text
stringlengths
0
1.73k
source
stringlengths
35
119
category
stringclasses
2 values
torch.Tensor.nansum Tensor.nansum(dim=None, keepdim=False, dtype=None) -> Tensor See "torch.nansum()"
https://pytorch.org/docs/stable/generated/torch.Tensor.nansum.html
pytorch docs
torch.Tensor.unbind Tensor.unbind(dim=0) -> seq See "torch.unbind()"
https://pytorch.org/docs/stable/generated/torch.Tensor.unbind.html
pytorch docs
torch.isclose torch.isclose(input, other, rtol=1e-05, atol=1e-08, equal_nan=False) -> Tensor Returns a new tensor with boolean elements representing if each element of "input" is "close" to the corresponding element of "other". Closeness is defined as: \lvert \text{input} - \text{other} \rvert \leq \texttt{atol} + \texttt{rtol} \times \lvert \text{other} \rvert where "input" and "other" are finite. Where "input" and/or "other" are nonfinite they are close if and only if they are equal, with NaNs being considered equal to each other when "equal_nan" is True. Parameters: * input (Tensor) -- first tensor to compare * **other** (*Tensor*) -- second tensor to compare * **atol** (*float**, **optional*) -- absolute tolerance. Default: 1e-08 * **rtol** (*float**, **optional*) -- relative tolerance. Default: 1e-05 * **equal_nan** (*bool**, **optional*) -- if "True", then two
https://pytorch.org/docs/stable/generated/torch.isclose.html
pytorch docs
"NaN" s will be considered equal. Default: "False" Examples: >>> torch.isclose(torch.tensor((1., 2, 3)), torch.tensor((1 + 1e-10, 3, 4))) tensor([ True, False, False]) >>> torch.isclose(torch.tensor((float('inf'), 4)), torch.tensor((float('inf'), 6)), rtol=.5) tensor([True, True])
https://pytorch.org/docs/stable/generated/torch.isclose.html
pytorch docs
torch.nn.functional.kl_div torch.nn.functional.kl_div(input, target, size_average=None, reduce=None, reduction='mean', log_target=False) The Kullback-Leibler divergence Loss See "KLDivLoss" for details. Parameters: * input (Tensor) -- Tensor of arbitrary shape in log- probabilities. * **target** (*Tensor*) -- Tensor of the same shape as input. See "log_target" for the target's interpretation. * **size_average** (*bool**, **optional*) -- Deprecated (see "reduction"). By default, the losses are averaged over each loss element in the batch. Note that for some losses, there multiple elements per sample. If the field "size_average" is set to "False", the losses are instead summed for each minibatch. Ignored when reduce is "False". Default: "True" * **reduce** (*bool**, **optional*) -- Deprecated (see "reduction"). By default, the losses are averaged or summed
https://pytorch.org/docs/stable/generated/torch.nn.functional.kl_div.html
pytorch docs
over observations for each minibatch depending on "size_average". When "reduce" is "False", returns a loss per batch element instead and ignores "size_average". Default: "True" * **reduction** (*str**, **optional*) -- Specifies the reduction to apply to the output: "'none'" | "'batchmean'" | "'sum'" | "'mean'". "'none'": no reduction will be applied "'batchmean'": the sum of the output will be divided by the batchsize "'sum'": the output will be summed "'mean'": the output will be divided by the number of elements in the output Default: "'mean'" * **log_target** (*bool*) -- A flag indicating whether "target" is passed in the log space. It is recommended to pass certain distributions (like "softmax") in the log space to avoid numerical issues caused by explicit "log". Default: "False" Return type: Tensor Note: "size_average" and "reduce" are in the process of being
https://pytorch.org/docs/stable/generated/torch.nn.functional.kl_div.html
pytorch docs
deprecated, and in the meantime, specifying either of those two args will override "reduction". Note: "reduction" = "'mean'" doesn't return the true kl divergence value, please use "reduction" = "'batchmean'" which aligns with KL math definition. In the next major release, "'mean'" will be changed to be the same as 'batchmean'.
https://pytorch.org/docs/stable/generated/torch.nn.functional.kl_div.html
pytorch docs
torch.ravel torch.ravel(input) -> Tensor Return a contiguous flattened tensor. A copy is made only if needed. Parameters: input (Tensor) -- the input tensor. Example: >>> t = torch.tensor([[[1, 2], ... [3, 4]], ... [[5, 6], ... [7, 8]]]) >>> torch.ravel(t) tensor([1, 2, 3, 4, 5, 6, 7, 8])
https://pytorch.org/docs/stable/generated/torch.ravel.html
pytorch docs
torch.get_default_dtype torch.get_default_dtype() -> torch.dtype Get the current default floating point "torch.dtype". Example: >>> torch.get_default_dtype() # initial default for floating point is torch.float32 torch.float32 >>> torch.set_default_dtype(torch.float64) >>> torch.get_default_dtype() # default is now changed to torch.float64 torch.float64 >>> torch.set_default_tensor_type(torch.FloatTensor) # setting tensor type also affects this >>> torch.get_default_dtype() # changed to torch.float32, the dtype for torch.FloatTensor torch.float32
https://pytorch.org/docs/stable/generated/torch.get_default_dtype.html
pytorch docs
torch.autograd.backward torch.autograd.backward(tensors, grad_tensors=None, retain_graph=None, create_graph=False, grad_variables=None, inputs=None) Computes the sum of gradients of given tensors with respect to graph leaves. The graph is differentiated using the chain rule. If any of "tensors" are non-scalar (i.e. their data has more than one element) and require gradient, then the Jacobian-vector product would be computed, in this case the function additionally requires specifying "grad_tensors". It should be a sequence of matching length, that contains the "vector" in the Jacobian-vector product, usually the gradient of the differentiated function w.r.t. corresponding tensors ("None" is an acceptable value for all tensors that don't need gradient tensors). This function accumulates gradients in the leaves - you might need to zero ".grad" attributes or set them to "None" before calling it.
https://pytorch.org/docs/stable/generated/torch.autograd.backward.html
pytorch docs
See Default gradient layouts for details on the memory layout of accumulated gradients. Note: Using this method with "create_graph=True" will create a reference cycle between the parameter and its gradient which can cause a memory leak. We recommend using "autograd.grad" when creating the graph to avoid this. If you have to use this function, make sure to reset the ".grad" fields of your parameters to "None" after use to break the cycle and avoid the leak. Note: If you run any forward ops, create "grad_tensors", and/or call "backward" in a user-specified CUDA stream context, see Stream semantics of backward passes. Note: When "inputs" are provided and a given input is not a leaf, the current implementation will call its grad_fn (even though it is not strictly needed to get this gradients). It is an implementation detail on which the user should not rely. See htt
https://pytorch.org/docs/stable/generated/torch.autograd.backward.html
pytorch docs
ps://github.com/pytorch/pytorch/pull/60521#issuecomment-867061780 for more details. Parameters: * tensors (Sequence[Tensor] or Tensor) -- Tensors of which the derivative will be computed. * **grad_tensors** (*Sequence**[**Tensor** or **None**] or **Tensor**, **optional*) -- The "vector" in the Jacobian- vector product, usually gradients w.r.t. each element of corresponding tensors. None values can be specified for scalar Tensors or ones that don't require grad. If a None value would be acceptable for all grad_tensors, then this argument is optional. * **retain_graph** (*bool**, **optional*) -- If "False", the graph used to compute the grad will be freed. Note that in nearly all cases setting this option to "True" is not needed and often can be worked around in a much more efficient way. Defaults to the value of "create_graph".
https://pytorch.org/docs/stable/generated/torch.autograd.backward.html
pytorch docs
Defaults to the value of "create_graph". * **create_graph** (*bool**, **optional*) -- If "True", graph of the derivative will be constructed, allowing to compute higher order derivative products. Defaults to "False". * **inputs** (*Sequence**[**Tensor**] or **Tensor**, **optional*) -- Inputs w.r.t. which the gradient be will accumulated into ".grad". All other Tensors will be ignored. If not provided, the gradient is accumulated into all the leaf Tensors that were used to compute the attr::tensors.
