text
stringlengths
0
1.73k
source
stringlengths
35
119
category
stringclasses
2 values
torch._foreach_floor torch._foreach_floor(self: List[Tensor]) -> List[Tensor] Apply "torch.floor()" to each Tensor of the input list.
https://pytorch.org/docs/stable/generated/torch._foreach_floor.html
pytorch docs
torch.matrix_exp torch.matrix_exp(A) -> Tensor Alias for "torch.linalg.matrix_exp()".
https://pytorch.org/docs/stable/generated/torch.matrix_exp.html
pytorch docs
torch.nanquantile torch.nanquantile(input, q, dim=None, keepdim=False, *, interpolation='linear', out=None) -> Tensor This is a variant of "torch.quantile()" that "ignores" "NaN" values, computing the quantiles "q" as if "NaN" values in "input" did not exist. If all values in a reduced row are "NaN" then the quantiles for that reduction will be "NaN". See the documentation for "torch.quantile()". Parameters: * input (Tensor) -- the input tensor. * **q** (*float** or **Tensor*) -- a scalar or 1D tensor of quantile values in the range [0, 1] * **dim** (*int*) -- the dimension to reduce. * **keepdim** (*bool*) -- whether the output tensor has "dim" retained or not. Keyword Arguments: * interpolation (str) -- interpolation method to use when the desired quantile lies between two data points. Can be "linear", "lower", "higher", "midpoint" and "nearest". Default is "linear".
https://pytorch.org/docs/stable/generated/torch.nanquantile.html
pytorch docs
is "linear". * **out** (*Tensor**, **optional*) -- the output tensor. Example: >>> t = torch.tensor([float('nan'), 1, 2]) >>> t.quantile(0.5) tensor(nan) >>> t.nanquantile(0.5) tensor(1.5000) >>> t = torch.tensor([[float('nan'), float('nan')], [1, 2]]) >>> t tensor([[nan, nan], [1., 2.]]) >>> t.nanquantile(0.5, dim=0) tensor([1., 2.]) >>> t.nanquantile(0.5, dim=1) tensor([ nan, 1.5000])
https://pytorch.org/docs/stable/generated/torch.nanquantile.html
pytorch docs
torch.aminmax torch.aminmax(input, *, dim=None, keepdim=False, out=None) -> (Tensor min, Tensor max) Computes the minimum and maximum values of the "input" tensor. Parameters: input (Tensor) -- The input tensor Keyword Arguments: * dim (Optional[int]) -- The dimension along which to compute the values. If None, computes the values over the entire "input" tensor. Default is None. * **keepdim** (*bool*) -- If *True*, the reduced dimensions will be kept in the output tensor as dimensions with size 1 for broadcasting, otherwise they will be removed, as if calling ("torch.squeeze()"). Default is *False*. * **out** (*Optional**[**Tuple**[**Tensor**, **Tensor**]**]*) -- Optional tensors on which to write the result. Must have the same shape and dtype as the expected output. Default is *None*. Returns: A named tuple (min, max) containing the minimum and maximum
https://pytorch.org/docs/stable/generated/torch.aminmax.html
pytorch docs
values. Raises: RuntimeError -- If any of the dimensions to compute the values over has size 0. Note: NaN values are propagated to the output if at least one value is NaN. See also: "torch.amin()" computes just the minimum value "torch.amax()" computes just the maximum value Example: >>> torch.aminmax(torch.tensor([1, -3, 5])) torch.return_types.aminmax( min=tensor(-3), max=tensor(5)) >>> # aminmax propagates NaNs >>> torch.aminmax(torch.tensor([1, -3, 5, torch.nan])) torch.return_types.aminmax( min=tensor(nan), max=tensor(nan)) >>> t = torch.arange(10).view(2, 5) >>> t tensor([[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]]) >>> t.aminmax(dim=0, keepdim=True) torch.return_types.aminmax( min=tensor([[0, 1, 2, 3, 4]]), max=tensor([[5, 6, 7, 8, 9]]))
https://pytorch.org/docs/stable/generated/torch.aminmax.html
pytorch docs
torch.autograd.functional.jacobian torch.autograd.functional.jacobian(func, inputs, create_graph=False, strict=False, vectorize=False, strategy='reverse-mode') Function that computes the Jacobian of a given function. Parameters: * func (function) -- a Python function that takes Tensor inputs and returns a tuple of Tensors or a Tensor. * **inputs** (*tuple of Tensors** or **Tensor*) -- inputs to the function "func". * **create_graph** (*bool**, **optional*) -- If "True", the Jacobian will be computed in a differentiable manner. Note that when "strict" is "False", the result can not require gradients or be disconnected from the inputs. Defaults to "False". * **strict** (*bool**, **optional*) -- If "True", an error will be raised when we detect that there exists an input such that all the outputs are independent of it. If "False", we return a
https://pytorch.org/docs/stable/generated/torch.autograd.functional.jacobian.html
pytorch docs
Tensor of zeros as the jacobian for said inputs, which is the expected mathematical value. Defaults to "False". * **vectorize** (*bool**, **optional*) -- This feature is experimental. Please consider using "torch.func.jacrev()" or "torch.func.jacfwd()" instead if you are looking for something less experimental and more performant. When computing the jacobian, usually we invoke "autograd.grad" once per row of the jacobian. If this flag is "True", we perform only a single "autograd.grad" call with "batched_grad=True" which uses the vmap prototype feature. Though this should lead to performance improvements in many cases, because this feature is still experimental, there may be performance cliffs. See "torch.autograd.grad()"'s "batched_grad" parameter for more information. * **strategy** (*str**, **optional*) -- Set to ""forward-mode""
https://pytorch.org/docs/stable/generated/torch.autograd.functional.jacobian.html
pytorch docs
or ""reverse-mode"" to determine whether the Jacobian will be computed with forward or reverse mode AD. Currently, ""forward-mode"" requires "vectorized=True". Defaults to ""reverse-mode"". If "func" has more outputs than inputs, ""forward-mode"" tends to be more performant. Otherwise, prefer to use ""reverse-mode"". Returns: if there is a single input and output, this will be a single Tensor containing the Jacobian for the linearized inputs and output. If one of the two is a tuple, then the Jacobian will be a tuple of Tensors. If both of them are tuples, then the Jacobian will be a tuple of tuple of Tensors where "Jacobian[i][j]" will contain the Jacobian of the "i"th output and "j"th input and will have as size the concatenation of the sizes of the corresponding output and the corresponding input and will have same dtype and device as the corresponding input.
https://pytorch.org/docs/stable/generated/torch.autograd.functional.jacobian.html
pytorch docs
If strategy is "forward-mode", the dtype will be that of the output; otherwise, the input. Return type: Jacobian (Tensor or nested tuple of Tensors) -[ Example ]- def exp_reducer(x): ... return x.exp().sum(dim=1) inputs = torch.rand(2, 2) jacobian(exp_reducer, inputs) tensor([[[1.4917, 2.4352], [0.0000, 0.0000]], [[0.0000, 0.0000], [2.4369, 2.3799]]]) jacobian(exp_reducer, inputs, create_graph=True) tensor([[[1.4917, 2.4352], [0.0000, 0.0000]], [[0.0000, 0.0000], [2.4369, 2.3799]]], grad_fn=) def exp_adder(x, y): ... return 2 * x.exp() + 3 * y inputs = (torch.rand(2), torch.rand(2)) jacobian(exp_adder, inputs) (tensor([[2.8052, 0.0000], [0.0000, 3.3963]]), tensor([[3., 0.], [0., 3.]]))
https://pytorch.org/docs/stable/generated/torch.autograd.functional.jacobian.html
pytorch docs
BatchNorm3d class torch.ao.nn.quantized.BatchNorm3d(num_features, eps=1e-05, momentum=0.1, device=None, dtype=None) This is the quantized version of "BatchNorm3d".
