text
stringlengths
0
1.73k
source
stringlengths
35
119
category
stringclasses
2 values
torch.Tensor.bitwise_and_ Tensor.bitwise_and_() -> Tensor In-place version of "bitwise_and()"
https://pytorch.org/docs/stable/generated/torch.Tensor.bitwise_and_.html
pytorch docs
torch.chain_matmul torch.chain_matmul(*matrices, out=None) Returns the matrix product of the N 2-D tensors. This product is efficiently computed using the matrix chain order algorithm which selects the order in which incurs the lowest cost in terms of arithmetic operations ([CLRS]). Note that since this is a function to compute the product, N needs to be greater than or equal to 2; if equal to 2 then a trivial matrix-matrix product is returned. If N is 1, then this is a no-op - the original matrix is returned as is. Warning: "torch.chain_matmul()" is deprecated and will be removed in a future PyTorch release. Use "torch.linalg.multi_dot()" instead, which accepts a list of two or more tensors rather than multiple arguments. Parameters: * matrices (Tensors...) -- a sequence of 2 or more 2-D tensors whose product is to be determined. * **out** (*Tensor**, **optional*) -- the output tensor. Ignored
https://pytorch.org/docs/stable/generated/torch.chain_matmul.html
pytorch docs
if "out" = "None". Returns: if the i^{th} tensor was of dimensions p_{i} \times p_{i + 1}, then the product would be of dimensions p_{1} \times p_{N + 1}. Return type: Tensor Example: >>> a = torch.randn(3, 4) >>> b = torch.randn(4, 5) >>> c = torch.randn(5, 6) >>> d = torch.randn(6, 7) >>> # will raise a deprecation warning >>> torch.chain_matmul(a, b, c, d) tensor([[ -2.3375, -3.9790, -4.1119, -6.6577, 9.5609, -11.5095, -3.2614], [ 21.4038, 3.3378, -8.4982, -5.2457, -10.2561, -2.4684, 2.7163], [ -0.9647, -5.8917, -2.3213, -5.2284, 12.8615, -12.2816, -2.5095]])
https://pytorch.org/docs/stable/generated/torch.chain_matmul.html
pytorch docs
torch.foreach_log2 torch.foreach_log2(self: List[Tensor]) -> None Apply "torch.log2()" to each Tensor of the input list.
https://pytorch.org/docs/stable/generated/torch._foreach_log2_.html
pytorch docs
torch.cuda.utilization torch.cuda.utilization(device=None) Returns the percent of time over the past sample period during which one or more kernels was executing on the GPU as given by nvidia-smi. Parameters: device (torch.device or int, optional) -- selected device. Returns statistic for the current device, given by "current_device()", if "device" is "None" (default). Return type: int Warning: Each sample period may be between 1 second and 1/6 second, depending on the product being queried.
https://pytorch.org/docs/stable/generated/torch.cuda.utilization.html
pytorch docs
torch.get_num_threads torch.get_num_threads() -> int Returns the number of threads used for parallelizing CPU operations
https://pytorch.org/docs/stable/generated/torch.get_num_threads.html
pytorch docs
torch.Tensor.hsplit Tensor.hsplit(split_size_or_sections) -> List of Tensors See "torch.hsplit()"
https://pytorch.org/docs/stable/generated/torch.Tensor.hsplit.html
pytorch docs
CrossEntropyLoss class torch.nn.CrossEntropyLoss(weight=None, size_average=None, ignore_index=- 100, reduce=None, reduction='mean', label_smoothing=0.0) This criterion computes the cross entropy loss between input logits and target. It is useful when training a classification problem with C classes. If provided, the optional argument "weight" should be a 1D Tensor assigning weight to each of the classes. This is particularly useful when you have an unbalanced training set. The input is expected to contain the unnormalized logits for each class (which do not need to be positive or sum to 1, in general). input has to be a Tensor of size (C) for unbatched input, (minibatch, C) or (minibatch, C, d_1, d_2, ..., d_K) with K \geq 1 for the K-dimensional case. The last being useful for higher dimension inputs, such as computing cross entropy loss per-pixel for 2D images. The target that this criterion expects should contain either:
https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
pytorch docs
Class indices in the range [0, C) where C is the number of classes; if ignore_index is specified, this loss also accepts this class index (this index may not necessarily be in the class range). The unreduced (i.e. with "reduction" set to "'none'") loss for this case can be described as: \ell(x, y) = L = \{l_1,\dots,l_N\}^\top, \quad l_n = - w_{y_n} \log \frac{\exp(x_{n,y_n})}{\sum_{c=1}^C \exp(x_{n,c})} \cdot \mathbb{1}\{y_n \not= \text{ignore\_index}\} where x is the input, y is the target, w is the weight, C is the number of classes, and N spans the minibatch dimension as well as d_1, ..., d_k for the K-dimensional case. If "reduction" is not "'none'" (default "'mean'"), then \ell(x, y) = \begin{cases} \sum_{n=1}^N \frac{1}{\sum_{n=1}^N w_{y_n} \cdot \mathbb{1}\{y_n \not= \text{ignore\_index}\}} l_n, & \text{if reduction} = \text{`mean';}\\ \sum_{n=1}^N l_n, & \text{if
https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
pytorch docs
reduction} = \text{`sum'.} \end{cases} Note that this case is equivalent to the combination of "LogSoftmax" and "NLLLoss". Probabilities for each class; useful when labels beyond a single class per minibatch item are required, such as for blended labels, label smoothing, etc. The unreduced (i.e. with "reduction" set to "'none'") loss for this case can be described as: \ell(x, y) = L = \{l_1,\dots,l_N\}^\top, \quad l_n = - \sum_{c=1}^C w_c \log \frac{\exp(x_{n,c})}{\sum_{i=1}^C \exp(x_{n,i})} y_{n,c} where x is the input, y is the target, w is the weight, C is the number of classes, and N spans the minibatch dimension as well as d_1, ..., d_k for the K-dimensional case. If "reduction" is not "'none'" (default "'mean'"), then \ell(x, y) = \begin{cases} \frac{\sum_{n=1}^N l_n}{N}, & \text{if reduction} = \text{`mean';}\\ \sum_{n=1}^N l_n,
https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
pytorch docs
& \text{if reduction} = \text{`sum'.} \end{cases} Note: The performance of this criterion is generally better when *target* contains class indices, as this allows for optimized computation. Consider providing *target* as class probabilities only when a single class label per minibatch item is too restrictive. Parameters: * weight (Tensor, optional) -- a manual rescaling weight given to each class. If given, has to be a Tensor of size C * **size_average** (*bool**, **optional*) -- Deprecated (see "reduction"). By default, the losses are averaged over each loss element in the batch. Note that for some losses, there are multiple elements per sample. If the field "size_average" is set to "False", the losses are instead summed for each minibatch. Ignored when "reduce" is "False". Default: "True" * **ignore_index** (*int**, **optional*) -- Specifies a target
https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
pytorch docs
value that is ignored and does not contribute to the input gradient. When "size_average" is "True", the loss is averaged over non-ignored targets. Note that "ignore_index" is only applicable when the target contains class indices. * **reduce** (*bool**, **optional*) -- Deprecated (see "reduction"). By default, the losses are averaged or summed over observations for each minibatch depending on "size_average". When "reduce" is "False", returns a loss per batch element instead and ignores "size_average". Default: "True" * **reduction** (*str**, **optional*) -- Specifies the reduction to apply to the output: "'none'" | "'mean'" | "'sum'". "'none'": no reduction will be applied, "'mean'": the weighted mean of the output is taken, "'sum'": the output will be summed. Note: "size_average" and "reduce" are in the process of being deprecated, and in the meantime, specifying either of
https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
pytorch docs
those two args will override "reduction". Default: "'mean'" * **label_smoothing** (*float**, **optional*) -- A float in [0.0, 1.0]. Specifies the amount of smoothing when computing the loss, where 0.0 means no smoothing. The targets become a mixture of the original ground truth and a uniform distribution as described in Rethinking the Inception Architecture for Computer Vision. Default: 0.0. Shape: * Input: Shape (C), (N, C) or (N, C, d_1, d_2, ..., d_K) with K \geq 1 in the case of K-dimensional loss. * Target: If containing class indices, shape (), (N) or (N, d_1, d_2, ..., d_K) with K \geq 1 in the case of K-dimensional loss where each value should be between [0, C). If containing class probabilities, same shape as the input and each value should be between [0, 1]. * Output: If reduction is 'none', shape (), (N) or (N, d_1, d_2,
https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
pytorch docs
..., d_K) with K \geq 1 in the case of K-dimensional loss, depending on the shape of the input. Otherwise, scalar. where: \begin{aligned} C ={} & \text{number of classes} \\ N ={} & \text{batch size} \\ \end{aligned} Examples: >>> # Example of target with class indices >>> loss = nn.CrossEntropyLoss() >>> input = torch.randn(3, 5, requires_grad=True) >>> target = torch.empty(3, dtype=torch.long).random_(5) >>> output = loss(input, target) >>> output.backward() >>> >>> # Example of target with class probabilities >>> input = torch.randn(3, 5, requires_grad=True) >>> target = torch.randn(3, 5).softmax(dim=1) >>> output = loss(input, target) >>> output.backward()
https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
pytorch docs
prepare_qat class torch.quantization.prepare_qat(model, mapping=None, inplace=False) Prepares a copy of the model for quantization calibration or quantization-aware training and converts it to quantized version. Quantization configuration should be assigned preemptively to individual submodules in .qconfig attribute. Parameters: * model -- input model to be modified in-place * **mapping** -- dictionary that maps float modules to quantized modules to be replaced. * **inplace** -- carry out model transformations in-place, the original module is mutated
https://pytorch.org/docs/stable/generated/torch.quantization.prepare_qat.html
pytorch docs
torch.Tensor.acos_ Tensor.acos_() -> Tensor In-place version of "acos()"
https://pytorch.org/docs/stable/generated/torch.Tensor.acos_.html
pytorch docs
torch.nn.functional.threshold torch.nn.functional.threshold(input, threshold, value, inplace=False) Thresholds each element of the input Tensor. See "Threshold" for more details. Return type: Tensor
https://pytorch.org/docs/stable/generated/torch.nn.functional.threshold.html
pytorch docs
torch.xlogy torch.xlogy(input, other, *, out=None) -> Tensor Alias for "torch.special.xlogy()".
