text
stringlengths
0
1.73k
source
stringlengths
35
119
category
stringclasses
2 values
torch.Tensor.t_ Tensor.t_() -> Tensor In-place version of "t()"
https://pytorch.org/docs/stable/generated/torch.Tensor.t_.html
pytorch docs
torch.Tensor.cholesky Tensor.cholesky(upper=False) -> Tensor See "torch.cholesky()"
https://pytorch.org/docs/stable/generated/torch.Tensor.cholesky.html
pytorch docs
LSTMCell class torch.nn.LSTMCell(input_size, hidden_size, bias=True, device=None, dtype=None) A long short-term memory (LSTM) cell. \begin{array}{ll} i = \sigma(W_{ii} x + b_{ii} + W_{hi} h + b_{hi}) \\ f = \sigma(W_{if} x + b_{if} + W_{hf} h + b_{hf}) \\ g = \tanh(W_{ig} x + b_{ig} + W_{hg} h + b_{hg}) \\ o = \sigma(W_{io} x + b_{io} + W_{ho} h + b_{ho}) \\ c' = f * c + i * g \\ h' = o * \tanh(c') \\ \end{array} where \sigma is the sigmoid function, and * is the Hadamard product. Parameters: * input_size (int) -- The number of expected features in the input x * **hidden_size** (*int*) -- The number of features in the hidden state *h* * **bias** (*bool*) -- If "False", then the layer does not use bias weights *b_ih* and *b_hh*. Default: "True" Inputs: input, (h_0, c_0) * input of shape (batch, input_size) or (input_size): tensor containing input features
https://pytorch.org/docs/stable/generated/torch.nn.LSTMCell.html
pytorch docs
tensor containing input features * **h_0** of shape *(batch, hidden_size)* or *(hidden_size)*: tensor containing the initial hidden state * **c_0** of shape *(batch, hidden_size)* or *(hidden_size)*: tensor containing the initial cell state If *(h_0, c_0)* is not provided, both **h_0** and **c_0** default to zero. Outputs: (h_1, c_1) * h_1 of shape (batch, hidden_size) or (hidden_size): tensor containing the next hidden state * **c_1** of shape *(batch, hidden_size)* or *(hidden_size)*: tensor containing the next cell state Variables: * weight_ih (torch.Tensor) -- the learnable input-hidden weights, of shape (4hidden_size, input_size)* * **weight_hh** (*torch.Tensor*) -- the learnable hidden-hidden weights, of shape *(4*hidden_size, hidden_size)* * **bias_ih** -- the learnable input-hidden bias, of shape *(4*hidden_size)*
https://pytorch.org/docs/stable/generated/torch.nn.LSTMCell.html
pytorch docs
(4hidden_size)* * **bias_hh** -- the learnable hidden-hidden bias, of shape *(4*hidden_size)* Note: All the weights and biases are initialized from \mathcal{U}(-\sqrt{k}, \sqrt{k}) where k = \frac{1}{\text{hidden\_size}} On certain ROCm devices, when using float16 inputs this module will use different precision for backward. Examples: >>> rnn = nn.LSTMCell(10, 20) # (input_size, hidden_size) >>> input = torch.randn(2, 3, 10) # (time_steps, batch, input_size) >>> hx = torch.randn(3, 20) # (batch, hidden_size) >>> cx = torch.randn(3, 20) >>> output = [] >>> for i in range(input.size()[0]): ... hx, cx = rnn(input[i], (hx, cx)) ... output.append(hx) >>> output = torch.stack(output, dim=0)
https://pytorch.org/docs/stable/generated/torch.nn.LSTMCell.html
pytorch docs
conv3d class torch.ao.nn.quantized.functional.conv3d(input, weight, bias, stride=1, padding=0, dilation=1, groups=1, padding_mode='zeros', scale=1.0, zero_point=0, dtype=torch.quint8) Applies a 3D convolution over a quantized 3D input composed of several input planes. See "Conv3d" for details and output shape. Parameters: * input -- quantized input tensor of shape (\text{minibatch} , \text{in_channels} , iD , iH , iW) * **weight** -- quantized filters of shape (\text{out\_channels} , \frac{\text{in\_channels}}{\text{groups}} , kD , kH , kW) * **bias** -- **non-quantized** bias tensor of shape (\text{out\_channels}). The tensor type must be *torch.float*. * **stride** -- the stride of the convolving kernel. Can be a single number or a tuple *(sD, sH, sW)*. Default: 1 * **padding** -- implicit paddings on both sides of the input. Can be a single number or a tuple *(padD, padH, padW)*. Default: 0
https://pytorch.org/docs/stable/generated/torch.ao.nn.quantized.functional.conv3d.html
pytorch docs
Default: 0 * **dilation** -- the spacing between kernel elements. Can be a single number or a tuple *(dD, dH, dW)*. Default: 1 * **groups** -- split input into groups, \text{in\_channels} should be divisible by the number of groups. Default: 1 * **padding_mode** -- the padding mode to use. Only "zeros" is supported for quantized convolution at the moment. Default: "zeros" * **scale** -- quantization scale for the output. Default: 1.0 * **zero_point** -- quantization zero_point for the output. Default: 0 * **dtype** -- quantization data type to use. Default: "torch.quint8" Examples: >>> from torch.ao.nn.quantized import functional as qF >>> filters = torch.randn(8, 4, 3, 3, 3, dtype=torch.float) >>> inputs = torch.randn(1, 4, 5, 5, 5, dtype=torch.float) >>> bias = torch.randn(8, dtype=torch.float) >>> >>> scale, zero_point = 1.0, 0 >>> dtype_inputs = torch.quint8
https://pytorch.org/docs/stable/generated/torch.ao.nn.quantized.functional.conv3d.html
pytorch docs
dtype_inputs = torch.quint8 >>> dtype_filters = torch.qint8 >>> >>> q_filters = torch.quantize_per_tensor(filters, scale, zero_point, dtype_filters) >>> q_inputs = torch.quantize_per_tensor(inputs, scale, zero_point, dtype_inputs) >>> qF.conv3d(q_inputs, q_filters, bias, padding=1, scale=scale, zero_point=zero_point)
https://pytorch.org/docs/stable/generated/torch.ao.nn.quantized.functional.conv3d.html
pytorch docs
torch.nn.utils.prune.is_pruned torch.nn.utils.prune.is_pruned(module) Check whether "module" is pruned by looking for "forward_pre_hooks" in its modules that inherit from the "BasePruningMethod". Parameters: module (nn.Module) -- object that is either pruned or unpruned Returns: binary answer to whether "module" is pruned. -[ Examples ]- from torch.nn.utils import prune m = nn.Linear(5, 7) print(prune.is_pruned(m)) False prune.random_unstructured(m, name='weight', amount=0.2) print(prune.is_pruned(m)) True
https://pytorch.org/docs/stable/generated/torch.nn.utils.prune.is_pruned.html
pytorch docs
torch.Tensor.ndim Tensor.ndim Alias for "dim()"
https://pytorch.org/docs/stable/generated/torch.Tensor.ndim.html
pytorch docs
max_pool1d class torch.ao.nn.quantized.functional.max_pool1d(input, kernel_size, stride=None, padding=0, dilation=1, ceil_mode=False, return_indices=False) Applies a 1D max pooling over a quantized input signal composed of several quantized input planes. Note: The input quantization parameters are propagated to the output. See "MaxPool1d" for details.
https://pytorch.org/docs/stable/generated/torch.ao.nn.quantized.functional.max_pool1d.html
pytorch docs
torch.cuda.ipc_collect torch.cuda.ipc_collect() Force collects GPU memory after it has been released by CUDA IPC. Note: Checks if any sent CUDA tensors could be cleaned from the memory. Force closes shared memory file used for reference counting if there is no active counters. Useful when the producer process stopped actively sending tensors and want to release unused memory.
https://pytorch.org/docs/stable/generated/torch.cuda.ipc_collect.html
pytorch docs
torch.Tensor.conj_physical_ Tensor.conj_physical_() -> Tensor In-place version of "conj_physical()"
https://pytorch.org/docs/stable/generated/torch.Tensor.conj_physical_.html
pytorch docs
torch.Tensor.view_as Tensor.view_as(other) -> Tensor View this tensor as the same size as "other". "self.view_as(other)" is equivalent to "self.view(other.size())". Please see "view()" for more information about "view". Parameters: other ("torch.Tensor") -- The result tensor has the same size as "other".
