text
stringlengths
0
1.73k
source
stringlengths
35
119
category
stringclasses
2 values
torch.Tensor.sinh_ Tensor.sinh_() -> Tensor In-place version of "sinh()"
https://pytorch.org/docs/stable/generated/torch.Tensor.sinh_.html
pytorch docs
ConvReLU1d class torch.ao.nn.intrinsic.ConvReLU1d(conv, relu) This is a sequential container which calls the Conv1d and ReLU modules. During quantization this will be replaced with the corresponding fused module.
https://pytorch.org/docs/stable/generated/torch.ao.nn.intrinsic.ConvReLU1d.html
pytorch docs
torch.cuda.jiterator._create_jit_fn torch.cuda.jiterator._create_jit_fn(code_string, **kwargs) Create a jiterator-generated cuda kernel for an elementwise op. The code string has to be a valid CUDA function that describes the computation for a single element. The code string has to follow the c++ template pattern, as shown in the example below. This function will be inlined into elementwise kernel template, and compiled on the fly. Compiled kernel will be cached in memory, as well as local temp dir. Jiterator-generated kernels accepts noncontiguous tensors, and supports boardcasting and type promotion. Parameters: * code_string (str) -- CUDA code string to be compiled by jiterator. The entry functor must return by value. * **kwargs** (*Dict**, **optional*) -- Keyword arguments for generated function Return type: Callable Example:
https://pytorch.org/docs/stable/generated/torch.cuda.jiterator._create_jit_fn.html
pytorch docs
Return type: Callable Example: code_string = "template <typename T> T my_kernel(T x, T y, T alpha) { return -x + alpha * y; }" jitted_fn = create_jit_fn(code_string, alpha=1.0) a = torch.rand(3, device='cuda') b = torch.rand(3, device='cuda') # invoke jitted function like a regular python function result = jitted_fn(a, b, alpha=3.14) code_string also allows multiple function definitions, and the last function will be treated as the entry function. Example: code_string = "template <typename T> T util_fn(T x, T y) { return ::sin(x) + ::cos(y); }" code_string += "template <typename T> T my_kernel(T x, T y, T val) { return ::min(val, util_fn(x, y)); }" jitted_fn = create_jit_fn(code_string, val=0.0) a = torch.rand(3, device='cuda') b = torch.rand(3, device='cuda') # invoke jitted function like a regular python function result = jitted_fn(a, b) # using default val=0.0
https://pytorch.org/docs/stable/generated/torch.cuda.jiterator._create_jit_fn.html
pytorch docs
Jiterator can be used together with python registration to override an operator's cuda kernel. Following example is overriding gelu's cuda kernel with relu. Example: code_string = "template <typename T> T my_gelu(T a) { return a > 0 ? a : 0; }" my_gelu = create_jit_fn(code_string) my_lib = torch.library.Library("aten", "IMPL") my_lib.impl('aten::gelu', my_gelu, "CUDA") # torch.nn.GELU and torch.nn.function.gelu are now overridden a = torch.rand(3, device='cuda') torch.allclose(torch.nn.functional.gelu(a), torch.nn.functional.relu(a)) Warning: This API is in beta and may change in future releases. Warning: This API only supports up to 8 inputs and 1 output Warning: All input tensors must live in CUDA device
https://pytorch.org/docs/stable/generated/torch.cuda.jiterator._create_jit_fn.html
pytorch docs
default_fake_quant torch.quantization.fake_quantize.default_fake_quant alias of functools.partial(, observer=, quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, reduce_range=True){}
https://pytorch.org/docs/stable/generated/torch.quantization.fake_quantize.default_fake_quant.html
pytorch docs
torch.logaddexp torch.logaddexp(input, other, *, out=None) -> Tensor Logarithm of the sum of exponentiations of the inputs. Calculates pointwise \log\left(e^x + e^y\right). This function is useful in statistics where the calculated probabilities of events may be so small as to exceed the range of normal floating point numbers. In such cases the logarithm of the calculated probability is stored. This function allows adding probabilities stored in such a fashion. This op should be disambiguated with "torch.logsumexp()" which performs a reduction on a single tensor. Parameters: * input (Tensor) -- the input tensor. * **other** (*Tensor*) -- the second input tensor Keyword Arguments: out (Tensor, optional) -- the output tensor. Example: >>> torch.logaddexp(torch.tensor([-1.0]), torch.tensor([-1.0, -2, -3])) tensor([-0.3069, -0.6867, -0.8731])
https://pytorch.org/docs/stable/generated/torch.logaddexp.html
pytorch docs
tensor([-0.3069, -0.6867, -0.8731]) >>> torch.logaddexp(torch.tensor([-100.0, -200, -300]), torch.tensor([-1.0, -2, -3])) tensor([-1., -2., -3.]) >>> torch.logaddexp(torch.tensor([1.0, 2000, 30000]), torch.tensor([-1.0, -2, -3])) tensor([1.1269e+00, 2.0000e+03, 3.0000e+04])
https://pytorch.org/docs/stable/generated/torch.logaddexp.html
pytorch docs
torch.nn.utils.prune.random_structured torch.nn.utils.prune.random_structured(module, name, amount, dim) Prunes tensor corresponding to parameter called "name" in "module" by removing the specified "amount" of (currently unpruned) channels along the specified "dim" selected at random. Modifies module in place (and also return the modified module) by: adding a named buffer called "name+'_mask'" corresponding to the binary mask applied to the parameter "name" by the pruning method. replacing the parameter "name" by its pruned version, while the original (unpruned) parameter is stored in a new parameter named "name+'_orig'". Parameters: * module (nn.Module) -- module containing the tensor to prune * **name** (*str*) -- parameter name within "module" on which pruning will act. * **amount** (*int** or **float*) -- quantity of parameters to
https://pytorch.org/docs/stable/generated/torch.nn.utils.prune.random_structured.html
pytorch docs
prune. If "float", should be between 0.0 and 1.0 and represent the fraction of parameters to prune. If "int", it represents the absolute number of parameters to prune. * **dim** (*int*) -- index of the dim along which we define channels to prune. Returns: modified (i.e. pruned) version of the input module Return type: module (nn.Module) -[ Examples ]- m = prune.random_structured( ... nn.Linear(5, 3), 'weight', amount=3, dim=1 ... ) columns_pruned = int(sum(torch.sum(m.weight, dim=0) == 0)) print(columns_pruned) 3
https://pytorch.org/docs/stable/generated/torch.nn.utils.prune.random_structured.html
pytorch docs
torch.argmax torch.argmax(input) -> LongTensor Returns the indices of the maximum value of all elements in the "input" tensor. This is the second value returned by "torch.max()". See its documentation for the exact semantics of this method. Note: If there are multiple maximal values then the indices of the first maximal value are returned. Parameters: input (Tensor) -- the input tensor. Example: >>> a = torch.randn(4, 4) >>> a tensor([[ 1.3398, 0.2663, -0.2686, 0.2450], [-0.7401, -0.8805, -0.3402, -1.1936], [ 0.4907, -1.3948, -1.0691, -0.3132], [-1.6092, 0.5419, -0.2993, 0.3195]]) >>> torch.argmax(a) tensor(0) torch.argmax(input, dim, keepdim=False) -> LongTensor Returns the indices of the maximum values of a tensor across a dimension. This is the second value returned by "torch.max()". See its documentation for the exact semantics of this method.
