repo
stringlengths
7
55
path
stringlengths
4
127
func_name
stringlengths
1
88
original_string
stringlengths
75
19.8k
language
stringclasses
1 value
code
stringlengths
75
19.8k
code_tokens
sequence
docstring
stringlengths
3
17.3k
docstring_tokens
sequence
sha
stringlengths
40
40
url
stringlengths
87
242
partition
stringclasses
1 value
cytoscape/py2cytoscape
py2cytoscape/cyrest/layout.py
layout.attribute_circle
def attribute_circle(self, EdgeAttribute=None, network=None, \ NodeAttribute=None, nodeList=None, singlePartition=None,\ spacing=None, verbose=False): """ Execute the Attribute Circle Layout on a network. :param EdgeAttribute (string, optional): The name of the edge column containing numeric values that will be used as weights in the layout algorithm. Only columns containing numeric values are shown :param network (string, optional): Specifies a network by name, or by SUID if the prefix SUID: is used. The keyword CURRENT, or a blank value can also be used to specify the current network. :param NodeAttribute (string, optional): The name of the node column containing numeric values that will be used as weights in the layout algorithm. Only columns containing numeric values are shown :param nodeList (string, optional): Specifies a list of nodes. The keywords all, selected, or unselected can be used to specify nodes by their selection state. The pattern COLUMN:VALUE sets this parameter to any rows that contain the specified column value; if the COLUMN prefix is not used, the NAME column is matched by default. A list of COLUMN:VALUE pairs of the format COLUMN1:VALUE1,COLUMN2:VALUE2,... can be used to match multiple values. :param singlePartition (string, optional): Don't partition graph before layout, only boolean values allowed: true or false :param spacing (string, optional): Circle size, in numeric value :param verbose: print more """ network=check_network(self,network,verbose=verbose) PARAMS=set_param(["EdgeAttribute","network","NodeAttribute","nodeList","singlePartition","spacing"],\ [EdgeAttribute,network,NodeAttribute,nodeList,singlePartition,spacing]) response=api(url=self.__url+"/attribute-circle", PARAMS=PARAMS, method="POST", verbose=verbose) return response
python
def attribute_circle(self, EdgeAttribute=None, network=None, \ NodeAttribute=None, nodeList=None, singlePartition=None,\ spacing=None, verbose=False): """ Execute the Attribute Circle Layout on a network. :param EdgeAttribute (string, optional): The name of the edge column containing numeric values that will be used as weights in the layout algorithm. Only columns containing numeric values are shown :param network (string, optional): Specifies a network by name, or by SUID if the prefix SUID: is used. The keyword CURRENT, or a blank value can also be used to specify the current network. :param NodeAttribute (string, optional): The name of the node column containing numeric values that will be used as weights in the layout algorithm. Only columns containing numeric values are shown :param nodeList (string, optional): Specifies a list of nodes. The keywords all, selected, or unselected can be used to specify nodes by their selection state. The pattern COLUMN:VALUE sets this parameter to any rows that contain the specified column value; if the COLUMN prefix is not used, the NAME column is matched by default. A list of COLUMN:VALUE pairs of the format COLUMN1:VALUE1,COLUMN2:VALUE2,... can be used to match multiple values. :param singlePartition (string, optional): Don't partition graph before layout, only boolean values allowed: true or false :param spacing (string, optional): Circle size, in numeric value :param verbose: print more """ network=check_network(self,network,verbose=verbose) PARAMS=set_param(["EdgeAttribute","network","NodeAttribute","nodeList","singlePartition","spacing"],\ [EdgeAttribute,network,NodeAttribute,nodeList,singlePartition,spacing]) response=api(url=self.__url+"/attribute-circle", PARAMS=PARAMS, method="POST", verbose=verbose) return response
[ "def", "attribute_circle", "(", "self", ",", "EdgeAttribute", "=", "None", ",", "network", "=", "None", ",", "NodeAttribute", "=", "None", ",", "nodeList", "=", "None", ",", "singlePartition", "=", "None", ",", "spacing", "=", "None", ",", "verbose", "=", "False", ")", ":", "network", "=", "check_network", "(", "self", ",", "network", ",", "verbose", "=", "verbose", ")", "PARAMS", "=", "set_param", "(", "[", "\"EdgeAttribute\"", ",", "\"network\"", ",", "\"NodeAttribute\"", ",", "\"nodeList\"", ",", "\"singlePartition\"", ",", "\"spacing\"", "]", ",", "[", "EdgeAttribute", ",", "network", ",", "NodeAttribute", ",", "nodeList", ",", "singlePartition", ",", "spacing", "]", ")", "response", "=", "api", "(", "url", "=", "self", ".", "__url", "+", "\"/attribute-circle\"", ",", "PARAMS", "=", "PARAMS", ",", "method", "=", "\"POST\"", ",", "verbose", "=", "verbose", ")", "return", "response" ]
Execute the Attribute Circle Layout on a network. :param EdgeAttribute (string, optional): The name of the edge column containing numeric values that will be used as weights in the layout algorithm. Only columns containing numeric values are shown :param network (string, optional): Specifies a network by name, or by SUID if the prefix SUID: is used. The keyword CURRENT, or a blank value can also be used to specify the current network. :param NodeAttribute (string, optional): The name of the node column containing numeric values that will be used as weights in the layout algorithm. Only columns containing numeric values are shown :param nodeList (string, optional): Specifies a list of nodes. The keywords all, selected, or unselected can be used to specify nodes by their selection state. The pattern COLUMN:VALUE sets this parameter to any rows that contain the specified column value; if the COLUMN prefix is not used, the NAME column is matched by default. A list of COLUMN:VALUE pairs of the format COLUMN1:VALUE1,COLUMN2:VALUE2,... can be used to match multiple values. :param singlePartition (string, optional): Don't partition graph before layout, only boolean values allowed: true or false :param spacing (string, optional): Circle size, in numeric value :param verbose: print more
[ "Execute", "the", "Attribute", "Circle", "Layout", "on", "a", "network", "." ]
dd34de8d028f512314d0057168df7fef7c5d5195
https://github.com/cytoscape/py2cytoscape/blob/dd34de8d028f512314d0057168df7fef7c5d5195/py2cytoscape/cyrest/layout.py#L29-L61
train
cytoscape/py2cytoscape
py2cytoscape/cyrest/layout.py
layout.attributes_layout
def attributes_layout(self, EdgeAttribute=None, maxwidth=None, minrad=None, \ network=None, NodeAttribute=None,nodeList=None, radmult=None, \ spacingx=None, spacingy=None, verbose=False): """ Execute the Group Attributes Layout on a network :param EdgeAttribute (string, optional): The name of the edge column containing numeric values that will be used as weights in the layout algorithm. Only columns containing numeric values are shown :param maxwidth (string, optional): Maximum width of a row, in numeric value :param minrad (string, optional): Minimum width of a partition, in numeric value :param network (string, optional): Specifies a network by name, or by SUID if the prefix SUID: is used. The keyword CURRENT, or a blank value can also be used to specify the current network. :param NodeAttribute (string, optional): The name of the node column containing numeric values that will be used as weights in the layout algorithm. Only columns containing numeric values are shown :param nodeList (string, optional): Specifies a list of nodes. The keywords all, selected, or unselected can be used to specify nodes by their selection state. The pattern COLUMN:VALUE sets this parameter to any rows that contain the specified column value; if the COLUMN prefix is not used, the NAME column is matched by default. A list of COLUMN:VALUE pairs of the format COLUMN1:VALUE1,COLUMN2:VALUE2,... can be used to match multiple values. :param radmult (string, optional): Minimum width of a partition, in numeric value :param spacingx (string, optional): Horizontal spacing between two partitions in a row, in numeric value :param spacingy (string, optional): Vertical spacing between the largest partitions of two rows, in numeric value :param verbose: print more """ network=check_network(self,network,verbose=verbose) PARAMS=set_param(["EdgeAttribute","network","NodeAttribute","nodeList","singlePartition","spacing"],\ [EdgeAttribute, maxwidth, \ minrad, network, NodeAttribute,nodeList, radmult, \ spacingx, spacingy]) response=api(url=self.__url+"/attributes-layout", PARAMS=PARAMS, method="POST", verbose=verbose) return response
python
def attributes_layout(self, EdgeAttribute=None, maxwidth=None, minrad=None, \ network=None, NodeAttribute=None,nodeList=None, radmult=None, \ spacingx=None, spacingy=None, verbose=False): """ Execute the Group Attributes Layout on a network :param EdgeAttribute (string, optional): The name of the edge column containing numeric values that will be used as weights in the layout algorithm. Only columns containing numeric values are shown :param maxwidth (string, optional): Maximum width of a row, in numeric value :param minrad (string, optional): Minimum width of a partition, in numeric value :param network (string, optional): Specifies a network by name, or by SUID if the prefix SUID: is used. The keyword CURRENT, or a blank value can also be used to specify the current network. :param NodeAttribute (string, optional): The name of the node column containing numeric values that will be used as weights in the layout algorithm. Only columns containing numeric values are shown :param nodeList (string, optional): Specifies a list of nodes. The keywords all, selected, or unselected can be used to specify nodes by their selection state. The pattern COLUMN:VALUE sets this parameter to any rows that contain the specified column value; if the COLUMN prefix is not used, the NAME column is matched by default. A list of COLUMN:VALUE pairs of the format COLUMN1:VALUE1,COLUMN2:VALUE2,... can be used to match multiple values. :param radmult (string, optional): Minimum width of a partition, in numeric value :param spacingx (string, optional): Horizontal spacing between two partitions in a row, in numeric value :param spacingy (string, optional): Vertical spacing between the largest partitions of two rows, in numeric value :param verbose: print more """ network=check_network(self,network,verbose=verbose) PARAMS=set_param(["EdgeAttribute","network","NodeAttribute","nodeList","singlePartition","spacing"],\ [EdgeAttribute, maxwidth, \ minrad, network, NodeAttribute,nodeList, radmult, \ spacingx, spacingy]) response=api(url=self.__url+"/attributes-layout", PARAMS=PARAMS, method="POST", verbose=verbose) return response
[ "def", "attributes_layout", "(", "self", ",", "EdgeAttribute", "=", "None", ",", "maxwidth", "=", "None", ",", "minrad", "=", "None", ",", "network", "=", "None", ",", "NodeAttribute", "=", "None", ",", "nodeList", "=", "None", ",", "radmult", "=", "None", ",", "spacingx", "=", "None", ",", "spacingy", "=", "None", ",", "verbose", "=", "False", ")", ":", "network", "=", "check_network", "(", "self", ",", "network", ",", "verbose", "=", "verbose", ")", "PARAMS", "=", "set_param", "(", "[", "\"EdgeAttribute\"", ",", "\"network\"", ",", "\"NodeAttribute\"", ",", "\"nodeList\"", ",", "\"singlePartition\"", ",", "\"spacing\"", "]", ",", "[", "EdgeAttribute", ",", "maxwidth", ",", "minrad", ",", "network", ",", "NodeAttribute", ",", "nodeList", ",", "radmult", ",", "spacingx", ",", "spacingy", "]", ")", "response", "=", "api", "(", "url", "=", "self", ".", "__url", "+", "\"/attributes-layout\"", ",", "PARAMS", "=", "PARAMS", ",", "method", "=", "\"POST\"", ",", "verbose", "=", "verbose", ")", "return", "response" ]
Execute the Group Attributes Layout on a network :param EdgeAttribute (string, optional): The name of the edge column containing numeric values that will be used as weights in the layout algorithm. Only columns containing numeric values are shown :param maxwidth (string, optional): Maximum width of a row, in numeric value :param minrad (string, optional): Minimum width of a partition, in numeric value :param network (string, optional): Specifies a network by name, or by SUID if the prefix SUID: is used. The keyword CURRENT, or a blank value can also be used to specify the current network. :param NodeAttribute (string, optional): The name of the node column containing numeric values that will be used as weights in the layout algorithm. Only columns containing numeric values are shown :param nodeList (string, optional): Specifies a list of nodes. The keywords all, selected, or unselected can be used to specify nodes by their selection state. The pattern COLUMN:VALUE sets this parameter to any rows that contain the specified column value; if the COLUMN prefix is not used, the NAME column is matched by default. A list of COLUMN:VALUE pairs of the format COLUMN1:VALUE1,COLUMN2:VALUE2,... can be used to match multiple values. :param radmult (string, optional): Minimum width of a partition, in numeric value :param spacingx (string, optional): Horizontal spacing between two partitions in a row, in numeric value :param spacingy (string, optional): Vertical spacing between the largest partitions of two rows, in numeric value :param verbose: print more
[ "Execute", "the", "Group", "Attributes", "Layout", "on", "a", "network" ]
dd34de8d028f512314d0057168df7fef7c5d5195
https://github.com/cytoscape/py2cytoscape/blob/dd34de8d028f512314d0057168df7fef7c5d5195/py2cytoscape/cyrest/layout.py#L64-L104
train
cytoscape/py2cytoscape
py2cytoscape/cyrest/layout.py
layout.circular
def circular(self,EdgeAttribute=None,leftEdge=None,network=None,\ NodeAttribute=None,nodeHorizontalSpacing=None,nodeList=None,\ nodeVerticalSpacing=None,rightMargin=None,singlePartition=None,topEdge=None,\ verbose=None): """ Execute the Circular Layout on a network :param EdgeAttribute (string, optional): The name of the edge column contai ning numeric values that will be used as weights in the layout algor ithm. Only columns containing numeric values are shown :param leftEdge (string, optional): Left edge margin, in numeric value :param network (string, optional): Specifies a network by name, or by SUID if the prefix SUID: is used. The keyword CURRENT, or a blank value c an also be used to specify the current network. :param NodeAttribute (string, optional): The name of the node column contai ning numeric values that will be used as weights in the layout algor ithm. Only columns containing numeric values are shown :param nodeHorizontalSpacing (string, optional): Horizontal spacing between nodes, in numeric value :param nodeList (string, optional): Specifies a list of nodes. The keywords all, selected, or unselected can be used to specify nodes by their selection state. The pattern COLUMN:VALUE sets this parameter to any rows that contain the specified column value; if the COLUMN prefix is not used, the NAME column is matched by default. A list of COLUMN :VALUE pairs of the format COLUMN1:VALUE1,COLUMN2:VALUE2,... can be used to match multiple values. :param nodeVerticalSpacing (string, optional): Vertical spacing between nod es, in numeric value :param rightMargin (string, optional): Right edge margin, in numeric value :param singlePartition (string, optional): Don't partition graph before lay out; only boolean values are allowed: true or false :param topEdge (string, optional): Top edge margin, in numeric value """ network=check_network(self,network,verbose=verbose) PARAMS=set_param(['EdgeAttribute','leftEdge','network','NodeAttribute',\ 'nodeHorizontalSpacing','nodeList','nodeVerticalSpacing','rightMargin',\ 'singlePartition','topEdge'],[EdgeAttribute,leftEdge,network,NodeAttribute,\ nodeHorizontalSpacing,nodeList,nodeVerticalSpacing,rightMargin,\ singlePartition,topEdge]) response=api(url=self.__url+"/circular", PARAMS=PARAMS, method="POST", verbose=verbose) return response
python
def circular(self,EdgeAttribute=None,leftEdge=None,network=None,\ NodeAttribute=None,nodeHorizontalSpacing=None,nodeList=None,\ nodeVerticalSpacing=None,rightMargin=None,singlePartition=None,topEdge=None,\ verbose=None): """ Execute the Circular Layout on a network :param EdgeAttribute (string, optional): The name of the edge column contai ning numeric values that will be used as weights in the layout algor ithm. Only columns containing numeric values are shown :param leftEdge (string, optional): Left edge margin, in numeric value :param network (string, optional): Specifies a network by name, or by SUID if the prefix SUID: is used. The keyword CURRENT, or a blank value c an also be used to specify the current network. :param NodeAttribute (string, optional): The name of the node column contai ning numeric values that will be used as weights in the layout algor ithm. Only columns containing numeric values are shown :param nodeHorizontalSpacing (string, optional): Horizontal spacing between nodes, in numeric value :param nodeList (string, optional): Specifies a list of nodes. The keywords all, selected, or unselected can be used to specify nodes by their selection state. The pattern COLUMN:VALUE sets this parameter to any rows that contain the specified column value; if the COLUMN prefix is not used, the NAME column is matched by default. A list of COLUMN :VALUE pairs of the format COLUMN1:VALUE1,COLUMN2:VALUE2,... can be used to match multiple values. :param nodeVerticalSpacing (string, optional): Vertical spacing between nod es, in numeric value :param rightMargin (string, optional): Right edge margin, in numeric value :param singlePartition (string, optional): Don't partition graph before lay out; only boolean values are allowed: true or false :param topEdge (string, optional): Top edge margin, in numeric value """ network=check_network(self,network,verbose=verbose) PARAMS=set_param(['EdgeAttribute','leftEdge','network','NodeAttribute',\ 'nodeHorizontalSpacing','nodeList','nodeVerticalSpacing','rightMargin',\ 'singlePartition','topEdge'],[EdgeAttribute,leftEdge,network,NodeAttribute,\ nodeHorizontalSpacing,nodeList,nodeVerticalSpacing,rightMargin,\ singlePartition,topEdge]) response=api(url=self.__url+"/circular", PARAMS=PARAMS, method="POST", verbose=verbose) return response
[ "def", "circular", "(", "self", ",", "EdgeAttribute", "=", "None", ",", "leftEdge", "=", "None", ",", "network", "=", "None", ",", "NodeAttribute", "=", "None", ",", "nodeHorizontalSpacing", "=", "None", ",", "nodeList", "=", "None", ",", "nodeVerticalSpacing", "=", "None", ",", "rightMargin", "=", "None", ",", "singlePartition", "=", "None", ",", "topEdge", "=", "None", ",", "verbose", "=", "None", ")", ":", "network", "=", "check_network", "(", "self", ",", "network", ",", "verbose", "=", "verbose", ")", "PARAMS", "=", "set_param", "(", "[", "'EdgeAttribute'", ",", "'leftEdge'", ",", "'network'", ",", "'NodeAttribute'", ",", "'nodeHorizontalSpacing'", ",", "'nodeList'", ",", "'nodeVerticalSpacing'", ",", "'rightMargin'", ",", "'singlePartition'", ",", "'topEdge'", "]", ",", "[", "EdgeAttribute", ",", "leftEdge", ",", "network", ",", "NodeAttribute", ",", "nodeHorizontalSpacing", ",", "nodeList", ",", "nodeVerticalSpacing", ",", "rightMargin", ",", "singlePartition", ",", "topEdge", "]", ")", "response", "=", "api", "(", "url", "=", "self", ".", "__url", "+", "\"/circular\"", ",", "PARAMS", "=", "PARAMS", ",", "method", "=", "\"POST\"", ",", "verbose", "=", "verbose", ")", "return", "response" ]
Execute the Circular Layout on a network :param EdgeAttribute (string, optional): The name of the edge column contai ning numeric values that will be used as weights in the layout algor ithm. Only columns containing numeric values are shown :param leftEdge (string, optional): Left edge margin, in numeric value :param network (string, optional): Specifies a network by name, or by SUID if the prefix SUID: is used. The keyword CURRENT, or a blank value c an also be used to specify the current network. :param NodeAttribute (string, optional): The name of the node column contai ning numeric values that will be used as weights in the layout algor ithm. Only columns containing numeric values are shown :param nodeHorizontalSpacing (string, optional): Horizontal spacing between nodes, in numeric value :param nodeList (string, optional): Specifies a list of nodes. The keywords all, selected, or unselected can be used to specify nodes by their selection state. The pattern COLUMN:VALUE sets this parameter to any rows that contain the specified column value; if the COLUMN prefix is not used, the NAME column is matched by default. A list of COLUMN :VALUE pairs of the format COLUMN1:VALUE1,COLUMN2:VALUE2,... can be used to match multiple values. :param nodeVerticalSpacing (string, optional): Vertical spacing between nod es, in numeric value :param rightMargin (string, optional): Right edge margin, in numeric value :param singlePartition (string, optional): Don't partition graph before lay out; only boolean values are allowed: true or false :param topEdge (string, optional): Top edge margin, in numeric value
[ "Execute", "the", "Circular", "Layout", "on", "a", "network" ]
dd34de8d028f512314d0057168df7fef7c5d5195
https://github.com/cytoscape/py2cytoscape/blob/dd34de8d028f512314d0057168df7fef7c5d5195/py2cytoscape/cyrest/layout.py#L106-L146
train
cytoscape/py2cytoscape
py2cytoscape/cyrest/layout.py
layout.copycat
def copycat(self,gridUnmapped=None,selectUnmapped=None,sourceColumn=None,\ sourceNetwork=None,targetColumn=None,targetNetwork=None,verbose=None): """ Sets the coordinates for each node in the target network to the coordinates of a matching node in the source network. Optional parameters such as gridUnmapped and selectUnmapped determine the behavior of target network nodes that could not be matched. :param gridUnmapped (string, optional): If this is set to true, any nodes i n the target network that could not be matched to a node in the sour ce network will be laid out in a grid :param selectUnmapped (string, optional): If this is set to true, any nodes in the target network that could not be matched to a node in the so urce network will be selected in the target network :param sourceColumn (string): The name of column in the node table used to match nodes :param sourceNetwork (string): The name of network to get node coordinates from :param targetColumn (string): The name of column in the node table used to match nodes :param targetNetwork (string): The name of the network to apply coordinates to. """ PARAMS=set_param(['gridUnmapped','selectUnmapped','sourceColumn',\ 'sourceNetwork','targetColumn','targetNetwork'],[gridUnmapped,\ selectUnmapped,sourceColumn,sourceNetwork,targetColumn,targetNetwork]) response=api(url=self.__url+"/copycat", PARAMS=PARAMS, method="POST", verbose=verbose) return response
python
def copycat(self,gridUnmapped=None,selectUnmapped=None,sourceColumn=None,\ sourceNetwork=None,targetColumn=None,targetNetwork=None,verbose=None): """ Sets the coordinates for each node in the target network to the coordinates of a matching node in the source network. Optional parameters such as gridUnmapped and selectUnmapped determine the behavior of target network nodes that could not be matched. :param gridUnmapped (string, optional): If this is set to true, any nodes i n the target network that could not be matched to a node in the sour ce network will be laid out in a grid :param selectUnmapped (string, optional): If this is set to true, any nodes in the target network that could not be matched to a node in the so urce network will be selected in the target network :param sourceColumn (string): The name of column in the node table used to match nodes :param sourceNetwork (string): The name of network to get node coordinates from :param targetColumn (string): The name of column in the node table used to match nodes :param targetNetwork (string): The name of the network to apply coordinates to. """ PARAMS=set_param(['gridUnmapped','selectUnmapped','sourceColumn',\ 'sourceNetwork','targetColumn','targetNetwork'],[gridUnmapped,\ selectUnmapped,sourceColumn,sourceNetwork,targetColumn,targetNetwork]) response=api(url=self.__url+"/copycat", PARAMS=PARAMS, method="POST", verbose=verbose) return response
[ "def", "copycat", "(", "self", ",", "gridUnmapped", "=", "None", ",", "selectUnmapped", "=", "None", ",", "sourceColumn", "=", "None", ",", "sourceNetwork", "=", "None", ",", "targetColumn", "=", "None", ",", "targetNetwork", "=", "None", ",", "verbose", "=", "None", ")", ":", "PARAMS", "=", "set_param", "(", "[", "'gridUnmapped'", ",", "'selectUnmapped'", ",", "'sourceColumn'", ",", "'sourceNetwork'", ",", "'targetColumn'", ",", "'targetNetwork'", "]", ",", "[", "gridUnmapped", ",", "selectUnmapped", ",", "sourceColumn", ",", "sourceNetwork", ",", "targetColumn", ",", "targetNetwork", "]", ")", "response", "=", "api", "(", "url", "=", "self", ".", "__url", "+", "\"/copycat\"", ",", "PARAMS", "=", "PARAMS", ",", "method", "=", "\"POST\"", ",", "verbose", "=", "verbose", ")", "return", "response" ]
Sets the coordinates for each node in the target network to the coordinates of a matching node in the source network. Optional parameters such as gridUnmapped and selectUnmapped determine the behavior of target network nodes that could not be matched. :param gridUnmapped (string, optional): If this is set to true, any nodes i n the target network that could not be matched to a node in the sour ce network will be laid out in a grid :param selectUnmapped (string, optional): If this is set to true, any nodes in the target network that could not be matched to a node in the so urce network will be selected in the target network :param sourceColumn (string): The name of column in the node table used to match nodes :param sourceNetwork (string): The name of network to get node coordinates from :param targetColumn (string): The name of column in the node table used to match nodes :param targetNetwork (string): The name of the network to apply coordinates to.
[ "Sets", "the", "coordinates", "for", "each", "node", "in", "the", "target", "network", "to", "the", "coordinates", "of", "a", "matching", "node", "in", "the", "source", "network", ".", "Optional", "parameters", "such", "as", "gridUnmapped", "and", "selectUnmapped", "determine", "the", "behavior", "of", "target", "network", "nodes", "that", "could", "not", "be", "matched", "." ]
dd34de8d028f512314d0057168df7fef7c5d5195
https://github.com/cytoscape/py2cytoscape/blob/dd34de8d028f512314d0057168df7fef7c5d5195/py2cytoscape/cyrest/layout.py#L148-L175
train
cytoscape/py2cytoscape
py2cytoscape/cyrest/layout.py
layout.degree_circle
def degree_circle(self,EdgeAttribute=None,network=None,NodeAttribute=None,\ nodeList=None,singlePartition=None,verbose=None): """ Execute the Degree Sorted Circle Layout on a network. :param EdgeAttribute (string, optional): The name of the edge column contai ning numeric values that will be used as weights in the layout algor ithm. Only columns containing numeric values are shown :param network (string, optional): Specifies a network by name, or by SUID if the prefix SUID: is used. The keyword CURRENT, or a blank value c an also be used to specify the current network. :param NodeAttribute (string, optional): The name of the node column contai ning numeric values that will be used as weights in the layout algor ithm. Only columns containing numeric values are shown :param nodeList (string, optional): Specifies a list of nodes. The keywords all, selected, or unselected can be used to specify nodes by their selection state. The pattern COLUMN:VALUE sets this parameter to any rows that contain the specified column value; if the COLUMN prefix is not used, the NAME column is matched by default. A list of COLUMN :VALUE pairs of the format COLUMN1:VALUE1,COLUMN2:VALUE2,... can be used to match multiple values. :param singlePartition (string, optional): Don't partition graph before lay out; boolean values only, true or false; defaults to false """ network=check_network(self,network,verbose=verbose) PARAMS=set_param(['EdgeAttribute','network','NodeAttribute','nodeList',\ 'singlePartition'],[EdgeAttribute,network,NodeAttribute,nodeList,\ singlePartition]) response=api(url=self.__url+"/degree-circle", PARAMS=PARAMS, method="POST", verbose=verbose) return response
python
def degree_circle(self,EdgeAttribute=None,network=None,NodeAttribute=None,\ nodeList=None,singlePartition=None,verbose=None): """ Execute the Degree Sorted Circle Layout on a network. :param EdgeAttribute (string, optional): The name of the edge column contai ning numeric values that will be used as weights in the layout algor ithm. Only columns containing numeric values are shown :param network (string, optional): Specifies a network by name, or by SUID if the prefix SUID: is used. The keyword CURRENT, or a blank value c an also be used to specify the current network. :param NodeAttribute (string, optional): The name of the node column contai ning numeric values that will be used as weights in the layout algor ithm. Only columns containing numeric values are shown :param nodeList (string, optional): Specifies a list of nodes. The keywords all, selected, or unselected can be used to specify nodes by their selection state. The pattern COLUMN:VALUE sets this parameter to any rows that contain the specified column value; if the COLUMN prefix is not used, the NAME column is matched by default. A list of COLUMN :VALUE pairs of the format COLUMN1:VALUE1,COLUMN2:VALUE2,... can be used to match multiple values. :param singlePartition (string, optional): Don't partition graph before lay out; boolean values only, true or false; defaults to false """ network=check_network(self,network,verbose=verbose) PARAMS=set_param(['EdgeAttribute','network','NodeAttribute','nodeList',\ 'singlePartition'],[EdgeAttribute,network,NodeAttribute,nodeList,\ singlePartition]) response=api(url=self.__url+"/degree-circle", PARAMS=PARAMS, method="POST", verbose=verbose) return response
[ "def", "degree_circle", "(", "self", ",", "EdgeAttribute", "=", "None", ",", "network", "=", "None", ",", "NodeAttribute", "=", "None", ",", "nodeList", "=", "None", ",", "singlePartition", "=", "None", ",", "verbose", "=", "None", ")", ":", "network", "=", "check_network", "(", "self", ",", "network", ",", "verbose", "=", "verbose", ")", "PARAMS", "=", "set_param", "(", "[", "'EdgeAttribute'", ",", "'network'", ",", "'NodeAttribute'", ",", "'nodeList'", ",", "'singlePartition'", "]", ",", "[", "EdgeAttribute", ",", "network", ",", "NodeAttribute", ",", "nodeList", ",", "singlePartition", "]", ")", "response", "=", "api", "(", "url", "=", "self", ".", "__url", "+", "\"/degree-circle\"", ",", "PARAMS", "=", "PARAMS", ",", "method", "=", "\"POST\"", ",", "verbose", "=", "verbose", ")", "return", "response" ]
Execute the Degree Sorted Circle Layout on a network. :param EdgeAttribute (string, optional): The name of the edge column contai ning numeric values that will be used as weights in the layout algor ithm. Only columns containing numeric values are shown :param network (string, optional): Specifies a network by name, or by SUID if the prefix SUID: is used. The keyword CURRENT, or a blank value c an also be used to specify the current network. :param NodeAttribute (string, optional): The name of the node column contai ning numeric values that will be used as weights in the layout algor ithm. Only columns containing numeric values are shown :param nodeList (string, optional): Specifies a list of nodes. The keywords all, selected, or unselected can be used to specify nodes by their selection state. The pattern COLUMN:VALUE sets this parameter to any rows that contain the specified column value; if the COLUMN prefix is not used, the NAME column is matched by default. A list of COLUMN :VALUE pairs of the format COLUMN1:VALUE1,COLUMN2:VALUE2,... can be used to match multiple values. :param singlePartition (string, optional): Don't partition graph before lay out; boolean values only, true or false; defaults to false
[ "Execute", "the", "Degree", "Sorted", "Circle", "Layout", "on", "a", "network", "." ]
dd34de8d028f512314d0057168df7fef7c5d5195
https://github.com/cytoscape/py2cytoscape/blob/dd34de8d028f512314d0057168df7fef7c5d5195/py2cytoscape/cyrest/layout.py#L233-L262
train
cytoscape/py2cytoscape
py2cytoscape/cyrest/layout.py
layout.force_directed
def force_directed(self,defaultEdgeWeight=None,defaultNodeMass=None,\ defaultSpringCoefficient=None,defaultSpringLength=None,EdgeAttribute=None,\ isDeterministic=None,maxWeightCutoff=None,minWeightCutoff=None,network=None,\ NodeAttribute=None,nodeList=None,numIterations=None,singlePartition=None,\ Type=None,verbose=None): """ Execute the Prefuse Force Directed Layout on a network :param defaultEdgeWeight (string, optional): The default edge weight to con sider, default is 0.5 :param defaultNodeMass (string, optional): Default Node Mass, in numeric va lue :param defaultSpringCoefficient (string, optional): Default Spring Coeffici ent, in numeric value :param defaultSpringLength (string, optional): Default Spring Length, in nu meric value :param EdgeAttribute (string, optional): The name of the edge column contai ning numeric values that will be used as weights in the layout algor ithm. Only columns containing numeric values are shown :param isDeterministic (string, optional): Force deterministic layouts (slo wer); boolean values only, true or false; defaults to false :param maxWeightCutoff (string, optional): The maximum edge weight to consi der, default to the Double.MAX value :param minWeightCutoff (string, optional): The minimum edge weight to consi der, numeric values, default is 0 :param network (string, optional): Specifies a network by name, or by SUID if the prefix SUID: is used. The keyword CURRENT, or a blank value c an also be used to specify the current network. :param NodeAttribute (string, optional): The name of the node column contai ning numeric values that will be used as weights in the layout algor ithm. Only columns containing numeric values are shown :param nodeList (string, optional): Specifies a list of nodes. The keywords all, selected, or unselected can be used to specify nodes by their selection state. The pattern COLUMN:VALUE sets this parameter to any rows that contain the specified column value; if the COLUMN prefix is not used, the NAME column is matched by default. A list of COLUMN :VALUE pairs of the format COLUMN1:VALUE1,COLUMN2:VALUE2,... can be used to match multiple values. :param numIterations (string, optional): Number of Iterations, in numeric v alue :param singlePartition (string, optional): Don't partition graph before lay out; boolean values only, true or false; defaults to false :param Type (string, optional): How to interpret weight values; must be one of Heuristic, -Log(value), 1 - normalized value and normalized valu e. Defaults to Heuristic = ['Heuristic', '-Log(value)', '1 - normali zed value', 'normalized value'] """ network=check_network(self,network,verbose=verbose) PARAMS=set_param(['defaultEdgeWeight','defaultNodeMass','defaultSpringCoefficient',\ 'defaultSpringLength','EdgeAttribute','isDeterministic','maxWeightCutoff',\ 'minWeightCutoff','network','NodeAttribute','nodeList','numIterations',\ 'singlePartition','Type'],[defaultEdgeWeight,defaultNodeMass,\ defaultSpringCoefficient,defaultSpringLength,EdgeAttribute,isDeterministic,\ maxWeightCutoff,minWeightCutoff,network,NodeAttribute,nodeList,numIterations,\ singlePartition,Type]) response=api(url=self.__url+"/force-directed", PARAMS=PARAMS, method="POST", verbose=verbose) return response
python
def force_directed(self,defaultEdgeWeight=None,defaultNodeMass=None,\ defaultSpringCoefficient=None,defaultSpringLength=None,EdgeAttribute=None,\ isDeterministic=None,maxWeightCutoff=None,minWeightCutoff=None,network=None,\ NodeAttribute=None,nodeList=None,numIterations=None,singlePartition=None,\ Type=None,verbose=None): """ Execute the Prefuse Force Directed Layout on a network :param defaultEdgeWeight (string, optional): The default edge weight to con sider, default is 0.5 :param defaultNodeMass (string, optional): Default Node Mass, in numeric va lue :param defaultSpringCoefficient (string, optional): Default Spring Coeffici ent, in numeric value :param defaultSpringLength (string, optional): Default Spring Length, in nu meric value :param EdgeAttribute (string, optional): The name of the edge column contai ning numeric values that will be used as weights in the layout algor ithm. Only columns containing numeric values are shown :param isDeterministic (string, optional): Force deterministic layouts (slo wer); boolean values only, true or false; defaults to false :param maxWeightCutoff (string, optional): The maximum edge weight to consi der, default to the Double.MAX value :param minWeightCutoff (string, optional): The minimum edge weight to consi der, numeric values, default is 0 :param network (string, optional): Specifies a network by name, or by SUID if the prefix SUID: is used. The keyword CURRENT, or a blank value c an also be used to specify the current network. :param NodeAttribute (string, optional): The name of the node column contai ning numeric values that will be used as weights in the layout algor ithm. Only columns containing numeric values are shown :param nodeList (string, optional): Specifies a list of nodes. The keywords all, selected, or unselected can be used to specify nodes by their selection state. The pattern COLUMN:VALUE sets this parameter to any rows that contain the specified column value; if the COLUMN prefix is not used, the NAME column is matched by default. A list of COLUMN :VALUE pairs of the format COLUMN1:VALUE1,COLUMN2:VALUE2,... can be used to match multiple values. :param numIterations (string, optional): Number of Iterations, in numeric v alue :param singlePartition (string, optional): Don't partition graph before lay out; boolean values only, true or false; defaults to false :param Type (string, optional): How to interpret weight values; must be one of Heuristic, -Log(value), 1 - normalized value and normalized valu e. Defaults to Heuristic = ['Heuristic', '-Log(value)', '1 - normali zed value', 'normalized value'] """ network=check_network(self,network,verbose=verbose) PARAMS=set_param(['defaultEdgeWeight','defaultNodeMass','defaultSpringCoefficient',\ 'defaultSpringLength','EdgeAttribute','isDeterministic','maxWeightCutoff',\ 'minWeightCutoff','network','NodeAttribute','nodeList','numIterations',\ 'singlePartition','Type'],[defaultEdgeWeight,defaultNodeMass,\ defaultSpringCoefficient,defaultSpringLength,EdgeAttribute,isDeterministic,\ maxWeightCutoff,minWeightCutoff,network,NodeAttribute,nodeList,numIterations,\ singlePartition,Type]) response=api(url=self.__url+"/force-directed", PARAMS=PARAMS, method="POST", verbose=verbose) return response
[ "def", "force_directed", "(", "self", ",", "defaultEdgeWeight", "=", "None", ",", "defaultNodeMass", "=", "None", ",", "defaultSpringCoefficient", "=", "None", ",", "defaultSpringLength", "=", "None", ",", "EdgeAttribute", "=", "None", ",", "isDeterministic", "=", "None", ",", "maxWeightCutoff", "=", "None", ",", "minWeightCutoff", "=", "None", ",", "network", "=", "None", ",", "NodeAttribute", "=", "None", ",", "nodeList", "=", "None", ",", "numIterations", "=", "None", ",", "singlePartition", "=", "None", ",", "Type", "=", "None", ",", "verbose", "=", "None", ")", ":", "network", "=", "check_network", "(", "self", ",", "network", ",", "verbose", "=", "verbose", ")", "PARAMS", "=", "set_param", "(", "[", "'defaultEdgeWeight'", ",", "'defaultNodeMass'", ",", "'defaultSpringCoefficient'", ",", "'defaultSpringLength'", ",", "'EdgeAttribute'", ",", "'isDeterministic'", ",", "'maxWeightCutoff'", ",", "'minWeightCutoff'", ",", "'network'", ",", "'NodeAttribute'", ",", "'nodeList'", ",", "'numIterations'", ",", "'singlePartition'", ",", "'Type'", "]", ",", "[", "defaultEdgeWeight", ",", "defaultNodeMass", ",", "defaultSpringCoefficient", ",", "defaultSpringLength", ",", "EdgeAttribute", ",", "isDeterministic", ",", "maxWeightCutoff", ",", "minWeightCutoff", ",", "network", ",", "NodeAttribute", ",", "nodeList", ",", "numIterations", ",", "singlePartition", ",", "Type", "]", ")", "response", "=", "api", "(", "url", "=", "self", ".", "__url", "+", "\"/force-directed\"", ",", "PARAMS", "=", "PARAMS", ",", "method", "=", "\"POST\"", ",", "verbose", "=", "verbose", ")", "return", "response" ]
Execute the Prefuse Force Directed Layout on a network :param defaultEdgeWeight (string, optional): The default edge weight to con sider, default is 0.5 :param defaultNodeMass (string, optional): Default Node Mass, in numeric va lue :param defaultSpringCoefficient (string, optional): Default Spring Coeffici ent, in numeric value :param defaultSpringLength (string, optional): Default Spring Length, in nu meric value :param EdgeAttribute (string, optional): The name of the edge column contai ning numeric values that will be used as weights in the layout algor ithm. Only columns containing numeric values are shown :param isDeterministic (string, optional): Force deterministic layouts (slo wer); boolean values only, true or false; defaults to false :param maxWeightCutoff (string, optional): The maximum edge weight to consi der, default to the Double.MAX value :param minWeightCutoff (string, optional): The minimum edge weight to consi der, numeric values, default is 0 :param network (string, optional): Specifies a network by name, or by SUID if the prefix SUID: is used. The keyword CURRENT, or a blank value c an also be used to specify the current network. :param NodeAttribute (string, optional): The name of the node column contai ning numeric values that will be used as weights in the layout algor ithm. Only columns containing numeric values are shown :param nodeList (string, optional): Specifies a list of nodes. The keywords all, selected, or unselected can be used to specify nodes by their selection state. The pattern COLUMN:VALUE sets this parameter to any rows that contain the specified column value; if the COLUMN prefix is not used, the NAME column is matched by default. A list of COLUMN :VALUE pairs of the format COLUMN1:VALUE1,COLUMN2:VALUE2,... can be used to match multiple values. :param numIterations (string, optional): Number of Iterations, in numeric v alue :param singlePartition (string, optional): Don't partition graph before lay out; boolean values only, true or false; defaults to false :param Type (string, optional): How to interpret weight values; must be one of Heuristic, -Log(value), 1 - normalized value and normalized valu e. Defaults to Heuristic = ['Heuristic', '-Log(value)', '1 - normali zed value', 'normalized value']
[ "Execute", "the", "Prefuse", "Force", "Directed", "Layout", "on", "a", "network" ]
dd34de8d028f512314d0057168df7fef7c5d5195
https://github.com/cytoscape/py2cytoscape/blob/dd34de8d028f512314d0057168df7fef7c5d5195/py2cytoscape/cyrest/layout.py#L265-L321
train
cytoscape/py2cytoscape
py2cytoscape/cyrest/layout.py
layout.genemania_force_directed
def genemania_force_directed(self,curveSteepness=None,defaultEdgeWeight=None,\ defaultSpringCoefficient=None,defaultSpringLength=None,EdgeAttribute=None,\ ignoreHiddenElements=None,isDeterministic=None,maxNodeMass=None,\ maxWeightCutoff=None,midpointEdges=None,minNodeMass=None,minWeightCutoff=None,\ network=None,NodeAttribute=None,nodeList=None,numIterations=None,\ singlePartition=None,Type=None,verbose=None): """ Execute the GeneMANIA Force Directed Layout on a network. :param curveSteepness (string, optional): :param defaultEdgeWeight (string, optional): The default edge weight to con sider, default is 0.5 :param defaultSpringCoefficient (string, optional): :param defaultSpringLength (string, optional): :param EdgeAttribute (string, optional): The name of the edge column contai ning numeric values that will be used as weights in the layout algor ithm. Only columns containing numeric values are shown :param ignoreHiddenElements (string, optional): :param isDeterministic (string, optional): :param maxNodeMass (string, optional): :param maxWeightCutoff (string, optional): The maximum edge weight to consi der, default to the Double.MAX value :param midpointEdges (string, optional): :param minNodeMass (string, optional): :param minWeightCutoff (string, optional): The minimum edge weight to consi der, numeric values, default is 0 :param network (string, optional): Specifies a network by name, or by SUID if the prefix SUID: is used. The keyword CURRENT, or a blank value c an also be used to specify the current network. :param NodeAttribute (string, optional): The name of the node column contai ning numeric values that will be used as weights in the layout algor ithm. Only columns containing numeric values are shown :param nodeList (string, optional): Specifies a list of nodes. The keywords all, selected, or unselected can be used to specify nodes by their selection state. The pattern COLUMN:VALUE sets this parameter to any rows that contain the specified column value; if the COLUMN prefix is not used, the NAME column is matched by default. A list of COLUMN :VALUE pairs of the format COLUMN1:VALUE1,COLUMN2:VALUE2,... can be used to match multiple values. :param numIterations (string, optional): :param singlePartition (string, optional): :param Type (string, optional): How to interpret weight values; must be one of Heuristic, -Log(value), 1 - normalized value and normalized valu e. Defaults to Heuristic = ['Heuristic', '-Log(value)', '1 - normali zed value', 'normalized value'] """ network=check_network(self,network,verbose=verbose) PARAMS=set_param(['curveSteepness','defaultEdgeWeight',\ 'defaultSpringCoefficient','defaultSpringLength','EdgeAttribute',\ 'ignoreHiddenElements','isDeterministic','maxNodeMass','maxWeightCutoff',\ 'midpointEdges','minNodeMass','minWeightCutoff','network','NodeAttribute',\ 'nodeList','numIterations','singlePartition','Type'],[curveSteepness,\ defaultEdgeWeight,defaultSpringCoefficient,defaultSpringLength,EdgeAttribute,\ ignoreHiddenElements,isDeterministic,maxNodeMass,maxWeightCutoff,\ midpointEdges,minNodeMass,minWeightCutoff,network,NodeAttribute,nodeList,\ numIterations,singlePartition,Type]) response=api(url=self.__url+"/genemania-force-directed", PARAMS=PARAMS, method="POST", verbose=verbose) return response
python
def genemania_force_directed(self,curveSteepness=None,defaultEdgeWeight=None,\ defaultSpringCoefficient=None,defaultSpringLength=None,EdgeAttribute=None,\ ignoreHiddenElements=None,isDeterministic=None,maxNodeMass=None,\ maxWeightCutoff=None,midpointEdges=None,minNodeMass=None,minWeightCutoff=None,\ network=None,NodeAttribute=None,nodeList=None,numIterations=None,\ singlePartition=None,Type=None,verbose=None): """ Execute the GeneMANIA Force Directed Layout on a network. :param curveSteepness (string, optional): :param defaultEdgeWeight (string, optional): The default edge weight to con sider, default is 0.5 :param defaultSpringCoefficient (string, optional): :param defaultSpringLength (string, optional): :param EdgeAttribute (string, optional): The name of the edge column contai ning numeric values that will be used as weights in the layout algor ithm. Only columns containing numeric values are shown :param ignoreHiddenElements (string, optional): :param isDeterministic (string, optional): :param maxNodeMass (string, optional): :param maxWeightCutoff (string, optional): The maximum edge weight to consi der, default to the Double.MAX value :param midpointEdges (string, optional): :param minNodeMass (string, optional): :param minWeightCutoff (string, optional): The minimum edge weight to consi der, numeric values, default is 0 :param network (string, optional): Specifies a network by name, or by SUID if the prefix SUID: is used. The keyword CURRENT, or a blank value c an also be used to specify the current network. :param NodeAttribute (string, optional): The name of the node column contai ning numeric values that will be used as weights in the layout algor ithm. Only columns containing numeric values are shown :param nodeList (string, optional): Specifies a list of nodes. The keywords all, selected, or unselected can be used to specify nodes by their selection state. The pattern COLUMN:VALUE sets this parameter to any rows that contain the specified column value; if the COLUMN prefix is not used, the NAME column is matched by default. A list of COLUMN :VALUE pairs of the format COLUMN1:VALUE1,COLUMN2:VALUE2,... can be used to match multiple values. :param numIterations (string, optional): :param singlePartition (string, optional): :param Type (string, optional): How to interpret weight values; must be one of Heuristic, -Log(value), 1 - normalized value and normalized valu e. Defaults to Heuristic = ['Heuristic', '-Log(value)', '1 - normali zed value', 'normalized value'] """ network=check_network(self,network,verbose=verbose) PARAMS=set_param(['curveSteepness','defaultEdgeWeight',\ 'defaultSpringCoefficient','defaultSpringLength','EdgeAttribute',\ 'ignoreHiddenElements','isDeterministic','maxNodeMass','maxWeightCutoff',\ 'midpointEdges','minNodeMass','minWeightCutoff','network','NodeAttribute',\ 'nodeList','numIterations','singlePartition','Type'],[curveSteepness,\ defaultEdgeWeight,defaultSpringCoefficient,defaultSpringLength,EdgeAttribute,\ ignoreHiddenElements,isDeterministic,maxNodeMass,maxWeightCutoff,\ midpointEdges,minNodeMass,minWeightCutoff,network,NodeAttribute,nodeList,\ numIterations,singlePartition,Type]) response=api(url=self.__url+"/genemania-force-directed", PARAMS=PARAMS, method="POST", verbose=verbose) return response
[ "def", "genemania_force_directed", "(", "self", ",", "curveSteepness", "=", "None", ",", "defaultEdgeWeight", "=", "None", ",", "defaultSpringCoefficient", "=", "None", ",", "defaultSpringLength", "=", "None", ",", "EdgeAttribute", "=", "None", ",", "ignoreHiddenElements", "=", "None", ",", "isDeterministic", "=", "None", ",", "maxNodeMass", "=", "None", ",", "maxWeightCutoff", "=", "None", ",", "midpointEdges", "=", "None", ",", "minNodeMass", "=", "None", ",", "minWeightCutoff", "=", "None", ",", "network", "=", "None", ",", "NodeAttribute", "=", "None", ",", "nodeList", "=", "None", ",", "numIterations", "=", "None", ",", "singlePartition", "=", "None", ",", "Type", "=", "None", ",", "verbose", "=", "None", ")", ":", "network", "=", "check_network", "(", "self", ",", "network", ",", "verbose", "=", "verbose", ")", "PARAMS", "=", "set_param", "(", "[", "'curveSteepness'", ",", "'defaultEdgeWeight'", ",", "'defaultSpringCoefficient'", ",", "'defaultSpringLength'", ",", "'EdgeAttribute'", ",", "'ignoreHiddenElements'", ",", "'isDeterministic'", ",", "'maxNodeMass'", ",", "'maxWeightCutoff'", ",", "'midpointEdges'", ",", "'minNodeMass'", ",", "'minWeightCutoff'", ",", "'network'", ",", "'NodeAttribute'", ",", "'nodeList'", ",", "'numIterations'", ",", "'singlePartition'", ",", "'Type'", "]", ",", "[", "curveSteepness", ",", "defaultEdgeWeight", ",", "defaultSpringCoefficient", ",", "defaultSpringLength", ",", "EdgeAttribute", ",", "ignoreHiddenElements", ",", "isDeterministic", ",", "maxNodeMass", ",", "maxWeightCutoff", ",", "midpointEdges", ",", "minNodeMass", ",", "minWeightCutoff", ",", "network", ",", "NodeAttribute", ",", "nodeList", ",", "numIterations", ",", "singlePartition", ",", "Type", "]", ")", "response", "=", "api", "(", "url", "=", "self", ".", "__url", "+", "\"/genemania-force-directed\"", ",", "PARAMS", "=", "PARAMS", ",", "method", "=", "\"POST\"", ",", "verbose", "=", "verbose", ")", "return", "response" ]