https://pytorch.org/docs/stable/generated/torch.Tensor.view_as.html
pytorch docs
torch.Tensor.mvlgamma_ Tensor.mvlgamma_(p) -> Tensor In-place version of "mvlgamma()"
https://pytorch.org/docs/stable/generated/torch.Tensor.mvlgamma_.html
pytorch docs
torch.add torch.add(input, other, *, alpha=1, out=None) -> Tensor Adds "other", scaled by "alpha", to "input". \text{{out}}_i = \text{{input}}_i + \text{{alpha}} \times \text{{other}}_i Supports broadcasting to a common shape, type promotion, and integer, float, and complex inputs. Parameters: * input (Tensor) -- the input tensor. * **other** (*Tensor** or **Number*) -- the tensor or number to add to "input". Keyword Arguments: * alpha (Number) -- the multiplier for "other". * **out** (*Tensor**, **optional*) -- the output tensor. Examples: >>> a = torch.randn(4) >>> a tensor([ 0.0202, 1.0985, 1.3506, -0.6056]) >>> torch.add(a, 20) tensor([ 20.0202, 21.0985, 21.3506, 19.3944]) >>> b = torch.randn(4) >>> b tensor([-0.9732, -0.3497, 0.6245, 0.4022]) >>> c = torch.randn(4, 1) >>> c tensor([[ 0.3743], [-1.7724],
https://pytorch.org/docs/stable/generated/torch.add.html
pytorch docs
tensor([[ 0.3743], [-1.7724], [-0.5811], [-0.8017]]) >>> torch.add(b, c, alpha=10) tensor([[ 2.7695, 3.3930, 4.3672, 4.1450], [-18.6971, -18.0736, -17.0994, -17.3216], [ -6.7845, -6.1610, -5.1868, -5.4090], [ -8.9902, -8.3667, -7.3925, -7.6147]])
https://pytorch.org/docs/stable/generated/torch.add.html
pytorch docs
torch.cuda.get_sync_debug_mode torch.cuda.get_sync_debug_mode() Returns current value of debug mode for cuda synchronizing operations. Return type: int
https://pytorch.org/docs/stable/generated/torch.cuda.get_sync_debug_mode.html
pytorch docs
torch.cat torch.cat(tensors, dim=0, *, out=None) -> Tensor Concatenates the given sequence of "seq" tensors in the given dimension. All tensors must either have the same shape (except in the concatenating dimension) or be empty. "torch.cat()" can be seen as an inverse operation for "torch.split()" and "torch.chunk()". "torch.cat()" can be best understood via examples. Parameters: * tensors (sequence of Tensors) -- any python sequence of tensors of the same type. Non-empty tensors provided must have the same shape, except in the cat dimension. * **dim** (*int**, **optional*) -- the dimension over which the tensors are concatenated Keyword Arguments: out (Tensor, optional) -- the output tensor. Example: >>> x = torch.randn(2, 3) >>> x tensor([[ 0.6580, -1.0969, -0.4614], [-0.1034, -0.5790, 0.1497]]) >>> torch.cat((x, x, x), 0) tensor([[ 0.6580, -1.0969, -0.4614],
https://pytorch.org/docs/stable/generated/torch.cat.html
pytorch docs
tensor([[ 0.6580, -1.0969, -0.4614], [-0.1034, -0.5790, 0.1497], [ 0.6580, -1.0969, -0.4614], [-0.1034, -0.5790, 0.1497], [ 0.6580, -1.0969, -0.4614], [-0.1034, -0.5790, 0.1497]]) >>> torch.cat((x, x, x), 1) tensor([[ 0.6580, -1.0969, -0.4614, 0.6580, -1.0969, -0.4614, 0.6580, -1.0969, -0.4614], [-0.1034, -0.5790, 0.1497, -0.1034, -0.5790, 0.1497, -0.1034, -0.5790, 0.1497]])
https://pytorch.org/docs/stable/generated/torch.cat.html
pytorch docs
torch.load torch.load(f, map_location=None, pickle_module=pickle, , weights_only=False, *pickle_load_args) Loads an object saved with "torch.save()" from a file. "torch.load()" uses Python's unpickling facilities but treats storages, which underlie tensors, specially. They are first deserialized on the CPU and are then moved to the device they were saved from. If this fails (e.g. because the run time system doesn't have certain devices), an exception is raised. However, storages can be dynamically remapped to an alternative set of devices using the "map_location" argument. If "map_location" is a callable, it will be called once for each serialized storage with two arguments: storage and location. The storage argument will be the initial deserialization of the storage, residing on the CPU. Each serialized storage has a location tag associated with it which identifies the device it was saved from, and this tag is the second argument passed to
https://pytorch.org/docs/stable/generated/torch.load.html
pytorch docs
"map_location". The builtin location tags are "'cpu'" for CPU tensors and "'cuda:device_id'" (e.g. "'cuda:2'") for CUDA tensors. "map_location" should return either "None" or a storage. If "map_location" returns a storage, it will be used as the final deserialized object, already moved to the right device. Otherwise, "torch.load()" will fall back to the default behavior, as if "map_location" wasn't specified. If "map_location" is a "torch.device" object or a string containing a device tag, it indicates the location where all tensors should be loaded. Otherwise, if "map_location" is a dict, it will be used to remap location tags appearing in the file (keys), to ones that specify where to put the storages (values). User extensions can register their own location tags and tagging and deserialization methods using "torch.serialization.register_package()". Parameters: * f (Union[str, PathLike, BinaryIO*,
https://pytorch.org/docs/stable/generated/torch.load.html
pytorch docs
IO[bytes]*]) -- a file-like object (has to implement "read()", "readline()", "tell()", and "seek()"), or a string or os.PathLike object containing a file name * **map_location** (*Optional**[**Union**[**Callable**[**[**Tensor**, **str**]**, **Tensor**]**, **device**, **str**, **Dict**[**str**, **str**]**]**]*) -- a function, "torch.device", string or a dict specifying how to remap storage locations * **pickle_module** (*Optional**[**Any**]*) -- module used for unpickling metadata and objects (has to match the "pickle_module" used to serialize file) * **weights_only** (*bool*) -- Indicates whether unpickler should be restricted to loading only tensors, primitive types and dictionaries * **pickle_load_args** (*Any*) -- (Python 3 only) optional keyword arguments passed over to "pickle_module.load()" and "pickle_module.Unpickler()", e.g., "errors=...". Return type:
https://pytorch.org/docs/stable/generated/torch.load.html
pytorch docs
Return type: Any Warning: "torch.load()" unless *weights_only* parameter is set to *True*, uses "pickle" module implicitly, which is known to be insecure. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling. Never load data that could have come from an untrusted source in an unsafe mode, or that could have been tampered with. **Only load data you trust**. Note: When you call "torch.load()" on a file which contains GPU tensors, those tensors will be loaded to GPU by default. You can call "torch.load(.., map_location='cpu')" and then "load_state_dict()" to avoid GPU RAM surge when loading a model checkpoint. Note: By default, we decode byte strings as "utf-8". This is to avoid a common error case "UnicodeDecodeError: 'ascii' codec can't decode byte 0x..." when loading files saved by Python 2 in Python
https://pytorch.org/docs/stable/generated/torch.load.html
pytorch docs
If this default is incorrect, you may use an extra "encoding" keyword argument to specify how these objects should be loaded, e.g., "encoding='latin1'" decodes them to strings using "latin1" encoding, and "encoding='bytes'" keeps them as byte arrays which can be decoded later with "byte_array.decode(...)". -[ Example ]- torch.load('tensors.pt') # Load all tensors onto the CPU torch.load('tensors.pt', map_location=torch.device('cpu')) # Load all tensors onto the CPU, using a function torch.load('tensors.pt', map_location=lambda storage, loc: storage) # Load all tensors onto GPU 1 torch.load('tensors.pt', map_location=lambda storage, loc: storage.cuda(1)) # Map tensors from GPU 1 to GPU 0 torch.load('tensors.pt', map_location={'cuda:1': 'cuda:0'}) # Load tensor from io.BytesIO object with open('tensor.pt', 'rb') as f: ... buffer = io.BytesIO(f.read()) torch.load(buffer)
https://pytorch.org/docs/stable/generated/torch.load.html
pytorch docs
torch.load(buffer) # Load a module with 'ascii' encoding for unpickling torch.load('module.pt', encoding='ascii')
https://pytorch.org/docs/stable/generated/torch.load.html
pytorch docs
torch.Tensor.unflatten Tensor.unflatten(dim, sizes) -> Tensor See "torch.unflatten()".
