repo
stringlengths 7
55
| path
stringlengths 4
127
| func_name
stringlengths 1
88
| original_string
stringlengths 75
19.8k
| language
stringclasses 1
value | code
stringlengths 75
19.8k
| code_tokens
list | docstring
stringlengths 3
17.3k
| docstring_tokens
list | sha
stringlengths 40
40
| url
stringlengths 87
242
| partition
stringclasses 1
value |
---|---|---|---|---|---|---|---|---|---|---|---|
sorgerlab/indra | indra/sources/reach/api.py | process_pubmed_abstract | def process_pubmed_abstract(pubmed_id, offline=False,
output_fname=default_output_fname, **kwargs):
"""Return a ReachProcessor by processing an abstract with a given Pubmed id.
Uses the Pubmed client to get the abstract. If that fails, None is
returned.
Parameters
----------
pubmed_id : str
The ID of a Pubmed article. The string may start with PMID but
passing just the ID also works.
Examples: 27168024, PMID27168024
https://www.ncbi.nlm.nih.gov/pubmed/
offline : Optional[bool]
If set to True, the REACH system is ran offline. Otherwise (by default)
the web service is called. Default: False
output_fname : Optional[str]
The file to output the REACH JSON output to.
Defaults to reach_output.json in current working directory.
**kwargs : keyword arguments
All other keyword arguments are passed directly to `process_text`.
Returns
-------
rp : ReachProcessor
A ReachProcessor containing the extracted INDRA Statements
in rp.statements.
"""
abs_txt = pubmed_client.get_abstract(pubmed_id)
if abs_txt is None:
return None
rp = process_text(abs_txt, citation=pubmed_id, offline=offline,
output_fname=output_fname, **kwargs)
if rp and rp.statements:
for st in rp.statements:
for ev in st.evidence:
ev.epistemics['section_type'] = 'abstract'
return rp | python | def process_pubmed_abstract(pubmed_id, offline=False,
output_fname=default_output_fname, **kwargs):
"""Return a ReachProcessor by processing an abstract with a given Pubmed id.
Uses the Pubmed client to get the abstract. If that fails, None is
returned.
Parameters
----------
pubmed_id : str
The ID of a Pubmed article. The string may start with PMID but
passing just the ID also works.
Examples: 27168024, PMID27168024
https://www.ncbi.nlm.nih.gov/pubmed/
offline : Optional[bool]
If set to True, the REACH system is ran offline. Otherwise (by default)
the web service is called. Default: False
output_fname : Optional[str]
The file to output the REACH JSON output to.
Defaults to reach_output.json in current working directory.
**kwargs : keyword arguments
All other keyword arguments are passed directly to `process_text`.
Returns
-------
rp : ReachProcessor
A ReachProcessor containing the extracted INDRA Statements
in rp.statements.
"""
abs_txt = pubmed_client.get_abstract(pubmed_id)
if abs_txt is None:
return None
rp = process_text(abs_txt, citation=pubmed_id, offline=offline,
output_fname=output_fname, **kwargs)
if rp and rp.statements:
for st in rp.statements:
for ev in st.evidence:
ev.epistemics['section_type'] = 'abstract'
return rp | [
"def",
"process_pubmed_abstract",
"(",
"pubmed_id",
",",
"offline",
"=",
"False",
",",
"output_fname",
"=",
"default_output_fname",
",",
"*",
"*",
"kwargs",
")",
":",
"abs_txt",
"=",
"pubmed_client",
".",
"get_abstract",
"(",
"pubmed_id",
")",
"if",
"abs_txt",
"is",
"None",
":",
"return",
"None",
"rp",
"=",
"process_text",
"(",
"abs_txt",
",",
"citation",
"=",
"pubmed_id",
",",
"offline",
"=",
"offline",
",",
"output_fname",
"=",
"output_fname",
",",
"*",
"*",
"kwargs",
")",
"if",
"rp",
"and",
"rp",
".",
"statements",
":",
"for",
"st",
"in",
"rp",
".",
"statements",
":",
"for",
"ev",
"in",
"st",
".",
"evidence",
":",
"ev",
".",
"epistemics",
"[",
"'section_type'",
"]",
"=",
"'abstract'",
"return",
"rp"
]
| Return a ReachProcessor by processing an abstract with a given Pubmed id.
Uses the Pubmed client to get the abstract. If that fails, None is
returned.
Parameters
----------
pubmed_id : str
The ID of a Pubmed article. The string may start with PMID but
passing just the ID also works.
Examples: 27168024, PMID27168024
https://www.ncbi.nlm.nih.gov/pubmed/
offline : Optional[bool]
If set to True, the REACH system is ran offline. Otherwise (by default)
the web service is called. Default: False
output_fname : Optional[str]
The file to output the REACH JSON output to.
Defaults to reach_output.json in current working directory.
**kwargs : keyword arguments
All other keyword arguments are passed directly to `process_text`.
Returns
-------
rp : ReachProcessor
A ReachProcessor containing the extracted INDRA Statements
in rp.statements. | [
"Return",
"a",
"ReachProcessor",
"by",
"processing",
"an",
"abstract",
"with",
"a",
"given",
"Pubmed",
"id",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/sources/reach/api.py#L77-L115 | train |
sorgerlab/indra | indra/sources/reach/api.py | process_text | def process_text(text, citation=None, offline=False,
output_fname=default_output_fname, timeout=None):
"""Return a ReachProcessor by processing the given text.
Parameters
----------
text : str
The text to be processed.
citation : Optional[str]
A PubMed ID passed to be used in the evidence for the extracted INDRA
Statements. This is used when the text to be processed comes from
a publication that is not otherwise identified. Default: None
offline : Optional[bool]
If set to True, the REACH system is ran offline. Otherwise (by default)
the web service is called. Default: False
output_fname : Optional[str]
The file to output the REACH JSON output to.
Defaults to reach_output.json in current working directory.
timeout : Optional[float]
This only applies when reading online (`offline=False`). Only wait for
`timeout` seconds for the api to respond.
Returns
-------
rp : ReachProcessor
A ReachProcessor containing the extracted INDRA Statements
in rp.statements.
"""
if offline:
if not try_offline:
logger.error('Offline reading is not available.')
return None
try:
api_ruler = reach_reader.get_api_ruler()
except ReachOfflineReadingError as e:
logger.error(e)
logger.error('Cannot read offline because the REACH ApiRuler '
'could not be instantiated.')
return None
try:
result_map = api_ruler.annotateText(text, 'fries')
except JavaException as e:
logger.error('Could not process text.')
logger.error(e)
return None
# REACH version < 1.3.3
json_str = result_map.get('resultJson')
if not json_str:
# REACH version >= 1.3.3
json_str = result_map.get('result')
if not isinstance(json_str, bytes):
json_str = json_str.encode('utf-8')
else:
data = {'text': text.encode('utf-8')}
try:
res = requests.post(reach_text_url, data, timeout=timeout)
except requests.exceptions.RequestException as e:
logger.error('Could not connect to REACH service:')
logger.error(e)
return None
# TODO: we could use res.json() here to get a dict
# directly
# This is a byte string
json_str = res.content
if not isinstance(json_str, bytes):
raise TypeError('{} is {} instead of {}'.format(json_str, json_str.__class__, bytes))
with open(output_fname, 'wb') as fh:
fh.write(json_str)
return process_json_str(json_str.decode('utf-8'), citation) | python | def process_text(text, citation=None, offline=False,
output_fname=default_output_fname, timeout=None):
"""Return a ReachProcessor by processing the given text.
Parameters
----------
text : str
The text to be processed.
citation : Optional[str]
A PubMed ID passed to be used in the evidence for the extracted INDRA
Statements. This is used when the text to be processed comes from
a publication that is not otherwise identified. Default: None
offline : Optional[bool]
If set to True, the REACH system is ran offline. Otherwise (by default)
the web service is called. Default: False
output_fname : Optional[str]
The file to output the REACH JSON output to.
Defaults to reach_output.json in current working directory.
timeout : Optional[float]
This only applies when reading online (`offline=False`). Only wait for
`timeout` seconds for the api to respond.
Returns
-------
rp : ReachProcessor
A ReachProcessor containing the extracted INDRA Statements
in rp.statements.
"""
if offline:
if not try_offline:
logger.error('Offline reading is not available.')
return None
try:
api_ruler = reach_reader.get_api_ruler()
except ReachOfflineReadingError as e:
logger.error(e)
logger.error('Cannot read offline because the REACH ApiRuler '
'could not be instantiated.')
return None
try:
result_map = api_ruler.annotateText(text, 'fries')
except JavaException as e:
logger.error('Could not process text.')
logger.error(e)
return None
# REACH version < 1.3.3
json_str = result_map.get('resultJson')
if not json_str:
# REACH version >= 1.3.3
json_str = result_map.get('result')
if not isinstance(json_str, bytes):
json_str = json_str.encode('utf-8')
else:
data = {'text': text.encode('utf-8')}
try:
res = requests.post(reach_text_url, data, timeout=timeout)
except requests.exceptions.RequestException as e:
logger.error('Could not connect to REACH service:')
logger.error(e)
return None
# TODO: we could use res.json() here to get a dict
# directly
# This is a byte string
json_str = res.content
if not isinstance(json_str, bytes):
raise TypeError('{} is {} instead of {}'.format(json_str, json_str.__class__, bytes))
with open(output_fname, 'wb') as fh:
fh.write(json_str)
return process_json_str(json_str.decode('utf-8'), citation) | [
"def",
"process_text",
"(",
"text",
",",
"citation",
"=",
"None",
",",
"offline",
"=",
"False",
",",
"output_fname",
"=",
"default_output_fname",
",",
"timeout",
"=",
"None",
")",
":",
"if",
"offline",
":",
"if",
"not",
"try_offline",
":",
"logger",
".",
"error",
"(",
"'Offline reading is not available.'",
")",
"return",
"None",
"try",
":",
"api_ruler",
"=",
"reach_reader",
".",
"get_api_ruler",
"(",
")",
"except",
"ReachOfflineReadingError",
"as",
"e",
":",
"logger",
".",
"error",
"(",
"e",
")",
"logger",
".",
"error",
"(",
"'Cannot read offline because the REACH ApiRuler '",
"'could not be instantiated.'",
")",
"return",
"None",
"try",
":",
"result_map",
"=",
"api_ruler",
".",
"annotateText",
"(",
"text",
",",
"'fries'",
")",
"except",
"JavaException",
"as",
"e",
":",
"logger",
".",
"error",
"(",
"'Could not process text.'",
")",
"logger",
".",
"error",
"(",
"e",
")",
"return",
"None",
"# REACH version < 1.3.3",
"json_str",
"=",
"result_map",
".",
"get",
"(",
"'resultJson'",
")",
"if",
"not",
"json_str",
":",
"# REACH version >= 1.3.3",
"json_str",
"=",
"result_map",
".",
"get",
"(",
"'result'",
")",
"if",
"not",
"isinstance",
"(",
"json_str",
",",
"bytes",
")",
":",
"json_str",
"=",
"json_str",
".",
"encode",
"(",
"'utf-8'",
")",
"else",
":",
"data",
"=",
"{",
"'text'",
":",
"text",
".",
"encode",
"(",
"'utf-8'",
")",
"}",
"try",
":",
"res",
"=",
"requests",
".",
"post",
"(",
"reach_text_url",
",",
"data",
",",
"timeout",
"=",
"timeout",
")",
"except",
"requests",
".",
"exceptions",
".",
"RequestException",
"as",
"e",
":",
"logger",
".",
"error",
"(",
"'Could not connect to REACH service:'",
")",
"logger",
".",
"error",
"(",
"e",
")",
"return",
"None",
"# TODO: we could use res.json() here to get a dict",
"# directly",
"# This is a byte string",
"json_str",
"=",
"res",
".",
"content",
"if",
"not",
"isinstance",
"(",
"json_str",
",",
"bytes",
")",
":",
"raise",
"TypeError",
"(",
"'{} is {} instead of {}'",
".",
"format",
"(",
"json_str",
",",
"json_str",
".",
"__class__",
",",
"bytes",
")",
")",
"with",
"open",
"(",
"output_fname",
",",
"'wb'",
")",
"as",
"fh",
":",
"fh",
".",
"write",
"(",
"json_str",
")",
"return",
"process_json_str",
"(",
"json_str",
".",
"decode",
"(",
"'utf-8'",
")",
",",
"citation",
")"
]
| Return a ReachProcessor by processing the given text.
Parameters
----------
text : str
The text to be processed.
citation : Optional[str]
A PubMed ID passed to be used in the evidence for the extracted INDRA
Statements. This is used when the text to be processed comes from
a publication that is not otherwise identified. Default: None
offline : Optional[bool]
If set to True, the REACH system is ran offline. Otherwise (by default)
the web service is called. Default: False
output_fname : Optional[str]
The file to output the REACH JSON output to.
Defaults to reach_output.json in current working directory.
timeout : Optional[float]
This only applies when reading online (`offline=False`). Only wait for
`timeout` seconds for the api to respond.
Returns
-------
rp : ReachProcessor
A ReachProcessor containing the extracted INDRA Statements
in rp.statements. | [
"Return",
"a",
"ReachProcessor",
"by",
"processing",
"the",
"given",
"text",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/sources/reach/api.py#L118-L187 | train |
sorgerlab/indra | indra/sources/reach/api.py | process_nxml_str | def process_nxml_str(nxml_str, citation=None, offline=False,
output_fname=default_output_fname):
"""Return a ReachProcessor by processing the given NXML string.
NXML is the format used by PubmedCentral for papers in the open
access subset.
Parameters
----------
nxml_str : str
The NXML string to be processed.
citation : Optional[str]
A PubMed ID passed to be used in the evidence for the extracted INDRA
Statements. Default: None
offline : Optional[bool]
If set to True, the REACH system is ran offline. Otherwise (by default)
the web service is called. Default: False
output_fname : Optional[str]
The file to output the REACH JSON output to.
Defaults to reach_output.json in current working directory.
Returns
-------
rp : ReachProcessor
A ReachProcessor containing the extracted INDRA Statements
in rp.statements.
"""
if offline:
if not try_offline:
logger.error('Offline reading is not available.')
return None
try:
api_ruler = reach_reader.get_api_ruler()
except ReachOfflineReadingError as e:
logger.error(e)
logger.error('Cannot read offline because the REACH ApiRuler '
'could not be instantiated.')
return None
try:
result_map = api_ruler.annotateNxml(nxml_str, 'fries')
except JavaException as e:
logger.error('Could not process NXML.')
logger.error(e)
return None
# REACH version < 1.3.3
json_str = result_map.get('resultJson')
if not json_str:
# REACH version >= 1.3.3
json_str = result_map.get('result')
if json_str is None:
logger.warning('No results retrieved')
return None
if isinstance(json_str, bytes):
json_str = json_str.decode('utf-8')
return process_json_str(json_str, citation)
else:
data = {'nxml': nxml_str}
try:
res = requests.post(reach_nxml_url, data)
except requests.exceptions.RequestException as e:
logger.error('Could not connect to REACH service:')
logger.error(e)
return None
if res.status_code != 200:
logger.error('Could not process NXML via REACH service.'
+ 'Status code: %d' % res.status_code)
return None
json_str = res.text
with open(output_fname, 'wb') as fh:
fh.write(json_str.encode('utf-8'))
return process_json_str(json_str, citation) | python | def process_nxml_str(nxml_str, citation=None, offline=False,
output_fname=default_output_fname):
"""Return a ReachProcessor by processing the given NXML string.
NXML is the format used by PubmedCentral for papers in the open
access subset.
Parameters
----------
nxml_str : str
The NXML string to be processed.
citation : Optional[str]
A PubMed ID passed to be used in the evidence for the extracted INDRA
Statements. Default: None
offline : Optional[bool]
If set to True, the REACH system is ran offline. Otherwise (by default)
the web service is called. Default: False
output_fname : Optional[str]
The file to output the REACH JSON output to.
Defaults to reach_output.json in current working directory.
Returns
-------
rp : ReachProcessor
A ReachProcessor containing the extracted INDRA Statements
in rp.statements.
"""
if offline:
if not try_offline:
logger.error('Offline reading is not available.')
return None
try:
api_ruler = reach_reader.get_api_ruler()
except ReachOfflineReadingError as e:
logger.error(e)
logger.error('Cannot read offline because the REACH ApiRuler '
'could not be instantiated.')
return None
try:
result_map = api_ruler.annotateNxml(nxml_str, 'fries')
except JavaException as e:
logger.error('Could not process NXML.')
logger.error(e)
return None
# REACH version < 1.3.3
json_str = result_map.get('resultJson')
if not json_str:
# REACH version >= 1.3.3
json_str = result_map.get('result')
if json_str is None:
logger.warning('No results retrieved')
return None
if isinstance(json_str, bytes):
json_str = json_str.decode('utf-8')
return process_json_str(json_str, citation)
else:
data = {'nxml': nxml_str}
try:
res = requests.post(reach_nxml_url, data)
except requests.exceptions.RequestException as e:
logger.error('Could not connect to REACH service:')
logger.error(e)
return None
if res.status_code != 200:
logger.error('Could not process NXML via REACH service.'
+ 'Status code: %d' % res.status_code)
return None
json_str = res.text
with open(output_fname, 'wb') as fh:
fh.write(json_str.encode('utf-8'))
return process_json_str(json_str, citation) | [
"def",
"process_nxml_str",
"(",
"nxml_str",
",",
"citation",
"=",
"None",
",",
"offline",
"=",
"False",
",",
"output_fname",
"=",
"default_output_fname",
")",
":",
"if",
"offline",
":",
"if",
"not",
"try_offline",
":",
"logger",
".",
"error",
"(",
"'Offline reading is not available.'",
")",
"return",
"None",
"try",
":",
"api_ruler",
"=",
"reach_reader",
".",
"get_api_ruler",
"(",
")",
"except",
"ReachOfflineReadingError",
"as",
"e",
":",
"logger",
".",
"error",
"(",
"e",
")",
"logger",
".",
"error",
"(",
"'Cannot read offline because the REACH ApiRuler '",
"'could not be instantiated.'",
")",
"return",
"None",
"try",
":",
"result_map",
"=",
"api_ruler",
".",
"annotateNxml",
"(",
"nxml_str",
",",
"'fries'",
")",
"except",
"JavaException",
"as",
"e",
":",
"logger",
".",
"error",
"(",
"'Could not process NXML.'",
")",
"logger",
".",
"error",
"(",
"e",
")",
"return",
"None",
"# REACH version < 1.3.3",
"json_str",
"=",
"result_map",
".",
"get",
"(",
"'resultJson'",
")",
"if",
"not",
"json_str",
":",
"# REACH version >= 1.3.3",
"json_str",
"=",
"result_map",
".",
"get",
"(",
"'result'",
")",
"if",
"json_str",
"is",
"None",
":",
"logger",
".",
"warning",
"(",
"'No results retrieved'",
")",
"return",
"None",
"if",
"isinstance",
"(",
"json_str",
",",
"bytes",
")",
":",
"json_str",
"=",
"json_str",
".",
"decode",
"(",
"'utf-8'",
")",
"return",
"process_json_str",
"(",
"json_str",
",",
"citation",
")",
"else",
":",
"data",
"=",
"{",
"'nxml'",
":",
"nxml_str",
"}",
"try",
":",
"res",
"=",
"requests",
".",
"post",
"(",
"reach_nxml_url",
",",
"data",
")",
"except",
"requests",
".",
"exceptions",
".",
"RequestException",
"as",
"e",
":",
"logger",
".",
"error",
"(",
"'Could not connect to REACH service:'",
")",
"logger",
".",
"error",
"(",
"e",
")",
"return",
"None",
"if",
"res",
".",
"status_code",
"!=",
"200",
":",
"logger",
".",
"error",
"(",
"'Could not process NXML via REACH service.'",
"+",
"'Status code: %d'",
"%",
"res",
".",
"status_code",
")",
"return",
"None",
"json_str",
"=",
"res",
".",
"text",
"with",
"open",
"(",
"output_fname",
",",
"'wb'",
")",
"as",
"fh",
":",
"fh",
".",
"write",
"(",
"json_str",
".",
"encode",
"(",
"'utf-8'",
")",
")",
"return",
"process_json_str",
"(",
"json_str",
",",
"citation",
")"
]
| Return a ReachProcessor by processing the given NXML string.
NXML is the format used by PubmedCentral for papers in the open
access subset.
Parameters
----------
nxml_str : str
The NXML string to be processed.
citation : Optional[str]
A PubMed ID passed to be used in the evidence for the extracted INDRA
Statements. Default: None
offline : Optional[bool]
If set to True, the REACH system is ran offline. Otherwise (by default)
the web service is called. Default: False
output_fname : Optional[str]
The file to output the REACH JSON output to.
Defaults to reach_output.json in current working directory.
Returns
-------
rp : ReachProcessor
A ReachProcessor containing the extracted INDRA Statements
in rp.statements. | [
"Return",
"a",
"ReachProcessor",
"by",
"processing",
"the",
"given",
"NXML",
"string",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/sources/reach/api.py#L190-L261 | train |
sorgerlab/indra | indra/sources/reach/api.py | process_nxml_file | def process_nxml_file(file_name, citation=None, offline=False,
output_fname=default_output_fname):
"""Return a ReachProcessor by processing the given NXML file.
NXML is the format used by PubmedCentral for papers in the open
access subset.
Parameters
----------
file_name : str
The name of the NXML file to be processed.
citation : Optional[str]
A PubMed ID passed to be used in the evidence for the extracted INDRA
Statements. Default: None
offline : Optional[bool]
If set to True, the REACH system is ran offline. Otherwise (by default)
the web service is called. Default: False
output_fname : Optional[str]
The file to output the REACH JSON output to.
Defaults to reach_output.json in current working directory.
Returns
-------
rp : ReachProcessor
A ReachProcessor containing the extracted INDRA Statements
in rp.statements.
"""
with open(file_name, 'rb') as f:
nxml_str = f.read().decode('utf-8')
return process_nxml_str(nxml_str, citation, False, output_fname) | python | def process_nxml_file(file_name, citation=None, offline=False,
output_fname=default_output_fname):
"""Return a ReachProcessor by processing the given NXML file.
NXML is the format used by PubmedCentral for papers in the open
access subset.
Parameters
----------
file_name : str
The name of the NXML file to be processed.
citation : Optional[str]
A PubMed ID passed to be used in the evidence for the extracted INDRA
Statements. Default: None
offline : Optional[bool]
If set to True, the REACH system is ran offline. Otherwise (by default)
the web service is called. Default: False
output_fname : Optional[str]
The file to output the REACH JSON output to.
Defaults to reach_output.json in current working directory.
Returns
-------
rp : ReachProcessor
A ReachProcessor containing the extracted INDRA Statements
in rp.statements.
"""
with open(file_name, 'rb') as f:
nxml_str = f.read().decode('utf-8')
return process_nxml_str(nxml_str, citation, False, output_fname) | [
"def",
"process_nxml_file",
"(",
"file_name",
",",
"citation",
"=",
"None",
",",
"offline",
"=",
"False",
",",
"output_fname",
"=",
"default_output_fname",
")",
":",
"with",
"open",
"(",
"file_name",
",",
"'rb'",
")",
"as",
"f",
":",
"nxml_str",
"=",
"f",
".",
"read",
"(",
")",
".",
"decode",
"(",
"'utf-8'",
")",
"return",
"process_nxml_str",
"(",
"nxml_str",
",",
"citation",
",",
"False",
",",
"output_fname",
")"
]
| Return a ReachProcessor by processing the given NXML file.
NXML is the format used by PubmedCentral for papers in the open
access subset.
Parameters
----------
file_name : str
The name of the NXML file to be processed.
citation : Optional[str]
A PubMed ID passed to be used in the evidence for the extracted INDRA
Statements. Default: None
offline : Optional[bool]
If set to True, the REACH system is ran offline. Otherwise (by default)
the web service is called. Default: False
output_fname : Optional[str]
The file to output the REACH JSON output to.
Defaults to reach_output.json in current working directory.
Returns
-------
rp : ReachProcessor
A ReachProcessor containing the extracted INDRA Statements
in rp.statements. | [
"Return",
"a",
"ReachProcessor",
"by",
"processing",
"the",
"given",
"NXML",
"file",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/sources/reach/api.py#L264-L293 | train |
sorgerlab/indra | indra/sources/reach/api.py | process_json_file | def process_json_file(file_name, citation=None):
"""Return a ReachProcessor by processing the given REACH json file.
The output from the REACH parser is in this json format. This function is
useful if the output is saved as a file and needs to be processed.
For more information on the format, see: https://github.com/clulab/reach
Parameters
----------
file_name : str
The name of the json file to be processed.
citation : Optional[str]
A PubMed ID passed to be used in the evidence for the extracted INDRA
Statements. Default: None
Returns
-------
rp : ReachProcessor
A ReachProcessor containing the extracted INDRA Statements
in rp.statements.
"""
try:
with open(file_name, 'rb') as fh:
json_str = fh.read().decode('utf-8')
return process_json_str(json_str, citation)
except IOError:
logger.error('Could not read file %s.' % file_name) | python | def process_json_file(file_name, citation=None):
"""Return a ReachProcessor by processing the given REACH json file.
The output from the REACH parser is in this json format. This function is
useful if the output is saved as a file and needs to be processed.
For more information on the format, see: https://github.com/clulab/reach
Parameters
----------
file_name : str
The name of the json file to be processed.
citation : Optional[str]
A PubMed ID passed to be used in the evidence for the extracted INDRA
Statements. Default: None
Returns
-------
rp : ReachProcessor
A ReachProcessor containing the extracted INDRA Statements
in rp.statements.
"""
try:
with open(file_name, 'rb') as fh:
json_str = fh.read().decode('utf-8')
return process_json_str(json_str, citation)
except IOError:
logger.error('Could not read file %s.' % file_name) | [
"def",
"process_json_file",
"(",
"file_name",
",",
"citation",
"=",
"None",
")",
":",
"try",
":",
"with",
"open",
"(",
"file_name",
",",
"'rb'",
")",
"as",
"fh",
":",
"json_str",
"=",
"fh",
".",
"read",
"(",
")",
".",
"decode",
"(",
"'utf-8'",
")",
"return",
"process_json_str",
"(",
"json_str",
",",
"citation",
")",
"except",
"IOError",
":",
"logger",
".",
"error",
"(",
"'Could not read file %s.'",
"%",
"file_name",
")"
]
| Return a ReachProcessor by processing the given REACH json file.
The output from the REACH parser is in this json format. This function is
useful if the output is saved as a file and needs to be processed.
For more information on the format, see: https://github.com/clulab/reach
Parameters
----------
file_name : str
The name of the json file to be processed.
citation : Optional[str]
A PubMed ID passed to be used in the evidence for the extracted INDRA
Statements. Default: None
Returns
-------
rp : ReachProcessor
A ReachProcessor containing the extracted INDRA Statements
in rp.statements. | [
"Return",
"a",
"ReachProcessor",
"by",
"processing",
"the",
"given",
"REACH",
"json",
"file",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/sources/reach/api.py#L296-L322 | train |
sorgerlab/indra | indra/sources/reach/api.py | process_json_str | def process_json_str(json_str, citation=None):
"""Return a ReachProcessor by processing the given REACH json string.
The output from the REACH parser is in this json format.
For more information on the format, see: https://github.com/clulab/reach
Parameters
----------
json_str : str
The json string to be processed.
citation : Optional[str]
A PubMed ID passed to be used in the evidence for the extracted INDRA
Statements. Default: None
Returns
-------
rp : ReachProcessor
A ReachProcessor containing the extracted INDRA Statements
in rp.statements.
"""
if not isinstance(json_str, basestring):
raise TypeError('{} is {} instead of {}'.format(json_str,
json_str.__class__,
basestring))
json_str = json_str.replace('frame-id', 'frame_id')
json_str = json_str.replace('argument-label', 'argument_label')
json_str = json_str.replace('object-meta', 'object_meta')
json_str = json_str.replace('doc-id', 'doc_id')
json_str = json_str.replace('is-hypothesis', 'is_hypothesis')
json_str = json_str.replace('is-negated', 'is_negated')
json_str = json_str.replace('is-direct', 'is_direct')
json_str = json_str.replace('found-by', 'found_by')
try:
json_dict = json.loads(json_str)
except ValueError:
logger.error('Could not decode JSON string.')
return None
rp = ReachProcessor(json_dict, citation)
rp.get_modifications()
rp.get_complexes()
rp.get_activation()
rp.get_translocation()
rp.get_regulate_amounts()
return rp | python | def process_json_str(json_str, citation=None):
"""Return a ReachProcessor by processing the given REACH json string.
The output from the REACH parser is in this json format.
For more information on the format, see: https://github.com/clulab/reach
Parameters
----------
json_str : str
The json string to be processed.
citation : Optional[str]
A PubMed ID passed to be used in the evidence for the extracted INDRA
Statements. Default: None
Returns
-------
rp : ReachProcessor
A ReachProcessor containing the extracted INDRA Statements
in rp.statements.
"""
if not isinstance(json_str, basestring):
raise TypeError('{} is {} instead of {}'.format(json_str,
json_str.__class__,
basestring))
json_str = json_str.replace('frame-id', 'frame_id')
json_str = json_str.replace('argument-label', 'argument_label')
json_str = json_str.replace('object-meta', 'object_meta')
json_str = json_str.replace('doc-id', 'doc_id')
json_str = json_str.replace('is-hypothesis', 'is_hypothesis')
json_str = json_str.replace('is-negated', 'is_negated')
json_str = json_str.replace('is-direct', 'is_direct')
json_str = json_str.replace('found-by', 'found_by')
try:
json_dict = json.loads(json_str)
except ValueError:
logger.error('Could not decode JSON string.')
return None
rp = ReachProcessor(json_dict, citation)
rp.get_modifications()
rp.get_complexes()
rp.get_activation()
rp.get_translocation()
rp.get_regulate_amounts()
return rp | [
"def",
"process_json_str",
"(",
"json_str",
",",
"citation",
"=",
"None",
")",
":",
"if",
"not",
"isinstance",
"(",
"json_str",
",",
"basestring",
")",
":",
"raise",
"TypeError",
"(",
"'{} is {} instead of {}'",
".",
"format",
"(",
"json_str",
",",
"json_str",
".",
"__class__",
",",
"basestring",
")",
")",
"json_str",
"=",
"json_str",
".",
"replace",
"(",
"'frame-id'",
",",
"'frame_id'",
")",
"json_str",
"=",
"json_str",
".",
"replace",
"(",
"'argument-label'",
",",
"'argument_label'",
")",
"json_str",
"=",
"json_str",
".",
"replace",
"(",
"'object-meta'",
",",
"'object_meta'",
")",
"json_str",
"=",
"json_str",
".",
"replace",
"(",
"'doc-id'",
",",
"'doc_id'",
")",
"json_str",
"=",
"json_str",
".",
"replace",
"(",
"'is-hypothesis'",
",",
"'is_hypothesis'",
")",
"json_str",
"=",
"json_str",
".",
"replace",
"(",
"'is-negated'",
",",
"'is_negated'",
")",
"json_str",
"=",
"json_str",
".",
"replace",
"(",
"'is-direct'",
",",
"'is_direct'",
")",
"json_str",
"=",
"json_str",
".",
"replace",
"(",
"'found-by'",
",",
"'found_by'",
")",
"try",
":",
"json_dict",
"=",
"json",
".",
"loads",
"(",
"json_str",
")",
"except",
"ValueError",
":",
"logger",
".",
"error",
"(",
"'Could not decode JSON string.'",
")",
"return",
"None",
"rp",
"=",
"ReachProcessor",
"(",
"json_dict",
",",
"citation",
")",
"rp",
".",
"get_modifications",
"(",
")",
"rp",
".",
"get_complexes",
"(",
")",
"rp",
".",
"get_activation",
"(",
")",
"rp",
".",
"get_translocation",
"(",
")",
"rp",
".",
"get_regulate_amounts",
"(",
")",
"return",
"rp"
]
| Return a ReachProcessor by processing the given REACH json string.
The output from the REACH parser is in this json format.
For more information on the format, see: https://github.com/clulab/reach
Parameters
----------
json_str : str
The json string to be processed.
citation : Optional[str]
A PubMed ID passed to be used in the evidence for the extracted INDRA
Statements. Default: None
Returns
-------
rp : ReachProcessor
A ReachProcessor containing the extracted INDRA Statements
in rp.statements. | [
"Return",
"a",
"ReachProcessor",
"by",
"processing",
"the",
"given",
"REACH",
"json",
"string",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/sources/reach/api.py#L325-L369 | train |
sorgerlab/indra | indra/tools/reading/wait_for_complete.py | make_parser | def make_parser():
"""Generate the parser for this script."""
parser = ArgumentParser(
'wait_for_complete.py',
usage='%(prog)s [-h] queue_name [options]',
description=('Wait for a set of batch jobs to complete, and monitor '
'them as they run.'),
epilog=('Jobs can also be monitored, terminated, and otherwise '
'managed on the AWS website. However this tool will also tag '
'the instances, and should be run whenever a job is submitted '
'to AWS.')
)
parser.add_argument(
dest='queue_name',
help=('The name of the queue to watch and wait for completion. If no '
'jobs are specified, this will wait until all jobs in the queue '
'are completed (either SUCCEEDED or FAILED).')
)
parser.add_argument(
'--watch', '-w',
dest='job_list',
metavar='JOB_ID',
nargs='+',
help=('Specify particular jobs using their job ids, as reported by '
'the submit command. Many ids may be specified.')
)
parser.add_argument(
'--prefix', '-p',
dest='job_name_prefix',
help='Specify a prefix for the name of the jobs to watch and wait for.'
)
parser.add_argument(
'--interval', '-i',
dest='poll_interval',
default=10,
type=int,
help=('The time interval to wait between job status checks, in '
'seconds (default: %(default)d seconds).')
)
parser.add_argument(
'--timeout', '-T',
metavar='TIMEOUT',
type=int,
help=('If the logs are not updated for %(metavar)s seconds, '
'print a warning. If `--kill_on_log_timeout` flag is set, then '
'the offending jobs will be automatically terminated.')
)
parser.add_argument(
'--kill_on_timeout', '-K',
action='store_true',
help='If a log times out, terminate the offending job.'
)
parser.add_argument(
'--stash_log_method', '-l',
choices=['s3', 'local'],
metavar='METHOD',
help=('Select a method from: [%(choices)s] to store the job logs. '
'If no method is specified, the logs will not be '
'loaded off of AWS. If \'s3\' is specified, then '
'`job_name_prefix` must also be given, as this will indicate '
'where on s3 to store the logs.')
)
return parser | python | def make_parser():
"""Generate the parser for this script."""
parser = ArgumentParser(
'wait_for_complete.py',
usage='%(prog)s [-h] queue_name [options]',
description=('Wait for a set of batch jobs to complete, and monitor '
'them as they run.'),
epilog=('Jobs can also be monitored, terminated, and otherwise '
'managed on the AWS website. However this tool will also tag '
'the instances, and should be run whenever a job is submitted '
'to AWS.')
)
parser.add_argument(
dest='queue_name',
help=('The name of the queue to watch and wait for completion. If no '
'jobs are specified, this will wait until all jobs in the queue '
'are completed (either SUCCEEDED or FAILED).')
)
parser.add_argument(
'--watch', '-w',
dest='job_list',
metavar='JOB_ID',
nargs='+',
help=('Specify particular jobs using their job ids, as reported by '
'the submit command. Many ids may be specified.')
)
parser.add_argument(
'--prefix', '-p',
dest='job_name_prefix',
help='Specify a prefix for the name of the jobs to watch and wait for.'
)
parser.add_argument(
'--interval', '-i',
dest='poll_interval',
default=10,
type=int,
help=('The time interval to wait between job status checks, in '
'seconds (default: %(default)d seconds).')
)
parser.add_argument(
'--timeout', '-T',
metavar='TIMEOUT',
type=int,
help=('If the logs are not updated for %(metavar)s seconds, '
'print a warning. If `--kill_on_log_timeout` flag is set, then '
'the offending jobs will be automatically terminated.')
)
parser.add_argument(
'--kill_on_timeout', '-K',
action='store_true',
help='If a log times out, terminate the offending job.'
)
parser.add_argument(
'--stash_log_method', '-l',
choices=['s3', 'local'],
metavar='METHOD',
help=('Select a method from: [%(choices)s] to store the job logs. '
'If no method is specified, the logs will not be '
'loaded off of AWS. If \'s3\' is specified, then '
'`job_name_prefix` must also be given, as this will indicate '
'where on s3 to store the logs.')
)
return parser | [
"def",
"make_parser",
"(",
")",
":",
"parser",
"=",
"ArgumentParser",
"(",
"'wait_for_complete.py'",
",",
"usage",
"=",
"'%(prog)s [-h] queue_name [options]'",
",",
"description",
"=",
"(",
"'Wait for a set of batch jobs to complete, and monitor '",
"'them as they run.'",
")",
",",
"epilog",
"=",
"(",
"'Jobs can also be monitored, terminated, and otherwise '",
"'managed on the AWS website. However this tool will also tag '",
"'the instances, and should be run whenever a job is submitted '",
"'to AWS.'",
")",
")",
"parser",
".",
"add_argument",
"(",
"dest",
"=",
"'queue_name'",
",",
"help",
"=",
"(",
"'The name of the queue to watch and wait for completion. If no '",
"'jobs are specified, this will wait until all jobs in the queue '",
"'are completed (either SUCCEEDED or FAILED).'",
")",
")",
"parser",
".",
"add_argument",
"(",
"'--watch'",
",",
"'-w'",
",",
"dest",
"=",
"'job_list'",
",",
"metavar",
"=",
"'JOB_ID'",
",",
"nargs",
"=",
"'+'",
",",
"help",
"=",
"(",
"'Specify particular jobs using their job ids, as reported by '",
"'the submit command. Many ids may be specified.'",
")",
")",
"parser",
".",
"add_argument",
"(",
"'--prefix'",
",",
"'-p'",
",",
"dest",
"=",
"'job_name_prefix'",
",",
"help",
"=",
"'Specify a prefix for the name of the jobs to watch and wait for.'",
")",
"parser",
".",
"add_argument",
"(",
"'--interval'",
",",
"'-i'",
",",
"dest",
"=",
"'poll_interval'",
",",
"default",
"=",
"10",
",",
"type",
"=",
"int",
",",
"help",
"=",
"(",
"'The time interval to wait between job status checks, in '",
"'seconds (default: %(default)d seconds).'",
")",
")",
"parser",
".",
"add_argument",
"(",
"'--timeout'",
",",
"'-T'",
",",
"metavar",
"=",
"'TIMEOUT'",
",",
"type",
"=",
"int",
",",
"help",
"=",
"(",
"'If the logs are not updated for %(metavar)s seconds, '",
"'print a warning. If `--kill_on_log_timeout` flag is set, then '",
"'the offending jobs will be automatically terminated.'",
")",
")",
"parser",
".",
"add_argument",
"(",
"'--kill_on_timeout'",
",",
"'-K'",
",",
"action",
"=",
"'store_true'",
",",
"help",
"=",
"'If a log times out, terminate the offending job.'",
")",
"parser",
".",
"add_argument",
"(",
"'--stash_log_method'",
",",
"'-l'",
",",
"choices",
"=",
"[",
"'s3'",
",",
"'local'",
"]",
",",
"metavar",
"=",
"'METHOD'",
",",
"help",
"=",
"(",
"'Select a method from: [%(choices)s] to store the job logs. '",
"'If no method is specified, the logs will not be '",
"'loaded off of AWS. If \\'s3\\' is specified, then '",
"'`job_name_prefix` must also be given, as this will indicate '",
"'where on s3 to store the logs.'",
")",
")",
"return",
"parser"
]
| Generate the parser for this script. | [
"Generate",
"the",
"parser",
"for",
"this",
"script",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/tools/reading/wait_for_complete.py#L4-L66 | train |
sorgerlab/indra | indra/literature/__init__.py | id_lookup | def id_lookup(paper_id, idtype):
"""Take an ID of type PMID, PMCID, or DOI and lookup the other IDs.
If the DOI is not found in Pubmed, try to obtain the DOI by doing a
reverse-lookup of the DOI in CrossRef using article metadata.
Parameters
----------
paper_id : str
ID of the article.
idtype : str
Type of the ID: 'pmid', 'pmcid', or 'doi
Returns
-------
ids : dict
A dictionary with the following keys: pmid, pmcid and doi.
"""
if idtype not in ('pmid', 'pmcid', 'doi'):
raise ValueError("Invalid idtype %s; must be 'pmid', 'pmcid', "
"or 'doi'." % idtype)
ids = {'doi': None, 'pmid': None, 'pmcid': None}
pmc_id_results = pmc_client.id_lookup(paper_id, idtype)
# Start with the results of the PMC lookup and then override with the
# provided ID
ids['pmid'] = pmc_id_results.get('pmid')
ids['pmcid'] = pmc_id_results.get('pmcid')
ids['doi'] = pmc_id_results.get('doi')
ids[idtype] = paper_id
# If we gave a DOI, then our work is done after looking for PMID and PMCID
if idtype == 'doi':
return ids
# If we gave a PMID or PMCID, we need to check to see if we got a DOI.
# If we got a DOI back, we're done.
elif ids.get('doi'):
return ids
# If we get here, then we've given PMID or PMCID and don't have a DOI yet.
# If we gave a PMCID and have neither a PMID nor a DOI, then we'll run
# into problems later on when we try to the reverse lookup using CrossRef.
# So we bail here and return what we have (PMCID only) with a warning.
if ids.get('pmcid') and ids.get('doi') is None and ids.get('pmid') is None:
logger.warning('%s: PMCID without PMID or DOI' % ids.get('pmcid'))
return ids
# To clarify the state of things at this point:
assert ids.get('pmid') is not None
assert ids.get('doi') is None
# As a last result, we try to get the DOI from CrossRef (which internally
# tries to get the DOI from Pubmed in the process of collecting the
# necessary metadata for the lookup):
ids['doi'] = crossref_client.doi_query(ids['pmid'])
# It may still be None, but at this point there's nothing we can do...
return ids | python | def id_lookup(paper_id, idtype):
"""Take an ID of type PMID, PMCID, or DOI and lookup the other IDs.
If the DOI is not found in Pubmed, try to obtain the DOI by doing a
reverse-lookup of the DOI in CrossRef using article metadata.
Parameters
----------
paper_id : str
ID of the article.
idtype : str
Type of the ID: 'pmid', 'pmcid', or 'doi
Returns
-------
ids : dict
A dictionary with the following keys: pmid, pmcid and doi.
"""
if idtype not in ('pmid', 'pmcid', 'doi'):
raise ValueError("Invalid idtype %s; must be 'pmid', 'pmcid', "
"or 'doi'." % idtype)
ids = {'doi': None, 'pmid': None, 'pmcid': None}
pmc_id_results = pmc_client.id_lookup(paper_id, idtype)
# Start with the results of the PMC lookup and then override with the
# provided ID
ids['pmid'] = pmc_id_results.get('pmid')
ids['pmcid'] = pmc_id_results.get('pmcid')
ids['doi'] = pmc_id_results.get('doi')
ids[idtype] = paper_id
# If we gave a DOI, then our work is done after looking for PMID and PMCID
if idtype == 'doi':
return ids
# If we gave a PMID or PMCID, we need to check to see if we got a DOI.
# If we got a DOI back, we're done.
elif ids.get('doi'):
return ids
# If we get here, then we've given PMID or PMCID and don't have a DOI yet.
# If we gave a PMCID and have neither a PMID nor a DOI, then we'll run
# into problems later on when we try to the reverse lookup using CrossRef.
# So we bail here and return what we have (PMCID only) with a warning.
if ids.get('pmcid') and ids.get('doi') is None and ids.get('pmid') is None:
logger.warning('%s: PMCID without PMID or DOI' % ids.get('pmcid'))
return ids
# To clarify the state of things at this point:
assert ids.get('pmid') is not None
assert ids.get('doi') is None
# As a last result, we try to get the DOI from CrossRef (which internally
# tries to get the DOI from Pubmed in the process of collecting the
# necessary metadata for the lookup):
ids['doi'] = crossref_client.doi_query(ids['pmid'])
# It may still be None, but at this point there's nothing we can do...
return ids | [
"def",
"id_lookup",
"(",
"paper_id",
",",
"idtype",
")",
":",
"if",
"idtype",
"not",
"in",
"(",
"'pmid'",
",",
"'pmcid'",
",",
"'doi'",
")",
":",
"raise",
"ValueError",
"(",
"\"Invalid idtype %s; must be 'pmid', 'pmcid', \"",
"\"or 'doi'.\"",
"%",
"idtype",
")",
"ids",
"=",
"{",
"'doi'",
":",
"None",
",",
"'pmid'",
":",
"None",
",",
"'pmcid'",
":",
"None",
"}",
"pmc_id_results",
"=",
"pmc_client",
".",
"id_lookup",
"(",
"paper_id",
",",
"idtype",
")",
"# Start with the results of the PMC lookup and then override with the",
"# provided ID",
"ids",
"[",
"'pmid'",
"]",
"=",
"pmc_id_results",
".",
"get",
"(",
"'pmid'",
")",
"ids",
"[",
"'pmcid'",
"]",
"=",
"pmc_id_results",
".",
"get",
"(",
"'pmcid'",
")",
"ids",
"[",
"'doi'",
"]",
"=",
"pmc_id_results",
".",
"get",
"(",
"'doi'",
")",
"ids",
"[",
"idtype",
"]",
"=",
"paper_id",
"# If we gave a DOI, then our work is done after looking for PMID and PMCID",
"if",
"idtype",
"==",
"'doi'",
":",
"return",
"ids",
"# If we gave a PMID or PMCID, we need to check to see if we got a DOI.",
"# If we got a DOI back, we're done.",
"elif",
"ids",
".",
"get",
"(",
"'doi'",
")",
":",
"return",
"ids",
"# If we get here, then we've given PMID or PMCID and don't have a DOI yet.",
"# If we gave a PMCID and have neither a PMID nor a DOI, then we'll run",
"# into problems later on when we try to the reverse lookup using CrossRef.",
"# So we bail here and return what we have (PMCID only) with a warning.",
"if",
"ids",
".",
"get",
"(",
"'pmcid'",
")",
"and",
"ids",
".",
"get",
"(",
"'doi'",
")",
"is",
"None",
"and",
"ids",
".",
"get",
"(",
"'pmid'",
")",
"is",
"None",
":",
"logger",
".",
"warning",
"(",
"'%s: PMCID without PMID or DOI'",
"%",
"ids",
".",
"get",
"(",
"'pmcid'",
")",
")",
"return",
"ids",
"# To clarify the state of things at this point:",
"assert",
"ids",
".",
"get",
"(",
"'pmid'",
")",
"is",
"not",
"None",
"assert",
"ids",
".",
"get",
"(",
"'doi'",
")",
"is",
"None",
"# As a last result, we try to get the DOI from CrossRef (which internally",
"# tries to get the DOI from Pubmed in the process of collecting the",
"# necessary metadata for the lookup):",
"ids",
"[",
"'doi'",
"]",
"=",
"crossref_client",
".",
"doi_query",
"(",
"ids",
"[",
"'pmid'",
"]",
")",
"# It may still be None, but at this point there's nothing we can do...",
"return",
"ids"
]
| Take an ID of type PMID, PMCID, or DOI and lookup the other IDs.
If the DOI is not found in Pubmed, try to obtain the DOI by doing a
reverse-lookup of the DOI in CrossRef using article metadata.
Parameters
----------
paper_id : str
ID of the article.
idtype : str
Type of the ID: 'pmid', 'pmcid', or 'doi
Returns
-------
ids : dict
A dictionary with the following keys: pmid, pmcid and doi. | [
"Take",
"an",
"ID",
"of",
"type",
"PMID",
"PMCID",
"or",
"DOI",
"and",
"lookup",
"the",
"other",
"IDs",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/literature/__init__.py#L19-L71 | train |
sorgerlab/indra | indra/literature/__init__.py | get_full_text | def get_full_text(paper_id, idtype, preferred_content_type='text/xml'):
"""Return the content and the content type of an article.
This function retreives the content of an article by its PubMed ID,
PubMed Central ID, or DOI. It prioritizes full text content when available
and returns an abstract from PubMed as a fallback.
Parameters
----------
paper_id : string
ID of the article.
idtype : 'pmid', 'pmcid', or 'doi
Type of the ID.
preferred_content_type : Optional[st]r
Preference for full-text format, if available. Can be one of
'text/xml', 'text/plain', 'application/pdf'. Default: 'text/xml'
Returns
-------
content : str
The content of the article.
content_type : str
The content type of the article
"""
if preferred_content_type not in \
('text/xml', 'text/plain', 'application/pdf'):
raise ValueError("preferred_content_type must be one of 'text/xml', "
"'text/plain', or 'application/pdf'.")
ids = id_lookup(paper_id, idtype)
pmcid = ids.get('pmcid')
pmid = ids.get('pmid')
doi = ids.get('doi')
# First try to find paper via PMC
if pmcid:
nxml = pmc_client.get_xml(pmcid)
if nxml:
return nxml, 'pmc_oa_xml'
# If we got here, it means we didn't find the full text in PMC, so we'll
# need either the DOI (for lookup in CrossRef) and/or the PMID (so we
# can fall back on the abstract. If by some strange turn we have neither,
# give up now.
if not doi and not pmid:
return (None, None)
# If it does not have PMC NXML then we attempt to obtain the full-text
# through the CrossRef Click-through API
if doi:
# Get publisher
publisher = crossref_client.get_publisher(doi)
# First check for whether this is Elsevier--if so, use the Elsevier
# client directly, because the Clickthrough API key seems unreliable.
# Return full XML.
if publisher == 'Elsevier BV':
logger.info('Elsevier: %s' % pmid)
#article = elsevier_client.get_article(doi, output='txt')
try:
article_xml = elsevier_client.download_article(doi)
except Exception as e:
logger.error("Error downloading Elsevier article: %s" % e)
article_xml = None
if article_xml is not None:
return (article_xml, 'elsevier_xml')
# FIXME FIXME FIXME
# Because we don't yet have a way to process non-Elsevier content
# obtained from CrossRef, which includes both XML of unknown format
# and PDFs, we just comment this section out for now
"""
# Check if there are any full text links
links = crossref_client.get_fulltext_links(doi)
if links:
headers = {}
# Set the Cross Ref Clickthrough API key in the header, if we've
# got one
cr_api_key = crossref_client.get_api_key()
if cr_api_key is not None:
headers['CR-Clickthrough-Client-Token'] = cr_api_key
# Utility function to get particular links by content-type
def lookup_content_type(link_list, content_type):
content_list = [l.get('URL') for l in link_list
if l.get('content-type') == content_type]
return None if not content_list else content_list[0]
# First check for what the user asked for
if lookup_content_type(links, preferred_content_type):
req = requests.get(lookup_content_type(links,
preferred_content_type),
headers=headers)
if req.status_code == 200:
req_content_type = req.headers['Content-Type']
return req.text, req_content_type
elif req.status_code == 400:
logger.warning('Full text query returned 400 (Bad Request): '
'Perhaps missing CrossRef Clickthrough API '
'key?')
return (None, None)
# Check for XML first
if lookup_content_type(links, 'text/xml'):
req = requests.get(lookup_content_type(links, 'text/xml'),
headers=headers)
if req.status_code == 200:
req_content_type = req.headers['Content-Type']
return req.text, req_content_type
elif req.status_code == 400:
logger.warning('Full text query returned 400 (Bad Request):'
'Perhaps missing CrossRef Clickthrough API '
'key?')
return (None, None)
# Next, plain text
elif lookup_content_type(links, 'text/plain'):
req = requests.get(lookup_content_type(links, 'text/plain'),
headers=headers)
if req.status_code == 200:
req_content_type = req.headers['Content-Type']
return req.text, req_content_type
elif req.status_code == 400:
logger.warning('Full text query returned 400 (Bad Request):'
'Perhaps missing CrossRef Clickthrough API '
'key?')
return (None, None)
elif lookup_content_type(links, 'application/pdf'):
pass
# Wiley's links are often of content-type 'unspecified'.
elif lookup_content_type(links, 'unspecified'):
req = requests.get(lookup_content_type(links, 'unspecified'),
headers=headers)
if req.status_code == 200:
req_content_type = req.headers['Content-Type']
return 'foo', req_content_type
elif req.status_code == 400:
logger.warning('Full text query returned 400 (Bad Request):'
'Perhaps missing CrossRef Clickthrough API '
'key?')
return (None, None)
elif req.status_code == 401:
logger.warning('Full text query returned 401 (Unauthorized)')
return (None, None)
elif req.status_code == 403:
logger.warning('Full text query returned 403 (Forbidden)')
return (None, None)
else:
raise Exception("Unknown content type(s): %s" % links)
elif publisher == 'American Society for Biochemistry & Molecular ' \
'Biology (ASBMB)':
url = crossref_client.get_url(doi)
return get_asbmb_full_text(url)
"""
# end FIXME FIXME FIXME
# No full text links and not a publisher we support. We'll have to
# fall back to the abstract.
#elif pmid:
if pmid:
abstract = pubmed_client.get_abstract(pmid)
if abstract is None:
return (None, None)
else:
return abstract, 'abstract'
# We have a useless DOI and no PMID. Give up.
else:
return (None, None)
# We don't have a DOI but we're guaranteed to have a PMID at this point,
# so we fall back to the abstract:
else:
abstract = pubmed_client.get_abstract(pmid)
if abstract is None:
return (None, None)
else:
return abstract, 'abstract'
# We'll only get here if we've missed a combination of conditions
assert False | python | def get_full_text(paper_id, idtype, preferred_content_type='text/xml'):
"""Return the content and the content type of an article.
This function retreives the content of an article by its PubMed ID,
PubMed Central ID, or DOI. It prioritizes full text content when available
and returns an abstract from PubMed as a fallback.
Parameters
----------
paper_id : string
ID of the article.
idtype : 'pmid', 'pmcid', or 'doi
Type of the ID.
preferred_content_type : Optional[st]r
Preference for full-text format, if available. Can be one of
'text/xml', 'text/plain', 'application/pdf'. Default: 'text/xml'
Returns
-------
content : str
The content of the article.
content_type : str
The content type of the article
"""
if preferred_content_type not in \
('text/xml', 'text/plain', 'application/pdf'):
raise ValueError("preferred_content_type must be one of 'text/xml', "
"'text/plain', or 'application/pdf'.")
ids = id_lookup(paper_id, idtype)
pmcid = ids.get('pmcid')
pmid = ids.get('pmid')
doi = ids.get('doi')
# First try to find paper via PMC
if pmcid:
nxml = pmc_client.get_xml(pmcid)
if nxml:
return nxml, 'pmc_oa_xml'
# If we got here, it means we didn't find the full text in PMC, so we'll
# need either the DOI (for lookup in CrossRef) and/or the PMID (so we
# can fall back on the abstract. If by some strange turn we have neither,
# give up now.
if not doi and not pmid:
return (None, None)
# If it does not have PMC NXML then we attempt to obtain the full-text
# through the CrossRef Click-through API
if doi:
# Get publisher
publisher = crossref_client.get_publisher(doi)
# First check for whether this is Elsevier--if so, use the Elsevier
# client directly, because the Clickthrough API key seems unreliable.
# Return full XML.
if publisher == 'Elsevier BV':
logger.info('Elsevier: %s' % pmid)
#article = elsevier_client.get_article(doi, output='txt')
try:
article_xml = elsevier_client.download_article(doi)
except Exception as e:
logger.error("Error downloading Elsevier article: %s" % e)
article_xml = None
if article_xml is not None:
return (article_xml, 'elsevier_xml')
# FIXME FIXME FIXME
# Because we don't yet have a way to process non-Elsevier content
# obtained from CrossRef, which includes both XML of unknown format
# and PDFs, we just comment this section out for now
"""
# Check if there are any full text links
links = crossref_client.get_fulltext_links(doi)
if links:
headers = {}
# Set the Cross Ref Clickthrough API key in the header, if we've
# got one
cr_api_key = crossref_client.get_api_key()
if cr_api_key is not None:
headers['CR-Clickthrough-Client-Token'] = cr_api_key
# Utility function to get particular links by content-type
def lookup_content_type(link_list, content_type):
content_list = [l.get('URL') for l in link_list
if l.get('content-type') == content_type]
return None if not content_list else content_list[0]
# First check for what the user asked for
if lookup_content_type(links, preferred_content_type):
req = requests.get(lookup_content_type(links,
preferred_content_type),
headers=headers)
if req.status_code == 200:
req_content_type = req.headers['Content-Type']
return req.text, req_content_type
elif req.status_code == 400:
logger.warning('Full text query returned 400 (Bad Request): '
'Perhaps missing CrossRef Clickthrough API '
'key?')
return (None, None)
# Check for XML first
if lookup_content_type(links, 'text/xml'):
req = requests.get(lookup_content_type(links, 'text/xml'),
headers=headers)
if req.status_code == 200:
req_content_type = req.headers['Content-Type']
return req.text, req_content_type
elif req.status_code == 400:
logger.warning('Full text query returned 400 (Bad Request):'
'Perhaps missing CrossRef Clickthrough API '
'key?')
return (None, None)
# Next, plain text
elif lookup_content_type(links, 'text/plain'):
req = requests.get(lookup_content_type(links, 'text/plain'),
headers=headers)
if req.status_code == 200:
req_content_type = req.headers['Content-Type']
return req.text, req_content_type
elif req.status_code == 400:
logger.warning('Full text query returned 400 (Bad Request):'
'Perhaps missing CrossRef Clickthrough API '
'key?')
return (None, None)
elif lookup_content_type(links, 'application/pdf'):
pass
# Wiley's links are often of content-type 'unspecified'.
elif lookup_content_type(links, 'unspecified'):
req = requests.get(lookup_content_type(links, 'unspecified'),
headers=headers)
if req.status_code == 200:
req_content_type = req.headers['Content-Type']
return 'foo', req_content_type
elif req.status_code == 400:
logger.warning('Full text query returned 400 (Bad Request):'
'Perhaps missing CrossRef Clickthrough API '
'key?')
return (None, None)
elif req.status_code == 401:
logger.warning('Full text query returned 401 (Unauthorized)')
return (None, None)
elif req.status_code == 403:
logger.warning('Full text query returned 403 (Forbidden)')
return (None, None)
else:
raise Exception("Unknown content type(s): %s" % links)
elif publisher == 'American Society for Biochemistry & Molecular ' \
'Biology (ASBMB)':
url = crossref_client.get_url(doi)
return get_asbmb_full_text(url)
"""
# end FIXME FIXME FIXME
# No full text links and not a publisher we support. We'll have to
# fall back to the abstract.
#elif pmid:
if pmid:
abstract = pubmed_client.get_abstract(pmid)
if abstract is None:
return (None, None)
else:
return abstract, 'abstract'
# We have a useless DOI and no PMID. Give up.
else:
return (None, None)
# We don't have a DOI but we're guaranteed to have a PMID at this point,
# so we fall back to the abstract:
else:
abstract = pubmed_client.get_abstract(pmid)
if abstract is None:
return (None, None)
else:
return abstract, 'abstract'
# We'll only get here if we've missed a combination of conditions
assert False | [
"def",
"get_full_text",
"(",
"paper_id",
",",
"idtype",
",",
"preferred_content_type",
"=",
"'text/xml'",
")",
":",
"if",
"preferred_content_type",
"not",
"in",
"(",
"'text/xml'",
",",
"'text/plain'",
",",
"'application/pdf'",
")",
":",
"raise",
"ValueError",
"(",
"\"preferred_content_type must be one of 'text/xml', \"",
"\"'text/plain', or 'application/pdf'.\"",
")",
"ids",
"=",
"id_lookup",
"(",
"paper_id",
",",
"idtype",
")",
"pmcid",
"=",
"ids",
".",
"get",
"(",
"'pmcid'",
")",
"pmid",
"=",
"ids",
".",
"get",
"(",
"'pmid'",
")",
"doi",
"=",
"ids",
".",
"get",
"(",
"'doi'",
")",
"# First try to find paper via PMC",
"if",
"pmcid",
":",
"nxml",
"=",
"pmc_client",
".",
"get_xml",
"(",
"pmcid",
")",
"if",
"nxml",
":",
"return",
"nxml",
",",
"'pmc_oa_xml'",
"# If we got here, it means we didn't find the full text in PMC, so we'll",
"# need either the DOI (for lookup in CrossRef) and/or the PMID (so we",
"# can fall back on the abstract. If by some strange turn we have neither,",
"# give up now.",
"if",
"not",
"doi",
"and",
"not",
"pmid",
":",
"return",
"(",
"None",
",",
"None",
")",
"# If it does not have PMC NXML then we attempt to obtain the full-text",
"# through the CrossRef Click-through API",
"if",
"doi",
":",
"# Get publisher",
"publisher",
"=",
"crossref_client",
".",
"get_publisher",
"(",
"doi",
")",
"# First check for whether this is Elsevier--if so, use the Elsevier",
"# client directly, because the Clickthrough API key seems unreliable.",
"# Return full XML.",
"if",
"publisher",
"==",
"'Elsevier BV'",
":",
"logger",
".",
"info",
"(",
"'Elsevier: %s'",
"%",
"pmid",
")",
"#article = elsevier_client.get_article(doi, output='txt')",
"try",
":",
"article_xml",
"=",
"elsevier_client",
".",
"download_article",
"(",
"doi",
")",
"except",
"Exception",
"as",
"e",
":",
"logger",
".",
"error",
"(",
"\"Error downloading Elsevier article: %s\"",
"%",
"e",
")",
"article_xml",
"=",
"None",
"if",
"article_xml",
"is",
"not",
"None",
":",
"return",
"(",
"article_xml",
",",
"'elsevier_xml'",
")",
"# FIXME FIXME FIXME",
"# Because we don't yet have a way to process non-Elsevier content",
"# obtained from CrossRef, which includes both XML of unknown format",
"# and PDFs, we just comment this section out for now",
"\"\"\"\n # Check if there are any full text links\n links = crossref_client.get_fulltext_links(doi)\n if links:\n headers = {}\n # Set the Cross Ref Clickthrough API key in the header, if we've\n # got one\n cr_api_key = crossref_client.get_api_key()\n if cr_api_key is not None:\n headers['CR-Clickthrough-Client-Token'] = cr_api_key\n # Utility function to get particular links by content-type\n def lookup_content_type(link_list, content_type):\n content_list = [l.get('URL') for l in link_list\n if l.get('content-type') == content_type]\n return None if not content_list else content_list[0]\n # First check for what the user asked for\n if lookup_content_type(links, preferred_content_type):\n req = requests.get(lookup_content_type(links,\n preferred_content_type),\n headers=headers)\n if req.status_code == 200:\n req_content_type = req.headers['Content-Type']\n return req.text, req_content_type\n elif req.status_code == 400:\n logger.warning('Full text query returned 400 (Bad Request): '\n 'Perhaps missing CrossRef Clickthrough API '\n 'key?')\n return (None, None)\n # Check for XML first\n if lookup_content_type(links, 'text/xml'):\n req = requests.get(lookup_content_type(links, 'text/xml'),\n headers=headers)\n if req.status_code == 200:\n req_content_type = req.headers['Content-Type']\n return req.text, req_content_type\n elif req.status_code == 400:\n logger.warning('Full text query returned 400 (Bad Request):'\n 'Perhaps missing CrossRef Clickthrough API '\n 'key?')\n return (None, None)\n # Next, plain text\n elif lookup_content_type(links, 'text/plain'):\n req = requests.get(lookup_content_type(links, 'text/plain'),\n headers=headers)\n if req.status_code == 200:\n req_content_type = req.headers['Content-Type']\n return req.text, req_content_type\n elif req.status_code == 400:\n logger.warning('Full text query returned 400 (Bad Request):'\n 'Perhaps missing CrossRef Clickthrough API '\n 'key?')\n return (None, None)\n elif lookup_content_type(links, 'application/pdf'):\n pass\n # Wiley's links are often of content-type 'unspecified'.\n elif lookup_content_type(links, 'unspecified'):\n req = requests.get(lookup_content_type(links, 'unspecified'),\n headers=headers)\n if req.status_code == 200:\n req_content_type = req.headers['Content-Type']\n return 'foo', req_content_type\n elif req.status_code == 400:\n logger.warning('Full text query returned 400 (Bad Request):'\n 'Perhaps missing CrossRef Clickthrough API '\n 'key?')\n return (None, None)\n elif req.status_code == 401:\n logger.warning('Full text query returned 401 (Unauthorized)')\n return (None, None)\n elif req.status_code == 403:\n logger.warning('Full text query returned 403 (Forbidden)')\n return (None, None)\n else:\n raise Exception(\"Unknown content type(s): %s\" % links)\n elif publisher == 'American Society for Biochemistry & Molecular ' \\\n 'Biology (ASBMB)':\n url = crossref_client.get_url(doi)\n return get_asbmb_full_text(url)\n \"\"\"",
"# end FIXME FIXME FIXME",
"# No full text links and not a publisher we support. We'll have to",
"# fall back to the abstract.",
"#elif pmid:",
"if",
"pmid",
":",
"abstract",
"=",
"pubmed_client",
".",
"get_abstract",
"(",
"pmid",
")",
"if",
"abstract",
"is",
"None",
":",
"return",
"(",
"None",
",",
"None",
")",
"else",
":",
"return",
"abstract",
",",
"'abstract'",
"# We have a useless DOI and no PMID. Give up.",
"else",
":",
"return",
"(",
"None",
",",
"None",
")",
"# We don't have a DOI but we're guaranteed to have a PMID at this point,",
"# so we fall back to the abstract:",
"else",
":",
"abstract",
"=",
"pubmed_client",
".",
"get_abstract",
"(",
"pmid",
")",
"if",
"abstract",
"is",
"None",
":",
"return",
"(",
"None",
",",
"None",
")",
"else",
":",
"return",
"abstract",
",",
"'abstract'",
"# We'll only get here if we've missed a combination of conditions",
"assert",
"False"
]
| Return the content and the content type of an article.
