repo
stringlengths 7
55
| path
stringlengths 4
127
| func_name
stringlengths 1
88
| original_string
stringlengths 75
19.8k
| language
stringclasses 1
value | code
stringlengths 75
19.8k
| code_tokens
list | docstring
stringlengths 3
17.3k
| docstring_tokens
list | sha
stringlengths 40
40
| url
stringlengths 87
242
| partition
stringclasses 1
value |
---|---|---|---|---|---|---|---|---|---|---|---|
LuqueDaniel/pybooru | pybooru/api_danbooru.py | DanbooruApi_Mixin.pool_versions | def pool_versions(self, updater_id=None, updater_name=None, pool_id=None):
"""Get list of pool versions.
Parameters:
updater_id (int):
updater_name (str):
pool_id (int):
"""
params = {
'search[updater_id]': updater_id,
'search[updater_name]': updater_name,
'search[pool_id]': pool_id
}
return self._get('pool_versions.json', params) | python | def pool_versions(self, updater_id=None, updater_name=None, pool_id=None):
"""Get list of pool versions.
Parameters:
updater_id (int):
updater_name (str):
pool_id (int):
"""
params = {
'search[updater_id]': updater_id,
'search[updater_name]': updater_name,
'search[pool_id]': pool_id
}
return self._get('pool_versions.json', params) | [
"def",
"pool_versions",
"(",
"self",
",",
"updater_id",
"=",
"None",
",",
"updater_name",
"=",
"None",
",",
"pool_id",
"=",
"None",
")",
":",
"params",
"=",
"{",
"'search[updater_id]'",
":",
"updater_id",
",",
"'search[updater_name]'",
":",
"updater_name",
",",
"'search[pool_id]'",
":",
"pool_id",
"}",
"return",
"self",
".",
"_get",
"(",
"'pool_versions.json'",
",",
"params",
")"
]
| Get list of pool versions.
Parameters:
updater_id (int):
updater_name (str):
pool_id (int): | [
"Get",
"list",
"of",
"pool",
"versions",
"."
]
| 60cd5254684d293b308f0b11b8f4ac2dce101479 | https://github.com/LuqueDaniel/pybooru/blob/60cd5254684d293b308f0b11b8f4ac2dce101479/pybooru/api_danbooru.py#L975-L988 | train |
LuqueDaniel/pybooru | pybooru/api_danbooru.py | DanbooruApi_Mixin.tag_aliases | def tag_aliases(self, name_matches=None, antecedent_name=None,
tag_id=None):
"""Get tags aliases.
Parameters:
name_matches (str): Match antecedent or consequent name.
antecedent_name (str): Match antecedent name (exact match).
tag_id (int): The tag alias id.
"""
params = {
'search[name_matches]': name_matches,
'search[antecedent_name]': antecedent_name,
'search[id]': tag_id
}
return self._get('tag_aliases.json', params) | python | def tag_aliases(self, name_matches=None, antecedent_name=None,
tag_id=None):
"""Get tags aliases.
Parameters:
name_matches (str): Match antecedent or consequent name.
antecedent_name (str): Match antecedent name (exact match).
tag_id (int): The tag alias id.
"""
params = {
'search[name_matches]': name_matches,
'search[antecedent_name]': antecedent_name,
'search[id]': tag_id
}
return self._get('tag_aliases.json', params) | [
"def",
"tag_aliases",
"(",
"self",
",",
"name_matches",
"=",
"None",
",",
"antecedent_name",
"=",
"None",
",",
"tag_id",
"=",
"None",
")",
":",
"params",
"=",
"{",
"'search[name_matches]'",
":",
"name_matches",
",",
"'search[antecedent_name]'",
":",
"antecedent_name",
",",
"'search[id]'",
":",
"tag_id",
"}",
"return",
"self",
".",
"_get",
"(",
"'tag_aliases.json'",
",",
"params",
")"
]
| Get tags aliases.
Parameters:
name_matches (str): Match antecedent or consequent name.
antecedent_name (str): Match antecedent name (exact match).
tag_id (int): The tag alias id. | [
"Get",
"tags",
"aliases",
"."
]
| 60cd5254684d293b308f0b11b8f4ac2dce101479 | https://github.com/LuqueDaniel/pybooru/blob/60cd5254684d293b308f0b11b8f4ac2dce101479/pybooru/api_danbooru.py#L1039-L1053 | train |
LuqueDaniel/pybooru | pybooru/api_danbooru.py | DanbooruApi_Mixin.tag_implications | def tag_implications(self, name_matches=None, antecedent_name=None,
tag_id=None):
"""Get tags implications.
Parameters:
name_matches (str): Match antecedent or consequent name.
antecedent_name (str): Match antecedent name (exact match).
tag_id (int): Tag implication id.
"""
params = {
'search[name_matches]': name_matches,
'search[antecedent_name]': antecedent_name,
'search[id]': tag_id
}
return self._get('tag_implications.json', params) | python | def tag_implications(self, name_matches=None, antecedent_name=None,
tag_id=None):
"""Get tags implications.
Parameters:
name_matches (str): Match antecedent or consequent name.
antecedent_name (str): Match antecedent name (exact match).
tag_id (int): Tag implication id.
"""
params = {
'search[name_matches]': name_matches,
'search[antecedent_name]': antecedent_name,
'search[id]': tag_id
}
return self._get('tag_implications.json', params) | [
"def",
"tag_implications",
"(",
"self",
",",
"name_matches",
"=",
"None",
",",
"antecedent_name",
"=",
"None",
",",
"tag_id",
"=",
"None",
")",
":",
"params",
"=",
"{",
"'search[name_matches]'",
":",
"name_matches",
",",
"'search[antecedent_name]'",
":",
"antecedent_name",
",",
"'search[id]'",
":",
"tag_id",
"}",
"return",
"self",
".",
"_get",
"(",
"'tag_implications.json'",
",",
"params",
")"
]
| Get tags implications.
Parameters:
name_matches (str): Match antecedent or consequent name.
antecedent_name (str): Match antecedent name (exact match).
tag_id (int): Tag implication id. | [
"Get",
"tags",
"implications",
"."
]
| 60cd5254684d293b308f0b11b8f4ac2dce101479 | https://github.com/LuqueDaniel/pybooru/blob/60cd5254684d293b308f0b11b8f4ac2dce101479/pybooru/api_danbooru.py#L1055-L1069 | train |
LuqueDaniel/pybooru | pybooru/api_danbooru.py | DanbooruApi_Mixin.tag_related | def tag_related(self, query, category=None):
"""Get related tags.
Parameters:
query (str): The tag to find the related tags for.
category (str): If specified, show only tags of a specific
category. Can be: General 0, Artist 1, Copyright
3 and Character 4.
"""
params = {'query': query, 'category': category}
return self._get('related_tag.json', params) | python | def tag_related(self, query, category=None):
"""Get related tags.
Parameters:
query (str): The tag to find the related tags for.
category (str): If specified, show only tags of a specific
category. Can be: General 0, Artist 1, Copyright
3 and Character 4.
"""
params = {'query': query, 'category': category}
return self._get('related_tag.json', params) | [
"def",
"tag_related",
"(",
"self",
",",
"query",
",",
"category",
"=",
"None",
")",
":",
"params",
"=",
"{",
"'query'",
":",
"query",
",",
"'category'",
":",
"category",
"}",
"return",
"self",
".",
"_get",
"(",
"'related_tag.json'",
",",
"params",
")"
]
| Get related tags.
Parameters:
query (str): The tag to find the related tags for.
category (str): If specified, show only tags of a specific
category. Can be: General 0, Artist 1, Copyright
3 and Character 4. | [
"Get",
"related",
"tags",
"."
]
| 60cd5254684d293b308f0b11b8f4ac2dce101479 | https://github.com/LuqueDaniel/pybooru/blob/60cd5254684d293b308f0b11b8f4ac2dce101479/pybooru/api_danbooru.py#L1071-L1081 | train |
LuqueDaniel/pybooru | pybooru/api_danbooru.py | DanbooruApi_Mixin.wiki_list | def wiki_list(self, title=None, creator_id=None, body_matches=None,
other_names_match=None, creator_name=None, hide_deleted=None,
other_names_present=None, order=None):
"""Function to retrieves a list of every wiki page.
Parameters:
title (str): Page title.
creator_id (int): Creator id.
body_matches (str): Page content.
other_names_match (str): Other names.
creator_name (str): Creator name.
hide_deleted (str): Can be: yes, no.
other_names_present (str): Can be: yes, no.
order (str): Can be: date, title.
"""
params = {
'search[title]': title,
'search[creator_id]': creator_id,
'search[body_matches]': body_matches,
'search[other_names_match]': other_names_match,
'search[creator_name]': creator_name,
'search[hide_deleted]': hide_deleted,
'search[other_names_present]': other_names_present,
'search[order]': order
}
return self._get('wiki_pages.json', params) | python | def wiki_list(self, title=None, creator_id=None, body_matches=None,
other_names_match=None, creator_name=None, hide_deleted=None,
other_names_present=None, order=None):
"""Function to retrieves a list of every wiki page.
Parameters:
title (str): Page title.
creator_id (int): Creator id.
body_matches (str): Page content.
other_names_match (str): Other names.
creator_name (str): Creator name.
hide_deleted (str): Can be: yes, no.
other_names_present (str): Can be: yes, no.
order (str): Can be: date, title.
"""
params = {
'search[title]': title,
'search[creator_id]': creator_id,
'search[body_matches]': body_matches,
'search[other_names_match]': other_names_match,
'search[creator_name]': creator_name,
'search[hide_deleted]': hide_deleted,
'search[other_names_present]': other_names_present,
'search[order]': order
}
return self._get('wiki_pages.json', params) | [
"def",
"wiki_list",
"(",
"self",
",",
"title",
"=",
"None",
",",
"creator_id",
"=",
"None",
",",
"body_matches",
"=",
"None",
",",
"other_names_match",
"=",
"None",
",",
"creator_name",
"=",
"None",
",",
"hide_deleted",
"=",
"None",
",",
"other_names_present",
"=",
"None",
",",
"order",
"=",
"None",
")",
":",
"params",
"=",
"{",
"'search[title]'",
":",
"title",
",",
"'search[creator_id]'",
":",
"creator_id",
",",
"'search[body_matches]'",
":",
"body_matches",
",",
"'search[other_names_match]'",
":",
"other_names_match",
",",
"'search[creator_name]'",
":",
"creator_name",
",",
"'search[hide_deleted]'",
":",
"hide_deleted",
",",
"'search[other_names_present]'",
":",
"other_names_present",
",",
"'search[order]'",
":",
"order",
"}",
"return",
"self",
".",
"_get",
"(",
"'wiki_pages.json'",
",",
"params",
")"
]
| Function to retrieves a list of every wiki page.
Parameters:
title (str): Page title.
creator_id (int): Creator id.
body_matches (str): Page content.
other_names_match (str): Other names.
creator_name (str): Creator name.
hide_deleted (str): Can be: yes, no.
other_names_present (str): Can be: yes, no.
order (str): Can be: date, title. | [
"Function",
"to",
"retrieves",
"a",
"list",
"of",
"every",
"wiki",
"page",
"."
]
| 60cd5254684d293b308f0b11b8f4ac2dce101479 | https://github.com/LuqueDaniel/pybooru/blob/60cd5254684d293b308f0b11b8f4ac2dce101479/pybooru/api_danbooru.py#L1083-L1108 | train |
LuqueDaniel/pybooru | pybooru/api_danbooru.py | DanbooruApi_Mixin.wiki_versions_list | def wiki_versions_list(self, page_id, updater_id):
"""Return a list of wiki page version.
Parameters:
page_id (int):
updater_id (int):
"""
params = {
'earch[updater_id]': updater_id,
'search[wiki_page_id]': page_id
}
return self._get('wiki_page_versions.json', params) | python | def wiki_versions_list(self, page_id, updater_id):
"""Return a list of wiki page version.
Parameters:
page_id (int):
updater_id (int):
"""
params = {
'earch[updater_id]': updater_id,
'search[wiki_page_id]': page_id
}
return self._get('wiki_page_versions.json', params) | [
"def",
"wiki_versions_list",
"(",
"self",
",",
"page_id",
",",
"updater_id",
")",
":",
"params",
"=",
"{",
"'earch[updater_id]'",
":",
"updater_id",
",",
"'search[wiki_page_id]'",
":",
"page_id",
"}",
"return",
"self",
".",
"_get",
"(",
"'wiki_page_versions.json'",
",",
"params",
")"
]
| Return a list of wiki page version.
Parameters:
page_id (int):
updater_id (int): | [
"Return",
"a",
"list",
"of",
"wiki",
"page",
"version",
"."
]
| 60cd5254684d293b308f0b11b8f4ac2dce101479 | https://github.com/LuqueDaniel/pybooru/blob/60cd5254684d293b308f0b11b8f4ac2dce101479/pybooru/api_danbooru.py#L1172-L1183 | train |
LuqueDaniel/pybooru | pybooru/api_danbooru.py | DanbooruApi_Mixin.forum_topic_list | def forum_topic_list(self, title_matches=None, title=None,
category_id=None):
"""Function to get forum topics.
Parameters:
title_matches (str): Search body for the given terms.
title (str): Exact title match.
category_id (int): Can be: 0, 1, 2 (General, Tags, Bugs & Features
respectively).
"""
params = {
'search[title_matches]': title_matches,
'search[title]': title,
'search[category_id]': category_id
}
return self._get('forum_topics.json', params) | python | def forum_topic_list(self, title_matches=None, title=None,
category_id=None):
"""Function to get forum topics.
Parameters:
title_matches (str): Search body for the given terms.
title (str): Exact title match.
category_id (int): Can be: 0, 1, 2 (General, Tags, Bugs & Features
respectively).
"""
params = {
'search[title_matches]': title_matches,
'search[title]': title,
'search[category_id]': category_id
}
return self._get('forum_topics.json', params) | [
"def",
"forum_topic_list",
"(",
"self",
",",
"title_matches",
"=",
"None",
",",
"title",
"=",
"None",
",",
"category_id",
"=",
"None",
")",
":",
"params",
"=",
"{",
"'search[title_matches]'",
":",
"title_matches",
",",
"'search[title]'",
":",
"title",
",",
"'search[category_id]'",
":",
"category_id",
"}",
"return",
"self",
".",
"_get",
"(",
"'forum_topics.json'",
",",
"params",
")"
]
| Function to get forum topics.
Parameters:
title_matches (str): Search body for the given terms.
title (str): Exact title match.
category_id (int): Can be: 0, 1, 2 (General, Tags, Bugs & Features
respectively). | [
"Function",
"to",
"get",
"forum",
"topics",
"."
]
| 60cd5254684d293b308f0b11b8f4ac2dce101479 | https://github.com/LuqueDaniel/pybooru/blob/60cd5254684d293b308f0b11b8f4ac2dce101479/pybooru/api_danbooru.py#L1193-L1208 | train |
LuqueDaniel/pybooru | pybooru/api_danbooru.py | DanbooruApi_Mixin.forum_post_list | def forum_post_list(self, creator_id=None, creator_name=None,
topic_id=None, topic_title_matches=None,
topic_category_id=None, body_matches=None):
"""Return a list of forum posts.
Parameters:
creator_id (int):
creator_name (str):
topic_id (int):
topic_title_matches (str):
topic_category_id (int): Can be: 0, 1, 2 (General, Tags, Bugs &
Features respectively).
body_matches (str): Can be part of the post content.
"""
params = {
'search[creator_id]': creator_id,
'search[creator_name]': creator_name,
'search[topic_id]': topic_id,
'search[topic_title_matches]': topic_title_matches,
'search[topic_category_id]': topic_category_id,
'search[body_matches]': body_matches
}
return self._get('forum_posts.json', params) | python | def forum_post_list(self, creator_id=None, creator_name=None,
topic_id=None, topic_title_matches=None,
topic_category_id=None, body_matches=None):
"""Return a list of forum posts.
Parameters:
creator_id (int):
creator_name (str):
topic_id (int):
topic_title_matches (str):
topic_category_id (int): Can be: 0, 1, 2 (General, Tags, Bugs &
Features respectively).
body_matches (str): Can be part of the post content.
"""
params = {
'search[creator_id]': creator_id,
'search[creator_name]': creator_name,
'search[topic_id]': topic_id,
'search[topic_title_matches]': topic_title_matches,
'search[topic_category_id]': topic_category_id,
'search[body_matches]': body_matches
}
return self._get('forum_posts.json', params) | [
"def",
"forum_post_list",
"(",
"self",
",",
"creator_id",
"=",
"None",
",",
"creator_name",
"=",
"None",
",",
"topic_id",
"=",
"None",
",",
"topic_title_matches",
"=",
"None",
",",
"topic_category_id",
"=",
"None",
",",
"body_matches",
"=",
"None",
")",
":",
"params",
"=",
"{",
"'search[creator_id]'",
":",
"creator_id",
",",
"'search[creator_name]'",
":",
"creator_name",
",",
"'search[topic_id]'",
":",
"topic_id",
",",
"'search[topic_title_matches]'",
":",
"topic_title_matches",
",",
"'search[topic_category_id]'",
":",
"topic_category_id",
",",
"'search[body_matches]'",
":",
"body_matches",
"}",
"return",
"self",
".",
"_get",
"(",
"'forum_posts.json'",
",",
"params",
")"
]
| Return a list of forum posts.
Parameters:
creator_id (int):
creator_name (str):
topic_id (int):
topic_title_matches (str):
topic_category_id (int): Can be: 0, 1, 2 (General, Tags, Bugs &
Features respectively).
body_matches (str): Can be part of the post content. | [
"Return",
"a",
"list",
"of",
"forum",
"posts",
"."
]
| 60cd5254684d293b308f0b11b8f4ac2dce101479 | https://github.com/LuqueDaniel/pybooru/blob/60cd5254684d293b308f0b11b8f4ac2dce101479/pybooru/api_danbooru.py#L1268-L1290 | train |
LuqueDaniel/pybooru | pybooru/pybooru.py | _Pybooru.site_name | def site_name(self, site_name):
"""Function that sets and checks the site name and set url.
Parameters:
site_name (str): The site name in 'SITE_LIST', default sites.
Raises:
PybooruError: When 'site_name' isn't valid.
"""
if site_name in SITE_LIST:
self.__site_name = site_name
self.__site_url = SITE_LIST[site_name]['url']
else:
raise PybooruError(
"The 'site_name' is not valid, specify a valid 'site_name'.") | python | def site_name(self, site_name):
"""Function that sets and checks the site name and set url.
Parameters:
site_name (str): The site name in 'SITE_LIST', default sites.
Raises:
PybooruError: When 'site_name' isn't valid.
"""
if site_name in SITE_LIST:
self.__site_name = site_name
self.__site_url = SITE_LIST[site_name]['url']
else:
raise PybooruError(
"The 'site_name' is not valid, specify a valid 'site_name'.") | [
"def",
"site_name",
"(",
"self",
",",
"site_name",
")",
":",
"if",
"site_name",
"in",
"SITE_LIST",
":",
"self",
".",
"__site_name",
"=",
"site_name",
"self",
".",
"__site_url",
"=",
"SITE_LIST",
"[",
"site_name",
"]",
"[",
"'url'",
"]",
"else",
":",
"raise",
"PybooruError",
"(",
"\"The 'site_name' is not valid, specify a valid 'site_name'.\"",
")"
]
| Function that sets and checks the site name and set url.
Parameters:
site_name (str): The site name in 'SITE_LIST', default sites.
Raises:
PybooruError: When 'site_name' isn't valid. | [
"Function",
"that",
"sets",
"and",
"checks",
"the",
"site",
"name",
"and",
"set",
"url",
"."
]
| 60cd5254684d293b308f0b11b8f4ac2dce101479 | https://github.com/LuqueDaniel/pybooru/blob/60cd5254684d293b308f0b11b8f4ac2dce101479/pybooru/pybooru.py#L79-L93 | train |
LuqueDaniel/pybooru | pybooru/pybooru.py | _Pybooru.site_url | def site_url(self, url):
"""URL setter and validator for site_url property.
Parameters:
url (str): URL of on Moebooru/Danbooru based sites.
Raises:
PybooruError: When URL scheme or URL are invalid.
"""
# Regular expression to URL validate
regex = re.compile(
r'^(?:http|https)://' # Scheme only HTTP/HTTPS
r'(?:(?:[A-Z0-9](?:[A-Z0-9-]{0,61}[A-Z0-9])?\.)+(?:[A-Z]{2,6}\.?| \
[A-Z0-9-]{2,}(?<!-)\.?)|' # Domain
r'localhost|' # localhost...
r'\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}|' # or ipv4
r'\[?[A-F0-9]*:[A-F0-9:]+\]?)' # or ipv6
r'(?::\d+)?' # Port
r'(?:/?|[/?]\S+)$', re.IGNORECASE)
# Validate URL
if re.match('^(?:http|https)://', url):
if re.search(regex, url):
self.__site_url = url
else:
raise PybooruError("Invalid URL: {0}".format(url))
else:
raise PybooruError(
"Invalid URL scheme, use HTTP or HTTPS: {0}".format(url)) | python | def site_url(self, url):
"""URL setter and validator for site_url property.
Parameters:
url (str): URL of on Moebooru/Danbooru based sites.
Raises:
PybooruError: When URL scheme or URL are invalid.
"""
# Regular expression to URL validate
regex = re.compile(
r'^(?:http|https)://' # Scheme only HTTP/HTTPS
r'(?:(?:[A-Z0-9](?:[A-Z0-9-]{0,61}[A-Z0-9])?\.)+(?:[A-Z]{2,6}\.?| \
[A-Z0-9-]{2,}(?<!-)\.?)|' # Domain
r'localhost|' # localhost...
r'\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}|' # or ipv4
r'\[?[A-F0-9]*:[A-F0-9:]+\]?)' # or ipv6
r'(?::\d+)?' # Port
r'(?:/?|[/?]\S+)$', re.IGNORECASE)
# Validate URL
if re.match('^(?:http|https)://', url):
if re.search(regex, url):
self.__site_url = url
else:
raise PybooruError("Invalid URL: {0}".format(url))
else:
raise PybooruError(
"Invalid URL scheme, use HTTP or HTTPS: {0}".format(url)) | [
"def",
"site_url",
"(",
"self",
",",
"url",
")",
":",
"# Regular expression to URL validate",
"regex",
"=",
"re",
".",
"compile",
"(",
"r'^(?:http|https)://'",
"# Scheme only HTTP/HTTPS",
"r'(?:(?:[A-Z0-9](?:[A-Z0-9-]{0,61}[A-Z0-9])?\\.)+(?:[A-Z]{2,6}\\.?| \\\n [A-Z0-9-]{2,}(?<!-)\\.?)|'",
"# Domain",
"r'localhost|'",
"# localhost...",
"r'\\d{1,3}\\.\\d{1,3}\\.\\d{1,3}\\.\\d{1,3}|'",
"# or ipv4",
"r'\\[?[A-F0-9]*:[A-F0-9:]+\\]?)'",
"# or ipv6",
"r'(?::\\d+)?'",
"# Port",
"r'(?:/?|[/?]\\S+)$'",
",",
"re",
".",
"IGNORECASE",
")",
"# Validate URL",
"if",
"re",
".",
"match",
"(",
"'^(?:http|https)://'",
",",
"url",
")",
":",
"if",
"re",
".",
"search",
"(",
"regex",
",",
"url",
")",
":",
"self",
".",
"__site_url",
"=",
"url",
"else",
":",
"raise",
"PybooruError",
"(",
"\"Invalid URL: {0}\"",
".",
"format",
"(",
"url",
")",
")",
"else",
":",
"raise",
"PybooruError",
"(",
"\"Invalid URL scheme, use HTTP or HTTPS: {0}\"",
".",
"format",
"(",
"url",
")",
")"
]
| URL setter and validator for site_url property.
Parameters:
url (str): URL of on Moebooru/Danbooru based sites.
Raises:
PybooruError: When URL scheme or URL are invalid. | [
"URL",
"setter",
"and",
"validator",
"for",
"site_url",
"property",
"."
]
| 60cd5254684d293b308f0b11b8f4ac2dce101479 | https://github.com/LuqueDaniel/pybooru/blob/60cd5254684d293b308f0b11b8f4ac2dce101479/pybooru/pybooru.py#L106-L134 | train |
LuqueDaniel/pybooru | pybooru/pybooru.py | _Pybooru._request | def _request(self, url, api_call, request_args, method='GET'):
"""Function to request and returning JSON data.
Parameters:
url (str): Base url call.
api_call (str): API function to be called.
request_args (dict): All requests parameters.
method (str): (Defauld: GET) HTTP method 'GET' or 'POST'
Raises:
PybooruHTTPError: HTTP Error.
requests.exceptions.Timeout: When HTTP Timeout.
ValueError: When can't decode JSON response.
"""
try:
if method != 'GET':
# Reset content-type for data encoded as a multipart form
self.client.headers.update({'content-type': None})
response = self.client.request(method, url, **request_args)
self.last_call.update({
'API': api_call,
'url': response.url,
'status_code': response.status_code,
'status': self._get_status(response.status_code),
'headers': response.headers
})
if response.status_code in (200, 201, 202, 204):
return response.json()
raise PybooruHTTPError("In _request", response.status_code,
response.url)
except requests.exceptions.Timeout:
raise PybooruError("Timeout! url: {0}".format(response.url))
except ValueError as e:
raise PybooruError("JSON Error: {0} in line {1} column {2}".format(
e.msg, e.lineno, e.colno)) | python | def _request(self, url, api_call, request_args, method='GET'):
"""Function to request and returning JSON data.
Parameters:
url (str): Base url call.
api_call (str): API function to be called.
request_args (dict): All requests parameters.
method (str): (Defauld: GET) HTTP method 'GET' or 'POST'
Raises:
PybooruHTTPError: HTTP Error.
requests.exceptions.Timeout: When HTTP Timeout.
ValueError: When can't decode JSON response.
"""
try:
if method != 'GET':
# Reset content-type for data encoded as a multipart form
self.client.headers.update({'content-type': None})
response = self.client.request(method, url, **request_args)
self.last_call.update({
'API': api_call,
'url': response.url,
'status_code': response.status_code,
'status': self._get_status(response.status_code),
'headers': response.headers
})
if response.status_code in (200, 201, 202, 204):
return response.json()
raise PybooruHTTPError("In _request", response.status_code,
response.url)
except requests.exceptions.Timeout:
raise PybooruError("Timeout! url: {0}".format(response.url))
except ValueError as e:
raise PybooruError("JSON Error: {0} in line {1} column {2}".format(
e.msg, e.lineno, e.colno)) | [
"def",
"_request",
"(",
"self",
",",
"url",
",",
"api_call",
",",
"request_args",
",",
"method",
"=",
"'GET'",
")",
":",
"try",
":",
"if",
"method",
"!=",
"'GET'",
":",
"# Reset content-type for data encoded as a multipart form",
"self",
".",
"client",
".",
"headers",
".",
"update",
"(",
"{",
"'content-type'",
":",
"None",
"}",
")",
"response",
"=",
"self",
".",
"client",
".",
"request",
"(",
"method",
",",
"url",
",",
"*",
"*",
"request_args",
")",
"self",
".",
"last_call",
".",
"update",
"(",
"{",
"'API'",
":",
"api_call",
",",
"'url'",
":",
"response",
".",
"url",
",",
"'status_code'",
":",
"response",
".",
"status_code",
",",
"'status'",
":",
"self",
".",
"_get_status",
"(",
"response",
".",
"status_code",
")",
",",
"'headers'",
":",
"response",
".",
"headers",
"}",
")",
"if",
"response",
".",
"status_code",
"in",
"(",
"200",
",",
"201",
",",
"202",
",",
"204",
")",
":",
"return",
"response",
".",
"json",
"(",
")",
"raise",
"PybooruHTTPError",
"(",
"\"In _request\"",
",",
"response",
".",
"status_code",
",",
"response",
".",
"url",
")",
"except",
"requests",
".",
"exceptions",
".",
"Timeout",
":",
"raise",
"PybooruError",
"(",
"\"Timeout! url: {0}\"",
".",
"format",
"(",
"response",
".",
"url",
")",
")",
"except",
"ValueError",
"as",
"e",
":",
"raise",
"PybooruError",
"(",
"\"JSON Error: {0} in line {1} column {2}\"",
".",
"format",
"(",
"e",
".",
"msg",
",",
"e",
".",
"lineno",
",",
"e",
".",
"colno",
")",
")"
]
| Function to request and returning JSON data.
Parameters:
url (str): Base url call.
api_call (str): API function to be called.
request_args (dict): All requests parameters.
method (str): (Defauld: GET) HTTP method 'GET' or 'POST'
Raises:
PybooruHTTPError: HTTP Error.
requests.exceptions.Timeout: When HTTP Timeout.
ValueError: When can't decode JSON response. | [
"Function",
"to",
"request",
"and",
"returning",
"JSON",
"data",
"."
]
| 60cd5254684d293b308f0b11b8f4ac2dce101479 | https://github.com/LuqueDaniel/pybooru/blob/60cd5254684d293b308f0b11b8f4ac2dce101479/pybooru/pybooru.py#L149-L186 | train |
LuqueDaniel/pybooru | pybooru/api_moebooru.py | MoebooruApi_Mixin.post_update | def post_update(self, post_id, tags=None, file_=None, rating=None,
source=None, is_rating_locked=None, is_note_locked=None,
parent_id=None):
"""Update a specific post.
Only the 'post_id' parameter is required. Leave the other parameters
blank if you don't want to change them (Requires login).
Parameters:
post_id (int): The id number of the post to update.
tags (str): A space delimited list of tags. Specify previous tags.
file_ (str): The file data ENCODED as a multipart form.
rating (str): The rating for the post. Can be: safe, questionable,
or explicit.
source (str): If this is a URL, Moebooru will download the file.
rating_locked (bool): Set to True to prevent others from changing
the rating.
note_locked (bool): Set to True to prevent others from adding
notes.
parent_id (int): The ID of the parent post.
"""
params = {
'id': post_id,
'post[tags]': tags,
'post[rating]': rating,
'post[source]': source,
'post[is_rating_locked]': is_rating_locked,
'post[is_note_locked]': is_note_locked,
'post[parent_id]': parent_id
}
if file_ is not None:
file_ = {'post[file]': open(file_, 'rb')}
return self._get('post/update', params, 'PUT', file_)
else:
return self._get('post/update', params, 'PUT') | python | def post_update(self, post_id, tags=None, file_=None, rating=None,
source=None, is_rating_locked=None, is_note_locked=None,
parent_id=None):
"""Update a specific post.
Only the 'post_id' parameter is required. Leave the other parameters
blank if you don't want to change them (Requires login).
Parameters:
post_id (int): The id number of the post to update.
tags (str): A space delimited list of tags. Specify previous tags.
file_ (str): The file data ENCODED as a multipart form.
rating (str): The rating for the post. Can be: safe, questionable,
or explicit.
source (str): If this is a URL, Moebooru will download the file.
rating_locked (bool): Set to True to prevent others from changing
the rating.
note_locked (bool): Set to True to prevent others from adding
notes.
parent_id (int): The ID of the parent post.
"""
params = {
'id': post_id,
'post[tags]': tags,
'post[rating]': rating,
'post[source]': source,
'post[is_rating_locked]': is_rating_locked,
'post[is_note_locked]': is_note_locked,
'post[parent_id]': parent_id
}
if file_ is not None:
file_ = {'post[file]': open(file_, 'rb')}
return self._get('post/update', params, 'PUT', file_)
else:
return self._get('post/update', params, 'PUT') | [
"def",
"post_update",
"(",
"self",
",",
"post_id",
",",
"tags",
"=",
"None",
",",
"file_",
"=",
"None",
",",
"rating",
"=",
"None",
",",
"source",
"=",
"None",
",",
"is_rating_locked",
"=",
"None",
",",
"is_note_locked",
"=",
"None",
",",
"parent_id",
"=",
"None",
")",
":",
"params",
"=",
"{",
"'id'",
":",
"post_id",
",",
"'post[tags]'",
":",
"tags",
",",
"'post[rating]'",
":",
"rating",
",",
"'post[source]'",
":",
"source",
",",
"'post[is_rating_locked]'",
":",
"is_rating_locked",
",",
"'post[is_note_locked]'",
":",
"is_note_locked",
",",
"'post[parent_id]'",
":",
"parent_id",
"}",
"if",
"file_",
"is",
"not",
"None",
":",
"file_",
"=",
"{",
"'post[file]'",
":",
"open",
"(",
"file_",
",",
"'rb'",
")",
"}",
"return",
"self",
".",
"_get",
"(",
"'post/update'",
",",
"params",
",",
"'PUT'",
",",
"file_",
")",
"else",
":",
"return",
"self",
".",
"_get",
"(",
"'post/update'",
",",
"params",
",",
"'PUT'",
")"
]
| Update a specific post.
Only the 'post_id' parameter is required. Leave the other parameters
blank if you don't want to change them (Requires login).
Parameters:
post_id (int): The id number of the post to update.
tags (str): A space delimited list of tags. Specify previous tags.
file_ (str): The file data ENCODED as a multipart form.
rating (str): The rating for the post. Can be: safe, questionable,
or explicit.
source (str): If this is a URL, Moebooru will download the file.
rating_locked (bool): Set to True to prevent others from changing
the rating.
note_locked (bool): Set to True to prevent others from adding
notes.
parent_id (int): The ID of the parent post. | [
"Update",
"a",
"specific",
"post",
"."
]
| 60cd5254684d293b308f0b11b8f4ac2dce101479 | https://github.com/LuqueDaniel/pybooru/blob/60cd5254684d293b308f0b11b8f4ac2dce101479/pybooru/api_moebooru.py#L79-L113 | train |
LuqueDaniel/pybooru | pybooru/moebooru.py | Moebooru.site_name | def site_name(self, site_name):
"""Sets api_version and hash_string.
Parameters:
site_name (str): The site name in 'SITE_LIST', default sites.
Raises:
PybooruError: When 'site_name' isn't valid.
"""
# Set base class property site_name
_Pybooru.site_name.fset(self, site_name)
if ('api_version' and 'hashed_string') in SITE_LIST[site_name]:
self.api_version = SITE_LIST[site_name]['api_version']
self.hash_string = SITE_LIST[site_name]['hashed_string'] | python | def site_name(self, site_name):
"""Sets api_version and hash_string.
Parameters:
site_name (str): The site name in 'SITE_LIST', default sites.
Raises:
PybooruError: When 'site_name' isn't valid.
"""
# Set base class property site_name
_Pybooru.site_name.fset(self, site_name)
if ('api_version' and 'hashed_string') in SITE_LIST[site_name]:
self.api_version = SITE_LIST[site_name]['api_version']
self.hash_string = SITE_LIST[site_name]['hashed_string'] | [
"def",
"site_name",
"(",
"self",
",",
"site_name",
")",
":",
"# Set base class property site_name",
"_Pybooru",
".",
"site_name",
".",
"fset",
"(",
"self",
",",
"site_name",
")",
"if",
"(",
"'api_version'",
"and",
"'hashed_string'",
")",
"in",
"SITE_LIST",
"[",
"site_name",
"]",
":",
"self",
".",
"api_version",
"=",
"SITE_LIST",
"[",
"site_name",
"]",
"[",
"'api_version'",
"]",
"self",
".",
"hash_string",
"=",
"SITE_LIST",
"[",
"site_name",
"]",
"[",
"'hashed_string'",
"]"
]
| Sets api_version and hash_string.
Parameters:
site_name (str): The site name in 'SITE_LIST', default sites.
Raises:
PybooruError: When 'site_name' isn't valid. | [
"Sets",
"api_version",
"and",
"hash_string",
"."
]
| 60cd5254684d293b308f0b11b8f4ac2dce101479 | https://github.com/LuqueDaniel/pybooru/blob/60cd5254684d293b308f0b11b8f4ac2dce101479/pybooru/moebooru.py#L74-L88 | train |
LuqueDaniel/pybooru | pybooru/moebooru.py | Moebooru._build_url | def _build_url(self, api_call):
"""Build request url.
Parameters:
api_call (str): Base API Call.
Returns:
Complete url (str).
"""
if self.api_version in ('1.13.0', '1.13.0+update.1', '1.13.0+update.2'):
if '/' not in api_call:
return "{0}/{1}/index.json".format(self.site_url, api_call)
return "{0}/{1}.json".format(self.site_url, api_call) | python | def _build_url(self, api_call):
"""Build request url.
Parameters:
api_call (str): Base API Call.
Returns:
Complete url (str).
"""
if self.api_version in ('1.13.0', '1.13.0+update.1', '1.13.0+update.2'):
if '/' not in api_call:
return "{0}/{1}/index.json".format(self.site_url, api_call)
return "{0}/{1}.json".format(self.site_url, api_call) | [
"def",
"_build_url",
"(",
"self",
",",
"api_call",
")",
":",
"if",
"self",
".",
"api_version",
"in",
"(",
"'1.13.0'",
",",
"'1.13.0+update.1'",
",",
"'1.13.0+update.2'",
")",
":",
"if",
"'/'",
"not",
"in",
"api_call",
":",
"return",
"\"{0}/{1}/index.json\"",
".",
"format",
"(",
"self",
".",
"site_url",
",",
"api_call",
")",
"return",
"\"{0}/{1}.json\"",
".",
"format",
"(",
"self",
".",
"site_url",
",",
"api_call",
")"
]
| Build request url.
Parameters:
api_call (str): Base API Call.
Returns:
Complete url (str). | [
"Build",
"request",
"url",
"."
]
| 60cd5254684d293b308f0b11b8f4ac2dce101479 | https://github.com/LuqueDaniel/pybooru/blob/60cd5254684d293b308f0b11b8f4ac2dce101479/pybooru/moebooru.py#L90-L102 | train |
LuqueDaniel/pybooru | pybooru/moebooru.py | Moebooru._build_hash_string | def _build_hash_string(self):
"""Function for build password hash string.
Raises:
PybooruError: When isn't provide hash string.
PybooruError: When aren't provide username or password.
PybooruError: When Pybooru can't add password to hash strring.
"""
# Build AUTENTICATION hash_string
# Check if hash_string exists
if self.site_name in SITE_LIST or self.hash_string:
if self.username and self.password:
try:
hash_string = self.hash_string.format(self.password)
except TypeError:
raise PybooruError("Pybooru can't add 'password' "
"to 'hash_string'")
# encrypt hashed_string to SHA1 and return hexdigest string
self.password_hash = hashlib.sha1(
hash_string.encode('utf-8')).hexdigest()
else:
raise PybooruError("Specify the 'username' and 'password' "
"parameters of the Pybooru object, for "
"setting 'password_hash' attribute.")
else:
raise PybooruError(
"Specify the 'hash_string' parameter of the Pybooru"
" object, for the functions that requires login.") | python | def _build_hash_string(self):
"""Function for build password hash string.
Raises:
PybooruError: When isn't provide hash string.
PybooruError: When aren't provide username or password.
PybooruError: When Pybooru can't add password to hash strring.
"""
# Build AUTENTICATION hash_string
# Check if hash_string exists
if self.site_name in SITE_LIST or self.hash_string:
if self.username and self.password:
try:
hash_string = self.hash_string.format(self.password)
except TypeError:
raise PybooruError("Pybooru can't add 'password' "
"to 'hash_string'")
# encrypt hashed_string to SHA1 and return hexdigest string
self.password_hash = hashlib.sha1(
hash_string.encode('utf-8')).hexdigest()
else:
raise PybooruError("Specify the 'username' and 'password' "
"parameters of the Pybooru object, for "
"setting 'password_hash' attribute.")
else:
raise PybooruError(
"Specify the 'hash_string' parameter of the Pybooru"
" object, for the functions that requires login.") | [
"def",
"_build_hash_string",
"(",
"self",
")",
":",
"# Build AUTENTICATION hash_string",
"# Check if hash_string exists",
"if",
"self",
".",
"site_name",
"in",
"SITE_LIST",
"or",
"self",
".",
"hash_string",
":",
"if",
"self",
".",
"username",
"and",
"self",
".",
"password",
":",
"try",
":",
"hash_string",
"=",
"self",
".",
"hash_string",
".",
"format",
"(",
"self",
".",
"password",
")",
"except",
"TypeError",
":",
"raise",
"PybooruError",
"(",
"\"Pybooru can't add 'password' \"",
"\"to 'hash_string'\"",
")",
"# encrypt hashed_string to SHA1 and return hexdigest string",
"self",
".",
"password_hash",
"=",
"hashlib",
".",
"sha1",
"(",
"hash_string",
".",
"encode",
"(",
"'utf-8'",
")",
")",
".",
"hexdigest",
"(",
")",
"else",
":",
"raise",
"PybooruError",
"(",
"\"Specify the 'username' and 'password' \"",
"\"parameters of the Pybooru object, for \"",
"\"setting 'password_hash' attribute.\"",
")",
"else",
":",
"raise",
"PybooruError",
"(",
"\"Specify the 'hash_string' parameter of the Pybooru\"",
"\" object, for the functions that requires login.\"",
")"
]
| Function for build password hash string.
Raises:
PybooruError: When isn't provide hash string.
PybooruError: When aren't provide username or password.
PybooruError: When Pybooru can't add password to hash strring. | [
"Function",
"for",
"build",
"password",
"hash",
"string",
"."
]
| 60cd5254684d293b308f0b11b8f4ac2dce101479 | https://github.com/LuqueDaniel/pybooru/blob/60cd5254684d293b308f0b11b8f4ac2dce101479/pybooru/moebooru.py#L104-L131 | train |
bjodah/pyodesys | pyodesys/symbolic.py | _is_autonomous | def _is_autonomous(indep, exprs):
""" Whether the expressions for the dependent variables are autonomous.
Note that the system may still behave as an autonomous system on the interface
of :meth:`integrate` due to use of pre-/post-processors.
"""
if indep is None:
return True
for expr in exprs:
try:
in_there = indep in expr.free_symbols
except:
in_there = expr.has(indep)
if in_there:
return False
return True | python | def _is_autonomous(indep, exprs):
""" Whether the expressions for the dependent variables are autonomous.
