repo
stringlengths 7
55
| path
stringlengths 4
127
| func_name
stringlengths 1
88
| original_string
stringlengths 75
19.8k
| language
stringclasses 1
value | code
stringlengths 75
19.8k
| code_tokens
list | docstring
stringlengths 3
17.3k
| docstring_tokens
list | sha
stringlengths 40
40
| url
stringlengths 87
242
| partition
stringclasses 1
value |
---|---|---|---|---|---|---|---|---|---|---|---|
sorgerlab/indra | indra/tools/incremental_model.py | IncrementalModel.save | def save(self, model_fname='model.pkl'):
"""Save the state of the IncrementalModel in a pickle file.
Parameters
----------
model_fname : Optional[str]
The name of the pickle file to save the state of the
IncrementalModel in. Default: model.pkl
"""
with open(model_fname, 'wb') as fh:
pickle.dump(self.stmts, fh, protocol=4) | python | def save(self, model_fname='model.pkl'):
"""Save the state of the IncrementalModel in a pickle file.
Parameters
----------
model_fname : Optional[str]
The name of the pickle file to save the state of the
IncrementalModel in. Default: model.pkl
"""
with open(model_fname, 'wb') as fh:
pickle.dump(self.stmts, fh, protocol=4) | [
"def",
"save",
"(",
"self",
",",
"model_fname",
"=",
"'model.pkl'",
")",
":",
"with",
"open",
"(",
"model_fname",
",",
"'wb'",
")",
"as",
"fh",
":",
"pickle",
".",
"dump",
"(",
"self",
".",
"stmts",
",",
"fh",
",",
"protocol",
"=",
"4",
")"
]
| Save the state of the IncrementalModel in a pickle file.
Parameters
----------
model_fname : Optional[str]
The name of the pickle file to save the state of the
IncrementalModel in. Default: model.pkl | [
"Save",
"the",
"state",
"of",
"the",
"IncrementalModel",
"in",
"a",
"pickle",
"file",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/tools/incremental_model.py#L45-L55 | train |
sorgerlab/indra | indra/tools/incremental_model.py | IncrementalModel.add_statements | def add_statements(self, pmid, stmts):
"""Add INDRA Statements to the incremental model indexed by PMID.
Parameters
----------
pmid : str
The PMID of the paper from which statements were extracted.
stmts : list[indra.statements.Statement]
A list of INDRA Statements to be added to the model.
"""
if pmid not in self.stmts:
self.stmts[pmid] = stmts
else:
self.stmts[pmid] += stmts | python | def add_statements(self, pmid, stmts):
"""Add INDRA Statements to the incremental model indexed by PMID.
Parameters
----------
pmid : str
The PMID of the paper from which statements were extracted.
stmts : list[indra.statements.Statement]
A list of INDRA Statements to be added to the model.
"""
if pmid not in self.stmts:
self.stmts[pmid] = stmts
else:
self.stmts[pmid] += stmts | [
"def",
"add_statements",
"(",
"self",
",",
"pmid",
",",
"stmts",
")",
":",
"if",
"pmid",
"not",
"in",
"self",
".",
"stmts",
":",
"self",
".",
"stmts",
"[",
"pmid",
"]",
"=",
"stmts",
"else",
":",
"self",
".",
"stmts",
"[",
"pmid",
"]",
"+=",
"stmts"
]
| Add INDRA Statements to the incremental model indexed by PMID.
Parameters
----------
pmid : str
The PMID of the paper from which statements were extracted.
stmts : list[indra.statements.Statement]
A list of INDRA Statements to be added to the model. | [
"Add",
"INDRA",
"Statements",
"to",
"the",
"incremental",
"model",
"indexed",
"by",
"PMID",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/tools/incremental_model.py#L57-L70 | train |
sorgerlab/indra | indra/tools/incremental_model.py | IncrementalModel.preassemble | def preassemble(self, filters=None, grounding_map=None):
"""Preassemble the Statements collected in the model.
Use INDRA's GroundingMapper, Preassembler and BeliefEngine
on the IncrementalModel and save the unique statements and
the top level statements in class attributes.
Currently the following filter options are implemented:
- grounding: require that all Agents in statements are grounded
- human_only: require that all proteins are human proteins
- prior_one: require that at least one Agent is in the prior model
- prior_all: require that all Agents are in the prior model
Parameters
----------
filters : Optional[list[str]]
A list of filter options to apply when choosing the statements.
