text
stringlengths
0
1.73k
source
stringlengths
35
119
category
stringclasses
2 values
LazyConv2d class torch.nn.LazyConv2d(out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros', device=None, dtype=None) A "torch.nn.Conv2d" module with lazy initialization of the "in_channels" argument of the "Conv2d" that is inferred from the "input.size(1)". The attributes that will be lazily initialized are weight and bias. Check the "torch.nn.modules.lazy.LazyModuleMixin" for further documentation on lazy modules and their limitations. Parameters: * out_channels (int) -- Number of channels produced by the convolution * **kernel_size** (*int** or **tuple*) -- Size of the convolving kernel * **stride** (*int** or **tuple**, **optional*) -- Stride of the convolution. Default: 1 * **padding** (*int** or **tuple**, **optional*) -- Zero-padding added to both sides of the input. Default: 0 * **padding_mode** (*str**, **optional*) -- "'zeros'",
https://pytorch.org/docs/stable/generated/torch.nn.LazyConv2d.html
pytorch docs
"'reflect'", "'replicate'" or "'circular'". Default: "'zeros'" * **dilation** (*int** or **tuple**, **optional*) -- Spacing between kernel elements. Default: 1 * **groups** (*int**, **optional*) -- Number of blocked connections from input channels to output channels. Default: 1 * **bias** (*bool**, **optional*) -- If "True", adds a learnable bias to the output. Default: "True" See also: "torch.nn.Conv2d" and "torch.nn.modules.lazy.LazyModuleMixin" cls_to_become alias of "Conv2d"
https://pytorch.org/docs/stable/generated/torch.nn.LazyConv2d.html
pytorch docs
torch.Tensor.xlogy_ Tensor.xlogy_(other) -> Tensor In-place version of "xlogy()"
https://pytorch.org/docs/stable/generated/torch.Tensor.xlogy_.html
pytorch docs
torch.cuda.get_device_properties torch.cuda.get_device_properties(device) Gets the properties of a device. Parameters: device (torch.device or int or str) -- device for which to return the properties of the device. Returns: the properties of the device Return type: _CudaDeviceProperties
https://pytorch.org/docs/stable/generated/torch.cuda.get_device_properties.html
pytorch docs
torch.Tensor.ldexp_ Tensor.ldexp_(other) -> Tensor In-place version of "ldexp()"
https://pytorch.org/docs/stable/generated/torch.Tensor.ldexp_.html
pytorch docs
torch.kron torch.kron(input, other, *, out=None) -> Tensor Computes the Kronecker product, denoted by \otimes, of "input" and "other". If "input" is a (a_0 \times a_1 \times \dots \times a_n) tensor and "other" is a (b_0 \times b_1 \times \dots \times b_n) tensor, the result will be a (a_0b_0 \times a_1b_1 \times \dots \times a_n*b_n) tensor with the following entries: (\text{input} \otimes \text{other})_{k_0, k_1, \dots, k_n} = \text{input}_{i_0, i_1, \dots, i_n} * \text{other}_{j_0, j_1, \dots, j_n}, where k_t = i_t * b_t + j_t for 0 \leq t \leq n. If one tensor has fewer dimensions than the other it is unsqueezed until it has the same number of dimensions. Supports real-valued and complex-valued inputs. Note: This function generalizes the typical definition of the Kronecker product for two matrices to two tensors, as described above. When "input" is a (m \times n) matrix and "other" is a (p \times q)
https://pytorch.org/docs/stable/generated/torch.kron.html
pytorch docs
matrix, the result will be a (pm \times qn) block matrix: \mathbf{A} \otimes \mathbf{B}=\begin{bmatrix} a_{11} \mathbf{B} & \cdots & a_{1 n} \mathbf{B} \\ \vdots & \ddots & \vdots \\ a_{m 1} \mathbf{B} & \cdots & a_{m n} \mathbf{B} \end{bmatrix} where "input" is \mathbf{A} and "other" is \mathbf{B}. Parameters: * input (Tensor) -- * **other** (*Tensor*) -- Keyword Arguments: out (Tensor, optional) -- The output tensor. Ignored if "None". Default: "None" Examples: >>> mat1 = torch.eye(2) >>> mat2 = torch.ones(2, 2) >>> torch.kron(mat1, mat2) tensor([[1., 1., 0., 0.], [1., 1., 0., 0.], [0., 0., 1., 1.], [0., 0., 1., 1.]]) >>> mat1 = torch.eye(2) >>> mat2 = torch.arange(1, 5).reshape(2, 2) >>> torch.kron(mat1, mat2) tensor([[1., 2., 0., 0.], [3., 4., 0., 0.], [0., 0., 1., 2.],
https://pytorch.org/docs/stable/generated/torch.kron.html
pytorch docs
[0., 0., 1., 2.], [0., 0., 3., 4.]])
https://pytorch.org/docs/stable/generated/torch.kron.html
pytorch docs
torch.fft.ihfft torch.fft.ihfft(input, n=None, dim=- 1, norm=None, *, out=None) -> Tensor Computes the inverse of "hfft()". "input" must be a real-valued signal, interpreted in the Fourier domain. The IFFT of a real signal is Hermitian-symmetric, "X[i] = conj(X[-i])". "ihfft()" represents this in the one-sided form where only the positive frequencies below the Nyquist frequency are included. To compute the full output, use "ifft()". Note: Supports torch.half on CUDA with GPU Architecture SM53 or greater. However it only supports powers of 2 signal length in every transformed dimension. Parameters: * input (Tensor) -- the real input tensor * **n** (*int**, **optional*) -- Signal length. If given, the input will either be zero-padded or trimmed to this length before computing the Hermitian IFFT. * **dim** (*int**, **optional*) -- The dimension along which to take the one dimensional Hermitian IFFT.
https://pytorch.org/docs/stable/generated/torch.fft.ihfft.html
pytorch docs
take the one dimensional Hermitian IFFT. * **norm** (*str**, **optional*) -- Normalization mode. For the backward transform ("ihfft()"), these correspond to: * ""forward"" - no normalization * ""backward"" - normalize by "1/n" * ""ortho"" - normalize by "1/sqrt(n)" (making the IFFT orthonormal) Calling the forward transform ("hfft()") with the same normalization mode will apply an overall normalization of "1/n" between the two transforms. This is required to make "ihfft()" the exact inverse. Default is ""backward"" (normalize by "1/n"). Keyword Arguments: out (Tensor, optional) -- the output tensor. -[ Example ]- t = torch.arange(5) t tensor([0, 1, 2, 3, 4]) torch.fft.ihfft(t) tensor([ 2.0000-0.0000j, -0.5000-0.6882j, -0.5000-0.1625j]) Compare against the full output from "ifft()": torch.fft.ifft(t)
https://pytorch.org/docs/stable/generated/torch.fft.ihfft.html
pytorch docs
torch.fft.ifft(t) tensor([ 2.0000-0.0000j, -0.5000-0.6882j, -0.5000-0.1625j, -0.5000+0.1625j, -0.5000+0.6882j])
https://pytorch.org/docs/stable/generated/torch.fft.ihfft.html
pytorch docs
torch.nn.modules.module.register_module_full_backward_hook torch.nn.modules.module.register_module_full_backward_hook(hook) Registers a backward hook common to all the modules. Warning: This adds global state to the *nn.module* module and it is only intended for debugging/profiling purposes. The hook will be called every time the gradients with respect to a module are computed, i.e. the hook will execute if and only if the gradients with respect to module outputs are computed. The hook should have the following signature: hook(module, grad_input, grad_output) -> Tensor or None The "grad_input" and "grad_output" are tuples. The hook should not modify its arguments, but it can optionally return a new gradient with respect to the input that will be used in place of "grad_input" in subsequent computations. "grad_input" will only correspond to the inputs given as positional arguments and all
https://pytorch.org/docs/stable/generated/torch.nn.modules.module.register_module_full_backward_hook.html
pytorch docs
kwarg arguments will not appear in the hook. Entries in "grad_input" and "grad_output" will be "None" for all non-Tensor arguments. For technical reasons, when this hook is applied to a Module, its forward function will receive a view of each Tensor passed to the Module. Similarly the caller will receive a view of each Tensor returned by the Module's forward function. Global hooks are called before hooks registered with register_backward_hook Returns: a handle that can be used to remove the added hook by calling "handle.remove()" Return type: "torch.utils.hooks.RemovableHandle"
https://pytorch.org/docs/stable/generated/torch.nn.modules.module.register_module_full_backward_hook.html
pytorch docs
torch.Tensor.polygamma Tensor.polygamma(n) -> Tensor See "torch.polygamma()"
https://pytorch.org/docs/stable/generated/torch.Tensor.polygamma.html
pytorch docs
torch.jit.annotate torch.jit.annotate(the_type, the_value) This method is a pass-through function that returns the_value, used to hint TorchScript compiler the type of the_value. It is a no-op when running outside of TorchScript. Though TorchScript can infer correct type for most Python expressions, there are some cases where type inference can be wrong, including: Empty containers like [] and {}, which TorchScript assumes to be container of Tensor Optional types like Optional[T] but assigned a valid value of type T, TorchScript would assume it is type T rather than Optional[T] Note that annotate() does not help in init method of torch.nn.Module subclasses because it is executed in eager mode. To annotate types of torch.nn.Module attributes, use "Annotate()" instead. Example: import torch from typing import Dict @torch.jit.script def fn():
https://pytorch.org/docs/stable/generated/torch.jit.annotate.html
pytorch docs
@torch.jit.script def fn(): # Telling TorchScript that this empty dictionary is a (str -> int) dictionary # instead of default dictionary type of (str -> Tensor). d = torch.jit.annotate(Dict[str, int], {}) # Without `torch.jit.annotate` above, following statement would fail because of # type mismatch. d["name"] = 20 Parameters: * the_type -- Python type that should be passed to TorchScript compiler as type hint for the_value * **the_value** -- Value or expression to hint type for. Returns: the_value is passed back as return value.