https://pytorch.org/docs/stable/generated/torch.Tensor.unflatten.html
pytorch docs
torch.quantile torch.quantile(input, q, dim=None, keepdim=False, *, interpolation='linear', out=None) -> Tensor Computes the q-th quantiles of each row of the "input" tensor along the dimension "dim". To compute the quantile, we map q in [0, 1] to the range of indices [0, n] to find the location of the quantile in the sorted input. If the quantile lies between two data points "a < b" with indices "i" and "j" in the sorted order, result is computed according to the given "interpolation" method as follows: "linear": "a + (b - a) * fraction", where "fraction" is the fractional part of the computed quantile index. "lower": "a". "higher": "b". "nearest": "a" or "b", whichever's index is closer to the computed quantile index (rounding down for .5 fractions). "midpoint": "(a + b) / 2". If "q" is a 1D tensor, the first dimension of the output represents the quantiles and has size equal to the size of "q", the remaining
https://pytorch.org/docs/stable/generated/torch.quantile.html
pytorch docs
dimensions are what remains from the reduction. Note: By default "dim" is "None" resulting in the "input" tensor being flattened before computation. Parameters: * input (Tensor) -- the input tensor. * **q** (*float** or **Tensor*) -- a scalar or 1D tensor of values in the range [0, 1]. * **dim** (*int*) -- the dimension to reduce. * **keepdim** (*bool*) -- whether the output tensor has "dim" retained or not. Keyword Arguments: * interpolation (str) -- interpolation method to use when the desired quantile lies between two data points. Can be "linear", "lower", "higher", "midpoint" and "nearest". Default is "linear". * **out** (*Tensor**, **optional*) -- the output tensor. Example: >>> a = torch.randn(2, 3) >>> a tensor([[ 0.0795, -1.2117, 0.9765], [ 1.1707, 0.6706, 0.4884]]) >>> q = torch.tensor([0.25, 0.5, 0.75])
https://pytorch.org/docs/stable/generated/torch.quantile.html
pytorch docs
q = torch.tensor([0.25, 0.5, 0.75]) >>> torch.quantile(a, q, dim=1, keepdim=True) tensor([[[-0.5661], [ 0.5795]], [[ 0.0795], [ 0.6706]], [[ 0.5280], [ 0.9206]]]) >>> torch.quantile(a, q, dim=1, keepdim=True).shape torch.Size([3, 2, 1]) >>> a = torch.arange(4.) >>> a tensor([0., 1., 2., 3.]) >>> torch.quantile(a, 0.6, interpolation='linear') tensor(1.8000) >>> torch.quantile(a, 0.6, interpolation='lower') tensor(1.) >>> torch.quantile(a, 0.6, interpolation='higher') tensor(2.) >>> torch.quantile(a, 0.6, interpolation='midpoint') tensor(1.5000) >>> torch.quantile(a, 0.6, interpolation='nearest') tensor(2.) >>> torch.quantile(a, 0.4, interpolation='nearest') tensor(1.)
https://pytorch.org/docs/stable/generated/torch.quantile.html
pytorch docs
torch.Tensor.to Tensor.to(args, *kwargs) -> Tensor Performs Tensor dtype and/or device conversion. A "torch.dtype" and "torch.device" are inferred from the arguments of "self.to(args, *kwargs)". Note: If the "self" Tensor already has the correct "torch.dtype" and "torch.device", then "self" is returned. Otherwise, the returned tensor is a copy of "self" with the desired "torch.dtype" and "torch.device". Here are the ways to call "to": to(dtype, non_blocking=False, copy=False, memory_format=torch.preserve_format) -> Tensor Returns a Tensor with the specified "dtype" Args: memory_format ("torch.memory_format", optional): the desired memory format of returned Tensor. Default: "torch.preserve_format". torch.to(device=None, dtype=None, non_blocking=False, copy=False, memory_format=torch.preserve_format) -> Tensor Returns a Tensor with the specified "device" and (optional)
https://pytorch.org/docs/stable/generated/torch.Tensor.to.html
pytorch docs
"dtype". If "dtype" is "None" it is inferred to be "self.dtype". When "non_blocking", tries to convert asynchronously with respect to the host if possible, e.g., converting a CPU Tensor with pinned memory to a CUDA Tensor. When "copy" is set, a new Tensor is created even when the Tensor already matches the desired conversion. Args: memory_format ("torch.memory_format", optional): the desired memory format of returned Tensor. Default: "torch.preserve_format". torch.to(other, non_blocking=False, copy=False) -> Tensor Returns a Tensor with same "torch.dtype" and "torch.device" as the Tensor "other". When "non_blocking", tries to convert asynchronously with respect to the host if possible, e.g., converting a CPU Tensor with pinned memory to a CUDA Tensor. When "copy" is set, a new Tensor is created even when the
https://pytorch.org/docs/stable/generated/torch.Tensor.to.html
pytorch docs
Tensor already matches the desired conversion. Example: >>> tensor = torch.randn(2, 2) # Initially dtype=float32, device=cpu >>> tensor.to(torch.float64) tensor([[-0.5044, 0.0005], [ 0.3310, -0.0584]], dtype=torch.float64) >>> cuda0 = torch.device('cuda:0') >>> tensor.to(cuda0) tensor([[-0.5044, 0.0005], [ 0.3310, -0.0584]], device='cuda:0') >>> tensor.to(cuda0, dtype=torch.float64) tensor([[-0.5044, 0.0005], [ 0.3310, -0.0584]], dtype=torch.float64, device='cuda:0') >>> other = torch.randn((), dtype=torch.float64, device=cuda0) >>> tensor.to(other, non_blocking=True) tensor([[-0.5044, 0.0005], [ 0.3310, -0.0584]], dtype=torch.float64, device='cuda:0')
https://pytorch.org/docs/stable/generated/torch.Tensor.to.html
pytorch docs
torch.Tensor.gcd Tensor.gcd(other) -> Tensor See "torch.gcd()"
https://pytorch.org/docs/stable/generated/torch.Tensor.gcd.html
pytorch docs
torch.Tensor.baddbmm Tensor.baddbmm(batch1, batch2, *, beta=1, alpha=1) -> Tensor See "torch.baddbmm()"
https://pytorch.org/docs/stable/generated/torch.Tensor.baddbmm.html
pytorch docs
add_quant_dequant class torch.quantization.add_quant_dequant(module) Wrap the leaf child module in QuantWrapper if it has a valid qconfig Note that this function will modify the children of module inplace and it can return a new module which wraps the input module as well. Parameters: * module -- input module with qconfig attributes for all the leaf modules * **quantize** (*that we want to*) -- Returns: Either the inplace modified module with submodules wrapped in QuantWrapper based on qconfig or a new QuantWrapper module which wraps the input module, the latter case only happens when the input module is a leaf module and we want to quantize it.
https://pytorch.org/docs/stable/generated/torch.quantization.add_quant_dequant.html
pytorch docs
RecordingObserver class torch.quantization.observer.RecordingObserver(dtype=torch.quint8, **kwargs) The module is mainly for debug and records the tensor values during runtime. Parameters: * dtype -- Quantized data type * **qscheme** -- Quantization scheme to be used * **reduce_range** -- Reduces the range of the quantized data type by 1 bit
https://pytorch.org/docs/stable/generated/torch.quantization.observer.RecordingObserver.html
pytorch docs
torch.Tensor.is_signed Tensor.is_signed() -> bool Returns True if the data type of "self" is a signed data type.