https://pytorch.org/docs/stable/generated/torch.xlogy.html
pytorch docs
torch.sum torch.sum(input, *, dtype=None) -> Tensor Returns the sum of all elements in the "input" tensor. Parameters: input (Tensor) -- the input tensor. Keyword Arguments: dtype ("torch.dtype", optional) -- the desired data type of returned tensor. If specified, the input tensor is casted to "dtype" before the operation is performed. This is useful for preventing data type overflows. Default: None. Example: >>> a = torch.randn(1, 3) >>> a tensor([[ 0.1133, -0.9567, 0.2958]]) >>> torch.sum(a) tensor(-0.5475) torch.sum(input, dim, keepdim=False, *, dtype=None) -> Tensor Returns the sum of each row of the "input" tensor in the given dimension "dim". If "dim" is a list of dimensions, reduce over all of them. If "keepdim" is "True", the output tensor is of the same size as "input" except in the dimension(s) "dim" where it is of size 1.
https://pytorch.org/docs/stable/generated/torch.sum.html
pytorch docs
Otherwise, "dim" is squeezed (see "torch.squeeze()"), resulting in the output tensor having 1 (or "len(dim)") fewer dimension(s). Parameters: * input (Tensor) -- the input tensor. * **dim** (*int** or **tuple of ints**, **optional*) -- the dimension or dimensions to reduce. If "None", all dimensions are reduced. * **keepdim** (*bool*) -- whether the output tensor has "dim" retained or not. Keyword Arguments: dtype ("torch.dtype", optional) -- the desired data type of returned tensor. If specified, the input tensor is casted to "dtype" before the operation is performed. This is useful for preventing data type overflows. Default: None. Example: >>> a = torch.randn(4, 4) >>> a tensor([[ 0.0569, -0.2475, 0.0737, -0.3429], [-0.2993, 0.9138, 0.9337, -1.6864], [ 0.1132, 0.7892, -0.1003, 0.5688], [ 0.3637, -0.9906, -0.4752, -1.5197]])
https://pytorch.org/docs/stable/generated/torch.sum.html
pytorch docs
torch.sum(a, 1) tensor([-0.4598, -0.1381, 1.3708, -2.6217]) >>> b = torch.arange(4 * 5 * 6).view(4, 5, 6) >>> torch.sum(b, (2, 1)) tensor([ 435., 1335., 2235., 3135.])
https://pytorch.org/docs/stable/generated/torch.sum.html
pytorch docs
torch.Tensor.is_cuda Tensor.is_cuda Is "True" if the Tensor is stored on the GPU, "False" otherwise.
https://pytorch.org/docs/stable/generated/torch.Tensor.is_cuda.html
pytorch docs
torch.autograd.grad torch.autograd.grad(outputs, inputs, grad_outputs=None, retain_graph=None, create_graph=False, only_inputs=True, allow_unused=False, is_grads_batched=False) Computes and returns the sum of gradients of outputs with respect to the inputs. "grad_outputs" should be a sequence of length matching "output" containing the "vector" in vector-Jacobian product, usually the pre-computed gradients w.r.t. each of the outputs. If an output doesn't require_grad, then the gradient can be "None"). Note: If you run any forward ops, create "grad_outputs", and/or call "grad" in a user-specified CUDA stream context, see Stream semantics of backward passes. Note: "only_inputs" argument is deprecated and is ignored now (defaults to "True"). To accumulate gradient for other parts of the graph, please use "torch.autograd.backward". Parameters: * outputs (sequence of Tensor) -- outputs of the
https://pytorch.org/docs/stable/generated/torch.autograd.grad.html
pytorch docs
differentiated function. * **inputs** (*sequence of Tensor*) -- Inputs w.r.t. which the gradient will be returned (and not accumulated into ".grad"). * **grad_outputs** (*sequence of Tensor*) -- The "vector" in the vector-Jacobian product. Usually gradients w.r.t. each output. None values can be specified for scalar Tensors or ones that don't require grad. If a None value would be acceptable for all grad_tensors, then this argument is optional. Default: None. * **retain_graph** (*bool**, **optional*) -- If "False", the graph used to compute the grad will be freed. Note that in nearly all cases setting this option to "True" is not needed and often can be worked around in a much more efficient way. Defaults to the value of "create_graph". * **create_graph** (*bool**, **optional*) -- If "True", graph of the derivative will be constructed, allowing to compute higher
https://pytorch.org/docs/stable/generated/torch.autograd.grad.html
pytorch docs
order derivative products. Default: "False". * **allow_unused** (*bool**, **optional*) -- If "False", specifying inputs that were not used when computing outputs (and therefore their grad is always zero) is an error. Defaults to "False". * **is_grads_batched** (*bool**, **optional*) -- If "True", the first dimension of each tensor in "grad_outputs" will be interpreted as the batch dimension. Instead of computing a single vector-Jacobian product, we compute a batch of vector- Jacobian products for each "vector" in the batch. We use the vmap prototype feature as the backend to vectorize calls to the autograd engine so that this computation can be performed in a single call. This should lead to performance improvements when compared to manually looping and performing backward multiple times. Note that due to this feature being experimental, there may be performance cliffs. Please use
https://pytorch.org/docs/stable/generated/torch.autograd.grad.html
pytorch docs
"torch._C._debug_only_display_vmap_fallback_warnings(True)" to show any performance warnings and file an issue on github if warnings exist for your use case. Defaults to "False". Return type: Tuple[Tensor, ...]
