repo
stringlengths
7
55
path
stringlengths
4
127
func_name
stringlengths
1
88
original_string
stringlengths
75
19.8k
language
stringclasses
1 value
code
stringlengths
75
19.8k
code_tokens
sequence
docstring
stringlengths
3
17.3k
docstring_tokens
sequence
sha
stringlengths
40
40
url
stringlengths
87
242
partition
stringclasses
1 value
btimby/fulltext
fulltext/data/winmake.py
rm
def rm(pattern): """Recursively remove a file or dir by pattern.""" paths = glob.glob(pattern) for path in paths: if path.startswith('.git/'): continue if os.path.isdir(path): def onerror(fun, path, excinfo): exc = excinfo[1] if exc.errno != errno.ENOENT: raise safe_print("rmdir -f %s" % path) shutil.rmtree(path, onerror=onerror) else: safe_print("rm %s" % path) os.remove(path)
python
def rm(pattern): """Recursively remove a file or dir by pattern.""" paths = glob.glob(pattern) for path in paths: if path.startswith('.git/'): continue if os.path.isdir(path): def onerror(fun, path, excinfo): exc = excinfo[1] if exc.errno != errno.ENOENT: raise safe_print("rmdir -f %s" % path) shutil.rmtree(path, onerror=onerror) else: safe_print("rm %s" % path) os.remove(path)
[ "def", "rm", "(", "pattern", ")", ":", "paths", "=", "glob", ".", "glob", "(", "pattern", ")", "for", "path", "in", "paths", ":", "if", "path", ".", "startswith", "(", "'.git/'", ")", ":", "continue", "if", "os", ".", "path", ".", "isdir", "(", "path", ")", ":", "def", "onerror", "(", "fun", ",", "path", ",", "excinfo", ")", ":", "exc", "=", "excinfo", "[", "1", "]", "if", "exc", ".", "errno", "!=", "errno", ".", "ENOENT", ":", "raise", "safe_print", "(", "\"rmdir -f %s\"", "%", "path", ")", "shutil", ".", "rmtree", "(", "path", ",", "onerror", "=", "onerror", ")", "else", ":", "safe_print", "(", "\"rm %s\"", "%", "path", ")", "os", ".", "remove", "(", "path", ")" ]
Recursively remove a file or dir by pattern.
[ "Recursively", "remove", "a", "file", "or", "dir", "by", "pattern", "." ]
9234cc1e2099209430e20317649549026de283ce
https://github.com/btimby/fulltext/blob/9234cc1e2099209430e20317649549026de283ce/fulltext/data/winmake.py#L106-L122
train
btimby/fulltext
fulltext/data/winmake.py
help
def help(): """Print this help""" safe_print('Run "make [-p <PYTHON>] <target>" where <target> is one of:') for name in sorted(_cmds): safe_print( " %-20s %s" % (name.replace('_', '-'), _cmds[name] or '')) sys.exit(1)
python
def help(): """Print this help""" safe_print('Run "make [-p <PYTHON>] <target>" where <target> is one of:') for name in sorted(_cmds): safe_print( " %-20s %s" % (name.replace('_', '-'), _cmds[name] or '')) sys.exit(1)
[ "def", "help", "(", ")", ":", "safe_print", "(", "'Run \"make [-p <PYTHON>] <target>\" where <target> is one of:'", ")", "for", "name", "in", "sorted", "(", "_cmds", ")", ":", "safe_print", "(", "\" %-20s %s\"", "%", "(", "name", ".", "replace", "(", "'_'", ",", "'-'", ")", ",", "_cmds", "[", "name", "]", "or", "''", ")", ")", "sys", ".", "exit", "(", "1", ")" ]
Print this help
[ "Print", "this", "help" ]
9234cc1e2099209430e20317649549026de283ce
https://github.com/btimby/fulltext/blob/9234cc1e2099209430e20317649549026de283ce/fulltext/data/winmake.py#L149-L155
train
btimby/fulltext
fulltext/data/winmake.py
clean
def clean(): """Deletes dev files""" rm("$testfn*") rm("*.bak") rm("*.core") rm("*.egg-info") rm("*.orig") rm("*.pyc") rm("*.pyd") rm("*.pyo") rm("*.rej") rm("*.so") rm("*.~") rm("*__pycache__") rm(".coverage") rm(".tox") rm(".coverage") rm("build") rm("dist") rm("docs/_build") rm("htmlcov") rm("tmp") rm("venv")
python
def clean(): """Deletes dev files""" rm("$testfn*") rm("*.bak") rm("*.core") rm("*.egg-info") rm("*.orig") rm("*.pyc") rm("*.pyd") rm("*.pyo") rm("*.rej") rm("*.so") rm("*.~") rm("*__pycache__") rm(".coverage") rm(".tox") rm(".coverage") rm("build") rm("dist") rm("docs/_build") rm("htmlcov") rm("tmp") rm("venv")
[ "def", "clean", "(", ")", ":", "rm", "(", "\"$testfn*\"", ")", "rm", "(", "\"*.bak\"", ")", "rm", "(", "\"*.core\"", ")", "rm", "(", "\"*.egg-info\"", ")", "rm", "(", "\"*.orig\"", ")", "rm", "(", "\"*.pyc\"", ")", "rm", "(", "\"*.pyd\"", ")", "rm", "(", "\"*.pyo\"", ")", "rm", "(", "\"*.rej\"", ")", "rm", "(", "\"*.so\"", ")", "rm", "(", "\"*.~\"", ")", "rm", "(", "\"*__pycache__\"", ")", "rm", "(", "\".coverage\"", ")", "rm", "(", "\".tox\"", ")", "rm", "(", "\".coverage\"", ")", "rm", "(", "\"build\"", ")", "rm", "(", "\"dist\"", ")", "rm", "(", "\"docs/_build\"", ")", "rm", "(", "\"htmlcov\"", ")", "rm", "(", "\"tmp\"", ")", "rm", "(", "\"venv\"", ")" ]
Deletes dev files
[ "Deletes", "dev", "files" ]
9234cc1e2099209430e20317649549026de283ce
https://github.com/btimby/fulltext/blob/9234cc1e2099209430e20317649549026de283ce/fulltext/data/winmake.py#L200-L222
train
btimby/fulltext
fulltext/data/winmake.py
lint
def lint(): """Run flake8 against all py files""" py_files = subprocess.check_output("git ls-files") if PY3: py_files = py_files.decode() py_files = [x for x in py_files.split() if x.endswith('.py')] py_files = ' '.join(py_files) sh("%s -m flake8 %s" % (PYTHON, py_files), nolog=True)
python
def lint(): """Run flake8 against all py files""" py_files = subprocess.check_output("git ls-files") if PY3: py_files = py_files.decode() py_files = [x for x in py_files.split() if x.endswith('.py')] py_files = ' '.join(py_files) sh("%s -m flake8 %s" % (PYTHON, py_files), nolog=True)
[ "def", "lint", "(", ")", ":", "py_files", "=", "subprocess", ".", "check_output", "(", "\"git ls-files\"", ")", "if", "PY3", ":", "py_files", "=", "py_files", ".", "decode", "(", ")", "py_files", "=", "[", "x", "for", "x", "in", "py_files", ".", "split", "(", ")", "if", "x", ".", "endswith", "(", "'.py'", ")", "]", "py_files", "=", "' '", ".", "join", "(", "py_files", ")", "sh", "(", "\"%s -m flake8 %s\"", "%", "(", "PYTHON", ",", "py_files", ")", ",", "nolog", "=", "True", ")" ]
Run flake8 against all py files
[ "Run", "flake8", "against", "all", "py", "files" ]
9234cc1e2099209430e20317649549026de283ce
https://github.com/btimby/fulltext/blob/9234cc1e2099209430e20317649549026de283ce/fulltext/data/winmake.py#L234-L241
train
btimby/fulltext
fulltext/data/winmake.py
coverage
def coverage(): """Run coverage tests.""" # Note: coverage options are controlled by .coveragerc file install() test_setup() sh("%s -m coverage run %s" % (PYTHON, TEST_SCRIPT)) sh("%s -m coverage report" % PYTHON) sh("%s -m coverage html" % PYTHON) sh("%s -m webbrowser -t htmlcov/index.html" % PYTHON)
python
def coverage(): """Run coverage tests.""" # Note: coverage options are controlled by .coveragerc file install() test_setup() sh("%s -m coverage run %s" % (PYTHON, TEST_SCRIPT)) sh("%s -m coverage report" % PYTHON) sh("%s -m coverage html" % PYTHON) sh("%s -m webbrowser -t htmlcov/index.html" % PYTHON)
[ "def", "coverage", "(", ")", ":", "# Note: coverage options are controlled by .coveragerc file", "install", "(", ")", "test_setup", "(", ")", "sh", "(", "\"%s -m coverage run %s\"", "%", "(", "PYTHON", ",", "TEST_SCRIPT", ")", ")", "sh", "(", "\"%s -m coverage report\"", "%", "PYTHON", ")", "sh", "(", "\"%s -m coverage html\"", "%", "PYTHON", ")", "sh", "(", "\"%s -m webbrowser -t htmlcov/index.html\"", "%", "PYTHON", ")" ]
Run coverage tests.
[ "Run", "coverage", "tests", "." ]
9234cc1e2099209430e20317649549026de283ce
https://github.com/btimby/fulltext/blob/9234cc1e2099209430e20317649549026de283ce/fulltext/data/winmake.py#L261-L269
train
btimby/fulltext
fulltext/data/winmake.py
venv
def venv(): """Install venv + deps.""" try: import virtualenv # NOQA except ImportError: sh("%s -m pip install virtualenv" % PYTHON) if not os.path.isdir("venv"): sh("%s -m virtualenv venv" % PYTHON) sh("venv\\Scripts\\pip install -r %s" % (REQUIREMENTS_TXT))
python
def venv(): """Install venv + deps.""" try: import virtualenv # NOQA except ImportError: sh("%s -m pip install virtualenv" % PYTHON) if not os.path.isdir("venv"): sh("%s -m virtualenv venv" % PYTHON) sh("venv\\Scripts\\pip install -r %s" % (REQUIREMENTS_TXT))
[ "def", "venv", "(", ")", ":", "try", ":", "import", "virtualenv", "# NOQA", "except", "ImportError", ":", "sh", "(", "\"%s -m pip install virtualenv\"", "%", "PYTHON", ")", "if", "not", "os", ".", "path", ".", "isdir", "(", "\"venv\"", ")", ":", "sh", "(", "\"%s -m virtualenv venv\"", "%", "PYTHON", ")", "sh", "(", "\"venv\\\\Scripts\\\\pip install -r %s\"", "%", "(", "REQUIREMENTS_TXT", ")", ")" ]
Install venv + deps.
[ "Install", "venv", "+", "deps", "." ]
9234cc1e2099209430e20317649549026de283ce
https://github.com/btimby/fulltext/blob/9234cc1e2099209430e20317649549026de283ce/fulltext/data/winmake.py#L311-L319
train
pschmitt/pykeepass
pykeepass/kdbx_parsing/kdbx4.py
compute_header_hmac_hash
def compute_header_hmac_hash(context): """Compute HMAC-SHA256 hash of header. Used to prevent header tampering.""" return hmac.new( hashlib.sha512( b'\xff' * 8 + hashlib.sha512( context._.header.value.dynamic_header.master_seed.data + context.transformed_key + b'\x01' ).digest() ).digest(), context._.header.data, hashlib.sha256 ).digest()
python
def compute_header_hmac_hash(context): """Compute HMAC-SHA256 hash of header. Used to prevent header tampering.""" return hmac.new( hashlib.sha512( b'\xff' * 8 + hashlib.sha512( context._.header.value.dynamic_header.master_seed.data + context.transformed_key + b'\x01' ).digest() ).digest(), context._.header.data, hashlib.sha256 ).digest()
[ "def", "compute_header_hmac_hash", "(", "context", ")", ":", "return", "hmac", ".", "new", "(", "hashlib", ".", "sha512", "(", "b'\\xff'", "*", "8", "+", "hashlib", ".", "sha512", "(", "context", ".", "_", ".", "header", ".", "value", ".", "dynamic_header", ".", "master_seed", ".", "data", "+", "context", ".", "transformed_key", "+", "b'\\x01'", ")", ".", "digest", "(", ")", ")", ".", "digest", "(", ")", ",", "context", ".", "_", ".", "header", ".", "data", ",", "hashlib", ".", "sha256", ")", ".", "digest", "(", ")" ]
Compute HMAC-SHA256 hash of header. Used to prevent header tampering.
[ "Compute", "HMAC", "-", "SHA256", "hash", "of", "header", ".", "Used", "to", "prevent", "header", "tampering", "." ]
85da3630d6e410b2a10d3e711cd69308b51d401d
https://github.com/pschmitt/pykeepass/blob/85da3630d6e410b2a10d3e711cd69308b51d401d/pykeepass/kdbx_parsing/kdbx4.py#L64-L79
train
pschmitt/pykeepass
pykeepass/kdbx_parsing/kdbx4.py
compute_payload_block_hash
def compute_payload_block_hash(this): """Compute hash of each payload block. Used to prevent payload corruption and tampering.""" return hmac.new( hashlib.sha512( struct.pack('<Q', this._index) + hashlib.sha512( this._._.header.value.dynamic_header.master_seed.data + this._.transformed_key + b'\x01' ).digest() ).digest(), struct.pack('<Q', this._index) + struct.pack('<I', len(this.block_data)) + this.block_data, hashlib.sha256 ).digest()
python
def compute_payload_block_hash(this): """Compute hash of each payload block. Used to prevent payload corruption and tampering.""" return hmac.new( hashlib.sha512( struct.pack('<Q', this._index) + hashlib.sha512( this._._.header.value.dynamic_header.master_seed.data + this._.transformed_key + b'\x01' ).digest() ).digest(), struct.pack('<Q', this._index) + struct.pack('<I', len(this.block_data)) + this.block_data, hashlib.sha256 ).digest()
[ "def", "compute_payload_block_hash", "(", "this", ")", ":", "return", "hmac", ".", "new", "(", "hashlib", ".", "sha512", "(", "struct", ".", "pack", "(", "'<Q'", ",", "this", ".", "_index", ")", "+", "hashlib", ".", "sha512", "(", "this", ".", "_", ".", "_", ".", "header", ".", "value", ".", "dynamic_header", ".", "master_seed", ".", "data", "+", "this", ".", "_", ".", "transformed_key", "+", "b'\\x01'", ")", ".", "digest", "(", ")", ")", ".", "digest", "(", ")", ",", "struct", ".", "pack", "(", "'<Q'", ",", "this", ".", "_index", ")", "+", "struct", ".", "pack", "(", "'<I'", ",", "len", "(", "this", ".", "block_data", ")", ")", "+", "this", ".", "block_data", ",", "hashlib", ".", "sha256", ")", ".", "digest", "(", ")" ]
Compute hash of each payload block. Used to prevent payload corruption and tampering.
[ "Compute", "hash", "of", "each", "payload", "block", ".", "Used", "to", "prevent", "payload", "corruption", "and", "tampering", "." ]
85da3630d6e410b2a10d3e711cd69308b51d401d
https://github.com/pschmitt/pykeepass/blob/85da3630d6e410b2a10d3e711cd69308b51d401d/pykeepass/kdbx_parsing/kdbx4.py#L156-L171
train
pschmitt/pykeepass
pykeepass/kdbx_parsing/pytwofish.py
Twofish.decrypt
def decrypt(self, block): """Decrypt blocks.""" if len(block) % 16: raise ValueError("block size must be a multiple of 16") plaintext = b'' while block: a, b, c, d = struct.unpack("<4L", block[:16]) temp = [a, b, c, d] decrypt(self.context, temp) plaintext += struct.pack("<4L", *temp) block = block[16:] return plaintext
python
def decrypt(self, block): """Decrypt blocks.""" if len(block) % 16: raise ValueError("block size must be a multiple of 16") plaintext = b'' while block: a, b, c, d = struct.unpack("<4L", block[:16]) temp = [a, b, c, d] decrypt(self.context, temp) plaintext += struct.pack("<4L", *temp) block = block[16:] return plaintext
[ "def", "decrypt", "(", "self", ",", "block", ")", ":", "if", "len", "(", "block", ")", "%", "16", ":", "raise", "ValueError", "(", "\"block size must be a multiple of 16\"", ")", "plaintext", "=", "b''", "while", "block", ":", "a", ",", "b", ",", "c", ",", "d", "=", "struct", ".", "unpack", "(", "\"<4L\"", ",", "block", "[", ":", "16", "]", ")", "temp", "=", "[", "a", ",", "b", ",", "c", ",", "d", "]", "decrypt", "(", "self", ".", "context", ",", "temp", ")", "plaintext", "+=", "struct", ".", "pack", "(", "\"<4L\"", ",", "*", "temp", ")", "block", "=", "block", "[", "16", ":", "]", "return", "plaintext" ]
Decrypt blocks.
[ "Decrypt", "blocks", "." ]
85da3630d6e410b2a10d3e711cd69308b51d401d
https://github.com/pschmitt/pykeepass/blob/85da3630d6e410b2a10d3e711cd69308b51d401d/pykeepass/kdbx_parsing/pytwofish.py#L81-L96
train
pschmitt/pykeepass
pykeepass/kdbx_parsing/pytwofish.py
Twofish.encrypt
def encrypt(self, block): """Encrypt blocks.""" if len(block) % 16: raise ValueError("block size must be a multiple of 16") ciphertext = b'' while block: a, b, c, d = struct.unpack("<4L", block[0:16]) temp = [a, b, c, d] encrypt(self.context, temp) ciphertext += struct.pack("<4L", *temp) block = block[16:] return ciphertext
python
def encrypt(self, block): """Encrypt blocks.""" if len(block) % 16: raise ValueError("block size must be a multiple of 16") ciphertext = b'' while block: a, b, c, d = struct.unpack("<4L", block[0:16]) temp = [a, b, c, d] encrypt(self.context, temp) ciphertext += struct.pack("<4L", *temp) block = block[16:] return ciphertext
[ "def", "encrypt", "(", "self", ",", "block", ")", ":", "if", "len", "(", "block", ")", "%", "16", ":", "raise", "ValueError", "(", "\"block size must be a multiple of 16\"", ")", "ciphertext", "=", "b''", "while", "block", ":", "a", ",", "b", ",", "c", ",", "d", "=", "struct", ".", "unpack", "(", "\"<4L\"", ",", "block", "[", "0", ":", "16", "]", ")", "temp", "=", "[", "a", ",", "b", ",", "c", ",", "d", "]", "encrypt", "(", "self", ".", "context", ",", "temp", ")", "ciphertext", "+=", "struct", ".", "pack", "(", "\"<4L\"", ",", "*", "temp", ")", "block", "=", "block", "[", "16", ":", "]", "return", "ciphertext" ]
Encrypt blocks.
[ "Encrypt", "blocks", "." ]
85da3630d6e410b2a10d3e711cd69308b51d401d
https://github.com/pschmitt/pykeepass/blob/85da3630d6e410b2a10d3e711cd69308b51d401d/pykeepass/kdbx_parsing/pytwofish.py#L99-L114
train
pschmitt/pykeepass
pykeepass/kdbx_parsing/common.py
aes_kdf
def aes_kdf(key, rounds, password=None, keyfile=None): """Set up a context for AES128-ECB encryption to find transformed_key""" cipher = AES.new(key, AES.MODE_ECB) key_composite = compute_key_composite( password=password, keyfile=keyfile ) # get the number of rounds from the header and transform the key_composite transformed_key = key_composite for _ in range(0, rounds): transformed_key = cipher.encrypt(transformed_key) return hashlib.sha256(transformed_key).digest()
python
def aes_kdf(key, rounds, password=None, keyfile=None): """Set up a context for AES128-ECB encryption to find transformed_key""" cipher = AES.new(key, AES.MODE_ECB) key_composite = compute_key_composite( password=password, keyfile=keyfile ) # get the number of rounds from the header and transform the key_composite transformed_key = key_composite for _ in range(0, rounds): transformed_key = cipher.encrypt(transformed_key) return hashlib.sha256(transformed_key).digest()
[ "def", "aes_kdf", "(", "key", ",", "rounds", ",", "password", "=", "None", ",", "keyfile", "=", "None", ")", ":", "cipher", "=", "AES", ".", "new", "(", "key", ",", "AES", ".", "MODE_ECB", ")", "key_composite", "=", "compute_key_composite", "(", "password", "=", "password", ",", "keyfile", "=", "keyfile", ")", "# get the number of rounds from the header and transform the key_composite", "transformed_key", "=", "key_composite", "for", "_", "in", "range", "(", "0", ",", "rounds", ")", ":", "transformed_key", "=", "cipher", ".", "encrypt", "(", "transformed_key", ")", "return", "hashlib", ".", "sha256", "(", "transformed_key", ")", ".", "digest", "(", ")" ]
Set up a context for AES128-ECB encryption to find transformed_key
[ "Set", "up", "a", "context", "for", "AES128", "-", "ECB", "encryption", "to", "find", "transformed_key" ]
85da3630d6e410b2a10d3e711cd69308b51d401d
https://github.com/pschmitt/pykeepass/blob/85da3630d6e410b2a10d3e711cd69308b51d401d/pykeepass/kdbx_parsing/common.py#L84-L98
train
pschmitt/pykeepass
pykeepass/kdbx_parsing/common.py
compute_key_composite
def compute_key_composite(password=None, keyfile=None): """Compute composite key. Used in header verification and payload decryption.""" # hash the password if password: password_composite = hashlib.sha256(password.encode('utf-8')).digest() else: password_composite = b'' # hash the keyfile if keyfile: # try to read XML keyfile try: with open(keyfile, 'r') as f: tree = etree.parse(f).getroot() keyfile_composite = base64.b64decode(tree.find('Key/Data').text) # otherwise, try to read plain keyfile except (etree.XMLSyntaxError, UnicodeDecodeError): try: with open(keyfile, 'rb') as f: key = f.read() try: int(key, 16) is_hex = True except ValueError: is_hex = False # if the length is 32 bytes we assume it is the key if len(key) == 32: keyfile_composite = key # if the length is 64 bytes we assume the key is hex encoded elif len(key) == 64 and is_hex: keyfile_composite = codecs.decode(key, 'hex') # anything else may be a file to hash for the key else: keyfile_composite = hashlib.sha256(key).digest() except: raise IOError('Could not read keyfile') else: keyfile_composite = b'' # create composite key from password and keyfile composites return hashlib.sha256(password_composite + keyfile_composite).digest()
python
def compute_key_composite(password=None, keyfile=None): """Compute composite key. Used in header verification and payload decryption.""" # hash the password if password: password_composite = hashlib.sha256(password.encode('utf-8')).digest() else: password_composite = b'' # hash the keyfile if keyfile: # try to read XML keyfile try: with open(keyfile, 'r') as f: tree = etree.parse(f).getroot() keyfile_composite = base64.b64decode(tree.find('Key/Data').text) # otherwise, try to read plain keyfile except (etree.XMLSyntaxError, UnicodeDecodeError): try: with open(keyfile, 'rb') as f: key = f.read() try: int(key, 16) is_hex = True except ValueError: is_hex = False # if the length is 32 bytes we assume it is the key if len(key) == 32: keyfile_composite = key # if the length is 64 bytes we assume the key is hex encoded elif len(key) == 64 and is_hex: keyfile_composite = codecs.decode(key, 'hex') # anything else may be a file to hash for the key else: keyfile_composite = hashlib.sha256(key).digest() except: raise IOError('Could not read keyfile') else: keyfile_composite = b'' # create composite key from password and keyfile composites return hashlib.sha256(password_composite + keyfile_composite).digest()
[ "def", "compute_key_composite", "(", "password", "=", "None", ",", "keyfile", "=", "None", ")", ":", "# hash the password", "if", "password", ":", "password_composite", "=", "hashlib", ".", "sha256", "(", "password", ".", "encode", "(", "'utf-8'", ")", ")", ".", "digest", "(", ")", "else", ":", "password_composite", "=", "b''", "# hash the keyfile", "if", "keyfile", ":", "# try to read XML keyfile", "try", ":", "with", "open", "(", "keyfile", ",", "'r'", ")", "as", "f", ":", "tree", "=", "etree", ".", "parse", "(", "f", ")", ".", "getroot", "(", ")", "keyfile_composite", "=", "base64", ".", "b64decode", "(", "tree", ".", "find", "(", "'Key/Data'", ")", ".", "text", ")", "# otherwise, try to read plain keyfile", "except", "(", "etree", ".", "XMLSyntaxError", ",", "UnicodeDecodeError", ")", ":", "try", ":", "with", "open", "(", "keyfile", ",", "'rb'", ")", "as", "f", ":", "key", "=", "f", ".", "read", "(", ")", "try", ":", "int", "(", "key", ",", "16", ")", "is_hex", "=", "True", "except", "ValueError", ":", "is_hex", "=", "False", "# if the length is 32 bytes we assume it is the key", "if", "len", "(", "key", ")", "==", "32", ":", "keyfile_composite", "=", "key", "# if the length is 64 bytes we assume the key is hex encoded", "elif", "len", "(", "key", ")", "==", "64", "and", "is_hex", ":", "keyfile_composite", "=", "codecs", ".", "decode", "(", "key", ",", "'hex'", ")", "# anything else may be a file to hash for the key", "else", ":", "keyfile_composite", "=", "hashlib", ".", "sha256", "(", "key", ")", ".", "digest", "(", ")", "except", ":", "raise", "IOError", "(", "'Could not read keyfile'", ")", "else", ":", "keyfile_composite", "=", "b''", "# create composite key from password and keyfile composites", "return", "hashlib", ".", "sha256", "(", "password_composite", "+", "keyfile_composite", ")", ".", "digest", "(", ")" ]
Compute composite key. Used in header verification and payload decryption.
[ "Compute", "composite", "key", ".", "Used", "in", "header", "verification", "and", "payload", "decryption", "." ]
85da3630d6e410b2a10d3e711cd69308b51d401d
https://github.com/pschmitt/pykeepass/blob/85da3630d6e410b2a10d3e711cd69308b51d401d/pykeepass/kdbx_parsing/common.py#L101-L144
train
pschmitt/pykeepass
pykeepass/kdbx_parsing/common.py
compute_master
def compute_master(context): """Computes master key from transformed key and master seed. Used in payload decryption.""" # combine the transformed key with the header master seed to find the master_key master_key = hashlib.sha256( context._.header.value.dynamic_header.master_seed.data + context.transformed_key).digest() return master_key
python
def compute_master(context): """Computes master key from transformed key and master seed. Used in payload decryption.""" # combine the transformed key with the header master seed to find the master_key master_key = hashlib.sha256( context._.header.value.dynamic_header.master_seed.data + context.transformed_key).digest() return master_key
[ "def", "compute_master", "(", "context", ")", ":", "# combine the transformed key with the header master seed to find the master_key", "master_key", "=", "hashlib", ".", "sha256", "(", "context", ".", "_", ".", "header", ".", "value", ".", "dynamic_header", ".", "master_seed", ".", "data", "+", "context", ".", "transformed_key", ")", ".", "digest", "(", ")", "return", "master_key" ]
Computes master key from transformed key and master seed. Used in payload decryption.
[ "Computes", "master", "key", "from", "transformed", "key", "and", "master", "seed", ".", "Used", "in", "payload", "decryption", "." ]
85da3630d6e410b2a10d3e711cd69308b51d401d
https://github.com/pschmitt/pykeepass/blob/85da3630d6e410b2a10d3e711cd69308b51d401d/pykeepass/kdbx_parsing/common.py#L146-L154
train
pschmitt/pykeepass
pykeepass/kdbx_parsing/common.py
Unprotect
def Unprotect(protected_stream_id, protected_stream_key, subcon): """Select stream cipher based on protected_stream_id""" return Switch( protected_stream_id, {'arcfourvariant': ARCFourVariantStream(protected_stream_key, subcon), 'salsa20': Salsa20Stream(protected_stream_key, subcon), 'chacha20': ChaCha20Stream(protected_stream_key, subcon), }, default=subcon )
python
def Unprotect(protected_stream_id, protected_stream_key, subcon): """Select stream cipher based on protected_stream_id""" return Switch( protected_stream_id, {'arcfourvariant': ARCFourVariantStream(protected_stream_key, subcon), 'salsa20': Salsa20Stream(protected_stream_key, subcon), 'chacha20': ChaCha20Stream(protected_stream_key, subcon), }, default=subcon )
[ "def", "Unprotect", "(", "protected_stream_id", ",", "protected_stream_key", ",", "subcon", ")", ":", "return", "Switch", "(", "protected_stream_id", ",", "{", "'arcfourvariant'", ":", "ARCFourVariantStream", "(", "protected_stream_key", ",", "subcon", ")", ",", "'salsa20'", ":", "Salsa20Stream", "(", "protected_stream_key", ",", "subcon", ")", ",", "'chacha20'", ":", "ChaCha20Stream", "(", "protected_stream_key", ",", "subcon", ")", ",", "}", ",", "default", "=", "subcon", ")" ]
Select stream cipher based on protected_stream_id
[ "Select", "stream", "cipher", "based", "on", "protected_stream_id" ]
85da3630d6e410b2a10d3e711cd69308b51d401d
https://github.com/pschmitt/pykeepass/blob/85da3630d6e410b2a10d3e711cd69308b51d401d/pykeepass/kdbx_parsing/common.py#L231-L241
train
pschmitt/pykeepass
pykeepass/kdbx_parsing/twofish.py
BlockCipher.encrypt
def encrypt(self,plaintext,n=''): """Encrypt some plaintext plaintext = a string of binary data n = the 'tweak' value when the chaining mode is XTS The encrypt function will encrypt the supplied plaintext. The behavior varies slightly depending on the chaining mode. ECB, CBC: --------- When the supplied plaintext is not a multiple of the blocksize of the cipher, then the remaining plaintext will be cached. The next time the encrypt function is called with some plaintext, the new plaintext will be concatenated to the cache and then cache+plaintext will be encrypted. CFB, OFB, CTR: -------------- When the chaining mode allows the cipher to act as a stream cipher, the encrypt function will always encrypt all of the supplied plaintext immediately. No cache will be kept. XTS: ---- Because the handling of the last two blocks is linked, it needs the whole block of plaintext to be supplied at once. Every encrypt function called on a XTS cipher will output an encrypted block based on the current supplied plaintext block. CMAC: ----- Everytime the function is called, the hash from the input data is calculated. No finalizing needed. The hashlength is equal to block size of the used block cipher. """ #self.ed = 'e' if chain is encrypting, 'd' if decrypting, # None if nothing happened with the chain yet #assert self.ed in ('e',None) # makes sure you don't encrypt with a cipher that has started decrypting self.ed = 'e' if self.mode == MODE_XTS: # data sequence number (or 'tweak') has to be provided when in XTS mode return self.chain.update(plaintext,'e',n) else: return self.chain.update(plaintext,'e')
python
def encrypt(self,plaintext,n=''): """Encrypt some plaintext plaintext = a string of binary data n = the 'tweak' value when the chaining mode is XTS The encrypt function will encrypt the supplied plaintext. The behavior varies slightly depending on the chaining mode. ECB, CBC: --------- When the supplied plaintext is not a multiple of the blocksize of the cipher, then the remaining plaintext will be cached. The next time the encrypt function is called with some plaintext, the new plaintext will be concatenated to the cache and then cache+plaintext will be encrypted. CFB, OFB, CTR: -------------- When the chaining mode allows the cipher to act as a stream cipher, the encrypt function will always encrypt all of the supplied plaintext immediately. No cache will be kept. XTS: ---- Because the handling of the last two blocks is linked, it needs the whole block of plaintext to be supplied at once. Every encrypt function called on a XTS cipher will output an encrypted block based on the current supplied plaintext block. CMAC: ----- Everytime the function is called, the hash from the input data is calculated. No finalizing needed. The hashlength is equal to block size of the used block cipher. """ #self.ed = 'e' if chain is encrypting, 'd' if decrypting, # None if nothing happened with the chain yet #assert self.ed in ('e',None) # makes sure you don't encrypt with a cipher that has started decrypting self.ed = 'e' if self.mode == MODE_XTS: # data sequence number (or 'tweak') has to be provided when in XTS mode return self.chain.update(plaintext,'e',n) else: return self.chain.update(plaintext,'e')
[ "def", "encrypt", "(", "self", ",", "plaintext", ",", "n", "=", "''", ")", ":", "#self.ed = 'e' if chain is encrypting, 'd' if decrypting,", "# None if nothing happened with the chain yet", "#assert self.ed in ('e',None) ", "# makes sure you don't encrypt with a cipher that has started decrypting", "self", ".", "ed", "=", "'e'", "if", "self", ".", "mode", "==", "MODE_XTS", ":", "# data sequence number (or 'tweak') has to be provided when in XTS mode", "return", "self", ".", "chain", ".", "update", "(", "plaintext", ",", "'e'", ",", "n", ")", "else", ":", "return", "self", ".", "chain", ".", "update", "(", "plaintext", ",", "'e'", ")" ]
Encrypt some plaintext plaintext = a string of binary data n = the 'tweak' value when the chaining mode is XTS The encrypt function will encrypt the supplied plaintext. The behavior varies slightly depending on the chaining mode. ECB, CBC: --------- When the supplied plaintext is not a multiple of the blocksize of the cipher, then the remaining plaintext will be cached. The next time the encrypt function is called with some plaintext, the new plaintext will be concatenated to the cache and then cache+plaintext will be encrypted. CFB, OFB, CTR: -------------- When the chaining mode allows the cipher to act as a stream cipher, the encrypt function will always encrypt all of the supplied plaintext immediately. No cache will be kept. XTS: ---- Because the handling of the last two blocks is linked, it needs the whole block of plaintext to be supplied at once. Every encrypt function called on a XTS cipher will output an encrypted block based on the current supplied plaintext block. CMAC: ----- Everytime the function is called, the hash from the input data is calculated. No finalizing needed. The hashlength is equal to block size of the used block cipher.
[ "Encrypt", "some", "plaintext" ]
85da3630d6e410b2a10d3e711cd69308b51d401d
https://github.com/pschmitt/pykeepass/blob/85da3630d6e410b2a10d3e711cd69308b51d401d/pykeepass/kdbx_parsing/twofish.py#L114-L159
train
pschmitt/pykeepass
pykeepass/kdbx_parsing/twofish.py
BlockCipher.decrypt
def decrypt(self,ciphertext,n=''): """Decrypt some ciphertext ciphertext = a string of binary data n = the 'tweak' value when the chaining mode is XTS The decrypt function will decrypt the supplied ciphertext. The behavior varies slightly depending on the chaining mode. ECB, CBC: --------- When the supplied ciphertext is not a multiple of the blocksize of the cipher, then the remaining ciphertext will be cached. The next time the decrypt function is called with some ciphertext, the new ciphertext will be concatenated to the cache and then cache+ciphertext will be decrypted. CFB, OFB, CTR: -------------- When the chaining mode allows the cipher to act as a stream cipher, the decrypt function will always decrypt all of the supplied ciphertext immediately. No cache will be kept. XTS: ---- Because the handling of the last two blocks is linked, it needs the whole block of ciphertext to be supplied at once. Every decrypt function called on a XTS cipher will output a decrypted block based on the current supplied ciphertext block. CMAC: ----- Mode not supported for decryption as this does not make sense. """ #self.ed = 'e' if chain is encrypting, 'd' if decrypting, # None if nothing happened with the chain yet #assert self.ed in ('d',None) # makes sure you don't decrypt with a cipher that has started encrypting self.ed = 'd' if self.mode == MODE_XTS: # data sequence number (or 'tweak') has to be provided when in XTS mode return self.chain.update(ciphertext,'d',n) else: return self.chain.update(ciphertext,'d')
python
def decrypt(self,ciphertext,n=''): """Decrypt some ciphertext ciphertext = a string of binary data n = the 'tweak' value when the chaining mode is XTS The decrypt function will decrypt the supplied ciphertext. The behavior varies slightly depending on the chaining mode. ECB, CBC: --------- When the supplied ciphertext is not a multiple of the blocksize of the cipher, then the remaining ciphertext will be cached. The next time the decrypt function is called with some ciphertext, the new ciphertext will be concatenated to the cache and then cache+ciphertext will be decrypted. CFB, OFB, CTR: -------------- When the chaining mode allows the cipher to act as a stream cipher, the decrypt function will always decrypt all of the supplied ciphertext immediately. No cache will be kept. XTS: ---- Because the handling of the last two blocks is linked, it needs the whole block of ciphertext to be supplied at once. Every decrypt function called on a XTS cipher will output a decrypted block based on the current supplied ciphertext block. CMAC: ----- Mode not supported for decryption as this does not make sense. """ #self.ed = 'e' if chain is encrypting, 'd' if decrypting, # None if nothing happened with the chain yet #assert self.ed in ('d',None) # makes sure you don't decrypt with a cipher that has started encrypting self.ed = 'd' if self.mode == MODE_XTS: # data sequence number (or 'tweak') has to be provided when in XTS mode return self.chain.update(ciphertext,'d',n) else: return self.chain.update(ciphertext,'d')
[ "def", "decrypt", "(", "self", ",", "ciphertext", ",", "n", "=", "''", ")", ":", "#self.ed = 'e' if chain is encrypting, 'd' if decrypting,", "# None if nothing happened with the chain yet", "#assert self.ed in ('d',None)", "# makes sure you don't decrypt with a cipher that has started encrypting", "self", ".", "ed", "=", "'d'", "if", "self", ".", "mode", "==", "MODE_XTS", ":", "# data sequence number (or 'tweak') has to be provided when in XTS mode", "return", "self", ".", "chain", ".", "update", "(", "ciphertext", ",", "'d'", ",", "n", ")", "else", ":", "return", "self", ".", "chain", ".", "update", "(", "ciphertext", ",", "'d'", ")" ]
Decrypt some ciphertext ciphertext = a string of binary data n = the 'tweak' value when the chaining mode is XTS The decrypt function will decrypt the supplied ciphertext. The behavior varies slightly depending on the chaining mode. ECB, CBC: --------- When the supplied ciphertext is not a multiple of the blocksize of the cipher, then the remaining ciphertext will be cached. The next time the decrypt function is called with some ciphertext, the new ciphertext will be concatenated to the cache and then cache+ciphertext will be decrypted. CFB, OFB, CTR: -------------- When the chaining mode allows the cipher to act as a stream cipher, the decrypt function will always decrypt all of the supplied ciphertext immediately. No cache will be kept. XTS: ---- Because the handling of the last two blocks is linked, it needs the whole block of ciphertext to be supplied at once. Every decrypt function called on a XTS cipher will output a decrypted block based on the current supplied ciphertext block. CMAC: ----- Mode not supported for decryption as this does not make sense.
