repo
stringlengths 7
55
| path
stringlengths 4
127
| func_name
stringlengths 1
88
| original_string
stringlengths 75
19.8k
| language
stringclasses 1
value | code
stringlengths 75
19.8k
| code_tokens
list | docstring
stringlengths 3
17.3k
| docstring_tokens
list | sha
stringlengths 40
40
| url
stringlengths 87
242
| partition
stringclasses 1
value |
---|---|---|---|---|---|---|---|---|---|---|---|
sorgerlab/indra | indra/assemblers/pysb/export.py | _prepare_kappa | def _prepare_kappa(model):
"""Return a Kappa STD with the model loaded."""
import kappy
kappa = kappy.KappaStd()
model_str = export(model, 'kappa')
kappa.add_model_string(model_str)
kappa.project_parse()
return kappa | python | def _prepare_kappa(model):
"""Return a Kappa STD with the model loaded."""
import kappy
kappa = kappy.KappaStd()
model_str = export(model, 'kappa')
kappa.add_model_string(model_str)
kappa.project_parse()
return kappa | [
"def",
"_prepare_kappa",
"(",
"model",
")",
":",
"import",
"kappy",
"kappa",
"=",
"kappy",
".",
"KappaStd",
"(",
")",
"model_str",
"=",
"export",
"(",
"model",
",",
"'kappa'",
")",
"kappa",
".",
"add_model_string",
"(",
"model_str",
")",
"kappa",
".",
"project_parse",
"(",
")",
"return",
"kappa"
]
| Return a Kappa STD with the model loaded. | [
"Return",
"a",
"Kappa",
"STD",
"with",
"the",
"model",
"loaded",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/assemblers/pysb/export.py#L141-L148 | train |
sorgerlab/indra | indra/databases/cbio_client.py | send_request | def send_request(**kwargs):
"""Return a data frame from a web service request to cBio portal.
Sends a web service requrest to the cBio portal with arguments given in
the dictionary data and returns a Pandas data frame on success.
More information about the service here:
http://www.cbioportal.org/web_api.jsp
Parameters
----------
kwargs : dict
A dict of parameters for the query. Entries map directly to web service
calls with the exception of the optional 'skiprows' entry, whose value
is used as the number of rows to skip when reading the result data
frame.
Returns
-------
df : pandas.DataFrame
Response from cBioPortal as a Pandas DataFrame.
"""
skiprows = kwargs.pop('skiprows', None)
res = requests.get(cbio_url, params=kwargs)
if res.status_code == 200:
# Adaptively skip rows based on number of comment lines
if skiprows == -1:
lines = res.text.split('\n')
skiprows = 0
for line in lines:
if line.startswith('#'):
skiprows += 1
else:
break
csv_StringIO = StringIO(res.text)
df = pandas.read_csv(csv_StringIO, sep='\t', skiprows=skiprows)
return df
else:
logger.error('Request returned with code %d' % res.status_code) | python | def send_request(**kwargs):
"""Return a data frame from a web service request to cBio portal.
Sends a web service requrest to the cBio portal with arguments given in
the dictionary data and returns a Pandas data frame on success.
More information about the service here:
http://www.cbioportal.org/web_api.jsp
Parameters
----------
kwargs : dict
A dict of parameters for the query. Entries map directly to web service
calls with the exception of the optional 'skiprows' entry, whose value
is used as the number of rows to skip when reading the result data
frame.
Returns
-------
df : pandas.DataFrame
Response from cBioPortal as a Pandas DataFrame.
"""
skiprows = kwargs.pop('skiprows', None)
res = requests.get(cbio_url, params=kwargs)
if res.status_code == 200:
# Adaptively skip rows based on number of comment lines
if skiprows == -1:
lines = res.text.split('\n')
skiprows = 0
for line in lines:
if line.startswith('#'):
skiprows += 1
else:
break
csv_StringIO = StringIO(res.text)
df = pandas.read_csv(csv_StringIO, sep='\t', skiprows=skiprows)
return df
else:
logger.error('Request returned with code %d' % res.status_code) | [
"def",
"send_request",
"(",
"*",
"*",
"kwargs",
")",
":",
"skiprows",
"=",
"kwargs",
".",
"pop",
"(",
"'skiprows'",
",",
"None",
")",
"res",
"=",
"requests",
".",
"get",
"(",
"cbio_url",
",",
"params",
"=",
"kwargs",
")",
"if",
"res",
".",
"status_code",
"==",
"200",
":",
"# Adaptively skip rows based on number of comment lines",
"if",
"skiprows",
"==",
"-",
"1",
":",
"lines",
"=",
"res",
".",
"text",
".",
"split",
"(",
"'\\n'",
")",
"skiprows",
"=",
"0",
"for",
"line",
"in",
"lines",
":",
"if",
"line",
".",
"startswith",
"(",
"'#'",
")",
":",
"skiprows",
"+=",
"1",
"else",
":",
"break",
"csv_StringIO",
"=",
"StringIO",
"(",
"res",
".",
"text",
")",
"df",
"=",
"pandas",
".",
"read_csv",
"(",
"csv_StringIO",
",",
"sep",
"=",
"'\\t'",
",",
"skiprows",
"=",
"skiprows",
")",
"return",
"df",
"else",
":",
"logger",
".",
"error",
"(",
"'Request returned with code %d'",
"%",
"res",
".",
"status_code",
")"
]
| Return a data frame from a web service request to cBio portal.
Sends a web service requrest to the cBio portal with arguments given in
the dictionary data and returns a Pandas data frame on success.
More information about the service here:
http://www.cbioportal.org/web_api.jsp
Parameters
----------
kwargs : dict
A dict of parameters for the query. Entries map directly to web service
calls with the exception of the optional 'skiprows' entry, whose value
is used as the number of rows to skip when reading the result data
frame.
Returns
-------
df : pandas.DataFrame
Response from cBioPortal as a Pandas DataFrame. | [
"Return",
"a",
"data",
"frame",
"from",
"a",
"web",
"service",
"request",
"to",
"cBio",
"portal",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/databases/cbio_client.py#L25-L63 | train |
sorgerlab/indra | indra/databases/cbio_client.py | get_mutations | def get_mutations(study_id, gene_list, mutation_type=None,
case_id=None):
"""Return mutations as a list of genes and list of amino acid changes.
Parameters
----------
study_id : str
The ID of the cBio study.
Example: 'cellline_ccle_broad' or 'paad_icgc'
gene_list : list[str]
A list of genes with their HGNC symbols.
Example: ['BRAF', 'KRAS']
mutation_type : Optional[str]
The type of mutation to filter to.
mutation_type can be one of: missense, nonsense, frame_shift_ins,
frame_shift_del, splice_site
case_id : Optional[str]
The case ID within the study to filter to.
Returns
-------
mutations : tuple[list]
A tuple of two lists, the first one containing a list of genes, and
the second one a list of amino acid changes in those genes.
"""
genetic_profile = get_genetic_profiles(study_id, 'mutation')[0]
gene_list_str = ','.join(gene_list)
data = {'cmd': 'getMutationData',
'case_set_id': study_id,
'genetic_profile_id': genetic_profile,
'gene_list': gene_list_str,
'skiprows': -1}
df = send_request(**data)
if case_id:
df = df[df['case_id'] == case_id]
res = _filter_data_frame(df, ['gene_symbol', 'amino_acid_change'],
'mutation_type', mutation_type)
mutations = {'gene_symbol': list(res['gene_symbol'].values()),
'amino_acid_change': list(res['amino_acid_change'].values())}
return mutations | python | def get_mutations(study_id, gene_list, mutation_type=None,
case_id=None):
"""Return mutations as a list of genes and list of amino acid changes.
Parameters
----------
study_id : str
The ID of the cBio study.
Example: 'cellline_ccle_broad' or 'paad_icgc'
gene_list : list[str]
A list of genes with their HGNC symbols.
Example: ['BRAF', 'KRAS']
mutation_type : Optional[str]
The type of mutation to filter to.
mutation_type can be one of: missense, nonsense, frame_shift_ins,
frame_shift_del, splice_site
case_id : Optional[str]
The case ID within the study to filter to.
Returns
-------
mutations : tuple[list]
A tuple of two lists, the first one containing a list of genes, and
the second one a list of amino acid changes in those genes.
"""
genetic_profile = get_genetic_profiles(study_id, 'mutation')[0]
gene_list_str = ','.join(gene_list)
data = {'cmd': 'getMutationData',
'case_set_id': study_id,
'genetic_profile_id': genetic_profile,
'gene_list': gene_list_str,
'skiprows': -1}
df = send_request(**data)
if case_id:
df = df[df['case_id'] == case_id]
res = _filter_data_frame(df, ['gene_symbol', 'amino_acid_change'],
'mutation_type', mutation_type)
mutations = {'gene_symbol': list(res['gene_symbol'].values()),
'amino_acid_change': list(res['amino_acid_change'].values())}
return mutations | [
"def",
"get_mutations",
"(",
"study_id",
",",
"gene_list",
",",
"mutation_type",
"=",
"None",
",",
"case_id",
"=",
"None",
")",
":",
"genetic_profile",
"=",
"get_genetic_profiles",
"(",
"study_id",
",",
"'mutation'",
")",
"[",
"0",
"]",
"gene_list_str",
"=",
"','",
".",
"join",
"(",
"gene_list",
")",
"data",
"=",
"{",
"'cmd'",
":",
"'getMutationData'",
",",
"'case_set_id'",
":",
"study_id",
",",
"'genetic_profile_id'",
":",
"genetic_profile",
",",
"'gene_list'",
":",
"gene_list_str",
",",
"'skiprows'",
":",
"-",
"1",
"}",
"df",
"=",
"send_request",
"(",
"*",
"*",
"data",
")",
"if",
"case_id",
":",
"df",
"=",
"df",
"[",
"df",
"[",
"'case_id'",
"]",
"==",
"case_id",
"]",
"res",
"=",
"_filter_data_frame",
"(",
"df",
",",
"[",
"'gene_symbol'",
",",
"'amino_acid_change'",
"]",
",",
"'mutation_type'",
",",
"mutation_type",
")",
"mutations",
"=",
"{",
"'gene_symbol'",
":",
"list",
"(",
"res",
"[",
"'gene_symbol'",
"]",
".",
"values",
"(",
")",
")",
",",
"'amino_acid_change'",
":",
"list",
"(",
"res",
"[",
"'amino_acid_change'",
"]",
".",
"values",
"(",
")",
")",
"}",
"return",
"mutations"
]
| Return mutations as a list of genes and list of amino acid changes.
Parameters
----------
study_id : str
The ID of the cBio study.
Example: 'cellline_ccle_broad' or 'paad_icgc'
gene_list : list[str]
A list of genes with their HGNC symbols.
Example: ['BRAF', 'KRAS']
mutation_type : Optional[str]
The type of mutation to filter to.
mutation_type can be one of: missense, nonsense, frame_shift_ins,
frame_shift_del, splice_site
case_id : Optional[str]
The case ID within the study to filter to.
Returns
-------
mutations : tuple[list]
A tuple of two lists, the first one containing a list of genes, and
the second one a list of amino acid changes in those genes. | [
"Return",
"mutations",
"as",
"a",
"list",
"of",
"genes",
"and",
"list",
"of",
"amino",
"acid",
"changes",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/databases/cbio_client.py#L66-L106 | train |
sorgerlab/indra | indra/databases/cbio_client.py | get_case_lists | def get_case_lists(study_id):
"""Return a list of the case set ids for a particular study.
TAKE NOTE the "case_list_id" are the same thing as "case_set_id"
Within the data, this string is referred to as a "case_list_id".
Within API calls it is referred to as a 'case_set_id'.
The documentation does not make this explicitly clear.
Parameters
----------
study_id : str
The ID of the cBio study.
Example: 'cellline_ccle_broad' or 'paad_icgc'
Returns
-------
case_set_ids : dict[dict[int]]
A dict keyed to cases containing a dict keyed to genes
containing int
"""
data = {'cmd': 'getCaseLists',
'cancer_study_id': study_id}
df = send_request(**data)
case_set_ids = df['case_list_id'].tolist()
return case_set_ids | python | def get_case_lists(study_id):
"""Return a list of the case set ids for a particular study.
TAKE NOTE the "case_list_id" are the same thing as "case_set_id"
Within the data, this string is referred to as a "case_list_id".
Within API calls it is referred to as a 'case_set_id'.
The documentation does not make this explicitly clear.
Parameters
----------
study_id : str
The ID of the cBio study.
Example: 'cellline_ccle_broad' or 'paad_icgc'
Returns
-------
case_set_ids : dict[dict[int]]
A dict keyed to cases containing a dict keyed to genes
containing int
"""
data = {'cmd': 'getCaseLists',
'cancer_study_id': study_id}
df = send_request(**data)
case_set_ids = df['case_list_id'].tolist()
return case_set_ids | [
"def",
"get_case_lists",
"(",
"study_id",
")",
":",
"data",
"=",
"{",
"'cmd'",
":",
"'getCaseLists'",
",",
"'cancer_study_id'",
":",
"study_id",
"}",
"df",
"=",
"send_request",
"(",
"*",
"*",
"data",
")",
"case_set_ids",
"=",
"df",
"[",
"'case_list_id'",
"]",
".",
"tolist",
"(",
")",
"return",
"case_set_ids"
]
| Return a list of the case set ids for a particular study.
TAKE NOTE the "case_list_id" are the same thing as "case_set_id"
Within the data, this string is referred to as a "case_list_id".
Within API calls it is referred to as a 'case_set_id'.
The documentation does not make this explicitly clear.
Parameters
----------
study_id : str
The ID of the cBio study.
Example: 'cellline_ccle_broad' or 'paad_icgc'
Returns
-------
case_set_ids : dict[dict[int]]
A dict keyed to cases containing a dict keyed to genes
containing int | [
"Return",
"a",
"list",
"of",
"the",
"case",
"set",
"ids",
"for",
"a",
"particular",
"study",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/databases/cbio_client.py#L109-L133 | train |
sorgerlab/indra | indra/databases/cbio_client.py | get_profile_data | def get_profile_data(study_id, gene_list,
profile_filter, case_set_filter=None):
"""Return dict of cases and genes and their respective values.
Parameters
----------
study_id : str
The ID of the cBio study.
Example: 'cellline_ccle_broad' or 'paad_icgc'
gene_list : list[str]
A list of genes with their HGNC symbols.
Example: ['BRAF', 'KRAS']
profile_filter : str
A string used to filter the profiles to return. Will be one of:
- MUTATION
- MUTATION_EXTENDED
- COPY_NUMBER_ALTERATION
- MRNA_EXPRESSION
- METHYLATION
case_set_filter : Optional[str]
A string that specifices which case_set_id to use, based on a complete
or partial match. If not provided, will look for study_id + '_all'
Returns
-------
profile_data : dict[dict[int]]
A dict keyed to cases containing a dict keyed to genes
containing int
"""
genetic_profiles = get_genetic_profiles(study_id, profile_filter)
if genetic_profiles:
genetic_profile = genetic_profiles[0]
else:
return {}
gene_list_str = ','.join(gene_list)
case_set_ids = get_case_lists(study_id)
if case_set_filter:
case_set_id = [x for x in case_set_ids if case_set_filter in x][0]
else:
case_set_id = study_id + '_all'
# based on looking at the cBioPortal, this is a common case_set_id
data = {'cmd': 'getProfileData',
'case_set_id': case_set_id,
'genetic_profile_id': genetic_profile,
'gene_list': gene_list_str,
'skiprows': -1}
df = send_request(**data)
case_list_df = [x for x in df.columns.tolist()
if x not in ['GENE_ID', 'COMMON']]
profile_data = {case: {g: None for g in gene_list}
for case in case_list_df}
for case in case_list_df:
profile_values = df[case].tolist()
df_gene_list = df['COMMON'].tolist()
for g, cv in zip(df_gene_list, profile_values):
if not pandas.isnull(cv):
profile_data[case][g] = cv
return profile_data | python | def get_profile_data(study_id, gene_list,
profile_filter, case_set_filter=None):
"""Return dict of cases and genes and their respective values.
Parameters
----------
study_id : str
The ID of the cBio study.
Example: 'cellline_ccle_broad' or 'paad_icgc'
gene_list : list[str]
A list of genes with their HGNC symbols.
Example: ['BRAF', 'KRAS']
profile_filter : str
A string used to filter the profiles to return. Will be one of:
- MUTATION
- MUTATION_EXTENDED
- COPY_NUMBER_ALTERATION
- MRNA_EXPRESSION
- METHYLATION
case_set_filter : Optional[str]
A string that specifices which case_set_id to use, based on a complete
or partial match. If not provided, will look for study_id + '_all'
Returns
-------
profile_data : dict[dict[int]]
A dict keyed to cases containing a dict keyed to genes
containing int
"""
genetic_profiles = get_genetic_profiles(study_id, profile_filter)
if genetic_profiles:
genetic_profile = genetic_profiles[0]
else:
return {}
gene_list_str = ','.join(gene_list)
case_set_ids = get_case_lists(study_id)
if case_set_filter:
case_set_id = [x for x in case_set_ids if case_set_filter in x][0]
else:
case_set_id = study_id + '_all'
# based on looking at the cBioPortal, this is a common case_set_id
data = {'cmd': 'getProfileData',
'case_set_id': case_set_id,
'genetic_profile_id': genetic_profile,
'gene_list': gene_list_str,
'skiprows': -1}
df = send_request(**data)
case_list_df = [x for x in df.columns.tolist()
if x not in ['GENE_ID', 'COMMON']]
profile_data = {case: {g: None for g in gene_list}
for case in case_list_df}
for case in case_list_df:
profile_values = df[case].tolist()
df_gene_list = df['COMMON'].tolist()
for g, cv in zip(df_gene_list, profile_values):
if not pandas.isnull(cv):
profile_data[case][g] = cv
return profile_data | [
"def",
"get_profile_data",
"(",
"study_id",
",",
"gene_list",
",",
"profile_filter",
",",
"case_set_filter",
"=",
"None",
")",
":",
"genetic_profiles",
"=",
"get_genetic_profiles",
"(",
"study_id",
",",
"profile_filter",
")",
"if",
"genetic_profiles",
":",
"genetic_profile",
"=",
"genetic_profiles",
"[",
"0",
"]",
"else",
":",
"return",
"{",
"}",
"gene_list_str",
"=",
"','",
".",
"join",
"(",
"gene_list",
")",
"case_set_ids",
"=",
"get_case_lists",
"(",
"study_id",
")",
"if",
"case_set_filter",
":",
"case_set_id",
"=",
"[",
"x",
"for",
"x",
"in",
"case_set_ids",
"if",
"case_set_filter",
"in",
"x",
"]",
"[",
"0",
"]",
"else",
":",
"case_set_id",
"=",
"study_id",
"+",
"'_all'",
"# based on looking at the cBioPortal, this is a common case_set_id",
"data",
"=",
"{",
"'cmd'",
":",
"'getProfileData'",
",",
"'case_set_id'",
":",
"case_set_id",
",",
"'genetic_profile_id'",
":",
"genetic_profile",
",",
"'gene_list'",
":",
"gene_list_str",
",",
"'skiprows'",
":",
"-",
"1",
"}",
"df",
"=",
"send_request",
"(",
"*",
"*",
"data",
")",
"case_list_df",
"=",
"[",
"x",
"for",
"x",
"in",
"df",
".",
"columns",
".",
"tolist",
"(",
")",
"if",
"x",
"not",
"in",
"[",
"'GENE_ID'",
",",
"'COMMON'",
"]",
"]",
"profile_data",
"=",
"{",
"case",
":",
"{",
"g",
":",
"None",
"for",
"g",
"in",
"gene_list",
"}",
"for",
"case",
"in",
"case_list_df",
"}",
"for",
"case",
"in",
"case_list_df",
":",
"profile_values",
"=",
"df",
"[",
"case",
"]",
".",
"tolist",
"(",
")",
"df_gene_list",
"=",
"df",
"[",
"'COMMON'",
"]",
".",
"tolist",
"(",
")",
"for",
"g",
",",
"cv",
"in",
"zip",
"(",
"df_gene_list",
",",
"profile_values",
")",
":",
"if",
"not",
"pandas",
".",
"isnull",
"(",
"cv",
")",
":",
"profile_data",
"[",
"case",
"]",
"[",
"g",
"]",
"=",
"cv",
"return",
"profile_data"
]
| Return dict of cases and genes and their respective values.
Parameters
----------
study_id : str
The ID of the cBio study.
Example: 'cellline_ccle_broad' or 'paad_icgc'
gene_list : list[str]
A list of genes with their HGNC symbols.
Example: ['BRAF', 'KRAS']
profile_filter : str
A string used to filter the profiles to return. Will be one of:
- MUTATION
- MUTATION_EXTENDED
- COPY_NUMBER_ALTERATION
- MRNA_EXPRESSION
- METHYLATION
case_set_filter : Optional[str]
A string that specifices which case_set_id to use, based on a complete
or partial match. If not provided, will look for study_id + '_all'
Returns
-------
profile_data : dict[dict[int]]
A dict keyed to cases containing a dict keyed to genes
containing int | [
"Return",
"dict",
"of",
"cases",
"and",
"genes",
"and",
"their",
"respective",
"values",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/databases/cbio_client.py#L136-L193 | train |
sorgerlab/indra | indra/databases/cbio_client.py | get_num_sequenced | def get_num_sequenced(study_id):
"""Return number of sequenced tumors for given study.
This is useful for calculating mutation statistics in terms of the
prevalence of certain mutations within a type of cancer.
Parameters
----------
study_id : str
The ID of the cBio study.
Example: 'paad_icgc'
Returns
-------
num_case : int
The number of sequenced tumors in the given study
"""
data = {'cmd': 'getCaseLists',
'cancer_study_id': study_id}
df = send_request(**data)
if df.empty:
return 0
row_filter = df['case_list_id'].str.contains('sequenced', case=False)
num_case = len(df[row_filter]['case_ids'].tolist()[0].split(' '))
return num_case | python | def get_num_sequenced(study_id):
"""Return number of sequenced tumors for given study.
This is useful for calculating mutation statistics in terms of the
prevalence of certain mutations within a type of cancer.
Parameters
----------
study_id : str
The ID of the cBio study.
Example: 'paad_icgc'
Returns
-------
num_case : int
The number of sequenced tumors in the given study
"""
data = {'cmd': 'getCaseLists',
'cancer_study_id': study_id}
df = send_request(**data)
if df.empty:
return 0
row_filter = df['case_list_id'].str.contains('sequenced', case=False)
num_case = len(df[row_filter]['case_ids'].tolist()[0].split(' '))
return num_case | [
"def",
"get_num_sequenced",
"(",
"study_id",
")",
":",
"data",
"=",
"{",
"'cmd'",
":",
"'getCaseLists'",
",",
"'cancer_study_id'",
":",
"study_id",
"}",
"df",
"=",
"send_request",
"(",
"*",
"*",
"data",
")",
"if",
"df",
".",
"empty",
":",
"return",
"0",
"row_filter",
"=",
"df",
"[",
"'case_list_id'",
"]",
".",
"str",
".",
"contains",
"(",
"'sequenced'",
",",
"case",
"=",
"False",
")",
"num_case",
"=",
"len",
"(",
"df",
"[",
"row_filter",
"]",
"[",
"'case_ids'",
"]",
".",
"tolist",
"(",
")",
"[",
"0",
"]",
".",
"split",
"(",
"' '",
")",
")",
"return",
"num_case"
]
| Return number of sequenced tumors for given study.
This is useful for calculating mutation statistics in terms of the
prevalence of certain mutations within a type of cancer.
Parameters
----------
study_id : str
The ID of the cBio study.
Example: 'paad_icgc'
Returns
-------
num_case : int
The number of sequenced tumors in the given study | [
"Return",
"number",
"of",
"sequenced",
"tumors",
"for",
"given",
"study",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/databases/cbio_client.py#L196-L220 | train |
sorgerlab/indra | indra/databases/cbio_client.py | get_cancer_studies | def get_cancer_studies(study_filter=None):
"""Return a list of cancer study identifiers, optionally filtered.
There are typically multiple studies for a given type of cancer and
a filter can be used to constrain the returned list.
Parameters
----------
study_filter : Optional[str]
A string used to filter the study IDs to return. Example: "paad"
Returns
-------
study_ids : list[str]
A list of study IDs.
For instance "paad" as a filter would result in a list
of study IDs with paad in their name like "paad_icgc", "paad_tcga",
etc.
"""
data = {'cmd': 'getCancerStudies'}
df = send_request(**data)
res = _filter_data_frame(df, ['cancer_study_id'],
'cancer_study_id', study_filter)
study_ids = list(res['cancer_study_id'].values())
return study_ids | python | def get_cancer_studies(study_filter=None):
"""Return a list of cancer study identifiers, optionally filtered.
There are typically multiple studies for a given type of cancer and
a filter can be used to constrain the returned list.
Parameters
----------
study_filter : Optional[str]
A string used to filter the study IDs to return. Example: "paad"
Returns
-------
study_ids : list[str]
A list of study IDs.
For instance "paad" as a filter would result in a list
of study IDs with paad in their name like "paad_icgc", "paad_tcga",
etc.
"""
data = {'cmd': 'getCancerStudies'}
df = send_request(**data)
res = _filter_data_frame(df, ['cancer_study_id'],
'cancer_study_id', study_filter)
study_ids = list(res['cancer_study_id'].values())
return study_ids | [
"def",
"get_cancer_studies",
"(",
"study_filter",
"=",
"None",
")",
":",
"data",
"=",
"{",
"'cmd'",
":",
"'getCancerStudies'",
"}",
"df",
"=",
"send_request",
"(",
"*",
"*",
"data",
")",
"res",
"=",
"_filter_data_frame",
"(",
"df",
",",
"[",
"'cancer_study_id'",
"]",
",",
"'cancer_study_id'",
",",
"study_filter",
")",
"study_ids",
"=",
"list",
"(",
"res",
"[",
"'cancer_study_id'",
"]",
".",
"values",
"(",
")",
")",
"return",
"study_ids"
]
| Return a list of cancer study identifiers, optionally filtered.
There are typically multiple studies for a given type of cancer and
a filter can be used to constrain the returned list.
Parameters
----------
study_filter : Optional[str]
A string used to filter the study IDs to return. Example: "paad"
Returns
-------
study_ids : list[str]
A list of study IDs.
For instance "paad" as a filter would result in a list
of study IDs with paad in their name like "paad_icgc", "paad_tcga",
etc. | [
"Return",
"a",
"list",
"of",
"cancer",
"study",
"identifiers",
"optionally",
"filtered",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/databases/cbio_client.py#L261-L285 | train |
sorgerlab/indra | indra/databases/cbio_client.py | get_cancer_types | def get_cancer_types(cancer_filter=None):
"""Return a list of cancer types, optionally filtered.
Parameters
----------
cancer_filter : Optional[str]
A string used to filter cancer types. Its value is the name or
part of the name of a type of cancer. Example: "melanoma",
"pancreatic", "non-small cell lung"
Returns
-------
type_ids : list[str]
A list of cancer types matching the filter.
Example: for cancer_filter="pancreatic", the result includes
"panet" (neuro-endocrine) and "paad" (adenocarcinoma)
"""
data = {'cmd': 'getTypesOfCancer'}
df = send_request(**data)
res = _filter_data_frame(df, ['type_of_cancer_id'], 'name', cancer_filter)
type_ids = list(res['type_of_cancer_id'].values())
return type_ids | python | def get_cancer_types(cancer_filter=None):
"""Return a list of cancer types, optionally filtered.
Parameters
----------
cancer_filter : Optional[str]
A string used to filter cancer types. Its value is the name or
part of the name of a type of cancer. Example: "melanoma",
"pancreatic", "non-small cell lung"
Returns
-------
type_ids : list[str]
A list of cancer types matching the filter.
Example: for cancer_filter="pancreatic", the result includes
"panet" (neuro-endocrine) and "paad" (adenocarcinoma)
"""
data = {'cmd': 'getTypesOfCancer'}
df = send_request(**data)
res = _filter_data_frame(df, ['type_of_cancer_id'], 'name', cancer_filter)
type_ids = list(res['type_of_cancer_id'].values())
return type_ids | [
"def",
"get_cancer_types",
"(",
"cancer_filter",
"=",
"None",
")",
":",
"data",
"=",
"{",
"'cmd'",
":",
"'getTypesOfCancer'",
"}",
"df",
"=",
"send_request",
"(",
"*",
"*",
"data",
")",
"res",
"=",
"_filter_data_frame",
"(",
"df",
",",
"[",
"'type_of_cancer_id'",
"]",
",",
"'name'",
",",
"cancer_filter",
")",
"type_ids",
"=",
"list",
"(",
"res",
"[",
"'type_of_cancer_id'",
"]",
".",
"values",
"(",
")",
")",
"return",
"type_ids"
]
| Return a list of cancer types, optionally filtered.
Parameters
----------
cancer_filter : Optional[str]
A string used to filter cancer types. Its value is the name or
part of the name of a type of cancer. Example: "melanoma",
"pancreatic", "non-small cell lung"
Returns
-------
type_ids : list[str]
A list of cancer types matching the filter.
Example: for cancer_filter="pancreatic", the result includes
"panet" (neuro-endocrine) and "paad" (adenocarcinoma) | [
"Return",
"a",
"list",
"of",
"cancer",
"types",
"optionally",
"filtered",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/databases/cbio_client.py#L288-L309 | train |
sorgerlab/indra | indra/databases/cbio_client.py | get_ccle_mutations | def get_ccle_mutations(gene_list, cell_lines, mutation_type=None):
"""Return a dict of mutations in given genes and cell lines from CCLE.
This is a specialized call to get_mutations tailored to CCLE cell lines.
Parameters
----------
gene_list : list[str]
A list of HGNC gene symbols to get mutations in
cell_lines : list[str]
A list of CCLE cell line names to get mutations for.
mutation_type : Optional[str]
The type of mutation to filter to.
mutation_type can be one of: missense, nonsense, frame_shift_ins,
frame_shift_del, splice_site
Returns
-------
mutations : dict
The result from cBioPortal as a dict in the format
{cell_line : {gene : [mutation1, mutation2, ...] }}
Example:
{'LOXIMVI_SKIN': {'BRAF': ['V600E', 'I208V']},
'SKMEL30_SKIN': {'BRAF': ['D287H', 'E275K']}}
"""
mutations = {cl: {g: [] for g in gene_list} for cl in cell_lines}
for cell_line in cell_lines:
mutations_cl = get_mutations(ccle_study, gene_list,
mutation_type=mutation_type,
case_id=cell_line)
for gene, aa_change in zip(mutations_cl['gene_symbol'],
mutations_cl['amino_acid_change']):
aa_change = str(aa_change)
mutations[cell_line][gene].append(aa_change)
return mutations | python | def get_ccle_mutations(gene_list, cell_lines, mutation_type=None):
"""Return a dict of mutations in given genes and cell lines from CCLE.
This is a specialized call to get_mutations tailored to CCLE cell lines.
Parameters
----------
gene_list : list[str]
A list of HGNC gene symbols to get mutations in
cell_lines : list[str]
A list of CCLE cell line names to get mutations for.
mutation_type : Optional[str]
The type of mutation to filter to.
mutation_type can be one of: missense, nonsense, frame_shift_ins,
frame_shift_del, splice_site
Returns
-------
mutations : dict
The result from cBioPortal as a dict in the format
{cell_line : {gene : [mutation1, mutation2, ...] }}
Example:
{'LOXIMVI_SKIN': {'BRAF': ['V600E', 'I208V']},
'SKMEL30_SKIN': {'BRAF': ['D287H', 'E275K']}}
"""
mutations = {cl: {g: [] for g in gene_list} for cl in cell_lines}
for cell_line in cell_lines:
mutations_cl = get_mutations(ccle_study, gene_list,
mutation_type=mutation_type,
case_id=cell_line)
for gene, aa_change in zip(mutations_cl['gene_symbol'],
mutations_cl['amino_acid_change']):
aa_change = str(aa_change)
mutations[cell_line][gene].append(aa_change)
return mutations | [
"def",
"get_ccle_mutations",
"(",
"gene_list",
",",
"cell_lines",
",",
"mutation_type",
"=",
"None",
")",
":",
"mutations",
"=",
"{",
"cl",
":",
"{",
"g",
":",
"[",
"]",
"for",
"g",
"in",
"gene_list",
"}",
"for",
"cl",
"in",
"cell_lines",
"}",
"for",
"cell_line",
"in",
"cell_lines",
":",
"mutations_cl",
"=",
"get_mutations",
"(",
"ccle_study",
",",
"gene_list",
",",
"mutation_type",
"=",
"mutation_type",
",",
"case_id",
"=",
"cell_line",
")",
"for",
"gene",
",",
"aa_change",
"in",
"zip",
"(",
"mutations_cl",
"[",
"'gene_symbol'",
"]",
",",
"mutations_cl",
"[",
"'amino_acid_change'",
"]",
")",
":",
"aa_change",
"=",
"str",
"(",
"aa_change",
")",
"mutations",
"[",
"cell_line",
"]",
"[",
"gene",
"]",
".",
"append",
"(",
"aa_change",
")",
"return",
"mutations"
]
| Return a dict of mutations in given genes and cell lines from CCLE.
This is a specialized call to get_mutations tailored to CCLE cell lines.
Parameters
----------
gene_list : list[str]
A list of HGNC gene symbols to get mutations in
cell_lines : list[str]
A list of CCLE cell line names to get mutations for.
mutation_type : Optional[str]
The type of mutation to filter to.
mutation_type can be one of: missense, nonsense, frame_shift_ins,
frame_shift_del, splice_site
Returns
-------
mutations : dict
The result from cBioPortal as a dict in the format
{cell_line : {gene : [mutation1, mutation2, ...] }}
Example:
{'LOXIMVI_SKIN': {'BRAF': ['V600E', 'I208V']},
'SKMEL30_SKIN': {'BRAF': ['D287H', 'E275K']}} | [
"Return",
"a",
"dict",
"of",
"mutations",
"in",
"given",
"genes",
"and",
"cell",
"lines",
"from",
"CCLE",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/databases/cbio_client.py#L312-L347 | train |
sorgerlab/indra | indra/databases/cbio_client.py | get_ccle_lines_for_mutation | def get_ccle_lines_for_mutation(gene, amino_acid_change):
"""Return cell lines with a given point mutation in a given gene.
Checks which cell lines in CCLE have a particular point mutation
in a given gene and return their names in a list.
Parameters
----------
gene : str
The HGNC symbol of the mutated gene in whose product the amino
acid change occurs. Example: "BRAF"
amino_acid_change : str
The amino acid change of interest. Example: "V600E"
Returns
-------
cell_lines : list
A list of CCLE cell lines in which the given mutation occurs.
"""
data = {'cmd': 'getMutationData',
'case_set_id': ccle_study,
'genetic_profile_id': ccle_study + '_mutations',
'gene_list': gene,
'skiprows': 1}
df = send_request(**data)
df = df[df['amino_acid_change'] == amino_acid_change]
cell_lines = df['case_id'].unique().tolist()
return cell_lines | python | def get_ccle_lines_for_mutation(gene, amino_acid_change):
"""Return cell lines with a given point mutation in a given gene.
Checks which cell lines in CCLE have a particular point mutation
in a given gene and return their names in a list.
Parameters
----------
gene : str
The HGNC symbol of the mutated gene in whose product the amino
acid change occurs. Example: "BRAF"
amino_acid_change : str
The amino acid change of interest. Example: "V600E"
Returns
-------
cell_lines : list
A list of CCLE cell lines in which the given mutation occurs.
"""
data = {'cmd': 'getMutationData',
'case_set_id': ccle_study,
'genetic_profile_id': ccle_study + '_mutations',
'gene_list': gene,
'skiprows': 1}
df = send_request(**data)
df = df[df['amino_acid_change'] == amino_acid_change]
cell_lines = df['case_id'].unique().tolist()
return cell_lines | [
"def",
"get_ccle_lines_for_mutation",
"(",
"gene",
",",
"amino_acid_change",
")",
":",
"data",
"=",
"{",
"'cmd'",
":",
"'getMutationData'",
",",
"'case_set_id'",
":",
"ccle_study",
",",
"'genetic_profile_id'",
":",
"ccle_study",
"+",
"'_mutations'",
",",
"'gene_list'",
":",
"gene",
",",
"'skiprows'",
":",
"1",
"}",
"df",
"=",
"send_request",
"(",
"*",
"*",
"data",
")",
"df",
"=",
"df",
"[",
"df",
"[",
"'amino_acid_change'",
"]",
"==",
"amino_acid_change",
"]",
"cell_lines",
"=",
"df",
"[",
"'case_id'",
"]",
".",
"unique",
"(",
")",
".",
"tolist",
"(",
")",
"return",
"cell_lines"
]
| Return cell lines with a given point mutation in a given gene.
Checks which cell lines in CCLE have a particular point mutation
in a given gene and return their names in a list.
Parameters
----------
gene : str
The HGNC symbol of the mutated gene in whose product the amino
acid change occurs. Example: "BRAF"
amino_acid_change : str
The amino acid change of interest. Example: "V600E"
Returns
-------
cell_lines : list
A list of CCLE cell lines in which the given mutation occurs. | [
"Return",
"cell",
"lines",
"with",
"a",
"given",
"point",
"mutation",
"in",
"a",
"given",
"gene",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/databases/cbio_client.py#L350-L377 | train |
sorgerlab/indra | indra/databases/cbio_client.py | get_ccle_cna | def get_ccle_cna(gene_list, cell_lines):
"""Return a dict of CNAs in given genes and cell lines from CCLE.
CNA values correspond to the following alterations
-2 = homozygous deletion
-1 = hemizygous deletion
0 = neutral / no change
1 = gain
2 = high level amplification
Parameters
----------
gene_list : list[str]
A list of HGNC gene symbols to get mutations in
cell_lines : list[str]
A list of CCLE cell line names to get mutations for.
Returns
-------
profile_data : dict[dict[int]]
A dict keyed to cases containing a dict keyed to genes
containing int
"""
profile_data = get_profile_data(ccle_study, gene_list,
'COPY_NUMBER_ALTERATION', 'all')
profile_data = dict((key, value) for key, value in profile_data.items()
if key in cell_lines)
return profile_data | python | def get_ccle_cna(gene_list, cell_lines):
"""Return a dict of CNAs in given genes and cell lines from CCLE.
CNA values correspond to the following alterations
-2 = homozygous deletion
-1 = hemizygous deletion
0 = neutral / no change
1 = gain
2 = high level amplification
Parameters
----------
gene_list : list[str]
A list of HGNC gene symbols to get mutations in
cell_lines : list[str]
A list of CCLE cell line names to get mutations for.