https://pytorch.org/docs/stable/generated/torch.ao.nn.quantized.BatchNorm3d.html
pytorch docs
torch.nonzero torch.nonzero(input, *, out=None, as_tuple=False) -> LongTensor or tuple of LongTensors Note: "torch.nonzero(..., as_tuple=False)" (default) returns a 2-D tensor where each row is the index for a nonzero value."torch.nonzero(..., as_tuple=True)" returns a tuple of 1-D index tensors, allowing for advanced indexing, so "x[x.nonzero(as_tuple=True)]" gives all nonzero values of tensor "x". Of the returned tuple, each index tensor contains nonzero indices for a certain dimension.See below for more details on the two behaviors.When "input" is on CUDA, "torch.nonzero()" causes host-device synchronization. When "as_tuple" is "False" (default): Returns a tensor containing the indices of all non-zero elements of "input". Each row in the result contains the indices of a non-zero element in "input". The result is sorted lexicographically, with the last index changing the fastest (C-style).
https://pytorch.org/docs/stable/generated/torch.nonzero.html
pytorch docs
the last index changing the fastest (C-style). If "input" has n dimensions, then the resulting indices tensor "out" is of size (z \times n), where z is the total number of non- zero elements in the "input" tensor. When "as_tuple" is "True": Returns a tuple of 1-D tensors, one for each dimension in "input", each containing the indices (in that dimension) of all non-zero elements of "input" . If "input" has n dimensions, then the resulting tuple contains n tensors of size z, where z is the total number of non-zero elements in the "input" tensor. As a special case, when "input" has zero dimensions and a nonzero scalar value, it is treated as a one-dimensional tensor with one element. Parameters: input (Tensor) -- the input tensor. Keyword Arguments: out (LongTensor, optional) -- the output tensor containing indices Returns: If "as_tuple" is "False", the output tensor containing indices.
https://pytorch.org/docs/stable/generated/torch.nonzero.html
pytorch docs
If "as_tuple" is "True", one 1-D tensor for each dimension, containing the indices of each nonzero element along that dimension. Return type: LongTensor or tuple of LongTensor Example: >>> torch.nonzero(torch.tensor([1, 1, 1, 0, 1])) tensor([[ 0], [ 1], [ 2], [ 4]]) >>> torch.nonzero(torch.tensor([[0.6, 0.0, 0.0, 0.0], ... [0.0, 0.4, 0.0, 0.0], ... [0.0, 0.0, 1.2, 0.0], ... [0.0, 0.0, 0.0,-0.4]])) tensor([[ 0, 0], [ 1, 1], [ 2, 2], [ 3, 3]]) >>> torch.nonzero(torch.tensor([1, 1, 1, 0, 1]), as_tuple=True) (tensor([0, 1, 2, 4]),) >>> torch.nonzero(torch.tensor([[0.6, 0.0, 0.0, 0.0], ... [0.0, 0.4, 0.0, 0.0], ... [0.0, 0.0, 1.2, 0.0],
https://pytorch.org/docs/stable/generated/torch.nonzero.html
pytorch docs
... [0.0, 0.0, 0.0,-0.4]]), as_tuple=True) (tensor([0, 1, 2, 3]), tensor([0, 1, 2, 3])) >>> torch.nonzero(torch.tensor(5), as_tuple=True) (tensor([0]),)
https://pytorch.org/docs/stable/generated/torch.nonzero.html
pytorch docs
torch.set_default_dtype torch.set_default_dtype(d) Sets the default floating point dtype to "d". Supports torch.float32 and torch.float64 as inputs. Other dtypes may be accepted without complaint but are not supported and are unlikely to work as expected. When PyTorch is initialized its default floating point dtype is torch.float32, and the intent of set_default_dtype(torch.float64) is to facilitate NumPy-like type inference. The default floating point dtype is used to: Implicitly determine the default complex dtype. When the default floating point type is float32 the default complex dtype is complex64, and when the default floating point type is float64 the default complex type is complex128. Infer the dtype for tensors constructed using Python floats or complex Python numbers. See examples below. Determine the result of type promotion between bool and integer
https://pytorch.org/docs/stable/generated/torch.set_default_dtype.html
pytorch docs
tensors and Python floats and complex Python numbers. Parameters: d ("torch.dtype") -- the floating point dtype to make the default. Either torch.float32 or torch.float64. -[ Example ]- initial default for floating point is torch.float32 Python floats are interpreted as float32 torch.tensor([1.2, 3]).dtype torch.float32 initial default for floating point is torch.complex64 Complex Python numbers are interpreted as complex64 torch.tensor([1.2, 3j]).dtype torch.complex64 torch.set_default_dtype(torch.float64) Python floats are now interpreted as float64 torch.tensor([1.2, 3]).dtype # a new floating point tensor torch.float64 Complex Python numbers are now interpreted as complex128 torch.tensor([1.2, 3j]).dtype # a new complex tensor torch.complex128
https://pytorch.org/docs/stable/generated/torch.set_default_dtype.html
pytorch docs
torch.arctan2 torch.arctan2(input, other, *, out=None) -> Tensor Alias for "torch.atan2()".
https://pytorch.org/docs/stable/generated/torch.arctan2.html
pytorch docs
torch.Tensor.trunc_ Tensor.trunc_() -> Tensor In-place version of "trunc()"
https://pytorch.org/docs/stable/generated/torch.Tensor.trunc_.html
pytorch docs
RandomStructured class torch.nn.utils.prune.RandomStructured(amount, dim=- 1) Prune entire (currently unpruned) channels in a tensor at random. Parameters: * amount (int or float) -- quantity of parameters to prune. If "float", should be between 0.0 and 1.0 and represent the fraction of parameters to prune. If "int", it represents the absolute number of parameters to prune. * **dim** (*int**, **optional*) -- index of the dim along which we define channels to prune. Default: -1. classmethod apply(module, name, amount, dim=- 1) Adds the forward pre-hook that enables pruning on the fly and the reparametrization of a tensor in terms of the original tensor and the pruning mask. Parameters: * **module** (*nn.Module*) -- module containing the tensor to prune * **name** (*str*) -- parameter name within "module" on which pruning will act.
https://pytorch.org/docs/stable/generated/torch.nn.utils.prune.RandomStructured.html
pytorch docs
pruning will act. * **amount** (*int** or **float*) -- quantity of parameters to prune. If "float", should be between 0.0 and 1.0 and represent the fraction of parameters to prune. If "int", it represents the absolute number of parameters to prune. * **dim** (*int**, **optional*) -- index of the dim along which we define channels to prune. Default: -1. apply_mask(module) Simply handles the multiplication between the parameter being pruned and the generated mask. Fetches the mask and the original tensor from the module and returns the pruned version of the tensor. Parameters: **module** (*nn.Module*) -- module containing the tensor to prune Returns: pruned version of the input tensor Return type: pruned_tensor (torch.Tensor) compute_mask(t, default_mask) Computes and returns a mask for the input tensor "t". Starting
https://pytorch.org/docs/stable/generated/torch.nn.utils.prune.RandomStructured.html
pytorch docs
from a base "default_mask" (which should be a mask of ones if the tensor has not been pruned yet), generate a random mask to apply on top of the "default_mask" by randomly zeroing out channels along the specified dim of the tensor. Parameters: * **t** (*torch.Tensor*) -- tensor representing the parameter to prune * **default_mask** (*torch.Tensor*) -- Base mask from previous pruning iterations, that need to be respected after the new mask is applied. Same dims as "t". Returns: mask to apply to "t", of same dims as "t" Return type: mask (torch.Tensor) Raises: **IndexError** -- if "self.dim >= len(t.shape)" prune(t, default_mask=None, importance_scores=None) Computes and returns a pruned version of input tensor "t" according to the pruning rule specified in "compute_mask()". Parameters: * **t** (*torch.Tensor*) -- tensor to prune (of same
https://pytorch.org/docs/stable/generated/torch.nn.utils.prune.RandomStructured.html
pytorch docs
dimensions as "default_mask"). * **importance_scores** (*torch.Tensor*) -- tensor of importance scores (of same shape as "t") used to compute mask for pruning "t". The values in this tensor indicate the importance of the corresponding elements in the "t" that is being pruned. If unspecified or None, the tensor "t" will be used in its place. * **default_mask** (*torch.Tensor**, **optional*) -- mask from previous pruning iteration, if any. To be considered when determining what portion of the tensor that pruning should act on. If None, default to a mask of ones. Returns: pruned version of tensor "t". remove(module) Removes the pruning reparameterization from a module. The pruned parameter named "name" remains permanently pruned, and the parameter named "name+'_orig'" is removed from the parameter
https://pytorch.org/docs/stable/generated/torch.nn.utils.prune.RandomStructured.html
pytorch docs
list. Similarly, the buffer named "name+'_mask'" is removed from the buffers. Note: Pruning itself is NOT undone or reversed!