Note that the system may still behave as an autonomous system on the interface
of :meth:`integrate` due to use of pre-/post-processors.
"""
if indep is None:
return True
for expr in exprs:
try:
in_there = indep in expr.free_symbols
except:
in_there = expr.has(indep)
if in_there:
return False
return True | [
"def",
"_is_autonomous",
"(",
"indep",
",",
"exprs",
")",
":",
"if",
"indep",
"is",
"None",
":",
"return",
"True",
"for",
"expr",
"in",
"exprs",
":",
"try",
":",
"in_there",
"=",
"indep",
"in",
"expr",
".",
"free_symbols",
"except",
":",
"in_there",
"=",
"expr",
".",
"has",
"(",
"indep",
")",
"if",
"in_there",
":",
"return",
"False",
"return",
"True"
]
| Whether the expressions for the dependent variables are autonomous.
Note that the system may still behave as an autonomous system on the interface
of :meth:`integrate` due to use of pre-/post-processors. | [
"Whether",
"the",
"expressions",
"for",
"the",
"dependent",
"variables",
"are",
"autonomous",
"."
]
| 0034a6165b550d8d9808baef58678dca5a493ab7 | https://github.com/bjodah/pyodesys/blob/0034a6165b550d8d9808baef58678dca5a493ab7/pyodesys/symbolic.py#L81-L96 | train |
bjodah/pyodesys | pyodesys/symbolic.py | symmetricsys | def symmetricsys(dep_tr=None, indep_tr=None, SuperClass=TransformedSys, **kwargs):
""" A factory function for creating symmetrically transformed systems.
Creates a new subclass which applies the same transformation for each dependent variable.
Parameters
----------
dep_tr : pair of callables (default: None)
Forward and backward transformation callbacks to be applied to the
dependent variables.
indep_tr : pair of callables (default: None)
Forward and backward transformation to be applied to the
independent variable.
SuperClass : class
\*\*kwargs :
Default keyword arguments for the TransformedSys subclass.
Returns
-------
Subclass of SuperClass (by default :class:`TransformedSys`).
Examples
--------
>>> import sympy
>>> logexp = (sympy.log, sympy.exp)
>>> def psimp(exprs):
... return [sympy.powsimp(expr.expand(), force=True) for expr in exprs]
...
>>> LogLogSys = symmetricsys(logexp, logexp, exprs_process_cb=psimp)
>>> mysys = LogLogSys.from_callback(lambda x, y, p: [-y[0], y[0] - y[1]], 2, 0)
>>> mysys.exprs
(-exp(x_0), -exp(x_0) + exp(x_0 + y_0 - y_1))
"""
if dep_tr is not None:
if not callable(dep_tr[0]) or not callable(dep_tr[1]):
raise ValueError("Exceptected dep_tr to be a pair of callables")
if indep_tr is not None:
if not callable(indep_tr[0]) or not callable(indep_tr[1]):
raise ValueError("Exceptected indep_tr to be a pair of callables")
class _SymmetricSys(SuperClass):
def __init__(self, dep_exprs, indep=None, **inner_kwargs):
new_kwargs = kwargs.copy()
new_kwargs.update(inner_kwargs)
dep, exprs = zip(*dep_exprs)
super(_SymmetricSys, self).__init__(
zip(dep, exprs), indep,
dep_transf=list(zip(
list(map(dep_tr[0], dep)),
list(map(dep_tr[1], dep))
)) if dep_tr is not None else None,
indep_transf=((indep_tr[0](indep), indep_tr[1](indep))
if indep_tr is not None else None),
**new_kwargs)
@classmethod
def from_callback(cls, cb, ny=None, nparams=None, **inner_kwargs):
new_kwargs = kwargs.copy()
new_kwargs.update(inner_kwargs)
return SuperClass.from_callback(
cb, ny, nparams,
dep_transf_cbs=repeat(dep_tr) if dep_tr is not None else None,
indep_transf_cbs=indep_tr,
**new_kwargs)
return _SymmetricSys | python | def symmetricsys(dep_tr=None, indep_tr=None, SuperClass=TransformedSys, **kwargs):
""" A factory function for creating symmetrically transformed systems.
Creates a new subclass which applies the same transformation for each dependent variable.
Parameters
----------
dep_tr : pair of callables (default: None)
Forward and backward transformation callbacks to be applied to the
dependent variables.
indep_tr : pair of callables (default: None)
Forward and backward transformation to be applied to the
independent variable.
SuperClass : class
\*\*kwargs :
Default keyword arguments for the TransformedSys subclass.
Returns
-------
Subclass of SuperClass (by default :class:`TransformedSys`).
Examples
--------
>>> import sympy
>>> logexp = (sympy.log, sympy.exp)
>>> def psimp(exprs):
... return [sympy.powsimp(expr.expand(), force=True) for expr in exprs]
...
>>> LogLogSys = symmetricsys(logexp, logexp, exprs_process_cb=psimp)
>>> mysys = LogLogSys.from_callback(lambda x, y, p: [-y[0], y[0] - y[1]], 2, 0)
>>> mysys.exprs
(-exp(x_0), -exp(x_0) + exp(x_0 + y_0 - y_1))
"""
if dep_tr is not None:
if not callable(dep_tr[0]) or not callable(dep_tr[1]):
raise ValueError("Exceptected dep_tr to be a pair of callables")
if indep_tr is not None:
if not callable(indep_tr[0]) or not callable(indep_tr[1]):
raise ValueError("Exceptected indep_tr to be a pair of callables")
class _SymmetricSys(SuperClass):
def __init__(self, dep_exprs, indep=None, **inner_kwargs):
new_kwargs = kwargs.copy()
new_kwargs.update(inner_kwargs)
dep, exprs = zip(*dep_exprs)
super(_SymmetricSys, self).__init__(
zip(dep, exprs), indep,
dep_transf=list(zip(
list(map(dep_tr[0], dep)),
list(map(dep_tr[1], dep))
)) if dep_tr is not None else None,
indep_transf=((indep_tr[0](indep), indep_tr[1](indep))
if indep_tr is not None else None),
**new_kwargs)
@classmethod
def from_callback(cls, cb, ny=None, nparams=None, **inner_kwargs):
new_kwargs = kwargs.copy()
new_kwargs.update(inner_kwargs)
return SuperClass.from_callback(
cb, ny, nparams,
dep_transf_cbs=repeat(dep_tr) if dep_tr is not None else None,
indep_transf_cbs=indep_tr,
**new_kwargs)
return _SymmetricSys | [
"def",
"symmetricsys",
"(",
"dep_tr",
"=",
"None",
",",
"indep_tr",
"=",
"None",
",",
"SuperClass",
"=",
"TransformedSys",
",",
"*",
"*",
"kwargs",
")",
":",
"if",
"dep_tr",
"is",
"not",
"None",
":",
"if",
"not",
"callable",
"(",
"dep_tr",
"[",
"0",
"]",
")",
"or",
"not",
"callable",
"(",
"dep_tr",
"[",
"1",
"]",
")",
":",
"raise",
"ValueError",
"(",
"\"Exceptected dep_tr to be a pair of callables\"",
")",
"if",
"indep_tr",
"is",
"not",
"None",
":",
"if",
"not",
"callable",
"(",
"indep_tr",
"[",
"0",
"]",
")",
"or",
"not",
"callable",
"(",
"indep_tr",
"[",
"1",
"]",
")",
":",
"raise",
"ValueError",
"(",
"\"Exceptected indep_tr to be a pair of callables\"",
")",
"class",
"_SymmetricSys",
"(",
"SuperClass",
")",
":",
"def",
"__init__",
"(",
"self",
",",
"dep_exprs",
",",
"indep",
"=",
"None",
",",
"*",
"*",
"inner_kwargs",
")",
":",
"new_kwargs",
"=",
"kwargs",
".",
"copy",
"(",
")",
"new_kwargs",
".",
"update",
"(",
"inner_kwargs",
")",
"dep",
",",
"exprs",
"=",
"zip",
"(",
"*",
"dep_exprs",
")",
"super",
"(",
"_SymmetricSys",
",",
"self",
")",
".",
"__init__",
"(",
"zip",
"(",
"dep",
",",
"exprs",
")",
",",
"indep",
",",
"dep_transf",
"=",
"list",
"(",
"zip",
"(",
"list",
"(",
"map",
"(",
"dep_tr",
"[",
"0",
"]",
",",
"dep",
")",
")",
",",
"list",
"(",
"map",
"(",
"dep_tr",
"[",
"1",
"]",
",",
"dep",
")",
")",
")",
")",
"if",
"dep_tr",
"is",
"not",
"None",
"else",
"None",
",",
"indep_transf",
"=",
"(",
"(",
"indep_tr",
"[",
"0",
"]",
"(",
"indep",
")",
",",
"indep_tr",
"[",
"1",
"]",
"(",
"indep",
")",
")",
"if",
"indep_tr",
"is",
"not",
"None",
"else",
"None",
")",
",",
"*",
"*",
"new_kwargs",
")",
"@",
"classmethod",
"def",
"from_callback",
"(",
"cls",
",",
"cb",
",",
"ny",
"=",
"None",
",",
"nparams",
"=",
"None",
",",
"*",
"*",
"inner_kwargs",
")",
":",
"new_kwargs",
"=",
"kwargs",
".",
"copy",
"(",
")",
"new_kwargs",
".",
"update",
"(",
"inner_kwargs",
")",
"return",
"SuperClass",
".",
"from_callback",
"(",
"cb",
",",
"ny",
",",
"nparams",
",",
"dep_transf_cbs",
"=",
"repeat",
"(",
"dep_tr",
")",
"if",
"dep_tr",
"is",
"not",
"None",
"else",
"None",
",",
"indep_transf_cbs",
"=",
"indep_tr",
",",
"*",
"*",
"new_kwargs",
")",
"return",
"_SymmetricSys"
]
| A factory function for creating symmetrically transformed systems.
Creates a new subclass which applies the same transformation for each dependent variable.
Parameters
----------
dep_tr : pair of callables (default: None)
Forward and backward transformation callbacks to be applied to the
dependent variables.
indep_tr : pair of callables (default: None)
Forward and backward transformation to be applied to the
independent variable.
SuperClass : class
\*\*kwargs :
Default keyword arguments for the TransformedSys subclass.
Returns
-------
Subclass of SuperClass (by default :class:`TransformedSys`).
Examples
--------
>>> import sympy
>>> logexp = (sympy.log, sympy.exp)
>>> def psimp(exprs):
... return [sympy.powsimp(expr.expand(), force=True) for expr in exprs]
...
>>> LogLogSys = symmetricsys(logexp, logexp, exprs_process_cb=psimp)
>>> mysys = LogLogSys.from_callback(lambda x, y, p: [-y[0], y[0] - y[1]], 2, 0)
>>> mysys.exprs
(-exp(x_0), -exp(x_0) + exp(x_0 + y_0 - y_1)) | [
"A",
"factory",
"function",
"for",
"creating",
"symmetrically",
"transformed",
"systems",
"."
]
| 0034a6165b550d8d9808baef58678dca5a493ab7 | https://github.com/bjodah/pyodesys/blob/0034a6165b550d8d9808baef58678dca5a493ab7/pyodesys/symbolic.py#L961-L1027 | train |
bjodah/pyodesys | pyodesys/symbolic.py | SymbolicSys.from_other | def from_other(cls, ori, **kwargs):
""" Creates a new instance with an existing one as a template.
Parameters
----------
ori : SymbolicSys instance
\\*\\*kwargs:
Keyword arguments used to create the new instance.
Returns
-------
A new instance of the class.
"""
for k in cls._attrs_to_copy + ('params', 'roots', 'init_indep', 'init_dep'):
if k not in kwargs:
val = getattr(ori, k)
if val is not None:
kwargs[k] = val
if 'lower_bounds' not in kwargs and getattr(ori, 'lower_bounds') is not None:
kwargs['lower_bounds'] = ori.lower_bounds
if 'upper_bounds' not in kwargs and getattr(ori, 'upper_bounds') is not None:
kwargs['upper_bounds'] = ori.upper_bounds
if len(ori.pre_processors) > 0:
if 'pre_processors' not in kwargs:
kwargs['pre_processors'] = []
kwargs['pre_processors'] = kwargs['pre_processors'] + ori.pre_processors
if len(ori.post_processors) > 0:
if 'post_processors' not in kwargs:
kwargs['post_processors'] = []
kwargs['post_processors'] = ori.post_processors + kwargs['post_processors']
if 'dep_exprs' not in kwargs:
kwargs['dep_exprs'] = zip(ori.dep, ori.exprs)
if 'indep' not in kwargs:
kwargs['indep'] = ori.indep
instance = cls(**kwargs)
for attr in ori._attrs_to_copy:
if attr not in cls._attrs_to_copy:
setattr(instance, attr, getattr(ori, attr))
return instance | python | def from_other(cls, ori, **kwargs):
""" Creates a new instance with an existing one as a template.
Parameters
----------
ori : SymbolicSys instance
\\*\\*kwargs:
Keyword arguments used to create the new instance.
Returns
-------
A new instance of the class.
"""
for k in cls._attrs_to_copy + ('params', 'roots', 'init_indep', 'init_dep'):
if k not in kwargs:
val = getattr(ori, k)
if val is not None:
kwargs[k] = val
if 'lower_bounds' not in kwargs and getattr(ori, 'lower_bounds') is not None:
kwargs['lower_bounds'] = ori.lower_bounds
if 'upper_bounds' not in kwargs and getattr(ori, 'upper_bounds') is not None:
kwargs['upper_bounds'] = ori.upper_bounds
if len(ori.pre_processors) > 0:
if 'pre_processors' not in kwargs:
kwargs['pre_processors'] = []
kwargs['pre_processors'] = kwargs['pre_processors'] + ori.pre_processors
if len(ori.post_processors) > 0:
if 'post_processors' not in kwargs:
kwargs['post_processors'] = []
kwargs['post_processors'] = ori.post_processors + kwargs['post_processors']
if 'dep_exprs' not in kwargs:
kwargs['dep_exprs'] = zip(ori.dep, ori.exprs)
if 'indep' not in kwargs:
kwargs['indep'] = ori.indep
instance = cls(**kwargs)
for attr in ori._attrs_to_copy:
if attr not in cls._attrs_to_copy:
setattr(instance, attr, getattr(ori, attr))
return instance | [
"def",
"from_other",
"(",
"cls",
",",
"ori",
",",
"*",
"*",
"kwargs",
")",
":",
"for",
"k",
"in",
"cls",
".",
"_attrs_to_copy",
"+",
"(",
"'params'",
",",
"'roots'",
",",
"'init_indep'",
",",
"'init_dep'",
")",
":",
"if",
"k",
"not",
"in",
"kwargs",
":",
"val",
"=",
"getattr",
"(",
"ori",
",",
"k",
")",
"if",
"val",
"is",
"not",
"None",
":",
"kwargs",
"[",
"k",
"]",
"=",
"val",
"if",
"'lower_bounds'",
"not",
"in",
"kwargs",
"and",
"getattr",
"(",
"ori",
",",
"'lower_bounds'",
")",
"is",
"not",
"None",
":",
"kwargs",
"[",
"'lower_bounds'",
"]",
"=",
"ori",
".",
"lower_bounds",
"if",
"'upper_bounds'",
"not",
"in",
"kwargs",
"and",
"getattr",
"(",
"ori",
",",
"'upper_bounds'",
")",
"is",
"not",
"None",
":",
"kwargs",
"[",
"'upper_bounds'",
"]",
"=",
"ori",
".",
"upper_bounds",
"if",
"len",
"(",
"ori",
".",
"pre_processors",
")",
">",
"0",
":",
"if",
"'pre_processors'",
"not",
"in",
"kwargs",
":",
"kwargs",
"[",
"'pre_processors'",
"]",
"=",
"[",
"]",
"kwargs",
"[",
"'pre_processors'",
"]",
"=",
"kwargs",
"[",
"'pre_processors'",
"]",
"+",
"ori",
".",
"pre_processors",
"if",
"len",
"(",
"ori",
".",
"post_processors",
")",
">",
"0",
":",
"if",
"'post_processors'",
"not",
"in",
"kwargs",
":",
"kwargs",
"[",
"'post_processors'",
"]",
"=",
"[",
"]",
"kwargs",
"[",
"'post_processors'",
"]",
"=",
"ori",
".",
"post_processors",
"+",
"kwargs",
"[",
"'post_processors'",
"]",
"if",
"'dep_exprs'",
"not",
"in",
"kwargs",
":",
"kwargs",
"[",
"'dep_exprs'",
"]",
"=",
"zip",
"(",
"ori",
".",
"dep",
",",
"ori",
".",
"exprs",
")",
"if",
"'indep'",
"not",
"in",
"kwargs",
":",
"kwargs",
"[",
"'indep'",
"]",
"=",
"ori",
".",
"indep",
"instance",
"=",
"cls",
"(",
"*",
"*",
"kwargs",
")",
"for",
"attr",
"in",
"ori",
".",
"_attrs_to_copy",
":",
"if",
"attr",
"not",
"in",
"cls",
".",
"_attrs_to_copy",
":",
"setattr",
"(",
"instance",
",",
"attr",
",",
"getattr",
"(",
"ori",
",",
"attr",
")",
")",
"return",
"instance"
]
| Creates a new instance with an existing one as a template.
Parameters
----------
ori : SymbolicSys instance
\\*\\*kwargs:
Keyword arguments used to create the new instance.
Returns
-------
A new instance of the class. | [
"Creates",
"a",
"new",
"instance",
"with",
"an",
"existing",
"one",
"as",
"a",
"template",
"."
]
| 0034a6165b550d8d9808baef58678dca5a493ab7 | https://github.com/bjodah/pyodesys/blob/0034a6165b550d8d9808baef58678dca5a493ab7/pyodesys/symbolic.py#L466-L508 | train |
bjodah/pyodesys | pyodesys/symbolic.py | SymbolicSys.get_jac | def get_jac(self):
""" Derives the jacobian from ``self.exprs`` and ``self.dep``. """
if self._jac is True:
if self.sparse is True:
self._jac, self._colptrs, self._rowvals = self.be.sparse_jacobian_csc(self.exprs, self.dep)
elif self.band is not None: # Banded
self._jac = self.be.banded_jacobian(self.exprs, self.dep, *self.band)
else:
f = self.be.Matrix(1, self.ny, self.exprs)
self._jac = f.jacobian(self.be.Matrix(1, self.ny, self.dep))
elif self._jac is False:
return False
return self._jac | python | def get_jac(self):
""" Derives the jacobian from ``self.exprs`` and ``self.dep``. """
if self._jac is True:
if self.sparse is True:
self._jac, self._colptrs, self._rowvals = self.be.sparse_jacobian_csc(self.exprs, self.dep)
elif self.band is not None: # Banded
self._jac = self.be.banded_jacobian(self.exprs, self.dep, *self.band)
else:
f = self.be.Matrix(1, self.ny, self.exprs)
self._jac = f.jacobian(self.be.Matrix(1, self.ny, self.dep))
elif self._jac is False:
return False
return self._jac | [
"def",
"get_jac",
"(",
"self",
")",
":",
"if",
"self",
".",
"_jac",
"is",
"True",
":",
"if",
"self",
".",
"sparse",
"is",
"True",
":",
"self",
".",
"_jac",
",",
"self",
".",
"_colptrs",
",",
"self",
".",
"_rowvals",
"=",
"self",
".",
"be",
".",
"sparse_jacobian_csc",
"(",
"self",
".",
"exprs",
",",
"self",
".",
"dep",
")",
"elif",
"self",
".",
"band",
"is",
"not",
"None",
":",
"# Banded",
"self",
".",
"_jac",
"=",
"self",
".",
"be",
".",
"banded_jacobian",
"(",
"self",
".",
"exprs",
",",
"self",
".",
"dep",
",",
"*",
"self",
".",
"band",
")",
"else",
":",
"f",
"=",
"self",
".",
"be",
".",
"Matrix",
"(",
"1",
",",
"self",
".",
"ny",
",",
"self",
".",
"exprs",
")",
"self",
".",
"_jac",
"=",
"f",
".",
"jacobian",
"(",
"self",
".",
"be",
".",
"Matrix",
"(",
"1",
",",
"self",
".",
"ny",
",",
"self",
".",
"dep",
")",
")",
"elif",
"self",
".",
"_jac",
"is",
"False",
":",
"return",
"False",
"return",
"self",
".",
"_jac"
]
| Derives the jacobian from ``self.exprs`` and ``self.dep``. | [
"Derives",
"the",
"jacobian",
"from",
"self",
".",
"exprs",
"and",
"self",
".",
"dep",
"."
]
| 0034a6165b550d8d9808baef58678dca5a493ab7 | https://github.com/bjodah/pyodesys/blob/0034a6165b550d8d9808baef58678dca5a493ab7/pyodesys/symbolic.py#L637-L650 | train |
bjodah/pyodesys | pyodesys/symbolic.py | SymbolicSys.get_jtimes | def get_jtimes(self):
""" Derive the jacobian-vector product from ``self.exprs`` and ``self.dep``"""
if self._jtimes is False:
return False
if self._jtimes is True:
r = self.be.Dummy('r')
v = tuple(self.be.Dummy('v_{0}'.format(i)) for i in range(self.ny))
f = self.be.Matrix(1, self.ny, self.exprs)
f = f.subs([(x_i, x_i + r * v_i) for x_i, v_i in zip(self.dep, v)])
return v, self.be.flatten(f.diff(r).subs(r, 0))
else:
return tuple(zip(*self._jtimes)) | python | def get_jtimes(self):
""" Derive the jacobian-vector product from ``self.exprs`` and ``self.dep``"""
if self._jtimes is False:
return False
if self._jtimes is True:
r = self.be.Dummy('r')
v = tuple(self.be.Dummy('v_{0}'.format(i)) for i in range(self.ny))
f = self.be.Matrix(1, self.ny, self.exprs)
f = f.subs([(x_i, x_i + r * v_i) for x_i, v_i in zip(self.dep, v)])
return v, self.be.flatten(f.diff(r).subs(r, 0))
else:
return tuple(zip(*self._jtimes)) | [
"def",
"get_jtimes",
"(",
"self",
")",
":",
"if",
"self",
".",
"_jtimes",
"is",
"False",
":",
"return",
"False",
"if",
"self",
".",
"_jtimes",
"is",
"True",
":",
"r",
"=",
"self",
".",
"be",
".",
"Dummy",
"(",
"'r'",
")",
"v",
"=",
"tuple",
"(",
"self",
".",
"be",
".",
"Dummy",
"(",
"'v_{0}'",
".",
"format",
"(",
"i",
")",
")",
"for",
"i",
"in",
"range",
"(",
"self",
".",
"ny",
")",
")",
"f",
"=",
"self",
".",
"be",
".",
"Matrix",
"(",
"1",
",",
"self",
".",
"ny",
",",
"self",
".",
"exprs",
")",
"f",
"=",
"f",
".",
"subs",
"(",
"[",
"(",
"x_i",
",",
"x_i",
"+",
"r",
"*",
"v_i",
")",
"for",
"x_i",
",",
"v_i",
"in",
"zip",
"(",
"self",
".",
"dep",
",",
"v",
")",
"]",
")",
"return",
"v",
",",
"self",
".",
"be",
".",
"flatten",
"(",
"f",
".",
"diff",
"(",
"r",
")",
".",
"subs",
"(",
"r",
",",
"0",
")",
")",
"else",
":",
"return",
"tuple",
"(",
"zip",
"(",
"*",
"self",
".",
"_jtimes",
")",
")"
]
| Derive the jacobian-vector product from ``self.exprs`` and ``self.dep`` | [
"Derive",
"the",
"jacobian",
"-",
"vector",
"product",
"from",
"self",
".",
"exprs",
"and",
"self",
".",
"dep"
]
| 0034a6165b550d8d9808baef58678dca5a493ab7 | https://github.com/bjodah/pyodesys/blob/0034a6165b550d8d9808baef58678dca5a493ab7/pyodesys/symbolic.py#L652-L664 | train |
bjodah/pyodesys | pyodesys/symbolic.py | SymbolicSys.jacobian_singular | def jacobian_singular(self):
""" Returns True if Jacobian is singular, else False. """
cses, (jac_in_cses,) = self.be.cse(self.get_jac())
if jac_in_cses.nullspace():
return True
else:
return False | python | def jacobian_singular(self):
""" Returns True if Jacobian is singular, else False. """
cses, (jac_in_cses,) = self.be.cse(self.get_jac())
if jac_in_cses.nullspace():
return True
else:
return False | [
"def",
"jacobian_singular",
"(",
"self",
")",
":",
"cses",
",",
"(",
"jac_in_cses",
",",
")",
"=",
"self",
".",
"be",
".",
"cse",
"(",
"self",
".",
"get_jac",
"(",
")",
")",
"if",
"jac_in_cses",
".",
"nullspace",
"(",
")",
":",
"return",
"True",
"else",
":",
"return",
"False"
]
| Returns True if Jacobian is singular, else False. | [
"Returns",
"True",
"if",
"Jacobian",
"is",
"singular",
"else",
"False",
"."
]
| 0034a6165b550d8d9808baef58678dca5a493ab7 | https://github.com/bjodah/pyodesys/blob/0034a6165b550d8d9808baef58678dca5a493ab7/pyodesys/symbolic.py#L666-L672 | train |
bjodah/pyodesys | pyodesys/symbolic.py | SymbolicSys.get_dfdx | def get_dfdx(self):
""" Calculates 2nd derivatives of ``self.exprs`` """
if self._dfdx is True:
if self.indep is None:
zero = 0*self.be.Dummy()**0
self._dfdx = self.be.Matrix(1, self.ny, [zero]*self.ny)
else:
self._dfdx = self.be.Matrix(1, self.ny, [expr.diff(self.indep) for expr in self.exprs])
elif self._dfdx is False:
return False
return self._dfdx | python | def get_dfdx(self):
""" Calculates 2nd derivatives of ``self.exprs`` """
if self._dfdx is True:
if self.indep is None:
zero = 0*self.be.Dummy()**0
self._dfdx = self.be.Matrix(1, self.ny, [zero]*self.ny)
else:
self._dfdx = self.be.Matrix(1, self.ny, [expr.diff(self.indep) for expr in self.exprs])
elif self._dfdx is False:
return False
return self._dfdx | [
"def",
"get_dfdx",
"(",
"self",
")",
":",
"if",
"self",
".",
"_dfdx",
"is",
"True",
":",
"if",
"self",
".",
"indep",
"is",
"None",
":",
"zero",
"=",
"0",
"*",
"self",
".",
"be",
".",
"Dummy",
"(",
")",
"**",
"0",
"self",
".",
"_dfdx",
"=",
"self",
".",
"be",
".",
"Matrix",
"(",
"1",
",",
"self",
".",
"ny",
",",
"[",
"zero",
"]",
"*",
"self",
".",
"ny",
")",
"else",
":",
"self",
".",
"_dfdx",
"=",
"self",
".",
"be",
".",
"Matrix",
"(",
"1",
",",
"self",
".",
"ny",
",",
"[",
"expr",
".",
"diff",
"(",
"self",
".",
"indep",
")",
"for",
"expr",
"in",
"self",
".",
"exprs",
"]",
")",
"elif",
"self",
".",
"_dfdx",
"is",
"False",
":",
"return",
"False",
"return",
"self",
".",
"_dfdx"
]
| Calculates 2nd derivatives of ``self.exprs`` | [
"Calculates",
"2nd",
"derivatives",
"of",
"self",
".",
"exprs"
]
| 0034a6165b550d8d9808baef58678dca5a493ab7 | https://github.com/bjodah/pyodesys/blob/0034a6165b550d8d9808baef58678dca5a493ab7/pyodesys/symbolic.py#L674-L684 | train |
bjodah/pyodesys | pyodesys/symbolic.py | SymbolicSys.get_f_ty_callback | def get_f_ty_callback(self):
""" Generates a callback for evaluating ``self.exprs``. """
cb = self._callback_factory(self.exprs)
lb = self.lower_bounds
ub = self.upper_bounds
if lb is not None or ub is not None:
def _bounds_wrapper(t, y, p=(), be=None):
if lb is not None:
if np.any(y < lb - 10*self._current_integration_kwargs['atol']):
raise RecoverableError
y = np.array(y)
y[y < lb] = lb[y < lb]
if ub is not None:
if np.any(y > ub + 10*self._current_integration_kwargs['atol']):
raise RecoverableError
y = np.array(y)
y[y > ub] = ub[y > ub]
return cb(t, y, p, be)
return _bounds_wrapper
else:
return cb | python | def get_f_ty_callback(self):
""" Generates a callback for evaluating ``self.exprs``. """
cb = self._callback_factory(self.exprs)
lb = self.lower_bounds
ub = self.upper_bounds
if lb is not None or ub is not None:
def _bounds_wrapper(t, y, p=(), be=None):
if lb is not None:
if np.any(y < lb - 10*self._current_integration_kwargs['atol']):
raise RecoverableError
y = np.array(y)
y[y < lb] = lb[y < lb]
if ub is not None:
if np.any(y > ub + 10*self._current_integration_kwargs['atol']):
raise RecoverableError
y = np.array(y)
y[y > ub] = ub[y > ub]
return cb(t, y, p, be)
return _bounds_wrapper
else:
return cb | [
"def",
"get_f_ty_callback",
"(",
"self",
")",
":",
"cb",
"=",
"self",
".",
"_callback_factory",
"(",
"self",
".",
"exprs",
")",
"lb",
"=",
"self",
".",
"lower_bounds",
"ub",
"=",
"self",
".",
"upper_bounds",
"if",
"lb",
"is",
"not",
"None",
"or",
"ub",
"is",
"not",
"None",
":",
"def",
"_bounds_wrapper",
"(",
"t",
",",
"y",
",",
"p",
"=",
"(",
")",
",",
"be",
"=",
"None",
")",
":",
"if",
"lb",
"is",
"not",
"None",
":",
"if",
"np",
".",
"any",
"(",
"y",
"<",
"lb",
"-",
"10",
"*",
"self",
".",
"_current_integration_kwargs",
"[",
"'atol'",
"]",
")",
":",
"raise",
"RecoverableError",
"y",
"=",
"np",
".",
"array",
"(",
"y",
")",
"y",
"[",
"y",
"<",
"lb",
"]",
"=",
"lb",
"[",
"y",
"<",
"lb",
"]",
"if",
"ub",
"is",
"not",
"None",
":",
"if",
"np",
".",
"any",
"(",
"y",
">",
"ub",
"+",
"10",
"*",
"self",
".",
"_current_integration_kwargs",
"[",
"'atol'",
"]",
")",
":",
"raise",
"RecoverableError",
"y",
"=",
"np",
".",
"array",
"(",
"y",
")",
"y",
"[",
"y",
">",
"ub",
"]",
"=",
"ub",
"[",
"y",
">",
"ub",
"]",
"return",
"cb",
"(",
"t",
",",
"y",
",",
"p",
",",
"be",
")",
"return",
"_bounds_wrapper",
"else",
":",
"return",
"cb"
]
| Generates a callback for evaluating ``self.exprs``. | [
"Generates",
"a",
"callback",
"for",
"evaluating",
"self",
".",
"exprs",
"."
]
| 0034a6165b550d8d9808baef58678dca5a493ab7 | https://github.com/bjodah/pyodesys/blob/0034a6165b550d8d9808baef58678dca5a493ab7/pyodesys/symbolic.py#L689-L709 | train |
bjodah/pyodesys | pyodesys/symbolic.py | SymbolicSys.get_j_ty_callback | def get_j_ty_callback(self):
""" Generates a callback for evaluating the jacobian. """
j_exprs = self.get_jac()
if j_exprs is False:
return None
cb = self._callback_factory(j_exprs)
if self.sparse:
from scipy.sparse import csc_matrix
def sparse_cb(x, y, p=()):
data = cb(x, y, p).flatten()
return csc_matrix((data, self._rowvals, self._colptrs))
return sparse_cb
else:
return cb | python | def get_j_ty_callback(self):
""" Generates a callback for evaluating the jacobian. """
j_exprs = self.get_jac()
if j_exprs is False:
return None
cb = self._callback_factory(j_exprs)
if self.sparse:
from scipy.sparse import csc_matrix
def sparse_cb(x, y, p=()):
data = cb(x, y, p).flatten()
return csc_matrix((data, self._rowvals, self._colptrs))
return sparse_cb
else:
return cb | [
"def",
"get_j_ty_callback",
"(",
"self",
")",
":",
"j_exprs",
"=",
"self",
".",
"get_jac",
"(",
")",
"if",
"j_exprs",
"is",
"False",
":",
"return",
"None",
"cb",
"=",
"self",
".",
"_callback_factory",
"(",
"j_exprs",
")",
"if",
"self",
".",
"sparse",
":",
"from",
"scipy",
".",
"sparse",
"import",
"csc_matrix",
"def",
"sparse_cb",
"(",
"x",
",",
"y",
",",
"p",
"=",
"(",
")",
")",
":",
"data",
"=",
"cb",
"(",
"x",
",",
"y",
",",
"p",
")",
".",
"flatten",
"(",
")",
"return",
"csc_matrix",
"(",
"(",
"data",
",",
"self",
".",
"_rowvals",
",",
"self",
".",
"_colptrs",
")",
")",
"return",
"sparse_cb",
"else",
":",
"return",
"cb"
]
| Generates a callback for evaluating the jacobian. | [
"Generates",
"a",
"callback",
"for",
"evaluating",
"the",
"jacobian",
"."
]
| 0034a6165b550d8d9808baef58678dca5a493ab7 | https://github.com/bjodah/pyodesys/blob/0034a6165b550d8d9808baef58678dca5a493ab7/pyodesys/symbolic.py#L711-L726 | train |
bjodah/pyodesys | pyodesys/symbolic.py | SymbolicSys.get_dfdx_callback | def get_dfdx_callback(self):
""" Generate a callback for evaluating derivative of ``self.exprs`` """
dfdx_exprs = self.get_dfdx()
if dfdx_exprs is False:
return None
return self._callback_factory(dfdx_exprs) | python | def get_dfdx_callback(self):
""" Generate a callback for evaluating derivative of ``self.exprs`` """
dfdx_exprs = self.get_dfdx()
if dfdx_exprs is False:
return None
return self._callback_factory(dfdx_exprs) | [
"def",
"get_dfdx_callback",
"(",
"self",
")",
":",
"dfdx_exprs",
"=",
"self",
".",
"get_dfdx",
"(",
")",
"if",
"dfdx_exprs",
"is",
"False",
":",
"return",
"None",
"return",
"self",
".",
"_callback_factory",
"(",
"dfdx_exprs",
")"
]
| Generate a callback for evaluating derivative of ``self.exprs`` | [
"Generate",
"a",
"callback",
"for",
"evaluating",
"derivative",
"of",
"self",
".",
"exprs"
]
| 0034a6165b550d8d9808baef58678dca5a493ab7 | https://github.com/bjodah/pyodesys/blob/0034a6165b550d8d9808baef58678dca5a493ab7/pyodesys/symbolic.py#L728-L733 | train |
bjodah/pyodesys | pyodesys/symbolic.py | SymbolicSys.get_jtimes_callback | def get_jtimes_callback(self):
""" Generate a callback fro evaluating the jacobian-vector product."""
jtimes = self.get_jtimes()
if jtimes is False:
return None
v, jtimes_exprs = jtimes
return _Callback(self.indep, tuple(self.dep) + tuple(v), self.params,
jtimes_exprs, Lambdify=self.be.Lambdify) | python | def get_jtimes_callback(self):
""" Generate a callback fro evaluating the jacobian-vector product."""
jtimes = self.get_jtimes()
if jtimes is False:
return None
v, jtimes_exprs = jtimes
return _Callback(self.indep, tuple(self.dep) + tuple(v), self.params,
jtimes_exprs, Lambdify=self.be.Lambdify) | [
"def",
"get_jtimes_callback",
"(",
"self",
")",
":",
"jtimes",
"=",
"self",
".",
"get_jtimes",
"(",
")",
"if",
"jtimes",
"is",
"False",
":",
"return",
"None",
"v",
",",
"jtimes_exprs",
"=",
"jtimes",
"return",
"_Callback",
"(",
"self",
".",
"indep",
",",
"tuple",
"(",
"self",
".",
"dep",
")",
"+",
"tuple",
"(",
"v",
")",
",",
"self",
".",
"params",
",",
"jtimes_exprs",
",",
"Lambdify",
"=",
"self",
".",
"be",
".",
"Lambdify",
")"
]
| Generate a callback fro evaluating the jacobian-vector product. | [
"Generate",
"a",
"callback",
"fro",
"evaluating",
"the",
"jacobian",
"-",
"vector",
"product",
"."
]
| 0034a6165b550d8d9808baef58678dca5a493ab7 | https://github.com/bjodah/pyodesys/blob/0034a6165b550d8d9808baef58678dca5a493ab7/pyodesys/symbolic.py#L735-L742 | train |
bjodah/pyodesys | pyodesys/symbolic.py | PartiallySolvedSystem.from_linear_invariants | def from_linear_invariants(cls, ori_sys, preferred=None, **kwargs):
""" Reformulates the ODE system in fewer variables.
Given linear invariant equations one can always reduce the number
of dependent variables in the system by the rank of the matrix describing
this linear system.
Parameters
----------
ori_sys : :class:`SymbolicSys` instance
preferred : iterable of preferred dependent variables
Due to numerical rounding it is preferable to choose the variables
which are expected to be of the largest magnitude during integration.
\*\*kwargs :
Keyword arguments passed on to constructor.
"""
_be = ori_sys.be
A = _be.Matrix(ori_sys.linear_invariants)
rA, pivots = A.rref()
if len(pivots) < A.shape[0]:
# If the linear system contains rows which a linearly dependent these could be removed.
# The criterion for removal could be dictated by a user provided callback.
#
# An alternative would be to write the matrix in reduced row echelon form, however,
# this would cause the invariants to become linear combinations of each other and
# their intuitive meaning (original principles they were formulated from) will be lost.
# Hence that is not the default behaviour. However, the user may choose to rewrite the
# equations in reduced row echelon form if they choose to before calling this method.
raise NotImplementedError("Linear invariants contain linear dependencies.")
per_row_cols = [(ri, [ci for ci in range(A.cols) if A[ri, ci] != 0]) for ri in range(A.rows)]
if preferred is None:
preferred = ori_sys.names[:A.rows] if ori_sys.dep_by_name else list(range(A.rows))
targets = [
ori_sys.names.index(dep) if ori_sys.dep_by_name else (
dep if isinstance(dep, int) else ori_sys.dep.index(dep))
for dep in preferred]
row_tgt = []
for ri, colids in sorted(per_row_cols, key=lambda k: len(k[1])):
for tgt in targets:
if tgt in colids:
row_tgt.append((ri, tgt))
targets.remove(tgt)
break
if len(targets) == 0:
break
else:
raise ValueError("Could not find a solutions for: %s" % targets)
def analytic_factory(x0, y0, p0, be):
return {
ori_sys.dep[tgt]: y0[ori_sys.dep[tgt] if ori_sys.dep_by_name else tgt] - sum(
[A[ri, ci]*(ori_sys.dep[ci] - y0[ori_sys.dep[ci] if ori_sys.dep_by_name else ci]) for
ci in range(A.cols) if ci != tgt])/A[ri, tgt] for ri, tgt in row_tgt
}
ori_li_nms = ori_sys.linear_invariant_names or ()
new_lin_invar = [[cell for ci, cell in enumerate(row) if ci not in list(zip(*row_tgt))[1]]
for ri, row in enumerate(A.tolist()) if ri not in list(zip(*row_tgt))[0]]
new_lin_i_nms = [nam for ri, nam in enumerate(ori_li_nms) if ri not in list(zip(*row_tgt))[0]]
return cls(ori_sys, analytic_factory, linear_invariants=new_lin_invar,
linear_invariant_names=new_lin_i_nms, **kwargs) | python | def from_linear_invariants(cls, ori_sys, preferred=None, **kwargs):
""" Reformulates the ODE system in fewer variables.
Given linear invariant equations one can always reduce the number
of dependent variables in the system by the rank of the matrix describing
this linear system.
Parameters
----------
ori_sys : :class:`SymbolicSys` instance
preferred : iterable of preferred dependent variables
Due to numerical rounding it is preferable to choose the variables
which are expected to be of the largest magnitude during integration.
\*\*kwargs :
Keyword arguments passed on to constructor.