https://pytorch.org/docs/stable/generated/torch.argmax.html
pytorch docs
Parameters: * input (Tensor) -- the input tensor. * **dim** (*int*) -- the dimension to reduce. If "None", the argmax of the flattened input is returned. * **keepdim** (*bool*) -- whether the output tensor has "dim" retained or not. Ignored if "dim=None". Example: >>> a = torch.randn(4, 4) >>> a tensor([[ 1.3398, 0.2663, -0.2686, 0.2450], [-0.7401, -0.8805, -0.3402, -1.1936], [ 0.4907, -1.3948, -1.0691, -0.3132], [-1.6092, 0.5419, -0.2993, 0.3195]]) >>> torch.argmax(a, dim=1) tensor([ 0, 2, 0, 1])
https://pytorch.org/docs/stable/generated/torch.argmax.html
pytorch docs
QuantWrapper class torch.quantization.QuantWrapper(module) A wrapper class that wraps the input module, adds QuantStub and DeQuantStub and surround the call to module with call to quant and dequant modules. This is used by the quantization utility functions to add the quant and dequant modules, before convert function QuantStub will just be observer, it observes the input tensor, after convert, QuantStub will be swapped to nnq.Quantize which does actual quantization. Similarly for DeQuantStub.
https://pytorch.org/docs/stable/generated/torch.quantization.QuantWrapper.html
pytorch docs
torch.Tensor.dsplit Tensor.dsplit(split_size_or_sections) -> List of Tensors See "torch.dsplit()"
https://pytorch.org/docs/stable/generated/torch.Tensor.dsplit.html
pytorch docs
torch.Tensor.gt_ Tensor.gt_(other) -> Tensor In-place version of "gt()".
https://pytorch.org/docs/stable/generated/torch.Tensor.gt_.html
pytorch docs
torch.Tensor.sign Tensor.sign() -> Tensor See "torch.sign()"
https://pytorch.org/docs/stable/generated/torch.Tensor.sign.html
pytorch docs
AdaptiveAvgPool3d class torch.nn.AdaptiveAvgPool3d(output_size) Applies a 3D adaptive average pooling over an input signal composed of several input planes. The output is of size D x H x W, for any input size. The number of output features is equal to the number of input planes. Parameters: output_size (Union[int, None, Tuple[Optional[int], Optional[int], Optional[int]]]) -- the target output size of the form D x H x W. Can be a tuple (D, H, W) or a single number D for a cube D x D x D. D, H and W can be either a "int", or "None" which means the size will be the same as that of the input. Shape: * Input: (N, C, D_{in}, H_{in}, W_{in}) or (C, D_{in}, H_{in}, W_{in}). * Output: (N, C, S_{0}, S_{1}, S_{2}) or (C, S_{0}, S_{1}, S_{2}), where S=\text{output\_size}. -[ Examples ]- target output size of 5x7x9
https://pytorch.org/docs/stable/generated/torch.nn.AdaptiveAvgPool3d.html
pytorch docs
target output size of 5x7x9 m = nn.AdaptiveAvgPool3d((5, 7, 9)) input = torch.randn(1, 64, 8, 9, 10) output = m(input) target output size of 7x7x7 (cube) m = nn.AdaptiveAvgPool3d(7) input = torch.randn(1, 64, 10, 9, 8) output = m(input) target output size of 7x9x8 m = nn.AdaptiveAvgPool3d((7, None, None)) input = torch.randn(1, 64, 10, 9, 8) output = m(input)
https://pytorch.org/docs/stable/generated/torch.nn.AdaptiveAvgPool3d.html
pytorch docs
torch.bitwise_right_shift torch.bitwise_right_shift(input, other, *, out=None) -> Tensor Computes the right arithmetic shift of "input" by "other" bits. The input tensor must be of integral type. This operator supports broadcasting to a common shape and type promotion. The operation applied is: \text{out}_i = \text{input}_i >> \text{other}_i Parameters: * input (Tensor or Scalar) -- the first input tensor * **other** (*Tensor** or **Scalar*) -- the second input tensor Keyword Arguments: out (Tensor, optional) -- the output tensor. Example: >>> torch.bitwise_right_shift(torch.tensor([-2, -7, 31], dtype=torch.int8), torch.tensor([1, 0, 3], dtype=torch.int8)) tensor([-1, -7, 3], dtype=torch.int8)
https://pytorch.org/docs/stable/generated/torch.bitwise_right_shift.html
pytorch docs
torch.Tensor.normal_ Tensor.normal_(mean=0, std=1, *, generator=None) -> Tensor Fills "self" tensor with elements samples from the normal distribution parameterized by "mean" and "std".
https://pytorch.org/docs/stable/generated/torch.Tensor.normal_.html
pytorch docs
hardsigmoid class torch.ao.nn.quantized.functional.hardsigmoid(input, inplace=False) This is the quantized version of "hardsigmoid()". Return type: Tensor
https://pytorch.org/docs/stable/generated/torch.ao.nn.quantized.functional.hardsigmoid.html
pytorch docs
celu class torch.ao.nn.quantized.functional.celu(input, scale, zero_point, alpha=1.) Applies the quantized CELU function element-wise. \text{CELU}(x) = \max(0,x) + \min(0, \alpha * (\exp(x / \alpha) - 1)) Parameters: * input (Tensor) -- quantized input * **alpha** (*float*) -- the \alpha value for the CELU formulation. Default: 1.0 Return type: Tensor
https://pytorch.org/docs/stable/generated/torch.ao.nn.quantized.functional.celu.html
pytorch docs
torch.nn.functional.huber_loss torch.nn.functional.huber_loss(input, target, reduction='mean', delta=1.0) Function that uses a squared term if the absolute element-wise error falls below delta and a delta-scaled L1 term otherwise. See "HuberLoss" for details. Return type: Tensor
https://pytorch.org/docs/stable/generated/torch.nn.functional.huber_loss.html
pytorch docs
torch.linalg.lu torch.linalg.lu(A, *, pivot=True, out=None) Computes the LU decomposition with partial pivoting of a matrix. Letting \mathbb{K} be \mathbb{R} or \mathbb{C}, the LU decomposition with partial pivoting of a matrix A \in \mathbb{K}^{m \times n} is defined as A = PLU\mathrlap{\qquad P \in \mathbb{K}^{m \times m}, L \in \mathbb{K}^{m \times k}, U \in \mathbb{K}^{k \times n}} where k = min(m,n), P is a permutation matrix, L is lower triangular with ones on the diagonal and U is upper triangular. If "pivot"= False and "A" is on GPU, then the LU decomposition without pivoting is computed A = LU\mathrlap{\qquad L \in \mathbb{K}^{m \times k}, U \in \mathbb{K}^{k \times n}} When "pivot"= False, the returned matrix "P" will be empty. The LU decomposition without pivoting may not exist if any of the principal minors of "A" is singular. In this case, the output matrix may contain inf or NaN.
https://pytorch.org/docs/stable/generated/torch.linalg.lu.html
pytorch docs
matrix may contain inf or NaN. Supports input of float, double, cfloat and cdouble dtypes. Also supports batches of matrices, and if "A" is a batch of matrices then the output has the same batch dimensions. See also: "torch.linalg.solve()" solves a system of linear equations using the LU decomposition with partial pivoting. Warning: The LU decomposition is almost never unique, as often there are different permutation matrices that can yield different LU decompositions. As such, different platforms, like SciPy, or inputs on different devices, may produce different valid decompositions. Warning: Gradient computations are only supported if the input matrix is full-rank. If this condition is not met, no error will be thrown, but the gradient may not be finite. This is because the LU decomposition with pivoting is not differentiable at these points. Parameters:
https://pytorch.org/docs/stable/generated/torch.linalg.lu.html
pytorch docs
points. Parameters: * A (Tensor) -- tensor of shape (, m, n)* where *** is zero or more batch dimensions. * **pivot** (*bool**, **optional*) -- Controls whether to compute the LU decomposition with partial pivoting or no pivoting. Default: *True*. Keyword Arguments: out (tuple, optional) -- output tuple of three tensors. Ignored if None. Default: None. Returns: A named tuple (P, L, U). Examples: >>> A = torch.randn(3, 2) >>> P, L, U = torch.linalg.lu(A) >>> P tensor([[0., 1., 0.], [0., 0., 1.], [1., 0., 0.]]) >>> L tensor([[1.0000, 0.0000], [0.5007, 1.0000], [0.0633, 0.9755]]) >>> U tensor([[0.3771, 0.0489], [0.0000, 0.9644]]) >>> torch.dist(A, P @ L @ U) tensor(5.9605e-08) >>> A = torch.randn(2, 5, 7, device="cuda") >>> P, L, U = torch.linalg.lu(A, pivot=False)
https://pytorch.org/docs/stable/generated/torch.linalg.lu.html
pytorch docs
P tensor([], device='cuda:0') >>> torch.dist(A, L @ U) tensor(1.0376e-06, device='cuda:0')
https://pytorch.org/docs/stable/generated/torch.linalg.lu.html
pytorch docs
torch.Tensor.data_ptr Tensor.data_ptr() -> int Returns the address of the first element of "self" tensor.