https://pytorch.org/docs/stable/generated/torch.nn.utils.prune.RandomStructured.html
pytorch docs
torch.cuda.get_rng_state_all torch.cuda.get_rng_state_all() Returns a list of ByteTensor representing the random number states of all devices. Return type: List[Tensor]
https://pytorch.org/docs/stable/generated/torch.cuda.get_rng_state_all.html
pytorch docs
torch.fix torch.fix(input, *, out=None) -> Tensor Alias for "torch.trunc()"
https://pytorch.org/docs/stable/generated/torch.fix.html
pytorch docs
torch.cuda.seed_all torch.cuda.seed_all() Sets the seed for generating random numbers to a random number on all GPUs. It's safe to call this function if CUDA is not available; in that case, it is silently ignored.
https://pytorch.org/docs/stable/generated/torch.cuda.seed_all.html
pytorch docs
set_grad_enabled class torch.set_grad_enabled(mode) Context-manager that sets gradient calculation on or off. "set_grad_enabled" will enable or disable grads based on its argument "mode". It can be used as a context-manager or as a function. This context manager is thread local; it will not affect computation in other threads. Parameters: mode (bool) -- Flag whether to enable grad ("True"), or disable ("False"). This can be used to conditionally enable gradients. Note: set_grad_enabled is one of several mechanisms that can enable or disable gradients locally see Locally disabling gradient computation for more information on how they compare. Note: This API does not apply to forward-mode AD. Example:: >>> x = torch.tensor([1.], requires_grad=True) >>> is_train = False >>> with torch.set_grad_enabled(is_train): ... y = x * 2 >>> y.requires_grad False
https://pytorch.org/docs/stable/generated/torch.set_grad_enabled.html
pytorch docs
y.requires_grad False >>> _ = torch.set_grad_enabled(True) >>> y = x * 2 >>> y.requires_grad True >>> _ = torch.set_grad_enabled(False) >>> y = x * 2 >>> y.requires_grad False
https://pytorch.org/docs/stable/generated/torch.set_grad_enabled.html
pytorch docs
torch.nn.functional.fractional_max_pool2d torch.nn.functional.fractional_max_pool2d(args, *kwargs) Applies 2D fractional max pooling over an input signal composed of several input planes. Fractional MaxPooling is described in detail in the paper Fractional MaxPooling by Ben Graham The max-pooling operation is applied in kH \times kW regions by a stochastic step size determined by the target output size. The number of output features is equal to the number of input planes. Parameters: * kernel_size -- the size of the window to take a max over. Can be a single number k (for a square kernel of k \times k) or a tuple (kH, kW) * **output_size** -- the target output size of the image of the form oH \times oW. Can be a tuple *(oH, oW)* or a single number oH for a square image oH \times oH * **output_ratio** -- If one wants to have an output size as a
https://pytorch.org/docs/stable/generated/torch.nn.functional.fractional_max_pool2d.html
pytorch docs
ratio of the input size, this option can be given. This has to be a number or tuple in the range (0, 1) * **return_indices** -- if "True", will return the indices along with the outputs. Useful to pass to "max_unpool2d()". Examples:: >>> input = torch.randn(20, 16, 50, 32) >>> # pool of square window of size=3, and target output size 13x12 >>> F.fractional_max_pool2d(input, 3, output_size=(13, 12)) >>> # pool of square window and target output size being half of input image size >>> F.fractional_max_pool2d(input, 3, output_ratio=(0.5, 0.5))
https://pytorch.org/docs/stable/generated/torch.nn.functional.fractional_max_pool2d.html
pytorch docs
torch.nn.functional.batch_norm torch.nn.functional.batch_norm(input, running_mean, running_var, weight=None, bias=None, training=False, momentum=0.1, eps=1e-05) Applies Batch Normalization for each channel across a batch of data. See "BatchNorm1d", "BatchNorm2d", "BatchNorm3d" for details. Return type: Tensor
https://pytorch.org/docs/stable/generated/torch.nn.functional.batch_norm.html
pytorch docs
torch.jit.set_fusion_strategy torch.jit.set_fusion_strategy(strategy) Sets the type and number of specializations that can occur during fusion. Usage: provide a list of pairs (type, depth) where type is one of "STATIC" or "DYNAMIC" and depth is an integer. Behavior - static vs dynamic: In STATIC fusion, fused ops are compiled to have fixed input shapes. The shape is determined based on some initial profiling runs. In DYNAMIC fusion, fused ops are compiled to have variable input shapes, so that multiple shapes are possible. In both cases, we also recompile on new striding behavior, device, or dtype. Behavior - fallback functions & depth: When an input doesn't match the format required by the specialized compiled op, it will run a fallback function. Fallback functions are recursively be compiled and specialized based on the observed tensor shapes. Since compilation can be
https://pytorch.org/docs/stable/generated/torch.jit.set_fusion_strategy.html
pytorch docs
slow, the "depth" parameter is provided to limit the number of specializations that can be compiled, before giving up on recompiling and falling back to a completely un-fused, un- specialized implementation. The list of (type, depth) pairs controls the type of specializations and the number of specializations. For example: [("STATIC", 2), ("DYNAMIC", 2)] indicates that the first two specializations will use static fusions, the following two specializations will use dynamic fusion, and any inputs that satisfy none of the 4 options will run an unfused implementation. NB: in the future, if more as more fusion backends are added there may be more granular apis for specific fusers.
https://pytorch.org/docs/stable/generated/torch.jit.set_fusion_strategy.html
pytorch docs
torch.Tensor.lgamma_ Tensor.lgamma_() -> Tensor In-place version of "lgamma()"
https://pytorch.org/docs/stable/generated/torch.Tensor.lgamma_.html
pytorch docs
torch.linalg.matmul torch.linalg.matmul(input, other, *, out=None) -> Tensor Alias for "torch.matmul()"
https://pytorch.org/docs/stable/generated/torch.linalg.matmul.html
pytorch docs
AdaptiveMaxPool2d class torch.nn.AdaptiveMaxPool2d(output_size, return_indices=False) Applies a 2D adaptive max pooling over an input signal composed of several input planes. The output is of size H_{out} \times W_{out}, for any input size. The number of output features is equal to the number of input planes. Parameters: * output_size (Union[int, None, Tuple[Optional[int], Optional[int]]]) -- the target output size of the image of the form H_{out} \times W_{out}. Can be a tuple (H_{out}, W_{out}) or a single H_{out} for a square image H_{out} \times H_{out}. H_{out} and W_{out} can be either a "int", or "None" which means the size will be the same as that of the input. * **return_indices** (*bool*) -- if "True", will return the indices along with the outputs. Useful to pass to nn.MaxUnpool2d. Default: "False" Shape:
https://pytorch.org/docs/stable/generated/torch.nn.AdaptiveMaxPool2d.html
pytorch docs
Shape: * Input: (N, C, H_{in}, W_{in}) or (C, H_{in}, W_{in}). * Output: (N, C, H_{out}, W_{out}) or (C, H_{out}, W_{out}), where (H_{out}, W_{out})=\text{output\_size}. -[ Examples ]- target output size of 5x7 m = nn.AdaptiveMaxPool2d((5, 7)) input = torch.randn(1, 64, 8, 9) output = m(input) target output size of 7x7 (square) m = nn.AdaptiveMaxPool2d(7) input = torch.randn(1, 64, 10, 9) output = m(input) target output size of 10x7 m = nn.AdaptiveMaxPool2d((None, 7)) input = torch.randn(1, 64, 10, 9) output = m(input)
https://pytorch.org/docs/stable/generated/torch.nn.AdaptiveMaxPool2d.html
pytorch docs
torch.Tensor.slice_scatter Tensor.slice_scatter(src, dim=0, start=None, end=None, step=1) -> Tensor See "torch.slice_scatter()"
https://pytorch.org/docs/stable/generated/torch.Tensor.slice_scatter.html
pytorch docs
torch.Tensor.cov Tensor.cov(*, correction=1, fweights=None, aweights=None) -> Tensor See "torch.cov()"
https://pytorch.org/docs/stable/generated/torch.Tensor.cov.html
pytorch docs
