently implemented for WorldClim and CHELSA as `WorldClim{Climate}`, `CHELSA{Climate}` and `CHELSA{Future{Climate, args..}}`. See the [`getraster`](@ref) docs for implementation details. """ struct Climate <: RasterDataSet end months(::Type{Climate}) = ntuple(identity, Val{12}) """ Weather <: RasterDataSet Weather datasets. These are usually large time-series of specific dates, and use a `date` keyword in `getraster`. Currently implemented for WorldClim and CHELSA as `WorldClim{Weather}`, and `CHELSA{Weather}` See the [`getraster`](@ref) docs for implementation details. """ struct Weather <: RasterDataSet end """ Elevation <: RasterDataSet Elevation datasets. Currently implemented for WorldClim as `WorldClim{Elevation}`. See the [`getraster`](@ref) docs for implementation details. """ struct Elevation <: RasterDataSet end """ LandCover <: RasterDataSet Land-cover datasets. Currently implemented for EarthEnv as `EarchEnv{LandCover}`. See the [`getraster`](@ref) docs for implementation details. """ struct LandCover{X} <: RasterDataSet end """ HabitatHeterogeneity <: RasterDataSet Habitat heterogeneity datasets. Currently implemented for EarchEnv as `EarchEnv{HabitatHeterogeneity}`. See the [`getraster`](@ref) docs for implementation details. """ struct HabitatHeterogeneity <: RasterDataSet end """ ClimateModel Abstract supertype for climate models use in [`Future`](@ref) datasets. """ abstract type ClimateModel end struct ACCESS1 <: ClimateModel end struct BNUESM <: ClimateModel end struct CCSM4 <: ClimateModel end struct CESM1BGC <: ClimateModel end struct CESM1CAM5 <: ClimateModel end struct CMCCCMS <: ClimateModel end struct CMCCCM <: ClimateModel end struct CNRMCM5 <: ClimateModel end struct CSIROMk3 <: ClimateModel end struct CanESM2 <: ClimateModel end struct FGOALS <: ClimateModel end struct FIOESM <: ClimateModel end struct GFDLCM3 <: ClimateModel end struct GFDLESM2G <: ClimateModel end struct GFDLESM2M <: ClimateModel end struct GISSE2HCC <: ClimateModel end struct GISSE2H <: ClimateModel end struct GISSE2RCC <: ClimateModel end struct GISSE2R <: ClimateModel end struct HadGEM2AO <: ClimateModel end struct HadGEM2CC <: ClimateModel end struct IPSLCM5ALR <: ClimateModel end struct IPSLCM5AMR <: ClimateModel end struct MIROCESMCHEM <: ClimateModel end struct MIROCESM <: ClimateModel end struct MIROC5 <: ClimateModel end struct MPIESMLR <: ClimateModel end struct MPIESMMR <: ClimateModel end struct MRICGCM3 <: ClimateModel end struct MRIESM1 <: ClimateModel end struct NorESM1M <: ClimateModel end struct BCCCSM1 <: ClimateModel end struct Inmcm4 <: ClimateModel end struct BCCCSM2MR <: ClimateModel end struct CNRMCM61 <: ClimateModel end struct CNRMESM21 <: ClimateModel end struct CanESM5 <: ClimateModel end struct GFDLESM4 <: ClimateModel end struct IPSLCM6ALR <: ClimateModel end struct MIROCES2L <: ClimateModel end struct MIROC6 <: ClimateModel end struct MRIESM2 <: ClimateModel end struct UKESM <: ClimateModel end struct MPIESMHR <: ClimateModel end """ CMIPphase Abstract supertype for phases of the CMIP, the Coupled Model Intercomparison Project. Subtypes are `CMIP5` and `CMIP6`. """ abstract type CMIPphase end """ CMIP5 <: CMIPphase The Coupled Model Intercomparison Project, Phase 5. """ struct CMIP5 <: CMIPphase end """ CMIP6 <: CMIPphase The Coupled Model Intercomparison Project, Phase 6. """ struct CMIP6 <: CMIPphase end """ ClimateScenario Abstract supertype for scenarios used in [`CMIPphase`](@ref) models. """ abstract type ClimateScenario end """ RepresentativeConcentrationPathway Abstract supertype for Representative Concentration Pathways (RCPs) for [`CMIP5`](@ref). Subtypes are: `RCP26`, `RCP45`, `RCP60`, `RCP85` """ abstract type RepresentativeConcentrationPathway <: ClimateScenario end struct RCP26 <: RepresentativeConcentrationPathway end struct RCP45 <: RepresentativeConcentrationPathway end struct RCP60 <: RepresentativeConcentrationPathway end struct RCP85 <: RepresentativeConcentrationPathway end """ SharedSocioeconomicPathway Abstract supertype for Shared Socio-economic Pathways (SSPs) for [`CMIP6`](@ref). Subtypes are: `SSP126`, `SSP245`, SSP370`, SSP585` """ abstract type SharedSocioeconomicPathway <: ClimateScenario end struct SSP126 <: SharedSocioeconomicPathway end struct SSP245 <: SharedSocioeconomicPathway end struct SSP370 <: SharedSocioeconomicPathway end struct SSP585 <: SharedSocioeconomicPathway end """ Future{<:RasterDataSet,<:CMIPphase,<:ClimateModel,<:ClimateScenario} Future climate datasets specified with a dataset, phase, model, and scenario. ## Type Parameters #### `RasterDataSet` Currently [`BioClim`](@ref) and [`Climate`](@ref) are implemented for the [`CHELSA`](@ref) data source. #### `CMIPphase` Can be either [`CMIP5`](@ref) or [`CMIP6`](@ref). #### `ClimateModel` Climate models can be chosen from: `ACCESS1`, `BNUESM`, `CCSM4`, `CESM1BGC`, `CESM1CAM5`, `CMCCCMS`, `CMCCCM`, `CNRMCM5`, `CSIROMk3`, `CanESM2`, `FGOALS`, `FIOESM`, `GFDLCM3`, `GFDLESM2G`, `GFDLESM2M`, `GISSE2HCC`, `GISSE2H`, `GISSE2RCC`, `GISSE2R`, `HadGEM2AO`, `HadGEM2CC`, `IPSLCM5ALR`, `IPSLCM5AMR`, `MIROCESMCHEM`, `MIROCESM`, `MIROC5`, `MPIESMLR`, `MPIESMMR`, `MRICGCM3`, `MRIESM1`, `NorESM1M`, `BCCCSM1`, `Inmcm4`, `BCCCSM2MR`, `CNRMCM61`, `CNRMESM21`, `CanESM5`, `MIROCES2L`, `MIROC6` for CMIP5; `UKESM`, `MPIESMHR` `IPSLCM6ALR`, `MRIESM2`, `GFDLESM4` for `CMIP6`. #### `ClimateScenario` CMIP5 Climate scenarios are all [`RepresentativeConcentrationPathway`](@ref) and can be chosen from: `RCP26`, `RCP45`, `RCP60`, `RCP85` CMIP6 Climate scenarios are all [`SharedSocioeconomicPathway`](@ref) and can be chosen from: `SSP126`, `SSP245`, `SSP370`, `SSP585` However, note that not all climate scenarios are available for all models. ## Example ```jldoctest future using RasterDataSources dataset = Future{BioClim, CMIP5, BNUESM, RCP45} # output Future{BioClim, CMIP5, BNUESM, RCP45} ``` Currently `Future` is only implented for `CHELSA` ```jldoctest future datasource = CHELSA{Future{BioClim, CMIP5, BNUESM, RCP45}} ``` """ struct Future{D<:RasterDataSet,C<:CMIPphase,M<:ClimateModel,S<:ClimateScenario} end _dataset(::Type{<:Future{D}}) where D = D _dataset(::Type{<:Future{BioClimPlus}}) = BioClim _phase(::Type{<:Future{<:Any,P}}) where P = P _model(::Type{<:Future{<:Any,<:Any,M}}) where M = M _scenario(::Type{<:Future{<:Any,<:Any,<:Any,S}}) where S = S layers(::Type{<:Future{BioClimPlus}}) = BIOCLIMPLUS_LAYERS_FUTURE """ ModisProduct <: RasterDataSet Abstract supertype for [`MODIS`](@ref)/VIIRS products. # Usage Some commonly used products are `MOD13Q1` (250m resolution MODIS vegetation indices) and `VNP13A1` (500m resolution VIIRS vegetation indices). Refer to the [MODIS documentation](https://modis.ornl.gov/documentation.html) for detailed product information. """ abstract type ModisProduct <: RasterDataSet end struct ECO4ESIPTJPL <: ModisProduct end struct ECO4WUE <: ModisProduct end struct GEDI03 <: ModisProduct end struct GEDI04_B <: ModisProduct end struct MCD12Q1 <: ModisProduct end struct MCD12Q2 <: ModisProduct end struct MCD15A2H <: ModisProduct end struct MCD15A3H <: ModisProduct end struct MCD19A3 <: ModisProduct end struct MCD43A <: ModisProduct end struct MCD43A1 <: ModisProduct end struct MCD43A4 <: ModisProduct end struct MCD64A1 <: ModisProduct end struct MOD09A1 <: ModisProduct end struct MOD11A2 <: ModisProduct end struct MOD13Q1 <: ModisProduct end struct MOD14A2 <: ModisProduct end struct MOD15A2H <: ModisProduct end struct MOD16A2 <: ModisProduct end struct MOD17A2H <: ModisProduct end struct MOD17A3HGF <: ModisProduct end struct MOD21A2 <: ModisProduct end struct MOD44B <: ModisProduct end struct MYD09A1 <: ModisProduct end struct MYD11A2 <: ModisProduct end struct MYD13Q1 <: ModisProduct end struct MYD14A2 <: ModisProduct end struct MYD15A2H <: ModisProduct end struct MYD16A2 <: ModisProduct end struct MYD17A2H <: ModisProduct end struct MYD17A3HGF <: ModisProduct end struct MYD21A2 <: ModisProduct end struct SIF005 <: ModisProduct end struct SIF_ANN <: ModisProduct end struct VNP09A1 <: ModisProduct end struct VNP09H1 <: ModisProduct end struct VNP13A1 <: ModisProduct end struct VNP15A2H <: ModisProduct end struct VNP21A2 <: ModisProduct end struct VNP22Q2 <: ModisProduct end
RasterDataSources
https://github.com/EcoJulia/RasterDataSources.jl.git
[ "MIT" ]
0.6.1
dfab74c3efb21c6df589f30f7bbe5b9b8dbbe3c9
code
5924
const ALWB_URI = URI(scheme="http", host="www.bom.gov.au", path="/jsp/awra/thredds/fileServer/AWRACMS") abstract type DataMode end """ Values <: DataMode Get the dataset as regular measured values. """ struct Values <: DataMode end """ Deciles <: DataMode Get the dataset in relative deciles. """ struct Deciles <: DataMode end # Docs below struct ALWB{M<:DataMode,D<:Union{Day,Month,Year}} <: RasterDataSource end layers(::Type{<:ALWB}) = ( :rain_day, :s0_pct, :ss_pct, :sd_pct, :sm_pct, :qtot, :etot, :e0, :ma_wet, :pen_pet, :fao_pet, :asce_pet, :msl_wet, :dd ) # Days are in 1 year nc files date_step(::Type{<:ALWB{<:Any,Day}}) = Year(1) # Months and years are in single files date_step(::Type{<:ALWB{<:Any,Month}}) = Year(100) date_step(::Type{<:ALWB{<:Any,Year}}) = Year(100) has_constant_dims(::Type{<:ALWB}) = false @doc """ ALWB{Union{Deciles,Values},Union{Day,Month,Year}} <: RasterDataSource Data from the Australian Landscape Water Balance (ALWB) data source. See: [www.bom.gov.au/water/landscape](http://www.bom.gov.au/water/landscape) The dataset contains NetCDF files. They have a time dimension so that multiple dates are stored in each file. The available layers are: `$(layers(ALWB))`, available in daily, monthly and annual resolutions, and as `Values` or relative `Deciles`. `getraster` for `ALWB` must use a `date` keyword to specify the date to download. See the [`getraster`](@ref) docs for implementation details. """ ALWB # http://www.bom.gov.au/jsp/awra/thredds/fileServer/AWRACMS/values/day/rain_day_2017.nc # Precipiation = "rain_day" # SoilMoisture_Upper = "s0_pct" # http://www.bom.gov.au/jsp/awra/thredds/fileServer/AWRACMS/values/day/ss_pct_2017.nc # SoilMoisture_Lower = "ss_pct" # http://www.bom.gov.au/jsp/awra/thredds/fileServer/AWRACMS/values/day/sd_pct_2017.nc # SoilMoisture_Deep = "sd_pct" # http://www.bom.gov.au/jsp/awra/thredds/fileServer/AWRACMS/values/day/sm_pct_2017.nc # SoilMoisture_RootZone = "sm_pct" # http://www.bom.gov.au/jsp/awra/thredds/fileServer/AWRACMS/values/day/qtot_2017.nc # Runoff = "qtot" # http://www.bom.gov.au/jsp/awra/thredds/fileServer/AWRACMS/values/day/etot_2017.nc # Evapotrans_Actual = "etot" # http://www.bom.gov.au/jsp/awra/thredds/fileServer/AWRACMS/values/day/e0_2017.nc # Evapotrans_Potential_Landscape = "e0" # http://www.bom.gov.au/jsp/awra/thredds/fileServer/AWRACMS/values/day/ma_wet_2017.nc # Evapotrans_Potential_Areal = "ma_wet" # http://www.bom.gov.au/jsp/awra/thredds/fileServer/AWRACMS/values/day/pen_pet_2017.nc # Evapotrans_Potential_SyntheticPan = "pen_pet" # http://www.bom.gov.au/jsp/awra/thredds/fileServer/AWRACMS/values/day/fao_pet_2017.nc # Evapotrans_RefCrop_Short = "fao_pet" # http://www.bom.gov.au/jsp/awra/thredds/fileServer/AWRACMS/values/day/asce_pet_2017.nc # Evapotrans_RefCrop_Tall = "asce_pet" # http://www.bom.gov.au/jsp/awra/thredds/fileServer/AWRACMS/values/day/etot_2017.nc # http://www.bom.gov.au/jsp/awra/thredds/fileServer/AWRACMS/values/day/msl_wet_2017.nc # Evaporation_OpenWater = "msl_wet" # http://www.bom.gov.au/jsp/awra/thredds/fileServer/AWRACMS/values/day/dd_2017.nc # DeepDrainage = "dd" """ getraster(source::Type{<:ALWB{Union{Deciles,Values},Union{Day,Month,Year}}}, [layer]; date) Download [`ALWB`](@ref) weather data from [www.bom.gov.au/water/landscape](http://www.bom.gov.au/water/landscape) as values or deciles with timesteps of `Day`, `Month` or `Year`. # Arguments - `layer`: `Symbol` or `Tuple` of `Symbol` from `$(layers(ALWB))`. Without a `layer` argument, all layers will be downloaded, and a `NamedTuple` of paths returned. # Keywords - `date`: a `DateTime`, `AbstractVector` of `DateTime` or a `Tuple` of start and end dates. For multiple dates, a `Vector` of multiple filenames will be returned. ALWB is available with a daily, monthly, and yearly, timestep. # Example This will return the file containing annual averages, including your date: ```julia julia> getraster(ALWB{Values,Year}, :ss_pct; date=Date(2001, 2)) "/your/RASTERDATASOURCES_PATH/ALWB/values/month/ss_pct.nc" ``` Returns the filepath/s of the downloaded or pre-existing files. """ function getraster(T::Type{<:ALWB}, layers::Union{Tuple,Symbol}; date) _getraster(T, layers, date) end getraster_keywords(::Type{<:ALWB}) = (:date,) function _getraster(T::Type{<:ALWB{M,P}}, layers, dates::Tuple) where {M,P} _getraster(T, layers, date_sequence(T, dates)) end function _getraster(T::Type{<:ALWB}, layers, dates::AbstractArray) _getraster.(T, Ref(layers), dates) end function _getraster(T::Type{<:ALWB}, layers::Tuple, date::Dates.TimeType) _map_layers(T, layers, date) end function _getraster(T::Type{<:ALWB}, layer::Symbol, date::Dates.TimeType) _check_layer(T, layer) mkpath(rasterpath(T)) url = rasterurl(T, layer; date=date) path = rasterpath(T, layer; date=date) _maybe_download(url, path) path end rastername(T::Type{<:ALWB{M,P}}, layer; date) where {M,P} = string(layer, _pathsegment(P, date), ".nc") rasterpath(::Type{ALWB}) = joinpath(rasterpath(), "ALWB") rasterpath(::Type{ALWB{M,P}}) where {M,P} = joinpath(joinpath(rasterpath(), "ALWB"), map(_pathsegment, (M, P))...) rasterpath(T::Type{<:ALWB}, layer; date=nothing) = joinpath(rasterpath(T), rastername(T, layer; date)) rasterurl(T::Type{<:ALWB{M,P}}, layer; date) where {M,P} = joinpath(ALWB_URI, _pathsegments(T)..., rastername(T, layer; date)) # Utility methods _pathsegments(::Type{ALWB{M,P}}) where {M,P} = _pathsegment(M), _pathsegment(P) _pathsegment(::Type{Values}) = "values" _pathsegment(::Type{Deciles}) = "deciles" _pathsegment(::Type{Day}) = "day" _pathsegment(::Type{Month}) = "month" _pathsegment(::Type{Year}) = "year" # Days are in whole-year files _pathsegment(::Type{Day}, date) = "_" * string(year(date)) # Months and years are all in one file _pathsegment(::Type{<:Union{Year,Month}}, date) = ""
RasterDataSources
https://github.com/EcoJulia/RasterDataSources.jl.git
[ "MIT" ]
0.6.1
dfab74c3efb21c6df589f30f7bbe5b9b8dbbe3c9
code
3824
struct AWAP <: RasterDataSource end layers(::Type{AWAP}) = (:solar, :rainfall, :vprpress09, :vprpress15, :tmin, :tmax) date_step(::Type{<:AWAP}) = Day(1) # AWAP files dont all have matching extents. has_matching_layer_size(::Type{<:AWAP}) = false @doc """ AWAP <: RasterDataSource Daily weather data from the Australian Water Availability Project, developed by CSIRO. See: [www.csiro.au/awap](http://www.csiro.au/awap/) The available layers are: `$(layers(AWAP))`. """ AWAP const AWAP_PATHSEGMENTS = ( solar = ("solar", "solarave", "daily"), rainfall = ("rainfall", "totals", "daily"), vprpress09 = ("vprp", "vprph09", "daily"), vprpress15 = ("vprp", "vprph15", "daily"), tmin = ("temperature", "minave", "daily"), tmax = ("temperature", "maxave", "daily"), ) # Add ndvi monthly? ndvi, ndviave, month """ getraster(source::Type{AWAP}, [layer]; date) Download data from the [`AWAP`](@ref) weather dataset, from [www.csiro.au/awap](http://www.csiro.au/awap/). The AWAP dataset contains ASCII `.grid` files. # Arguments - `layer` `Symbol` or `Tuple` of `Symbol` for `layer`s in `$(layers(AWAP))`. Without a `layer` argument, all layers will be downloaded, and a `NamedTuple` of paths returned. # Keywords - `date`: a `DateTime`, `AbstractVector` of `DateTime` or a `Tuple` of start and end dates. For multiple dates, A `Vector` of multiple filenames will be returned. AWAP is available with a daily timestep. # Example Download rainfall for the first month of 2001: ```julia julia> getraster(AWAP, :rainfall; date=Date(2001, 1, 1):Day(1):Date(2001, 1, 31)) 31-element Vector{String}: "/your/path/AWAP/rainfall/totals/20010101.grid" "/your/path/AWAP/rainfall/totals/20010102.grid" ... "/your/path/AWAP/rainfall/totals/20010131.grid" ``` Returns the filepath/s of the downloaded or pre-existing files. """ getraster(T::Type{AWAP}, layer::Union{Tuple,Symbol}; date) = _getraster(T, layer, date) getraster_keywords(::Type{<:AWAP}) = (:date,) function _getraster(T::Type{AWAP}, layer::Union{Tuple,Symbol}, dates::Tuple{<:Any,<:Any}) _getraster(T, layer, date_sequence(T, dates)) end function _getraster(T::Type{AWAP}, layers::Union{Tuple,Symbol}, dates::AbstractArray) _getraster.(T, Ref(layers), dates) end function _getraster(T::Type{<:AWAP}, layers::Tuple, date::Dates.TimeType) _map_layers(T, layers, date) end function _getraster(T::Type{AWAP}, layer::Symbol, date::Dates.TimeType) _check_layer(T, layer) mkpath(_rasterpath(T, layer)) raster_path = rasterpath(T, layer; date=date) if !isfile(raster_path) zip_path = zippath(T, layer; date=date) _maybe_download(zipurl(T, layer; date=date), zip_path) run(`uncompress $zip_path -f`) end return raster_path end rasterpath(T::Type{AWAP}) = joinpath(rasterpath(), "AWAP") rasterpath(T::Type{AWAP}, layer; date::Dates.AbstractTime) = joinpath(_rasterpath(T, layer), rastername(T, layer; date)) _rasterpath(T::Type{AWAP}, layer) = joinpath(rasterpath(T), AWAP_PATHSEGMENTS[layer][1:2]...) rastername(T::Type{AWAP}, layer; date::Dates.AbstractTime) = joinpath(_date2string(T, date) * ".grid") function zipurl(T::Type{AWAP}, layer; date) s = AWAP_PATHSEGMENTS[layer] d = _date2string(T, date) # The actual zip name has the date twice, which is weird. # So we getraster in to a different name as there no output # name flages for `uncompress`. It's ancient. uri = URI(scheme="http", host="www.bom.gov.au", path="/web03/ncc/www/awap") joinpath(uri, s..., "grid/0.05/history/nat/$d$d.grid.Z") end zipname(T::Type{AWAP}, layer; date) = _date2string(T, date) * ".grid.Z" zippath(T::Type{AWAP}, layer; date) = joinpath(_rasterpath(T, layer), zipname(T, layer; date)) _dateformat(::Type{AWAP}) = DateFormat("yyyymmdd")
RasterDataSources
https://github.com/EcoJulia/RasterDataSources.jl.git
[ "MIT" ]
0.6.1
dfab74c3efb21c6df589f30f7bbe5b9b8dbbe3c9
code
4425
layers(::Type{CHELSA{BioClim}}) = layers(BioClim) layers(::Type{CHELSA{BioClimPlus}}) = layers(BioClimPlus) layerkeys(::Type{CHELSA{BioClim}}, args...) = layerkeys(BioClim, args...) layerkeys(::Type{CHELSA{BioClimPlus}}, args...) = layerkeys(BioClimPlus, args...) """ getraster(source::Type{CHELSA{BioClim}}, [layer]; version = 2, [patch]) => Union{Tuple,String} Download [`CHELSA`](@ref) [`BioClim`](@ref) data from [chelsa-climate.org](https://chelsa-climate.org/). # Arguments - `layer`: `Integer` or tuple/range of `Integer` from `$(layers(BioClim))`, or `Symbol`s form `$(layerkeys(BioClim))`. Without a `layer` argument, all layers will be downloaded, and a `NamedTuple` of paths returned. # Keyword arguments $CHELSA_KEYWORDS Returns the filepath/s of the downloaded or pre-existing files. """ getraster( T::Type{CHELSA{BioClim}}, layer::Union{Tuple,Int,Symbol}; version::Int = 2, patch::Int = latest_patch(T, version)) = _getraster(T, layer, version, patch) _getraster(T::Type{CHELSA{BioClim}}, layers::Tuple, version, patch) = _map_layers(T, layers, version, patch) _getraster(T::Type{CHELSA{BioClim}}, layer::Symbol, version, patch) = _getraster(T, bioclim_int(layer), version, patch) function _getraster(T::Type{CHELSA{BioClim}}, layer::Integer, version, patch) _check_layer(T, layer) path = rasterpath(T, layer; version, patch) url = rasterurl(T, layer; version, patch) CHELSA_warn_version(T, layer, version, patch, path) return _maybe_download(url, path) end getraster_keywords(::Type{<:CHELSA{BioClim}}) = (:version,:patch) function rastername(::Type{CHELSA{BioClim}}, layer::Integer; version::Int = 2, patch = latest_patch(CHELSA, version)) if version == 1 "CHELSA_bio10_$(lpad(layer, 2, "0")).tif" elseif version == 2 "CHELSA_bio$(layer)_1981-2010_V.2.$patch.tif" else CHELSA_invalid_version(version) end end rasterpath(::Type{CHELSA{BioClim}}) = joinpath(rasterpath(CHELSA), "BioClim") rasterpath(T::Type{CHELSA{BioClim}}, layer::Integer; version = 2, patch = latest_patch(CHELSA, version)) = joinpath(rasterpath(T), rastername(T, layer; version, patch)) function rasterurl(::Type{CHELSA{BioClim}}; version) if version == 1 joinpath(rasterurl(CHELSA, version), "climatologies/") elseif version == 2 joinpath(rasterurl(CHELSA, version), "climatologies/1981-2010/") else CHELSA_invalid_version(version) end end rasterurl(T::Type{CHELSA{BioClim}}, layer::Integer; version = 2, patch = latest_patch(CHELSA, version)) = joinpath(rasterurl(T; version), "bio", rastername(T, layer; version, patch)) ### Bioclim+ """ getraster(source::Type{CHELSA{BioClim}}, [layer]; version = 2, [patch]) => Union{Tuple,String} Download [`CHELSA`](@ref) [`BioClim`](@ref) data from [chelsa-climate.org](https://chelsa-climate.org/). # Arguments - `layer`: iterable of `Symbol`s from `$(layerkeys(BioClimPlus))`. Without a `layer` argument, all layers will be downloaded, and a `NamedTuple` of paths returned. # Keyword arguments $CHELSA_KEYWORDS Returns the filepath/s of the downloaded or pre-existing files. """ getraster( T::Type{CHELSA{BioClimPlus}}, layer::Union{Tuple,Int,Symbol}; version::Int = 2, patch::Int = latest_patch(T, version)) = _getraster(T, layer, version, patch) _getraster(T::Type{CHELSA{BioClimPlus}}, layers::Tuple, version, patch) = _map_layers(T, layers, version, patch) function _getraster(T::Type{CHELSA{BioClimPlus}}, layer::Symbol, version, patch) version == 2 || CHELSA_invalid_version(version, 2) _check_layer(T, layer) path = rasterpath(T, layer; version, patch) url = rasterurl(T, layer; version, patch) return _maybe_download(url, path) end getraster_keywords(::Type{<:CHELSA{BioClimPlus}}) = (:version,:patch) rastername(T::Type{CHELSA{BioClimPlus}}, layer::Symbol; version = 2, patch = latest_patch(T, version)) = "CHELSA_$(layer)_1981-2010_V.2.$patch.tif" rasterpath(::Type{CHELSA{BioClimPlus}}) = rasterpath(CHELSA{BioClim}) rasterpath(T::Type{CHELSA{BioClimPlus}}, layer::Symbol; version = 2, patch = latest_patch(T, version)) = joinpath(rasterpath(T), rastername(T, layer; version, patch)) rasterurl(T::Type{CHELSA{BioClimPlus}}, layer::Symbol; version = 2, patch = latest_patch(T, version)) = joinpath(rasterurl(CHELSA{BioClim}; version), "bio", rastername(T, layer; version, patch))
