repo
stringlengths
7
55
path
stringlengths
4
127
func_name
stringlengths
1
88
original_string
stringlengths
75
19.8k
language
stringclasses
1 value
code
stringlengths
75
19.8k
code_tokens
sequence
docstring
stringlengths
3
17.3k
docstring_tokens
sequence
sha
stringlengths
40
40
url
stringlengths
87
242
partition
stringclasses
1 value
mila-iqia/fuel
fuel/transformers/__init__.py
ExpectsAxisLabels.verify_axis_labels
def verify_axis_labels(self, expected, actual, source_name): """Verify that axis labels for a given source are as expected. Parameters ---------- expected : tuple A tuple of strings representing the expected axis labels. actual : tuple or None A tuple of strings representing the actual axis labels, or `None` if they could not be determined. source_name : str The name of the source being checked. Used for caching the results of checks so that the check is only performed once. Notes ----- Logs a warning in case of `actual=None`, raises an error on other mismatches. """ if not getattr(self, '_checked_axis_labels', False): self._checked_axis_labels = defaultdict(bool) if not self._checked_axis_labels[source_name]: if actual is None: log.warning("%s instance could not verify (missing) axis " "expected %s, got None", self.__class__.__name__, expected) else: if expected != actual: raise AxisLabelsMismatchError("{} expected axis labels " "{}, got {} instead".format( self.__class__.__name__, expected, actual)) self._checked_axis_labels[source_name] = True
python
def verify_axis_labels(self, expected, actual, source_name): """Verify that axis labels for a given source are as expected. Parameters ---------- expected : tuple A tuple of strings representing the expected axis labels. actual : tuple or None A tuple of strings representing the actual axis labels, or `None` if they could not be determined. source_name : str The name of the source being checked. Used for caching the results of checks so that the check is only performed once. Notes ----- Logs a warning in case of `actual=None`, raises an error on other mismatches. """ if not getattr(self, '_checked_axis_labels', False): self._checked_axis_labels = defaultdict(bool) if not self._checked_axis_labels[source_name]: if actual is None: log.warning("%s instance could not verify (missing) axis " "expected %s, got None", self.__class__.__name__, expected) else: if expected != actual: raise AxisLabelsMismatchError("{} expected axis labels " "{}, got {} instead".format( self.__class__.__name__, expected, actual)) self._checked_axis_labels[source_name] = True
[ "def", "verify_axis_labels", "(", "self", ",", "expected", ",", "actual", ",", "source_name", ")", ":", "if", "not", "getattr", "(", "self", ",", "'_checked_axis_labels'", ",", "False", ")", ":", "self", ".", "_checked_axis_labels", "=", "defaultdict", "(", "bool", ")", "if", "not", "self", ".", "_checked_axis_labels", "[", "source_name", "]", ":", "if", "actual", "is", "None", ":", "log", ".", "warning", "(", "\"%s instance could not verify (missing) axis \"", "\"expected %s, got None\"", ",", "self", ".", "__class__", ".", "__name__", ",", "expected", ")", "else", ":", "if", "expected", "!=", "actual", ":", "raise", "AxisLabelsMismatchError", "(", "\"{} expected axis labels \"", "\"{}, got {} instead\"", ".", "format", "(", "self", ".", "__class__", ".", "__name__", ",", "expected", ",", "actual", ")", ")", "self", ".", "_checked_axis_labels", "[", "source_name", "]", "=", "True" ]
Verify that axis labels for a given source are as expected. Parameters ---------- expected : tuple A tuple of strings representing the expected axis labels. actual : tuple or None A tuple of strings representing the actual axis labels, or `None` if they could not be determined. source_name : str The name of the source being checked. Used for caching the results of checks so that the check is only performed once. Notes ----- Logs a warning in case of `actual=None`, raises an error on other mismatches.
[ "Verify", "that", "axis", "labels", "for", "a", "given", "source", "are", "as", "expected", "." ]
1d6292dc25e3a115544237e392e61bff6631d23c
https://github.com/mila-iqia/fuel/blob/1d6292dc25e3a115544237e392e61bff6631d23c/fuel/transformers/__init__.py#L34-L67
train
mila-iqia/fuel
fuel/transformers/__init__.py
Batch.get_data
def get_data(self, request=None): """Get data from the dataset.""" if request is None: raise ValueError data = [[] for _ in self.sources] for i in range(request): try: for source_data, example in zip( data, next(self.child_epoch_iterator)): source_data.append(example) except StopIteration: # If some data has been extracted and `strict` is not set, # we should spit out this data before stopping iteration. if not self.strictness and data[0]: break elif self.strictness > 1 and data[0]: raise ValueError raise return tuple(numpy.asarray(source_data) for source_data in data)
python
def get_data(self, request=None): """Get data from the dataset.""" if request is None: raise ValueError data = [[] for _ in self.sources] for i in range(request): try: for source_data, example in zip( data, next(self.child_epoch_iterator)): source_data.append(example) except StopIteration: # If some data has been extracted and `strict` is not set, # we should spit out this data before stopping iteration. if not self.strictness and data[0]: break elif self.strictness > 1 and data[0]: raise ValueError raise return tuple(numpy.asarray(source_data) for source_data in data)
[ "def", "get_data", "(", "self", ",", "request", "=", "None", ")", ":", "if", "request", "is", "None", ":", "raise", "ValueError", "data", "=", "[", "[", "]", "for", "_", "in", "self", ".", "sources", "]", "for", "i", "in", "range", "(", "request", ")", ":", "try", ":", "for", "source_data", ",", "example", "in", "zip", "(", "data", ",", "next", "(", "self", ".", "child_epoch_iterator", ")", ")", ":", "source_data", ".", "append", "(", "example", ")", "except", "StopIteration", ":", "# If some data has been extracted and `strict` is not set,", "# we should spit out this data before stopping iteration.", "if", "not", "self", ".", "strictness", "and", "data", "[", "0", "]", ":", "break", "elif", "self", ".", "strictness", ">", "1", "and", "data", "[", "0", "]", ":", "raise", "ValueError", "raise", "return", "tuple", "(", "numpy", ".", "asarray", "(", "source_data", ")", "for", "source_data", "in", "data", ")" ]
Get data from the dataset.
[ "Get", "data", "from", "the", "dataset", "." ]
1d6292dc25e3a115544237e392e61bff6631d23c
https://github.com/mila-iqia/fuel/blob/1d6292dc25e3a115544237e392e61bff6631d23c/fuel/transformers/__init__.py#L608-L626
train
mila-iqia/fuel
fuel/utils/parallel.py
_producer_wrapper
def _producer_wrapper(f, port, addr='tcp://127.0.0.1'): """A shim that sets up a socket and starts the producer callable. Parameters ---------- f : callable Callable that takes a single argument, a handle for a ZeroMQ PUSH socket. Must be picklable. port : int The port on which the socket should connect. addr : str, optional Address to which the socket should connect. Defaults to localhost ('tcp://127.0.0.1'). """ try: context = zmq.Context() socket = context.socket(zmq.PUSH) socket.connect(':'.join([addr, str(port)])) f(socket) finally: # Works around a Python 3.x bug. context.destroy()
python
def _producer_wrapper(f, port, addr='tcp://127.0.0.1'): """A shim that sets up a socket and starts the producer callable. Parameters ---------- f : callable Callable that takes a single argument, a handle for a ZeroMQ PUSH socket. Must be picklable. port : int The port on which the socket should connect. addr : str, optional Address to which the socket should connect. Defaults to localhost ('tcp://127.0.0.1'). """ try: context = zmq.Context() socket = context.socket(zmq.PUSH) socket.connect(':'.join([addr, str(port)])) f(socket) finally: # Works around a Python 3.x bug. context.destroy()
[ "def", "_producer_wrapper", "(", "f", ",", "port", ",", "addr", "=", "'tcp://127.0.0.1'", ")", ":", "try", ":", "context", "=", "zmq", ".", "Context", "(", ")", "socket", "=", "context", ".", "socket", "(", "zmq", ".", "PUSH", ")", "socket", ".", "connect", "(", "':'", ".", "join", "(", "[", "addr", ",", "str", "(", "port", ")", "]", ")", ")", "f", "(", "socket", ")", "finally", ":", "# Works around a Python 3.x bug.", "context", ".", "destroy", "(", ")" ]
A shim that sets up a socket and starts the producer callable. Parameters ---------- f : callable Callable that takes a single argument, a handle for a ZeroMQ PUSH socket. Must be picklable. port : int The port on which the socket should connect. addr : str, optional Address to which the socket should connect. Defaults to localhost ('tcp://127.0.0.1').
[ "A", "shim", "that", "sets", "up", "a", "socket", "and", "starts", "the", "producer", "callable", "." ]
1d6292dc25e3a115544237e392e61bff6631d23c
https://github.com/mila-iqia/fuel/blob/1d6292dc25e3a115544237e392e61bff6631d23c/fuel/utils/parallel.py#L14-L36
train
mila-iqia/fuel
fuel/utils/parallel.py
_spawn_producer
def _spawn_producer(f, port, addr='tcp://127.0.0.1'): """Start a process that sends results on a PUSH socket. Parameters ---------- f : callable Callable that takes a single argument, a handle for a ZeroMQ PUSH socket. Must be picklable. Returns ------- process : multiprocessing.Process The process handle of the created producer process. """ process = Process(target=_producer_wrapper, args=(f, port, addr)) process.start() return process
python
def _spawn_producer(f, port, addr='tcp://127.0.0.1'): """Start a process that sends results on a PUSH socket. Parameters ---------- f : callable Callable that takes a single argument, a handle for a ZeroMQ PUSH socket. Must be picklable. Returns ------- process : multiprocessing.Process The process handle of the created producer process. """ process = Process(target=_producer_wrapper, args=(f, port, addr)) process.start() return process
[ "def", "_spawn_producer", "(", "f", ",", "port", ",", "addr", "=", "'tcp://127.0.0.1'", ")", ":", "process", "=", "Process", "(", "target", "=", "_producer_wrapper", ",", "args", "=", "(", "f", ",", "port", ",", "addr", ")", ")", "process", ".", "start", "(", ")", "return", "process" ]
Start a process that sends results on a PUSH socket. Parameters ---------- f : callable Callable that takes a single argument, a handle for a ZeroMQ PUSH socket. Must be picklable. Returns ------- process : multiprocessing.Process The process handle of the created producer process.
[ "Start", "a", "process", "that", "sends", "results", "on", "a", "PUSH", "socket", "." ]
1d6292dc25e3a115544237e392e61bff6631d23c
https://github.com/mila-iqia/fuel/blob/1d6292dc25e3a115544237e392e61bff6631d23c/fuel/utils/parallel.py#L39-L56
train
mila-iqia/fuel
fuel/utils/parallel.py
producer_consumer
def producer_consumer(producer, consumer, addr='tcp://127.0.0.1', port=None, context=None): """A producer-consumer pattern. Parameters ---------- producer : callable Callable that takes a single argument, a handle for a ZeroMQ PUSH socket. Must be picklable. consumer : callable Callable that takes a single argument, a handle for a ZeroMQ PULL socket. addr : str, optional Address to which the socket should connect. Defaults to localhost ('tcp://127.0.0.1'). port : int, optional The port on which the consumer should listen. context : zmq.Context, optional The ZeroMQ Context to use. One will be created otherwise. Returns ------- result Passes along whatever `consumer` returns. Notes ----- This sets up a PULL socket in the calling process and forks a process that calls `producer` on a PUSH socket. When the consumer returns, the producer process is terminated. Wrap `consumer` or `producer` in a `functools.partial` object in order to send additional arguments; the callables passed in should expect only one required, positional argument, the socket handle. """ context_created = False if context is None: context_created = True context = zmq.Context() try: consumer_socket = context.socket(zmq.PULL) if port is None: port = consumer_socket.bind_to_random_port(addr) try: process = _spawn_producer(producer, port) result = consumer(consumer_socket) finally: process.terminate() return result finally: # Works around a Python 3.x bug. if context_created: context.destroy()
python
def producer_consumer(producer, consumer, addr='tcp://127.0.0.1', port=None, context=None): """A producer-consumer pattern. Parameters ---------- producer : callable Callable that takes a single argument, a handle for a ZeroMQ PUSH socket. Must be picklable. consumer : callable Callable that takes a single argument, a handle for a ZeroMQ PULL socket. addr : str, optional Address to which the socket should connect. Defaults to localhost ('tcp://127.0.0.1'). port : int, optional The port on which the consumer should listen. context : zmq.Context, optional The ZeroMQ Context to use. One will be created otherwise. Returns ------- result Passes along whatever `consumer` returns. Notes ----- This sets up a PULL socket in the calling process and forks a process that calls `producer` on a PUSH socket. When the consumer returns, the producer process is terminated. Wrap `consumer` or `producer` in a `functools.partial` object in order to send additional arguments; the callables passed in should expect only one required, positional argument, the socket handle. """ context_created = False if context is None: context_created = True context = zmq.Context() try: consumer_socket = context.socket(zmq.PULL) if port is None: port = consumer_socket.bind_to_random_port(addr) try: process = _spawn_producer(producer, port) result = consumer(consumer_socket) finally: process.terminate() return result finally: # Works around a Python 3.x bug. if context_created: context.destroy()
[ "def", "producer_consumer", "(", "producer", ",", "consumer", ",", "addr", "=", "'tcp://127.0.0.1'", ",", "port", "=", "None", ",", "context", "=", "None", ")", ":", "context_created", "=", "False", "if", "context", "is", "None", ":", "context_created", "=", "True", "context", "=", "zmq", ".", "Context", "(", ")", "try", ":", "consumer_socket", "=", "context", ".", "socket", "(", "zmq", ".", "PULL", ")", "if", "port", "is", "None", ":", "port", "=", "consumer_socket", ".", "bind_to_random_port", "(", "addr", ")", "try", ":", "process", "=", "_spawn_producer", "(", "producer", ",", "port", ")", "result", "=", "consumer", "(", "consumer_socket", ")", "finally", ":", "process", ".", "terminate", "(", ")", "return", "result", "finally", ":", "# Works around a Python 3.x bug.", "if", "context_created", ":", "context", ".", "destroy", "(", ")" ]
A producer-consumer pattern. Parameters ---------- producer : callable Callable that takes a single argument, a handle for a ZeroMQ PUSH socket. Must be picklable. consumer : callable Callable that takes a single argument, a handle for a ZeroMQ PULL socket. addr : str, optional Address to which the socket should connect. Defaults to localhost ('tcp://127.0.0.1'). port : int, optional The port on which the consumer should listen. context : zmq.Context, optional The ZeroMQ Context to use. One will be created otherwise. Returns ------- result Passes along whatever `consumer` returns. Notes ----- This sets up a PULL socket in the calling process and forks a process that calls `producer` on a PUSH socket. When the consumer returns, the producer process is terminated. Wrap `consumer` or `producer` in a `functools.partial` object in order to send additional arguments; the callables passed in should expect only one required, positional argument, the socket handle.
[ "A", "producer", "-", "consumer", "pattern", "." ]
1d6292dc25e3a115544237e392e61bff6631d23c
https://github.com/mila-iqia/fuel/blob/1d6292dc25e3a115544237e392e61bff6631d23c/fuel/utils/parallel.py#L59-L113
train
mila-iqia/fuel
fuel/converters/dogs_vs_cats.py
convert_dogs_vs_cats
def convert_dogs_vs_cats(directory, output_directory, output_filename='dogs_vs_cats.hdf5'): """Converts the Dogs vs. Cats dataset to HDF5. Converts the Dogs vs. Cats dataset to an HDF5 dataset compatible with :class:`fuel.datasets.dogs_vs_cats`. The converted dataset is saved as 'dogs_vs_cats.hdf5'. It assumes the existence of the following files: * `dogs_vs_cats.train.zip` * `dogs_vs_cats.test1.zip` Parameters ---------- directory : str Directory in which input files reside. output_directory : str Directory in which to save the converted dataset. output_filename : str, optional Name of the saved dataset. Defaults to 'dogs_vs_cats.hdf5'. Returns ------- output_paths : tuple of str Single-element tuple containing the path to the converted dataset. """ # Prepare output file output_path = os.path.join(output_directory, output_filename) h5file = h5py.File(output_path, mode='w') dtype = h5py.special_dtype(vlen=numpy.dtype('uint8')) hdf_features = h5file.create_dataset('image_features', (37500,), dtype=dtype) hdf_shapes = h5file.create_dataset('image_features_shapes', (37500, 3), dtype='int32') hdf_labels = h5file.create_dataset('targets', (25000, 1), dtype='uint8') # Attach shape annotations and scales hdf_features.dims.create_scale(hdf_shapes, 'shapes') hdf_features.dims[0].attach_scale(hdf_shapes) hdf_shapes_labels = h5file.create_dataset('image_features_shapes_labels', (3,), dtype='S7') hdf_shapes_labels[...] = ['channel'.encode('utf8'), 'height'.encode('utf8'), 'width'.encode('utf8')] hdf_features.dims.create_scale(hdf_shapes_labels, 'shape_labels') hdf_features.dims[0].attach_scale(hdf_shapes_labels) # Add axis annotations hdf_features.dims[0].label = 'batch' hdf_labels.dims[0].label = 'batch' hdf_labels.dims[1].label = 'index' # Convert i = 0 for split, split_size in zip([TRAIN, TEST], [25000, 12500]): # Open the ZIP file filename = os.path.join(directory, split) zip_file = zipfile.ZipFile(filename, 'r') image_names = zip_file.namelist()[1:] # Discard the directory name # Shuffle the examples if split == TRAIN: rng = numpy.random.RandomState(123522) rng.shuffle(image_names) else: image_names.sort(key=lambda fn: int(os.path.splitext(fn[6:])[0])) # Convert from JPEG to NumPy arrays with progress_bar(filename, split_size) as bar: for image_name in image_names: # Save image image = numpy.array(Image.open(zip_file.open(image_name))) image = image.transpose(2, 0, 1) hdf_features[i] = image.flatten() hdf_shapes[i] = image.shape # Cats are 0, Dogs are 1 if split == TRAIN: hdf_labels[i] = 0 if 'cat' in image_name else 1 # Update progress i += 1 bar.update(i if split == TRAIN else i - 25000) # Add the labels split_dict = {} sources = ['image_features', 'targets'] split_dict['train'] = dict(zip(sources, [(0, 25000)] * 2)) split_dict['test'] = {sources[0]: (25000, 37500)} h5file.attrs['split'] = H5PYDataset.create_split_array(split_dict) h5file.flush() h5file.close() return (output_path,)
python
def convert_dogs_vs_cats(directory, output_directory, output_filename='dogs_vs_cats.hdf5'): """Converts the Dogs vs. Cats dataset to HDF5. Converts the Dogs vs. Cats dataset to an HDF5 dataset compatible with :class:`fuel.datasets.dogs_vs_cats`. The converted dataset is saved as 'dogs_vs_cats.hdf5'. It assumes the existence of the following files: * `dogs_vs_cats.train.zip` * `dogs_vs_cats.test1.zip` Parameters ---------- directory : str Directory in which input files reside. output_directory : str Directory in which to save the converted dataset. output_filename : str, optional Name of the saved dataset. Defaults to 'dogs_vs_cats.hdf5'. Returns ------- output_paths : tuple of str Single-element tuple containing the path to the converted dataset. """ # Prepare output file output_path = os.path.join(output_directory, output_filename) h5file = h5py.File(output_path, mode='w') dtype = h5py.special_dtype(vlen=numpy.dtype('uint8')) hdf_features = h5file.create_dataset('image_features', (37500,), dtype=dtype) hdf_shapes = h5file.create_dataset('image_features_shapes', (37500, 3), dtype='int32') hdf_labels = h5file.create_dataset('targets', (25000, 1), dtype='uint8') # Attach shape annotations and scales hdf_features.dims.create_scale(hdf_shapes, 'shapes') hdf_features.dims[0].attach_scale(hdf_shapes) hdf_shapes_labels = h5file.create_dataset('image_features_shapes_labels', (3,), dtype='S7') hdf_shapes_labels[...] = ['channel'.encode('utf8'), 'height'.encode('utf8'), 'width'.encode('utf8')] hdf_features.dims.create_scale(hdf_shapes_labels, 'shape_labels') hdf_features.dims[0].attach_scale(hdf_shapes_labels) # Add axis annotations hdf_features.dims[0].label = 'batch' hdf_labels.dims[0].label = 'batch' hdf_labels.dims[1].label = 'index' # Convert i = 0 for split, split_size in zip([TRAIN, TEST], [25000, 12500]): # Open the ZIP file filename = os.path.join(directory, split) zip_file = zipfile.ZipFile(filename, 'r') image_names = zip_file.namelist()[1:] # Discard the directory name # Shuffle the examples if split == TRAIN: rng = numpy.random.RandomState(123522) rng.shuffle(image_names) else: image_names.sort(key=lambda fn: int(os.path.splitext(fn[6:])[0])) # Convert from JPEG to NumPy arrays with progress_bar(filename, split_size) as bar: for image_name in image_names: # Save image image = numpy.array(Image.open(zip_file.open(image_name))) image = image.transpose(2, 0, 1) hdf_features[i] = image.flatten() hdf_shapes[i] = image.shape # Cats are 0, Dogs are 1 if split == TRAIN: hdf_labels[i] = 0 if 'cat' in image_name else 1 # Update progress i += 1 bar.update(i if split == TRAIN else i - 25000) # Add the labels split_dict = {} sources = ['image_features', 'targets'] split_dict['train'] = dict(zip(sources, [(0, 25000)] * 2)) split_dict['test'] = {sources[0]: (25000, 37500)} h5file.attrs['split'] = H5PYDataset.create_split_array(split_dict) h5file.flush() h5file.close() return (output_path,)
[ "def", "convert_dogs_vs_cats", "(", "directory", ",", "output_directory", ",", "output_filename", "=", "'dogs_vs_cats.hdf5'", ")", ":", "# Prepare output file", "output_path", "=", "os", ".", "path", ".", "join", "(", "output_directory", ",", "output_filename", ")", "h5file", "=", "h5py", ".", "File", "(", "output_path", ",", "mode", "=", "'w'", ")", "dtype", "=", "h5py", ".", "special_dtype", "(", "vlen", "=", "numpy", ".", "dtype", "(", "'uint8'", ")", ")", "hdf_features", "=", "h5file", ".", "create_dataset", "(", "'image_features'", ",", "(", "37500", ",", ")", ",", "dtype", "=", "dtype", ")", "hdf_shapes", "=", "h5file", ".", "create_dataset", "(", "'image_features_shapes'", ",", "(", "37500", ",", "3", ")", ",", "dtype", "=", "'int32'", ")", "hdf_labels", "=", "h5file", ".", "create_dataset", "(", "'targets'", ",", "(", "25000", ",", "1", ")", ",", "dtype", "=", "'uint8'", ")", "# Attach shape annotations and scales", "hdf_features", ".", "dims", ".", "create_scale", "(", "hdf_shapes", ",", "'shapes'", ")", "hdf_features", ".", "dims", "[", "0", "]", ".", "attach_scale", "(", "hdf_shapes", ")", "hdf_shapes_labels", "=", "h5file", ".", "create_dataset", "(", "'image_features_shapes_labels'", ",", "(", "3", ",", ")", ",", "dtype", "=", "'S7'", ")", "hdf_shapes_labels", "[", "...", "]", "=", "[", "'channel'", ".", "encode", "(", "'utf8'", ")", ",", "'height'", ".", "encode", "(", "'utf8'", ")", ",", "'width'", ".", "encode", "(", "'utf8'", ")", "]", "hdf_features", ".", "dims", ".", "create_scale", "(", "hdf_shapes_labels", ",", "'shape_labels'", ")", "hdf_features", ".", "dims", "[", "0", "]", ".", "attach_scale", "(", "hdf_shapes_labels", ")", "# Add axis annotations", "hdf_features", ".", "dims", "[", "0", "]", ".", "label", "=", "'batch'", "hdf_labels", ".", "dims", "[", "0", "]", ".", "label", "=", "'batch'", "hdf_labels", ".", "dims", "[", "1", "]", ".", "label", "=", "'index'", "# Convert", "i", "=", "0", "for", "split", ",", "split_size", "in", "zip", "(", "[", "TRAIN", ",", "TEST", "]", ",", "[", "25000", ",", "12500", "]", ")", ":", "# Open the ZIP file", "filename", "=", "os", ".", "path", ".", "join", "(", "directory", ",", "split", ")", "zip_file", "=", "zipfile", ".", "ZipFile", "(", "filename", ",", "'r'", ")", "image_names", "=", "zip_file", ".", "namelist", "(", ")", "[", "1", ":", "]", "# Discard the directory name", "# Shuffle the examples", "if", "split", "==", "TRAIN", ":", "rng", "=", "numpy", ".", "random", ".", "RandomState", "(", "123522", ")", "rng", ".", "shuffle", "(", "image_names", ")", "else", ":", "image_names", ".", "sort", "(", "key", "=", "lambda", "fn", ":", "int", "(", "os", ".", "path", ".", "splitext", "(", "fn", "[", "6", ":", "]", ")", "[", "0", "]", ")", ")", "# Convert from JPEG to NumPy arrays", "with", "progress_bar", "(", "filename", ",", "split_size", ")", "as", "bar", ":", "for", "image_name", "in", "image_names", ":", "# Save image", "image", "=", "numpy", ".", "array", "(", "Image", ".", "open", "(", "zip_file", ".", "open", "(", "image_name", ")", ")", ")", "image", "=", "image", ".", "transpose", "(", "2", ",", "0", ",", "1", ")", "hdf_features", "[", "i", "]", "=", "image", ".", "flatten", "(", ")", "hdf_shapes", "[", "i", "]", "=", "image", ".", "shape", "# Cats are 0, Dogs are 1", "if", "split", "==", "TRAIN", ":", "hdf_labels", "[", "i", "]", "=", "0", "if", "'cat'", "in", "image_name", "else", "1", "# Update progress", "i", "+=", "1", "bar", ".", "update", "(", "i", "if", "split", "==", "TRAIN", "else", "i", "-", "25000", ")", "# Add the labels", "split_dict", "=", "{", "}", "sources", "=", "[", "'image_features'", ",", "'targets'", "]", "split_dict", "[", "'train'", "]", "=", "dict", "(", "zip", "(", "sources", ",", "[", "(", "0", ",", "25000", ")", "]", "*", "2", ")", ")", "split_dict", "[", "'test'", "]", "=", "{", "sources", "[", "0", "]", ":", "(", "25000", ",", "37500", ")", "}", "h5file", ".", "attrs", "[", "'split'", "]", "=", "H5PYDataset", ".", "create_split_array", "(", "split_dict", ")", "h5file", ".", "flush", "(", ")", "h5file", ".", "close", "(", ")", "return", "(", "output_path", ",", ")" ]
Converts the Dogs vs. Cats dataset to HDF5. Converts the Dogs vs. Cats dataset to an HDF5 dataset compatible with :class:`fuel.datasets.dogs_vs_cats`. The converted dataset is saved as 'dogs_vs_cats.hdf5'. It assumes the existence of the following files: * `dogs_vs_cats.train.zip` * `dogs_vs_cats.test1.zip` Parameters ---------- directory : str Directory in which input files reside. output_directory : str Directory in which to save the converted dataset. output_filename : str, optional Name of the saved dataset. Defaults to 'dogs_vs_cats.hdf5'. Returns ------- output_paths : tuple of str Single-element tuple containing the path to the converted dataset.
[ "Converts", "the", "Dogs", "vs", ".", "Cats", "dataset", "to", "HDF5", "." ]
1d6292dc25e3a115544237e392e61bff6631d23c
https://github.com/mila-iqia/fuel/blob/1d6292dc25e3a115544237e392e61bff6631d23c/fuel/converters/dogs_vs_cats.py#L16-L113
train
mila-iqia/fuel
fuel/bin/fuel_download.py
main
def main(args=None): """Entry point for `fuel-download` script. This function can also be imported and used from Python. Parameters ---------- args : iterable, optional (default: None) A list of arguments that will be passed to Fuel's downloading utility. If this argument is not specified, `sys.argv[1:]` will be used. """ built_in_datasets = dict(downloaders.all_downloaders) if fuel.config.extra_downloaders: for name in fuel.config.extra_downloaders: extra_datasets = dict( importlib.import_module(name).all_downloaders) if any(key in built_in_datasets for key in extra_datasets.keys()): raise ValueError('extra downloaders conflict in name with ' 'built-in downloaders') built_in_datasets.update(extra_datasets) parser = argparse.ArgumentParser( description='Download script for built-in datasets.') parent_parser = argparse.ArgumentParser(add_help=False) parent_parser.add_argument( "-d", "--directory", help="where to save the downloaded files", type=str, default=os.getcwd()) parent_parser.add_argument( "--clear", help="clear the downloaded files", action='store_true') subparsers = parser.add_subparsers() download_functions = {} for name, fill_subparser in built_in_datasets.items(): subparser = subparsers.add_parser( name, parents=[parent_parser], help='Download the {} dataset'.format(name)) # Allows the parser to know which subparser was called. subparser.set_defaults(which_=name) download_functions[name] = fill_subparser(subparser) args = parser.parse_args() args_dict = vars(args) download_function = download_functions[args_dict.pop('which_')] try: download_function(**args_dict) except NeedURLPrefix: parser.error(url_prefix_message)
python
def main(args=None): """Entry point for `fuel-download` script. This function can also be imported and used from Python. Parameters ---------- args : iterable, optional (default: None) A list of arguments that will be passed to Fuel's downloading utility. If this argument is not specified, `sys.argv[1:]` will be used. """ built_in_datasets = dict(downloaders.all_downloaders) if fuel.config.extra_downloaders: for name in fuel.config.extra_downloaders: extra_datasets = dict( importlib.import_module(name).all_downloaders) if any(key in built_in_datasets for key in extra_datasets.keys()): raise ValueError('extra downloaders conflict in name with ' 'built-in downloaders') built_in_datasets.update(extra_datasets) parser = argparse.ArgumentParser( description='Download script for built-in datasets.') parent_parser = argparse.ArgumentParser(add_help=False) parent_parser.add_argument( "-d", "--directory", help="where to save the downloaded files", type=str, default=os.getcwd()) parent_parser.add_argument( "--clear", help="clear the downloaded files", action='store_true') subparsers = parser.add_subparsers() download_functions = {} for name, fill_subparser in built_in_datasets.items(): subparser = subparsers.add_parser( name, parents=[parent_parser], help='Download the {} dataset'.format(name)) # Allows the parser to know which subparser was called. subparser.set_defaults(which_=name) download_functions[name] = fill_subparser(subparser) args = parser.parse_args() args_dict = vars(args) download_function = download_functions[args_dict.pop('which_')] try: download_function(**args_dict) except NeedURLPrefix: parser.error(url_prefix_message)
[ "def", "main", "(", "args", "=", "None", ")", ":", "built_in_datasets", "=", "dict", "(", "downloaders", ".", "all_downloaders", ")", "if", "fuel", ".", "config", ".", "extra_downloaders", ":", "for", "name", "in", "fuel", ".", "config", ".", "extra_downloaders", ":", "extra_datasets", "=", "dict", "(", "importlib", ".", "import_module", "(", "name", ")", ".", "all_downloaders", ")", "if", "any", "(", "key", "in", "built_in_datasets", "for", "key", "in", "extra_datasets", ".", "keys", "(", ")", ")", ":", "raise", "ValueError", "(", "'extra downloaders conflict in name with '", "'built-in downloaders'", ")", "built_in_datasets", ".", "update", "(", "extra_datasets", ")", "parser", "=", "argparse", ".", "ArgumentParser", "(", "description", "=", "'Download script for built-in datasets.'", ")", "parent_parser", "=", "argparse", ".", "ArgumentParser", "(", "add_help", "=", "False", ")", "parent_parser", ".", "add_argument", "(", "\"-d\"", ",", "\"--directory\"", ",", "help", "=", "\"where to save the downloaded files\"", ",", "type", "=", "str", ",", "default", "=", "os", ".", "getcwd", "(", ")", ")", "parent_parser", ".", "add_argument", "(", "\"--clear\"", ",", "help", "=", "\"clear the downloaded files\"", ",", "action", "=", "'store_true'", ")", "subparsers", "=", "parser", ".", "add_subparsers", "(", ")", "download_functions", "=", "{", "}", "for", "name", ",", "fill_subparser", "in", "built_in_datasets", ".", "items", "(", ")", ":", "subparser", "=", "subparsers", ".", "add_parser", "(", "name", ",", "parents", "=", "[", "parent_parser", "]", ",", "help", "=", "'Download the {} dataset'", ".", "format", "(", "name", ")", ")", "# Allows the parser to know which subparser was called.", "subparser", ".", "set_defaults", "(", "which_", "=", "name", ")", "download_functions", "[", "name", "]", "=", "fill_subparser", "(", "subparser", ")", "args", "=", "parser", ".", "parse_args", "(", ")", "args_dict", "=", "vars", "(", "args", ")", "download_function", "=", "download_functions", "[", "args_dict", ".", "pop", "(", "'which_'", ")", "]", "try", ":", "download_function", "(", "*", "*", "args_dict", ")", "except", "NeedURLPrefix", ":", "parser", ".", "error", "(", "url_prefix_message", ")" ]
Entry point for `fuel-download` script. This function can also be imported and used from Python. Parameters ---------- args : iterable, optional (default: None) A list of arguments that will be passed to Fuel's downloading utility. If this argument is not specified, `sys.argv[1:]` will be used.
[ "Entry", "point", "for", "fuel", "-", "download", "script", "." ]
1d6292dc25e3a115544237e392e61bff6631d23c
https://github.com/mila-iqia/fuel/blob/1d6292dc25e3a115544237e392e61bff6631d23c/fuel/bin/fuel_download.py#L19-L64
train
mila-iqia/fuel
fuel/downloaders/mnist.py
fill_subparser
def fill_subparser(subparser): """Sets up a subparser to download the MNIST dataset files. The following MNIST dataset files are downloaded from Yann LeCun's website [LECUN]: `train-images-idx3-ubyte.gz`, `train-labels-idx1-ubyte.gz`, `t10k-images-idx3-ubyte.gz`, `t10k-labels-idx1-ubyte.gz`. Parameters ---------- subparser : :class:`argparse.ArgumentParser` Subparser handling the `mnist` command. """ filenames = ['train-images-idx3-ubyte.gz', 'train-labels-idx1-ubyte.gz', 't10k-images-idx3-ubyte.gz', 't10k-labels-idx1-ubyte.gz'] urls = ['http://yann.lecun.com/exdb/mnist/' + f for f in filenames] subparser.set_defaults(urls=urls, filenames=filenames) return default_downloader
python
def fill_subparser(subparser): """Sets up a subparser to download the MNIST dataset files. The following MNIST dataset files are downloaded from Yann LeCun's website [LECUN]: `train-images-idx3-ubyte.gz`, `train-labels-idx1-ubyte.gz`, `t10k-images-idx3-ubyte.gz`, `t10k-labels-idx1-ubyte.gz`. Parameters ---------- subparser : :class:`argparse.ArgumentParser` Subparser handling the `mnist` command. """ filenames = ['train-images-idx3-ubyte.gz', 'train-labels-idx1-ubyte.gz', 't10k-images-idx3-ubyte.gz', 't10k-labels-idx1-ubyte.gz'] urls = ['http://yann.lecun.com/exdb/mnist/' + f for f in filenames] subparser.set_defaults(urls=urls, filenames=filenames) return default_downloader
[ "def", "fill_subparser", "(", "subparser", ")", ":", "filenames", "=", "[", "'train-images-idx3-ubyte.gz'", ",", "'train-labels-idx1-ubyte.gz'", ",", "'t10k-images-idx3-ubyte.gz'", ",", "'t10k-labels-idx1-ubyte.gz'", "]", "urls", "=", "[", "'http://yann.lecun.com/exdb/mnist/'", "+", "f", "for", "f", "in", "filenames", "]", "subparser", ".", "set_defaults", "(", "urls", "=", "urls", ",", "filenames", "=", "filenames", ")", "return", "default_downloader" ]
Sets up a subparser to download the MNIST dataset files. The following MNIST dataset files are downloaded from Yann LeCun's website [LECUN]: `train-images-idx3-ubyte.gz`, `train-labels-idx1-ubyte.gz`, `t10k-images-idx3-ubyte.gz`, `t10k-labels-idx1-ubyte.gz`. Parameters ---------- subparser : :class:`argparse.ArgumentParser` Subparser handling the `mnist` command.
[ "Sets", "up", "a", "subparser", "to", "download", "the", "MNIST", "dataset", "files", "." ]
1d6292dc25e3a115544237e392e61bff6631d23c
https://github.com/mila-iqia/fuel/blob/1d6292dc25e3a115544237e392e61bff6631d23c/fuel/downloaders/mnist.py#L4-L22
train
mila-iqia/fuel
fuel/bin/fuel_info.py
main
def main(args=None): """Entry point for `fuel-info` script. This function can also be imported and used from Python. Parameters ---------- args : iterable, optional (default: None) A list of arguments that will be passed to Fuel's information utility. If this argument is not specified, `sys.argv[1:]` will be used. """ parser = argparse.ArgumentParser( description='Extracts metadata from a Fuel-converted HDF5 file.') parser.add_argument("filename", help="HDF5 file to analyze") args = parser.parse_args() with h5py.File(args.filename, 'r') as h5file: interface_version = h5file.attrs.get('h5py_interface_version', 'N/A') fuel_convert_version = h5file.attrs.get('fuel_convert_version', 'N/A') fuel_convert_command = h5file.attrs.get('fuel_convert_command', 'N/A') message_prefix = message_prefix_template.format( os.path.basename(args.filename)) message_body = message_body_template.format( fuel_convert_command, interface_version, fuel_convert_version) message = ''.join(['\n', message_prefix, '\n', '=' * len(message_prefix), message_body]) print(message)
python
def main(args=None): """Entry point for `fuel-info` script. This function can also be imported and used from Python. Parameters ---------- args : iterable, optional (default: None) A list of arguments that will be passed to Fuel's information utility. If this argument is not specified, `sys.argv[1:]` will be used. """ parser = argparse.ArgumentParser( description='Extracts metadata from a Fuel-converted HDF5 file.') parser.add_argument("filename", help="HDF5 file to analyze") args = parser.parse_args() with h5py.File(args.filename, 'r') as h5file: interface_version = h5file.attrs.get('h5py_interface_version', 'N/A') fuel_convert_version = h5file.attrs.get('fuel_convert_version', 'N/A') fuel_convert_command = h5file.attrs.get('fuel_convert_command', 'N/A') message_prefix = message_prefix_template.format( os.path.basename(args.filename)) message_body = message_body_template.format( fuel_convert_command, interface_version, fuel_convert_version) message = ''.join(['\n', message_prefix, '\n', '=' * len(message_prefix), message_body]) print(message)
[ "def", "main", "(", "args", "=", "None", ")", ":", "parser", "=", "argparse", ".", "ArgumentParser", "(", "description", "=", "'Extracts metadata from a Fuel-converted HDF5 file.'", ")", "parser", ".", "add_argument", "(", "\"filename\"", ",", "help", "=", "\"HDF5 file to analyze\"", ")", "args", "=", "parser", ".", "parse_args", "(", ")", "with", "h5py", ".", "File", "(", "args", ".", "filename", ",", "'r'", ")", "as", "h5file", ":", "interface_version", "=", "h5file", ".", "attrs", ".", "get", "(", "'h5py_interface_version'", ",", "'N/A'", ")", "fuel_convert_version", "=", "h5file", ".", "attrs", ".", "get", "(", "'fuel_convert_version'", ",", "'N/A'", ")", "fuel_convert_command", "=", "h5file", ".", "attrs", ".", "get", "(", "'fuel_convert_command'", ",", "'N/A'", ")", "message_prefix", "=", "message_prefix_template", ".", "format", "(", "os", ".", "path", ".", "basename", "(", "args", ".", "filename", ")", ")", "message_body", "=", "message_body_template", ".", "format", "(", "fuel_convert_command", ",", "interface_version", ",", "fuel_convert_version", ")", "message", "=", "''", ".", "join", "(", "[", "'\\n'", ",", "message_prefix", ",", "'\\n'", ",", "'='", "*", "len", "(", "message_prefix", ")", ",", "message_body", "]", ")", "print", "(", "message", ")" ]
Entry point for `fuel-info` script. This function can also be imported and used from Python. Parameters ---------- args : iterable, optional (default: None) A list of arguments that will be passed to Fuel's information utility. If this argument is not specified, `sys.argv[1:]` will be used.
[ "Entry", "point", "for", "fuel", "-", "info", "script", "." ]
1d6292dc25e3a115544237e392e61bff6631d23c
https://github.com/mila-iqia/fuel/blob/1d6292dc25e3a115544237e392e61bff6631d23c/fuel/bin/fuel_info.py#L22-L51
train
mila-iqia/fuel
fuel/converters/caltech101_silhouettes.py
convert_silhouettes
def convert_silhouettes(size, directory, output_directory, output_filename=None): """ Convert the CalTech 101 Silhouettes Datasets. Parameters ---------- size : {16, 28} Convert either the 16x16 or 28x28 sized version of the dataset. directory : str Directory in which the required input files reside. output_filename : str Where to save the converted dataset. """ if size not in (16, 28): raise ValueError('size must be 16 or 28') if output_filename is None: output_filename = 'caltech101_silhouettes{}.hdf5'.format(size) output_file = os.path.join(output_directory, output_filename) input_file = 'caltech101_silhouettes_{}_split1.mat'.format(size) input_file = os.path.join(directory, input_file) if not os.path.isfile(input_file): raise MissingInputFiles('Required files missing', [input_file]) with h5py.File(output_file, mode="w") as h5file: mat = loadmat(input_file) train_features = mat['train_data'].reshape([-1, 1, size, size]) train_targets = mat['train_labels'] valid_features = mat['val_data'].reshape([-1, 1, size, size]) valid_targets = mat['val_labels'] test_features = mat['test_data'].reshape([-1, 1, size, size]) test_targets = mat['test_labels'] data = ( ('train', 'features', train_features), ('train', 'targets', train_targets), ('valid', 'features', valid_features), ('valid', 'targets', valid_targets), ('test', 'features', test_features), ('test', 'targets', test_targets), ) fill_hdf5_file(h5file, data) for i, label in enumerate(('batch', 'channel', 'height', 'width')): h5file['features'].dims[i].label = label for i, label in enumerate(('batch', 'index')): h5file['targets'].dims[i].label = label return (output_file,)
python
def convert_silhouettes(size, directory, output_directory, output_filename=None): """ Convert the CalTech 101 Silhouettes Datasets. Parameters ---------- size : {16, 28} Convert either the 16x16 or 28x28 sized version of the dataset. directory : str Directory in which the required input files reside. output_filename : str Where to save the converted dataset. """ if size not in (16, 28): raise ValueError('size must be 16 or 28') if output_filename is None: output_filename = 'caltech101_silhouettes{}.hdf5'.format(size) output_file = os.path.join(output_directory, output_filename) input_file = 'caltech101_silhouettes_{}_split1.mat'.format(size) input_file = os.path.join(directory, input_file) if not os.path.isfile(input_file): raise MissingInputFiles('Required files missing', [input_file]) with h5py.File(output_file, mode="w") as h5file: mat = loadmat(input_file) train_features = mat['train_data'].reshape([-1, 1, size, size]) train_targets = mat['train_labels'] valid_features = mat['val_data'].reshape([-1, 1, size, size]) valid_targets = mat['val_labels'] test_features = mat['test_data'].reshape([-1, 1, size, size]) test_targets = mat['test_labels'] data = ( ('train', 'features', train_features), ('train', 'targets', train_targets), ('valid', 'features', valid_features), ('valid', 'targets', valid_targets), ('test', 'features', test_features), ('test', 'targets', test_targets), ) fill_hdf5_file(h5file, data) for i, label in enumerate(('batch', 'channel', 'height', 'width')): h5file['features'].dims[i].label = label for i, label in enumerate(('batch', 'index')): h5file['targets'].dims[i].label = label return (output_file,)
[ "def", "convert_silhouettes", "(", "size", ",", "directory", ",", "output_directory", ",", "output_filename", "=", "None", ")", ":", "if", "size", "not", "in", "(", "16", ",", "28", ")", ":", "raise", "ValueError", "(", "'size must be 16 or 28'", ")", "if", "output_filename", "is", "None", ":", "output_filename", "=", "'caltech101_silhouettes{}.hdf5'", ".", "format", "(", "size", ")", "output_file", "=", "os", ".", "path", ".", "join", "(", "output_directory", ",", "output_filename", ")", "input_file", "=", "'caltech101_silhouettes_{}_split1.mat'", ".", "format", "(", "size", ")", "input_file", "=", "os", ".", "path", ".", "join", "(", "directory", ",", "input_file", ")", "if", "not", "os", ".", "path", ".", "isfile", "(", "input_file", ")", ":", "raise", "MissingInputFiles", "(", "'Required files missing'", ",", "[", "input_file", "]", ")", "with", "h5py", ".", "File", "(", "output_file", ",", "mode", "=", "\"w\"", ")", "as", "h5file", ":", "mat", "=", "loadmat", "(", "input_file", ")", "train_features", "=", "mat", "[", "'train_data'", "]", ".", "reshape", "(", "[", "-", "1", ",", "1", ",", "size", ",", "size", "]", ")", "train_targets", "=", "mat", "[", "'train_labels'", "]", "valid_features", "=", "mat", "[", "'val_data'", "]", ".", "reshape", "(", "[", "-", "1", ",", "1", ",", "size", ",", "size", "]", ")", "valid_targets", "=", "mat", "[", "'val_labels'", "]", "test_features", "=", "mat", "[", "'test_data'", "]", ".", "reshape", "(", "[", "-", "1", ",", "1", ",", "size", ",", "size", "]", ")", "test_targets", "=", "mat", "[", "'test_labels'", "]", "data", "=", "(", "(", "'train'", ",", "'features'", ",", "train_features", ")", ",", "(", "'train'", ",", "'targets'", ",", "train_targets", ")", ",", "(", "'valid'", ",", "'features'", ",", "valid_features", ")", ",", "(", "'valid'", ",", "'targets'", ",", "valid_targets", ")", ",", "(", "'test'", ",", "'features'", ",", "test_features", ")", ",", "(", "'test'", ",", "'targets'", ",", "test_targets", ")", ",", ")", "fill_hdf5_file", "(", "h5file", ",", "data", ")", "for", "i", ",", "label", "in", "enumerate", "(", "(", "'batch'", ",", "'channel'", ",", "'height'", ",", "'width'", ")", ")", ":", "h5file", "[", "'features'", "]", ".", "dims", "[", "i", "]", ".", "label", "=", "label", "for", "i", ",", "label", "in", "enumerate", "(", "(", "'batch'", ",", "'index'", ")", ")", ":", "h5file", "[", "'targets'", "]", ".", "dims", "[", "i", "]", ".", "label", "=", "label", "return", "(", "output_file", ",", ")" ]
Convert the CalTech 101 Silhouettes Datasets. Parameters ---------- size : {16, 28} Convert either the 16x16 or 28x28 sized version of the dataset. directory : str Directory in which the required input files reside. output_filename : str Where to save the converted dataset.