UpsamplingBilinear2d class torch.nn.UpsamplingBilinear2d(size=None, scale_factor=None) Applies a 2D bilinear upsampling to an input signal composed of several input channels. To specify the scale, it takes either the "size" or the "scale_factor" as it's constructor argument. When "size" is given, it is the output size of the image (h, w). Parameters: * size (int or Tuple[int, int], optional) -- output spatial sizes * **scale_factor** (*float** or **Tuple**[**float**, **float**]**, **optional*) -- multiplier for spatial size. Warning: This class is deprecated in favor of "interpolate()". It is equivalent to "nn.functional.interpolate(..., mode='bilinear', align_corners=True)". Shape: * Input: (N, C, H_{in}, W_{in}) * Output: (N, C, H_{out}, W_{out}) where H_{out} = \left\lfloor H_{in} \times \text{scale\_factor} \right\rfloor
https://pytorch.org/docs/stable/generated/torch.nn.UpsamplingBilinear2d.html
pytorch docs
\right\rfloor W_{out} = \left\lfloor W_{in} \times \text{scale\_factor} \right\rfloor Examples: >>> input = torch.arange(1, 5, dtype=torch.float32).view(1, 1, 2, 2) >>> input tensor([[[[1., 2.], [3., 4.]]]]) >>> m = nn.UpsamplingBilinear2d(scale_factor=2) >>> m(input) tensor([[[[1.0000, 1.3333, 1.6667, 2.0000], [1.6667, 2.0000, 2.3333, 2.6667], [2.3333, 2.6667, 3.0000, 3.3333], [3.0000, 3.3333, 3.6667, 4.0000]]]])
https://pytorch.org/docs/stable/generated/torch.nn.UpsamplingBilinear2d.html
pytorch docs
AvgPool2d class torch.nn.AvgPool2d(kernel_size, stride=None, padding=0, ceil_mode=False, count_include_pad=True, divisor_override=None) Applies a 2D average pooling over an input signal composed of several input planes. In the simplest case, the output value of the layer with input size (N, C, H, W), output (N, C, H_{out}, W_{out}) and "kernel_size" (kH, kW) can be precisely described as: out(N_i, C_j, h, w) = \frac{1}{kH * kW} \sum_{m=0}^{kH-1} \sum_{n=0}^{kW-1} input(N_i, C_j, stride[0] \times h + m, stride[1] \times w + n) If "padding" is non-zero, then the input is implicitly zero-padded on both sides for "padding" number of points. Note: When ceil_mode=True, sliding windows are allowed to go off-bounds if they start within the left padding or the input. Sliding windows that would start in the right padded region are ignored. The parameters "kernel_size", "stride", "padding" can either be:
https://pytorch.org/docs/stable/generated/torch.nn.AvgPool2d.html
pytorch docs
a single "int" -- in which case the same value is used for the height and width dimension a "tuple" of two ints -- in which case, the first int is used for the height dimension, and the second int for the width dimension Parameters: * kernel_size (Union[int, Tuple[int, int]]) -- the size of the window * **stride** (*Union**[**int**, **Tuple**[**int**, **int**]**]*) -- the stride of the window. Default value is "kernel_size" * **padding** (*Union**[**int**, **Tuple**[**int**, **int**]**]*) -- implicit zero padding to be added on both sides * **ceil_mode** (*bool*) -- when True, will use *ceil* instead of *floor* to compute the output shape * **count_include_pad** (*bool*) -- when True, will include the zero-padding in the averaging calculation * **divisor_override** (*Optional**[**int**]*) -- if specified,
https://pytorch.org/docs/stable/generated/torch.nn.AvgPool2d.html
pytorch docs
it will be used as divisor, otherwise size of the pooling region will be used. Shape: * Input: (N, C, H_{in}, W_{in}) or (C, H_{in}, W_{in}). * Output: (N, C, H_{out}, W_{out}) or (C, H_{out}, W_{out}), where H_{out} = \left\lfloor\frac{H_{in} + 2 \times \text{padding}[0] - \text{kernel\_size}[0]}{\text{stride}[0]} + 1\right\rfloor W_{out} = \left\lfloor\frac{W_{in} + 2 \times \text{padding}[1] - \text{kernel\_size}[1]}{\text{stride}[1]} + 1\right\rfloor Examples: >>> # pool of square window of size=3, stride=2 >>> m = nn.AvgPool2d(3, stride=2) >>> # pool of non-square window >>> m = nn.AvgPool2d((3, 2), stride=(2, 1)) >>> input = torch.randn(20, 16, 50, 32) >>> output = m(input)
https://pytorch.org/docs/stable/generated/torch.nn.AvgPool2d.html
pytorch docs
torch.Tensor.fix Tensor.fix() -> Tensor See "torch.fix()".
https://pytorch.org/docs/stable/generated/torch.Tensor.fix.html
pytorch docs
torch.nn.functional.feature_alpha_dropout torch.nn.functional.feature_alpha_dropout(input, p=0.5, training=False, inplace=False) Randomly masks out entire channels (a channel is a feature map, e.g. the j-th channel of the i-th sample in the batch input is a tensor \text{input}[i, j]) of the input tensor). Instead of setting activations to zero, as in regular Dropout, the activations are set to the negative saturation value of the SELU activation function. Each element will be masked independently on every forward call with probability "p" using samples from a Bernoulli distribution. The elements to be masked are randomized on every forward call, and scaled and shifted to maintain zero mean and unit variance. See "FeatureAlphaDropout" for details. Parameters: * p (float) -- dropout probability of a channel to be zeroed. Default: 0.5 * **training** (*bool*) -- apply dropout if is "True". Default:
https://pytorch.org/docs/stable/generated/torch.nn.functional.feature_alpha_dropout.html
pytorch docs
"True" * **inplace** (*bool*) -- If set to "True", will do this operation in-place. Default: "False" Return type: Tensor
https://pytorch.org/docs/stable/generated/torch.nn.functional.feature_alpha_dropout.html
pytorch docs
torch.Tensor.to_sparse_csr Tensor.to_sparse_csr(dense_dim=None) -> Tensor Convert a tensor to compressed row storage format (CSR). Except for strided tensors, only works with 2D tensors. If the "self" is strided, then the number of dense dimensions could be specified, and a hybrid CSR tensor will be created, with dense_dim dense dimensions and self.dim() - 2 - dense_dim batch dimension. Parameters: dense_dim (int, optional) -- Number of dense dimensions of the resulting CSR tensor. This argument should be used only if "self" is a strided tensor, and must be a value between 0 and dimension of "self" tensor minus two. Example: >>> dense = torch.randn(5, 5) >>> sparse = dense.to_sparse_csr() >>> sparse._nnz() 25 >>> dense = torch.zeros(3, 3, 1, 1) >>> dense[0, 0] = dense[1, 2] = dense[2, 1] = 1 >>> dense.to_sparse_csr(dense_dim=2) tensor(crow_indices=tensor([0, 1, 2, 3]),
https://pytorch.org/docs/stable/generated/torch.Tensor.to_sparse_csr.html
pytorch docs
tensor(crow_indices=tensor([0, 1, 2, 3]), col_indices=tensor([0, 2, 1]), values=tensor([[[1.]], [[1.]], [[1.]]]), size=(3, 3, 1, 1), nnz=3, layout=torch.sparse_csr)
https://pytorch.org/docs/stable/generated/torch.Tensor.to_sparse_csr.html
pytorch docs
torch.nn.functional.glu torch.nn.functional.glu(input, dim=- 1) -> Tensor The gated linear unit. Computes: \text{GLU}(a, b) = a \otimes \sigma(b) where input is split in half along dim to form a and b, \sigma is the sigmoid function and \otimes is the element-wise product between matrices. See Language Modeling with Gated Convolutional Networks. Parameters: * input (Tensor) -- input tensor * **dim** (*int*) -- dimension on which to split the input. Default: -1 Return type: Tensor
https://pytorch.org/docs/stable/generated/torch.nn.functional.glu.html
pytorch docs
torch.nn.functional.conv1d torch.nn.functional.conv1d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1) -> Tensor Applies a 1D convolution over an input signal composed of several input planes. This operator supports TensorFloat32. See "Conv1d" for details and output shape. Note: In some circumstances when given tensors on a CUDA device and using CuDNN, this operator may select a nondeterministic algorithm to increase performance. If this is undesirable, you can try to make the operation deterministic (potentially at a performance cost) by setting "torch.backends.cudnn.deterministic = True". See Reproducibility for more information. Note: This operator supports complex data types i.e. "complex32, complex64, complex128". Parameters: * input -- input tensor of shape (\text{minibatch} , \text{in_channels} , iW) * **weight** -- filters of shape (\text{out\_channels} ,
https://pytorch.org/docs/stable/generated/torch.nn.functional.conv1d.html
pytorch docs