RasterDataSources
https://github.com/EcoJulia/RasterDataSources.jl.git
[ "MIT" ]
0.6.1
dfab74c3efb21c6df589f30f7bbe5b9b8dbbe3c9
code
1817
layers(::Type{CHELSA{Climate}}) = (:clt, :cmi, :hurs, :ncdf, :pet, :pr, :rsds, :sfcWind, :tas, :tasmax, :tasmin, :vpd) """ getraster(T::Type{CHELSA{Climate}}, [layer::Union{Tuple,Symbol}]; month) => Vector{String} Download [`CHELSA`](@ref) [`Climate`](@ref) data. # Arguments - `layer` `Symbol` or `Tuple` of `Symbol` from `$(layers(CHELSA{Climate}))`. # Keywords - `month`: `Integer` or `AbstractArray` of `Integer`. Chosen from `1:12`. Returns the filepath/s of the downloaded or pre-existing files. """ function getraster(T::Type{CHELSA{Climate}}, layers::Union{Tuple,Symbol}; month) _getraster(T, layers, month) end getraster_keywords(::Type{CHELSA{Climate}}) = (:month,) function _getraster(T::Type{CHELSA{Climate}}, layers, month::AbstractArray) _getraster.(T, Ref(layers), month) end function _getraster(T::Type{CHELSA{Climate}}, layers::Tuple, month::Integer) _map_layers(T, layers, month) end function _getraster(T::Type{CHELSA{Climate}}, layer::Symbol, month::Integer) _check_layer(T, layer) path = rasterpath(T, layer; month) url = rasterurl(T, layer; month) return _maybe_download(url, path) end # Climate layers don't get their own folder rasterpath(T::Type{<:CHELSA{Climate}}, layer; month) = joinpath(_rasterpath(T, layer), rastername(T, layer; month)) _rasterpath(T::Type{<:CHELSA{Climate}}, layer) = joinpath(rasterpath(T), string(layer)) rasterpath(T::Type{<:CHELSA{Climate}}) = joinpath(rasterpath(CHELSA), "Climate") function rastername(T::Type{<:CHELSA{Climate}}, layer; month) _layer = layer == :pet ? :pet_penman : layer "CHELSA_$(_layer)_$(_pad2(month))_1981-2010_V.2.1.tif" end rasterurl(T::Type{CHELSA{Climate}}, layer::Symbol; month) = joinpath(rasterurl(CHELSA, 2), "climatologies/1981-2010", string(layer), rastername(T, layer; month))
RasterDataSources
https://github.com/EcoJulia/RasterDataSources.jl.git
[ "MIT" ]
0.6.1
dfab74c3efb21c6df589f30f7bbe5b9b8dbbe3c9
code
12347
layers(::Type{<:CHELSA{<:Future{BioClim}}}) = layers(BioClim) layers(::Type{<:CHELSA{T}}) where T <:Future{BioClimPlus} = layers(T) layerkeys(T::Type{<:CHELSA{<:Future{BioClim}}}, args...) = layerkeys(BioClim, args...) layers(::Type{<:CHELSA{<:Future{Climate}}}) = (:prec, :temp, :tmin, :tmax) date_step(::Type{<:CHELSA{<:Future{Climate,CMIP5}}}) = Year(20) date_step(::Type{<:CHELSA{<:Future{Climate,CMIP6}}}) = Year(30) # A modified key is used in the file name, while the key is used as-is in the path const CHELSAKEY = (prec="pr", temp="tas", tmin="tasmin", tmax="tasmax", bio="bio") """ getraster(T::Type{CHELSA{Future{BioClim}}}, [layer]; date) => String Download CHELSA [`BioClim`](@ref) data, choosing layers from: `$(layers(CHELSA{BioClim}))`. See the docs for [`Future`](@ref) for model choices. Without a layer argument, all layers will be downloaded, and a `NamedTuple` of paths returned. ## Keywords - `date`: a `Date` or `DateTime` object, a Vector, or Tuple of start/end dates. Note that CHELSA CMIP5 only has two datasets, for the periods 2041-2060 and 2061-2080. CMIP6 has datasets for the periods 2011-2040, 2041-2070, and 2071-2100. Dates must fall within these ranges. ## Example ```julia using RasterDataSources, Dates getraster(CHELSA{Future{BioClim, CMIP6, GFDLESM4, SSP370}}, 1, date = Date(2050)) ``` """ function getraster( T::Type{<:CHELSA{<:Future{BioClim}}}, layers::Union{Tuple,Int,Symbol}; date ) _getraster(T, layers, date) end getraster_keywords(::Type{<:CHELSA{<:Future{BioClim}}}) = (:date,) """ getraster(T::Type{CHELSA{Future{BioClimPlus}}}, [layer]; date) => String Download CHELSA [`BioClimPlus`](@ref) data, choosing layers from: `$(layers(CHELSA{BioClimPlus}))`. See the docs for [`Future`](@ref) for model choices. Without a layer argument, all layers will be downloaded, and a `NamedTuple` of paths returned. ## Keywords - `date`: a `Date` or `DateTime` object, a Vector, or Tuple of start/end dates. Note that CHELSA CMIP5 only has two datasets, for the periods 2041-2060 and 2061-2080. CMIP6 has datasets for the periods 2011-2040, 2041-2070, and 2071-2100. Dates must fall within these ranges. ## Example """ function getraster( T::Type{<:CHELSA{<:Future{BioClimPlus}}}, layers::Union{Tuple,Int,Symbol}; date ) _getraster(T, layers, date) end getraster_keywords(::Type{<:CHELSA{<:Future{BioClimPlus}}}) = (:date,) """ getraster(T::Type{CHELSA{Future{Climate}}}, [layer]; date, month) => String Download CHELSA [`Climate`](@ref) data, choosing layers from: `$(layers(CHELSA{BioClim}))`. See the docs for [`Future`](@ref) for model choices. Without a layer argument, all layers will be downloaded, and a `NamedTuple` of paths returned. ## Keywords - `date`: a `Date` or `DateTime` object, a Vector, or Tuple of start/end dates. Note that CHELSA CMIP5 only has two datasets, for the periods 2041-2060 and 2061-2080. CMIP6 has datasets for the periods 2011-2040, 2041-2070, and 2071-2100. Dates must fall within these ranges. - `month`: the month of the year, from 1 to 12, or a array or range of months like `1:12`. ## Example ``` using Dates, RasterDataSources getraster(CHELSA{Future{Climate, CMIP6, GFDLESM4, SSP370}}, :prec; date = Date(2050), month = 1) ``` """ function getraster( T::Type{<:CHELSA{<:Future{Climate}}}, layers::Union{Tuple,Symbol}; date, month ) _getraster(T, layers, date, month) end getraster_keywords(::Type{<:CHELSA{<:Future{Climate}}}) = (:date, :month) function _getraster(T::Type{<:CHELSA{<:Future{Climate}}}, layers, date, months::AbstractArray) map(month -> _getraster(T, layers, date, month), months) end function _getraster( T::Type{<:CHELSA{<:Future{Climate}}}, layers, dates::AbstractArray, months::AbstractArray ) map(date -> _getraster(T, layers, date, months), dates) end function _getraster(T::Type{<:CHELSA{<:Future{Climate}}}, layers, dates::AbstractArray, month) map(date -> _getraster(T, layers; date, month), dates) end function _getraster(T::Type{<:CHELSA{<:Future{Climate}}}, layers, dates::Tuple, months::AbstractArray) _getraster(T, layers, date_sequence(T, dates), months) end function _getraster(T::Type{<:CHELSA{<:Future{Climate}}}, layers, dates::Tuple, month) _getraster(T, layers, date_sequence(T, dates), month) end function _getraster(T::Type{<:CHELSA{<:Future{Climate}}}, layers, date, month) _getraster(T, layers; date, month) end function _getraster(T::Type{<:CHELSA{<:Future{BioClim}}}, layers, dates::AbstractArray) map(date -> _getraster(T, layers, date), dates) end function _getraster(T::Type{<:CHELSA{<:Future{BioClim}}}, layers, date::TimeType) _getraster(T, layers; date) end function _getraster(T::Type{<:CHELSA{<:Future{BioClimPlus}}}, layers, dates::AbstractArray) map(date -> _getraster(T, layers, date), dates) end function _getraster(T::Type{<:CHELSA{<:Future{BioClimPlus}}}, layers, date::TimeType) _getraster(T, layers; date) end # We have the extra args as keywords again to generalise rasterpath/rasterurl function _getraster(T::Type{<:CHELSA{<:Future}}, layers::Tuple; kw...) _map_layers(T, layers; kw...) end _getraster(T::Type{<:CHELSA{<:Future{BioClim}}}, layer::Symbol; kw...) = _getraster(T, bioclim_int(layer); kw...) function _getraster(T::Type{<:CHELSA{<:Future}}, layer::Union{Symbol,Integer}; kw...) _check_layer(T, layer) path = rasterpath(T, layer; kw...) url = rasterurl(T, layer; kw...) return _maybe_download(url, path) end function rastername(T::Type{<:CHELSA{<:Future}}, layer; kw...) _rastername(_phase(T), T, layer; kw...) end function _rastername( ::Type{CMIP5}, T::Type{<:CHELSA{<:Future{BioClim}}}, layer::Integer; date ) date_string = _date_string(_phase(T), date) mod = _format(CHELSA, _model(T)) scen = _format(CHELSA, _scenario(T)) return "CHELSA_bio_mon_$(mod)_$(scen)_r1i1p1_g025.nc_$(layer)_$(date_string)_V1.2.tif" end function _rastername( ::Type{CMIP5}, T::Type{<:CHELSA{<:Future{Climate}}}, layer::Symbol; date, month ) date_string = _date_string(_phase(T), date) mod = _format(CHELSA, _model(T)) scen = _format(CHELSA, _scenario(T)) key = CHELSAKEY[layer] suffix = layer === :prec ? "" : "_V1.2" # prec filenames dont end in _V1.2 return "CHELSA_$(key)_mon_$(mod)_$(scen)_r1i1p1_g025.nc_$(month)_$(date_string)$(suffix).tif" end function _rastername(::Type{CMIP6}, T::Type{<:CHELSA{<:Future{BioClim}}}, layer::Integer; date) date_string = _date_string(_phase(T), date) mod = _format(CHELSA, _model(T)) scen = _format(CHELSA, _scenario(T)) return "CHELSA_bio$(layer)_$(date_string)_$(mod)_$(scen)_V.2.1.tif" end function _rastername(::Type{CMIP6}, T::Type{<:CHELSA{<:Future{BioClimPlus}}}, layer::Symbol; date) date_string = _date_string(_phase(T), date) mod = _format(CHELSA, _model(T)) scen = _format(CHELSA, _scenario(T)) return "CHELSA_$(layer)_$(date_string)_$(mod)_$(scen)_V.2.1.tif" end function _rastername( ::Type{CMIP6}, T::Type{<:CHELSA{<:Future{Climate}}}, layer::Symbol; date, month ) # CMIP6 Climate uses an underscore in the date string, of course date_string = replace(_date_string(_phase(T), date), "-" => "_") mod = _format(CHELSA, _model(T)) scen = _format(CHELSA, _scenario(T)) key = CHELSAKEY[layer] mon = lpad(month, 2, '0') return "CHELSA_$(mod)_r1i1p1f1_w5e5_$(scen)_$(key)_$(mon)_$(date_string)_norm.tif" end function rasterpath(T::Type{<:CHELSA{<:Future}}) joinpath(rasterpath(CHELSA), "Future", string(_dataset(T)), string(_scenario(T)), string(_model(T))) end function rasterpath(T::Type{<:CHELSA{<:Future}}, layer; kw...) joinpath(rasterpath(T), rastername(T, layer; kw...)) end function rasterurl(T::Type{<:CHELSA{<:Future}}, layer; date, kw...) date_str = _date_string(_phase(T), date) key = _chelsa_layer(_dataset(T), layer) path = _urlpath(_phase(T), T::Type{<:CHELSA{<:Future}}, key, date_str) joinpath(rasterurl(CHELSA), path, rastername(T, layer; date, kw...)) end _chelsa_layer(::Type{<:BioClim}, layer) = :bio _chelsa_layer(::Type{<:BioClimPlus}, layer) = :bio _chelsa_layer(::Type{<:Climate}, layer) = layer function _urlpath(::Type{CMIP5}, T::Type{<:CHELSA{<:Future}}, name, date_str) return "chelsav1/cmip5/$date_str/$name/" end function _urlpath(::Type{CMIP6}, T::Type{<:CHELSA{<:Future}}, name, date_str) # The model is in uppercase in the URL for CMIP6 mod = uppercase(_format(CHELSA, _model(T))) scen = _format(CHELSA, _scenario(T)) key = CHELSAKEY[name] return "chelsav2/GLOBAL/climatologies/$date_str/$mod/$scen/$key/" end function _date_string(::Type{CMIP5}, date) if date < DateTime(2041) _cmip5_date_error(date) elseif date < DateTime(2061) "2041-2060" elseif date < DateTime(2081) "2061-2080" else _cmip5_date_error(date) end end function _date_string(::Type{CMIP6}, date) if date < DateTime(1981) _cmip6_date_error(date) elseif date < DateTime(2011) "1981-2010" elseif date < DateTime(2041) "2011-2040" elseif date < DateTime(2071) "2041-2070" elseif date < DateTime(2101) "2071-2100" else _cmip6_date_error(date) end end _cmip5_date_error(date) = error("CMIP5 covers the period from 2041-2080, not including $date") _cmip6_date_error(date) = error("CMIP6 covers the period from 1981-2100, not including $date") _dataset(::Type{<:CHELSA{F}}) where F<:Future = _dataset(F) _phase(::Type{<:CHELSA{F}}) where F<:Future = _phase(F) _model(::Type{<:CHELSA{F}}) where F<:Future = _model(F) _scenario(::Type{<:CHELSA{F}}) where F<:Future = _scenario(F) # Climate model string formatters for CHELSA Future # CMIP5 _format(::Type{CHELSA}, ::Type{ACCESS1}) = "ACCESS1-0" _format(::Type{CHELSA}, ::Type{BNUESM}) = "BNU-ESM" _format(::Type{CHELSA}, ::Type{CCSM4}) = "CCSM4" _format(::Type{CHELSA}, ::Type{CESM1BGC}) = "CESM1-BGC" _format(::Type{CHELSA}, ::Type{CESM1CAM5}) = "CESM1-CAM5" _format(::Type{CHELSA}, ::Type{CMCCCMS}) = "CMCC-CMS" _format(::Type{CHELSA}, ::Type{CMCCCM}) = "CMCC-CM" _format(::Type{CHELSA}, ::Type{CNRMCM5}) = "CNRM-CM5" _format(::Type{CHELSA}, ::Type{CSIROMk3}) = "CSIRO-Mk3" _format(::Type{CHELSA}, ::Type{CanESM2}) = "CanESM2" _format(::Type{CHELSA}, ::Type{FGOALS}) = "FGOALS-g2" _format(::Type{CHELSA}, ::Type{FIOESM}) = "FIO-ESM" _format(::Type{CHELSA}, ::Type{GFDLCM3}) = "GFDL-CM3" _format(::Type{CHELSA}, ::Type{GFDLESM2G}) = "GFDL-ESM2G" _format(::Type{CHELSA}, ::Type{GFDLESM2M}) = "GFDL-ESM2M" _format(::Type{CHELSA}, ::Type{GISSE2HCC}) = "GISS-E2-H-CC" _format(::Type{CHELSA}, ::Type{GISSE2H}) = "GISS-E2-H" _format(::Type{CHELSA}, ::Type{GISSE2RCC}) = "GISS-E2-R-CC" _format(::Type{CHELSA}, ::Type{GISSE2R}) = "GISS-E2-R" _format(::Type{CHELSA}, ::Type{HadGEM2AO}) = "HadGEM2-AO" _format(::Type{CHELSA}, ::Type{HadGEM2CC}) = "HadGEM2-CC" _format(::Type{CHELSA}, ::Type{IPSLCM5ALR}) = "IPSL-CM5A-LR" _format(::Type{CHELSA}, ::Type{IPSLCM5AMR}) = "IPSL-CM5A-MR" _format(::Type{CHELSA}, ::Type{MIROCESMCHEM}) = "MIROC-ESM-CHEM" _format(::Type{CHELSA}, ::Type{MIROCESM}) = "MIROC-ESM" _format(::Type{CHELSA}, ::Type{MIROC5}) = "MIROC5" _format(::Type{CHELSA}, ::Type{MPIESMLR}) = "MPI-ESM-LR" _format(::Type{CHELSA}, ::Type{MPIESMMR}) = "MPI-ESM-MR" _format(::Type{CHELSA}, ::Type{MRICGCM3}) = "MRI-CGCM3" _format(::Type{CHELSA}, ::Type{MRIESM1}) = "MRI-ESM1" _format(::Type{CHELSA}, ::Type{NorESM1M}) = "NorESM1-M" _format(::Type{CHELSA}, ::Type{BCCCSM1}) = "bcc-csm-1" _format(::Type{CHELSA}, ::Type{Inmcm4}) = "inmcm4" # CMIP6 _format(::Type{CHELSA}, ::Type{GFDLESM4}) = "gfdl-esm4" _format(::Type{CHELSA}, ::Type{IPSLCM6ALR}) = "ipsl-cm6a-lr" _format(::Type{CHELSA}, ::Type{MPIESMHR}) = "mpi-esm1-2-hr" _format(::Type{CHELSA}, ::Type{MRIESM2}) = "mri-esm2-0" _format(::Type{CHELSA}, ::Type{UKESM}) = "ukesm1-0-ll" # Format scenarios _format(::Type{CHELSA}, ::Type{RCP26}) = "rcp26" _format(::Type{CHELSA}, ::Type{RCP45}) = "rcp45" _format(::Type{CHELSA}, ::Type{RCP60}) = "rcp60" _format(::Type{CHELSA}, ::Type{RCP85}) = "rcp85" _format(::Type{CHELSA}, ::Type{SSP126}) = "ssp126" _format(::Type{CHELSA}, ::Type{SSP245}) = "ssp245" _format(::Type{CHELSA}, ::Type{SSP370}) = "ssp370" _format(::Type{CHELSA}, ::Type{SSP585}) = "ssp585"
RasterDataSources
https://github.com/EcoJulia/RasterDataSources.jl.git
[ "MIT" ]
0.6.1
dfab74c3efb21c6df589f30f7bbe5b9b8dbbe3c9
code
1632
""" CHELSA{Union{BioClim,BioClimPlus,Climate,<:Future}} <: RasterDataSource Data from CHELSA, currently implements the `BioClim` `BioClimPlus`, and `Climate` variables for current and future conditions. See: [chelsa-climate.org](https://chelsa-climate.org/) for the dataset, and the [`getraster`](@ref) docs for implementation details. """ struct CHELSA{X} <: RasterDataSource end rasterpath(::Type{CHELSA}) = joinpath(rasterpath(), "CHELSA") function rasterurl(T::Type{CHELSA}, version) if version == 1 joinpath(rasterurl(T), "chelsav1") elseif version == 2 joinpath(rasterurl(T), "chelsav2/GLOBAL") else CHELSA_invalid_version(version) end end rasterurl(::Type{CHELSA}) = URI(scheme="https", host="os.zhdk.cloud.switch.ch", path="") function latest_patch(::Type{<:CHELSA}, v) if v == 1 2 elseif v == 2 1 else CHELSA_invalid_version(v) end end const CHELSA_KEYWORDS = """ - `version`: `Integer` indicating the CHELSA version, currently either `1` or `2`. - `patch`: `Integer` indicating the CHELSA patch number. Defaults to the latest patch (V1.2 and V2.1) """ CHELSA_invalid_version(v, valid_versions = [1,2]) = throw(ArgumentError("Version $v is not available for CHELSA. Available versions: $valid_versions.")) function CHELSA_warn_version(T, layer, version, patch, path) if version == 2 && !isfile(path) && isfile(rasterpath(T, layer; version = 1)) @info "File for CHELSA v1.2 detected, but requested version is CHELSA v$version.$patch. To load data for CHELSA v1.2 instead, set version keyword to 1" end end
RasterDataSources
https://github.com/EcoJulia/RasterDataSources.jl.git
[ "MIT" ]
0.6.1
dfab74c3efb21c6df589f30f7bbe5b9b8dbbe3c9
code
3323
resolutions(::Type{EarthEnv{HabitatHeterogeneity}}) = ("1km", "5km", "25km") defres(::Type{EarthEnv{HabitatHeterogeneity}}) = "25km" layers(::Type{EarthEnv{HabitatHeterogeneity}}) = values(heterogeneity_lookup) layerkeys(::Type{EarthEnv{HabitatHeterogeneity}}) = keys(heterogeneity_lookup) layerkeys(T::Type{EarthEnv{HabitatHeterogeneity}}, layers) = map(l -> layerkeys(T, l), layers) function layerkeys(::Type{EarthEnv{HabitatHeterogeneity}}, layer::Symbol) Symbol(lowercase(string(layer))) end # Yes, they randomly chose cases const heterogeneity_lookup = ( cv = :cv, evenness = :evenness, range = :range, shannon = :shannon, simpson = :simpson, std = :std, contrast = :Contrast, correlation = :Correlation, dissimilarity = :Dissimilarity, entropy = :Entropy, homogeneity = :Homogeneity, maximum = :Maximum, uniformity = :Uniformity, variance = :Variance, ) heterogeneity_layer(x::Symbol) = heterogeneity_lookup[Symbol(lowercase(string(x)))] """ getraster(source::Type{EarthEnv{HabitatHeterogeneity}}, [layer]; res="25km") Download [`EarthEnv`](@ref) habitat heterogeneity data. # Arguments - `layer`: `Symbol` or `Tuple` of `Symbol` from `$(layers(EarthEnv{HabitatHeterogeneity}))`. Without a `layer` argument, all layers will be downloaded, and a `NamedTuple` of paths returned. # Keywords - `res`: `String` chosen from `$(resolutions(EarthEnv{HabitatHeterogeneity}))`, defaulting to "25km". Returns the filepath/s of the downloaded or pre-existing files. """ function getraster(T::Type{EarthEnv{HabitatHeterogeneity}}, layers::Union{Tuple,Symbol}; res::String=defres(T) ) _getraster(T, layers, res) end getraster_keywords(::Type{EarthEnv{HabitatHeterogeneity}}) = (:res,) function _getraster(T::Type{EarthEnv{HabitatHeterogeneity}}, layers::Tuple, res::String) return _map_layers(T, layers, res) end function _getraster(T::Type{EarthEnv{HabitatHeterogeneity}}, layer::Symbol, res::String) layer = heterogeneity_layer(layer) _check_layer(T, layer) _check_res(T, res) path = rasterpath(T, layer; res) url = rasterurl(T, layer; res) return _maybe_download(url, path) end function rastername(::Type{EarthEnv{HabitatHeterogeneity}}, layer::Symbol; res::String=defres(T)) "$(layer)_$(res).tif" end function rasterpath(::Type{EarthEnv{HabitatHeterogeneity}}) joinpath(rasterpath(EarthEnv), "HabitatHeterogeneity") end function rasterpath(T::Type{EarthEnv{HabitatHeterogeneity}}, layer::Symbol; res::String=defres(T)) joinpath(rasterpath(T), string(res), rastername(T, layer; res)) end function rasterurl(::Type{EarthEnv{HabitatHeterogeneity}}) joinpath(rasterurl(EarthEnv), "habitat_heterogeneity") end function rasterurl(T::Type{EarthEnv{HabitatHeterogeneity}}, layer; res::String=defres(T)) prec = _getprecision(layer, res) layerpath = "$res/$(layer)_01_05_$(res)_$prec.tif" joinpath(rasterurl(T), layerpath) end # See http://www.earthenv.org/texture function _getprecision(layer, res) if ((res in ("1km", "5km")) && (layer == :Correlation)) "int16" elseif ((res == "5km") && (layer == :cv)) || ((res == "25km") && (layer == :Entropy)) || layer in (:Contrast, :Dissimilarity, :Variance) "uint32" else "uint16" end end
RasterDataSources
https://github.com/EcoJulia/RasterDataSources.jl.git
[ "MIT" ]
0.6.1
dfab74c3efb21c6df589f30f7bbe5b9b8dbbe3c9
code
2657
layers(::Type{<:EarthEnv{<:LandCover}}) = ntuple(identity, Val{12}()) layerkeys(::Type{<:EarthEnv{<:LandCover}}) = keys(landcover_lookup) layerkeys(T::Type{<:EarthEnv{<:LandCover}}, layers) = map(l -> layerkeys(T, l), layers) layerkeys(T::Type{<:EarthEnv{<:LandCover}}, layer::Int) = layerkeys(T)[layer] layerkeys(T::Type{<:EarthEnv{<:LandCover}}, layer::Symbol) = layer const landcover_lookup = ( needleleaf_trees = 1, evergreen_broadleaf_trees = 2, deciduous_broadleaf_trees = 3, other_trees = 4, shrubs = 5, herbaceous = 6, cultivated_and_managed = 7, regularly_flooded = 8, urban_builtup = 9, snow_ice = 10, barren = 11, open_water = 12, ) """ getraster(T::Type{EarthEnv{LandCover}}, [layer]; discover=false) => Union{Tuple,String} Download [`EarthEnv`](@ref) landcover data. # Arguments - `layer`: `Integer` or tuple/range of `Integer` from `$(layers(EarthEnv{LandCover}))`, or `Symbol`s from `$(layerkeys(EarthEnv{LandCover}))`. Without a `layer` argument, all layers will be downloaded, and a `NamedTuple` of paths returned. # Keywords - `discover::Bool`: whether to download the dataset that integrates the DISCover model. Returns the filepath/s of the downloaded or pre-existing files. """ function getraster(T::Type{<:EarthEnv{<:LandCover}}, layers::Union{Tuple,Int,Symbol}) _getraster(T, layers) end _getraster(T::Type{<:EarthEnv{<:LandCover}}, layers::Tuple) = _map_layers(T, layers) _getraster(T::Type{<:EarthEnv{<:LandCover}}, layer::Symbol) = _getraster(T, landcover_lookup[layer]) function _getraster(T::Type{<:EarthEnv{<:LandCover}}, layer::Integer) _check_layer(T, layer) url = rasterurl(T, layer) path = rasterpath(T, layer) return _maybe_download(url, path) end function rastername(T::Type{<:EarthEnv{<:LandCover}}, layer::Integer) class = _discover(T) ? "consensus_full" : "Consensus_reduced" "$(class)_class_" * string(layer) * ".tif" end function rasterpath(T::Type{<:EarthEnv{<:LandCover}}) joinpath(rasterpath(EarthEnv), "LandCover", _discover_segment(T)) end function rasterpath(T::Type{<:EarthEnv{<:LandCover}}, layer::Integer) joinpath(rasterpath(T), rastername(T, layer)) end function rasterurl(T::Type{<:EarthEnv{<:LandCover}}) joinpath(rasterurl(EarthEnv), "consensus_landcover", _discover_segment(T)) end function rasterurl(T::Type{<:EarthEnv{<:LandCover}}, layer::Integer) joinpath(rasterurl(T), rastername(T, layer)) end _discover(T::Type{EarthEnv{LandCover{:DISCover}}}) = true _discover(T::Type{<:EarthEnv{<:LandCover}}) = false _discover_segment(T) = _discover(T) ? "with_DISCover" : "without_DISCover"