Execute the GeneMANIA Force Directed Layout on a network. :param curveSteepness (string, optional): :param defaultEdgeWeight (string, optional): The default edge weight to con sider, default is 0.5 :param defaultSpringCoefficient (string, optional): :param defaultSpringLength (string, optional): :param EdgeAttribute (string, optional): The name of the edge column contai ning numeric values that will be used as weights in the layout algor ithm. Only columns containing numeric values are shown :param ignoreHiddenElements (string, optional): :param isDeterministic (string, optional): :param maxNodeMass (string, optional): :param maxWeightCutoff (string, optional): The maximum edge weight to consi der, default to the Double.MAX value :param midpointEdges (string, optional): :param minNodeMass (string, optional): :param minWeightCutoff (string, optional): The minimum edge weight to consi der, numeric values, default is 0 :param network (string, optional): Specifies a network by name, or by SUID if the prefix SUID: is used. The keyword CURRENT, or a blank value c an also be used to specify the current network. :param NodeAttribute (string, optional): The name of the node column contai ning numeric values that will be used as weights in the layout algor ithm. Only columns containing numeric values are shown :param nodeList (string, optional): Specifies a list of nodes. The keywords all, selected, or unselected can be used to specify nodes by their selection state. The pattern COLUMN:VALUE sets this parameter to any rows that contain the specified column value; if the COLUMN prefix is not used, the NAME column is matched by default. A list of COLUMN :VALUE pairs of the format COLUMN1:VALUE1,COLUMN2:VALUE2,... can be used to match multiple values. :param numIterations (string, optional): :param singlePartition (string, optional): :param Type (string, optional): How to interpret weight values; must be one of Heuristic, -Log(value), 1 - normalized value and normalized valu e. Defaults to Heuristic = ['Heuristic', '-Log(value)', '1 - normali zed value', 'normalized value']
[ "Execute", "the", "GeneMANIA", "Force", "Directed", "Layout", "on", "a", "network", "." ]
dd34de8d028f512314d0057168df7fef7c5d5195
https://github.com/cytoscape/py2cytoscape/blob/dd34de8d028f512314d0057168df7fef7c5d5195/py2cytoscape/cyrest/layout.py#L455-L512
train
cytoscape/py2cytoscape
py2cytoscape/cyrest/layout.py
layout.get_preferred
def get_preferred(self,network=None,verbose=None): """ Returns the name of the current preferred layout or empty string if not set. Default is grid. :param network (string, optional): Gets the name of the current preferred l ayout """ network=check_network(self,network,verbose=verbose) PARAMS=set_param(['network'],[network]) response=api(url=self.__url+"/get preferred", PARAMS=PARAMS, method="POST", verbose=verbose) return response
python
def get_preferred(self,network=None,verbose=None): """ Returns the name of the current preferred layout or empty string if not set. Default is grid. :param network (string, optional): Gets the name of the current preferred l ayout """ network=check_network(self,network,verbose=verbose) PARAMS=set_param(['network'],[network]) response=api(url=self.__url+"/get preferred", PARAMS=PARAMS, method="POST", verbose=verbose) return response
[ "def", "get_preferred", "(", "self", ",", "network", "=", "None", ",", "verbose", "=", "None", ")", ":", "network", "=", "check_network", "(", "self", ",", "network", ",", "verbose", "=", "verbose", ")", "PARAMS", "=", "set_param", "(", "[", "'network'", "]", ",", "[", "network", "]", ")", "response", "=", "api", "(", "url", "=", "self", ".", "__url", "+", "\"/get preferred\"", ",", "PARAMS", "=", "PARAMS", ",", "method", "=", "\"POST\"", ",", "verbose", "=", "verbose", ")", "return", "response" ]
Returns the name of the current preferred layout or empty string if not set. Default is grid. :param network (string, optional): Gets the name of the current preferred l ayout
[ "Returns", "the", "name", "of", "the", "current", "preferred", "layout", "or", "empty", "string", "if", "not", "set", ".", "Default", "is", "grid", "." ]
dd34de8d028f512314d0057168df7fef7c5d5195
https://github.com/cytoscape/py2cytoscape/blob/dd34de8d028f512314d0057168df7fef7c5d5195/py2cytoscape/cyrest/layout.py#L515-L526
train
cytoscape/py2cytoscape
py2cytoscape/cyrest/layout.py
layout.grid
def grid(self,EdgeAttribute=None,network=None,NodeAttribute=None,\ nodeHorizontalSpacing=None,nodeList=None,nodeVerticalSpacing=None,verbose=None): """ Execute the Grid Layout on a network. :param EdgeAttribute (string, optional): The name of the edge column contai ning numeric values that will be used as weights in the layout algor ithm. Only columns containing numeric values are shown :param network (string, optional): Specifies a network by name, or by SUID if the prefix SUID: is used. The keyword CURRENT, or a blank value c an also be used to specify the current network. :param NodeAttribute (string, optional): The name of the node column contai ning numeric values that will be used as weights in the layout algor ithm. Only columns containing numeric values are shown :param nodeHorizontalSpacing (string, optional): Horizontal spacing between nodes, in numeric value :param nodeList (string, optional): Specifies a list of nodes. The keywords all, selected, or unselected can be used to specify nodes by their selection state. The pattern COLUMN:VALUE sets this parameter to any rows that contain the specified column value; if the COLUMN prefix is not used, the NAME column is matched by default. A list of COLUMN :VALUE pairs of the format COLUMN1:VALUE1,COLUMN2:VALUE2,... can be used to match multiple values. :param nodeVerticalSpacing (string, optional): Vertical spacing between nod es, in numeric value """ network=check_network(self,network,verbose=verbose) PARAMS=set_param(['EdgeAttribute','network','NodeAttribute',\ 'nodeHorizontalSpacing','nodeList','nodeVerticalSpacing'],\ [EdgeAttribute,network,NodeAttribute,nodeHorizontalSpacing,nodeList,\ nodeVerticalSpacing]) response=api(url=self.__url+"/grid", PARAMS=PARAMS, method="POST", verbose=verbose) return response
python
def grid(self,EdgeAttribute=None,network=None,NodeAttribute=None,\ nodeHorizontalSpacing=None,nodeList=None,nodeVerticalSpacing=None,verbose=None): """ Execute the Grid Layout on a network. :param EdgeAttribute (string, optional): The name of the edge column contai ning numeric values that will be used as weights in the layout algor ithm. Only columns containing numeric values are shown :param network (string, optional): Specifies a network by name, or by SUID if the prefix SUID: is used. The keyword CURRENT, or a blank value c an also be used to specify the current network. :param NodeAttribute (string, optional): The name of the node column contai ning numeric values that will be used as weights in the layout algor ithm. Only columns containing numeric values are shown :param nodeHorizontalSpacing (string, optional): Horizontal spacing between nodes, in numeric value :param nodeList (string, optional): Specifies a list of nodes. The keywords all, selected, or unselected can be used to specify nodes by their selection state. The pattern COLUMN:VALUE sets this parameter to any rows that contain the specified column value; if the COLUMN prefix is not used, the NAME column is matched by default. A list of COLUMN :VALUE pairs of the format COLUMN1:VALUE1,COLUMN2:VALUE2,... can be used to match multiple values. :param nodeVerticalSpacing (string, optional): Vertical spacing between nod es, in numeric value """ network=check_network(self,network,verbose=verbose) PARAMS=set_param(['EdgeAttribute','network','NodeAttribute',\ 'nodeHorizontalSpacing','nodeList','nodeVerticalSpacing'],\ [EdgeAttribute,network,NodeAttribute,nodeHorizontalSpacing,nodeList,\ nodeVerticalSpacing]) response=api(url=self.__url+"/grid", PARAMS=PARAMS, method="POST", verbose=verbose) return response
[ "def", "grid", "(", "self", ",", "EdgeAttribute", "=", "None", ",", "network", "=", "None", ",", "NodeAttribute", "=", "None", ",", "nodeHorizontalSpacing", "=", "None", ",", "nodeList", "=", "None", ",", "nodeVerticalSpacing", "=", "None", ",", "verbose", "=", "None", ")", ":", "network", "=", "check_network", "(", "self", ",", "network", ",", "verbose", "=", "verbose", ")", "PARAMS", "=", "set_param", "(", "[", "'EdgeAttribute'", ",", "'network'", ",", "'NodeAttribute'", ",", "'nodeHorizontalSpacing'", ",", "'nodeList'", ",", "'nodeVerticalSpacing'", "]", ",", "[", "EdgeAttribute", ",", "network", ",", "NodeAttribute", ",", "nodeHorizontalSpacing", ",", "nodeList", ",", "nodeVerticalSpacing", "]", ")", "response", "=", "api", "(", "url", "=", "self", ".", "__url", "+", "\"/grid\"", ",", "PARAMS", "=", "PARAMS", ",", "method", "=", "\"POST\"", ",", "verbose", "=", "verbose", ")", "return", "response" ]
Execute the Grid Layout on a network. :param EdgeAttribute (string, optional): The name of the edge column contai ning numeric values that will be used as weights in the layout algor ithm. Only columns containing numeric values are shown :param network (string, optional): Specifies a network by name, or by SUID if the prefix SUID: is used. The keyword CURRENT, or a blank value c an also be used to specify the current network. :param NodeAttribute (string, optional): The name of the node column contai ning numeric values that will be used as weights in the layout algor ithm. Only columns containing numeric values are shown :param nodeHorizontalSpacing (string, optional): Horizontal spacing between nodes, in numeric value :param nodeList (string, optional): Specifies a list of nodes. The keywords all, selected, or unselected can be used to specify nodes by their selection state. The pattern COLUMN:VALUE sets this parameter to any rows that contain the specified column value; if the COLUMN prefix is not used, the NAME column is matched by default. A list of COLUMN :VALUE pairs of the format COLUMN1:VALUE1,COLUMN2:VALUE2,... can be used to match multiple values. :param nodeVerticalSpacing (string, optional): Vertical spacing between nod es, in numeric value
[ "Execute", "the", "Grid", "Layout", "on", "a", "network", "." ]
dd34de8d028f512314d0057168df7fef7c5d5195
https://github.com/cytoscape/py2cytoscape/blob/dd34de8d028f512314d0057168df7fef7c5d5195/py2cytoscape/cyrest/layout.py#L528-L560
train
cytoscape/py2cytoscape
py2cytoscape/cyrest/layout.py
layout.hierarchical
def hierarchical(self,bandGap=None,componentSpacing=None,EdgeAttribute=None,\ leftEdge=None,network=None,NodeAttribute=None,nodeHorizontalSpacing=None,\ nodeList=None,nodeVerticalSpacing=None,rightMargin=None,topEdge=None,\ verbose=None): """ Execute the Hierarchical Layout on a network. :param bandGap (string, optional): Band gap, in numeric value :param componentSpacing (string, optional): Component spacing, in numeric v alue :param EdgeAttribute (string, optional): The name of the edge column contai ning numeric values that will be used as weights in the layout algor ithm. Only columns containing numeric values are shown :param leftEdge (string, optional): Left edge margin, in numeric value :param network (string, optional): Specifies a network by name, or by SUID if the prefix SUID: is used. The keyword CURRENT, or a blank value c an also be used to specify the current network. :param NodeAttribute (string, optional): The name of the node column contai ning numeric values that will be used as weights in the layout algor ithm. Only columns containing numeric values are shown :param nodeHorizontalSpacing (string, optional): Horizontal spacing between nodes, in numeric value :param nodeList (string, optional): Specifies a list of nodes. The keywords all, selected, or unselected can be used to specify nodes by their selection state. The pattern COLUMN:VALUE sets this parameter to any rows that contain the specified column value; if the COLUMN prefix is not used, the NAME column is matched by default. A list of COLUMN :VALUE pairs of the format COLUMN1:VALUE1,COLUMN2:VALUE2,... can be used to match multiple values. :param nodeVerticalSpacing (string, optional): Vertical spacing between nod es, in numeric value :param rightMargin (string, optional): Right edge margin, in numeric value :param topEdge (string, optional): Top edge margin, in numeric value """ network=check_network(self,network,verbose=verbose) PARAMS=set_param(['bandGap','componentSpacing','EdgeAttribute','leftEdge',\ 'network','NodeAttribute','nodeHorizontalSpacing','nodeList',\ 'nodeVerticalSpacing','rightMargin','topEdge'],[bandGap,componentSpacing,\ EdgeAttribute,leftEdge,network,NodeAttribute,nodeHorizontalSpacing,\ nodeList,nodeVerticalSpacing,rightMargin,topEdge]) response=api(url=self.__url+"/hierarchical", PARAMS=PARAMS, method="POST", verbose=verbose) return response
python
def hierarchical(self,bandGap=None,componentSpacing=None,EdgeAttribute=None,\ leftEdge=None,network=None,NodeAttribute=None,nodeHorizontalSpacing=None,\ nodeList=None,nodeVerticalSpacing=None,rightMargin=None,topEdge=None,\ verbose=None): """ Execute the Hierarchical Layout on a network. :param bandGap (string, optional): Band gap, in numeric value :param componentSpacing (string, optional): Component spacing, in numeric v alue :param EdgeAttribute (string, optional): The name of the edge column contai ning numeric values that will be used as weights in the layout algor ithm. Only columns containing numeric values are shown :param leftEdge (string, optional): Left edge margin, in numeric value :param network (string, optional): Specifies a network by name, or by SUID if the prefix SUID: is used. The keyword CURRENT, or a blank value c an also be used to specify the current network. :param NodeAttribute (string, optional): The name of the node column contai ning numeric values that will be used as weights in the layout algor ithm. Only columns containing numeric values are shown :param nodeHorizontalSpacing (string, optional): Horizontal spacing between nodes, in numeric value :param nodeList (string, optional): Specifies a list of nodes. The keywords all, selected, or unselected can be used to specify nodes by their selection state. The pattern COLUMN:VALUE sets this parameter to any rows that contain the specified column value; if the COLUMN prefix is not used, the NAME column is matched by default. A list of COLUMN :VALUE pairs of the format COLUMN1:VALUE1,COLUMN2:VALUE2,... can be used to match multiple values. :param nodeVerticalSpacing (string, optional): Vertical spacing between nod es, in numeric value :param rightMargin (string, optional): Right edge margin, in numeric value :param topEdge (string, optional): Top edge margin, in numeric value """ network=check_network(self,network,verbose=verbose) PARAMS=set_param(['bandGap','componentSpacing','EdgeAttribute','leftEdge',\ 'network','NodeAttribute','nodeHorizontalSpacing','nodeList',\ 'nodeVerticalSpacing','rightMargin','topEdge'],[bandGap,componentSpacing,\ EdgeAttribute,leftEdge,network,NodeAttribute,nodeHorizontalSpacing,\ nodeList,nodeVerticalSpacing,rightMargin,topEdge]) response=api(url=self.__url+"/hierarchical", PARAMS=PARAMS, method="POST", verbose=verbose) return response
[ "def", "hierarchical", "(", "self", ",", "bandGap", "=", "None", ",", "componentSpacing", "=", "None", ",", "EdgeAttribute", "=", "None", ",", "leftEdge", "=", "None", ",", "network", "=", "None", ",", "NodeAttribute", "=", "None", ",", "nodeHorizontalSpacing", "=", "None", ",", "nodeList", "=", "None", ",", "nodeVerticalSpacing", "=", "None", ",", "rightMargin", "=", "None", ",", "topEdge", "=", "None", ",", "verbose", "=", "None", ")", ":", "network", "=", "check_network", "(", "self", ",", "network", ",", "verbose", "=", "verbose", ")", "PARAMS", "=", "set_param", "(", "[", "'bandGap'", ",", "'componentSpacing'", ",", "'EdgeAttribute'", ",", "'leftEdge'", ",", "'network'", ",", "'NodeAttribute'", ",", "'nodeHorizontalSpacing'", ",", "'nodeList'", ",", "'nodeVerticalSpacing'", ",", "'rightMargin'", ",", "'topEdge'", "]", ",", "[", "bandGap", ",", "componentSpacing", ",", "EdgeAttribute", ",", "leftEdge", ",", "network", ",", "NodeAttribute", ",", "nodeHorizontalSpacing", ",", "nodeList", ",", "nodeVerticalSpacing", ",", "rightMargin", ",", "topEdge", "]", ")", "response", "=", "api", "(", "url", "=", "self", ".", "__url", "+", "\"/hierarchical\"", ",", "PARAMS", "=", "PARAMS", ",", "method", "=", "\"POST\"", ",", "verbose", "=", "verbose", ")", "return", "response" ]
Execute the Hierarchical Layout on a network. :param bandGap (string, optional): Band gap, in numeric value :param componentSpacing (string, optional): Component spacing, in numeric v alue :param EdgeAttribute (string, optional): The name of the edge column contai ning numeric values that will be used as weights in the layout algor ithm. Only columns containing numeric values are shown :param leftEdge (string, optional): Left edge margin, in numeric value :param network (string, optional): Specifies a network by name, or by SUID if the prefix SUID: is used. The keyword CURRENT, or a blank value c an also be used to specify the current network. :param NodeAttribute (string, optional): The name of the node column contai ning numeric values that will be used as weights in the layout algor ithm. Only columns containing numeric values are shown :param nodeHorizontalSpacing (string, optional): Horizontal spacing between nodes, in numeric value :param nodeList (string, optional): Specifies a list of nodes. The keywords all, selected, or unselected can be used to specify nodes by their selection state. The pattern COLUMN:VALUE sets this parameter to any rows that contain the specified column value; if the COLUMN prefix is not used, the NAME column is matched by default. A list of COLUMN :VALUE pairs of the format COLUMN1:VALUE1,COLUMN2:VALUE2,... can be used to match multiple values. :param nodeVerticalSpacing (string, optional): Vertical spacing between nod es, in numeric value :param rightMargin (string, optional): Right edge margin, in numeric value :param topEdge (string, optional): Top edge margin, in numeric value
[ "Execute", "the", "Hierarchical", "Layout", "on", "a", "network", "." ]
dd34de8d028f512314d0057168df7fef7c5d5195
https://github.com/cytoscape/py2cytoscape/blob/dd34de8d028f512314d0057168df7fef7c5d5195/py2cytoscape/cyrest/layout.py#L563-L604
train
cytoscape/py2cytoscape
py2cytoscape/cyrest/layout.py
layout.isom
def isom(self,coolingFactor=None,EdgeAttribute=None,initialAdaptation=None,\ maxEpoch=None,minAdaptation=None,minRadius=None,network=None,NodeAttribute=None,\ nodeList=None,radius=None,radiusConstantTime=None,singlePartition=None,\ sizeFactor=None,verbose=None): """ Execute the Inverted Self-Organizing Map Layout on a network. :param coolingFactor (string, optional): Cooling factor, in numeric value :param EdgeAttribute (string, optional): The name of the edge column contai ning numeric values that will be used as weights in the layout algor ithm. Only columns containing numeric values are shown :param initialAdaptation (string, optional): Initial adaptation, in numeric value :param maxEpoch (string, optional): Number of iterations, in numeric value :param minAdaptation (string, optional): Minimum adaptation value, in numer ic value :param minRadius (string, optional): Minimum radius, in numeric value :param network (string, optional): Specifies a network by name, or by SUID if the prefix SUID: is used. The keyword CURRENT, or a blank value c an also be used to specify the current network. :param NodeAttribute (string, optional): The name of the node column contai ning numeric values that will be used as weights in the layout algor ithm. Only columns containing numeric values are shown :param nodeList (string, optional): Specifies a list of nodes. The keywords all, selected, or unselected can be used to specify nodes by their selection state. The pattern COLUMN:VALUE sets this parameter to any rows that contain the specified column value; if the COLUMN prefix is not used, the NAME column is matched by default. A list of COLUMN :VALUE pairs of the format COLUMN1:VALUE1,COLUMN2:VALUE2,... can be used to match multiple values. :param radius (string, optional): Radius, in numeric value :param radiusConstantTime (string, optional): Radius constant, in numeric v alue :param singlePartition (string, optional): Don't partition graph before lay out; boolean values only, true or false; defaults to false :param sizeFactor (string, optional): Size factor, in numeric value """ network=check_network(self,network,verbose=verbose) PARAMS=set_param(['coolingFactor','EdgeAttribute','initialAdaptation',\ 'maxEpoch','minAdaptation','minRadius','network','NodeAttribute','nodeList',\ 'radius','radiusConstantTime','singlePartition','sizeFactor'],[coolingFactor,\ EdgeAttribute,initialAdaptation,maxEpoch,minAdaptation,minRadius,network,\ NodeAttribute,nodeList,radius,radiusConstantTime,singlePartition,sizeFactor]) response=api(url=self.__url+"/isom", PARAMS=PARAMS, method="POST", verbose=verbose) return response
python
def isom(self,coolingFactor=None,EdgeAttribute=None,initialAdaptation=None,\ maxEpoch=None,minAdaptation=None,minRadius=None,network=None,NodeAttribute=None,\ nodeList=None,radius=None,radiusConstantTime=None,singlePartition=None,\ sizeFactor=None,verbose=None): """ Execute the Inverted Self-Organizing Map Layout on a network. :param coolingFactor (string, optional): Cooling factor, in numeric value :param EdgeAttribute (string, optional): The name of the edge column contai ning numeric values that will be used as weights in the layout algor ithm. Only columns containing numeric values are shown :param initialAdaptation (string, optional): Initial adaptation, in numeric value :param maxEpoch (string, optional): Number of iterations, in numeric value :param minAdaptation (string, optional): Minimum adaptation value, in numer ic value :param minRadius (string, optional): Minimum radius, in numeric value :param network (string, optional): Specifies a network by name, or by SUID if the prefix SUID: is used. The keyword CURRENT, or a blank value c an also be used to specify the current network. :param NodeAttribute (string, optional): The name of the node column contai ning numeric values that will be used as weights in the layout algor ithm. Only columns containing numeric values are shown :param nodeList (string, optional): Specifies a list of nodes. The keywords all, selected, or unselected can be used to specify nodes by their selection state. The pattern COLUMN:VALUE sets this parameter to any rows that contain the specified column value; if the COLUMN prefix is not used, the NAME column is matched by default. A list of COLUMN :VALUE pairs of the format COLUMN1:VALUE1,COLUMN2:VALUE2,... can be used to match multiple values. :param radius (string, optional): Radius, in numeric value :param radiusConstantTime (string, optional): Radius constant, in numeric v alue :param singlePartition (string, optional): Don't partition graph before lay out; boolean values only, true or false; defaults to false :param sizeFactor (string, optional): Size factor, in numeric value """ network=check_network(self,network,verbose=verbose) PARAMS=set_param(['coolingFactor','EdgeAttribute','initialAdaptation',\ 'maxEpoch','minAdaptation','minRadius','network','NodeAttribute','nodeList',\ 'radius','radiusConstantTime','singlePartition','sizeFactor'],[coolingFactor,\ EdgeAttribute,initialAdaptation,maxEpoch,minAdaptation,minRadius,network,\ NodeAttribute,nodeList,radius,radiusConstantTime,singlePartition,sizeFactor]) response=api(url=self.__url+"/isom", PARAMS=PARAMS, method="POST", verbose=verbose) return response
[ "def", "isom", "(", "self", ",", "coolingFactor", "=", "None", ",", "EdgeAttribute", "=", "None", ",", "initialAdaptation", "=", "None", ",", "maxEpoch", "=", "None", ",", "minAdaptation", "=", "None", ",", "minRadius", "=", "None", ",", "network", "=", "None", ",", "NodeAttribute", "=", "None", ",", "nodeList", "=", "None", ",", "radius", "=", "None", ",", "radiusConstantTime", "=", "None", ",", "singlePartition", "=", "None", ",", "sizeFactor", "=", "None", ",", "verbose", "=", "None", ")", ":", "network", "=", "check_network", "(", "self", ",", "network", ",", "verbose", "=", "verbose", ")", "PARAMS", "=", "set_param", "(", "[", "'coolingFactor'", ",", "'EdgeAttribute'", ",", "'initialAdaptation'", ",", "'maxEpoch'", ",", "'minAdaptation'", ",", "'minRadius'", ",", "'network'", ",", "'NodeAttribute'", ",", "'nodeList'", ",", "'radius'", ",", "'radiusConstantTime'", ",", "'singlePartition'", ",", "'sizeFactor'", "]", ",", "[", "coolingFactor", ",", "EdgeAttribute", ",", "initialAdaptation", ",", "maxEpoch", ",", "minAdaptation", ",", "minRadius", ",", "network", ",", "NodeAttribute", ",", "nodeList", ",", "radius", ",", "radiusConstantTime", ",", "singlePartition", ",", "sizeFactor", "]", ")", "response", "=", "api", "(", "url", "=", "self", ".", "__url", "+", "\"/isom\"", ",", "PARAMS", "=", "PARAMS", ",", "method", "=", "\"POST\"", ",", "verbose", "=", "verbose", ")", "return", "response" ]
Execute the Inverted Self-Organizing Map Layout on a network. :param coolingFactor (string, optional): Cooling factor, in numeric value :param EdgeAttribute (string, optional): The name of the edge column contai ning numeric values that will be used as weights in the layout algor ithm. Only columns containing numeric values are shown :param initialAdaptation (string, optional): Initial adaptation, in numeric value :param maxEpoch (string, optional): Number of iterations, in numeric value :param minAdaptation (string, optional): Minimum adaptation value, in numer ic value :param minRadius (string, optional): Minimum radius, in numeric value :param network (string, optional): Specifies a network by name, or by SUID if the prefix SUID: is used. The keyword CURRENT, or a blank value c an also be used to specify the current network. :param NodeAttribute (string, optional): The name of the node column contai ning numeric values that will be used as weights in the layout algor ithm. Only columns containing numeric values are shown :param nodeList (string, optional): Specifies a list of nodes. The keywords all, selected, or unselected can be used to specify nodes by their selection state. The pattern COLUMN:VALUE sets this parameter to any rows that contain the specified column value; if the COLUMN prefix is not used, the NAME column is matched by default. A list of COLUMN :VALUE pairs of the format COLUMN1:VALUE1,COLUMN2:VALUE2,... can be used to match multiple values. :param radius (string, optional): Radius, in numeric value :param radiusConstantTime (string, optional): Radius constant, in numeric v alue :param singlePartition (string, optional): Don't partition graph before lay out; boolean values only, true or false; defaults to false :param sizeFactor (string, optional): Size factor, in numeric value
[ "Execute", "the", "Inverted", "Self", "-", "Organizing", "Map", "Layout", "on", "a", "network", "." ]
dd34de8d028f512314d0057168df7fef7c5d5195
https://github.com/cytoscape/py2cytoscape/blob/dd34de8d028f512314d0057168df7fef7c5d5195/py2cytoscape/cyrest/layout.py#L607-L651
train
cytoscape/py2cytoscape
py2cytoscape/cyrest/layout.py
layout.kamada_kawai
def kamada_kawai(self,defaultEdgeWeight=None,EdgeAttribute=None,\ m_anticollisionSpringStrength=None,m_averageIterationsPerNode=None,\ m_disconnectedNodeDistanceSpringRestLength=None,\ m_disconnectedNodeDistanceSpringStrength=None,m_layoutPass=None,\ m_nodeDistanceRestLengthConstant=None,m_nodeDistanceStrengthConstant=None,\ maxWeightCutoff=None,minWeightCutoff=None,network=None,NodeAttribute=None,\ nodeList=None,randomize=None,singlePartition=None,Type=None,unweighted=None,\ verbose=None): """ Execute the Edge-weighted Spring Embedded Layout on a network. :param defaultEdgeWeight (string, optional): The default edge weight to con sider, default is 0.5 :param EdgeAttribute (string, optional): The name of the edge column contai ning numeric values that will be used as weights in the layout algor ithm. Only columns containing numeric values are shown :param m_anticollisionSpringStrength (string, optional): Strength to apply to avoid collisions, in numeric value :param m_averageIterationsPerNode (string, optional): Average number of ite ratations for each node, in numeric value :param m_disconnectedNodeDistanceSpringRestLength (string, optional): Rest length of a 'disconnected' spring, in numeric value :param m_disconnectedNodeDistanceSpringStrength (string, optional): Strengt h of a 'disconnected' spring, in numeric value :param m_layoutPass (string, optional): Number of layout passes, in numeric value :param m_nodeDistanceRestLengthConstant (string, optional): Spring rest len gth, in numeric value :param m_nodeDistanceStrengthConstant (string, optional): Spring strength, in numeric value :param maxWeightCutoff (string, optional): The maximum edge weight to consi der, default to the Double.MAX value :param minWeightCutoff (string, optional): The minimum edge weight to consi der, numeric values, default is 0 :param network (string, optional): Specifies a network by name, or by SUID if the prefix SUID: is used. The keyword CURRENT, or a blank value c an also be used to specify the current network. :param NodeAttribute (string, optional): The name of the node column contai ning numeric values that will be used as weights in the layout algor ithm. Only columns containing numeric values are shown :param nodeList (string, optional): Specifies a list of nodes. The keywords all, selected, or unselected can be used to specify nodes by their selection state. The pattern COLUMN:VALUE sets this parameter to any rows that contain the specified column value; if the COLUMN prefix is not used, the NAME column is matched by default. A list of COLUMN :VALUE pairs of the format COLUMN1:VALUE1,COLUMN2:VALUE2,... can be used to match multiple values. :param randomize (string, optional): Randomize graph before layout; boolean values only, true or false; defaults to true :param singlePartition (string, optional): Don't partition graph before lay out; boolean values only, true or false; defaults to false :param Type (string, optional): How to interpret weight values; must be one of Heuristic, -Log(value), 1 - normalized value and normalized valu e. Defaults to Heuristic = ['Heuristic', '-Log(value)', '1 - normali zed value', 'normalized value'] :param unweighted (string, optional): Use unweighted edges; boolean values only, true or false; defaults to false """ network=check_network(self,network,verbose=verbose) PARAMS=set_param(['defaultEdgeWeight','EdgeAttribute',\ 'm_anticollisionSpringStrength','m_averageIterationsPerNode',\ 'm_disconnectedNodeDistanceSpringRestLength',\ 'm_disconnectedNodeDistanceSpringStrength','m_layoutPass',\ 'm_nodeDistanceRestLengthConstant','m_nodeDistanceStrengthConstant',\ 'maxWeightCutoff','minWeightCutoff','network','NodeAttribute','nodeList',\ 'randomize','singlePartition','Type','unweighted'],[defaultEdgeWeight,\ EdgeAttribute,m_anticollisionSpringStrength,m_averageIterationsPerNode,\ m_disconnectedNodeDistanceSpringRestLength,\ m_disconnectedNodeDistanceSpringStrength,m_layoutPass,\ m_nodeDistanceRestLengthConstant,m_nodeDistanceStrengthConstant,\ maxWeightCutoff,minWeightCutoff,network,NodeAttribute,nodeList,randomize,\ singlePartition,Type,unweighted]) response=api(url=self.__url+"/kamada-kawai", PARAMS=PARAMS, method="POST", verbose=verbose) return response
python
def kamada_kawai(self,defaultEdgeWeight=None,EdgeAttribute=None,\ m_anticollisionSpringStrength=None,m_averageIterationsPerNode=None,\ m_disconnectedNodeDistanceSpringRestLength=None,\ m_disconnectedNodeDistanceSpringStrength=None,m_layoutPass=None,\ m_nodeDistanceRestLengthConstant=None,m_nodeDistanceStrengthConstant=None,\ maxWeightCutoff=None,minWeightCutoff=None,network=None,NodeAttribute=None,\ nodeList=None,randomize=None,singlePartition=None,Type=None,unweighted=None,\ verbose=None): """ Execute the Edge-weighted Spring Embedded Layout on a network. :param defaultEdgeWeight (string, optional): The default edge weight to con sider, default is 0.5 :param EdgeAttribute (string, optional): The name of the edge column contai ning numeric values that will be used as weights in the layout algor ithm. Only columns containing numeric values are shown :param m_anticollisionSpringStrength (string, optional): Strength to apply to avoid collisions, in numeric value :param m_averageIterationsPerNode (string, optional): Average number of ite ratations for each node, in numeric value :param m_disconnectedNodeDistanceSpringRestLength (string, optional): Rest length of a 'disconnected' spring, in numeric value :param m_disconnectedNodeDistanceSpringStrength (string, optional): Strengt h of a 'disconnected' spring, in numeric value :param m_layoutPass (string, optional): Number of layout passes, in numeric value :param m_nodeDistanceRestLengthConstant (string, optional): Spring rest len gth, in numeric value :param m_nodeDistanceStrengthConstant (string, optional): Spring strength, in numeric value :param maxWeightCutoff (string, optional): The maximum edge weight to consi der, default to the Double.MAX value :param minWeightCutoff (string, optional): The minimum edge weight to consi der, numeric values, default is 0 :param network (string, optional): Specifies a network by name, or by SUID if the prefix SUID: is used. The keyword CURRENT, or a blank value c an also be used to specify the current network. :param NodeAttribute (string, optional): The name of the node column contai ning numeric values that will be used as weights in the layout algor ithm. Only columns containing numeric values are shown :param nodeList (string, optional): Specifies a list of nodes. The keywords all, selected, or unselected can be used to specify nodes by their selection state. The pattern COLUMN:VALUE sets this parameter to any rows that contain the specified column value; if the COLUMN prefix is not used, the NAME column is matched by default. A list of COLUMN :VALUE pairs of the format COLUMN1:VALUE1,COLUMN2:VALUE2,... can be used to match multiple values. :param randomize (string, optional): Randomize graph before layout; boolean values only, true or false; defaults to true :param singlePartition (string, optional): Don't partition graph before lay out; boolean values only, true or false; defaults to false :param Type (string, optional): How to interpret weight values; must be one of Heuristic, -Log(value), 1 - normalized value and normalized valu e. Defaults to Heuristic = ['Heuristic', '-Log(value)', '1 - normali zed value', 'normalized value'] :param unweighted (string, optional): Use unweighted edges; boolean values only, true or false; defaults to false """ network=check_network(self,network,verbose=verbose) PARAMS=set_param(['defaultEdgeWeight','EdgeAttribute',\ 'm_anticollisionSpringStrength','m_averageIterationsPerNode',\ 'm_disconnectedNodeDistanceSpringRestLength',\ 'm_disconnectedNodeDistanceSpringStrength','m_layoutPass',\ 'm_nodeDistanceRestLengthConstant','m_nodeDistanceStrengthConstant',\ 'maxWeightCutoff','minWeightCutoff','network','NodeAttribute','nodeList',\ 'randomize','singlePartition','Type','unweighted'],[defaultEdgeWeight,\ EdgeAttribute,m_anticollisionSpringStrength,m_averageIterationsPerNode,\ m_disconnectedNodeDistanceSpringRestLength,\ m_disconnectedNodeDistanceSpringStrength,m_layoutPass,\ m_nodeDistanceRestLengthConstant,m_nodeDistanceStrengthConstant,\ maxWeightCutoff,minWeightCutoff,network,NodeAttribute,nodeList,randomize,\ singlePartition,Type,unweighted]) response=api(url=self.__url+"/kamada-kawai", PARAMS=PARAMS, method="POST", verbose=verbose) return response
[ "def", "kamada_kawai", "(", "self", ",", "defaultEdgeWeight", "=", "None", ",", "EdgeAttribute", "=", "None", ",", "m_anticollisionSpringStrength", "=", "None", ",", "m_averageIterationsPerNode", "=", "None", ",", "m_disconnectedNodeDistanceSpringRestLength", "=", "None", ",", "m_disconnectedNodeDistanceSpringStrength", "=", "None", ",", "m_layoutPass", "=", "None", ",", "m_nodeDistanceRestLengthConstant", "=", "None", ",", "m_nodeDistanceStrengthConstant", "=", "None", ",", "maxWeightCutoff", "=", "None", ",", "minWeightCutoff", "=", "None", ",", "network", "=", "None", ",", "NodeAttribute", "=", "None", ",", "nodeList", "=", "None", ",", "randomize", "=", "None", ",", "singlePartition", "=", "None", ",", "Type", "=", "None", ",", "unweighted", "=", "None", ",", "verbose", "=", "None", ")", ":", "network", "=", "check_network", "(", "self", ",", "network", ",", "verbose", "=", "verbose", ")", "PARAMS", "=", "set_param", "(", "[", "'defaultEdgeWeight'", ",", "'EdgeAttribute'", ",", "'m_anticollisionSpringStrength'", ",", "'m_averageIterationsPerNode'", ",", "'m_disconnectedNodeDistanceSpringRestLength'", ",", "'m_disconnectedNodeDistanceSpringStrength'", ",", "'m_layoutPass'", ",", "'m_nodeDistanceRestLengthConstant'", ",", "'m_nodeDistanceStrengthConstant'", ",", "'maxWeightCutoff'", ",", "'minWeightCutoff'", ",", "'network'", ",", "'NodeAttribute'", ",", "'nodeList'", ",", "'randomize'", ",", "'singlePartition'", ",", "'Type'", ",", "'unweighted'", "]", ",", "[", "defaultEdgeWeight", ",", "EdgeAttribute", ",", "m_anticollisionSpringStrength", ",", "m_averageIterationsPerNode", ",", "m_disconnectedNodeDistanceSpringRestLength", ",", "m_disconnectedNodeDistanceSpringStrength", ",", "m_layoutPass", ",", "m_nodeDistanceRestLengthConstant", ",", "m_nodeDistanceStrengthConstant", ",", "maxWeightCutoff", ",", "minWeightCutoff", ",", "network", ",", "NodeAttribute", ",", "nodeList", ",", "randomize", ",", "singlePartition", ",", "Type", ",", "unweighted", "]", ")", "response", "=", "api", "(", "url", "=", "self", ".", "__url", "+", "\"/kamada-kawai\"", ",", "PARAMS", "=", "PARAMS", ",", "method", "=", "\"POST\"", ",", "verbose", "=", "verbose", ")", "return", "response" ]
Execute the Edge-weighted Spring Embedded Layout on a network. :param defaultEdgeWeight (string, optional): The default edge weight to con sider, default is 0.5 :param EdgeAttribute (string, optional): The name of the edge column contai ning numeric values that will be used as weights in the layout algor ithm. Only columns containing numeric values are shown :param m_anticollisionSpringStrength (string, optional): Strength to apply to avoid collisions, in numeric value :param m_averageIterationsPerNode (string, optional): Average number of ite ratations for each node, in numeric value :param m_disconnectedNodeDistanceSpringRestLength (string, optional): Rest length of a 'disconnected' spring, in numeric value :param m_disconnectedNodeDistanceSpringStrength (string, optional): Strengt h of a 'disconnected' spring, in numeric value :param m_layoutPass (string, optional): Number of layout passes, in numeric value :param m_nodeDistanceRestLengthConstant (string, optional): Spring rest len gth, in numeric value :param m_nodeDistanceStrengthConstant (string, optional): Spring strength, in numeric value :param maxWeightCutoff (string, optional): The maximum edge weight to consi der, default to the Double.MAX value :param minWeightCutoff (string, optional): The minimum edge weight to consi der, numeric values, default is 0 :param network (string, optional): Specifies a network by name, or by SUID if the prefix SUID: is used. The keyword CURRENT, or a blank value c an also be used to specify the current network. :param NodeAttribute (string, optional): The name of the node column contai ning numeric values that will be used as weights in the layout algor ithm. Only columns containing numeric values are shown :param nodeList (string, optional): Specifies a list of nodes. The keywords all, selected, or unselected can be used to specify nodes by their selection state. The pattern COLUMN:VALUE sets this parameter to any rows that contain the specified column value; if the COLUMN prefix is not used, the NAME column is matched by default. A list of COLUMN :VALUE pairs of the format COLUMN1:VALUE1,COLUMN2:VALUE2,... can be used to match multiple values. :param randomize (string, optional): Randomize graph before layout; boolean values only, true or false; defaults to true :param singlePartition (string, optional): Don't partition graph before lay out; boolean values only, true or false; defaults to false :param Type (string, optional): How to interpret weight values; must be one of Heuristic, -Log(value), 1 - normalized value and normalized valu e. Defaults to Heuristic = ['Heuristic', '-Log(value)', '1 - normali zed value', 'normalized value'] :param unweighted (string, optional): Use unweighted edges; boolean values only, true or false; defaults to false
[ "Execute", "the", "Edge", "-", "weighted", "Spring", "Embedded", "Layout", "on", "a", "network", "." ]
dd34de8d028f512314d0057168df7fef7c5d5195
https://github.com/cytoscape/py2cytoscape/blob/dd34de8d028f512314d0057168df7fef7c5d5195/py2cytoscape/cyrest/layout.py#L653-L726
train
cytoscape/py2cytoscape
py2cytoscape/cyrest/layout.py
layout.set_preferred
def set_preferred(self,preferredLayout=None,verbose=None): """ Sets the preferred layout. Takes a specific name as defined in the API Default is grid. :param preferredLayout (string, optional): Layout to use as preferred, for allowed names see Layout API """ PARAMS=set_param(['preferredLayout'],[preferredLayout]) response=api(url=self.__url+"/set preferred", PARAMS=PARAMS, method="POST", verbose=verbose) return response
python
def set_preferred(self,preferredLayout=None,verbose=None): """ Sets the preferred layout. Takes a specific name as defined in the API Default is grid. :param preferredLayout (string, optional): Layout to use as preferred, for allowed names see Layout API """ PARAMS=set_param(['preferredLayout'],[preferredLayout]) response=api(url=self.__url+"/set preferred", PARAMS=PARAMS, method="POST", verbose=verbose) return response
[ "def", "set_preferred", "(", "self", ",", "preferredLayout", "=", "None", ",", "verbose", "=", "None", ")", ":", "PARAMS", "=", "set_param", "(", "[", "'preferredLayout'", "]", ",", "[", "preferredLayout", "]", ")", "response", "=", "api", "(", "url", "=", "self", ".", "__url", "+", "\"/set preferred\"", ",", "PARAMS", "=", "PARAMS", ",", "method", "=", "\"POST\"", ",", "verbose", "=", "verbose", ")", "return", "response" ]
Sets the preferred layout. Takes a specific name as defined in the API Default is grid. :param preferredLayout (string, optional): Layout to use as preferred, for allowed names see Layout API
[ "Sets", "the", "preferred", "layout", ".", "Takes", "a", "specific", "name", "as", "defined", "in", "the", "API", "Default", "is", "grid", "." ]
dd34de8d028f512314d0057168df7fef7c5d5195
https://github.com/cytoscape/py2cytoscape/blob/dd34de8d028f512314d0057168df7fef7c5d5195/py2cytoscape/cyrest/layout.py#L729-L739
train
cytoscape/py2cytoscape
py2cytoscape/cyrest/layout.py
layout.stacked_node_layout
def stacked_node_layout(self,EdgeAttribute=None,network=None,NodeAttribute=None,\ nodeList=None,x_position=None,y_start_position=None,verbose=None): """ Execute the Stacked Node Layout on a network. :param EdgeAttribute (string, optional): The name of the edge column contai ning numeric values that will be used as weights in the layout algor ithm. Only columns containing numeric values are shown :param network (string, optional): Specifies a network by name, or by SUID if the prefix SUID: is used. The keyword CURRENT, or a blank value c an also be used to specify the current network. :param NodeAttribute (string, optional): The name of the node column contai ning numeric values that will be used as weights in the layout algor ithm. Only columns containing numeric values are shown :param nodeList (string, optional): Specifies a list of nodes. The keywords all, selected, or unselected can be used to specify nodes by their selection state. The pattern COLUMN:VALUE sets this parameter to any rows that contain the specified column value; if the COLUMN prefix is not used, the NAME column is matched by default. A list of COLUMN :VALUE pairs of the format COLUMN1:VALUE1,COLUMN2:VALUE2,... can be used to match multiple values. :param x_position (string, optional): X start position, in numeric value :param y_start_position (string, optional): Y start position, in numeric va lue """ network=check_network(self,network,verbose=verbose) PARAMS=set_param(['EdgeAttribute','network','NodeAttribute','nodeList',\ 'x_position','y_start_position'],[EdgeAttribute,network,NodeAttribute,\ nodeList,x_position,y_start_position]) response=api(url=self.__url+"/stacked-node-layout", PARAMS=PARAMS, method="POST", verbose=verbose) return response
python
def stacked_node_layout(self,EdgeAttribute=None,network=None,NodeAttribute=None,\ nodeList=None,x_position=None,y_start_position=None,verbose=None): """ Execute the Stacked Node Layout on a network. :param EdgeAttribute (string, optional): The name of the edge column contai ning numeric values that will be used as weights in the layout algor ithm. Only columns containing numeric values are shown :param network (string, optional): Specifies a network by name, or by SUID if the prefix SUID: is used. The keyword CURRENT, or a blank value c an also be used to specify the current network. :param NodeAttribute (string, optional): The name of the node column contai ning numeric values that will be used as weights in the layout algor ithm. Only columns containing numeric values are shown :param nodeList (string, optional): Specifies a list of nodes. The keywords all, selected, or unselected can be used to specify nodes by their selection state. The pattern COLUMN:VALUE sets this parameter to any rows that contain the specified column value; if the COLUMN prefix is not used, the NAME column is matched by default. A list of COLUMN :VALUE pairs of the format COLUMN1:VALUE1,COLUMN2:VALUE2,... can be used to match multiple values. :param x_position (string, optional): X start position, in numeric value :param y_start_position (string, optional): Y start position, in numeric va lue """ network=check_network(self,network,verbose=verbose) PARAMS=set_param(['EdgeAttribute','network','NodeAttribute','nodeList',\ 'x_position','y_start_position'],[EdgeAttribute,network,NodeAttribute,\ nodeList,x_position,y_start_position]) response=api(url=self.__url+"/stacked-node-layout", PARAMS=PARAMS, method="POST", verbose=verbose) return response
[ "def", "stacked_node_layout", "(", "self", ",", "EdgeAttribute", "=", "None", ",", "network", "=", "None", ",", "NodeAttribute", "=", "None", ",", "nodeList", "=", "None", ",", "x_position", "=", "None", ",", "y_start_position", "=", "None", ",", "verbose", "=", "None", ")", ":", "network", "=", "check_network", "(", "self", ",", "network", ",", "verbose", "=", "verbose", ")", "PARAMS", "=", "set_param", "(", "[", "'EdgeAttribute'", ",", "'network'", ",", "'NodeAttribute'", ",", "'nodeList'", ",", "'x_position'", ",", "'y_start_position'", "]", ",", "[", "EdgeAttribute", ",", "network", ",", "NodeAttribute", ",", "nodeList", ",", "x_position", ",", "y_start_position", "]", ")", "response", "=", "api", "(", "url", "=", "self", ".", "__url", "+", "\"/stacked-node-layout\"", ",", "PARAMS", "=", "PARAMS", ",", "method", "=", "\"POST\"", ",", "verbose", "=", "verbose", ")", "return", "response" ]
Execute the Stacked Node Layout on a network. :param EdgeAttribute (string, optional): The name of the edge column contai ning numeric values that will be used as weights in the layout algor ithm. Only columns containing numeric values are shown :param network (string, optional): Specifies a network by name, or by SUID if the prefix SUID: is used. The keyword CURRENT, or a blank value c an also be used to specify the current network. :param NodeAttribute (string, optional): The name of the node column contai ning numeric values that will be used as weights in the layout algor ithm. Only columns containing numeric values are shown :param nodeList (string, optional): Specifies a list of nodes. The keywords all, selected, or unselected can be used to specify nodes by their selection state. The pattern COLUMN:VALUE sets this parameter to any rows that contain the specified column value; if the COLUMN prefix is not used, the NAME column is matched by default. A list of COLUMN :VALUE pairs of the format COLUMN1:VALUE1,COLUMN2:VALUE2,... can be used to match multiple values. :param x_position (string, optional): X start position, in numeric value :param y_start_position (string, optional): Y start position, in numeric va lue
[ "Execute", "the", "Stacked", "Node", "Layout", "on", "a", "network", "." ]
dd34de8d028f512314d0057168df7fef7c5d5195
https://github.com/cytoscape/py2cytoscape/blob/dd34de8d028f512314d0057168df7fef7c5d5195/py2cytoscape/cyrest/layout.py#L742-L772
train
cytoscape/py2cytoscape
py2cytoscape/cyrest/table.py
table.create_column
def create_column(self,columnName=None,listType=None,table=None,ntype=None,verbose=None): """ Appends an additional column of attribute values to the current table. :param columnName (string, optional): The new column name :param listType (string, optional): Can be one of integer, long, double, or string. :param table (string, optional): Specifies a table by table name. If the pr efix SUID: is used, the table corresponding the SUID will be returne d. :param ntype (string, optional): Can be one of integer, long, double, string , or list. """ PARAMS=set_param(['columnName','listType','table','type'],[columnName,\ listType,table,ntype]) response=api(url=self.__url+"/create column", PARAMS=PARAMS, method="POST", verbose=verbose) return response
python
def create_column(self,columnName=None,listType=None,table=None,ntype=None,verbose=None): """ Appends an additional column of attribute values to the current table. :param columnName (string, optional): The new column name :param listType (string, optional): Can be one of integer, long, double, or string. :param table (string, optional): Specifies a table by table name. If the pr efix SUID: is used, the table corresponding the SUID will be returne d. :param ntype (string, optional): Can be one of integer, long, double, string , or list. """ PARAMS=set_param(['columnName','listType','table','type'],[columnName,\ listType,table,ntype]) response=api(url=self.__url+"/create column", PARAMS=PARAMS, method="POST", verbose=verbose) return response
[ "def", "create_column", "(", "self", ",", "columnName", "=", "None", ",", "listType", "=", "None", ",", "table", "=", "None", ",", "ntype", "=", "None", ",", "verbose", "=", "None", ")", ":", "PARAMS", "=", "set_param", "(", "[", "'columnName'", ",", "'listType'", ",", "'table'", ",", "'type'", "]", ",", "[", "columnName", ",", "listType", ",", "table", ",", "ntype", "]", ")", "response", "=", "api", "(", "url", "=", "self", ".", "__url", "+", "\"/create column\"", ",", "PARAMS", "=", "PARAMS", ",", "method", "=", "\"POST\"", ",", "verbose", "=", "verbose", ")", "return", "response" ]
Appends an additional column of attribute values to the current table. :param columnName (string, optional): The new column name :param listType (string, optional): Can be one of integer, long, double, or string. :param table (string, optional): Specifies a table by table name. If the pr efix SUID: is used, the table corresponding the SUID will be returne d. :param ntype (string, optional): Can be one of integer, long, double, string , or list.