This function retreives the content of an article by its PubMed ID,
PubMed Central ID, or DOI. It prioritizes full text content when available
and returns an abstract from PubMed as a fallback.
Parameters
----------
paper_id : string
ID of the article.
idtype : 'pmid', 'pmcid', or 'doi
Type of the ID.
preferred_content_type : Optional[st]r
Preference for full-text format, if available. Can be one of
'text/xml', 'text/plain', 'application/pdf'. Default: 'text/xml'
Returns
-------
content : str
The content of the article.
content_type : str
The content type of the article | [
"Return",
"the",
"content",
"and",
"the",
"content",
"type",
"of",
"an",
"article",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/literature/__init__.py#L74-L244 | train |
sorgerlab/indra | indra/sources/reach/reader.py | ReachReader.get_api_ruler | def get_api_ruler(self):
"""Return the existing reader if it exists or launch a new one.
Returns
-------
api_ruler : org.clulab.reach.apis.ApiRuler
An instance of the REACH ApiRuler class (java object).
"""
if self.api_ruler is None:
try:
self.api_ruler = \
autoclass('org.clulab.reach.export.apis.ApiRuler')
except JavaException as e:
raise ReachOfflineReadingError(e)
return self.api_ruler | python | def get_api_ruler(self):
"""Return the existing reader if it exists or launch a new one.
Returns
-------
api_ruler : org.clulab.reach.apis.ApiRuler
An instance of the REACH ApiRuler class (java object).
"""
if self.api_ruler is None:
try:
self.api_ruler = \
autoclass('org.clulab.reach.export.apis.ApiRuler')
except JavaException as e:
raise ReachOfflineReadingError(e)
return self.api_ruler | [
"def",
"get_api_ruler",
"(",
"self",
")",
":",
"if",
"self",
".",
"api_ruler",
"is",
"None",
":",
"try",
":",
"self",
".",
"api_ruler",
"=",
"autoclass",
"(",
"'org.clulab.reach.export.apis.ApiRuler'",
")",
"except",
"JavaException",
"as",
"e",
":",
"raise",
"ReachOfflineReadingError",
"(",
"e",
")",
"return",
"self",
".",
"api_ruler"
]
| Return the existing reader if it exists or launch a new one.
Returns
-------
api_ruler : org.clulab.reach.apis.ApiRuler
An instance of the REACH ApiRuler class (java object). | [
"Return",
"the",
"existing",
"reader",
"if",
"it",
"exists",
"or",
"launch",
"a",
"new",
"one",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/sources/reach/reader.py#L55-L69 | train |
sorgerlab/indra | indra/sources/biogrid.py | _download_biogrid_data | def _download_biogrid_data(url):
"""Downloads zipped, tab-separated Biogrid data in .tab2 format.
Parameters:
-----------
url : str
URL of the BioGrid zip file.
Returns
-------
csv.reader
A csv.reader object for iterating over the rows (header has already
been skipped).
"""
res = requests.get(biogrid_file_url)
if res.status_code != 200:
raise Exception('Unable to download Biogrid data: status code %s'
% res.status_code)
zip_bytes = BytesIO(res.content)
zip_file = ZipFile(zip_bytes)
zip_info_list = zip_file.infolist()
# There should be only one file in this zip archive
if len(zip_info_list) != 1:
raise Exception('There should be exactly zipfile in BioGrid zip '
'archive: %s' % str(zip_info_list))
unzipped_bytes = zip_file.read(zip_info_list[0]) # Unzip the file
biogrid_str = StringIO(unzipped_bytes.decode('utf8')) # Make file-like obj
csv_reader = csv.reader(biogrid_str, delimiter='\t') # Get csv reader
next(csv_reader) # Skip the header
return csv_reader | python | def _download_biogrid_data(url):
"""Downloads zipped, tab-separated Biogrid data in .tab2 format.
Parameters:
-----------
url : str
URL of the BioGrid zip file.
Returns
-------
csv.reader
A csv.reader object for iterating over the rows (header has already
been skipped).
"""
res = requests.get(biogrid_file_url)
if res.status_code != 200:
raise Exception('Unable to download Biogrid data: status code %s'
% res.status_code)
zip_bytes = BytesIO(res.content)
zip_file = ZipFile(zip_bytes)
zip_info_list = zip_file.infolist()
# There should be only one file in this zip archive
if len(zip_info_list) != 1:
raise Exception('There should be exactly zipfile in BioGrid zip '
'archive: %s' % str(zip_info_list))
unzipped_bytes = zip_file.read(zip_info_list[0]) # Unzip the file
biogrid_str = StringIO(unzipped_bytes.decode('utf8')) # Make file-like obj
csv_reader = csv.reader(biogrid_str, delimiter='\t') # Get csv reader
next(csv_reader) # Skip the header
return csv_reader | [
"def",
"_download_biogrid_data",
"(",
"url",
")",
":",
"res",
"=",
"requests",
".",
"get",
"(",
"biogrid_file_url",
")",
"if",
"res",
".",
"status_code",
"!=",
"200",
":",
"raise",
"Exception",
"(",
"'Unable to download Biogrid data: status code %s'",
"%",
"res",
".",
"status_code",
")",
"zip_bytes",
"=",
"BytesIO",
"(",
"res",
".",
"content",
")",
"zip_file",
"=",
"ZipFile",
"(",
"zip_bytes",
")",
"zip_info_list",
"=",
"zip_file",
".",
"infolist",
"(",
")",
"# There should be only one file in this zip archive",
"if",
"len",
"(",
"zip_info_list",
")",
"!=",
"1",
":",
"raise",
"Exception",
"(",
"'There should be exactly zipfile in BioGrid zip '",
"'archive: %s'",
"%",
"str",
"(",
"zip_info_list",
")",
")",
"unzipped_bytes",
"=",
"zip_file",
".",
"read",
"(",
"zip_info_list",
"[",
"0",
"]",
")",
"# Unzip the file",
"biogrid_str",
"=",
"StringIO",
"(",
"unzipped_bytes",
".",
"decode",
"(",
"'utf8'",
")",
")",
"# Make file-like obj",
"csv_reader",
"=",
"csv",
".",
"reader",
"(",
"biogrid_str",
",",
"delimiter",
"=",
"'\\t'",
")",
"# Get csv reader",
"next",
"(",
"csv_reader",
")",
"# Skip the header",
"return",
"csv_reader"
]
| Downloads zipped, tab-separated Biogrid data in .tab2 format.
Parameters:
-----------
url : str
URL of the BioGrid zip file.
Returns
-------
csv.reader
A csv.reader object for iterating over the rows (header has already
been skipped). | [
"Downloads",
"zipped",
"tab",
"-",
"separated",
"Biogrid",
"data",
"in",
".",
"tab2",
"format",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/sources/biogrid.py#L156-L185 | train |
sorgerlab/indra | indra/sources/biogrid.py | BiogridProcessor._make_agent | def _make_agent(self, entrez_id, text_id):
"""Make an Agent object, appropriately grounded.
Parameters
----------
entrez_id : str
Entrez id number
text_id : str
A plain text systematic name, or None if not listed.
Returns
-------
agent : indra.statements.Agent
A grounded agent object.
"""
hgnc_name, db_refs = self._make_db_refs(entrez_id, text_id)
if hgnc_name is not None:
name = hgnc_name
elif text_id is not None:
name = text_id
# Handle case where the name is None
else:
return None
return Agent(name, db_refs=db_refs) | python | def _make_agent(self, entrez_id, text_id):
"""Make an Agent object, appropriately grounded.
Parameters
----------
entrez_id : str
Entrez id number
text_id : str
A plain text systematic name, or None if not listed.
Returns
-------
agent : indra.statements.Agent
A grounded agent object.
"""
hgnc_name, db_refs = self._make_db_refs(entrez_id, text_id)
if hgnc_name is not None:
name = hgnc_name
elif text_id is not None:
name = text_id
# Handle case where the name is None
else:
return None
return Agent(name, db_refs=db_refs) | [
"def",
"_make_agent",
"(",
"self",
",",
"entrez_id",
",",
"text_id",
")",
":",
"hgnc_name",
",",
"db_refs",
"=",
"self",
".",
"_make_db_refs",
"(",
"entrez_id",
",",
"text_id",
")",
"if",
"hgnc_name",
"is",
"not",
"None",
":",
"name",
"=",
"hgnc_name",
"elif",
"text_id",
"is",
"not",
"None",
":",
"name",
"=",
"text_id",
"# Handle case where the name is None",
"else",
":",
"return",
"None",
"return",
"Agent",
"(",
"name",
",",
"db_refs",
"=",
"db_refs",
")"
]
| Make an Agent object, appropriately grounded.
Parameters
----------
entrez_id : str
Entrez id number
text_id : str
A plain text systematic name, or None if not listed.
Returns
-------
agent : indra.statements.Agent
A grounded agent object. | [
"Make",
"an",
"Agent",
"object",
"appropriately",
"grounded",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/sources/biogrid.py#L97-L121 | train |
sorgerlab/indra | indra/sources/biogrid.py | BiogridProcessor._make_db_refs | def _make_db_refs(self, entrez_id, text_id):
"""Looks up the HGNC ID and name, as well as the Uniprot ID.
Parameters
----------
entrez_id : str
Entrez gene ID.
text_id : str or None
A plain text systematic name, or None if not listed in the
Biogrid data.
Returns
-------
hgnc_name : str
Official HGNC symbol for the gene.
db_refs : dict
db_refs grounding dictionary, used when constructing the Agent
object.
"""
db_refs = {}
if text_id != '-' and text_id is not None:
db_refs['TEXT'] = text_id
hgnc_id = hgnc_client.get_hgnc_from_entrez(entrez_id)
hgnc_name = hgnc_client.get_hgnc_name(hgnc_id)
if hgnc_id is not None:
db_refs['HGNC'] = hgnc_id
up_id = hgnc_client.get_uniprot_id(hgnc_id)
if up_id is not None:
db_refs['UP'] = up_id
return (hgnc_name, db_refs) | python | def _make_db_refs(self, entrez_id, text_id):
"""Looks up the HGNC ID and name, as well as the Uniprot ID.
Parameters
----------
entrez_id : str
Entrez gene ID.
text_id : str or None
A plain text systematic name, or None if not listed in the
Biogrid data.
Returns
-------
hgnc_name : str
Official HGNC symbol for the gene.
db_refs : dict
db_refs grounding dictionary, used when constructing the Agent
object.
"""
db_refs = {}
if text_id != '-' and text_id is not None:
db_refs['TEXT'] = text_id
hgnc_id = hgnc_client.get_hgnc_from_entrez(entrez_id)
hgnc_name = hgnc_client.get_hgnc_name(hgnc_id)
if hgnc_id is not None:
db_refs['HGNC'] = hgnc_id
up_id = hgnc_client.get_uniprot_id(hgnc_id)
if up_id is not None:
db_refs['UP'] = up_id
return (hgnc_name, db_refs) | [
"def",
"_make_db_refs",
"(",
"self",
",",
"entrez_id",
",",
"text_id",
")",
":",
"db_refs",
"=",
"{",
"}",
"if",
"text_id",
"!=",
"'-'",
"and",
"text_id",
"is",
"not",
"None",
":",
"db_refs",
"[",
"'TEXT'",
"]",
"=",
"text_id",
"hgnc_id",
"=",
"hgnc_client",
".",
"get_hgnc_from_entrez",
"(",
"entrez_id",
")",
"hgnc_name",
"=",
"hgnc_client",
".",
"get_hgnc_name",
"(",
"hgnc_id",
")",
"if",
"hgnc_id",
"is",
"not",
"None",
":",
"db_refs",
"[",
"'HGNC'",
"]",
"=",
"hgnc_id",
"up_id",
"=",
"hgnc_client",
".",
"get_uniprot_id",
"(",
"hgnc_id",
")",
"if",
"up_id",
"is",
"not",
"None",
":",
"db_refs",
"[",
"'UP'",
"]",
"=",
"up_id",
"return",
"(",
"hgnc_name",
",",
"db_refs",
")"
]
| Looks up the HGNC ID and name, as well as the Uniprot ID.
Parameters
----------
entrez_id : str
Entrez gene ID.
text_id : str or None
A plain text systematic name, or None if not listed in the
Biogrid data.
Returns
-------
hgnc_name : str
Official HGNC symbol for the gene.
db_refs : dict
db_refs grounding dictionary, used when constructing the Agent
object. | [
"Looks",
"up",
"the",
"HGNC",
"ID",
"and",
"name",
"as",
"well",
"as",
"the",
"Uniprot",
"ID",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/sources/biogrid.py#L123-L153 | train |
sorgerlab/indra | indra/assemblers/kami/assembler.py | KamiAssembler.make_model | def make_model(self, policies=None, initial_conditions=True,
reverse_effects=False):
"""Assemble the Kami model from the collected INDRA Statements.
This method assembles a Kami model from the set of INDRA Statements.
The assembled model is both returned and set as the assembler's
model argument.
Parameters
----------
policies : Optional[Union[str, dict]]
A string or dictionary of policies, as defined in
:py:class:`indra.assemblers.KamiAssembler`. This set of policies
locally supersedes the default setting in the assembler. This
is useful when this function is called multiple times with
different policies.
initial_conditions : Optional[bool]
If True, default initial conditions are generated for the
agents in the model.
Returns
-------
model : dict
The assembled Kami model.
"""
self.processed_policies = self.process_policies(policies)
ppa = PysbPreassembler(self.statements)
ppa.replace_activities()
if reverse_effects:
ppa.add_reverse_effects()
self.statements = ppa.statements
# Set local policies for this make_model call that overwrite
# the global policies of the Kami assembler
if policies is not None:
global_policies = self.policies
if isinstance(policies, basestring):
local_policies = {'other': policies}
else:
local_policies = {'other': 'default'}
local_policies.update(policies)
self.policies = local_policies
self.model = {}
graphs = []
self.model['graphs'] = graphs
self.model['typing'] = []
# Action graph generated here
action_graph = {'id': 'action_graph',
'attrs': {'name': 'action_graph'}}
action_graph['graph'] = {'nodes': [], 'edges': []}
graphs.append(action_graph)
# Iterate over the statements to generate rules
self._assemble()
# Add initial conditions
#if initial_conditions:
# self.add_default_initial_conditions()
# If local policies were applied, revert to the global one
if policies is not None:
self.policies = global_policies
return self.model | python | def make_model(self, policies=None, initial_conditions=True,
reverse_effects=False):
"""Assemble the Kami model from the collected INDRA Statements.
This method assembles a Kami model from the set of INDRA Statements.
The assembled model is both returned and set as the assembler's
model argument.
Parameters
----------
policies : Optional[Union[str, dict]]
A string or dictionary of policies, as defined in
:py:class:`indra.assemblers.KamiAssembler`. This set of policies
locally supersedes the default setting in the assembler. This
is useful when this function is called multiple times with
different policies.
initial_conditions : Optional[bool]
If True, default initial conditions are generated for the
agents in the model.
Returns
-------
model : dict
The assembled Kami model.
"""
self.processed_policies = self.process_policies(policies)
ppa = PysbPreassembler(self.statements)
ppa.replace_activities()
if reverse_effects:
ppa.add_reverse_effects()
self.statements = ppa.statements
# Set local policies for this make_model call that overwrite
# the global policies of the Kami assembler
if policies is not None:
global_policies = self.policies
if isinstance(policies, basestring):
local_policies = {'other': policies}
else:
local_policies = {'other': 'default'}
local_policies.update(policies)
self.policies = local_policies
self.model = {}
graphs = []
self.model['graphs'] = graphs
self.model['typing'] = []
# Action graph generated here
action_graph = {'id': 'action_graph',
'attrs': {'name': 'action_graph'}}
action_graph['graph'] = {'nodes': [], 'edges': []}
graphs.append(action_graph)
# Iterate over the statements to generate rules
self._assemble()
# Add initial conditions
#if initial_conditions:
# self.add_default_initial_conditions()
# If local policies were applied, revert to the global one
if policies is not None:
self.policies = global_policies
return self.model | [
"def",
"make_model",
"(",
"self",
",",
"policies",
"=",
"None",
",",
"initial_conditions",
"=",
"True",
",",
"reverse_effects",
"=",
"False",
")",
":",
"self",
".",
"processed_policies",
"=",
"self",
".",
"process_policies",
"(",
"policies",
")",
"ppa",
"=",
"PysbPreassembler",
"(",
"self",
".",
"statements",
")",
"ppa",
".",
"replace_activities",
"(",
")",
"if",
"reverse_effects",
":",
"ppa",
".",
"add_reverse_effects",
"(",
")",
"self",
".",
"statements",
"=",
"ppa",
".",
"statements",
"# Set local policies for this make_model call that overwrite",
"# the global policies of the Kami assembler",
"if",
"policies",
"is",
"not",
"None",
":",
"global_policies",
"=",
"self",
".",
"policies",
"if",
"isinstance",
"(",
"policies",
",",
"basestring",
")",
":",
"local_policies",
"=",
"{",
"'other'",
":",
"policies",
"}",
"else",
":",
"local_policies",
"=",
"{",
"'other'",
":",
"'default'",
"}",
"local_policies",
".",
"update",
"(",
"policies",
")",
"self",
".",
"policies",
"=",
"local_policies",
"self",
".",
"model",
"=",
"{",
"}",
"graphs",
"=",
"[",
"]",
"self",
".",
"model",
"[",
"'graphs'",
"]",
"=",
"graphs",
"self",
".",
"model",
"[",
"'typing'",
"]",
"=",
"[",
"]",
"# Action graph generated here",
"action_graph",
"=",
"{",
"'id'",
":",
"'action_graph'",
",",
"'attrs'",
":",
"{",
"'name'",
":",
"'action_graph'",
"}",
"}",
"action_graph",
"[",
"'graph'",
"]",
"=",
"{",
"'nodes'",
":",
"[",
"]",
",",
"'edges'",
":",
"[",
"]",
"}",
"graphs",
".",
"append",
"(",
"action_graph",
")",
"# Iterate over the statements to generate rules",
"self",
".",
"_assemble",
"(",
")",
"# Add initial conditions",
"#if initial_conditions:",
"# self.add_default_initial_conditions()",
"# If local policies were applied, revert to the global one",
"if",
"policies",
"is",
"not",
"None",
":",
"self",
".",
"policies",
"=",
"global_policies",
"return",
"self",
".",
"model"
]
| Assemble the Kami model from the collected INDRA Statements.
This method assembles a Kami model from the set of INDRA Statements.
The assembled model is both returned and set as the assembler's
model argument.
Parameters
----------
policies : Optional[Union[str, dict]]
A string or dictionary of policies, as defined in
:py:class:`indra.assemblers.KamiAssembler`. This set of policies
locally supersedes the default setting in the assembler. This
is useful when this function is called multiple times with
different policies.
initial_conditions : Optional[bool]
If True, default initial conditions are generated for the
agents in the model.
Returns
-------
model : dict
The assembled Kami model. | [
"Assemble",
"the",
"Kami",
"model",
"from",
"the",
"collected",
"INDRA",
"Statements",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/assemblers/kami/assembler.py#L24-L87 | train |
sorgerlab/indra | indra/assemblers/kami/assembler.py | Nugget.add_agent | def add_agent(self, agent):
"""Add an INDRA Agent and its conditions to the Nugget."""
agent_id = self.add_node(agent.name)
self.add_typing(agent_id, 'agent')
# Handle bound conditions
for bc in agent.bound_conditions:
# Here we make the assumption that the binding site
# is simply named after the binding partner
if bc.is_bound:
test_type = 'is_bnd'
else:
test_type = 'is_free'
bound_name = bc.agent.name
agent_bs = get_binding_site_name(bc.agent)
test_name = '%s_bound_to_%s_test' % (agent_id, bound_name)
agent_bs_id = self.add_node(agent_bs)
test_id = self.add_node(test_name)
self.add_edge(agent_bs_id, agent_id)
self.add_edge(agent_bs_id, test_id)
self.add_typing(agent_bs_id, 'locus')
self.add_typing(test_id, test_type)
for mod in agent.mods:
mod_site_str = abbrevs[mod.mod_type]
if mod.residue is not None:
mod_site_str = mod.residue
mod_pos_str = mod.position if mod.position is not None else ''
mod_site = ('%s%s' % (mod_site_str, mod_pos_str))
site_states = states[mod.mod_type]
if mod.is_modified:
val = site_states[1]
else:
val = site_states[0]
mod_site_id = self.add_node(mod_site, {'val': val})
self.add_edge(mod_site_id, agent_id)
self.add_typing(mod_site_id, 'state')
return agent_id | python | def add_agent(self, agent):
"""Add an INDRA Agent and its conditions to the Nugget."""
agent_id = self.add_node(agent.name)
self.add_typing(agent_id, 'agent')
# Handle bound conditions
for bc in agent.bound_conditions:
# Here we make the assumption that the binding site
# is simply named after the binding partner
if bc.is_bound:
test_type = 'is_bnd'
else:
test_type = 'is_free'
bound_name = bc.agent.name
agent_bs = get_binding_site_name(bc.agent)
test_name = '%s_bound_to_%s_test' % (agent_id, bound_name)
agent_bs_id = self.add_node(agent_bs)
test_id = self.add_node(test_name)
self.add_edge(agent_bs_id, agent_id)
self.add_edge(agent_bs_id, test_id)
self.add_typing(agent_bs_id, 'locus')
self.add_typing(test_id, test_type)
for mod in agent.mods:
mod_site_str = abbrevs[mod.mod_type]
if mod.residue is not None:
mod_site_str = mod.residue
mod_pos_str = mod.position if mod.position is not None else ''
mod_site = ('%s%s' % (mod_site_str, mod_pos_str))
site_states = states[mod.mod_type]
if mod.is_modified:
val = site_states[1]
else:
val = site_states[0]
mod_site_id = self.add_node(mod_site, {'val': val})
self.add_edge(mod_site_id, agent_id)
self.add_typing(mod_site_id, 'state')
return agent_id | [
"def",
"add_agent",
"(",
"self",
",",
"agent",
")",
":",
"agent_id",
"=",
"self",
".",
"add_node",
"(",
"agent",
".",
"name",
")",
"self",
".",
"add_typing",
"(",
"agent_id",
",",
"'agent'",
")",
"# Handle bound conditions",
"for",
"bc",
"in",
"agent",
".",
"bound_conditions",
":",
"# Here we make the assumption that the binding site",
"# is simply named after the binding partner",
"if",
"bc",
".",
"is_bound",
":",
"test_type",
"=",
"'is_bnd'",
"else",
":",
"test_type",
"=",
"'is_free'",
"bound_name",
"=",
"bc",
".",
"agent",
".",
"name",
"agent_bs",
"=",
"get_binding_site_name",
"(",
"bc",
".",
"agent",
")",
"test_name",
"=",
"'%s_bound_to_%s_test'",
"%",
"(",
"agent_id",
",",
"bound_name",
")",
"agent_bs_id",
"=",
"self",
".",
"add_node",
"(",
"agent_bs",
")",
"test_id",
"=",
"self",
".",
"add_node",
"(",
"test_name",
")",
"self",
".",
"add_edge",
"(",
"agent_bs_id",
",",
"agent_id",
")",
"self",
".",
"add_edge",
"(",
"agent_bs_id",
",",
"test_id",
")",
"self",
".",
"add_typing",
"(",
"agent_bs_id",
",",
"'locus'",
")",
"self",
".",
"add_typing",
"(",
"test_id",
",",
"test_type",
")",
"for",
"mod",
"in",
"agent",
".",
"mods",
":",
"mod_site_str",
"=",
"abbrevs",
"[",
"mod",
".",
"mod_type",
"]",
"if",
"mod",
".",
"residue",
"is",
"not",
"None",
":",
"mod_site_str",
"=",
"mod",
".",
"residue",
"mod_pos_str",
"=",
"mod",
".",
"position",
"if",
"mod",
".",
"position",
"is",
"not",
"None",
"else",
"''",
"mod_site",
"=",
"(",
"'%s%s'",
"%",
"(",
"mod_site_str",
",",
"mod_pos_str",
")",
")",
"site_states",
"=",
"states",
"[",
"mod",
".",
"mod_type",
"]",
"if",
"mod",
".",
"is_modified",
":",
"val",
"=",
"site_states",
"[",
"1",
"]",
"else",
":",
"val",
"=",
"site_states",
"[",
"0",
"]",
"mod_site_id",
"=",
"self",
".",
"add_node",
"(",
"mod_site",
",",
"{",
"'val'",
":",
"val",
"}",
")",
"self",
".",
"add_edge",
"(",
"mod_site_id",
",",
"agent_id",
")",
"self",
".",
"add_typing",
"(",
"mod_site_id",
",",
"'state'",
")",
"return",
"agent_id"
]
| Add an INDRA Agent and its conditions to the Nugget. | [
"Add",
"an",
"INDRA",
"Agent",
"and",
"its",
"conditions",
"to",
"the",
"Nugget",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/assemblers/kami/assembler.py#L134-L170 | train |
sorgerlab/indra | indra/assemblers/kami/assembler.py | Nugget.add_node | def add_node(self, name_base, attrs=None):
"""Add a node with a given base name to the Nugget and return ID."""
if name_base not in self.counters:
node_id = name_base
else:
node_id = '%s_%d' % (name_base, self.counters[name_base])
node = {'id': node_id}
if attrs:
node['attrs'] = attrs
self.nodes.append(node)
self.counters[node_id] += 1
return node_id | python | def add_node(self, name_base, attrs=None):
"""Add a node with a given base name to the Nugget and return ID."""
if name_base not in self.counters:
node_id = name_base
else:
node_id = '%s_%d' % (name_base, self.counters[name_base])
node = {'id': node_id}
if attrs:
node['attrs'] = attrs
self.nodes.append(node)
self.counters[node_id] += 1
return node_id | [
"def",
"add_node",
"(",
"self",
",",
"name_base",
",",
"attrs",
"=",
"None",
")",
":",
"if",
"name_base",
"not",
"in",
"self",
".",
"counters",
":",
"node_id",
"=",
"name_base",
"else",
":",
"node_id",
"=",
"'%s_%d'",
"%",
"(",
"name_base",
",",
"self",
".",
"counters",
"[",
"name_base",
"]",
")",
"node",
"=",
"{",
"'id'",
":",
"node_id",
"}",
"if",
"attrs",
":",
"node",
"[",
"'attrs'",
"]",
"=",
"attrs",
"self",
".",
"nodes",
".",
"append",
"(",
"node",
")",
"self",
".",
"counters",
"[",
"node_id",
"]",
"+=",
"1",
"return",
"node_id"
]
| Add a node with a given base name to the Nugget and return ID. | [
"Add",
"a",
"node",
"with",
"a",
"given",
"base",
"name",
"to",
"the",
"Nugget",
"and",
"return",
"ID",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/assemblers/kami/assembler.py#L172-L183 | train |
sorgerlab/indra | indra/assemblers/kami/assembler.py | Nugget.get_nugget_dict | def get_nugget_dict(self):
"""Return the Nugget as a dictionary."""
nugget_dict = \
{'id': self.id,
'graph': {
'nodes': self.nodes,
'edges': self.edges
},
'attrs': {
'name': self.name,
'rate': self.rate
}
}
return nugget_dict | python | def get_nugget_dict(self):
"""Return the Nugget as a dictionary."""
nugget_dict = \
{'id': self.id,
'graph': {
'nodes': self.nodes,
'edges': self.edges
},
'attrs': {
'name': self.name,
'rate': self.rate
}
}
return nugget_dict | [
"def",
"get_nugget_dict",
"(",
"self",
")",
":",
"nugget_dict",
"=",
"{",
"'id'",
":",
"self",
".",
"id",
",",
"'graph'",
":",
"{",
"'nodes'",
":",
"self",
".",
"nodes",
",",
"'edges'",
":",
"self",
".",
"edges",
"}",
",",
"'attrs'",
":",
"{",
"'name'",
":",
"self",
".",
"name",
",",
"'rate'",
":",
"self",
".",
"rate",
"}",
"}",
"return",
"nugget_dict"
]
| Return the Nugget as a dictionary. | [
"Return",
"the",
"Nugget",
"as",
"a",
"dictionary",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/assemblers/kami/assembler.py#L193-L206 | train |
sorgerlab/indra | indra/sources/tees/api.py | process_text | def process_text(text, pmid=None, python2_path=None):
"""Processes the specified plain text with TEES and converts output to
supported INDRA statements. Check for the TEES installation is the
TEES_PATH environment variable, and configuration file; if not found,
checks candidate paths in tees_candidate_paths. Raises an exception if
TEES cannot be found in any of these places.
Parameters
----------
text : str
Plain text to process with TEES
pmid : str
The PMID from which the paper comes from, to be stored in the Evidence
object of statements. Set to None if this is unspecified.
python2_path : str
TEES is only compatible with python 2. This processor invokes this
external python 2 interpreter so that the processor can be run in
either python 2 or python 3. If None, searches for an executible named
python2 in the PATH environment variable.
Returns
-------
tp : TEESProcessor
A TEESProcessor object which contains a list of INDRA statements
extracted from TEES extractions
"""
# Try to locate python2 in one of the directories of the PATH environment
# variable if it is not provided
if python2_path is None:
for path in os.environ["PATH"].split(os.pathsep):
proposed_python2_path = os.path.join(path, 'python2.7')
if os.path.isfile(proposed_python2_path):
python2_path = proposed_python2_path
print('Found python 2 interpreter at', python2_path)
break
if python2_path is None:
raise Exception('Could not find python2 in the directories ' +
'listed in the PATH environment variable. ' +
'Need python2 to run TEES.')
# Run TEES
a1_text, a2_text, sentence_segmentations = run_on_text(text,
python2_path)
# Run the TEES processor
tp = TEESProcessor(a1_text, a2_text, sentence_segmentations, pmid)
return tp | python | def process_text(text, pmid=None, python2_path=None):
"""Processes the specified plain text with TEES and converts output to
supported INDRA statements. Check for the TEES installation is the
TEES_PATH environment variable, and configuration file; if not found,
checks candidate paths in tees_candidate_paths. Raises an exception if
TEES cannot be found in any of these places.
Parameters
----------
text : str
Plain text to process with TEES
pmid : str
The PMID from which the paper comes from, to be stored in the Evidence
object of statements. Set to None if this is unspecified.
python2_path : str
TEES is only compatible with python 2. This processor invokes this
external python 2 interpreter so that the processor can be run in
either python 2 or python 3. If None, searches for an executible named
python2 in the PATH environment variable.
Returns
-------
tp : TEESProcessor
A TEESProcessor object which contains a list of INDRA statements
extracted from TEES extractions
"""
# Try to locate python2 in one of the directories of the PATH environment
# variable if it is not provided
if python2_path is None:
for path in os.environ["PATH"].split(os.pathsep):
proposed_python2_path = os.path.join(path, 'python2.7')
if os.path.isfile(proposed_python2_path):
python2_path = proposed_python2_path
print('Found python 2 interpreter at', python2_path)
break
if python2_path is None:
raise Exception('Could not find python2 in the directories ' +
'listed in the PATH environment variable. ' +
'Need python2 to run TEES.')
# Run TEES
a1_text, a2_text, sentence_segmentations = run_on_text(text,
python2_path)
# Run the TEES processor
tp = TEESProcessor(a1_text, a2_text, sentence_segmentations, pmid)
return tp | [
"def",
"process_text",
"(",
"text",
",",
"pmid",
"=",
"None",
",",
"python2_path",
"=",
"None",
")",
":",
"# Try to locate python2 in one of the directories of the PATH environment",
"# variable if it is not provided",
"if",
"python2_path",
"is",
"None",
":",
"for",
"path",
"in",
"os",
".",
"environ",
"[",
"\"PATH\"",
"]",
".",
"split",
"(",
"os",
".",
"pathsep",
")",
":",
"proposed_python2_path",
"=",
"os",
".",
"path",
".",
"join",
"(",
"path",
",",
"'python2.7'",
")",
"if",
"os",
".",
"path",
".",
"isfile",
"(",
"proposed_python2_path",
")",
":",
"python2_path",
"=",
"proposed_python2_path",
"print",
"(",
"'Found python 2 interpreter at'",
",",
"python2_path",
")",
"break",
"if",
"python2_path",
"is",
"None",
":",
"raise",
"Exception",
"(",
"'Could not find python2 in the directories '",
"+",
"'listed in the PATH environment variable. '",
"+",
"'Need python2 to run TEES.'",
")",
"# Run TEES",
"a1_text",
",",
"a2_text",
",",
"sentence_segmentations",
"=",
"run_on_text",
"(",
"text",
",",
"python2_path",
")",
"# Run the TEES processor",
"tp",
"=",
"TEESProcessor",
"(",
"a1_text",
",",
"a2_text",
",",
"sentence_segmentations",
",",
"pmid",
")",
"return",
"tp"
]
| Processes the specified plain text with TEES and converts output to
supported INDRA statements. Check for the TEES installation is the
TEES_PATH environment variable, and configuration file; if not found,
checks candidate paths in tees_candidate_paths. Raises an exception if
TEES cannot be found in any of these places.
Parameters
----------
text : str
Plain text to process with TEES
pmid : str
The PMID from which the paper comes from, to be stored in the Evidence
object of statements. Set to None if this is unspecified.
python2_path : str
TEES is only compatible with python 2. This processor invokes this
external python 2 interpreter so that the processor can be run in
either python 2 or python 3. If None, searches for an executible named
python2 in the PATH environment variable.
Returns
-------
tp : TEESProcessor
A TEESProcessor object which contains a list of INDRA statements
extracted from TEES extractions | [
"Processes",
"the",
"specified",
"plain",
"text",
"with",
"TEES",
"and",
"converts",
"output",
"to",
"supported",
"INDRA",
"statements",
".",
"Check",
"for",
"the",
"TEES",
"installation",
"is",
"the",
"TEES_PATH",
"environment",
"variable",
"and",
"configuration",
"file",
";",
"if",
"not",
"found",
"checks",
"candidate",
"paths",
"in",
"tees_candidate_paths",
".",
"Raises",
"an",
"exception",
"if",
"TEES",
"cannot",
"be",
"found",
"in",
"any",
"of",
"these",
"places",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/sources/tees/api.py#L46-L93 | train |
sorgerlab/indra | indra/sources/tees/api.py | run_on_text | def run_on_text(text, python2_path):
"""Runs TEES on the given text in a temporary directory and returns a
temporary directory with TEES output.
The caller should delete this directory when done with it. This function
runs TEES and produces TEES output files but does not process TEES output
into INDRA statements.
Parameters
----------
text : str
Text from which to extract relationships
python2_path : str
The path to the python 2 interpreter
Returns
-------
output_dir : str
Temporary directory with TEES output. The caller should delete this
directgory when done with it.
"""
tees_path = get_config('TEES_PATH')
if tees_path is None:
# If TEES directory is not specifies, see if any of the candidate paths
# exist and contain all of the files expected for a TEES installation.
for cpath in tees_candidate_paths:
cpath = os.path.expanduser(cpath)
if os.path.isdir(cpath):
# Check to see if it has all of the expected files and
# directories
has_expected_files = True
for f in tees_installation_files:
fpath = os.path.join(cpath, f)
present = os.path.isfile(fpath)
has_expected_files = has_expected_files and present
has_expected_dirs = True
for d in tees_installation_dirs:
dpath = os.path.join(cpath, d)
present = os.path.isdir(dpath)
has_expected_dirs = has_expected_dirs and present
if has_expected_files and has_expected_dirs:
# We found a directory with all of the files and
# directories we expected in a TEES installation - let's
# assume it's a TEES installation
tees_path = cpath
print('Found TEES installation at ' + cpath)
break
# Make sure the provided TEES directory exists
if not os.path.isdir(tees_path):
raise Exception('Provided TEES directory does not exist.')
# Make sure the classify.py script exists within this directory
classify_path = 'classify.py'
# if not os.path.isfile(classify_path):
# raise Exception('classify.py does not exist in provided TEES path.')
# Create a temporary directory to tag the shared-task files
tmp_dir = tempfile.mkdtemp(suffix='indra_tees_processor')
pwd = os.path.abspath(os.getcwd())
try:
# Write text to a file in the temporary directory
text_path = os.path.join(tmp_dir, 'text.txt')
# Had some trouble with non-ascii characters. A possible TODO item in
# the future is to look into resolving this, for now just ignoring
# non-latin-1 characters
with codecs.open(text_path, 'w', encoding='latin-1', errors='ignore') \
as f:
f.write(text)
# Run TEES
output_path = os.path.join(tmp_dir, 'output')
model_path = os.path.join(tees_path, 'tees_data/models/GE11-test/')
command = [python2_path, classify_path, '-m', model_path,
'-i', text_path,
'-o', output_path]
try:
pwd = os.path.abspath(os.getcwd())
os.chdir(tees_path) # Change to TEES directory
# print('cwd is:', os.getcwd())
# out = subprocess.check_output(command, stderr=subprocess.STDOUT)
p = subprocess.Popen(command, stdout=subprocess.PIPE,
stderr=subprocess.PIPE, cwd=tees_path)
p.wait()
(so, se) = p.communicate()
print(so)
print(se)
os.chdir(pwd) # Change back to previous directory
# print('cwd is:', os.getcwd())
# print(out.decode('utf-8'))
except BaseException as e:
# If there's an error, print it out and then propagate the
# exception
os.chdir(pwd) # Change back to previous directory
# print (e.output.decode('utf-8'))
raise e
except BaseException as e:
# If there was an exception, delete the temporary directory and
# pass on the exception
shutil.rmtree(tmp_dir)
raise e
# Return the temporary directory with the TEES output
output_tuple = extract_output(tmp_dir)
shutil.rmtree(tmp_dir)
return output_tuple | python | def run_on_text(text, python2_path):
"""Runs TEES on the given text in a temporary directory and returns a
temporary directory with TEES output.
The caller should delete this directory when done with it. This function
runs TEES and produces TEES output files but does not process TEES output
into INDRA statements.
Parameters
----------
text : str
Text from which to extract relationships
python2_path : str
The path to the python 2 interpreter
Returns
-------
output_dir : str
Temporary directory with TEES output. The caller should delete this
directgory when done with it.
"""
tees_path = get_config('TEES_PATH')
if tees_path is None:
# If TEES directory is not specifies, see if any of the candidate paths
# exist and contain all of the files expected for a TEES installation.
for cpath in tees_candidate_paths:
cpath = os.path.expanduser(cpath)
if os.path.isdir(cpath):
# Check to see if it has all of the expected files and
# directories
has_expected_files = True
for f in tees_installation_files:
fpath = os.path.join(cpath, f)
present = os.path.isfile(fpath)
has_expected_files = has_expected_files and present
has_expected_dirs = True
for d in tees_installation_dirs:
dpath = os.path.join(cpath, d)
present = os.path.isdir(dpath)
has_expected_dirs = has_expected_dirs and present
if has_expected_files and has_expected_dirs:
# We found a directory with all of the files and
# directories we expected in a TEES installation - let's
# assume it's a TEES installation
tees_path = cpath
print('Found TEES installation at ' + cpath)
break
# Make sure the provided TEES directory exists
if not os.path.isdir(tees_path):
raise Exception('Provided TEES directory does not exist.')
# Make sure the classify.py script exists within this directory
classify_path = 'classify.py'
# if not os.path.isfile(classify_path):
# raise Exception('classify.py does not exist in provided TEES path.')
# Create a temporary directory to tag the shared-task files
tmp_dir = tempfile.mkdtemp(suffix='indra_tees_processor')
pwd = os.path.abspath(os.getcwd())
try:
# Write text to a file in the temporary directory
text_path = os.path.join(tmp_dir, 'text.txt')
# Had some trouble with non-ascii characters. A possible TODO item in
# the future is to look into resolving this, for now just ignoring
# non-latin-1 characters
with codecs.open(text_path, 'w', encoding='latin-1', errors='ignore') \
as f:
f.write(text)
# Run TEES
output_path = os.path.join(tmp_dir, 'output')
model_path = os.path.join(tees_path, 'tees_data/models/GE11-test/')
command = [python2_path, classify_path, '-m', model_path,
'-i', text_path,
'-o', output_path]
try:
pwd = os.path.abspath(os.getcwd())
os.chdir(tees_path) # Change to TEES directory
# print('cwd is:', os.getcwd())
# out = subprocess.check_output(command, stderr=subprocess.STDOUT)
p = subprocess.Popen(command, stdout=subprocess.PIPE,
stderr=subprocess.PIPE, cwd=tees_path)
p.wait()
(so, se) = p.communicate()
print(so)
print(se)
os.chdir(pwd) # Change back to previous directory
# print('cwd is:', os.getcwd())
# print(out.decode('utf-8'))
except BaseException as e:
# If there's an error, print it out and then propagate the
# exception
os.chdir(pwd) # Change back to previous directory
# print (e.output.decode('utf-8'))
raise e
except BaseException as e:
# If there was an exception, delete the temporary directory and
# pass on the exception
shutil.rmtree(tmp_dir)
raise e
# Return the temporary directory with the TEES output
output_tuple = extract_output(tmp_dir)
shutil.rmtree(tmp_dir)
return output_tuple | [
"def",
"run_on_text",
"(",
"text",
",",
"python2_path",
")",
":",
"tees_path",
"=",
"get_config",
"(",
"'TEES_PATH'",
")",
"if",
"tees_path",
"is",
"None",
":",
"# If TEES directory is not specifies, see if any of the candidate paths",
"# exist and contain all of the files expected for a TEES installation.",
"for",
"cpath",
"in",
"tees_candidate_paths",
":",
"cpath",
"=",
"os",
".",
"path",
".",
"expanduser",
"(",
"cpath",
")",
"if",
"os",
".",
"path",
".",
"isdir",
"(",
"cpath",
")",
":",
"# Check to see if it has all of the expected files and",
"# directories",
"has_expected_files",
"=",
"True",
"for",
"f",
"in",
"tees_installation_files",
":",
"fpath",
"=",
"os",
".",
"path",
".",
"join",
"(",
"cpath",
",",
"f",
")",
"present",
"=",
"os",
".",
"path",
".",
"isfile",
"(",
"fpath",
")",
"has_expected_files",
"=",
"has_expected_files",
"and",
"present",
"has_expected_dirs",
"=",
"True",
"for",
"d",
"in",
"tees_installation_dirs",
":",
"dpath",
"=",
"os",
".",
"path",
".",
"join",
"(",
"cpath",
",",
"d",
")",
"present",
"=",
"os",
".",
"path",
".",
"isdir",
"(",
"dpath",
")",
"has_expected_dirs",
"=",
"has_expected_dirs",
"and",
"present",
"if",
"has_expected_files",
"and",
"has_expected_dirs",
":",
"# We found a directory with all of the files and",
"# directories we expected in a TEES installation - let's",
"# assume it's a TEES installation",
"tees_path",
"=",
"cpath",
"print",
"(",
"'Found TEES installation at '",
"+",
"cpath",
")",
"break",
"# Make sure the provided TEES directory exists",
"if",
"not",
"os",
".",
"path",
".",
"isdir",
"(",
"tees_path",
")",
":",
"raise",
"Exception",
"(",
"'Provided TEES directory does not exist.'",
")",
"# Make sure the classify.py script exists within this directory",
"classify_path",
"=",
"'classify.py'",
"# if not os.path.isfile(classify_path):",
"# raise Exception('classify.py does not exist in provided TEES path.')",
"# Create a temporary directory to tag the shared-task files",
"tmp_dir",
"=",
"tempfile",
".",
"mkdtemp",
"(",
"suffix",
"=",
"'indra_tees_processor'",
")",
"pwd",
"=",
"os",
".",
"path",
".",
"abspath",
"(",
"os",
".",
"getcwd",
"(",
")",
")",
"try",
":",
"# Write text to a file in the temporary directory",
"text_path",
"=",
"os",
".",
"path",
".",
"join",
"(",
"tmp_dir",
",",
"'text.txt'",
")",
"# Had some trouble with non-ascii characters. A possible TODO item in",
"# the future is to look into resolving this, for now just ignoring",
"# non-latin-1 characters",
"with",
"codecs",
".",
"open",
"(",
"text_path",
",",
"'w'",
",",
"encoding",
"=",
"'latin-1'",
",",
"errors",
"=",
"'ignore'",
")",
"as",
"f",
":",
"f",
".",
"write",
"(",
"text",
")",
"# Run TEES",
"output_path",
"=",
"os",
".",
"path",
".",
"join",
"(",
"tmp_dir",
",",
"'output'",
")",
"model_path",
"=",
"os",
".",
"path",
".",
"join",
"(",
"tees_path",
",",
"'tees_data/models/GE11-test/'",
")",
"command",
"=",
"[",
"python2_path",
",",
"classify_path",
",",
"'-m'",
",",
"model_path",
",",
"'-i'",
",",
"text_path",
",",
"'-o'",
",",
"output_path",
"]",
"try",
":",
"pwd",
"=",
"os",
".",
"path",
".",
"abspath",
"(",
"os",
".",
"getcwd",
"(",
")",
")",
"os",
".",
"chdir",
"(",
"tees_path",
")",
"# Change to TEES directory",
"# print('cwd is:', os.getcwd())",
"# out = subprocess.check_output(command, stderr=subprocess.STDOUT)",
"p",
"=",
"subprocess",
".",
"Popen",
"(",
"command",
",",
"stdout",
"=",
"subprocess",
".",
"PIPE",
",",
"stderr",
"=",
"subprocess",
".",
"PIPE",
",",
"cwd",
"=",
"tees_path",
")",
"p",
".",
"wait",
"(",
")",
"(",
"so",
",",
"se",
")",
"=",
"p",
".",
"communicate",
"(",
")",
"print",
"(",
"so",
")",
"print",
"(",
"se",
")",
"os",
".",
"chdir",
"(",
"pwd",
")",
"# Change back to previous directory",
"# print('cwd is:', os.getcwd())",
"# print(out.decode('utf-8'))",
"except",
"BaseException",
"as",
"e",
":",
"# If there's an error, print it out and then propagate the",
"# exception",
"os",
".",
"chdir",
"(",
"pwd",
")",
"# Change back to previous directory",
"# print (e.output.decode('utf-8'))",
"raise",
"e",
"except",
"BaseException",
"as",
"e",
":",
"# If there was an exception, delete the temporary directory and",
"# pass on the exception",
"shutil",
".",
"rmtree",
"(",
"tmp_dir",
")",
"raise",
"e",
"# Return the temporary directory with the TEES output",
"output_tuple",
"=",
"extract_output",
"(",
"tmp_dir",
")",
"shutil",
".",
"rmtree",
"(",
"tmp_dir",
")",
"return",
"output_tuple"
]
| Runs TEES on the given text in a temporary directory and returns a
temporary directory with TEES output.
The caller should delete this directory when done with it. This function
runs TEES and produces TEES output files but does not process TEES output
into INDRA statements.
Parameters
----------
text : str
Text from which to extract relationships
python2_path : str
The path to the python 2 interpreter
Returns
-------
output_dir : str
Temporary directory with TEES output. The caller should delete this
directgory when done with it. | [
"Runs",
"TEES",
"on",
"the",
"given",
"text",
"in",
"a",
"temporary",
"directory",
"and",
"returns",
"a",
"temporary",
"directory",
"with",
"TEES",
"output",
".",
"The",
"caller",
"should",
"delete",
"this",
"directory",
"when",
"done",
"with",
"it",
".",
"This",
"function",
"runs",
"TEES",
"and",
"produces",
"TEES",
"output",
"files",
"but",
"does",
"not",
"process",
"TEES",
"output",
"into",
"INDRA",
"statements",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/sources/tees/api.py#L95-L206 | train |
sorgerlab/indra | indra/sources/tees/api.py | extract_output | def extract_output(output_dir):
"""Extract the text of the a1, a2, and sentence segmentation files from the
TEES output directory. These files are located within a compressed archive.
Parameters
----------
output_dir : str
Directory containing the output of the TEES system
Returns
-------
a1_text : str
The text of the TEES a1 file (specifying the entities)
a2_text : str
The text of the TEES a2 file (specifying the event graph)
sentence_segmentations : str
The text of the XML file specifying the sentence segmentation
"""
# Locate the file of sentences segmented by the TEES system, described
# in a compressed xml document
sentences_glob = os.path.join(output_dir, '*-preprocessed.xml.gz')
sentences_filename_candidates = glob.glob(sentences_glob)
# Make sure there is exactly one such file
if len(sentences_filename_candidates) != 1:
m = 'Looking for exactly one file matching %s but found %d matches'
raise Exception(m % (
sentences_glob, len(sentences_filename_candidates)))
return None, None, None
# Read in the sentence segmentation XML
sentence_segmentation_filename = sentences_filename_candidates[0]
with gzip.GzipFile(sentences_filename_candidates[0], 'r') as f:
sentence_segmentations = f.read().decode('utf-8')
# Create a temporary directory to which to extract the a1 and a2 files from
# the tarball
tmp_dir = tempfile.mkdtemp(suffix='indra_tees_processor')
try:
# Make sure the tarfile with the extracted events is in shared task
# format is in the output directory
tarfile_glob = os.path.join(output_dir, '*-events.tar.gz')
candidate_tarfiles = glob.glob(tarfile_glob)
if len(candidate_tarfiles) != 1:
raise Exception('Expected exactly one match for glob %s' %
tarfile_glob)
return None, None, None
# Decide what tar files to extract
# (We're not blindly extracting all files because of the security
# warning in the documentation for TarFile.extractall
# In particular, we want to make sure that the filename doesn't
# try to specify a relative or absolute path other than the current
# directory by making sure the filename starts with an alphanumeric
# character.
# We're also only interested in files with the .a1 or .a2 extension
tar_file = tarfile.open(candidate_tarfiles[0])
a1_file = None
a2_file = None
extract_these = []
for m in tar_file.getmembers():
if re.match('[a-zA-Z0-9].*.a[12]', m.name):
extract_these.append(m)
if m.name.endswith('.a1'):
a1_file = m.name
elif m.name.endswith('.a2'):
a2_file = m.name
else:
assert(False)
# There should be exactly two files that match these criteria
if len(extract_these) != 2 or a1_file is None or a2_file is None:
raise Exception('We thought there would be one .a1 and one .a2' +
' file in the tarball, but we got %d files total' %
len(extract_these))
return None, None, None
# Extract the files that we decided to extract
tar_file.extractall(path=tmp_dir, members=extract_these)
# Read the text of the a1 (entities) file
with codecs.open(os.path.join(tmp_dir, a1_file), 'r',
encoding='utf-8') as f:
a1_text = f.read()
# Read the text of the a2 (events) file
with codecs.open(os.path.join(tmp_dir, a2_file), 'r',
encoding='utf-8') as f:
a2_text = f.read()
# Now that we're done, remove the temporary directory
shutil.rmtree(tmp_dir)
# Return the extracted text
return a1_text, a2_text, sentence_segmentations
except BaseException as e:
# If there was an exception, delete the temporary directory and
# pass on the exception
print('Not removing temporary directory: ' + tmp_dir)
shutil.rmtree(tmp_dir)
raise e
return None, None, None | python | def extract_output(output_dir):
"""Extract the text of the a1, a2, and sentence segmentation files from the
TEES output directory. These files are located within a compressed archive.
Parameters
----------
output_dir : str
Directory containing the output of the TEES system
Returns
-------
a1_text : str
The text of the TEES a1 file (specifying the entities)
a2_text : str
The text of the TEES a2 file (specifying the event graph)
sentence_segmentations : str
The text of the XML file specifying the sentence segmentation
"""
# Locate the file of sentences segmented by the TEES system, described
# in a compressed xml document
sentences_glob = os.path.join(output_dir, '*-preprocessed.xml.gz')
sentences_filename_candidates = glob.glob(sentences_glob)
# Make sure there is exactly one such file
if len(sentences_filename_candidates) != 1:
m = 'Looking for exactly one file matching %s but found %d matches'
raise Exception(m % (
sentences_glob, len(sentences_filename_candidates)))
return None, None, None
# Read in the sentence segmentation XML
sentence_segmentation_filename = sentences_filename_candidates[0]
with gzip.GzipFile(sentences_filename_candidates[0], 'r') as f:
sentence_segmentations = f.read().decode('utf-8')
# Create a temporary directory to which to extract the a1 and a2 files from
# the tarball
tmp_dir = tempfile.mkdtemp(suffix='indra_tees_processor')
try:
# Make sure the tarfile with the extracted events is in shared task
# format is in the output directory
tarfile_glob = os.path.join(output_dir, '*-events.tar.gz')
candidate_tarfiles = glob.glob(tarfile_glob)
if len(candidate_tarfiles) != 1:
raise Exception('Expected exactly one match for glob %s' %
tarfile_glob)
return None, None, None
# Decide what tar files to extract
# (We're not blindly extracting all files because of the security
# warning in the documentation for TarFile.extractall
# In particular, we want to make sure that the filename doesn't
# try to specify a relative or absolute path other than the current
# directory by making sure the filename starts with an alphanumeric
# character.
# We're also only interested in files with the .a1 or .a2 extension
tar_file = tarfile.open(candidate_tarfiles[0])
a1_file = None
a2_file = None
extract_these = []
for m in tar_file.getmembers():
if re.match('[a-zA-Z0-9].*.a[12]', m.name):
extract_these.append(m)
if m.name.endswith('.a1'):
a1_file = m.name
elif m.name.endswith('.a2'):
a2_file = m.name
else:
assert(False)
# There should be exactly two files that match these criteria
if len(extract_these) != 2 or a1_file is None or a2_file is None:
raise Exception('We thought there would be one .a1 and one .a2' +
' file in the tarball, but we got %d files total' %
len(extract_these))
return None, None, None
# Extract the files that we decided to extract
tar_file.extractall(path=tmp_dir, members=extract_these)
# Read the text of the a1 (entities) file
with codecs.open(os.path.join(tmp_dir, a1_file), 'r',
encoding='utf-8') as f:
a1_text = f.read()
# Read the text of the a2 (events) file
with codecs.open(os.path.join(tmp_dir, a2_file), 'r',
encoding='utf-8') as f:
a2_text = f.read()
# Now that we're done, remove the temporary directory
shutil.rmtree(tmp_dir)
# Return the extracted text
return a1_text, a2_text, sentence_segmentations
except BaseException as e:
# If there was an exception, delete the temporary directory and
# pass on the exception
print('Not removing temporary directory: ' + tmp_dir)
shutil.rmtree(tmp_dir)
raise e
return None, None, None | [
"def",
"extract_output",
"(",
"output_dir",
")",
":",
"# Locate the file of sentences segmented by the TEES system, described",
"# in a compressed xml document",
"sentences_glob",
"=",
"os",
".",
"path",
".",
"join",
"(",
"output_dir",
",",
"'*-preprocessed.xml.gz'",
")",
"sentences_filename_candidates",
"=",
"glob",
".",
"glob",
"(",
"sentences_glob",
")",
"# Make sure there is exactly one such file",
"if",
"len",
"(",
"sentences_filename_candidates",
")",
"!=",
"1",
":",
"m",
"=",
"'Looking for exactly one file matching %s but found %d matches'",
"raise",
"Exception",
"(",
"m",
"%",
"(",
"sentences_glob",
",",
"len",
"(",
"sentences_filename_candidates",
")",
")",
")",
"return",
"None",
",",
"None",
",",
"None",
"# Read in the sentence segmentation XML",
"sentence_segmentation_filename",
"=",
"sentences_filename_candidates",
"[",
"0",
"]",
"with",
"gzip",
".",
"GzipFile",
"(",
"sentences_filename_candidates",
"[",
"0",
"]",
",",
"'r'",
")",
"as",
"f",
":",
"sentence_segmentations",
"=",
"f",
".",
"read",
"(",
")",
".",
"decode",
"(",
"'utf-8'",
")",
"# Create a temporary directory to which to extract the a1 and a2 files from",
"# the tarball",
"tmp_dir",
"=",
"tempfile",
".",
"mkdtemp",
"(",
"suffix",
"=",
"'indra_tees_processor'",
")",
"try",
":",
"# Make sure the tarfile with the extracted events is in shared task",
"# format is in the output directory",
"tarfile_glob",
"=",
"os",
".",
"path",
".",
"join",
"(",
"output_dir",
",",
"'*-events.tar.gz'",
")",
"candidate_tarfiles",
"=",
"glob",
".",
"glob",
"(",
"tarfile_glob",
")",
"if",
"len",
"(",
"candidate_tarfiles",
")",
"!=",
"1",
":",
"raise",
"Exception",
"(",
"'Expected exactly one match for glob %s'",
"%",
"tarfile_glob",
")",
"return",
"None",
",",
"None",
",",
"None",
"# Decide what tar files to extract",
"# (We're not blindly extracting all files because of the security",
"# warning in the documentation for TarFile.extractall",
"# In particular, we want to make sure that the filename doesn't",
"# try to specify a relative or absolute path other than the current",
"# directory by making sure the filename starts with an alphanumeric",
"# character.",
"# We're also only interested in files with the .a1 or .a2 extension",
"tar_file",
"=",
"tarfile",
".",
"open",
"(",
"candidate_tarfiles",
"[",
"0",
"]",
")",
"a1_file",
"=",
"None",
"a2_file",
"=",
"None",
"extract_these",
"=",
"[",
"]",
"for",
"m",
"in",
"tar_file",
".",
"getmembers",
"(",
")",
":",
"if",
"re",
".",
"match",
"(",
"'[a-zA-Z0-9].*.a[12]'",
",",
"m",
".",
"name",
")",
":",
"extract_these",
".",
"append",
"(",
"m",
")",
"if",
"m",
".",
"name",
".",
"endswith",
"(",
"'.a1'",
")",
":",
"a1_file",
"=",
"m",
".",
"name",
"elif",
"m",
".",
"name",
".",
"endswith",
"(",
"'.a2'",
")",
":",
"a2_file",
"=",
"m",
".",
"name",
"else",
":",
"assert",
"(",
"False",
")",
"# There should be exactly two files that match these criteria",
"if",
"len",
"(",
"extract_these",
")",
"!=",
"2",
"or",
"a1_file",
"is",
"None",
"or",
"a2_file",
"is",
"None",
":",
"raise",
"Exception",
"(",
"'We thought there would be one .a1 and one .a2'",
"+",
"' file in the tarball, but we got %d files total'",
"%",
"len",
"(",
"extract_these",
")",
")",
"return",
"None",
",",
"None",
",",
"None",
"# Extract the files that we decided to extract",
"tar_file",
".",
"extractall",
"(",
"path",
"=",
"tmp_dir",
",",
"members",
"=",
"extract_these",
")",
"# Read the text of the a1 (entities) file",
"with",
"codecs",
".",
"open",
"(",
"os",
".",
"path",
".",
"join",
"(",
"tmp_dir",
",",
"a1_file",
")",
",",
"'r'",
",",
"encoding",
"=",
"'utf-8'",
")",
"as",
"f",
":",
"a1_text",
"=",
"f",
".",
"read",
"(",
")",
"# Read the text of the a2 (events) file",
"with",
"codecs",
".",
"open",
"(",
"os",
".",
"path",
".",
"join",
"(",
"tmp_dir",
",",
"a2_file",
")",
",",
"'r'",
",",
"encoding",
"=",
"'utf-8'",
")",
"as",
"f",
":",
"a2_text",
"=",
"f",
".",
"read",
"(",
")",
"# Now that we're done, remove the temporary directory",
"shutil",
".",
"rmtree",
"(",
"tmp_dir",
")",
"# Return the extracted text",
"return",
"a1_text",
",",
"a2_text",
",",
"sentence_segmentations",
"except",
"BaseException",
"as",
"e",
":",
"# If there was an exception, delete the temporary directory and",
"# pass on the exception",
"print",
"(",
"'Not removing temporary directory: '",
"+",
"tmp_dir",
")",
"shutil",
".",
"rmtree",
"(",
"tmp_dir",
")",
"raise",
"e",
"return",
"None",
",",
"None",
",",
"None"
]
| Extract the text of the a1, a2, and sentence segmentation files from the
TEES output directory. These files are located within a compressed archive.