RasterDataSources
https://github.com/EcoJulia/RasterDataSources.jl.git
[ "MIT" ]
0.6.1
dfab74c3efb21c6df589f30f7bbe5b9b8dbbe3c9
code
393
""" EarthEnv{Union{HabitatHeterogeneity,LandCover}} <: RasterDataSource Data from the `EarthEnv` including `HabitatHeterogeneity` and `LandCover` See: [www.earthenv.org](http://www.earthenv.org/) """ struct EarthEnv{X} <: RasterDataSource end rasterpath(::Type{EarthEnv}) = joinpath(rasterpath(), "EarthEnv") rasterurl(::Type{EarthEnv}) = URI(scheme="https", host="data.earthenv.org")
RasterDataSources
https://github.com/EcoJulia/RasterDataSources.jl.git
[ "MIT" ]
0.6.1
dfab74c3efb21c6df589f30f7bbe5b9b8dbbe3c9
code
924
""" Example parameter sets for getraster(MODIS{MOD13Q1}, ...) """ """ A semi-urban spot in the middle of the Crozon peninsula, West France Usage : `getraster(MOD13Q1, :NDVI; RasterDataSources.crozon...)` """ const crozon = (lat = 48.24, lon = -4.5, km_ab = 1, km_lr = 1, date = "2012-02-02") """ Whole Britanny area, western France Usage : `getraster(MOD13Q1, :NDVI; RasterDataSources.britanny...)` """ const britanny = (lat = 48.25, lon = -3.5, km_ab = 100, km_lr = 100, date = Date("2012-02-02")) """ Two years of a single MODIS pixel in Broceliande forest """ const broceliande = ( lat = 48.02458, lon = -2.24057, km_ab = 0, km_lr = 0, date = (Date("2012-02-02"), Date("2014-02-02")), ) """ Three dates in Crozon """ const crozon2 = ( lat = 48.24, lon = -4.5, km_ab = 1, km_lr = 1, date = ["2012-02-02", "2013-02-02", "2014-02-02"], )
RasterDataSources
https://github.com/EcoJulia/RasterDataSources.jl.git
[ "MIT" ]
0.6.1
dfab74c3efb21c6df589f30f7bbe5b9b8dbbe3c9
code
3815
""" This file contains functions to handle MODIS product info. Depending on missions and products, MODIS data does not have the same layers. """ """ product(T::Type{<:ModisProduct}) Extracts `ModisProduct` product name as a `String` """ function product(T::Type{<:ModisProduct}) return String(nameof(T)) end """ Lists available layers for a given MODIS Product Looks in `joinpath(ENV["RASTERDATASOURCES_PATH"]/MODIS/layers` for a file with the right name. If not found, sends a request to the server to get the list. This allows to make as many internal calls of layers() and layerkeys() as needed without issuing a lot of requests. """ function list_layers(T::Type{<:ModisProduct}) prod = product(T) path = joinpath(ENV["RASTERDATASOURCES_PATH"], "MODIS/layers", prod * ".csv") if isfile(path) layers = open(path, "r") do f readline(f) end else # if not on disk we download layers info @info "Starting download of layers list for product $prod" mkpath(dirname(path)) r = HTTP.download( join([string(MODIS_URI), prod, "bands"], "/"), path, ["Accept" => "text/csv"], ) # read downloaded file layers = open(path, "r") do f readline(f) end end return split(String(layers), ",") end """ List available dates for a MODIS product at given coordinates """ function list_dates( T::Type{<:ModisProduct}; lat::Real, lon::Real, from::Union{String,Date} = "all", # might be handy to::Union{String,Date} = "all", format::String = "Date", ) prod = product(T) filepath = joinpath(rasterpath(), "MODIS/dates", string(lat) * "," * string(lon) * ".csv") if !isfile(filepath) # we need to download dates from the server mkpath(dirname(filepath)) @info "Requesting availables dates for product $prod at $lat , $lon" ## Get all dates at given point # request r = HTTP.request( "GET", join([string(MODIS_URI), prod, "dates"], "/"), query = Dict("latitude" => string(lat), "longitude" => string(lon)), ) # parse body = JP.parse(String(r.body)) # prebuild columns calendardates = String[] modisdates = String[] # fill the vectors for date in body["dates"] push!(calendardates, date["calendar_date"]) push!(modisdates, date["modis_date"]) end open(filepath, "w") do f writedlm(f, [calendardates modisdates], ',') end else # a file with dates is already downloaded # we simply read the file mat = readdlm(filepath, ',', String) calendardates = mat[:, 1] modisdates = mat[:, 2] end ## Filter for dates between from and to arguments calendardates = Date.(calendardates) from == "all" && (from = calendardates[1]) to == "all" && (to = calendardates[end]) startfound, endfound = false, false bounds = [0,0] i = 1 while !endfound # two ways to find the end: if i == length(calendardates) # end of vector reached endfound = true bounds[2] = i elseif calendardates[i] > Date(to) && i > 1 # to reached # if dates[i] is just over "to", dates[i-1] is the margin endfound = true bounds[2] = i-1 end if !startfound if calendardates[i] >= Date(from) startfound = true bounds[1] = i end end i += 1 end if format == "ModisDate" return modisdates[bounds[1]:bounds[2]] else return calendardates[bounds[1]:bounds[2]] end end
RasterDataSources
https://github.com/EcoJulia/RasterDataSources.jl.git
[ "MIT" ]
0.6.1
dfab74c3efb21c6df589f30f7bbe5b9b8dbbe3c9
code
10969
""" MODIS{ModisProduct} <: RasterDataSource MODIS/VIIRS Land Product Database. Vegetation indices, surface reflectance, and more land cover data. Data from [`ModisProduct`](@ref)s datasets. See: [modis.ornl.gov](https://modis.ornl.gov/) """ struct MODIS{X} <: RasterDataSource end function layerkeys(T::Type{MODIS{X}}) where {X} layernames = list_layers(X) keys = [] # For some products, layers have names that start with numbers, thus # resulting in bad Symbol names. Here we remove some words from each # layer name until it's in a good format. for l in layernames newname = [] words = split(l, "_") beginning = true for w in words # keep only "clean" words if beginning if match(r"^[0-9]|^days|^m|^meters", w) === nothing push!(newname, w) beginning = false # added one word: no more checks end else push!(newname, w) end end push!(keys, Symbol(join(newname, "_"))) # build Array of newname Symbols end return Tuple(collect(keys)) # build tuple from Array{Symbol} end """ layerkeys(T::Type{<:ModisProduct}) => Tuple `Tuple` of `Symbol`s corresponding to the available layers for a given product. May issue a request to MODIS server to get the layers list, or might just read this information if the correctly named file is available. """ layerkeys(T::Type{<:ModisProduct}) = layerkeys(MODIS{T}) function layerkeys(T::Type{<:MODIS{X}}, layers::Tuple) where {X} if isa(layers[1], Int) # integer layer names get their key name layerkeys(T)[collect(layers)] else # if all elements of layers are correct layer keys, return them all(k -> k in layerkeys(T), layers) && return (layers) throw("Unknown layers in $layers") end end layerkeys(T::Type{<:ModisProduct}, layers) = layerkeys(MODIS{T}, layers) function layers(T::Type{MODIS{X}}) where {X} return Tuple(1:length(layerkeys(T))) end layers(T::Type{<:ModisProduct}) = layers(MODIS{T}) function getraster(T::Type{<:MODIS{X}}, args...; kwargs...) where {X} X <: ModisProduct ? getraster(X, args...; kwargs...) : throw("Unrecognized MODIS product.") end getraster_keywords(::Type{<:Union{MODIS,ModisProduct}}) = (:lat, :lon, :km_ab, :km_lr, :date, :end) """ getraster(T::Union{Type{<:ModisProduct}, Type{MODIS{X}}}, [layer::Union{Tuple,AbstractVector,Integer, Symbol}]; kwargs...) => Union{String, AbstractVector, NamedTuple} Download [`MODIS`](@ref) data for a given [`ModisProduct`](@ref) as ASCII raster(s). # Arguments - `layer`: `Integer` or tuple/range of `Integer` or `Symbol`s. Without a `layer` argument, all layers will be downloaded, and a `NamedTuple` of paths returned. Available layers for a given product can be looked up using [`RasterDataSources.layerkeys(T::Type{<:ModisProduct})`](@ref). # Keywords - `lat` and `lon`: Coordinates in decimal degrees of the approximate center of the raster. The MODIS API will try to match its pixel grid system as close as possible to those coordinates. - `km_ab` and `km_lr`: Half-width and half-height of the raster in kilometers (kilometers above/below and left/right). Currently only `Integer` values are supported, up to 100. - `date`: `String`, `Date`, `DateTime`, `AbstractVector` of dates or `Tuple` of a start and end date for the request. `String`s should be in format YYYY-MM-DD but can be in similar formats as long as they are comprehensible by `Dates.Date`. The available date interval for MODIS is 16 days, reset every first of January. # Example Download 250m NDVI in the western part of Britanny, France, from winter to late spring, 2002: ```julia julia> getraster(MOD13Q1, :NDVI; lat = 48.25, lon = -4, km_ab = 50, km_lr = 50, date = (Date(2002,1,1), Date(2002,6,1))) 10-element Vector{String}: "/your/path/MODIS/MOD13Q1/250m_16_days_NDVI/47.8313_-4.5899_2002-01-01.asc" ... "/your/path/MODIS/MOD13Q1/250m_16_days_NDVI/47.8313_-4.5899_2002-05-25.asc" ``` Will attempt to download several files, one for each date and layer combination, and returns the filepath/s of the downloaded or pre-existing files. Coordinates in the file names correspond to the lower-left corner of the raster. """ function getraster( T::Type{<:ModisProduct}, layer::Union{Tuple,Symbol,Int} = layerkeys(T); lat::Real, lon::Real, km_ab::Int, km_lr::Int, date::Union{Tuple,AbstractVector,String,Date,DateTime}, ) # first check all arguments check_layers(T, layer) check_kwargs(T; lat = lat, lon = lon, km_ab = km_ab, km_lr = km_lr, date = date) # then pass them to internal functions _getraster(T, layer, date; lat = lat, lon = lon, km_ab = km_ab, km_lr = km_lr) end # if layer is a tuple, get them all using _map_layers function _getraster(T::Type{<:ModisProduct}, layers::Tuple, date; kwargs...) _map_layers(T, layers, date; kwargs...) end # convert layer symbols to int function _getraster(T::Type{<:ModisProduct}, layer::Symbol, date; kwargs...) _getraster(T, modis_int(T, layer), date; kwargs...) end # Tuple : start and end date function _getraster(T::Type{<:ModisProduct}, layer::Int, date::Tuple; kwargs...) _getraster( T, layer, kwargs[:lat], kwargs[:lon], kwargs[:km_ab], kwargs[:km_lr], string(Date(date[1])), string(Date(date[2])), ) end # Handle vectors : map over dates function _getraster(T::Type{<:ModisProduct}, layer::Int, date::AbstractVector; kwargs...) out = String[] for d in eachindex(date) push!