[ "Appends", "an", "additional", "column", "of", "attribute", "values", "to", "the", "current", "table", "." ]
dd34de8d028f512314d0057168df7fef7c5d5195
https://github.com/cytoscape/py2cytoscape/blob/dd34de8d028f512314d0057168df7fef7c5d5195/py2cytoscape/cyrest/table.py#L30-L46
train
cytoscape/py2cytoscape
py2cytoscape/cyrest/table.py
table.create_table
def create_table(self,keyColumn=None,keyColumnType=None,title=None,verbose=None): """ Adds a new table to the network. :param keyColumn (string, optional): Specifies the name of a column in the table :param keyColumnType (string, optional): The syntactical type of the value used in the key :param title (string, optional): The name of the table used in the current network :returns: table SUID """ PARAMS=set_param(['keyColumn','keyColumnType','title'],[keyColumn,\ keyColumnType,title]) response=api(url=self.__url+"/create table", PARAMS=PARAMS, method="POST", verbose=verbose) return response
python
def create_table(self,keyColumn=None,keyColumnType=None,title=None,verbose=None): """ Adds a new table to the network. :param keyColumn (string, optional): Specifies the name of a column in the table :param keyColumnType (string, optional): The syntactical type of the value used in the key :param title (string, optional): The name of the table used in the current network :returns: table SUID """ PARAMS=set_param(['keyColumn','keyColumnType','title'],[keyColumn,\ keyColumnType,title]) response=api(url=self.__url+"/create table", PARAMS=PARAMS, method="POST", verbose=verbose) return response
[ "def", "create_table", "(", "self", ",", "keyColumn", "=", "None", ",", "keyColumnType", "=", "None", ",", "title", "=", "None", ",", "verbose", "=", "None", ")", ":", "PARAMS", "=", "set_param", "(", "[", "'keyColumn'", ",", "'keyColumnType'", ",", "'title'", "]", ",", "[", "keyColumn", ",", "keyColumnType", ",", "title", "]", ")", "response", "=", "api", "(", "url", "=", "self", ".", "__url", "+", "\"/create table\"", ",", "PARAMS", "=", "PARAMS", ",", "method", "=", "\"POST\"", ",", "verbose", "=", "verbose", ")", "return", "response" ]
Adds a new table to the network. :param keyColumn (string, optional): Specifies the name of a column in the table :param keyColumnType (string, optional): The syntactical type of the value used in the key :param title (string, optional): The name of the table used in the current network :returns: table SUID
[ "Adds", "a", "new", "table", "to", "the", "network", "." ]
dd34de8d028f512314d0057168df7fef7c5d5195
https://github.com/cytoscape/py2cytoscape/blob/dd34de8d028f512314d0057168df7fef7c5d5195/py2cytoscape/cyrest/table.py#L49-L65
train
cytoscape/py2cytoscape
py2cytoscape/cyrest/table.py
table.delete_column
def delete_column(self,column=None,table=None,verbose=None): """ Remove a column from a table, specified by its name. Returns the name of the column removed. :param column (string, optional): Specifies the name of a column in the tab le :param table (string, optional): Specifies a table by table name. If the pr efix SUID: is used, the table corresponding the SUID will be returne d. """ PARAMS=set_param(['column','table'],[column,table]) response=api(url=self.__url+"/delete column", PARAMS=PARAMS, method="POST", verbose=verbose) return response
python
def delete_column(self,column=None,table=None,verbose=None): """ Remove a column from a table, specified by its name. Returns the name of the column removed. :param column (string, optional): Specifies the name of a column in the tab le :param table (string, optional): Specifies a table by table name. If the pr efix SUID: is used, the table corresponding the SUID will be returne d. """ PARAMS=set_param(['column','table'],[column,table]) response=api(url=self.__url+"/delete column", PARAMS=PARAMS, method="POST", verbose=verbose) return response
[ "def", "delete_column", "(", "self", ",", "column", "=", "None", ",", "table", "=", "None", ",", "verbose", "=", "None", ")", ":", "PARAMS", "=", "set_param", "(", "[", "'column'", ",", "'table'", "]", ",", "[", "column", ",", "table", "]", ")", "response", "=", "api", "(", "url", "=", "self", ".", "__url", "+", "\"/delete column\"", ",", "PARAMS", "=", "PARAMS", ",", "method", "=", "\"POST\"", ",", "verbose", "=", "verbose", ")", "return", "response" ]
Remove a column from a table, specified by its name. Returns the name of the column removed. :param column (string, optional): Specifies the name of a column in the tab le :param table (string, optional): Specifies a table by table name. If the pr efix SUID: is used, the table corresponding the SUID will be returne d.
[ "Remove", "a", "column", "from", "a", "table", "specified", "by", "its", "name", ".", "Returns", "the", "name", "of", "the", "column", "removed", "." ]
dd34de8d028f512314d0057168df7fef7c5d5195
https://github.com/cytoscape/py2cytoscape/blob/dd34de8d028f512314d0057168df7fef7c5d5195/py2cytoscape/cyrest/table.py#L67-L80
train
cytoscape/py2cytoscape
py2cytoscape/cyrest/table.py
table.delete_row
def delete_row(self,keyValue=None,table=None,verbose=None): """ Deletes a row from a table.Requires the table name or SUID and the row key. :param keyValue (string): Specifies the primary key of a value in the row o f a table :param table (string, optional): Specifies a table by table name. If the pr efix SUID: is used, the table corresponding the SUID will be returne d. """ PARAMS=set_param(['keyValue','table'],[keyValue,table]) response=api(url=self.__url+"/delete row", PARAMS=PARAMS, method="POST", verbose=verbose) return response
python
def delete_row(self,keyValue=None,table=None,verbose=None): """ Deletes a row from a table.Requires the table name or SUID and the row key. :param keyValue (string): Specifies the primary key of a value in the row o f a table :param table (string, optional): Specifies a table by table name. If the pr efix SUID: is used, the table corresponding the SUID will be returne d. """ PARAMS=set_param(['keyValue','table'],[keyValue,table]) response=api(url=self.__url+"/delete row", PARAMS=PARAMS, method="POST", verbose=verbose) return response
[ "def", "delete_row", "(", "self", ",", "keyValue", "=", "None", ",", "table", "=", "None", ",", "verbose", "=", "None", ")", ":", "PARAMS", "=", "set_param", "(", "[", "'keyValue'", ",", "'table'", "]", ",", "[", "keyValue", ",", "table", "]", ")", "response", "=", "api", "(", "url", "=", "self", ".", "__url", "+", "\"/delete row\"", ",", "PARAMS", "=", "PARAMS", ",", "method", "=", "\"POST\"", ",", "verbose", "=", "verbose", ")", "return", "response" ]
Deletes a row from a table.Requires the table name or SUID and the row key. :param keyValue (string): Specifies the primary key of a value in the row o f a table :param table (string, optional): Specifies a table by table name. If the pr efix SUID: is used, the table corresponding the SUID will be returne d.
[ "Deletes", "a", "row", "from", "a", "table", ".", "Requires", "the", "table", "name", "or", "SUID", "and", "the", "row", "key", "." ]
dd34de8d028f512314d0057168df7fef7c5d5195
https://github.com/cytoscape/py2cytoscape/blob/dd34de8d028f512314d0057168df7fef7c5d5195/py2cytoscape/cyrest/table.py#L83-L95
train
cytoscape/py2cytoscape
py2cytoscape/cyrest/table.py
table.get_value
def get_value(self,column=None,keyValue=None,table=None,verbose=None): """ Returns the value from a cell as specified by row and column ids. :param column (string, optional): Specifies the name of a column in the tab le :param keyValue (string, optional): Specifies a row of a table using the pr imary key as the indentifier :param table (string, optional): Specifies a table by table name. If the pr efix SUID: is used, the table corresponding the SUID will be returne d. :returns: value from a cell as specified by row and column ids """ PARAMS=set_param(['column','keyValue','table'],[column,keyValue,table]) response=api(url=self.__url+"/get value", PARAMS=PARAMS, method="POST", verbose=verbose) return response
python
def get_value(self,column=None,keyValue=None,table=None,verbose=None): """ Returns the value from a cell as specified by row and column ids. :param column (string, optional): Specifies the name of a column in the tab le :param keyValue (string, optional): Specifies a row of a table using the pr imary key as the indentifier :param table (string, optional): Specifies a table by table name. If the pr efix SUID: is used, the table corresponding the SUID will be returne d. :returns: value from a cell as specified by row and column ids """ PARAMS=set_param(['column','keyValue','table'],[column,keyValue,table]) response=api(url=self.__url+"/get value", PARAMS=PARAMS, method="POST", verbose=verbose) return response
[ "def", "get_value", "(", "self", ",", "column", "=", "None", ",", "keyValue", "=", "None", ",", "table", "=", "None", ",", "verbose", "=", "None", ")", ":", "PARAMS", "=", "set_param", "(", "[", "'column'", ",", "'keyValue'", ",", "'table'", "]", ",", "[", "column", ",", "keyValue", ",", "table", "]", ")", "response", "=", "api", "(", "url", "=", "self", ".", "__url", "+", "\"/get value\"", ",", "PARAMS", "=", "PARAMS", ",", "method", "=", "\"POST\"", ",", "verbose", "=", "verbose", ")", "return", "response" ]
Returns the value from a cell as specified by row and column ids. :param column (string, optional): Specifies the name of a column in the tab le :param keyValue (string, optional): Specifies a row of a table using the pr imary key as the indentifier :param table (string, optional): Specifies a table by table name. If the pr efix SUID: is used, the table corresponding the SUID will be returne d. :returns: value from a cell as specified by row and column ids
[ "Returns", "the", "value", "from", "a", "cell", "as", "specified", "by", "row", "and", "column", "ids", "." ]
dd34de8d028f512314d0057168df7fef7c5d5195
https://github.com/cytoscape/py2cytoscape/blob/dd34de8d028f512314d0057168df7fef7c5d5195/py2cytoscape/cyrest/table.py#L160-L176
train
cytoscape/py2cytoscape
py2cytoscape/cyrest/table.py
table.import_url
def import_url(self,caseSensitiveNetworkCollectionKeys=None,\ caseSensitiveNetworkKeys=None,dataTypeList=None,\ DataTypeTargetForNetworkCollection=None,DataTypeTargetForNetworkList=None,\ delimiters=None,delimitersForDataList=None,firstRowAsColumnNames=None,\ KeyColumnForMapping=None,KeyColumnForMappingNetworkList=None,\ keyColumnIndex=None,newTableName=None,startLoadRow=None,\ TargetNetworkCollection=None,TargetNetworkList=None,url=None,\ WhereImportTable=None,verbose=None): """ Similar to Import Table this uses a long list of input parameters to specify the attributes of the table, the mapping keys, and the destination table for the input. :param caseSensitiveNetworkCollectionKeys (string, optional): Determines wh ether capitalization is considered in matching and sorting :param caseSensitiveNetworkKeys (string, optional): Determines whether capi talization is considered in matching and sorting :param dataTypeList (string, optional): List of column data types ordered b y column index (e.g. "string,int,long,double,boolean,intlist" or jus t "s,i,l,d,b,il") :param DataTypeTargetForNetworkCollection (string, optional): Select whethe r to import the data as Node Table Columns, Edge Table Columns, or N etwork Table Columns :param DataTypeTargetForNetworkList (string, optional): The data type of th e targets :param delimiters (string, optional): The list of delimiters that separate columns in the table. :param delimitersForDataList (string, optional): The delimiters between ele ments of list columns in the table. :param firstRowAsColumnNames (string, optional): If the first imported row contains column names, set this to true. :param KeyColumnForMapping (string, optional): The column in the network to use as the merge key :param KeyColumnForMappingNetworkList (string, optional): The column in the network to use as the merge key :param keyColumnIndex (string, optional): The column that contains the key values for this import. These values will be used to match with the key values in the network. :param newTableName (string, optional): The title of the new table :param startLoadRow (string, optional): The first row of the input table to load. This allows the skipping of headers that are not part of the import. :param TargetNetworkCollection (string, optional): The network collection t o use for the table import :param TargetNetworkList (string, optional): The list of networks into whic h the table is imported :param url (string): The URL of the file or resource that provides the tabl e or network to be imported. :param WhereImportTable (string, optional): Determines what network(s) the imported table will be associated with (if any). A table can be impo rted into a Network Collection, Selected networks or to an unassigne d table. """ PARAMS=set_param(['caseSensitiveNetworkCollectionKeys',\ 'caseSensitiveNetworkKeys','dataTypeList','DataTypeTargetForNetworkCollection',\ 'DataTypeTargetForNetworkList','delimiters','delimitersForDataList',\ 'firstRowAsColumnNames','KeyColumnForMapping','KeyColumnForMappingNetworkList',\ 'keyColumnIndex','newTableName','startLoadRow','TargetNetworkCollection',\ 'TargetNetworkList','url','WhereImportTable'],[caseSensitiveNetworkCollectionKeys,\ caseSensitiveNetworkKeys,dataTypeList,DataTypeTargetForNetworkCollection,\ DataTypeTargetForNetworkList,delimiters,delimitersForDataList,\ firstRowAsColumnNames,KeyColumnForMapping,KeyColumnForMappingNetworkList,\ keyColumnIndex,newTableName,startLoadRow,TargetNetworkCollection,\ TargetNetworkList,url,WhereImportTable]) response=api(url=self.__url+"/import url", PARAMS=PARAMS, method="POST", verbose=verbose) return response
python
def import_url(self,caseSensitiveNetworkCollectionKeys=None,\ caseSensitiveNetworkKeys=None,dataTypeList=None,\ DataTypeTargetForNetworkCollection=None,DataTypeTargetForNetworkList=None,\ delimiters=None,delimitersForDataList=None,firstRowAsColumnNames=None,\ KeyColumnForMapping=None,KeyColumnForMappingNetworkList=None,\ keyColumnIndex=None,newTableName=None,startLoadRow=None,\ TargetNetworkCollection=None,TargetNetworkList=None,url=None,\ WhereImportTable=None,verbose=None): """ Similar to Import Table this uses a long list of input parameters to specify the attributes of the table, the mapping keys, and the destination table for the input. :param caseSensitiveNetworkCollectionKeys (string, optional): Determines wh ether capitalization is considered in matching and sorting :param caseSensitiveNetworkKeys (string, optional): Determines whether capi talization is considered in matching and sorting :param dataTypeList (string, optional): List of column data types ordered b y column index (e.g. "string,int,long,double,boolean,intlist" or jus t "s,i,l,d,b,il") :param DataTypeTargetForNetworkCollection (string, optional): Select whethe r to import the data as Node Table Columns, Edge Table Columns, or N etwork Table Columns :param DataTypeTargetForNetworkList (string, optional): The data type of th e targets :param delimiters (string, optional): The list of delimiters that separate columns in the table. :param delimitersForDataList (string, optional): The delimiters between ele ments of list columns in the table. :param firstRowAsColumnNames (string, optional): If the first imported row contains column names, set this to true. :param KeyColumnForMapping (string, optional): The column in the network to use as the merge key :param KeyColumnForMappingNetworkList (string, optional): The column in the network to use as the merge key :param keyColumnIndex (string, optional): The column that contains the key values for this import. These values will be used to match with the key values in the network. :param newTableName (string, optional): The title of the new table :param startLoadRow (string, optional): The first row of the input table to load. This allows the skipping of headers that are not part of the import. :param TargetNetworkCollection (string, optional): The network collection t o use for the table import :param TargetNetworkList (string, optional): The list of networks into whic h the table is imported :param url (string): The URL of the file or resource that provides the tabl e or network to be imported. :param WhereImportTable (string, optional): Determines what network(s) the imported table will be associated with (if any). A table can be impo rted into a Network Collection, Selected networks or to an unassigne d table. """ PARAMS=set_param(['caseSensitiveNetworkCollectionKeys',\ 'caseSensitiveNetworkKeys','dataTypeList','DataTypeTargetForNetworkCollection',\ 'DataTypeTargetForNetworkList','delimiters','delimitersForDataList',\ 'firstRowAsColumnNames','KeyColumnForMapping','KeyColumnForMappingNetworkList',\ 'keyColumnIndex','newTableName','startLoadRow','TargetNetworkCollection',\ 'TargetNetworkList','url','WhereImportTable'],[caseSensitiveNetworkCollectionKeys,\ caseSensitiveNetworkKeys,dataTypeList,DataTypeTargetForNetworkCollection,\ DataTypeTargetForNetworkList,delimiters,delimitersForDataList,\ firstRowAsColumnNames,KeyColumnForMapping,KeyColumnForMappingNetworkList,\ keyColumnIndex,newTableName,startLoadRow,TargetNetworkCollection,\ TargetNetworkList,url,WhereImportTable]) response=api(url=self.__url+"/import url", PARAMS=PARAMS, method="POST", verbose=verbose) return response
[ "def", "import_url", "(", "self", ",", "caseSensitiveNetworkCollectionKeys", "=", "None", ",", "caseSensitiveNetworkKeys", "=", "None", ",", "dataTypeList", "=", "None", ",", "DataTypeTargetForNetworkCollection", "=", "None", ",", "DataTypeTargetForNetworkList", "=", "None", ",", "delimiters", "=", "None", ",", "delimitersForDataList", "=", "None", ",", "firstRowAsColumnNames", "=", "None", ",", "KeyColumnForMapping", "=", "None", ",", "KeyColumnForMappingNetworkList", "=", "None", ",", "keyColumnIndex", "=", "None", ",", "newTableName", "=", "None", ",", "startLoadRow", "=", "None", ",", "TargetNetworkCollection", "=", "None", ",", "TargetNetworkList", "=", "None", ",", "url", "=", "None", ",", "WhereImportTable", "=", "None", ",", "verbose", "=", "None", ")", ":", "PARAMS", "=", "set_param", "(", "[", "'caseSensitiveNetworkCollectionKeys'", ",", "'caseSensitiveNetworkKeys'", ",", "'dataTypeList'", ",", "'DataTypeTargetForNetworkCollection'", ",", "'DataTypeTargetForNetworkList'", ",", "'delimiters'", ",", "'delimitersForDataList'", ",", "'firstRowAsColumnNames'", ",", "'KeyColumnForMapping'", ",", "'KeyColumnForMappingNetworkList'", ",", "'keyColumnIndex'", ",", "'newTableName'", ",", "'startLoadRow'", ",", "'TargetNetworkCollection'", ",", "'TargetNetworkList'", ",", "'url'", ",", "'WhereImportTable'", "]", ",", "[", "caseSensitiveNetworkCollectionKeys", ",", "caseSensitiveNetworkKeys", ",", "dataTypeList", ",", "DataTypeTargetForNetworkCollection", ",", "DataTypeTargetForNetworkList", ",", "delimiters", ",", "delimitersForDataList", ",", "firstRowAsColumnNames", ",", "KeyColumnForMapping", ",", "KeyColumnForMappingNetworkList", ",", "keyColumnIndex", ",", "newTableName", ",", "startLoadRow", ",", "TargetNetworkCollection", ",", "TargetNetworkList", ",", "url", ",", "WhereImportTable", "]", ")", "response", "=", "api", "(", "url", "=", "self", ".", "__url", "+", "\"/import url\"", ",", "PARAMS", "=", "PARAMS", ",", "method", "=", "\"POST\"", ",", "verbose", "=", "verbose", ")", "return", "response" ]
Similar to Import Table this uses a long list of input parameters to specify the attributes of the table, the mapping keys, and the destination table for the input. :param caseSensitiveNetworkCollectionKeys (string, optional): Determines wh ether capitalization is considered in matching and sorting :param caseSensitiveNetworkKeys (string, optional): Determines whether capi talization is considered in matching and sorting :param dataTypeList (string, optional): List of column data types ordered b y column index (e.g. "string,int,long,double,boolean,intlist" or jus t "s,i,l,d,b,il") :param DataTypeTargetForNetworkCollection (string, optional): Select whethe r to import the data as Node Table Columns, Edge Table Columns, or N etwork Table Columns :param DataTypeTargetForNetworkList (string, optional): The data type of th e targets :param delimiters (string, optional): The list of delimiters that separate columns in the table. :param delimitersForDataList (string, optional): The delimiters between ele ments of list columns in the table. :param firstRowAsColumnNames (string, optional): If the first imported row contains column names, set this to true. :param KeyColumnForMapping (string, optional): The column in the network to use as the merge key :param KeyColumnForMappingNetworkList (string, optional): The column in the network to use as the merge key :param keyColumnIndex (string, optional): The column that contains the key values for this import. These values will be used to match with the key values in the network. :param newTableName (string, optional): The title of the new table :param startLoadRow (string, optional): The first row of the input table to load. This allows the skipping of headers that are not part of the import. :param TargetNetworkCollection (string, optional): The network collection t o use for the table import :param TargetNetworkList (string, optional): The list of networks into whic h the table is imported :param url (string): The URL of the file or resource that provides the tabl e or network to be imported. :param WhereImportTable (string, optional): Determines what network(s) the imported table will be associated with (if any). A table can be impo rted into a Network Collection, Selected networks or to an unassigne d table.
[ "Similar", "to", "Import", "Table", "this", "uses", "a", "long", "list", "of", "input", "parameters", "to", "specify", "the", "attributes", "of", "the", "table", "the", "mapping", "keys", "and", "the", "destination", "table", "for", "the", "input", "." ]
dd34de8d028f512314d0057168df7fef7c5d5195
https://github.com/cytoscape/py2cytoscape/blob/dd34de8d028f512314d0057168df7fef7c5d5195/py2cytoscape/cyrest/table.py#L246-L311
train
cytoscape/py2cytoscape
py2cytoscape/cyrest/table.py
table.list_tables
def list_tables(self,includePrivate=None,namespace=None,atype=None,verbose=None): """ Returns a list of the table SUIDs associated with the passed network parameter. :param includePrivate (string, optional): A boolean value determining wheth er to return private as well as public tables :param namespace (string, optional): An optional argument to contrain outpu t to a single namespace, or ALL :param atype (string, optional): One of ''network'', ''node'', ''edge'', ''u nattached'', ''all'', to constrain the type of table listed :returns: list of the table SUIDs associated with the passed network parameter. """ PARAMS=set_param(['includePrivate','namespace','type'],\ [includePrivate,namespace,atype]) response=api(url=self.__url+"/list", PARAMS=PARAMS, method="POST", verbose=verbose) return response
python
def list_tables(self,includePrivate=None,namespace=None,atype=None,verbose=None): """ Returns a list of the table SUIDs associated with the passed network parameter. :param includePrivate (string, optional): A boolean value determining wheth er to return private as well as public tables :param namespace (string, optional): An optional argument to contrain outpu t to a single namespace, or ALL :param atype (string, optional): One of ''network'', ''node'', ''edge'', ''u nattached'', ''all'', to constrain the type of table listed :returns: list of the table SUIDs associated with the passed network parameter. """ PARAMS=set_param(['includePrivate','namespace','type'],\ [includePrivate,namespace,atype]) response=api(url=self.__url+"/list", PARAMS=PARAMS, method="POST", verbose=verbose) return response
[ "def", "list_tables", "(", "self", ",", "includePrivate", "=", "None", ",", "namespace", "=", "None", ",", "atype", "=", "None", ",", "verbose", "=", "None", ")", ":", "PARAMS", "=", "set_param", "(", "[", "'includePrivate'", ",", "'namespace'", ",", "'type'", "]", ",", "[", "includePrivate", ",", "namespace", ",", "atype", "]", ")", "response", "=", "api", "(", "url", "=", "self", ".", "__url", "+", "\"/list\"", ",", "PARAMS", "=", "PARAMS", ",", "method", "=", "\"POST\"", ",", "verbose", "=", "verbose", ")", "return", "response" ]
Returns a list of the table SUIDs associated with the passed network parameter. :param includePrivate (string, optional): A boolean value determining wheth er to return private as well as public tables :param namespace (string, optional): An optional argument to contrain outpu t to a single namespace, or ALL :param atype (string, optional): One of ''network'', ''node'', ''edge'', ''u nattached'', ''all'', to constrain the type of table listed :returns: list of the table SUIDs associated with the passed network parameter.
[ "Returns", "a", "list", "of", "the", "table", "SUIDs", "associated", "with", "the", "passed", "network", "parameter", "." ]
dd34de8d028f512314d0057168df7fef7c5d5195
https://github.com/cytoscape/py2cytoscape/blob/dd34de8d028f512314d0057168df7fef7c5d5195/py2cytoscape/cyrest/table.py#L314-L329
train
cytoscape/py2cytoscape
py2cytoscape/cyrest/table.py
table.list_columns
def list_columns(self,table=None,verbose=None): """ Returns the list of columns in the table. :param table (string, optional): Specifies a table by table name. If the pr efix SUID: is used, the table corresponding the SUID will be returne d. :returns: list of columns in the table. """ PARAMS=set_param(['table'],[table]) response=api(url=self.__url+"/list columns", PARAMS=PARAMS, method="POST", verbose=verbose) return response
python
def list_columns(self,table=None,verbose=None): """ Returns the list of columns in the table. :param table (string, optional): Specifies a table by table name. If the pr efix SUID: is used, the table corresponding the SUID will be returne d. :returns: list of columns in the table. """ PARAMS=set_param(['table'],[table]) response=api(url=self.__url+"/list columns", PARAMS=PARAMS, method="POST", verbose=verbose) return response
[ "def", "list_columns", "(", "self", ",", "table", "=", "None", ",", "verbose", "=", "None", ")", ":", "PARAMS", "=", "set_param", "(", "[", "'table'", "]", ",", "[", "table", "]", ")", "response", "=", "api", "(", "url", "=", "self", ".", "__url", "+", "\"/list columns\"", ",", "PARAMS", "=", "PARAMS", ",", "method", "=", "\"POST\"", ",", "verbose", "=", "verbose", ")", "return", "response" ]
Returns the list of columns in the table. :param table (string, optional): Specifies a table by table name. If the pr efix SUID: is used, the table corresponding the SUID will be returne d. :returns: list of columns in the table.
[ "Returns", "the", "list", "of", "columns", "in", "the", "table", "." ]
dd34de8d028f512314d0057168df7fef7c5d5195
https://github.com/cytoscape/py2cytoscape/blob/dd34de8d028f512314d0057168df7fef7c5d5195/py2cytoscape/cyrest/table.py#L332-L343
train
cytoscape/py2cytoscape
py2cytoscape/cyrest/table.py
table.list_rows
def list_rows(self,rowList=None,table=None,verbose=None): """ Returns the list of primary keys for each of the rows in the specified table. :param rowList (string, optional): Specifies a list of rows. The pattern CO LUMN:VALUE sets this parameter to any rows that contain the specifie d column value; if the COLUMN prefix is not used, the NAME column is matched by default. A list of COLUMN:VALUE pairs of the format COLU MN1:VALUE1,COLUMN2:VALUE2,... can be used to match multiple values. This parameter can also be set to all to include all rows. :param table (string, optional): Specifies a table by table name. If the pr efix SUID: is used, the table corresponding the SUID will be returne d. """ PARAMS=set_param(['rowList','table'],[rowList,table]) response=api(url=self.__url+"/list rows", PARAMS=PARAMS, method="POST", verbose=verbose) return response
python
def list_rows(self,rowList=None,table=None,verbose=None): """ Returns the list of primary keys for each of the rows in the specified table. :param rowList (string, optional): Specifies a list of rows. The pattern CO LUMN:VALUE sets this parameter to any rows that contain the specifie d column value; if the COLUMN prefix is not used, the NAME column is matched by default. A list of COLUMN:VALUE pairs of the format COLU MN1:VALUE1,COLUMN2:VALUE2,... can be used to match multiple values. This parameter can also be set to all to include all rows. :param table (string, optional): Specifies a table by table name. If the pr efix SUID: is used, the table corresponding the SUID will be returne d. """ PARAMS=set_param(['rowList','table'],[rowList,table]) response=api(url=self.__url+"/list rows", PARAMS=PARAMS, method="POST", verbose=verbose) return response
[ "def", "list_rows", "(", "self", ",", "rowList", "=", "None", ",", "table", "=", "None", ",", "verbose", "=", "None", ")", ":", "PARAMS", "=", "set_param", "(", "[", "'rowList'", ",", "'table'", "]", ",", "[", "rowList", ",", "table", "]", ")", "response", "=", "api", "(", "url", "=", "self", ".", "__url", "+", "\"/list rows\"", ",", "PARAMS", "=", "PARAMS", ",", "method", "=", "\"POST\"", ",", "verbose", "=", "verbose", ")", "return", "response" ]
Returns the list of primary keys for each of the rows in the specified table. :param rowList (string, optional): Specifies a list of rows. The pattern CO LUMN:VALUE sets this parameter to any rows that contain the specifie d column value; if the COLUMN prefix is not used, the NAME column is matched by default. A list of COLUMN:VALUE pairs of the format COLU MN1:VALUE1,COLUMN2:VALUE2,... can be used to match multiple values. This parameter can also be set to all to include all rows. :param table (string, optional): Specifies a table by table name. If the pr efix SUID: is used, the table corresponding the SUID will be returne d.
[ "Returns", "the", "list", "of", "primary", "keys", "for", "each", "of", "the", "rows", "in", "the", "specified", "table", "." ]
dd34de8d028f512314d0057168df7fef7c5d5195
https://github.com/cytoscape/py2cytoscape/blob/dd34de8d028f512314d0057168df7fef7c5d5195/py2cytoscape/cyrest/table.py#L346-L362
train
cytoscape/py2cytoscape
py2cytoscape/cyrest/table.py
table.merge
def merge(self,DataTypeTargetForNetworkCollection=None,\ dataTypeTargetForNetworkList=None,mergeType=None,SourceMergeColumns=None,\ SourceMergeKey=None,SourceTable=None,TargetKeyNetworkCollection=None,\ TargetMergeKey=None,TargetNetworkCollection=None,TargetNetworkList=None,\ UnassignedTable=None,WhereMergeTable=None,verbose=None): """ Merge tables together joining around a designated key column. Depending on the arguments, might merge into multiple local tables. :param DataTypeTargetForNetworkCollection (string, optional): The collectio n of networks where the merged table will reside :param dataTypeTargetForNetworkList (string, optional): :param mergeType (string, optional): A choice between ''Copy Columns'' and ''Link To Columns'' that determines if replicates are created :param SourceMergeColumns (string, optional): A list of columns that will b e brought into the merged table :param SourceMergeKey (string, optional): The name of the columns that exis ts in both tables and is used to correlate rows :param SourceTable (string, optional): The name of the table used as the ba se data in the merge :param TargetKeyNetworkCollection (string, optional): The name of the prima ry column about which the merge is made :param TargetMergeKey (string, optional): :param TargetNetworkCollection (string, optional): The group of networks th at will be merged into the source table :param TargetNetworkList (string, optional): The list of networks where the merged table will be added :param UnassignedTable (string, optional): :param WhereMergeTable (string, optional): The destination path of the resu ltant merged table. The choices are ''Network Collection'', ''Select ed Networks'', or ''All Unassigned Tables''. """ PARAMS=set_param(['DataTypeTargetForNetworkCollection','dataTypeTargetForNetworkList','mergeType','SourceMergeColumns','SourceMergeKey','SourceTable','TargetKeyNetworkCollection','TargetMergeKey','TargetNetworkCollection','TargetNetworkList','UnassignedTable','WhereMergeTable'],\ [DataTypeTargetForNetworkCollection,dataTypeTargetForNetworkList,mergeType,SourceMergeColumns,SourceMergeKey,SourceTable,TargetKeyNetworkCollection,TargetMergeKey,TargetNetworkCollection,TargetNetworkList,UnassignedTable,WhereMergeTable]) response=api(url=self.__url+"/merge", PARAMS=PARAMS, method="POST", verbose=verbose) return response
python
def merge(self,DataTypeTargetForNetworkCollection=None,\ dataTypeTargetForNetworkList=None,mergeType=None,SourceMergeColumns=None,\ SourceMergeKey=None,SourceTable=None,TargetKeyNetworkCollection=None,\ TargetMergeKey=None,TargetNetworkCollection=None,TargetNetworkList=None,\ UnassignedTable=None,WhereMergeTable=None,verbose=None): """ Merge tables together joining around a designated key column. Depending on the arguments, might merge into multiple local tables. :param DataTypeTargetForNetworkCollection (string, optional): The collectio n of networks where the merged table will reside :param dataTypeTargetForNetworkList (string, optional): :param mergeType (string, optional): A choice between ''Copy Columns'' and ''Link To Columns'' that determines if replicates are created :param SourceMergeColumns (string, optional): A list of columns that will b e brought into the merged table :param SourceMergeKey (string, optional): The name of the columns that exis ts in both tables and is used to correlate rows :param SourceTable (string, optional): The name of the table used as the ba se data in the merge :param TargetKeyNetworkCollection (string, optional): The name of the prima ry column about which the merge is made :param TargetMergeKey (string, optional): :param TargetNetworkCollection (string, optional): The group of networks th at will be merged into the source table :param TargetNetworkList (string, optional): The list of networks where the merged table will be added :param UnassignedTable (string, optional): :param WhereMergeTable (string, optional): The destination path of the resu ltant merged table. The choices are ''Network Collection'', ''Select ed Networks'', or ''All Unassigned Tables''. """ PARAMS=set_param(['DataTypeTargetForNetworkCollection','dataTypeTargetForNetworkList','mergeType','SourceMergeColumns','SourceMergeKey','SourceTable','TargetKeyNetworkCollection','TargetMergeKey','TargetNetworkCollection','TargetNetworkList','UnassignedTable','WhereMergeTable'],\ [DataTypeTargetForNetworkCollection,dataTypeTargetForNetworkList,mergeType,SourceMergeColumns,SourceMergeKey,SourceTable,TargetKeyNetworkCollection,TargetMergeKey,TargetNetworkCollection,TargetNetworkList,UnassignedTable,WhereMergeTable]) response=api(url=self.__url+"/merge", PARAMS=PARAMS, method="POST", verbose=verbose) return response
[ "def", "merge", "(", "self", ",", "DataTypeTargetForNetworkCollection", "=", "None", ",", "dataTypeTargetForNetworkList", "=", "None", ",", "mergeType", "=", "None", ",", "SourceMergeColumns", "=", "None", ",", "SourceMergeKey", "=", "None", ",", "SourceTable", "=", "None", ",", "TargetKeyNetworkCollection", "=", "None", ",", "TargetMergeKey", "=", "None", ",", "TargetNetworkCollection", "=", "None", ",", "TargetNetworkList", "=", "None", ",", "UnassignedTable", "=", "None", ",", "WhereMergeTable", "=", "None", ",", "verbose", "=", "None", ")", ":", "PARAMS", "=", "set_param", "(", "[", "'DataTypeTargetForNetworkCollection'", ",", "'dataTypeTargetForNetworkList'", ",", "'mergeType'", ",", "'SourceMergeColumns'", ",", "'SourceMergeKey'", ",", "'SourceTable'", ",", "'TargetKeyNetworkCollection'", ",", "'TargetMergeKey'", ",", "'TargetNetworkCollection'", ",", "'TargetNetworkList'", ",", "'UnassignedTable'", ",", "'WhereMergeTable'", "]", ",", "[", "DataTypeTargetForNetworkCollection", ",", "dataTypeTargetForNetworkList", ",", "mergeType", ",", "SourceMergeColumns", ",", "SourceMergeKey", ",", "SourceTable", ",", "TargetKeyNetworkCollection", ",", "TargetMergeKey", ",", "TargetNetworkCollection", ",", "TargetNetworkList", ",", "UnassignedTable", ",", "WhereMergeTable", "]", ")", "response", "=", "api", "(", "url", "=", "self", ".", "__url", "+", "\"/merge\"", ",", "PARAMS", "=", "PARAMS", ",", "method", "=", "\"POST\"", ",", "verbose", "=", "verbose", ")", "return", "response" ]
Merge tables together joining around a designated key column. Depending on the arguments, might merge into multiple local tables. :param DataTypeTargetForNetworkCollection (string, optional): The collectio n of networks where the merged table will reside :param dataTypeTargetForNetworkList (string, optional): :param mergeType (string, optional): A choice between ''Copy Columns'' and ''Link To Columns'' that determines if replicates are created :param SourceMergeColumns (string, optional): A list of columns that will b e brought into the merged table :param SourceMergeKey (string, optional): The name of the columns that exis ts in both tables and is used to correlate rows :param SourceTable (string, optional): The name of the table used as the ba se data in the merge :param TargetKeyNetworkCollection (string, optional): The name of the prima ry column about which the merge is made :param TargetMergeKey (string, optional): :param TargetNetworkCollection (string, optional): The group of networks th at will be merged into the source table :param TargetNetworkList (string, optional): The list of networks where the merged table will be added :param UnassignedTable (string, optional): :param WhereMergeTable (string, optional): The destination path of the resu ltant merged table. The choices are ''Network Collection'', ''Select ed Networks'', or ''All Unassigned Tables''.
[ "Merge", "tables", "together", "joining", "around", "a", "designated", "key", "column", ".", "Depending", "on", "the", "arguments", "might", "merge", "into", "multiple", "local", "tables", "." ]
dd34de8d028f512314d0057168df7fef7c5d5195
https://github.com/cytoscape/py2cytoscape/blob/dd34de8d028f512314d0057168df7fef7c5d5195/py2cytoscape/cyrest/table.py#L365-L400
train
cytoscape/py2cytoscape
py2cytoscape/cyrest/table.py
table.rename_column
def rename_column(self,columnName=None,newColumnName=None,table=None,verbose=None): """ Changes the name of a specified column in the table. :param columnName (string): The name of the column that will be renamed. :param newColumnName (string): The new name of the column. :param table (string, optional): Specifies a table by table name. If the pr efix SUID: is used, the table corresponding the SUID will be returne d. """ PARAMS=set_param(['columnName','newColumnName','table'],[columnName,newColumnName,table]) response=api(url=self.__url+"/rename column", PARAMS=PARAMS, method="POST", verbose=verbose) return response
python
def rename_column(self,columnName=None,newColumnName=None,table=None,verbose=None): """ Changes the name of a specified column in the table. :param columnName (string): The name of the column that will be renamed. :param newColumnName (string): The new name of the column. :param table (string, optional): Specifies a table by table name. If the pr efix SUID: is used, the table corresponding the SUID will be returne d. """ PARAMS=set_param(['columnName','newColumnName','table'],[columnName,newColumnName,table]) response=api(url=self.__url+"/rename column", PARAMS=PARAMS, method="POST", verbose=verbose) return response
[ "def", "rename_column", "(", "self", ",", "columnName", "=", "None", ",", "newColumnName", "=", "None", ",", "table", "=", "None", ",", "verbose", "=", "None", ")", ":", "PARAMS", "=", "set_param", "(", "[", "'columnName'", ",", "'newColumnName'", ",", "'table'", "]", ",", "[", "columnName", ",", "newColumnName", ",", "table", "]", ")", "response", "=", "api", "(", "url", "=", "self", ".", "__url", "+", "\"/rename column\"", ",", "PARAMS", "=", "PARAMS", ",", "method", "=", "\"POST\"", ",", "verbose", "=", "verbose", ")", "return", "response" ]
Changes the name of a specified column in the table. :param columnName (string): The name of the column that will be renamed. :param newColumnName (string): The new name of the column. :param table (string, optional): Specifies a table by table name. If the pr efix SUID: is used, the table corresponding the SUID will be returne d.
[ "Changes", "the", "name", "of", "a", "specified", "column", "in", "the", "table", "." ]
dd34de8d028f512314d0057168df7fef7c5d5195
https://github.com/cytoscape/py2cytoscape/blob/dd34de8d028f512314d0057168df7fef7c5d5195/py2cytoscape/cyrest/table.py#L404-L416
train
cytoscape/py2cytoscape
py2cytoscape/cyrest/table.py
table.set_title
def set_title(self,table=None,title=None,verbose=None): """ Changes the visible identifier of a single table. :param table (string, optional): Specifies a table by table name. If the pr efix SUID: is used, the table corresponding the SUID will be returne d. :param title (string, optional): The name of the table used in the current network """ PARAMS=set_param(['table','title'],[table,title]) response=api(url=self.__url+"/set title", PARAMS=PARAMS, method="POST", verbose=verbose) return response
python
def set_title(self,table=None,title=None,verbose=None): """ Changes the visible identifier of a single table. :param table (string, optional): Specifies a table by table name. If the pr efix SUID: is used, the table corresponding the SUID will be returne d. :param title (string, optional): The name of the table used in the current network """ PARAMS=set_param(['table','title'],[table,title]) response=api(url=self.__url+"/set title", PARAMS=PARAMS, method="POST", verbose=verbose) return response
[ "def", "set_title", "(", "self", ",", "table", "=", "None", ",", "title", "=", "None", ",", "verbose", "=", "None", ")", ":", "PARAMS", "=", "set_param", "(", "[", "'table'", ",", "'title'", "]", ",", "[", "table", ",", "title", "]", ")", "response", "=", "api", "(", "url", "=", "self", ".", "__url", "+", "\"/set title\"", ",", "PARAMS", "=", "PARAMS", ",", "method", "=", "\"POST\"", ",", "verbose", "=", "verbose", ")", "return", "response" ]
Changes the visible identifier of a single table. :param table (string, optional): Specifies a table by table name. If the pr efix SUID: is used, the table corresponding the SUID will be returne d. :param title (string, optional): The name of the table used in the current network
[ "Changes", "the", "visible", "identifier", "of", "a", "single", "table", "." ]
dd34de8d028f512314d0057168df7fef7c5d5195
https://github.com/cytoscape/py2cytoscape/blob/dd34de8d028f512314d0057168df7fef7c5d5195/py2cytoscape/cyrest/table.py#L420-L432
train
cytoscape/py2cytoscape
py2cytoscape/cyrest/table.py
table.set_values
def set_values(self,columnName=None,rowList=None,table=None,value=None,verbose=None): """ Set all the values in the specified list of rows with a single value. :param columnName (string, optional): Specifies the name of a column in the table :param rowList (string, optional): Specifies a list of rows. The pattern CO LUMN:VALUE sets this parameter to any rows that contain the specifie d column value; if the COLUMN prefix is not used, the NAME column is matched by default. A list of COLUMN:VALUE pairs of the format COLU MN1:VALUE1,COLUMN2:VALUE2,... can be used to match multiple values. This parameter can also be set to all to include all rows. :param table (string, optional): Specifies a table by table name. If the pr efix SUID: is used, the table corresponding the SUID will be returne d. :param value (string, optional): The value to set the columns in the select ed rows to. This should be a string value, which will be converted t o the appropriate column type. """ PARAMS=set_param(['columnName','rowList','table','value'],[columnName,rowList,table,value]) response=api(url=self.__url+"/set values", PARAMS=PARAMS, method="POST", verbose=verbose) return response
python
def set_values(self,columnName=None,rowList=None,table=None,value=None,verbose=None): """ Set all the values in the specified list of rows with a single value. :param columnName (string, optional): Specifies the name of a column in the table :param rowList (string, optional): Specifies a list of rows. The pattern CO LUMN:VALUE sets this parameter to any rows that contain the specifie d column value; if the COLUMN prefix is not used, the NAME column is matched by default. A list of COLUMN:VALUE pairs of the format COLU MN1:VALUE1,COLUMN2:VALUE2,... can be used to match multiple values. This parameter can also be set to all to include all rows. :param table (string, optional): Specifies a table by table name. If the pr efix SUID: is used, the table corresponding the SUID will be returne d. :param value (string, optional): The value to set the columns in the select ed rows to. This should be a string value, which will be converted t o the appropriate column type. """ PARAMS=set_param(['columnName','rowList','table','value'],[columnName,rowList,table,value]) response=api(url=self.__url+"/set values", PARAMS=PARAMS, method="POST", verbose=verbose) return response
[ "def", "set_values", "(", "self", ",", "columnName", "=", "None", ",", "rowList", "=", "None", ",", "table", "=", "None", ",", "value", "=", "None", ",", "verbose", "=", "None", ")", ":", "PARAMS", "=", "set_param", "(", "[", "'columnName'", ",", "'rowList'", ",", "'table'", ",", "'value'", "]", ",", "[", "columnName", ",", "rowList", ",", "table", ",", "value", "]", ")", "response", "=", "api", "(", "url", "=", "self", ".", "__url", "+", "\"/set values\"", ",", "PARAMS", "=", "PARAMS", ",", "method", "=", "\"POST\"", ",", "verbose", "=", "verbose", ")", "return", "response" ]
Set all the values in the specified list of rows with a single value. :param columnName (string, optional): Specifies the name of a column in the table :param rowList (string, optional): Specifies a list of rows. The pattern CO LUMN:VALUE sets this parameter to any rows that contain the specifie d column value; if the COLUMN prefix is not used, the NAME column is matched by default. A list of COLUMN:VALUE pairs of the format COLU MN1:VALUE1,COLUMN2:VALUE2,... can be used to match multiple values. This parameter can also be set to all to include all rows. :param table (string, optional): Specifies a table by table name. If the pr efix SUID: is used, the table corresponding the SUID will be returne d. :param value (string, optional): The value to set the columns in the select ed rows to. This should be a string value, which will be converted t o the appropriate column type.