Parameters
----------
output_dir : str
Directory containing the output of the TEES system
Returns
-------
a1_text : str
The text of the TEES a1 file (specifying the entities)
a2_text : str
The text of the TEES a2 file (specifying the event graph)
sentence_segmentations : str
The text of the XML file specifying the sentence segmentation | [
"Extract",
"the",
"text",
"of",
"the",
"a1",
"a2",
"and",
"sentence",
"segmentation",
"files",
"from",
"the",
"TEES",
"output",
"directory",
".",
"These",
"files",
"are",
"located",
"within",
"a",
"compressed",
"archive",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/sources/tees/api.py#L208-L312 | train |
sorgerlab/indra | indra/sources/eidos/reader.py | _list_to_seq | def _list_to_seq(lst):
"""Return a scala.collection.Seq from a Python list."""
ml = autoclass('scala.collection.mutable.MutableList')()
for element in lst:
ml.appendElem(element)
return ml | python | def _list_to_seq(lst):
"""Return a scala.collection.Seq from a Python list."""
ml = autoclass('scala.collection.mutable.MutableList')()
for element in lst:
ml.appendElem(element)
return ml | [
"def",
"_list_to_seq",
"(",
"lst",
")",
":",
"ml",
"=",
"autoclass",
"(",
"'scala.collection.mutable.MutableList'",
")",
"(",
")",
"for",
"element",
"in",
"lst",
":",
"ml",
".",
"appendElem",
"(",
"element",
")",
"return",
"ml"
]
| Return a scala.collection.Seq from a Python list. | [
"Return",
"a",
"scala",
".",
"collection",
".",
"Seq",
"from",
"a",
"Python",
"list",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/sources/eidos/reader.py#L130-L135 | train |
sorgerlab/indra | indra/sources/eidos/reader.py | EidosReader.process_text | def process_text(self, text, format='json'):
"""Return a mentions JSON object given text.
Parameters
----------
text : str
Text to be processed.
format : str
The format of the output to produce, one of "json" or "json_ld".
Default: "json"
Returns
-------
json_dict : dict
A JSON object of mentions extracted from text.
"""
if self.eidos_reader is None:
self.initialize_reader()
default_arg = lambda x: autoclass('scala.Some')(x)
today = datetime.date.today().strftime("%Y-%m-%d")
fname = 'default_file_name'
annot_doc = self.eidos_reader.extractFromText(
text,
True, # keep text
False, # CAG-relevant only
default_arg(today), # doc creation time
default_arg(fname) # file name
)
if format == 'json':
mentions = annot_doc.odinMentions()
ser = autoclass(eidos_package +
'.serialization.json.WMJSONSerializer')
mentions_json = ser.toJsonStr(mentions)
elif format == 'json_ld':
# We need to get a Scala Seq of annot docs here
ml = _list_to_seq([annot_doc])
# We currently do not need toinstantiate the adjective grounder
# if we want to reinstate it, we would need to do the following
# ag = EidosAdjectiveGrounder.fromConfig(
# EidosSystem.defaultConfig.getConfig("adjectiveGrounder"))
# We now create a JSON-LD corpus
jc = autoclass(eidos_package + '.serialization.json.JLDCorpus')
corpus = jc(ml)
# Finally, serialize the corpus into JSON string
mentions_json = corpus.toJsonStr()
json_dict = json.loads(mentions_json)
return json_dict | python | def process_text(self, text, format='json'):
"""Return a mentions JSON object given text.
Parameters
----------
text : str
Text to be processed.
format : str
The format of the output to produce, one of "json" or "json_ld".
Default: "json"
Returns
-------
json_dict : dict
A JSON object of mentions extracted from text.
"""
if self.eidos_reader is None:
self.initialize_reader()
default_arg = lambda x: autoclass('scala.Some')(x)
today = datetime.date.today().strftime("%Y-%m-%d")
fname = 'default_file_name'
annot_doc = self.eidos_reader.extractFromText(
text,
True, # keep text
False, # CAG-relevant only
default_arg(today), # doc creation time
default_arg(fname) # file name
)
if format == 'json':
mentions = annot_doc.odinMentions()
ser = autoclass(eidos_package +
'.serialization.json.WMJSONSerializer')
mentions_json = ser.toJsonStr(mentions)
elif format == 'json_ld':
# We need to get a Scala Seq of annot docs here
ml = _list_to_seq([annot_doc])
# We currently do not need toinstantiate the adjective grounder
# if we want to reinstate it, we would need to do the following
# ag = EidosAdjectiveGrounder.fromConfig(
# EidosSystem.defaultConfig.getConfig("adjectiveGrounder"))
# We now create a JSON-LD corpus
jc = autoclass(eidos_package + '.serialization.json.JLDCorpus')
corpus = jc(ml)
# Finally, serialize the corpus into JSON string
mentions_json = corpus.toJsonStr()
json_dict = json.loads(mentions_json)
return json_dict | [
"def",
"process_text",
"(",
"self",
",",
"text",
",",
"format",
"=",
"'json'",
")",
":",
"if",
"self",
".",
"eidos_reader",
"is",
"None",
":",
"self",
".",
"initialize_reader",
"(",
")",
"default_arg",
"=",
"lambda",
"x",
":",
"autoclass",
"(",
"'scala.Some'",
")",
"(",
"x",
")",
"today",
"=",
"datetime",
".",
"date",
".",
"today",
"(",
")",
".",
"strftime",
"(",
"\"%Y-%m-%d\"",
")",
"fname",
"=",
"'default_file_name'",
"annot_doc",
"=",
"self",
".",
"eidos_reader",
".",
"extractFromText",
"(",
"text",
",",
"True",
",",
"# keep text",
"False",
",",
"# CAG-relevant only",
"default_arg",
"(",
"today",
")",
",",
"# doc creation time",
"default_arg",
"(",
"fname",
")",
"# file name",
")",
"if",
"format",
"==",
"'json'",
":",
"mentions",
"=",
"annot_doc",
".",
"odinMentions",
"(",
")",
"ser",
"=",
"autoclass",
"(",
"eidos_package",
"+",
"'.serialization.json.WMJSONSerializer'",
")",
"mentions_json",
"=",
"ser",
".",
"toJsonStr",
"(",
"mentions",
")",
"elif",
"format",
"==",
"'json_ld'",
":",
"# We need to get a Scala Seq of annot docs here",
"ml",
"=",
"_list_to_seq",
"(",
"[",
"annot_doc",
"]",
")",
"# We currently do not need toinstantiate the adjective grounder",
"# if we want to reinstate it, we would need to do the following",
"# ag = EidosAdjectiveGrounder.fromConfig(",
"# EidosSystem.defaultConfig.getConfig(\"adjectiveGrounder\"))",
"# We now create a JSON-LD corpus",
"jc",
"=",
"autoclass",
"(",
"eidos_package",
"+",
"'.serialization.json.JLDCorpus'",
")",
"corpus",
"=",
"jc",
"(",
"ml",
")",
"# Finally, serialize the corpus into JSON string",
"mentions_json",
"=",
"corpus",
".",
"toJsonStr",
"(",
")",
"json_dict",
"=",
"json",
".",
"loads",
"(",
"mentions_json",
")",
"return",
"json_dict"
]
| Return a mentions JSON object given text.
Parameters
----------
text : str
Text to be processed.
format : str
The format of the output to produce, one of "json" or "json_ld".
Default: "json"
Returns
-------
json_dict : dict
A JSON object of mentions extracted from text. | [
"Return",
"a",
"mentions",
"JSON",
"object",
"given",
"text",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/sources/eidos/reader.py#L80-L127 | train |
sorgerlab/indra | indra/sources/eidos/api.py | process_text | def process_text(text, out_format='json_ld', save_json='eidos_output.json',
webservice=None):
"""Return an EidosProcessor by processing the given text.
This constructs a reader object via Java and extracts mentions
from the text. It then serializes the mentions into JSON and
processes the result with process_json.
Parameters
----------
text : str
The text to be processed.
out_format : Optional[str]
The type of Eidos output to read into and process. Currently only
'json-ld' is supported which is also the default value used.
save_json : Optional[str]
The name of a file in which to dump the JSON output of Eidos.
webservice : Optional[str]
An Eidos reader web service URL to send the request to.
If None, the reading is assumed to be done with the Eidos JAR rather
than via a web service. Default: None
Returns
-------
ep : EidosProcessor
An EidosProcessor containing the extracted INDRA Statements in its
statements attribute.
"""
if not webservice:
if eidos_reader is None:
logger.error('Eidos reader is not available.')
return None
json_dict = eidos_reader.process_text(text, out_format)
else:
res = requests.post('%s/process_text' % webservice,
json={'text': text})
json_dict = res.json()
if save_json:
with open(save_json, 'wt') as fh:
json.dump(json_dict, fh, indent=2)
return process_json(json_dict) | python | def process_text(text, out_format='json_ld', save_json='eidos_output.json',
webservice=None):
"""Return an EidosProcessor by processing the given text.
This constructs a reader object via Java and extracts mentions
from the text. It then serializes the mentions into JSON and
processes the result with process_json.
Parameters
----------
text : str
The text to be processed.
out_format : Optional[str]
The type of Eidos output to read into and process. Currently only
'json-ld' is supported which is also the default value used.
save_json : Optional[str]
The name of a file in which to dump the JSON output of Eidos.
webservice : Optional[str]
An Eidos reader web service URL to send the request to.
If None, the reading is assumed to be done with the Eidos JAR rather
than via a web service. Default: None
Returns
-------
ep : EidosProcessor
An EidosProcessor containing the extracted INDRA Statements in its
statements attribute.
"""
if not webservice:
if eidos_reader is None:
logger.error('Eidos reader is not available.')
return None
json_dict = eidos_reader.process_text(text, out_format)
else:
res = requests.post('%s/process_text' % webservice,
json={'text': text})
json_dict = res.json()
if save_json:
with open(save_json, 'wt') as fh:
json.dump(json_dict, fh, indent=2)
return process_json(json_dict) | [
"def",
"process_text",
"(",
"text",
",",
"out_format",
"=",
"'json_ld'",
",",
"save_json",
"=",
"'eidos_output.json'",
",",
"webservice",
"=",
"None",
")",
":",
"if",
"not",
"webservice",
":",
"if",
"eidos_reader",
"is",
"None",
":",
"logger",
".",
"error",
"(",
"'Eidos reader is not available.'",
")",
"return",
"None",
"json_dict",
"=",
"eidos_reader",
".",
"process_text",
"(",
"text",
",",
"out_format",
")",
"else",
":",
"res",
"=",
"requests",
".",
"post",
"(",
"'%s/process_text'",
"%",
"webservice",
",",
"json",
"=",
"{",
"'text'",
":",
"text",
"}",
")",
"json_dict",
"=",
"res",
".",
"json",
"(",
")",
"if",
"save_json",
":",
"with",
"open",
"(",
"save_json",
",",
"'wt'",
")",
"as",
"fh",
":",
"json",
".",
"dump",
"(",
"json_dict",
",",
"fh",
",",
"indent",
"=",
"2",
")",
"return",
"process_json",
"(",
"json_dict",
")"
]
| Return an EidosProcessor by processing the given text.
This constructs a reader object via Java and extracts mentions
from the text. It then serializes the mentions into JSON and
processes the result with process_json.
Parameters
----------
text : str
The text to be processed.
out_format : Optional[str]
The type of Eidos output to read into and process. Currently only
'json-ld' is supported which is also the default value used.
save_json : Optional[str]
The name of a file in which to dump the JSON output of Eidos.
webservice : Optional[str]
An Eidos reader web service URL to send the request to.
If None, the reading is assumed to be done with the Eidos JAR rather
than via a web service. Default: None
Returns
-------
ep : EidosProcessor
An EidosProcessor containing the extracted INDRA Statements in its
statements attribute. | [
"Return",
"an",
"EidosProcessor",
"by",
"processing",
"the",
"given",
"text",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/sources/eidos/api.py#L22-L62 | train |
sorgerlab/indra | indra/sources/eidos/api.py | process_json_file | def process_json_file(file_name):
"""Return an EidosProcessor by processing the given Eidos JSON-LD file.
This function is useful if the output from Eidos is saved as a file and
needs to be processed.
Parameters
----------
file_name : str
The name of the JSON-LD file to be processed.
Returns
-------
ep : EidosProcessor
A EidosProcessor containing the extracted INDRA Statements
in its statements attribute.
"""
try:
with open(file_name, 'rb') as fh:
json_str = fh.read().decode('utf-8')
return process_json_str(json_str)
except IOError:
logger.exception('Could not read file %s.' % file_name) | python | def process_json_file(file_name):
"""Return an EidosProcessor by processing the given Eidos JSON-LD file.
This function is useful if the output from Eidos is saved as a file and
needs to be processed.
Parameters
----------
file_name : str
The name of the JSON-LD file to be processed.
Returns
-------
ep : EidosProcessor
A EidosProcessor containing the extracted INDRA Statements
in its statements attribute.
"""
try:
with open(file_name, 'rb') as fh:
json_str = fh.read().decode('utf-8')
return process_json_str(json_str)
except IOError:
logger.exception('Could not read file %s.' % file_name) | [
"def",
"process_json_file",
"(",
"file_name",
")",
":",
"try",
":",
"with",
"open",
"(",
"file_name",
",",
"'rb'",
")",
"as",
"fh",
":",
"json_str",
"=",
"fh",
".",
"read",
"(",
")",
".",
"decode",
"(",
"'utf-8'",
")",
"return",
"process_json_str",
"(",
"json_str",
")",
"except",
"IOError",
":",
"logger",
".",
"exception",
"(",
"'Could not read file %s.'",
"%",
"file_name",
")"
]
| Return an EidosProcessor by processing the given Eidos JSON-LD file.
This function is useful if the output from Eidos is saved as a file and
needs to be processed.
Parameters
----------
file_name : str
The name of the JSON-LD file to be processed.
Returns
-------
ep : EidosProcessor
A EidosProcessor containing the extracted INDRA Statements
in its statements attribute. | [
"Return",
"an",
"EidosProcessor",
"by",
"processing",
"the",
"given",
"Eidos",
"JSON",
"-",
"LD",
"file",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/sources/eidos/api.py#L65-L87 | train |
sorgerlab/indra | indra/sources/eidos/api.py | process_json | def process_json(json_dict):
"""Return an EidosProcessor by processing a Eidos JSON-LD dict.
Parameters
----------
json_dict : dict
The JSON-LD dict to be processed.
Returns
-------
ep : EidosProcessor
A EidosProcessor containing the extracted INDRA Statements
in its statements attribute.
"""
ep = EidosProcessor(json_dict)
ep.extract_causal_relations()
ep.extract_correlations()
ep.extract_events()
return ep | python | def process_json(json_dict):
"""Return an EidosProcessor by processing a Eidos JSON-LD dict.
Parameters
----------
json_dict : dict
The JSON-LD dict to be processed.
Returns
-------
ep : EidosProcessor
A EidosProcessor containing the extracted INDRA Statements
in its statements attribute.
"""
ep = EidosProcessor(json_dict)
ep.extract_causal_relations()
ep.extract_correlations()
ep.extract_events()
return ep | [
"def",
"process_json",
"(",
"json_dict",
")",
":",
"ep",
"=",
"EidosProcessor",
"(",
"json_dict",
")",
"ep",
".",
"extract_causal_relations",
"(",
")",
"ep",
".",
"extract_correlations",
"(",
")",
"ep",
".",
"extract_events",
"(",
")",
"return",
"ep"
]
| Return an EidosProcessor by processing a Eidos JSON-LD dict.
Parameters
----------
json_dict : dict
The JSON-LD dict to be processed.
Returns
-------
ep : EidosProcessor
A EidosProcessor containing the extracted INDRA Statements
in its statements attribute. | [
"Return",
"an",
"EidosProcessor",
"by",
"processing",
"a",
"Eidos",
"JSON",
"-",
"LD",
"dict",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/sources/eidos/api.py#L108-L126 | train |
sorgerlab/indra | indra/databases/chembl_client.py | get_drug_inhibition_stmts | def get_drug_inhibition_stmts(drug):
"""Query ChEMBL for kinetics data given drug as Agent get back statements
Parameters
----------
drug : Agent
Agent representing drug with MESH or CHEBI grounding
Returns
-------
stmts : list of INDRA statements
INDRA statements generated by querying ChEMBL for all kinetics data of
a drug interacting with protein targets
"""
chebi_id = drug.db_refs.get('CHEBI')
mesh_id = drug.db_refs.get('MESH')
if chebi_id:
drug_chembl_id = chebi_client.get_chembl_id(chebi_id)
elif mesh_id:
drug_chembl_id = get_chembl_id(mesh_id)
else:
logger.error('Drug missing ChEBI or MESH grounding.')
return None
logger.info('Drug: %s' % (drug_chembl_id))
query_dict = {'query': 'activity',
'params': {'molecule_chembl_id': drug_chembl_id,
'limit': 10000}
}
res = send_query(query_dict)
activities = res['activities']
targ_act_dict = activities_by_target(activities)
target_chembl_ids = [x for x in targ_act_dict]
protein_targets = get_protein_targets_only(target_chembl_ids)
filtered_targ_act_dict = {t: targ_act_dict[t]
for t in [x for x in protein_targets]}
stmts = []
for target_chembl_id in filtered_targ_act_dict:
target_activity_ids = filtered_targ_act_dict[target_chembl_id]
target_activites = [x for x in activities
if x['activity_id'] in target_activity_ids]
target_upids = []
targ_comp = protein_targets[target_chembl_id]['target_components']
for t_c in targ_comp:
target_upids.append(t_c['accession'])
evidence = []
for assay in target_activites:
ev = get_evidence(assay)
if not ev:
continue
evidence.append(ev)
if len(evidence) > 0:
for target_upid in target_upids:
agent_name = uniprot_client.get_gene_name(target_upid)
target_agent = Agent(agent_name, db_refs={'UP': target_upid})
st = Inhibition(drug, target_agent, evidence=evidence)
stmts.append(st)
return stmts | python | def get_drug_inhibition_stmts(drug):
"""Query ChEMBL for kinetics data given drug as Agent get back statements
Parameters
----------
drug : Agent
Agent representing drug with MESH or CHEBI grounding
Returns
-------
stmts : list of INDRA statements
INDRA statements generated by querying ChEMBL for all kinetics data of
a drug interacting with protein targets
"""
chebi_id = drug.db_refs.get('CHEBI')
mesh_id = drug.db_refs.get('MESH')
if chebi_id:
drug_chembl_id = chebi_client.get_chembl_id(chebi_id)
elif mesh_id:
drug_chembl_id = get_chembl_id(mesh_id)
else:
logger.error('Drug missing ChEBI or MESH grounding.')
return None
logger.info('Drug: %s' % (drug_chembl_id))
query_dict = {'query': 'activity',
'params': {'molecule_chembl_id': drug_chembl_id,
'limit': 10000}
}
res = send_query(query_dict)
activities = res['activities']
targ_act_dict = activities_by_target(activities)
target_chembl_ids = [x for x in targ_act_dict]
protein_targets = get_protein_targets_only(target_chembl_ids)
filtered_targ_act_dict = {t: targ_act_dict[t]
for t in [x for x in protein_targets]}
stmts = []
for target_chembl_id in filtered_targ_act_dict:
target_activity_ids = filtered_targ_act_dict[target_chembl_id]
target_activites = [x for x in activities
if x['activity_id'] in target_activity_ids]
target_upids = []
targ_comp = protein_targets[target_chembl_id]['target_components']
for t_c in targ_comp:
target_upids.append(t_c['accession'])
evidence = []
for assay in target_activites:
ev = get_evidence(assay)
if not ev:
continue
evidence.append(ev)
if len(evidence) > 0:
for target_upid in target_upids:
agent_name = uniprot_client.get_gene_name(target_upid)
target_agent = Agent(agent_name, db_refs={'UP': target_upid})
st = Inhibition(drug, target_agent, evidence=evidence)
stmts.append(st)
return stmts | [
"def",
"get_drug_inhibition_stmts",
"(",
"drug",
")",
":",
"chebi_id",
"=",
"drug",
".",
"db_refs",
".",
"get",
"(",
"'CHEBI'",
")",
"mesh_id",
"=",
"drug",
".",
"db_refs",
".",
"get",
"(",
"'MESH'",
")",
"if",
"chebi_id",
":",
"drug_chembl_id",
"=",
"chebi_client",
".",
"get_chembl_id",
"(",
"chebi_id",
")",
"elif",
"mesh_id",
":",
"drug_chembl_id",
"=",
"get_chembl_id",
"(",
"mesh_id",
")",
"else",
":",
"logger",
".",
"error",
"(",
"'Drug missing ChEBI or MESH grounding.'",
")",
"return",
"None",
"logger",
".",
"info",
"(",
"'Drug: %s'",
"%",
"(",
"drug_chembl_id",
")",
")",
"query_dict",
"=",
"{",
"'query'",
":",
"'activity'",
",",
"'params'",
":",
"{",
"'molecule_chembl_id'",
":",
"drug_chembl_id",
",",
"'limit'",
":",
"10000",
"}",
"}",
"res",
"=",
"send_query",
"(",
"query_dict",
")",
"activities",
"=",
"res",
"[",
"'activities'",
"]",
"targ_act_dict",
"=",
"activities_by_target",
"(",
"activities",
")",
"target_chembl_ids",
"=",
"[",
"x",
"for",
"x",
"in",
"targ_act_dict",
"]",
"protein_targets",
"=",
"get_protein_targets_only",
"(",
"target_chembl_ids",
")",
"filtered_targ_act_dict",
"=",
"{",
"t",
":",
"targ_act_dict",
"[",
"t",
"]",
"for",
"t",
"in",
"[",
"x",
"for",
"x",
"in",
"protein_targets",
"]",
"}",
"stmts",
"=",
"[",
"]",
"for",
"target_chembl_id",
"in",
"filtered_targ_act_dict",
":",
"target_activity_ids",
"=",
"filtered_targ_act_dict",
"[",
"target_chembl_id",
"]",
"target_activites",
"=",
"[",
"x",
"for",
"x",
"in",
"activities",
"if",
"x",
"[",
"'activity_id'",
"]",
"in",
"target_activity_ids",
"]",
"target_upids",
"=",
"[",
"]",
"targ_comp",
"=",
"protein_targets",
"[",
"target_chembl_id",
"]",
"[",
"'target_components'",
"]",
"for",
"t_c",
"in",
"targ_comp",
":",
"target_upids",
".",
"append",
"(",
"t_c",
"[",
"'accession'",
"]",
")",
"evidence",
"=",
"[",
"]",
"for",
"assay",
"in",
"target_activites",
":",
"ev",
"=",
"get_evidence",
"(",
"assay",
")",
"if",
"not",
"ev",
":",
"continue",
"evidence",
".",
"append",
"(",
"ev",
")",
"if",
"len",
"(",
"evidence",
")",
">",
"0",
":",
"for",
"target_upid",
"in",
"target_upids",
":",
"agent_name",
"=",
"uniprot_client",
".",
"get_gene_name",
"(",
"target_upid",
")",
"target_agent",
"=",
"Agent",
"(",
"agent_name",
",",
"db_refs",
"=",
"{",
"'UP'",
":",
"target_upid",
"}",
")",
"st",
"=",
"Inhibition",
"(",
"drug",
",",
"target_agent",
",",
"evidence",
"=",
"evidence",
")",
"stmts",
".",
"append",
"(",
"st",
")",
"return",
"stmts"
]
| Query ChEMBL for kinetics data given drug as Agent get back statements
Parameters
----------
drug : Agent
Agent representing drug with MESH or CHEBI grounding
Returns
-------
stmts : list of INDRA statements
INDRA statements generated by querying ChEMBL for all kinetics data of
a drug interacting with protein targets | [
"Query",
"ChEMBL",
"for",
"kinetics",
"data",
"given",
"drug",
"as",
"Agent",
"get",
"back",
"statements"
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/databases/chembl_client.py#L46-L102 | train |
sorgerlab/indra | indra/databases/chembl_client.py | send_query | def send_query(query_dict):
"""Query ChEMBL API
Parameters
----------
query_dict : dict
'query' : string of the endpoint to query
'params' : dict of params for the query
Returns
-------
js : dict
dict parsed from json that is unique to the submitted query
"""
query = query_dict['query']
params = query_dict['params']
url = 'https://www.ebi.ac.uk/chembl/api/data/' + query + '.json'
r = requests.get(url, params=params)
r.raise_for_status()
js = r.json()
return js | python | def send_query(query_dict):
"""Query ChEMBL API
Parameters
----------
query_dict : dict
'query' : string of the endpoint to query
'params' : dict of params for the query
Returns
-------
js : dict
dict parsed from json that is unique to the submitted query
"""
query = query_dict['query']
params = query_dict['params']
url = 'https://www.ebi.ac.uk/chembl/api/data/' + query + '.json'
r = requests.get(url, params=params)
r.raise_for_status()
js = r.json()
return js | [
"def",
"send_query",
"(",
"query_dict",
")",
":",
"query",
"=",
"query_dict",
"[",
"'query'",
"]",
"params",
"=",
"query_dict",
"[",
"'params'",
"]",
"url",
"=",
"'https://www.ebi.ac.uk/chembl/api/data/'",
"+",
"query",
"+",
"'.json'",
"r",
"=",
"requests",
".",
"get",
"(",
"url",
",",
"params",
"=",
"params",
")",
"r",
".",
"raise_for_status",
"(",
")",
"js",
"=",
"r",
".",
"json",
"(",
")",
"return",
"js"
]
| Query ChEMBL API
Parameters
----------
query_dict : dict
'query' : string of the endpoint to query
'params' : dict of params for the query
Returns
-------
js : dict
dict parsed from json that is unique to the submitted query | [
"Query",
"ChEMBL",
"API"
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/databases/chembl_client.py#L105-L125 | train |
sorgerlab/indra | indra/databases/chembl_client.py | query_target | def query_target(target_chembl_id):
"""Query ChEMBL API target by id
Parameters
----------
target_chembl_id : str
Returns
-------
target : dict
dict parsed from json that is unique for the target
"""
query_dict = {'query': 'target',
'params': {'target_chembl_id': target_chembl_id,
'limit': 1}}
res = send_query(query_dict)
target = res['targets'][0]
return target | python | def query_target(target_chembl_id):
"""Query ChEMBL API target by id
Parameters
----------
target_chembl_id : str
Returns
-------
target : dict
dict parsed from json that is unique for the target
"""
query_dict = {'query': 'target',
'params': {'target_chembl_id': target_chembl_id,
'limit': 1}}
res = send_query(query_dict)
target = res['targets'][0]
return target | [
"def",
"query_target",
"(",
"target_chembl_id",
")",
":",
"query_dict",
"=",
"{",
"'query'",
":",
"'target'",
",",
"'params'",
":",
"{",
"'target_chembl_id'",
":",
"target_chembl_id",
",",
"'limit'",
":",
"1",
"}",
"}",
"res",
"=",
"send_query",
"(",
"query_dict",
")",
"target",
"=",
"res",
"[",
"'targets'",
"]",
"[",
"0",
"]",
"return",
"target"
]
| Query ChEMBL API target by id
Parameters
----------
target_chembl_id : str
Returns
-------
target : dict
dict parsed from json that is unique for the target | [
"Query",
"ChEMBL",
"API",
"target",
"by",
"id"
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/databases/chembl_client.py#L128-L145 | train |
sorgerlab/indra | indra/databases/chembl_client.py | activities_by_target | def activities_by_target(activities):
"""Get back lists of activities in a dict keyed by ChEMBL target id
Parameters
----------
activities : list
response from a query returning activities for a drug
Returns
-------
targ_act_dict : dict
dictionary keyed to ChEMBL target ids with lists of activity ids
"""
targ_act_dict = defaultdict(lambda: [])
for activity in activities:
target_chembl_id = activity['target_chembl_id']
activity_id = activity['activity_id']
targ_act_dict[target_chembl_id].append(activity_id)
for target_chembl_id in targ_act_dict:
targ_act_dict[target_chembl_id] = \
list(set(targ_act_dict[target_chembl_id]))
return targ_act_dict | python | def activities_by_target(activities):
"""Get back lists of activities in a dict keyed by ChEMBL target id
Parameters
----------
activities : list
response from a query returning activities for a drug
Returns
-------
targ_act_dict : dict
dictionary keyed to ChEMBL target ids with lists of activity ids
"""
targ_act_dict = defaultdict(lambda: [])
for activity in activities:
target_chembl_id = activity['target_chembl_id']
activity_id = activity['activity_id']
targ_act_dict[target_chembl_id].append(activity_id)
for target_chembl_id in targ_act_dict:
targ_act_dict[target_chembl_id] = \
list(set(targ_act_dict[target_chembl_id]))
return targ_act_dict | [
"def",
"activities_by_target",
"(",
"activities",
")",
":",
"targ_act_dict",
"=",
"defaultdict",
"(",
"lambda",
":",
"[",
"]",
")",
"for",
"activity",
"in",
"activities",
":",
"target_chembl_id",
"=",
"activity",
"[",
"'target_chembl_id'",
"]",
"activity_id",
"=",
"activity",
"[",
"'activity_id'",
"]",
"targ_act_dict",
"[",
"target_chembl_id",
"]",
".",
"append",
"(",
"activity_id",
")",
"for",
"target_chembl_id",
"in",
"targ_act_dict",
":",
"targ_act_dict",
"[",
"target_chembl_id",
"]",
"=",
"list",
"(",
"set",
"(",
"targ_act_dict",
"[",
"target_chembl_id",
"]",
")",
")",
"return",
"targ_act_dict"
]
| Get back lists of activities in a dict keyed by ChEMBL target id
Parameters
----------
activities : list
response from a query returning activities for a drug
Returns
-------
targ_act_dict : dict
dictionary keyed to ChEMBL target ids with lists of activity ids | [
"Get",
"back",
"lists",
"of",
"activities",
"in",
"a",
"dict",
"keyed",
"by",
"ChEMBL",
"target",
"id"
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/databases/chembl_client.py#L148-L169 | train |
sorgerlab/indra | indra/databases/chembl_client.py | get_protein_targets_only | def get_protein_targets_only(target_chembl_ids):
"""Given list of ChEMBL target ids, return dict of SINGLE PROTEIN targets
Parameters
----------
target_chembl_ids : list
list of chembl_ids as strings
Returns
-------
protein_targets : dict
dictionary keyed to ChEMBL target ids with lists of activity ids
"""
protein_targets = {}
for target_chembl_id in target_chembl_ids:
target = query_target(target_chembl_id)
if 'SINGLE PROTEIN' in target['target_type']:
protein_targets[target_chembl_id] = target
return protein_targets | python | def get_protein_targets_only(target_chembl_ids):
"""Given list of ChEMBL target ids, return dict of SINGLE PROTEIN targets
Parameters
----------
target_chembl_ids : list
list of chembl_ids as strings
Returns
-------
protein_targets : dict
dictionary keyed to ChEMBL target ids with lists of activity ids
"""
protein_targets = {}
for target_chembl_id in target_chembl_ids:
target = query_target(target_chembl_id)
if 'SINGLE PROTEIN' in target['target_type']:
protein_targets[target_chembl_id] = target
return protein_targets | [
"def",
"get_protein_targets_only",
"(",
"target_chembl_ids",
")",
":",
"protein_targets",
"=",
"{",
"}",
"for",
"target_chembl_id",
"in",
"target_chembl_ids",
":",
"target",
"=",
"query_target",
"(",
"target_chembl_id",
")",
"if",
"'SINGLE PROTEIN'",
"in",
"target",
"[",
"'target_type'",
"]",
":",
"protein_targets",
"[",
"target_chembl_id",
"]",
"=",
"target",
"return",
"protein_targets"
]
| Given list of ChEMBL target ids, return dict of SINGLE PROTEIN targets
Parameters
----------
target_chembl_ids : list
list of chembl_ids as strings
Returns
-------
protein_targets : dict
dictionary keyed to ChEMBL target ids with lists of activity ids | [
"Given",
"list",
"of",
"ChEMBL",
"target",
"ids",
"return",
"dict",
"of",
"SINGLE",
"PROTEIN",
"targets"
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/databases/chembl_client.py#L172-L190 | train |
sorgerlab/indra | indra/databases/chembl_client.py | get_evidence | def get_evidence(assay):
"""Given an activity, return an INDRA Evidence object.
Parameters
----------
assay : dict
an activity from the activities list returned by a query to the API
Returns
-------
ev : :py:class:`Evidence`
an :py:class:`Evidence` object containing the kinetics of the
"""
kin = get_kinetics(assay)
source_id = assay.get('assay_chembl_id')
if not kin:
return None
annotations = {'kinetics': kin}
chembl_doc_id = str(assay.get('document_chembl_id'))
pmid = get_pmid(chembl_doc_id)
ev = Evidence(source_api='chembl', pmid=pmid, source_id=source_id,
annotations=annotations)
return ev | python | def get_evidence(assay):
"""Given an activity, return an INDRA Evidence object.
Parameters
----------
assay : dict
an activity from the activities list returned by a query to the API
Returns
-------
ev : :py:class:`Evidence`
an :py:class:`Evidence` object containing the kinetics of the
"""
kin = get_kinetics(assay)
source_id = assay.get('assay_chembl_id')
if not kin:
return None
annotations = {'kinetics': kin}
chembl_doc_id = str(assay.get('document_chembl_id'))
pmid = get_pmid(chembl_doc_id)
ev = Evidence(source_api='chembl', pmid=pmid, source_id=source_id,
annotations=annotations)
return ev | [
"def",
"get_evidence",
"(",
"assay",
")",
":",
"kin",
"=",
"get_kinetics",
"(",
"assay",
")",
"source_id",
"=",
"assay",
".",
"get",
"(",
"'assay_chembl_id'",
")",
"if",
"not",
"kin",
":",
"return",
"None",
"annotations",
"=",
"{",
"'kinetics'",
":",
"kin",
"}",
"chembl_doc_id",
"=",
"str",
"(",
"assay",
".",
"get",
"(",
"'document_chembl_id'",
")",
")",
"pmid",
"=",
"get_pmid",
"(",
"chembl_doc_id",
")",
"ev",
"=",
"Evidence",
"(",
"source_api",
"=",
"'chembl'",
",",
"pmid",
"=",
"pmid",
",",
"source_id",
"=",
"source_id",
",",
"annotations",
"=",
"annotations",
")",
"return",
"ev"
]
| Given an activity, return an INDRA Evidence object.
Parameters
----------
assay : dict
an activity from the activities list returned by a query to the API
Returns
-------
ev : :py:class:`Evidence`
an :py:class:`Evidence` object containing the kinetics of the | [
"Given",
"an",
"activity",
"return",
"an",
"INDRA",
"Evidence",
"object",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/databases/chembl_client.py#L193-L215 | train |
sorgerlab/indra | indra/databases/chembl_client.py | get_kinetics | def get_kinetics(assay):
"""Given an activity, return its kinetics values.
Parameters
----------
assay : dict
an activity from the activities list returned by a query to the API
Returns
-------
kin : dict
dictionary of values with units keyed to value types 'IC50', 'EC50',
'INH', 'Potency', 'Kd'
"""
try:
val = float(assay.get('standard_value'))
except TypeError:
logger.warning('Invalid assay value: %s' % assay.get('standard_value'))
return None
unit = assay.get('standard_units')
if unit == 'nM':
unit_sym = 1e-9 * units.mol / units.liter
elif unit == 'uM':
unit_sym = 1e-6 * units.mol / units.liter
else:
logger.warning('Unhandled unit: %s' % unit)
return None
param_type = assay.get('standard_type')
if param_type not in ['IC50', 'EC50', 'INH', 'Potency', 'Kd']:
logger.warning('Unhandled parameter type: %s' % param_type)
logger.info(str(assay))
return None
kin = {param_type: val * unit_sym}
return kin | python | def get_kinetics(assay):
"""Given an activity, return its kinetics values.
Parameters
----------
assay : dict
an activity from the activities list returned by a query to the API
Returns
-------
kin : dict
dictionary of values with units keyed to value types 'IC50', 'EC50',
'INH', 'Potency', 'Kd'
"""
try:
val = float(assay.get('standard_value'))
except TypeError:
logger.warning('Invalid assay value: %s' % assay.get('standard_value'))
return None
unit = assay.get('standard_units')
if unit == 'nM':
unit_sym = 1e-9 * units.mol / units.liter
elif unit == 'uM':
unit_sym = 1e-6 * units.mol / units.liter
else:
logger.warning('Unhandled unit: %s' % unit)
return None
param_type = assay.get('standard_type')
if param_type not in ['IC50', 'EC50', 'INH', 'Potency', 'Kd']:
logger.warning('Unhandled parameter type: %s' % param_type)
logger.info(str(assay))
return None
kin = {param_type: val * unit_sym}
return kin | [
"def",
"get_kinetics",
"(",
"assay",
")",
":",
"try",
":",
"val",
"=",
"float",
"(",
"assay",
".",
"get",
"(",
"'standard_value'",
")",
")",
"except",
"TypeError",
":",
"logger",
".",
"warning",
"(",
"'Invalid assay value: %s'",
"%",
"assay",
".",
"get",
"(",
"'standard_value'",
")",
")",
"return",
"None",
"unit",
"=",
"assay",
".",
"get",
"(",
"'standard_units'",
")",
"if",
"unit",
"==",
"'nM'",
":",
"unit_sym",
"=",
"1e-9",
"*",
"units",
".",
"mol",
"/",
"units",
".",
"liter",
"elif",
"unit",
"==",
"'uM'",
":",
"unit_sym",
"=",
"1e-6",
"*",
"units",
".",
"mol",
"/",
"units",
".",
"liter",
"else",
":",
"logger",
".",
"warning",
"(",
"'Unhandled unit: %s'",
"%",
"unit",
")",
"return",
"None",
"param_type",
"=",
"assay",
".",
"get",
"(",
"'standard_type'",
")",
"if",
"param_type",
"not",
"in",
"[",
"'IC50'",
",",
"'EC50'",
",",
"'INH'",
",",
"'Potency'",
",",
"'Kd'",
"]",
":",
"logger",
".",
"warning",
"(",
"'Unhandled parameter type: %s'",
"%",
"param_type",
")",
"logger",
".",
"info",
"(",
"str",
"(",
"assay",
")",
")",
"return",
"None",
"kin",
"=",
"{",
"param_type",
":",
"val",
"*",
"unit_sym",
"}",
"return",
"kin"
]
| Given an activity, return its kinetics values.
Parameters
----------
assay : dict
an activity from the activities list returned by a query to the API
Returns
-------
kin : dict
dictionary of values with units keyed to value types 'IC50', 'EC50',
'INH', 'Potency', 'Kd' | [
"Given",
"an",
"activity",
"return",
"its",
"kinetics",
"values",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/databases/chembl_client.py#L218-L251 | train |
sorgerlab/indra | indra/databases/chembl_client.py | get_pmid | def get_pmid(doc_id):
"""Get PMID from document_chembl_id
Parameters
----------
doc_id : str
Returns
-------
pmid : str
"""
url_pmid = 'https://www.ebi.ac.uk/chembl/api/data/document.json'
params = {'document_chembl_id': doc_id}
res = requests.get(url_pmid, params=params)
js = res.json()
pmid = str(js['documents'][0]['pubmed_id'])
return pmid | python | def get_pmid(doc_id):
"""Get PMID from document_chembl_id
Parameters
----------
doc_id : str
Returns
-------
pmid : str
"""
url_pmid = 'https://www.ebi.ac.uk/chembl/api/data/document.json'
params = {'document_chembl_id': doc_id}
res = requests.get(url_pmid, params=params)
js = res.json()
pmid = str(js['documents'][0]['pubmed_id'])
return pmid | [
"def",
"get_pmid",
"(",
"doc_id",
")",
":",
"url_pmid",
"=",
"'https://www.ebi.ac.uk/chembl/api/data/document.json'",
"params",
"=",
"{",
"'document_chembl_id'",
":",
"doc_id",
"}",
"res",
"=",
"requests",
".",
"get",
"(",
"url_pmid",
",",
"params",
"=",
"params",
")",
"js",
"=",
"res",
".",
"json",
"(",
")",
"pmid",
"=",
"str",
"(",
"js",
"[",
"'documents'",
"]",
"[",
"0",
"]",
"[",
"'pubmed_id'",
"]",
")",
"return",
"pmid"
]
| Get PMID from document_chembl_id
Parameters
----------
doc_id : str
Returns
-------
pmid : str | [
"Get",
"PMID",
"from",
"document_chembl_id"
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/databases/chembl_client.py#L254-L270 | train |
sorgerlab/indra | indra/databases/chembl_client.py | get_target_chemblid | def get_target_chemblid(target_upid):
"""Get ChEMBL ID from UniProt upid
Parameters
----------
target_upid : str
Returns
-------
target_chembl_id : str
"""
url = 'https://www.ebi.ac.uk/chembl/api/data/target.json'
params = {'target_components__accession': target_upid}
r = requests.get(url, params=params)
r.raise_for_status()
js = r.json()
target_chemblid = js['targets'][0]['target_chembl_id']
return target_chemblid | python | def get_target_chemblid(target_upid):
"""Get ChEMBL ID from UniProt upid
Parameters
----------
target_upid : str
Returns
-------
target_chembl_id : str
"""
url = 'https://www.ebi.ac.uk/chembl/api/data/target.json'
params = {'target_components__accession': target_upid}
r = requests.get(url, params=params)
r.raise_for_status()
js = r.json()
target_chemblid = js['targets'][0]['target_chembl_id']
return target_chemblid | [
"def",
"get_target_chemblid",
"(",
"target_upid",
")",
":",
"url",
"=",
"'https://www.ebi.ac.uk/chembl/api/data/target.json'",
"params",
"=",
"{",
"'target_components__accession'",
":",
"target_upid",
"}",
"r",
"=",
"requests",
".",
"get",
"(",
"url",
",",
"params",
"=",
"params",
")",
"r",
".",
"raise_for_status",
"(",
")",
"js",
"=",
"r",
".",
"json",
"(",
")",
"target_chemblid",
"=",
"js",
"[",
"'targets'",
"]",
"[",
"0",
"]",
"[",
"'target_chembl_id'",
"]",
"return",
"target_chemblid"
]
| Get ChEMBL ID from UniProt upid
Parameters
----------
target_upid : str
Returns
-------
target_chembl_id : str | [
"Get",
"ChEMBL",
"ID",
"from",
"UniProt",
"upid"
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/databases/chembl_client.py#L273-L290 | train |
sorgerlab/indra | indra/databases/chembl_client.py | get_mesh_id | def get_mesh_id(nlm_mesh):
"""Get MESH ID from NLM MESH
Parameters
----------
nlm_mesh : str
Returns
-------
mesh_id : str
"""
url_nlm2mesh = 'http://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi'
params = {'db': 'mesh', 'term': nlm_mesh, 'retmode': 'JSON'}
r = requests.get(url_nlm2mesh, params=params)
res = r.json()
mesh_id = res['esearchresult']['idlist'][0]
return mesh_id | python | def get_mesh_id(nlm_mesh):
"""Get MESH ID from NLM MESH
Parameters
----------
nlm_mesh : str
Returns
-------
mesh_id : str
"""
url_nlm2mesh = 'http://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi'
params = {'db': 'mesh', 'term': nlm_mesh, 'retmode': 'JSON'}
r = requests.get(url_nlm2mesh, params=params)
res = r.json()
mesh_id = res['esearchresult']['idlist'][0]
return mesh_id | [
"def",
"get_mesh_id",
"(",
"nlm_mesh",
")",
":",
"url_nlm2mesh",
"=",
"'http://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi'",
"params",
"=",
"{",
"'db'",
":",
"'mesh'",
",",
"'term'",
":",
"nlm_mesh",
",",
"'retmode'",
":",
"'JSON'",
"}",
"r",
"=",
"requests",
".",
"get",
"(",
"url_nlm2mesh",
",",
"params",
"=",
"params",
")",
"res",
"=",
"r",
".",
"json",
"(",
")",
"mesh_id",
"=",
"res",
"[",
"'esearchresult'",
"]",
"[",
"'idlist'",
"]",
"[",
"0",
"]",
"return",
"mesh_id"
]
| Get MESH ID from NLM MESH
Parameters
----------
nlm_mesh : str
Returns
-------
mesh_id : str | [
"Get",
"MESH",
"ID",
"from",
"NLM",
"MESH"
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/databases/chembl_client.py#L293-L309 | train |
sorgerlab/indra | indra/databases/chembl_client.py | get_pcid | def get_pcid(mesh_id):
"""Get PC ID from MESH ID
Parameters
----------
mesh : str
Returns
-------
pcid : str
"""
url_mesh2pcid = 'http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi'
params = {'dbfrom': 'mesh', 'id': mesh_id,
'db': 'pccompound', 'retmode': 'JSON'}
r = requests.get(url_mesh2pcid, params=params)
res = r.json()
pcid = res['linksets'][0]['linksetdbs'][0]['links'][0]
return pcid | python | def get_pcid(mesh_id):
"""Get PC ID from MESH ID
Parameters
----------
mesh : str
Returns
-------
pcid : str
"""
url_mesh2pcid = 'http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi'
params = {'dbfrom': 'mesh', 'id': mesh_id,
'db': 'pccompound', 'retmode': 'JSON'}
r = requests.get(url_mesh2pcid, params=params)
res = r.json()
pcid = res['linksets'][0]['linksetdbs'][0]['links'][0]
return pcid | [
"def",
"get_pcid",
"(",
"mesh_id",
")",
":",
"url_mesh2pcid",
"=",
"'http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi'",
"params",
"=",
"{",
"'dbfrom'",
":",
"'mesh'",
",",
"'id'",
":",
"mesh_id",
",",
"'db'",
":",
"'pccompound'",
",",
"'retmode'",
":",
"'JSON'",
"}",
"r",
"=",
"requests",
".",
"get",
"(",
"url_mesh2pcid",
",",
"params",
"=",
"params",
")",
"res",
"=",
"r",
".",
"json",
"(",
")",
"pcid",
"=",
"res",
"[",
"'linksets'",
"]",
"[",
"0",
"]",
"[",
"'linksetdbs'",
"]",
"[",
"0",
"]",
"[",
"'links'",
"]",
"[",
"0",
"]",
"return",
"pcid"
]
| Get PC ID from MESH ID
Parameters
----------
mesh : str
Returns
-------
pcid : str | [
"Get",
"PC",
"ID",
"from",
"MESH",
"ID"
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/databases/chembl_client.py#L312-L329 | train |
sorgerlab/indra | indra/databases/chembl_client.py | get_chembl_id | def get_chembl_id(nlm_mesh):
"""Get ChEMBL ID from NLM MESH
Parameters
----------
nlm_mesh : str
Returns
-------
chembl_id : str
"""
mesh_id = get_mesh_id(nlm_mesh)
pcid = get_pcid(mesh_id)
url_mesh2pcid = 'https://pubchem.ncbi.nlm.nih.gov/rest/pug/compound/' + \
'cid/%s/synonyms/JSON' % pcid
r = requests.get(url_mesh2pcid)
res = r.json()
synonyms = res['InformationList']['Information'][0]['Synonym']
chembl_id = [syn for syn in synonyms
if 'CHEMBL' in syn and 'SCHEMBL' not in syn][0]
return chembl_id | python | def get_chembl_id(nlm_mesh):
"""Get ChEMBL ID from NLM MESH
Parameters
----------
nlm_mesh : str
Returns
-------
chembl_id : str
"""
mesh_id = get_mesh_id(nlm_mesh)
pcid = get_pcid(mesh_id)
url_mesh2pcid = 'https://pubchem.ncbi.nlm.nih.gov/rest/pug/compound/' + \
'cid/%s/synonyms/JSON' % pcid
r = requests.get(url_mesh2pcid)
res = r.json()
synonyms = res['InformationList']['Information'][0]['Synonym']
chembl_id = [syn for syn in synonyms
if 'CHEMBL' in syn and 'SCHEMBL' not in syn][0]
return chembl_id | [
"def",
"get_chembl_id",
"(",
"nlm_mesh",
")",
":",
"mesh_id",
"=",
"get_mesh_id",
"(",
"nlm_mesh",
")",
"pcid",
"=",
"get_pcid",
"(",
"mesh_id",
")",
"url_mesh2pcid",
"=",
"'https://pubchem.ncbi.nlm.nih.gov/rest/pug/compound/'",
"+",
"'cid/%s/synonyms/JSON'",
"%",
"pcid",
"r",
"=",
"requests",
".",
"get",
"(",
"url_mesh2pcid",
")",
"res",
"=",
"r",
".",
"json",
"(",
")",
"synonyms",
"=",
"res",
"[",
"'InformationList'",
"]",
"[",
"'Information'",
"]",
"[",
"0",
"]",
"[",
"'Synonym'",
"]",
"chembl_id",
"=",
"[",
"syn",
"for",
"syn",
"in",
"synonyms",
"if",
"'CHEMBL'",
"in",
"syn",
"and",
"'SCHEMBL'",
"not",
"in",
"syn",
"]",
"[",
"0",
"]",
"return",
"chembl_id"
]
| Get ChEMBL ID from NLM MESH
Parameters
----------
nlm_mesh : str
Returns
-------
chembl_id : str | [
"Get",
"ChEMBL",
"ID",
"from",
"NLM",
"MESH"
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/databases/chembl_client.py#L332-L352 | train |
sorgerlab/indra | indra/sources/geneways/find_full_text_sentence.py | FullTextMention.get_sentences | def get_sentences(self, root_element, block_tags):
"""Returns a list of plain-text sentences by iterating through
XML tags except for those listed in block_tags."""
sentences = []
for element in root_element:
if not self.any_ends_with(block_tags, element.tag):
# tag not in block_tags
if element.text is not None and not re.match('^\s*$',
element.text):
sentences.extend(self.sentence_tokenize(element.text))
sentences.extend(self.get_sentences(element, block_tags))
f = open('sentence_debug.txt', 'w')
for s in sentences:
f.write(s.lower() + '\n')
f.close()
return sentences | python | def get_sentences(self, root_element, block_tags):
"""Returns a list of plain-text sentences by iterating through
XML tags except for those listed in block_tags."""
sentences = []
for element in root_element:
if not self.any_ends_with(block_tags, element.tag):
# tag not in block_tags
if element.text is not None and not re.match('^\s*$',
element.text):
sentences.extend(self.sentence_tokenize(element.text))
sentences.extend(self.get_sentences(element, block_tags))
f = open('sentence_debug.txt', 'w')
for s in sentences:
f.write(s.lower() + '\n')
f.close()
return sentences | [
"def",
"get_sentences",
"(",
"self",
",",
"root_element",
",",
"block_tags",
")",
":",
"sentences",
"=",
"[",
"]",
"for",
"element",
"in",
"root_element",
":",
"if",
"not",
"self",
".",
"any_ends_with",
"(",
"block_tags",
",",
"element",
".",
"tag",
")",
":",
"# tag not in block_tags",
"if",
"element",
".",
"text",
"is",
"not",
"None",
"and",
"not",
"re",
".",
"match",
"(",
"'^\\s*$'",
",",
"element",
".",
"text",
")",
":",
"sentences",
".",
"extend",
"(",
"self",
".",
"sentence_tokenize",
"(",
"element",
".",
"text",
")",
")",
"sentences",
".",
"extend",
"(",
"self",
".",
"get_sentences",
"(",
"element",
",",
"block_tags",
")",
")",
"f",
"=",
"open",
"(",
"'sentence_debug.txt'",
",",
"'w'",
")",
"for",
"s",
"in",
"sentences",
":",
"f",
".",
"write",
"(",
"s",
".",
"lower",
"(",
")",
"+",
"'\\n'",
")",
"f",
".",
"close",
"(",
")",
"return",
"sentences"
]
| Returns a list of plain-text sentences by iterating through
XML tags except for those listed in block_tags. | [
"Returns",
"a",
"list",
"of",
"plain",
"-",
"text",
"sentences",
"by",
"iterating",
"through",
"XML",
"tags",
"except",
"for",
"those",
"listed",
"in",
"block_tags",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/sources/geneways/find_full_text_sentence.py#L33-L49 | train |
sorgerlab/indra | indra/sources/geneways/find_full_text_sentence.py | FullTextMention.any_ends_with | def any_ends_with(self, string_list, pattern):
"""Returns true iff one of the strings in string_list ends in
pattern."""
try:
s_base = basestring
except:
s_base = str
is_string = isinstance(pattern, s_base)
if not is_string:
return False
for s in string_list:
if pattern.endswith(s):
return True
return False | python | def any_ends_with(self, string_list, pattern):
"""Returns true iff one of the strings in string_list ends in
pattern."""
try:
s_base = basestring
except:
s_base = str
is_string = isinstance(pattern, s_base)
if not is_string:
return False
for s in string_list:
if pattern.endswith(s):
return True
return False | [
"def",
"any_ends_with",
"(",
"self",
",",
"string_list",
",",
"pattern",
")",
":",
"try",
":",
"s_base",
"=",
"basestring",
"except",
":",
"s_base",
"=",
"str",
"is_string",
"=",
"isinstance",
"(",
"pattern",
",",
"s_base",
")",
"if",
"not",
"is_string",
":",
"return",
"False",
"for",
"s",
"in",
"string_list",
":",
"if",
"pattern",
".",
"endswith",
"(",
"s",
")",
":",
"return",
"True",
"return",
"False"
]
| Returns true iff one of the strings in string_list ends in
pattern. | [
"Returns",
"true",
"iff",
"one",
"of",
"the",
"strings",
"in",
"string_list",
"ends",
"in",
"pattern",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/sources/geneways/find_full_text_sentence.py#L51-L66 | train |
sorgerlab/indra | indra/sources/geneways/find_full_text_sentence.py | FullTextMention.get_tag_names | def get_tag_names(self):
"""Returns the set of tag names present in the XML."""
root = etree.fromstring(self.xml_full_text.encode('utf-8'))
return self.get_children_tag_names(root) | python | def get_tag_names(self):
"""Returns the set of tag names present in the XML."""
root = etree.fromstring(self.xml_full_text.encode('utf-8'))
return self.get_children_tag_names(root) | [
"def",
"get_tag_names",
"(",
"self",
")",
":",
"root",
"=",
"etree",
".",
"fromstring",
"(",
"self",
".",
"xml_full_text",
".",
"encode",
"(",
"'utf-8'",
")",
")",
"return",
"self",
".",
"get_children_tag_names",
"(",
"root",
")"
]
| Returns the set of tag names present in the XML. | [
"Returns",
"the",
"set",
"of",
"tag",
"names",
"present",
"in",
"the",
"XML",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/sources/geneways/find_full_text_sentence.py#L120-L123 | train |
sorgerlab/indra | indra/sources/geneways/find_full_text_sentence.py | FullTextMention.get_children_tag_names | def get_children_tag_names(self, xml_element):
"""Returns all tag names of xml element and its children."""
tags = set()
tags.add(self.remove_namespace_from_tag(xml_element.tag))
for element in xml_element.iter(tag=etree.Element):
if element != xml_element:
new_tags = self.get_children_tag_names(element)
if new_tags is not None:
tags.update(new_tags)
return tags | python | def get_children_tag_names(self, xml_element):
"""Returns all tag names of xml element and its children."""
tags = set()
tags.add(self.remove_namespace_from_tag(xml_element.tag))
for element in xml_element.iter(tag=etree.Element):
if element != xml_element:
new_tags = self.get_children_tag_names(element)
if new_tags is not None:
tags.update(new_tags)
return tags | [
"def",
"get_children_tag_names",
"(",
"self",
",",
"xml_element",
")",
":",
"tags",
"=",
"set",
"(",
")",
"tags",
".",
"add",
"(",
"self",
".",
"remove_namespace_from_tag",
"(",
"xml_element",
".",
"tag",
")",
")",
"for",
"element",
"in",
"xml_element",
".",
"iter",
"(",
"tag",
"=",
"etree",
".",
"Element",
")",
":",
"if",
"element",
"!=",
"xml_element",
":",
"new_tags",
"=",
"self",
".",
"get_children_tag_names",
"(",
"element",
")",
"if",
"new_tags",
"is",
"not",
"None",
":",
"tags",
".",
"update",
"(",
"new_tags",
")",
"return",
"tags"
]
| Returns all tag names of xml element and its children. | [
"Returns",
"all",
"tag",
"names",
"of",
"xml",
"element",
"and",
"its",
"children",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/sources/geneways/find_full_text_sentence.py#L125-L135 | train |
sorgerlab/indra | indra/sources/geneways/find_full_text_sentence.py | FullTextMention.string_matches_sans_whitespace | def string_matches_sans_whitespace(self, str1, str2_fuzzy_whitespace):
"""Check if two strings match, modulo their whitespace."""
str2_fuzzy_whitespace = re.sub('\s+', '\s*', str2_fuzzy_whitespace)
return re.search(str2_fuzzy_whitespace, str1) is not None | python | def string_matches_sans_whitespace(self, str1, str2_fuzzy_whitespace):
"""Check if two strings match, modulo their whitespace."""
str2_fuzzy_whitespace = re.sub('\s+', '\s*', str2_fuzzy_whitespace)
return re.search(str2_fuzzy_whitespace, str1) is not None | [
"def",
"string_matches_sans_whitespace",
"(",
"self",
",",
"str1",
",",
"str2_fuzzy_whitespace",
")",
":",
"str2_fuzzy_whitespace",
"=",
"re",
".",
"sub",
"(",
"'\\s+'",
",",
"'\\s*'",
",",
"str2_fuzzy_whitespace",
")",
"return",
"re",
".",
"search",
"(",
"str2_fuzzy_whitespace",
",",
"str1",
")",
"is",
"not",
"None"
]
| Check if two strings match, modulo their whitespace. | [
"Check",
"if",
"two",
"strings",
"match",
"modulo",
"their",
"whitespace",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/sources/geneways/find_full_text_sentence.py#L137-L140 | train |
sorgerlab/indra | indra/sources/geneways/find_full_text_sentence.py | FullTextMention.sentence_matches | def sentence_matches(self, sentence_text):
"""Returns true iff the sentence contains this mention's upstream
and downstream participants, and if one of the stemmed verbs in
the sentence is the same as the stemmed action type."""
has_upstream = False
has_downstream = False
has_verb = False
# Get the first word of the action type and assume this is the verb
# (Ex. get depends for depends on)
actiontype_words = word_tokenize(self.mention.actiontype)
actiontype_verb_stemmed = stem(actiontype_words[0])
words = word_tokenize(sentence_text)
if self.string_matches_sans_whitespace(sentence_text.lower(),
self.mention.upstream.lower()):
has_upstream = True
if self.string_matches_sans_whitespace(sentence_text.lower(),
self.mention.downstream.lower()):
has_downstream = True
for word in words:
if actiontype_verb_stemmed == stem(word):
has_verb = True
return has_upstream and has_downstream and has_verb | python | def sentence_matches(self, sentence_text):
"""Returns true iff the sentence contains this mention's upstream
and downstream participants, and if one of the stemmed verbs in
the sentence is the same as the stemmed action type."""
has_upstream = False
has_downstream = False
has_verb = False
# Get the first word of the action type and assume this is the verb
# (Ex. get depends for depends on)
actiontype_words = word_tokenize(self.mention.actiontype)
actiontype_verb_stemmed = stem(actiontype_words[0])
words = word_tokenize(sentence_text)
if self.string_matches_sans_whitespace(sentence_text.lower(),
self.mention.upstream.lower()):
has_upstream = True
if self.string_matches_sans_whitespace(sentence_text.lower(),
self.mention.downstream.lower()):
has_downstream = True
for word in words:
if actiontype_verb_stemmed == stem(word):
has_verb = True
return has_upstream and has_downstream and has_verb | [
"def",
"sentence_matches",
"(",
"self",
",",
"sentence_text",
")",
":",
"has_upstream",
"=",
"False",
"has_downstream",
"=",
"False",
"has_verb",
"=",
"False",
"# Get the first word of the action type and assume this is the verb",
"# (Ex. get depends for depends on)",
"actiontype_words",
"=",
"word_tokenize",
"(",
"self",
".",
"mention",
".",
"actiontype",
")",
"actiontype_verb_stemmed",
"=",
"stem",
"(",
"actiontype_words",
"[",
"0",
"]",
")",
"words",
"=",
"word_tokenize",
"(",
"sentence_text",
")",
"if",
"self",
".",
"string_matches_sans_whitespace",
"(",
"sentence_text",
".",
"lower",
"(",
")",
",",
"self",
".",
"mention",
".",
"upstream",
".",
"lower",
"(",
")",
")",
":",
"has_upstream",
"=",
"True",
"if",
"self",
".",
"string_matches_sans_whitespace",
"(",
"sentence_text",
".",
"lower",
"(",
")",
",",
"self",
".",
"mention",
".",
"downstream",
".",
"lower",
"(",
")",
")",
":",
"has_downstream",
"=",
"True",
"for",
"word",
"in",
"words",
":",
"if",
"actiontype_verb_stemmed",
"==",
"stem",
"(",
"word",
")",
":",
"has_verb",
"=",
"True",
"return",
"has_upstream",
"and",
"has_downstream",
"and",
"has_verb"
]
| Returns true iff the sentence contains this mention's upstream
and downstream participants, and if one of the stemmed verbs in
the sentence is the same as the stemmed action type. | [
"Returns",
"true",
"iff",
"the",
"sentence",
"contains",
"this",
"mention",
"s",
"upstream",
"and",
"downstream",
"participants",
"and",
"if",
"one",
"of",
"the",
"stemmed",
"verbs",
"in",
"the",
"sentence",
"is",
"the",
"same",
"as",
"the",
"stemmed",
"action",
"type",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/sources/geneways/find_full_text_sentence.py#L142-L169 | train |
sorgerlab/indra | indra/databases/__init__.py | get_identifiers_url | def get_identifiers_url(db_name, db_id):
"""Return an identifiers.org URL for a given database name and ID.
Parameters
----------
db_name : str
An internal database name: HGNC, UP, CHEBI, etc.
db_id : str
An identifier in the given database.
Returns
-------
url : str
An identifiers.org URL corresponding to the given database name and ID.