Returns
-------
profile_data : dict[dict[int]]
A dict keyed to cases containing a dict keyed to genes
containing int
"""
profile_data = get_profile_data(ccle_study, gene_list,
'COPY_NUMBER_ALTERATION', 'all')
profile_data = dict((key, value) for key, value in profile_data.items()
if key in cell_lines)
return profile_data | [
"def",
"get_ccle_cna",
"(",
"gene_list",
",",
"cell_lines",
")",
":",
"profile_data",
"=",
"get_profile_data",
"(",
"ccle_study",
",",
"gene_list",
",",
"'COPY_NUMBER_ALTERATION'",
",",
"'all'",
")",
"profile_data",
"=",
"dict",
"(",
"(",
"key",
",",
"value",
")",
"for",
"key",
",",
"value",
"in",
"profile_data",
".",
"items",
"(",
")",
"if",
"key",
"in",
"cell_lines",
")",
"return",
"profile_data"
]
| Return a dict of CNAs in given genes and cell lines from CCLE.
CNA values correspond to the following alterations
-2 = homozygous deletion
-1 = hemizygous deletion
0 = neutral / no change
1 = gain
2 = high level amplification
Parameters
----------
gene_list : list[str]
A list of HGNC gene symbols to get mutations in
cell_lines : list[str]
A list of CCLE cell line names to get mutations for.
Returns
-------
profile_data : dict[dict[int]]
A dict keyed to cases containing a dict keyed to genes
containing int | [
"Return",
"a",
"dict",
"of",
"CNAs",
"in",
"given",
"genes",
"and",
"cell",
"lines",
"from",
"CCLE",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/databases/cbio_client.py#L380-L412 | train |
sorgerlab/indra | indra/databases/cbio_client.py | get_ccle_mrna | def get_ccle_mrna(gene_list, cell_lines):
"""Return a dict of mRNA amounts in given genes and cell lines from CCLE.
Parameters
----------
gene_list : list[str]
A list of HGNC gene symbols to get mRNA amounts for.
cell_lines : list[str]
A list of CCLE cell line names to get mRNA amounts for.
Returns
-------
mrna_amounts : dict[dict[float]]
A dict keyed to cell lines containing a dict keyed to genes
containing float
"""
gene_list_str = ','.join(gene_list)
data = {'cmd': 'getProfileData',
'case_set_id': ccle_study + '_mrna',
'genetic_profile_id': ccle_study + '_mrna',
'gene_list': gene_list_str,
'skiprows': -1}
df = send_request(**data)
mrna_amounts = {cl: {g: [] for g in gene_list} for cl in cell_lines}
for cell_line in cell_lines:
if cell_line in df.columns:
for gene in gene_list:
value_cell = df[cell_line][df['COMMON'] == gene]
if value_cell.empty:
mrna_amounts[cell_line][gene] = None
elif pandas.isnull(value_cell.values[0]):
mrna_amounts[cell_line][gene] = None
else:
value = value_cell.values[0]
mrna_amounts[cell_line][gene] = value
else:
mrna_amounts[cell_line] = None
return mrna_amounts | python | def get_ccle_mrna(gene_list, cell_lines):
"""Return a dict of mRNA amounts in given genes and cell lines from CCLE.
Parameters
----------
gene_list : list[str]
A list of HGNC gene symbols to get mRNA amounts for.
cell_lines : list[str]
A list of CCLE cell line names to get mRNA amounts for.
Returns
-------
mrna_amounts : dict[dict[float]]
A dict keyed to cell lines containing a dict keyed to genes
containing float
"""
gene_list_str = ','.join(gene_list)
data = {'cmd': 'getProfileData',
'case_set_id': ccle_study + '_mrna',
'genetic_profile_id': ccle_study + '_mrna',
'gene_list': gene_list_str,
'skiprows': -1}
df = send_request(**data)
mrna_amounts = {cl: {g: [] for g in gene_list} for cl in cell_lines}
for cell_line in cell_lines:
if cell_line in df.columns:
for gene in gene_list:
value_cell = df[cell_line][df['COMMON'] == gene]
if value_cell.empty:
mrna_amounts[cell_line][gene] = None
elif pandas.isnull(value_cell.values[0]):
mrna_amounts[cell_line][gene] = None
else:
value = value_cell.values[0]
mrna_amounts[cell_line][gene] = value
else:
mrna_amounts[cell_line] = None
return mrna_amounts | [
"def",
"get_ccle_mrna",
"(",
"gene_list",
",",
"cell_lines",
")",
":",
"gene_list_str",
"=",
"','",
".",
"join",
"(",
"gene_list",
")",
"data",
"=",
"{",
"'cmd'",
":",
"'getProfileData'",
",",
"'case_set_id'",
":",
"ccle_study",
"+",
"'_mrna'",
",",
"'genetic_profile_id'",
":",
"ccle_study",
"+",
"'_mrna'",
",",
"'gene_list'",
":",
"gene_list_str",
",",
"'skiprows'",
":",
"-",
"1",
"}",
"df",
"=",
"send_request",
"(",
"*",
"*",
"data",
")",
"mrna_amounts",
"=",
"{",
"cl",
":",
"{",
"g",
":",
"[",
"]",
"for",
"g",
"in",
"gene_list",
"}",
"for",
"cl",
"in",
"cell_lines",
"}",
"for",
"cell_line",
"in",
"cell_lines",
":",
"if",
"cell_line",
"in",
"df",
".",
"columns",
":",
"for",
"gene",
"in",
"gene_list",
":",
"value_cell",
"=",
"df",
"[",
"cell_line",
"]",
"[",
"df",
"[",
"'COMMON'",
"]",
"==",
"gene",
"]",
"if",
"value_cell",
".",
"empty",
":",
"mrna_amounts",
"[",
"cell_line",
"]",
"[",
"gene",
"]",
"=",
"None",
"elif",
"pandas",
".",
"isnull",
"(",
"value_cell",
".",
"values",
"[",
"0",
"]",
")",
":",
"mrna_amounts",
"[",
"cell_line",
"]",
"[",
"gene",
"]",
"=",
"None",
"else",
":",
"value",
"=",
"value_cell",
".",
"values",
"[",
"0",
"]",
"mrna_amounts",
"[",
"cell_line",
"]",
"[",
"gene",
"]",
"=",
"value",
"else",
":",
"mrna_amounts",
"[",
"cell_line",
"]",
"=",
"None",
"return",
"mrna_amounts"
]
| Return a dict of mRNA amounts in given genes and cell lines from CCLE.
Parameters
----------
gene_list : list[str]
A list of HGNC gene symbols to get mRNA amounts for.
cell_lines : list[str]
A list of CCLE cell line names to get mRNA amounts for.
Returns
-------
mrna_amounts : dict[dict[float]]
A dict keyed to cell lines containing a dict keyed to genes
containing float | [
"Return",
"a",
"dict",
"of",
"mRNA",
"amounts",
"in",
"given",
"genes",
"and",
"cell",
"lines",
"from",
"CCLE",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/databases/cbio_client.py#L415-L452 | train |
sorgerlab/indra | indra/databases/cbio_client.py | _filter_data_frame | def _filter_data_frame(df, data_col, filter_col, filter_str=None):
"""Return a filtered data frame as a dictionary."""
if filter_str is not None:
relevant_cols = data_col + [filter_col]
df.dropna(inplace=True, subset=relevant_cols)
row_filter = df[filter_col].str.contains(filter_str, case=False)
data_list = df[row_filter][data_col].to_dict()
else:
data_list = df[data_col].to_dict()
return data_list | python | def _filter_data_frame(df, data_col, filter_col, filter_str=None):
"""Return a filtered data frame as a dictionary."""
if filter_str is not None:
relevant_cols = data_col + [filter_col]
df.dropna(inplace=True, subset=relevant_cols)
row_filter = df[filter_col].str.contains(filter_str, case=False)
data_list = df[row_filter][data_col].to_dict()
else:
data_list = df[data_col].to_dict()
return data_list | [
"def",
"_filter_data_frame",
"(",
"df",
",",
"data_col",
",",
"filter_col",
",",
"filter_str",
"=",
"None",
")",
":",
"if",
"filter_str",
"is",
"not",
"None",
":",
"relevant_cols",
"=",
"data_col",
"+",
"[",
"filter_col",
"]",
"df",
".",
"dropna",
"(",
"inplace",
"=",
"True",
",",
"subset",
"=",
"relevant_cols",
")",
"row_filter",
"=",
"df",
"[",
"filter_col",
"]",
".",
"str",
".",
"contains",
"(",
"filter_str",
",",
"case",
"=",
"False",
")",
"data_list",
"=",
"df",
"[",
"row_filter",
"]",
"[",
"data_col",
"]",
".",
"to_dict",
"(",
")",
"else",
":",
"data_list",
"=",
"df",
"[",
"data_col",
"]",
".",
"to_dict",
"(",
")",
"return",
"data_list"
]
| Return a filtered data frame as a dictionary. | [
"Return",
"a",
"filtered",
"data",
"frame",
"as",
"a",
"dictionary",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/databases/cbio_client.py#L455-L464 | train |
sorgerlab/indra | rest_api/api.py | allow_cors | def allow_cors(func):
"""This is a decorator which enable CORS for the specified endpoint."""
def wrapper(*args, **kwargs):
response.headers['Access-Control-Allow-Origin'] = '*'
response.headers['Access-Control-Allow-Methods'] = \
'PUT, GET, POST, DELETE, OPTIONS'
response.headers['Access-Control-Allow-Headers'] = \
'Origin, Accept, Content-Type, X-Requested-With, X-CSRF-Token'
return func(*args, **kwargs)
return wrapper | python | def allow_cors(func):
"""This is a decorator which enable CORS for the specified endpoint."""
def wrapper(*args, **kwargs):
response.headers['Access-Control-Allow-Origin'] = '*'
response.headers['Access-Control-Allow-Methods'] = \
'PUT, GET, POST, DELETE, OPTIONS'
response.headers['Access-Control-Allow-Headers'] = \
'Origin, Accept, Content-Type, X-Requested-With, X-CSRF-Token'
return func(*args, **kwargs)
return wrapper | [
"def",
"allow_cors",
"(",
"func",
")",
":",
"def",
"wrapper",
"(",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
":",
"response",
".",
"headers",
"[",
"'Access-Control-Allow-Origin'",
"]",
"=",
"'*'",
"response",
".",
"headers",
"[",
"'Access-Control-Allow-Methods'",
"]",
"=",
"'PUT, GET, POST, DELETE, OPTIONS'",
"response",
".",
"headers",
"[",
"'Access-Control-Allow-Headers'",
"]",
"=",
"'Origin, Accept, Content-Type, X-Requested-With, X-CSRF-Token'",
"return",
"func",
"(",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
"return",
"wrapper"
]
| This is a decorator which enable CORS for the specified endpoint. | [
"This",
"is",
"a",
"decorator",
"which",
"enable",
"CORS",
"for",
"the",
"specified",
"endpoint",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/rest_api/api.py#L50-L59 | train |
sorgerlab/indra | rest_api/api.py | trips_process_text | def trips_process_text():
"""Process text with TRIPS and return INDRA Statements."""
if request.method == 'OPTIONS':
return {}
response = request.body.read().decode('utf-8')
body = json.loads(response)
text = body.get('text')
tp = trips.process_text(text)
return _stmts_from_proc(tp) | python | def trips_process_text():
"""Process text with TRIPS and return INDRA Statements."""
if request.method == 'OPTIONS':
return {}
response = request.body.read().decode('utf-8')
body = json.loads(response)
text = body.get('text')
tp = trips.process_text(text)
return _stmts_from_proc(tp) | [
"def",
"trips_process_text",
"(",
")",
":",
"if",
"request",
".",
"method",
"==",
"'OPTIONS'",
":",
"return",
"{",
"}",
"response",
"=",
"request",
".",
"body",
".",
"read",
"(",
")",
".",
"decode",
"(",
"'utf-8'",
")",
"body",
"=",
"json",
".",
"loads",
"(",
"response",
")",
"text",
"=",
"body",
".",
"get",
"(",
"'text'",
")",
"tp",
"=",
"trips",
".",
"process_text",
"(",
"text",
")",
"return",
"_stmts_from_proc",
"(",
"tp",
")"
]
| Process text with TRIPS and return INDRA Statements. | [
"Process",
"text",
"with",
"TRIPS",
"and",
"return",
"INDRA",
"Statements",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/rest_api/api.py#L76-L84 | train |
sorgerlab/indra | rest_api/api.py | trips_process_xml | def trips_process_xml():
"""Process TRIPS EKB XML and return INDRA Statements."""
if request.method == 'OPTIONS':
return {}
response = request.body.read().decode('utf-8')
body = json.loads(response)
xml_str = body.get('xml_str')
tp = trips.process_xml(xml_str)
return _stmts_from_proc(tp) | python | def trips_process_xml():
"""Process TRIPS EKB XML and return INDRA Statements."""
if request.method == 'OPTIONS':
return {}
response = request.body.read().decode('utf-8')
body = json.loads(response)
xml_str = body.get('xml_str')
tp = trips.process_xml(xml_str)
return _stmts_from_proc(tp) | [
"def",
"trips_process_xml",
"(",
")",
":",
"if",
"request",
".",
"method",
"==",
"'OPTIONS'",
":",
"return",
"{",
"}",
"response",
"=",
"request",
".",
"body",
".",
"read",
"(",
")",
".",
"decode",
"(",
"'utf-8'",
")",
"body",
"=",
"json",
".",
"loads",
"(",
"response",
")",
"xml_str",
"=",
"body",
".",
"get",
"(",
"'xml_str'",
")",
"tp",
"=",
"trips",
".",
"process_xml",
"(",
"xml_str",
")",
"return",
"_stmts_from_proc",
"(",
"tp",
")"
]
| Process TRIPS EKB XML and return INDRA Statements. | [
"Process",
"TRIPS",
"EKB",
"XML",
"and",
"return",
"INDRA",
"Statements",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/rest_api/api.py#L89-L97 | train |
sorgerlab/indra | rest_api/api.py | reach_process_text | def reach_process_text():
"""Process text with REACH and return INDRA Statements."""
if request.method == 'OPTIONS':
return {}
response = request.body.read().decode('utf-8')
body = json.loads(response)
text = body.get('text')
offline = True if body.get('offline') else False
rp = reach.process_text(text, offline=offline)
return _stmts_from_proc(rp) | python | def reach_process_text():
"""Process text with REACH and return INDRA Statements."""
if request.method == 'OPTIONS':
return {}
response = request.body.read().decode('utf-8')
body = json.loads(response)
text = body.get('text')
offline = True if body.get('offline') else False
rp = reach.process_text(text, offline=offline)
return _stmts_from_proc(rp) | [
"def",
"reach_process_text",
"(",
")",
":",
"if",
"request",
".",
"method",
"==",
"'OPTIONS'",
":",
"return",
"{",
"}",
"response",
"=",
"request",
".",
"body",
".",
"read",
"(",
")",
".",
"decode",
"(",
"'utf-8'",
")",
"body",
"=",
"json",
".",
"loads",
"(",
"response",
")",
"text",
"=",
"body",
".",
"get",
"(",
"'text'",
")",
"offline",
"=",
"True",
"if",
"body",
".",
"get",
"(",
"'offline'",
")",
"else",
"False",
"rp",
"=",
"reach",
".",
"process_text",
"(",
"text",
",",
"offline",
"=",
"offline",
")",
"return",
"_stmts_from_proc",
"(",
"rp",
")"
]
| Process text with REACH and return INDRA Statements. | [
"Process",
"text",
"with",
"REACH",
"and",
"return",
"INDRA",
"Statements",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/rest_api/api.py#L104-L113 | train |
sorgerlab/indra | rest_api/api.py | reach_process_json | def reach_process_json():
"""Process REACH json and return INDRA Statements."""
if request.method == 'OPTIONS':
return {}
response = request.body.read().decode('utf-8')
body = json.loads(response)
json_str = body.get('json')
rp = reach.process_json_str(json_str)
return _stmts_from_proc(rp) | python | def reach_process_json():
"""Process REACH json and return INDRA Statements."""
if request.method == 'OPTIONS':
return {}
response = request.body.read().decode('utf-8')
body = json.loads(response)
json_str = body.get('json')
rp = reach.process_json_str(json_str)
return _stmts_from_proc(rp) | [
"def",
"reach_process_json",
"(",
")",
":",
"if",
"request",
".",
"method",
"==",
"'OPTIONS'",
":",
"return",
"{",
"}",
"response",
"=",
"request",
".",
"body",
".",
"read",
"(",
")",
".",
"decode",
"(",
"'utf-8'",
")",
"body",
"=",
"json",
".",
"loads",
"(",
"response",
")",
"json_str",
"=",
"body",
".",
"get",
"(",
"'json'",
")",
"rp",
"=",
"reach",
".",
"process_json_str",
"(",
"json_str",
")",
"return",
"_stmts_from_proc",
"(",
"rp",
")"
]
| Process REACH json and return INDRA Statements. | [
"Process",
"REACH",
"json",
"and",
"return",
"INDRA",
"Statements",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/rest_api/api.py#L118-L126 | train |
sorgerlab/indra | rest_api/api.py | reach_process_pmc | def reach_process_pmc():
"""Process PubMedCentral article and return INDRA Statements."""
if request.method == 'OPTIONS':
return {}
response = request.body.read().decode('utf-8')
body = json.loads(response)
pmcid = body.get('pmcid')
rp = reach.process_pmc(pmcid)
return _stmts_from_proc(rp) | python | def reach_process_pmc():
"""Process PubMedCentral article and return INDRA Statements."""
if request.method == 'OPTIONS':
return {}
response = request.body.read().decode('utf-8')
body = json.loads(response)
pmcid = body.get('pmcid')
rp = reach.process_pmc(pmcid)
return _stmts_from_proc(rp) | [
"def",
"reach_process_pmc",
"(",
")",
":",
"if",
"request",
".",
"method",
"==",
"'OPTIONS'",
":",
"return",
"{",
"}",
"response",
"=",
"request",
".",
"body",
".",
"read",
"(",
")",
".",
"decode",
"(",
"'utf-8'",
")",
"body",
"=",
"json",
".",
"loads",
"(",
"response",
")",
"pmcid",
"=",
"body",
".",
"get",
"(",
"'pmcid'",
")",
"rp",
"=",
"reach",
".",
"process_pmc",
"(",
"pmcid",
")",
"return",
"_stmts_from_proc",
"(",
"rp",
")"
]
| Process PubMedCentral article and return INDRA Statements. | [
"Process",
"PubMedCentral",
"article",
"and",
"return",
"INDRA",
"Statements",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/rest_api/api.py#L131-L139 | train |
sorgerlab/indra | rest_api/api.py | bel_process_pybel_neighborhood | def bel_process_pybel_neighborhood():
"""Process BEL Large Corpus neighborhood and return INDRA Statements."""
if request.method == 'OPTIONS':
return {}
response = request.body.read().decode('utf-8')
body = json.loads(response)
genes = body.get('genes')
bp = bel.process_pybel_neighborhood(genes)
return _stmts_from_proc(bp) | python | def bel_process_pybel_neighborhood():
"""Process BEL Large Corpus neighborhood and return INDRA Statements."""
if request.method == 'OPTIONS':
return {}
response = request.body.read().decode('utf-8')
body = json.loads(response)
genes = body.get('genes')
bp = bel.process_pybel_neighborhood(genes)
return _stmts_from_proc(bp) | [
"def",
"bel_process_pybel_neighborhood",
"(",
")",
":",
"if",
"request",
".",
"method",
"==",
"'OPTIONS'",
":",
"return",
"{",
"}",
"response",
"=",
"request",
".",
"body",
".",
"read",
"(",
")",
".",
"decode",
"(",
"'utf-8'",
")",
"body",
"=",
"json",
".",
"loads",
"(",
"response",
")",
"genes",
"=",
"body",
".",
"get",
"(",
"'genes'",
")",
"bp",
"=",
"bel",
".",
"process_pybel_neighborhood",
"(",
"genes",
")",
"return",
"_stmts_from_proc",
"(",
"bp",
")"
]
| Process BEL Large Corpus neighborhood and return INDRA Statements. | [
"Process",
"BEL",
"Large",
"Corpus",
"neighborhood",
"and",
"return",
"INDRA",
"Statements",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/rest_api/api.py#L147-L155 | train |
sorgerlab/indra | rest_api/api.py | bel_process_belrdf | def bel_process_belrdf():
"""Process BEL RDF and return INDRA Statements."""
if request.method == 'OPTIONS':
return {}
response = request.body.read().decode('utf-8')
body = json.loads(response)
belrdf = body.get('belrdf')
bp = bel.process_belrdf(belrdf)
return _stmts_from_proc(bp) | python | def bel_process_belrdf():
"""Process BEL RDF and return INDRA Statements."""
if request.method == 'OPTIONS':
return {}
response = request.body.read().decode('utf-8')
body = json.loads(response)
belrdf = body.get('belrdf')
bp = bel.process_belrdf(belrdf)
return _stmts_from_proc(bp) | [
"def",
"bel_process_belrdf",
"(",
")",
":",
"if",
"request",
".",
"method",
"==",
"'OPTIONS'",
":",
"return",
"{",
"}",
"response",
"=",
"request",
".",
"body",
".",
"read",
"(",
")",
".",
"decode",
"(",
"'utf-8'",
")",
"body",
"=",
"json",
".",
"loads",
"(",
"response",
")",
"belrdf",
"=",
"body",
".",
"get",
"(",
"'belrdf'",
")",
"bp",
"=",
"bel",
".",
"process_belrdf",
"(",
"belrdf",
")",
"return",
"_stmts_from_proc",
"(",
"bp",
")"
]
| Process BEL RDF and return INDRA Statements. | [
"Process",
"BEL",
"RDF",
"and",
"return",
"INDRA",
"Statements",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/rest_api/api.py#L160-L168 | train |
sorgerlab/indra | rest_api/api.py | biopax_process_pc_pathsbetween | def biopax_process_pc_pathsbetween():
"""Process PathwayCommons paths between genes, return INDRA Statements."""
if request.method == 'OPTIONS':
return {}
response = request.body.read().decode('utf-8')
body = json.loads(response)
genes = body.get('genes')
bp = biopax.process_pc_pathsbetween(genes)
return _stmts_from_proc(bp) | python | def biopax_process_pc_pathsbetween():
"""Process PathwayCommons paths between genes, return INDRA Statements."""
if request.method == 'OPTIONS':
return {}
response = request.body.read().decode('utf-8')
body = json.loads(response)
genes = body.get('genes')
bp = biopax.process_pc_pathsbetween(genes)
return _stmts_from_proc(bp) | [
"def",
"biopax_process_pc_pathsbetween",
"(",
")",
":",
"if",
"request",
".",
"method",
"==",
"'OPTIONS'",
":",
"return",
"{",
"}",
"response",
"=",
"request",
".",
"body",
".",
"read",
"(",
")",
".",
"decode",
"(",
"'utf-8'",
")",
"body",
"=",
"json",
".",
"loads",
"(",
"response",
")",
"genes",
"=",
"body",
".",
"get",
"(",
"'genes'",
")",
"bp",
"=",
"biopax",
".",
"process_pc_pathsbetween",
"(",
"genes",
")",
"return",
"_stmts_from_proc",
"(",
"bp",
")"
]
| Process PathwayCommons paths between genes, return INDRA Statements. | [
"Process",
"PathwayCommons",
"paths",
"between",
"genes",
"return",
"INDRA",
"Statements",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/rest_api/api.py#L174-L182 | train |
sorgerlab/indra | rest_api/api.py | biopax_process_pc_pathsfromto | def biopax_process_pc_pathsfromto():
"""Process PathwayCommons paths from-to genes, return INDRA Statements."""
if request.method == 'OPTIONS':
return {}
response = request.body.read().decode('utf-8')
body = json.loads(response)
source = body.get('source')
target = body.get('target')
bp = biopax.process_pc_pathsfromto(source, target)
return _stmts_from_proc(bp) | python | def biopax_process_pc_pathsfromto():
"""Process PathwayCommons paths from-to genes, return INDRA Statements."""
if request.method == 'OPTIONS':
return {}
response = request.body.read().decode('utf-8')
body = json.loads(response)
source = body.get('source')
target = body.get('target')
bp = biopax.process_pc_pathsfromto(source, target)
return _stmts_from_proc(bp) | [
"def",
"biopax_process_pc_pathsfromto",
"(",
")",
":",
"if",
"request",
".",
"method",
"==",
"'OPTIONS'",
":",
"return",
"{",
"}",
"response",
"=",
"request",
".",
"body",
".",
"read",
"(",
")",
".",
"decode",
"(",
"'utf-8'",
")",
"body",
"=",
"json",
".",
"loads",
"(",
"response",
")",
"source",
"=",
"body",
".",
"get",
"(",
"'source'",
")",
"target",
"=",
"body",
".",
"get",
"(",
"'target'",
")",
"bp",
"=",
"biopax",
".",
"process_pc_pathsfromto",
"(",
"source",
",",
"target",
")",
"return",
"_stmts_from_proc",
"(",
"bp",
")"
]
| Process PathwayCommons paths from-to genes, return INDRA Statements. | [
"Process",
"PathwayCommons",
"paths",
"from",
"-",
"to",
"genes",
"return",
"INDRA",
"Statements",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/rest_api/api.py#L187-L196 | train |
sorgerlab/indra | rest_api/api.py | biopax_process_pc_neighborhood | def biopax_process_pc_neighborhood():
"""Process PathwayCommons neighborhood, return INDRA Statements."""
if request.method == 'OPTIONS':
return {}
response = request.body.read().decode('utf-8')
body = json.loads(response)
genes = body.get('genes')
bp = biopax.process_pc_neighborhood(genes)
return _stmts_from_proc(bp) | python | def biopax_process_pc_neighborhood():
"""Process PathwayCommons neighborhood, return INDRA Statements."""
if request.method == 'OPTIONS':
return {}
response = request.body.read().decode('utf-8')
body = json.loads(response)
genes = body.get('genes')
bp = biopax.process_pc_neighborhood(genes)
return _stmts_from_proc(bp) | [
"def",
"biopax_process_pc_neighborhood",
"(",
")",
":",
"if",
"request",
".",
"method",
"==",
"'OPTIONS'",
":",
"return",
"{",
"}",
"response",
"=",
"request",
".",
"body",
".",
"read",
"(",
")",
".",
"decode",
"(",
"'utf-8'",
")",
"body",
"=",
"json",
".",
"loads",
"(",
"response",
")",
"genes",
"=",
"body",
".",
"get",
"(",
"'genes'",
")",
"bp",
"=",
"biopax",
".",
"process_pc_neighborhood",
"(",
"genes",
")",
"return",
"_stmts_from_proc",
"(",
"bp",
")"
]
| Process PathwayCommons neighborhood, return INDRA Statements. | [
"Process",
"PathwayCommons",
"neighborhood",
"return",
"INDRA",
"Statements",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/rest_api/api.py#L201-L209 | train |
sorgerlab/indra | rest_api/api.py | eidos_process_text | def eidos_process_text():
"""Process text with EIDOS and return INDRA Statements."""
if request.method == 'OPTIONS':
return {}
req = request.body.read().decode('utf-8')
body = json.loads(req)
text = body.get('text')
webservice = body.get('webservice')
if not webservice:
response.status = 400
response.content_type = 'application/json'
return json.dumps({'error': 'No web service address provided.'})
ep = eidos.process_text(text, webservice=webservice)
return _stmts_from_proc(ep) | python | def eidos_process_text():
"""Process text with EIDOS and return INDRA Statements."""
if request.method == 'OPTIONS':
return {}
req = request.body.read().decode('utf-8')
body = json.loads(req)
text = body.get('text')
webservice = body.get('webservice')
if not webservice:
response.status = 400
response.content_type = 'application/json'
return json.dumps({'error': 'No web service address provided.'})
ep = eidos.process_text(text, webservice=webservice)
return _stmts_from_proc(ep) | [
"def",
"eidos_process_text",
"(",
")",
":",
"if",
"request",
".",
"method",
"==",
"'OPTIONS'",
":",
"return",
"{",
"}",
"req",
"=",
"request",
".",
"body",
".",
"read",
"(",
")",
".",
"decode",
"(",
"'utf-8'",
")",
"body",
"=",
"json",
".",
"loads",
"(",
"req",
")",
"text",
"=",
"body",
".",
"get",
"(",
"'text'",
")",
"webservice",
"=",
"body",
".",
"get",
"(",
"'webservice'",
")",
"if",
"not",
"webservice",
":",
"response",
".",
"status",
"=",
"400",
"response",
".",
"content_type",
"=",
"'application/json'",
"return",
"json",
".",
"dumps",
"(",
"{",
"'error'",
":",
"'No web service address provided.'",
"}",
")",
"ep",
"=",
"eidos",
".",
"process_text",
"(",
"text",
",",
"webservice",
"=",
"webservice",
")",
"return",
"_stmts_from_proc",
"(",
"ep",
")"
]
| Process text with EIDOS and return INDRA Statements. | [
"Process",
"text",
"with",
"EIDOS",
"and",
"return",
"INDRA",
"Statements",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/rest_api/api.py#L215-L228 | train |
sorgerlab/indra | rest_api/api.py | eidos_process_jsonld | def eidos_process_jsonld():
"""Process an EIDOS JSON-LD and return INDRA Statements."""
if request.method == 'OPTIONS':
return {}
response = request.body.read().decode('utf-8')
body = json.loads(response)
eidos_json = body.get('jsonld')
ep = eidos.process_json_str(eidos_json)
return _stmts_from_proc(ep) | python | def eidos_process_jsonld():
"""Process an EIDOS JSON-LD and return INDRA Statements."""
if request.method == 'OPTIONS':
return {}
response = request.body.read().decode('utf-8')
body = json.loads(response)
eidos_json = body.get('jsonld')
ep = eidos.process_json_str(eidos_json)
return _stmts_from_proc(ep) | [
"def",
"eidos_process_jsonld",
"(",
")",
":",
"if",
"request",
".",
"method",
"==",
"'OPTIONS'",
":",
"return",
"{",
"}",
"response",
"=",
"request",
".",
"body",
".",
"read",
"(",
")",
".",
"decode",
"(",
"'utf-8'",
")",
"body",
"=",
"json",
".",
"loads",
"(",
"response",
")",
"eidos_json",
"=",
"body",
".",
"get",
"(",
"'jsonld'",
")",
"ep",
"=",
"eidos",
".",
"process_json_str",
"(",
"eidos_json",
")",
"return",
"_stmts_from_proc",
"(",
"ep",
")"
]
| Process an EIDOS JSON-LD and return INDRA Statements. | [
"Process",
"an",
"EIDOS",
"JSON",
"-",
"LD",
"and",
"return",
"INDRA",
"Statements",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/rest_api/api.py#L233-L241 | train |
sorgerlab/indra | rest_api/api.py | cwms_process_text | def cwms_process_text():
"""Process text with CWMS and return INDRA Statements."""
if request.method == 'OPTIONS':
return {}
response = request.body.read().decode('utf-8')
body = json.loads(response)
text = body.get('text')
cp = cwms.process_text(text)
return _stmts_from_proc(cp) | python | def cwms_process_text():
"""Process text with CWMS and return INDRA Statements."""
if request.method == 'OPTIONS':
return {}
response = request.body.read().decode('utf-8')
body = json.loads(response)
text = body.get('text')
cp = cwms.process_text(text)
return _stmts_from_proc(cp) | [
"def",
"cwms_process_text",
"(",
")",
":",
"if",
"request",
".",
"method",
"==",
"'OPTIONS'",
":",
"return",
"{",
"}",
"response",
"=",
"request",
".",
"body",
".",
"read",
"(",
")",
".",
"decode",
"(",
"'utf-8'",
")",
"body",
"=",
"json",
".",
"loads",
"(",
"response",
")",
"text",
"=",
"body",
".",
"get",
"(",
"'text'",
")",
"cp",
"=",
"cwms",
".",
"process_text",
"(",
"text",
")",
"return",
"_stmts_from_proc",
"(",
"cp",
")"
]
| Process text with CWMS and return INDRA Statements. | [
"Process",
"text",
"with",
"CWMS",
"and",
"return",
"INDRA",
"Statements",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/rest_api/api.py#L246-L254 | train |
sorgerlab/indra | rest_api/api.py | hume_process_jsonld | def hume_process_jsonld():
"""Process Hume JSON-LD and return INDRA Statements."""
if request.method == 'OPTIONS':
return {}
response = request.body.read().decode('utf-8')
body = json.loads(response)
jsonld_str = body.get('jsonld')
jsonld = json.loads(jsonld_str)
hp = hume.process_jsonld(jsonld)
return _stmts_from_proc(hp) | python | def hume_process_jsonld():
"""Process Hume JSON-LD and return INDRA Statements."""
if request.method == 'OPTIONS':
return {}
response = request.body.read().decode('utf-8')
body = json.loads(response)
jsonld_str = body.get('jsonld')
jsonld = json.loads(jsonld_str)
hp = hume.process_jsonld(jsonld)
return _stmts_from_proc(hp) | [
"def",
"hume_process_jsonld",
"(",
")",
":",
"if",
"request",
".",
"method",
"==",
"'OPTIONS'",
":",
"return",
"{",
"}",
"response",
"=",
"request",
".",
"body",
".",
"read",
"(",
")",
".",
"decode",
"(",
"'utf-8'",
")",
"body",
"=",
"json",
".",
"loads",
"(",
"response",
")",
"jsonld_str",
"=",
"body",
".",
"get",
"(",
"'jsonld'",
")",
"jsonld",
"=",
"json",
".",
"loads",
"(",
"jsonld_str",
")",
"hp",
"=",
"hume",
".",
"process_jsonld",
"(",
"jsonld",
")",
"return",
"_stmts_from_proc",
"(",
"hp",
")"
]
| Process Hume JSON-LD and return INDRA Statements. | [
"Process",
"Hume",
"JSON",
"-",
"LD",
"and",
"return",
"INDRA",
"Statements",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/rest_api/api.py#L259-L268 | train |
sorgerlab/indra | rest_api/api.py | sofia_process_text | def sofia_process_text():
"""Process text with Sofia and return INDRA Statements."""
if request.method == 'OPTIONS':
return {}
response = request.body.read().decode('utf-8')
body = json.loads(response)
text = body.get('text')
auth = body.get('auth')
sp = sofia.process_text(text, auth=auth)
return _stmts_from_proc(sp) | python | def sofia_process_text():
"""Process text with Sofia and return INDRA Statements."""
if request.method == 'OPTIONS':
return {}
response = request.body.read().decode('utf-8')
body = json.loads(response)
text = body.get('text')
auth = body.get('auth')
sp = sofia.process_text(text, auth=auth)
return _stmts_from_proc(sp) | [
"def",
"sofia_process_text",
"(",
")",
":",
"if",
"request",
".",
"method",
"==",
"'OPTIONS'",
":",
"return",
"{",
"}",
"response",
"=",
"request",
".",
"body",
".",
"read",
"(",
")",
".",
"decode",
"(",
"'utf-8'",
")",
"body",
"=",
"json",
".",
"loads",
"(",
"response",
")",
"text",
"=",
"body",
".",
"get",
"(",
"'text'",
")",
"auth",
"=",
"body",
".",
"get",
"(",
"'auth'",
")",
"sp",
"=",
"sofia",
".",
"process_text",
"(",
"text",
",",
"auth",
"=",
"auth",
")",
"return",
"_stmts_from_proc",
"(",
"sp",
")"
]
| Process text with Sofia and return INDRA Statements. | [
"Process",
"text",
"with",
"Sofia",
"and",
"return",
"INDRA",
"Statements",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/rest_api/api.py#L288-L297 | train |
sorgerlab/indra | rest_api/api.py | assemble_pysb | def assemble_pysb():
"""Assemble INDRA Statements and return PySB model string."""
if request.method == 'OPTIONS':
return {}
response = request.body.read().decode('utf-8')
body = json.loads(response)
stmts_json = body.get('statements')
export_format = body.get('export_format')
stmts = stmts_from_json(stmts_json)
pa = PysbAssembler()
pa.add_statements(stmts)
pa.make_model()
try:
for m in pa.model.monomers:
pysb_assembler.set_extended_initial_condition(pa.model, m, 0)
except Exception as e:
logger.exception(e)
if not export_format:
model_str = pa.print_model()
elif export_format in ('kappa_im', 'kappa_cm'):
fname = 'model_%s.png' % export_format
root = os.path.dirname(os.path.abspath(fname))
graph = pa.export_model(format=export_format, file_name=fname)
with open(fname, 'rb') as fh:
data = 'data:image/png;base64,%s' % \
base64.b64encode(fh.read()).decode()
return {'image': data}
else:
try:
model_str = pa.export_model(format=export_format)
except Exception as e:
logger.exception(e)
model_str = ''
res = {'model': model_str}
return res | python | def assemble_pysb():
"""Assemble INDRA Statements and return PySB model string."""