[ "Set", "all", "the", "values", "in", "the", "specified", "list", "of", "rows", "with", "a", "single", "value", "." ]
dd34de8d028f512314d0057168df7fef7c5d5195
https://github.com/cytoscape/py2cytoscape/blob/dd34de8d028f512314d0057168df7fef7c5d5195/py2cytoscape/cyrest/table.py#L436-L457
train
cytoscape/py2cytoscape
py2cytoscape/cyrest/table.py
table.getTable
def getTable(self, columns=None, table=None, network = "current", namespace='default', verbose=VERBOSE): """ Gets tables from cytoscape. :param table: table to retrieve eg. node :param columns: columns to retrieve in list format :param network (string, optional): Specifies a network by name, or by SUID if the prefix SUID: is used. The keyword CURRENT, or a blank value can also be used to specify the current network. :param namespace (string, optional): Node, Edge, and Network objects support the default, local, and hidden namespaces. Root networks also support the shared namespace. Custom namespaces may be specified by Apps. :returns: a pandas dataframe """ u=self.__url host=u.split("//")[1].split(":")[0] port=u.split(":")[2].split("/")[0] version=u.split(":")[2].split("/")[1] if type(network) != int: network=check_network(self,network,verbose=verbose) PARAMS=set_param(["columnList","namespace","network"],["SUID",namespace,network]) network=api(namespace="network", command="get attribute",PARAMS=PARAMS, host=host,port=str(port),version=version) network=network[0]["SUID"] df=pd.DataFrame() def target(column): URL="http://"+str(host)+":"+str(port)+"/v1/networks/"+str(network)+"/tables/"+namespace+table+"/columns/"+column if verbose: print("'"+URL+"'") sys.stdout.flush() response = urllib2.urlopen(URL) response = response.read() colA=json.loads(response) col=pd.DataFrame() colHeader=colA["name"] colValues=colA["values"] col[colHeader]=colValues return col ncols=["name"] for c in columns: ncols.append(c.replace(" ","%20") ) for c in ncols: try: col=target(c) df=pd.concat([df,col],axis=1) except: print("Could not find "+c) sys.stdout.flush() df.index=df["name"].tolist() df=df.drop(["name"],axis=1) return df
python
def getTable(self, columns=None, table=None, network = "current", namespace='default', verbose=VERBOSE): """ Gets tables from cytoscape. :param table: table to retrieve eg. node :param columns: columns to retrieve in list format :param network (string, optional): Specifies a network by name, or by SUID if the prefix SUID: is used. The keyword CURRENT, or a blank value can also be used to specify the current network. :param namespace (string, optional): Node, Edge, and Network objects support the default, local, and hidden namespaces. Root networks also support the shared namespace. Custom namespaces may be specified by Apps. :returns: a pandas dataframe """ u=self.__url host=u.split("//")[1].split(":")[0] port=u.split(":")[2].split("/")[0] version=u.split(":")[2].split("/")[1] if type(network) != int: network=check_network(self,network,verbose=verbose) PARAMS=set_param(["columnList","namespace","network"],["SUID",namespace,network]) network=api(namespace="network", command="get attribute",PARAMS=PARAMS, host=host,port=str(port),version=version) network=network[0]["SUID"] df=pd.DataFrame() def target(column): URL="http://"+str(host)+":"+str(port)+"/v1/networks/"+str(network)+"/tables/"+namespace+table+"/columns/"+column if verbose: print("'"+URL+"'") sys.stdout.flush() response = urllib2.urlopen(URL) response = response.read() colA=json.loads(response) col=pd.DataFrame() colHeader=colA["name"] colValues=colA["values"] col[colHeader]=colValues return col ncols=["name"] for c in columns: ncols.append(c.replace(" ","%20") ) for c in ncols: try: col=target(c) df=pd.concat([df,col],axis=1) except: print("Could not find "+c) sys.stdout.flush() df.index=df["name"].tolist() df=df.drop(["name"],axis=1) return df
[ "def", "getTable", "(", "self", ",", "columns", "=", "None", ",", "table", "=", "None", ",", "network", "=", "\"current\"", ",", "namespace", "=", "'default'", ",", "verbose", "=", "VERBOSE", ")", ":", "u", "=", "self", ".", "__url", "host", "=", "u", ".", "split", "(", "\"//\"", ")", "[", "1", "]", ".", "split", "(", "\":\"", ")", "[", "0", "]", "port", "=", "u", ".", "split", "(", "\":\"", ")", "[", "2", "]", ".", "split", "(", "\"/\"", ")", "[", "0", "]", "version", "=", "u", ".", "split", "(", "\":\"", ")", "[", "2", "]", ".", "split", "(", "\"/\"", ")", "[", "1", "]", "if", "type", "(", "network", ")", "!=", "int", ":", "network", "=", "check_network", "(", "self", ",", "network", ",", "verbose", "=", "verbose", ")", "PARAMS", "=", "set_param", "(", "[", "\"columnList\"", ",", "\"namespace\"", ",", "\"network\"", "]", ",", "[", "\"SUID\"", ",", "namespace", ",", "network", "]", ")", "network", "=", "api", "(", "namespace", "=", "\"network\"", ",", "command", "=", "\"get attribute\"", ",", "PARAMS", "=", "PARAMS", ",", "host", "=", "host", ",", "port", "=", "str", "(", "port", ")", ",", "version", "=", "version", ")", "network", "=", "network", "[", "0", "]", "[", "\"SUID\"", "]", "df", "=", "pd", ".", "DataFrame", "(", ")", "def", "target", "(", "column", ")", ":", "URL", "=", "\"http://\"", "+", "str", "(", "host", ")", "+", "\":\"", "+", "str", "(", "port", ")", "+", "\"/v1/networks/\"", "+", "str", "(", "network", ")", "+", "\"/tables/\"", "+", "namespace", "+", "table", "+", "\"/columns/\"", "+", "column", "if", "verbose", ":", "print", "(", "\"'\"", "+", "URL", "+", "\"'\"", ")", "sys", ".", "stdout", ".", "flush", "(", ")", "response", "=", "urllib2", ".", "urlopen", "(", "URL", ")", "response", "=", "response", ".", "read", "(", ")", "colA", "=", "json", ".", "loads", "(", "response", ")", "col", "=", "pd", ".", "DataFrame", "(", ")", "colHeader", "=", "colA", "[", "\"name\"", "]", "colValues", "=", "colA", "[", "\"values\"", "]", "col", "[", "colHeader", "]", "=", "colValues", "return", "col", "ncols", "=", "[", "\"name\"", "]", "for", "c", "in", "columns", ":", "ncols", ".", "append", "(", "c", ".", "replace", "(", "\" \"", ",", "\"%20\"", ")", ")", "for", "c", "in", "ncols", ":", "try", ":", "col", "=", "target", "(", "c", ")", "df", "=", "pd", ".", "concat", "(", "[", "df", ",", "col", "]", ",", "axis", "=", "1", ")", "except", ":", "print", "(", "\"Could not find \"", "+", "c", ")", "sys", ".", "stdout", ".", "flush", "(", ")", "df", ".", "index", "=", "df", "[", "\"name\"", "]", ".", "tolist", "(", ")", "df", "=", "df", ".", "drop", "(", "[", "\"name\"", "]", ",", "axis", "=", "1", ")", "return", "df" ]
Gets tables from cytoscape. :param table: table to retrieve eg. node :param columns: columns to retrieve in list format :param network (string, optional): Specifies a network by name, or by SUID if the prefix SUID: is used. The keyword CURRENT, or a blank value can also be used to specify the current network. :param namespace (string, optional): Node, Edge, and Network objects support the default, local, and hidden namespaces. Root networks also support the shared namespace. Custom namespaces may be specified by Apps. :returns: a pandas dataframe
[ "Gets", "tables", "from", "cytoscape", "." ]
dd34de8d028f512314d0057168df7fef7c5d5195
https://github.com/cytoscape/py2cytoscape/blob/dd34de8d028f512314d0057168df7fef7c5d5195/py2cytoscape/cyrest/table.py#L459-L515
train
cytoscape/py2cytoscape
py2cytoscape/cyrest/table.py
table.loadTableData
def loadTableData(self, df, df_key='index',table="node", table_key_column = "name", \ network="current",namespace="default",verbose=False): """ Loads tables into cytoscape. :param df: a pandas dataframe to load :param df_key: key column in df, default="index" :param table: target table, default="node" :param table_key_column: table key column, default="name" :param network (string, optional): Specifies a network by name, or by SUID if the prefix SUID: is used. The keyword CURRENT, or a blank value can also be used to specify the current network. :param namespace (string, optional): Node, Edge, and Network objects support the default, local, and hidden namespaces. Root networks also support the shared namespace. Custom namespaces may be specified by Apps. :param verbose: print more information :returns: output of put request """ u=self.__url host=u.split("//")[1].split(":")[0] port=u.split(":")[2].split("/")[0] version=u.split(":")[2].split("/")[1] if type(network) != int: network=check_network(self,network,verbose=verbose) PARAMS=set_param(["columnList","namespace","network"],["SUID",namespace,network]) networkID=api(namespace="network", command="get attribute",PARAMS=PARAMS, host=host,port=str(port),version=version) PARAMS=set_param(["columnList","namespace","network"],["name",namespace,network]) networkname=api(namespace="network", command="get attribute",PARAMS=PARAMS, host=host,port=str(port),version=version) network=networkID[0]["SUID"] networkname=networkname[0]["name"] tmp=df.copy() if df_key!="index": tmp.index=tmp[df_key].tolist() tmp=tmp.drop([df_key],axis=1) tablen=networkname+" default node" data=[] for c in tmp.columns.tolist(): tmpcol=tmp[[c]].dropna() for r in tmpcol.index.tolist(): cell={} cell[str(table_key_column)]=str(r) # {"name":"p53"} val=tmpcol.loc[r,c] if type(val) != str: val=float(val) cell[str(c)]=val data.append(cell) upload={"key":table_key_column,"dataKey":table_key_column,\ "data":data} URL="http://"+str(host)+":"+str(port)+"/v1/networks/"+str(network)+"/tables/"+namespace+table if verbose: print("'"+URL+"'", upload) sys.stdout.flush() r = requests.put(url = URL, json = upload) if verbose: print(r) checkresponse(r) res=r.content return res
python
def loadTableData(self, df, df_key='index',table="node", table_key_column = "name", \ network="current",namespace="default",verbose=False): """ Loads tables into cytoscape. :param df: a pandas dataframe to load :param df_key: key column in df, default="index" :param table: target table, default="node" :param table_key_column: table key column, default="name" :param network (string, optional): Specifies a network by name, or by SUID if the prefix SUID: is used. The keyword CURRENT, or a blank value can also be used to specify the current network. :param namespace (string, optional): Node, Edge, and Network objects support the default, local, and hidden namespaces. Root networks also support the shared namespace. Custom namespaces may be specified by Apps. :param verbose: print more information :returns: output of put request """ u=self.__url host=u.split("//")[1].split(":")[0] port=u.split(":")[2].split("/")[0] version=u.split(":")[2].split("/")[1] if type(network) != int: network=check_network(self,network,verbose=verbose) PARAMS=set_param(["columnList","namespace","network"],["SUID",namespace,network]) networkID=api(namespace="network", command="get attribute",PARAMS=PARAMS, host=host,port=str(port),version=version) PARAMS=set_param(["columnList","namespace","network"],["name",namespace,network]) networkname=api(namespace="network", command="get attribute",PARAMS=PARAMS, host=host,port=str(port),version=version) network=networkID[0]["SUID"] networkname=networkname[0]["name"] tmp=df.copy() if df_key!="index": tmp.index=tmp[df_key].tolist() tmp=tmp.drop([df_key],axis=1) tablen=networkname+" default node" data=[] for c in tmp.columns.tolist(): tmpcol=tmp[[c]].dropna() for r in tmpcol.index.tolist(): cell={} cell[str(table_key_column)]=str(r) # {"name":"p53"} val=tmpcol.loc[r,c] if type(val) != str: val=float(val) cell[str(c)]=val data.append(cell) upload={"key":table_key_column,"dataKey":table_key_column,\ "data":data} URL="http://"+str(host)+":"+str(port)+"/v1/networks/"+str(network)+"/tables/"+namespace+table if verbose: print("'"+URL+"'", upload) sys.stdout.flush() r = requests.put(url = URL, json = upload) if verbose: print(r) checkresponse(r) res=r.content return res
[ "def", "loadTableData", "(", "self", ",", "df", ",", "df_key", "=", "'index'", ",", "table", "=", "\"node\"", ",", "table_key_column", "=", "\"name\"", ",", "network", "=", "\"current\"", ",", "namespace", "=", "\"default\"", ",", "verbose", "=", "False", ")", ":", "u", "=", "self", ".", "__url", "host", "=", "u", ".", "split", "(", "\"//\"", ")", "[", "1", "]", ".", "split", "(", "\":\"", ")", "[", "0", "]", "port", "=", "u", ".", "split", "(", "\":\"", ")", "[", "2", "]", ".", "split", "(", "\"/\"", ")", "[", "0", "]", "version", "=", "u", ".", "split", "(", "\":\"", ")", "[", "2", "]", ".", "split", "(", "\"/\"", ")", "[", "1", "]", "if", "type", "(", "network", ")", "!=", "int", ":", "network", "=", "check_network", "(", "self", ",", "network", ",", "verbose", "=", "verbose", ")", "PARAMS", "=", "set_param", "(", "[", "\"columnList\"", ",", "\"namespace\"", ",", "\"network\"", "]", ",", "[", "\"SUID\"", ",", "namespace", ",", "network", "]", ")", "networkID", "=", "api", "(", "namespace", "=", "\"network\"", ",", "command", "=", "\"get attribute\"", ",", "PARAMS", "=", "PARAMS", ",", "host", "=", "host", ",", "port", "=", "str", "(", "port", ")", ",", "version", "=", "version", ")", "PARAMS", "=", "set_param", "(", "[", "\"columnList\"", ",", "\"namespace\"", ",", "\"network\"", "]", ",", "[", "\"name\"", ",", "namespace", ",", "network", "]", ")", "networkname", "=", "api", "(", "namespace", "=", "\"network\"", ",", "command", "=", "\"get attribute\"", ",", "PARAMS", "=", "PARAMS", ",", "host", "=", "host", ",", "port", "=", "str", "(", "port", ")", ",", "version", "=", "version", ")", "network", "=", "networkID", "[", "0", "]", "[", "\"SUID\"", "]", "networkname", "=", "networkname", "[", "0", "]", "[", "\"name\"", "]", "tmp", "=", "df", ".", "copy", "(", ")", "if", "df_key", "!=", "\"index\"", ":", "tmp", ".", "index", "=", "tmp", "[", "df_key", "]", ".", "tolist", "(", ")", "tmp", "=", "tmp", ".", "drop", "(", "[", "df_key", "]", ",", "axis", "=", "1", ")", "tablen", "=", "networkname", "+", "\" default node\"", "data", "=", "[", "]", "for", "c", "in", "tmp", ".", "columns", ".", "tolist", "(", ")", ":", "tmpcol", "=", "tmp", "[", "[", "c", "]", "]", ".", "dropna", "(", ")", "for", "r", "in", "tmpcol", ".", "index", ".", "tolist", "(", ")", ":", "cell", "=", "{", "}", "cell", "[", "str", "(", "table_key_column", ")", "]", "=", "str", "(", "r", ")", "# {\"name\":\"p53\"}", "val", "=", "tmpcol", ".", "loc", "[", "r", ",", "c", "]", "if", "type", "(", "val", ")", "!=", "str", ":", "val", "=", "float", "(", "val", ")", "cell", "[", "str", "(", "c", ")", "]", "=", "val", "data", ".", "append", "(", "cell", ")", "upload", "=", "{", "\"key\"", ":", "table_key_column", ",", "\"dataKey\"", ":", "table_key_column", ",", "\"data\"", ":", "data", "}", "URL", "=", "\"http://\"", "+", "str", "(", "host", ")", "+", "\":\"", "+", "str", "(", "port", ")", "+", "\"/v1/networks/\"", "+", "str", "(", "network", ")", "+", "\"/tables/\"", "+", "namespace", "+", "table", "if", "verbose", ":", "print", "(", "\"'\"", "+", "URL", "+", "\"'\"", ",", "upload", ")", "sys", ".", "stdout", ".", "flush", "(", ")", "r", "=", "requests", ".", "put", "(", "url", "=", "URL", ",", "json", "=", "upload", ")", "if", "verbose", ":", "print", "(", "r", ")", "checkresponse", "(", "r", ")", "res", "=", "r", ".", "content", "return", "res" ]
Loads tables into cytoscape. :param df: a pandas dataframe to load :param df_key: key column in df, default="index" :param table: target table, default="node" :param table_key_column: table key column, default="name" :param network (string, optional): Specifies a network by name, or by SUID if the prefix SUID: is used. The keyword CURRENT, or a blank value can also be used to specify the current network. :param namespace (string, optional): Node, Edge, and Network objects support the default, local, and hidden namespaces. Root networks also support the shared namespace. Custom namespaces may be specified by Apps. :param verbose: print more information :returns: output of put request
[ "Loads", "tables", "into", "cytoscape", "." ]
dd34de8d028f512314d0057168df7fef7c5d5195
https://github.com/cytoscape/py2cytoscape/blob/dd34de8d028f512314d0057168df7fef7c5d5195/py2cytoscape/cyrest/table.py#L517-L588
train
cytoscape/py2cytoscape
py2cytoscape/cyrest/table.py
table.getTableCount
def getTableCount(verbose=None): """ Returns the number of global tables. :param verbose: print more :returns: 200: successful operation """ response=api(url=self.url+'tables/count', method="GET", verbose=verbose, parse_params=False) return response
python
def getTableCount(verbose=None): """ Returns the number of global tables. :param verbose: print more :returns: 200: successful operation """ response=api(url=self.url+'tables/count', method="GET", verbose=verbose, parse_params=False) return response
[ "def", "getTableCount", "(", "verbose", "=", "None", ")", ":", "response", "=", "api", "(", "url", "=", "self", ".", "url", "+", "'tables/count'", ",", "method", "=", "\"GET\"", ",", "verbose", "=", "verbose", ",", "parse_params", "=", "False", ")", "return", "response" ]
Returns the number of global tables. :param verbose: print more :returns: 200: successful operation
[ "Returns", "the", "number", "of", "global", "tables", "." ]
dd34de8d028f512314d0057168df7fef7c5d5195
https://github.com/cytoscape/py2cytoscape/blob/dd34de8d028f512314d0057168df7fef7c5d5195/py2cytoscape/cyrest/table.py#L590-L600
train
cytoscape/py2cytoscape
py2cytoscape/data/base_view.py
BaseView.set_value
def set_value(self, visual_property, value): """Set a single Visual Property Value :param visual_property: Visual Property ID :param value: New value for the VP :return: None """ if visual_property is None or value is None: raise ValueError('Both VP and value are required.') new_value = [ { 'visualProperty': visual_property, "value": value } ] requests.put(self.url, data=json.dumps(new_value), headers=HEADERS)
python
def set_value(self, visual_property, value): """Set a single Visual Property Value :param visual_property: Visual Property ID :param value: New value for the VP :return: None """ if visual_property is None or value is None: raise ValueError('Both VP and value are required.') new_value = [ { 'visualProperty': visual_property, "value": value } ] requests.put(self.url, data=json.dumps(new_value), headers=HEADERS)
[ "def", "set_value", "(", "self", ",", "visual_property", ",", "value", ")", ":", "if", "visual_property", "is", "None", "or", "value", "is", "None", ":", "raise", "ValueError", "(", "'Both VP and value are required.'", ")", "new_value", "=", "[", "{", "'visualProperty'", ":", "visual_property", ",", "\"value\"", ":", "value", "}", "]", "requests", ".", "put", "(", "self", ".", "url", ",", "data", "=", "json", ".", "dumps", "(", "new_value", ")", ",", "headers", "=", "HEADERS", ")" ]
Set a single Visual Property Value :param visual_property: Visual Property ID :param value: New value for the VP :return: None
[ "Set", "a", "single", "Visual", "Property", "Value" ]
dd34de8d028f512314d0057168df7fef7c5d5195
https://github.com/cytoscape/py2cytoscape/blob/dd34de8d028f512314d0057168df7fef7c5d5195/py2cytoscape/data/base_view.py#L41-L57
train
cytoscape/py2cytoscape
py2cytoscape/data/base_view.py
BaseView.set_values
def set_values(self, values): """ Set multiple Visual properties at once. :param values: :return: """ if values is None: raise ValueError('Values are required.') new_values = [] for vp in values.keys(): new_val = { 'visualProperty': vp, 'value': values[vp] } new_values.append(new_val) requests.put(self.url, data=json.dumps(new_values), headers=HEADERS)
python
def set_values(self, values): """ Set multiple Visual properties at once. :param values: :return: """ if values is None: raise ValueError('Values are required.') new_values = [] for vp in values.keys(): new_val = { 'visualProperty': vp, 'value': values[vp] } new_values.append(new_val) requests.put(self.url, data=json.dumps(new_values), headers=HEADERS)
[ "def", "set_values", "(", "self", ",", "values", ")", ":", "if", "values", "is", "None", ":", "raise", "ValueError", "(", "'Values are required.'", ")", "new_values", "=", "[", "]", "for", "vp", "in", "values", ".", "keys", "(", ")", ":", "new_val", "=", "{", "'visualProperty'", ":", "vp", ",", "'value'", ":", "values", "[", "vp", "]", "}", "new_values", ".", "append", "(", "new_val", ")", "requests", ".", "put", "(", "self", ".", "url", ",", "data", "=", "json", ".", "dumps", "(", "new_values", ")", ",", "headers", "=", "HEADERS", ")" ]
Set multiple Visual properties at once. :param values: :return:
[ "Set", "multiple", "Visual", "properties", "at", "once", "." ]
dd34de8d028f512314d0057168df7fef7c5d5195
https://github.com/cytoscape/py2cytoscape/blob/dd34de8d028f512314d0057168df7fef7c5d5195/py2cytoscape/data/base_view.py#L59-L77
train
cytoscape/py2cytoscape
py2cytoscape/data/base_view.py
BaseView.get_value
def get_value(self, visual_property): """Get a value for the Visual Property :param visual_property: :return: """ res = requests.get(self.url + '/' + visual_property) return res.json()['value']
python
def get_value(self, visual_property): """Get a value for the Visual Property :param visual_property: :return: """ res = requests.get(self.url + '/' + visual_property) return res.json()['value']
[ "def", "get_value", "(", "self", ",", "visual_property", ")", ":", "res", "=", "requests", ".", "get", "(", "self", ".", "url", "+", "'/'", "+", "visual_property", ")", "return", "res", ".", "json", "(", ")", "[", "'value'", "]" ]
Get a value for the Visual Property :param visual_property: :return:
[ "Get", "a", "value", "for", "the", "Visual", "Property" ]
dd34de8d028f512314d0057168df7fef7c5d5195
https://github.com/cytoscape/py2cytoscape/blob/dd34de8d028f512314d0057168df7fef7c5d5195/py2cytoscape/data/base_view.py#L79-L86
train
cytoscape/py2cytoscape
py2cytoscape/data/base_view.py
BaseView.get_values
def get_values(self): """Get all visual property values for the object :return: dictionary of values (VP ID - value) """ results = requests.get(self.url).json() values = {} for entry in results: values[entry['visualProperty']] = entry['value'] return values
python
def get_values(self): """Get all visual property values for the object :return: dictionary of values (VP ID - value) """ results = requests.get(self.url).json() values = {} for entry in results: values[entry['visualProperty']] = entry['value'] return values
[ "def", "get_values", "(", "self", ")", ":", "results", "=", "requests", ".", "get", "(", "self", ".", "url", ")", ".", "json", "(", ")", "values", "=", "{", "}", "for", "entry", "in", "results", ":", "values", "[", "entry", "[", "'visualProperty'", "]", "]", "=", "entry", "[", "'value'", "]", "return", "values" ]
Get all visual property values for the object :return: dictionary of values (VP ID - value)
[ "Get", "all", "visual", "property", "values", "for", "the", "object" ]
dd34de8d028f512314d0057168df7fef7c5d5195
https://github.com/cytoscape/py2cytoscape/blob/dd34de8d028f512314d0057168df7fef7c5d5195/py2cytoscape/data/base_view.py#L88-L98
train
cytoscape/py2cytoscape
py2cytoscape/data/network_view.py
CyNetworkView.update_network_view
def update_network_view(self, visual_property=None, value=None): """ Updates single value for Network-related VP. :param visual_property: :param value: :return: """ new_value = [ { "visualProperty": visual_property, "value": value } ] res = requests.put(self.__url + '/network', data=json.dumps(new_value), headers=HEADERS) check_response(res)
python
def update_network_view(self, visual_property=None, value=None): """ Updates single value for Network-related VP. :param visual_property: :param value: :return: """ new_value = [ { "visualProperty": visual_property, "value": value } ] res = requests.put(self.__url + '/network', data=json.dumps(new_value), headers=HEADERS) check_response(res)
[ "def", "update_network_view", "(", "self", ",", "visual_property", "=", "None", ",", "value", "=", "None", ")", ":", "new_value", "=", "[", "{", "\"visualProperty\"", ":", "visual_property", ",", "\"value\"", ":", "value", "}", "]", "res", "=", "requests", ".", "put", "(", "self", ".", "__url", "+", "'/network'", ",", "data", "=", "json", ".", "dumps", "(", "new_value", ")", ",", "headers", "=", "HEADERS", ")", "check_response", "(", "res", ")" ]
Updates single value for Network-related VP. :param visual_property: :param value: :return:
[ "Updates", "single", "value", "for", "Network", "-", "related", "VP", "." ]
dd34de8d028f512314d0057168df7fef7c5d5195
https://github.com/cytoscape/py2cytoscape/blob/dd34de8d028f512314d0057168df7fef7c5d5195/py2cytoscape/data/network_view.py#L153-L171
train
cytoscape/py2cytoscape
py2cytoscape/cyrest/view.py
view.export
def export(self, Height=None, options=None, outputFile=None, Resolution=None,\ Units=None, Width=None, Zoom=None, view="current", verbose=False): """ Exports the current view to a graphics file and returns the path to the saved file. PNG and JPEG formats have options for scaling, while other formats only have the option 'exportTextAsFont'. For the PDF format, exporting text as font does not work for two-byte characters such as Chinese or Japanese. To avoid corrupted texts in the exported PDF, please set false to 'exportTextAsFont' when exporting networks including those non-English characters. :param Height (string, optional): The height of the exported image. Valid only for bitmap formats, such as PNG and JPEG. :param options (string, optional): The format of the output file. = ['JPEG (*.jpeg, *.jpg)', 'PDF (*.pdf)', 'PNG (*.png)', 'PostScript (*.ps)', 'SVG (*.svg)'] :param OutputFile (string, optional): The path name of the file where the view must be saved to. By default, the view's title is used as the file name. :param Resolution (string, optional): The resolution of the exported image, in DPI. Valid only for bitmap formats, when the selected width and height 'units' is inches. The possible values are: 72 (default), 100, 150, 300, 600. = ['72', '100', '150', '300', '600'] :param Units (string, optional): The units for the 'width' and 'height' values. Valid only for bitmap formats, such as PNG and JPEG. The possible values are: pixels (default), inches. = ['pixels', 'inches'] :param Width (string, optional): The width of the exported image. Valid only for bitmap formats, such as PNG and JPEG. :param Zoom (string, optional): The zoom value to proportionally scale the image. The default value is 100.0. Valid only for bitmap formats, such as PNG and JPEG :param verbose: print more :returns: path to the saved file """ PARAMS=set_param(["Height","options","outputFile","Resolution",\ "Units","Width","Zoom","view"],\ [Height,options,outputFile,Resolution,Units,Width,Zoom,view ]) response=api(url=self.__url+"/export", PARAMS=PARAMS, method="POST", verbose=verbose) return response
python
def export(self, Height=None, options=None, outputFile=None, Resolution=None,\ Units=None, Width=None, Zoom=None, view="current", verbose=False): """ Exports the current view to a graphics file and returns the path to the saved file. PNG and JPEG formats have options for scaling, while other formats only have the option 'exportTextAsFont'. For the PDF format, exporting text as font does not work for two-byte characters such as Chinese or Japanese. To avoid corrupted texts in the exported PDF, please set false to 'exportTextAsFont' when exporting networks including those non-English characters. :param Height (string, optional): The height of the exported image. Valid only for bitmap formats, such as PNG and JPEG. :param options (string, optional): The format of the output file. = ['JPEG (*.jpeg, *.jpg)', 'PDF (*.pdf)', 'PNG (*.png)', 'PostScript (*.ps)', 'SVG (*.svg)'] :param OutputFile (string, optional): The path name of the file where the view must be saved to. By default, the view's title is used as the file name. :param Resolution (string, optional): The resolution of the exported image, in DPI. Valid only for bitmap formats, when the selected width and height 'units' is inches. The possible values are: 72 (default), 100, 150, 300, 600. = ['72', '100', '150', '300', '600'] :param Units (string, optional): The units for the 'width' and 'height' values. Valid only for bitmap formats, such as PNG and JPEG. The possible values are: pixels (default), inches. = ['pixels', 'inches'] :param Width (string, optional): The width of the exported image. Valid only for bitmap formats, such as PNG and JPEG. :param Zoom (string, optional): The zoom value to proportionally scale the image. The default value is 100.0. Valid only for bitmap formats, such as PNG and JPEG :param verbose: print more :returns: path to the saved file """ PARAMS=set_param(["Height","options","outputFile","Resolution",\ "Units","Width","Zoom","view"],\ [Height,options,outputFile,Resolution,Units,Width,Zoom,view ]) response=api(url=self.__url+"/export", PARAMS=PARAMS, method="POST", verbose=verbose) return response
[ "def", "export", "(", "self", ",", "Height", "=", "None", ",", "options", "=", "None", ",", "outputFile", "=", "None", ",", "Resolution", "=", "None", ",", "Units", "=", "None", ",", "Width", "=", "None", ",", "Zoom", "=", "None", ",", "view", "=", "\"current\"", ",", "verbose", "=", "False", ")", ":", "PARAMS", "=", "set_param", "(", "[", "\"Height\"", ",", "\"options\"", ",", "\"outputFile\"", ",", "\"Resolution\"", ",", "\"Units\"", ",", "\"Width\"", ",", "\"Zoom\"", ",", "\"view\"", "]", ",", "[", "Height", ",", "options", ",", "outputFile", ",", "Resolution", ",", "Units", ",", "Width", ",", "Zoom", ",", "view", "]", ")", "response", "=", "api", "(", "url", "=", "self", ".", "__url", "+", "\"/export\"", ",", "PARAMS", "=", "PARAMS", ",", "method", "=", "\"POST\"", ",", "verbose", "=", "verbose", ")", "return", "response" ]
Exports the current view to a graphics file and returns the path to the saved file. PNG and JPEG formats have options for scaling, while other formats only have the option 'exportTextAsFont'. For the PDF format, exporting text as font does not work for two-byte characters such as Chinese or Japanese. To avoid corrupted texts in the exported PDF, please set false to 'exportTextAsFont' when exporting networks including those non-English characters. :param Height (string, optional): The height of the exported image. Valid only for bitmap formats, such as PNG and JPEG. :param options (string, optional): The format of the output file. = ['JPEG (*.jpeg, *.jpg)', 'PDF (*.pdf)', 'PNG (*.png)', 'PostScript (*.ps)', 'SVG (*.svg)'] :param OutputFile (string, optional): The path name of the file where the view must be saved to. By default, the view's title is used as the file name. :param Resolution (string, optional): The resolution of the exported image, in DPI. Valid only for bitmap formats, when the selected width and height 'units' is inches. The possible values are: 72 (default), 100, 150, 300, 600. = ['72', '100', '150', '300', '600'] :param Units (string, optional): The units for the 'width' and 'height' values. Valid only for bitmap formats, such as PNG and JPEG. The possible values are: pixels (default), inches. = ['pixels', 'inches'] :param Width (string, optional): The width of the exported image. Valid only for bitmap formats, such as PNG and JPEG. :param Zoom (string, optional): The zoom value to proportionally scale the image. The default value is 100.0. Valid only for bitmap formats, such as PNG and JPEG :param verbose: print more :returns: path to the saved file
[ "Exports", "the", "current", "view", "to", "a", "graphics", "file", "and", "returns", "the", "path", "to", "the", "saved", "file", ".", "PNG", "and", "JPEG", "formats", "have", "options", "for", "scaling", "while", "other", "formats", "only", "have", "the", "option", "exportTextAsFont", ".", "For", "the", "PDF", "format", "exporting", "text", "as", "font", "does", "not", "work", "for", "two", "-", "byte", "characters", "such", "as", "Chinese", "or", "Japanese", ".", "To", "avoid", "corrupted", "texts", "in", "the", "exported", "PDF", "please", "set", "false", "to", "exportTextAsFont", "when", "exporting", "networks", "including", "those", "non", "-", "English", "characters", "." ]
dd34de8d028f512314d0057168df7fef7c5d5195
https://github.com/cytoscape/py2cytoscape/blob/dd34de8d028f512314d0057168df7fef7c5d5195/py2cytoscape/cyrest/view.py#L46-L85
train
cytoscape/py2cytoscape
py2cytoscape/cyrest/view.py
view.fit_content
def fit_content(self, verbose=False): """ Zooms out the current view in order to display all of its elements. :param verbose: print more """ PARAMS={} response=api(url=self.__url+"/fit content", PARAMS=PARAMS, method="POST", verbose=verbose) return response
python
def fit_content(self, verbose=False): """ Zooms out the current view in order to display all of its elements. :param verbose: print more """ PARAMS={} response=api(url=self.__url+"/fit content", PARAMS=PARAMS, method="POST", verbose=verbose) return response
[ "def", "fit_content", "(", "self", ",", "verbose", "=", "False", ")", ":", "PARAMS", "=", "{", "}", "response", "=", "api", "(", "url", "=", "self", ".", "__url", "+", "\"/fit content\"", ",", "PARAMS", "=", "PARAMS", ",", "method", "=", "\"POST\"", ",", "verbose", "=", "verbose", ")", "return", "response" ]
Zooms out the current view in order to display all of its elements. :param verbose: print more
[ "Zooms", "out", "the", "current", "view", "in", "order", "to", "display", "all", "of", "its", "elements", "." ]
dd34de8d028f512314d0057168df7fef7c5d5195
https://github.com/cytoscape/py2cytoscape/blob/dd34de8d028f512314d0057168df7fef7c5d5195/py2cytoscape/cyrest/view.py#L87-L96
train
cytoscape/py2cytoscape
py2cytoscape/cyrest/view.py
view.get_current
def get_current(self, layout=None, network=None, verbose=False): """ Returns the current view or null if there is none. :param verbose: print more :returns: current view or null if there is none """ PARAMS={} response=api(url=self.__url+"/get_current", PARAMS=PARAMS, method="POST", verbose=verbose) return response
python
def get_current(self, layout=None, network=None, verbose=False): """ Returns the current view or null if there is none. :param verbose: print more :returns: current view or null if there is none """ PARAMS={} response=api(url=self.__url+"/get_current", PARAMS=PARAMS, method="POST", verbose=verbose) return response
[ "def", "get_current", "(", "self", ",", "layout", "=", "None", ",", "network", "=", "None", ",", "verbose", "=", "False", ")", ":", "PARAMS", "=", "{", "}", "response", "=", "api", "(", "url", "=", "self", ".", "__url", "+", "\"/get_current\"", ",", "PARAMS", "=", "PARAMS", ",", "method", "=", "\"POST\"", ",", "verbose", "=", "verbose", ")", "return", "response" ]
Returns the current view or null if there is none. :param verbose: print more :returns: current view or null if there is none
[ "Returns", "the", "current", "view", "or", "null", "if", "there", "is", "none", "." ]
dd34de8d028f512314d0057168df7fef7c5d5195
https://github.com/cytoscape/py2cytoscape/blob/dd34de8d028f512314d0057168df7fef7c5d5195/py2cytoscape/cyrest/view.py#L110-L120
train
cytoscape/py2cytoscape
py2cytoscape/data/style.py
Style.update_defaults
def update_defaults(self, prop_value_dict): """ Updates the value of one or more visual properties. :param prop_value_dict: Dictionary containing, for each visual property, the new value to use. """ body = [] for key in prop_value_dict: entry = { 'visualProperty': key, 'value': prop_value_dict[key] } body.append(entry) url = self.__url + 'defaults' requests.put(url, data=json.dumps(body), headers=HEADERS)
python
def update_defaults(self, prop_value_dict): """ Updates the value of one or more visual properties. :param prop_value_dict: Dictionary containing, for each visual property, the new value to use. """ body = [] for key in prop_value_dict: entry = { 'visualProperty': key, 'value': prop_value_dict[key] } body.append(entry) url = self.__url + 'defaults' requests.put(url, data=json.dumps(body), headers=HEADERS)
[ "def", "update_defaults", "(", "self", ",", "prop_value_dict", ")", ":", "body", "=", "[", "]", "for", "key", "in", "prop_value_dict", ":", "entry", "=", "{", "'visualProperty'", ":", "key", ",", "'value'", ":", "prop_value_dict", "[", "key", "]", "}", "body", ".", "append", "(", "entry", ")", "url", "=", "self", ".", "__url", "+", "'defaults'", "requests", ".", "put", "(", "url", ",", "data", "=", "json", ".", "dumps", "(", "body", ")", ",", "headers", "=", "HEADERS", ")" ]
Updates the value of one or more visual properties. :param prop_value_dict: Dictionary containing, for each visual property, the new value to use.
[ "Updates", "the", "value", "of", "one", "or", "more", "visual", "properties", "." ]
dd34de8d028f512314d0057168df7fef7c5d5195
https://github.com/cytoscape/py2cytoscape/blob/dd34de8d028f512314d0057168df7fef7c5d5195/py2cytoscape/data/style.py#L112-L129
train
cytoscape/py2cytoscape
py2cytoscape/cyrest/cyrest.py
cyclient.status
def status(self, verbose=False): """ Checks the status of your CyREST server. """ try: response=api(url=self.__url, method="GET", verbose=verbose) except Exception as e: print('Could not get status from CyREST:\n\n' + str(e)) else: print('CyREST online!')
python
def status(self, verbose=False): """ Checks the status of your CyREST server. """ try: response=api(url=self.__url, method="GET", verbose=verbose) except Exception as e: print('Could not get status from CyREST:\n\n' + str(e)) else: print('CyREST online!')
[ "def", "status", "(", "self", ",", "verbose", "=", "False", ")", ":", "try", ":", "response", "=", "api", "(", "url", "=", "self", ".", "__url", ",", "method", "=", "\"GET\"", ",", "verbose", "=", "verbose", ")", "except", "Exception", "as", "e", ":", "print", "(", "'Could not get status from CyREST:\\n\\n'", "+", "str", "(", "e", ")", ")", "else", ":", "print", "(", "'CyREST online!'", ")" ]
Checks the status of your CyREST server.