(out, _getraster(T, layer, date[d]; kwargs...)) end return out end # single date : from = to = string(Date(date)) function _getraster( T::Type{<:ModisProduct}, layer::Int, date::Union{Dates.TimeType,String}; kwargs..., ) _getraster( T, layer, kwargs[:lat], kwargs[:lon], kwargs[:km_ab], kwargs[:km_lr], string(Date(date)), string(Date(date)), ) end """ _getraster(T::Type{<:ModisProduct}, layer::Int, lat::Real, lon::Real, km_ab::Int, km_lr::Int, from::String, to::String) => Union{String, Vector{String}} Modis requests always have an internal start and end date: using from and to in internal arguments makes more sense. `date` argument is converted by various _getraster dispatches before calling this. """ function _getraster( T::Type{<:ModisProduct}, layer::Int, lat::Real, lon::Real, km_ab::Int, km_lr::Int, from::String, to::String, ) # accessing dates in a format readable by the MODIS API dates = list_dates(T; lat = lat, lon = lon, format = "ModisDate", from = from, to = to) length(dates) == 0 && throw("No available $T data at $lat , $lon from $from to $to") if length(dates) <= 10 files = _getrasterchunk( T, layer; lat = lat, lon = lon, km_ab = km_ab, km_lr = km_lr, dates = dates, ) else # take "chunk" subsets of dates 10 by 10 n_chunks = div(length(dates), 10) + 1 chunks = [dates[1+10*k:(k == n_chunks - 1 ? end : 10 * k + 10)] for k = 0:(n_chunks-1)] # remove empty end chunk # (happens when length(dates) is divisible by 10) length(chunks[end]) == 0 && (chunks = chunks[1:(end-1)]) files = map(chunks) do c _getrasterchunk( T, layer; dates = c, lat = lat, lon = lon, km_ab = km_ab, km_lr = km_lr, ) end files = vcat(files...) # splat chunks to get only one list end return files end """ _getrasterchunk(T::Type{<:ModisProduct}, layer::Int; dates::Vector{String}, kwargs...) Internal calls of [`RasterDataSources.modis_request`](@ref) and [`RasterDataSources.process_subset`](@ref): fetch data from server, write a raster `.tif` file. The MODIS API only allows requests for ten or less dates. Returns the filepath/s of the downloaded or pre-existing files. """ function _getrasterchunk( T::Type{<:ModisProduct}, layer::Int; dates::Vector{String}, kwargs..., ) length(dates) > 10 && throw("Too many dates provided. Use from and to arguments") subset, pars = modis_request( T, list_layers(T)[layer], kwargs[:lat], kwargs[:lon], kwargs[:km_ab], kwargs[:km_lr], dates[1], dates[end], ) out = process_subset(T, subset, pars) return out end function rasterpath(T::Type{<:ModisProduct}, layer; kwargs...) # argument checks check_layers(T, layer) check_kwargs(T; kwargs...) return joinpath(_rasterpath(T, layer), rastername(T; kwargs...)) end function _rasterpath(T::Type{<:ModisProduct}) return joinpath(rasterpath(), "MODIS", string(nameof(T))) end function _rasterpath(T::Type{<:ModisProduct}, layer::Int) return joinpath(_rasterpath(T), list_layers(T)[layer]) end function _rasterpath(T::Type{<:ModisProduct}, layer::Symbol) return joinpath(_rasterpath(T), list_layers(T)[modis_int(T, layer)]) end function _rasterpath(T::Type{<:ModisProduct}, layer::String) layer in list_layers(T) && (return joinpath(_rasterpath(T), layer)) throw("Unknow layer in product $(string(T))") end function rastername(T::Type{<:ModisProduct}; kwargs...) check_kwargs(T; kwargs...) name = "$(round(kwargs[:lat], digits = 4))_$(round(kwargs[:lon], digits = 4))_$(kwargs[:date]).asc" return name end # date_sequence does not use a date step because MODIS dates may vary from a # strict 16-day sequence (mostly because of the 1st of January reset) # date_step(T::Type{<:ModisProduct}) = Day(16) # date_step(T::Type{MODIS{X}}) where {X} = date_step(X) function date_sequence(T::Type{MODIS{X}}, dates; kw...) where {X} date_sequence(X, dates; kw...) end """ date_sequence(T::Type{<:ModisProduct}, dates::NTuple{2}) Asks list_dates for a list of required dates """ function date_sequence(T::Type{<:ModisProduct}, dates::NTuple{2}; kwargs...) if !haskey(kwargs, :lat) || !haskey(kwargs, :lon) throw( ArgumentError( "`lat` and `lon` must be provided to correctly build the date sequence.", ), ) end # get the dates sequence = Date.( list_dates( T, lat = kwargs[:lat], lon = kwargs[:lon], from = dates[1], to = dates[2], ) ) return sequence end # disable metadata copy to avoid building "duplicate" series # (see issue #294 of Rasters.jl) has_constant_metadata(T::Type{MODIS{X}}) where {X} = false has_constant_metadata(T::Type{<:ModisProduct}) = false
RasterDataSources
https://github.com/EcoJulia/RasterDataSources.jl.git
[ "MIT" ]
0.6.1
dfab74c3efb21c6df589f30f7bbe5b9b8dbbe3c9
code
10679
""" MODIS-specific utility functions MODIS data is not available in .tif format so we need a bit more steps before storing the retrieved data and we can't download() it. Data parsing is way easier using JSON.jl but it adds a dependency """ """ modis_int(T::Type{<:ModisProduct}, l::Symbol) Converts Symbol `l` to the corresponding integer if `l` is in the layer keys of the required `ModisProduct` `T`. """ function modis_int(T::Type{<:ModisProduct}, l::Symbol) keys = layerkeys(T) for i in eachindex(keys) keys[i] === l && return (i) end end """ MODIS API address """ const MODIS_URI = URI(scheme = "https", host = "modis.ornl.gov", path = "/rst/api/v1") """ modis_request(T::Type{<:ModisProduct}, args...) Lowest level function for requests to modis server. All arguments are assumed correct. # Arguments - `layer`: `String` matching the "exact" layer name (i.e. as it is written in the MODIS dataset itself) for the given product. e.g. `"250m_16_days_EVI"`. - `lat`, `lon`, `km_ab`, `km_lr` in correct types - `from`, `to`: `String`s of astronomical dates for start and end dates of downloaded data, e.g. `"A2002033"` for "2002-02-02" Returns a `NamedTuple` of information relevant to build a raster header, and a `Vector` of `Dict`s containing raster data, directly downloaded from MODIS. Those will almost always directly be passed to [`RasterDataSources.process_subset`](@ref) """ function modis_request(T::Type{<:ModisProduct}, layer, lat, lon, km_ab, km_lr, from, to) # using joinpath here is more readable but works only for UNIX based OS, :'( base_uri = join([string(MODIS_URI), product(T), "subset"], "/") query = string( URI(; query = Dict( "latitude" => string(lat), "longitude" => string(lon), "startDate" => string(from), "endDate" => string(to), "kmAboveBelow" => string(km_ab), "kmLeftRight" => string(km_lr), "band" => string(layer), ), ), ) r = HTTP.request("GET", URI(base_uri * query), ["Accept" => "application/json"]) body = JP.parse(String(r.body)) # The server outputs data in a nested JSON array that we can # parse manually : the highest level is a metadata array with # a "subset" column containing pixel array for each (band, timepoint) # the header information is in the top-level of the request pars = ( nrows = body["nrows"], ncols = body["ncols"], xll = body["xllcorner"], yll = body["yllcorner"], cellsize = body["cellsize"] ) # data is in the subset field subset = body["subset"] return subset, pars end """ sinusoidal_to_latlon(x::Real, y::Real) Convert x and y in sinusoidal projection to lat and lon in dec. degrees The ![EPSG.io API](https://github.com/maptiler/epsg.io) takes care of coordinate conversions. This is not ideal in terms of network use but guarantees that the coordinates are correct. """ function sinusoidal_to_latlon(x::Real, y::Real) url = "https://epsg.io/trans" @info "Asking EPSG.io for coordinates calculation" query = Dict( "x" => string(x), "y" => string(y), "s_srs" => "53008", # sinusoidal "t_srs" => "4326", # WGS84 ) r = HTTP.request("GET", url; query = query) body = JP.parse(String(r.body)) lat = parse(Float64, body["y"]) lon = parse(Float64, body["x"]) return (lat, lon) end # data from https://nssdc.gsfc.nasa.gov/planetary/factsheet/earthfact.html const EARTH_EQ_RADIUS = 6378137 const EARTH_POL_RADIUS = 6356752 function meters_to_latlon(d::Real, lat::Real) dlon = asind(d / (cosd(lat) * EARTH_EQ_RADIUS)) dlat = d * 180 / (π * EARTH_POL_RADIUS) return (dlat, dlon) end function _maybe_prepare_params(xllcorner::Real, yllcorner::Real, nrows::Int, cellsize::Real) filepath = joinpath( rasterpath(), "MODIS", "headers", string(xllcorner) * "," * string(yllcorner) * "," * string(cellsize) * "," * string(nrows) * ".csv", ) if isfile(filepath) pars_str = open(filepath, "r") do f readline(f) end pars = parse.(Float64, split(pars_str, ",")) else # coordinates in sin projection ; we want upper-left in WGS84 # convert coordinates yll, xll = sinusoidal_to_latlon(xllcorner, yllcorner) # convert cell size in meters to degrees in lat and lon directions dy, dx = meters_to_latlon(cellsize, yll) # watch out, this is a Tuple{Float64, Float64} pars = [xll, yll, dx, dy] # store in file pars_str = join(string.(pars), ",") mkpath(dirname(filepath)) open(filepath, "w") do f write(f, pars_str) end end # return a NamedTuple return (xll = pars[1], yll = pars[2], dx = pars[3], dy = pars[4]) end """ process_subset(T::Type{<:ModisProduct}, subset::Vector{Any}, pars::NamedTuple) Process a raw subset and argument parameters and create several raster files. Any already existing file is not overwritten. For each band, a separate folder is created, containing a file for each of the required dates. This is inspired by the way WorldClim{Climate} treats the problem of possibly having to download several dates AND bands. Can theoretically be used for MODIS data that does not directly come from [`RasterDataSources.modis_request`](@ref), but caution is advised. Returns the filepath/s of the created or pre-existing files. """ function process_subset(T::Type{<:ModisProduct}, subset::Vector{Any}, pars::NamedTuple) # coerce parameters from String to correct types ncols = pars[:ncols] nrows = pars[:nrows] cellsize = pars[:cellsize] xll = parse(Float64, pars[:xll]) yll = parse(Float64, pars[:yll]) pars = _maybe_prepare_params(xll, yll, nrows, cellsize) path_out = String[] for i in eachindex(subset) # for each (date, band) date = subset[i]["calendar_date"] band = subset[i]["band"] filepath = rasterpath(T, band; lat = pars[:yll], lon = pars[:xll], date = date) mat = permutedims(reshape(subset[i]["data"], (ncols, nrows))) mkpath(dirname(filepath)) # prepare directories if they dont exist if !isfile(filepath) @info "Creating raster file $(basename(filepath)) in $(dirname(filepath))" write_ascii(filepath, mat; ncols = ncols, nrows = nrows, nodatavalue = -3000.0, pars...) else @info "Raster file $(basename(filepath)) already exists in $(dirname(filepath))" end push!