https://pytorch.org/docs/stable/generated/torch.Tensor.is_signed.html
pytorch docs
torch.broadcast_to torch.broadcast_to(input, shape) -> Tensor Broadcasts "input" to the shape "shape". Equivalent to calling "input.expand(shape)". See "expand()" for details. Parameters: * input (Tensor) -- the input tensor. * **shape** (list, tuple, or "torch.Size") -- the new shape. Example: >>> x = torch.tensor([1, 2, 3]) >>> torch.broadcast_to(x, (3, 3)) tensor([[1, 2, 3], [1, 2, 3], [1, 2, 3]])
https://pytorch.org/docs/stable/generated/torch.broadcast_to.html
pytorch docs
Hardswish class torch.nn.Hardswish(inplace=False) Applies the Hardswish function, element-wise, as described in the paper: Searching for MobileNetV3. Hardswish is defined as: \text{Hardswish}(x) = \begin{cases} 0 & \text{if~} x \le -3, \\ x & \text{if~} x \ge +3, \\ x \cdot (x + 3) /6 & \text{otherwise} \end{cases} Parameters: inplace (bool) -- can optionally do the operation in- place. Default: "False" Shape: * Input: (*), where * means any number of dimensions. * Output: (*), same shape as the input. [image] Examples: >>> m = nn.Hardswish() >>> input = torch.randn(2) >>> output = m(input)
https://pytorch.org/docs/stable/generated/torch.nn.Hardswish.html
pytorch docs
torch.Tensor.greater_ Tensor.greater_(other) -> Tensor In-place version of "greater()".
https://pytorch.org/docs/stable/generated/torch.Tensor.greater_.html
pytorch docs
ReduceLROnPlateau class torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.1, patience=10, threshold=0.0001, threshold_mode='rel', cooldown=0, min_lr=0, eps=1e-08, verbose=False) Reduce learning rate when a metric has stopped improving. Models often benefit from reducing the learning rate by a factor of 2-10 once learning stagnates. This scheduler reads a metrics quantity and if no improvement is seen for a 'patience' number of epochs, the learning rate is reduced. Parameters: * optimizer (Optimizer) -- Wrapped optimizer. * **mode** (*str*) -- One of *min*, *max*. In *min* mode, lr will be reduced when the quantity monitored has stopped decreasing; in *max* mode it will be reduced when the quantity monitored has stopped increasing. Default: 'min'. * **factor** (*float*) -- Factor by which the learning rate will be reduced. new_lr = lr * factor. Default: 0.1.
https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.ReduceLROnPlateau.html
pytorch docs
patience (int) -- Number of epochs with no improvement after which learning rate will be reduced. For example, if patience = 2, then we will ignore the first 2 epochs with no improvement, and will only decrease the LR after the 3rd epoch if the loss still hasn't improved then. Default: 10. threshold (float) -- Threshold for measuring the new optimum, to only focus on significant changes. Default: 1e-4. threshold_mode (str) -- One of rel, abs. In rel mode, dynamic_threshold = best * ( 1 + threshold ) in 'max' mode or best * ( 1 - threshold ) in min mode. In abs mode, dynamic_threshold = best + threshold in max mode or best - threshold in min mode. Default: 'rel'. cooldown (int) -- Number of epochs to wait before resuming normal operation after lr has been reduced. Default: 0. min_lr (float or list) -- A scalar or a list of
https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.ReduceLROnPlateau.html
pytorch docs
scalars. A lower bound on the learning rate of all param groups or each group respectively. Default: 0. * **eps** (*float*) -- Minimal decay applied to lr. If the difference between new and old lr is smaller than eps, the update is ignored. Default: 1e-8. * **verbose** (*bool*) -- If "True", prints a message to stdout for each update. Default: "False". -[ Example ]- optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9) scheduler = ReduceLROnPlateau(optimizer, 'min') for epoch in range(10): train(...) val_loss = validate(...) # Note that step should be called after validate() scheduler.step(val_loss)
https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.ReduceLROnPlateau.html
pytorch docs
UninitializedBuffer class torch.nn.parameter.UninitializedBuffer(requires_grad=False, device=None, dtype=None) A buffer that is not initialized. Uninitialized Buffer is a a special case of "torch.Tensor" where the shape of the data is still unknown. Unlike a "torch.Tensor", uninitialized parameters hold no data and attempting to access some properties, like their shape, will throw a runtime error. The only operations that can be performed on a uninitialized parameter are changing its datatype, moving it to a different device and converting it to a regular "torch.Tensor". The default device or dtype to use when the buffer is materialized can be set during construction using e.g. "device='cuda'".
https://pytorch.org/docs/stable/generated/torch.nn.parameter.UninitializedBuffer.html
pytorch docs
ConvTranspose3d class torch.ao.nn.quantized.ConvTranspose3d(in_channels, out_channels, kernel_size, stride=1, padding=0, output_padding=0, groups=1, bias=True, dilation=1, padding_mode='zeros', device=None, dtype=None) Applies a 3D transposed convolution operator over an input image composed of several input planes. For details on input arguments, parameters, and implementation see "ConvTranspose3d". Note: Currently only the FBGEMM engine is implemented. Please, set the *torch.backends.quantized.engine = 'fbgemm'* For special notes, please, see "Conv3d" Variables: * weight (Tensor) -- packed tensor derived from the learnable weight parameter. * **scale** (*Tensor*) -- scalar for the output scale * **zero_point** (*Tensor*) -- scalar for the output zero point See "ConvTranspose3d" for other attributes. Examples: >>> torch.backends.quantized.engine = 'fbgemm' >>> from torch.nn import quantized as nnq
https://pytorch.org/docs/stable/generated/torch.ao.nn.quantized.ConvTranspose3d.html
pytorch docs
from torch.nn import quantized as nnq >>> # With cubic kernels and equal stride >>> m = nnq.ConvTranspose3d(16, 33, 3, stride=2) >>> # non-cubic kernels and unequal stride and with padding >>> m = nnq.ConvTranspose3d(16, 33, (3, 3, 5), stride=(2, 1, 1), padding=(4, 2, 2)) >>> input = torch.randn(20, 16, 50, 100, 100) >>> q_input = torch.quantize_per_tensor(input, scale=1.0, zero_point=0, dtype=torch.quint8) >>> output = m(q_input) >>> # exact output size can be also specified as an argument >>> input = torch.randn(1, 16, 12, 12, 12) >>> q_input = torch.quantize_per_tensor(input, scale=1.0, zero_point=0, dtype=torch.quint8) >>> downsample = nnq.Conv3d(16, 16, 3, stride=2, padding=1) >>> upsample = nnq.ConvTranspose3d(16, 16, 3, stride=2, padding=1) >>> h = downsample(q_input) >>> h.size() torch.Size([1, 16, 6, 6, 6]) >>> output = upsample(h, output_size=input.size()) >>> output.size()
https://pytorch.org/docs/stable/generated/torch.ao.nn.quantized.ConvTranspose3d.html
pytorch docs
output.size() torch.Size([1, 16, 12, 12, 12])
https://pytorch.org/docs/stable/generated/torch.ao.nn.quantized.ConvTranspose3d.html
pytorch docs
torch.cuda.is_initialized torch.cuda.is_initialized() Returns whether PyTorch's CUDA state has been initialized.
https://pytorch.org/docs/stable/generated/torch.cuda.is_initialized.html
pytorch docs
torch.autograd.function.FunctionCtx.mark_dirty FunctionCtx.mark_dirty(*args) Marks given tensors as modified in an in-place operation. This should be called at most once, only from inside the "forward()" method, and all arguments should be inputs. Every tensor that's been modified in-place in a call to "forward()" should be given to this function, to ensure correctness of our checks. It doesn't matter whether the function is called before or after modification. Examples:: >>> class Inplace(Function): >>> @staticmethod >>> def forward(ctx, x): >>> x_npy = x.numpy() # x_npy shares storage with x >>> x_npy += 1 >>> ctx.mark_dirty(x) >>> return x >>> >>> @staticmethod >>> @once_differentiable >>> def backward(ctx, grad_output): >>> return grad_output >>>
https://pytorch.org/docs/stable/generated/torch.autograd.function.FunctionCtx.mark_dirty.html
pytorch docs
return grad_output >>> >>> a = torch.tensor(1., requires_grad=True, dtype=torch.double).clone() >>> b = a * a >>> Inplace.apply(a) # This would lead to wrong gradients! >>> # but the engine would not know unless we mark_dirty >>> b.backward() # RuntimeError: one of the variables needed for gradient >>> # computation has been modified by an inplace operation
https://pytorch.org/docs/stable/generated/torch.autograd.function.FunctionCtx.mark_dirty.html
pytorch docs
torch.Tensor.index_put Tensor.index_put(indices, values, accumulate=False) -> Tensor Out-place version of "index_put_()".