[ "Checks", "the", "status", "of", "your", "CyREST", "server", "." ]
dd34de8d028f512314d0057168df7fef7c5d5195
https://github.com/cytoscape/py2cytoscape/blob/dd34de8d028f512314d0057168df7fef7c5d5195/py2cytoscape/cyrest/cyrest.py#L67-L76
train
cytoscape/py2cytoscape
py2cytoscape/cyrest/cyrest.py
cyclient.version
def version(self, verbose=False): """ Checks Cytoscape version """ response=api(url=self.__url+"version",method="H", verbose=verbose) response=json.loads(response) for k in response.keys(): print(k, response[k])
python
def version(self, verbose=False): """ Checks Cytoscape version """ response=api(url=self.__url+"version",method="H", verbose=verbose) response=json.loads(response) for k in response.keys(): print(k, response[k])
[ "def", "version", "(", "self", ",", "verbose", "=", "False", ")", ":", "response", "=", "api", "(", "url", "=", "self", ".", "__url", "+", "\"version\"", ",", "method", "=", "\"H\"", ",", "verbose", "=", "verbose", ")", "response", "=", "json", ".", "loads", "(", "response", ")", "for", "k", "in", "response", ".", "keys", "(", ")", ":", "print", "(", "k", ",", "response", "[", "k", "]", ")" ]
Checks Cytoscape version
[ "Checks", "Cytoscape", "version" ]
dd34de8d028f512314d0057168df7fef7c5d5195
https://github.com/cytoscape/py2cytoscape/blob/dd34de8d028f512314d0057168df7fef7c5d5195/py2cytoscape/cyrest/cyrest.py#L84-L91
train
cytoscape/py2cytoscape
py2cytoscape/cyrest/idmapper.py
idmapper.map_column
def map_column(self, only_use_one=None, source_column=None, species=None, target_selection= None, verbose=False): """ Uses the BridgeDB service to look up analogous identifiers from a wide selection of other databases :param only_use_one (string, optional): When multiple identifiers can be mapped from a single term, this forces a singular result :param source_column (string): Specifies the column nmae where the source identifiers are located = [''] :param source_selection (string): Specifies the database describing the existing identifiers = [''] :param species (string, optional): The combined common or latin name of the species to which the identifiers apply = ['Human (Homo sapiens)', 'Mouse (Mus musculus)', 'Rat (Rattus norvegicus)', 'Frog (Xenopus tropicalis)', 'Zebra fish (Danio rerio)', 'Fruit fly (Drosophila melanogaster)', 'Mosquito (Anopheles gambiae)', 'Arabidopsis thaliana (Arabidopsis thaliana)', 'Yeast (Saccharomyces cerevisiae)', 'E. coli (Escherichia coli)', 'Tuberculosis (Mycobacterium tuberculosis)', 'Worm (Caenorhabditis elegans)'] :param target_selection (string): Specifies the database identifiers to be looked up = [''] :param verbose: print more :returns: eg. { "new column": "SGD " } """ PARAMS=set_param(["only_use_one","source_column","species","target_selection"],[only_use_one,source_column,species,target_selection]) response=api(url=self.__url+"/map column", PARAMS=PARAMS, method="POST", verbose=verbose) return response
python
def map_column(self, only_use_one=None, source_column=None, species=None, target_selection= None, verbose=False): """ Uses the BridgeDB service to look up analogous identifiers from a wide selection of other databases :param only_use_one (string, optional): When multiple identifiers can be mapped from a single term, this forces a singular result :param source_column (string): Specifies the column nmae where the source identifiers are located = [''] :param source_selection (string): Specifies the database describing the existing identifiers = [''] :param species (string, optional): The combined common or latin name of the species to which the identifiers apply = ['Human (Homo sapiens)', 'Mouse (Mus musculus)', 'Rat (Rattus norvegicus)', 'Frog (Xenopus tropicalis)', 'Zebra fish (Danio rerio)', 'Fruit fly (Drosophila melanogaster)', 'Mosquito (Anopheles gambiae)', 'Arabidopsis thaliana (Arabidopsis thaliana)', 'Yeast (Saccharomyces cerevisiae)', 'E. coli (Escherichia coli)', 'Tuberculosis (Mycobacterium tuberculosis)', 'Worm (Caenorhabditis elegans)'] :param target_selection (string): Specifies the database identifiers to be looked up = [''] :param verbose: print more :returns: eg. { "new column": "SGD " } """ PARAMS=set_param(["only_use_one","source_column","species","target_selection"],[only_use_one,source_column,species,target_selection]) response=api(url=self.__url+"/map column", PARAMS=PARAMS, method="POST", verbose=verbose) return response
[ "def", "map_column", "(", "self", ",", "only_use_one", "=", "None", ",", "source_column", "=", "None", ",", "species", "=", "None", ",", "target_selection", "=", "None", ",", "verbose", "=", "False", ")", ":", "PARAMS", "=", "set_param", "(", "[", "\"only_use_one\"", ",", "\"source_column\"", ",", "\"species\"", ",", "\"target_selection\"", "]", ",", "[", "only_use_one", ",", "source_column", ",", "species", ",", "target_selection", "]", ")", "response", "=", "api", "(", "url", "=", "self", ".", "__url", "+", "\"/map column\"", ",", "PARAMS", "=", "PARAMS", ",", "method", "=", "\"POST\"", ",", "verbose", "=", "verbose", ")", "return", "response" ]
Uses the BridgeDB service to look up analogous identifiers from a wide selection of other databases :param only_use_one (string, optional): When multiple identifiers can be mapped from a single term, this forces a singular result :param source_column (string): Specifies the column nmae where the source identifiers are located = [''] :param source_selection (string): Specifies the database describing the existing identifiers = [''] :param species (string, optional): The combined common or latin name of the species to which the identifiers apply = ['Human (Homo sapiens)', 'Mouse (Mus musculus)', 'Rat (Rattus norvegicus)', 'Frog (Xenopus tropicalis)', 'Zebra fish (Danio rerio)', 'Fruit fly (Drosophila melanogaster)', 'Mosquito (Anopheles gambiae)', 'Arabidopsis thaliana (Arabidopsis thaliana)', 'Yeast (Saccharomyces cerevisiae)', 'E. coli (Escherichia coli)', 'Tuberculosis (Mycobacterium tuberculosis)', 'Worm (Caenorhabditis elegans)'] :param target_selection (string): Specifies the database identifiers to be looked up = [''] :param verbose: print more :returns: eg. { "new column": "SGD " }
[ "Uses", "the", "BridgeDB", "service", "to", "look", "up", "analogous", "identifiers", "from", "a", "wide", "selection", "of", "other", "databases" ]
dd34de8d028f512314d0057168df7fef7c5d5195
https://github.com/cytoscape/py2cytoscape/blob/dd34de8d028f512314d0057168df7fef7c5d5195/py2cytoscape/cyrest/idmapper.py#L13-L38
train
cytoscape/py2cytoscape
py2cytoscape/cyrest/command.py
command.echo
def echo(self, variableName, verbose=False): """ The echo command will display the value of the variable specified by the variableName argument, or all variables if variableName is not provided. :param variableName: The name of the variable or '*' to display the value of all variables. :param verbose: print more """ PARAMS={"variableName":variableName} response=api(url=self.__url+"/echo", PARAMS=PARAMS, verbose=verbose) return response
python
def echo(self, variableName, verbose=False): """ The echo command will display the value of the variable specified by the variableName argument, or all variables if variableName is not provided. :param variableName: The name of the variable or '*' to display the value of all variables. :param verbose: print more """ PARAMS={"variableName":variableName} response=api(url=self.__url+"/echo", PARAMS=PARAMS, verbose=verbose) return response
[ "def", "echo", "(", "self", ",", "variableName", ",", "verbose", "=", "False", ")", ":", "PARAMS", "=", "{", "\"variableName\"", ":", "variableName", "}", "response", "=", "api", "(", "url", "=", "self", ".", "__url", "+", "\"/echo\"", ",", "PARAMS", "=", "PARAMS", ",", "verbose", "=", "verbose", ")", "return", "response" ]
The echo command will display the value of the variable specified by the variableName argument, or all variables if variableName is not provided. :param variableName: The name of the variable or '*' to display the value of all variables. :param verbose: print more
[ "The", "echo", "command", "will", "display", "the", "value", "of", "the", "variable", "specified", "by", "the", "variableName", "argument", "or", "all", "variables", "if", "variableName", "is", "not", "provided", "." ]
dd34de8d028f512314d0057168df7fef7c5d5195
https://github.com/cytoscape/py2cytoscape/blob/dd34de8d028f512314d0057168df7fef7c5d5195/py2cytoscape/cyrest/command.py#L13-L23
train
cytoscape/py2cytoscape
py2cytoscape/cyrest/command.py
command.open_dialog
def open_dialog(self, verbose=False): """ The command line dialog provides a field to enter commands and view results. It also provides the help command to display namespaces, commands, and arguments. :param verbose: print more """ response=api(url=self.__url+"/open dialog", verbose=verbose) return response
python
def open_dialog(self, verbose=False): """ The command line dialog provides a field to enter commands and view results. It also provides the help command to display namespaces, commands, and arguments. :param verbose: print more """ response=api(url=self.__url+"/open dialog", verbose=verbose) return response
[ "def", "open_dialog", "(", "self", ",", "verbose", "=", "False", ")", ":", "response", "=", "api", "(", "url", "=", "self", ".", "__url", "+", "\"/open dialog\"", ",", "verbose", "=", "verbose", ")", "return", "response" ]
The command line dialog provides a field to enter commands and view results. It also provides the help command to display namespaces, commands, and arguments. :param verbose: print more
[ "The", "command", "line", "dialog", "provides", "a", "field", "to", "enter", "commands", "and", "view", "results", ".", "It", "also", "provides", "the", "help", "command", "to", "display", "namespaces", "commands", "and", "arguments", "." ]
dd34de8d028f512314d0057168df7fef7c5d5195
https://github.com/cytoscape/py2cytoscape/blob/dd34de8d028f512314d0057168df7fef7c5d5195/py2cytoscape/cyrest/command.py#L25-L34
train
cytoscape/py2cytoscape
py2cytoscape/cyrest/command.py
command.pause
def pause(self, message=None, verbose=False): """ The pause command displays a dialog with the text provided in the message argument and waits for the user to click OK :param message: a message to display. default=None :param verbose: print more """ PARAMS=set_param(["message"],[message]) response=api(url=self.__url+"/pause", PARAMS=PARAMS, verbose=verbose) return response
python
def pause(self, message=None, verbose=False): """ The pause command displays a dialog with the text provided in the message argument and waits for the user to click OK :param message: a message to display. default=None :param verbose: print more """ PARAMS=set_param(["message"],[message]) response=api(url=self.__url+"/pause", PARAMS=PARAMS, verbose=verbose) return response
[ "def", "pause", "(", "self", ",", "message", "=", "None", ",", "verbose", "=", "False", ")", ":", "PARAMS", "=", "set_param", "(", "[", "\"message\"", "]", ",", "[", "message", "]", ")", "response", "=", "api", "(", "url", "=", "self", ".", "__url", "+", "\"/pause\"", ",", "PARAMS", "=", "PARAMS", ",", "verbose", "=", "verbose", ")", "return", "response" ]
The pause command displays a dialog with the text provided in the message argument and waits for the user to click OK :param message: a message to display. default=None :param verbose: print more
[ "The", "pause", "command", "displays", "a", "dialog", "with", "the", "text", "provided", "in", "the", "message", "argument", "and", "waits", "for", "the", "user", "to", "click", "OK" ]
dd34de8d028f512314d0057168df7fef7c5d5195
https://github.com/cytoscape/py2cytoscape/blob/dd34de8d028f512314d0057168df7fef7c5d5195/py2cytoscape/cyrest/command.py#L37-L48
train
cytoscape/py2cytoscape
py2cytoscape/cyrest/command.py
command.quit
def quit(self,verbose=False): """ This command causes Cytoscape to exit. It is typically used at the end of a script file. :param verbose: print more """ response=api(url=self.__url+"/quit", verbose=verbose) return response
python
def quit(self,verbose=False): """ This command causes Cytoscape to exit. It is typically used at the end of a script file. :param verbose: print more """ response=api(url=self.__url+"/quit", verbose=verbose) return response
[ "def", "quit", "(", "self", ",", "verbose", "=", "False", ")", ":", "response", "=", "api", "(", "url", "=", "self", ".", "__url", "+", "\"/quit\"", ",", "verbose", "=", "verbose", ")", "return", "response" ]
This command causes Cytoscape to exit. It is typically used at the end of a script file. :param verbose: print more
[ "This", "command", "causes", "Cytoscape", "to", "exit", ".", "It", "is", "typically", "used", "at", "the", "end", "of", "a", "script", "file", "." ]
dd34de8d028f512314d0057168df7fef7c5d5195
https://github.com/cytoscape/py2cytoscape/blob/dd34de8d028f512314d0057168df7fef7c5d5195/py2cytoscape/cyrest/command.py#L51-L59
train
cytoscape/py2cytoscape
py2cytoscape/cyrest/command.py
command.run
def run(self,script_file,args=None,verbose=False): """ The run command will execute a command script from the file pointed to by the file argument, which should contain Cytoscape commands, one per line. Arguments to the script are provided by the args argument. :param script_file: file to run :param args: enter the script arguments as key:value pairs separated by commas. eg. "arg1:value1,arg2:value2" :param verbose: print more """ PARAMS=set_param(["file","args"],[script_file,args]) response=api(url=self.__url+"/run", PARAMS=PARAMS, verbose=verbose) return response
python
def run(self,script_file,args=None,verbose=False): """ The run command will execute a command script from the file pointed to by the file argument, which should contain Cytoscape commands, one per line. Arguments to the script are provided by the args argument. :param script_file: file to run :param args: enter the script arguments as key:value pairs separated by commas. eg. "arg1:value1,arg2:value2" :param verbose: print more """ PARAMS=set_param(["file","args"],[script_file,args]) response=api(url=self.__url+"/run", PARAMS=PARAMS, verbose=verbose) return response
[ "def", "run", "(", "self", ",", "script_file", ",", "args", "=", "None", ",", "verbose", "=", "False", ")", ":", "PARAMS", "=", "set_param", "(", "[", "\"file\"", ",", "\"args\"", "]", ",", "[", "script_file", ",", "args", "]", ")", "response", "=", "api", "(", "url", "=", "self", ".", "__url", "+", "\"/run\"", ",", "PARAMS", "=", "PARAMS", ",", "verbose", "=", "verbose", ")", "return", "response" ]
The run command will execute a command script from the file pointed to by the file argument, which should contain Cytoscape commands, one per line. Arguments to the script are provided by the args argument. :param script_file: file to run :param args: enter the script arguments as key:value pairs separated by commas. eg. "arg1:value1,arg2:value2" :param verbose: print more
[ "The", "run", "command", "will", "execute", "a", "command", "script", "from", "the", "file", "pointed", "to", "by", "the", "file", "argument", "which", "should", "contain", "Cytoscape", "commands", "one", "per", "line", ".", "Arguments", "to", "the", "script", "are", "provided", "by", "the", "args", "argument", "." ]
dd34de8d028f512314d0057168df7fef7c5d5195
https://github.com/cytoscape/py2cytoscape/blob/dd34de8d028f512314d0057168df7fef7c5d5195/py2cytoscape/cyrest/command.py#L61-L75
train
cytoscape/py2cytoscape
py2cytoscape/cyrest/command.py
command.sleep
def sleep(self,duration,verbose=False): """ The sleep command will pause processing for a period of time as specified by duration seconds. It is typically used as part of a command script. :param duration: enter the time in seconds to sleep :param verbose: print more """ PARAMS={"duration":str(duration)} response=api(url=self.__url+"/sleep", PARAMS=PARAMS, verbose=verbose) return response
python
def sleep(self,duration,verbose=False): """ The sleep command will pause processing for a period of time as specified by duration seconds. It is typically used as part of a command script. :param duration: enter the time in seconds to sleep :param verbose: print more """ PARAMS={"duration":str(duration)} response=api(url=self.__url+"/sleep", PARAMS=PARAMS, verbose=verbose) return response
[ "def", "sleep", "(", "self", ",", "duration", ",", "verbose", "=", "False", ")", ":", "PARAMS", "=", "{", "\"duration\"", ":", "str", "(", "duration", ")", "}", "response", "=", "api", "(", "url", "=", "self", ".", "__url", "+", "\"/sleep\"", ",", "PARAMS", "=", "PARAMS", ",", "verbose", "=", "verbose", ")", "return", "response" ]
The sleep command will pause processing for a period of time as specified by duration seconds. It is typically used as part of a command script. :param duration: enter the time in seconds to sleep :param verbose: print more
[ "The", "sleep", "command", "will", "pause", "processing", "for", "a", "period", "of", "time", "as", "specified", "by", "duration", "seconds", ".", "It", "is", "typically", "used", "as", "part", "of", "a", "command", "script", "." ]
dd34de8d028f512314d0057168df7fef7c5d5195
https://github.com/cytoscape/py2cytoscape/blob/dd34de8d028f512314d0057168df7fef7c5d5195/py2cytoscape/cyrest/command.py#L77-L87
train
ofw/curlify
curlify.py
to_curl
def to_curl(request, compressed=False, verify=True): """ Returns string with curl command by provided request object Parameters ---------- compressed : bool If `True` then `--compressed` argument will be added to result """ parts = [ ('curl', None), ('-X', request.method), ] for k, v in sorted(request.headers.items()): parts += [('-H', '{0}: {1}'.format(k, v))] if request.body: body = request.body if isinstance(body, bytes): body = body.decode('utf-8') parts += [('-d', body)] if compressed: parts += [('--compressed', None)] if not verify: parts += [('--insecure', None)] parts += [(None, request.url)] flat_parts = [] for k, v in parts: if k: flat_parts.append(k) if v: flat_parts.append("'{0}'".format(v)) return ' '.join(flat_parts)
python
def to_curl(request, compressed=False, verify=True): """ Returns string with curl command by provided request object Parameters ---------- compressed : bool If `True` then `--compressed` argument will be added to result """ parts = [ ('curl', None), ('-X', request.method), ] for k, v in sorted(request.headers.items()): parts += [('-H', '{0}: {1}'.format(k, v))] if request.body: body = request.body if isinstance(body, bytes): body = body.decode('utf-8') parts += [('-d', body)] if compressed: parts += [('--compressed', None)] if not verify: parts += [('--insecure', None)] parts += [(None, request.url)] flat_parts = [] for k, v in parts: if k: flat_parts.append(k) if v: flat_parts.append("'{0}'".format(v)) return ' '.join(flat_parts)
[ "def", "to_curl", "(", "request", ",", "compressed", "=", "False", ",", "verify", "=", "True", ")", ":", "parts", "=", "[", "(", "'curl'", ",", "None", ")", ",", "(", "'-X'", ",", "request", ".", "method", ")", ",", "]", "for", "k", ",", "v", "in", "sorted", "(", "request", ".", "headers", ".", "items", "(", ")", ")", ":", "parts", "+=", "[", "(", "'-H'", ",", "'{0}: {1}'", ".", "format", "(", "k", ",", "v", ")", ")", "]", "if", "request", ".", "body", ":", "body", "=", "request", ".", "body", "if", "isinstance", "(", "body", ",", "bytes", ")", ":", "body", "=", "body", ".", "decode", "(", "'utf-8'", ")", "parts", "+=", "[", "(", "'-d'", ",", "body", ")", "]", "if", "compressed", ":", "parts", "+=", "[", "(", "'--compressed'", ",", "None", ")", "]", "if", "not", "verify", ":", "parts", "+=", "[", "(", "'--insecure'", ",", "None", ")", "]", "parts", "+=", "[", "(", "None", ",", "request", ".", "url", ")", "]", "flat_parts", "=", "[", "]", "for", "k", ",", "v", "in", "parts", ":", "if", "k", ":", "flat_parts", ".", "append", "(", "k", ")", "if", "v", ":", "flat_parts", ".", "append", "(", "\"'{0}'\"", ".", "format", "(", "v", ")", ")", "return", "' '", ".", "join", "(", "flat_parts", ")" ]
Returns string with curl command by provided request object Parameters ---------- compressed : bool If `True` then `--compressed` argument will be added to result
[ "Returns", "string", "with", "curl", "command", "by", "provided", "request", "object" ]
5a464218431f979ac78d089682d36860b57420ce
https://github.com/ofw/curlify/blob/5a464218431f979ac78d089682d36860b57420ce/curlify.py#L4-L42
train
rq/Flask-RQ2
src/flask_rq2/cli.py
shared_options
def shared_options(rq): "Default class options to pass to the CLI commands." return { 'url': rq.redis_url, 'config': None, 'worker_class': rq.worker_class, 'job_class': rq.job_class, 'queue_class': rq.queue_class, 'connection_class': rq.connection_class, }
python
def shared_options(rq): "Default class options to pass to the CLI commands." return { 'url': rq.redis_url, 'config': None, 'worker_class': rq.worker_class, 'job_class': rq.job_class, 'queue_class': rq.queue_class, 'connection_class': rq.connection_class, }
[ "def", "shared_options", "(", "rq", ")", ":", "return", "{", "'url'", ":", "rq", ".", "redis_url", ",", "'config'", ":", "None", ",", "'worker_class'", ":", "rq", ".", "worker_class", ",", "'job_class'", ":", "rq", ".", "job_class", ",", "'queue_class'", ":", "rq", ".", "queue_class", ",", "'connection_class'", ":", "rq", ".", "connection_class", ",", "}" ]
Default class options to pass to the CLI commands.
[ "Default", "class", "options", "to", "pass", "to", "the", "CLI", "commands", "." ]
58eedf6f0cd7bcde4ccd787074762ea08f531337
https://github.com/rq/Flask-RQ2/blob/58eedf6f0cd7bcde4ccd787074762ea08f531337/src/flask_rq2/cli.py#L35-L44
train
rq/Flask-RQ2
src/flask_rq2/cli.py
empty
def empty(rq, ctx, all, queues): "Empty given queues." return ctx.invoke( rq_cli.empty, all=all, queues=queues or rq.queues, **shared_options(rq) )
python
def empty(rq, ctx, all, queues): "Empty given queues." return ctx.invoke( rq_cli.empty, all=all, queues=queues or rq.queues, **shared_options(rq) )
[ "def", "empty", "(", "rq", ",", "ctx", ",", "all", ",", "queues", ")", ":", "return", "ctx", ".", "invoke", "(", "rq_cli", ".", "empty", ",", "all", "=", "all", ",", "queues", "=", "queues", "or", "rq", ".", "queues", ",", "*", "*", "shared_options", "(", "rq", ")", ")" ]
Empty given queues.
[ "Empty", "given", "queues", "." ]
58eedf6f0cd7bcde4ccd787074762ea08f531337
https://github.com/rq/Flask-RQ2/blob/58eedf6f0cd7bcde4ccd787074762ea08f531337/src/flask_rq2/cli.py#L66-L73
train
rq/Flask-RQ2
src/flask_rq2/cli.py
requeue
def requeue(rq, ctx, all, job_ids): "Requeue failed jobs." return ctx.invoke( rq_cli.requeue, all=all, job_ids=job_ids, **shared_options(rq) )
python
def requeue(rq, ctx, all, job_ids): "Requeue failed jobs." return ctx.invoke( rq_cli.requeue, all=all, job_ids=job_ids, **shared_options(rq) )
[ "def", "requeue", "(", "rq", ",", "ctx", ",", "all", ",", "job_ids", ")", ":", "return", "ctx", ".", "invoke", "(", "rq_cli", ".", "requeue", ",", "all", "=", "all", ",", "job_ids", "=", "job_ids", ",", "*", "*", "shared_options", "(", "rq", ")", ")" ]
Requeue failed jobs.
[ "Requeue", "failed", "jobs", "." ]
58eedf6f0cd7bcde4ccd787074762ea08f531337
https://github.com/rq/Flask-RQ2/blob/58eedf6f0cd7bcde4ccd787074762ea08f531337/src/flask_rq2/cli.py#L79-L86
train
rq/Flask-RQ2
src/flask_rq2/cli.py
info
def info(rq, ctx, path, interval, raw, only_queues, only_workers, by_queue, queues): "RQ command-line monitor." return ctx.invoke( rq_cli.info, path=path, interval=interval, raw=raw, only_queues=only_queues, only_workers=only_workers, by_queue=by_queue, queues=queues or rq.queues, **shared_options(rq) )
python
def info(rq, ctx, path, interval, raw, only_queues, only_workers, by_queue, queues): "RQ command-line monitor." return ctx.invoke( rq_cli.info, path=path, interval=interval, raw=raw, only_queues=only_queues, only_workers=only_workers, by_queue=by_queue, queues=queues or rq.queues, **shared_options(rq) )
[ "def", "info", "(", "rq", ",", "ctx", ",", "path", ",", "interval", ",", "raw", ",", "only_queues", ",", "only_workers", ",", "by_queue", ",", "queues", ")", ":", "return", "ctx", ".", "invoke", "(", "rq_cli", ".", "info", ",", "path", "=", "path", ",", "interval", "=", "interval", ",", "raw", "=", "raw", ",", "only_queues", "=", "only_queues", ",", "only_workers", "=", "only_workers", ",", "by_queue", "=", "by_queue", ",", "queues", "=", "queues", "or", "rq", ".", "queues", ",", "*", "*", "shared_options", "(", "rq", ")", ")" ]
RQ command-line monitor.
[ "RQ", "command", "-", "line", "monitor", "." ]
58eedf6f0cd7bcde4ccd787074762ea08f531337
https://github.com/rq/Flask-RQ2/blob/58eedf6f0cd7bcde4ccd787074762ea08f531337/src/flask_rq2/cli.py#L100-L113
train
rq/Flask-RQ2
src/flask_rq2/cli.py
worker
def worker(rq, ctx, burst, logging_level, name, path, results_ttl, worker_ttl, verbose, quiet, sentry_dsn, exception_handler, pid, queues): "Starts an RQ worker." ctx.invoke( rq_cli.worker, burst=burst, logging_level=logging_level, name=name, path=path, results_ttl=results_ttl, worker_ttl=worker_ttl, verbose=verbose, quiet=quiet, sentry_dsn=sentry_dsn, exception_handler=exception_handler or rq._exception_handlers, pid=pid, queues=queues or rq.queues, **shared_options(rq) )
python
def worker(rq, ctx, burst, logging_level, name, path, results_ttl, worker_ttl, verbose, quiet, sentry_dsn, exception_handler, pid, queues): "Starts an RQ worker." ctx.invoke( rq_cli.worker, burst=burst, logging_level=logging_level, name=name, path=path, results_ttl=results_ttl, worker_ttl=worker_ttl, verbose=verbose, quiet=quiet, sentry_dsn=sentry_dsn, exception_handler=exception_handler or rq._exception_handlers, pid=pid, queues=queues or rq.queues, **shared_options(rq) )
[ "def", "worker", "(", "rq", ",", "ctx", ",", "burst", ",", "logging_level", ",", "name", ",", "path", ",", "results_ttl", ",", "worker_ttl", ",", "verbose", ",", "quiet", ",", "sentry_dsn", ",", "exception_handler", ",", "pid", ",", "queues", ")", ":", "ctx", ".", "invoke", "(", "rq_cli", ".", "worker", ",", "burst", "=", "burst", ",", "logging_level", "=", "logging_level", ",", "name", "=", "name", ",", "path", "=", "path", ",", "results_ttl", "=", "results_ttl", ",", "worker_ttl", "=", "worker_ttl", ",", "verbose", "=", "verbose", ",", "quiet", "=", "quiet", ",", "sentry_dsn", "=", "sentry_dsn", ",", "exception_handler", "=", "exception_handler", "or", "rq", ".", "_exception_handlers", ",", "pid", "=", "pid", ",", "queues", "=", "queues", "or", "rq", ".", "queues", ",", "*", "*", "shared_options", "(", "rq", ")", ")" ]
Starts an RQ worker.
[ "Starts", "an", "RQ", "worker", "." ]
58eedf6f0cd7bcde4ccd787074762ea08f531337
https://github.com/rq/Flask-RQ2/blob/58eedf6f0cd7bcde4ccd787074762ea08f531337/src/flask_rq2/cli.py#L136-L155
train
rq/Flask-RQ2
src/flask_rq2/cli.py
suspend
def suspend(rq, ctx, duration): "Suspends all workers." ctx.invoke( rq_cli.suspend, duration=duration, **shared_options(rq) )
python
def suspend(rq, ctx, duration): "Suspends all workers." ctx.invoke( rq_cli.suspend, duration=duration, **shared_options(rq) )
[ "def", "suspend", "(", "rq", ",", "ctx", ",", "duration", ")", ":", "ctx", ".", "invoke", "(", "rq_cli", ".", "suspend", ",", "duration", "=", "duration", ",", "*", "*", "shared_options", "(", "rq", ")", ")" ]
Suspends all workers.
[ "Suspends", "all", "workers", "." ]
58eedf6f0cd7bcde4ccd787074762ea08f531337
https://github.com/rq/Flask-RQ2/blob/58eedf6f0cd7bcde4ccd787074762ea08f531337/src/flask_rq2/cli.py#L162-L168
train
rq/Flask-RQ2
src/flask_rq2/cli.py
scheduler
def scheduler(rq, ctx, verbose, burst, queue, interval, pid): "Periodically checks for scheduled jobs." scheduler = rq.get_scheduler(interval=interval, queue=queue) if pid: with open(os.path.expanduser(pid), 'w') as fp: fp.write(str(os.getpid())) if verbose: level = 'DEBUG' else: level = 'INFO' setup_loghandlers(level) scheduler.run(burst=burst)
python
def scheduler(rq, ctx, verbose, burst, queue, interval, pid): "Periodically checks for scheduled jobs." scheduler = rq.get_scheduler(interval=interval, queue=queue) if pid: with open(os.path.expanduser(pid), 'w') as fp: fp.write(str(os.getpid())) if verbose: level = 'DEBUG' else: level = 'INFO' setup_loghandlers(level) scheduler.run(burst=burst)
[ "def", "scheduler", "(", "rq", ",", "ctx", ",", "verbose", ",", "burst", ",", "queue", ",", "interval", ",", "pid", ")", ":", "scheduler", "=", "rq", ".", "get_scheduler", "(", "interval", "=", "interval", ",", "queue", "=", "queue", ")", "if", "pid", ":", "with", "open", "(", "os", ".", "path", ".", "expanduser", "(", "pid", ")", ",", "'w'", ")", "as", "fp", ":", "fp", ".", "write", "(", "str", "(", "os", ".", "getpid", "(", ")", ")", ")", "if", "verbose", ":", "level", "=", "'DEBUG'", "else", ":", "level", "=", "'INFO'", "setup_loghandlers", "(", "level", ")", "scheduler", ".", "run", "(", "burst", "=", "burst", ")" ]
Periodically checks for scheduled jobs.
[ "Periodically", "checks", "for", "scheduled", "jobs", "." ]
58eedf6f0cd7bcde4ccd787074762ea08f531337
https://github.com/rq/Flask-RQ2/blob/58eedf6f0cd7bcde4ccd787074762ea08f531337/src/flask_rq2/cli.py#L193-L204
train
rq/Flask-RQ2
src/flask_rq2/app.py
RQ.init_cli
def init_cli(self, app): """ Initialize the Flask CLI support in case it was enabled for the app. Works with both Flask>=1.0's CLI support as well as the backport in the Flask-CLI package for Flask<1.0. """ # in case click isn't installed after all if click is None: raise RuntimeError('Cannot import click. Is it installed?') # only add commands if we have a click context available from .cli import add_commands add_commands(app.cli, self)
python
def init_cli(self, app): """ Initialize the Flask CLI support in case it was enabled for the app. Works with both Flask>=1.0's CLI support as well as the backport in the Flask-CLI package for Flask<1.0. """ # in case click isn't installed after all if click is None: raise RuntimeError('Cannot import click. Is it installed?') # only add commands if we have a click context available from .cli import add_commands add_commands(app.cli, self)
[ "def", "init_cli", "(", "self", ",", "app", ")", ":", "# in case click isn't installed after all", "if", "click", "is", "None", ":", "raise", "RuntimeError", "(", "'Cannot import click. Is it installed?'", ")", "# only add commands if we have a click context available", "from", ".", "cli", "import", "add_commands", "add_commands", "(", "app", ".", "cli", ",", "self", ")" ]
Initialize the Flask CLI support in case it was enabled for the app. Works with both Flask>=1.0's CLI support as well as the backport in the Flask-CLI package for Flask<1.0.
[ "Initialize", "the", "Flask", "CLI", "support", "in", "case", "it", "was", "enabled", "for", "the", "app", "." ]
58eedf6f0cd7bcde4ccd787074762ea08f531337
https://github.com/rq/Flask-RQ2/blob/58eedf6f0cd7bcde4ccd787074762ea08f531337/src/flask_rq2/app.py#L195-L208
train
ionelmc/python-remote-pdb
src/remote_pdb.py
set_trace
def set_trace(host=None, port=None, patch_stdstreams=False): """ Opens a remote PDB on first available port. """ if host is None: host = os.environ.get('REMOTE_PDB_HOST', '127.0.0.1') if port is None: port = int(os.environ.get('REMOTE_PDB_PORT', '0')) rdb = RemotePdb(host=host, port=port, patch_stdstreams=patch_stdstreams) rdb.set_trace(frame=sys._getframe().f_back)
python
def set_trace(host=None, port=None, patch_stdstreams=False): """ Opens a remote PDB on first available port. """ if host is None: host = os.environ.get('REMOTE_PDB_HOST', '127.0.0.1') if port is None: port = int(os.environ.get('REMOTE_PDB_PORT', '0')) rdb = RemotePdb(host=host, port=port, patch_stdstreams=patch_stdstreams) rdb.set_trace(frame=sys._getframe().f_back)
[ "def", "set_trace", "(", "host", "=", "None", ",", "port", "=", "None", ",", "patch_stdstreams", "=", "False", ")", ":", "if", "host", "is", "None", ":", "host", "=", "os", ".", "environ", ".", "get", "(", "'REMOTE_PDB_HOST'", ",", "'127.0.0.1'", ")", "if", "port", "is", "None", ":", "port", "=", "int", "(", "os", ".", "environ", ".", "get", "(", "'REMOTE_PDB_PORT'", ",", "'0'", ")", ")", "rdb", "=", "RemotePdb", "(", "host", "=", "host", ",", "port", "=", "port", ",", "patch_stdstreams", "=", "patch_stdstreams", ")", "rdb", ".", "set_trace", "(", "frame", "=", "sys", ".", "_getframe", "(", ")", ".", "f_back", ")" ]
Opens a remote PDB on first available port.
[ "Opens", "a", "remote", "PDB", "on", "first", "available", "port", "." ]
152b4af3b8da282bbba1fc6b62f85d5cdf70be6e
https://github.com/ionelmc/python-remote-pdb/blob/152b4af3b8da282bbba1fc6b62f85d5cdf70be6e/src/remote_pdb.py#L121-L130
train
nschloe/optimesh
optimesh/cvt/lloyd.py
quasi_newton_uniform_lloyd
def quasi_newton_uniform_lloyd(points, cells, *args, omega=1.0, **kwargs): """Relaxed Lloyd's algorithm. omega=1 leads to Lloyd's algorithm, overrelaxation omega=2 gives good results. Check out Xiao Xiao, Over-Relaxation Lloyd Method For Computing Centroidal Voronoi Tessellations, Master's thesis, <https://scholarcommons.sc.edu/etd/295/>. Everything above omega=2 can lead to flickering, i.e., rapidly alternating updates and bad meshes. """ def get_new_points(mesh): x = ( mesh.node_coords - omega / 2 * jac_uniform(mesh) / mesh.control_volumes[:, None] ) # update boundary and ghosts idx = mesh.is_boundary_node & ~ghosted_mesh.is_ghost_point x[idx] = mesh.node_coords[idx] x[ghosted_mesh.is_ghost_point] = ghosted_mesh.reflect_ghost( x[ghosted_mesh.mirrors] ) return x ghosted_mesh = GhostedMesh(points, cells) runner( get_new_points, ghosted_mesh, *args, **kwargs, update_topology=lambda mesh: ghosted_mesh.update_topology(), # get_stats_mesh=lambda mesh: ghosted_mesh.get_unghosted_mesh(), ) mesh = ghosted_mesh.get_unghosted_mesh() return mesh.node_coords, mesh.cells["nodes"]
python
def quasi_newton_uniform_lloyd(points, cells, *args, omega=1.0, **kwargs): """Relaxed Lloyd's algorithm. omega=1 leads to Lloyd's algorithm, overrelaxation omega=2 gives good results. Check out Xiao Xiao, Over-Relaxation Lloyd Method For Computing Centroidal Voronoi Tessellations, Master's thesis, <https://scholarcommons.sc.edu/etd/295/>. Everything above omega=2 can lead to flickering, i.e., rapidly alternating updates and bad meshes. """ def get_new_points(mesh): x = ( mesh.node_coords - omega / 2 * jac_uniform(mesh) / mesh.control_volumes[:, None] ) # update boundary and ghosts idx = mesh.is_boundary_node & ~ghosted_mesh.is_ghost_point x[idx] = mesh.node_coords[idx] x[ghosted_mesh.is_ghost_point] = ghosted_mesh.reflect_ghost( x[ghosted_mesh.mirrors] ) return x ghosted_mesh = GhostedMesh(points, cells) runner( get_new_points, ghosted_mesh, *args, **kwargs, update_topology=lambda mesh: ghosted_mesh.update_topology(), # get_stats_mesh=lambda mesh: ghosted_mesh.get_unghosted_mesh(), ) mesh = ghosted_mesh.get_unghosted_mesh() return mesh.node_coords, mesh.cells["nodes"]
[ "def", "quasi_newton_uniform_lloyd", "(", "points", ",", "cells", ",", "*", "args", ",", "omega", "=", "1.0", ",", "*", "*", "kwargs", ")", ":", "def", "get_new_points", "(", "mesh", ")", ":", "x", "=", "(", "mesh", ".", "node_coords", "-", "omega", "/", "2", "*", "jac_uniform", "(", "mesh", ")", "/", "mesh", ".", "control_volumes", "[", ":", ",", "None", "]", ")", "# update boundary and ghosts", "idx", "=", "mesh", ".", "is_boundary_node", "&", "~", "ghosted_mesh", ".", "is_ghost_point", "x", "[", "idx", "]", "=", "mesh", ".", "node_coords", "[", "idx", "]", "x", "[", "ghosted_mesh", ".", "is_ghost_point", "]", "=", "ghosted_mesh", ".", "reflect_ghost", "(", "x", "[", "ghosted_mesh", ".", "mirrors", "]", ")", "return", "x", "ghosted_mesh", "=", "GhostedMesh", "(", "points", ",", "cells", ")", "runner", "(", "get_new_points", ",", "ghosted_mesh", ",", "*", "args", ",", "*", "*", "kwargs", ",", "update_topology", "=", "lambda", "mesh", ":", "ghosted_mesh", ".", "update_topology", "(", ")", ",", "# get_stats_mesh=lambda mesh: ghosted_mesh.get_unghosted_mesh(),", ")", "mesh", "=", "ghosted_mesh", ".", "get_unghosted_mesh", "(", ")", "return", "mesh", ".", "node_coords", ",", "mesh", ".", "cells", "[", "\"nodes\"", "]" ]
Relaxed Lloyd's algorithm. omega=1 leads to Lloyd's algorithm, overrelaxation omega=2 gives good results. Check out Xiao Xiao, Over-Relaxation Lloyd Method For Computing Centroidal Voronoi Tessellations, Master's thesis, <https://scholarcommons.sc.edu/etd/295/>. Everything above omega=2 can lead to flickering, i.e., rapidly alternating updates and bad meshes.
[ "Relaxed", "Lloyd", "s", "algorithm", ".", "omega", "=", "1", "leads", "to", "Lloyd", "s", "algorithm", "overrelaxation", "omega", "=", "2", "gives", "good", "results", ".", "Check", "out" ]
b85f48d1559a51a01cc3df6214c61ca8ad5ed786
https://github.com/nschloe/optimesh/blob/b85f48d1559a51a01cc3df6214c61ca8ad5ed786/optimesh/cvt/lloyd.py#L8-L46
train
nschloe/optimesh
optimesh/cpt.py
_energy_uniform_per_node
def _energy_uniform_per_node(X, cells): """The CPT mesh energy is defined as sum_i E_i, E_i = 1/(d+1) * sum int_{omega_i} ||x - x_i||^2 rho(x) dx, see Chen-Holst. This method gives the E_i and assumes uniform density, rho(x) = 1. """ dim = 2 mesh = MeshTri(X, cells) star_integrals = numpy.zeros(mesh.node_coords.shape[0]) # Python loop over the cells... slow! for cell, cell_volume in zip(mesh.cells["nodes"], mesh.cell_volumes): for idx in cell: xi = mesh.node_coords[idx] tri = mesh.node_coords[cell] val = quadpy.triangle.integrate( lambda x: numpy.einsum("ij,ij->i", x.T - xi, x.T - xi), tri, # Take any scheme with order 2 quadpy.triangle.Dunavant(2), ) star_integrals[idx] += val return star_integrals / (dim + 1)
python
def _energy_uniform_per_node(X, cells): """The CPT mesh energy is defined as sum_i E_i, E_i = 1/(d+1) * sum int_{omega_i} ||x - x_i||^2 rho(x) dx, see Chen-Holst. This method gives the E_i and assumes uniform density, rho(x) = 1. """ dim = 2 mesh = MeshTri(X, cells) star_integrals = numpy.zeros(mesh.node_coords.shape[0]) # Python loop over the cells... slow! for cell, cell_volume in zip(mesh.cells["nodes"], mesh.cell_volumes): for idx in cell: xi = mesh.node_coords[idx] tri = mesh.node_coords[cell] val = quadpy.triangle.integrate( lambda x: numpy.einsum("ij,ij->i", x.T - xi, x.T - xi), tri, # Take any scheme with order 2 quadpy.triangle.Dunavant(2), ) star_integrals[idx] += val return star_integrals / (dim + 1)
[ "def", "_energy_uniform_per_node", "(", "X", ",", "cells", ")", ":", "dim", "=", "2", "mesh", "=", "MeshTri", "(", "X", ",", "cells", ")", "star_integrals", "=", "numpy", ".", "zeros", "(", "mesh", ".", "node_coords", ".", "shape", "[", "0", "]", ")", "# Python loop over the cells... slow!", "for", "cell", ",", "cell_volume", "in", "zip", "(", "mesh", ".", "cells", "[", "\"nodes\"", "]", ",", "mesh", ".", "cell_volumes", ")", ":", "for", "idx", "in", "cell", ":", "xi", "=", "mesh", ".", "node_coords", "[", "idx", "]", "tri", "=", "mesh", ".", "node_coords", "[", "cell", "]", "val", "=", "quadpy", ".", "triangle", ".", "integrate", "(", "lambda", "x", ":", "numpy", ".", "einsum", "(", "\"ij,ij->i\"", ",", "x", ".", "T", "-", "xi", ",", "x", ".", "T", "-", "xi", ")", ",", "tri", ",", "# Take any scheme with order 2", "quadpy", ".", "triangle", ".", "Dunavant", "(", "2", ")", ",", ")", "star_integrals", "[", "idx", "]", "+=", "val", "return", "star_integrals", "/", "(", "dim", "+", "1", ")" ]
The CPT mesh energy is defined as sum_i E_i, E_i = 1/(d+1) * sum int_{omega_i} ||x - x_i||^2 rho(x) dx, see Chen-Holst. This method gives the E_i and assumes uniform density, rho(x) = 1.
[ "The", "CPT", "mesh", "energy", "is", "defined", "as" ]
b85f48d1559a51a01cc3df6214c61ca8ad5ed786
https://github.com/nschloe/optimesh/blob/b85f48d1559a51a01cc3df6214c61ca8ad5ed786/optimesh/cpt.py#L91-L116
train
nschloe/optimesh
optimesh/cpt.py
jac_uniform
def jac_uniform(X, cells): """The approximated Jacobian is partial_i E = 2/(d+1) (x_i int_{omega_i} rho(x) dx - int_{omega_i} x rho(x) dx) = 2/(d+1) sum_{tau_j in omega_i} (x_i - b_{j, rho}) int_{tau_j} rho, see Chen-Holst. This method here assumes uniform density, rho(x) = 1, such that partial_i E = 2/(d+1) sum_{tau_j in omega_i} (x_i - b_j) |tau_j| with b_j being the ordinary barycenter. """ dim = 2 mesh = MeshTri(X, cells) jac = numpy.zeros(X.shape) for k in range(mesh.cells["nodes"].shape[1]): i = mesh.cells["nodes"][:, k] fastfunc.add.at( jac, i, ((mesh.node_coords[i] - mesh.cell_barycenters).T * mesh.cell_volumes).T, ) return 2 / (dim + 1) * jac
python
def jac_uniform(X, cells): """The approximated Jacobian is partial_i E = 2/(d+1) (x_i int_{omega_i} rho(x) dx - int_{omega_i} x rho(x) dx) = 2/(d+1) sum_{tau_j in omega_i} (x_i - b_{j, rho}) int_{tau_j} rho, see Chen-Holst. This method here assumes uniform density, rho(x) = 1, such that partial_i E = 2/(d+1) sum_{tau_j in omega_i} (x_i - b_j) |tau_j| with b_j being the ordinary barycenter. """ dim = 2 mesh = MeshTri(X, cells) jac = numpy.zeros(X.shape) for k in range(mesh.cells["nodes"].shape[1]): i = mesh.cells["nodes"][:, k] fastfunc.add.at( jac, i, ((mesh.node_coords[i] - mesh.cell_barycenters).T * mesh.cell_volumes).T, ) return 2 / (dim + 1) * jac
[ "def", "jac_uniform", "(", "X", ",", "cells", ")", ":", "dim", "=", "2", "mesh", "=", "MeshTri", "(", "X", ",", "cells", ")", "jac", "=", "numpy", ".", "zeros", "(", "X", ".", "shape", ")", "for", "k", "in", "range", "(", "mesh", ".", "cells", "[", "\"nodes\"", "]", ".", "shape", "[", "1", "]", ")", ":", "i", "=", "mesh", ".", "cells", "[", "\"nodes\"", "]", "[", ":", ",", "k", "]", "fastfunc", ".", "add", ".", "at", "(", "jac", ",", "i", ",", "(", "(", "mesh", ".", "node_coords", "[", "i", "]", "-", "mesh", ".", "cell_barycenters", ")", ".", "T", "*", "mesh", ".", "cell_volumes", ")", ".", "T", ",", ")", "return", "2", "/", "(", "dim", "+", "1", ")", "*", "jac" ]
The approximated Jacobian is partial_i E = 2/(d+1) (x_i int_{omega_i} rho(x) dx - int_{omega_i} x rho(x) dx) = 2/(d+1) sum_{tau_j in omega_i} (x_i - b_{j, rho}) int_{tau_j} rho, see Chen-Holst. This method here assumes uniform density, rho(x) = 1, such that partial_i E = 2/(d+1) sum_{tau_j in omega_i} (x_i - b_j) |tau_j| with b_j being the ordinary barycenter.
[ "The", "approximated", "Jacobian", "is" ]
b85f48d1559a51a01cc3df6214c61ca8ad5ed786
https://github.com/nschloe/optimesh/blob/b85f48d1559a51a01cc3df6214c61ca8ad5ed786/optimesh/cpt.py#L123-L147
train
nschloe/optimesh
optimesh/cpt.py
solve_hessian_approx_uniform
def solve_hessian_approx_uniform(X, cells, rhs): """As discussed above, the approximated Jacobian is partial_i E = 2/(d+1) sum_{tau_j in omega_i} (x_i - b_j) |tau_j|. To get the Hessian, we have to form its derivative. As a simplifications, let us assume again that |tau_j| is independent of the node positions. Then we get partial_ii E = 2/(d+1) |omega_i| - 2/(d+1)**2 |omega_i|, partial_ij E = -2/(d+1)**2 |tau_j|. The terms with (d+1)**2 are from the barycenter in `partial_i E`. It turns out from numerical experiments that the negative term in `partial_ii E` is detrimental to the convergence. Hence, this approximated Hessian solver only considers the off-diagonal contributions from the barycentric terms. """ dim = 2 mesh = MeshTri(X, cells) # Create matrix in IJV format row_idx = [] col_idx = [] val = [] cells = mesh.cells["nodes"].T n = X.shape[0] # Main diagonal, 2/(d+1) |omega_i| x_i a = mesh.cell_volumes * (2 / (dim + 1)) for i in [0, 1, 2]: row_idx += [cells[i]] col_idx += [cells[i]] val += [a] # terms corresponding to -2/(d+1) * b_j |tau_j| a = mesh.cell_volumes * (2 / (dim + 1) ** 2) for i in [[0, 1, 2], [1, 2, 0], [2, 0, 1]]: edges = cells[i] # Leads to funny osciilatory movements # row_idx += [edges[0], edges[0], edges[0]] # col_idx += [edges[0], edges[1], edges[2]] # val += [-a, -a, -a] # Best so far row_idx += [edges[0], edges[0]] col_idx += [edges[1], edges[2]] val += [-a, -a] row_idx = numpy.concatenate(row_idx) col_idx = numpy.concatenate(col_idx) val = numpy.concatenate(val) # Set Dirichlet conditions on the boundary matrix = scipy.sparse.coo_matrix((val, (row_idx, col_idx)), shape=(n, n)) # Transform to CSR format for efficiency matrix = matrix.tocsr() # Apply Dirichlet conditions. # Set all Dirichlet rows to 0. for i in numpy.where(mesh.is_boundary_node)[0]: matrix.data[matrix.indptr[i] : matrix.indptr[i + 1]] = 0.0 # Set the diagonal and RHS. d = matrix.diagonal() d[mesh.is_boundary_node] = 1.0 matrix.setdiag(d) rhs[mesh.is_boundary_node] = 0.0 out = scipy.sparse.linalg.spsolve(matrix, rhs) # PyAMG fails on circleci. # ml = pyamg.ruge_stuben_solver(matrix) # # Keep an eye on multiple rhs-solves in pyamg, # # <https://github.com/pyamg/pyamg/issues/215>. # tol = 1.0e-10 # out = numpy.column_stack( # [ml.solve(rhs[:, 0], tol=tol), ml.solve(rhs[:, 1], tol=tol)] # ) return out
python
def solve_hessian_approx_uniform(X, cells, rhs): """As discussed above, the approximated Jacobian is partial_i E = 2/(d+1) sum_{tau_j in omega_i} (x_i - b_j) |tau_j|. To get the Hessian, we have to form its derivative. As a simplifications, let us assume again that |tau_j| is independent of the node positions. Then we get partial_ii E = 2/(d+1) |omega_i| - 2/(d+1)**2 |omega_i|, partial_ij E = -2/(d+1)**2 |tau_j|. The terms with (d+1)**2 are from the barycenter in `partial_i E`. It turns out from numerical experiments that the negative term in `partial_ii E` is detrimental to the convergence. Hence, this approximated Hessian solver only considers the off-diagonal contributions from the barycentric terms. """ dim = 2 mesh = MeshTri(X, cells) # Create matrix in IJV format row_idx = [] col_idx = [] val = [] cells = mesh.cells["nodes"].T n = X.shape[0] # Main diagonal, 2/(d+1) |omega_i| x_i a = mesh.cell_volumes * (2 / (dim + 1)) for i in [0, 1, 2]: row_idx += [cells[i]] col_idx += [cells[i]] val += [a] # terms corresponding to -2/(d+1) * b_j |tau_j| a = mesh.cell_volumes * (2 / (dim + 1) ** 2) for i in [[0, 1, 2], [1, 2, 0], [2, 0, 1]]: edges = cells[i] # Leads to funny osciilatory movements # row_idx += [edges[0], edges[0], edges[0]] # col_idx += [edges[0], edges[1], edges[2]] # val += [-a, -a, -a] # Best so far row_idx += [edges[0], edges[0]] col_idx += [edges[1], edges[2]] val += [-a, -a] row_idx = numpy.concatenate(row_idx) col_idx = numpy.concatenate(col_idx) val = numpy.concatenate(val) # Set Dirichlet conditions on the boundary matrix = scipy.sparse.coo_matrix((val, (row_idx, col_idx)), shape=(n, n)) # Transform to CSR format for efficiency matrix = matrix.tocsr() # Apply Dirichlet conditions. # Set all Dirichlet rows to 0. for i in numpy.where(mesh.is_boundary_node)[0]: matrix.data[matrix.indptr[i] : matrix.indptr[i + 1]] = 0.0 # Set the diagonal and RHS. d = matrix.diagonal() d[mesh.is_boundary_node] = 1.0 matrix.setdiag(d) rhs[mesh.is_boundary_node] = 0.0 out = scipy.sparse.linalg.spsolve(matrix, rhs) # PyAMG fails on circleci. # ml = pyamg.ruge_stuben_solver(matrix) # # Keep an eye on multiple rhs-solves in pyamg, # # <https://github.com/pyamg/pyamg/issues/215>. # tol = 1.0e-10 # out = numpy.column_stack( # [ml.solve(rhs[:, 0], tol=tol), ml.solve(rhs[:, 1], tol=tol)] # ) return out
[ "def", "solve_hessian_approx_uniform", "(", "X", ",", "cells", ",", "rhs", ")", ":", "dim", "=", "2", "mesh", "=", "MeshTri", "(", "X", ",", "cells", ")", "# Create matrix in IJV format", "row_idx", "=", "[", "]", "col_idx", "=", "[", "]", "val", "=", "[", "]", "cells", "=", "mesh", ".", "cells", "[", "\"nodes\"", "]", ".", "T", "n", "=", "X", ".", "shape", "[", "0", "]", "# Main diagonal, 2/(d+1) |omega_i| x_i", "a", "=", "mesh", ".", "cell_volumes", "*", "(", "2", "/", "(", "dim", "+", "1", ")", ")", "for", "i", "in", "[", "0", ",", "1", ",", "2", "]", ":", "row_idx", "+=", "[", "cells", "[", "i", "]", "]", "col_idx", "+=", "[", "cells", "[", "i", "]", "]", "val", "+=", "[", "a", "]", "# terms corresponding to -2/(d+1) * b_j |tau_j|", "a", "=", "mesh", ".", "cell_volumes", "*", "(", "2", "/", "(", "dim", "+", "1", ")", "**", "2", ")", "for", "i", "in", "[", "[", "0", ",", "1", ",", "2", "]", ",", "[", "1", ",", "2", ",", "0", "]", ",", "[", "2", ",", "0", ",", "1", "]", "]", ":", "edges", "=", "cells", "[", "i", "]", "# Leads to funny osciilatory movements", "# row_idx += [edges[0], edges[0], edges[0]]", "# col_idx += [edges[0], edges[1], edges[2]]", "# val += [-a, -a, -a]", "# Best so far", "row_idx", "+=", "[", "edges", "[", "0", "]", ",", "edges", "[", "0", "]", "]", "col_idx", "+=", "[", "edges", "[", "1", "]", ",", "edges", "[", "2", "]", "]", "val", "+=", "[", "-", "a", ",", "-", "a", "]", "row_idx", "=", "numpy", ".", "concatenate", "(", "row_idx", ")", "col_idx", "=", "numpy", ".", "concatenate", "(", "col_idx", ")", "val", "=", "numpy", ".", "concatenate", "(", "val", ")", "# Set Dirichlet conditions on the boundary", "matrix", "=", "scipy", ".", "sparse", ".", "coo_matrix", "(", "(", "val", ",", "(", "row_idx", ",", "col_idx", ")", ")", ",", "shape", "=", "(", "n", ",", "n", ")", ")", "# Transform to CSR format for efficiency", "matrix", "=", "matrix", ".", "tocsr", "(", ")", "# Apply Dirichlet conditions.", "# Set all Dirichlet rows to 0.", "for", "i", "in", "numpy", ".", "where", "(", "mesh", ".", "is_boundary_node", ")", "[", "0", "]", ":", "matrix", ".", "data", "[", "matrix", ".", "indptr", "[", "i", "]", ":", "matrix", ".", "indptr", "[", "i", "+", "1", "]", "]", "=", "0.0", "# Set the diagonal and RHS.", "d", "=", "matrix", ".", "diagonal", "(", ")", "d", "[", "mesh", ".", "is_boundary_node", "]", "=", "1.0", "matrix", ".", "setdiag", "(", "d", ")", "rhs", "[", "mesh", ".", "is_boundary_node", "]", "=", "0.0", "out", "=", "scipy", ".", "sparse", ".", "linalg", ".", "spsolve", "(", "matrix", ",", "rhs", ")", "# PyAMG fails on circleci.", "# ml = pyamg.ruge_stuben_solver(matrix)", "# # Keep an eye on multiple rhs-solves in pyamg,", "# # <https://github.com/pyamg/pyamg/issues/215>.", "# tol = 1.0e-10", "# out = numpy.column_stack(", "# [ml.solve(rhs[:, 0], tol=tol), ml.solve(rhs[:, 1], tol=tol)]", "# )", "return", "out" ]
As discussed above, the approximated Jacobian is partial_i E = 2/(d+1) sum_{tau_j in omega_i} (x_i - b_j) |tau_j|. To get the Hessian, we have to form its derivative. As a simplifications, let us assume again that |tau_j| is independent of the node positions. Then we get partial_ii E = 2/(d+1) |omega_i| - 2/(d+1)**2 |omega_i|, partial_ij E = -2/(d+1)**2 |tau_j|. The terms with (d+1)**2 are from the barycenter in `partial_i E`. It turns out from numerical experiments that the negative term in `partial_ii E` is detrimental to the convergence. Hence, this approximated Hessian solver only considers the off-diagonal contributions from the barycentric terms.