if request.method == 'OPTIONS':
return {}
response = request.body.read().decode('utf-8')
body = json.loads(response)
stmts_json = body.get('statements')
export_format = body.get('export_format')
stmts = stmts_from_json(stmts_json)
pa = PysbAssembler()
pa.add_statements(stmts)
pa.make_model()
try:
for m in pa.model.monomers:
pysb_assembler.set_extended_initial_condition(pa.model, m, 0)
except Exception as e:
logger.exception(e)
if not export_format:
model_str = pa.print_model()
elif export_format in ('kappa_im', 'kappa_cm'):
fname = 'model_%s.png' % export_format
root = os.path.dirname(os.path.abspath(fname))
graph = pa.export_model(format=export_format, file_name=fname)
with open(fname, 'rb') as fh:
data = 'data:image/png;base64,%s' % \
base64.b64encode(fh.read()).decode()
return {'image': data}
else:
try:
model_str = pa.export_model(format=export_format)
except Exception as e:
logger.exception(e)
model_str = ''
res = {'model': model_str}
return res | [
"def",
"assemble_pysb",
"(",
")",
":",
"if",
"request",
".",
"method",
"==",
"'OPTIONS'",
":",
"return",
"{",
"}",
"response",
"=",
"request",
".",
"body",
".",
"read",
"(",
")",
".",
"decode",
"(",
"'utf-8'",
")",
"body",
"=",
"json",
".",
"loads",
"(",
"response",
")",
"stmts_json",
"=",
"body",
".",
"get",
"(",
"'statements'",
")",
"export_format",
"=",
"body",
".",
"get",
"(",
"'export_format'",
")",
"stmts",
"=",
"stmts_from_json",
"(",
"stmts_json",
")",
"pa",
"=",
"PysbAssembler",
"(",
")",
"pa",
".",
"add_statements",
"(",
"stmts",
")",
"pa",
".",
"make_model",
"(",
")",
"try",
":",
"for",
"m",
"in",
"pa",
".",
"model",
".",
"monomers",
":",
"pysb_assembler",
".",
"set_extended_initial_condition",
"(",
"pa",
".",
"model",
",",
"m",
",",
"0",
")",
"except",
"Exception",
"as",
"e",
":",
"logger",
".",
"exception",
"(",
"e",
")",
"if",
"not",
"export_format",
":",
"model_str",
"=",
"pa",
".",
"print_model",
"(",
")",
"elif",
"export_format",
"in",
"(",
"'kappa_im'",
",",
"'kappa_cm'",
")",
":",
"fname",
"=",
"'model_%s.png'",
"%",
"export_format",
"root",
"=",
"os",
".",
"path",
".",
"dirname",
"(",
"os",
".",
"path",
".",
"abspath",
"(",
"fname",
")",
")",
"graph",
"=",
"pa",
".",
"export_model",
"(",
"format",
"=",
"export_format",
",",
"file_name",
"=",
"fname",
")",
"with",
"open",
"(",
"fname",
",",
"'rb'",
")",
"as",
"fh",
":",
"data",
"=",
"'data:image/png;base64,%s'",
"%",
"base64",
".",
"b64encode",
"(",
"fh",
".",
"read",
"(",
")",
")",
".",
"decode",
"(",
")",
"return",
"{",
"'image'",
":",
"data",
"}",
"else",
":",
"try",
":",
"model_str",
"=",
"pa",
".",
"export_model",
"(",
"format",
"=",
"export_format",
")",
"except",
"Exception",
"as",
"e",
":",
"logger",
".",
"exception",
"(",
"e",
")",
"model_str",
"=",
"''",
"res",
"=",
"{",
"'model'",
":",
"model_str",
"}",
"return",
"res"
]
| Assemble INDRA Statements and return PySB model string. | [
"Assemble",
"INDRA",
"Statements",
"and",
"return",
"PySB",
"model",
"string",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/rest_api/api.py#L307-L342 | train |
sorgerlab/indra | rest_api/api.py | assemble_cx | def assemble_cx():
"""Assemble INDRA Statements and return CX network json."""
if request.method == 'OPTIONS':
return {}
response = request.body.read().decode('utf-8')
body = json.loads(response)
stmts_json = body.get('statements')
stmts = stmts_from_json(stmts_json)
ca = CxAssembler(stmts)
model_str = ca.make_model()
res = {'model': model_str}
return res | python | def assemble_cx():
"""Assemble INDRA Statements and return CX network json."""
if request.method == 'OPTIONS':
return {}
response = request.body.read().decode('utf-8')
body = json.loads(response)
stmts_json = body.get('statements')
stmts = stmts_from_json(stmts_json)
ca = CxAssembler(stmts)
model_str = ca.make_model()
res = {'model': model_str}
return res | [
"def",
"assemble_cx",
"(",
")",
":",
"if",
"request",
".",
"method",
"==",
"'OPTIONS'",
":",
"return",
"{",
"}",
"response",
"=",
"request",
".",
"body",
".",
"read",
"(",
")",
".",
"decode",
"(",
"'utf-8'",
")",
"body",
"=",
"json",
".",
"loads",
"(",
"response",
")",
"stmts_json",
"=",
"body",
".",
"get",
"(",
"'statements'",
")",
"stmts",
"=",
"stmts_from_json",
"(",
"stmts_json",
")",
"ca",
"=",
"CxAssembler",
"(",
"stmts",
")",
"model_str",
"=",
"ca",
".",
"make_model",
"(",
")",
"res",
"=",
"{",
"'model'",
":",
"model_str",
"}",
"return",
"res"
]
| Assemble INDRA Statements and return CX network json. | [
"Assemble",
"INDRA",
"Statements",
"and",
"return",
"CX",
"network",
"json",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/rest_api/api.py#L348-L359 | train |
sorgerlab/indra | rest_api/api.py | share_model_ndex | def share_model_ndex():
"""Upload the model to NDEX"""
if request.method == 'OPTIONS':
return {}
response = request.body.read().decode('utf-8')
body = json.loads(response)
stmts_str = body.get('stmts')
stmts_json = json.loads(stmts_str)
stmts = stmts_from_json(stmts_json["statements"])
ca = CxAssembler(stmts)
for n, v in body.items():
ca.cx['networkAttributes'].append({'n': n, 'v': v, 'd': 'string'})
ca.make_model()
network_id = ca.upload_model(private=False)
return {'network_id': network_id} | python | def share_model_ndex():
"""Upload the model to NDEX"""
if request.method == 'OPTIONS':
return {}
response = request.body.read().decode('utf-8')
body = json.loads(response)
stmts_str = body.get('stmts')
stmts_json = json.loads(stmts_str)
stmts = stmts_from_json(stmts_json["statements"])
ca = CxAssembler(stmts)
for n, v in body.items():
ca.cx['networkAttributes'].append({'n': n, 'v': v, 'd': 'string'})
ca.make_model()
network_id = ca.upload_model(private=False)
return {'network_id': network_id} | [
"def",
"share_model_ndex",
"(",
")",
":",
"if",
"request",
".",
"method",
"==",
"'OPTIONS'",
":",
"return",
"{",
"}",
"response",
"=",
"request",
".",
"body",
".",
"read",
"(",
")",
".",
"decode",
"(",
"'utf-8'",
")",
"body",
"=",
"json",
".",
"loads",
"(",
"response",
")",
"stmts_str",
"=",
"body",
".",
"get",
"(",
"'stmts'",
")",
"stmts_json",
"=",
"json",
".",
"loads",
"(",
"stmts_str",
")",
"stmts",
"=",
"stmts_from_json",
"(",
"stmts_json",
"[",
"\"statements\"",
"]",
")",
"ca",
"=",
"CxAssembler",
"(",
"stmts",
")",
"for",
"n",
",",
"v",
"in",
"body",
".",
"items",
"(",
")",
":",
"ca",
".",
"cx",
"[",
"'networkAttributes'",
"]",
".",
"append",
"(",
"{",
"'n'",
":",
"n",
",",
"'v'",
":",
"v",
",",
"'d'",
":",
"'string'",
"}",
")",
"ca",
".",
"make_model",
"(",
")",
"network_id",
"=",
"ca",
".",
"upload_model",
"(",
"private",
"=",
"False",
")",
"return",
"{",
"'network_id'",
":",
"network_id",
"}"
]
| Upload the model to NDEX | [
"Upload",
"the",
"model",
"to",
"NDEX"
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/rest_api/api.py#L365-L379 | train |
sorgerlab/indra | rest_api/api.py | fetch_model_ndex | def fetch_model_ndex():
"""Download model and associated pieces from NDEX"""
if request.method == 'OPTIONS':
return {}
response = request.body.read().decode('utf-8')
body = json.loads(response)
network_id = body.get('network_id')
cx = process_ndex_network(network_id)
network_attr = [x for x in cx.cx if x.get('networkAttributes')]
network_attr = network_attr[0]['networkAttributes']
keep_keys = ['txt_input', 'parser',
'model_elements', 'preset_pos', 'stmts',
'sentences', 'evidence', 'cell_line', 'mrna', 'mutations']
stored_data = {}
for d in network_attr:
if d['n'] in keep_keys:
stored_data[d['n']] = d['v']
return stored_data | python | def fetch_model_ndex():
"""Download model and associated pieces from NDEX"""
if request.method == 'OPTIONS':
return {}
response = request.body.read().decode('utf-8')
body = json.loads(response)
network_id = body.get('network_id')
cx = process_ndex_network(network_id)
network_attr = [x for x in cx.cx if x.get('networkAttributes')]
network_attr = network_attr[0]['networkAttributes']
keep_keys = ['txt_input', 'parser',
'model_elements', 'preset_pos', 'stmts',
'sentences', 'evidence', 'cell_line', 'mrna', 'mutations']
stored_data = {}
for d in network_attr:
if d['n'] in keep_keys:
stored_data[d['n']] = d['v']
return stored_data | [
"def",
"fetch_model_ndex",
"(",
")",
":",
"if",
"request",
".",
"method",
"==",
"'OPTIONS'",
":",
"return",
"{",
"}",
"response",
"=",
"request",
".",
"body",
".",
"read",
"(",
")",
".",
"decode",
"(",
"'utf-8'",
")",
"body",
"=",
"json",
".",
"loads",
"(",
"response",
")",
"network_id",
"=",
"body",
".",
"get",
"(",
"'network_id'",
")",
"cx",
"=",
"process_ndex_network",
"(",
"network_id",
")",
"network_attr",
"=",
"[",
"x",
"for",
"x",
"in",
"cx",
".",
"cx",
"if",
"x",
".",
"get",
"(",
"'networkAttributes'",
")",
"]",
"network_attr",
"=",
"network_attr",
"[",
"0",
"]",
"[",
"'networkAttributes'",
"]",
"keep_keys",
"=",
"[",
"'txt_input'",
",",
"'parser'",
",",
"'model_elements'",
",",
"'preset_pos'",
",",
"'stmts'",
",",
"'sentences'",
",",
"'evidence'",
",",
"'cell_line'",
",",
"'mrna'",
",",
"'mutations'",
"]",
"stored_data",
"=",
"{",
"}",
"for",
"d",
"in",
"network_attr",
":",
"if",
"d",
"[",
"'n'",
"]",
"in",
"keep_keys",
":",
"stored_data",
"[",
"d",
"[",
"'n'",
"]",
"]",
"=",
"d",
"[",
"'v'",
"]",
"return",
"stored_data"
]
| Download model and associated pieces from NDEX | [
"Download",
"model",
"and",
"associated",
"pieces",
"from",
"NDEX"
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/rest_api/api.py#L384-L401 | train |
sorgerlab/indra | rest_api/api.py | assemble_graph | def assemble_graph():
"""Assemble INDRA Statements and return Graphviz graph dot string."""
if request.method == 'OPTIONS':
return {}
response = request.body.read().decode('utf-8')
body = json.loads(response)
stmts_json = body.get('statements')
stmts = stmts_from_json(stmts_json)
ga = GraphAssembler(stmts)
model_str = ga.make_model()
res = {'model': model_str}
return res | python | def assemble_graph():
"""Assemble INDRA Statements and return Graphviz graph dot string."""
if request.method == 'OPTIONS':
return {}
response = request.body.read().decode('utf-8')
body = json.loads(response)
stmts_json = body.get('statements')
stmts = stmts_from_json(stmts_json)
ga = GraphAssembler(stmts)
model_str = ga.make_model()
res = {'model': model_str}
return res | [
"def",
"assemble_graph",
"(",
")",
":",
"if",
"request",
".",
"method",
"==",
"'OPTIONS'",
":",
"return",
"{",
"}",
"response",
"=",
"request",
".",
"body",
".",
"read",
"(",
")",
".",
"decode",
"(",
"'utf-8'",
")",
"body",
"=",
"json",
".",
"loads",
"(",
"response",
")",
"stmts_json",
"=",
"body",
".",
"get",
"(",
"'statements'",
")",
"stmts",
"=",
"stmts_from_json",
"(",
"stmts_json",
")",
"ga",
"=",
"GraphAssembler",
"(",
"stmts",
")",
"model_str",
"=",
"ga",
".",
"make_model",
"(",
")",
"res",
"=",
"{",
"'model'",
":",
"model_str",
"}",
"return",
"res"
]
| Assemble INDRA Statements and return Graphviz graph dot string. | [
"Assemble",
"INDRA",
"Statements",
"and",
"return",
"Graphviz",
"graph",
"dot",
"string",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/rest_api/api.py#L407-L418 | train |
sorgerlab/indra | rest_api/api.py | assemble_cyjs | def assemble_cyjs():
"""Assemble INDRA Statements and return Cytoscape JS network."""
if request.method == 'OPTIONS':
return {}
response = request.body.read().decode('utf-8')
body = json.loads(response)
stmts_json = body.get('statements')
stmts = stmts_from_json(stmts_json)
cja = CyJSAssembler()
cja.add_statements(stmts)
cja.make_model(grouping=True)
model_str = cja.print_cyjs_graph()
return model_str | python | def assemble_cyjs():
"""Assemble INDRA Statements and return Cytoscape JS network."""
if request.method == 'OPTIONS':
return {}
response = request.body.read().decode('utf-8')
body = json.loads(response)
stmts_json = body.get('statements')
stmts = stmts_from_json(stmts_json)
cja = CyJSAssembler()
cja.add_statements(stmts)
cja.make_model(grouping=True)
model_str = cja.print_cyjs_graph()
return model_str | [
"def",
"assemble_cyjs",
"(",
")",
":",
"if",
"request",
".",
"method",
"==",
"'OPTIONS'",
":",
"return",
"{",
"}",
"response",
"=",
"request",
".",
"body",
".",
"read",
"(",
")",
".",
"decode",
"(",
"'utf-8'",
")",
"body",
"=",
"json",
".",
"loads",
"(",
"response",
")",
"stmts_json",
"=",
"body",
".",
"get",
"(",
"'statements'",
")",
"stmts",
"=",
"stmts_from_json",
"(",
"stmts_json",
")",
"cja",
"=",
"CyJSAssembler",
"(",
")",
"cja",
".",
"add_statements",
"(",
"stmts",
")",
"cja",
".",
"make_model",
"(",
"grouping",
"=",
"True",
")",
"model_str",
"=",
"cja",
".",
"print_cyjs_graph",
"(",
")",
"return",
"model_str"
]
| Assemble INDRA Statements and return Cytoscape JS network. | [
"Assemble",
"INDRA",
"Statements",
"and",
"return",
"Cytoscape",
"JS",
"network",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/rest_api/api.py#L424-L436 | train |
sorgerlab/indra | rest_api/api.py | assemble_english | def assemble_english():
"""Assemble each statement into """
if request.method == 'OPTIONS':
return {}
response = request.body.read().decode('utf-8')
body = json.loads(response)
stmts_json = body.get('statements')
stmts = stmts_from_json(stmts_json)
sentences = {}
for st in stmts:
enga = EnglishAssembler()
enga.add_statements([st])
model_str = enga.make_model()
sentences[st.uuid] = model_str
res = {'sentences': sentences}
return res | python | def assemble_english():
"""Assemble each statement into """
if request.method == 'OPTIONS':
return {}
response = request.body.read().decode('utf-8')
body = json.loads(response)
stmts_json = body.get('statements')
stmts = stmts_from_json(stmts_json)
sentences = {}
for st in stmts:
enga = EnglishAssembler()
enga.add_statements([st])
model_str = enga.make_model()
sentences[st.uuid] = model_str
res = {'sentences': sentences}
return res | [
"def",
"assemble_english",
"(",
")",
":",
"if",
"request",
".",
"method",
"==",
"'OPTIONS'",
":",
"return",
"{",
"}",
"response",
"=",
"request",
".",
"body",
".",
"read",
"(",
")",
".",
"decode",
"(",
"'utf-8'",
")",
"body",
"=",
"json",
".",
"loads",
"(",
"response",
")",
"stmts_json",
"=",
"body",
".",
"get",
"(",
"'statements'",
")",
"stmts",
"=",
"stmts_from_json",
"(",
"stmts_json",
")",
"sentences",
"=",
"{",
"}",
"for",
"st",
"in",
"stmts",
":",
"enga",
"=",
"EnglishAssembler",
"(",
")",
"enga",
".",
"add_statements",
"(",
"[",
"st",
"]",
")",
"model_str",
"=",
"enga",
".",
"make_model",
"(",
")",
"sentences",
"[",
"st",
".",
"uuid",
"]",
"=",
"model_str",
"res",
"=",
"{",
"'sentences'",
":",
"sentences",
"}",
"return",
"res"
]
| Assemble each statement into | [
"Assemble",
"each",
"statement",
"into"
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/rest_api/api.py#L442-L457 | train |
sorgerlab/indra | rest_api/api.py | assemble_loopy | def assemble_loopy():
"""Assemble INDRA Statements into a Loopy model using SIF Assembler."""
if request.method == 'OPTIONS':
return {}
response = request.body.read().decode('utf-8')
body = json.loads(response)
stmts_json = body.get('statements')
stmts = stmts_from_json(stmts_json)
sa = SifAssembler(stmts)
sa.make_model(use_name_as_key=True)
model_str = sa.print_loopy(as_url=True)
res = {'loopy_url': model_str}
return res | python | def assemble_loopy():
"""Assemble INDRA Statements into a Loopy model using SIF Assembler."""
if request.method == 'OPTIONS':
return {}
response = request.body.read().decode('utf-8')
body = json.loads(response)
stmts_json = body.get('statements')
stmts = stmts_from_json(stmts_json)
sa = SifAssembler(stmts)
sa.make_model(use_name_as_key=True)
model_str = sa.print_loopy(as_url=True)
res = {'loopy_url': model_str}
return res | [
"def",
"assemble_loopy",
"(",
")",
":",
"if",
"request",
".",
"method",
"==",
"'OPTIONS'",
":",
"return",
"{",
"}",
"response",
"=",
"request",
".",
"body",
".",
"read",
"(",
")",
".",
"decode",
"(",
"'utf-8'",
")",
"body",
"=",
"json",
".",
"loads",
"(",
"response",
")",
"stmts_json",
"=",
"body",
".",
"get",
"(",
"'statements'",
")",
"stmts",
"=",
"stmts_from_json",
"(",
"stmts_json",
")",
"sa",
"=",
"SifAssembler",
"(",
"stmts",
")",
"sa",
".",
"make_model",
"(",
"use_name_as_key",
"=",
"True",
")",
"model_str",
"=",
"sa",
".",
"print_loopy",
"(",
"as_url",
"=",
"True",
")",
"res",
"=",
"{",
"'loopy_url'",
":",
"model_str",
"}",
"return",
"res"
]
| Assemble INDRA Statements into a Loopy model using SIF Assembler. | [
"Assemble",
"INDRA",
"Statements",
"into",
"a",
"Loopy",
"model",
"using",
"SIF",
"Assembler",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/rest_api/api.py#L462-L474 | train |
sorgerlab/indra | rest_api/api.py | get_ccle_mrna_levels | def get_ccle_mrna_levels():
"""Get CCLE mRNA amounts using cBioClient"""
if request.method == 'OPTIONS':
return {}
response = request.body.read().decode('utf-8')
body = json.loads(response)
gene_list = body.get('gene_list')
cell_lines = body.get('cell_lines')
mrna_amounts = cbio_client.get_ccle_mrna(gene_list, cell_lines)
res = {'mrna_amounts': mrna_amounts}
return res | python | def get_ccle_mrna_levels():
"""Get CCLE mRNA amounts using cBioClient"""
if request.method == 'OPTIONS':
return {}
response = request.body.read().decode('utf-8')
body = json.loads(response)
gene_list = body.get('gene_list')
cell_lines = body.get('cell_lines')
mrna_amounts = cbio_client.get_ccle_mrna(gene_list, cell_lines)
res = {'mrna_amounts': mrna_amounts}
return res | [
"def",
"get_ccle_mrna_levels",
"(",
")",
":",
"if",
"request",
".",
"method",
"==",
"'OPTIONS'",
":",
"return",
"{",
"}",
"response",
"=",
"request",
".",
"body",
".",
"read",
"(",
")",
".",
"decode",
"(",
"'utf-8'",
")",
"body",
"=",
"json",
".",
"loads",
"(",
"response",
")",
"gene_list",
"=",
"body",
".",
"get",
"(",
"'gene_list'",
")",
"cell_lines",
"=",
"body",
".",
"get",
"(",
"'cell_lines'",
")",
"mrna_amounts",
"=",
"cbio_client",
".",
"get_ccle_mrna",
"(",
"gene_list",
",",
"cell_lines",
")",
"res",
"=",
"{",
"'mrna_amounts'",
":",
"mrna_amounts",
"}",
"return",
"res"
]
| Get CCLE mRNA amounts using cBioClient | [
"Get",
"CCLE",
"mRNA",
"amounts",
"using",
"cBioClient"
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/rest_api/api.py#L480-L490 | train |
sorgerlab/indra | rest_api/api.py | get_ccle_mutations | def get_ccle_mutations():
"""Get CCLE mutations
returns the amino acid changes for a given list of genes and cell lines
"""
if request.method == 'OPTIONS':
return {}
response = request.body.read().decode('utf-8')
body = json.loads(response)
gene_list = body.get('gene_list')
cell_lines = body.get('cell_lines')
mutations = cbio_client.get_ccle_mutations(gene_list, cell_lines)
res = {'mutations': mutations}
return res | python | def get_ccle_mutations():
"""Get CCLE mutations
returns the amino acid changes for a given list of genes and cell lines
"""
if request.method == 'OPTIONS':
return {}
response = request.body.read().decode('utf-8')
body = json.loads(response)
gene_list = body.get('gene_list')
cell_lines = body.get('cell_lines')
mutations = cbio_client.get_ccle_mutations(gene_list, cell_lines)
res = {'mutations': mutations}
return res | [
"def",
"get_ccle_mutations",
"(",
")",
":",
"if",
"request",
".",
"method",
"==",
"'OPTIONS'",
":",
"return",
"{",
"}",
"response",
"=",
"request",
".",
"body",
".",
"read",
"(",
")",
".",
"decode",
"(",
"'utf-8'",
")",
"body",
"=",
"json",
".",
"loads",
"(",
"response",
")",
"gene_list",
"=",
"body",
".",
"get",
"(",
"'gene_list'",
")",
"cell_lines",
"=",
"body",
".",
"get",
"(",
"'cell_lines'",
")",
"mutations",
"=",
"cbio_client",
".",
"get_ccle_mutations",
"(",
"gene_list",
",",
"cell_lines",
")",
"res",
"=",
"{",
"'mutations'",
":",
"mutations",
"}",
"return",
"res"
]
| Get CCLE mutations
returns the amino acid changes for a given list of genes and cell lines | [
"Get",
"CCLE",
"mutations",
"returns",
"the",
"amino",
"acid",
"changes",
"for",
"a",
"given",
"list",
"of",
"genes",
"and",
"cell",
"lines"
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/rest_api/api.py#L517-L529 | train |
sorgerlab/indra | rest_api/api.py | map_grounding | def map_grounding():
"""Map grounding on a list of INDRA Statements."""
if request.method == 'OPTIONS':
return {}
response = request.body.read().decode('utf-8')
body = json.loads(response)
stmts_json = body.get('statements')
stmts = stmts_from_json(stmts_json)
stmts_out = ac.map_grounding(stmts)
return _return_stmts(stmts_out) | python | def map_grounding():
"""Map grounding on a list of INDRA Statements."""
if request.method == 'OPTIONS':
return {}
response = request.body.read().decode('utf-8')
body = json.loads(response)
stmts_json = body.get('statements')
stmts = stmts_from_json(stmts_json)
stmts_out = ac.map_grounding(stmts)
return _return_stmts(stmts_out) | [
"def",
"map_grounding",
"(",
")",
":",
"if",
"request",
".",
"method",
"==",
"'OPTIONS'",
":",
"return",
"{",
"}",
"response",
"=",
"request",
".",
"body",
".",
"read",
"(",
")",
".",
"decode",
"(",
"'utf-8'",
")",
"body",
"=",
"json",
".",
"loads",
"(",
"response",
")",
"stmts_json",
"=",
"body",
".",
"get",
"(",
"'statements'",
")",
"stmts",
"=",
"stmts_from_json",
"(",
"stmts_json",
")",
"stmts_out",
"=",
"ac",
".",
"map_grounding",
"(",
"stmts",
")",
"return",
"_return_stmts",
"(",
"stmts_out",
")"
]
| Map grounding on a list of INDRA Statements. | [
"Map",
"grounding",
"on",
"a",
"list",
"of",
"INDRA",
"Statements",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/rest_api/api.py#L534-L543 | train |
sorgerlab/indra | rest_api/api.py | run_preassembly | def run_preassembly():
"""Run preassembly on a list of INDRA Statements."""
if request.method == 'OPTIONS':
return {}
response = request.body.read().decode('utf-8')
body = json.loads(response)
stmts_json = body.get('statements')
stmts = stmts_from_json(stmts_json)
scorer = body.get('scorer')
return_toplevel = body.get('return_toplevel')
if scorer == 'wm':
belief_scorer = get_eidos_scorer()
else:
belief_scorer = None
stmts_out = ac.run_preassembly(stmts, belief_scorer=belief_scorer,
return_toplevel=return_toplevel)
return _return_stmts(stmts_out) | python | def run_preassembly():
"""Run preassembly on a list of INDRA Statements."""
if request.method == 'OPTIONS':
return {}
response = request.body.read().decode('utf-8')
body = json.loads(response)
stmts_json = body.get('statements')
stmts = stmts_from_json(stmts_json)
scorer = body.get('scorer')
return_toplevel = body.get('return_toplevel')
if scorer == 'wm':
belief_scorer = get_eidos_scorer()
else:
belief_scorer = None
stmts_out = ac.run_preassembly(stmts, belief_scorer=belief_scorer,
return_toplevel=return_toplevel)
return _return_stmts(stmts_out) | [
"def",
"run_preassembly",
"(",
")",
":",
"if",
"request",
".",
"method",
"==",
"'OPTIONS'",
":",
"return",
"{",
"}",
"response",
"=",
"request",
".",
"body",
".",
"read",
"(",
")",
".",
"decode",
"(",
"'utf-8'",
")",
"body",
"=",
"json",
".",
"loads",
"(",
"response",
")",
"stmts_json",
"=",
"body",
".",
"get",
"(",
"'statements'",
")",
"stmts",
"=",
"stmts_from_json",
"(",
"stmts_json",
")",
"scorer",
"=",
"body",
".",
"get",
"(",
"'scorer'",
")",
"return_toplevel",
"=",
"body",
".",
"get",
"(",
"'return_toplevel'",
")",
"if",
"scorer",
"==",
"'wm'",
":",
"belief_scorer",
"=",
"get_eidos_scorer",
"(",
")",
"else",
":",
"belief_scorer",
"=",
"None",
"stmts_out",
"=",
"ac",
".",
"run_preassembly",
"(",
"stmts",
",",
"belief_scorer",
"=",
"belief_scorer",
",",
"return_toplevel",
"=",
"return_toplevel",
")",
"return",
"_return_stmts",
"(",
"stmts_out",
")"
]
| Run preassembly on a list of INDRA Statements. | [
"Run",
"preassembly",
"on",
"a",
"list",
"of",
"INDRA",
"Statements",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/rest_api/api.py#L562-L578 | train |
sorgerlab/indra | rest_api/api.py | map_ontologies | def map_ontologies():
"""Run ontology mapping on a list of INDRA Statements."""
if request.method == 'OPTIONS':
return {}
response = request.body.read().decode('utf-8')
body = json.loads(response)
stmts_json = body.get('statements')
stmts = stmts_from_json(stmts_json)
om = OntologyMapper(stmts, wm_ontomap, scored=True, symmetric=False)
om.map_statements()
return _return_stmts(stmts) | python | def map_ontologies():
"""Run ontology mapping on a list of INDRA Statements."""
if request.method == 'OPTIONS':
return {}
response = request.body.read().decode('utf-8')
body = json.loads(response)
stmts_json = body.get('statements')
stmts = stmts_from_json(stmts_json)
om = OntologyMapper(stmts, wm_ontomap, scored=True, symmetric=False)
om.map_statements()
return _return_stmts(stmts) | [
"def",
"map_ontologies",
"(",
")",
":",
"if",
"request",
".",
"method",
"==",
"'OPTIONS'",
":",
"return",
"{",
"}",
"response",
"=",
"request",
".",
"body",
".",
"read",
"(",
")",
".",
"decode",
"(",
"'utf-8'",
")",
"body",
"=",
"json",
".",
"loads",
"(",
"response",
")",
"stmts_json",
"=",
"body",
".",
"get",
"(",
"'statements'",
")",
"stmts",
"=",
"stmts_from_json",
"(",
"stmts_json",
")",
"om",
"=",
"OntologyMapper",
"(",
"stmts",
",",
"wm_ontomap",
",",
"scored",
"=",
"True",
",",
"symmetric",
"=",
"False",
")",
"om",
".",
"map_statements",
"(",
")",
"return",
"_return_stmts",
"(",
"stmts",
")"
]
| Run ontology mapping on a list of INDRA Statements. | [
"Run",
"ontology",
"mapping",
"on",
"a",
"list",
"of",
"INDRA",
"Statements",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/rest_api/api.py#L583-L593 | train |
sorgerlab/indra | rest_api/api.py | filter_by_type | def filter_by_type():
"""Filter to a given INDRA Statement type."""
if request.method == 'OPTIONS':
return {}
response = request.body.read().decode('utf-8')
body = json.loads(response)
stmts_json = body.get('statements')
stmt_type_str = body.get('type')
stmt_type_str = stmt_type_str.capitalize()
stmt_type = getattr(sys.modules[__name__], stmt_type_str)
stmts = stmts_from_json(stmts_json)
stmts_out = ac.filter_by_type(stmts, stmt_type)
return _return_stmts(stmts_out) | python | def filter_by_type():
"""Filter to a given INDRA Statement type."""
if request.method == 'OPTIONS':
return {}
response = request.body.read().decode('utf-8')
body = json.loads(response)
stmts_json = body.get('statements')
stmt_type_str = body.get('type')
stmt_type_str = stmt_type_str.capitalize()
stmt_type = getattr(sys.modules[__name__], stmt_type_str)
stmts = stmts_from_json(stmts_json)
stmts_out = ac.filter_by_type(stmts, stmt_type)
return _return_stmts(stmts_out) | [
"def",
"filter_by_type",
"(",
")",
":",
"if",
"request",
".",
"method",
"==",
"'OPTIONS'",
":",
"return",
"{",
"}",
"response",
"=",
"request",
".",
"body",
".",
"read",
"(",
")",
".",
"decode",
"(",
"'utf-8'",
")",
"body",
"=",
"json",
".",
"loads",
"(",
"response",
")",
"stmts_json",
"=",
"body",
".",
"get",
"(",
"'statements'",
")",
"stmt_type_str",
"=",
"body",
".",
"get",
"(",
"'type'",
")",
"stmt_type_str",
"=",
"stmt_type_str",
".",
"capitalize",
"(",
")",
"stmt_type",
"=",
"getattr",
"(",
"sys",
".",
"modules",
"[",
"__name__",
"]",
",",
"stmt_type_str",
")",
"stmts",
"=",
"stmts_from_json",
"(",
"stmts_json",
")",
"stmts_out",
"=",
"ac",
".",
"filter_by_type",
"(",
"stmts",
",",
"stmt_type",
")",
"return",
"_return_stmts",
"(",
"stmts_out",
")"
]
| Filter to a given INDRA Statement type. | [
"Filter",
"to",
"a",
"given",
"INDRA",
"Statement",
"type",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/rest_api/api.py#L598-L610 | train |
sorgerlab/indra | rest_api/api.py | filter_grounded_only | def filter_grounded_only():
"""Filter to grounded Statements only."""
if request.method == 'OPTIONS':
return {}
response = request.body.read().decode('utf-8')
body = json.loads(response)
stmts_json = body.get('statements')
score_threshold = body.get('score_threshold')
if score_threshold is not None:
score_threshold = float(score_threshold)
stmts = stmts_from_json(stmts_json)
stmts_out = ac.filter_grounded_only(stmts, score_threshold=score_threshold)
return _return_stmts(stmts_out) | python | def filter_grounded_only():
"""Filter to grounded Statements only."""
if request.method == 'OPTIONS':
return {}
response = request.body.read().decode('utf-8')
body = json.loads(response)
stmts_json = body.get('statements')
score_threshold = body.get('score_threshold')
if score_threshold is not None:
score_threshold = float(score_threshold)
stmts = stmts_from_json(stmts_json)
stmts_out = ac.filter_grounded_only(stmts, score_threshold=score_threshold)
return _return_stmts(stmts_out) | [
"def",
"filter_grounded_only",
"(",
")",
":",
"if",
"request",
".",
"method",
"==",
"'OPTIONS'",
":",
"return",
"{",
"}",
"response",
"=",
"request",
".",
"body",
".",
"read",
"(",
")",
".",
"decode",
"(",
"'utf-8'",
")",
"body",
"=",
"json",
".",
"loads",
"(",
"response",
")",
"stmts_json",
"=",
"body",
".",
"get",
"(",
"'statements'",
")",
"score_threshold",
"=",
"body",
".",
"get",
"(",
"'score_threshold'",
")",
"if",
"score_threshold",
"is",
"not",
"None",
":",
"score_threshold",
"=",
"float",
"(",
"score_threshold",
")",
"stmts",
"=",
"stmts_from_json",
"(",
"stmts_json",
")",
"stmts_out",
"=",
"ac",
".",
"filter_grounded_only",
"(",
"stmts",
",",
"score_threshold",
"=",
"score_threshold",
")",
"return",
"_return_stmts",
"(",
"stmts_out",
")"
]
| Filter to grounded Statements only. | [
"Filter",
"to",
"grounded",
"Statements",
"only",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/rest_api/api.py#L615-L627 | train |
sorgerlab/indra | rest_api/api.py | filter_belief | def filter_belief():
"""Filter to beliefs above a given threshold."""
if request.method == 'OPTIONS':
return {}
response = request.body.read().decode('utf-8')
body = json.loads(response)
stmts_json = body.get('statements')
belief_cutoff = body.get('belief_cutoff')
if belief_cutoff is not None:
belief_cutoff = float(belief_cutoff)
stmts = stmts_from_json(stmts_json)
stmts_out = ac.filter_belief(stmts, belief_cutoff)
return _return_stmts(stmts_out) | python | def filter_belief():
"""Filter to beliefs above a given threshold."""
if request.method == 'OPTIONS':
return {}
response = request.body.read().decode('utf-8')
body = json.loads(response)
stmts_json = body.get('statements')
belief_cutoff = body.get('belief_cutoff')
if belief_cutoff is not None:
belief_cutoff = float(belief_cutoff)
stmts = stmts_from_json(stmts_json)
stmts_out = ac.filter_belief(stmts, belief_cutoff)
return _return_stmts(stmts_out) | [
"def",
"filter_belief",
"(",
")",
":",
"if",
"request",
".",
"method",
"==",
"'OPTIONS'",
":",
"return",
"{",
"}",
"response",
"=",
"request",
".",
"body",
".",
"read",
"(",
")",
".",
"decode",
"(",
"'utf-8'",
")",
"body",
"=",
"json",
".",
"loads",
"(",
"response",
")",
"stmts_json",
"=",
"body",
".",
"get",
"(",
"'statements'",
")",
"belief_cutoff",
"=",
"body",
".",
"get",
"(",
"'belief_cutoff'",
")",
"if",
"belief_cutoff",
"is",
"not",
"None",
":",
"belief_cutoff",
"=",
"float",
"(",
"belief_cutoff",
")",
"stmts",
"=",
"stmts_from_json",
"(",
"stmts_json",
")",
"stmts_out",
"=",
"ac",
".",
"filter_belief",
"(",
"stmts",
",",
"belief_cutoff",
")",
"return",
"_return_stmts",
"(",
"stmts_out",
")"
]
| Filter to beliefs above a given threshold. | [
"Filter",
"to",
"beliefs",
"above",
"a",
"given",
"threshold",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/rest_api/api.py#L632-L644 | train |
sorgerlab/indra | indra/util/get_version.py | get_git_info | def get_git_info():
"""Get a dict with useful git info."""
start_dir = abspath(curdir)
try:
chdir(dirname(abspath(__file__)))
re_patt_str = (r'commit\s+(?P<commit_hash>\w+).*?Author:\s+'
r'(?P<author_name>.*?)\s+<(?P<author_email>.*?)>\s+Date:\s+'
r'(?P<date>.*?)\n\s+(?P<commit_msg>.*?)(?:\ndiff.*?)?$')
show_out = check_output(['git', 'show']).decode('ascii')
revp_out = check_output(['git', 'rev-parse', '--abbrev-ref', 'HEAD'])
revp_out = revp_out.decode('ascii').strip()
m = re.search(re_patt_str, show_out, re.DOTALL)
assert m is not None, \
"Regex pattern:\n\n\"%s\"\n\n failed to match string:\n\n\"%s\"" \
% (re_patt_str, show_out)
ret_dict = m.groupdict()
ret_dict['branch_name'] = revp_out
finally:
chdir(start_dir)
return ret_dict | python | def get_git_info():
"""Get a dict with useful git info."""
start_dir = abspath(curdir)
try:
chdir(dirname(abspath(__file__)))
re_patt_str = (r'commit\s+(?P<commit_hash>\w+).*?Author:\s+'
r'(?P<author_name>.*?)\s+<(?P<author_email>.*?)>\s+Date:\s+'
r'(?P<date>.*?)\n\s+(?P<commit_msg>.*?)(?:\ndiff.*?)?$')
show_out = check_output(['git', 'show']).decode('ascii')
revp_out = check_output(['git', 'rev-parse', '--abbrev-ref', 'HEAD'])
revp_out = revp_out.decode('ascii').strip()
m = re.search(re_patt_str, show_out, re.DOTALL)
assert m is not None, \
"Regex pattern:\n\n\"%s\"\n\n failed to match string:\n\n\"%s\"" \
% (re_patt_str, show_out)
ret_dict = m.groupdict()
ret_dict['branch_name'] = revp_out
finally:
chdir(start_dir)
return ret_dict | [
"def",
"get_git_info",
"(",
")",
":",
"start_dir",
"=",
"abspath",
"(",
"curdir",
")",
"try",
":",
"chdir",
"(",
"dirname",
"(",
"abspath",
"(",
"__file__",
")",
")",
")",
"re_patt_str",
"=",
"(",
"r'commit\\s+(?P<commit_hash>\\w+).*?Author:\\s+'",
"r'(?P<author_name>.*?)\\s+<(?P<author_email>.*?)>\\s+Date:\\s+'",
"r'(?P<date>.*?)\\n\\s+(?P<commit_msg>.*?)(?:\\ndiff.*?)?$'",
")",
"show_out",
"=",
"check_output",
"(",
"[",
"'git'",
",",
"'show'",
"]",
")",
".",
"decode",
"(",
"'ascii'",
")",
"revp_out",
"=",
"check_output",
"(",
"[",
"'git'",
",",
"'rev-parse'",
",",
"'--abbrev-ref'",
",",
"'HEAD'",
"]",
")",
"revp_out",
"=",
"revp_out",
".",
"decode",
"(",
"'ascii'",
")",
".",
"strip",
"(",
")",
"m",
"=",
"re",
".",
"search",
"(",
"re_patt_str",
",",
"show_out",
",",
"re",
".",
"DOTALL",
")",
"assert",
"m",
"is",
"not",
"None",
",",
"\"Regex pattern:\\n\\n\\\"%s\\\"\\n\\n failed to match string:\\n\\n\\\"%s\\\"\"",
"%",
"(",
"re_patt_str",
",",
"show_out",
")",
"ret_dict",
"=",
"m",
".",
"groupdict",
"(",
")",
"ret_dict",
"[",
"'branch_name'",
"]",
"=",
"revp_out",
"finally",
":",
"chdir",
"(",
"start_dir",
")",
"return",
"ret_dict"
]
| Get a dict with useful git info. | [
"Get",
"a",
"dict",
"with",
"useful",
"git",
"info",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/util/get_version.py#L18-L37 | train |
sorgerlab/indra | indra/util/get_version.py | get_version | def get_version(with_git_hash=True, refresh_hash=False):
"""Get an indra version string, including a git hash."""