"""
_be = ori_sys.be
A = _be.Matrix(ori_sys.linear_invariants)
rA, pivots = A.rref()
if len(pivots) < A.shape[0]:
# If the linear system contains rows which a linearly dependent these could be removed.
# The criterion for removal could be dictated by a user provided callback.
#
# An alternative would be to write the matrix in reduced row echelon form, however,
# this would cause the invariants to become linear combinations of each other and
# their intuitive meaning (original principles they were formulated from) will be lost.
# Hence that is not the default behaviour. However, the user may choose to rewrite the
# equations in reduced row echelon form if they choose to before calling this method.
raise NotImplementedError("Linear invariants contain linear dependencies.")
per_row_cols = [(ri, [ci for ci in range(A.cols) if A[ri, ci] != 0]) for ri in range(A.rows)]
if preferred is None:
preferred = ori_sys.names[:A.rows] if ori_sys.dep_by_name else list(range(A.rows))
targets = [
ori_sys.names.index(dep) if ori_sys.dep_by_name else (
dep if isinstance(dep, int) else ori_sys.dep.index(dep))
for dep in preferred]
row_tgt = []
for ri, colids in sorted(per_row_cols, key=lambda k: len(k[1])):
for tgt in targets:
if tgt in colids:
row_tgt.append((ri, tgt))
targets.remove(tgt)
break
if len(targets) == 0:
break
else:
raise ValueError("Could not find a solutions for: %s" % targets)
def analytic_factory(x0, y0, p0, be):
return {
ori_sys.dep[tgt]: y0[ori_sys.dep[tgt] if ori_sys.dep_by_name else tgt] - sum(
[A[ri, ci]*(ori_sys.dep[ci] - y0[ori_sys.dep[ci] if ori_sys.dep_by_name else ci]) for
ci in range(A.cols) if ci != tgt])/A[ri, tgt] for ri, tgt in row_tgt
}
ori_li_nms = ori_sys.linear_invariant_names or ()
new_lin_invar = [[cell for ci, cell in enumerate(row) if ci not in list(zip(*row_tgt))[1]]
for ri, row in enumerate(A.tolist()) if ri not in list(zip(*row_tgt))[0]]
new_lin_i_nms = [nam for ri, nam in enumerate(ori_li_nms) if ri not in list(zip(*row_tgt))[0]]
return cls(ori_sys, analytic_factory, linear_invariants=new_lin_invar,
linear_invariant_names=new_lin_i_nms, **kwargs) | [
"def",
"from_linear_invariants",
"(",
"cls",
",",
"ori_sys",
",",
"preferred",
"=",
"None",
",",
"*",
"*",
"kwargs",
")",
":",
"_be",
"=",
"ori_sys",
".",
"be",
"A",
"=",
"_be",
".",
"Matrix",
"(",
"ori_sys",
".",
"linear_invariants",
")",
"rA",
",",
"pivots",
"=",
"A",
".",
"rref",
"(",
")",
"if",
"len",
"(",
"pivots",
")",
"<",
"A",
".",
"shape",
"[",
"0",
"]",
":",
"# If the linear system contains rows which a linearly dependent these could be removed.",
"# The criterion for removal could be dictated by a user provided callback.",
"#",
"# An alternative would be to write the matrix in reduced row echelon form, however,",
"# this would cause the invariants to become linear combinations of each other and",
"# their intuitive meaning (original principles they were formulated from) will be lost.",
"# Hence that is not the default behaviour. However, the user may choose to rewrite the",
"# equations in reduced row echelon form if they choose to before calling this method.",
"raise",
"NotImplementedError",
"(",
"\"Linear invariants contain linear dependencies.\"",
")",
"per_row_cols",
"=",
"[",
"(",
"ri",
",",
"[",
"ci",
"for",
"ci",
"in",
"range",
"(",
"A",
".",
"cols",
")",
"if",
"A",
"[",
"ri",
",",
"ci",
"]",
"!=",
"0",
"]",
")",
"for",
"ri",
"in",
"range",
"(",
"A",
".",
"rows",
")",
"]",
"if",
"preferred",
"is",
"None",
":",
"preferred",
"=",
"ori_sys",
".",
"names",
"[",
":",
"A",
".",
"rows",
"]",
"if",
"ori_sys",
".",
"dep_by_name",
"else",
"list",
"(",
"range",
"(",
"A",
".",
"rows",
")",
")",
"targets",
"=",
"[",
"ori_sys",
".",
"names",
".",
"index",
"(",
"dep",
")",
"if",
"ori_sys",
".",
"dep_by_name",
"else",
"(",
"dep",
"if",
"isinstance",
"(",
"dep",
",",
"int",
")",
"else",
"ori_sys",
".",
"dep",
".",
"index",
"(",
"dep",
")",
")",
"for",
"dep",
"in",
"preferred",
"]",
"row_tgt",
"=",
"[",
"]",
"for",
"ri",
",",
"colids",
"in",
"sorted",
"(",
"per_row_cols",
",",
"key",
"=",
"lambda",
"k",
":",
"len",
"(",
"k",
"[",
"1",
"]",
")",
")",
":",
"for",
"tgt",
"in",
"targets",
":",
"if",
"tgt",
"in",
"colids",
":",
"row_tgt",
".",
"append",
"(",
"(",
"ri",
",",
"tgt",
")",
")",
"targets",
".",
"remove",
"(",
"tgt",
")",
"break",
"if",
"len",
"(",
"targets",
")",
"==",
"0",
":",
"break",
"else",
":",
"raise",
"ValueError",
"(",
"\"Could not find a solutions for: %s\"",
"%",
"targets",
")",
"def",
"analytic_factory",
"(",
"x0",
",",
"y0",
",",
"p0",
",",
"be",
")",
":",
"return",
"{",
"ori_sys",
".",
"dep",
"[",
"tgt",
"]",
":",
"y0",
"[",
"ori_sys",
".",
"dep",
"[",
"tgt",
"]",
"if",
"ori_sys",
".",
"dep_by_name",
"else",
"tgt",
"]",
"-",
"sum",
"(",
"[",
"A",
"[",
"ri",
",",
"ci",
"]",
"*",
"(",
"ori_sys",
".",
"dep",
"[",
"ci",
"]",
"-",
"y0",
"[",
"ori_sys",
".",
"dep",
"[",
"ci",
"]",
"if",
"ori_sys",
".",
"dep_by_name",
"else",
"ci",
"]",
")",
"for",
"ci",
"in",
"range",
"(",
"A",
".",
"cols",
")",
"if",
"ci",
"!=",
"tgt",
"]",
")",
"/",
"A",
"[",
"ri",
",",
"tgt",
"]",
"for",
"ri",
",",
"tgt",
"in",
"row_tgt",
"}",
"ori_li_nms",
"=",
"ori_sys",
".",
"linear_invariant_names",
"or",
"(",
")",
"new_lin_invar",
"=",
"[",
"[",
"cell",
"for",
"ci",
",",
"cell",
"in",
"enumerate",
"(",
"row",
")",
"if",
"ci",
"not",
"in",
"list",
"(",
"zip",
"(",
"*",
"row_tgt",
")",
")",
"[",
"1",
"]",
"]",
"for",
"ri",
",",
"row",
"in",
"enumerate",
"(",
"A",
".",
"tolist",
"(",
")",
")",
"if",
"ri",
"not",
"in",
"list",
"(",
"zip",
"(",
"*",
"row_tgt",
")",
")",
"[",
"0",
"]",
"]",
"new_lin_i_nms",
"=",
"[",
"nam",
"for",
"ri",
",",
"nam",
"in",
"enumerate",
"(",
"ori_li_nms",
")",
"if",
"ri",
"not",
"in",
"list",
"(",
"zip",
"(",
"*",
"row_tgt",
")",
")",
"[",
"0",
"]",
"]",
"return",
"cls",
"(",
"ori_sys",
",",
"analytic_factory",
",",
"linear_invariants",
"=",
"new_lin_invar",
",",
"linear_invariant_names",
"=",
"new_lin_i_nms",
",",
"*",
"*",
"kwargs",
")"
]
| Reformulates the ODE system in fewer variables.
Given linear invariant equations one can always reduce the number
of dependent variables in the system by the rank of the matrix describing
this linear system.
Parameters
----------
ori_sys : :class:`SymbolicSys` instance
preferred : iterable of preferred dependent variables
Due to numerical rounding it is preferable to choose the variables
which are expected to be of the largest magnitude during integration.
\*\*kwargs :
Keyword arguments passed on to constructor. | [
"Reformulates",
"the",
"ODE",
"system",
"in",
"fewer",
"variables",
"."
]
| 0034a6165b550d8d9808baef58678dca5a493ab7 | https://github.com/bjodah/pyodesys/blob/0034a6165b550d8d9808baef58678dca5a493ab7/pyodesys/symbolic.py#L1275-L1335 | train |
bjodah/pyodesys | pyodesys/core.py | chained_parameter_variation | def chained_parameter_variation(subject, durations, y0, varied_params, default_params=None,
integrate_kwargs=None, x0=None, npoints=1, numpy=None):
""" Integrate an ODE-system for a serie of durations with some parameters changed in-between
Parameters
----------
subject : function or ODESys instance
If a function: should have the signature of :meth:`pyodesys.ODESys.integrate`
(and resturn a :class:`pyodesys.results.Result` object).
If a ODESys instance: the ``integrate`` method will be used.
durations : iterable of floats
Spans of the independent variable.
y0 : dict or array_like
varied_params : dict mapping parameter name (or index) to array_like
Each array_like need to be of same length as durations.
default_params : dict or array_like
Default values for the parameters of the ODE system.
integrate_kwargs : dict
Keyword arguments passed on to ``integrate``.
x0 : float-like
First value of independent variable. default: 0.
npoints : int
Number of points per sub-interval.
Examples
--------
>>> odesys = ODESys(lambda t, y, p: [-p[0]*y[0]])
>>> int_kw = dict(integrator='cvode', method='adams', atol=1e-12, rtol=1e-12)
>>> kwargs = dict(default_params=[0], integrate_kwargs=int_kw)
>>> res = chained_parameter_variation(odesys, [2, 3], [42], {0: [.7, .1]}, **kwargs)
>>> mask1 = res.xout <= 2
>>> import numpy as np
>>> np.allclose(res.yout[mask1, 0], 42*np.exp(-.7*res.xout[mask1]))
True
>>> mask2 = 2 <= res.xout
>>> np.allclose(res.yout[mask2, 0], res.yout[mask2, 0][0]*np.exp(-.1*(res.xout[mask2] - res.xout[mask2][0])))
True
"""
assert len(durations) > 0, 'need at least 1 duration (preferably many)'
assert npoints > 0, 'need at least 1 point per duration'
for k, v in varied_params.items():
if len(v) != len(durations):
raise ValueError("Mismathced lengths of durations and varied_params")
if isinstance(subject, ODESys):
integrate = subject.integrate
numpy = numpy or subject.numpy
else:
integrate = subject
numpy = numpy or np
default_params = default_params or {}
integrate_kwargs = integrate_kwargs or {}
def _get_idx(cont, idx):
if isinstance(cont, dict):
return {k: (v[idx] if hasattr(v, '__len__') and getattr(v, 'ndim', 1) > 0 else v)
for k, v in cont.items()}
else:
return cont[idx]
durations = numpy.cumsum(durations)
for idx_dur in range(len(durations)):
params = copy.copy(default_params)
for k, v in varied_params.items():
params[k] = v[idx_dur]
if idx_dur == 0:
if x0 is None:
x0 = durations[0]*0
out = integrate(numpy.linspace(x0, durations[0], npoints + 1), y0, params, **integrate_kwargs)
else:
if isinstance(out, Result):
out.extend_by_integration(durations[idx_dur], params, npoints=npoints, **integrate_kwargs)
else:
for idx_res, r in enumerate(out):
r.extend_by_integration(durations[idx_dur], _get_idx(params, idx_res),
npoints=npoints, **integrate_kwargs)
return out | python | def chained_parameter_variation(subject, durations, y0, varied_params, default_params=None,
integrate_kwargs=None, x0=None, npoints=1, numpy=None):
""" Integrate an ODE-system for a serie of durations with some parameters changed in-between
Parameters
----------
subject : function or ODESys instance
If a function: should have the signature of :meth:`pyodesys.ODESys.integrate`
(and resturn a :class:`pyodesys.results.Result` object).
If a ODESys instance: the ``integrate`` method will be used.
durations : iterable of floats
Spans of the independent variable.
y0 : dict or array_like
varied_params : dict mapping parameter name (or index) to array_like
Each array_like need to be of same length as durations.
default_params : dict or array_like
Default values for the parameters of the ODE system.
integrate_kwargs : dict
Keyword arguments passed on to ``integrate``.
x0 : float-like
First value of independent variable. default: 0.
npoints : int
Number of points per sub-interval.
Examples
--------
>>> odesys = ODESys(lambda t, y, p: [-p[0]*y[0]])
>>> int_kw = dict(integrator='cvode', method='adams', atol=1e-12, rtol=1e-12)
>>> kwargs = dict(default_params=[0], integrate_kwargs=int_kw)
>>> res = chained_parameter_variation(odesys, [2, 3], [42], {0: [.7, .1]}, **kwargs)
>>> mask1 = res.xout <= 2
>>> import numpy as np
>>> np.allclose(res.yout[mask1, 0], 42*np.exp(-.7*res.xout[mask1]))
True
>>> mask2 = 2 <= res.xout
>>> np.allclose(res.yout[mask2, 0], res.yout[mask2, 0][0]*np.exp(-.1*(res.xout[mask2] - res.xout[mask2][0])))
True
"""
assert len(durations) > 0, 'need at least 1 duration (preferably many)'
assert npoints > 0, 'need at least 1 point per duration'
for k, v in varied_params.items():
if len(v) != len(durations):
raise ValueError("Mismathced lengths of durations and varied_params")
if isinstance(subject, ODESys):
integrate = subject.integrate
numpy = numpy or subject.numpy
else:
integrate = subject
numpy = numpy or np
default_params = default_params or {}
integrate_kwargs = integrate_kwargs or {}
def _get_idx(cont, idx):
if isinstance(cont, dict):
return {k: (v[idx] if hasattr(v, '__len__') and getattr(v, 'ndim', 1) > 0 else v)
for k, v in cont.items()}
else:
return cont[idx]
durations = numpy.cumsum(durations)
for idx_dur in range(len(durations)):
params = copy.copy(default_params)
for k, v in varied_params.items():
params[k] = v[idx_dur]
if idx_dur == 0:
if x0 is None:
x0 = durations[0]*0
out = integrate(numpy.linspace(x0, durations[0], npoints + 1), y0, params, **integrate_kwargs)
else:
if isinstance(out, Result):
out.extend_by_integration(durations[idx_dur], params, npoints=npoints, **integrate_kwargs)
else:
for idx_res, r in enumerate(out):
r.extend_by_integration(durations[idx_dur], _get_idx(params, idx_res),
npoints=npoints, **integrate_kwargs)
return out | [
"def",
"chained_parameter_variation",
"(",
"subject",
",",
"durations",
",",
"y0",
",",
"varied_params",
",",
"default_params",
"=",
"None",
",",
"integrate_kwargs",
"=",
"None",
",",
"x0",
"=",
"None",
",",
"npoints",
"=",
"1",
",",
"numpy",
"=",
"None",
")",
":",
"assert",
"len",
"(",
"durations",
")",
">",
"0",
",",
"'need at least 1 duration (preferably many)'",
"assert",
"npoints",
">",
"0",
",",
"'need at least 1 point per duration'",
"for",
"k",
",",
"v",
"in",
"varied_params",
".",
"items",
"(",
")",
":",
"if",
"len",
"(",
"v",
")",
"!=",
"len",
"(",
"durations",
")",
":",
"raise",
"ValueError",
"(",
"\"Mismathced lengths of durations and varied_params\"",
")",
"if",
"isinstance",
"(",
"subject",
",",
"ODESys",
")",
":",
"integrate",
"=",
"subject",
".",
"integrate",
"numpy",
"=",
"numpy",
"or",
"subject",
".",
"numpy",
"else",
":",
"integrate",
"=",
"subject",
"numpy",
"=",
"numpy",
"or",
"np",
"default_params",
"=",
"default_params",
"or",
"{",
"}",
"integrate_kwargs",
"=",
"integrate_kwargs",
"or",
"{",
"}",
"def",
"_get_idx",
"(",
"cont",
",",
"idx",
")",
":",
"if",
"isinstance",
"(",
"cont",
",",
"dict",
")",
":",
"return",
"{",
"k",
":",
"(",
"v",
"[",
"idx",
"]",
"if",
"hasattr",
"(",
"v",
",",
"'__len__'",
")",
"and",
"getattr",
"(",
"v",
",",
"'ndim'",
",",
"1",
")",
">",
"0",
"else",
"v",
")",
"for",
"k",
",",
"v",
"in",
"cont",
".",
"items",
"(",
")",
"}",
"else",
":",
"return",
"cont",
"[",
"idx",
"]",
"durations",
"=",
"numpy",
".",
"cumsum",
"(",
"durations",
")",
"for",
"idx_dur",
"in",
"range",
"(",
"len",
"(",
"durations",
")",
")",
":",
"params",
"=",
"copy",
".",
"copy",
"(",
"default_params",
")",
"for",
"k",
",",
"v",
"in",
"varied_params",
".",
"items",
"(",
")",
":",
"params",
"[",
"k",
"]",
"=",
"v",
"[",
"idx_dur",
"]",
"if",
"idx_dur",
"==",
"0",
":",
"if",
"x0",
"is",
"None",
":",
"x0",
"=",
"durations",
"[",
"0",
"]",
"*",
"0",
"out",
"=",
"integrate",
"(",
"numpy",
".",
"linspace",
"(",
"x0",
",",
"durations",
"[",
"0",
"]",
",",
"npoints",
"+",
"1",
")",
",",
"y0",
",",
"params",
",",
"*",
"*",
"integrate_kwargs",
")",
"else",
":",
"if",
"isinstance",
"(",
"out",
",",
"Result",
")",
":",
"out",
".",
"extend_by_integration",
"(",
"durations",
"[",
"idx_dur",
"]",
",",
"params",
",",
"npoints",
"=",
"npoints",
",",
"*",
"*",
"integrate_kwargs",
")",
"else",
":",
"for",
"idx_res",
",",
"r",
"in",
"enumerate",
"(",
"out",
")",
":",
"r",
".",
"extend_by_integration",
"(",
"durations",
"[",
"idx_dur",
"]",
",",
"_get_idx",
"(",
"params",
",",
"idx_res",
")",
",",
"npoints",
"=",
"npoints",
",",
"*",
"*",
"integrate_kwargs",
")",
"return",
"out"
]
| Integrate an ODE-system for a serie of durations with some parameters changed in-between
Parameters
----------
subject : function or ODESys instance
If a function: should have the signature of :meth:`pyodesys.ODESys.integrate`
(and resturn a :class:`pyodesys.results.Result` object).
If a ODESys instance: the ``integrate`` method will be used.
durations : iterable of floats
Spans of the independent variable.
y0 : dict or array_like
varied_params : dict mapping parameter name (or index) to array_like
Each array_like need to be of same length as durations.
default_params : dict or array_like
Default values for the parameters of the ODE system.
integrate_kwargs : dict
Keyword arguments passed on to ``integrate``.
x0 : float-like
First value of independent variable. default: 0.
npoints : int
Number of points per sub-interval.
Examples
--------
>>> odesys = ODESys(lambda t, y, p: [-p[0]*y[0]])
>>> int_kw = dict(integrator='cvode', method='adams', atol=1e-12, rtol=1e-12)
>>> kwargs = dict(default_params=[0], integrate_kwargs=int_kw)
>>> res = chained_parameter_variation(odesys, [2, 3], [42], {0: [.7, .1]}, **kwargs)
>>> mask1 = res.xout <= 2
>>> import numpy as np
>>> np.allclose(res.yout[mask1, 0], 42*np.exp(-.7*res.xout[mask1]))
True
>>> mask2 = 2 <= res.xout
>>> np.allclose(res.yout[mask2, 0], res.yout[mask2, 0][0]*np.exp(-.1*(res.xout[mask2] - res.xout[mask2][0])))
True | [
"Integrate",
"an",
"ODE",
"-",
"system",
"for",
"a",
"serie",
"of",
"durations",
"with",
"some",
"parameters",
"changed",
"in",
"-",
"between"
]
| 0034a6165b550d8d9808baef58678dca5a493ab7 | https://github.com/bjodah/pyodesys/blob/0034a6165b550d8d9808baef58678dca5a493ab7/pyodesys/core.py#L917-L996 | train |
bjodah/pyodesys | pyodesys/core.py | ODESys.pre_process | def pre_process(self, xout, y0, params=()):
""" Transforms input to internal values, used internally. """
for pre_processor in self.pre_processors:
xout, y0, params = pre_processor(xout, y0, params)
return [self.numpy.atleast_1d(arr) for arr in (xout, y0, params)] | python | def pre_process(self, xout, y0, params=()):
""" Transforms input to internal values, used internally. """
for pre_processor in self.pre_processors:
xout, y0, params = pre_processor(xout, y0, params)
return [self.numpy.atleast_1d(arr) for arr in (xout, y0, params)] | [
"def",
"pre_process",
"(",
"self",
",",
"xout",
",",
"y0",
",",
"params",
"=",
"(",
")",
")",
":",
"for",
"pre_processor",
"in",
"self",
".",
"pre_processors",
":",
"xout",
",",
"y0",
",",
"params",
"=",
"pre_processor",
"(",
"xout",
",",
"y0",
",",
"params",
")",
"return",
"[",
"self",
".",
"numpy",
".",
"atleast_1d",
"(",
"arr",
")",
"for",
"arr",
"in",
"(",
"xout",
",",
"y0",
",",
"params",
")",
"]"
]
| Transforms input to internal values, used internally. | [
"Transforms",
"input",
"to",
"internal",
"values",
"used",
"internally",
"."
]
| 0034a6165b550d8d9808baef58678dca5a493ab7 | https://github.com/bjodah/pyodesys/blob/0034a6165b550d8d9808baef58678dca5a493ab7/pyodesys/core.py#L286-L290 | train |
bjodah/pyodesys | pyodesys/core.py | ODESys.post_process | def post_process(self, xout, yout, params):
""" Transforms internal values to output, used internally. """
for post_processor in self.post_processors:
xout, yout, params = post_processor(xout, yout, params)
return xout, yout, params | python | def post_process(self, xout, yout, params):
""" Transforms internal values to output, used internally. """
for post_processor in self.post_processors:
xout, yout, params = post_processor(xout, yout, params)
return xout, yout, params | [
"def",
"post_process",
"(",
"self",
",",
"xout",
",",
"yout",
",",
"params",
")",
":",
"for",
"post_processor",
"in",
"self",
".",
"post_processors",
":",
"xout",
",",
"yout",
",",
"params",
"=",
"post_processor",
"(",
"xout",
",",
"yout",
",",
"params",
")",
"return",
"xout",
",",
"yout",
",",
"params"
]
| Transforms internal values to output, used internally. | [
"Transforms",
"internal",
"values",
"to",
"output",
"used",
"internally",
"."
]
| 0034a6165b550d8d9808baef58678dca5a493ab7 | https://github.com/bjodah/pyodesys/blob/0034a6165b550d8d9808baef58678dca5a493ab7/pyodesys/core.py#L292-L296 | train |
bjodah/pyodesys | pyodesys/core.py | ODESys.adaptive | def adaptive(self, y0, x0, xend, params=(), **kwargs):
""" Integrate with integrator chosen output.
Parameters
----------
integrator : str
See :meth:`integrate`.
y0 : array_like
See :meth:`integrate`.
x0 : float
Initial value of the independent variable.
xend : float
Final value of the independent variable.
params : array_like
See :meth:`integrate`.
\*\*kwargs :
See :meth:`integrate`.
Returns
-------
Same as :meth:`integrate`
"""
return self.integrate((x0, xend), y0,
params=params, **kwargs) | python | def adaptive(self, y0, x0, xend, params=(), **kwargs):
""" Integrate with integrator chosen output.
Parameters
----------
integrator : str
See :meth:`integrate`.
y0 : array_like
See :meth:`integrate`.
x0 : float
Initial value of the independent variable.
xend : float
Final value of the independent variable.
params : array_like
See :meth:`integrate`.
\*\*kwargs :
See :meth:`integrate`.
Returns
-------
Same as :meth:`integrate`
"""
return self.integrate((x0, xend), y0,
params=params, **kwargs) | [
"def",
"adaptive",
"(",
"self",
",",
"y0",
",",
"x0",
",",
"xend",
",",
"params",
"=",
"(",
")",
",",
"*",
"*",
"kwargs",
")",
":",
"return",
"self",
".",
"integrate",
"(",
"(",
"x0",
",",
"xend",
")",
",",
"y0",
",",
"params",
"=",
"params",
",",
"*",
"*",
"kwargs",
")"
]
| Integrate with integrator chosen output.
Parameters
----------
integrator : str
See :meth:`integrate`.
y0 : array_like
See :meth:`integrate`.
x0 : float
Initial value of the independent variable.
xend : float
Final value of the independent variable.
params : array_like
See :meth:`integrate`.
\*\*kwargs :
See :meth:`integrate`.
Returns
-------
Same as :meth:`integrate` | [
"Integrate",
"with",
"integrator",
"chosen",
"output",
"."
]
| 0034a6165b550d8d9808baef58678dca5a493ab7 | https://github.com/bjodah/pyodesys/blob/0034a6165b550d8d9808baef58678dca5a493ab7/pyodesys/core.py#L298-L321 | train |
bjodah/pyodesys | pyodesys/core.py | ODESys.predefined | def predefined(self, y0, xout, params=(), **kwargs):
""" Integrate with user chosen output.
Parameters
----------
integrator : str
See :meth:`integrate`.
y0 : array_like
See :meth:`integrate`.
xout : array_like
params : array_like
See :meth:`integrate`.
\*\*kwargs:
See :meth:`integrate`
Returns
-------
Length 2 tuple : (yout, info)
See :meth:`integrate`.
"""
xout, yout, info = self.integrate(xout, y0, params=params,
force_predefined=True, **kwargs)
return yout, info | python | def predefined(self, y0, xout, params=(), **kwargs):
""" Integrate with user chosen output.
Parameters
----------
integrator : str
See :meth:`integrate`.
y0 : array_like
See :meth:`integrate`.
xout : array_like
params : array_like
See :meth:`integrate`.
\*\*kwargs:
See :meth:`integrate`
Returns
-------
Length 2 tuple : (yout, info)
See :meth:`integrate`.
"""
xout, yout, info = self.integrate(xout, y0, params=params,
force_predefined=True, **kwargs)
return yout, info | [
"def",
"predefined",
"(",
"self",
",",
"y0",
",",
"xout",
",",
"params",
"=",
"(",
")",
",",
"*",
"*",
"kwargs",
")",
":",
"xout",
",",
"yout",
",",
"info",
"=",
"self",
".",
"integrate",
"(",
"xout",
",",
"y0",
",",
"params",
"=",
"params",
",",
"force_predefined",
"=",
"True",
",",
"*",
"*",
"kwargs",
")",
"return",
"yout",
",",
"info"
]
| Integrate with user chosen output.
Parameters
----------
integrator : str
See :meth:`integrate`.
y0 : array_like
See :meth:`integrate`.
xout : array_like
params : array_like
See :meth:`integrate`.
\*\*kwargs:
See :meth:`integrate`
Returns
-------
Length 2 tuple : (yout, info)
See :meth:`integrate`. | [
"Integrate",
"with",
"user",
"chosen",
"output",
"."
]
| 0034a6165b550d8d9808baef58678dca5a493ab7 | https://github.com/bjodah/pyodesys/blob/0034a6165b550d8d9808baef58678dca5a493ab7/pyodesys/core.py#L323-L345 | train |
bjodah/pyodesys | pyodesys/core.py | ODESys.integrate | def integrate(self, x, y0, params=(), atol=1e-8, rtol=1e-8, **kwargs):
""" Integrate the system of ordinary differential equations.
Solves the initial value problem (IVP).
Parameters
----------
x : array_like or pair (start and final time) or float
if float:
make it a pair: (0, x)
if pair or length-2 array:
initial and final value of the independent variable
if array_like:
values of independent variable report at
y0 : array_like
Initial values at x[0] for the dependent variables.
params : array_like (default: tuple())
Value of parameters passed to user-supplied callbacks.
integrator : str or None
Name of integrator, one of:
- 'scipy': :meth:`_integrate_scipy`
- 'gsl': :meth:`_integrate_gsl`
- 'odeint': :meth:`_integrate_odeint`
- 'cvode': :meth:`_integrate_cvode`
See respective method for more information.
If ``None``: ``os.environ.get('PYODESYS_INTEGRATOR', 'scipy')``
atol : float
Absolute tolerance
rtol : float
Relative tolerance
with_jacobian : bool or None (default)
Whether to use the jacobian. When ``None`` the choice is
done automatically (only used when required). This matters
when jacobian is derived at runtime (high computational cost).
with_jtimes : bool (default: False)
Whether to use the jacobian-vector product. This is only supported
by ``cvode`` and only when ``linear_solver`` is one of: gmres',
'gmres_classic', 'bicgstab', 'tfqmr'. See the documentation
for ``pycvodes`` for more information.
force_predefined : bool (default: False)
override behaviour of ``len(x) == 2`` => :meth:`adaptive`
\\*\\*kwargs :
Additional keyword arguments for ``_integrate_$(integrator)``.
Returns
-------
Length 3 tuple: (x, yout, info)
x : array of values of the independent variable
yout : array of the dependent variable(s) for the different
values of x.
info : dict ('nfev' is guaranteed to be a key)
"""
arrs = self.to_arrays(x, y0, params)
_x, _y, _p = _arrs = self.pre_process(*arrs)
ndims = [a.ndim for a in _arrs]
if ndims == [1, 1, 1]:
twodim = False
elif ndims == [2, 2, 2]:
twodim = True
else:
raise ValueError("Pre-processor made ndims inconsistent?")
if self.append_iv:
_p = self.numpy.concatenate((_p, _y), axis=-1)
if hasattr(self, 'ny'):
if _y.shape[-1] != self.ny:
raise ValueError("Incorrect shape of intern_y0")
if isinstance(atol, dict):
kwargs['atol'] = [atol[k] for k in self.names]
else:
kwargs['atol'] = atol
kwargs['rtol'] = rtol
integrator = kwargs.pop('integrator', None)
if integrator is None:
integrator = os.environ.get('PYODESYS_INTEGRATOR', 'scipy')
args = tuple(map(self.numpy.atleast_2d, (_x, _y, _p)))
self._current_integration_kwargs = kwargs
if isinstance(integrator, str):
nfo = getattr(self, '_integrate_' + integrator)(*args, **kwargs)
else:
kwargs['with_jacobian'] = getattr(integrator, 'with_jacobian', None)
nfo = self._integrate(integrator.integrate_adaptive,
integrator.integrate_predefined,
*args, **kwargs)
if twodim:
_xout = [d['internal_xout'] for d in nfo]
_yout = [d['internal_yout'] for d in nfo]
_params = [d['internal_params'] for d in nfo]
res = [Result(*(self.post_process(_xout[i], _yout[i], _params[i]) + (nfo[i], self)))
for i in range(len(nfo))]
else:
_xout = nfo[0]['internal_xout']
_yout = nfo[0]['internal_yout']
self._internal = _xout.copy(), _yout.copy(), _p.copy()
nfo = nfo[0]
res = Result(*(self.post_process(_xout, _yout, _p) + (nfo, self)))
return res | python | def integrate(self, x, y0, params=(), atol=1e-8, rtol=1e-8, **kwargs):
""" Integrate the system of ordinary differential equations.
Solves the initial value problem (IVP).
Parameters
----------
x : array_like or pair (start and final time) or float
if float:
make it a pair: (0, x)
if pair or length-2 array:
initial and final value of the independent variable
if array_like:
values of independent variable report at
y0 : array_like
Initial values at x[0] for the dependent variables.
params : array_like (default: tuple())
Value of parameters passed to user-supplied callbacks.
integrator : str or None
Name of integrator, one of:
- 'scipy': :meth:`_integrate_scipy`
- 'gsl': :meth:`_integrate_gsl`
- 'odeint': :meth:`_integrate_odeint`
- 'cvode': :meth:`_integrate_cvode`
See respective method for more information.
If ``None``: ``os.environ.get('PYODESYS_INTEGRATOR', 'scipy')``
atol : float
Absolute tolerance
rtol : float
Relative tolerance
with_jacobian : bool or None (default)
Whether to use the jacobian. When ``None`` the choice is
done automatically (only used when required). This matters
when jacobian is derived at runtime (high computational cost).
with_jtimes : bool (default: False)
Whether to use the jacobian-vector product. This is only supported
by ``cvode`` and only when ``linear_solver`` is one of: gmres',
'gmres_classic', 'bicgstab', 'tfqmr'. See the documentation
for ``pycvodes`` for more information.
force_predefined : bool (default: False)
override behaviour of ``len(x) == 2`` => :meth:`adaptive`
\\*\\*kwargs :
Additional keyword arguments for ``_integrate_$(integrator)``.
Returns
-------
Length 3 tuple: (x, yout, info)
x : array of values of the independent variable
yout : array of the dependent variable(s) for the different
values of x.
info : dict ('nfev' is guaranteed to be a key)
"""
arrs = self.to_arrays(x, y0, params)
_x, _y, _p = _arrs = self.pre_process(*arrs)
ndims = [a.ndim for a in _arrs]
if ndims == [1, 1, 1]:
twodim = False
elif ndims == [2, 2, 2]:
twodim = True
else:
raise ValueError("Pre-processor made ndims inconsistent?")
if self.append_iv:
_p = self.numpy.concatenate((_p, _y), axis=-1)
if hasattr(self, 'ny'):
if _y.shape[-1] != self.ny:
raise ValueError("Incorrect shape of intern_y0")
if isinstance(atol, dict):
kwargs['atol'] = [atol[k] for k in self.names]
else:
kwargs['atol'] = atol
kwargs['rtol'] = rtol
integrator = kwargs.pop('integrator', None)
if integrator is None:
integrator = os.environ.get('PYODESYS_INTEGRATOR', 'scipy')
args = tuple(map(self.numpy.atleast_2d, (_x, _y, _p)))
self._current_integration_kwargs = kwargs
if isinstance(integrator, str):
nfo = getattr(self, '_integrate_' + integrator)(*args, **kwargs)
else:
kwargs['with_jacobian'] = getattr(integrator, 'with_jacobian', None)
nfo = self._integrate(integrator.integrate_adaptive,
integrator.integrate_predefined,
*args, **kwargs)
if twodim:
_xout = [d['internal_xout'] for d in nfo]
_yout = [d['internal_yout'] for d in nfo]
_params = [d['internal_params'] for d in nfo]
res = [Result(*(self.post_process(_xout[i], _yout[i], _params[i]) + (nfo[i], self)))
for i in range(len(nfo))]
else:
_xout = nfo[0]['internal_xout']
_yout = nfo[0]['internal_yout']
self._internal = _xout.copy(), _yout.copy(), _p.copy()
nfo = nfo[0]
res = Result(*(self.post_process(_xout, _yout, _p) + (nfo, self)))
return res | [
"def",
"integrate",
"(",
"self",
",",
"x",
",",
"y0",
",",
"params",
"=",
"(",
")",
",",
"atol",
"=",
"1e-8",
",",
"rtol",
"=",
"1e-8",
",",
"*",
"*",
"kwargs",
")",
":",
"arrs",
"=",
"self",
".",
"to_arrays",
"(",
"x",
",",
"y0",
",",
"params",
")",
"_x",
",",
"_y",
",",
"_p",
"=",
"_arrs",
"=",
"self",
".",
"pre_process",
"(",
"*",
"arrs",
")",
"ndims",
"=",
"[",
"a",
".",
"ndim",
"for",
"a",
"in",
"_arrs",
"]",
"if",
"ndims",
"==",
"[",
"1",
",",
"1",
",",
"1",
"]",
":",
"twodim",
"=",
"False",
"elif",
"ndims",
"==",
"[",
"2",
",",
"2",
",",
"2",
"]",
":",
"twodim",
"=",
"True",
"else",
":",
"raise",
"ValueError",
"(",
"\"Pre-processor made ndims inconsistent?\"",
")",
"if",
"self",
".",
"append_iv",
":",
"_p",
"=",
"self",
".",
"numpy",
".",
"concatenate",
"(",
"(",
"_p",
",",
"_y",
")",
",",
"axis",
"=",
"-",
"1",
")",
"if",
"hasattr",
"(",
"self",
",",
"'ny'",
")",
":",
"if",
"_y",
".",
"shape",
"[",
"-",
"1",
"]",
"!=",
"self",
".",
"ny",
":",
"raise",
"ValueError",
"(",
"\"Incorrect shape of intern_y0\"",
")",
"if",
"isinstance",
"(",
"atol",
",",
"dict",
")",
":",
"kwargs",
"[",
"'atol'",
"]",
"=",
"[",
"atol",
"[",
"k",
"]",
"for",
"k",
"in",
"self",
".",
"names",
"]",
"else",
":",
"kwargs",
"[",
"'atol'",
"]",
"=",
"atol",
"kwargs",
"[",
"'rtol'",
"]",
"=",
"rtol",
"integrator",
"=",
"kwargs",
".",
"pop",
"(",
"'integrator'",
",",
"None",
")",
"if",
"integrator",
"is",
"None",
":",
"integrator",
"=",
"os",
".",
"environ",
".",
"get",
"(",
"'PYODESYS_INTEGRATOR'",
",",
"'scipy'",
")",
"args",
"=",
"tuple",
"(",
"map",
"(",
"self",
".",
"numpy",
".",
"atleast_2d",
",",
"(",
"_x",
",",
"_y",
",",
"_p",
")",
")",
")",
"self",
".",
"_current_integration_kwargs",
"=",
"kwargs",
"if",
"isinstance",
"(",
"integrator",
",",
"str",
")",
":",
"nfo",
"=",
"getattr",
"(",
"self",
",",
"'_integrate_'",
"+",
"integrator",
")",
"(",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
"else",
":",
"kwargs",
"[",
"'with_jacobian'",
"]",
"=",
"getattr",
"(",
"integrator",
",",
"'with_jacobian'",
",",
"None",
")",
"nfo",
"=",
"self",
".",
"_integrate",
"(",
"integrator",
".",
"integrate_adaptive",
",",
"integrator",
".",
"integrate_predefined",
",",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
"if",
"twodim",
":",
"_xout",
"=",
"[",
"d",
"[",
"'internal_xout'",
"]",
"for",
"d",
"in",
"nfo",
"]",
"_yout",
"=",
"[",
"d",
"[",
"'internal_yout'",
"]",
"for",
"d",
"in",
"nfo",
"]",
"_params",
"=",
"[",
"d",
"[",
"'internal_params'",
"]",
"for",
"d",
"in",
"nfo",
"]",
"res",
"=",
"[",
"Result",
"(",
"*",
"(",
"self",
".",
"post_process",
"(",
"_xout",
"[",
"i",
"]",
",",
"_yout",
"[",
"i",
"]",
",",
"_params",
"[",
"i",
"]",
")",
"+",
"(",
"nfo",
"[",
"i",
"]",
",",
"self",
")",
")",
")",
"for",
"i",
"in",
"range",
"(",
"len",
"(",
"nfo",
")",
")",
"]",
"else",
":",
"_xout",
"=",
"nfo",
"[",
"0",
"]",
"[",
"'internal_xout'",
"]",
"_yout",
"=",
"nfo",
"[",
"0",
"]",
"[",
"'internal_yout'",
"]",
"self",
".",
"_internal",
"=",
"_xout",
".",
"copy",
"(",
")",
",",
"_yout",
".",
"copy",
"(",
")",
",",
"_p",
".",
"copy",
"(",
")",
"nfo",
"=",
"nfo",
"[",
"0",
"]",
"res",
"=",
"Result",
"(",
"*",
"(",
"self",
".",
"post_process",
"(",
"_xout",
",",
"_yout",
",",
"_p",
")",
"+",
"(",
"nfo",
",",
"self",
")",
")",
")",
"return",
"res"
]
| Integrate the system of ordinary differential equations.
Solves the initial value problem (IVP).
Parameters
----------
x : array_like or pair (start and final time) or float
if float:
make it a pair: (0, x)
if pair or length-2 array:
initial and final value of the independent variable
if array_like:
values of independent variable report at
y0 : array_like
Initial values at x[0] for the dependent variables.
params : array_like (default: tuple())
Value of parameters passed to user-supplied callbacks.
integrator : str or None
Name of integrator, one of:
- 'scipy': :meth:`_integrate_scipy`
- 'gsl': :meth:`_integrate_gsl`
- 'odeint': :meth:`_integrate_odeint`
- 'cvode': :meth:`_integrate_cvode`
See respective method for more information.
If ``None``: ``os.environ.get('PYODESYS_INTEGRATOR', 'scipy')``
atol : float
Absolute tolerance
rtol : float
Relative tolerance
with_jacobian : bool or None (default)
Whether to use the jacobian. When ``None`` the choice is
done automatically (only used when required). This matters
when jacobian is derived at runtime (high computational cost).
with_jtimes : bool (default: False)
Whether to use the jacobian-vector product. This is only supported
by ``cvode`` and only when ``linear_solver`` is one of: gmres',
'gmres_classic', 'bicgstab', 'tfqmr'. See the documentation
for ``pycvodes`` for more information.
force_predefined : bool (default: False)
override behaviour of ``len(x) == 2`` => :meth:`adaptive`
\\*\\*kwargs :
Additional keyword arguments for ``_integrate_$(integrator)``.
Returns
-------
Length 3 tuple: (x, yout, info)
x : array of values of the independent variable
yout : array of the dependent variable(s) for the different
values of x.
info : dict ('nfev' is guaranteed to be a key) | [
"Integrate",
"the",
"system",
"of",
"ordinary",
"differential",
"equations",
"."
]
| 0034a6165b550d8d9808baef58678dca5a493ab7 | https://github.com/bjodah/pyodesys/blob/0034a6165b550d8d9808baef58678dca5a493ab7/pyodesys/core.py#L347-L449 | train |
bjodah/pyodesys | pyodesys/core.py | ODESys.plot_phase_plane | def plot_phase_plane(self, indices=None, **kwargs):
""" Plots a phase portrait from last integration.
This method will be deprecated. Please use :meth:`Result.plot_phase_plane`.
See :func:`pyodesys.plotting.plot_phase_plane`
"""
return self._plot(plot_phase_plane, indices=indices, **kwargs) | python | def plot_phase_plane(self, indices=None, **kwargs):
""" Plots a phase portrait from last integration.
This method will be deprecated. Please use :meth:`Result.plot_phase_plane`.
See :func:`pyodesys.plotting.plot_phase_plane`
"""
return self._plot(plot_phase_plane, indices=indices, **kwargs) | [
"def",
"plot_phase_plane",
"(",
"self",
",",
"indices",
"=",
"None",
",",
"*",
"*",
"kwargs",
")",
":",
"return",
"self",
".",
"_plot",
"(",
"plot_phase_plane",
",",
"indices",
"=",
"indices",
",",
"*",
"*",
"kwargs",
")"
]
| Plots a phase portrait from last integration.
This method will be deprecated. Please use :meth:`Result.plot_phase_plane`.
See :func:`pyodesys.plotting.plot_phase_plane` | [
"Plots",
"a",
"phase",
"portrait",
"from",
"last",
"integration",
"."