[ "Convert", "the", "CalTech", "101", "Silhouettes", "Datasets", "." ]
1d6292dc25e3a115544237e392e61bff6631d23c
https://github.com/mila-iqia/fuel/blob/1d6292dc25e3a115544237e392e61bff6631d23c/fuel/converters/caltech101_silhouettes.py#L9-L61
train
mila-iqia/fuel
fuel/schemes.py
cross_validation
def cross_validation(scheme_class, num_examples, num_folds, strict=True, **kwargs): """Return pairs of schemes to be used for cross-validation. Parameters ---------- scheme_class : subclass of :class:`IndexScheme` or :class:`BatchScheme` The type of the returned schemes. The constructor is called with an iterator and `**kwargs` as arguments. num_examples : int The number of examples in the datastream. num_folds : int The number of folds to return. strict : bool, optional If `True`, enforce that `num_examples` is divisible by `num_folds` and so, that all validation sets have the same size. If `False`, the size of the validation set is returned along the iteration schemes. Defaults to `True`. Yields ------ fold : tuple The generator returns `num_folds` tuples. The first two elements of the tuple are the training and validation iteration schemes. If `strict` is set to `False`, the tuple has a third element corresponding to the size of the validation set. """ if strict and num_examples % num_folds != 0: raise ValueError(("{} examples are not divisible in {} evenly-sized " + "folds. To allow this, have a look at the " + "`strict` argument.").format(num_examples, num_folds)) for i in xrange(num_folds): begin = num_examples * i // num_folds end = num_examples * (i+1) // num_folds train = scheme_class(list(chain(xrange(0, begin), xrange(end, num_examples))), **kwargs) valid = scheme_class(xrange(begin, end), **kwargs) if strict: yield (train, valid) else: yield (train, valid, end - begin)
python
def cross_validation(scheme_class, num_examples, num_folds, strict=True, **kwargs): """Return pairs of schemes to be used for cross-validation. Parameters ---------- scheme_class : subclass of :class:`IndexScheme` or :class:`BatchScheme` The type of the returned schemes. The constructor is called with an iterator and `**kwargs` as arguments. num_examples : int The number of examples in the datastream. num_folds : int The number of folds to return. strict : bool, optional If `True`, enforce that `num_examples` is divisible by `num_folds` and so, that all validation sets have the same size. If `False`, the size of the validation set is returned along the iteration schemes. Defaults to `True`. Yields ------ fold : tuple The generator returns `num_folds` tuples. The first two elements of the tuple are the training and validation iteration schemes. If `strict` is set to `False`, the tuple has a third element corresponding to the size of the validation set. """ if strict and num_examples % num_folds != 0: raise ValueError(("{} examples are not divisible in {} evenly-sized " + "folds. To allow this, have a look at the " + "`strict` argument.").format(num_examples, num_folds)) for i in xrange(num_folds): begin = num_examples * i // num_folds end = num_examples * (i+1) // num_folds train = scheme_class(list(chain(xrange(0, begin), xrange(end, num_examples))), **kwargs) valid = scheme_class(xrange(begin, end), **kwargs) if strict: yield (train, valid) else: yield (train, valid, end - begin)
[ "def", "cross_validation", "(", "scheme_class", ",", "num_examples", ",", "num_folds", ",", "strict", "=", "True", ",", "*", "*", "kwargs", ")", ":", "if", "strict", "and", "num_examples", "%", "num_folds", "!=", "0", ":", "raise", "ValueError", "(", "(", "\"{} examples are not divisible in {} evenly-sized \"", "+", "\"folds. To allow this, have a look at the \"", "+", "\"`strict` argument.\"", ")", ".", "format", "(", "num_examples", ",", "num_folds", ")", ")", "for", "i", "in", "xrange", "(", "num_folds", ")", ":", "begin", "=", "num_examples", "*", "i", "//", "num_folds", "end", "=", "num_examples", "*", "(", "i", "+", "1", ")", "//", "num_folds", "train", "=", "scheme_class", "(", "list", "(", "chain", "(", "xrange", "(", "0", ",", "begin", ")", ",", "xrange", "(", "end", ",", "num_examples", ")", ")", ")", ",", "*", "*", "kwargs", ")", "valid", "=", "scheme_class", "(", "xrange", "(", "begin", ",", "end", ")", ",", "*", "*", "kwargs", ")", "if", "strict", ":", "yield", "(", "train", ",", "valid", ")", "else", ":", "yield", "(", "train", ",", "valid", ",", "end", "-", "begin", ")" ]
Return pairs of schemes to be used for cross-validation. Parameters ---------- scheme_class : subclass of :class:`IndexScheme` or :class:`BatchScheme` The type of the returned schemes. The constructor is called with an iterator and `**kwargs` as arguments. num_examples : int The number of examples in the datastream. num_folds : int The number of folds to return. strict : bool, optional If `True`, enforce that `num_examples` is divisible by `num_folds` and so, that all validation sets have the same size. If `False`, the size of the validation set is returned along the iteration schemes. Defaults to `True`. Yields ------ fold : tuple The generator returns `num_folds` tuples. The first two elements of the tuple are the training and validation iteration schemes. If `strict` is set to `False`, the tuple has a third element corresponding to the size of the validation set.
[ "Return", "pairs", "of", "schemes", "to", "be", "used", "for", "cross", "-", "validation", "." ]
1d6292dc25e3a115544237e392e61bff6631d23c
https://github.com/mila-iqia/fuel/blob/1d6292dc25e3a115544237e392e61bff6631d23c/fuel/schemes.py#L260-L305
train
mila-iqia/fuel
fuel/bin/fuel_convert.py
main
def main(args=None): """Entry point for `fuel-convert` script. This function can also be imported and used from Python. Parameters ---------- args : iterable, optional (default: None) A list of arguments that will be passed to Fuel's conversion utility. If this argument is not specified, `sys.argv[1:]` will be used. """ built_in_datasets = dict(converters.all_converters) if fuel.config.extra_converters: for name in fuel.config.extra_converters: extra_datasets = dict( importlib.import_module(name).all_converters) if any(key in built_in_datasets for key in extra_datasets.keys()): raise ValueError('extra converters conflict in name with ' 'built-in converters') built_in_datasets.update(extra_datasets) parser = argparse.ArgumentParser( description='Conversion script for built-in datasets.') subparsers = parser.add_subparsers() parent_parser = argparse.ArgumentParser(add_help=False) parent_parser.add_argument( "-d", "--directory", help="directory in which input files reside", type=str, default=os.getcwd()) convert_functions = {} for name, fill_subparser in built_in_datasets.items(): subparser = subparsers.add_parser( name, parents=[parent_parser], help='Convert the {} dataset'.format(name)) subparser.add_argument( "-o", "--output-directory", help="where to save the dataset", type=str, default=os.getcwd(), action=CheckDirectoryAction) subparser.add_argument( "-r", "--output_filename", help="new name of the created dataset", type=str, default=None) # Allows the parser to know which subparser was called. subparser.set_defaults(which_=name) convert_functions[name] = fill_subparser(subparser) args = parser.parse_args(args) args_dict = vars(args) if args_dict['output_filename'] is not None and\ os.path.splitext(args_dict['output_filename'])[1] not in\ ('.hdf5', '.hdf', '.h5'): args_dict['output_filename'] += '.hdf5' if args_dict['output_filename'] is None: args_dict.pop('output_filename') convert_function = convert_functions[args_dict.pop('which_')] try: output_paths = convert_function(**args_dict) except MissingInputFiles as e: intro = "The following required files were not found:\n" message = "\n".join([intro] + [" * " + f for f in e.filenames]) message += "\n\nDid you forget to run fuel-download?" parser.error(message) # Tag the newly-created file(s) with H5PYDataset version and command-line # options for output_path in output_paths: h5file = h5py.File(output_path, 'a') interface_version = H5PYDataset.interface_version.encode('utf-8') h5file.attrs['h5py_interface_version'] = interface_version fuel_convert_version = converters.__version__.encode('utf-8') h5file.attrs['fuel_convert_version'] = fuel_convert_version command = [os.path.basename(sys.argv[0])] + sys.argv[1:] h5file.attrs['fuel_convert_command'] = ( ' '.join(command).encode('utf-8')) h5file.flush() h5file.close()
python
def main(args=None): """Entry point for `fuel-convert` script. This function can also be imported and used from Python. Parameters ---------- args : iterable, optional (default: None) A list of arguments that will be passed to Fuel's conversion utility. If this argument is not specified, `sys.argv[1:]` will be used. """ built_in_datasets = dict(converters.all_converters) if fuel.config.extra_converters: for name in fuel.config.extra_converters: extra_datasets = dict( importlib.import_module(name).all_converters) if any(key in built_in_datasets for key in extra_datasets.keys()): raise ValueError('extra converters conflict in name with ' 'built-in converters') built_in_datasets.update(extra_datasets) parser = argparse.ArgumentParser( description='Conversion script for built-in datasets.') subparsers = parser.add_subparsers() parent_parser = argparse.ArgumentParser(add_help=False) parent_parser.add_argument( "-d", "--directory", help="directory in which input files reside", type=str, default=os.getcwd()) convert_functions = {} for name, fill_subparser in built_in_datasets.items(): subparser = subparsers.add_parser( name, parents=[parent_parser], help='Convert the {} dataset'.format(name)) subparser.add_argument( "-o", "--output-directory", help="where to save the dataset", type=str, default=os.getcwd(), action=CheckDirectoryAction) subparser.add_argument( "-r", "--output_filename", help="new name of the created dataset", type=str, default=None) # Allows the parser to know which subparser was called. subparser.set_defaults(which_=name) convert_functions[name] = fill_subparser(subparser) args = parser.parse_args(args) args_dict = vars(args) if args_dict['output_filename'] is not None and\ os.path.splitext(args_dict['output_filename'])[1] not in\ ('.hdf5', '.hdf', '.h5'): args_dict['output_filename'] += '.hdf5' if args_dict['output_filename'] is None: args_dict.pop('output_filename') convert_function = convert_functions[args_dict.pop('which_')] try: output_paths = convert_function(**args_dict) except MissingInputFiles as e: intro = "The following required files were not found:\n" message = "\n".join([intro] + [" * " + f for f in e.filenames]) message += "\n\nDid you forget to run fuel-download?" parser.error(message) # Tag the newly-created file(s) with H5PYDataset version and command-line # options for output_path in output_paths: h5file = h5py.File(output_path, 'a') interface_version = H5PYDataset.interface_version.encode('utf-8') h5file.attrs['h5py_interface_version'] = interface_version fuel_convert_version = converters.__version__.encode('utf-8') h5file.attrs['fuel_convert_version'] = fuel_convert_version command = [os.path.basename(sys.argv[0])] + sys.argv[1:] h5file.attrs['fuel_convert_command'] = ( ' '.join(command).encode('utf-8')) h5file.flush() h5file.close()
[ "def", "main", "(", "args", "=", "None", ")", ":", "built_in_datasets", "=", "dict", "(", "converters", ".", "all_converters", ")", "if", "fuel", ".", "config", ".", "extra_converters", ":", "for", "name", "in", "fuel", ".", "config", ".", "extra_converters", ":", "extra_datasets", "=", "dict", "(", "importlib", ".", "import_module", "(", "name", ")", ".", "all_converters", ")", "if", "any", "(", "key", "in", "built_in_datasets", "for", "key", "in", "extra_datasets", ".", "keys", "(", ")", ")", ":", "raise", "ValueError", "(", "'extra converters conflict in name with '", "'built-in converters'", ")", "built_in_datasets", ".", "update", "(", "extra_datasets", ")", "parser", "=", "argparse", ".", "ArgumentParser", "(", "description", "=", "'Conversion script for built-in datasets.'", ")", "subparsers", "=", "parser", ".", "add_subparsers", "(", ")", "parent_parser", "=", "argparse", ".", "ArgumentParser", "(", "add_help", "=", "False", ")", "parent_parser", ".", "add_argument", "(", "\"-d\"", ",", "\"--directory\"", ",", "help", "=", "\"directory in which input files reside\"", ",", "type", "=", "str", ",", "default", "=", "os", ".", "getcwd", "(", ")", ")", "convert_functions", "=", "{", "}", "for", "name", ",", "fill_subparser", "in", "built_in_datasets", ".", "items", "(", ")", ":", "subparser", "=", "subparsers", ".", "add_parser", "(", "name", ",", "parents", "=", "[", "parent_parser", "]", ",", "help", "=", "'Convert the {} dataset'", ".", "format", "(", "name", ")", ")", "subparser", ".", "add_argument", "(", "\"-o\"", ",", "\"--output-directory\"", ",", "help", "=", "\"where to save the dataset\"", ",", "type", "=", "str", ",", "default", "=", "os", ".", "getcwd", "(", ")", ",", "action", "=", "CheckDirectoryAction", ")", "subparser", ".", "add_argument", "(", "\"-r\"", ",", "\"--output_filename\"", ",", "help", "=", "\"new name of the created dataset\"", ",", "type", "=", "str", ",", "default", "=", "None", ")", "# Allows the parser to know which subparser was called.", "subparser", ".", "set_defaults", "(", "which_", "=", "name", ")", "convert_functions", "[", "name", "]", "=", "fill_subparser", "(", "subparser", ")", "args", "=", "parser", ".", "parse_args", "(", "args", ")", "args_dict", "=", "vars", "(", "args", ")", "if", "args_dict", "[", "'output_filename'", "]", "is", "not", "None", "and", "os", ".", "path", ".", "splitext", "(", "args_dict", "[", "'output_filename'", "]", ")", "[", "1", "]", "not", "in", "(", "'.hdf5'", ",", "'.hdf'", ",", "'.h5'", ")", ":", "args_dict", "[", "'output_filename'", "]", "+=", "'.hdf5'", "if", "args_dict", "[", "'output_filename'", "]", "is", "None", ":", "args_dict", ".", "pop", "(", "'output_filename'", ")", "convert_function", "=", "convert_functions", "[", "args_dict", ".", "pop", "(", "'which_'", ")", "]", "try", ":", "output_paths", "=", "convert_function", "(", "*", "*", "args_dict", ")", "except", "MissingInputFiles", "as", "e", ":", "intro", "=", "\"The following required files were not found:\\n\"", "message", "=", "\"\\n\"", ".", "join", "(", "[", "intro", "]", "+", "[", "\" * \"", "+", "f", "for", "f", "in", "e", ".", "filenames", "]", ")", "message", "+=", "\"\\n\\nDid you forget to run fuel-download?\"", "parser", ".", "error", "(", "message", ")", "# Tag the newly-created file(s) with H5PYDataset version and command-line", "# options", "for", "output_path", "in", "output_paths", ":", "h5file", "=", "h5py", ".", "File", "(", "output_path", ",", "'a'", ")", "interface_version", "=", "H5PYDataset", ".", "interface_version", ".", "encode", "(", "'utf-8'", ")", "h5file", ".", "attrs", "[", "'h5py_interface_version'", "]", "=", "interface_version", "fuel_convert_version", "=", "converters", ".", "__version__", ".", "encode", "(", "'utf-8'", ")", "h5file", ".", "attrs", "[", "'fuel_convert_version'", "]", "=", "fuel_convert_version", "command", "=", "[", "os", ".", "path", ".", "basename", "(", "sys", ".", "argv", "[", "0", "]", ")", "]", "+", "sys", ".", "argv", "[", "1", ":", "]", "h5file", ".", "attrs", "[", "'fuel_convert_command'", "]", "=", "(", "' '", ".", "join", "(", "command", ")", ".", "encode", "(", "'utf-8'", ")", ")", "h5file", ".", "flush", "(", ")", "h5file", ".", "close", "(", ")" ]
Entry point for `fuel-convert` script. This function can also be imported and used from Python. Parameters ---------- args : iterable, optional (default: None) A list of arguments that will be passed to Fuel's conversion utility. If this argument is not specified, `sys.argv[1:]` will be used.
[ "Entry", "point", "for", "fuel", "-", "convert", "script", "." ]
1d6292dc25e3a115544237e392e61bff6631d23c
https://github.com/mila-iqia/fuel/blob/1d6292dc25e3a115544237e392e61bff6631d23c/fuel/bin/fuel_convert.py#L24-L98
train
mila-iqia/fuel
fuel/utils/lock.py
refresh_lock
def refresh_lock(lock_file): """'Refresh' an existing lock. 'Refresh' an existing lock by re-writing the file containing the owner's unique id, using a new (randomly generated) id, which is also returned. """ unique_id = '%s_%s_%s' % ( os.getpid(), ''.join([str(random.randint(0, 9)) for i in range(10)]), hostname) try: lock_write = open(lock_file, 'w') lock_write.write(unique_id + '\n') lock_write.close() except Exception: # In some strange case, this happen. To prevent all tests # from failing, we release the lock, but as there is a # problem, we still keep the original exception. # This way, only 1 test would fail. while get_lock.n_lock > 0: release_lock() raise return unique_id
python
def refresh_lock(lock_file): """'Refresh' an existing lock. 'Refresh' an existing lock by re-writing the file containing the owner's unique id, using a new (randomly generated) id, which is also returned. """ unique_id = '%s_%s_%s' % ( os.getpid(), ''.join([str(random.randint(0, 9)) for i in range(10)]), hostname) try: lock_write = open(lock_file, 'w') lock_write.write(unique_id + '\n') lock_write.close() except Exception: # In some strange case, this happen. To prevent all tests # from failing, we release the lock, but as there is a # problem, we still keep the original exception. # This way, only 1 test would fail. while get_lock.n_lock > 0: release_lock() raise return unique_id
[ "def", "refresh_lock", "(", "lock_file", ")", ":", "unique_id", "=", "'%s_%s_%s'", "%", "(", "os", ".", "getpid", "(", ")", ",", "''", ".", "join", "(", "[", "str", "(", "random", ".", "randint", "(", "0", ",", "9", ")", ")", "for", "i", "in", "range", "(", "10", ")", "]", ")", ",", "hostname", ")", "try", ":", "lock_write", "=", "open", "(", "lock_file", ",", "'w'", ")", "lock_write", ".", "write", "(", "unique_id", "+", "'\\n'", ")", "lock_write", ".", "close", "(", ")", "except", "Exception", ":", "# In some strange case, this happen. To prevent all tests", "# from failing, we release the lock, but as there is a", "# problem, we still keep the original exception.", "# This way, only 1 test would fail.", "while", "get_lock", ".", "n_lock", ">", "0", ":", "release_lock", "(", ")", "raise", "return", "unique_id" ]
Refresh' an existing lock. 'Refresh' an existing lock by re-writing the file containing the owner's unique id, using a new (randomly generated) id, which is also returned.
[ "Refresh", "an", "existing", "lock", "." ]
1d6292dc25e3a115544237e392e61bff6631d23c
https://github.com/mila-iqia/fuel/blob/1d6292dc25e3a115544237e392e61bff6631d23c/fuel/utils/lock.py#L95-L118
train
mila-iqia/fuel
fuel/utils/lock.py
get_lock
def get_lock(lock_dir, **kw): """Obtain lock on compilation directory. Parameters ---------- lock_dir : str Lock directory. kw : dict Additional arguments to be forwarded to the `lock` function when acquiring the lock. Notes ----- We can lock only on 1 directory at a time. """ if not hasattr(get_lock, 'n_lock'): # Initialization. get_lock.n_lock = 0 if not hasattr(get_lock, 'lock_is_enabled'): # Enable lock by default. get_lock.lock_is_enabled = True get_lock.lock_dir = lock_dir get_lock.unlocker = Unlocker(get_lock.lock_dir) else: if lock_dir != get_lock.lock_dir: # Compilation directory has changed. # First ensure all old locks were released. assert get_lock.n_lock == 0 # Update members for new compilation directory. get_lock.lock_dir = lock_dir get_lock.unlocker = Unlocker(get_lock.lock_dir) if get_lock.lock_is_enabled: # Only really try to acquire the lock if we do not have it already. if get_lock.n_lock == 0: lock(get_lock.lock_dir, **kw) atexit.register(Unlocker.unlock, get_lock.unlocker) # Store time at which the lock was set. get_lock.start_time = time.time() else: # Check whether we need to 'refresh' the lock. We do this # every 'config.compile.timeout / 2' seconds to ensure # no one else tries to override our lock after their # 'config.compile.timeout' timeout period. if get_lock.start_time is None: # This should not happen. So if this happen, clean up # the lock state and raise an error. while get_lock.n_lock > 0: release_lock() raise Exception( "For some unknow reason, the lock was already taken," " but no start time was registered.") now = time.time() if now - get_lock.start_time > TIMEOUT: lockpath = os.path.join(get_lock.lock_dir, 'lock') logger.info('Refreshing lock %s', str(lockpath)) refresh_lock(lockpath) get_lock.start_time = now get_lock.n_lock += 1
python
def get_lock(lock_dir, **kw): """Obtain lock on compilation directory. Parameters ---------- lock_dir : str Lock directory. kw : dict Additional arguments to be forwarded to the `lock` function when acquiring the lock. Notes ----- We can lock only on 1 directory at a time. """ if not hasattr(get_lock, 'n_lock'): # Initialization. get_lock.n_lock = 0 if not hasattr(get_lock, 'lock_is_enabled'): # Enable lock by default. get_lock.lock_is_enabled = True get_lock.lock_dir = lock_dir get_lock.unlocker = Unlocker(get_lock.lock_dir) else: if lock_dir != get_lock.lock_dir: # Compilation directory has changed. # First ensure all old locks were released. assert get_lock.n_lock == 0 # Update members for new compilation directory. get_lock.lock_dir = lock_dir get_lock.unlocker = Unlocker(get_lock.lock_dir) if get_lock.lock_is_enabled: # Only really try to acquire the lock if we do not have it already. if get_lock.n_lock == 0: lock(get_lock.lock_dir, **kw) atexit.register(Unlocker.unlock, get_lock.unlocker) # Store time at which the lock was set. get_lock.start_time = time.time() else: # Check whether we need to 'refresh' the lock. We do this # every 'config.compile.timeout / 2' seconds to ensure # no one else tries to override our lock after their # 'config.compile.timeout' timeout period. if get_lock.start_time is None: # This should not happen. So if this happen, clean up # the lock state and raise an error. while get_lock.n_lock > 0: release_lock() raise Exception( "For some unknow reason, the lock was already taken," " but no start time was registered.") now = time.time() if now - get_lock.start_time > TIMEOUT: lockpath = os.path.join(get_lock.lock_dir, 'lock') logger.info('Refreshing lock %s', str(lockpath)) refresh_lock(lockpath) get_lock.start_time = now get_lock.n_lock += 1
[ "def", "get_lock", "(", "lock_dir", ",", "*", "*", "kw", ")", ":", "if", "not", "hasattr", "(", "get_lock", ",", "'n_lock'", ")", ":", "# Initialization.", "get_lock", ".", "n_lock", "=", "0", "if", "not", "hasattr", "(", "get_lock", ",", "'lock_is_enabled'", ")", ":", "# Enable lock by default.", "get_lock", ".", "lock_is_enabled", "=", "True", "get_lock", ".", "lock_dir", "=", "lock_dir", "get_lock", ".", "unlocker", "=", "Unlocker", "(", "get_lock", ".", "lock_dir", ")", "else", ":", "if", "lock_dir", "!=", "get_lock", ".", "lock_dir", ":", "# Compilation directory has changed.", "# First ensure all old locks were released.", "assert", "get_lock", ".", "n_lock", "==", "0", "# Update members for new compilation directory.", "get_lock", ".", "lock_dir", "=", "lock_dir", "get_lock", ".", "unlocker", "=", "Unlocker", "(", "get_lock", ".", "lock_dir", ")", "if", "get_lock", ".", "lock_is_enabled", ":", "# Only really try to acquire the lock if we do not have it already.", "if", "get_lock", ".", "n_lock", "==", "0", ":", "lock", "(", "get_lock", ".", "lock_dir", ",", "*", "*", "kw", ")", "atexit", ".", "register", "(", "Unlocker", ".", "unlock", ",", "get_lock", ".", "unlocker", ")", "# Store time at which the lock was set.", "get_lock", ".", "start_time", "=", "time", ".", "time", "(", ")", "else", ":", "# Check whether we need to 'refresh' the lock. We do this", "# every 'config.compile.timeout / 2' seconds to ensure", "# no one else tries to override our lock after their", "# 'config.compile.timeout' timeout period.", "if", "get_lock", ".", "start_time", "is", "None", ":", "# This should not happen. So if this happen, clean up", "# the lock state and raise an error.", "while", "get_lock", ".", "n_lock", ">", "0", ":", "release_lock", "(", ")", "raise", "Exception", "(", "\"For some unknow reason, the lock was already taken,\"", "\" but no start time was registered.\"", ")", "now", "=", "time", ".", "time", "(", ")", "if", "now", "-", "get_lock", ".", "start_time", ">", "TIMEOUT", ":", "lockpath", "=", "os", ".", "path", ".", "join", "(", "get_lock", ".", "lock_dir", ",", "'lock'", ")", "logger", ".", "info", "(", "'Refreshing lock %s'", ",", "str", "(", "lockpath", ")", ")", "refresh_lock", "(", "lockpath", ")", "get_lock", ".", "start_time", "=", "now", "get_lock", ".", "n_lock", "+=", "1" ]
Obtain lock on compilation directory. Parameters ---------- lock_dir : str Lock directory. kw : dict Additional arguments to be forwarded to the `lock` function when acquiring the lock. Notes ----- We can lock only on 1 directory at a time.
[ "Obtain", "lock", "on", "compilation", "directory", "." ]
1d6292dc25e3a115544237e392e61bff6631d23c
https://github.com/mila-iqia/fuel/blob/1d6292dc25e3a115544237e392e61bff6631d23c/fuel/utils/lock.py#L297-L356
train
mila-iqia/fuel
fuel/utils/lock.py
release_lock
def release_lock(): """Release lock on compilation directory.""" get_lock.n_lock -= 1 assert get_lock.n_lock >= 0 # Only really release lock once all lock requests have ended. if get_lock.lock_is_enabled and get_lock.n_lock == 0: get_lock.start_time = None get_lock.unlocker.unlock()
python
def release_lock(): """Release lock on compilation directory.""" get_lock.n_lock -= 1 assert get_lock.n_lock >= 0 # Only really release lock once all lock requests have ended. if get_lock.lock_is_enabled and get_lock.n_lock == 0: get_lock.start_time = None get_lock.unlocker.unlock()
[ "def", "release_lock", "(", ")", ":", "get_lock", ".", "n_lock", "-=", "1", "assert", "get_lock", ".", "n_lock", ">=", "0", "# Only really release lock once all lock requests have ended.", "if", "get_lock", ".", "lock_is_enabled", "and", "get_lock", ".", "n_lock", "==", "0", ":", "get_lock", ".", "start_time", "=", "None", "get_lock", ".", "unlocker", ".", "unlock", "(", ")" ]
Release lock on compilation directory.
[ "Release", "lock", "on", "compilation", "directory", "." ]
1d6292dc25e3a115544237e392e61bff6631d23c
https://github.com/mila-iqia/fuel/blob/1d6292dc25e3a115544237e392e61bff6631d23c/fuel/utils/lock.py#L359-L366
train
mila-iqia/fuel
fuel/utils/lock.py
release_readlock
def release_readlock(lockdir_name): """Release a previously obtained readlock. Parameters ---------- lockdir_name : str Name of the previously obtained readlock """ # Make sure the lock still exists before deleting it if os.path.exists(lockdir_name) and os.path.isdir(lockdir_name): os.rmdir(lockdir_name)
python
def release_readlock(lockdir_name): """Release a previously obtained readlock. Parameters ---------- lockdir_name : str Name of the previously obtained readlock """ # Make sure the lock still exists before deleting it if os.path.exists(lockdir_name) and os.path.isdir(lockdir_name): os.rmdir(lockdir_name)
[ "def", "release_readlock", "(", "lockdir_name", ")", ":", "# Make sure the lock still exists before deleting it", "if", "os", ".", "path", ".", "exists", "(", "lockdir_name", ")", "and", "os", ".", "path", ".", "isdir", "(", "lockdir_name", ")", ":", "os", ".", "rmdir", "(", "lockdir_name", ")" ]
Release a previously obtained readlock. Parameters ---------- lockdir_name : str Name of the previously obtained readlock
[ "Release", "a", "previously", "obtained", "readlock", "." ]
1d6292dc25e3a115544237e392e61bff6631d23c
https://github.com/mila-iqia/fuel/blob/1d6292dc25e3a115544237e392e61bff6631d23c/fuel/utils/lock.py#L392-L403
train
mila-iqia/fuel
fuel/utils/lock.py
get_readlock
def get_readlock(pid, path): """Obtain a readlock on a file. Parameters ---------- path : str Name of the file on which to obtain a readlock """ timestamp = int(time.time() * 1e6) lockdir_name = "%s.readlock.%i.%i" % (path, pid, timestamp) os.mkdir(lockdir_name) # Register function to release the readlock at the end of the script atexit.register(release_readlock, lockdir_name=lockdir_name)
python
def get_readlock(pid, path): """Obtain a readlock on a file. Parameters ---------- path : str Name of the file on which to obtain a readlock """ timestamp = int(time.time() * 1e6) lockdir_name = "%s.readlock.%i.%i" % (path, pid, timestamp) os.mkdir(lockdir_name) # Register function to release the readlock at the end of the script atexit.register(release_readlock, lockdir_name=lockdir_name)
[ "def", "get_readlock", "(", "pid", ",", "path", ")", ":", "timestamp", "=", "int", "(", "time", ".", "time", "(", ")", "*", "1e6", ")", "lockdir_name", "=", "\"%s.readlock.%i.%i\"", "%", "(", "path", ",", "pid", ",", "timestamp", ")", "os", ".", "mkdir", "(", "lockdir_name", ")", "# Register function to release the readlock at the end of the script", "atexit", ".", "register", "(", "release_readlock", ",", "lockdir_name", "=", "lockdir_name", ")" ]
Obtain a readlock on a file. Parameters ---------- path : str Name of the file on which to obtain a readlock
[ "Obtain", "a", "readlock", "on", "a", "file", "." ]
1d6292dc25e3a115544237e392e61bff6631d23c
https://github.com/mila-iqia/fuel/blob/1d6292dc25e3a115544237e392e61bff6631d23c/fuel/utils/lock.py#L406-L420
train
mila-iqia/fuel
fuel/utils/lock.py
Unlocker.unlock
def unlock(self): """Remove current lock. This function does not crash if it is unable to properly delete the lock file and directory. The reason is that it should be allowed for multiple jobs running in parallel to unlock the same directory at the same time (e.g. when reaching their timeout limit). """ # If any error occurs, we assume this is because someone else tried to # unlock this directory at the same time. # Note that it is important not to have both remove statements within # the same try/except block. The reason is that while the attempt to # remove the file may fail (e.g. because for some reason this file does # not exist), we still want to try and remove the directory. try: self.os.remove(self.os.path.join(self.tmp_dir, 'lock')) except Exception: pass try: self.os.rmdir(self.tmp_dir) except Exception: pass
python
def unlock(self): """Remove current lock. This function does not crash if it is unable to properly delete the lock file and directory. The reason is that it should be allowed for multiple jobs running in parallel to unlock the same directory at the same time (e.g. when reaching their timeout limit). """ # If any error occurs, we assume this is because someone else tried to # unlock this directory at the same time. # Note that it is important not to have both remove statements within # the same try/except block. The reason is that while the attempt to # remove the file may fail (e.g. because for some reason this file does # not exist), we still want to try and remove the directory. try: self.os.remove(self.os.path.join(self.tmp_dir, 'lock')) except Exception: pass try: self.os.rmdir(self.tmp_dir) except Exception: pass
[ "def", "unlock", "(", "self", ")", ":", "# If any error occurs, we assume this is because someone else tried to", "# unlock this directory at the same time.", "# Note that it is important not to have both remove statements within", "# the same try/except block. The reason is that while the attempt to", "# remove the file may fail (e.g. because for some reason this file does", "# not exist), we still want to try and remove the directory.", "try", ":", "self", ".", "os", ".", "remove", "(", "self", ".", "os", ".", "path", ".", "join", "(", "self", ".", "tmp_dir", ",", "'lock'", ")", ")", "except", "Exception", ":", "pass", "try", ":", "self", ".", "os", ".", "rmdir", "(", "self", ".", "tmp_dir", ")", "except", "Exception", ":", "pass" ]
Remove current lock. This function does not crash if it is unable to properly delete the lock file and directory. The reason is that it should be allowed for multiple jobs running in parallel to unlock the same directory at the same time (e.g. when reaching their timeout limit).
[ "Remove", "current", "lock", "." ]
1d6292dc25e3a115544237e392e61bff6631d23c
https://github.com/mila-iqia/fuel/blob/1d6292dc25e3a115544237e392e61bff6631d23c/fuel/utils/lock.py#L69-L92
train
mila-iqia/fuel
fuel/downloaders/base.py
filename_from_url
def filename_from_url(url, path=None): """Parses a URL to determine a file name. Parameters ---------- url : str URL to parse. """ r = requests.get(url, stream=True) if 'Content-Disposition' in r.headers: filename = re.findall(r'filename=([^;]+)', r.headers['Content-Disposition'])[0].strip('"\"') else: filename = os.path.basename(urllib.parse.urlparse(url).path) return filename
python
def filename_from_url(url, path=None): """Parses a URL to determine a file name. Parameters ---------- url : str URL to parse. """ r = requests.get(url, stream=True) if 'Content-Disposition' in r.headers: filename = re.findall(r'filename=([^;]+)', r.headers['Content-Disposition'])[0].strip('"\"') else: filename = os.path.basename(urllib.parse.urlparse(url).path) return filename
[ "def", "filename_from_url", "(", "url", ",", "path", "=", "None", ")", ":", "r", "=", "requests", ".", "get", "(", "url", ",", "stream", "=", "True", ")", "if", "'Content-Disposition'", "in", "r", ".", "headers", ":", "filename", "=", "re", ".", "findall", "(", "r'filename=([^;]+)'", ",", "r", ".", "headers", "[", "'Content-Disposition'", "]", ")", "[", "0", "]", ".", "strip", "(", "'\"\\\"'", ")", "else", ":", "filename", "=", "os", ".", "path", ".", "basename", "(", "urllib", ".", "parse", ".", "urlparse", "(", "url", ")", ".", "path", ")", "return", "filename" ]
Parses a URL to determine a file name. Parameters ---------- url : str URL to parse.
[ "Parses", "a", "URL", "to", "determine", "a", "file", "name", "." ]
1d6292dc25e3a115544237e392e61bff6631d23c
https://github.com/mila-iqia/fuel/blob/1d6292dc25e3a115544237e392e61bff6631d23c/fuel/downloaders/base.py#L39-L54
train
mila-iqia/fuel
fuel/downloaders/base.py
download
def download(url, file_handle, chunk_size=1024): """Downloads a given URL to a specific file. Parameters ---------- url : str URL to download. file_handle : file Where to save the downloaded URL. """ r = requests.get(url, stream=True) total_length = r.headers.get('content-length') if total_length is None: maxval = UnknownLength else: maxval = int(total_length) name = file_handle.name with progress_bar(name=name, maxval=maxval) as bar: for i, chunk in enumerate(r.iter_content(chunk_size)): if total_length: bar.update(i * chunk_size) file_handle.write(chunk)
python
def download(url, file_handle, chunk_size=1024): """Downloads a given URL to a specific file. Parameters ---------- url : str URL to download. file_handle : file Where to save the downloaded URL. """ r = requests.get(url, stream=True) total_length = r.headers.get('content-length') if total_length is None: maxval = UnknownLength else: maxval = int(total_length) name = file_handle.name with progress_bar(name=name, maxval=maxval) as bar: for i, chunk in enumerate(r.iter_content(chunk_size)): if total_length: bar.update(i * chunk_size) file_handle.write(chunk)
[ "def", "download", "(", "url", ",", "file_handle", ",", "chunk_size", "=", "1024", ")", ":", "r", "=", "requests", ".", "get", "(", "url", ",", "stream", "=", "True", ")", "total_length", "=", "r", ".", "headers", ".", "get", "(", "'content-length'", ")", "if", "total_length", "is", "None", ":", "maxval", "=", "UnknownLength", "else", ":", "maxval", "=", "int", "(", "total_length", ")", "name", "=", "file_handle", ".", "name", "with", "progress_bar", "(", "name", "=", "name", ",", "maxval", "=", "maxval", ")", "as", "bar", ":", "for", "i", ",", "chunk", "in", "enumerate", "(", "r", ".", "iter_content", "(", "chunk_size", ")", ")", ":", "if", "total_length", ":", "bar", ".", "update", "(", "i", "*", "chunk_size", ")", "file_handle", ".", "write", "(", "chunk", ")" ]
Downloads a given URL to a specific file. Parameters ---------- url : str URL to download. file_handle : file Where to save the downloaded URL.
[ "Downloads", "a", "given", "URL", "to", "a", "specific", "file", "." ]
1d6292dc25e3a115544237e392e61bff6631d23c
https://github.com/mila-iqia/fuel/blob/1d6292dc25e3a115544237e392e61bff6631d23c/fuel/downloaders/base.py#L57-L79
train
mila-iqia/fuel
fuel/downloaders/base.py
default_downloader
def default_downloader(directory, urls, filenames, url_prefix=None, clear=False): """Downloads or clears files from URLs and filenames. Parameters ---------- directory : str The directory in which downloaded files are saved. urls : list A list of URLs to download. filenames : list A list of file names for the corresponding URLs. url_prefix : str, optional If provided, this is prepended to filenames that lack a corresponding URL. clear : bool, optional If `True`, delete the given filenames from the given directory rather than download them. """ # Parse file names from URL if not provided for i, url in enumerate(urls): filename = filenames[i] if not filename: filename = filename_from_url(url) if not filename: raise ValueError("no filename available for URL '{}'".format(url)) filenames[i] = filename files = [os.path.join(directory, f) for f in filenames] if clear: for f in files: if os.path.isfile(f): os.remove(f) else: print('Downloading ' + ', '.join(filenames) + '\n') ensure_directory_exists(directory) for url, f, n in zip(urls, files, filenames): if not url: if url_prefix is None: raise NeedURLPrefix url = url_prefix + n with open(f, 'wb') as file_handle: download(url, file_handle)
python
def default_downloader(directory, urls, filenames, url_prefix=None, clear=False): """Downloads or clears files from URLs and filenames. Parameters ---------- directory : str The directory in which downloaded files are saved. urls : list A list of URLs to download. filenames : list A list of file names for the corresponding URLs. url_prefix : str, optional If provided, this is prepended to filenames that lack a corresponding URL. clear : bool, optional If `True`, delete the given filenames from the given directory rather than download them. """ # Parse file names from URL if not provided for i, url in enumerate(urls): filename = filenames[i] if not filename: filename = filename_from_url(url) if not filename: raise ValueError("no filename available for URL '{}'".format(url)) filenames[i] = filename files = [os.path.join(directory, f) for f in filenames] if clear: for f in files: if os.path.isfile(f): os.remove(f) else: print('Downloading ' + ', '.join(filenames) + '\n') ensure_directory_exists(directory) for url, f, n in zip(urls, files, filenames): if not url: if url_prefix is None: raise NeedURLPrefix url = url_prefix + n with open(f, 'wb') as file_handle: download(url, file_handle)
[ "def", "default_downloader", "(", "directory", ",", "urls", ",", "filenames", ",", "url_prefix", "=", "None", ",", "clear", "=", "False", ")", ":", "# Parse file names from URL if not provided", "for", "i", ",", "url", "in", "enumerate", "(", "urls", ")", ":", "filename", "=", "filenames", "[", "i", "]", "if", "not", "filename", ":", "filename", "=", "filename_from_url", "(", "url", ")", "if", "not", "filename", ":", "raise", "ValueError", "(", "\"no filename available for URL '{}'\"", ".", "format", "(", "url", ")", ")", "filenames", "[", "i", "]", "=", "filename", "files", "=", "[", "os", ".", "path", ".", "join", "(", "directory", ",", "f", ")", "for", "f", "in", "filenames", "]", "if", "clear", ":", "for", "f", "in", "files", ":", "if", "os", ".", "path", ".", "isfile", "(", "f", ")", ":", "os", ".", "remove", "(", "f", ")", "else", ":", "print", "(", "'Downloading '", "+", "', '", ".", "join", "(", "filenames", ")", "+", "'\\n'", ")", "ensure_directory_exists", "(", "directory", ")", "for", "url", ",", "f", ",", "n", "in", "zip", "(", "urls", ",", "files", ",", "filenames", ")", ":", "if", "not", "url", ":", "if", "url_prefix", "is", "None", ":", "raise", "NeedURLPrefix", "url", "=", "url_prefix", "+", "n", "with", "open", "(", "f", ",", "'wb'", ")", "as", "file_handle", ":", "download", "(", "url", ",", "file_handle", ")" ]
Downloads or clears files from URLs and filenames. Parameters ---------- directory : str The directory in which downloaded files are saved. urls : list A list of URLs to download. filenames : list A list of file names for the corresponding URLs. url_prefix : str, optional If provided, this is prepended to filenames that lack a corresponding URL. clear : bool, optional If `True`, delete the given filenames from the given directory rather than download them.
[ "Downloads", "or", "clears", "files", "from", "URLs", "and", "filenames", "." ]
1d6292dc25e3a115544237e392e61bff6631d23c
https://github.com/mila-iqia/fuel/blob/1d6292dc25e3a115544237e392e61bff6631d23c/fuel/downloaders/base.py#L96-L140
train
mila-iqia/fuel
fuel/utils/__init__.py
find_in_data_path
def find_in_data_path(filename): """Searches for a file within Fuel's data path. This function loops over all paths defined in Fuel's data path and returns the first path in which the file is found. Parameters ---------- filename : str Name of the file to find. Returns ------- file_path : str Path to the first file matching `filename` found in Fuel's data path. Raises ------ IOError If the file doesn't appear in Fuel's data path. """ for path in config.data_path: path = os.path.expanduser(os.path.expandvars(path)) file_path = os.path.join(path, filename) if os.path.isfile(file_path): return file_path raise IOError("{} not found in Fuel's data path".format(filename))
python
def find_in_data_path(filename): """Searches for a file within Fuel's data path. This function loops over all paths defined in Fuel's data path and returns the first path in which the file is found. Parameters ---------- filename : str Name of the file to find. Returns ------- file_path : str Path to the first file matching `filename` found in Fuel's data path. Raises ------ IOError If the file doesn't appear in Fuel's data path. """ for path in config.data_path: path = os.path.expanduser(os.path.expandvars(path)) file_path = os.path.join(path, filename) if os.path.isfile(file_path): return file_path raise IOError("{} not found in Fuel's data path".format(filename))
[ "def", "find_in_data_path", "(", "filename", ")", ":", "for", "path", "in", "config", ".", "data_path", ":", "path", "=", "os", ".", "path", ".", "expanduser", "(", "os", ".", "path", ".", "expandvars", "(", "path", ")", ")", "file_path", "=", "os", ".", "path", ".", "join", "(", "path", ",", "filename", ")", "if", "os", ".", "path", ".", "isfile", "(", "file_path", ")", ":", "return", "file_path", "raise", "IOError", "(", "\"{} not found in Fuel's data path\"", ".", "format", "(", "filename", ")", ")" ]
Searches for a file within Fuel's data path. This function loops over all paths defined in Fuel's data path and returns the first path in which the file is found. Parameters ---------- filename : str Name of the file to find. Returns ------- file_path : str Path to the first file matching `filename` found in Fuel's data path. Raises ------ IOError If the file doesn't appear in Fuel's data path.
[ "Searches", "for", "a", "file", "within", "Fuel", "s", "data", "path", "." ]
1d6292dc25e3a115544237e392e61bff6631d23c
https://github.com/mila-iqia/fuel/blob/1d6292dc25e3a115544237e392e61bff6631d23c/fuel/utils/__init__.py#L406-L434
train
mila-iqia/fuel
fuel/utils/__init__.py
lazy_property_factory
def lazy_property_factory(lazy_property): """Create properties that perform lazy loading of attributes.""" def lazy_property_getter(self): if not hasattr(self, '_' + lazy_property): self.load() if not hasattr(self, '_' + lazy_property): raise ValueError("{} wasn't loaded".format(lazy_property)) return getattr(self, '_' + lazy_property) def lazy_property_setter(self, value): setattr(self, '_' + lazy_property, value) return lazy_property_getter, lazy_property_setter
python
def lazy_property_factory(lazy_property): """Create properties that perform lazy loading of attributes.""" def lazy_property_getter(self): if not hasattr(self, '_' + lazy_property): self.load() if not hasattr(self, '_' + lazy_property): raise ValueError("{} wasn't loaded".format(lazy_property)) return getattr(self, '_' + lazy_property) def lazy_property_setter(self, value): setattr(self, '_' + lazy_property, value) return lazy_property_getter, lazy_property_setter
[ "def", "lazy_property_factory", "(", "lazy_property", ")", ":", "def", "lazy_property_getter", "(", "self", ")", ":", "if", "not", "hasattr", "(", "self", ",", "'_'", "+", "lazy_property", ")", ":", "self", ".", "load", "(", ")", "if", "not", "hasattr", "(", "self", ",", "'_'", "+", "lazy_property", ")", ":", "raise", "ValueError", "(", "\"{} wasn't loaded\"", ".", "format", "(", "lazy_property", ")", ")", "return", "getattr", "(", "self", ",", "'_'", "+", "lazy_property", ")", "def", "lazy_property_setter", "(", "self", ",", "value", ")", ":", "setattr", "(", "self", ",", "'_'", "+", "lazy_property", ",", "value", ")", "return", "lazy_property_getter", ",", "lazy_property_setter" ]
Create properties that perform lazy loading of attributes.