https://pytorch.org/docs/stable/generated/torch.jit.annotate.html
pytorch docs
torch.isfinite torch.isfinite(input) -> Tensor Returns a new tensor with boolean elements representing if each element is finite or not. Real values are finite when they are not NaN, negative infinity, or infinity. Complex values are finite when both their real and imaginary parts are finite. Parameters: input (Tensor) -- the input tensor. Returns: A boolean tensor that is True where "input" is finite and False elsewhere Example: >>> torch.isfinite(torch.tensor([1, float('inf'), 2, float('-inf'), float('nan')])) tensor([True, False, True, False, False])
https://pytorch.org/docs/stable/generated/torch.isfinite.html
pytorch docs
torch.set_rng_state torch.set_rng_state(new_state) Sets the random number generator state. Parameters: new_state (torch.ByteTensor) -- The desired state
https://pytorch.org/docs/stable/generated/torch.set_rng_state.html
pytorch docs
FixedQParamsFakeQuantize class torch.quantization.fake_quantize.FixedQParamsFakeQuantize(observer) Simulate quantize and dequantize with fixed quantization parameters in training time. Only per tensor quantization is supported.
https://pytorch.org/docs/stable/generated/torch.quantization.fake_quantize.FixedQParamsFakeQuantize.html
pytorch docs
torch.greater torch.greater(input, other, *, out=None) -> Tensor Alias for "torch.gt()".
https://pytorch.org/docs/stable/generated/torch.greater.html
pytorch docs
torch.Tensor.greater_equal Tensor.greater_equal(other) -> Tensor See "torch.greater_equal()".
https://pytorch.org/docs/stable/generated/torch.Tensor.greater_equal.html
pytorch docs
torch.Tensor.sort Tensor.sort(dim=- 1, descending=False) See "torch.sort()"
https://pytorch.org/docs/stable/generated/torch.Tensor.sort.html
pytorch docs
torch.linspace torch.linspace(start, end, steps, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor Creates a one-dimensional tensor of size "steps" whose values are evenly spaced from "start" to "end", inclusive. That is, the value are: (\text{start}, \text{start} + \frac{\text{end} - \text{start}}{\text{steps} - 1}, \ldots, \text{start} + (\text{steps} - 2) * \frac{\text{end} - \text{start}}{\text{steps} - 1}, \text{end}) From PyTorch 1.11 linspace requires the steps argument. Use steps=100 to restore the previous behavior. Parameters: * start (float) -- the starting value for the set of points * **end** (*float*) -- the ending value for the set of points * **steps** (*int*) -- size of the constructed tensor Keyword Arguments: * out (Tensor, optional) -- the output tensor. * **dtype** (*torch.dtype**, **optional*) -- the data type to
https://pytorch.org/docs/stable/generated/torch.linspace.html
pytorch docs
perform the computation in. Default: if None, uses the global default dtype (see torch.get_default_dtype()) when both "start" and "end" are real, and corresponding complex dtype when either is complex. * **layout** ("torch.layout", optional) -- the desired layout of returned Tensor. Default: "torch.strided". * **device** ("torch.device", optional) -- the desired device of returned tensor. Default: if "None", uses the current device for the default tensor type (see "torch.set_default_tensor_type()"). "device" will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. * **requires_grad** (*bool**, **optional*) -- If autograd should record operations on the returned tensor. Default: "False". Example: >>> torch.linspace(3, 10, steps=5) tensor([ 3.0000, 4.7500, 6.5000, 8.2500, 10.0000]) >>> torch.linspace(-10, 10, steps=5)
https://pytorch.org/docs/stable/generated/torch.linspace.html
pytorch docs
torch.linspace(-10, 10, steps=5) tensor([-10., -5., 0., 5., 10.]) >>> torch.linspace(start=-10, end=10, steps=5) tensor([-10., -5., 0., 5., 10.]) >>> torch.linspace(start=-10, end=10, steps=1) tensor([-10.])
https://pytorch.org/docs/stable/generated/torch.linspace.html
pytorch docs
elu class torch.ao.nn.quantized.functional.elu(input, scale, zero_point, alpha=1.0) This is the quantized version of "elu()". Parameters: * input (Tensor) -- quantized input * **scale** (*float*) -- quantization scale of the output tensor * **zero_point** (*int*) -- quantization zero point of the output tensor * **alpha** (*float*) -- the alpha constant Return type: Tensor
https://pytorch.org/docs/stable/generated/torch.ao.nn.quantized.functional.elu.html
pytorch docs
torch.nn.functional.pairwise_distance torch.nn.functional.pairwise_distance(x1, x2, p=2.0, eps=1e-6, keepdim=False) -> Tensor See "torch.nn.PairwiseDistance" for details
https://pytorch.org/docs/stable/generated/torch.nn.functional.pairwise_distance.html
pytorch docs
torch.nn.functional.multi_margin_loss torch.nn.functional.multi_margin_loss(input, target, p=1, margin=1, weight=None, size_average=None, reduce=None, reduction='mean') -> Tensor See "MultiMarginLoss" for details. Return type: Tensor
https://pytorch.org/docs/stable/generated/torch.nn.functional.multi_margin_loss.html
pytorch docs
PolynomialLR class torch.optim.lr_scheduler.PolynomialLR(optimizer, total_iters=5, power=1.0, last_epoch=- 1, verbose=False) Decays the learning rate of each parameter group using a polynomial function in the given total_iters. When last_epoch=-1, sets initial lr as lr. Parameters: * optimizer (Optimizer) -- Wrapped optimizer. * **total_iters** (*int*) -- The number of steps that the scheduler decays the learning rate. Default: 5. * **power** (*int*) -- The power of the polynomial. Default: 1.0. * **verbose** (*bool*) -- If "True", prints a message to stdout for each update. Default: "False". -[ Example ]- Assuming optimizer uses lr = 0.001 for all groups lr = 0.001 if epoch == 0 lr = 0.00075 if epoch == 1 lr = 0.00050 if epoch == 2 lr = 0.00025 if epoch == 3 lr = 0.0 if epoch >= 4 scheduler = PolynomialLR(self.opt, total_iters=4, power=1.0)
https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.PolynomialLR.html
pytorch docs
for epoch in range(100): train(...) validate(...) scheduler.step() get_last_lr() Return last computed learning rate by current scheduler. load_state_dict(state_dict) Loads the schedulers state. Parameters: **state_dict** (*dict*) -- scheduler state. Should be an object returned from a call to "state_dict()". print_lr(is_verbose, group, lr, epoch=None) Display the current learning rate. state_dict() Returns the state of the scheduler as a "dict". It contains an entry for every variable in self.__dict__ which is not the optimizer.