]
| 0034a6165b550d8d9808baef58678dca5a493ab7 | https://github.com/bjodah/pyodesys/blob/0034a6165b550d8d9808baef58678dca5a493ab7/pyodesys/core.py#L756-L762 | train |
neon-jungle/wagtailnews | wagtailnews/permissions.py | user_can_edit_news | def user_can_edit_news(user):
"""
Check if the user has permission to edit any of the registered NewsItem
types.
"""
newsitem_models = [model.get_newsitem_model()
for model in NEWSINDEX_MODEL_CLASSES]
if user.is_active and user.is_superuser:
# admin can edit news iff any news types exist
return bool(newsitem_models)
for NewsItem in newsitem_models:
for perm in format_perms(NewsItem, ['add', 'change', 'delete']):
if user.has_perm(perm):
return True
return False | python | def user_can_edit_news(user):
"""
Check if the user has permission to edit any of the registered NewsItem
types.
"""
newsitem_models = [model.get_newsitem_model()
for model in NEWSINDEX_MODEL_CLASSES]
if user.is_active and user.is_superuser:
# admin can edit news iff any news types exist
return bool(newsitem_models)
for NewsItem in newsitem_models:
for perm in format_perms(NewsItem, ['add', 'change', 'delete']):
if user.has_perm(perm):
return True
return False | [
"def",
"user_can_edit_news",
"(",
"user",
")",
":",
"newsitem_models",
"=",
"[",
"model",
".",
"get_newsitem_model",
"(",
")",
"for",
"model",
"in",
"NEWSINDEX_MODEL_CLASSES",
"]",
"if",
"user",
".",
"is_active",
"and",
"user",
".",
"is_superuser",
":",
"# admin can edit news iff any news types exist",
"return",
"bool",
"(",
"newsitem_models",
")",
"for",
"NewsItem",
"in",
"newsitem_models",
":",
"for",
"perm",
"in",
"format_perms",
"(",
"NewsItem",
",",
"[",
"'add'",
",",
"'change'",
",",
"'delete'",
"]",
")",
":",
"if",
"user",
".",
"has_perm",
"(",
"perm",
")",
":",
"return",
"True",
"return",
"False"
]
| Check if the user has permission to edit any of the registered NewsItem
types. | [
"Check",
"if",
"the",
"user",
"has",
"permission",
"to",
"edit",
"any",
"of",
"the",
"registered",
"NewsItem",
"types",
"."
]
| 4cdec7013cca276dcfc658d3c986444ba6a42a84 | https://github.com/neon-jungle/wagtailnews/blob/4cdec7013cca276dcfc658d3c986444ba6a42a84/wagtailnews/permissions.py#L21-L38 | train |
neon-jungle/wagtailnews | wagtailnews/permissions.py | user_can_edit_newsitem | def user_can_edit_newsitem(user, NewsItem):
"""
Check if the user has permission to edit a particular NewsItem type.
"""
for perm in format_perms(NewsItem, ['add', 'change', 'delete']):
if user.has_perm(perm):
return True
return False | python | def user_can_edit_newsitem(user, NewsItem):
"""
Check if the user has permission to edit a particular NewsItem type.
"""
for perm in format_perms(NewsItem, ['add', 'change', 'delete']):
if user.has_perm(perm):
return True
return False | [
"def",
"user_can_edit_newsitem",
"(",
"user",
",",
"NewsItem",
")",
":",
"for",
"perm",
"in",
"format_perms",
"(",
"NewsItem",
",",
"[",
"'add'",
",",
"'change'",
",",
"'delete'",
"]",
")",
":",
"if",
"user",
".",
"has_perm",
"(",
"perm",
")",
":",
"return",
"True",
"return",
"False"
]
| Check if the user has permission to edit a particular NewsItem type. | [
"Check",
"if",
"the",
"user",
"has",
"permission",
"to",
"edit",
"a",
"particular",
"NewsItem",
"type",
"."
]
| 4cdec7013cca276dcfc658d3c986444ba6a42a84 | https://github.com/neon-jungle/wagtailnews/blob/4cdec7013cca276dcfc658d3c986444ba6a42a84/wagtailnews/permissions.py#L41-L49 | train |
neon-jungle/wagtailnews | wagtailnews/models.py | get_date_or_404 | def get_date_or_404(year, month, day):
"""Try to make a date from the given inputs, raising Http404 on error"""
try:
return datetime.date(int(year), int(month), int(day))
except ValueError:
raise Http404 | python | def get_date_or_404(year, month, day):
"""Try to make a date from the given inputs, raising Http404 on error"""
try:
return datetime.date(int(year), int(month), int(day))
except ValueError:
raise Http404 | [
"def",
"get_date_or_404",
"(",
"year",
",",
"month",
",",
"day",
")",
":",
"try",
":",
"return",
"datetime",
".",
"date",
"(",
"int",
"(",
"year",
")",
",",
"int",
"(",
"month",
")",
",",
"int",
"(",
"day",
")",
")",
"except",
"ValueError",
":",
"raise",
"Http404"
]
| Try to make a date from the given inputs, raising Http404 on error | [
"Try",
"to",
"make",
"a",
"date",
"from",
"the",
"given",
"inputs",
"raising",
"Http404",
"on",
"error"
]
| 4cdec7013cca276dcfc658d3c986444ba6a42a84 | https://github.com/neon-jungle/wagtailnews/blob/4cdec7013cca276dcfc658d3c986444ba6a42a84/wagtailnews/models.py#L29-L34 | train |
neon-jungle/wagtailnews | wagtailnews/models.py | NewsIndexMixin.respond | def respond(self, request, view, newsitems, extra_context={}):
"""A helper that takes some news items and returns an HttpResponse"""
context = self.get_context(request, view=view)
context.update(self.paginate_newsitems(request, newsitems))
context.update(extra_context)
template = self.get_template(request, view=view)
return TemplateResponse(request, template, context) | python | def respond(self, request, view, newsitems, extra_context={}):
"""A helper that takes some news items and returns an HttpResponse"""
context = self.get_context(request, view=view)
context.update(self.paginate_newsitems(request, newsitems))
context.update(extra_context)
template = self.get_template(request, view=view)
return TemplateResponse(request, template, context) | [
"def",
"respond",
"(",
"self",
",",
"request",
",",
"view",
",",
"newsitems",
",",
"extra_context",
"=",
"{",
"}",
")",
":",
"context",
"=",
"self",
".",
"get_context",
"(",
"request",
",",
"view",
"=",
"view",
")",
"context",
".",
"update",
"(",
"self",
".",
"paginate_newsitems",
"(",
"request",
",",
"newsitems",
")",
")",
"context",
".",
"update",
"(",
"extra_context",
")",
"template",
"=",
"self",
".",
"get_template",
"(",
"request",
",",
"view",
"=",
"view",
")",
"return",
"TemplateResponse",
"(",
"request",
",",
"template",
",",
"context",
")"
]
| A helper that takes some news items and returns an HttpResponse | [
"A",
"helper",
"that",
"takes",
"some",
"news",
"items",
"and",
"returns",
"an",
"HttpResponse"
]
| 4cdec7013cca276dcfc658d3c986444ba6a42a84 | https://github.com/neon-jungle/wagtailnews/blob/4cdec7013cca276dcfc658d3c986444ba6a42a84/wagtailnews/models.py#L80-L86 | train |
neon-jungle/wagtailnews | wagtailnews/views/chooser.py | get_newsitem_model | def get_newsitem_model(model_string):
"""
Get the NewsItem model from a model string. Raises ValueError if the model
string is invalid, or references a model that is not a NewsItem.
"""
try:
NewsItem = apps.get_model(model_string)
assert issubclass(NewsItem, AbstractNewsItem)
except (ValueError, LookupError, AssertionError):
raise ValueError('Invalid news item model string'.format(model_string))
return NewsItem | python | def get_newsitem_model(model_string):
"""
Get the NewsItem model from a model string. Raises ValueError if the model
string is invalid, or references a model that is not a NewsItem.
"""
try:
NewsItem = apps.get_model(model_string)
assert issubclass(NewsItem, AbstractNewsItem)
except (ValueError, LookupError, AssertionError):
raise ValueError('Invalid news item model string'.format(model_string))
return NewsItem | [
"def",
"get_newsitem_model",
"(",
"model_string",
")",
":",
"try",
":",
"NewsItem",
"=",
"apps",
".",
"get_model",
"(",
"model_string",
")",
"assert",
"issubclass",
"(",
"NewsItem",
",",
"AbstractNewsItem",
")",
"except",
"(",
"ValueError",
",",
"LookupError",
",",
"AssertionError",
")",
":",
"raise",
"ValueError",
"(",
"'Invalid news item model string'",
".",
"format",
"(",
"model_string",
")",
")",
"return",
"NewsItem"
]
| Get the NewsItem model from a model string. Raises ValueError if the model
string is invalid, or references a model that is not a NewsItem. | [
"Get",
"the",
"NewsItem",
"model",
"from",
"a",
"model",
"string",
".",
"Raises",
"ValueError",
"if",
"the",
"model",
"string",
"is",
"invalid",
"or",
"references",
"a",
"model",
"that",
"is",
"not",
"a",
"NewsItem",
"."
]
| 4cdec7013cca276dcfc658d3c986444ba6a42a84 | https://github.com/neon-jungle/wagtailnews/blob/4cdec7013cca276dcfc658d3c986444ba6a42a84/wagtailnews/views/chooser.py#L119-L129 | train |
geometalab/pyGeoTile | pygeotile/tile.py | Tile.from_quad_tree | def from_quad_tree(cls, quad_tree):
"""Creates a tile from a Microsoft QuadTree"""
assert bool(re.match('^[0-3]*$', quad_tree)), 'QuadTree value can only consists of the digits 0, 1, 2 and 3.'
zoom = len(str(quad_tree))
offset = int(math.pow(2, zoom)) - 1
google_x, google_y = [reduce(lambda result, bit: (result << 1) | bit, bits, 0)
for bits in zip(*(reversed(divmod(digit, 2))
for digit in (int(c) for c in str(quad_tree))))]
return cls(tms_x=google_x, tms_y=(offset - google_y), zoom=zoom) | python | def from_quad_tree(cls, quad_tree):
"""Creates a tile from a Microsoft QuadTree"""
assert bool(re.match('^[0-3]*$', quad_tree)), 'QuadTree value can only consists of the digits 0, 1, 2 and 3.'
zoom = len(str(quad_tree))
offset = int(math.pow(2, zoom)) - 1
google_x, google_y = [reduce(lambda result, bit: (result << 1) | bit, bits, 0)
for bits in zip(*(reversed(divmod(digit, 2))
for digit in (int(c) for c in str(quad_tree))))]
return cls(tms_x=google_x, tms_y=(offset - google_y), zoom=zoom) | [
"def",
"from_quad_tree",
"(",
"cls",
",",
"quad_tree",
")",
":",
"assert",
"bool",
"(",
"re",
".",
"match",
"(",
"'^[0-3]*$'",
",",
"quad_tree",
")",
")",
",",
"'QuadTree value can only consists of the digits 0, 1, 2 and 3.'",
"zoom",
"=",
"len",
"(",
"str",
"(",
"quad_tree",
")",
")",
"offset",
"=",
"int",
"(",
"math",
".",
"pow",
"(",
"2",
",",
"zoom",
")",
")",
"-",
"1",
"google_x",
",",
"google_y",
"=",
"[",
"reduce",
"(",
"lambda",
"result",
",",
"bit",
":",
"(",
"result",
"<<",
"1",
")",
"|",
"bit",
",",
"bits",
",",
"0",
")",
"for",
"bits",
"in",
"zip",
"(",
"*",
"(",
"reversed",
"(",
"divmod",
"(",
"digit",
",",
"2",
")",
")",
"for",
"digit",
"in",
"(",
"int",
"(",
"c",
")",
"for",
"c",
"in",
"str",
"(",
"quad_tree",
")",
")",
")",
")",
"]",
"return",
"cls",
"(",
"tms_x",
"=",
"google_x",
",",
"tms_y",
"=",
"(",
"offset",
"-",
"google_y",
")",
",",
"zoom",
"=",
"zoom",
")"
]
| Creates a tile from a Microsoft QuadTree | [
"Creates",
"a",
"tile",
"from",
"a",
"Microsoft",
"QuadTree"
]
| b1f44271698f5fc4d18c2add935797ed43254aa6 | https://github.com/geometalab/pyGeoTile/blob/b1f44271698f5fc4d18c2add935797ed43254aa6/pygeotile/tile.py#L16-L24 | train |
geometalab/pyGeoTile | pygeotile/tile.py | Tile.from_google | def from_google(cls, google_x, google_y, zoom):
"""Creates a tile from Google format X Y and zoom"""
max_tile = (2 ** zoom) - 1
assert 0 <= google_x <= max_tile, 'Google X needs to be a value between 0 and (2^zoom) -1.'
assert 0 <= google_y <= max_tile, 'Google Y needs to be a value between 0 and (2^zoom) -1.'
return cls(tms_x=google_x, tms_y=(2 ** zoom - 1) - google_y, zoom=zoom) | python | def from_google(cls, google_x, google_y, zoom):
"""Creates a tile from Google format X Y and zoom"""
max_tile = (2 ** zoom) - 1
assert 0 <= google_x <= max_tile, 'Google X needs to be a value between 0 and (2^zoom) -1.'
assert 0 <= google_y <= max_tile, 'Google Y needs to be a value between 0 and (2^zoom) -1.'
return cls(tms_x=google_x, tms_y=(2 ** zoom - 1) - google_y, zoom=zoom) | [
"def",
"from_google",
"(",
"cls",
",",
"google_x",
",",
"google_y",
",",
"zoom",
")",
":",
"max_tile",
"=",
"(",
"2",
"**",
"zoom",
")",
"-",
"1",
"assert",
"0",
"<=",
"google_x",
"<=",
"max_tile",
",",
"'Google X needs to be a value between 0 and (2^zoom) -1.'",
"assert",
"0",
"<=",
"google_y",
"<=",
"max_tile",
",",
"'Google Y needs to be a value between 0 and (2^zoom) -1.'",
"return",
"cls",
"(",
"tms_x",
"=",
"google_x",
",",
"tms_y",
"=",
"(",
"2",
"**",
"zoom",
"-",
"1",
")",
"-",
"google_y",
",",
"zoom",
"=",
"zoom",
")"
]
| Creates a tile from Google format X Y and zoom | [
"Creates",
"a",
"tile",
"from",
"Google",
"format",
"X",
"Y",
"and",
"zoom"
]
| b1f44271698f5fc4d18c2add935797ed43254aa6 | https://github.com/geometalab/pyGeoTile/blob/b1f44271698f5fc4d18c2add935797ed43254aa6/pygeotile/tile.py#L35-L40 | train |
geometalab/pyGeoTile | pygeotile/tile.py | Tile.for_point | def for_point(cls, point, zoom):
"""Creates a tile for given point"""
latitude, longitude = point.latitude_longitude
return cls.for_latitude_longitude(latitude=latitude, longitude=longitude, zoom=zoom) | python | def for_point(cls, point, zoom):
"""Creates a tile for given point"""
latitude, longitude = point.latitude_longitude
return cls.for_latitude_longitude(latitude=latitude, longitude=longitude, zoom=zoom) | [
"def",
"for_point",
"(",
"cls",
",",
"point",
",",
"zoom",
")",
":",
"latitude",
",",
"longitude",
"=",
"point",
".",
"latitude_longitude",
"return",
"cls",
".",
"for_latitude_longitude",
"(",
"latitude",
"=",
"latitude",
",",
"longitude",
"=",
"longitude",
",",
"zoom",
"=",
"zoom",
")"
]
| Creates a tile for given point | [
"Creates",
"a",
"tile",
"for",
"given",
"point"
]
| b1f44271698f5fc4d18c2add935797ed43254aa6 | https://github.com/geometalab/pyGeoTile/blob/b1f44271698f5fc4d18c2add935797ed43254aa6/pygeotile/tile.py#L43-L46 | train |
geometalab/pyGeoTile | pygeotile/tile.py | Tile.quad_tree | def quad_tree(self):
"""Gets the tile in the Microsoft QuadTree format, converted from TMS"""
value = ''
tms_x, tms_y = self.tms
tms_y = (2 ** self.zoom - 1) - tms_y
for i in range(self.zoom, 0, -1):
digit = 0
mask = 1 << (i - 1)
if (tms_x & mask) != 0:
digit += 1
if (tms_y & mask) != 0:
digit += 2
value += str(digit)
return value | python | def quad_tree(self):
"""Gets the tile in the Microsoft QuadTree format, converted from TMS"""
value = ''
tms_x, tms_y = self.tms
tms_y = (2 ** self.zoom - 1) - tms_y
for i in range(self.zoom, 0, -1):
digit = 0
mask = 1 << (i - 1)
if (tms_x & mask) != 0:
digit += 1
if (tms_y & mask) != 0:
digit += 2
value += str(digit)
return value | [
"def",
"quad_tree",
"(",
"self",
")",
":",
"value",
"=",
"''",
"tms_x",
",",
"tms_y",
"=",
"self",
".",
"tms",
"tms_y",
"=",
"(",
"2",
"**",
"self",
".",
"zoom",
"-",
"1",
")",
"-",
"tms_y",
"for",
"i",
"in",
"range",
"(",
"self",
".",
"zoom",
",",
"0",
",",
"-",
"1",
")",
":",
"digit",
"=",
"0",
"mask",
"=",
"1",
"<<",
"(",
"i",
"-",
"1",
")",
"if",
"(",
"tms_x",
"&",
"mask",
")",
"!=",
"0",
":",
"digit",
"+=",
"1",
"if",
"(",
"tms_y",
"&",
"mask",
")",
"!=",
"0",
":",
"digit",
"+=",
"2",
"value",
"+=",
"str",
"(",
"digit",
")",
"return",
"value"
]
| Gets the tile in the Microsoft QuadTree format, converted from TMS | [
"Gets",
"the",
"tile",
"in",
"the",
"Microsoft",
"QuadTree",
"format",
"converted",
"from",
"TMS"
]
| b1f44271698f5fc4d18c2add935797ed43254aa6 | https://github.com/geometalab/pyGeoTile/blob/b1f44271698f5fc4d18c2add935797ed43254aa6/pygeotile/tile.py#L75-L88 | train |
geometalab/pyGeoTile | pygeotile/tile.py | Tile.google | def google(self):
"""Gets the tile in the Google format, converted from TMS"""
tms_x, tms_y = self.tms
return tms_x, (2 ** self.zoom - 1) - tms_y | python | def google(self):
"""Gets the tile in the Google format, converted from TMS"""
tms_x, tms_y = self.tms
return tms_x, (2 ** self.zoom - 1) - tms_y | [
"def",
"google",
"(",
"self",
")",
":",
"tms_x",
",",
"tms_y",
"=",
"self",
".",
"tms",
"return",
"tms_x",
",",
"(",
"2",
"**",
"self",
".",
"zoom",
"-",
"1",
")",
"-",
"tms_y"
]
| Gets the tile in the Google format, converted from TMS | [
"Gets",
"the",
"tile",
"in",
"the",
"Google",
"format",
"converted",
"from",
"TMS"
]
| b1f44271698f5fc4d18c2add935797ed43254aa6 | https://github.com/geometalab/pyGeoTile/blob/b1f44271698f5fc4d18c2add935797ed43254aa6/pygeotile/tile.py#L91-L94 | train |
geometalab/pyGeoTile | pygeotile/tile.py | Tile.bounds | def bounds(self):
"""Gets the bounds of a tile represented as the most west and south point and the most east and north point"""
google_x, google_y = self.google
pixel_x_west, pixel_y_north = google_x * TILE_SIZE, google_y * TILE_SIZE
pixel_x_east, pixel_y_south = (google_x + 1) * TILE_SIZE, (google_y + 1) * TILE_SIZE
point_min = Point.from_pixel(pixel_x=pixel_x_west, pixel_y=pixel_y_south, zoom=self.zoom)
point_max = Point.from_pixel(pixel_x=pixel_x_east, pixel_y=pixel_y_north, zoom=self.zoom)
return point_min, point_max | python | def bounds(self):
"""Gets the bounds of a tile represented as the most west and south point and the most east and north point"""
google_x, google_y = self.google
pixel_x_west, pixel_y_north = google_x * TILE_SIZE, google_y * TILE_SIZE
pixel_x_east, pixel_y_south = (google_x + 1) * TILE_SIZE, (google_y + 1) * TILE_SIZE
point_min = Point.from_pixel(pixel_x=pixel_x_west, pixel_y=pixel_y_south, zoom=self.zoom)
point_max = Point.from_pixel(pixel_x=pixel_x_east, pixel_y=pixel_y_north, zoom=self.zoom)
return point_min, point_max | [
"def",
"bounds",
"(",
"self",
")",
":",
"google_x",
",",
"google_y",
"=",
"self",
".",
"google",
"pixel_x_west",
",",
"pixel_y_north",
"=",
"google_x",
"*",
"TILE_SIZE",
",",
"google_y",
"*",
"TILE_SIZE",
"pixel_x_east",
",",
"pixel_y_south",
"=",
"(",
"google_x",
"+",
"1",
")",
"*",
"TILE_SIZE",
",",
"(",
"google_y",
"+",
"1",
")",
"*",
"TILE_SIZE",
"point_min",
"=",
"Point",
".",
"from_pixel",
"(",
"pixel_x",
"=",
"pixel_x_west",
",",
"pixel_y",
"=",
"pixel_y_south",
",",
"zoom",
"=",
"self",
".",
"zoom",
")",
"point_max",
"=",
"Point",
".",
"from_pixel",
"(",
"pixel_x",
"=",
"pixel_x_east",
",",
"pixel_y",
"=",
"pixel_y_north",
",",
"zoom",
"=",
"self",
".",
"zoom",
")",
"return",
"point_min",
",",
"point_max"
]
| Gets the bounds of a tile represented as the most west and south point and the most east and north point | [
"Gets",
"the",
"bounds",
"of",
"a",
"tile",
"represented",
"as",
"the",
"most",
"west",
"and",
"south",
"point",
"and",
"the",
"most",
"east",
"and",
"north",
"point"
]
| b1f44271698f5fc4d18c2add935797ed43254aa6 | https://github.com/geometalab/pyGeoTile/blob/b1f44271698f5fc4d18c2add935797ed43254aa6/pygeotile/tile.py#L97-L105 | train |
IAMconsortium/pyam | pyam/read_ixmp.py | read_ix | def read_ix(ix, **kwargs):
"""Read timeseries data from an ixmp object
Parameters
----------
ix: ixmp.TimeSeries or ixmp.Scenario
this option requires the ixmp package as a dependency
kwargs: arguments passed to ixmp.TimeSeries.timeseries()
"""
if not isinstance(ix, ixmp.TimeSeries):
error = 'not recognized as valid ixmp class: {}'.format(ix)
raise ValueError(error)
df = ix.timeseries(iamc=False, **kwargs)
df['model'] = ix.model
df['scenario'] = ix.scenario
return df, 'year', [] | python | def read_ix(ix, **kwargs):
"""Read timeseries data from an ixmp object
Parameters
----------
ix: ixmp.TimeSeries or ixmp.Scenario
this option requires the ixmp package as a dependency
kwargs: arguments passed to ixmp.TimeSeries.timeseries()
"""
if not isinstance(ix, ixmp.TimeSeries):
error = 'not recognized as valid ixmp class: {}'.format(ix)
raise ValueError(error)
df = ix.timeseries(iamc=False, **kwargs)
df['model'] = ix.model
df['scenario'] = ix.scenario
return df, 'year', [] | [
"def",
"read_ix",
"(",
"ix",
",",
"*",
"*",
"kwargs",
")",
":",
"if",
"not",
"isinstance",
"(",
"ix",
",",
"ixmp",
".",
"TimeSeries",
")",
":",
"error",
"=",
"'not recognized as valid ixmp class: {}'",
".",
"format",
"(",
"ix",
")",
"raise",
"ValueError",
"(",
"error",
")",
"df",
"=",
"ix",
".",
"timeseries",
"(",
"iamc",
"=",
"False",
",",
"*",
"*",
"kwargs",
")",
"df",
"[",
"'model'",
"]",
"=",
"ix",
".",
"model",
"df",
"[",
"'scenario'",
"]",
"=",
"ix",
".",
"scenario",
"return",
"df",
",",
"'year'",
",",
"[",
"]"
]
| Read timeseries data from an ixmp object
Parameters
----------
ix: ixmp.TimeSeries or ixmp.Scenario
this option requires the ixmp package as a dependency
kwargs: arguments passed to ixmp.TimeSeries.timeseries() | [
"Read",
"timeseries",
"data",
"from",
"an",
"ixmp",
"object"
]
| 4077929ca6e7be63a0e3ecf882c5f1da97b287bf | https://github.com/IAMconsortium/pyam/blob/4077929ca6e7be63a0e3ecf882c5f1da97b287bf/pyam/read_ixmp.py#L8-L24 | train |
IAMconsortium/pyam | pyam/utils.py | requires_package | def requires_package(pkg, msg, error_type=ImportError):
"""Decorator when a function requires an optional dependency
Parameters
----------
pkg : imported package object
msg : string
Message to show to user with error_type
error_type : python error class
"""
def _requires_package(func):
def wrapper(*args, **kwargs):
if pkg is None:
raise error_type(msg)
return func(*args, **kwargs)
return wrapper
return _requires_package | python | def requires_package(pkg, msg, error_type=ImportError):
"""Decorator when a function requires an optional dependency
Parameters
----------
pkg : imported package object
msg : string
Message to show to user with error_type
error_type : python error class
"""
def _requires_package(func):
def wrapper(*args, **kwargs):
if pkg is None:
raise error_type(msg)
return func(*args, **kwargs)
return wrapper
return _requires_package | [
"def",
"requires_package",
"(",
"pkg",
",",
"msg",
",",
"error_type",
"=",
"ImportError",
")",
":",
"def",
"_requires_package",
"(",
"func",
")",
":",
"def",
"wrapper",
"(",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
":",
"if",
"pkg",
"is",
"None",
":",
"raise",
"error_type",
"(",
"msg",
")",
"return",
"func",
"(",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
"return",
"wrapper",
"return",
"_requires_package"
]
| Decorator when a function requires an optional dependency
Parameters
----------
pkg : imported package object
msg : string
Message to show to user with error_type
error_type : python error class | [
"Decorator",
"when",
"a",
"function",
"requires",
"an",
"optional",
"dependency"
]
| 4077929ca6e7be63a0e3ecf882c5f1da97b287bf | https://github.com/IAMconsortium/pyam/blob/4077929ca6e7be63a0e3ecf882c5f1da97b287bf/pyam/utils.py#L36-L52 | train |
IAMconsortium/pyam | pyam/utils.py | write_sheet | def write_sheet(writer, name, df, index=False):
"""Write a pandas DataFrame to an ExcelWriter,
auto-formatting column width depending on maxwidth of data and colum header
Parameters
----------
writer: pandas.ExcelWriter
an instance of a pandas ExcelWriter
name: string
name of the sheet to be written
df: pandas.DataFrame
a pandas DataFrame to be written to the sheet
index: boolean, default False
flag whether index should be written to the sheet
"""
if index:
df = df.reset_index()
df.to_excel(writer, name, index=False)
worksheet = writer.sheets[name]
for i, col in enumerate(df.columns):
if df.dtypes[col].name.startswith(('float', 'int')):
width = len(str(col)) + 2
else:
width = max([df[col].map(lambda x: len(str(x or 'None'))).max(),
len(col)]) + 2
xls_col = '{c}:{c}'.format(c=NUMERIC_TO_STR[i])
worksheet.set_column(xls_col, width) | python | def write_sheet(writer, name, df, index=False):
"""Write a pandas DataFrame to an ExcelWriter,
auto-formatting column width depending on maxwidth of data and colum header
Parameters
----------
writer: pandas.ExcelWriter
an instance of a pandas ExcelWriter
name: string
name of the sheet to be written
df: pandas.DataFrame
a pandas DataFrame to be written to the sheet
index: boolean, default False
flag whether index should be written to the sheet
"""
if index:
df = df.reset_index()
df.to_excel(writer, name, index=False)
worksheet = writer.sheets[name]
for i, col in enumerate(df.columns):
if df.dtypes[col].name.startswith(('float', 'int')):
width = len(str(col)) + 2
else:
width = max([df[col].map(lambda x: len(str(x or 'None'))).max(),
len(col)]) + 2
xls_col = '{c}:{c}'.format(c=NUMERIC_TO_STR[i])
worksheet.set_column(xls_col, width) | [
"def",
"write_sheet",
"(",
"writer",
",",
"name",
",",
"df",
",",
"index",
"=",
"False",
")",
":",
"if",
"index",
":",
"df",
"=",
"df",
".",
"reset_index",
"(",
")",
"df",
".",
"to_excel",
"(",
"writer",
",",
"name",
",",
"index",
"=",
"False",
")",
"worksheet",
"=",
"writer",
".",
"sheets",
"[",
"name",
"]",
"for",
"i",
",",
"col",
"in",
"enumerate",
"(",
"df",
".",
"columns",
")",
":",
"if",
"df",
".",
"dtypes",
"[",
"col",
"]",
".",
"name",
".",
"startswith",
"(",
"(",
"'float'",
",",
"'int'",
")",
")",
":",
"width",
"=",
"len",
"(",
"str",
"(",
"col",
")",
")",
"+",
"2",
"else",
":",
"width",
"=",
"max",
"(",
"[",
"df",
"[",
"col",
"]",
".",
"map",
"(",
"lambda",
"x",
":",
"len",
"(",
"str",
"(",
"x",
"or",
"'None'",
")",
")",
")",
".",
"max",
"(",
")",
",",
"len",
"(",
"col",
")",
"]",
")",
"+",
"2",
"xls_col",
"=",
"'{c}:{c}'",
".",
"format",
"(",
"c",
"=",
"NUMERIC_TO_STR",
"[",
"i",
"]",
")",
"worksheet",
".",
"set_column",
"(",
"xls_col",
",",
"width",
")"
]
| Write a pandas DataFrame to an ExcelWriter,
auto-formatting column width depending on maxwidth of data and colum header
Parameters
----------
writer: pandas.ExcelWriter
an instance of a pandas ExcelWriter
name: string
name of the sheet to be written
df: pandas.DataFrame
a pandas DataFrame to be written to the sheet
index: boolean, default False
flag whether index should be written to the sheet | [
"Write",
"a",
"pandas",
"DataFrame",
"to",
"an",
"ExcelWriter",
"auto",
"-",
"formatting",
"column",
"width",
"depending",
"on",
"maxwidth",
"of",
"data",
"and",
"colum",
"header"
]
| 4077929ca6e7be63a0e3ecf882c5f1da97b287bf | https://github.com/IAMconsortium/pyam/blob/4077929ca6e7be63a0e3ecf882c5f1da97b287bf/pyam/utils.py#L70-L96 | train |
IAMconsortium/pyam | pyam/utils.py | read_pandas | def read_pandas(fname, *args, **kwargs):
"""Read a file and return a pd.DataFrame"""
if not os.path.exists(fname):
raise ValueError('no data file `{}` found!'.format(fname))
if fname.endswith('csv'):
df = pd.read_csv(fname, *args, **kwargs)
else:
xl = pd.ExcelFile(fname)
if len(xl.sheet_names) > 1 and 'sheet_name' not in kwargs:
kwargs['sheet_name'] = 'data'
df = pd.read_excel(fname, *args, **kwargs)
return df | python | def read_pandas(fname, *args, **kwargs):
"""Read a file and return a pd.DataFrame"""
if not os.path.exists(fname):
raise ValueError('no data file `{}` found!'.format(fname))
if fname.endswith('csv'):
df = pd.read_csv(fname, *args, **kwargs)
else:
xl = pd.ExcelFile(fname)
if len(xl.sheet_names) > 1 and 'sheet_name' not in kwargs:
kwargs['sheet_name'] = 'data'
df = pd.read_excel(fname, *args, **kwargs)
return df | [
"def",
"read_pandas",
"(",
"fname",
",",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
":",
"if",
"not",
"os",
".",
"path",
".",
"exists",
"(",
"fname",
")",
":",
"raise",
"ValueError",
"(",
"'no data file `{}` found!'",
".",
"format",
"(",
"fname",
")",
")",
"if",
"fname",
".",
"endswith",
"(",
"'csv'",
")",
":",
"df",
"=",
"pd",
".",
"read_csv",
"(",
"fname",
",",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
"else",
":",
"xl",
"=",
"pd",
".",
"ExcelFile",
"(",
"fname",
")",
"if",
"len",
"(",
"xl",
".",
"sheet_names",
")",
">",
"1",
"and",
"'sheet_name'",
"not",
"in",
"kwargs",
":",
"kwargs",
"[",
"'sheet_name'",
"]",
"=",
"'data'",
"df",
"=",
"pd",
".",
"read_excel",
"(",
"fname",
",",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
"return",
"df"
]
| Read a file and return a pd.DataFrame | [
"Read",
"a",
"file",
"and",
"return",
"a",
"pd",
".",
"DataFrame"
]
| 4077929ca6e7be63a0e3ecf882c5f1da97b287bf | https://github.com/IAMconsortium/pyam/blob/4077929ca6e7be63a0e3ecf882c5f1da97b287bf/pyam/utils.py#L99-L110 | train |
IAMconsortium/pyam | pyam/utils.py | sort_data | def sort_data(data, cols):
"""Sort `data` rows and order columns"""
return data.sort_values(cols)[cols + ['value']].reset_index(drop=True) | python | def sort_data(data, cols):
"""Sort `data` rows and order columns"""
return data.sort_values(cols)[cols + ['value']].reset_index(drop=True) | [
"def",
"sort_data",
"(",
"data",
",",
"cols",
")",
":",
"return",
"data",
".",
"sort_values",
"(",
"cols",
")",
"[",
"cols",
"+",
"[",
"'value'",
"]",
"]",
".",
"reset_index",
"(",
"drop",
"=",
"True",
")"
]
| Sort `data` rows and order columns | [
"Sort",
"data",
"rows",
"and",
"order",
"columns"
]
| 4077929ca6e7be63a0e3ecf882c5f1da97b287bf | https://github.com/IAMconsortium/pyam/blob/4077929ca6e7be63a0e3ecf882c5f1da97b287bf/pyam/utils.py#L258-L260 | train |
IAMconsortium/pyam | pyam/utils.py | _escape_regexp | def _escape_regexp(s):
"""escape characters with specific regexp use"""
return (
str(s)
.replace('|', '\\|')
.replace('.', '\.') # `.` has to be replaced before `*`
.replace('*', '.*')
.replace('+', '\+')
.replace('(', '\(')
.replace(')', '\)')
.replace('$', '\\$')
) | python | def _escape_regexp(s):
"""escape characters with specific regexp use"""
return (
str(s)
.replace('|', '\\|')
.replace('.', '\.') # `.` has to be replaced before `*`
.replace('*', '.*')
.replace('+', '\+')
.replace('(', '\(')
.replace(')', '\)')
.replace('$', '\\$')
) | [
"def",
"_escape_regexp",
"(",
"s",
")",
":",
"return",
"(",
"str",
"(",
"s",
")",
".",
"replace",
"(",
"'|'",
",",
"'\\\\|'",
")",
".",
"replace",
"(",
"'.'",
",",
"'\\.'",
")",
"# `.` has to be replaced before `*`",
".",
"replace",
"(",
"'*'",
",",
"'.*'",
")",
".",
"replace",
"(",
"'+'",
",",
"'\\+'",
")",
".",
"replace",
"(",
"'('",
",",
"'\\('",
")",
".",
"replace",
"(",
"')'",
",",
"'\\)'",
")",
".",
"replace",
"(",
"'$'",
",",
"'\\\\$'",
")",
")"
]
| escape characters with specific regexp use | [
"escape",
"characters",
"with",
"specific",
"regexp",
"use"
]
| 4077929ca6e7be63a0e3ecf882c5f1da97b287bf | https://github.com/IAMconsortium/pyam/blob/4077929ca6e7be63a0e3ecf882c5f1da97b287bf/pyam/utils.py#L332-L343 | train |
IAMconsortium/pyam | pyam/utils.py | years_match | def years_match(data, years):
"""
matching of year columns for data filtering
"""
years = [years] if isinstance(years, int) else years
dt = datetime.datetime
if isinstance(years, dt) or isinstance(years[0], dt):
error_msg = "`year` can only be filtered with ints or lists of ints"
raise TypeError(error_msg)
return data.isin(years) | python | def years_match(data, years):
"""
matching of year columns for data filtering
"""
years = [years] if isinstance(years, int) else years
dt = datetime.datetime
if isinstance(years, dt) or isinstance(years[0], dt):
error_msg = "`year` can only be filtered with ints or lists of ints"
raise TypeError(error_msg)
return data.isin(years) | [
"def",
"years_match",
"(",
"data",
",",
"years",
")",
":",
"years",
"=",
"[",
"years",
"]",
"if",
"isinstance",
"(",
"years",
",",
"int",
")",
"else",
"years",
"dt",
"=",
"datetime",
".",
"datetime",
"if",
"isinstance",
"(",
"years",
",",
"dt",
")",
"or",
"isinstance",
"(",
"years",
"[",
"0",
"]",
",",
"dt",
")",
":",
"error_msg",
"=",
"\"`year` can only be filtered with ints or lists of ints\"",
"raise",
"TypeError",
"(",
"error_msg",
")",
"return",
"data",
".",
"isin",
"(",
"years",
")"
]
| matching of year columns for data filtering | [
"matching",
"of",
"year",
"columns",
"for",
"data",
"filtering"
]
| 4077929ca6e7be63a0e3ecf882c5f1da97b287bf | https://github.com/IAMconsortium/pyam/blob/4077929ca6e7be63a0e3ecf882c5f1da97b287bf/pyam/utils.py#L346-L355 | train |
IAMconsortium/pyam | pyam/utils.py | hour_match | def hour_match(data, hours):
"""
matching of days in time columns for data filtering
"""
hours = [hours] if isinstance(hours, int) else hours
return data.isin(hours) | python | def hour_match(data, hours):
"""
matching of days in time columns for data filtering
"""
hours = [hours] if isinstance(hours, int) else hours
return data.isin(hours) | [
"def",
"hour_match",
"(",
"data",
",",
"hours",
")",
":",
"hours",
"=",
"[",
"hours",
"]",
"if",
"isinstance",
"(",
"hours",
",",
"int",
")",
"else",
"hours",
"return",
"data",
".",
"isin",
"(",
"hours",
")"
]
| matching of days in time columns for data filtering | [
"matching",
"of",
"days",
"in",
"time",
"columns",
"for",
"data",
"filtering"
]
| 4077929ca6e7be63a0e3ecf882c5f1da97b287bf | https://github.com/IAMconsortium/pyam/blob/4077929ca6e7be63a0e3ecf882c5f1da97b287bf/pyam/utils.py#L372-L377 | train |
IAMconsortium/pyam | pyam/utils.py | datetime_match | def datetime_match(data, dts):
"""
matching of datetimes in time columns for data filtering
"""
dts = dts if islistable(dts) else [dts]
if any([not isinstance(i, datetime.datetime) for i in dts]):
error_msg = (
"`time` can only be filtered by datetimes"
)
raise TypeError(error_msg)
return data.isin(dts) | python | def datetime_match(data, dts):
"""
matching of datetimes in time columns for data filtering
"""
dts = dts if islistable(dts) else [dts]
if any([not isinstance(i, datetime.datetime) for i in dts]):
error_msg = (
"`time` can only be filtered by datetimes"
)
raise TypeError(error_msg)
return data.isin(dts) | [
"def",
"datetime_match",
"(",
"data",
",",
"dts",
")",
":",
"dts",
"=",
"dts",
"if",
"islistable",
"(",
"dts",
")",
"else",
"[",
"dts",
"]",
"if",
"any",
"(",
"[",
"not",
"isinstance",
"(",
"i",
",",
"datetime",
".",
"datetime",
")",
"for",
"i",
"in",
"dts",
"]",
")",
":",
"error_msg",
"=",
"(",
"\"`time` can only be filtered by datetimes\"",
")",
"raise",
"TypeError",
"(",
"error_msg",
")",
"return",
"data",
".",
"isin",
"(",
"dts",
")"
]
| matching of datetimes in time columns for data filtering | [
"matching",
"of",
"datetimes",
"in",
"time",
"columns",
"for",
"data",
"filtering"
]
| 4077929ca6e7be63a0e3ecf882c5f1da97b287bf | https://github.com/IAMconsortium/pyam/blob/4077929ca6e7be63a0e3ecf882c5f1da97b287bf/pyam/utils.py#L422-L432 | train |
IAMconsortium/pyam | pyam/utils.py | to_int | def to_int(x, index=False):
"""Formatting series or timeseries columns to int and checking validity.
If `index=False`, the function works on the `pd.Series x`; else,
the function casts the index of `x` to int and returns x with a new index.
"""
_x = x.index if index else x
cols = list(map(int, _x))
error = _x[cols != _x]
if not error.empty:
raise ValueError('invalid values `{}`'.format(list(error)))
if index:
x.index = cols
return x
else:
return _x | python | def to_int(x, index=False):
"""Formatting series or timeseries columns to int and checking validity.
If `index=False`, the function works on the `pd.Series x`; else,
the function casts the index of `x` to int and returns x with a new index.
"""
_x = x.index if index else x
cols = list(map(int, _x))
error = _x[cols != _x]
if not error.empty:
raise ValueError('invalid values `{}`'.format(list(error)))
if index:
x.index = cols
return x
else:
return _x | [
"def",
"to_int",
"(",
"x",
",",
"index",
"=",
"False",
")",
":",
"_x",
"=",
"x",
".",
"index",
"if",
"index",
"else",
"x",
"cols",
"=",
"list",
"(",
"map",
"(",
"int",
",",
"_x",
")",
")",
"error",
"=",
"_x",
"[",
"cols",
"!=",
"_x",
"]",
"if",
"not",
"error",
".",
"empty",
":",
"raise",
"ValueError",
"(",
"'invalid values `{}`'",
".",
"format",
"(",
"list",
"(",
"error",
")",
")",
")",
"if",
"index",
":",
"x",
".",
"index",
"=",
"cols",
"return",
"x",
"else",
":",
"return",
"_x"
]
| Formatting series or timeseries columns to int and checking validity.