[ "Create", "properties", "that", "perform", "lazy", "loading", "of", "attributes", "." ]
1d6292dc25e3a115544237e392e61bff6631d23c
https://github.com/mila-iqia/fuel/blob/1d6292dc25e3a115544237e392e61bff6631d23c/fuel/utils/__init__.py#L437-L449
train
mila-iqia/fuel
fuel/utils/__init__.py
do_not_pickle_attributes
def do_not_pickle_attributes(*lazy_properties): r"""Decorator to assign non-pickable properties. Used to assign properties which will not be pickled on some class. This decorator creates a series of properties whose values won't be serialized; instead, their values will be reloaded (e.g. from disk) by the :meth:`load` function after deserializing the object. The decorator can be used to avoid the serialization of bulky attributes. Another possible use is for attributes which cannot be pickled at all. In this case the user should construct the attribute himself in :meth:`load`. Parameters ---------- \*lazy_properties : strings The names of the attributes that are lazy. Notes ----- The pickling behavior of the dataset is only overridden if the dataset does not have a ``__getstate__`` method implemented. Examples -------- In order to make sure that attributes are not serialized with the dataset, and are lazily reloaded after deserialization by the :meth:`load` in the wrapped class. Use the decorator with the names of the attributes as an argument. >>> from fuel.datasets import Dataset >>> @do_not_pickle_attributes('features', 'targets') ... class TestDataset(Dataset): ... def load(self): ... self.features = range(10 ** 6) ... self.targets = range(10 ** 6)[::-1] """ def wrap_class(cls): if not hasattr(cls, 'load'): raise ValueError("no load method implemented") # Attach the lazy loading properties to the class for lazy_property in lazy_properties: setattr(cls, lazy_property, property(*lazy_property_factory(lazy_property))) # Delete the values of lazy properties when serializing if not hasattr(cls, '__getstate__'): def __getstate__(self): serializable_state = self.__dict__.copy() for lazy_property in lazy_properties: attr = serializable_state.get('_' + lazy_property) # Iterators would lose their state if isinstance(attr, collections.Iterator): raise ValueError("Iterators can't be lazy loaded") serializable_state.pop('_' + lazy_property, None) return serializable_state setattr(cls, '__getstate__', __getstate__) return cls return wrap_class
python
def do_not_pickle_attributes(*lazy_properties): r"""Decorator to assign non-pickable properties. Used to assign properties which will not be pickled on some class. This decorator creates a series of properties whose values won't be serialized; instead, their values will be reloaded (e.g. from disk) by the :meth:`load` function after deserializing the object. The decorator can be used to avoid the serialization of bulky attributes. Another possible use is for attributes which cannot be pickled at all. In this case the user should construct the attribute himself in :meth:`load`. Parameters ---------- \*lazy_properties : strings The names of the attributes that are lazy. Notes ----- The pickling behavior of the dataset is only overridden if the dataset does not have a ``__getstate__`` method implemented. Examples -------- In order to make sure that attributes are not serialized with the dataset, and are lazily reloaded after deserialization by the :meth:`load` in the wrapped class. Use the decorator with the names of the attributes as an argument. >>> from fuel.datasets import Dataset >>> @do_not_pickle_attributes('features', 'targets') ... class TestDataset(Dataset): ... def load(self): ... self.features = range(10 ** 6) ... self.targets = range(10 ** 6)[::-1] """ def wrap_class(cls): if not hasattr(cls, 'load'): raise ValueError("no load method implemented") # Attach the lazy loading properties to the class for lazy_property in lazy_properties: setattr(cls, lazy_property, property(*lazy_property_factory(lazy_property))) # Delete the values of lazy properties when serializing if not hasattr(cls, '__getstate__'): def __getstate__(self): serializable_state = self.__dict__.copy() for lazy_property in lazy_properties: attr = serializable_state.get('_' + lazy_property) # Iterators would lose their state if isinstance(attr, collections.Iterator): raise ValueError("Iterators can't be lazy loaded") serializable_state.pop('_' + lazy_property, None) return serializable_state setattr(cls, '__getstate__', __getstate__) return cls return wrap_class
[ "def", "do_not_pickle_attributes", "(", "*", "lazy_properties", ")", ":", "def", "wrap_class", "(", "cls", ")", ":", "if", "not", "hasattr", "(", "cls", ",", "'load'", ")", ":", "raise", "ValueError", "(", "\"no load method implemented\"", ")", "# Attach the lazy loading properties to the class", "for", "lazy_property", "in", "lazy_properties", ":", "setattr", "(", "cls", ",", "lazy_property", ",", "property", "(", "*", "lazy_property_factory", "(", "lazy_property", ")", ")", ")", "# Delete the values of lazy properties when serializing", "if", "not", "hasattr", "(", "cls", ",", "'__getstate__'", ")", ":", "def", "__getstate__", "(", "self", ")", ":", "serializable_state", "=", "self", ".", "__dict__", ".", "copy", "(", ")", "for", "lazy_property", "in", "lazy_properties", ":", "attr", "=", "serializable_state", ".", "get", "(", "'_'", "+", "lazy_property", ")", "# Iterators would lose their state", "if", "isinstance", "(", "attr", ",", "collections", ".", "Iterator", ")", ":", "raise", "ValueError", "(", "\"Iterators can't be lazy loaded\"", ")", "serializable_state", ".", "pop", "(", "'_'", "+", "lazy_property", ",", "None", ")", "return", "serializable_state", "setattr", "(", "cls", ",", "'__getstate__'", ",", "__getstate__", ")", "return", "cls", "return", "wrap_class" ]
r"""Decorator to assign non-pickable properties. Used to assign properties which will not be pickled on some class. This decorator creates a series of properties whose values won't be serialized; instead, their values will be reloaded (e.g. from disk) by the :meth:`load` function after deserializing the object. The decorator can be used to avoid the serialization of bulky attributes. Another possible use is for attributes which cannot be pickled at all. In this case the user should construct the attribute himself in :meth:`load`. Parameters ---------- \*lazy_properties : strings The names of the attributes that are lazy. Notes ----- The pickling behavior of the dataset is only overridden if the dataset does not have a ``__getstate__`` method implemented. Examples -------- In order to make sure that attributes are not serialized with the dataset, and are lazily reloaded after deserialization by the :meth:`load` in the wrapped class. Use the decorator with the names of the attributes as an argument. >>> from fuel.datasets import Dataset >>> @do_not_pickle_attributes('features', 'targets') ... class TestDataset(Dataset): ... def load(self): ... self.features = range(10 ** 6) ... self.targets = range(10 ** 6)[::-1]
[ "r", "Decorator", "to", "assign", "non", "-", "pickable", "properties", "." ]
1d6292dc25e3a115544237e392e61bff6631d23c
https://github.com/mila-iqia/fuel/blob/1d6292dc25e3a115544237e392e61bff6631d23c/fuel/utils/__init__.py#L452-L513
train
mila-iqia/fuel
fuel/utils/__init__.py
Subset.sorted_fancy_indexing
def sorted_fancy_indexing(indexable, request): """Safe fancy indexing. Some objects, such as h5py datasets, only support list indexing if the list is sorted. This static method adds support for unsorted list indexing by sorting the requested indices, accessing the corresponding elements and re-shuffling the result. Parameters ---------- request : list of int Unsorted list of example indices. indexable : any fancy-indexable object Indexable we'd like to do unsorted fancy indexing on. """ if len(request) > 1: indices = numpy.argsort(request) data = numpy.empty(shape=(len(request),) + indexable.shape[1:], dtype=indexable.dtype) data[indices] = indexable[numpy.array(request)[indices], ...] else: data = indexable[request] return data
python
def sorted_fancy_indexing(indexable, request): """Safe fancy indexing. Some objects, such as h5py datasets, only support list indexing if the list is sorted. This static method adds support for unsorted list indexing by sorting the requested indices, accessing the corresponding elements and re-shuffling the result. Parameters ---------- request : list of int Unsorted list of example indices. indexable : any fancy-indexable object Indexable we'd like to do unsorted fancy indexing on. """ if len(request) > 1: indices = numpy.argsort(request) data = numpy.empty(shape=(len(request),) + indexable.shape[1:], dtype=indexable.dtype) data[indices] = indexable[numpy.array(request)[indices], ...] else: data = indexable[request] return data
[ "def", "sorted_fancy_indexing", "(", "indexable", ",", "request", ")", ":", "if", "len", "(", "request", ")", ">", "1", ":", "indices", "=", "numpy", ".", "argsort", "(", "request", ")", "data", "=", "numpy", ".", "empty", "(", "shape", "=", "(", "len", "(", "request", ")", ",", ")", "+", "indexable", ".", "shape", "[", "1", ":", "]", ",", "dtype", "=", "indexable", ".", "dtype", ")", "data", "[", "indices", "]", "=", "indexable", "[", "numpy", ".", "array", "(", "request", ")", "[", "indices", "]", ",", "...", "]", "else", ":", "data", "=", "indexable", "[", "request", "]", "return", "data" ]
Safe fancy indexing. Some objects, such as h5py datasets, only support list indexing if the list is sorted. This static method adds support for unsorted list indexing by sorting the requested indices, accessing the corresponding elements and re-shuffling the result. Parameters ---------- request : list of int Unsorted list of example indices. indexable : any fancy-indexable object Indexable we'd like to do unsorted fancy indexing on.
[ "Safe", "fancy", "indexing", "." ]
1d6292dc25e3a115544237e392e61bff6631d23c
https://github.com/mila-iqia/fuel/blob/1d6292dc25e3a115544237e392e61bff6631d23c/fuel/utils/__init__.py#L175-L200
train
mila-iqia/fuel
fuel/utils/__init__.py
Subset.slice_to_numerical_args
def slice_to_numerical_args(slice_, num_examples): """Translate a slice's attributes into numerical attributes. Parameters ---------- slice_ : :class:`slice` Slice for which numerical attributes are wanted. num_examples : int Number of examples in the indexable that is to be sliced through. This determines the numerical value for the `stop` attribute in case it's `None`. """ start = slice_.start if slice_.start is not None else 0 stop = slice_.stop if slice_.stop is not None else num_examples step = slice_.step if slice_.step is not None else 1 return start, stop, step
python
def slice_to_numerical_args(slice_, num_examples): """Translate a slice's attributes into numerical attributes. Parameters ---------- slice_ : :class:`slice` Slice for which numerical attributes are wanted. num_examples : int Number of examples in the indexable that is to be sliced through. This determines the numerical value for the `stop` attribute in case it's `None`. """ start = slice_.start if slice_.start is not None else 0 stop = slice_.stop if slice_.stop is not None else num_examples step = slice_.step if slice_.step is not None else 1 return start, stop, step
[ "def", "slice_to_numerical_args", "(", "slice_", ",", "num_examples", ")", ":", "start", "=", "slice_", ".", "start", "if", "slice_", ".", "start", "is", "not", "None", "else", "0", "stop", "=", "slice_", ".", "stop", "if", "slice_", ".", "stop", "is", "not", "None", "else", "num_examples", "step", "=", "slice_", ".", "step", "if", "slice_", ".", "step", "is", "not", "None", "else", "1", "return", "start", ",", "stop", ",", "step" ]
Translate a slice's attributes into numerical attributes. Parameters ---------- slice_ : :class:`slice` Slice for which numerical attributes are wanted. num_examples : int Number of examples in the indexable that is to be sliced through. This determines the numerical value for the `stop` attribute in case it's `None`.
[ "Translate", "a", "slice", "s", "attributes", "into", "numerical", "attributes", "." ]
1d6292dc25e3a115544237e392e61bff6631d23c
https://github.com/mila-iqia/fuel/blob/1d6292dc25e3a115544237e392e61bff6631d23c/fuel/utils/__init__.py#L203-L219
train
mila-iqia/fuel
fuel/utils/__init__.py
Subset.get_list_representation
def get_list_representation(self): """Returns this subset's representation as a list of indices.""" if self.is_list: return self.list_or_slice else: return self[list(range(self.num_examples))]
python
def get_list_representation(self): """Returns this subset's representation as a list of indices.""" if self.is_list: return self.list_or_slice else: return self[list(range(self.num_examples))]
[ "def", "get_list_representation", "(", "self", ")", ":", "if", "self", ".", "is_list", ":", "return", "self", ".", "list_or_slice", "else", ":", "return", "self", "[", "list", "(", "range", "(", "self", ".", "num_examples", ")", ")", "]" ]
Returns this subset's representation as a list of indices.
[ "Returns", "this", "subset", "s", "representation", "as", "a", "list", "of", "indices", "." ]
1d6292dc25e3a115544237e392e61bff6631d23c
https://github.com/mila-iqia/fuel/blob/1d6292dc25e3a115544237e392e61bff6631d23c/fuel/utils/__init__.py#L221-L226
train
mila-iqia/fuel
fuel/utils/__init__.py
Subset.index_within_subset
def index_within_subset(self, indexable, subset_request, sort_indices=False): """Index an indexable object within the context of this subset. Parameters ---------- indexable : indexable object The object to index through. subset_request : :class:`list` or :class:`slice` List of positive integer indices or slice that constitutes the request *within the context of this subset*. This request will be translated to a request on the indexable object. sort_indices : bool, optional If the request is a list of indices, indexes in sorted order and reshuffles the result in the original order. Defaults to `False`. """ # Translate the request within the context of this subset to a # request to the indexable object if isinstance(subset_request, numbers.Integral): request, = self[[subset_request]] else: request = self[subset_request] # Integer or slice requests can be processed directly. if isinstance(request, numbers.Integral) or hasattr(request, 'step'): return indexable[request] # If requested, we do fancy indexing in sorted order and reshuffle the # result back in the original order. if sort_indices: return self.sorted_fancy_indexing(indexable, request) # If the indexable supports fancy indexing (numpy array, HDF5 dataset), # the request can be processed directly. if isinstance(indexable, (numpy.ndarray, h5py.Dataset)): return indexable[request] # Anything else (e.g. lists) isn't considered to support fancy # indexing, so Subset does it manually. return iterable_fancy_indexing(indexable, request)
python
def index_within_subset(self, indexable, subset_request, sort_indices=False): """Index an indexable object within the context of this subset. Parameters ---------- indexable : indexable object The object to index through. subset_request : :class:`list` or :class:`slice` List of positive integer indices or slice that constitutes the request *within the context of this subset*. This request will be translated to a request on the indexable object. sort_indices : bool, optional If the request is a list of indices, indexes in sorted order and reshuffles the result in the original order. Defaults to `False`. """ # Translate the request within the context of this subset to a # request to the indexable object if isinstance(subset_request, numbers.Integral): request, = self[[subset_request]] else: request = self[subset_request] # Integer or slice requests can be processed directly. if isinstance(request, numbers.Integral) or hasattr(request, 'step'): return indexable[request] # If requested, we do fancy indexing in sorted order and reshuffle the # result back in the original order. if sort_indices: return self.sorted_fancy_indexing(indexable, request) # If the indexable supports fancy indexing (numpy array, HDF5 dataset), # the request can be processed directly. if isinstance(indexable, (numpy.ndarray, h5py.Dataset)): return indexable[request] # Anything else (e.g. lists) isn't considered to support fancy # indexing, so Subset does it manually. return iterable_fancy_indexing(indexable, request)
[ "def", "index_within_subset", "(", "self", ",", "indexable", ",", "subset_request", ",", "sort_indices", "=", "False", ")", ":", "# Translate the request within the context of this subset to a", "# request to the indexable object", "if", "isinstance", "(", "subset_request", ",", "numbers", ".", "Integral", ")", ":", "request", ",", "=", "self", "[", "[", "subset_request", "]", "]", "else", ":", "request", "=", "self", "[", "subset_request", "]", "# Integer or slice requests can be processed directly.", "if", "isinstance", "(", "request", ",", "numbers", ".", "Integral", ")", "or", "hasattr", "(", "request", ",", "'step'", ")", ":", "return", "indexable", "[", "request", "]", "# If requested, we do fancy indexing in sorted order and reshuffle the", "# result back in the original order.", "if", "sort_indices", ":", "return", "self", ".", "sorted_fancy_indexing", "(", "indexable", ",", "request", ")", "# If the indexable supports fancy indexing (numpy array, HDF5 dataset),", "# the request can be processed directly.", "if", "isinstance", "(", "indexable", ",", "(", "numpy", ".", "ndarray", ",", "h5py", ".", "Dataset", ")", ")", ":", "return", "indexable", "[", "request", "]", "# Anything else (e.g. lists) isn't considered to support fancy", "# indexing, so Subset does it manually.", "return", "iterable_fancy_indexing", "(", "indexable", ",", "request", ")" ]
Index an indexable object within the context of this subset. Parameters ---------- indexable : indexable object The object to index through. subset_request : :class:`list` or :class:`slice` List of positive integer indices or slice that constitutes the request *within the context of this subset*. This request will be translated to a request on the indexable object. sort_indices : bool, optional If the request is a list of indices, indexes in sorted order and reshuffles the result in the original order. Defaults to `False`.
[ "Index", "an", "indexable", "object", "within", "the", "context", "of", "this", "subset", "." ]
1d6292dc25e3a115544237e392e61bff6631d23c
https://github.com/mila-iqia/fuel/blob/1d6292dc25e3a115544237e392e61bff6631d23c/fuel/utils/__init__.py#L228-L266
train
mila-iqia/fuel
fuel/utils/__init__.py
Subset.num_examples
def num_examples(self): """The number of examples this subset spans.""" if self.is_list: return len(self.list_or_slice) else: start, stop, step = self.slice_to_numerical_args( self.list_or_slice, self.original_num_examples) return stop - start
python
def num_examples(self): """The number of examples this subset spans.""" if self.is_list: return len(self.list_or_slice) else: start, stop, step = self.slice_to_numerical_args( self.list_or_slice, self.original_num_examples) return stop - start
[ "def", "num_examples", "(", "self", ")", ":", "if", "self", ".", "is_list", ":", "return", "len", "(", "self", ".", "list_or_slice", ")", "else", ":", "start", ",", "stop", ",", "step", "=", "self", ".", "slice_to_numerical_args", "(", "self", ".", "list_or_slice", ",", "self", ".", "original_num_examples", ")", "return", "stop", "-", "start" ]
The number of examples this subset spans.
[ "The", "number", "of", "examples", "this", "subset", "spans", "." ]
1d6292dc25e3a115544237e392e61bff6631d23c
https://github.com/mila-iqia/fuel/blob/1d6292dc25e3a115544237e392e61bff6631d23c/fuel/utils/__init__.py#L290-L297
train
mila-iqia/fuel
fuel/streams.py
DataStream.get_epoch_iterator
def get_epoch_iterator(self, **kwargs): """Get an epoch iterator for the data stream.""" if not self._fresh_state: self.next_epoch() else: self._fresh_state = False return super(DataStream, self).get_epoch_iterator(**kwargs)
python
def get_epoch_iterator(self, **kwargs): """Get an epoch iterator for the data stream.""" if not self._fresh_state: self.next_epoch() else: self._fresh_state = False return super(DataStream, self).get_epoch_iterator(**kwargs)
[ "def", "get_epoch_iterator", "(", "self", ",", "*", "*", "kwargs", ")", ":", "if", "not", "self", ".", "_fresh_state", ":", "self", ".", "next_epoch", "(", ")", "else", ":", "self", ".", "_fresh_state", "=", "False", "return", "super", "(", "DataStream", ",", "self", ")", ".", "get_epoch_iterator", "(", "*", "*", "kwargs", ")" ]
Get an epoch iterator for the data stream.
[ "Get", "an", "epoch", "iterator", "for", "the", "data", "stream", "." ]
1d6292dc25e3a115544237e392e61bff6631d23c
https://github.com/mila-iqia/fuel/blob/1d6292dc25e3a115544237e392e61bff6631d23c/fuel/streams.py#L172-L178
train
mila-iqia/fuel
fuel/downloaders/binarized_mnist.py
fill_subparser
def fill_subparser(subparser): """Sets up a subparser to download the binarized MNIST dataset files. The binarized MNIST dataset files (`binarized_mnist_{train,valid,test}.amat`) are downloaded from Hugo Larochelle's website [HUGO]. .. [HUGO] http://www.cs.toronto.edu/~larocheh/public/datasets/ binarized_mnist/binarized_mnist_{train,valid,test}.amat Parameters ---------- subparser : :class:`argparse.ArgumentParser` Subparser handling the `binarized_mnist` command. """ sets = ['train', 'valid', 'test'] urls = ['http://www.cs.toronto.edu/~larocheh/public/datasets/' + 'binarized_mnist/binarized_mnist_{}.amat'.format(s) for s in sets] filenames = ['binarized_mnist_{}.amat'.format(s) for s in sets] subparser.set_defaults(urls=urls, filenames=filenames) return default_downloader
python
def fill_subparser(subparser): """Sets up a subparser to download the binarized MNIST dataset files. The binarized MNIST dataset files (`binarized_mnist_{train,valid,test}.amat`) are downloaded from Hugo Larochelle's website [HUGO]. .. [HUGO] http://www.cs.toronto.edu/~larocheh/public/datasets/ binarized_mnist/binarized_mnist_{train,valid,test}.amat Parameters ---------- subparser : :class:`argparse.ArgumentParser` Subparser handling the `binarized_mnist` command. """ sets = ['train', 'valid', 'test'] urls = ['http://www.cs.toronto.edu/~larocheh/public/datasets/' + 'binarized_mnist/binarized_mnist_{}.amat'.format(s) for s in sets] filenames = ['binarized_mnist_{}.amat'.format(s) for s in sets] subparser.set_defaults(urls=urls, filenames=filenames) return default_downloader
[ "def", "fill_subparser", "(", "subparser", ")", ":", "sets", "=", "[", "'train'", ",", "'valid'", ",", "'test'", "]", "urls", "=", "[", "'http://www.cs.toronto.edu/~larocheh/public/datasets/'", "+", "'binarized_mnist/binarized_mnist_{}.amat'", ".", "format", "(", "s", ")", "for", "s", "in", "sets", "]", "filenames", "=", "[", "'binarized_mnist_{}.amat'", ".", "format", "(", "s", ")", "for", "s", "in", "sets", "]", "subparser", ".", "set_defaults", "(", "urls", "=", "urls", ",", "filenames", "=", "filenames", ")", "return", "default_downloader" ]
Sets up a subparser to download the binarized MNIST dataset files. The binarized MNIST dataset files (`binarized_mnist_{train,valid,test}.amat`) are downloaded from Hugo Larochelle's website [HUGO]. .. [HUGO] http://www.cs.toronto.edu/~larocheh/public/datasets/ binarized_mnist/binarized_mnist_{train,valid,test}.amat Parameters ---------- subparser : :class:`argparse.ArgumentParser` Subparser handling the `binarized_mnist` command.
[ "Sets", "up", "a", "subparser", "to", "download", "the", "binarized", "MNIST", "dataset", "files", "." ]
1d6292dc25e3a115544237e392e61bff6631d23c
https://github.com/mila-iqia/fuel/blob/1d6292dc25e3a115544237e392e61bff6631d23c/fuel/downloaders/binarized_mnist.py#L4-L25
train
mila-iqia/fuel
fuel/downloaders/youtube_audio.py
download
def download(directory, youtube_id, clear=False): """Download the audio of a YouTube video. The audio is downloaded in the highest available quality. Progress is printed to `stdout`. The file is named `youtube_id.m4a`, where `youtube_id` is the 11-character code identifiying the YouTube video (can be determined from the URL). Parameters ---------- directory : str The directory in which to save the downloaded audio file. youtube_id : str 11-character video ID (taken from YouTube URL) clear : bool If `True`, it deletes the downloaded video. Otherwise it downloads it. Defaults to `False`. """ filepath = os.path.join(directory, '{}.m4a'.format(youtube_id)) if clear: os.remove(filepath) return if not PAFY_AVAILABLE: raise ImportError("pafy is required to download YouTube videos") url = 'https://www.youtube.com/watch?v={}'.format(youtube_id) video = pafy.new(url) audio = video.getbestaudio() audio.download(quiet=False, filepath=filepath)
python
def download(directory, youtube_id, clear=False): """Download the audio of a YouTube video. The audio is downloaded in the highest available quality. Progress is printed to `stdout`. The file is named `youtube_id.m4a`, where `youtube_id` is the 11-character code identifiying the YouTube video (can be determined from the URL). Parameters ---------- directory : str The directory in which to save the downloaded audio file. youtube_id : str 11-character video ID (taken from YouTube URL) clear : bool If `True`, it deletes the downloaded video. Otherwise it downloads it. Defaults to `False`. """ filepath = os.path.join(directory, '{}.m4a'.format(youtube_id)) if clear: os.remove(filepath) return if not PAFY_AVAILABLE: raise ImportError("pafy is required to download YouTube videos") url = 'https://www.youtube.com/watch?v={}'.format(youtube_id) video = pafy.new(url) audio = video.getbestaudio() audio.download(quiet=False, filepath=filepath)
[ "def", "download", "(", "directory", ",", "youtube_id", ",", "clear", "=", "False", ")", ":", "filepath", "=", "os", ".", "path", ".", "join", "(", "directory", ",", "'{}.m4a'", ".", "format", "(", "youtube_id", ")", ")", "if", "clear", ":", "os", ".", "remove", "(", "filepath", ")", "return", "if", "not", "PAFY_AVAILABLE", ":", "raise", "ImportError", "(", "\"pafy is required to download YouTube videos\"", ")", "url", "=", "'https://www.youtube.com/watch?v={}'", ".", "format", "(", "youtube_id", ")", "video", "=", "pafy", ".", "new", "(", "url", ")", "audio", "=", "video", ".", "getbestaudio", "(", ")", "audio", ".", "download", "(", "quiet", "=", "False", ",", "filepath", "=", "filepath", ")" ]
Download the audio of a YouTube video. The audio is downloaded in the highest available quality. Progress is printed to `stdout`. The file is named `youtube_id.m4a`, where `youtube_id` is the 11-character code identifiying the YouTube video (can be determined from the URL). Parameters ---------- directory : str The directory in which to save the downloaded audio file. youtube_id : str 11-character video ID (taken from YouTube URL) clear : bool If `True`, it deletes the downloaded video. Otherwise it downloads it. Defaults to `False`.
[ "Download", "the", "audio", "of", "a", "YouTube", "video", "." ]
1d6292dc25e3a115544237e392e61bff6631d23c
https://github.com/mila-iqia/fuel/blob/1d6292dc25e3a115544237e392e61bff6631d23c/fuel/downloaders/youtube_audio.py#L10-L38
train
mila-iqia/fuel
fuel/downloaders/youtube_audio.py
fill_subparser
def fill_subparser(subparser): """Sets up a subparser to download audio of YouTube videos. Adds the compulsory `--youtube-id` flag. Parameters ---------- subparser : :class:`argparse.ArgumentParser` Subparser handling the `youtube_audio` command. """ subparser.add_argument( '--youtube-id', type=str, required=True, help=("The YouTube ID of the video from which to extract audio, " "usually an 11-character string.") ) return download
python
def fill_subparser(subparser): """Sets up a subparser to download audio of YouTube videos. Adds the compulsory `--youtube-id` flag. Parameters ---------- subparser : :class:`argparse.ArgumentParser` Subparser handling the `youtube_audio` command. """ subparser.add_argument( '--youtube-id', type=str, required=True, help=("The YouTube ID of the video from which to extract audio, " "usually an 11-character string.") ) return download
[ "def", "fill_subparser", "(", "subparser", ")", ":", "subparser", ".", "add_argument", "(", "'--youtube-id'", ",", "type", "=", "str", ",", "required", "=", "True", ",", "help", "=", "(", "\"The YouTube ID of the video from which to extract audio, \"", "\"usually an 11-character string.\"", ")", ")", "return", "download" ]
Sets up a subparser to download audio of YouTube videos. Adds the compulsory `--youtube-id` flag. Parameters ---------- subparser : :class:`argparse.ArgumentParser` Subparser handling the `youtube_audio` command.
[ "Sets", "up", "a", "subparser", "to", "download", "audio", "of", "YouTube", "videos", "." ]
1d6292dc25e3a115544237e392e61bff6631d23c
https://github.com/mila-iqia/fuel/blob/1d6292dc25e3a115544237e392e61bff6631d23c/fuel/downloaders/youtube_audio.py#L41-L57
train
mila-iqia/fuel
fuel/converters/youtube_audio.py
convert_youtube_audio
def convert_youtube_audio(directory, output_directory, youtube_id, channels, sample, output_filename=None): """Converts downloaded YouTube audio to HDF5 format. Requires `ffmpeg` to be installed and available on the command line (i.e. available on your `PATH`). Parameters ---------- directory : str Directory in which input files reside. output_directory : str Directory in which to save the converted dataset. youtube_id : str 11-character video ID (taken from YouTube URL) channels : int The number of audio channels to use in the PCM Wave file. sample : int The sampling rate to use in Hz, e.g. 44100 or 16000. output_filename : str, optional Name of the saved dataset. If `None` (the default), `youtube_id.hdf5` is used. """ input_file = os.path.join(directory, '{}.m4a'.format(youtube_id)) wav_filename = '{}.wav'.format(youtube_id) wav_file = os.path.join(directory, wav_filename) ffmpeg_not_available = subprocess.call(['ffmpeg', '-version']) if ffmpeg_not_available: raise RuntimeError('conversion requires ffmpeg') subprocess.check_call(['ffmpeg', '-y', '-i', input_file, '-ac', str(channels), '-ar', str(sample), wav_file], stdout=sys.stdout) # Load WAV into array _, data = scipy.io.wavfile.read(wav_file) if data.ndim == 1: data = data[:, None] data = data[None, :] # Store in HDF5 if output_filename is None: output_filename = '{}.hdf5'.format(youtube_id) output_file = os.path.join(output_directory, output_filename) with h5py.File(output_file, 'w') as h5file: fill_hdf5_file(h5file, (('train', 'features', data),)) h5file['features'].dims[0].label = 'batch' h5file['features'].dims[1].label = 'time' h5file['features'].dims[2].label = 'feature' return (output_file,)
python
def convert_youtube_audio(directory, output_directory, youtube_id, channels, sample, output_filename=None): """Converts downloaded YouTube audio to HDF5 format. Requires `ffmpeg` to be installed and available on the command line (i.e. available on your `PATH`). Parameters ---------- directory : str Directory in which input files reside. output_directory : str Directory in which to save the converted dataset. youtube_id : str 11-character video ID (taken from YouTube URL) channels : int The number of audio channels to use in the PCM Wave file. sample : int The sampling rate to use in Hz, e.g. 44100 or 16000. output_filename : str, optional Name of the saved dataset. If `None` (the default), `youtube_id.hdf5` is used. """ input_file = os.path.join(directory, '{}.m4a'.format(youtube_id)) wav_filename = '{}.wav'.format(youtube_id) wav_file = os.path.join(directory, wav_filename) ffmpeg_not_available = subprocess.call(['ffmpeg', '-version']) if ffmpeg_not_available: raise RuntimeError('conversion requires ffmpeg') subprocess.check_call(['ffmpeg', '-y', '-i', input_file, '-ac', str(channels), '-ar', str(sample), wav_file], stdout=sys.stdout) # Load WAV into array _, data = scipy.io.wavfile.read(wav_file) if data.ndim == 1: data = data[:, None] data = data[None, :] # Store in HDF5 if output_filename is None: output_filename = '{}.hdf5'.format(youtube_id) output_file = os.path.join(output_directory, output_filename) with h5py.File(output_file, 'w') as h5file: fill_hdf5_file(h5file, (('train', 'features', data),)) h5file['features'].dims[0].label = 'batch' h5file['features'].dims[1].label = 'time' h5file['features'].dims[2].label = 'feature' return (output_file,)
[ "def", "convert_youtube_audio", "(", "directory", ",", "output_directory", ",", "youtube_id", ",", "channels", ",", "sample", ",", "output_filename", "=", "None", ")", ":", "input_file", "=", "os", ".", "path", ".", "join", "(", "directory", ",", "'{}.m4a'", ".", "format", "(", "youtube_id", ")", ")", "wav_filename", "=", "'{}.wav'", ".", "format", "(", "youtube_id", ")", "wav_file", "=", "os", ".", "path", ".", "join", "(", "directory", ",", "wav_filename", ")", "ffmpeg_not_available", "=", "subprocess", ".", "call", "(", "[", "'ffmpeg'", ",", "'-version'", "]", ")", "if", "ffmpeg_not_available", ":", "raise", "RuntimeError", "(", "'conversion requires ffmpeg'", ")", "subprocess", ".", "check_call", "(", "[", "'ffmpeg'", ",", "'-y'", ",", "'-i'", ",", "input_file", ",", "'-ac'", ",", "str", "(", "channels", ")", ",", "'-ar'", ",", "str", "(", "sample", ")", ",", "wav_file", "]", ",", "stdout", "=", "sys", ".", "stdout", ")", "# Load WAV into array", "_", ",", "data", "=", "scipy", ".", "io", ".", "wavfile", ".", "read", "(", "wav_file", ")", "if", "data", ".", "ndim", "==", "1", ":", "data", "=", "data", "[", ":", ",", "None", "]", "data", "=", "data", "[", "None", ",", ":", "]", "# Store in HDF5", "if", "output_filename", "is", "None", ":", "output_filename", "=", "'{}.hdf5'", ".", "format", "(", "youtube_id", ")", "output_file", "=", "os", ".", "path", ".", "join", "(", "output_directory", ",", "output_filename", ")", "with", "h5py", ".", "File", "(", "output_file", ",", "'w'", ")", "as", "h5file", ":", "fill_hdf5_file", "(", "h5file", ",", "(", "(", "'train'", ",", "'features'", ",", "data", ")", ",", ")", ")", "h5file", "[", "'features'", "]", ".", "dims", "[", "0", "]", ".", "label", "=", "'batch'", "h5file", "[", "'features'", "]", ".", "dims", "[", "1", "]", ".", "label", "=", "'time'", "h5file", "[", "'features'", "]", ".", "dims", "[", "2", "]", ".", "label", "=", "'feature'", "return", "(", "output_file", ",", ")" ]
Converts downloaded YouTube audio to HDF5 format. Requires `ffmpeg` to be installed and available on the command line (i.e. available on your `PATH`). Parameters ---------- directory : str Directory in which input files reside. output_directory : str Directory in which to save the converted dataset. youtube_id : str 11-character video ID (taken from YouTube URL) channels : int The number of audio channels to use in the PCM Wave file. sample : int The sampling rate to use in Hz, e.g. 44100 or 16000. output_filename : str, optional Name of the saved dataset. If `None` (the default), `youtube_id.hdf5` is used.
[ "Converts", "downloaded", "YouTube", "audio", "to", "HDF5", "format", "." ]
1d6292dc25e3a115544237e392e61bff6631d23c
https://github.com/mila-iqia/fuel/blob/1d6292dc25e3a115544237e392e61bff6631d23c/fuel/converters/youtube_audio.py#L11-L62
train
mila-iqia/fuel
fuel/converters/youtube_audio.py
fill_subparser
def fill_subparser(subparser): """Sets up a subparser to convert YouTube audio files. Adds the compulsory `--youtube-id` flag as well as the optional `sample` and `channels` flags. Parameters ---------- subparser : :class:`argparse.ArgumentParser` Subparser handling the `youtube_audio` command. """ subparser.add_argument( '--youtube-id', type=str, required=True, help=("The YouTube ID of the video from which to extract audio, " "usually an 11-character string.") ) subparser.add_argument( '--channels', type=int, default=1, help=("The number of audio channels to convert to. The default of 1" "means audio is converted to mono.") ) subparser.add_argument( '--sample', type=int, default=16000, help=("The sampling rate in Hz. The default of 16000 is " "significantly downsampled compared to normal WAVE files; " "pass 44100 for the usual sampling rate.") ) return convert_youtube_audio
python
def fill_subparser(subparser): """Sets up a subparser to convert YouTube audio files. Adds the compulsory `--youtube-id` flag as well as the optional `sample` and `channels` flags. Parameters ---------- subparser : :class:`argparse.ArgumentParser` Subparser handling the `youtube_audio` command. """ subparser.add_argument( '--youtube-id', type=str, required=True, help=("The YouTube ID of the video from which to extract audio, " "usually an 11-character string.") ) subparser.add_argument( '--channels', type=int, default=1, help=("The number of audio channels to convert to. The default of 1" "means audio is converted to mono.") ) subparser.add_argument( '--sample', type=int, default=16000, help=("The sampling rate in Hz. The default of 16000 is " "significantly downsampled compared to normal WAVE files; " "pass 44100 for the usual sampling rate.") ) return convert_youtube_audio
[ "def", "fill_subparser", "(", "subparser", ")", ":", "subparser", ".", "add_argument", "(", "'--youtube-id'", ",", "type", "=", "str", ",", "required", "=", "True", ",", "help", "=", "(", "\"The YouTube ID of the video from which to extract audio, \"", "\"usually an 11-character string.\"", ")", ")", "subparser", ".", "add_argument", "(", "'--channels'", ",", "type", "=", "int", ",", "default", "=", "1", ",", "help", "=", "(", "\"The number of audio channels to convert to. The default of 1\"", "\"means audio is converted to mono.\"", ")", ")", "subparser", ".", "add_argument", "(", "'--sample'", ",", "type", "=", "int", ",", "default", "=", "16000", ",", "help", "=", "(", "\"The sampling rate in Hz. The default of 16000 is \"", "\"significantly downsampled compared to normal WAVE files; \"", "\"pass 44100 for the usual sampling rate.\"", ")", ")", "return", "convert_youtube_audio" ]
Sets up a subparser to convert YouTube audio files. Adds the compulsory `--youtube-id` flag as well as the optional `sample` and `channels` flags. Parameters ---------- subparser : :class:`argparse.ArgumentParser` Subparser handling the `youtube_audio` command.
[ "Sets", "up", "a", "subparser", "to", "convert", "YouTube", "audio", "files", "." ]
1d6292dc25e3a115544237e392e61bff6631d23c
https://github.com/mila-iqia/fuel/blob/1d6292dc25e3a115544237e392e61bff6631d23c/fuel/converters/youtube_audio.py#L65-L93
train
mila-iqia/fuel
fuel/converters/ilsvrc2012.py
convert_ilsvrc2012
def convert_ilsvrc2012(directory, output_directory, output_filename='ilsvrc2012.hdf5', shuffle_seed=config.default_seed): """Converter for data from the ILSVRC 2012 competition. Source files for this dataset can be obtained by registering at [ILSVRC2012WEB]. Parameters ---------- input_directory : str Path from which to read raw data files. output_directory : str Path to which to save the HDF5 file. output_filename : str, optional The output filename for the HDF5 file. Default: 'ilsvrc2012.hdf5'. shuffle_seed : int or sequence, optional Seed for a random number generator used to shuffle the order of the training set on disk, so that sequential reads will not be ordered by class. .. [ILSVRC2012WEB] http://image-net.org/challenges/LSVRC/2012/index """ devkit_path = os.path.join(directory, DEVKIT_ARCHIVE) train, valid, test = [os.path.join(directory, fn) for fn in IMAGE_TARS] n_train, valid_groundtruth, n_test, wnid_map = prepare_metadata( devkit_path) n_valid = len(valid_groundtruth) output_path = os.path.join(output_directory, output_filename) with h5py.File(output_path, 'w') as f, create_temp_tar() as patch: log.info('Creating HDF5 datasets...') prepare_hdf5_file(f, n_train, n_valid, n_test) log.info('Processing training set...') process_train_set(f, train, patch, n_train, wnid_map, shuffle_seed) log.info('Processing validation set...') process_other_set(f, 'valid', valid, patch, valid_groundtruth, n_train) log.info('Processing test set...') process_other_set(f, 'test', test, patch, (None,) * n_test, n_train + n_valid) log.info('Done.') return (output_path,)
python
def convert_ilsvrc2012(directory, output_directory, output_filename='ilsvrc2012.hdf5', shuffle_seed=config.default_seed): """Converter for data from the ILSVRC 2012 competition. Source files for this dataset can be obtained by registering at [ILSVRC2012WEB]. Parameters ---------- input_directory : str Path from which to read raw data files. output_directory : str Path to which to save the HDF5 file. output_filename : str, optional The output filename for the HDF5 file. Default: 'ilsvrc2012.hdf5'. shuffle_seed : int or sequence, optional Seed for a random number generator used to shuffle the order of the training set on disk, so that sequential reads will not be ordered by class. .. [ILSVRC2012WEB] http://image-net.org/challenges/LSVRC/2012/index """ devkit_path = os.path.join(directory, DEVKIT_ARCHIVE) train, valid, test = [os.path.join(directory, fn) for fn in IMAGE_TARS] n_train, valid_groundtruth, n_test, wnid_map = prepare_metadata( devkit_path) n_valid = len(valid_groundtruth) output_path = os.path.join(output_directory, output_filename) with h5py.File(output_path, 'w') as f, create_temp_tar() as patch: log.info('Creating HDF5 datasets...') prepare_hdf5_file(f, n_train, n_valid, n_test) log.info('Processing training set...') process_train_set(f, train, patch, n_train, wnid_map, shuffle_seed) log.info('Processing validation set...') process_other_set(f, 'valid', valid, patch, valid_groundtruth, n_train) log.info('Processing test set...') process_other_set(f, 'test', test, patch, (None,) * n_test, n_train + n_valid) log.info('Done.') return (output_path,)
[ "def", "convert_ilsvrc2012", "(", "directory", ",", "output_directory", ",", "output_filename", "=", "'ilsvrc2012.hdf5'", ",", "shuffle_seed", "=", "config", ".", "default_seed", ")", ":", "devkit_path", "=", "os", ".", "path", ".", "join", "(", "directory", ",", "DEVKIT_ARCHIVE", ")", "train", ",", "valid", ",", "test", "=", "[", "os", ".", "path", ".", "join", "(", "directory", ",", "fn", ")", "for", "fn", "in", "IMAGE_TARS", "]", "n_train", ",", "valid_groundtruth", ",", "n_test", ",", "wnid_map", "=", "prepare_metadata", "(", "devkit_path", ")", "n_valid", "=", "len", "(", "valid_groundtruth", ")", "output_path", "=", "os", ".", "path", ".", "join", "(", "output_directory", ",", "output_filename", ")", "with", "h5py", ".", "File", "(", "output_path", ",", "'w'", ")", "as", "f", ",", "create_temp_tar", "(", ")", "as", "patch", ":", "log", ".", "info", "(", "'Creating HDF5 datasets...'", ")", "prepare_hdf5_file", "(", "f", ",", "n_train", ",", "n_valid", ",", "n_test", ")", "log", ".", "info", "(", "'Processing training set...'", ")", "process_train_set", "(", "f", ",", "train", ",", "patch", ",", "n_train", ",", "wnid_map", ",", "shuffle_seed", ")", "log", ".", "info", "(", "'Processing validation set...'", ")", "process_other_set", "(", "f", ",", "'valid'", ",", "valid", ",", "patch", ",", "valid_groundtruth", ",", "n_train", ")", "log", ".", "info", "(", "'Processing test set...'", ")", "process_other_set", "(", "f", ",", "'test'", ",", "test", ",", "patch", ",", "(", "None", ",", ")", "*", "n_test", ",", "n_train", "+", "n_valid", ")", "log", ".", "info", "(", "'Done.'", ")", "return", "(", "output_path", ",", ")" ]
Converter for data from the ILSVRC 2012 competition. Source files for this dataset can be obtained by registering at [ILSVRC2012WEB]. Parameters ---------- input_directory : str Path from which to read raw data files. output_directory : str Path to which to save the HDF5 file. output_filename : str, optional The output filename for the HDF5 file. Default: 'ilsvrc2012.hdf5'. shuffle_seed : int or sequence, optional Seed for a random number generator used to shuffle the order of the training set on disk, so that sequential reads will not be ordered by class. .. [ILSVRC2012WEB] http://image-net.org/challenges/LSVRC/2012/index
[ "Converter", "for", "data", "from", "the", "ILSVRC", "2012", "competition", "." ]
1d6292dc25e3a115544237e392e61bff6631d23c
https://github.com/mila-iqia/fuel/blob/1d6292dc25e3a115544237e392e61bff6631d23c/fuel/converters/ilsvrc2012.py#L35-L78
train
mila-iqia/fuel
fuel/converters/ilsvrc2012.py
fill_subparser
def fill_subparser(subparser): """Sets up a subparser to convert the ILSVRC2012 dataset files. Parameters ---------- subparser : :class:`argparse.ArgumentParser` Subparser handling the `ilsvrc2012` command. """ subparser.add_argument( "--shuffle-seed", help="Seed to use for randomizing order of the " "training set on disk.", default=config.default_seed, type=int, required=False) return convert_ilsvrc2012
python
def fill_subparser(subparser): """Sets up a subparser to convert the ILSVRC2012 dataset files. Parameters ---------- subparser : :class:`argparse.ArgumentParser` Subparser handling the `ilsvrc2012` command. """ subparser.add_argument( "--shuffle-seed", help="Seed to use for randomizing order of the " "training set on disk.", default=config.default_seed, type=int, required=False) return convert_ilsvrc2012
[ "def", "fill_subparser", "(", "subparser", ")", ":", "subparser", ".", "add_argument", "(", "\"--shuffle-seed\"", ",", "help", "=", "\"Seed to use for randomizing order of the \"", "\"training set on disk.\"", ",", "default", "=", "config", ".", "default_seed", ",", "type", "=", "int", ",", "required", "=", "False", ")", "return", "convert_ilsvrc2012" ]
Sets up a subparser to convert the ILSVRC2012 dataset files. Parameters ---------- subparser : :class:`argparse.ArgumentParser` Subparser handling the `ilsvrc2012` command.
[ "Sets", "up", "a", "subparser", "to", "convert", "the", "ILSVRC2012", "dataset", "files", "." ]
1d6292dc25e3a115544237e392e61bff6631d23c
https://github.com/mila-iqia/fuel/blob/1d6292dc25e3a115544237e392e61bff6631d23c/fuel/converters/ilsvrc2012.py#L81-L94
train
mila-iqia/fuel
fuel/converters/ilsvrc2012.py
read_metadata_mat_file
def read_metadata_mat_file(meta_mat): """Read ILSVRC2012 metadata from the distributed MAT file. Parameters ---------- meta_mat : str or file-like object The filename or file-handle for `meta.mat` from the ILSVRC2012 development kit. Returns ------- synsets : ndarray, 1-dimensional, compound dtype A table containing ILSVRC2012 metadata for the "synonym sets" or "synsets" that comprise the classes and superclasses, including the following fields: * `ILSVRC2012_ID`: the integer ID used in the original competition data. * `WNID`: A string identifier that uniquely identifies a synset in ImageNet and WordNet. * `wordnet_height`: The length of the longest path to a leaf node in the FULL ImageNet/WordNet hierarchy (leaf nodes in the FULL ImageNet/WordNet hierarchy have `wordnet_height` 0). * `gloss`: A string representation of an English textual description of the concept represented by this synset. * `num_children`: The number of children in the hierarchy for this synset. * `words`: A string representation, comma separated, of different synoym words or phrases for the concept represented by this synset. * `children`: A vector of `ILSVRC2012_ID`s of children of this synset, padded with -1. Note that these refer to `ILSVRC2012_ID`s from the original data and *not* the zero-based index in the table. * `num_train_images`: The number of training images for this synset. """ mat = loadmat(meta_mat, squeeze_me=True) synsets = mat['synsets'] new_dtype = numpy.dtype([ ('ILSVRC2012_ID', numpy.int16), ('WNID', ('S', max(map(len, synsets['WNID'])))), ('wordnet_height', numpy.int8), ('gloss', ('S', max(map(len, synsets['gloss'])))), ('num_children', numpy.int8), ('words', ('S', max(map(len, synsets['words'])))), ('children', (numpy.int8, max(synsets['num_children']))), ('num_train_images', numpy.uint16) ]) new_synsets = numpy.empty(synsets.shape, dtype=new_dtype) for attr in ['ILSVRC2012_ID', 'WNID', 'wordnet_height', 'gloss', 'num_children', 'words', 'num_train_images']: new_synsets[attr] = synsets[attr] children = [numpy.atleast_1d(ch) for ch in synsets['children']] padded_children = [ numpy.concatenate((c, -numpy.ones(new_dtype['children'].shape[0] - len(c), dtype=numpy.int16))) for c in children ] new_synsets['children'] = padded_children return new_synsets
python
def read_metadata_mat_file(meta_mat): """Read ILSVRC2012 metadata from the distributed MAT file. Parameters ---------- meta_mat : str or file-like object The filename or file-handle for `meta.mat` from the ILSVRC2012 development kit. Returns ------- synsets : ndarray, 1-dimensional, compound dtype A table containing ILSVRC2012 metadata for the "synonym sets" or "synsets" that comprise the classes and superclasses, including the following fields: * `ILSVRC2012_ID`: the integer ID used in the original competition data. * `WNID`: A string identifier that uniquely identifies a synset in ImageNet and WordNet. * `wordnet_height`: The length of the longest path to a leaf node in the FULL ImageNet/WordNet hierarchy (leaf nodes in the FULL ImageNet/WordNet hierarchy have `wordnet_height` 0). * `gloss`: A string representation of an English textual description of the concept represented by this synset. * `num_children`: The number of children in the hierarchy for this synset. * `words`: A string representation, comma separated, of different synoym words or phrases for the concept represented by this synset. * `children`: A vector of `ILSVRC2012_ID`s of children of this synset, padded with -1. Note that these refer to `ILSVRC2012_ID`s from the original data and *not* the zero-based index in the table. * `num_train_images`: The number of training images for this synset. """ mat = loadmat(meta_mat, squeeze_me=True) synsets = mat['synsets'] new_dtype = numpy.dtype([ ('ILSVRC2012_ID', numpy.int16), ('WNID', ('S', max(map(len, synsets['WNID'])))), ('wordnet_height', numpy.int8), ('gloss', ('S', max(map(len, synsets['gloss'])))), ('num_children', numpy.int8), ('words', ('S', max(map(len, synsets['words'])))), ('children', (numpy.int8, max(synsets['num_children']))), ('num_train_images', numpy.uint16) ]) new_synsets = numpy.empty(synsets.shape, dtype=new_dtype) for attr in ['ILSVRC2012_ID', 'WNID', 'wordnet_height', 'gloss', 'num_children', 'words', 'num_train_images']: new_synsets[attr] = synsets[attr] children = [numpy.atleast_1d(ch) for ch in synsets['children']] padded_children = [ numpy.concatenate((c, -numpy.ones(new_dtype['children'].shape[0] - len(c), dtype=numpy.int16))) for c in children ] new_synsets['children'] = padded_children return new_synsets
[ "def", "read_metadata_mat_file", "(", "meta_mat", ")", ":", "mat", "=", "loadmat", "(", "meta_mat", ",", "squeeze_me", "=", "True", ")", "synsets", "=", "mat", "[", "'synsets'", "]", "new_dtype", "=", "numpy", ".", "dtype", "(", "[", "(", "'ILSVRC2012_ID'", ",", "numpy", ".", "int16", ")", ",", "(", "'WNID'", ",", "(", "'S'", ",", "max", "(", "map", "(", "len", ",", "synsets", "[", "'WNID'", "]", ")", ")", ")", ")", ",", "(", "'wordnet_height'", ",", "numpy", ".", "int8", ")", ",", "(", "'gloss'", ",", "(", "'S'", ",", "max", "(", "map", "(", "len", ",", "synsets", "[", "'gloss'", "]", ")", ")", ")", ")", ",", "(", "'num_children'", ",", "numpy", ".", "int8", ")", ",", "(", "'words'", ",", "(", "'S'", ",", "max", "(", "map", "(", "len", ",", "synsets", "[", "'words'", "]", ")", ")", ")", ")", ",", "(", "'children'", ",", "(", "numpy", ".", "int8", ",", "max", "(", "synsets", "[", "'num_children'", "]", ")", ")", ")", ",", "(", "'num_train_images'", ",", "numpy", ".", "uint16", ")", "]", ")", "new_synsets", "=", "numpy", ".", "empty", "(", "synsets", ".", "shape", ",", "dtype", "=", "new_dtype", ")", "for", "attr", "in", "[", "'ILSVRC2012_ID'", ",", "'WNID'", ",", "'wordnet_height'", ",", "'gloss'", ",", "'num_children'", ",", "'words'", ",", "'num_train_images'", "]", ":", "new_synsets", "[", "attr", "]", "=", "synsets", "[", "attr", "]", "children", "=", "[", "numpy", ".", "atleast_1d", "(", "ch", ")", "for", "ch", "in", "synsets", "[", "'children'", "]", "]", "padded_children", "=", "[", "numpy", ".", "concatenate", "(", "(", "c", ",", "-", "numpy", ".", "ones", "(", "new_dtype", "[", "'children'", "]", ".", "shape", "[", "0", "]", "-", "len", "(", "c", ")", ",", "dtype", "=", "numpy", ".", "int16", ")", ")", ")", "for", "c", "in", "children", "]", "new_synsets", "[", "'children'", "]", "=", "padded_children", "return", "new_synsets" ]
Read ILSVRC2012 metadata from the distributed MAT file. Parameters ---------- meta_mat : str or file-like object The filename or file-handle for `meta.mat` from the ILSVRC2012 development kit. Returns ------- synsets : ndarray, 1-dimensional, compound dtype A table containing ILSVRC2012 metadata for the "synonym sets" or "synsets" that comprise the classes and superclasses, including the following fields: * `ILSVRC2012_ID`: the integer ID used in the original competition data. * `WNID`: A string identifier that uniquely identifies a synset in ImageNet and WordNet. * `wordnet_height`: The length of the longest path to a leaf node in the FULL ImageNet/WordNet hierarchy (leaf nodes in the FULL ImageNet/WordNet hierarchy have `wordnet_height` 0). * `gloss`: A string representation of an English textual description of the concept represented by this synset. * `num_children`: The number of children in the hierarchy for this synset. * `words`: A string representation, comma separated, of different synoym words or phrases for the concept represented by this synset. * `children`: A vector of `ILSVRC2012_ID`s of children of this synset, padded with -1. Note that these refer to `ILSVRC2012_ID`s from the original data and *not* the zero-based index in the table. * `num_train_images`: The number of training images for this synset.