https://pytorch.org/docs/stable/generated/torch.autograd.backward.html
pytorch docs
torch.geqrf torch.geqrf(input, *, out=None) This is a low-level function for calling LAPACK's geqrf directly. This function returns a namedtuple (a, tau) as defined in LAPACK documentation for geqrf . Computes a QR decomposition of "input". Both Q and R matrices are stored in the same output tensor a. The elements of R are stored on and above the diagonal. Elementary reflectors (or Householder vectors) implicitly defining matrix Q are stored below the diagonal. The results of this function can be used together with "torch.linalg.householder_product()" to obtain the Q matrix or with "torch.ormqr()", which uses an implicit representation of the Q matrix, for an efficient matrix-matrix multiplication. See LAPACK documentation for geqrf for further details. Note: See also "torch.linalg.qr()", which computes Q and R matrices, and "torch.linalg.lstsq()" with the "driver="gels"" option for a
https://pytorch.org/docs/stable/generated/torch.geqrf.html
pytorch docs
function that can solve matrix equations using a QR decomposition. Parameters: input (Tensor) -- the input matrix Keyword Arguments: out (tuple, optional) -- the output tuple of (Tensor, Tensor). Ignored if None. Default: None.
https://pytorch.org/docs/stable/generated/torch.geqrf.html
pytorch docs
torch.autograd.Function.backward static Function.backward(ctx, *grad_outputs) Defines a formula for differentiating the operation with backward mode automatic differentiation (alias to the vjp function). This function is to be overridden by all subclasses. It must accept a context "ctx" as the first argument, followed by as many outputs as the "forward()" returned (None will be passed in for non tensor outputs of the forward function), and it should return as many tensors, as there were inputs to "forward()". Each argument is the gradient w.r.t the given output, and each returned value should be the gradient w.r.t. the corresponding input. If an input is not a Tensor or is a Tensor not requiring grads, you can just pass None as a gradient for that input. The context can be used to retrieve tensors saved during the forward pass. It also has an attribute "ctx.needs_input_grad" as a
https://pytorch.org/docs/stable/generated/torch.autograd.Function.backward.html
pytorch docs
tuple of booleans representing whether each input needs gradient. E.g., "backward()" will have "ctx.needs_input_grad[0] = True" if the first input to "forward()" needs gradient computated w.r.t. the output. Return type: Any
https://pytorch.org/docs/stable/generated/torch.autograd.Function.backward.html
pytorch docs
torch.Tensor.isneginf Tensor.isneginf() -> Tensor See "torch.isneginf()"
https://pytorch.org/docs/stable/generated/torch.Tensor.isneginf.html
pytorch docs
torch.cumprod torch.cumprod(input, dim, *, dtype=None, out=None) -> Tensor Returns the cumulative product of elements of "input" in the dimension "dim". For example, if "input" is a vector of size N, the result will also be a vector of size N, with elements. y_i = x_1 \times x_2\times x_3\times \dots \times x_i Parameters: * input (Tensor) -- the input tensor. * **dim** (*int*) -- the dimension to do the operation over Keyword Arguments: * dtype ("torch.dtype", optional) -- the desired data type of returned tensor. If specified, the input tensor is casted to "dtype" before the operation is performed. This is useful for preventing data type overflows. Default: None. * **out** (*Tensor**, **optional*) -- the output tensor. Example: >>> a = torch.randn(10) >>> a tensor([ 0.6001, 0.2069, -0.1919, 0.9792, 0.6727, 1.0062, 0.4126, -0.2129, -0.4206, 0.1968])
https://pytorch.org/docs/stable/generated/torch.cumprod.html
pytorch docs
-0.2129, -0.4206, 0.1968]) >>> torch.cumprod(a, dim=0) tensor([ 0.6001, 0.1241, -0.0238, -0.0233, -0.0157, -0.0158, -0.0065, 0.0014, -0.0006, -0.0001]) >>> a[5] = 0.0 >>> torch.cumprod(a, dim=0) tensor([ 0.6001, 0.1241, -0.0238, -0.0233, -0.0157, -0.0000, -0.0000, 0.0000, -0.0000, -0.0000])
https://pytorch.org/docs/stable/generated/torch.cumprod.html
pytorch docs
torch.Tensor.diag Tensor.diag(diagonal=0) -> Tensor See "torch.diag()"
https://pytorch.org/docs/stable/generated/torch.Tensor.diag.html
pytorch docs
torch.rsqrt torch.rsqrt(input, *, out=None) -> Tensor Returns a new tensor with the reciprocal of the square-root of each of the elements of "input". \text{out}_{i} = \frac{1}{\sqrt{\text{input}_{i}}} Parameters: input (Tensor) -- the input tensor. Keyword Arguments: out (Tensor, optional) -- the output tensor. Example: >>> a = torch.randn(4) >>> a tensor([-0.0370, 0.2970, 1.5420, -0.9105]) >>> torch.rsqrt(a) tensor([ nan, 1.8351, 0.8053, nan])
https://pytorch.org/docs/stable/generated/torch.rsqrt.html
pytorch docs
torch.dstack torch.dstack(tensors, *, out=None) -> Tensor Stack tensors in sequence depthwise (along third axis). This is equivalent to concatenation along the third axis after 1-D and 2-D tensors have been reshaped by "torch.atleast_3d()". Parameters: tensors (sequence of Tensors) -- sequence of tensors to concatenate Keyword Arguments: out (Tensor, optional) -- the output tensor. Example: >>> a = torch.tensor([1, 2, 3]) >>> b = torch.tensor([4, 5, 6]) >>> torch.dstack((a,b)) tensor([[[1, 4], [2, 5], [3, 6]]]) >>> a = torch.tensor([[1],[2],[3]]) >>> b = torch.tensor([[4],[5],[6]]) >>> torch.dstack((a,b)) tensor([[[1, 4]], [[2, 5]], [[3, 6]]])
https://pytorch.org/docs/stable/generated/torch.dstack.html
pytorch docs
torch.Tensor.tan_ Tensor.tan_() -> Tensor In-place version of "tan()"
https://pytorch.org/docs/stable/generated/torch.Tensor.tan_.html
pytorch docs
torch.Tensor.sub Tensor.sub(other, *, alpha=1) -> Tensor See "torch.sub()".
https://pytorch.org/docs/stable/generated/torch.Tensor.sub.html
pytorch docs
torch._foreach_tan torch._foreach_tan(self: List[Tensor]) -> List[Tensor] Apply "torch.tan()" to each Tensor of the input list.