[ "As", "discussed", "above", "the", "approximated", "Jacobian", "is" ]
b85f48d1559a51a01cc3df6214c61ca8ad5ed786
https://github.com/nschloe/optimesh/blob/b85f48d1559a51a01cc3df6214c61ca8ad5ed786/optimesh/cpt.py#L150-L227
train
nschloe/optimesh
optimesh/cpt.py
quasi_newton_uniform
def quasi_newton_uniform(points, cells, *args, **kwargs): """Like linear_solve above, but assuming rho==1. Note that the energy gradient \\partial E_i = 2/(d+1) sum_{tau_j in omega_i} (x_i - b_j) \\int_{tau_j} rho becomes \\partial E_i = 2/(d+1) sum_{tau_j in omega_i} (x_i - b_j) |tau_j|. Because of the dependence of |tau_j| on the point coordinates, this is a nonlinear problem. This method makes the simplifying assumption that |tau_j| does in fact _not_ depend on the point coordinates. With this, one still only needs to solve a linear system. """ def get_new_points(mesh): # do one Newton step # TODO need copy? x = mesh.node_coords.copy() cells = mesh.cells["nodes"] jac_x = jac_uniform(x, cells) x -= solve_hessian_approx_uniform(x, cells, jac_x) return x mesh = MeshTri(points, cells) runner(get_new_points, mesh, *args, **kwargs) return mesh.node_coords, mesh.cells["nodes"]
python
def quasi_newton_uniform(points, cells, *args, **kwargs): """Like linear_solve above, but assuming rho==1. Note that the energy gradient \\partial E_i = 2/(d+1) sum_{tau_j in omega_i} (x_i - b_j) \\int_{tau_j} rho becomes \\partial E_i = 2/(d+1) sum_{tau_j in omega_i} (x_i - b_j) |tau_j|. Because of the dependence of |tau_j| on the point coordinates, this is a nonlinear problem. This method makes the simplifying assumption that |tau_j| does in fact _not_ depend on the point coordinates. With this, one still only needs to solve a linear system. """ def get_new_points(mesh): # do one Newton step # TODO need copy? x = mesh.node_coords.copy() cells = mesh.cells["nodes"] jac_x = jac_uniform(x, cells) x -= solve_hessian_approx_uniform(x, cells, jac_x) return x mesh = MeshTri(points, cells) runner(get_new_points, mesh, *args, **kwargs) return mesh.node_coords, mesh.cells["nodes"]
[ "def", "quasi_newton_uniform", "(", "points", ",", "cells", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "def", "get_new_points", "(", "mesh", ")", ":", "# do one Newton step", "# TODO need copy?", "x", "=", "mesh", ".", "node_coords", ".", "copy", "(", ")", "cells", "=", "mesh", ".", "cells", "[", "\"nodes\"", "]", "jac_x", "=", "jac_uniform", "(", "x", ",", "cells", ")", "x", "-=", "solve_hessian_approx_uniform", "(", "x", ",", "cells", ",", "jac_x", ")", "return", "x", "mesh", "=", "MeshTri", "(", "points", ",", "cells", ")", "runner", "(", "get_new_points", ",", "mesh", ",", "*", "args", ",", "*", "*", "kwargs", ")", "return", "mesh", ".", "node_coords", ",", "mesh", ".", "cells", "[", "\"nodes\"", "]" ]
Like linear_solve above, but assuming rho==1. Note that the energy gradient \\partial E_i = 2/(d+1) sum_{tau_j in omega_i} (x_i - b_j) \\int_{tau_j} rho becomes \\partial E_i = 2/(d+1) sum_{tau_j in omega_i} (x_i - b_j) |tau_j|. Because of the dependence of |tau_j| on the point coordinates, this is a nonlinear problem. This method makes the simplifying assumption that |tau_j| does in fact _not_ depend on the point coordinates. With this, one still only needs to solve a linear system.
[ "Like", "linear_solve", "above", "but", "assuming", "rho", "==", "1", ".", "Note", "that", "the", "energy", "gradient" ]
b85f48d1559a51a01cc3df6214c61ca8ad5ed786
https://github.com/nschloe/optimesh/blob/b85f48d1559a51a01cc3df6214c61ca8ad5ed786/optimesh/cpt.py#L230-L257
train
nschloe/optimesh
optimesh/laplace.py
fixed_point
def fixed_point(points, cells, *args, **kwargs): """Perform k steps of Laplacian smoothing to the mesh, i.e., moving each interior vertex to the arithmetic average of its neighboring points. """ def get_new_points(mesh): # move interior points into average of their neighbors num_neighbors = numpy.zeros(len(mesh.node_coords), dtype=int) idx = mesh.edges["nodes"] fastfunc.add.at(num_neighbors, idx, numpy.ones(idx.shape, dtype=int)) new_points = numpy.zeros(mesh.node_coords.shape) fastfunc.add.at(new_points, idx[:, 0], mesh.node_coords[idx[:, 1]]) fastfunc.add.at(new_points, idx[:, 1], mesh.node_coords[idx[:, 0]]) new_points /= num_neighbors[:, None] idx = mesh.is_boundary_node new_points[idx] = mesh.node_coords[idx] return new_points mesh = MeshTri(points, cells) runner(get_new_points, mesh, *args, **kwargs) return mesh.node_coords, mesh.cells["nodes"]
python
def fixed_point(points, cells, *args, **kwargs): """Perform k steps of Laplacian smoothing to the mesh, i.e., moving each interior vertex to the arithmetic average of its neighboring points. """ def get_new_points(mesh): # move interior points into average of their neighbors num_neighbors = numpy.zeros(len(mesh.node_coords), dtype=int) idx = mesh.edges["nodes"] fastfunc.add.at(num_neighbors, idx, numpy.ones(idx.shape, dtype=int)) new_points = numpy.zeros(mesh.node_coords.shape) fastfunc.add.at(new_points, idx[:, 0], mesh.node_coords[idx[:, 1]]) fastfunc.add.at(new_points, idx[:, 1], mesh.node_coords[idx[:, 0]]) new_points /= num_neighbors[:, None] idx = mesh.is_boundary_node new_points[idx] = mesh.node_coords[idx] return new_points mesh = MeshTri(points, cells) runner(get_new_points, mesh, *args, **kwargs) return mesh.node_coords, mesh.cells["nodes"]
[ "def", "fixed_point", "(", "points", ",", "cells", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "def", "get_new_points", "(", "mesh", ")", ":", "# move interior points into average of their neighbors", "num_neighbors", "=", "numpy", ".", "zeros", "(", "len", "(", "mesh", ".", "node_coords", ")", ",", "dtype", "=", "int", ")", "idx", "=", "mesh", ".", "edges", "[", "\"nodes\"", "]", "fastfunc", ".", "add", ".", "at", "(", "num_neighbors", ",", "idx", ",", "numpy", ".", "ones", "(", "idx", ".", "shape", ",", "dtype", "=", "int", ")", ")", "new_points", "=", "numpy", ".", "zeros", "(", "mesh", ".", "node_coords", ".", "shape", ")", "fastfunc", ".", "add", ".", "at", "(", "new_points", ",", "idx", "[", ":", ",", "0", "]", ",", "mesh", ".", "node_coords", "[", "idx", "[", ":", ",", "1", "]", "]", ")", "fastfunc", ".", "add", ".", "at", "(", "new_points", ",", "idx", "[", ":", ",", "1", "]", ",", "mesh", ".", "node_coords", "[", "idx", "[", ":", ",", "0", "]", "]", ")", "new_points", "/=", "num_neighbors", "[", ":", ",", "None", "]", "idx", "=", "mesh", ".", "is_boundary_node", "new_points", "[", "idx", "]", "=", "mesh", ".", "node_coords", "[", "idx", "]", "return", "new_points", "mesh", "=", "MeshTri", "(", "points", ",", "cells", ")", "runner", "(", "get_new_points", ",", "mesh", ",", "*", "args", ",", "*", "*", "kwargs", ")", "return", "mesh", ".", "node_coords", ",", "mesh", ".", "cells", "[", "\"nodes\"", "]" ]
Perform k steps of Laplacian smoothing to the mesh, i.e., moving each interior vertex to the arithmetic average of its neighboring points.
[ "Perform", "k", "steps", "of", "Laplacian", "smoothing", "to", "the", "mesh", "i", ".", "e", ".", "moving", "each", "interior", "vertex", "to", "the", "arithmetic", "average", "of", "its", "neighboring", "points", "." ]
b85f48d1559a51a01cc3df6214c61ca8ad5ed786
https://github.com/nschloe/optimesh/blob/b85f48d1559a51a01cc3df6214c61ca8ad5ed786/optimesh/laplace.py#L12-L34
train
nschloe/optimesh
optimesh/odt.py
energy
def energy(mesh, uniform_density=False): """The mesh energy is defined as E = int_Omega |u_l(x) - u(x)| rho(x) dx where u(x) = ||x||^2 and u_l is its piecewise linearization on the mesh. """ # E = 1/(d+1) sum_i ||x_i||^2 |omega_i| - int_Omega_i ||x||^2 dim = mesh.cells["nodes"].shape[1] - 1 star_volume = numpy.zeros(mesh.node_coords.shape[0]) for i in range(3): idx = mesh.cells["nodes"][:, i] if uniform_density: # rho = 1, # int_{star} phi_i * rho = 1/(d+1) sum_{triangles in star} |triangle| fastfunc.add.at(star_volume, idx, mesh.cell_volumes) else: # rho = 1 / tau_j, # int_{star} phi_i * rho = 1/(d+1) |num triangles in star| fastfunc.add.at(star_volume, idx, numpy.ones(idx.shape, dtype=float)) x2 = numpy.einsum("ij,ij->i", mesh.node_coords, mesh.node_coords) out = 1 / (dim + 1) * numpy.dot(star_volume, x2) # could be cached assert dim == 2 x = mesh.node_coords[:, :2] triangles = numpy.moveaxis(x[mesh.cells["nodes"]], 0, 1) val = quadpy.triangle.integrate( lambda x: x[0] ** 2 + x[1] ** 2, triangles, # Take any scheme with order 2 quadpy.triangle.Dunavant(2), ) if uniform_density: val = numpy.sum(val) else: rho = 1.0 / mesh.cell_volumes val = numpy.dot(val, rho) assert out >= val return out - val
python
def energy(mesh, uniform_density=False): """The mesh energy is defined as E = int_Omega |u_l(x) - u(x)| rho(x) dx where u(x) = ||x||^2 and u_l is its piecewise linearization on the mesh. """ # E = 1/(d+1) sum_i ||x_i||^2 |omega_i| - int_Omega_i ||x||^2 dim = mesh.cells["nodes"].shape[1] - 1 star_volume = numpy.zeros(mesh.node_coords.shape[0]) for i in range(3): idx = mesh.cells["nodes"][:, i] if uniform_density: # rho = 1, # int_{star} phi_i * rho = 1/(d+1) sum_{triangles in star} |triangle| fastfunc.add.at(star_volume, idx, mesh.cell_volumes) else: # rho = 1 / tau_j, # int_{star} phi_i * rho = 1/(d+1) |num triangles in star| fastfunc.add.at(star_volume, idx, numpy.ones(idx.shape, dtype=float)) x2 = numpy.einsum("ij,ij->i", mesh.node_coords, mesh.node_coords) out = 1 / (dim + 1) * numpy.dot(star_volume, x2) # could be cached assert dim == 2 x = mesh.node_coords[:, :2] triangles = numpy.moveaxis(x[mesh.cells["nodes"]], 0, 1) val = quadpy.triangle.integrate( lambda x: x[0] ** 2 + x[1] ** 2, triangles, # Take any scheme with order 2 quadpy.triangle.Dunavant(2), ) if uniform_density: val = numpy.sum(val) else: rho = 1.0 / mesh.cell_volumes val = numpy.dot(val, rho) assert out >= val return out - val
[ "def", "energy", "(", "mesh", ",", "uniform_density", "=", "False", ")", ":", "# E = 1/(d+1) sum_i ||x_i||^2 |omega_i| - int_Omega_i ||x||^2", "dim", "=", "mesh", ".", "cells", "[", "\"nodes\"", "]", ".", "shape", "[", "1", "]", "-", "1", "star_volume", "=", "numpy", ".", "zeros", "(", "mesh", ".", "node_coords", ".", "shape", "[", "0", "]", ")", "for", "i", "in", "range", "(", "3", ")", ":", "idx", "=", "mesh", ".", "cells", "[", "\"nodes\"", "]", "[", ":", ",", "i", "]", "if", "uniform_density", ":", "# rho = 1,", "# int_{star} phi_i * rho = 1/(d+1) sum_{triangles in star} |triangle|", "fastfunc", ".", "add", ".", "at", "(", "star_volume", ",", "idx", ",", "mesh", ".", "cell_volumes", ")", "else", ":", "# rho = 1 / tau_j,", "# int_{star} phi_i * rho = 1/(d+1) |num triangles in star|", "fastfunc", ".", "add", ".", "at", "(", "star_volume", ",", "idx", ",", "numpy", ".", "ones", "(", "idx", ".", "shape", ",", "dtype", "=", "float", ")", ")", "x2", "=", "numpy", ".", "einsum", "(", "\"ij,ij->i\"", ",", "mesh", ".", "node_coords", ",", "mesh", ".", "node_coords", ")", "out", "=", "1", "/", "(", "dim", "+", "1", ")", "*", "numpy", ".", "dot", "(", "star_volume", ",", "x2", ")", "# could be cached", "assert", "dim", "==", "2", "x", "=", "mesh", ".", "node_coords", "[", ":", ",", ":", "2", "]", "triangles", "=", "numpy", ".", "moveaxis", "(", "x", "[", "mesh", ".", "cells", "[", "\"nodes\"", "]", "]", ",", "0", ",", "1", ")", "val", "=", "quadpy", ".", "triangle", ".", "integrate", "(", "lambda", "x", ":", "x", "[", "0", "]", "**", "2", "+", "x", "[", "1", "]", "**", "2", ",", "triangles", ",", "# Take any scheme with order 2", "quadpy", ".", "triangle", ".", "Dunavant", "(", "2", ")", ",", ")", "if", "uniform_density", ":", "val", "=", "numpy", ".", "sum", "(", "val", ")", "else", ":", "rho", "=", "1.0", "/", "mesh", ".", "cell_volumes", "val", "=", "numpy", ".", "dot", "(", "val", ",", "rho", ")", "assert", "out", ">=", "val", "return", "out", "-", "val" ]
The mesh energy is defined as E = int_Omega |u_l(x) - u(x)| rho(x) dx where u(x) = ||x||^2 and u_l is its piecewise linearization on the mesh.
[ "The", "mesh", "energy", "is", "defined", "as" ]
b85f48d1559a51a01cc3df6214c61ca8ad5ed786
https://github.com/nschloe/optimesh/blob/b85f48d1559a51a01cc3df6214c61ca8ad5ed786/optimesh/odt.py#L28-L70
train
nschloe/optimesh
optimesh/cvt/block_diagonal.py
quasi_newton_uniform_blocks
def quasi_newton_uniform_blocks(points, cells, *args, **kwargs): """Lloyd's algorithm can be though of a diagonal-only Hessian; this method incorporates the diagonal blocks, too. """ def get_new_points(mesh): # TODO need copy? x = mesh.node_coords.copy() x += update(mesh) # update ghosts x[ghosted_mesh.is_ghost_point] = ghosted_mesh.reflect_ghost( x[ghosted_mesh.mirrors] ) return x ghosted_mesh = GhostedMesh(points, cells) runner( get_new_points, ghosted_mesh, *args, **kwargs, update_topology=lambda mesh: ghosted_mesh.update_topology(), # get_stats_mesh=lambda mesh: ghosted_mesh.get_unghosted_mesh(), ) mesh = ghosted_mesh.get_unghosted_mesh() return mesh.node_coords, mesh.cells["nodes"]
python
def quasi_newton_uniform_blocks(points, cells, *args, **kwargs): """Lloyd's algorithm can be though of a diagonal-only Hessian; this method incorporates the diagonal blocks, too. """ def get_new_points(mesh): # TODO need copy? x = mesh.node_coords.copy() x += update(mesh) # update ghosts x[ghosted_mesh.is_ghost_point] = ghosted_mesh.reflect_ghost( x[ghosted_mesh.mirrors] ) return x ghosted_mesh = GhostedMesh(points, cells) runner( get_new_points, ghosted_mesh, *args, **kwargs, update_topology=lambda mesh: ghosted_mesh.update_topology(), # get_stats_mesh=lambda mesh: ghosted_mesh.get_unghosted_mesh(), ) mesh = ghosted_mesh.get_unghosted_mesh() return mesh.node_coords, mesh.cells["nodes"]
[ "def", "quasi_newton_uniform_blocks", "(", "points", ",", "cells", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "def", "get_new_points", "(", "mesh", ")", ":", "# TODO need copy?", "x", "=", "mesh", ".", "node_coords", ".", "copy", "(", ")", "x", "+=", "update", "(", "mesh", ")", "# update ghosts", "x", "[", "ghosted_mesh", ".", "is_ghost_point", "]", "=", "ghosted_mesh", ".", "reflect_ghost", "(", "x", "[", "ghosted_mesh", ".", "mirrors", "]", ")", "return", "x", "ghosted_mesh", "=", "GhostedMesh", "(", "points", ",", "cells", ")", "runner", "(", "get_new_points", ",", "ghosted_mesh", ",", "*", "args", ",", "*", "*", "kwargs", ",", "update_topology", "=", "lambda", "mesh", ":", "ghosted_mesh", ".", "update_topology", "(", ")", ",", "# get_stats_mesh=lambda mesh: ghosted_mesh.get_unghosted_mesh(),", ")", "mesh", "=", "ghosted_mesh", ".", "get_unghosted_mesh", "(", ")", "return", "mesh", ".", "node_coords", ",", "mesh", ".", "cells", "[", "\"nodes\"", "]" ]
Lloyd's algorithm can be though of a diagonal-only Hessian; this method incorporates the diagonal blocks, too.
[ "Lloyd", "s", "algorithm", "can", "be", "though", "of", "a", "diagonal", "-", "only", "Hessian", ";", "this", "method", "incorporates", "the", "diagonal", "blocks", "too", "." ]
b85f48d1559a51a01cc3df6214c61ca8ad5ed786
https://github.com/nschloe/optimesh/blob/b85f48d1559a51a01cc3df6214c61ca8ad5ed786/optimesh/cvt/block_diagonal.py#L12-L39
train
linnarsson-lab/loompy
loompy/loompy.py
new
def new(filename: str, *, file_attrs: Optional[Dict[str, str]] = None) -> LoomConnection: """ Create an empty Loom file, and return it as a context manager. """ if filename.startswith("~/"): filename = os.path.expanduser(filename) if file_attrs is None: file_attrs = {} # Create the file (empty). # Yes, this might cause an exception, which we prefer to send to the caller f = h5py.File(name=filename, mode='w') f.create_group('/layers') f.create_group('/row_attrs') f.create_group('/col_attrs') f.create_group('/row_graphs') f.create_group('/col_graphs') f.flush() f.close() ds = connect(filename, validate=False) for vals in file_attrs: ds.attrs[vals] = file_attrs[vals] # store creation date currentTime = time.localtime(time.time()) ds.attrs['CreationDate'] = timestamp() ds.attrs["LOOM_SPEC_VERSION"] = loompy.loom_spec_version return ds
python
def new(filename: str, *, file_attrs: Optional[Dict[str, str]] = None) -> LoomConnection: """ Create an empty Loom file, and return it as a context manager. """ if filename.startswith("~/"): filename = os.path.expanduser(filename) if file_attrs is None: file_attrs = {} # Create the file (empty). # Yes, this might cause an exception, which we prefer to send to the caller f = h5py.File(name=filename, mode='w') f.create_group('/layers') f.create_group('/row_attrs') f.create_group('/col_attrs') f.create_group('/row_graphs') f.create_group('/col_graphs') f.flush() f.close() ds = connect(filename, validate=False) for vals in file_attrs: ds.attrs[vals] = file_attrs[vals] # store creation date currentTime = time.localtime(time.time()) ds.attrs['CreationDate'] = timestamp() ds.attrs["LOOM_SPEC_VERSION"] = loompy.loom_spec_version return ds
[ "def", "new", "(", "filename", ":", "str", ",", "*", ",", "file_attrs", ":", "Optional", "[", "Dict", "[", "str", ",", "str", "]", "]", "=", "None", ")", "->", "LoomConnection", ":", "if", "filename", ".", "startswith", "(", "\"~/\"", ")", ":", "filename", "=", "os", ".", "path", ".", "expanduser", "(", "filename", ")", "if", "file_attrs", "is", "None", ":", "file_attrs", "=", "{", "}", "# Create the file (empty).", "# Yes, this might cause an exception, which we prefer to send to the caller", "f", "=", "h5py", ".", "File", "(", "name", "=", "filename", ",", "mode", "=", "'w'", ")", "f", ".", "create_group", "(", "'/layers'", ")", "f", ".", "create_group", "(", "'/row_attrs'", ")", "f", ".", "create_group", "(", "'/col_attrs'", ")", "f", ".", "create_group", "(", "'/row_graphs'", ")", "f", ".", "create_group", "(", "'/col_graphs'", ")", "f", ".", "flush", "(", ")", "f", ".", "close", "(", ")", "ds", "=", "connect", "(", "filename", ",", "validate", "=", "False", ")", "for", "vals", "in", "file_attrs", ":", "ds", ".", "attrs", "[", "vals", "]", "=", "file_attrs", "[", "vals", "]", "# store creation date", "currentTime", "=", "time", ".", "localtime", "(", "time", ".", "time", "(", ")", ")", "ds", ".", "attrs", "[", "'CreationDate'", "]", "=", "timestamp", "(", ")", "ds", ".", "attrs", "[", "\"LOOM_SPEC_VERSION\"", "]", "=", "loompy", ".", "loom_spec_version", "return", "ds" ]
Create an empty Loom file, and return it as a context manager.
[ "Create", "an", "empty", "Loom", "file", "and", "return", "it", "as", "a", "context", "manager", "." ]
62c8373a92b058753baa3a95331fb541f560f599
https://github.com/linnarsson-lab/loompy/blob/62c8373a92b058753baa3a95331fb541f560f599/loompy/loompy.py#L993-L1020
train
linnarsson-lab/loompy
loompy/loompy.py
create
def create(filename: str, layers: Union[np.ndarray, Dict[str, np.ndarray], loompy.LayerManager], row_attrs: Union[loompy.AttributeManager, Dict[str, np.ndarray]], col_attrs: Union[loompy.AttributeManager, Dict[str, np.ndarray]], *, file_attrs: Dict[str, str] = None) -> None: """ Create a new Loom file from the given data. Args: filename (str): The filename (typically using a ``.loom`` file extension) layers: One of the following: * Two-dimensional (N-by-M) numpy ndarray of float values * Sparse matrix (e.g. :class:`scipy.sparse.csr_matrix`) * Dictionary of named layers, each an N-by-M ndarray or sparse matrix * A :class:`.LayerManager`, with each layer an N-by-M ndarray row_attrs (dict): Row attributes, where keys are attribute names and values are numpy arrays (float or string) of length N col_attrs (dict): Column attributes, where keys are attribute names and values are numpy arrays (float or string) of length M file_attrs (dict): Global attributes, where keys are attribute names and values are strings Returns: Nothing Remarks: If the file exists, it will be overwritten. """ if isinstance(row_attrs, loompy.AttributeManager): row_attrs = {k: v[:] for k, v in row_attrs.items()} if isinstance(col_attrs, loompy.AttributeManager): col_attrs = {k: v[:] for k, v in col_attrs.items()} if isinstance(layers, np.ndarray) or scipy.sparse.issparse(layers): layers = {"": layers} elif isinstance(layers, loompy.LayerManager): layers = {k: v[:, :] for k, v in layers.items()} if "" not in layers: raise ValueError("Data for default layer must be provided") # Sanity checks shape = layers[""].shape # type: ignore if shape[0] == 0 or shape[1] == 0: raise ValueError("Main matrix cannot be empty") for name, layer in layers.items(): if layer.shape != shape: # type: ignore raise ValueError(f"Layer '{name}' is not the same shape as the main matrix") for name, ra in row_attrs.items(): if ra.shape[0] != shape[0]: raise ValueError(f"Row attribute '{name}' is not the same length ({ra.shape[0]}) as number of rows in main matrix ({shape[0]})") for name, ca in col_attrs.items(): if ca.shape[0] != shape[1]: raise ValueError(f"Column attribute '{name}' is not the same length ({ca.shape[0]}) as number of columns in main matrix ({shape[1]})") try: with new(filename, file_attrs=file_attrs) as ds: for key, vals in layers.items(): ds.layer[key] = vals for key, vals in row_attrs.items(): ds.ra[key] = vals for key, vals in col_attrs.items(): ds.ca[key] = vals except ValueError as ve: #ds.close(suppress_warning=True) # ds does not exist here if os.path.exists(filename): os.remove(filename) raise ve
python
def create(filename: str, layers: Union[np.ndarray, Dict[str, np.ndarray], loompy.LayerManager], row_attrs: Union[loompy.AttributeManager, Dict[str, np.ndarray]], col_attrs: Union[loompy.AttributeManager, Dict[str, np.ndarray]], *, file_attrs: Dict[str, str] = None) -> None: """ Create a new Loom file from the given data. Args: filename (str): The filename (typically using a ``.loom`` file extension) layers: One of the following: * Two-dimensional (N-by-M) numpy ndarray of float values * Sparse matrix (e.g. :class:`scipy.sparse.csr_matrix`) * Dictionary of named layers, each an N-by-M ndarray or sparse matrix * A :class:`.LayerManager`, with each layer an N-by-M ndarray row_attrs (dict): Row attributes, where keys are attribute names and values are numpy arrays (float or string) of length N col_attrs (dict): Column attributes, where keys are attribute names and values are numpy arrays (float or string) of length M file_attrs (dict): Global attributes, where keys are attribute names and values are strings Returns: Nothing Remarks: If the file exists, it will be overwritten. """ if isinstance(row_attrs, loompy.AttributeManager): row_attrs = {k: v[:] for k, v in row_attrs.items()} if isinstance(col_attrs, loompy.AttributeManager): col_attrs = {k: v[:] for k, v in col_attrs.items()} if isinstance(layers, np.ndarray) or scipy.sparse.issparse(layers): layers = {"": layers} elif isinstance(layers, loompy.LayerManager): layers = {k: v[:, :] for k, v in layers.items()} if "" not in layers: raise ValueError("Data for default layer must be provided") # Sanity checks shape = layers[""].shape # type: ignore if shape[0] == 0 or shape[1] == 0: raise ValueError("Main matrix cannot be empty") for name, layer in layers.items(): if layer.shape != shape: # type: ignore raise ValueError(f"Layer '{name}' is not the same shape as the main matrix") for name, ra in row_attrs.items(): if ra.shape[0] != shape[0]: raise ValueError(f"Row attribute '{name}' is not the same length ({ra.shape[0]}) as number of rows in main matrix ({shape[0]})") for name, ca in col_attrs.items(): if ca.shape[0] != shape[1]: raise ValueError(f"Column attribute '{name}' is not the same length ({ca.shape[0]}) as number of columns in main matrix ({shape[1]})") try: with new(filename, file_attrs=file_attrs) as ds: for key, vals in layers.items(): ds.layer[key] = vals for key, vals in row_attrs.items(): ds.ra[key] = vals for key, vals in col_attrs.items(): ds.ca[key] = vals except ValueError as ve: #ds.close(suppress_warning=True) # ds does not exist here if os.path.exists(filename): os.remove(filename) raise ve
[ "def", "create", "(", "filename", ":", "str", ",", "layers", ":", "Union", "[", "np", ".", "ndarray", ",", "Dict", "[", "str", ",", "np", ".", "ndarray", "]", ",", "loompy", ".", "LayerManager", "]", ",", "row_attrs", ":", "Union", "[", "loompy", ".", "AttributeManager", ",", "Dict", "[", "str", ",", "np", ".", "ndarray", "]", "]", ",", "col_attrs", ":", "Union", "[", "loompy", ".", "AttributeManager", ",", "Dict", "[", "str", ",", "np", ".", "ndarray", "]", "]", ",", "*", ",", "file_attrs", ":", "Dict", "[", "str", ",", "str", "]", "=", "None", ")", "->", "None", ":", "if", "isinstance", "(", "row_attrs", ",", "loompy", ".", "AttributeManager", ")", ":", "row_attrs", "=", "{", "k", ":", "v", "[", ":", "]", "for", "k", ",", "v", "in", "row_attrs", ".", "items", "(", ")", "}", "if", "isinstance", "(", "col_attrs", ",", "loompy", ".", "AttributeManager", ")", ":", "col_attrs", "=", "{", "k", ":", "v", "[", ":", "]", "for", "k", ",", "v", "in", "col_attrs", ".", "items", "(", ")", "}", "if", "isinstance", "(", "layers", ",", "np", ".", "ndarray", ")", "or", "scipy", ".", "sparse", ".", "issparse", "(", "layers", ")", ":", "layers", "=", "{", "\"\"", ":", "layers", "}", "elif", "isinstance", "(", "layers", ",", "loompy", ".", "LayerManager", ")", ":", "layers", "=", "{", "k", ":", "v", "[", ":", ",", ":", "]", "for", "k", ",", "v", "in", "layers", ".", "items", "(", ")", "}", "if", "\"\"", "not", "in", "layers", ":", "raise", "ValueError", "(", "\"Data for default layer must be provided\"", ")", "# Sanity checks", "shape", "=", "layers", "[", "\"\"", "]", ".", "shape", "# type: ignore", "if", "shape", "[", "0", "]", "==", "0", "or", "shape", "[", "1", "]", "==", "0", ":", "raise", "ValueError", "(", "\"Main matrix cannot be empty\"", ")", "for", "name", ",", "layer", "in", "layers", ".", "items", "(", ")", ":", "if", "layer", ".", "shape", "!=", "shape", ":", "# type: ignore", "raise", "ValueError", "(", "f\"Layer '{name}' is not the same shape as the main matrix\"", ")", "for", "name", ",", "ra", "in", "row_attrs", ".", "items", "(", ")", ":", "if", "ra", ".", "shape", "[", "0", "]", "!=", "shape", "[", "0", "]", ":", "raise", "ValueError", "(", "f\"Row attribute '{name}' is not the same length ({ra.shape[0]}) as number of rows in main matrix ({shape[0]})\"", ")", "for", "name", ",", "ca", "in", "col_attrs", ".", "items", "(", ")", ":", "if", "ca", ".", "shape", "[", "0", "]", "!=", "shape", "[", "1", "]", ":", "raise", "ValueError", "(", "f\"Column attribute '{name}' is not the same length ({ca.shape[0]}) as number of columns in main matrix ({shape[1]})\"", ")", "try", ":", "with", "new", "(", "filename", ",", "file_attrs", "=", "file_attrs", ")", "as", "ds", ":", "for", "key", ",", "vals", "in", "layers", ".", "items", "(", ")", ":", "ds", ".", "layer", "[", "key", "]", "=", "vals", "for", "key", ",", "vals", "in", "row_attrs", ".", "items", "(", ")", ":", "ds", ".", "ra", "[", "key", "]", "=", "vals", "for", "key", ",", "vals", "in", "col_attrs", ".", "items", "(", ")", ":", "ds", ".", "ca", "[", "key", "]", "=", "vals", "except", "ValueError", "as", "ve", ":", "#ds.close(suppress_warning=True) # ds does not exist here", "if", "os", ".", "path", ".", "exists", "(", "filename", ")", ":", "os", ".", "remove", "(", "filename", ")", "raise", "ve" ]
Create a new Loom file from the given data. Args: filename (str): The filename (typically using a ``.loom`` file extension) layers: One of the following: * Two-dimensional (N-by-M) numpy ndarray of float values * Sparse matrix (e.g. :class:`scipy.sparse.csr_matrix`) * Dictionary of named layers, each an N-by-M ndarray or sparse matrix * A :class:`.LayerManager`, with each layer an N-by-M ndarray row_attrs (dict): Row attributes, where keys are attribute names and values are numpy arrays (float or string) of length N col_attrs (dict): Column attributes, where keys are attribute names and values are numpy arrays (float or string) of length M file_attrs (dict): Global attributes, where keys are attribute names and values are strings Returns: Nothing Remarks: If the file exists, it will be overwritten.
[ "Create", "a", "new", "Loom", "file", "from", "the", "given", "data", "." ]
62c8373a92b058753baa3a95331fb541f560f599
https://github.com/linnarsson-lab/loompy/blob/62c8373a92b058753baa3a95331fb541f560f599/loompy/loompy.py#L1023-L1089
train
linnarsson-lab/loompy
loompy/loompy.py
connect
def connect(filename: str, mode: str = 'r+', *, validate: bool = True, spec_version: str = "2.0.1") -> LoomConnection: """ Establish a connection to a .loom file. Args: filename: Path to the Loom file to open mode: Read/write mode, 'r+' (read/write) or 'r' (read-only), defaults to 'r+' validate: Validate the file structure against the Loom file format specification spec_version: The loom file spec version to validate against (e.g. "2.0.1" or "old") Returns: A LoomConnection instance. Remarks: This function should typically be used as a context manager (i.e. inside a ``with``-block): .. highlight:: python .. code-block:: python import loompy with loompy.connect("mydata.loom") as ds: print(ds.ca.keys()) This ensures that the file will be closed automatically when the context block ends Note: if validation is requested, an exception is raised if validation fails. """ return LoomConnection(filename, mode, validate=validate, spec_version=spec_version)
python
def connect(filename: str, mode: str = 'r+', *, validate: bool = True, spec_version: str = "2.0.1") -> LoomConnection: """ Establish a connection to a .loom file. Args: filename: Path to the Loom file to open mode: Read/write mode, 'r+' (read/write) or 'r' (read-only), defaults to 'r+' validate: Validate the file structure against the Loom file format specification spec_version: The loom file spec version to validate against (e.g. "2.0.1" or "old") Returns: A LoomConnection instance. Remarks: This function should typically be used as a context manager (i.e. inside a ``with``-block): .. highlight:: python .. code-block:: python import loompy with loompy.connect("mydata.loom") as ds: print(ds.ca.keys()) This ensures that the file will be closed automatically when the context block ends Note: if validation is requested, an exception is raised if validation fails. """ return LoomConnection(filename, mode, validate=validate, spec_version=spec_version)
[ "def", "connect", "(", "filename", ":", "str", ",", "mode", ":", "str", "=", "'r+'", ",", "*", ",", "validate", ":", "bool", "=", "True", ",", "spec_version", ":", "str", "=", "\"2.0.1\"", ")", "->", "LoomConnection", ":", "return", "LoomConnection", "(", "filename", ",", "mode", ",", "validate", "=", "validate", ",", "spec_version", "=", "spec_version", ")" ]
Establish a connection to a .loom file. Args: filename: Path to the Loom file to open mode: Read/write mode, 'r+' (read/write) or 'r' (read-only), defaults to 'r+' validate: Validate the file structure against the Loom file format specification spec_version: The loom file spec version to validate against (e.g. "2.0.1" or "old") Returns: A LoomConnection instance. Remarks: This function should typically be used as a context manager (i.e. inside a ``with``-block): .. highlight:: python .. code-block:: python import loompy with loompy.connect("mydata.loom") as ds: print(ds.ca.keys()) This ensures that the file will be closed automatically when the context block ends Note: if validation is requested, an exception is raised if validation fails.
[ "Establish", "a", "connection", "to", "a", ".", "loom", "file", "." ]
62c8373a92b058753baa3a95331fb541f560f599
https://github.com/linnarsson-lab/loompy/blob/62c8373a92b058753baa3a95331fb541f560f599/loompy/loompy.py#L1290-L1316
train
linnarsson-lab/loompy
loompy/loompy.py
LoomConnection.last_modified
def last_modified(self) -> str: """ Return an ISO8601 timestamp indicating when the file was last modified Returns: An ISO8601 timestamp indicating when the file was last modified Remarks: If the file has no timestamp, and mode is 'r+', a new timestamp is created and returned. Otherwise, the current time in UTC is returned """ if "last_modified" in self.attrs: return self.attrs["last_modified"] elif self.mode == "r+": # Make sure the file has modification timestamps self.attrs["last_modified"] = timestamp() return self.attrs["last_modified"] return timestamp()
python
def last_modified(self) -> str: """ Return an ISO8601 timestamp indicating when the file was last modified Returns: An ISO8601 timestamp indicating when the file was last modified Remarks: If the file has no timestamp, and mode is 'r+', a new timestamp is created and returned. Otherwise, the current time in UTC is returned """ if "last_modified" in self.attrs: return self.attrs["last_modified"] elif self.mode == "r+": # Make sure the file has modification timestamps self.attrs["last_modified"] = timestamp() return self.attrs["last_modified"] return timestamp()
[ "def", "last_modified", "(", "self", ")", "->", "str", ":", "if", "\"last_modified\"", "in", "self", ".", "attrs", ":", "return", "self", ".", "attrs", "[", "\"last_modified\"", "]", "elif", "self", ".", "mode", "==", "\"r+\"", ":", "# Make sure the file has modification timestamps", "self", ".", "attrs", "[", "\"last_modified\"", "]", "=", "timestamp", "(", ")", "return", "self", ".", "attrs", "[", "\"last_modified\"", "]", "return", "timestamp", "(", ")" ]
Return an ISO8601 timestamp indicating when the file was last modified Returns: An ISO8601 timestamp indicating when the file was last modified Remarks: If the file has no timestamp, and mode is 'r+', a new timestamp is created and returned. Otherwise, the current time in UTC is returned
[ "Return", "an", "ISO8601", "timestamp", "indicating", "when", "the", "file", "was", "last", "modified" ]
62c8373a92b058753baa3a95331fb541f560f599
https://github.com/linnarsson-lab/loompy/blob/62c8373a92b058753baa3a95331fb541f560f599/loompy/loompy.py#L115-L132
train
linnarsson-lab/loompy
loompy/loompy.py
LoomConnection.get_changes_since
def get_changes_since(self, timestamp: str) -> Dict[str, List]: """ Get a summary of the parts of the file that changed since the given time Args: timestamp: ISO8601 timestamp Return: dict: Dictionary like ``{"row_graphs": rg, "col_graphs": cg, "row_attrs": ra, "col_attrs": ca, "layers": layers}`` listing the names of objects that were modified since the given time """ rg = [] cg = [] ra = [] ca = [] layers = [] if self.last_modified() > timestamp: if self.row_graphs.last_modified() > timestamp: for name in self.row_graphs.keys(): if self.row_graphs.last_modified(name) > timestamp: rg.append(name) if self.col_graphs.last_modified() > timestamp: for name in self.col_graphs.keys(): if self.col_graphs.last_modified(name) > timestamp: cg.append(name) if self.ra.last_modified() > timestamp: for name in self.ra.keys(): if self.ra.last_modified(name) > timestamp: ra.append(name) if self.ca.last_modified() > timestamp: for name in self.ca.keys(): if self.ca.last_modified(name) > timestamp: ca.append(name) if self.layers.last_modified() > timestamp: for name in self.layers.keys(): if self.layers.last_modified(name) > timestamp: layers.append(name) return {"row_graphs": rg, "col_graphs": cg, "row_attrs": ra, "col_attrs": ca, "layers": layers}
python
def get_changes_since(self, timestamp: str) -> Dict[str, List]: """ Get a summary of the parts of the file that changed since the given time Args: timestamp: ISO8601 timestamp Return: dict: Dictionary like ``{"row_graphs": rg, "col_graphs": cg, "row_attrs": ra, "col_attrs": ca, "layers": layers}`` listing the names of objects that were modified since the given time """ rg = [] cg = [] ra = [] ca = [] layers = [] if self.last_modified() > timestamp: if self.row_graphs.last_modified() > timestamp: for name in self.row_graphs.keys(): if self.row_graphs.last_modified(name) > timestamp: rg.append(name) if self.col_graphs.last_modified() > timestamp: for name in self.col_graphs.keys(): if self.col_graphs.last_modified(name) > timestamp: cg.append(name) if self.ra.last_modified() > timestamp: for name in self.ra.keys(): if self.ra.last_modified(name) > timestamp: ra.append(name) if self.ca.last_modified() > timestamp: for name in self.ca.keys(): if self.ca.last_modified(name) > timestamp: ca.append(name) if self.layers.last_modified() > timestamp: for name in self.layers.keys(): if self.layers.last_modified(name) > timestamp: layers.append(name) return {"row_graphs": rg, "col_graphs": cg, "row_attrs": ra, "col_attrs": ca, "layers": layers}
[ "def", "get_changes_since", "(", "self", ",", "timestamp", ":", "str", ")", "->", "Dict", "[", "str", ",", "List", "]", ":", "rg", "=", "[", "]", "cg", "=", "[", "]", "ra", "=", "[", "]", "ca", "=", "[", "]", "layers", "=", "[", "]", "if", "self", ".", "last_modified", "(", ")", ">", "timestamp", ":", "if", "self", ".", "row_graphs", ".", "last_modified", "(", ")", ">", "timestamp", ":", "for", "name", "in", "self", ".", "row_graphs", ".", "keys", "(", ")", ":", "if", "self", ".", "row_graphs", ".", "last_modified", "(", "name", ")", ">", "timestamp", ":", "rg", ".", "append", "(", "name", ")", "if", "self", ".", "col_graphs", ".", "last_modified", "(", ")", ">", "timestamp", ":", "for", "name", "in", "self", ".", "col_graphs", ".", "keys", "(", ")", ":", "if", "self", ".", "col_graphs", ".", "last_modified", "(", "name", ")", ">", "timestamp", ":", "cg", ".", "append", "(", "name", ")", "if", "self", ".", "ra", ".", "last_modified", "(", ")", ">", "timestamp", ":", "for", "name", "in", "self", ".", "ra", ".", "keys", "(", ")", ":", "if", "self", ".", "ra", ".", "last_modified", "(", "name", ")", ">", "timestamp", ":", "ra", ".", "append", "(", "name", ")", "if", "self", ".", "ca", ".", "last_modified", "(", ")", ">", "timestamp", ":", "for", "name", "in", "self", ".", "ca", ".", "keys", "(", ")", ":", "if", "self", ".", "ca", ".", "last_modified", "(", "name", ")", ">", "timestamp", ":", "ca", ".", "append", "(", "name", ")", "if", "self", ".", "layers", ".", "last_modified", "(", ")", ">", "timestamp", ":", "for", "name", "in", "self", ".", "layers", ".", "keys", "(", ")", ":", "if", "self", ".", "layers", ".", "last_modified", "(", "name", ")", ">", "timestamp", ":", "layers", ".", "append", "(", "name", ")", "return", "{", "\"row_graphs\"", ":", "rg", ",", "\"col_graphs\"", ":", "cg", ",", "\"row_attrs\"", ":", "ra", ",", "\"col_attrs\"", ":", "ca", ",", "\"layers\"", ":", "layers", "}" ]
Get a summary of the parts of the file that changed since the given time Args: timestamp: ISO8601 timestamp Return: dict: Dictionary like ``{"row_graphs": rg, "col_graphs": cg, "row_attrs": ra, "col_attrs": ca, "layers": layers}`` listing the names of objects that were modified since the given time
[ "Get", "a", "summary", "of", "the", "parts", "of", "the", "file", "that", "changed", "since", "the", "given", "time" ]
62c8373a92b058753baa3a95331fb541f560f599
https://github.com/linnarsson-lab/loompy/blob/62c8373a92b058753baa3a95331fb541f560f599/loompy/loompy.py#L134-L171
train
linnarsson-lab/loompy
loompy/loompy.py
LoomConnection.sparse
def sparse(self, rows: np.ndarray = None, cols: np.ndarray = None, layer: str = None) -> scipy.sparse.coo_matrix: """ Return the main matrix or specified layer as a scipy.sparse.coo_matrix, without loading dense matrix in RAM Args: rows: Rows to include, or None to include all cols: Columns to include, or None to include all layer: Layer to return, or None to return the default layer Returns: Sparse matrix (:class:`scipy.sparse.coo_matrix`) """ if layer is None: return self.layers[""].sparse(rows=rows, cols=cols) else: return self.layers[layer].sparse(rows=rows, cols=cols)
python
def sparse(self, rows: np.ndarray = None, cols: np.ndarray = None, layer: str = None) -> scipy.sparse.coo_matrix: """ Return the main matrix or specified layer as a scipy.sparse.coo_matrix, without loading dense matrix in RAM Args: rows: Rows to include, or None to include all cols: Columns to include, or None to include all layer: Layer to return, or None to return the default layer Returns: Sparse matrix (:class:`scipy.sparse.coo_matrix`) """ if layer is None: return self.layers[""].sparse(rows=rows, cols=cols) else: return self.layers[layer].sparse(rows=rows, cols=cols)
[ "def", "sparse", "(", "self", ",", "rows", ":", "np", ".", "ndarray", "=", "None", ",", "cols", ":", "np", ".", "ndarray", "=", "None", ",", "layer", ":", "str", "=", "None", ")", "->", "scipy", ".", "sparse", ".", "coo_matrix", ":", "if", "layer", "is", "None", ":", "return", "self", ".", "layers", "[", "\"\"", "]", ".", "sparse", "(", "rows", "=", "rows", ",", "cols", "=", "cols", ")", "else", ":", "return", "self", ".", "layers", "[", "layer", "]", ".", "sparse", "(", "rows", "=", "rows", ",", "cols", "=", "cols", ")" ]
Return the main matrix or specified layer as a scipy.sparse.coo_matrix, without loading dense matrix in RAM Args: rows: Rows to include, or None to include all cols: Columns to include, or None to include all layer: Layer to return, or None to return the default layer Returns: Sparse matrix (:class:`scipy.sparse.coo_matrix`)
[ "Return", "the", "main", "matrix", "or", "specified", "layer", "as", "a", "scipy", ".", "sparse", ".", "coo_matrix", "without", "loading", "dense", "matrix", "in", "RAM" ]
62c8373a92b058753baa3a95331fb541f560f599
https://github.com/linnarsson-lab/loompy/blob/62c8373a92b058753baa3a95331fb541f560f599/loompy/loompy.py#L229-L244
train
linnarsson-lab/loompy
loompy/loompy.py
LoomConnection.close
def close(self, suppress_warning: bool = False) -> None: """ Close the connection. After this, the connection object becomes invalid. Warns user if called after closing. Args: suppress_warning: Suppresses warning message if True (defaults to false) """ if self._file is None: if not suppress_warning: # Warn user that they're being paranoid # and should clean up their code logging.warn("Connection to %s is already closed", self.filename) else: self._file.close() self._file = None self.layers = None # type: ignore self.ra = None # type: ignore self.row_attrs = None # type: ignore self.ca = None # type: ignore self.col_attrs = None # type: ignore self.row_graphs = None # type: ignore self.col_graphs = None # type: ignore self.shape = (0, 0) self._closed = True
python
def close(self, suppress_warning: bool = False) -> None: """ Close the connection. After this, the connection object becomes invalid. Warns user if called after closing. Args: suppress_warning: Suppresses warning message if True (defaults to false) """ if self._file is None: if not suppress_warning: # Warn user that they're being paranoid # and should clean up their code logging.warn("Connection to %s is already closed", self.filename) else: self._file.close() self._file = None self.layers = None # type: ignore self.ra = None # type: ignore self.row_attrs = None # type: ignore self.ca = None # type: ignore self.col_attrs = None # type: ignore self.row_graphs = None # type: ignore self.col_graphs = None # type: ignore self.shape = (0, 0) self._closed = True
[ "def", "close", "(", "self", ",", "suppress_warning", ":", "bool", "=", "False", ")", "->", "None", ":", "if", "self", ".", "_file", "is", "None", ":", "if", "not", "suppress_warning", ":", "# Warn user that they're being paranoid", "# and should clean up their code", "logging", ".", "warn", "(", "\"Connection to %s is already closed\"", ",", "self", ".", "filename", ")", "else", ":", "self", ".", "_file", ".", "close", "(", ")", "self", ".", "_file", "=", "None", "self", ".", "layers", "=", "None", "# type: ignore", "self", ".", "ra", "=", "None", "# type: ignore", "self", ".", "row_attrs", "=", "None", "# type: ignore", "self", ".", "ca", "=", "None", "# type: ignore", "self", ".", "col_attrs", "=", "None", "# type: ignore", "self", ".", "row_graphs", "=", "None", "# type: ignore", "self", ".", "col_graphs", "=", "None", "# type: ignore", "self", ".", "shape", "=", "(", "0", ",", "0", ")", "self", ".", "_closed", "=", "True" ]
Close the connection. After this, the connection object becomes invalid. Warns user if called after closing. Args: suppress_warning: Suppresses warning message if True (defaults to false)
[ "Close", "the", "connection", ".", "After", "this", "the", "connection", "object", "becomes", "invalid", ".", "Warns", "user", "if", "called", "after", "closing", "." ]
62c8373a92b058753baa3a95331fb541f560f599
https://github.com/linnarsson-lab/loompy/blob/62c8373a92b058753baa3a95331fb541f560f599/loompy/loompy.py#L246-L269
train
linnarsson-lab/loompy
loompy/loompy.py
LoomConnection.permute
def permute(self, ordering: np.ndarray, axis: int) -> None: """ Permute the dataset along the indicated axis. Args: ordering (list of int): The desired order along the axis axis (int): The axis along which to permute Returns: Nothing. """ if self._file.__contains__("tiles"): del self._file['tiles'] ordering = list(np.array(ordering).flatten()) # Flatten the ordering, in case we got a column vector self.layers._permute(ordering, axis=axis) if axis == 0: self.row_attrs._permute(ordering) self.row_graphs._permute(ordering) if axis == 1: self.col_attrs._permute(ordering) self.col_graphs._permute(ordering)
python
def permute(self, ordering: np.ndarray, axis: int) -> None: """ Permute the dataset along the indicated axis. Args: ordering (list of int): The desired order along the axis axis (int): The axis along which to permute Returns: Nothing. """ if self._file.__contains__("tiles"): del self._file['tiles'] ordering = list(np.array(ordering).flatten()) # Flatten the ordering, in case we got a column vector self.layers._permute(ordering, axis=axis) if axis == 0: self.row_attrs._permute(ordering) self.row_graphs._permute(ordering) if axis == 1: self.col_attrs._permute(ordering) self.col_graphs._permute(ordering)
[ "def", "permute", "(", "self", ",", "ordering", ":", "np", ".", "ndarray", ",", "axis", ":", "int", ")", "->", "None", ":", "if", "self", ".", "_file", ".", "__contains__", "(", "\"tiles\"", ")", ":", "del", "self", ".", "_file", "[", "'tiles'", "]", "ordering", "=", "list", "(", "np", ".", "array", "(", "ordering", ")", ".", "flatten", "(", ")", ")", "# Flatten the ordering, in case we got a column vector", "self", ".", "layers", ".", "_permute", "(", "ordering", ",", "axis", "=", "axis", ")", "if", "axis", "==", "0", ":", "self", ".", "row_attrs", ".", "_permute", "(", "ordering", ")", "self", ".", "row_graphs", ".", "_permute", "(", "ordering", ")", "if", "axis", "==", "1", ":", "self", ".", "col_attrs", ".", "_permute", "(", "ordering", ")", "self", ".", "col_graphs", ".", "_permute", "(", "ordering", ")" ]
Permute the dataset along the indicated axis. Args: ordering (list of int): The desired order along the axis axis (int): The axis along which to permute Returns: Nothing.