[ "Read", "ILSVRC2012", "metadata", "from", "the", "distributed", "MAT", "file", "." ]
1d6292dc25e3a115544237e392e61bff6631d23c
https://github.com/mila-iqia/fuel/blob/1d6292dc25e3a115544237e392e61bff6631d23c/fuel/converters/ilsvrc2012.py#L231-L294
train
mila-iqia/fuel
fuel/config_parser.py
multiple_paths_parser
def multiple_paths_parser(value): """Parses data_path argument. Parameters ---------- value : str a string of data paths separated by ":". Returns ------- value : list a list of strings indicating each data paths. """ if isinstance(value, six.string_types): value = value.split(os.path.pathsep) return value
python
def multiple_paths_parser(value): """Parses data_path argument. Parameters ---------- value : str a string of data paths separated by ":". Returns ------- value : list a list of strings indicating each data paths. """ if isinstance(value, six.string_types): value = value.split(os.path.pathsep) return value
[ "def", "multiple_paths_parser", "(", "value", ")", ":", "if", "isinstance", "(", "value", ",", "six", ".", "string_types", ")", ":", "value", "=", "value", ".", "split", "(", "os", ".", "path", ".", "pathsep", ")", "return", "value" ]
Parses data_path argument. Parameters ---------- value : str a string of data paths separated by ":". Returns ------- value : list a list of strings indicating each data paths.
[ "Parses", "data_path", "argument", "." ]
1d6292dc25e3a115544237e392e61bff6631d23c
https://github.com/mila-iqia/fuel/blob/1d6292dc25e3a115544237e392e61bff6631d23c/fuel/config_parser.py#L108-L124
train
mila-iqia/fuel
fuel/config_parser.py
Configuration.add_config
def add_config(self, key, type_, default=NOT_SET, env_var=None): """Add a configuration setting. Parameters ---------- key : str The name of the configuration setting. This must be a valid Python attribute name i.e. alphanumeric with underscores. type : function A function such as ``float``, ``int`` or ``str`` which takes the configuration value and returns an object of the correct type. Note that the values retrieved from environment variables are always strings, while those retrieved from the YAML file might already be parsed. Hence, the function provided here must accept both types of input. default : object, optional The default configuration to return if not set. By default none is set and an error is raised instead. env_var : str, optional The environment variable name that holds this configuration value. If not given, this configuration can only be set in the YAML configuration file. """ self.config[key] = {'type': type_} if env_var is not None: self.config[key]['env_var'] = env_var if default is not NOT_SET: self.config[key]['default'] = default
python
def add_config(self, key, type_, default=NOT_SET, env_var=None): """Add a configuration setting. Parameters ---------- key : str The name of the configuration setting. This must be a valid Python attribute name i.e. alphanumeric with underscores. type : function A function such as ``float``, ``int`` or ``str`` which takes the configuration value and returns an object of the correct type. Note that the values retrieved from environment variables are always strings, while those retrieved from the YAML file might already be parsed. Hence, the function provided here must accept both types of input. default : object, optional The default configuration to return if not set. By default none is set and an error is raised instead. env_var : str, optional The environment variable name that holds this configuration value. If not given, this configuration can only be set in the YAML configuration file. """ self.config[key] = {'type': type_} if env_var is not None: self.config[key]['env_var'] = env_var if default is not NOT_SET: self.config[key]['default'] = default
[ "def", "add_config", "(", "self", ",", "key", ",", "type_", ",", "default", "=", "NOT_SET", ",", "env_var", "=", "None", ")", ":", "self", ".", "config", "[", "key", "]", "=", "{", "'type'", ":", "type_", "}", "if", "env_var", "is", "not", "None", ":", "self", ".", "config", "[", "key", "]", "[", "'env_var'", "]", "=", "env_var", "if", "default", "is", "not", "NOT_SET", ":", "self", ".", "config", "[", "key", "]", "[", "'default'", "]", "=", "default" ]
Add a configuration setting. Parameters ---------- key : str The name of the configuration setting. This must be a valid Python attribute name i.e. alphanumeric with underscores. type : function A function such as ``float``, ``int`` or ``str`` which takes the configuration value and returns an object of the correct type. Note that the values retrieved from environment variables are always strings, while those retrieved from the YAML file might already be parsed. Hence, the function provided here must accept both types of input. default : object, optional The default configuration to return if not set. By default none is set and an error is raised instead. env_var : str, optional The environment variable name that holds this configuration value. If not given, this configuration can only be set in the YAML configuration file.
[ "Add", "a", "configuration", "setting", "." ]
1d6292dc25e3a115544237e392e61bff6631d23c
https://github.com/mila-iqia/fuel/blob/1d6292dc25e3a115544237e392e61bff6631d23c/fuel/config_parser.py#L168-L196
train
mila-iqia/fuel
fuel/server.py
send_arrays
def send_arrays(socket, arrays, stop=False): """Send NumPy arrays using the buffer interface and some metadata. Parameters ---------- socket : :class:`zmq.Socket` The socket to send data over. arrays : list A list of :class:`numpy.ndarray` to transfer. stop : bool, optional Instead of sending a series of NumPy arrays, send a JSON object with a single `stop` key. The :func:`recv_arrays` will raise ``StopIteration`` when it receives this. Notes ----- The protocol is very simple: A single JSON object describing the array format (using the same specification as ``.npy`` files) is sent first. Subsequently the arrays are sent as bytestreams (through NumPy's support of the buffering protocol). """ if arrays: # The buffer protocol only works on contiguous arrays arrays = [numpy.ascontiguousarray(array) for array in arrays] if stop: headers = {'stop': True} socket.send_json(headers) else: headers = [header_data_from_array_1_0(array) for array in arrays] socket.send_json(headers, zmq.SNDMORE) for array in arrays[:-1]: socket.send(array, zmq.SNDMORE) socket.send(arrays[-1])
python
def send_arrays(socket, arrays, stop=False): """Send NumPy arrays using the buffer interface and some metadata. Parameters ---------- socket : :class:`zmq.Socket` The socket to send data over. arrays : list A list of :class:`numpy.ndarray` to transfer. stop : bool, optional Instead of sending a series of NumPy arrays, send a JSON object with a single `stop` key. The :func:`recv_arrays` will raise ``StopIteration`` when it receives this. Notes ----- The protocol is very simple: A single JSON object describing the array format (using the same specification as ``.npy`` files) is sent first. Subsequently the arrays are sent as bytestreams (through NumPy's support of the buffering protocol). """ if arrays: # The buffer protocol only works on contiguous arrays arrays = [numpy.ascontiguousarray(array) for array in arrays] if stop: headers = {'stop': True} socket.send_json(headers) else: headers = [header_data_from_array_1_0(array) for array in arrays] socket.send_json(headers, zmq.SNDMORE) for array in arrays[:-1]: socket.send(array, zmq.SNDMORE) socket.send(arrays[-1])
[ "def", "send_arrays", "(", "socket", ",", "arrays", ",", "stop", "=", "False", ")", ":", "if", "arrays", ":", "# The buffer protocol only works on contiguous arrays", "arrays", "=", "[", "numpy", ".", "ascontiguousarray", "(", "array", ")", "for", "array", "in", "arrays", "]", "if", "stop", ":", "headers", "=", "{", "'stop'", ":", "True", "}", "socket", ".", "send_json", "(", "headers", ")", "else", ":", "headers", "=", "[", "header_data_from_array_1_0", "(", "array", ")", "for", "array", "in", "arrays", "]", "socket", ".", "send_json", "(", "headers", ",", "zmq", ".", "SNDMORE", ")", "for", "array", "in", "arrays", "[", ":", "-", "1", "]", ":", "socket", ".", "send", "(", "array", ",", "zmq", ".", "SNDMORE", ")", "socket", ".", "send", "(", "arrays", "[", "-", "1", "]", ")" ]
Send NumPy arrays using the buffer interface and some metadata. Parameters ---------- socket : :class:`zmq.Socket` The socket to send data over. arrays : list A list of :class:`numpy.ndarray` to transfer. stop : bool, optional Instead of sending a series of NumPy arrays, send a JSON object with a single `stop` key. The :func:`recv_arrays` will raise ``StopIteration`` when it receives this. Notes ----- The protocol is very simple: A single JSON object describing the array format (using the same specification as ``.npy`` files) is sent first. Subsequently the arrays are sent as bytestreams (through NumPy's support of the buffering protocol).
[ "Send", "NumPy", "arrays", "using", "the", "buffer", "interface", "and", "some", "metadata", "." ]
1d6292dc25e3a115544237e392e61bff6631d23c
https://github.com/mila-iqia/fuel/blob/1d6292dc25e3a115544237e392e61bff6631d23c/fuel/server.py#L12-L45
train
mila-iqia/fuel
fuel/server.py
recv_arrays
def recv_arrays(socket): """Receive a list of NumPy arrays. Parameters ---------- socket : :class:`zmq.Socket` The socket to receive the arrays on. Returns ------- list A list of :class:`numpy.ndarray` objects. Raises ------ StopIteration If the first JSON object received contains the key `stop`, signifying that the server has finished a single epoch. """ headers = socket.recv_json() if 'stop' in headers: raise StopIteration arrays = [] for header in headers: data = socket.recv(copy=False) buf = buffer_(data) array = numpy.frombuffer(buf, dtype=numpy.dtype(header['descr'])) array.shape = header['shape'] if header['fortran_order']: array.shape = header['shape'][::-1] array = array.transpose() arrays.append(array) return arrays
python
def recv_arrays(socket): """Receive a list of NumPy arrays. Parameters ---------- socket : :class:`zmq.Socket` The socket to receive the arrays on. Returns ------- list A list of :class:`numpy.ndarray` objects. Raises ------ StopIteration If the first JSON object received contains the key `stop`, signifying that the server has finished a single epoch. """ headers = socket.recv_json() if 'stop' in headers: raise StopIteration arrays = [] for header in headers: data = socket.recv(copy=False) buf = buffer_(data) array = numpy.frombuffer(buf, dtype=numpy.dtype(header['descr'])) array.shape = header['shape'] if header['fortran_order']: array.shape = header['shape'][::-1] array = array.transpose() arrays.append(array) return arrays
[ "def", "recv_arrays", "(", "socket", ")", ":", "headers", "=", "socket", ".", "recv_json", "(", ")", "if", "'stop'", "in", "headers", ":", "raise", "StopIteration", "arrays", "=", "[", "]", "for", "header", "in", "headers", ":", "data", "=", "socket", ".", "recv", "(", "copy", "=", "False", ")", "buf", "=", "buffer_", "(", "data", ")", "array", "=", "numpy", ".", "frombuffer", "(", "buf", ",", "dtype", "=", "numpy", ".", "dtype", "(", "header", "[", "'descr'", "]", ")", ")", "array", ".", "shape", "=", "header", "[", "'shape'", "]", "if", "header", "[", "'fortran_order'", "]", ":", "array", ".", "shape", "=", "header", "[", "'shape'", "]", "[", ":", ":", "-", "1", "]", "array", "=", "array", ".", "transpose", "(", ")", "arrays", ".", "append", "(", "array", ")", "return", "arrays" ]
Receive a list of NumPy arrays. Parameters ---------- socket : :class:`zmq.Socket` The socket to receive the arrays on. Returns ------- list A list of :class:`numpy.ndarray` objects. Raises ------ StopIteration If the first JSON object received contains the key `stop`, signifying that the server has finished a single epoch.
[ "Receive", "a", "list", "of", "NumPy", "arrays", "." ]
1d6292dc25e3a115544237e392e61bff6631d23c
https://github.com/mila-iqia/fuel/blob/1d6292dc25e3a115544237e392e61bff6631d23c/fuel/server.py#L48-L81
train
mila-iqia/fuel
fuel/server.py
start_server
def start_server(data_stream, port=5557, hwm=10): """Start a data processing server. This command starts a server in the current process that performs the actual data processing (by retrieving data from the given data stream). It also starts a second process, the broker, which mediates between the server and the client. The broker also keeps a buffer of batches in memory. Parameters ---------- data_stream : :class:`.DataStream` The data stream to return examples from. port : int, optional The port the server and the client (training loop) will use to communicate. Defaults to 5557. hwm : int, optional The `ZeroMQ high-water mark (HWM) <http://zguide.zeromq.org/page:all#High-Water-Marks>`_ on the sending socket. Increasing this increases the buffer, which can be useful if your data preprocessing times are very random. However, it will increase memory usage. There is no easy way to tell how many batches will actually be queued with a particular HWM. Defaults to 10. Be sure to set the corresponding HWM on the receiving end as well. """ logging.basicConfig(level='INFO') context = zmq.Context() socket = context.socket(zmq.PUSH) socket.set_hwm(hwm) socket.bind('tcp://*:{}'.format(port)) it = data_stream.get_epoch_iterator() logger.info('server started') while True: try: data = next(it) stop = False logger.debug("sending {} arrays".format(len(data))) except StopIteration: it = data_stream.get_epoch_iterator() data = None stop = True logger.debug("sending StopIteration") send_arrays(socket, data, stop=stop)
python
def start_server(data_stream, port=5557, hwm=10): """Start a data processing server. This command starts a server in the current process that performs the actual data processing (by retrieving data from the given data stream). It also starts a second process, the broker, which mediates between the server and the client. The broker also keeps a buffer of batches in memory. Parameters ---------- data_stream : :class:`.DataStream` The data stream to return examples from. port : int, optional The port the server and the client (training loop) will use to communicate. Defaults to 5557. hwm : int, optional The `ZeroMQ high-water mark (HWM) <http://zguide.zeromq.org/page:all#High-Water-Marks>`_ on the sending socket. Increasing this increases the buffer, which can be useful if your data preprocessing times are very random. However, it will increase memory usage. There is no easy way to tell how many batches will actually be queued with a particular HWM. Defaults to 10. Be sure to set the corresponding HWM on the receiving end as well. """ logging.basicConfig(level='INFO') context = zmq.Context() socket = context.socket(zmq.PUSH) socket.set_hwm(hwm) socket.bind('tcp://*:{}'.format(port)) it = data_stream.get_epoch_iterator() logger.info('server started') while True: try: data = next(it) stop = False logger.debug("sending {} arrays".format(len(data))) except StopIteration: it = data_stream.get_epoch_iterator() data = None stop = True logger.debug("sending StopIteration") send_arrays(socket, data, stop=stop)
[ "def", "start_server", "(", "data_stream", ",", "port", "=", "5557", ",", "hwm", "=", "10", ")", ":", "logging", ".", "basicConfig", "(", "level", "=", "'INFO'", ")", "context", "=", "zmq", ".", "Context", "(", ")", "socket", "=", "context", ".", "socket", "(", "zmq", ".", "PUSH", ")", "socket", ".", "set_hwm", "(", "hwm", ")", "socket", ".", "bind", "(", "'tcp://*:{}'", ".", "format", "(", "port", ")", ")", "it", "=", "data_stream", ".", "get_epoch_iterator", "(", ")", "logger", ".", "info", "(", "'server started'", ")", "while", "True", ":", "try", ":", "data", "=", "next", "(", "it", ")", "stop", "=", "False", "logger", ".", "debug", "(", "\"sending {} arrays\"", ".", "format", "(", "len", "(", "data", ")", ")", ")", "except", "StopIteration", ":", "it", "=", "data_stream", ".", "get_epoch_iterator", "(", ")", "data", "=", "None", "stop", "=", "True", "logger", ".", "debug", "(", "\"sending StopIteration\"", ")", "send_arrays", "(", "socket", ",", "data", ",", "stop", "=", "stop", ")" ]
Start a data processing server. This command starts a server in the current process that performs the actual data processing (by retrieving data from the given data stream). It also starts a second process, the broker, which mediates between the server and the client. The broker also keeps a buffer of batches in memory. Parameters ---------- data_stream : :class:`.DataStream` The data stream to return examples from. port : int, optional The port the server and the client (training loop) will use to communicate. Defaults to 5557. hwm : int, optional The `ZeroMQ high-water mark (HWM) <http://zguide.zeromq.org/page:all#High-Water-Marks>`_ on the sending socket. Increasing this increases the buffer, which can be useful if your data preprocessing times are very random. However, it will increase memory usage. There is no easy way to tell how many batches will actually be queued with a particular HWM. Defaults to 10. Be sure to set the corresponding HWM on the receiving end as well.
[ "Start", "a", "data", "processing", "server", "." ]
1d6292dc25e3a115544237e392e61bff6631d23c
https://github.com/mila-iqia/fuel/blob/1d6292dc25e3a115544237e392e61bff6631d23c/fuel/server.py#L84-L131
train
apacha/OMR-Datasets
omrdatasettools/image_generators/HomusImageGenerator.py
HomusImageGenerator.create_images
def create_images(raw_data_directory: str, destination_directory: str, stroke_thicknesses: List[int], canvas_width: int = None, canvas_height: int = None, staff_line_spacing: int = 14, staff_line_vertical_offsets: List[int] = None, random_position_on_canvas: bool = False) -> dict: """ Creates a visual representation of the Homus Dataset by parsing all text-files and the symbols as specified by the parameters by drawing lines that connect the points from each stroke of each symbol. Each symbol will be drawn in the center of a fixed canvas, specified by width and height. :param raw_data_directory: The directory, that contains the text-files that contain the textual representation of the music symbols :param destination_directory: The directory, in which the symbols should be generated into. One sub-folder per symbol category will be generated automatically :param stroke_thicknesses: The thickness of the pen, used for drawing the lines in pixels. If multiple are specified, multiple images will be generated that have a different suffix, e.g. 1-16-3.png for the 3-px version and 1-16-2.png for the 2-px version of the image 1-16 :param canvas_width: The width of the canvas, that each image will be drawn upon, regardless of the original size of the symbol. Larger symbols will be cropped. If the original size of the symbol should be used, provided None here. :param canvas_height: The height of the canvas, that each image will be drawn upon, regardless of the original size of the symbol. Larger symbols will be cropped. If the original size of the symbol should be used, provided None here :param staff_line_spacing: Number of pixels spacing between each of the five staff-lines :param staff_line_vertical_offsets: List of vertical offsets, where the staff-lines will be superimposed over the drawn images. If None is provided, no staff-lines will be superimposed. If multiple values are provided, multiple versions of each symbol will be generated with the appropriate staff-lines, e.g. 1-5_3_offset_70.png and 1-5_3_offset_77.png for two versions of the symbol 1-5 with stroke thickness 3 and staff-line offsets 70 and 77 pixels from the top. :param random_position_on_canvas: True, if the symbols should be randomly placed on the fixed canvas. False, if the symbols should be centered in the fixed canvas. Note that this flag only has an effect, if fixed canvas sizes are used. :return: A dictionary that contains the file-names of all generated symbols and the respective bounding-boxes of each symbol. """ all_symbol_files = [y for x in os.walk(raw_data_directory) for y in glob(os.path.join(x[0], '*.txt'))] staff_line_multiplier = 1 if staff_line_vertical_offsets is not None and staff_line_vertical_offsets: staff_line_multiplier = len(staff_line_vertical_offsets) total_number_of_symbols = len(all_symbol_files) * len(stroke_thicknesses) * staff_line_multiplier output = "Generating {0} images with {1} symbols in {2} different stroke thicknesses ({3})".format( total_number_of_symbols, len(all_symbol_files), len(stroke_thicknesses), stroke_thicknesses) if staff_line_vertical_offsets is not None: output += " and with staff-lines with {0} different offsets from the top ({1})".format( staff_line_multiplier, staff_line_vertical_offsets) if canvas_width is not None and canvas_height is not None: if random_position_on_canvas is False: output += "\nRandomly drawn on a fixed canvas of size {0}x{1} (Width x Height)".format(canvas_width, canvas_height) else: output += "\nCentrally drawn on a fixed canvas of size {0}x{1} (Width x Height)".format(canvas_width, canvas_height) print(output) print("In directory {0}".format(os.path.abspath(destination_directory)), flush=True) bounding_boxes = dict() progress_bar = tqdm(total=total_number_of_symbols, mininterval=0.25) for symbol_file in all_symbol_files: with open(symbol_file) as file: content = file.read() symbol = HomusSymbol.initialize_from_string(content) target_directory = os.path.join(destination_directory, symbol.symbol_class) os.makedirs(target_directory, exist_ok=True) raw_file_name_without_extension = os.path.splitext(os.path.basename(symbol_file))[0] for stroke_thickness in stroke_thicknesses: export_path = ExportPath(destination_directory, symbol.symbol_class, raw_file_name_without_extension, 'png', stroke_thickness) if canvas_width is None and canvas_height is None: symbol.draw_into_bitmap(export_path, stroke_thickness, margin=2) else: symbol.draw_onto_canvas(export_path, stroke_thickness, 0, canvas_width, canvas_height, staff_line_spacing, staff_line_vertical_offsets, bounding_boxes, random_position_on_canvas) progress_bar.update(1 * staff_line_multiplier) progress_bar.close() return bounding_boxes
python
def create_images(raw_data_directory: str, destination_directory: str, stroke_thicknesses: List[int], canvas_width: int = None, canvas_height: int = None, staff_line_spacing: int = 14, staff_line_vertical_offsets: List[int] = None, random_position_on_canvas: bool = False) -> dict: """ Creates a visual representation of the Homus Dataset by parsing all text-files and the symbols as specified by the parameters by drawing lines that connect the points from each stroke of each symbol. Each symbol will be drawn in the center of a fixed canvas, specified by width and height. :param raw_data_directory: The directory, that contains the text-files that contain the textual representation of the music symbols :param destination_directory: The directory, in which the symbols should be generated into. One sub-folder per symbol category will be generated automatically :param stroke_thicknesses: The thickness of the pen, used for drawing the lines in pixels. If multiple are specified, multiple images will be generated that have a different suffix, e.g. 1-16-3.png for the 3-px version and 1-16-2.png for the 2-px version of the image 1-16 :param canvas_width: The width of the canvas, that each image will be drawn upon, regardless of the original size of the symbol. Larger symbols will be cropped. If the original size of the symbol should be used, provided None here. :param canvas_height: The height of the canvas, that each image will be drawn upon, regardless of the original size of the symbol. Larger symbols will be cropped. If the original size of the symbol should be used, provided None here :param staff_line_spacing: Number of pixels spacing between each of the five staff-lines :param staff_line_vertical_offsets: List of vertical offsets, where the staff-lines will be superimposed over the drawn images. If None is provided, no staff-lines will be superimposed. If multiple values are provided, multiple versions of each symbol will be generated with the appropriate staff-lines, e.g. 1-5_3_offset_70.png and 1-5_3_offset_77.png for two versions of the symbol 1-5 with stroke thickness 3 and staff-line offsets 70 and 77 pixels from the top. :param random_position_on_canvas: True, if the symbols should be randomly placed on the fixed canvas. False, if the symbols should be centered in the fixed canvas. Note that this flag only has an effect, if fixed canvas sizes are used. :return: A dictionary that contains the file-names of all generated symbols and the respective bounding-boxes of each symbol. """ all_symbol_files = [y for x in os.walk(raw_data_directory) for y in glob(os.path.join(x[0], '*.txt'))] staff_line_multiplier = 1 if staff_line_vertical_offsets is not None and staff_line_vertical_offsets: staff_line_multiplier = len(staff_line_vertical_offsets) total_number_of_symbols = len(all_symbol_files) * len(stroke_thicknesses) * staff_line_multiplier output = "Generating {0} images with {1} symbols in {2} different stroke thicknesses ({3})".format( total_number_of_symbols, len(all_symbol_files), len(stroke_thicknesses), stroke_thicknesses) if staff_line_vertical_offsets is not None: output += " and with staff-lines with {0} different offsets from the top ({1})".format( staff_line_multiplier, staff_line_vertical_offsets) if canvas_width is not None and canvas_height is not None: if random_position_on_canvas is False: output += "\nRandomly drawn on a fixed canvas of size {0}x{1} (Width x Height)".format(canvas_width, canvas_height) else: output += "\nCentrally drawn on a fixed canvas of size {0}x{1} (Width x Height)".format(canvas_width, canvas_height) print(output) print("In directory {0}".format(os.path.abspath(destination_directory)), flush=True) bounding_boxes = dict() progress_bar = tqdm(total=total_number_of_symbols, mininterval=0.25) for symbol_file in all_symbol_files: with open(symbol_file) as file: content = file.read() symbol = HomusSymbol.initialize_from_string(content) target_directory = os.path.join(destination_directory, symbol.symbol_class) os.makedirs(target_directory, exist_ok=True) raw_file_name_without_extension = os.path.splitext(os.path.basename(symbol_file))[0] for stroke_thickness in stroke_thicknesses: export_path = ExportPath(destination_directory, symbol.symbol_class, raw_file_name_without_extension, 'png', stroke_thickness) if canvas_width is None and canvas_height is None: symbol.draw_into_bitmap(export_path, stroke_thickness, margin=2) else: symbol.draw_onto_canvas(export_path, stroke_thickness, 0, canvas_width, canvas_height, staff_line_spacing, staff_line_vertical_offsets, bounding_boxes, random_position_on_canvas) progress_bar.update(1 * staff_line_multiplier) progress_bar.close() return bounding_boxes
[ "def", "create_images", "(", "raw_data_directory", ":", "str", ",", "destination_directory", ":", "str", ",", "stroke_thicknesses", ":", "List", "[", "int", "]", ",", "canvas_width", ":", "int", "=", "None", ",", "canvas_height", ":", "int", "=", "None", ",", "staff_line_spacing", ":", "int", "=", "14", ",", "staff_line_vertical_offsets", ":", "List", "[", "int", "]", "=", "None", ",", "random_position_on_canvas", ":", "bool", "=", "False", ")", "->", "dict", ":", "all_symbol_files", "=", "[", "y", "for", "x", "in", "os", ".", "walk", "(", "raw_data_directory", ")", "for", "y", "in", "glob", "(", "os", ".", "path", ".", "join", "(", "x", "[", "0", "]", ",", "'*.txt'", ")", ")", "]", "staff_line_multiplier", "=", "1", "if", "staff_line_vertical_offsets", "is", "not", "None", "and", "staff_line_vertical_offsets", ":", "staff_line_multiplier", "=", "len", "(", "staff_line_vertical_offsets", ")", "total_number_of_symbols", "=", "len", "(", "all_symbol_files", ")", "*", "len", "(", "stroke_thicknesses", ")", "*", "staff_line_multiplier", "output", "=", "\"Generating {0} images with {1} symbols in {2} different stroke thicknesses ({3})\"", ".", "format", "(", "total_number_of_symbols", ",", "len", "(", "all_symbol_files", ")", ",", "len", "(", "stroke_thicknesses", ")", ",", "stroke_thicknesses", ")", "if", "staff_line_vertical_offsets", "is", "not", "None", ":", "output", "+=", "\" and with staff-lines with {0} different offsets from the top ({1})\"", ".", "format", "(", "staff_line_multiplier", ",", "staff_line_vertical_offsets", ")", "if", "canvas_width", "is", "not", "None", "and", "canvas_height", "is", "not", "None", ":", "if", "random_position_on_canvas", "is", "False", ":", "output", "+=", "\"\\nRandomly drawn on a fixed canvas of size {0}x{1} (Width x Height)\"", ".", "format", "(", "canvas_width", ",", "canvas_height", ")", "else", ":", "output", "+=", "\"\\nCentrally drawn on a fixed canvas of size {0}x{1} (Width x Height)\"", ".", "format", "(", "canvas_width", ",", "canvas_height", ")", "print", "(", "output", ")", "print", "(", "\"In directory {0}\"", ".", "format", "(", "os", ".", "path", ".", "abspath", "(", "destination_directory", ")", ")", ",", "flush", "=", "True", ")", "bounding_boxes", "=", "dict", "(", ")", "progress_bar", "=", "tqdm", "(", "total", "=", "total_number_of_symbols", ",", "mininterval", "=", "0.25", ")", "for", "symbol_file", "in", "all_symbol_files", ":", "with", "open", "(", "symbol_file", ")", "as", "file", ":", "content", "=", "file", ".", "read", "(", ")", "symbol", "=", "HomusSymbol", ".", "initialize_from_string", "(", "content", ")", "target_directory", "=", "os", ".", "path", ".", "join", "(", "destination_directory", ",", "symbol", ".", "symbol_class", ")", "os", ".", "makedirs", "(", "target_directory", ",", "exist_ok", "=", "True", ")", "raw_file_name_without_extension", "=", "os", ".", "path", ".", "splitext", "(", "os", ".", "path", ".", "basename", "(", "symbol_file", ")", ")", "[", "0", "]", "for", "stroke_thickness", "in", "stroke_thicknesses", ":", "export_path", "=", "ExportPath", "(", "destination_directory", ",", "symbol", ".", "symbol_class", ",", "raw_file_name_without_extension", ",", "'png'", ",", "stroke_thickness", ")", "if", "canvas_width", "is", "None", "and", "canvas_height", "is", "None", ":", "symbol", ".", "draw_into_bitmap", "(", "export_path", ",", "stroke_thickness", ",", "margin", "=", "2", ")", "else", ":", "symbol", ".", "draw_onto_canvas", "(", "export_path", ",", "stroke_thickness", ",", "0", ",", "canvas_width", ",", "canvas_height", ",", "staff_line_spacing", ",", "staff_line_vertical_offsets", ",", "bounding_boxes", ",", "random_position_on_canvas", ")", "progress_bar", ".", "update", "(", "1", "*", "staff_line_multiplier", ")", "progress_bar", ".", "close", "(", ")", "return", "bounding_boxes" ]
Creates a visual representation of the Homus Dataset by parsing all text-files and the symbols as specified by the parameters by drawing lines that connect the points from each stroke of each symbol. Each symbol will be drawn in the center of a fixed canvas, specified by width and height. :param raw_data_directory: The directory, that contains the text-files that contain the textual representation of the music symbols :param destination_directory: The directory, in which the symbols should be generated into. One sub-folder per symbol category will be generated automatically :param stroke_thicknesses: The thickness of the pen, used for drawing the lines in pixels. If multiple are specified, multiple images will be generated that have a different suffix, e.g. 1-16-3.png for the 3-px version and 1-16-2.png for the 2-px version of the image 1-16 :param canvas_width: The width of the canvas, that each image will be drawn upon, regardless of the original size of the symbol. Larger symbols will be cropped. If the original size of the symbol should be used, provided None here. :param canvas_height: The height of the canvas, that each image will be drawn upon, regardless of the original size of the symbol. Larger symbols will be cropped. If the original size of the symbol should be used, provided None here :param staff_line_spacing: Number of pixels spacing between each of the five staff-lines :param staff_line_vertical_offsets: List of vertical offsets, where the staff-lines will be superimposed over the drawn images. If None is provided, no staff-lines will be superimposed. If multiple values are provided, multiple versions of each symbol will be generated with the appropriate staff-lines, e.g. 1-5_3_offset_70.png and 1-5_3_offset_77.png for two versions of the symbol 1-5 with stroke thickness 3 and staff-line offsets 70 and 77 pixels from the top. :param random_position_on_canvas: True, if the symbols should be randomly placed on the fixed canvas. False, if the symbols should be centered in the fixed canvas. Note that this flag only has an effect, if fixed canvas sizes are used. :return: A dictionary that contains the file-names of all generated symbols and the respective bounding-boxes of each symbol.