version = __version__
if with_git_hash:
global INDRA_GITHASH
if INDRA_GITHASH is None or refresh_hash:
with open(devnull, 'w') as nul:
try:
ret = check_output(['git', 'rev-parse', 'HEAD'],
cwd=dirname(__file__), stderr=nul)
except CalledProcessError:
ret = 'UNHASHED'
INDRA_GITHASH = ret.strip().decode('utf-8')
version = '%s-%s' % (version, INDRA_GITHASH)
return version | python | def get_version(with_git_hash=True, refresh_hash=False):
"""Get an indra version string, including a git hash."""
version = __version__
if with_git_hash:
global INDRA_GITHASH
if INDRA_GITHASH is None or refresh_hash:
with open(devnull, 'w') as nul:
try:
ret = check_output(['git', 'rev-parse', 'HEAD'],
cwd=dirname(__file__), stderr=nul)
except CalledProcessError:
ret = 'UNHASHED'
INDRA_GITHASH = ret.strip().decode('utf-8')
version = '%s-%s' % (version, INDRA_GITHASH)
return version | [
"def",
"get_version",
"(",
"with_git_hash",
"=",
"True",
",",
"refresh_hash",
"=",
"False",
")",
":",
"version",
"=",
"__version__",
"if",
"with_git_hash",
":",
"global",
"INDRA_GITHASH",
"if",
"INDRA_GITHASH",
"is",
"None",
"or",
"refresh_hash",
":",
"with",
"open",
"(",
"devnull",
",",
"'w'",
")",
"as",
"nul",
":",
"try",
":",
"ret",
"=",
"check_output",
"(",
"[",
"'git'",
",",
"'rev-parse'",
",",
"'HEAD'",
"]",
",",
"cwd",
"=",
"dirname",
"(",
"__file__",
")",
",",
"stderr",
"=",
"nul",
")",
"except",
"CalledProcessError",
":",
"ret",
"=",
"'UNHASHED'",
"INDRA_GITHASH",
"=",
"ret",
".",
"strip",
"(",
")",
".",
"decode",
"(",
"'utf-8'",
")",
"version",
"=",
"'%s-%s'",
"%",
"(",
"version",
",",
"INDRA_GITHASH",
")",
"return",
"version"
]
| Get an indra version string, including a git hash. | [
"Get",
"an",
"indra",
"version",
"string",
"including",
"a",
"git",
"hash",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/util/get_version.py#L40-L54 | train |
sorgerlab/indra | indra/assemblers/cx/assembler.py | _fix_evidence_text | def _fix_evidence_text(txt):
"""Eliminate some symbols to have cleaner supporting text."""
txt = re.sub('[ ]?\( xref \)', '', txt)
# This is to make [ xref ] become [] to match the two readers
txt = re.sub('\[ xref \]', '[]', txt)
txt = re.sub('[\(]?XREF_BIBR[\)]?[,]?', '', txt)
txt = re.sub('[\(]?XREF_FIG[\)]?[,]?', '', txt)
txt = re.sub('[\(]?XREF_SUPPLEMENT[\)]?[,]?', '', txt)
txt = txt.strip()
return txt | python | def _fix_evidence_text(txt):
"""Eliminate some symbols to have cleaner supporting text."""
txt = re.sub('[ ]?\( xref \)', '', txt)
# This is to make [ xref ] become [] to match the two readers
txt = re.sub('\[ xref \]', '[]', txt)
txt = re.sub('[\(]?XREF_BIBR[\)]?[,]?', '', txt)
txt = re.sub('[\(]?XREF_FIG[\)]?[,]?', '', txt)
txt = re.sub('[\(]?XREF_SUPPLEMENT[\)]?[,]?', '', txt)
txt = txt.strip()
return txt | [
"def",
"_fix_evidence_text",
"(",
"txt",
")",
":",
"txt",
"=",
"re",
".",
"sub",
"(",
"'[ ]?\\( xref \\)'",
",",
"''",
",",
"txt",
")",
"# This is to make [ xref ] become [] to match the two readers",
"txt",
"=",
"re",
".",
"sub",
"(",
"'\\[ xref \\]'",
",",
"'[]'",
",",
"txt",
")",
"txt",
"=",
"re",
".",
"sub",
"(",
"'[\\(]?XREF_BIBR[\\)]?[,]?'",
",",
"''",
",",
"txt",
")",
"txt",
"=",
"re",
".",
"sub",
"(",
"'[\\(]?XREF_FIG[\\)]?[,]?'",
",",
"''",
",",
"txt",
")",
"txt",
"=",
"re",
".",
"sub",
"(",
"'[\\(]?XREF_SUPPLEMENT[\\)]?[,]?'",
",",
"''",
",",
"txt",
")",
"txt",
"=",
"txt",
".",
"strip",
"(",
")",
"return",
"txt"
]
| Eliminate some symbols to have cleaner supporting text. | [
"Eliminate",
"some",
"symbols",
"to",
"have",
"cleaner",
"supporting",
"text",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/assemblers/cx/assembler.py#L562-L571 | train |
sorgerlab/indra | indra/assemblers/cx/assembler.py | CxAssembler.make_model | def make_model(self, add_indra_json=True):
"""Assemble the CX network from the collected INDRA Statements.
This method assembles a CX network from the set of INDRA Statements.
The assembled network is set as the assembler's cx argument.
Parameters
----------
add_indra_json : Optional[bool]
If True, the INDRA Statement JSON annotation is added to each
edge in the network. Default: True
Returns
-------
cx_str : str
The json serialized CX model.
"""
self.add_indra_json = add_indra_json
for stmt in self.statements:
if isinstance(stmt, Modification):
self._add_modification(stmt)
if isinstance(stmt, SelfModification):
self._add_self_modification(stmt)
elif isinstance(stmt, RegulateActivity) or \
isinstance(stmt, RegulateAmount):
self._add_regulation(stmt)
elif isinstance(stmt, Complex):
self._add_complex(stmt)
elif isinstance(stmt, Gef):
self._add_gef(stmt)
elif isinstance(stmt, Gap):
self._add_gap(stmt)
elif isinstance(stmt, Influence):
self._add_influence(stmt)
network_description = ''
self.cx['networkAttributes'].append({'n': 'name',
'v': self.network_name})
self.cx['networkAttributes'].append({'n': 'description',
'v': network_description})
cx_str = self.print_cx()
return cx_str | python | def make_model(self, add_indra_json=True):
"""Assemble the CX network from the collected INDRA Statements.
This method assembles a CX network from the set of INDRA Statements.
The assembled network is set as the assembler's cx argument.
Parameters
----------
add_indra_json : Optional[bool]
If True, the INDRA Statement JSON annotation is added to each
edge in the network. Default: True
Returns
-------
cx_str : str
The json serialized CX model.
"""
self.add_indra_json = add_indra_json
for stmt in self.statements:
if isinstance(stmt, Modification):
self._add_modification(stmt)
if isinstance(stmt, SelfModification):
self._add_self_modification(stmt)
elif isinstance(stmt, RegulateActivity) or \
isinstance(stmt, RegulateAmount):
self._add_regulation(stmt)
elif isinstance(stmt, Complex):
self._add_complex(stmt)
elif isinstance(stmt, Gef):
self._add_gef(stmt)
elif isinstance(stmt, Gap):
self._add_gap(stmt)
elif isinstance(stmt, Influence):
self._add_influence(stmt)
network_description = ''
self.cx['networkAttributes'].append({'n': 'name',
'v': self.network_name})
self.cx['networkAttributes'].append({'n': 'description',
'v': network_description})
cx_str = self.print_cx()
return cx_str | [
"def",
"make_model",
"(",
"self",
",",
"add_indra_json",
"=",
"True",
")",
":",
"self",
".",
"add_indra_json",
"=",
"add_indra_json",
"for",
"stmt",
"in",
"self",
".",
"statements",
":",
"if",
"isinstance",
"(",
"stmt",
",",
"Modification",
")",
":",
"self",
".",
"_add_modification",
"(",
"stmt",
")",
"if",
"isinstance",
"(",
"stmt",
",",
"SelfModification",
")",
":",
"self",
".",
"_add_self_modification",
"(",
"stmt",
")",
"elif",
"isinstance",
"(",
"stmt",
",",
"RegulateActivity",
")",
"or",
"isinstance",
"(",
"stmt",
",",
"RegulateAmount",
")",
":",
"self",
".",
"_add_regulation",
"(",
"stmt",
")",
"elif",
"isinstance",
"(",
"stmt",
",",
"Complex",
")",
":",
"self",
".",
"_add_complex",
"(",
"stmt",
")",
"elif",
"isinstance",
"(",
"stmt",
",",
"Gef",
")",
":",
"self",
".",
"_add_gef",
"(",
"stmt",
")",
"elif",
"isinstance",
"(",
"stmt",
",",
"Gap",
")",
":",
"self",
".",
"_add_gap",
"(",
"stmt",
")",
"elif",
"isinstance",
"(",
"stmt",
",",
"Influence",
")",
":",
"self",
".",
"_add_influence",
"(",
"stmt",
")",
"network_description",
"=",
"''",
"self",
".",
"cx",
"[",
"'networkAttributes'",
"]",
".",
"append",
"(",
"{",
"'n'",
":",
"'name'",
",",
"'v'",
":",
"self",
".",
"network_name",
"}",
")",
"self",
".",
"cx",
"[",
"'networkAttributes'",
"]",
".",
"append",
"(",
"{",
"'n'",
":",
"'description'",
",",
"'v'",
":",
"network_description",
"}",
")",
"cx_str",
"=",
"self",
".",
"print_cx",
"(",
")",
"return",
"cx_str"
]
| Assemble the CX network from the collected INDRA Statements.
This method assembles a CX network from the set of INDRA Statements.
The assembled network is set as the assembler's cx argument.
Parameters
----------
add_indra_json : Optional[bool]
If True, the INDRA Statement JSON annotation is added to each
edge in the network. Default: True
Returns
-------
cx_str : str
The json serialized CX model. | [
"Assemble",
"the",
"CX",
"network",
"from",
"the",
"collected",
"INDRA",
"Statements",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/assemblers/cx/assembler.py#L75-L115 | train |
sorgerlab/indra | indra/assemblers/cx/assembler.py | CxAssembler.print_cx | def print_cx(self, pretty=True):
"""Return the assembled CX network as a json string.
Parameters
----------
pretty : bool
If True, the CX string is formatted with indentation (for human
viewing) otherwise no indentation is used.
Returns
-------
json_str : str
A json formatted string representation of the CX network.
"""
def _get_aspect_metadata(aspect):
count = len(self.cx.get(aspect)) if self.cx.get(aspect) else 0
if not count:
return None
data = {'name': aspect,
'idCounter': self._id_counter,
'consistencyGroup': 1,
'elementCount': count}
return data
full_cx = OrderedDict()
full_cx['numberVerification'] = [{'longNumber': 281474976710655}]
aspects = ['nodes', 'edges', 'supports', 'citations', 'edgeAttributes',
'edgeCitations', 'edgeSupports', 'networkAttributes',
'nodeAttributes', 'cartesianLayout']
full_cx['metaData'] = []
for aspect in aspects:
metadata = _get_aspect_metadata(aspect)
if metadata:
full_cx['metaData'].append(metadata)
for k, v in self.cx.items():
full_cx[k] = v
full_cx['status'] = [{'error': '', 'success': True}]
full_cx = [{k: v} for k, v in full_cx.items()]
if pretty:
json_str = json.dumps(full_cx, indent=2)
else:
json_str = json.dumps(full_cx)
return json_str | python | def print_cx(self, pretty=True):
"""Return the assembled CX network as a json string.
Parameters
----------
pretty : bool
If True, the CX string is formatted with indentation (for human
viewing) otherwise no indentation is used.
Returns
-------
json_str : str
A json formatted string representation of the CX network.
"""
def _get_aspect_metadata(aspect):
count = len(self.cx.get(aspect)) if self.cx.get(aspect) else 0
if not count:
return None
data = {'name': aspect,
'idCounter': self._id_counter,
'consistencyGroup': 1,
'elementCount': count}
return data
full_cx = OrderedDict()
full_cx['numberVerification'] = [{'longNumber': 281474976710655}]
aspects = ['nodes', 'edges', 'supports', 'citations', 'edgeAttributes',
'edgeCitations', 'edgeSupports', 'networkAttributes',
'nodeAttributes', 'cartesianLayout']
full_cx['metaData'] = []
for aspect in aspects:
metadata = _get_aspect_metadata(aspect)
if metadata:
full_cx['metaData'].append(metadata)
for k, v in self.cx.items():
full_cx[k] = v
full_cx['status'] = [{'error': '', 'success': True}]
full_cx = [{k: v} for k, v in full_cx.items()]
if pretty:
json_str = json.dumps(full_cx, indent=2)
else:
json_str = json.dumps(full_cx)
return json_str | [
"def",
"print_cx",
"(",
"self",
",",
"pretty",
"=",
"True",
")",
":",
"def",
"_get_aspect_metadata",
"(",
"aspect",
")",
":",
"count",
"=",
"len",
"(",
"self",
".",
"cx",
".",
"get",
"(",
"aspect",
")",
")",
"if",
"self",
".",
"cx",
".",
"get",
"(",
"aspect",
")",
"else",
"0",
"if",
"not",
"count",
":",
"return",
"None",
"data",
"=",
"{",
"'name'",
":",
"aspect",
",",
"'idCounter'",
":",
"self",
".",
"_id_counter",
",",
"'consistencyGroup'",
":",
"1",
",",
"'elementCount'",
":",
"count",
"}",
"return",
"data",
"full_cx",
"=",
"OrderedDict",
"(",
")",
"full_cx",
"[",
"'numberVerification'",
"]",
"=",
"[",
"{",
"'longNumber'",
":",
"281474976710655",
"}",
"]",
"aspects",
"=",
"[",
"'nodes'",
",",
"'edges'",
",",
"'supports'",
",",
"'citations'",
",",
"'edgeAttributes'",
",",
"'edgeCitations'",
",",
"'edgeSupports'",
",",
"'networkAttributes'",
",",
"'nodeAttributes'",
",",
"'cartesianLayout'",
"]",
"full_cx",
"[",
"'metaData'",
"]",
"=",
"[",
"]",
"for",
"aspect",
"in",
"aspects",
":",
"metadata",
"=",
"_get_aspect_metadata",
"(",
"aspect",
")",
"if",
"metadata",
":",
"full_cx",
"[",
"'metaData'",
"]",
".",
"append",
"(",
"metadata",
")",
"for",
"k",
",",
"v",
"in",
"self",
".",
"cx",
".",
"items",
"(",
")",
":",
"full_cx",
"[",
"k",
"]",
"=",
"v",
"full_cx",
"[",
"'status'",
"]",
"=",
"[",
"{",
"'error'",
":",
"''",
",",
"'success'",
":",
"True",
"}",
"]",
"full_cx",
"=",
"[",
"{",
"k",
":",
"v",
"}",
"for",
"k",
",",
"v",
"in",
"full_cx",
".",
"items",
"(",
")",
"]",
"if",
"pretty",
":",
"json_str",
"=",
"json",
".",
"dumps",
"(",
"full_cx",
",",
"indent",
"=",
"2",
")",
"else",
":",
"json_str",
"=",
"json",
".",
"dumps",
"(",
"full_cx",
")",
"return",
"json_str"
]
| Return the assembled CX network as a json string.
Parameters
----------
pretty : bool
If True, the CX string is formatted with indentation (for human
viewing) otherwise no indentation is used.
Returns
-------
json_str : str
A json formatted string representation of the CX network. | [
"Return",
"the",
"assembled",
"CX",
"network",
"as",
"a",
"json",
"string",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/assemblers/cx/assembler.py#L117-L158 | train |
sorgerlab/indra | indra/assemblers/cx/assembler.py | CxAssembler.save_model | def save_model(self, file_name='model.cx'):
"""Save the assembled CX network in a file.
Parameters
----------
file_name : Optional[str]
The name of the file to save the CX network to. Default: model.cx
"""
with open(file_name, 'wt') as fh:
cx_str = self.print_cx()
fh.write(cx_str) | python | def save_model(self, file_name='model.cx'):
"""Save the assembled CX network in a file.
Parameters
----------
file_name : Optional[str]
The name of the file to save the CX network to. Default: model.cx
"""
with open(file_name, 'wt') as fh:
cx_str = self.print_cx()
fh.write(cx_str) | [
"def",
"save_model",
"(",
"self",
",",
"file_name",
"=",
"'model.cx'",
")",
":",
"with",
"open",
"(",
"file_name",
",",
"'wt'",
")",
"as",
"fh",
":",
"cx_str",
"=",
"self",
".",
"print_cx",
"(",
")",
"fh",
".",
"write",
"(",
"cx_str",
")"
]
| Save the assembled CX network in a file.
Parameters
----------
file_name : Optional[str]
The name of the file to save the CX network to. Default: model.cx | [
"Save",
"the",
"assembled",
"CX",
"network",
"in",
"a",
"file",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/assemblers/cx/assembler.py#L160-L170 | train |
sorgerlab/indra | indra/assemblers/cx/assembler.py | CxAssembler.set_context | def set_context(self, cell_type):
"""Set protein expression data and mutational status as node attribute
This method uses :py:mod:`indra.databases.context_client` to get
protein expression levels and mutational status for a given cell type
and set a node attribute for proteins accordingly.
Parameters
----------
cell_type : str
Cell type name for which expression levels are queried.
The cell type name follows the CCLE database conventions.
Example: LOXIMVI_SKIN, BT20_BREAST
"""
node_names = [node['n'] for node in self.cx['nodes']]
res_expr = context_client.get_protein_expression(node_names,
[cell_type])
res_mut = context_client.get_mutations(node_names,
[cell_type])
res_expr = res_expr.get(cell_type)
res_mut = res_mut.get(cell_type)
if not res_expr:
msg = 'Could not get protein expression for %s cell type.' % \
cell_type
logger.warning(msg)
if not res_mut:
msg = 'Could not get mutational status for %s cell type.' % \
cell_type
logger.warning(msg)
if not res_expr and not res_mut:
return
self.cx['networkAttributes'].append({'n': 'cellular_context',
'v': cell_type})
counter = 0
for node in self.cx['nodes']:
amount = res_expr.get(node['n'])
mut = res_mut.get(node['n'])
if amount is not None:
node_attribute = {'po': node['@id'],
'n': 'expression_amount',
'v': int(amount)}
self.cx['nodeAttributes'].append(node_attribute)
if mut is not None:
is_mutated = 1 if mut else 0
node_attribute = {'po': node['@id'],
'n': 'is_mutated',
'v': is_mutated}
self.cx['nodeAttributes'].append(node_attribute)
if mut is not None or amount is not None:
counter += 1
logger.info('Set context for %d nodes.' % counter) | python | def set_context(self, cell_type):
"""Set protein expression data and mutational status as node attribute
This method uses :py:mod:`indra.databases.context_client` to get
protein expression levels and mutational status for a given cell type
and set a node attribute for proteins accordingly.
Parameters
----------
cell_type : str
Cell type name for which expression levels are queried.
The cell type name follows the CCLE database conventions.
Example: LOXIMVI_SKIN, BT20_BREAST
"""
node_names = [node['n'] for node in self.cx['nodes']]
res_expr = context_client.get_protein_expression(node_names,
[cell_type])
res_mut = context_client.get_mutations(node_names,
[cell_type])
res_expr = res_expr.get(cell_type)
res_mut = res_mut.get(cell_type)
if not res_expr:
msg = 'Could not get protein expression for %s cell type.' % \
cell_type
logger.warning(msg)
if not res_mut:
msg = 'Could not get mutational status for %s cell type.' % \
cell_type
logger.warning(msg)
if not res_expr and not res_mut:
return
self.cx['networkAttributes'].append({'n': 'cellular_context',
'v': cell_type})
counter = 0
for node in self.cx['nodes']:
amount = res_expr.get(node['n'])
mut = res_mut.get(node['n'])
if amount is not None:
node_attribute = {'po': node['@id'],
'n': 'expression_amount',
'v': int(amount)}
self.cx['nodeAttributes'].append(node_attribute)
if mut is not None:
is_mutated = 1 if mut else 0
node_attribute = {'po': node['@id'],
'n': 'is_mutated',
'v': is_mutated}
self.cx['nodeAttributes'].append(node_attribute)
if mut is not None or amount is not None:
counter += 1
logger.info('Set context for %d nodes.' % counter) | [
"def",
"set_context",
"(",
"self",
",",
"cell_type",
")",
":",
"node_names",
"=",
"[",
"node",
"[",
"'n'",
"]",
"for",
"node",
"in",
"self",
".",
"cx",
"[",
"'nodes'",
"]",
"]",
"res_expr",
"=",
"context_client",
".",
"get_protein_expression",
"(",
"node_names",
",",
"[",
"cell_type",
"]",
")",
"res_mut",
"=",
"context_client",
".",
"get_mutations",
"(",
"node_names",
",",
"[",
"cell_type",
"]",
")",
"res_expr",
"=",
"res_expr",
".",
"get",
"(",
"cell_type",
")",
"res_mut",
"=",
"res_mut",
".",
"get",
"(",
"cell_type",
")",
"if",
"not",
"res_expr",
":",
"msg",
"=",
"'Could not get protein expression for %s cell type.'",
"%",
"cell_type",
"logger",
".",
"warning",
"(",
"msg",
")",
"if",
"not",
"res_mut",
":",
"msg",
"=",
"'Could not get mutational status for %s cell type.'",
"%",
"cell_type",
"logger",
".",
"warning",
"(",
"msg",
")",
"if",
"not",
"res_expr",
"and",
"not",
"res_mut",
":",
"return",
"self",
".",
"cx",
"[",
"'networkAttributes'",
"]",
".",
"append",
"(",
"{",
"'n'",
":",
"'cellular_context'",
",",
"'v'",
":",
"cell_type",
"}",
")",
"counter",
"=",
"0",
"for",
"node",
"in",
"self",
".",
"cx",
"[",
"'nodes'",
"]",
":",
"amount",
"=",
"res_expr",
".",
"get",
"(",
"node",
"[",
"'n'",
"]",
")",
"mut",
"=",
"res_mut",
".",
"get",
"(",
"node",
"[",
"'n'",
"]",
")",
"if",
"amount",
"is",
"not",
"None",
":",
"node_attribute",
"=",
"{",
"'po'",
":",
"node",
"[",
"'@id'",
"]",
",",
"'n'",
":",
"'expression_amount'",
",",
"'v'",
":",
"int",
"(",
"amount",
")",
"}",
"self",
".",
"cx",
"[",
"'nodeAttributes'",
"]",
".",
"append",
"(",
"node_attribute",
")",
"if",
"mut",
"is",
"not",
"None",
":",
"is_mutated",
"=",
"1",
"if",
"mut",
"else",
"0",
"node_attribute",
"=",
"{",
"'po'",
":",
"node",
"[",
"'@id'",
"]",
",",
"'n'",
":",
"'is_mutated'",
",",
"'v'",
":",
"is_mutated",
"}",
"self",
".",
"cx",
"[",
"'nodeAttributes'",
"]",
".",
"append",
"(",
"node_attribute",
")",
"if",
"mut",
"is",
"not",
"None",
"or",
"amount",
"is",
"not",
"None",
":",
"counter",
"+=",
"1",
"logger",
".",
"info",
"(",
"'Set context for %d nodes.'",
"%",
"counter",
")"
]
| Set protein expression data and mutational status as node attribute
This method uses :py:mod:`indra.databases.context_client` to get
protein expression levels and mutational status for a given cell type
and set a node attribute for proteins accordingly.
Parameters
----------
cell_type : str
Cell type name for which expression levels are queried.
The cell type name follows the CCLE database conventions.
Example: LOXIMVI_SKIN, BT20_BREAST | [
"Set",
"protein",
"expression",
"data",
"and",
"mutational",
"status",
"as",
"node",
"attribute"
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/assemblers/cx/assembler.py#L212-L265 | train |
sorgerlab/indra | indra/databases/biogrid_client.py | get_publications | def get_publications(gene_names, save_json_name=None):
"""Return evidence publications for interaction between the given genes.
Parameters
----------
gene_names : list[str]
A list of gene names (HGNC symbols) to query interactions between.
Currently supports exactly two genes only.
save_json_name : Optional[str]
A file name to save the raw BioGRID web service output in. By default,
the raw output is not saved.
Return
------
publications : list[Publication]
A list of Publication objects that provide evidence for interactions
between the given list of genes.
"""
if len(gene_names) != 2:
logger.warning('Other than 2 gene names given.')
return []
res_dict = _send_request(gene_names)
if not res_dict:
return []
if save_json_name is not None:
# The json module produces strings, not bytes, so the file should be
# opened in text mode
with open(save_json_name, 'wt') as fh:
json.dump(res_dict, fh, indent=1)
publications = _extract_publications(res_dict, gene_names)
return publications | python | def get_publications(gene_names, save_json_name=None):
"""Return evidence publications for interaction between the given genes.
Parameters
----------
gene_names : list[str]
A list of gene names (HGNC symbols) to query interactions between.
Currently supports exactly two genes only.
save_json_name : Optional[str]
A file name to save the raw BioGRID web service output in. By default,
the raw output is not saved.
Return
------
publications : list[Publication]
A list of Publication objects that provide evidence for interactions
between the given list of genes.
"""
if len(gene_names) != 2:
logger.warning('Other than 2 gene names given.')
return []
res_dict = _send_request(gene_names)
if not res_dict:
return []
if save_json_name is not None:
# The json module produces strings, not bytes, so the file should be
# opened in text mode
with open(save_json_name, 'wt') as fh:
json.dump(res_dict, fh, indent=1)
publications = _extract_publications(res_dict, gene_names)
return publications | [
"def",
"get_publications",
"(",
"gene_names",
",",
"save_json_name",
"=",
"None",
")",
":",
"if",
"len",
"(",
"gene_names",
")",
"!=",
"2",
":",
"logger",
".",
"warning",
"(",
"'Other than 2 gene names given.'",
")",
"return",
"[",
"]",
"res_dict",
"=",
"_send_request",
"(",
"gene_names",
")",
"if",
"not",
"res_dict",
":",
"return",
"[",
"]",
"if",
"save_json_name",
"is",
"not",
"None",
":",
"# The json module produces strings, not bytes, so the file should be",
"# opened in text mode",
"with",
"open",
"(",
"save_json_name",
",",
"'wt'",
")",
"as",
"fh",
":",
"json",
".",
"dump",
"(",
"res_dict",
",",
"fh",
",",
"indent",
"=",
"1",
")",
"publications",
"=",
"_extract_publications",
"(",
"res_dict",
",",
"gene_names",
")",
"return",
"publications"
]
| Return evidence publications for interaction between the given genes.
Parameters
----------
gene_names : list[str]
A list of gene names (HGNC symbols) to query interactions between.
Currently supports exactly two genes only.
save_json_name : Optional[str]
A file name to save the raw BioGRID web service output in. By default,
the raw output is not saved.
Return
------
publications : list[Publication]
A list of Publication objects that provide evidence for interactions
between the given list of genes. | [
"Return",
"evidence",
"publications",
"for",
"interaction",
"between",
"the",
"given",
"genes",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/databases/biogrid_client.py#L90-L120 | train |
sorgerlab/indra | indra/assemblers/pysb/common.py | _n | def _n(name):
"""Return valid PySB name."""
n = name.encode('ascii', errors='ignore').decode('ascii')
n = re.sub('[^A-Za-z0-9_]', '_', n)
n = re.sub(r'(^[0-9].*)', r'p\1', n)
return n | python | def _n(name):
"""Return valid PySB name."""
n = name.encode('ascii', errors='ignore').decode('ascii')
n = re.sub('[^A-Za-z0-9_]', '_', n)
n = re.sub(r'(^[0-9].*)', r'p\1', n)
return n | [
"def",
"_n",
"(",
"name",
")",
":",
"n",
"=",
"name",
".",
"encode",
"(",
"'ascii'",
",",
"errors",
"=",
"'ignore'",
")",
".",
"decode",
"(",
"'ascii'",
")",
"n",
"=",
"re",
".",
"sub",
"(",
"'[^A-Za-z0-9_]'",
",",
"'_'",
",",
"n",
")",
"n",
"=",
"re",
".",
"sub",
"(",
"r'(^[0-9].*)'",
",",
"r'p\\1'",
",",
"n",
")",
"return",
"n"
]
| Return valid PySB name. | [
"Return",
"valid",
"PySB",
"name",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/assemblers/pysb/common.py#L5-L10 | train |
sorgerlab/indra | indra/sources/indra_db_rest/processor.py | IndraDBRestProcessor.get_hash_statements_dict | def get_hash_statements_dict(self):
"""Return a dict of Statements keyed by hashes."""
res = {stmt_hash: stmts_from_json([stmt])[0]
for stmt_hash, stmt in self.__statement_jsons.items()}
return res | python | def get_hash_statements_dict(self):
"""Return a dict of Statements keyed by hashes."""
res = {stmt_hash: stmts_from_json([stmt])[0]
for stmt_hash, stmt in self.__statement_jsons.items()}
return res | [
"def",
"get_hash_statements_dict",
"(",
"self",
")",
":",
"res",
"=",
"{",
"stmt_hash",
":",
"stmts_from_json",
"(",
"[",
"stmt",
"]",
")",
"[",
"0",
"]",
"for",
"stmt_hash",
",",
"stmt",
"in",
"self",
".",
"__statement_jsons",
".",
"items",
"(",
")",
"}",
"return",
"res"
]
| Return a dict of Statements keyed by hashes. | [
"Return",
"a",
"dict",
"of",
"Statements",
"keyed",
"by",
"hashes",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/sources/indra_db_rest/processor.py#L159-L163 | train |
sorgerlab/indra | indra/sources/indra_db_rest/processor.py | IndraDBRestProcessor.merge_results | def merge_results(self, other_processor):
"""Merge the results of this processor with those of another."""
if not isinstance(other_processor, self.__class__):
raise ValueError("Can only extend with another %s instance."
% self.__class__.__name__)
self.statements.extend(other_processor.statements)
if other_processor.statements_sample is not None:
if self.statements_sample is None:
self.statements_sample = other_processor.statements_sample
else:
self.statements_sample.extend(other_processor.statements_sample)
self._merge_json(other_processor.__statement_jsons,
other_processor.__evidence_counts)
return | python | def merge_results(self, other_processor):
"""Merge the results of this processor with those of another."""
if not isinstance(other_processor, self.__class__):
raise ValueError("Can only extend with another %s instance."
% self.__class__.__name__)
self.statements.extend(other_processor.statements)
if other_processor.statements_sample is not None:
if self.statements_sample is None:
self.statements_sample = other_processor.statements_sample
else:
self.statements_sample.extend(other_processor.statements_sample)
self._merge_json(other_processor.__statement_jsons,
other_processor.__evidence_counts)
return | [
"def",
"merge_results",
"(",
"self",
",",
"other_processor",
")",
":",
"if",
"not",
"isinstance",
"(",
"other_processor",
",",
"self",
".",
"__class__",
")",
":",
"raise",
"ValueError",
"(",
"\"Can only extend with another %s instance.\"",
"%",
"self",
".",
"__class__",
".",
"__name__",
")",
"self",
".",
"statements",
".",
"extend",
"(",
"other_processor",
".",
"statements",
")",
"if",
"other_processor",
".",
"statements_sample",
"is",
"not",
"None",
":",
"if",
"self",
".",
"statements_sample",
"is",
"None",
":",
"self",
".",
"statements_sample",
"=",
"other_processor",
".",
"statements_sample",
"else",
":",
"self",
".",
"statements_sample",
".",
"extend",
"(",
"other_processor",
".",
"statements_sample",
")",
"self",
".",
"_merge_json",
"(",
"other_processor",
".",
"__statement_jsons",
",",
"other_processor",
".",
"__evidence_counts",
")",
"return"
]
| Merge the results of this processor with those of another. | [
"Merge",
"the",
"results",
"of",
"this",
"processor",
"with",
"those",
"of",
"another",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/sources/indra_db_rest/processor.py#L165-L179 | train |
sorgerlab/indra | indra/sources/indra_db_rest/processor.py | IndraDBRestProcessor.wait_until_done | def wait_until_done(self, timeout=None):
"""Wait for the background load to complete."""
start = datetime.now()
if not self.__th:
raise IndraDBRestResponseError("There is no thread waiting to "
"complete.")
self.__th.join(timeout)
now = datetime.now()
dt = now - start
if self.__th.is_alive():
logger.warning("Timed out after %0.3f seconds waiting for "
"statement load to complete." % dt.total_seconds())
ret = False
else:
logger.info("Waited %0.3f seconds for statements to finish loading."
% dt.total_seconds())
ret = True
return ret | python | def wait_until_done(self, timeout=None):
"""Wait for the background load to complete."""
start = datetime.now()
if not self.__th:
raise IndraDBRestResponseError("There is no thread waiting to "
"complete.")
self.__th.join(timeout)
now = datetime.now()
dt = now - start
if self.__th.is_alive():
logger.warning("Timed out after %0.3f seconds waiting for "
"statement load to complete." % dt.total_seconds())
ret = False
else:
logger.info("Waited %0.3f seconds for statements to finish loading."
% dt.total_seconds())
ret = True
return ret | [
"def",
"wait_until_done",
"(",
"self",
",",
"timeout",
"=",
"None",
")",
":",
"start",
"=",
"datetime",
".",
"now",
"(",
")",
"if",
"not",
"self",
".",
"__th",
":",
"raise",
"IndraDBRestResponseError",
"(",
"\"There is no thread waiting to \"",
"\"complete.\"",
")",
"self",
".",
"__th",
".",
"join",
"(",
"timeout",
")",
"now",
"=",
"datetime",
".",
"now",
"(",
")",
"dt",
"=",
"now",
"-",
"start",
"if",
"self",
".",
"__th",
".",
"is_alive",
"(",
")",
":",
"logger",
".",
"warning",
"(",
"\"Timed out after %0.3f seconds waiting for \"",
"\"statement load to complete.\"",
"%",
"dt",
".",
"total_seconds",
"(",
")",
")",
"ret",
"=",
"False",
"else",
":",
"logger",
".",
"info",
"(",
"\"Waited %0.3f seconds for statements to finish loading.\"",
"%",
"dt",
".",
"total_seconds",
"(",
")",
")",
"ret",
"=",
"True",
"return",
"ret"
]
| Wait for the background load to complete. | [
"Wait",
"for",
"the",
"background",
"load",
"to",
"complete",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/sources/indra_db_rest/processor.py#L181-L198 | train |
sorgerlab/indra | indra/sources/indra_db_rest/processor.py | IndraDBRestProcessor._merge_json | def _merge_json(self, stmt_json, ev_counts):
"""Merge these statement jsons with new jsons."""
# Where there is overlap, there _should_ be agreement.
self.__evidence_counts.update(ev_counts)
for k, sj in stmt_json.items():
if k not in self.__statement_jsons:
self.__statement_jsons[k] = sj # This should be most of them
else:
# This should only happen rarely.
for evj in sj['evidence']:
self.__statement_jsons[k]['evidence'].append(evj)
if not self.__started:
self.statements_sample = stmts_from_json(
self.__statement_jsons.values())
self.__started = True
return | python | def _merge_json(self, stmt_json, ev_counts):
"""Merge these statement jsons with new jsons."""
# Where there is overlap, there _should_ be agreement.
self.__evidence_counts.update(ev_counts)
for k, sj in stmt_json.items():
if k not in self.__statement_jsons:
self.__statement_jsons[k] = sj # This should be most of them
else:
# This should only happen rarely.
for evj in sj['evidence']:
self.__statement_jsons[k]['evidence'].append(evj)
if not self.__started:
self.statements_sample = stmts_from_json(
self.__statement_jsons.values())
self.__started = True
return | [
"def",
"_merge_json",
"(",
"self",
",",
"stmt_json",
",",
"ev_counts",
")",
":",
"# Where there is overlap, there _should_ be agreement.",
"self",
".",
"__evidence_counts",
".",
"update",
"(",
"ev_counts",
")",
"for",
"k",
",",
"sj",
"in",
"stmt_json",
".",
"items",
"(",
")",
":",
"if",
"k",
"not",
"in",
"self",
".",
"__statement_jsons",
":",
"self",
".",
"__statement_jsons",
"[",
"k",
"]",
"=",
"sj",
"# This should be most of them",
"else",
":",
"# This should only happen rarely.",
"for",
"evj",
"in",
"sj",
"[",
"'evidence'",
"]",
":",
"self",
".",
"__statement_jsons",
"[",
"k",
"]",
"[",
"'evidence'",
"]",
".",
"append",
"(",
"evj",
")",
"if",
"not",
"self",
".",
"__started",
":",
"self",
".",
"statements_sample",
"=",
"stmts_from_json",
"(",
"self",
".",
"__statement_jsons",
".",
"values",
"(",
")",
")",
"self",
".",
"__started",
"=",
"True",
"return"
]
| Merge these statement jsons with new jsons. | [
"Merge",
"these",
"statement",
"jsons",
"with",
"new",
"jsons",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/sources/indra_db_rest/processor.py#L200-L217 | train |
sorgerlab/indra | indra/sources/indra_db_rest/processor.py | IndraDBRestProcessor._run_queries | def _run_queries(self, agent_strs, stmt_types, params, persist):
"""Use paging to get all statements requested."""
self._query_over_statement_types(agent_strs, stmt_types, params)
assert len(self.__done_dict) == len(stmt_types) \
or None in self.__done_dict.keys(), \
"Done dict was not initiated for all stmt_type's."