"""
identifiers_url = 'http://identifiers.org/'
bel_scai_url = 'https://arty.scai.fraunhofer.de/artifactory/bel/namespace/'
if db_name == 'UP':
url = identifiers_url + 'uniprot/%s' % db_id
elif db_name == 'HGNC':
url = identifiers_url + 'hgnc/HGNC:%s' % db_id
elif db_name == 'IP':
url = identifiers_url + 'interpro/%s' % db_id
elif db_name == 'IPR':
url = identifiers_url + 'interpro/%s' % db_id
elif db_name == 'CHEBI':
url = identifiers_url + 'chebi/%s' % db_id
elif db_name == 'NCIT':
url = identifiers_url + 'ncit/%s' % db_id
elif db_name == 'GO':
if db_id.startswith('GO:'):
url = identifiers_url + 'go/%s' % db_id
else:
url = identifiers_url + 'go/GO:%s' % db_id
elif db_name in ('PUBCHEM', 'PCID'): # Assuming PCID = PubChem compound ID
if db_id.startswith('PUBCHEM:'):
db_id = db_id[8:]
elif db_id.startswith('PCID:'):
db_id = db_id[5:]
url = identifiers_url + 'pubchem.compound/%s' % db_id
elif db_name == 'PF':
url = identifiers_url + 'pfam/%s' % db_id
elif db_name == 'MIRBASEM':
url = identifiers_url + 'mirbase.mature/%s' % db_id
elif db_name == 'MIRBASE':
url = identifiers_url + 'mirbase/%s' % db_id
elif db_name == 'MESH':
url = identifiers_url + 'mesh/%s' % db_id
elif db_name == 'EGID':
url = identifiers_url + 'ncbigene/%s' % db_id
elif db_name == 'HMDB':
url = identifiers_url + 'hmdb/%s' % db_id
elif db_name == 'LINCS':
if db_id.startswith('LSM-'): # Lincs Small Molecule ID
url = identifiers_url + 'lincs.smallmolecule/%s' % db_id
elif db_id.startswith('LCL-'): # Lincs Cell Line ID
url = identifiers_url + 'lincs.cell/%s' % db_id
else: # Assume LINCS Protein
url = identifiers_url + 'lincs.protein/%s' % db_id
elif db_name == 'HMS-LINCS':
url = 'http://lincs.hms.harvard.edu/db/sm/%s-101' % db_id
# Special cases with no identifiers entry
elif db_name == 'SCHEM':
url = bel_scai_url + 'selventa-legacy-chemicals/' + \
'selventa-legacy-chemicals-20150601.belns'
elif db_name == 'SCOMP':
url = bel_scai_url + 'selventa-named-complexes/' + \
'selventa-named-complexes-20150601.belns'
elif db_name == 'SFAM':
url = bel_scai_url + 'selventa-protein-families/' + \
'selventa-protein-families-20150601.belns'
elif db_name == 'FPLX':
url = 'http://identifiers.org/fplx/%s' % db_id
elif db_name == 'LNCRNADB':
if db_id.startswith('ENSG'):
url = 'http://www.lncrnadb.org/search/?q=%s' % db_id
else: # Assmuing HGNC symbol
url = 'http://www.lncrnadb.org/%s/' % db_id
elif db_name == 'NXPFA':
url = 'https://www.nextprot.org/term/FA-%s' % db_id
elif db_name in ('UN', 'WDI', 'FAO'):
url = 'https://github.com/clulab/eidos/wiki/JSON-LD#Grounding/%s' % \
db_id
elif db_name == 'HUME':
url = ('https://github.com/BBN-E/Hume/blob/master/resource/ontologies/'
'hume_ontology/%s' % db_id)
elif db_name == 'CWMS':
url = 'http://trips.ihmc.us/%s' % db_id
elif db_name == 'SIGNOR': # Assuming db_id == Primary ID
url = 'https://signor.uniroma2.it/relation_result.php?id=%s' % db_id
elif db_name == 'SOFIA':
url = 'http://cs.cmu.edu/sofia/%s' % db_id
elif db_name == 'CHEMBL':
if not db_id.startswith('CHEMBL'):
db_id = 'CHEMBL%s' % db_id
url = identifiers_url + 'chembl.compound/%s' % db_id
elif db_name == 'NONCODE':
url = 'http://www.noncode.org/show_gene.php?id=NONHSAG%s' % db_id
elif db_name == 'TEXT':
return None
else:
logger.warning('Unhandled name space %s' % db_name)
url = None
return url | python | def get_identifiers_url(db_name, db_id):
"""Return an identifiers.org URL for a given database name and ID.
Parameters
----------
db_name : str
An internal database name: HGNC, UP, CHEBI, etc.
db_id : str
An identifier in the given database.
Returns
-------
url : str
An identifiers.org URL corresponding to the given database name and ID.
"""
identifiers_url = 'http://identifiers.org/'
bel_scai_url = 'https://arty.scai.fraunhofer.de/artifactory/bel/namespace/'
if db_name == 'UP':
url = identifiers_url + 'uniprot/%s' % db_id
elif db_name == 'HGNC':
url = identifiers_url + 'hgnc/HGNC:%s' % db_id
elif db_name == 'IP':
url = identifiers_url + 'interpro/%s' % db_id
elif db_name == 'IPR':
url = identifiers_url + 'interpro/%s' % db_id
elif db_name == 'CHEBI':
url = identifiers_url + 'chebi/%s' % db_id
elif db_name == 'NCIT':
url = identifiers_url + 'ncit/%s' % db_id
elif db_name == 'GO':
if db_id.startswith('GO:'):
url = identifiers_url + 'go/%s' % db_id
else:
url = identifiers_url + 'go/GO:%s' % db_id
elif db_name in ('PUBCHEM', 'PCID'): # Assuming PCID = PubChem compound ID
if db_id.startswith('PUBCHEM:'):
db_id = db_id[8:]
elif db_id.startswith('PCID:'):
db_id = db_id[5:]
url = identifiers_url + 'pubchem.compound/%s' % db_id
elif db_name == 'PF':
url = identifiers_url + 'pfam/%s' % db_id
elif db_name == 'MIRBASEM':
url = identifiers_url + 'mirbase.mature/%s' % db_id
elif db_name == 'MIRBASE':
url = identifiers_url + 'mirbase/%s' % db_id
elif db_name == 'MESH':
url = identifiers_url + 'mesh/%s' % db_id
elif db_name == 'EGID':
url = identifiers_url + 'ncbigene/%s' % db_id
elif db_name == 'HMDB':
url = identifiers_url + 'hmdb/%s' % db_id
elif db_name == 'LINCS':
if db_id.startswith('LSM-'): # Lincs Small Molecule ID
url = identifiers_url + 'lincs.smallmolecule/%s' % db_id
elif db_id.startswith('LCL-'): # Lincs Cell Line ID
url = identifiers_url + 'lincs.cell/%s' % db_id
else: # Assume LINCS Protein
url = identifiers_url + 'lincs.protein/%s' % db_id
elif db_name == 'HMS-LINCS':
url = 'http://lincs.hms.harvard.edu/db/sm/%s-101' % db_id
# Special cases with no identifiers entry
elif db_name == 'SCHEM':
url = bel_scai_url + 'selventa-legacy-chemicals/' + \
'selventa-legacy-chemicals-20150601.belns'
elif db_name == 'SCOMP':
url = bel_scai_url + 'selventa-named-complexes/' + \
'selventa-named-complexes-20150601.belns'
elif db_name == 'SFAM':
url = bel_scai_url + 'selventa-protein-families/' + \
'selventa-protein-families-20150601.belns'
elif db_name == 'FPLX':
url = 'http://identifiers.org/fplx/%s' % db_id
elif db_name == 'LNCRNADB':
if db_id.startswith('ENSG'):
url = 'http://www.lncrnadb.org/search/?q=%s' % db_id
else: # Assmuing HGNC symbol
url = 'http://www.lncrnadb.org/%s/' % db_id
elif db_name == 'NXPFA':
url = 'https://www.nextprot.org/term/FA-%s' % db_id
elif db_name in ('UN', 'WDI', 'FAO'):
url = 'https://github.com/clulab/eidos/wiki/JSON-LD#Grounding/%s' % \
db_id
elif db_name == 'HUME':
url = ('https://github.com/BBN-E/Hume/blob/master/resource/ontologies/'
'hume_ontology/%s' % db_id)
elif db_name == 'CWMS':
url = 'http://trips.ihmc.us/%s' % db_id
elif db_name == 'SIGNOR': # Assuming db_id == Primary ID
url = 'https://signor.uniroma2.it/relation_result.php?id=%s' % db_id
elif db_name == 'SOFIA':
url = 'http://cs.cmu.edu/sofia/%s' % db_id
elif db_name == 'CHEMBL':
if not db_id.startswith('CHEMBL'):
db_id = 'CHEMBL%s' % db_id
url = identifiers_url + 'chembl.compound/%s' % db_id
elif db_name == 'NONCODE':
url = 'http://www.noncode.org/show_gene.php?id=NONHSAG%s' % db_id
elif db_name == 'TEXT':
return None
else:
logger.warning('Unhandled name space %s' % db_name)
url = None
return url | [
"def",
"get_identifiers_url",
"(",
"db_name",
",",
"db_id",
")",
":",
"identifiers_url",
"=",
"'http://identifiers.org/'",
"bel_scai_url",
"=",
"'https://arty.scai.fraunhofer.de/artifactory/bel/namespace/'",
"if",
"db_name",
"==",
"'UP'",
":",
"url",
"=",
"identifiers_url",
"+",
"'uniprot/%s'",
"%",
"db_id",
"elif",
"db_name",
"==",
"'HGNC'",
":",
"url",
"=",
"identifiers_url",
"+",
"'hgnc/HGNC:%s'",
"%",
"db_id",
"elif",
"db_name",
"==",
"'IP'",
":",
"url",
"=",
"identifiers_url",
"+",
"'interpro/%s'",
"%",
"db_id",
"elif",
"db_name",
"==",
"'IPR'",
":",
"url",
"=",
"identifiers_url",
"+",
"'interpro/%s'",
"%",
"db_id",
"elif",
"db_name",
"==",
"'CHEBI'",
":",
"url",
"=",
"identifiers_url",
"+",
"'chebi/%s'",
"%",
"db_id",
"elif",
"db_name",
"==",
"'NCIT'",
":",
"url",
"=",
"identifiers_url",
"+",
"'ncit/%s'",
"%",
"db_id",
"elif",
"db_name",
"==",
"'GO'",
":",
"if",
"db_id",
".",
"startswith",
"(",
"'GO:'",
")",
":",
"url",
"=",
"identifiers_url",
"+",
"'go/%s'",
"%",
"db_id",
"else",
":",
"url",
"=",
"identifiers_url",
"+",
"'go/GO:%s'",
"%",
"db_id",
"elif",
"db_name",
"in",
"(",
"'PUBCHEM'",
",",
"'PCID'",
")",
":",
"# Assuming PCID = PubChem compound ID",
"if",
"db_id",
".",
"startswith",
"(",
"'PUBCHEM:'",
")",
":",
"db_id",
"=",
"db_id",
"[",
"8",
":",
"]",
"elif",
"db_id",
".",
"startswith",
"(",
"'PCID:'",
")",
":",
"db_id",
"=",
"db_id",
"[",
"5",
":",
"]",
"url",
"=",
"identifiers_url",
"+",
"'pubchem.compound/%s'",
"%",
"db_id",
"elif",
"db_name",
"==",
"'PF'",
":",
"url",
"=",
"identifiers_url",
"+",
"'pfam/%s'",
"%",
"db_id",
"elif",
"db_name",
"==",
"'MIRBASEM'",
":",
"url",
"=",
"identifiers_url",
"+",
"'mirbase.mature/%s'",
"%",
"db_id",
"elif",
"db_name",
"==",
"'MIRBASE'",
":",
"url",
"=",
"identifiers_url",
"+",
"'mirbase/%s'",
"%",
"db_id",
"elif",
"db_name",
"==",
"'MESH'",
":",
"url",
"=",
"identifiers_url",
"+",
"'mesh/%s'",
"%",
"db_id",
"elif",
"db_name",
"==",
"'EGID'",
":",
"url",
"=",
"identifiers_url",
"+",
"'ncbigene/%s'",
"%",
"db_id",
"elif",
"db_name",
"==",
"'HMDB'",
":",
"url",
"=",
"identifiers_url",
"+",
"'hmdb/%s'",
"%",
"db_id",
"elif",
"db_name",
"==",
"'LINCS'",
":",
"if",
"db_id",
".",
"startswith",
"(",
"'LSM-'",
")",
":",
"# Lincs Small Molecule ID",
"url",
"=",
"identifiers_url",
"+",
"'lincs.smallmolecule/%s'",
"%",
"db_id",
"elif",
"db_id",
".",
"startswith",
"(",
"'LCL-'",
")",
":",
"# Lincs Cell Line ID",
"url",
"=",
"identifiers_url",
"+",
"'lincs.cell/%s'",
"%",
"db_id",
"else",
":",
"# Assume LINCS Protein",
"url",
"=",
"identifiers_url",
"+",
"'lincs.protein/%s'",
"%",
"db_id",
"elif",
"db_name",
"==",
"'HMS-LINCS'",
":",
"url",
"=",
"'http://lincs.hms.harvard.edu/db/sm/%s-101'",
"%",
"db_id",
"# Special cases with no identifiers entry",
"elif",
"db_name",
"==",
"'SCHEM'",
":",
"url",
"=",
"bel_scai_url",
"+",
"'selventa-legacy-chemicals/'",
"+",
"'selventa-legacy-chemicals-20150601.belns'",
"elif",
"db_name",
"==",
"'SCOMP'",
":",
"url",
"=",
"bel_scai_url",
"+",
"'selventa-named-complexes/'",
"+",
"'selventa-named-complexes-20150601.belns'",
"elif",
"db_name",
"==",
"'SFAM'",
":",
"url",
"=",
"bel_scai_url",
"+",
"'selventa-protein-families/'",
"+",
"'selventa-protein-families-20150601.belns'",
"elif",
"db_name",
"==",
"'FPLX'",
":",
"url",
"=",
"'http://identifiers.org/fplx/%s'",
"%",
"db_id",
"elif",
"db_name",
"==",
"'LNCRNADB'",
":",
"if",
"db_id",
".",
"startswith",
"(",
"'ENSG'",
")",
":",
"url",
"=",
"'http://www.lncrnadb.org/search/?q=%s'",
"%",
"db_id",
"else",
":",
"# Assmuing HGNC symbol",
"url",
"=",
"'http://www.lncrnadb.org/%s/'",
"%",
"db_id",
"elif",
"db_name",
"==",
"'NXPFA'",
":",
"url",
"=",
"'https://www.nextprot.org/term/FA-%s'",
"%",
"db_id",
"elif",
"db_name",
"in",
"(",
"'UN'",
",",
"'WDI'",
",",
"'FAO'",
")",
":",
"url",
"=",
"'https://github.com/clulab/eidos/wiki/JSON-LD#Grounding/%s'",
"%",
"db_id",
"elif",
"db_name",
"==",
"'HUME'",
":",
"url",
"=",
"(",
"'https://github.com/BBN-E/Hume/blob/master/resource/ontologies/'",
"'hume_ontology/%s'",
"%",
"db_id",
")",
"elif",
"db_name",
"==",
"'CWMS'",
":",
"url",
"=",
"'http://trips.ihmc.us/%s'",
"%",
"db_id",
"elif",
"db_name",
"==",
"'SIGNOR'",
":",
"# Assuming db_id == Primary ID",
"url",
"=",
"'https://signor.uniroma2.it/relation_result.php?id=%s'",
"%",
"db_id",
"elif",
"db_name",
"==",
"'SOFIA'",
":",
"url",
"=",
"'http://cs.cmu.edu/sofia/%s'",
"%",
"db_id",
"elif",
"db_name",
"==",
"'CHEMBL'",
":",
"if",
"not",
"db_id",
".",
"startswith",
"(",
"'CHEMBL'",
")",
":",
"db_id",
"=",
"'CHEMBL%s'",
"%",
"db_id",
"url",
"=",
"identifiers_url",
"+",
"'chembl.compound/%s'",
"%",
"db_id",
"elif",
"db_name",
"==",
"'NONCODE'",
":",
"url",
"=",
"'http://www.noncode.org/show_gene.php?id=NONHSAG%s'",
"%",
"db_id",
"elif",
"db_name",
"==",
"'TEXT'",
":",
"return",
"None",
"else",
":",
"logger",
".",
"warning",
"(",
"'Unhandled name space %s'",
"%",
"db_name",
")",
"url",
"=",
"None",
"return",
"url"
]
| Return an identifiers.org URL for a given database name and ID.
Parameters
----------
db_name : str
An internal database name: HGNC, UP, CHEBI, etc.
db_id : str
An identifier in the given database.
Returns
-------
url : str
An identifiers.org URL corresponding to the given database name and ID. | [
"Return",
"an",
"identifiers",
".",
"org",
"URL",
"for",
"a",
"given",
"database",
"name",
"and",
"ID",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/databases/__init__.py#L6-L110 | train |
sorgerlab/indra | indra/tools/assemble_corpus.py | dump_statements | def dump_statements(stmts, fname, protocol=4):
"""Dump a list of statements into a pickle file.
Parameters
----------
fname : str
The name of the pickle file to dump statements into.
protocol : Optional[int]
The pickle protocol to use (use 2 for Python 2 compatibility).
Default: 4
"""
logger.info('Dumping %d statements into %s...' % (len(stmts), fname))
with open(fname, 'wb') as fh:
pickle.dump(stmts, fh, protocol=protocol) | python | def dump_statements(stmts, fname, protocol=4):
"""Dump a list of statements into a pickle file.
Parameters
----------
fname : str
The name of the pickle file to dump statements into.
protocol : Optional[int]
The pickle protocol to use (use 2 for Python 2 compatibility).
Default: 4
"""
logger.info('Dumping %d statements into %s...' % (len(stmts), fname))
with open(fname, 'wb') as fh:
pickle.dump(stmts, fh, protocol=protocol) | [
"def",
"dump_statements",
"(",
"stmts",
",",
"fname",
",",
"protocol",
"=",
"4",
")",
":",
"logger",
".",
"info",
"(",
"'Dumping %d statements into %s...'",
"%",
"(",
"len",
"(",
"stmts",
")",
",",
"fname",
")",
")",
"with",
"open",
"(",
"fname",
",",
"'wb'",
")",
"as",
"fh",
":",
"pickle",
".",
"dump",
"(",
"stmts",
",",
"fh",
",",
"protocol",
"=",
"protocol",
")"
]
| Dump a list of statements into a pickle file.
Parameters
----------
fname : str
The name of the pickle file to dump statements into.
protocol : Optional[int]
The pickle protocol to use (use 2 for Python 2 compatibility).
Default: 4 | [
"Dump",
"a",
"list",
"of",
"statements",
"into",
"a",
"pickle",
"file",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/tools/assemble_corpus.py#L27-L40 | train |
sorgerlab/indra | indra/tools/assemble_corpus.py | load_statements | def load_statements(fname, as_dict=False):
"""Load statements from a pickle file.
Parameters
----------
fname : str
The name of the pickle file to load statements from.
as_dict : Optional[bool]
If True and the pickle file contains a dictionary of statements, it
is returned as a dictionary. If False, the statements are always
returned in a list. Default: False
Returns
-------
stmts : list
A list or dict of statements that were loaded.
"""
logger.info('Loading %s...' % fname)
with open(fname, 'rb') as fh:
# Encoding argument not available in pickle for Python 2
if sys.version_info[0] < 3:
stmts = pickle.load(fh)
# Encoding argument specified here to enable compatibility with
# pickle files created with Python 2
else:
stmts = pickle.load(fh, encoding='latin1')
if isinstance(stmts, dict):
if as_dict:
return stmts
st = []
for pmid, st_list in stmts.items():
st += st_list
stmts = st
logger.info('Loaded %d statements' % len(stmts))
return stmts | python | def load_statements(fname, as_dict=False):
"""Load statements from a pickle file.
Parameters
----------
fname : str
The name of the pickle file to load statements from.
as_dict : Optional[bool]
If True and the pickle file contains a dictionary of statements, it
is returned as a dictionary. If False, the statements are always
returned in a list. Default: False
Returns
-------
stmts : list
A list or dict of statements that were loaded.
"""
logger.info('Loading %s...' % fname)
with open(fname, 'rb') as fh:
# Encoding argument not available in pickle for Python 2
if sys.version_info[0] < 3:
stmts = pickle.load(fh)
# Encoding argument specified here to enable compatibility with
# pickle files created with Python 2
else:
stmts = pickle.load(fh, encoding='latin1')
if isinstance(stmts, dict):
if as_dict:
return stmts
st = []
for pmid, st_list in stmts.items():
st += st_list
stmts = st
logger.info('Loaded %d statements' % len(stmts))
return stmts | [
"def",
"load_statements",
"(",
"fname",
",",
"as_dict",
"=",
"False",
")",
":",
"logger",
".",
"info",
"(",
"'Loading %s...'",
"%",
"fname",
")",
"with",
"open",
"(",
"fname",
",",
"'rb'",
")",
"as",
"fh",
":",
"# Encoding argument not available in pickle for Python 2",
"if",
"sys",
".",
"version_info",
"[",
"0",
"]",
"<",
"3",
":",
"stmts",
"=",
"pickle",
".",
"load",
"(",
"fh",
")",
"# Encoding argument specified here to enable compatibility with",
"# pickle files created with Python 2",
"else",
":",
"stmts",
"=",
"pickle",
".",
"load",
"(",
"fh",
",",
"encoding",
"=",
"'latin1'",
")",
"if",
"isinstance",
"(",
"stmts",
",",
"dict",
")",
":",
"if",
"as_dict",
":",
"return",
"stmts",
"st",
"=",
"[",
"]",
"for",
"pmid",
",",
"st_list",
"in",
"stmts",
".",
"items",
"(",
")",
":",
"st",
"+=",
"st_list",
"stmts",
"=",
"st",
"logger",
".",
"info",
"(",
"'Loaded %d statements'",
"%",
"len",
"(",
"stmts",
")",
")",
"return",
"stmts"
]
| Load statements from a pickle file.
Parameters
----------
fname : str
The name of the pickle file to load statements from.
as_dict : Optional[bool]
If True and the pickle file contains a dictionary of statements, it
is returned as a dictionary. If False, the statements are always
returned in a list. Default: False
Returns
-------
stmts : list
A list or dict of statements that were loaded. | [
"Load",
"statements",
"from",
"a",
"pickle",
"file",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/tools/assemble_corpus.py#L43-L78 | train |
sorgerlab/indra | indra/tools/assemble_corpus.py | map_grounding | def map_grounding(stmts_in, **kwargs):
"""Map grounding using the GroundingMapper.
Parameters
----------
stmts_in : list[indra.statements.Statement]
A list of statements to map.
do_rename : Optional[bool]
If True, Agents are renamed based on their mapped grounding.
grounding_map : Optional[dict]
A user supplied grounding map which maps a string to a
dictionary of database IDs (in the format used by Agents'
db_refs).
use_deft : Optional[bool]
If True, Deft will be attempted to be used for acronym disambiguation.
Default: True
save : Optional[str]
The name of a pickle file to save the results (stmts_out) into.
Returns
-------
stmts_out : list[indra.statements.Statement]
A list of mapped statements.
"""
from indra.preassembler.grounding_mapper import GroundingMapper
from indra.preassembler.grounding_mapper import gm as grounding_map
from indra.preassembler.grounding_mapper import \
default_agent_map as agent_map
logger.info('Mapping grounding on %d statements...' % len(stmts_in))
do_rename = kwargs.get('do_rename')
gm = kwargs.get('grounding_map', grounding_map)
if do_rename is None:
do_rename = True
gm = GroundingMapper(gm, agent_map, use_deft=kwargs.get('use_deft', True))
stmts_out = gm.map_agents(stmts_in, do_rename=do_rename)
dump_pkl = kwargs.get('save')
if dump_pkl:
dump_statements(stmts_out, dump_pkl)
return stmts_out | python | def map_grounding(stmts_in, **kwargs):
"""Map grounding using the GroundingMapper.
Parameters
----------
stmts_in : list[indra.statements.Statement]
A list of statements to map.
do_rename : Optional[bool]
If True, Agents are renamed based on their mapped grounding.
grounding_map : Optional[dict]
A user supplied grounding map which maps a string to a
dictionary of database IDs (in the format used by Agents'
db_refs).
use_deft : Optional[bool]
If True, Deft will be attempted to be used for acronym disambiguation.
Default: True
save : Optional[str]
The name of a pickle file to save the results (stmts_out) into.
Returns
-------
stmts_out : list[indra.statements.Statement]
A list of mapped statements.
"""
from indra.preassembler.grounding_mapper import GroundingMapper
from indra.preassembler.grounding_mapper import gm as grounding_map
from indra.preassembler.grounding_mapper import \
default_agent_map as agent_map
logger.info('Mapping grounding on %d statements...' % len(stmts_in))
do_rename = kwargs.get('do_rename')
gm = kwargs.get('grounding_map', grounding_map)
if do_rename is None:
do_rename = True
gm = GroundingMapper(gm, agent_map, use_deft=kwargs.get('use_deft', True))
stmts_out = gm.map_agents(stmts_in, do_rename=do_rename)
dump_pkl = kwargs.get('save')
if dump_pkl:
dump_statements(stmts_out, dump_pkl)
return stmts_out | [
"def",
"map_grounding",
"(",
"stmts_in",
",",
"*",
"*",
"kwargs",
")",
":",
"from",
"indra",
".",
"preassembler",
".",
"grounding_mapper",
"import",
"GroundingMapper",
"from",
"indra",
".",
"preassembler",
".",
"grounding_mapper",
"import",
"gm",
"as",
"grounding_map",
"from",
"indra",
".",
"preassembler",
".",
"grounding_mapper",
"import",
"default_agent_map",
"as",
"agent_map",
"logger",
".",
"info",
"(",
"'Mapping grounding on %d statements...'",
"%",
"len",
"(",
"stmts_in",
")",
")",
"do_rename",
"=",
"kwargs",
".",
"get",
"(",
"'do_rename'",
")",
"gm",
"=",
"kwargs",
".",
"get",
"(",
"'grounding_map'",
",",
"grounding_map",
")",
"if",
"do_rename",
"is",
"None",
":",
"do_rename",
"=",
"True",
"gm",
"=",
"GroundingMapper",
"(",
"gm",
",",
"agent_map",
",",
"use_deft",
"=",
"kwargs",
".",
"get",
"(",
"'use_deft'",
",",
"True",
")",
")",
"stmts_out",
"=",
"gm",
".",
"map_agents",
"(",
"stmts_in",
",",
"do_rename",
"=",
"do_rename",
")",
"dump_pkl",
"=",
"kwargs",
".",
"get",
"(",
"'save'",
")",
"if",
"dump_pkl",
":",
"dump_statements",
"(",
"stmts_out",
",",
"dump_pkl",
")",
"return",
"stmts_out"
]
| Map grounding using the GroundingMapper.
Parameters
----------
stmts_in : list[indra.statements.Statement]
A list of statements to map.
do_rename : Optional[bool]
If True, Agents are renamed based on their mapped grounding.
grounding_map : Optional[dict]
A user supplied grounding map which maps a string to a
dictionary of database IDs (in the format used by Agents'
db_refs).
use_deft : Optional[bool]
If True, Deft will be attempted to be used for acronym disambiguation.
Default: True
save : Optional[str]
The name of a pickle file to save the results (stmts_out) into.
Returns
-------
stmts_out : list[indra.statements.Statement]
A list of mapped statements. | [
"Map",
"grounding",
"using",
"the",
"GroundingMapper",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/tools/assemble_corpus.py#L81-L119 | train |
sorgerlab/indra | indra/tools/assemble_corpus.py | merge_groundings | def merge_groundings(stmts_in):
"""Gather and merge original grounding information from evidences.
Each Statement's evidences are traversed to find original grounding
information. These groundings are then merged into an overall consensus
grounding dict with as much detail as possible.
The current implementation is only applicable to Statements whose
concept/agent roles are fixed. Complexes, Associations and Conversions
cannot be handled correctly.
Parameters
----------
stmts_in : list[indra.statements.Statement]
A list of INDRA Statements whose groundings should be merged. These
Statements are meant to have been preassembled and potentially have
multiple pieces of evidence.
Returns
-------
stmts_out : list[indra.statements.Statement]
The list of Statements now with groundings merged at the Statement
level.
"""
def surface_grounding(stmt):
# Find the "best" grounding for a given concept and its evidences
# and surface that
for idx, concept in enumerate(stmt.agent_list()):
if concept is None:
continue
aggregate_groundings = {}
for ev in stmt.evidence:
if 'agents' in ev.annotations:
groundings = ev.annotations['agents']['raw_grounding'][idx]
for ns, value in groundings.items():
if ns not in aggregate_groundings:
aggregate_groundings[ns] = []
if isinstance(value, list):
aggregate_groundings[ns] += value
else:
aggregate_groundings[ns].append(value)
best_groundings = get_best_groundings(aggregate_groundings)
concept.db_refs = best_groundings
def get_best_groundings(aggregate_groundings):
best_groundings = {}
for ns, values in aggregate_groundings.items():
# There are 3 possibilities here
# 1. All the entries in the list are scored in which case we
# get unique entries and sort them by score
if all([isinstance(v, (tuple, list)) for v in values]):
best_groundings[ns] = []
for unique_value in {v[0] for v in values}:
scores = [v[1] for v in values if v[0] == unique_value]
best_groundings[ns].append((unique_value, max(scores)))
best_groundings[ns] = \
sorted(best_groundings[ns], key=lambda x: x[1],
reverse=True)
# 2. All the entries in the list are unscored in which case we
# get the highest frequency entry
elif all([not isinstance(v, (tuple, list)) for v in values]):
best_groundings[ns] = max(set(values), key=values.count)
# 3. There is a mixture, which can happen when some entries were
# mapped with scores and others had no scores to begin with.
# In this case, we again pick the highest frequency non-scored
# entry assuming that the unmapped version is more reliable.
else:
unscored_vals = [v for v in values
if not isinstance(v, (tuple, list))]
best_groundings[ns] = max(set(unscored_vals),
key=unscored_vals.count)
return best_groundings
stmts_out = []
for stmt in stmts_in:
if not isinstance(stmt, (Complex, Conversion)):
surface_grounding(stmt)
stmts_out.append(stmt)
return stmts_out | python | def merge_groundings(stmts_in):
"""Gather and merge original grounding information from evidences.
Each Statement's evidences are traversed to find original grounding
information. These groundings are then merged into an overall consensus
grounding dict with as much detail as possible.
The current implementation is only applicable to Statements whose
concept/agent roles are fixed. Complexes, Associations and Conversions
cannot be handled correctly.
Parameters
----------
stmts_in : list[indra.statements.Statement]
A list of INDRA Statements whose groundings should be merged. These
Statements are meant to have been preassembled and potentially have
multiple pieces of evidence.
Returns
-------
stmts_out : list[indra.statements.Statement]
The list of Statements now with groundings merged at the Statement
level.
"""
def surface_grounding(stmt):
# Find the "best" grounding for a given concept and its evidences
# and surface that
for idx, concept in enumerate(stmt.agent_list()):
if concept is None:
continue
aggregate_groundings = {}
for ev in stmt.evidence:
if 'agents' in ev.annotations:
groundings = ev.annotations['agents']['raw_grounding'][idx]
for ns, value in groundings.items():
if ns not in aggregate_groundings:
aggregate_groundings[ns] = []
if isinstance(value, list):
aggregate_groundings[ns] += value
else:
aggregate_groundings[ns].append(value)
best_groundings = get_best_groundings(aggregate_groundings)
concept.db_refs = best_groundings
def get_best_groundings(aggregate_groundings):
best_groundings = {}
for ns, values in aggregate_groundings.items():
# There are 3 possibilities here
# 1. All the entries in the list are scored in which case we
# get unique entries and sort them by score
if all([isinstance(v, (tuple, list)) for v in values]):
best_groundings[ns] = []
for unique_value in {v[0] for v in values}:
scores = [v[1] for v in values if v[0] == unique_value]
best_groundings[ns].append((unique_value, max(scores)))
best_groundings[ns] = \
sorted(best_groundings[ns], key=lambda x: x[1],
reverse=True)
# 2. All the entries in the list are unscored in which case we
# get the highest frequency entry
elif all([not isinstance(v, (tuple, list)) for v in values]):
best_groundings[ns] = max(set(values), key=values.count)
# 3. There is a mixture, which can happen when some entries were
# mapped with scores and others had no scores to begin with.
# In this case, we again pick the highest frequency non-scored
# entry assuming that the unmapped version is more reliable.
else:
unscored_vals = [v for v in values
if not isinstance(v, (tuple, list))]
best_groundings[ns] = max(set(unscored_vals),
key=unscored_vals.count)
return best_groundings
stmts_out = []
for stmt in stmts_in:
if not isinstance(stmt, (Complex, Conversion)):
surface_grounding(stmt)
stmts_out.append(stmt)
return stmts_out | [
"def",
"merge_groundings",
"(",
"stmts_in",
")",
":",
"def",
"surface_grounding",
"(",
"stmt",
")",
":",
"# Find the \"best\" grounding for a given concept and its evidences",
"# and surface that",
"for",
"idx",
",",
"concept",
"in",
"enumerate",
"(",
"stmt",
".",
"agent_list",
"(",
")",
")",
":",
"if",
"concept",
"is",
"None",
":",
"continue",
"aggregate_groundings",
"=",
"{",
"}",
"for",
"ev",
"in",
"stmt",
".",
"evidence",
":",
"if",
"'agents'",
"in",
"ev",
".",
"annotations",
":",
"groundings",
"=",
"ev",
".",
"annotations",
"[",
"'agents'",
"]",
"[",
"'raw_grounding'",
"]",
"[",
"idx",
"]",
"for",
"ns",
",",
"value",
"in",
"groundings",
".",
"items",
"(",
")",
":",
"if",
"ns",
"not",
"in",
"aggregate_groundings",
":",
"aggregate_groundings",
"[",
"ns",
"]",
"=",
"[",
"]",
"if",
"isinstance",
"(",
"value",
",",
"list",
")",
":",
"aggregate_groundings",
"[",
"ns",
"]",
"+=",
"value",
"else",
":",
"aggregate_groundings",
"[",
"ns",
"]",
".",
"append",
"(",
"value",
")",
"best_groundings",
"=",
"get_best_groundings",
"(",
"aggregate_groundings",
")",
"concept",
".",
"db_refs",
"=",
"best_groundings",
"def",
"get_best_groundings",
"(",
"aggregate_groundings",
")",
":",
"best_groundings",
"=",
"{",
"}",
"for",
"ns",
",",
"values",
"in",
"aggregate_groundings",
".",
"items",
"(",
")",
":",
"# There are 3 possibilities here",
"# 1. All the entries in the list are scored in which case we",
"# get unique entries and sort them by score",
"if",
"all",
"(",
"[",
"isinstance",
"(",
"v",
",",
"(",
"tuple",
",",
"list",
")",
")",
"for",
"v",
"in",
"values",
"]",
")",
":",
"best_groundings",
"[",
"ns",
"]",
"=",
"[",
"]",
"for",
"unique_value",
"in",
"{",
"v",
"[",
"0",
"]",
"for",
"v",
"in",
"values",
"}",
":",
"scores",
"=",
"[",
"v",
"[",
"1",
"]",
"for",
"v",
"in",
"values",
"if",
"v",
"[",
"0",
"]",
"==",
"unique_value",
"]",
"best_groundings",
"[",
"ns",
"]",
".",
"append",
"(",
"(",
"unique_value",
",",
"max",
"(",
"scores",
")",
")",
")",
"best_groundings",
"[",
"ns",
"]",
"=",
"sorted",
"(",
"best_groundings",
"[",
"ns",
"]",
",",
"key",
"=",
"lambda",
"x",
":",
"x",
"[",
"1",
"]",
",",
"reverse",
"=",
"True",
")",
"# 2. All the entries in the list are unscored in which case we",
"# get the highest frequency entry",
"elif",
"all",
"(",
"[",
"not",
"isinstance",
"(",
"v",
",",
"(",
"tuple",
",",
"list",
")",
")",
"for",
"v",
"in",
"values",
"]",
")",
":",
"best_groundings",
"[",
"ns",
"]",
"=",
"max",
"(",
"set",
"(",
"values",
")",
",",
"key",
"=",
"values",
".",
"count",
")",
"# 3. There is a mixture, which can happen when some entries were",
"# mapped with scores and others had no scores to begin with.",
"# In this case, we again pick the highest frequency non-scored",
"# entry assuming that the unmapped version is more reliable.",
"else",
":",
"unscored_vals",
"=",
"[",
"v",
"for",
"v",
"in",
"values",
"if",
"not",
"isinstance",
"(",
"v",
",",
"(",
"tuple",
",",
"list",
")",
")",
"]",
"best_groundings",
"[",
"ns",
"]",
"=",
"max",
"(",
"set",
"(",
"unscored_vals",
")",
",",
"key",
"=",
"unscored_vals",
".",
"count",
")",
"return",
"best_groundings",
"stmts_out",
"=",
"[",
"]",
"for",
"stmt",
"in",
"stmts_in",
":",
"if",
"not",
"isinstance",
"(",
"stmt",
",",
"(",
"Complex",
",",
"Conversion",
")",
")",
":",
"surface_grounding",
"(",
"stmt",
")",
"stmts_out",
".",
"append",
"(",
"stmt",
")",
"return",
"stmts_out"
]
| Gather and merge original grounding information from evidences.
Each Statement's evidences are traversed to find original grounding
information. These groundings are then merged into an overall consensus
grounding dict with as much detail as possible.
The current implementation is only applicable to Statements whose
concept/agent roles are fixed. Complexes, Associations and Conversions
cannot be handled correctly.
Parameters
----------
stmts_in : list[indra.statements.Statement]
A list of INDRA Statements whose groundings should be merged. These
Statements are meant to have been preassembled and potentially have
multiple pieces of evidence.
Returns
-------
stmts_out : list[indra.statements.Statement]
The list of Statements now with groundings merged at the Statement
level. | [
"Gather",
"and",
"merge",
"original",
"grounding",
"information",
"from",
"evidences",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/tools/assemble_corpus.py#L122-L201 | train |
sorgerlab/indra | indra/tools/assemble_corpus.py | merge_deltas | def merge_deltas(stmts_in):
"""Gather and merge original Influence delta information from evidence.
This function is only applicable to Influence Statements that have
subj and obj deltas. All other statement types are passed through unchanged.
Polarities and adjectives for subjects and objects respectivey are
collected and merged by travesrsing all evidences of a Statement.
Parameters
----------
stmts_in : list[indra.statements.Statement]
A list of INDRA Statements whose influence deltas should be merged.
These Statements are meant to have been preassembled and potentially
have multiple pieces of evidence.
Returns
-------
stmts_out : list[indra.statements.Statement]
The list of Statements now with deltas merged at the Statement
level.
"""
stmts_out = []
for stmt in stmts_in:
# This operation is only applicable to Influences
if not isinstance(stmt, Influence):
stmts_out.append(stmt)
continue
# At this point this is guaranteed to be an Influence
deltas = {}
for role in ('subj', 'obj'):
for info in ('polarity', 'adjectives'):
key = (role, info)
deltas[key] = []
for ev in stmt.evidence:
entry = ev.annotations.get('%s_%s' % key)
deltas[key].append(entry if entry else None)
# POLARITY
# For polarity we need to work in pairs
polarity_pairs = list(zip(deltas[('subj', 'polarity')],
deltas[('obj', 'polarity')]))
# If we have some fully defined pairs, we take the most common one
both_pols = [pair for pair in polarity_pairs if pair[0] is not None and
pair[1] is not None]
if both_pols:
subj_pol, obj_pol = max(set(both_pols), key=both_pols.count)
stmt.subj.delta['polarity'] = subj_pol
stmt.obj.delta['polarity'] = obj_pol
# Otherwise we prefer the case when at least one entry of the
# pair is given
else:
one_pol = [pair for pair in polarity_pairs if pair[0] is not None or
pair[1] is not None]
if one_pol:
subj_pol, obj_pol = max(set(one_pol), key=one_pol.count)
stmt.subj.delta['polarity'] = subj_pol
stmt.obj.delta['polarity'] = obj_pol
# ADJECTIVES
for attr, role in ((stmt.subj.delta, 'subj'), (stmt.obj.delta, 'obj')):
all_adjectives = []
for adj in deltas[(role, 'adjectives')]:
if isinstance(adj, list):
all_adjectives += adj
elif adj is not None:
all_adjectives.append(adj)
attr['adjectives'] = all_adjectives
stmts_out.append(stmt)
return stmts_out | python | def merge_deltas(stmts_in):
"""Gather and merge original Influence delta information from evidence.
This function is only applicable to Influence Statements that have
subj and obj deltas. All other statement types are passed through unchanged.
Polarities and adjectives for subjects and objects respectivey are
collected and merged by travesrsing all evidences of a Statement.
Parameters
----------
stmts_in : list[indra.statements.Statement]
A list of INDRA Statements whose influence deltas should be merged.
These Statements are meant to have been preassembled and potentially
have multiple pieces of evidence.
Returns
-------
stmts_out : list[indra.statements.Statement]
The list of Statements now with deltas merged at the Statement
level.
"""
stmts_out = []
for stmt in stmts_in:
# This operation is only applicable to Influences
if not isinstance(stmt, Influence):
stmts_out.append(stmt)
continue
# At this point this is guaranteed to be an Influence
deltas = {}
for role in ('subj', 'obj'):
for info in ('polarity', 'adjectives'):
key = (role, info)
deltas[key] = []
for ev in stmt.evidence:
entry = ev.annotations.get('%s_%s' % key)
deltas[key].append(entry if entry else None)
# POLARITY
# For polarity we need to work in pairs
polarity_pairs = list(zip(deltas[('subj', 'polarity')],
deltas[('obj', 'polarity')]))
# If we have some fully defined pairs, we take the most common one
both_pols = [pair for pair in polarity_pairs if pair[0] is not None and
pair[1] is not None]
if both_pols:
subj_pol, obj_pol = max(set(both_pols), key=both_pols.count)
stmt.subj.delta['polarity'] = subj_pol
stmt.obj.delta['polarity'] = obj_pol
# Otherwise we prefer the case when at least one entry of the
# pair is given
else:
one_pol = [pair for pair in polarity_pairs if pair[0] is not None or
pair[1] is not None]
if one_pol:
subj_pol, obj_pol = max(set(one_pol), key=one_pol.count)
stmt.subj.delta['polarity'] = subj_pol
stmt.obj.delta['polarity'] = obj_pol
# ADJECTIVES
for attr, role in ((stmt.subj.delta, 'subj'), (stmt.obj.delta, 'obj')):
all_adjectives = []
for adj in deltas[(role, 'adjectives')]:
if isinstance(adj, list):
all_adjectives += adj
elif adj is not None:
all_adjectives.append(adj)
attr['adjectives'] = all_adjectives
stmts_out.append(stmt)
return stmts_out | [
"def",
"merge_deltas",
"(",
"stmts_in",
")",
":",
"stmts_out",
"=",
"[",
"]",
"for",
"stmt",
"in",
"stmts_in",
":",
"# This operation is only applicable to Influences",
"if",
"not",
"isinstance",
"(",
"stmt",
",",
"Influence",
")",
":",
"stmts_out",
".",
"append",
"(",
"stmt",
")",
"continue",
"# At this point this is guaranteed to be an Influence",
"deltas",
"=",
"{",
"}",
"for",
"role",
"in",
"(",
"'subj'",
",",
"'obj'",
")",
":",
"for",
"info",
"in",
"(",
"'polarity'",
",",
"'adjectives'",
")",
":",
"key",
"=",
"(",
"role",
",",
"info",
")",
"deltas",
"[",
"key",
"]",
"=",
"[",
"]",
"for",
"ev",
"in",
"stmt",
".",
"evidence",
":",
"entry",
"=",
"ev",
".",
"annotations",
".",
"get",
"(",
"'%s_%s'",
"%",
"key",
")",
"deltas",
"[",
"key",
"]",
".",
"append",
"(",
"entry",
"if",
"entry",
"else",
"None",
")",
"# POLARITY",
"# For polarity we need to work in pairs",
"polarity_pairs",
"=",
"list",
"(",
"zip",
"(",
"deltas",
"[",
"(",
"'subj'",
",",
"'polarity'",
")",
"]",
",",
"deltas",
"[",
"(",
"'obj'",
",",
"'polarity'",
")",
"]",
")",
")",
"# If we have some fully defined pairs, we take the most common one",
"both_pols",
"=",
"[",
"pair",
"for",
"pair",
"in",
"polarity_pairs",
"if",
"pair",
"[",
"0",
"]",
"is",
"not",
"None",
"and",
"pair",
"[",
"1",
"]",
"is",
"not",
"None",
"]",
"if",
"both_pols",
":",
"subj_pol",
",",
"obj_pol",
"=",
"max",
"(",
"set",
"(",
"both_pols",
")",
",",
"key",
"=",
"both_pols",
".",
"count",
")",
"stmt",
".",
"subj",
".",
"delta",
"[",
"'polarity'",
"]",
"=",
"subj_pol",
"stmt",
".",
"obj",
".",
"delta",
"[",
"'polarity'",
"]",
"=",
"obj_pol",
"# Otherwise we prefer the case when at least one entry of the",
"# pair is given",
"else",
":",
"one_pol",
"=",
"[",
"pair",
"for",
"pair",
"in",
"polarity_pairs",
"if",
"pair",
"[",
"0",
"]",
"is",
"not",
"None",
"or",
"pair",
"[",
"1",
"]",
"is",
"not",
"None",
"]",
"if",
"one_pol",
":",
"subj_pol",
",",
"obj_pol",
"=",
"max",
"(",
"set",
"(",
"one_pol",
")",
",",
"key",
"=",
"one_pol",
".",
"count",
")",
"stmt",
".",
"subj",
".",
"delta",
"[",
"'polarity'",
"]",
"=",
"subj_pol",
"stmt",
".",
"obj",
".",
"delta",
"[",
"'polarity'",
"]",
"=",
"obj_pol",
"# ADJECTIVES",
"for",
"attr",
",",
"role",
"in",
"(",
"(",
"stmt",
".",
"subj",
".",
"delta",
",",
"'subj'",
")",
",",
"(",
"stmt",
".",
"obj",
".",
"delta",
",",
"'obj'",
")",
")",
":",
"all_adjectives",
"=",
"[",
"]",
"for",
"adj",
"in",
"deltas",
"[",
"(",
"role",
",",
"'adjectives'",
")",
"]",
":",
"if",
"isinstance",
"(",
"adj",
",",
"list",
")",
":",
"all_adjectives",
"+=",
"adj",
"elif",
"adj",
"is",
"not",
"None",
":",
"all_adjectives",
".",
"append",
"(",
"adj",
")",
"attr",
"[",
"'adjectives'",
"]",
"=",
"all_adjectives",
"stmts_out",
".",
"append",
"(",
"stmt",
")",
"return",
"stmts_out"
]
| Gather and merge original Influence delta information from evidence.
This function is only applicable to Influence Statements that have
subj and obj deltas. All other statement types are passed through unchanged.
Polarities and adjectives for subjects and objects respectivey are
collected and merged by travesrsing all evidences of a Statement.
Parameters
----------
stmts_in : list[indra.statements.Statement]
A list of INDRA Statements whose influence deltas should be merged.
These Statements are meant to have been preassembled and potentially
have multiple pieces of evidence.
Returns
-------
stmts_out : list[indra.statements.Statement]
The list of Statements now with deltas merged at the Statement
level. | [
"Gather",
"and",
"merge",
"original",
"Influence",
"delta",
"information",
"from",
"evidence",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/tools/assemble_corpus.py#L204-L272 | train |
sorgerlab/indra | indra/tools/assemble_corpus.py | map_sequence | def map_sequence(stmts_in, **kwargs):
"""Map sequences using the SiteMapper.
Parameters
----------
stmts_in : list[indra.statements.Statement]
A list of statements to map.
do_methionine_offset : boolean
Whether to check for off-by-one errors in site position (possibly)
attributable to site numbering from mature proteins after
cleavage of the initial methionine. If True, checks the reference
sequence for a known modification at 1 site position greater
than the given one; if there exists such a site, creates the
mapping. Default is True.
do_orthology_mapping : boolean
Whether to check sequence positions for known modification sites
in mouse or rat sequences (based on PhosphoSitePlus data). If a
mouse/rat site is found that is linked to a site in the human
reference sequence, a mapping is created. Default is True.
do_isoform_mapping : boolean
Whether to check sequence positions for known modifications
in other human isoforms of the protein (based on PhosphoSitePlus
data). If a site is found that is linked to a site in the human
reference sequence, a mapping is created. Default is True.
use_cache : boolean
If True, a cache will be created/used from the laction specified by
SITEMAPPER_CACHE_PATH, defined in your INDRA config or the environment.
If False, no cache is used. For more details on the cache, see the
SiteMapper class definition.
save : Optional[str]
The name of a pickle file to save the results (stmts_out) into.
Returns
-------
stmts_out : list[indra.statements.Statement]
A list of mapped statements.
"""
from indra.preassembler.sitemapper import SiteMapper, default_site_map
logger.info('Mapping sites on %d statements...' % len(stmts_in))
kwarg_list = ['do_methionine_offset', 'do_orthology_mapping',
'do_isoform_mapping']
sm = SiteMapper(default_site_map,
use_cache=kwargs.pop('use_cache', False),
**_filter(kwargs, kwarg_list))
valid, mapped = sm.map_sites(stmts_in)
correctly_mapped_stmts = []
for ms in mapped:
correctly_mapped = all([mm.has_mapping() for mm in ms.mapped_mods])
if correctly_mapped:
correctly_mapped_stmts.append(ms.mapped_stmt)
stmts_out = valid + correctly_mapped_stmts
logger.info('%d statements with valid sites' % len(stmts_out))
dump_pkl = kwargs.get('save')
if dump_pkl:
dump_statements(stmts_out, dump_pkl)
del sm
return stmts_out | python | def map_sequence(stmts_in, **kwargs):
"""Map sequences using the SiteMapper.
Parameters
----------
stmts_in : list[indra.statements.Statement]
A list of statements to map.
do_methionine_offset : boolean
Whether to check for off-by-one errors in site position (possibly)
attributable to site numbering from mature proteins after
cleavage of the initial methionine. If True, checks the reference
sequence for a known modification at 1 site position greater
than the given one; if there exists such a site, creates the
mapping. Default is True.
do_orthology_mapping : boolean
Whether to check sequence positions for known modification sites
in mouse or rat sequences (based on PhosphoSitePlus data). If a
mouse/rat site is found that is linked to a site in the human
reference sequence, a mapping is created. Default is True.
do_isoform_mapping : boolean
Whether to check sequence positions for known modifications
in other human isoforms of the protein (based on PhosphoSitePlus
data). If a site is found that is linked to a site in the human
reference sequence, a mapping is created. Default is True.
use_cache : boolean
If True, a cache will be created/used from the laction specified by
SITEMAPPER_CACHE_PATH, defined in your INDRA config or the environment.
If False, no cache is used. For more details on the cache, see the
SiteMapper class definition.
save : Optional[str]
The name of a pickle file to save the results (stmts_out) into.
Returns
-------
stmts_out : list[indra.statements.Statement]
A list of mapped statements.
"""
from indra.preassembler.sitemapper import SiteMapper, default_site_map
logger.info('Mapping sites on %d statements...' % len(stmts_in))
kwarg_list = ['do_methionine_offset', 'do_orthology_mapping',
'do_isoform_mapping']
sm = SiteMapper(default_site_map,
use_cache=kwargs.pop('use_cache', False),
**_filter(kwargs, kwarg_list))
valid, mapped = sm.map_sites(stmts_in)
correctly_mapped_stmts = []
for ms in mapped:
correctly_mapped = all([mm.has_mapping() for mm in ms.mapped_mods])
if correctly_mapped:
correctly_mapped_stmts.append(ms.mapped_stmt)
stmts_out = valid + correctly_mapped_stmts
logger.info('%d statements with valid sites' % len(stmts_out))
dump_pkl = kwargs.get('save')
if dump_pkl:
dump_statements(stmts_out, dump_pkl)
del sm
return stmts_out | [
"def",
"map_sequence",
"(",
"stmts_in",
",",
"*",
"*",
"kwargs",
")",
":",
"from",
"indra",
".",
"preassembler",
".",
"sitemapper",
"import",
"SiteMapper",
",",
"default_site_map",
"logger",
".",
"info",
"(",
"'Mapping sites on %d statements...'",
"%",
"len",
"(",
"stmts_in",
")",
")",
"kwarg_list",
"=",
"[",
"'do_methionine_offset'",
",",
"'do_orthology_mapping'",
",",
"'do_isoform_mapping'",
"]",
"sm",
"=",
"SiteMapper",
"(",
"default_site_map",
",",
"use_cache",
"=",
"kwargs",
".",
"pop",
"(",
"'use_cache'",
",",
"False",
")",
",",
"*",
"*",
"_filter",
"(",
"kwargs",
",",
"kwarg_list",
")",
")",
"valid",
",",
"mapped",
"=",
"sm",
".",
"map_sites",
"(",
"stmts_in",
")",
"correctly_mapped_stmts",
"=",
"[",
"]",
"for",
"ms",
"in",
"mapped",
":",
"correctly_mapped",
"=",
"all",
"(",
"[",
"mm",
".",
"has_mapping",
"(",
")",
"for",
"mm",
"in",
"ms",
".",
"mapped_mods",
"]",
")",
"if",
"correctly_mapped",
":",
"correctly_mapped_stmts",
".",
"append",
"(",
"ms",
".",
"mapped_stmt",
")",
"stmts_out",
"=",
"valid",
"+",
"correctly_mapped_stmts",
"logger",
".",
"info",
"(",
"'%d statements with valid sites'",
"%",
"len",
"(",
"stmts_out",
")",
")",
"dump_pkl",
"=",
"kwargs",
".",
"get",
"(",
"'save'",
")",
"if",
"dump_pkl",
":",
"dump_statements",
"(",
"stmts_out",
",",
"dump_pkl",
")",
"del",
"sm",
"return",
"stmts_out"
]
| Map sequences using the SiteMapper.
Parameters
----------
stmts_in : list[indra.statements.Statement]
A list of statements to map.
do_methionine_offset : boolean
Whether to check for off-by-one errors in site position (possibly)
attributable to site numbering from mature proteins after
cleavage of the initial methionine. If True, checks the reference
sequence for a known modification at 1 site position greater
than the given one; if there exists such a site, creates the
mapping. Default is True.
do_orthology_mapping : boolean
Whether to check sequence positions for known modification sites
in mouse or rat sequences (based on PhosphoSitePlus data). If a
mouse/rat site is found that is linked to a site in the human
reference sequence, a mapping is created. Default is True.
do_isoform_mapping : boolean
Whether to check sequence positions for known modifications
in other human isoforms of the protein (based on PhosphoSitePlus
data). If a site is found that is linked to a site in the human
reference sequence, a mapping is created. Default is True.
use_cache : boolean
If True, a cache will be created/used from the laction specified by
SITEMAPPER_CACHE_PATH, defined in your INDRA config or the environment.
If False, no cache is used. For more details on the cache, see the
SiteMapper class definition.
save : Optional[str]
The name of a pickle file to save the results (stmts_out) into.
Returns
-------
stmts_out : list[indra.statements.Statement]
A list of mapped statements. | [
"Map",
"sequences",
"using",
"the",
"SiteMapper",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/tools/assemble_corpus.py#L275-L331 | train |
sorgerlab/indra | indra/tools/assemble_corpus.py | run_preassembly | def run_preassembly(stmts_in, **kwargs):
"""Run preassembly on a list of statements.
Parameters
----------
stmts_in : list[indra.statements.Statement]
A list of statements to preassemble.
return_toplevel : Optional[bool]
If True, only the top-level statements are returned. If False,
all statements are returned irrespective of level of specificity.
Default: True
poolsize : Optional[int]
The number of worker processes to use to parallelize the
comparisons performed by the function. If None (default), no
parallelization is performed. NOTE: Parallelization is only
available on Python 3.4 and above.
size_cutoff : Optional[int]
Groups with size_cutoff or more statements are sent to worker
processes, while smaller groups are compared in the parent process.
Default value is 100. Not relevant when parallelization is not
used.
belief_scorer : Optional[indra.belief.BeliefScorer]
Instance of BeliefScorer class to use in calculating Statement
probabilities. If None is provided (default), then the default
scorer is used.
hierarchies : Optional[dict]
Dict of hierarchy managers to use for preassembly
flatten_evidence : Optional[bool]
If True, evidences are collected and flattened via supports/supported_by
links. Default: False
flatten_evidence_collect_from : Optional[str]
String indicating whether to collect and flatten evidence from the
`supports` attribute of each statement or the `supported_by` attribute.
If not set, defaults to 'supported_by'.
Only relevant when flatten_evidence is True.
save : Optional[str]
The name of a pickle file to save the results (stmts_out) into.
save_unique : Optional[str]
The name of a pickle file to save the unique statements into.
Returns
-------
stmts_out : list[indra.statements.Statement]
A list of preassembled top-level statements.
"""
dump_pkl_unique = kwargs.get('save_unique')
belief_scorer = kwargs.get('belief_scorer')
use_hierarchies = kwargs['hierarchies'] if 'hierarchies' in kwargs else \
hierarchies
be = BeliefEngine(scorer=belief_scorer)
pa = Preassembler(hierarchies, stmts_in)
run_preassembly_duplicate(pa, be, save=dump_pkl_unique)
dump_pkl = kwargs.get('save')
return_toplevel = kwargs.get('return_toplevel', True)
poolsize = kwargs.get('poolsize', None)
size_cutoff = kwargs.get('size_cutoff', 100)
options = {'save': dump_pkl, 'return_toplevel': return_toplevel,
'poolsize': poolsize, 'size_cutoff': size_cutoff,
'flatten_evidence': kwargs.get('flatten_evidence', False),
'flatten_evidence_collect_from':
kwargs.get('flatten_evidence_collect_from', 'supported_by')
}
stmts_out = run_preassembly_related(pa, be, **options)
return stmts_out | python | def run_preassembly(stmts_in, **kwargs):
"""Run preassembly on a list of statements.
Parameters
----------
stmts_in : list[indra.statements.Statement]
A list of statements to preassemble.
return_toplevel : Optional[bool]
If True, only the top-level statements are returned. If False,
all statements are returned irrespective of level of specificity.
Default: True
poolsize : Optional[int]
The number of worker processes to use to parallelize the
comparisons performed by the function. If None (default), no
parallelization is performed. NOTE: Parallelization is only
available on Python 3.4 and above.
size_cutoff : Optional[int]
Groups with size_cutoff or more statements are sent to worker
processes, while smaller groups are compared in the parent process.
Default value is 100. Not relevant when parallelization is not
used.
belief_scorer : Optional[indra.belief.BeliefScorer]
Instance of BeliefScorer class to use in calculating Statement
probabilities. If None is provided (default), then the default
scorer is used.
hierarchies : Optional[dict]
Dict of hierarchy managers to use for preassembly
flatten_evidence : Optional[bool]
If True, evidences are collected and flattened via supports/supported_by
links. Default: False
flatten_evidence_collect_from : Optional[str]
String indicating whether to collect and flatten evidence from the
`supports` attribute of each statement or the `supported_by` attribute.
If not set, defaults to 'supported_by'.
Only relevant when flatten_evidence is True.
save : Optional[str]
The name of a pickle file to save the results (stmts_out) into.
save_unique : Optional[str]
The name of a pickle file to save the unique statements into.
Returns
-------
stmts_out : list[indra.statements.Statement]
A list of preassembled top-level statements.
"""
dump_pkl_unique = kwargs.get('save_unique')
belief_scorer = kwargs.get('belief_scorer')
use_hierarchies = kwargs['hierarchies'] if 'hierarchies' in kwargs else \
hierarchies
be = BeliefEngine(scorer=belief_scorer)
pa = Preassembler(hierarchies, stmts_in)
run_preassembly_duplicate(pa, be, save=dump_pkl_unique)
dump_pkl = kwargs.get('save')
return_toplevel = kwargs.get('return_toplevel', True)
poolsize = kwargs.get('poolsize', None)
size_cutoff = kwargs.get('size_cutoff', 100)
options = {'save': dump_pkl, 'return_toplevel': return_toplevel,
'poolsize': poolsize, 'size_cutoff': size_cutoff,
'flatten_evidence': kwargs.get('flatten_evidence', False),
'flatten_evidence_collect_from':
kwargs.get('flatten_evidence_collect_from', 'supported_by')
}
stmts_out = run_preassembly_related(pa, be, **options)
return stmts_out | [
"def",
"run_preassembly",
"(",
"stmts_in",
",",
"*",
"*",
"kwargs",
")",
":",
"dump_pkl_unique",
"=",
"kwargs",
".",
"get",
"(",
"'save_unique'",
")",
"belief_scorer",
"=",
"kwargs",
".",
"get",
"(",
"'belief_scorer'",
")",
"use_hierarchies",
"=",
"kwargs",
"[",
"'hierarchies'",
"]",
"if",
"'hierarchies'",
"in",
"kwargs",
"else",
"hierarchies",
"be",
"=",
"BeliefEngine",
"(",
"scorer",
"=",
"belief_scorer",
")",
"pa",
"=",
"Preassembler",
"(",
"hierarchies",
",",
"stmts_in",
")",
"run_preassembly_duplicate",
"(",
"pa",
",",
"be",
",",
"save",
"=",
"dump_pkl_unique",
")",
"dump_pkl",
"=",
"kwargs",
".",
"get",
"(",
"'save'",
")",
"return_toplevel",
"=",
"kwargs",
".",
"get",
"(",
"'return_toplevel'",
",",
"True",
")",
"poolsize",
"=",
"kwargs",
".",
"get",
"(",
"'poolsize'",
",",
"None",
")",
"size_cutoff",
"=",
"kwargs",
".",
"get",
"(",
"'size_cutoff'",
",",
"100",
")",
"options",
"=",
"{",
"'save'",
":",
"dump_pkl",
",",
"'return_toplevel'",
":",
"return_toplevel",
",",
"'poolsize'",
":",
"poolsize",
",",
"'size_cutoff'",
":",
"size_cutoff",
",",
"'flatten_evidence'",
":",
"kwargs",
".",
"get",
"(",
"'flatten_evidence'",
",",
"False",
")",
",",
"'flatten_evidence_collect_from'",
":",
"kwargs",
".",
"get",
"(",
"'flatten_evidence_collect_from'",
",",
"'supported_by'",
")",
"}",
"stmts_out",
"=",
"run_preassembly_related",
"(",
"pa",
",",
"be",
",",
"*",
"*",
"options",
")",
"return",
"stmts_out"
]
| Run preassembly on a list of statements.
Parameters
----------
stmts_in : list[indra.statements.Statement]
A list of statements to preassemble.
return_toplevel : Optional[bool]
If True, only the top-level statements are returned. If False,
all statements are returned irrespective of level of specificity.
Default: True
poolsize : Optional[int]
The number of worker processes to use to parallelize the
comparisons performed by the function. If None (default), no
parallelization is performed. NOTE: Parallelization is only
available on Python 3.4 and above.
size_cutoff : Optional[int]
Groups with size_cutoff or more statements are sent to worker
processes, while smaller groups are compared in the parent process.
Default value is 100. Not relevant when parallelization is not
used.
belief_scorer : Optional[indra.belief.BeliefScorer]
Instance of BeliefScorer class to use in calculating Statement
probabilities. If None is provided (default), then the default
scorer is used.
hierarchies : Optional[dict]
Dict of hierarchy managers to use for preassembly
flatten_evidence : Optional[bool]
If True, evidences are collected and flattened via supports/supported_by
links. Default: False
flatten_evidence_collect_from : Optional[str]
String indicating whether to collect and flatten evidence from the
`supports` attribute of each statement or the `supported_by` attribute.