https://pytorch.org/docs/stable/generated/torch.Tensor.data_ptr.html
pytorch docs
quantize class torch.quantization.quantize(model, run_fn, run_args, mapping=None, inplace=False) Quantize the input float model with post training static quantization. First it will prepare the model for calibration, then it calls run_fn which will run the calibration step, after that we will convert the model to a quantized model. Parameters: * model -- input float model * **run_fn** -- a calibration function for calibrating the prepared model * **run_args** -- positional arguments for *run_fn* * **inplace** -- carry out model transformations in-place, the original module is mutated * **mapping** -- correspondence between original module types and quantized counterparts Returns: Quantized model.
https://pytorch.org/docs/stable/generated/torch.quantization.quantize.html
pytorch docs
torch.log1p torch.log1p(input, *, out=None) -> Tensor Returns a new tensor with the natural logarithm of (1 + "input"). y_i = \log_{e} (x_i + 1) Note: This function is more accurate than "torch.log()" for small values of "input" Parameters: input (Tensor) -- the input tensor. Keyword Arguments: out (Tensor, optional) -- the output tensor. Example: >>> a = torch.randn(5) >>> a tensor([-1.0090, -0.9923, 1.0249, -0.5372, 0.2492]) >>> torch.log1p(a) tensor([ nan, -4.8653, 0.7055, -0.7705, 0.2225])
https://pytorch.org/docs/stable/generated/torch.log1p.html
pytorch docs
torch.diagflat torch.diagflat(input, offset=0) -> Tensor If "input" is a vector (1-D tensor), then returns a 2-D square tensor with the elements of "input" as the diagonal. If "input" is a tensor with more than one dimension, then returns a 2-D tensor with diagonal elements equal to a flattened "input". The argument "offset" controls which diagonal to consider: If "offset" = 0, it is the main diagonal. If "offset" > 0, it is above the main diagonal. If "offset" < 0, it is below the main diagonal. Parameters: * input (Tensor) -- the input tensor. * **offset** (*int**, **optional*) -- the diagonal to consider. Default: 0 (main diagonal). Examples: >>> a = torch.randn(3) >>> a tensor([-0.2956, -0.9068, 0.1695]) >>> torch.diagflat(a) tensor([[-0.2956, 0.0000, 0.0000], [ 0.0000, -0.9068, 0.0000], [ 0.0000, 0.0000, 0.1695]]) >>> torch.diagflat(a, 1)
https://pytorch.org/docs/stable/generated/torch.diagflat.html
pytorch docs
torch.diagflat(a, 1) tensor([[ 0.0000, -0.2956, 0.0000, 0.0000], [ 0.0000, 0.0000, -0.9068, 0.0000], [ 0.0000, 0.0000, 0.0000, 0.1695], [ 0.0000, 0.0000, 0.0000, 0.0000]]) >>> a = torch.randn(2, 2) >>> a tensor([[ 0.2094, -0.3018], [-0.1516, 1.9342]]) >>> torch.diagflat(a) tensor([[ 0.2094, 0.0000, 0.0000, 0.0000], [ 0.0000, -0.3018, 0.0000, 0.0000], [ 0.0000, 0.0000, -0.1516, 0.0000], [ 0.0000, 0.0000, 0.0000, 1.9342]])
https://pytorch.org/docs/stable/generated/torch.diagflat.html
pytorch docs
torch.Tensor.masked_scatter_ Tensor.masked_scatter_(mask, source) Copies elements from "source" into "self" tensor at positions where the "mask" is True. The shape of "mask" must be broadcastable with the shape of the underlying tensor. The "source" should have at least as many elements as the number of ones in "mask" Parameters: * mask (BoolTensor) -- the boolean mask * **source** (*Tensor*) -- the tensor to copy from Note: The "mask" operates on the "self" tensor, not on the given "source" tensor.
https://pytorch.org/docs/stable/generated/torch.Tensor.masked_scatter_.html
pytorch docs
dual_level class torch.autograd.forward_ad.dual_level Context-manager that enables forward AD. All forward AD computation must be performed in a "dual_level" context. Note: The "dual_level" context appropriately enters and exit the dual level to controls the current forward AD level, which is used by default by the other functions in this API.We currently don't plan to support nested "dual_level" contexts, however, so only a single forward AD level is supported. To compute higher-order forward grads, one can use "torch.func.jvp()". Example: >>> x = torch.tensor([1]) >>> x_t = torch.tensor([1]) >>> with dual_level(): ... inp = make_dual(x, x_t) ... # Do computations with inp ... out = your_fn(inp) ... _, grad = unpack_dual(out) >>> grad is None False >>> # After exiting the level, the grad is deleted >>> _, grad_after = unpack_dual(out) >>> grad is None True
https://pytorch.org/docs/stable/generated/torch.autograd.forward_ad.dual_level.html
pytorch docs
grad is None True Please see the forward-mode AD tutorial for detailed steps on how to use this API.
https://pytorch.org/docs/stable/generated/torch.autograd.forward_ad.dual_level.html
pytorch docs
torch.Tensor.share_memory_ Tensor.share_memory_() Moves the underlying storage to shared memory. This is a no-op if the underlying storage is already in shared memory and for CUDA tensors. Tensors in shared memory cannot be resized.
https://pytorch.org/docs/stable/generated/torch.Tensor.share_memory_.html
pytorch docs
LBFGS class torch.optim.LBFGS(params, lr=1, max_iter=20, max_eval=None, tolerance_grad=1e-07, tolerance_change=1e-09, history_size=100, line_search_fn=None) Implements L-BFGS algorithm, heavily inspired by minFunc. Warning: This optimizer doesn't support per-parameter options and parameter groups (there can be only one). Warning: Right now all parameters have to be on a single device. This will be improved in the future. Note: This is a very memory intensive optimizer (it requires additional "param_bytes * (history_size + 1)" bytes). If it doesn't fit in memory try reducing the history size, or use a different algorithm. Parameters: * lr (float) -- learning rate (default: 1) * **max_iter** (*int*) -- maximal number of iterations per optimization step (default: 20) * **max_eval** (*int*) -- maximal number of function evaluations per optimization step (default: max_iter * 1.25).