https://pytorch.org/docs/stable/generated/torch._foreach_tan.html
pytorch docs
torch.dist torch.dist(input, other, p=2) -> Tensor Returns the p-norm of ("input" - "other") The shapes of "input" and "other" must be broadcastable. Parameters: * input (Tensor) -- the input tensor. * **other** (*Tensor*) -- the Right-hand-side input tensor * **p** (*float**, **optional*) -- the norm to be computed Example: >>> x = torch.randn(4) >>> x tensor([-1.5393, -0.8675, 0.5916, 1.6321]) >>> y = torch.randn(4) >>> y tensor([ 0.0967, -1.0511, 0.6295, 0.8360]) >>> torch.dist(x, y, 3.5) tensor(1.6727) >>> torch.dist(x, y, 3) tensor(1.6973) >>> torch.dist(x, y, 0) tensor(4.) >>> torch.dist(x, y, 1) tensor(2.6537)
https://pytorch.org/docs/stable/generated/torch.dist.html
pytorch docs
torch.func.vjp torch.func.vjp(func, *primals, has_aux=False) Standing for the vector-Jacobian product, returns a tuple containing the results of "func" applied to "primals" and a function that, when given "cotangents", computes the reverse-mode Jacobian of "func" with respect to "primals" times "cotangents". Parameters: * func (Callable) -- A Python function that takes one or more arguments. Must return one or more Tensors. * **primals** (*Tensors*) -- Positional arguments to "func" that must all be Tensors. The returned function will also be computing the derivative with respect to these arguments * **has_aux** (*bool*) -- Flag indicating that "func" returns a "(output, aux)" tuple where the first element is the output of the function to be differentiated and the second element is other auxiliary objects that will not be differentiated. Default: False. Returns:
https://pytorch.org/docs/stable/generated/torch.func.vjp.html
pytorch docs
Default: False. Returns: Returns a "(output, vjp_fn)" tuple containing the output of "func" applied to "primals" and a function that computes the vjp of "func" with respect to all "primals" using the cotangents passed to the returned function. If "has_aux is True", then instead returns a "(output, vjp_fn, aux)" tuple. The returned "vjp_fn" function will return a tuple of each VJP. When used in simple cases, "vjp()" behaves the same as "grad()" x = torch.randn([5]) f = lambda x: x.sin().sum() (_, vjpfunc) = torch.func.vjp(f, x) grad = vjpfunc(torch.tensor(1.))[0] assert torch.allclose(grad, torch.func.grad(f)(x)) However, "vjp()" can support functions with multiple outputs by passing in the cotangents for each of the outputs x = torch.randn([5]) f = lambda x: (x.sin(), x.cos()) (_, vjpfunc) = torch.func.vjp(f, x) vjps = vjpfunc((torch.ones([5]), torch.ones([5])))
https://pytorch.org/docs/stable/generated/torch.func.vjp.html
pytorch docs
assert torch.allclose(vjps[0], x.cos() + -x.sin()) "vjp()" can even support outputs being Python structs x = torch.randn([5]) f = lambda x: {'first': x.sin(), 'second': x.cos()} (_, vjpfunc) = torch.func.vjp(f, x) cotangents = {'first': torch.ones([5]), 'second': torch.ones([5])} vjps = vjpfunc(cotangents) assert torch.allclose(vjps[0], x.cos() + -x.sin()) The function returned by "vjp()" will compute the partials with respect to each of the "primals" x, y = torch.randn([5, 4]), torch.randn([4, 5]) (_, vjpfunc) = torch.func.vjp(torch.matmul, x, y) cotangents = torch.randn([5, 5]) vjps = vjpfunc(cotangents) assert len(vjps) == 2 assert torch.allclose(vjps[0], torch.matmul(cotangents, y.transpose(0, 1))) assert torch.allclose(vjps[1], torch.matmul(x.transpose(0, 1), cotangents)) "primals" are the positional arguments for "f". All kwargs use their default value x = torch.randn([5])
https://pytorch.org/docs/stable/generated/torch.func.vjp.html
pytorch docs
x = torch.randn([5]) def f(x, scale=4.): return x * scale (_, vjpfunc) = torch.func.vjp(f, x) vjps = vjpfunc(torch.ones_like(x)) assert torch.allclose(vjps[0], torch.full(x.shape, 4.)) Note: Using PyTorch "torch.no_grad" together with "vjp". Case 1: Using "torch.no_grad" inside a function: >>> def f(x): >>> with torch.no_grad(): >>> c = x ** 2 >>> return x - c In this case, "vjp(f)(x)" will respect the inner "torch.no_grad".Case 2: Using "vjp" inside "torch.no_grad" context manager: >>> with torch.no_grad(): >>> vjp(f)(x) In this case, "vjp" will respect the inner "torch.no_grad", but not the outer one. This is because "vjp" is a "function transform": its result should not depend on the result of a context manager outside of "f".
https://pytorch.org/docs/stable/generated/torch.func.vjp.html
pytorch docs
Tanhshrink class torch.nn.Tanhshrink Applies the element-wise function: \text{Tanhshrink}(x) = x - \tanh(x) Shape: * Input: (*), where * means any number of dimensions. * Output: (*), same shape as the input. [image] Examples: >>> m = nn.Tanhshrink() >>> input = torch.randn(2) >>> output = m(input)
https://pytorch.org/docs/stable/generated/torch.nn.Tanhshrink.html
pytorch docs
torch.Tensor.arccos Tensor.arccos() -> Tensor See "torch.arccos()"
https://pytorch.org/docs/stable/generated/torch.Tensor.arccos.html
pytorch docs
torch.Tensor.row_indices Tensor.row_indices()
https://pytorch.org/docs/stable/generated/torch.Tensor.row_indices.html
pytorch docs
Linear class torch.ao.nn.qat.dynamic.Linear(in_features, out_features, bias=True, qconfig=None, device=None, dtype=None) A linear module attached with FakeQuantize modules for weight, used for dynamic quantization aware training. We adopt the same interface as torch.nn.Linear, please see https://pytorch.org/docs/stable/nn.html#torch.nn.Linear for documentation. Similar to torch.nn.Linear, with FakeQuantize modules initialized to default.
https://pytorch.org/docs/stable/generated/torch.ao.nn.qat.dynamic.Linear.html
pytorch docs
MaxUnpool2d class torch.nn.MaxUnpool2d(kernel_size, stride=None, padding=0) Computes a partial inverse of "MaxPool2d". "MaxPool2d" is not fully invertible, since the non-maximal values are lost. "MaxUnpool2d" takes in as input the output of "MaxPool2d" including the indices of the maximal values and computes a partial inverse in which all non-maximal values are set to zero. Note: "MaxPool2d" can map several input sizes to the same output sizes. Hence, the inversion process can get ambiguous. To accommodate this, you can provide the needed output size as an additional argument "output_size" in the forward call. See the Inputs and Example below. Parameters: * kernel_size (int or tuple) -- Size of the max pooling window. * **stride** (*int** or **tuple*) -- Stride of the max pooling window. It is set to "kernel_size" by default. * **padding** (*int** or **tuple*) -- Padding that was added to
https://pytorch.org/docs/stable/generated/torch.nn.MaxUnpool2d.html
pytorch docs
the input Inputs: * input: the input Tensor to invert * *indices*: the indices given out by "MaxPool2d" * *output_size* (optional): the targeted output size Shape: * Input: (N, C, H_{in}, W_{in}) or (C, H_{in}, W_{in}). * Output: (N, C, H_{out}, W_{out}) or (C, H_{out}, W_{out}), where H_{out} = (H_{in} - 1) \times \text{stride[0]} - 2 \times \text{padding[0]} + \text{kernel\_size[0]} W_{out} = (W_{in} - 1) \times \text{stride[1]} - 2 \times \text{padding[1]} + \text{kernel\_size[1]} or as given by "output_size" in the call operator Example: >>> pool = nn.MaxPool2d(2, stride=2, return_indices=True) >>> unpool = nn.MaxUnpool2d(2, stride=2) >>> input = torch.tensor([[[[ 1., 2., 3., 4.], [ 5., 6., 7., 8.], [ 9., 10., 11., 12.], [13., 14., 15., 16.]]]])
https://pytorch.org/docs/stable/generated/torch.nn.MaxUnpool2d.html
pytorch docs
output, indices = pool(input) >>> unpool(output, indices) tensor([[[[ 0., 0., 0., 0.], [ 0., 6., 0., 8.], [ 0., 0., 0., 0.], [ 0., 14., 0., 16.]]]]) >>> # Now using output_size to resolve an ambiguous size for the inverse >>> input = torch.torch.tensor([[[[ 1., 2., 3., 4., 5.], [ 6., 7., 8., 9., 10.], [11., 12., 13., 14., 15.], [16., 17., 18., 19., 20.]]]]) >>> output, indices = pool(input) >>> # This call will not work without specifying output_size >>> unpool(output, indices, output_size=input.size()) tensor([[[[ 0., 0., 0., 0., 0.], [ 0., 7., 0., 9., 0.], [ 0., 0., 0., 0., 0.], [ 0., 17., 0., 19., 0.]]]])