[ "Decrypt", "some", "ciphertext" ]
85da3630d6e410b2a10d3e711cd69308b51d401d
https://github.com/pschmitt/pykeepass/blob/85da3630d6e410b2a10d3e711cd69308b51d401d/pykeepass/kdbx_parsing/twofish.py#L161-L204
train
pschmitt/pykeepass
pykeepass/kdbx_parsing/twofish.py
BlockCipher.final
def final(self,style='pkcs7'): # TODO: after calling final, reset the IV? so the cipher is as good as new? """Finalizes the encryption by padding the cache padfct = padding function import from CryptoPlus.Util.padding For ECB, CBC: the remaining bytes in the cache will be padded and encrypted. For OFB,CFB, CTR: an encrypted padding will be returned, making the total outputed bytes since construction of the cipher a multiple of the blocksize of that cipher. If the cipher has been used for decryption, the final function won't do anything. You have to manually unpad if necessary. After finalization, the chain can still be used but the IV, counter etc aren't reset but just continue as they were after the last step (finalization step). """ assert self.mode not in (MODE_XTS, MODE_CMAC) # finalizing (=padding) doesn't make sense when in XTS or CMAC mode if self.ed == b'e': # when the chain is in encryption mode, finalizing will pad the cache and encrypt this last block if self.mode in (MODE_OFB,MODE_CFB,MODE_CTR): dummy = b'0'*(self.chain.totalbytes%self.blocksize) # a dummy string that will be used to get a valid padding else: #ECB, CBC dummy = self.chain.cache pdata = pad(dummy,self.blocksize,style=style)[len(dummy):] #~ pad = padfct(dummy,padding.PAD,self.blocksize)[len(dummy):] # construct the padding necessary return self.chain.update(pdata,b'e') # supply the padding to the update function => chain cache will be "cache+padding" else: # final function doesn't make sense when decrypting => padding should be removed manually pass
python
def final(self,style='pkcs7'): # TODO: after calling final, reset the IV? so the cipher is as good as new? """Finalizes the encryption by padding the cache padfct = padding function import from CryptoPlus.Util.padding For ECB, CBC: the remaining bytes in the cache will be padded and encrypted. For OFB,CFB, CTR: an encrypted padding will be returned, making the total outputed bytes since construction of the cipher a multiple of the blocksize of that cipher. If the cipher has been used for decryption, the final function won't do anything. You have to manually unpad if necessary. After finalization, the chain can still be used but the IV, counter etc aren't reset but just continue as they were after the last step (finalization step). """ assert self.mode not in (MODE_XTS, MODE_CMAC) # finalizing (=padding) doesn't make sense when in XTS or CMAC mode if self.ed == b'e': # when the chain is in encryption mode, finalizing will pad the cache and encrypt this last block if self.mode in (MODE_OFB,MODE_CFB,MODE_CTR): dummy = b'0'*(self.chain.totalbytes%self.blocksize) # a dummy string that will be used to get a valid padding else: #ECB, CBC dummy = self.chain.cache pdata = pad(dummy,self.blocksize,style=style)[len(dummy):] #~ pad = padfct(dummy,padding.PAD,self.blocksize)[len(dummy):] # construct the padding necessary return self.chain.update(pdata,b'e') # supply the padding to the update function => chain cache will be "cache+padding" else: # final function doesn't make sense when decrypting => padding should be removed manually pass
[ "def", "final", "(", "self", ",", "style", "=", "'pkcs7'", ")", ":", "# TODO: after calling final, reset the IV? so the cipher is as good as new?", "assert", "self", ".", "mode", "not", "in", "(", "MODE_XTS", ",", "MODE_CMAC", ")", "# finalizing (=padding) doesn't make sense when in XTS or CMAC mode", "if", "self", ".", "ed", "==", "b'e'", ":", "# when the chain is in encryption mode, finalizing will pad the cache and encrypt this last block", "if", "self", ".", "mode", "in", "(", "MODE_OFB", ",", "MODE_CFB", ",", "MODE_CTR", ")", ":", "dummy", "=", "b'0'", "*", "(", "self", ".", "chain", ".", "totalbytes", "%", "self", ".", "blocksize", ")", "# a dummy string that will be used to get a valid padding", "else", ":", "#ECB, CBC", "dummy", "=", "self", ".", "chain", ".", "cache", "pdata", "=", "pad", "(", "dummy", ",", "self", ".", "blocksize", ",", "style", "=", "style", ")", "[", "len", "(", "dummy", ")", ":", "]", "#~ pad = padfct(dummy,padding.PAD,self.blocksize)[len(dummy):] # construct the padding necessary", "return", "self", ".", "chain", ".", "update", "(", "pdata", ",", "b'e'", ")", "# supply the padding to the update function => chain cache will be \"cache+padding\"", "else", ":", "# final function doesn't make sense when decrypting => padding should be removed manually", "pass" ]
Finalizes the encryption by padding the cache padfct = padding function import from CryptoPlus.Util.padding For ECB, CBC: the remaining bytes in the cache will be padded and encrypted. For OFB,CFB, CTR: an encrypted padding will be returned, making the total outputed bytes since construction of the cipher a multiple of the blocksize of that cipher. If the cipher has been used for decryption, the final function won't do anything. You have to manually unpad if necessary. After finalization, the chain can still be used but the IV, counter etc aren't reset but just continue as they were after the last step (finalization step).
[ "Finalizes", "the", "encryption", "by", "padding", "the", "cache" ]
85da3630d6e410b2a10d3e711cd69308b51d401d
https://github.com/pschmitt/pykeepass/blob/85da3630d6e410b2a10d3e711cd69308b51d401d/pykeepass/kdbx_parsing/twofish.py#L206-L237
train
pschmitt/pykeepass
pykeepass/baseelement.py
BaseElement._datetime_to_utc
def _datetime_to_utc(self, dt): """Convert naive datetimes to UTC""" if not dt.tzinfo: dt = dt.replace(tzinfo=tz.gettz()) return dt.astimezone(tz.gettz('UTC'))
python
def _datetime_to_utc(self, dt): """Convert naive datetimes to UTC""" if not dt.tzinfo: dt = dt.replace(tzinfo=tz.gettz()) return dt.astimezone(tz.gettz('UTC'))
[ "def", "_datetime_to_utc", "(", "self", ",", "dt", ")", ":", "if", "not", "dt", ".", "tzinfo", ":", "dt", "=", "dt", ".", "replace", "(", "tzinfo", "=", "tz", ".", "gettz", "(", ")", ")", "return", "dt", ".", "astimezone", "(", "tz", ".", "gettz", "(", "'UTC'", ")", ")" ]
Convert naive datetimes to UTC
[ "Convert", "naive", "datetimes", "to", "UTC" ]
85da3630d6e410b2a10d3e711cd69308b51d401d
https://github.com/pschmitt/pykeepass/blob/85da3630d6e410b2a10d3e711cd69308b51d401d/pykeepass/baseelement.py#L92-L97
train
pschmitt/pykeepass
pykeepass/baseelement.py
BaseElement._encode_time
def _encode_time(self, value): """Convert datetime to base64 or plaintext string""" if self._kp.version >= (4, 0): diff_seconds = int( ( self._datetime_to_utc(value) - datetime( year=1, month=1, day=1, tzinfo=tz.gettz('UTC') ) ).total_seconds() ) return base64.b64encode( struct.pack('<Q', diff_seconds) ).decode('utf-8') else: return self._datetime_to_utc(value).isoformat()
python
def _encode_time(self, value): """Convert datetime to base64 or plaintext string""" if self._kp.version >= (4, 0): diff_seconds = int( ( self._datetime_to_utc(value) - datetime( year=1, month=1, day=1, tzinfo=tz.gettz('UTC') ) ).total_seconds() ) return base64.b64encode( struct.pack('<Q', diff_seconds) ).decode('utf-8') else: return self._datetime_to_utc(value).isoformat()
[ "def", "_encode_time", "(", "self", ",", "value", ")", ":", "if", "self", ".", "_kp", ".", "version", ">=", "(", "4", ",", "0", ")", ":", "diff_seconds", "=", "int", "(", "(", "self", ".", "_datetime_to_utc", "(", "value", ")", "-", "datetime", "(", "year", "=", "1", ",", "month", "=", "1", ",", "day", "=", "1", ",", "tzinfo", "=", "tz", ".", "gettz", "(", "'UTC'", ")", ")", ")", ".", "total_seconds", "(", ")", ")", "return", "base64", ".", "b64encode", "(", "struct", ".", "pack", "(", "'<Q'", ",", "diff_seconds", ")", ")", ".", "decode", "(", "'utf-8'", ")", "else", ":", "return", "self", ".", "_datetime_to_utc", "(", "value", ")", ".", "isoformat", "(", ")" ]
Convert datetime to base64 or plaintext string
[ "Convert", "datetime", "to", "base64", "or", "plaintext", "string" ]
85da3630d6e410b2a10d3e711cd69308b51d401d
https://github.com/pschmitt/pykeepass/blob/85da3630d6e410b2a10d3e711cd69308b51d401d/pykeepass/baseelement.py#L99-L118
train
pschmitt/pykeepass
pykeepass/baseelement.py
BaseElement._decode_time
def _decode_time(self, text): """Convert base64 time or plaintext time to datetime""" if self._kp.version >= (4, 0): # decode KDBX4 date from b64 format try: return ( datetime(year=1, month=1, day=1, tzinfo=tz.gettz('UTC')) + timedelta( seconds = struct.unpack('<Q', base64.b64decode(text))[0] ) ) except BinasciiError: return parser.parse( text, tzinfos={'UTC':tz.gettz('UTC')} ) else: return parser.parse( text, tzinfos={'UTC':tz.gettz('UTC')} )
python
def _decode_time(self, text): """Convert base64 time or plaintext time to datetime""" if self._kp.version >= (4, 0): # decode KDBX4 date from b64 format try: return ( datetime(year=1, month=1, day=1, tzinfo=tz.gettz('UTC')) + timedelta( seconds = struct.unpack('<Q', base64.b64decode(text))[0] ) ) except BinasciiError: return parser.parse( text, tzinfos={'UTC':tz.gettz('UTC')} ) else: return parser.parse( text, tzinfos={'UTC':tz.gettz('UTC')} )
[ "def", "_decode_time", "(", "self", ",", "text", ")", ":", "if", "self", ".", "_kp", ".", "version", ">=", "(", "4", ",", "0", ")", ":", "# decode KDBX4 date from b64 format", "try", ":", "return", "(", "datetime", "(", "year", "=", "1", ",", "month", "=", "1", ",", "day", "=", "1", ",", "tzinfo", "=", "tz", ".", "gettz", "(", "'UTC'", ")", ")", "+", "timedelta", "(", "seconds", "=", "struct", ".", "unpack", "(", "'<Q'", ",", "base64", ".", "b64decode", "(", "text", ")", ")", "[", "0", "]", ")", ")", "except", "BinasciiError", ":", "return", "parser", ".", "parse", "(", "text", ",", "tzinfos", "=", "{", "'UTC'", ":", "tz", ".", "gettz", "(", "'UTC'", ")", "}", ")", "else", ":", "return", "parser", ".", "parse", "(", "text", ",", "tzinfos", "=", "{", "'UTC'", ":", "tz", ".", "gettz", "(", "'UTC'", ")", "}", ")" ]
Convert base64 time or plaintext time to datetime
[ "Convert", "base64", "time", "or", "plaintext", "time", "to", "datetime" ]
85da3630d6e410b2a10d3e711cd69308b51d401d
https://github.com/pschmitt/pykeepass/blob/85da3630d6e410b2a10d3e711cd69308b51d401d/pykeepass/baseelement.py#L120-L141
train
thunder-project/thunder
thunder/images/readers.py
fromrdd
def fromrdd(rdd, dims=None, nrecords=None, dtype=None, labels=None, ordered=False): """ Load images from a Spark RDD. Input RDD must be a collection of key-value pairs where keys are singleton tuples indexing images, and values are 2d or 3d ndarrays. Parameters ---------- rdd : SparkRDD An RDD containing the images. dims : tuple or array, optional, default = None Image dimensions (if provided will avoid check). nrecords : int, optional, default = None Number of images (if provided will avoid check). dtype : string, default = None Data numerical type (if provided will avoid check) labels : array, optional, default = None Labels for records. If provided, should be one-dimensional. ordered : boolean, optional, default = False Whether or not the rdd is ordered by key """ from .images import Images from bolt.spark.array import BoltArraySpark if dims is None or dtype is None: item = rdd.values().first() dtype = item.dtype dims = item.shape if nrecords is None: nrecords = rdd.count() def process_keys(record): k, v = record if isinstance(k, int): k = (k,) return k, v values = BoltArraySpark(rdd.map(process_keys), shape=(nrecords,) + tuple(dims), dtype=dtype, split=1, ordered=ordered) return Images(values, labels=labels)
python
def fromrdd(rdd, dims=None, nrecords=None, dtype=None, labels=None, ordered=False): """ Load images from a Spark RDD. Input RDD must be a collection of key-value pairs where keys are singleton tuples indexing images, and values are 2d or 3d ndarrays. Parameters ---------- rdd : SparkRDD An RDD containing the images. dims : tuple or array, optional, default = None Image dimensions (if provided will avoid check). nrecords : int, optional, default = None Number of images (if provided will avoid check). dtype : string, default = None Data numerical type (if provided will avoid check) labels : array, optional, default = None Labels for records. If provided, should be one-dimensional. ordered : boolean, optional, default = False Whether or not the rdd is ordered by key """ from .images import Images from bolt.spark.array import BoltArraySpark if dims is None or dtype is None: item = rdd.values().first() dtype = item.dtype dims = item.shape if nrecords is None: nrecords = rdd.count() def process_keys(record): k, v = record if isinstance(k, int): k = (k,) return k, v values = BoltArraySpark(rdd.map(process_keys), shape=(nrecords,) + tuple(dims), dtype=dtype, split=1, ordered=ordered) return Images(values, labels=labels)
[ "def", "fromrdd", "(", "rdd", ",", "dims", "=", "None", ",", "nrecords", "=", "None", ",", "dtype", "=", "None", ",", "labels", "=", "None", ",", "ordered", "=", "False", ")", ":", "from", ".", "images", "import", "Images", "from", "bolt", ".", "spark", ".", "array", "import", "BoltArraySpark", "if", "dims", "is", "None", "or", "dtype", "is", "None", ":", "item", "=", "rdd", ".", "values", "(", ")", ".", "first", "(", ")", "dtype", "=", "item", ".", "dtype", "dims", "=", "item", ".", "shape", "if", "nrecords", "is", "None", ":", "nrecords", "=", "rdd", ".", "count", "(", ")", "def", "process_keys", "(", "record", ")", ":", "k", ",", "v", "=", "record", "if", "isinstance", "(", "k", ",", "int", ")", ":", "k", "=", "(", "k", ",", ")", "return", "k", ",", "v", "values", "=", "BoltArraySpark", "(", "rdd", ".", "map", "(", "process_keys", ")", ",", "shape", "=", "(", "nrecords", ",", ")", "+", "tuple", "(", "dims", ")", ",", "dtype", "=", "dtype", ",", "split", "=", "1", ",", "ordered", "=", "ordered", ")", "return", "Images", "(", "values", ",", "labels", "=", "labels", ")" ]
Load images from a Spark RDD. Input RDD must be a collection of key-value pairs where keys are singleton tuples indexing images, and values are 2d or 3d ndarrays. Parameters ---------- rdd : SparkRDD An RDD containing the images. dims : tuple or array, optional, default = None Image dimensions (if provided will avoid check). nrecords : int, optional, default = None Number of images (if provided will avoid check). dtype : string, default = None Data numerical type (if provided will avoid check) labels : array, optional, default = None Labels for records. If provided, should be one-dimensional. ordered : boolean, optional, default = False Whether or not the rdd is ordered by key
[ "Load", "images", "from", "a", "Spark", "RDD", "." ]
967ff8f3e7c2fabe1705743d95eb2746d4329786
https://github.com/thunder-project/thunder/blob/967ff8f3e7c2fabe1705743d95eb2746d4329786/thunder/images/readers.py#L10-L56
train
thunder-project/thunder
thunder/images/readers.py
fromarray
def fromarray(values, labels=None, npartitions=None, engine=None): """ Load images from an array. First dimension will be used to index images, so remaining dimensions after the first should be the dimensions of the images, e.g. (3, 100, 200) for 3 x (100, 200) images Parameters ---------- values : array-like The array of images. Can be a numpy array, a bolt array, or an array-like. labels : array, optional, default = None Labels for records. If provided, should be one-dimensional. npartitions : int, default = None Number of partitions for parallelization (spark only) engine : object, default = None Computational engine (e.g. a SparkContext for spark) """ from .images import Images import bolt if isinstance(values, bolt.spark.array.BoltArraySpark): return Images(values) values = asarray(values) if values.ndim < 2: raise ValueError('Array for images must have at least 2 dimensions, got %g' % values.ndim) if values.ndim == 2: values = expand_dims(values, 0) shape = None dtype = None for im in values: if shape is None: shape = im.shape dtype = im.dtype if not im.shape == shape: raise ValueError('Arrays must all be of same shape; got both %s and %s' % (str(shape), str(im.shape))) if not im.dtype == dtype: raise ValueError('Arrays must all be of same data type; got both %s and %s' % (str(dtype), str(im.dtype))) if spark and isinstance(engine, spark): if not npartitions: npartitions = engine.defaultParallelism values = bolt.array(values, context=engine, npartitions=npartitions, axis=(0,)) values._ordered = True return Images(values) return Images(values, labels=labels)
python
def fromarray(values, labels=None, npartitions=None, engine=None): """ Load images from an array. First dimension will be used to index images, so remaining dimensions after the first should be the dimensions of the images, e.g. (3, 100, 200) for 3 x (100, 200) images Parameters ---------- values : array-like The array of images. Can be a numpy array, a bolt array, or an array-like. labels : array, optional, default = None Labels for records. If provided, should be one-dimensional. npartitions : int, default = None Number of partitions for parallelization (spark only) engine : object, default = None Computational engine (e.g. a SparkContext for spark) """ from .images import Images import bolt if isinstance(values, bolt.spark.array.BoltArraySpark): return Images(values) values = asarray(values) if values.ndim < 2: raise ValueError('Array for images must have at least 2 dimensions, got %g' % values.ndim) if values.ndim == 2: values = expand_dims(values, 0) shape = None dtype = None for im in values: if shape is None: shape = im.shape dtype = im.dtype if not im.shape == shape: raise ValueError('Arrays must all be of same shape; got both %s and %s' % (str(shape), str(im.shape))) if not im.dtype == dtype: raise ValueError('Arrays must all be of same data type; got both %s and %s' % (str(dtype), str(im.dtype))) if spark and isinstance(engine, spark): if not npartitions: npartitions = engine.defaultParallelism values = bolt.array(values, context=engine, npartitions=npartitions, axis=(0,)) values._ordered = True return Images(values) return Images(values, labels=labels)
[ "def", "fromarray", "(", "values", ",", "labels", "=", "None", ",", "npartitions", "=", "None", ",", "engine", "=", "None", ")", ":", "from", ".", "images", "import", "Images", "import", "bolt", "if", "isinstance", "(", "values", ",", "bolt", ".", "spark", ".", "array", ".", "BoltArraySpark", ")", ":", "return", "Images", "(", "values", ")", "values", "=", "asarray", "(", "values", ")", "if", "values", ".", "ndim", "<", "2", ":", "raise", "ValueError", "(", "'Array for images must have at least 2 dimensions, got %g'", "%", "values", ".", "ndim", ")", "if", "values", ".", "ndim", "==", "2", ":", "values", "=", "expand_dims", "(", "values", ",", "0", ")", "shape", "=", "None", "dtype", "=", "None", "for", "im", "in", "values", ":", "if", "shape", "is", "None", ":", "shape", "=", "im", ".", "shape", "dtype", "=", "im", ".", "dtype", "if", "not", "im", ".", "shape", "==", "shape", ":", "raise", "ValueError", "(", "'Arrays must all be of same shape; got both %s and %s'", "%", "(", "str", "(", "shape", ")", ",", "str", "(", "im", ".", "shape", ")", ")", ")", "if", "not", "im", ".", "dtype", "==", "dtype", ":", "raise", "ValueError", "(", "'Arrays must all be of same data type; got both %s and %s'", "%", "(", "str", "(", "dtype", ")", ",", "str", "(", "im", ".", "dtype", ")", ")", ")", "if", "spark", "and", "isinstance", "(", "engine", ",", "spark", ")", ":", "if", "not", "npartitions", ":", "npartitions", "=", "engine", ".", "defaultParallelism", "values", "=", "bolt", ".", "array", "(", "values", ",", "context", "=", "engine", ",", "npartitions", "=", "npartitions", ",", "axis", "=", "(", "0", ",", ")", ")", "values", ".", "_ordered", "=", "True", "return", "Images", "(", "values", ")", "return", "Images", "(", "values", ",", "labels", "=", "labels", ")" ]
Load images from an array. First dimension will be used to index images, so remaining dimensions after the first should be the dimensions of the images, e.g. (3, 100, 200) for 3 x (100, 200) images Parameters ---------- values : array-like The array of images. Can be a numpy array, a bolt array, or an array-like. labels : array, optional, default = None Labels for records. If provided, should be one-dimensional. npartitions : int, default = None Number of partitions for parallelization (spark only) engine : object, default = None Computational engine (e.g. a SparkContext for spark)
[ "Load", "images", "from", "an", "array", "." ]
967ff8f3e7c2fabe1705743d95eb2746d4329786
https://github.com/thunder-project/thunder/blob/967ff8f3e7c2fabe1705743d95eb2746d4329786/thunder/images/readers.py#L58-L116
train
thunder-project/thunder
thunder/images/readers.py
fromlist
def fromlist(items, accessor=None, keys=None, dims=None, dtype=None, labels=None, npartitions=None, engine=None): """ Load images from a list of items using the given accessor. Parameters ---------- accessor : function Apply to each item from the list to yield an image. keys : list, optional, default=None An optional list of keys. dims : tuple, optional, default=None Specify a known image dimension to avoid computation. labels : array, optional, default = None Labels for records. If provided, should be one-dimensional. npartitions : int Number of partitions for computational engine. """ if spark and isinstance(engine, spark): nrecords = len(items) if keys: items = zip(keys, items) else: keys = [(i,) for i in range(nrecords)] items = zip(keys, items) if not npartitions: npartitions = engine.defaultParallelism rdd = engine.parallelize(items, npartitions) if accessor: rdd = rdd.mapValues(accessor) return fromrdd(rdd, nrecords=nrecords, dims=dims, dtype=dtype, labels=labels, ordered=True) else: if accessor: items = asarray([accessor(i) for i in items]) return fromarray(items, labels=labels)
python
def fromlist(items, accessor=None, keys=None, dims=None, dtype=None, labels=None, npartitions=None, engine=None): """ Load images from a list of items using the given accessor. Parameters ---------- accessor : function Apply to each item from the list to yield an image. keys : list, optional, default=None An optional list of keys. dims : tuple, optional, default=None Specify a known image dimension to avoid computation. labels : array, optional, default = None Labels for records. If provided, should be one-dimensional. npartitions : int Number of partitions for computational engine. """ if spark and isinstance(engine, spark): nrecords = len(items) if keys: items = zip(keys, items) else: keys = [(i,) for i in range(nrecords)] items = zip(keys, items) if not npartitions: npartitions = engine.defaultParallelism rdd = engine.parallelize(items, npartitions) if accessor: rdd = rdd.mapValues(accessor) return fromrdd(rdd, nrecords=nrecords, dims=dims, dtype=dtype, labels=labels, ordered=True) else: if accessor: items = asarray([accessor(i) for i in items]) return fromarray(items, labels=labels)
[ "def", "fromlist", "(", "items", ",", "accessor", "=", "None", ",", "keys", "=", "None", ",", "dims", "=", "None", ",", "dtype", "=", "None", ",", "labels", "=", "None", ",", "npartitions", "=", "None", ",", "engine", "=", "None", ")", ":", "if", "spark", "and", "isinstance", "(", "engine", ",", "spark", ")", ":", "nrecords", "=", "len", "(", "items", ")", "if", "keys", ":", "items", "=", "zip", "(", "keys", ",", "items", ")", "else", ":", "keys", "=", "[", "(", "i", ",", ")", "for", "i", "in", "range", "(", "nrecords", ")", "]", "items", "=", "zip", "(", "keys", ",", "items", ")", "if", "not", "npartitions", ":", "npartitions", "=", "engine", ".", "defaultParallelism", "rdd", "=", "engine", ".", "parallelize", "(", "items", ",", "npartitions", ")", "if", "accessor", ":", "rdd", "=", "rdd", ".", "mapValues", "(", "accessor", ")", "return", "fromrdd", "(", "rdd", ",", "nrecords", "=", "nrecords", ",", "dims", "=", "dims", ",", "dtype", "=", "dtype", ",", "labels", "=", "labels", ",", "ordered", "=", "True", ")", "else", ":", "if", "accessor", ":", "items", "=", "asarray", "(", "[", "accessor", "(", "i", ")", "for", "i", "in", "items", "]", ")", "return", "fromarray", "(", "items", ",", "labels", "=", "labels", ")" ]
Load images from a list of items using the given accessor. Parameters ---------- accessor : function Apply to each item from the list to yield an image. keys : list, optional, default=None An optional list of keys. dims : tuple, optional, default=None Specify a known image dimension to avoid computation. labels : array, optional, default = None Labels for records. If provided, should be one-dimensional. npartitions : int Number of partitions for computational engine.
[ "Load", "images", "from", "a", "list", "of", "items", "using", "the", "given", "accessor", "." ]
967ff8f3e7c2fabe1705743d95eb2746d4329786
https://github.com/thunder-project/thunder/blob/967ff8f3e7c2fabe1705743d95eb2746d4329786/thunder/images/readers.py#L119-L157
train
thunder-project/thunder
thunder/images/readers.py
frompath
def frompath(path, accessor=None, ext=None, start=None, stop=None, recursive=False, npartitions=None, dims=None, dtype=None, labels=None, recount=False, engine=None, credentials=None): """ Load images from a path using the given accessor. Supports both local and remote filesystems. Parameters ---------- accessor : function Apply to each item after loading to yield an image. ext : str, optional, default=None File extension. npartitions : int, optional, default=None Number of partitions for computational engine, if None will use default for engine. dims : tuple, optional, default=None Dimensions of images. dtype : str, optional, default=None Numerical type of images. labels : array, optional, default = None Labels for records. If provided, should be one-dimensional. start, stop : nonnegative int, optional, default=None Indices of files to load, interpreted using Python slicing conventions. recursive : boolean, optional, default=False If true, will recursively descend directories from path, loading all files with an extension matching 'ext'. recount : boolean, optional, default=False Force subsequent record counting. """ from thunder.readers import get_parallel_reader reader = get_parallel_reader(path)(engine, credentials=credentials) data = reader.read(path, ext=ext, start=start, stop=stop, recursive=recursive, npartitions=npartitions) if spark and isinstance(engine, spark): if accessor: data = data.flatMap(accessor) if recount: nrecords = None def switch(record): ary, idx = record return (idx,), ary data = data.values().zipWithIndex().map(switch) else: nrecords = reader.nfiles return fromrdd(data, nrecords=nrecords, dims=dims, dtype=dtype, labels=labels, ordered=True) else: if accessor: data = [accessor(d) for d in data] flattened = list(itertools.chain(*data)) values = [kv[1] for kv in flattened] return fromarray(values, labels=labels)
python
def frompath(path, accessor=None, ext=None, start=None, stop=None, recursive=False, npartitions=None, dims=None, dtype=None, labels=None, recount=False, engine=None, credentials=None): """ Load images from a path using the given accessor. Supports both local and remote filesystems. Parameters ---------- accessor : function Apply to each item after loading to yield an image. ext : str, optional, default=None File extension. npartitions : int, optional, default=None Number of partitions for computational engine, if None will use default for engine. dims : tuple, optional, default=None Dimensions of images. dtype : str, optional, default=None Numerical type of images. labels : array, optional, default = None Labels for records. If provided, should be one-dimensional. start, stop : nonnegative int, optional, default=None Indices of files to load, interpreted using Python slicing conventions. recursive : boolean, optional, default=False If true, will recursively descend directories from path, loading all files with an extension matching 'ext'. recount : boolean, optional, default=False Force subsequent record counting. """ from thunder.readers import get_parallel_reader reader = get_parallel_reader(path)(engine, credentials=credentials) data = reader.read(path, ext=ext, start=start, stop=stop, recursive=recursive, npartitions=npartitions) if spark and isinstance(engine, spark): if accessor: data = data.flatMap(accessor) if recount: nrecords = None def switch(record): ary, idx = record return (idx,), ary data = data.values().zipWithIndex().map(switch) else: nrecords = reader.nfiles return fromrdd(data, nrecords=nrecords, dims=dims, dtype=dtype, labels=labels, ordered=True) else: if accessor: data = [accessor(d) for d in data] flattened = list(itertools.chain(*data)) values = [kv[1] for kv in flattened] return fromarray(values, labels=labels)
[ "def", "frompath", "(", "path", ",", "accessor", "=", "None", ",", "ext", "=", "None", ",", "start", "=", "None", ",", "stop", "=", "None", ",", "recursive", "=", "False", ",", "npartitions", "=", "None", ",", "dims", "=", "None", ",", "dtype", "=", "None", ",", "labels", "=", "None", ",", "recount", "=", "False", ",", "engine", "=", "None", ",", "credentials", "=", "None", ")", ":", "from", "thunder", ".", "readers", "import", "get_parallel_reader", "reader", "=", "get_parallel_reader", "(", "path", ")", "(", "engine", ",", "credentials", "=", "credentials", ")", "data", "=", "reader", ".", "read", "(", "path", ",", "ext", "=", "ext", ",", "start", "=", "start", ",", "stop", "=", "stop", ",", "recursive", "=", "recursive", ",", "npartitions", "=", "npartitions", ")", "if", "spark", "and", "isinstance", "(", "engine", ",", "spark", ")", ":", "if", "accessor", ":", "data", "=", "data", ".", "flatMap", "(", "accessor", ")", "if", "recount", ":", "nrecords", "=", "None", "def", "switch", "(", "record", ")", ":", "ary", ",", "idx", "=", "record", "return", "(", "idx", ",", ")", ",", "ary", "data", "=", "data", ".", "values", "(", ")", ".", "zipWithIndex", "(", ")", ".", "map", "(", "switch", ")", "else", ":", "nrecords", "=", "reader", ".", "nfiles", "return", "fromrdd", "(", "data", ",", "nrecords", "=", "nrecords", ",", "dims", "=", "dims", ",", "dtype", "=", "dtype", ",", "labels", "=", "labels", ",", "ordered", "=", "True", ")", "else", ":", "if", "accessor", ":", "data", "=", "[", "accessor", "(", "d", ")", "for", "d", "in", "data", "]", "flattened", "=", "list", "(", "itertools", ".", "chain", "(", "*", "data", ")", ")", "values", "=", "[", "kv", "[", "1", "]", "for", "kv", "in", "flattened", "]", "return", "fromarray", "(", "values", ",", "labels", "=", "labels", ")" ]
Load images from a path using the given accessor. Supports both local and remote filesystems. Parameters ---------- accessor : function Apply to each item after loading to yield an image. ext : str, optional, default=None File extension. npartitions : int, optional, default=None Number of partitions for computational engine, if None will use default for engine. dims : tuple, optional, default=None Dimensions of images. dtype : str, optional, default=None Numerical type of images. labels : array, optional, default = None Labels for records. If provided, should be one-dimensional. start, stop : nonnegative int, optional, default=None Indices of files to load, interpreted using Python slicing conventions. recursive : boolean, optional, default=False If true, will recursively descend directories from path, loading all files with an extension matching 'ext'. recount : boolean, optional, default=False Force subsequent record counting.
[ "Load", "images", "from", "a", "path", "using", "the", "given", "accessor", "." ]
967ff8f3e7c2fabe1705743d95eb2746d4329786
https://github.com/thunder-project/thunder/blob/967ff8f3e7c2fabe1705743d95eb2746d4329786/thunder/images/readers.py#L159-L221
train
thunder-project/thunder
thunder/images/readers.py
fromtif
def fromtif(path, ext='tif', start=None, stop=None, recursive=False, nplanes=None, npartitions=None, labels=None, engine=None, credentials=None, discard_extra=False): """ Loads images from single or multi-page TIF files. Parameters ---------- path : str Path to data files or directory, specified as either a local filesystem path or in a URI-like format, including scheme. May include a single '*' wildcard character. ext : string, optional, default = 'tif' Extension required on data files to be loaded. start, stop : nonnegative int, optional, default = None Indices of the first and last-plus-one file to load, relative to the sorted filenames matching 'path' and 'ext'. Interpreted using python slice indexing conventions. recursive : boolean, optional, default = False If true, will recursively descend directories from path, loading all files with an extension matching 'ext'. nplanes : positive integer, optional, default = None If passed, will cause single files to be subdivided into nplanes separate images. Otherwise, each file is taken to represent one image. npartitions : int, optional, default = None Number of partitions for computational engine, if None will use default for engine. labels : array, optional, default = None Labels for records. If provided, should be one-dimensional. discard_extra : boolean, optional, default = False If True and nplanes doesn't divide by the number of pages in a multi-page tiff, the reminder will be discarded and a warning will be shown. If False, it will raise an error """ from tifffile import TiffFile if nplanes is not None and nplanes <= 0: raise ValueError('nplanes must be positive if passed, got %d' % nplanes) def getarray(idx_buffer_filename): idx, buf, fname = idx_buffer_filename fbuf = BytesIO(buf) tfh = TiffFile(fbuf) ary = tfh.asarray() pageCount = ary.shape[0] if nplanes is not None: extra = pageCount % nplanes if extra: if discard_extra: pageCount = pageCount - extra logging.getLogger('thunder').warn('Ignored %d pages in file %s' % (extra, fname)) else: raise ValueError("nplanes '%d' does not evenly divide '%d in file %s'" % (nplanes, pageCount, fname)) values = [ary[i:(i+nplanes)] for i in range(0, pageCount, nplanes)] else: values = [ary] tfh.close() if ary.ndim == 3: values = [val.squeeze() for val in values] nvals = len(values) keys = [(idx*nvals + timepoint,) for timepoint in range(nvals)] return zip(keys, values) recount = False if nplanes is None else True data = frompath(path, accessor=getarray, ext=ext, start=start, stop=stop, recursive=recursive, npartitions=npartitions, recount=recount, labels=labels, engine=engine, credentials=credentials) if engine is not None and npartitions is not None and data.npartitions() < npartitions: data = data.repartition(npartitions) return data
python
def fromtif(path, ext='tif', start=None, stop=None, recursive=False, nplanes=None, npartitions=None, labels=None, engine=None, credentials=None, discard_extra=False): """ Loads images from single or multi-page TIF files. Parameters ---------- path : str Path to data files or directory, specified as either a local filesystem path or in a URI-like format, including scheme. May include a single '*' wildcard character. ext : string, optional, default = 'tif' Extension required on data files to be loaded. start, stop : nonnegative int, optional, default = None Indices of the first and last-plus-one file to load, relative to the sorted filenames matching 'path' and 'ext'. Interpreted using python slice indexing conventions. recursive : boolean, optional, default = False If true, will recursively descend directories from path, loading all files with an extension matching 'ext'. nplanes : positive integer, optional, default = None If passed, will cause single files to be subdivided into nplanes separate images. Otherwise, each file is taken to represent one image. npartitions : int, optional, default = None Number of partitions for computational engine, if None will use default for engine. labels : array, optional, default = None Labels for records. If provided, should be one-dimensional. discard_extra : boolean, optional, default = False If True and nplanes doesn't divide by the number of pages in a multi-page tiff, the reminder will be discarded and a warning will be shown. If False, it will raise an error """ from tifffile import TiffFile if nplanes is not None and nplanes <= 0: raise ValueError('nplanes must be positive if passed, got %d' % nplanes) def getarray(idx_buffer_filename): idx, buf, fname = idx_buffer_filename fbuf = BytesIO(buf) tfh = TiffFile(fbuf) ary = tfh.asarray() pageCount = ary.shape[0] if nplanes is not None: extra = pageCount % nplanes if extra: if discard_extra: pageCount = pageCount - extra logging.getLogger('thunder').warn('Ignored %d pages in file %s' % (extra, fname)) else: raise ValueError("nplanes '%d' does not evenly divide '%d in file %s'" % (nplanes, pageCount, fname)) values = [ary[i:(i+nplanes)] for i in range(0, pageCount, nplanes)] else: values = [ary] tfh.close() if ary.ndim == 3: values = [val.squeeze() for val in values] nvals = len(values) keys = [(idx*nvals + timepoint,) for timepoint in range(nvals)] return zip(keys, values) recount = False if nplanes is None else True data = frompath(path, accessor=getarray, ext=ext, start=start, stop=stop, recursive=recursive, npartitions=npartitions, recount=recount, labels=labels, engine=engine, credentials=credentials) if engine is not None and npartitions is not None and data.npartitions() < npartitions: data = data.repartition(npartitions) return data
[ "def", "fromtif", "(", "path", ",", "ext", "=", "'tif'", ",", "start", "=", "None", ",", "stop", "=", "None", ",", "recursive", "=", "False", ",", "nplanes", "=", "None", ",", "npartitions", "=", "None", ",", "labels", "=", "None", ",", "engine", "=", "None", ",", "credentials", "=", "None", ",", "discard_extra", "=", "False", ")", ":", "from", "tifffile", "import", "TiffFile", "if", "nplanes", "is", "not", "None", "and", "nplanes", "<=", "0", ":", "raise", "ValueError", "(", "'nplanes must be positive if passed, got %d'", "%", "nplanes", ")", "def", "getarray", "(", "idx_buffer_filename", ")", ":", "idx", ",", "buf", ",", "fname", "=", "idx_buffer_filename", "fbuf", "=", "BytesIO", "(", "buf", ")", "tfh", "=", "TiffFile", "(", "fbuf", ")", "ary", "=", "tfh", ".", "asarray", "(", ")", "pageCount", "=", "ary", ".", "shape", "[", "0", "]", "if", "nplanes", "is", "not", "None", ":", "extra", "=", "pageCount", "%", "nplanes", "if", "extra", ":", "if", "discard_extra", ":", "pageCount", "=", "pageCount", "-", "extra", "logging", ".", "getLogger", "(", "'thunder'", ")", ".", "warn", "(", "'Ignored %d pages in file %s'", "%", "(", "extra", ",", "fname", ")", ")", "else", ":", "raise", "ValueError", "(", "\"nplanes '%d' does not evenly divide '%d in file %s'\"", "%", "(", "nplanes", ",", "pageCount", ",", "fname", ")", ")", "values", "=", "[", "ary", "[", "i", ":", "(", "i", "+", "nplanes", ")", "]", "for", "i", "in", "range", "(", "0", ",", "pageCount", ",", "nplanes", ")", "]", "else", ":", "values", "=", "[", "ary", "]", "tfh", ".", "close", "(", ")", "if", "ary", ".", "ndim", "==", "3", ":", "values", "=", "[", "val", ".", "squeeze", "(", ")", "for", "val", "in", "values", "]", "nvals", "=", "len", "(", "values", ")", "keys", "=", "[", "(", "idx", "*", "nvals", "+", "timepoint", ",", ")", "for", "timepoint", "in", "range", "(", "nvals", ")", "]", "return", "zip", "(", "keys", ",", "values", ")", "recount", "=", "False", "if", "nplanes", "is", "None", "else", "True", "data", "=", "frompath", "(", "path", ",", "accessor", "=", "getarray", ",", "ext", "=", "ext", ",", "start", "=", "start", ",", "stop", "=", "stop", ",", "recursive", "=", "recursive", ",", "npartitions", "=", "npartitions", ",", "recount", "=", "recount", ",", "labels", "=", "labels", ",", "engine", "=", "engine", ",", "credentials", "=", "credentials", ")", "if", "engine", "is", "not", "None", "and", "npartitions", "is", "not", "None", "and", "data", ".", "npartitions", "(", ")", "<", "npartitions", ":", "data", "=", "data", ".", "repartition", "(", "npartitions", ")", "return", "data" ]
Loads images from single or multi-page TIF files. Parameters ---------- path : str Path to data files or directory, specified as either a local filesystem path or in a URI-like format, including scheme. May include a single '*' wildcard character. ext : string, optional, default = 'tif' Extension required on data files to be loaded. start, stop : nonnegative int, optional, default = None Indices of the first and last-plus-one file to load, relative to the sorted filenames matching 'path' and 'ext'. Interpreted using python slice indexing conventions. recursive : boolean, optional, default = False If true, will recursively descend directories from path, loading all files with an extension matching 'ext'. nplanes : positive integer, optional, default = None If passed, will cause single files to be subdivided into nplanes separate images. Otherwise, each file is taken to represent one image. npartitions : int, optional, default = None Number of partitions for computational engine, if None will use default for engine. labels : array, optional, default = None Labels for records. If provided, should be one-dimensional. discard_extra : boolean, optional, default = False If True and nplanes doesn't divide by the number of pages in a multi-page tiff, the reminder will be discarded and a warning will be shown. If False, it will raise an error
[ "Loads", "images", "from", "single", "or", "multi", "-", "page", "TIF", "files", "." ]
967ff8f3e7c2fabe1705743d95eb2746d4329786
https://github.com/thunder-project/thunder/blob/967ff8f3e7c2fabe1705743d95eb2746d4329786/thunder/images/readers.py#L323-L397
train
thunder-project/thunder
thunder/images/readers.py
frompng
def frompng(path, ext='png', start=None, stop=None, recursive=False, npartitions=None, labels=None, engine=None, credentials=None): """ Load images from PNG files. Parameters ---------- path : str Path to data files or directory, specified as either a local filesystem path or in a URI-like format, including scheme. May include a single '*' wildcard character. ext : string, optional, default = 'tif' Extension required on data files to be loaded. start, stop : nonnegative int, optional, default = None Indices of the first and last-plus-one file to load, relative to the sorted filenames matching `path` and `ext`. Interpreted using python slice indexing conventions. recursive : boolean, optional, default = False If true, will recursively descend directories from path, loading all files with an extension matching 'ext'. npartitions : int, optional, default = None Number of partitions for computational engine, if None will use default for engine. labels : array, optional, default = None Labels for records. If provided, should be one-dimensional. """ from scipy.misc import imread def getarray(idx_buffer_filename): idx, buf, _ = idx_buffer_filename fbuf = BytesIO(buf) yield (idx,), imread(fbuf) return frompath(path, accessor=getarray, ext=ext, start=start, stop=stop, recursive=recursive, npartitions=npartitions, labels=labels, engine=engine, credentials=credentials)
python
def frompng(path, ext='png', start=None, stop=None, recursive=False, npartitions=None, labels=None, engine=None, credentials=None): """ Load images from PNG files. Parameters ---------- path : str Path to data files or directory, specified as either a local filesystem path or in a URI-like format, including scheme. May include a single '*' wildcard character. ext : string, optional, default = 'tif' Extension required on data files to be loaded. start, stop : nonnegative int, optional, default = None Indices of the first and last-plus-one file to load, relative to the sorted filenames matching `path` and `ext`. Interpreted using python slice indexing conventions. recursive : boolean, optional, default = False If true, will recursively descend directories from path, loading all files with an extension matching 'ext'. npartitions : int, optional, default = None Number of partitions for computational engine, if None will use default for engine. labels : array, optional, default = None Labels for records. If provided, should be one-dimensional. """ from scipy.misc import imread def getarray(idx_buffer_filename): idx, buf, _ = idx_buffer_filename fbuf = BytesIO(buf) yield (idx,), imread(fbuf) return frompath(path, accessor=getarray, ext=ext, start=start, stop=stop, recursive=recursive, npartitions=npartitions, labels=labels, engine=engine, credentials=credentials)
[ "def", "frompng", "(", "path", ",", "ext", "=", "'png'", ",", "start", "=", "None", ",", "stop", "=", "None", ",", "recursive", "=", "False", ",", "npartitions", "=", "None", ",", "labels", "=", "None", ",", "engine", "=", "None", ",", "credentials", "=", "None", ")", ":", "from", "scipy", ".", "misc", "import", "imread", "def", "getarray", "(", "idx_buffer_filename", ")", ":", "idx", ",", "buf", ",", "_", "=", "idx_buffer_filename", "fbuf", "=", "BytesIO", "(", "buf", ")", "yield", "(", "idx", ",", ")", ",", "imread", "(", "fbuf", ")", "return", "frompath", "(", "path", ",", "accessor", "=", "getarray", ",", "ext", "=", "ext", ",", "start", "=", "start", ",", "stop", "=", "stop", ",", "recursive", "=", "recursive", ",", "npartitions", "=", "npartitions", ",", "labels", "=", "labels", ",", "engine", "=", "engine", ",", "credentials", "=", "credentials", ")" ]
Load images from PNG files. Parameters ---------- path : str Path to data files or directory, specified as either a local filesystem path or in a URI-like format, including scheme. May include a single '*' wildcard character. ext : string, optional, default = 'tif' Extension required on data files to be loaded. start, stop : nonnegative int, optional, default = None Indices of the first and last-plus-one file to load, relative to the sorted filenames matching `path` and `ext`. Interpreted using python slice indexing conventions. recursive : boolean, optional, default = False If true, will recursively descend directories from path, loading all files with an extension matching 'ext'. npartitions : int, optional, default = None Number of partitions for computational engine, if None will use default for engine. labels : array, optional, default = None Labels for records. If provided, should be one-dimensional.