If `index=False`, the function works on the `pd.Series x`; else,
the function casts the index of `x` to int and returns x with a new index. | [
"Formatting",
"series",
"or",
"timeseries",
"columns",
"to",
"int",
"and",
"checking",
"validity",
".",
"If",
"index",
"=",
"False",
"the",
"function",
"works",
"on",
"the",
"pd",
".",
"Series",
"x",
";",
"else",
"the",
"function",
"casts",
"the",
"index",
"of",
"x",
"to",
"int",
"and",
"returns",
"x",
"with",
"a",
"new",
"index",
"."
]
| 4077929ca6e7be63a0e3ecf882c5f1da97b287bf | https://github.com/IAMconsortium/pyam/blob/4077929ca6e7be63a0e3ecf882c5f1da97b287bf/pyam/utils.py#L435-L449 | train |
IAMconsortium/pyam | pyam/utils.py | concat_with_pipe | def concat_with_pipe(x, cols=None):
"""Concatenate a `pd.Series` separated by `|`, drop `None` or `np.nan`"""
cols = cols or x.index
return '|'.join([x[i] for i in cols if x[i] not in [None, np.nan]]) | python | def concat_with_pipe(x, cols=None):
"""Concatenate a `pd.Series` separated by `|`, drop `None` or `np.nan`"""
cols = cols or x.index
return '|'.join([x[i] for i in cols if x[i] not in [None, np.nan]]) | [
"def",
"concat_with_pipe",
"(",
"x",
",",
"cols",
"=",
"None",
")",
":",
"cols",
"=",
"cols",
"or",
"x",
".",
"index",
"return",
"'|'",
".",
"join",
"(",
"[",
"x",
"[",
"i",
"]",
"for",
"i",
"in",
"cols",
"if",
"x",
"[",
"i",
"]",
"not",
"in",
"[",
"None",
",",
"np",
".",
"nan",
"]",
"]",
")"
]
| Concatenate a `pd.Series` separated by `|`, drop `None` or `np.nan` | [
"Concatenate",
"a",
"pd",
".",
"Series",
"separated",
"by",
"|",
"drop",
"None",
"or",
"np",
".",
"nan"
]
| 4077929ca6e7be63a0e3ecf882c5f1da97b287bf | https://github.com/IAMconsortium/pyam/blob/4077929ca6e7be63a0e3ecf882c5f1da97b287bf/pyam/utils.py#L452-L455 | train |
IAMconsortium/pyam | pyam/core.py | _make_index | def _make_index(df, cols=META_IDX):
"""Create an index from the columns of a dataframe"""
return pd.MultiIndex.from_tuples(
pd.unique(list(zip(*[df[col] for col in cols]))), names=tuple(cols)) | python | def _make_index(df, cols=META_IDX):
"""Create an index from the columns of a dataframe"""
return pd.MultiIndex.from_tuples(
pd.unique(list(zip(*[df[col] for col in cols]))), names=tuple(cols)) | [
"def",
"_make_index",
"(",
"df",
",",
"cols",
"=",
"META_IDX",
")",
":",
"return",
"pd",
".",
"MultiIndex",
".",
"from_tuples",
"(",
"pd",
".",
"unique",
"(",
"list",
"(",
"zip",
"(",
"*",
"[",
"df",
"[",
"col",
"]",
"for",
"col",
"in",
"cols",
"]",
")",
")",
")",
",",
"names",
"=",
"tuple",
"(",
"cols",
")",
")"
]
| Create an index from the columns of a dataframe | [
"Create",
"an",
"index",
"from",
"the",
"columns",
"of",
"a",
"dataframe"
]
| 4077929ca6e7be63a0e3ecf882c5f1da97b287bf | https://github.com/IAMconsortium/pyam/blob/4077929ca6e7be63a0e3ecf882c5f1da97b287bf/pyam/core.py#L1400-L1403 | train |
IAMconsortium/pyam | pyam/core.py | check_aggregate | def check_aggregate(df, variable, components=None, exclude_on_fail=False,
multiplier=1, **kwargs):
"""Check whether the timeseries values match the aggregation
of sub-categories
Parameters
----------
df: IamDataFrame instance
args: see IamDataFrame.check_aggregate() for details
kwargs: passed to `df.filter()`
"""
fdf = df.filter(**kwargs)
if len(fdf.data) > 0:
vdf = fdf.check_aggregate(variable=variable, components=components,
exclude_on_fail=exclude_on_fail,
multiplier=multiplier)
df.meta['exclude'] |= fdf.meta['exclude'] # update if any excluded
return vdf | python | def check_aggregate(df, variable, components=None, exclude_on_fail=False,
multiplier=1, **kwargs):
"""Check whether the timeseries values match the aggregation
of sub-categories
Parameters
----------
df: IamDataFrame instance
args: see IamDataFrame.check_aggregate() for details
kwargs: passed to `df.filter()`
"""
fdf = df.filter(**kwargs)
if len(fdf.data) > 0:
vdf = fdf.check_aggregate(variable=variable, components=components,
exclude_on_fail=exclude_on_fail,
multiplier=multiplier)
df.meta['exclude'] |= fdf.meta['exclude'] # update if any excluded
return vdf | [
"def",
"check_aggregate",
"(",
"df",
",",
"variable",
",",
"components",
"=",
"None",
",",
"exclude_on_fail",
"=",
"False",
",",
"multiplier",
"=",
"1",
",",
"*",
"*",
"kwargs",
")",
":",
"fdf",
"=",
"df",
".",
"filter",
"(",
"*",
"*",
"kwargs",
")",
"if",
"len",
"(",
"fdf",
".",
"data",
")",
">",
"0",
":",
"vdf",
"=",
"fdf",
".",
"check_aggregate",
"(",
"variable",
"=",
"variable",
",",
"components",
"=",
"components",
",",
"exclude_on_fail",
"=",
"exclude_on_fail",
",",
"multiplier",
"=",
"multiplier",
")",
"df",
".",
"meta",
"[",
"'exclude'",
"]",
"|=",
"fdf",
".",
"meta",
"[",
"'exclude'",
"]",
"# update if any excluded",
"return",
"vdf"
]
| Check whether the timeseries values match the aggregation
of sub-categories
Parameters
----------
df: IamDataFrame instance
args: see IamDataFrame.check_aggregate() for details
kwargs: passed to `df.filter()` | [
"Check",
"whether",
"the",
"timeseries",
"values",
"match",
"the",
"aggregation",
"of",
"sub",
"-",
"categories"
]
| 4077929ca6e7be63a0e3ecf882c5f1da97b287bf | https://github.com/IAMconsortium/pyam/blob/4077929ca6e7be63a0e3ecf882c5f1da97b287bf/pyam/core.py#L1462-L1479 | train |
IAMconsortium/pyam | pyam/core.py | filter_by_meta | def filter_by_meta(data, df, join_meta=False, **kwargs):
"""Filter by and join meta columns from an IamDataFrame to a pd.DataFrame
Parameters
----------
data: pd.DataFrame instance
DataFrame to which meta columns are to be joined,
index or columns must include `['model', 'scenario']`
df: IamDataFrame instance
IamDataFrame from which meta columns are filtered and joined (optional)
join_meta: bool, default False
join selected columns from `df.meta` on `data`
kwargs:
meta columns to be filtered/joined, where `col=...` applies filters
by the given arguments (using `utils.pattern_match()`) and `col=None`
joins the column without filtering (setting col to `np.nan`
if `(model, scenario) not in df.meta.index`)
"""
if not set(META_IDX).issubset(data.index.names + list(data.columns)):
raise ValueError('missing required index dimensions or columns!')
meta = pd.DataFrame(df.meta[list(set(kwargs) - set(META_IDX))].copy())
# filter meta by columns
keep = np.array([True] * len(meta))
apply_filter = False
for col, values in kwargs.items():
if col in META_IDX and values is not None:
_col = meta.index.get_level_values(0 if col is 'model' else 1)
keep &= pattern_match(_col, values, has_nan=False)
apply_filter = True
elif values is not None:
keep &= pattern_match(meta[col], values)
apply_filter |= values is not None
meta = meta[keep]
# set the data index to META_IDX and apply filtered meta index
data = data.copy()
idx = list(data.index.names) if not data.index.names == [None] else None
data = data.reset_index().set_index(META_IDX)
meta = meta.loc[meta.index.intersection(data.index)]
meta.index.names = META_IDX
if apply_filter:
data = data.loc[meta.index]
data.index.names = META_IDX
# join meta (optional), reset index to format as input arg
data = data.join(meta) if join_meta else data
data = data.reset_index().set_index(idx or 'index')
if idx is None:
data.index.name = None
return data | python | def filter_by_meta(data, df, join_meta=False, **kwargs):
"""Filter by and join meta columns from an IamDataFrame to a pd.DataFrame
Parameters
----------
data: pd.DataFrame instance
DataFrame to which meta columns are to be joined,
index or columns must include `['model', 'scenario']`
df: IamDataFrame instance
IamDataFrame from which meta columns are filtered and joined (optional)
join_meta: bool, default False
join selected columns from `df.meta` on `data`
kwargs:
meta columns to be filtered/joined, where `col=...` applies filters
by the given arguments (using `utils.pattern_match()`) and `col=None`
joins the column without filtering (setting col to `np.nan`
if `(model, scenario) not in df.meta.index`)
"""
if not set(META_IDX).issubset(data.index.names + list(data.columns)):
raise ValueError('missing required index dimensions or columns!')
meta = pd.DataFrame(df.meta[list(set(kwargs) - set(META_IDX))].copy())
# filter meta by columns
keep = np.array([True] * len(meta))
apply_filter = False
for col, values in kwargs.items():
if col in META_IDX and values is not None:
_col = meta.index.get_level_values(0 if col is 'model' else 1)
keep &= pattern_match(_col, values, has_nan=False)
apply_filter = True
elif values is not None:
keep &= pattern_match(meta[col], values)
apply_filter |= values is not None
meta = meta[keep]
# set the data index to META_IDX and apply filtered meta index
data = data.copy()
idx = list(data.index.names) if not data.index.names == [None] else None
data = data.reset_index().set_index(META_IDX)
meta = meta.loc[meta.index.intersection(data.index)]
meta.index.names = META_IDX
if apply_filter:
data = data.loc[meta.index]
data.index.names = META_IDX
# join meta (optional), reset index to format as input arg
data = data.join(meta) if join_meta else data
data = data.reset_index().set_index(idx or 'index')
if idx is None:
data.index.name = None
return data | [
"def",
"filter_by_meta",
"(",
"data",
",",
"df",
",",
"join_meta",
"=",
"False",
",",
"*",
"*",
"kwargs",
")",
":",
"if",
"not",
"set",
"(",
"META_IDX",
")",
".",
"issubset",
"(",
"data",
".",
"index",
".",
"names",
"+",
"list",
"(",
"data",
".",
"columns",
")",
")",
":",
"raise",
"ValueError",
"(",
"'missing required index dimensions or columns!'",
")",
"meta",
"=",
"pd",
".",
"DataFrame",
"(",
"df",
".",
"meta",
"[",
"list",
"(",
"set",
"(",
"kwargs",
")",
"-",
"set",
"(",
"META_IDX",
")",
")",
"]",
".",
"copy",
"(",
")",
")",
"# filter meta by columns",
"keep",
"=",
"np",
".",
"array",
"(",
"[",
"True",
"]",
"*",
"len",
"(",
"meta",
")",
")",
"apply_filter",
"=",
"False",
"for",
"col",
",",
"values",
"in",
"kwargs",
".",
"items",
"(",
")",
":",
"if",
"col",
"in",
"META_IDX",
"and",
"values",
"is",
"not",
"None",
":",
"_col",
"=",
"meta",
".",
"index",
".",
"get_level_values",
"(",
"0",
"if",
"col",
"is",
"'model'",
"else",
"1",
")",
"keep",
"&=",
"pattern_match",
"(",
"_col",
",",
"values",
",",
"has_nan",
"=",
"False",
")",
"apply_filter",
"=",
"True",
"elif",
"values",
"is",
"not",
"None",
":",
"keep",
"&=",
"pattern_match",
"(",
"meta",
"[",
"col",
"]",
",",
"values",
")",
"apply_filter",
"|=",
"values",
"is",
"not",
"None",
"meta",
"=",
"meta",
"[",
"keep",
"]",
"# set the data index to META_IDX and apply filtered meta index",
"data",
"=",
"data",
".",
"copy",
"(",
")",
"idx",
"=",
"list",
"(",
"data",
".",
"index",
".",
"names",
")",
"if",
"not",
"data",
".",
"index",
".",
"names",
"==",
"[",
"None",
"]",
"else",
"None",
"data",
"=",
"data",
".",
"reset_index",
"(",
")",
".",
"set_index",
"(",
"META_IDX",
")",
"meta",
"=",
"meta",
".",
"loc",
"[",
"meta",
".",
"index",
".",
"intersection",
"(",
"data",
".",
"index",
")",
"]",
"meta",
".",
"index",
".",
"names",
"=",
"META_IDX",
"if",
"apply_filter",
":",
"data",
"=",
"data",
".",
"loc",
"[",
"meta",
".",
"index",
"]",
"data",
".",
"index",
".",
"names",
"=",
"META_IDX",
"# join meta (optional), reset index to format as input arg",
"data",
"=",
"data",
".",
"join",
"(",
"meta",
")",
"if",
"join_meta",
"else",
"data",
"data",
"=",
"data",
".",
"reset_index",
"(",
")",
".",
"set_index",
"(",
"idx",
"or",
"'index'",
")",
"if",
"idx",
"is",
"None",
":",
"data",
".",
"index",
".",
"name",
"=",
"None",
"return",
"data"
]
| Filter by and join meta columns from an IamDataFrame to a pd.DataFrame
Parameters
----------
data: pd.DataFrame instance
DataFrame to which meta columns are to be joined,
index or columns must include `['model', 'scenario']`
df: IamDataFrame instance
IamDataFrame from which meta columns are filtered and joined (optional)
join_meta: bool, default False
join selected columns from `df.meta` on `data`
kwargs:
meta columns to be filtered/joined, where `col=...` applies filters
by the given arguments (using `utils.pattern_match()`) and `col=None`
joins the column without filtering (setting col to `np.nan`
if `(model, scenario) not in df.meta.index`) | [
"Filter",
"by",
"and",
"join",
"meta",
"columns",
"from",
"an",
"IamDataFrame",
"to",
"a",
"pd",
".",
"DataFrame"
]
| 4077929ca6e7be63a0e3ecf882c5f1da97b287bf | https://github.com/IAMconsortium/pyam/blob/4077929ca6e7be63a0e3ecf882c5f1da97b287bf/pyam/core.py#L1482-L1534 | train |
IAMconsortium/pyam | pyam/core.py | compare | def compare(left, right, left_label='left', right_label='right',
drop_close=True, **kwargs):
"""Compare the data in two IamDataFrames and return a pd.DataFrame
Parameters
----------
left, right: IamDataFrames
the IamDataFrames to be compared
left_label, right_label: str, default `left`, `right`
column names of the returned dataframe
drop_close: bool, default True
remove all data where `left` and `right` are close
kwargs: passed to `np.isclose()`
"""
ret = pd.concat({right_label: right.data.set_index(right._LONG_IDX),
left_label: left.data.set_index(left._LONG_IDX)}, axis=1)
ret.columns = ret.columns.droplevel(1)
if drop_close:
ret = ret[~np.isclose(ret[left_label], ret[right_label], **kwargs)]
return ret[[right_label, left_label]] | python | def compare(left, right, left_label='left', right_label='right',
drop_close=True, **kwargs):
"""Compare the data in two IamDataFrames and return a pd.DataFrame
Parameters
----------
left, right: IamDataFrames
the IamDataFrames to be compared
left_label, right_label: str, default `left`, `right`
column names of the returned dataframe
drop_close: bool, default True
remove all data where `left` and `right` are close
kwargs: passed to `np.isclose()`
"""
ret = pd.concat({right_label: right.data.set_index(right._LONG_IDX),
left_label: left.data.set_index(left._LONG_IDX)}, axis=1)
ret.columns = ret.columns.droplevel(1)
if drop_close:
ret = ret[~np.isclose(ret[left_label], ret[right_label], **kwargs)]
return ret[[right_label, left_label]] | [
"def",
"compare",
"(",
"left",
",",
"right",
",",
"left_label",
"=",
"'left'",
",",
"right_label",
"=",
"'right'",
",",
"drop_close",
"=",
"True",
",",
"*",
"*",
"kwargs",
")",
":",
"ret",
"=",
"pd",
".",
"concat",
"(",
"{",
"right_label",
":",
"right",
".",
"data",
".",
"set_index",
"(",
"right",
".",
"_LONG_IDX",
")",
",",
"left_label",
":",
"left",
".",
"data",
".",
"set_index",
"(",
"left",
".",
"_LONG_IDX",
")",
"}",
",",
"axis",
"=",
"1",
")",
"ret",
".",
"columns",
"=",
"ret",
".",
"columns",
".",
"droplevel",
"(",
"1",
")",
"if",
"drop_close",
":",
"ret",
"=",
"ret",
"[",
"~",
"np",
".",
"isclose",
"(",
"ret",
"[",
"left_label",
"]",
",",
"ret",
"[",
"right_label",
"]",
",",
"*",
"*",
"kwargs",
")",
"]",
"return",
"ret",
"[",
"[",
"right_label",
",",
"left_label",
"]",
"]"
]
| Compare the data in two IamDataFrames and return a pd.DataFrame
Parameters
----------
left, right: IamDataFrames
the IamDataFrames to be compared
left_label, right_label: str, default `left`, `right`
column names of the returned dataframe
drop_close: bool, default True
remove all data where `left` and `right` are close
kwargs: passed to `np.isclose()` | [
"Compare",
"the",
"data",
"in",
"two",
"IamDataFrames",
"and",
"return",
"a",
"pd",
".",
"DataFrame"
]
| 4077929ca6e7be63a0e3ecf882c5f1da97b287bf | https://github.com/IAMconsortium/pyam/blob/4077929ca6e7be63a0e3ecf882c5f1da97b287bf/pyam/core.py#L1537-L1556 | train |
IAMconsortium/pyam | pyam/core.py | concat | def concat(dfs):
"""Concatenate a series of `pyam.IamDataFrame`-like objects together"""
if isstr(dfs) or not hasattr(dfs, '__iter__'):
msg = 'Argument must be a non-string iterable (e.g., list or tuple)'
raise TypeError(msg)
_df = None
for df in dfs:
df = df if isinstance(df, IamDataFrame) else IamDataFrame(df)
if _df is None:
_df = copy.deepcopy(df)
else:
_df.append(df, inplace=True)
return _df | python | def concat(dfs):
"""Concatenate a series of `pyam.IamDataFrame`-like objects together"""
if isstr(dfs) or not hasattr(dfs, '__iter__'):
msg = 'Argument must be a non-string iterable (e.g., list or tuple)'
raise TypeError(msg)
_df = None
for df in dfs:
df = df if isinstance(df, IamDataFrame) else IamDataFrame(df)
if _df is None:
_df = copy.deepcopy(df)
else:
_df.append(df, inplace=True)
return _df | [
"def",
"concat",
"(",
"dfs",
")",
":",
"if",
"isstr",
"(",
"dfs",
")",
"or",
"not",
"hasattr",
"(",
"dfs",
",",
"'__iter__'",
")",
":",
"msg",
"=",
"'Argument must be a non-string iterable (e.g., list or tuple)'",
"raise",
"TypeError",
"(",
"msg",
")",
"_df",
"=",
"None",
"for",
"df",
"in",
"dfs",
":",
"df",
"=",
"df",
"if",
"isinstance",
"(",
"df",
",",
"IamDataFrame",
")",
"else",
"IamDataFrame",
"(",
"df",
")",
"if",
"_df",
"is",
"None",
":",
"_df",
"=",
"copy",
".",
"deepcopy",
"(",
"df",
")",
"else",
":",
"_df",
".",
"append",
"(",
"df",
",",
"inplace",
"=",
"True",
")",
"return",
"_df"
]
| Concatenate a series of `pyam.IamDataFrame`-like objects together | [
"Concatenate",
"a",
"series",
"of",
"pyam",
".",
"IamDataFrame",
"-",
"like",
"objects",
"together"
]
| 4077929ca6e7be63a0e3ecf882c5f1da97b287bf | https://github.com/IAMconsortium/pyam/blob/4077929ca6e7be63a0e3ecf882c5f1da97b287bf/pyam/core.py#L1559-L1572 | train |
IAMconsortium/pyam | pyam/core.py | IamDataFrame.variables | def variables(self, include_units=False):
"""Get a list of variables
Parameters
----------
include_units: boolean, default False
include the units
"""
if include_units:
return self.data[['variable', 'unit']].drop_duplicates()\
.reset_index(drop=True).sort_values('variable')
else:
return pd.Series(self.data.variable.unique(), name='variable') | python | def variables(self, include_units=False):
"""Get a list of variables
Parameters
----------
include_units: boolean, default False
include the units
"""
if include_units:
return self.data[['variable', 'unit']].drop_duplicates()\
.reset_index(drop=True).sort_values('variable')
else:
return pd.Series(self.data.variable.unique(), name='variable') | [
"def",
"variables",
"(",
"self",
",",
"include_units",
"=",
"False",
")",
":",
"if",
"include_units",
":",
"return",
"self",
".",
"data",
"[",
"[",
"'variable'",
",",
"'unit'",
"]",
"]",
".",
"drop_duplicates",
"(",
")",
".",
"reset_index",
"(",
"drop",
"=",
"True",
")",
".",
"sort_values",
"(",
"'variable'",
")",
"else",
":",
"return",
"pd",
".",
"Series",
"(",
"self",
".",
"data",
".",
"variable",
".",
"unique",
"(",
")",
",",
"name",
"=",
"'variable'",
")"
]
| Get a list of variables
Parameters
----------
include_units: boolean, default False
include the units | [
"Get",
"a",
"list",
"of",
"variables"
]
| 4077929ca6e7be63a0e3ecf882c5f1da97b287bf | https://github.com/IAMconsortium/pyam/blob/4077929ca6e7be63a0e3ecf882c5f1da97b287bf/pyam/core.py#L161-L173 | train |
IAMconsortium/pyam | pyam/core.py | IamDataFrame.append | def append(self, other, ignore_meta_conflict=False, inplace=False,
**kwargs):
"""Append any castable object to this IamDataFrame.
Columns in `other.meta` that are not in `self.meta` are always merged,
duplicate region-variable-unit-year rows raise a ValueError.
Parameters
----------
other: pyam.IamDataFrame, ixmp.TimeSeries, ixmp.Scenario,
pd.DataFrame or data file
An IamDataFrame, TimeSeries or Scenario (requires `ixmp`),
pandas.DataFrame or data file with IAMC-format data columns
ignore_meta_conflict : bool, default False
If False and `other` is an IamDataFrame, raise an error if
any meta columns present in `self` and `other` are not identical.
inplace : bool, default False
If True, do operation inplace and return None
kwargs are passed through to `IamDataFrame(other, **kwargs)`
"""
if not isinstance(other, IamDataFrame):
other = IamDataFrame(other, **kwargs)
ignore_meta_conflict = True
if self.time_col is not other.time_col:
raise ValueError('incompatible time format (years vs. datetime)!')
ret = copy.deepcopy(self) if not inplace else self
diff = other.meta.index.difference(ret.meta.index)
intersect = other.meta.index.intersection(ret.meta.index)
# merge other.meta columns not in self.meta for existing scenarios
if not intersect.empty:
# if not ignored, check that overlapping meta dataframes are equal
if not ignore_meta_conflict:
cols = [i for i in other.meta.columns if i in ret.meta.columns]
if not ret.meta.loc[intersect, cols].equals(
other.meta.loc[intersect, cols]):
conflict_idx = (
pd.concat([ret.meta.loc[intersect, cols],
other.meta.loc[intersect, cols]]
).drop_duplicates()
.index.drop_duplicates()
)
msg = 'conflict in `meta` for scenarios {}'.format(
[i for i in pd.DataFrame(index=conflict_idx).index])
raise ValueError(msg)
cols = [i for i in other.meta.columns if i not in ret.meta.columns]
_meta = other.meta.loc[intersect, cols]
ret.meta = ret.meta.merge(_meta, how='outer',
left_index=True, right_index=True)
# join other.meta for new scenarios
if not diff.empty:
# sorting not supported by ` pd.append()` prior to version 23
sort_kwarg = {} if int(pd.__version__.split('.')[1]) < 23 \
else dict(sort=False)
ret.meta = ret.meta.append(other.meta.loc[diff, :], **sort_kwarg)
# append other.data (verify integrity for no duplicates)
_data = ret.data.set_index(ret._LONG_IDX).append(
other.data.set_index(other._LONG_IDX), verify_integrity=True)
# merge extra columns in `data` and set `LONG_IDX`
ret.extra_cols += [i for i in other.extra_cols
if i not in ret.extra_cols]
ret._LONG_IDX = IAMC_IDX + [ret.time_col] + ret.extra_cols
ret.data = sort_data(_data.reset_index(), ret._LONG_IDX)
if not inplace:
return ret | python | def append(self, other, ignore_meta_conflict=False, inplace=False,
**kwargs):
"""Append any castable object to this IamDataFrame.
Columns in `other.meta` that are not in `self.meta` are always merged,
duplicate region-variable-unit-year rows raise a ValueError.
Parameters
----------
other: pyam.IamDataFrame, ixmp.TimeSeries, ixmp.Scenario,
pd.DataFrame or data file
An IamDataFrame, TimeSeries or Scenario (requires `ixmp`),
pandas.DataFrame or data file with IAMC-format data columns
ignore_meta_conflict : bool, default False
If False and `other` is an IamDataFrame, raise an error if
any meta columns present in `self` and `other` are not identical.
inplace : bool, default False
If True, do operation inplace and return None
kwargs are passed through to `IamDataFrame(other, **kwargs)`
"""
if not isinstance(other, IamDataFrame):
other = IamDataFrame(other, **kwargs)
ignore_meta_conflict = True
if self.time_col is not other.time_col:
raise ValueError('incompatible time format (years vs. datetime)!')
ret = copy.deepcopy(self) if not inplace else self
diff = other.meta.index.difference(ret.meta.index)
intersect = other.meta.index.intersection(ret.meta.index)
# merge other.meta columns not in self.meta for existing scenarios
if not intersect.empty:
# if not ignored, check that overlapping meta dataframes are equal
if not ignore_meta_conflict:
cols = [i for i in other.meta.columns if i in ret.meta.columns]
if not ret.meta.loc[intersect, cols].equals(
other.meta.loc[intersect, cols]):
conflict_idx = (
pd.concat([ret.meta.loc[intersect, cols],
other.meta.loc[intersect, cols]]
).drop_duplicates()
.index.drop_duplicates()
)
msg = 'conflict in `meta` for scenarios {}'.format(
[i for i in pd.DataFrame(index=conflict_idx).index])
raise ValueError(msg)
cols = [i for i in other.meta.columns if i not in ret.meta.columns]
_meta = other.meta.loc[intersect, cols]
ret.meta = ret.meta.merge(_meta, how='outer',
left_index=True, right_index=True)
# join other.meta for new scenarios
if not diff.empty:
# sorting not supported by ` pd.append()` prior to version 23
sort_kwarg = {} if int(pd.__version__.split('.')[1]) < 23 \
else dict(sort=False)
ret.meta = ret.meta.append(other.meta.loc[diff, :], **sort_kwarg)
# append other.data (verify integrity for no duplicates)
_data = ret.data.set_index(ret._LONG_IDX).append(
other.data.set_index(other._LONG_IDX), verify_integrity=True)
# merge extra columns in `data` and set `LONG_IDX`
ret.extra_cols += [i for i in other.extra_cols
if i not in ret.extra_cols]
ret._LONG_IDX = IAMC_IDX + [ret.time_col] + ret.extra_cols
ret.data = sort_data(_data.reset_index(), ret._LONG_IDX)
if not inplace:
return ret | [
"def",
"append",
"(",
"self",
",",
"other",
",",
"ignore_meta_conflict",
"=",
"False",
",",
"inplace",
"=",
"False",
",",
"*",
"*",
"kwargs",
")",
":",
"if",
"not",
"isinstance",
"(",
"other",
",",
"IamDataFrame",
")",
":",
"other",
"=",
"IamDataFrame",
"(",
"other",
",",
"*",
"*",
"kwargs",
")",
"ignore_meta_conflict",
"=",
"True",
"if",
"self",
".",
"time_col",
"is",
"not",
"other",
".",
"time_col",
":",
"raise",
"ValueError",
"(",
"'incompatible time format (years vs. datetime)!'",
")",
"ret",
"=",
"copy",
".",
"deepcopy",
"(",
"self",
")",
"if",
"not",
"inplace",
"else",
"self",
"diff",
"=",
"other",
".",
"meta",
".",
"index",
".",
"difference",
"(",
"ret",
".",
"meta",
".",
"index",
")",
"intersect",
"=",
"other",
".",
"meta",
".",
"index",
".",
"intersection",
"(",
"ret",
".",
"meta",
".",
"index",
")",
"# merge other.meta columns not in self.meta for existing scenarios",
"if",
"not",
"intersect",
".",
"empty",
":",
"# if not ignored, check that overlapping meta dataframes are equal",
"if",
"not",
"ignore_meta_conflict",
":",
"cols",
"=",
"[",
"i",
"for",
"i",
"in",
"other",
".",
"meta",
".",
"columns",
"if",
"i",
"in",
"ret",
".",
"meta",
".",
"columns",
"]",
"if",
"not",
"ret",
".",
"meta",
".",
"loc",
"[",
"intersect",
",",
"cols",
"]",
".",
"equals",
"(",
"other",
".",
"meta",
".",
"loc",
"[",
"intersect",
",",
"cols",
"]",
")",
":",
"conflict_idx",
"=",
"(",
"pd",
".",
"concat",
"(",
"[",
"ret",
".",
"meta",
".",
"loc",
"[",
"intersect",
",",
"cols",
"]",
",",
"other",
".",
"meta",
".",
"loc",
"[",
"intersect",
",",
"cols",
"]",
"]",
")",
".",
"drop_duplicates",
"(",
")",
".",
"index",
".",
"drop_duplicates",
"(",
")",
")",
"msg",
"=",
"'conflict in `meta` for scenarios {}'",
".",
"format",
"(",
"[",
"i",
"for",
"i",
"in",
"pd",
".",
"DataFrame",
"(",
"index",
"=",
"conflict_idx",
")",
".",
"index",
"]",
")",
"raise",
"ValueError",
"(",
"msg",
")",
"cols",
"=",
"[",
"i",
"for",
"i",
"in",
"other",
".",
"meta",
".",
"columns",
"if",
"i",
"not",
"in",
"ret",
".",
"meta",
".",
"columns",
"]",
"_meta",
"=",
"other",
".",
"meta",
".",
"loc",
"[",
"intersect",
",",
"cols",
"]",
"ret",
".",
"meta",
"=",
"ret",
".",
"meta",
".",
"merge",
"(",
"_meta",
",",
"how",
"=",
"'outer'",
",",
"left_index",
"=",
"True",
",",
"right_index",
"=",
"True",
")",
"# join other.meta for new scenarios",
"if",
"not",
"diff",
".",
"empty",
":",
"# sorting not supported by ` pd.append()` prior to version 23",
"sort_kwarg",
"=",
"{",
"}",
"if",
"int",
"(",
"pd",
".",
"__version__",
".",
"split",
"(",
"'.'",
")",
"[",
"1",
"]",
")",
"<",
"23",
"else",
"dict",
"(",
"sort",
"=",
"False",
")",
"ret",
".",
"meta",
"=",
"ret",
".",
"meta",
".",
"append",
"(",
"other",
".",
"meta",
".",
"loc",
"[",
"diff",
",",
":",
"]",
",",
"*",
"*",
"sort_kwarg",
")",
"# append other.data (verify integrity for no duplicates)",
"_data",
"=",
"ret",
".",
"data",
".",
"set_index",
"(",
"ret",
".",
"_LONG_IDX",
")",
".",
"append",
"(",
"other",
".",
"data",
".",
"set_index",
"(",
"other",
".",
"_LONG_IDX",
")",
",",
"verify_integrity",
"=",
"True",
")",
"# merge extra columns in `data` and set `LONG_IDX`",
"ret",
".",
"extra_cols",
"+=",
"[",
"i",
"for",
"i",
"in",
"other",
".",
"extra_cols",
"if",
"i",
"not",
"in",
"ret",
".",
"extra_cols",
"]",
"ret",
".",
"_LONG_IDX",
"=",
"IAMC_IDX",
"+",
"[",
"ret",
".",
"time_col",
"]",
"+",
"ret",
".",
"extra_cols",
"ret",
".",
"data",
"=",
"sort_data",
"(",
"_data",
".",
"reset_index",
"(",
")",
",",
"ret",
".",
"_LONG_IDX",
")",
"if",
"not",
"inplace",
":",
"return",
"ret"
]
| Append any castable object to this IamDataFrame.
Columns in `other.meta` that are not in `self.meta` are always merged,
duplicate region-variable-unit-year rows raise a ValueError.
Parameters
----------
other: pyam.IamDataFrame, ixmp.TimeSeries, ixmp.Scenario,
pd.DataFrame or data file
An IamDataFrame, TimeSeries or Scenario (requires `ixmp`),
pandas.DataFrame or data file with IAMC-format data columns
ignore_meta_conflict : bool, default False
If False and `other` is an IamDataFrame, raise an error if
any meta columns present in `self` and `other` are not identical.
inplace : bool, default False
If True, do operation inplace and return None
kwargs are passed through to `IamDataFrame(other, **kwargs)` | [
"Append",
"any",
"castable",
"object",
"to",
"this",
"IamDataFrame",
".",
"Columns",
"in",
"other",
".",
"meta",
"that",
"are",
"not",
"in",
"self",
".",
"meta",
"are",
"always",
"merged",
"duplicate",
"region",
"-",
"variable",
"-",
"unit",
"-",
"year",
"rows",
"raise",
"a",
"ValueError",
"."
]
| 4077929ca6e7be63a0e3ecf882c5f1da97b287bf | https://github.com/IAMconsortium/pyam/blob/4077929ca6e7be63a0e3ecf882c5f1da97b287bf/pyam/core.py#L175-L246 | train |
IAMconsortium/pyam | pyam/core.py | IamDataFrame.pivot_table | def pivot_table(self, index, columns, values='value',
aggfunc='count', fill_value=None, style=None):
"""Returns a pivot table
Parameters
----------
index: str or list of strings
rows for Pivot table
columns: str or list of strings
columns for Pivot table
values: str, default 'value'
dataframe column to aggregate or count
aggfunc: str or function, default 'count'
function used for aggregation,
accepts 'count', 'mean', and 'sum'
fill_value: scalar, default None
value to replace missing values with
style: str, default None
output style for pivot table formatting
accepts 'highlight_not_max', 'heatmap'
"""
index = [index] if isstr(index) else index
columns = [columns] if isstr(columns) else columns
df = self.data
# allow 'aggfunc' to be passed as string for easier user interface
if isstr(aggfunc):
if aggfunc == 'count':
df = self.data.groupby(index + columns, as_index=False).count()
fill_value = 0
elif aggfunc == 'mean':
df = self.data.groupby(index + columns, as_index=False).mean()\
.round(2)
aggfunc = np.sum
fill_value = 0 if style == 'heatmap' else ""
elif aggfunc == 'sum':
aggfunc = np.sum
fill_value = 0 if style == 'heatmap' else ""
df = df.pivot_table(values=values, index=index, columns=columns,
aggfunc=aggfunc, fill_value=fill_value)
return df | python | def pivot_table(self, index, columns, values='value',
aggfunc='count', fill_value=None, style=None):
"""Returns a pivot table
Parameters
----------
index: str or list of strings
rows for Pivot table
columns: str or list of strings
columns for Pivot table
values: str, default 'value'
dataframe column to aggregate or count
aggfunc: str or function, default 'count'
function used for aggregation,
accepts 'count', 'mean', and 'sum'
fill_value: scalar, default None
value to replace missing values with
style: str, default None
output style for pivot table formatting
accepts 'highlight_not_max', 'heatmap'
"""
index = [index] if isstr(index) else index
columns = [columns] if isstr(columns) else columns
df = self.data
# allow 'aggfunc' to be passed as string for easier user interface
if isstr(aggfunc):
if aggfunc == 'count':
df = self.data.groupby(index + columns, as_index=False).count()
fill_value = 0
elif aggfunc == 'mean':
df = self.data.groupby(index + columns, as_index=False).mean()\
.round(2)
aggfunc = np.sum
fill_value = 0 if style == 'heatmap' else ""
elif aggfunc == 'sum':
aggfunc = np.sum
fill_value = 0 if style == 'heatmap' else ""
df = df.pivot_table(values=values, index=index, columns=columns,
aggfunc=aggfunc, fill_value=fill_value)
return df | [
"def",
"pivot_table",
"(",
"self",
",",
"index",
",",
"columns",
",",
"values",
"=",
"'value'",
",",
"aggfunc",
"=",
"'count'",
",",
"fill_value",
"=",
"None",
",",
"style",
"=",
"None",
")",
":",
"index",
"=",
"[",
"index",
"]",
"if",
"isstr",
"(",
"index",
")",
"else",
"index",
"columns",
"=",
"[",
"columns",
"]",
"if",
"isstr",
"(",
"columns",
")",
"else",
"columns",
"df",
"=",
"self",
".",
"data",
"# allow 'aggfunc' to be passed as string for easier user interface",
"if",
"isstr",
"(",
"aggfunc",
")",
":",
"if",
"aggfunc",
"==",
"'count'",
":",
"df",
"=",
"self",
".",
"data",
".",
"groupby",
"(",
"index",
"+",
"columns",
",",
"as_index",
"=",
"False",
")",
".",
"count",
"(",
")",
"fill_value",
"=",
"0",
"elif",
"aggfunc",
"==",
"'mean'",
":",
"df",
"=",
"self",
".",
"data",
".",
"groupby",
"(",
"index",
"+",
"columns",
",",
"as_index",
"=",
"False",
")",
".",
"mean",
"(",
")",
".",
"round",
"(",
"2",
")",
"aggfunc",
"=",
"np",
".",
"sum",
"fill_value",
"=",
"0",
"if",
"style",
"==",
"'heatmap'",
"else",
"\"\"",
"elif",
"aggfunc",
"==",
"'sum'",
":",
"aggfunc",
"=",
"np",
".",
"sum",
"fill_value",
"=",
"0",
"if",
"style",
"==",
"'heatmap'",
"else",
"\"\"",
"df",
"=",
"df",
".",
"pivot_table",
"(",
"values",
"=",
"values",
",",
"index",
"=",
"index",
",",
"columns",
"=",
"columns",
",",
"aggfunc",
"=",
"aggfunc",
",",
"fill_value",
"=",
"fill_value",
")",
"return",
"df"
]
| Returns a pivot table
Parameters
----------
index: str or list of strings
rows for Pivot table
columns: str or list of strings
columns for Pivot table
values: str, default 'value'
dataframe column to aggregate or count
aggfunc: str or function, default 'count'
function used for aggregation,
accepts 'count', 'mean', and 'sum'
fill_value: scalar, default None
value to replace missing values with
style: str, default None
output style for pivot table formatting
accepts 'highlight_not_max', 'heatmap' | [
"Returns",
"a",
"pivot",
"table"
]
| 4077929ca6e7be63a0e3ecf882c5f1da97b287bf | https://github.com/IAMconsortium/pyam/blob/4077929ca6e7be63a0e3ecf882c5f1da97b287bf/pyam/core.py#L248-L290 | train |
IAMconsortium/pyam | pyam/core.py | IamDataFrame.as_pandas | def as_pandas(self, with_metadata=False):
"""Return this as a pd.DataFrame
Parameters
----------
with_metadata : bool, default False or dict
if True, join data with all meta columns; if a dict, discover
meaningful meta columns from values (in key-value)
"""
if with_metadata:
cols = self._discover_meta_cols(**with_metadata) \
if isinstance(with_metadata, dict) else self.meta.columns
return (
self.data
.set_index(META_IDX)
.join(self.meta[cols])
.reset_index()
)
else:
return self.data.copy() | python | def as_pandas(self, with_metadata=False):
"""Return this as a pd.DataFrame
Parameters
----------
with_metadata : bool, default False or dict
if True, join data with all meta columns; if a dict, discover
meaningful meta columns from values (in key-value)
"""
if with_metadata:
cols = self._discover_meta_cols(**with_metadata) \
if isinstance(with_metadata, dict) else self.meta.columns
return (
self.data
.set_index(META_IDX)
.join(self.meta[cols])
.reset_index()
)
else:
return self.data.copy() | [
"def",
"as_pandas",
"(",
"self",
",",
"with_metadata",
"=",
"False",
")",
":",
"if",
"with_metadata",
":",
"cols",
"=",
"self",
".",
"_discover_meta_cols",
"(",
"*",
"*",
"with_metadata",
")",
"if",
"isinstance",
"(",
"with_metadata",
",",
"dict",
")",
"else",
"self",
".",
"meta",
".",
"columns",
"return",
"(",
"self",
".",
"data",
".",
"set_index",
"(",
"META_IDX",
")",
".",
"join",
"(",
"self",
".",
"meta",
"[",
"cols",
"]",
")",
".",
"reset_index",
"(",
")",
")",
"else",
":",
"return",
"self",
".",
"data",
".",
"copy",
"(",
")"
]
| Return this as a pd.DataFrame
Parameters
----------
with_metadata : bool, default False or dict
if True, join data with all meta columns; if a dict, discover
meaningful meta columns from values (in key-value) | [
"Return",
"this",
"as",
"a",
"pd",
".",
"DataFrame"
]
| 4077929ca6e7be63a0e3ecf882c5f1da97b287bf | https://github.com/IAMconsortium/pyam/blob/4077929ca6e7be63a0e3ecf882c5f1da97b287bf/pyam/core.py#L312-L331 | train |
IAMconsortium/pyam | pyam/core.py | IamDataFrame._new_meta_column | def _new_meta_column(self, name):
"""Add a column to meta if it doesn't exist, set to value `np.nan`"""
if name is None:
raise ValueError('cannot add a meta column `{}`'.format(name))
if name not in self.meta:
self.meta[name] = np.nan | python | def _new_meta_column(self, name):
"""Add a column to meta if it doesn't exist, set to value `np.nan`"""
if name is None:
raise ValueError('cannot add a meta column `{}`'.format(name))
if name not in self.meta:
self.meta[name] = np.nan | [
"def",
"_new_meta_column",
"(",
"self",
",",
"name",
")",
":",
"if",
"name",
"is",
"None",
":",
"raise",
"ValueError",
"(",
"'cannot add a meta column `{}`'",
".",
"format",
"(",
"name",
")",
")",
"if",
"name",
"not",
"in",
"self",
".",
"meta",
":",
"self",
".",
"meta",
"[",
"name",
"]",
"=",
"np",
".",
"nan"
]
| Add a column to meta if it doesn't exist, set to value `np.nan` | [
"Add",
"a",
"column",
"to",
"meta",
"if",
"it",
"doesn",
"t",
"exist",
"set",
"to",
"value",
"np",
".",
"nan"
]
| 4077929ca6e7be63a0e3ecf882c5f1da97b287bf | https://github.com/IAMconsortium/pyam/blob/4077929ca6e7be63a0e3ecf882c5f1da97b287bf/pyam/core.py#L474-L479 | train |
IAMconsortium/pyam | pyam/core.py | IamDataFrame.convert_unit | def convert_unit(self, conversion_mapping, inplace=False):
"""Converts units based on provided unit conversion factors
Parameters
----------
conversion_mapping: dict
for each unit for which a conversion should be carried out,
provide current unit and target unit and conversion factor
{<current unit>: [<target unit>, <conversion factor>]}
inplace: bool, default False
if True, do operation inplace and return None
"""
ret = copy.deepcopy(self) if not inplace else self
for current_unit, (new_unit, factor) in conversion_mapping.items():
factor = pd.to_numeric(factor)
where = ret.data['unit'] == current_unit
ret.data.loc[where, 'value'] *= factor
ret.data.loc[where, 'unit'] = new_unit
if not inplace:
return ret | python | def convert_unit(self, conversion_mapping, inplace=False):
"""Converts units based on provided unit conversion factors
Parameters
----------
conversion_mapping: dict
for each unit for which a conversion should be carried out,
provide current unit and target unit and conversion factor
{<current unit>: [<target unit>, <conversion factor>]}
inplace: bool, default False
if True, do operation inplace and return None
"""
ret = copy.deepcopy(self) if not inplace else self
for current_unit, (new_unit, factor) in conversion_mapping.items():
factor = pd.to_numeric(factor)
where = ret.data['unit'] == current_unit
ret.data.loc[where, 'value'] *= factor
ret.data.loc[where, 'unit'] = new_unit
if not inplace:
return ret | [
"def",
"convert_unit",
"(",
"self",
",",
"conversion_mapping",
",",
"inplace",
"=",
"False",
")",
":",
"ret",
"=",
"copy",
".",
"deepcopy",
"(",
"self",
")",
"if",
"not",
"inplace",
"else",
"self",
"for",
"current_unit",
",",
"(",
"new_unit",
",",
"factor",
")",
"in",
"conversion_mapping",
".",
"items",
"(",
")",
":",
"factor",
"=",
"pd",
".",
"to_numeric",
"(",
"factor",
")",
"where",
"=",
"ret",
".",
"data",
"[",
"'unit'",
"]",
"==",
"current_unit",
"ret",
".",
"data",
".",
"loc",
"[",
"where",
",",
"'value'",
"]",
"*=",
"factor",
"ret",
".",
"data",
".",
"loc",
"[",
"where",
",",
"'unit'",
"]",
"=",
"new_unit",
"if",
"not",
"inplace",
":",
"return",
"ret"
]
| Converts units based on provided unit conversion factors
Parameters
----------
conversion_mapping: dict
for each unit for which a conversion should be carried out,
provide current unit and target unit and conversion factor
{<current unit>: [<target unit>, <conversion factor>]}
inplace: bool, default False
if True, do operation inplace and return None | [
"Converts",
"units",
"based",
"on",
"provided",
"unit",
"conversion",
"factors"
]
| 4077929ca6e7be63a0e3ecf882c5f1da97b287bf | https://github.com/IAMconsortium/pyam/blob/4077929ca6e7be63a0e3ecf882c5f1da97b287bf/pyam/core.py#L635-L654 | train |
IAMconsortium/pyam | pyam/core.py | IamDataFrame.normalize | def normalize(self, inplace=False, **kwargs):
"""Normalize data to a given value. Currently only supports normalizing
to a specific time.