If not set, defaults to 'supported_by'.
Only relevant when flatten_evidence is True.
save : Optional[str]
The name of a pickle file to save the results (stmts_out) into.
save_unique : Optional[str]
The name of a pickle file to save the unique statements into.
Returns
-------
stmts_out : list[indra.statements.Statement]
A list of preassembled top-level statements. | [
"Run",
"preassembly",
"on",
"a",
"list",
"of",
"statements",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/tools/assemble_corpus.py#L334-L398 | train |
sorgerlab/indra | indra/tools/assemble_corpus.py | run_preassembly_duplicate | def run_preassembly_duplicate(preassembler, beliefengine, **kwargs):
"""Run deduplication stage of preassembly on a list of statements.
Parameters
----------
preassembler : indra.preassembler.Preassembler
A Preassembler instance
beliefengine : indra.belief.BeliefEngine
A BeliefEngine instance.
save : Optional[str]
The name of a pickle file to save the results (stmts_out) into.
Returns
-------
stmts_out : list[indra.statements.Statement]
A list of unique statements.
"""
logger.info('Combining duplicates on %d statements...' %
len(preassembler.stmts))
dump_pkl = kwargs.get('save')
stmts_out = preassembler.combine_duplicates()
beliefengine.set_prior_probs(stmts_out)
logger.info('%d unique statements' % len(stmts_out))
if dump_pkl:
dump_statements(stmts_out, dump_pkl)
return stmts_out | python | def run_preassembly_duplicate(preassembler, beliefengine, **kwargs):
"""Run deduplication stage of preassembly on a list of statements.
Parameters
----------
preassembler : indra.preassembler.Preassembler
A Preassembler instance
beliefengine : indra.belief.BeliefEngine
A BeliefEngine instance.
save : Optional[str]
The name of a pickle file to save the results (stmts_out) into.
Returns
-------
stmts_out : list[indra.statements.Statement]
A list of unique statements.
"""
logger.info('Combining duplicates on %d statements...' %
len(preassembler.stmts))
dump_pkl = kwargs.get('save')
stmts_out = preassembler.combine_duplicates()
beliefengine.set_prior_probs(stmts_out)
logger.info('%d unique statements' % len(stmts_out))
if dump_pkl:
dump_statements(stmts_out, dump_pkl)
return stmts_out | [
"def",
"run_preassembly_duplicate",
"(",
"preassembler",
",",
"beliefengine",
",",
"*",
"*",
"kwargs",
")",
":",
"logger",
".",
"info",
"(",
"'Combining duplicates on %d statements...'",
"%",
"len",
"(",
"preassembler",
".",
"stmts",
")",
")",
"dump_pkl",
"=",
"kwargs",
".",
"get",
"(",
"'save'",
")",
"stmts_out",
"=",
"preassembler",
".",
"combine_duplicates",
"(",
")",
"beliefengine",
".",
"set_prior_probs",
"(",
"stmts_out",
")",
"logger",
".",
"info",
"(",
"'%d unique statements'",
"%",
"len",
"(",
"stmts_out",
")",
")",
"if",
"dump_pkl",
":",
"dump_statements",
"(",
"stmts_out",
",",
"dump_pkl",
")",
"return",
"stmts_out"
]
| Run deduplication stage of preassembly on a list of statements.
Parameters
----------
preassembler : indra.preassembler.Preassembler
A Preassembler instance
beliefengine : indra.belief.BeliefEngine
A BeliefEngine instance.
save : Optional[str]
The name of a pickle file to save the results (stmts_out) into.
Returns
-------
stmts_out : list[indra.statements.Statement]
A list of unique statements. | [
"Run",
"deduplication",
"stage",
"of",
"preassembly",
"on",
"a",
"list",
"of",
"statements",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/tools/assemble_corpus.py#L401-L426 | train |
sorgerlab/indra | indra/tools/assemble_corpus.py | run_preassembly_related | def run_preassembly_related(preassembler, beliefengine, **kwargs):
"""Run related stage of preassembly on a list of statements.
Parameters
----------
preassembler : indra.preassembler.Preassembler
A Preassembler instance which already has a set of unique statements
internally.
beliefengine : indra.belief.BeliefEngine
A BeliefEngine instance.
return_toplevel : Optional[bool]
If True, only the top-level statements are returned. If False,
all statements are returned irrespective of level of specificity.
Default: True
poolsize : Optional[int]
The number of worker processes to use to parallelize the
comparisons performed by the function. If None (default), no
parallelization is performed. NOTE: Parallelization is only
available on Python 3.4 and above.
size_cutoff : Optional[int]
Groups with size_cutoff or more statements are sent to worker
processes, while smaller groups are compared in the parent process.
Default value is 100. Not relevant when parallelization is not
used.
flatten_evidence : Optional[bool]
If True, evidences are collected and flattened via supports/supported_by
links. Default: False
flatten_evidence_collect_from : Optional[str]
String indicating whether to collect and flatten evidence from the
`supports` attribute of each statement or the `supported_by` attribute.
If not set, defaults to 'supported_by'.
Only relevant when flatten_evidence is True.
save : Optional[str]
The name of a pickle file to save the results (stmts_out) into.
Returns
-------
stmts_out : list[indra.statements.Statement]
A list of preassembled top-level statements.
"""
logger.info('Combining related on %d statements...' %
len(preassembler.unique_stmts))
return_toplevel = kwargs.get('return_toplevel', True)
poolsize = kwargs.get('poolsize', None)
size_cutoff = kwargs.get('size_cutoff', 100)
stmts_out = preassembler.combine_related(return_toplevel=False,
poolsize=poolsize,
size_cutoff=size_cutoff)
# Calculate beliefs
beliefengine.set_hierarchy_probs(stmts_out)
# Flatten evidence if needed
do_flatten_evidence = kwargs.get('flatten_evidence', False)
if do_flatten_evidence:
flatten_evidences_collect_from = \
kwargs.get('flatten_evidence_collect_from', 'supported_by')
stmts_out = flatten_evidence(stmts_out, flatten_evidences_collect_from)
# Filter to top if needed
stmts_top = filter_top_level(stmts_out)
if return_toplevel:
stmts_out = stmts_top
logger.info('%d top-level statements' % len(stmts_out))
else:
logger.info('%d statements out of which %d are top-level' %
(len(stmts_out), len(stmts_top)))
dump_pkl = kwargs.get('save')
if dump_pkl:
dump_statements(stmts_out, dump_pkl)
return stmts_out | python | def run_preassembly_related(preassembler, beliefengine, **kwargs):
"""Run related stage of preassembly on a list of statements.
Parameters
----------
preassembler : indra.preassembler.Preassembler
A Preassembler instance which already has a set of unique statements
internally.
beliefengine : indra.belief.BeliefEngine
A BeliefEngine instance.
return_toplevel : Optional[bool]
If True, only the top-level statements are returned. If False,
all statements are returned irrespective of level of specificity.
Default: True
poolsize : Optional[int]
The number of worker processes to use to parallelize the
comparisons performed by the function. If None (default), no
parallelization is performed. NOTE: Parallelization is only
available on Python 3.4 and above.
size_cutoff : Optional[int]
Groups with size_cutoff or more statements are sent to worker
processes, while smaller groups are compared in the parent process.
Default value is 100. Not relevant when parallelization is not
used.
flatten_evidence : Optional[bool]
If True, evidences are collected and flattened via supports/supported_by
links. Default: False
flatten_evidence_collect_from : Optional[str]
String indicating whether to collect and flatten evidence from the
`supports` attribute of each statement or the `supported_by` attribute.
If not set, defaults to 'supported_by'.
Only relevant when flatten_evidence is True.
save : Optional[str]
The name of a pickle file to save the results (stmts_out) into.
Returns
-------
stmts_out : list[indra.statements.Statement]
A list of preassembled top-level statements.
"""
logger.info('Combining related on %d statements...' %
len(preassembler.unique_stmts))
return_toplevel = kwargs.get('return_toplevel', True)
poolsize = kwargs.get('poolsize', None)
size_cutoff = kwargs.get('size_cutoff', 100)
stmts_out = preassembler.combine_related(return_toplevel=False,
poolsize=poolsize,
size_cutoff=size_cutoff)
# Calculate beliefs
beliefengine.set_hierarchy_probs(stmts_out)
# Flatten evidence if needed
do_flatten_evidence = kwargs.get('flatten_evidence', False)
if do_flatten_evidence:
flatten_evidences_collect_from = \
kwargs.get('flatten_evidence_collect_from', 'supported_by')
stmts_out = flatten_evidence(stmts_out, flatten_evidences_collect_from)
# Filter to top if needed
stmts_top = filter_top_level(stmts_out)
if return_toplevel:
stmts_out = stmts_top
logger.info('%d top-level statements' % len(stmts_out))
else:
logger.info('%d statements out of which %d are top-level' %
(len(stmts_out), len(stmts_top)))
dump_pkl = kwargs.get('save')
if dump_pkl:
dump_statements(stmts_out, dump_pkl)
return stmts_out | [
"def",
"run_preassembly_related",
"(",
"preassembler",
",",
"beliefengine",
",",
"*",
"*",
"kwargs",
")",
":",
"logger",
".",
"info",
"(",
"'Combining related on %d statements...'",
"%",
"len",
"(",
"preassembler",
".",
"unique_stmts",
")",
")",
"return_toplevel",
"=",
"kwargs",
".",
"get",
"(",
"'return_toplevel'",
",",
"True",
")",
"poolsize",
"=",
"kwargs",
".",
"get",
"(",
"'poolsize'",
",",
"None",
")",
"size_cutoff",
"=",
"kwargs",
".",
"get",
"(",
"'size_cutoff'",
",",
"100",
")",
"stmts_out",
"=",
"preassembler",
".",
"combine_related",
"(",
"return_toplevel",
"=",
"False",
",",
"poolsize",
"=",
"poolsize",
",",
"size_cutoff",
"=",
"size_cutoff",
")",
"# Calculate beliefs",
"beliefengine",
".",
"set_hierarchy_probs",
"(",
"stmts_out",
")",
"# Flatten evidence if needed",
"do_flatten_evidence",
"=",
"kwargs",
".",
"get",
"(",
"'flatten_evidence'",
",",
"False",
")",
"if",
"do_flatten_evidence",
":",
"flatten_evidences_collect_from",
"=",
"kwargs",
".",
"get",
"(",
"'flatten_evidence_collect_from'",
",",
"'supported_by'",
")",
"stmts_out",
"=",
"flatten_evidence",
"(",
"stmts_out",
",",
"flatten_evidences_collect_from",
")",
"# Filter to top if needed",
"stmts_top",
"=",
"filter_top_level",
"(",
"stmts_out",
")",
"if",
"return_toplevel",
":",
"stmts_out",
"=",
"stmts_top",
"logger",
".",
"info",
"(",
"'%d top-level statements'",
"%",
"len",
"(",
"stmts_out",
")",
")",
"else",
":",
"logger",
".",
"info",
"(",
"'%d statements out of which %d are top-level'",
"%",
"(",
"len",
"(",
"stmts_out",
")",
",",
"len",
"(",
"stmts_top",
")",
")",
")",
"dump_pkl",
"=",
"kwargs",
".",
"get",
"(",
"'save'",
")",
"if",
"dump_pkl",
":",
"dump_statements",
"(",
"stmts_out",
",",
"dump_pkl",
")",
"return",
"stmts_out"
]
| Run related stage of preassembly on a list of statements.
Parameters
----------
preassembler : indra.preassembler.Preassembler
A Preassembler instance which already has a set of unique statements
internally.
beliefengine : indra.belief.BeliefEngine
A BeliefEngine instance.
return_toplevel : Optional[bool]
If True, only the top-level statements are returned. If False,
all statements are returned irrespective of level of specificity.
Default: True
poolsize : Optional[int]
The number of worker processes to use to parallelize the
comparisons performed by the function. If None (default), no
parallelization is performed. NOTE: Parallelization is only
available on Python 3.4 and above.
size_cutoff : Optional[int]
Groups with size_cutoff or more statements are sent to worker
processes, while smaller groups are compared in the parent process.
Default value is 100. Not relevant when parallelization is not
used.
flatten_evidence : Optional[bool]
If True, evidences are collected and flattened via supports/supported_by
links. Default: False
flatten_evidence_collect_from : Optional[str]
String indicating whether to collect and flatten evidence from the
`supports` attribute of each statement or the `supported_by` attribute.
If not set, defaults to 'supported_by'.
Only relevant when flatten_evidence is True.
save : Optional[str]
The name of a pickle file to save the results (stmts_out) into.
Returns
-------
stmts_out : list[indra.statements.Statement]
A list of preassembled top-level statements. | [
"Run",
"related",
"stage",
"of",
"preassembly",
"on",
"a",
"list",
"of",
"statements",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/tools/assemble_corpus.py#L429-L499 | train |
sorgerlab/indra | indra/tools/assemble_corpus.py | filter_by_type | def filter_by_type(stmts_in, stmt_type, **kwargs):
"""Filter to a given statement type.
Parameters
----------
stmts_in : list[indra.statements.Statement]
A list of statements to filter.
stmt_type : indra.statements.Statement
The class of the statement type to filter for.
Example: indra.statements.Modification
invert : Optional[bool]
If True, the statements that are not of the given type
are returned. Default: False
save : Optional[str]
The name of a pickle file to save the results (stmts_out) into.
Returns
-------
stmts_out : list[indra.statements.Statement]
A list of filtered statements.
"""
invert = kwargs.get('invert', False)
logger.info('Filtering %d statements for type %s%s...' %
(len(stmts_in), 'not ' if invert else '',
stmt_type.__name__))
if not invert:
stmts_out = [st for st in stmts_in if isinstance(st, stmt_type)]
else:
stmts_out = [st for st in stmts_in if not isinstance(st, stmt_type)]
logger.info('%d statements after filter...' % len(stmts_out))
dump_pkl = kwargs.get('save')
if dump_pkl:
dump_statements(stmts_out, dump_pkl)
return stmts_out | python | def filter_by_type(stmts_in, stmt_type, **kwargs):
"""Filter to a given statement type.
Parameters
----------
stmts_in : list[indra.statements.Statement]
A list of statements to filter.
stmt_type : indra.statements.Statement
The class of the statement type to filter for.
Example: indra.statements.Modification
invert : Optional[bool]
If True, the statements that are not of the given type
are returned. Default: False
save : Optional[str]
The name of a pickle file to save the results (stmts_out) into.
Returns
-------
stmts_out : list[indra.statements.Statement]
A list of filtered statements.
"""
invert = kwargs.get('invert', False)
logger.info('Filtering %d statements for type %s%s...' %
(len(stmts_in), 'not ' if invert else '',
stmt_type.__name__))
if not invert:
stmts_out = [st for st in stmts_in if isinstance(st, stmt_type)]
else:
stmts_out = [st for st in stmts_in if not isinstance(st, stmt_type)]
logger.info('%d statements after filter...' % len(stmts_out))
dump_pkl = kwargs.get('save')
if dump_pkl:
dump_statements(stmts_out, dump_pkl)
return stmts_out | [
"def",
"filter_by_type",
"(",
"stmts_in",
",",
"stmt_type",
",",
"*",
"*",
"kwargs",
")",
":",
"invert",
"=",
"kwargs",
".",
"get",
"(",
"'invert'",
",",
"False",
")",
"logger",
".",
"info",
"(",
"'Filtering %d statements for type %s%s...'",
"%",
"(",
"len",
"(",
"stmts_in",
")",
",",
"'not '",
"if",
"invert",
"else",
"''",
",",
"stmt_type",
".",
"__name__",
")",
")",
"if",
"not",
"invert",
":",
"stmts_out",
"=",
"[",
"st",
"for",
"st",
"in",
"stmts_in",
"if",
"isinstance",
"(",
"st",
",",
"stmt_type",
")",
"]",
"else",
":",
"stmts_out",
"=",
"[",
"st",
"for",
"st",
"in",
"stmts_in",
"if",
"not",
"isinstance",
"(",
"st",
",",
"stmt_type",
")",
"]",
"logger",
".",
"info",
"(",
"'%d statements after filter...'",
"%",
"len",
"(",
"stmts_out",
")",
")",
"dump_pkl",
"=",
"kwargs",
".",
"get",
"(",
"'save'",
")",
"if",
"dump_pkl",
":",
"dump_statements",
"(",
"stmts_out",
",",
"dump_pkl",
")",
"return",
"stmts_out"
]
| Filter to a given statement type.
Parameters
----------
stmts_in : list[indra.statements.Statement]
A list of statements to filter.
stmt_type : indra.statements.Statement
The class of the statement type to filter for.
Example: indra.statements.Modification
invert : Optional[bool]
If True, the statements that are not of the given type
are returned. Default: False
save : Optional[str]
The name of a pickle file to save the results (stmts_out) into.
Returns
-------
stmts_out : list[indra.statements.Statement]
A list of filtered statements. | [
"Filter",
"to",
"a",
"given",
"statement",
"type",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/tools/assemble_corpus.py#L502-L536 | train |
sorgerlab/indra | indra/tools/assemble_corpus.py | _remove_bound_conditions | def _remove_bound_conditions(agent, keep_criterion):
"""Removes bound conditions of agent such that keep_criterion is False.
Parameters
----------
agent: Agent
The agent whose bound conditions we evaluate
keep_criterion: function
Evaluates removal_criterion(a) for each agent a in a bound condition
and if it evaluates to False, removes a from agent's bound_conditions
"""
new_bc = []
for ind in range(len(agent.bound_conditions)):
if keep_criterion(agent.bound_conditions[ind].agent):
new_bc.append(agent.bound_conditions[ind])
agent.bound_conditions = new_bc | python | def _remove_bound_conditions(agent, keep_criterion):
"""Removes bound conditions of agent such that keep_criterion is False.
Parameters
----------
agent: Agent
The agent whose bound conditions we evaluate
keep_criterion: function
Evaluates removal_criterion(a) for each agent a in a bound condition
and if it evaluates to False, removes a from agent's bound_conditions
"""
new_bc = []
for ind in range(len(agent.bound_conditions)):
if keep_criterion(agent.bound_conditions[ind].agent):
new_bc.append(agent.bound_conditions[ind])
agent.bound_conditions = new_bc | [
"def",
"_remove_bound_conditions",
"(",
"agent",
",",
"keep_criterion",
")",
":",
"new_bc",
"=",
"[",
"]",
"for",
"ind",
"in",
"range",
"(",
"len",
"(",
"agent",
".",
"bound_conditions",
")",
")",
":",
"if",
"keep_criterion",
"(",
"agent",
".",
"bound_conditions",
"[",
"ind",
"]",
".",
"agent",
")",
":",
"new_bc",
".",
"append",
"(",
"agent",
".",
"bound_conditions",
"[",
"ind",
"]",
")",
"agent",
".",
"bound_conditions",
"=",
"new_bc"
]
| Removes bound conditions of agent such that keep_criterion is False.
Parameters
----------
agent: Agent
The agent whose bound conditions we evaluate
keep_criterion: function
Evaluates removal_criterion(a) for each agent a in a bound condition
and if it evaluates to False, removes a from agent's bound_conditions | [
"Removes",
"bound",
"conditions",
"of",
"agent",
"such",
"that",
"keep_criterion",
"is",
"False",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/tools/assemble_corpus.py#L566-L581 | train |
sorgerlab/indra | indra/tools/assemble_corpus.py | _any_bound_condition_fails_criterion | def _any_bound_condition_fails_criterion(agent, criterion):
"""Returns True if any bound condition fails to meet the specified
criterion.
Parameters
----------
agent: Agent
The agent whose bound conditions we evaluate
criterion: function
Evaluates criterion(a) for each a in a bound condition and returns True
if any agents fail to meet the criterion.
Returns
-------
any_meets: bool
True if and only if any of the agents in a bound condition fail to match
the specified criteria
"""
bc_agents = [bc.agent for bc in agent.bound_conditions]
for b in bc_agents:
if not criterion(b):
return True
return False | python | def _any_bound_condition_fails_criterion(agent, criterion):
"""Returns True if any bound condition fails to meet the specified
criterion.
Parameters
----------
agent: Agent
The agent whose bound conditions we evaluate
criterion: function
Evaluates criterion(a) for each a in a bound condition and returns True
if any agents fail to meet the criterion.
Returns
-------
any_meets: bool
True if and only if any of the agents in a bound condition fail to match
the specified criteria
"""
bc_agents = [bc.agent for bc in agent.bound_conditions]
for b in bc_agents:
if not criterion(b):
return True
return False | [
"def",
"_any_bound_condition_fails_criterion",
"(",
"agent",
",",
"criterion",
")",
":",
"bc_agents",
"=",
"[",
"bc",
".",
"agent",
"for",
"bc",
"in",
"agent",
".",
"bound_conditions",
"]",
"for",
"b",
"in",
"bc_agents",
":",
"if",
"not",
"criterion",
"(",
"b",
")",
":",
"return",
"True",
"return",
"False"
]
| Returns True if any bound condition fails to meet the specified
criterion.
Parameters
----------
agent: Agent
The agent whose bound conditions we evaluate
criterion: function
Evaluates criterion(a) for each a in a bound condition and returns True
if any agents fail to meet the criterion.
Returns
-------
any_meets: bool
True if and only if any of the agents in a bound condition fail to match
the specified criteria | [
"Returns",
"True",
"if",
"any",
"bound",
"condition",
"fails",
"to",
"meet",
"the",
"specified",
"criterion",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/tools/assemble_corpus.py#L584-L606 | train |
sorgerlab/indra | indra/tools/assemble_corpus.py | filter_grounded_only | def filter_grounded_only(stmts_in, **kwargs):
"""Filter to statements that have grounded agents.
Parameters
----------
stmts_in : list[indra.statements.Statement]
A list of statements to filter.
score_threshold : Optional[float]
If scored groundings are available in a list and the highest score
if below this threshold, the Statement is filtered out.
save : Optional[str]
The name of a pickle file to save the results (stmts_out) into.
remove_bound: Optional[bool]
If true, removes ungrounded bound conditions from a statement.
If false (default), filters out statements with ungrounded bound
conditions.
Returns
-------
stmts_out : list[indra.statements.Statement]
A list of filtered statements.
"""
remove_bound = kwargs.get('remove_bound', False)
logger.info('Filtering %d statements for grounded agents...' %
len(stmts_in))
stmts_out = []
score_threshold = kwargs.get('score_threshold')
for st in stmts_in:
grounded = True
for agent in st.agent_list():
if agent is not None:
criterion = lambda x: _agent_is_grounded(x, score_threshold)
if not criterion(agent):
grounded = False
break
if not isinstance(agent, Agent):
continue
if remove_bound:
_remove_bound_conditions(agent, criterion)
elif _any_bound_condition_fails_criterion(agent, criterion):
grounded = False
break
if grounded:
stmts_out.append(st)
logger.info('%d statements after filter...' % len(stmts_out))
dump_pkl = kwargs.get('save')
if dump_pkl:
dump_statements(stmts_out, dump_pkl)
return stmts_out | python | def filter_grounded_only(stmts_in, **kwargs):
"""Filter to statements that have grounded agents.
Parameters
----------
stmts_in : list[indra.statements.Statement]
A list of statements to filter.
score_threshold : Optional[float]
If scored groundings are available in a list and the highest score
if below this threshold, the Statement is filtered out.
save : Optional[str]
The name of a pickle file to save the results (stmts_out) into.
remove_bound: Optional[bool]
If true, removes ungrounded bound conditions from a statement.
If false (default), filters out statements with ungrounded bound
conditions.
Returns
-------
stmts_out : list[indra.statements.Statement]
A list of filtered statements.
"""
remove_bound = kwargs.get('remove_bound', False)
logger.info('Filtering %d statements for grounded agents...' %
len(stmts_in))
stmts_out = []
score_threshold = kwargs.get('score_threshold')
for st in stmts_in:
grounded = True
for agent in st.agent_list():
if agent is not None:
criterion = lambda x: _agent_is_grounded(x, score_threshold)
if not criterion(agent):
grounded = False
break
if not isinstance(agent, Agent):
continue
if remove_bound:
_remove_bound_conditions(agent, criterion)
elif _any_bound_condition_fails_criterion(agent, criterion):
grounded = False
break
if grounded:
stmts_out.append(st)
logger.info('%d statements after filter...' % len(stmts_out))
dump_pkl = kwargs.get('save')
if dump_pkl:
dump_statements(stmts_out, dump_pkl)
return stmts_out | [
"def",
"filter_grounded_only",
"(",
"stmts_in",
",",
"*",
"*",
"kwargs",
")",
":",
"remove_bound",
"=",
"kwargs",
".",
"get",
"(",
"'remove_bound'",
",",
"False",
")",
"logger",
".",
"info",
"(",
"'Filtering %d statements for grounded agents...'",
"%",
"len",
"(",
"stmts_in",
")",
")",
"stmts_out",
"=",
"[",
"]",
"score_threshold",
"=",
"kwargs",
".",
"get",
"(",
"'score_threshold'",
")",
"for",
"st",
"in",
"stmts_in",
":",
"grounded",
"=",
"True",
"for",
"agent",
"in",
"st",
".",
"agent_list",
"(",
")",
":",
"if",
"agent",
"is",
"not",
"None",
":",
"criterion",
"=",
"lambda",
"x",
":",
"_agent_is_grounded",
"(",
"x",
",",
"score_threshold",
")",
"if",
"not",
"criterion",
"(",
"agent",
")",
":",
"grounded",
"=",
"False",
"break",
"if",
"not",
"isinstance",
"(",
"agent",
",",
"Agent",
")",
":",
"continue",
"if",
"remove_bound",
":",
"_remove_bound_conditions",
"(",
"agent",
",",
"criterion",
")",
"elif",
"_any_bound_condition_fails_criterion",
"(",
"agent",
",",
"criterion",
")",
":",
"grounded",
"=",
"False",
"break",
"if",
"grounded",
":",
"stmts_out",
".",
"append",
"(",
"st",
")",
"logger",
".",
"info",
"(",
"'%d statements after filter...'",
"%",
"len",
"(",
"stmts_out",
")",
")",
"dump_pkl",
"=",
"kwargs",
".",
"get",
"(",
"'save'",
")",
"if",
"dump_pkl",
":",
"dump_statements",
"(",
"stmts_out",
",",
"dump_pkl",
")",
"return",
"stmts_out"
]
| Filter to statements that have grounded agents.
Parameters
----------
stmts_in : list[indra.statements.Statement]
A list of statements to filter.
score_threshold : Optional[float]
If scored groundings are available in a list and the highest score
if below this threshold, the Statement is filtered out.
save : Optional[str]
The name of a pickle file to save the results (stmts_out) into.
remove_bound: Optional[bool]
If true, removes ungrounded bound conditions from a statement.
If false (default), filters out statements with ungrounded bound
conditions.
Returns
-------
stmts_out : list[indra.statements.Statement]
A list of filtered statements. | [
"Filter",
"to",
"statements",
"that",
"have",
"grounded",
"agents",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/tools/assemble_corpus.py#L609-L658 | train |
sorgerlab/indra | indra/tools/assemble_corpus.py | _agent_is_gene | def _agent_is_gene(agent, specific_only):
"""Returns whether an agent is for a gene.
Parameters
----------
agent: Agent
The agent to evaluate
specific_only : Optional[bool]
If True, only elementary genes/proteins evaluate as genes and families
will be filtered out. If False, families are also included.
Returns
-------
is_gene: bool
Whether the agent is a gene
"""
if not specific_only:
if not(agent.db_refs.get('HGNC') or \
agent.db_refs.get('UP') or \
agent.db_refs.get('FPLX')):
return False
else:
if not(agent.db_refs.get('HGNC') or \
agent.db_refs.get('UP')):
return False
return True | python | def _agent_is_gene(agent, specific_only):
"""Returns whether an agent is for a gene.
Parameters
----------
agent: Agent
The agent to evaluate
specific_only : Optional[bool]
If True, only elementary genes/proteins evaluate as genes and families
will be filtered out. If False, families are also included.
Returns
-------
is_gene: bool
Whether the agent is a gene
"""
if not specific_only:
if not(agent.db_refs.get('HGNC') or \
agent.db_refs.get('UP') or \
agent.db_refs.get('FPLX')):
return False
else:
if not(agent.db_refs.get('HGNC') or \
agent.db_refs.get('UP')):
return False
return True | [
"def",
"_agent_is_gene",
"(",
"agent",
",",
"specific_only",
")",
":",
"if",
"not",
"specific_only",
":",
"if",
"not",
"(",
"agent",
".",
"db_refs",
".",
"get",
"(",
"'HGNC'",
")",
"or",
"agent",
".",
"db_refs",
".",
"get",
"(",
"'UP'",
")",
"or",
"agent",
".",
"db_refs",
".",
"get",
"(",
"'FPLX'",
")",
")",
":",
"return",
"False",
"else",
":",
"if",
"not",
"(",
"agent",
".",
"db_refs",
".",
"get",
"(",
"'HGNC'",
")",
"or",
"agent",
".",
"db_refs",
".",
"get",
"(",
"'UP'",
")",
")",
":",
"return",
"False",
"return",
"True"
]
| Returns whether an agent is for a gene.
Parameters
----------
agent: Agent
The agent to evaluate
specific_only : Optional[bool]
If True, only elementary genes/proteins evaluate as genes and families
will be filtered out. If False, families are also included.
Returns
-------
is_gene: bool
Whether the agent is a gene | [
"Returns",
"whether",
"an",
"agent",
"is",
"for",
"a",
"gene",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/tools/assemble_corpus.py#L661-L686 | train |
sorgerlab/indra | indra/tools/assemble_corpus.py | filter_genes_only | def filter_genes_only(stmts_in, **kwargs):
"""Filter to statements containing genes only.
Parameters
----------
stmts_in : list[indra.statements.Statement]
A list of statements to filter.
specific_only : Optional[bool]
If True, only elementary genes/proteins will be kept and families
will be filtered out. If False, families are also included in the
output. Default: False
save : Optional[str]
The name of a pickle file to save the results (stmts_out) into.
remove_bound: Optional[bool]
If true, removes bound conditions that are not genes
If false (default), filters out statements with non-gene bound
conditions
Returns
-------
stmts_out : list[indra.statements.Statement]
A list of filtered statements.
"""
remove_bound = 'remove_bound' in kwargs and kwargs['remove_bound']
specific_only = kwargs.get('specific_only')
logger.info('Filtering %d statements for ones containing genes only...' %
len(stmts_in))
stmts_out = []
for st in stmts_in:
genes_only = True
for agent in st.agent_list():
if agent is not None:
criterion = lambda a: _agent_is_gene(a, specific_only)
if not criterion(agent):
genes_only = False
break
if remove_bound:
_remove_bound_conditions(agent, criterion)
else:
if _any_bound_condition_fails_criterion(agent, criterion):
genes_only = False
break
if genes_only:
stmts_out.append(st)
logger.info('%d statements after filter...' % len(stmts_out))
dump_pkl = kwargs.get('save')
if dump_pkl:
dump_statements(stmts_out, dump_pkl)
return stmts_out | python | def filter_genes_only(stmts_in, **kwargs):
"""Filter to statements containing genes only.
Parameters
----------
stmts_in : list[indra.statements.Statement]
A list of statements to filter.
specific_only : Optional[bool]
If True, only elementary genes/proteins will be kept and families
will be filtered out. If False, families are also included in the
output. Default: False
save : Optional[str]
The name of a pickle file to save the results (stmts_out) into.
remove_bound: Optional[bool]
If true, removes bound conditions that are not genes
If false (default), filters out statements with non-gene bound
conditions
Returns
-------
stmts_out : list[indra.statements.Statement]
A list of filtered statements.
"""
remove_bound = 'remove_bound' in kwargs and kwargs['remove_bound']
specific_only = kwargs.get('specific_only')
logger.info('Filtering %d statements for ones containing genes only...' %
len(stmts_in))
stmts_out = []
for st in stmts_in:
genes_only = True
for agent in st.agent_list():
if agent is not None:
criterion = lambda a: _agent_is_gene(a, specific_only)
if not criterion(agent):
genes_only = False
break
if remove_bound:
_remove_bound_conditions(agent, criterion)
else:
if _any_bound_condition_fails_criterion(agent, criterion):
genes_only = False
break
if genes_only:
stmts_out.append(st)
logger.info('%d statements after filter...' % len(stmts_out))
dump_pkl = kwargs.get('save')
if dump_pkl:
dump_statements(stmts_out, dump_pkl)
return stmts_out | [
"def",
"filter_genes_only",
"(",
"stmts_in",
",",
"*",
"*",
"kwargs",
")",
":",
"remove_bound",
"=",
"'remove_bound'",
"in",
"kwargs",
"and",
"kwargs",
"[",
"'remove_bound'",
"]",
"specific_only",
"=",
"kwargs",
".",
"get",
"(",
"'specific_only'",
")",
"logger",
".",
"info",
"(",
"'Filtering %d statements for ones containing genes only...'",
"%",
"len",
"(",
"stmts_in",
")",
")",
"stmts_out",
"=",
"[",
"]",
"for",
"st",
"in",
"stmts_in",
":",
"genes_only",
"=",
"True",
"for",
"agent",
"in",
"st",
".",
"agent_list",
"(",
")",
":",
"if",
"agent",
"is",
"not",
"None",
":",
"criterion",
"=",
"lambda",
"a",
":",
"_agent_is_gene",
"(",
"a",
",",
"specific_only",
")",
"if",
"not",
"criterion",
"(",
"agent",
")",
":",
"genes_only",
"=",
"False",
"break",
"if",
"remove_bound",
":",
"_remove_bound_conditions",
"(",
"agent",
",",
"criterion",
")",
"else",
":",
"if",
"_any_bound_condition_fails_criterion",
"(",
"agent",
",",
"criterion",
")",
":",
"genes_only",
"=",
"False",
"break",
"if",
"genes_only",
":",
"stmts_out",
".",
"append",
"(",
"st",
")",
"logger",
".",
"info",
"(",
"'%d statements after filter...'",
"%",
"len",
"(",
"stmts_out",
")",
")",
"dump_pkl",
"=",
"kwargs",
".",
"get",
"(",
"'save'",
")",
"if",
"dump_pkl",
":",
"dump_statements",
"(",
"stmts_out",
",",
"dump_pkl",
")",
"return",
"stmts_out"
]
| Filter to statements containing genes only.
Parameters
----------
stmts_in : list[indra.statements.Statement]
A list of statements to filter.
specific_only : Optional[bool]
If True, only elementary genes/proteins will be kept and families
will be filtered out. If False, families are also included in the
output. Default: False
save : Optional[str]
The name of a pickle file to save the results (stmts_out) into.
remove_bound: Optional[bool]
If true, removes bound conditions that are not genes
If false (default), filters out statements with non-gene bound
conditions
Returns
-------
stmts_out : list[indra.statements.Statement]
A list of filtered statements. | [
"Filter",
"to",
"statements",
"containing",
"genes",
"only",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/tools/assemble_corpus.py#L689-L739 | train |
sorgerlab/indra | indra/tools/assemble_corpus.py | filter_belief | def filter_belief(stmts_in, belief_cutoff, **kwargs):
"""Filter to statements with belief above a given cutoff.
Parameters
----------
stmts_in : list[indra.statements.Statement]
A list of statements to filter.
belief_cutoff : float
Only statements with belief above the belief_cutoff will be returned.
Here 0 < belief_cutoff < 1.
save : Optional[str]
The name of a pickle file to save the results (stmts_out) into.
Returns
-------
stmts_out : list[indra.statements.Statement]
A list of filtered statements.
"""
dump_pkl = kwargs.get('save')
logger.info('Filtering %d statements to above %f belief' %
(len(stmts_in), belief_cutoff))
# The first round of filtering is in the top-level list
stmts_out = []
# Now we eliminate supports/supported-by
for stmt in stmts_in:
if stmt.belief < belief_cutoff:
continue
stmts_out.append(stmt)
supp_by = []
supp = []
for st in stmt.supports:
if st.belief >= belief_cutoff:
supp.append(st)
for st in stmt.supported_by:
if st.belief >= belief_cutoff:
supp_by.append(st)
stmt.supports = supp
stmt.supported_by = supp_by
logger.info('%d statements after filter...' % len(stmts_out))
if dump_pkl:
dump_statements(stmts_out, dump_pkl)
return stmts_out | python | def filter_belief(stmts_in, belief_cutoff, **kwargs):
"""Filter to statements with belief above a given cutoff.
Parameters
----------
stmts_in : list[indra.statements.Statement]
A list of statements to filter.
belief_cutoff : float
Only statements with belief above the belief_cutoff will be returned.
Here 0 < belief_cutoff < 1.
save : Optional[str]
The name of a pickle file to save the results (stmts_out) into.
Returns
-------
stmts_out : list[indra.statements.Statement]
A list of filtered statements.
"""
dump_pkl = kwargs.get('save')
logger.info('Filtering %d statements to above %f belief' %
(len(stmts_in), belief_cutoff))
# The first round of filtering is in the top-level list
stmts_out = []
# Now we eliminate supports/supported-by
for stmt in stmts_in:
if stmt.belief < belief_cutoff:
continue
stmts_out.append(stmt)
supp_by = []
supp = []
for st in stmt.supports:
if st.belief >= belief_cutoff:
supp.append(st)
for st in stmt.supported_by:
if st.belief >= belief_cutoff:
supp_by.append(st)
stmt.supports = supp
stmt.supported_by = supp_by
logger.info('%d statements after filter...' % len(stmts_out))
if dump_pkl:
dump_statements(stmts_out, dump_pkl)
return stmts_out | [
"def",
"filter_belief",
"(",
"stmts_in",
",",
"belief_cutoff",
",",
"*",
"*",
"kwargs",
")",
":",
"dump_pkl",
"=",
"kwargs",
".",
"get",
"(",
"'save'",
")",
"logger",
".",
"info",
"(",
"'Filtering %d statements to above %f belief'",
"%",
"(",
"len",
"(",
"stmts_in",
")",
",",
"belief_cutoff",
")",
")",
"# The first round of filtering is in the top-level list",
"stmts_out",
"=",
"[",
"]",
"# Now we eliminate supports/supported-by",
"for",
"stmt",
"in",
"stmts_in",
":",
"if",
"stmt",
".",
"belief",
"<",
"belief_cutoff",
":",
"continue",
"stmts_out",
".",
"append",
"(",
"stmt",
")",
"supp_by",
"=",
"[",
"]",
"supp",
"=",
"[",
"]",
"for",
"st",
"in",
"stmt",
".",
"supports",
":",
"if",
"st",
".",
"belief",
">=",
"belief_cutoff",
":",
"supp",
".",
"append",
"(",
"st",
")",
"for",
"st",
"in",
"stmt",
".",
"supported_by",
":",
"if",
"st",
".",
"belief",
">=",
"belief_cutoff",
":",
"supp_by",
".",
"append",
"(",
"st",
")",
"stmt",
".",
"supports",
"=",
"supp",
"stmt",
".",
"supported_by",
"=",
"supp_by",
"logger",
".",
"info",
"(",
"'%d statements after filter...'",
"%",
"len",
"(",
"stmts_out",
")",
")",
"if",
"dump_pkl",
":",
"dump_statements",
"(",
"stmts_out",
",",
"dump_pkl",
")",
"return",
"stmts_out"
]
| Filter to statements with belief above a given cutoff.
Parameters
----------
stmts_in : list[indra.statements.Statement]
A list of statements to filter.
belief_cutoff : float
Only statements with belief above the belief_cutoff will be returned.
Here 0 < belief_cutoff < 1.
save : Optional[str]
The name of a pickle file to save the results (stmts_out) into.
Returns
-------
stmts_out : list[indra.statements.Statement]
A list of filtered statements. | [
"Filter",
"to",
"statements",
"with",
"belief",
"above",
"a",
"given",
"cutoff",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/tools/assemble_corpus.py#L742-L783 | train |
sorgerlab/indra | indra/tools/assemble_corpus.py | filter_gene_list | def filter_gene_list(stmts_in, gene_list, policy, allow_families=False,
**kwargs):
"""Return statements that contain genes given in a list.
Parameters
----------
stmts_in : list[indra.statements.Statement]
A list of statements to filter.
gene_list : list[str]
A list of gene symbols to filter for.
policy : str
The policy to apply when filtering for the list of genes. "one": keep
statements that contain at least one of the list of genes and
possibly others not in the list "all": keep statements that only
contain genes given in the list
allow_families : Optional[bool]
Will include statements involving FamPlex families containing one
of the genes in the gene list. Default: False
save : Optional[str]
The name of a pickle file to save the results (stmts_out) into.
remove_bound: Optional[str]
If true, removes bound conditions that are not genes in the list
If false (default), looks at agents in the bound conditions in addition
to those participating in the statement directly when applying the
specified policy.
invert : Optional[bool]
If True, the statements that do not match according to the policy
are returned. Default: False
Returns
-------
stmts_out : list[indra.statements.Statement]
A list of filtered statements.
"""
invert = kwargs.get('invert', False)
remove_bound = kwargs.get('remove_bound', False)
if policy not in ('one', 'all'):
logger.error('Policy %s is invalid, not applying filter.' % policy)
else:
genes_str = ', '.join(gene_list)
inv_str = 'not ' if invert else ''
logger.info(('Filtering %d statements for ones %scontaining "%s" of: '
'%s...') % (len(stmts_in), inv_str, policy, genes_str))
# If we're allowing families, make a list of all FamPlex IDs that
# contain members of the gene list, and add them to the filter list
filter_list = copy(gene_list)
if allow_families:
for hgnc_name in gene_list:
gene_uri = hierarchies['entity'].get_uri('HGNC', hgnc_name)
parents = hierarchies['entity'].get_parents(gene_uri)
for par_uri in parents:
ns, id = hierarchies['entity'].ns_id_from_uri(par_uri)
filter_list.append(id)
stmts_out = []
if remove_bound:
# If requested, remove agents whose names are not in the list from
# all bound conditions
if not invert:
keep_criterion = lambda a: a.name in filter_list
else:
keep_criterion = lambda a: a.name not in filter_list
for st in stmts_in:
for agent in st.agent_list():
_remove_bound_conditions(agent, keep_criterion)
if policy == 'one':
for st in stmts_in:
found_gene = False
if not remove_bound:
agent_list = st.agent_list_with_bound_condition_agents()
else:
agent_list = st.agent_list()
for agent in agent_list:
if agent is not None:
if agent.name in filter_list:
found_gene = True
break
if (found_gene and not invert) or (not found_gene and invert):
stmts_out.append(st)
elif policy == 'all':
for st in stmts_in:
found_genes = True
if not remove_bound:
agent_list = st.agent_list_with_bound_condition_agents()
else:
agent_list = st.agent_list()
for agent in agent_list:
if agent is not None:
if agent.name not in filter_list:
found_genes = False
break
if (found_genes and not invert) or (not found_genes and invert):
stmts_out.append(st)
else:
stmts_out = stmts_in
logger.info('%d statements after filter...' % len(stmts_out))
dump_pkl = kwargs.get('save')
if dump_pkl:
dump_statements(stmts_out, dump_pkl)
return stmts_out | python | def filter_gene_list(stmts_in, gene_list, policy, allow_families=False,
**kwargs):
"""Return statements that contain genes given in a list.
Parameters
----------
stmts_in : list[indra.statements.Statement]
A list of statements to filter.
gene_list : list[str]
A list of gene symbols to filter for.
policy : str
The policy to apply when filtering for the list of genes. "one": keep
statements that contain at least one of the list of genes and
possibly others not in the list "all": keep statements that only
contain genes given in the list
allow_families : Optional[bool]
Will include statements involving FamPlex families containing one
of the genes in the gene list. Default: False
save : Optional[str]
The name of a pickle file to save the results (stmts_out) into.
remove_bound: Optional[str]
If true, removes bound conditions that are not genes in the list
If false (default), looks at agents in the bound conditions in addition
to those participating in the statement directly when applying the
specified policy.
invert : Optional[bool]
If True, the statements that do not match according to the policy
are returned. Default: False
Returns
-------
stmts_out : list[indra.statements.Statement]
A list of filtered statements.
"""
invert = kwargs.get('invert', False)
remove_bound = kwargs.get('remove_bound', False)
if policy not in ('one', 'all'):
logger.error('Policy %s is invalid, not applying filter.' % policy)
else:
genes_str = ', '.join(gene_list)
inv_str = 'not ' if invert else ''
logger.info(('Filtering %d statements for ones %scontaining "%s" of: '
'%s...') % (len(stmts_in), inv_str, policy, genes_str))
# If we're allowing families, make a list of all FamPlex IDs that
# contain members of the gene list, and add them to the filter list
filter_list = copy(gene_list)
if allow_families:
for hgnc_name in gene_list:
gene_uri = hierarchies['entity'].get_uri('HGNC', hgnc_name)
parents = hierarchies['entity'].get_parents(gene_uri)
for par_uri in parents:
ns, id = hierarchies['entity'].ns_id_from_uri(par_uri)
filter_list.append(id)
stmts_out = []
if remove_bound:
# If requested, remove agents whose names are not in the list from
# all bound conditions
if not invert:
keep_criterion = lambda a: a.name in filter_list
else:
keep_criterion = lambda a: a.name not in filter_list
for st in stmts_in:
for agent in st.agent_list():
_remove_bound_conditions(agent, keep_criterion)
if policy == 'one':
for st in stmts_in:
found_gene = False
if not remove_bound:
agent_list = st.agent_list_with_bound_condition_agents()
else:
agent_list = st.agent_list()
for agent in agent_list:
if agent is not None:
if agent.name in filter_list:
found_gene = True
break
if (found_gene and not invert) or (not found_gene and invert):
stmts_out.append(st)
elif policy == 'all':
for st in stmts_in:
found_genes = True
if not remove_bound:
agent_list = st.agent_list_with_bound_condition_agents()
else:
agent_list = st.agent_list()
for agent in agent_list:
if agent is not None:
if agent.name not in filter_list:
found_genes = False
break
if (found_genes and not invert) or (not found_genes and invert):
stmts_out.append(st)
else:
stmts_out = stmts_in
logger.info('%d statements after filter...' % len(stmts_out))
dump_pkl = kwargs.get('save')
if dump_pkl:
dump_statements(stmts_out, dump_pkl)
return stmts_out | [
"def",
"filter_gene_list",
"(",
"stmts_in",
",",
"gene_list",
",",
"policy",
",",
"allow_families",
"=",
"False",
",",
"*",
"*",
"kwargs",
")",
":",
"invert",
"=",
"kwargs",
".",
"get",
"(",
"'invert'",
",",
"False",
")",
"remove_bound",
"=",
"kwargs",
".",
"get",
"(",
"'remove_bound'",
",",
"False",
")",
"if",
"policy",
"not",
"in",
"(",
"'one'",
",",
"'all'",
")",
":",
"logger",
".",
"error",
"(",
"'Policy %s is invalid, not applying filter.'",
"%",
"policy",
")",
"else",
":",
"genes_str",
"=",
"', '",
".",
"join",
"(",
"gene_list",
")",
"inv_str",
"=",
"'not '",
"if",
"invert",
"else",
"''",
"logger",
".",
"info",
"(",
"(",
"'Filtering %d statements for ones %scontaining \"%s\" of: '",
"'%s...'",
")",
"%",
"(",
"len",
"(",
"stmts_in",
")",
",",
"inv_str",
",",
"policy",
",",
"genes_str",
")",
")",
"# If we're allowing families, make a list of all FamPlex IDs that",
"# contain members of the gene list, and add them to the filter list",
"filter_list",
"=",
"copy",
"(",
"gene_list",
")",
"if",
"allow_families",
":",
"for",
"hgnc_name",
"in",
"gene_list",
":",
"gene_uri",
"=",
"hierarchies",
"[",
"'entity'",
"]",
".",
"get_uri",
"(",
"'HGNC'",
",",
"hgnc_name",
")",
"parents",
"=",
"hierarchies",
"[",
"'entity'",
"]",
".",
"get_parents",
"(",
"gene_uri",
")",
"for",
"par_uri",
"in",
"parents",
":",
"ns",
",",
"id",
"=",
"hierarchies",
"[",
"'entity'",
"]",
".",
"ns_id_from_uri",
"(",
"par_uri",
")",
"filter_list",
".",
"append",
"(",
"id",
")",
"stmts_out",
"=",
"[",
"]",
"if",
"remove_bound",
":",
"# If requested, remove agents whose names are not in the list from",
"# all bound conditions",
"if",
"not",
"invert",
":",
"keep_criterion",
"=",
"lambda",
"a",
":",
"a",
".",
"name",
"in",
"filter_list",
"else",
":",
"keep_criterion",
"=",
"lambda",
"a",
":",
"a",
".",
"name",
"not",
"in",
"filter_list",
"for",
"st",
"in",
"stmts_in",
":",
"for",
"agent",
"in",
"st",
".",
"agent_list",
"(",
")",
":",
"_remove_bound_conditions",
"(",
"agent",
",",
"keep_criterion",
")",
"if",
"policy",
"==",
"'one'",
":",
"for",
"st",
"in",
"stmts_in",
":",
"found_gene",
"=",
"False",
"if",
"not",
"remove_bound",
":",
"agent_list",
"=",
"st",
".",
"agent_list_with_bound_condition_agents",
"(",
")",
"else",
":",
"agent_list",
"=",
"st",
".",
"agent_list",
"(",
")",
"for",
"agent",
"in",
"agent_list",
":",
"if",
"agent",
"is",
"not",
"None",
":",
"if",
"agent",
".",
"name",
"in",
"filter_list",
":",
"found_gene",
"=",
"True",
"break",
"if",
"(",
"found_gene",
"and",
"not",
"invert",
")",
"or",
"(",
"not",
"found_gene",
"and",
"invert",
")",
":",
"stmts_out",
".",
"append",
"(",
"st",
")",
"elif",
"policy",
"==",
"'all'",
":",
"for",
"st",
"in",
"stmts_in",
":",
"found_genes",
"=",
"True",
"if",
"not",
"remove_bound",
":",
"agent_list",
"=",
"st",
".",
"agent_list_with_bound_condition_agents",
"(",
")",
"else",
":",
"agent_list",
"=",
"st",
".",
"agent_list",
"(",
")",
"for",
"agent",
"in",
"agent_list",
":",
"if",
"agent",
"is",
"not",
"None",
":",
"if",
"agent",
".",
"name",
"not",
"in",
"filter_list",
":",
"found_genes",
"=",
"False",
"break",
"if",
"(",
"found_genes",
"and",
"not",
"invert",
")",
"or",
"(",
"not",
"found_genes",
"and",
"invert",
")",
":",
"stmts_out",
".",
"append",
"(",
"st",
")",
"else",
":",
"stmts_out",
"=",
"stmts_in",
"logger",
".",
"info",
"(",
"'%d statements after filter...'",
"%",
"len",
"(",
"stmts_out",
")",
")",
"dump_pkl",
"=",
"kwargs",
".",
"get",
"(",
"'save'",
")",
"if",
"dump_pkl",
":",
"dump_statements",
"(",
"stmts_out",
",",
"dump_pkl",
")",
"return",
"stmts_out"
]
| Return statements that contain genes given in a list.
Parameters
----------
stmts_in : list[indra.statements.Statement]
A list of statements to filter.
gene_list : list[str]
A list of gene symbols to filter for.
policy : str
The policy to apply when filtering for the list of genes. "one": keep
statements that contain at least one of the list of genes and
possibly others not in the list "all": keep statements that only
contain genes given in the list
allow_families : Optional[bool]
Will include statements involving FamPlex families containing one
of the genes in the gene list. Default: False
save : Optional[str]
The name of a pickle file to save the results (stmts_out) into.
remove_bound: Optional[str]
If true, removes bound conditions that are not genes in the list
If false (default), looks at agents in the bound conditions in addition
to those participating in the statement directly when applying the
specified policy.
invert : Optional[bool]
If True, the statements that do not match according to the policy
are returned. Default: False
Returns
-------
stmts_out : list[indra.statements.Statement]
A list of filtered statements. | [
"Return",
"statements",
"that",
"contain",
"genes",
"given",
"in",
"a",
"list",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/tools/assemble_corpus.py#L786-L890 | train |
sorgerlab/indra | indra/tools/assemble_corpus.py | filter_by_db_refs | def filter_by_db_refs(stmts_in, namespace, values, policy, **kwargs):
"""Filter to Statements whose agents are grounded to a matching entry.
Statements are filtered so that the db_refs entry (of the given namespace)
of their Agent/Concept arguments take a value in the given list of values.
Parameters
----------
stmts_in : list[indra.statements.Statement]
A list of Statements to filter.
namespace : str
The namespace in db_refs to which the filter should apply.
values : list[str]
A list of values in the given namespace to which the filter should
apply.
policy : str
The policy to apply when filtering for the db_refs. "one": keep
Statements that contain at least one of the list of db_refs and
possibly others not in the list "all": keep Statements that only
contain db_refs given in the list
save : Optional[str]
The name of a pickle file to save the results (stmts_out) into.
invert : Optional[bool]
If True, the Statements that do not match according to the policy
are returned. Default: False
match_suffix : Optional[bool]
If True, the suffix of the db_refs entry is matches agains the list
of entries
Returns
-------
stmts_out : list[indra.statements.Statement]
A list of filtered Statements.
"""
invert = kwargs.get('invert', False)
match_suffix = kwargs.get('match_suffix', False)
if policy not in ('one', 'all'):
logger.error('Policy %s is invalid, not applying filter.' % policy)
return
else:
name_str = ', '.join(values)
rev_mod = 'not ' if invert else ''
logger.info(('Filtering %d statements for those with %s agents %s'
'grounded to: %s in the %s namespace...') %
(len(stmts_in), policy, rev_mod, name_str, namespace))
def meets_criterion(agent):
if namespace not in agent.db_refs:
return False
entry = agent.db_refs[namespace]
if isinstance(entry, list):
entry = entry[0][0]
ret = False
# Match suffix or entire entry
if match_suffix:
if any([entry.endswith(e) for e in values]):
ret = True
else:
if entry in values:
ret = True
# Invert if needed
if invert:
return not ret
else:
return ret
enough = all if policy == 'all' else any
stmts_out = [s for s in stmts_in
if enough([meets_criterion(ag) for ag in s.agent_list()
if ag is not None])]
logger.info('%d Statements after filter...' % len(stmts_out))
dump_pkl = kwargs.get('save')
if dump_pkl:
dump_statements(stmts_out, dump_pkl)
return stmts_out | python | def filter_by_db_refs(stmts_in, namespace, values, policy, **kwargs):
"""Filter to Statements whose agents are grounded to a matching entry.
Statements are filtered so that the db_refs entry (of the given namespace)
of their Agent/Concept arguments take a value in the given list of values.
Parameters
----------
stmts_in : list[indra.statements.Statement]
A list of Statements to filter.
namespace : str
The namespace in db_refs to which the filter should apply.
values : list[str]
A list of values in the given namespace to which the filter should
apply.
policy : str
The policy to apply when filtering for the db_refs. "one": keep
Statements that contain at least one of the list of db_refs and
possibly others not in the list "all": keep Statements that only
contain db_refs given in the list
save : Optional[str]
The name of a pickle file to save the results (stmts_out) into.
invert : Optional[bool]
If True, the Statements that do not match according to the policy
are returned. Default: False
match_suffix : Optional[bool]
If True, the suffix of the db_refs entry is matches agains the list
of entries
Returns
-------
stmts_out : list[indra.statements.Statement]
A list of filtered Statements.
"""
invert = kwargs.get('invert', False)
match_suffix = kwargs.get('match_suffix', False)
if policy not in ('one', 'all'):
logger.error('Policy %s is invalid, not applying filter.' % policy)
return
else:
name_str = ', '.join(values)
rev_mod = 'not ' if invert else ''
logger.info(('Filtering %d statements for those with %s agents %s'
'grounded to: %s in the %s namespace...') %
(len(stmts_in), policy, rev_mod, name_str, namespace))
def meets_criterion(agent):
if namespace not in agent.db_refs:
return False
entry = agent.db_refs[namespace]
if isinstance(entry, list):
entry = entry[0][0]
ret = False
# Match suffix or entire entry
if match_suffix:
if any([entry.endswith(e) for e in values]):
ret = True
else:
if entry in values:
ret = True
# Invert if needed
if invert:
return not ret
else:
return ret
enough = all if policy == 'all' else any
stmts_out = [s for s in stmts_in
if enough([meets_criterion(ag) for ag in s.agent_list()
if ag is not None])]
logger.info('%d Statements after filter...' % len(stmts_out))
dump_pkl = kwargs.get('save')
if dump_pkl:
dump_statements(stmts_out, dump_pkl)
return stmts_out | [
"def",
"filter_by_db_refs",
"(",
"stmts_in",
",",
"namespace",
",",
"values",
",",
"policy",
",",
"*",
"*",
"kwargs",
")",
":",
"invert",
"=",
"kwargs",
".",
"get",
"(",
"'invert'",
",",
"False",
")",
"match_suffix",
"=",
"kwargs",
".",
"get",
"(",
"'match_suffix'",
",",
"False",
")",
"if",
"policy",
"not",
"in",
"(",
"'one'",
",",
"'all'",
")",
":",
"logger",
".",
"error",
"(",
"'Policy %s is invalid, not applying filter.'",
"%",
"policy",
")",
"return",
"else",
":",
"name_str",
"=",
"', '",
".",
"join",
"(",
"values",
")",
"rev_mod",
"=",
"'not '",
"if",
"invert",
"else",
"''",
"logger",
".",
"info",
"(",
"(",
"'Filtering %d statements for those with %s agents %s'",
"'grounded to: %s in the %s namespace...'",
")",
"%",
"(",
"len",
"(",
"stmts_in",
")",
",",
"policy",
",",
"rev_mod",
",",
"name_str",
",",
"namespace",
")",
")",
"def",
"meets_criterion",
"(",
"agent",
")",
":",
"if",
"namespace",
"not",
"in",
"agent",
".",
"db_refs",
":",
"return",
"False",
"entry",
"=",
"agent",
".",
"db_refs",
"[",
"namespace",
"]",
"if",
"isinstance",
"(",
"entry",
",",
"list",
")",
":",
"entry",
"=",
"entry",
"[",
"0",
"]",
"[",
"0",
"]",
"ret",
"=",
"False",
"# Match suffix or entire entry",
"if",
"match_suffix",
":",
"if",
"any",
"(",
"[",
"entry",
".",
"endswith",
"(",
"e",
")",
"for",
"e",
"in",
"values",
"]",
")",
":",
"ret",
"=",
"True",
"else",
":",
"if",
"entry",
"in",
"values",
":",
"ret",
"=",
"True",
"# Invert if needed",
"if",
"invert",
":",
"return",
"not",
"ret",
"else",
":",
"return",
"ret",
"enough",
"=",
"all",
"if",
"policy",
"==",
"'all'",
"else",
"any",
"stmts_out",
"=",
"[",
"s",
"for",
"s",
"in",
"stmts_in",
"if",
"enough",
"(",
"[",
"meets_criterion",
"(",
"ag",
")",
"for",
"ag",
"in",
"s",
".",
"agent_list",
"(",
")",
"if",
"ag",
"is",
"not",
"None",
"]",
")",
"]",
"logger",
".",
"info",
"(",
"'%d Statements after filter...'",
"%",
"len",
"(",
"stmts_out",
")",
")",
"dump_pkl",
"=",
"kwargs",
".",
"get",
"(",
"'save'",
")",
"if",
"dump_pkl",
":",
"dump_statements",
"(",
"stmts_out",
",",
"dump_pkl",
")",
"return",
"stmts_out"
]
| Filter to Statements whose agents are grounded to a matching entry.
Statements are filtered so that the db_refs entry (of the given namespace)
of their Agent/Concept arguments take a value in the given list of values.
Parameters
----------
stmts_in : list[indra.statements.Statement]
A list of Statements to filter.
namespace : str
The namespace in db_refs to which the filter should apply.
values : list[str]
A list of values in the given namespace to which the filter should
apply.
policy : str
The policy to apply when filtering for the db_refs. "one": keep
Statements that contain at least one of the list of db_refs and
possibly others not in the list "all": keep Statements that only
contain db_refs given in the list
save : Optional[str]
The name of a pickle file to save the results (stmts_out) into.
invert : Optional[bool]
If True, the Statements that do not match according to the policy
are returned. Default: False
match_suffix : Optional[bool]
If True, the suffix of the db_refs entry is matches agains the list
of entries
Returns
-------
stmts_out : list[indra.statements.Statement]
A list of filtered Statements. | [
"Filter",
"to",
"Statements",
"whose",
"agents",
"are",
"grounded",
"to",
"a",
"matching",
"entry",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/tools/assemble_corpus.py#L962-L1039 | train |
sorgerlab/indra | indra/tools/assemble_corpus.py | filter_human_only | def filter_human_only(stmts_in, **kwargs):
"""Filter out statements that are grounded, but not to a human gene.
Parameters
----------
stmts_in : list[indra.statements.Statement]
A list of statements to filter.
save : Optional[str]
The name of a pickle file to save the results (stmts_out) into.
remove_bound: Optional[bool]
If true, removes all bound conditions that are grounded but not to human
genes. If false (default), filters out statements with boundary
conditions that are grounded to non-human genes.
Returns
-------
stmts_out : list[indra.statements.Statement]
A list of filtered statements.
"""
from indra.databases import uniprot_client
if 'remove_bound' in kwargs and kwargs['remove_bound']:
remove_bound = True
else:
remove_bound = False
dump_pkl = kwargs.get('save')
logger.info('Filtering %d statements for human genes only...' %
len(stmts_in))
stmts_out = []
def criterion(agent):
upid = agent.db_refs.get('UP')
if upid and not uniprot_client.is_human(upid):
return False
else:
return True
for st in stmts_in:
human_genes = True
for agent in st.agent_list():
if agent is not None:
if not criterion(agent):
human_genes = False
break
if remove_bound:
_remove_bound_conditions(agent, criterion)
elif _any_bound_condition_fails_criterion(agent, criterion):
human_genes = False
break
if human_genes:
stmts_out.append(st)
logger.info('%d statements after filter...' % len(stmts_out))
if dump_pkl:
dump_statements(stmts_out, dump_pkl)
return stmts_out | python | def filter_human_only(stmts_in, **kwargs):
"""Filter out statements that are grounded, but not to a human gene.
Parameters
----------
stmts_in : list[indra.statements.Statement]
A list of statements to filter.
save : Optional[str]
The name of a pickle file to save the results (stmts_out) into.
remove_bound: Optional[bool]
If true, removes all bound conditions that are grounded but not to human
genes. If false (default), filters out statements with boundary
conditions that are grounded to non-human genes.
Returns
-------
stmts_out : list[indra.statements.Statement]
A list of filtered statements.