https://pytorch.org/docs/stable/generated/torch.optim.LBFGS.html
pytorch docs
tolerance_grad (float) -- termination tolerance on first order optimality (default: 1e-5). tolerance_change (float) -- termination tolerance on function value/parameter changes (default: 1e-9). history_size (int) -- update history size (default: 100). line_search_fn (str) -- either 'strong_wolfe' or None (default: None). add_param_group(param_group) Add a param group to the "Optimizer" s *param_groups*. This can be useful when fine tuning a pre-trained network as frozen layers can be made trainable and added to the "Optimizer" as training progresses. Parameters: **param_group** (*dict*) -- Specifies what Tensors should be optimized along with group specific optimization options. load_state_dict(state_dict) Loads the optimizer state. Parameters: **state_dict** (*dict*) -- optimizer state. Should be an
https://pytorch.org/docs/stable/generated/torch.optim.LBFGS.html
pytorch docs
object returned from a call to "state_dict()". register_step_post_hook(hook) Register an optimizer step post hook which will be called after optimizer step. It should have the following signature: hook(optimizer, args, kwargs) -> None The "optimizer" argument is the optimizer instance being used. Parameters: **hook** (*Callable*) -- The user defined hook to be registered. Returns: a handle that can be used to remove the added hook by calling "handle.remove()" Return type: "torch.utils.hooks.RemoveableHandle" register_step_pre_hook(hook) Register an optimizer step pre hook which will be called before optimizer step. It should have the following signature: hook(optimizer, args, kwargs) -> None or modified args and kwargs The "optimizer" argument is the optimizer instance being used. If args and kwargs are modified by the pre-hook, then the
https://pytorch.org/docs/stable/generated/torch.optim.LBFGS.html
pytorch docs
transformed values are returned as a tuple containing the new_args and new_kwargs. Parameters: **hook** (*Callable*) -- The user defined hook to be registered. Returns: a handle that can be used to remove the added hook by calling "handle.remove()" Return type: "torch.utils.hooks.RemoveableHandle" state_dict() Returns the state of the optimizer as a "dict". It contains two entries: * state - a dict holding current optimization state. Its content differs between optimizer classes. * param_groups - a list containing all parameter groups where each parameter group is a dict step(closure) Performs a single optimization step. Parameters: **closure** (*Callable*) -- A closure that reevaluates the model and returns the loss. zero_grad(set_to_none=False) Sets the gradients of all optimized "torch.Tensor" s to zero. Parameters:
https://pytorch.org/docs/stable/generated/torch.optim.LBFGS.html
pytorch docs
Parameters: set_to_none (bool) -- instead of setting to zero, set the grads to None. This will in general have lower memory footprint, and can modestly improve performance. However, it changes certain behaviors. For example: 1. When the user tries to access a gradient and perform manual ops on it, a None attribute or a Tensor full of 0s will behave differently. 2. If the user requests "zero_grad(set_to_none=True)" followed by a backward pass, ".grad"s are guaranteed to be None for params that did not receive a gradient. 3. "torch.optim" optimizers have a different behavior if the gradient is 0 or None (in one case it does the step with a gradient of 0 and in the other it skips the step altogether).
https://pytorch.org/docs/stable/generated/torch.optim.LBFGS.html
pytorch docs
torch.Tensor.addr Tensor.addr(vec1, vec2, *, beta=1, alpha=1) -> Tensor See "torch.addr()"
https://pytorch.org/docs/stable/generated/torch.Tensor.addr.html
pytorch docs
torch.Tensor.type Tensor.type(dtype=None, non_blocking=False, **kwargs) -> str or Tensor Returns the type if dtype is not provided, else casts this object to the specified type. If this is already of the correct type, no copy is performed and the original object is returned. Parameters: * dtype (dtype or string) -- The desired type * **non_blocking** (*bool*) -- If "True", and the source is in pinned memory and destination is on the GPU or vice versa, the copy is performed asynchronously with respect to the host. Otherwise, the argument has no effect. * ****kwargs** -- For compatibility, may contain the key "async" in place of the "non_blocking" argument. The "async" arg is deprecated.
https://pytorch.org/docs/stable/generated/torch.Tensor.type.html
pytorch docs
torch.Tensor.narrow_copy Tensor.narrow_copy(dimension, start, length) -> Tensor See "torch.narrow_copy()".
https://pytorch.org/docs/stable/generated/torch.Tensor.narrow_copy.html
pytorch docs
LazyInstanceNorm3d class torch.nn.LazyInstanceNorm3d(eps=1e-05, momentum=0.1, affine=True, track_running_stats=True, device=None, dtype=None) A "torch.nn.InstanceNorm3d" module with lazy initialization of the "num_features" argument of the "InstanceNorm3d" that is inferred from the "input.size(1)". The attributes that will be lazily initialized are weight, bias, running_mean and running_var. Check the "torch.nn.modules.lazy.LazyModuleMixin" for further documentation on lazy modules and their limitations. Parameters: * num_features -- C from an expected input of size (N, C, D, H, W) or (C, D, H, W) * **eps** (*float*) -- a value added to the denominator for numerical stability. Default: 1e-5 * **momentum** (*float*) -- the value used for the running_mean and running_var computation. Default: 0.1 * **affine** (*bool*) -- a boolean value that when set to
https://pytorch.org/docs/stable/generated/torch.nn.LazyInstanceNorm3d.html
pytorch docs
"True", this module has learnable affine parameters, initialized the same way as done for batch normalization. Default: "False". * **track_running_stats** (*bool*) -- a boolean value that when set to "True", this module tracks the running mean and variance, and when set to "False", this module does not track such statistics and always uses batch statistics in both training and eval modes. Default: "False" Shape: * Input: (N, C, D, H, W) or (C, D, H, W) * Output: (N, C, D, H, W) or (C, D, H, W) (same shape as input) cls_to_become alias of "InstanceNorm3d"
https://pytorch.org/docs/stable/generated/torch.nn.LazyInstanceNorm3d.html
pytorch docs
ConstantPad2d class torch.nn.ConstantPad2d(padding, value) Pads the input tensor boundaries with a constant value. For N-dimensional padding, use "torch.nn.functional.pad()". Parameters: padding (int, tuple) -- the size of the padding. If is int, uses the same padding in all boundaries. If a 4-tuple, uses (\text{padding_left}, \text{padding_right}, \text{padding_top}, \text{padding_bottom}) Shape: * Input: (N, C, H_{in}, W_{in}) or (C, H_{in}, W_{in}). * Output: (N, C, H_{out}, W_{out}) or (C, H_{out}, W_{out}), where H_{out} = H_{in} + \text{padding\_top} + \text{padding\_bottom} W_{out} = W_{in} + \text{padding\_left} + \text{padding\_right} Examples: >>> m = nn.ConstantPad2d(2, 3.5) >>> input = torch.randn(1, 2, 2) >>> input tensor([[[ 1.6585, 0.4320], [-0.8701, -0.4649]]]) >>> m(input)
https://pytorch.org/docs/stable/generated/torch.nn.ConstantPad2d.html
pytorch docs
m(input) tensor([[[ 3.5000, 3.5000, 3.5000, 3.5000, 3.5000, 3.5000], [ 3.5000, 3.5000, 3.5000, 3.5000, 3.5000, 3.5000], [ 3.5000, 3.5000, 1.6585, 0.4320, 3.5000, 3.5000], [ 3.5000, 3.5000, -0.8701, -0.4649, 3.5000, 3.5000], [ 3.5000, 3.5000, 3.5000, 3.5000, 3.5000, 3.5000], [ 3.5000, 3.5000, 3.5000, 3.5000, 3.5000, 3.5000]]]) >>> # using different paddings for different sides >>> m = nn.ConstantPad2d((3, 0, 2, 1), 3.5) >>> m(input) tensor([[[ 3.5000, 3.5000, 3.5000, 3.5000, 3.5000], [ 3.5000, 3.5000, 3.5000, 3.5000, 3.5000], [ 3.5000, 3.5000, 3.5000, 1.6585, 0.4320], [ 3.5000, 3.5000, 3.5000, -0.8701, -0.4649], [ 3.5000, 3.5000, 3.5000, 3.5000, 3.5000]]])
https://pytorch.org/docs/stable/generated/torch.nn.ConstantPad2d.html
pytorch docs
torch.Tensor.polygamma_ Tensor.polygamma_(n) -> Tensor In-place version of "polygamma()"
https://pytorch.org/docs/stable/generated/torch.Tensor.polygamma_.html
pytorch docs