(path_out, filepath) end return (length(path_out) == 1 ? path_out[1] : path_out) end """ check_layers(T::Type{<:ModisProduct}, layers::Union{Tuple, AbstractVector, Symbol, String, Int}) => nothing Checks if required layers make sense for the MODIS product T. """ function check_layers( T::Type{<:ModisProduct}, layers::Union{Tuple,AbstractVector,Symbol,String,Int}, ) if typeof(layers) <: Tuple || typeof(layers) <: AbstractVector for l in layers _check_layer(T::Type{<:ModisProduct}, l) end else _check_layer(T::Type{<:ModisProduct}, layers) end end function _check_layer(T::Type{<:ModisProduct}, layer::Symbol) !(layer in layerkeys(T)) && throw( ArgumentError( "Invalid layer $layer for product $T.\nAvailable layers are $(layerkeys(T))", ), ) return nothing end function _check_layer(T::Type{<:ModisProduct}, layer::Int) !(layer in layers(T)) && throw( ArgumentError( "Invalid layer $layer for product $T.\nAvailable layers are $(layers(T))", ), ) return nothing end function _check_layer(T::Type{<:ModisProduct}, layer::String) !(layer in list_layers(T)) && throw( ArgumentError( "Invalid layer $layer for product $T.\nAvailable layers are $(list_layers(T)).\nProceed with caution while using `String` layers. You might want to use their `Symbol` counterparts.", ), ) end """ check_kwargs(T::Type{ModisProduct}; kwargs...) => nothing "Never trust user input". Checks all keyword arguments that might be used in internal calls. """ function check_kwargs(T::Type{<:ModisProduct}; kwargs...) symbols = keys(kwargs) errors = String[] # check lat if :lat in symbols (kwargs[:lat] < -90 || kwargs[:lat] > 90) && push!(errors, "Latitude lat=$(kwargs[:lat]) must be between -90 and 90.") end # check lon if :lon in symbols (kwargs[:lon] < -180 || kwargs[:lon] > 180) && push!(errors, "Longitude lon=$(kwargs[:lon]) must be between -180 and 180.") end # check km_ab if :km_ab in symbols (kwargs[:km_ab] < 0 || kwargs[:km_ab] > 100) && push!( errors, "Km above and below km_ab=$(kwargs[:km_ab]) must be between 0 and 100.", ) end # check km_lr if :km_lr in symbols (kwargs[:km_lr] < 0 || kwargs[:km_lr] > 100) && push!( errors, "Km left and right km_lr=$(kwargs[:km_lr]) must be between 0 and 100.", ) end # check from if :from in symbols # check if conversion works from = Date(kwargs[:from]) (from < Date(2000) || from > Dates.now()) && push!(errors, "Unsupported date for from=$(from)") end # check to if :to in symbols # check if conversion works to = Date(kwargs[:to]) (to < Date(2000) || to > Dates.now()) && push!(errors, "Unsupported date for to=$(to)") end if :date in symbols _check_date(kwargs[:date]) || push!(errors, "Unsupported date(s) in date=$(kwargs[:date])") end if length(errors) > 0 if length(errors) == 1 throw(ArgumentError(errors[1])) else throw(ArgumentError(join(["Several wrong arguments."; errors], "\n"))) end end return nothing end _check_date(d::AbstractVector) = all(b -> b == true, map(_check_date, d)) _check_date(d::Tuple) = all(b -> b == true, map(_check_date, d)) _check_date(d::String) = _check_date(Date(d)) """ _check_date(d::Dates.TimeType) Does not check if `d` is available, only checks if `d` makes sense, i.e if `d` **could** be available. Returns `true` for good dates, `false` for bad ones. """ function _check_date(d::Dates.TimeType) return !(d < Date(2000) || d > Dates.now()) end
RasterDataSources
https://github.com/EcoJulia/RasterDataSources.jl.git
[ "MIT" ]
0.6.1
dfab74c3efb21c6df589f30f7bbe5b9b8dbbe3c9
code
9067
struct SRTM <: RasterDataSource end # SRTM Mirror with 5x5 degree tiles const SRTM_URI = URI(scheme = "https", host = "srtm.csi.cgiar.org", path = "/wp-content/uploads/files/srtm_5x5/TIFF") const HAS_SRTM_TILE = BitArray([ 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 0 0 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 1 0 0 1 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 1 1 0 0 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 0 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 0 0 0 0 1 1 1 1 1 1 0 1 1 1 0 0 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 ]) getraster_keywords(::Type{SRTM}) = (:bounds, :tile_index) function _raster_tile_stem(tile_index::CartesianIndex) y, x = tile_index.I "srtm_$(lpad(x, 2, '0'))_$(lpad(y, 2, '0'))" end _rastername(::Type{SRTM}, tile_index::CartesianIndex{2}) = _raster_tile_stem(tile_index) * ".tif" _rasterpath(T::Type{SRTM}, tile_index::CartesianIndex{2}) = joinpath(rasterpath(), "SRTM", _rastername(T, tile_index)) _zipname(::Type{SRTM}, tile_index::CartesianIndex{2}) = _raster_tile_stem(tile_index) * ".zip" _zipurl(T::Type{SRTM}, tile_index::CartesianIndex{2}) = joinpath(SRTM_URI, _zipname(T, tile_index)) _zippath(T::Type{SRTM}, tile_index::CartesianIndex{2}) = joinpath(rasterpath(), "SRTM", "zips", _zipname(T, tile_index)) function _getraster(T::Type{SRTM}, tile_index::CartesianIndex{2}) raster_path = _rasterpath(T, tile_index) if !isfile(raster_path) @info "Note: not all oceanic tiles exist in the SRTM dataset." zip_path = _zippath(T, tile_index) _maybe_download(_zipurl(T, tile_index), zip_path) mkpath(dirname(raster_path)) raster_name = _rastername(T, tile_index) zf = ZipFile.Reader(zip_path) write(raster_path, read(_zipfile_to_read(raster_name, zf))) close(zf) end return raster_path end # Adapted from https://github.com/centreborelli/srtm4/blob/master/src/srtm4.c#L87-L117 function _wgs84_to_tile_x(x) # tiles longitude indexes go from 1 to 72, # covering the range from -180 to +180 tile_x = (1 + floor(Int, (x + 180) / 5)) % 72 return tile_x == 0 ? 72 : tile_x end function _wgs84_to_tile_y(y) y = clamp(y, -60, 60) tile_y = 1 + floor(Int, (60 - y) / 5) return tile_y == 25 ? 24 : tile_y end function bounds_to_tile_indices(::Type{SRTM}, bounds::NTuple{4,Real}) bounds_to_tile_indices(SRTM, ((bounds[1], bounds[3]), (bounds[2], bounds[4]))) end function bounds_to_tile_indices(::Type{SRTM}, (xs, ys)::NTuple{2,NTuple{2,Real}}) _check_order(xs) _check_order(ys) t_xs = _wgs84_to_tile_x.(xs) t_ys = reverse(_wgs84_to_tile_y.(ys)) return CartesianIndices((t_ys[1]:(t_ys[2]), t_xs[1]:(t_xs[2]))) end _check_order((a, b)) = a > b && throw(ArgumentError("Upper bound $b less than lower bound $a")) for op in (:getraster, :rastername, :rasterpath, :zipname, :zipurl, :zippath) _op = Symbol('_', op) # Name of internal function @eval begin # Broadcasting function dispatch function $_op(T::Type{SRTM}, tile_index::CartesianIndices) broadcast(tile_index) do I HAS_SRTM_TILE[I] ? $_op(T, I) : missing end end # Bounds to tile indices dispatch $_op(T::Type{SRTM}, bounds::Tuple) = $_op(T, bounds_to_tile_indices(T, bounds)) # Public function definition with key-word arguments function $op(T::Type{SRTM}; bounds=nothing, tile_index=nothing) if isnothing(bounds) & isnothing(tile_index) :op === :getraster || return joinpath(rasterpath(), "SRTM") throw(ArgumentError("One of `bounds` or `tile_index` kwarg must be specified")) elseif !isnothing(bounds) & !isnothing(tile_index) throw(ArgumentError("Only one of `bounds` or `tile_index` should be specified. " * "found `bounds`=$bounds and `tile_index`=$tile_index")) else # Call the internal function without key-word arguments return $_op(T, isnothing(tile_index) ? bounds : tile_index) end end end end
RasterDataSources
https://github.com/EcoJulia/RasterDataSources.jl.git
[ "MIT" ]
0.6.1
dfab74c3efb21c6df589f30f7bbe5b9b8dbbe3c9
code
2202
layers(::Type{WorldClim{BioClim}}) = layers(BioClim) layerkeys(T::Type{WorldClim{BioClim}}, args...) = layerkeys(BioClim, args...) """ getraster(T::Type{WorldClim{BioClim}}, [layer::Union{Tuple,AbstractVector,Integer}]; res::String="10m") => Union{Tuple,AbstractVector,String} Download [`WorldClim`](@ref) [`BioClim`](@ref) data. # Arguments - `layer`: `Integer` or tuple/range of `Integer` from `$(layers(BioClim))`. or `Symbol`s from `$(layerkeys(BioClim))`. Without a `layer` argument, all layers will be downloaded, and a `NamedTuple` of paths returned. # Keywords - `res`: `String` chosen from $(resolutions(WorldClim{BioClim})), "10m" by default. Returns the filepath/s of the downloaded or pre-existing files. """ function getraster(T::Type{WorldClim{BioClim}}, layers::Union{Tuple,Int,Symbol}; res::String=defres(T) ) _getraster(T, layers, res) end getraster_keywords(::Type{WorldClim{BioClim}}) = (:res,) _getraster(T::Type{WorldClim{BioClim}}, layers::Tuple, res) = _map_layers(T, layers, res) _getraster(T::Type{WorldClim{BioClim}}, layer::Symbol, res) = _getraster(T, bioclim_int(layer), res) function _getraster(T::Type{WorldClim{BioClim}}, layer::Integer, res) _check_layer(T, layer) _check_res(T, res) raster_path = rasterpath(T, layer; res) zip_path = zippath(T, layer; res) if !isfile(raster_path) _maybe_download(zipurl(T, layer; res), zip_path) mkpath(dirname(raster_path)) raster_name = rastername(T, layer; res) zf = ZipFile.Reader(zip_path) write(raster_path, read(_zipfile_to_read(raster_name, zf))) close(zf) end return raster_path end # BioClim layers don't get their own folder rasterpath(T::Type{<:WorldClim{BioClim}}, layer; kw...) = joinpath(rasterpath(T), rastername(T, layer; kw...)) rastername(T::Type{<:WorldClim{BioClim}}, key; res) = "wc2.1_$(res)_bio_$key.tif" zipname(T::Type{<:WorldClim{BioClim}}, key; res) = "wc2.1_$(res)_bio.zip" zipurl(T::Type{<:WorldClim{BioClim}}, key; res) = joinpath(WORLDCLIM_URI, "base", zipname(T, key; res)) zippath(T::Type{<:WorldClim{BioClim}}, key; res) = joinpath(rasterpath(T), "zips", zipname(T, key; res))
RasterDataSources
https://github.com/EcoJulia/RasterDataSources.jl.git
[ "MIT" ]
0.6.1
dfab74c3efb21c6df589f30f7bbe5b9b8dbbe3c9
code
2554
layers(::Type{WorldClim{Climate}}) = (:tmin, :tmax, :tavg, :prec, :srad, :wind, :vapr) """ getraster(T::Type{WorldClim{Climate}}, [layer::Union{Tuple,Symbol}]; month, res::String="10m") => Vector{String} Download [`WorldClim`](@ref) [`Climate`](@ref) data. # Arguments - `layer` `Symbol` or `Tuple` of `Symbol` from `$(layers(WorldClim{Climate}))`. Without a `layer` argument, all layers will be downloaded, and a `NamedTuple` of paths returned. # Keywords - `month`: `Integer` or `AbstractArray` of `Integer`. Chosen from `1:12`. - `res`: `String` chosen from $(resolutions(WorldClim{Climate})), "10m" by default. Returns the filepath/s of the downloaded or pre-existing files. """ function getraster(T::Type{WorldClim{Climate}}, layers::Union{Tuple,Symbol}; month, res::String=defres(T) ) _getraster(T, layers, month, res) end getraster_keywords(::Type{WorldClim{Climate}}) = (:month, :res,) function _getraster(T::Type{WorldClim{Climate}}, layers, month::AbstractArray, res::String) _getraster.(T, Ref(layers), month, Ref(res)) end function _getraster(T::Type{WorldClim{Climate}}, layers::Tuple, month::Integer, res::String) _map_layers(T, layers, month, res) end function _getraster(T::Type{WorldClim{Climate}}, layer::Symbol, month::Integer, res::String) _check_layer(T, layer) _check_res(T, res) raster_path = rasterpath(T, layer; res, month) if !isfile(raster_path) zip_path = zippath(T, layer; res, month) _maybe_download(zipurl(T, layer; res, month), zip_path) zf = ZipFile.Reader(zip_path) mkpath(dirname(raster_path)) raster_name = rastername(T, layer; res, month) write(raster_path, read(_zipfile_to_read(raster_name, zf))) close(zf) end return raster_path end # Climate layers don't get their own folder rasterpath(T::Type{<:WorldClim{Climate}}, layer; res, month) = joinpath(_rasterpath(T, layer), rastername(T, layer; res, month)) _rasterpath(T::Type{<:WorldClim{Climate}}, layer) = joinpath(rasterpath(T), string(layer)) rastername(T::Type{<:WorldClim{Climate}}, layer; res, month) = "wc2.1_$(res)_$(layer)_$(_pad2(month)).tif" zipname(T::Type{<:WorldClim{Climate}}, layer; res, month=1) = "wc2.1_$(res)_$(layer).zip" zipurl(T::Type{<:WorldClim{Climate}}, layer; res, month=1) = joinpath(WORLDCLIM_URI, "base", zipname(T, layer; res, month)) zippath(T::Type{<:WorldClim{Climate}}, layer; res, month=1) = joinpath(rasterpath(T), "zips", zipname(T, layer; res, month)) _pad2(month) = lpad(month, 2, '0')