"""
from indra.databases import uniprot_client
if 'remove_bound' in kwargs and kwargs['remove_bound']:
remove_bound = True
else:
remove_bound = False
dump_pkl = kwargs.get('save')
logger.info('Filtering %d statements for human genes only...' %
len(stmts_in))
stmts_out = []
def criterion(agent):
upid = agent.db_refs.get('UP')
if upid and not uniprot_client.is_human(upid):
return False
else:
return True
for st in stmts_in:
human_genes = True
for agent in st.agent_list():
if agent is not None:
if not criterion(agent):
human_genes = False
break
if remove_bound:
_remove_bound_conditions(agent, criterion)
elif _any_bound_condition_fails_criterion(agent, criterion):
human_genes = False
break
if human_genes:
stmts_out.append(st)
logger.info('%d statements after filter...' % len(stmts_out))
if dump_pkl:
dump_statements(stmts_out, dump_pkl)
return stmts_out | [
"def",
"filter_human_only",
"(",
"stmts_in",
",",
"*",
"*",
"kwargs",
")",
":",
"from",
"indra",
".",
"databases",
"import",
"uniprot_client",
"if",
"'remove_bound'",
"in",
"kwargs",
"and",
"kwargs",
"[",
"'remove_bound'",
"]",
":",
"remove_bound",
"=",
"True",
"else",
":",
"remove_bound",
"=",
"False",
"dump_pkl",
"=",
"kwargs",
".",
"get",
"(",
"'save'",
")",
"logger",
".",
"info",
"(",
"'Filtering %d statements for human genes only...'",
"%",
"len",
"(",
"stmts_in",
")",
")",
"stmts_out",
"=",
"[",
"]",
"def",
"criterion",
"(",
"agent",
")",
":",
"upid",
"=",
"agent",
".",
"db_refs",
".",
"get",
"(",
"'UP'",
")",
"if",
"upid",
"and",
"not",
"uniprot_client",
".",
"is_human",
"(",
"upid",
")",
":",
"return",
"False",
"else",
":",
"return",
"True",
"for",
"st",
"in",
"stmts_in",
":",
"human_genes",
"=",
"True",
"for",
"agent",
"in",
"st",
".",
"agent_list",
"(",
")",
":",
"if",
"agent",
"is",
"not",
"None",
":",
"if",
"not",
"criterion",
"(",
"agent",
")",
":",
"human_genes",
"=",
"False",
"break",
"if",
"remove_bound",
":",
"_remove_bound_conditions",
"(",
"agent",
",",
"criterion",
")",
"elif",
"_any_bound_condition_fails_criterion",
"(",
"agent",
",",
"criterion",
")",
":",
"human_genes",
"=",
"False",
"break",
"if",
"human_genes",
":",
"stmts_out",
".",
"append",
"(",
"st",
")",
"logger",
".",
"info",
"(",
"'%d statements after filter...'",
"%",
"len",
"(",
"stmts_out",
")",
")",
"if",
"dump_pkl",
":",
"dump_statements",
"(",
"stmts_out",
",",
"dump_pkl",
")",
"return",
"stmts_out"
]
| Filter out statements that are grounded, but not to a human gene.
Parameters
----------
stmts_in : list[indra.statements.Statement]
A list of statements to filter.
save : Optional[str]
The name of a pickle file to save the results (stmts_out) into.
remove_bound: Optional[bool]
If true, removes all bound conditions that are grounded but not to human
genes. If false (default), filters out statements with boundary
conditions that are grounded to non-human genes.
Returns
-------
stmts_out : list[indra.statements.Statement]
A list of filtered statements. | [
"Filter",
"out",
"statements",
"that",
"are",
"grounded",
"but",
"not",
"to",
"a",
"human",
"gene",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/tools/assemble_corpus.py#L1042-L1097 | train |
sorgerlab/indra | indra/tools/assemble_corpus.py | filter_direct | def filter_direct(stmts_in, **kwargs):
"""Filter to statements that are direct interactions
Parameters
----------
stmts_in : list[indra.statements.Statement]
A list of statements to filter.
save : Optional[str]
The name of a pickle file to save the results (stmts_out) into.
Returns
-------
stmts_out : list[indra.statements.Statement]
A list of filtered statements.
"""
def get_is_direct(stmt):
"""Returns true if there is evidence that the statement is a direct
interaction.
If any of the evidences associated with the statement
indicates a direct interatcion then we assume the interaction
is direct. If there is no evidence for the interaction being indirect
then we default to direct.
"""
any_indirect = False
for ev in stmt.evidence:
if ev.epistemics.get('direct') is True:
return True
elif ev.epistemics.get('direct') is False:
# This guarantees that we have seen at least
# some evidence that the statement is indirect
any_indirect = True
if any_indirect:
return False
return True
logger.info('Filtering %d statements to direct ones...' % len(stmts_in))
stmts_out = []
for st in stmts_in:
if get_is_direct(st):
stmts_out.append(st)
logger.info('%d statements after filter...' % len(stmts_out))
dump_pkl = kwargs.get('save')
if dump_pkl:
dump_statements(stmts_out, dump_pkl)
return stmts_out | python | def filter_direct(stmts_in, **kwargs):
"""Filter to statements that are direct interactions
Parameters
----------
stmts_in : list[indra.statements.Statement]
A list of statements to filter.
save : Optional[str]
The name of a pickle file to save the results (stmts_out) into.
Returns
-------
stmts_out : list[indra.statements.Statement]
A list of filtered statements.
"""
def get_is_direct(stmt):
"""Returns true if there is evidence that the statement is a direct
interaction.
If any of the evidences associated with the statement
indicates a direct interatcion then we assume the interaction
is direct. If there is no evidence for the interaction being indirect
then we default to direct.
"""
any_indirect = False
for ev in stmt.evidence:
if ev.epistemics.get('direct') is True:
return True
elif ev.epistemics.get('direct') is False:
# This guarantees that we have seen at least
# some evidence that the statement is indirect
any_indirect = True
if any_indirect:
return False
return True
logger.info('Filtering %d statements to direct ones...' % len(stmts_in))
stmts_out = []
for st in stmts_in:
if get_is_direct(st):
stmts_out.append(st)
logger.info('%d statements after filter...' % len(stmts_out))
dump_pkl = kwargs.get('save')
if dump_pkl:
dump_statements(stmts_out, dump_pkl)
return stmts_out | [
"def",
"filter_direct",
"(",
"stmts_in",
",",
"*",
"*",
"kwargs",
")",
":",
"def",
"get_is_direct",
"(",
"stmt",
")",
":",
"\"\"\"Returns true if there is evidence that the statement is a direct\n interaction.\n\n If any of the evidences associated with the statement\n indicates a direct interatcion then we assume the interaction\n is direct. If there is no evidence for the interaction being indirect\n then we default to direct.\n \"\"\"",
"any_indirect",
"=",
"False",
"for",
"ev",
"in",
"stmt",
".",
"evidence",
":",
"if",
"ev",
".",
"epistemics",
".",
"get",
"(",
"'direct'",
")",
"is",
"True",
":",
"return",
"True",
"elif",
"ev",
".",
"epistemics",
".",
"get",
"(",
"'direct'",
")",
"is",
"False",
":",
"# This guarantees that we have seen at least",
"# some evidence that the statement is indirect",
"any_indirect",
"=",
"True",
"if",
"any_indirect",
":",
"return",
"False",
"return",
"True",
"logger",
".",
"info",
"(",
"'Filtering %d statements to direct ones...'",
"%",
"len",
"(",
"stmts_in",
")",
")",
"stmts_out",
"=",
"[",
"]",
"for",
"st",
"in",
"stmts_in",
":",
"if",
"get_is_direct",
"(",
"st",
")",
":",
"stmts_out",
".",
"append",
"(",
"st",
")",
"logger",
".",
"info",
"(",
"'%d statements after filter...'",
"%",
"len",
"(",
"stmts_out",
")",
")",
"dump_pkl",
"=",
"kwargs",
".",
"get",
"(",
"'save'",
")",
"if",
"dump_pkl",
":",
"dump_statements",
"(",
"stmts_out",
",",
"dump_pkl",
")",
"return",
"stmts_out"
]
| Filter to statements that are direct interactions
Parameters
----------
stmts_in : list[indra.statements.Statement]
A list of statements to filter.
save : Optional[str]
The name of a pickle file to save the results (stmts_out) into.
Returns
-------
stmts_out : list[indra.statements.Statement]
A list of filtered statements. | [
"Filter",
"to",
"statements",
"that",
"are",
"direct",
"interactions"
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/tools/assemble_corpus.py#L1100-L1144 | train |
sorgerlab/indra | indra/tools/assemble_corpus.py | filter_no_hypothesis | def filter_no_hypothesis(stmts_in, **kwargs):
"""Filter to statements that are not marked as hypothesis in epistemics.
Parameters
----------
stmts_in : list[indra.statements.Statement]
A list of statements to filter.
save : Optional[str]
The name of a pickle file to save the results (stmts_out) into.
Returns
-------
stmts_out : list[indra.statements.Statement]
A list of filtered statements.
"""
logger.info('Filtering %d statements to no hypothesis...' % len(stmts_in))
stmts_out = []
for st in stmts_in:
all_hypotheses = True
ev = None
for ev in st.evidence:
if not ev.epistemics.get('hypothesis', False):
all_hypotheses = False
break
if ev is None:
all_hypotheses = False
if not all_hypotheses:
stmts_out.append(st)
logger.info('%d statements after filter...' % len(stmts_out))
dump_pkl = kwargs.get('save')
if dump_pkl:
dump_statements(stmts_out, dump_pkl)
return stmts_out | python | def filter_no_hypothesis(stmts_in, **kwargs):
"""Filter to statements that are not marked as hypothesis in epistemics.
Parameters
----------
stmts_in : list[indra.statements.Statement]
A list of statements to filter.
save : Optional[str]
The name of a pickle file to save the results (stmts_out) into.
Returns
-------
stmts_out : list[indra.statements.Statement]
A list of filtered statements.
"""
logger.info('Filtering %d statements to no hypothesis...' % len(stmts_in))
stmts_out = []
for st in stmts_in:
all_hypotheses = True
ev = None
for ev in st.evidence:
if not ev.epistemics.get('hypothesis', False):
all_hypotheses = False
break
if ev is None:
all_hypotheses = False
if not all_hypotheses:
stmts_out.append(st)
logger.info('%d statements after filter...' % len(stmts_out))
dump_pkl = kwargs.get('save')
if dump_pkl:
dump_statements(stmts_out, dump_pkl)
return stmts_out | [
"def",
"filter_no_hypothesis",
"(",
"stmts_in",
",",
"*",
"*",
"kwargs",
")",
":",
"logger",
".",
"info",
"(",
"'Filtering %d statements to no hypothesis...'",
"%",
"len",
"(",
"stmts_in",
")",
")",
"stmts_out",
"=",
"[",
"]",
"for",
"st",
"in",
"stmts_in",
":",
"all_hypotheses",
"=",
"True",
"ev",
"=",
"None",
"for",
"ev",
"in",
"st",
".",
"evidence",
":",
"if",
"not",
"ev",
".",
"epistemics",
".",
"get",
"(",
"'hypothesis'",
",",
"False",
")",
":",
"all_hypotheses",
"=",
"False",
"break",
"if",
"ev",
"is",
"None",
":",
"all_hypotheses",
"=",
"False",
"if",
"not",
"all_hypotheses",
":",
"stmts_out",
".",
"append",
"(",
"st",
")",
"logger",
".",
"info",
"(",
"'%d statements after filter...'",
"%",
"len",
"(",
"stmts_out",
")",
")",
"dump_pkl",
"=",
"kwargs",
".",
"get",
"(",
"'save'",
")",
"if",
"dump_pkl",
":",
"dump_statements",
"(",
"stmts_out",
",",
"dump_pkl",
")",
"return",
"stmts_out"
]
| Filter to statements that are not marked as hypothesis in epistemics.
Parameters
----------
stmts_in : list[indra.statements.Statement]
A list of statements to filter.
save : Optional[str]
The name of a pickle file to save the results (stmts_out) into.
Returns
-------
stmts_out : list[indra.statements.Statement]
A list of filtered statements. | [
"Filter",
"to",
"statements",
"that",
"are",
"not",
"marked",
"as",
"hypothesis",
"in",
"epistemics",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/tools/assemble_corpus.py#L1147-L1179 | train |
sorgerlab/indra | indra/tools/assemble_corpus.py | filter_evidence_source | def filter_evidence_source(stmts_in, source_apis, policy='one', **kwargs):
"""Filter to statements that have evidence from a given set of sources.
Parameters
----------
stmts_in : list[indra.statements.Statement]
A list of statements to filter.
source_apis : list[str]
A list of sources to filter for. Examples: biopax, bel, reach
policy : Optional[str]
If 'one', a statement that hase evidence from any of the sources is
kept. If 'all', only those statements are kept which have evidence
from all the input sources specified in source_apis.
If 'none', only those statements are kept that don't have evidence
from any of the sources specified in source_apis.
save : Optional[str]
The name of a pickle file to save the results (stmts_out) into.
Returns
-------
stmts_out : list[indra.statements.Statement]
A list of filtered statements.
"""
logger.info('Filtering %d statements to evidence source "%s" of: %s...' %
(len(stmts_in), policy, ', '.join(source_apis)))
stmts_out = []
for st in stmts_in:
sources = set([ev.source_api for ev in st.evidence])
if policy == 'one':
if sources.intersection(source_apis):
stmts_out.append(st)
if policy == 'all':
if sources.intersection(source_apis) == set(source_apis):
stmts_out.append(st)
if policy == 'none':
if not sources.intersection(source_apis):
stmts_out.append(st)
logger.info('%d statements after filter...' % len(stmts_out))
dump_pkl = kwargs.get('save')
if dump_pkl:
dump_statements(stmts_out, dump_pkl)
return stmts_out | python | def filter_evidence_source(stmts_in, source_apis, policy='one', **kwargs):
"""Filter to statements that have evidence from a given set of sources.
Parameters
----------
stmts_in : list[indra.statements.Statement]
A list of statements to filter.
source_apis : list[str]
A list of sources to filter for. Examples: biopax, bel, reach
policy : Optional[str]
If 'one', a statement that hase evidence from any of the sources is
kept. If 'all', only those statements are kept which have evidence
from all the input sources specified in source_apis.
If 'none', only those statements are kept that don't have evidence
from any of the sources specified in source_apis.
save : Optional[str]
The name of a pickle file to save the results (stmts_out) into.
Returns
-------
stmts_out : list[indra.statements.Statement]
A list of filtered statements.
"""
logger.info('Filtering %d statements to evidence source "%s" of: %s...' %
(len(stmts_in), policy, ', '.join(source_apis)))
stmts_out = []
for st in stmts_in:
sources = set([ev.source_api for ev in st.evidence])
if policy == 'one':
if sources.intersection(source_apis):
stmts_out.append(st)
if policy == 'all':
if sources.intersection(source_apis) == set(source_apis):
stmts_out.append(st)
if policy == 'none':
if not sources.intersection(source_apis):
stmts_out.append(st)
logger.info('%d statements after filter...' % len(stmts_out))
dump_pkl = kwargs.get('save')
if dump_pkl:
dump_statements(stmts_out, dump_pkl)
return stmts_out | [
"def",
"filter_evidence_source",
"(",
"stmts_in",
",",
"source_apis",
",",
"policy",
"=",
"'one'",
",",
"*",
"*",
"kwargs",
")",
":",
"logger",
".",
"info",
"(",
"'Filtering %d statements to evidence source \"%s\" of: %s...'",
"%",
"(",
"len",
"(",
"stmts_in",
")",
",",
"policy",
",",
"', '",
".",
"join",
"(",
"source_apis",
")",
")",
")",
"stmts_out",
"=",
"[",
"]",
"for",
"st",
"in",
"stmts_in",
":",
"sources",
"=",
"set",
"(",
"[",
"ev",
".",
"source_api",
"for",
"ev",
"in",
"st",
".",
"evidence",
"]",
")",
"if",
"policy",
"==",
"'one'",
":",
"if",
"sources",
".",
"intersection",
"(",
"source_apis",
")",
":",
"stmts_out",
".",
"append",
"(",
"st",
")",
"if",
"policy",
"==",
"'all'",
":",
"if",
"sources",
".",
"intersection",
"(",
"source_apis",
")",
"==",
"set",
"(",
"source_apis",
")",
":",
"stmts_out",
".",
"append",
"(",
"st",
")",
"if",
"policy",
"==",
"'none'",
":",
"if",
"not",
"sources",
".",
"intersection",
"(",
"source_apis",
")",
":",
"stmts_out",
".",
"append",
"(",
"st",
")",
"logger",
".",
"info",
"(",
"'%d statements after filter...'",
"%",
"len",
"(",
"stmts_out",
")",
")",
"dump_pkl",
"=",
"kwargs",
".",
"get",
"(",
"'save'",
")",
"if",
"dump_pkl",
":",
"dump_statements",
"(",
"stmts_out",
",",
"dump_pkl",
")",
"return",
"stmts_out"
]
| Filter to statements that have evidence from a given set of sources.
Parameters
----------
stmts_in : list[indra.statements.Statement]
A list of statements to filter.
source_apis : list[str]
A list of sources to filter for. Examples: biopax, bel, reach
policy : Optional[str]
If 'one', a statement that hase evidence from any of the sources is
kept. If 'all', only those statements are kept which have evidence
from all the input sources specified in source_apis.
If 'none', only those statements are kept that don't have evidence
from any of the sources specified in source_apis.
save : Optional[str]
The name of a pickle file to save the results (stmts_out) into.
Returns
-------
stmts_out : list[indra.statements.Statement]
A list of filtered statements. | [
"Filter",
"to",
"statements",
"that",
"have",
"evidence",
"from",
"a",
"given",
"set",
"of",
"sources",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/tools/assemble_corpus.py#L1217-L1258 | train |
sorgerlab/indra | indra/tools/assemble_corpus.py | filter_top_level | def filter_top_level(stmts_in, **kwargs):
"""Filter to statements that are at the top-level of the hierarchy.
Here top-level statements correspond to most specific ones.
Parameters
----------
stmts_in : list[indra.statements.Statement]
A list of statements to filter.
save : Optional[str]
The name of a pickle file to save the results (stmts_out) into.
Returns
-------
stmts_out : list[indra.statements.Statement]
A list of filtered statements.
"""
logger.info('Filtering %d statements for top-level...' % len(stmts_in))
stmts_out = [st for st in stmts_in if not st.supports]
logger.info('%d statements after filter...' % len(stmts_out))
dump_pkl = kwargs.get('save')
if dump_pkl:
dump_statements(stmts_out, dump_pkl)
return stmts_out | python | def filter_top_level(stmts_in, **kwargs):
"""Filter to statements that are at the top-level of the hierarchy.
Here top-level statements correspond to most specific ones.
Parameters
----------
stmts_in : list[indra.statements.Statement]
A list of statements to filter.
save : Optional[str]
The name of a pickle file to save the results (stmts_out) into.
Returns
-------
stmts_out : list[indra.statements.Statement]
A list of filtered statements.
"""
logger.info('Filtering %d statements for top-level...' % len(stmts_in))
stmts_out = [st for st in stmts_in if not st.supports]
logger.info('%d statements after filter...' % len(stmts_out))
dump_pkl = kwargs.get('save')
if dump_pkl:
dump_statements(stmts_out, dump_pkl)
return stmts_out | [
"def",
"filter_top_level",
"(",
"stmts_in",
",",
"*",
"*",
"kwargs",
")",
":",
"logger",
".",
"info",
"(",
"'Filtering %d statements for top-level...'",
"%",
"len",
"(",
"stmts_in",
")",
")",
"stmts_out",
"=",
"[",
"st",
"for",
"st",
"in",
"stmts_in",
"if",
"not",
"st",
".",
"supports",
"]",
"logger",
".",
"info",
"(",
"'%d statements after filter...'",
"%",
"len",
"(",
"stmts_out",
")",
")",
"dump_pkl",
"=",
"kwargs",
".",
"get",
"(",
"'save'",
")",
"if",
"dump_pkl",
":",
"dump_statements",
"(",
"stmts_out",
",",
"dump_pkl",
")",
"return",
"stmts_out"
]
| Filter to statements that are at the top-level of the hierarchy.
Here top-level statements correspond to most specific ones.
Parameters
----------
stmts_in : list[indra.statements.Statement]
A list of statements to filter.
save : Optional[str]
The name of a pickle file to save the results (stmts_out) into.
Returns
-------
stmts_out : list[indra.statements.Statement]
A list of filtered statements. | [
"Filter",
"to",
"statements",
"that",
"are",
"at",
"the",
"top",
"-",
"level",
"of",
"the",
"hierarchy",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/tools/assemble_corpus.py#L1261-L1284 | train |
sorgerlab/indra | indra/tools/assemble_corpus.py | filter_inconsequential_mods | def filter_inconsequential_mods(stmts_in, whitelist=None, **kwargs):
"""Filter out Modifications that modify inconsequential sites
Inconsequential here means that the site is not mentioned / tested
in any other statement. In some cases specific sites should be
preserved, for instance, to be used as readouts in a model.
In this case, the given sites can be passed in a whitelist.
Parameters
----------
stmts_in : list[indra.statements.Statement]
A list of statements to filter.
whitelist : Optional[dict]
A whitelist containing agent modification sites whose
modifications should be preserved even if no other statement
refers to them. The whitelist parameter is a dictionary in which
the key is a gene name and the value is a list of tuples of
(modification_type, residue, position). Example:
whitelist = {'MAP2K1': [('phosphorylation', 'S', '222')]}
save : Optional[str]
The name of a pickle file to save the results (stmts_out) into.
Returns
-------
stmts_out : list[indra.statements.Statement]
A list of filtered statements.
"""
if whitelist is None:
whitelist = {}
logger.info('Filtering %d statements to remove' % len(stmts_in) +
' inconsequential modifications...')
states_used = whitelist
for stmt in stmts_in:
for agent in stmt.agent_list():
if agent is not None:
if agent.mods:
for mc in agent.mods:
mod = (mc.mod_type, mc.residue, mc.position)
try:
states_used[agent.name].append(mod)
except KeyError:
states_used[agent.name] = [mod]
for k, v in states_used.items():
states_used[k] = list(set(v))
stmts_out = []
for stmt in stmts_in:
skip = False
if isinstance(stmt, Modification):
mod_type = modclass_to_modtype[stmt.__class__]
if isinstance(stmt, RemoveModification):
mod_type = modtype_to_inverse[mod_type]
mod = (mod_type, stmt.residue, stmt.position)
used = states_used.get(stmt.sub.name, [])
if mod not in used:
skip = True
if not skip:
stmts_out.append(stmt)
logger.info('%d statements after filter...' % len(stmts_out))
dump_pkl = kwargs.get('save')
if dump_pkl:
dump_statements(stmts_out, dump_pkl)
return stmts_out | python | def filter_inconsequential_mods(stmts_in, whitelist=None, **kwargs):
"""Filter out Modifications that modify inconsequential sites
Inconsequential here means that the site is not mentioned / tested
in any other statement. In some cases specific sites should be
preserved, for instance, to be used as readouts in a model.
In this case, the given sites can be passed in a whitelist.
Parameters
----------
stmts_in : list[indra.statements.Statement]
A list of statements to filter.
whitelist : Optional[dict]
A whitelist containing agent modification sites whose
modifications should be preserved even if no other statement
refers to them. The whitelist parameter is a dictionary in which
the key is a gene name and the value is a list of tuples of
(modification_type, residue, position). Example:
whitelist = {'MAP2K1': [('phosphorylation', 'S', '222')]}
save : Optional[str]
The name of a pickle file to save the results (stmts_out) into.
Returns
-------
stmts_out : list[indra.statements.Statement]
A list of filtered statements.
"""
if whitelist is None:
whitelist = {}
logger.info('Filtering %d statements to remove' % len(stmts_in) +
' inconsequential modifications...')
states_used = whitelist
for stmt in stmts_in:
for agent in stmt.agent_list():
if agent is not None:
if agent.mods:
for mc in agent.mods:
mod = (mc.mod_type, mc.residue, mc.position)
try:
states_used[agent.name].append(mod)
except KeyError:
states_used[agent.name] = [mod]
for k, v in states_used.items():
states_used[k] = list(set(v))
stmts_out = []
for stmt in stmts_in:
skip = False
if isinstance(stmt, Modification):
mod_type = modclass_to_modtype[stmt.__class__]
if isinstance(stmt, RemoveModification):
mod_type = modtype_to_inverse[mod_type]
mod = (mod_type, stmt.residue, stmt.position)
used = states_used.get(stmt.sub.name, [])
if mod not in used:
skip = True
if not skip:
stmts_out.append(stmt)
logger.info('%d statements after filter...' % len(stmts_out))
dump_pkl = kwargs.get('save')
if dump_pkl:
dump_statements(stmts_out, dump_pkl)
return stmts_out | [
"def",
"filter_inconsequential_mods",
"(",
"stmts_in",
",",
"whitelist",
"=",
"None",
",",
"*",
"*",
"kwargs",
")",
":",
"if",
"whitelist",
"is",
"None",
":",
"whitelist",
"=",
"{",
"}",
"logger",
".",
"info",
"(",
"'Filtering %d statements to remove'",
"%",
"len",
"(",
"stmts_in",
")",
"+",
"' inconsequential modifications...'",
")",
"states_used",
"=",
"whitelist",
"for",
"stmt",
"in",
"stmts_in",
":",
"for",
"agent",
"in",
"stmt",
".",
"agent_list",
"(",
")",
":",
"if",
"agent",
"is",
"not",
"None",
":",
"if",
"agent",
".",
"mods",
":",
"for",
"mc",
"in",
"agent",
".",
"mods",
":",
"mod",
"=",
"(",
"mc",
".",
"mod_type",
",",
"mc",
".",
"residue",
",",
"mc",
".",
"position",
")",
"try",
":",
"states_used",
"[",
"agent",
".",
"name",
"]",
".",
"append",
"(",
"mod",
")",
"except",
"KeyError",
":",
"states_used",
"[",
"agent",
".",
"name",
"]",
"=",
"[",
"mod",
"]",
"for",
"k",
",",
"v",
"in",
"states_used",
".",
"items",
"(",
")",
":",
"states_used",
"[",
"k",
"]",
"=",
"list",
"(",
"set",
"(",
"v",
")",
")",
"stmts_out",
"=",
"[",
"]",
"for",
"stmt",
"in",
"stmts_in",
":",
"skip",
"=",
"False",
"if",
"isinstance",
"(",
"stmt",
",",
"Modification",
")",
":",
"mod_type",
"=",
"modclass_to_modtype",
"[",
"stmt",
".",
"__class__",
"]",
"if",
"isinstance",
"(",
"stmt",
",",
"RemoveModification",
")",
":",
"mod_type",
"=",
"modtype_to_inverse",
"[",
"mod_type",
"]",
"mod",
"=",
"(",
"mod_type",
",",
"stmt",
".",
"residue",
",",
"stmt",
".",
"position",
")",
"used",
"=",
"states_used",
".",
"get",
"(",
"stmt",
".",
"sub",
".",
"name",
",",
"[",
"]",
")",
"if",
"mod",
"not",
"in",
"used",
":",
"skip",
"=",
"True",
"if",
"not",
"skip",
":",
"stmts_out",
".",
"append",
"(",
"stmt",
")",
"logger",
".",
"info",
"(",
"'%d statements after filter...'",
"%",
"len",
"(",
"stmts_out",
")",
")",
"dump_pkl",
"=",
"kwargs",
".",
"get",
"(",
"'save'",
")",
"if",
"dump_pkl",
":",
"dump_statements",
"(",
"stmts_out",
",",
"dump_pkl",
")",
"return",
"stmts_out"
]
| Filter out Modifications that modify inconsequential sites
Inconsequential here means that the site is not mentioned / tested
in any other statement. In some cases specific sites should be
preserved, for instance, to be used as readouts in a model.
In this case, the given sites can be passed in a whitelist.
Parameters
----------
stmts_in : list[indra.statements.Statement]
A list of statements to filter.
whitelist : Optional[dict]
A whitelist containing agent modification sites whose
modifications should be preserved even if no other statement
refers to them. The whitelist parameter is a dictionary in which
the key is a gene name and the value is a list of tuples of
(modification_type, residue, position). Example:
whitelist = {'MAP2K1': [('phosphorylation', 'S', '222')]}
save : Optional[str]
The name of a pickle file to save the results (stmts_out) into.
Returns
-------
stmts_out : list[indra.statements.Statement]
A list of filtered statements. | [
"Filter",
"out",
"Modifications",
"that",
"modify",
"inconsequential",
"sites"
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/tools/assemble_corpus.py#L1287-L1348 | train |
sorgerlab/indra | indra/tools/assemble_corpus.py | filter_inconsequential_acts | def filter_inconsequential_acts(stmts_in, whitelist=None, **kwargs):
"""Filter out Activations that modify inconsequential activities
Inconsequential here means that the site is not mentioned / tested
in any other statement. In some cases specific activity types should be
preserved, for instance, to be used as readouts in a model.
In this case, the given activities can be passed in a whitelist.
Parameters
----------
stmts_in : list[indra.statements.Statement]
A list of statements to filter.
whitelist : Optional[dict]
A whitelist containing agent activity types which should be preserved
even if no other statement refers to them.
The whitelist parameter is a dictionary in which
the key is a gene name and the value is a list of activity types.
Example: whitelist = {'MAP2K1': ['kinase']}
save : Optional[str]
The name of a pickle file to save the results (stmts_out) into.
Returns
-------
stmts_out : list[indra.statements.Statement]
A list of filtered statements.
"""
if whitelist is None:
whitelist = {}
logger.info('Filtering %d statements to remove' % len(stmts_in) +
' inconsequential activations...')
states_used = whitelist
for stmt in stmts_in:
for agent in stmt.agent_list():
if agent is not None:
if agent.activity:
act = agent.activity.activity_type
try:
states_used[agent.name].append(act)
except KeyError:
states_used[agent.name] = [act]
for k, v in states_used.items():
states_used[k] = list(set(v))
stmts_out = []
for stmt in stmts_in:
skip = False
if isinstance(stmt, RegulateActivity):
used = states_used.get(stmt.obj.name, [])
if stmt.obj_activity not in used:
skip = True
if not skip:
stmts_out.append(stmt)
logger.info('%d statements after filter...' % len(stmts_out))
dump_pkl = kwargs.get('save')
if dump_pkl:
dump_statements(stmts_out, dump_pkl)
return stmts_out | python | def filter_inconsequential_acts(stmts_in, whitelist=None, **kwargs):
"""Filter out Activations that modify inconsequential activities
Inconsequential here means that the site is not mentioned / tested
in any other statement. In some cases specific activity types should be
preserved, for instance, to be used as readouts in a model.
In this case, the given activities can be passed in a whitelist.
Parameters
----------
stmts_in : list[indra.statements.Statement]
A list of statements to filter.
whitelist : Optional[dict]
A whitelist containing agent activity types which should be preserved
even if no other statement refers to them.
The whitelist parameter is a dictionary in which
the key is a gene name and the value is a list of activity types.
Example: whitelist = {'MAP2K1': ['kinase']}
save : Optional[str]
The name of a pickle file to save the results (stmts_out) into.
Returns
-------
stmts_out : list[indra.statements.Statement]
A list of filtered statements.
"""
if whitelist is None:
whitelist = {}
logger.info('Filtering %d statements to remove' % len(stmts_in) +
' inconsequential activations...')
states_used = whitelist
for stmt in stmts_in:
for agent in stmt.agent_list():
if agent is not None:
if agent.activity:
act = agent.activity.activity_type
try:
states_used[agent.name].append(act)
except KeyError:
states_used[agent.name] = [act]
for k, v in states_used.items():
states_used[k] = list(set(v))
stmts_out = []
for stmt in stmts_in:
skip = False
if isinstance(stmt, RegulateActivity):
used = states_used.get(stmt.obj.name, [])
if stmt.obj_activity not in used:
skip = True
if not skip:
stmts_out.append(stmt)
logger.info('%d statements after filter...' % len(stmts_out))
dump_pkl = kwargs.get('save')
if dump_pkl:
dump_statements(stmts_out, dump_pkl)
return stmts_out | [
"def",
"filter_inconsequential_acts",
"(",
"stmts_in",
",",
"whitelist",
"=",
"None",
",",
"*",
"*",
"kwargs",
")",
":",
"if",
"whitelist",
"is",
"None",
":",
"whitelist",
"=",
"{",
"}",
"logger",
".",
"info",
"(",
"'Filtering %d statements to remove'",
"%",
"len",
"(",
"stmts_in",
")",
"+",
"' inconsequential activations...'",
")",
"states_used",
"=",
"whitelist",
"for",
"stmt",
"in",
"stmts_in",
":",
"for",
"agent",
"in",
"stmt",
".",
"agent_list",
"(",
")",
":",
"if",
"agent",
"is",
"not",
"None",
":",
"if",
"agent",
".",
"activity",
":",
"act",
"=",
"agent",
".",
"activity",
".",
"activity_type",
"try",
":",
"states_used",
"[",
"agent",
".",
"name",
"]",
".",
"append",
"(",
"act",
")",
"except",
"KeyError",
":",
"states_used",
"[",
"agent",
".",
"name",
"]",
"=",
"[",
"act",
"]",
"for",
"k",
",",
"v",
"in",
"states_used",
".",
"items",
"(",
")",
":",
"states_used",
"[",
"k",
"]",
"=",
"list",
"(",
"set",
"(",
"v",
")",
")",
"stmts_out",
"=",
"[",
"]",
"for",
"stmt",
"in",
"stmts_in",
":",
"skip",
"=",
"False",
"if",
"isinstance",
"(",
"stmt",
",",
"RegulateActivity",
")",
":",
"used",
"=",
"states_used",
".",
"get",
"(",
"stmt",
".",
"obj",
".",
"name",
",",
"[",
"]",
")",
"if",
"stmt",
".",
"obj_activity",
"not",
"in",
"used",
":",
"skip",
"=",
"True",
"if",
"not",
"skip",
":",
"stmts_out",
".",
"append",
"(",
"stmt",
")",
"logger",
".",
"info",
"(",
"'%d statements after filter...'",
"%",
"len",
"(",
"stmts_out",
")",
")",
"dump_pkl",
"=",
"kwargs",
".",
"get",
"(",
"'save'",
")",
"if",
"dump_pkl",
":",
"dump_statements",
"(",
"stmts_out",
",",
"dump_pkl",
")",
"return",
"stmts_out"
]
| Filter out Activations that modify inconsequential activities
Inconsequential here means that the site is not mentioned / tested
in any other statement. In some cases specific activity types should be
preserved, for instance, to be used as readouts in a model.
In this case, the given activities can be passed in a whitelist.
Parameters
----------
stmts_in : list[indra.statements.Statement]
A list of statements to filter.
whitelist : Optional[dict]
A whitelist containing agent activity types which should be preserved
even if no other statement refers to them.
The whitelist parameter is a dictionary in which
the key is a gene name and the value is a list of activity types.
Example: whitelist = {'MAP2K1': ['kinase']}
save : Optional[str]
The name of a pickle file to save the results (stmts_out) into.
Returns
-------
stmts_out : list[indra.statements.Statement]
A list of filtered statements. | [
"Filter",
"out",
"Activations",
"that",
"modify",
"inconsequential",
"activities"
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/tools/assemble_corpus.py#L1351-L1406 | train |
sorgerlab/indra | indra/tools/assemble_corpus.py | filter_enzyme_kinase | def filter_enzyme_kinase(stmts_in, **kwargs):
"""Filter Phosphorylations to ones where the enzyme is a known kinase.
Parameters
----------
stmts_in : list[indra.statements.Statement]
A list of statements to filter.
save : Optional[str]
The name of a pickle file to save the results (stmts_out) into.
Returns
-------
stmts_out : list[indra.statements.Statement]
A list of filtered statements.
"""
logger.info('Filtering %d statements to remove ' % len(stmts_in) +
'phosphorylation by non-kinases...')
path = os.path.dirname(os.path.abspath(__file__))
kinase_table = read_unicode_csv(path + '/../resources/kinases.tsv',
delimiter='\t')
gene_names = [lin[1] for lin in list(kinase_table)[1:]]
stmts_out = []
for st in stmts_in:
if isinstance(st, Phosphorylation):
if st.enz is not None:
if st.enz.name in gene_names:
stmts_out.append(st)
else:
stmts_out.append(st)
logger.info('%d statements after filter...' % len(stmts_out))
dump_pkl = kwargs.get('save')
if dump_pkl:
dump_statements(stmts_out, dump_pkl)
return stmts_out | python | def filter_enzyme_kinase(stmts_in, **kwargs):
"""Filter Phosphorylations to ones where the enzyme is a known kinase.
Parameters
----------
stmts_in : list[indra.statements.Statement]
A list of statements to filter.
save : Optional[str]
The name of a pickle file to save the results (stmts_out) into.
Returns
-------
stmts_out : list[indra.statements.Statement]
A list of filtered statements.
"""
logger.info('Filtering %d statements to remove ' % len(stmts_in) +
'phosphorylation by non-kinases...')
path = os.path.dirname(os.path.abspath(__file__))
kinase_table = read_unicode_csv(path + '/../resources/kinases.tsv',
delimiter='\t')
gene_names = [lin[1] for lin in list(kinase_table)[1:]]
stmts_out = []
for st in stmts_in:
if isinstance(st, Phosphorylation):
if st.enz is not None:
if st.enz.name in gene_names:
stmts_out.append(st)
else:
stmts_out.append(st)
logger.info('%d statements after filter...' % len(stmts_out))
dump_pkl = kwargs.get('save')
if dump_pkl:
dump_statements(stmts_out, dump_pkl)
return stmts_out | [
"def",
"filter_enzyme_kinase",
"(",
"stmts_in",
",",
"*",
"*",
"kwargs",
")",
":",
"logger",
".",
"info",
"(",
"'Filtering %d statements to remove '",
"%",
"len",
"(",
"stmts_in",
")",
"+",
"'phosphorylation by non-kinases...'",
")",
"path",
"=",
"os",
".",
"path",
".",
"dirname",
"(",
"os",
".",
"path",
".",
"abspath",
"(",
"__file__",
")",
")",
"kinase_table",
"=",
"read_unicode_csv",
"(",
"path",
"+",
"'/../resources/kinases.tsv'",
",",
"delimiter",
"=",
"'\\t'",
")",
"gene_names",
"=",
"[",
"lin",
"[",
"1",
"]",
"for",
"lin",
"in",
"list",
"(",
"kinase_table",
")",
"[",
"1",
":",
"]",
"]",
"stmts_out",
"=",
"[",
"]",
"for",
"st",
"in",
"stmts_in",
":",
"if",
"isinstance",
"(",
"st",
",",
"Phosphorylation",
")",
":",
"if",
"st",
".",
"enz",
"is",
"not",
"None",
":",
"if",
"st",
".",
"enz",
".",
"name",
"in",
"gene_names",
":",
"stmts_out",
".",
"append",
"(",
"st",
")",
"else",
":",
"stmts_out",
".",
"append",
"(",
"st",
")",
"logger",
".",
"info",
"(",
"'%d statements after filter...'",
"%",
"len",
"(",
"stmts_out",
")",
")",
"dump_pkl",
"=",
"kwargs",
".",
"get",
"(",
"'save'",
")",
"if",
"dump_pkl",
":",
"dump_statements",
"(",
"stmts_out",
",",
"dump_pkl",
")",
"return",
"stmts_out"
]
| Filter Phosphorylations to ones where the enzyme is a known kinase.
Parameters
----------
stmts_in : list[indra.statements.Statement]
A list of statements to filter.
save : Optional[str]
The name of a pickle file to save the results (stmts_out) into.
Returns
-------
stmts_out : list[indra.statements.Statement]
A list of filtered statements. | [
"Filter",
"Phosphorylations",
"to",
"ones",
"where",
"the",
"enzyme",
"is",
"a",
"known",
"kinase",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/tools/assemble_corpus.py#L1506-L1539 | train |
sorgerlab/indra | indra/tools/assemble_corpus.py | filter_transcription_factor | def filter_transcription_factor(stmts_in, **kwargs):
"""Filter out RegulateAmounts where subject is not a transcription factor.
Parameters
----------
stmts_in : list[indra.statements.Statement]
A list of statements to filter.
save : Optional[str]
The name of a pickle file to save the results (stmts_out) into.
Returns
-------
stmts_out : list[indra.statements.Statement]
A list of filtered statements.
"""
logger.info('Filtering %d statements to remove ' % len(stmts_in) +
'amount regulations by non-transcription-factors...')
path = os.path.dirname(os.path.abspath(__file__))
tf_table = \
read_unicode_csv(path + '/../resources/transcription_factors.csv')
gene_names = [lin[1] for lin in list(tf_table)[1:]]
stmts_out = []
for st in stmts_in:
if isinstance(st, RegulateAmount):
if st.subj is not None:
if st.subj.name in gene_names:
stmts_out.append(st)
else:
stmts_out.append(st)
logger.info('%d statements after filter...' % len(stmts_out))
dump_pkl = kwargs.get('save')
if dump_pkl:
dump_statements(stmts_out, dump_pkl)
return stmts_out | python | def filter_transcription_factor(stmts_in, **kwargs):
"""Filter out RegulateAmounts where subject is not a transcription factor.
Parameters
----------
stmts_in : list[indra.statements.Statement]
A list of statements to filter.
save : Optional[str]
The name of a pickle file to save the results (stmts_out) into.
Returns
-------
stmts_out : list[indra.statements.Statement]
A list of filtered statements.
"""
logger.info('Filtering %d statements to remove ' % len(stmts_in) +
'amount regulations by non-transcription-factors...')
path = os.path.dirname(os.path.abspath(__file__))
tf_table = \
read_unicode_csv(path + '/../resources/transcription_factors.csv')
gene_names = [lin[1] for lin in list(tf_table)[1:]]
stmts_out = []
for st in stmts_in:
if isinstance(st, RegulateAmount):
if st.subj is not None:
if st.subj.name in gene_names:
stmts_out.append(st)
else:
stmts_out.append(st)
logger.info('%d statements after filter...' % len(stmts_out))
dump_pkl = kwargs.get('save')
if dump_pkl:
dump_statements(stmts_out, dump_pkl)
return stmts_out | [
"def",
"filter_transcription_factor",
"(",
"stmts_in",
",",
"*",
"*",
"kwargs",
")",
":",
"logger",
".",
"info",
"(",
"'Filtering %d statements to remove '",
"%",
"len",
"(",
"stmts_in",
")",
"+",
"'amount regulations by non-transcription-factors...'",
")",
"path",
"=",
"os",
".",
"path",
".",
"dirname",
"(",
"os",
".",
"path",
".",
"abspath",
"(",
"__file__",
")",
")",
"tf_table",
"=",
"read_unicode_csv",
"(",
"path",
"+",
"'/../resources/transcription_factors.csv'",
")",
"gene_names",
"=",
"[",
"lin",
"[",
"1",
"]",
"for",
"lin",
"in",
"list",
"(",
"tf_table",
")",
"[",
"1",
":",
"]",
"]",
"stmts_out",
"=",
"[",
"]",
"for",
"st",
"in",
"stmts_in",
":",
"if",
"isinstance",
"(",
"st",
",",
"RegulateAmount",
")",
":",
"if",
"st",
".",
"subj",
"is",
"not",
"None",
":",
"if",
"st",
".",
"subj",
".",
"name",
"in",
"gene_names",
":",
"stmts_out",
".",
"append",
"(",
"st",
")",
"else",
":",
"stmts_out",
".",
"append",
"(",
"st",
")",
"logger",
".",
"info",
"(",
"'%d statements after filter...'",
"%",
"len",
"(",
"stmts_out",
")",
")",
"dump_pkl",
"=",
"kwargs",
".",
"get",
"(",
"'save'",
")",
"if",
"dump_pkl",
":",
"dump_statements",
"(",
"stmts_out",
",",
"dump_pkl",
")",
"return",
"stmts_out"
]
| Filter out RegulateAmounts where subject is not a transcription factor.
Parameters
----------
stmts_in : list[indra.statements.Statement]
A list of statements to filter.
save : Optional[str]
The name of a pickle file to save the results (stmts_out) into.
Returns
-------
stmts_out : list[indra.statements.Statement]
A list of filtered statements. | [
"Filter",
"out",
"RegulateAmounts",
"where",
"subject",
"is",
"not",
"a",
"transcription",
"factor",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/tools/assemble_corpus.py#L1579-L1612 | train |
sorgerlab/indra | indra/tools/assemble_corpus.py | filter_uuid_list | def filter_uuid_list(stmts_in, uuids, **kwargs):
"""Filter to Statements corresponding to given UUIDs
Parameters
----------
stmts_in : list[indra.statements.Statement]
A list of statements to filter.
uuids : list[str]
A list of UUIDs to filter for.
save : Optional[str]
The name of a pickle file to save the results (stmts_out) into.
invert : Optional[bool]
Invert the filter to remove the Statements corresponding to the given
UUIDs.
Returns
-------
stmts_out : list[indra.statements.Statement]
A list of filtered statements.
"""
invert = kwargs.get('invert', False)
logger.info('Filtering %d statements for %d UUID%s...' %
(len(stmts_in), len(uuids), 's' if len(uuids) > 1 else ''))
stmts_out = []
for st in stmts_in:
if not invert:
if st.uuid in uuids:
stmts_out.append(st)
else:
if st.uuid not in uuids:
stmts_out.append(st)
logger.info('%d statements after filter...' % len(stmts_out))
dump_pkl = kwargs.get('save')
if dump_pkl:
dump_statements(stmts_out, dump_pkl)
return stmts_out | python | def filter_uuid_list(stmts_in, uuids, **kwargs):
"""Filter to Statements corresponding to given UUIDs
Parameters
----------
stmts_in : list[indra.statements.Statement]
A list of statements to filter.
uuids : list[str]
A list of UUIDs to filter for.
save : Optional[str]
The name of a pickle file to save the results (stmts_out) into.
invert : Optional[bool]
Invert the filter to remove the Statements corresponding to the given
UUIDs.
Returns
-------
stmts_out : list[indra.statements.Statement]
A list of filtered statements.
"""
invert = kwargs.get('invert', False)
logger.info('Filtering %d statements for %d UUID%s...' %
(len(stmts_in), len(uuids), 's' if len(uuids) > 1 else ''))
stmts_out = []
for st in stmts_in:
if not invert:
if st.uuid in uuids:
stmts_out.append(st)
else:
if st.uuid not in uuids:
stmts_out.append(st)
logger.info('%d statements after filter...' % len(stmts_out))
dump_pkl = kwargs.get('save')
if dump_pkl:
dump_statements(stmts_out, dump_pkl)
return stmts_out | [
"def",
"filter_uuid_list",
"(",
"stmts_in",
",",
"uuids",
",",
"*",
"*",
"kwargs",
")",
":",
"invert",
"=",
"kwargs",
".",
"get",
"(",
"'invert'",
",",
"False",
")",
"logger",
".",
"info",
"(",
"'Filtering %d statements for %d UUID%s...'",
"%",
"(",
"len",
"(",
"stmts_in",
")",
",",
"len",
"(",
"uuids",
")",
",",
"'s'",
"if",
"len",
"(",
"uuids",
")",
">",
"1",
"else",
"''",
")",
")",
"stmts_out",
"=",
"[",
"]",
"for",
"st",
"in",
"stmts_in",
":",
"if",
"not",
"invert",
":",
"if",
"st",
".",
"uuid",
"in",
"uuids",
":",
"stmts_out",
".",
"append",
"(",
"st",
")",
"else",
":",
"if",
"st",
".",
"uuid",
"not",
"in",
"uuids",
":",
"stmts_out",
".",
"append",
"(",
"st",
")",
"logger",
".",
"info",
"(",
"'%d statements after filter...'",
"%",
"len",
"(",
"stmts_out",
")",
")",
"dump_pkl",
"=",
"kwargs",
".",
"get",
"(",
"'save'",
")",
"if",
"dump_pkl",
":",
"dump_statements",
"(",
"stmts_out",
",",
"dump_pkl",
")",
"return",
"stmts_out"
]
| Filter to Statements corresponding to given UUIDs
Parameters
----------
stmts_in : list[indra.statements.Statement]
A list of statements to filter.
uuids : list[str]
A list of UUIDs to filter for.
save : Optional[str]
The name of a pickle file to save the results (stmts_out) into.
invert : Optional[bool]
Invert the filter to remove the Statements corresponding to the given
UUIDs.
Returns
-------
stmts_out : list[indra.statements.Statement]
A list of filtered statements. | [
"Filter",
"to",
"Statements",
"corresponding",
"to",
"given",
"UUIDs"
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/tools/assemble_corpus.py#L1615-L1651 | train |
sorgerlab/indra | indra/tools/assemble_corpus.py | expand_families | def expand_families(stmts_in, **kwargs):
"""Expand FamPlex Agents to individual genes.
Parameters
----------
stmts_in : list[indra.statements.Statement]
A list of statements to expand.
save : Optional[str]
The name of a pickle file to save the results (stmts_out) into.
Returns
-------
stmts_out : list[indra.statements.Statement]
A list of expanded statements.
"""
from indra.tools.expand_families import Expander
logger.info('Expanding families on %d statements...' % len(stmts_in))
expander = Expander(hierarchies)
stmts_out = expander.expand_families(stmts_in)
logger.info('%d statements after expanding families...' % len(stmts_out))
dump_pkl = kwargs.get('save')
if dump_pkl:
dump_statements(stmts_out, dump_pkl)
return stmts_out | python | def expand_families(stmts_in, **kwargs):
"""Expand FamPlex Agents to individual genes.
Parameters
----------
stmts_in : list[indra.statements.Statement]
A list of statements to expand.
save : Optional[str]
The name of a pickle file to save the results (stmts_out) into.
Returns
-------
stmts_out : list[indra.statements.Statement]
A list of expanded statements.
"""
from indra.tools.expand_families import Expander
logger.info('Expanding families on %d statements...' % len(stmts_in))
expander = Expander(hierarchies)
stmts_out = expander.expand_families(stmts_in)
logger.info('%d statements after expanding families...' % len(stmts_out))
dump_pkl = kwargs.get('save')
if dump_pkl:
dump_statements(stmts_out, dump_pkl)
return stmts_out | [
"def",
"expand_families",
"(",
"stmts_in",
",",
"*",
"*",
"kwargs",
")",
":",
"from",
"indra",
".",
"tools",
".",
"expand_families",
"import",
"Expander",
"logger",
".",
"info",
"(",
"'Expanding families on %d statements...'",
"%",
"len",
"(",
"stmts_in",
")",
")",
"expander",
"=",
"Expander",
"(",
"hierarchies",
")",
"stmts_out",
"=",
"expander",
".",
"expand_families",
"(",
"stmts_in",
")",
"logger",
".",
"info",
"(",
"'%d statements after expanding families...'",
"%",
"len",
"(",
"stmts_out",
")",
")",
"dump_pkl",
"=",
"kwargs",
".",
"get",
"(",
"'save'",
")",
"if",
"dump_pkl",
":",
"dump_statements",
"(",
"stmts_out",
",",
"dump_pkl",
")",
"return",
"stmts_out"
]
| Expand FamPlex Agents to individual genes.
Parameters
----------
stmts_in : list[indra.statements.Statement]
A list of statements to expand.
save : Optional[str]
The name of a pickle file to save the results (stmts_out) into.
Returns
-------
stmts_out : list[indra.statements.Statement]
A list of expanded statements. | [
"Expand",
"FamPlex",
"Agents",
"to",
"individual",
"genes",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/tools/assemble_corpus.py#L1654-L1677 | train |
sorgerlab/indra | indra/tools/assemble_corpus.py | reduce_activities | def reduce_activities(stmts_in, **kwargs):
"""Reduce the activity types in a list of statements
Parameters
----------
stmts_in : list[indra.statements.Statement]
A list of statements to reduce activity types in.
save : Optional[str]
The name of a pickle file to save the results (stmts_out) into.
Returns
-------
stmts_out : list[indra.statements.Statement]
A list of reduced activity statements.
"""
logger.info('Reducing activities on %d statements...' % len(stmts_in))
stmts_out = [deepcopy(st) for st in stmts_in]
ml = MechLinker(stmts_out)
ml.gather_explicit_activities()
ml.reduce_activities()
stmts_out = ml.statements
dump_pkl = kwargs.get('save')
if dump_pkl:
dump_statements(stmts_out, dump_pkl)
return stmts_out | python | def reduce_activities(stmts_in, **kwargs):
"""Reduce the activity types in a list of statements
Parameters
----------
stmts_in : list[indra.statements.Statement]
A list of statements to reduce activity types in.
save : Optional[str]
The name of a pickle file to save the results (stmts_out) into.
Returns
-------
stmts_out : list[indra.statements.Statement]
A list of reduced activity statements.
"""
logger.info('Reducing activities on %d statements...' % len(stmts_in))
stmts_out = [deepcopy(st) for st in stmts_in]
ml = MechLinker(stmts_out)
ml.gather_explicit_activities()
ml.reduce_activities()
stmts_out = ml.statements
dump_pkl = kwargs.get('save')
if dump_pkl:
dump_statements(stmts_out, dump_pkl)
return stmts_out | [
"def",
"reduce_activities",
"(",
"stmts_in",
",",
"*",
"*",
"kwargs",
")",
":",
"logger",
".",
"info",
"(",
"'Reducing activities on %d statements...'",
"%",
"len",
"(",
"stmts_in",
")",
")",
"stmts_out",
"=",
"[",
"deepcopy",
"(",
"st",
")",
"for",
"st",
"in",
"stmts_in",
"]",
"ml",
"=",
"MechLinker",
"(",
"stmts_out",
")",
"ml",
".",
"gather_explicit_activities",
"(",
")",
"ml",
".",
"reduce_activities",
"(",
")",
"stmts_out",
"=",
"ml",
".",
"statements",
"dump_pkl",
"=",
"kwargs",
".",
"get",
"(",
"'save'",
")",
"if",
"dump_pkl",
":",
"dump_statements",
"(",
"stmts_out",
",",
"dump_pkl",
")",
"return",
"stmts_out"
]
| Reduce the activity types in a list of statements
Parameters
----------
stmts_in : list[indra.statements.Statement]
A list of statements to reduce activity types in.
save : Optional[str]
The name of a pickle file to save the results (stmts_out) into.
Returns
-------
stmts_out : list[indra.statements.Statement]
A list of reduced activity statements. | [
"Reduce",
"the",
"activity",
"types",
"in",
"a",
"list",
"of",
"statements"
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/tools/assemble_corpus.py#L1680-L1704 | train |
sorgerlab/indra | indra/tools/assemble_corpus.py | strip_agent_context | def strip_agent_context(stmts_in, **kwargs):
"""Strip any context on agents within each statement.
Parameters
----------
stmts_in : list[indra.statements.Statement]
A list of statements whose agent context should be stripped.
save : Optional[str]
The name of a pickle file to save the results (stmts_out) into.
Returns
-------
stmts_out : list[indra.statements.Statement]
A list of stripped statements.
"""
logger.info('Stripping agent context on %d statements...' % len(stmts_in))
stmts_out = []
for st in stmts_in:
new_st = deepcopy(st)
for agent in new_st.agent_list():
if agent is None:
continue
agent.mods = []
agent.mutations = []
agent.activity = None
agent.location = None
agent.bound_conditions = []
stmts_out.append(new_st)
dump_pkl = kwargs.get('save')
if dump_pkl:
dump_statements(stmts_out, dump_pkl)
return stmts_out | python | def strip_agent_context(stmts_in, **kwargs):
"""Strip any context on agents within each statement.
Parameters
----------
stmts_in : list[indra.statements.Statement]
A list of statements whose agent context should be stripped.
save : Optional[str]
The name of a pickle file to save the results (stmts_out) into.
Returns
-------
stmts_out : list[indra.statements.Statement]
A list of stripped statements.
"""
logger.info('Stripping agent context on %d statements...' % len(stmts_in))
stmts_out = []
for st in stmts_in:
new_st = deepcopy(st)
for agent in new_st.agent_list():
if agent is None:
continue
agent.mods = []
agent.mutations = []
agent.activity = None
agent.location = None
agent.bound_conditions = []
stmts_out.append(new_st)
dump_pkl = kwargs.get('save')
if dump_pkl:
dump_statements(stmts_out, dump_pkl)
return stmts_out | [
"def",
"strip_agent_context",
"(",
"stmts_in",
",",
"*",
"*",
"kwargs",
")",
":",
"logger",
".",
"info",
"(",
"'Stripping agent context on %d statements...'",
"%",
"len",
"(",
"stmts_in",
")",
")",
"stmts_out",
"=",
"[",
"]",
"for",
"st",
"in",
"stmts_in",
":",
"new_st",
"=",
"deepcopy",
"(",
"st",
")",
"for",
"agent",
"in",
"new_st",
".",
"agent_list",
"(",
")",
":",
"if",
"agent",
"is",
"None",
":",
"continue",
"agent",
".",
"mods",
"=",
"[",
"]",
"agent",
".",
"mutations",
"=",
"[",
"]",
"agent",
".",
"activity",
"=",
"None",
"agent",
".",
"location",
"=",
"None",
"agent",
".",
"bound_conditions",
"=",
"[",
"]",
"stmts_out",
".",
"append",
"(",
"new_st",
")",
"dump_pkl",
"=",
"kwargs",
".",
"get",
"(",
"'save'",
")",
"if",
"dump_pkl",
":",
"dump_statements",
"(",
"stmts_out",
",",
"dump_pkl",
")",
"return",
"stmts_out"
]
| Strip any context on agents within each statement.
Parameters
----------
stmts_in : list[indra.statements.Statement]
A list of statements whose agent context should be stripped.
save : Optional[str]
The name of a pickle file to save the results (stmts_out) into.
Returns
-------
stmts_out : list[indra.statements.Statement]
A list of stripped statements. | [
"Strip",
"any",
"context",
"on",
"agents",
"within",
"each",
"statement",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/tools/assemble_corpus.py#L1707-L1738 | train |
sorgerlab/indra | indra/tools/assemble_corpus.py | standardize_names_groundings | def standardize_names_groundings(stmts):
"""Standardize the names of Concepts with respect to an ontology.
NOTE: this function is currently optimized for Influence Statements
obtained from Eidos, Hume, Sofia and CWMS. It will possibly yield
unexpected results for biology-specific Statements.
"""
print('Standardize names to groundings')
for stmt in stmts:
for concept in stmt.agent_list():
db_ns, db_id = concept.get_grounding()
if db_id is not None:
if isinstance(db_id, list):
db_id = db_id[0][0].split('/')[-1]
else:
db_id = db_id.split('/')[-1]
db_id = db_id.replace('|', ' ')
db_id = db_id.replace('_', ' ')
db_id = db_id.replace('ONT::', '')
db_id = db_id.capitalize()
concept.name = db_id
return stmts | python | def standardize_names_groundings(stmts):
"""Standardize the names of Concepts with respect to an ontology.
NOTE: this function is currently optimized for Influence Statements
obtained from Eidos, Hume, Sofia and CWMS. It will possibly yield
unexpected results for biology-specific Statements.
"""
print('Standardize names to groundings')
for stmt in stmts:
for concept in stmt.agent_list():
db_ns, db_id = concept.get_grounding()
if db_id is not None:
if isinstance(db_id, list):
db_id = db_id[0][0].split('/')[-1]
else:
db_id = db_id.split('/')[-1]
db_id = db_id.replace('|', ' ')
db_id = db_id.replace('_', ' ')
db_id = db_id.replace('ONT::', '')
db_id = db_id.capitalize()
concept.name = db_id
return stmts | [
"def",
"standardize_names_groundings",
"(",
"stmts",
")",
":",
"print",
"(",
"'Standardize names to groundings'",
")",
"for",
"stmt",
"in",
"stmts",
":",
"for",
"concept",
"in",
"stmt",
".",
"agent_list",
"(",
")",
":",
"db_ns",
",",
"db_id",
"=",
"concept",
".",
"get_grounding",
"(",
")",
"if",
"db_id",
"is",
"not",
"None",
":",
"if",
"isinstance",
"(",
"db_id",
",",
"list",
")",
":",
"db_id",
"=",
"db_id",
"[",
"0",
"]",
"[",
"0",
"]",
".",
"split",
"(",
"'/'",
")",
"[",
"-",
"1",
"]",
"else",
":",
"db_id",
"=",
"db_id",
".",
"split",
"(",
"'/'",
")",
"[",
"-",
"1",
"]",
"db_id",
"=",
"db_id",
".",
"replace",
"(",
"'|'",
",",
"' '",
")",
"db_id",
"=",
"db_id",
".",
"replace",
"(",
"'_'",
",",
"' '",
")",
"db_id",
"=",
"db_id",
".",
"replace",
"(",
"'ONT::'",
",",
"''",
")",
"db_id",
"=",
"db_id",
".",
"capitalize",
"(",
")",
"concept",
".",
"name",
"=",
"db_id",
"return",
"stmts"
]
| Standardize the names of Concepts with respect to an ontology.
NOTE: this function is currently optimized for Influence Statements
obtained from Eidos, Hume, Sofia and CWMS. It will possibly yield
unexpected results for biology-specific Statements. | [
"Standardize",
"the",
"names",
"of",
"Concepts",
"with",
"respect",
"to",
"an",
"ontology",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/tools/assemble_corpus.py#L1741-L1762 | train |
sorgerlab/indra | indra/tools/assemble_corpus.py | dump_stmt_strings | def dump_stmt_strings(stmts, fname):
"""Save printed statements in a file.
Parameters
----------
stmts_in : list[indra.statements.Statement]
A list of statements to save in a text file.
fname : Optional[str]
The name of a text file to save the printed statements into.
"""
with open(fname, 'wb') as fh:
for st in stmts:
fh.write(('%s\n' % st).encode('utf-8')) | python | def dump_stmt_strings(stmts, fname):
"""Save printed statements in a file.
Parameters
----------
stmts_in : list[indra.statements.Statement]
A list of statements to save in a text file.
fname : Optional[str]
The name of a text file to save the printed statements into.
"""
with open(fname, 'wb') as fh:
for st in stmts:
fh.write(('%s\n' % st).encode('utf-8')) | [
"def",
"dump_stmt_strings",
"(",
"stmts",
",",
"fname",
")",
":",
"with",
"open",
"(",
"fname",
",",
"'wb'",
")",
"as",
"fh",
":",
"for",
"st",
"in",
"stmts",
":",
"fh",
".",
"write",
"(",
"(",
"'%s\\n'",
"%",
"st",
")",
".",
"encode",
"(",
"'utf-8'",
")",
")"
]
| Save printed statements in a file.
Parameters
----------
stmts_in : list[indra.statements.Statement]
A list of statements to save in a text file.
fname : Optional[str]
The name of a text file to save the printed statements into. | [
"Save",
"printed",
"statements",
"in",
"a",
"file",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/tools/assemble_corpus.py#L1765-L1777 | train |
sorgerlab/indra | indra/tools/assemble_corpus.py | rename_db_ref | def rename_db_ref(stmts_in, ns_from, ns_to, **kwargs):
"""Rename an entry in the db_refs of each Agent.
This is particularly useful when old Statements in pickle files
need to be updated after a namespace was changed such as
'BE' to 'FPLX'.