[ "Creates", "a", "visual", "representation", "of", "the", "Homus", "Dataset", "by", "parsing", "all", "text", "-", "files", "and", "the", "symbols", "as", "specified", "by", "the", "parameters", "by", "drawing", "lines", "that", "connect", "the", "points", "from", "each", "stroke", "of", "each", "symbol", "." ]
d0a22a03ae35caeef211729efa340e1ec0e01ea5
https://github.com/apacha/OMR-Datasets/blob/d0a22a03ae35caeef211729efa340e1ec0e01ea5/omrdatasettools/image_generators/HomusImageGenerator.py#L13-L105
train
apacha/OMR-Datasets
omrdatasettools/image_generators/MuscimaPlusPlusImageGenerator.py
MuscimaPlusPlusImageGenerator.extract_and_render_all_symbol_masks
def extract_and_render_all_symbol_masks(self, raw_data_directory: str, destination_directory: str): """ Extracts all symbols from the raw XML documents and generates individual symbols from the masks :param raw_data_directory: The directory, that contains the xml-files and matching images :param destination_directory: The directory, in which the symbols should be generated into. One sub-folder per symbol category will be generated automatically """ print("Extracting Symbols from Muscima++ Dataset...") xml_files = self.get_all_xml_file_paths(raw_data_directory) crop_objects = self.load_crop_objects_from_xml_files(xml_files) self.render_masks_of_crop_objects_into_image(crop_objects, destination_directory)
python
def extract_and_render_all_symbol_masks(self, raw_data_directory: str, destination_directory: str): """ Extracts all symbols from the raw XML documents and generates individual symbols from the masks :param raw_data_directory: The directory, that contains the xml-files and matching images :param destination_directory: The directory, in which the symbols should be generated into. One sub-folder per symbol category will be generated automatically """ print("Extracting Symbols from Muscima++ Dataset...") xml_files = self.get_all_xml_file_paths(raw_data_directory) crop_objects = self.load_crop_objects_from_xml_files(xml_files) self.render_masks_of_crop_objects_into_image(crop_objects, destination_directory)
[ "def", "extract_and_render_all_symbol_masks", "(", "self", ",", "raw_data_directory", ":", "str", ",", "destination_directory", ":", "str", ")", ":", "print", "(", "\"Extracting Symbols from Muscima++ Dataset...\"", ")", "xml_files", "=", "self", ".", "get_all_xml_file_paths", "(", "raw_data_directory", ")", "crop_objects", "=", "self", ".", "load_crop_objects_from_xml_files", "(", "xml_files", ")", "self", ".", "render_masks_of_crop_objects_into_image", "(", "crop_objects", ",", "destination_directory", ")" ]
Extracts all symbols from the raw XML documents and generates individual symbols from the masks :param raw_data_directory: The directory, that contains the xml-files and matching images :param destination_directory: The directory, in which the symbols should be generated into. One sub-folder per symbol category will be generated automatically
[ "Extracts", "all", "symbols", "from", "the", "raw", "XML", "documents", "and", "generates", "individual", "symbols", "from", "the", "masks" ]
d0a22a03ae35caeef211729efa340e1ec0e01ea5
https://github.com/apacha/OMR-Datasets/blob/d0a22a03ae35caeef211729efa340e1ec0e01ea5/omrdatasettools/image_generators/MuscimaPlusPlusImageGenerator.py#L23-L35
train
apacha/OMR-Datasets
omrdatasettools/converters/ImageColorInverter.py
ImageColorInverter.invert_images
def invert_images(self, image_directory: str, image_file_ending: str = "*.bmp"): """ In-situ converts the white on black images of a directory to black on white images :param image_directory: The directory, that contains the images :param image_file_ending: The pattern for finding files in the image_directory """ image_paths = [y for x in os.walk(image_directory) for y in glob(os.path.join(x[0], image_file_ending))] for image_path in tqdm(image_paths, desc="Inverting all images in directory {0}".format(image_directory)): white_on_black_image = Image.open(image_path).convert("L") black_on_white_image = ImageOps.invert(white_on_black_image) black_on_white_image.save(os.path.splitext(image_path)[0] + ".png")
python
def invert_images(self, image_directory: str, image_file_ending: str = "*.bmp"): """ In-situ converts the white on black images of a directory to black on white images :param image_directory: The directory, that contains the images :param image_file_ending: The pattern for finding files in the image_directory """ image_paths = [y for x in os.walk(image_directory) for y in glob(os.path.join(x[0], image_file_ending))] for image_path in tqdm(image_paths, desc="Inverting all images in directory {0}".format(image_directory)): white_on_black_image = Image.open(image_path).convert("L") black_on_white_image = ImageOps.invert(white_on_black_image) black_on_white_image.save(os.path.splitext(image_path)[0] + ".png")
[ "def", "invert_images", "(", "self", ",", "image_directory", ":", "str", ",", "image_file_ending", ":", "str", "=", "\"*.bmp\"", ")", ":", "image_paths", "=", "[", "y", "for", "x", "in", "os", ".", "walk", "(", "image_directory", ")", "for", "y", "in", "glob", "(", "os", ".", "path", ".", "join", "(", "x", "[", "0", "]", ",", "image_file_ending", ")", ")", "]", "for", "image_path", "in", "tqdm", "(", "image_paths", ",", "desc", "=", "\"Inverting all images in directory {0}\"", ".", "format", "(", "image_directory", ")", ")", ":", "white_on_black_image", "=", "Image", ".", "open", "(", "image_path", ")", ".", "convert", "(", "\"L\"", ")", "black_on_white_image", "=", "ImageOps", ".", "invert", "(", "white_on_black_image", ")", "black_on_white_image", ".", "save", "(", "os", ".", "path", ".", "splitext", "(", "image_path", ")", "[", "0", "]", "+", "\".png\"", ")" ]
In-situ converts the white on black images of a directory to black on white images :param image_directory: The directory, that contains the images :param image_file_ending: The pattern for finding files in the image_directory
[ "In", "-", "situ", "converts", "the", "white", "on", "black", "images", "of", "a", "directory", "to", "black", "on", "white", "images" ]
d0a22a03ae35caeef211729efa340e1ec0e01ea5
https://github.com/apacha/OMR-Datasets/blob/d0a22a03ae35caeef211729efa340e1ec0e01ea5/omrdatasettools/converters/ImageColorInverter.py#L15-L26
train
apacha/OMR-Datasets
omrdatasettools/image_generators/CapitanImageGenerator.py
CapitanImageGenerator.create_capitan_images
def create_capitan_images(self, raw_data_directory: str, destination_directory: str, stroke_thicknesses: List[int]) -> None: """ Creates a visual representation of the Capitan strokes by parsing all text-files and the symbols as specified by the parameters by drawing lines that connect the points from each stroke of each symbol. :param raw_data_directory: The directory, that contains the raw capitan dataset :param destination_directory: The directory, in which the symbols should be generated into. One sub-folder per symbol category will be generated automatically :param stroke_thicknesses: The thickness of the pen, used for drawing the lines in pixels. If multiple are specified, multiple images will be generated that have a different suffix, e.g. 1-16-3.png for the 3-px version and 1-16-2.png for the 2-px version of the image 1-16 """ symbols = self.load_capitan_symbols(raw_data_directory) self.draw_capitan_stroke_images(symbols, destination_directory, stroke_thicknesses) self.draw_capitan_score_images(symbols, destination_directory)
python
def create_capitan_images(self, raw_data_directory: str, destination_directory: str, stroke_thicknesses: List[int]) -> None: """ Creates a visual representation of the Capitan strokes by parsing all text-files and the symbols as specified by the parameters by drawing lines that connect the points from each stroke of each symbol. :param raw_data_directory: The directory, that contains the raw capitan dataset :param destination_directory: The directory, in which the symbols should be generated into. One sub-folder per symbol category will be generated automatically :param stroke_thicknesses: The thickness of the pen, used for drawing the lines in pixels. If multiple are specified, multiple images will be generated that have a different suffix, e.g. 1-16-3.png for the 3-px version and 1-16-2.png for the 2-px version of the image 1-16 """ symbols = self.load_capitan_symbols(raw_data_directory) self.draw_capitan_stroke_images(symbols, destination_directory, stroke_thicknesses) self.draw_capitan_score_images(symbols, destination_directory)
[ "def", "create_capitan_images", "(", "self", ",", "raw_data_directory", ":", "str", ",", "destination_directory", ":", "str", ",", "stroke_thicknesses", ":", "List", "[", "int", "]", ")", "->", "None", ":", "symbols", "=", "self", ".", "load_capitan_symbols", "(", "raw_data_directory", ")", "self", ".", "draw_capitan_stroke_images", "(", "symbols", ",", "destination_directory", ",", "stroke_thicknesses", ")", "self", ".", "draw_capitan_score_images", "(", "symbols", ",", "destination_directory", ")" ]
Creates a visual representation of the Capitan strokes by parsing all text-files and the symbols as specified by the parameters by drawing lines that connect the points from each stroke of each symbol. :param raw_data_directory: The directory, that contains the raw capitan dataset :param destination_directory: The directory, in which the symbols should be generated into. One sub-folder per symbol category will be generated automatically :param stroke_thicknesses: The thickness of the pen, used for drawing the lines in pixels. If multiple are specified, multiple images will be generated that have a different suffix, e.g. 1-16-3.png for the 3-px version and 1-16-2.png for the 2-px version of the image 1-16
[ "Creates", "a", "visual", "representation", "of", "the", "Capitan", "strokes", "by", "parsing", "all", "text", "-", "files", "and", "the", "symbols", "as", "specified", "by", "the", "parameters", "by", "drawing", "lines", "that", "connect", "the", "points", "from", "each", "stroke", "of", "each", "symbol", "." ]
d0a22a03ae35caeef211729efa340e1ec0e01ea5
https://github.com/apacha/OMR-Datasets/blob/d0a22a03ae35caeef211729efa340e1ec0e01ea5/omrdatasettools/image_generators/CapitanImageGenerator.py#L13-L29
train
apacha/OMR-Datasets
omrdatasettools/image_generators/CapitanImageGenerator.py
CapitanImageGenerator.draw_capitan_stroke_images
def draw_capitan_stroke_images(self, symbols: List[CapitanSymbol], destination_directory: str, stroke_thicknesses: List[int]) -> None: """ Creates a visual representation of the Capitan strokes by drawing lines that connect the points from each stroke of each symbol. :param symbols: The list of parsed Capitan-symbols :param destination_directory: The directory, in which the symbols should be generated into. One sub-folder per symbol category will be generated automatically :param stroke_thicknesses: The thickness of the pen, used for drawing the lines in pixels. If multiple are specified, multiple images will be generated that have a different suffix, e.g. 1-16-3.png for the 3-px version and 1-16-2.png for the 2-px version of the image 1-16 """ total_number_of_symbols = len(symbols) * len(stroke_thicknesses) output = "Generating {0} images with {1} symbols in {2} different stroke thicknesses ({3})".format( total_number_of_symbols, len(symbols), len(stroke_thicknesses), stroke_thicknesses) print(output) print("In directory {0}".format(os.path.abspath(destination_directory)), flush=True) progress_bar = tqdm(total=total_number_of_symbols, mininterval=0.25, desc="Rendering strokes") capitan_file_name_counter = 0 for symbol in symbols: capitan_file_name_counter += 1 target_directory = os.path.join(destination_directory, symbol.symbol_class) os.makedirs(target_directory, exist_ok=True) raw_file_name_without_extension = "capitan-{0}-{1}-stroke".format(symbol.symbol_class, capitan_file_name_counter) for stroke_thickness in stroke_thicknesses: export_path = ExportPath(destination_directory, symbol.symbol_class, raw_file_name_without_extension, 'png', stroke_thickness) symbol.draw_capitan_stroke_onto_canvas(export_path, stroke_thickness, 0) progress_bar.update(1) progress_bar.close()
python
def draw_capitan_stroke_images(self, symbols: List[CapitanSymbol], destination_directory: str, stroke_thicknesses: List[int]) -> None: """ Creates a visual representation of the Capitan strokes by drawing lines that connect the points from each stroke of each symbol. :param symbols: The list of parsed Capitan-symbols :param destination_directory: The directory, in which the symbols should be generated into. One sub-folder per symbol category will be generated automatically :param stroke_thicknesses: The thickness of the pen, used for drawing the lines in pixels. If multiple are specified, multiple images will be generated that have a different suffix, e.g. 1-16-3.png for the 3-px version and 1-16-2.png for the 2-px version of the image 1-16 """ total_number_of_symbols = len(symbols) * len(stroke_thicknesses) output = "Generating {0} images with {1} symbols in {2} different stroke thicknesses ({3})".format( total_number_of_symbols, len(symbols), len(stroke_thicknesses), stroke_thicknesses) print(output) print("In directory {0}".format(os.path.abspath(destination_directory)), flush=True) progress_bar = tqdm(total=total_number_of_symbols, mininterval=0.25, desc="Rendering strokes") capitan_file_name_counter = 0 for symbol in symbols: capitan_file_name_counter += 1 target_directory = os.path.join(destination_directory, symbol.symbol_class) os.makedirs(target_directory, exist_ok=True) raw_file_name_without_extension = "capitan-{0}-{1}-stroke".format(symbol.symbol_class, capitan_file_name_counter) for stroke_thickness in stroke_thicknesses: export_path = ExportPath(destination_directory, symbol.symbol_class, raw_file_name_without_extension, 'png', stroke_thickness) symbol.draw_capitan_stroke_onto_canvas(export_path, stroke_thickness, 0) progress_bar.update(1) progress_bar.close()
[ "def", "draw_capitan_stroke_images", "(", "self", ",", "symbols", ":", "List", "[", "CapitanSymbol", "]", ",", "destination_directory", ":", "str", ",", "stroke_thicknesses", ":", "List", "[", "int", "]", ")", "->", "None", ":", "total_number_of_symbols", "=", "len", "(", "symbols", ")", "*", "len", "(", "stroke_thicknesses", ")", "output", "=", "\"Generating {0} images with {1} symbols in {2} different stroke thicknesses ({3})\"", ".", "format", "(", "total_number_of_symbols", ",", "len", "(", "symbols", ")", ",", "len", "(", "stroke_thicknesses", ")", ",", "stroke_thicknesses", ")", "print", "(", "output", ")", "print", "(", "\"In directory {0}\"", ".", "format", "(", "os", ".", "path", ".", "abspath", "(", "destination_directory", ")", ")", ",", "flush", "=", "True", ")", "progress_bar", "=", "tqdm", "(", "total", "=", "total_number_of_symbols", ",", "mininterval", "=", "0.25", ",", "desc", "=", "\"Rendering strokes\"", ")", "capitan_file_name_counter", "=", "0", "for", "symbol", "in", "symbols", ":", "capitan_file_name_counter", "+=", "1", "target_directory", "=", "os", ".", "path", ".", "join", "(", "destination_directory", ",", "symbol", ".", "symbol_class", ")", "os", ".", "makedirs", "(", "target_directory", ",", "exist_ok", "=", "True", ")", "raw_file_name_without_extension", "=", "\"capitan-{0}-{1}-stroke\"", ".", "format", "(", "symbol", ".", "symbol_class", ",", "capitan_file_name_counter", ")", "for", "stroke_thickness", "in", "stroke_thicknesses", ":", "export_path", "=", "ExportPath", "(", "destination_directory", ",", "symbol", ".", "symbol_class", ",", "raw_file_name_without_extension", ",", "'png'", ",", "stroke_thickness", ")", "symbol", ".", "draw_capitan_stroke_onto_canvas", "(", "export_path", ",", "stroke_thickness", ",", "0", ")", "progress_bar", ".", "update", "(", "1", ")", "progress_bar", ".", "close", "(", ")" ]
Creates a visual representation of the Capitan strokes by drawing lines that connect the points from each stroke of each symbol. :param symbols: The list of parsed Capitan-symbols :param destination_directory: The directory, in which the symbols should be generated into. One sub-folder per symbol category will be generated automatically :param stroke_thicknesses: The thickness of the pen, used for drawing the lines in pixels. If multiple are specified, multiple images will be generated that have a different suffix, e.g. 1-16-3.png for the 3-px version and 1-16-2.png for the 2-px version of the image 1-16
[ "Creates", "a", "visual", "representation", "of", "the", "Capitan", "strokes", "by", "drawing", "lines", "that", "connect", "the", "points", "from", "each", "stroke", "of", "each", "symbol", "." ]
d0a22a03ae35caeef211729efa340e1ec0e01ea5
https://github.com/apacha/OMR-Datasets/blob/d0a22a03ae35caeef211729efa340e1ec0e01ea5/omrdatasettools/image_generators/CapitanImageGenerator.py#L44-L82
train
apacha/OMR-Datasets
omrdatasettools/image_generators/Rectangle.py
Rectangle.overlap
def overlap(r1: 'Rectangle', r2: 'Rectangle'): """ Overlapping rectangles overlap both horizontally & vertically """ h_overlaps = (r1.left <= r2.right) and (r1.right >= r2.left) v_overlaps = (r1.bottom >= r2.top) and (r1.top <= r2.bottom) return h_overlaps and v_overlaps
python
def overlap(r1: 'Rectangle', r2: 'Rectangle'): """ Overlapping rectangles overlap both horizontally & vertically """ h_overlaps = (r1.left <= r2.right) and (r1.right >= r2.left) v_overlaps = (r1.bottom >= r2.top) and (r1.top <= r2.bottom) return h_overlaps and v_overlaps
[ "def", "overlap", "(", "r1", ":", "'Rectangle'", ",", "r2", ":", "'Rectangle'", ")", ":", "h_overlaps", "=", "(", "r1", ".", "left", "<=", "r2", ".", "right", ")", "and", "(", "r1", ".", "right", ">=", "r2", ".", "left", ")", "v_overlaps", "=", "(", "r1", ".", "bottom", ">=", "r2", ".", "top", ")", "and", "(", "r1", ".", "top", "<=", "r2", ".", "bottom", ")", "return", "h_overlaps", "and", "v_overlaps" ]
Overlapping rectangles overlap both horizontally & vertically
[ "Overlapping", "rectangles", "overlap", "both", "horizontally", "&", "vertically" ]
d0a22a03ae35caeef211729efa340e1ec0e01ea5
https://github.com/apacha/OMR-Datasets/blob/d0a22a03ae35caeef211729efa340e1ec0e01ea5/omrdatasettools/image_generators/Rectangle.py#L18-L24
train
apacha/OMR-Datasets
omrdatasettools/image_generators/AudiverisOmrImageGenerator.py
AudiverisOmrImageGenerator.extract_symbols
def extract_symbols(self, raw_data_directory: str, destination_directory: str): """ Extracts the symbols from the raw XML documents and matching images of the Audiveris OMR dataset into individual symbols :param raw_data_directory: The directory, that contains the xml-files and matching images :param destination_directory: The directory, in which the symbols should be generated into. One sub-folder per symbol category will be generated automatically """ print("Extracting Symbols from Audiveris OMR Dataset...") all_xml_files = [y for x in os.walk(raw_data_directory) for y in glob(os.path.join(x[0], '*.xml'))] all_image_files = [y for x in os.walk(raw_data_directory) for y in glob(os.path.join(x[0], '*.png'))] data_pairs = [] for i in range(len(all_xml_files)): data_pairs.append((all_xml_files[i], all_image_files[i])) for data_pair in data_pairs: self.__extract_symbols(data_pair[0], data_pair[1], destination_directory)
python
def extract_symbols(self, raw_data_directory: str, destination_directory: str): """ Extracts the symbols from the raw XML documents and matching images of the Audiveris OMR dataset into individual symbols :param raw_data_directory: The directory, that contains the xml-files and matching images :param destination_directory: The directory, in which the symbols should be generated into. One sub-folder per symbol category will be generated automatically """ print("Extracting Symbols from Audiveris OMR Dataset...") all_xml_files = [y for x in os.walk(raw_data_directory) for y in glob(os.path.join(x[0], '*.xml'))] all_image_files = [y for x in os.walk(raw_data_directory) for y in glob(os.path.join(x[0], '*.png'))] data_pairs = [] for i in range(len(all_xml_files)): data_pairs.append((all_xml_files[i], all_image_files[i])) for data_pair in data_pairs: self.__extract_symbols(data_pair[0], data_pair[1], destination_directory)
[ "def", "extract_symbols", "(", "self", ",", "raw_data_directory", ":", "str", ",", "destination_directory", ":", "str", ")", ":", "print", "(", "\"Extracting Symbols from Audiveris OMR Dataset...\"", ")", "all_xml_files", "=", "[", "y", "for", "x", "in", "os", ".", "walk", "(", "raw_data_directory", ")", "for", "y", "in", "glob", "(", "os", ".", "path", ".", "join", "(", "x", "[", "0", "]", ",", "'*.xml'", ")", ")", "]", "all_image_files", "=", "[", "y", "for", "x", "in", "os", ".", "walk", "(", "raw_data_directory", ")", "for", "y", "in", "glob", "(", "os", ".", "path", ".", "join", "(", "x", "[", "0", "]", ",", "'*.png'", ")", ")", "]", "data_pairs", "=", "[", "]", "for", "i", "in", "range", "(", "len", "(", "all_xml_files", ")", ")", ":", "data_pairs", ".", "append", "(", "(", "all_xml_files", "[", "i", "]", ",", "all_image_files", "[", "i", "]", ")", ")", "for", "data_pair", "in", "data_pairs", ":", "self", ".", "__extract_symbols", "(", "data_pair", "[", "0", "]", ",", "data_pair", "[", "1", "]", ",", "destination_directory", ")" ]
Extracts the symbols from the raw XML documents and matching images of the Audiveris OMR dataset into individual symbols :param raw_data_directory: The directory, that contains the xml-files and matching images :param destination_directory: The directory, in which the symbols should be generated into. One sub-folder per symbol category will be generated automatically
[ "Extracts", "the", "symbols", "from", "the", "raw", "XML", "documents", "and", "matching", "images", "of", "the", "Audiveris", "OMR", "dataset", "into", "individual", "symbols" ]
d0a22a03ae35caeef211729efa340e1ec0e01ea5
https://github.com/apacha/OMR-Datasets/blob/d0a22a03ae35caeef211729efa340e1ec0e01ea5/omrdatasettools/image_generators/AudiverisOmrImageGenerator.py#L16-L35
train
apacha/OMR-Datasets
omrdatasettools/image_generators/HomusSymbol.py
HomusSymbol.initialize_from_string
def initialize_from_string(content: str) -> 'HomusSymbol': """ Create and initializes a new symbol from a string :param content: The content of a symbol as read from the text-file :return: The initialized symbol :rtype: HomusSymbol """ if content is None or content is "": return None lines = content.splitlines() min_x = sys.maxsize max_x = 0 min_y = sys.maxsize max_y = 0 symbol_name = lines[0] strokes = [] for stroke_string in lines[1:]: stroke = [] for point_string in stroke_string.split(";"): if point_string is "": continue # Skip the last element, that is due to a trailing ; in each line point_x, point_y = point_string.split(",") x = int(point_x) y = int(point_y) stroke.append(Point2D(x, y)) max_x = max(max_x, x) min_x = min(min_x, x) max_y = max(max_y, y) min_y = min(min_y, y) strokes.append(stroke) dimensions = Rectangle(Point2D(min_x, min_y), max_x - min_x + 1, max_y - min_y + 1) return HomusSymbol(content, strokes, symbol_name, dimensions)
python
def initialize_from_string(content: str) -> 'HomusSymbol': """ Create and initializes a new symbol from a string :param content: The content of a symbol as read from the text-file :return: The initialized symbol :rtype: HomusSymbol """ if content is None or content is "": return None lines = content.splitlines() min_x = sys.maxsize max_x = 0 min_y = sys.maxsize max_y = 0 symbol_name = lines[0] strokes = [] for stroke_string in lines[1:]: stroke = [] for point_string in stroke_string.split(";"): if point_string is "": continue # Skip the last element, that is due to a trailing ; in each line point_x, point_y = point_string.split(",") x = int(point_x) y = int(point_y) stroke.append(Point2D(x, y)) max_x = max(max_x, x) min_x = min(min_x, x) max_y = max(max_y, y) min_y = min(min_y, y) strokes.append(stroke) dimensions = Rectangle(Point2D(min_x, min_y), max_x - min_x + 1, max_y - min_y + 1) return HomusSymbol(content, strokes, symbol_name, dimensions)
[ "def", "initialize_from_string", "(", "content", ":", "str", ")", "->", "'HomusSymbol'", ":", "if", "content", "is", "None", "or", "content", "is", "\"\"", ":", "return", "None", "lines", "=", "content", ".", "splitlines", "(", ")", "min_x", "=", "sys", ".", "maxsize", "max_x", "=", "0", "min_y", "=", "sys", ".", "maxsize", "max_y", "=", "0", "symbol_name", "=", "lines", "[", "0", "]", "strokes", "=", "[", "]", "for", "stroke_string", "in", "lines", "[", "1", ":", "]", ":", "stroke", "=", "[", "]", "for", "point_string", "in", "stroke_string", ".", "split", "(", "\";\"", ")", ":", "if", "point_string", "is", "\"\"", ":", "continue", "# Skip the last element, that is due to a trailing ; in each line", "point_x", ",", "point_y", "=", "point_string", ".", "split", "(", "\",\"", ")", "x", "=", "int", "(", "point_x", ")", "y", "=", "int", "(", "point_y", ")", "stroke", ".", "append", "(", "Point2D", "(", "x", ",", "y", ")", ")", "max_x", "=", "max", "(", "max_x", ",", "x", ")", "min_x", "=", "min", "(", "min_x", ",", "x", ")", "max_y", "=", "max", "(", "max_y", ",", "y", ")", "min_y", "=", "min", "(", "min_y", ",", "y", ")", "strokes", ".", "append", "(", "stroke", ")", "dimensions", "=", "Rectangle", "(", "Point2D", "(", "min_x", ",", "min_y", ")", ",", "max_x", "-", "min_x", "+", "1", ",", "max_y", "-", "min_y", "+", "1", ")", "return", "HomusSymbol", "(", "content", ",", "strokes", ",", "symbol_name", ",", "dimensions", ")" ]
Create and initializes a new symbol from a string :param content: The content of a symbol as read from the text-file :return: The initialized symbol :rtype: HomusSymbol
[ "Create", "and", "initializes", "a", "new", "symbol", "from", "a", "string" ]
d0a22a03ae35caeef211729efa340e1ec0e01ea5
https://github.com/apacha/OMR-Datasets/blob/d0a22a03ae35caeef211729efa340e1ec0e01ea5/omrdatasettools/image_generators/HomusSymbol.py#L21-L62
train
apacha/OMR-Datasets
omrdatasettools/image_generators/HomusSymbol.py
HomusSymbol.draw_into_bitmap
def draw_into_bitmap(self, export_path: ExportPath, stroke_thickness: int, margin: int = 0) -> None: """ Draws the symbol in the original size that it has plus an optional margin :param export_path: The path, where the symbols should be created on disk :param stroke_thickness: Pen-thickness for drawing the symbol in pixels :param margin: An optional margin for each symbol """ self.draw_onto_canvas(export_path, stroke_thickness, margin, self.dimensions.width + 2 * margin, self.dimensions.height + 2 * margin)
python
def draw_into_bitmap(self, export_path: ExportPath, stroke_thickness: int, margin: int = 0) -> None: """ Draws the symbol in the original size that it has plus an optional margin :param export_path: The path, where the symbols should be created on disk :param stroke_thickness: Pen-thickness for drawing the symbol in pixels :param margin: An optional margin for each symbol """ self.draw_onto_canvas(export_path, stroke_thickness, margin, self.dimensions.width + 2 * margin, self.dimensions.height + 2 * margin)
[ "def", "draw_into_bitmap", "(", "self", ",", "export_path", ":", "ExportPath", ",", "stroke_thickness", ":", "int", ",", "margin", ":", "int", "=", "0", ")", "->", "None", ":", "self", ".", "draw_onto_canvas", "(", "export_path", ",", "stroke_thickness", ",", "margin", ",", "self", ".", "dimensions", ".", "width", "+", "2", "*", "margin", ",", "self", ".", "dimensions", ".", "height", "+", "2", "*", "margin", ")" ]
Draws the symbol in the original size that it has plus an optional margin :param export_path: The path, where the symbols should be created on disk :param stroke_thickness: Pen-thickness for drawing the symbol in pixels :param margin: An optional margin for each symbol
[ "Draws", "the", "symbol", "in", "the", "original", "size", "that", "it", "has", "plus", "an", "optional", "margin" ]
d0a22a03ae35caeef211729efa340e1ec0e01ea5
https://github.com/apacha/OMR-Datasets/blob/d0a22a03ae35caeef211729efa340e1ec0e01ea5/omrdatasettools/image_generators/HomusSymbol.py#L64-L76
train
apacha/OMR-Datasets
omrdatasettools/image_generators/HomusSymbol.py
HomusSymbol.draw_onto_canvas
def draw_onto_canvas(self, export_path: ExportPath, stroke_thickness: int, margin: int, destination_width: int, destination_height: int, staff_line_spacing: int = 14, staff_line_vertical_offsets: List[int] = None, bounding_boxes: dict = None, random_position_on_canvas: bool = False) -> None: """ Draws the symbol onto a canvas with a fixed size :param bounding_boxes: The dictionary into which the bounding-boxes will be added of each generated image :param export_path: The path, where the symbols should be created on disk :param stroke_thickness: :param margin: :param destination_width: :param destination_height: :param staff_line_spacing: :param staff_line_vertical_offsets: Offsets used for drawing staff-lines. If None provided, no staff-lines will be drawn if multiple integers are provided, multiple images will be generated """ width = self.dimensions.width + 2 * margin height = self.dimensions.height + 2 * margin if random_position_on_canvas: # max is required for elements that are larger than the canvas, # where the possible range for the random value would be negative random_horizontal_offset = random.randint(0, max(0, destination_width - width)) random_vertical_offset = random.randint(0, max(0, destination_height - height)) offset = Point2D(self.dimensions.origin.x - margin - random_horizontal_offset, self.dimensions.origin.y - margin - random_vertical_offset) else: width_offset_for_centering = (destination_width - width) / 2 height_offset_for_centering = (destination_height - height) / 2 offset = Point2D(self.dimensions.origin.x - margin - width_offset_for_centering, self.dimensions.origin.y - margin - height_offset_for_centering) image_without_staff_lines = Image.new('RGB', (destination_width, destination_height), "white") # create a new white image draw = ImageDraw.Draw(image_without_staff_lines) black = (0, 0, 0) for stroke in self.strokes: for i in range(0, len(stroke) - 1): start_point = self.__subtract_offset(stroke[i], offset) end_point = self.__subtract_offset(stroke[i + 1], offset) draw.line((start_point.x, start_point.y, end_point.x, end_point.y), black, stroke_thickness) location = self.__subtract_offset(self.dimensions.origin, offset) bounding_box_in_image = Rectangle(location, self.dimensions.width, self.dimensions.height) # self.draw_bounding_box(draw, location) del draw if staff_line_vertical_offsets is not None and staff_line_vertical_offsets: for staff_line_vertical_offset in staff_line_vertical_offsets: image_with_staff_lines = image_without_staff_lines.copy() self.__draw_staff_lines_into_image(image_with_staff_lines, stroke_thickness, staff_line_spacing, staff_line_vertical_offset) file_name_with_offset = export_path.get_full_path(staff_line_vertical_offset) image_with_staff_lines.save(file_name_with_offset) image_with_staff_lines.close() if bounding_boxes is not None: # Note that the ImageDatasetGenerator does not yield the full path, but only the class_name and # the file_name, e.g. '3-4-Time\\1-13_3_offset_74.png', so we store only that part in the dictionary class_and_file_name = export_path.get_class_name_and_file_path(staff_line_vertical_offset) bounding_boxes[class_and_file_name] = bounding_box_in_image else: image_without_staff_lines.save(export_path.get_full_path()) if bounding_boxes is not None: # Note that the ImageDatasetGenerator does not yield the full path, but only the class_name and # the file_name, e.g. '3-4-Time\\1-13_3_offset_74.png', so we store only that part in the dictionary class_and_file_name = export_path.get_class_name_and_file_path() bounding_boxes[class_and_file_name] = bounding_box_in_image image_without_staff_lines.close()
python
def draw_onto_canvas(self, export_path: ExportPath, stroke_thickness: int, margin: int, destination_width: int, destination_height: int, staff_line_spacing: int = 14, staff_line_vertical_offsets: List[int] = None, bounding_boxes: dict = None, random_position_on_canvas: bool = False) -> None: """ Draws the symbol onto a canvas with a fixed size :param bounding_boxes: The dictionary into which the bounding-boxes will be added of each generated image :param export_path: The path, where the symbols should be created on disk :param stroke_thickness: :param margin: :param destination_width: :param destination_height: :param staff_line_spacing: :param staff_line_vertical_offsets: Offsets used for drawing staff-lines. If None provided, no staff-lines will be drawn if multiple integers are provided, multiple images will be generated """ width = self.dimensions.width + 2 * margin height = self.dimensions.height + 2 * margin if random_position_on_canvas: # max is required for elements that are larger than the canvas, # where the possible range for the random value would be negative random_horizontal_offset = random.randint(0, max(0, destination_width - width)) random_vertical_offset = random.randint(0, max(0, destination_height - height)) offset = Point2D(self.dimensions.origin.x - margin - random_horizontal_offset, self.dimensions.origin.y - margin - random_vertical_offset) else: width_offset_for_centering = (destination_width - width) / 2 height_offset_for_centering = (destination_height - height) / 2 offset = Point2D(self.dimensions.origin.x - margin - width_offset_for_centering, self.dimensions.origin.y - margin - height_offset_for_centering) image_without_staff_lines = Image.new('RGB', (destination_width, destination_height), "white") # create a new white image draw = ImageDraw.Draw(image_without_staff_lines) black = (0, 0, 0) for stroke in self.strokes: for i in range(0, len(stroke) - 1): start_point = self.__subtract_offset(stroke[i], offset) end_point = self.__subtract_offset(stroke[i + 1], offset) draw.line((start_point.x, start_point.y, end_point.x, end_point.y), black, stroke_thickness) location = self.__subtract_offset(self.dimensions.origin, offset) bounding_box_in_image = Rectangle(location, self.dimensions.width, self.dimensions.height) # self.draw_bounding_box(draw, location) del draw if staff_line_vertical_offsets is not None and staff_line_vertical_offsets: for staff_line_vertical_offset in staff_line_vertical_offsets: image_with_staff_lines = image_without_staff_lines.copy() self.__draw_staff_lines_into_image(image_with_staff_lines, stroke_thickness, staff_line_spacing, staff_line_vertical_offset) file_name_with_offset = export_path.get_full_path(staff_line_vertical_offset) image_with_staff_lines.save(file_name_with_offset) image_with_staff_lines.close() if bounding_boxes is not None: # Note that the ImageDatasetGenerator does not yield the full path, but only the class_name and # the file_name, e.g. '3-4-Time\\1-13_3_offset_74.png', so we store only that part in the dictionary class_and_file_name = export_path.get_class_name_and_file_path(staff_line_vertical_offset) bounding_boxes[class_and_file_name] = bounding_box_in_image else: image_without_staff_lines.save(export_path.get_full_path()) if bounding_boxes is not None: # Note that the ImageDatasetGenerator does not yield the full path, but only the class_name and # the file_name, e.g. '3-4-Time\\1-13_3_offset_74.png', so we store only that part in the dictionary class_and_file_name = export_path.get_class_name_and_file_path() bounding_boxes[class_and_file_name] = bounding_box_in_image image_without_staff_lines.close()
[ "def", "draw_onto_canvas", "(", "self", ",", "export_path", ":", "ExportPath", ",", "stroke_thickness", ":", "int", ",", "margin", ":", "int", ",", "destination_width", ":", "int", ",", "destination_height", ":", "int", ",", "staff_line_spacing", ":", "int", "=", "14", ",", "staff_line_vertical_offsets", ":", "List", "[", "int", "]", "=", "None", ",", "bounding_boxes", ":", "dict", "=", "None", ",", "random_position_on_canvas", ":", "bool", "=", "False", ")", "->", "None", ":", "width", "=", "self", ".", "dimensions", ".", "width", "+", "2", "*", "margin", "height", "=", "self", ".", "dimensions", ".", "height", "+", "2", "*", "margin", "if", "random_position_on_canvas", ":", "# max is required for elements that are larger than the canvas,", "# where the possible range for the random value would be negative", "random_horizontal_offset", "=", "random", ".", "randint", "(", "0", ",", "max", "(", "0", ",", "destination_width", "-", "width", ")", ")", "random_vertical_offset", "=", "random", ".", "randint", "(", "0", ",", "max", "(", "0", ",", "destination_height", "-", "height", ")", ")", "offset", "=", "Point2D", "(", "self", ".", "dimensions", ".", "origin", ".", "x", "-", "margin", "-", "random_horizontal_offset", ",", "self", ".", "dimensions", ".", "origin", ".", "y", "-", "margin", "-", "random_vertical_offset", ")", "else", ":", "width_offset_for_centering", "=", "(", "destination_width", "-", "width", ")", "/", "2", "height_offset_for_centering", "=", "(", "destination_height", "-", "height", ")", "/", "2", "offset", "=", "Point2D", "(", "self", ".", "dimensions", ".", "origin", ".", "x", "-", "margin", "-", "width_offset_for_centering", ",", "self", ".", "dimensions", ".", "origin", ".", "y", "-", "margin", "-", "height_offset_for_centering", ")", "image_without_staff_lines", "=", "Image", ".", "new", "(", "'RGB'", ",", "(", "destination_width", ",", "destination_height", ")", ",", "\"white\"", ")", "# create a new white image", "draw", "=", "ImageDraw", ".", "Draw", "(", "image_without_staff_lines", ")", "black", "=", "(", "0", ",", "0", ",", "0", ")", "for", "stroke", "in", "self", ".", "strokes", ":", "for", "i", "in", "range", "(", "0", ",", "len", "(", "stroke", ")", "-", "1", ")", ":", "start_point", "=", "self", ".", "__subtract_offset", "(", "stroke", "[", "i", "]", ",", "offset", ")", "end_point", "=", "self", ".", "__subtract_offset", "(", "stroke", "[", "i", "+", "1", "]", ",", "offset", ")", "draw", ".", "line", "(", "(", "start_point", ".", "x", ",", "start_point", ".", "y", ",", "end_point", ".", "x", ",", "end_point", ".", "y", ")", ",", "black", ",", "stroke_thickness", ")", "location", "=", "self", ".", "__subtract_offset", "(", "self", ".", "dimensions", ".", "origin", ",", "offset", ")", "bounding_box_in_image", "=", "Rectangle", "(", "location", ",", "self", ".", "dimensions", ".", "width", ",", "self", ".", "dimensions", ".", "height", ")", "# self.draw_bounding_box(draw, location)", "del", "draw", "if", "staff_line_vertical_offsets", "is", "not", "None", "and", "staff_line_vertical_offsets", ":", "for", "staff_line_vertical_offset", "in", "staff_line_vertical_offsets", ":", "image_with_staff_lines", "=", "image_without_staff_lines", ".", "copy", "(", ")", "self", ".", "__draw_staff_lines_into_image", "(", "image_with_staff_lines", ",", "stroke_thickness", ",", "staff_line_spacing", ",", "staff_line_vertical_offset", ")", "file_name_with_offset", "=", "export_path", ".", "get_full_path", "(", "staff_line_vertical_offset", ")", "image_with_staff_lines", ".", "save", "(", "file_name_with_offset", ")", "image_with_staff_lines", ".", "close", "(", ")", "if", "bounding_boxes", "is", "not", "None", ":", "# Note that the ImageDatasetGenerator does not yield the full path, but only the class_name and", "# the file_name, e.g. '3-4-Time\\\\1-13_3_offset_74.png', so we store only that part in the dictionary", "class_and_file_name", "=", "export_path", ".", "get_class_name_and_file_path", "(", "staff_line_vertical_offset", ")", "bounding_boxes", "[", "class_and_file_name", "]", "=", "bounding_box_in_image", "else", ":", "image_without_staff_lines", ".", "save", "(", "export_path", ".", "get_full_path", "(", ")", ")", "if", "bounding_boxes", "is", "not", "None", ":", "# Note that the ImageDatasetGenerator does not yield the full path, but only the class_name and", "# the file_name, e.g. '3-4-Time\\\\1-13_3_offset_74.png', so we store only that part in the dictionary", "class_and_file_name", "=", "export_path", ".", "get_class_name_and_file_path", "(", ")", "bounding_boxes", "[", "class_and_file_name", "]", "=", "bounding_box_in_image", "image_without_staff_lines", ".", "close", "(", ")" ]
Draws the symbol onto a canvas with a fixed size :param bounding_boxes: The dictionary into which the bounding-boxes will be added of each generated image :param export_path: The path, where the symbols should be created on disk :param stroke_thickness: :param margin: :param destination_width: :param destination_height: :param staff_line_spacing: :param staff_line_vertical_offsets: Offsets used for drawing staff-lines. If None provided, no staff-lines will be drawn if multiple integers are provided, multiple images will be generated
[ "Draws", "the", "symbol", "onto", "a", "canvas", "with", "a", "fixed", "size" ]
d0a22a03ae35caeef211729efa340e1ec0e01ea5
https://github.com/apacha/OMR-Datasets/blob/d0a22a03ae35caeef211729efa340e1ec0e01ea5/omrdatasettools/image_generators/HomusSymbol.py#L78-L148
train
datascopeanalytics/scrubadub
scrubadub/import_magic.py
update_locals
def update_locals(locals_instance, instance_iterator, *args, **kwargs): """import all of the detector classes into the local namespace to make it easy to do things like `import scrubadub.detectors.NameDetector` without having to add each new ``Detector`` or ``Filth`` """ # http://stackoverflow.com/a/4526709/564709 # http://stackoverflow.com/a/511059/564709 for instance in instance_iterator(): locals_instance.update({type(instance).__name__: instance.__class__})
python
def update_locals(locals_instance, instance_iterator, *args, **kwargs): """import all of the detector classes into the local namespace to make it easy to do things like `import scrubadub.detectors.NameDetector` without having to add each new ``Detector`` or ``Filth`` """ # http://stackoverflow.com/a/4526709/564709 # http://stackoverflow.com/a/511059/564709 for instance in instance_iterator(): locals_instance.update({type(instance).__name__: instance.__class__})
[ "def", "update_locals", "(", "locals_instance", ",", "instance_iterator", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "# http://stackoverflow.com/a/4526709/564709", "# http://stackoverflow.com/a/511059/564709", "for", "instance", "in", "instance_iterator", "(", ")", ":", "locals_instance", ".", "update", "(", "{", "type", "(", "instance", ")", ".", "__name__", ":", "instance", ".", "__class__", "}", ")" ]
import all of the detector classes into the local namespace to make it easy to do things like `import scrubadub.detectors.NameDetector` without having to add each new ``Detector`` or ``Filth``
[ "import", "all", "of", "the", "detector", "classes", "into", "the", "local", "namespace", "to", "make", "it", "easy", "to", "do", "things", "like", "import", "scrubadub", ".", "detectors", ".", "NameDetector", "without", "having", "to", "add", "each", "new", "Detector", "or", "Filth" ]
914bda49a16130b44af43df6a2f84755477c407c
https://github.com/datascopeanalytics/scrubadub/blob/914bda49a16130b44af43df6a2f84755477c407c/scrubadub/import_magic.py#L34-L42
train
datascopeanalytics/scrubadub
scrubadub/filth/__init__.py
iter_filth_clss
def iter_filth_clss(): """Iterate over all of the filths that are included in this sub-package. This is a convenience method for capturing all new Filth that are added over time. """ return iter_subclasses( os.path.dirname(os.path.abspath(__file__)), Filth, _is_abstract_filth, )
python
def iter_filth_clss(): """Iterate over all of the filths that are included in this sub-package. This is a convenience method for capturing all new Filth that are added over time. """ return iter_subclasses( os.path.dirname(os.path.abspath(__file__)), Filth, _is_abstract_filth, )
[ "def", "iter_filth_clss", "(", ")", ":", "return", "iter_subclasses", "(", "os", ".", "path", ".", "dirname", "(", "os", ".", "path", ".", "abspath", "(", "__file__", ")", ")", ",", "Filth", ",", "_is_abstract_filth", ",", ")" ]
Iterate over all of the filths that are included in this sub-package. This is a convenience method for capturing all new Filth that are added over time.
[ "Iterate", "over", "all", "of", "the", "filths", "that", "are", "included", "in", "this", "sub", "-", "package", ".", "This", "is", "a", "convenience", "method", "for", "capturing", "all", "new", "Filth", "that", "are", "added", "over", "time", "." ]
914bda49a16130b44af43df6a2f84755477c407c
https://github.com/datascopeanalytics/scrubadub/blob/914bda49a16130b44af43df6a2f84755477c407c/scrubadub/filth/__init__.py#L13-L22
train
datascopeanalytics/scrubadub
scrubadub/filth/__init__.py
iter_filths
def iter_filths(): """Iterate over all instances of filth""" for filth_cls in iter_filth_clss(): if issubclass(filth_cls, RegexFilth): m = next(re.finditer(r"\s+", "fake pattern string")) yield filth_cls(m) else: yield filth_cls()
python
def iter_filths(): """Iterate over all instances of filth""" for filth_cls in iter_filth_clss(): if issubclass(filth_cls, RegexFilth): m = next(re.finditer(r"\s+", "fake pattern string")) yield filth_cls(m) else: yield filth_cls()
[ "def", "iter_filths", "(", ")", ":", "for", "filth_cls", "in", "iter_filth_clss", "(", ")", ":", "if", "issubclass", "(", "filth_cls", ",", "RegexFilth", ")", ":", "m", "=", "next", "(", "re", ".", "finditer", "(", "r\"\\s+\"", ",", "\"fake pattern string\"", ")", ")", "yield", "filth_cls", "(", "m", ")", "else", ":", "yield", "filth_cls", "(", ")" ]
Iterate over all instances of filth
[ "Iterate", "over", "all", "instances", "of", "filth" ]
914bda49a16130b44af43df6a2f84755477c407c
https://github.com/datascopeanalytics/scrubadub/blob/914bda49a16130b44af43df6a2f84755477c407c/scrubadub/filth/__init__.py#L25-L32
train
datascopeanalytics/scrubadub
scrubadub/filth/base.py
MergedFilth._update_content
def _update_content(self, other_filth): """this updates the bounds, text and placeholder for the merged filth """ if self.end < other_filth.beg or other_filth.end < self.beg: raise exceptions.FilthMergeError( "a_filth goes from [%s, %s) and b_filth goes from [%s, %s)" % ( self.beg, self.end, other_filth.beg, other_filth.end )) # get the text over lap correct if self.beg < other_filth.beg: first = self second = other_filth else: second = self first = other_filth end_offset = second.end - first.end if end_offset > 0: self.text = first.text + second.text[-end_offset:] # update the beg/end strings self.beg = min(self.beg, other_filth.beg) self.end = max(self.end, other_filth.end) if self.end - self.beg != len(self.text): raise exceptions.FilthMergeError("text length isn't consistent") # update the placeholder self.filths.append(other_filth) self._placeholder = '+'.join([filth.type for filth in self.filths])
python
def _update_content(self, other_filth): """this updates the bounds, text and placeholder for the merged filth """ if self.end < other_filth.beg or other_filth.end < self.beg: raise exceptions.FilthMergeError( "a_filth goes from [%s, %s) and b_filth goes from [%s, %s)" % ( self.beg, self.end, other_filth.beg, other_filth.end )) # get the text over lap correct if self.beg < other_filth.beg: first = self second = other_filth else: second = self first = other_filth end_offset = second.end - first.end if end_offset > 0: self.text = first.text + second.text[-end_offset:] # update the beg/end strings self.beg = min(self.beg, other_filth.beg) self.end = max(self.end, other_filth.end) if self.end - self.beg != len(self.text): raise exceptions.FilthMergeError("text length isn't consistent") # update the placeholder self.filths.append(other_filth) self._placeholder = '+'.join([filth.type for filth in self.filths])
[ "def", "_update_content", "(", "self", ",", "other_filth", ")", ":", "if", "self", ".", "end", "<", "other_filth", ".", "beg", "or", "other_filth", ".", "end", "<", "self", ".", "beg", ":", "raise", "exceptions", ".", "FilthMergeError", "(", "\"a_filth goes from [%s, %s) and b_filth goes from [%s, %s)\"", "%", "(", "self", ".", "beg", ",", "self", ".", "end", ",", "other_filth", ".", "beg", ",", "other_filth", ".", "end", ")", ")", "# get the text over lap correct", "if", "self", ".", "beg", "<", "other_filth", ".", "beg", ":", "first", "=", "self", "second", "=", "other_filth", "else", ":", "second", "=", "self", "first", "=", "other_filth", "end_offset", "=", "second", ".", "end", "-", "first", ".", "end", "if", "end_offset", ">", "0", ":", "self", ".", "text", "=", "first", ".", "text", "+", "second", ".", "text", "[", "-", "end_offset", ":", "]", "# update the beg/end strings", "self", ".", "beg", "=", "min", "(", "self", ".", "beg", ",", "other_filth", ".", "beg", ")", "self", ".", "end", "=", "max", "(", "self", ".", "end", ",", "other_filth", ".", "end", ")", "if", "self", ".", "end", "-", "self", ".", "beg", "!=", "len", "(", "self", ".", "text", ")", ":", "raise", "exceptions", ".", "FilthMergeError", "(", "\"text length isn't consistent\"", ")", "# update the placeholder", "self", ".", "filths", ".", "append", "(", "other_filth", ")", "self", ".", "_placeholder", "=", "'+'", ".", "join", "(", "[", "filth", ".", "type", "for", "filth", "in", "self", ".", "filths", "]", ")" ]
this updates the bounds, text and placeholder for the merged filth
[ "this", "updates", "the", "bounds", "text", "and", "placeholder", "for", "the", "merged", "filth" ]
914bda49a16130b44af43df6a2f84755477c407c
https://github.com/datascopeanalytics/scrubadub/blob/914bda49a16130b44af43df6a2f84755477c407c/scrubadub/filth/base.py#L65-L94
train
datascopeanalytics/scrubadub
scrubadub/scrubbers.py
Scrubber.add_detector
def add_detector(self, detector_cls): """Add a ``Detector`` to scrubadub""" if not issubclass(detector_cls, detectors.base.Detector): raise TypeError(( '"%(detector_cls)s" is not a subclass of Detector' ) % locals()) # TODO: should add tests to make sure filth_cls is actually a proper # filth_cls name = detector_cls.filth_cls.type if name in self._detectors: raise KeyError(( 'can not add Detector "%(name)s"---it already exists. ' 'Try removing it first.' ) % locals()) self._detectors[name] = detector_cls()
python
def add_detector(self, detector_cls): """Add a ``Detector`` to scrubadub""" if not issubclass(detector_cls, detectors.base.Detector): raise TypeError(( '"%(detector_cls)s" is not a subclass of Detector' ) % locals()) # TODO: should add tests to make sure filth_cls is actually a proper # filth_cls name = detector_cls.filth_cls.type if name in self._detectors: raise KeyError(( 'can not add Detector "%(name)s"---it already exists. ' 'Try removing it first.' ) % locals()) self._detectors[name] = detector_cls()
[ "def", "add_detector", "(", "self", ",", "detector_cls", ")", ":", "if", "not", "issubclass", "(", "detector_cls", ",", "detectors", ".", "base", ".", "Detector", ")", ":", "raise", "TypeError", "(", "(", "'\"%(detector_cls)s\" is not a subclass of Detector'", ")", "%", "locals", "(", ")", ")", "# TODO: should add tests to make sure filth_cls is actually a proper", "# filth_cls", "name", "=", "detector_cls", ".", "filth_cls", ".", "type", "if", "name", "in", "self", ".", "_detectors", ":", "raise", "KeyError", "(", "(", "'can not add Detector \"%(name)s\"---it already exists. '", "'Try removing it first.'", ")", "%", "locals", "(", ")", ")", "self", ".", "_detectors", "[", "name", "]", "=", "detector_cls", "(", ")" ]
Add a ``Detector`` to scrubadub
[ "Add", "a", "Detector", "to", "scrubadub" ]
914bda49a16130b44af43df6a2f84755477c407c
https://github.com/datascopeanalytics/scrubadub/blob/914bda49a16130b44af43df6a2f84755477c407c/scrubadub/scrubbers.py#L24-L38
train
datascopeanalytics/scrubadub
scrubadub/scrubbers.py
Scrubber.clean
def clean(self, text, **kwargs): """This is the master method that cleans all of the filth out of the dirty dirty ``text``. All keyword arguments to this function are passed through to the ``Filth.replace_with`` method to fine-tune how the ``Filth`` is cleaned. """ if sys.version_info < (3, 0): # Only in Python 2. In 3 every string is a Python 2 unicode if not isinstance(text, unicode): raise exceptions.UnicodeRequired clean_chunks = [] filth = Filth() for next_filth in self.iter_filth(text): clean_chunks.append(text[filth.end:next_filth.beg]) clean_chunks.append(next_filth.replace_with(**kwargs)) filth = next_filth clean_chunks.append(text[filth.end:]) return u''.join(clean_chunks)
python
def clean(self, text, **kwargs): """This is the master method that cleans all of the filth out of the dirty dirty ``text``. All keyword arguments to this function are passed through to the ``Filth.replace_with`` method to fine-tune how the ``Filth`` is cleaned. """ if sys.version_info < (3, 0): # Only in Python 2. In 3 every string is a Python 2 unicode if not isinstance(text, unicode): raise exceptions.UnicodeRequired clean_chunks = [] filth = Filth() for next_filth in self.iter_filth(text): clean_chunks.append(text[filth.end:next_filth.beg]) clean_chunks.append(next_filth.replace_with(**kwargs)) filth = next_filth clean_chunks.append(text[filth.end:]) return u''.join(clean_chunks)
[ "def", "clean", "(", "self", ",", "text", ",", "*", "*", "kwargs", ")", ":", "if", "sys", ".", "version_info", "<", "(", "3", ",", "0", ")", ":", "# Only in Python 2. In 3 every string is a Python 2 unicode", "if", "not", "isinstance", "(", "text", ",", "unicode", ")", ":", "raise", "exceptions", ".", "UnicodeRequired", "clean_chunks", "=", "[", "]", "filth", "=", "Filth", "(", ")", "for", "next_filth", "in", "self", ".", "iter_filth", "(", "text", ")", ":", "clean_chunks", ".", "append", "(", "text", "[", "filth", ".", "end", ":", "next_filth", ".", "beg", "]", ")", "clean_chunks", ".", "append", "(", "next_filth", ".", "replace_with", "(", "*", "*", "kwargs", ")", ")", "filth", "=", "next_filth", "clean_chunks", ".", "append", "(", "text", "[", "filth", ".", "end", ":", "]", ")", "return", "u''", ".", "join", "(", "clean_chunks", ")" ]
This is the master method that cleans all of the filth out of the dirty dirty ``text``. All keyword arguments to this function are passed through to the ``Filth.replace_with`` method to fine-tune how the ``Filth`` is cleaned.
[ "This", "is", "the", "master", "method", "that", "cleans", "all", "of", "the", "filth", "out", "of", "the", "dirty", "dirty", "text", ".", "All", "keyword", "arguments", "to", "this", "function", "are", "passed", "through", "to", "the", "Filth", ".", "replace_with", "method", "to", "fine", "-", "tune", "how", "the", "Filth", "is", "cleaned", "." ]
914bda49a16130b44af43df6a2f84755477c407c
https://github.com/datascopeanalytics/scrubadub/blob/914bda49a16130b44af43df6a2f84755477c407c/scrubadub/scrubbers.py#L44-L62
train
datascopeanalytics/scrubadub
scrubadub/scrubbers.py
Scrubber.iter_filth
def iter_filth(self, text): """Iterate over the different types of filth that can exist. """ # currently doing this by aggregating all_filths and then sorting # inline instead of with a Filth.__cmp__ method, which is apparently # much slower http://stackoverflow.com/a/988728/564709 # # NOTE: we could probably do this in a more efficient way by iterating # over all detectors simultaneously. just trying to get something # working right now and we can worry about efficiency later all_filths = [] for detector in self._detectors.values(): for filth in detector.iter_filth(text): if not isinstance(filth, Filth): raise TypeError('iter_filth must always yield Filth') all_filths.append(filth) # Sort by start position. If two filths start in the same place then # return the longer one first all_filths.sort(key=lambda f: (f.beg, -f.end)) # this is where the Scrubber does its hard work and merges any # overlapping filths. if not all_filths: raise StopIteration filth = all_filths[0] for next_filth in all_filths[1:]: if filth.end < next_filth.beg: yield filth filth = next_filth else: filth = filth.merge(next_filth) yield filth
python
def iter_filth(self, text): """Iterate over the different types of filth that can exist. """ # currently doing this by aggregating all_filths and then sorting # inline instead of with a Filth.__cmp__ method, which is apparently # much slower http://stackoverflow.com/a/988728/564709 # # NOTE: we could probably do this in a more efficient way by iterating # over all detectors simultaneously. just trying to get something # working right now and we can worry about efficiency later all_filths = [] for detector in self._detectors.values(): for filth in detector.iter_filth(text): if not isinstance(filth, Filth): raise TypeError('iter_filth must always yield Filth') all_filths.append(filth) # Sort by start position. If two filths start in the same place then # return the longer one first all_filths.sort(key=lambda f: (f.beg, -f.end)) # this is where the Scrubber does its hard work and merges any # overlapping filths. if not all_filths: raise StopIteration filth = all_filths[0] for next_filth in all_filths[1:]: if filth.end < next_filth.beg: yield filth filth = next_filth else: filth = filth.merge(next_filth) yield filth
[ "def", "iter_filth", "(", "self", ",", "text", ")", ":", "# currently doing this by aggregating all_filths and then sorting", "# inline instead of with a Filth.__cmp__ method, which is apparently", "# much slower http://stackoverflow.com/a/988728/564709", "#", "# NOTE: we could probably do this in a more efficient way by iterating", "# over all detectors simultaneously. just trying to get something", "# working right now and we can worry about efficiency later", "all_filths", "=", "[", "]", "for", "detector", "in", "self", ".", "_detectors", ".", "values", "(", ")", ":", "for", "filth", "in", "detector", ".", "iter_filth", "(", "text", ")", ":", "if", "not", "isinstance", "(", "filth", ",", "Filth", ")", ":", "raise", "TypeError", "(", "'iter_filth must always yield Filth'", ")", "all_filths", ".", "append", "(", "filth", ")", "# Sort by start position. If two filths start in the same place then", "# return the longer one first", "all_filths", ".", "sort", "(", "key", "=", "lambda", "f", ":", "(", "f", ".", "beg", ",", "-", "f", ".", "end", ")", ")", "# this is where the Scrubber does its hard work and merges any", "# overlapping filths.", "if", "not", "all_filths", ":", "raise", "StopIteration", "filth", "=", "all_filths", "[", "0", "]", "for", "next_filth", "in", "all_filths", "[", "1", ":", "]", ":", "if", "filth", ".", "end", "<", "next_filth", ".", "beg", ":", "yield", "filth", "filth", "=", "next_filth", "else", ":", "filth", "=", "filth", ".", "merge", "(", "next_filth", ")", "yield", "filth" ]
Iterate over the different types of filth that can exist.
[ "Iterate", "over", "the", "different", "types", "of", "filth", "that", "can", "exist", "." ]
914bda49a16130b44af43df6a2f84755477c407c
https://github.com/datascopeanalytics/scrubadub/blob/914bda49a16130b44af43df6a2f84755477c407c/scrubadub/scrubbers.py#L64-L96
train
terrycain/aioboto3
aioboto3/s3/inject.py
download_file
async def download_file(self, Bucket, Key, Filename, ExtraArgs=None, Callback=None, Config=None): """Download an S3 object to a file. Usage:: import boto3 s3 = boto3.resource('s3') s3.meta.client.download_file('mybucket', 'hello.txt', '/tmp/hello.txt') Similar behavior as S3Transfer's download_file() method, except that parameters are capitalized. """ with open(Filename, 'wb') as open_file: await download_fileobj(self, Bucket, Key, open_file, ExtraArgs=ExtraArgs, Callback=Callback, Config=Config)
python
async def download_file(self, Bucket, Key, Filename, ExtraArgs=None, Callback=None, Config=None): """Download an S3 object to a file. Usage:: import boto3 s3 = boto3.resource('s3') s3.meta.client.download_file('mybucket', 'hello.txt', '/tmp/hello.txt') Similar behavior as S3Transfer's download_file() method, except that parameters are capitalized. """ with open(Filename, 'wb') as open_file: await download_fileobj(self, Bucket, Key, open_file, ExtraArgs=ExtraArgs, Callback=Callback, Config=Config)
[ "async", "def", "download_file", "(", "self", ",", "Bucket", ",", "Key", ",", "Filename", ",", "ExtraArgs", "=", "None", ",", "Callback", "=", "None", ",", "Config", "=", "None", ")", ":", "with", "open", "(", "Filename", ",", "'wb'", ")", "as", "open_file", ":", "await", "download_fileobj", "(", "self", ",", "Bucket", ",", "Key", ",", "open_file", ",", "ExtraArgs", "=", "ExtraArgs", ",", "Callback", "=", "Callback", ",", "Config", "=", "Config", ")" ]
Download an S3 object to a file. Usage:: import boto3 s3 = boto3.resource('s3') s3.meta.client.download_file('mybucket', 'hello.txt', '/tmp/hello.txt') Similar behavior as S3Transfer's download_file() method, except that parameters are capitalized.