https://pytorch.org/docs/stable/generated/torch.Tensor.index_put.html
pytorch docs
torch.quantize_per_tensor torch.quantize_per_tensor(input, scale, zero_point, dtype) -> Tensor Converts a float tensor to a quantized tensor with given scale and zero point. Parameters: * input (Tensor) -- float tensor or list of tensors to quantize * **scale** (*float** or **Tensor*) -- scale to apply in quantization formula * **zero_point** (*int** or **Tensor*) -- offset in integer value that maps to float zero * **dtype** ("torch.dtype") -- the desired data type of returned tensor. Has to be one of the quantized dtypes: "torch.quint8", "torch.qint8", "torch.qint32" Returns: A newly quantized tensor or list of quantized tensors. Return type: Tensor Example: >>> torch.quantize_per_tensor(torch.tensor([-1.0, 0.0, 1.0, 2.0]), 0.1, 10, torch.quint8) tensor([-1., 0., 1., 2.], size=(4,), dtype=torch.quint8,
https://pytorch.org/docs/stable/generated/torch.quantize_per_tensor.html
pytorch docs
quantization_scheme=torch.per_tensor_affine, scale=0.1, zero_point=10) >>> torch.quantize_per_tensor(torch.tensor([-1.0, 0.0, 1.0, 2.0]), 0.1, 10, torch.quint8).int_repr() tensor([ 0, 10, 20, 30], dtype=torch.uint8) >>> torch.quantize_per_tensor([torch.tensor([-1.0, 0.0]), torch.tensor([-2.0, 2.0])], >>> torch.tensor([0.1, 0.2]), torch.tensor([10, 20]), torch.quint8) (tensor([-1., 0.], size=(2,), dtype=torch.quint8, quantization_scheme=torch.per_tensor_affine, scale=0.1, zero_point=10), tensor([-2., 2.], size=(2,), dtype=torch.quint8, quantization_scheme=torch.per_tensor_affine, scale=0.2, zero_point=20)) >>> torch.quantize_per_tensor(torch.tensor([-1.0, 0.0, 1.0, 2.0]), torch.tensor(0.1), torch.tensor(10), torch.quint8) tensor([-1., 0., 1., 2.], size=(4,), dtype=torch.quint8, quantization_scheme=torch.per_tensor_affine, scale=0.10, zero_point=10)
https://pytorch.org/docs/stable/generated/torch.quantize_per_tensor.html
pytorch docs
torch.svd_lowrank torch.svd_lowrank(A, q=6, niter=2, M=None) Return the singular value decomposition "(U, S, V)" of a matrix, batches of matrices, or a sparse matrix A such that A \approx U diag(S) V^T. In case M is given, then SVD is computed for the matrix A - M. Note: The implementation is based on the Algorithm 5.1 from Halko et al, 2009. Note: To obtain repeatable results, reset the seed for the pseudorandom number generator Note: The input is assumed to be a low-rank matrix. Note: In general, use the full-rank SVD implementation "torch.linalg.svd()" for dense matrices due to its 10-fold higher performance characteristics. The low-rank SVD will be useful for huge sparse matrices that "torch.linalg.svd()" cannot handle. Args:: A (Tensor): the input tensor of size (*, m, n) q (int, optional): a slightly overestimated rank of A. niter (int, optional): the number of subspace iterations to
https://pytorch.org/docs/stable/generated/torch.svd_lowrank.html
pytorch docs
conduct; niter must be a nonnegative integer, and defaults to 2 M (Tensor, optional): the input tensor's mean of size (*, 1, n). References:: * Nathan Halko, Per-Gunnar Martinsson, and Joel Tropp, Finding structure with randomness: probabilistic algorithms for constructing approximate matrix decompositions, arXiv:0909.4061 [math.NA; math.PR], 2009 (available at arXiv). Return type: Tuple[Tensor, Tensor, Tensor]
https://pytorch.org/docs/stable/generated/torch.svd_lowrank.html
pytorch docs
torch.allclose torch.allclose(input, other, rtol=1e-05, atol=1e-08, equal_nan=False) -> bool This function checks if "input" and "other" satisfy the condition: \lvert \text{input} - \text{other} \rvert \leq \texttt{atol} + \texttt{rtol} \times \lvert \text{other} \rvert elementwise, for all elements of "input" and "other". The behaviour of this function is analogous to numpy.allclose Parameters: * input (Tensor) -- first tensor to compare * **other** (*Tensor*) -- second tensor to compare * **atol** (*float**, **optional*) -- absolute tolerance. Default: 1e-08 * **rtol** (*float**, **optional*) -- relative tolerance. Default: 1e-05 * **equal_nan** (*bool**, **optional*) -- if "True", then two "NaN" s will be considered equal. Default: "False" Example: >>> torch.allclose(torch.tensor([10000., 1e-07]), torch.tensor([10000.1, 1e-08])) False
https://pytorch.org/docs/stable/generated/torch.allclose.html
pytorch docs
False >>> torch.allclose(torch.tensor([10000., 1e-08]), torch.tensor([10000.1, 1e-09])) True >>> torch.allclose(torch.tensor([1.0, float('nan')]), torch.tensor([1.0, float('nan')])) False >>> torch.allclose(torch.tensor([1.0, float('nan')]), torch.tensor([1.0, float('nan')]), equal_nan=True) True
https://pytorch.org/docs/stable/generated/torch.allclose.html
pytorch docs
FeatureAlphaDropout class torch.nn.FeatureAlphaDropout(p=0.5, inplace=False) Randomly masks out entire channels (a channel is a feature map, e.g. the j-th channel of the i-th sample in the batch input is a tensor \text{input}[i, j]) of the input tensor). Instead of setting activations to zero, as in regular Dropout, the activations are set to the negative saturation value of the SELU activation function. More details can be found in the paper Self-Normalizing Neural Networks . Each element will be masked independently for each sample on every forward call with probability "p" using samples from a Bernoulli distribution. The elements to be masked are randomized on every forward call, and scaled and shifted to maintain zero mean and unit variance. Usually the input comes from "nn.AlphaDropout" modules. As described in the paper Efficient Object Localization Using Convolutional Networks , if adjacent pixels within feature maps are
https://pytorch.org/docs/stable/generated/torch.nn.FeatureAlphaDropout.html
pytorch docs
strongly correlated (as is normally the case in early convolution layers) then i.i.d. dropout will not regularize the activations and will otherwise just result in an effective learning rate decrease. In this case, "nn.AlphaDropout()" will help promote independence between feature maps and should be used instead. Parameters: * p (float, optional) -- probability of an element to be zeroed. Default: 0.5 * **inplace** (*bool**, **optional*) -- If set to "True", will do this operation in-place Shape: * Input: (N, C, D, H, W) or (C, D, H, W). * Output: (N, C, D, H, W) or (C, D, H, W) (same shape as input). Examples: >>> m = nn.FeatureAlphaDropout(p=0.2) >>> input = torch.randn(20, 16, 4, 32, 32) >>> output = m(input)
https://pytorch.org/docs/stable/generated/torch.nn.FeatureAlphaDropout.html
pytorch docs
torch.Tensor.vdot Tensor.vdot(other) -> Tensor See "torch.vdot()"
https://pytorch.org/docs/stable/generated/torch.Tensor.vdot.html
pytorch docs
torch.cuda.memory_reserved torch.cuda.memory_reserved(device=None) Returns the current GPU memory managed by the caching allocator in bytes for a given device. Parameters: device (torch.device or int, optional) -- selected device. Returns statistic for the current device, given by "current_device()", if "device" is "None" (default). Return type: int Note: See Memory management for more details about GPU memory management.