Parameters
----------
stmts_in : list[indra.statements.Statement]
A list of statements whose Agents' db_refs need to be changed
ns_from : str
The namespace identifier to replace
ns_to : str
The namespace identifier to replace to
save : Optional[str]
The name of a pickle file to save the results (stmts_out) into.
Returns
-------
stmts_out : list[indra.statements.Statement]
A list of Statements with Agents' db_refs changed.
"""
logger.info('Remapping "%s" to "%s" in db_refs on %d statements...' %
(ns_from, ns_to, len(stmts_in)))
stmts_out = [deepcopy(st) for st in stmts_in]
for stmt in stmts_out:
for agent in stmt.agent_list():
if agent is not None and ns_from in agent.db_refs:
agent.db_refs[ns_to] = agent.db_refs.pop(ns_from)
dump_pkl = kwargs.get('save')
if dump_pkl:
dump_statements(stmts_out, dump_pkl)
return stmts_out | python | def rename_db_ref(stmts_in, ns_from, ns_to, **kwargs):
"""Rename an entry in the db_refs of each Agent.
This is particularly useful when old Statements in pickle files
need to be updated after a namespace was changed such as
'BE' to 'FPLX'.
Parameters
----------
stmts_in : list[indra.statements.Statement]
A list of statements whose Agents' db_refs need to be changed
ns_from : str
The namespace identifier to replace
ns_to : str
The namespace identifier to replace to
save : Optional[str]
The name of a pickle file to save the results (stmts_out) into.
Returns
-------
stmts_out : list[indra.statements.Statement]
A list of Statements with Agents' db_refs changed.
"""
logger.info('Remapping "%s" to "%s" in db_refs on %d statements...' %
(ns_from, ns_to, len(stmts_in)))
stmts_out = [deepcopy(st) for st in stmts_in]
for stmt in stmts_out:
for agent in stmt.agent_list():
if agent is not None and ns_from in agent.db_refs:
agent.db_refs[ns_to] = agent.db_refs.pop(ns_from)
dump_pkl = kwargs.get('save')
if dump_pkl:
dump_statements(stmts_out, dump_pkl)
return stmts_out | [
"def",
"rename_db_ref",
"(",
"stmts_in",
",",
"ns_from",
",",
"ns_to",
",",
"*",
"*",
"kwargs",
")",
":",
"logger",
".",
"info",
"(",
"'Remapping \"%s\" to \"%s\" in db_refs on %d statements...'",
"%",
"(",
"ns_from",
",",
"ns_to",
",",
"len",
"(",
"stmts_in",
")",
")",
")",
"stmts_out",
"=",
"[",
"deepcopy",
"(",
"st",
")",
"for",
"st",
"in",
"stmts_in",
"]",
"for",
"stmt",
"in",
"stmts_out",
":",
"for",
"agent",
"in",
"stmt",
".",
"agent_list",
"(",
")",
":",
"if",
"agent",
"is",
"not",
"None",
"and",
"ns_from",
"in",
"agent",
".",
"db_refs",
":",
"agent",
".",
"db_refs",
"[",
"ns_to",
"]",
"=",
"agent",
".",
"db_refs",
".",
"pop",
"(",
"ns_from",
")",
"dump_pkl",
"=",
"kwargs",
".",
"get",
"(",
"'save'",
")",
"if",
"dump_pkl",
":",
"dump_statements",
"(",
"stmts_out",
",",
"dump_pkl",
")",
"return",
"stmts_out"
]
| Rename an entry in the db_refs of each Agent.
This is particularly useful when old Statements in pickle files
need to be updated after a namespace was changed such as
'BE' to 'FPLX'.
Parameters
----------
stmts_in : list[indra.statements.Statement]
A list of statements whose Agents' db_refs need to be changed
ns_from : str
The namespace identifier to replace
ns_to : str
The namespace identifier to replace to
save : Optional[str]
The name of a pickle file to save the results (stmts_out) into.
Returns
-------
stmts_out : list[indra.statements.Statement]
A list of Statements with Agents' db_refs changed. | [
"Rename",
"an",
"entry",
"in",
"the",
"db_refs",
"of",
"each",
"Agent",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/tools/assemble_corpus.py#L1780-L1813 | train |
sorgerlab/indra | indra/tools/assemble_corpus.py | align_statements | def align_statements(stmts1, stmts2, keyfun=None):
"""Return alignment of two lists of statements by key.
Parameters
----------
stmts1 : list[indra.statements.Statement]
A list of INDRA Statements to align
stmts2 : list[indra.statements.Statement]
A list of INDRA Statements to align
keyfun : Optional[function]
A function that takes a Statement as an argument
and returns a key to align by. If not given,
the default key function is a tuble of the names
of the Agents in the Statement.
Return
------
matches : list(tuple)
A list of tuples where each tuple has two elements,
the first corresponding to an element of the stmts1
list and the second corresponding to an element
of the stmts2 list. If a given element is not matched,
its corresponding pair in the tuple is None.
"""
def name_keyfun(stmt):
return tuple(a.name if a is not None else None for
a in stmt.agent_list())
if not keyfun:
keyfun = name_keyfun
matches = []
keys1 = [keyfun(s) for s in stmts1]
keys2 = [keyfun(s) for s in stmts2]
for stmt, key in zip(stmts1, keys1):
try:
match_idx = keys2.index(key)
match_stmt = stmts2[match_idx]
matches.append((stmt, match_stmt))
except ValueError:
matches.append((stmt, None))
for stmt, key in zip(stmts2, keys2):
try:
match_idx = keys1.index(key)
except ValueError:
matches.append((None, stmt))
return matches | python | def align_statements(stmts1, stmts2, keyfun=None):
"""Return alignment of two lists of statements by key.
Parameters
----------
stmts1 : list[indra.statements.Statement]
A list of INDRA Statements to align
stmts2 : list[indra.statements.Statement]
A list of INDRA Statements to align
keyfun : Optional[function]
A function that takes a Statement as an argument
and returns a key to align by. If not given,
the default key function is a tuble of the names
of the Agents in the Statement.
Return
------
matches : list(tuple)
A list of tuples where each tuple has two elements,
the first corresponding to an element of the stmts1
list and the second corresponding to an element
of the stmts2 list. If a given element is not matched,
its corresponding pair in the tuple is None.
"""
def name_keyfun(stmt):
return tuple(a.name if a is not None else None for
a in stmt.agent_list())
if not keyfun:
keyfun = name_keyfun
matches = []
keys1 = [keyfun(s) for s in stmts1]
keys2 = [keyfun(s) for s in stmts2]
for stmt, key in zip(stmts1, keys1):
try:
match_idx = keys2.index(key)
match_stmt = stmts2[match_idx]
matches.append((stmt, match_stmt))
except ValueError:
matches.append((stmt, None))
for stmt, key in zip(stmts2, keys2):
try:
match_idx = keys1.index(key)
except ValueError:
matches.append((None, stmt))
return matches | [
"def",
"align_statements",
"(",
"stmts1",
",",
"stmts2",
",",
"keyfun",
"=",
"None",
")",
":",
"def",
"name_keyfun",
"(",
"stmt",
")",
":",
"return",
"tuple",
"(",
"a",
".",
"name",
"if",
"a",
"is",
"not",
"None",
"else",
"None",
"for",
"a",
"in",
"stmt",
".",
"agent_list",
"(",
")",
")",
"if",
"not",
"keyfun",
":",
"keyfun",
"=",
"name_keyfun",
"matches",
"=",
"[",
"]",
"keys1",
"=",
"[",
"keyfun",
"(",
"s",
")",
"for",
"s",
"in",
"stmts1",
"]",
"keys2",
"=",
"[",
"keyfun",
"(",
"s",
")",
"for",
"s",
"in",
"stmts2",
"]",
"for",
"stmt",
",",
"key",
"in",
"zip",
"(",
"stmts1",
",",
"keys1",
")",
":",
"try",
":",
"match_idx",
"=",
"keys2",
".",
"index",
"(",
"key",
")",
"match_stmt",
"=",
"stmts2",
"[",
"match_idx",
"]",
"matches",
".",
"append",
"(",
"(",
"stmt",
",",
"match_stmt",
")",
")",
"except",
"ValueError",
":",
"matches",
".",
"append",
"(",
"(",
"stmt",
",",
"None",
")",
")",
"for",
"stmt",
",",
"key",
"in",
"zip",
"(",
"stmts2",
",",
"keys2",
")",
":",
"try",
":",
"match_idx",
"=",
"keys1",
".",
"index",
"(",
"key",
")",
"except",
"ValueError",
":",
"matches",
".",
"append",
"(",
"(",
"None",
",",
"stmt",
")",
")",
"return",
"matches"
]
| Return alignment of two lists of statements by key.
Parameters
----------
stmts1 : list[indra.statements.Statement]
A list of INDRA Statements to align
stmts2 : list[indra.statements.Statement]
A list of INDRA Statements to align
keyfun : Optional[function]
A function that takes a Statement as an argument
and returns a key to align by. If not given,
the default key function is a tuble of the names
of the Agents in the Statement.
Return
------
matches : list(tuple)
A list of tuples where each tuple has two elements,
the first corresponding to an element of the stmts1
list and the second corresponding to an element
of the stmts2 list. If a given element is not matched,
its corresponding pair in the tuple is None. | [
"Return",
"alignment",
"of",
"two",
"lists",
"of",
"statements",
"by",
"key",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/tools/assemble_corpus.py#L1816-L1860 | train |
sorgerlab/indra | indra/sources/indra_db_rest/util.py | submit_query_request | def submit_query_request(end_point, *args, **kwargs):
"""Low level function to format the query string."""
ev_limit = kwargs.pop('ev_limit', 10)
best_first = kwargs.pop('best_first', True)
tries = kwargs.pop('tries', 2)
# This isn't handled by requests because of the multiple identical agent
# keys, e.g. {'agent': 'MEK', 'agent': 'ERK'} which is not supported in
# python, but is allowed and necessary in these query strings.
# TODO because we use the API Gateway, this feature is not longer needed.
# We should just use the requests parameters dict.
query_str = '?' + '&'.join(['%s=%s' % (k, v) for k, v in kwargs.items()
if v is not None]
+ list(args))
return submit_statement_request('get', end_point, query_str,
ev_limit=ev_limit, best_first=best_first,
tries=tries) | python | def submit_query_request(end_point, *args, **kwargs):
"""Low level function to format the query string."""
ev_limit = kwargs.pop('ev_limit', 10)
best_first = kwargs.pop('best_first', True)
tries = kwargs.pop('tries', 2)
# This isn't handled by requests because of the multiple identical agent
# keys, e.g. {'agent': 'MEK', 'agent': 'ERK'} which is not supported in
# python, but is allowed and necessary in these query strings.
# TODO because we use the API Gateway, this feature is not longer needed.
# We should just use the requests parameters dict.
query_str = '?' + '&'.join(['%s=%s' % (k, v) for k, v in kwargs.items()
if v is not None]
+ list(args))
return submit_statement_request('get', end_point, query_str,
ev_limit=ev_limit, best_first=best_first,
tries=tries) | [
"def",
"submit_query_request",
"(",
"end_point",
",",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
":",
"ev_limit",
"=",
"kwargs",
".",
"pop",
"(",
"'ev_limit'",
",",
"10",
")",
"best_first",
"=",
"kwargs",
".",
"pop",
"(",
"'best_first'",
",",
"True",
")",
"tries",
"=",
"kwargs",
".",
"pop",
"(",
"'tries'",
",",
"2",
")",
"# This isn't handled by requests because of the multiple identical agent",
"# keys, e.g. {'agent': 'MEK', 'agent': 'ERK'} which is not supported in",
"# python, but is allowed and necessary in these query strings.",
"# TODO because we use the API Gateway, this feature is not longer needed.",
"# We should just use the requests parameters dict.",
"query_str",
"=",
"'?'",
"+",
"'&'",
".",
"join",
"(",
"[",
"'%s=%s'",
"%",
"(",
"k",
",",
"v",
")",
"for",
"k",
",",
"v",
"in",
"kwargs",
".",
"items",
"(",
")",
"if",
"v",
"is",
"not",
"None",
"]",
"+",
"list",
"(",
"args",
")",
")",
"return",
"submit_statement_request",
"(",
"'get'",
",",
"end_point",
",",
"query_str",
",",
"ev_limit",
"=",
"ev_limit",
",",
"best_first",
"=",
"best_first",
",",
"tries",
"=",
"tries",
")"
]
| Low level function to format the query string. | [
"Low",
"level",
"function",
"to",
"format",
"the",
"query",
"string",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/sources/indra_db_rest/util.py#L11-L26 | train |
sorgerlab/indra | indra/sources/indra_db_rest/util.py | submit_statement_request | def submit_statement_request(meth, end_point, query_str='', data=None,
tries=2, **params):
"""Even lower level function to make the request."""
full_end_point = 'statements/' + end_point.lstrip('/')
return make_db_rest_request(meth, full_end_point, query_str, data, params, tries) | python | def submit_statement_request(meth, end_point, query_str='', data=None,
tries=2, **params):
"""Even lower level function to make the request."""
full_end_point = 'statements/' + end_point.lstrip('/')
return make_db_rest_request(meth, full_end_point, query_str, data, params, tries) | [
"def",
"submit_statement_request",
"(",
"meth",
",",
"end_point",
",",
"query_str",
"=",
"''",
",",
"data",
"=",
"None",
",",
"tries",
"=",
"2",
",",
"*",
"*",
"params",
")",
":",
"full_end_point",
"=",
"'statements/'",
"+",
"end_point",
".",
"lstrip",
"(",
"'/'",
")",
"return",
"make_db_rest_request",
"(",
"meth",
",",
"full_end_point",
",",
"query_str",
",",
"data",
",",
"params",
",",
"tries",
")"
]
| Even lower level function to make the request. | [
"Even",
"lower",
"level",
"function",
"to",
"make",
"the",
"request",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/sources/indra_db_rest/util.py#L29-L33 | train |
sorgerlab/indra | indra/preassembler/__init__.py | render_stmt_graph | def render_stmt_graph(statements, reduce=True, english=False, rankdir=None,
agent_style=None):
"""Render the statement hierarchy as a pygraphviz graph.
Parameters
----------
stmts : list of :py:class:`indra.statements.Statement`
A list of top-level statements with associated supporting statements
resulting from building a statement hierarchy with
:py:meth:`combine_related`.
reduce : bool
Whether to perform a transitive reduction of the edges in the graph.
Default is True.
english : bool
If True, the statements in the graph are represented by their
English-assembled equivalent; otherwise they are represented as
text-formatted Statements.
rank_dir : str or None
Argument to pass through to the pygraphviz `AGraph` constructor
specifying graph layout direction. In particular, a value of 'LR'
specifies a left-to-right direction. If None, the pygraphviz default
is used.
agent_style : dict or None
Dict of attributes specifying the visual properties of nodes. If None,
the following default attributes are used::
agent_style = {'color': 'lightgray', 'style': 'filled',
'fontname': 'arial'}
Returns
-------
pygraphviz.AGraph
Pygraphviz graph with nodes representing statements and edges pointing
from supported statements to supported_by statements.
Examples
--------
Pattern for getting statements and rendering as a Graphviz graph:
>>> from indra.preassembler.hierarchy_manager import hierarchies
>>> braf = Agent('BRAF')
>>> map2k1 = Agent('MAP2K1')
>>> st1 = Phosphorylation(braf, map2k1)
>>> st2 = Phosphorylation(braf, map2k1, residue='S')
>>> pa = Preassembler(hierarchies, [st1, st2])
>>> pa.combine_related() # doctest:+ELLIPSIS
[Phosphorylation(BRAF(), MAP2K1(), S)]
>>> graph = render_stmt_graph(pa.related_stmts)
>>> graph.write('example_graph.dot') # To make the DOT file
>>> graph.draw('example_graph.png', prog='dot') # To make an image
Resulting graph:
.. image:: /images/example_graph.png
:align: center
:alt: Example statement graph rendered by Graphviz
"""
from indra.assemblers.english import EnglishAssembler
# Set the default agent formatting properties
if agent_style is None:
agent_style = {'color': 'lightgray', 'style': 'filled',
'fontname': 'arial'}
# Sets to store all of the nodes and edges as we recursively process all
# of the statements
nodes = set([])
edges = set([])
stmt_dict = {}
# Recursive function for processing all statements
def process_stmt(stmt):
nodes.add(str(stmt.matches_key()))
stmt_dict[str(stmt.matches_key())] = stmt
for sby_ix, sby_stmt in enumerate(stmt.supported_by):
edges.add((str(stmt.matches_key()), str(sby_stmt.matches_key())))
process_stmt(sby_stmt)
# Process all of the top-level statements, getting the supporting statements
# recursively
for stmt in statements:
process_stmt(stmt)
# Create a networkx graph from the nodes
nx_graph = nx.DiGraph()
nx_graph.add_edges_from(edges)
# Perform transitive reduction if desired
if reduce:
nx_graph = nx.algorithms.dag.transitive_reduction(nx_graph)
# Create a pygraphviz graph from the nx graph
try:
pgv_graph = pgv.AGraph(name='statements', directed=True,
rankdir=rankdir)
except NameError:
logger.error('Cannot generate graph because '
'pygraphviz could not be imported.')
return None
for node in nx_graph.nodes():
stmt = stmt_dict[node]
if english:
ea = EnglishAssembler([stmt])
stmt_str = ea.make_model()
else:
stmt_str = str(stmt)
pgv_graph.add_node(node,
label='%s (%d)' % (stmt_str, len(stmt.evidence)),
**agent_style)
pgv_graph.add_edges_from(nx_graph.edges())
return pgv_graph | python | def render_stmt_graph(statements, reduce=True, english=False, rankdir=None,
agent_style=None):
"""Render the statement hierarchy as a pygraphviz graph.
Parameters
----------
stmts : list of :py:class:`indra.statements.Statement`
A list of top-level statements with associated supporting statements
resulting from building a statement hierarchy with
:py:meth:`combine_related`.
reduce : bool
Whether to perform a transitive reduction of the edges in the graph.
Default is True.
english : bool
If True, the statements in the graph are represented by their
English-assembled equivalent; otherwise they are represented as
text-formatted Statements.
rank_dir : str or None
Argument to pass through to the pygraphviz `AGraph` constructor
specifying graph layout direction. In particular, a value of 'LR'
specifies a left-to-right direction. If None, the pygraphviz default
is used.
agent_style : dict or None
Dict of attributes specifying the visual properties of nodes. If None,
the following default attributes are used::
agent_style = {'color': 'lightgray', 'style': 'filled',
'fontname': 'arial'}
Returns
-------
pygraphviz.AGraph
Pygraphviz graph with nodes representing statements and edges pointing
from supported statements to supported_by statements.
Examples
--------
Pattern for getting statements and rendering as a Graphviz graph:
>>> from indra.preassembler.hierarchy_manager import hierarchies
>>> braf = Agent('BRAF')
>>> map2k1 = Agent('MAP2K1')
>>> st1 = Phosphorylation(braf, map2k1)
>>> st2 = Phosphorylation(braf, map2k1, residue='S')
>>> pa = Preassembler(hierarchies, [st1, st2])
>>> pa.combine_related() # doctest:+ELLIPSIS
[Phosphorylation(BRAF(), MAP2K1(), S)]
>>> graph = render_stmt_graph(pa.related_stmts)
>>> graph.write('example_graph.dot') # To make the DOT file
>>> graph.draw('example_graph.png', prog='dot') # To make an image
Resulting graph:
.. image:: /images/example_graph.png
:align: center
:alt: Example statement graph rendered by Graphviz
"""
from indra.assemblers.english import EnglishAssembler
# Set the default agent formatting properties
if agent_style is None:
agent_style = {'color': 'lightgray', 'style': 'filled',
'fontname': 'arial'}
# Sets to store all of the nodes and edges as we recursively process all
# of the statements
nodes = set([])
edges = set([])
stmt_dict = {}
# Recursive function for processing all statements
def process_stmt(stmt):
nodes.add(str(stmt.matches_key()))
stmt_dict[str(stmt.matches_key())] = stmt
for sby_ix, sby_stmt in enumerate(stmt.supported_by):
edges.add((str(stmt.matches_key()), str(sby_stmt.matches_key())))
process_stmt(sby_stmt)
# Process all of the top-level statements, getting the supporting statements
# recursively
for stmt in statements:
process_stmt(stmt)
# Create a networkx graph from the nodes
nx_graph = nx.DiGraph()
nx_graph.add_edges_from(edges)
# Perform transitive reduction if desired
if reduce:
nx_graph = nx.algorithms.dag.transitive_reduction(nx_graph)
# Create a pygraphviz graph from the nx graph
try:
pgv_graph = pgv.AGraph(name='statements', directed=True,
rankdir=rankdir)
except NameError:
logger.error('Cannot generate graph because '
'pygraphviz could not be imported.')
return None
for node in nx_graph.nodes():
stmt = stmt_dict[node]
if english:
ea = EnglishAssembler([stmt])
stmt_str = ea.make_model()
else:
stmt_str = str(stmt)
pgv_graph.add_node(node,
label='%s (%d)' % (stmt_str, len(stmt.evidence)),
**agent_style)
pgv_graph.add_edges_from(nx_graph.edges())
return pgv_graph | [
"def",
"render_stmt_graph",
"(",
"statements",
",",
"reduce",
"=",
"True",
",",
"english",
"=",
"False",
",",
"rankdir",
"=",
"None",
",",
"agent_style",
"=",
"None",
")",
":",
"from",
"indra",
".",
"assemblers",
".",
"english",
"import",
"EnglishAssembler",
"# Set the default agent formatting properties",
"if",
"agent_style",
"is",
"None",
":",
"agent_style",
"=",
"{",
"'color'",
":",
"'lightgray'",
",",
"'style'",
":",
"'filled'",
",",
"'fontname'",
":",
"'arial'",
"}",
"# Sets to store all of the nodes and edges as we recursively process all",
"# of the statements",
"nodes",
"=",
"set",
"(",
"[",
"]",
")",
"edges",
"=",
"set",
"(",
"[",
"]",
")",
"stmt_dict",
"=",
"{",
"}",
"# Recursive function for processing all statements",
"def",
"process_stmt",
"(",
"stmt",
")",
":",
"nodes",
".",
"add",
"(",
"str",
"(",
"stmt",
".",
"matches_key",
"(",
")",
")",
")",
"stmt_dict",
"[",
"str",
"(",
"stmt",
".",
"matches_key",
"(",
")",
")",
"]",
"=",
"stmt",
"for",
"sby_ix",
",",
"sby_stmt",
"in",
"enumerate",
"(",
"stmt",
".",
"supported_by",
")",
":",
"edges",
".",
"add",
"(",
"(",
"str",
"(",
"stmt",
".",
"matches_key",
"(",
")",
")",
",",
"str",
"(",
"sby_stmt",
".",
"matches_key",
"(",
")",
")",
")",
")",
"process_stmt",
"(",
"sby_stmt",
")",
"# Process all of the top-level statements, getting the supporting statements",
"# recursively",
"for",
"stmt",
"in",
"statements",
":",
"process_stmt",
"(",
"stmt",
")",
"# Create a networkx graph from the nodes",
"nx_graph",
"=",
"nx",
".",
"DiGraph",
"(",
")",
"nx_graph",
".",
"add_edges_from",
"(",
"edges",
")",
"# Perform transitive reduction if desired",
"if",
"reduce",
":",
"nx_graph",
"=",
"nx",
".",
"algorithms",
".",
"dag",
".",
"transitive_reduction",
"(",
"nx_graph",
")",
"# Create a pygraphviz graph from the nx graph",
"try",
":",
"pgv_graph",
"=",
"pgv",
".",
"AGraph",
"(",
"name",
"=",
"'statements'",
",",
"directed",
"=",
"True",
",",
"rankdir",
"=",
"rankdir",
")",
"except",
"NameError",
":",
"logger",
".",
"error",
"(",
"'Cannot generate graph because '",
"'pygraphviz could not be imported.'",
")",
"return",
"None",
"for",
"node",
"in",
"nx_graph",
".",
"nodes",
"(",
")",
":",
"stmt",
"=",
"stmt_dict",
"[",
"node",
"]",
"if",
"english",
":",
"ea",
"=",
"EnglishAssembler",
"(",
"[",
"stmt",
"]",
")",
"stmt_str",
"=",
"ea",
".",
"make_model",
"(",
")",
"else",
":",
"stmt_str",
"=",
"str",
"(",
"stmt",
")",
"pgv_graph",
".",
"add_node",
"(",
"node",
",",
"label",
"=",
"'%s (%d)'",
"%",
"(",
"stmt_str",
",",
"len",
"(",
"stmt",
".",
"evidence",
")",
")",
",",
"*",
"*",
"agent_style",
")",
"pgv_graph",
".",
"add_edges_from",
"(",
"nx_graph",
".",
"edges",
"(",
")",
")",
"return",
"pgv_graph"
]
| Render the statement hierarchy as a pygraphviz graph.
Parameters
----------
stmts : list of :py:class:`indra.statements.Statement`
A list of top-level statements with associated supporting statements
resulting from building a statement hierarchy with
:py:meth:`combine_related`.
reduce : bool
Whether to perform a transitive reduction of the edges in the graph.
Default is True.
english : bool
If True, the statements in the graph are represented by their
English-assembled equivalent; otherwise they are represented as
text-formatted Statements.
rank_dir : str or None
Argument to pass through to the pygraphviz `AGraph` constructor
specifying graph layout direction. In particular, a value of 'LR'
specifies a left-to-right direction. If None, the pygraphviz default
is used.
agent_style : dict or None
Dict of attributes specifying the visual properties of nodes. If None,
the following default attributes are used::
agent_style = {'color': 'lightgray', 'style': 'filled',
'fontname': 'arial'}
Returns
-------
pygraphviz.AGraph
Pygraphviz graph with nodes representing statements and edges pointing
from supported statements to supported_by statements.
Examples
--------
Pattern for getting statements and rendering as a Graphviz graph:
>>> from indra.preassembler.hierarchy_manager import hierarchies
>>> braf = Agent('BRAF')
>>> map2k1 = Agent('MAP2K1')
>>> st1 = Phosphorylation(braf, map2k1)
>>> st2 = Phosphorylation(braf, map2k1, residue='S')
>>> pa = Preassembler(hierarchies, [st1, st2])
>>> pa.combine_related() # doctest:+ELLIPSIS
[Phosphorylation(BRAF(), MAP2K1(), S)]
>>> graph = render_stmt_graph(pa.related_stmts)
>>> graph.write('example_graph.dot') # To make the DOT file
>>> graph.draw('example_graph.png', prog='dot') # To make an image
Resulting graph:
.. image:: /images/example_graph.png
:align: center
:alt: Example statement graph rendered by Graphviz | [
"Render",
"the",
"statement",
"hierarchy",
"as",
"a",
"pygraphviz",
"graph",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/preassembler/__init__.py#L646-L752 | train |
sorgerlab/indra | indra/preassembler/__init__.py | flatten_stmts | def flatten_stmts(stmts):
"""Return the full set of unique stms in a pre-assembled stmt graph.
The flattened list of statements returned by this function can be
compared to the original set of unique statements to make sure no
statements have been lost during the preassembly process.
Parameters
----------
stmts : list of :py:class:`indra.statements.Statement`
A list of top-level statements with associated supporting statements
resulting from building a statement hierarchy with
:py:meth:`combine_related`.
Returns
-------
stmts : list of :py:class:`indra.statements.Statement`
List of all statements contained in the hierarchical statement graph.
Examples
--------
Calling :py:meth:`combine_related` on two statements results in one
top-level statement; calling :py:func:`flatten_stmts` recovers both:
>>> from indra.preassembler.hierarchy_manager import hierarchies
>>> braf = Agent('BRAF')
>>> map2k1 = Agent('MAP2K1')
>>> st1 = Phosphorylation(braf, map2k1)
>>> st2 = Phosphorylation(braf, map2k1, residue='S')
>>> pa = Preassembler(hierarchies, [st1, st2])
>>> pa.combine_related() # doctest:+ELLIPSIS
[Phosphorylation(BRAF(), MAP2K1(), S)]
>>> flattened = flatten_stmts(pa.related_stmts)
>>> flattened.sort(key=lambda x: x.matches_key())
>>> flattened
[Phosphorylation(BRAF(), MAP2K1()), Phosphorylation(BRAF(), MAP2K1(), S)]
"""
total_stmts = set(stmts)
for stmt in stmts:
if stmt.supported_by:
children = flatten_stmts(stmt.supported_by)
total_stmts = total_stmts.union(children)
return list(total_stmts) | python | def flatten_stmts(stmts):
"""Return the full set of unique stms in a pre-assembled stmt graph.
The flattened list of statements returned by this function can be
compared to the original set of unique statements to make sure no
statements have been lost during the preassembly process.
Parameters
----------
stmts : list of :py:class:`indra.statements.Statement`
A list of top-level statements with associated supporting statements
resulting from building a statement hierarchy with
:py:meth:`combine_related`.
Returns
-------
stmts : list of :py:class:`indra.statements.Statement`
List of all statements contained in the hierarchical statement graph.
Examples
--------
Calling :py:meth:`combine_related` on two statements results in one
top-level statement; calling :py:func:`flatten_stmts` recovers both:
>>> from indra.preassembler.hierarchy_manager import hierarchies
>>> braf = Agent('BRAF')
>>> map2k1 = Agent('MAP2K1')
>>> st1 = Phosphorylation(braf, map2k1)
>>> st2 = Phosphorylation(braf, map2k1, residue='S')
>>> pa = Preassembler(hierarchies, [st1, st2])
>>> pa.combine_related() # doctest:+ELLIPSIS
[Phosphorylation(BRAF(), MAP2K1(), S)]
>>> flattened = flatten_stmts(pa.related_stmts)
>>> flattened.sort(key=lambda x: x.matches_key())
>>> flattened
[Phosphorylation(BRAF(), MAP2K1()), Phosphorylation(BRAF(), MAP2K1(), S)]
"""
total_stmts = set(stmts)
for stmt in stmts:
if stmt.supported_by:
children = flatten_stmts(stmt.supported_by)
total_stmts = total_stmts.union(children)
return list(total_stmts) | [
"def",
"flatten_stmts",
"(",
"stmts",
")",
":",
"total_stmts",
"=",
"set",
"(",
"stmts",
")",
"for",
"stmt",
"in",
"stmts",
":",
"if",
"stmt",
".",
"supported_by",
":",
"children",
"=",
"flatten_stmts",
"(",
"stmt",
".",
"supported_by",
")",
"total_stmts",
"=",
"total_stmts",
".",
"union",
"(",
"children",
")",
"return",
"list",
"(",
"total_stmts",
")"
]
| Return the full set of unique stms in a pre-assembled stmt graph.
The flattened list of statements returned by this function can be
compared to the original set of unique statements to make sure no
statements have been lost during the preassembly process.
Parameters
----------
stmts : list of :py:class:`indra.statements.Statement`
A list of top-level statements with associated supporting statements
resulting from building a statement hierarchy with
:py:meth:`combine_related`.
Returns
-------
stmts : list of :py:class:`indra.statements.Statement`
List of all statements contained in the hierarchical statement graph.
Examples
--------
Calling :py:meth:`combine_related` on two statements results in one
top-level statement; calling :py:func:`flatten_stmts` recovers both:
>>> from indra.preassembler.hierarchy_manager import hierarchies
>>> braf = Agent('BRAF')
>>> map2k1 = Agent('MAP2K1')
>>> st1 = Phosphorylation(braf, map2k1)
>>> st2 = Phosphorylation(braf, map2k1, residue='S')
>>> pa = Preassembler(hierarchies, [st1, st2])
>>> pa.combine_related() # doctest:+ELLIPSIS
[Phosphorylation(BRAF(), MAP2K1(), S)]
>>> flattened = flatten_stmts(pa.related_stmts)
>>> flattened.sort(key=lambda x: x.matches_key())
>>> flattened
[Phosphorylation(BRAF(), MAP2K1()), Phosphorylation(BRAF(), MAP2K1(), S)] | [
"Return",
"the",
"full",
"set",
"of",
"unique",
"stms",
"in",
"a",
"pre",
"-",
"assembled",
"stmt",
"graph",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/preassembler/__init__.py#L755-L797 | train |
sorgerlab/indra | indra/preassembler/__init__.py | Preassembler.combine_duplicates | def combine_duplicates(self):
"""Combine duplicates among `stmts` and save result in `unique_stmts`.
A wrapper around the static method :py:meth:`combine_duplicate_stmts`.
"""
if self.unique_stmts is None:
self.unique_stmts = self.combine_duplicate_stmts(self.stmts)
return self.unique_stmts | python | def combine_duplicates(self):
"""Combine duplicates among `stmts` and save result in `unique_stmts`.
A wrapper around the static method :py:meth:`combine_duplicate_stmts`.
"""
if self.unique_stmts is None:
self.unique_stmts = self.combine_duplicate_stmts(self.stmts)
return self.unique_stmts | [
"def",
"combine_duplicates",
"(",
"self",
")",
":",
"if",
"self",
".",
"unique_stmts",
"is",
"None",
":",
"self",
".",
"unique_stmts",
"=",
"self",
".",
"combine_duplicate_stmts",
"(",
"self",
".",
"stmts",
")",
"return",
"self",
".",
"unique_stmts"
]
| Combine duplicates among `stmts` and save result in `unique_stmts`.
A wrapper around the static method :py:meth:`combine_duplicate_stmts`. | [
"Combine",
"duplicates",
"among",
"stmts",
"and",
"save",
"result",
"in",
"unique_stmts",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/preassembler/__init__.py#L68-L75 | train |
sorgerlab/indra | indra/preassembler/__init__.py | Preassembler._get_stmt_matching_groups | def _get_stmt_matching_groups(stmts):
"""Use the matches_key method to get sets of matching statements."""
def match_func(x): return x.matches_key()
# Remove exact duplicates using a set() call, then make copies:
logger.debug('%d statements before removing object duplicates.' %
len(stmts))
st = list(set(stmts))
logger.debug('%d statements after removing object duplicates.' %
len(stmts))
# Group statements according to whether they are matches (differing
# only in their evidence).
# Sort the statements in place by matches_key()
st.sort(key=match_func)
return itertools.groupby(st, key=match_func) | python | def _get_stmt_matching_groups(stmts):
"""Use the matches_key method to get sets of matching statements."""
def match_func(x): return x.matches_key()
# Remove exact duplicates using a set() call, then make copies:
logger.debug('%d statements before removing object duplicates.' %
len(stmts))
st = list(set(stmts))
logger.debug('%d statements after removing object duplicates.' %
len(stmts))
# Group statements according to whether they are matches (differing
# only in their evidence).
# Sort the statements in place by matches_key()
st.sort(key=match_func)
return itertools.groupby(st, key=match_func) | [
"def",
"_get_stmt_matching_groups",
"(",
"stmts",
")",
":",
"def",
"match_func",
"(",
"x",
")",
":",
"return",
"x",
".",
"matches_key",
"(",
")",
"# Remove exact duplicates using a set() call, then make copies:",
"logger",
".",
"debug",
"(",
"'%d statements before removing object duplicates.'",
"%",
"len",
"(",
"stmts",
")",
")",
"st",
"=",
"list",
"(",
"set",
"(",
"stmts",
")",
")",
"logger",
".",
"debug",
"(",
"'%d statements after removing object duplicates.'",
"%",
"len",
"(",
"stmts",
")",
")",
"# Group statements according to whether they are matches (differing",
"# only in their evidence).",
"# Sort the statements in place by matches_key()",
"st",
".",
"sort",
"(",
"key",
"=",
"match_func",
")",
"return",
"itertools",
".",
"groupby",
"(",
"st",
",",
"key",
"=",
"match_func",
")"
]
| Use the matches_key method to get sets of matching statements. | [
"Use",
"the",
"matches_key",
"method",
"to",
"get",
"sets",
"of",
"matching",
"statements",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/preassembler/__init__.py#L78-L93 | train |
sorgerlab/indra | indra/preassembler/__init__.py | Preassembler.combine_duplicate_stmts | def combine_duplicate_stmts(stmts):
"""Combine evidence from duplicate Statements.
Statements are deemed to be duplicates if they have the same key
returned by the `matches_key()` method of the Statement class. This
generally means that statements must be identical in terms of their
arguments and can differ only in their associated `Evidence` objects.
This function keeps the first instance of each set of duplicate
statements and merges the lists of Evidence from all of the other
statements.
Parameters
----------
stmts : list of :py:class:`indra.statements.Statement`
Set of statements to de-duplicate.
Returns
-------
list of :py:class:`indra.statements.Statement`
Unique statements with accumulated evidence across duplicates.
Examples
--------
De-duplicate and combine evidence for two statements differing only
in their evidence lists:
>>> map2k1 = Agent('MAP2K1')
>>> mapk1 = Agent('MAPK1')
>>> stmt1 = Phosphorylation(map2k1, mapk1, 'T', '185',
... evidence=[Evidence(text='evidence 1')])
>>> stmt2 = Phosphorylation(map2k1, mapk1, 'T', '185',
... evidence=[Evidence(text='evidence 2')])
>>> uniq_stmts = Preassembler.combine_duplicate_stmts([stmt1, stmt2])
>>> uniq_stmts
[Phosphorylation(MAP2K1(), MAPK1(), T, 185)]
>>> sorted([e.text for e in uniq_stmts[0].evidence]) # doctest:+IGNORE_UNICODE
['evidence 1', 'evidence 2']
"""
# Helper function to get a list of evidence matches keys
def _ev_keys(sts):
ev_keys = []
for stmt in sts:
for ev in stmt.evidence:
ev_keys.append(ev.matches_key())
return ev_keys
# Iterate over groups of duplicate statements
unique_stmts = []
for _, duplicates in Preassembler._get_stmt_matching_groups(stmts):
ev_keys = set()
# Get the first statement and add the evidence of all subsequent
# Statements to it
duplicates = list(duplicates)
start_ev_keys = _ev_keys(duplicates)
for stmt_ix, stmt in enumerate(duplicates):
if stmt_ix is 0:
new_stmt = stmt.make_generic_copy()
if len(duplicates) == 1:
new_stmt.uuid = stmt.uuid
raw_text = [None if ag is None else ag.db_refs.get('TEXT')
for ag in stmt.agent_list(deep_sorted=True)]
raw_grounding = [None if ag is None else ag.db_refs
for ag in stmt.agent_list(deep_sorted=True)]
for ev in stmt.evidence:
ev_key = ev.matches_key() + str(raw_text) + \
str(raw_grounding)
if ev_key not in ev_keys:
# In case there are already agents annotations, we
# just add a new key for raw_text, otherwise create
# a new key
if 'agents' in ev.annotations:
ev.annotations['agents']['raw_text'] = raw_text
ev.annotations['agents']['raw_grounding'] = \
raw_grounding
else:
ev.annotations['agents'] = \
{'raw_text': raw_text,
'raw_grounding': raw_grounding}
if 'prior_uuids' not in ev.annotations:
ev.annotations['prior_uuids'] = []
ev.annotations['prior_uuids'].append(stmt.uuid)
new_stmt.evidence.append(ev)
ev_keys.add(ev_key)
end_ev_keys = _ev_keys([new_stmt])
if len(end_ev_keys) != len(start_ev_keys):
logger.debug('%d redundant evidences eliminated.' %
(len(start_ev_keys) - len(end_ev_keys)))
# This should never be None or anything else
assert isinstance(new_stmt, Statement)
unique_stmts.append(new_stmt)
return unique_stmts | python | def combine_duplicate_stmts(stmts):
"""Combine evidence from duplicate Statements.
Statements are deemed to be duplicates if they have the same key
returned by the `matches_key()` method of the Statement class. This
generally means that statements must be identical in terms of their
arguments and can differ only in their associated `Evidence` objects.
This function keeps the first instance of each set of duplicate
statements and merges the lists of Evidence from all of the other
statements.
Parameters
----------
stmts : list of :py:class:`indra.statements.Statement`
Set of statements to de-duplicate.
Returns
-------
list of :py:class:`indra.statements.Statement`
Unique statements with accumulated evidence across duplicates.
Examples
--------
De-duplicate and combine evidence for two statements differing only
in their evidence lists:
>>> map2k1 = Agent('MAP2K1')
>>> mapk1 = Agent('MAPK1')
>>> stmt1 = Phosphorylation(map2k1, mapk1, 'T', '185',
... evidence=[Evidence(text='evidence 1')])
>>> stmt2 = Phosphorylation(map2k1, mapk1, 'T', '185',
... evidence=[Evidence(text='evidence 2')])
>>> uniq_stmts = Preassembler.combine_duplicate_stmts([stmt1, stmt2])
>>> uniq_stmts
[Phosphorylation(MAP2K1(), MAPK1(), T, 185)]
>>> sorted([e.text for e in uniq_stmts[0].evidence]) # doctest:+IGNORE_UNICODE
['evidence 1', 'evidence 2']
"""
# Helper function to get a list of evidence matches keys
def _ev_keys(sts):
ev_keys = []
for stmt in sts:
for ev in stmt.evidence:
ev_keys.append(ev.matches_key())
return ev_keys
# Iterate over groups of duplicate statements
unique_stmts = []
for _, duplicates in Preassembler._get_stmt_matching_groups(stmts):
ev_keys = set()
# Get the first statement and add the evidence of all subsequent
# Statements to it
duplicates = list(duplicates)
start_ev_keys = _ev_keys(duplicates)
for stmt_ix, stmt in enumerate(duplicates):
if stmt_ix is 0:
new_stmt = stmt.make_generic_copy()
if len(duplicates) == 1:
new_stmt.uuid = stmt.uuid
raw_text = [None if ag is None else ag.db_refs.get('TEXT')
for ag in stmt.agent_list(deep_sorted=True)]
raw_grounding = [None if ag is None else ag.db_refs
for ag in stmt.agent_list(deep_sorted=True)]
for ev in stmt.evidence:
ev_key = ev.matches_key() + str(raw_text) + \
str(raw_grounding)
if ev_key not in ev_keys:
# In case there are already agents annotations, we
# just add a new key for raw_text, otherwise create
# a new key
if 'agents' in ev.annotations:
ev.annotations['agents']['raw_text'] = raw_text
ev.annotations['agents']['raw_grounding'] = \
raw_grounding
else:
ev.annotations['agents'] = \
{'raw_text': raw_text,
'raw_grounding': raw_grounding}
if 'prior_uuids' not in ev.annotations:
ev.annotations['prior_uuids'] = []
ev.annotations['prior_uuids'].append(stmt.uuid)
new_stmt.evidence.append(ev)
ev_keys.add(ev_key)
end_ev_keys = _ev_keys([new_stmt])
if len(end_ev_keys) != len(start_ev_keys):
logger.debug('%d redundant evidences eliminated.' %
(len(start_ev_keys) - len(end_ev_keys)))
# This should never be None or anything else
assert isinstance(new_stmt, Statement)
unique_stmts.append(new_stmt)
return unique_stmts | [
"def",
"combine_duplicate_stmts",
"(",
"stmts",
")",
":",
"# Helper function to get a list of evidence matches keys",
"def",
"_ev_keys",
"(",
"sts",
")",
":",
"ev_keys",
"=",
"[",
"]",
"for",
"stmt",
"in",
"sts",
":",
"for",
"ev",
"in",
"stmt",
".",
"evidence",
":",
"ev_keys",
".",
"append",
"(",
"ev",
".",
"matches_key",
"(",
")",
")",
"return",
"ev_keys",
"# Iterate over groups of duplicate statements",
"unique_stmts",
"=",
"[",
"]",
"for",
"_",
",",
"duplicates",
"in",
"Preassembler",
".",
"_get_stmt_matching_groups",
"(",
"stmts",
")",
":",
"ev_keys",
"=",
"set",
"(",
")",
"# Get the first statement and add the evidence of all subsequent",
"# Statements to it",
"duplicates",
"=",
"list",
"(",
"duplicates",
")",
"start_ev_keys",
"=",
"_ev_keys",
"(",
"duplicates",
")",
"for",
"stmt_ix",
",",
"stmt",
"in",
"enumerate",
"(",
"duplicates",
")",
":",
"if",
"stmt_ix",
"is",
"0",
":",
"new_stmt",
"=",
"stmt",
".",
"make_generic_copy",
"(",
")",
"if",
"len",
"(",
"duplicates",
")",
"==",
"1",
":",
"new_stmt",
".",
"uuid",
"=",
"stmt",
".",
"uuid",
"raw_text",
"=",
"[",
"None",
"if",
"ag",
"is",
"None",
"else",
"ag",
".",
"db_refs",
".",
"get",
"(",
"'TEXT'",
")",
"for",
"ag",
"in",
"stmt",
".",
"agent_list",
"(",
"deep_sorted",
"=",
"True",
")",
"]",
"raw_grounding",
"=",
"[",
"None",
"if",
"ag",
"is",
"None",
"else",
"ag",
".",
"db_refs",
"for",
"ag",
"in",
"stmt",
".",
"agent_list",
"(",
"deep_sorted",
"=",
"True",
")",
"]",
"for",
"ev",
"in",
"stmt",
".",
"evidence",
":",
"ev_key",
"=",
"ev",
".",
"matches_key",
"(",
")",
"+",
"str",
"(",
"raw_text",
")",
"+",
"str",
"(",
"raw_grounding",
")",
"if",
"ev_key",
"not",
"in",
"ev_keys",
":",
"# In case there are already agents annotations, we",
"# just add a new key for raw_text, otherwise create",
"# a new key",
"if",
"'agents'",
"in",
"ev",
".",
"annotations",
":",
"ev",
".",
"annotations",
"[",
"'agents'",
"]",
"[",
"'raw_text'",
"]",
"=",
"raw_text",
"ev",
".",
"annotations",
"[",
"'agents'",
"]",
"[",
"'raw_grounding'",
"]",
"=",
"raw_grounding",
"else",
":",
"ev",
".",
"annotations",
"[",
"'agents'",
"]",
"=",
"{",
"'raw_text'",
":",
"raw_text",
",",
"'raw_grounding'",
":",
"raw_grounding",
"}",
"if",
"'prior_uuids'",
"not",
"in",
"ev",
".",
"annotations",
":",
"ev",
".",
"annotations",
"[",
"'prior_uuids'",
"]",
"=",
"[",
"]",
"ev",
".",
"annotations",
"[",
"'prior_uuids'",
"]",
".",
"append",
"(",
"stmt",
".",
"uuid",
")",
"new_stmt",
".",
"evidence",
".",
"append",
"(",
"ev",
")",
"ev_keys",
".",
"add",
"(",
"ev_key",
")",
"end_ev_keys",
"=",
"_ev_keys",
"(",
"[",
"new_stmt",
"]",
")",
"if",
"len",
"(",
"end_ev_keys",
")",
"!=",
"len",
"(",
"start_ev_keys",
")",
":",
"logger",
".",
"debug",
"(",
"'%d redundant evidences eliminated.'",
"%",
"(",
"len",
"(",
"start_ev_keys",
")",
"-",
"len",
"(",
"end_ev_keys",
")",
")",
")",
"# This should never be None or anything else",
"assert",
"isinstance",
"(",
"new_stmt",
",",
"Statement",
")",
"unique_stmts",
".",
"append",
"(",
"new_stmt",
")",
"return",
"unique_stmts"
]
| Combine evidence from duplicate Statements.
Statements are deemed to be duplicates if they have the same key
returned by the `matches_key()` method of the Statement class. This
generally means that statements must be identical in terms of their
arguments and can differ only in their associated `Evidence` objects.
This function keeps the first instance of each set of duplicate
statements and merges the lists of Evidence from all of the other
statements.
Parameters
----------
stmts : list of :py:class:`indra.statements.Statement`
Set of statements to de-duplicate.
Returns
-------
list of :py:class:`indra.statements.Statement`
Unique statements with accumulated evidence across duplicates.
Examples
--------
De-duplicate and combine evidence for two statements differing only
in their evidence lists:
>>> map2k1 = Agent('MAP2K1')
>>> mapk1 = Agent('MAPK1')
>>> stmt1 = Phosphorylation(map2k1, mapk1, 'T', '185',
... evidence=[Evidence(text='evidence 1')])
>>> stmt2 = Phosphorylation(map2k1, mapk1, 'T', '185',
... evidence=[Evidence(text='evidence 2')])
>>> uniq_stmts = Preassembler.combine_duplicate_stmts([stmt1, stmt2])
>>> uniq_stmts
[Phosphorylation(MAP2K1(), MAPK1(), T, 185)]
>>> sorted([e.text for e in uniq_stmts[0].evidence]) # doctest:+IGNORE_UNICODE
['evidence 1', 'evidence 2'] | [
"Combine",
"evidence",
"from",
"duplicate",
"Statements",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/preassembler/__init__.py#L96-L186 | train |
sorgerlab/indra | indra/preassembler/__init__.py | Preassembler._get_stmt_by_group | def _get_stmt_by_group(self, stmt_type, stmts_this_type, eh):
"""Group Statements of `stmt_type` by their hierarchical relations."""
# Dict of stmt group key tuples, indexed by their first Agent
stmt_by_first = collections.defaultdict(lambda: [])
# Dict of stmt group key tuples, indexed by their second Agent
stmt_by_second = collections.defaultdict(lambda: [])
# Dict of statements with None first, with second Agent as keys
none_first = collections.defaultdict(lambda: [])
# Dict of statements with None second, with first Agent as keys
none_second = collections.defaultdict(lambda: [])
# The dict of all statement groups, with tuples of components
# or entity_matches_keys as keys
stmt_by_group = collections.defaultdict(lambda: [])
# Here we group Statements according to the hierarchy graph
# components that their agents are part of
for stmt_tuple in stmts_this_type:
_, stmt = stmt_tuple
entities = self._get_entities(stmt, stmt_type, eh)
# At this point we have an entity list
# If we're dealing with Complexes, sort the entities and use
# as dict key
if stmt_type == Complex:
# There shouldn't be any statements of the type
# e.g., Complex([Foo, None, Bar])
assert None not in entities
assert len(entities) > 0
entities.sort()
key = tuple(entities)
if stmt_tuple not in stmt_by_group[key]:
stmt_by_group[key].append(stmt_tuple)
elif stmt_type == Conversion:
assert len(entities) > 0
key = (entities[0],
tuple(sorted(entities[1:len(stmt.obj_from)+1])),
tuple(sorted(entities[-len(stmt.obj_to):])))
if stmt_tuple not in stmt_by_group[key]:
stmt_by_group[key].append(stmt_tuple)
# Now look at all other statement types
# All other statements will have one or two entities
elif len(entities) == 1:
# If only one entity, we only need the one key
# It should not be None!
assert None not in entities
key = tuple(entities)
if stmt_tuple not in stmt_by_group[key]:
stmt_by_group[key].append(stmt_tuple)
else:
# Make sure we only have two entities, and they are not both
# None
key = tuple(entities)
assert len(key) == 2
assert key != (None, None)
# First agent is None; add in the statements, indexed by
# 2nd
if key[0] is None and stmt_tuple not in none_first[key[1]]:
none_first[key[1]].append(stmt_tuple)
# Second agent is None; add in the statements, indexed by
# 1st
elif key[1] is None and stmt_tuple not in none_second[key[0]]:
none_second[key[0]].append(stmt_tuple)
# Neither entity is None!
elif None not in key:
if stmt_tuple not in stmt_by_group[key]:
stmt_by_group[key].append(stmt_tuple)
if key not in stmt_by_first[key[0]]:
stmt_by_first[key[0]].append(key)
if key not in stmt_by_second[key[1]]:
stmt_by_second[key[1]].append(key)
# When we've gotten here, we should have stmt_by_group entries, and
# we may or may not have stmt_by_first/second dicts filled out
# (depending on the statement type).
if none_first:
# Get the keys associated with stmts having a None first
# argument
for second_arg, stmts in none_first.items():
# Look for any statements with this second arg
second_arg_keys = stmt_by_second[second_arg]
# If there are no more specific statements matching this
# set of statements with a None first arg, then the
# statements with the None first arg deserve to be in
# their own group.
if not second_arg_keys:
stmt_by_group[(None, second_arg)] = stmts
# On the other hand, if there are statements with a matching
# second arg component, we need to add the None first
# statements to all groups with the matching second arg
for second_arg_key in second_arg_keys:
stmt_by_group[second_arg_key] += stmts
# Now do the corresponding steps for the statements with None as the
# second argument:
if none_second:
for first_arg, stmts in none_second.items():
# Look for any statements with this first arg
first_arg_keys = stmt_by_first[first_arg]
# If there are no more specific statements matching this
# set of statements with a None second arg, then the
# statements with the None second arg deserve to be in
# their own group.
if not first_arg_keys:
stmt_by_group[(first_arg, None)] = stmts
# On the other hand, if there are statements with a matching
# first arg component, we need to add the None second
# statements to all groups with the matching first arg
for first_arg_key in first_arg_keys:
stmt_by_group[first_arg_key] += stmts
return stmt_by_group | python | def _get_stmt_by_group(self, stmt_type, stmts_this_type, eh):
"""Group Statements of `stmt_type` by their hierarchical relations."""
# Dict of stmt group key tuples, indexed by their first Agent
stmt_by_first = collections.defaultdict(lambda: [])
# Dict of stmt group key tuples, indexed by their second Agent
stmt_by_second = collections.defaultdict(lambda: [])
# Dict of statements with None first, with second Agent as keys
none_first = collections.defaultdict(lambda: [])
# Dict of statements with None second, with first Agent as keys
none_second = collections.defaultdict(lambda: [])
# The dict of all statement groups, with tuples of components
# or entity_matches_keys as keys
stmt_by_group = collections.defaultdict(lambda: [])
# Here we group Statements according to the hierarchy graph
# components that their agents are part of
for stmt_tuple in stmts_this_type:
_, stmt = stmt_tuple
entities = self._get_entities(stmt, stmt_type, eh)
# At this point we have an entity list
# If we're dealing with Complexes, sort the entities and use
# as dict key
if stmt_type == Complex:
# There shouldn't be any statements of the type
# e.g., Complex([Foo, None, Bar])
assert None not in entities
assert len(entities) > 0
entities.sort()
key = tuple(entities)
if stmt_tuple not in stmt_by_group[key]:
stmt_by_group[key].append(stmt_tuple)
elif stmt_type == Conversion:
assert len(entities) > 0
key = (entities[0],
tuple(sorted(entities[1:len(stmt.obj_from)+1])),
tuple(sorted(entities[-len(stmt.obj_to):])))
if stmt_tuple not in stmt_by_group[key]:
stmt_by_group[key].append(stmt_tuple)
# Now look at all other statement types
# All other statements will have one or two entities
elif len(entities) == 1:
# If only one entity, we only need the one key
# It should not be None!
assert None not in entities
key = tuple(entities)
if stmt_tuple not in stmt_by_group[key]:
stmt_by_group[key].append(stmt_tuple)
else:
# Make sure we only have two entities, and they are not both
# None
key = tuple(entities)
assert len(key) == 2
assert key != (None, None)
# First agent is None; add in the statements, indexed by
# 2nd
if key[0] is None and stmt_tuple not in none_first[key[1]]:
none_first[key[1]].append(stmt_tuple)
# Second agent is None; add in the statements, indexed by
# 1st
elif key[1] is None and stmt_tuple not in none_second[key[0]]:
none_second[key[0]].append(stmt_tuple)
# Neither entity is None!
elif None not in key:
if stmt_tuple not in stmt_by_group[key]:
stmt_by_group[key].append(stmt_tuple)
if key not in stmt_by_first[key[0]]:
stmt_by_first[key[0]].append(key)
if key not in stmt_by_second[key[1]]:
stmt_by_second[key[1]].append(key)
# When we've gotten here, we should have stmt_by_group entries, and
# we may or may not have stmt_by_first/second dicts filled out
# (depending on the statement type).
if none_first:
# Get the keys associated with stmts having a None first
# argument
for second_arg, stmts in none_first.items():
# Look for any statements with this second arg
second_arg_keys = stmt_by_second[second_arg]
# If there are no more specific statements matching this
# set of statements with a None first arg, then the
# statements with the None first arg deserve to be in
# their own group.
if not second_arg_keys:
stmt_by_group[(None, second_arg)] = stmts
# On the other hand, if there are statements with a matching
# second arg component, we need to add the None first
# statements to all groups with the matching second arg
for second_arg_key in second_arg_keys:
stmt_by_group[second_arg_key] += stmts
# Now do the corresponding steps for the statements with None as the
# second argument:
if none_second:
for first_arg, stmts in none_second.items():
# Look for any statements with this first arg
first_arg_keys = stmt_by_first[first_arg]
# If there are no more specific statements matching this
# set of statements with a None second arg, then the
# statements with the None second arg deserve to be in
# their own group.
if not first_arg_keys:
stmt_by_group[(first_arg, None)] = stmts
# On the other hand, if there are statements with a matching
# first arg component, we need to add the None second
# statements to all groups with the matching first arg
for first_arg_key in first_arg_keys:
stmt_by_group[first_arg_key] += stmts
return stmt_by_group | [
"def",
"_get_stmt_by_group",
"(",
"self",
",",
"stmt_type",
",",
"stmts_this_type",
",",
"eh",
")",
":",
"# Dict of stmt group key tuples, indexed by their first Agent",
"stmt_by_first",
"=",
"collections",
".",
"defaultdict",
"(",
"lambda",
":",
"[",
"]",
")",
"# Dict of stmt group key tuples, indexed by their second Agent",
"stmt_by_second",
"=",
"collections",
".",
"defaultdict",
"(",
"lambda",
":",
"[",
"]",
")",
"# Dict of statements with None first, with second Agent as keys",
"none_first",
"=",
"collections",
".",
"defaultdict",
"(",
"lambda",
":",
"[",
"]",
")",
"# Dict of statements with None second, with first Agent as keys",
"none_second",
"=",
"collections",
".",
"defaultdict",
"(",
"lambda",
":",
"[",
"]",
")",
"# The dict of all statement groups, with tuples of components",
"# or entity_matches_keys as keys",
"stmt_by_group",
"=",
"collections",
".",
"defaultdict",
"(",
"lambda",
":",
"[",
"]",
")",
"# Here we group Statements according to the hierarchy graph",
"# components that their agents are part of",
"for",
"stmt_tuple",
"in",
"stmts_this_type",
":",
"_",
",",
"stmt",
"=",
"stmt_tuple",
"entities",
"=",
"self",
".",
"_get_entities",
"(",
"stmt",
",",
"stmt_type",
",",
"eh",
")",
"# At this point we have an entity list",
"# If we're dealing with Complexes, sort the entities and use",
"# as dict key",
"if",
"stmt_type",
"==",
"Complex",
":",
"# There shouldn't be any statements of the type",
"# e.g., Complex([Foo, None, Bar])",
"assert",
"None",
"not",
"in",
"entities",
"assert",
"len",
"(",
"entities",
")",
">",
"0",
"entities",
".",
"sort",
"(",
")",
"key",
"=",
"tuple",
"(",
"entities",
")",
"if",
"stmt_tuple",
"not",
"in",
"stmt_by_group",
"[",
"key",
"]",
":",
"stmt_by_group",
"[",
"key",
"]",
".",
"append",
"(",
"stmt_tuple",
")",
"elif",
"stmt_type",
"==",
"Conversion",
":",
"assert",
"len",
"(",
"entities",
")",
">",
"0",
"key",
"=",
"(",
"entities",
"[",
"0",
"]",
",",
"tuple",
"(",
"sorted",
"(",
"entities",
"[",
"1",
":",
"len",
"(",
"stmt",
".",
"obj_from",
")",
"+",
"1",
"]",
")",
")",
",",
"tuple",
"(",
"sorted",
"(",
"entities",
"[",
"-",
"len",
"(",
"stmt",
".",
"obj_to",
")",
":",
"]",
")",
")",
")",
"if",
"stmt_tuple",
"not",
"in",
"stmt_by_group",
"[",
"key",
"]",
":",
"stmt_by_group",
"[",
"key",
"]",
".",
"append",
"(",
"stmt_tuple",
")",
"# Now look at all other statement types",
"# All other statements will have one or two entities",
"elif",
"len",
"(",
"entities",
")",
"==",
"1",
":",
"# If only one entity, we only need the one key",
"# It should not be None!",
"assert",
"None",
"not",
"in",
"entities",
"key",
"=",
"tuple",
"(",
"entities",
")",
"if",
"stmt_tuple",
"not",
"in",
"stmt_by_group",
"[",
"key",
"]",
":",
"stmt_by_group",
"[",
"key",
"]",
".",
"append",
"(",
"stmt_tuple",
")",
"else",
":",
"# Make sure we only have two entities, and they are not both",
"# None",
"key",
"=",
"tuple",
"(",
"entities",
")",
"assert",
"len",
"(",
"key",
")",
"==",
"2",
"assert",
"key",
"!=",
"(",
"None",
",",
"None",
")",
"# First agent is None; add in the statements, indexed by",
"# 2nd",
"if",
"key",
"[",
"0",
"]",
"is",
"None",
"and",
"stmt_tuple",
"not",
"in",
"none_first",
"[",
"key",
"[",
"1",
"]",
"]",
":",
"none_first",
"[",
"key",
"[",
"1",
"]",
"]",
".",
"append",
"(",
"stmt_tuple",
")",
"# Second agent is None; add in the statements, indexed by",
"# 1st",
"elif",
"key",
"[",
"1",
"]",
"is",
"None",
"and",
"stmt_tuple",
"not",
"in",
"none_second",
"[",
"key",
"[",
"0",
"]",
"]",
":",
"none_second",
"[",
"key",
"[",
"0",
"]",
"]",
".",
"append",
"(",
"stmt_tuple",
")",
"# Neither entity is None!",
"elif",
"None",
"not",
"in",
"key",
":",
"if",
"stmt_tuple",
"not",
"in",
"stmt_by_group",
"[",
"key",
"]",
":",
"stmt_by_group",
"[",
"key",
"]",
".",
"append",
"(",
"stmt_tuple",
")",
"if",
"key",
"not",
"in",
"stmt_by_first",
"[",
"key",
"[",
"0",
"]",
"]",
":",
"stmt_by_first",
"[",
"key",
"[",
"0",
"]",
"]",
".",
"append",
"(",
"key",
")",
"if",
"key",
"not",
"in",
"stmt_by_second",
"[",
"key",
"[",
"1",
"]",
"]",
":",
"stmt_by_second",
"[",
"key",
"[",
"1",
"]",
"]",
".",
"append",
"(",
"key",
")",
"# When we've gotten here, we should have stmt_by_group entries, and",
"# we may or may not have stmt_by_first/second dicts filled out",
"# (depending on the statement type).",
"if",
"none_first",
":",
"# Get the keys associated with stmts having a None first",
"# argument",
"for",
"second_arg",
",",
"stmts",
"in",
"none_first",
".",
"items",
"(",
")",
":",
"# Look for any statements with this second arg",
"second_arg_keys",
"=",
"stmt_by_second",
"[",
"second_arg",
"]",
"# If there are no more specific statements matching this",
"# set of statements with a None first arg, then the",
"# statements with the None first arg deserve to be in",
"# their own group.",
"if",
"not",
"second_arg_keys",
":",
"stmt_by_group",
"[",
"(",
"None",
",",
"second_arg",
")",
"]",
"=",
"stmts",
"# On the other hand, if there are statements with a matching",
"# second arg component, we need to add the None first",
"# statements to all groups with the matching second arg",
"for",
"second_arg_key",
"in",
"second_arg_keys",
":",
"stmt_by_group",
"[",
"second_arg_key",
"]",
"+=",
"stmts",
"# Now do the corresponding steps for the statements with None as the",
"# second argument:",
"if",
"none_second",
":",
"for",
"first_arg",
",",
"stmts",
"in",
"none_second",
".",
"items",
"(",
")",
":",
"# Look for any statements with this first arg",
"first_arg_keys",
"=",
"stmt_by_first",
"[",
"first_arg",
"]",
"# If there are no more specific statements matching this",
"# set of statements with a None second arg, then the",
"# statements with the None second arg deserve to be in",
"# their own group.",
"if",
"not",
"first_arg_keys",
":",
"stmt_by_group",
"[",
"(",
"first_arg",
",",
"None",
")",
"]",
"=",
"stmts",
"# On the other hand, if there are statements with a matching",
"# first arg component, we need to add the None second",
"# statements to all groups with the matching first arg",
"for",
"first_arg_key",
"in",
"first_arg_keys",
":",
"stmt_by_group",
"[",
"first_arg_key",
"]",
"+=",
"stmts",
"return",
"stmt_by_group"
]
| Group Statements of `stmt_type` by their hierarchical relations. | [
"Group",
"Statements",
"of",
"stmt_type",
"by",
"their",
"hierarchical",
"relations",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/preassembler/__init__.py#L220-L326 | train |
sorgerlab/indra | indra/preassembler/__init__.py | Preassembler.combine_related | def combine_related(self, return_toplevel=True, poolsize=None,
size_cutoff=100):
"""Connect related statements based on their refinement relationships.