[ "Download", "an", "S3", "object", "to", "a", "file", "." ]
0fd192175461f7bb192f3ed9a872591caf8474ac
https://github.com/terrycain/aioboto3/blob/0fd192175461f7bb192f3ed9a872591caf8474ac/aioboto3/s3/inject.py#L17-L30
train
terrycain/aioboto3
aioboto3/s3/inject.py
download_fileobj
async def download_fileobj(self, Bucket, Key, Fileobj, ExtraArgs=None, Callback=None, Config=None): """Download an object from S3 to a file-like object. The file-like object must be in binary mode. This is a managed transfer which will perform a multipart download in multiple threads if necessary. Usage:: import boto3 s3 = boto3.client('s3') with open('filename', 'wb') as data: s3.download_fileobj('mybucket', 'mykey', data) :type Fileobj: a file-like object :param Fileobj: A file-like object to download into. At a minimum, it must implement the `write` method and must accept bytes. :type Bucket: str :param Bucket: The name of the bucket to download from. :type Key: str :param Key: The name of the key to download from. :type ExtraArgs: dict :param ExtraArgs: Extra arguments that may be passed to the client operation. :type Callback: method :param Callback: A method which takes a number of bytes transferred to be periodically called during the download. :type Config: boto3.s3.transfer.TransferConfig :param Config: The transfer configuration to be used when performing the download. """ try: resp = await self.get_object(Bucket=Bucket, Key=Key) except ClientError as err: if err.response['Error']['Code'] == 'NoSuchKey': # Convert to 404 so it looks the same when boto3.download_file fails raise ClientError({'Error': {'Code': '404', 'Message': 'Not Found'}}, 'HeadObject') raise body = resp['Body'] while True: data = await body.read(4096) if data == b'': break if Callback: try: Callback(len(data)) except: # noqa: E722 pass Fileobj.write(data) await asyncio.sleep(0.0)
python
async def download_fileobj(self, Bucket, Key, Fileobj, ExtraArgs=None, Callback=None, Config=None): """Download an object from S3 to a file-like object. The file-like object must be in binary mode. This is a managed transfer which will perform a multipart download in multiple threads if necessary. Usage:: import boto3 s3 = boto3.client('s3') with open('filename', 'wb') as data: s3.download_fileobj('mybucket', 'mykey', data) :type Fileobj: a file-like object :param Fileobj: A file-like object to download into. At a minimum, it must implement the `write` method and must accept bytes. :type Bucket: str :param Bucket: The name of the bucket to download from. :type Key: str :param Key: The name of the key to download from. :type ExtraArgs: dict :param ExtraArgs: Extra arguments that may be passed to the client operation. :type Callback: method :param Callback: A method which takes a number of bytes transferred to be periodically called during the download. :type Config: boto3.s3.transfer.TransferConfig :param Config: The transfer configuration to be used when performing the download. """ try: resp = await self.get_object(Bucket=Bucket, Key=Key) except ClientError as err: if err.response['Error']['Code'] == 'NoSuchKey': # Convert to 404 so it looks the same when boto3.download_file fails raise ClientError({'Error': {'Code': '404', 'Message': 'Not Found'}}, 'HeadObject') raise body = resp['Body'] while True: data = await body.read(4096) if data == b'': break if Callback: try: Callback(len(data)) except: # noqa: E722 pass Fileobj.write(data) await asyncio.sleep(0.0)
[ "async", "def", "download_fileobj", "(", "self", ",", "Bucket", ",", "Key", ",", "Fileobj", ",", "ExtraArgs", "=", "None", ",", "Callback", "=", "None", ",", "Config", "=", "None", ")", ":", "try", ":", "resp", "=", "await", "self", ".", "get_object", "(", "Bucket", "=", "Bucket", ",", "Key", "=", "Key", ")", "except", "ClientError", "as", "err", ":", "if", "err", ".", "response", "[", "'Error'", "]", "[", "'Code'", "]", "==", "'NoSuchKey'", ":", "# Convert to 404 so it looks the same when boto3.download_file fails", "raise", "ClientError", "(", "{", "'Error'", ":", "{", "'Code'", ":", "'404'", ",", "'Message'", ":", "'Not Found'", "}", "}", ",", "'HeadObject'", ")", "raise", "body", "=", "resp", "[", "'Body'", "]", "while", "True", ":", "data", "=", "await", "body", ".", "read", "(", "4096", ")", "if", "data", "==", "b''", ":", "break", "if", "Callback", ":", "try", ":", "Callback", "(", "len", "(", "data", ")", ")", "except", ":", "# noqa: E722", "pass", "Fileobj", ".", "write", "(", "data", ")", "await", "asyncio", ".", "sleep", "(", "0.0", ")" ]
Download an object from S3 to a file-like object. The file-like object must be in binary mode. This is a managed transfer which will perform a multipart download in multiple threads if necessary. Usage:: import boto3 s3 = boto3.client('s3') with open('filename', 'wb') as data: s3.download_fileobj('mybucket', 'mykey', data) :type Fileobj: a file-like object :param Fileobj: A file-like object to download into. At a minimum, it must implement the `write` method and must accept bytes. :type Bucket: str :param Bucket: The name of the bucket to download from. :type Key: str :param Key: The name of the key to download from. :type ExtraArgs: dict :param ExtraArgs: Extra arguments that may be passed to the client operation. :type Callback: method :param Callback: A method which takes a number of bytes transferred to be periodically called during the download. :type Config: boto3.s3.transfer.TransferConfig :param Config: The transfer configuration to be used when performing the download.
[ "Download", "an", "object", "from", "S3", "to", "a", "file", "-", "like", "object", "." ]
0fd192175461f7bb192f3ed9a872591caf8474ac
https://github.com/terrycain/aioboto3/blob/0fd192175461f7bb192f3ed9a872591caf8474ac/aioboto3/s3/inject.py#L33-L95
train
terrycain/aioboto3
aioboto3/s3/inject.py
upload_fileobj
async def upload_fileobj(self, Fileobj: BinaryIO, Bucket: str, Key: str, ExtraArgs: Optional[Dict[str, Any]] = None, Callback: Optional[Callable[[int], None]] = None, Config: Optional[S3TransferConfig] = None): """Upload a file-like object to S3. The file-like object must be in binary mode. This is a managed transfer which will perform a multipart upload in multiple threads if necessary. Usage:: import boto3 s3 = boto3.client('s3') with open('filename', 'rb') as data: s3.upload_fileobj(data, 'mybucket', 'mykey') :type Fileobj: a file-like object :param Fileobj: A file-like object to upload. At a minimum, it must implement the `read` method, and must return bytes. :type Bucket: str :param Bucket: The name of the bucket to upload to. :type Key: str :param Key: The name of the key to upload to. :type ExtraArgs: dict :param ExtraArgs: Extra arguments that may be passed to the client operation. :type Callback: method :param Callback: A method which takes a number of bytes transferred to be periodically called during the upload. :type Config: boto3.s3.transfer.TransferConfig :param Config: The transfer configuration to be used when performing the upload. """ if not ExtraArgs: ExtraArgs = {} # I was debating setting up a queue etc... # If its too slow I'll then be bothered multipart_chunksize = 8388608 if Config is None else Config.multipart_chunksize io_chunksize = 262144 if Config is None else Config.io_chunksize # max_concurrency = 10 if Config is None else Config.max_concurrency # max_io_queue = 100 if config is None else Config.max_io_queue # Start multipart upload resp = await self.create_multipart_upload(Bucket=Bucket, Key=Key, **ExtraArgs) upload_id = resp['UploadId'] part = 0 parts = [] running = True sent_bytes = 0 try: while running: part += 1 multipart_payload = b'' while len(multipart_payload) < multipart_chunksize: if asyncio.iscoroutinefunction(Fileobj.read): # handles if we pass in aiofiles obj data = await Fileobj.read(io_chunksize) else: data = Fileobj.read(io_chunksize) if data == b'': # End of file running = False break multipart_payload += data # Submit part to S3 resp = await self.upload_part( Body=multipart_payload, Bucket=Bucket, Key=Key, PartNumber=part, UploadId=upload_id ) parts.append({'ETag': resp['ETag'], 'PartNumber': part}) sent_bytes += len(multipart_payload) try: Callback(sent_bytes) # Attempt to call the callback, if it fails, ignore, if no callback, ignore except: # noqa: E722 pass # By now the uploads must have been done await self.complete_multipart_upload( Bucket=Bucket, Key=Key, UploadId=upload_id, MultipartUpload={'Parts': parts} ) except: # noqa: E722 # Cancel multipart upload await self.abort_multipart_upload( Bucket=Bucket, Key=Key, UploadId=upload_id ) raise
python
async def upload_fileobj(self, Fileobj: BinaryIO, Bucket: str, Key: str, ExtraArgs: Optional[Dict[str, Any]] = None, Callback: Optional[Callable[[int], None]] = None, Config: Optional[S3TransferConfig] = None): """Upload a file-like object to S3. The file-like object must be in binary mode. This is a managed transfer which will perform a multipart upload in multiple threads if necessary. Usage:: import boto3 s3 = boto3.client('s3') with open('filename', 'rb') as data: s3.upload_fileobj(data, 'mybucket', 'mykey') :type Fileobj: a file-like object :param Fileobj: A file-like object to upload. At a minimum, it must implement the `read` method, and must return bytes. :type Bucket: str :param Bucket: The name of the bucket to upload to. :type Key: str :param Key: The name of the key to upload to. :type ExtraArgs: dict :param ExtraArgs: Extra arguments that may be passed to the client operation. :type Callback: method :param Callback: A method which takes a number of bytes transferred to be periodically called during the upload. :type Config: boto3.s3.transfer.TransferConfig :param Config: The transfer configuration to be used when performing the upload. """ if not ExtraArgs: ExtraArgs = {} # I was debating setting up a queue etc... # If its too slow I'll then be bothered multipart_chunksize = 8388608 if Config is None else Config.multipart_chunksize io_chunksize = 262144 if Config is None else Config.io_chunksize # max_concurrency = 10 if Config is None else Config.max_concurrency # max_io_queue = 100 if config is None else Config.max_io_queue # Start multipart upload resp = await self.create_multipart_upload(Bucket=Bucket, Key=Key, **ExtraArgs) upload_id = resp['UploadId'] part = 0 parts = [] running = True sent_bytes = 0 try: while running: part += 1 multipart_payload = b'' while len(multipart_payload) < multipart_chunksize: if asyncio.iscoroutinefunction(Fileobj.read): # handles if we pass in aiofiles obj data = await Fileobj.read(io_chunksize) else: data = Fileobj.read(io_chunksize) if data == b'': # End of file running = False break multipart_payload += data # Submit part to S3 resp = await self.upload_part( Body=multipart_payload, Bucket=Bucket, Key=Key, PartNumber=part, UploadId=upload_id ) parts.append({'ETag': resp['ETag'], 'PartNumber': part}) sent_bytes += len(multipart_payload) try: Callback(sent_bytes) # Attempt to call the callback, if it fails, ignore, if no callback, ignore except: # noqa: E722 pass # By now the uploads must have been done await self.complete_multipart_upload( Bucket=Bucket, Key=Key, UploadId=upload_id, MultipartUpload={'Parts': parts} ) except: # noqa: E722 # Cancel multipart upload await self.abort_multipart_upload( Bucket=Bucket, Key=Key, UploadId=upload_id ) raise
[ "async", "def", "upload_fileobj", "(", "self", ",", "Fileobj", ":", "BinaryIO", ",", "Bucket", ":", "str", ",", "Key", ":", "str", ",", "ExtraArgs", ":", "Optional", "[", "Dict", "[", "str", ",", "Any", "]", "]", "=", "None", ",", "Callback", ":", "Optional", "[", "Callable", "[", "[", "int", "]", ",", "None", "]", "]", "=", "None", ",", "Config", ":", "Optional", "[", "S3TransferConfig", "]", "=", "None", ")", ":", "if", "not", "ExtraArgs", ":", "ExtraArgs", "=", "{", "}", "# I was debating setting up a queue etc...", "# If its too slow I'll then be bothered", "multipart_chunksize", "=", "8388608", "if", "Config", "is", "None", "else", "Config", ".", "multipart_chunksize", "io_chunksize", "=", "262144", "if", "Config", "is", "None", "else", "Config", ".", "io_chunksize", "# max_concurrency = 10 if Config is None else Config.max_concurrency", "# max_io_queue = 100 if config is None else Config.max_io_queue", "# Start multipart upload", "resp", "=", "await", "self", ".", "create_multipart_upload", "(", "Bucket", "=", "Bucket", ",", "Key", "=", "Key", ",", "*", "*", "ExtraArgs", ")", "upload_id", "=", "resp", "[", "'UploadId'", "]", "part", "=", "0", "parts", "=", "[", "]", "running", "=", "True", "sent_bytes", "=", "0", "try", ":", "while", "running", ":", "part", "+=", "1", "multipart_payload", "=", "b''", "while", "len", "(", "multipart_payload", ")", "<", "multipart_chunksize", ":", "if", "asyncio", ".", "iscoroutinefunction", "(", "Fileobj", ".", "read", ")", ":", "# handles if we pass in aiofiles obj", "data", "=", "await", "Fileobj", ".", "read", "(", "io_chunksize", ")", "else", ":", "data", "=", "Fileobj", ".", "read", "(", "io_chunksize", ")", "if", "data", "==", "b''", ":", "# End of file", "running", "=", "False", "break", "multipart_payload", "+=", "data", "# Submit part to S3", "resp", "=", "await", "self", ".", "upload_part", "(", "Body", "=", "multipart_payload", ",", "Bucket", "=", "Bucket", ",", "Key", "=", "Key", ",", "PartNumber", "=", "part", ",", "UploadId", "=", "upload_id", ")", "parts", ".", "append", "(", "{", "'ETag'", ":", "resp", "[", "'ETag'", "]", ",", "'PartNumber'", ":", "part", "}", ")", "sent_bytes", "+=", "len", "(", "multipart_payload", ")", "try", ":", "Callback", "(", "sent_bytes", ")", "# Attempt to call the callback, if it fails, ignore, if no callback, ignore", "except", ":", "# noqa: E722", "pass", "# By now the uploads must have been done", "await", "self", ".", "complete_multipart_upload", "(", "Bucket", "=", "Bucket", ",", "Key", "=", "Key", ",", "UploadId", "=", "upload_id", ",", "MultipartUpload", "=", "{", "'Parts'", ":", "parts", "}", ")", "except", ":", "# noqa: E722", "# Cancel multipart upload", "await", "self", ".", "abort_multipart_upload", "(", "Bucket", "=", "Bucket", ",", "Key", "=", "Key", ",", "UploadId", "=", "upload_id", ")", "raise" ]
Upload a file-like object to S3. The file-like object must be in binary mode. This is a managed transfer which will perform a multipart upload in multiple threads if necessary. Usage:: import boto3 s3 = boto3.client('s3') with open('filename', 'rb') as data: s3.upload_fileobj(data, 'mybucket', 'mykey') :type Fileobj: a file-like object :param Fileobj: A file-like object to upload. At a minimum, it must implement the `read` method, and must return bytes. :type Bucket: str :param Bucket: The name of the bucket to upload to. :type Key: str :param Key: The name of the key to upload to. :type ExtraArgs: dict :param ExtraArgs: Extra arguments that may be passed to the client operation. :type Callback: method :param Callback: A method which takes a number of bytes transferred to be periodically called during the upload. :type Config: boto3.s3.transfer.TransferConfig :param Config: The transfer configuration to be used when performing the upload.
[ "Upload", "a", "file", "-", "like", "object", "to", "S3", "." ]
0fd192175461f7bb192f3ed9a872591caf8474ac
https://github.com/terrycain/aioboto3/blob/0fd192175461f7bb192f3ed9a872591caf8474ac/aioboto3/s3/inject.py#L98-L203
train
terrycain/aioboto3
aioboto3/s3/inject.py
upload_file
async def upload_file(self, Filename, Bucket, Key, ExtraArgs=None, Callback=None, Config=None): """Upload a file to an S3 object. Usage:: import boto3 s3 = boto3.resource('s3') s3.meta.client.upload_file('/tmp/hello.txt', 'mybucket', 'hello.txt') Similar behavior as S3Transfer's upload_file() method, except that parameters are capitalized. """ with open(Filename, 'rb') as open_file: await upload_fileobj(self, open_file, Bucket, Key, ExtraArgs=ExtraArgs, Callback=Callback, Config=Config)
python
async def upload_file(self, Filename, Bucket, Key, ExtraArgs=None, Callback=None, Config=None): """Upload a file to an S3 object. Usage:: import boto3 s3 = boto3.resource('s3') s3.meta.client.upload_file('/tmp/hello.txt', 'mybucket', 'hello.txt') Similar behavior as S3Transfer's upload_file() method, except that parameters are capitalized. """ with open(Filename, 'rb') as open_file: await upload_fileobj(self, open_file, Bucket, Key, ExtraArgs=ExtraArgs, Callback=Callback, Config=Config)
[ "async", "def", "upload_file", "(", "self", ",", "Filename", ",", "Bucket", ",", "Key", ",", "ExtraArgs", "=", "None", ",", "Callback", "=", "None", ",", "Config", "=", "None", ")", ":", "with", "open", "(", "Filename", ",", "'rb'", ")", "as", "open_file", ":", "await", "upload_fileobj", "(", "self", ",", "open_file", ",", "Bucket", ",", "Key", ",", "ExtraArgs", "=", "ExtraArgs", ",", "Callback", "=", "Callback", ",", "Config", "=", "Config", ")" ]
Upload a file to an S3 object. Usage:: import boto3 s3 = boto3.resource('s3') s3.meta.client.upload_file('/tmp/hello.txt', 'mybucket', 'hello.txt') Similar behavior as S3Transfer's upload_file() method, except that parameters are capitalized.
[ "Upload", "a", "file", "to", "an", "S3", "object", "." ]
0fd192175461f7bb192f3ed9a872591caf8474ac
https://github.com/terrycain/aioboto3/blob/0fd192175461f7bb192f3ed9a872591caf8474ac/aioboto3/s3/inject.py#L206-L219
train
terrycain/aioboto3
aioboto3/resources.py
AIOBoto3ResourceFactory._create_action
def _create_action(factory_self, action_model, resource_name, service_context, is_load=False): """ Creates a new method which makes a request to the underlying AWS service. """ # Create the action in in this closure but before the ``do_action`` # method below is invoked, which allows instances of the resource # to share the ServiceAction instance. action = AIOServiceAction( action_model, factory=factory_self, service_context=service_context ) # A resource's ``load`` method is special because it sets # values on the resource instead of returning the response. if is_load: # We need a new method here because we want access to the # instance via ``self``. async def do_action(self, *args, **kwargs): # response = action(self, *args, **kwargs) response = await action.async_call(self, *args, **kwargs) self.meta.data = response # Create the docstring for the load/reload mehtods. lazy_docstring = docstring.LoadReloadDocstring( action_name=action_model.name, resource_name=resource_name, event_emitter=factory_self._emitter, load_model=action_model, service_model=service_context.service_model, include_signature=False ) else: # We need a new method here because we want access to the # instance via ``self``. async def do_action(self, *args, **kwargs): response = await action.async_call(self, *args, **kwargs) if hasattr(self, 'load'): # Clear cached data. It will be reloaded the next # time that an attribute is accessed. # TODO: Make this configurable in the future? self.meta.data = None return response lazy_docstring = docstring.ActionDocstring( resource_name=resource_name, event_emitter=factory_self._emitter, action_model=action_model, service_model=service_context.service_model, include_signature=False ) do_action.__name__ = str(action_model.name) do_action.__doc__ = lazy_docstring return do_action
python
def _create_action(factory_self, action_model, resource_name, service_context, is_load=False): """ Creates a new method which makes a request to the underlying AWS service. """ # Create the action in in this closure but before the ``do_action`` # method below is invoked, which allows instances of the resource # to share the ServiceAction instance. action = AIOServiceAction( action_model, factory=factory_self, service_context=service_context ) # A resource's ``load`` method is special because it sets # values on the resource instead of returning the response. if is_load: # We need a new method here because we want access to the # instance via ``self``. async def do_action(self, *args, **kwargs): # response = action(self, *args, **kwargs) response = await action.async_call(self, *args, **kwargs) self.meta.data = response # Create the docstring for the load/reload mehtods. lazy_docstring = docstring.LoadReloadDocstring( action_name=action_model.name, resource_name=resource_name, event_emitter=factory_self._emitter, load_model=action_model, service_model=service_context.service_model, include_signature=False ) else: # We need a new method here because we want access to the # instance via ``self``. async def do_action(self, *args, **kwargs): response = await action.async_call(self, *args, **kwargs) if hasattr(self, 'load'): # Clear cached data. It will be reloaded the next # time that an attribute is accessed. # TODO: Make this configurable in the future? self.meta.data = None return response lazy_docstring = docstring.ActionDocstring( resource_name=resource_name, event_emitter=factory_self._emitter, action_model=action_model, service_model=service_context.service_model, include_signature=False ) do_action.__name__ = str(action_model.name) do_action.__doc__ = lazy_docstring return do_action
[ "def", "_create_action", "(", "factory_self", ",", "action_model", ",", "resource_name", ",", "service_context", ",", "is_load", "=", "False", ")", ":", "# Create the action in in this closure but before the ``do_action``", "# method below is invoked, which allows instances of the resource", "# to share the ServiceAction instance.", "action", "=", "AIOServiceAction", "(", "action_model", ",", "factory", "=", "factory_self", ",", "service_context", "=", "service_context", ")", "# A resource's ``load`` method is special because it sets", "# values on the resource instead of returning the response.", "if", "is_load", ":", "# We need a new method here because we want access to the", "# instance via ``self``.", "async", "def", "do_action", "(", "self", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "# response = action(self, *args, **kwargs)", "response", "=", "await", "action", ".", "async_call", "(", "self", ",", "*", "args", ",", "*", "*", "kwargs", ")", "self", ".", "meta", ".", "data", "=", "response", "# Create the docstring for the load/reload mehtods.", "lazy_docstring", "=", "docstring", ".", "LoadReloadDocstring", "(", "action_name", "=", "action_model", ".", "name", ",", "resource_name", "=", "resource_name", ",", "event_emitter", "=", "factory_self", ".", "_emitter", ",", "load_model", "=", "action_model", ",", "service_model", "=", "service_context", ".", "service_model", ",", "include_signature", "=", "False", ")", "else", ":", "# We need a new method here because we want access to the", "# instance via ``self``.", "async", "def", "do_action", "(", "self", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "response", "=", "await", "action", ".", "async_call", "(", "self", ",", "*", "args", ",", "*", "*", "kwargs", ")", "if", "hasattr", "(", "self", ",", "'load'", ")", ":", "# Clear cached data. It will be reloaded the next", "# time that an attribute is accessed.", "# TODO: Make this configurable in the future?", "self", ".", "meta", ".", "data", "=", "None", "return", "response", "lazy_docstring", "=", "docstring", ".", "ActionDocstring", "(", "resource_name", "=", "resource_name", ",", "event_emitter", "=", "factory_self", ".", "_emitter", ",", "action_model", "=", "action_model", ",", "service_model", "=", "service_context", ".", "service_model", ",", "include_signature", "=", "False", ")", "do_action", ".", "__name__", "=", "str", "(", "action_model", ".", "name", ")", "do_action", ".", "__doc__", "=", "lazy_docstring", "return", "do_action" ]
Creates a new method which makes a request to the underlying AWS service.
[ "Creates", "a", "new", "method", "which", "makes", "a", "request", "to", "the", "underlying", "AWS", "service", "." ]
0fd192175461f7bb192f3ed9a872591caf8474ac
https://github.com/terrycain/aioboto3/blob/0fd192175461f7bb192f3ed9a872591caf8474ac/aioboto3/resources.py#L183-L240
train
terrycain/aioboto3
aioboto3/s3/cse.py
AsymmetricCryptoContext.from_der_private_key
def from_der_private_key(data: bytes, password: Optional[str] = None) -> _RSAPrivateKey: """ Convert private key in DER encoding to a Private key object :param data: private key bytes :param password: password the private key is encrypted with """ return serialization.load_der_private_key(data, password, default_backend())
python
def from_der_private_key(data: bytes, password: Optional[str] = None) -> _RSAPrivateKey: """ Convert private key in DER encoding to a Private key object :param data: private key bytes :param password: password the private key is encrypted with """ return serialization.load_der_private_key(data, password, default_backend())
[ "def", "from_der_private_key", "(", "data", ":", "bytes", ",", "password", ":", "Optional", "[", "str", "]", "=", "None", ")", "->", "_RSAPrivateKey", ":", "return", "serialization", ".", "load_der_private_key", "(", "data", ",", "password", ",", "default_backend", "(", ")", ")" ]
Convert private key in DER encoding to a Private key object :param data: private key bytes :param password: password the private key is encrypted with
[ "Convert", "private", "key", "in", "DER", "encoding", "to", "a", "Private", "key", "object" ]
0fd192175461f7bb192f3ed9a872591caf8474ac
https://github.com/terrycain/aioboto3/blob/0fd192175461f7bb192f3ed9a872591caf8474ac/aioboto3/s3/cse.py#L149-L156
train
terrycain/aioboto3
aioboto3/s3/cse.py
S3CSE.get_object
async def get_object(self, Bucket: str, Key: str, **kwargs) -> dict: """ S3 GetObject. Takes same args as Boto3 documentation Decrypts any CSE :param Bucket: S3 Bucket :param Key: S3 Key (filepath) :return: returns same response as a normal S3 get_object """ if self._s3_client is None: await self.setup() # Ok so if we are doing a range get. We need to align the range start/end with AES block boundaries # 9223372036854775806 is 8EiB so I have no issue with hardcoding it. # We pass the actual start, desired start and desired end to the decrypt function so that it can # generate the correct IV's for starting decryption at that block and then chop off the start and end of the # AES block so it matches what the user is expecting. _range = kwargs.get('Range') actual_range_start = None desired_range_start = None desired_range_end = None if _range: range_match = RANGE_REGEX.match(_range) if not range_match: raise ValueError('Dont understand this range value {0}'.format(_range)) desired_range_start = int(range_match.group(1)) desired_range_end = range_match.group(2) if desired_range_end is None: desired_range_end = 9223372036854775806 else: desired_range_end = int(desired_range_end) actual_range_start, actual_range_end = _get_adjusted_crypto_range(desired_range_start, desired_range_end) # Update range with actual start_end kwargs['Range'] = 'bytes={0}-{1}'.format(actual_range_start, actual_range_end) s3_response = await self._s3_client.get_object(Bucket=Bucket, Key=Key, **kwargs) file_data = await s3_response['Body'].read() metadata = s3_response['Metadata'] whole_file_length = int(s3_response['ResponseMetadata']['HTTPHeaders']['content-length']) if 'x-amz-key' not in metadata and 'x-amz-key-v2' not in metadata: # No crypto return s3_response if 'x-amz-key' in metadata: # Crypto V1 body = await self._decrypt_v1(file_data, metadata, actual_range_start) else: # Crypto V2 body = await self._decrypt_v2(file_data, metadata, whole_file_length, actual_range_start, desired_range_start, desired_range_end) s3_response['Body'] = DummyAIOFile(body) return s3_response
python
async def get_object(self, Bucket: str, Key: str, **kwargs) -> dict: """ S3 GetObject. Takes same args as Boto3 documentation Decrypts any CSE :param Bucket: S3 Bucket :param Key: S3 Key (filepath) :return: returns same response as a normal S3 get_object """ if self._s3_client is None: await self.setup() # Ok so if we are doing a range get. We need to align the range start/end with AES block boundaries # 9223372036854775806 is 8EiB so I have no issue with hardcoding it. # We pass the actual start, desired start and desired end to the decrypt function so that it can # generate the correct IV's for starting decryption at that block and then chop off the start and end of the # AES block so it matches what the user is expecting. _range = kwargs.get('Range') actual_range_start = None desired_range_start = None desired_range_end = None if _range: range_match = RANGE_REGEX.match(_range) if not range_match: raise ValueError('Dont understand this range value {0}'.format(_range)) desired_range_start = int(range_match.group(1)) desired_range_end = range_match.group(2) if desired_range_end is None: desired_range_end = 9223372036854775806 else: desired_range_end = int(desired_range_end) actual_range_start, actual_range_end = _get_adjusted_crypto_range(desired_range_start, desired_range_end) # Update range with actual start_end kwargs['Range'] = 'bytes={0}-{1}'.format(actual_range_start, actual_range_end) s3_response = await self._s3_client.get_object(Bucket=Bucket, Key=Key, **kwargs) file_data = await s3_response['Body'].read() metadata = s3_response['Metadata'] whole_file_length = int(s3_response['ResponseMetadata']['HTTPHeaders']['content-length']) if 'x-amz-key' not in metadata and 'x-amz-key-v2' not in metadata: # No crypto return s3_response if 'x-amz-key' in metadata: # Crypto V1 body = await self._decrypt_v1(file_data, metadata, actual_range_start) else: # Crypto V2 body = await self._decrypt_v2(file_data, metadata, whole_file_length, actual_range_start, desired_range_start, desired_range_end) s3_response['Body'] = DummyAIOFile(body) return s3_response
[ "async", "def", "get_object", "(", "self", ",", "Bucket", ":", "str", ",", "Key", ":", "str", ",", "*", "*", "kwargs", ")", "->", "dict", ":", "if", "self", ".", "_s3_client", "is", "None", ":", "await", "self", ".", "setup", "(", ")", "# Ok so if we are doing a range get. We need to align the range start/end with AES block boundaries", "# 9223372036854775806 is 8EiB so I have no issue with hardcoding it.", "# We pass the actual start, desired start and desired end to the decrypt function so that it can", "# generate the correct IV's for starting decryption at that block and then chop off the start and end of the", "# AES block so it matches what the user is expecting.", "_range", "=", "kwargs", ".", "get", "(", "'Range'", ")", "actual_range_start", "=", "None", "desired_range_start", "=", "None", "desired_range_end", "=", "None", "if", "_range", ":", "range_match", "=", "RANGE_REGEX", ".", "match", "(", "_range", ")", "if", "not", "range_match", ":", "raise", "ValueError", "(", "'Dont understand this range value {0}'", ".", "format", "(", "_range", ")", ")", "desired_range_start", "=", "int", "(", "range_match", ".", "group", "(", "1", ")", ")", "desired_range_end", "=", "range_match", ".", "group", "(", "2", ")", "if", "desired_range_end", "is", "None", ":", "desired_range_end", "=", "9223372036854775806", "else", ":", "desired_range_end", "=", "int", "(", "desired_range_end", ")", "actual_range_start", ",", "actual_range_end", "=", "_get_adjusted_crypto_range", "(", "desired_range_start", ",", "desired_range_end", ")", "# Update range with actual start_end", "kwargs", "[", "'Range'", "]", "=", "'bytes={0}-{1}'", ".", "format", "(", "actual_range_start", ",", "actual_range_end", ")", "s3_response", "=", "await", "self", ".", "_s3_client", ".", "get_object", "(", "Bucket", "=", "Bucket", ",", "Key", "=", "Key", ",", "*", "*", "kwargs", ")", "file_data", "=", "await", "s3_response", "[", "'Body'", "]", ".", "read", "(", ")", "metadata", "=", "s3_response", "[", "'Metadata'", "]", "whole_file_length", "=", "int", "(", "s3_response", "[", "'ResponseMetadata'", "]", "[", "'HTTPHeaders'", "]", "[", "'content-length'", "]", ")", "if", "'x-amz-key'", "not", "in", "metadata", "and", "'x-amz-key-v2'", "not", "in", "metadata", ":", "# No crypto", "return", "s3_response", "if", "'x-amz-key'", "in", "metadata", ":", "# Crypto V1", "body", "=", "await", "self", ".", "_decrypt_v1", "(", "file_data", ",", "metadata", ",", "actual_range_start", ")", "else", ":", "# Crypto V2", "body", "=", "await", "self", ".", "_decrypt_v2", "(", "file_data", ",", "metadata", ",", "whole_file_length", ",", "actual_range_start", ",", "desired_range_start", ",", "desired_range_end", ")", "s3_response", "[", "'Body'", "]", "=", "DummyAIOFile", "(", "body", ")", "return", "s3_response" ]
S3 GetObject. Takes same args as Boto3 documentation Decrypts any CSE :param Bucket: S3 Bucket :param Key: S3 Key (filepath) :return: returns same response as a normal S3 get_object
[ "S3", "GetObject", ".", "Takes", "same", "args", "as", "Boto3", "documentation" ]
0fd192175461f7bb192f3ed9a872591caf8474ac
https://github.com/terrycain/aioboto3/blob/0fd192175461f7bb192f3ed9a872591caf8474ac/aioboto3/s3/cse.py#L330-L389
train
terrycain/aioboto3
aioboto3/s3/cse.py
S3CSE.put_object
async def put_object(self, Body: Union[bytes, IO], Bucket: str, Key: str, Metadata: Dict = None, **kwargs): """ PutObject. Takes same args as Boto3 documentation Encrypts files :param: Body: File data :param Bucket: S3 Bucket :param Key: S3 Key (filepath) """ if self._s3_client is None: await self.setup() if hasattr(Body, 'read'): if inspect.iscoroutinefunction(Body.read): Body = await Body.read() else: Body = Body.read() # We do some different V2 stuff if using kms is_kms = isinstance(self._crypto_context, KMSCryptoContext) # noinspection PyUnresolvedReferences authenticated_crypto = is_kms and self._crypto_context.authenticated_encryption Metadata = Metadata if Metadata is not None else {} aes_key, matdesc_metadata, key_metadata = await self._crypto_context.get_encryption_aes_key() if is_kms and authenticated_crypto: Metadata['x-amz-cek-alg'] = 'AES/GCM/NoPadding' Metadata['x-amz-tag-len'] = str(AES_BLOCK_SIZE) iv = os.urandom(12) # 16byte 128bit authentication tag forced aesgcm = AESGCM(aes_key) result = await self._loop.run_in_executor(None, lambda: aesgcm.encrypt(iv, Body, None)) else: if is_kms: # V1 is always AES/CBC/PKCS5Padding Metadata['x-amz-cek-alg'] = 'AES/CBC/PKCS5Padding' iv = os.urandom(16) padder = PKCS7(AES.block_size).padder() padded_result = await self._loop.run_in_executor(None, lambda: (padder.update(Body) + padder.finalize())) aescbc = Cipher(AES(aes_key), CBC(iv), backend=self._backend).encryptor() result = await self._loop.run_in_executor(None, lambda: (aescbc.update(padded_result) + aescbc.finalize())) # For all V1 and V2 Metadata['x-amz-unencrypted-content-length'] = str(len(Body)) Metadata['x-amz-iv'] = base64.b64encode(iv).decode() Metadata['x-amz-matdesc'] = json.dumps(matdesc_metadata) if is_kms: Metadata['x-amz-wrap-alg'] = 'kms' Metadata['x-amz-key-v2'] = key_metadata else: Metadata['x-amz-key'] = key_metadata await self._s3_client.put_object( Bucket=Bucket, Key=Key, Body=result, Metadata=Metadata, **kwargs )
python
async def put_object(self, Body: Union[bytes, IO], Bucket: str, Key: str, Metadata: Dict = None, **kwargs): """ PutObject. Takes same args as Boto3 documentation Encrypts files :param: Body: File data :param Bucket: S3 Bucket :param Key: S3 Key (filepath) """ if self._s3_client is None: await self.setup() if hasattr(Body, 'read'): if inspect.iscoroutinefunction(Body.read): Body = await Body.read() else: Body = Body.read() # We do some different V2 stuff if using kms is_kms = isinstance(self._crypto_context, KMSCryptoContext) # noinspection PyUnresolvedReferences authenticated_crypto = is_kms and self._crypto_context.authenticated_encryption Metadata = Metadata if Metadata is not None else {} aes_key, matdesc_metadata, key_metadata = await self._crypto_context.get_encryption_aes_key() if is_kms and authenticated_crypto: Metadata['x-amz-cek-alg'] = 'AES/GCM/NoPadding' Metadata['x-amz-tag-len'] = str(AES_BLOCK_SIZE) iv = os.urandom(12) # 16byte 128bit authentication tag forced aesgcm = AESGCM(aes_key) result = await self._loop.run_in_executor(None, lambda: aesgcm.encrypt(iv, Body, None)) else: if is_kms: # V1 is always AES/CBC/PKCS5Padding Metadata['x-amz-cek-alg'] = 'AES/CBC/PKCS5Padding' iv = os.urandom(16) padder = PKCS7(AES.block_size).padder() padded_result = await self._loop.run_in_executor(None, lambda: (padder.update(Body) + padder.finalize())) aescbc = Cipher(AES(aes_key), CBC(iv), backend=self._backend).encryptor() result = await self._loop.run_in_executor(None, lambda: (aescbc.update(padded_result) + aescbc.finalize())) # For all V1 and V2 Metadata['x-amz-unencrypted-content-length'] = str(len(Body)) Metadata['x-amz-iv'] = base64.b64encode(iv).decode() Metadata['x-amz-matdesc'] = json.dumps(matdesc_metadata) if is_kms: Metadata['x-amz-wrap-alg'] = 'kms' Metadata['x-amz-key-v2'] = key_metadata else: Metadata['x-amz-key'] = key_metadata await self._s3_client.put_object( Bucket=Bucket, Key=Key, Body=result, Metadata=Metadata, **kwargs )
[ "async", "def", "put_object", "(", "self", ",", "Body", ":", "Union", "[", "bytes", ",", "IO", "]", ",", "Bucket", ":", "str", ",", "Key", ":", "str", ",", "Metadata", ":", "Dict", "=", "None", ",", "*", "*", "kwargs", ")", ":", "if", "self", ".", "_s3_client", "is", "None", ":", "await", "self", ".", "setup", "(", ")", "if", "hasattr", "(", "Body", ",", "'read'", ")", ":", "if", "inspect", ".", "iscoroutinefunction", "(", "Body", ".", "read", ")", ":", "Body", "=", "await", "Body", ".", "read", "(", ")", "else", ":", "Body", "=", "Body", ".", "read", "(", ")", "# We do some different V2 stuff if using kms", "is_kms", "=", "isinstance", "(", "self", ".", "_crypto_context", ",", "KMSCryptoContext", ")", "# noinspection PyUnresolvedReferences", "authenticated_crypto", "=", "is_kms", "and", "self", ".", "_crypto_context", ".", "authenticated_encryption", "Metadata", "=", "Metadata", "if", "Metadata", "is", "not", "None", "else", "{", "}", "aes_key", ",", "matdesc_metadata", ",", "key_metadata", "=", "await", "self", ".", "_crypto_context", ".", "get_encryption_aes_key", "(", ")", "if", "is_kms", "and", "authenticated_crypto", ":", "Metadata", "[", "'x-amz-cek-alg'", "]", "=", "'AES/GCM/NoPadding'", "Metadata", "[", "'x-amz-tag-len'", "]", "=", "str", "(", "AES_BLOCK_SIZE", ")", "iv", "=", "os", ".", "urandom", "(", "12", ")", "# 16byte 128bit authentication tag forced", "aesgcm", "=", "AESGCM", "(", "aes_key", ")", "result", "=", "await", "self", ".", "_loop", ".", "run_in_executor", "(", "None", ",", "lambda", ":", "aesgcm", ".", "encrypt", "(", "iv", ",", "Body", ",", "None", ")", ")", "else", ":", "if", "is_kms", ":", "# V1 is always AES/CBC/PKCS5Padding", "Metadata", "[", "'x-amz-cek-alg'", "]", "=", "'AES/CBC/PKCS5Padding'", "iv", "=", "os", ".", "urandom", "(", "16", ")", "padder", "=", "PKCS7", "(", "AES", ".", "block_size", ")", ".", "padder", "(", ")", "padded_result", "=", "await", "self", ".", "_loop", ".", "run_in_executor", "(", "None", ",", "lambda", ":", "(", "padder", ".", "update", "(", "Body", ")", "+", "padder", ".", "finalize", "(", ")", ")", ")", "aescbc", "=", "Cipher", "(", "AES", "(", "aes_key", ")", ",", "CBC", "(", "iv", ")", ",", "backend", "=", "self", ".", "_backend", ")", ".", "encryptor", "(", ")", "result", "=", "await", "self", ".", "_loop", ".", "run_in_executor", "(", "None", ",", "lambda", ":", "(", "aescbc", ".", "update", "(", "padded_result", ")", "+", "aescbc", ".", "finalize", "(", ")", ")", ")", "# For all V1 and V2", "Metadata", "[", "'x-amz-unencrypted-content-length'", "]", "=", "str", "(", "len", "(", "Body", ")", ")", "Metadata", "[", "'x-amz-iv'", "]", "=", "base64", ".", "b64encode", "(", "iv", ")", ".", "decode", "(", ")", "Metadata", "[", "'x-amz-matdesc'", "]", "=", "json", ".", "dumps", "(", "matdesc_metadata", ")", "if", "is_kms", ":", "Metadata", "[", "'x-amz-wrap-alg'", "]", "=", "'kms'", "Metadata", "[", "'x-amz-key-v2'", "]", "=", "key_metadata", "else", ":", "Metadata", "[", "'x-amz-key'", "]", "=", "key_metadata", "await", "self", ".", "_s3_client", ".", "put_object", "(", "Bucket", "=", "Bucket", ",", "Key", "=", "Key", ",", "Body", "=", "result", ",", "Metadata", "=", "Metadata", ",", "*", "*", "kwargs", ")" ]
PutObject. Takes same args as Boto3 documentation Encrypts files :param: Body: File data :param Bucket: S3 Bucket :param Key: S3 Key (filepath)
[ "PutObject", ".", "Takes", "same", "args", "as", "Boto3", "documentation" ]
0fd192175461f7bb192f3ed9a872591caf8474ac
https://github.com/terrycain/aioboto3/blob/0fd192175461f7bb192f3ed9a872591caf8474ac/aioboto3/s3/cse.py#L482-L549
train
astrofrog/fast-histogram
fast_histogram/histogram.py
histogram1d
def histogram1d(x, bins, range, weights=None): """ Compute a 1D histogram assuming equally spaced bins. Parameters ---------- x : `~numpy.ndarray` The position of the points to bin in the 1D histogram bins : int The number of bins range : iterable The range as a tuple of (xmin, xmax) weights : `~numpy.ndarray` The weights of the points in the 1D histogram Returns ------- array : `~numpy.ndarray` The 1D histogram array """ nx = bins if not np.isscalar(bins): raise TypeError('bins should be an integer') xmin, xmax = range if not np.isfinite(xmin): raise ValueError("xmin should be finite") if not np.isfinite(xmax): raise ValueError("xmax should be finite") if xmax <= xmin: raise ValueError("xmax should be greater than xmin") if nx <= 0: raise ValueError("nx should be strictly positive") if weights is None: return _histogram1d(x, nx, xmin, xmax) else: return _histogram1d_weighted(x, weights, nx, xmin, xmax)
python
def histogram1d(x, bins, range, weights=None): """ Compute a 1D histogram assuming equally spaced bins. Parameters ---------- x : `~numpy.ndarray` The position of the points to bin in the 1D histogram bins : int The number of bins range : iterable The range as a tuple of (xmin, xmax) weights : `~numpy.ndarray` The weights of the points in the 1D histogram Returns ------- array : `~numpy.ndarray` The 1D histogram array """ nx = bins if not np.isscalar(bins): raise TypeError('bins should be an integer') xmin, xmax = range if not np.isfinite(xmin): raise ValueError("xmin should be finite") if not np.isfinite(xmax): raise ValueError("xmax should be finite") if xmax <= xmin: raise ValueError("xmax should be greater than xmin") if nx <= 0: raise ValueError("nx should be strictly positive") if weights is None: return _histogram1d(x, nx, xmin, xmax) else: return _histogram1d_weighted(x, weights, nx, xmin, xmax)
[ "def", "histogram1d", "(", "x", ",", "bins", ",", "range", ",", "weights", "=", "None", ")", ":", "nx", "=", "bins", "if", "not", "np", ".", "isscalar", "(", "bins", ")", ":", "raise", "TypeError", "(", "'bins should be an integer'", ")", "xmin", ",", "xmax", "=", "range", "if", "not", "np", ".", "isfinite", "(", "xmin", ")", ":", "raise", "ValueError", "(", "\"xmin should be finite\"", ")", "if", "not", "np", ".", "isfinite", "(", "xmax", ")", ":", "raise", "ValueError", "(", "\"xmax should be finite\"", ")", "if", "xmax", "<=", "xmin", ":", "raise", "ValueError", "(", "\"xmax should be greater than xmin\"", ")", "if", "nx", "<=", "0", ":", "raise", "ValueError", "(", "\"nx should be strictly positive\"", ")", "if", "weights", "is", "None", ":", "return", "_histogram1d", "(", "x", ",", "nx", ",", "xmin", ",", "xmax", ")", "else", ":", "return", "_histogram1d_weighted", "(", "x", ",", "weights", ",", "nx", ",", "xmin", ",", "xmax", ")" ]
Compute a 1D histogram assuming equally spaced bins. Parameters ---------- x : `~numpy.ndarray` The position of the points to bin in the 1D histogram bins : int The number of bins range : iterable The range as a tuple of (xmin, xmax) weights : `~numpy.ndarray` The weights of the points in the 1D histogram Returns ------- array : `~numpy.ndarray` The 1D histogram array
[ "Compute", "a", "1D", "histogram", "assuming", "equally", "spaced", "bins", "." ]
ace4f2444fba2e21fa3cd9dad966f6b65b60660f
https://github.com/astrofrog/fast-histogram/blob/ace4f2444fba2e21fa3cd9dad966f6b65b60660f/fast_histogram/histogram.py#L15-L58
train
astrofrog/fast-histogram
fast_histogram/histogram.py
histogram2d
def histogram2d(x, y, bins, range, weights=None): """ Compute a 2D histogram assuming equally spaced bins. Parameters ---------- x, y : `~numpy.ndarray` The position of the points to bin in the 2D histogram bins : int or iterable The number of bins in each dimension. If given as an integer, the same number of bins is used for each dimension. range : iterable The range to use in each dimention, as an iterable of value pairs, i.e. [(xmin, xmax), (ymin, ymax)] weights : `~numpy.ndarray` The weights of the points in the 1D histogram Returns ------- array : `~numpy.ndarray` The 2D histogram array """ if isinstance(bins, numbers.Integral): nx = ny = bins else: nx, ny = bins if not np.isscalar(nx) or not np.isscalar(ny): raise TypeError('bins should be an iterable of two integers') (xmin, xmax), (ymin, ymax) = range if not np.isfinite(xmin): raise ValueError("xmin should be finite") if not np.isfinite(xmax): raise ValueError("xmax should be finite") if not np.isfinite(ymin): raise ValueError("ymin should be finite") if not np.isfinite(ymax): raise ValueError("ymax should be finite") if xmax <= xmin: raise ValueError("xmax should be greater than xmin") if ymax <= ymin: raise ValueError("xmax should be greater than xmin") if nx <= 0: raise ValueError("nx should be strictly positive") if ny <= 0: raise ValueError("ny should be strictly positive") if weights is None: return _histogram2d(x, y, nx, xmin, xmax, ny, ymin, ymax) else: return _histogram2d_weighted(x, y, weights, nx, xmin, xmax, ny, ymin, ymax)
python
def histogram2d(x, y, bins, range, weights=None): """ Compute a 2D histogram assuming equally spaced bins. Parameters ---------- x, y : `~numpy.ndarray` The position of the points to bin in the 2D histogram bins : int or iterable The number of bins in each dimension. If given as an integer, the same number of bins is used for each dimension. range : iterable The range to use in each dimention, as an iterable of value pairs, i.e. [(xmin, xmax), (ymin, ymax)] weights : `~numpy.ndarray` The weights of the points in the 1D histogram Returns ------- array : `~numpy.ndarray` The 2D histogram array """ if isinstance(bins, numbers.Integral): nx = ny = bins else: nx, ny = bins if not np.isscalar(nx) or not np.isscalar(ny): raise TypeError('bins should be an iterable of two integers') (xmin, xmax), (ymin, ymax) = range if not np.isfinite(xmin): raise ValueError("xmin should be finite") if not np.isfinite(xmax): raise ValueError("xmax should be finite") if not np.isfinite(ymin): raise ValueError("ymin should be finite") if not np.isfinite(ymax): raise ValueError("ymax should be finite") if xmax <= xmin: raise ValueError("xmax should be greater than xmin") if ymax <= ymin: raise ValueError("xmax should be greater than xmin") if nx <= 0: raise ValueError("nx should be strictly positive") if ny <= 0: raise ValueError("ny should be strictly positive") if weights is None: return _histogram2d(x, y, nx, xmin, xmax, ny, ymin, ymax) else: return _histogram2d_weighted(x, y, weights, nx, xmin, xmax, ny, ymin, ymax)
[ "def", "histogram2d", "(", "x", ",", "y", ",", "bins", ",", "range", ",", "weights", "=", "None", ")", ":", "if", "isinstance", "(", "bins", ",", "numbers", ".", "Integral", ")", ":", "nx", "=", "ny", "=", "bins", "else", ":", "nx", ",", "ny", "=", "bins", "if", "not", "np", ".", "isscalar", "(", "nx", ")", "or", "not", "np", ".", "isscalar", "(", "ny", ")", ":", "raise", "TypeError", "(", "'bins should be an iterable of two integers'", ")", "(", "xmin", ",", "xmax", ")", ",", "(", "ymin", ",", "ymax", ")", "=", "range", "if", "not", "np", ".", "isfinite", "(", "xmin", ")", ":", "raise", "ValueError", "(", "\"xmin should be finite\"", ")", "if", "not", "np", ".", "isfinite", "(", "xmax", ")", ":", "raise", "ValueError", "(", "\"xmax should be finite\"", ")", "if", "not", "np", ".", "isfinite", "(", "ymin", ")", ":", "raise", "ValueError", "(", "\"ymin should be finite\"", ")", "if", "not", "np", ".", "isfinite", "(", "ymax", ")", ":", "raise", "ValueError", "(", "\"ymax should be finite\"", ")", "if", "xmax", "<=", "xmin", ":", "raise", "ValueError", "(", "\"xmax should be greater than xmin\"", ")", "if", "ymax", "<=", "ymin", ":", "raise", "ValueError", "(", "\"xmax should be greater than xmin\"", ")", "if", "nx", "<=", "0", ":", "raise", "ValueError", "(", "\"nx should be strictly positive\"", ")", "if", "ny", "<=", "0", ":", "raise", "ValueError", "(", "\"ny should be strictly positive\"", ")", "if", "weights", "is", "None", ":", "return", "_histogram2d", "(", "x", ",", "y", ",", "nx", ",", "xmin", ",", "xmax", ",", "ny", ",", "ymin", ",", "ymax", ")", "else", ":", "return", "_histogram2d_weighted", "(", "x", ",", "y", ",", "weights", ",", "nx", ",", "xmin", ",", "xmax", ",", "ny", ",", "ymin", ",", "ymax", ")" ]
Compute a 2D histogram assuming equally spaced bins. Parameters ---------- x, y : `~numpy.ndarray` The position of the points to bin in the 2D histogram bins : int or iterable The number of bins in each dimension. If given as an integer, the same number of bins is used for each dimension. range : iterable The range to use in each dimention, as an iterable of value pairs, i.e. [(xmin, xmax), (ymin, ymax)] weights : `~numpy.ndarray` The weights of the points in the 1D histogram Returns ------- array : `~numpy.ndarray` The 2D histogram array
[ "Compute", "a", "2D", "histogram", "assuming", "equally", "spaced", "bins", "." ]
ace4f2444fba2e21fa3cd9dad966f6b65b60660f
https://github.com/astrofrog/fast-histogram/blob/ace4f2444fba2e21fa3cd9dad966f6b65b60660f/fast_histogram/histogram.py#L61-L121
train
cytoscape/py2cytoscape
py2cytoscape/data/cynetwork.py
CyNetwork.to_networkx
def to_networkx(self): """ Return this network in NetworkX graph object. :return: Network as NetworkX graph object """ return nx_util.to_networkx(self.session.get(self.__url).json())
python
def to_networkx(self): """ Return this network in NetworkX graph object. :return: Network as NetworkX graph object """ return nx_util.to_networkx(self.session.get(self.__url).json())
[ "def", "to_networkx", "(", "self", ")", ":", "return", "nx_util", ".", "to_networkx", "(", "self", ".", "session", ".", "get", "(", "self", ".", "__url", ")", ".", "json", "(", ")", ")" ]
Return this network in NetworkX graph object. :return: Network as NetworkX graph object
[ "Return", "this", "network", "in", "NetworkX", "graph", "object", "." ]
dd34de8d028f512314d0057168df7fef7c5d5195
https://github.com/cytoscape/py2cytoscape/blob/dd34de8d028f512314d0057168df7fef7c5d5195/py2cytoscape/data/cynetwork.py#L46-L52
train
cytoscape/py2cytoscape
py2cytoscape/data/cynetwork.py
CyNetwork.to_dataframe
def to_dataframe(self, extra_edges_columns=[]): """ Return this network in pandas DataFrame. :return: Network as DataFrame. This is equivalent to SIF. """ return df_util.to_dataframe( self.session.get(self.__url).json(), edges_attr_cols=extra_edges_columns )
python
def to_dataframe(self, extra_edges_columns=[]): """ Return this network in pandas DataFrame. :return: Network as DataFrame. This is equivalent to SIF. """ return df_util.to_dataframe( self.session.get(self.__url).json(), edges_attr_cols=extra_edges_columns )
[ "def", "to_dataframe", "(", "self", ",", "extra_edges_columns", "=", "[", "]", ")", ":", "return", "df_util", ".", "to_dataframe", "(", "self", ".", "session", ".", "get", "(", "self", ".", "__url", ")", ".", "json", "(", ")", ",", "edges_attr_cols", "=", "extra_edges_columns", ")" ]
Return this network in pandas DataFrame. :return: Network as DataFrame. This is equivalent to SIF.