GRUCell class torch.nn.GRUCell(input_size, hidden_size, bias=True, device=None, dtype=None) A gated recurrent unit (GRU) cell \begin{array}{ll} r = \sigma(W_{ir} x + b_{ir} + W_{hr} h + b_{hr}) \\ z = \sigma(W_{iz} x + b_{iz} + W_{hz} h + b_{hz}) \\ n = \tanh(W_{in} x + b_{in} + r * (W_{hn} h + b_{hn})) \\ h' = (1 - z) * n + z * h \end{array} where \sigma is the sigmoid function, and * is the Hadamard product. Parameters: * input_size (int) -- The number of expected features in the input x * **hidden_size** (*int*) -- The number of features in the hidden state *h* * **bias** (*bool*) -- If "False", then the layer does not use bias weights *b_ih* and *b_hh*. Default: "True" Inputs: input, hidden * input : tensor containing input features * **hidden** : tensor containing the initial hidden state for each element in the batch. Defaults to zero if not provided. Outputs: h'
https://pytorch.org/docs/stable/generated/torch.nn.GRUCell.html
pytorch docs
Outputs: h' * h' : tensor containing the next hidden state for each element in the batch Shape: * input: (N, H_{in}) or (H_{in}) tensor containing input features where H_{in} = input_size. * hidden: (N, H_{out}) or (H_{out}) tensor containing the initial hidden state where H_{out} = *hidden_size*. Defaults to zero if not provided. * output: (N, H_{out}) or (H_{out}) tensor containing the next hidden state. Variables: * weight_ih (torch.Tensor) -- the learnable input-hidden weights, of shape (3hidden_size, input_size)* * **weight_hh** (*torch.Tensor*) -- the learnable hidden-hidden weights, of shape *(3*hidden_size, hidden_size)* * **bias_ih** -- the learnable input-hidden bias, of shape *(3*hidden_size)* * **bias_hh** -- the learnable hidden-hidden bias, of shape *(3*hidden_size)* Note: All the weights and biases are initialized from
https://pytorch.org/docs/stable/generated/torch.nn.GRUCell.html
pytorch docs
\mathcal{U}(-\sqrt{k}, \sqrt{k}) where k = \frac{1}{\text{hidden_size}} On certain ROCm devices, when using float16 inputs this module will use different precision for backward. Examples: >>> rnn = nn.GRUCell(10, 20) >>> input = torch.randn(6, 3, 10) >>> hx = torch.randn(3, 20) >>> output = [] >>> for i in range(6): ... hx = rnn(input[i], hx) ... output.append(hx)
https://pytorch.org/docs/stable/generated/torch.nn.GRUCell.html
pytorch docs
torch.erfinv torch.erfinv(input, *, out=None) -> Tensor Alias for "torch.special.erfinv()".
https://pytorch.org/docs/stable/generated/torch.erfinv.html
pytorch docs
torch.Tensor.asin_ Tensor.asin_() -> Tensor In-place version of "asin()"
https://pytorch.org/docs/stable/generated/torch.Tensor.asin_.html
pytorch docs
torch.Tensor.smm Tensor.smm(mat) -> Tensor See "torch.smm()"
https://pytorch.org/docs/stable/generated/torch.Tensor.smm.html
pytorch docs
torch.fft.ifftshift torch.fft.ifftshift(input, dim=None) -> Tensor Inverse of "fftshift()". Parameters: * input (Tensor) -- the tensor in FFT order * **dim** (*int**, **Tuple**[**int**]**, **optional*) -- The dimensions to rearrange. Only dimensions specified here will be rearranged, any other dimensions will be left in their original order. Default: All dimensions of "input". -[ Example ]- f = torch.fft.fftfreq(5) f tensor([ 0.0000, 0.2000, 0.4000, -0.4000, -0.2000]) A round-trip through "fftshift()" and "ifftshift()" gives the same result: shifted = torch.fft.fftshift(f) torch.fft.ifftshift(shifted) tensor([ 0.0000, 0.2000, 0.4000, -0.4000, -0.2000])
https://pytorch.org/docs/stable/generated/torch.fft.ifftshift.html
pytorch docs
torch.Tensor.repeat Tensor.repeat(*sizes) -> Tensor Repeats this tensor along the specified dimensions. Unlike "expand()", this function copies the tensor's data. Warning: "repeat()" behaves differently from numpy.repeat, but is more similar to numpy.tile. For the operator similar to *numpy.repeat*, see "torch.repeat_interleave()". Parameters: sizes (torch.Size or int...) -- The number of times to repeat this tensor along each dimension Example: >>> x = torch.tensor([1, 2, 3]) >>> x.repeat(4, 2) tensor([[ 1, 2, 3, 1, 2, 3], [ 1, 2, 3, 1, 2, 3], [ 1, 2, 3, 1, 2, 3], [ 1, 2, 3, 1, 2, 3]]) >>> x.repeat(4, 2, 1).size() torch.Size([4, 2, 3])
https://pytorch.org/docs/stable/generated/torch.Tensor.repeat.html
pytorch docs
torch.func.jacrev torch.func.jacrev(func, argnums=0, *, has_aux=False, chunk_size=None, _preallocate_and_copy=False) Computes the Jacobian of "func" with respect to the arg(s) at index "argnum" using reverse mode autodiff Note: Using "chunk_size=1" is equivalent to computing the jacobian row- by-row with a for-loop i.e. the constraints of "vmap()" are not applicable. Parameters: * func (function) -- A Python function that takes one or more arguments, one of which must be a Tensor, and returns one or more Tensors * **argnums** (*int** or **Tuple**[**int**]*) -- Optional, integer or tuple of integers, saying which arguments to get the Jacobian with respect to. Default: 0. * **has_aux** (*bool*) -- Flag indicating that "func" returns a "(output, aux)" tuple where the first element is the output of the function to be differentiated and the second element is
https://pytorch.org/docs/stable/generated/torch.func.jacrev.html
pytorch docs
auxiliary objects that will not be differentiated. Default: False. * **chunk_size** (*None** or **int*) -- If None (default), use the maximum chunk size (equivalent to doing a single vmap over vjp to compute the jacobian). If 1, then compute the jacobian row-by-row with a for-loop. If not None, then compute the jacobian "chunk_size" rows at a time (equivalent to doing multiple vmap over vjp). If you run into memory issues computing the jacobian, please try to specify a non-None chunk_size. Returns: Returns a function that takes in the same inputs as "func" and returns the Jacobian of "func" with respect to the arg(s) at "argnums". If "has_aux is True", then the returned function instead returns a "(jacobian, aux)" tuple where "jacobian" is the Jacobian and "aux" is auxiliary objects returned by "func". A basic usage with a pointwise, unary operation will give a diagonal array as the Jacobian
https://pytorch.org/docs/stable/generated/torch.func.jacrev.html
pytorch docs
diagonal array as the Jacobian from torch.func import jacrev x = torch.randn(5) jacobian = jacrev(torch.sin)(x) expected = torch.diag(torch.cos(x)) assert torch.allclose(jacobian, expected) If you would like to compute the output of the function as well as the jacobian of the function, use the "has_aux" flag to return the output as an auxiliary object: from torch.func import jacrev x = torch.randn(5) def f(x): return x.sin() def g(x): result = f(x) return result, result jacobian_f, f_x = jacrev(g, has_aux=True)(x) assert torch.allclose(f_x, f(x)) "jacrev()" can be composed with vmap to produce batched Jacobians: from torch.func import jacrev, vmap x = torch.randn(64, 5) jacobian = vmap(jacrev(torch.sin))(x) assert jacobian.shape == (64, 5, 5) Additionally, "jacrev()" can be composed with itself to produce Hessians
https://pytorch.org/docs/stable/generated/torch.func.jacrev.html
pytorch docs
Hessians from torch.func import jacrev def f(x): return x.sin().sum() x = torch.randn(5) hessian = jacrev(jacrev(f))(x) assert torch.allclose(hessian, torch.diag(-x.sin())) By default, "jacrev()" computes the Jacobian with respect to the first input. However, it can compute the Jacboian with respect to a different argument by using "argnums": from torch.func import jacrev def f(x, y): return x + y ** 2 x, y = torch.randn(5), torch.randn(5) jacobian = jacrev(f, argnums=1)(x, y) expected = torch.diag(2 * y) assert torch.allclose(jacobian, expected) Additionally, passing a tuple to "argnums" will compute the Jacobian with respect to multiple arguments from torch.func import jacrev def f(x, y): return x + y ** 2 x, y = torch.randn(5), torch.randn(5) jacobian = jacrev(f, argnums=(0, 1))(x, y) expectedX = torch.diag(torch.ones_like(x))
https://pytorch.org/docs/stable/generated/torch.func.jacrev.html
pytorch docs
expectedX = torch.diag(torch.ones_like(x)) expectedY = torch.diag(2 * y) assert torch.allclose(jacobian[0], expectedX) assert torch.allclose(jacobian[1], expectedY) Note: Using PyTorch "torch.no_grad" together with "jacrev". Case 1: Using "torch.no_grad" inside a function: >>> def f(x): >>> with torch.no_grad(): >>> c = x ** 2 >>> return x - c In this case, "jacrev(f)(x)" will respect the inner "torch.no_grad".Case 2: Using "jacrev" inside "torch.no_grad" context manager: >>> with torch.no_grad(): >>> jacrev(f)(x) In this case, "jacrev" will respect the inner "torch.no_grad", but not the outer one. This is because "jacrev" is a "function transform": its result should not depend on the result of a context manager outside of "f".