https://pytorch.org/docs/stable/generated/torch.cuda.memory_reserved.html
pytorch docs
torch.foreach_acos torch.foreach_acos(self: List[Tensor]) -> None Apply "torch.acos()" to each Tensor of the input list.
https://pytorch.org/docs/stable/generated/torch._foreach_acos_.html
pytorch docs
torch.sym_int torch.sym_int(a) SymInt-aware utility for int casting. Parameters: a (SymInt, SymFloat, or object) -- Object to cast
https://pytorch.org/docs/stable/generated/torch.sym_int.html
pytorch docs
torch.fft.ifft2 torch.fft.ifft2(input, s=None, dim=(- 2, - 1), norm=None, *, out=None) -> Tensor Computes the 2 dimensional inverse discrete Fourier transform of "input". Equivalent to "ifftn()" but IFFTs only the last two dimensions by default. Note: Supports torch.half and torch.chalf on CUDA with GPU Architecture SM53 or greater. However it only supports powers of 2 signal length in every transformed dimensions. Parameters: * input (Tensor) -- the input tensor * **s** (*Tuple**[**int**]**, **optional*) -- Signal size in the transformed dimensions. If given, each dimension "dim[i]" will either be zero-padded or trimmed to the length "s[i]" before computing the IFFT. If a length "-1" is specified, no padding is done in that dimension. Default: "s = [input.size(d) for d in dim]" * **dim** (*Tuple**[**int**]**, **optional*) -- Dimensions to be transformed. Default: last two dimensions.
https://pytorch.org/docs/stable/generated/torch.fft.ifft2.html
pytorch docs
norm (str, optional) --Normalization mode. For the backward transform ("ifft2()"), these correspond to: * ""forward"" - no normalization * ""backward"" - normalize by "1/n" * ""ortho"" - normalize by "1/sqrt(n)" (making the IFFT orthonormal) Where "n = prod(s)" is the logical IFFT size. Calling the forward transform ("fft2()") with the same normalization mode will apply an overall normalization of "1/n" between the two transforms. This is required to make "ifft2()" the exact inverse. Default is ""backward"" (normalize by "1/n"). Keyword Arguments: out (Tensor, optional) -- the output tensor. -[ Example ]- x = torch.rand(10, 10, dtype=torch.complex64) ifft2 = torch.fft.ifft2(x) The discrete Fourier transform is separable, so "ifft2()" here is equivalent to two one-dimensional "ifft()" calls:
https://pytorch.org/docs/stable/generated/torch.fft.ifft2.html
pytorch docs
two_iffts = torch.fft.ifft(torch.fft.ifft(x, dim=0), dim=1) torch.testing.assert_close(ifft2, two_iffts, check_stride=False)
https://pytorch.org/docs/stable/generated/torch.fft.ifft2.html
pytorch docs
torch.nn.functional.leaky_relu_ torch.nn.functional.leaky_relu_(input, negative_slope=0.01) -> Tensor In-place version of "leaky_relu()".
https://pytorch.org/docs/stable/generated/torch.nn.functional.leaky_relu_.html
pytorch docs
torch.Tensor.masked_fill_ Tensor.masked_fill_(mask, value) Fills elements of "self" tensor with "value" where "mask" is True. The shape of "mask" must be broadcastable with the shape of the underlying tensor. Parameters: * mask (BoolTensor) -- the boolean mask * **value** (*float*) -- the value to fill in with
https://pytorch.org/docs/stable/generated/torch.Tensor.masked_fill_.html
pytorch docs
default_weight_fake_quant torch.quantization.fake_quantize.default_weight_fake_quant alias of functools.partial(, observer=, quant_min=-128, quant_max=127, dtype=torch.qint8, qscheme=torch.per_tensor_symmetric, reduce_range=False){}
https://pytorch.org/docs/stable/generated/torch.quantization.fake_quantize.default_weight_fake_quant.html
pytorch docs
ConvTranspose3d class torch.nn.ConvTranspose3d(in_channels, out_channels, kernel_size, stride=1, padding=0, output_padding=0, groups=1, bias=True, dilation=1, padding_mode='zeros', device=None, dtype=None) Applies a 3D transposed convolution operator over an input image composed of several input planes. The transposed convolution operator multiplies each input value element-wise by a learnable kernel, and sums over the outputs from all input feature planes. This module can be seen as the gradient of Conv3d with respect to its input. It is also known as a fractionally-strided convolution or a deconvolution (although it is not an actual deconvolution operation as it does not compute a true inverse of convolution). For more information, see the visualizations here and the Deconvolutional Networks paper. This module supports TensorFloat32. On certain ROCm devices, when using float16 inputs this module will use different precision for backward.
https://pytorch.org/docs/stable/generated/torch.nn.ConvTranspose3d.html
pytorch docs
use different precision for backward. "stride" controls the stride for the cross-correlation. "padding" controls the amount of implicit zero padding on both sides for "dilation * (kernel_size - 1) - padding" number of points. See note below for details. "output_padding" controls the additional size added to one side of the output shape. See note below for details. "dilation" controls the spacing between the kernel points; also known as the à trous algorithm. It is harder to describe, but the link here has a nice visualization of what "dilation" does. "groups" controls the connections between inputs and outputs. "in_channels" and "out_channels" must both be divisible by "groups". For example, * At groups=1, all inputs are convolved to all outputs. * At groups=2, the operation becomes equivalent to having two conv layers side by side, each seeing half the input
https://pytorch.org/docs/stable/generated/torch.nn.ConvTranspose3d.html
pytorch docs
channels and producing half the output channels, and both subsequently concatenated. * At groups= "in_channels", each input channel is convolved with its own set of filters (of size \frac{\text{out\_channels}}{\text{in\_channels}}). The parameters "kernel_size", "stride", "padding", "output_padding" can either be: * a single "int" -- in which case the same value is used for the depth, height and width dimensions * a "tuple" of three ints -- in which case, the first *int* is used for the depth dimension, the second *int* for the height dimension and the third *int* for the width dimension Note: The "padding" argument effectively adds "dilation * (kernel_size - 1) - padding" amount of zero padding to both sizes of the input. This is set so that when a "Conv3d" and a "ConvTranspose3d" are initialized with same parameters, they are
https://pytorch.org/docs/stable/generated/torch.nn.ConvTranspose3d.html
pytorch docs
inverses of each other in regard to the input and output shapes. However, when "stride > 1", "Conv3d" maps multiple input shapes to the same output shape. "output_padding" is provided to resolve this ambiguity by effectively increasing the calculated output shape on one side. Note that "output_padding" is only used to find output shape, but does not actually add zero-padding to output. Note: In some circumstances when given tensors on a CUDA device and using CuDNN, this operator may select a nondeterministic algorithm to increase performance. If this is undesirable, you can try to make the operation deterministic (potentially at a performance cost) by setting "torch.backends.cudnn.deterministic = True". See Reproducibility for more information. Parameters: * in_channels (int) -- Number of channels in the input image * **out_channels** (*int*) -- Number of channels produced by the convolution
https://pytorch.org/docs/stable/generated/torch.nn.ConvTranspose3d.html
pytorch docs