\frac{\text{in_channels}}{\text{groups}} , kW) * **bias** -- optional bias of shape (\text{out\_channels}). Default: "None" * **stride** -- the stride of the convolving kernel. Can be a single number or a one-element tuple *(sW,)*. Default: 1 * **padding** -- implicit paddings on both sides of the input. Can be a string {'valid', 'same'}, single number or a one-element tuple *(padW,)*. Default: 0 "padding='valid'" is the same as no padding. "padding='same'" pads the input so the output has the same shape as the input. However, this mode doesn't support any stride values other than 1. Warning: For "padding='same'", if the "weight" is even-length and "dilation" is odd in any dimension, a full "pad()" operation may be needed internally. Lowering performance. * **dilation** -- the spacing between kernel elements. Can be a
https://pytorch.org/docs/stable/generated/torch.nn.functional.conv1d.html
pytorch docs
single number or a one-element tuple (dW,). Default: 1 * **groups** -- split input into groups, \text{in\_channels} should be divisible by the number of groups. Default: 1 Examples: >>> inputs = torch.randn(33, 16, 30) >>> filters = torch.randn(20, 16, 5) >>> F.conv1d(inputs, filters)
https://pytorch.org/docs/stable/generated/torch.nn.functional.conv1d.html
pytorch docs
default_weight_observer torch.quantization.observer.default_weight_observer alias of functools.partial(, dtype=torch.qint8, qscheme=torch.per_tensor_symmetric){}
https://pytorch.org/docs/stable/generated/torch.quantization.observer.default_weight_observer.html
pytorch docs
torch.gradient torch.gradient(input, *, spacing=1, dim=None, edge_order=1) -> List of Tensors Estimates the gradient of a function g : \mathbb{R}^n \rightarrow \mathbb{R} in one or more dimensions using the second-order accurate central differences method. The gradient of g is estimated using samples. By default, when "spacing" is not specified, the samples are entirely described by "input", and the mapping of input coordinates to an output is the same as the tensor's mapping of indices to values. For example, for a three-dimensional "input" the function described is g : \mathbb{R}^3 \rightarrow \mathbb{R}, and g(1, 2, 3)\ == input[1, 2, 3]. When "spacing" is specified, it modifies the relationship between "input" and input coordinates. This is detailed in the "Keyword Arguments" section below. The gradient is estimated by estimating each partial derivative of g independently. This estimation is accurate if g is in C^3 (it has
https://pytorch.org/docs/stable/generated/torch.gradient.html
pytorch docs
at least 3 continuous derivatives), and the estimation can be improved by providing closer samples. Mathematically, the value at each interior point of a partial derivative is estimated using Taylor’s theorem with remainder. Letting x be an interior point and x+h_r be point neighboring it, the partial gradient at f(x+h_r) is estimated using: \begin{aligned} f(x+h_r) = f(x) + h_r f'(x) + {h_r}^2 \frac{f''(x)}{2} + {h_r}^3 \frac{f'''(x_r)}{6} \\ \end{aligned} where x_r is a number in the interval [x, x+ h_r] and using the fact that f \in C^3 we derive : f'(x) \approx \frac{ {h_l}^2 f(x+h_r) - {h_r}^2 f(x-h_l) + ({h_r}^2-{h_l}^2 ) f(x) }{ {h_r} {h_l}^2 + {h_r}^2 {h_l} } Note: We estimate the gradient of functions in complex domain g : \mathbb{C}^n \rightarrow \mathbb{C} in the same way. The value of each partial derivative at the boundary points is computed differently. See edge_order below. Parameters:
https://pytorch.org/docs/stable/generated/torch.gradient.html
pytorch docs
Parameters: input ("Tensor") -- the tensor that represents the values of the function Keyword Arguments: * spacing ("scalar", "list of scalar", "list of Tensor", optional) -- "spacing" can be used to modify how the "input" tensor's indices relate to sample coordinates. If "spacing" is a scalar then the indices are multiplied by the scalar to produce the coordinates. For example, if "spacing=2" the indices (1, 2, 3) become coordinates (2, 4, 6). If "spacing" is a list of scalars then the corresponding indices are multiplied. For example, if "spacing=(2, -1, 3)" the indices (1, 2, 3) become coordinates (2, -2, 9). Finally, if "spacing" is a list of one-dimensional tensors then each tensor specifies the coordinates for the corresponding dimension. For example, if the indices are (1, 2, 3) and the tensors are (t0, t1, t2), then the coordinates are (t0[1], t1[2], t2[3])
https://pytorch.org/docs/stable/generated/torch.gradient.html
pytorch docs
dim ("int", "list of int", optional) -- the dimension or dimensions to approximate the gradient over. By default the partial gradient in every dimension is computed. Note that when "dim" is specified the elements of the "spacing" argument must correspond with the specified dims." edge_order ("int", optional) -- 1 or 2, for first-order or second-order estimation of the boundary ("edge") values, respectively. Examples: >>> # Estimates the gradient of f(x)=x^2 at points [-2, -1, 2, 4] >>> coordinates = (torch.tensor([-2., -1., 1., 4.]),) >>> values = torch.tensor([4., 1., 1., 16.], ) >>> torch.gradient(values, spacing = coordinates) (tensor([-3., -2., 2., 5.]),) >>> # Estimates the gradient of the R^2 -> R function whose samples are >>> # described by the tensor t. Implicit coordinates are [0, 1] for the outermost
https://pytorch.org/docs/stable/generated/torch.gradient.html
pytorch docs
dimension and [0, 1, 2, 3] for the innermost dimension, and function estimates >>> # partial derivative for both dimensions. >>> t = torch.tensor([[1, 2, 4, 8], [10, 20, 40, 80]]) >>> torch.gradient(t) (tensor([[ 9., 18., 36., 72.], [ 9., 18., 36., 72.]]), tensor([[ 1.0000, 1.5000, 3.0000, 4.0000], [10.0000, 15.0000, 30.0000, 40.0000]])) >>> # A scalar value for spacing modifies the relationship between tensor indices >>> # and input coordinates by multiplying the indices to find the >>> # coordinates. For example, below the indices of the innermost >>> # 0, 1, 2, 3 translate to coordinates of [0, 2, 4, 6], and the indices of >>> # the outermost dimension 0, 1 translate to coordinates of [0, 2]. >>> torch.gradient(t, spacing = 2.0) # dim = None (implicitly [0, 1]) (tensor([[ 4.5000, 9.0000, 18.0000, 36.0000], [ 4.5000, 9.0000, 18.0000, 36.0000]]),
https://pytorch.org/docs/stable/generated/torch.gradient.html
pytorch docs
tensor([[ 0.5000, 0.7500, 1.5000, 2.0000], [ 5.0000, 7.5000, 15.0000, 20.0000]])) >>> # doubling the spacing between samples halves the estimated partial gradients. >>> >>> # Estimates only the partial derivative for dimension 1 >>> torch.gradient(t, dim = 1) # spacing = None (implicitly 1.) (tensor([[ 1.0000, 1.5000, 3.0000, 4.0000], [10.0000, 15.0000, 30.0000, 40.0000]]),) >>> # When spacing is a list of scalars, the relationship between the tensor >>> # indices and input coordinates changes based on dimension. >>> # For example, below, the indices of the innermost dimension 0, 1, 2, 3 translate >>> # to coordinates of [0, 3, 6, 9], and the indices of the outermost dimension >>> # 0, 1 translate to coordinates of [0, 2]. >>> torch.gradient(t, spacing = [3., 2.]) (tensor([[ 4.5000, 9.0000, 18.0000, 36.0000], [ 4.5000, 9.0000, 18.0000, 36.0000]]),
https://pytorch.org/docs/stable/generated/torch.gradient.html
pytorch docs
tensor([[ 0.3333, 0.5000, 1.0000, 1.3333], [ 3.3333, 5.0000, 10.0000, 13.3333]])) >>> # The following example is a replication of the previous one with explicit >>> # coordinates. >>> coords = (torch.tensor([0, 2]), torch.tensor([0, 3, 6, 9])) >>> torch.gradient(t, spacing = coords) (tensor([[ 4.5000, 9.0000, 18.0000, 36.0000], [ 4.5000, 9.0000, 18.0000, 36.0000]]), tensor([[ 0.3333, 0.5000, 1.0000, 1.3333], [ 3.3333, 5.0000, 10.0000, 13.3333]]))
https://pytorch.org/docs/stable/generated/torch.gradient.html
pytorch docs
torch.select_scatter torch.select_scatter(input, src, dim, index) -> Tensor Embeds the values of the "src" tensor into "input" at the given index. This function returns a tensor with fresh storage; it does not create a view. Parameters: * input (Tensor) -- the input tensor. * **src** (*Tensor*) -- The tensor to embed into "input" * **dim** (*int*) -- the dimension to insert the slice into. * **index** (*int*) -- the index to select with Note: "src" must be of the proper size in order to be embedded into "input". Specifically, it should have the same shape as "torch.select(input, dim, index)" Example: >>> a = torch.zeros(2, 2) >>> b = torch.ones(2) >>> a.select_scatter(b, 0, 0) tensor([[1., 1.], [0., 0.]])