https://pytorch.org/docs/stable/generated/torch.func.jacrev.html
pytorch docs
Conv2d class torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros', device=None, dtype=None) Applies a 2D convolution over an input signal composed of several input planes. In the simplest case, the output value of the layer with input size (N, C_{\text{in}}, H, W) and output (N, C_{\text{out}}, H_{\text{out}}, W_{\text{out}}) can be precisely described as: \text{out}(N_i, C_{\text{out}_j}) = \text{bias}(C_{\text{out}_j}) + \sum_{k = 0}^{C_{\text{in}} - 1} \text{weight}(C_{\text{out}_j}, k) \star \text{input}(N_i, k) where \star is the valid 2D cross-correlation operator, N is a batch size, C denotes a number of channels, H is a height of input planes in pixels, and W is width in pixels. This module supports TensorFloat32. On certain ROCm devices, when using float16 inputs this module will use different precision for backward.
https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html
pytorch docs
use different precision for backward. "stride" controls the stride for the cross-correlation, a single number or a tuple. "padding" controls the amount of padding applied to the input. It can be either a string {'valid', 'same'} or an int / a tuple of ints giving the amount of implicit padding applied on both sides. "dilation" controls the spacing between the kernel points; also known as the à trous algorithm. It is harder to describe, but this link has a nice visualization of what "dilation" does. "groups" controls the connections between inputs and outputs. "in_channels" and "out_channels" must both be divisible by "groups". For example, * At groups=1, all inputs are convolved to all outputs. * At groups=2, the operation becomes equivalent to having two conv layers side by side, each seeing half the input channels and producing half the output channels, and both subsequently concatenated.
https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html
pytorch docs
subsequently concatenated. * At groups= "in_channels", each input channel is convolved with its own set of filters (of size \frac{\text{out\_channels}}{\text{in\_channels}}). The parameters "kernel_size", "stride", "padding", "dilation" can either be: * a single "int" -- in which case the same value is used for the height and width dimension * a "tuple" of two ints -- in which case, the first *int* is used for the height dimension, and the second *int* for the width dimension Note: When *groups == in_channels* and *out_channels == K * in_channels*, where *K* is a positive integer, this operation is also known as a "depthwise convolution".In other words, for an input of size (N, C_{in}, L_{in}), a depthwise convolution with a depthwise multiplier *K* can be performed with the arguments (C_\text{in}=C_\text{in}, C_\text{out}=C_\text{in} \times \text{K}, ..., \text{groups}=C_\text{in}).
https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html
pytorch docs
\text{K}, ..., \text{groups}=C_\text{in}). Note: In some circumstances when given tensors on a CUDA device and using CuDNN, this operator may select a nondeterministic algorithm to increase performance. If this is undesirable, you can try to make the operation deterministic (potentially at a performance cost) by setting "torch.backends.cudnn.deterministic = True". See Reproducibility for more information. Note: "padding='valid'" is the same as no padding. "padding='same'" pads the input so the output has the shape as the input. However, this mode doesn't support any stride values other than 1. Note: This module supports complex data types i.e. "complex32, complex64, complex128". Parameters: * in_channels (int) -- Number of channels in the input image * **out_channels** (*int*) -- Number of channels produced by the convolution * **kernel_size** (*int** or **tuple*) -- Size of the convolving
https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html
pytorch docs
kernel * **stride** (*int** or **tuple**, **optional*) -- Stride of the convolution. Default: 1 * **padding** (*int**, **tuple** or **str**, **optional*) -- Padding added to all four sides of the input. Default: 0 * **padding_mode** (*str**, **optional*) -- "'zeros'", "'reflect'", "'replicate'" or "'circular'". Default: "'zeros'" * **dilation** (*int** or **tuple**, **optional*) -- Spacing between kernel elements. Default: 1 * **groups** (*int**, **optional*) -- Number of blocked connections from input channels to output channels. Default: 1 * **bias** (*bool**, **optional*) -- If "True", adds a learnable bias to the output. Default: "True" Shape: * Input: (N, C_{in}, H_{in}, W_{in}) or (C_{in}, H_{in}, W_{in}) * Output: (N, C_{out}, H_{out}, W_{out}) or (C_{out}, H_{out}, W_{out}), where H_{out} = \left\lfloor\frac{H_{in} + 2 \times
https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html
pytorch docs
\text{padding}[0] - \text{dilation}[0] \times (\text{kernel_size}[0] - 1) - 1}{\text{stride}[0]} + 1\right\rfloor W_{out} = \left\lfloor\frac{W_{in} + 2 \times \text{padding}[1] - \text{dilation}[1] \times (\text{kernel\_size}[1] - 1) - 1}{\text{stride}[1]} + 1\right\rfloor Variables: * weight (Tensor) -- the learnable weights of the module of shape (\text{out_channels}, \frac{\text{in_channels}}{\text{groups}}, \text{kernel_size[0]}, \text{kernel_size[1]}). The values of these weights are sampled from \mathcal{U}(-\sqrt{k}, \sqrt{k}) where k = \frac{groups}{C_\text{in} * \prod_{i=0}^{1}\text{kernel_size}[i]} * **bias** (*Tensor*) -- the learnable bias of the module of shape (out_channels). If "bias" is "True", then the values of these weights are sampled from \mathcal{U}(-\sqrt{k},
https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html
pytorch docs
\sqrt{k}) where k = \frac{groups}{C_\text{in} * \prod_{i=0}^{1}\text{kernel_size}[i]} -[ Examples ]- With square kernels and equal stride m = nn.Conv2d(16, 33, 3, stride=2) non-square kernels and unequal stride and with padding m = nn.Conv2d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2)) non-square kernels and unequal stride and with padding and dilation m = nn.Conv2d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2), dilation=(3, 1)) input = torch.randn(20, 16, 50, 100) output = m(input)
https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html
pytorch docs
torch.Tensor.detach_ Tensor.detach_() Detaches the Tensor from the graph that created it, making it a leaf. Views cannot be detached in-place. This method also affects forward mode AD gradients and the result will never have forward mode AD gradients.