https://pytorch.org/docs/stable/generated/torch.autograd.grad.html
pytorch docs
torch.Tensor.index_add_ Tensor.index_add_(dim, index, source, *, alpha=1) -> Tensor Accumulate the elements of "alpha" times "source" into the "self" tensor by adding to the indices in the order given in "index". For example, if "dim == 0", "index[i] == j", and "alpha=-1", then the "i"th row of "source" is subtracted from the "j"th row of "self". The "dim"th dimension of "source" must have the same size as the length of "index" (which must be a vector), and all other dimensions must match "self", or an error will be raised. For a 3-D tensor the output is given as: self[index[i], :, :] += alpha * src[i, :, :] # if dim == 0 self[:, index[i], :] += alpha * src[:, i, :] # if dim == 1 self[:, :, index[i]] += alpha * src[:, :, i] # if dim == 2 Note: This operation may behave nondeterministically when given tensors on a CUDA device. See Reproducibility for more information. Parameters:
https://pytorch.org/docs/stable/generated/torch.Tensor.index_add_.html
pytorch docs
Parameters: * dim (int) -- dimension along which to index * **index** (*Tensor*) -- indices of "source" to select from, should have dtype either *torch.int64* or *torch.int32* * **source** (*Tensor*) -- the tensor containing values to add Keyword Arguments: alpha (Number) -- the scalar multiplier for "source" Example: >>> x = torch.ones(5, 3) >>> t = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=torch.float) >>> index = torch.tensor([0, 4, 2]) >>> x.index_add_(0, index, t) tensor([[ 2., 3., 4.], [ 1., 1., 1.], [ 8., 9., 10.], [ 1., 1., 1.], [ 5., 6., 7.]]) >>> x.index_add_(0, index, t, alpha=-1) tensor([[ 1., 1., 1.], [ 1., 1., 1.], [ 1., 1., 1.], [ 1., 1., 1.], [ 1., 1., 1.]])
https://pytorch.org/docs/stable/generated/torch.Tensor.index_add_.html
pytorch docs
torch.Tensor.ceil Tensor.ceil() -> Tensor See "torch.ceil()"
https://pytorch.org/docs/stable/generated/torch.Tensor.ceil.html
pytorch docs
torch.Tensor.bfloat16 Tensor.bfloat16(memory_format=torch.preserve_format) -> Tensor "self.bfloat16()" is equivalent to "self.to(torch.bfloat16)". See "to()". Parameters: memory_format ("torch.memory_format", optional) -- the desired memory format of returned Tensor. Default: "torch.preserve_format".
https://pytorch.org/docs/stable/generated/torch.Tensor.bfloat16.html
pytorch docs
torch.Tensor.matmul Tensor.matmul(tensor2) -> Tensor See "torch.matmul()"
https://pytorch.org/docs/stable/generated/torch.Tensor.matmul.html
pytorch docs
torch.Tensor.adjoint Tensor.adjoint() -> Tensor Alias for "adjoint()"
https://pytorch.org/docs/stable/generated/torch.Tensor.adjoint.html
pytorch docs
torch.tensordot torch.tensordot(a, b, dims=2, out=None) Returns a contraction of a and b over multiple dimensions. "tensordot" implements a generalized matrix product. Parameters: * a (Tensor) -- Left tensor to contract * **b** (*Tensor*) -- Right tensor to contract * **dims** (*int** or **Tuple**[**List**[**int**]**, **List**[**int**]**] or **List**[**List**[**int**]**] **containing two lists** or **Tensor*) -- number of dimensions to contract or explicit lists of dimensions for "a" and "b" respectively When called with a non-negative integer argument "dims" = d, and the number of dimensions of "a" and "b" is m and n, respectively, "tensordot()" computes r_{i_0,...,i_{m-d}, i_d,...,i_n} = \sum_{k_0,...,k_{d-1}} a_{i_0,...,i_{m-d},k_0,...,k_{d-1}} \times b_{k_0,...,k_{d-1}, i_d,...,i_n}. When called with "dims" of the list form, the given dimensions will
https://pytorch.org/docs/stable/generated/torch.tensordot.html
pytorch docs
be contracted in place of the last d of "a" and the first d of b. The sizes in these dimensions must match, but "tensordot()" will deal with broadcasted dimensions. Examples: >>> a = torch.arange(60.).reshape(3, 4, 5) >>> b = torch.arange(24.).reshape(4, 3, 2) >>> torch.tensordot(a, b, dims=([1, 0], [0, 1])) tensor([[4400., 4730.], [4532., 4874.], [4664., 5018.], [4796., 5162.], [4928., 5306.]]) >>> a = torch.randn(3, 4, 5, device='cuda') >>> b = torch.randn(4, 5, 6, device='cuda') >>> c = torch.tensordot(a, b, dims=2).cpu() tensor([[ 8.3504, -2.5436, 6.2922, 2.7556, -1.0732, 3.2741], [ 3.3161, 0.0704, 5.0187, -0.4079, -4.3126, 4.8744], [ 0.8223, 3.9445, 3.2168, -0.2400, 3.4117, 1.7780]]) >>> a = torch.randn(3, 5, 4, 6) >>> b = torch.randn(6, 4, 5, 3) >>> torch.tensordot(a, b, dims=([2, 1, 3], [1, 2, 0]))
https://pytorch.org/docs/stable/generated/torch.tensordot.html
pytorch docs
tensor([[ 7.7193, -2.4867, -10.3204], [ 1.5513, -14.4737, -6.5113], [ -0.2850, 4.2573, -3.5997]])
https://pytorch.org/docs/stable/generated/torch.tensordot.html
pytorch docs
torch.mvlgamma torch.mvlgamma(input, p, *, out=None) -> Tensor Alias for "torch.special.multigammaln()".
https://pytorch.org/docs/stable/generated/torch.mvlgamma.html
pytorch docs
torch.signal.windows.nuttall torch.signal.windows.nuttall(M, *, sym=True, dtype=None, layout=torch.strided, device=None, requires_grad=False) Computes the minimum 4-term Blackman-Harris window according to Nuttall. w_n = 1 - 0.36358 \cos{(z_n)} + 0.48917 \cos{(2z_n)} - 0.13659 \cos{(3z_n)} + 0.01064 \cos{(4z_n)} where "z_n = 2 π n/ M". The window is normalized to 1 (maximum value is 1). However, the 1 doesn't appear if "M" is even and "sym" is True. Parameters: M (int) -- the length of the window. In other words, the number of points of the returned window. Keyword Arguments: * sym (bool, optional) -- If False, returns a periodic window suitable for use in spectral analysis. If True, returns a symmetric window suitable for use in filter design. Default: True. * **dtype** ("torch.dtype", optional) -- the desired data type
https://pytorch.org/docs/stable/generated/torch.signal.windows.nuttall.html
pytorch docs
of returned tensor. Default: if "None", uses a global default (see "torch.set_default_tensor_type()"). * **layout** ("torch.layout", optional) -- the desired layout of returned Tensor. Default: "torch.strided". * **device** ("torch.device", optional) -- the desired device of returned tensor. Default: if "None", uses the current device for the default tensor type (see "torch.set_default_tensor_type()"). "device" will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. * **requires_grad** (*bool**, **optional*) -- If autograd should record operations on the returned tensor. Default: "False". Return type: Tensor References: - A. Nuttall, “Some windows with very good sidelobe behavior,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 29, no. 1, pp. 84-91, Feb 1981. https://doi.org/10.1109/TASSP.1981.1163506
https://pytorch.org/docs/stable/generated/torch.signal.windows.nuttall.html
pytorch docs
Heinzel G. et al., “Spectrum and spectral density estimation by the Discrete Fourier transform (DFT), including a comprehensive list of window functions and some new flat-top windows”, February 15, 2002 https://holometer.fnal.gov/GH_FFT.pdf Examples: >>> # Generates a symmetric Nutall window. >>> torch.signal.windows.general_hamming(5, sym=True) tensor([3.6280e-04, 2.2698e-01, 1.0000e+00, 2.2698e-01, 3.6280e-04]) >>> # Generates a periodic Nuttall window. >>> torch.signal.windows.general_hamming(5, sym=False) tensor([3.6280e-04, 1.1052e-01, 7.9826e-01, 7.9826e-01, 1.1052e-01])
https://pytorch.org/docs/stable/generated/torch.signal.windows.nuttall.html
pytorch docs
Upsample class torch.nn.Upsample(size=None, scale_factor=None, mode='nearest', align_corners=None, recompute_scale_factor=None) Upsamples a given multi-channel 1D (temporal), 2D (spatial) or 3D (volumetric) data. The input data is assumed to be of the form minibatch x channels x [optional depth] x [optional height] x width. Hence, for spatial inputs, we expect a 4D Tensor and for volumetric inputs, we expect a 5D Tensor. The algorithms available for upsampling are nearest neighbor and linear, bilinear, bicubic and trilinear for 3D, 4D and 5D input Tensor, respectively. One can either give a "scale_factor" or the target output "size" to calculate the output size. (You cannot give both, as it is ambiguous) Parameters: * size (int or Tuple[int] or Tuple[int, int] or Tuple[int, int, int], optional) -- output spatial sizes * **scale_factor** (*float** or **Tuple**[**float**] or
https://pytorch.org/docs/stable/generated/torch.nn.Upsample.html
pytorch docs