Parameters
----------
inplace: bool, default False
if True, do operation inplace and return None
kwargs: the values on which to normalize (e.g., `year=2005`)
"""
if len(kwargs) > 1 or self.time_col not in kwargs:
raise ValueError('Only time(year)-based normalization supported')
ret = copy.deepcopy(self) if not inplace else self
df = ret.data
# change all below if supporting more in the future
cols = self.time_col
value = kwargs[self.time_col]
x = df.set_index(IAMC_IDX)
x['value'] /= x[x[cols] == value]['value']
ret.data = x.reset_index()
if not inplace:
return ret | python | def normalize(self, inplace=False, **kwargs):
"""Normalize data to a given value. Currently only supports normalizing
to a specific time.
Parameters
----------
inplace: bool, default False
if True, do operation inplace and return None
kwargs: the values on which to normalize (e.g., `year=2005`)
"""
if len(kwargs) > 1 or self.time_col not in kwargs:
raise ValueError('Only time(year)-based normalization supported')
ret = copy.deepcopy(self) if not inplace else self
df = ret.data
# change all below if supporting more in the future
cols = self.time_col
value = kwargs[self.time_col]
x = df.set_index(IAMC_IDX)
x['value'] /= x[x[cols] == value]['value']
ret.data = x.reset_index()
if not inplace:
return ret | [
"def",
"normalize",
"(",
"self",
",",
"inplace",
"=",
"False",
",",
"*",
"*",
"kwargs",
")",
":",
"if",
"len",
"(",
"kwargs",
")",
">",
"1",
"or",
"self",
".",
"time_col",
"not",
"in",
"kwargs",
":",
"raise",
"ValueError",
"(",
"'Only time(year)-based normalization supported'",
")",
"ret",
"=",
"copy",
".",
"deepcopy",
"(",
"self",
")",
"if",
"not",
"inplace",
"else",
"self",
"df",
"=",
"ret",
".",
"data",
"# change all below if supporting more in the future",
"cols",
"=",
"self",
".",
"time_col",
"value",
"=",
"kwargs",
"[",
"self",
".",
"time_col",
"]",
"x",
"=",
"df",
".",
"set_index",
"(",
"IAMC_IDX",
")",
"x",
"[",
"'value'",
"]",
"/=",
"x",
"[",
"x",
"[",
"cols",
"]",
"==",
"value",
"]",
"[",
"'value'",
"]",
"ret",
".",
"data",
"=",
"x",
".",
"reset_index",
"(",
")",
"if",
"not",
"inplace",
":",
"return",
"ret"
]
| Normalize data to a given value. Currently only supports normalizing
to a specific time.
Parameters
----------
inplace: bool, default False
if True, do operation inplace and return None
kwargs: the values on which to normalize (e.g., `year=2005`) | [
"Normalize",
"data",
"to",
"a",
"given",
"value",
".",
"Currently",
"only",
"supports",
"normalizing",
"to",
"a",
"specific",
"time",
"."
]
| 4077929ca6e7be63a0e3ecf882c5f1da97b287bf | https://github.com/IAMconsortium/pyam/blob/4077929ca6e7be63a0e3ecf882c5f1da97b287bf/pyam/core.py#L656-L677 | train |
IAMconsortium/pyam | pyam/core.py | IamDataFrame.aggregate | def aggregate(self, variable, components=None, append=False):
"""Compute the aggregate of timeseries components or sub-categories
Parameters
----------
variable: str
variable for which the aggregate should be computed
components: list of str, default None
list of variables, defaults to all sub-categories of `variable`
append: bool, default False
append the aggregate timeseries to `data` and return None,
else return aggregate timeseries
"""
# default components to all variables one level below `variable`
components = components or self._variable_components(variable)
if not len(components):
msg = 'cannot aggregate variable `{}` because it has no components'
logger().info(msg.format(variable))
return
rows = self._apply_filters(variable=components)
_data = _aggregate(self.data[rows], 'variable')
if append is True:
self.append(_data, variable=variable, inplace=True)
else:
return _data | python | def aggregate(self, variable, components=None, append=False):
"""Compute the aggregate of timeseries components or sub-categories
Parameters
----------
variable: str
variable for which the aggregate should be computed
components: list of str, default None
list of variables, defaults to all sub-categories of `variable`
append: bool, default False
append the aggregate timeseries to `data` and return None,
else return aggregate timeseries
"""
# default components to all variables one level below `variable`
components = components or self._variable_components(variable)
if not len(components):
msg = 'cannot aggregate variable `{}` because it has no components'
logger().info(msg.format(variable))
return
rows = self._apply_filters(variable=components)
_data = _aggregate(self.data[rows], 'variable')
if append is True:
self.append(_data, variable=variable, inplace=True)
else:
return _data | [
"def",
"aggregate",
"(",
"self",
",",
"variable",
",",
"components",
"=",
"None",
",",
"append",
"=",
"False",
")",
":",
"# default components to all variables one level below `variable`",
"components",
"=",
"components",
"or",
"self",
".",
"_variable_components",
"(",
"variable",
")",
"if",
"not",
"len",
"(",
"components",
")",
":",
"msg",
"=",
"'cannot aggregate variable `{}` because it has no components'",
"logger",
"(",
")",
".",
"info",
"(",
"msg",
".",
"format",
"(",
"variable",
")",
")",
"return",
"rows",
"=",
"self",
".",
"_apply_filters",
"(",
"variable",
"=",
"components",
")",
"_data",
"=",
"_aggregate",
"(",
"self",
".",
"data",
"[",
"rows",
"]",
",",
"'variable'",
")",
"if",
"append",
"is",
"True",
":",
"self",
".",
"append",
"(",
"_data",
",",
"variable",
"=",
"variable",
",",
"inplace",
"=",
"True",
")",
"else",
":",
"return",
"_data"
]
| Compute the aggregate of timeseries components or sub-categories
Parameters
----------
variable: str
variable for which the aggregate should be computed
components: list of str, default None
list of variables, defaults to all sub-categories of `variable`
append: bool, default False
append the aggregate timeseries to `data` and return None,
else return aggregate timeseries | [
"Compute",
"the",
"aggregate",
"of",
"timeseries",
"components",
"or",
"sub",
"-",
"categories"
]
| 4077929ca6e7be63a0e3ecf882c5f1da97b287bf | https://github.com/IAMconsortium/pyam/blob/4077929ca6e7be63a0e3ecf882c5f1da97b287bf/pyam/core.py#L679-L707 | train |
IAMconsortium/pyam | pyam/core.py | IamDataFrame.check_aggregate | def check_aggregate(self, variable, components=None, exclude_on_fail=False,
multiplier=1, **kwargs):
"""Check whether a timeseries matches the aggregation of its components
Parameters
----------
variable: str
variable to be checked for matching aggregation of sub-categories
components: list of str, default None
list of variables, defaults to all sub-categories of `variable`
exclude_on_fail: boolean, default False
flag scenarios failing validation as `exclude: True`
multiplier: number, default 1
factor when comparing variable and sum of components
kwargs: passed to `np.isclose()`
"""
# compute aggregate from components, return None if no components
df_components = self.aggregate(variable, components)
if df_components is None:
return
# filter and groupby data, use `pd.Series.align` for matching index
rows = self._apply_filters(variable=variable)
df_variable, df_components = (
_aggregate(self.data[rows], 'variable').align(df_components)
)
# use `np.isclose` for checking match
diff = df_variable[~np.isclose(df_variable, multiplier * df_components,
**kwargs)]
if len(diff):
msg = '`{}` - {} of {} rows are not aggregates of components'
logger().info(msg.format(variable, len(diff), len(df_variable)))
if exclude_on_fail:
self._exclude_on_fail(diff.index.droplevel([2, 3, 4]))
return IamDataFrame(diff, variable=variable).timeseries() | python | def check_aggregate(self, variable, components=None, exclude_on_fail=False,
multiplier=1, **kwargs):
"""Check whether a timeseries matches the aggregation of its components
Parameters
----------
variable: str
variable to be checked for matching aggregation of sub-categories
components: list of str, default None
list of variables, defaults to all sub-categories of `variable`
exclude_on_fail: boolean, default False
flag scenarios failing validation as `exclude: True`
multiplier: number, default 1
factor when comparing variable and sum of components
kwargs: passed to `np.isclose()`
"""
# compute aggregate from components, return None if no components
df_components = self.aggregate(variable, components)
if df_components is None:
return
# filter and groupby data, use `pd.Series.align` for matching index
rows = self._apply_filters(variable=variable)
df_variable, df_components = (
_aggregate(self.data[rows], 'variable').align(df_components)
)
# use `np.isclose` for checking match
diff = df_variable[~np.isclose(df_variable, multiplier * df_components,
**kwargs)]
if len(diff):
msg = '`{}` - {} of {} rows are not aggregates of components'
logger().info(msg.format(variable, len(diff), len(df_variable)))
if exclude_on_fail:
self._exclude_on_fail(diff.index.droplevel([2, 3, 4]))
return IamDataFrame(diff, variable=variable).timeseries() | [
"def",
"check_aggregate",
"(",
"self",
",",
"variable",
",",
"components",
"=",
"None",
",",
"exclude_on_fail",
"=",
"False",
",",
"multiplier",
"=",
"1",
",",
"*",
"*",
"kwargs",
")",
":",
"# compute aggregate from components, return None if no components",
"df_components",
"=",
"self",
".",
"aggregate",
"(",
"variable",
",",
"components",
")",
"if",
"df_components",
"is",
"None",
":",
"return",
"# filter and groupby data, use `pd.Series.align` for matching index",
"rows",
"=",
"self",
".",
"_apply_filters",
"(",
"variable",
"=",
"variable",
")",
"df_variable",
",",
"df_components",
"=",
"(",
"_aggregate",
"(",
"self",
".",
"data",
"[",
"rows",
"]",
",",
"'variable'",
")",
".",
"align",
"(",
"df_components",
")",
")",
"# use `np.isclose` for checking match",
"diff",
"=",
"df_variable",
"[",
"~",
"np",
".",
"isclose",
"(",
"df_variable",
",",
"multiplier",
"*",
"df_components",
",",
"*",
"*",
"kwargs",
")",
"]",
"if",
"len",
"(",
"diff",
")",
":",
"msg",
"=",
"'`{}` - {} of {} rows are not aggregates of components'",
"logger",
"(",
")",
".",
"info",
"(",
"msg",
".",
"format",
"(",
"variable",
",",
"len",
"(",
"diff",
")",
",",
"len",
"(",
"df_variable",
")",
")",
")",
"if",
"exclude_on_fail",
":",
"self",
".",
"_exclude_on_fail",
"(",
"diff",
".",
"index",
".",
"droplevel",
"(",
"[",
"2",
",",
"3",
",",
"4",
"]",
")",
")",
"return",
"IamDataFrame",
"(",
"diff",
",",
"variable",
"=",
"variable",
")",
".",
"timeseries",
"(",
")"
]
| Check whether a timeseries matches the aggregation of its components
Parameters
----------
variable: str
variable to be checked for matching aggregation of sub-categories
components: list of str, default None
list of variables, defaults to all sub-categories of `variable`
exclude_on_fail: boolean, default False
flag scenarios failing validation as `exclude: True`
multiplier: number, default 1
factor when comparing variable and sum of components
kwargs: passed to `np.isclose()` | [
"Check",
"whether",
"a",
"timeseries",
"matches",
"the",
"aggregation",
"of",
"its",
"components"
]
| 4077929ca6e7be63a0e3ecf882c5f1da97b287bf | https://github.com/IAMconsortium/pyam/blob/4077929ca6e7be63a0e3ecf882c5f1da97b287bf/pyam/core.py#L709-L747 | train |
IAMconsortium/pyam | pyam/core.py | IamDataFrame.aggregate_region | def aggregate_region(self, variable, region='World', subregions=None,
components=None, append=False):
"""Compute the aggregate of timeseries over a number of regions
including variable components only defined at the `region` level
Parameters
----------
variable: str
variable for which the aggregate should be computed
region: str, default 'World'
dimension
subregions: list of str
list of subregions, defaults to all regions other than `region`
components: list of str
list of variables, defaults to all sub-categories of `variable`
included in `region` but not in any of `subregions`
append: bool, default False
append the aggregate timeseries to `data` and return None,
else return aggregate timeseries
"""
# default subregions to all regions other than `region`
if subregions is None:
rows = self._apply_filters(variable=variable)
subregions = set(self.data[rows].region) - set([region])
if not len(subregions):
msg = 'cannot aggregate variable `{}` to `{}` because it does not'\
' exist in any subregion'
logger().info(msg.format(variable, region))
return
# compute aggregate over all subregions
subregion_df = self.filter(region=subregions)
cols = ['region', 'variable']
_data = _aggregate(subregion_df.filter(variable=variable).data, cols)
# add components at the `region` level, defaults to all variables one
# level below `variable` that are only present in `region`
region_df = self.filter(region=region)
components = components or (
set(region_df._variable_components(variable)).difference(
subregion_df._variable_components(variable)))
if len(components):
rows = region_df._apply_filters(variable=components)
_data = _data.add(_aggregate(region_df.data[rows], cols),
fill_value=0)
if append is True:
self.append(_data, region=region, variable=variable, inplace=True)
else:
return _data | python | def aggregate_region(self, variable, region='World', subregions=None,
components=None, append=False):
"""Compute the aggregate of timeseries over a number of regions
including variable components only defined at the `region` level
Parameters
----------
variable: str
variable for which the aggregate should be computed
region: str, default 'World'
dimension
subregions: list of str
list of subregions, defaults to all regions other than `region`
components: list of str
list of variables, defaults to all sub-categories of `variable`
included in `region` but not in any of `subregions`
append: bool, default False
append the aggregate timeseries to `data` and return None,
else return aggregate timeseries
"""
# default subregions to all regions other than `region`
if subregions is None:
rows = self._apply_filters(variable=variable)
subregions = set(self.data[rows].region) - set([region])
if not len(subregions):
msg = 'cannot aggregate variable `{}` to `{}` because it does not'\
' exist in any subregion'
logger().info(msg.format(variable, region))
return
# compute aggregate over all subregions
subregion_df = self.filter(region=subregions)
cols = ['region', 'variable']
_data = _aggregate(subregion_df.filter(variable=variable).data, cols)
# add components at the `region` level, defaults to all variables one
# level below `variable` that are only present in `region`
region_df = self.filter(region=region)
components = components or (
set(region_df._variable_components(variable)).difference(
subregion_df._variable_components(variable)))
if len(components):
rows = region_df._apply_filters(variable=components)
_data = _data.add(_aggregate(region_df.data[rows], cols),
fill_value=0)
if append is True:
self.append(_data, region=region, variable=variable, inplace=True)
else:
return _data | [
"def",
"aggregate_region",
"(",
"self",
",",
"variable",
",",
"region",
"=",
"'World'",
",",
"subregions",
"=",
"None",
",",
"components",
"=",
"None",
",",
"append",
"=",
"False",
")",
":",
"# default subregions to all regions other than `region`",
"if",
"subregions",
"is",
"None",
":",
"rows",
"=",
"self",
".",
"_apply_filters",
"(",
"variable",
"=",
"variable",
")",
"subregions",
"=",
"set",
"(",
"self",
".",
"data",
"[",
"rows",
"]",
".",
"region",
")",
"-",
"set",
"(",
"[",
"region",
"]",
")",
"if",
"not",
"len",
"(",
"subregions",
")",
":",
"msg",
"=",
"'cannot aggregate variable `{}` to `{}` because it does not'",
"' exist in any subregion'",
"logger",
"(",
")",
".",
"info",
"(",
"msg",
".",
"format",
"(",
"variable",
",",
"region",
")",
")",
"return",
"# compute aggregate over all subregions",
"subregion_df",
"=",
"self",
".",
"filter",
"(",
"region",
"=",
"subregions",
")",
"cols",
"=",
"[",
"'region'",
",",
"'variable'",
"]",
"_data",
"=",
"_aggregate",
"(",
"subregion_df",
".",
"filter",
"(",
"variable",
"=",
"variable",
")",
".",
"data",
",",
"cols",
")",
"# add components at the `region` level, defaults to all variables one",
"# level below `variable` that are only present in `region`",
"region_df",
"=",
"self",
".",
"filter",
"(",
"region",
"=",
"region",
")",
"components",
"=",
"components",
"or",
"(",
"set",
"(",
"region_df",
".",
"_variable_components",
"(",
"variable",
")",
")",
".",
"difference",
"(",
"subregion_df",
".",
"_variable_components",
"(",
"variable",
")",
")",
")",
"if",
"len",
"(",
"components",
")",
":",
"rows",
"=",
"region_df",
".",
"_apply_filters",
"(",
"variable",
"=",
"components",
")",
"_data",
"=",
"_data",
".",
"add",
"(",
"_aggregate",
"(",
"region_df",
".",
"data",
"[",
"rows",
"]",
",",
"cols",
")",
",",
"fill_value",
"=",
"0",
")",
"if",
"append",
"is",
"True",
":",
"self",
".",
"append",
"(",
"_data",
",",
"region",
"=",
"region",
",",
"variable",
"=",
"variable",
",",
"inplace",
"=",
"True",
")",
"else",
":",
"return",
"_data"
]
| Compute the aggregate of timeseries over a number of regions
including variable components only defined at the `region` level
Parameters
----------
variable: str
variable for which the aggregate should be computed
region: str, default 'World'
dimension
subregions: list of str
list of subregions, defaults to all regions other than `region`
components: list of str
list of variables, defaults to all sub-categories of `variable`
included in `region` but not in any of `subregions`
append: bool, default False
append the aggregate timeseries to `data` and return None,
else return aggregate timeseries | [
"Compute",
"the",
"aggregate",
"of",
"timeseries",
"over",
"a",
"number",
"of",
"regions",
"including",
"variable",
"components",
"only",
"defined",
"at",
"the",
"region",
"level"
]
| 4077929ca6e7be63a0e3ecf882c5f1da97b287bf | https://github.com/IAMconsortium/pyam/blob/4077929ca6e7be63a0e3ecf882c5f1da97b287bf/pyam/core.py#L749-L801 | train |
IAMconsortium/pyam | pyam/core.py | IamDataFrame.check_aggregate_region | def check_aggregate_region(self, variable, region='World', subregions=None,
components=None, exclude_on_fail=False,
**kwargs):
"""Check whether the region timeseries data match the aggregation
of components
Parameters
----------
variable: str
variable to be checked for matching aggregation of subregions
region: str, default 'World'
region to be checked for matching aggregation of subregions
subregions: list of str
list of subregions, defaults to all regions other than `region`
components: list of str, default None
list of variables, defaults to all sub-categories of `variable`
included in `region` but not in any of `subregions`
exclude_on_fail: boolean, default False
flag scenarios failing validation as `exclude: True`
kwargs: passed to `np.isclose()`
"""
# compute aggregate from subregions, return None if no subregions
df_subregions = self.aggregate_region(variable, region, subregions,
components)
if df_subregions is None:
return
# filter and groupby data, use `pd.Series.align` for matching index
rows = self._apply_filters(region=region, variable=variable)
df_region, df_subregions = (
_aggregate(self.data[rows], ['region', 'variable'])
.align(df_subregions)
)
# use `np.isclose` for checking match
diff = df_region[~np.isclose(df_region, df_subregions, **kwargs)]
if len(diff):
msg = (
'`{}` - {} of {} rows are not aggregates of subregions'
)
logger().info(msg.format(variable, len(diff), len(df_region)))
if exclude_on_fail:
self._exclude_on_fail(diff.index.droplevel([2, 3]))
col_args = dict(region=region, variable=variable)
return IamDataFrame(diff, **col_args).timeseries() | python | def check_aggregate_region(self, variable, region='World', subregions=None,
components=None, exclude_on_fail=False,
**kwargs):
"""Check whether the region timeseries data match the aggregation
of components
Parameters
----------
variable: str
variable to be checked for matching aggregation of subregions
region: str, default 'World'
region to be checked for matching aggregation of subregions
subregions: list of str
list of subregions, defaults to all regions other than `region`
components: list of str, default None
list of variables, defaults to all sub-categories of `variable`
included in `region` but not in any of `subregions`
exclude_on_fail: boolean, default False
flag scenarios failing validation as `exclude: True`
kwargs: passed to `np.isclose()`
"""
# compute aggregate from subregions, return None if no subregions
df_subregions = self.aggregate_region(variable, region, subregions,
components)
if df_subregions is None:
return
# filter and groupby data, use `pd.Series.align` for matching index
rows = self._apply_filters(region=region, variable=variable)
df_region, df_subregions = (
_aggregate(self.data[rows], ['region', 'variable'])
.align(df_subregions)
)
# use `np.isclose` for checking match
diff = df_region[~np.isclose(df_region, df_subregions, **kwargs)]
if len(diff):
msg = (
'`{}` - {} of {} rows are not aggregates of subregions'
)
logger().info(msg.format(variable, len(diff), len(df_region)))
if exclude_on_fail:
self._exclude_on_fail(diff.index.droplevel([2, 3]))
col_args = dict(region=region, variable=variable)
return IamDataFrame(diff, **col_args).timeseries() | [
"def",
"check_aggregate_region",
"(",
"self",
",",
"variable",
",",
"region",
"=",
"'World'",
",",
"subregions",
"=",
"None",
",",
"components",
"=",
"None",
",",
"exclude_on_fail",
"=",
"False",
",",
"*",
"*",
"kwargs",
")",
":",
"# compute aggregate from subregions, return None if no subregions",
"df_subregions",
"=",
"self",
".",
"aggregate_region",
"(",
"variable",
",",
"region",
",",
"subregions",
",",
"components",
")",
"if",
"df_subregions",
"is",
"None",
":",
"return",
"# filter and groupby data, use `pd.Series.align` for matching index",
"rows",
"=",
"self",
".",
"_apply_filters",
"(",
"region",
"=",
"region",
",",
"variable",
"=",
"variable",
")",
"df_region",
",",
"df_subregions",
"=",
"(",
"_aggregate",
"(",
"self",
".",
"data",
"[",
"rows",
"]",
",",
"[",
"'region'",
",",
"'variable'",
"]",
")",
".",
"align",
"(",
"df_subregions",
")",
")",
"# use `np.isclose` for checking match",
"diff",
"=",
"df_region",
"[",
"~",
"np",
".",
"isclose",
"(",
"df_region",
",",
"df_subregions",
",",
"*",
"*",
"kwargs",
")",
"]",
"if",
"len",
"(",
"diff",
")",
":",
"msg",
"=",
"(",
"'`{}` - {} of {} rows are not aggregates of subregions'",
")",
"logger",
"(",
")",
".",
"info",
"(",
"msg",
".",
"format",
"(",
"variable",
",",
"len",
"(",
"diff",
")",
",",
"len",
"(",
"df_region",
")",
")",
")",
"if",
"exclude_on_fail",
":",
"self",
".",
"_exclude_on_fail",
"(",
"diff",
".",
"index",
".",
"droplevel",
"(",
"[",
"2",
",",
"3",
"]",
")",
")",
"col_args",
"=",
"dict",
"(",
"region",
"=",
"region",
",",
"variable",
"=",
"variable",
")",
"return",
"IamDataFrame",
"(",
"diff",
",",
"*",
"*",
"col_args",
")",
".",
"timeseries",
"(",
")"
]
| Check whether the region timeseries data match the aggregation
of components
Parameters
----------
variable: str
variable to be checked for matching aggregation of subregions
region: str, default 'World'
region to be checked for matching aggregation of subregions
subregions: list of str
list of subregions, defaults to all regions other than `region`
components: list of str, default None
list of variables, defaults to all sub-categories of `variable`
included in `region` but not in any of `subregions`
exclude_on_fail: boolean, default False
flag scenarios failing validation as `exclude: True`
kwargs: passed to `np.isclose()` | [
"Check",
"whether",
"the",
"region",
"timeseries",
"data",
"match",
"the",
"aggregation",
"of",
"components"
]
| 4077929ca6e7be63a0e3ecf882c5f1da97b287bf | https://github.com/IAMconsortium/pyam/blob/4077929ca6e7be63a0e3ecf882c5f1da97b287bf/pyam/core.py#L803-L850 | train |
IAMconsortium/pyam | pyam/core.py | IamDataFrame.check_internal_consistency | def check_internal_consistency(self, **kwargs):
"""Check whether the database is internally consistent
We check that all variables are equal to the sum of their sectoral
components and that all the regions add up to the World total. If
the check is passed, None is returned, otherwise a dictionary of
inconsistent variables is returned.
Note: at the moment, this method's regional checking is limited to
checking that all the regions sum to the World region. We cannot
make this more automatic unless we start to store how the regions
relate, see
[this issue](https://github.com/IAMconsortium/pyam/issues/106).
Parameters
----------
kwargs: passed to `np.isclose()`
"""
inconsistent_vars = {}
for variable in self.variables():
diff_agg = self.check_aggregate(variable, **kwargs)
if diff_agg is not None:
inconsistent_vars[variable + "-aggregate"] = diff_agg
diff_regional = self.check_aggregate_region(variable, **kwargs)
if diff_regional is not None:
inconsistent_vars[variable + "-regional"] = diff_regional
return inconsistent_vars if inconsistent_vars else None | python | def check_internal_consistency(self, **kwargs):
"""Check whether the database is internally consistent
We check that all variables are equal to the sum of their sectoral
components and that all the regions add up to the World total. If
the check is passed, None is returned, otherwise a dictionary of
inconsistent variables is returned.
Note: at the moment, this method's regional checking is limited to
checking that all the regions sum to the World region. We cannot
make this more automatic unless we start to store how the regions
relate, see
[this issue](https://github.com/IAMconsortium/pyam/issues/106).
Parameters
----------
kwargs: passed to `np.isclose()`
"""
inconsistent_vars = {}
for variable in self.variables():
diff_agg = self.check_aggregate(variable, **kwargs)
if diff_agg is not None:
inconsistent_vars[variable + "-aggregate"] = diff_agg
diff_regional = self.check_aggregate_region(variable, **kwargs)
if diff_regional is not None:
inconsistent_vars[variable + "-regional"] = diff_regional
return inconsistent_vars if inconsistent_vars else None | [
"def",
"check_internal_consistency",
"(",
"self",
",",
"*",
"*",
"kwargs",
")",
":",
"inconsistent_vars",
"=",
"{",
"}",
"for",
"variable",
"in",
"self",
".",
"variables",
"(",
")",
":",
"diff_agg",
"=",
"self",
".",
"check_aggregate",
"(",
"variable",
",",
"*",
"*",
"kwargs",
")",
"if",
"diff_agg",
"is",
"not",
"None",
":",
"inconsistent_vars",
"[",
"variable",
"+",
"\"-aggregate\"",
"]",
"=",
"diff_agg",
"diff_regional",
"=",
"self",
".",
"check_aggregate_region",
"(",
"variable",
",",
"*",
"*",
"kwargs",
")",
"if",
"diff_regional",
"is",
"not",
"None",
":",
"inconsistent_vars",
"[",
"variable",
"+",
"\"-regional\"",
"]",
"=",
"diff_regional",
"return",
"inconsistent_vars",
"if",
"inconsistent_vars",
"else",
"None"
]
| Check whether the database is internally consistent
We check that all variables are equal to the sum of their sectoral
components and that all the regions add up to the World total. If
the check is passed, None is returned, otherwise a dictionary of
inconsistent variables is returned.
Note: at the moment, this method's regional checking is limited to
checking that all the regions sum to the World region. We cannot
make this more automatic unless we start to store how the regions
relate, see
[this issue](https://github.com/IAMconsortium/pyam/issues/106).
Parameters
----------
kwargs: passed to `np.isclose()` | [
"Check",
"whether",
"the",
"database",
"is",
"internally",
"consistent"
]
| 4077929ca6e7be63a0e3ecf882c5f1da97b287bf | https://github.com/IAMconsortium/pyam/blob/4077929ca6e7be63a0e3ecf882c5f1da97b287bf/pyam/core.py#L860-L888 | train |
IAMconsortium/pyam | pyam/core.py | IamDataFrame._apply_filters | def _apply_filters(self, **filters):
"""Determine rows to keep in data for given set of filters
Parameters
----------
filters: dict
dictionary of filters ({col: values}}); uses a pseudo-regexp syntax
by default, but accepts `regexp: True` to use regexp directly
"""
regexp = filters.pop('regexp', False)
keep = np.array([True] * len(self.data))
# filter by columns and list of values
for col, values in filters.items():
# treat `_apply_filters(col=None)` as no filter applied
if values is None:
continue
if col in self.meta.columns:
matches = pattern_match(self.meta[col], values, regexp=regexp)
cat_idx = self.meta[matches].index
keep_col = (self.data[META_IDX].set_index(META_IDX)
.index.isin(cat_idx))
elif col == 'variable':
level = filters['level'] if 'level' in filters else None
keep_col = pattern_match(self.data[col], values, level, regexp)
elif col == 'year':
_data = self.data[col] if self.time_col is not 'time' \
else self.data['time'].apply(lambda x: x.year)
keep_col = years_match(_data, values)
elif col == 'month' and self.time_col is 'time':
keep_col = month_match(self.data['time']
.apply(lambda x: x.month),
values)
elif col == 'day' and self.time_col is 'time':
if isinstance(values, str):
wday = True
elif isinstance(values, list) and isinstance(values[0], str):
wday = True
else:
wday = False
if wday:
days = self.data['time'].apply(lambda x: x.weekday())
else: # ints or list of ints
days = self.data['time'].apply(lambda x: x.day)
keep_col = day_match(days, values)
elif col == 'hour' and self.time_col is 'time':
keep_col = hour_match(self.data['time']
.apply(lambda x: x.hour),
values)
elif col == 'time' and self.time_col is 'time':
keep_col = datetime_match(self.data[col], values)
elif col == 'level':
if 'variable' not in filters.keys():
keep_col = find_depth(self.data['variable'], level=values)
else:
continue
elif col in self.data.columns:
keep_col = pattern_match(self.data[col], values, regexp=regexp)
else:
_raise_filter_error(col)
keep &= keep_col
return keep | python | def _apply_filters(self, **filters):
"""Determine rows to keep in data for given set of filters
Parameters
----------
filters: dict
dictionary of filters ({col: values}}); uses a pseudo-regexp syntax
by default, but accepts `regexp: True` to use regexp directly
"""
regexp = filters.pop('regexp', False)
keep = np.array([True] * len(self.data))
# filter by columns and list of values
for col, values in filters.items():
# treat `_apply_filters(col=None)` as no filter applied
if values is None:
continue
if col in self.meta.columns:
matches = pattern_match(self.meta[col], values, regexp=regexp)
cat_idx = self.meta[matches].index
keep_col = (self.data[META_IDX].set_index(META_IDX)
.index.isin(cat_idx))
elif col == 'variable':
level = filters['level'] if 'level' in filters else None
keep_col = pattern_match(self.data[col], values, level, regexp)
elif col == 'year':
_data = self.data[col] if self.time_col is not 'time' \
else self.data['time'].apply(lambda x: x.year)
keep_col = years_match(_data, values)
elif col == 'month' and self.time_col is 'time':
keep_col = month_match(self.data['time']
.apply(lambda x: x.month),
values)
elif col == 'day' and self.time_col is 'time':
if isinstance(values, str):
wday = True
elif isinstance(values, list) and isinstance(values[0], str):
wday = True
else:
wday = False
if wday:
days = self.data['time'].apply(lambda x: x.weekday())
else: # ints or list of ints
days = self.data['time'].apply(lambda x: x.day)
keep_col = day_match(days, values)
elif col == 'hour' and self.time_col is 'time':
keep_col = hour_match(self.data['time']
.apply(lambda x: x.hour),
values)
elif col == 'time' and self.time_col is 'time':
keep_col = datetime_match(self.data[col], values)
elif col == 'level':
if 'variable' not in filters.keys():
keep_col = find_depth(self.data['variable'], level=values)
else:
continue
elif col in self.data.columns:
keep_col = pattern_match(self.data[col], values, regexp=regexp)
else:
_raise_filter_error(col)
keep &= keep_col
return keep | [
"def",
"_apply_filters",
"(",
"self",
",",
"*",
"*",
"filters",
")",
":",
"regexp",
"=",
"filters",
".",
"pop",
"(",
"'regexp'",
",",
"False",
")",
"keep",
"=",
"np",
".",
"array",
"(",
"[",
"True",
"]",
"*",
"len",
"(",
"self",
".",
"data",
")",
")",
"# filter by columns and list of values",
"for",
"col",
",",
"values",
"in",
"filters",
".",
"items",
"(",
")",
":",
"# treat `_apply_filters(col=None)` as no filter applied",
"if",
"values",
"is",
"None",
":",
"continue",
"if",
"col",
"in",
"self",
".",
"meta",
".",
"columns",
":",
"matches",
"=",
"pattern_match",
"(",
"self",
".",
"meta",
"[",
"col",
"]",
",",
"values",
",",
"regexp",
"=",
"regexp",
")",
"cat_idx",
"=",
"self",
".",
"meta",
"[",
"matches",
"]",
".",
"index",
"keep_col",
"=",
"(",
"self",
".",
"data",
"[",
"META_IDX",
"]",
".",
"set_index",
"(",
"META_IDX",
")",
".",
"index",
".",
"isin",
"(",
"cat_idx",
")",
")",
"elif",
"col",
"==",
"'variable'",
":",
"level",
"=",
"filters",
"[",
"'level'",
"]",
"if",
"'level'",
"in",
"filters",
"else",
"None",
"keep_col",
"=",
"pattern_match",
"(",
"self",
".",
"data",
"[",
"col",
"]",
",",
"values",
",",
"level",
",",
"regexp",
")",
"elif",
"col",
"==",
"'year'",
":",
"_data",
"=",
"self",
".",
"data",
"[",
"col",
"]",
"if",
"self",
".",
"time_col",
"is",
"not",
"'time'",
"else",
"self",
".",
"data",
"[",
"'time'",
"]",
".",
"apply",
"(",
"lambda",
"x",
":",
"x",
".",
"year",
")",
"keep_col",
"=",
"years_match",
"(",
"_data",
",",
"values",
")",
"elif",
"col",
"==",
"'month'",
"and",
"self",
".",
"time_col",
"is",
"'time'",
":",
"keep_col",
"=",
"month_match",
"(",
"self",
".",
"data",
"[",
"'time'",
"]",
".",
"apply",
"(",
"lambda",
"x",
":",
"x",
".",
"month",
")",
",",
"values",
")",
"elif",
"col",
"==",
"'day'",
"and",
"self",
".",
"time_col",
"is",
"'time'",
":",
"if",
"isinstance",
"(",
"values",
",",
"str",
")",
":",
"wday",
"=",
"True",
"elif",
"isinstance",
"(",
"values",
",",
"list",
")",
"and",
"isinstance",
"(",
"values",
"[",
"0",
"]",
",",
"str",
")",
":",
"wday",
"=",
"True",
"else",
":",
"wday",
"=",
"False",
"if",
"wday",
":",
"days",
"=",
"self",
".",
"data",
"[",
"'time'",
"]",
".",
"apply",
"(",
"lambda",
"x",
":",
"x",
".",
"weekday",
"(",
")",
")",
"else",
":",
"# ints or list of ints",
"days",
"=",
"self",
".",
"data",
"[",
"'time'",
"]",
".",
"apply",
"(",
"lambda",
"x",
":",
"x",
".",
"day",
")",
"keep_col",
"=",
"day_match",
"(",
"days",
",",
"values",
")",
"elif",
"col",
"==",
"'hour'",
"and",
"self",
".",
"time_col",
"is",
"'time'",
":",
"keep_col",
"=",
"hour_match",
"(",
"self",
".",
"data",
"[",
"'time'",
"]",
".",
"apply",
"(",
"lambda",
"x",
":",
"x",
".",
"hour",
")",
",",
"values",
")",
"elif",
"col",
"==",
"'time'",
"and",
"self",
".",
"time_col",
"is",
"'time'",
":",
"keep_col",
"=",
"datetime_match",
"(",
"self",
".",
"data",
"[",
"col",
"]",
",",
"values",
")",
"elif",
"col",
"==",
"'level'",
":",
"if",
"'variable'",
"not",
"in",
"filters",
".",
"keys",
"(",
")",
":",
"keep_col",
"=",
"find_depth",
"(",
"self",
".",
"data",
"[",
"'variable'",
"]",
",",
"level",
"=",
"values",
")",
"else",
":",
"continue",
"elif",
"col",
"in",
"self",
".",
"data",
".",
"columns",
":",
"keep_col",
"=",
"pattern_match",
"(",
"self",
".",
"data",
"[",
"col",
"]",
",",
"values",
",",
"regexp",
"=",
"regexp",
")",
"else",
":",
"_raise_filter_error",
"(",
"col",
")",
"keep",
"&=",
"keep_col",
"return",
"keep"
]
| Determine rows to keep in data for given set of filters
Parameters
----------
filters: dict
dictionary of filters ({col: values}}); uses a pseudo-regexp syntax
by default, but accepts `regexp: True` to use regexp directly | [
"Determine",
"rows",
"to",
"keep",
"in",
"data",
"for",
"given",
"set",
"of",
"filters"
]
| 4077929ca6e7be63a0e3ecf882c5f1da97b287bf | https://github.com/IAMconsortium/pyam/blob/4077929ca6e7be63a0e3ecf882c5f1da97b287bf/pyam/core.py#L938-L1013 | train |
IAMconsortium/pyam | pyam/core.py | IamDataFrame.col_apply | def col_apply(self, col, func, *args, **kwargs):
"""Apply a function to a column
Parameters
----------
col: string
column in either data or metadata
func: functional
function to apply
"""
if col in self.data:
self.data[col] = self.data[col].apply(func, *args, **kwargs)
else:
self.meta[col] = self.meta[col].apply(func, *args, **kwargs) | python | def col_apply(self, col, func, *args, **kwargs):
"""Apply a function to a column
Parameters
----------
col: string
column in either data or metadata
func: functional
function to apply
"""
if col in self.data:
self.data[col] = self.data[col].apply(func, *args, **kwargs)
else:
self.meta[col] = self.meta[col].apply(func, *args, **kwargs) | [
"def",
"col_apply",
"(",
"self",
",",
"col",
",",
"func",
",",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
":",
"if",
"col",
"in",
"self",
".",
"data",
":",
"self",
".",
"data",
"[",
"col",
"]",
"=",
"self",
".",
"data",
"[",
"col",
"]",
".",
"apply",
"(",
"func",
",",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
"else",
":",
"self",
".",
"meta",
"[",
"col",
"]",
"=",
"self",
".",
"meta",
"[",
"col",
"]",
".",
"apply",
"(",
"func",
",",
"*",
"args",
",",
"*",
"*",
"kwargs",
")"
]
| Apply a function to a column
Parameters
----------
col: string
column in either data or metadata
func: functional
function to apply | [
"Apply",
"a",
"function",
"to",
"a",
"column"
]
| 4077929ca6e7be63a0e3ecf882c5f1da97b287bf | https://github.com/IAMconsortium/pyam/blob/4077929ca6e7be63a0e3ecf882c5f1da97b287bf/pyam/core.py#L1015-L1028 | train |
IAMconsortium/pyam | pyam/core.py | IamDataFrame._to_file_format | def _to_file_format(self, iamc_index):
"""Return a dataframe suitable for writing to a file"""
df = self.timeseries(iamc_index=iamc_index).reset_index()
df = df.rename(columns={c: str(c).title() for c in df.columns})
return df | python | def _to_file_format(self, iamc_index):
"""Return a dataframe suitable for writing to a file"""
df = self.timeseries(iamc_index=iamc_index).reset_index()
df = df.rename(columns={c: str(c).title() for c in df.columns})
return df | [
"def",
"_to_file_format",
"(",
"self",
",",
"iamc_index",
")",
":",
"df",
"=",
"self",
".",
"timeseries",
"(",
"iamc_index",
"=",
"iamc_index",
")",
".",
"reset_index",
"(",
")",
"df",
"=",
"df",
".",
"rename",
"(",
"columns",
"=",
"{",
"c",
":",
"str",
"(",
"c",
")",
".",
"title",
"(",
")",
"for",
"c",
"in",
"df",
".",
"columns",
"}",
")",
"return",
"df"
]
| Return a dataframe suitable for writing to a file | [
"Return",
"a",
"dataframe",
"suitable",
"for",
"writing",
"to",
"a",
"file"
]
| 4077929ca6e7be63a0e3ecf882c5f1da97b287bf | https://github.com/IAMconsortium/pyam/blob/4077929ca6e7be63a0e3ecf882c5f1da97b287bf/pyam/core.py#L1030-L1034 | train |
IAMconsortium/pyam | pyam/core.py | IamDataFrame.to_csv | def to_csv(self, path, iamc_index=False, **kwargs):
"""Write timeseries data to a csv file
Parameters
----------
path: string
file path
iamc_index: bool, default False
if True, use `['model', 'scenario', 'region', 'variable', 'unit']`;
else, use all `data` columns
"""
self._to_file_format(iamc_index).to_csv(path, index=False, **kwargs) | python | def to_csv(self, path, iamc_index=False, **kwargs):
"""Write timeseries data to a csv file
Parameters
----------
path: string
file path
iamc_index: bool, default False
if True, use `['model', 'scenario', 'region', 'variable', 'unit']`;
else, use all `data` columns
"""
self._to_file_format(iamc_index).to_csv(path, index=False, **kwargs) | [
"def",
"to_csv",
"(",
"self",
",",
"path",
",",
"iamc_index",
"=",
"False",
",",
"*",
"*",
"kwargs",
")",
":",
"self",
".",
"_to_file_format",
"(",
"iamc_index",
")",
".",
"to_csv",
"(",
"path",
",",
"index",
"=",
"False",
",",
"*",
"*",
"kwargs",
")"
]
| Write timeseries data to a csv file
Parameters
----------
path: string
file path
iamc_index: bool, default False
if True, use `['model', 'scenario', 'region', 'variable', 'unit']`;
else, use all `data` columns | [
"Write",
"timeseries",
"data",
"to",
"a",
"csv",
"file"
]
| 4077929ca6e7be63a0e3ecf882c5f1da97b287bf | https://github.com/IAMconsortium/pyam/blob/4077929ca6e7be63a0e3ecf882c5f1da97b287bf/pyam/core.py#L1036-L1047 | train |
IAMconsortium/pyam | pyam/core.py | IamDataFrame.to_excel | def to_excel(self, excel_writer, sheet_name='data',
iamc_index=False, **kwargs):
"""Write timeseries data to Excel format
Parameters
----------
excel_writer: string or ExcelWriter object
file path or existing ExcelWriter
sheet_name: string, default 'data'
name of sheet which will contain `IamDataFrame.timeseries()` data
iamc_index: bool, default False
if True, use `['model', 'scenario', 'region', 'variable', 'unit']`;
else, use all `data` columns
"""
if not isinstance(excel_writer, pd.ExcelWriter):
close = True
excel_writer = pd.ExcelWriter(excel_writer)
self._to_file_format(iamc_index)\
.to_excel(excel_writer, sheet_name=sheet_name, index=False,
**kwargs)
if close:
excel_writer.close() | python | def to_excel(self, excel_writer, sheet_name='data',
iamc_index=False, **kwargs):
"""Write timeseries data to Excel format
Parameters
----------
excel_writer: string or ExcelWriter object
file path or existing ExcelWriter
sheet_name: string, default 'data'
name of sheet which will contain `IamDataFrame.timeseries()` data
iamc_index: bool, default False
if True, use `['model', 'scenario', 'region', 'variable', 'unit']`;
else, use all `data` columns
"""
if not isinstance(excel_writer, pd.ExcelWriter):
close = True
excel_writer = pd.ExcelWriter(excel_writer)
self._to_file_format(iamc_index)\
.to_excel(excel_writer, sheet_name=sheet_name, index=False,
**kwargs)
if close:
excel_writer.close() | [
"def",
"to_excel",
"(",
"self",
",",
"excel_writer",
",",
"sheet_name",
"=",
"'data'",
",",
"iamc_index",
"=",
"False",
",",
"*",
"*",
"kwargs",
")",
":",
"if",
"not",
"isinstance",
"(",
"excel_writer",
",",
"pd",
".",
"ExcelWriter",
")",
":",
"close",
"=",
"True",
"excel_writer",
"=",
"pd",
".",
"ExcelWriter",
"(",
"excel_writer",
")",
"self",
".",
"_to_file_format",
"(",
"iamc_index",
")",
".",
"to_excel",
"(",
"excel_writer",
",",
"sheet_name",
"=",
"sheet_name",
",",
"index",
"=",
"False",
",",
"*",
"*",
"kwargs",
")",
"if",
"close",
":",
"excel_writer",
".",
"close",
"(",
")"
]
| Write timeseries data to Excel format
Parameters
----------
excel_writer: string or ExcelWriter object
file path or existing ExcelWriter
sheet_name: string, default 'data'
name of sheet which will contain `IamDataFrame.timeseries()` data
iamc_index: bool, default False
if True, use `['model', 'scenario', 'region', 'variable', 'unit']`;
else, use all `data` columns | [
"Write",
"timeseries",
"data",
"to",
"Excel",
"format"
]
| 4077929ca6e7be63a0e3ecf882c5f1da97b287bf | https://github.com/IAMconsortium/pyam/blob/4077929ca6e7be63a0e3ecf882c5f1da97b287bf/pyam/core.py#L1049-L1070 | train |
IAMconsortium/pyam | pyam/core.py | IamDataFrame.export_metadata | def export_metadata(self, path):
"""Export metadata to Excel
Parameters
----------
path: string
path/filename for xlsx file of metadata export
"""
writer = pd.ExcelWriter(path)
write_sheet(writer, 'meta', self.meta, index=True)
writer.save() | python | def export_metadata(self, path):
"""Export metadata to Excel
Parameters
----------
path: string
path/filename for xlsx file of metadata export
"""
writer = pd.ExcelWriter(path)
write_sheet(writer, 'meta', self.meta, index=True)
writer.save() | [
"def",
"export_metadata",
"(",
"self",
",",
"path",
")",
":",
"writer",
"=",
"pd",
".",
"ExcelWriter",
"(",
"path",
")",
"write_sheet",
"(",
"writer",
",",
"'meta'",
",",
"self",
".",
"meta",
",",
"index",
"=",
"True",
")",
"writer",
".",
"save",
"(",
")"
]
| Export metadata to Excel
Parameters
----------
path: string
path/filename for xlsx file of metadata export | [
"Export",
"metadata",
"to",
"Excel"
]
| 4077929ca6e7be63a0e3ecf882c5f1da97b287bf | https://github.com/IAMconsortium/pyam/blob/4077929ca6e7be63a0e3ecf882c5f1da97b287bf/pyam/core.py#L1072-L1082 | train |
IAMconsortium/pyam | pyam/core.py | IamDataFrame.load_metadata | def load_metadata(self, path, *args, **kwargs):
"""Load metadata exported from `pyam.IamDataFrame` instance
Parameters
----------
path: string
xlsx file with metadata exported from `pyam.IamDataFrame` instance
"""
if not os.path.exists(path):
raise ValueError("no metadata file '" + path + "' found!")