https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.PolynomialLR.html
pytorch docs
torch.Tensor.flip Tensor.flip(dims) -> Tensor See "torch.flip()"
https://pytorch.org/docs/stable/generated/torch.Tensor.flip.html
pytorch docs
ReflectionPad2d class torch.nn.ReflectionPad2d(padding) Pads the input tensor using the reflection of the input boundary. For N-dimensional padding, use "torch.nn.functional.pad()". Parameters: padding (int, tuple) -- the size of the padding. If is int, uses the same padding in all boundaries. If a 4-tuple, uses (\text{padding_left}, \text{padding_right}, \text{padding_top}, \text{padding_bottom}) Shape: * Input: (N, C, H_{in}, W_{in}) or (C, H_{in}, W_{in}). * Output: (N, C, H_{out}, W_{out}) or (C, H_{out}, W_{out}) where H_{out} = H_{in} + \text{padding\_top} + \text{padding\_bottom} W_{out} = W_{in} + \text{padding\_left} + \text{padding\_right} Examples: >>> m = nn.ReflectionPad2d(2) >>> input = torch.arange(9, dtype=torch.float).reshape(1, 1, 3, 3) >>> input tensor([[[[0., 1., 2.], [3., 4., 5.], [6., 7., 8.]]]])
https://pytorch.org/docs/stable/generated/torch.nn.ReflectionPad2d.html
pytorch docs
[6., 7., 8.]]]]) >>> m(input) tensor([[[[8., 7., 6., 7., 8., 7., 6.], [5., 4., 3., 4., 5., 4., 3.], [2., 1., 0., 1., 2., 1., 0.], [5., 4., 3., 4., 5., 4., 3.], [8., 7., 6., 7., 8., 7., 6.], [5., 4., 3., 4., 5., 4., 3.], [2., 1., 0., 1., 2., 1., 0.]]]]) >>> # using different paddings for different sides >>> m = nn.ReflectionPad2d((1, 1, 2, 0)) >>> m(input) tensor([[[[7., 6., 7., 8., 7.], [4., 3., 4., 5., 4.], [1., 0., 1., 2., 1.], [4., 3., 4., 5., 4.], [7., 6., 7., 8., 7.]]]])
https://pytorch.org/docs/stable/generated/torch.nn.ReflectionPad2d.html
pytorch docs
torch.Tensor.take Tensor.take(indices) -> Tensor See "torch.take()"
https://pytorch.org/docs/stable/generated/torch.Tensor.take.html
pytorch docs
torch.matmul torch.matmul(input, other, *, out=None) -> Tensor Matrix product of two tensors. The behavior depends on the dimensionality of the tensors as follows: If both tensors are 1-dimensional, the dot product (scalar) is returned. If both arguments are 2-dimensional, the matrix-matrix product is returned. If the first argument is 1-dimensional and the second argument is 2-dimensional, a 1 is prepended to its dimension for the purpose of the matrix multiply. After the matrix multiply, the prepended dimension is removed. If the first argument is 2-dimensional and the second argument is 1-dimensional, the matrix-vector product is returned. If both arguments are at least 1-dimensional and at least one argument is N-dimensional (where N > 2), then a batched matrix multiply is returned. If the first argument is 1-dimensional, a 1 is prepended to its dimension for the purpose of the batched
https://pytorch.org/docs/stable/generated/torch.matmul.html
pytorch docs
matrix multiply and removed after. If the second argument is 1-dimensional, a 1 is appended to its dimension for the purpose of the batched matrix multiple and removed after. The non-matrix (i.e. batch) dimensions are broadcasted (and thus must be broadcastable). For example, if "input" is a (j \times 1 \times n \times n) tensor and "other" is a (k \times n \times n) tensor, "out" will be a (j \times k \times n \times n) tensor. Note that the broadcasting logic only looks at the batch dimensions when determining if the inputs are broadcastable, and not the matrix dimensions. For example, if "input" is a (j \times 1 \times n \times m) tensor and "other" is a (k \times m \times p) tensor, these inputs are valid for broadcasting even though the final two dimensions (i.e. the matrix dimensions) are different. "out" will be a (j \times k \times n \times p) tensor. This operation has support for arguments with sparse layouts. In
https://pytorch.org/docs/stable/generated/torch.matmul.html
pytorch docs
particular the matrix-matrix (both arguments 2-dimensional) supports sparse arguments with the same restrictions as "torch.mm()" Warning: Sparse support is a beta feature and some layout(s)/dtype/device combinations may not be supported, or may not have autograd support. If you notice missing functionality please open a feature request. This operator supports TensorFloat32. On certain ROCm devices, when using float16 inputs this module will use different precision for backward. Note: The 1-dimensional dot product version of this function does not support an "out" parameter. Parameters: * input (Tensor) -- the first tensor to be multiplied * **other** (*Tensor*) -- the second tensor to be multiplied Keyword Arguments: out (Tensor, optional) -- the output tensor. Example: >>> # vector x vector >>> tensor1 = torch.randn(3) >>> tensor2 = torch.randn(3)
https://pytorch.org/docs/stable/generated/torch.matmul.html
pytorch docs
tensor2 = torch.randn(3) >>> torch.matmul(tensor1, tensor2).size() torch.Size([]) >>> # matrix x vector >>> tensor1 = torch.randn(3, 4) >>> tensor2 = torch.randn(4) >>> torch.matmul(tensor1, tensor2).size() torch.Size([3]) >>> # batched matrix x broadcasted vector >>> tensor1 = torch.randn(10, 3, 4) >>> tensor2 = torch.randn(4) >>> torch.matmul(tensor1, tensor2).size() torch.Size([10, 3]) >>> # batched matrix x batched matrix >>> tensor1 = torch.randn(10, 3, 4) >>> tensor2 = torch.randn(10, 4, 5) >>> torch.matmul(tensor1, tensor2).size() torch.Size([10, 3, 5]) >>> # batched matrix x broadcasted matrix >>> tensor1 = torch.randn(10, 3, 4) >>> tensor2 = torch.randn(4, 5) >>> torch.matmul(tensor1, tensor2).size() torch.Size([10, 3, 5])
https://pytorch.org/docs/stable/generated/torch.matmul.html
pytorch docs
default_eval_fn class torch.quantization.default_eval_fn(model, calib_data) Default evaluation function takes a torch.utils.data.Dataset or a list of input Tensors and run the model on the dataset
https://pytorch.org/docs/stable/generated/torch.quantization.default_eval_fn.html
pytorch docs
Linear class torch.ao.nn.quantized.Linear(in_features, out_features, bias_=True, dtype=torch.qint8) A quantized linear module with quantized tensor as inputs and outputs. We adopt the same interface as torch.nn.Linear, please see https://pytorch.org/docs/stable/nn.html#torch.nn.Linear for documentation. Similar to "Linear", attributes will be randomly initialized at module creation time and will be overwritten later Variables: * weight (Tensor) -- the non-learnable quantized weights of the module of shape (\text{out_features}, \text{in_features}). * **bias** (*Tensor*) -- the non-learnable bias of the module of shape (\text{out\_features}). If "bias" is "True", the values are initialized to zero. * **scale** -- *scale* parameter of output Quantized Tensor, type: double * **zero_point** -- *zero_point* parameter for output Quantized Tensor, type: long Examples:
https://pytorch.org/docs/stable/generated/torch.ao.nn.quantized.Linear.html
pytorch docs
Tensor, type: long Examples: >>> m = nn.quantized.Linear(20, 30) >>> input = torch.randn(128, 20) >>> input = torch.quantize_per_tensor(input, 1.0, 0, torch.quint8) >>> output = m(input) >>> print(output.size()) torch.Size([128, 30]) classmethod from_float(mod) Create a quantized module from an observed float module Parameters: **mod** (*Module*) -- a float module, either produced by torch.ao.quantization utilities or provided by the user classmethod from_reference(ref_qlinear, output_scale, output_zero_point) Create a (fbgemm/qnnpack) quantized module from a reference quantized module Parameters: * **ref_qlinear** (*Module*) -- a reference quantized linear module, either produced by torch.ao.quantization utilities or provided by the user * **output_scale** (*float*) -- scale for output Tensor * **output_zero_point** (*int*) -- zero point for output
https://pytorch.org/docs/stable/generated/torch.ao.nn.quantized.Linear.html
pytorch docs
Tensor
https://pytorch.org/docs/stable/generated/torch.ao.nn.quantized.Linear.html
pytorch docs
torch.lerp torch.lerp(input, end, weight, *, out=None) Does a linear interpolation of two tensors "start" (given by "input") and "end" based on a scalar or tensor "weight" and returns the resulting "out" tensor. \text{out}_i = \text{start}_i + \text{weight}_i \times (\text{end}_i - \text{start}_i) The shapes of "start" and "end" must be broadcastable. If "weight" is a tensor, then the shapes of "weight", "start", and "end" must be broadcastable. Parameters: * input (Tensor) -- the tensor with the starting points * **end** (*Tensor*) -- the tensor with the ending points * **weight** (*float** or **tensor*) -- the weight for the interpolation formula Keyword Arguments: out (Tensor, optional) -- the output tensor. Example: >>> start = torch.arange(1., 5.) >>> end = torch.empty(4).fill_(10) >>> start tensor([ 1., 2., 3., 4.]) >>> end tensor([ 10., 10., 10., 10.])