https://pytorch.org/docs/stable/generated/torch.nn.MaxUnpool2d.html
pytorch docs
LSTMCell class torch.ao.nn.quantized.dynamic.LSTMCell(args, *kwargs) A long short-term memory (LSTM) cell. A dynamic quantized LSTMCell module with floating point tensor as inputs and outputs. Weights are quantized to 8 bits. We adopt the same interface as torch.nn.LSTMCell, please see https://pytorch.org/docs/stable/nn.html#torch.nn.LSTMCell for documentation. Examples: >>> rnn = nn.LSTMCell(10, 20) >>> input = torch.randn(6, 3, 10) >>> hx = torch.randn(3, 20) >>> cx = torch.randn(3, 20) >>> output = [] >>> for i in range(6): ... hx, cx = rnn(input[i], (hx, cx)) ... output.append(hx)
https://pytorch.org/docs/stable/generated/torch.ao.nn.quantized.dynamic.LSTMCell.html
pytorch docs
torch.sparse.sum torch.sparse.sum(input, dim=None, dtype=None) Returns the sum of each row of the sparse tensor "input" in the given dimensions "dim". If "dim" is a list of dimensions, reduce over all of them. When sum over all "sparse_dim", this method returns a dense tensor instead of a sparse tensor. All summed "dim" are squeezed (see "torch.squeeze()"), resulting an output tensor having "dim" fewer dimensions than "input". During backward, only gradients at "nnz" locations of "input" will propagate back. Note that the gradients of "input" is coalesced. Parameters: * input (Tensor) -- the input sparse tensor * **dim** (*int** or **tuple of ints*) -- a dimension or a list of dimensions to reduce. Default: reduce over all dims. * **dtype** ("torch.dtype", optional) -- the desired data type of returned Tensor. Default: dtype of "input". Return type: Tensor Example: >>> nnz = 3
https://pytorch.org/docs/stable/generated/torch.sparse.sum.html
pytorch docs
Tensor Example: >>> nnz = 3 >>> dims = [5, 5, 2, 3] >>> I = torch.cat([torch.randint(0, dims[0], size=(nnz,)), torch.randint(0, dims[1], size=(nnz,))], 0).reshape(2, nnz) >>> V = torch.randn(nnz, dims[2], dims[3]) >>> size = torch.Size(dims) >>> S = torch.sparse_coo_tensor(I, V, size) >>> S tensor(indices=tensor([[2, 0, 3], [2, 4, 1]]), values=tensor([[[-0.6438, -1.6467, 1.4004], [ 0.3411, 0.0918, -0.2312]], [[ 0.5348, 0.0634, -2.0494], [-0.7125, -1.0646, 2.1844]], [[ 0.1276, 0.1874, -0.6334], [-1.9682, -0.5340, 0.7483]]]), size=(5, 5, 2, 3), nnz=3, layout=torch.sparse_coo) # when sum over only part of sparse_dims, return a sparse tensor >>> torch.sparse.sum(S, [1, 3]) tensor(indices=tensor([[0, 2, 3]]),
https://pytorch.org/docs/stable/generated/torch.sparse.sum.html
pytorch docs
tensor(indices=tensor([[0, 2, 3]]), values=tensor([[-1.4512, 0.4073], [-0.8901, 0.2017], [-0.3183, -1.7539]]), size=(5, 2), nnz=3, layout=torch.sparse_coo) # when sum over all sparse dim, return a dense tensor # with summed dims squeezed >>> torch.sparse.sum(S, [0, 1, 3]) tensor([-2.6596, -1.1450])
https://pytorch.org/docs/stable/generated/torch.sparse.sum.html
pytorch docs
torch.remainder torch.remainder(input, other, *, out=None) -> Tensor Computes Python's modulus operation entrywise. The result has the same sign as the divisor "other" and its absolute value is less than that of "other". It may also be defined in terms of "torch.div()" as torch.remainder(a, b) == a - a.div(b, rounding_mode="floor") * b Supports broadcasting to a common shape, type promotion, and integer and float inputs. Note: Complex inputs are not supported. In some cases, it is not mathematically possible to satisfy the definition of a modulo operation with complex numbers. See "torch.fmod()" for how division by zero is handled. See also: "torch.fmod()" which implements C++'s std::fmod. This one is defined in terms of division rounding towards zero. Parameters: * input (Tensor or Scalar) -- the dividend * **other** (*Tensor** or **Scalar*) -- the divisor Keyword Arguments:
https://pytorch.org/docs/stable/generated/torch.remainder.html
pytorch docs
Keyword Arguments: out (Tensor, optional) -- the output tensor. Example: >>> torch.remainder(torch.tensor([-3., -2, -1, 1, 2, 3]), 2) tensor([ 1., 0., 1., 1., 0., 1.]) >>> torch.remainder(torch.tensor([1, 2, 3, 4, 5]), -1.5) tensor([ -0.5000, -1.0000, 0.0000, -0.5000, -1.0000 ])
https://pytorch.org/docs/stable/generated/torch.remainder.html
pytorch docs
torch.moveaxis torch.moveaxis(input, source, destination) -> Tensor Alias for "torch.movedim()". This function is equivalent to NumPy's moveaxis function. Examples: >>> t = torch.randn(3,2,1) >>> t tensor([[[-0.3362], [-0.8437]], [[-0.9627], [ 0.1727]], [[ 0.5173], [-0.1398]]]) >>> torch.moveaxis(t, 1, 0).shape torch.Size([2, 3, 1]) >>> torch.moveaxis(t, 1, 0) tensor([[[-0.3362], [-0.9627], [ 0.5173]], [[-0.8437], [ 0.1727], [-0.1398]]]) >>> torch.moveaxis(t, (1, 2), (0, 1)).shape torch.Size([2, 1, 3]) >>> torch.moveaxis(t, (1, 2), (0, 1)) tensor([[[-0.3362, -0.9627, 0.5173]], [[-0.8437, 0.1727, -0.1398]]])
https://pytorch.org/docs/stable/generated/torch.moveaxis.html
pytorch docs
torch.ormqr torch.ormqr(input, tau, other, left=True, transpose=False, *, out=None) -> Tensor Computes the matrix-matrix multiplication of a product of Householder matrices with a general matrix. Multiplies a m \times n matrix C (given by "other") with a matrix Q, where Q is represented using Householder reflectors (input, tau). See Representation of Orthogonal or Unitary Matrices for further details. If "left" is True then op(Q) times C is computed, otherwise the result is C times op(Q). When "left" is True, the implicit matrix Q has size m \times m. It has size n \times n otherwise. If "transpose" is True then op is the conjugate transpose operation, otherwise it's a no-op. Supports inputs of float, double, cfloat and cdouble dtypes. Also supports batched inputs, and, if the input is batched, the output is batched with the same dimensions. See also: "torch.geqrf()" can be used to form the Householder
https://pytorch.org/docs/stable/generated/torch.ormqr.html
pytorch docs
representation (input, tau) of matrix Q from the QR decomposition. Note: This function supports backward but it is only fast when "(input, tau)" do not require gradients and/or "tau.size(-1)" is very small. `` Parameters: * input (Tensor) -- tensor of shape (, mn, k) where *** is zero or more batch dimensions and mn equals to m or n* depending on the "left". * **tau** (*Tensor*) -- tensor of shape *(*, min(mn, k))* where *** is zero or more batch dimensions. * **other** (*Tensor*) -- tensor of shape *(*, m, n)* where *** is zero or more batch dimensions. * **left** (*bool*) -- controls the order of multiplication. * **transpose** (*bool*) -- controls whether the matrix *Q* is conjugate transposed or not. Keyword Arguments: out (Tensor, optional) -- the output Tensor. Ignored if None. Default: None.
https://pytorch.org/docs/stable/generated/torch.ormqr.html
pytorch docs
torch.cuda.set_sync_debug_mode torch.cuda.set_sync_debug_mode(debug_mode) Sets the debug mode for cuda synchronizing operations. Parameters: debug_mode (str or int) -- if "default" or 0, don't error or warn on synchronizing operations, if "warn" or 1, warn on synchronizing operations, if "error" or 2, error out synchronizing operations. Warning: This is an experimental feature, and not all synchronizing operations will trigger warning or error. In particular, operations in torch.distributed and torch.sparse namespaces are not covered yet.