[ "Load", "images", "from", "PNG", "files", "." ]
967ff8f3e7c2fabe1705743d95eb2746d4329786
https://github.com/thunder-project/thunder/blob/967ff8f3e7c2fabe1705743d95eb2746d4329786/thunder/images/readers.py#L399-L436
train
thunder-project/thunder
thunder/images/readers.py
fromrandom
def fromrandom(shape=(10, 50, 50), npartitions=1, seed=42, engine=None): """ Generate random image data. Parameters ---------- shape : tuple, optional, default=(10, 50, 50) Dimensions of images. npartitions : int, optional, default=1 Number of partitions. seed : int, optional, default=42 Random seed. """ seed = hash(seed) def generate(v): random.seed(seed + v) return random.randn(*shape[1:]) return fromlist(range(shape[0]), accessor=generate, npartitions=npartitions, engine=engine)
python
def fromrandom(shape=(10, 50, 50), npartitions=1, seed=42, engine=None): """ Generate random image data. Parameters ---------- shape : tuple, optional, default=(10, 50, 50) Dimensions of images. npartitions : int, optional, default=1 Number of partitions. seed : int, optional, default=42 Random seed. """ seed = hash(seed) def generate(v): random.seed(seed + v) return random.randn(*shape[1:]) return fromlist(range(shape[0]), accessor=generate, npartitions=npartitions, engine=engine)
[ "def", "fromrandom", "(", "shape", "=", "(", "10", ",", "50", ",", "50", ")", ",", "npartitions", "=", "1", ",", "seed", "=", "42", ",", "engine", "=", "None", ")", ":", "seed", "=", "hash", "(", "seed", ")", "def", "generate", "(", "v", ")", ":", "random", ".", "seed", "(", "seed", "+", "v", ")", "return", "random", ".", "randn", "(", "*", "shape", "[", "1", ":", "]", ")", "return", "fromlist", "(", "range", "(", "shape", "[", "0", "]", ")", ",", "accessor", "=", "generate", ",", "npartitions", "=", "npartitions", ",", "engine", "=", "engine", ")" ]
Generate random image data. Parameters ---------- shape : tuple, optional, default=(10, 50, 50) Dimensions of images. npartitions : int, optional, default=1 Number of partitions. seed : int, optional, default=42 Random seed.
[ "Generate", "random", "image", "data", "." ]
967ff8f3e7c2fabe1705743d95eb2746d4329786
https://github.com/thunder-project/thunder/blob/967ff8f3e7c2fabe1705743d95eb2746d4329786/thunder/images/readers.py#L438-L459
train
thunder-project/thunder
thunder/images/readers.py
fromexample
def fromexample(name=None, engine=None): """ Load example image data. Data are downloaded from S3, so this method requires an internet connection. Parameters ---------- name : str Name of dataset, if not specified will print options. engine : object, default = None Computational engine (e.g. a SparkContext for Spark) """ datasets = ['mouse', 'fish'] if name is None: print('Availiable example image datasets') for d in datasets: print('- ' + d) return check_options(name, datasets) path = 's3n://thunder-sample-data/images/' + name if name == 'mouse': data = frombinary(path=path, npartitions=1, order='F', engine=engine) if name == 'fish': data = fromtif(path=path, npartitions=1, engine=engine) if spark and isinstance(engine, spark): data.cache() data.compute() return data
python
def fromexample(name=None, engine=None): """ Load example image data. Data are downloaded from S3, so this method requires an internet connection. Parameters ---------- name : str Name of dataset, if not specified will print options. engine : object, default = None Computational engine (e.g. a SparkContext for Spark) """ datasets = ['mouse', 'fish'] if name is None: print('Availiable example image datasets') for d in datasets: print('- ' + d) return check_options(name, datasets) path = 's3n://thunder-sample-data/images/' + name if name == 'mouse': data = frombinary(path=path, npartitions=1, order='F', engine=engine) if name == 'fish': data = fromtif(path=path, npartitions=1, engine=engine) if spark and isinstance(engine, spark): data.cache() data.compute() return data
[ "def", "fromexample", "(", "name", "=", "None", ",", "engine", "=", "None", ")", ":", "datasets", "=", "[", "'mouse'", ",", "'fish'", "]", "if", "name", "is", "None", ":", "print", "(", "'Availiable example image datasets'", ")", "for", "d", "in", "datasets", ":", "print", "(", "'- '", "+", "d", ")", "return", "check_options", "(", "name", ",", "datasets", ")", "path", "=", "'s3n://thunder-sample-data/images/'", "+", "name", "if", "name", "==", "'mouse'", ":", "data", "=", "frombinary", "(", "path", "=", "path", ",", "npartitions", "=", "1", ",", "order", "=", "'F'", ",", "engine", "=", "engine", ")", "if", "name", "==", "'fish'", ":", "data", "=", "fromtif", "(", "path", "=", "path", ",", "npartitions", "=", "1", ",", "engine", "=", "engine", ")", "if", "spark", "and", "isinstance", "(", "engine", ",", "spark", ")", ":", "data", ".", "cache", "(", ")", "data", ".", "compute", "(", ")", "return", "data" ]
Load example image data. Data are downloaded from S3, so this method requires an internet connection. Parameters ---------- name : str Name of dataset, if not specified will print options. engine : object, default = None Computational engine (e.g. a SparkContext for Spark)
[ "Load", "example", "image", "data", "." ]
967ff8f3e7c2fabe1705743d95eb2746d4329786
https://github.com/thunder-project/thunder/blob/967ff8f3e7c2fabe1705743d95eb2746d4329786/thunder/images/readers.py#L461-L497
train
thunder-project/thunder
thunder/blocks/local.py
LocalChunks.unchunk
def unchunk(self): """ Reconstitute the chunked array back into a full ndarray. Returns ------- ndarray """ if self.padding != len(self.shape)*(0,): shape = self.values.shape arr = empty(shape, dtype=object) for inds in product(*[arange(s) for s in shape]): slices = [] for i, p, n in zip(inds, self.padding, shape): start = None if (i == 0 or p == 0) else p stop = None if (i == n-1 or p == 0) else -p slices.append(slice(start, stop, None)) arr[inds] = self.values[inds][tuple(slices)] else: arr = self.values return allstack(arr.tolist())
python
def unchunk(self): """ Reconstitute the chunked array back into a full ndarray. Returns ------- ndarray """ if self.padding != len(self.shape)*(0,): shape = self.values.shape arr = empty(shape, dtype=object) for inds in product(*[arange(s) for s in shape]): slices = [] for i, p, n in zip(inds, self.padding, shape): start = None if (i == 0 or p == 0) else p stop = None if (i == n-1 or p == 0) else -p slices.append(slice(start, stop, None)) arr[inds] = self.values[inds][tuple(slices)] else: arr = self.values return allstack(arr.tolist())
[ "def", "unchunk", "(", "self", ")", ":", "if", "self", ".", "padding", "!=", "len", "(", "self", ".", "shape", ")", "*", "(", "0", ",", ")", ":", "shape", "=", "self", ".", "values", ".", "shape", "arr", "=", "empty", "(", "shape", ",", "dtype", "=", "object", ")", "for", "inds", "in", "product", "(", "*", "[", "arange", "(", "s", ")", "for", "s", "in", "shape", "]", ")", ":", "slices", "=", "[", "]", "for", "i", ",", "p", ",", "n", "in", "zip", "(", "inds", ",", "self", ".", "padding", ",", "shape", ")", ":", "start", "=", "None", "if", "(", "i", "==", "0", "or", "p", "==", "0", ")", "else", "p", "stop", "=", "None", "if", "(", "i", "==", "n", "-", "1", "or", "p", "==", "0", ")", "else", "-", "p", "slices", ".", "append", "(", "slice", "(", "start", ",", "stop", ",", "None", ")", ")", "arr", "[", "inds", "]", "=", "self", ".", "values", "[", "inds", "]", "[", "tuple", "(", "slices", ")", "]", "else", ":", "arr", "=", "self", ".", "values", "return", "allstack", "(", "arr", ".", "tolist", "(", ")", ")" ]
Reconstitute the chunked array back into a full ndarray. Returns ------- ndarray
[ "Reconstitute", "the", "chunked", "array", "back", "into", "a", "full", "ndarray", "." ]
967ff8f3e7c2fabe1705743d95eb2746d4329786
https://github.com/thunder-project/thunder/blob/967ff8f3e7c2fabe1705743d95eb2746d4329786/thunder/blocks/local.py#L54-L75
train
thunder-project/thunder
thunder/blocks/local.py
LocalChunks.chunk
def chunk(arr, chunk_size="150", padding=None): """ Created a chunked array from a full array and a chunk size. Parameters ---------- array : ndarray Array that will be broken into chunks chunk_size : string or tuple, default = '150' Size of each image chunk. If a str, size of memory footprint in KB. If a tuple, then the dimensions of each chunk. If an int, then all dimensions will use this number padding : tuple or int Amount of padding along each dimensions for chunks. If an int, then the same amount of padding is used for all dimensions Returns ------- LocalChunks """ plan, _ = LocalChunks.getplan(chunk_size, arr.shape[1:], arr.dtype) plan = r_[arr.shape[0], plan] if padding is None: pad = arr.ndim*(0,) elif isinstance(padding, int): pad = (0,) + (arr.ndim-1)*(padding,) else: pad = (0,) + padding shape = arr.shape if any([x + y > z for x, y, z in zip(plan, pad, shape)]): raise ValueError("Chunk sizes %s plus padding sizes %s cannot exceed value dimensions %s along any axis" % (tuple(plan), tuple(pad), tuple(shape))) if any([x > y for x, y in zip(pad, plan)]): raise ValueError("Padding sizes %s cannot exceed chunk sizes %s along any axis" % (tuple(pad), tuple(plan))) def rectify(x): x[x<0] = 0 return x breaks = [r_[arange(0, n, s), n] for n, s in zip(shape, plan)] limits = [zip(rectify(b[:-1]-p), b[1:]+p) for b, p in zip(breaks, pad)] slices = product(*[[slice(x[0], x[1]) for x in l] for l in limits]) vals = [arr[s] for s in slices] newarr = empty(len(vals), dtype=object) for i in range(len(vals)): newarr[i] = vals[i] newsize = [b.shape[0]-1 for b in breaks] newarr = newarr.reshape(*newsize) return LocalChunks(newarr, shape, plan, dtype=arr.dtype, padding=pad)
python
def chunk(arr, chunk_size="150", padding=None): """ Created a chunked array from a full array and a chunk size. Parameters ---------- array : ndarray Array that will be broken into chunks chunk_size : string or tuple, default = '150' Size of each image chunk. If a str, size of memory footprint in KB. If a tuple, then the dimensions of each chunk. If an int, then all dimensions will use this number padding : tuple or int Amount of padding along each dimensions for chunks. If an int, then the same amount of padding is used for all dimensions Returns ------- LocalChunks """ plan, _ = LocalChunks.getplan(chunk_size, arr.shape[1:], arr.dtype) plan = r_[arr.shape[0], plan] if padding is None: pad = arr.ndim*(0,) elif isinstance(padding, int): pad = (0,) + (arr.ndim-1)*(padding,) else: pad = (0,) + padding shape = arr.shape if any([x + y > z for x, y, z in zip(plan, pad, shape)]): raise ValueError("Chunk sizes %s plus padding sizes %s cannot exceed value dimensions %s along any axis" % (tuple(plan), tuple(pad), tuple(shape))) if any([x > y for x, y in zip(pad, plan)]): raise ValueError("Padding sizes %s cannot exceed chunk sizes %s along any axis" % (tuple(pad), tuple(plan))) def rectify(x): x[x<0] = 0 return x breaks = [r_[arange(0, n, s), n] for n, s in zip(shape, plan)] limits = [zip(rectify(b[:-1]-p), b[1:]+p) for b, p in zip(breaks, pad)] slices = product(*[[slice(x[0], x[1]) for x in l] for l in limits]) vals = [arr[s] for s in slices] newarr = empty(len(vals), dtype=object) for i in range(len(vals)): newarr[i] = vals[i] newsize = [b.shape[0]-1 for b in breaks] newarr = newarr.reshape(*newsize) return LocalChunks(newarr, shape, plan, dtype=arr.dtype, padding=pad)
[ "def", "chunk", "(", "arr", ",", "chunk_size", "=", "\"150\"", ",", "padding", "=", "None", ")", ":", "plan", ",", "_", "=", "LocalChunks", ".", "getplan", "(", "chunk_size", ",", "arr", ".", "shape", "[", "1", ":", "]", ",", "arr", ".", "dtype", ")", "plan", "=", "r_", "[", "arr", ".", "shape", "[", "0", "]", ",", "plan", "]", "if", "padding", "is", "None", ":", "pad", "=", "arr", ".", "ndim", "*", "(", "0", ",", ")", "elif", "isinstance", "(", "padding", ",", "int", ")", ":", "pad", "=", "(", "0", ",", ")", "+", "(", "arr", ".", "ndim", "-", "1", ")", "*", "(", "padding", ",", ")", "else", ":", "pad", "=", "(", "0", ",", ")", "+", "padding", "shape", "=", "arr", ".", "shape", "if", "any", "(", "[", "x", "+", "y", ">", "z", "for", "x", ",", "y", ",", "z", "in", "zip", "(", "plan", ",", "pad", ",", "shape", ")", "]", ")", ":", "raise", "ValueError", "(", "\"Chunk sizes %s plus padding sizes %s cannot exceed value dimensions %s along any axis\"", "%", "(", "tuple", "(", "plan", ")", ",", "tuple", "(", "pad", ")", ",", "tuple", "(", "shape", ")", ")", ")", "if", "any", "(", "[", "x", ">", "y", "for", "x", ",", "y", "in", "zip", "(", "pad", ",", "plan", ")", "]", ")", ":", "raise", "ValueError", "(", "\"Padding sizes %s cannot exceed chunk sizes %s along any axis\"", "%", "(", "tuple", "(", "pad", ")", ",", "tuple", "(", "plan", ")", ")", ")", "def", "rectify", "(", "x", ")", ":", "x", "[", "x", "<", "0", "]", "=", "0", "return", "x", "breaks", "=", "[", "r_", "[", "arange", "(", "0", ",", "n", ",", "s", ")", ",", "n", "]", "for", "n", ",", "s", "in", "zip", "(", "shape", ",", "plan", ")", "]", "limits", "=", "[", "zip", "(", "rectify", "(", "b", "[", ":", "-", "1", "]", "-", "p", ")", ",", "b", "[", "1", ":", "]", "+", "p", ")", "for", "b", ",", "p", "in", "zip", "(", "breaks", ",", "pad", ")", "]", "slices", "=", "product", "(", "*", "[", "[", "slice", "(", "x", "[", "0", "]", ",", "x", "[", "1", "]", ")", "for", "x", "in", "l", "]", "for", "l", "in", "limits", "]", ")", "vals", "=", "[", "arr", "[", "s", "]", "for", "s", "in", "slices", "]", "newarr", "=", "empty", "(", "len", "(", "vals", ")", ",", "dtype", "=", "object", ")", "for", "i", "in", "range", "(", "len", "(", "vals", ")", ")", ":", "newarr", "[", "i", "]", "=", "vals", "[", "i", "]", "newsize", "=", "[", "b", ".", "shape", "[", "0", "]", "-", "1", "for", "b", "in", "breaks", "]", "newarr", "=", "newarr", ".", "reshape", "(", "*", "newsize", ")", "return", "LocalChunks", "(", "newarr", ",", "shape", ",", "plan", ",", "dtype", "=", "arr", ".", "dtype", ",", "padding", "=", "pad", ")" ]
Created a chunked array from a full array and a chunk size. Parameters ---------- array : ndarray Array that will be broken into chunks chunk_size : string or tuple, default = '150' Size of each image chunk. If a str, size of memory footprint in KB. If a tuple, then the dimensions of each chunk. If an int, then all dimensions will use this number padding : tuple or int Amount of padding along each dimensions for chunks. If an int, then the same amount of padding is used for all dimensions Returns ------- LocalChunks
[ "Created", "a", "chunked", "array", "from", "a", "full", "array", "and", "a", "chunk", "size", "." ]
967ff8f3e7c2fabe1705743d95eb2746d4329786
https://github.com/thunder-project/thunder/blob/967ff8f3e7c2fabe1705743d95eb2746d4329786/thunder/blocks/local.py#L121-L178
train
thunder-project/thunder
thunder/base.py
Data.filter
def filter(self, func): """ Filter array along an axis. Applies a function which should evaluate to boolean, along a single axis or multiple axes. Array will be aligned so that the desired set of axes are in the keys, which may require a transpose/reshape. Parameters ---------- func : function Function to apply, should return boolean """ if self.mode == 'local': reshaped = self._align(self.baseaxes) filtered = asarray(list(filter(func, reshaped))) if self.labels is not None: mask = asarray(list(map(func, reshaped))) if self.mode == 'spark': sort = False if self.labels is None else True filtered = self.values.filter(func, axis=self.baseaxes, sort=sort) if self.labels is not None: keys, vals = zip(*self.values.map(func, axis=self.baseaxes, value_shape=(1,)).tordd().collect()) perm = sorted(range(len(keys)), key=keys.__getitem__) mask = asarray(vals)[perm] if self.labels is not None: s1 = prod(self.baseshape) newlabels = self.labels.reshape(s1, 1)[mask].squeeze() else: newlabels = None return self._constructor(filtered, labels=newlabels).__finalize__(self, noprop=('labels',))
python
def filter(self, func): """ Filter array along an axis. Applies a function which should evaluate to boolean, along a single axis or multiple axes. Array will be aligned so that the desired set of axes are in the keys, which may require a transpose/reshape. Parameters ---------- func : function Function to apply, should return boolean """ if self.mode == 'local': reshaped = self._align(self.baseaxes) filtered = asarray(list(filter(func, reshaped))) if self.labels is not None: mask = asarray(list(map(func, reshaped))) if self.mode == 'spark': sort = False if self.labels is None else True filtered = self.values.filter(func, axis=self.baseaxes, sort=sort) if self.labels is not None: keys, vals = zip(*self.values.map(func, axis=self.baseaxes, value_shape=(1,)).tordd().collect()) perm = sorted(range(len(keys)), key=keys.__getitem__) mask = asarray(vals)[perm] if self.labels is not None: s1 = prod(self.baseshape) newlabels = self.labels.reshape(s1, 1)[mask].squeeze() else: newlabels = None return self._constructor(filtered, labels=newlabels).__finalize__(self, noprop=('labels',))
[ "def", "filter", "(", "self", ",", "func", ")", ":", "if", "self", ".", "mode", "==", "'local'", ":", "reshaped", "=", "self", ".", "_align", "(", "self", ".", "baseaxes", ")", "filtered", "=", "asarray", "(", "list", "(", "filter", "(", "func", ",", "reshaped", ")", ")", ")", "if", "self", ".", "labels", "is", "not", "None", ":", "mask", "=", "asarray", "(", "list", "(", "map", "(", "func", ",", "reshaped", ")", ")", ")", "if", "self", ".", "mode", "==", "'spark'", ":", "sort", "=", "False", "if", "self", ".", "labels", "is", "None", "else", "True", "filtered", "=", "self", ".", "values", ".", "filter", "(", "func", ",", "axis", "=", "self", ".", "baseaxes", ",", "sort", "=", "sort", ")", "if", "self", ".", "labels", "is", "not", "None", ":", "keys", ",", "vals", "=", "zip", "(", "*", "self", ".", "values", ".", "map", "(", "func", ",", "axis", "=", "self", ".", "baseaxes", ",", "value_shape", "=", "(", "1", ",", ")", ")", ".", "tordd", "(", ")", ".", "collect", "(", ")", ")", "perm", "=", "sorted", "(", "range", "(", "len", "(", "keys", ")", ")", ",", "key", "=", "keys", ".", "__getitem__", ")", "mask", "=", "asarray", "(", "vals", ")", "[", "perm", "]", "if", "self", ".", "labels", "is", "not", "None", ":", "s1", "=", "prod", "(", "self", ".", "baseshape", ")", "newlabels", "=", "self", ".", "labels", ".", "reshape", "(", "s1", ",", "1", ")", "[", "mask", "]", ".", "squeeze", "(", ")", "else", ":", "newlabels", "=", "None", "return", "self", ".", "_constructor", "(", "filtered", ",", "labels", "=", "newlabels", ")", ".", "__finalize__", "(", "self", ",", "noprop", "=", "(", "'labels'", ",", ")", ")" ]
Filter array along an axis. Applies a function which should evaluate to boolean, along a single axis or multiple axes. Array will be aligned so that the desired set of axes are in the keys, which may require a transpose/reshape. Parameters ---------- func : function Function to apply, should return boolean
[ "Filter", "array", "along", "an", "axis", "." ]
967ff8f3e7c2fabe1705743d95eb2746d4329786
https://github.com/thunder-project/thunder/blob/967ff8f3e7c2fabe1705743d95eb2746d4329786/thunder/base.py#L372-L410
train
thunder-project/thunder
thunder/base.py
Data.map
def map(self, func, value_shape=None, dtype=None, with_keys=False): """ Apply an array -> array function across an axis. Array will be aligned so that the desired set of axes are in the keys, which may require a transpose/reshape. Parameters ---------- func : function Function of a single array to apply. If with_keys=True, function should be of a (tuple, array) pair. axis : tuple or int, optional, default=(0,) Axis or multiple axes to apply function along. value_shape : tuple, optional, default=None Known shape of values resulting from operation. Only valid in spark mode. dtype : numpy dtype, optional, default=None Known shape of dtype resulting from operation. Only valid in spark mode. with_keys : bool, optional, default=False Include keys as an argument to the function """ axis = self.baseaxes if self.mode == 'local': axes = sorted(tupleize(axis)) key_shape = [self.shape[axis] for axis in axes] reshaped = self._align(axes, key_shape=key_shape) if with_keys: keys = zip(*unravel_index(range(prod(key_shape)), key_shape)) mapped = asarray(list(map(func, zip(keys, reshaped)))) else: mapped = asarray(list(map(func, reshaped))) try: elem_shape = mapped[0].shape except: elem_shape = (1,) expand = list(elem_shape) expand = [1] if len(expand) == 0 else expand # invert the previous reshape operation, using the shape of the map result linearized_shape_inv = key_shape + expand reordered = mapped.reshape(*linearized_shape_inv) return self._constructor(reordered, mode=self.mode).__finalize__(self, noprop=('index')) if self.mode == 'spark': expand = lambda x: array(func(x), ndmin=1) mapped = self.values.map(expand, axis, value_shape, dtype, with_keys) return self._constructor(mapped, mode=self.mode).__finalize__(self, noprop=('index',))
python
def map(self, func, value_shape=None, dtype=None, with_keys=False): """ Apply an array -> array function across an axis. Array will be aligned so that the desired set of axes are in the keys, which may require a transpose/reshape. Parameters ---------- func : function Function of a single array to apply. If with_keys=True, function should be of a (tuple, array) pair. axis : tuple or int, optional, default=(0,) Axis or multiple axes to apply function along. value_shape : tuple, optional, default=None Known shape of values resulting from operation. Only valid in spark mode. dtype : numpy dtype, optional, default=None Known shape of dtype resulting from operation. Only valid in spark mode. with_keys : bool, optional, default=False Include keys as an argument to the function """ axis = self.baseaxes if self.mode == 'local': axes = sorted(tupleize(axis)) key_shape = [self.shape[axis] for axis in axes] reshaped = self._align(axes, key_shape=key_shape) if with_keys: keys = zip(*unravel_index(range(prod(key_shape)), key_shape)) mapped = asarray(list(map(func, zip(keys, reshaped)))) else: mapped = asarray(list(map(func, reshaped))) try: elem_shape = mapped[0].shape except: elem_shape = (1,) expand = list(elem_shape) expand = [1] if len(expand) == 0 else expand # invert the previous reshape operation, using the shape of the map result linearized_shape_inv = key_shape + expand reordered = mapped.reshape(*linearized_shape_inv) return self._constructor(reordered, mode=self.mode).__finalize__(self, noprop=('index')) if self.mode == 'spark': expand = lambda x: array(func(x), ndmin=1) mapped = self.values.map(expand, axis, value_shape, dtype, with_keys) return self._constructor(mapped, mode=self.mode).__finalize__(self, noprop=('index',))
[ "def", "map", "(", "self", ",", "func", ",", "value_shape", "=", "None", ",", "dtype", "=", "None", ",", "with_keys", "=", "False", ")", ":", "axis", "=", "self", ".", "baseaxes", "if", "self", ".", "mode", "==", "'local'", ":", "axes", "=", "sorted", "(", "tupleize", "(", "axis", ")", ")", "key_shape", "=", "[", "self", ".", "shape", "[", "axis", "]", "for", "axis", "in", "axes", "]", "reshaped", "=", "self", ".", "_align", "(", "axes", ",", "key_shape", "=", "key_shape", ")", "if", "with_keys", ":", "keys", "=", "zip", "(", "*", "unravel_index", "(", "range", "(", "prod", "(", "key_shape", ")", ")", ",", "key_shape", ")", ")", "mapped", "=", "asarray", "(", "list", "(", "map", "(", "func", ",", "zip", "(", "keys", ",", "reshaped", ")", ")", ")", ")", "else", ":", "mapped", "=", "asarray", "(", "list", "(", "map", "(", "func", ",", "reshaped", ")", ")", ")", "try", ":", "elem_shape", "=", "mapped", "[", "0", "]", ".", "shape", "except", ":", "elem_shape", "=", "(", "1", ",", ")", "expand", "=", "list", "(", "elem_shape", ")", "expand", "=", "[", "1", "]", "if", "len", "(", "expand", ")", "==", "0", "else", "expand", "# invert the previous reshape operation, using the shape of the map result", "linearized_shape_inv", "=", "key_shape", "+", "expand", "reordered", "=", "mapped", ".", "reshape", "(", "*", "linearized_shape_inv", ")", "return", "self", ".", "_constructor", "(", "reordered", ",", "mode", "=", "self", ".", "mode", ")", ".", "__finalize__", "(", "self", ",", "noprop", "=", "(", "'index'", ")", ")", "if", "self", ".", "mode", "==", "'spark'", ":", "expand", "=", "lambda", "x", ":", "array", "(", "func", "(", "x", ")", ",", "ndmin", "=", "1", ")", "mapped", "=", "self", ".", "values", ".", "map", "(", "expand", ",", "axis", ",", "value_shape", ",", "dtype", ",", "with_keys", ")", "return", "self", ".", "_constructor", "(", "mapped", ",", "mode", "=", "self", ".", "mode", ")", ".", "__finalize__", "(", "self", ",", "noprop", "=", "(", "'index'", ",", ")", ")" ]
Apply an array -> array function across an axis. Array will be aligned so that the desired set of axes are in the keys, which may require a transpose/reshape. Parameters ---------- func : function Function of a single array to apply. If with_keys=True, function should be of a (tuple, array) pair. axis : tuple or int, optional, default=(0,) Axis or multiple axes to apply function along. value_shape : tuple, optional, default=None Known shape of values resulting from operation. Only valid in spark mode. dtype : numpy dtype, optional, default=None Known shape of dtype resulting from operation. Only valid in spark mode. with_keys : bool, optional, default=False Include keys as an argument to the function
[ "Apply", "an", "array", "-", ">", "array", "function", "across", "an", "axis", "." ]
967ff8f3e7c2fabe1705743d95eb2746d4329786
https://github.com/thunder-project/thunder/blob/967ff8f3e7c2fabe1705743d95eb2746d4329786/thunder/base.py#L412-L469
train
thunder-project/thunder
thunder/base.py
Data._reduce
def _reduce(self, func, axis=0): """ Reduce an array along an axis. Applies an associative/commutative function of two arguments cumulatively to all arrays along an axis. Array will be aligned so that the desired set of axes are in the keys, which may require a transpose/reshape. Parameters ---------- func : function Function of two arrays that returns a single array axis : tuple or int, optional, default=(0,) Axis or multiple axes to reduce along. """ if self.mode == 'local': axes = sorted(tupleize(axis)) # if the function is a ufunc, it can automatically handle reducing over multiple axes if isinstance(func, ufunc): inshape(self.shape, axes) reduced = func.reduce(self, axis=tuple(axes)) else: reshaped = self._align(axes) reduced = reduce(func, reshaped) # ensure that the shape of the reduced array is valid expected_shape = [self.shape[i] for i in range(len(self.shape)) if i not in axes] if reduced.shape != tuple(expected_shape): raise ValueError("reduce did not yield an array with valid dimensions") return self._constructor(reduced[newaxis, :]).__finalize__(self) if self.mode == 'spark': reduced = self.values.reduce(func, axis, keepdims=True) return self._constructor(reduced).__finalize__(self)
python
def _reduce(self, func, axis=0): """ Reduce an array along an axis. Applies an associative/commutative function of two arguments cumulatively to all arrays along an axis. Array will be aligned so that the desired set of axes are in the keys, which may require a transpose/reshape. Parameters ---------- func : function Function of two arrays that returns a single array axis : tuple or int, optional, default=(0,) Axis or multiple axes to reduce along. """ if self.mode == 'local': axes = sorted(tupleize(axis)) # if the function is a ufunc, it can automatically handle reducing over multiple axes if isinstance(func, ufunc): inshape(self.shape, axes) reduced = func.reduce(self, axis=tuple(axes)) else: reshaped = self._align(axes) reduced = reduce(func, reshaped) # ensure that the shape of the reduced array is valid expected_shape = [self.shape[i] for i in range(len(self.shape)) if i not in axes] if reduced.shape != tuple(expected_shape): raise ValueError("reduce did not yield an array with valid dimensions") return self._constructor(reduced[newaxis, :]).__finalize__(self) if self.mode == 'spark': reduced = self.values.reduce(func, axis, keepdims=True) return self._constructor(reduced).__finalize__(self)
[ "def", "_reduce", "(", "self", ",", "func", ",", "axis", "=", "0", ")", ":", "if", "self", ".", "mode", "==", "'local'", ":", "axes", "=", "sorted", "(", "tupleize", "(", "axis", ")", ")", "# if the function is a ufunc, it can automatically handle reducing over multiple axes", "if", "isinstance", "(", "func", ",", "ufunc", ")", ":", "inshape", "(", "self", ".", "shape", ",", "axes", ")", "reduced", "=", "func", ".", "reduce", "(", "self", ",", "axis", "=", "tuple", "(", "axes", ")", ")", "else", ":", "reshaped", "=", "self", ".", "_align", "(", "axes", ")", "reduced", "=", "reduce", "(", "func", ",", "reshaped", ")", "# ensure that the shape of the reduced array is valid", "expected_shape", "=", "[", "self", ".", "shape", "[", "i", "]", "for", "i", "in", "range", "(", "len", "(", "self", ".", "shape", ")", ")", "if", "i", "not", "in", "axes", "]", "if", "reduced", ".", "shape", "!=", "tuple", "(", "expected_shape", ")", ":", "raise", "ValueError", "(", "\"reduce did not yield an array with valid dimensions\"", ")", "return", "self", ".", "_constructor", "(", "reduced", "[", "newaxis", ",", ":", "]", ")", ".", "__finalize__", "(", "self", ")", "if", "self", ".", "mode", "==", "'spark'", ":", "reduced", "=", "self", ".", "values", ".", "reduce", "(", "func", ",", "axis", ",", "keepdims", "=", "True", ")", "return", "self", ".", "_constructor", "(", "reduced", ")", ".", "__finalize__", "(", "self", ")" ]
Reduce an array along an axis. Applies an associative/commutative function of two arguments cumulatively to all arrays along an axis. Array will be aligned so that the desired set of axes are in the keys, which may require a transpose/reshape. Parameters ---------- func : function Function of two arrays that returns a single array axis : tuple or int, optional, default=(0,) Axis or multiple axes to reduce along.