[ "Return", "this", "network", "in", "pandas", "DataFrame", "." ]
dd34de8d028f512314d0057168df7fef7c5d5195
https://github.com/cytoscape/py2cytoscape/blob/dd34de8d028f512314d0057168df7fef7c5d5195/py2cytoscape/data/cynetwork.py#L54-L63
train
cytoscape/py2cytoscape
py2cytoscape/data/cynetwork.py
CyNetwork.add_node
def add_node(self, node_name, dataframe=False): """ Add a single node to the network. """ if node_name is None: return None return self.add_nodes([node_name], dataframe=dataframe)
python
def add_node(self, node_name, dataframe=False): """ Add a single node to the network. """ if node_name is None: return None return self.add_nodes([node_name], dataframe=dataframe)
[ "def", "add_node", "(", "self", ",", "node_name", ",", "dataframe", "=", "False", ")", ":", "if", "node_name", "is", "None", ":", "return", "None", "return", "self", ".", "add_nodes", "(", "[", "node_name", "]", ",", "dataframe", "=", "dataframe", ")" ]
Add a single node to the network.
[ "Add", "a", "single", "node", "to", "the", "network", "." ]
dd34de8d028f512314d0057168df7fef7c5d5195
https://github.com/cytoscape/py2cytoscape/blob/dd34de8d028f512314d0057168df7fef7c5d5195/py2cytoscape/data/cynetwork.py#L82-L86
train
cytoscape/py2cytoscape
py2cytoscape/data/cynetwork.py
CyNetwork.add_nodes
def add_nodes(self, node_name_list, dataframe=False): """ Add new nodes to the network :param node_name_list: list of node names, e.g. ['a', 'b', 'c'] :param dataframe: If True, return a pandas dataframe instead of a dict. :return: A dict mapping names to SUIDs for the newly-created nodes. """ res = self.session.post(self.__url + 'nodes', data=json.dumps(node_name_list), headers=HEADERS) check_response(res) nodes = res.json() if dataframe: return pd.DataFrame(nodes).set_index(['SUID']) else: return {node['name']: node['SUID'] for node in nodes}
python
def add_nodes(self, node_name_list, dataframe=False): """ Add new nodes to the network :param node_name_list: list of node names, e.g. ['a', 'b', 'c'] :param dataframe: If True, return a pandas dataframe instead of a dict. :return: A dict mapping names to SUIDs for the newly-created nodes. """ res = self.session.post(self.__url + 'nodes', data=json.dumps(node_name_list), headers=HEADERS) check_response(res) nodes = res.json() if dataframe: return pd.DataFrame(nodes).set_index(['SUID']) else: return {node['name']: node['SUID'] for node in nodes}
[ "def", "add_nodes", "(", "self", ",", "node_name_list", ",", "dataframe", "=", "False", ")", ":", "res", "=", "self", ".", "session", ".", "post", "(", "self", ".", "__url", "+", "'nodes'", ",", "data", "=", "json", ".", "dumps", "(", "node_name_list", ")", ",", "headers", "=", "HEADERS", ")", "check_response", "(", "res", ")", "nodes", "=", "res", ".", "json", "(", ")", "if", "dataframe", ":", "return", "pd", ".", "DataFrame", "(", "nodes", ")", ".", "set_index", "(", "[", "'SUID'", "]", ")", "else", ":", "return", "{", "node", "[", "'name'", "]", ":", "node", "[", "'SUID'", "]", "for", "node", "in", "nodes", "}" ]
Add new nodes to the network :param node_name_list: list of node names, e.g. ['a', 'b', 'c'] :param dataframe: If True, return a pandas dataframe instead of a dict. :return: A dict mapping names to SUIDs for the newly-created nodes.
[ "Add", "new", "nodes", "to", "the", "network" ]
dd34de8d028f512314d0057168df7fef7c5d5195
https://github.com/cytoscape/py2cytoscape/blob/dd34de8d028f512314d0057168df7fef7c5d5195/py2cytoscape/data/cynetwork.py#L88-L102
train
cytoscape/py2cytoscape
py2cytoscape/data/cynetwork.py
CyNetwork.add_edge
def add_edge(self, source, target, interaction='-', directed=True, dataframe=True): """ Add a single edge from source to target. """ new_edge = { 'source': source, 'target': target, 'interaction': interaction, 'directed': directed } return self.add_edges([new_edge], dataframe=dataframe)
python
def add_edge(self, source, target, interaction='-', directed=True, dataframe=True): """ Add a single edge from source to target. """ new_edge = { 'source': source, 'target': target, 'interaction': interaction, 'directed': directed } return self.add_edges([new_edge], dataframe=dataframe)
[ "def", "add_edge", "(", "self", ",", "source", ",", "target", ",", "interaction", "=", "'-'", ",", "directed", "=", "True", ",", "dataframe", "=", "True", ")", ":", "new_edge", "=", "{", "'source'", ":", "source", ",", "'target'", ":", "target", ",", "'interaction'", ":", "interaction", ",", "'directed'", ":", "directed", "}", "return", "self", ".", "add_edges", "(", "[", "new_edge", "]", ",", "dataframe", "=", "dataframe", ")" ]
Add a single edge from source to target.
[ "Add", "a", "single", "edge", "from", "source", "to", "target", "." ]
dd34de8d028f512314d0057168df7fef7c5d5195
https://github.com/cytoscape/py2cytoscape/blob/dd34de8d028f512314d0057168df7fef7c5d5195/py2cytoscape/data/cynetwork.py#L104-L112
train
cytoscape/py2cytoscape
py2cytoscape/data/cynetwork.py
CyNetwork.get_views
def get_views(self): """ Get views as a list of SUIDs :return: """ url = self.__url + 'views' return self.session.get(url).json()
python
def get_views(self): """ Get views as a list of SUIDs :return: """ url = self.__url + 'views' return self.session.get(url).json()
[ "def", "get_views", "(", "self", ")", ":", "url", "=", "self", ".", "__url", "+", "'views'", "return", "self", ".", "session", ".", "get", "(", "url", ")", ".", "json", "(", ")" ]
Get views as a list of SUIDs :return:
[ "Get", "views", "as", "a", "list", "of", "SUIDs" ]
dd34de8d028f512314d0057168df7fef7c5d5195
https://github.com/cytoscape/py2cytoscape/blob/dd34de8d028f512314d0057168df7fef7c5d5195/py2cytoscape/data/cynetwork.py#L304-L311
train
cytoscape/py2cytoscape
py2cytoscape/cyrest/diffusion.py
diffusion.diffuse_advanced
def diffuse_advanced(self, heatColumnName=None, time=None, verbose=False): """ Diffusion will send the selected network view and its selected nodes to a web-based REST service to calculate network propagation. Results are returned and represented by columns in the node table. Columns are created for each execution of Diffusion and their names are returned in the response. :param heatColumnName (string, optional): A node column name intended to override the default table column 'diffusion_input'. This represents the query vector and corresponds to h in the diffusion equation. = ['HEKScore', 'JurkatScore', '(Use selected nodes)'] :param time (string, optional): The extent of spread over the network. This corresponds to t in the diffusion equation. :param verbose: print more """ PARAMS=set_param(["heatColumnName","time"],[heatColumnName,time]) response=api(url=self.__url+"/diffuse_advanced", PARAMS=PARAMS, method="POST", verbose=verbose) return response
python
def diffuse_advanced(self, heatColumnName=None, time=None, verbose=False): """ Diffusion will send the selected network view and its selected nodes to a web-based REST service to calculate network propagation. Results are returned and represented by columns in the node table. Columns are created for each execution of Diffusion and their names are returned in the response. :param heatColumnName (string, optional): A node column name intended to override the default table column 'diffusion_input'. This represents the query vector and corresponds to h in the diffusion equation. = ['HEKScore', 'JurkatScore', '(Use selected nodes)'] :param time (string, optional): The extent of spread over the network. This corresponds to t in the diffusion equation. :param verbose: print more """ PARAMS=set_param(["heatColumnName","time"],[heatColumnName,time]) response=api(url=self.__url+"/diffuse_advanced", PARAMS=PARAMS, method="POST", verbose=verbose) return response
[ "def", "diffuse_advanced", "(", "self", ",", "heatColumnName", "=", "None", ",", "time", "=", "None", ",", "verbose", "=", "False", ")", ":", "PARAMS", "=", "set_param", "(", "[", "\"heatColumnName\"", ",", "\"time\"", "]", ",", "[", "heatColumnName", ",", "time", "]", ")", "response", "=", "api", "(", "url", "=", "self", ".", "__url", "+", "\"/diffuse_advanced\"", ",", "PARAMS", "=", "PARAMS", ",", "method", "=", "\"POST\"", ",", "verbose", "=", "verbose", ")", "return", "response" ]
Diffusion will send the selected network view and its selected nodes to a web-based REST service to calculate network propagation. Results are returned and represented by columns in the node table. Columns are created for each execution of Diffusion and their names are returned in the response. :param heatColumnName (string, optional): A node column name intended to override the default table column 'diffusion_input'. This represents the query vector and corresponds to h in the diffusion equation. = ['HEKScore', 'JurkatScore', '(Use selected nodes)'] :param time (string, optional): The extent of spread over the network. This corresponds to t in the diffusion equation. :param verbose: print more
[ "Diffusion", "will", "send", "the", "selected", "network", "view", "and", "its", "selected", "nodes", "to", "a", "web", "-", "based", "REST", "service", "to", "calculate", "network", "propagation", ".", "Results", "are", "returned", "and", "represented", "by", "columns", "in", "the", "node", "table", ".", "Columns", "are", "created", "for", "each", "execution", "of", "Diffusion", "and", "their", "names", "are", "returned", "in", "the", "response", "." ]
dd34de8d028f512314d0057168df7fef7c5d5195
https://github.com/cytoscape/py2cytoscape/blob/dd34de8d028f512314d0057168df7fef7c5d5195/py2cytoscape/cyrest/diffusion.py#L30-L48
train
cytoscape/py2cytoscape
py2cytoscape/util/util_networkx.py
to_networkx
def to_networkx(cyjs, directed=True): """ Convert Cytoscape.js-style JSON object into NetworkX object. By default, data will be handles as a directed graph. """ if directed: g = nx.MultiDiGraph() else: g = nx.MultiGraph() network_data = cyjs[DATA] if network_data is not None: for key in network_data.keys(): g.graph[key] = network_data[key] nodes = cyjs[ELEMENTS][NODES] edges = cyjs[ELEMENTS][EDGES] for node in nodes: data = node[DATA] g.add_node(data[ID], attr_dict=data) for edge in edges: data = edge[DATA] source = data[SOURCE] target = data[TARGET] g.add_edge(source, target, attr_dict=data) return g
python
def to_networkx(cyjs, directed=True): """ Convert Cytoscape.js-style JSON object into NetworkX object. By default, data will be handles as a directed graph. """ if directed: g = nx.MultiDiGraph() else: g = nx.MultiGraph() network_data = cyjs[DATA] if network_data is not None: for key in network_data.keys(): g.graph[key] = network_data[key] nodes = cyjs[ELEMENTS][NODES] edges = cyjs[ELEMENTS][EDGES] for node in nodes: data = node[DATA] g.add_node(data[ID], attr_dict=data) for edge in edges: data = edge[DATA] source = data[SOURCE] target = data[TARGET] g.add_edge(source, target, attr_dict=data) return g
[ "def", "to_networkx", "(", "cyjs", ",", "directed", "=", "True", ")", ":", "if", "directed", ":", "g", "=", "nx", ".", "MultiDiGraph", "(", ")", "else", ":", "g", "=", "nx", ".", "MultiGraph", "(", ")", "network_data", "=", "cyjs", "[", "DATA", "]", "if", "network_data", "is", "not", "None", ":", "for", "key", "in", "network_data", ".", "keys", "(", ")", ":", "g", ".", "graph", "[", "key", "]", "=", "network_data", "[", "key", "]", "nodes", "=", "cyjs", "[", "ELEMENTS", "]", "[", "NODES", "]", "edges", "=", "cyjs", "[", "ELEMENTS", "]", "[", "EDGES", "]", "for", "node", "in", "nodes", ":", "data", "=", "node", "[", "DATA", "]", "g", ".", "add_node", "(", "data", "[", "ID", "]", ",", "attr_dict", "=", "data", ")", "for", "edge", "in", "edges", ":", "data", "=", "edge", "[", "DATA", "]", "source", "=", "data", "[", "SOURCE", "]", "target", "=", "data", "[", "TARGET", "]", "g", ".", "add_edge", "(", "source", ",", "target", ",", "attr_dict", "=", "data", ")", "return", "g" ]
Convert Cytoscape.js-style JSON object into NetworkX object. By default, data will be handles as a directed graph.
[ "Convert", "Cytoscape", ".", "js", "-", "style", "JSON", "object", "into", "NetworkX", "object", "." ]
dd34de8d028f512314d0057168df7fef7c5d5195
https://github.com/cytoscape/py2cytoscape/blob/dd34de8d028f512314d0057168df7fef7c5d5195/py2cytoscape/util/util_networkx.py#L120-L151
train
cytoscape/py2cytoscape
py2cytoscape/cyrest/cybrowser.py
cybrowser.dialog
def dialog(self=None, wid=None, text=None, title=None, url=None, debug=False, verbose=False): """ Launch and HTML browser in a separate window. :param wid: Window ID :param text: HTML text :param title: Window Title :param url: URL :param debug: Show debug tools. boolean :param verbose: print more """ PARAMS=set_param(["id","text","title","url","debug"],[wid,text,title,url,debug]) response=api(url=self.__url+"/dialog?",PARAMS=PARAMS, method="GET", verbose=verbose) return response
python
def dialog(self=None, wid=None, text=None, title=None, url=None, debug=False, verbose=False): """ Launch and HTML browser in a separate window. :param wid: Window ID :param text: HTML text :param title: Window Title :param url: URL :param debug: Show debug tools. boolean :param verbose: print more """ PARAMS=set_param(["id","text","title","url","debug"],[wid,text,title,url,debug]) response=api(url=self.__url+"/dialog?",PARAMS=PARAMS, method="GET", verbose=verbose) return response
[ "def", "dialog", "(", "self", "=", "None", ",", "wid", "=", "None", ",", "text", "=", "None", ",", "title", "=", "None", ",", "url", "=", "None", ",", "debug", "=", "False", ",", "verbose", "=", "False", ")", ":", "PARAMS", "=", "set_param", "(", "[", "\"id\"", ",", "\"text\"", ",", "\"title\"", ",", "\"url\"", ",", "\"debug\"", "]", ",", "[", "wid", ",", "text", ",", "title", ",", "url", ",", "debug", "]", ")", "response", "=", "api", "(", "url", "=", "self", ".", "__url", "+", "\"/dialog?\"", ",", "PARAMS", "=", "PARAMS", ",", "method", "=", "\"GET\"", ",", "verbose", "=", "verbose", ")", "return", "response" ]
Launch and HTML browser in a separate window. :param wid: Window ID :param text: HTML text :param title: Window Title :param url: URL :param debug: Show debug tools. boolean :param verbose: print more
[ "Launch", "and", "HTML", "browser", "in", "a", "separate", "window", "." ]
dd34de8d028f512314d0057168df7fef7c5d5195
https://github.com/cytoscape/py2cytoscape/blob/dd34de8d028f512314d0057168df7fef7c5d5195/py2cytoscape/cyrest/cybrowser.py#L13-L27
train
cytoscape/py2cytoscape
py2cytoscape/cyrest/cybrowser.py
cybrowser.hide
def hide(self, wid, verbose=False): """ Hide and HTML browser in the Results Panel. :param wid: Window ID :param verbose: print more """ PARAMS={"id":wid} response=api(url=self.__url+"/hide?",PARAMS=PARAMS, method="GET", verbose=verbose) return response
python
def hide(self, wid, verbose=False): """ Hide and HTML browser in the Results Panel. :param wid: Window ID :param verbose: print more """ PARAMS={"id":wid} response=api(url=self.__url+"/hide?",PARAMS=PARAMS, method="GET", verbose=verbose) return response
[ "def", "hide", "(", "self", ",", "wid", ",", "verbose", "=", "False", ")", ":", "PARAMS", "=", "{", "\"id\"", ":", "wid", "}", "response", "=", "api", "(", "url", "=", "self", ".", "__url", "+", "\"/hide?\"", ",", "PARAMS", "=", "PARAMS", ",", "method", "=", "\"GET\"", ",", "verbose", "=", "verbose", ")", "return", "response" ]
Hide and HTML browser in the Results Panel. :param wid: Window ID :param verbose: print more
[ "Hide", "and", "HTML", "browser", "in", "the", "Results", "Panel", "." ]
dd34de8d028f512314d0057168df7fef7c5d5195
https://github.com/cytoscape/py2cytoscape/blob/dd34de8d028f512314d0057168df7fef7c5d5195/py2cytoscape/cyrest/cybrowser.py#L29-L40
train
cytoscape/py2cytoscape
py2cytoscape/cyrest/cybrowser.py
cybrowser.show
def show(self, wid=None, text=None, title=None, url=None, verbose=False): """ Launch an HTML browser in the Results Panel. :param wid: Window ID :param text: HTML text :param title: Window Title :param url: URL :param verbose: print more """ PARAMS={} for p,v in zip(["id","text","title","url"],[wid,text,title,url]): if v: PARAMS[p]=v response=api(url=self.__url+"/show?",PARAMS=PARAMS, method="GET", verbose=verbose) return response
python
def show(self, wid=None, text=None, title=None, url=None, verbose=False): """ Launch an HTML browser in the Results Panel. :param wid: Window ID :param text: HTML text :param title: Window Title :param url: URL :param verbose: print more """ PARAMS={} for p,v in zip(["id","text","title","url"],[wid,text,title,url]): if v: PARAMS[p]=v response=api(url=self.__url+"/show?",PARAMS=PARAMS, method="GET", verbose=verbose) return response
[ "def", "show", "(", "self", ",", "wid", "=", "None", ",", "text", "=", "None", ",", "title", "=", "None", ",", "url", "=", "None", ",", "verbose", "=", "False", ")", ":", "PARAMS", "=", "{", "}", "for", "p", ",", "v", "in", "zip", "(", "[", "\"id\"", ",", "\"text\"", ",", "\"title\"", ",", "\"url\"", "]", ",", "[", "wid", ",", "text", ",", "title", ",", "url", "]", ")", ":", "if", "v", ":", "PARAMS", "[", "p", "]", "=", "v", "response", "=", "api", "(", "url", "=", "self", ".", "__url", "+", "\"/show?\"", ",", "PARAMS", "=", "PARAMS", ",", "method", "=", "\"GET\"", ",", "verbose", "=", "verbose", ")", "return", "response" ]
Launch an HTML browser in the Results Panel. :param wid: Window ID :param text: HTML text :param title: Window Title :param url: URL :param verbose: print more
[ "Launch", "an", "HTML", "browser", "in", "the", "Results", "Panel", "." ]
dd34de8d028f512314d0057168df7fef7c5d5195
https://github.com/cytoscape/py2cytoscape/blob/dd34de8d028f512314d0057168df7fef7c5d5195/py2cytoscape/cyrest/cybrowser.py#L42-L59
train
cytoscape/py2cytoscape
py2cytoscape/data/util_http.py
check_response
def check_response(res): """ Check HTTP response and raise exception if response is not OK. """ try: res.raise_for_status() # Alternative is res.ok except Exception as exc: # Bad response code, e.g. if adding an edge with nodes that doesn't exist try: err_info = res.json() err_msg = err_info['message'] # or 'localizeMessage' except ValueError: err_msg = res.text[:40] # Take the first 40 chars of the response except KeyError: err_msg = res.text[:40] + ("(No 'message' in err_info dict: %s" % list(err_info.keys())) exc.args += (err_msg,) raise exc
python
def check_response(res): """ Check HTTP response and raise exception if response is not OK. """ try: res.raise_for_status() # Alternative is res.ok except Exception as exc: # Bad response code, e.g. if adding an edge with nodes that doesn't exist try: err_info = res.json() err_msg = err_info['message'] # or 'localizeMessage' except ValueError: err_msg = res.text[:40] # Take the first 40 chars of the response except KeyError: err_msg = res.text[:40] + ("(No 'message' in err_info dict: %s" % list(err_info.keys())) exc.args += (err_msg,) raise exc
[ "def", "check_response", "(", "res", ")", ":", "try", ":", "res", ".", "raise_for_status", "(", ")", "# Alternative is res.ok", "except", "Exception", "as", "exc", ":", "# Bad response code, e.g. if adding an edge with nodes that doesn't exist", "try", ":", "err_info", "=", "res", ".", "json", "(", ")", "err_msg", "=", "err_info", "[", "'message'", "]", "# or 'localizeMessage'", "except", "ValueError", ":", "err_msg", "=", "res", ".", "text", "[", ":", "40", "]", "# Take the first 40 chars of the response", "except", "KeyError", ":", "err_msg", "=", "res", ".", "text", "[", ":", "40", "]", "+", "(", "\"(No 'message' in err_info dict: %s\"", "%", "list", "(", "err_info", ".", "keys", "(", ")", ")", ")", "exc", ".", "args", "+=", "(", "err_msg", ",", ")", "raise", "exc" ]
Check HTTP response and raise exception if response is not OK.
[ "Check", "HTTP", "response", "and", "raise", "exception", "if", "response", "is", "not", "OK", "." ]
dd34de8d028f512314d0057168df7fef7c5d5195
https://github.com/cytoscape/py2cytoscape/blob/dd34de8d028f512314d0057168df7fef7c5d5195/py2cytoscape/data/util_http.py#L3-L18
train
cytoscape/py2cytoscape
py2cytoscape/util/util_dataframe.py
from_dataframe
def from_dataframe(df, source_col='source', target_col='target', interaction_col='interaction', name='From DataFrame', edge_attr_cols=[]): """ Utility to convert Pandas DataFrame object into Cytoscape.js JSON :param df: Dataframe to convert. :param source_col: Name of source column. :param target_col: Name of target column. :param interaction_col: Name of interaction column. :param name: Name of network. :param edge_attr_cols: List containing other columns to consider in df as edges' attributes. :return: Dictionary version of df. """ network = cyjs.get_empty_network(name=name) nodes = set() if edge_attr_cols is None: edge_attr_cols = [] for index, row in df.iterrows(): s = row[source_col] t = row[target_col] if s not in nodes: nodes.add(s) source = get_node(s) network['elements']['nodes'].append(source) if t not in nodes: nodes.add(t) target = get_node(t) network['elements']['nodes'].append(target) extra_values = {column: row[column] for column in edge_attr_cols if column in df.columns} network['elements']['edges'].append( get_edge(s, t, interaction=row[interaction_col], **extra_values) ) return network
python
def from_dataframe(df, source_col='source', target_col='target', interaction_col='interaction', name='From DataFrame', edge_attr_cols=[]): """ Utility to convert Pandas DataFrame object into Cytoscape.js JSON :param df: Dataframe to convert. :param source_col: Name of source column. :param target_col: Name of target column. :param interaction_col: Name of interaction column. :param name: Name of network. :param edge_attr_cols: List containing other columns to consider in df as edges' attributes. :return: Dictionary version of df. """ network = cyjs.get_empty_network(name=name) nodes = set() if edge_attr_cols is None: edge_attr_cols = [] for index, row in df.iterrows(): s = row[source_col] t = row[target_col] if s not in nodes: nodes.add(s) source = get_node(s) network['elements']['nodes'].append(source) if t not in nodes: nodes.add(t) target = get_node(t) network['elements']['nodes'].append(target) extra_values = {column: row[column] for column in edge_attr_cols if column in df.columns} network['elements']['edges'].append( get_edge(s, t, interaction=row[interaction_col], **extra_values) ) return network
[ "def", "from_dataframe", "(", "df", ",", "source_col", "=", "'source'", ",", "target_col", "=", "'target'", ",", "interaction_col", "=", "'interaction'", ",", "name", "=", "'From DataFrame'", ",", "edge_attr_cols", "=", "[", "]", ")", ":", "network", "=", "cyjs", ".", "get_empty_network", "(", "name", "=", "name", ")", "nodes", "=", "set", "(", ")", "if", "edge_attr_cols", "is", "None", ":", "edge_attr_cols", "=", "[", "]", "for", "index", ",", "row", "in", "df", ".", "iterrows", "(", ")", ":", "s", "=", "row", "[", "source_col", "]", "t", "=", "row", "[", "target_col", "]", "if", "s", "not", "in", "nodes", ":", "nodes", ".", "add", "(", "s", ")", "source", "=", "get_node", "(", "s", ")", "network", "[", "'elements'", "]", "[", "'nodes'", "]", ".", "append", "(", "source", ")", "if", "t", "not", "in", "nodes", ":", "nodes", ".", "add", "(", "t", ")", "target", "=", "get_node", "(", "t", ")", "network", "[", "'elements'", "]", "[", "'nodes'", "]", ".", "append", "(", "target", ")", "extra_values", "=", "{", "column", ":", "row", "[", "column", "]", "for", "column", "in", "edge_attr_cols", "if", "column", "in", "df", ".", "columns", "}", "network", "[", "'elements'", "]", "[", "'edges'", "]", ".", "append", "(", "get_edge", "(", "s", ",", "t", ",", "interaction", "=", "row", "[", "interaction_col", "]", ",", "*", "*", "extra_values", ")", ")", "return", "network" ]
Utility to convert Pandas DataFrame object into Cytoscape.js JSON :param df: Dataframe to convert. :param source_col: Name of source column. :param target_col: Name of target column. :param interaction_col: Name of interaction column. :param name: Name of network. :param edge_attr_cols: List containing other columns to consider in df as edges' attributes. :return: Dictionary version of df.
[ "Utility", "to", "convert", "Pandas", "DataFrame", "object", "into", "Cytoscape", ".", "js", "JSON" ]
dd34de8d028f512314d0057168df7fef7c5d5195
https://github.com/cytoscape/py2cytoscape/blob/dd34de8d028f512314d0057168df7fef7c5d5195/py2cytoscape/util/util_dataframe.py#L6-L49
train
cytoscape/py2cytoscape
py2cytoscape/util/util_dataframe.py
to_dataframe
def to_dataframe(network, interaction='interaction', default_interaction='-', edges_attr_cols=[]): """ Utility to convert a Cytoscape dictionary into a Pandas Dataframe. :param network: Dictionary to convert. :param interaction: Name of interaction column. :param default_interaction: Default value for missing interactions. :param edges_attr_cols: List containing other edges' attributes to include in the Dataframe, if present in network. :return: Converted Pandas Dataframe. """ edges = network['elements']['edges'] if edges_attr_cols is None: edges_attr_cols = [] edges_attr_cols = sorted(edges_attr_cols) network_array = [] # the set avoids duplicates valid_extra_cols = set() for edge in edges: edge_data = edge['data'] source = edge_data['source'] target = edge_data['target'] if interaction in edge_data: itr = edge_data[interaction] else: itr = default_interaction extra_values = [] for extra_column in edges_attr_cols: if extra_column in edge_data: extra_values.append(edge_data[extra_column]) valid_extra_cols.add(extra_column) row = tuple([source, itr, target] + extra_values) network_array.append(row) return pd.DataFrame( network_array, columns=['source', 'interaction', 'target'] + sorted(valid_extra_cols))
python
def to_dataframe(network, interaction='interaction', default_interaction='-', edges_attr_cols=[]): """ Utility to convert a Cytoscape dictionary into a Pandas Dataframe. :param network: Dictionary to convert. :param interaction: Name of interaction column. :param default_interaction: Default value for missing interactions. :param edges_attr_cols: List containing other edges' attributes to include in the Dataframe, if present in network. :return: Converted Pandas Dataframe. """ edges = network['elements']['edges'] if edges_attr_cols is None: edges_attr_cols = [] edges_attr_cols = sorted(edges_attr_cols) network_array = [] # the set avoids duplicates valid_extra_cols = set() for edge in edges: edge_data = edge['data'] source = edge_data['source'] target = edge_data['target'] if interaction in edge_data: itr = edge_data[interaction] else: itr = default_interaction extra_values = [] for extra_column in edges_attr_cols: if extra_column in edge_data: extra_values.append(edge_data[extra_column]) valid_extra_cols.add(extra_column) row = tuple([source, itr, target] + extra_values) network_array.append(row) return pd.DataFrame( network_array, columns=['source', 'interaction', 'target'] + sorted(valid_extra_cols))
[ "def", "to_dataframe", "(", "network", ",", "interaction", "=", "'interaction'", ",", "default_interaction", "=", "'-'", ",", "edges_attr_cols", "=", "[", "]", ")", ":", "edges", "=", "network", "[", "'elements'", "]", "[", "'edges'", "]", "if", "edges_attr_cols", "is", "None", ":", "edges_attr_cols", "=", "[", "]", "edges_attr_cols", "=", "sorted", "(", "edges_attr_cols", ")", "network_array", "=", "[", "]", "# the set avoids duplicates", "valid_extra_cols", "=", "set", "(", ")", "for", "edge", "in", "edges", ":", "edge_data", "=", "edge", "[", "'data'", "]", "source", "=", "edge_data", "[", "'source'", "]", "target", "=", "edge_data", "[", "'target'", "]", "if", "interaction", "in", "edge_data", ":", "itr", "=", "edge_data", "[", "interaction", "]", "else", ":", "itr", "=", "default_interaction", "extra_values", "=", "[", "]", "for", "extra_column", "in", "edges_attr_cols", ":", "if", "extra_column", "in", "edge_data", ":", "extra_values", ".", "append", "(", "edge_data", "[", "extra_column", "]", ")", "valid_extra_cols", ".", "add", "(", "extra_column", ")", "row", "=", "tuple", "(", "[", "source", ",", "itr", ",", "target", "]", "+", "extra_values", ")", "network_array", ".", "append", "(", "row", ")", "return", "pd", ".", "DataFrame", "(", "network_array", ",", "columns", "=", "[", "'source'", ",", "'interaction'", ",", "'target'", "]", "+", "sorted", "(", "valid_extra_cols", ")", ")" ]
Utility to convert a Cytoscape dictionary into a Pandas Dataframe. :param network: Dictionary to convert. :param interaction: Name of interaction column. :param default_interaction: Default value for missing interactions. :param edges_attr_cols: List containing other edges' attributes to include in the Dataframe, if present in network. :return: Converted Pandas Dataframe.