Tuple[float, float] or Tuple[float, float, float], optional*) -- multiplier for spatial size. Has to match input size if it is a tuple. * **mode** (*str**, **optional*) -- the upsampling algorithm: one of "'nearest'", "'linear'", "'bilinear'", "'bicubic'" and "'trilinear'". Default: "'nearest'" * **align_corners** (*bool**, **optional*) -- if "True", the corner pixels of the input and output tensors are aligned, and thus preserving the values at those pixels. This only has effect when "mode" is "'linear'", "'bilinear'", "'bicubic'", or "'trilinear'". Default: "False" * **recompute_scale_factor** (*bool**, **optional*) -- recompute the scale_factor for use in the interpolation calculation. If *recompute_scale_factor* is "True", then *scale_factor* must be passed in and *scale_factor* is used to compute the output
https://pytorch.org/docs/stable/generated/torch.nn.Upsample.html
pytorch docs
size. The computed output size will be used to infer new scales for the interpolation. Note that when scale_factor is floating-point, it may differ from the recomputed scale_factor due to rounding and precision issues. If recompute_scale_factor is "False", then size or scale_factor will be used directly for interpolation. Shape: * Input: (N, C, W_{in}), (N, C, H_{in}, W_{in}) or (N, C, D_{in}, H_{in}, W_{in}) * Output: (N, C, W_{out}), (N, C, H_{out}, W_{out}) or (N, C, D_{out}, H_{out}, W_{out}), where D_{out} = \left\lfloor D_{in} \times \text{scale\_factor} \right\rfloor H_{out} = \left\lfloor H_{in} \times \text{scale\_factor} \right\rfloor W_{out} = \left\lfloor W_{in} \times \text{scale\_factor} \right\rfloor Warning: With "align_corners = True", the linearly interpolating modes (*linear*, *bilinear*, *bicubic*, and *trilinear*) don't
https://pytorch.org/docs/stable/generated/torch.nn.Upsample.html
pytorch docs
proportionally align the output and input pixels, and thus the output values can depend on the input size. This was the default behavior for these modes up to version 0.3.1. Since then, the default behavior is "align_corners = False". See below for concrete examples on how this affects the outputs. Note: If you want downsampling/general resizing, you should use "interpolate()". Examples: >>> input = torch.arange(1, 5, dtype=torch.float32).view(1, 1, 2, 2) >>> input tensor([[[[1., 2.], [3., 4.]]]]) >>> m = nn.Upsample(scale_factor=2, mode='nearest') >>> m(input) tensor([[[[1., 1., 2., 2.], [1., 1., 2., 2.], [3., 3., 4., 4.], [3., 3., 4., 4.]]]]) >>> m = nn.Upsample(scale_factor=2, mode='bilinear') # align_corners=False >>> m(input) tensor([[[[1.0000, 1.2500, 1.7500, 2.0000], [1.5000, 1.7500, 2.2500, 2.5000],
https://pytorch.org/docs/stable/generated/torch.nn.Upsample.html
pytorch docs
[1.5000, 1.7500, 2.2500, 2.5000], [2.5000, 2.7500, 3.2500, 3.5000], [3.0000, 3.2500, 3.7500, 4.0000]]]]) >>> m = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True) >>> m(input) tensor([[[[1.0000, 1.3333, 1.6667, 2.0000], [1.6667, 2.0000, 2.3333, 2.6667], [2.3333, 2.6667, 3.0000, 3.3333], [3.0000, 3.3333, 3.6667, 4.0000]]]]) >>> # Try scaling the same data in a larger tensor >>> input_3x3 = torch.zeros(3, 3).view(1, 1, 3, 3) >>> input_3x3[:, :, :2, :2].copy_(input) tensor([[[[1., 2.], [3., 4.]]]]) >>> input_3x3 tensor([[[[1., 2., 0.], [3., 4., 0.], [0., 0., 0.]]]]) >>> m = nn.Upsample(scale_factor=2, mode='bilinear') # align_corners=False >>> # Notice that values in top left corner are the same with the small input (except at boundary) >>> m(input_3x3)
https://pytorch.org/docs/stable/generated/torch.nn.Upsample.html
pytorch docs
m(input_3x3) tensor([[[[1.0000, 1.2500, 1.7500, 1.5000, 0.5000, 0.0000], [1.5000, 1.7500, 2.2500, 1.8750, 0.6250, 0.0000], [2.5000, 2.7500, 3.2500, 2.6250, 0.8750, 0.0000], [2.2500, 2.4375, 2.8125, 2.2500, 0.7500, 0.0000], [0.7500, 0.8125, 0.9375, 0.7500, 0.2500, 0.0000], [0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000]]]]) >>> m = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True) >>> # Notice that values in top left corner are now changed >>> m(input_3x3) tensor([[[[1.0000, 1.4000, 1.8000, 1.6000, 0.8000, 0.0000], [1.8000, 2.2000, 2.6000, 2.2400, 1.1200, 0.0000], [2.6000, 3.0000, 3.4000, 2.8800, 1.4400, 0.0000], [2.4000, 2.7200, 3.0400, 2.5600, 1.2800, 0.0000], [1.2000, 1.3600, 1.5200, 1.2800, 0.6400, 0.0000], [0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000]]]])
https://pytorch.org/docs/stable/generated/torch.nn.Upsample.html
pytorch docs
Conv3d class torch.ao.nn.quantized.Conv3d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros', device=None, dtype=None) Applies a 3D convolution over a quantized input signal composed of several quantized input planes. For details on input arguments, parameters, and implementation see "Conv3d". Note: Only *zeros* is supported for the "padding_mode" argument. Note: Only *torch.quint8* is supported for the input data type. Variables: * weight (Tensor) -- packed tensor derived from the learnable weight parameter. * **scale** (*Tensor*) -- scalar for the output scale * **zero_point** (*Tensor*) -- scalar for the output zero point See "Conv3d" for other attributes. Examples: >>> # With square kernels and equal stride >>> m = nn.quantized.Conv3d(16, 33, 3, stride=2) >>> # non-square kernels and unequal stride and with padding
https://pytorch.org/docs/stable/generated/torch.ao.nn.quantized.Conv3d.html
pytorch docs
m = nn.quantized.Conv3d(16, 33, (3, 5, 5), stride=(1, 2, 2), padding=(1, 2, 2)) >>> # non-square kernels and unequal stride and with padding and dilation >>> m = nn.quantized.Conv3d(16, 33, (3, 5, 5), stride=(1, 2, 2), padding=(1, 2, 2), dilation=(1, 2, 2)) >>> input = torch.randn(20, 16, 56, 56, 56) >>> # quantize input to quint8 >>> q_input = torch.quantize_per_tensor(input, scale=1.0, zero_point=0, dtype=torch.quint8) >>> output = m(q_input) classmethod from_float(mod) Creates a quantized module from a float module or qparams_dict. Parameters: **mod** (*Module*) -- a float module, either produced by torch.ao.quantization utilities or provided by the user
https://pytorch.org/docs/stable/generated/torch.ao.nn.quantized.Conv3d.html
pytorch docs
torch.nn.utils.rnn.pad_sequence torch.nn.utils.rnn.pad_sequence(sequences, batch_first=False, padding_value=0.0) Pad a list of variable length Tensors with "padding_value" "pad_sequence" stacks a list of Tensors along a new dimension, and pads them to equal length. For example, if the input is list of sequences with size "L x " and if batch_first is False, and "T x B x " otherwise. B is batch size. It is equal to the number of elements in "sequences". T is length of the longest sequence. L is length of the sequence. *** is any number of trailing dimensions, including none. -[ Example ]- from torch.nn.utils.rnn import pad_sequence a = torch.ones(25, 300) b = torch.ones(22, 300) c = torch.ones(15, 300) pad_sequence([a, b, c]).size() torch.Size([25, 3, 300]) Note: This function returns a Tensor of size "T x B x *" or "B x T x *"
https://pytorch.org/docs/stable/generated/torch.nn.utils.rnn.pad_sequence.html
pytorch docs
where T is the length of the longest sequence. This function assumes trailing dimensions and type of all the Tensors in sequences are same. Parameters: * sequences (list[Tensor]) -- list of variable length sequences. * **batch_first** (*bool**, **optional*) -- output will be in "B x T x *" if True, or in "T x B x *" otherwise. Default: False. * **padding_value** (*float**, **optional*) -- value for padded elements. Default: 0. Returns: Tensor of size "T x B x " if "batch_first" is "False". Tensor of size "B x T x " otherwise Return type: Tensor
https://pytorch.org/docs/stable/generated/torch.nn.utils.rnn.pad_sequence.html
pytorch docs
torch.initial_seed torch.initial_seed() Returns the initial seed for generating random numbers as a Python long. Return type: int
https://pytorch.org/docs/stable/generated/torch.initial_seed.html
pytorch docs
load_observer_state_dict class torch.quantization.observer.load_observer_state_dict(mod, obs_dict) Given input model and a state_dict containing model observer stats, load the stats back into the model. The observer state_dict can be saved using torch.ao.quantization.get_observer_state_dict
https://pytorch.org/docs/stable/generated/torch.quantization.observer.load_observer_state_dict.html
pytorch docs
torch.scatter_add torch.scatter_add(input, dim, index, src) -> Tensor Out-of-place version of "torch.Tensor.scatter_add_()"
https://pytorch.org/docs/stable/generated/torch.scatter_add.html