[ "Reduce", "an", "array", "along", "an", "axis", "." ]
967ff8f3e7c2fabe1705743d95eb2746d4329786
https://github.com/thunder-project/thunder/blob/967ff8f3e7c2fabe1705743d95eb2746d4329786/thunder/base.py#L471-L508
train
thunder-project/thunder
thunder/base.py
Data.element_wise
def element_wise(self, other, op): """ Apply an elementwise operation to data. Both self and other data must have the same mode. If self is in local mode, other can also be a numpy array. Self and other must have the same shape, or other must be a scalar. Parameters ---------- other : Data or numpy array Data to apply elementwise operation to op : function Binary operator to use for elementwise operations, e.g. add, subtract """ if not isscalar(other) and not self.shape == other.shape: raise ValueError("shapes %s and %s must be equal" % (self.shape, other.shape)) if not isscalar(other) and isinstance(other, Data) and not self.mode == other.mode: raise NotImplementedError if isscalar(other): return self.map(lambda x: op(x, other)) if self.mode == 'local' and isinstance(other, ndarray): return self._constructor(op(self.values, other)).__finalize__(self) if self.mode == 'local' and isinstance(other, Data): return self._constructor(op(self.values, other.values)).__finalize__(self) if self.mode == 'spark' and isinstance(other, Data): def func(record): (k1, x), (k2, y) = record return k1, op(x, y) rdd = self.tordd().zip(other.tordd()).map(func) barray = BoltArraySpark(rdd, shape=self.shape, dtype=self.dtype, split=self.values.split) return self._constructor(barray).__finalize__(self)
python
def element_wise(self, other, op): """ Apply an elementwise operation to data. Both self and other data must have the same mode. If self is in local mode, other can also be a numpy array. Self and other must have the same shape, or other must be a scalar. Parameters ---------- other : Data or numpy array Data to apply elementwise operation to op : function Binary operator to use for elementwise operations, e.g. add, subtract """ if not isscalar(other) and not self.shape == other.shape: raise ValueError("shapes %s and %s must be equal" % (self.shape, other.shape)) if not isscalar(other) and isinstance(other, Data) and not self.mode == other.mode: raise NotImplementedError if isscalar(other): return self.map(lambda x: op(x, other)) if self.mode == 'local' and isinstance(other, ndarray): return self._constructor(op(self.values, other)).__finalize__(self) if self.mode == 'local' and isinstance(other, Data): return self._constructor(op(self.values, other.values)).__finalize__(self) if self.mode == 'spark' and isinstance(other, Data): def func(record): (k1, x), (k2, y) = record return k1, op(x, y) rdd = self.tordd().zip(other.tordd()).map(func) barray = BoltArraySpark(rdd, shape=self.shape, dtype=self.dtype, split=self.values.split) return self._constructor(barray).__finalize__(self)
[ "def", "element_wise", "(", "self", ",", "other", ",", "op", ")", ":", "if", "not", "isscalar", "(", "other", ")", "and", "not", "self", ".", "shape", "==", "other", ".", "shape", ":", "raise", "ValueError", "(", "\"shapes %s and %s must be equal\"", "%", "(", "self", ".", "shape", ",", "other", ".", "shape", ")", ")", "if", "not", "isscalar", "(", "other", ")", "and", "isinstance", "(", "other", ",", "Data", ")", "and", "not", "self", ".", "mode", "==", "other", ".", "mode", ":", "raise", "NotImplementedError", "if", "isscalar", "(", "other", ")", ":", "return", "self", ".", "map", "(", "lambda", "x", ":", "op", "(", "x", ",", "other", ")", ")", "if", "self", ".", "mode", "==", "'local'", "and", "isinstance", "(", "other", ",", "ndarray", ")", ":", "return", "self", ".", "_constructor", "(", "op", "(", "self", ".", "values", ",", "other", ")", ")", ".", "__finalize__", "(", "self", ")", "if", "self", ".", "mode", "==", "'local'", "and", "isinstance", "(", "other", ",", "Data", ")", ":", "return", "self", ".", "_constructor", "(", "op", "(", "self", ".", "values", ",", "other", ".", "values", ")", ")", ".", "__finalize__", "(", "self", ")", "if", "self", ".", "mode", "==", "'spark'", "and", "isinstance", "(", "other", ",", "Data", ")", ":", "def", "func", "(", "record", ")", ":", "(", "k1", ",", "x", ")", ",", "(", "k2", ",", "y", ")", "=", "record", "return", "k1", ",", "op", "(", "x", ",", "y", ")", "rdd", "=", "self", ".", "tordd", "(", ")", ".", "zip", "(", "other", ".", "tordd", "(", ")", ")", ".", "map", "(", "func", ")", "barray", "=", "BoltArraySpark", "(", "rdd", ",", "shape", "=", "self", ".", "shape", ",", "dtype", "=", "self", ".", "dtype", ",", "split", "=", "self", ".", "values", ".", "split", ")", "return", "self", ".", "_constructor", "(", "barray", ")", ".", "__finalize__", "(", "self", ")" ]
Apply an elementwise operation to data. Both self and other data must have the same mode. If self is in local mode, other can also be a numpy array. Self and other must have the same shape, or other must be a scalar. Parameters ---------- other : Data or numpy array Data to apply elementwise operation to op : function Binary operator to use for elementwise operations, e.g. add, subtract
[ "Apply", "an", "elementwise", "operation", "to", "data", "." ]
967ff8f3e7c2fabe1705743d95eb2746d4329786
https://github.com/thunder-project/thunder/blob/967ff8f3e7c2fabe1705743d95eb2746d4329786/thunder/base.py#L510-L549
train
thunder-project/thunder
thunder/base.py
Data.clip
def clip(self, min=None, max=None): """ Clip values above and below. Parameters ---------- min : scalar or array-like Minimum value. If array, will be broadcasted max : scalar or array-like Maximum value. If array, will be broadcasted. """ return self._constructor( self.values.clip(min=min, max=max)).__finalize__(self)
python
def clip(self, min=None, max=None): """ Clip values above and below. Parameters ---------- min : scalar or array-like Minimum value. If array, will be broadcasted max : scalar or array-like Maximum value. If array, will be broadcasted. """ return self._constructor( self.values.clip(min=min, max=max)).__finalize__(self)
[ "def", "clip", "(", "self", ",", "min", "=", "None", ",", "max", "=", "None", ")", ":", "return", "self", ".", "_constructor", "(", "self", ".", "values", ".", "clip", "(", "min", "=", "min", ",", "max", "=", "max", ")", ")", ".", "__finalize__", "(", "self", ")" ]
Clip values above and below. Parameters ---------- min : scalar or array-like Minimum value. If array, will be broadcasted max : scalar or array-like Maximum value. If array, will be broadcasted.
[ "Clip", "values", "above", "and", "below", "." ]
967ff8f3e7c2fabe1705743d95eb2746d4329786
https://github.com/thunder-project/thunder/blob/967ff8f3e7c2fabe1705743d95eb2746d4329786/thunder/base.py#L575-L588
train
thunder-project/thunder
thunder/series/readers.py
fromrdd
def fromrdd(rdd, nrecords=None, shape=None, index=None, labels=None, dtype=None, ordered=False): """ Load series data from a Spark RDD. Assumes keys are tuples with increasing and unique indices, and values are 1d ndarrays. Will try to infer properties that are not explicitly provided. Parameters ---------- rdd : SparkRDD An RDD containing series data. shape : tuple or array, optional, default = None Total shape of data (if provided will avoid check). nrecords : int, optional, default = None Number of records (if provided will avoid check). index : array, optional, default = None Index for records, if not provided will use (0, 1, ...) labels : array, optional, default = None Labels for records. If provided, should have shape of shape[:-1]. dtype : string, default = None Data numerical type (if provided will avoid check) ordered : boolean, optional, default = False Whether or not the rdd is ordered by key """ from .series import Series from bolt.spark.array import BoltArraySpark if index is None or dtype is None: item = rdd.values().first() if index is None: index = range(len(item)) if dtype is None: dtype = item.dtype if nrecords is None and shape is not None: nrecords = prod(shape[:-1]) if nrecords is None: nrecords = rdd.count() if shape is None: shape = (nrecords, asarray(index).shape[0]) def process_keys(record): k, v = record if isinstance(k, int): k = (k,) return k, v values = BoltArraySpark(rdd.map(process_keys), shape=shape, dtype=dtype, split=len(shape)-1, ordered=ordered) return Series(values, index=index, labels=labels)
python
def fromrdd(rdd, nrecords=None, shape=None, index=None, labels=None, dtype=None, ordered=False): """ Load series data from a Spark RDD. Assumes keys are tuples with increasing and unique indices, and values are 1d ndarrays. Will try to infer properties that are not explicitly provided. Parameters ---------- rdd : SparkRDD An RDD containing series data. shape : tuple or array, optional, default = None Total shape of data (if provided will avoid check). nrecords : int, optional, default = None Number of records (if provided will avoid check). index : array, optional, default = None Index for records, if not provided will use (0, 1, ...) labels : array, optional, default = None Labels for records. If provided, should have shape of shape[:-1]. dtype : string, default = None Data numerical type (if provided will avoid check) ordered : boolean, optional, default = False Whether or not the rdd is ordered by key """ from .series import Series from bolt.spark.array import BoltArraySpark if index is None or dtype is None: item = rdd.values().first() if index is None: index = range(len(item)) if dtype is None: dtype = item.dtype if nrecords is None and shape is not None: nrecords = prod(shape[:-1]) if nrecords is None: nrecords = rdd.count() if shape is None: shape = (nrecords, asarray(index).shape[0]) def process_keys(record): k, v = record if isinstance(k, int): k = (k,) return k, v values = BoltArraySpark(rdd.map(process_keys), shape=shape, dtype=dtype, split=len(shape)-1, ordered=ordered) return Series(values, index=index, labels=labels)
[ "def", "fromrdd", "(", "rdd", ",", "nrecords", "=", "None", ",", "shape", "=", "None", ",", "index", "=", "None", ",", "labels", "=", "None", ",", "dtype", "=", "None", ",", "ordered", "=", "False", ")", ":", "from", ".", "series", "import", "Series", "from", "bolt", ".", "spark", ".", "array", "import", "BoltArraySpark", "if", "index", "is", "None", "or", "dtype", "is", "None", ":", "item", "=", "rdd", ".", "values", "(", ")", ".", "first", "(", ")", "if", "index", "is", "None", ":", "index", "=", "range", "(", "len", "(", "item", ")", ")", "if", "dtype", "is", "None", ":", "dtype", "=", "item", ".", "dtype", "if", "nrecords", "is", "None", "and", "shape", "is", "not", "None", ":", "nrecords", "=", "prod", "(", "shape", "[", ":", "-", "1", "]", ")", "if", "nrecords", "is", "None", ":", "nrecords", "=", "rdd", ".", "count", "(", ")", "if", "shape", "is", "None", ":", "shape", "=", "(", "nrecords", ",", "asarray", "(", "index", ")", ".", "shape", "[", "0", "]", ")", "def", "process_keys", "(", "record", ")", ":", "k", ",", "v", "=", "record", "if", "isinstance", "(", "k", ",", "int", ")", ":", "k", "=", "(", "k", ",", ")", "return", "k", ",", "v", "values", "=", "BoltArraySpark", "(", "rdd", ".", "map", "(", "process_keys", ")", ",", "shape", "=", "shape", ",", "dtype", "=", "dtype", ",", "split", "=", "len", "(", "shape", ")", "-", "1", ",", "ordered", "=", "ordered", ")", "return", "Series", "(", "values", ",", "index", "=", "index", ",", "labels", "=", "labels", ")" ]
Load series data from a Spark RDD. Assumes keys are tuples with increasing and unique indices, and values are 1d ndarrays. Will try to infer properties that are not explicitly provided. Parameters ---------- rdd : SparkRDD An RDD containing series data. shape : tuple or array, optional, default = None Total shape of data (if provided will avoid check). nrecords : int, optional, default = None Number of records (if provided will avoid check). index : array, optional, default = None Index for records, if not provided will use (0, 1, ...) labels : array, optional, default = None Labels for records. If provided, should have shape of shape[:-1]. dtype : string, default = None Data numerical type (if provided will avoid check) ordered : boolean, optional, default = False Whether or not the rdd is ordered by key
[ "Load", "series", "data", "from", "a", "Spark", "RDD", "." ]
967ff8f3e7c2fabe1705743d95eb2746d4329786
https://github.com/thunder-project/thunder/blob/967ff8f3e7c2fabe1705743d95eb2746d4329786/thunder/series/readers.py#L13-L72
train
thunder-project/thunder
thunder/series/readers.py
fromarray
def fromarray(values, index=None, labels=None, npartitions=None, engine=None): """ Load series data from an array. Assumes that all but final dimension index the records, and the size of the final dimension is the length of each record, e.g. a (2, 3, 4) array will be treated as 2 x 3 records of size (4,) Parameters ---------- values : array-like An array containing the data. Can be a numpy array, a bolt array, or an array-like. index : array, optional, default = None Index for records, if not provided will use (0,1,...,N) where N is the length of each record. labels : array, optional, default = None Labels for records. If provided, should have same shape as values.shape[:-1]. npartitions : int, default = None Number of partitions for parallelization (Spark only) engine : object, default = None Computational engine (e.g. a SparkContext for Spark) """ from .series import Series import bolt if isinstance(values, bolt.spark.array.BoltArraySpark): return Series(values) values = asarray(values) if values.ndim < 2: values = expand_dims(values, 0) if index is not None and not asarray(index).shape[0] == values.shape[-1]: raise ValueError('Index length %s not equal to record length %s' % (asarray(index).shape[0], values.shape[-1])) if index is None: index = arange(values.shape[-1]) if spark and isinstance(engine, spark): axis = tuple(range(values.ndim - 1)) values = bolt.array(values, context=engine, npartitions=npartitions, axis=axis) values._ordered = True return Series(values, index=index) return Series(values, index=index, labels=labels)
python
def fromarray(values, index=None, labels=None, npartitions=None, engine=None): """ Load series data from an array. Assumes that all but final dimension index the records, and the size of the final dimension is the length of each record, e.g. a (2, 3, 4) array will be treated as 2 x 3 records of size (4,) Parameters ---------- values : array-like An array containing the data. Can be a numpy array, a bolt array, or an array-like. index : array, optional, default = None Index for records, if not provided will use (0,1,...,N) where N is the length of each record. labels : array, optional, default = None Labels for records. If provided, should have same shape as values.shape[:-1]. npartitions : int, default = None Number of partitions for parallelization (Spark only) engine : object, default = None Computational engine (e.g. a SparkContext for Spark) """ from .series import Series import bolt if isinstance(values, bolt.spark.array.BoltArraySpark): return Series(values) values = asarray(values) if values.ndim < 2: values = expand_dims(values, 0) if index is not None and not asarray(index).shape[0] == values.shape[-1]: raise ValueError('Index length %s not equal to record length %s' % (asarray(index).shape[0], values.shape[-1])) if index is None: index = arange(values.shape[-1]) if spark and isinstance(engine, spark): axis = tuple(range(values.ndim - 1)) values = bolt.array(values, context=engine, npartitions=npartitions, axis=axis) values._ordered = True return Series(values, index=index) return Series(values, index=index, labels=labels)
[ "def", "fromarray", "(", "values", ",", "index", "=", "None", ",", "labels", "=", "None", ",", "npartitions", "=", "None", ",", "engine", "=", "None", ")", ":", "from", ".", "series", "import", "Series", "import", "bolt", "if", "isinstance", "(", "values", ",", "bolt", ".", "spark", ".", "array", ".", "BoltArraySpark", ")", ":", "return", "Series", "(", "values", ")", "values", "=", "asarray", "(", "values", ")", "if", "values", ".", "ndim", "<", "2", ":", "values", "=", "expand_dims", "(", "values", ",", "0", ")", "if", "index", "is", "not", "None", "and", "not", "asarray", "(", "index", ")", ".", "shape", "[", "0", "]", "==", "values", ".", "shape", "[", "-", "1", "]", ":", "raise", "ValueError", "(", "'Index length %s not equal to record length %s'", "%", "(", "asarray", "(", "index", ")", ".", "shape", "[", "0", "]", ",", "values", ".", "shape", "[", "-", "1", "]", ")", ")", "if", "index", "is", "None", ":", "index", "=", "arange", "(", "values", ".", "shape", "[", "-", "1", "]", ")", "if", "spark", "and", "isinstance", "(", "engine", ",", "spark", ")", ":", "axis", "=", "tuple", "(", "range", "(", "values", ".", "ndim", "-", "1", ")", ")", "values", "=", "bolt", ".", "array", "(", "values", ",", "context", "=", "engine", ",", "npartitions", "=", "npartitions", ",", "axis", "=", "axis", ")", "values", ".", "_ordered", "=", "True", "return", "Series", "(", "values", ",", "index", "=", "index", ")", "return", "Series", "(", "values", ",", "index", "=", "index", ",", "labels", "=", "labels", ")" ]
Load series data from an array. Assumes that all but final dimension index the records, and the size of the final dimension is the length of each record, e.g. a (2, 3, 4) array will be treated as 2 x 3 records of size (4,) Parameters ---------- values : array-like An array containing the data. Can be a numpy array, a bolt array, or an array-like. index : array, optional, default = None Index for records, if not provided will use (0,1,...,N) where N is the length of each record. labels : array, optional, default = None Labels for records. If provided, should have same shape as values.shape[:-1]. npartitions : int, default = None Number of partitions for parallelization (Spark only) engine : object, default = None Computational engine (e.g. a SparkContext for Spark)
[ "Load", "series", "data", "from", "an", "array", "." ]
967ff8f3e7c2fabe1705743d95eb2746d4329786
https://github.com/thunder-project/thunder/blob/967ff8f3e7c2fabe1705743d95eb2746d4329786/thunder/series/readers.py#L74-L124
train
thunder-project/thunder
thunder/series/readers.py
fromlist
def fromlist(items, accessor=None, index=None, labels=None, dtype=None, npartitions=None, engine=None): """ Load series data from a list with an optional accessor function. Will call accessor function on each item from the list, providing a generic interface for data loading. Parameters ---------- items : list A list of items to load. accessor : function, optional, default = None A function to apply to each item in the list during loading. index : array, optional, default = None Index for records, if not provided will use (0,1,...,N) where N is the length of each record. labels : array, optional, default = None Labels for records. If provided, should have same length as items. dtype : string, default = None Data numerical type (if provided will avoid check) npartitions : int, default = None Number of partitions for parallelization (Spark only) engine : object, default = None Computational engine (e.g. a SparkContext for Spark) """ if spark and isinstance(engine, spark): if dtype is None: dtype = accessor(items[0]).dtype if accessor else items[0].dtype nrecords = len(items) keys = map(lambda k: (k, ), range(len(items))) if not npartitions: npartitions = engine.defaultParallelism items = zip(keys, items) rdd = engine.parallelize(items, npartitions) if accessor: rdd = rdd.mapValues(accessor) return fromrdd(rdd, nrecords=nrecords, index=index, labels=labels, dtype=dtype, ordered=True) else: if accessor: items = [accessor(i) for i in items] return fromarray(items, index=index, labels=labels)
python
def fromlist(items, accessor=None, index=None, labels=None, dtype=None, npartitions=None, engine=None): """ Load series data from a list with an optional accessor function. Will call accessor function on each item from the list, providing a generic interface for data loading. Parameters ---------- items : list A list of items to load. accessor : function, optional, default = None A function to apply to each item in the list during loading. index : array, optional, default = None Index for records, if not provided will use (0,1,...,N) where N is the length of each record. labels : array, optional, default = None Labels for records. If provided, should have same length as items. dtype : string, default = None Data numerical type (if provided will avoid check) npartitions : int, default = None Number of partitions for parallelization (Spark only) engine : object, default = None Computational engine (e.g. a SparkContext for Spark) """ if spark and isinstance(engine, spark): if dtype is None: dtype = accessor(items[0]).dtype if accessor else items[0].dtype nrecords = len(items) keys = map(lambda k: (k, ), range(len(items))) if not npartitions: npartitions = engine.defaultParallelism items = zip(keys, items) rdd = engine.parallelize(items, npartitions) if accessor: rdd = rdd.mapValues(accessor) return fromrdd(rdd, nrecords=nrecords, index=index, labels=labels, dtype=dtype, ordered=True) else: if accessor: items = [accessor(i) for i in items] return fromarray(items, index=index, labels=labels)
[ "def", "fromlist", "(", "items", ",", "accessor", "=", "None", ",", "index", "=", "None", ",", "labels", "=", "None", ",", "dtype", "=", "None", ",", "npartitions", "=", "None", ",", "engine", "=", "None", ")", ":", "if", "spark", "and", "isinstance", "(", "engine", ",", "spark", ")", ":", "if", "dtype", "is", "None", ":", "dtype", "=", "accessor", "(", "items", "[", "0", "]", ")", ".", "dtype", "if", "accessor", "else", "items", "[", "0", "]", ".", "dtype", "nrecords", "=", "len", "(", "items", ")", "keys", "=", "map", "(", "lambda", "k", ":", "(", "k", ",", ")", ",", "range", "(", "len", "(", "items", ")", ")", ")", "if", "not", "npartitions", ":", "npartitions", "=", "engine", ".", "defaultParallelism", "items", "=", "zip", "(", "keys", ",", "items", ")", "rdd", "=", "engine", ".", "parallelize", "(", "items", ",", "npartitions", ")", "if", "accessor", ":", "rdd", "=", "rdd", ".", "mapValues", "(", "accessor", ")", "return", "fromrdd", "(", "rdd", ",", "nrecords", "=", "nrecords", ",", "index", "=", "index", ",", "labels", "=", "labels", ",", "dtype", "=", "dtype", ",", "ordered", "=", "True", ")", "else", ":", "if", "accessor", ":", "items", "=", "[", "accessor", "(", "i", ")", "for", "i", "in", "items", "]", "return", "fromarray", "(", "items", ",", "index", "=", "index", ",", "labels", "=", "labels", ")" ]
Load series data from a list with an optional accessor function. Will call accessor function on each item from the list, providing a generic interface for data loading. Parameters ---------- items : list A list of items to load. accessor : function, optional, default = None A function to apply to each item in the list during loading. index : array, optional, default = None Index for records, if not provided will use (0,1,...,N) where N is the length of each record. labels : array, optional, default = None Labels for records. If provided, should have same length as items. dtype : string, default = None Data numerical type (if provided will avoid check) npartitions : int, default = None Number of partitions for parallelization (Spark only) engine : object, default = None Computational engine (e.g. a SparkContext for Spark)
[ "Load", "series", "data", "from", "a", "list", "with", "an", "optional", "accessor", "function", "." ]
967ff8f3e7c2fabe1705743d95eb2746d4329786
https://github.com/thunder-project/thunder/blob/967ff8f3e7c2fabe1705743d95eb2746d4329786/thunder/series/readers.py#L126-L173
train
thunder-project/thunder
thunder/series/readers.py
fromtext
def fromtext(path, ext='txt', dtype='float64', skip=0, shape=None, index=None, labels=None, npartitions=None, engine=None, credentials=None): """ Loads series data from text files. Assumes data are formatted as rows, where each record is a row of numbers separated by spaces e.g. 'v v v v v'. You can optionally specify a fixed number of initial items per row to skip / discard. Parameters ---------- path : string Directory to load from, can be a URI string with scheme (e.g. 'file://', 's3n://', or 'gs://'), or a single file, or a directory, or a directory with a single wildcard character. ext : str, optional, default = 'txt' File extension. dtype : dtype or dtype specifier, default 'float64' Numerical type to use for data after converting from text. skip : int, optional, default = 0 Number of items in each record to skip. shape : tuple or list, optional, default = None Shape of data if known, will be inferred otherwise. index : array, optional, default = None Index for records, if not provided will use (0, 1, ...) labels : array, optional, default = None Labels for records. If provided, should have length equal to number of rows. npartitions : int, default = None Number of partitions for parallelization (Spark only) engine : object, default = None Computational engine (e.g. a SparkContext for Spark) credentials : dict, default = None Credentials for remote storage (e.g. S3) in the form {access: ***, secret: ***} """ from thunder.readers import normalize_scheme, get_parallel_reader path = normalize_scheme(path, ext) if spark and isinstance(engine, spark): def parse(line, skip): vec = [float(x) for x in line.split(' ')] return array(vec[skip:], dtype=dtype) lines = engine.textFile(path, npartitions) data = lines.map(lambda x: parse(x, skip)) def switch(record): ary, idx = record return (idx,), ary rdd = data.zipWithIndex().map(switch) return fromrdd(rdd, dtype=str(dtype), shape=shape, index=index, ordered=True) else: reader = get_parallel_reader(path)(engine, credentials=credentials) data = reader.read(path, ext=ext) values = [] for kv in data: for line in str(kv[1].decode('utf-8')).split('\n')[:-1]: values.append(fromstring(line, sep=' ')) values = asarray(values) if skip > 0: values = values[:, skip:] if shape: values = values.reshape(shape) return fromarray(values, index=index, labels=labels)
python
def fromtext(path, ext='txt', dtype='float64', skip=0, shape=None, index=None, labels=None, npartitions=None, engine=None, credentials=None): """ Loads series data from text files. Assumes data are formatted as rows, where each record is a row of numbers separated by spaces e.g. 'v v v v v'. You can optionally specify a fixed number of initial items per row to skip / discard. Parameters ---------- path : string Directory to load from, can be a URI string with scheme (e.g. 'file://', 's3n://', or 'gs://'), or a single file, or a directory, or a directory with a single wildcard character. ext : str, optional, default = 'txt' File extension. dtype : dtype or dtype specifier, default 'float64' Numerical type to use for data after converting from text. skip : int, optional, default = 0 Number of items in each record to skip. shape : tuple or list, optional, default = None Shape of data if known, will be inferred otherwise. index : array, optional, default = None Index for records, if not provided will use (0, 1, ...) labels : array, optional, default = None Labels for records. If provided, should have length equal to number of rows. npartitions : int, default = None Number of partitions for parallelization (Spark only) engine : object, default = None Computational engine (e.g. a SparkContext for Spark) credentials : dict, default = None Credentials for remote storage (e.g. S3) in the form {access: ***, secret: ***} """ from thunder.readers import normalize_scheme, get_parallel_reader path = normalize_scheme(path, ext) if spark and isinstance(engine, spark): def parse(line, skip): vec = [float(x) for x in line.split(' ')] return array(vec[skip:], dtype=dtype) lines = engine.textFile(path, npartitions) data = lines.map(lambda x: parse(x, skip)) def switch(record): ary, idx = record return (idx,), ary rdd = data.zipWithIndex().map(switch) return fromrdd(rdd, dtype=str(dtype), shape=shape, index=index, ordered=True) else: reader = get_parallel_reader(path)(engine, credentials=credentials) data = reader.read(path, ext=ext) values = [] for kv in data: for line in str(kv[1].decode('utf-8')).split('\n')[:-1]: values.append(fromstring(line, sep=' ')) values = asarray(values) if skip > 0: values = values[:, skip:] if shape: values = values.reshape(shape) return fromarray(values, index=index, labels=labels)
[ "def", "fromtext", "(", "path", ",", "ext", "=", "'txt'", ",", "dtype", "=", "'float64'", ",", "skip", "=", "0", ",", "shape", "=", "None", ",", "index", "=", "None", ",", "labels", "=", "None", ",", "npartitions", "=", "None", ",", "engine", "=", "None", ",", "credentials", "=", "None", ")", ":", "from", "thunder", ".", "readers", "import", "normalize_scheme", ",", "get_parallel_reader", "path", "=", "normalize_scheme", "(", "path", ",", "ext", ")", "if", "spark", "and", "isinstance", "(", "engine", ",", "spark", ")", ":", "def", "parse", "(", "line", ",", "skip", ")", ":", "vec", "=", "[", "float", "(", "x", ")", "for", "x", "in", "line", ".", "split", "(", "' '", ")", "]", "return", "array", "(", "vec", "[", "skip", ":", "]", ",", "dtype", "=", "dtype", ")", "lines", "=", "engine", ".", "textFile", "(", "path", ",", "npartitions", ")", "data", "=", "lines", ".", "map", "(", "lambda", "x", ":", "parse", "(", "x", ",", "skip", ")", ")", "def", "switch", "(", "record", ")", ":", "ary", ",", "idx", "=", "record", "return", "(", "idx", ",", ")", ",", "ary", "rdd", "=", "data", ".", "zipWithIndex", "(", ")", ".", "map", "(", "switch", ")", "return", "fromrdd", "(", "rdd", ",", "dtype", "=", "str", "(", "dtype", ")", ",", "shape", "=", "shape", ",", "index", "=", "index", ",", "ordered", "=", "True", ")", "else", ":", "reader", "=", "get_parallel_reader", "(", "path", ")", "(", "engine", ",", "credentials", "=", "credentials", ")", "data", "=", "reader", ".", "read", "(", "path", ",", "ext", "=", "ext", ")", "values", "=", "[", "]", "for", "kv", "in", "data", ":", "for", "line", "in", "str", "(", "kv", "[", "1", "]", ".", "decode", "(", "'utf-8'", ")", ")", ".", "split", "(", "'\\n'", ")", "[", ":", "-", "1", "]", ":", "values", ".", "append", "(", "fromstring", "(", "line", ",", "sep", "=", "' '", ")", ")", "values", "=", "asarray", "(", "values", ")", "if", "skip", ">", "0", ":", "values", "=", "values", "[", ":", ",", "skip", ":", "]", "if", "shape", ":", "values", "=", "values", ".", "reshape", "(", "shape", ")", "return", "fromarray", "(", "values", ",", "index", "=", "index", ",", "labels", "=", "labels", ")" ]
Loads series data from text files. Assumes data are formatted as rows, where each record is a row of numbers separated by spaces e.g. 'v v v v v'. You can optionally specify a fixed number of initial items per row to skip / discard. Parameters ---------- path : string Directory to load from, can be a URI string with scheme (e.g. 'file://', 's3n://', or 'gs://'), or a single file, or a directory, or a directory with a single wildcard character. ext : str, optional, default = 'txt' File extension. dtype : dtype or dtype specifier, default 'float64' Numerical type to use for data after converting from text. skip : int, optional, default = 0 Number of items in each record to skip. shape : tuple or list, optional, default = None Shape of data if known, will be inferred otherwise. index : array, optional, default = None Index for records, if not provided will use (0, 1, ...) labels : array, optional, default = None Labels for records. If provided, should have length equal to number of rows. npartitions : int, default = None Number of partitions for parallelization (Spark only) engine : object, default = None Computational engine (e.g. a SparkContext for Spark) credentials : dict, default = None Credentials for remote storage (e.g. S3) in the form {access: ***, secret: ***}
[ "Loads", "series", "data", "from", "text", "files", "." ]
967ff8f3e7c2fabe1705743d95eb2746d4329786
https://github.com/thunder-project/thunder/blob/967ff8f3e7c2fabe1705743d95eb2746d4329786/thunder/series/readers.py#L175-L252
train
thunder-project/thunder
thunder/series/readers.py
frombinary
def frombinary(path, ext='bin', conf='conf.json', dtype=None, shape=None, skip=0, index=None, labels=None, engine=None, credentials=None): """ Load series data from flat binary files. Parameters ---------- path : string URI or local filesystem path Directory to load from, can be a URI string with scheme (e.g. 'file://', 's3n://', or 'gs://'), or a single file, or a directory, or a directory with a single wildcard character. ext : str, optional, default = 'bin' Optional file extension specifier. conf : str, optional, default = 'conf.json' Name of conf file with type and size information. dtype : dtype or dtype specifier, default 'float64' Numerical type to use for data after converting from text. shape : tuple or list, optional, default = None Shape of data if known, will be inferred otherwise. skip : int, optional, default = 0 Number of items in each record to skip. index : array, optional, default = None Index for records, if not provided will use (0, 1, ...) labels : array, optional, default = None Labels for records. If provided, should have shape of shape[:-1]. engine : object, default = None Computational engine (e.g. a SparkContext for Spark) credentials : dict, default = None Credentials for remote storage (e.g. S3) in the form {access: ***, secret: ***} """ shape, dtype = _binaryconfig(path, conf, dtype, shape, credentials) from thunder.readers import normalize_scheme, get_parallel_reader path = normalize_scheme(path, ext) from numpy import dtype as dtype_func nelements = shape[-1] + skip recordsize = dtype_func(dtype).itemsize * nelements if spark and isinstance(engine, spark): lines = engine.binaryRecords(path, recordsize) raw = lines.map(lambda x: frombuffer(buffer(x), offset=0, count=nelements, dtype=dtype)[skip:]) def switch(record): ary, idx = record return (idx,), ary rdd = raw.zipWithIndex().map(switch) if shape and len(shape) > 2: expand = lambda k: unravel_index(k[0], shape[0:-1]) rdd = rdd.map(lambda kv: (expand(kv[0]), kv[1])) if not index: index = arange(shape[-1]) return fromrdd(rdd, dtype=dtype, shape=shape, index=index, ordered=True) else: reader = get_parallel_reader(path)(engine, credentials=credentials) data = reader.read(path, ext=ext) values = [] for record in data: buf = record[1] offset = 0 while offset < len(buf): v = frombuffer(buffer(buf), offset=offset, count=nelements, dtype=dtype) values.append(v[skip:]) offset += recordsize if not len(values) == prod(shape[0:-1]): raise ValueError('Unexpected shape, got %g records but expected %g' % (len(values), prod(shape[0:-1]))) values = asarray(values, dtype=dtype) if shape: values = values.reshape(shape) return fromarray(values, index=index, labels=labels)
python
def frombinary(path, ext='bin', conf='conf.json', dtype=None, shape=None, skip=0, index=None, labels=None, engine=None, credentials=None): """ Load series data from flat binary files. Parameters ---------- path : string URI or local filesystem path Directory to load from, can be a URI string with scheme (e.g. 'file://', 's3n://', or 'gs://'), or a single file, or a directory, or a directory with a single wildcard character. ext : str, optional, default = 'bin' Optional file extension specifier. conf : str, optional, default = 'conf.json' Name of conf file with type and size information. dtype : dtype or dtype specifier, default 'float64' Numerical type to use for data after converting from text. shape : tuple or list, optional, default = None Shape of data if known, will be inferred otherwise. skip : int, optional, default = 0 Number of items in each record to skip. index : array, optional, default = None Index for records, if not provided will use (0, 1, ...) labels : array, optional, default = None Labels for records. If provided, should have shape of shape[:-1]. engine : object, default = None Computational engine (e.g. a SparkContext for Spark) credentials : dict, default = None Credentials for remote storage (e.g. S3) in the form {access: ***, secret: ***} """ shape, dtype = _binaryconfig(path, conf, dtype, shape, credentials) from thunder.readers import normalize_scheme, get_parallel_reader path = normalize_scheme(path, ext) from numpy import dtype as dtype_func nelements = shape[-1] + skip recordsize = dtype_func(dtype).itemsize * nelements if spark and isinstance(engine, spark): lines = engine.binaryRecords(path, recordsize) raw = lines.map(lambda x: frombuffer(buffer(x), offset=0, count=nelements, dtype=dtype)[skip:]) def switch(record): ary, idx = record return (idx,), ary rdd = raw.zipWithIndex().map(switch) if shape and len(shape) > 2: expand = lambda k: unravel_index(k[0], shape[0:-1]) rdd = rdd.map(lambda kv: (expand(kv[0]), kv[1])) if not index: index = arange(shape[-1]) return fromrdd(rdd, dtype=dtype, shape=shape, index=index, ordered=True) else: reader = get_parallel_reader(path)(engine, credentials=credentials) data = reader.read(path, ext=ext) values = [] for record in data: buf = record[1] offset = 0 while offset < len(buf): v = frombuffer(buffer(buf), offset=offset, count=nelements, dtype=dtype) values.append(v[skip:]) offset += recordsize if not len(values) == prod(shape[0:-1]): raise ValueError('Unexpected shape, got %g records but expected %g' % (len(values), prod(shape[0:-1]))) values = asarray(values, dtype=dtype) if shape: values = values.reshape(shape) return fromarray(values, index=index, labels=labels)
[ "def", "frombinary", "(", "path", ",", "ext", "=", "'bin'", ",", "conf", "=", "'conf.json'", ",", "dtype", "=", "None", ",", "shape", "=", "None", ",", "skip", "=", "0", ",", "index", "=", "None", ",", "labels", "=", "None", ",", "engine", "=", "None", ",", "credentials", "=", "None", ")", ":", "shape", ",", "dtype", "=", "_binaryconfig", "(", "path", ",", "conf", ",", "dtype", ",", "shape", ",", "credentials", ")", "from", "thunder", ".", "readers", "import", "normalize_scheme", ",", "get_parallel_reader", "path", "=", "normalize_scheme", "(", "path", ",", "ext", ")", "from", "numpy", "import", "dtype", "as", "dtype_func", "nelements", "=", "shape", "[", "-", "1", "]", "+", "skip", "recordsize", "=", "dtype_func", "(", "dtype", ")", ".", "itemsize", "*", "nelements", "if", "spark", "and", "isinstance", "(", "engine", ",", "spark", ")", ":", "lines", "=", "engine", ".", "binaryRecords", "(", "path", ",", "recordsize", ")", "raw", "=", "lines", ".", "map", "(", "lambda", "x", ":", "frombuffer", "(", "buffer", "(", "x", ")", ",", "offset", "=", "0", ",", "count", "=", "nelements", ",", "dtype", "=", "dtype", ")", "[", "skip", ":", "]", ")", "def", "switch", "(", "record", ")", ":", "ary", ",", "idx", "=", "record", "return", "(", "idx", ",", ")", ",", "ary", "rdd", "=", "raw", ".", "zipWithIndex", "(", ")", ".", "map", "(", "switch", ")", "if", "shape", "and", "len", "(", "shape", ")", ">", "2", ":", "expand", "=", "lambda", "k", ":", "unravel_index", "(", "k", "[", "0", "]", ",", "shape", "[", "0", ":", "-", "1", "]", ")", "rdd", "=", "rdd", ".", "map", "(", "lambda", "kv", ":", "(", "expand", "(", "kv", "[", "0", "]", ")", ",", "kv", "[", "1", "]", ")", ")", "if", "not", "index", ":", "index", "=", "arange", "(", "shape", "[", "-", "1", "]", ")", "return", "fromrdd", "(", "rdd", ",", "dtype", "=", "dtype", ",", "shape", "=", "shape", ",", "index", "=", "index", ",", "ordered", "=", "True", ")", "else", ":", "reader", "=", "get_parallel_reader", "(", "path", ")", "(", "engine", ",", "credentials", "=", "credentials", ")", "data", "=", "reader", ".", "read", "(", "path", ",", "ext", "=", "ext", ")", "values", "=", "[", "]", "for", "record", "in", "data", ":", "buf", "=", "record", "[", "1", "]", "offset", "=", "0", "while", "offset", "<", "len", "(", "buf", ")", ":", "v", "=", "frombuffer", "(", "buffer", "(", "buf", ")", ",", "offset", "=", "offset", ",", "count", "=", "nelements", ",", "dtype", "=", "dtype", ")", "values", ".", "append", "(", "v", "[", "skip", ":", "]", ")", "offset", "+=", "recordsize", "if", "not", "len", "(", "values", ")", "==", "prod", "(", "shape", "[", "0", ":", "-", "1", "]", ")", ":", "raise", "ValueError", "(", "'Unexpected shape, got %g records but expected %g'", "%", "(", "len", "(", "values", ")", ",", "prod", "(", "shape", "[", "0", ":", "-", "1", "]", ")", ")", ")", "values", "=", "asarray", "(", "values", ",", "dtype", "=", "dtype", ")", "if", "shape", ":", "values", "=", "values", ".", "reshape", "(", "shape", ")", "return", "fromarray", "(", "values", ",", "index", "=", "index", ",", "labels", "=", "labels", ")" ]
Load series data from flat binary files. Parameters ---------- path : string URI or local filesystem path Directory to load from, can be a URI string with scheme (e.g. 'file://', 's3n://', or 'gs://'), or a single file, or a directory, or a directory with a single wildcard character. ext : str, optional, default = 'bin' Optional file extension specifier. conf : str, optional, default = 'conf.json' Name of conf file with type and size information. dtype : dtype or dtype specifier, default 'float64' Numerical type to use for data after converting from text. shape : tuple or list, optional, default = None Shape of data if known, will be inferred otherwise. skip : int, optional, default = 0 Number of items in each record to skip. index : array, optional, default = None Index for records, if not provided will use (0, 1, ...) labels : array, optional, default = None Labels for records. If provided, should have shape of shape[:-1]. engine : object, default = None Computational engine (e.g. a SparkContext for Spark) credentials : dict, default = None Credentials for remote storage (e.g. S3) in the form {access: ***, secret: ***}
[ "Load", "series", "data", "from", "flat", "binary", "files", "." ]
967ff8f3e7c2fabe1705743d95eb2746d4329786
https://github.com/thunder-project/thunder/blob/967ff8f3e7c2fabe1705743d95eb2746d4329786/thunder/series/readers.py#L254-L342
train
thunder-project/thunder
thunder/series/readers.py
_binaryconfig
def _binaryconfig(path, conf, dtype=None, shape=None, credentials=None): """ Collects parameters to use for binary series loading. """ import json from thunder.readers import get_file_reader, FileNotFoundError reader = get_file_reader(path)(credentials=credentials) try: buf = reader.read(path, filename=conf) params = json.loads(str(buf.decode('utf-8'))) except FileNotFoundError: params = {} if dtype: params['dtype'] = dtype if shape: params['shape'] = shape if 'dtype' not in params.keys(): raise ValueError('dtype not specified either in conf.json or as argument') if 'shape' not in params.keys(): raise ValueError('shape not specified either in conf.json or as argument') return params['shape'], params['dtype']
python
def _binaryconfig(path, conf, dtype=None, shape=None, credentials=None): """ Collects parameters to use for binary series loading. """ import json from thunder.readers import get_file_reader, FileNotFoundError reader = get_file_reader(path)(credentials=credentials) try: buf = reader.read(path, filename=conf) params = json.loads(str(buf.decode('utf-8'))) except FileNotFoundError: params = {} if dtype: params['dtype'] = dtype if shape: params['shape'] = shape if 'dtype' not in params.keys(): raise ValueError('dtype not specified either in conf.json or as argument') if 'shape' not in params.keys(): raise ValueError('shape not specified either in conf.json or as argument') return params['shape'], params['dtype']
[ "def", "_binaryconfig", "(", "path", ",", "conf", ",", "dtype", "=", "None", ",", "shape", "=", "None", ",", "credentials", "=", "None", ")", ":", "import", "json", "from", "thunder", ".", "readers", "import", "get_file_reader", ",", "FileNotFoundError", "reader", "=", "get_file_reader", "(", "path", ")", "(", "credentials", "=", "credentials", ")", "try", ":", "buf", "=", "reader", ".", "read", "(", "path", ",", "filename", "=", "conf", ")", "params", "=", "json", ".", "loads", "(", "str", "(", "buf", ".", "decode", "(", "'utf-8'", ")", ")", ")", "except", "FileNotFoundError", ":", "params", "=", "{", "}", "if", "dtype", ":", "params", "[", "'dtype'", "]", "=", "dtype", "if", "shape", ":", "params", "[", "'shape'", "]", "=", "shape", "if", "'dtype'", "not", "in", "params", ".", "keys", "(", ")", ":", "raise", "ValueError", "(", "'dtype not specified either in conf.json or as argument'", ")", "if", "'shape'", "not", "in", "params", ".", "keys", "(", ")", ":", "raise", "ValueError", "(", "'shape not specified either in conf.json or as argument'", ")", "return", "params", "[", "'shape'", "]", ",", "params", "[", "'dtype'", "]" ]
Collects parameters to use for binary series loading.