if path.endswith('csv'):
df = pd.read_csv(path, *args, **kwargs)
else:
xl = pd.ExcelFile(path)
if len(xl.sheet_names) > 1 and 'sheet_name' not in kwargs:
kwargs['sheet_name'] = 'meta'
df = pd.read_excel(path, *args, **kwargs)
req_cols = ['model', 'scenario', 'exclude']
if not set(req_cols).issubset(set(df.columns)):
e = 'File `{}` does not have required columns ({})!'
raise ValueError(e.format(path, req_cols))
# set index, filter to relevant scenarios from imported metadata file
df.set_index(META_IDX, inplace=True)
idx = self.meta.index.intersection(df.index)
n_invalid = len(df) - len(idx)
if n_invalid > 0:
msg = 'Ignoring {} scenario{} from imported metadata'
logger().info(msg.format(n_invalid, 's' if n_invalid > 1 else ''))
if idx.empty:
raise ValueError('No valid scenarios in imported metadata file!')
df = df.loc[idx]
# Merge in imported metadata
msg = 'Importing metadata for {} scenario{} (for total of {})'
logger().info(msg.format(len(df), 's' if len(df) > 1 else '',
len(self.meta)))
for col in df.columns:
self._new_meta_column(col)
self.meta[col] = df[col].combine_first(self.meta[col])
# set column `exclude` to bool
self.meta.exclude = self.meta.exclude.astype('bool') | python | def load_metadata(self, path, *args, **kwargs):
"""Load metadata exported from `pyam.IamDataFrame` instance
Parameters
----------
path: string
xlsx file with metadata exported from `pyam.IamDataFrame` instance
"""
if not os.path.exists(path):
raise ValueError("no metadata file '" + path + "' found!")
if path.endswith('csv'):
df = pd.read_csv(path, *args, **kwargs)
else:
xl = pd.ExcelFile(path)
if len(xl.sheet_names) > 1 and 'sheet_name' not in kwargs:
kwargs['sheet_name'] = 'meta'
df = pd.read_excel(path, *args, **kwargs)
req_cols = ['model', 'scenario', 'exclude']
if not set(req_cols).issubset(set(df.columns)):
e = 'File `{}` does not have required columns ({})!'
raise ValueError(e.format(path, req_cols))
# set index, filter to relevant scenarios from imported metadata file
df.set_index(META_IDX, inplace=True)
idx = self.meta.index.intersection(df.index)
n_invalid = len(df) - len(idx)
if n_invalid > 0:
msg = 'Ignoring {} scenario{} from imported metadata'
logger().info(msg.format(n_invalid, 's' if n_invalid > 1 else ''))
if idx.empty:
raise ValueError('No valid scenarios in imported metadata file!')
df = df.loc[idx]
# Merge in imported metadata
msg = 'Importing metadata for {} scenario{} (for total of {})'
logger().info(msg.format(len(df), 's' if len(df) > 1 else '',
len(self.meta)))
for col in df.columns:
self._new_meta_column(col)
self.meta[col] = df[col].combine_first(self.meta[col])
# set column `exclude` to bool
self.meta.exclude = self.meta.exclude.astype('bool') | [
"def",
"load_metadata",
"(",
"self",
",",
"path",
",",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
":",
"if",
"not",
"os",
".",
"path",
".",
"exists",
"(",
"path",
")",
":",
"raise",
"ValueError",
"(",
"\"no metadata file '\"",
"+",
"path",
"+",
"\"' found!\"",
")",
"if",
"path",
".",
"endswith",
"(",
"'csv'",
")",
":",
"df",
"=",
"pd",
".",
"read_csv",
"(",
"path",
",",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
"else",
":",
"xl",
"=",
"pd",
".",
"ExcelFile",
"(",
"path",
")",
"if",
"len",
"(",
"xl",
".",
"sheet_names",
")",
">",
"1",
"and",
"'sheet_name'",
"not",
"in",
"kwargs",
":",
"kwargs",
"[",
"'sheet_name'",
"]",
"=",
"'meta'",
"df",
"=",
"pd",
".",
"read_excel",
"(",
"path",
",",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
"req_cols",
"=",
"[",
"'model'",
",",
"'scenario'",
",",
"'exclude'",
"]",
"if",
"not",
"set",
"(",
"req_cols",
")",
".",
"issubset",
"(",
"set",
"(",
"df",
".",
"columns",
")",
")",
":",
"e",
"=",
"'File `{}` does not have required columns ({})!'",
"raise",
"ValueError",
"(",
"e",
".",
"format",
"(",
"path",
",",
"req_cols",
")",
")",
"# set index, filter to relevant scenarios from imported metadata file",
"df",
".",
"set_index",
"(",
"META_IDX",
",",
"inplace",
"=",
"True",
")",
"idx",
"=",
"self",
".",
"meta",
".",
"index",
".",
"intersection",
"(",
"df",
".",
"index",
")",
"n_invalid",
"=",
"len",
"(",
"df",
")",
"-",
"len",
"(",
"idx",
")",
"if",
"n_invalid",
">",
"0",
":",
"msg",
"=",
"'Ignoring {} scenario{} from imported metadata'",
"logger",
"(",
")",
".",
"info",
"(",
"msg",
".",
"format",
"(",
"n_invalid",
",",
"'s'",
"if",
"n_invalid",
">",
"1",
"else",
"''",
")",
")",
"if",
"idx",
".",
"empty",
":",
"raise",
"ValueError",
"(",
"'No valid scenarios in imported metadata file!'",
")",
"df",
"=",
"df",
".",
"loc",
"[",
"idx",
"]",
"# Merge in imported metadata",
"msg",
"=",
"'Importing metadata for {} scenario{} (for total of {})'",
"logger",
"(",
")",
".",
"info",
"(",
"msg",
".",
"format",
"(",
"len",
"(",
"df",
")",
",",
"'s'",
"if",
"len",
"(",
"df",
")",
">",
"1",
"else",
"''",
",",
"len",
"(",
"self",
".",
"meta",
")",
")",
")",
"for",
"col",
"in",
"df",
".",
"columns",
":",
"self",
".",
"_new_meta_column",
"(",
"col",
")",
"self",
".",
"meta",
"[",
"col",
"]",
"=",
"df",
"[",
"col",
"]",
".",
"combine_first",
"(",
"self",
".",
"meta",
"[",
"col",
"]",
")",
"# set column `exclude` to bool",
"self",
".",
"meta",
".",
"exclude",
"=",
"self",
".",
"meta",
".",
"exclude",
".",
"astype",
"(",
"'bool'",
")"
]
| Load metadata exported from `pyam.IamDataFrame` instance
Parameters
----------
path: string
xlsx file with metadata exported from `pyam.IamDataFrame` instance | [
"Load",
"metadata",
"exported",
"from",
"pyam",
".",
"IamDataFrame",
"instance"
]
| 4077929ca6e7be63a0e3ecf882c5f1da97b287bf | https://github.com/IAMconsortium/pyam/blob/4077929ca6e7be63a0e3ecf882c5f1da97b287bf/pyam/core.py#L1084-L1131 | train |
IAMconsortium/pyam | pyam/core.py | IamDataFrame.line_plot | def line_plot(self, x='year', y='value', **kwargs):
"""Plot timeseries lines of existing data
see pyam.plotting.line_plot() for all available options
"""
df = self.as_pandas(with_metadata=kwargs)
# pivot data if asked for explicit variable name
variables = df['variable'].unique()
if x in variables or y in variables:
keep_vars = set([x, y]) & set(variables)
df = df[df['variable'].isin(keep_vars)]
idx = list(set(df.columns) - set(['value']))
df = (df
.reset_index()
.set_index(idx)
.value # df -> series
.unstack(level='variable') # keep_vars are columns
.rename_axis(None, axis=1) # rm column index name
.reset_index()
.set_index(META_IDX)
)
if x != 'year' and y != 'year':
df = df.drop('year', axis=1) # years causes NaNs
ax, handles, labels = plotting.line_plot(
df.dropna(), x=x, y=y, **kwargs)
return ax | python | def line_plot(self, x='year', y='value', **kwargs):
"""Plot timeseries lines of existing data
see pyam.plotting.line_plot() for all available options
"""
df = self.as_pandas(with_metadata=kwargs)
# pivot data if asked for explicit variable name
variables = df['variable'].unique()
if x in variables or y in variables:
keep_vars = set([x, y]) & set(variables)
df = df[df['variable'].isin(keep_vars)]
idx = list(set(df.columns) - set(['value']))
df = (df
.reset_index()
.set_index(idx)
.value # df -> series
.unstack(level='variable') # keep_vars are columns
.rename_axis(None, axis=1) # rm column index name
.reset_index()
.set_index(META_IDX)
)
if x != 'year' and y != 'year':
df = df.drop('year', axis=1) # years causes NaNs
ax, handles, labels = plotting.line_plot(
df.dropna(), x=x, y=y, **kwargs)
return ax | [
"def",
"line_plot",
"(",
"self",
",",
"x",
"=",
"'year'",
",",
"y",
"=",
"'value'",
",",
"*",
"*",
"kwargs",
")",
":",
"df",
"=",
"self",
".",
"as_pandas",
"(",
"with_metadata",
"=",
"kwargs",
")",
"# pivot data if asked for explicit variable name",
"variables",
"=",
"df",
"[",
"'variable'",
"]",
".",
"unique",
"(",
")",
"if",
"x",
"in",
"variables",
"or",
"y",
"in",
"variables",
":",
"keep_vars",
"=",
"set",
"(",
"[",
"x",
",",
"y",
"]",
")",
"&",
"set",
"(",
"variables",
")",
"df",
"=",
"df",
"[",
"df",
"[",
"'variable'",
"]",
".",
"isin",
"(",
"keep_vars",
")",
"]",
"idx",
"=",
"list",
"(",
"set",
"(",
"df",
".",
"columns",
")",
"-",
"set",
"(",
"[",
"'value'",
"]",
")",
")",
"df",
"=",
"(",
"df",
".",
"reset_index",
"(",
")",
".",
"set_index",
"(",
"idx",
")",
".",
"value",
"# df -> series",
".",
"unstack",
"(",
"level",
"=",
"'variable'",
")",
"# keep_vars are columns",
".",
"rename_axis",
"(",
"None",
",",
"axis",
"=",
"1",
")",
"# rm column index name",
".",
"reset_index",
"(",
")",
".",
"set_index",
"(",
"META_IDX",
")",
")",
"if",
"x",
"!=",
"'year'",
"and",
"y",
"!=",
"'year'",
":",
"df",
"=",
"df",
".",
"drop",
"(",
"'year'",
",",
"axis",
"=",
"1",
")",
"# years causes NaNs",
"ax",
",",
"handles",
",",
"labels",
"=",
"plotting",
".",
"line_plot",
"(",
"df",
".",
"dropna",
"(",
")",
",",
"x",
"=",
"x",
",",
"y",
"=",
"y",
",",
"*",
"*",
"kwargs",
")",
"return",
"ax"
]
| Plot timeseries lines of existing data
see pyam.plotting.line_plot() for all available options | [
"Plot",
"timeseries",
"lines",
"of",
"existing",
"data"
]
| 4077929ca6e7be63a0e3ecf882c5f1da97b287bf | https://github.com/IAMconsortium/pyam/blob/4077929ca6e7be63a0e3ecf882c5f1da97b287bf/pyam/core.py#L1133-L1160 | train |
IAMconsortium/pyam | pyam/core.py | IamDataFrame.stack_plot | def stack_plot(self, *args, **kwargs):
"""Plot timeseries stacks of existing data
see pyam.plotting.stack_plot() for all available options
"""
df = self.as_pandas(with_metadata=True)
ax = plotting.stack_plot(df, *args, **kwargs)
return ax | python | def stack_plot(self, *args, **kwargs):
"""Plot timeseries stacks of existing data
see pyam.plotting.stack_plot() for all available options
"""
df = self.as_pandas(with_metadata=True)
ax = plotting.stack_plot(df, *args, **kwargs)
return ax | [
"def",
"stack_plot",
"(",
"self",
",",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
":",
"df",
"=",
"self",
".",
"as_pandas",
"(",
"with_metadata",
"=",
"True",
")",
"ax",
"=",
"plotting",
".",
"stack_plot",
"(",
"df",
",",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
"return",
"ax"
]
| Plot timeseries stacks of existing data
see pyam.plotting.stack_plot() for all available options | [
"Plot",
"timeseries",
"stacks",
"of",
"existing",
"data"
]
| 4077929ca6e7be63a0e3ecf882c5f1da97b287bf | https://github.com/IAMconsortium/pyam/blob/4077929ca6e7be63a0e3ecf882c5f1da97b287bf/pyam/core.py#L1162-L1169 | train |
IAMconsortium/pyam | pyam/core.py | IamDataFrame.scatter | def scatter(self, x, y, **kwargs):
"""Plot a scatter chart using metadata columns
see pyam.plotting.scatter() for all available options
"""
variables = self.data['variable'].unique()
xisvar = x in variables
yisvar = y in variables
if not xisvar and not yisvar:
cols = [x, y] + self._discover_meta_cols(**kwargs)
df = self.meta[cols].reset_index()
elif xisvar and yisvar:
# filter pivot both and rename
dfx = (
self
.filter(variable=x)
.as_pandas(with_metadata=kwargs)
.rename(columns={'value': x, 'unit': 'xunit'})
.set_index(YEAR_IDX)
.drop('variable', axis=1)
)
dfy = (
self
.filter(variable=y)
.as_pandas(with_metadata=kwargs)
.rename(columns={'value': y, 'unit': 'yunit'})
.set_index(YEAR_IDX)
.drop('variable', axis=1)
)
df = dfx.join(dfy, lsuffix='_left', rsuffix='').reset_index()
else:
# filter, merge with meta, and rename value column to match var
var = x if xisvar else y
df = (
self
.filter(variable=var)
.as_pandas(with_metadata=kwargs)
.rename(columns={'value': var})
)
ax = plotting.scatter(df.dropna(), x, y, **kwargs)
return ax | python | def scatter(self, x, y, **kwargs):
"""Plot a scatter chart using metadata columns
see pyam.plotting.scatter() for all available options
"""
variables = self.data['variable'].unique()
xisvar = x in variables
yisvar = y in variables
if not xisvar and not yisvar:
cols = [x, y] + self._discover_meta_cols(**kwargs)
df = self.meta[cols].reset_index()
elif xisvar and yisvar:
# filter pivot both and rename
dfx = (
self
.filter(variable=x)
.as_pandas(with_metadata=kwargs)
.rename(columns={'value': x, 'unit': 'xunit'})
.set_index(YEAR_IDX)
.drop('variable', axis=1)
)
dfy = (
self
.filter(variable=y)
.as_pandas(with_metadata=kwargs)
.rename(columns={'value': y, 'unit': 'yunit'})
.set_index(YEAR_IDX)
.drop('variable', axis=1)
)
df = dfx.join(dfy, lsuffix='_left', rsuffix='').reset_index()
else:
# filter, merge with meta, and rename value column to match var
var = x if xisvar else y
df = (
self
.filter(variable=var)
.as_pandas(with_metadata=kwargs)
.rename(columns={'value': var})
)
ax = plotting.scatter(df.dropna(), x, y, **kwargs)
return ax | [
"def",
"scatter",
"(",
"self",
",",
"x",
",",
"y",
",",
"*",
"*",
"kwargs",
")",
":",
"variables",
"=",
"self",
".",
"data",
"[",
"'variable'",
"]",
".",
"unique",
"(",
")",
"xisvar",
"=",
"x",
"in",
"variables",
"yisvar",
"=",
"y",
"in",
"variables",
"if",
"not",
"xisvar",
"and",
"not",
"yisvar",
":",
"cols",
"=",
"[",
"x",
",",
"y",
"]",
"+",
"self",
".",
"_discover_meta_cols",
"(",
"*",
"*",
"kwargs",
")",
"df",
"=",
"self",
".",
"meta",
"[",
"cols",
"]",
".",
"reset_index",
"(",
")",
"elif",
"xisvar",
"and",
"yisvar",
":",
"# filter pivot both and rename",
"dfx",
"=",
"(",
"self",
".",
"filter",
"(",
"variable",
"=",
"x",
")",
".",
"as_pandas",
"(",
"with_metadata",
"=",
"kwargs",
")",
".",
"rename",
"(",
"columns",
"=",
"{",
"'value'",
":",
"x",
",",
"'unit'",
":",
"'xunit'",
"}",
")",
".",
"set_index",
"(",
"YEAR_IDX",
")",
".",
"drop",
"(",
"'variable'",
",",
"axis",
"=",
"1",
")",
")",
"dfy",
"=",
"(",
"self",
".",
"filter",
"(",
"variable",
"=",
"y",
")",
".",
"as_pandas",
"(",
"with_metadata",
"=",
"kwargs",
")",
".",
"rename",
"(",
"columns",
"=",
"{",
"'value'",
":",
"y",
",",
"'unit'",
":",
"'yunit'",
"}",
")",
".",
"set_index",
"(",
"YEAR_IDX",
")",
".",
"drop",
"(",
"'variable'",
",",
"axis",
"=",
"1",
")",
")",
"df",
"=",
"dfx",
".",
"join",
"(",
"dfy",
",",
"lsuffix",
"=",
"'_left'",
",",
"rsuffix",
"=",
"''",
")",
".",
"reset_index",
"(",
")",
"else",
":",
"# filter, merge with meta, and rename value column to match var",
"var",
"=",
"x",
"if",
"xisvar",
"else",
"y",
"df",
"=",
"(",
"self",
".",
"filter",
"(",
"variable",
"=",
"var",
")",
".",
"as_pandas",
"(",
"with_metadata",
"=",
"kwargs",
")",
".",
"rename",
"(",
"columns",
"=",
"{",
"'value'",
":",
"var",
"}",
")",
")",
"ax",
"=",
"plotting",
".",
"scatter",
"(",
"df",
".",
"dropna",
"(",
")",
",",
"x",
",",
"y",
",",
"*",
"*",
"kwargs",
")",
"return",
"ax"
]
| Plot a scatter chart using metadata columns
see pyam.plotting.scatter() for all available options | [
"Plot",
"a",
"scatter",
"chart",
"using",
"metadata",
"columns"
]
| 4077929ca6e7be63a0e3ecf882c5f1da97b287bf | https://github.com/IAMconsortium/pyam/blob/4077929ca6e7be63a0e3ecf882c5f1da97b287bf/pyam/core.py#L1189-L1229 | train |
IAMconsortium/pyam | pyam/run_control.py | RunControl.update | def update(self, rc):
"""Add additional run control parameters
Parameters
----------
rc : string, file, dictionary, optional
a path to a YAML file, a file handle for a YAML file, or a
dictionary describing run control configuration
"""
rc = self._load_yaml(rc)
self.store = _recursive_update(self.store, rc) | python | def update(self, rc):
"""Add additional run control parameters
Parameters
----------
rc : string, file, dictionary, optional
a path to a YAML file, a file handle for a YAML file, or a
dictionary describing run control configuration
"""
rc = self._load_yaml(rc)
self.store = _recursive_update(self.store, rc) | [
"def",
"update",
"(",
"self",
",",
"rc",
")",
":",
"rc",
"=",
"self",
".",
"_load_yaml",
"(",
"rc",
")",
"self",
".",
"store",
"=",
"_recursive_update",
"(",
"self",
".",
"store",
",",
"rc",
")"
]
| Add additional run control parameters
Parameters
----------
rc : string, file, dictionary, optional
a path to a YAML file, a file handle for a YAML file, or a
dictionary describing run control configuration | [
"Add",
"additional",
"run",
"control",
"parameters"
]
| 4077929ca6e7be63a0e3ecf882c5f1da97b287bf | https://github.com/IAMconsortium/pyam/blob/4077929ca6e7be63a0e3ecf882c5f1da97b287bf/pyam/run_control.py#L75-L85 | train |
IAMconsortium/pyam | pyam/run_control.py | RunControl.recursive_update | def recursive_update(self, k, d):
"""Recursively update a top-level option in the run control
Parameters
----------
k : string
the top-level key
d : dictionary or similar
the dictionary to use for updating
"""
u = self.__getitem__(k)
self.store[k] = _recursive_update(u, d) | python | def recursive_update(self, k, d):
"""Recursively update a top-level option in the run control
Parameters
----------
k : string
the top-level key
d : dictionary or similar
the dictionary to use for updating
"""
u = self.__getitem__(k)
self.store[k] = _recursive_update(u, d) | [
"def",
"recursive_update",
"(",
"self",
",",
"k",
",",
"d",
")",
":",
"u",
"=",
"self",
".",
"__getitem__",
"(",
"k",
")",
"self",
".",
"store",
"[",
"k",
"]",
"=",
"_recursive_update",
"(",
"u",
",",
"d",
")"
]
| Recursively update a top-level option in the run control
Parameters
----------
k : string
the top-level key
d : dictionary or similar
the dictionary to use for updating | [
"Recursively",
"update",
"a",
"top",
"-",
"level",
"option",
"in",
"the",
"run",
"control"
]
| 4077929ca6e7be63a0e3ecf882c5f1da97b287bf | https://github.com/IAMconsortium/pyam/blob/4077929ca6e7be63a0e3ecf882c5f1da97b287bf/pyam/run_control.py#L125-L136 | train |
IAMconsortium/pyam | pyam/iiasa.py | Connection.available_metadata | def available_metadata(self):
"""
List all scenario metadata indicators available in the connected
data source
"""
url = self.base_url + 'metadata/types'
headers = {'Authorization': 'Bearer {}'.format(self.auth())}
r = requests.get(url, headers=headers)
return pd.read_json(r.content, orient='records')['name'] | python | def available_metadata(self):
"""
List all scenario metadata indicators available in the connected
data source
"""
url = self.base_url + 'metadata/types'
headers = {'Authorization': 'Bearer {}'.format(self.auth())}
r = requests.get(url, headers=headers)
return pd.read_json(r.content, orient='records')['name'] | [
"def",
"available_metadata",
"(",
"self",
")",
":",
"url",
"=",
"self",
".",
"base_url",
"+",
"'metadata/types'",
"headers",
"=",
"{",
"'Authorization'",
":",
"'Bearer {}'",
".",
"format",
"(",
"self",
".",
"auth",
"(",
")",
")",
"}",
"r",
"=",
"requests",
".",
"get",
"(",
"url",
",",
"headers",
"=",
"headers",
")",
"return",
"pd",
".",
"read_json",
"(",
"r",
".",
"content",
",",
"orient",
"=",
"'records'",
")",
"[",
"'name'",
"]"
]
| List all scenario metadata indicators available in the connected
data source | [
"List",
"all",
"scenario",
"metadata",
"indicators",
"available",
"in",
"the",
"connected",
"data",
"source"
]
| 4077929ca6e7be63a0e3ecf882c5f1da97b287bf | https://github.com/IAMconsortium/pyam/blob/4077929ca6e7be63a0e3ecf882c5f1da97b287bf/pyam/iiasa.py#L87-L95 | train |
IAMconsortium/pyam | pyam/iiasa.py | Connection.metadata | def metadata(self, default=True):
"""
Metadata of scenarios in the connected data source
Parameter
---------
default : bool, optional, default True
Return *only* the default version of each Scenario.
Any (`model`, `scenario`) without a default version is omitted.
If :obj:`False`, return all versions.
"""
# at present this reads in all data for all scenarios, it could be sped
# up in the future to try to query a subset
default = 'true' if default else 'false'
add_url = 'runs?getOnlyDefaultRuns={}&includeMetadata=true'
url = self.base_url + add_url.format(default)
headers = {'Authorization': 'Bearer {}'.format(self.auth())}
r = requests.get(url, headers=headers)
df = pd.read_json(r.content, orient='records')
def extract(row):
return (
pd.concat([row[['model', 'scenario']],
pd.Series(row.metadata)])
.to_frame()
.T
.set_index(['model', 'scenario'])
)
return pd.concat([extract(row) for idx, row in df.iterrows()],
sort=False).reset_index() | python | def metadata(self, default=True):
"""
Metadata of scenarios in the connected data source
Parameter
---------
default : bool, optional, default True
Return *only* the default version of each Scenario.
Any (`model`, `scenario`) without a default version is omitted.
If :obj:`False`, return all versions.
"""
# at present this reads in all data for all scenarios, it could be sped
# up in the future to try to query a subset
default = 'true' if default else 'false'
add_url = 'runs?getOnlyDefaultRuns={}&includeMetadata=true'
url = self.base_url + add_url.format(default)
headers = {'Authorization': 'Bearer {}'.format(self.auth())}
r = requests.get(url, headers=headers)
df = pd.read_json(r.content, orient='records')
def extract(row):
return (
pd.concat([row[['model', 'scenario']],
pd.Series(row.metadata)])
.to_frame()
.T
.set_index(['model', 'scenario'])
)
return pd.concat([extract(row) for idx, row in df.iterrows()],
sort=False).reset_index() | [
"def",
"metadata",
"(",
"self",
",",
"default",
"=",
"True",
")",
":",
"# at present this reads in all data for all scenarios, it could be sped",
"# up in the future to try to query a subset",
"default",
"=",
"'true'",
"if",
"default",
"else",
"'false'",
"add_url",
"=",
"'runs?getOnlyDefaultRuns={}&includeMetadata=true'",
"url",
"=",
"self",
".",
"base_url",
"+",
"add_url",
".",
"format",
"(",
"default",
")",
"headers",
"=",
"{",
"'Authorization'",
":",
"'Bearer {}'",
".",
"format",
"(",
"self",
".",
"auth",
"(",
")",
")",
"}",
"r",
"=",
"requests",
".",
"get",
"(",
"url",
",",
"headers",
"=",
"headers",
")",
"df",
"=",
"pd",
".",
"read_json",
"(",
"r",
".",
"content",
",",
"orient",
"=",
"'records'",
")",
"def",
"extract",
"(",
"row",
")",
":",
"return",
"(",
"pd",
".",
"concat",
"(",
"[",
"row",
"[",
"[",
"'model'",
",",
"'scenario'",
"]",
"]",
",",
"pd",
".",
"Series",
"(",
"row",
".",
"metadata",
")",
"]",
")",
".",
"to_frame",
"(",
")",
".",
"T",
".",
"set_index",
"(",
"[",
"'model'",
",",
"'scenario'",
"]",
")",
")",
"return",
"pd",
".",
"concat",
"(",
"[",
"extract",
"(",
"row",
")",
"for",
"idx",
",",
"row",
"in",
"df",
".",
"iterrows",
"(",
")",
"]",
",",
"sort",
"=",
"False",
")",
".",
"reset_index",
"(",
")"
]
| Metadata of scenarios in the connected data source
Parameter
---------
default : bool, optional, default True
Return *only* the default version of each Scenario.
Any (`model`, `scenario`) without a default version is omitted.