# Check if we want to keep going.
if not persist:
self._compile_statements()
return
# Get the rest of the content.
while not self._all_done():
self._query_over_statement_types(agent_strs, stmt_types, params)
# Create the actual statements.
self._compile_statements()
return | python | def _run_queries(self, agent_strs, stmt_types, params, persist):
"""Use paging to get all statements requested."""
self._query_over_statement_types(agent_strs, stmt_types, params)
assert len(self.__done_dict) == len(stmt_types) \
or None in self.__done_dict.keys(), \
"Done dict was not initiated for all stmt_type's."
# Check if we want to keep going.
if not persist:
self._compile_statements()
return
# Get the rest of the content.
while not self._all_done():
self._query_over_statement_types(agent_strs, stmt_types, params)
# Create the actual statements.
self._compile_statements()
return | [
"def",
"_run_queries",
"(",
"self",
",",
"agent_strs",
",",
"stmt_types",
",",
"params",
",",
"persist",
")",
":",
"self",
".",
"_query_over_statement_types",
"(",
"agent_strs",
",",
"stmt_types",
",",
"params",
")",
"assert",
"len",
"(",
"self",
".",
"__done_dict",
")",
"==",
"len",
"(",
"stmt_types",
")",
"or",
"None",
"in",
"self",
".",
"__done_dict",
".",
"keys",
"(",
")",
",",
"\"Done dict was not initiated for all stmt_type's.\"",
"# Check if we want to keep going.",
"if",
"not",
"persist",
":",
"self",
".",
"_compile_statements",
"(",
")",
"return",
"# Get the rest of the content.",
"while",
"not",
"self",
".",
"_all_done",
"(",
")",
":",
"self",
".",
"_query_over_statement_types",
"(",
"agent_strs",
",",
"stmt_types",
",",
"params",
")",
"# Create the actual statements.",
"self",
".",
"_compile_statements",
"(",
")",
"return"
]
| Use paging to get all statements requested. | [
"Use",
"paging",
"to",
"get",
"all",
"statements",
"requested",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/sources/indra_db_rest/processor.py#L274-L293 | train |
sorgerlab/indra | indra/literature/pubmed_client.py | get_ids | def get_ids(search_term, **kwargs):
"""Search Pubmed for paper IDs given a search term.
Search options can be passed as keyword arguments, some of which are
custom keywords identified by this function, while others are passed on
as parameters for the request to the PubMed web service
For details on parameters that can be used in PubMed searches, see
https://www.ncbi.nlm.nih.gov/books/NBK25499/#chapter4.ESearch Some useful
parameters to pass are db='pmc' to search PMC instead of pubmed reldate=2
to search for papers within the last 2 days mindate='2016/03/01',
maxdate='2016/03/31' to search for papers in March 2016.
PubMed, by default, limits returned PMIDs to a small number, and this
number can be controlled by the "retmax" parameter. This function
uses a retmax value of 100,000 by default that can be changed via the
corresponding keyword argument.
Parameters
----------
search_term : str
A term for which the PubMed search should be performed.
use_text_word : Optional[bool]
If True, the "[tw]" string is appended to the search term to constrain
the search to "text words", that is words that appear as whole
in relevant parts of the PubMed entry (excl. for instance the journal
name or publication date) like the title and abstract. Using this
option can eliminate spurious search results such as all articles
published in June for a search for the "JUN" gene, or journal names
that contain Acad for a search for the "ACAD" gene.
See also: https://www.nlm.nih.gov/bsd/disted/pubmedtutorial/020_760.html
Default : True
kwargs : kwargs
Additional keyword arguments to pass to the PubMed search as
parameters.
"""
use_text_word = kwargs.pop('use_text_word', True)
if use_text_word:
search_term += '[tw]'
params = {'term': search_term,
'retmax': 100000,
'retstart': 0,
'db': 'pubmed',
'sort': 'pub+date'}
params.update(kwargs)
tree = send_request(pubmed_search, params)
if tree is None:
return []
if tree.find('ERROR') is not None:
logger.error(tree.find('ERROR').text)
return []
if tree.find('ErrorList') is not None:
for err in tree.find('ErrorList').getchildren():
logger.error('Error - %s: %s' % (err.tag, err.text))
return []
count = int(tree.find('Count').text)
id_terms = tree.findall('IdList/Id')
if id_terms is None:
return []
ids = [idt.text for idt in id_terms]
if count != len(ids):
logger.warning('Not all ids were retrieved for search %s;\n'
'limited at %d.' % (search_term, params['retmax']))
return ids | python | def get_ids(search_term, **kwargs):
"""Search Pubmed for paper IDs given a search term.
Search options can be passed as keyword arguments, some of which are
custom keywords identified by this function, while others are passed on
as parameters for the request to the PubMed web service
For details on parameters that can be used in PubMed searches, see
https://www.ncbi.nlm.nih.gov/books/NBK25499/#chapter4.ESearch Some useful
parameters to pass are db='pmc' to search PMC instead of pubmed reldate=2
to search for papers within the last 2 days mindate='2016/03/01',
maxdate='2016/03/31' to search for papers in March 2016.
PubMed, by default, limits returned PMIDs to a small number, and this
number can be controlled by the "retmax" parameter. This function
uses a retmax value of 100,000 by default that can be changed via the
corresponding keyword argument.
Parameters
----------
search_term : str
A term for which the PubMed search should be performed.
use_text_word : Optional[bool]
If True, the "[tw]" string is appended to the search term to constrain
the search to "text words", that is words that appear as whole
in relevant parts of the PubMed entry (excl. for instance the journal
name or publication date) like the title and abstract. Using this
option can eliminate spurious search results such as all articles
published in June for a search for the "JUN" gene, or journal names
that contain Acad for a search for the "ACAD" gene.
See also: https://www.nlm.nih.gov/bsd/disted/pubmedtutorial/020_760.html
Default : True
kwargs : kwargs
Additional keyword arguments to pass to the PubMed search as
parameters.
"""
use_text_word = kwargs.pop('use_text_word', True)
if use_text_word:
search_term += '[tw]'
params = {'term': search_term,
'retmax': 100000,
'retstart': 0,
'db': 'pubmed',
'sort': 'pub+date'}
params.update(kwargs)
tree = send_request(pubmed_search, params)
if tree is None:
return []
if tree.find('ERROR') is not None:
logger.error(tree.find('ERROR').text)
return []
if tree.find('ErrorList') is not None:
for err in tree.find('ErrorList').getchildren():
logger.error('Error - %s: %s' % (err.tag, err.text))
return []
count = int(tree.find('Count').text)
id_terms = tree.findall('IdList/Id')
if id_terms is None:
return []
ids = [idt.text for idt in id_terms]
if count != len(ids):
logger.warning('Not all ids were retrieved for search %s;\n'
'limited at %d.' % (search_term, params['retmax']))
return ids | [
"def",
"get_ids",
"(",
"search_term",
",",
"*",
"*",
"kwargs",
")",
":",
"use_text_word",
"=",
"kwargs",
".",
"pop",
"(",
"'use_text_word'",
",",
"True",
")",
"if",
"use_text_word",
":",
"search_term",
"+=",
"'[tw]'",
"params",
"=",
"{",
"'term'",
":",
"search_term",
",",
"'retmax'",
":",
"100000",
",",
"'retstart'",
":",
"0",
",",
"'db'",
":",
"'pubmed'",
",",
"'sort'",
":",
"'pub+date'",
"}",
"params",
".",
"update",
"(",
"kwargs",
")",
"tree",
"=",
"send_request",
"(",
"pubmed_search",
",",
"params",
")",
"if",
"tree",
"is",
"None",
":",
"return",
"[",
"]",
"if",
"tree",
".",
"find",
"(",
"'ERROR'",
")",
"is",
"not",
"None",
":",
"logger",
".",
"error",
"(",
"tree",
".",
"find",
"(",
"'ERROR'",
")",
".",
"text",
")",
"return",
"[",
"]",
"if",
"tree",
".",
"find",
"(",
"'ErrorList'",
")",
"is",
"not",
"None",
":",
"for",
"err",
"in",
"tree",
".",
"find",
"(",
"'ErrorList'",
")",
".",
"getchildren",
"(",
")",
":",
"logger",
".",
"error",
"(",
"'Error - %s: %s'",
"%",
"(",
"err",
".",
"tag",
",",
"err",
".",
"text",
")",
")",
"return",
"[",
"]",
"count",
"=",
"int",
"(",
"tree",
".",
"find",
"(",
"'Count'",
")",
".",
"text",
")",
"id_terms",
"=",
"tree",
".",
"findall",
"(",
"'IdList/Id'",
")",
"if",
"id_terms",
"is",
"None",
":",
"return",
"[",
"]",
"ids",
"=",
"[",
"idt",
".",
"text",
"for",
"idt",
"in",
"id_terms",
"]",
"if",
"count",
"!=",
"len",
"(",
"ids",
")",
":",
"logger",
".",
"warning",
"(",
"'Not all ids were retrieved for search %s;\\n'",
"'limited at %d.'",
"%",
"(",
"search_term",
",",
"params",
"[",
"'retmax'",
"]",
")",
")",
"return",
"ids"
]
| Search Pubmed for paper IDs given a search term.
Search options can be passed as keyword arguments, some of which are
custom keywords identified by this function, while others are passed on
as parameters for the request to the PubMed web service
For details on parameters that can be used in PubMed searches, see
https://www.ncbi.nlm.nih.gov/books/NBK25499/#chapter4.ESearch Some useful
parameters to pass are db='pmc' to search PMC instead of pubmed reldate=2
to search for papers within the last 2 days mindate='2016/03/01',
maxdate='2016/03/31' to search for papers in March 2016.
PubMed, by default, limits returned PMIDs to a small number, and this
number can be controlled by the "retmax" parameter. This function
uses a retmax value of 100,000 by default that can be changed via the
corresponding keyword argument.
Parameters
----------
search_term : str
A term for which the PubMed search should be performed.
use_text_word : Optional[bool]
If True, the "[tw]" string is appended to the search term to constrain
the search to "text words", that is words that appear as whole
in relevant parts of the PubMed entry (excl. for instance the journal
name or publication date) like the title and abstract. Using this
option can eliminate spurious search results such as all articles
published in June for a search for the "JUN" gene, or journal names
that contain Acad for a search for the "ACAD" gene.
See also: https://www.nlm.nih.gov/bsd/disted/pubmedtutorial/020_760.html
Default : True
kwargs : kwargs
Additional keyword arguments to pass to the PubMed search as
parameters. | [
"Search",
"Pubmed",
"for",
"paper",
"IDs",
"given",
"a",
"search",
"term",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/literature/pubmed_client.py#L41-L103 | train |
sorgerlab/indra | indra/literature/pubmed_client.py | get_id_count | def get_id_count(search_term):
"""Get the number of citations in Pubmed for a search query.
Parameters
----------
search_term : str
A term for which the PubMed search should be performed.
Returns
-------
int or None
The number of citations for the query, or None if the query fails.
"""
params = {'term': search_term,
'rettype': 'count',
'db': 'pubmed'}
tree = send_request(pubmed_search, params)
if tree is None:
return None
else:
count = tree.getchildren()[0].text
return int(count) | python | def get_id_count(search_term):
"""Get the number of citations in Pubmed for a search query.
Parameters
----------
search_term : str
A term for which the PubMed search should be performed.
Returns
-------
int or None
The number of citations for the query, or None if the query fails.
"""
params = {'term': search_term,
'rettype': 'count',
'db': 'pubmed'}
tree = send_request(pubmed_search, params)
if tree is None:
return None
else:
count = tree.getchildren()[0].text
return int(count) | [
"def",
"get_id_count",
"(",
"search_term",
")",
":",
"params",
"=",
"{",
"'term'",
":",
"search_term",
",",
"'rettype'",
":",
"'count'",
",",
"'db'",
":",
"'pubmed'",
"}",
"tree",
"=",
"send_request",
"(",
"pubmed_search",
",",
"params",
")",
"if",
"tree",
"is",
"None",
":",
"return",
"None",
"else",
":",
"count",
"=",
"tree",
".",
"getchildren",
"(",
")",
"[",
"0",
"]",
".",
"text",
"return",
"int",
"(",
"count",
")"
]
| Get the number of citations in Pubmed for a search query.
Parameters
----------
search_term : str
A term for which the PubMed search should be performed.
Returns
-------
int or None
The number of citations for the query, or None if the query fails. | [
"Get",
"the",
"number",
"of",
"citations",
"in",
"Pubmed",
"for",
"a",
"search",
"query",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/literature/pubmed_client.py#L106-L127 | train |
sorgerlab/indra | indra/literature/pubmed_client.py | get_ids_for_gene | def get_ids_for_gene(hgnc_name, **kwargs):
"""Get the curated set of articles for a gene in the Entrez database.
Search parameters for the Gene database query can be passed in as
keyword arguments.
Parameters
----------
hgnc_name : string
The HGNC name of the gene. This is used to obtain the HGNC ID
(using the hgnc_client module) and in turn used to obtain the Entrez
ID associated with the gene. Entrez is then queried for that ID.
"""
# Get the HGNC ID for the HGNC name
hgnc_id = hgnc_client.get_hgnc_id(hgnc_name)
if hgnc_id is None:
raise ValueError('Invalid HGNC name.')
# Get the Entrez ID
entrez_id = hgnc_client.get_entrez_id(hgnc_id)
if entrez_id is None:
raise ValueError('Entrez ID not found in HGNC table.')
# Query the Entrez Gene database
params = {'db': 'gene',
'retmode': 'xml',
'id': entrez_id}
params.update(kwargs)
tree = send_request(pubmed_fetch, params)
if tree is None:
return []
if tree.find('ERROR') is not None:
logger.error(tree.find('ERROR').text)
return []
# Get all PMIDs from the XML tree
id_terms = tree.findall('.//PubMedId')
if id_terms is None:
return []
# Use a set to remove duplicate IDs
ids = list(set([idt.text for idt in id_terms]))
return ids | python | def get_ids_for_gene(hgnc_name, **kwargs):
"""Get the curated set of articles for a gene in the Entrez database.
Search parameters for the Gene database query can be passed in as
keyword arguments.
Parameters
----------
hgnc_name : string
The HGNC name of the gene. This is used to obtain the HGNC ID
(using the hgnc_client module) and in turn used to obtain the Entrez
ID associated with the gene. Entrez is then queried for that ID.
"""
# Get the HGNC ID for the HGNC name
hgnc_id = hgnc_client.get_hgnc_id(hgnc_name)
if hgnc_id is None:
raise ValueError('Invalid HGNC name.')
# Get the Entrez ID
entrez_id = hgnc_client.get_entrez_id(hgnc_id)
if entrez_id is None:
raise ValueError('Entrez ID not found in HGNC table.')
# Query the Entrez Gene database
params = {'db': 'gene',
'retmode': 'xml',
'id': entrez_id}
params.update(kwargs)
tree = send_request(pubmed_fetch, params)
if tree is None:
return []
if tree.find('ERROR') is not None:
logger.error(tree.find('ERROR').text)
return []
# Get all PMIDs from the XML tree
id_terms = tree.findall('.//PubMedId')
if id_terms is None:
return []
# Use a set to remove duplicate IDs
ids = list(set([idt.text for idt in id_terms]))
return ids | [
"def",
"get_ids_for_gene",
"(",
"hgnc_name",
",",
"*",
"*",
"kwargs",
")",
":",
"# Get the HGNC ID for the HGNC name",
"hgnc_id",
"=",
"hgnc_client",
".",
"get_hgnc_id",
"(",
"hgnc_name",
")",
"if",
"hgnc_id",
"is",
"None",
":",
"raise",
"ValueError",
"(",
"'Invalid HGNC name.'",
")",
"# Get the Entrez ID",
"entrez_id",
"=",
"hgnc_client",
".",
"get_entrez_id",
"(",
"hgnc_id",
")",
"if",
"entrez_id",
"is",
"None",
":",
"raise",
"ValueError",
"(",
"'Entrez ID not found in HGNC table.'",
")",
"# Query the Entrez Gene database",
"params",
"=",
"{",
"'db'",
":",
"'gene'",
",",
"'retmode'",
":",
"'xml'",
",",
"'id'",
":",
"entrez_id",
"}",
"params",
".",
"update",
"(",
"kwargs",
")",
"tree",
"=",
"send_request",
"(",
"pubmed_fetch",
",",
"params",
")",
"if",
"tree",
"is",
"None",
":",
"return",
"[",
"]",
"if",
"tree",
".",
"find",
"(",
"'ERROR'",
")",
"is",
"not",
"None",
":",
"logger",
".",
"error",
"(",
"tree",
".",
"find",
"(",
"'ERROR'",
")",
".",
"text",
")",
"return",
"[",
"]",
"# Get all PMIDs from the XML tree",
"id_terms",
"=",
"tree",
".",
"findall",
"(",
"'.//PubMedId'",
")",
"if",
"id_terms",
"is",
"None",
":",
"return",
"[",
"]",
"# Use a set to remove duplicate IDs",
"ids",
"=",
"list",
"(",
"set",
"(",
"[",
"idt",
".",
"text",
"for",
"idt",
"in",
"id_terms",
"]",
")",
")",
"return",
"ids"
]
| Get the curated set of articles for a gene in the Entrez database.
Search parameters for the Gene database query can be passed in as
keyword arguments.
Parameters
----------
hgnc_name : string
The HGNC name of the gene. This is used to obtain the HGNC ID
(using the hgnc_client module) and in turn used to obtain the Entrez
ID associated with the gene. Entrez is then queried for that ID. | [
"Get",
"the",
"curated",
"set",
"of",
"articles",
"for",
"a",
"gene",
"in",
"the",
"Entrez",
"database",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/literature/pubmed_client.py#L131-L170 | train |
sorgerlab/indra | indra/literature/pubmed_client.py | get_article_xml | def get_article_xml(pubmed_id):
"""Get the XML metadata for a single article from the Pubmed database.
"""
if pubmed_id.upper().startswith('PMID'):
pubmed_id = pubmed_id[4:]
params = {'db': 'pubmed',
'retmode': 'xml',
'id': pubmed_id}
tree = send_request(pubmed_fetch, params)
if tree is None:
return None
article = tree.find('PubmedArticle/MedlineCitation/Article')
return article | python | def get_article_xml(pubmed_id):
"""Get the XML metadata for a single article from the Pubmed database.
"""
if pubmed_id.upper().startswith('PMID'):
pubmed_id = pubmed_id[4:]
params = {'db': 'pubmed',
'retmode': 'xml',
'id': pubmed_id}
tree = send_request(pubmed_fetch, params)
if tree is None:
return None
article = tree.find('PubmedArticle/MedlineCitation/Article')
return article | [
"def",
"get_article_xml",
"(",
"pubmed_id",
")",
":",
"if",
"pubmed_id",
".",
"upper",
"(",
")",
".",
"startswith",
"(",
"'PMID'",
")",
":",
"pubmed_id",
"=",
"pubmed_id",
"[",
"4",
":",
"]",
"params",
"=",
"{",
"'db'",
":",
"'pubmed'",
",",
"'retmode'",
":",
"'xml'",
",",
"'id'",
":",
"pubmed_id",
"}",
"tree",
"=",
"send_request",
"(",
"pubmed_fetch",
",",
"params",
")",
"if",
"tree",
"is",
"None",
":",
"return",
"None",
"article",
"=",
"tree",
".",
"find",
"(",
"'PubmedArticle/MedlineCitation/Article'",
")",
"return",
"article"
]
| Get the XML metadata for a single article from the Pubmed database. | [
"Get",
"the",
"XML",
"metadata",
"for",
"a",
"single",
"article",
"from",
"the",
"Pubmed",
"database",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/literature/pubmed_client.py#L174-L186 | train |
sorgerlab/indra | indra/literature/pubmed_client.py | get_abstract | def get_abstract(pubmed_id, prepend_title=True):
"""Get the abstract of an article in the Pubmed database."""
article = get_article_xml(pubmed_id)
if article is None:
return None
return _abstract_from_article_element(article, prepend_title) | python | def get_abstract(pubmed_id, prepend_title=True):
"""Get the abstract of an article in the Pubmed database."""
article = get_article_xml(pubmed_id)
if article is None:
return None
return _abstract_from_article_element(article, prepend_title) | [
"def",
"get_abstract",
"(",
"pubmed_id",
",",
"prepend_title",
"=",
"True",
")",
":",
"article",
"=",
"get_article_xml",
"(",
"pubmed_id",
")",
"if",
"article",
"is",
"None",
":",
"return",
"None",
"return",
"_abstract_from_article_element",
"(",
"article",
",",
"prepend_title",
")"
]
| Get the abstract of an article in the Pubmed database. | [
"Get",
"the",
"abstract",
"of",
"an",
"article",
"in",
"the",
"Pubmed",
"database",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/literature/pubmed_client.py#L224-L229 | train |
sorgerlab/indra | indra/literature/pubmed_client.py | get_metadata_from_xml_tree | def get_metadata_from_xml_tree(tree, get_issns_from_nlm=False,
get_abstracts=False, prepend_title=False,
mesh_annotations=False):
"""Get metadata for an XML tree containing PubmedArticle elements.
Documentation on the XML structure can be found at:
- https://www.nlm.nih.gov/bsd/licensee/elements_descriptions.html
- https://www.nlm.nih.gov/bsd/licensee/elements_alphabetical.html
Parameters
----------
tree : xml.etree.ElementTree
ElementTree containing one or more PubmedArticle elements.
get_issns_from_nlm : boolean
Look up the full list of ISSN number for the journal associated with
the article, which helps to match articles to CrossRef search results.
Defaults to False, since it slows down performance.
get_abstracts : boolean
Indicates whether to include the Pubmed abstract in the results.
prepend_title : boolean
If get_abstracts is True, specifies whether the article title should
be prepended to the abstract text.
mesh_annotations : boolean
If True, extract mesh annotations from the pubmed entries and include
in the returned data. If false, don't.
Returns
-------
dict of dicts
Dictionary indexed by PMID. Each value is a dict containing the
following fields: 'doi', 'title', 'authors', 'journal_title',
'journal_abbrev', 'journal_nlm_id', 'issn_list', 'page'.
"""
# Iterate over the articles and build the results dict
results = {}
pm_articles = tree.findall('./PubmedArticle')
for art_ix, pm_article in enumerate(pm_articles):
medline_citation = pm_article.find('./MedlineCitation')
article_info = _get_article_info(medline_citation,
pm_article.find('PubmedData'))
journal_info = _get_journal_info(medline_citation, get_issns_from_nlm)
context_info = _get_annotations(medline_citation)
# Build the result
result = {}
result.update(article_info)
result.update(journal_info)
result.update(context_info)
# Get the abstracts if requested
if get_abstracts:
abstract = _abstract_from_article_element(
medline_citation.find('Article'),
prepend_title=prepend_title
)
result['abstract'] = abstract
# Add to dict
results[article_info['pmid']] = result
return results | python | def get_metadata_from_xml_tree(tree, get_issns_from_nlm=False,
get_abstracts=False, prepend_title=False,
mesh_annotations=False):
"""Get metadata for an XML tree containing PubmedArticle elements.
Documentation on the XML structure can be found at:
- https://www.nlm.nih.gov/bsd/licensee/elements_descriptions.html
- https://www.nlm.nih.gov/bsd/licensee/elements_alphabetical.html
Parameters
----------
tree : xml.etree.ElementTree
ElementTree containing one or more PubmedArticle elements.
get_issns_from_nlm : boolean
Look up the full list of ISSN number for the journal associated with
the article, which helps to match articles to CrossRef search results.
Defaults to False, since it slows down performance.
get_abstracts : boolean
Indicates whether to include the Pubmed abstract in the results.
prepend_title : boolean
If get_abstracts is True, specifies whether the article title should
be prepended to the abstract text.
mesh_annotations : boolean
If True, extract mesh annotations from the pubmed entries and include
in the returned data. If false, don't.
Returns
-------
dict of dicts
Dictionary indexed by PMID. Each value is a dict containing the
following fields: 'doi', 'title', 'authors', 'journal_title',
'journal_abbrev', 'journal_nlm_id', 'issn_list', 'page'.
"""
# Iterate over the articles and build the results dict
results = {}
pm_articles = tree.findall('./PubmedArticle')
for art_ix, pm_article in enumerate(pm_articles):
medline_citation = pm_article.find('./MedlineCitation')
article_info = _get_article_info(medline_citation,
pm_article.find('PubmedData'))
journal_info = _get_journal_info(medline_citation, get_issns_from_nlm)
context_info = _get_annotations(medline_citation)
# Build the result
result = {}
result.update(article_info)
result.update(journal_info)
result.update(context_info)
# Get the abstracts if requested
if get_abstracts:
abstract = _abstract_from_article_element(
medline_citation.find('Article'),
prepend_title=prepend_title
)
result['abstract'] = abstract
# Add to dict
results[article_info['pmid']] = result
return results | [
"def",
"get_metadata_from_xml_tree",
"(",
"tree",
",",
"get_issns_from_nlm",
"=",
"False",
",",
"get_abstracts",
"=",
"False",
",",
"prepend_title",
"=",
"False",
",",
"mesh_annotations",
"=",
"False",
")",
":",
"# Iterate over the articles and build the results dict",
"results",
"=",
"{",
"}",
"pm_articles",
"=",
"tree",
".",
"findall",
"(",
"'./PubmedArticle'",
")",
"for",
"art_ix",
",",
"pm_article",
"in",
"enumerate",
"(",
"pm_articles",
")",
":",
"medline_citation",
"=",
"pm_article",
".",
"find",
"(",
"'./MedlineCitation'",
")",
"article_info",
"=",
"_get_article_info",
"(",
"medline_citation",
",",
"pm_article",
".",
"find",
"(",
"'PubmedData'",
")",
")",
"journal_info",
"=",
"_get_journal_info",
"(",
"medline_citation",
",",
"get_issns_from_nlm",
")",
"context_info",
"=",
"_get_annotations",
"(",
"medline_citation",
")",
"# Build the result",
"result",
"=",
"{",
"}",
"result",
".",
"update",
"(",
"article_info",
")",
"result",
".",
"update",
"(",
"journal_info",
")",
"result",
".",
"update",
"(",
"context_info",
")",
"# Get the abstracts if requested",
"if",
"get_abstracts",
":",
"abstract",
"=",
"_abstract_from_article_element",
"(",
"medline_citation",
".",
"find",
"(",
"'Article'",
")",
",",
"prepend_title",
"=",
"prepend_title",
")",
"result",
"[",
"'abstract'",
"]",
"=",
"abstract",
"# Add to dict",
"results",
"[",
"article_info",
"[",
"'pmid'",
"]",
"]",
"=",
"result",
"return",
"results"
]
| Get metadata for an XML tree containing PubmedArticle elements.
Documentation on the XML structure can be found at:
- https://www.nlm.nih.gov/bsd/licensee/elements_descriptions.html
- https://www.nlm.nih.gov/bsd/licensee/elements_alphabetical.html
Parameters
----------
tree : xml.etree.ElementTree
ElementTree containing one or more PubmedArticle elements.
get_issns_from_nlm : boolean
Look up the full list of ISSN number for the journal associated with
the article, which helps to match articles to CrossRef search results.
Defaults to False, since it slows down performance.
get_abstracts : boolean
Indicates whether to include the Pubmed abstract in the results.
prepend_title : boolean
If get_abstracts is True, specifies whether the article title should
be prepended to the abstract text.
mesh_annotations : boolean
If True, extract mesh annotations from the pubmed entries and include
in the returned data. If false, don't.
Returns
-------
dict of dicts
Dictionary indexed by PMID. Each value is a dict containing the
following fields: 'doi', 'title', 'authors', 'journal_title',
'journal_abbrev', 'journal_nlm_id', 'issn_list', 'page'. | [
"Get",
"metadata",
"for",
"an",
"XML",
"tree",
"containing",
"PubmedArticle",
"elements",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/literature/pubmed_client.py#L303-L364 | train |
sorgerlab/indra | indra/literature/pubmed_client.py | get_metadata_for_ids | def get_metadata_for_ids(pmid_list, get_issns_from_nlm=False,
get_abstracts=False, prepend_title=False):
"""Get article metadata for up to 200 PMIDs from the Pubmed database.
Parameters
----------
pmid_list : list of PMIDs as strings
Can contain 1-200 PMIDs.
get_issns_from_nlm : boolean
Look up the full list of ISSN number for the journal associated with
the article, which helps to match articles to CrossRef search results.
Defaults to False, since it slows down performance.
get_abstracts : boolean
Indicates whether to include the Pubmed abstract in the results.
prepend_title : boolean
If get_abstracts is True, specifies whether the article title should
be prepended to the abstract text.
Returns
-------
dict of dicts
Dictionary indexed by PMID. Each value is a dict containing the
following fields: 'doi', 'title', 'authors', 'journal_title',
'journal_abbrev', 'journal_nlm_id', 'issn_list', 'page'.
"""
if len(pmid_list) > 200:
raise ValueError("Metadata query is limited to 200 PMIDs at a time.")
params = {'db': 'pubmed',
'retmode': 'xml',
'id': pmid_list}
tree = send_request(pubmed_fetch, params)
if tree is None:
return None
return get_metadata_from_xml_tree(tree, get_issns_from_nlm, get_abstracts,
prepend_title) | python | def get_metadata_for_ids(pmid_list, get_issns_from_nlm=False,
get_abstracts=False, prepend_title=False):
"""Get article metadata for up to 200 PMIDs from the Pubmed database.
Parameters
----------
pmid_list : list of PMIDs as strings
Can contain 1-200 PMIDs.
get_issns_from_nlm : boolean
Look up the full list of ISSN number for the journal associated with
the article, which helps to match articles to CrossRef search results.
Defaults to False, since it slows down performance.
get_abstracts : boolean
Indicates whether to include the Pubmed abstract in the results.
prepend_title : boolean
If get_abstracts is True, specifies whether the article title should
be prepended to the abstract text.
Returns
-------
dict of dicts
Dictionary indexed by PMID. Each value is a dict containing the
following fields: 'doi', 'title', 'authors', 'journal_title',
'journal_abbrev', 'journal_nlm_id', 'issn_list', 'page'.
"""
if len(pmid_list) > 200:
raise ValueError("Metadata query is limited to 200 PMIDs at a time.")
params = {'db': 'pubmed',
'retmode': 'xml',
'id': pmid_list}
tree = send_request(pubmed_fetch, params)
if tree is None:
return None
return get_metadata_from_xml_tree(tree, get_issns_from_nlm, get_abstracts,
prepend_title) | [
"def",
"get_metadata_for_ids",
"(",
"pmid_list",
",",
"get_issns_from_nlm",
"=",
"False",
",",
"get_abstracts",
"=",
"False",
",",
"prepend_title",
"=",
"False",
")",
":",
"if",
"len",
"(",
"pmid_list",
")",
">",
"200",
":",
"raise",
"ValueError",
"(",
"\"Metadata query is limited to 200 PMIDs at a time.\"",
")",
"params",
"=",
"{",
"'db'",
":",
"'pubmed'",
",",
"'retmode'",
":",
"'xml'",
",",
"'id'",
":",
"pmid_list",
"}",
"tree",
"=",
"send_request",
"(",
"pubmed_fetch",
",",
"params",
")",
"if",
"tree",
"is",
"None",
":",
"return",
"None",
"return",
"get_metadata_from_xml_tree",
"(",
"tree",
",",
"get_issns_from_nlm",
",",
"get_abstracts",
",",
"prepend_title",
")"
]
| Get article metadata for up to 200 PMIDs from the Pubmed database.
Parameters
----------
pmid_list : list of PMIDs as strings
Can contain 1-200 PMIDs.
get_issns_from_nlm : boolean
Look up the full list of ISSN number for the journal associated with
the article, which helps to match articles to CrossRef search results.
Defaults to False, since it slows down performance.
get_abstracts : boolean
Indicates whether to include the Pubmed abstract in the results.
prepend_title : boolean
If get_abstracts is True, specifies whether the article title should
be prepended to the abstract text.
Returns
-------
dict of dicts
Dictionary indexed by PMID. Each value is a dict containing the
following fields: 'doi', 'title', 'authors', 'journal_title',
'journal_abbrev', 'journal_nlm_id', 'issn_list', 'page'. | [
"Get",
"article",
"metadata",
"for",
"up",
"to",
"200",
"PMIDs",
"from",
"the",
"Pubmed",
"database",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/literature/pubmed_client.py#L391-L425 | train |
sorgerlab/indra | indra/literature/pubmed_client.py | get_issns_for_journal | def get_issns_for_journal(nlm_id):
"""Get a list of the ISSN numbers for a journal given its NLM ID.
Information on NLM XML DTDs is available at
https://www.nlm.nih.gov/databases/dtd/
"""
params = {'db': 'nlmcatalog',
'retmode': 'xml',
'id': nlm_id}
tree = send_request(pubmed_fetch, params)
if tree is None:
return None
issn_list = tree.findall('.//ISSN')
issn_linking = tree.findall('.//ISSNLinking')
issns = issn_list + issn_linking
# No ISSNs found!
if not issns:
return None
else:
return [issn.text for issn in issns] | python | def get_issns_for_journal(nlm_id):
"""Get a list of the ISSN numbers for a journal given its NLM ID.
Information on NLM XML DTDs is available at
https://www.nlm.nih.gov/databases/dtd/
"""
params = {'db': 'nlmcatalog',
'retmode': 'xml',
'id': nlm_id}
tree = send_request(pubmed_fetch, params)
if tree is None:
return None
issn_list = tree.findall('.//ISSN')
issn_linking = tree.findall('.//ISSNLinking')
issns = issn_list + issn_linking
# No ISSNs found!
if not issns:
return None
else:
return [issn.text for issn in issns] | [
"def",
"get_issns_for_journal",
"(",
"nlm_id",
")",
":",
"params",
"=",
"{",
"'db'",
":",
"'nlmcatalog'",
",",
"'retmode'",
":",
"'xml'",
",",
"'id'",
":",
"nlm_id",
"}",
"tree",
"=",
"send_request",
"(",
"pubmed_fetch",
",",
"params",
")",
"if",
"tree",
"is",
"None",
":",
"return",
"None",
"issn_list",
"=",
"tree",
".",
"findall",
"(",
"'.//ISSN'",
")",
"issn_linking",
"=",
"tree",
".",
"findall",
"(",
"'.//ISSNLinking'",
")",
"issns",
"=",
"issn_list",
"+",
"issn_linking",
"# No ISSNs found!",
"if",
"not",
"issns",
":",
"return",
"None",
"else",
":",
"return",
"[",
"issn",
".",
"text",
"for",
"issn",
"in",
"issns",
"]"
]
| Get a list of the ISSN numbers for a journal given its NLM ID.
Information on NLM XML DTDs is available at
https://www.nlm.nih.gov/databases/dtd/ | [
"Get",
"a",
"list",
"of",
"the",
"ISSN",
"numbers",
"for",
"a",
"journal",
"given",
"its",
"NLM",
"ID",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/literature/pubmed_client.py#L429-L448 | train |
sorgerlab/indra | indra/explanation/model_checker.py | remove_im_params | def remove_im_params(model, im):
"""Remove parameter nodes from the influence map.
Parameters
----------
model : pysb.core.Model
PySB model.
im : networkx.MultiDiGraph
Influence map.
Returns
-------
networkx.MultiDiGraph
Influence map with the parameter nodes removed.
"""
for param in model.parameters:
# If the node doesn't exist e.g., it may have already been removed),
# skip over the parameter without error
try:
im.remove_node(param.name)
except:
pass | python | def remove_im_params(model, im):
"""Remove parameter nodes from the influence map.
Parameters
----------
model : pysb.core.Model
PySB model.
im : networkx.MultiDiGraph
Influence map.
Returns
-------
networkx.MultiDiGraph
Influence map with the parameter nodes removed.
"""
for param in model.parameters:
# If the node doesn't exist e.g., it may have already been removed),
# skip over the parameter without error
try:
im.remove_node(param.name)
except:
pass | [
"def",
"remove_im_params",
"(",
"model",
",",
"im",
")",
":",
"for",
"param",
"in",
"model",
".",
"parameters",
":",
"# If the node doesn't exist e.g., it may have already been removed),",
"# skip over the parameter without error",
"try",
":",
"im",
".",
"remove_node",
"(",
"param",
".",
"name",
")",
"except",
":",
"pass"
]
| Remove parameter nodes from the influence map.
Parameters
----------
model : pysb.core.Model
PySB model.
im : networkx.MultiDiGraph
Influence map.
Returns
-------
networkx.MultiDiGraph
Influence map with the parameter nodes removed. | [
"Remove",
"parameter",
"nodes",
"from",
"the",
"influence",
"map",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/explanation/model_checker.py#L919-L940 | train |
sorgerlab/indra | indra/explanation/model_checker.py | _get_signed_predecessors | def _get_signed_predecessors(im, node, polarity):
"""Get upstream nodes in the influence map.
Return the upstream nodes along with the overall polarity of the path
to that node by account for the polarity of the path to the given node
and the polarity of the edge between the given node and its immediate
predecessors.
Parameters
----------
im : networkx.MultiDiGraph
Graph containing the influence map.
node : str
The node (rule name) in the influence map to get predecessors (upstream
nodes) for.
polarity : int
Polarity of the overall path to the given node.
Returns
-------
generator of tuples, (node, polarity)
Each tuple returned contains two elements, a node (string) and the
polarity of the overall path (int) to that node.
"""
signed_pred_list = []
for pred in im.predecessors(node):
pred_edge = (pred, node)
yield (pred, _get_edge_sign(im, pred_edge) * polarity) | python | def _get_signed_predecessors(im, node, polarity):
"""Get upstream nodes in the influence map.
Return the upstream nodes along with the overall polarity of the path
to that node by account for the polarity of the path to the given node
and the polarity of the edge between the given node and its immediate
predecessors.
Parameters
----------
im : networkx.MultiDiGraph
Graph containing the influence map.
node : str
The node (rule name) in the influence map to get predecessors (upstream
nodes) for.
polarity : int
Polarity of the overall path to the given node.
Returns
-------
generator of tuples, (node, polarity)
Each tuple returned contains two elements, a node (string) and the
polarity of the overall path (int) to that node.