[ "Collects", "parameters", "to", "use", "for", "binary", "series", "loading", "." ]
967ff8f3e7c2fabe1705743d95eb2746d4329786
https://github.com/thunder-project/thunder/blob/967ff8f3e7c2fabe1705743d95eb2746d4329786/thunder/series/readers.py#L344-L370
train
thunder-project/thunder
thunder/series/readers.py
fromexample
def fromexample(name=None, engine=None): """ Load example series data. Data are downloaded from S3, so this method requires an internet connection. Parameters ---------- name : str Name of dataset, options include 'iris' | 'mouse' | 'fish'. If not specified will print options. engine : object, default = None Computational engine (e.g. a SparkContext for Spark) """ import os import tempfile import shutil from boto.s3.connection import S3Connection datasets = ['iris', 'mouse', 'fish'] if name is None: print('Availiable example series datasets') for d in datasets: print('- ' + d) return check_options(name, datasets) d = tempfile.mkdtemp() try: os.mkdir(os.path.join(d, 'series')) os.mkdir(os.path.join(d, 'series', name)) conn = S3Connection(anon=True) bucket = conn.get_bucket('thunder-sample-data') for key in bucket.list(os.path.join('series', name) + '/'): if not key.name.endswith('/'): key.get_contents_to_filename(os.path.join(d, key.name)) data = frombinary(os.path.join(d, 'series', name), engine=engine) if spark and isinstance(engine, spark): data.cache() data.compute() finally: shutil.rmtree(d) return data
python
def fromexample(name=None, engine=None): """ Load example series data. Data are downloaded from S3, so this method requires an internet connection. Parameters ---------- name : str Name of dataset, options include 'iris' | 'mouse' | 'fish'. If not specified will print options. engine : object, default = None Computational engine (e.g. a SparkContext for Spark) """ import os import tempfile import shutil from boto.s3.connection import S3Connection datasets = ['iris', 'mouse', 'fish'] if name is None: print('Availiable example series datasets') for d in datasets: print('- ' + d) return check_options(name, datasets) d = tempfile.mkdtemp() try: os.mkdir(os.path.join(d, 'series')) os.mkdir(os.path.join(d, 'series', name)) conn = S3Connection(anon=True) bucket = conn.get_bucket('thunder-sample-data') for key in bucket.list(os.path.join('series', name) + '/'): if not key.name.endswith('/'): key.get_contents_to_filename(os.path.join(d, key.name)) data = frombinary(os.path.join(d, 'series', name), engine=engine) if spark and isinstance(engine, spark): data.cache() data.compute() finally: shutil.rmtree(d) return data
[ "def", "fromexample", "(", "name", "=", "None", ",", "engine", "=", "None", ")", ":", "import", "os", "import", "tempfile", "import", "shutil", "from", "boto", ".", "s3", ".", "connection", "import", "S3Connection", "datasets", "=", "[", "'iris'", ",", "'mouse'", ",", "'fish'", "]", "if", "name", "is", "None", ":", "print", "(", "'Availiable example series datasets'", ")", "for", "d", "in", "datasets", ":", "print", "(", "'- '", "+", "d", ")", "return", "check_options", "(", "name", ",", "datasets", ")", "d", "=", "tempfile", ".", "mkdtemp", "(", ")", "try", ":", "os", ".", "mkdir", "(", "os", ".", "path", ".", "join", "(", "d", ",", "'series'", ")", ")", "os", ".", "mkdir", "(", "os", ".", "path", ".", "join", "(", "d", ",", "'series'", ",", "name", ")", ")", "conn", "=", "S3Connection", "(", "anon", "=", "True", ")", "bucket", "=", "conn", ".", "get_bucket", "(", "'thunder-sample-data'", ")", "for", "key", "in", "bucket", ".", "list", "(", "os", ".", "path", ".", "join", "(", "'series'", ",", "name", ")", "+", "'/'", ")", ":", "if", "not", "key", ".", "name", ".", "endswith", "(", "'/'", ")", ":", "key", ".", "get_contents_to_filename", "(", "os", ".", "path", ".", "join", "(", "d", ",", "key", ".", "name", ")", ")", "data", "=", "frombinary", "(", "os", ".", "path", ".", "join", "(", "d", ",", "'series'", ",", "name", ")", ",", "engine", "=", "engine", ")", "if", "spark", "and", "isinstance", "(", "engine", ",", "spark", ")", ":", "data", ".", "cache", "(", ")", "data", ".", "compute", "(", ")", "finally", ":", "shutil", ".", "rmtree", "(", "d", ")", "return", "data" ]
Load example series data. Data are downloaded from S3, so this method requires an internet connection. Parameters ---------- name : str Name of dataset, options include 'iris' | 'mouse' | 'fish'. If not specified will print options. engine : object, default = None Computational engine (e.g. a SparkContext for Spark)
[ "Load", "example", "series", "data", "." ]
967ff8f3e7c2fabe1705743d95eb2746d4329786
https://github.com/thunder-project/thunder/blob/967ff8f3e7c2fabe1705743d95eb2746d4329786/thunder/series/readers.py#L398-L447
train
thunder-project/thunder
thunder/series/writers.py
tobinary
def tobinary(series, path, prefix='series', overwrite=False, credentials=None): """ Writes out data to binary format. Parameters ---------- series : Series The data to write path : string path or URI to directory to be created Output files will be written underneath path. Directory will be created as a result of this call. prefix : str, optional, default = 'series' String prefix for files. overwrite : bool If true, path and all its contents will be deleted and recreated as partof this call. """ from six import BytesIO from thunder.utils import check_path from thunder.writers import get_parallel_writer if not overwrite: check_path(path, credentials=credentials) overwrite = True def tobuffer(kv): firstkey = None buf = BytesIO() for k, v in kv: if firstkey is None: firstkey = k buf.write(v.tostring()) val = buf.getvalue() buf.close() if firstkey is None: return iter([]) else: label = prefix + '-' + getlabel(firstkey) + ".bin" return iter([(label, val)]) writer = get_parallel_writer(path)(path, overwrite=overwrite, credentials=credentials) if series.mode == 'spark': binary = series.values.tordd().sortByKey().mapPartitions(tobuffer) binary.foreach(writer.write) else: basedims = [series.shape[d] for d in series.baseaxes] def split(k): ind = unravel_index(k, basedims) return ind, series.values[ind] buf = tobuffer([split(i) for i in range(prod(basedims))]) [writer.write(b) for b in buf] shape = series.shape dtype = series.dtype write_config(path, shape=shape, dtype=dtype, overwrite=overwrite, credentials=credentials)
python
def tobinary(series, path, prefix='series', overwrite=False, credentials=None): """ Writes out data to binary format. Parameters ---------- series : Series The data to write path : string path or URI to directory to be created Output files will be written underneath path. Directory will be created as a result of this call. prefix : str, optional, default = 'series' String prefix for files. overwrite : bool If true, path and all its contents will be deleted and recreated as partof this call. """ from six import BytesIO from thunder.utils import check_path from thunder.writers import get_parallel_writer if not overwrite: check_path(path, credentials=credentials) overwrite = True def tobuffer(kv): firstkey = None buf = BytesIO() for k, v in kv: if firstkey is None: firstkey = k buf.write(v.tostring()) val = buf.getvalue() buf.close() if firstkey is None: return iter([]) else: label = prefix + '-' + getlabel(firstkey) + ".bin" return iter([(label, val)]) writer = get_parallel_writer(path)(path, overwrite=overwrite, credentials=credentials) if series.mode == 'spark': binary = series.values.tordd().sortByKey().mapPartitions(tobuffer) binary.foreach(writer.write) else: basedims = [series.shape[d] for d in series.baseaxes] def split(k): ind = unravel_index(k, basedims) return ind, series.values[ind] buf = tobuffer([split(i) for i in range(prod(basedims))]) [writer.write(b) for b in buf] shape = series.shape dtype = series.dtype write_config(path, shape=shape, dtype=dtype, overwrite=overwrite, credentials=credentials)
[ "def", "tobinary", "(", "series", ",", "path", ",", "prefix", "=", "'series'", ",", "overwrite", "=", "False", ",", "credentials", "=", "None", ")", ":", "from", "six", "import", "BytesIO", "from", "thunder", ".", "utils", "import", "check_path", "from", "thunder", ".", "writers", "import", "get_parallel_writer", "if", "not", "overwrite", ":", "check_path", "(", "path", ",", "credentials", "=", "credentials", ")", "overwrite", "=", "True", "def", "tobuffer", "(", "kv", ")", ":", "firstkey", "=", "None", "buf", "=", "BytesIO", "(", ")", "for", "k", ",", "v", "in", "kv", ":", "if", "firstkey", "is", "None", ":", "firstkey", "=", "k", "buf", ".", "write", "(", "v", ".", "tostring", "(", ")", ")", "val", "=", "buf", ".", "getvalue", "(", ")", "buf", ".", "close", "(", ")", "if", "firstkey", "is", "None", ":", "return", "iter", "(", "[", "]", ")", "else", ":", "label", "=", "prefix", "+", "'-'", "+", "getlabel", "(", "firstkey", ")", "+", "\".bin\"", "return", "iter", "(", "[", "(", "label", ",", "val", ")", "]", ")", "writer", "=", "get_parallel_writer", "(", "path", ")", "(", "path", ",", "overwrite", "=", "overwrite", ",", "credentials", "=", "credentials", ")", "if", "series", ".", "mode", "==", "'spark'", ":", "binary", "=", "series", ".", "values", ".", "tordd", "(", ")", ".", "sortByKey", "(", ")", ".", "mapPartitions", "(", "tobuffer", ")", "binary", ".", "foreach", "(", "writer", ".", "write", ")", "else", ":", "basedims", "=", "[", "series", ".", "shape", "[", "d", "]", "for", "d", "in", "series", ".", "baseaxes", "]", "def", "split", "(", "k", ")", ":", "ind", "=", "unravel_index", "(", "k", ",", "basedims", ")", "return", "ind", ",", "series", ".", "values", "[", "ind", "]", "buf", "=", "tobuffer", "(", "[", "split", "(", "i", ")", "for", "i", "in", "range", "(", "prod", "(", "basedims", ")", ")", "]", ")", "[", "writer", ".", "write", "(", "b", ")", "for", "b", "in", "buf", "]", "shape", "=", "series", ".", "shape", "dtype", "=", "series", ".", "dtype", "write_config", "(", "path", ",", "shape", "=", "shape", ",", "dtype", "=", "dtype", ",", "overwrite", "=", "overwrite", ",", "credentials", "=", "credentials", ")" ]
Writes out data to binary format. Parameters ---------- series : Series The data to write path : string path or URI to directory to be created Output files will be written underneath path. Directory will be created as a result of this call. prefix : str, optional, default = 'series' String prefix for files. overwrite : bool If true, path and all its contents will be deleted and recreated as partof this call.
[ "Writes", "out", "data", "to", "binary", "format", "." ]
967ff8f3e7c2fabe1705743d95eb2746d4329786
https://github.com/thunder-project/thunder/blob/967ff8f3e7c2fabe1705743d95eb2746d4329786/thunder/series/writers.py#L3-L65
train
thunder-project/thunder
thunder/series/writers.py
write_config
def write_config(path, shape=None, dtype=None, name="conf.json", overwrite=True, credentials=None): """ Write a conf.json file with required information to load Series binary data. """ import json from thunder.writers import get_file_writer writer = get_file_writer(path) conf = {'shape': shape, 'dtype': str(dtype)} confwriter = writer(path, name, overwrite=overwrite, credentials=credentials) confwriter.write(json.dumps(conf, indent=2)) successwriter = writer(path, "SUCCESS", overwrite=overwrite, credentials=credentials) successwriter.write('')
python
def write_config(path, shape=None, dtype=None, name="conf.json", overwrite=True, credentials=None): """ Write a conf.json file with required information to load Series binary data. """ import json from thunder.writers import get_file_writer writer = get_file_writer(path) conf = {'shape': shape, 'dtype': str(dtype)} confwriter = writer(path, name, overwrite=overwrite, credentials=credentials) confwriter.write(json.dumps(conf, indent=2)) successwriter = writer(path, "SUCCESS", overwrite=overwrite, credentials=credentials) successwriter.write('')
[ "def", "write_config", "(", "path", ",", "shape", "=", "None", ",", "dtype", "=", "None", ",", "name", "=", "\"conf.json\"", ",", "overwrite", "=", "True", ",", "credentials", "=", "None", ")", ":", "import", "json", "from", "thunder", ".", "writers", "import", "get_file_writer", "writer", "=", "get_file_writer", "(", "path", ")", "conf", "=", "{", "'shape'", ":", "shape", ",", "'dtype'", ":", "str", "(", "dtype", ")", "}", "confwriter", "=", "writer", "(", "path", ",", "name", ",", "overwrite", "=", "overwrite", ",", "credentials", "=", "credentials", ")", "confwriter", ".", "write", "(", "json", ".", "dumps", "(", "conf", ",", "indent", "=", "2", ")", ")", "successwriter", "=", "writer", "(", "path", ",", "\"SUCCESS\"", ",", "overwrite", "=", "overwrite", ",", "credentials", "=", "credentials", ")", "successwriter", ".", "write", "(", "''", ")" ]
Write a conf.json file with required information to load Series binary data.
[ "Write", "a", "conf", ".", "json", "file", "with", "required", "information", "to", "load", "Series", "binary", "data", "." ]
967ff8f3e7c2fabe1705743d95eb2746d4329786
https://github.com/thunder-project/thunder/blob/967ff8f3e7c2fabe1705743d95eb2746d4329786/thunder/series/writers.py#L67-L81
train
thunder-project/thunder
thunder/images/images.py
Images.toblocks
def toblocks(self, chunk_size='auto', padding=None): """ Convert to blocks which represent subdivisions of the images data. Parameters ---------- chunk_size : str or tuple, size of image chunk used during conversion, default = 'auto' String interpreted as memory size (in kilobytes, e.g. '64'). The exception is the string 'auto'. In spark mode, 'auto' will choose a chunk size to make the resulting blocks ~100 MB in size. In local mode, 'auto' will create a single block. Tuple of ints interpreted as 'pixels per dimension'. padding : tuple or int Amount of padding along each dimensions for blocks. If an int, then the same amount of padding is used for all dimensions """ from thunder.blocks.blocks import Blocks from thunder.blocks.local import LocalChunks if self.mode == 'spark': if chunk_size is 'auto': chunk_size = str(max([int(1e5/self.shape[0]), 1])) chunks = self.values.chunk(chunk_size, padding=padding).keys_to_values((0,)) if self.mode == 'local': if chunk_size is 'auto': chunk_size = self.shape[1:] chunks = LocalChunks.chunk(self.values, chunk_size, padding=padding) return Blocks(chunks)
python
def toblocks(self, chunk_size='auto', padding=None): """ Convert to blocks which represent subdivisions of the images data. Parameters ---------- chunk_size : str or tuple, size of image chunk used during conversion, default = 'auto' String interpreted as memory size (in kilobytes, e.g. '64'). The exception is the string 'auto'. In spark mode, 'auto' will choose a chunk size to make the resulting blocks ~100 MB in size. In local mode, 'auto' will create a single block. Tuple of ints interpreted as 'pixels per dimension'. padding : tuple or int Amount of padding along each dimensions for blocks. If an int, then the same amount of padding is used for all dimensions """ from thunder.blocks.blocks import Blocks from thunder.blocks.local import LocalChunks if self.mode == 'spark': if chunk_size is 'auto': chunk_size = str(max([int(1e5/self.shape[0]), 1])) chunks = self.values.chunk(chunk_size, padding=padding).keys_to_values((0,)) if self.mode == 'local': if chunk_size is 'auto': chunk_size = self.shape[1:] chunks = LocalChunks.chunk(self.values, chunk_size, padding=padding) return Blocks(chunks)
[ "def", "toblocks", "(", "self", ",", "chunk_size", "=", "'auto'", ",", "padding", "=", "None", ")", ":", "from", "thunder", ".", "blocks", ".", "blocks", "import", "Blocks", "from", "thunder", ".", "blocks", ".", "local", "import", "LocalChunks", "if", "self", ".", "mode", "==", "'spark'", ":", "if", "chunk_size", "is", "'auto'", ":", "chunk_size", "=", "str", "(", "max", "(", "[", "int", "(", "1e5", "/", "self", ".", "shape", "[", "0", "]", ")", ",", "1", "]", ")", ")", "chunks", "=", "self", ".", "values", ".", "chunk", "(", "chunk_size", ",", "padding", "=", "padding", ")", ".", "keys_to_values", "(", "(", "0", ",", ")", ")", "if", "self", ".", "mode", "==", "'local'", ":", "if", "chunk_size", "is", "'auto'", ":", "chunk_size", "=", "self", ".", "shape", "[", "1", ":", "]", "chunks", "=", "LocalChunks", ".", "chunk", "(", "self", ".", "values", ",", "chunk_size", ",", "padding", "=", "padding", ")", "return", "Blocks", "(", "chunks", ")" ]
Convert to blocks which represent subdivisions of the images data. Parameters ---------- chunk_size : str or tuple, size of image chunk used during conversion, default = 'auto' String interpreted as memory size (in kilobytes, e.g. '64'). The exception is the string 'auto'. In spark mode, 'auto' will choose a chunk size to make the resulting blocks ~100 MB in size. In local mode, 'auto' will create a single block. Tuple of ints interpreted as 'pixels per dimension'. padding : tuple or int Amount of padding along each dimensions for blocks. If an int, then the same amount of padding is used for all dimensions
[ "Convert", "to", "blocks", "which", "represent", "subdivisions", "of", "the", "images", "data", "." ]
967ff8f3e7c2fabe1705743d95eb2746d4329786
https://github.com/thunder-project/thunder/blob/967ff8f3e7c2fabe1705743d95eb2746d4329786/thunder/images/images.py#L60-L89
train
thunder-project/thunder
thunder/images/images.py
Images.toseries
def toseries(self, chunk_size='auto'): """ Converts to series data. This method is equivalent to images.toblocks(size).toSeries(). Parameters ---------- chunk_size : str or tuple, size of image chunk used during conversion, default = 'auto' String interpreted as memory size (in kilobytes, e.g. '64'). The exception is the string 'auto', which will choose a chunk size to make the resulting blocks ~100 MB in size. Tuple of ints interpreted as 'pixels per dimension'. Only valid in spark mode. """ from thunder.series.series import Series if chunk_size is 'auto': chunk_size = str(max([int(1e5/self.shape[0]), 1])) n = len(self.shape) - 1 index = arange(self.shape[0]) if self.mode == 'spark': return Series(self.values.swap((0,), tuple(range(n)), size=chunk_size), index=index) if self.mode == 'local': return Series(self.values.transpose(tuple(range(1, n+1)) + (0,)), index=index)
python
def toseries(self, chunk_size='auto'): """ Converts to series data. This method is equivalent to images.toblocks(size).toSeries(). Parameters ---------- chunk_size : str or tuple, size of image chunk used during conversion, default = 'auto' String interpreted as memory size (in kilobytes, e.g. '64'). The exception is the string 'auto', which will choose a chunk size to make the resulting blocks ~100 MB in size. Tuple of ints interpreted as 'pixels per dimension'. Only valid in spark mode. """ from thunder.series.series import Series if chunk_size is 'auto': chunk_size = str(max([int(1e5/self.shape[0]), 1])) n = len(self.shape) - 1 index = arange(self.shape[0]) if self.mode == 'spark': return Series(self.values.swap((0,), tuple(range(n)), size=chunk_size), index=index) if self.mode == 'local': return Series(self.values.transpose(tuple(range(1, n+1)) + (0,)), index=index)
[ "def", "toseries", "(", "self", ",", "chunk_size", "=", "'auto'", ")", ":", "from", "thunder", ".", "series", ".", "series", "import", "Series", "if", "chunk_size", "is", "'auto'", ":", "chunk_size", "=", "str", "(", "max", "(", "[", "int", "(", "1e5", "/", "self", ".", "shape", "[", "0", "]", ")", ",", "1", "]", ")", ")", "n", "=", "len", "(", "self", ".", "shape", ")", "-", "1", "index", "=", "arange", "(", "self", ".", "shape", "[", "0", "]", ")", "if", "self", ".", "mode", "==", "'spark'", ":", "return", "Series", "(", "self", ".", "values", ".", "swap", "(", "(", "0", ",", ")", ",", "tuple", "(", "range", "(", "n", ")", ")", ",", "size", "=", "chunk_size", ")", ",", "index", "=", "index", ")", "if", "self", ".", "mode", "==", "'local'", ":", "return", "Series", "(", "self", ".", "values", ".", "transpose", "(", "tuple", "(", "range", "(", "1", ",", "n", "+", "1", ")", ")", "+", "(", "0", ",", ")", ")", ",", "index", "=", "index", ")" ]
Converts to series data. This method is equivalent to images.toblocks(size).toSeries(). Parameters ---------- chunk_size : str or tuple, size of image chunk used during conversion, default = 'auto' String interpreted as memory size (in kilobytes, e.g. '64'). The exception is the string 'auto', which will choose a chunk size to make the resulting blocks ~100 MB in size. Tuple of ints interpreted as 'pixels per dimension'. Only valid in spark mode.
[ "Converts", "to", "series", "data", "." ]
967ff8f3e7c2fabe1705743d95eb2746d4329786
https://github.com/thunder-project/thunder/blob/967ff8f3e7c2fabe1705743d95eb2746d4329786/thunder/images/images.py#L91-L117
train
thunder-project/thunder
thunder/images/images.py
Images.tospark
def tospark(self, engine=None): """ Convert to distributed spark mode. """ from thunder.images.readers import fromarray if self.mode == 'spark': logging.getLogger('thunder').warn('images already in spark mode') pass if engine is None: raise ValueError('Must provide a SparkContext') return fromarray(self.toarray(), engine=engine)
python
def tospark(self, engine=None): """ Convert to distributed spark mode. """ from thunder.images.readers import fromarray if self.mode == 'spark': logging.getLogger('thunder').warn('images already in spark mode') pass if engine is None: raise ValueError('Must provide a SparkContext') return fromarray(self.toarray(), engine=engine)
[ "def", "tospark", "(", "self", ",", "engine", "=", "None", ")", ":", "from", "thunder", ".", "images", ".", "readers", "import", "fromarray", "if", "self", ".", "mode", "==", "'spark'", ":", "logging", ".", "getLogger", "(", "'thunder'", ")", ".", "warn", "(", "'images already in spark mode'", ")", "pass", "if", "engine", "is", "None", ":", "raise", "ValueError", "(", "'Must provide a SparkContext'", ")", "return", "fromarray", "(", "self", ".", "toarray", "(", ")", ",", "engine", "=", "engine", ")" ]
Convert to distributed spark mode.
[ "Convert", "to", "distributed", "spark", "mode", "." ]
967ff8f3e7c2fabe1705743d95eb2746d4329786
https://github.com/thunder-project/thunder/blob/967ff8f3e7c2fabe1705743d95eb2746d4329786/thunder/images/images.py#L131-L144
train
thunder-project/thunder
thunder/images/images.py
Images.foreach
def foreach(self, func): """ Execute a function on each image. Functions can have side effects. There is no return value. """ if self.mode == 'spark': self.values.tordd().map(lambda kv: (kv[0][0], kv[1])).foreach(func) else: [func(kv) for kv in enumerate(self.values)]
python
def foreach(self, func): """ Execute a function on each image. Functions can have side effects. There is no return value. """ if self.mode == 'spark': self.values.tordd().map(lambda kv: (kv[0][0], kv[1])).foreach(func) else: [func(kv) for kv in enumerate(self.values)]
[ "def", "foreach", "(", "self", ",", "func", ")", ":", "if", "self", ".", "mode", "==", "'spark'", ":", "self", ".", "values", ".", "tordd", "(", ")", ".", "map", "(", "lambda", "kv", ":", "(", "kv", "[", "0", "]", "[", "0", "]", ",", "kv", "[", "1", "]", ")", ")", ".", "foreach", "(", "func", ")", "else", ":", "[", "func", "(", "kv", ")", "for", "kv", "in", "enumerate", "(", "self", ".", "values", ")", "]" ]
Execute a function on each image. Functions can have side effects. There is no return value.
[ "Execute", "a", "function", "on", "each", "image", "." ]
967ff8f3e7c2fabe1705743d95eb2746d4329786
https://github.com/thunder-project/thunder/blob/967ff8f3e7c2fabe1705743d95eb2746d4329786/thunder/images/images.py#L146-L155
train
thunder-project/thunder
thunder/images/images.py
Images.sample
def sample(self, nsamples=100, seed=None): """ Extract a random sample of images. Parameters ---------- nsamples : int, optional, default = 100 The number of data points to sample. seed : int, optional, default = None Random seed. """ if nsamples < 1: raise ValueError("Number of samples must be larger than 0, got '%g'" % nsamples) if seed is None: seed = random.randint(0, 2 ** 32) if self.mode == 'spark': result = asarray(self.values.tordd().values().takeSample(False, nsamples, seed)) else: inds = [int(k) for k in random.rand(nsamples) * self.shape[0]] result = asarray([self.values[i] for i in inds]) return self._constructor(result)
python
def sample(self, nsamples=100, seed=None): """ Extract a random sample of images. Parameters ---------- nsamples : int, optional, default = 100 The number of data points to sample. seed : int, optional, default = None Random seed. """ if nsamples < 1: raise ValueError("Number of samples must be larger than 0, got '%g'" % nsamples) if seed is None: seed = random.randint(0, 2 ** 32) if self.mode == 'spark': result = asarray(self.values.tordd().values().takeSample(False, nsamples, seed)) else: inds = [int(k) for k in random.rand(nsamples) * self.shape[0]] result = asarray([self.values[i] for i in inds]) return self._constructor(result)
[ "def", "sample", "(", "self", ",", "nsamples", "=", "100", ",", "seed", "=", "None", ")", ":", "if", "nsamples", "<", "1", ":", "raise", "ValueError", "(", "\"Number of samples must be larger than 0, got '%g'\"", "%", "nsamples", ")", "if", "seed", "is", "None", ":", "seed", "=", "random", ".", "randint", "(", "0", ",", "2", "**", "32", ")", "if", "self", ".", "mode", "==", "'spark'", ":", "result", "=", "asarray", "(", "self", ".", "values", ".", "tordd", "(", ")", ".", "values", "(", ")", ".", "takeSample", "(", "False", ",", "nsamples", ",", "seed", ")", ")", "else", ":", "inds", "=", "[", "int", "(", "k", ")", "for", "k", "in", "random", ".", "rand", "(", "nsamples", ")", "*", "self", ".", "shape", "[", "0", "]", "]", "result", "=", "asarray", "(", "[", "self", ".", "values", "[", "i", "]", "for", "i", "in", "inds", "]", ")", "return", "self", ".", "_constructor", "(", "result", ")" ]
Extract a random sample of images. Parameters ---------- nsamples : int, optional, default = 100 The number of data points to sample. seed : int, optional, default = None Random seed.
[ "Extract", "a", "random", "sample", "of", "images", "." ]
967ff8f3e7c2fabe1705743d95eb2746d4329786
https://github.com/thunder-project/thunder/blob/967ff8f3e7c2fabe1705743d95eb2746d4329786/thunder/images/images.py#L157-L182
train
thunder-project/thunder
thunder/images/images.py
Images.var
def var(self): """ Compute the variance across images. """ return self._constructor(self.values.var(axis=0, keepdims=True))
python
def var(self): """ Compute the variance across images. """ return self._constructor(self.values.var(axis=0, keepdims=True))
[ "def", "var", "(", "self", ")", ":", "return", "self", ".", "_constructor", "(", "self", ".", "values", ".", "var", "(", "axis", "=", "0", ",", "keepdims", "=", "True", ")", ")" ]
Compute the variance across images.
[ "Compute", "the", "variance", "across", "images", "." ]
967ff8f3e7c2fabe1705743d95eb2746d4329786
https://github.com/thunder-project/thunder/blob/967ff8f3e7c2fabe1705743d95eb2746d4329786/thunder/images/images.py#L201-L205
train
thunder-project/thunder
thunder/images/images.py
Images.std
def std(self): """ Compute the standard deviation across images. """ return self._constructor(self.values.std(axis=0, keepdims=True))
python
def std(self): """ Compute the standard deviation across images. """ return self._constructor(self.values.std(axis=0, keepdims=True))
[ "def", "std", "(", "self", ")", ":", "return", "self", ".", "_constructor", "(", "self", ".", "values", ".", "std", "(", "axis", "=", "0", ",", "keepdims", "=", "True", ")", ")" ]
Compute the standard deviation across images.
[ "Compute", "the", "standard", "deviation", "across", "images", "." ]
967ff8f3e7c2fabe1705743d95eb2746d4329786
https://github.com/thunder-project/thunder/blob/967ff8f3e7c2fabe1705743d95eb2746d4329786/thunder/images/images.py#L207-L211
train
thunder-project/thunder
thunder/images/images.py
Images.squeeze
def squeeze(self): """ Remove single-dimensional axes from images. """ axis = tuple(range(1, len(self.shape) - 1)) if prod(self.shape[1:]) == 1 else None return self.map(lambda x: x.squeeze(axis=axis))
python
def squeeze(self): """ Remove single-dimensional axes from images. """ axis = tuple(range(1, len(self.shape) - 1)) if prod(self.shape[1:]) == 1 else None return self.map(lambda x: x.squeeze(axis=axis))
[ "def", "squeeze", "(", "self", ")", ":", "axis", "=", "tuple", "(", "range", "(", "1", ",", "len", "(", "self", ".", "shape", ")", "-", "1", ")", ")", "if", "prod", "(", "self", ".", "shape", "[", "1", ":", "]", ")", "==", "1", "else", "None", "return", "self", ".", "map", "(", "lambda", "x", ":", "x", ".", "squeeze", "(", "axis", "=", "axis", ")", ")" ]
Remove single-dimensional axes from images.
[ "Remove", "single", "-", "dimensional", "axes", "from", "images", "." ]
967ff8f3e7c2fabe1705743d95eb2746d4329786
https://github.com/thunder-project/thunder/blob/967ff8f3e7c2fabe1705743d95eb2746d4329786/thunder/images/images.py#L231-L236
train
thunder-project/thunder
thunder/images/images.py
Images.max_projection
def max_projection(self, axis=2): """ Compute maximum projections of images along a dimension. Parameters ---------- axis : int, optional, default = 2 Which axis to compute projection along. """ if axis >= size(self.value_shape): raise Exception('Axis for projection (%s) exceeds ' 'image dimensions (%s-%s)' % (axis, 0, size(self.value_shape)-1)) new_value_shape = list(self.value_shape) del new_value_shape[axis] return self.map(lambda x: amax(x, axis), value_shape=new_value_shape)
python
def max_projection(self, axis=2): """ Compute maximum projections of images along a dimension. Parameters ---------- axis : int, optional, default = 2 Which axis to compute projection along. """ if axis >= size(self.value_shape): raise Exception('Axis for projection (%s) exceeds ' 'image dimensions (%s-%s)' % (axis, 0, size(self.value_shape)-1)) new_value_shape = list(self.value_shape) del new_value_shape[axis] return self.map(lambda x: amax(x, axis), value_shape=new_value_shape)
[ "def", "max_projection", "(", "self", ",", "axis", "=", "2", ")", ":", "if", "axis", ">=", "size", "(", "self", ".", "value_shape", ")", ":", "raise", "Exception", "(", "'Axis for projection (%s) exceeds '", "'image dimensions (%s-%s)'", "%", "(", "axis", ",", "0", ",", "size", "(", "self", ".", "value_shape", ")", "-", "1", ")", ")", "new_value_shape", "=", "list", "(", "self", ".", "value_shape", ")", "del", "new_value_shape", "[", "axis", "]", "return", "self", ".", "map", "(", "lambda", "x", ":", "amax", "(", "x", ",", "axis", ")", ",", "value_shape", "=", "new_value_shape", ")" ]
Compute maximum projections of images along a dimension. Parameters ---------- axis : int, optional, default = 2 Which axis to compute projection along.
[ "Compute", "maximum", "projections", "of", "images", "along", "a", "dimension", "." ]
967ff8f3e7c2fabe1705743d95eb2746d4329786
https://github.com/thunder-project/thunder/blob/967ff8f3e7c2fabe1705743d95eb2746d4329786/thunder/images/images.py#L258-L273
train
thunder-project/thunder
thunder/images/images.py
Images.max_min_projection
def max_min_projection(self, axis=2): """ Compute maximum-minimum projection along a dimension. This computes the sum of the maximum and minimum values. Parameters ---------- axis : int, optional, default = 2 Which axis to compute projection along. """ if axis >= size(self.value_shape): raise Exception('Axis for projection (%s) exceeds ' 'image dimensions (%s-%s)' % (axis, 0, size(self.value_shape)-1)) new_value_shape = list(self.value_shape) del new_value_shape[axis] return self.map(lambda x: amax(x, axis) + amin(x, axis), value_shape=new_value_shape)
python
def max_min_projection(self, axis=2): """ Compute maximum-minimum projection along a dimension. This computes the sum of the maximum and minimum values. Parameters ---------- axis : int, optional, default = 2 Which axis to compute projection along. """ if axis >= size(self.value_shape): raise Exception('Axis for projection (%s) exceeds ' 'image dimensions (%s-%s)' % (axis, 0, size(self.value_shape)-1)) new_value_shape = list(self.value_shape) del new_value_shape[axis] return self.map(lambda x: amax(x, axis) + amin(x, axis), value_shape=new_value_shape)
[ "def", "max_min_projection", "(", "self", ",", "axis", "=", "2", ")", ":", "if", "axis", ">=", "size", "(", "self", ".", "value_shape", ")", ":", "raise", "Exception", "(", "'Axis for projection (%s) exceeds '", "'image dimensions (%s-%s)'", "%", "(", "axis", ",", "0", ",", "size", "(", "self", ".", "value_shape", ")", "-", "1", ")", ")", "new_value_shape", "=", "list", "(", "self", ".", "value_shape", ")", "del", "new_value_shape", "[", "axis", "]", "return", "self", ".", "map", "(", "lambda", "x", ":", "amax", "(", "x", ",", "axis", ")", "+", "amin", "(", "x", ",", "axis", ")", ",", "value_shape", "=", "new_value_shape", ")" ]
Compute maximum-minimum projection along a dimension. This computes the sum of the maximum and minimum values. Parameters ---------- axis : int, optional, default = 2 Which axis to compute projection along.