https://pytorch.org/docs/stable/generated/torch.Tensor.detach_.html
pytorch docs
torch.mode torch.mode(input, dim=- 1, keepdim=False, *, out=None) Returns a namedtuple "(values, indices)" where "values" is the mode value of each row of the "input" tensor in the given dimension "dim", i.e. a value which appears most often in that row, and "indices" is the index location of each mode value found. By default, "dim" is the last dimension of the "input" tensor. If "keepdim" is "True", the output tensors are of the same size as "input" except in the dimension "dim" where they are of size 1. Otherwise, "dim" is squeezed (see "torch.squeeze()"), resulting in the output tensors having 1 fewer dimension than "input". Note: This function is not defined for "torch.cuda.Tensor" yet. Parameters: * input (Tensor) -- the input tensor. * **dim** (*int*) -- the dimension to reduce. * **keepdim** (*bool*) -- whether the output tensor has "dim" retained or not. Keyword Arguments:
https://pytorch.org/docs/stable/generated/torch.mode.html
pytorch docs
retained or not. Keyword Arguments: out (tuple, optional) -- the result tuple of two output tensors (values, indices) Example: >>> a = torch.randint(10, (5,)) >>> a tensor([6, 5, 1, 0, 2]) >>> b = a + (torch.randn(50, 1) * 5).long() >>> torch.mode(b, 0) torch.return_types.mode(values=tensor([6, 5, 1, 0, 2]), indices=tensor([2, 2, 2, 2, 2]))
https://pytorch.org/docs/stable/generated/torch.mode.html
pytorch docs
torch.signal.windows.cosine torch.signal.windows.cosine(M, *, sym=True, dtype=None, layout=torch.strided, device=None, requires_grad=False) Computes a window with a simple cosine waveform. Also known as the sine window. The cosine window is defined as follows: w_n = \cos{\left(\frac{\pi n}{M} - \frac{\pi}{2}\right)} = \sin{\left(\frac{\pi n}{M}\right)} The window is normalized to 1 (maximum value is 1). However, the 1 doesn't appear if "M" is even and "sym" is True. Parameters: M (int) -- the length of the window. In other words, the number of points of the returned window. Keyword Arguments: * sym (bool, optional) -- If False, returns a periodic window suitable for use in spectral analysis. If True, returns a symmetric window suitable for use in filter design. Default: True. * **dtype** ("torch.dtype", optional) -- the desired data type
https://pytorch.org/docs/stable/generated/torch.signal.windows.cosine.html
pytorch docs
of returned tensor. Default: if "None", uses a global default (see "torch.set_default_tensor_type()"). * **layout** ("torch.layout", optional) -- the desired layout of returned Tensor. Default: "torch.strided". * **device** ("torch.device", optional) -- the desired device of returned tensor. Default: if "None", uses the current device for the default tensor type (see "torch.set_default_tensor_type()"). "device" will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. * **requires_grad** (*bool**, **optional*) -- If autograd should record operations on the returned tensor. Default: "False". Return type: Tensor Examples: >>> # Generates a symmetric cosine window. >>> torch.signal.windows.cosine(10) tensor([0.1564, 0.4540, 0.7071, 0.8910, 0.9877, 0.9877, 0.8910, 0.7071, 0.4540, 0.1564]) >>> # Generates a periodic cosine window.
https://pytorch.org/docs/stable/generated/torch.signal.windows.cosine.html
pytorch docs
Generates a periodic cosine window. >>> torch.signal.windows.cosine(10, sym=False) tensor([0.1423, 0.4154, 0.6549, 0.8413, 0.9595, 1.0000, 0.9595, 0.8413, 0.6549, 0.4154])
https://pytorch.org/docs/stable/generated/torch.signal.windows.cosine.html
pytorch docs
torch.pow torch.pow(input, exponent, *, out=None) -> Tensor Takes the power of each element in "input" with "exponent" and returns a tensor with the result. "exponent" can be either a single "float" number or a Tensor with the same number of elements as "input". When "exponent" is a scalar value, the operation applied is: \text{out}_i = x_i ^ \text{exponent} When "exponent" is a tensor, the operation applied is: \text{out}_i = x_i ^ {\text{exponent}_i} When "exponent" is a tensor, the shapes of "input" and "exponent" must be broadcastable. Parameters: * input (Tensor) -- the input tensor. * **exponent** (*float** or **tensor*) -- the exponent value Keyword Arguments: out (Tensor, optional) -- the output tensor. Example: >>> a = torch.randn(4) >>> a tensor([ 0.4331, 1.2475, 0.6834, -0.2791]) >>> torch.pow(a, 2) tensor([ 0.1875, 1.5561, 0.4670, 0.0779])
https://pytorch.org/docs/stable/generated/torch.pow.html
pytorch docs
tensor([ 0.1875, 1.5561, 0.4670, 0.0779]) >>> exp = torch.arange(1., 5.) >>> a = torch.arange(1., 5.) >>> a tensor([ 1., 2., 3., 4.]) >>> exp tensor([ 1., 2., 3., 4.]) >>> torch.pow(a, exp) tensor([ 1., 4., 27., 256.]) torch.pow(self, exponent, *, out=None) -> Tensor "self" is a scalar "float" value, and "exponent" is a tensor. The returned tensor "out" is of the same shape as "exponent" The operation applied is: \text{out}_i = \text{self} ^ {\text{exponent}_i} Parameters: * self (float) -- the scalar base value for the power operation * **exponent** (*Tensor*) -- the exponent tensor Keyword Arguments: out (Tensor, optional) -- the output tensor. Example: >>> exp = torch.arange(1., 5.) >>> base = 2 >>> torch.pow(base, exp) tensor([ 2., 4., 8., 16.])
https://pytorch.org/docs/stable/generated/torch.pow.html
pytorch docs
torch.logsumexp torch.logsumexp(input, dim, keepdim=False, *, out=None) Returns the log of summed exponentials of each row of the "input" tensor in the given dimension "dim". The computation is numerically stabilized. For summation index j given by dim and other indices i, the result is \text{logsumexp}(x)_{i} = \log \sum_j \exp(x_{ij}) If "keepdim" is "True", the output tensor is of the same size as "input" except in the dimension(s) "dim" where it is of size 1. Otherwise, "dim" is squeezed (see "torch.squeeze()"), resulting in the output tensor having 1 (or "len(dim)") fewer dimension(s). Parameters: * input (Tensor) -- the input tensor. * **dim** (*int** or **tuple of ints**, **optional*) -- the dimension or dimensions to reduce. If "None", all dimensions are reduced. * **keepdim** (*bool*) -- whether the output tensor has "dim" retained or not. Keyword Arguments:
https://pytorch.org/docs/stable/generated/torch.logsumexp.html
pytorch docs
retained or not. Keyword Arguments: out (Tensor, optional) -- the output tensor. Example: >>> a = torch.randn(3, 3) >>> torch.logsumexp(a, 1) tensor([1.4907, 1.0593, 1.5696]) >>> torch.dist(torch.logsumexp(a, 1), torch.log(torch.sum(torch.exp(a), 1))) tensor(1.6859e-07)
https://pytorch.org/docs/stable/generated/torch.logsumexp.html
pytorch docs
torch.Tensor.clamp Tensor.clamp(min=None, max=None) -> Tensor See "torch.clamp()"
https://pytorch.org/docs/stable/generated/torch.Tensor.clamp.html
pytorch docs
torch.Tensor.cdouble Tensor.cdouble(memory_format=torch.preserve_format) -> Tensor "self.cdouble()" is equivalent to "self.to(torch.complex128)". See "to()". Parameters: memory_format ("torch.memory_format", optional) -- the desired memory format of returned Tensor. Default: "torch.preserve_format".
https://pytorch.org/docs/stable/generated/torch.Tensor.cdouble.html
pytorch docs
torch.Tensor.inverse Tensor.inverse() -> Tensor See "torch.inverse()"
https://pytorch.org/docs/stable/generated/torch.Tensor.inverse.html
pytorch docs
torch.nn.functional.triplet_margin_loss torch.nn.functional.triplet_margin_loss(anchor, positive, negative, margin=1.0, p=2, eps=1e-06, swap=False, size_average=None, reduce=None, reduction='mean') See "TripletMarginLoss" for details Return type: Tensor
https://pytorch.org/docs/stable/generated/torch.nn.functional.triplet_margin_loss.html
pytorch docs
torch.Tensor.grad Tensor.grad This attribute is "None" by default and becomes a Tensor the first time a call to "backward()" computes gradients for "self". The attribute will then contain the gradients computed and future calls to "backward()" will accumulate (add) gradients into it.