https://pytorch.org/docs/stable/generated/torch.cuda.set_sync_debug_mode.html
pytorch docs
torch.log10 torch.log10(input, *, out=None) -> Tensor Returns a new tensor with the logarithm to the base 10 of the elements of "input". y_{i} = \log_{10} (x_{i}) Parameters: input (Tensor) -- the input tensor. Keyword Arguments: out (Tensor, optional) -- the output tensor. Example: >>> a = torch.rand(5) >>> a tensor([ 0.5224, 0.9354, 0.7257, 0.1301, 0.2251]) >>> torch.log10(a) tensor([-0.2820, -0.0290, -0.1392, -0.8857, -0.6476])
https://pytorch.org/docs/stable/generated/torch.log10.html
pytorch docs
torch.flatten torch.flatten(input, start_dim=0, end_dim=- 1) -> Tensor Flattens "input" by reshaping it into a one-dimensional tensor. If "start_dim" or "end_dim" are passed, only dimensions starting with "start_dim" and ending with "end_dim" are flattened. The order of elements in "input" is unchanged. Unlike NumPy's flatten, which always copies input's data, this function may return the original object, a view, or copy. If no dimensions are flattened, then the original object "input" is returned. Otherwise, if input can be viewed as the flattened shape, then that view is returned. Finally, only if the input cannot be viewed as the flattened shape is input's data copied. See "torch.Tensor.view()" for details on when a view will be returned. Note: Flattening a zero-dimensional tensor will return a one- dimensional view. Parameters: * input (Tensor) -- the input tensor. * **start_dim** (*int*) -- the first dim to flatten
https://pytorch.org/docs/stable/generated/torch.flatten.html
pytorch docs
end_dim (int) -- the last dim to flatten Example: >>> t = torch.tensor([[[1, 2], ... [3, 4]], ... [[5, 6], ... [7, 8]]]) >>> torch.flatten(t) tensor([1, 2, 3, 4, 5, 6, 7, 8]) >>> torch.flatten(t, start_dim=1) tensor([[1, 2, 3, 4], [5, 6, 7, 8]])
https://pytorch.org/docs/stable/generated/torch.flatten.html
pytorch docs
torch.Tensor.indices Tensor.indices() -> Tensor Return the indices tensor of a sparse COO tensor. Warning: Throws an error if "self" is not a sparse COO tensor. See also "Tensor.values()". Note: This method can only be called on a coalesced sparse tensor. See "Tensor.coalesce()" for details.
https://pytorch.org/docs/stable/generated/torch.Tensor.indices.html
pytorch docs
torch.Tensor.erfc_ Tensor.erfc_() -> Tensor In-place version of "erfc()"
https://pytorch.org/docs/stable/generated/torch.Tensor.erfc_.html
pytorch docs
torch.autograd.profiler.profile.self_cpu_time_total property profile.self_cpu_time_total Returns total time spent on CPU obtained as a sum of all self times across all the events.
https://pytorch.org/docs/stable/generated/torch.autograd.profiler.profile.self_cpu_time_total.html
pytorch docs
torch.nn.utils.clip_grad_norm_ torch.nn.utils.clip_grad_norm_(parameters, max_norm, norm_type=2.0, error_if_nonfinite=False, foreach=None) Clips gradient norm of an iterable of parameters. The norm is computed over all gradients together, as if they were concatenated into a single vector. Gradients are modified in-place. Parameters: * parameters (Iterable[Tensor] or Tensor) -- an iterable of Tensors or a single Tensor that will have gradients normalized * **max_norm** (*float*) -- max norm of the gradients * **norm_type** (*float*) -- type of the used p-norm. Can be "'inf'" for infinity norm. * **error_if_nonfinite** (*bool*) -- if True, an error is thrown if the total norm of the gradients from "parameters" is "nan", "inf", or "-inf". Default: False (will switch to True in the future) * **foreach** (*bool*) -- use the faster foreach-based
https://pytorch.org/docs/stable/generated/torch.nn.utils.clip_grad_norm_.html
pytorch docs
implementation. If "None", use the foreach implementation for CUDA and CPU tensors and silently fall back to the slow implementation for other device types. Default: "None" Returns: Total norm of the parameter gradients (viewed as a single vector). Return type: Tensor
https://pytorch.org/docs/stable/generated/torch.nn.utils.clip_grad_norm_.html
pytorch docs
torch.Tensor.to_mkldnn Tensor.to_mkldnn() -> Tensor Returns a copy of the tensor in "torch.mkldnn" layout.
https://pytorch.org/docs/stable/generated/torch.Tensor.to_mkldnn.html
pytorch docs
torch.Tensor.erf_ Tensor.erf_() -> Tensor In-place version of "erf()"
https://pytorch.org/docs/stable/generated/torch.Tensor.erf_.html
pytorch docs
torch.Tensor.bool Tensor.bool(memory_format=torch.preserve_format) -> Tensor "self.bool()" is equivalent to "self.to(torch.bool)". See "to()". Parameters: memory_format ("torch.memory_format", optional) -- the desired memory format of returned Tensor. Default: "torch.preserve_format".
https://pytorch.org/docs/stable/generated/torch.Tensor.bool.html
pytorch docs
torch.view_as_complex torch.view_as_complex(input) -> Tensor Returns a view of "input" as a complex tensor. For an input complex tensor of "size" m1, m2, \dots, mi, 2, this function returns a new complex tensor of "size" m1, m2, \dots, mi where the last dimension of the input tensor is expected to represent the real and imaginary components of complex numbers. Warning: "view_as_complex()" is only supported for tensors with "torch.dtype" "torch.float64" and "torch.float32". The input is expected to have the last dimension of "size" 2. In addition, the tensor must have a *stride* of 1 for its last dimension. The strides of all other dimensions must be even numbers. Parameters: input (Tensor) -- the input tensor. Example: >>> x=torch.randn(4, 2) >>> x tensor([[ 1.6116, -0.5772], [-1.4606, -0.9120], [ 0.0786, -1.7497], [-0.6561, -1.6623]])
https://pytorch.org/docs/stable/generated/torch.view_as_complex.html
pytorch docs
[-0.6561, -1.6623]]) >>> torch.view_as_complex(x) tensor([(1.6116-0.5772j), (-1.4606-0.9120j), (0.0786-1.7497j), (-0.6561-1.6623j)])
https://pytorch.org/docs/stable/generated/torch.view_as_complex.html
pytorch docs
torch.nn.functional.pixel_shuffle torch.nn.functional.pixel_shuffle(input, upscale_factor) -> Tensor Rearranges elements in a tensor of shape (, C \times r^2, H, W) to a tensor of shape (, C, H \times r, W \times r), where r is the "upscale_factor". See "PixelShuffle" for details. Parameters: * input (Tensor) -- the input tensor * **upscale_factor** (*int*) -- factor to increase spatial resolution by Examples: >>> input = torch.randn(1, 9, 4, 4) >>> output = torch.nn.functional.pixel_shuffle(input, 3) >>> print(output.size()) torch.Size([1, 1, 12, 12])
https://pytorch.org/docs/stable/generated/torch.nn.functional.pixel_shuffle.html
pytorch docs
torch.Tensor.arcsinh_ Tensor.arcsinh_() -> Tensor In-place version of "arcsinh()"
https://pytorch.org/docs/stable/generated/torch.Tensor.arcsinh_.html
pytorch docs
torch.Tensor.less Tensor.less() lt(other) -> Tensor See "torch.less()".