[ "Compute", "maximum", "-", "minimum", "projection", "along", "a", "dimension", "." ]
967ff8f3e7c2fabe1705743d95eb2746d4329786
https://github.com/thunder-project/thunder/blob/967ff8f3e7c2fabe1705743d95eb2746d4329786/thunder/images/images.py#L275-L292
train
thunder-project/thunder
thunder/images/images.py
Images.subsample
def subsample(self, factor): """ Downsample images by an integer factor. Parameters ---------- factor : positive int or tuple of positive ints Stride to use in subsampling. If a single int is passed, each dimension of the image will be downsampled by this factor. If a tuple is passed, each dimension will be downsampled by the given factor. """ value_shape = self.value_shape ndims = len(value_shape) if not hasattr(factor, '__len__'): factor = [factor] * ndims factor = [int(sf) for sf in factor] if any((sf <= 0 for sf in factor)): raise ValueError('All sampling factors must be positive; got ' + str(factor)) def roundup(a, b): return (a + b - 1) // b slices = [slice(0, value_shape[i], factor[i]) for i in range(ndims)] new_value_shape = tuple([roundup(value_shape[i], factor[i]) for i in range(ndims)]) return self.map(lambda v: v[slices], value_shape=new_value_shape)
python
def subsample(self, factor): """ Downsample images by an integer factor. Parameters ---------- factor : positive int or tuple of positive ints Stride to use in subsampling. If a single int is passed, each dimension of the image will be downsampled by this factor. If a tuple is passed, each dimension will be downsampled by the given factor. """ value_shape = self.value_shape ndims = len(value_shape) if not hasattr(factor, '__len__'): factor = [factor] * ndims factor = [int(sf) for sf in factor] if any((sf <= 0 for sf in factor)): raise ValueError('All sampling factors must be positive; got ' + str(factor)) def roundup(a, b): return (a + b - 1) // b slices = [slice(0, value_shape[i], factor[i]) for i in range(ndims)] new_value_shape = tuple([roundup(value_shape[i], factor[i]) for i in range(ndims)]) return self.map(lambda v: v[slices], value_shape=new_value_shape)
[ "def", "subsample", "(", "self", ",", "factor", ")", ":", "value_shape", "=", "self", ".", "value_shape", "ndims", "=", "len", "(", "value_shape", ")", "if", "not", "hasattr", "(", "factor", ",", "'__len__'", ")", ":", "factor", "=", "[", "factor", "]", "*", "ndims", "factor", "=", "[", "int", "(", "sf", ")", "for", "sf", "in", "factor", "]", "if", "any", "(", "(", "sf", "<=", "0", "for", "sf", "in", "factor", ")", ")", ":", "raise", "ValueError", "(", "'All sampling factors must be positive; got '", "+", "str", "(", "factor", ")", ")", "def", "roundup", "(", "a", ",", "b", ")", ":", "return", "(", "a", "+", "b", "-", "1", ")", "//", "b", "slices", "=", "[", "slice", "(", "0", ",", "value_shape", "[", "i", "]", ",", "factor", "[", "i", "]", ")", "for", "i", "in", "range", "(", "ndims", ")", "]", "new_value_shape", "=", "tuple", "(", "[", "roundup", "(", "value_shape", "[", "i", "]", ",", "factor", "[", "i", "]", ")", "for", "i", "in", "range", "(", "ndims", ")", "]", ")", "return", "self", ".", "map", "(", "lambda", "v", ":", "v", "[", "slices", "]", ",", "value_shape", "=", "new_value_shape", ")" ]
Downsample images by an integer factor. Parameters ---------- factor : positive int or tuple of positive ints Stride to use in subsampling. If a single int is passed, each dimension of the image will be downsampled by this factor. If a tuple is passed, each dimension will be downsampled by the given factor.
[ "Downsample", "images", "by", "an", "integer", "factor", "." ]
967ff8f3e7c2fabe1705743d95eb2746d4329786
https://github.com/thunder-project/thunder/blob/967ff8f3e7c2fabe1705743d95eb2746d4329786/thunder/images/images.py#L294-L320
train
thunder-project/thunder
thunder/images/images.py
Images.gaussian_filter
def gaussian_filter(self, sigma=2, order=0): """ Spatially smooth images with a gaussian filter. Filtering will be applied to every image in the collection. Parameters ---------- sigma : scalar or sequence of scalars, default = 2 Size of the filter size as standard deviation in pixels. A sequence is interpreted as the standard deviation for each axis. A single scalar is applied equally to all axes. order : choice of 0 / 1 / 2 / 3 or sequence from same set, optional, default = 0 Order of the gaussian kernel, 0 is a gaussian, higher numbers correspond to derivatives of a gaussian. """ from scipy.ndimage.filters import gaussian_filter return self.map(lambda v: gaussian_filter(v, sigma, order), value_shape=self.value_shape)
python
def gaussian_filter(self, sigma=2, order=0): """ Spatially smooth images with a gaussian filter. Filtering will be applied to every image in the collection. Parameters ---------- sigma : scalar or sequence of scalars, default = 2 Size of the filter size as standard deviation in pixels. A sequence is interpreted as the standard deviation for each axis. A single scalar is applied equally to all axes. order : choice of 0 / 1 / 2 / 3 or sequence from same set, optional, default = 0 Order of the gaussian kernel, 0 is a gaussian, higher numbers correspond to derivatives of a gaussian. """ from scipy.ndimage.filters import gaussian_filter return self.map(lambda v: gaussian_filter(v, sigma, order), value_shape=self.value_shape)
[ "def", "gaussian_filter", "(", "self", ",", "sigma", "=", "2", ",", "order", "=", "0", ")", ":", "from", "scipy", ".", "ndimage", ".", "filters", "import", "gaussian_filter", "return", "self", ".", "map", "(", "lambda", "v", ":", "gaussian_filter", "(", "v", ",", "sigma", ",", "order", ")", ",", "value_shape", "=", "self", ".", "value_shape", ")" ]
Spatially smooth images with a gaussian filter. Filtering will be applied to every image in the collection. Parameters ---------- sigma : scalar or sequence of scalars, default = 2 Size of the filter size as standard deviation in pixels. A sequence is interpreted as the standard deviation for each axis. A single scalar is applied equally to all axes. order : choice of 0 / 1 / 2 / 3 or sequence from same set, optional, default = 0 Order of the gaussian kernel, 0 is a gaussian, higher numbers correspond to derivatives of a gaussian.
[ "Spatially", "smooth", "images", "with", "a", "gaussian", "filter", "." ]
967ff8f3e7c2fabe1705743d95eb2746d4329786
https://github.com/thunder-project/thunder/blob/967ff8f3e7c2fabe1705743d95eb2746d4329786/thunder/images/images.py#L322-L341
train
thunder-project/thunder
thunder/images/images.py
Images._image_filter
def _image_filter(self, filter=None, size=2): """ Generic function for maping a filtering operation over images. Parameters ---------- filter : string Which filter to use. size : int or tuple Size parameter for filter. """ from numpy import isscalar from scipy.ndimage.filters import median_filter, uniform_filter FILTERS = { 'median': median_filter, 'uniform': uniform_filter } func = FILTERS[filter] mode = self.mode value_shape = self.value_shape ndims = len(value_shape) if ndims == 3 and isscalar(size) == 1: size = [size, size, size] if ndims == 3 and size[2] == 0: def filter_(im): if mode == 'spark': im.setflags(write=True) else: im = im.copy() for z in arange(0, value_shape[2]): im[:, :, z] = func(im[:, :, z], size[0:2]) return im else: filter_ = lambda x: func(x, size) return self.map(lambda v: filter_(v), value_shape=self.value_shape)
python
def _image_filter(self, filter=None, size=2): """ Generic function for maping a filtering operation over images. Parameters ---------- filter : string Which filter to use. size : int or tuple Size parameter for filter. """ from numpy import isscalar from scipy.ndimage.filters import median_filter, uniform_filter FILTERS = { 'median': median_filter, 'uniform': uniform_filter } func = FILTERS[filter] mode = self.mode value_shape = self.value_shape ndims = len(value_shape) if ndims == 3 and isscalar(size) == 1: size = [size, size, size] if ndims == 3 and size[2] == 0: def filter_(im): if mode == 'spark': im.setflags(write=True) else: im = im.copy() for z in arange(0, value_shape[2]): im[:, :, z] = func(im[:, :, z], size[0:2]) return im else: filter_ = lambda x: func(x, size) return self.map(lambda v: filter_(v), value_shape=self.value_shape)
[ "def", "_image_filter", "(", "self", ",", "filter", "=", "None", ",", "size", "=", "2", ")", ":", "from", "numpy", "import", "isscalar", "from", "scipy", ".", "ndimage", ".", "filters", "import", "median_filter", ",", "uniform_filter", "FILTERS", "=", "{", "'median'", ":", "median_filter", ",", "'uniform'", ":", "uniform_filter", "}", "func", "=", "FILTERS", "[", "filter", "]", "mode", "=", "self", ".", "mode", "value_shape", "=", "self", ".", "value_shape", "ndims", "=", "len", "(", "value_shape", ")", "if", "ndims", "==", "3", "and", "isscalar", "(", "size", ")", "==", "1", ":", "size", "=", "[", "size", ",", "size", ",", "size", "]", "if", "ndims", "==", "3", "and", "size", "[", "2", "]", "==", "0", ":", "def", "filter_", "(", "im", ")", ":", "if", "mode", "==", "'spark'", ":", "im", ".", "setflags", "(", "write", "=", "True", ")", "else", ":", "im", "=", "im", ".", "copy", "(", ")", "for", "z", "in", "arange", "(", "0", ",", "value_shape", "[", "2", "]", ")", ":", "im", "[", ":", ",", ":", ",", "z", "]", "=", "func", "(", "im", "[", ":", ",", ":", ",", "z", "]", ",", "size", "[", "0", ":", "2", "]", ")", "return", "im", "else", ":", "filter_", "=", "lambda", "x", ":", "func", "(", "x", ",", "size", ")", "return", "self", ".", "map", "(", "lambda", "v", ":", "filter_", "(", "v", ")", ",", "value_shape", "=", "self", ".", "value_shape", ")" ]
Generic function for maping a filtering operation over images. Parameters ---------- filter : string Which filter to use. size : int or tuple Size parameter for filter.
[ "Generic", "function", "for", "maping", "a", "filtering", "operation", "over", "images", "." ]
967ff8f3e7c2fabe1705743d95eb2746d4329786
https://github.com/thunder-project/thunder/blob/967ff8f3e7c2fabe1705743d95eb2746d4329786/thunder/images/images.py#L373-L414
train
thunder-project/thunder
thunder/images/images.py
Images.localcorr
def localcorr(self, size=2): """ Correlate every pixel in an image sequence to the average of its local neighborhood. This algorithm computes, for every pixel, the correlation coefficient between the sequence of values for that pixel, and the average of all pixels in a local neighborhood. It does this by blurring the image(s) with a uniform filter, and then correlates the original sequence with the blurred sequence. Parameters ---------- size : int or tuple, optional, default = 2 Size of the filter in pixels. If a scalar, will use the same filter size along each dimension. """ from thunder.images.readers import fromarray, fromrdd from numpy import corrcoef, concatenate nimages = self.shape[0] # spatially average the original image set over the specified neighborhood blurred = self.uniform_filter(size) # union the averaged images with the originals to create an # Images object containing 2N images (where N is the original number of images), # ordered such that the first N images are the averaged ones. if self.mode == 'spark': combined = self.values.concatenate(blurred.values) combined_images = fromrdd(combined.tordd()) else: combined = concatenate((self.values, blurred.values), axis=0) combined_images = fromarray(combined) # correlate the first N (averaged) records with the last N (original) records series = combined_images.toseries() corr = series.map(lambda x: corrcoef(x[:nimages], x[nimages:])[0, 1]) return corr.toarray()
python
def localcorr(self, size=2): """ Correlate every pixel in an image sequence to the average of its local neighborhood. This algorithm computes, for every pixel, the correlation coefficient between the sequence of values for that pixel, and the average of all pixels in a local neighborhood. It does this by blurring the image(s) with a uniform filter, and then correlates the original sequence with the blurred sequence. Parameters ---------- size : int or tuple, optional, default = 2 Size of the filter in pixels. If a scalar, will use the same filter size along each dimension. """ from thunder.images.readers import fromarray, fromrdd from numpy import corrcoef, concatenate nimages = self.shape[0] # spatially average the original image set over the specified neighborhood blurred = self.uniform_filter(size) # union the averaged images with the originals to create an # Images object containing 2N images (where N is the original number of images), # ordered such that the first N images are the averaged ones. if self.mode == 'spark': combined = self.values.concatenate(blurred.values) combined_images = fromrdd(combined.tordd()) else: combined = concatenate((self.values, blurred.values), axis=0) combined_images = fromarray(combined) # correlate the first N (averaged) records with the last N (original) records series = combined_images.toseries() corr = series.map(lambda x: corrcoef(x[:nimages], x[nimages:])[0, 1]) return corr.toarray()
[ "def", "localcorr", "(", "self", ",", "size", "=", "2", ")", ":", "from", "thunder", ".", "images", ".", "readers", "import", "fromarray", ",", "fromrdd", "from", "numpy", "import", "corrcoef", ",", "concatenate", "nimages", "=", "self", ".", "shape", "[", "0", "]", "# spatially average the original image set over the specified neighborhood", "blurred", "=", "self", ".", "uniform_filter", "(", "size", ")", "# union the averaged images with the originals to create an", "# Images object containing 2N images (where N is the original number of images),", "# ordered such that the first N images are the averaged ones.", "if", "self", ".", "mode", "==", "'spark'", ":", "combined", "=", "self", ".", "values", ".", "concatenate", "(", "blurred", ".", "values", ")", "combined_images", "=", "fromrdd", "(", "combined", ".", "tordd", "(", ")", ")", "else", ":", "combined", "=", "concatenate", "(", "(", "self", ".", "values", ",", "blurred", ".", "values", ")", ",", "axis", "=", "0", ")", "combined_images", "=", "fromarray", "(", "combined", ")", "# correlate the first N (averaged) records with the last N (original) records", "series", "=", "combined_images", ".", "toseries", "(", ")", "corr", "=", "series", ".", "map", "(", "lambda", "x", ":", "corrcoef", "(", "x", "[", ":", "nimages", "]", ",", "x", "[", "nimages", ":", "]", ")", "[", "0", ",", "1", "]", ")", "return", "corr", ".", "toarray", "(", ")" ]
Correlate every pixel in an image sequence to the average of its local neighborhood. This algorithm computes, for every pixel, the correlation coefficient between the sequence of values for that pixel, and the average of all pixels in a local neighborhood. It does this by blurring the image(s) with a uniform filter, and then correlates the original sequence with the blurred sequence. Parameters ---------- size : int or tuple, optional, default = 2 Size of the filter in pixels. If a scalar, will use the same filter size along each dimension.
[ "Correlate", "every", "pixel", "in", "an", "image", "sequence", "to", "the", "average", "of", "its", "local", "neighborhood", "." ]
967ff8f3e7c2fabe1705743d95eb2746d4329786
https://github.com/thunder-project/thunder/blob/967ff8f3e7c2fabe1705743d95eb2746d4329786/thunder/images/images.py#L416-L454
train
thunder-project/thunder
thunder/images/images.py
Images.subtract
def subtract(self, val): """ Subtract a constant value or an image from all images. Parameters ---------- val : int, float, or ndarray Value to subtract. """ if isinstance(val, ndarray): if val.shape != self.value_shape: raise Exception('Cannot subtract image with dimensions %s ' 'from images with dimension %s' % (str(val.shape), str(self.value_shape))) return self.map(lambda x: x - val, value_shape=self.value_shape)
python
def subtract(self, val): """ Subtract a constant value or an image from all images. Parameters ---------- val : int, float, or ndarray Value to subtract. """ if isinstance(val, ndarray): if val.shape != self.value_shape: raise Exception('Cannot subtract image with dimensions %s ' 'from images with dimension %s' % (str(val.shape), str(self.value_shape))) return self.map(lambda x: x - val, value_shape=self.value_shape)
[ "def", "subtract", "(", "self", ",", "val", ")", ":", "if", "isinstance", "(", "val", ",", "ndarray", ")", ":", "if", "val", ".", "shape", "!=", "self", ".", "value_shape", ":", "raise", "Exception", "(", "'Cannot subtract image with dimensions %s '", "'from images with dimension %s'", "%", "(", "str", "(", "val", ".", "shape", ")", ",", "str", "(", "self", ".", "value_shape", ")", ")", ")", "return", "self", ".", "map", "(", "lambda", "x", ":", "x", "-", "val", ",", "value_shape", "=", "self", ".", "value_shape", ")" ]
Subtract a constant value or an image from all images. Parameters ---------- val : int, float, or ndarray Value to subtract.
[ "Subtract", "a", "constant", "value", "or", "an", "image", "from", "all", "images", "." ]
967ff8f3e7c2fabe1705743d95eb2746d4329786
https://github.com/thunder-project/thunder/blob/967ff8f3e7c2fabe1705743d95eb2746d4329786/thunder/images/images.py#L456-L470
train
thunder-project/thunder
thunder/images/images.py
Images.topng
def topng(self, path, prefix='image', overwrite=False): """ Write 2d images as PNG files. Files will be written into a newly-created directory. Three-dimensional data will be treated as RGB channels. Parameters ---------- path : string Path to output directory, must be one level below an existing directory. prefix : string String to prepend to filenames. overwrite : bool If true, the directory given by path will first be deleted if it exists. """ from thunder.images.writers import topng # TODO add back colormap and vmin/vmax topng(self, path, prefix=prefix, overwrite=overwrite)
python
def topng(self, path, prefix='image', overwrite=False): """ Write 2d images as PNG files. Files will be written into a newly-created directory. Three-dimensional data will be treated as RGB channels. Parameters ---------- path : string Path to output directory, must be one level below an existing directory. prefix : string String to prepend to filenames. overwrite : bool If true, the directory given by path will first be deleted if it exists. """ from thunder.images.writers import topng # TODO add back colormap and vmin/vmax topng(self, path, prefix=prefix, overwrite=overwrite)
[ "def", "topng", "(", "self", ",", "path", ",", "prefix", "=", "'image'", ",", "overwrite", "=", "False", ")", ":", "from", "thunder", ".", "images", ".", "writers", "import", "topng", "# TODO add back colormap and vmin/vmax", "topng", "(", "self", ",", "path", ",", "prefix", "=", "prefix", ",", "overwrite", "=", "overwrite", ")" ]
Write 2d images as PNG files. Files will be written into a newly-created directory. Three-dimensional data will be treated as RGB channels. Parameters ---------- path : string Path to output directory, must be one level below an existing directory. prefix : string String to prepend to filenames. overwrite : bool If true, the directory given by path will first be deleted if it exists.
[ "Write", "2d", "images", "as", "PNG", "files", "." ]
967ff8f3e7c2fabe1705743d95eb2746d4329786
https://github.com/thunder-project/thunder/blob/967ff8f3e7c2fabe1705743d95eb2746d4329786/thunder/images/images.py#L472-L492
train
thunder-project/thunder
thunder/images/images.py
Images.map_as_series
def map_as_series(self, func, value_size=None, dtype=None, chunk_size='auto'): """ Efficiently apply a function to images as series data. For images data that represent image sequences, this method applies a function to each pixel's series, and then returns to the images format, using an efficient intermediate block representation. Parameters ---------- func : function Function to apply to each time series. Should take one-dimensional ndarray and return the transformed one-dimensional ndarray. value_size : int, optional, default = None Size of the one-dimensional ndarray resulting from application of func. If not supplied, will be automatically inferred for an extra computational cost. dtype : str, optional, default = None dtype of one-dimensional ndarray resulting from application of func. If not supplied it will be automatically inferred for an extra computational cost. chunk_size : str or tuple, size of image chunk used during conversion, default = 'auto' String interpreted as memory size (in kilobytes, e.g. '64'). The exception is the string 'auto'. In spark mode, 'auto' will choose a chunk size to make the resulting blocks ~100 MB in size. In local mode, 'auto' will create a single block. Tuple of ints interpreted as 'pixels per dimension'. """ blocks = self.toblocks(chunk_size=chunk_size) if value_size is not None: dims = list(blocks.blockshape) dims[0] = value_size else: dims = None def f(block): return apply_along_axis(func, 0, block) return blocks.map(f, value_shape=dims, dtype=dtype).toimages()
python
def map_as_series(self, func, value_size=None, dtype=None, chunk_size='auto'): """ Efficiently apply a function to images as series data. For images data that represent image sequences, this method applies a function to each pixel's series, and then returns to the images format, using an efficient intermediate block representation. Parameters ---------- func : function Function to apply to each time series. Should take one-dimensional ndarray and return the transformed one-dimensional ndarray. value_size : int, optional, default = None Size of the one-dimensional ndarray resulting from application of func. If not supplied, will be automatically inferred for an extra computational cost. dtype : str, optional, default = None dtype of one-dimensional ndarray resulting from application of func. If not supplied it will be automatically inferred for an extra computational cost. chunk_size : str or tuple, size of image chunk used during conversion, default = 'auto' String interpreted as memory size (in kilobytes, e.g. '64'). The exception is the string 'auto'. In spark mode, 'auto' will choose a chunk size to make the resulting blocks ~100 MB in size. In local mode, 'auto' will create a single block. Tuple of ints interpreted as 'pixels per dimension'. """ blocks = self.toblocks(chunk_size=chunk_size) if value_size is not None: dims = list(blocks.blockshape) dims[0] = value_size else: dims = None def f(block): return apply_along_axis(func, 0, block) return blocks.map(f, value_shape=dims, dtype=dtype).toimages()
[ "def", "map_as_series", "(", "self", ",", "func", ",", "value_size", "=", "None", ",", "dtype", "=", "None", ",", "chunk_size", "=", "'auto'", ")", ":", "blocks", "=", "self", ".", "toblocks", "(", "chunk_size", "=", "chunk_size", ")", "if", "value_size", "is", "not", "None", ":", "dims", "=", "list", "(", "blocks", ".", "blockshape", ")", "dims", "[", "0", "]", "=", "value_size", "else", ":", "dims", "=", "None", "def", "f", "(", "block", ")", ":", "return", "apply_along_axis", "(", "func", ",", "0", ",", "block", ")", "return", "blocks", ".", "map", "(", "f", ",", "value_shape", "=", "dims", ",", "dtype", "=", "dtype", ")", ".", "toimages", "(", ")" ]
Efficiently apply a function to images as series data. For images data that represent image sequences, this method applies a function to each pixel's series, and then returns to the images format, using an efficient intermediate block representation. Parameters ---------- func : function Function to apply to each time series. Should take one-dimensional ndarray and return the transformed one-dimensional ndarray. value_size : int, optional, default = None Size of the one-dimensional ndarray resulting from application of func. If not supplied, will be automatically inferred for an extra computational cost. dtype : str, optional, default = None dtype of one-dimensional ndarray resulting from application of func. If not supplied it will be automatically inferred for an extra computational cost. chunk_size : str or tuple, size of image chunk used during conversion, default = 'auto' String interpreted as memory size (in kilobytes, e.g. '64'). The exception is the string 'auto'. In spark mode, 'auto' will choose a chunk size to make the resulting blocks ~100 MB in size. In local mode, 'auto' will create a single block. Tuple of ints interpreted as 'pixels per dimension'.
[ "Efficiently", "apply", "a", "function", "to", "images", "as", "series", "data", "." ]
967ff8f3e7c2fabe1705743d95eb2746d4329786
https://github.com/thunder-project/thunder/blob/967ff8f3e7c2fabe1705743d95eb2746d4329786/thunder/images/images.py#L536-L577
train
thunder-project/thunder
thunder/blocks/blocks.py
Blocks.count
def count(self): """ Explicit count of the number of items. For lazy or distributed data, will force a computation. """ if self.mode == 'spark': return self.tordd().count() if self.mode == 'local': return prod(self.values.values.shape)
python
def count(self): """ Explicit count of the number of items. For lazy or distributed data, will force a computation. """ if self.mode == 'spark': return self.tordd().count() if self.mode == 'local': return prod(self.values.values.shape)
[ "def", "count", "(", "self", ")", ":", "if", "self", ".", "mode", "==", "'spark'", ":", "return", "self", ".", "tordd", "(", ")", ".", "count", "(", ")", "if", "self", ".", "mode", "==", "'local'", ":", "return", "prod", "(", "self", ".", "values", ".", "values", ".", "shape", ")" ]
Explicit count of the number of items. For lazy or distributed data, will force a computation.
[ "Explicit", "count", "of", "the", "number", "of", "items", "." ]
967ff8f3e7c2fabe1705743d95eb2746d4329786
https://github.com/thunder-project/thunder/blob/967ff8f3e7c2fabe1705743d95eb2746d4329786/thunder/blocks/blocks.py#L30-L40
train
thunder-project/thunder
thunder/blocks/blocks.py
Blocks.collect_blocks
def collect_blocks(self): """ Collect the blocks in a list """ if self.mode == 'spark': return self.values.tordd().sortByKey().values().collect() if self.mode == 'local': return self.values.values.flatten().tolist()
python
def collect_blocks(self): """ Collect the blocks in a list """ if self.mode == 'spark': return self.values.tordd().sortByKey().values().collect() if self.mode == 'local': return self.values.values.flatten().tolist()
[ "def", "collect_blocks", "(", "self", ")", ":", "if", "self", ".", "mode", "==", "'spark'", ":", "return", "self", ".", "values", ".", "tordd", "(", ")", ".", "sortByKey", "(", ")", ".", "values", "(", ")", ".", "collect", "(", ")", "if", "self", ".", "mode", "==", "'local'", ":", "return", "self", ".", "values", ".", "values", ".", "flatten", "(", ")", ".", "tolist", "(", ")" ]
Collect the blocks in a list
[ "Collect", "the", "blocks", "in", "a", "list" ]
967ff8f3e7c2fabe1705743d95eb2746d4329786
https://github.com/thunder-project/thunder/blob/967ff8f3e7c2fabe1705743d95eb2746d4329786/thunder/blocks/blocks.py#L42-L50
train
thunder-project/thunder
thunder/blocks/blocks.py
Blocks.map
def map(self, func, value_shape=None, dtype=None): """ Apply an array -> array function to each block """ mapped = self.values.map(func, value_shape=value_shape, dtype=dtype) return self._constructor(mapped).__finalize__(self, noprop=('dtype',))
python
def map(self, func, value_shape=None, dtype=None): """ Apply an array -> array function to each block """ mapped = self.values.map(func, value_shape=value_shape, dtype=dtype) return self._constructor(mapped).__finalize__(self, noprop=('dtype',))
[ "def", "map", "(", "self", ",", "func", ",", "value_shape", "=", "None", ",", "dtype", "=", "None", ")", ":", "mapped", "=", "self", ".", "values", ".", "map", "(", "func", ",", "value_shape", "=", "value_shape", ",", "dtype", "=", "dtype", ")", "return", "self", ".", "_constructor", "(", "mapped", ")", ".", "__finalize__", "(", "self", ",", "noprop", "=", "(", "'dtype'", ",", ")", ")" ]
Apply an array -> array function to each block
[ "Apply", "an", "array", "-", ">", "array", "function", "to", "each", "block" ]
967ff8f3e7c2fabe1705743d95eb2746d4329786
https://github.com/thunder-project/thunder/blob/967ff8f3e7c2fabe1705743d95eb2746d4329786/thunder/blocks/blocks.py#L52-L57
train
thunder-project/thunder
thunder/blocks/blocks.py
Blocks.toimages
def toimages(self): """ Convert blocks to images. """ from thunder.images.images import Images if self.mode == 'spark': values = self.values.values_to_keys((0,)).unchunk() if self.mode == 'local': values = self.values.unchunk() return Images(values)
python
def toimages(self): """ Convert blocks to images. """ from thunder.images.images import Images if self.mode == 'spark': values = self.values.values_to_keys((0,)).unchunk() if self.mode == 'local': values = self.values.unchunk() return Images(values)
[ "def", "toimages", "(", "self", ")", ":", "from", "thunder", ".", "images", ".", "images", "import", "Images", "if", "self", ".", "mode", "==", "'spark'", ":", "values", "=", "self", ".", "values", ".", "values_to_keys", "(", "(", "0", ",", ")", ")", ".", "unchunk", "(", ")", "if", "self", ".", "mode", "==", "'local'", ":", "values", "=", "self", ".", "values", ".", "unchunk", "(", ")", "return", "Images", "(", "values", ")" ]
Convert blocks to images.
[ "Convert", "blocks", "to", "images", "." ]
967ff8f3e7c2fabe1705743d95eb2746d4329786
https://github.com/thunder-project/thunder/blob/967ff8f3e7c2fabe1705743d95eb2746d4329786/thunder/blocks/blocks.py#L75-L87
train
thunder-project/thunder
thunder/blocks/blocks.py
Blocks.toseries
def toseries(self): """ Converts blocks to series. """ from thunder.series.series import Series if self.mode == 'spark': values = self.values.values_to_keys(tuple(range(1, len(self.shape)))).unchunk() if self.mode == 'local': values = self.values.unchunk() values = rollaxis(values, 0, values.ndim) return Series(values)
python
def toseries(self): """ Converts blocks to series. """ from thunder.series.series import Series if self.mode == 'spark': values = self.values.values_to_keys(tuple(range(1, len(self.shape)))).unchunk() if self.mode == 'local': values = self.values.unchunk() values = rollaxis(values, 0, values.ndim) return Series(values)
[ "def", "toseries", "(", "self", ")", ":", "from", "thunder", ".", "series", ".", "series", "import", "Series", "if", "self", ".", "mode", "==", "'spark'", ":", "values", "=", "self", ".", "values", ".", "values_to_keys", "(", "tuple", "(", "range", "(", "1", ",", "len", "(", "self", ".", "shape", ")", ")", ")", ")", ".", "unchunk", "(", ")", "if", "self", ".", "mode", "==", "'local'", ":", "values", "=", "self", ".", "values", ".", "unchunk", "(", ")", "values", "=", "rollaxis", "(", "values", ",", "0", ",", "values", ".", "ndim", ")", "return", "Series", "(", "values", ")" ]
Converts blocks to series.
[ "Converts", "blocks", "to", "series", "." ]
967ff8f3e7c2fabe1705743d95eb2746d4329786
https://github.com/thunder-project/thunder/blob/967ff8f3e7c2fabe1705743d95eb2746d4329786/thunder/blocks/blocks.py#L89-L102
train
thunder-project/thunder
thunder/blocks/blocks.py
Blocks.toarray
def toarray(self): """ Convert blocks to local ndarray """ if self.mode == 'spark': return self.values.unchunk().toarray() if self.mode == 'local': return self.values.unchunk()
python
def toarray(self): """ Convert blocks to local ndarray """ if self.mode == 'spark': return self.values.unchunk().toarray() if self.mode == 'local': return self.values.unchunk()
[ "def", "toarray", "(", "self", ")", ":", "if", "self", ".", "mode", "==", "'spark'", ":", "return", "self", ".", "values", ".", "unchunk", "(", ")", ".", "toarray", "(", ")", "if", "self", ".", "mode", "==", "'local'", ":", "return", "self", ".", "values", ".", "unchunk", "(", ")" ]
Convert blocks to local ndarray
[ "Convert", "blocks", "to", "local", "ndarray" ]
967ff8f3e7c2fabe1705743d95eb2746d4329786
https://github.com/thunder-project/thunder/blob/967ff8f3e7c2fabe1705743d95eb2746d4329786/thunder/blocks/blocks.py#L104-L112
train
thunder-project/thunder
thunder/series/series.py
Series.flatten
def flatten(self): """ Reshape all dimensions but the last into a single dimension """ size = prod(self.shape[:-1]) return self.reshape(size, self.shape[-1])
python
def flatten(self): """ Reshape all dimensions but the last into a single dimension """ size = prod(self.shape[:-1]) return self.reshape(size, self.shape[-1])
[ "def", "flatten", "(", "self", ")", ":", "size", "=", "prod", "(", "self", ".", "shape", "[", ":", "-", "1", "]", ")", "return", "self", ".", "reshape", "(", "size", ",", "self", ".", "shape", "[", "-", "1", "]", ")" ]
Reshape all dimensions but the last into a single dimension
[ "Reshape", "all", "dimensions", "but", "the", "last", "into", "a", "single", "dimension" ]
967ff8f3e7c2fabe1705743d95eb2746d4329786
https://github.com/thunder-project/thunder/blob/967ff8f3e7c2fabe1705743d95eb2746d4329786/thunder/series/series.py#L81-L86
train
thunder-project/thunder
thunder/series/series.py
Series.tospark
def tospark(self, engine=None): """ Convert to spark mode. """ from thunder.series.readers import fromarray if self.mode == 'spark': logging.getLogger('thunder').warn('images already in local mode') pass if engine is None: raise ValueError('Must provide SparkContext') return fromarray(self.toarray(), index=self.index, labels=self.labels, engine=engine)
python
def tospark(self, engine=None): """ Convert to spark mode. """ from thunder.series.readers import fromarray if self.mode == 'spark': logging.getLogger('thunder').warn('images already in local mode') pass if engine is None: raise ValueError('Must provide SparkContext') return fromarray(self.toarray(), index=self.index, labels=self.labels, engine=engine)
[ "def", "tospark", "(", "self", ",", "engine", "=", "None", ")", ":", "from", "thunder", ".", "series", ".", "readers", "import", "fromarray", "if", "self", ".", "mode", "==", "'spark'", ":", "logging", ".", "getLogger", "(", "'thunder'", ")", ".", "warn", "(", "'images already in local mode'", ")", "pass", "if", "engine", "is", "None", ":", "raise", "ValueError", "(", "'Must provide SparkContext'", ")", "return", "fromarray", "(", "self", ".", "toarray", "(", ")", ",", "index", "=", "self", ".", "index", ",", "labels", "=", "self", ".", "labels", ",", "engine", "=", "engine", ")" ]
Convert to spark mode.
[ "Convert", "to", "spark", "mode", "." ]
967ff8f3e7c2fabe1705743d95eb2746d4329786
https://github.com/thunder-project/thunder/blob/967ff8f3e7c2fabe1705743d95eb2746d4329786/thunder/series/series.py#L122-L135
train
thunder-project/thunder
thunder/series/series.py
Series.sample
def sample(self, n=100, seed=None): """ Extract random sample of records. Parameters ---------- n : int, optional, default = 100 The number of data points to sample. seed : int, optional, default = None Random seed. """ if n < 1: raise ValueError("Number of samples must be larger than 0, got '%g'" % n) if seed is None: seed = random.randint(0, 2 ** 32) if self.mode == 'spark': result = asarray(self.values.tordd().values().takeSample(False, n, seed)) else: basedims = [self.shape[d] for d in self.baseaxes] inds = [unravel_index(int(k), basedims) for k in random.rand(n) * prod(basedims)] result = asarray([self.values[tupleize(i) + (slice(None, None),)] for i in inds]) return self._constructor(result, index=self.index)
python
def sample(self, n=100, seed=None): """ Extract random sample of records. Parameters ---------- n : int, optional, default = 100 The number of data points to sample. seed : int, optional, default = None Random seed. """ if n < 1: raise ValueError("Number of samples must be larger than 0, got '%g'" % n) if seed is None: seed = random.randint(0, 2 ** 32) if self.mode == 'spark': result = asarray(self.values.tordd().values().takeSample(False, n, seed)) else: basedims = [self.shape[d] for d in self.baseaxes] inds = [unravel_index(int(k), basedims) for k in random.rand(n) * prod(basedims)] result = asarray([self.values[tupleize(i) + (slice(None, None),)] for i in inds]) return self._constructor(result, index=self.index)
[ "def", "sample", "(", "self", ",", "n", "=", "100", ",", "seed", "=", "None", ")", ":", "if", "n", "<", "1", ":", "raise", "ValueError", "(", "\"Number of samples must be larger than 0, got '%g'\"", "%", "n", ")", "if", "seed", "is", "None", ":", "seed", "=", "random", ".", "randint", "(", "0", ",", "2", "**", "32", ")", "if", "self", ".", "mode", "==", "'spark'", ":", "result", "=", "asarray", "(", "self", ".", "values", ".", "tordd", "(", ")", ".", "values", "(", ")", ".", "takeSample", "(", "False", ",", "n", ",", "seed", ")", ")", "else", ":", "basedims", "=", "[", "self", ".", "shape", "[", "d", "]", "for", "d", "in", "self", ".", "baseaxes", "]", "inds", "=", "[", "unravel_index", "(", "int", "(", "k", ")", ",", "basedims", ")", "for", "k", "in", "random", ".", "rand", "(", "n", ")", "*", "prod", "(", "basedims", ")", "]", "result", "=", "asarray", "(", "[", "self", ".", "values", "[", "tupleize", "(", "i", ")", "+", "(", "slice", "(", "None", ",", "None", ")", ",", ")", "]", "for", "i", "in", "inds", "]", ")", "return", "self", ".", "_constructor", "(", "result", ",", "index", "=", "self", ".", "index", ")" ]
Extract random sample of records. Parameters ---------- n : int, optional, default = 100 The number of data points to sample. seed : int, optional, default = None Random seed.
[ "Extract", "random", "sample", "of", "records", "." ]
967ff8f3e7c2fabe1705743d95eb2746d4329786
https://github.com/thunder-project/thunder/blob/967ff8f3e7c2fabe1705743d95eb2746d4329786/thunder/series/series.py#L137-L163
train
thunder-project/thunder
thunder/series/series.py
Series.map
def map(self, func, index=None, value_shape=None, dtype=None, with_keys=False): """ Map an array -> array function over each record. Parameters ---------- func : function A function of a single record. index : array-like, optional, default = None If known, the index to be used following function evaluation. value_shape : int, optional, default=None Known shape of values resulting from operation. Only valid in spark mode. dtype : numpy.dtype, optional, default = None If known, the type of the data following function evaluation. with_keys : boolean, optional, default = False If true, function should be of both tuple indices and series values. """ # if new index is given, can infer missing value_shape if value_shape is None and index is not None: value_shape = len(index) if isinstance(value_shape, int): values_shape = (value_shape, ) new = super(Series, self).map(func, value_shape=value_shape, dtype=dtype, with_keys=with_keys) if index is not None: new.index = index # if series shape did not change and no index was supplied, propagate original index else: if len(new.index) == len(self.index): new.index = self.index return new
python
def map(self, func, index=None, value_shape=None, dtype=None, with_keys=False): """ Map an array -> array function over each record. Parameters ---------- func : function A function of a single record. index : array-like, optional, default = None If known, the index to be used following function evaluation. value_shape : int, optional, default=None Known shape of values resulting from operation. Only valid in spark mode. dtype : numpy.dtype, optional, default = None If known, the type of the data following function evaluation. with_keys : boolean, optional, default = False If true, function should be of both tuple indices and series values. """ # if new index is given, can infer missing value_shape if value_shape is None and index is not None: value_shape = len(index) if isinstance(value_shape, int): values_shape = (value_shape, ) new = super(Series, self).map(func, value_shape=value_shape, dtype=dtype, with_keys=with_keys) if index is not None: new.index = index # if series shape did not change and no index was supplied, propagate original index else: if len(new.index) == len(self.index): new.index = self.index return new
[ "def", "map", "(", "self", ",", "func", ",", "index", "=", "None", ",", "value_shape", "=", "None", ",", "dtype", "=", "None", ",", "with_keys", "=", "False", ")", ":", "# if new index is given, can infer missing value_shape", "if", "value_shape", "is", "None", "and", "index", "is", "not", "None", ":", "value_shape", "=", "len", "(", "index", ")", "if", "isinstance", "(", "value_shape", ",", "int", ")", ":", "values_shape", "=", "(", "value_shape", ",", ")", "new", "=", "super", "(", "Series", ",", "self", ")", ".", "map", "(", "func", ",", "value_shape", "=", "value_shape", ",", "dtype", "=", "dtype", ",", "with_keys", "=", "with_keys", ")", "if", "index", "is", "not", "None", ":", "new", ".", "index", "=", "index", "# if series shape did not change and no index was supplied, propagate original index", "else", ":", "if", "len", "(", "new", ".", "index", ")", "==", "len", "(", "self", ".", "index", ")", ":", "new", ".", "index", "=", "self", ".", "index", "return", "new" ]
Map an array -> array function over each record. Parameters ---------- func : function A function of a single record. index : array-like, optional, default = None If known, the index to be used following function evaluation. value_shape : int, optional, default=None Known shape of values resulting from operation. Only valid in spark mode. dtype : numpy.dtype, optional, default = None If known, the type of the data following function evaluation. with_keys : boolean, optional, default = False If true, function should be of both tuple indices and series values.