See description above for more details. Default: None
grounding_map : Optional[dict]
A user supplied grounding map which maps a string to a
dictionary of database IDs (in the format used by Agents'
db_refs).
"""
stmts = self.get_statements()
# Filter out hypotheses
stmts = ac.filter_no_hypothesis(stmts)
# Fix grounding
if grounding_map is not None:
stmts = ac.map_grounding(stmts, grounding_map=grounding_map)
else:
stmts = ac.map_grounding(stmts)
if filters and ('grounding' in filters):
stmts = ac.filter_grounded_only(stmts)
# Fix sites
stmts = ac.map_sequence(stmts)
if filters and 'human_only' in filters:
stmts = ac.filter_human_only(stmts)
# Run preassembly
stmts = ac.run_preassembly(stmts, return_toplevel=False)
# Run relevance filter
stmts = self._relevance_filter(stmts, filters)
# Save Statements
self.assembled_stmts = stmts | python | def preassemble(self, filters=None, grounding_map=None):
"""Preassemble the Statements collected in the model.
Use INDRA's GroundingMapper, Preassembler and BeliefEngine
on the IncrementalModel and save the unique statements and
the top level statements in class attributes.
Currently the following filter options are implemented:
- grounding: require that all Agents in statements are grounded
- human_only: require that all proteins are human proteins
- prior_one: require that at least one Agent is in the prior model
- prior_all: require that all Agents are in the prior model
Parameters
----------
filters : Optional[list[str]]
A list of filter options to apply when choosing the statements.
See description above for more details. Default: None
grounding_map : Optional[dict]
A user supplied grounding map which maps a string to a
dictionary of database IDs (in the format used by Agents'
db_refs).
"""
stmts = self.get_statements()
# Filter out hypotheses
stmts = ac.filter_no_hypothesis(stmts)
# Fix grounding
if grounding_map is not None:
stmts = ac.map_grounding(stmts, grounding_map=grounding_map)
else:
stmts = ac.map_grounding(stmts)
if filters and ('grounding' in filters):
stmts = ac.filter_grounded_only(stmts)
# Fix sites
stmts = ac.map_sequence(stmts)
if filters and 'human_only' in filters:
stmts = ac.filter_human_only(stmts)
# Run preassembly
stmts = ac.run_preassembly(stmts, return_toplevel=False)
# Run relevance filter
stmts = self._relevance_filter(stmts, filters)
# Save Statements
self.assembled_stmts = stmts | [
"def",
"preassemble",
"(",
"self",
",",
"filters",
"=",
"None",
",",
"grounding_map",
"=",
"None",
")",
":",
"stmts",
"=",
"self",
".",
"get_statements",
"(",
")",
"# Filter out hypotheses",
"stmts",
"=",
"ac",
".",
"filter_no_hypothesis",
"(",
"stmts",
")",
"# Fix grounding",
"if",
"grounding_map",
"is",
"not",
"None",
":",
"stmts",
"=",
"ac",
".",
"map_grounding",
"(",
"stmts",
",",
"grounding_map",
"=",
"grounding_map",
")",
"else",
":",
"stmts",
"=",
"ac",
".",
"map_grounding",
"(",
"stmts",
")",
"if",
"filters",
"and",
"(",
"'grounding'",
"in",
"filters",
")",
":",
"stmts",
"=",
"ac",
".",
"filter_grounded_only",
"(",
"stmts",
")",
"# Fix sites",
"stmts",
"=",
"ac",
".",
"map_sequence",
"(",
"stmts",
")",
"if",
"filters",
"and",
"'human_only'",
"in",
"filters",
":",
"stmts",
"=",
"ac",
".",
"filter_human_only",
"(",
"stmts",
")",
"# Run preassembly",
"stmts",
"=",
"ac",
".",
"run_preassembly",
"(",
"stmts",
",",
"return_toplevel",
"=",
"False",
")",
"# Run relevance filter",
"stmts",
"=",
"self",
".",
"_relevance_filter",
"(",
"stmts",
",",
"filters",
")",
"# Save Statements",
"self",
".",
"assembled_stmts",
"=",
"stmts"
]
| Preassemble the Statements collected in the model.
Use INDRA's GroundingMapper, Preassembler and BeliefEngine
on the IncrementalModel and save the unique statements and
the top level statements in class attributes.