https://pytorch.org/docs/stable/generated/torch.Tensor.less.html
pytorch docs
ConvBnReLU3d class torch.ao.nn.intrinsic.qat.ConvBnReLU3d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=None, padding_mode='zeros', eps=1e-05, momentum=0.1, freeze_bn=False, qconfig=None) A ConvBnReLU3d module is a module fused from Conv3d, BatchNorm3d and ReLU, attached with FakeQuantize modules for weight, used in quantization aware training. We combined the interface of "torch.nn.Conv3d" and "torch.nn.BatchNorm3d" and "torch.nn.ReLU". Similar to torch.nn.Conv3d, with FakeQuantize modules initialized to default. Variables: weight_fake_quant -- fake quant module for weight
https://pytorch.org/docs/stable/generated/torch.ao.nn.intrinsic.qat.ConvBnReLU3d.html
pytorch docs
torch.logical_xor torch.logical_xor(input, other, *, out=None) -> Tensor Computes the element-wise logical XOR of the given input tensors. Zeros are treated as "False" and nonzeros are treated as "True". Parameters: * input (Tensor) -- the input tensor. * **other** (*Tensor*) -- the tensor to compute XOR with Keyword Arguments: out (Tensor, optional) -- the output tensor. Example: >>> torch.logical_xor(torch.tensor([True, False, True]), torch.tensor([True, False, False])) tensor([False, False, True]) >>> a = torch.tensor([0, 1, 10, 0], dtype=torch.int8) >>> b = torch.tensor([4, 0, 1, 0], dtype=torch.int8) >>> torch.logical_xor(a, b) tensor([ True, True, False, False]) >>> torch.logical_xor(a.double(), b.double()) tensor([ True, True, False, False]) >>> torch.logical_xor(a.double(), b) tensor([ True, True, False, False])
https://pytorch.org/docs/stable/generated/torch.logical_xor.html
pytorch docs
tensor([ True, True, False, False]) >>> torch.logical_xor(a, b, out=torch.empty(4, dtype=torch.bool)) tensor([ True, True, False, False])
https://pytorch.org/docs/stable/generated/torch.logical_xor.html
pytorch docs
SobolEngine class torch.quasirandom.SobolEngine(dimension, scramble=False, seed=None) The "torch.quasirandom.SobolEngine" is an engine for generating (scrambled) Sobol sequences. Sobol sequences are an example of low discrepancy quasi-random sequences. This implementation of an engine for Sobol sequences is capable of sampling sequences up to a maximum dimension of 21201. It uses direction numbers from https://web.maths.unsw.edu.au/~fkuo/sobol/ obtained using the search criterion D(6) up to the dimension 21201. This is the recommended choice by the authors. -[ References ]- Art B. Owen. Scrambling Sobol and Niederreiter-Xing points. Journal of Complexity, 14(4):466-489, December 1998. I. M. Sobol. The distribution of points in a cube and the accurate evaluation of integrals. Zh. Vychisl. Mat. i Mat. Phys., 7:784-802, 1967. Parameters: * dimension (Int) -- The dimensionality of the sequence to be drawn
https://pytorch.org/docs/stable/generated/torch.quasirandom.SobolEngine.html
pytorch docs
be drawn * **scramble** (*bool**, **optional*) -- Setting this to "True" will produce scrambled Sobol sequences. Scrambling is capable of producing better Sobol sequences. Default: "False". * **seed** (*Int**, **optional*) -- This is the seed for the scrambling. The seed of the random number generator is set to this, if specified. Otherwise, it uses a random seed. Default: "None" Examples: >>> soboleng = torch.quasirandom.SobolEngine(dimension=5) >>> soboleng.draw(3) tensor([[0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [0.5000, 0.5000, 0.5000, 0.5000, 0.5000], [0.7500, 0.2500, 0.2500, 0.2500, 0.7500]]) draw(n=1, out=None, dtype=torch.float32) Function to draw a sequence of "n" points from a Sobol sequence. Note that the samples are dependent on the previous samples. The size of the result is (n, dimension). Parameters:
https://pytorch.org/docs/stable/generated/torch.quasirandom.SobolEngine.html
pytorch docs
Parameters: * n (Int, optional) -- The length of sequence of points to draw. Default: 1 * **out** (*Tensor**, **optional*) -- The output tensor * **dtype** ("torch.dtype", optional) -- the desired data type of the returned tensor. Default: "torch.float32" Return type: *Tensor* draw_base2(m, out=None, dtype=torch.float32) Function to draw a sequence of "2**m" points from a Sobol sequence. Note that the samples are dependent on the previous samples. The size of the result is (2**m, dimension). Parameters: * **m** (*Int*) -- The (base2) exponent of the number of points to draw. * **out** (*Tensor**, **optional*) -- The output tensor * **dtype** ("torch.dtype", optional) -- the desired data type of the returned tensor. Default: "torch.float32" Return type: *Tensor* fast_forward(n)
https://pytorch.org/docs/stable/generated/torch.quasirandom.SobolEngine.html
pytorch docs
Tensor fast_forward(n) Function to fast-forward the state of the "SobolEngine" by "n" steps. This is equivalent to drawing "n" samples without using the samples. Parameters: **n** (*Int*) -- The number of steps to fast-forward by. reset() Function to reset the "SobolEngine" to base state.
https://pytorch.org/docs/stable/generated/torch.quasirandom.SobolEngine.html
pytorch docs
PackedSequence class torch.nn.utils.rnn.PackedSequence(data, batch_sizes=None, sorted_indices=None, unsorted_indices=None) Holds the data and list of "batch_sizes" of a packed sequence. All RNN modules accept packed sequences as inputs. Note: Instances of this class should never be created manually. They are meant to be instantiated by functions like "pack_padded_sequence()".Batch sizes represent the number elements at each sequence step in the batch, not the varying sequence lengths passed to "pack_padded_sequence()". For instance, given data "abc" and "x" the "PackedSequence" would contain data "axbc" with "batch_sizes=[2,1,1]". Variables: * data (Tensor) -- Tensor containing packed sequence * **batch_sizes** (*Tensor*) -- Tensor of integers holding information about the batch size at each sequence step * **sorted_indices** (*Tensor**, **optional*) -- Tensor of
https://pytorch.org/docs/stable/generated/torch.nn.utils.rnn.PackedSequence.html
pytorch docs
integers holding how this "PackedSequence" is constructed from sequences. * **unsorted_indices** (*Tensor**, **optional*) -- Tensor of integers holding how this to recover the original sequences with correct order. Note: "data" can be on arbitrary device and of arbitrary dtype. "sorted_indices" and "unsorted_indices" must be "torch.int64" tensors on the same device as "data".However, "batch_sizes" should always be a CPU "torch.int64" tensor.This invariant is maintained throughout "PackedSequence" class, and all functions that construct a *:class:PackedSequence* in PyTorch (i.e., they only pass in tensors conforming to this constraint). batch_sizes: Tensor Alias for field number 1 count(value, /) Return number of occurrences of value. data: Tensor Alias for field number 0 index(value, start=0, stop=9223372036854775807, /) Return first index of value.