"""
signed_pred_list = []
for pred in im.predecessors(node):
pred_edge = (pred, node)
yield (pred, _get_edge_sign(im, pred_edge) * polarity) | [
"def",
"_get_signed_predecessors",
"(",
"im",
",",
"node",
",",
"polarity",
")",
":",
"signed_pred_list",
"=",
"[",
"]",
"for",
"pred",
"in",
"im",
".",
"predecessors",
"(",
"node",
")",
":",
"pred_edge",
"=",
"(",
"pred",
",",
"node",
")",
"yield",
"(",
"pred",
",",
"_get_edge_sign",
"(",
"im",
",",
"pred_edge",
")",
"*",
"polarity",
")"
]
| Get upstream nodes in the influence map.
Return the upstream nodes along with the overall polarity of the path
to that node by account for the polarity of the path to the given node
and the polarity of the edge between the given node and its immediate
predecessors.
Parameters
----------
im : networkx.MultiDiGraph
Graph containing the influence map.
node : str
The node (rule name) in the influence map to get predecessors (upstream
nodes) for.
polarity : int
Polarity of the overall path to the given node.
Returns
-------
generator of tuples, (node, polarity)
Each tuple returned contains two elements, a node (string) and the
polarity of the overall path (int) to that node. | [
"Get",
"upstream",
"nodes",
"in",
"the",
"influence",
"map",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/explanation/model_checker.py#L1009-L1037 | train |
sorgerlab/indra | indra/explanation/model_checker.py | _get_edge_sign | def _get_edge_sign(im, edge):
"""Get the polarity of the influence by examining the edge sign."""
edge_data = im[edge[0]][edge[1]]
# Handle possible multiple edges between nodes
signs = list(set([v['sign'] for v in edge_data.values()
if v.get('sign')]))
if len(signs) > 1:
logger.warning("Edge %s has conflicting polarities; choosing "
"positive polarity by default" % str(edge))
sign = 1
else:
sign = signs[0]
if sign is None:
raise Exception('No sign attribute for edge.')
elif abs(sign) == 1:
return sign
else:
raise Exception('Unexpected edge sign: %s' % edge.attr['sign']) | python | def _get_edge_sign(im, edge):
"""Get the polarity of the influence by examining the edge sign."""
edge_data = im[edge[0]][edge[1]]
# Handle possible multiple edges between nodes
signs = list(set([v['sign'] for v in edge_data.values()
if v.get('sign')]))
if len(signs) > 1:
logger.warning("Edge %s has conflicting polarities; choosing "
"positive polarity by default" % str(edge))
sign = 1
else:
sign = signs[0]
if sign is None:
raise Exception('No sign attribute for edge.')
elif abs(sign) == 1:
return sign
else:
raise Exception('Unexpected edge sign: %s' % edge.attr['sign']) | [
"def",
"_get_edge_sign",
"(",
"im",
",",
"edge",
")",
":",
"edge_data",
"=",
"im",
"[",
"edge",
"[",
"0",
"]",
"]",
"[",
"edge",
"[",
"1",
"]",
"]",
"# Handle possible multiple edges between nodes",
"signs",
"=",
"list",
"(",
"set",
"(",
"[",
"v",
"[",
"'sign'",
"]",
"for",
"v",
"in",
"edge_data",
".",
"values",
"(",
")",
"if",
"v",
".",
"get",
"(",
"'sign'",
")",
"]",
")",
")",
"if",
"len",
"(",
"signs",
")",
">",
"1",
":",
"logger",
".",
"warning",
"(",
"\"Edge %s has conflicting polarities; choosing \"",
"\"positive polarity by default\"",
"%",
"str",
"(",
"edge",
")",
")",
"sign",
"=",
"1",
"else",
":",
"sign",
"=",
"signs",
"[",
"0",
"]",
"if",
"sign",
"is",
"None",
":",
"raise",
"Exception",
"(",
"'No sign attribute for edge.'",
")",
"elif",
"abs",
"(",
"sign",
")",
"==",
"1",
":",
"return",
"sign",
"else",
":",
"raise",
"Exception",
"(",
"'Unexpected edge sign: %s'",
"%",
"edge",
".",
"attr",
"[",
"'sign'",
"]",
")"
]
| Get the polarity of the influence by examining the edge sign. | [
"Get",
"the",
"polarity",
"of",
"the",
"influence",
"by",
"examining",
"the",
"edge",
"sign",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/explanation/model_checker.py#L1040-L1057 | train |
sorgerlab/indra | indra/explanation/model_checker.py | _add_modification_to_agent | def _add_modification_to_agent(agent, mod_type, residue, position):
"""Add a modification condition to an Agent."""
new_mod = ModCondition(mod_type, residue, position)
# Check if this modification already exists
for old_mod in agent.mods:
if old_mod.equals(new_mod):
return agent
new_agent = deepcopy(agent)
new_agent.mods.append(new_mod)
return new_agent | python | def _add_modification_to_agent(agent, mod_type, residue, position):
"""Add a modification condition to an Agent."""
new_mod = ModCondition(mod_type, residue, position)
# Check if this modification already exists
for old_mod in agent.mods:
if old_mod.equals(new_mod):
return agent
new_agent = deepcopy(agent)
new_agent.mods.append(new_mod)
return new_agent | [
"def",
"_add_modification_to_agent",
"(",
"agent",
",",
"mod_type",
",",
"residue",
",",
"position",
")",
":",
"new_mod",
"=",
"ModCondition",
"(",
"mod_type",
",",
"residue",
",",
"position",
")",
"# Check if this modification already exists",
"for",
"old_mod",
"in",
"agent",
".",
"mods",
":",
"if",
"old_mod",
".",
"equals",
"(",
"new_mod",
")",
":",
"return",
"agent",
"new_agent",
"=",
"deepcopy",
"(",
"agent",
")",
"new_agent",
".",
"mods",
".",
"append",
"(",
"new_mod",
")",
"return",
"new_agent"
]
| Add a modification condition to an Agent. | [
"Add",
"a",
"modification",
"condition",
"to",
"an",
"Agent",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/explanation/model_checker.py#L1060-L1069 | train |
sorgerlab/indra | indra/explanation/model_checker.py | _match_lhs | def _match_lhs(cp, rules):
"""Get rules with a left-hand side matching the given ComplexPattern."""
rule_matches = []
for rule in rules:
reactant_pattern = rule.rule_expression.reactant_pattern
for rule_cp in reactant_pattern.complex_patterns:
if _cp_embeds_into(rule_cp, cp):
rule_matches.append(rule)
break
return rule_matches | python | def _match_lhs(cp, rules):
"""Get rules with a left-hand side matching the given ComplexPattern."""
rule_matches = []
for rule in rules:
reactant_pattern = rule.rule_expression.reactant_pattern
for rule_cp in reactant_pattern.complex_patterns:
if _cp_embeds_into(rule_cp, cp):
rule_matches.append(rule)
break
return rule_matches | [
"def",
"_match_lhs",
"(",
"cp",
",",
"rules",
")",
":",
"rule_matches",
"=",
"[",
"]",
"for",
"rule",
"in",
"rules",
":",
"reactant_pattern",
"=",
"rule",
".",
"rule_expression",
".",
"reactant_pattern",
"for",
"rule_cp",
"in",
"reactant_pattern",
".",
"complex_patterns",
":",
"if",
"_cp_embeds_into",
"(",
"rule_cp",
",",
"cp",
")",
":",
"rule_matches",
".",
"append",
"(",
"rule",
")",
"break",
"return",
"rule_matches"
]
| Get rules with a left-hand side matching the given ComplexPattern. | [
"Get",
"rules",
"with",
"a",
"left",
"-",
"hand",
"side",
"matching",
"the",
"given",
"ComplexPattern",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/explanation/model_checker.py#L1084-L1093 | train |
sorgerlab/indra | indra/explanation/model_checker.py | _cp_embeds_into | def _cp_embeds_into(cp1, cp2):
"""Check that any state in ComplexPattern2 is matched in ComplexPattern1.
"""
# Check that any state in cp2 is matched in cp1
# If the thing we're matching to is just a monomer pattern, that makes
# things easier--we just need to find the corresponding monomer pattern
# in cp1
if cp1 is None or cp2 is None:
return False
cp1 = as_complex_pattern(cp1)
cp2 = as_complex_pattern(cp2)
if len(cp2.monomer_patterns) == 1:
mp2 = cp2.monomer_patterns[0]
# Iterate over the monomer patterns in cp1 and see if there is one
# that has the same name
for mp1 in cp1.monomer_patterns:
if _mp_embeds_into(mp1, mp2):
return True
return False | python | def _cp_embeds_into(cp1, cp2):
"""Check that any state in ComplexPattern2 is matched in ComplexPattern1.
"""
# Check that any state in cp2 is matched in cp1
# If the thing we're matching to is just a monomer pattern, that makes
# things easier--we just need to find the corresponding monomer pattern
# in cp1
if cp1 is None or cp2 is None:
return False
cp1 = as_complex_pattern(cp1)
cp2 = as_complex_pattern(cp2)
if len(cp2.monomer_patterns) == 1:
mp2 = cp2.monomer_patterns[0]
# Iterate over the monomer patterns in cp1 and see if there is one
# that has the same name
for mp1 in cp1.monomer_patterns:
if _mp_embeds_into(mp1, mp2):
return True
return False | [
"def",
"_cp_embeds_into",
"(",
"cp1",
",",
"cp2",
")",
":",
"# Check that any state in cp2 is matched in cp1",
"# If the thing we're matching to is just a monomer pattern, that makes",
"# things easier--we just need to find the corresponding monomer pattern",
"# in cp1",
"if",
"cp1",
"is",
"None",
"or",
"cp2",
"is",
"None",
":",
"return",
"False",
"cp1",
"=",
"as_complex_pattern",
"(",
"cp1",
")",
"cp2",
"=",
"as_complex_pattern",
"(",
"cp2",
")",
"if",
"len",
"(",
"cp2",
".",
"monomer_patterns",
")",
"==",
"1",
":",
"mp2",
"=",
"cp2",
".",
"monomer_patterns",
"[",
"0",
"]",
"# Iterate over the monomer patterns in cp1 and see if there is one",
"# that has the same name",
"for",
"mp1",
"in",
"cp1",
".",
"monomer_patterns",
":",
"if",
"_mp_embeds_into",
"(",
"mp1",
",",
"mp2",
")",
":",
"return",
"True",
"return",
"False"
]
| Check that any state in ComplexPattern2 is matched in ComplexPattern1. | [
"Check",
"that",
"any",
"state",
"in",
"ComplexPattern2",
"is",
"matched",
"in",
"ComplexPattern1",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/explanation/model_checker.py#L1096-L1114 | train |
sorgerlab/indra | indra/explanation/model_checker.py | _mp_embeds_into | def _mp_embeds_into(mp1, mp2):
"""Check that conditions in MonomerPattern2 are met in MonomerPattern1."""
sc_matches = []
if mp1.monomer.name != mp2.monomer.name:
return False
# Check that all conditions in mp2 are met in mp1
for site_name, site_state in mp2.site_conditions.items():
if site_name not in mp1.site_conditions or \
site_state != mp1.site_conditions[site_name]:
return False
return True | python | def _mp_embeds_into(mp1, mp2):
"""Check that conditions in MonomerPattern2 are met in MonomerPattern1."""
sc_matches = []
if mp1.monomer.name != mp2.monomer.name:
return False
# Check that all conditions in mp2 are met in mp1
for site_name, site_state in mp2.site_conditions.items():
if site_name not in mp1.site_conditions or \
site_state != mp1.site_conditions[site_name]:
return False
return True | [
"def",
"_mp_embeds_into",
"(",
"mp1",
",",
"mp2",
")",
":",
"sc_matches",
"=",
"[",
"]",
"if",
"mp1",
".",
"monomer",
".",
"name",
"!=",
"mp2",
".",
"monomer",
".",
"name",
":",
"return",
"False",
"# Check that all conditions in mp2 are met in mp1",
"for",
"site_name",
",",
"site_state",
"in",
"mp2",
".",
"site_conditions",
".",
"items",
"(",
")",
":",
"if",
"site_name",
"not",
"in",
"mp1",
".",
"site_conditions",
"or",
"site_state",
"!=",
"mp1",
".",
"site_conditions",
"[",
"site_name",
"]",
":",
"return",
"False",
"return",
"True"
]
| Check that conditions in MonomerPattern2 are met in MonomerPattern1. | [
"Check",
"that",
"conditions",
"in",
"MonomerPattern2",
"are",
"met",
"in",
"MonomerPattern1",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/explanation/model_checker.py#L1117-L1127 | train |
sorgerlab/indra | indra/explanation/model_checker.py | _monomer_pattern_label | def _monomer_pattern_label(mp):
"""Return a string label for a MonomerPattern."""
site_strs = []
for site, cond in mp.site_conditions.items():
if isinstance(cond, tuple) or isinstance(cond, list):
assert len(cond) == 2
if cond[1] == WILD:
site_str = '%s_%s' % (site, cond[0])
else:
site_str = '%s_%s%s' % (site, cond[0], cond[1])
elif isinstance(cond, numbers.Real):
continue
else:
site_str = '%s_%s' % (site, cond)
site_strs.append(site_str)
return '%s_%s' % (mp.monomer.name, '_'.join(site_strs)) | python | def _monomer_pattern_label(mp):
"""Return a string label for a MonomerPattern."""
site_strs = []
for site, cond in mp.site_conditions.items():
if isinstance(cond, tuple) or isinstance(cond, list):
assert len(cond) == 2
if cond[1] == WILD:
site_str = '%s_%s' % (site, cond[0])
else:
site_str = '%s_%s%s' % (site, cond[0], cond[1])
elif isinstance(cond, numbers.Real):
continue
else:
site_str = '%s_%s' % (site, cond)
site_strs.append(site_str)
return '%s_%s' % (mp.monomer.name, '_'.join(site_strs)) | [
"def",
"_monomer_pattern_label",
"(",
"mp",
")",
":",
"site_strs",
"=",
"[",
"]",
"for",
"site",
",",
"cond",
"in",
"mp",
".",
"site_conditions",
".",
"items",
"(",
")",
":",
"if",
"isinstance",
"(",
"cond",
",",
"tuple",
")",
"or",
"isinstance",
"(",
"cond",
",",
"list",
")",
":",
"assert",
"len",
"(",
"cond",
")",
"==",
"2",
"if",
"cond",
"[",
"1",
"]",
"==",
"WILD",
":",
"site_str",
"=",
"'%s_%s'",
"%",
"(",
"site",
",",
"cond",
"[",
"0",
"]",
")",
"else",
":",
"site_str",
"=",
"'%s_%s%s'",
"%",
"(",
"site",
",",
"cond",
"[",
"0",
"]",
",",
"cond",
"[",
"1",
"]",
")",
"elif",
"isinstance",
"(",
"cond",
",",
"numbers",
".",
"Real",
")",
":",
"continue",
"else",
":",
"site_str",
"=",
"'%s_%s'",
"%",
"(",
"site",
",",
"cond",
")",
"site_strs",
".",
"append",
"(",
"site_str",
")",
"return",
"'%s_%s'",
"%",
"(",
"mp",
".",
"monomer",
".",
"name",
",",
"'_'",
".",
"join",
"(",
"site_strs",
")",
")"
]
| Return a string label for a MonomerPattern. | [
"Return",
"a",
"string",
"label",
"for",
"a",
"MonomerPattern",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/explanation/model_checker.py#L1224-L1239 | train |
sorgerlab/indra | indra/explanation/model_checker.py | _stmt_from_rule | def _stmt_from_rule(model, rule_name, stmts):
"""Return the INDRA Statement corresponding to a given rule by name."""
stmt_uuid = None
for ann in model.annotations:
if ann.predicate == 'from_indra_statement':
if ann.subject == rule_name:
stmt_uuid = ann.object
break
if stmt_uuid:
for stmt in stmts:
if stmt.uuid == stmt_uuid:
return stmt | python | def _stmt_from_rule(model, rule_name, stmts):
"""Return the INDRA Statement corresponding to a given rule by name."""
stmt_uuid = None
for ann in model.annotations:
if ann.predicate == 'from_indra_statement':
if ann.subject == rule_name:
stmt_uuid = ann.object
break
if stmt_uuid:
for stmt in stmts:
if stmt.uuid == stmt_uuid:
return stmt | [
"def",
"_stmt_from_rule",
"(",
"model",
",",
"rule_name",
",",
"stmts",
")",
":",
"stmt_uuid",
"=",
"None",
"for",
"ann",
"in",
"model",
".",
"annotations",
":",
"if",
"ann",
".",
"predicate",
"==",
"'from_indra_statement'",
":",
"if",
"ann",
".",
"subject",
"==",
"rule_name",
":",
"stmt_uuid",
"=",
"ann",
".",
"object",
"break",
"if",
"stmt_uuid",
":",
"for",
"stmt",
"in",
"stmts",
":",
"if",
"stmt",
".",
"uuid",
"==",
"stmt_uuid",
":",
"return",
"stmt"
]
| Return the INDRA Statement corresponding to a given rule by name. | [
"Return",
"the",
"INDRA",
"Statement",
"corresponding",
"to",
"a",
"given",
"rule",
"by",
"name",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/explanation/model_checker.py#L1263-L1274 | train |
sorgerlab/indra | indra/explanation/model_checker.py | ModelChecker.generate_im | def generate_im(self, model):
"""Return a graph representing the influence map generated by Kappa
Parameters
----------
model : pysb.Model
The PySB model whose influence map is to be generated
Returns
-------
graph : networkx.MultiDiGraph
A MultiDiGraph representing the influence map
"""
kappa = kappy.KappaStd()
model_str = export.export(model, 'kappa')
kappa.add_model_string(model_str)
kappa.project_parse()
imap = kappa.analyses_influence_map(accuracy='medium')
graph = im_json_to_graph(imap)
return graph | python | def generate_im(self, model):
"""Return a graph representing the influence map generated by Kappa
Parameters
----------
model : pysb.Model
The PySB model whose influence map is to be generated
Returns
-------
graph : networkx.MultiDiGraph
A MultiDiGraph representing the influence map
"""
kappa = kappy.KappaStd()
model_str = export.export(model, 'kappa')
kappa.add_model_string(model_str)
kappa.project_parse()
imap = kappa.analyses_influence_map(accuracy='medium')
graph = im_json_to_graph(imap)
return graph | [
"def",
"generate_im",
"(",
"self",
",",
"model",
")",
":",
"kappa",
"=",
"kappy",
".",
"KappaStd",
"(",
")",
"model_str",
"=",
"export",
".",
"export",
"(",
"model",
",",
"'kappa'",
")",
"kappa",
".",
"add_model_string",
"(",
"model_str",
")",
"kappa",
".",
"project_parse",
"(",
")",
"imap",
"=",
"kappa",
".",
"analyses_influence_map",
"(",
"accuracy",
"=",
"'medium'",
")",
"graph",
"=",
"im_json_to_graph",
"(",
"imap",
")",
"return",
"graph"
]
| Return a graph representing the influence map generated by Kappa
Parameters
----------
model : pysb.Model
The PySB model whose influence map is to be generated
Returns
-------
graph : networkx.MultiDiGraph
A MultiDiGraph representing the influence map | [
"Return",
"a",
"graph",
"representing",
"the",
"influence",
"map",
"generated",
"by",
"Kappa"
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/explanation/model_checker.py#L196-L215 | train |
sorgerlab/indra | indra/explanation/model_checker.py | ModelChecker.draw_im | def draw_im(self, fname):
"""Draw and save the influence map in a file.
Parameters
----------
fname : str
The name of the file to save the influence map in.
The extension of the file will determine the file format,
typically png or pdf.
"""
im = self.get_im()
im_agraph = nx.nx_agraph.to_agraph(im)
im_agraph.draw(fname, prog='dot') | python | def draw_im(self, fname):
"""Draw and save the influence map in a file.
Parameters
----------
fname : str
The name of the file to save the influence map in.
The extension of the file will determine the file format,
typically png or pdf.
"""
im = self.get_im()
im_agraph = nx.nx_agraph.to_agraph(im)
im_agraph.draw(fname, prog='dot') | [
"def",
"draw_im",
"(",
"self",
",",
"fname",
")",
":",
"im",
"=",
"self",
".",
"get_im",
"(",
")",
"im_agraph",
"=",
"nx",
".",
"nx_agraph",
".",
"to_agraph",
"(",
"im",
")",
"im_agraph",
".",
"draw",
"(",
"fname",
",",
"prog",
"=",
"'dot'",
")"
]
| Draw and save the influence map in a file.
Parameters
----------
fname : str
The name of the file to save the influence map in.
The extension of the file will determine the file format,
typically png or pdf. | [
"Draw",
"and",
"save",
"the",
"influence",
"map",
"in",
"a",
"file",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/explanation/model_checker.py#L217-L229 | train |
sorgerlab/indra | indra/explanation/model_checker.py | ModelChecker.get_im | def get_im(self, force_update=False):
"""Get the influence map for the model, generating it if necessary.
Parameters
----------
force_update : bool
Whether to generate the influence map when the function is called.
If False, returns the previously generated influence map if
available. Defaults to True.
Returns
-------
networkx MultiDiGraph object containing the influence map.
The influence map can be rendered as a pdf using the dot layout
program as follows::
im_agraph = nx.nx_agraph.to_agraph(influence_map)
im_agraph.draw('influence_map.pdf', prog='dot')
"""
if self._im and not force_update:
return self._im
if not self.model:
raise Exception("Cannot get influence map if there is no model.")
def add_obs_for_agent(agent):
obj_mps = list(pa.grounded_monomer_patterns(self.model, agent))
if not obj_mps:
logger.debug('No monomer patterns found in model for agent %s, '
'skipping' % agent)
return
obs_list = []
for obj_mp in obj_mps:
obs_name = _monomer_pattern_label(obj_mp) + '_obs'
# Add the observable
obj_obs = Observable(obs_name, obj_mp, _export=False)
obs_list.append(obs_name)
try:
self.model.add_component(obj_obs)
except ComponentDuplicateNameError as e:
pass
return obs_list
# Create observables for all statements to check, and add to model
# Remove any existing observables in the model
self.model.observables = ComponentSet([])
for stmt in self.statements:
# Generate observables for Modification statements
if isinstance(stmt, Modification):
mod_condition_name = modclass_to_modtype[stmt.__class__]
if isinstance(stmt, RemoveModification):
mod_condition_name = modtype_to_inverse[mod_condition_name]
# Add modification to substrate agent
modified_sub = _add_modification_to_agent(stmt.sub,
mod_condition_name, stmt.residue,
stmt.position)
obs_list = add_obs_for_agent(modified_sub)
# Associate this statement with this observable
self.stmt_to_obs[stmt] = obs_list
# Generate observables for Activation/Inhibition statements
elif isinstance(stmt, RegulateActivity):
regulated_obj, polarity = \
_add_activity_to_agent(stmt.obj, stmt.obj_activity,
stmt.is_activation)
obs_list = add_obs_for_agent(regulated_obj)
# Associate this statement with this observable
self.stmt_to_obs[stmt] = obs_list
elif isinstance(stmt, RegulateAmount):
obs_list = add_obs_for_agent(stmt.obj)
self.stmt_to_obs[stmt] = obs_list
elif isinstance(stmt, Influence):
obs_list = add_obs_for_agent(stmt.obj.concept)
self.stmt_to_obs[stmt] = obs_list
# Add observables for each agent
for ag in self.agent_obs:
obs_list = add_obs_for_agent(ag)
self.agent_to_obs[ag] = obs_list
logger.info("Generating influence map")
self._im = self.generate_im(self.model)
#self._im.is_multigraph = lambda: False
# Now, for every rule in the model, check if there are any observables
# downstream; alternatively, for every observable in the model, get a
# list of rules.
# We'll need the dictionary to check if nodes are observables
node_attributes = nx.get_node_attributes(self._im, 'node_type')
for rule in self.model.rules:
obs_list = []
# Get successors of the rule node
for neighb in self._im.neighbors(rule.name):
# Check if the node is an observable
if node_attributes[neighb] != 'variable':
continue
# Get the edge and check the polarity
edge_sign = _get_edge_sign(self._im, (rule.name, neighb))
obs_list.append((neighb, edge_sign))
self.rule_obs_dict[rule.name] = obs_list
return self._im | python | def get_im(self, force_update=False):
"""Get the influence map for the model, generating it if necessary.
Parameters
----------
force_update : bool
Whether to generate the influence map when the function is called.
If False, returns the previously generated influence map if
available. Defaults to True.
Returns
-------
networkx MultiDiGraph object containing the influence map.
The influence map can be rendered as a pdf using the dot layout
program as follows::
im_agraph = nx.nx_agraph.to_agraph(influence_map)
im_agraph.draw('influence_map.pdf', prog='dot')
"""
if self._im and not force_update:
return self._im
if not self.model:
raise Exception("Cannot get influence map if there is no model.")
def add_obs_for_agent(agent):
obj_mps = list(pa.grounded_monomer_patterns(self.model, agent))
if not obj_mps:
logger.debug('No monomer patterns found in model for agent %s, '
'skipping' % agent)
return
obs_list = []
for obj_mp in obj_mps:
obs_name = _monomer_pattern_label(obj_mp) + '_obs'
# Add the observable
obj_obs = Observable(obs_name, obj_mp, _export=False)
obs_list.append(obs_name)
try:
self.model.add_component(obj_obs)
except ComponentDuplicateNameError as e:
pass
return obs_list
# Create observables for all statements to check, and add to model
# Remove any existing observables in the model
self.model.observables = ComponentSet([])
for stmt in self.statements:
# Generate observables for Modification statements
if isinstance(stmt, Modification):
mod_condition_name = modclass_to_modtype[stmt.__class__]
if isinstance(stmt, RemoveModification):
mod_condition_name = modtype_to_inverse[mod_condition_name]
# Add modification to substrate agent
modified_sub = _add_modification_to_agent(stmt.sub,
mod_condition_name, stmt.residue,
stmt.position)
obs_list = add_obs_for_agent(modified_sub)
# Associate this statement with this observable
self.stmt_to_obs[stmt] = obs_list
# Generate observables for Activation/Inhibition statements
elif isinstance(stmt, RegulateActivity):
regulated_obj, polarity = \
_add_activity_to_agent(stmt.obj, stmt.obj_activity,
stmt.is_activation)
obs_list = add_obs_for_agent(regulated_obj)
# Associate this statement with this observable
self.stmt_to_obs[stmt] = obs_list
elif isinstance(stmt, RegulateAmount):
obs_list = add_obs_for_agent(stmt.obj)
self.stmt_to_obs[stmt] = obs_list
elif isinstance(stmt, Influence):
obs_list = add_obs_for_agent(stmt.obj.concept)
self.stmt_to_obs[stmt] = obs_list
# Add observables for each agent
for ag in self.agent_obs:
obs_list = add_obs_for_agent(ag)
self.agent_to_obs[ag] = obs_list
logger.info("Generating influence map")
self._im = self.generate_im(self.model)
#self._im.is_multigraph = lambda: False
# Now, for every rule in the model, check if there are any observables
# downstream; alternatively, for every observable in the model, get a
# list of rules.
# We'll need the dictionary to check if nodes are observables
node_attributes = nx.get_node_attributes(self._im, 'node_type')
for rule in self.model.rules:
obs_list = []
# Get successors of the rule node
for neighb in self._im.neighbors(rule.name):
# Check if the node is an observable
if node_attributes[neighb] != 'variable':
continue
# Get the edge and check the polarity
edge_sign = _get_edge_sign(self._im, (rule.name, neighb))
obs_list.append((neighb, edge_sign))
self.rule_obs_dict[rule.name] = obs_list
return self._im | [
"def",
"get_im",
"(",
"self",
",",
"force_update",
"=",
"False",
")",
":",
"if",
"self",
".",
"_im",
"and",
"not",
"force_update",
":",
"return",
"self",
".",
"_im",
"if",
"not",
"self",
".",
"model",
":",
"raise",
"Exception",
"(",
"\"Cannot get influence map if there is no model.\"",
")",
"def",
"add_obs_for_agent",
"(",
"agent",
")",
":",
"obj_mps",
"=",
"list",
"(",
"pa",
".",
"grounded_monomer_patterns",
"(",
"self",
".",
"model",
",",
"agent",
")",
")",
"if",
"not",
"obj_mps",
":",
"logger",
".",
"debug",
"(",
"'No monomer patterns found in model for agent %s, '",
"'skipping'",
"%",
"agent",
")",
"return",
"obs_list",
"=",
"[",
"]",
"for",
"obj_mp",
"in",
"obj_mps",
":",
"obs_name",
"=",
"_monomer_pattern_label",
"(",
"obj_mp",
")",
"+",
"'_obs'",
"# Add the observable",
"obj_obs",
"=",
"Observable",
"(",
"obs_name",
",",
"obj_mp",
",",
"_export",
"=",
"False",
")",
"obs_list",
".",
"append",
"(",
"obs_name",
")",
"try",
":",
"self",
".",
"model",
".",
"add_component",
"(",
"obj_obs",
")",
"except",
"ComponentDuplicateNameError",
"as",
"e",
":",
"pass",
"return",
"obs_list",
"# Create observables for all statements to check, and add to model",
"# Remove any existing observables in the model",
"self",
".",
"model",
".",
"observables",
"=",
"ComponentSet",
"(",
"[",
"]",
")",
"for",
"stmt",
"in",
"self",
".",
"statements",
":",
"# Generate observables for Modification statements",
"if",
"isinstance",
"(",
"stmt",
",",
"Modification",
")",
":",
"mod_condition_name",
"=",
"modclass_to_modtype",
"[",
"stmt",
".",
"__class__",
"]",
"if",
"isinstance",
"(",
"stmt",
",",
"RemoveModification",
")",
":",
"mod_condition_name",
"=",
"modtype_to_inverse",
"[",
"mod_condition_name",
"]",
"# Add modification to substrate agent",
"modified_sub",
"=",
"_add_modification_to_agent",
"(",
"stmt",
".",
"sub",
",",
"mod_condition_name",
",",
"stmt",
".",
"residue",
",",
"stmt",
".",
"position",
")",
"obs_list",
"=",
"add_obs_for_agent",
"(",
"modified_sub",
")",
"# Associate this statement with this observable",
"self",
".",
"stmt_to_obs",
"[",
"stmt",
"]",
"=",
"obs_list",
"# Generate observables for Activation/Inhibition statements",
"elif",
"isinstance",
"(",
"stmt",
",",
"RegulateActivity",
")",
":",
"regulated_obj",
",",
"polarity",
"=",
"_add_activity_to_agent",
"(",
"stmt",
".",
"obj",
",",
"stmt",
".",
"obj_activity",
",",
"stmt",
".",
"is_activation",
")",
"obs_list",
"=",
"add_obs_for_agent",
"(",
"regulated_obj",
")",
"# Associate this statement with this observable",
"self",
".",
"stmt_to_obs",
"[",
"stmt",
"]",
"=",
"obs_list",
"elif",
"isinstance",
"(",
"stmt",
",",
"RegulateAmount",
")",
":",
"obs_list",
"=",
"add_obs_for_agent",
"(",
"stmt",
".",
"obj",
")",
"self",
".",
"stmt_to_obs",
"[",
"stmt",
"]",
"=",
"obs_list",
"elif",
"isinstance",
"(",
"stmt",
",",
"Influence",
")",
":",
"obs_list",
"=",
"add_obs_for_agent",
"(",
"stmt",
".",
"obj",
".",
"concept",
")",
"self",
".",
"stmt_to_obs",
"[",
"stmt",
"]",
"=",
"obs_list",
"# Add observables for each agent",
"for",
"ag",
"in",
"self",
".",
"agent_obs",
":",
"obs_list",
"=",
"add_obs_for_agent",
"(",
"ag",
")",
"self",
".",
"agent_to_obs",
"[",
"ag",
"]",
"=",
"obs_list",
"logger",
".",
"info",
"(",
"\"Generating influence map\"",
")",
"self",
".",
"_im",
"=",
"self",
".",
"generate_im",
"(",
"self",
".",
"model",
")",
"#self._im.is_multigraph = lambda: False",
"# Now, for every rule in the model, check if there are any observables",
"# downstream; alternatively, for every observable in the model, get a",
"# list of rules.",
"# We'll need the dictionary to check if nodes are observables",
"node_attributes",
"=",
"nx",
".",
"get_node_attributes",
"(",
"self",
".",
"_im",
",",
"'node_type'",
")",
"for",
"rule",
"in",
"self",
".",
"model",
".",
"rules",
":",
"obs_list",
"=",
"[",
"]",
"# Get successors of the rule node",
"for",
"neighb",
"in",
"self",
".",
"_im",
".",
"neighbors",
"(",
"rule",
".",
"name",
")",
":",
"# Check if the node is an observable",
"if",
"node_attributes",
"[",
"neighb",
"]",
"!=",
"'variable'",
":",
"continue",
"# Get the edge and check the polarity",
"edge_sign",
"=",
"_get_edge_sign",
"(",
"self",
".",
"_im",
",",
"(",
"rule",
".",
"name",
",",
"neighb",
")",
")",
"obs_list",
".",
"append",
"(",
"(",
"neighb",
",",
"edge_sign",
")",
")",
"self",
".",
"rule_obs_dict",
"[",
"rule",
".",
"name",
"]",
"=",
"obs_list",
"return",
"self",
".",
"_im"
]
| Get the influence map for the model, generating it if necessary.
Parameters
----------
force_update : bool
Whether to generate the influence map when the function is called.
If False, returns the previously generated influence map if
available. Defaults to True.
Returns
-------
networkx MultiDiGraph object containing the influence map.
The influence map can be rendered as a pdf using the dot layout
program as follows::
im_agraph = nx.nx_agraph.to_agraph(influence_map)
im_agraph.draw('influence_map.pdf', prog='dot') | [
"Get",
"the",
"influence",
"map",
"for",
"the",
"model",
"generating",
"it",
"if",
"necessary",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/explanation/model_checker.py#L231-L327 | train |
sorgerlab/indra | indra/explanation/model_checker.py | ModelChecker.check_model | def check_model(self, max_paths=1, max_path_length=5):
"""Check all the statements added to the ModelChecker.
Parameters
----------
max_paths : Optional[int]
The maximum number of specific paths to return for each Statement
to be explained. Default: 1
max_path_length : Optional[int]
The maximum length of specific paths to return. Default: 5
Returns
-------
list of (Statement, PathResult)
Each tuple contains the Statement checked against the model and
a PathResult object describing the results of model checking.
"""
results = []
for stmt in self.statements:
result = self.check_statement(stmt, max_paths, max_path_length)
results.append((stmt, result))
return results | python | def check_model(self, max_paths=1, max_path_length=5):
"""Check all the statements added to the ModelChecker.
Parameters
----------
max_paths : Optional[int]
The maximum number of specific paths to return for each Statement
to be explained. Default: 1
max_path_length : Optional[int]
The maximum length of specific paths to return. Default: 5
Returns
-------
list of (Statement, PathResult)
Each tuple contains the Statement checked against the model and
a PathResult object describing the results of model checking.
"""
results = []
for stmt in self.statements:
result = self.check_statement(stmt, max_paths, max_path_length)
results.append((stmt, result))
return results | [
"def",
"check_model",
"(",
"self",
",",
"max_paths",
"=",
"1",
",",
"max_path_length",
"=",
"5",
")",
":",
"results",
"=",
"[",
"]",
"for",
"stmt",
"in",
"self",
".",
"statements",
":",
"result",
"=",
"self",
".",
"check_statement",
"(",
"stmt",
",",
"max_paths",
",",
"max_path_length",
")",
"results",
".",
"append",
"(",
"(",
"stmt",
",",
"result",
")",
")",
"return",
"results"
]
| Check all the statements added to the ModelChecker.
Parameters
----------
max_paths : Optional[int]
The maximum number of specific paths to return for each Statement
to be explained. Default: 1
max_path_length : Optional[int]
The maximum length of specific paths to return. Default: 5
Returns
-------
list of (Statement, PathResult)
Each tuple contains the Statement checked against the model and
a PathResult object describing the results of model checking. | [
"Check",
"all",
"the",
"statements",
"added",
"to",
"the",
"ModelChecker",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/explanation/model_checker.py#L329-L350 | train |
sorgerlab/indra | indra/explanation/model_checker.py | ModelChecker.check_statement | def check_statement(self, stmt, max_paths=1, max_path_length=5):
"""Check a single Statement against the model.
Parameters
----------
stmt : indra.statements.Statement
The Statement to check.
max_paths : Optional[int]
The maximum number of specific paths to return for each Statement
to be explained. Default: 1
max_path_length : Optional[int]
The maximum length of specific paths to return. Default: 5
Returns
-------
boolean
True if the model satisfies the Statement.
"""
# Make sure the influence map is initialized
self.get_im()
# Check if this is one of the statement types that we can check
if not isinstance(stmt, (Modification, RegulateAmount,
RegulateActivity, Influence)):
return PathResult(False, 'STATEMENT_TYPE_NOT_HANDLED',
max_paths, max_path_length)
# Get the polarity for the statement
if isinstance(stmt, Modification):
target_polarity = -1 if isinstance(stmt, RemoveModification) else 1
elif isinstance(stmt, RegulateActivity):
target_polarity = 1 if stmt.is_activation else -1
elif isinstance(stmt, RegulateAmount):
target_polarity = -1 if isinstance(stmt, DecreaseAmount) else 1
elif isinstance(stmt, Influence):
target_polarity = -1 if stmt.overall_polarity() == -1 else 1
# Get the subject and object (works also for Modifications)
subj, obj = stmt.agent_list()
# Get a list of monomer patterns matching the subject FIXME Currently
# this will match rules with the corresponding monomer pattern on it.
# In future, this statement should (possibly) also match rules in which
# 1) the agent is in its active form, or 2) the agent is tagged as the
# enzyme in a rule of the appropriate activity (e.g., a phosphorylation
# rule) FIXME
if subj is not None:
subj_mps = list(pa.grounded_monomer_patterns(self.model, subj,
ignore_activities=True))
if not subj_mps:
logger.debug('No monomers found corresponding to agent %s' %
subj)
return PathResult(False, 'SUBJECT_MONOMERS_NOT_FOUND',
max_paths, max_path_length)
else:
subj_mps = [None]
# Observables may not be found for an activation since there may be no
# rule in the model activating the object, and the object may not have
# an "active" site of the appropriate type
obs_names = self.stmt_to_obs[stmt]
if not obs_names:
logger.debug("No observables for stmt %s, returning False" % stmt)
return PathResult(False, 'OBSERVABLES_NOT_FOUND',
max_paths, max_path_length)
for subj_mp, obs_name in itertools.product(subj_mps, obs_names):
# NOTE: Returns on the path found for the first enz_mp/obs combo
result = self._find_im_paths(subj_mp, obs_name, target_polarity,
max_paths, max_path_length)
# If a path was found, then we return it; otherwise, that means
# there was no path for this observable, so we have to try the next
# one
if result.path_found:
return result
# If we got here, then there was no path for any observable
return PathResult(False, 'NO_PATHS_FOUND',
max_paths, max_path_length) | python | def check_statement(self, stmt, max_paths=1, max_path_length=5):
"""Check a single Statement against the model.