Currently the following filter options are implemented:
- grounding: require that all Agents in statements are grounded
- human_only: require that all proteins are human proteins
- prior_one: require that at least one Agent is in the prior model
- prior_all: require that all Agents are in the prior model
Parameters
----------
filters : Optional[list[str]]
A list of filter options to apply when choosing the statements.
See description above for more details. Default: None
grounding_map : Optional[dict]
A user supplied grounding map which maps a string to a
dictionary of database IDs (in the format used by Agents'
db_refs). | [
"Preassemble",
"the",
"Statements",
"collected",
"in",
"the",
"model",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/tools/incremental_model.py#L84-L134 | train |
sorgerlab/indra | indra/tools/incremental_model.py | IncrementalModel.get_model_agents | def get_model_agents(self):
"""Return a list of all Agents from all Statements.
Returns
-------
agents : list[indra.statements.Agent]
A list of Agents that are in the model.
"""
model_stmts = self.get_statements()
agents = []
for stmt in model_stmts:
for a in stmt.agent_list():
if a is not None:
agents.append(a)
return agents | python | def get_model_agents(self):
"""Return a list of all Agents from all Statements.
Returns
-------
agents : list[indra.statements.Agent]
A list of Agents that are in the model.
"""
model_stmts = self.get_statements()
agents = []
for stmt in model_stmts:
for a in stmt.agent_list():
if a is not None:
agents.append(a)
return agents | [
"def",
"get_model_agents",
"(",
"self",
")",
":",
"model_stmts",
"=",
"self",
".",
"get_statements",
"(",
")",
"agents",
"=",
"[",
"]",
"for",
"stmt",
"in",
"model_stmts",
":",
"for",
"a",
"in",
"stmt",
".",
"agent_list",
"(",
")",
":",
"if",
"a",
"is",
"not",
"None",
":",
"agents",
".",
"append",
"(",
"a",
")",
"return",
"agents"
]
| Return a list of all Agents from all Statements.
Returns
-------
agents : list[indra.statements.Agent]
A list of Agents that are in the model. | [
"Return",
"a",
"list",
"of",
"all",
"Agents",
"from",
"all",
"Statements",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/tools/incremental_model.py#L149-L163 | train |
sorgerlab/indra | indra/tools/incremental_model.py | IncrementalModel.get_statements | def get_statements(self):
"""Return a list of all Statements in a single list.
Returns
-------
stmts : list[indra.statements.Statement]
A list of all the INDRA Statements in the model.
"""
stmt_lists = [v for k, v in self.stmts.items()]
stmts = []
for s in stmt_lists:
stmts += s
return stmts | python | def get_statements(self):
"""Return a list of all Statements in a single list.
Returns
-------
stmts : list[indra.statements.Statement]
A list of all the INDRA Statements in the model.
"""
stmt_lists = [v for k, v in self.stmts.items()]
stmts = []
for s in stmt_lists:
stmts += s
return stmts | [
"def",
"get_statements",
"(",
"self",
")",
":",
"stmt_lists",
"=",
"[",
"v",
"for",
"k",
",",
"v",
"in",
"self",
".",
"stmts",
".",
"items",
"(",
")",
"]",
"stmts",
"=",
"[",
"]",
"for",
"s",
"in",
"stmt_lists",
":",
"stmts",
"+=",
"s",
"return",
"stmts"
]
| Return a list of all Statements in a single list.
Returns
-------
stmts : list[indra.statements.Statement]
A list of all the INDRA Statements in the model. | [
"Return",
"a",
"list",
"of",
"all",
"Statements",
"in",
"a",
"single",
"list",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/tools/incremental_model.py#L165-L177 | train |
sorgerlab/indra | indra/tools/incremental_model.py | IncrementalModel.get_statements_noprior | def get_statements_noprior(self):
"""Return a list of all non-prior Statements in a single list.
Returns
-------
stmts : list[indra.statements.Statement]
A list of all the INDRA Statements in the model (excluding
the prior).
"""
stmt_lists = [v for k, v in self.stmts.items() if k != 'prior']
stmts = []
for s in stmt_lists:
stmts += s
return stmts | python | def get_statements_noprior(self):
"""Return a list of all non-prior Statements in a single list.
Returns
-------
stmts : list[indra.statements.Statement]
A list of all the INDRA Statements in the model (excluding
the prior).