https://pytorch.org/docs/stable/generated/torch.nn.utils.rnn.PackedSequence.html
pytorch docs
Return first index of value. Raises ValueError if the value is not present. property is_cuda Returns true if *self.data* stored on a gpu is_pinned() Returns true if *self.data* stored on in pinned memory sorted_indices: Optional[Tensor] Alias for field number 2 to(args, *kwargs) Performs dtype and/or device conversion on *self.data*. It has similar signature as "torch.Tensor.to()", except optional arguments like *non_blocking* and *copy* should be passed as kwargs, not args, or they will not apply to the index tensors. Note: If the "self.data" Tensor already has the correct "torch.dtype" and "torch.device", then "self" is returned. Otherwise, returns a copy with the desired configuration. unsorted_indices: Optional[Tensor] Alias for field number 3
https://pytorch.org/docs/stable/generated/torch.nn.utils.rnn.PackedSequence.html
pytorch docs
Softplus class torch.nn.Softplus(beta=1, threshold=20) Applies the Softplus function \text{Softplus}(x) = \frac{1}{\beta} * \log(1 + \exp(\beta * x)) element-wise. SoftPlus is a smooth approximation to the ReLU function and can be used to constrain the output of a machine to always be positive. For numerical stability the implementation reverts to the linear function when input \times \beta > threshold. Parameters: * beta (int) -- the \beta value for the Softplus formulation. Default: 1 * **threshold** (*int*) -- values above this revert to a linear function. Default: 20 Shape: * Input: (*), where * means any number of dimensions. * Output: (*), same shape as the input. [image] Examples: >>> m = nn.Softplus() >>> input = torch.randn(2) >>> output = m(input)
https://pytorch.org/docs/stable/generated/torch.nn.Softplus.html
pytorch docs
torch.logical_or torch.logical_or(input, other, *, out=None) -> Tensor Computes the element-wise logical OR of the given input tensors. Zeros are treated as "False" and nonzeros are treated as "True". Parameters: * input (Tensor) -- the input tensor. * **other** (*Tensor*) -- the tensor to compute OR with Keyword Arguments: out (Tensor, optional) -- the output tensor. Example: >>> torch.logical_or(torch.tensor([True, False, True]), torch.tensor([True, False, False])) tensor([ True, False, True]) >>> a = torch.tensor([0, 1, 10, 0], dtype=torch.int8) >>> b = torch.tensor([4, 0, 1, 0], dtype=torch.int8) >>> torch.logical_or(a, b) tensor([ True, True, True, False]) >>> torch.logical_or(a.double(), b.double()) tensor([ True, True, True, False]) >>> torch.logical_or(a.double(), b) tensor([ True, True, True, False])
https://pytorch.org/docs/stable/generated/torch.logical_or.html
pytorch docs
tensor([ True, True, True, False]) >>> torch.logical_or(a, b, out=torch.empty(4, dtype=torch.bool)) tensor([ True, True, True, False])
https://pytorch.org/docs/stable/generated/torch.logical_or.html
pytorch docs
threshold class torch.ao.nn.quantized.functional.threshold(input, threshold, value) Applies the quantized version of the threshold function element- wise: x = \begin{cases} x & \text{if~} x > \text{threshold} \\ \text{value} & \text{otherwise} \end{cases} See "Threshold" for more details. Return type: Tensor
https://pytorch.org/docs/stable/generated/torch.ao.nn.quantized.functional.threshold.html
pytorch docs
torch.Tensor.diagonal Tensor.diagonal(offset=0, dim1=0, dim2=1) -> Tensor See "torch.diagonal()"
https://pytorch.org/docs/stable/generated/torch.Tensor.diagonal.html
pytorch docs
MarginRankingLoss class torch.nn.MarginRankingLoss(margin=0.0, size_average=None, reduce=None, reduction='mean') Creates a criterion that measures the loss given inputs x1, x2, two 1D mini-batch or 0D Tensors, and a label 1D mini-batch or 0D Tensor y (containing 1 or -1). If y = 1 then it assumed the first input should be ranked higher (have a larger value) than the second input, and vice-versa for y = -1. The loss function for each pair of samples in the mini-batch is: \text{loss}(x1, x2, y) = \max(0, -y * (x1 - x2) + \text{margin}) Parameters: * margin (float, optional) -- Has a default value of 0. * **size_average** (*bool**, **optional*) -- Deprecated (see "reduction"). By default, the losses are averaged over each loss element in the batch. Note that for some losses, there are multiple elements per sample. If the field "size_average"
https://pytorch.org/docs/stable/generated/torch.nn.MarginRankingLoss.html
pytorch docs
is set to "False", the losses are instead summed for each minibatch. Ignored when "reduce" is "False". Default: "True" * **reduce** (*bool**, **optional*) -- Deprecated (see "reduction"). By default, the losses are averaged or summed over observations for each minibatch depending on "size_average". When "reduce" is "False", returns a loss per batch element instead and ignores "size_average". Default: "True" * **reduction** (*str**, **optional*) -- Specifies the reduction to apply to the output: "'none'" | "'mean'" | "'sum'". "'none'": no reduction will be applied, "'mean'": the sum of the output will be divided by the number of elements in the output, "'sum'": the output will be summed. Note: "size_average" and "reduce" are in the process of being deprecated, and in the meantime, specifying either of those two args will override "reduction". Default: "'mean'" Shape:
https://pytorch.org/docs/stable/generated/torch.nn.MarginRankingLoss.html
pytorch docs
Shape: * Input1: (N) or () where N is the batch size. * Input2: (N) or (), same shape as the Input1. * Target: (N) or (), same shape as the inputs. * Output: scalar. If "reduction" is "'none'" and Input size is not (), then (N). Examples: >>> loss = nn.MarginRankingLoss() >>> input1 = torch.randn(3, requires_grad=True) >>> input2 = torch.randn(3, requires_grad=True) >>> target = torch.randn(3).sign() >>> output = loss(input1, input2, target) >>> output.backward()
https://pytorch.org/docs/stable/generated/torch.nn.MarginRankingLoss.html
pytorch docs
torch.Tensor.cumprod Tensor.cumprod(dim, dtype=None) -> Tensor See "torch.cumprod()"
https://pytorch.org/docs/stable/generated/torch.Tensor.cumprod.html
pytorch docs
LocalResponseNorm class torch.nn.LocalResponseNorm(size, alpha=0.0001, beta=0.75, k=1.0) Applies local response normalization over an input signal composed of several input planes, where channels occupy the second dimension. Applies normalization across channels. b_{c} = a_{c}\left(k + \frac{\alpha}{n} \sum_{c'=\max(0, c-n/2)}^{\min(N-1,c+n/2)}a_{c'}^2\right)^{-\beta} Parameters: * size (int) -- amount of neighbouring channels used for normalization * **alpha** (*float*) -- multiplicative factor. Default: 0.0001 * **beta** (*float*) -- exponent. Default: 0.75 * **k** (*float*) -- additive factor. Default: 1 Shape: * Input: (N, C, *) * Output: (N, C, *) (same shape as input) Examples: >>> lrn = nn.LocalResponseNorm(2) >>> signal_2d = torch.randn(32, 5, 24, 24) >>> signal_4d = torch.randn(16, 5, 7, 7, 7, 7) >>> output_2d = lrn(signal_2d) >>> output_4d = lrn(signal_4d)
https://pytorch.org/docs/stable/generated/torch.nn.LocalResponseNorm.html
pytorch docs
torch.jit.trace_module torch.jit.trace_module(mod, inputs, optimize=None, check_trace=True, check_inputs=None, check_tolerance=1e-05, strict=True, _force_outplace=False, _module_class=None, _compilation_unit=, example_inputs_is_kwarg=False) Trace a module and return an executable "ScriptModule" that will be optimized using just-in-time compilation. When a module is passed to "torch.jit.trace", only the "forward" method is run and traced. With "trace_module", you can specify a dictionary of method names to example inputs to trace (see the "inputs") argument below. See "torch.jit.trace" for more information on tracing. Parameters: * mod (torch.nn.Module) -- A "torch.nn.Module" containing methods whose names are specified in "inputs". The given methods will be compiled as a part of a single ScriptModule. * **inputs** (*dict*) -- A dict containing sample inputs indexed
https://pytorch.org/docs/stable/generated/torch.jit.trace_module.html
pytorch docs
by method names in "mod". The inputs will be passed to methods whose names correspond to inputs' keys while tracing. "{ 'forward' : example_forward_input, 'method2': example_method2_input}" Keyword Arguments: * check_trace ("bool", optional) -- Check if the same inputs run through traced code produce the same outputs. Default: "True". You might want to disable this if, for example, your network contains non- deterministic ops or if you are sure that the network is correct despite a checker failure. * **check_inputs** (*list of dicts**, **optional*) -- A list of dicts of input arguments that should be used to check the trace against what is expected. Each tuple is equivalent to a set of input arguments that would be specified in "inputs". For best results, pass in a set of checking inputs representative of the space of shapes and types of inputs you
https://pytorch.org/docs/stable/generated/torch.jit.trace_module.html
pytorch docs
expect the network to see. If not specified, the original "inputs" are used for checking * **check_tolerance** (*float**, **optional*) -- Floating-point comparison tolerance to use in the checker procedure. This can be used to relax the checker strictness in the event that results diverge numerically for a known reason, such as operator fusion. * **example_inputs_is_kwarg** ("bool", optional) -- This parameter indicate whether the example inputs is a pack pack of keyword arguments. Default: "False". Returns: A "ScriptModule" object with a single "forward" method containing the traced code. When "func" is a "torch.nn.Module", the returned "ScriptModule" will have the same set of sub- modules and parameters as "func". Example (tracing a module with multiple methods): import torch import torch.nn as nn class Net(nn.Module): def __init__(self):
https://pytorch.org/docs/stable/generated/torch.jit.trace_module.html
pytorch docs
def init(self): super(Net, self).init() self.conv = nn.Conv2d(1, 1, 3) def forward(self, x): return self.conv(x) def weighted_kernel_sum(self, weight): return weight * self.conv.weight n = Net() example_weight = torch.rand(1, 1, 3, 3) example_forward_input = torch.rand(1, 1, 3, 3) # Trace a specific method and construct `ScriptModule` with # a single `forward` method module = torch.jit.trace(n.forward, example_forward_input) # Trace a module (implicitly traces `forward`) and construct a # `ScriptModule` with a single `forward` method module = torch.jit.trace(n, example_forward_input) # Trace specific methods on a module (specified in `inputs`), constructs # a `ScriptModule` with `forward` and `weighted_kernel_sum` methods inputs = {'forward' : example_forward_input, 'weighted_kernel_sum' : example_weight}
https://pytorch.org/docs/stable/generated/torch.jit.trace_module.html
pytorch docs
module = torch.jit.trace_module(n, inputs)
https://pytorch.org/docs/stable/generated/torch.jit.trace_module.html
pytorch docs
ReplicationPad2d class torch.nn.ReplicationPad2d(padding) Pads the input tensor using replication of the input boundary. For N-dimensional padding, use "torch.nn.functional.pad()". Parameters: padding (int, tuple) -- the size of the padding. If is int, uses the same padding in all boundaries. If a 4-tuple, uses (\text{padding_left}, \text{padding_right}, \text{padding_top}, \text{padding_bottom}) Shape: * Input: (N, C, H_{in}, W_{in}) or (C, H_{in}, W_{in}). * Output: (N, C, H_{out}, W_{out}) or (C, H_{out}, W_{out}), where H_{out} = H_{in} + \text{padding\_top} + \text{padding\_bottom} W_{out} = W_{in} + \text{padding\_left} + \text{padding\_right} Examples: >>> m = nn.ReplicationPad2d(2) >>> input = torch.arange(9, dtype=torch.float).reshape(1, 1, 3, 3) >>> input tensor([[[[0., 1., 2.], [3., 4., 5.], [6., 7., 8.]]]])