pytorch docs
torch.trapezoid torch.trapezoid(y, x=None, *, dx=None, dim=- 1) -> Tensor Computes the trapezoidal rule along "dim". By default the spacing between elements is assumed to be 1, but "dx" can be used to specify a different constant spacing, and "x" can be used to specify arbitrary spacing along "dim". Assuming "y" is a one-dimensional tensor with elements {y_0, y_1, ..., y_n}, the default computation is \begin{aligned} \sum_{i = 1}^{n-1} \frac{1}{2} (y_i + y_{i-1}) \end{aligned} When "dx" is specified the computation becomes \begin{aligned} \sum_{i = 1}^{n-1} \frac{\Delta x}{2} (y_i + y_{i-1}) \end{aligned} effectively multiplying the result by "dx". When "x" is specified, assuming "x" is also a one-dimensional tensor with elements {x_0, x_1, ..., x_n}, the computation becomes \begin{aligned} \sum_{i = 1}^{n-1} \frac{(x_i - x_{i-1})}{2} (y_i + y_{i-1}) \end{aligned}
https://pytorch.org/docs/stable/generated/torch.trapezoid.html
pytorch docs
(y_i + y_{i-1}) \end{aligned} When "x" and "y" have the same size, the computation is as described above and no broadcasting is needed. The broadcasting behavior of this function is as follows when their sizes are different. For both "x" and "y", the function computes the difference between consecutive elements along dimension "dim". This effectively creates two tensors, x_diff and y_diff, that have the same shape as the original tensors except their lengths along the dimension "dim" is reduced by 1. After that, those two tensors are broadcast together to compute final output as part of the trapezoidal rule. See the examples below for details. Note: The trapezoidal rule is a technique for approximating the definite integral of a function by averaging its left and right Riemann sums. The approximation becomes more accurate as the resolution of the partition increases. Parameters: * y (Tensor) -- Values to use when computing the
https://pytorch.org/docs/stable/generated/torch.trapezoid.html
pytorch docs
trapezoidal rule. * **x** (*Tensor*) -- If specified, defines spacing between values as specified above. Keyword Arguments: * dx (float) -- constant spacing between values. If neither "x" or "dx" are specified then this defaults to 1. Effectively multiplies the result by its value. * **dim** (*int*) -- The dimension along which to compute the trapezoidal rule. The last (inner-most) dimension by default. Examples: >>> # Computes the trapezoidal rule in 1D, spacing is implicitly 1 >>> y = torch.tensor([1, 5, 10]) >>> torch.trapezoid(y) tensor(10.5) >>> # Computes the same trapezoidal rule directly to verify >>> (1 + 10 + 10) / 2 10.5 >>> # Computes the trapezoidal rule in 1D with constant spacing of 2 >>> # NOTE: the result is the same as before, but multiplied by 2 >>> torch.trapezoid(y, dx=2) 21.0 >>> # Computes the trapezoidal rule in 1D with arbitrary spacing
https://pytorch.org/docs/stable/generated/torch.trapezoid.html
pytorch docs
x = torch.tensor([1, 3, 6]) >>> torch.trapezoid(y, x) 28.5 >>> # Computes the same trapezoidal rule directly to verify >>> ((3 - 1) * (1 + 5) + (6 - 3) * (5 + 10)) / 2 28.5 >>> # Computes the trapezoidal rule for each row of a 3x3 matrix >>> y = torch.arange(9).reshape(3, 3) tensor([[0, 1, 2], [3, 4, 5], [6, 7, 8]]) >>> torch.trapezoid(y) tensor([ 2., 8., 14.]) >>> # Computes the trapezoidal rule for each column of the matrix >>> torch.trapezoid(y, dim=0) tensor([ 6., 8., 10.]) >>> # Computes the trapezoidal rule for each row of a 3x3 ones matrix >>> # with the same arbitrary spacing >>> y = torch.ones(3, 3) >>> x = torch.tensor([1, 3, 6]) >>> torch.trapezoid(y, x) array([5., 5., 5.]) >>> # Computes the trapezoidal rule for each row of a 3x3 ones matrix >>> # with different arbitrary spacing per row >>> y = torch.ones(3, 3)
https://pytorch.org/docs/stable/generated/torch.trapezoid.html
pytorch docs
y = torch.ones(3, 3) >>> x = torch.tensor([[1, 2, 3], [1, 3, 5], [1, 4, 7]]) >>> torch.trapezoid(y, x) array([2., 4., 6.])
https://pytorch.org/docs/stable/generated/torch.trapezoid.html
pytorch docs
RAdam class torch.optim.RAdam(params, lr=0.001, betas=(0.9, 0.999), eps=1e-08, weight_decay=0, *, foreach=None, differentiable=False) Implements RAdam algorithm. \begin{aligned} &\rule{110mm}{0.4pt} \\ &\textbf{input} : \gamma \text{ (lr)}, \: \beta_1, \beta_2 \text{ (betas)}, \: \theta_0 \text{ (params)}, \:f(\theta) \text{ (objective)}, \: \lambda \text{ (weightdecay)}, \\ &\hspace{13mm} \epsilon \text{ (epsilon)} \\ &\textbf{initialize} : m_0 \leftarrow 0 \text{ ( first moment)}, v_0 \leftarrow 0 \text{ ( second moment)}, \\ &\hspace{18mm} \rho_{\infty} \leftarrow 2/(1-\beta_2) -1 \\[-1.ex] &\rule{110mm}{0.4pt} \\ &\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do} \\ &\hspace{6mm}g_t \leftarrow \nabla_{\theta} f_t (\theta_{t-1}) \\ &\hspace{5mm} \textbf{if}
https://pytorch.org/docs/stable/generated/torch.optim.RAdam.html
pytorch docs
\: \lambda \neq 0 \ &\hspace{10mm} g_t \leftarrow g_t + \lambda \theta_{t-1} \ &\hspace{6mm}m_t \leftarrow \beta_1 m_{t-1} + (1 - \beta_1) g_t \ &\hspace{6mm}v_t \leftarrow \beta_2 v_{t-1} + (1-\beta_2) g^2_t \ &\hspace{6mm}\widehat{m_t} \leftarrow m_t/\big(1-\beta_1^t \big) \ &\hspace{6mm}\rho_t \leftarrow \rho_{\infty} - 2 t \beta^t_2 /\big(1-\beta_2^t \big) \[0.1.ex] &\hspace{6mm}\textbf{if} \: \rho_t > 5 \ &\hspace{12mm} l_t \leftarrow \frac{\sqrt{ (1-\beta^t_2) }}{ \sqrt{v_t} +\epsilon } \ &\hspace{12mm} r_t \leftarrow \sqrt{\frac{(\rho_t-4)(\rho_t-2)\ rho_{\infty}}{(\rho_{\infty}-4)(\rho_{\infty}-2) \rho_t}} \ &\hspace{12mm}\theta_t \leftarrow \theta_{t-1} - \gamma \widehat{m_t} r_t l_t \ &\hspace{6mm}\textbf{else}
https://pytorch.org/docs/stable/generated/torch.optim.RAdam.html
pytorch docs
\ &\hspace{12mm}\theta_t \leftarrow \theta_{t-1} - \gamma \widehat{m_t} \ &\rule{110mm}{0.4pt} \[-1.ex] &\bf{return} \: \theta_t \[-1.ex] &\rule{110mm}{0.4pt} \[-1.ex] \end{aligned} For further details regarding the algorithm we refer to On the variance of the adaptive learning rate and beyond. This implementation uses the same weight_decay implementation as Adam (were the weight_decay is applied to the gradient) and not the one from AdamW (were weight_decay is applied to the update). This is different from the author's implementation. Parameters: * params (iterable) -- iterable of parameters to optimize or dicts defining parameter groups * **lr** (*float**, **optional*) -- learning rate (default: 1e-3) * **betas** (*Tuple**[**float**, **float**]**, **optional*) -- coefficients used for computing running averages of gradient
https://pytorch.org/docs/stable/generated/torch.optim.RAdam.html
pytorch docs
and its square (default: (0.9, 0.999)) * **eps** (*float**, **optional*) -- term added to the denominator to improve numerical stability (default: 1e-8) * **weight_decay** (*float**, **optional*) -- weight decay (L2 penalty) (default: 0) * **foreach** (*bool**, **optional*) -- whether foreach implementation of optimizer is used. If unspecified by the user (so foreach is None), we will try to use foreach over the for-loop implementation on CUDA, since it is usually significantly more performant. (default: None) * **differentiable** (*bool**, **optional*) -- whether autograd should occur through the optimizer step in training. Otherwise, the step() function runs in a torch.no_grad() context. Setting to True can impair performance, so leave it False if you don't intend to run autograd through this instance (default: False) add_param_group(param_group)
https://pytorch.org/docs/stable/generated/torch.optim.RAdam.html
pytorch docs
add_param_group(param_group) Add a param group to the "Optimizer" s *param_groups*. This can be useful when fine tuning a pre-trained network as frozen layers can be made trainable and added to the "Optimizer" as training progresses. Parameters: **param_group** (*dict*) -- Specifies what Tensors should be optimized along with group specific optimization options. load_state_dict(state_dict) Loads the optimizer state. Parameters: **state_dict** (*dict*) -- optimizer state. Should be an object returned from a call to "state_dict()". register_step_post_hook(hook) Register an optimizer step post hook which will be called after optimizer step. It should have the following signature: hook(optimizer, args, kwargs) -> None The "optimizer" argument is the optimizer instance being used. Parameters: **hook** (*Callable*) -- The user defined hook to be registered.