https://pytorch.org/docs/stable/generated/torch.lerp.html
pytorch docs
tensor([ 10., 10., 10., 10.]) >>> torch.lerp(start, end, 0.5) tensor([ 5.5000, 6.0000, 6.5000, 7.0000]) >>> torch.lerp(start, end, torch.full_like(start, 0.5)) tensor([ 5.5000, 6.0000, 6.5000, 7.0000])
https://pytorch.org/docs/stable/generated/torch.lerp.html
pytorch docs
torch.Tensor.cfloat Tensor.cfloat(memory_format=torch.preserve_format) -> Tensor "self.cfloat()" is equivalent to "self.to(torch.complex64)". See "to()". Parameters: memory_format ("torch.memory_format", optional) -- the desired memory format of returned Tensor. Default: "torch.preserve_format".
https://pytorch.org/docs/stable/generated/torch.Tensor.cfloat.html
pytorch docs
torch.Tensor.atanh Tensor.atanh() -> Tensor See "torch.atanh()"
https://pytorch.org/docs/stable/generated/torch.Tensor.atanh.html
pytorch docs
torch.nn.functional.softmax torch.nn.functional.softmax(input, dim=None, _stacklevel=3, dtype=None) Applies a softmax function. Softmax is defined as: \text{Softmax}(x_{i}) = \frac{\exp(x_i)}{\sum_j \exp(x_j)} It is applied to all slices along dim, and will re-scale them so that the elements lie in the range [0, 1] and sum to 1. See "Softmax" for more details. Parameters: * input (Tensor) -- input * **dim** (*int*) -- A dimension along which softmax will be computed. * **dtype** ("torch.dtype", optional) -- the desired data type of returned tensor. If specified, the input tensor is casted to "dtype" before the operation is performed. This is useful for preventing data type overflows. Default: None. Return type: Tensor Note: This function doesn't work directly with NLLLoss, which expects the Log to be computed between the Softmax and itself. Use
https://pytorch.org/docs/stable/generated/torch.nn.functional.softmax.html
pytorch docs
log_softmax instead (it's faster and has better numerical properties).
https://pytorch.org/docs/stable/generated/torch.nn.functional.softmax.html
pytorch docs
torch.sym_float torch.sym_float(a) SymInt-aware utility for float casting. Parameters: a (SymInt, SymFloat, or object) -- Object to cast
https://pytorch.org/docs/stable/generated/torch.sym_float.html
pytorch docs
torch.addr torch.addr(input, vec1, vec2, *, beta=1, alpha=1, out=None) -> Tensor Performs the outer-product of vectors "vec1" and "vec2" and adds it to the matrix "input". Optional values "beta" and "alpha" are scaling factors on the outer product between "vec1" and "vec2" and the added matrix "input" respectively. \text{out} = \beta\ \text{input} + \alpha\ (\text{vec1} \otimes \text{vec2}) If "beta" is 0, then "input" will be ignored, and nan and inf in it will not be propagated. If "vec1" is a vector of size n and "vec2" is a vector of size m, then "input" must be broadcastable with a matrix of size (n \times m) and "out" will be a matrix of size (n \times m). Parameters: * input (Tensor) -- matrix to be added * **vec1** (*Tensor*) -- the first vector of the outer product * **vec2** (*Tensor*) -- the second vector of the outer product Keyword Arguments:
https://pytorch.org/docs/stable/generated/torch.addr.html
pytorch docs
Keyword Arguments: * beta (Number, optional) -- multiplier for "input" (\beta) * **alpha** (*Number**, **optional*) -- multiplier for \text{vec1} \otimes \text{vec2} (\alpha) * **out** (*Tensor**, **optional*) -- the output tensor. Example: >>> vec1 = torch.arange(1., 4.) >>> vec2 = torch.arange(1., 3.) >>> M = torch.zeros(3, 2) >>> torch.addr(M, vec1, vec2) tensor([[ 1., 2.], [ 2., 4.], [ 3., 6.]])
https://pytorch.org/docs/stable/generated/torch.addr.html
pytorch docs
torch.Tensor.index_select Tensor.index_select(dim, index) -> Tensor See "torch.index_select()"
https://pytorch.org/docs/stable/generated/torch.Tensor.index_select.html
pytorch docs
torch.linalg.pinv torch.linalg.pinv(A, *, atol=None, rtol=None, hermitian=False, out=None) -> Tensor Computes the pseudoinverse (Moore-Penrose inverse) of a matrix. The pseudoinverse may be defined algebraically but it is more computationally convenient to understand it through the SVD Supports input of float, double, cfloat and cdouble dtypes. Also supports batches of matrices, and if "A" is a batch of matrices then the output has the same batch dimensions. If "hermitian"= True, "A" is assumed to be Hermitian if complex or symmetric if real, but this is not checked internally. Instead, just the lower triangular part of the matrix is used in the computations. The singular values (or the norm of the eigenvalues when "hermitian"= True) that are below \max(\text{atol}, \sigma_1 \cdot \text{rtol}) threshold are treated as zero and discarded in the computation, where \sigma_1 is the largest singular value (or eigenvalue).
https://pytorch.org/docs/stable/generated/torch.linalg.pinv.html
pytorch docs
eigenvalue). If "rtol" is not specified and "A" is a matrix of dimensions (m, n), the relative tolerance is set to be \text{rtol} = \max(m, n) \varepsilon and \varepsilon is the epsilon value for the dtype of "A" (see "finfo"). If "rtol" is not specified and "atol" is specified to be larger than zero then "rtol" is set to zero. If "atol" or "rtol" is a "torch.Tensor", its shape must be broadcastable to that of the singular values of "A" as returned by "torch.linalg.svd()". Note: This function uses "torch.linalg.svd()" if "hermitian"*= False* and "torch.linalg.eigh()" if "hermitian"*= True*. For CUDA inputs, this function synchronizes that device with the CPU. Note: Consider using "torch.linalg.lstsq()" if possible for multiplying a matrix on the left by the pseudoinverse, as: torch.linalg.lstsq(A, B).solution == A.pinv() @ B It is always preferred to use "lstsq()" when possible, as it is
https://pytorch.org/docs/stable/generated/torch.linalg.pinv.html
pytorch docs
faster and more numerically stable than computing the pseudoinverse explicitly. Note: This function has NumPy compatible variant *linalg.pinv(A, rcond, hermitian=False)*. However, use of the positional argument "rcond" is deprecated in favor of "rtol". Warning: This function uses internally "torch.linalg.svd()" (or "torch.linalg.eigh()" when "hermitian"*= True*), so its derivative has the same problems as those of these functions. See the warnings in "torch.linalg.svd()" and "torch.linalg.eigh()" for more details. See also: "torch.linalg.inv()" computes the inverse of a square matrix. "torch.linalg.lstsq()" computes "A"*.pinv() @ *"B" with a numerically stable algorithm. Parameters: * A (Tensor) -- tensor of shape (, m, n)* where *** is zero or more batch dimensions. * **rcond** (*float**, **Tensor**, **optional*) -- [NumPy Compat]. Alias for "rtol". Default: *None*. Keyword Arguments:
https://pytorch.org/docs/stable/generated/torch.linalg.pinv.html
pytorch docs
Keyword Arguments: * atol (float, Tensor, optional) -- the absolute tolerance value. When None it's considered to be zero. Default: None. * **rtol** (*float**, **Tensor**, **optional*) -- the relative tolerance value. See above for the value it takes when *None*. Default: *None*. * **hermitian** (*bool**, **optional*) -- indicates whether "A" is Hermitian if complex or symmetric if real. Default: *False*. * **out** (*Tensor**, **optional*) -- output tensor. Ignored if *None*. Default: *None*. Examples: >>> A = torch.randn(3, 5) >>> A tensor([[ 0.5495, 0.0979, -1.4092, -0.1128, 0.4132], [-1.1143, -0.3662, 0.3042, 1.6374, -0.9294], [-0.3269, -0.5745, -0.0382, -0.5922, -0.6759]]) >>> torch.linalg.pinv(A) tensor([[ 0.0600, -0.1933, -0.2090], [-0.0903, -0.0817, -0.4752], [-0.7124, -0.1631, -0.2272],
https://pytorch.org/docs/stable/generated/torch.linalg.pinv.html
pytorch docs
[-0.7124, -0.1631, -0.2272], [ 0.1356, 0.3933, -0.5023], [-0.0308, -0.1725, -0.5216]]) >>> A = torch.randn(2, 6, 3) >>> Apinv = torch.linalg.pinv(A) >>> torch.dist(Apinv @ A, torch.eye(3)) tensor(8.5633e-07) >>> A = torch.randn(3, 3, dtype=torch.complex64) >>> A = A + A.T.conj() # creates a Hermitian matrix >>> Apinv = torch.linalg.pinv(A, hermitian=True) >>> torch.dist(Apinv @ A, torch.eye(3)) tensor(1.0830e-06)
https://pytorch.org/docs/stable/generated/torch.linalg.pinv.html
pytorch docs
HingeEmbeddingLoss class torch.nn.HingeEmbeddingLoss(margin=1.0, size_average=None, reduce=None, reduction='mean') Measures the loss given an input tensor x and a labels tensor y (containing 1 or -1). This is usually used for measuring whether two inputs are similar or dissimilar, e.g. using the L1 pairwise distance as x, and is typically used for learning nonlinear embeddings or semi-supervised learning. The loss function for n-th sample in the mini-batch is l_n = \begin{cases} x_n, & \text{if}\; y_n = 1,\\ \max \{0, \Delta - x_n\}, & \text{if}\; y_n = -1, \end{cases} and the total loss functions is \ell(x, y) = \begin{cases} \operatorname{mean}(L), & \text{if reduction} = \text{`mean';}\\ \operatorname{sum}(L), & \text{if reduction} = \text{`sum'.} \end{cases} where L = {l_1,\dots,l_N}^\top. Parameters: * margin (float, optional) -- Has a default value of 1.