https://pytorch.org/docs/stable/generated/torch.nn.ReplicationPad2d.html
pytorch docs
[6., 7., 8.]]]]) >>> m(input) tensor([[[[0., 0., 0., 1., 2., 2., 2.], [0., 0., 0., 1., 2., 2., 2.], [0., 0., 0., 1., 2., 2., 2.], [3., 3., 3., 4., 5., 5., 5.], [6., 6., 6., 7., 8., 8., 8.], [6., 6., 6., 7., 8., 8., 8.], [6., 6., 6., 7., 8., 8., 8.]]]]) >>> # using different paddings for different sides >>> m = nn.ReplicationPad2d((1, 1, 2, 0)) >>> m(input) tensor([[[[0., 0., 1., 2., 2.], [0., 0., 1., 2., 2.], [0., 0., 1., 2., 2.], [3., 3., 4., 5., 5.], [6., 6., 7., 8., 8.]]]])
https://pytorch.org/docs/stable/generated/torch.nn.ReplicationPad2d.html
pytorch docs
torch.Tensor.to_dense Tensor.to_dense() -> Tensor Creates a strided copy of "self" if "self" is not a strided tensor, otherwise returns "self". Example: >>> s = torch.sparse_coo_tensor( ... torch.tensor([[1, 1], ... [0, 2]]), ... torch.tensor([9, 10]), ... size=(3, 3)) >>> s.to_dense() tensor([[ 0, 0, 0], [ 9, 0, 10], [ 0, 0, 0]])
https://pytorch.org/docs/stable/generated/torch.Tensor.to_dense.html
pytorch docs
Dropout class torch.nn.Dropout(p=0.5, inplace=False) During training, randomly zeroes some of the elements of the input tensor with probability "p" using samples from a Bernoulli distribution. Each channel will be zeroed out independently on every forward call. This has proven to be an effective technique for regularization and preventing the co-adaptation of neurons as described in the paper Improving neural networks by preventing co-adaptation of feature detectors . Furthermore, the outputs are scaled by a factor of \frac{1}{1-p} during training. This means that during evaluation the module simply computes an identity function. Parameters: * p (float) -- probability of an element to be zeroed. Default: 0.5 * **inplace** (*bool*) -- If set to "True", will do this operation in-place. Default: "False" Shape: * Input: (*). Input can be of any shape * Output: (*). Output is of the same shape as input
https://pytorch.org/docs/stable/generated/torch.nn.Dropout.html
pytorch docs
Examples: >>> m = nn.Dropout(p=0.2) >>> input = torch.randn(20, 16) >>> output = m(input)
https://pytorch.org/docs/stable/generated/torch.nn.Dropout.html
pytorch docs
avg_pool2d class torch.ao.nn.quantized.functional.avg_pool2d(input, kernel_size, stride=None, padding=0, ceil_mode=False, count_include_pad=True, divisor_override=None) Applies 2D average-pooling operation in kH \times kW regions by step size sH \times sW steps. The number of output features is equal to the number of input planes. Note: The input quantization parameters propagate to the output. See "AvgPool2d" for details and output shape. Parameters: * input -- quantized input tensor (\text{minibatch} , \text{in_channels} , iH , iW) * **kernel_size** -- size of the pooling region. Can be a single number or a tuple *(kH, kW)* * **stride** -- stride of the pooling operation. Can be a single number or a tuple *(sH, sW)*. Default: "kernel_size" * **padding** -- implicit zero paddings on both sides of the input. Can be a single number or a tuple *(padH, padW)*. Default: 0
https://pytorch.org/docs/stable/generated/torch.ao.nn.quantized.functional.avg_pool2d.html
pytorch docs
Default: 0 * **ceil_mode** -- when True, will use *ceil* instead of *floor* in the formula to compute the output shape. Default: "False" * **count_include_pad** -- when True, will include the zero- padding in the averaging calculation. Default: "True" * **divisor_override** -- if specified, it will be used as divisor, otherwise size of the pooling region will be used. Default: None
https://pytorch.org/docs/stable/generated/torch.ao.nn.quantized.functional.avg_pool2d.html
pytorch docs
torch.Tensor.ne Tensor.ne(other) -> Tensor See "torch.ne()".
https://pytorch.org/docs/stable/generated/torch.Tensor.ne.html
pytorch docs
torch.foreach_asin torch.foreach_asin(self: List[Tensor]) -> None Apply "torch.asin()" to each Tensor of the input list.
https://pytorch.org/docs/stable/generated/torch._foreach_asin_.html
pytorch docs
Linear class torch.ao.nn.quantized.dynamic.Linear(in_features, out_features, bias_=True, dtype=torch.qint8) A dynamic quantized linear module with floating point tensor as inputs and outputs. We adopt the same interface as torch.nn.Linear, please see https://pytorch.org/docs/stable/nn.html#torch.nn.Linear for documentation. Similar to "torch.nn.Linear", attributes will be randomly initialized at module creation time and will be overwritten later Variables: * weight (Tensor) -- the non-learnable quantized weights of the module which are of shape (\text{out_features}, \text{in_features}). * **bias** (*Tensor*) -- the non-learnable floating point bias of the module of shape (\text{out\_features}). If "bias" is "True", the values are initialized to zero. Examples: >>> m = nn.quantized.dynamic.Linear(20, 30) >>> input = torch.randn(128, 20) >>> output = m(input) >>> print(output.size())
https://pytorch.org/docs/stable/generated/torch.ao.nn.quantized.dynamic.Linear.html
pytorch docs
print(output.size()) torch.Size([128, 30]) classmethod from_float(mod) Create a dynamic quantized module from a float module or qparams_dict Parameters: **mod** (*Module*) -- a float module, either produced by torch.ao.quantization utilities or provided by the user classmethod from_reference(ref_qlinear) Create a (fbgemm/qnnpack) dynamic quantized module from a reference quantized module :param ref_qlinear: a reference quantized module, either produced by :type ref_qlinear: Module :param torch.ao.quantization functions or provided by the user:
https://pytorch.org/docs/stable/generated/torch.ao.nn.quantized.dynamic.Linear.html
pytorch docs