[ "Permute", "the", "dataset", "along", "the", "indicated", "axis", "." ]
62c8373a92b058753baa3a95331fb541f560f599
https://github.com/linnarsson-lab/loompy/blob/62c8373a92b058753baa3a95331fb541f560f599/loompy/loompy.py#L784-L806
train
linnarsson-lab/loompy
loompy/loompy.py
LoomConnection.aggregate
def aggregate(self, out_file: str = None, select: np.ndarray = None, group_by: Union[str, np.ndarray] = "Clusters", aggr_by: str = "mean", aggr_ca_by: Dict[str, str] = None) -> np.ndarray: """ Aggregate the Loom file by applying aggregation functions to the main matrix as well as to the column attributes Args: out_file The name of the output Loom file (will be appended to if it exists) select Bool array giving the columns to include (or None, to include all) group_by The column attribute to group by, or an np.ndarray of integer group labels aggr_by The aggregation function for the main matrix aggr_ca_by A dictionary of aggregation functions for the column attributes (or None to skip) Returns: m Aggregated main matrix Remarks: aggr_by gives the aggregation function for the main matrix aggr_ca_by is a dictionary with column attributes as keys and aggregation functionas as values Aggregation functions can be any valid aggregation function from here: https://github.com/ml31415/numpy-groupies In addition, you can specify: "tally" to count the number of occurences of each value of a categorical attribute """ ca = {} # type: Dict[str, np.ndarray] if select is not None: raise ValueError("The 'select' argument is deprecated") if isinstance(group_by, np.ndarray): labels = group_by else: labels = (self.ca[group_by]).astype('int') _, zero_strt_sort_noholes_lbls = np.unique(labels, return_inverse=True) n_groups = len(set(labels)) if aggr_ca_by is not None: for key in self.ca.keys(): if key not in aggr_ca_by: continue func = aggr_ca_by[key] if func == "tally": for val in set(self.ca[key]): if np.issubdtype(type(val), np.str_): valnew = val.replace("/", "-") # Slashes are not allowed in attribute names valnew = valnew.replace(".", "_") # Nor are periods ca[key + "_" + str(valnew)] = npg.aggregate(zero_strt_sort_noholes_lbls, (self.ca[key] == val).astype('int'), func="sum", fill_value=0) elif func == "mode": def mode(x): # type: ignore return scipy.stats.mode(x)[0][0] ca[key] = npg.aggregate(zero_strt_sort_noholes_lbls, self.ca[key], func=mode, fill_value=0).astype('str') elif func == "mean": ca[key] = npg.aggregate(zero_strt_sort_noholes_lbls, self.ca[key], func=func, fill_value=0) elif func == "first": ca[key] = npg.aggregate(zero_strt_sort_noholes_lbls, self.ca[key], func=func, fill_value=self.ca[key][0]) m = np.empty((self.shape[0], n_groups)) for (_, selection, view) in self.scan(axis=0, layers=[""]): vals_aggr = npg.aggregate(zero_strt_sort_noholes_lbls, view[:, :], func=aggr_by, axis=1, fill_value=0) m[selection, :] = vals_aggr if out_file is not None: loompy.create(out_file, m, self.ra, ca) return m
python
def aggregate(self, out_file: str = None, select: np.ndarray = None, group_by: Union[str, np.ndarray] = "Clusters", aggr_by: str = "mean", aggr_ca_by: Dict[str, str] = None) -> np.ndarray: """ Aggregate the Loom file by applying aggregation functions to the main matrix as well as to the column attributes Args: out_file The name of the output Loom file (will be appended to if it exists) select Bool array giving the columns to include (or None, to include all) group_by The column attribute to group by, or an np.ndarray of integer group labels aggr_by The aggregation function for the main matrix aggr_ca_by A dictionary of aggregation functions for the column attributes (or None to skip) Returns: m Aggregated main matrix Remarks: aggr_by gives the aggregation function for the main matrix aggr_ca_by is a dictionary with column attributes as keys and aggregation functionas as values Aggregation functions can be any valid aggregation function from here: https://github.com/ml31415/numpy-groupies In addition, you can specify: "tally" to count the number of occurences of each value of a categorical attribute """ ca = {} # type: Dict[str, np.ndarray] if select is not None: raise ValueError("The 'select' argument is deprecated") if isinstance(group_by, np.ndarray): labels = group_by else: labels = (self.ca[group_by]).astype('int') _, zero_strt_sort_noholes_lbls = np.unique(labels, return_inverse=True) n_groups = len(set(labels)) if aggr_ca_by is not None: for key in self.ca.keys(): if key not in aggr_ca_by: continue func = aggr_ca_by[key] if func == "tally": for val in set(self.ca[key]): if np.issubdtype(type(val), np.str_): valnew = val.replace("/", "-") # Slashes are not allowed in attribute names valnew = valnew.replace(".", "_") # Nor are periods ca[key + "_" + str(valnew)] = npg.aggregate(zero_strt_sort_noholes_lbls, (self.ca[key] == val).astype('int'), func="sum", fill_value=0) elif func == "mode": def mode(x): # type: ignore return scipy.stats.mode(x)[0][0] ca[key] = npg.aggregate(zero_strt_sort_noholes_lbls, self.ca[key], func=mode, fill_value=0).astype('str') elif func == "mean": ca[key] = npg.aggregate(zero_strt_sort_noholes_lbls, self.ca[key], func=func, fill_value=0) elif func == "first": ca[key] = npg.aggregate(zero_strt_sort_noholes_lbls, self.ca[key], func=func, fill_value=self.ca[key][0]) m = np.empty((self.shape[0], n_groups)) for (_, selection, view) in self.scan(axis=0, layers=[""]): vals_aggr = npg.aggregate(zero_strt_sort_noholes_lbls, view[:, :], func=aggr_by, axis=1, fill_value=0) m[selection, :] = vals_aggr if out_file is not None: loompy.create(out_file, m, self.ra, ca) return m
[ "def", "aggregate", "(", "self", ",", "out_file", ":", "str", "=", "None", ",", "select", ":", "np", ".", "ndarray", "=", "None", ",", "group_by", ":", "Union", "[", "str", ",", "np", ".", "ndarray", "]", "=", "\"Clusters\"", ",", "aggr_by", ":", "str", "=", "\"mean\"", ",", "aggr_ca_by", ":", "Dict", "[", "str", ",", "str", "]", "=", "None", ")", "->", "np", ".", "ndarray", ":", "ca", "=", "{", "}", "# type: Dict[str, np.ndarray]", "if", "select", "is", "not", "None", ":", "raise", "ValueError", "(", "\"The 'select' argument is deprecated\"", ")", "if", "isinstance", "(", "group_by", ",", "np", ".", "ndarray", ")", ":", "labels", "=", "group_by", "else", ":", "labels", "=", "(", "self", ".", "ca", "[", "group_by", "]", ")", ".", "astype", "(", "'int'", ")", "_", ",", "zero_strt_sort_noholes_lbls", "=", "np", ".", "unique", "(", "labels", ",", "return_inverse", "=", "True", ")", "n_groups", "=", "len", "(", "set", "(", "labels", ")", ")", "if", "aggr_ca_by", "is", "not", "None", ":", "for", "key", "in", "self", ".", "ca", ".", "keys", "(", ")", ":", "if", "key", "not", "in", "aggr_ca_by", ":", "continue", "func", "=", "aggr_ca_by", "[", "key", "]", "if", "func", "==", "\"tally\"", ":", "for", "val", "in", "set", "(", "self", ".", "ca", "[", "key", "]", ")", ":", "if", "np", ".", "issubdtype", "(", "type", "(", "val", ")", ",", "np", ".", "str_", ")", ":", "valnew", "=", "val", ".", "replace", "(", "\"/\"", ",", "\"-\"", ")", "# Slashes are not allowed in attribute names", "valnew", "=", "valnew", ".", "replace", "(", "\".\"", ",", "\"_\"", ")", "# Nor are periods", "ca", "[", "key", "+", "\"_\"", "+", "str", "(", "valnew", ")", "]", "=", "npg", ".", "aggregate", "(", "zero_strt_sort_noholes_lbls", ",", "(", "self", ".", "ca", "[", "key", "]", "==", "val", ")", ".", "astype", "(", "'int'", ")", ",", "func", "=", "\"sum\"", ",", "fill_value", "=", "0", ")", "elif", "func", "==", "\"mode\"", ":", "def", "mode", "(", "x", ")", ":", "# type: ignore", "return", "scipy", ".", "stats", ".", "mode", "(", "x", ")", "[", "0", "]", "[", "0", "]", "ca", "[", "key", "]", "=", "npg", ".", "aggregate", "(", "zero_strt_sort_noholes_lbls", ",", "self", ".", "ca", "[", "key", "]", ",", "func", "=", "mode", ",", "fill_value", "=", "0", ")", ".", "astype", "(", "'str'", ")", "elif", "func", "==", "\"mean\"", ":", "ca", "[", "key", "]", "=", "npg", ".", "aggregate", "(", "zero_strt_sort_noholes_lbls", ",", "self", ".", "ca", "[", "key", "]", ",", "func", "=", "func", ",", "fill_value", "=", "0", ")", "elif", "func", "==", "\"first\"", ":", "ca", "[", "key", "]", "=", "npg", ".", "aggregate", "(", "zero_strt_sort_noholes_lbls", ",", "self", ".", "ca", "[", "key", "]", ",", "func", "=", "func", ",", "fill_value", "=", "self", ".", "ca", "[", "key", "]", "[", "0", "]", ")", "m", "=", "np", ".", "empty", "(", "(", "self", ".", "shape", "[", "0", "]", ",", "n_groups", ")", ")", "for", "(", "_", ",", "selection", ",", "view", ")", "in", "self", ".", "scan", "(", "axis", "=", "0", ",", "layers", "=", "[", "\"\"", "]", ")", ":", "vals_aggr", "=", "npg", ".", "aggregate", "(", "zero_strt_sort_noholes_lbls", ",", "view", "[", ":", ",", ":", "]", ",", "func", "=", "aggr_by", ",", "axis", "=", "1", ",", "fill_value", "=", "0", ")", "m", "[", "selection", ",", ":", "]", "=", "vals_aggr", "if", "out_file", "is", "not", "None", ":", "loompy", ".", "create", "(", "out_file", ",", "m", ",", "self", ".", "ra", ",", "ca", ")", "return", "m" ]
Aggregate the Loom file by applying aggregation functions to the main matrix as well as to the column attributes Args: out_file The name of the output Loom file (will be appended to if it exists) select Bool array giving the columns to include (or None, to include all) group_by The column attribute to group by, or an np.ndarray of integer group labels aggr_by The aggregation function for the main matrix aggr_ca_by A dictionary of aggregation functions for the column attributes (or None to skip) Returns: m Aggregated main matrix Remarks: aggr_by gives the aggregation function for the main matrix aggr_ca_by is a dictionary with column attributes as keys and aggregation functionas as values Aggregation functions can be any valid aggregation function from here: https://github.com/ml31415/numpy-groupies In addition, you can specify: "tally" to count the number of occurences of each value of a categorical attribute
[ "Aggregate", "the", "Loom", "file", "by", "applying", "aggregation", "functions", "to", "the", "main", "matrix", "as", "well", "as", "to", "the", "column", "attributes" ]
62c8373a92b058753baa3a95331fb541f560f599
https://github.com/linnarsson-lab/loompy/blob/62c8373a92b058753baa3a95331fb541f560f599/loompy/loompy.py#L873-L934
train
linnarsson-lab/loompy
loompy/file_attribute_manager.py
FileAttributeManager.get
def get(self, name: str, default: Any = None) -> np.ndarray: """ Return the value for a named attribute if it exists, else default. If default is not given, it defaults to None, so that this method never raises a KeyError. """ if name in self: return self[name] else: return default
python
def get(self, name: str, default: Any = None) -> np.ndarray: """ Return the value for a named attribute if it exists, else default. If default is not given, it defaults to None, so that this method never raises a KeyError. """ if name in self: return self[name] else: return default
[ "def", "get", "(", "self", ",", "name", ":", "str", ",", "default", ":", "Any", "=", "None", ")", "->", "np", ".", "ndarray", ":", "if", "name", "in", "self", ":", "return", "self", "[", "name", "]", "else", ":", "return", "default" ]
Return the value for a named attribute if it exists, else default. If default is not given, it defaults to None, so that this method never raises a KeyError.
[ "Return", "the", "value", "for", "a", "named", "attribute", "if", "it", "exists", "else", "default", ".", "If", "default", "is", "not", "given", "it", "defaults", "to", "None", "so", "that", "this", "method", "never", "raises", "a", "KeyError", "." ]
62c8373a92b058753baa3a95331fb541f560f599
https://github.com/linnarsson-lab/loompy/blob/62c8373a92b058753baa3a95331fb541f560f599/loompy/file_attribute_manager.py#L78-L86
train
linnarsson-lab/loompy
loompy/color.py
cat_colors
def cat_colors(N: int = 1, *, hue: str = None, luminosity: str = None, bgvalue: int = None, loop: bool = False, seed: str = "cat") -> Union[List[Any], colors.LinearSegmentedColormap]: """ Return a colormap suitable for N categorical values, optimized to be both aesthetically pleasing and perceptually distinct. Args: N The number of colors requested. hue Controls the hue of the generated color. You can pass a string representing a color name: "red", "orange", "yellow", "green", "blue", "purple", "pink" and "monochrome" are currently supported. If you pass a hexidecimal color string such as "#00FFFF", its hue value will be used to generate colors. luminosity Controls the luminosity of the generated color: "bright", "light" or "dark". bgvalue If not None, then the corresponding index color will be set to light gray loop If True, loop the color alphabet instead of generating random colors seed If not None, use as the random seed (default: "cat") Returns: A set of colors in the requested format, either a list of values or a matplotlib LinearSegmentedColormap (when format="cmap") If N <= 25 and hue and luminosity are both None, a subset of the optimally perceptually distinct "color alphabet" is returned. Else, a pleasing set of random colors is returned. Colors are designed to be displayed on a white background. """ c: List[str] = [] if N <= 25 and hue is None and luminosity is None: c = _color_alphabet[:N] elif not loop: c = RandomColor(seed=seed).generate(count=N, hue=hue, luminosity=luminosity, format_="hex") else: n = N while n > 0: c += _color_alphabet[:n] n -= 25 if bgvalue is not None: c[bgvalue] = "#aaaaaa" return colors.LinearSegmentedColormap.from_list("", c, N)
python
def cat_colors(N: int = 1, *, hue: str = None, luminosity: str = None, bgvalue: int = None, loop: bool = False, seed: str = "cat") -> Union[List[Any], colors.LinearSegmentedColormap]: """ Return a colormap suitable for N categorical values, optimized to be both aesthetically pleasing and perceptually distinct. Args: N The number of colors requested. hue Controls the hue of the generated color. You can pass a string representing a color name: "red", "orange", "yellow", "green", "blue", "purple", "pink" and "monochrome" are currently supported. If you pass a hexidecimal color string such as "#00FFFF", its hue value will be used to generate colors. luminosity Controls the luminosity of the generated color: "bright", "light" or "dark". bgvalue If not None, then the corresponding index color will be set to light gray loop If True, loop the color alphabet instead of generating random colors seed If not None, use as the random seed (default: "cat") Returns: A set of colors in the requested format, either a list of values or a matplotlib LinearSegmentedColormap (when format="cmap") If N <= 25 and hue and luminosity are both None, a subset of the optimally perceptually distinct "color alphabet" is returned. Else, a pleasing set of random colors is returned. Colors are designed to be displayed on a white background. """ c: List[str] = [] if N <= 25 and hue is None and luminosity is None: c = _color_alphabet[:N] elif not loop: c = RandomColor(seed=seed).generate(count=N, hue=hue, luminosity=luminosity, format_="hex") else: n = N while n > 0: c += _color_alphabet[:n] n -= 25 if bgvalue is not None: c[bgvalue] = "#aaaaaa" return colors.LinearSegmentedColormap.from_list("", c, N)
[ "def", "cat_colors", "(", "N", ":", "int", "=", "1", ",", "*", ",", "hue", ":", "str", "=", "None", ",", "luminosity", ":", "str", "=", "None", ",", "bgvalue", ":", "int", "=", "None", ",", "loop", ":", "bool", "=", "False", ",", "seed", ":", "str", "=", "\"cat\"", ")", "->", "Union", "[", "List", "[", "Any", "]", ",", "colors", ".", "LinearSegmentedColormap", "]", ":", "c", ":", "List", "[", "str", "]", "=", "[", "]", "if", "N", "<=", "25", "and", "hue", "is", "None", "and", "luminosity", "is", "None", ":", "c", "=", "_color_alphabet", "[", ":", "N", "]", "elif", "not", "loop", ":", "c", "=", "RandomColor", "(", "seed", "=", "seed", ")", ".", "generate", "(", "count", "=", "N", ",", "hue", "=", "hue", ",", "luminosity", "=", "luminosity", ",", "format_", "=", "\"hex\"", ")", "else", ":", "n", "=", "N", "while", "n", ">", "0", ":", "c", "+=", "_color_alphabet", "[", ":", "n", "]", "n", "-=", "25", "if", "bgvalue", "is", "not", "None", ":", "c", "[", "bgvalue", "]", "=", "\"#aaaaaa\"", "return", "colors", ".", "LinearSegmentedColormap", ".", "from_list", "(", "\"\"", ",", "c", ",", "N", ")" ]
Return a colormap suitable for N categorical values, optimized to be both aesthetically pleasing and perceptually distinct. Args: N The number of colors requested. hue Controls the hue of the generated color. You can pass a string representing a color name: "red", "orange", "yellow", "green", "blue", "purple", "pink" and "monochrome" are currently supported. If you pass a hexidecimal color string such as "#00FFFF", its hue value will be used to generate colors. luminosity Controls the luminosity of the generated color: "bright", "light" or "dark". bgvalue If not None, then the corresponding index color will be set to light gray loop If True, loop the color alphabet instead of generating random colors seed If not None, use as the random seed (default: "cat") Returns: A set of colors in the requested format, either a list of values or a matplotlib LinearSegmentedColormap (when format="cmap") If N <= 25 and hue and luminosity are both None, a subset of the optimally perceptually distinct "color alphabet" is returned. Else, a pleasing set of random colors is returned. Colors are designed to be displayed on a white background.
[ "Return", "a", "colormap", "suitable", "for", "N", "categorical", "values", "optimized", "to", "be", "both", "aesthetically", "pleasing", "and", "perceptually", "distinct", "." ]
62c8373a92b058753baa3a95331fb541f560f599
https://github.com/linnarsson-lab/loompy/blob/62c8373a92b058753baa3a95331fb541f560f599/loompy/color.py#L336-L367
train
linnarsson-lab/loompy
loompy/graph_manager.py
_renumber
def _renumber(a: np.ndarray, keys: np.ndarray, values: np.ndarray) -> np.ndarray: """ Renumber 'a' by replacing any occurrence of 'keys' by the corresponding 'values' """ ordering = np.argsort(keys) keys = keys[ordering] values = keys[ordering] index = np.digitize(a.ravel(), keys, right=True) return(values[index].reshape(a.shape))
python
def _renumber(a: np.ndarray, keys: np.ndarray, values: np.ndarray) -> np.ndarray: """ Renumber 'a' by replacing any occurrence of 'keys' by the corresponding 'values' """ ordering = np.argsort(keys) keys = keys[ordering] values = keys[ordering] index = np.digitize(a.ravel(), keys, right=True) return(values[index].reshape(a.shape))
[ "def", "_renumber", "(", "a", ":", "np", ".", "ndarray", ",", "keys", ":", "np", ".", "ndarray", ",", "values", ":", "np", ".", "ndarray", ")", "->", "np", ".", "ndarray", ":", "ordering", "=", "np", ".", "argsort", "(", "keys", ")", "keys", "=", "keys", "[", "ordering", "]", "values", "=", "keys", "[", "ordering", "]", "index", "=", "np", ".", "digitize", "(", "a", ".", "ravel", "(", ")", ",", "keys", ",", "right", "=", "True", ")", "return", "(", "values", "[", "index", "]", ".", "reshape", "(", "a", ".", "shape", ")", ")" ]
Renumber 'a' by replacing any occurrence of 'keys' by the corresponding 'values'
[ "Renumber", "a", "by", "replacing", "any", "occurrence", "of", "keys", "by", "the", "corresponding", "values" ]
62c8373a92b058753baa3a95331fb541f560f599
https://github.com/linnarsson-lab/loompy/blob/62c8373a92b058753baa3a95331fb541f560f599/loompy/graph_manager.py#L7-L15
train
linnarsson-lab/loompy
loompy/loom_validator.py
LoomValidator.validate
def validate(self, path: str, strictness: str = "speconly") -> bool: """ Validate a file for conformance to the Loom specification Args: path: Full path to the file to be validated strictness: "speconly" or "conventions" Remarks: In "speconly" mode, conformance is assessed relative to the file format specification at http://linnarssonlab.org/loompy/format/. In "conventions" mode, conformance is additionally assessed relative to attribute name and data type conventions given at http://linnarssonlab.org/loompy/conventions/. """ valid1 = True with h5py.File(path, mode="r") as f: valid1 = self.validate_spec(f) if not valid1: self.errors.append("For help, see http://linnarssonlab.org/loompy/format/") valid2 = True if strictness == "conventions": with loompy.connect(path, mode="r") as ds: valid2 = self.validate_conventions(ds) if not valid2: self.errors.append("For help, see http://linnarssonlab.org/loompy/conventions/") return valid1 and valid2
python
def validate(self, path: str, strictness: str = "speconly") -> bool: """ Validate a file for conformance to the Loom specification Args: path: Full path to the file to be validated strictness: "speconly" or "conventions" Remarks: In "speconly" mode, conformance is assessed relative to the file format specification at http://linnarssonlab.org/loompy/format/. In "conventions" mode, conformance is additionally assessed relative to attribute name and data type conventions given at http://linnarssonlab.org/loompy/conventions/. """ valid1 = True with h5py.File(path, mode="r") as f: valid1 = self.validate_spec(f) if not valid1: self.errors.append("For help, see http://linnarssonlab.org/loompy/format/") valid2 = True if strictness == "conventions": with loompy.connect(path, mode="r") as ds: valid2 = self.validate_conventions(ds) if not valid2: self.errors.append("For help, see http://linnarssonlab.org/loompy/conventions/") return valid1 and valid2
[ "def", "validate", "(", "self", ",", "path", ":", "str", ",", "strictness", ":", "str", "=", "\"speconly\"", ")", "->", "bool", ":", "valid1", "=", "True", "with", "h5py", ".", "File", "(", "path", ",", "mode", "=", "\"r\"", ")", "as", "f", ":", "valid1", "=", "self", ".", "validate_spec", "(", "f", ")", "if", "not", "valid1", ":", "self", ".", "errors", ".", "append", "(", "\"For help, see http://linnarssonlab.org/loompy/format/\"", ")", "valid2", "=", "True", "if", "strictness", "==", "\"conventions\"", ":", "with", "loompy", ".", "connect", "(", "path", ",", "mode", "=", "\"r\"", ")", "as", "ds", ":", "valid2", "=", "self", ".", "validate_conventions", "(", "ds", ")", "if", "not", "valid2", ":", "self", ".", "errors", ".", "append", "(", "\"For help, see http://linnarssonlab.org/loompy/conventions/\"", ")", "return", "valid1", "and", "valid2" ]
Validate a file for conformance to the Loom specification Args: path: Full path to the file to be validated strictness: "speconly" or "conventions" Remarks: In "speconly" mode, conformance is assessed relative to the file format specification at http://linnarssonlab.org/loompy/format/. In "conventions" mode, conformance is additionally assessed relative to attribute name and data type conventions given at http://linnarssonlab.org/loompy/conventions/.
[ "Validate", "a", "file", "for", "conformance", "to", "the", "Loom", "specification" ]
62c8373a92b058753baa3a95331fb541f560f599
https://github.com/linnarsson-lab/loompy/blob/62c8373a92b058753baa3a95331fb541f560f599/loompy/loom_validator.py#L34-L60
train
linnarsson-lab/loompy
loompy/attribute_manager.py
AttributeManager._permute
def _permute(self, ordering: np.ndarray) -> None: """ Permute all the attributes in the collection Remarks: This permutes the order of the values for each attribute in the file """ for key in self.keys(): self[key] = self[key][ordering]
python
def _permute(self, ordering: np.ndarray) -> None: """ Permute all the attributes in the collection Remarks: This permutes the order of the values for each attribute in the file """ for key in self.keys(): self[key] = self[key][ordering]
[ "def", "_permute", "(", "self", ",", "ordering", ":", "np", ".", "ndarray", ")", "->", "None", ":", "for", "key", "in", "self", ".", "keys", "(", ")", ":", "self", "[", "key", "]", "=", "self", "[", "key", "]", "[", "ordering", "]" ]
Permute all the attributes in the collection Remarks: This permutes the order of the values for each attribute in the file
[ "Permute", "all", "the", "attributes", "in", "the", "collection" ]
62c8373a92b058753baa3a95331fb541f560f599
https://github.com/linnarsson-lab/loompy/blob/62c8373a92b058753baa3a95331fb541f560f599/loompy/attribute_manager.py#L180-L188
train
linnarsson-lab/loompy
loompy/attribute_manager.py
AttributeManager.get
def get(self, name: str, default: np.ndarray) -> np.ndarray: """ Return the value for a named attribute if it exists, else default. Default has to be a numpy array of correct size. """ if name in self: return self[name] else: if not isinstance(default, np.ndarray): raise ValueError(f"Default must be an np.ndarray with exactly {self.ds.shape[self.axis]} values") if default.shape[0] != self.ds.shape[self.axis]: raise ValueError(f"Default must be an np.ndarray with exactly {self.ds.shape[self.axis]} values but {len(default)} were given") return default
python
def get(self, name: str, default: np.ndarray) -> np.ndarray: """ Return the value for a named attribute if it exists, else default. Default has to be a numpy array of correct size. """ if name in self: return self[name] else: if not isinstance(default, np.ndarray): raise ValueError(f"Default must be an np.ndarray with exactly {self.ds.shape[self.axis]} values") if default.shape[0] != self.ds.shape[self.axis]: raise ValueError(f"Default must be an np.ndarray with exactly {self.ds.shape[self.axis]} values but {len(default)} were given") return default
[ "def", "get", "(", "self", ",", "name", ":", "str", ",", "default", ":", "np", ".", "ndarray", ")", "->", "np", ".", "ndarray", ":", "if", "name", "in", "self", ":", "return", "self", "[", "name", "]", "else", ":", "if", "not", "isinstance", "(", "default", ",", "np", ".", "ndarray", ")", ":", "raise", "ValueError", "(", "f\"Default must be an np.ndarray with exactly {self.ds.shape[self.axis]} values\"", ")", "if", "default", ".", "shape", "[", "0", "]", "!=", "self", ".", "ds", ".", "shape", "[", "self", ".", "axis", "]", ":", "raise", "ValueError", "(", "f\"Default must be an np.ndarray with exactly {self.ds.shape[self.axis]} values but {len(default)} were given\"", ")", "return", "default" ]
Return the value for a named attribute if it exists, else default. Default has to be a numpy array of correct size.
[ "Return", "the", "value", "for", "a", "named", "attribute", "if", "it", "exists", "else", "default", ".", "Default", "has", "to", "be", "a", "numpy", "array", "of", "correct", "size", "." ]
62c8373a92b058753baa3a95331fb541f560f599
https://github.com/linnarsson-lab/loompy/blob/62c8373a92b058753baa3a95331fb541f560f599/loompy/attribute_manager.py#L190-L205
train
linnarsson-lab/loompy
loompy/normalize.py
normalize_attr_array
def normalize_attr_array(a: Any) -> np.ndarray: """ Take all kinds of array-like inputs and normalize to a one-dimensional np.ndarray """ if type(a) is np.ndarray: return a elif type(a) is np.matrix: if a.shape[0] == 1: return np.array(a)[0, :] elif a.shape[1] == 1: return np.array(a)[:, 0] else: raise ValueError("Attribute values must be 1-dimensional.") elif type(a) is list or type(a) is tuple: return np.array(a) elif sparse.issparse(a): return normalize_attr_array(a.todense()) else: raise ValueError("Argument must be a list, tuple, numpy matrix, numpy ndarray or sparse matrix.")
python
def normalize_attr_array(a: Any) -> np.ndarray: """ Take all kinds of array-like inputs and normalize to a one-dimensional np.ndarray """ if type(a) is np.ndarray: return a elif type(a) is np.matrix: if a.shape[0] == 1: return np.array(a)[0, :] elif a.shape[1] == 1: return np.array(a)[:, 0] else: raise ValueError("Attribute values must be 1-dimensional.") elif type(a) is list or type(a) is tuple: return np.array(a) elif sparse.issparse(a): return normalize_attr_array(a.todense()) else: raise ValueError("Argument must be a list, tuple, numpy matrix, numpy ndarray or sparse matrix.")
[ "def", "normalize_attr_array", "(", "a", ":", "Any", ")", "->", "np", ".", "ndarray", ":", "if", "type", "(", "a", ")", "is", "np", ".", "ndarray", ":", "return", "a", "elif", "type", "(", "a", ")", "is", "np", ".", "matrix", ":", "if", "a", ".", "shape", "[", "0", "]", "==", "1", ":", "return", "np", ".", "array", "(", "a", ")", "[", "0", ",", ":", "]", "elif", "a", ".", "shape", "[", "1", "]", "==", "1", ":", "return", "np", ".", "array", "(", "a", ")", "[", ":", ",", "0", "]", "else", ":", "raise", "ValueError", "(", "\"Attribute values must be 1-dimensional.\"", ")", "elif", "type", "(", "a", ")", "is", "list", "or", "type", "(", "a", ")", "is", "tuple", ":", "return", "np", ".", "array", "(", "a", ")", "elif", "sparse", ".", "issparse", "(", "a", ")", ":", "return", "normalize_attr_array", "(", "a", ".", "todense", "(", ")", ")", "else", ":", "raise", "ValueError", "(", "\"Argument must be a list, tuple, numpy matrix, numpy ndarray or sparse matrix.\"", ")" ]
Take all kinds of array-like inputs and normalize to a one-dimensional np.ndarray
[ "Take", "all", "kinds", "of", "array", "-", "like", "inputs", "and", "normalize", "to", "a", "one", "-", "dimensional", "np", ".", "ndarray" ]
62c8373a92b058753baa3a95331fb541f560f599
https://github.com/linnarsson-lab/loompy/blob/62c8373a92b058753baa3a95331fb541f560f599/loompy/normalize.py#L29-L47
train
linnarsson-lab/loompy
loompy/to_html.py
to_html
def to_html(ds: Any) -> str: """ Return an HTML representation of the loom file or view, showing the upper-left 10x10 corner. """ rm = min(10, ds.shape[0]) cm = min(10, ds.shape[1]) html = "<p>" if ds.attrs.__contains__("title"): html += "<strong>" + ds.attrs["title"] + "</strong> " html += f"{ds.shape[0]} rows, {ds.shape[1]} columns, {len(ds.layers)} layer{'s' if len(ds.layers) > 1 else ''}<br/>(showing up to 10x10)<br/>" html += ds.filename + "<br/>" for (name, val) in ds.attrs.items(): html += f"name: <em>{val}</em><br/>" html += "<table>" # Emit column attributes for ca in ds.col_attrs.keys(): html += "<tr>" for ra in ds.row_attrs.keys(): html += "<td>&nbsp;</td>" # Space for row attrs html += "<td><strong>" + ca + "</strong></td>" # Col attr name for v in ds.col_attrs[ca][:cm]: html += "<td>" + str(v) + "</td>" if ds.shape[1] > cm: html += "<td>...</td>" html += "</tr>" # Emit row attribute names html += "<tr>" for ra in ds.row_attrs.keys(): html += "<td><strong>" + ra + "</strong></td>" # Row attr name html += "<td>&nbsp;</td>" # Space for col attrs for v in range(cm): html += "<td>&nbsp;</td>" if ds.shape[1] > cm: html += "<td>...</td>" html += "</tr>" # Emit row attr values and matrix values for row in range(rm): html += "<tr>" for ra in ds.row_attrs.keys(): html += "<td>" + str(ds.row_attrs[ra][row]) + "</td>" html += "<td>&nbsp;</td>" # Space for col attrs for v in ds[row, :cm]: html += "<td>" + str(v) + "</td>" if ds.shape[1] > cm: html += "<td>...</td>" html += "</tr>" # Emit ellipses if ds.shape[0] > rm: html += "<tr>" for v in range(rm + 1 + len(ds.row_attrs.keys())): html += "<td>...</td>" if ds.shape[1] > cm: html += "<td>...</td>" html += "</tr>" html += "</table>" return html
python
def to_html(ds: Any) -> str: """ Return an HTML representation of the loom file or view, showing the upper-left 10x10 corner. """ rm = min(10, ds.shape[0]) cm = min(10, ds.shape[1]) html = "<p>" if ds.attrs.__contains__("title"): html += "<strong>" + ds.attrs["title"] + "</strong> " html += f"{ds.shape[0]} rows, {ds.shape[1]} columns, {len(ds.layers)} layer{'s' if len(ds.layers) > 1 else ''}<br/>(showing up to 10x10)<br/>" html += ds.filename + "<br/>" for (name, val) in ds.attrs.items(): html += f"name: <em>{val}</em><br/>" html += "<table>" # Emit column attributes for ca in ds.col_attrs.keys(): html += "<tr>" for ra in ds.row_attrs.keys(): html += "<td>&nbsp;</td>" # Space for row attrs html += "<td><strong>" + ca + "</strong></td>" # Col attr name for v in ds.col_attrs[ca][:cm]: html += "<td>" + str(v) + "</td>" if ds.shape[1] > cm: html += "<td>...</td>" html += "</tr>" # Emit row attribute names html += "<tr>" for ra in ds.row_attrs.keys(): html += "<td><strong>" + ra + "</strong></td>" # Row attr name html += "<td>&nbsp;</td>" # Space for col attrs for v in range(cm): html += "<td>&nbsp;</td>" if ds.shape[1] > cm: html += "<td>...</td>" html += "</tr>" # Emit row attr values and matrix values for row in range(rm): html += "<tr>" for ra in ds.row_attrs.keys(): html += "<td>" + str(ds.row_attrs[ra][row]) + "</td>" html += "<td>&nbsp;</td>" # Space for col attrs for v in ds[row, :cm]: html += "<td>" + str(v) + "</td>" if ds.shape[1] > cm: html += "<td>...</td>" html += "</tr>" # Emit ellipses if ds.shape[0] > rm: html += "<tr>" for v in range(rm + 1 + len(ds.row_attrs.keys())): html += "<td>...</td>" if ds.shape[1] > cm: html += "<td>...</td>" html += "</tr>" html += "</table>" return html
[ "def", "to_html", "(", "ds", ":", "Any", ")", "->", "str", ":", "rm", "=", "min", "(", "10", ",", "ds", ".", "shape", "[", "0", "]", ")", "cm", "=", "min", "(", "10", ",", "ds", ".", "shape", "[", "1", "]", ")", "html", "=", "\"<p>\"", "if", "ds", ".", "attrs", ".", "__contains__", "(", "\"title\"", ")", ":", "html", "+=", "\"<strong>\"", "+", "ds", ".", "attrs", "[", "\"title\"", "]", "+", "\"</strong> \"", "html", "+=", "f\"{ds.shape[0]} rows, {ds.shape[1]} columns, {len(ds.layers)} layer{'s' if len(ds.layers) > 1 else ''}<br/>(showing up to 10x10)<br/>\"", "html", "+=", "ds", ".", "filename", "+", "\"<br/>\"", "for", "(", "name", ",", "val", ")", "in", "ds", ".", "attrs", ".", "items", "(", ")", ":", "html", "+=", "f\"name: <em>{val}</em><br/>\"", "html", "+=", "\"<table>\"", "# Emit column attributes", "for", "ca", "in", "ds", ".", "col_attrs", ".", "keys", "(", ")", ":", "html", "+=", "\"<tr>\"", "for", "ra", "in", "ds", ".", "row_attrs", ".", "keys", "(", ")", ":", "html", "+=", "\"<td>&nbsp;</td>\"", "# Space for row attrs", "html", "+=", "\"<td><strong>\"", "+", "ca", "+", "\"</strong></td>\"", "# Col attr name", "for", "v", "in", "ds", ".", "col_attrs", "[", "ca", "]", "[", ":", "cm", "]", ":", "html", "+=", "\"<td>\"", "+", "str", "(", "v", ")", "+", "\"</td>\"", "if", "ds", ".", "shape", "[", "1", "]", ">", "cm", ":", "html", "+=", "\"<td>...</td>\"", "html", "+=", "\"</tr>\"", "# Emit row attribute names", "html", "+=", "\"<tr>\"", "for", "ra", "in", "ds", ".", "row_attrs", ".", "keys", "(", ")", ":", "html", "+=", "\"<td><strong>\"", "+", "ra", "+", "\"</strong></td>\"", "# Row attr name", "html", "+=", "\"<td>&nbsp;</td>\"", "# Space for col attrs", "for", "v", "in", "range", "(", "cm", ")", ":", "html", "+=", "\"<td>&nbsp;</td>\"", "if", "ds", ".", "shape", "[", "1", "]", ">", "cm", ":", "html", "+=", "\"<td>...</td>\"", "html", "+=", "\"</tr>\"", "# Emit row attr values and matrix values", "for", "row", "in", "range", "(", "rm", ")", ":", "html", "+=", "\"<tr>\"", "for", "ra", "in", "ds", ".", "row_attrs", ".", "keys", "(", ")", ":", "html", "+=", "\"<td>\"", "+", "str", "(", "ds", ".", "row_attrs", "[", "ra", "]", "[", "row", "]", ")", "+", "\"</td>\"", "html", "+=", "\"<td>&nbsp;</td>\"", "# Space for col attrs", "for", "v", "in", "ds", "[", "row", ",", ":", "cm", "]", ":", "html", "+=", "\"<td>\"", "+", "str", "(", "v", ")", "+", "\"</td>\"", "if", "ds", ".", "shape", "[", "1", "]", ">", "cm", ":", "html", "+=", "\"<td>...</td>\"", "html", "+=", "\"</tr>\"", "# Emit ellipses", "if", "ds", ".", "shape", "[", "0", "]", ">", "rm", ":", "html", "+=", "\"<tr>\"", "for", "v", "in", "range", "(", "rm", "+", "1", "+", "len", "(", "ds", ".", "row_attrs", ".", "keys", "(", ")", ")", ")", ":", "html", "+=", "\"<td>...</td>\"", "if", "ds", ".", "shape", "[", "1", "]", ">", "cm", ":", "html", "+=", "\"<td>...</td>\"", "html", "+=", "\"</tr>\"", "html", "+=", "\"</table>\"", "return", "html" ]
Return an HTML representation of the loom file or view, showing the upper-left 10x10 corner.
[ "Return", "an", "HTML", "representation", "of", "the", "loom", "file", "or", "view", "showing", "the", "upper", "-", "left", "10x10", "corner", "." ]
62c8373a92b058753baa3a95331fb541f560f599
https://github.com/linnarsson-lab/loompy/blob/62c8373a92b058753baa3a95331fb541f560f599/loompy/to_html.py#L4-L62
train
linnarsson-lab/loompy
loompy/loom_view.py
LoomView.permute
def permute(self, ordering: np.ndarray, *, axis: int) -> None: """ Permute the view, by permuting its layers, attributes and graphs Args: ordering (np.ndarray): The desired ordering along the axis axis (int): 0, permute rows; 1, permute columns """ if axis not in (0, 1): raise ValueError("Axis must be 0 (rows) or 1 (columns)") for layer in self.layers.values(): layer._permute(ordering, axis=axis) if axis == 0: if self.row_graphs is not None: for g in self.row_graphs.values(): g._permute(ordering) for a in self.row_attrs.values(): a._permute(ordering) elif axis == 1: if self.col_graphs is not None: for g in self.col_graphs.values(): g._permute(ordering) for a in self.col_attrs.values(): a._permute(ordering)
python
def permute(self, ordering: np.ndarray, *, axis: int) -> None: """ Permute the view, by permuting its layers, attributes and graphs Args: ordering (np.ndarray): The desired ordering along the axis axis (int): 0, permute rows; 1, permute columns """ if axis not in (0, 1): raise ValueError("Axis must be 0 (rows) or 1 (columns)") for layer in self.layers.values(): layer._permute(ordering, axis=axis) if axis == 0: if self.row_graphs is not None: for g in self.row_graphs.values(): g._permute(ordering) for a in self.row_attrs.values(): a._permute(ordering) elif axis == 1: if self.col_graphs is not None: for g in self.col_graphs.values(): g._permute(ordering) for a in self.col_attrs.values(): a._permute(ordering)
[ "def", "permute", "(", "self", ",", "ordering", ":", "np", ".", "ndarray", ",", "*", ",", "axis", ":", "int", ")", "->", "None", ":", "if", "axis", "not", "in", "(", "0", ",", "1", ")", ":", "raise", "ValueError", "(", "\"Axis must be 0 (rows) or 1 (columns)\"", ")", "for", "layer", "in", "self", ".", "layers", ".", "values", "(", ")", ":", "layer", ".", "_permute", "(", "ordering", ",", "axis", "=", "axis", ")", "if", "axis", "==", "0", ":", "if", "self", ".", "row_graphs", "is", "not", "None", ":", "for", "g", "in", "self", ".", "row_graphs", ".", "values", "(", ")", ":", "g", ".", "_permute", "(", "ordering", ")", "for", "a", "in", "self", ".", "row_attrs", ".", "values", "(", ")", ":", "a", ".", "_permute", "(", "ordering", ")", "elif", "axis", "==", "1", ":", "if", "self", ".", "col_graphs", "is", "not", "None", ":", "for", "g", "in", "self", ".", "col_graphs", ".", "values", "(", ")", ":", "g", ".", "_permute", "(", "ordering", ")", "for", "a", "in", "self", ".", "col_attrs", ".", "values", "(", ")", ":", "a", ".", "_permute", "(", "ordering", ")" ]
Permute the view, by permuting its layers, attributes and graphs Args: ordering (np.ndarray): The desired ordering along the axis axis (int): 0, permute rows; 1, permute columns
[ "Permute", "the", "view", "by", "permuting", "its", "layers", "attributes", "and", "graphs" ]
62c8373a92b058753baa3a95331fb541f560f599
https://github.com/linnarsson-lab/loompy/blob/62c8373a92b058753baa3a95331fb541f560f599/loompy/loom_view.py#L45-L68
train
linnarsson-lab/loompy
loompy/loom_layer.py
MemoryLoomLayer.permute
def permute(self, ordering: np.ndarray, *, axis: int) -> None: """ Permute the layer along an axis Args: axis: The axis to permute (0, permute the rows; 1, permute the columns) ordering: The permutation vector """ if axis == 0: self.values = self.values[ordering, :] elif axis == 1: self.values = self.values[:, ordering] else: raise ValueError("axis must be 0 or 1")
python
def permute(self, ordering: np.ndarray, *, axis: int) -> None: """ Permute the layer along an axis Args: axis: The axis to permute (0, permute the rows; 1, permute the columns) ordering: The permutation vector """ if axis == 0: self.values = self.values[ordering, :] elif axis == 1: self.values = self.values[:, ordering] else: raise ValueError("axis must be 0 or 1")
[ "def", "permute", "(", "self", ",", "ordering", ":", "np", ".", "ndarray", ",", "*", ",", "axis", ":", "int", ")", "->", "None", ":", "if", "axis", "==", "0", ":", "self", ".", "values", "=", "self", ".", "values", "[", "ordering", ",", ":", "]", "elif", "axis", "==", "1", ":", "self", ".", "values", "=", "self", ".", "values", "[", ":", ",", "ordering", "]", "else", ":", "raise", "ValueError", "(", "\"axis must be 0 or 1\"", ")" ]
Permute the layer along an axis Args: axis: The axis to permute (0, permute the rows; 1, permute the columns) ordering: The permutation vector
[ "Permute", "the", "layer", "along", "an", "axis" ]
62c8373a92b058753baa3a95331fb541f560f599
https://github.com/linnarsson-lab/loompy/blob/62c8373a92b058753baa3a95331fb541f560f599/loompy/loom_layer.py#L30-L43
train
linnarsson-lab/loompy
loompy/loom_layer.py
LoomLayer._resize
def _resize(self, size: Tuple[int, int], axis: int = None) -> None: """Resize the dataset, or the specified axis. The dataset must be stored in chunked format; it can be resized up to the "maximum shape" (keyword maxshape) specified at creation time. The rank of the dataset cannot be changed. "Size" should be a shape tuple, or if an axis is specified, an integer. BEWARE: This functions differently than the NumPy resize() method! The data is not "reshuffled" to fit in the new shape; each axis is grown or shrunk independently. The coordinates of existing data are fixed. """ if self.name == "": self.ds._file['/matrix'].resize(size, axis) else: self.ds._file['/layers/' + self.name].resize(size, axis)
python
def _resize(self, size: Tuple[int, int], axis: int = None) -> None: """Resize the dataset, or the specified axis. The dataset must be stored in chunked format; it can be resized up to the "maximum shape" (keyword maxshape) specified at creation time. The rank of the dataset cannot be changed. "Size" should be a shape tuple, or if an axis is specified, an integer. BEWARE: This functions differently than the NumPy resize() method! The data is not "reshuffled" to fit in the new shape; each axis is grown or shrunk independently. The coordinates of existing data are fixed. """ if self.name == "": self.ds._file['/matrix'].resize(size, axis) else: self.ds._file['/layers/' + self.name].resize(size, axis)
[ "def", "_resize", "(", "self", ",", "size", ":", "Tuple", "[", "int", ",", "int", "]", ",", "axis", ":", "int", "=", "None", ")", "->", "None", ":", "if", "self", ".", "name", "==", "\"\"", ":", "self", ".", "ds", ".", "_file", "[", "'/matrix'", "]", ".", "resize", "(", "size", ",", "axis", ")", "else", ":", "self", ".", "ds", ".", "_file", "[", "'/layers/'", "+", "self", ".", "name", "]", ".", "resize", "(", "size", ",", "axis", ")" ]
Resize the dataset, or the specified axis. The dataset must be stored in chunked format; it can be resized up to the "maximum shape" (keyword maxshape) specified at creation time. The rank of the dataset cannot be changed. "Size" should be a shape tuple, or if an axis is specified, an integer. BEWARE: This functions differently than the NumPy resize() method! The data is not "reshuffled" to fit in the new shape; each axis is grown or shrunk independently. The coordinates of existing data are fixed.