[ "Map", "an", "array", "-", ">", "array", "function", "over", "each", "record", "." ]
967ff8f3e7c2fabe1705743d95eb2746d4329786
https://github.com/thunder-project/thunder/blob/967ff8f3e7c2fabe1705743d95eb2746d4329786/thunder/series/series.py#L165-L202
train
thunder-project/thunder
thunder/series/series.py
Series.mean
def mean(self): """ Compute the mean across records """ return self._constructor(self.values.mean(axis=self.baseaxes, keepdims=True))
python
def mean(self): """ Compute the mean across records """ return self._constructor(self.values.mean(axis=self.baseaxes, keepdims=True))
[ "def", "mean", "(", "self", ")", ":", "return", "self", ".", "_constructor", "(", "self", ".", "values", ".", "mean", "(", "axis", "=", "self", ".", "baseaxes", ",", "keepdims", "=", "True", ")", ")" ]
Compute the mean across records
[ "Compute", "the", "mean", "across", "records" ]
967ff8f3e7c2fabe1705743d95eb2746d4329786
https://github.com/thunder-project/thunder/blob/967ff8f3e7c2fabe1705743d95eb2746d4329786/thunder/series/series.py#L215-L219
train
thunder-project/thunder
thunder/series/series.py
Series.sum
def sum(self): """ Compute the sum across records. """ return self._constructor(self.values.sum(axis=self.baseaxes, keepdims=True))
python
def sum(self): """ Compute the sum across records. """ return self._constructor(self.values.sum(axis=self.baseaxes, keepdims=True))
[ "def", "sum", "(", "self", ")", ":", "return", "self", ".", "_constructor", "(", "self", ".", "values", ".", "sum", "(", "axis", "=", "self", ".", "baseaxes", ",", "keepdims", "=", "True", ")", ")" ]
Compute the sum across records.
[ "Compute", "the", "sum", "across", "records", "." ]
967ff8f3e7c2fabe1705743d95eb2746d4329786
https://github.com/thunder-project/thunder/blob/967ff8f3e7c2fabe1705743d95eb2746d4329786/thunder/series/series.py#L233-L237
train
thunder-project/thunder
thunder/series/series.py
Series.max
def max(self): """ Compute the max across records. """ return self._constructor(self.values.max(axis=self.baseaxes, keepdims=True))
python
def max(self): """ Compute the max across records. """ return self._constructor(self.values.max(axis=self.baseaxes, keepdims=True))
[ "def", "max", "(", "self", ")", ":", "return", "self", ".", "_constructor", "(", "self", ".", "values", ".", "max", "(", "axis", "=", "self", ".", "baseaxes", ",", "keepdims", "=", "True", ")", ")" ]
Compute the max across records.
[ "Compute", "the", "max", "across", "records", "." ]
967ff8f3e7c2fabe1705743d95eb2746d4329786
https://github.com/thunder-project/thunder/blob/967ff8f3e7c2fabe1705743d95eb2746d4329786/thunder/series/series.py#L239-L243
train
thunder-project/thunder
thunder/series/series.py
Series.min
def min(self): """ Compute the min across records. """ return self._constructor(self.values.min(axis=self.baseaxes, keepdims=True))
python
def min(self): """ Compute the min across records. """ return self._constructor(self.values.min(axis=self.baseaxes, keepdims=True))
[ "def", "min", "(", "self", ")", ":", "return", "self", ".", "_constructor", "(", "self", ".", "values", ".", "min", "(", "axis", "=", "self", ".", "baseaxes", ",", "keepdims", "=", "True", ")", ")" ]
Compute the min across records.
[ "Compute", "the", "min", "across", "records", "." ]
967ff8f3e7c2fabe1705743d95eb2746d4329786
https://github.com/thunder-project/thunder/blob/967ff8f3e7c2fabe1705743d95eb2746d4329786/thunder/series/series.py#L245-L249
train
thunder-project/thunder
thunder/series/series.py
Series.reshape
def reshape(self, *shape): """ Reshape the Series object Cannot change the last dimension. Parameters ---------- shape: one or more ints New shape """ if prod(self.shape) != prod(shape): raise ValueError("Reshaping must leave the number of elements unchanged") if self.shape[-1] != shape[-1]: raise ValueError("Reshaping cannot change the size of the constituent series (last dimension)") if self.labels is not None: newlabels = self.labels.reshape(*shape[:-1]) else: newlabels = None return self._constructor(self.values.reshape(shape), labels=newlabels).__finalize__(self, noprop=('labels',))
python
def reshape(self, *shape): """ Reshape the Series object Cannot change the last dimension. Parameters ---------- shape: one or more ints New shape """ if prod(self.shape) != prod(shape): raise ValueError("Reshaping must leave the number of elements unchanged") if self.shape[-1] != shape[-1]: raise ValueError("Reshaping cannot change the size of the constituent series (last dimension)") if self.labels is not None: newlabels = self.labels.reshape(*shape[:-1]) else: newlabels = None return self._constructor(self.values.reshape(shape), labels=newlabels).__finalize__(self, noprop=('labels',))
[ "def", "reshape", "(", "self", ",", "*", "shape", ")", ":", "if", "prod", "(", "self", ".", "shape", ")", "!=", "prod", "(", "shape", ")", ":", "raise", "ValueError", "(", "\"Reshaping must leave the number of elements unchanged\"", ")", "if", "self", ".", "shape", "[", "-", "1", "]", "!=", "shape", "[", "-", "1", "]", ":", "raise", "ValueError", "(", "\"Reshaping cannot change the size of the constituent series (last dimension)\"", ")", "if", "self", ".", "labels", "is", "not", "None", ":", "newlabels", "=", "self", ".", "labels", ".", "reshape", "(", "*", "shape", "[", ":", "-", "1", "]", ")", "else", ":", "newlabels", "=", "None", "return", "self", ".", "_constructor", "(", "self", ".", "values", ".", "reshape", "(", "shape", ")", ",", "labels", "=", "newlabels", ")", ".", "__finalize__", "(", "self", ",", "noprop", "=", "(", "'labels'", ",", ")", ")" ]
Reshape the Series object Cannot change the last dimension. Parameters ---------- shape: one or more ints New shape
[ "Reshape", "the", "Series", "object" ]
967ff8f3e7c2fabe1705743d95eb2746d4329786
https://github.com/thunder-project/thunder/blob/967ff8f3e7c2fabe1705743d95eb2746d4329786/thunder/series/series.py#L251-L273
train
thunder-project/thunder
thunder/series/series.py
Series.between
def between(self, left, right): """ Select subset of values within the given index range. Inclusive on the left; exclusive on the right. Parameters ---------- left : int Left-most index in the desired range. right: int Right-most index in the desired range. """ crit = lambda x: left <= x < right return self.select(crit)
python
def between(self, left, right): """ Select subset of values within the given index range. Inclusive on the left; exclusive on the right. Parameters ---------- left : int Left-most index in the desired range. right: int Right-most index in the desired range. """ crit = lambda x: left <= x < right return self.select(crit)
[ "def", "between", "(", "self", ",", "left", ",", "right", ")", ":", "crit", "=", "lambda", "x", ":", "left", "<=", "x", "<", "right", "return", "self", ".", "select", "(", "crit", ")" ]
Select subset of values within the given index range. Inclusive on the left; exclusive on the right. Parameters ---------- left : int Left-most index in the desired range. right: int Right-most index in the desired range.
[ "Select", "subset", "of", "values", "within", "the", "given", "index", "range", "." ]
967ff8f3e7c2fabe1705743d95eb2746d4329786
https://github.com/thunder-project/thunder/blob/967ff8f3e7c2fabe1705743d95eb2746d4329786/thunder/series/series.py#L275-L290
train
thunder-project/thunder
thunder/series/series.py
Series.select
def select(self, crit): """ Select subset of values that match a given index criterion. Parameters ---------- crit : function, list, str, int Criterion function to map to indices, specific index value, or list of indices. """ import types # handle lists, strings, and ints if not isinstance(crit, types.FunctionType): # set("foo") -> {"f", "o"}; wrap in list to prevent: if isinstance(crit, string_types): critlist = set([crit]) else: try: critlist = set(crit) except TypeError: # typically means crit is not an iterable type; for instance, crit is an int critlist = set([crit]) crit = lambda x: x in critlist # if only one index, return it directly or throw an error index = self.index if size(index) == 1: if crit(index[0]): return self else: raise Exception('No indices found matching criterion') # determine new index and check the result newindex = [i for i in index if crit(i)] if len(newindex) == 0: raise Exception('No indices found matching criterion') if array(newindex == index).all(): return self # use fast logical indexing to get the new values subinds = where([crit(i) for i in index]) new = self.map(lambda x: x[subinds], index=newindex) # if singleton, need to check whether it's an array or a scalar/int # if array, recompute a new set of indices if len(newindex) == 1: new = new.map(lambda x: x[0], index=newindex) val = new.first() if size(val) == 1: newindex = [newindex[0]] else: newindex = arange(0, size(val)) new._index = newindex return new
python
def select(self, crit): """ Select subset of values that match a given index criterion. Parameters ---------- crit : function, list, str, int Criterion function to map to indices, specific index value, or list of indices. """ import types # handle lists, strings, and ints if not isinstance(crit, types.FunctionType): # set("foo") -> {"f", "o"}; wrap in list to prevent: if isinstance(crit, string_types): critlist = set([crit]) else: try: critlist = set(crit) except TypeError: # typically means crit is not an iterable type; for instance, crit is an int critlist = set([crit]) crit = lambda x: x in critlist # if only one index, return it directly or throw an error index = self.index if size(index) == 1: if crit(index[0]): return self else: raise Exception('No indices found matching criterion') # determine new index and check the result newindex = [i for i in index if crit(i)] if len(newindex) == 0: raise Exception('No indices found matching criterion') if array(newindex == index).all(): return self # use fast logical indexing to get the new values subinds = where([crit(i) for i in index]) new = self.map(lambda x: x[subinds], index=newindex) # if singleton, need to check whether it's an array or a scalar/int # if array, recompute a new set of indices if len(newindex) == 1: new = new.map(lambda x: x[0], index=newindex) val = new.first() if size(val) == 1: newindex = [newindex[0]] else: newindex = arange(0, size(val)) new._index = newindex return new
[ "def", "select", "(", "self", ",", "crit", ")", ":", "import", "types", "# handle lists, strings, and ints", "if", "not", "isinstance", "(", "crit", ",", "types", ".", "FunctionType", ")", ":", "# set(\"foo\") -> {\"f\", \"o\"}; wrap in list to prevent:", "if", "isinstance", "(", "crit", ",", "string_types", ")", ":", "critlist", "=", "set", "(", "[", "crit", "]", ")", "else", ":", "try", ":", "critlist", "=", "set", "(", "crit", ")", "except", "TypeError", ":", "# typically means crit is not an iterable type; for instance, crit is an int", "critlist", "=", "set", "(", "[", "crit", "]", ")", "crit", "=", "lambda", "x", ":", "x", "in", "critlist", "# if only one index, return it directly or throw an error", "index", "=", "self", ".", "index", "if", "size", "(", "index", ")", "==", "1", ":", "if", "crit", "(", "index", "[", "0", "]", ")", ":", "return", "self", "else", ":", "raise", "Exception", "(", "'No indices found matching criterion'", ")", "# determine new index and check the result", "newindex", "=", "[", "i", "for", "i", "in", "index", "if", "crit", "(", "i", ")", "]", "if", "len", "(", "newindex", ")", "==", "0", ":", "raise", "Exception", "(", "'No indices found matching criterion'", ")", "if", "array", "(", "newindex", "==", "index", ")", ".", "all", "(", ")", ":", "return", "self", "# use fast logical indexing to get the new values", "subinds", "=", "where", "(", "[", "crit", "(", "i", ")", "for", "i", "in", "index", "]", ")", "new", "=", "self", ".", "map", "(", "lambda", "x", ":", "x", "[", "subinds", "]", ",", "index", "=", "newindex", ")", "# if singleton, need to check whether it's an array or a scalar/int", "# if array, recompute a new set of indices", "if", "len", "(", "newindex", ")", "==", "1", ":", "new", "=", "new", ".", "map", "(", "lambda", "x", ":", "x", "[", "0", "]", ",", "index", "=", "newindex", ")", "val", "=", "new", ".", "first", "(", ")", "if", "size", "(", "val", ")", "==", "1", ":", "newindex", "=", "[", "newindex", "[", "0", "]", "]", "else", ":", "newindex", "=", "arange", "(", "0", ",", "size", "(", "val", ")", ")", "new", ".", "_index", "=", "newindex", "return", "new" ]
Select subset of values that match a given index criterion. Parameters ---------- crit : function, list, str, int Criterion function to map to indices, specific index value, or list of indices.
[ "Select", "subset", "of", "values", "that", "match", "a", "given", "index", "criterion", "." ]
967ff8f3e7c2fabe1705743d95eb2746d4329786
https://github.com/thunder-project/thunder/blob/967ff8f3e7c2fabe1705743d95eb2746d4329786/thunder/series/series.py#L292-L348
train
thunder-project/thunder
thunder/series/series.py
Series.center
def center(self, axis=1): """ Subtract the mean either within or across records. Parameters ---------- axis : int, optional, default = 1 Which axis to center along, within (1) or across (0) records. """ if axis == 1: return self.map(lambda x: x - mean(x)) elif axis == 0: meanval = self.mean().toarray() return self.map(lambda x: x - meanval) else: raise Exception('Axis must be 0 or 1')
python
def center(self, axis=1): """ Subtract the mean either within or across records. Parameters ---------- axis : int, optional, default = 1 Which axis to center along, within (1) or across (0) records. """ if axis == 1: return self.map(lambda x: x - mean(x)) elif axis == 0: meanval = self.mean().toarray() return self.map(lambda x: x - meanval) else: raise Exception('Axis must be 0 or 1')
[ "def", "center", "(", "self", ",", "axis", "=", "1", ")", ":", "if", "axis", "==", "1", ":", "return", "self", ".", "map", "(", "lambda", "x", ":", "x", "-", "mean", "(", "x", ")", ")", "elif", "axis", "==", "0", ":", "meanval", "=", "self", ".", "mean", "(", ")", ".", "toarray", "(", ")", "return", "self", ".", "map", "(", "lambda", "x", ":", "x", "-", "meanval", ")", "else", ":", "raise", "Exception", "(", "'Axis must be 0 or 1'", ")" ]
Subtract the mean either within or across records. Parameters ---------- axis : int, optional, default = 1 Which axis to center along, within (1) or across (0) records.
[ "Subtract", "the", "mean", "either", "within", "or", "across", "records", "." ]
967ff8f3e7c2fabe1705743d95eb2746d4329786
https://github.com/thunder-project/thunder/blob/967ff8f3e7c2fabe1705743d95eb2746d4329786/thunder/series/series.py#L350-L365
train
thunder-project/thunder
thunder/series/series.py
Series.standardize
def standardize(self, axis=1): """ Divide by standard deviation either within or across records. Parameters ---------- axis : int, optional, default = 0 Which axis to standardize along, within (1) or across (0) records """ if axis == 1: return self.map(lambda x: x / std(x)) elif axis == 0: stdval = self.std().toarray() return self.map(lambda x: x / stdval) else: raise Exception('Axis must be 0 or 1')
python
def standardize(self, axis=1): """ Divide by standard deviation either within or across records. Parameters ---------- axis : int, optional, default = 0 Which axis to standardize along, within (1) or across (0) records """ if axis == 1: return self.map(lambda x: x / std(x)) elif axis == 0: stdval = self.std().toarray() return self.map(lambda x: x / stdval) else: raise Exception('Axis must be 0 or 1')
[ "def", "standardize", "(", "self", ",", "axis", "=", "1", ")", ":", "if", "axis", "==", "1", ":", "return", "self", ".", "map", "(", "lambda", "x", ":", "x", "/", "std", "(", "x", ")", ")", "elif", "axis", "==", "0", ":", "stdval", "=", "self", ".", "std", "(", ")", ".", "toarray", "(", ")", "return", "self", ".", "map", "(", "lambda", "x", ":", "x", "/", "stdval", ")", "else", ":", "raise", "Exception", "(", "'Axis must be 0 or 1'", ")" ]
Divide by standard deviation either within or across records. Parameters ---------- axis : int, optional, default = 0 Which axis to standardize along, within (1) or across (0) records
[ "Divide", "by", "standard", "deviation", "either", "within", "or", "across", "records", "." ]
967ff8f3e7c2fabe1705743d95eb2746d4329786
https://github.com/thunder-project/thunder/blob/967ff8f3e7c2fabe1705743d95eb2746d4329786/thunder/series/series.py#L367-L382
train
thunder-project/thunder
thunder/series/series.py
Series.zscore
def zscore(self, axis=1): """ Subtract the mean and divide by standard deviation within or across records. Parameters ---------- axis : int, optional, default = 0 Which axis to zscore along, within (1) or across (0) records """ if axis == 1: return self.map(lambda x: (x - mean(x)) / std(x)) elif axis == 0: meanval = self.mean().toarray() stdval = self.std().toarray() return self.map(lambda x: (x - meanval) / stdval) else: raise Exception('Axis must be 0 or 1')
python
def zscore(self, axis=1): """ Subtract the mean and divide by standard deviation within or across records. Parameters ---------- axis : int, optional, default = 0 Which axis to zscore along, within (1) or across (0) records """ if axis == 1: return self.map(lambda x: (x - mean(x)) / std(x)) elif axis == 0: meanval = self.mean().toarray() stdval = self.std().toarray() return self.map(lambda x: (x - meanval) / stdval) else: raise Exception('Axis must be 0 or 1')
[ "def", "zscore", "(", "self", ",", "axis", "=", "1", ")", ":", "if", "axis", "==", "1", ":", "return", "self", ".", "map", "(", "lambda", "x", ":", "(", "x", "-", "mean", "(", "x", ")", ")", "/", "std", "(", "x", ")", ")", "elif", "axis", "==", "0", ":", "meanval", "=", "self", ".", "mean", "(", ")", ".", "toarray", "(", ")", "stdval", "=", "self", ".", "std", "(", ")", ".", "toarray", "(", ")", "return", "self", ".", "map", "(", "lambda", "x", ":", "(", "x", "-", "meanval", ")", "/", "stdval", ")", "else", ":", "raise", "Exception", "(", "'Axis must be 0 or 1'", ")" ]
Subtract the mean and divide by standard deviation within or across records. Parameters ---------- axis : int, optional, default = 0 Which axis to zscore along, within (1) or across (0) records
[ "Subtract", "the", "mean", "and", "divide", "by", "standard", "deviation", "within", "or", "across", "records", "." ]
967ff8f3e7c2fabe1705743d95eb2746d4329786
https://github.com/thunder-project/thunder/blob/967ff8f3e7c2fabe1705743d95eb2746d4329786/thunder/series/series.py#L384-L400
train
thunder-project/thunder
thunder/series/series.py
Series.squelch
def squelch(self, threshold): """ Set all records that do not exceed the given threhsold to 0. Parameters ---------- threshold : scalar Level below which to set records to zero """ func = lambda x: zeros(x.shape) if max(x) < threshold else x return self.map(func)
python
def squelch(self, threshold): """ Set all records that do not exceed the given threhsold to 0. Parameters ---------- threshold : scalar Level below which to set records to zero """ func = lambda x: zeros(x.shape) if max(x) < threshold else x return self.map(func)
[ "def", "squelch", "(", "self", ",", "threshold", ")", ":", "func", "=", "lambda", "x", ":", "zeros", "(", "x", ".", "shape", ")", "if", "max", "(", "x", ")", "<", "threshold", "else", "x", "return", "self", ".", "map", "(", "func", ")" ]
Set all records that do not exceed the given threhsold to 0. Parameters ---------- threshold : scalar Level below which to set records to zero
[ "Set", "all", "records", "that", "do", "not", "exceed", "the", "given", "threhsold", "to", "0", "." ]
967ff8f3e7c2fabe1705743d95eb2746d4329786
https://github.com/thunder-project/thunder/blob/967ff8f3e7c2fabe1705743d95eb2746d4329786/thunder/series/series.py#L402-L412
train
thunder-project/thunder
thunder/series/series.py
Series.correlate
def correlate(self, signal): """ Correlate records against one or many one-dimensional arrays. Parameters ---------- signal : array-like One or more signals to correlate against. """ s = asarray(signal) if s.ndim == 1: if size(s) != self.shape[-1]: raise ValueError("Length of signal '%g' does not match record length '%g'" % (size(s), self.shape[-1])) return self.map(lambda x: corrcoef(x, s)[0, 1], index=[1]) elif s.ndim == 2: if s.shape[1] != self.shape[-1]: raise ValueError("Length of signal '%g' does not match record length '%g'" % (s.shape[1], self.shape[-1])) newindex = arange(0, s.shape[0]) return self.map(lambda x: array([corrcoef(x, y)[0, 1] for y in s]), index=newindex) else: raise Exception('Signal to correlate with must have 1 or 2 dimensions')
python
def correlate(self, signal): """ Correlate records against one or many one-dimensional arrays. Parameters ---------- signal : array-like One or more signals to correlate against. """ s = asarray(signal) if s.ndim == 1: if size(s) != self.shape[-1]: raise ValueError("Length of signal '%g' does not match record length '%g'" % (size(s), self.shape[-1])) return self.map(lambda x: corrcoef(x, s)[0, 1], index=[1]) elif s.ndim == 2: if s.shape[1] != self.shape[-1]: raise ValueError("Length of signal '%g' does not match record length '%g'" % (s.shape[1], self.shape[-1])) newindex = arange(0, s.shape[0]) return self.map(lambda x: array([corrcoef(x, y)[0, 1] for y in s]), index=newindex) else: raise Exception('Signal to correlate with must have 1 or 2 dimensions')
[ "def", "correlate", "(", "self", ",", "signal", ")", ":", "s", "=", "asarray", "(", "signal", ")", "if", "s", ".", "ndim", "==", "1", ":", "if", "size", "(", "s", ")", "!=", "self", ".", "shape", "[", "-", "1", "]", ":", "raise", "ValueError", "(", "\"Length of signal '%g' does not match record length '%g'\"", "%", "(", "size", "(", "s", ")", ",", "self", ".", "shape", "[", "-", "1", "]", ")", ")", "return", "self", ".", "map", "(", "lambda", "x", ":", "corrcoef", "(", "x", ",", "s", ")", "[", "0", ",", "1", "]", ",", "index", "=", "[", "1", "]", ")", "elif", "s", ".", "ndim", "==", "2", ":", "if", "s", ".", "shape", "[", "1", "]", "!=", "self", ".", "shape", "[", "-", "1", "]", ":", "raise", "ValueError", "(", "\"Length of signal '%g' does not match record length '%g'\"", "%", "(", "s", ".", "shape", "[", "1", "]", ",", "self", ".", "shape", "[", "-", "1", "]", ")", ")", "newindex", "=", "arange", "(", "0", ",", "s", ".", "shape", "[", "0", "]", ")", "return", "self", ".", "map", "(", "lambda", "x", ":", "array", "(", "[", "corrcoef", "(", "x", ",", "y", ")", "[", "0", ",", "1", "]", "for", "y", "in", "s", "]", ")", ",", "index", "=", "newindex", ")", "else", ":", "raise", "Exception", "(", "'Signal to correlate with must have 1 or 2 dimensions'", ")" ]
Correlate records against one or many one-dimensional arrays. Parameters ---------- signal : array-like One or more signals to correlate against.
[ "Correlate", "records", "against", "one", "or", "many", "one", "-", "dimensional", "arrays", "." ]
967ff8f3e7c2fabe1705743d95eb2746d4329786
https://github.com/thunder-project/thunder/blob/967ff8f3e7c2fabe1705743d95eb2746d4329786/thunder/series/series.py#L414-L440
train
thunder-project/thunder
thunder/series/series.py
Series._check_panel
def _check_panel(self, length): """ Check that given fixed panel length evenly divides index. Parameters ---------- length : int Fixed length with which to subdivide index """ n = len(self.index) if divmod(n, length)[1] != 0: raise ValueError("Panel length '%g' must evenly divide length of series '%g'" % (length, n)) if n == length: raise ValueError("Panel length '%g' cannot be length of series '%g'" % (length, n))
python
def _check_panel(self, length): """ Check that given fixed panel length evenly divides index. Parameters ---------- length : int Fixed length with which to subdivide index """ n = len(self.index) if divmod(n, length)[1] != 0: raise ValueError("Panel length '%g' must evenly divide length of series '%g'" % (length, n)) if n == length: raise ValueError("Panel length '%g' cannot be length of series '%g'" % (length, n))
[ "def", "_check_panel", "(", "self", ",", "length", ")", ":", "n", "=", "len", "(", "self", ".", "index", ")", "if", "divmod", "(", "n", ",", "length", ")", "[", "1", "]", "!=", "0", ":", "raise", "ValueError", "(", "\"Panel length '%g' must evenly divide length of series '%g'\"", "%", "(", "length", ",", "n", ")", ")", "if", "n", "==", "length", ":", "raise", "ValueError", "(", "\"Panel length '%g' cannot be length of series '%g'\"", "%", "(", "length", ",", "n", ")", ")" ]
Check that given fixed panel length evenly divides index. Parameters ---------- length : int Fixed length with which to subdivide index
[ "Check", "that", "given", "fixed", "panel", "length", "evenly", "divides", "index", "." ]
967ff8f3e7c2fabe1705743d95eb2746d4329786
https://github.com/thunder-project/thunder/blob/967ff8f3e7c2fabe1705743d95eb2746d4329786/thunder/series/series.py#L442-L457
train
thunder-project/thunder
thunder/series/series.py
Series.mean_by_panel
def mean_by_panel(self, length): """ Compute the mean across fixed sized panels of each record. Splits each record into panels of size `length`, and then computes the mean across panels. Panel length must subdivide record exactly. Parameters ---------- length : int Fixed length with which to subdivide. """ self._check_panel(length) func = lambda v: v.reshape(-1, length).mean(axis=0) newindex = arange(length) return self.map(func, index=newindex)
python
def mean_by_panel(self, length): """ Compute the mean across fixed sized panels of each record. Splits each record into panels of size `length`, and then computes the mean across panels. Panel length must subdivide record exactly. Parameters ---------- length : int Fixed length with which to subdivide. """ self._check_panel(length) func = lambda v: v.reshape(-1, length).mean(axis=0) newindex = arange(length) return self.map(func, index=newindex)
[ "def", "mean_by_panel", "(", "self", ",", "length", ")", ":", "self", ".", "_check_panel", "(", "length", ")", "func", "=", "lambda", "v", ":", "v", ".", "reshape", "(", "-", "1", ",", "length", ")", ".", "mean", "(", "axis", "=", "0", ")", "newindex", "=", "arange", "(", "length", ")", "return", "self", ".", "map", "(", "func", ",", "index", "=", "newindex", ")" ]
Compute the mean across fixed sized panels of each record. Splits each record into panels of size `length`, and then computes the mean across panels. Panel length must subdivide record exactly. Parameters ---------- length : int Fixed length with which to subdivide.
[ "Compute", "the", "mean", "across", "fixed", "sized", "panels", "of", "each", "record", "." ]
967ff8f3e7c2fabe1705743d95eb2746d4329786
https://github.com/thunder-project/thunder/blob/967ff8f3e7c2fabe1705743d95eb2746d4329786/thunder/series/series.py#L459-L475
train
thunder-project/thunder
thunder/series/series.py
Series._makemasks
def _makemasks(self, index=None, level=0): """ Internal function for generating masks for selecting values based on multi-index values. As all other multi-index functions will call this function, basic type-checking is also performed at this stage. """ if index is None: index = self.index try: dims = len(array(index).shape) if dims == 1: index = array(index, ndmin=2).T except: raise TypeError('A multi-index must be convertible to a numpy ndarray') try: index = index[:, level] except: raise ValueError("Levels must be indices into individual elements of the index") lenIdx = index.shape[0] nlevels = index.shape[1] combs = product(*[unique(index.T[i, :]) for i in range(nlevels)]) combs = array([l for l in combs]) masks = array([[array_equal(index[i], c) for i in range(lenIdx)] for c in combs]) return zip(*[(masks[x], combs[x]) for x in range(len(masks)) if masks[x].any()])
python
def _makemasks(self, index=None, level=0): """ Internal function for generating masks for selecting values based on multi-index values. As all other multi-index functions will call this function, basic type-checking is also performed at this stage. """ if index is None: index = self.index try: dims = len(array(index).shape) if dims == 1: index = array(index, ndmin=2).T except: raise TypeError('A multi-index must be convertible to a numpy ndarray') try: index = index[:, level] except: raise ValueError("Levels must be indices into individual elements of the index") lenIdx = index.shape[0] nlevels = index.shape[1] combs = product(*[unique(index.T[i, :]) for i in range(nlevels)]) combs = array([l for l in combs]) masks = array([[array_equal(index[i], c) for i in range(lenIdx)] for c in combs]) return zip(*[(masks[x], combs[x]) for x in range(len(masks)) if masks[x].any()])
[ "def", "_makemasks", "(", "self", ",", "index", "=", "None", ",", "level", "=", "0", ")", ":", "if", "index", "is", "None", ":", "index", "=", "self", ".", "index", "try", ":", "dims", "=", "len", "(", "array", "(", "index", ")", ".", "shape", ")", "if", "dims", "==", "1", ":", "index", "=", "array", "(", "index", ",", "ndmin", "=", "2", ")", ".", "T", "except", ":", "raise", "TypeError", "(", "'A multi-index must be convertible to a numpy ndarray'", ")", "try", ":", "index", "=", "index", "[", ":", ",", "level", "]", "except", ":", "raise", "ValueError", "(", "\"Levels must be indices into individual elements of the index\"", ")", "lenIdx", "=", "index", ".", "shape", "[", "0", "]", "nlevels", "=", "index", ".", "shape", "[", "1", "]", "combs", "=", "product", "(", "*", "[", "unique", "(", "index", ".", "T", "[", "i", ",", ":", "]", ")", "for", "i", "in", "range", "(", "nlevels", ")", "]", ")", "combs", "=", "array", "(", "[", "l", "for", "l", "in", "combs", "]", ")", "masks", "=", "array", "(", "[", "[", "array_equal", "(", "index", "[", "i", "]", ",", "c", ")", "for", "i", "in", "range", "(", "lenIdx", ")", "]", "for", "c", "in", "combs", "]", ")", "return", "zip", "(", "*", "[", "(", "masks", "[", "x", "]", ",", "combs", "[", "x", "]", ")", "for", "x", "in", "range", "(", "len", "(", "masks", ")", ")", "if", "masks", "[", "x", "]", ".", "any", "(", ")", "]", ")" ]
Internal function for generating masks for selecting values based on multi-index values. As all other multi-index functions will call this function, basic type-checking is also performed at this stage.
[ "Internal", "function", "for", "generating", "masks", "for", "selecting", "values", "based", "on", "multi", "-", "index", "values", "." ]
967ff8f3e7c2fabe1705743d95eb2746d4329786
https://github.com/thunder-project/thunder/blob/967ff8f3e7c2fabe1705743d95eb2746d4329786/thunder/series/series.py#L477-L507
train
thunder-project/thunder
thunder/series/series.py
Series._map_by_index
def _map_by_index(self, function, level=0): """ An internal function for maping a function to groups of values based on a multi-index Elements of each record are grouped according to unique value combinations of the multi- index across the given levels of the multi-index. Then the given function is applied to to each of these groups separately. If this function is many-to-one, the result can be recast as a Series indexed by the unique index values used for grouping. """ if type(level) is int: level = [level] masks, ind = self._makemasks(index=self.index, level=level) nMasks = len(masks) newindex = array(ind) if len(newindex[0]) == 1: newindex = ravel(newindex) return self.map(lambda v: asarray([array(function(v[masks[x]])) for x in range(nMasks)]), index=newindex)
python
def _map_by_index(self, function, level=0): """ An internal function for maping a function to groups of values based on a multi-index Elements of each record are grouped according to unique value combinations of the multi- index across the given levels of the multi-index. Then the given function is applied to to each of these groups separately. If this function is many-to-one, the result can be recast as a Series indexed by the unique index values used for grouping. """ if type(level) is int: level = [level] masks, ind = self._makemasks(index=self.index, level=level) nMasks = len(masks) newindex = array(ind) if len(newindex[0]) == 1: newindex = ravel(newindex) return self.map(lambda v: asarray([array(function(v[masks[x]])) for x in range(nMasks)]), index=newindex)
[ "def", "_map_by_index", "(", "self", ",", "function", ",", "level", "=", "0", ")", ":", "if", "type", "(", "level", ")", "is", "int", ":", "level", "=", "[", "level", "]", "masks", ",", "ind", "=", "self", ".", "_makemasks", "(", "index", "=", "self", ".", "index", ",", "level", "=", "level", ")", "nMasks", "=", "len", "(", "masks", ")", "newindex", "=", "array", "(", "ind", ")", "if", "len", "(", "newindex", "[", "0", "]", ")", "==", "1", ":", "newindex", "=", "ravel", "(", "newindex", ")", "return", "self", ".", "map", "(", "lambda", "v", ":", "asarray", "(", "[", "array", "(", "function", "(", "v", "[", "masks", "[", "x", "]", "]", ")", ")", "for", "x", "in", "range", "(", "nMasks", ")", "]", ")", ",", "index", "=", "newindex", ")" ]
An internal function for maping a function to groups of values based on a multi-index Elements of each record are grouped according to unique value combinations of the multi- index across the given levels of the multi-index. Then the given function is applied to to each of these groups separately. If this function is many-to-one, the result can be recast as a Series indexed by the unique index values used for grouping.
[ "An", "internal", "function", "for", "maping", "a", "function", "to", "groups", "of", "values", "based", "on", "a", "multi", "-", "index" ]
967ff8f3e7c2fabe1705743d95eb2746d4329786
https://github.com/thunder-project/thunder/blob/967ff8f3e7c2fabe1705743d95eb2746d4329786/thunder/series/series.py#L509-L528
train
thunder-project/thunder
thunder/series/series.py
Series.aggregate_by_index
def aggregate_by_index(self, function, level=0): """ Aggregrate data in each record, grouping by index values. For each unique value of the index, applies a function to the group indexed by that value. Returns a Series indexed by those unique values. For the result to be a valid Series object, the aggregating function should return a simple numeric type. Also allows selection of levels within a multi-index. See select_by_index for more info on indices and multi-indices. Parameters ---------- function : function Aggregating function to map to Series values. Should take a list or ndarray as input and return a simple numeric value. level : list of ints, optional, default=0 Specifies the levels of the multi-index to use when determining unique index values. If only a single level is desired, can be an int. """ result = self._map_by_index(function, level=level) return result.map(lambda v: array(v), index=result.index)
python
def aggregate_by_index(self, function, level=0): """ Aggregrate data in each record, grouping by index values. For each unique value of the index, applies a function to the group indexed by that value. Returns a Series indexed by those unique values. For the result to be a valid Series object, the aggregating function should return a simple numeric type. Also allows selection of levels within a multi-index. See select_by_index for more info on indices and multi-indices. Parameters ---------- function : function Aggregating function to map to Series values. Should take a list or ndarray as input and return a simple numeric value. level : list of ints, optional, default=0 Specifies the levels of the multi-index to use when determining unique index values. If only a single level is desired, can be an int. """ result = self._map_by_index(function, level=level) return result.map(lambda v: array(v), index=result.index)
[ "def", "aggregate_by_index", "(", "self", ",", "function", ",", "level", "=", "0", ")", ":", "result", "=", "self", ".", "_map_by_index", "(", "function", ",", "level", "=", "level", ")", "return", "result", ".", "map", "(", "lambda", "v", ":", "array", "(", "v", ")", ",", "index", "=", "result", ".", "index", ")" ]
Aggregrate data in each record, grouping by index values. For each unique value of the index, applies a function to the group indexed by that value. Returns a Series indexed by those unique values. For the result to be a valid Series object, the aggregating function should return a simple numeric type. Also allows selection of levels within a multi-index. See select_by_index for more info on indices and multi-indices. Parameters ---------- function : function Aggregating function to map to Series values. Should take a list or ndarray as input and return a simple numeric value. level : list of ints, optional, default=0 Specifies the levels of the multi-index to use when determining unique index values. If only a single level is desired, can be an int.
[ "Aggregrate", "data", "in", "each", "record", "grouping", "by", "index", "values", "." ]
967ff8f3e7c2fabe1705743d95eb2746d4329786
https://github.com/thunder-project/thunder/blob/967ff8f3e7c2fabe1705743d95eb2746d4329786/thunder/series/series.py#L628-L649
train
thunder-project/thunder
thunder/series/series.py
Series.gramian
def gramian(self): """ Compute gramian of a distributed matrix. The gramian is defined as the product of the matrix with its transpose, i.e. A^T * A. """ if self.mode == 'spark': rdd = self.values.tordd() from pyspark.accumulators import AccumulatorParam class MatrixAccumulator(AccumulatorParam): def zero(self, value): return zeros(shape(value)) def addInPlace(self, val1, val2): val1 += val2 return val1 global mat init = zeros((self.shape[1], self.shape[1])) mat = rdd.context.accumulator(init, MatrixAccumulator()) def outer_sum(x): global mat mat += outer(x, x) rdd.values().foreach(outer_sum) return self._constructor(mat.value, index=self.index) if self.mode == 'local': return self._constructor(dot(self.values.T, self.values), index=self.index)
python
def gramian(self): """ Compute gramian of a distributed matrix. The gramian is defined as the product of the matrix with its transpose, i.e. A^T * A. """ if self.mode == 'spark': rdd = self.values.tordd() from pyspark.accumulators import AccumulatorParam class MatrixAccumulator(AccumulatorParam): def zero(self, value): return zeros(shape(value)) def addInPlace(self, val1, val2): val1 += val2 return val1 global mat init = zeros((self.shape[1], self.shape[1])) mat = rdd.context.accumulator(init, MatrixAccumulator()) def outer_sum(x): global mat mat += outer(x, x) rdd.values().foreach(outer_sum) return self._constructor(mat.value, index=self.index) if self.mode == 'local': return self._constructor(dot(self.values.T, self.values), index=self.index)
[ "def", "gramian", "(", "self", ")", ":", "if", "self", ".", "mode", "==", "'spark'", ":", "rdd", "=", "self", ".", "values", ".", "tordd", "(", ")", "from", "pyspark", ".", "accumulators", "import", "AccumulatorParam", "class", "MatrixAccumulator", "(", "AccumulatorParam", ")", ":", "def", "zero", "(", "self", ",", "value", ")", ":", "return", "zeros", "(", "shape", "(", "value", ")", ")", "def", "addInPlace", "(", "self", ",", "val1", ",", "val2", ")", ":", "val1", "+=", "val2", "return", "val1", "global", "mat", "init", "=", "zeros", "(", "(", "self", ".", "shape", "[", "1", "]", ",", "self", ".", "shape", "[", "1", "]", ")", ")", "mat", "=", "rdd", ".", "context", ".", "accumulator", "(", "init", ",", "MatrixAccumulator", "(", ")", ")", "def", "outer_sum", "(", "x", ")", ":", "global", "mat", "mat", "+=", "outer", "(", "x", ",", "x", ")", "rdd", ".", "values", "(", ")", ".", "foreach", "(", "outer_sum", ")", "return", "self", ".", "_constructor", "(", "mat", ".", "value", ",", "index", "=", "self", ".", "index", ")", "if", "self", ".", "mode", "==", "'local'", ":", "return", "self", ".", "_constructor", "(", "dot", "(", "self", ".", "values", ".", "T", ",", "self", ".", "values", ")", ",", "index", "=", "self", ".", "index", ")" ]
Compute gramian of a distributed matrix. The gramian is defined as the product of the matrix with its transpose, i.e. A^T * A.