https://pytorch.org/docs/stable/generated/torch.optim.RAdam.html
pytorch docs
registered. Returns: a handle that can be used to remove the added hook by calling "handle.remove()" Return type: "torch.utils.hooks.RemoveableHandle" register_step_pre_hook(hook) Register an optimizer step pre hook which will be called before optimizer step. It should have the following signature: hook(optimizer, args, kwargs) -> None or modified args and kwargs The "optimizer" argument is the optimizer instance being used. If args and kwargs are modified by the pre-hook, then the transformed values are returned as a tuple containing the new_args and new_kwargs. Parameters: **hook** (*Callable*) -- The user defined hook to be registered. Returns: a handle that can be used to remove the added hook by calling "handle.remove()" Return type: "torch.utils.hooks.RemoveableHandle" state_dict()
https://pytorch.org/docs/stable/generated/torch.optim.RAdam.html
pytorch docs
state_dict() Returns the state of the optimizer as a "dict". It contains two entries: * state - a dict holding current optimization state. Its content differs between optimizer classes. * param_groups - a list containing all parameter groups where each parameter group is a dict zero_grad(set_to_none=False) Sets the gradients of all optimized "torch.Tensor" s to zero. Parameters: **set_to_none** (*bool*) -- instead of setting to zero, set the grads to None. This will in general have lower memory footprint, and can modestly improve performance. However, it changes certain behaviors. For example: 1. When the user tries to access a gradient and perform manual ops on it, a None attribute or a Tensor full of 0s will behave differently. 2. If the user requests "zero_grad(set_to_none=True)" followed by a backward pass,
https://pytorch.org/docs/stable/generated/torch.optim.RAdam.html
pytorch docs
".grad"s are guaranteed to be None for params that did not receive a gradient. 3. "torch.optim" optimizers have a different behavior if the gradient is 0 or None (in one case it does the step with a gradient of 0 and in the other it skips the step altogether).
https://pytorch.org/docs/stable/generated/torch.optim.RAdam.html
pytorch docs
PixelUnshuffle class torch.nn.PixelUnshuffle(downscale_factor) Reverses the "PixelShuffle" operation by rearranging elements in a tensor of shape (, C, H \times r, W \times r) to a tensor of shape (, C \times r^2, H, W), where r is a downscale factor. See the paper: Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network by Shi et. al (2016) for more details. Parameters: downscale_factor (int) -- factor to decrease spatial resolution by Shape: * Input: (*, C_{in}, H_{in}, W_{in}), where * is zero or more batch dimensions * Output: (*, C_{out}, H_{out}, W_{out}), where C_{out} = C_{in} \times \text{downscale\_factor}^2 H_{out} = H_{in} \div \text{downscale\_factor} W_{out} = W_{in} \div \text{downscale\_factor} Examples: >>> pixel_unshuffle = nn.PixelUnshuffle(3) >>> input = torch.randn(1, 1, 12, 12)
https://pytorch.org/docs/stable/generated/torch.nn.PixelUnshuffle.html
pytorch docs
input = torch.randn(1, 1, 12, 12) >>> output = pixel_unshuffle(input) >>> print(output.size()) torch.Size([1, 9, 4, 4])
https://pytorch.org/docs/stable/generated/torch.nn.PixelUnshuffle.html
pytorch docs
torch.foreach_exp torch.foreach_exp(self: List[Tensor]) -> None Apply "torch.exp()" to each Tensor of the input list.
https://pytorch.org/docs/stable/generated/torch._foreach_exp_.html
pytorch docs
torch.nn.functional.log_softmax torch.nn.functional.log_softmax(input, dim=None, _stacklevel=3, dtype=None) Applies a softmax followed by a logarithm. While mathematically equivalent to log(softmax(x)), doing these two operations separately is slower and numerically unstable. This function uses an alternative formulation to compute the output and gradient correctly. See "LogSoftmax" for more details. Parameters: * input (Tensor) -- input * **dim** (*int*) -- A dimension along which log_softmax will be computed. * **dtype** ("torch.dtype", optional) -- the desired data type of returned tensor. If specified, the input tensor is cast to "dtype" before the operation is performed. This is useful for preventing data type overflows. Default: None. Return type: Tensor
https://pytorch.org/docs/stable/generated/torch.nn.functional.log_softmax.html
pytorch docs
AvgPool3d class torch.nn.AvgPool3d(kernel_size, stride=None, padding=0, ceil_mode=False, count_include_pad=True, divisor_override=None) Applies a 3D average pooling over an input signal composed of several input planes. In the simplest case, the output value of the layer with input size (N, C, D, H, W), output (N, C, D_{out}, H_{out}, W_{out}) and "kernel_size" (kD, kH, kW) can be precisely described as: \begin{aligned} \text{out}(N_i, C_j, d, h, w) ={} & \sum_{k=0}^{kD-1} \sum_{m=0}^{kH-1} \sum_{n=0}^{kW-1} \\ & \frac{\text{input}(N_i, C_j, \text{stride}[0] \times d + k, \text{stride}[1] \times h + m, \text{stride}[2] \times w + n)} {kD \times kH \times kW} \end{aligned} If "padding" is non-zero, then the input is implicitly zero-padded on all three sides for "padding" number of points. Note: When ceil_mode=True, sliding windows are allowed to go off-bounds if they start within the left padding or the input. Sliding
https://pytorch.org/docs/stable/generated/torch.nn.AvgPool3d.html
pytorch docs
windows that would start in the right padded region are ignored. The parameters "kernel_size", "stride" can either be: * a single "int" -- in which case the same value is used for the depth, height and width dimension * a "tuple" of three ints -- in which case, the first *int* is used for the depth dimension, the second *int* for the height dimension and the third *int* for the width dimension Parameters: * kernel_size (Union[int, Tuple[int, int, int]]) -- the size of the window * **stride** (*Union**[**int**, **Tuple**[**int**, **int**, **int**]**]*) -- the stride of the window. Default value is "kernel_size" * **padding** (*Union**[**int**, **Tuple**[**int**, **int**, **int**]**]*) -- implicit zero padding to be added on all three sides * **ceil_mode** (*bool*) -- when True, will use *ceil* instead of *floor* to compute the output shape
https://pytorch.org/docs/stable/generated/torch.nn.AvgPool3d.html
pytorch docs
of floor to compute the output shape * **count_include_pad** (*bool*) -- when True, will include the zero-padding in the averaging calculation * **divisor_override** (*Optional**[**int**]*) -- if specified, it will be used as divisor, otherwise "kernel_size" will be used Shape: * Input: (N, C, D_{in}, H_{in}, W_{in}) or (C, D_{in}, H_{in}, W_{in}). * Output: (N, C, D_{out}, H_{out}, W_{out}) or (C, D_{out}, H_{out}, W_{out}), where D_{out} = \left\lfloor\frac{D_{in} + 2 \times \text{padding}[0] - \text{kernel\_size}[0]}{\text{stride}[0]} + 1\right\rfloor H_{out} = \left\lfloor\frac{H_{in} + 2 \times \text{padding}[1] - \text{kernel\_size}[1]}{\text{stride}[1]} + 1\right\rfloor W_{out} = \left\lfloor\frac{W_{in} + 2 \times \text{padding}[2] - \text{kernel\_size}[2]}{\text{stride}[2]} + 1\right\rfloor Examples:
https://pytorch.org/docs/stable/generated/torch.nn.AvgPool3d.html
pytorch docs
Examples: >>> # pool of square window of size=3, stride=2 >>> m = nn.AvgPool3d(3, stride=2) >>> # pool of non-square window >>> m = nn.AvgPool3d((3, 2, 2), stride=(2, 1, 2)) >>> input = torch.randn(20, 16, 50, 44, 31) >>> output = m(input)
https://pytorch.org/docs/stable/generated/torch.nn.AvgPool3d.html
pytorch docs
torch.Tensor.masked_fill Tensor.masked_fill(mask, value) -> Tensor Out-of-place version of "torch.Tensor.masked_fill_()"
https://pytorch.org/docs/stable/generated/torch.Tensor.masked_fill.html
pytorch docs
torch.Tensor.sparse_resize_and_clear_ Tensor.sparse_resize_and_clear_(size, sparse_dim, dense_dim) -> Tensor Removes all specified elements from a sparse tensor "self" and resizes "self" to the desired size and the number of sparse and dense dimensions. Parameters: * size (torch.Size) -- the desired size. * **sparse_dim** (*int*) -- the number of sparse dimensions * **dense_dim** (*int*) -- the number of dense dimensions
https://pytorch.org/docs/stable/generated/torch.Tensor.sparse_resize_and_clear_.html
pytorch docs
torch.nn.utils.stateless.functional_call torch.nn.utils.stateless.functional_call(module, parameters_and_buffers, args, kwargs=None, *, tie_weights=True) Performs a functional call on the module by replacing the module parameters and buffers with the provided ones. Warning: This API is deprecated as of PyTorch 2.0 and will be removed in a future version of PyTorch. Please use "torch.func.functional_call()" instead, which is a drop-in replacement for this API. Note: If the module has active parametrizations, passing a value in the "parameters_and_buffers" argument with the name set to the regular parameter name will completely disable the parametrization. If you want to apply the parametrization function to the value passed please set the key as "{submodule_name}.parametrizations.{parameter_name}.original". Note: If the module performs in-place operations on parameters/buffers,
https://pytorch.org/docs/stable/generated/torch.nn.utils.stateless.functional_call.html
pytorch docs
these will be reflected in the parameters_and_buffers input.Example: >>> a = {'foo': torch.zeros(())} >>> mod = Foo() # does self.foo = self.foo + 1 >>> print(mod.foo) # tensor(0.) >>> functional_call(mod, a, torch.ones(())) >>> print(mod.foo) # tensor(0.) >>> print(a['foo']) # tensor(1.) Note: If the module has tied weights, whether or not functional_call respects the tying is determined by the tie_weights flag.Example: >>> a = {'foo': torch.zeros(())} >>> mod = Foo() # has both self.foo and self.foo_tied which are tied. Returns x + self.foo + self.foo_tied >>> print(mod.foo) # tensor(1.) >>> mod(torch.zeros(())) # tensor(2.) >>> functional_call(mod, a, torch.zeros(())) # tensor(0.) since it will change self.foo_tied too >>> functional_call(mod, a, torch.zeros(()), tie_weights=False) # tensor(1.)--self.foo_tied is not updated
https://pytorch.org/docs/stable/generated/torch.nn.utils.stateless.functional_call.html
pytorch docs
new_a = {'foo', torch.zeros(()), 'foo_tied': torch.zeros(())} >>> functional_call(mod, new_a, torch.zeros()) # tensor(0.) Parameters: * module (torch.nn.Module) -- the module to call * **parameters_and_buffers** (*dict of str and Tensor*) -- the parameters that will be used in the module call. * **args** (*Any** or **tuple*) -- arguments to be passed to the module call. If not a tuple, considered a single argument. * **kwargs** (*dict*) -- keyword arguments to be passed to the module call * **tie_weights** (*bool**, **optional*) -- If True, then parameters and buffers tied in the original model will be treated as tied in the reparamaterized version. Therefore, if True and different values are passed for the tied paramaters and buffers, it will error. If False, it will not respect the originally tied parameters and buffers unless the values
https://pytorch.org/docs/stable/generated/torch.nn.utils.stateless.functional_call.html
pytorch docs
passed for both weights are the same. Default: True. Returns: the result of calling "module". Return type: Any
https://pytorch.org/docs/stable/generated/torch.nn.utils.stateless.functional_call.html
pytorch docs
torch.nn.utils.prune.custom_from_mask torch.nn.utils.prune.custom_from_mask(module, name, mask) Prunes tensor corresponding to parameter called "name" in "module" by applying the pre-computed mask in "mask". Modifies module in place (and also return the modified module) by: adding a named buffer called "name+'_mask'" corresponding to the binary mask applied to the parameter "name" by the pruning method. replacing the parameter "name" by its pruned version, while the original (unpruned) parameter is stored in a new parameter named "name+'_orig'". Parameters: * module (nn.Module) -- module containing the tensor to prune * **name** (*str*) -- parameter name within "module" on which pruning will act. * **mask** (*Tensor*) -- binary mask to be applied to the parameter. Returns: modified (i.e. pruned) version of the input module Return type:
https://pytorch.org/docs/stable/generated/torch.nn.utils.prune.custom_from_mask.html
pytorch docs
Return type: module (nn.Module) -[ Examples ]- from torch.nn.utils import prune m = prune.custom_from_mask( ... nn.Linear(5, 3), name='bias', mask=torch.tensor([0, 1, 0]) ... ) print(m.bias_mask) tensor([0., 1., 0.])
https://pytorch.org/docs/stable/generated/torch.nn.utils.prune.custom_from_mask.html
pytorch docs
torch.Tensor.xlogy Tensor.xlogy(other) -> Tensor See "torch.xlogy()"
https://pytorch.org/docs/stable/generated/torch.Tensor.xlogy.html
pytorch docs
torch.Tensor.softmax Tensor.softmax(dim) -> Tensor Alias for "torch.nn.functional.softmax()".
https://pytorch.org/docs/stable/generated/torch.Tensor.softmax.html
pytorch docs
torch.autograd.functional.jvp torch.autograd.functional.jvp(func, inputs, v=None, create_graph=False, strict=False) Function that computes the dot product between the Jacobian of the given function at the point given by the inputs and a vector "v". Parameters: * func (function) -- a Python function that takes Tensor inputs and returns a tuple of Tensors or a Tensor. * **inputs** (*tuple of Tensors** or **Tensor*) -- inputs to the function "func". * **v** (*tuple of Tensors** or **Tensor*) -- The vector for which the Jacobian vector product is computed. Must be the same size as the input of "func". This argument is optional when the input to "func" contains a single element and (if it is not provided) will be set as a Tensor containing a single "1". * **create_graph** (*bool**, **optional*) -- If "True", both the output and result will be computed in a differentiable way.