https://pytorch.org/docs/stable/generated/torch.nn.HingeEmbeddingLoss.html
pytorch docs
1. * **size_average** (*bool**, **optional*) -- Deprecated (see "reduction"). By default, the losses are averaged over each loss element in the batch. Note that for some losses, there are multiple elements per sample. If the field "size_average" is set to "False", the losses are instead summed for each minibatch. Ignored when "reduce" is "False". Default: "True" * **reduce** (*bool**, **optional*) -- Deprecated (see "reduction"). By default, the losses are averaged or summed over observations for each minibatch depending on "size_average". When "reduce" is "False", returns a loss per batch element instead and ignores "size_average". Default: "True" * **reduction** (*str**, **optional*) -- Specifies the reduction to apply to the output: "'none'" | "'mean'" | "'sum'". "'none'": no reduction will be applied, "'mean'": the sum of
https://pytorch.org/docs/stable/generated/torch.nn.HingeEmbeddingLoss.html
pytorch docs
the output will be divided by the number of elements in the output, "'sum'": the output will be summed. Note: "size_average" and "reduce" are in the process of being deprecated, and in the meantime, specifying either of those two args will override "reduction". Default: "'mean'" Shape: * Input: (*) where * means, any number of dimensions. The sum operation operates over all the elements. * Target: (*), same shape as the input * Output: scalar. If "reduction" is "'none'", then same shape as the input
https://pytorch.org/docs/stable/generated/torch.nn.HingeEmbeddingLoss.html
pytorch docs
torch.set_default_device torch.set_default_device(device) Sets the default "torch.Tensor" to be allocated on "device". This does not affect factory function calls which are called with an explicit "device" argument. Factory calls will be performed as if they were passed "device" as an argument. To only temporarily change the default device instead of setting it globally, use "with torch.device(device):" instead. The default device is initially "cpu". If you set the default tensor device to another device (e.g., "cuda") without a device index, tensors will be allocated on whatever the current device for the device type, even after "torch.cuda.set_device()" is called. Warning: This function imposes a slight performance cost on every Python call to the torch API (not just factory functions). If this is causing problems for you, please comment on https://github.com/pytorch/pytorch/issues/92701 Parameters:
https://pytorch.org/docs/stable/generated/torch.set_default_device.html
pytorch docs
Parameters: device (device or string) -- the device to set as default Example: >>> torch.tensor([1.2, 3]).device device(type='cpu') >>> torch.set_default_device('cuda') # current device is 0 >>> torch.tensor([1.2, 3]).device device(type='cuda', index=0) >>> torch.set_default_device('cuda:1') >>> torch.tensor([1.2, 3]).device device(type='cuda', index=1)
https://pytorch.org/docs/stable/generated/torch.set_default_device.html
pytorch docs
torch.nn.functional.max_pool1d torch.nn.functional.max_pool1d(input, kernel_size, stride=None, padding=0, dilation=1, ceil_mode=False, return_indices=False) Applies a 1D max pooling over an input signal composed of several input planes. Note: The order of "ceil_mode" and "return_indices" is different from what seen in "MaxPool1d", and will change in a future release. See "MaxPool1d" for details. Parameters: * input -- input tensor of shape (\text{minibatch} , \text{in_channels} , iW), minibatch dim optional. * **kernel_size** -- the size of the window. Can be a single number or a tuple *(kW,)* * **stride** -- the stride of the window. Can be a single number or a tuple *(sW,)*. Default: "kernel_size" * **padding** -- Implicit negative infinity padding to be added on both sides, must be >= 0 and <= kernel_size / 2. * **dilation** -- The stride between elements within a sliding
https://pytorch.org/docs/stable/generated/torch.nn.functional.max_pool1d.html
pytorch docs
window, must be > 0. * **ceil_mode** -- If "True", will use *ceil* instead of *floor* to compute the output shape. This ensures that every element in the input tensor is covered by a sliding window. * **return_indices** -- If "True", will return the argmax along with the max values. Useful for "torch.nn.functional.max_unpool1d" later
https://pytorch.org/docs/stable/generated/torch.nn.functional.max_pool1d.html
pytorch docs
torch.Tensor.to_sparse_csc Tensor.to_sparse_csc() -> Tensor Convert a tensor to compressed column storage (CSC) format. Except for strided tensors, only works with 2D tensors. If the "self" is strided, then the number of dense dimensions could be specified, and a hybrid CSC tensor will be created, with dense_dim dense dimensions and self.dim() - 2 - dense_dim batch dimension. Parameters: dense_dim (int, optional) -- Number of dense dimensions of the resulting CSC tensor. This argument should be used only if "self" is a strided tensor, and must be a value between 0 and dimension of "self" tensor minus two. Example: >>> dense = torch.randn(5, 5) >>> sparse = dense.to_sparse_csc() >>> sparse._nnz() 25 >>> dense = torch.zeros(3, 3, 1, 1) >>> dense[0, 0] = dense[1, 2] = dense[2, 1] = 1 >>> dense.to_sparse_csc(dense_dim=2) tensor(ccol_indices=tensor([0, 1, 2, 3]),
https://pytorch.org/docs/stable/generated/torch.Tensor.to_sparse_csc.html
pytorch docs
tensor(ccol_indices=tensor([0, 1, 2, 3]), row_indices=tensor([0, 2, 1]), values=tensor([[[1.]], [[1.]], [[1.]]]), size=(3, 3, 1, 1), nnz=3, layout=torch.sparse_csc)
https://pytorch.org/docs/stable/generated/torch.Tensor.to_sparse_csc.html
pytorch docs
torch.save torch.save(obj, f, pickle_module=pickle, pickle_protocol=DEFAULT_PROTOCOL, _use_new_zipfile_serialization=True) Saves an object to a disk file. See also: Saving and loading tensors Parameters: * obj (object) -- saved object * **f** (*Union**[**str**, **PathLike**, **BinaryIO**, **IO**[**bytes**]**]*) -- a file-like object (has to implement write and flush) or a string or os.PathLike object containing a file name * **pickle_module** (*Any*) -- module used for pickling metadata and objects * **pickle_protocol** (*int*) -- can be specified to override the default protocol Note: A common PyTorch convention is to save tensors using .pt file extension. Note: PyTorch preserves storage sharing across serialization. See Saving and loading tensors preserves views for more details. Note: The 1.6 release of PyTorch switched "torch.save" to use a new
https://pytorch.org/docs/stable/generated/torch.save.html
pytorch docs
zipfile-based file format. "torch.load" still retains the ability to load files in the old format. If for any reason you want "torch.save" to use the old format, pass the kwarg "_use_new_zipfile_serialization=False". -[ Example ]- Save to file x = torch.tensor([0, 1, 2, 3, 4]) torch.save(x, 'tensor.pt') Save to io.BytesIO buffer buffer = io.BytesIO() torch.save(x, buffer)
https://pytorch.org/docs/stable/generated/torch.save.html
pytorch docs
torch.triu torch.triu(input, diagonal=0, *, out=None) -> Tensor Returns the upper triangular part of a matrix (2-D tensor) or batch of matrices "input", the other elements of the result tensor "out" are set to 0. The upper triangular part of the matrix is defined as the elements on and above the diagonal. The argument "diagonal" controls which diagonal to consider. If "diagonal" = 0, all elements on and above the main diagonal are retained. A positive value excludes just as many diagonals above the main diagonal, and similarly a negative value includes just as many diagonals below the main diagonal. The main diagonal are the set of indices \lbrace (i, i) \rbrace for i \in [0, \min{d_{1}, d_{2}} - 1] where d_{1}, d_{2} are the dimensions of the matrix. Parameters: * input (Tensor) -- the input tensor. * **diagonal** (*int**, **optional*) -- the diagonal to consider Keyword Arguments:
https://pytorch.org/docs/stable/generated/torch.triu.html
pytorch docs
Keyword Arguments: out (Tensor, optional) -- the output tensor. Example: >>> a = torch.randn(3, 3) >>> a tensor([[ 0.2309, 0.5207, 2.0049], [ 0.2072, -1.0680, 0.6602], [ 0.3480, -0.5211, -0.4573]]) >>> torch.triu(a) tensor([[ 0.2309, 0.5207, 2.0049], [ 0.0000, -1.0680, 0.6602], [ 0.0000, 0.0000, -0.4573]]) >>> torch.triu(a, diagonal=1) tensor([[ 0.0000, 0.5207, 2.0049], [ 0.0000, 0.0000, 0.6602], [ 0.0000, 0.0000, 0.0000]]) >>> torch.triu(a, diagonal=-1) tensor([[ 0.2309, 0.5207, 2.0049], [ 0.2072, -1.0680, 0.6602], [ 0.0000, -0.5211, -0.4573]]) >>> b = torch.randn(4, 6) >>> b tensor([[ 0.5876, -0.0794, -1.8373, 0.6654, 0.2604, 1.5235], [-0.2447, 0.9556, -1.2919, 1.3378, -0.1768, -1.0857], [ 0.4333, 0.3146, 0.6576, -1.0432, 0.9348, -0.4410],
https://pytorch.org/docs/stable/generated/torch.triu.html
pytorch docs
[-0.9888, 1.0679, -1.3337, -1.6556, 0.4798, 0.2830]]) >>> torch.triu(b, diagonal=1) tensor([[ 0.0000, -0.0794, -1.8373, 0.6654, 0.2604, 1.5235], [ 0.0000, 0.0000, -1.2919, 1.3378, -0.1768, -1.0857], [ 0.0000, 0.0000, 0.0000, -1.0432, 0.9348, -0.4410], [ 0.0000, 0.0000, 0.0000, 0.0000, 0.4798, 0.2830]]) >>> torch.triu(b, diagonal=-1) tensor([[ 0.5876, -0.0794, -1.8373, 0.6654, 0.2604, 1.5235], [-0.2447, 0.9556, -1.2919, 1.3378, -0.1768, -1.0857], [ 0.0000, 0.3146, 0.6576, -1.0432, 0.9348, -0.4410], [ 0.0000, 0.0000, -1.3337, -1.6556, 0.4798, 0.2830]])
https://pytorch.org/docs/stable/generated/torch.triu.html
pytorch docs
torch.Tensor.select_scatter Tensor.select_scatter(src, dim, index) -> Tensor See "torch.select_scatter()"
https://pytorch.org/docs/stable/generated/torch.Tensor.select_scatter.html
pytorch docs
torch.linalg.svdvals torch.linalg.svdvals(A, *, driver=None, out=None) -> Tensor Computes the singular values of a matrix. Supports input of float, double, cfloat and cdouble dtypes. Also supports batches of matrices, and if "A" is a batch of matrices then the output has the same batch dimensions. The singular values are returned in descending order. Note: This function is equivalent to NumPy's *linalg.svd(A, compute_uv=False)*. Note: When inputs are on a CUDA device, this function synchronizes that device with the CPU. See also: "torch.linalg.svd()" computes the full singular value decomposition. Parameters: A (Tensor) -- tensor of shape (, m, n)* where *** is zero or more batch dimensions. Keyword Arguments: * driver (str, optional) -- name of the cuSOLVER method to be used. This keyword argument only works on CUDA
https://pytorch.org/docs/stable/generated/torch.linalg.svdvals.html
pytorch docs
inputs. Available options are: None, gesvd, gesvdj, and gesvda. Check "torch.linalg.svd()" for details. Default: None. * **out** (*Tensor**, **optional*) -- output tensor. Ignored if *None*. Default: *None*. Returns: A real-valued tensor, even when "A" is complex. Examples: >>> A = torch.randn(5, 3) >>> S = torch.linalg.svdvals(A) >>> S tensor([2.5139, 2.1087, 1.1066]) >>> torch.dist(S, torch.linalg.svd(A, full_matrices=False).S) tensor(2.4576e-07)
https://pytorch.org/docs/stable/generated/torch.linalg.svdvals.html
pytorch docs
AdamW class torch.optim.AdamW(params, lr=0.001, betas=(0.9, 0.999), eps=1e-08, weight_decay=0.01, amsgrad=False, *, maximize=False, foreach=None, capturable=False, differentiable=False) Implements AdamW algorithm. \begin{aligned} &\rule{110mm}{0.4pt} \\ &\textbf{input} : \gamma \text{(lr)}, \: \beta_1, \beta_2 \text{(betas)}, \: \theta_0 \text{(params)}, \: f(\theta) \text{(objective)}, \: \epsilon \text{ (epsilon)} \\ &\hspace{13mm} \lambda \text{(weight decay)}, \: \textit{amsgrad}, \: \textit{maximize} \\ &\textbf{initialize} : m_0 \leftarrow 0 \text{ (first moment)}, v_0 \leftarrow 0 \text{ ( second moment)}, \: \widehat{v_0}^{max}\leftarrow 0 \\[-1.ex] &\rule{110mm}{0.4pt} \\ &\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do} \\
https://pytorch.org/docs/stable/generated/torch.optim.AdamW.html
pytorch docs
\textbf{do} \ &\hspace{5mm}\textbf{if} \: \textit{maximize}: \ &\hspace{10mm}g_t \leftarrow -\nabla_{\theta} f_t (\theta_{t-1}) \ &\hspace{5mm}\textbf{else} \ &\hspace{10mm}g_t \leftarrow \nabla_{\theta} f_t (\theta_{t-1}) \ &\hspace{5mm} \theta_t \leftarrow \theta_{t-1} - \gamma \lambda \theta_{t-1} \ &\hspace{5mm}m_t \leftarrow \beta_1 m_{t-1} + (1 - \beta_1) g_t \ &\hspace{5mm}v_t \leftarrow \beta_2 v_{t-1} + (1-\beta_2) g^2_t \ &\hspace{5mm}\widehat{m_t} \leftarrow m_t/\big(1-\beta_1^t \big) \ &\hspace{5mm}\widehat{v_t} \leftarrow v_t/\big(1-\beta_2^t \big) \ &\hspace{5mm}\textbf{if} \: amsgrad \ &\hspace{10mm}\widehat{v_t}^{max} \leftarrow \mathrm{max}(\widehat{v_t}^{max}, \widehat{v_t})
https://pytorch.org/docs/stable/generated/torch.optim.AdamW.html
pytorch docs
\ &\hspace{10mm}\theta_t \leftarrow \theta_t - \gamma \widehat{m_t}/ \big(\sqrt{\widehat{v_t}^{max}} + \epsilon \big) \ &\hspace{5mm}\textbf{else} \ &\hspace{10mm}\theta_t \leftarrow \theta_t - \gamma \widehat{m_t}/ \big(\sqrt{\widehat{v_t}} + \epsilon \big) \ &\rule{110mm}{0.4pt} \[-1.ex] &\bf{return} \: \theta_t \[-1.ex] &\rule{110mm}{0.4pt} \[-1.ex] \end{aligned} For further details regarding the algorithm we refer to Decoupled Weight Decay Regularization. Parameters: * params (iterable) -- iterable of parameters to optimize or dicts defining parameter groups * **lr** (*float**, **optional*) -- learning rate (default: 1e-3) * **betas** (*Tuple**[**float**, **float**]**, **optional*) -- coefficients used for computing running averages of gradient
https://pytorch.org/docs/stable/generated/torch.optim.AdamW.html
pytorch docs
and its square (default: (0.9, 0.999)) * **eps** (*float**, **optional*) -- term added to the denominator to improve numerical stability (default: 1e-8) * **weight_decay** (*float**, **optional*) -- weight decay coefficient (default: 1e-2) * **amsgrad** (*bool**, **optional*) -- whether to use the AMSGrad variant of this algorithm from the paper On the Convergence of Adam and Beyond (default: False) * **maximize** (*bool**, **optional*) -- maximize the params based on the objective, instead of minimizing (default: False) * **foreach** (*bool**, **optional*) -- whether foreach implementation of optimizer is used. If unspecified by the user (so foreach is None), we will try to use foreach over the for-loop implementation on CUDA, since it is usually significantly more performant. (default: None) * **capturable** (*bool**, **optional*) -- whether this instance
https://pytorch.org/docs/stable/generated/torch.optim.AdamW.html
pytorch docs
is safe to capture in a CUDA graph. Passing True can impair ungraphed performance, so if you don't intend to graph capture this instance, leave it False (default: False) * **differentiable** (*bool**, **optional*) -- whether autograd should occur through the optimizer step in training. Otherwise, the step() function runs in a torch.no_grad() context. Setting to True can impair performance, so leave it False if you don't intend to run autograd through this instance (default: False) add_param_group(param_group) Add a param group to the "Optimizer" s *param_groups*. This can be useful when fine tuning a pre-trained network as frozen layers can be made trainable and added to the "Optimizer" as training progresses. Parameters: **param_group** (*dict*) -- Specifies what Tensors should be optimized along with group specific optimization options. load_state_dict(state_dict)
https://pytorch.org/docs/stable/generated/torch.optim.AdamW.html
pytorch docs