convolution * **kernel_size** (*int** or **tuple*) -- Size of the convolving kernel * **stride** (*int** or **tuple**, **optional*) -- Stride of the convolution. Default: 1 * **padding** (*int** or **tuple**, **optional*) -- "dilation * (kernel_size - 1) - padding" zero-padding will be added to both sides of each dimension in the input. Default: 0 * **output_padding** (*int** or **tuple**, **optional*) -- Additional size added to one side of each dimension in the output shape. Default: 0 * **groups** (*int**, **optional*) -- Number of blocked connections from input channels to output channels. Default: 1 * **bias** (*bool**, **optional*) -- If "True", adds a learnable bias to the output. Default: "True" * **dilation** (*int** or **tuple**, **optional*) -- Spacing between kernel elements. Default: 1 Shape: * Input: (N, C_{in}, D_{in}, H_{in}, W_{in}) or (C_{in}, D_{in},
https://pytorch.org/docs/stable/generated/torch.nn.ConvTranspose3d.html
pytorch docs
H_{in}, W_{in}) * Output: (N, C_{out}, D_{out}, H_{out}, W_{out}) or (C_{out}, D_{out}, H_{out}, W_{out}), where D_{out} = (D_{in} - 1) \times \text{stride}[0] - 2 \times \text{padding}[0] + \text{dilation}[0] \times (\text{kernel\_size}[0] - 1) + \text{output\_padding}[0] + 1 H_{out} = (H_{in} - 1) \times \text{stride}[1] - 2 \times \text{padding}[1] + \text{dilation}[1] \times (\text{kernel\_size}[1] - 1) + \text{output\_padding}[1] + 1 W_{out} = (W_{in} - 1) \times \text{stride}[2] - 2 \times \text{padding}[2] + \text{dilation}[2] \times (\text{kernel\_size}[2] - 1) + \text{output\_padding}[2] + 1 Variables: * weight (Tensor) -- the learnable weights of the module of shape (\text{in_channels}, \frac{\text{out_channels}}{\text{groups}}, \text{kernel_size[0]}, \text{kernel_size[1]},
https://pytorch.org/docs/stable/generated/torch.nn.ConvTranspose3d.html
pytorch docs
\text{kernel_size[2]}). The values of these weights are sampled from \mathcal{U}(-\sqrt{k}, \sqrt{k}) where k = \frac{groups}{C_\text{out} * \prod_{i=0}^{2}\text{kernel_size}[i]} * **bias** (*Tensor*) -- the learnable bias of the module of shape (out_channels) If "bias" is "True", then the values of these weights are sampled from \mathcal{U}(-\sqrt{k}, \sqrt{k}) where k = \frac{groups}{C_\text{out} * \prod_{i=0}^{2}\text{kernel\_size}[i]} Examples: >>> # With square kernels and equal stride >>> m = nn.ConvTranspose3d(16, 33, 3, stride=2) >>> # non-square kernels and unequal stride and with padding >>> m = nn.ConvTranspose3d(16, 33, (3, 5, 2), stride=(2, 1, 1), padding=(0, 4, 2)) >>> input = torch.randn(20, 16, 10, 50, 100) >>> output = m(input)
https://pytorch.org/docs/stable/generated/torch.nn.ConvTranspose3d.html
pytorch docs
torch.cholesky_inverse torch.cholesky_inverse(input, upper=False, *, out=None) -> Tensor Computes the inverse of a symmetric positive-definite matrix A using its Cholesky factor u: returns matrix "inv". The inverse is computed using LAPACK routines "dpotri" and "spotri" (and the corresponding MAGMA routines). If "upper" is "False", u is lower triangular such that the returned tensor is inv = (uu^{{T}})^{{-1}} If "upper" is "True" or not provided, u is upper triangular such that the returned tensor is inv = (u^T u)^{{-1}} Supports input of float, double, cfloat and cdouble dtypes. Also supports batches of matrices, and if A is a batch of matrices then the output has the same batch dimensions. Parameters: * input (Tensor) -- the input tensor A of size (*, n, n), consisting of symmetric positive-definite matrices where * is zero or more batch dimensions.
https://pytorch.org/docs/stable/generated/torch.cholesky_inverse.html
pytorch docs
zero or more batch dimensions. * **upper** (*bool**, **optional*) -- flag that indicates whether to return a upper or lower triangular matrix. Default: False Keyword Arguments: out (Tensor, optional) -- the output tensor for inv Example: >>> a = torch.randn(3, 3) >>> a = torch.mm(a, a.t()) + 1e-05 * torch.eye(3) # make symmetric positive definite >>> u = torch.linalg.cholesky(a) >>> a tensor([[ 0.9935, -0.6353, 1.5806], [ -0.6353, 0.8769, -1.7183], [ 1.5806, -1.7183, 10.6618]]) >>> torch.cholesky_inverse(u) tensor([[ 1.9314, 1.2251, -0.0889], [ 1.2251, 2.4439, 0.2122], [-0.0889, 0.2122, 0.1412]]) >>> a.inverse() tensor([[ 1.9314, 1.2251, -0.0889], [ 1.2251, 2.4439, 0.2122], [-0.0889, 0.2122, 0.1412]]) >>> a = torch.randn(3, 2, 2) # Example for batched input
https://pytorch.org/docs/stable/generated/torch.cholesky_inverse.html
pytorch docs
a = a @ a.mT + 1e-03 # make symmetric positive-definite >>> l = torch.linalg.cholesky(a) >>> z = l @ l.mT >>> torch.dist(z, a) tensor(3.5894e-07)
https://pytorch.org/docs/stable/generated/torch.cholesky_inverse.html
pytorch docs
torch.Tensor.isfinite Tensor.isfinite() -> Tensor See "torch.isfinite()"
https://pytorch.org/docs/stable/generated/torch.Tensor.isfinite.html
pytorch docs
GroupNorm class torch.nn.GroupNorm(num_groups, num_channels, eps=1e-05, affine=True, device=None, dtype=None) Applies Group Normalization over a mini-batch of inputs as described in the paper Group Normalization y = \frac{x - \mathrm{E}[x]}{ \sqrt{\mathrm{Var}[x] + \epsilon}} * \gamma + \beta The input channels are separated into "num_groups" groups, each containing "num_channels / num_groups" channels. "num_channels" must be divisible by "num_groups". The mean and standard-deviation are calculated separately over the each group. \gamma and \beta are learnable per-channel affine transform parameter vectors of size "num_channels" if "affine" is "True". The standard-deviation is calculated via the biased estimator, equivalent to torch.var(input, unbiased=False). This layer uses statistics computed from input data in both training and evaluation modes. Parameters: * num_groups (int) -- number of groups to separate the
https://pytorch.org/docs/stable/generated/torch.nn.GroupNorm.html
pytorch docs
channels into * **num_channels** (*int*) -- number of channels expected in input * **eps** (*float*) -- a value added to the denominator for numerical stability. Default: 1e-5 * **affine** (*bool*) -- a boolean value that when set to "True", this module has learnable per-channel affine parameters initialized to ones (for weights) and zeros (for biases). Default: "True". Shape: * Input: (N, C, *) where C=\text{num_channels} * Output: (N, C, *) (same shape as input) Examples: >>> input = torch.randn(20, 6, 10, 10) >>> # Separate 6 channels into 3 groups >>> m = nn.GroupNorm(3, 6) >>> # Separate 6 channels into 6 groups (equivalent with InstanceNorm) >>> m = nn.GroupNorm(6, 6) >>> # Put all 6 channels into a single group (equivalent with LayerNorm) >>> m = nn.GroupNorm(1, 6) >>> # Activating the module >>> output = m(input)
https://pytorch.org/docs/stable/generated/torch.nn.GroupNorm.html
pytorch docs
torch.cuda.caching_allocator_alloc torch.cuda.caching_allocator_alloc(size, device=None, stream=None) Performs a memory allocation using the CUDA memory allocator. Memory is allocated for a given device and a stream, this function is intended to be used for interoperability with other frameworks. Allocated memory is released through "caching_allocator_delete()". Parameters: * size (int) -- number of bytes to be allocated. * **device** (*torch.device** or **int**, **optional*) -- selected device. If it is "None" the default CUDA device is used. * **stream** (*torch.cuda.Stream** or **int**, **optional*) -- selected stream. If is "None" then the default stream for the selected device is used. Note: See Memory management for more details about GPU memory management.