https://pytorch.org/docs/stable/generated/torch.select_scatter.html
pytorch docs
torch.Tensor.q_per_channel_zero_points Tensor.q_per_channel_zero_points() -> Tensor Given a Tensor quantized by linear (affine) per-channel quantization, returns a tensor of zero_points of the underlying quantizer. It has the number of elements that matches the corresponding dimensions (from q_per_channel_axis) of the tensor.
https://pytorch.org/docs/stable/generated/torch.Tensor.q_per_channel_zero_points.html
pytorch docs
LSTM class torch.nn.quantizable.LSTM(input_size, hidden_size, num_layers=1, bias=True, batch_first=False, dropout=0.0, bidirectional=False, device=None, dtype=None) A quantizable long short-term memory (LSTM). For the description and the argument types, please, refer to "LSTM" Variables: layers -- instances of the _LSTMLayer Note: To access the weights and biases, you need to access them per layer. See examples below. Examples: >>> import torch.nn.quantizable as nnqa >>> rnn = nnqa.LSTM(10, 20, 2) >>> input = torch.randn(5, 3, 10) >>> h0 = torch.randn(2, 3, 20) >>> c0 = torch.randn(2, 3, 20) >>> output, (hn, cn) = rnn(input, (h0, c0)) >>> # To get the weights: >>> print(rnn.layers[0].weight_ih) tensor([[...]]) >>> print(rnn.layers[0].weight_hh) AssertionError: There is no reverse path in the non-bidirectional layer
https://pytorch.org/docs/stable/generated/torch.nn.quantizable.LSTM.html
pytorch docs
torch.result_type torch.result_type(tensor1, tensor2) -> dtype Returns the "torch.dtype" that would result from performing an arithmetic operation on the provided input tensors. See type promotion documentation for more information on the type promotion logic. Parameters: * tensor1 (Tensor or Number) -- an input tensor or number * **tensor2** (*Tensor** or **Number*) -- an input tensor or number Example: >>> torch.result_type(torch.tensor([1, 2], dtype=torch.int), 1.0) torch.float32 >>> torch.result_type(torch.tensor([1, 2], dtype=torch.uint8), torch.tensor(1)) torch.uint8
https://pytorch.org/docs/stable/generated/torch.result_type.html
pytorch docs
torch.foreach_atan torch.foreach_atan(self: List[Tensor]) -> None Apply "torch.atan()" to each Tensor of the input list.
https://pytorch.org/docs/stable/generated/torch._foreach_atan_.html
pytorch docs
torch.cuda.nvtx.mark torch.cuda.nvtx.mark(msg) Describe an instantaneous event that occurred at some point. Parameters: msg (str) -- ASCII message to associate with the event.
https://pytorch.org/docs/stable/generated/torch.cuda.nvtx.mark.html
pytorch docs
torch.Tensor.cumsum Tensor.cumsum(dim, dtype=None) -> Tensor See "torch.cumsum()"
https://pytorch.org/docs/stable/generated/torch.Tensor.cumsum.html
pytorch docs
torch.resolve_neg torch.resolve_neg(input) -> Tensor Returns a new tensor with materialized negation if "input"'s negative bit is set to True, else returns "input". The output tensor will always have its negative bit set to False. :param input: the input tensor. :type input: Tensor Example: >>> x = torch.tensor([-1 + 1j, -2 + 2j, 3 - 3j]) >>> y = x.conj() >>> z = y.imag >>> z.is_neg() True >>> out = y.resolve_neg() >>> out tensor([-1, -2, -3]) >>> out.is_neg() False
https://pytorch.org/docs/stable/generated/torch.resolve_neg.html
pytorch docs
torch._foreach_atan torch._foreach_atan(self: List[Tensor]) -> List[Tensor] Apply "torch.atan()" to each Tensor of the input list.
https://pytorch.org/docs/stable/generated/torch._foreach_atan.html
pytorch docs
torch.conj_physical torch.conj_physical(input, *, out=None) -> Tensor Computes the element-wise conjugate of the given "input" tensor. If "input" has a non-complex dtype, this function just returns "input". Note: This performs the conjugate operation regardless of the fact conjugate bit is set or not. Warning: In the future, "torch.conj_physical()" may return a non-writeable view for an "input" of non-complex dtype. It's recommended that programs not modify the tensor returned by "torch.conj_physical()" when "input" is of non-complex dtype to be compatible with this change. \text{out}_{i} = conj(\text{input}_{i}) Parameters: input (Tensor) -- the input tensor. Keyword Arguments: out (Tensor, optional) -- the output tensor. Example: >>> torch.conj_physical(torch.tensor([-1 + 1j, -2 + 2j, 3 - 3j])) tensor([-1 - 1j, -2 - 2j, 3 + 3j])
https://pytorch.org/docs/stable/generated/torch.conj_physical.html
pytorch docs
torch.Tensor.new_zeros Tensor.new_zeros(size, *, dtype=None, device=None, requires_grad=False, layout=torch.strided, pin_memory=False) -> Tensor Returns a Tensor of size "size" filled with "0". By default, the returned Tensor has the same "torch.dtype" and "torch.device" as this tensor. Parameters: size (int...) -- a list, tuple, or "torch.Size" of integers defining the shape of the output tensor. Keyword Arguments: * dtype ("torch.dtype", optional) -- the desired type of returned tensor. Default: if None, same "torch.dtype" as this tensor. * **device** ("torch.device", optional) -- the desired device of returned tensor. Default: if None, same "torch.device" as this tensor. * **requires_grad** (*bool**, **optional*) -- If autograd should record operations on the returned tensor. Default: "False". * **layout** ("torch.layout", optional) -- the desired layout of
https://pytorch.org/docs/stable/generated/torch.Tensor.new_zeros.html
pytorch docs
returned Tensor. Default: "torch.strided". * **pin_memory** (*bool**, **optional*) -- If set, returned tensor would be allocated in the pinned memory. Works only for CPU tensors. Default: "False". Example: >>> tensor = torch.tensor((), dtype=torch.float64) >>> tensor.new_zeros((2, 3)) tensor([[ 0., 0., 0.], [ 0., 0., 0.]], dtype=torch.float64)
https://pytorch.org/docs/stable/generated/torch.Tensor.new_zeros.html
pytorch docs
propagate_qconfig class torch.quantization.propagate_qconfig_(module, qconfig_dict=None, prepare_custom_config_dict=None) Propagate qconfig through the module hierarchy and assign qconfig attribute on each leaf module Parameters: * module -- input module * **qconfig_dict** -- dictionary that maps from name or type of submodule to quantization configuration, qconfig applies to all submodules of a given module unless qconfig for the submodules are specified (when the submodule already has qconfig attribute) * **prepare_custom_config_dict** -- dictionary for custom handling of modules see docs for "prepare_fx()" Returns: None, module is modified inplace with qconfig attached
https://pytorch.org/docs/stable/generated/torch.quantization.propagate_qconfig_.html
pytorch docs
torch.sign torch.sign(input, *, out=None) -> Tensor Returns a new tensor with the signs of the elements of "input". \text{out}_{i} = \operatorname{sgn}(\text{input}_{i}) Parameters: input (Tensor) -- the input tensor. Keyword Arguments: out (Tensor, optional) -- the output tensor. Example: >>> a = torch.tensor([0.7, -1.2, 0., 2.3]) >>> a tensor([ 0.7000, -1.2000, 0.0000, 2.3000]) >>> torch.sign(a) tensor([ 1., -1., 0., 1.])