Parameters
----------
stmt : indra.statements.Statement
The Statement to check.
max_paths : Optional[int]
The maximum number of specific paths to return for each Statement
to be explained. Default: 1
max_path_length : Optional[int]
The maximum length of specific paths to return. Default: 5
Returns
-------
boolean
True if the model satisfies the Statement.
"""
# Make sure the influence map is initialized
self.get_im()
# Check if this is one of the statement types that we can check
if not isinstance(stmt, (Modification, RegulateAmount,
RegulateActivity, Influence)):
return PathResult(False, 'STATEMENT_TYPE_NOT_HANDLED',
max_paths, max_path_length)
# Get the polarity for the statement
if isinstance(stmt, Modification):
target_polarity = -1 if isinstance(stmt, RemoveModification) else 1
elif isinstance(stmt, RegulateActivity):
target_polarity = 1 if stmt.is_activation else -1
elif isinstance(stmt, RegulateAmount):
target_polarity = -1 if isinstance(stmt, DecreaseAmount) else 1
elif isinstance(stmt, Influence):
target_polarity = -1 if stmt.overall_polarity() == -1 else 1
# Get the subject and object (works also for Modifications)
subj, obj = stmt.agent_list()
# Get a list of monomer patterns matching the subject FIXME Currently
# this will match rules with the corresponding monomer pattern on it.
# In future, this statement should (possibly) also match rules in which
# 1) the agent is in its active form, or 2) the agent is tagged as the
# enzyme in a rule of the appropriate activity (e.g., a phosphorylation
# rule) FIXME
if subj is not None:
subj_mps = list(pa.grounded_monomer_patterns(self.model, subj,
ignore_activities=True))
if not subj_mps:
logger.debug('No monomers found corresponding to agent %s' %
subj)
return PathResult(False, 'SUBJECT_MONOMERS_NOT_FOUND',
max_paths, max_path_length)
else:
subj_mps = [None]
# Observables may not be found for an activation since there may be no
# rule in the model activating the object, and the object may not have
# an "active" site of the appropriate type
obs_names = self.stmt_to_obs[stmt]
if not obs_names:
logger.debug("No observables for stmt %s, returning False" % stmt)
return PathResult(False, 'OBSERVABLES_NOT_FOUND',
max_paths, max_path_length)
for subj_mp, obs_name in itertools.product(subj_mps, obs_names):
# NOTE: Returns on the path found for the first enz_mp/obs combo
result = self._find_im_paths(subj_mp, obs_name, target_polarity,
max_paths, max_path_length)
# If a path was found, then we return it; otherwise, that means
# there was no path for this observable, so we have to try the next
# one
if result.path_found:
return result
# If we got here, then there was no path for any observable
return PathResult(False, 'NO_PATHS_FOUND',
max_paths, max_path_length) | [
"def",
"check_statement",
"(",
"self",
",",
"stmt",
",",
"max_paths",
"=",
"1",
",",
"max_path_length",
"=",
"5",
")",
":",
"# Make sure the influence map is initialized",
"self",
".",
"get_im",
"(",
")",
"# Check if this is one of the statement types that we can check",
"if",
"not",
"isinstance",
"(",
"stmt",
",",
"(",
"Modification",
",",
"RegulateAmount",
",",
"RegulateActivity",
",",
"Influence",
")",
")",
":",
"return",
"PathResult",
"(",
"False",
",",
"'STATEMENT_TYPE_NOT_HANDLED'",
",",
"max_paths",
",",
"max_path_length",
")",
"# Get the polarity for the statement",
"if",
"isinstance",
"(",
"stmt",
",",
"Modification",
")",
":",
"target_polarity",
"=",
"-",
"1",
"if",
"isinstance",
"(",
"stmt",
",",
"RemoveModification",
")",
"else",
"1",
"elif",
"isinstance",
"(",
"stmt",
",",
"RegulateActivity",
")",
":",
"target_polarity",
"=",
"1",
"if",
"stmt",
".",
"is_activation",
"else",
"-",
"1",
"elif",
"isinstance",
"(",
"stmt",
",",
"RegulateAmount",
")",
":",
"target_polarity",
"=",
"-",
"1",
"if",
"isinstance",
"(",
"stmt",
",",
"DecreaseAmount",
")",
"else",
"1",
"elif",
"isinstance",
"(",
"stmt",
",",
"Influence",
")",
":",
"target_polarity",
"=",
"-",
"1",
"if",
"stmt",
".",
"overall_polarity",
"(",
")",
"==",
"-",
"1",
"else",
"1",
"# Get the subject and object (works also for Modifications)",
"subj",
",",
"obj",
"=",
"stmt",
".",
"agent_list",
"(",
")",
"# Get a list of monomer patterns matching the subject FIXME Currently",
"# this will match rules with the corresponding monomer pattern on it.",
"# In future, this statement should (possibly) also match rules in which",
"# 1) the agent is in its active form, or 2) the agent is tagged as the",
"# enzyme in a rule of the appropriate activity (e.g., a phosphorylation",
"# rule) FIXME",
"if",
"subj",
"is",
"not",
"None",
":",
"subj_mps",
"=",
"list",
"(",
"pa",
".",
"grounded_monomer_patterns",
"(",
"self",
".",
"model",
",",
"subj",
",",
"ignore_activities",
"=",
"True",
")",
")",
"if",
"not",
"subj_mps",
":",
"logger",
".",
"debug",
"(",
"'No monomers found corresponding to agent %s'",
"%",
"subj",
")",
"return",
"PathResult",
"(",
"False",
",",
"'SUBJECT_MONOMERS_NOT_FOUND'",
",",
"max_paths",
",",
"max_path_length",
")",
"else",
":",
"subj_mps",
"=",
"[",
"None",
"]",
"# Observables may not be found for an activation since there may be no",
"# rule in the model activating the object, and the object may not have",
"# an \"active\" site of the appropriate type",
"obs_names",
"=",
"self",
".",
"stmt_to_obs",
"[",
"stmt",
"]",
"if",
"not",
"obs_names",
":",
"logger",
".",
"debug",
"(",
"\"No observables for stmt %s, returning False\"",
"%",
"stmt",
")",
"return",
"PathResult",
"(",
"False",
",",
"'OBSERVABLES_NOT_FOUND'",
",",
"max_paths",
",",
"max_path_length",
")",
"for",
"subj_mp",
",",
"obs_name",
"in",
"itertools",
".",
"product",
"(",
"subj_mps",
",",
"obs_names",
")",
":",
"# NOTE: Returns on the path found for the first enz_mp/obs combo",
"result",
"=",
"self",
".",
"_find_im_paths",
"(",
"subj_mp",
",",
"obs_name",
",",
"target_polarity",
",",
"max_paths",
",",
"max_path_length",
")",
"# If a path was found, then we return it; otherwise, that means",
"# there was no path for this observable, so we have to try the next",
"# one",
"if",
"result",
".",
"path_found",
":",
"return",
"result",
"# If we got here, then there was no path for any observable",
"return",
"PathResult",
"(",
"False",
",",
"'NO_PATHS_FOUND'",
",",
"max_paths",
",",
"max_path_length",
")"
]
| Check a single Statement against the model.
Parameters
----------
stmt : indra.statements.Statement
The Statement to check.
max_paths : Optional[int]
The maximum number of specific paths to return for each Statement
to be explained. Default: 1
max_path_length : Optional[int]
The maximum length of specific paths to return. Default: 5
Returns
-------
boolean
True if the model satisfies the Statement. | [
"Check",
"a",
"single",
"Statement",
"against",
"the",
"model",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/explanation/model_checker.py#L352-L423 | train |
sorgerlab/indra | indra/explanation/model_checker.py | ModelChecker.score_paths | def score_paths(self, paths, agents_values, loss_of_function=False,
sigma=0.15, include_final_node=False):
"""Return scores associated with a given set of paths.
Parameters
----------
paths : list[list[tuple[str, int]]]
A list of paths obtained from path finding. Each path is a list
of tuples (which are edges in the path), with the first element
of the tuple the name of a rule, and the second element its
polarity in the path.
agents_values : dict[indra.statements.Agent, float]
A dictionary of INDRA Agents and their corresponding measured
value in a given experimental condition.
loss_of_function : Optional[boolean]
If True, flip the polarity of the path. For instance, if the effect
of an inhibitory drug is explained, set this to True.
Default: False
sigma : Optional[float]
The estimated standard deviation for the normally distributed
measurement error in the observation model used to score paths
with respect to data. Default: 0.15
include_final_node : Optional[boolean]
Determines whether the final node of the path is included in the
score. Default: False
"""
obs_model = lambda x: scipy.stats.norm(x, sigma)
# Build up dict mapping observables to values
obs_dict = {}
for ag, val in agents_values.items():
obs_list = self.agent_to_obs[ag]
if obs_list is not None:
for obs in obs_list:
obs_dict[obs] = val
# For every path...
path_scores = []
for path in paths:
logger.info('------')
logger.info("Scoring path:")
logger.info(path)
# Look at every node in the path, excluding the final
# observable...
path_score = 0
last_path_node_index = -1 if include_final_node else -2
for node, sign in path[:last_path_node_index]:
# ...and for each node check the sign to see if it matches the
# data. So the first thing is to look at what's downstream
# of the rule
# affected_obs is a list of observable names alogn
for affected_obs, rule_obs_sign in self.rule_obs_dict[node]:
flip_polarity = -1 if loss_of_function else 1
pred_sign = sign * rule_obs_sign * flip_polarity
# Check to see if this observable is in the data
logger.info('%s %s: effect %s %s' %
(node, sign, affected_obs, pred_sign))
measured_val = obs_dict.get(affected_obs)
if measured_val:
# For negative predictions use CDF (prob that given
# measured value, true value lies below 0)
if pred_sign <= 0:
prob_correct = obs_model(measured_val).logcdf(0)
# For positive predictions, use log survival function
# (SF = 1 - CDF, i.e., prob that true value is
# above 0)
else:
prob_correct = obs_model(measured_val).logsf(0)
logger.info('Actual: %s, Log Probability: %s' %
(measured_val, prob_correct))
path_score += prob_correct
if not self.rule_obs_dict[node]:
logger.info('%s %s' % (node, sign))
prob_correct = obs_model(0).logcdf(0)
logger.info('Unmeasured node, Log Probability: %s' %
(prob_correct))
path_score += prob_correct
# Normalized path
#path_score = path_score / len(path)
logger.info("Path score: %s" % path_score)
path_scores.append(path_score)
path_tuples = list(zip(paths, path_scores))
# Sort first by path length
sorted_by_length = sorted(path_tuples, key=lambda x: len(x[0]))
# Sort by probability; sort in reverse order to large values
# (higher probabilities) are ranked higher
scored_paths = sorted(sorted_by_length, key=lambda x: x[1],
reverse=True)
return scored_paths | python | def score_paths(self, paths, agents_values, loss_of_function=False,
sigma=0.15, include_final_node=False):
"""Return scores associated with a given set of paths.
Parameters
----------
paths : list[list[tuple[str, int]]]
A list of paths obtained from path finding. Each path is a list
of tuples (which are edges in the path), with the first element
of the tuple the name of a rule, and the second element its
polarity in the path.
agents_values : dict[indra.statements.Agent, float]
A dictionary of INDRA Agents and their corresponding measured
value in a given experimental condition.
loss_of_function : Optional[boolean]
If True, flip the polarity of the path. For instance, if the effect
of an inhibitory drug is explained, set this to True.
Default: False
sigma : Optional[float]
The estimated standard deviation for the normally distributed
measurement error in the observation model used to score paths
with respect to data. Default: 0.15
include_final_node : Optional[boolean]
Determines whether the final node of the path is included in the
score. Default: False
"""
obs_model = lambda x: scipy.stats.norm(x, sigma)
# Build up dict mapping observables to values
obs_dict = {}
for ag, val in agents_values.items():
obs_list = self.agent_to_obs[ag]
if obs_list is not None:
for obs in obs_list:
obs_dict[obs] = val
# For every path...
path_scores = []
for path in paths:
logger.info('------')
logger.info("Scoring path:")
logger.info(path)
# Look at every node in the path, excluding the final
# observable...
path_score = 0
last_path_node_index = -1 if include_final_node else -2
for node, sign in path[:last_path_node_index]:
# ...and for each node check the sign to see if it matches the
# data. So the first thing is to look at what's downstream
# of the rule
# affected_obs is a list of observable names alogn
for affected_obs, rule_obs_sign in self.rule_obs_dict[node]:
flip_polarity = -1 if loss_of_function else 1
pred_sign = sign * rule_obs_sign * flip_polarity
# Check to see if this observable is in the data
logger.info('%s %s: effect %s %s' %
(node, sign, affected_obs, pred_sign))
measured_val = obs_dict.get(affected_obs)
if measured_val:
# For negative predictions use CDF (prob that given
# measured value, true value lies below 0)
if pred_sign <= 0:
prob_correct = obs_model(measured_val).logcdf(0)
# For positive predictions, use log survival function
# (SF = 1 - CDF, i.e., prob that true value is
# above 0)
else:
prob_correct = obs_model(measured_val).logsf(0)
logger.info('Actual: %s, Log Probability: %s' %
(measured_val, prob_correct))
path_score += prob_correct
if not self.rule_obs_dict[node]:
logger.info('%s %s' % (node, sign))
prob_correct = obs_model(0).logcdf(0)
logger.info('Unmeasured node, Log Probability: %s' %
(prob_correct))
path_score += prob_correct
# Normalized path
#path_score = path_score / len(path)
logger.info("Path score: %s" % path_score)
path_scores.append(path_score)
path_tuples = list(zip(paths, path_scores))
# Sort first by path length
sorted_by_length = sorted(path_tuples, key=lambda x: len(x[0]))
# Sort by probability; sort in reverse order to large values
# (higher probabilities) are ranked higher
scored_paths = sorted(sorted_by_length, key=lambda x: x[1],
reverse=True)
return scored_paths | [
"def",
"score_paths",
"(",
"self",
",",
"paths",
",",
"agents_values",
",",
"loss_of_function",
"=",
"False",
",",
"sigma",
"=",
"0.15",
",",
"include_final_node",
"=",
"False",
")",
":",
"obs_model",
"=",
"lambda",
"x",
":",
"scipy",
".",
"stats",
".",
"norm",
"(",
"x",
",",
"sigma",
")",
"# Build up dict mapping observables to values",
"obs_dict",
"=",
"{",
"}",
"for",
"ag",
",",
"val",
"in",
"agents_values",
".",
"items",
"(",
")",
":",
"obs_list",
"=",
"self",
".",
"agent_to_obs",
"[",
"ag",
"]",
"if",
"obs_list",
"is",
"not",
"None",
":",
"for",
"obs",
"in",
"obs_list",
":",
"obs_dict",
"[",
"obs",
"]",
"=",
"val",
"# For every path...",
"path_scores",
"=",
"[",
"]",
"for",
"path",
"in",
"paths",
":",
"logger",
".",
"info",
"(",
"'------'",
")",
"logger",
".",
"info",
"(",
"\"Scoring path:\"",
")",
"logger",
".",
"info",
"(",
"path",
")",
"# Look at every node in the path, excluding the final",
"# observable...",
"path_score",
"=",
"0",
"last_path_node_index",
"=",
"-",
"1",
"if",
"include_final_node",
"else",
"-",
"2",
"for",
"node",
",",
"sign",
"in",
"path",
"[",
":",
"last_path_node_index",
"]",
":",
"# ...and for each node check the sign to see if it matches the",
"# data. So the first thing is to look at what's downstream",
"# of the rule",
"# affected_obs is a list of observable names alogn",
"for",
"affected_obs",
",",
"rule_obs_sign",
"in",
"self",
".",
"rule_obs_dict",
"[",
"node",
"]",
":",
"flip_polarity",
"=",
"-",
"1",
"if",
"loss_of_function",
"else",
"1",
"pred_sign",
"=",
"sign",
"*",
"rule_obs_sign",
"*",
"flip_polarity",
"# Check to see if this observable is in the data",
"logger",
".",
"info",
"(",
"'%s %s: effect %s %s'",
"%",
"(",
"node",
",",
"sign",
",",
"affected_obs",
",",
"pred_sign",
")",
")",
"measured_val",
"=",
"obs_dict",
".",
"get",
"(",
"affected_obs",
")",
"if",
"measured_val",
":",
"# For negative predictions use CDF (prob that given",
"# measured value, true value lies below 0)",
"if",
"pred_sign",
"<=",
"0",
":",
"prob_correct",
"=",
"obs_model",
"(",
"measured_val",
")",
".",
"logcdf",
"(",
"0",
")",
"# For positive predictions, use log survival function",
"# (SF = 1 - CDF, i.e., prob that true value is",
"# above 0)",
"else",
":",
"prob_correct",
"=",
"obs_model",
"(",
"measured_val",
")",
".",
"logsf",
"(",
"0",
")",
"logger",
".",
"info",
"(",
"'Actual: %s, Log Probability: %s'",
"%",
"(",
"measured_val",
",",
"prob_correct",
")",
")",
"path_score",
"+=",
"prob_correct",
"if",
"not",
"self",
".",
"rule_obs_dict",
"[",
"node",
"]",
":",
"logger",
".",
"info",
"(",
"'%s %s'",
"%",
"(",
"node",
",",
"sign",
")",
")",
"prob_correct",
"=",
"obs_model",
"(",
"0",
")",
".",
"logcdf",
"(",
"0",
")",
"logger",
".",
"info",
"(",
"'Unmeasured node, Log Probability: %s'",
"%",
"(",
"prob_correct",
")",
")",
"path_score",
"+=",
"prob_correct",
"# Normalized path",
"#path_score = path_score / len(path)",
"logger",
".",
"info",
"(",
"\"Path score: %s\"",
"%",
"path_score",
")",
"path_scores",
".",
"append",
"(",
"path_score",
")",
"path_tuples",
"=",
"list",
"(",
"zip",
"(",
"paths",
",",
"path_scores",
")",
")",
"# Sort first by path length",
"sorted_by_length",
"=",
"sorted",
"(",
"path_tuples",
",",
"key",
"=",
"lambda",
"x",
":",
"len",
"(",
"x",
"[",
"0",
"]",
")",
")",
"# Sort by probability; sort in reverse order to large values",
"# (higher probabilities) are ranked higher",
"scored_paths",
"=",
"sorted",
"(",
"sorted_by_length",
",",
"key",
"=",
"lambda",
"x",
":",
"x",
"[",
"1",
"]",
",",
"reverse",
"=",
"True",
")",
"return",
"scored_paths"
]
| Return scores associated with a given set of paths.
Parameters
----------
paths : list[list[tuple[str, int]]]
A list of paths obtained from path finding. Each path is a list
of tuples (which are edges in the path), with the first element
of the tuple the name of a rule, and the second element its
polarity in the path.
agents_values : dict[indra.statements.Agent, float]
A dictionary of INDRA Agents and their corresponding measured
value in a given experimental condition.
loss_of_function : Optional[boolean]
If True, flip the polarity of the path. For instance, if the effect
of an inhibitory drug is explained, set this to True.
Default: False
sigma : Optional[float]
The estimated standard deviation for the normally distributed
measurement error in the observation model used to score paths
with respect to data. Default: 0.15
include_final_node : Optional[boolean]
Determines whether the final node of the path is included in the
score. Default: False | [
"Return",
"scores",
"associated",
"with",
"a",
"given",
"set",
"of",
"paths",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/explanation/model_checker.py#L642-L728 | train |
sorgerlab/indra | indra/explanation/model_checker.py | ModelChecker.prune_influence_map | def prune_influence_map(self):
"""Remove edges between rules causing problematic non-transitivity.
First, all self-loops are removed. After this initial step, edges are
removed between rules when they share *all* child nodes except for each
other; that is, they have a mutual relationship with each other and
share all of the same children.
Note that edges must be removed in batch at the end to prevent edge
removal from affecting the lists of rule children during the comparison
process.
"""
im = self.get_im()
# First, remove all self-loops
logger.info('Removing self loops')
edges_to_remove = []
for e in im.edges():
if e[0] == e[1]:
logger.info('Removing self loop: %s', e)
edges_to_remove.append((e[0], e[1]))
# Now remove all the edges to be removed with a single call
im.remove_edges_from(edges_to_remove)
# Remove parameter nodes from influence map
remove_im_params(self.model, im)
# Now compare nodes pairwise and look for overlap between child nodes
logger.info('Get successorts of each node')
succ_dict = {}
for node in im.nodes():
succ_dict[node] = set(im.successors(node))
# Sort and then group nodes by number of successors
logger.info('Compare combinations of successors')
group_key_fun = lambda x: len(succ_dict[x])
nodes_sorted = sorted(im.nodes(), key=group_key_fun)
groups = itertools.groupby(nodes_sorted, key=group_key_fun)
# Now iterate over each group and then construct combinations
# within the group to check for shared sucessors
edges_to_remove = []
for gix, group in groups:
combos = itertools.combinations(group, 2)
for ix, (p1, p2) in enumerate(combos):
# Children are identical except for mutual relationship
if succ_dict[p1].difference(succ_dict[p2]) == set([p2]) and \
succ_dict[p2].difference(succ_dict[p1]) == set([p1]):
for u, v in ((p1, p2), (p2, p1)):
edges_to_remove.append((u, v))
logger.debug('Will remove edge (%s, %s)', u, v)
logger.info('Removing %d edges from influence map' %
len(edges_to_remove))
# Now remove all the edges to be removed with a single call
im.remove_edges_from(edges_to_remove) | python | def prune_influence_map(self):
"""Remove edges between rules causing problematic non-transitivity.
First, all self-loops are removed. After this initial step, edges are
removed between rules when they share *all* child nodes except for each
other; that is, they have a mutual relationship with each other and
share all of the same children.
Note that edges must be removed in batch at the end to prevent edge
removal from affecting the lists of rule children during the comparison
process.
"""
im = self.get_im()
# First, remove all self-loops
logger.info('Removing self loops')
edges_to_remove = []
for e in im.edges():
if e[0] == e[1]:
logger.info('Removing self loop: %s', e)
edges_to_remove.append((e[0], e[1]))
# Now remove all the edges to be removed with a single call
im.remove_edges_from(edges_to_remove)
# Remove parameter nodes from influence map
remove_im_params(self.model, im)
# Now compare nodes pairwise and look for overlap between child nodes
logger.info('Get successorts of each node')
succ_dict = {}
for node in im.nodes():
succ_dict[node] = set(im.successors(node))
# Sort and then group nodes by number of successors
logger.info('Compare combinations of successors')
group_key_fun = lambda x: len(succ_dict[x])
nodes_sorted = sorted(im.nodes(), key=group_key_fun)
groups = itertools.groupby(nodes_sorted, key=group_key_fun)
# Now iterate over each group and then construct combinations
# within the group to check for shared sucessors
edges_to_remove = []
for gix, group in groups:
combos = itertools.combinations(group, 2)
for ix, (p1, p2) in enumerate(combos):
# Children are identical except for mutual relationship
if succ_dict[p1].difference(succ_dict[p2]) == set([p2]) and \
succ_dict[p2].difference(succ_dict[p1]) == set([p1]):
for u, v in ((p1, p2), (p2, p1)):
edges_to_remove.append((u, v))
logger.debug('Will remove edge (%s, %s)', u, v)
logger.info('Removing %d edges from influence map' %
len(edges_to_remove))
# Now remove all the edges to be removed with a single call
im.remove_edges_from(edges_to_remove) | [
"def",
"prune_influence_map",
"(",
"self",
")",
":",
"im",
"=",
"self",
".",
"get_im",
"(",
")",
"# First, remove all self-loops",
"logger",
".",
"info",
"(",
"'Removing self loops'",
")",
"edges_to_remove",
"=",
"[",
"]",
"for",
"e",
"in",
"im",
".",
"edges",
"(",
")",
":",
"if",
"e",
"[",
"0",
"]",
"==",
"e",
"[",
"1",
"]",
":",
"logger",
".",
"info",
"(",
"'Removing self loop: %s'",
",",
"e",
")",
"edges_to_remove",
".",
"append",
"(",
"(",
"e",
"[",
"0",
"]",
",",
"e",
"[",
"1",
"]",
")",
")",
"# Now remove all the edges to be removed with a single call",
"im",
".",
"remove_edges_from",
"(",
"edges_to_remove",
")",
"# Remove parameter nodes from influence map",
"remove_im_params",
"(",
"self",
".",
"model",
",",
"im",
")",
"# Now compare nodes pairwise and look for overlap between child nodes",
"logger",
".",
"info",
"(",
"'Get successorts of each node'",
")",
"succ_dict",
"=",
"{",
"}",
"for",
"node",
"in",
"im",
".",
"nodes",
"(",
")",
":",
"succ_dict",
"[",
"node",
"]",
"=",
"set",
"(",
"im",
".",
"successors",
"(",
"node",
")",
")",
"# Sort and then group nodes by number of successors",
"logger",
".",
"info",
"(",
"'Compare combinations of successors'",
")",
"group_key_fun",
"=",
"lambda",
"x",
":",
"len",
"(",
"succ_dict",
"[",
"x",
"]",
")",
"nodes_sorted",
"=",
"sorted",
"(",
"im",
".",
"nodes",
"(",
")",
",",
"key",
"=",
"group_key_fun",
")",
"groups",
"=",
"itertools",
".",
"groupby",
"(",
"nodes_sorted",
",",
"key",
"=",
"group_key_fun",
")",
"# Now iterate over each group and then construct combinations",
"# within the group to check for shared sucessors",
"edges_to_remove",
"=",
"[",
"]",
"for",
"gix",
",",
"group",
"in",
"groups",
":",
"combos",
"=",
"itertools",
".",
"combinations",
"(",
"group",
",",
"2",
")",
"for",
"ix",
",",
"(",
"p1",
",",
"p2",
")",
"in",
"enumerate",
"(",
"combos",
")",
":",
"# Children are identical except for mutual relationship",
"if",
"succ_dict",
"[",
"p1",
"]",
".",
"difference",
"(",
"succ_dict",
"[",
"p2",
"]",
")",
"==",
"set",
"(",
"[",
"p2",
"]",
")",
"and",
"succ_dict",
"[",
"p2",
"]",
".",
"difference",
"(",
"succ_dict",
"[",
"p1",
"]",
")",
"==",
"set",
"(",
"[",
"p1",
"]",
")",
":",
"for",
"u",
",",
"v",
"in",
"(",
"(",
"p1",
",",
"p2",
")",
",",
"(",
"p2",
",",
"p1",
")",
")",
":",
"edges_to_remove",
".",
"append",
"(",
"(",
"u",
",",
"v",
")",
")",
"logger",
".",
"debug",
"(",
"'Will remove edge (%s, %s)'",
",",
"u",
",",
"v",
")",
"logger",
".",
"info",
"(",
"'Removing %d edges from influence map'",
"%",
"len",
"(",
"edges_to_remove",
")",
")",
"# Now remove all the edges to be removed with a single call",
"im",
".",
"remove_edges_from",
"(",
"edges_to_remove",
")"
]
| Remove edges between rules causing problematic non-transitivity.
First, all self-loops are removed. After this initial step, edges are
removed between rules when they share *all* child nodes except for each
other; that is, they have a mutual relationship with each other and
share all of the same children.
Note that edges must be removed in batch at the end to prevent edge
removal from affecting the lists of rule children during the comparison
process. | [
"Remove",
"edges",
"between",
"rules",
"causing",
"problematic",
"non",
"-",
"transitivity",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/explanation/model_checker.py#L730-L782 | train |
sorgerlab/indra | indra/explanation/model_checker.py | ModelChecker.prune_influence_map_subj_obj | def prune_influence_map_subj_obj(self):
"""Prune influence map to include only edges where the object of the
upstream rule matches the subject of the downstream rule."""
def get_rule_info(r):
result = {}
for ann in self.model.annotations:
if ann.subject == r:
if ann.predicate == 'rule_has_subject':
result['subject'] = ann.object
elif ann.predicate == 'rule_has_object':
result['object'] = ann.object
return result
im = self.get_im()
rules = im.nodes()
edges_to_prune = []
for r1, r2 in itertools.permutations(rules, 2):
if (r1, r2) not in im.edges():
continue
r1_info = get_rule_info(r1)
r2_info = get_rule_info(r2)
if 'object' not in r1_info or 'subject' not in r2_info:
continue
if r1_info['object'] != r2_info['subject']:
logger.info("Removing edge %s --> %s" % (r1, r2))
edges_to_prune.append((r1, r2))
im.remove_edges_from(edges_to_prune) | python | def prune_influence_map_subj_obj(self):
"""Prune influence map to include only edges where the object of the
upstream rule matches the subject of the downstream rule."""
def get_rule_info(r):
result = {}
for ann in self.model.annotations:
if ann.subject == r:
if ann.predicate == 'rule_has_subject':
result['subject'] = ann.object
elif ann.predicate == 'rule_has_object':
result['object'] = ann.object
return result
im = self.get_im()
rules = im.nodes()
edges_to_prune = []
for r1, r2 in itertools.permutations(rules, 2):
if (r1, r2) not in im.edges():
continue
r1_info = get_rule_info(r1)
r2_info = get_rule_info(r2)
if 'object' not in r1_info or 'subject' not in r2_info:
continue
if r1_info['object'] != r2_info['subject']:
logger.info("Removing edge %s --> %s" % (r1, r2))
edges_to_prune.append((r1, r2))
im.remove_edges_from(edges_to_prune) | [
"def",
"prune_influence_map_subj_obj",
"(",
"self",
")",
":",
"def",
"get_rule_info",
"(",
"r",
")",
":",
"result",
"=",
"{",
"}",
"for",
"ann",
"in",
"self",
".",
"model",
".",
"annotations",
":",
"if",
"ann",
".",
"subject",
"==",
"r",
":",
"if",
"ann",
".",
"predicate",
"==",
"'rule_has_subject'",
":",
"result",
"[",
"'subject'",
"]",
"=",
"ann",
".",
"object",
"elif",
"ann",
".",
"predicate",
"==",
"'rule_has_object'",
":",
"result",
"[",
"'object'",
"]",
"=",
"ann",
".",
"object",
"return",
"result",
"im",
"=",
"self",
".",
"get_im",
"(",
")",
"rules",
"=",
"im",
".",
"nodes",
"(",
")",
"edges_to_prune",
"=",
"[",
"]",
"for",
"r1",
",",
"r2",
"in",
"itertools",
".",
"permutations",
"(",
"rules",
",",
"2",
")",
":",
"if",
"(",
"r1",
",",
"r2",
")",
"not",
"in",
"im",
".",
"edges",
"(",
")",
":",
"continue",
"r1_info",
"=",
"get_rule_info",
"(",
"r1",
")",
"r2_info",
"=",
"get_rule_info",
"(",
"r2",
")",
"if",
"'object'",
"not",
"in",
"r1_info",
"or",
"'subject'",
"not",
"in",
"r2_info",
":",
"continue",
"if",
"r1_info",
"[",
"'object'",
"]",
"!=",
"r2_info",
"[",
"'subject'",
"]",
":",
"logger",
".",
"info",
"(",
"\"Removing edge %s --> %s\"",
"%",
"(",
"r1",
",",
"r2",
")",
")",
"edges_to_prune",
".",
"append",
"(",
"(",
"r1",
",",
"r2",
")",
")",
"im",
".",
"remove_edges_from",
"(",
"edges_to_prune",
")"
]
| Prune influence map to include only edges where the object of the
upstream rule matches the subject of the downstream rule. | [
"Prune",
"influence",
"map",
"to",
"include",
"only",
"edges",
"where",
"the",
"object",
"of",
"the",
"upstream",
"rule",
"matches",
"the",
"subject",
"of",
"the",
"downstream",
"rule",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/explanation/model_checker.py#L784-L809 | train |
sorgerlab/indra | indra/tools/reading/util/reporter.py | Reporter.add_section | def add_section(self, section_name):
"""Create a section of the report, to be headed by section_name
Text and images can be added by using the `section` argument of the
`add_text` and `add_image` methods. Sections can also be ordered by
using the `set_section_order` method.
By default, text and images that have no section will be placed after
all the sections, in the order they were added. This behavior may be
altered using the `sections_first` attribute of the `make_report`
method.
"""
self.section_headings.append(section_name)
if section_name in self.sections:
raise ValueError("Section %s already exists." % section_name)
self.sections[section_name] = []
return | python | def add_section(self, section_name):
"""Create a section of the report, to be headed by section_name
Text and images can be added by using the `section` argument of the
`add_text` and `add_image` methods. Sections can also be ordered by
using the `set_section_order` method.
By default, text and images that have no section will be placed after
all the sections, in the order they were added. This behavior may be
altered using the `sections_first` attribute of the `make_report`
method.
"""
self.section_headings.append(section_name)
if section_name in self.sections:
raise ValueError("Section %s already exists." % section_name)
self.sections[section_name] = []
return | [
"def",
"add_section",
"(",
"self",
",",
"section_name",
")",
":",
"self",
".",
"section_headings",
".",
"append",
"(",
"section_name",
")",
"if",
"section_name",
"in",
"self",
".",
"sections",
":",
"raise",
"ValueError",
"(",
"\"Section %s already exists.\"",
"%",
"section_name",
")",
"self",
".",
"sections",
"[",
"section_name",
"]",
"=",
"[",
"]",
"return"
]
| Create a section of the report, to be headed by section_name
Text and images can be added by using the `section` argument of the
`add_text` and `add_image` methods. Sections can also be ordered by
using the `set_section_order` method.
By default, text and images that have no section will be placed after
all the sections, in the order they were added. This behavior may be
altered using the `sections_first` attribute of the `make_report`
method. | [
"Create",
"a",
"section",
"of",
"the",
"report",
"to",
"be",
"headed",
"by",
"section_name"
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/tools/reading/util/reporter.py#L31-L47 | train |
sorgerlab/indra | indra/tools/reading/util/reporter.py | Reporter.set_section_order | def set_section_order(self, section_name_list):
"""Set the order of the sections, which are by default unorderd.
Any unlisted sections that exist will be placed at the end of the
document in no particular order.
"""
self.section_headings = section_name_list[:]
for section_name in self.sections.keys():
if section_name not in section_name_list:
self.section_headings.append(section_name)
return | python | def set_section_order(self, section_name_list):
"""Set the order of the sections, which are by default unorderd.
Any unlisted sections that exist will be placed at the end of the
document in no particular order.
"""
self.section_headings = section_name_list[:]
for section_name in self.sections.keys():
if section_name not in section_name_list:
self.section_headings.append(section_name)
return | [
"def",
"set_section_order",
"(",
"self",
",",
"section_name_list",
")",
":",
"self",
".",
"section_headings",
"=",
"section_name_list",
"[",
":",
"]",
"for",
"section_name",
"in",
"self",
".",
"sections",
".",
"keys",
"(",
")",
":",
"if",
"section_name",
"not",
"in",
"section_name_list",
":",
"self",
".",
"section_headings",
".",
"append",
"(",
"section_name",
")",
"return"
]
| Set the order of the sections, which are by default unorderd.
Any unlisted sections that exist will be placed at the end of the
document in no particular order. | [
"Set",
"the",
"order",
"of",
"the",
"sections",
"which",
"are",
"by",
"default",
"unorderd",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/tools/reading/util/reporter.py#L49-L59 | train |
sorgerlab/indra | indra/tools/reading/util/reporter.py | Reporter.add_text | def add_text(self, text, *args, **kwargs):
"""Add text to the document.
Text is shown on the final document in the order it is added, either
within the given section or as part of the un-sectioned list of content.
Parameters
----------
text : str
The text to be added.
style : str
Choose the style of the text. Options include 'Normal', 'Code',
'Title', 'h1'. For others, see `getSampleStyleSheet` from
`reportlab.lib.styles`.
space : tuple (num spaces, font size)
The number and size of spaces to follow this section of text.
Default is (1, 12).
fontsize : int
The integer font size of the text (e.g. 12 for 12 point font).
Default is 12.
alignment : str
The alignment of the text. Options include 'left', 'right', and
'center'. Default is 'left'.
section : str
(This must be a keyword) Select a section in which to place this
text. Default is None, in which case the text will be simply be
added to a default list of text and images.
"""
# Pull down some kwargs.
section_name = kwargs.pop('section', None)
# Actually do the formatting.
para, sp = self._preformat_text(text, *args, **kwargs)
# Select the appropriate list to update
if section_name is None:
relevant_list = self.story
else:
relevant_list = self.sections[section_name]
# Add the new content to list.
relevant_list.append(para)
relevant_list.append(sp)
return | python | def add_text(self, text, *args, **kwargs):
"""Add text to the document.
Text is shown on the final document in the order it is added, either
within the given section or as part of the un-sectioned list of content.
Parameters
----------
text : str
The text to be added.
style : str
Choose the style of the text. Options include 'Normal', 'Code',
'Title', 'h1'. For others, see `getSampleStyleSheet` from
`reportlab.lib.styles`.
space : tuple (num spaces, font size)
The number and size of spaces to follow this section of text.
Default is (1, 12).
fontsize : int
The integer font size of the text (e.g. 12 for 12 point font).
Default is 12.
alignment : str
The alignment of the text. Options include 'left', 'right', and
'center'. Default is 'left'.
section : str
(This must be a keyword) Select a section in which to place this
text. Default is None, in which case the text will be simply be
added to a default list of text and images.
"""
# Pull down some kwargs.
section_name = kwargs.pop('section', None)
# Actually do the formatting.
para, sp = self._preformat_text(text, *args, **kwargs)
# Select the appropriate list to update
if section_name is None:
relevant_list = self.story
else:
relevant_list = self.sections[section_name]
# Add the new content to list.
relevant_list.append(para)
relevant_list.append(sp)
return | [
"def",
"add_text",
"(",
"self",
",",
"text",
",",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
":",
"# Pull down some kwargs.",
"section_name",
"=",
"kwargs",
".",
"pop",
"(",
"'section'",
",",
"None",
")",
"# Actually do the formatting.",
"para",
",",
"sp",
"=",
"self",
".",
"_preformat_text",
"(",
"text",
",",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
"# Select the appropriate list to update",
"if",
"section_name",
"is",
"None",
":",
"relevant_list",
"=",
"self",
".",
"story",
"else",
":",
"relevant_list",
"=",
"self",
".",
"sections",
"[",
"section_name",
"]",
"# Add the new content to list.",
"relevant_list",
".",
"append",
"(",
"para",
")",
"relevant_list",
".",
"append",
"(",
"sp",
")",
"return"
]
| Add text to the document.