If :obj:`False`, return all versions. | [
"Metadata",
"of",
"scenarios",
"in",
"the",
"connected",
"data",
"source"
]
| 4077929ca6e7be63a0e3ecf882c5f1da97b287bf | https://github.com/IAMconsortium/pyam/blob/4077929ca6e7be63a0e3ecf882c5f1da97b287bf/pyam/iiasa.py#L98-L128 | train |
IAMconsortium/pyam | pyam/iiasa.py | Connection.variables | def variables(self):
"""All variables in the connected data source"""
url = self.base_url + 'ts'
headers = {'Authorization': 'Bearer {}'.format(self.auth())}
r = requests.get(url, headers=headers)
df = pd.read_json(r.content, orient='records')
return pd.Series(df['variable'].unique(), name='variable') | python | def variables(self):
"""All variables in the connected data source"""
url = self.base_url + 'ts'
headers = {'Authorization': 'Bearer {}'.format(self.auth())}
r = requests.get(url, headers=headers)
df = pd.read_json(r.content, orient='records')
return pd.Series(df['variable'].unique(), name='variable') | [
"def",
"variables",
"(",
"self",
")",
":",
"url",
"=",
"self",
".",
"base_url",
"+",
"'ts'",
"headers",
"=",
"{",
"'Authorization'",
":",
"'Bearer {}'",
".",
"format",
"(",
"self",
".",
"auth",
"(",
")",
")",
"}",
"r",
"=",
"requests",
".",
"get",
"(",
"url",
",",
"headers",
"=",
"headers",
")",
"df",
"=",
"pd",
".",
"read_json",
"(",
"r",
".",
"content",
",",
"orient",
"=",
"'records'",
")",
"return",
"pd",
".",
"Series",
"(",
"df",
"[",
"'variable'",
"]",
".",
"unique",
"(",
")",
",",
"name",
"=",
"'variable'",
")"
]
| All variables in the connected data source | [
"All",
"variables",
"in",
"the",
"connected",
"data",
"source"
]
| 4077929ca6e7be63a0e3ecf882c5f1da97b287bf | https://github.com/IAMconsortium/pyam/blob/4077929ca6e7be63a0e3ecf882c5f1da97b287bf/pyam/iiasa.py#L141-L147 | train |
IAMconsortium/pyam | pyam/iiasa.py | Connection.query | def query(self, **kwargs):
"""
Query the data source, subselecting data. Available keyword arguments
include
- model
- scenario
- region
- variable
Example
-------
```
Connection.query(model='MESSAGE', scenario='SSP2*',
variable=['Emissions|CO2', 'Primary Energy'])
```
"""
headers = {
'Authorization': 'Bearer {}'.format(self.auth()),
'Content-Type': 'application/json',
}
data = json.dumps(self._query_post_data(**kwargs))
url = self.base_url + 'runs/bulk/ts'
r = requests.post(url, headers=headers, data=data)
# refactor returned json object to be castable to an IamDataFrame
df = (
pd.read_json(r.content, orient='records')
.drop(columns='runId')
.rename(columns={'time': 'subannual'})
)
# check if returned dataframe has subannual disaggregation, drop if not
if pd.Series([i in [-1, 'year'] for i in df.subannual]).all():
df.drop(columns='subannual', inplace=True)
# check if there are multiple version for any model/scenario
lst = (
df[META_IDX + ['version']].drop_duplicates()
.groupby(META_IDX).count().version
)
if max(lst) > 1:
raise ValueError('multiple versions for {}'.format(
lst[lst > 1].index.to_list()))
df.drop(columns='version', inplace=True)
return df | python | def query(self, **kwargs):
"""
Query the data source, subselecting data. Available keyword arguments
include
- model
- scenario
- region
- variable
Example
-------
```
Connection.query(model='MESSAGE', scenario='SSP2*',
variable=['Emissions|CO2', 'Primary Energy'])
```
"""
headers = {
'Authorization': 'Bearer {}'.format(self.auth()),
'Content-Type': 'application/json',
}
data = json.dumps(self._query_post_data(**kwargs))
url = self.base_url + 'runs/bulk/ts'
r = requests.post(url, headers=headers, data=data)
# refactor returned json object to be castable to an IamDataFrame
df = (
pd.read_json(r.content, orient='records')
.drop(columns='runId')
.rename(columns={'time': 'subannual'})
)
# check if returned dataframe has subannual disaggregation, drop if not
if pd.Series([i in [-1, 'year'] for i in df.subannual]).all():
df.drop(columns='subannual', inplace=True)
# check if there are multiple version for any model/scenario
lst = (
df[META_IDX + ['version']].drop_duplicates()
.groupby(META_IDX).count().version
)
if max(lst) > 1:
raise ValueError('multiple versions for {}'.format(
lst[lst > 1].index.to_list()))
df.drop(columns='version', inplace=True)
return df | [
"def",
"query",
"(",
"self",
",",
"*",
"*",
"kwargs",
")",
":",
"headers",
"=",
"{",
"'Authorization'",
":",
"'Bearer {}'",
".",
"format",
"(",
"self",
".",
"auth",
"(",
")",
")",
",",
"'Content-Type'",
":",
"'application/json'",
",",
"}",
"data",
"=",
"json",
".",
"dumps",
"(",
"self",
".",
"_query_post_data",
"(",
"*",
"*",
"kwargs",
")",
")",
"url",
"=",
"self",
".",
"base_url",
"+",
"'runs/bulk/ts'",
"r",
"=",
"requests",
".",
"post",
"(",
"url",
",",
"headers",
"=",
"headers",
",",
"data",
"=",
"data",
")",
"# refactor returned json object to be castable to an IamDataFrame",
"df",
"=",
"(",
"pd",
".",
"read_json",
"(",
"r",
".",
"content",
",",
"orient",
"=",
"'records'",
")",
".",
"drop",
"(",
"columns",
"=",
"'runId'",
")",
".",
"rename",
"(",
"columns",
"=",
"{",
"'time'",
":",
"'subannual'",
"}",
")",
")",
"# check if returned dataframe has subannual disaggregation, drop if not",
"if",
"pd",
".",
"Series",
"(",
"[",
"i",
"in",
"[",
"-",
"1",
",",
"'year'",
"]",
"for",
"i",
"in",
"df",
".",
"subannual",
"]",
")",
".",
"all",
"(",
")",
":",
"df",
".",
"drop",
"(",
"columns",
"=",
"'subannual'",
",",
"inplace",
"=",
"True",
")",
"# check if there are multiple version for any model/scenario",
"lst",
"=",
"(",
"df",
"[",
"META_IDX",
"+",
"[",
"'version'",
"]",
"]",
".",
"drop_duplicates",
"(",
")",
".",
"groupby",
"(",
"META_IDX",
")",
".",
"count",
"(",
")",
".",
"version",
")",
"if",
"max",
"(",
"lst",
")",
">",
"1",
":",
"raise",
"ValueError",
"(",
"'multiple versions for {}'",
".",
"format",
"(",
"lst",
"[",
"lst",
">",
"1",
"]",
".",
"index",
".",
"to_list",
"(",
")",
")",
")",
"df",
".",
"drop",
"(",
"columns",
"=",
"'version'",
",",
"inplace",
"=",
"True",
")",
"return",
"df"
]
| Query the data source, subselecting data. Available keyword arguments
include
- model
- scenario
- region
- variable
Example
-------
```
Connection.query(model='MESSAGE', scenario='SSP2*',
variable=['Emissions|CO2', 'Primary Energy'])
``` | [
"Query",
"the",
"data",
"source",
"subselecting",
"data",
".",
"Available",
"keyword",
"arguments",
"include"
]
| 4077929ca6e7be63a0e3ecf882c5f1da97b287bf | https://github.com/IAMconsortium/pyam/blob/4077929ca6e7be63a0e3ecf882c5f1da97b287bf/pyam/iiasa.py#L209-L253 | train |
IAMconsortium/pyam | pyam/statistics.py | Statistics.reindex | def reindex(self, copy=True):
"""Reindex the summary statistics dataframe"""
ret = deepcopy(self) if copy else self
ret.stats = ret.stats.reindex(index=ret._idx, level=0)
if ret.idx_depth == 2:
ret.stats = ret.stats.reindex(index=ret._sub_idx, level=1)
if ret.rows is not None:
ret.stats = ret.stats.reindex(index=ret.rows, level=ret.idx_depth)
ret.stats = ret.stats.reindex(columns=ret._headers, level=0)
ret.stats = ret.stats.reindex(columns=ret._subheaders, level=1)
ret.stats = ret.stats.reindex(columns=ret._describe_cols, level=2)
if copy:
return ret | python | def reindex(self, copy=True):
"""Reindex the summary statistics dataframe"""
ret = deepcopy(self) if copy else self
ret.stats = ret.stats.reindex(index=ret._idx, level=0)
if ret.idx_depth == 2:
ret.stats = ret.stats.reindex(index=ret._sub_idx, level=1)
if ret.rows is not None:
ret.stats = ret.stats.reindex(index=ret.rows, level=ret.idx_depth)
ret.stats = ret.stats.reindex(columns=ret._headers, level=0)
ret.stats = ret.stats.reindex(columns=ret._subheaders, level=1)
ret.stats = ret.stats.reindex(columns=ret._describe_cols, level=2)
if copy:
return ret | [
"def",
"reindex",
"(",
"self",
",",
"copy",
"=",
"True",
")",
":",
"ret",
"=",
"deepcopy",
"(",
"self",
")",
"if",
"copy",
"else",
"self",
"ret",
".",
"stats",
"=",
"ret",
".",
"stats",
".",
"reindex",
"(",
"index",
"=",
"ret",
".",
"_idx",
",",
"level",
"=",
"0",
")",
"if",
"ret",
".",
"idx_depth",
"==",
"2",
":",
"ret",
".",
"stats",
"=",
"ret",
".",
"stats",
".",
"reindex",
"(",
"index",
"=",
"ret",
".",
"_sub_idx",
",",
"level",
"=",
"1",
")",
"if",
"ret",
".",
"rows",
"is",
"not",
"None",
":",
"ret",
".",
"stats",
"=",
"ret",
".",
"stats",
".",
"reindex",
"(",
"index",
"=",
"ret",
".",
"rows",
",",
"level",
"=",
"ret",
".",
"idx_depth",
")",
"ret",
".",
"stats",
"=",
"ret",
".",
"stats",
".",
"reindex",
"(",
"columns",
"=",
"ret",
".",
"_headers",
",",
"level",
"=",
"0",
")",
"ret",
".",
"stats",
"=",
"ret",
".",
"stats",
".",
"reindex",
"(",
"columns",
"=",
"ret",
".",
"_subheaders",
",",
"level",
"=",
"1",
")",
"ret",
".",
"stats",
"=",
"ret",
".",
"stats",
".",
"reindex",
"(",
"columns",
"=",
"ret",
".",
"_describe_cols",
",",
"level",
"=",
"2",
")",
"if",
"copy",
":",
"return",
"ret"
]
| Reindex the summary statistics dataframe | [
"Reindex",
"the",
"summary",
"statistics",
"dataframe"
]
| 4077929ca6e7be63a0e3ecf882c5f1da97b287bf | https://github.com/IAMconsortium/pyam/blob/4077929ca6e7be63a0e3ecf882c5f1da97b287bf/pyam/statistics.py#L198-L213 | train |
IAMconsortium/pyam | pyam/statistics.py | Statistics.summarize | def summarize(self, center='mean', fullrange=None, interquartile=None,
custom_format='{:.2f}'):
"""Format the compiled statistics to a concise string output
Parameter
---------
center : str, default `mean`
what to return as 'center' of the summary: `mean`, `50%`, `median`
fullrange : bool, default None
return full range of data if True or `fullrange`, `interquartile`
and `format_spec` are None
interquartile : bool, default None
return interquartile range if True
custom_format : formatting specifications
"""
# call `reindex()` to reorder index and columns
self.reindex(copy=False)
center = 'median' if center == '50%' else center
if fullrange is None and interquartile is None:
fullrange = True
return self.stats.apply(format_rows, center=center,
fullrange=fullrange,
interquartile=interquartile,
custom_format=custom_format,
axis=1, raw=False) | python | def summarize(self, center='mean', fullrange=None, interquartile=None,
custom_format='{:.2f}'):
"""Format the compiled statistics to a concise string output
Parameter
---------
center : str, default `mean`
what to return as 'center' of the summary: `mean`, `50%`, `median`
fullrange : bool, default None
return full range of data if True or `fullrange`, `interquartile`
and `format_spec` are None
interquartile : bool, default None
return interquartile range if True
custom_format : formatting specifications
"""
# call `reindex()` to reorder index and columns
self.reindex(copy=False)
center = 'median' if center == '50%' else center
if fullrange is None and interquartile is None:
fullrange = True
return self.stats.apply(format_rows, center=center,
fullrange=fullrange,
interquartile=interquartile,
custom_format=custom_format,
axis=1, raw=False) | [
"def",
"summarize",
"(",
"self",
",",
"center",
"=",
"'mean'",
",",
"fullrange",
"=",
"None",
",",
"interquartile",
"=",
"None",
",",
"custom_format",
"=",
"'{:.2f}'",
")",
":",
"# call `reindex()` to reorder index and columns",
"self",
".",
"reindex",
"(",
"copy",
"=",
"False",
")",
"center",
"=",
"'median'",
"if",
"center",
"==",
"'50%'",
"else",
"center",
"if",
"fullrange",
"is",
"None",
"and",
"interquartile",
"is",
"None",
":",
"fullrange",
"=",
"True",
"return",
"self",
".",
"stats",
".",
"apply",
"(",
"format_rows",
",",
"center",
"=",
"center",
",",
"fullrange",
"=",
"fullrange",
",",
"interquartile",
"=",
"interquartile",
",",
"custom_format",
"=",
"custom_format",
",",
"axis",
"=",
"1",
",",
"raw",
"=",
"False",
")"
]
| Format the compiled statistics to a concise string output
Parameter
---------
center : str, default `mean`
what to return as 'center' of the summary: `mean`, `50%`, `median`
fullrange : bool, default None
return full range of data if True or `fullrange`, `interquartile`
and `format_spec` are None
interquartile : bool, default None
return interquartile range if True
custom_format : formatting specifications | [
"Format",
"the",
"compiled",
"statistics",
"to",
"a",
"concise",
"string",
"output"
]
| 4077929ca6e7be63a0e3ecf882c5f1da97b287bf | https://github.com/IAMconsortium/pyam/blob/4077929ca6e7be63a0e3ecf882c5f1da97b287bf/pyam/statistics.py#L215-L240 | train |
IAMconsortium/pyam | pyam/plotting.py | reset_default_props | def reset_default_props(**kwargs):
"""Reset properties to initial cycle point"""
global _DEFAULT_PROPS
pcycle = plt.rcParams['axes.prop_cycle']
_DEFAULT_PROPS = {
'color': itertools.cycle(_get_standard_colors(**kwargs))
if len(kwargs) > 0 else itertools.cycle([x['color'] for x in pcycle]),
'marker': itertools.cycle(['o', 'x', '.', '+', '*']),
'linestyle': itertools.cycle(['-', '--', '-.', ':']),
} | python | def reset_default_props(**kwargs):
"""Reset properties to initial cycle point"""
global _DEFAULT_PROPS
pcycle = plt.rcParams['axes.prop_cycle']
_DEFAULT_PROPS = {
'color': itertools.cycle(_get_standard_colors(**kwargs))
if len(kwargs) > 0 else itertools.cycle([x['color'] for x in pcycle]),
'marker': itertools.cycle(['o', 'x', '.', '+', '*']),
'linestyle': itertools.cycle(['-', '--', '-.', ':']),
} | [
"def",
"reset_default_props",
"(",
"*",
"*",
"kwargs",
")",
":",
"global",
"_DEFAULT_PROPS",
"pcycle",
"=",
"plt",
".",
"rcParams",
"[",
"'axes.prop_cycle'",
"]",
"_DEFAULT_PROPS",
"=",
"{",
"'color'",
":",
"itertools",
".",
"cycle",
"(",
"_get_standard_colors",
"(",
"*",
"*",
"kwargs",
")",
")",
"if",
"len",
"(",
"kwargs",
")",
">",
"0",
"else",
"itertools",
".",
"cycle",
"(",
"[",
"x",
"[",
"'color'",
"]",
"for",
"x",
"in",
"pcycle",
"]",
")",
",",
"'marker'",
":",
"itertools",
".",
"cycle",
"(",
"[",
"'o'",
",",
"'x'",
",",
"'.'",
",",
"'+'",
",",
"'*'",
"]",
")",
",",
"'linestyle'",
":",
"itertools",
".",
"cycle",
"(",
"[",
"'-'",
",",
"'--'",
",",
"'-.'",
",",
"':'",
"]",
")",
",",
"}"
]
| Reset properties to initial cycle point | [
"Reset",
"properties",
"to",
"initial",
"cycle",
"point"
]
| 4077929ca6e7be63a0e3ecf882c5f1da97b287bf | https://github.com/IAMconsortium/pyam/blob/4077929ca6e7be63a0e3ecf882c5f1da97b287bf/pyam/plotting.py#L75-L84 | train |
IAMconsortium/pyam | pyam/plotting.py | default_props | def default_props(reset=False, **kwargs):
"""Return current default properties
Parameters
----------
reset : bool
if True, reset properties and return
default: False
"""
global _DEFAULT_PROPS
if _DEFAULT_PROPS is None or reset:
reset_default_props(**kwargs)
return _DEFAULT_PROPS | python | def default_props(reset=False, **kwargs):
"""Return current default properties
Parameters
----------
reset : bool
if True, reset properties and return
default: False
"""
global _DEFAULT_PROPS
if _DEFAULT_PROPS is None or reset:
reset_default_props(**kwargs)
return _DEFAULT_PROPS | [
"def",
"default_props",
"(",
"reset",
"=",
"False",
",",
"*",
"*",
"kwargs",
")",
":",
"global",
"_DEFAULT_PROPS",
"if",
"_DEFAULT_PROPS",
"is",
"None",
"or",
"reset",
":",
"reset_default_props",
"(",
"*",
"*",
"kwargs",
")",
"return",
"_DEFAULT_PROPS"
]
| Return current default properties
Parameters
----------
reset : bool
if True, reset properties and return
default: False | [
"Return",
"current",
"default",
"properties"
]
| 4077929ca6e7be63a0e3ecf882c5f1da97b287bf | https://github.com/IAMconsortium/pyam/blob/4077929ca6e7be63a0e3ecf882c5f1da97b287bf/pyam/plotting.py#L87-L99 | train |
IAMconsortium/pyam | pyam/plotting.py | assign_style_props | def assign_style_props(df, color=None, marker=None, linestyle=None,
cmap=None):
"""Assign the style properties for a plot
Parameters
----------
df : pd.DataFrame
data to be used for style properties
"""
if color is None and cmap is not None:
raise ValueError('`cmap` must be provided with the `color` argument')
# determine color, marker, and linestyle for each line
n = len(df[color].unique()) if color in df.columns else \
len(df[list(set(df.columns) & set(IAMC_IDX))].drop_duplicates())
defaults = default_props(reset=True, num_colors=n, colormap=cmap)
props = {}
rc = run_control()
kinds = [('color', color), ('marker', marker), ('linestyle', linestyle)]
for kind, var in kinds:
rc_has_kind = kind in rc
if var in df.columns:
rc_has_var = rc_has_kind and var in rc[kind]
props_for_kind = {}
for val in df[var].unique():
if rc_has_var and val in rc[kind][var]:
props_for_kind[val] = rc[kind][var][val]
# cycle any way to keep defaults the same
next(defaults[kind])
else:
props_for_kind[val] = next(defaults[kind])
props[kind] = props_for_kind
# update for special properties only if they exist in props
if 'color' in props:
d = props['color']
values = list(d.values())
# find if any colors in our properties corresponds with special colors
# we know about
overlap_idx = np.in1d(values, list(PYAM_COLORS.keys()))
if overlap_idx.any(): # some exist in our special set
keys = np.array(list(d.keys()))[overlap_idx]
values = np.array(values)[overlap_idx]
# translate each from pyam name, like AR6-SSP2-45 to proper color
# designation
for k, v in zip(keys, values):
d[k] = PYAM_COLORS[v]
# replace props with updated dict without special colors
props['color'] = d
return props | python | def assign_style_props(df, color=None, marker=None, linestyle=None,
cmap=None):
"""Assign the style properties for a plot
Parameters
----------
df : pd.DataFrame
data to be used for style properties
"""
if color is None and cmap is not None:
raise ValueError('`cmap` must be provided with the `color` argument')
# determine color, marker, and linestyle for each line
n = len(df[color].unique()) if color in df.columns else \
len(df[list(set(df.columns) & set(IAMC_IDX))].drop_duplicates())
defaults = default_props(reset=True, num_colors=n, colormap=cmap)
props = {}
rc = run_control()
kinds = [('color', color), ('marker', marker), ('linestyle', linestyle)]
for kind, var in kinds:
rc_has_kind = kind in rc
if var in df.columns:
rc_has_var = rc_has_kind and var in rc[kind]
props_for_kind = {}
for val in df[var].unique():
if rc_has_var and val in rc[kind][var]:
props_for_kind[val] = rc[kind][var][val]
# cycle any way to keep defaults the same
next(defaults[kind])
else:
props_for_kind[val] = next(defaults[kind])
props[kind] = props_for_kind
# update for special properties only if they exist in props
if 'color' in props:
d = props['color']
values = list(d.values())
# find if any colors in our properties corresponds with special colors
# we know about
overlap_idx = np.in1d(values, list(PYAM_COLORS.keys()))
if overlap_idx.any(): # some exist in our special set
keys = np.array(list(d.keys()))[overlap_idx]
values = np.array(values)[overlap_idx]
# translate each from pyam name, like AR6-SSP2-45 to proper color
# designation
for k, v in zip(keys, values):
d[k] = PYAM_COLORS[v]
# replace props with updated dict without special colors
props['color'] = d
return props | [
"def",
"assign_style_props",
"(",
"df",
",",
"color",
"=",
"None",
",",
"marker",
"=",
"None",
",",
"linestyle",
"=",
"None",
",",
"cmap",
"=",
"None",
")",
":",
"if",
"color",
"is",
"None",
"and",
"cmap",
"is",
"not",
"None",
":",
"raise",
"ValueError",
"(",
"'`cmap` must be provided with the `color` argument'",
")",
"# determine color, marker, and linestyle for each line",
"n",
"=",
"len",
"(",
"df",
"[",
"color",
"]",
".",
"unique",
"(",
")",
")",
"if",
"color",
"in",
"df",
".",
"columns",
"else",
"len",
"(",
"df",
"[",
"list",
"(",
"set",
"(",
"df",
".",
"columns",
")",
"&",
"set",
"(",
"IAMC_IDX",
")",
")",
"]",
".",
"drop_duplicates",
"(",
")",
")",
"defaults",
"=",
"default_props",
"(",
"reset",
"=",
"True",
",",
"num_colors",
"=",
"n",
",",
"colormap",
"=",
"cmap",
")",
"props",
"=",
"{",
"}",
"rc",
"=",
"run_control",
"(",
")",
"kinds",
"=",
"[",
"(",
"'color'",
",",
"color",
")",
",",
"(",
"'marker'",
",",
"marker",
")",
",",
"(",
"'linestyle'",
",",
"linestyle",
")",
"]",
"for",
"kind",
",",
"var",
"in",
"kinds",
":",
"rc_has_kind",
"=",
"kind",
"in",
"rc",
"if",
"var",
"in",
"df",
".",
"columns",
":",
"rc_has_var",
"=",
"rc_has_kind",
"and",
"var",
"in",
"rc",
"[",
"kind",
"]",
"props_for_kind",
"=",
"{",
"}",
"for",
"val",
"in",
"df",
"[",
"var",
"]",
".",
"unique",
"(",
")",
":",
"if",
"rc_has_var",
"and",
"val",
"in",
"rc",
"[",
"kind",
"]",
"[",
"var",
"]",
":",
"props_for_kind",
"[",
"val",
"]",
"=",
"rc",
"[",
"kind",
"]",
"[",
"var",
"]",
"[",
"val",
"]",
"# cycle any way to keep defaults the same",
"next",
"(",
"defaults",
"[",
"kind",
"]",
")",
"else",
":",
"props_for_kind",
"[",
"val",
"]",
"=",
"next",
"(",
"defaults",
"[",
"kind",
"]",
")",
"props",
"[",
"kind",
"]",
"=",
"props_for_kind",
"# update for special properties only if they exist in props",
"if",
"'color'",
"in",
"props",
":",
"d",
"=",
"props",
"[",
"'color'",
"]",
"values",
"=",
"list",
"(",
"d",
".",
"values",
"(",
")",
")",
"# find if any colors in our properties corresponds with special colors",
"# we know about",
"overlap_idx",
"=",
"np",
".",
"in1d",
"(",
"values",
",",
"list",
"(",
"PYAM_COLORS",
".",
"keys",
"(",
")",
")",
")",
"if",
"overlap_idx",
".",
"any",
"(",
")",
":",
"# some exist in our special set",
"keys",
"=",
"np",
".",
"array",
"(",
"list",
"(",
"d",
".",
"keys",
"(",
")",
")",
")",
"[",
"overlap_idx",
"]",
"values",
"=",
"np",
".",
"array",
"(",
"values",
")",
"[",
"overlap_idx",
"]",
"# translate each from pyam name, like AR6-SSP2-45 to proper color",
"# designation",
"for",
"k",
",",
"v",
"in",
"zip",
"(",
"keys",
",",
"values",
")",
":",
"d",
"[",
"k",
"]",
"=",
"PYAM_COLORS",
"[",
"v",
"]",
"# replace props with updated dict without special colors",
"props",
"[",
"'color'",
"]",
"=",
"d",
"return",
"props"
]
| Assign the style properties for a plot
Parameters
----------
df : pd.DataFrame
data to be used for style properties | [
"Assign",
"the",
"style",
"properties",
"for",
"a",
"plot"
]
| 4077929ca6e7be63a0e3ecf882c5f1da97b287bf | https://github.com/IAMconsortium/pyam/blob/4077929ca6e7be63a0e3ecf882c5f1da97b287bf/pyam/plotting.py#L102-L155 | train |
IAMconsortium/pyam | pyam/plotting.py | reshape_line_plot | def reshape_line_plot(df, x, y):
"""Reshape data from long form to "line plot form".
Line plot form has x value as the index with one column for each line.
Each column has data points as values and all metadata as column headers.
"""
idx = list(df.columns.drop(y))
if df.duplicated(idx).any():
warnings.warn('Duplicated index found.')
df = df.drop_duplicates(idx, keep='last')
df = df.set_index(idx)[y].unstack(x).T
return df | python | def reshape_line_plot(df, x, y):
"""Reshape data from long form to "line plot form".
Line plot form has x value as the index with one column for each line.
Each column has data points as values and all metadata as column headers.
"""
idx = list(df.columns.drop(y))
if df.duplicated(idx).any():
warnings.warn('Duplicated index found.')
df = df.drop_duplicates(idx, keep='last')
df = df.set_index(idx)[y].unstack(x).T
return df | [
"def",
"reshape_line_plot",
"(",
"df",
",",
"x",
",",
"y",
")",
":",
"idx",
"=",
"list",
"(",
"df",
".",
"columns",
".",
"drop",
"(",
"y",
")",
")",
"if",
"df",
".",
"duplicated",
"(",
"idx",
")",
".",
"any",
"(",
")",
":",
"warnings",
".",
"warn",
"(",
"'Duplicated index found.'",
")",
"df",
"=",
"df",
".",
"drop_duplicates",
"(",
"idx",
",",
"keep",
"=",
"'last'",
")",
"df",
"=",
"df",
".",
"set_index",
"(",
"idx",
")",
"[",
"y",
"]",
".",
"unstack",
"(",
"x",
")",
".",
"T",
"return",
"df"
]
| Reshape data from long form to "line plot form".
Line plot form has x value as the index with one column for each line.
Each column has data points as values and all metadata as column headers. | [
"Reshape",
"data",
"from",
"long",
"form",
"to",
"line",
"plot",
"form",
"."
]
| 4077929ca6e7be63a0e3ecf882c5f1da97b287bf | https://github.com/IAMconsortium/pyam/blob/4077929ca6e7be63a0e3ecf882c5f1da97b287bf/pyam/plotting.py#L158-L169 | train |
IAMconsortium/pyam | pyam/plotting.py | reshape_bar_plot | def reshape_bar_plot(df, x, y, bars):
"""Reshape data from long form to "bar plot form".
Bar plot form has x value as the index with one column for bar grouping.
Table values come from y values.
"""
idx = [bars, x]
if df.duplicated(idx).any():
warnings.warn('Duplicated index found.')
df = df.drop_duplicates(idx, keep='last')
df = df.set_index(idx)[y].unstack(x).T
return df | python | def reshape_bar_plot(df, x, y, bars):
"""Reshape data from long form to "bar plot form".
Bar plot form has x value as the index with one column for bar grouping.
Table values come from y values.
"""
idx = [bars, x]
if df.duplicated(idx).any():
warnings.warn('Duplicated index found.')
df = df.drop_duplicates(idx, keep='last')
df = df.set_index(idx)[y].unstack(x).T
return df | [
"def",
"reshape_bar_plot",
"(",
"df",
",",
"x",
",",
"y",
",",
"bars",
")",
":",
"idx",
"=",
"[",
"bars",
",",
"x",
"]",
"if",
"df",
".",
"duplicated",
"(",
"idx",
")",
".",
"any",
"(",
")",
":",
"warnings",
".",
"warn",
"(",
"'Duplicated index found.'",
")",
"df",
"=",
"df",
".",
"drop_duplicates",
"(",
"idx",
",",
"keep",
"=",
"'last'",
")",
"df",
"=",
"df",
".",
"set_index",
"(",
"idx",
")",
"[",
"y",
"]",
".",
"unstack",
"(",
"x",
")",
".",
"T",
"return",
"df"
]
| Reshape data from long form to "bar plot form".
Bar plot form has x value as the index with one column for bar grouping.
Table values come from y values. | [
"Reshape",
"data",
"from",
"long",
"form",
"to",
"bar",
"plot",
"form",
"."
]
| 4077929ca6e7be63a0e3ecf882c5f1da97b287bf | https://github.com/IAMconsortium/pyam/blob/4077929ca6e7be63a0e3ecf882c5f1da97b287bf/pyam/plotting.py#L172-L183 | train |
IAMconsortium/pyam | pyam/plotting.py | read_shapefile | def read_shapefile(fname, region_col=None, **kwargs):
"""Read a shapefile for use in regional plots. Shapefiles must have a
column denoted as "region".
Parameters
----------
fname : string
path to shapefile to be read by geopandas
region_col : string, default None
if provided, rename a column in the shapefile to "region"
"""
gdf = gpd.read_file(fname, **kwargs)
if region_col is not None:
gdf = gdf.rename(columns={region_col: 'region'})
if 'region' not in gdf.columns:
raise IOError('Must provide a region column')
gdf['region'] = gdf['region'].str.upper()
return gdf | python | def read_shapefile(fname, region_col=None, **kwargs):
"""Read a shapefile for use in regional plots. Shapefiles must have a
column denoted as "region".
Parameters
----------
fname : string
path to shapefile to be read by geopandas
region_col : string, default None
if provided, rename a column in the shapefile to "region"
"""
gdf = gpd.read_file(fname, **kwargs)
if region_col is not None:
gdf = gdf.rename(columns={region_col: 'region'})
if 'region' not in gdf.columns:
raise IOError('Must provide a region column')
gdf['region'] = gdf['region'].str.upper()
return gdf | [
"def",
"read_shapefile",
"(",
"fname",
",",
"region_col",
"=",
"None",
",",
"*",
"*",
"kwargs",
")",
":",
"gdf",
"=",
"gpd",
".",
"read_file",
"(",
"fname",
",",
"*",
"*",
"kwargs",
")",
"if",
"region_col",
"is",
"not",
"None",
":",
"gdf",
"=",
"gdf",
".",
"rename",
"(",
"columns",
"=",
"{",
"region_col",
":",
"'region'",
"}",
")",
"if",
"'region'",
"not",
"in",
"gdf",
".",
"columns",
":",
"raise",
"IOError",
"(",
"'Must provide a region column'",
")",
"gdf",
"[",
"'region'",
"]",
"=",
"gdf",
"[",
"'region'",
"]",
".",
"str",
".",
"upper",
"(",
")",
"return",
"gdf"
]
| Read a shapefile for use in regional plots. Shapefiles must have a
column denoted as "region".
Parameters
----------
fname : string
path to shapefile to be read by geopandas
region_col : string, default None
if provided, rename a column in the shapefile to "region" | [
"Read",
"a",
"shapefile",
"for",
"use",
"in",
"regional",
"plots",
".",
"Shapefiles",
"must",
"have",
"a",
"column",
"denoted",
"as",
"region",
"."
]
| 4077929ca6e7be63a0e3ecf882c5f1da97b287bf | https://github.com/IAMconsortium/pyam/blob/4077929ca6e7be63a0e3ecf882c5f1da97b287bf/pyam/plotting.py#L188-L205 | train |
IAMconsortium/pyam | pyam/plotting.py | add_net_values_to_bar_plot | def add_net_values_to_bar_plot(axs, color='k'):
"""Add net values next to an existing vertical stacked bar chart
Parameters
----------
axs : matplotlib.Axes or list thereof
color : str, optional, default: black
the color of the bars to add
"""
axs = axs if isinstance(axs, Iterable) else [axs]
for ax in axs:
box_args = _get_boxes(ax)
for x, args in box_args.items():
rect = mpatches.Rectangle(*args, color=color)
ax.add_patch(rect) | python | def add_net_values_to_bar_plot(axs, color='k'):
"""Add net values next to an existing vertical stacked bar chart
Parameters
----------
axs : matplotlib.Axes or list thereof
color : str, optional, default: black
the color of the bars to add
"""
axs = axs if isinstance(axs, Iterable) else [axs]
for ax in axs:
box_args = _get_boxes(ax)
for x, args in box_args.items():
rect = mpatches.Rectangle(*args, color=color)
ax.add_patch(rect) | [
"def",
"add_net_values_to_bar_plot",
"(",
"axs",
",",
"color",
"=",
"'k'",
")",
":",
"axs",
"=",
"axs",
"if",
"isinstance",
"(",
"axs",
",",
"Iterable",
")",
"else",
"[",
"axs",
"]",
"for",
"ax",
"in",
"axs",
":",
"box_args",
"=",
"_get_boxes",
"(",
"ax",
")",
"for",
"x",
",",
"args",
"in",
"box_args",
".",
"items",
"(",
")",
":",
"rect",
"=",
"mpatches",
".",
"Rectangle",
"(",
"*",
"args",
",",
"color",
"=",
"color",
")",
"ax",
".",
"add_patch",
"(",
"rect",
")"
]
| Add net values next to an existing vertical stacked bar chart
Parameters
----------
axs : matplotlib.Axes or list thereof
color : str, optional, default: black
the color of the bars to add | [
"Add",
"net",
"values",
"next",
"to",
"an",
"existing",
"vertical",
"stacked",
"bar",
"chart"
]
| 4077929ca6e7be63a0e3ecf882c5f1da97b287bf | https://github.com/IAMconsortium/pyam/blob/4077929ca6e7be63a0e3ecf882c5f1da97b287bf/pyam/plotting.py#L650-L664 | train |
IAMconsortium/pyam | pyam/plotting.py | scatter | def scatter(df, x, y, ax=None, legend=None, title=None,
color=None, marker='o', linestyle=None, cmap=None,
groupby=['model', 'scenario'], with_lines=False, **kwargs):
"""Plot data as a scatter chart.
Parameters
----------
df : pd.DataFrame
Data to plot as a long-form data frame
x : str
column to be plotted on the x-axis
y : str
column to be plotted on the y-axis
ax : matplotlib.Axes, optional
legend : bool, optional
Include a legend (`None` displays legend only if less than 13 entries)
default: None
title : bool or string, optional
Display a custom title.
color : string, optional
A valid matplotlib color or column name. If a column name, common
values will be provided the same color.
default: None
marker : string
A valid matplotlib marker or column name. If a column name, common
values will be provided the same marker.
default: 'o'
linestyle : string, optional
A valid matplotlib linestyle or column name. If a column name, common
values will be provided the same linestyle.
default: None
cmap : string, optional
A colormap to use.
default: None
groupby : list-like, optional
Data grouping for plotting.
default: ['model', 'scenario']
with_lines : bool, optional
Make the scatter plot with lines connecting common data.
default: False
kwargs : Additional arguments to pass to the pd.DataFrame.plot() function
"""
if ax is None:
fig, ax = plt.subplots()
# assign styling properties
props = assign_style_props(df, color=color, marker=marker,
linestyle=linestyle, cmap=cmap)
# group data
groups = df.groupby(groupby)
# loop over grouped dataframe, plot data
legend_data = []
for name, group in groups:
pargs = {}
labels = []
for key, kind, var in [('c', 'color', color),
('marker', 'marker', marker),
('linestyle', 'linestyle', linestyle)]:
if kind in props:
label = group[var].values[0]
pargs[key] = props[kind][group[var].values[0]]
labels.append(repr(label).lstrip("u'").strip("'"))
else:
pargs[key] = var
if len(labels) > 0:
legend_data.append(' '.join(labels))
else:
legend_data.append(' '.join(name))
kwargs.update(pargs)
if with_lines:
ax.plot(group[x], group[y], **kwargs)
else:
kwargs.pop('linestyle') # scatter() can't take a linestyle
ax.scatter(group[x], group[y], **kwargs)
# build legend handles and labels
handles, labels = ax.get_legend_handles_labels()
if legend_data != [''] * len(legend_data):
labels = sorted(list(set(tuple(legend_data))))
idxs = [legend_data.index(d) for d in labels]
handles = [handles[i] for i in idxs]
if legend is None and len(labels) < 13 or legend is not False:
_add_legend(ax, handles, labels, legend)
# add labels and title
ax.set_xlabel(x)
ax.set_ylabel(y)
if title:
ax.set_title(title)
return ax | python | def scatter(df, x, y, ax=None, legend=None, title=None,
color=None, marker='o', linestyle=None, cmap=None,
groupby=['model', 'scenario'], with_lines=False, **kwargs):
"""Plot data as a scatter chart.
Parameters
----------
df : pd.DataFrame
Data to plot as a long-form data frame
x : str
column to be plotted on the x-axis
y : str
column to be plotted on the y-axis
ax : matplotlib.Axes, optional
legend : bool, optional
Include a legend (`None` displays legend only if less than 13 entries)
default: None
title : bool or string, optional
Display a custom title.
color : string, optional
A valid matplotlib color or column name. If a column name, common
values will be provided the same color.
default: None
marker : string
A valid matplotlib marker or column name. If a column name, common
values will be provided the same marker.
default: 'o'
linestyle : string, optional
A valid matplotlib linestyle or column name. If a column name, common
values will be provided the same linestyle.
default: None
cmap : string, optional
A colormap to use.
default: None
groupby : list-like, optional
Data grouping for plotting.
default: ['model', 'scenario']
with_lines : bool, optional
Make the scatter plot with lines connecting common data.
default: False
kwargs : Additional arguments to pass to the pd.DataFrame.plot() function
"""
if ax is None:
fig, ax = plt.subplots()
# assign styling properties
props = assign_style_props(df, color=color, marker=marker,
linestyle=linestyle, cmap=cmap)
# group data
groups = df.groupby(groupby)
# loop over grouped dataframe, plot data
legend_data = []
for name, group in groups:
pargs = {}
labels = []
for key, kind, var in [('c', 'color', color),
('marker', 'marker', marker),
('linestyle', 'linestyle', linestyle)]:
if kind in props:
label = group[var].values[0]
pargs[key] = props[kind][group[var].values[0]]
labels.append(repr(label).lstrip("u'").strip("'"))
else:
pargs[key] = var
if len(labels) > 0:
legend_data.append(' '.join(labels))
else:
legend_data.append(' '.join(name))
kwargs.update(pargs)
if with_lines:
ax.plot(group[x], group[y], **kwargs)
else:
kwargs.pop('linestyle') # scatter() can't take a linestyle
ax.scatter(group[x], group[y], **kwargs)
# build legend handles and labels
handles, labels = ax.get_legend_handles_labels()
if legend_data != [''] * len(legend_data):
labels = sorted(list(set(tuple(legend_data))))
idxs = [legend_data.index(d) for d in labels]
handles = [handles[i] for i in idxs]
if legend is None and len(labels) < 13 or legend is not False:
_add_legend(ax, handles, labels, legend)
# add labels and title
ax.set_xlabel(x)
ax.set_ylabel(y)
if title:
ax.set_title(title)
return ax | [
"def",
"scatter",
"(",
"df",
",",
"x",
",",
"y",
",",
"ax",
"=",
"None",
",",
"legend",
"=",
"None",
",",
"title",
"=",
"None",
",",
"color",
"=",
"None",
",",
"marker",
"=",
"'o'",
",",
"linestyle",
"=",
"None",
",",
"cmap",
"=",
"None",
",",
"groupby",
"=",
"[",
"'model'",
",",
"'scenario'",
"]",
",",
"with_lines",
"=",
"False",
",",
"*",
"*",
"kwargs",
")",
":",
"if",
"ax",
"is",
"None",
":",
"fig",
",",
"ax",
"=",
"plt",
".",
"subplots",
"(",
")",
"# assign styling properties",
"props",
"=",
"assign_style_props",
"(",
"df",
",",
"color",
"=",
"color",
",",
"marker",
"=",
"marker",
",",
"linestyle",
"=",
"linestyle",
",",
"cmap",
"=",
"cmap",
")",
"# group data",
"groups",
"=",
"df",
".",
"groupby",
"(",
"groupby",
")",
"# loop over grouped dataframe, plot data",
"legend_data",
"=",
"[",
"]",
"for",
"name",
",",
"group",
"in",
"groups",
":",
"pargs",
"=",
"{",
"}",
"labels",
"=",
"[",
"]",
"for",
"key",
",",
"kind",
",",
"var",
"in",
"[",
"(",
"'c'",
",",
"'color'",
",",
"color",
")",
",",
"(",
"'marker'",
",",
"'marker'",
",",
"marker",
")",
",",
"(",
"'linestyle'",
",",
"'linestyle'",
",",
"linestyle",
")",
"]",
":",
"if",
"kind",
"in",
"props",
":",
"label",
"=",
"group",
"[",
"var",
"]",
".",
"values",
"[",
"0",
"]",
"pargs",
"[",
"key",
"]",
"=",
"props",
"[",
"kind",
"]",
"[",
"group",
"[",
"var",
"]",
".",
"values",
"[",
"0",
"]",
"]",
"labels",
".",
"append",
"(",
"repr",
"(",
"label",
")",
".",
"lstrip",
"(",
"\"u'\"",
")",
".",
"strip",
"(",
"\"'\"",
")",
")",
"else",
":",
"pargs",
"[",
"key",
"]",
"=",
"var",
"if",
"len",
"(",
"labels",
")",
">",
"0",
":",
"legend_data",
".",
"append",
"(",
"' '",
".",
"join",
"(",
"labels",
")",
")",
"else",
":",
"legend_data",
".",
"append",
"(",
"' '",
".",
"join",
"(",
"name",
")",
")",
"kwargs",
".",
"update",
"(",
"pargs",
")",
"if",
"with_lines",
":",
"ax",
".",
"plot",
"(",
"group",
"[",
"x",
"]",
",",
"group",
"[",
"y",
"]",
",",
"*",
"*",
"kwargs",
")",
"else",
":",
"kwargs",
".",
"pop",
"(",
"'linestyle'",
")",
"# scatter() can't take a linestyle",
"ax",
".",
"scatter",
"(",
"group",
"[",
"x",
"]",
",",
"group",
"[",
"y",
"]",
",",
"*",
"*",
"kwargs",
")",
"# build legend handles and labels",
"handles",
",",
"labels",
"=",
"ax",
".",
"get_legend_handles_labels",
"(",
")",
"if",
"legend_data",
"!=",
"[",
"''",
"]",
"*",
"len",
"(",
"legend_data",
")",
":",
"labels",
"=",
"sorted",
"(",
"list",
"(",
"set",
"(",
"tuple",
"(",
"legend_data",
")",
")",
")",
")",
"idxs",
"=",
"[",
"legend_data",
".",
"index",
"(",
"d",
")",
"for",
"d",
"in",
"labels",
"]",
"handles",
"=",
"[",
"handles",
"[",
"i",
"]",
"for",
"i",
"in",
"idxs",
"]",
"if",
"legend",
"is",
"None",
"and",
"len",
"(",
"labels",
")",
"<",
"13",
"or",
"legend",
"is",
"not",
"False",
":",
"_add_legend",
"(",
"ax",
",",
"handles",
",",
"labels",
",",
"legend",
")",
"# add labels and title",
"ax",
".",
"set_xlabel",
"(",
"x",
")",
"ax",
".",
"set_ylabel",
"(",
"y",
")",
"if",
"title",
":",
"ax",
".",
"set_title",
"(",
"title",
")",
"return",
"ax"
]
| Plot data as a scatter chart.
Parameters
----------
df : pd.DataFrame
Data to plot as a long-form data frame
x : str
column to be plotted on the x-axis
y : str
column to be plotted on the y-axis
ax : matplotlib.Axes, optional
legend : bool, optional
Include a legend (`None` displays legend only if less than 13 entries)
default: None
title : bool or string, optional
Display a custom title.
color : string, optional
A valid matplotlib color or column name. If a column name, common
values will be provided the same color.
default: None
marker : string
A valid matplotlib marker or column name. If a column name, common
values will be provided the same marker.
default: 'o'
linestyle : string, optional
A valid matplotlib linestyle or column name. If a column name, common
values will be provided the same linestyle.
default: None
cmap : string, optional
A colormap to use.
default: None
groupby : list-like, optional
Data grouping for plotting.
default: ['model', 'scenario']
with_lines : bool, optional
Make the scatter plot with lines connecting common data.
default: False
kwargs : Additional arguments to pass to the pd.DataFrame.plot() function | [
"Plot",
"data",
"as",
"a",
"scatter",
"chart",
"."
]
| 4077929ca6e7be63a0e3ecf882c5f1da97b287bf | https://github.com/IAMconsortium/pyam/blob/4077929ca6e7be63a0e3ecf882c5f1da97b287bf/pyam/plotting.py#L667-L760 | train |
IAMconsortium/pyam | pyam/logger.py | logger | def logger():
"""Access global logger"""
global _LOGGER
if _LOGGER is None:
logging.basicConfig()
_LOGGER = logging.getLogger()
_LOGGER.setLevel('INFO')
return _LOGGER | python | def logger():
"""Access global logger"""
global _LOGGER
if _LOGGER is None:
logging.basicConfig()
_LOGGER = logging.getLogger()
_LOGGER.setLevel('INFO')
return _LOGGER | [
"def",
"logger",
"(",
")",
":",
"global",
"_LOGGER",
"if",
"_LOGGER",
"is",
"None",
":",
"logging",
".",
"basicConfig",
"(",
")",
"_LOGGER",
"=",
"logging",
".",
"getLogger",
"(",
")",
"_LOGGER",
".",
"setLevel",
"(",
"'INFO'",
")",
"return",
"_LOGGER"
]
| Access global logger | [
"Access",
"global",
"logger"
]
| 4077929ca6e7be63a0e3ecf882c5f1da97b287bf | https://github.com/IAMconsortium/pyam/blob/4077929ca6e7be63a0e3ecf882c5f1da97b287bf/pyam/logger.py#L7-L14 | train |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.