load_state_dict(state_dict) Loads the optimizer state. Parameters: **state_dict** (*dict*) -- optimizer state. Should be an object returned from a call to "state_dict()". register_step_post_hook(hook) Register an optimizer step post hook which will be called after optimizer step. It should have the following signature: hook(optimizer, args, kwargs) -> None The "optimizer" argument is the optimizer instance being used. Parameters: **hook** (*Callable*) -- The user defined hook to be registered. Returns: a handle that can be used to remove the added hook by calling "handle.remove()" Return type: "torch.utils.hooks.RemoveableHandle" register_step_pre_hook(hook) Register an optimizer step pre hook which will be called before optimizer step. It should have the following signature: hook(optimizer, args, kwargs) -> None or modified args and kwargs
https://pytorch.org/docs/stable/generated/torch.optim.AdamW.html
pytorch docs
The "optimizer" argument is the optimizer instance being used. If args and kwargs are modified by the pre-hook, then the transformed values are returned as a tuple containing the new_args and new_kwargs. Parameters: **hook** (*Callable*) -- The user defined hook to be registered. Returns: a handle that can be used to remove the added hook by calling "handle.remove()" Return type: "torch.utils.hooks.RemoveableHandle" state_dict() Returns the state of the optimizer as a "dict". It contains two entries: * state - a dict holding current optimization state. Its content differs between optimizer classes. * param_groups - a list containing all parameter groups where each parameter group is a dict zero_grad(set_to_none=False) Sets the gradients of all optimized "torch.Tensor" s to zero. Parameters:
https://pytorch.org/docs/stable/generated/torch.optim.AdamW.html
pytorch docs
Parameters: set_to_none (bool) -- instead of setting to zero, set the grads to None. This will in general have lower memory footprint, and can modestly improve performance. However, it changes certain behaviors. For example: 1. When the user tries to access a gradient and perform manual ops on it, a None attribute or a Tensor full of 0s will behave differently. 2. If the user requests "zero_grad(set_to_none=True)" followed by a backward pass, ".grad"s are guaranteed to be None for params that did not receive a gradient. 3. "torch.optim" optimizers have a different behavior if the gradient is 0 or None (in one case it does the step with a gradient of 0 and in the other it skips the step altogether).
https://pytorch.org/docs/stable/generated/torch.optim.AdamW.html
pytorch docs
torch.Tensor.cummin Tensor.cummin(dim) See "torch.cummin()"
https://pytorch.org/docs/stable/generated/torch.Tensor.cummin.html
pytorch docs
FuseCustomConfig class torch.ao.quantization.fx.custom_config.FuseCustomConfig Custom configuration for "fuse_fx()". Example usage: fuse_custom_config = FuseCustomConfig().set_preserved_attributes(["attr1", "attr2"]) classmethod from_dict(fuse_custom_config_dict) Create a "ConvertCustomConfig" from a dictionary with the following items: "preserved_attributes": a list of attributes that persist even if they are not used in "forward" This function is primarily for backward compatibility and may be removed in the future. Return type: *FuseCustomConfig* set_preserved_attributes(attributes) Set the names of the attributes that will persist in the graph module even if they are not used in the model's "forward" method. Return type: *FuseCustomConfig* to_dict() Convert this "FuseCustomConfig" to a dictionary with the items described in "from_dict()".
https://pytorch.org/docs/stable/generated/torch.ao.quantization.fx.custom_config.FuseCustomConfig.html
pytorch docs
described in "from_dict()". Return type: *Dict*[str, *Any*]
https://pytorch.org/docs/stable/generated/torch.ao.quantization.fx.custom_config.FuseCustomConfig.html
pytorch docs
Adam class torch.optim.Adam(params, lr=0.001, betas=(0.9, 0.999), eps=1e-08, weight_decay=0, amsgrad=False, *, foreach=None, maximize=False, capturable=False, differentiable=False, fused=None) Implements Adam algorithm. \begin{aligned} &\rule{110mm}{0.4pt} \\ &\textbf{input} : \gamma \text{ (lr)}, \beta_1, \beta_2 \text{ (betas)},\theta_0 \text{ (params)},f(\theta) \text{ (objective)} \\ &\hspace{13mm} \lambda \text{ (weight decay)}, \: \textit{amsgrad}, \:\textit{maximize} \\ &\textbf{initialize} : m_0 \leftarrow 0 \text{ ( first moment)}, v_0\leftarrow 0 \text{ (second moment)},\: \widehat{v_0}^{max}\leftarrow 0\\[-1.ex] &\rule{110mm}{0.4pt} \\ &\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do} \\ &\hspace{5mm}\textbf{if} \: \textit{maximize}: \\ &\hspace{10mm}g_t \leftarrow
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
pytorch docs
-\nabla_{\theta} f_t (\theta_{t-1}) \ &\hspace{5mm}\textbf{else} \ &\hspace{10mm}g_t \leftarrow \nabla_{\theta} f_t (\theta_{t-1}) \ &\hspace{5mm}\textbf{if} \: \lambda \neq 0 \ &\hspace{10mm} g_t \leftarrow g_t + \lambda \theta_{t-1} \ &\hspace{5mm}m_t \leftarrow \beta_1 m_{t-1} + (1 - \beta_1) g_t \ &\hspace{5mm}v_t \leftarrow \beta_2 v_{t-1} + (1-\beta_2) g^2_t \ &\hspace{5mm}\widehat{m_t} \leftarrow m_t/\big(1-\beta_1^t \big) \ &\hspace{5mm}\widehat{v_t} \leftarrow v_t/\big(1-\beta_2^t \big) \ &\hspace{5mm}\textbf{if} \: amsgrad \ &\hspace{10mm}\widehat{v_t}^{max} \leftarrow \mathrm{max}(\widehat{v_t}^{max}, \widehat{v_t}) \ &\hspace{10mm}\theta_t \leftarrow \theta_{t-1} - \gamma
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
pytorch docs
\widehat{m_t}/ \big(\sqrt{\widehat{v_t}^{max}} + \epsilon \big) \ &\hspace{5mm}\textbf{else} \ &\hspace{10mm}\theta_t \leftarrow \theta_{t-1} - \gamma \widehat{m_t}/ \big(\sqrt{\widehat{v_t}} + \epsilon \big) \ &\rule{110mm}{0.4pt} \[-1.ex] &\bf{return} \: \theta_t \[-1.ex] &\rule{110mm}{0.4pt} \[-1.ex] \end{aligned} For further details regarding the algorithm we refer to Adam: A Method for Stochastic Optimization. Parameters: * params (iterable) -- iterable of parameters to optimize or dicts defining parameter groups * **lr** (*float**, **optional*) -- learning rate (default: 1e-3) * **betas** (*Tuple**[**float**, **float**]**, **optional*) -- coefficients used for computing running averages of gradient and its square (default: (0.9, 0.999))
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
pytorch docs
and its square (default: (0.9, 0.999)) * **eps** (*float**, **optional*) -- term added to the denominator to improve numerical stability (default: 1e-8) * **weight_decay** (*float**, **optional*) -- weight decay (L2 penalty) (default: 0) * **amsgrad** (*bool**, **optional*) -- whether to use the AMSGrad variant of this algorithm from the paper On the Convergence of Adam and Beyond (default: False) * **foreach** (*bool**, **optional*) -- whether foreach implementation of optimizer is used (default: None) * **maximize** (*bool**, **optional*) -- maximize the params based on the objective, instead of minimizing (default: False) * **capturable** (*bool**, **optional*) -- whether this instance is safe to capture in a CUDA graph. Passing True can impair ungraphed performance, so if you don't intend to graph capture this instance, leave it False (default: False)
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
pytorch docs
differentiable (bool, optional) -- whether autograd should occur through the optimizer step in training. Otherwise, the step() function runs in a torch.no_grad() context. Setting to True can impair performance, so leave it False if you don't intend to run autograd through this instance (default: False) fused (bool, optional) -- whether the fused implementation (CUDA only) is used. Currently, torch.float64, torch.float32, torch.float16, and torch.bfloat16 are supported. Since the fused implementation is usually significantly faster than the for-loop implementation, we try to use it whenever possible (all parameters are on CUDA and are of a supported type). Else, we continue with the for-loop implementation. (default: None) add_param_group(param_group) Add a param group to the "Optimizer" s *param_groups*.