Text is shown on the final document in the order it is added, either
within the given section or as part of the un-sectioned list of content.
Parameters
----------
text : str
The text to be added.
style : str
Choose the style of the text. Options include 'Normal', 'Code',
'Title', 'h1'. For others, see `getSampleStyleSheet` from
`reportlab.lib.styles`.
space : tuple (num spaces, font size)
The number and size of spaces to follow this section of text.
Default is (1, 12).
fontsize : int
The integer font size of the text (e.g. 12 for 12 point font).
Default is 12.
alignment : str
The alignment of the text. Options include 'left', 'right', and
'center'. Default is 'left'.
section : str
(This must be a keyword) Select a section in which to place this
text. Default is None, in which case the text will be simply be
added to a default list of text and images. | [
"Add",
"text",
"to",
"the",
"document",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/tools/reading/util/reporter.py#L61-L104 | train |
sorgerlab/indra | indra/tools/reading/util/reporter.py | Reporter.add_image | def add_image(self, image_path, width=None, height=None, section=None):
"""Add an image to the document.
Images are shown on the final document in the order they are added,
either within the given section or as part of the un-sectioned list of
content.
Parameters
----------
image_path : str
A path to the image on the local file system.
width : int or float
The width of the image in the document in inches.
height : int or float
The height of the image in the document in incehs.
section : str
(This must be a keyword) Select a section in which to place this
image. Default is None, in which case the image will be simply be
added to a default list of text and images.
"""
if width is not None:
width = width*inch
if height is not None:
height = height*inch
im = Image(image_path, width, height)
if section is None:
self.story.append(im)
else:
self.sections[section].append(im)
return | python | def add_image(self, image_path, width=None, height=None, section=None):
"""Add an image to the document.
Images are shown on the final document in the order they are added,
either within the given section or as part of the un-sectioned list of
content.
Parameters
----------
image_path : str
A path to the image on the local file system.
width : int or float
The width of the image in the document in inches.
height : int or float
The height of the image in the document in incehs.
section : str
(This must be a keyword) Select a section in which to place this
image. Default is None, in which case the image will be simply be
added to a default list of text and images.
"""
if width is not None:
width = width*inch
if height is not None:
height = height*inch
im = Image(image_path, width, height)
if section is None:
self.story.append(im)
else:
self.sections[section].append(im)
return | [
"def",
"add_image",
"(",
"self",
",",
"image_path",
",",
"width",
"=",
"None",
",",
"height",
"=",
"None",
",",
"section",
"=",
"None",
")",
":",
"if",
"width",
"is",
"not",
"None",
":",
"width",
"=",
"width",
"*",
"inch",
"if",
"height",
"is",
"not",
"None",
":",
"height",
"=",
"height",
"*",
"inch",
"im",
"=",
"Image",
"(",
"image_path",
",",
"width",
",",
"height",
")",
"if",
"section",
"is",
"None",
":",
"self",
".",
"story",
".",
"append",
"(",
"im",
")",
"else",
":",
"self",
".",
"sections",
"[",
"section",
"]",
".",
"append",
"(",
"im",
")",
"return"
]
| Add an image to the document.
Images are shown on the final document in the order they are added,
either within the given section or as part of the un-sectioned list of
content.
Parameters
----------
image_path : str
A path to the image on the local file system.
width : int or float
The width of the image in the document in inches.
height : int or float
The height of the image in the document in incehs.
section : str
(This must be a keyword) Select a section in which to place this
image. Default is None, in which case the image will be simply be
added to a default list of text and images. | [
"Add",
"an",
"image",
"to",
"the",
"document",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/tools/reading/util/reporter.py#L106-L135 | train |
sorgerlab/indra | indra/tools/reading/util/reporter.py | Reporter.make_report | def make_report(self, sections_first=True, section_header_params=None):
"""Create the pdf document with name `self.name + '.pdf'`.
Parameters
----------
sections_first : bool
If True (default), text and images with sections are presented first
and un-sectioned content is appended afterword. If False, sectioned
text and images will be placed before the sections.
section_header_params : dict or None
Optionally overwrite/extend the default formatting for the section
headers. Default is None.
"""
full_story = list(self._preformat_text(self.title, style='Title',
fontsize=18, alignment='center'))
# Set the default section header parameters
if section_header_params is None:
section_header_params = {'style': 'h1', 'fontsize': 14,
'alignment': 'center'}
# Merge the sections and the rest of the story.
if sections_first:
full_story += self._make_sections(**section_header_params)
full_story += self.story
else:
full_story += self.story
full_story += self._make_sections(**section_header_params)
fname = self.name + '.pdf'
doc = SimpleDocTemplate(fname, pagesize=letter,
rightMargin=72, leftMargin=72,
topMargin=72, bottomMargin=18)
doc.build(full_story)
return fname | python | def make_report(self, sections_first=True, section_header_params=None):
"""Create the pdf document with name `self.name + '.pdf'`.
Parameters
----------
sections_first : bool
If True (default), text and images with sections are presented first
and un-sectioned content is appended afterword. If False, sectioned
text and images will be placed before the sections.
section_header_params : dict or None
Optionally overwrite/extend the default formatting for the section
headers. Default is None.
"""
full_story = list(self._preformat_text(self.title, style='Title',
fontsize=18, alignment='center'))
# Set the default section header parameters
if section_header_params is None:
section_header_params = {'style': 'h1', 'fontsize': 14,
'alignment': 'center'}
# Merge the sections and the rest of the story.
if sections_first:
full_story += self._make_sections(**section_header_params)
full_story += self.story
else:
full_story += self.story
full_story += self._make_sections(**section_header_params)
fname = self.name + '.pdf'
doc = SimpleDocTemplate(fname, pagesize=letter,
rightMargin=72, leftMargin=72,
topMargin=72, bottomMargin=18)
doc.build(full_story)
return fname | [
"def",
"make_report",
"(",
"self",
",",
"sections_first",
"=",
"True",
",",
"section_header_params",
"=",
"None",
")",
":",
"full_story",
"=",
"list",
"(",
"self",
".",
"_preformat_text",
"(",
"self",
".",
"title",
",",
"style",
"=",
"'Title'",
",",
"fontsize",
"=",
"18",
",",
"alignment",
"=",
"'center'",
")",
")",
"# Set the default section header parameters",
"if",
"section_header_params",
"is",
"None",
":",
"section_header_params",
"=",
"{",
"'style'",
":",
"'h1'",
",",
"'fontsize'",
":",
"14",
",",
"'alignment'",
":",
"'center'",
"}",
"# Merge the sections and the rest of the story.",
"if",
"sections_first",
":",
"full_story",
"+=",
"self",
".",
"_make_sections",
"(",
"*",
"*",
"section_header_params",
")",
"full_story",
"+=",
"self",
".",
"story",
"else",
":",
"full_story",
"+=",
"self",
".",
"story",
"full_story",
"+=",
"self",
".",
"_make_sections",
"(",
"*",
"*",
"section_header_params",
")",
"fname",
"=",
"self",
".",
"name",
"+",
"'.pdf'",
"doc",
"=",
"SimpleDocTemplate",
"(",
"fname",
",",
"pagesize",
"=",
"letter",
",",
"rightMargin",
"=",
"72",
",",
"leftMargin",
"=",
"72",
",",
"topMargin",
"=",
"72",
",",
"bottomMargin",
"=",
"18",
")",
"doc",
".",
"build",
"(",
"full_story",
")",
"return",
"fname"
]
| Create the pdf document with name `self.name + '.pdf'`.
Parameters
----------
sections_first : bool
If True (default), text and images with sections are presented first
and un-sectioned content is appended afterword. If False, sectioned
text and images will be placed before the sections.
section_header_params : dict or None
Optionally overwrite/extend the default formatting for the section
headers. Default is None. | [
"Create",
"the",
"pdf",
"document",
"with",
"name",
"self",
".",
"name",
"+",
".",
"pdf",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/tools/reading/util/reporter.py#L137-L171 | train |
sorgerlab/indra | indra/tools/reading/util/reporter.py | Reporter._make_sections | def _make_sections(self, **section_hdr_params):
"""Flatten the sections into a single story list."""
sect_story = []
if not self.section_headings and len(self.sections):
self.section_headings = self.sections.keys()
for section_name in self.section_headings:
section_story = self.sections[section_name]
line = '-'*20
section_head_text = '%s %s %s' % (line, section_name, line)
title, title_sp = self._preformat_text(section_head_text,
**section_hdr_params)
sect_story += [title, title_sp] + section_story
return sect_story | python | def _make_sections(self, **section_hdr_params):
"""Flatten the sections into a single story list."""
sect_story = []
if not self.section_headings and len(self.sections):
self.section_headings = self.sections.keys()
for section_name in self.section_headings:
section_story = self.sections[section_name]
line = '-'*20
section_head_text = '%s %s %s' % (line, section_name, line)
title, title_sp = self._preformat_text(section_head_text,
**section_hdr_params)
sect_story += [title, title_sp] + section_story
return sect_story | [
"def",
"_make_sections",
"(",
"self",
",",
"*",
"*",
"section_hdr_params",
")",
":",
"sect_story",
"=",
"[",
"]",
"if",
"not",
"self",
".",
"section_headings",
"and",
"len",
"(",
"self",
".",
"sections",
")",
":",
"self",
".",
"section_headings",
"=",
"self",
".",
"sections",
".",
"keys",
"(",
")",
"for",
"section_name",
"in",
"self",
".",
"section_headings",
":",
"section_story",
"=",
"self",
".",
"sections",
"[",
"section_name",
"]",
"line",
"=",
"'-'",
"*",
"20",
"section_head_text",
"=",
"'%s %s %s'",
"%",
"(",
"line",
",",
"section_name",
",",
"line",
")",
"title",
",",
"title_sp",
"=",
"self",
".",
"_preformat_text",
"(",
"section_head_text",
",",
"*",
"*",
"section_hdr_params",
")",
"sect_story",
"+=",
"[",
"title",
",",
"title_sp",
"]",
"+",
"section_story",
"return",
"sect_story"
]
| Flatten the sections into a single story list. | [
"Flatten",
"the",
"sections",
"into",
"a",
"single",
"story",
"list",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/tools/reading/util/reporter.py#L173-L186 | train |
sorgerlab/indra | indra/tools/reading/util/reporter.py | Reporter._preformat_text | def _preformat_text(self, text, style='Normal', space=None, fontsize=12,
alignment='left'):
"""Format the text for addition to a story list."""
if space is None:
space=(1,12)
ptext = ('<para alignment=\"%s\"><font size=%d>%s</font></para>'
% (alignment, fontsize, text))
para = Paragraph(ptext, self.styles[style])
sp = Spacer(*space)
return para, sp | python | def _preformat_text(self, text, style='Normal', space=None, fontsize=12,
alignment='left'):
"""Format the text for addition to a story list."""
if space is None:
space=(1,12)
ptext = ('<para alignment=\"%s\"><font size=%d>%s</font></para>'
% (alignment, fontsize, text))
para = Paragraph(ptext, self.styles[style])
sp = Spacer(*space)
return para, sp | [
"def",
"_preformat_text",
"(",
"self",
",",
"text",
",",
"style",
"=",
"'Normal'",
",",
"space",
"=",
"None",
",",
"fontsize",
"=",
"12",
",",
"alignment",
"=",
"'left'",
")",
":",
"if",
"space",
"is",
"None",
":",
"space",
"=",
"(",
"1",
",",
"12",
")",
"ptext",
"=",
"(",
"'<para alignment=\\\"%s\\\"><font size=%d>%s</font></para>'",
"%",
"(",
"alignment",
",",
"fontsize",
",",
"text",
")",
")",
"para",
"=",
"Paragraph",
"(",
"ptext",
",",
"self",
".",
"styles",
"[",
"style",
"]",
")",
"sp",
"=",
"Spacer",
"(",
"*",
"space",
")",
"return",
"para",
",",
"sp"
]
| Format the text for addition to a story list. | [
"Format",
"the",
"text",
"for",
"addition",
"to",
"a",
"story",
"list",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/tools/reading/util/reporter.py#L188-L197 | train |
sorgerlab/indra | indra/databases/mesh_client.py | get_mesh_name_from_web | def get_mesh_name_from_web(mesh_id):
"""Get the MESH label for the given MESH ID using the NLM REST API.
Parameters
----------
mesh_id : str
MESH Identifier, e.g. 'D003094'.
Returns
-------
str
Label for the MESH ID, or None if the query failed or no label was
found.
"""
url = MESH_URL + mesh_id + '.json'
resp = requests.get(url)
if resp.status_code != 200:
return None
mesh_json = resp.json()
try:
label = mesh_json['@graph'][0]['label']['@value']
except (KeyError, IndexError) as e:
return None
return label | python | def get_mesh_name_from_web(mesh_id):
"""Get the MESH label for the given MESH ID using the NLM REST API.
Parameters
----------
mesh_id : str
MESH Identifier, e.g. 'D003094'.
Returns
-------
str
Label for the MESH ID, or None if the query failed or no label was
found.
"""
url = MESH_URL + mesh_id + '.json'
resp = requests.get(url)
if resp.status_code != 200:
return None
mesh_json = resp.json()
try:
label = mesh_json['@graph'][0]['label']['@value']
except (KeyError, IndexError) as e:
return None
return label | [
"def",
"get_mesh_name_from_web",
"(",
"mesh_id",
")",
":",
"url",
"=",
"MESH_URL",
"+",
"mesh_id",
"+",
"'.json'",
"resp",
"=",
"requests",
".",
"get",
"(",
"url",
")",
"if",
"resp",
".",
"status_code",
"!=",
"200",
":",
"return",
"None",
"mesh_json",
"=",
"resp",
".",
"json",
"(",
")",
"try",
":",
"label",
"=",
"mesh_json",
"[",
"'@graph'",
"]",
"[",
"0",
"]",
"[",
"'label'",
"]",
"[",
"'@value'",
"]",
"except",
"(",
"KeyError",
",",
"IndexError",
")",
"as",
"e",
":",
"return",
"None",
"return",
"label"
]
| Get the MESH label for the given MESH ID using the NLM REST API.
Parameters
----------
mesh_id : str
MESH Identifier, e.g. 'D003094'.
Returns
-------
str
Label for the MESH ID, or None if the query failed or no label was
found. | [
"Get",
"the",
"MESH",
"label",
"for",
"the",
"given",
"MESH",
"ID",
"using",
"the",
"NLM",
"REST",
"API",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/databases/mesh_client.py#L28-L51 | train |
sorgerlab/indra | indra/databases/mesh_client.py | get_mesh_name | def get_mesh_name(mesh_id, offline=False):
"""Get the MESH label for the given MESH ID.
Uses the mappings table in `indra/resources`; if the MESH ID is not listed
there, falls back on the NLM REST API.
Parameters
----------
mesh_id : str
MESH Identifier, e.g. 'D003094'.
offline : bool
Whether to allow queries to the NLM REST API if the given MESH ID is not
contained in INDRA's internal MESH mappings file. Default is False
(allows REST API queries).
Returns
-------
str
Label for the MESH ID, or None if the query failed or no label was
found.
"""
indra_mesh_mapping = mesh_id_to_name.get(mesh_id)
if offline or indra_mesh_mapping is not None:
return indra_mesh_mapping
# Look up the MESH mapping from NLM if we don't have it locally
return get_mesh_name_from_web(mesh_id) | python | def get_mesh_name(mesh_id, offline=False):
"""Get the MESH label for the given MESH ID.
Uses the mappings table in `indra/resources`; if the MESH ID is not listed
there, falls back on the NLM REST API.
Parameters
----------
mesh_id : str
MESH Identifier, e.g. 'D003094'.
offline : bool
Whether to allow queries to the NLM REST API if the given MESH ID is not
contained in INDRA's internal MESH mappings file. Default is False
(allows REST API queries).
Returns
-------
str
Label for the MESH ID, or None if the query failed or no label was
found.
"""
indra_mesh_mapping = mesh_id_to_name.get(mesh_id)
if offline or indra_mesh_mapping is not None:
return indra_mesh_mapping
# Look up the MESH mapping from NLM if we don't have it locally
return get_mesh_name_from_web(mesh_id) | [
"def",
"get_mesh_name",
"(",
"mesh_id",
",",
"offline",
"=",
"False",
")",
":",
"indra_mesh_mapping",
"=",
"mesh_id_to_name",
".",
"get",
"(",
"mesh_id",
")",
"if",
"offline",
"or",
"indra_mesh_mapping",
"is",
"not",
"None",
":",
"return",
"indra_mesh_mapping",
"# Look up the MESH mapping from NLM if we don't have it locally",
"return",
"get_mesh_name_from_web",
"(",
"mesh_id",
")"
]
| Get the MESH label for the given MESH ID.
Uses the mappings table in `indra/resources`; if the MESH ID is not listed
there, falls back on the NLM REST API.
Parameters
----------
mesh_id : str
MESH Identifier, e.g. 'D003094'.
offline : bool
Whether to allow queries to the NLM REST API if the given MESH ID is not
contained in INDRA's internal MESH mappings file. Default is False
(allows REST API queries).
Returns
-------
str
Label for the MESH ID, or None if the query failed or no label was
found. | [
"Get",
"the",
"MESH",
"label",
"for",
"the",
"given",
"MESH",
"ID",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/databases/mesh_client.py#L54-L79 | train |
sorgerlab/indra | indra/databases/mesh_client.py | get_mesh_id_name | def get_mesh_id_name(mesh_term, offline=False):
"""Get the MESH ID and name for the given MESH term.
Uses the mappings table in `indra/resources`; if the MESH term is not
listed there, falls back on the NLM REST API.
Parameters
----------
mesh_term : str
MESH Descriptor or Concept name, e.g. 'Breast Cancer'.
offline : bool
Whether to allow queries to the NLM REST API if the given MESH term is
not contained in INDRA's internal MESH mappings file. Default is False
(allows REST API queries).
Returns
-------
tuple of strs
Returns a 2-tuple of the form `(id, name)` with the ID of the
descriptor corresponding to the MESH label, and the descriptor name
(which may not exactly match the name provided as an argument if it is
a Concept name). If the query failed, or no descriptor corresponding to
the name was found, returns a tuple of (None, None).
"""
indra_mesh_id = mesh_name_to_id.get(mesh_term)
if indra_mesh_id is not None:
return indra_mesh_id, mesh_term
indra_mesh_id, new_term = \
mesh_name_to_id_name.get(mesh_term, (None, None))
if indra_mesh_id is not None:
return indra_mesh_id, new_term
if offline:
return None, None
# Look up the MESH mapping from NLM if we don't have it locally
return get_mesh_id_name_from_web(mesh_term) | python | def get_mesh_id_name(mesh_term, offline=False):
"""Get the MESH ID and name for the given MESH term.
Uses the mappings table in `indra/resources`; if the MESH term is not
listed there, falls back on the NLM REST API.
Parameters
----------
mesh_term : str
MESH Descriptor or Concept name, e.g. 'Breast Cancer'.
offline : bool
Whether to allow queries to the NLM REST API if the given MESH term is
not contained in INDRA's internal MESH mappings file. Default is False
(allows REST API queries).
Returns
-------
tuple of strs
Returns a 2-tuple of the form `(id, name)` with the ID of the
descriptor corresponding to the MESH label, and the descriptor name
(which may not exactly match the name provided as an argument if it is
a Concept name). If the query failed, or no descriptor corresponding to
the name was found, returns a tuple of (None, None).
"""
indra_mesh_id = mesh_name_to_id.get(mesh_term)
if indra_mesh_id is not None:
return indra_mesh_id, mesh_term
indra_mesh_id, new_term = \
mesh_name_to_id_name.get(mesh_term, (None, None))
if indra_mesh_id is not None:
return indra_mesh_id, new_term
if offline:
return None, None
# Look up the MESH mapping from NLM if we don't have it locally
return get_mesh_id_name_from_web(mesh_term) | [
"def",
"get_mesh_id_name",
"(",
"mesh_term",
",",
"offline",
"=",
"False",
")",
":",
"indra_mesh_id",
"=",
"mesh_name_to_id",
".",
"get",
"(",
"mesh_term",
")",
"if",
"indra_mesh_id",
"is",
"not",
"None",
":",
"return",
"indra_mesh_id",
",",
"mesh_term",
"indra_mesh_id",
",",
"new_term",
"=",
"mesh_name_to_id_name",
".",
"get",
"(",
"mesh_term",
",",
"(",
"None",
",",
"None",
")",
")",
"if",
"indra_mesh_id",
"is",
"not",
"None",
":",
"return",
"indra_mesh_id",
",",
"new_term",
"if",
"offline",
":",
"return",
"None",
",",
"None",
"# Look up the MESH mapping from NLM if we don't have it locally",
"return",
"get_mesh_id_name_from_web",
"(",
"mesh_term",
")"
]
| Get the MESH ID and name for the given MESH term.
Uses the mappings table in `indra/resources`; if the MESH term is not
listed there, falls back on the NLM REST API.
Parameters
----------
mesh_term : str
MESH Descriptor or Concept name, e.g. 'Breast Cancer'.
offline : bool
Whether to allow queries to the NLM REST API if the given MESH term is
not contained in INDRA's internal MESH mappings file. Default is False
(allows REST API queries).
Returns
-------
tuple of strs
Returns a 2-tuple of the form `(id, name)` with the ID of the
descriptor corresponding to the MESH label, and the descriptor name
(which may not exactly match the name provided as an argument if it is
a Concept name). If the query failed, or no descriptor corresponding to
the name was found, returns a tuple of (None, None). | [
"Get",
"the",
"MESH",
"ID",
"and",
"name",
"for",
"the",
"given",
"MESH",
"term",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/databases/mesh_client.py#L82-L119 | train |
sorgerlab/indra | indra/tools/machine/cli.py | make | def make(directory):
"""Makes a RAS Machine directory"""
if os.path.exists(directory):
if os.path.isdir(directory):
click.echo('Directory already exists')
else:
click.echo('Path exists and is not a directory')
sys.exit()
os.makedirs(directory)
os.mkdir(os.path.join(directory, 'jsons'))
copy_default_config(os.path.join(directory, 'config.yaml')) | python | def make(directory):
"""Makes a RAS Machine directory"""
if os.path.exists(directory):
if os.path.isdir(directory):
click.echo('Directory already exists')
else:
click.echo('Path exists and is not a directory')
sys.exit()
os.makedirs(directory)
os.mkdir(os.path.join(directory, 'jsons'))
copy_default_config(os.path.join(directory, 'config.yaml')) | [
"def",
"make",
"(",
"directory",
")",
":",
"if",
"os",
".",
"path",
".",
"exists",
"(",
"directory",
")",
":",
"if",
"os",
".",
"path",
".",
"isdir",
"(",
"directory",
")",
":",
"click",
".",
"echo",
"(",
"'Directory already exists'",
")",
"else",
":",
"click",
".",
"echo",
"(",
"'Path exists and is not a directory'",
")",
"sys",
".",
"exit",
"(",
")",
"os",
".",
"makedirs",
"(",
"directory",
")",
"os",
".",
"mkdir",
"(",
"os",
".",
"path",
".",
"join",
"(",
"directory",
",",
"'jsons'",
")",
")",
"copy_default_config",
"(",
"os",
".",
"path",
".",
"join",
"(",
"directory",
",",
"'config.yaml'",
")",
")"
]
| Makes a RAS Machine directory | [
"Makes",
"a",
"RAS",
"Machine",
"directory"
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/tools/machine/cli.py#L30-L42 | train |
sorgerlab/indra | indra/tools/machine/cli.py | run_with_search | def run_with_search(model_path, config, num_days):
"""Run with PubMed search for new papers."""
from indra.tools.machine.machine import run_with_search_helper
run_with_search_helper(model_path, config, num_days=num_days) | python | def run_with_search(model_path, config, num_days):
"""Run with PubMed search for new papers."""
from indra.tools.machine.machine import run_with_search_helper
run_with_search_helper(model_path, config, num_days=num_days) | [
"def",
"run_with_search",
"(",
"model_path",
",",
"config",
",",
"num_days",
")",
":",
"from",
"indra",
".",
"tools",
".",
"machine",
".",
"machine",
"import",
"run_with_search_helper",
"run_with_search_helper",
"(",
"model_path",
",",
"config",
",",
"num_days",
"=",
"num_days",
")"
]
| Run with PubMed search for new papers. | [
"Run",
"with",
"PubMed",
"search",
"for",
"new",
"papers",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/tools/machine/cli.py#L50-L53 | train |
sorgerlab/indra | indra/tools/machine/cli.py | run_with_pmids | def run_with_pmids(model_path, pmids):
"""Run with given list of PMIDs."""
from indra.tools.machine.machine import run_with_pmids_helper
run_with_pmids_helper(model_path, pmids) | python | def run_with_pmids(model_path, pmids):
"""Run with given list of PMIDs."""
from indra.tools.machine.machine import run_with_pmids_helper
run_with_pmids_helper(model_path, pmids) | [
"def",
"run_with_pmids",
"(",
"model_path",
",",
"pmids",
")",
":",
"from",
"indra",
".",
"tools",
".",
"machine",
".",
"machine",
"import",
"run_with_pmids_helper",
"run_with_pmids_helper",
"(",
"model_path",
",",
"pmids",
")"
]
| Run with given list of PMIDs. | [
"Run",
"with",
"given",
"list",
"of",
"PMIDs",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/tools/machine/cli.py#L68-L71 | train |
sorgerlab/indra | indra/literature/pmc_client.py | id_lookup | def id_lookup(paper_id, idtype=None):
"""This function takes a Pubmed ID, Pubmed Central ID, or DOI
and use the Pubmed ID mapping
service and looks up all other IDs from one
of these. The IDs are returned in a dictionary."""
if idtype is not None and idtype not in ('pmid', 'pmcid', 'doi'):
raise ValueError("Invalid idtype %s; must be 'pmid', 'pmcid', "
"or 'doi'." % idtype)
if paper_id.upper().startswith('PMC'):
idtype = 'pmcid'
# Strip off any prefix
if paper_id.upper().startswith('PMID'):
paper_id = paper_id[4:]
elif paper_id.upper().startswith('DOI'):
paper_id = paper_id[3:]
data = {'ids': paper_id}
if idtype is not None:
data['idtype'] = idtype
try:
tree = pubmed_client.send_request(pmid_convert_url, data)
except Exception as e:
logger.error('Error looking up PMID in PMC: %s' % e)
return {}
if tree is None:
return {}
record = tree.find('record')
if record is None:
return {}
doi = record.attrib.get('doi')
pmid = record.attrib.get('pmid')
pmcid = record.attrib.get('pmcid')
ids = {'doi': doi,
'pmid': pmid,
'pmcid': pmcid}
return ids | python | def id_lookup(paper_id, idtype=None):
"""This function takes a Pubmed ID, Pubmed Central ID, or DOI
and use the Pubmed ID mapping
service and looks up all other IDs from one
of these. The IDs are returned in a dictionary."""
if idtype is not None and idtype not in ('pmid', 'pmcid', 'doi'):
raise ValueError("Invalid idtype %s; must be 'pmid', 'pmcid', "
"or 'doi'." % idtype)
if paper_id.upper().startswith('PMC'):
idtype = 'pmcid'
# Strip off any prefix
if paper_id.upper().startswith('PMID'):
paper_id = paper_id[4:]
elif paper_id.upper().startswith('DOI'):
paper_id = paper_id[3:]
data = {'ids': paper_id}
if idtype is not None:
data['idtype'] = idtype
try:
tree = pubmed_client.send_request(pmid_convert_url, data)
except Exception as e:
logger.error('Error looking up PMID in PMC: %s' % e)
return {}
if tree is None:
return {}
record = tree.find('record')
if record is None:
return {}
doi = record.attrib.get('doi')
pmid = record.attrib.get('pmid')
pmcid = record.attrib.get('pmcid')
ids = {'doi': doi,
'pmid': pmid,
'pmcid': pmcid}
return ids | [
"def",
"id_lookup",
"(",
"paper_id",
",",
"idtype",
"=",
"None",
")",
":",
"if",
"idtype",
"is",
"not",
"None",
"and",
"idtype",
"not",
"in",
"(",
"'pmid'",
",",
"'pmcid'",
",",
"'doi'",
")",
":",
"raise",
"ValueError",
"(",
"\"Invalid idtype %s; must be 'pmid', 'pmcid', \"",
"\"or 'doi'.\"",
"%",
"idtype",
")",
"if",
"paper_id",
".",
"upper",
"(",
")",
".",
"startswith",
"(",
"'PMC'",
")",
":",
"idtype",
"=",
"'pmcid'",
"# Strip off any prefix",
"if",
"paper_id",
".",
"upper",
"(",
")",
".",
"startswith",
"(",
"'PMID'",
")",
":",
"paper_id",
"=",
"paper_id",
"[",
"4",
":",
"]",
"elif",
"paper_id",
".",
"upper",
"(",
")",
".",
"startswith",
"(",
"'DOI'",
")",
":",
"paper_id",
"=",
"paper_id",
"[",
"3",
":",
"]",
"data",
"=",
"{",
"'ids'",
":",
"paper_id",
"}",
"if",
"idtype",
"is",
"not",
"None",
":",
"data",
"[",
"'idtype'",
"]",
"=",
"idtype",
"try",
":",
"tree",
"=",
"pubmed_client",
".",
"send_request",
"(",
"pmid_convert_url",
",",
"data",
")",
"except",
"Exception",
"as",
"e",
":",
"logger",
".",
"error",
"(",
"'Error looking up PMID in PMC: %s'",
"%",
"e",
")",
"return",
"{",
"}",
"if",
"tree",
"is",
"None",
":",
"return",
"{",
"}",
"record",
"=",
"tree",
".",
"find",
"(",
"'record'",
")",
"if",
"record",
"is",
"None",
":",
"return",
"{",
"}",
"doi",
"=",
"record",
".",
"attrib",
".",
"get",
"(",
"'doi'",
")",
"pmid",
"=",
"record",
".",
"attrib",
".",
"get",
"(",
"'pmid'",
")",
"pmcid",
"=",
"record",
".",
"attrib",
".",
"get",
"(",
"'pmcid'",
")",
"ids",
"=",
"{",
"'doi'",
":",
"doi",
",",
"'pmid'",
":",
"pmid",
",",
"'pmcid'",
":",
"pmcid",
"}",
"return",
"ids"
]
| This function takes a Pubmed ID, Pubmed Central ID, or DOI
and use the Pubmed ID mapping
service and looks up all other IDs from one
of these. The IDs are returned in a dictionary. | [
"This",
"function",
"takes",
"a",
"Pubmed",
"ID",
"Pubmed",
"Central",
"ID",
"or",
"DOI",
"and",
"use",
"the",
"Pubmed",
"ID",
"mapping",
"service",
"and",
"looks",
"up",
"all",
"other",
"IDs",
"from",
"one",
"of",
"these",
".",
"The",
"IDs",
"are",
"returned",
"in",
"a",
"dictionary",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/literature/pmc_client.py#L40-L74 | train |
sorgerlab/indra | indra/literature/pmc_client.py | get_xml | def get_xml(pmc_id):
"""Returns XML for the article corresponding to a PMC ID."""
if pmc_id.upper().startswith('PMC'):
pmc_id = pmc_id[3:]
# Request params
params = {}
params['verb'] = 'GetRecord'
params['identifier'] = 'oai:pubmedcentral.nih.gov:%s' % pmc_id
params['metadataPrefix'] = 'pmc'
# Submit the request
res = requests.get(pmc_url, params)
if not res.status_code == 200:
logger.warning("Couldn't download %s" % pmc_id)
return None
# Read the bytestream
xml_bytes = res.content
# Check for any XML errors; xml_str should still be bytes
tree = ET.XML(xml_bytes, parser=UTB())
xmlns = "http://www.openarchives.org/OAI/2.0/"
err_tag = tree.find('{%s}error' % xmlns)
if err_tag is not None:
err_code = err_tag.attrib['code']
err_text = err_tag.text
logger.warning('PMC client returned with error %s: %s'
% (err_code, err_text))
return None
# If no error, return the XML as a unicode string
else:
return xml_bytes.decode('utf-8') | python | def get_xml(pmc_id):
"""Returns XML for the article corresponding to a PMC ID."""
if pmc_id.upper().startswith('PMC'):
pmc_id = pmc_id[3:]
# Request params
params = {}
params['verb'] = 'GetRecord'
params['identifier'] = 'oai:pubmedcentral.nih.gov:%s' % pmc_id
params['metadataPrefix'] = 'pmc'
# Submit the request
res = requests.get(pmc_url, params)
if not res.status_code == 200:
logger.warning("Couldn't download %s" % pmc_id)
return None
# Read the bytestream
xml_bytes = res.content
# Check for any XML errors; xml_str should still be bytes
tree = ET.XML(xml_bytes, parser=UTB())
xmlns = "http://www.openarchives.org/OAI/2.0/"
err_tag = tree.find('{%s}error' % xmlns)
if err_tag is not None:
err_code = err_tag.attrib['code']
err_text = err_tag.text
logger.warning('PMC client returned with error %s: %s'
% (err_code, err_text))
return None
# If no error, return the XML as a unicode string
else:
return xml_bytes.decode('utf-8') | [
"def",
"get_xml",
"(",
"pmc_id",
")",
":",
"if",
"pmc_id",
".",
"upper",
"(",
")",
".",
"startswith",
"(",
"'PMC'",
")",
":",
"pmc_id",
"=",
"pmc_id",
"[",
"3",
":",
"]",
"# Request params",
"params",
"=",
"{",
"}",
"params",
"[",
"'verb'",
"]",
"=",
"'GetRecord'",
"params",
"[",
"'identifier'",
"]",
"=",
"'oai:pubmedcentral.nih.gov:%s'",
"%",
"pmc_id",
"params",
"[",
"'metadataPrefix'",
"]",
"=",
"'pmc'",
"# Submit the request",
"res",
"=",
"requests",
".",
"get",
"(",
"pmc_url",
",",
"params",
")",
"if",
"not",
"res",
".",
"status_code",
"==",
"200",
":",
"logger",
".",
"warning",
"(",
"\"Couldn't download %s\"",
"%",
"pmc_id",
")",
"return",
"None",
"# Read the bytestream",
"xml_bytes",
"=",
"res",
".",
"content",
"# Check for any XML errors; xml_str should still be bytes",
"tree",
"=",
"ET",
".",
"XML",
"(",
"xml_bytes",
",",
"parser",
"=",
"UTB",
"(",
")",
")",
"xmlns",
"=",
"\"http://www.openarchives.org/OAI/2.0/\"",
"err_tag",
"=",
"tree",
".",
"find",
"(",
"'{%s}error'",
"%",
"xmlns",
")",
"if",
"err_tag",
"is",
"not",
"None",
":",
"err_code",
"=",
"err_tag",
".",
"attrib",
"[",
"'code'",
"]",
"err_text",
"=",
"err_tag",
".",
"text",
"logger",
".",
"warning",
"(",
"'PMC client returned with error %s: %s'",
"%",
"(",
"err_code",
",",
"err_text",
")",
")",
"return",
"None",
"# If no error, return the XML as a unicode string",
"else",
":",
"return",
"xml_bytes",
".",
"decode",
"(",
"'utf-8'",
")"
]
| Returns XML for the article corresponding to a PMC ID. | [
"Returns",
"XML",
"for",
"the",
"article",
"corresponding",
"to",
"a",
"PMC",
"ID",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/literature/pmc_client.py#L81-L109 | train |
sorgerlab/indra | indra/literature/pmc_client.py | extract_paragraphs | def extract_paragraphs(xml_string):
"""Returns list of paragraphs in an NLM XML.
Parameters
----------
xml_string : str
String containing valid NLM XML.
Returns
-------
list of str
List of extracted paragraphs in an NLM XML
"""
tree = etree.fromstring(xml_string.encode('utf-8'))
paragraphs = []
# In NLM xml, all plaintext is within <p> tags, and is the only thing
# that can be contained in <p> tags. To handle to possibility of namespaces
# uses regex to search for tags either of the form 'p' or '{<namespace>}p'
for element in tree.iter():
if isinstance(element.tag, basestring) and \
re.search('(^|})[p|title]$', element.tag) and element.text:
paragraph = ' '.join(element.itertext())
paragraphs.append(paragraph)
return paragraphs | python | def extract_paragraphs(xml_string):
"""Returns list of paragraphs in an NLM XML.
Parameters
----------
xml_string : str
String containing valid NLM XML.
Returns
-------
list of str
List of extracted paragraphs in an NLM XML
"""
tree = etree.fromstring(xml_string.encode('utf-8'))
paragraphs = []
# In NLM xml, all plaintext is within <p> tags, and is the only thing
# that can be contained in <p> tags. To handle to possibility of namespaces
# uses regex to search for tags either of the form 'p' or '{<namespace>}p'
for element in tree.iter():
if isinstance(element.tag, basestring) and \
re.search('(^|})[p|title]$', element.tag) and element.text:
paragraph = ' '.join(element.itertext())
paragraphs.append(paragraph)
return paragraphs | [
"def",
"extract_paragraphs",
"(",
"xml_string",
")",
":",
"tree",
"=",
"etree",
".",
"fromstring",
"(",
"xml_string",
".",
"encode",
"(",
"'utf-8'",
")",
")",
"paragraphs",
"=",
"[",
"]",
"# In NLM xml, all plaintext is within <p> tags, and is the only thing",
"# that can be contained in <p> tags. To handle to possibility of namespaces",
"# uses regex to search for tags either of the form 'p' or '{<namespace>}p'",
"for",
"element",
"in",
"tree",
".",
"iter",
"(",
")",
":",
"if",
"isinstance",
"(",
"element",
".",
"tag",
",",
"basestring",
")",
"and",
"re",
".",
"search",
"(",
"'(^|})[p|title]$'",
",",
"element",
".",
"tag",
")",
"and",
"element",
".",
"text",
":",
"paragraph",
"=",
"' '",
".",
"join",
"(",
"element",
".",
"itertext",
"(",
")",
")",
"paragraphs",
".",
"append",
"(",
"paragraph",
")",
"return",
"paragraphs"
]
| Returns list of paragraphs in an NLM XML.
Parameters
----------
xml_string : str
String containing valid NLM XML.
Returns
-------
list of str
List of extracted paragraphs in an NLM XML | [
"Returns",
"list",
"of",
"paragraphs",
"in",
"an",
"NLM",
"XML",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/literature/pmc_client.py#L132-L156 | train |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.