https://pytorch.org/docs/stable/generated/torch.sign.html
pytorch docs
torch.Tensor.ravel Tensor.ravel() -> Tensor see "torch.ravel()"
https://pytorch.org/docs/stable/generated/torch.Tensor.ravel.html
pytorch docs
torch.swapaxes torch.swapaxes(input, axis0, axis1) -> Tensor Alias for "torch.transpose()". This function is equivalent to NumPy's swapaxes function. Examples: >>> x = torch.tensor([[[0,1],[2,3]],[[4,5],[6,7]]]) >>> x tensor([[[0, 1], [2, 3]], [[4, 5], [6, 7]]]) >>> torch.swapaxes(x, 0, 1) tensor([[[0, 1], [4, 5]], [[2, 3], [6, 7]]]) >>> torch.swapaxes(x, 0, 2) tensor([[[0, 4], [2, 6]], [[1, 5], [3, 7]]])
https://pytorch.org/docs/stable/generated/torch.swapaxes.html
pytorch docs
torch.nn.utils.remove_spectral_norm torch.nn.utils.remove_spectral_norm(module, name='weight') Removes the spectral normalization reparameterization from a module. Parameters: * module (Module) -- containing module * **name** (*str**, **optional*) -- name of weight parameter Return type: T_module -[ Example ]- m = spectral_norm(nn.Linear(40, 10)) remove_spectral_norm(m)
https://pytorch.org/docs/stable/generated/torch.nn.utils.remove_spectral_norm.html
pytorch docs
torch.cuda.seed torch.cuda.seed() Sets the seed for generating random numbers to a random number for the current GPU. It's safe to call this function if CUDA is not available; in that case, it is silently ignored. Warning: If you are working with a multi-GPU model, this function will only initialize the seed on one GPU. To initialize all GPUs, use "seed_all()".
https://pytorch.org/docs/stable/generated/torch.cuda.seed.html
pytorch docs
torch.nn.functional.cross_entropy torch.nn.functional.cross_entropy(input, target, weight=None, size_average=None, ignore_index=- 100, reduce=None, reduction='mean', label_smoothing=0.0) This criterion computes the cross entropy loss between input logits and target. See "CrossEntropyLoss" for details. Parameters: * input (Tensor) -- Predicted unnormalized logits; see Shape section below for supported shapes. * **target** (*Tensor*) -- Ground truth class indices or class probabilities; see Shape section below for supported shapes. * **weight** (*Tensor**, **optional*) -- a manual rescaling weight given to each class. If given, has to be a Tensor of size *C* * **size_average** (*bool**, **optional*) -- Deprecated (see "reduction"). By default, the losses are averaged over each loss element in the batch. Note that for some losses, there
https://pytorch.org/docs/stable/generated/torch.nn.functional.cross_entropy.html
pytorch docs
multiple elements per sample. If the field "size_average" is set to "False", the losses are instead summed for each minibatch. Ignored when reduce is "False". Default: "True" * **ignore_index** (*int**, **optional*) -- Specifies a target value that is ignored and does not contribute to the input gradient. When "size_average" is "True", the loss is averaged over non-ignored targets. Note that "ignore_index" is only applicable when the target contains class indices. Default: -100 * **reduce** (*bool**, **optional*) -- Deprecated (see "reduction"). By default, the losses are averaged or summed over observations for each minibatch depending on "size_average". When "reduce" is "False", returns a loss per batch element instead and ignores "size_average". Default: "True" * **reduction** (*str**, **optional*) -- Specifies the reduction
https://pytorch.org/docs/stable/generated/torch.nn.functional.cross_entropy.html
pytorch docs
to apply to the output: "'none'" | "'mean'" | "'sum'". "'none'": no reduction will be applied, "'mean'": the sum of the output will be divided by the number of elements in the output, "'sum'": the output will be summed. Note: "size_average" and "reduce" are in the process of being deprecated, and in the meantime, specifying either of those two args will override "reduction". Default: "'mean'" * **label_smoothing** (*float**, **optional*) -- A float in [0.0, 1.0]. Specifies the amount of smoothing when computing the loss, where 0.0 means no smoothing. The targets become a mixture of the original ground truth and a uniform distribution as described in Rethinking the Inception Architecture for Computer Vision. Default: 0.0. Return type: Tensor Shape: * Input: Shape (C), (N, C) or (N, C, d_1, d_2, ..., d_K) with K \geq 1 in the case of K-dimensional loss.
https://pytorch.org/docs/stable/generated/torch.nn.functional.cross_entropy.html
pytorch docs
Target: If containing class indices, shape (), (N) or (N, d_1, d_2, ..., d_K) with K \geq 1 in the case of K-dimensional loss where each value should be between [0, C). If containing class probabilities, same shape as the input and each value should be between [0, 1]. where: \begin{aligned} C ={} & \text{number of classes} \\ N ={} & \text{batch size} \\ \end{aligned} Examples: >>> # Example of target with class indices >>> input = torch.randn(3, 5, requires_grad=True) >>> target = torch.randint(5, (3,), dtype=torch.int64) >>> loss = F.cross_entropy(input, target) >>> loss.backward() >>> >>> # Example of target with class probabilities >>> input = torch.randn(3, 5, requires_grad=True) >>> target = torch.randn(3, 5).softmax(dim=1) >>> loss = F.cross_entropy(input, target) >>> loss.backward()
https://pytorch.org/docs/stable/generated/torch.nn.functional.cross_entropy.html
pytorch docs
torch.arctanh torch.arctanh(input, *, out=None) -> Tensor Alias for "torch.atanh()".
https://pytorch.org/docs/stable/generated/torch.arctanh.html
pytorch docs
torch.conj torch.conj(input) -> Tensor Returns a view of "input" with a flipped conjugate bit. If "input" has a non-complex dtype, this function just returns "input". Note: "torch.conj()" performs a lazy conjugation, but the actual conjugated tensor can be materialized at any time using "torch.resolve_conj()". Warning: In the future, "torch.conj()" may return a non-writeable view for an "input" of non-complex dtype. It's recommended that programs not modify the tensor returned by "torch.conj_physical()" when "input" is of non-complex dtype to be compatible with this change. Parameters: input (Tensor) -- the input tensor. Example: >>> x = torch.tensor([-1 + 1j, -2 + 2j, 3 - 3j]) >>> x.is_conj() False >>> y = torch.conj(x) >>> y.is_conj() True
https://pytorch.org/docs/stable/generated/torch.conj.html
pytorch docs
torch.Tensor.logical_and Tensor.logical_and() -> Tensor See "torch.logical_and()"
https://pytorch.org/docs/stable/generated/torch.Tensor.logical_and.html
pytorch docs
torch.Tensor.sinh Tensor.sinh() -> Tensor See "torch.sinh()"
https://pytorch.org/docs/stable/generated/torch.Tensor.sinh.html
pytorch docs
DeQuantStub class torch.quantization.DeQuantStub(qconfig=None) Dequantize stub module, before calibration, this is same as identity, this will be swapped as nnq.DeQuantize in convert. Parameters: qconfig -- quantization configuration for the tensor, if qconfig is not provided, we will get qconfig from parent modules
https://pytorch.org/docs/stable/generated/torch.quantization.DeQuantStub.html
pytorch docs
torch.nn.utils.remove_weight_norm torch.nn.utils.remove_weight_norm(module, name='weight') Removes the weight normalization reparameterization from a module. Parameters: * module (Module) -- containing module * **name** (*str**, **optional*) -- name of weight parameter Return type: T_module -[ Example ]- m = weight_norm(nn.Linear(20, 40)) remove_weight_norm(m)
https://pytorch.org/docs/stable/generated/torch.nn.utils.remove_weight_norm.html
pytorch docs
StepLR class torch.optim.lr_scheduler.StepLR(optimizer, step_size, gamma=0.1, last_epoch=- 1, verbose=False) Decays the learning rate of each parameter group by gamma every step_size epochs. Notice that such decay can happen simultaneously with other changes to the learning rate from outside this scheduler. When last_epoch=-1, sets initial lr as lr. Parameters: * optimizer (Optimizer) -- Wrapped optimizer. * **step_size** (*int*) -- Period of learning rate decay. * **gamma** (*float*) -- Multiplicative factor of learning rate decay. Default: 0.1. * **last_epoch** (*int*) -- The index of last epoch. Default: -1. * **verbose** (*bool*) -- If "True", prints a message to stdout for each update. Default: "False". -[ Example ]- Assuming optimizer uses lr = 0.05 for all groups lr = 0.05 if epoch < 30 lr = 0.005 if 30 <= epoch < 60 lr = 0.0005 if 60 <= epoch < 90 ...