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
pytorch docs
This can be useful when fine tuning a pre-trained network as frozen layers can be made trainable and added to the "Optimizer" as training progresses. Parameters: **param_group** (*dict*) -- Specifies what Tensors should be optimized along with group specific optimization options. load_state_dict(state_dict) Loads the optimizer state. Parameters: **state_dict** (*dict*) -- optimizer state. Should be an object returned from a call to "state_dict()". register_step_post_hook(hook) Register an optimizer step post hook which will be called after optimizer step. It should have the following signature: hook(optimizer, args, kwargs) -> None The "optimizer" argument is the optimizer instance being used. Parameters: **hook** (*Callable*) -- The user defined hook to be registered. Returns: a handle that can be used to remove the added hook by calling
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
pytorch docs
"handle.remove()" Return type: "torch.utils.hooks.RemoveableHandle" register_step_pre_hook(hook) Register an optimizer step pre hook which will be called before optimizer step. It should have the following signature: hook(optimizer, args, kwargs) -> None or modified args and kwargs The "optimizer" argument is the optimizer instance being used. If args and kwargs are modified by the pre-hook, then the transformed values are returned as a tuple containing the new_args and new_kwargs. Parameters: **hook** (*Callable*) -- The user defined hook to be registered. Returns: a handle that can be used to remove the added hook by calling "handle.remove()" Return type: "torch.utils.hooks.RemoveableHandle" state_dict() Returns the state of the optimizer as a "dict". It contains two entries: * state - a dict holding current optimization state. Its content
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
pytorch docs
differs between optimizer classes. * param_groups - a list containing all parameter groups where each parameter group is a dict zero_grad(set_to_none=False) Sets the gradients of all optimized "torch.Tensor" s to zero. Parameters: **set_to_none** (*bool*) -- instead of setting to zero, set the grads to None. This will in general have lower memory footprint, and can modestly improve performance. However, it changes certain behaviors. For example: 1. When the user tries to access a gradient and perform manual ops on it, a None attribute or a Tensor full of 0s will behave differently. 2. If the user requests "zero_grad(set_to_none=True)" followed by a backward pass, ".grad"s are guaranteed to be None for params that did not receive a gradient. 3. "torch.optim" optimizers have a different behavior if the gradient is 0 or None (in one case
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
pytorch docs
it does the step with a gradient of 0 and in the other it skips the step altogether).
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
pytorch docs
torch.nn.utils.skip_init torch.nn.utils.skip_init(module_cls, args, *kwargs) Given a module class object and args / kwargs, instantiates the module without initializing parameters / buffers. This can be useful if initialization is slow or if custom initialization will be performed, making the default initialization unnecessary. There are some caveats to this, due to the way this function is implemented: The module must accept a device arg in its constructor that is passed to any parameters or buffers created during construction. The module must not perform any computation on parameters in its constructor except initialization (i.e. functions from "torch.nn.init"). If these conditions are satisfied, the module can be instantiated with parameter / buffer values uninitialized, as if having been created using "torch.empty()". Parameters: * module_cls -- Class object; should be a subclass of "torch.nn.Module"
https://pytorch.org/docs/stable/generated/torch.nn.utils.skip_init.html
pytorch docs
"torch.nn.Module" * **args** -- args to pass to the module's constructor * **kwargs** -- kwargs to pass to the module's constructor Returns: Instantiated module with uninitialized parameters / buffers Example: >>> import torch >>> m = torch.nn.utils.skip_init(torch.nn.Linear, 5, 1) >>> m.weight Parameter containing: tensor([[0.0000e+00, 1.5846e+29, 7.8307e+00, 2.5250e-29, 1.1210e-44]], requires_grad=True) >>> m2 = torch.nn.utils.skip_init(torch.nn.Linear, in_features=6, out_features=1) >>> m2.weight Parameter containing: tensor([[-1.4677e+24, 4.5915e-41, 1.4013e-45, 0.0000e+00, -1.4677e+24, 4.5915e-41]], requires_grad=True)
https://pytorch.org/docs/stable/generated/torch.nn.utils.skip_init.html
pytorch docs
QConfig class torch.quantization.qconfig.QConfig(activation, weight) Describes how to quantize a layer or a part of the network by providing settings (observer classes) for activations and weights respectively. Note that QConfig needs to contain observer classes (like MinMaxObserver) or a callable that returns instances on invocation, not the concrete observer instances themselves. Quantization preparation function will instantiate observers multiple times for each of the layers. Observer classes have usually reasonable default arguments, but they can be overwritten with with_args method (that behaves like functools.partial): my_qconfig = QConfig( activation=MinMaxObserver.with_args(dtype=torch.qint8), weight=default_observer.with_args(dtype=torch.qint8))
https://pytorch.org/docs/stable/generated/torch.quantization.qconfig.QConfig.html
pytorch docs
torch.nn.functional.gelu torch.nn.functional.gelu(input, approximate='none') -> Tensor When the approximate argument is 'none', it applies element-wise the function \text{GELU}(x) = x * \Phi(x) where \Phi(x) is the Cumulative Distribution Function for Gaussian Distribution. When the approximate argument is 'tanh', Gelu is estimated with \text{GELU}(x) = 0.5 * x * (1 + \text{Tanh}(\sqrt(2 / \pi) * (x + 0.044715 * x^3))) See Gaussian Error Linear Units (GELUs).
https://pytorch.org/docs/stable/generated/torch.nn.functional.gelu.html
pytorch docs
torch.linalg.ldl_factor torch.linalg.ldl_factor(A, *, hermitian=False, out=None) Computes a compact representation of the LDL factorization of a Hermitian or symmetric (possibly indefinite) matrix. When "A" is complex valued it can be Hermitian ("hermitian"= True) or symmetric ("hermitian"= False). The factorization is of the form the form A = L D L^T. If "hermitian" is True then transpose operation is the conjugate transpose. L (or U) and D are stored in compact form in "LD". They follow the format specified by LAPACK's sytrf function. These tensors may be used in "torch.linalg.ldl_solve()" to solve linear systems. Supports input of float, double, cfloat and cdouble dtypes. Also supports batches of matrices, and if "A" is a batch of matrices then the output has the same batch dimensions. Note: When inputs are on a CUDA device, this function synchronizes that
https://pytorch.org/docs/stable/generated/torch.linalg.ldl_factor.html
pytorch docs
device with the CPU. For a version of this function that does not synchronize, see "torch.linalg.ldl_factor_ex()". Parameters: A (Tensor) -- tensor of shape (*, n, n) where * is zero or more batch dimensions consisting of symmetric or Hermitian matrices. (*, n, n) where *** is one or more batch dimensions. Keyword Arguments: * hermitian (bool, optional) -- whether to consider the input to be Hermitian or symmetric. For real-valued matrices, this switch has no effect. Default: False. * **out** (*tuple**, **optional*) -- tuple of two tensors to write the output to. Ignored if *None*. Default: *None*. Returns: A named tuple (LD, pivots). Examples: >>> A = torch.randn(3, 3) >>> A = A @ A.mT # make symmetric >>> A tensor([[7.2079, 4.2414, 1.9428], [4.2414, 3.4554, 0.3264], [1.9428, 0.3264, 1.3823]]) >>> LD, pivots = torch.linalg.ldl_factor(A)
https://pytorch.org/docs/stable/generated/torch.linalg.ldl_factor.html
pytorch docs