[ "Resize", "the", "dataset", "or", "the", "specified", "axis", "." ]
62c8373a92b058753baa3a95331fb541f560f599
https://github.com/linnarsson-lab/loompy/blob/62c8373a92b058753baa3a95331fb541f560f599/loompy/loom_layer.py#L130-L144
train
optimizely/python-sdk
optimizely/helpers/validator.py
is_datafile_valid
def is_datafile_valid(datafile): """ Given a datafile determine if it is valid or not. Args: datafile: JSON string representing the project. Returns: Boolean depending upon whether datafile is valid or not. """ try: datafile_json = json.loads(datafile) except: return False try: jsonschema.Draft4Validator(constants.JSON_SCHEMA).validate(datafile_json) except: return False return True
python
def is_datafile_valid(datafile): """ Given a datafile determine if it is valid or not. Args: datafile: JSON string representing the project. Returns: Boolean depending upon whether datafile is valid or not. """ try: datafile_json = json.loads(datafile) except: return False try: jsonschema.Draft4Validator(constants.JSON_SCHEMA).validate(datafile_json) except: return False return True
[ "def", "is_datafile_valid", "(", "datafile", ")", ":", "try", ":", "datafile_json", "=", "json", ".", "loads", "(", "datafile", ")", "except", ":", "return", "False", "try", ":", "jsonschema", ".", "Draft4Validator", "(", "constants", ".", "JSON_SCHEMA", ")", ".", "validate", "(", "datafile_json", ")", "except", ":", "return", "False", "return", "True" ]
Given a datafile determine if it is valid or not. Args: datafile: JSON string representing the project. Returns: Boolean depending upon whether datafile is valid or not.
[ "Given", "a", "datafile", "determine", "if", "it", "is", "valid", "or", "not", "." ]
ec028d9efcf22498c3820f2650fa10f5c30bec90
https://github.com/optimizely/python-sdk/blob/ec028d9efcf22498c3820f2650fa10f5c30bec90/optimizely/helpers/validator.py#L24-L44
train
optimizely/python-sdk
optimizely/helpers/validator.py
is_user_profile_valid
def is_user_profile_valid(user_profile): """ Determine if provided user profile is valid or not. Args: user_profile: User's profile which needs to be validated. Returns: Boolean depending upon whether profile is valid or not. """ if not user_profile: return False if not type(user_profile) is dict: return False if UserProfile.USER_ID_KEY not in user_profile: return False if UserProfile.EXPERIMENT_BUCKET_MAP_KEY not in user_profile: return False experiment_bucket_map = user_profile.get(UserProfile.EXPERIMENT_BUCKET_MAP_KEY) if not type(experiment_bucket_map) is dict: return False for decision in experiment_bucket_map.values(): if type(decision) is not dict or UserProfile.VARIATION_ID_KEY not in decision: return False return True
python
def is_user_profile_valid(user_profile): """ Determine if provided user profile is valid or not. Args: user_profile: User's profile which needs to be validated. Returns: Boolean depending upon whether profile is valid or not. """ if not user_profile: return False if not type(user_profile) is dict: return False if UserProfile.USER_ID_KEY not in user_profile: return False if UserProfile.EXPERIMENT_BUCKET_MAP_KEY not in user_profile: return False experiment_bucket_map = user_profile.get(UserProfile.EXPERIMENT_BUCKET_MAP_KEY) if not type(experiment_bucket_map) is dict: return False for decision in experiment_bucket_map.values(): if type(decision) is not dict or UserProfile.VARIATION_ID_KEY not in decision: return False return True
[ "def", "is_user_profile_valid", "(", "user_profile", ")", ":", "if", "not", "user_profile", ":", "return", "False", "if", "not", "type", "(", "user_profile", ")", "is", "dict", ":", "return", "False", "if", "UserProfile", ".", "USER_ID_KEY", "not", "in", "user_profile", ":", "return", "False", "if", "UserProfile", ".", "EXPERIMENT_BUCKET_MAP_KEY", "not", "in", "user_profile", ":", "return", "False", "experiment_bucket_map", "=", "user_profile", ".", "get", "(", "UserProfile", ".", "EXPERIMENT_BUCKET_MAP_KEY", ")", "if", "not", "type", "(", "experiment_bucket_map", ")", "is", "dict", ":", "return", "False", "for", "decision", "in", "experiment_bucket_map", ".", "values", "(", ")", ":", "if", "type", "(", "decision", ")", "is", "not", "dict", "or", "UserProfile", ".", "VARIATION_ID_KEY", "not", "in", "decision", ":", "return", "False", "return", "True" ]
Determine if provided user profile is valid or not. Args: user_profile: User's profile which needs to be validated. Returns: Boolean depending upon whether profile is valid or not.
[ "Determine", "if", "provided", "user", "profile", "is", "valid", "or", "not", "." ]
ec028d9efcf22498c3820f2650fa10f5c30bec90
https://github.com/optimizely/python-sdk/blob/ec028d9efcf22498c3820f2650fa10f5c30bec90/optimizely/helpers/validator.py#L126-L156
train
optimizely/python-sdk
optimizely/helpers/validator.py
is_attribute_valid
def is_attribute_valid(attribute_key, attribute_value): """ Determine if given attribute is valid. Args: attribute_key: Variable which needs to be validated attribute_value: Variable which needs to be validated Returns: False if attribute_key is not a string False if attribute_value is not one of the supported attribute types True otherwise """ if not isinstance(attribute_key, string_types): return False if isinstance(attribute_value, (string_types, bool)): return True if isinstance(attribute_value, (numbers.Integral, float)): return is_finite_number(attribute_value) return False
python
def is_attribute_valid(attribute_key, attribute_value): """ Determine if given attribute is valid. Args: attribute_key: Variable which needs to be validated attribute_value: Variable which needs to be validated Returns: False if attribute_key is not a string False if attribute_value is not one of the supported attribute types True otherwise """ if not isinstance(attribute_key, string_types): return False if isinstance(attribute_value, (string_types, bool)): return True if isinstance(attribute_value, (numbers.Integral, float)): return is_finite_number(attribute_value) return False
[ "def", "is_attribute_valid", "(", "attribute_key", ",", "attribute_value", ")", ":", "if", "not", "isinstance", "(", "attribute_key", ",", "string_types", ")", ":", "return", "False", "if", "isinstance", "(", "attribute_value", ",", "(", "string_types", ",", "bool", ")", ")", ":", "return", "True", "if", "isinstance", "(", "attribute_value", ",", "(", "numbers", ".", "Integral", ",", "float", ")", ")", ":", "return", "is_finite_number", "(", "attribute_value", ")", "return", "False" ]
Determine if given attribute is valid. Args: attribute_key: Variable which needs to be validated attribute_value: Variable which needs to be validated Returns: False if attribute_key is not a string False if attribute_value is not one of the supported attribute types True otherwise
[ "Determine", "if", "given", "attribute", "is", "valid", "." ]
ec028d9efcf22498c3820f2650fa10f5c30bec90
https://github.com/optimizely/python-sdk/blob/ec028d9efcf22498c3820f2650fa10f5c30bec90/optimizely/helpers/validator.py#L174-L196
train
optimizely/python-sdk
optimizely/helpers/validator.py
is_finite_number
def is_finite_number(value): """ Validates if the given value is a number, enforces absolute limit of 2^53 and restricts NAN, INF, -INF. Args: value: Value to be validated. Returns: Boolean: True if value is a number and not NAN, INF, -INF or greater than absolute limit of 2^53 else False. """ if not isinstance(value, (numbers.Integral, float)): # numbers.Integral instead of int to accomodate long integer in python 2 return False if isinstance(value, bool): # bool is a subclass of int return False if isinstance(value, float): if math.isnan(value) or math.isinf(value): return False if abs(value) > (2**53): return False return True
python
def is_finite_number(value): """ Validates if the given value is a number, enforces absolute limit of 2^53 and restricts NAN, INF, -INF. Args: value: Value to be validated. Returns: Boolean: True if value is a number and not NAN, INF, -INF or greater than absolute limit of 2^53 else False. """ if not isinstance(value, (numbers.Integral, float)): # numbers.Integral instead of int to accomodate long integer in python 2 return False if isinstance(value, bool): # bool is a subclass of int return False if isinstance(value, float): if math.isnan(value) or math.isinf(value): return False if abs(value) > (2**53): return False return True
[ "def", "is_finite_number", "(", "value", ")", ":", "if", "not", "isinstance", "(", "value", ",", "(", "numbers", ".", "Integral", ",", "float", ")", ")", ":", "# numbers.Integral instead of int to accomodate long integer in python 2", "return", "False", "if", "isinstance", "(", "value", ",", "bool", ")", ":", "# bool is a subclass of int", "return", "False", "if", "isinstance", "(", "value", ",", "float", ")", ":", "if", "math", ".", "isnan", "(", "value", ")", "or", "math", ".", "isinf", "(", "value", ")", ":", "return", "False", "if", "abs", "(", "value", ")", ">", "(", "2", "**", "53", ")", ":", "return", "False", "return", "True" ]
Validates if the given value is a number, enforces absolute limit of 2^53 and restricts NAN, INF, -INF. Args: value: Value to be validated. Returns: Boolean: True if value is a number and not NAN, INF, -INF or greater than absolute limit of 2^53 else False.
[ "Validates", "if", "the", "given", "value", "is", "a", "number", "enforces", "absolute", "limit", "of", "2^53", "and", "restricts", "NAN", "INF", "-", "INF", "." ]
ec028d9efcf22498c3820f2650fa10f5c30bec90
https://github.com/optimizely/python-sdk/blob/ec028d9efcf22498c3820f2650fa10f5c30bec90/optimizely/helpers/validator.py#L199-L225
train
optimizely/python-sdk
optimizely/helpers/validator.py
are_values_same_type
def are_values_same_type(first_val, second_val): """ Method to verify that both values belong to same type. Float and integer are considered as same type. Args: first_val: Value to validate. second_Val: Value to validate. Returns: Boolean: True if both values belong to same type. Otherwise False. """ first_val_type = type(first_val) second_val_type = type(second_val) # use isinstance to accomodate Python 2 unicode and str types. if isinstance(first_val, string_types) and isinstance(second_val, string_types): return True # Compare types if one of the values is bool because bool is a subclass on Integer. if isinstance(first_val, bool) or isinstance(second_val, bool): return first_val_type == second_val_type # Treat ints and floats as same type. if isinstance(first_val, (numbers.Integral, float)) and isinstance(second_val, (numbers.Integral, float)): return True return False
python
def are_values_same_type(first_val, second_val): """ Method to verify that both values belong to same type. Float and integer are considered as same type. Args: first_val: Value to validate. second_Val: Value to validate. Returns: Boolean: True if both values belong to same type. Otherwise False. """ first_val_type = type(first_val) second_val_type = type(second_val) # use isinstance to accomodate Python 2 unicode and str types. if isinstance(first_val, string_types) and isinstance(second_val, string_types): return True # Compare types if one of the values is bool because bool is a subclass on Integer. if isinstance(first_val, bool) or isinstance(second_val, bool): return first_val_type == second_val_type # Treat ints and floats as same type. if isinstance(first_val, (numbers.Integral, float)) and isinstance(second_val, (numbers.Integral, float)): return True return False
[ "def", "are_values_same_type", "(", "first_val", ",", "second_val", ")", ":", "first_val_type", "=", "type", "(", "first_val", ")", "second_val_type", "=", "type", "(", "second_val", ")", "# use isinstance to accomodate Python 2 unicode and str types.", "if", "isinstance", "(", "first_val", ",", "string_types", ")", "and", "isinstance", "(", "second_val", ",", "string_types", ")", ":", "return", "True", "# Compare types if one of the values is bool because bool is a subclass on Integer.", "if", "isinstance", "(", "first_val", ",", "bool", ")", "or", "isinstance", "(", "second_val", ",", "bool", ")", ":", "return", "first_val_type", "==", "second_val_type", "# Treat ints and floats as same type.", "if", "isinstance", "(", "first_val", ",", "(", "numbers", ".", "Integral", ",", "float", ")", ")", "and", "isinstance", "(", "second_val", ",", "(", "numbers", ".", "Integral", ",", "float", ")", ")", ":", "return", "True", "return", "False" ]
Method to verify that both values belong to same type. Float and integer are considered as same type. Args: first_val: Value to validate. second_Val: Value to validate. Returns: Boolean: True if both values belong to same type. Otherwise False.
[ "Method", "to", "verify", "that", "both", "values", "belong", "to", "same", "type", ".", "Float", "and", "integer", "are", "considered", "as", "same", "type", "." ]
ec028d9efcf22498c3820f2650fa10f5c30bec90
https://github.com/optimizely/python-sdk/blob/ec028d9efcf22498c3820f2650fa10f5c30bec90/optimizely/helpers/validator.py#L228-L255
train
optimizely/python-sdk
optimizely/logger.py
reset_logger
def reset_logger(name, level=None, handler=None): """ Make a standard python logger object with default formatter, handler, etc. Defaults are: - level == logging.INFO - handler == logging.StreamHandler() Args: name: a logger name. level: an optional initial log level for this logger. handler: an optional initial handler for this logger. Returns: a standard python logger with a single handler. """ # Make the logger and set its level. if level is None: level = logging.INFO logger = logging.getLogger(name) logger.setLevel(level) # Make the handler and attach it. handler = handler or logging.StreamHandler() handler.setFormatter(logging.Formatter(_DEFAULT_LOG_FORMAT)) # We don't use ``.addHandler``, since this logger may have already been # instantiated elsewhere with a different handler. It should only ever # have one, not many. logger.handlers = [handler] return logger
python
def reset_logger(name, level=None, handler=None): """ Make a standard python logger object with default formatter, handler, etc. Defaults are: - level == logging.INFO - handler == logging.StreamHandler() Args: name: a logger name. level: an optional initial log level for this logger. handler: an optional initial handler for this logger. Returns: a standard python logger with a single handler. """ # Make the logger and set its level. if level is None: level = logging.INFO logger = logging.getLogger(name) logger.setLevel(level) # Make the handler and attach it. handler = handler or logging.StreamHandler() handler.setFormatter(logging.Formatter(_DEFAULT_LOG_FORMAT)) # We don't use ``.addHandler``, since this logger may have already been # instantiated elsewhere with a different handler. It should only ever # have one, not many. logger.handlers = [handler] return logger
[ "def", "reset_logger", "(", "name", ",", "level", "=", "None", ",", "handler", "=", "None", ")", ":", "# Make the logger and set its level.", "if", "level", "is", "None", ":", "level", "=", "logging", ".", "INFO", "logger", "=", "logging", ".", "getLogger", "(", "name", ")", "logger", ".", "setLevel", "(", "level", ")", "# Make the handler and attach it.", "handler", "=", "handler", "or", "logging", ".", "StreamHandler", "(", ")", "handler", ".", "setFormatter", "(", "logging", ".", "Formatter", "(", "_DEFAULT_LOG_FORMAT", ")", ")", "# We don't use ``.addHandler``, since this logger may have already been", "# instantiated elsewhere with a different handler. It should only ever", "# have one, not many.", "logger", ".", "handlers", "=", "[", "handler", "]", "return", "logger" ]
Make a standard python logger object with default formatter, handler, etc. Defaults are: - level == logging.INFO - handler == logging.StreamHandler() Args: name: a logger name. level: an optional initial log level for this logger. handler: an optional initial handler for this logger. Returns: a standard python logger with a single handler.
[ "Make", "a", "standard", "python", "logger", "object", "with", "default", "formatter", "handler", "etc", "." ]
ec028d9efcf22498c3820f2650fa10f5c30bec90
https://github.com/optimizely/python-sdk/blob/ec028d9efcf22498c3820f2650fa10f5c30bec90/optimizely/logger.py#L22-L52
train
optimizely/python-sdk
optimizely/logger.py
adapt_logger
def adapt_logger(logger): """ Adapt our custom logger.BaseLogger object into a standard logging.Logger object. Adaptations are: - NoOpLogger turns into a logger with a single NullHandler. - SimpleLogger turns into a logger with a StreamHandler and level. Args: logger: Possibly a logger.BaseLogger, or a standard python logging.Logger. Returns: a standard python logging.Logger. """ if isinstance(logger, logging.Logger): return logger # Use the standard python logger created by these classes. if isinstance(logger, (SimpleLogger, NoOpLogger)): return logger.logger # Otherwise, return whatever we were given because we can't adapt. return logger
python
def adapt_logger(logger): """ Adapt our custom logger.BaseLogger object into a standard logging.Logger object. Adaptations are: - NoOpLogger turns into a logger with a single NullHandler. - SimpleLogger turns into a logger with a StreamHandler and level. Args: logger: Possibly a logger.BaseLogger, or a standard python logging.Logger. Returns: a standard python logging.Logger. """ if isinstance(logger, logging.Logger): return logger # Use the standard python logger created by these classes. if isinstance(logger, (SimpleLogger, NoOpLogger)): return logger.logger # Otherwise, return whatever we were given because we can't adapt. return logger
[ "def", "adapt_logger", "(", "logger", ")", ":", "if", "isinstance", "(", "logger", ",", "logging", ".", "Logger", ")", ":", "return", "logger", "# Use the standard python logger created by these classes.", "if", "isinstance", "(", "logger", ",", "(", "SimpleLogger", ",", "NoOpLogger", ")", ")", ":", "return", "logger", ".", "logger", "# Otherwise, return whatever we were given because we can't adapt.", "return", "logger" ]
Adapt our custom logger.BaseLogger object into a standard logging.Logger object. Adaptations are: - NoOpLogger turns into a logger with a single NullHandler. - SimpleLogger turns into a logger with a StreamHandler and level. Args: logger: Possibly a logger.BaseLogger, or a standard python logging.Logger. Returns: a standard python logging.Logger.
[ "Adapt", "our", "custom", "logger", ".", "BaseLogger", "object", "into", "a", "standard", "logging", ".", "Logger", "object", "." ]
ec028d9efcf22498c3820f2650fa10f5c30bec90
https://github.com/optimizely/python-sdk/blob/ec028d9efcf22498c3820f2650fa10f5c30bec90/optimizely/logger.py#L95-L117
train
optimizely/python-sdk
optimizely/user_profile.py
UserProfile.get_variation_for_experiment
def get_variation_for_experiment(self, experiment_id): """ Helper method to retrieve variation ID for given experiment. Args: experiment_id: ID for experiment for which variation needs to be looked up for. Returns: Variation ID corresponding to the experiment. None if no decision available. """ return self.experiment_bucket_map.get(experiment_id, {self.VARIATION_ID_KEY: None}).get(self.VARIATION_ID_KEY)
python
def get_variation_for_experiment(self, experiment_id): """ Helper method to retrieve variation ID for given experiment. Args: experiment_id: ID for experiment for which variation needs to be looked up for. Returns: Variation ID corresponding to the experiment. None if no decision available. """ return self.experiment_bucket_map.get(experiment_id, {self.VARIATION_ID_KEY: None}).get(self.VARIATION_ID_KEY)
[ "def", "get_variation_for_experiment", "(", "self", ",", "experiment_id", ")", ":", "return", "self", ".", "experiment_bucket_map", ".", "get", "(", "experiment_id", ",", "{", "self", ".", "VARIATION_ID_KEY", ":", "None", "}", ")", ".", "get", "(", "self", ".", "VARIATION_ID_KEY", ")" ]
Helper method to retrieve variation ID for given experiment. Args: experiment_id: ID for experiment for which variation needs to be looked up for. Returns: Variation ID corresponding to the experiment. None if no decision available.
[ "Helper", "method", "to", "retrieve", "variation", "ID", "for", "given", "experiment", "." ]
ec028d9efcf22498c3820f2650fa10f5c30bec90
https://github.com/optimizely/python-sdk/blob/ec028d9efcf22498c3820f2650fa10f5c30bec90/optimizely/user_profile.py#L34-L44
train
optimizely/python-sdk
optimizely/helpers/event_tag_utils.py
get_numeric_value
def get_numeric_value(event_tags, logger=None): """ A smart getter of the numeric value from the event tags. Args: event_tags: A dictionary of event tags. logger: Optional logger. Returns: A float numeric metric value is returned when the provided numeric metric value is in the following format: - A string (properly formatted, e.g., no commas) - An integer - A float or double None is returned when the provided numeric metric values is in the following format: - None - A boolean - inf, -inf, nan - A string not properly formatted (e.g., '1,234') - Any values that cannot be cast to a float (e.g., an array or dictionary) """ logger_message_debug = None numeric_metric_value = None if event_tags is None: logger_message_debug = 'Event tags is undefined.' elif not isinstance(event_tags, dict): logger_message_debug = 'Event tags is not a dictionary.' elif NUMERIC_METRIC_TYPE not in event_tags: logger_message_debug = 'The numeric metric key is not in event tags.' else: numeric_metric_value = event_tags[NUMERIC_METRIC_TYPE] try: if isinstance(numeric_metric_value, (numbers.Integral, float, str)): # Attempt to convert the numeric metric value to a float # (if it isn't already a float). cast_numeric_metric_value = float(numeric_metric_value) # If not a float after casting, then make everything else a None. # Other potential values are nan, inf, and -inf. if not isinstance(cast_numeric_metric_value, float) \ or math.isnan(cast_numeric_metric_value) \ or math.isinf(cast_numeric_metric_value): logger_message_debug = 'Provided numeric value {} is in an invalid format.'\ .format(numeric_metric_value) numeric_metric_value = None else: # Handle booleans as a special case. # They are treated like an integer in the cast, but we do not want to cast this. if isinstance(numeric_metric_value, bool): logger_message_debug = 'Provided numeric value is a boolean, which is an invalid format.' numeric_metric_value = None else: numeric_metric_value = cast_numeric_metric_value else: logger_message_debug = 'Numeric metric value is not in integer, float, or string form.' numeric_metric_value = None except ValueError: logger_message_debug = 'Value error while casting numeric metric value to a float.' numeric_metric_value = None # Log all potential debug messages while converting the numeric value to a float. if logger and logger_message_debug: logger.log(enums.LogLevels.DEBUG, logger_message_debug) # Log the final numeric metric value if numeric_metric_value is not None: if logger: logger.log(enums.LogLevels.INFO, 'The numeric metric value {} will be sent to results.' .format(numeric_metric_value)) else: if logger: logger.log(enums.LogLevels.WARNING, 'The provided numeric metric value {} is in an invalid format and will not be sent to results.' .format(numeric_metric_value)) return numeric_metric_value
python
def get_numeric_value(event_tags, logger=None): """ A smart getter of the numeric value from the event tags. Args: event_tags: A dictionary of event tags. logger: Optional logger. Returns: A float numeric metric value is returned when the provided numeric metric value is in the following format: - A string (properly formatted, e.g., no commas) - An integer - A float or double None is returned when the provided numeric metric values is in the following format: - None - A boolean - inf, -inf, nan - A string not properly formatted (e.g., '1,234') - Any values that cannot be cast to a float (e.g., an array or dictionary) """ logger_message_debug = None numeric_metric_value = None if event_tags is None: logger_message_debug = 'Event tags is undefined.' elif not isinstance(event_tags, dict): logger_message_debug = 'Event tags is not a dictionary.' elif NUMERIC_METRIC_TYPE not in event_tags: logger_message_debug = 'The numeric metric key is not in event tags.' else: numeric_metric_value = event_tags[NUMERIC_METRIC_TYPE] try: if isinstance(numeric_metric_value, (numbers.Integral, float, str)): # Attempt to convert the numeric metric value to a float # (if it isn't already a float). cast_numeric_metric_value = float(numeric_metric_value) # If not a float after casting, then make everything else a None. # Other potential values are nan, inf, and -inf. if not isinstance(cast_numeric_metric_value, float) \ or math.isnan(cast_numeric_metric_value) \ or math.isinf(cast_numeric_metric_value): logger_message_debug = 'Provided numeric value {} is in an invalid format.'\ .format(numeric_metric_value) numeric_metric_value = None else: # Handle booleans as a special case. # They are treated like an integer in the cast, but we do not want to cast this. if isinstance(numeric_metric_value, bool): logger_message_debug = 'Provided numeric value is a boolean, which is an invalid format.' numeric_metric_value = None else: numeric_metric_value = cast_numeric_metric_value else: logger_message_debug = 'Numeric metric value is not in integer, float, or string form.' numeric_metric_value = None except ValueError: logger_message_debug = 'Value error while casting numeric metric value to a float.' numeric_metric_value = None # Log all potential debug messages while converting the numeric value to a float. if logger and logger_message_debug: logger.log(enums.LogLevels.DEBUG, logger_message_debug) # Log the final numeric metric value if numeric_metric_value is not None: if logger: logger.log(enums.LogLevels.INFO, 'The numeric metric value {} will be sent to results.' .format(numeric_metric_value)) else: if logger: logger.log(enums.LogLevels.WARNING, 'The provided numeric metric value {} is in an invalid format and will not be sent to results.' .format(numeric_metric_value)) return numeric_metric_value
[ "def", "get_numeric_value", "(", "event_tags", ",", "logger", "=", "None", ")", ":", "logger_message_debug", "=", "None", "numeric_metric_value", "=", "None", "if", "event_tags", "is", "None", ":", "logger_message_debug", "=", "'Event tags is undefined.'", "elif", "not", "isinstance", "(", "event_tags", ",", "dict", ")", ":", "logger_message_debug", "=", "'Event tags is not a dictionary.'", "elif", "NUMERIC_METRIC_TYPE", "not", "in", "event_tags", ":", "logger_message_debug", "=", "'The numeric metric key is not in event tags.'", "else", ":", "numeric_metric_value", "=", "event_tags", "[", "NUMERIC_METRIC_TYPE", "]", "try", ":", "if", "isinstance", "(", "numeric_metric_value", ",", "(", "numbers", ".", "Integral", ",", "float", ",", "str", ")", ")", ":", "# Attempt to convert the numeric metric value to a float", "# (if it isn't already a float).", "cast_numeric_metric_value", "=", "float", "(", "numeric_metric_value", ")", "# If not a float after casting, then make everything else a None.", "# Other potential values are nan, inf, and -inf.", "if", "not", "isinstance", "(", "cast_numeric_metric_value", ",", "float", ")", "or", "math", ".", "isnan", "(", "cast_numeric_metric_value", ")", "or", "math", ".", "isinf", "(", "cast_numeric_metric_value", ")", ":", "logger_message_debug", "=", "'Provided numeric value {} is in an invalid format.'", ".", "format", "(", "numeric_metric_value", ")", "numeric_metric_value", "=", "None", "else", ":", "# Handle booleans as a special case.", "# They are treated like an integer in the cast, but we do not want to cast this.", "if", "isinstance", "(", "numeric_metric_value", ",", "bool", ")", ":", "logger_message_debug", "=", "'Provided numeric value is a boolean, which is an invalid format.'", "numeric_metric_value", "=", "None", "else", ":", "numeric_metric_value", "=", "cast_numeric_metric_value", "else", ":", "logger_message_debug", "=", "'Numeric metric value is not in integer, float, or string form.'", "numeric_metric_value", "=", "None", "except", "ValueError", ":", "logger_message_debug", "=", "'Value error while casting numeric metric value to a float.'", "numeric_metric_value", "=", "None", "# Log all potential debug messages while converting the numeric value to a float.", "if", "logger", "and", "logger_message_debug", ":", "logger", ".", "log", "(", "enums", ".", "LogLevels", ".", "DEBUG", ",", "logger_message_debug", ")", "# Log the final numeric metric value", "if", "numeric_metric_value", "is", "not", "None", ":", "if", "logger", ":", "logger", ".", "log", "(", "enums", ".", "LogLevels", ".", "INFO", ",", "'The numeric metric value {} will be sent to results.'", ".", "format", "(", "numeric_metric_value", ")", ")", "else", ":", "if", "logger", ":", "logger", ".", "log", "(", "enums", ".", "LogLevels", ".", "WARNING", ",", "'The provided numeric metric value {} is in an invalid format and will not be sent to results.'", ".", "format", "(", "numeric_metric_value", ")", ")", "return", "numeric_metric_value" ]
A smart getter of the numeric value from the event tags. Args: event_tags: A dictionary of event tags. logger: Optional logger. Returns: A float numeric metric value is returned when the provided numeric metric value is in the following format: - A string (properly formatted, e.g., no commas) - An integer - A float or double None is returned when the provided numeric metric values is in the following format: - None - A boolean - inf, -inf, nan - A string not properly formatted (e.g., '1,234') - Any values that cannot be cast to a float (e.g., an array or dictionary)
[ "A", "smart", "getter", "of", "the", "numeric", "value", "from", "the", "event", "tags", "." ]
ec028d9efcf22498c3820f2650fa10f5c30bec90
https://github.com/optimizely/python-sdk/blob/ec028d9efcf22498c3820f2650fa10f5c30bec90/optimizely/helpers/event_tag_utils.py#L43-L123
train
optimizely/python-sdk
optimizely/lib/pymmh3.py
hash
def hash( key, seed = 0x0 ): ''' Implements 32bit murmur3 hash. ''' key = bytearray( xencode(key) ) def fmix( h ): h ^= h >> 16 h = ( h * 0x85ebca6b ) & 0xFFFFFFFF h ^= h >> 13 h = ( h * 0xc2b2ae35 ) & 0xFFFFFFFF h ^= h >> 16 return h length = len( key ) nblocks = int( length / 4 ) h1 = seed c1 = 0xcc9e2d51 c2 = 0x1b873593 # body for block_start in xrange( 0, nblocks * 4, 4 ): # ??? big endian? k1 = key[ block_start + 3 ] << 24 | \ key[ block_start + 2 ] << 16 | \ key[ block_start + 1 ] << 8 | \ key[ block_start + 0 ] k1 = ( c1 * k1 ) & 0xFFFFFFFF k1 = ( k1 << 15 | k1 >> 17 ) & 0xFFFFFFFF # inlined ROTL32 k1 = ( c2 * k1 ) & 0xFFFFFFFF h1 ^= k1 h1 = ( h1 << 13 | h1 >> 19 ) & 0xFFFFFFFF # inlined ROTL32 h1 = ( h1 * 5 + 0xe6546b64 ) & 0xFFFFFFFF # tail tail_index = nblocks * 4 k1 = 0 tail_size = length & 3 if tail_size >= 3: k1 ^= key[ tail_index + 2 ] << 16 if tail_size >= 2: k1 ^= key[ tail_index + 1 ] << 8 if tail_size >= 1: k1 ^= key[ tail_index + 0 ] if tail_size > 0: k1 = ( k1 * c1 ) & 0xFFFFFFFF k1 = ( k1 << 15 | k1 >> 17 ) & 0xFFFFFFFF # inlined ROTL32 k1 = ( k1 * c2 ) & 0xFFFFFFFF h1 ^= k1 #finalization unsigned_val = fmix( h1 ^ length ) if unsigned_val & 0x80000000 == 0: return unsigned_val else: return -( (unsigned_val ^ 0xFFFFFFFF) + 1 )
python
def hash( key, seed = 0x0 ): ''' Implements 32bit murmur3 hash. ''' key = bytearray( xencode(key) ) def fmix( h ): h ^= h >> 16 h = ( h * 0x85ebca6b ) & 0xFFFFFFFF h ^= h >> 13 h = ( h * 0xc2b2ae35 ) & 0xFFFFFFFF h ^= h >> 16 return h length = len( key ) nblocks = int( length / 4 ) h1 = seed c1 = 0xcc9e2d51 c2 = 0x1b873593 # body for block_start in xrange( 0, nblocks * 4, 4 ): # ??? big endian? k1 = key[ block_start + 3 ] << 24 | \ key[ block_start + 2 ] << 16 | \ key[ block_start + 1 ] << 8 | \ key[ block_start + 0 ] k1 = ( c1 * k1 ) & 0xFFFFFFFF k1 = ( k1 << 15 | k1 >> 17 ) & 0xFFFFFFFF # inlined ROTL32 k1 = ( c2 * k1 ) & 0xFFFFFFFF h1 ^= k1 h1 = ( h1 << 13 | h1 >> 19 ) & 0xFFFFFFFF # inlined ROTL32 h1 = ( h1 * 5 + 0xe6546b64 ) & 0xFFFFFFFF # tail tail_index = nblocks * 4 k1 = 0 tail_size = length & 3 if tail_size >= 3: k1 ^= key[ tail_index + 2 ] << 16 if tail_size >= 2: k1 ^= key[ tail_index + 1 ] << 8 if tail_size >= 1: k1 ^= key[ tail_index + 0 ] if tail_size > 0: k1 = ( k1 * c1 ) & 0xFFFFFFFF k1 = ( k1 << 15 | k1 >> 17 ) & 0xFFFFFFFF # inlined ROTL32 k1 = ( k1 * c2 ) & 0xFFFFFFFF h1 ^= k1 #finalization unsigned_val = fmix( h1 ^ length ) if unsigned_val & 0x80000000 == 0: return unsigned_val else: return -( (unsigned_val ^ 0xFFFFFFFF) + 1 )
[ "def", "hash", "(", "key", ",", "seed", "=", "0x0", ")", ":", "key", "=", "bytearray", "(", "xencode", "(", "key", ")", ")", "def", "fmix", "(", "h", ")", ":", "h", "^=", "h", ">>", "16", "h", "=", "(", "h", "*", "0x85ebca6b", ")", "&", "0xFFFFFFFF", "h", "^=", "h", ">>", "13", "h", "=", "(", "h", "*", "0xc2b2ae35", ")", "&", "0xFFFFFFFF", "h", "^=", "h", ">>", "16", "return", "h", "length", "=", "len", "(", "key", ")", "nblocks", "=", "int", "(", "length", "/", "4", ")", "h1", "=", "seed", "c1", "=", "0xcc9e2d51", "c2", "=", "0x1b873593", "# body", "for", "block_start", "in", "xrange", "(", "0", ",", "nblocks", "*", "4", ",", "4", ")", ":", "# ??? big endian?", "k1", "=", "key", "[", "block_start", "+", "3", "]", "<<", "24", "|", "key", "[", "block_start", "+", "2", "]", "<<", "16", "|", "key", "[", "block_start", "+", "1", "]", "<<", "8", "|", "key", "[", "block_start", "+", "0", "]", "k1", "=", "(", "c1", "*", "k1", ")", "&", "0xFFFFFFFF", "k1", "=", "(", "k1", "<<", "15", "|", "k1", ">>", "17", ")", "&", "0xFFFFFFFF", "# inlined ROTL32", "k1", "=", "(", "c2", "*", "k1", ")", "&", "0xFFFFFFFF", "h1", "^=", "k1", "h1", "=", "(", "h1", "<<", "13", "|", "h1", ">>", "19", ")", "&", "0xFFFFFFFF", "# inlined ROTL32", "h1", "=", "(", "h1", "*", "5", "+", "0xe6546b64", ")", "&", "0xFFFFFFFF", "# tail", "tail_index", "=", "nblocks", "*", "4", "k1", "=", "0", "tail_size", "=", "length", "&", "3", "if", "tail_size", ">=", "3", ":", "k1", "^=", "key", "[", "tail_index", "+", "2", "]", "<<", "16", "if", "tail_size", ">=", "2", ":", "k1", "^=", "key", "[", "tail_index", "+", "1", "]", "<<", "8", "if", "tail_size", ">=", "1", ":", "k1", "^=", "key", "[", "tail_index", "+", "0", "]", "if", "tail_size", ">", "0", ":", "k1", "=", "(", "k1", "*", "c1", ")", "&", "0xFFFFFFFF", "k1", "=", "(", "k1", "<<", "15", "|", "k1", ">>", "17", ")", "&", "0xFFFFFFFF", "# inlined ROTL32", "k1", "=", "(", "k1", "*", "c2", ")", "&", "0xFFFFFFFF", "h1", "^=", "k1", "#finalization", "unsigned_val", "=", "fmix", "(", "h1", "^", "length", ")", "if", "unsigned_val", "&", "0x80000000", "==", "0", ":", "return", "unsigned_val", "else", ":", "return", "-", "(", "(", "unsigned_val", "^", "0xFFFFFFFF", ")", "+", "1", ")" ]
Implements 32bit murmur3 hash.
[ "Implements", "32bit", "murmur3", "hash", "." ]
ec028d9efcf22498c3820f2650fa10f5c30bec90
https://github.com/optimizely/python-sdk/blob/ec028d9efcf22498c3820f2650fa10f5c30bec90/optimizely/lib/pymmh3.py#L34-L94
train
optimizely/python-sdk
optimizely/lib/pymmh3.py
hash64
def hash64( key, seed = 0x0, x64arch = True ): ''' Implements 64bit murmur3 hash. Returns a tuple. ''' hash_128 = hash128( key, seed, x64arch ) unsigned_val1 = hash_128 & 0xFFFFFFFFFFFFFFFF if unsigned_val1 & 0x8000000000000000 == 0: signed_val1 = unsigned_val1 else: signed_val1 = -( (unsigned_val1 ^ 0xFFFFFFFFFFFFFFFF) + 1 ) unsigned_val2 = ( hash_128 >> 64 ) & 0xFFFFFFFFFFFFFFFF if unsigned_val2 & 0x8000000000000000 == 0: signed_val2 = unsigned_val2 else: signed_val2 = -( (unsigned_val2 ^ 0xFFFFFFFFFFFFFFFF) + 1 ) return ( int( signed_val1 ), int( signed_val2 ) )
python
def hash64( key, seed = 0x0, x64arch = True ): ''' Implements 64bit murmur3 hash. Returns a tuple. ''' hash_128 = hash128( key, seed, x64arch ) unsigned_val1 = hash_128 & 0xFFFFFFFFFFFFFFFF if unsigned_val1 & 0x8000000000000000 == 0: signed_val1 = unsigned_val1 else: signed_val1 = -( (unsigned_val1 ^ 0xFFFFFFFFFFFFFFFF) + 1 ) unsigned_val2 = ( hash_128 >> 64 ) & 0xFFFFFFFFFFFFFFFF if unsigned_val2 & 0x8000000000000000 == 0: signed_val2 = unsigned_val2 else: signed_val2 = -( (unsigned_val2 ^ 0xFFFFFFFFFFFFFFFF) + 1 ) return ( int( signed_val1 ), int( signed_val2 ) )
[ "def", "hash64", "(", "key", ",", "seed", "=", "0x0", ",", "x64arch", "=", "True", ")", ":", "hash_128", "=", "hash128", "(", "key", ",", "seed", ",", "x64arch", ")", "unsigned_val1", "=", "hash_128", "&", "0xFFFFFFFFFFFFFFFF", "if", "unsigned_val1", "&", "0x8000000000000000", "==", "0", ":", "signed_val1", "=", "unsigned_val1", "else", ":", "signed_val1", "=", "-", "(", "(", "unsigned_val1", "^", "0xFFFFFFFFFFFFFFFF", ")", "+", "1", ")", "unsigned_val2", "=", "(", "hash_128", ">>", "64", ")", "&", "0xFFFFFFFFFFFFFFFF", "if", "unsigned_val2", "&", "0x8000000000000000", "==", "0", ":", "signed_val2", "=", "unsigned_val2", "else", ":", "signed_val2", "=", "-", "(", "(", "unsigned_val2", "^", "0xFFFFFFFFFFFFFFFF", ")", "+", "1", ")", "return", "(", "int", "(", "signed_val1", ")", ",", "int", "(", "signed_val2", ")", ")" ]
Implements 64bit murmur3 hash. Returns a tuple.
[ "Implements", "64bit", "murmur3", "hash", ".", "Returns", "a", "tuple", "." ]
ec028d9efcf22498c3820f2650fa10f5c30bec90
https://github.com/optimizely/python-sdk/blob/ec028d9efcf22498c3820f2650fa10f5c30bec90/optimizely/lib/pymmh3.py#L406-L423
train
optimizely/python-sdk
optimizely/lib/pymmh3.py
hash_bytes
def hash_bytes( key, seed = 0x0, x64arch = True ): ''' Implements 128bit murmur3 hash. Returns a byte string. ''' hash_128 = hash128( key, seed, x64arch ) bytestring = '' for i in xrange(0, 16, 1): lsbyte = hash_128 & 0xFF bytestring = bytestring + str( chr( lsbyte ) ) hash_128 = hash_128 >> 8 return bytestring
python
def hash_bytes( key, seed = 0x0, x64arch = True ): ''' Implements 128bit murmur3 hash. Returns a byte string. ''' hash_128 = hash128( key, seed, x64arch ) bytestring = '' for i in xrange(0, 16, 1): lsbyte = hash_128 & 0xFF bytestring = bytestring + str( chr( lsbyte ) ) hash_128 = hash_128 >> 8 return bytestring
[ "def", "hash_bytes", "(", "key", ",", "seed", "=", "0x0", ",", "x64arch", "=", "True", ")", ":", "hash_128", "=", "hash128", "(", "key", ",", "seed", ",", "x64arch", ")", "bytestring", "=", "''", "for", "i", "in", "xrange", "(", "0", ",", "16", ",", "1", ")", ":", "lsbyte", "=", "hash_128", "&", "0xFF", "bytestring", "=", "bytestring", "+", "str", "(", "chr", "(", "lsbyte", ")", ")", "hash_128", "=", "hash_128", ">>", "8", "return", "bytestring" ]
Implements 128bit murmur3 hash. Returns a byte string.
[ "Implements", "128bit", "murmur3", "hash", ".", "Returns", "a", "byte", "string", "." ]
ec028d9efcf22498c3820f2650fa10f5c30bec90
https://github.com/optimizely/python-sdk/blob/ec028d9efcf22498c3820f2650fa10f5c30bec90/optimizely/lib/pymmh3.py#L426-L438
train
optimizely/python-sdk
optimizely/bucketer.py
Bucketer._generate_bucket_value
def _generate_bucket_value(self, bucketing_id): """ Helper function to generate bucket value in half-closed interval [0, MAX_TRAFFIC_VALUE). Args: bucketing_id: ID for bucketing. Returns: Bucket value corresponding to the provided bucketing ID. """ ratio = float(self._generate_unsigned_hash_code_32_bit(bucketing_id)) / MAX_HASH_VALUE return math.floor(ratio * MAX_TRAFFIC_VALUE)
python
def _generate_bucket_value(self, bucketing_id): """ Helper function to generate bucket value in half-closed interval [0, MAX_TRAFFIC_VALUE). Args: bucketing_id: ID for bucketing. Returns: Bucket value corresponding to the provided bucketing ID. """ ratio = float(self._generate_unsigned_hash_code_32_bit(bucketing_id)) / MAX_HASH_VALUE return math.floor(ratio * MAX_TRAFFIC_VALUE)
[ "def", "_generate_bucket_value", "(", "self", ",", "bucketing_id", ")", ":", "ratio", "=", "float", "(", "self", ".", "_generate_unsigned_hash_code_32_bit", "(", "bucketing_id", ")", ")", "/", "MAX_HASH_VALUE", "return", "math", ".", "floor", "(", "ratio", "*", "MAX_TRAFFIC_VALUE", ")" ]
Helper function to generate bucket value in half-closed interval [0, MAX_TRAFFIC_VALUE). Args: bucketing_id: ID for bucketing. Returns: Bucket value corresponding to the provided bucketing ID.
[ "Helper", "function", "to", "generate", "bucket", "value", "in", "half", "-", "closed", "interval", "[", "0", "MAX_TRAFFIC_VALUE", ")", "." ]
ec028d9efcf22498c3820f2650fa10f5c30bec90
https://github.com/optimizely/python-sdk/blob/ec028d9efcf22498c3820f2650fa10f5c30bec90/optimizely/bucketer.py#L55-L66
train
optimizely/python-sdk
optimizely/bucketer.py
Bucketer.find_bucket
def find_bucket(self, bucketing_id, parent_id, traffic_allocations): """ Determine entity based on bucket value and traffic allocations. Args: bucketing_id: ID to be used for bucketing the user. parent_id: ID representing group or experiment. traffic_allocations: Traffic allocations representing traffic allotted to experiments or variations. Returns: Entity ID which may represent experiment or variation. """ bucketing_key = BUCKETING_ID_TEMPLATE.format(bucketing_id=bucketing_id, parent_id=parent_id) bucketing_number = self._generate_bucket_value(bucketing_key) self.config.logger.debug('Assigned bucket %s to user with bucketing ID "%s".' % ( bucketing_number, bucketing_id )) for traffic_allocation in traffic_allocations: current_end_of_range = traffic_allocation.get('endOfRange') if bucketing_number < current_end_of_range: return traffic_allocation.get('entityId') return None
python
def find_bucket(self, bucketing_id, parent_id, traffic_allocations): """ Determine entity based on bucket value and traffic allocations. Args: bucketing_id: ID to be used for bucketing the user. parent_id: ID representing group or experiment. traffic_allocations: Traffic allocations representing traffic allotted to experiments or variations. Returns: Entity ID which may represent experiment or variation. """ bucketing_key = BUCKETING_ID_TEMPLATE.format(bucketing_id=bucketing_id, parent_id=parent_id) bucketing_number = self._generate_bucket_value(bucketing_key) self.config.logger.debug('Assigned bucket %s to user with bucketing ID "%s".' % ( bucketing_number, bucketing_id )) for traffic_allocation in traffic_allocations: current_end_of_range = traffic_allocation.get('endOfRange') if bucketing_number < current_end_of_range: return traffic_allocation.get('entityId') return None
[ "def", "find_bucket", "(", "self", ",", "bucketing_id", ",", "parent_id", ",", "traffic_allocations", ")", ":", "bucketing_key", "=", "BUCKETING_ID_TEMPLATE", ".", "format", "(", "bucketing_id", "=", "bucketing_id", ",", "parent_id", "=", "parent_id", ")", "bucketing_number", "=", "self", ".", "_generate_bucket_value", "(", "bucketing_key", ")", "self", ".", "config", ".", "logger", ".", "debug", "(", "'Assigned bucket %s to user with bucketing ID \"%s\".'", "%", "(", "bucketing_number", ",", "bucketing_id", ")", ")", "for", "traffic_allocation", "in", "traffic_allocations", ":", "current_end_of_range", "=", "traffic_allocation", ".", "get", "(", "'endOfRange'", ")", "if", "bucketing_number", "<", "current_end_of_range", ":", "return", "traffic_allocation", ".", "get", "(", "'entityId'", ")", "return", "None" ]
Determine entity based on bucket value and traffic allocations. Args: bucketing_id: ID to be used for bucketing the user. parent_id: ID representing group or experiment. traffic_allocations: Traffic allocations representing traffic allotted to experiments or variations. Returns: Entity ID which may represent experiment or variation.
[ "Determine", "entity", "based", "on", "bucket", "value", "and", "traffic", "allocations", "." ]
ec028d9efcf22498c3820f2650fa10f5c30bec90
https://github.com/optimizely/python-sdk/blob/ec028d9efcf22498c3820f2650fa10f5c30bec90/optimizely/bucketer.py#L68-L92
train