https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.StepLR.html
pytorch docs
... scheduler = StepLR(optimizer, step_size=30, gamma=0.1) for epoch in range(100): train(...) validate(...) scheduler.step() get_last_lr() Return last computed learning rate by current scheduler. load_state_dict(state_dict) Loads the schedulers state. Parameters: **state_dict** (*dict*) -- scheduler state. Should be an object returned from a call to "state_dict()". print_lr(is_verbose, group, lr, epoch=None) Display the current learning rate. state_dict() Returns the state of the scheduler as a "dict". It contains an entry for every variable in self.__dict__ which is not the optimizer.
https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.StepLR.html
pytorch docs
PReLU class torch.nn.PReLU(num_parameters=1, init=0.25, device=None, dtype=None) Applies the element-wise function: \text{PReLU}(x) = \max(0,x) + a * \min(0,x) or \text{PReLU}(x) = \begin{cases} x, & \text{ if } x \geq 0 \\ ax, & \text{ otherwise } \end{cases} Here a is a learnable parameter. When called without arguments, nn.PReLU() uses a single parameter a across all input channels. If called with nn.PReLU(nChannels), a separate a is used for each input channel. Note: weight decay should not be used when learning a for good performance. Note: Channel dim is the 2nd dim of input. When input has dims < 2, then there is no channel dim and the number of channels = 1. Parameters: * num_parameters (int) -- number of a to learn. Although it takes an int as input, there is only two values are legitimate: 1, or the number of channels at input. Default: 1
https://pytorch.org/docs/stable/generated/torch.nn.PReLU.html
pytorch docs
init (float) -- the initial value of a. Default: 0.25 Shape: * Input: ( *) where *** means, any number of additional dimensions. * Output: (*), same shape as the input. Variables: weight (Tensor) -- the learnable weights of shape ("num_parameters"). [image] Examples: >>> m = nn.PReLU() >>> input = torch.randn(2) >>> output = m(input)
https://pytorch.org/docs/stable/generated/torch.nn.PReLU.html
pytorch docs
torch.transpose torch.transpose(input, dim0, dim1) -> Tensor Returns a tensor that is a transposed version of "input". The given dimensions "dim0" and "dim1" are swapped. If "input" is a strided tensor then the resulting "out" tensor shares its underlying storage with the "input" tensor, so changing the content of one would change the content of the other. If "input" is a sparse tensor then the resulting "out" tensor does not share the underlying storage with the "input" tensor. If "input" is a sparse tensor with compressed layout (SparseCSR, SparseBSR, SparseCSC or SparseBSC) the arguments "dim0" and "dim1" must be both batch dimensions, or must both be sparse dimensions. The batch dimensions of a sparse tensor are the dimensions preceding the sparse dimensions. Note: Transpositions which interchange the sparse dimensions of a *SparseCSR* or *SparseCSC* layout tensor will result in the
https://pytorch.org/docs/stable/generated/torch.transpose.html
pytorch docs
layout changing between the two options. Transposition of the sparse dimensions of a SparseBSR or SparseBSC layout tensor will likewise generate a result with the opposite layout. Parameters: * input (Tensor) -- the input tensor. * **dim0** (*int*) -- the first dimension to be transposed * **dim1** (*int*) -- the second dimension to be transposed Example: >>> x = torch.randn(2, 3) >>> x tensor([[ 1.0028, -0.9893, 0.5809], [-0.1669, 0.7299, 0.4942]]) >>> torch.transpose(x, 0, 1) tensor([[ 1.0028, -0.1669], [-0.9893, 0.7299], [ 0.5809, 0.4942]]) See also "torch.t()".
https://pytorch.org/docs/stable/generated/torch.transpose.html
pytorch docs
torch.cdist torch.cdist(x1, x2, p=2.0, compute_mode='use_mm_for_euclid_dist_if_necessary') Computes batched the p-norm distance between each pair of the two collections of row vectors. Parameters: * x1 (Tensor) -- input tensor of shape B \times P \times M. * **x2** (*Tensor*) -- input tensor of shape B \times R \times M. * **p** (*float*) -- p value for the p-norm distance to calculate between each vector pair \in [0, \infty]. * **compute_mode** (*str*) -- 'use_mm_for_euclid_dist_if_necessary' - will use matrix multiplication approach to calculate euclidean distance (p = 2) if P > 25 or R > 25 'use_mm_for_euclid_dist' - will always use matrix multiplication approach to calculate euclidean distance (p = 2) 'donot_use_mm_for_euclid_dist' - will never use matrix multiplication approach to calculate euclidean distance (p = 2) Default: use_mm_for_euclid_dist_if_necessary.
https://pytorch.org/docs/stable/generated/torch.cdist.html
pytorch docs
Return type: Tensor If x1 has shape B \times P \times M and x2 has shape B \times R \times M then the output will have shape B \times P \times R. This function is equivalent to scipy.spatial.distance.cdist(input,'minkowski', p=p) if p \in (0, \infty). When p = 0 it is equivalent to scipy.spatial.distance.cdist(input, 'hamming') * M. When p = \infty, the closest scipy function is scipy.spatial.distance.cdist(xn, lambda x, y: np.abs(x - y).max()). -[ Example ]- a = torch.tensor([[0.9041, 0.0196], [-0.3108, -2.4423], [-0.4821, 1.059]]) a tensor([[ 0.9041, 0.0196], [-0.3108, -2.4423], [-0.4821, 1.0590]]) b = torch.tensor([[-2.1763, -0.4713], [-0.6986, 1.3702]]) b tensor([[-2.1763, -0.4713], [-0.6986, 1.3702]]) torch.cdist(a, b, p=2) tensor([[3.1193, 2.0959], [2.7138, 3.8322], [2.2830, 0.3791]])
https://pytorch.org/docs/stable/generated/torch.cdist.html
pytorch docs
torch.split torch.split(tensor, split_size_or_sections, dim=0) Splits the tensor into chunks. Each chunk is a view of the original tensor. If "split_size_or_sections" is an integer type, then "tensor" will be split into equally sized chunks (if possible). Last chunk will be smaller if the tensor size along the given dimension "dim" is not divisible by "split_size". If "split_size_or_sections" is a list, then "tensor" will be split into "len(split_size_or_sections)" chunks with sizes in "dim" according to "split_size_or_sections". Parameters: * tensor (Tensor) -- tensor to split. * **split_size_or_sections** (*int**) or **(**list**(**int**)*) -- size of a single chunk or list of sizes for each chunk * **dim** (*int*) -- dimension along which to split the tensor. Return type: List[Tensor] Example: >>> a = torch.arange(10).reshape(5, 2) >>> a tensor([[0, 1], [2, 3],
https://pytorch.org/docs/stable/generated/torch.split.html
pytorch docs
tensor([[0, 1], [2, 3], [4, 5], [6, 7], [8, 9]]) >>> torch.split(a, 2) (tensor([[0, 1], [2, 3]]), tensor([[4, 5], [6, 7]]), tensor([[8, 9]])) >>> torch.split(a, [1, 4]) (tensor([[0, 1]]), tensor([[2, 3], [4, 5], [6, 7], [8, 9]]))
https://pytorch.org/docs/stable/generated/torch.split.html
pytorch docs