RasterDataSources
https://github.com/EcoJulia/RasterDataSources.jl.git
[ "MIT" ]
0.6.1
dfab74c3efb21c6df589f30f7bbe5b9b8dbbe3c9
code
1930
layers(::Type{WorldClim{Elevation}}) = (:elev,) """ getraster(T::Type{WorldClim{Elevation}}, [layer::Union{Tuple,Symbol}]; res::String="10m") => Union{Tuple,AbstractVector,String} Download [`WorldClim`](@ref) [`Elevation`](@ref) data. # Arguments - `layer`: `Symbol` or `Tuple` of `Symbol` from `$(layers(WorldClim{Elevation}))`. Without a `layer` argument, all layers will be downloaded, and a `NamedTuple` of paths returned. # Keywords - `res`: `String` chosen from $(resolutions(WorldClim{Elevation})), "10m" by default. Returns the filepath/s of the downloaded or pre-existing files. """ function getraster(T::Type{WorldClim{Elevation}}, layers::Union{Tuple,Symbol}; res::String=defres(T) ) _getraster(T, layers, res) end getraster_keywords(::Type{WorldClim{Elevation}}) = (:res,) _getraster(T::Type{WorldClim{Elevation}}, layers::Tuple, res) = _map_layers(T, layers, res) function _getraster(T::Type{WorldClim{Elevation}}, layer::Symbol, res) _check_layer(T, layer) _check_res(T, res) raster_path = rasterpath(T, layer; res) if !isfile(raster_path) zip_path = zippath(T, layer; res) _maybe_download(zipurl(T, layer; res), zip_path) mkpath(dirname(raster_path)) raster_name = rastername(T, layer; res) zf = ZipFile.Reader(zip_path) write(raster_path, read(_zipfile_to_read(raster_name, zf))) close(zf) end return raster_path end rasterpath(T::Type{<:WorldClim{Elevation}}, layer; kw...) = joinpath(rasterpath(T), rastername(T, layer; kw...)) rastername(T::Type{<:WorldClim{Elevation}}, key; res) = "wc2.1_$(res)_elev.tif" zipname(T::Type{<:WorldClim{Elevation}}, key; res) = "wc2.1_$(res)_elev.zip" zipurl(T::Type{<:WorldClim{Elevation}}, key; res) = joinpath(WORLDCLIM_URI, "base", zipname(T, key; res)) zippath(T::Type{<:WorldClim{Elevation}}, key; res) = joinpath(rasterpath(T), "zips", zipname(T, key; res))
RasterDataSources
https://github.com/EcoJulia/RasterDataSources.jl.git
[ "MIT" ]
0.6.1
dfab74c3efb21c6df589f30f7bbe5b9b8dbbe3c9
code
781
""" WorldClim{Union{BioClim,Climate,Weather}} <: RasterDataSource Data from WorldClim datasets, either [`BioClim`](@ref), [`Climate`](@ref) or [`Weather`](@ref). See: [www.worldclim.org](https://www.worldclim.org) """ struct WorldClim{X} <: RasterDataSource end const WORLDCLIM_URI = URI(scheme="https", host="geodata.ucdavis.edu", path="/climate/worldclim/2_1") resolutions(::Type{<:WorldClim}) = ("30s", "2.5m", "5m", "10m") defres(::Type{<:WorldClim}) = "10m" rasterpath(::Type{WorldClim{T}}) where T = joinpath(rasterpath(), "WorldClim", string(nameof(T))) rasterpath(T::Type{<:WorldClim}, layer; kw...) = joinpath(rasterpath(T), string(layer), rastername(T, layer; kw...)) _zipfile_to_read(raster_name, zf) = first(filter(f -> f.name == raster_name, zf.files))
RasterDataSources
https://github.com/EcoJulia/RasterDataSources.jl.git
[ "MIT" ]
0.6.1
dfab74c3efb21c6df589f30f7bbe5b9b8dbbe3c9
code
3123
layers(::Type{WorldClim{Weather}}) = (:tmin, :tmax, :prec) date_step(::Type{WorldClim{Weather}}) = Month(1) """ getraster(T::Type{WorldClim{Weather}}, [layer::Union{Tuple,Symbol}]; date) => Union{String,Tuple{String},Vector{String}} Download [`WorldClim`](@ref) [`Weather`](@ref) data, for `layer`/s in: `$(layers(WorldClim{Weather}))`. Without a layer argument, all layers will be downloaded, and a `NamedTuple` of paths returned. # Keywords - `date`: a `Date` or `DateTime` object, a `Vector` of dates, or `Tuple` of start/end dates. WorldClim Weather is available with a daily timestep. Returns the filepath/s of the downloaded or pre-existing files. """ function getraster(T::Type{WorldClim{Weather}}, layers::Union{Tuple,Symbol}; date) _getraster(T, layers, date) end getraster_keywords(::Type{WorldClim{Weather}}) = (:date,) function _getraster(T::Type{WorldClim{Weather}}, layers, date::Tuple) _getraster(T, layers, date_sequence(T, date)) end function _getraster(T::Type{WorldClim{Weather}}, layers, dates::AbstractArray) _getraster.(T, Ref(layers), dates) end function _getraster(T::Type{WorldClim{Weather}}, layers::Tuple, date::Dates.TimeType) _map_layers(T, layers, date) end function _getraster(T::Type{WorldClim{Weather}}, layer::Symbol, date::Dates.TimeType) decadestart = Date.(1960:10:2020) for i in eachindex(decadestart[1:end-1]) # At least one date is in the decade date >= decadestart[i] && date < decadestart[i+1] || continue zip_path = zippath(T, layer; decade=decadestart[i]) _maybe_download(zipurl(T, layer; decade=decadestart[i]), zip_path) zf = ZipFile.Reader(zip_path) raster_path = rasterpath(T, layer; date=date) mkpath(dirname(raster_path)) if !isfile(raster_path) raster_name = rastername(T, layer; date=date) println("Writing $(raster_path)...") write(raster_path, read(_zipfile_to_read(raster_name, zf))) end close(zf) return raster_path end error("Date $date not between 1960 and 2020") end const WEATHER_DECADES = Dict(Date(1960) => "1960-1969", Date(1970) => "1970-1979", Date(1980) => "1980-1989", Date(1990) => "1990-1999", Date(2000) => "2000-2009", Date(2010) => "2010-2018") rastername(T::Type{<:WorldClim{Weather}}, layer; date) = joinpath("wc2.1_2.5m_$(layer)_$(_date2string(T, date)).tif") zipname(T::Type{<:WorldClim{Weather}}, layer; decade) = "wc2.1_2.5m_$(layer)_$(WEATHER_DECADES[decade]).zip" zipurl(T::Type{<:WorldClim{Weather}}, layer; decade) = joinpath(WORLDCLIM_URI, "hist", zipname(T, layer; decade)) zippath(T::Type{<:WorldClim{Weather}}, layer; decade) = joinpath(rasterpath(T), "zips", zipname(T, layer; decade)) # Utility methods _dateformat(::Type{<:WorldClim}) = DateFormat("yyyy-mm") _filename2date(T::Type{<:WorldClim}, fn::AbstractString) = _string2date(T, basename(fn)[findfirst(r"\d\d\d\d-\d\d", basename(fn))])
RasterDataSources
https://github.com/EcoJulia/RasterDataSources.jl.git
[ "MIT" ]
0.6.1
dfab74c3efb21c6df589f30f7bbe5b9b8dbbe3c9
code
2328
using RasterDataSources, URIs, Test, Dates using RasterDataSources: rastername, rasterurl, rasterpath @testset "ALWB" begin alwb_path = joinpath(ENV["RASTERDATASOURCES_PATH"], "ALWB") @test rasterpath(ALWB) == alwb_path @test rasterpath(ALWB{Values,Year}) == joinpath(alwb_path, "values", "year") @test rastername(ALWB{Values,Year}, :ss_pct; date=Date(2001, 1)) == "ss_pct.nc" @test rastername(ALWB{Values,Month}, :ss_pct; date=Date(2001, 1)) == "ss_pct.nc" @test rastername(ALWB{Values,Day}, :ss_pct; date=Date(2001, 1)) == "ss_pct_2001.nc" @test rasterpath(ALWB{Values,Day}, :ss_pct; date=Date(2001, 1)) == joinpath(alwb_path, "values", "day", "ss_pct_2001.nc") @test rasterurl(ALWB{Values,Year}, :ss_pct; date=Date(2001, 1)) == URI(scheme="http", host="www.bom.gov.au", path="/jsp/awra/thredds/fileServer/AWRACMS/values/year/ss_pct.nc") @test rasterurl(ALWB{Values,Day}, :ss_pct; date=Date(2001, 1)) == URI(scheme="http", host="www.bom.gov.au", path="/jsp/awra/thredds/fileServer/AWRACMS/values/day/ss_pct_2001.nc") raster_path = joinpath(alwb_path, "values", "day", "ss_pct_2018.nc") @test getraster(ALWB{Values,Day}, :ss_pct; date=DateTime(2018, 01, 01)) == raster_path @test isfile(raster_path) raster_path = joinpath(alwb_path, "deciles", "month", "s0_pct.nc") @test getraster(ALWB{Deciles,Month}, :s0_pct; date=DateTime(2018, 01, 01)) == raster_path @test isfile(raster_path) raster_path = joinpath(alwb_path, "values", "day", "ma_wet_2018.nc") @test getraster(ALWB{Values,Day}, :ma_wet; date=DateTime(2018, 01, 01)) == raster_path @test isfile(raster_path) raster_path = joinpath(alwb_path, "values", "month", "etot.nc") @test getraster(ALWB{Values,Month}, (:etot,); date=DateTime(2018, 01, 01)) == (etot=raster_path,) @test isfile(raster_path) raster_path = joinpath(alwb_path, "values", "year", "asce_pet.nc") @test getraster(ALWB{Values,Year}, :asce_pet; date=[DateTime(2018, 01, 01)]) == [raster_path] @test isfile(raster_path) raster_path = joinpath(alwb_path, "values", "year", "dd.nc") @test getraster(ALWB{Values,Year}, [:dd]; date=DateTime(2018, 01, 01)) == (dd=raster_path,) @test isfile(raster_path) @test RasterDataSources.getraster_keywords(ALWB) == (:date,) end
RasterDataSources
https://github.com/EcoJulia/RasterDataSources.jl.git
[ "MIT" ]
0.6.1
dfab74c3efb21c6df589f30f7bbe5b9b8dbbe3c9
code
1327
using RasterDataSources, URIs, Test, Dates using RasterDataSources: rastername, rasterpath, zipurl, zipname, zippath @testset "AWAP" begin using RasterDataSources: rastername, zipurl, zipname, zippath raster_file = joinpath(ENV["RASTERDATASOURCES_PATH"], "AWAP", "vprp", "vprph09", "20010101.grid") @test rasterpath(AWAP, :vprpress09; date=Date(2001, 1)) == raster_file @test rastername(AWAP, :vprpress09; date=Date(2001, 1)) == "20010101.grid" @test zipurl(AWAP, :vprpress09; date=Date(2001, 1)) == URI(scheme="http", host="www.bom.gov.au", path="/web03/ncc/www/awap/vprp/vprph09/daily/grid/0.05/history/nat/2001010120010101.grid.Z") @test zippath(AWAP, :vprpress09; date=Date(2001, 1)) == joinpath(ENV["RASTERDATASOURCES_PATH"], "AWAP", "vprp", "vprph09", "20010101.grid.Z") @test zipname(AWAP, :vprpress09; date=Date(2001, 1)) == "20010101.grid.Z" if Sys.islinux() @test getraster(AWAP, :vprpress09; date=DateTime(2001, 01, 01)) == raster_file @test getraster(AWAP, (:vprpress09,); date=DateTime(2001, 01, 01)) == (vprpress09=raster_file,) @test getraster(AWAP, [:vprpress09]; date=DateTime(2001, 01, 01)) == (vprpress09=raster_file,) @test isfile(raster_file) end @test RasterDataSources.getraster_keywords(AWAP) == (:date,) end
RasterDataSources
https://github.com/EcoJulia/RasterDataSources.jl.git