https://pytorch.org/docs/stable/generated/torch.cuda.caching_allocator_alloc.html
pytorch docs
BatchNorm1d class torch.nn.BatchNorm1d(num_features, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True, device=None, dtype=None) Applies Batch Normalization over a 2D or 3D input as described in the paper Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift . y = \frac{x - \mathrm{E}[x]}{\sqrt{\mathrm{Var}[x] + \epsilon}} * \gamma + \beta The mean and standard-deviation are calculated per-dimension over the mini-batches and \gamma and \beta are learnable parameter vectors of size C (where C is the number of features or channels of the input). By default, the elements of \gamma are set to 1 and the elements of \beta are set to 0. The standard-deviation is calculated via the biased estimator, equivalent to torch.var(input, unbiased=False). Also by default, during training this layer keeps running estimates of its computed mean and variance, which are then used for
https://pytorch.org/docs/stable/generated/torch.nn.BatchNorm1d.html
pytorch docs
normalization during evaluation. The running estimates are kept with a default "momentum" of 0.1. If "track_running_stats" is set to "False", this layer then does not keep running estimates, and batch statistics are instead used during evaluation time as well. Note: This "momentum" argument is different from one used in optimizer classes and the conventional notion of momentum. Mathematically, the update rule for running statistics here is \hat{x}_\text{new} = (1 - \text{momentum}) \times \hat{x} + \text{momentum} \times x_t, where \hat{x} is the estimated statistic and x_t is the new observed value. Because the Batch Normalization is done over the C dimension, computing statistics on (N, L) slices, it's common terminology to call this Temporal Batch Normalization. Parameters: * num_features (int) -- number of features or channels C of the input * **eps** (*float*) -- a value added to the denominator for
https://pytorch.org/docs/stable/generated/torch.nn.BatchNorm1d.html
pytorch docs
numerical stability. Default: 1e-5 * **momentum** (*float*) -- the value used for the running_mean and running_var computation. Can be set to "None" for cumulative moving average (i.e. simple average). Default: 0.1 * **affine** (*bool*) -- a boolean value that when set to "True", this module has learnable affine parameters. Default: "True" * **track_running_stats** (*bool*) -- a boolean value that when set to "True", this module tracks the running mean and variance, and when set to "False", this module does not track such statistics, and initializes statistics buffers "running_mean" and "running_var" as "None". When these buffers are "None", this module always uses batch statistics. in both training and eval modes. Default: "True" Shape: * Input: (N, C) or (N, C, L), where N is the batch size, C is the number of features or channels, and L is the sequence length
https://pytorch.org/docs/stable/generated/torch.nn.BatchNorm1d.html
pytorch docs
length * Output: (N, C) or (N, C, L) (same shape as input) Examples: >>> # With Learnable Parameters >>> m = nn.BatchNorm1d(100) >>> # Without Learnable Parameters >>> m = nn.BatchNorm1d(100, affine=False) >>> input = torch.randn(20, 100) >>> output = m(input)
https://pytorch.org/docs/stable/generated/torch.nn.BatchNorm1d.html
pytorch docs
torch.nn.functional.hardsigmoid torch.nn.functional.hardsigmoid(input, inplace=False) Applies the element-wise function \text{Hardsigmoid}(x) = \begin{cases} 0 & \text{if~} x \le -3, \\ 1 & \text{if~} x \ge +3, \\ x / 6 + 1 / 2 & \text{otherwise} \end{cases} Parameters: inplace (bool) -- If set to "True", will do this operation in-place. Default: "False" Return type: Tensor See "Hardsigmoid" for more details.
https://pytorch.org/docs/stable/generated/torch.nn.functional.hardsigmoid.html
pytorch docs
torch.cuda.synchronize torch.cuda.synchronize(device=None) Waits for all kernels in all streams on a CUDA device to complete. Parameters: device (torch.device or int, optional) -- device for which to synchronize. It uses the current device, given by "current_device()", if "device" is "None" (default).
https://pytorch.org/docs/stable/generated/torch.cuda.synchronize.html
pytorch docs
torch.Tensor.logical_xor_ Tensor.logical_xor_() -> Tensor In-place version of "logical_xor()"
https://pytorch.org/docs/stable/generated/torch.Tensor.logical_xor_.html
pytorch docs
torch.addcmul torch.addcmul(input, tensor1, tensor2, *, value=1, out=None) -> Tensor Performs the element-wise multiplication of "tensor1" by "tensor2", multiplies the result by the scalar "value" and adds it to "input". \text{out}_i = \text{input}_i + \text{value} \times \text{tensor1}_i \times \text{tensor2}_i The shapes of "tensor", "tensor1", and "tensor2" must be broadcastable. For inputs of type FloatTensor or DoubleTensor, "value" must be a real number, otherwise an integer. Parameters: * input (Tensor) -- the tensor to be added * **tensor1** (*Tensor*) -- the tensor to be multiplied * **tensor2** (*Tensor*) -- the tensor to be multiplied Keyword Arguments: * value (Number, optional) -- multiplier for tensor1 .* tensor2 * **out** (*Tensor**, **optional*) -- the output tensor. Example: >>> t = torch.randn(1, 3) >>> t1 = torch.randn(3, 1) >>> t2 = torch.randn(1, 3)
https://pytorch.org/docs/stable/generated/torch.addcmul.html
pytorch docs
t2 = torch.randn(1, 3) >>> torch.addcmul(t, t1, t2, value=0.1) tensor([[-0.8635, -0.6391, 1.6174], [-0.7617, -0.5879, 1.7388], [-0.8353, -0.6249, 1.6511]])
https://pytorch.org/docs/stable/generated/torch.addcmul.html
pytorch docs
torch.Tensor.multiply Tensor.multiply(value) -> Tensor See "torch.multiply()".
https://pytorch.org/docs/stable/generated/torch.Tensor.multiply.html
pytorch docs
MovingAverageMinMaxObserver class torch.quantization.observer.MovingAverageMinMaxObserver(averaging_constant=0.01, dtype=torch.quint8, qscheme=torch.per_tensor_affine, reduce_range=False, quant_min=None, quant_max=None, eps=1.1920928955078125e-07, **kwargs) Observer module for computing the quantization parameters based on the moving average of the min and max values. This observer computes the quantization parameters based on the moving averages of minimums and maximums of the incoming tensors. The module records the average minimum and maximum of incoming tensors, and uses this statistic to compute the quantization parameters. Parameters: * averaging_constant -- Averaging constant for min/max. * **dtype** -- dtype argument to the *quantize* node needed to implement the reference model spec. * **qscheme** -- Quantization scheme to be used * **reduce_range** -- Reduces the range of the quantized data
https://pytorch.org/docs/stable/generated/torch.quantization.observer.MovingAverageMinMaxObserver.html
pytorch docs
type by 1 bit * **quant_min** -- Minimum quantization value. If unspecified, it will follow the 8-bit setup. * **quant_max** -- Maximum quantization value. If unspecified, it will follow the 8-bit setup. * **eps** (*Tensor*) -- Epsilon value for float32, Defaults to *torch.finfo(torch.float32).eps*. The moving average min/max is computed as follows \begin{array}{ll} x_\text{min} = \begin{cases} \min(X) & \text{if~}x_\text{min} = \text{None} \\ (1 - c) x_\text{min} + c \min(X) & \text{otherwise} \end{cases}\\ x_\text{max} = \begin{cases} \max(X) & \text{if~}x_\text{max} = \text{None} \\ (1 - c) x_\text{max} + c \max(X) & \text{otherwise} \end{cases}\\ \end{array} where x_\text{min/max} is the running average min/max, X is is the incoming tensor, and c is the "averaging_constant". The scale and zero point are then computed as in "MinMaxObserver". Note:
https://pytorch.org/docs/stable/generated/torch.quantization.observer.MovingAverageMinMaxObserver.html
pytorch docs
Note: Only works with "torch.per_tensor_affine" quantization scheme. Note: If the running minimum equals to the running maximum, the scale and zero_point are set to 1.0 and 0.
https://pytorch.org/docs/stable/generated/torch.quantization.observer.MovingAverageMinMaxObserver.html
pytorch docs
torch.cuda.get_gencode_flags torch.cuda.get_gencode_flags() Returns NVCC gencode flags this library was compiled with. Return type: str
https://pytorch.org/docs/stable/generated/torch.cuda.get_gencode_flags.html
pytorch docs
Softsign class torch.nn.Softsign Applies the element-wise function: \text{SoftSign}(x) = \frac{x}{ 1 + |x|} Shape: * Input: (*), where * means any number of dimensions. * Output: (*), same shape as the input. [image] Examples: >>> m = nn.Softsign() >>> input = torch.randn(2) >>> output = m(input)
https://pytorch.org/docs/stable/generated/torch.nn.Softsign.html
pytorch docs
torch.Tensor.is_shared Tensor.is_shared() Checks if tensor is in shared memory. This is always "True" for CUDA tensors.
https://pytorch.org/docs/stable/generated/torch.Tensor.is_shared.html
pytorch docs