https://pytorch.org/docs/stable/generated/torch.Tensor.grad.html
pytorch docs
torch.Tensor.sigmoid_ Tensor.sigmoid_() -> Tensor In-place version of "sigmoid()"
https://pytorch.org/docs/stable/generated/torch.Tensor.sigmoid_.html
pytorch docs
torch.Tensor.bincount Tensor.bincount(weights=None, minlength=0) -> Tensor See "torch.bincount()"
https://pytorch.org/docs/stable/generated/torch.Tensor.bincount.html
pytorch docs
torch.cuda.memory_cached torch.cuda.memory_cached(device=None) Deprecated; see "memory_reserved()". Return type: int
https://pytorch.org/docs/stable/generated/torch.cuda.memory_cached.html
pytorch docs
torch.Tensor.short Tensor.short(memory_format=torch.preserve_format) -> Tensor "self.short()" is equivalent to "self.to(torch.int16)". See "to()". Parameters: memory_format ("torch.memory_format", optional) -- the desired memory format of returned Tensor. Default: "torch.preserve_format".
https://pytorch.org/docs/stable/generated/torch.Tensor.short.html
pytorch docs
torch.cuda.set_rng_state torch.cuda.set_rng_state(new_state, device='cuda') Sets the random number generator state of the specified GPU. Parameters: * new_state (torch.ByteTensor) -- The desired state * **device** (*torch.device** or **int**, **optional*) -- The device to set the RNG state. Default: "'cuda'" (i.e., "torch.device('cuda')", the current CUDA device).
https://pytorch.org/docs/stable/generated/torch.cuda.set_rng_state.html
pytorch docs
torch.unbind torch.unbind(input, dim=0) -> seq Removes a tensor dimension. Returns a tuple of all slices along a given dimension, already without it. Parameters: * input (Tensor) -- the tensor to unbind * **dim** (*int*) -- dimension to remove Example: >>> torch.unbind(torch.tensor([[1, 2, 3], >>> [4, 5, 6], >>> [7, 8, 9]])) (tensor([1, 2, 3]), tensor([4, 5, 6]), tensor([7, 8, 9]))
https://pytorch.org/docs/stable/generated/torch.unbind.html
pytorch docs
torch.Tensor.logical_xor Tensor.logical_xor() -> Tensor See "torch.logical_xor()"
https://pytorch.org/docs/stable/generated/torch.Tensor.logical_xor.html
pytorch docs
LnStructured class torch.nn.utils.prune.LnStructured(amount, n, dim=- 1) Prune entire (currently unpruned) channels in a tensor based on their L"n"-norm. Parameters: * amount (int or float) -- quantity of channels to prune. If "float", should be between 0.0 and 1.0 and represent the fraction of parameters to prune. If "int", it represents the absolute number of parameters to prune. * **n** (*int**, **float**, **inf**, **-inf**, **'fro'**, **'nuc'*) -- See documentation of valid entries for argument "p" in "torch.norm()". * **dim** (*int**, **optional*) -- index of the dim along which we define channels to prune. Default: -1. classmethod apply(module, name, amount, n, dim, importance_scores=None) Adds the forward pre-hook that enables pruning on the fly and the reparametrization of a tensor in terms of the original tensor and the pruning mask. Parameters:
https://pytorch.org/docs/stable/generated/torch.nn.utils.prune.LnStructured.html
pytorch docs
Parameters: * module (nn.Module) -- module containing the tensor to prune * **name** (*str*) -- parameter name within "module" on which pruning will act. * **amount** (*int** or **float*) -- quantity of parameters to prune. If "float", should be between 0.0 and 1.0 and represent the fraction of parameters to prune. If "int", it represents the absolute number of parameters to prune. * **n** (*int**, **float**, **inf**, **-inf**, **'fro'**, **'nuc'*) -- See documentation of valid entries for argument "p" in "torch.norm()". * **dim** (*int*) -- index of the dim along which we define channels to prune. * **importance_scores** (*torch.Tensor*) -- tensor of importance scores (of same shape as module parameter) used to compute mask for pruning. The values in this tensor indicate the importance of the corresponding elements in
https://pytorch.org/docs/stable/generated/torch.nn.utils.prune.LnStructured.html
pytorch docs
the parameter being pruned. If unspecified or None, the module parameter will be used in its place. apply_mask(module) Simply handles the multiplication between the parameter being pruned and the generated mask. Fetches the mask and the original tensor from the module and returns the pruned version of the tensor. Parameters: **module** (*nn.Module*) -- module containing the tensor to prune Returns: pruned version of the input tensor Return type: pruned_tensor (torch.Tensor) compute_mask(t, default_mask) Computes and returns a mask for the input tensor "t". Starting from a base "default_mask" (which should be a mask of ones if the tensor has not been pruned yet), generate a mask to apply on top of the "default_mask" by zeroing out the channels along the specified dim with the lowest L"n"-norm. Parameters:
https://pytorch.org/docs/stable/generated/torch.nn.utils.prune.LnStructured.html
pytorch docs
Parameters: * t (torch.Tensor) -- tensor representing the parameter to prune * **default_mask** (*torch.Tensor*) -- Base mask from previous pruning iterations, that need to be respected after the new mask is applied. Same dims as "t". Returns: mask to apply to "t", of same dims as "t" Return type: mask (torch.Tensor) Raises: **IndexError** -- if "self.dim >= len(t.shape)" prune(t, default_mask=None, importance_scores=None) Computes and returns a pruned version of input tensor "t" according to the pruning rule specified in "compute_mask()". Parameters: * **t** (*torch.Tensor*) -- tensor to prune (of same dimensions as "default_mask"). * **importance_scores** (*torch.Tensor*) -- tensor of importance scores (of same shape as "t") used to compute mask for pruning "t". The values in this tensor indicate
https://pytorch.org/docs/stable/generated/torch.nn.utils.prune.LnStructured.html
pytorch docs
the importance of the corresponding elements in the "t" that is being pruned. If unspecified or None, the tensor "t" will be used in its place. * **default_mask** (*torch.Tensor**, **optional*) -- mask from previous pruning iteration, if any. To be considered when determining what portion of the tensor that pruning should act on. If None, default to a mask of ones. Returns: pruned version of tensor "t". remove(module) Removes the pruning reparameterization from a module. The pruned parameter named "name" remains permanently pruned, and the parameter named "name+'_orig'" is removed from the parameter list. Similarly, the buffer named "name+'_mask'" is removed from the buffers. Note: Pruning itself is NOT undone or reversed!
https://pytorch.org/docs/stable/generated/torch.nn.utils.prune.LnStructured.html
pytorch docs
torch.Tensor.nanmean Tensor.nanmean(dim=None, keepdim=False, *, dtype=None) -> Tensor See "torch.nanmean()"
https://pytorch.org/docs/stable/generated/torch.Tensor.nanmean.html
pytorch docs
torch.Tensor.half Tensor.half(memory_format=torch.preserve_format) -> Tensor "self.half()" is equivalent to "self.to(torch.float16)". See "to()". Parameters: memory_format ("torch.memory_format", optional) -- the desired memory format of returned Tensor. Default: "torch.preserve_format".
https://pytorch.org/docs/stable/generated/torch.Tensor.half.html
pytorch docs
torch.Tensor.nextafter Tensor.nextafter(other) -> Tensor See "torch.nextafter()"
https://pytorch.org/docs/stable/generated/torch.Tensor.nextafter.html
pytorch docs
torch.Tensor.acosh_ Tensor.acosh_() -> Tensor In-place version of "acosh()"
https://pytorch.org/docs/stable/generated/torch.Tensor.acosh_.html
pytorch docs