[ "Utility", "to", "convert", "a", "Cytoscape", "dictionary", "into", "a", "Pandas", "Dataframe", "." ]
dd34de8d028f512314d0057168df7fef7c5d5195
https://github.com/cytoscape/py2cytoscape/blob/dd34de8d028f512314d0057168df7fef7c5d5195/py2cytoscape/util/util_dataframe.py#L52-L91
train
cytoscape/py2cytoscape
py2cytoscape/cytoscapejs/viewer.py
render
def render(network, style=DEF_STYLE, layout_algorithm=DEF_LAYOUT, background=DEF_BACKGROUND_COLOR, height=DEF_HEIGHT, width=DEF_WIDTH, style_file=STYLE_FILE, def_nodes=DEF_NODES, def_edges=DEF_EDGES): """Render network data with embedded Cytoscape.js widget. :param network: dict (required) The network data should be in Cytoscape.js JSON format. :param style: str or dict If str, pick one of the preset style. [default: 'default'] If dict, it should be Cytoscape.js style CSS object :param layout_algorithm: str Name of Cytoscape.js layout algorithm :param background: str Background in CSS format :param height: int Height of the widget. :param width: int Width of the widget. :param style_file: a styles file. [default: 'default_style.json'] :param def_nodes: default: [ {'data': {'id': 'Network Data'}}, {'data': {'id': 'Empty'}} ] :param def_edges: default: [ {'data': {'id': 'is', 'source': 'Network Data', 'target': 'Empty'}} ] """ from jinja2 import Template from IPython.core.display import display, HTML STYLES=set_styles(style_file) # Load style file if none available if isinstance(style, str): # Specified by name style = STYLES[style] if network is None: nodes = def_nodes edges = def_edges else: nodes = network['elements']['nodes'] edges = network['elements']['edges'] path = os.path.abspath(os.path.dirname(__file__)) + '/' + HTML_TEMPLATE_FILE template = Template(open(path).read()) cyjs_widget = template.render( nodes=json.dumps(nodes), edges=json.dumps(edges), background=background, uuid="cy" + str(uuid.uuid4()), widget_width=str(width), widget_height=str(height), layout=layout_algorithm, style_json=json.dumps(style) ) display(HTML(cyjs_widget))
python
def render(network, style=DEF_STYLE, layout_algorithm=DEF_LAYOUT, background=DEF_BACKGROUND_COLOR, height=DEF_HEIGHT, width=DEF_WIDTH, style_file=STYLE_FILE, def_nodes=DEF_NODES, def_edges=DEF_EDGES): """Render network data with embedded Cytoscape.js widget. :param network: dict (required) The network data should be in Cytoscape.js JSON format. :param style: str or dict If str, pick one of the preset style. [default: 'default'] If dict, it should be Cytoscape.js style CSS object :param layout_algorithm: str Name of Cytoscape.js layout algorithm :param background: str Background in CSS format :param height: int Height of the widget. :param width: int Width of the widget. :param style_file: a styles file. [default: 'default_style.json'] :param def_nodes: default: [ {'data': {'id': 'Network Data'}}, {'data': {'id': 'Empty'}} ] :param def_edges: default: [ {'data': {'id': 'is', 'source': 'Network Data', 'target': 'Empty'}} ] """ from jinja2 import Template from IPython.core.display import display, HTML STYLES=set_styles(style_file) # Load style file if none available if isinstance(style, str): # Specified by name style = STYLES[style] if network is None: nodes = def_nodes edges = def_edges else: nodes = network['elements']['nodes'] edges = network['elements']['edges'] path = os.path.abspath(os.path.dirname(__file__)) + '/' + HTML_TEMPLATE_FILE template = Template(open(path).read()) cyjs_widget = template.render( nodes=json.dumps(nodes), edges=json.dumps(edges), background=background, uuid="cy" + str(uuid.uuid4()), widget_width=str(width), widget_height=str(height), layout=layout_algorithm, style_json=json.dumps(style) ) display(HTML(cyjs_widget))
[ "def", "render", "(", "network", ",", "style", "=", "DEF_STYLE", ",", "layout_algorithm", "=", "DEF_LAYOUT", ",", "background", "=", "DEF_BACKGROUND_COLOR", ",", "height", "=", "DEF_HEIGHT", ",", "width", "=", "DEF_WIDTH", ",", "style_file", "=", "STYLE_FILE", ",", "def_nodes", "=", "DEF_NODES", ",", "def_edges", "=", "DEF_EDGES", ")", ":", "from", "jinja2", "import", "Template", "from", "IPython", ".", "core", ".", "display", "import", "display", ",", "HTML", "STYLES", "=", "set_styles", "(", "style_file", ")", "# Load style file if none available", "if", "isinstance", "(", "style", ",", "str", ")", ":", "# Specified by name", "style", "=", "STYLES", "[", "style", "]", "if", "network", "is", "None", ":", "nodes", "=", "def_nodes", "edges", "=", "def_edges", "else", ":", "nodes", "=", "network", "[", "'elements'", "]", "[", "'nodes'", "]", "edges", "=", "network", "[", "'elements'", "]", "[", "'edges'", "]", "path", "=", "os", ".", "path", ".", "abspath", "(", "os", ".", "path", ".", "dirname", "(", "__file__", ")", ")", "+", "'/'", "+", "HTML_TEMPLATE_FILE", "template", "=", "Template", "(", "open", "(", "path", ")", ".", "read", "(", ")", ")", "cyjs_widget", "=", "template", ".", "render", "(", "nodes", "=", "json", ".", "dumps", "(", "nodes", ")", ",", "edges", "=", "json", ".", "dumps", "(", "edges", ")", ",", "background", "=", "background", ",", "uuid", "=", "\"cy\"", "+", "str", "(", "uuid", ".", "uuid4", "(", ")", ")", ",", "widget_width", "=", "str", "(", "width", ")", ",", "widget_height", "=", "str", "(", "height", ")", ",", "layout", "=", "layout_algorithm", ",", "style_json", "=", "json", ".", "dumps", "(", "style", ")", ")", "display", "(", "HTML", "(", "cyjs_widget", ")", ")" ]
Render network data with embedded Cytoscape.js widget. :param network: dict (required) The network data should be in Cytoscape.js JSON format. :param style: str or dict If str, pick one of the preset style. [default: 'default'] If dict, it should be Cytoscape.js style CSS object :param layout_algorithm: str Name of Cytoscape.js layout algorithm :param background: str Background in CSS format :param height: int Height of the widget. :param width: int Width of the widget. :param style_file: a styles file. [default: 'default_style.json'] :param def_nodes: default: [ {'data': {'id': 'Network Data'}}, {'data': {'id': 'Empty'}} ] :param def_edges: default: [ {'data': {'id': 'is', 'source': 'Network Data', 'target': 'Empty'}} ]
[ "Render", "network", "data", "with", "embedded", "Cytoscape", ".", "js", "widget", "." ]
dd34de8d028f512314d0057168df7fef7c5d5195
https://github.com/cytoscape/py2cytoscape/blob/dd34de8d028f512314d0057168df7fef7c5d5195/py2cytoscape/cytoscapejs/viewer.py#L57-L118
train
cytoscape/py2cytoscape
py2cytoscape/cyrest/edge.py
edge.create_attribute
def create_attribute(self,column=None,listType=None,namespace=None, network=None, atype=None, verbose=False): """ Creates a new edge column. :param column (string, optional): Unique name of column :param listType (string, optional): Can be one of integer, long, double, or string. :param namespace (string, optional): Node, Edge, and Network objects support the default, local, and hidden namespaces. Root networks also support the shared namespace. Custom namespaces may be specified by Apps. :param network (string, optional): Specifies a network by name, or by SUID if the prefix SUID: is used. The keyword CURRENT, or a blank value can also be used to specify the current network. :param atype (string, optional): Can be one of integer, long, double, string, or list. :param verbose: print more """ network=check_network(self,network,verbose=verbose) PARAMS=set_param(["column","listType","namespace","network","type"],[column,listType,namespace,network,atype]) response=api(url=self.__url+"/create attribute", PARAMS=PARAMS, method="POST", verbose=verbose) return response
python
def create_attribute(self,column=None,listType=None,namespace=None, network=None, atype=None, verbose=False): """ Creates a new edge column. :param column (string, optional): Unique name of column :param listType (string, optional): Can be one of integer, long, double, or string. :param namespace (string, optional): Node, Edge, and Network objects support the default, local, and hidden namespaces. Root networks also support the shared namespace. Custom namespaces may be specified by Apps. :param network (string, optional): Specifies a network by name, or by SUID if the prefix SUID: is used. The keyword CURRENT, or a blank value can also be used to specify the current network. :param atype (string, optional): Can be one of integer, long, double, string, or list. :param verbose: print more """ network=check_network(self,network,verbose=verbose) PARAMS=set_param(["column","listType","namespace","network","type"],[column,listType,namespace,network,atype]) response=api(url=self.__url+"/create attribute", PARAMS=PARAMS, method="POST", verbose=verbose) return response
[ "def", "create_attribute", "(", "self", ",", "column", "=", "None", ",", "listType", "=", "None", ",", "namespace", "=", "None", ",", "network", "=", "None", ",", "atype", "=", "None", ",", "verbose", "=", "False", ")", ":", "network", "=", "check_network", "(", "self", ",", "network", ",", "verbose", "=", "verbose", ")", "PARAMS", "=", "set_param", "(", "[", "\"column\"", ",", "\"listType\"", ",", "\"namespace\"", ",", "\"network\"", ",", "\"type\"", "]", ",", "[", "column", ",", "listType", ",", "namespace", ",", "network", ",", "atype", "]", ")", "response", "=", "api", "(", "url", "=", "self", ".", "__url", "+", "\"/create attribute\"", ",", "PARAMS", "=", "PARAMS", ",", "method", "=", "\"POST\"", ",", "verbose", "=", "verbose", ")", "return", "response" ]
Creates a new edge column. :param column (string, optional): Unique name of column :param listType (string, optional): Can be one of integer, long, double, or string. :param namespace (string, optional): Node, Edge, and Network objects support the default, local, and hidden namespaces. Root networks also support the shared namespace. Custom namespaces may be specified by Apps. :param network (string, optional): Specifies a network by name, or by SUID if the prefix SUID: is used. The keyword CURRENT, or a blank value can also be used to specify the current network. :param atype (string, optional): Can be one of integer, long, double, string, or list. :param verbose: print more
[ "Creates", "a", "new", "edge", "column", "." ]
dd34de8d028f512314d0057168df7fef7c5d5195
https://github.com/cytoscape/py2cytoscape/blob/dd34de8d028f512314d0057168df7fef7c5d5195/py2cytoscape/cyrest/edge.py#L13-L35
train
cytoscape/py2cytoscape
py2cytoscape/cyrest/edge.py
edge.get
def get(self,edge=None,network=None,sourceNode=None, targetNode=None, atype=None, verbose=False): """ Returns the SUID of an edge that matches the passed parameters. If multiple edges are found, only one will be returned, and a warning will be reported in the Cytoscape Task History dialog. :param edge (string, optional): Selects an edge by name, or, if the parameter has the prefix suid:, selects an edge by SUID. If this parameter is set, all other edge matching parameters are ignored. :param network (string, optional): Specifies a network by name, or by SUID if the prefix SUID: is used. The keyword CURRENT, or a blank value can also be used to specify the current network. :param sourceNode (string, optional): Selects a node by name, or, if the parameter has the prefix suid:, selects a node by SUID. Specifies that the edge matched must have this node as its source. This parameter must be used with the targetNode parameter to produce results. :param targetNode (string, optional): Selects a node by name, or, if the parameter has the prefix suid:, selects a node by SUID. Specifies that the edge matched must have this node as its target. This parameter must be used with the sourceNode parameter to produce results. :param atype (string, optional): Specifies that the edge matched must be of the specified type. This parameter must be used with the sourceNode and targetNode parameters to produce results. :param verbose: print more :returns: {"columnName": columnName } """ network=check_network(self,network,verbose=verbose) PARAMS=set_param(["edge","network","sourceNode","targetNode","type"],[edge,network,sourceNode,targetNode,atype]) response=api(url=self.__url+"/get", PARAMS=PARAMS, method="POST", verbose=verbose) return response
python
def get(self,edge=None,network=None,sourceNode=None, targetNode=None, atype=None, verbose=False): """ Returns the SUID of an edge that matches the passed parameters. If multiple edges are found, only one will be returned, and a warning will be reported in the Cytoscape Task History dialog. :param edge (string, optional): Selects an edge by name, or, if the parameter has the prefix suid:, selects an edge by SUID. If this parameter is set, all other edge matching parameters are ignored. :param network (string, optional): Specifies a network by name, or by SUID if the prefix SUID: is used. The keyword CURRENT, or a blank value can also be used to specify the current network. :param sourceNode (string, optional): Selects a node by name, or, if the parameter has the prefix suid:, selects a node by SUID. Specifies that the edge matched must have this node as its source. This parameter must be used with the targetNode parameter to produce results. :param targetNode (string, optional): Selects a node by name, or, if the parameter has the prefix suid:, selects a node by SUID. Specifies that the edge matched must have this node as its target. This parameter must be used with the sourceNode parameter to produce results. :param atype (string, optional): Specifies that the edge matched must be of the specified type. This parameter must be used with the sourceNode and targetNode parameters to produce results. :param verbose: print more :returns: {"columnName": columnName } """ network=check_network(self,network,verbose=verbose) PARAMS=set_param(["edge","network","sourceNode","targetNode","type"],[edge,network,sourceNode,targetNode,atype]) response=api(url=self.__url+"/get", PARAMS=PARAMS, method="POST", verbose=verbose) return response
[ "def", "get", "(", "self", ",", "edge", "=", "None", ",", "network", "=", "None", ",", "sourceNode", "=", "None", ",", "targetNode", "=", "None", ",", "atype", "=", "None", ",", "verbose", "=", "False", ")", ":", "network", "=", "check_network", "(", "self", ",", "network", ",", "verbose", "=", "verbose", ")", "PARAMS", "=", "set_param", "(", "[", "\"edge\"", ",", "\"network\"", ",", "\"sourceNode\"", ",", "\"targetNode\"", ",", "\"type\"", "]", ",", "[", "edge", ",", "network", ",", "sourceNode", ",", "targetNode", ",", "atype", "]", ")", "response", "=", "api", "(", "url", "=", "self", ".", "__url", "+", "\"/get\"", ",", "PARAMS", "=", "PARAMS", ",", "method", "=", "\"POST\"", ",", "verbose", "=", "verbose", ")", "return", "response" ]
Returns the SUID of an edge that matches the passed parameters. If multiple edges are found, only one will be returned, and a warning will be reported in the Cytoscape Task History dialog. :param edge (string, optional): Selects an edge by name, or, if the parameter has the prefix suid:, selects an edge by SUID. If this parameter is set, all other edge matching parameters are ignored. :param network (string, optional): Specifies a network by name, or by SUID if the prefix SUID: is used. The keyword CURRENT, or a blank value can also be used to specify the current network. :param sourceNode (string, optional): Selects a node by name, or, if the parameter has the prefix suid:, selects a node by SUID. Specifies that the edge matched must have this node as its source. This parameter must be used with the targetNode parameter to produce results. :param targetNode (string, optional): Selects a node by name, or, if the parameter has the prefix suid:, selects a node by SUID. Specifies that the edge matched must have this node as its target. This parameter must be used with the sourceNode parameter to produce results. :param atype (string, optional): Specifies that the edge matched must be of the specified type. This parameter must be used with the sourceNode and targetNode parameters to produce results. :param verbose: print more :returns: {"columnName": columnName }
[ "Returns", "the", "SUID", "of", "an", "edge", "that", "matches", "the", "passed", "parameters", ".", "If", "multiple", "edges", "are", "found", "only", "one", "will", "be", "returned", "and", "a", "warning", "will", "be", "reported", "in", "the", "Cytoscape", "Task", "History", "dialog", "." ]
dd34de8d028f512314d0057168df7fef7c5d5195
https://github.com/cytoscape/py2cytoscape/blob/dd34de8d028f512314d0057168df7fef7c5d5195/py2cytoscape/cyrest/edge.py#L37-L68
train
cytoscape/py2cytoscape
py2cytoscape/cyrest/network.py
network.add_edge
def add_edge(self, isDirected=None,name=None,network=None,sourceName=None,targetName=None, verbose=False): """ Add a new edge between two existing nodes in a network. The names of the nodes must be specified and much match the value in the 'name' column for each node. :param isDirected (string, optional): Whether the edge should be directed or not. Even though all edges in Cytoscape have a source and target, by default they are treated as undirected. Setting this to 'true' will flag some algorithms to treat them as directed, although many current implementations will ignore this flag. :param name (string, optional): Set the 'name' and 'shared name' columns for this edge to the provided value. , :param network (string, optional): Specifies a network by name, or by SUID if the prefix SUID: is used. The keyword CURRENT, or a blank value can also be used to specify the current network. :param sourceName (string): Enter the name of an existing node in the network to be the source of the edge. Note that this is the name as defined in the 'name' column of the network. :param targetName (string): Enter the name of an existing node in the network to be the target of the edge. Note that this is the name as defined in the 'name' column of the network. :param verbose: print more """ network=check_network(self,network,verbose=verbose) PARAMS=set_param(["isDirected","name","network","sourceName","targetName"],\ [isDirected,name,network,sourceName,targetName]) response=api(url=self.__url+"/add edge", PARAMS=PARAMS, method="POST", verbose=verbose) return response
python
def add_edge(self, isDirected=None,name=None,network=None,sourceName=None,targetName=None, verbose=False): """ Add a new edge between two existing nodes in a network. The names of the nodes must be specified and much match the value in the 'name' column for each node. :param isDirected (string, optional): Whether the edge should be directed or not. Even though all edges in Cytoscape have a source and target, by default they are treated as undirected. Setting this to 'true' will flag some algorithms to treat them as directed, although many current implementations will ignore this flag. :param name (string, optional): Set the 'name' and 'shared name' columns for this edge to the provided value. , :param network (string, optional): Specifies a network by name, or by SUID if the prefix SUID: is used. The keyword CURRENT, or a blank value can also be used to specify the current network. :param sourceName (string): Enter the name of an existing node in the network to be the source of the edge. Note that this is the name as defined in the 'name' column of the network. :param targetName (string): Enter the name of an existing node in the network to be the target of the edge. Note that this is the name as defined in the 'name' column of the network. :param verbose: print more """ network=check_network(self,network,verbose=verbose) PARAMS=set_param(["isDirected","name","network","sourceName","targetName"],\ [isDirected,name,network,sourceName,targetName]) response=api(url=self.__url+"/add edge", PARAMS=PARAMS, method="POST", verbose=verbose) return response
[ "def", "add_edge", "(", "self", ",", "isDirected", "=", "None", ",", "name", "=", "None", ",", "network", "=", "None", ",", "sourceName", "=", "None", ",", "targetName", "=", "None", ",", "verbose", "=", "False", ")", ":", "network", "=", "check_network", "(", "self", ",", "network", ",", "verbose", "=", "verbose", ")", "PARAMS", "=", "set_param", "(", "[", "\"isDirected\"", ",", "\"name\"", ",", "\"network\"", ",", "\"sourceName\"", ",", "\"targetName\"", "]", ",", "[", "isDirected", ",", "name", ",", "network", ",", "sourceName", ",", "targetName", "]", ")", "response", "=", "api", "(", "url", "=", "self", ".", "__url", "+", "\"/add edge\"", ",", "PARAMS", "=", "PARAMS", ",", "method", "=", "\"POST\"", ",", "verbose", "=", "verbose", ")", "return", "response" ]
Add a new edge between two existing nodes in a network. The names of the nodes must be specified and much match the value in the 'name' column for each node. :param isDirected (string, optional): Whether the edge should be directed or not. Even though all edges in Cytoscape have a source and target, by default they are treated as undirected. Setting this to 'true' will flag some algorithms to treat them as directed, although many current implementations will ignore this flag. :param name (string, optional): Set the 'name' and 'shared name' columns for this edge to the provided value. , :param network (string, optional): Specifies a network by name, or by SUID if the prefix SUID: is used. The keyword CURRENT, or a blank value can also be used to specify the current network. :param sourceName (string): Enter the name of an existing node in the network to be the source of the edge. Note that this is the name as defined in the 'name' column of the network. :param targetName (string): Enter the name of an existing node in the network to be the target of the edge. Note that this is the name as defined in the 'name' column of the network. :param verbose: print more
[ "Add", "a", "new", "edge", "between", "two", "existing", "nodes", "in", "a", "network", ".", "The", "names", "of", "the", "nodes", "must", "be", "specified", "and", "much", "match", "the", "value", "in", "the", "name", "column", "for", "each", "node", "." ]
dd34de8d028f512314d0057168df7fef7c5d5195
https://github.com/cytoscape/py2cytoscape/blob/dd34de8d028f512314d0057168df7fef7c5d5195/py2cytoscape/cyrest/network.py#L45-L73
train
cytoscape/py2cytoscape
py2cytoscape/cyrest/network.py
network.create
def create(self, edgeList=None, excludeEdges=None, networkName=None, nodeList=None, source=None, verbose=False): """ Create a new network from a list of nodes and edges in an existing source network. The SUID of the network and view are returned. :param edgeList (string, optional): Specifies a list of edges. The keywords all, selected, or unselected can be used to specify edges by their selection state. The pattern COLUMN:VALUE sets this parameter to any rows that contain the specified column value; if the COLUMN prefix is not used, the NAME column is matched by default. A list of COLUMN:VALUE pairs of the format COLUMN1:VALUE1,COLUMN2:VALUE2,... can be used to match multiple values. :param excludeEdges (string, optional): Unless this is set to true, edges that connect nodes in the nodeList are implicitly included :param networkName (string, optional): :param nodeList (string, optional): Specifies a list of nodes. The keywords all, selected, or unselected can be used to specify nodes by their selection state. The pattern COLUMN:VALUE sets this parameter to any rows that contain the specified column value; if the COLUMN prefix is not used, the NAME column is matched by default. A list of COLUMN:VALUE pairs of the format COLUMN1:VALUE1,COLUMN2:VALUE2,... can be used to match multiple values. :param source (string, optional): Specifies a network by name, or by SUID if the prefix SUID: is used. The keyword CURRENT, or a blank value can also be used to specify the current network. :param verbose: print more :returns: { netowrk, view } """ network=check_network(self,source, verbose=verbose) PARAMS=set_param(["edgeList","excludeEdges","networkName","nodeList","source"], \ [edgeList,excludeEdges,networkName,nodeList,network]) response=api(url=self.__url+"/create", PARAMS=PARAMS, method="POST", verbose=verbose) return response
python
def create(self, edgeList=None, excludeEdges=None, networkName=None, nodeList=None, source=None, verbose=False): """ Create a new network from a list of nodes and edges in an existing source network. The SUID of the network and view are returned. :param edgeList (string, optional): Specifies a list of edges. The keywords all, selected, or unselected can be used to specify edges by their selection state. The pattern COLUMN:VALUE sets this parameter to any rows that contain the specified column value; if the COLUMN prefix is not used, the NAME column is matched by default. A list of COLUMN:VALUE pairs of the format COLUMN1:VALUE1,COLUMN2:VALUE2,... can be used to match multiple values. :param excludeEdges (string, optional): Unless this is set to true, edges that connect nodes in the nodeList are implicitly included :param networkName (string, optional): :param nodeList (string, optional): Specifies a list of nodes. The keywords all, selected, or unselected can be used to specify nodes by their selection state. The pattern COLUMN:VALUE sets this parameter to any rows that contain the specified column value; if the COLUMN prefix is not used, the NAME column is matched by default. A list of COLUMN:VALUE pairs of the format COLUMN1:VALUE1,COLUMN2:VALUE2,... can be used to match multiple values. :param source (string, optional): Specifies a network by name, or by SUID if the prefix SUID: is used. The keyword CURRENT, or a blank value can also be used to specify the current network. :param verbose: print more :returns: { netowrk, view } """ network=check_network(self,source, verbose=verbose) PARAMS=set_param(["edgeList","excludeEdges","networkName","nodeList","source"], \ [edgeList,excludeEdges,networkName,nodeList,network]) response=api(url=self.__url+"/create", PARAMS=PARAMS, method="POST", verbose=verbose) return response
[ "def", "create", "(", "self", ",", "edgeList", "=", "None", ",", "excludeEdges", "=", "None", ",", "networkName", "=", "None", ",", "nodeList", "=", "None", ",", "source", "=", "None", ",", "verbose", "=", "False", ")", ":", "network", "=", "check_network", "(", "self", ",", "source", ",", "verbose", "=", "verbose", ")", "PARAMS", "=", "set_param", "(", "[", "\"edgeList\"", ",", "\"excludeEdges\"", ",", "\"networkName\"", ",", "\"nodeList\"", ",", "\"source\"", "]", ",", "[", "edgeList", ",", "excludeEdges", ",", "networkName", ",", "nodeList", ",", "network", "]", ")", "response", "=", "api", "(", "url", "=", "self", ".", "__url", "+", "\"/create\"", ",", "PARAMS", "=", "PARAMS", ",", "method", "=", "\"POST\"", ",", "verbose", "=", "verbose", ")", "return", "response" ]
Create a new network from a list of nodes and edges in an existing source network. The SUID of the network and view are returned. :param edgeList (string, optional): Specifies a list of edges. The keywords all, selected, or unselected can be used to specify edges by their selection state. The pattern COLUMN:VALUE sets this parameter to any rows that contain the specified column value; if the COLUMN prefix is not used, the NAME column is matched by default. A list of COLUMN:VALUE pairs of the format COLUMN1:VALUE1,COLUMN2:VALUE2,... can be used to match multiple values. :param excludeEdges (string, optional): Unless this is set to true, edges that connect nodes in the nodeList are implicitly included :param networkName (string, optional): :param nodeList (string, optional): Specifies a list of nodes. The keywords all, selected, or unselected can be used to specify nodes by their selection state. The pattern COLUMN:VALUE sets this parameter to any rows that contain the specified column value; if the COLUMN prefix is not used, the NAME column is matched by default. A list of COLUMN:VALUE pairs of the format COLUMN1:VALUE1,COLUMN2:VALUE2,... can be used to match multiple values. :param source (string, optional): Specifies a network by name, or by SUID if the prefix SUID: is used. The keyword CURRENT, or a blank value can also be used to specify the current network. :param verbose: print more :returns: { netowrk, view }
[ "Create", "a", "new", "network", "from", "a", "list", "of", "nodes", "and", "edges", "in", "an", "existing", "source", "network", ".", "The", "SUID", "of", "the", "network", "and", "view", "are", "returned", "." ]
dd34de8d028f512314d0057168df7fef7c5d5195
https://github.com/cytoscape/py2cytoscape/blob/dd34de8d028f512314d0057168df7fef7c5d5195/py2cytoscape/cyrest/network.py#L137-L170
train
cytoscape/py2cytoscape
py2cytoscape/cyrest/network.py
network.create_empty
def create_empty(self, name=None, renderers=None, RootNetworkList=None, verbose=False): """ Create a new, empty network. The new network may be created as part of an existing network collection or a new network collection. :param name (string, optional): Enter the name of the new network. :param renderers (string, optional): Select the renderer to use for the new network view. By default, the standard Cytoscape 2D renderer (Ding) will be used = [''], :param RootNetworkList (string, optional): Choose the network collection the new network should be part of. If no network collection is selected, a new network collection is created. = [' -- Create new network collection --', 'cy:command_documentation_generation'] :param verbose: print more """ PARAMS=set_param(["name","renderers","RootNetworkList"],[name,renderers,RootNetworkList]) response=api(url=self.__url+"/create empty", PARAMS=PARAMS, method="POST", verbose=verbose) return response
python
def create_empty(self, name=None, renderers=None, RootNetworkList=None, verbose=False): """ Create a new, empty network. The new network may be created as part of an existing network collection or a new network collection. :param name (string, optional): Enter the name of the new network. :param renderers (string, optional): Select the renderer to use for the new network view. By default, the standard Cytoscape 2D renderer (Ding) will be used = [''], :param RootNetworkList (string, optional): Choose the network collection the new network should be part of. If no network collection is selected, a new network collection is created. = [' -- Create new network collection --', 'cy:command_documentation_generation'] :param verbose: print more """ PARAMS=set_param(["name","renderers","RootNetworkList"],[name,renderers,RootNetworkList]) response=api(url=self.__url+"/create empty", PARAMS=PARAMS, method="POST", verbose=verbose) return response
[ "def", "create_empty", "(", "self", ",", "name", "=", "None", ",", "renderers", "=", "None", ",", "RootNetworkList", "=", "None", ",", "verbose", "=", "False", ")", ":", "PARAMS", "=", "set_param", "(", "[", "\"name\"", ",", "\"renderers\"", ",", "\"RootNetworkList\"", "]", ",", "[", "name", ",", "renderers", ",", "RootNetworkList", "]", ")", "response", "=", "api", "(", "url", "=", "self", ".", "__url", "+", "\"/create empty\"", ",", "PARAMS", "=", "PARAMS", ",", "method", "=", "\"POST\"", ",", "verbose", "=", "verbose", ")", "return", "response" ]
Create a new, empty network. The new network may be created as part of an existing network collection or a new network collection. :param name (string, optional): Enter the name of the new network. :param renderers (string, optional): Select the renderer to use for the new network view. By default, the standard Cytoscape 2D renderer (Ding) will be used = [''], :param RootNetworkList (string, optional): Choose the network collection the new network should be part of. If no network collection is selected, a new network collection is created. = [' -- Create new network collection --', 'cy:command_documentation_generation'] :param verbose: print more
[ "Create", "a", "new", "empty", "network", ".", "The", "new", "network", "may", "be", "created", "as", "part", "of", "an", "existing", "network", "collection", "or", "a", "new", "network", "collection", "." ]
dd34de8d028f512314d0057168df7fef7c5d5195
https://github.com/cytoscape/py2cytoscape/blob/dd34de8d028f512314d0057168df7fef7c5d5195/py2cytoscape/cyrest/network.py#L201-L218
train
cytoscape/py2cytoscape
py2cytoscape/cyrest/network.py
network.list
def list(self, verbose=False): """ List all of the networks in the current session. :param verbose: print more :returns: [ list of network suids ] """ response=api(url=self.__url+"/list", method="POST", verbose=verbose) return response
python
def list(self, verbose=False): """ List all of the networks in the current session. :param verbose: print more :returns: [ list of network suids ] """ response=api(url=self.__url+"/list", method="POST", verbose=verbose) return response
[ "def", "list", "(", "self", ",", "verbose", "=", "False", ")", ":", "response", "=", "api", "(", "url", "=", "self", ".", "__url", "+", "\"/list\"", ",", "method", "=", "\"POST\"", ",", "verbose", "=", "verbose", ")", "return", "response" ]
List all of the networks in the current session. :param verbose: print more :returns: [ list of network suids ]
[ "List", "all", "of", "the", "networks", "in", "the", "current", "session", "." ]
dd34de8d028f512314d0057168df7fef7c5d5195
https://github.com/cytoscape/py2cytoscape/blob/dd34de8d028f512314d0057168df7fef7c5d5195/py2cytoscape/cyrest/network.py#L532-L542
train
cytoscape/py2cytoscape
py2cytoscape/cyrest/network.py
network.list_attributes
def list_attributes(self, namespace=None, network=None, verbose=False): """ Returns a list of column names assocated with a network. :param namespace (string, optional): Node, Edge, and Network objects support the default, local, and hidden namespaces. Root networks also support the shared namespace. Custom namespaces may be specified by Apps. :param network (string, optional): Specifies a network by name, or by SUID if the prefix SUID: is used. The keyword CURRENT, or a blank value can also be used to specify the current network. :param verbose: print more :returns: [ list of column names assocated with a network ] """ network=check_network(self,network,verbose=verbose) PARAMS=set_param(["namespace","network"],[namespace,network]) response=api(url=self.__url+"/list attributes", PARAMS=PARAMS, method="POST", verbose=verbose) return response
python
def list_attributes(self, namespace=None, network=None, verbose=False): """ Returns a list of column names assocated with a network. :param namespace (string, optional): Node, Edge, and Network objects support the default, local, and hidden namespaces. Root networks also support the shared namespace. Custom namespaces may be specified by Apps. :param network (string, optional): Specifies a network by name, or by SUID if the prefix SUID: is used. The keyword CURRENT, or a blank value can also be used to specify the current network. :param verbose: print more :returns: [ list of column names assocated with a network ] """ network=check_network(self,network,verbose=verbose) PARAMS=set_param(["namespace","network"],[namespace,network]) response=api(url=self.__url+"/list attributes", PARAMS=PARAMS, method="POST", verbose=verbose) return response
[ "def", "list_attributes", "(", "self", ",", "namespace", "=", "None", ",", "network", "=", "None", ",", "verbose", "=", "False", ")", ":", "network", "=", "check_network", "(", "self", ",", "network", ",", "verbose", "=", "verbose", ")", "PARAMS", "=", "set_param", "(", "[", "\"namespace\"", ",", "\"network\"", "]", ",", "[", "namespace", ",", "network", "]", ")", "response", "=", "api", "(", "url", "=", "self", ".", "__url", "+", "\"/list attributes\"", ",", "PARAMS", "=", "PARAMS", ",", "method", "=", "\"POST\"", ",", "verbose", "=", "verbose", ")", "return", "response" ]
Returns a list of column names assocated with a network. :param namespace (string, optional): Node, Edge, and Network objects support the default, local, and hidden namespaces. Root networks also support the shared namespace. Custom namespaces may be specified by Apps. :param network (string, optional): Specifies a network by name, or by SUID if the prefix SUID: is used. The keyword CURRENT, or a blank value can also be used to specify the current network. :param verbose: print more :returns: [ list of column names assocated with a network ]
[ "Returns", "a", "list", "of", "column", "names", "assocated", "with", "a", "network", "." ]
dd34de8d028f512314d0057168df7fef7c5d5195
https://github.com/cytoscape/py2cytoscape/blob/dd34de8d028f512314d0057168df7fef7c5d5195/py2cytoscape/cyrest/network.py#L544-L562
train
cytoscape/py2cytoscape
py2cytoscape/cyrest/network.py
network.rename
def rename(self, name=None, sourceNetwork=None, verbose=False): """ Rename an existing network. The SUID of the network is returned :param name (string): Enter a new title for the network :param sourceNetwork (string): Specifies a network by name, or by SUID if the prefix SUID: is used. The keyword CURRENT, or a blank value can also be used to specify the current network. :param verbose: print more :returns: SUID of the network is returned """ sourceNetwork=check_network(self,sourceNetwork,verbose=verbose) PARAMS=set_param(["name","sourceNetwork"],[name,sourceNetwork]) response=api(url=self.__url+"/rename", PARAMS=PARAMS, method="POST", verbose=verbose) return response
python
def rename(self, name=None, sourceNetwork=None, verbose=False): """ Rename an existing network. The SUID of the network is returned :param name (string): Enter a new title for the network :param sourceNetwork (string): Specifies a network by name, or by SUID if the prefix SUID: is used. The keyword CURRENT, or a blank value can also be used to specify the current network. :param verbose: print more :returns: SUID of the network is returned """ sourceNetwork=check_network(self,sourceNetwork,verbose=verbose) PARAMS=set_param(["name","sourceNetwork"],[name,sourceNetwork]) response=api(url=self.__url+"/rename", PARAMS=PARAMS, method="POST", verbose=verbose) return response
[ "def", "rename", "(", "self", ",", "name", "=", "None", ",", "sourceNetwork", "=", "None", ",", "verbose", "=", "False", ")", ":", "sourceNetwork", "=", "check_network", "(", "self", ",", "sourceNetwork", ",", "verbose", "=", "verbose", ")", "PARAMS", "=", "set_param", "(", "[", "\"name\"", ",", "\"sourceNetwork\"", "]", ",", "[", "name", ",", "sourceNetwork", "]", ")", "response", "=", "api", "(", "url", "=", "self", ".", "__url", "+", "\"/rename\"", ",", "PARAMS", "=", "PARAMS", ",", "method", "=", "\"POST\"", ",", "verbose", "=", "verbose", ")", "return", "response" ]
Rename an existing network. The SUID of the network is returned :param name (string): Enter a new title for the network :param sourceNetwork (string): Specifies a network by name, or by SUID if the prefix SUID: is used. The keyword CURRENT, or a blank value can also be used to specify the current network. :param verbose: print more :returns: SUID of the network is returned
[ "Rename", "an", "existing", "network", ".", "The", "SUID", "of", "the", "network", "is", "returned" ]
dd34de8d028f512314d0057168df7fef7c5d5195
https://github.com/cytoscape/py2cytoscape/blob/dd34de8d028f512314d0057168df7fef7c5d5195/py2cytoscape/cyrest/network.py#L619-L634
train
cytoscape/py2cytoscape
py2cytoscape/cyrest/session.py
session.new
def new(self, verbose=False): """ Destroys the current session and creates a new, empty one. :param wid: Window ID :param verbose: print more """ response=api(url=self.__url+"/new", verbose=verbose) return response
python
def new(self, verbose=False): """ Destroys the current session and creates a new, empty one. :param wid: Window ID :param verbose: print more """ response=api(url=self.__url+"/new", verbose=verbose) return response
[ "def", "new", "(", "self", ",", "verbose", "=", "False", ")", ":", "response", "=", "api", "(", "url", "=", "self", ".", "__url", "+", "\"/new\"", ",", "verbose", "=", "verbose", ")", "return", "response" ]
Destroys the current session and creates a new, empty one. :param wid: Window ID :param verbose: print more
[ "Destroys", "the", "current", "session", "and", "creates", "a", "new", "empty", "one", "." ]
dd34de8d028f512314d0057168df7fef7c5d5195
https://github.com/cytoscape/py2cytoscape/blob/dd34de8d028f512314d0057168df7fef7c5d5195/py2cytoscape/cyrest/session.py#L14-L23
train
cytoscape/py2cytoscape
py2cytoscape/cyrest/session.py
session.open
def open(self, session_file=None,session_url=None, verbose=False): """ Opens a session from a local file or URL. :param session_file: The path to the session file (.cys) to be loaded. :param session_url: A URL that provides a session file. :param verbose: print more """ PARAMS=set_param(["file", "url"],[session_file, session_url]) response=api(url=self.__url+"/open", PARAMS=PARAMS, verbose=verbose) return response
python
def open(self, session_file=None,session_url=None, verbose=False): """ Opens a session from a local file or URL. :param session_file: The path to the session file (.cys) to be loaded. :param session_url: A URL that provides a session file. :param verbose: print more """ PARAMS=set_param(["file", "url"],[session_file, session_url]) response=api(url=self.__url+"/open", PARAMS=PARAMS, verbose=verbose) return response
[ "def", "open", "(", "self", ",", "session_file", "=", "None", ",", "session_url", "=", "None", ",", "verbose", "=", "False", ")", ":", "PARAMS", "=", "set_param", "(", "[", "\"file\"", ",", "\"url\"", "]", ",", "[", "session_file", ",", "session_url", "]", ")", "response", "=", "api", "(", "url", "=", "self", ".", "__url", "+", "\"/open\"", ",", "PARAMS", "=", "PARAMS", ",", "verbose", "=", "verbose", ")", "return", "response" ]
Opens a session from a local file or URL. :param session_file: The path to the session file (.cys) to be loaded. :param session_url: A URL that provides a session file. :param verbose: print more
[ "Opens", "a", "session", "from", "a", "local", "file", "or", "URL", "." ]
dd34de8d028f512314d0057168df7fef7c5d5195
https://github.com/cytoscape/py2cytoscape/blob/dd34de8d028f512314d0057168df7fef7c5d5195/py2cytoscape/cyrest/session.py#L26-L37
train
cytoscape/py2cytoscape
py2cytoscape/cyrest/session.py
session.save
def save(self, session_file, verbose=False): """ Saves the current session to an existing file, which will be replaced. If this is a new session that has not been saved yet, use 'save as' instead. :param session_file: The path to the file where the current session must be saved to. :param verbose: print more """ PARAMS={"file":session_file} response=api(url=self.__url+"/save", PARAMS=PARAMS, verbose=verbose) return response
python
def save(self, session_file, verbose=False): """ Saves the current session to an existing file, which will be replaced. If this is a new session that has not been saved yet, use 'save as' instead. :param session_file: The path to the file where the current session must be saved to. :param verbose: print more """ PARAMS={"file":session_file} response=api(url=self.__url+"/save", PARAMS=PARAMS, verbose=verbose) return response
[ "def", "save", "(", "self", ",", "session_file", ",", "verbose", "=", "False", ")", ":", "PARAMS", "=", "{", "\"file\"", ":", "session_file", "}", "response", "=", "api", "(", "url", "=", "self", ".", "__url", "+", "\"/save\"", ",", "PARAMS", "=", "PARAMS", ",", "verbose", "=", "verbose", ")", "return", "response" ]
Saves the current session to an existing file, which will be replaced. If this is a new session that has not been saved yet, use 'save as' instead. :param session_file: The path to the file where the current session must be saved to. :param verbose: print more
[ "Saves", "the", "current", "session", "to", "an", "existing", "file", "which", "will", "be", "replaced", ".", "If", "this", "is", "a", "new", "session", "that", "has", "not", "been", "saved", "yet", "use", "save", "as", "instead", "." ]
dd34de8d028f512314d0057168df7fef7c5d5195
https://github.com/cytoscape/py2cytoscape/blob/dd34de8d028f512314d0057168df7fef7c5d5195/py2cytoscape/cyrest/session.py#L40-L54
train
cytoscape/py2cytoscape
py2cytoscape/cyrest/vizmap.py
vizmap.apply
def apply(self, styles=None, verbose=False): """ Applies the specified style to the selected views and returns the SUIDs of the affected views. :param styles (string): Name of Style to be applied to the selected views. = ['Directed', 'BioPAX_SIF', 'Bridging Reads Histogram:unique_0', 'PSIMI 25 Style', 'Coverage Histogram:best&unique', 'Minimal', 'Bridging Reads Histogram:best&unique_0', 'Coverage Histogram_0', 'Big Labels', 'No Histogram:best&unique_0', 'Bridging Reads Histogram:best', 'No Histogram_0', 'No Histogram:best&unique', 'Bridging Reads Histogram_0', 'Ripple', 'Coverage Histogram:unique_0', 'Nested Network Style', 'Coverage Histogram:best', 'Coverage Histogram:best&unique_0', 'default black', 'No Histogram:best_0', 'No Histogram:unique', 'No Histogram:unique_0', 'Solid', 'Bridging Reads Histogram:unique', 'No Histogram:best', 'Coverage Histogram', 'BioPAX', 'Bridging Reads Histogram', 'Coverage Histogram:best_0', 'Sample1', 'Universe', 'Bridging Reads Histogram:best_0', 'Coverage Histogram:unique', 'Bridging Reads Histogram:best&unique', 'No Histogram', 'default'] :param verbose: print more :returns: SUIDs of the affected views """ PARAMS=set_param(["styles"],[styles]) response=api(url=self.__url+"/apply", PARAMS=PARAMS, method="POST", verbose=verbose) return response
python
def apply(self, styles=None, verbose=False): """ Applies the specified style to the selected views and returns the SUIDs of the affected views. :param styles (string): Name of Style to be applied to the selected views. = ['Directed', 'BioPAX_SIF', 'Bridging Reads Histogram:unique_0', 'PSIMI 25 Style', 'Coverage Histogram:best&unique', 'Minimal', 'Bridging Reads Histogram:best&unique_0', 'Coverage Histogram_0', 'Big Labels', 'No Histogram:best&unique_0', 'Bridging Reads Histogram:best', 'No Histogram_0', 'No Histogram:best&unique', 'Bridging Reads Histogram_0', 'Ripple', 'Coverage Histogram:unique_0', 'Nested Network Style', 'Coverage Histogram:best', 'Coverage Histogram:best&unique_0', 'default black', 'No Histogram:best_0', 'No Histogram:unique', 'No Histogram:unique_0', 'Solid', 'Bridging Reads Histogram:unique', 'No Histogram:best', 'Coverage Histogram', 'BioPAX', 'Bridging Reads Histogram', 'Coverage Histogram:best_0', 'Sample1', 'Universe', 'Bridging Reads Histogram:best_0', 'Coverage Histogram:unique', 'Bridging Reads Histogram:best&unique', 'No Histogram', 'default'] :param verbose: print more :returns: SUIDs of the affected views """ PARAMS=set_param(["styles"],[styles]) response=api(url=self.__url+"/apply", PARAMS=PARAMS, method="POST", verbose=verbose) return response
[ "def", "apply", "(", "self", ",", "styles", "=", "None", ",", "verbose", "=", "False", ")", ":", "PARAMS", "=", "set_param", "(", "[", "\"styles\"", "]", ",", "[", "styles", "]", ")", "response", "=", "api", "(", "url", "=", "self", ".", "__url", "+", "\"/apply\"", ",", "PARAMS", "=", "PARAMS", ",", "method", "=", "\"POST\"", ",", "verbose", "=", "verbose", ")", "return", "response" ]
Applies the specified style to the selected views and returns the SUIDs of the affected views. :param styles (string): Name of Style to be applied to the selected views. = ['Directed', 'BioPAX_SIF', 'Bridging Reads Histogram:unique_0', 'PSIMI 25 Style', 'Coverage Histogram:best&unique', 'Minimal', 'Bridging Reads Histogram:best&unique_0', 'Coverage Histogram_0', 'Big Labels', 'No Histogram:best&unique_0', 'Bridging Reads Histogram:best', 'No Histogram_0', 'No Histogram:best&unique', 'Bridging Reads Histogram_0', 'Ripple', 'Coverage Histogram:unique_0', 'Nested Network Style', 'Coverage Histogram:best', 'Coverage Histogram:best&unique_0', 'default black', 'No Histogram:best_0', 'No Histogram:unique', 'No Histogram:unique_0', 'Solid', 'Bridging Reads Histogram:unique', 'No Histogram:best', 'Coverage Histogram', 'BioPAX', 'Bridging Reads Histogram', 'Coverage Histogram:best_0', 'Sample1', 'Universe', 'Bridging Reads Histogram:best_0', 'Coverage Histogram:unique', 'Bridging Reads Histogram:best&unique', 'No Histogram', 'default'] :param verbose: print more :returns: SUIDs of the affected views
[ "Applies", "the", "specified", "style", "to", "the", "selected", "views", "and", "returns", "the", "SUIDs", "of", "the", "affected", "views", "." ]
dd34de8d028f512314d0057168df7fef7c5d5195
https://github.com/cytoscape/py2cytoscape/blob/dd34de8d028f512314d0057168df7fef7c5d5195/py2cytoscape/cyrest/vizmap.py#L13-L39
train
cytoscape/py2cytoscape
py2cytoscape/cyrest/vizmap.py
vizmap.create_style
def create_style(self,title=None,defaults=None,mappings=None,verbose=VERBOSE): """ Creates a new visual style :param title: title of the visual style :param defaults: a list of dictionaries for each visualProperty :param mappings: a list of dictionaries for each visualProperty :param host: cytoscape host address, default=cytoscape_host :param port: cytoscape port, default=1234 :returns: nothing """ u=self.__url host=u.split("//")[1].split(":")[0] port=u.split(":")[2].split("/")[0] version=u.split(":")[2].split("/")[1] if defaults: defaults_=[] for d in defaults: if d: defaults_.append(d) defaults=defaults_ if mappings: mappings_=[] for m in mappings: if m: mappings_.append(m) mappings=mappings_ try: update_style(title=title,defaults=defaults,mappings=mappings,host=host,port=port) print("Existing style was updated.") sys.stdout.flush() except: print("Creating new style.") sys.stdout.flush() URL="http://"+str(host)+":"+str(port)+"/v1/styles" PARAMS={"title":title,\ "defaults":defaults,\ "mappings":mappings} r = requests.post(url = URL, json = PARAMS) checkresponse(r)
python
def create_style(self,title=None,defaults=None,mappings=None,verbose=VERBOSE): """ Creates a new visual style :param title: title of the visual style :param defaults: a list of dictionaries for each visualProperty :param mappings: a list of dictionaries for each visualProperty :param host: cytoscape host address, default=cytoscape_host :param port: cytoscape port, default=1234 :returns: nothing """ u=self.__url host=u.split("//")[1].split(":")[0] port=u.split(":")[2].split("/")[0] version=u.split(":")[2].split("/")[1] if defaults: defaults_=[] for d in defaults: if d: defaults_.append(d) defaults=defaults_ if mappings: mappings_=[] for m in mappings: if m: mappings_.append(m) mappings=mappings_ try: update_style(title=title,defaults=defaults,mappings=mappings,host=host,port=port) print("Existing style was updated.") sys.stdout.flush() except: print("Creating new style.") sys.stdout.flush() URL="http://"+str(host)+":"+str(port)+"/v1/styles" PARAMS={"title":title,\ "defaults":defaults,\ "mappings":mappings} r = requests.post(url = URL, json = PARAMS) checkresponse(r)
[ "def", "create_style", "(", "self", ",", "title", "=", "None", ",", "defaults", "=", "None", ",", "mappings", "=", "None", ",", "verbose", "=", "VERBOSE", ")", ":", "u", "=", "self", ".", "__url", "host", "=", "u", ".", "split", "(", "\"//\"", ")", "[", "1", "]", ".", "split", "(", "\":\"", ")", "[", "0", "]", "port", "=", "u", ".", "split", "(", "\":\"", ")", "[", "2", "]", ".", "split", "(", "\"/\"", ")", "[", "0", "]", "version", "=", "u", ".", "split", "(", "\":\"", ")", "[", "2", "]", ".", "split", "(", "\"/\"", ")", "[", "1", "]", "if", "defaults", ":", "defaults_", "=", "[", "]", "for", "d", "in", "defaults", ":", "if", "d", ":", "defaults_", ".", "append", "(", "d", ")", "defaults", "=", "defaults_", "if", "mappings", ":", "mappings_", "=", "[", "]", "for", "m", "in", "mappings", ":", "if", "m", ":", "mappings_", ".", "append", "(", "m", ")", "mappings", "=", "mappings_", "try", ":", "update_style", "(", "title", "=", "title", ",", "defaults", "=", "defaults", ",", "mappings", "=", "mappings", ",", "host", "=", "host", ",", "port", "=", "port", ")", "print", "(", "\"Existing style was updated.\"", ")", "sys", ".", "stdout", ".", "flush", "(", ")", "except", ":", "print", "(", "\"Creating new style.\"", ")", "sys", ".", "stdout", ".", "flush", "(", ")", "URL", "=", "\"http://\"", "+", "str", "(", "host", ")", "+", "\":\"", "+", "str", "(", "port", ")", "+", "\"/v1/styles\"", "PARAMS", "=", "{", "\"title\"", ":", "title", ",", "\"defaults\"", ":", "defaults", ",", "\"mappings\"", ":", "mappings", "}", "r", "=", "requests", ".", "post", "(", "url", "=", "URL", ",", "json", "=", "PARAMS", ")", "checkresponse", "(", "r", ")" ]
Creates a new visual style :param title: title of the visual style :param defaults: a list of dictionaries for each visualProperty :param mappings: a list of dictionaries for each visualProperty :param host: cytoscape host address, default=cytoscape_host :param port: cytoscape port, default=1234 :returns: nothing
[ "Creates", "a", "new", "visual", "style" ]
dd34de8d028f512314d0057168df7fef7c5d5195
https://github.com/cytoscape/py2cytoscape/blob/dd34de8d028f512314d0057168df7fef7c5d5195/py2cytoscape/cyrest/vizmap.py#L86-L129
train
cytoscape/py2cytoscape
py2cytoscape/cyrest/vizmap.py
vizmap.update_style
def update_style(self, title=None,defaults=None,mappings=None, verbose=False): """ Updates a visual style :param title: title of the visual style :param defaults: a list of dictionaries for each visualProperty :param mappings: a list of dictionaries for each visualProperty :returns: nothing """ u=self.__url host=u.split("//")[1].split(":")[0] port=u.split(":")[2].split("/")[0] version=u.split(":")[2].split("/")[1] if defaults: defaults_=[] for d in defaults: if d: defaults_.append(d) defaults=defaults_ if mappings: mappings_=[] for m in mappings: if m: mappings_.append(m) mappings=mappings_ URL="http://"+str(host)+":"+str(port)+"/v1/styles/"+str(title) if verbose: print(URL) sys.stdout.flush() response = requests.get(URL).json() olddefaults=response["defaults"] oldmappings=response["mappings"] if mappings: mappings_visual_properties=[ m["visualProperty"] for m in mappings ] newmappings=[ m for m in oldmappings if m["visualProperty"] not in mappings_visual_properties ] for m in mappings: newmappings.append(m) else: newmappings=oldmappings if defaults: defaults_visual_properties=[ m["visualProperty"] for m in defaults ] newdefaults=[ m for m in olddefaults if m["visualProperty"] not in defaults_visual_properties ] for m in defaults: newdefaults.append(m) else: newdefaults=olddefaults r=requests.delete(URL) checkresponse(r) URL="http://"+str(host)+":"+str(port)+"/v1/styles" PARAMS={"title":title,\ "defaults":newdefaults,\ "mappings":newmappings} r = requests.post(url = URL, json = PARAMS) checkresponse(r)
python
def update_style(self, title=None,defaults=None,mappings=None, verbose=False): """ Updates a visual style :param title: title of the visual style :param defaults: a list of dictionaries for each visualProperty :param mappings: a list of dictionaries for each visualProperty :returns: nothing """ u=self.__url host=u.split("//")[1].split(":")[0] port=u.split(":")[2].split("/")[0] version=u.split(":")[2].split("/")[1] if defaults: defaults_=[] for d in defaults: if d: defaults_.append(d) defaults=defaults_ if mappings: mappings_=[] for m in mappings: if m: mappings_.append(m) mappings=mappings_ URL="http://"+str(host)+":"+str(port)+"/v1/styles/"+str(title) if verbose: print(URL) sys.stdout.flush() response = requests.get(URL).json() olddefaults=response["defaults"] oldmappings=response["mappings"] if mappings: mappings_visual_properties=[ m["visualProperty"] for m in mappings ] newmappings=[ m for m in oldmappings if m["visualProperty"] not in mappings_visual_properties ] for m in mappings: newmappings.append(m) else: newmappings=oldmappings if defaults: defaults_visual_properties=[ m["visualProperty"] for m in defaults ] newdefaults=[ m for m in olddefaults if m["visualProperty"] not in defaults_visual_properties ] for m in defaults: newdefaults.append(m) else: newdefaults=olddefaults r=requests.delete(URL) checkresponse(r) URL="http://"+str(host)+":"+str(port)+"/v1/styles" PARAMS={"title":title,\ "defaults":newdefaults,\ "mappings":newmappings} r = requests.post(url = URL, json = PARAMS) checkresponse(r)
[ "def", "update_style", "(", "self", ",", "title", "=", "None", ",", "defaults", "=", "None", ",", "mappings", "=", "None", ",", "verbose", "=", "False", ")", ":", "u", "=", "self", ".", "__url", "host", "=", "u", ".", "split", "(", "\"//\"", ")", "[", "1", "]", ".", "split", "(", "\":\"", ")", "[", "0", "]", "port", "=", "u", ".", "split", "(", "\":\"", ")", "[", "2", "]", ".", "split", "(", "\"/\"", ")", "[", "0", "]", "version", "=", "u", ".", "split", "(", "\":\"", ")", "[", "2", "]", ".", "split", "(", "\"/\"", ")", "[", "1", "]", "if", "defaults", ":", "defaults_", "=", "[", "]", "for", "d", "in", "defaults", ":", "if", "d", ":", "defaults_", ".", "append", "(", "d", ")", "defaults", "=", "defaults_", "if", "mappings", ":", "mappings_", "=", "[", "]", "for", "m", "in", "mappings", ":", "if", "m", ":", "mappings_", ".", "append", "(", "m", ")", "mappings", "=", "mappings_", "URL", "=", "\"http://\"", "+", "str", "(", "host", ")", "+", "\":\"", "+", "str", "(", "port", ")", "+", "\"/v1/styles/\"", "+", "str", "(", "title", ")", "if", "verbose", ":", "print", "(", "URL", ")", "sys", ".", "stdout", ".", "flush", "(", ")", "response", "=", "requests", ".", "get", "(", "URL", ")", ".", "json", "(", ")", "olddefaults", "=", "response", "[", "\"defaults\"", "]", "oldmappings", "=", "response", "[", "\"mappings\"", "]", "if", "mappings", ":", "mappings_visual_properties", "=", "[", "m", "[", "\"visualProperty\"", "]", "for", "m", "in", "mappings", "]", "newmappings", "=", "[", "m", "for", "m", "in", "oldmappings", "if", "m", "[", "\"visualProperty\"", "]", "not", "in", "mappings_visual_properties", "]", "for", "m", "in", "mappings", ":", "newmappings", ".", "append", "(", "m", ")", "else", ":", "newmappings", "=", "oldmappings", "if", "defaults", ":", "defaults_visual_properties", "=", "[", "m", "[", "\"visualProperty\"", "]", "for", "m", "in", "defaults", "]", "newdefaults", "=", "[", "m", "for", "m", "in", "olddefaults", "if", "m", "[", "\"visualProperty\"", "]", "not", "in", "defaults_visual_properties", "]", "for", "m", "in", "defaults", ":", "newdefaults", ".", "append", "(", "m", ")", "else", ":", "newdefaults", "=", "olddefaults", "r", "=", "requests", ".", "delete", "(", "URL", ")", "checkresponse", "(", "r", ")", "URL", "=", "\"http://\"", "+", "str", "(", "host", ")", "+", "\":\"", "+", "str", "(", "port", ")", "+", "\"/v1/styles\"", "PARAMS", "=", "{", "\"title\"", ":", "title", ",", "\"defaults\"", ":", "newdefaults", ",", "\"mappings\"", ":", "newmappings", "}", "r", "=", "requests", ".", "post", "(", "url", "=", "URL", ",", "json", "=", "PARAMS", ")", "checkresponse", "(", "r", ")" ]
Updates a visual style :param title: title of the visual style :param defaults: a list of dictionaries for each visualProperty :param mappings: a list of dictionaries for each visualProperty :returns: nothing
[ "Updates", "a", "visual", "style" ]
dd34de8d028f512314d0057168df7fef7c5d5195
https://github.com/cytoscape/py2cytoscape/blob/dd34de8d028f512314d0057168df7fef7c5d5195/py2cytoscape/cyrest/vizmap.py#L131-L194
train
cytoscape/py2cytoscape
py2cytoscape/cyrest/vizmap.py
vizmap.simple_defaults
def simple_defaults(self, defaults_dic): """ Simplifies defaults. :param defaults_dic: a dictionary of the form { visualProperty_A:value_A, visualProperty_B:value_B, ..} :returns: a list of dictionaries with each item corresponding to a given key in defaults_dic """ defaults=[] for d in defaults_dic.keys(): dic={} dic["visualProperty"]=d dic["value"]=defaults_dic[d] defaults.append(dic) return defaults
python
def simple_defaults(self, defaults_dic): """ Simplifies defaults. :param defaults_dic: a dictionary of the form { visualProperty_A:value_A, visualProperty_B:value_B, ..} :returns: a list of dictionaries with each item corresponding to a given key in defaults_dic """ defaults=[] for d in defaults_dic.keys(): dic={} dic["visualProperty"]=d dic["value"]=defaults_dic[d] defaults.append(dic) return defaults
[ "def", "simple_defaults", "(", "self", ",", "defaults_dic", ")", ":", "defaults", "=", "[", "]", "for", "d", "in", "defaults_dic", ".", "keys", "(", ")", ":", "dic", "=", "{", "}", "dic", "[", "\"visualProperty\"", "]", "=", "d", "dic", "[", "\"value\"", "]", "=", "defaults_dic", "[", "d", "]", "defaults", ".", "append", "(", "dic", ")", "return", "defaults" ]
Simplifies defaults. :param defaults_dic: a dictionary of the form { visualProperty_A:value_A, visualProperty_B:value_B, ..} :returns: a list of dictionaries with each item corresponding to a given key in defaults_dic
[ "Simplifies", "defaults", "." ]
dd34de8d028f512314d0057168df7fef7c5d5195
https://github.com/cytoscape/py2cytoscape/blob/dd34de8d028f512314d0057168df7fef7c5d5195/py2cytoscape/cyrest/vizmap.py#L278-L293
train