[ "Compute", "gramian", "of", "a", "distributed", "matrix", "." ]
967ff8f3e7c2fabe1705743d95eb2746d4329786
https://github.com/thunder-project/thunder/blob/967ff8f3e7c2fabe1705743d95eb2746d4329786/thunder/series/series.py#L731-L763
train
thunder-project/thunder
thunder/series/series.py
Series.times
def times(self, other): """ Multiply a matrix by another one. Other matrix must be a numpy array, a scalar, or another matrix in local mode. Parameters ---------- other : Matrix, scalar, or numpy array A matrix to multiply with """ if isinstance(other, ScalarType): other = asarray(other) index = self.index else: if isinstance(other, list): other = asarray(other) if isinstance(other, ndarray) and other.ndim < 2: other = expand_dims(other, 1) if not self.shape[1] == other.shape[0]: raise ValueError('shapes %s and %s are not aligned' % (self.shape, other.shape)) index = arange(other.shape[1]) if self.mode == 'local' and isinstance(other, Series) and other.mode == 'spark': raise NotImplementedError if self.mode == 'spark' and isinstance(other, Series) and other.mode == 'spark': raise NotImplementedError if self.mode == 'local' and isinstance(other, (ndarray, ScalarType)): return self._constructor(dot(self.values, other), index=index) if self.mode == 'local' and isinstance(other, Series): return self._constructor(dot(self.values, other.values), index=index) if self.mode == 'spark' and isinstance(other, (ndarray, ScalarType)): return self.map(lambda x: dot(x, other), index=index) if self.mode == 'spark' and isinstance(other, Series): return self.map(lambda x: dot(x, other.values), index=index)
python
def times(self, other): """ Multiply a matrix by another one. Other matrix must be a numpy array, a scalar, or another matrix in local mode. Parameters ---------- other : Matrix, scalar, or numpy array A matrix to multiply with """ if isinstance(other, ScalarType): other = asarray(other) index = self.index else: if isinstance(other, list): other = asarray(other) if isinstance(other, ndarray) and other.ndim < 2: other = expand_dims(other, 1) if not self.shape[1] == other.shape[0]: raise ValueError('shapes %s and %s are not aligned' % (self.shape, other.shape)) index = arange(other.shape[1]) if self.mode == 'local' and isinstance(other, Series) and other.mode == 'spark': raise NotImplementedError if self.mode == 'spark' and isinstance(other, Series) and other.mode == 'spark': raise NotImplementedError if self.mode == 'local' and isinstance(other, (ndarray, ScalarType)): return self._constructor(dot(self.values, other), index=index) if self.mode == 'local' and isinstance(other, Series): return self._constructor(dot(self.values, other.values), index=index) if self.mode == 'spark' and isinstance(other, (ndarray, ScalarType)): return self.map(lambda x: dot(x, other), index=index) if self.mode == 'spark' and isinstance(other, Series): return self.map(lambda x: dot(x, other.values), index=index)
[ "def", "times", "(", "self", ",", "other", ")", ":", "if", "isinstance", "(", "other", ",", "ScalarType", ")", ":", "other", "=", "asarray", "(", "other", ")", "index", "=", "self", ".", "index", "else", ":", "if", "isinstance", "(", "other", ",", "list", ")", ":", "other", "=", "asarray", "(", "other", ")", "if", "isinstance", "(", "other", ",", "ndarray", ")", "and", "other", ".", "ndim", "<", "2", ":", "other", "=", "expand_dims", "(", "other", ",", "1", ")", "if", "not", "self", ".", "shape", "[", "1", "]", "==", "other", ".", "shape", "[", "0", "]", ":", "raise", "ValueError", "(", "'shapes %s and %s are not aligned'", "%", "(", "self", ".", "shape", ",", "other", ".", "shape", ")", ")", "index", "=", "arange", "(", "other", ".", "shape", "[", "1", "]", ")", "if", "self", ".", "mode", "==", "'local'", "and", "isinstance", "(", "other", ",", "Series", ")", "and", "other", ".", "mode", "==", "'spark'", ":", "raise", "NotImplementedError", "if", "self", ".", "mode", "==", "'spark'", "and", "isinstance", "(", "other", ",", "Series", ")", "and", "other", ".", "mode", "==", "'spark'", ":", "raise", "NotImplementedError", "if", "self", ".", "mode", "==", "'local'", "and", "isinstance", "(", "other", ",", "(", "ndarray", ",", "ScalarType", ")", ")", ":", "return", "self", ".", "_constructor", "(", "dot", "(", "self", ".", "values", ",", "other", ")", ",", "index", "=", "index", ")", "if", "self", ".", "mode", "==", "'local'", "and", "isinstance", "(", "other", ",", "Series", ")", ":", "return", "self", ".", "_constructor", "(", "dot", "(", "self", ".", "values", ",", "other", ".", "values", ")", ",", "index", "=", "index", ")", "if", "self", ".", "mode", "==", "'spark'", "and", "isinstance", "(", "other", ",", "(", "ndarray", ",", "ScalarType", ")", ")", ":", "return", "self", ".", "map", "(", "lambda", "x", ":", "dot", "(", "x", ",", "other", ")", ",", "index", "=", "index", ")", "if", "self", ".", "mode", "==", "'spark'", "and", "isinstance", "(", "other", ",", "Series", ")", ":", "return", "self", ".", "map", "(", "lambda", "x", ":", "dot", "(", "x", ",", "other", ".", "values", ")", ",", "index", "=", "index", ")" ]
Multiply a matrix by another one. Other matrix must be a numpy array, a scalar, or another matrix in local mode. Parameters ---------- other : Matrix, scalar, or numpy array A matrix to multiply with
[ "Multiply", "a", "matrix", "by", "another", "one", "." ]
967ff8f3e7c2fabe1705743d95eb2746d4329786
https://github.com/thunder-project/thunder/blob/967ff8f3e7c2fabe1705743d95eb2746d4329786/thunder/series/series.py#L765-L805
train
thunder-project/thunder
thunder/series/series.py
Series._makewindows
def _makewindows(self, indices, window): """ Make masks used by windowing functions Given a list of indices specifying window centers, and a window size, construct a list of index arrays, one per window, that index into the target array Parameters ---------- indices : array-like List of times specifying window centers window : int Window size """ div = divmod(window, 2) before = div[0] after = div[0] + div[1] index = asarray(self.index) indices = asarray(indices) if where(index == max(indices))[0][0] + after > len(index): raise ValueError("Maximum requested index %g, with window %g, exceeds length %g" % (max(indices), window, len(index))) if where(index == min(indices))[0][0] - before < 0: raise ValueError("Minimum requested index %g, with window %g, is less than 0" % (min(indices), window)) masks = [arange(where(index == i)[0][0]-before, where(index == i)[0][0]+after, dtype='int') for i in indices] return masks
python
def _makewindows(self, indices, window): """ Make masks used by windowing functions Given a list of indices specifying window centers, and a window size, construct a list of index arrays, one per window, that index into the target array Parameters ---------- indices : array-like List of times specifying window centers window : int Window size """ div = divmod(window, 2) before = div[0] after = div[0] + div[1] index = asarray(self.index) indices = asarray(indices) if where(index == max(indices))[0][0] + after > len(index): raise ValueError("Maximum requested index %g, with window %g, exceeds length %g" % (max(indices), window, len(index))) if where(index == min(indices))[0][0] - before < 0: raise ValueError("Minimum requested index %g, with window %g, is less than 0" % (min(indices), window)) masks = [arange(where(index == i)[0][0]-before, where(index == i)[0][0]+after, dtype='int') for i in indices] return masks
[ "def", "_makewindows", "(", "self", ",", "indices", ",", "window", ")", ":", "div", "=", "divmod", "(", "window", ",", "2", ")", "before", "=", "div", "[", "0", "]", "after", "=", "div", "[", "0", "]", "+", "div", "[", "1", "]", "index", "=", "asarray", "(", "self", ".", "index", ")", "indices", "=", "asarray", "(", "indices", ")", "if", "where", "(", "index", "==", "max", "(", "indices", ")", ")", "[", "0", "]", "[", "0", "]", "+", "after", ">", "len", "(", "index", ")", ":", "raise", "ValueError", "(", "\"Maximum requested index %g, with window %g, exceeds length %g\"", "%", "(", "max", "(", "indices", ")", ",", "window", ",", "len", "(", "index", ")", ")", ")", "if", "where", "(", "index", "==", "min", "(", "indices", ")", ")", "[", "0", "]", "[", "0", "]", "-", "before", "<", "0", ":", "raise", "ValueError", "(", "\"Minimum requested index %g, with window %g, is less than 0\"", "%", "(", "min", "(", "indices", ")", ",", "window", ")", ")", "masks", "=", "[", "arange", "(", "where", "(", "index", "==", "i", ")", "[", "0", "]", "[", "0", "]", "-", "before", ",", "where", "(", "index", "==", "i", ")", "[", "0", "]", "[", "0", "]", "+", "after", ",", "dtype", "=", "'int'", ")", "for", "i", "in", "indices", "]", "return", "masks" ]
Make masks used by windowing functions Given a list of indices specifying window centers, and a window size, construct a list of index arrays, one per window, that index into the target array Parameters ---------- indices : array-like List of times specifying window centers window : int Window size
[ "Make", "masks", "used", "by", "windowing", "functions" ]
967ff8f3e7c2fabe1705743d95eb2746d4329786
https://github.com/thunder-project/thunder/blob/967ff8f3e7c2fabe1705743d95eb2746d4329786/thunder/series/series.py#L807-L835
train
thunder-project/thunder
thunder/series/series.py
Series.mean_by_window
def mean_by_window(self, indices, window): """ Average series across multiple windows specified by their centers. Parameters ---------- indices : array-like List of times specifying window centers window : int Window size """ masks = self._makewindows(indices, window) newindex = arange(0, len(masks[0])) return self.map(lambda x: mean([x[m] for m in masks], axis=0), index=newindex)
python
def mean_by_window(self, indices, window): """ Average series across multiple windows specified by their centers. Parameters ---------- indices : array-like List of times specifying window centers window : int Window size """ masks = self._makewindows(indices, window) newindex = arange(0, len(masks[0])) return self.map(lambda x: mean([x[m] for m in masks], axis=0), index=newindex)
[ "def", "mean_by_window", "(", "self", ",", "indices", ",", "window", ")", ":", "masks", "=", "self", ".", "_makewindows", "(", "indices", ",", "window", ")", "newindex", "=", "arange", "(", "0", ",", "len", "(", "masks", "[", "0", "]", ")", ")", "return", "self", ".", "map", "(", "lambda", "x", ":", "mean", "(", "[", "x", "[", "m", "]", "for", "m", "in", "masks", "]", ",", "axis", "=", "0", ")", ",", "index", "=", "newindex", ")" ]
Average series across multiple windows specified by their centers. Parameters ---------- indices : array-like List of times specifying window centers window : int Window size
[ "Average", "series", "across", "multiple", "windows", "specified", "by", "their", "centers", "." ]
967ff8f3e7c2fabe1705743d95eb2746d4329786
https://github.com/thunder-project/thunder/blob/967ff8f3e7c2fabe1705743d95eb2746d4329786/thunder/series/series.py#L837-L851
train
thunder-project/thunder
thunder/series/series.py
Series.subsample
def subsample(self, sample_factor=2): """ Subsample series by an integer factor. Parameters ---------- sample_factor : positive integer, optional, default=2 Factor for downsampling. """ if sample_factor < 0: raise Exception('Factor for subsampling must be postive, got %g' % sample_factor) s = slice(0, len(self.index), sample_factor) newindex = self.index[s] return self.map(lambda v: v[s], index=newindex)
python
def subsample(self, sample_factor=2): """ Subsample series by an integer factor. Parameters ---------- sample_factor : positive integer, optional, default=2 Factor for downsampling. """ if sample_factor < 0: raise Exception('Factor for subsampling must be postive, got %g' % sample_factor) s = slice(0, len(self.index), sample_factor) newindex = self.index[s] return self.map(lambda v: v[s], index=newindex)
[ "def", "subsample", "(", "self", ",", "sample_factor", "=", "2", ")", ":", "if", "sample_factor", "<", "0", ":", "raise", "Exception", "(", "'Factor for subsampling must be postive, got %g'", "%", "sample_factor", ")", "s", "=", "slice", "(", "0", ",", "len", "(", "self", ".", "index", ")", ",", "sample_factor", ")", "newindex", "=", "self", ".", "index", "[", "s", "]", "return", "self", ".", "map", "(", "lambda", "v", ":", "v", "[", "s", "]", ",", "index", "=", "newindex", ")" ]
Subsample series by an integer factor. Parameters ---------- sample_factor : positive integer, optional, default=2 Factor for downsampling.
[ "Subsample", "series", "by", "an", "integer", "factor", "." ]
967ff8f3e7c2fabe1705743d95eb2746d4329786
https://github.com/thunder-project/thunder/blob/967ff8f3e7c2fabe1705743d95eb2746d4329786/thunder/series/series.py#L853-L866
train
thunder-project/thunder
thunder/series/series.py
Series.downsample
def downsample(self, sample_factor=2): """ Downsample series by an integer factor by averaging. Parameters ---------- sample_factor : positive integer, optional, default=2 Factor for downsampling. """ if sample_factor < 0: raise Exception('Factor for subsampling must be postive, got %g' % sample_factor) newlength = floor(len(self.index) / sample_factor) func = lambda v: v[0:int(newlength * sample_factor)].reshape(-1, sample_factor).mean(axis=1) newindex = arange(newlength) return self.map(func, index=newindex)
python
def downsample(self, sample_factor=2): """ Downsample series by an integer factor by averaging. Parameters ---------- sample_factor : positive integer, optional, default=2 Factor for downsampling. """ if sample_factor < 0: raise Exception('Factor for subsampling must be postive, got %g' % sample_factor) newlength = floor(len(self.index) / sample_factor) func = lambda v: v[0:int(newlength * sample_factor)].reshape(-1, sample_factor).mean(axis=1) newindex = arange(newlength) return self.map(func, index=newindex)
[ "def", "downsample", "(", "self", ",", "sample_factor", "=", "2", ")", ":", "if", "sample_factor", "<", "0", ":", "raise", "Exception", "(", "'Factor for subsampling must be postive, got %g'", "%", "sample_factor", ")", "newlength", "=", "floor", "(", "len", "(", "self", ".", "index", ")", "/", "sample_factor", ")", "func", "=", "lambda", "v", ":", "v", "[", "0", ":", "int", "(", "newlength", "*", "sample_factor", ")", "]", ".", "reshape", "(", "-", "1", ",", "sample_factor", ")", ".", "mean", "(", "axis", "=", "1", ")", "newindex", "=", "arange", "(", "newlength", ")", "return", "self", ".", "map", "(", "func", ",", "index", "=", "newindex", ")" ]
Downsample series by an integer factor by averaging. Parameters ---------- sample_factor : positive integer, optional, default=2 Factor for downsampling.
[ "Downsample", "series", "by", "an", "integer", "factor", "by", "averaging", "." ]
967ff8f3e7c2fabe1705743d95eb2746d4329786
https://github.com/thunder-project/thunder/blob/967ff8f3e7c2fabe1705743d95eb2746d4329786/thunder/series/series.py#L868-L882
train
thunder-project/thunder
thunder/series/series.py
Series.fourier
def fourier(self, freq=None): """ Compute statistics of a Fourier decomposition on series data. Parameters ---------- freq : int Digital frequency at which to compute coherence and phase """ def get(y, freq): y = y - mean(y) nframes = len(y) ft = fft.fft(y) ft = ft[0:int(fix(nframes/2))] ampFt = 2*abs(ft)/nframes amp = ampFt[freq] ampSum = sqrt(sum(ampFt**2)) co = amp / ampSum ph = -(pi/2) - angle(ft[freq]) if ph < 0: ph += pi * 2 return array([co, ph]) if freq >= int(fix(size(self.index)/2)): raise Exception('Requested frequency, %g, is too high, ' 'must be less than half the series duration' % freq) index = ['coherence', 'phase'] return self.map(lambda x: get(x, freq), index=index)
python
def fourier(self, freq=None): """ Compute statistics of a Fourier decomposition on series data. Parameters ---------- freq : int Digital frequency at which to compute coherence and phase """ def get(y, freq): y = y - mean(y) nframes = len(y) ft = fft.fft(y) ft = ft[0:int(fix(nframes/2))] ampFt = 2*abs(ft)/nframes amp = ampFt[freq] ampSum = sqrt(sum(ampFt**2)) co = amp / ampSum ph = -(pi/2) - angle(ft[freq]) if ph < 0: ph += pi * 2 return array([co, ph]) if freq >= int(fix(size(self.index)/2)): raise Exception('Requested frequency, %g, is too high, ' 'must be less than half the series duration' % freq) index = ['coherence', 'phase'] return self.map(lambda x: get(x, freq), index=index)
[ "def", "fourier", "(", "self", ",", "freq", "=", "None", ")", ":", "def", "get", "(", "y", ",", "freq", ")", ":", "y", "=", "y", "-", "mean", "(", "y", ")", "nframes", "=", "len", "(", "y", ")", "ft", "=", "fft", ".", "fft", "(", "y", ")", "ft", "=", "ft", "[", "0", ":", "int", "(", "fix", "(", "nframes", "/", "2", ")", ")", "]", "ampFt", "=", "2", "*", "abs", "(", "ft", ")", "/", "nframes", "amp", "=", "ampFt", "[", "freq", "]", "ampSum", "=", "sqrt", "(", "sum", "(", "ampFt", "**", "2", ")", ")", "co", "=", "amp", "/", "ampSum", "ph", "=", "-", "(", "pi", "/", "2", ")", "-", "angle", "(", "ft", "[", "freq", "]", ")", "if", "ph", "<", "0", ":", "ph", "+=", "pi", "*", "2", "return", "array", "(", "[", "co", ",", "ph", "]", ")", "if", "freq", ">=", "int", "(", "fix", "(", "size", "(", "self", ".", "index", ")", "/", "2", ")", ")", ":", "raise", "Exception", "(", "'Requested frequency, %g, is too high, '", "'must be less than half the series duration'", "%", "freq", ")", "index", "=", "[", "'coherence'", ",", "'phase'", "]", "return", "self", ".", "map", "(", "lambda", "x", ":", "get", "(", "x", ",", "freq", ")", ",", "index", "=", "index", ")" ]
Compute statistics of a Fourier decomposition on series data. Parameters ---------- freq : int Digital frequency at which to compute coherence and phase
[ "Compute", "statistics", "of", "a", "Fourier", "decomposition", "on", "series", "data", "." ]
967ff8f3e7c2fabe1705743d95eb2746d4329786
https://github.com/thunder-project/thunder/blob/967ff8f3e7c2fabe1705743d95eb2746d4329786/thunder/series/series.py#L884-L912
train
thunder-project/thunder
thunder/series/series.py
Series.convolve
def convolve(self, signal, mode='full'): """ Convolve series data against another signal. Parameters ---------- signal : array Signal to convolve with (must be 1D) mode : str, optional, default='full' Mode of convolution, options are 'full', 'same', and 'valid' """ from numpy import convolve s = asarray(signal) n = size(self.index) m = size(s) # use expected lengths to make a new index if mode == 'same': newmax = max(n, m) elif mode == 'valid': newmax = max(m, n) - min(m, n) + 1 else: newmax = n+m-1 newindex = arange(0, newmax) return self.map(lambda x: convolve(x, signal, mode), index=newindex)
python
def convolve(self, signal, mode='full'): """ Convolve series data against another signal. Parameters ---------- signal : array Signal to convolve with (must be 1D) mode : str, optional, default='full' Mode of convolution, options are 'full', 'same', and 'valid' """ from numpy import convolve s = asarray(signal) n = size(self.index) m = size(s) # use expected lengths to make a new index if mode == 'same': newmax = max(n, m) elif mode == 'valid': newmax = max(m, n) - min(m, n) + 1 else: newmax = n+m-1 newindex = arange(0, newmax) return self.map(lambda x: convolve(x, signal, mode), index=newindex)
[ "def", "convolve", "(", "self", ",", "signal", ",", "mode", "=", "'full'", ")", ":", "from", "numpy", "import", "convolve", "s", "=", "asarray", "(", "signal", ")", "n", "=", "size", "(", "self", ".", "index", ")", "m", "=", "size", "(", "s", ")", "# use expected lengths to make a new index", "if", "mode", "==", "'same'", ":", "newmax", "=", "max", "(", "n", ",", "m", ")", "elif", "mode", "==", "'valid'", ":", "newmax", "=", "max", "(", "m", ",", "n", ")", "-", "min", "(", "m", ",", "n", ")", "+", "1", "else", ":", "newmax", "=", "n", "+", "m", "-", "1", "newindex", "=", "arange", "(", "0", ",", "newmax", ")", "return", "self", ".", "map", "(", "lambda", "x", ":", "convolve", "(", "x", ",", "signal", ",", "mode", ")", ",", "index", "=", "newindex", ")" ]
Convolve series data against another signal. Parameters ---------- signal : array Signal to convolve with (must be 1D) mode : str, optional, default='full' Mode of convolution, options are 'full', 'same', and 'valid'
[ "Convolve", "series", "data", "against", "another", "signal", "." ]
967ff8f3e7c2fabe1705743d95eb2746d4329786
https://github.com/thunder-project/thunder/blob/967ff8f3e7c2fabe1705743d95eb2746d4329786/thunder/series/series.py#L914-L943
train
thunder-project/thunder
thunder/series/series.py
Series.crosscorr
def crosscorr(self, signal, lag=0): """ Cross correlate series data against another signal. Parameters ---------- signal : array Signal to correlate against (must be 1D). lag : int Range of lags to consider, will cover (-lag, +lag). """ from scipy.linalg import norm s = asarray(signal) s = s - mean(s) s = s / norm(s) if size(s) != size(self.index): raise Exception('Size of signal to cross correlate with, %g, ' 'does not match size of series' % size(s)) # created a matrix with lagged signals if lag is not 0: shifts = range(-lag, lag+1) d = len(s) m = len(shifts) sshifted = zeros((m, d)) for i in range(0, len(shifts)): tmp = roll(s, shifts[i]) if shifts[i] < 0: tmp[(d+shifts[i]):] = 0 if shifts[i] > 0: tmp[:shifts[i]] = 0 sshifted[i, :] = tmp s = sshifted else: shifts = [0] def get(y, s): y = y - mean(y) n = norm(y) if n == 0: b = zeros((s.shape[0],)) else: y /= n b = dot(s, y) return b return self.map(lambda x: get(x, s), index=shifts)
python
def crosscorr(self, signal, lag=0): """ Cross correlate series data against another signal. Parameters ---------- signal : array Signal to correlate against (must be 1D). lag : int Range of lags to consider, will cover (-lag, +lag). """ from scipy.linalg import norm s = asarray(signal) s = s - mean(s) s = s / norm(s) if size(s) != size(self.index): raise Exception('Size of signal to cross correlate with, %g, ' 'does not match size of series' % size(s)) # created a matrix with lagged signals if lag is not 0: shifts = range(-lag, lag+1) d = len(s) m = len(shifts) sshifted = zeros((m, d)) for i in range(0, len(shifts)): tmp = roll(s, shifts[i]) if shifts[i] < 0: tmp[(d+shifts[i]):] = 0 if shifts[i] > 0: tmp[:shifts[i]] = 0 sshifted[i, :] = tmp s = sshifted else: shifts = [0] def get(y, s): y = y - mean(y) n = norm(y) if n == 0: b = zeros((s.shape[0],)) else: y /= n b = dot(s, y) return b return self.map(lambda x: get(x, s), index=shifts)
[ "def", "crosscorr", "(", "self", ",", "signal", ",", "lag", "=", "0", ")", ":", "from", "scipy", ".", "linalg", "import", "norm", "s", "=", "asarray", "(", "signal", ")", "s", "=", "s", "-", "mean", "(", "s", ")", "s", "=", "s", "/", "norm", "(", "s", ")", "if", "size", "(", "s", ")", "!=", "size", "(", "self", ".", "index", ")", ":", "raise", "Exception", "(", "'Size of signal to cross correlate with, %g, '", "'does not match size of series'", "%", "size", "(", "s", ")", ")", "# created a matrix with lagged signals", "if", "lag", "is", "not", "0", ":", "shifts", "=", "range", "(", "-", "lag", ",", "lag", "+", "1", ")", "d", "=", "len", "(", "s", ")", "m", "=", "len", "(", "shifts", ")", "sshifted", "=", "zeros", "(", "(", "m", ",", "d", ")", ")", "for", "i", "in", "range", "(", "0", ",", "len", "(", "shifts", ")", ")", ":", "tmp", "=", "roll", "(", "s", ",", "shifts", "[", "i", "]", ")", "if", "shifts", "[", "i", "]", "<", "0", ":", "tmp", "[", "(", "d", "+", "shifts", "[", "i", "]", ")", ":", "]", "=", "0", "if", "shifts", "[", "i", "]", ">", "0", ":", "tmp", "[", ":", "shifts", "[", "i", "]", "]", "=", "0", "sshifted", "[", "i", ",", ":", "]", "=", "tmp", "s", "=", "sshifted", "else", ":", "shifts", "=", "[", "0", "]", "def", "get", "(", "y", ",", "s", ")", ":", "y", "=", "y", "-", "mean", "(", "y", ")", "n", "=", "norm", "(", "y", ")", "if", "n", "==", "0", ":", "b", "=", "zeros", "(", "(", "s", ".", "shape", "[", "0", "]", ",", ")", ")", "else", ":", "y", "/=", "n", "b", "=", "dot", "(", "s", ",", "y", ")", "return", "b", "return", "self", ".", "map", "(", "lambda", "x", ":", "get", "(", "x", ",", "s", ")", ",", "index", "=", "shifts", ")" ]
Cross correlate series data against another signal. Parameters ---------- signal : array Signal to correlate against (must be 1D). lag : int Range of lags to consider, will cover (-lag, +lag).
[ "Cross", "correlate", "series", "data", "against", "another", "signal", "." ]
967ff8f3e7c2fabe1705743d95eb2746d4329786
https://github.com/thunder-project/thunder/blob/967ff8f3e7c2fabe1705743d95eb2746d4329786/thunder/series/series.py#L945-L994
train
thunder-project/thunder
thunder/series/series.py
Series.detrend
def detrend(self, method='linear', order=5): """ Detrend series data with linear or nonlinear detrending. Preserve intercept so that subsequent operations can adjust the baseline. Parameters ---------- method : str, optional, default = 'linear' Detrending method order : int, optional, default = 5 Order of polynomial, for non-linear detrending only """ check_options(method, ['linear', 'nonlinear']) if method == 'linear': order = 1 def func(y): x = arange(len(y)) p = polyfit(x, y, order) p[-1] = 0 yy = polyval(p, x) return y - yy return self.map(func)
python
def detrend(self, method='linear', order=5): """ Detrend series data with linear or nonlinear detrending. Preserve intercept so that subsequent operations can adjust the baseline. Parameters ---------- method : str, optional, default = 'linear' Detrending method order : int, optional, default = 5 Order of polynomial, for non-linear detrending only """ check_options(method, ['linear', 'nonlinear']) if method == 'linear': order = 1 def func(y): x = arange(len(y)) p = polyfit(x, y, order) p[-1] = 0 yy = polyval(p, x) return y - yy return self.map(func)
[ "def", "detrend", "(", "self", ",", "method", "=", "'linear'", ",", "order", "=", "5", ")", ":", "check_options", "(", "method", ",", "[", "'linear'", ",", "'nonlinear'", "]", ")", "if", "method", "==", "'linear'", ":", "order", "=", "1", "def", "func", "(", "y", ")", ":", "x", "=", "arange", "(", "len", "(", "y", ")", ")", "p", "=", "polyfit", "(", "x", ",", "y", ",", "order", ")", "p", "[", "-", "1", "]", "=", "0", "yy", "=", "polyval", "(", "p", ",", "x", ")", "return", "y", "-", "yy", "return", "self", ".", "map", "(", "func", ")" ]
Detrend series data with linear or nonlinear detrending. Preserve intercept so that subsequent operations can adjust the baseline. Parameters ---------- method : str, optional, default = 'linear' Detrending method order : int, optional, default = 5 Order of polynomial, for non-linear detrending only
[ "Detrend", "series", "data", "with", "linear", "or", "nonlinear", "detrending", "." ]
967ff8f3e7c2fabe1705743d95eb2746d4329786
https://github.com/thunder-project/thunder/blob/967ff8f3e7c2fabe1705743d95eb2746d4329786/thunder/series/series.py#L996-L1022
train
thunder-project/thunder
thunder/series/series.py
Series.normalize
def normalize(self, method='percentile', window=None, perc=20, offset=0.1): """ Normalize by subtracting and dividing by a baseline. Baseline can be derived from a global mean or percentile, or a smoothed percentile estimated within a rolling window. Windowed baselines may only be well-defined for temporal series data. Parameters ---------- baseline : str, optional, default = 'percentile' Quantity to use as the baseline, options are 'mean', 'percentile', 'window', or 'window-exact'. window : int, optional, default = 6 Size of window for baseline estimation, for 'window' and 'window-exact' baseline only. perc : int, optional, default = 20 Percentile value to use, for 'percentile', 'window', or 'window-exact' baseline only. offset : float, optional, default = 0.1 Scalar added to baseline during division to avoid division by 0. """ check_options(method, ['mean', 'percentile', 'window', 'window-exact']) from warnings import warn if not (method == 'window' or method == 'window-exact') and window is not None: warn('Setting window without using method "window" has no effect') if method == 'mean': baseFunc = mean if method == 'percentile': baseFunc = lambda x: percentile(x, perc) if method == 'window': from scipy.ndimage.filters import percentile_filter baseFunc = lambda x: percentile_filter(x.astype(float64), perc, window, mode='nearest') if method == 'window-exact': if window & 0x1: left, right = (ceil(window/2), ceil(window/2) + 1) else: left, right = (window/2, window/2) n = len(self.index) baseFunc = lambda x: asarray([percentile(x[max(ix-left, 0):min(ix+right+1, n)], perc) for ix in arange(0, n)]) def get(y): b = baseFunc(y) return (y - b) / (b + offset) return self.map(get)
python
def normalize(self, method='percentile', window=None, perc=20, offset=0.1): """ Normalize by subtracting and dividing by a baseline. Baseline can be derived from a global mean or percentile, or a smoothed percentile estimated within a rolling window. Windowed baselines may only be well-defined for temporal series data. Parameters ---------- baseline : str, optional, default = 'percentile' Quantity to use as the baseline, options are 'mean', 'percentile', 'window', or 'window-exact'. window : int, optional, default = 6 Size of window for baseline estimation, for 'window' and 'window-exact' baseline only. perc : int, optional, default = 20 Percentile value to use, for 'percentile', 'window', or 'window-exact' baseline only. offset : float, optional, default = 0.1 Scalar added to baseline during division to avoid division by 0. """ check_options(method, ['mean', 'percentile', 'window', 'window-exact']) from warnings import warn if not (method == 'window' or method == 'window-exact') and window is not None: warn('Setting window without using method "window" has no effect') if method == 'mean': baseFunc = mean if method == 'percentile': baseFunc = lambda x: percentile(x, perc) if method == 'window': from scipy.ndimage.filters import percentile_filter baseFunc = lambda x: percentile_filter(x.astype(float64), perc, window, mode='nearest') if method == 'window-exact': if window & 0x1: left, right = (ceil(window/2), ceil(window/2) + 1) else: left, right = (window/2, window/2) n = len(self.index) baseFunc = lambda x: asarray([percentile(x[max(ix-left, 0):min(ix+right+1, n)], perc) for ix in arange(0, n)]) def get(y): b = baseFunc(y) return (y - b) / (b + offset) return self.map(get)
[ "def", "normalize", "(", "self", ",", "method", "=", "'percentile'", ",", "window", "=", "None", ",", "perc", "=", "20", ",", "offset", "=", "0.1", ")", ":", "check_options", "(", "method", ",", "[", "'mean'", ",", "'percentile'", ",", "'window'", ",", "'window-exact'", "]", ")", "from", "warnings", "import", "warn", "if", "not", "(", "method", "==", "'window'", "or", "method", "==", "'window-exact'", ")", "and", "window", "is", "not", "None", ":", "warn", "(", "'Setting window without using method \"window\" has no effect'", ")", "if", "method", "==", "'mean'", ":", "baseFunc", "=", "mean", "if", "method", "==", "'percentile'", ":", "baseFunc", "=", "lambda", "x", ":", "percentile", "(", "x", ",", "perc", ")", "if", "method", "==", "'window'", ":", "from", "scipy", ".", "ndimage", ".", "filters", "import", "percentile_filter", "baseFunc", "=", "lambda", "x", ":", "percentile_filter", "(", "x", ".", "astype", "(", "float64", ")", ",", "perc", ",", "window", ",", "mode", "=", "'nearest'", ")", "if", "method", "==", "'window-exact'", ":", "if", "window", "&", "0x1", ":", "left", ",", "right", "=", "(", "ceil", "(", "window", "/", "2", ")", ",", "ceil", "(", "window", "/", "2", ")", "+", "1", ")", "else", ":", "left", ",", "right", "=", "(", "window", "/", "2", ",", "window", "/", "2", ")", "n", "=", "len", "(", "self", ".", "index", ")", "baseFunc", "=", "lambda", "x", ":", "asarray", "(", "[", "percentile", "(", "x", "[", "max", "(", "ix", "-", "left", ",", "0", ")", ":", "min", "(", "ix", "+", "right", "+", "1", ",", "n", ")", "]", ",", "perc", ")", "for", "ix", "in", "arange", "(", "0", ",", "n", ")", "]", ")", "def", "get", "(", "y", ")", ":", "b", "=", "baseFunc", "(", "y", ")", "return", "(", "y", "-", "b", ")", "/", "(", "b", "+", "offset", ")", "return", "self", ".", "map", "(", "get", ")" ]
Normalize by subtracting and dividing by a baseline. Baseline can be derived from a global mean or percentile, or a smoothed percentile estimated within a rolling window. Windowed baselines may only be well-defined for temporal series data. Parameters ---------- baseline : str, optional, default = 'percentile' Quantity to use as the baseline, options are 'mean', 'percentile', 'window', or 'window-exact'. window : int, optional, default = 6 Size of window for baseline estimation, for 'window' and 'window-exact' baseline only. perc : int, optional, default = 20 Percentile value to use, for 'percentile', 'window', or 'window-exact' baseline only. offset : float, optional, default = 0.1 Scalar added to baseline during division to avoid division by 0.
[ "Normalize", "by", "subtracting", "and", "dividing", "by", "a", "baseline", "." ]
967ff8f3e7c2fabe1705743d95eb2746d4329786
https://github.com/thunder-project/thunder/blob/967ff8f3e7c2fabe1705743d95eb2746d4329786/thunder/series/series.py#L1024-L1081
train
thunder-project/thunder
thunder/series/series.py
Series.toimages
def toimages(self, chunk_size='auto'): """ Converts to images data. This method is equivalent to series.toblocks(size).toimages(). Parameters ---------- chunk_size : str or tuple, size of series chunk used during conversion, default = 'auto' String interpreted as memory size (in kilobytes, e.g. '64'). The exception is the string 'auto', which will choose a chunk size to make the resulting blocks ~100 MB in size. Int interpreted as 'number of elements'. Only valid in spark mode. """ from thunder.images.images import Images if chunk_size is 'auto': chunk_size = str(max([int(1e5/prod(self.baseshape)), 1])) n = len(self.shape) - 1 if self.mode == 'spark': return Images(self.values.swap(tuple(range(n)), (0,), size=chunk_size)) if self.mode == 'local': return Images(self.values.transpose((n,) + tuple(range(0, n))))
python
def toimages(self, chunk_size='auto'): """ Converts to images data. This method is equivalent to series.toblocks(size).toimages(). Parameters ---------- chunk_size : str or tuple, size of series chunk used during conversion, default = 'auto' String interpreted as memory size (in kilobytes, e.g. '64'). The exception is the string 'auto', which will choose a chunk size to make the resulting blocks ~100 MB in size. Int interpreted as 'number of elements'. Only valid in spark mode. """ from thunder.images.images import Images if chunk_size is 'auto': chunk_size = str(max([int(1e5/prod(self.baseshape)), 1])) n = len(self.shape) - 1 if self.mode == 'spark': return Images(self.values.swap(tuple(range(n)), (0,), size=chunk_size)) if self.mode == 'local': return Images(self.values.transpose((n,) + tuple(range(0, n))))
[ "def", "toimages", "(", "self", ",", "chunk_size", "=", "'auto'", ")", ":", "from", "thunder", ".", "images", ".", "images", "import", "Images", "if", "chunk_size", "is", "'auto'", ":", "chunk_size", "=", "str", "(", "max", "(", "[", "int", "(", "1e5", "/", "prod", "(", "self", ".", "baseshape", ")", ")", ",", "1", "]", ")", ")", "n", "=", "len", "(", "self", ".", "shape", ")", "-", "1", "if", "self", ".", "mode", "==", "'spark'", ":", "return", "Images", "(", "self", ".", "values", ".", "swap", "(", "tuple", "(", "range", "(", "n", ")", ")", ",", "(", "0", ",", ")", ",", "size", "=", "chunk_size", ")", ")", "if", "self", ".", "mode", "==", "'local'", ":", "return", "Images", "(", "self", ".", "values", ".", "transpose", "(", "(", "n", ",", ")", "+", "tuple", "(", "range", "(", "0", ",", "n", ")", ")", ")", ")" ]
Converts to images data. This method is equivalent to series.toblocks(size).toimages(). Parameters ---------- chunk_size : str or tuple, size of series chunk used during conversion, default = 'auto' String interpreted as memory size (in kilobytes, e.g. '64'). The exception is the string 'auto', which will choose a chunk size to make the resulting blocks ~100 MB in size. Int interpreted as 'number of elements'. Only valid in spark mode.
[ "Converts", "to", "images", "data", "." ]
967ff8f3e7c2fabe1705743d95eb2746d4329786
https://github.com/thunder-project/thunder/blob/967ff8f3e7c2fabe1705743d95eb2746d4329786/thunder/series/series.py#L1083-L1108
train