https://pytorch.org/docs/stable/generated/torch.autograd.functional.jvp.html
pytorch docs
Note that when "strict" is "False", the result can not require gradients or be disconnected from the inputs. Defaults to "False". * **strict** (*bool**, **optional*) -- If "True", an error will be raised when we detect that there exists an input such that all the outputs are independent of it. If "False", we return a Tensor of zeros as the jvp for said inputs, which is the expected mathematical value. Defaults to "False". Returns: tuple with: func_output (tuple of Tensors or Tensor): output of "func(inputs)" jvp (tuple of Tensors or Tensor): result of the dot product with the same shape as the output. Return type: output (tuple) Note: "autograd.functional.jvp" computes the jvp by using the backward of the backward (sometimes called the double backwards trick). This is not the most performant way of computing the jvp. Please
https://pytorch.org/docs/stable/generated/torch.autograd.functional.jvp.html
pytorch docs
consider using "torch.func.jvp()" or the low-level forward-mode AD API instead. -[ Example ]- def exp_reducer(x): ... return x.exp().sum(dim=1) inputs = torch.rand(4, 4) v = torch.ones(4, 4) jvp(exp_reducer, inputs, v) (tensor([6.3090, 4.6742, 7.9114, 8.2106]), tensor([6.3090, 4.6742, 7.9114, 8.2106])) jvp(exp_reducer, inputs, v, create_graph=True) (tensor([6.3090, 4.6742, 7.9114, 8.2106], grad_fn=), tensor([6.3090, 4.6742, 7.9114, 8.2106], grad_fn=)) def adder(x, y): ... return 2 * x + 3 * y inputs = (torch.rand(2), torch.rand(2)) v = (torch.ones(2), torch.ones(2)) jvp(adder, inputs, v) (tensor([2.2399, 2.5005]), tensor([5., 5.]))
https://pytorch.org/docs/stable/generated/torch.autograd.functional.jvp.html
pytorch docs
torch.func.grad_and_value torch.func.grad_and_value(func, argnums=0, has_aux=False) Returns a function to compute a tuple of the gradient and primal, or forward, computation. Parameters: * func (Callable) -- A Python function that takes one or more arguments. Must return a single-element Tensor. If specified "has_aux" equals "True", function can return a tuple of single-element Tensor and other auxiliary objects: "(output, aux)". * **argnums** (*int** or **Tuple**[**int**]*) -- Specifies arguments to compute gradients with respect to. "argnums" can be single integer or tuple of integers. Default: 0. * **has_aux** (*bool*) -- Flag indicating that "func" returns a tensor and other auxiliary objects: "(output, aux)". Default: False. Returns: Function to compute a tuple of gradients with respect to its inputs and the forward computation. By default, the output of
https://pytorch.org/docs/stable/generated/torch.func.grad_and_value.html
pytorch docs
the function is a tuple of the gradient tensor(s) with respect to the first argument and the primal computation. If specified "has_aux" equals "True", tuple of gradients and tuple of the forward computation with output auxiliary objects is returned. If "argnums" is a tuple of integers, a tuple of a tuple of the output gradients with respect to each "argnums" value and the forward computation is returned. Return type: Callable See "grad()" for examples
https://pytorch.org/docs/stable/generated/torch.func.grad_and_value.html
pytorch docs
torch.Tensor.size Tensor.size(dim=None) -> torch.Size or int Returns the size of the "self" tensor. If "dim" is not specified, the returned value is a "torch.Size", a subclass of "tuple". If "dim" is specified, returns an int holding the size of that dimension. Parameters: dim (int, optional) -- The dimension for which to retrieve the size. Example: >>> t = torch.empty(3, 4, 5) >>> t.size() torch.Size([3, 4, 5]) >>> t.size(dim=1) 4
https://pytorch.org/docs/stable/generated/torch.Tensor.size.html
pytorch docs
torch.Tensor.bitwise_xor Tensor.bitwise_xor() -> Tensor See "torch.bitwise_xor()"
https://pytorch.org/docs/stable/generated/torch.Tensor.bitwise_xor.html
pytorch docs
torch.func.hessian torch.func.hessian(func, argnums=0) Computes the Hessian of "func" with respect to the arg(s) at index "argnum" via a forward-over-reverse strategy. The forward-over-reverse strategy (composing "jacfwd(jacrev(func))") is a good default for good performance. It is possible to compute Hessians through other compositions of "jacfwd()" and "jacrev()" like "jacfwd(jacfwd(func))" or "jacrev(jacrev(func))". Parameters: * func (function) -- A Python function that takes one or more arguments, one of which must be a Tensor, and returns one or more Tensors * **argnums** (*int** or **Tuple**[**int**]*) -- Optional, integer or tuple of integers, saying which arguments to get the Hessian with respect to. Default: 0. Returns: Returns a function that takes in the same inputs as "func" and returns the Hessian of "func" with respect to the arg(s) at "argnums". Note:
https://pytorch.org/docs/stable/generated/torch.func.hessian.html
pytorch docs
"argnums". Note: You may see this API error out with "forward-mode AD not implemented for operator X". If so, please file a bug report and we will prioritize it. An alternative is to use "jacrev(jacrev(func))", which has better operator coverage. A basic usage with a R^N -> R^1 function gives a N x N Hessian: from torch.func import hessian def f(x): return x.sin().sum() x = torch.randn(5) hess = hessian(f)(x) # equivalent to jacfwd(jacrev(f))(x) assert torch.allclose(hess, torch.diag(-x.sin()))
https://pytorch.org/docs/stable/generated/torch.func.hessian.html
pytorch docs
torch.slogdet torch.slogdet(input) Alias for "torch.linalg.slogdet()"
https://pytorch.org/docs/stable/generated/torch.slogdet.html
pytorch docs
torch.broadcast_tensors torch.broadcast_tensors(*tensors) -> List of Tensors Broadcasts the given tensors according to Broadcasting semantics. Parameters: *tensors -- any number of tensors of the same type Warning: More than one element of a broadcasted tensor may refer to a single memory location. As a result, in-place operations (especially ones that are vectorized) may result in incorrect behavior. If you need to write to the tensors, please clone them first. Example: >>> x = torch.arange(3).view(1, 3) >>> y = torch.arange(2).view(2, 1) >>> a, b = torch.broadcast_tensors(x, y) >>> a.size() torch.Size([2, 3]) >>> a tensor([[0, 1, 2], [0, 1, 2]])
https://pytorch.org/docs/stable/generated/torch.broadcast_tensors.html
pytorch docs
torch.autograd.profiler.profile.total_average profile.total_average() Averages all events. Returns: A FunctionEventAvg object.
https://pytorch.org/docs/stable/generated/torch.autograd.profiler.profile.total_average.html
pytorch docs
torch.greater_equal torch.greater_equal(input, other, *, out=None) -> Tensor Alias for "torch.ge()".
https://pytorch.org/docs/stable/generated/torch.greater_equal.html
pytorch docs
torch.Tensor.qr Tensor.qr(some=True) See "torch.qr()"
https://pytorch.org/docs/stable/generated/torch.Tensor.qr.html
pytorch docs
torch.Tensor.mv Tensor.mv(vec) -> Tensor See "torch.mv()"
https://pytorch.org/docs/stable/generated/torch.Tensor.mv.html
pytorch docs
ObservationType class torch.ao.quantization.backend_config.ObservationType(value) An enum that represents different ways of how an operator/operator pattern should be observed OUTPUT_SHARE_OBSERVER_WITH_INPUT = 1 this means the output will use the same observer instance as input, based on qconfig.activation example: torch.cat, maxpool OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT = 0 this means input and output are observed with different observers, based on qconfig.activation example: conv, linear, softmax
https://pytorch.org/docs/stable/generated/torch.ao.quantization.backend_config.ObservationType.html
pytorch docs
torch.jit.script torch.jit.script(obj, optimize=None, _frames_up=0, _rcb=None, example_inputs=None) Scripting a function or "nn.Module" will inspect the source code, compile it as TorchScript code using the TorchScript compiler, and return a "ScriptModule" or "ScriptFunction". TorchScript itself is a subset of the Python language, so not all features in Python work, but we provide enough functionality to compute on tensors and do control-dependent operations. For a complete guide, see the TorchScript Language Reference. Scripting a dictionary or list copies the data inside it into a TorchScript instance than can be subsequently passed by reference between Python and TorchScript with zero copy overhead. "torch.jit.script" can be used as a function for modules, functions, dictionaries and lists and as a decorator "@torch.jit.script" for TorchScript Classes and functions. Parameters:
https://pytorch.org/docs/stable/generated/torch.jit.script.html
pytorch docs