This function takes as a starting point the unique statements (with
duplicates removed) and returns a modified flat list of statements
containing only those statements which do not represent a refinement of
other existing statements. In other words, the more general versions of
a given statement do not appear at the top level, but instead are
listed in the `supports` field of the top-level statements.
If :py:attr:`unique_stmts` has not been initialized with the
de-duplicated statements, :py:meth:`combine_duplicates` is called
internally.
After this function is called the attribute :py:attr:`related_stmts` is
set as a side-effect.
The procedure for combining statements in this way involves a series
of steps:
1. The statements are grouped by type (e.g., Phosphorylation) and
each type is iterated over independently.
2. Statements of the same type are then grouped according to their
Agents' entity hierarchy component identifiers. For instance,
ERK, MAPK1 and MAPK3 are all in the same connected component in the
entity hierarchy and therefore all Statements of the same type
referencing these entities will be grouped. This grouping assures
that relations are only possible within Statement groups and
not among groups. For two Statements to be in the same group at
this step, the Statements must be the same type and the Agents at
each position in the Agent lists must either be in the same
hierarchy component, or if they are not in the hierarchy, must have
identical entity_matches_keys. Statements with None in one of the
Agent list positions are collected separately at this stage.
3. Statements with None at either the first or second position are
iterated over. For a statement with a None as the first Agent,
the second Agent is examined; then the Statement with None is
added to all Statement groups with a corresponding component or
entity_matches_key in the second position. The same procedure is
performed for Statements with None at the second Agent position.
4. The statements within each group are then compared; if one
statement represents a refinement of the other (as defined by the
`refinement_of()` method implemented for the Statement), then the
more refined statement is added to the `supports` field of the more
general statement, and the more general statement is added to the
`supported_by` field of the more refined statement.
5. A new flat list of statements is created that contains only those
statements that have no `supports` entries (statements containing
such entries are not eliminated, because they will be retrievable
from the `supported_by` fields of other statements). This list
is returned to the caller.
On multi-core machines, the algorithm can be parallelized by setting
the poolsize argument to the desired number of worker processes.
This feature is only available in Python > 3.4.
.. note:: Subfamily relationships must be consistent across arguments
For now, we require that merges can only occur if the *isa*
relationships are all in the *same direction for all the agents* in
a Statement. For example, the two statement groups: `RAF_family ->
MEK1` and `BRAF -> MEK_family` would not be merged, since BRAF
*isa* RAF_family, but MEK_family is not a MEK1. In the future this
restriction could be revisited.
Parameters
----------
return_toplevel : Optional[bool]
If True only the top level statements are returned.
If False, all statements are returned. Default: True
poolsize : Optional[int]
The number of worker processes to use to parallelize the
comparisons performed by the function. If None (default), no
parallelization is performed. NOTE: Parallelization is only
available on Python 3.4 and above.
size_cutoff : Optional[int]
Groups with size_cutoff or more statements are sent to worker
processes, while smaller groups are compared in the parent process.
Default value is 100. Not relevant when parallelization is not
used.
Returns
-------
list of :py:class:`indra.statement.Statement`
The returned list contains Statements representing the more
concrete/refined versions of the Statements involving particular
entities. The attribute :py:attr:`related_stmts` is also set to
this list. However, if return_toplevel is False then all
statements are returned, irrespective of level of specificity.
In this case the relationships between statements can
be accessed via the supports/supported_by attributes.
Examples
--------
A more general statement with no information about a Phosphorylation
site is identified as supporting a more specific statement:
>>> from indra.preassembler.hierarchy_manager import hierarchies
>>> braf = Agent('BRAF')
>>> map2k1 = Agent('MAP2K1')
>>> st1 = Phosphorylation(braf, map2k1)
>>> st2 = Phosphorylation(braf, map2k1, residue='S')
>>> pa = Preassembler(hierarchies, [st1, st2])
>>> combined_stmts = pa.combine_related() # doctest:+ELLIPSIS
>>> combined_stmts
[Phosphorylation(BRAF(), MAP2K1(), S)]
>>> combined_stmts[0].supported_by
[Phosphorylation(BRAF(), MAP2K1())]
>>> combined_stmts[0].supported_by[0].supports
[Phosphorylation(BRAF(), MAP2K1(), S)]
"""
if self.related_stmts is not None:
if return_toplevel:
return self.related_stmts
else:
assert self.unique_stmts is not None
return self.unique_stmts
# Call combine_duplicates, which lazily initializes self.unique_stmts
unique_stmts = self.combine_duplicates()
# Generate the index map, linking related statements.
idx_map = self._generate_id_maps(unique_stmts, poolsize, size_cutoff)
# Now iterate over all indices and set supports/supported by
for ix1, ix2 in idx_map:
unique_stmts[ix1].supported_by.append(unique_stmts[ix2])
unique_stmts[ix2].supports.append(unique_stmts[ix1])
# Get the top level statements
self.related_stmts = [st for st in unique_stmts if not st.supports]
logger.debug('%d top level' % len(self.related_stmts))
if return_toplevel:
return self.related_stmts
else:
return unique_stmts | python | def combine_related(self, return_toplevel=True, poolsize=None,
size_cutoff=100):
"""Connect related statements based on their refinement relationships.
This function takes as a starting point the unique statements (with
duplicates removed) and returns a modified flat list of statements
containing only those statements which do not represent a refinement of
other existing statements. In other words, the more general versions of
a given statement do not appear at the top level, but instead are
listed in the `supports` field of the top-level statements.
If :py:attr:`unique_stmts` has not been initialized with the
de-duplicated statements, :py:meth:`combine_duplicates` is called
internally.
After this function is called the attribute :py:attr:`related_stmts` is
set as a side-effect.
The procedure for combining statements in this way involves a series
of steps:
1. The statements are grouped by type (e.g., Phosphorylation) and
each type is iterated over independently.
2. Statements of the same type are then grouped according to their
Agents' entity hierarchy component identifiers. For instance,
ERK, MAPK1 and MAPK3 are all in the same connected component in the
entity hierarchy and therefore all Statements of the same type
referencing these entities will be grouped. This grouping assures
that relations are only possible within Statement groups and
not among groups. For two Statements to be in the same group at
this step, the Statements must be the same type and the Agents at
each position in the Agent lists must either be in the same
hierarchy component, or if they are not in the hierarchy, must have
identical entity_matches_keys. Statements with None in one of the
Agent list positions are collected separately at this stage.
3. Statements with None at either the first or second position are
iterated over. For a statement with a None as the first Agent,
the second Agent is examined; then the Statement with None is
added to all Statement groups with a corresponding component or
entity_matches_key in the second position. The same procedure is
performed for Statements with None at the second Agent position.
4. The statements within each group are then compared; if one
statement represents a refinement of the other (as defined by the
`refinement_of()` method implemented for the Statement), then the
more refined statement is added to the `supports` field of the more
general statement, and the more general statement is added to the
`supported_by` field of the more refined statement.
5. A new flat list of statements is created that contains only those
statements that have no `supports` entries (statements containing
such entries are not eliminated, because they will be retrievable
from the `supported_by` fields of other statements). This list
is returned to the caller.
On multi-core machines, the algorithm can be parallelized by setting
the poolsize argument to the desired number of worker processes.
This feature is only available in Python > 3.4.
.. note:: Subfamily relationships must be consistent across arguments
For now, we require that merges can only occur if the *isa*
relationships are all in the *same direction for all the agents* in
a Statement. For example, the two statement groups: `RAF_family ->
MEK1` and `BRAF -> MEK_family` would not be merged, since BRAF
*isa* RAF_family, but MEK_family is not a MEK1. In the future this
restriction could be revisited.
Parameters
----------
return_toplevel : Optional[bool]
If True only the top level statements are returned.
If False, all statements are returned. Default: True
poolsize : Optional[int]
The number of worker processes to use to parallelize the
comparisons performed by the function. If None (default), no
parallelization is performed. NOTE: Parallelization is only
available on Python 3.4 and above.
size_cutoff : Optional[int]
Groups with size_cutoff or more statements are sent to worker
processes, while smaller groups are compared in the parent process.
Default value is 100. Not relevant when parallelization is not
used.
Returns
-------
list of :py:class:`indra.statement.Statement`
The returned list contains Statements representing the more
concrete/refined versions of the Statements involving particular
entities. The attribute :py:attr:`related_stmts` is also set to
this list. However, if return_toplevel is False then all
statements are returned, irrespective of level of specificity.
In this case the relationships between statements can
be accessed via the supports/supported_by attributes.
Examples
--------
A more general statement with no information about a Phosphorylation
site is identified as supporting a more specific statement:
>>> from indra.preassembler.hierarchy_manager import hierarchies
>>> braf = Agent('BRAF')
>>> map2k1 = Agent('MAP2K1')
>>> st1 = Phosphorylation(braf, map2k1)
>>> st2 = Phosphorylation(braf, map2k1, residue='S')
>>> pa = Preassembler(hierarchies, [st1, st2])
>>> combined_stmts = pa.combine_related() # doctest:+ELLIPSIS
>>> combined_stmts
[Phosphorylation(BRAF(), MAP2K1(), S)]
>>> combined_stmts[0].supported_by
[Phosphorylation(BRAF(), MAP2K1())]
>>> combined_stmts[0].supported_by[0].supports
[Phosphorylation(BRAF(), MAP2K1(), S)]
"""
if self.related_stmts is not None:
if return_toplevel:
return self.related_stmts
else:
assert self.unique_stmts is not None
return self.unique_stmts
# Call combine_duplicates, which lazily initializes self.unique_stmts
unique_stmts = self.combine_duplicates()
# Generate the index map, linking related statements.
idx_map = self._generate_id_maps(unique_stmts, poolsize, size_cutoff)
# Now iterate over all indices and set supports/supported by
for ix1, ix2 in idx_map:
unique_stmts[ix1].supported_by.append(unique_stmts[ix2])
unique_stmts[ix2].supports.append(unique_stmts[ix1])
# Get the top level statements
self.related_stmts = [st for st in unique_stmts if not st.supports]
logger.debug('%d top level' % len(self.related_stmts))
if return_toplevel:
return self.related_stmts
else:
return unique_stmts | [
"def",
"combine_related",
"(",
"self",
",",
"return_toplevel",
"=",
"True",
",",
"poolsize",
"=",
"None",
",",
"size_cutoff",
"=",
"100",
")",
":",
"if",
"self",
".",
"related_stmts",
"is",
"not",
"None",
":",
"if",
"return_toplevel",
":",
"return",
"self",
".",
"related_stmts",
"else",
":",
"assert",
"self",
".",
"unique_stmts",
"is",
"not",
"None",
"return",
"self",
".",
"unique_stmts",
"# Call combine_duplicates, which lazily initializes self.unique_stmts",
"unique_stmts",
"=",
"self",
".",
"combine_duplicates",
"(",
")",
"# Generate the index map, linking related statements.",
"idx_map",
"=",
"self",
".",
"_generate_id_maps",
"(",
"unique_stmts",
",",
"poolsize",
",",
"size_cutoff",
")",
"# Now iterate over all indices and set supports/supported by",
"for",
"ix1",
",",
"ix2",
"in",
"idx_map",
":",
"unique_stmts",
"[",
"ix1",
"]",
".",
"supported_by",
".",
"append",
"(",
"unique_stmts",
"[",
"ix2",
"]",
")",
"unique_stmts",
"[",
"ix2",
"]",
".",
"supports",
".",
"append",
"(",
"unique_stmts",
"[",
"ix1",
"]",
")",
"# Get the top level statements",
"self",
".",
"related_stmts",
"=",
"[",
"st",
"for",
"st",
"in",
"unique_stmts",
"if",
"not",
"st",
".",
"supports",
"]",
"logger",
".",
"debug",
"(",
"'%d top level'",
"%",
"len",
"(",
"self",
".",
"related_stmts",
")",
")",
"if",
"return_toplevel",
":",
"return",
"self",
".",
"related_stmts",
"else",
":",
"return",
"unique_stmts"
]
| Connect related statements based on their refinement relationships.
This function takes as a starting point the unique statements (with
duplicates removed) and returns a modified flat list of statements
containing only those statements which do not represent a refinement of
other existing statements. In other words, the more general versions of
a given statement do not appear at the top level, but instead are
listed in the `supports` field of the top-level statements.
If :py:attr:`unique_stmts` has not been initialized with the
de-duplicated statements, :py:meth:`combine_duplicates` is called
internally.
After this function is called the attribute :py:attr:`related_stmts` is
set as a side-effect.
The procedure for combining statements in this way involves a series
of steps:
1. The statements are grouped by type (e.g., Phosphorylation) and
each type is iterated over independently.
2. Statements of the same type are then grouped according to their
Agents' entity hierarchy component identifiers. For instance,
ERK, MAPK1 and MAPK3 are all in the same connected component in the
entity hierarchy and therefore all Statements of the same type
referencing these entities will be grouped. This grouping assures
that relations are only possible within Statement groups and
not among groups. For two Statements to be in the same group at
this step, the Statements must be the same type and the Agents at
each position in the Agent lists must either be in the same
hierarchy component, or if they are not in the hierarchy, must have
identical entity_matches_keys. Statements with None in one of the
Agent list positions are collected separately at this stage.
3. Statements with None at either the first or second position are
iterated over. For a statement with a None as the first Agent,
the second Agent is examined; then the Statement with None is
added to all Statement groups with a corresponding component or
entity_matches_key in the second position. The same procedure is
performed for Statements with None at the second Agent position.
4. The statements within each group are then compared; if one
statement represents a refinement of the other (as defined by the
`refinement_of()` method implemented for the Statement), then the
more refined statement is added to the `supports` field of the more
general statement, and the more general statement is added to the
`supported_by` field of the more refined statement.
5. A new flat list of statements is created that contains only those
statements that have no `supports` entries (statements containing
such entries are not eliminated, because they will be retrievable
from the `supported_by` fields of other statements). This list
is returned to the caller.
On multi-core machines, the algorithm can be parallelized by setting
the poolsize argument to the desired number of worker processes.
This feature is only available in Python > 3.4.
.. note:: Subfamily relationships must be consistent across arguments
For now, we require that merges can only occur if the *isa*
relationships are all in the *same direction for all the agents* in
a Statement. For example, the two statement groups: `RAF_family ->
MEK1` and `BRAF -> MEK_family` would not be merged, since BRAF
*isa* RAF_family, but MEK_family is not a MEK1. In the future this
restriction could be revisited.
Parameters
----------
return_toplevel : Optional[bool]
If True only the top level statements are returned.
If False, all statements are returned. Default: True
poolsize : Optional[int]
The number of worker processes to use to parallelize the
comparisons performed by the function. If None (default), no
parallelization is performed. NOTE: Parallelization is only
available on Python 3.4 and above.
size_cutoff : Optional[int]
Groups with size_cutoff or more statements are sent to worker
processes, while smaller groups are compared in the parent process.
Default value is 100. Not relevant when parallelization is not
used.
Returns
-------
list of :py:class:`indra.statement.Statement`
The returned list contains Statements representing the more
concrete/refined versions of the Statements involving particular
entities. The attribute :py:attr:`related_stmts` is also set to
this list. However, if return_toplevel is False then all
statements are returned, irrespective of level of specificity.
In this case the relationships between statements can
be accessed via the supports/supported_by attributes.
Examples
--------
A more general statement with no information about a Phosphorylation
site is identified as supporting a more specific statement:
>>> from indra.preassembler.hierarchy_manager import hierarchies
>>> braf = Agent('BRAF')
>>> map2k1 = Agent('MAP2K1')
>>> st1 = Phosphorylation(braf, map2k1)
>>> st2 = Phosphorylation(braf, map2k1, residue='S')
>>> pa = Preassembler(hierarchies, [st1, st2])
>>> combined_stmts = pa.combine_related() # doctest:+ELLIPSIS
>>> combined_stmts
[Phosphorylation(BRAF(), MAP2K1(), S)]
>>> combined_stmts[0].supported_by
[Phosphorylation(BRAF(), MAP2K1())]
>>> combined_stmts[0].supported_by[0].supports
[Phosphorylation(BRAF(), MAP2K1(), S)] | [
"Connect",
"related",
"statements",
"based",
"on",
"their",
"refinement",
"relationships",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/preassembler/__init__.py#L428-L563 | train |
sorgerlab/indra | indra/preassembler/__init__.py | Preassembler.find_contradicts | def find_contradicts(self):
"""Return pairs of contradicting Statements.
Returns
-------
contradicts : list(tuple(Statement, Statement))
A list of Statement pairs that are contradicting.
"""
eh = self.hierarchies['entity']
# Make a dict of Statement by type
stmts_by_type = collections.defaultdict(lambda: [])
for idx, stmt in enumerate(self.stmts):
stmts_by_type[indra_stmt_type(stmt)].append((idx, stmt))
# Handle Statements with polarity first
pos_stmts = AddModification.__subclasses__()
neg_stmts = [modclass_to_inverse[c] for c in pos_stmts]
pos_stmts += [Activation, IncreaseAmount]
neg_stmts += [Inhibition, DecreaseAmount]
contradicts = []
for pst, nst in zip(pos_stmts, neg_stmts):
poss = stmts_by_type.get(pst, [])
negs = stmts_by_type.get(nst, [])
pos_stmt_by_group = self._get_stmt_by_group(pst, poss, eh)
neg_stmt_by_group = self._get_stmt_by_group(nst, negs, eh)
for key, pg in pos_stmt_by_group.items():
ng = neg_stmt_by_group.get(key, [])
for (_, st1), (_, st2) in itertools.product(pg, ng):
if st1.contradicts(st2, self.hierarchies):
contradicts.append((st1, st2))
# Handle neutral Statements next
neu_stmts = [Influence, ActiveForm]
for stt in neu_stmts:
stmts = stmts_by_type.get(stt, [])
for (_, st1), (_, st2) in itertools.combinations(stmts, 2):
if st1.contradicts(st2, self.hierarchies):
contradicts.append((st1, st2))
return contradicts | python | def find_contradicts(self):
"""Return pairs of contradicting Statements.
Returns
-------
contradicts : list(tuple(Statement, Statement))
A list of Statement pairs that are contradicting.
"""
eh = self.hierarchies['entity']
# Make a dict of Statement by type
stmts_by_type = collections.defaultdict(lambda: [])
for idx, stmt in enumerate(self.stmts):
stmts_by_type[indra_stmt_type(stmt)].append((idx, stmt))
# Handle Statements with polarity first
pos_stmts = AddModification.__subclasses__()
neg_stmts = [modclass_to_inverse[c] for c in pos_stmts]
pos_stmts += [Activation, IncreaseAmount]
neg_stmts += [Inhibition, DecreaseAmount]
contradicts = []
for pst, nst in zip(pos_stmts, neg_stmts):
poss = stmts_by_type.get(pst, [])
negs = stmts_by_type.get(nst, [])
pos_stmt_by_group = self._get_stmt_by_group(pst, poss, eh)
neg_stmt_by_group = self._get_stmt_by_group(nst, negs, eh)
for key, pg in pos_stmt_by_group.items():
ng = neg_stmt_by_group.get(key, [])
for (_, st1), (_, st2) in itertools.product(pg, ng):
if st1.contradicts(st2, self.hierarchies):
contradicts.append((st1, st2))
# Handle neutral Statements next
neu_stmts = [Influence, ActiveForm]
for stt in neu_stmts:
stmts = stmts_by_type.get(stt, [])
for (_, st1), (_, st2) in itertools.combinations(stmts, 2):
if st1.contradicts(st2, self.hierarchies):
contradicts.append((st1, st2))
return contradicts | [
"def",
"find_contradicts",
"(",
"self",
")",
":",
"eh",
"=",
"self",
".",
"hierarchies",
"[",
"'entity'",
"]",
"# Make a dict of Statement by type",
"stmts_by_type",
"=",
"collections",
".",
"defaultdict",
"(",
"lambda",
":",
"[",
"]",
")",
"for",
"idx",
",",
"stmt",
"in",
"enumerate",
"(",
"self",
".",
"stmts",
")",
":",
"stmts_by_type",
"[",
"indra_stmt_type",
"(",
"stmt",
")",
"]",
".",
"append",
"(",
"(",
"idx",
",",
"stmt",
")",
")",
"# Handle Statements with polarity first",
"pos_stmts",
"=",
"AddModification",
".",
"__subclasses__",
"(",
")",
"neg_stmts",
"=",
"[",
"modclass_to_inverse",
"[",
"c",
"]",
"for",
"c",
"in",
"pos_stmts",
"]",
"pos_stmts",
"+=",
"[",
"Activation",
",",
"IncreaseAmount",
"]",
"neg_stmts",
"+=",
"[",
"Inhibition",
",",
"DecreaseAmount",
"]",
"contradicts",
"=",
"[",
"]",
"for",
"pst",
",",
"nst",
"in",
"zip",
"(",
"pos_stmts",
",",
"neg_stmts",
")",
":",
"poss",
"=",
"stmts_by_type",
".",
"get",
"(",
"pst",
",",
"[",
"]",
")",
"negs",
"=",
"stmts_by_type",
".",
"get",
"(",
"nst",
",",
"[",
"]",
")",
"pos_stmt_by_group",
"=",
"self",
".",
"_get_stmt_by_group",
"(",
"pst",
",",
"poss",
",",
"eh",
")",
"neg_stmt_by_group",
"=",
"self",
".",
"_get_stmt_by_group",
"(",
"nst",
",",
"negs",
",",
"eh",
")",
"for",
"key",
",",
"pg",
"in",
"pos_stmt_by_group",
".",
"items",
"(",
")",
":",
"ng",
"=",
"neg_stmt_by_group",
".",
"get",
"(",
"key",
",",
"[",
"]",
")",
"for",
"(",
"_",
",",
"st1",
")",
",",
"(",
"_",
",",
"st2",
")",
"in",
"itertools",
".",
"product",
"(",
"pg",
",",
"ng",
")",
":",
"if",
"st1",
".",
"contradicts",
"(",
"st2",
",",
"self",
".",
"hierarchies",
")",
":",
"contradicts",
".",
"append",
"(",
"(",
"st1",
",",
"st2",
")",
")",
"# Handle neutral Statements next",
"neu_stmts",
"=",
"[",
"Influence",
",",
"ActiveForm",
"]",
"for",
"stt",
"in",
"neu_stmts",
":",
"stmts",
"=",
"stmts_by_type",
".",
"get",
"(",
"stt",
",",
"[",
"]",
")",
"for",
"(",
"_",
",",
"st1",
")",
",",
"(",
"_",
",",
"st2",
")",
"in",
"itertools",
".",
"combinations",
"(",
"stmts",
",",
"2",
")",
":",
"if",
"st1",
".",
"contradicts",
"(",
"st2",
",",
"self",
".",
"hierarchies",
")",
":",
"contradicts",
".",
"append",
"(",
"(",
"st1",
",",
"st2",
")",
")",
"return",
"contradicts"
]
| Return pairs of contradicting Statements.
Returns
-------
contradicts : list(tuple(Statement, Statement))
A list of Statement pairs that are contradicting. | [
"Return",
"pairs",
"of",
"contradicting",
"Statements",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/preassembler/__init__.py#L565-L608 | train |
sorgerlab/indra | indra/literature/deft_tools.py | get_text_content_for_pmids | def get_text_content_for_pmids(pmids):
"""Get text content for articles given a list of their pmids
Parameters
----------
pmids : list of str
Returns
-------
text_content : list of str
"""
pmc_pmids = set(pmc_client.filter_pmids(pmids, source_type='fulltext'))
pmc_ids = []
for pmid in pmc_pmids:
pmc_id = pmc_client.id_lookup(pmid, idtype='pmid')['pmcid']
if pmc_id:
pmc_ids.append(pmc_id)
else:
pmc_pmids.discard(pmid)
pmc_xmls = []
failed = set()
for pmc_id in pmc_ids:
if pmc_id is not None:
pmc_xmls.append(pmc_client.get_xml(pmc_id))
else:
failed.append(pmid)
time.sleep(0.5)
remaining_pmids = set(pmids) - pmc_pmids | failed
abstracts = []
for pmid in remaining_pmids:
abstract = pubmed_client.get_abstract(pmid)
abstracts.append(abstract)
time.sleep(0.5)
return [text_content for source in (pmc_xmls, abstracts)
for text_content in source if text_content is not None] | python | def get_text_content_for_pmids(pmids):
"""Get text content for articles given a list of their pmids
Parameters
----------
pmids : list of str
Returns
-------
text_content : list of str
"""
pmc_pmids = set(pmc_client.filter_pmids(pmids, source_type='fulltext'))
pmc_ids = []
for pmid in pmc_pmids:
pmc_id = pmc_client.id_lookup(pmid, idtype='pmid')['pmcid']
if pmc_id:
pmc_ids.append(pmc_id)
else:
pmc_pmids.discard(pmid)
pmc_xmls = []
failed = set()
for pmc_id in pmc_ids:
if pmc_id is not None:
pmc_xmls.append(pmc_client.get_xml(pmc_id))
else:
failed.append(pmid)
time.sleep(0.5)
remaining_pmids = set(pmids) - pmc_pmids | failed
abstracts = []
for pmid in remaining_pmids:
abstract = pubmed_client.get_abstract(pmid)
abstracts.append(abstract)
time.sleep(0.5)
return [text_content for source in (pmc_xmls, abstracts)
for text_content in source if text_content is not None] | [
"def",
"get_text_content_for_pmids",
"(",
"pmids",
")",
":",
"pmc_pmids",
"=",
"set",
"(",
"pmc_client",
".",
"filter_pmids",
"(",
"pmids",
",",
"source_type",
"=",
"'fulltext'",
")",
")",
"pmc_ids",
"=",
"[",
"]",
"for",
"pmid",
"in",
"pmc_pmids",
":",
"pmc_id",
"=",
"pmc_client",
".",
"id_lookup",
"(",
"pmid",
",",
"idtype",
"=",
"'pmid'",
")",
"[",
"'pmcid'",
"]",
"if",
"pmc_id",
":",
"pmc_ids",
".",
"append",
"(",
"pmc_id",
")",
"else",
":",
"pmc_pmids",
".",
"discard",
"(",
"pmid",
")",
"pmc_xmls",
"=",
"[",
"]",
"failed",
"=",
"set",
"(",
")",
"for",
"pmc_id",
"in",
"pmc_ids",
":",
"if",
"pmc_id",
"is",
"not",
"None",
":",
"pmc_xmls",
".",
"append",
"(",
"pmc_client",
".",
"get_xml",
"(",
"pmc_id",
")",
")",
"else",
":",
"failed",
".",
"append",
"(",
"pmid",
")",
"time",
".",
"sleep",
"(",
"0.5",
")",
"remaining_pmids",
"=",
"set",
"(",
"pmids",
")",
"-",
"pmc_pmids",
"|",
"failed",
"abstracts",
"=",
"[",
"]",
"for",
"pmid",
"in",
"remaining_pmids",
":",
"abstract",
"=",
"pubmed_client",
".",
"get_abstract",
"(",
"pmid",
")",
"abstracts",
".",
"append",
"(",
"abstract",
")",
"time",
".",
"sleep",
"(",
"0.5",
")",
"return",
"[",
"text_content",
"for",
"source",
"in",
"(",
"pmc_xmls",
",",
"abstracts",
")",
"for",
"text_content",
"in",
"source",
"if",
"text_content",
"is",
"not",
"None",
"]"
]
| Get text content for articles given a list of their pmids
Parameters
----------
pmids : list of str
Returns
-------
text_content : list of str | [
"Get",
"text",
"content",
"for",
"articles",
"given",
"a",
"list",
"of",
"their",
"pmids"
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/literature/deft_tools.py#L46-L84 | train |
sorgerlab/indra | indra/literature/deft_tools.py | universal_extract_paragraphs | def universal_extract_paragraphs(xml):
"""Extract paragraphs from xml that could be from different sources
First try to parse the xml as if it came from elsevier. if we do not
have valid elsevier xml this will throw an exception. the text extraction
function in the pmc client may not throw an exception when parsing elsevier
xml, silently processing the xml incorrectly
Parameters
----------
xml : str
Either an NLM xml, Elsevier xml or plaintext
Returns
-------
paragraphs : str
Extracted plaintext paragraphs from NLM or Elsevier XML
"""
try:
paragraphs = elsevier_client.extract_paragraphs(xml)
except Exception:
paragraphs = None
if paragraphs is None:
try:
paragraphs = pmc_client.extract_paragraphs(xml)
except Exception:
paragraphs = [xml]
return paragraphs | python | def universal_extract_paragraphs(xml):
"""Extract paragraphs from xml that could be from different sources
First try to parse the xml as if it came from elsevier. if we do not
have valid elsevier xml this will throw an exception. the text extraction
function in the pmc client may not throw an exception when parsing elsevier
xml, silently processing the xml incorrectly
Parameters
----------
xml : str
Either an NLM xml, Elsevier xml or plaintext
Returns
-------
paragraphs : str
Extracted plaintext paragraphs from NLM or Elsevier XML
"""
try:
paragraphs = elsevier_client.extract_paragraphs(xml)
except Exception:
paragraphs = None
if paragraphs is None:
try:
paragraphs = pmc_client.extract_paragraphs(xml)
except Exception:
paragraphs = [xml]
return paragraphs | [
"def",
"universal_extract_paragraphs",
"(",
"xml",
")",
":",
"try",
":",
"paragraphs",
"=",
"elsevier_client",
".",
"extract_paragraphs",
"(",
"xml",
")",
"except",
"Exception",
":",
"paragraphs",
"=",
"None",
"if",
"paragraphs",
"is",
"None",
":",
"try",
":",
"paragraphs",
"=",
"pmc_client",
".",
"extract_paragraphs",
"(",
"xml",
")",
"except",
"Exception",
":",
"paragraphs",
"=",
"[",
"xml",
"]",
"return",
"paragraphs"
]
| Extract paragraphs from xml that could be from different sources
First try to parse the xml as if it came from elsevier. if we do not
have valid elsevier xml this will throw an exception. the text extraction
function in the pmc client may not throw an exception when parsing elsevier
xml, silently processing the xml incorrectly
Parameters
----------
xml : str
Either an NLM xml, Elsevier xml or plaintext
Returns
-------
paragraphs : str
Extracted plaintext paragraphs from NLM or Elsevier XML | [
"Extract",
"paragraphs",
"from",
"xml",
"that",
"could",
"be",
"from",
"different",
"sources"
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/literature/deft_tools.py#L87-L114 | train |
sorgerlab/indra | indra/literature/deft_tools.py | filter_paragraphs | def filter_paragraphs(paragraphs, contains=None):
"""Filter paragraphs to only those containing one of a list of strings
Parameters
----------
paragraphs : list of str
List of plaintext paragraphs from an article
contains : str or list of str
Exclude paragraphs not containing this string as a token, or
at least one of the strings in contains if it is a list
Returns
-------
str
Plaintext consisting of all input paragraphs containing at least
one of the supplied tokens.
"""
if contains is None:
pattern = ''
else:
if isinstance(contains, str):
contains = [contains]
pattern = '|'.join(r'[^\w]%s[^\w]' % shortform
for shortform in contains)
paragraphs = [p for p in paragraphs if re.search(pattern, p)]
return '\n'.join(paragraphs) + '\n' | python | def filter_paragraphs(paragraphs, contains=None):
"""Filter paragraphs to only those containing one of a list of strings
Parameters
----------
paragraphs : list of str
List of plaintext paragraphs from an article
contains : str or list of str
Exclude paragraphs not containing this string as a token, or
at least one of the strings in contains if it is a list
Returns
-------
str
Plaintext consisting of all input paragraphs containing at least
one of the supplied tokens.
"""
if contains is None:
pattern = ''
else:
if isinstance(contains, str):
contains = [contains]
pattern = '|'.join(r'[^\w]%s[^\w]' % shortform
for shortform in contains)
paragraphs = [p for p in paragraphs if re.search(pattern, p)]
return '\n'.join(paragraphs) + '\n' | [
"def",
"filter_paragraphs",
"(",
"paragraphs",
",",
"contains",
"=",
"None",
")",
":",
"if",
"contains",
"is",
"None",
":",
"pattern",
"=",
"''",
"else",
":",
"if",
"isinstance",
"(",
"contains",
",",
"str",
")",
":",
"contains",
"=",
"[",
"contains",
"]",
"pattern",
"=",
"'|'",
".",
"join",
"(",
"r'[^\\w]%s[^\\w]'",
"%",
"shortform",
"for",
"shortform",
"in",
"contains",
")",
"paragraphs",
"=",
"[",
"p",
"for",
"p",
"in",
"paragraphs",
"if",
"re",
".",
"search",
"(",
"pattern",
",",
"p",
")",
"]",
"return",
"'\\n'",
".",
"join",
"(",
"paragraphs",
")",
"+",
"'\\n'"
]
| Filter paragraphs to only those containing one of a list of strings
Parameters
----------
paragraphs : list of str
List of plaintext paragraphs from an article
contains : str or list of str
Exclude paragraphs not containing this string as a token, or
at least one of the strings in contains if it is a list
Returns
-------
str
Plaintext consisting of all input paragraphs containing at least
one of the supplied tokens. | [
"Filter",
"paragraphs",
"to",
"only",
"those",
"containing",
"one",
"of",
"a",
"list",
"of",
"strings"
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/literature/deft_tools.py#L117-L143 | train |
sorgerlab/indra | indra/statements/resources.py | get_valid_residue | def get_valid_residue(residue):
"""Check if the given string represents a valid amino acid residue."""
if residue is not None and amino_acids.get(residue) is None:
res = amino_acids_reverse.get(residue.lower())
if res is None:
raise InvalidResidueError(residue)
else:
return res
return residue | python | def get_valid_residue(residue):
"""Check if the given string represents a valid amino acid residue."""
if residue is not None and amino_acids.get(residue) is None:
res = amino_acids_reverse.get(residue.lower())
if res is None:
raise InvalidResidueError(residue)
else:
return res
return residue | [
"def",
"get_valid_residue",
"(",
"residue",
")",
":",
"if",
"residue",
"is",
"not",
"None",
"and",
"amino_acids",
".",
"get",
"(",
"residue",
")",
"is",
"None",
":",
"res",
"=",
"amino_acids_reverse",
".",
"get",
"(",
"residue",
".",
"lower",
"(",
")",
")",
"if",
"res",
"is",
"None",
":",
"raise",
"InvalidResidueError",
"(",
"residue",
")",
"else",
":",
"return",
"res",
"return",
"residue"
]
| Check if the given string represents a valid amino acid residue. | [
"Check",
"if",
"the",
"given",
"string",
"represents",
"a",
"valid",
"amino",
"acid",
"residue",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/statements/resources.py#L15-L23 | train |
sorgerlab/indra | indra/statements/resources.py | get_valid_location | def get_valid_location(location):
"""Check if the given location represents a valid cellular component."""
# If we're given None, return None
if location is not None and cellular_components.get(location) is None:
loc = cellular_components_reverse.get(location)
if loc is None:
raise InvalidLocationError(location)
else:
return loc
return location | python | def get_valid_location(location):
"""Check if the given location represents a valid cellular component."""
# If we're given None, return None
if location is not None and cellular_components.get(location) is None:
loc = cellular_components_reverse.get(location)
if loc is None:
raise InvalidLocationError(location)
else:
return loc
return location | [
"def",
"get_valid_location",
"(",
"location",
")",
":",
"# If we're given None, return None",
"if",
"location",
"is",
"not",
"None",
"and",
"cellular_components",
".",
"get",
"(",
"location",
")",
"is",
"None",
":",
"loc",
"=",
"cellular_components_reverse",
".",
"get",
"(",
"location",
")",
"if",
"loc",
"is",
"None",
":",
"raise",
"InvalidLocationError",
"(",
"location",
")",
"else",
":",
"return",
"loc",
"return",
"location"
]
| Check if the given location represents a valid cellular component. | [
"Check",
"if",
"the",
"given",
"location",
"represents",
"a",
"valid",
"cellular",
"component",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/statements/resources.py#L26-L35 | train |
sorgerlab/indra | indra/statements/resources.py | _read_activity_types | def _read_activity_types():
"""Read types of valid activities from a resource file."""
this_dir = os.path.dirname(os.path.abspath(__file__))
ac_file = os.path.join(this_dir, os.pardir, 'resources',
'activity_hierarchy.rdf')
g = rdflib.Graph()
with open(ac_file, 'r'):
g.parse(ac_file, format='nt')
act_types = set()
for s, _, o in g:
subj = s.rpartition('/')[-1]
obj = o.rpartition('/')[-1]
act_types.add(subj)
act_types.add(obj)
return sorted(list(act_types)) | python | def _read_activity_types():
"""Read types of valid activities from a resource file."""
this_dir = os.path.dirname(os.path.abspath(__file__))
ac_file = os.path.join(this_dir, os.pardir, 'resources',
'activity_hierarchy.rdf')
g = rdflib.Graph()
with open(ac_file, 'r'):
g.parse(ac_file, format='nt')
act_types = set()
for s, _, o in g:
subj = s.rpartition('/')[-1]
obj = o.rpartition('/')[-1]
act_types.add(subj)
act_types.add(obj)
return sorted(list(act_types)) | [
"def",
"_read_activity_types",
"(",
")",
":",
"this_dir",
"=",
"os",
".",
"path",
".",
"dirname",
"(",
"os",
".",
"path",
".",
"abspath",
"(",
"__file__",
")",
")",
"ac_file",
"=",
"os",
".",
"path",
".",
"join",
"(",
"this_dir",
",",
"os",
".",
"pardir",
",",
"'resources'",
",",
"'activity_hierarchy.rdf'",
")",
"g",
"=",
"rdflib",
".",
"Graph",
"(",
")",
"with",
"open",
"(",
"ac_file",
",",
"'r'",
")",
":",
"g",
".",
"parse",
"(",
"ac_file",
",",
"format",
"=",
"'nt'",
")",
"act_types",
"=",
"set",
"(",
")",
"for",
"s",
",",
"_",
",",
"o",
"in",
"g",
":",
"subj",
"=",
"s",
".",
"rpartition",
"(",
"'/'",
")",
"[",
"-",
"1",
"]",
"obj",
"=",
"o",
".",
"rpartition",
"(",
"'/'",
")",
"[",
"-",
"1",
"]",
"act_types",
".",
"add",
"(",
"subj",
")",
"act_types",
".",
"add",
"(",
"obj",
")",
"return",
"sorted",
"(",
"list",
"(",
"act_types",
")",
")"
]
| Read types of valid activities from a resource file. | [
"Read",
"types",
"of",
"valid",
"activities",
"from",
"a",
"resource",
"file",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/statements/resources.py#L38-L52 | train |
sorgerlab/indra | indra/statements/resources.py | _read_cellular_components | def _read_cellular_components():
"""Read cellular components from a resource file."""
# Here we load a patch file in addition to the current cellular components
# file to make sure we don't error with InvalidLocationError with some
# deprecated cellular location names
this_dir = os.path.dirname(os.path.abspath(__file__))
cc_file = os.path.join(this_dir, os.pardir, 'resources',
'cellular_components.tsv')
cc_patch_file = os.path.join(this_dir, os.pardir, 'resources',
'cellular_components_patch.tsv')
cellular_components = {}
cellular_components_reverse = {}
with open(cc_file, 'rt') as fh:
lines = list(fh.readlines())
# We add the patch to the end of the lines list
with open(cc_patch_file, 'rt') as fh:
lines += list(fh.readlines())
for lin in lines[1:]:
terms = lin.strip().split('\t')
cellular_components[terms[1]] = terms[0]
# If the GO -> name mapping doesn't exist yet, we add a mapping
# but if it already exists (i.e. the try doesn't error) then
# we don't add the GO -> name mapping. This ensures that names from
# the patch file aren't mapped to in the reverse list.
try:
cellular_components_reverse[terms[0]]
except KeyError:
cellular_components_reverse[terms[0]] = terms[1]
return cellular_components, cellular_components_reverse | python | def _read_cellular_components():
"""Read cellular components from a resource file."""
# Here we load a patch file in addition to the current cellular components
# file to make sure we don't error with InvalidLocationError with some
# deprecated cellular location names
this_dir = os.path.dirname(os.path.abspath(__file__))
cc_file = os.path.join(this_dir, os.pardir, 'resources',
'cellular_components.tsv')
cc_patch_file = os.path.join(this_dir, os.pardir, 'resources',
'cellular_components_patch.tsv')
cellular_components = {}
cellular_components_reverse = {}
with open(cc_file, 'rt') as fh:
lines = list(fh.readlines())
# We add the patch to the end of the lines list
with open(cc_patch_file, 'rt') as fh:
lines += list(fh.readlines())
for lin in lines[1:]:
terms = lin.strip().split('\t')
cellular_components[terms[1]] = terms[0]
# If the GO -> name mapping doesn't exist yet, we add a mapping
# but if it already exists (i.e. the try doesn't error) then
# we don't add the GO -> name mapping. This ensures that names from
# the patch file aren't mapped to in the reverse list.
try:
cellular_components_reverse[terms[0]]
except KeyError:
cellular_components_reverse[terms[0]] = terms[1]
return cellular_components, cellular_components_reverse | [
"def",
"_read_cellular_components",
"(",
")",
":",
"# Here we load a patch file in addition to the current cellular components",
"# file to make sure we don't error with InvalidLocationError with some",
"# deprecated cellular location names",
"this_dir",
"=",
"os",
".",
"path",
".",
"dirname",
"(",
"os",
".",
"path",
".",
"abspath",
"(",
"__file__",
")",
")",
"cc_file",
"=",
"os",
".",
"path",
".",
"join",
"(",
"this_dir",
",",
"os",
".",
"pardir",
",",
"'resources'",
",",
"'cellular_components.tsv'",
")",
"cc_patch_file",
"=",
"os",
".",
"path",
".",
"join",
"(",
"this_dir",
",",
"os",
".",
"pardir",
",",
"'resources'",
",",
"'cellular_components_patch.tsv'",
")",
"cellular_components",
"=",
"{",
"}",
"cellular_components_reverse",
"=",
"{",
"}",
"with",
"open",
"(",
"cc_file",
",",
"'rt'",
")",
"as",
"fh",
":",
"lines",
"=",
"list",
"(",
"fh",
".",
"readlines",
"(",
")",
")",
"# We add the patch to the end of the lines list",
"with",
"open",
"(",
"cc_patch_file",
",",
"'rt'",
")",
"as",
"fh",
":",
"lines",
"+=",
"list",
"(",
"fh",
".",
"readlines",
"(",
")",
")",
"for",
"lin",
"in",
"lines",
"[",
"1",
":",
"]",
":",
"terms",
"=",
"lin",
".",
"strip",
"(",
")",
".",
"split",
"(",
"'\\t'",
")",
"cellular_components",
"[",
"terms",
"[",
"1",
"]",
"]",
"=",
"terms",
"[",
"0",
"]",
"# If the GO -> name mapping doesn't exist yet, we add a mapping",
"# but if it already exists (i.e. the try doesn't error) then",
"# we don't add the GO -> name mapping. This ensures that names from",
"# the patch file aren't mapped to in the reverse list.",
"try",
":",
"cellular_components_reverse",
"[",
"terms",
"[",
"0",
"]",
"]",
"except",
"KeyError",
":",
"cellular_components_reverse",
"[",
"terms",
"[",
"0",
"]",
"]",
"=",
"terms",
"[",
"1",
"]",
"return",
"cellular_components",
",",
"cellular_components_reverse"
]
| Read cellular components from a resource file. | [
"Read",
"cellular",
"components",
"from",
"a",
"resource",
"file",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/statements/resources.py#L58-L86 | train |
sorgerlab/indra | indra/statements/resources.py | _read_amino_acids | def _read_amino_acids():
"""Read the amino acid information from a resource file."""
this_dir = os.path.dirname(os.path.abspath(__file__))
aa_file = os.path.join(this_dir, os.pardir, 'resources', 'amino_acids.tsv')
amino_acids = {}
amino_acids_reverse = {}
with open(aa_file, 'rt') as fh:
lines = fh.readlines()
for lin in lines[1:]:
terms = lin.strip().split('\t')
key = terms[2]
val = {'full_name': terms[0],
'short_name': terms[1],
'indra_name': terms[3]}
amino_acids[key] = val
for v in val.values():
amino_acids_reverse[v] = key
return amino_acids, amino_acids_reverse | python | def _read_amino_acids():
"""Read the amino acid information from a resource file."""
this_dir = os.path.dirname(os.path.abspath(__file__))
aa_file = os.path.join(this_dir, os.pardir, 'resources', 'amino_acids.tsv')
amino_acids = {}
amino_acids_reverse = {}
with open(aa_file, 'rt') as fh:
lines = fh.readlines()
for lin in lines[1:]:
terms = lin.strip().split('\t')
key = terms[2]
val = {'full_name': terms[0],
'short_name': terms[1],
'indra_name': terms[3]}
amino_acids[key] = val
for v in val.values():
amino_acids_reverse[v] = key
return amino_acids, amino_acids_reverse | [
"def",
"_read_amino_acids",
"(",
")",
":",
"this_dir",
"=",
"os",
".",
"path",
".",
"dirname",
"(",
"os",
".",
"path",
".",
"abspath",
"(",
"__file__",
")",
")",
"aa_file",
"=",
"os",
".",
"path",
".",
"join",
"(",
"this_dir",
",",
"os",
".",
"pardir",
",",
"'resources'",
",",
"'amino_acids.tsv'",
")",
"amino_acids",
"=",
"{",
"}",
"amino_acids_reverse",
"=",
"{",
"}",
"with",
"open",
"(",
"aa_file",
",",
"'rt'",
")",
"as",
"fh",
":",
"lines",
"=",
"fh",
".",
"readlines",
"(",
")",
"for",
"lin",
"in",
"lines",
"[",
"1",
":",
"]",
":",
"terms",
"=",
"lin",
".",
"strip",
"(",
")",
".",
"split",
"(",
"'\\t'",
")",
"key",
"=",
"terms",
"[",
"2",
"]",
"val",
"=",
"{",
"'full_name'",
":",
"terms",
"[",
"0",
"]",
",",
"'short_name'",
":",
"terms",
"[",
"1",
"]",
",",
"'indra_name'",
":",
"terms",
"[",
"3",
"]",
"}",
"amino_acids",
"[",
"key",
"]",
"=",
"val",
"for",
"v",
"in",
"val",
".",
"values",
"(",
")",
":",
"amino_acids_reverse",
"[",
"v",
"]",
"=",
"key",
"return",
"amino_acids",
",",
"amino_acids_reverse"
]
| Read the amino acid information from a resource file. | [
"Read",
"the",
"amino",
"acid",
"information",
"from",
"a",
"resource",
"file",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/statements/resources.py#L92-L109 | train |
sorgerlab/indra | indra/assemblers/pysb/export.py | export_sbgn | def export_sbgn(model):
"""Return an SBGN model string corresponding to the PySB model.
This function first calls generate_equations on the PySB model to obtain
a reaction network (i.e. individual species, reactions). It then iterates
over each reaction and and instantiates its reactants, products, and the
process itself as SBGN glyphs and arcs.
Parameters
----------
model : pysb.core.Model
A PySB model to be exported into SBGN
Returns
-------
sbgn_str : str
An SBGN model as string
"""
import lxml.etree
import lxml.builder
from pysb.bng import generate_equations
from indra.assemblers.sbgn import SBGNAssembler
logger.info('Generating reaction network with BNG for SBGN export. ' +
'This could take a long time.')
generate_equations(model)
sa = SBGNAssembler()
glyphs = {}
for idx, species in enumerate(model.species):
glyph = sa._glyph_for_complex_pattern(species)
if glyph is None:
continue
sa._map.append(glyph)
glyphs[idx] = glyph
for reaction in model.reactions:
# Get all the reactions / products / controllers of the reaction
reactants = set(reaction['reactants']) - set(reaction['products'])
products = set(reaction['products']) - set(reaction['reactants'])
controllers = set(reaction['reactants']) & set(reaction['products'])
# Add glyph for reaction
process_glyph = sa._process_glyph('process')
# Connect reactants with arcs
if not reactants:
glyph_id = sa._none_glyph()
sa._arc('consumption', glyph_id, process_glyph)
else:
for r in reactants:
glyph = glyphs.get(r)
if glyph is None:
glyph_id = sa._none_glyph()
else:
glyph_id = glyph.attrib['id']
sa._arc('consumption', glyph_id, process_glyph)
# Connect products with arcs
if not products:
glyph_id = sa._none_glyph()
sa._arc('production', process_glyph, glyph_id)
else:
for p in products:
glyph = glyphs.get(p)
if glyph is None:
glyph_id = sa._none_glyph()
else:
glyph_id = glyph.attrib['id']
sa._arc('production', process_glyph, glyph_id)
# Connect controllers with arcs
for c in controllers:
glyph = glyphs[c]
sa._arc('catalysis', glyph.attrib['id'], process_glyph)
sbgn_str = sa.print_model().decode('utf-8')
return sbgn_str | python | def export_sbgn(model):
"""Return an SBGN model string corresponding to the PySB model.
This function first calls generate_equations on the PySB model to obtain
a reaction network (i.e. individual species, reactions). It then iterates
over each reaction and and instantiates its reactants, products, and the
process itself as SBGN glyphs and arcs.
Parameters
----------
model : pysb.core.Model
A PySB model to be exported into SBGN
Returns
-------
sbgn_str : str
An SBGN model as string
"""
import lxml.etree
import lxml.builder
from pysb.bng import generate_equations
from indra.assemblers.sbgn import SBGNAssembler
logger.info('Generating reaction network with BNG for SBGN export. ' +
'This could take a long time.')
generate_equations(model)
sa = SBGNAssembler()
glyphs = {}
for idx, species in enumerate(model.species):
glyph = sa._glyph_for_complex_pattern(species)
if glyph is None:
continue
sa._map.append(glyph)
glyphs[idx] = glyph
for reaction in model.reactions:
# Get all the reactions / products / controllers of the reaction
reactants = set(reaction['reactants']) - set(reaction['products'])
products = set(reaction['products']) - set(reaction['reactants'])
controllers = set(reaction['reactants']) & set(reaction['products'])
# Add glyph for reaction
process_glyph = sa._process_glyph('process')
# Connect reactants with arcs
if not reactants:
glyph_id = sa._none_glyph()
sa._arc('consumption', glyph_id, process_glyph)
else:
for r in reactants:
glyph = glyphs.get(r)
if glyph is None:
glyph_id = sa._none_glyph()
else:
glyph_id = glyph.attrib['id']
sa._arc('consumption', glyph_id, process_glyph)
# Connect products with arcs
if not products:
glyph_id = sa._none_glyph()
sa._arc('production', process_glyph, glyph_id)
else:
for p in products:
glyph = glyphs.get(p)
if glyph is None:
glyph_id = sa._none_glyph()
else:
glyph_id = glyph.attrib['id']
sa._arc('production', process_glyph, glyph_id)
# Connect controllers with arcs
for c in controllers:
glyph = glyphs[c]
sa._arc('catalysis', glyph.attrib['id'], process_glyph)
sbgn_str = sa.print_model().decode('utf-8')
return sbgn_str | [
"def",
"export_sbgn",
"(",
"model",
")",
":",
"import",
"lxml",
".",
"etree",
"import",
"lxml",
".",
"builder",
"from",
"pysb",
".",
"bng",
"import",
"generate_equations",
"from",
"indra",
".",
"assemblers",
".",
"sbgn",
"import",
"SBGNAssembler",
"logger",
".",
"info",
"(",
"'Generating reaction network with BNG for SBGN export. '",
"+",
"'This could take a long time.'",
")",
"generate_equations",
"(",
"model",
")",
"sa",
"=",
"SBGNAssembler",
"(",
")",
"glyphs",
"=",
"{",
"}",
"for",
"idx",
",",
"species",
"in",
"enumerate",
"(",
"model",
".",
"species",
")",
":",
"glyph",
"=",
"sa",
".",
"_glyph_for_complex_pattern",
"(",
"species",
")",
"if",
"glyph",
"is",
"None",
":",
"continue",
"sa",
".",
"_map",
".",
"append",
"(",
"glyph",
")",
"glyphs",
"[",
"idx",
"]",
"=",
"glyph",
"for",
"reaction",
"in",
"model",
".",
"reactions",
":",
"# Get all the reactions / products / controllers of the reaction",
"reactants",
"=",
"set",
"(",
"reaction",
"[",
"'reactants'",
"]",
")",
"-",
"set",
"(",
"reaction",
"[",
"'products'",
"]",
")",
"products",
"=",
"set",
"(",
"reaction",
"[",
"'products'",
"]",
")",
"-",
"set",
"(",
"reaction",
"[",
"'reactants'",
"]",
")",
"controllers",
"=",
"set",
"(",
"reaction",
"[",
"'reactants'",
"]",
")",
"&",
"set",
"(",
"reaction",
"[",
"'products'",
"]",
")",
"# Add glyph for reaction",
"process_glyph",
"=",
"sa",
".",
"_process_glyph",
"(",
"'process'",
")",
"# Connect reactants with arcs",
"if",
"not",
"reactants",
":",
"glyph_id",
"=",
"sa",
".",
"_none_glyph",
"(",
")",
"sa",
".",
"_arc",
"(",
"'consumption'",
",",
"glyph_id",
",",
"process_glyph",
")",
"else",
":",
"for",
"r",
"in",
"reactants",
":",
"glyph",
"=",
"glyphs",
".",
"get",
"(",
"r",
")",
"if",
"glyph",
"is",
"None",
":",
"glyph_id",
"=",
"sa",
".",
"_none_glyph",
"(",
")",
"else",
":",
"glyph_id",
"=",
"glyph",
".",
"attrib",
"[",
"'id'",
"]",
"sa",
".",
"_arc",
"(",
"'consumption'",
",",
"glyph_id",
",",
"process_glyph",
")",
"# Connect products with arcs",
"if",
"not",
"products",
":",
"glyph_id",
"=",
"sa",
".",
"_none_glyph",
"(",
")",
"sa",
".",
"_arc",
"(",
"'production'",
",",
"process_glyph",
",",
"glyph_id",
")",
"else",
":",
"for",
"p",
"in",
"products",
":",
"glyph",
"=",
"glyphs",
".",
"get",
"(",
"p",
")",
"if",
"glyph",
"is",
"None",
":",
"glyph_id",
"=",
"sa",
".",
"_none_glyph",
"(",
")",
"else",
":",
"glyph_id",
"=",
"glyph",
".",
"attrib",
"[",
"'id'",
"]",
"sa",
".",
"_arc",
"(",
"'production'",
",",
"process_glyph",
",",
"glyph_id",
")",
"# Connect controllers with arcs",
"for",
"c",
"in",
"controllers",
":",
"glyph",
"=",
"glyphs",
"[",
"c",
"]",
"sa",
".",
"_arc",
"(",
"'catalysis'",
",",
"glyph",
".",
"attrib",
"[",
"'id'",
"]",
",",
"process_glyph",
")",
"sbgn_str",
"=",
"sa",
".",
"print_model",
"(",
")",
".",
"decode",
"(",
"'utf-8'",
")",
"return",
"sbgn_str"
]
| Return an SBGN model string corresponding to the PySB model.
This function first calls generate_equations on the PySB model to obtain
a reaction network (i.e. individual species, reactions). It then iterates
over each reaction and and instantiates its reactants, products, and the
process itself as SBGN glyphs and arcs.
Parameters
----------
model : pysb.core.Model
A PySB model to be exported into SBGN
Returns
-------
sbgn_str : str
An SBGN model as string | [
"Return",
"an",
"SBGN",
"model",
"string",
"corresponding",
"to",
"the",
"PySB",
"model",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/assemblers/pysb/export.py#L9-L82 | train |
sorgerlab/indra | indra/assemblers/pysb/export.py | export_kappa_im | def export_kappa_im(model, fname=None):
"""Return a networkx graph representing the model's Kappa influence map.
Parameters
----------
model : pysb.core.Model
A PySB model to be exported into a Kappa IM.
fname : Optional[str]
A file name, typically with .png or .pdf extension in which
the IM is rendered using pygraphviz.
Returns
-------
networkx.MultiDiGraph
A graph object representing the influence map.
"""
from .kappa_util import im_json_to_graph
kappa = _prepare_kappa(model)
imap = kappa.analyses_influence_map()
im = im_json_to_graph(imap)
for param in model.parameters:
try:
im.remove_node(param.name)
except:
pass
if fname:
agraph = networkx.nx_agraph.to_agraph(im)
agraph.draw(fname, prog='dot')
return im | python | def export_kappa_im(model, fname=None):
"""Return a networkx graph representing the model's Kappa influence map.
Parameters
----------
model : pysb.core.Model
A PySB model to be exported into a Kappa IM.
fname : Optional[str]
A file name, typically with .png or .pdf extension in which
the IM is rendered using pygraphviz.
Returns
-------
networkx.MultiDiGraph
A graph object representing the influence map.
"""
from .kappa_util import im_json_to_graph
kappa = _prepare_kappa(model)
imap = kappa.analyses_influence_map()
im = im_json_to_graph(imap)
for param in model.parameters:
try:
im.remove_node(param.name)
except:
pass
if fname:
agraph = networkx.nx_agraph.to_agraph(im)
agraph.draw(fname, prog='dot')
return im | [
"def",
"export_kappa_im",
"(",
"model",
",",
"fname",
"=",
"None",
")",
":",
"from",
".",
"kappa_util",
"import",
"im_json_to_graph",
"kappa",
"=",
"_prepare_kappa",
"(",
"model",
")",
"imap",
"=",
"kappa",
".",
"analyses_influence_map",
"(",
")",
"im",
"=",
"im_json_to_graph",
"(",
"imap",
")",
"for",
"param",
"in",
"model",
".",
"parameters",
":",
"try",
":",
"im",
".",
"remove_node",
"(",
"param",
".",
"name",
")",
"except",
":",
"pass",
"if",
"fname",
":",
"agraph",
"=",
"networkx",
".",
"nx_agraph",
".",
"to_agraph",
"(",
"im",
")",
"agraph",
".",
"draw",
"(",
"fname",
",",
"prog",
"=",
"'dot'",
")",
"return",
"im"
]
| Return a networkx graph representing the model's Kappa influence map.
Parameters
----------
model : pysb.core.Model
A PySB model to be exported into a Kappa IM.
fname : Optional[str]
A file name, typically with .png or .pdf extension in which
the IM is rendered using pygraphviz.
Returns
-------
networkx.MultiDiGraph
A graph object representing the influence map. | [
"Return",
"a",
"networkx",
"graph",
"representing",
"the",
"model",
"s",
"Kappa",
"influence",
"map",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/assemblers/pysb/export.py#L85-L113 | train |
sorgerlab/indra | indra/assemblers/pysb/export.py | export_kappa_cm | def export_kappa_cm(model, fname=None):
"""Return a networkx graph representing the model's Kappa contact map.
Parameters
----------
model : pysb.core.Model
A PySB model to be exported into a Kappa CM.
fname : Optional[str]
A file name, typically with .png or .pdf extension in which
the CM is rendered using pygraphviz.
Returns
-------
npygraphviz.Agraph
A graph object representing the contact map.
"""
from .kappa_util import cm_json_to_graph
kappa = _prepare_kappa(model)
cmap = kappa.analyses_contact_map()
cm = cm_json_to_graph(cmap)
if fname:
cm.draw(fname, prog='dot')
return cm | python | def export_kappa_cm(model, fname=None):
"""Return a networkx graph representing the model's Kappa contact map.
Parameters
----------
model : pysb.core.Model
A PySB model to be exported into a Kappa CM.
fname : Optional[str]
A file name, typically with .png or .pdf extension in which
the CM is rendered using pygraphviz.
Returns
-------
npygraphviz.Agraph
A graph object representing the contact map.
"""
from .kappa_util import cm_json_to_graph
kappa = _prepare_kappa(model)
cmap = kappa.analyses_contact_map()
cm = cm_json_to_graph(cmap)
if fname:
cm.draw(fname, prog='dot')
return cm | [
"def",
"export_kappa_cm",
"(",
"model",
",",
"fname",
"=",
"None",
")",
":",
"from",
".",
"kappa_util",
"import",
"cm_json_to_graph",
"kappa",
"=",
"_prepare_kappa",
"(",
"model",
")",
"cmap",
"=",
"kappa",
".",
"analyses_contact_map",
"(",
")",
"cm",
"=",
"cm_json_to_graph",
"(",
"cmap",
")",
"if",
"fname",
":",
"cm",
".",
"draw",
"(",
"fname",
",",
"prog",
"=",
"'dot'",
")",
"return",
"cm"
]
| Return a networkx graph representing the model's Kappa contact map.
Parameters
----------
model : pysb.core.Model
A PySB model to be exported into a Kappa CM.
fname : Optional[str]
A file name, typically with .png or .pdf extension in which
the CM is rendered using pygraphviz.
Returns
-------
npygraphviz.Agraph
A graph object representing the contact map. | [
"Return",
"a",
"networkx",
"graph",
"representing",
"the",
"model",
"s",
"Kappa",
"contact",
"map",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/assemblers/pysb/export.py#L116-L138 | train |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.