"""
stmt_lists = [v for k, v in self.stmts.items() if k != 'prior']
stmts = []
for s in stmt_lists:
stmts += s
return stmts | [
"def",
"get_statements_noprior",
"(",
"self",
")",
":",
"stmt_lists",
"=",
"[",
"v",
"for",
"k",
",",
"v",
"in",
"self",
".",
"stmts",
".",
"items",
"(",
")",
"if",
"k",
"!=",
"'prior'",
"]",
"stmts",
"=",
"[",
"]",
"for",
"s",
"in",
"stmt_lists",
":",
"stmts",
"+=",
"s",
"return",
"stmts"
]
| Return a list of all non-prior Statements in a single list.
Returns
-------
stmts : list[indra.statements.Statement]
A list of all the INDRA Statements in the model (excluding
the prior). | [
"Return",
"a",
"list",
"of",
"all",
"non",
"-",
"prior",
"Statements",
"in",
"a",
"single",
"list",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/tools/incremental_model.py#L179-L192 | train |
sorgerlab/indra | indra/sources/bel/api.py | process_ndex_neighborhood | def process_ndex_neighborhood(gene_names, network_id=None,
rdf_out='bel_output.rdf', print_output=True):
"""Return a BelRdfProcessor for an NDEx network neighborhood.
Parameters
----------
gene_names : list
A list of HGNC gene symbols to search the neighborhood of.
Example: ['BRAF', 'MAP2K1']
network_id : Optional[str]
The UUID of the network in NDEx. By default, the BEL Large Corpus
network is used.
rdf_out : Optional[str]
Name of the output file to save the RDF returned by the web service.
This is useful for debugging purposes or to repeat the same query
on an offline RDF file later. Default: bel_output.rdf
Returns
-------
bp : BelRdfProcessor
A BelRdfProcessor object which contains INDRA Statements in bp.statements.
Notes
-----
This function calls process_belrdf to the returned RDF string from the
webservice.
"""
logger.warning('This method is deprecated and the results are not '
'guaranteed to be correct. Please use '
'process_pybel_neighborhood instead.')
if network_id is None:
network_id = '9ea3c170-01ad-11e5-ac0f-000c29cb28fb'
url = ndex_bel2rdf + '/network/%s/asBELRDF/query' % network_id
params = {'searchString': ' '.join(gene_names)}
# The ndex_client returns the rdf as the content of a json dict
res_json = ndex_client.send_request(url, params, is_json=True)
if not res_json:
logger.error('No response for NDEx neighborhood query.')
return None
if res_json.get('error'):
error_msg = res_json.get('message')
logger.error('BEL/RDF response contains error: %s' % error_msg)
return None
rdf = res_json.get('content')
if not rdf:
logger.error('BEL/RDF response is empty.')
return None
with open(rdf_out, 'wb') as fh:
fh.write(rdf.encode('utf-8'))
bp = process_belrdf(rdf, print_output=print_output)
return bp | python | def process_ndex_neighborhood(gene_names, network_id=None,
rdf_out='bel_output.rdf', print_output=True):
"""Return a BelRdfProcessor for an NDEx network neighborhood.
Parameters
----------
gene_names : list
A list of HGNC gene symbols to search the neighborhood of.
Example: ['BRAF', 'MAP2K1']
network_id : Optional[str]
The UUID of the network in NDEx. By default, the BEL Large Corpus
network is used.
rdf_out : Optional[str]
Name of the output file to save the RDF returned by the web service.
This is useful for debugging purposes or to repeat the same query
on an offline RDF file later. Default: bel_output.rdf
Returns
-------
bp : BelRdfProcessor
A BelRdfProcessor object which contains INDRA Statements in bp.statements.
Notes
-----
This function calls process_belrdf to the returned RDF string from the
webservice.
"""
logger.warning('This method is deprecated and the results are not '
'guaranteed to be correct. Please use '
'process_pybel_neighborhood instead.')
if network_id is None:
network_id = '9ea3c170-01ad-11e5-ac0f-000c29cb28fb'
url = ndex_bel2rdf + '/network/%s/asBELRDF/query' % network_id
params = {'searchString': ' '.join(gene_names)}
# The ndex_client returns the rdf as the content of a json dict
res_json = ndex_client.send_request(url, params, is_json=True)
if not res_json:
logger.error('No response for NDEx neighborhood query.')
return None
if res_json.get('error'):
error_msg = res_json.get('message')
logger.error('BEL/RDF response contains error: %s' % error_msg)
return None
rdf = res_json.get('content')
if not rdf:
logger.error('BEL/RDF response is empty.')
return None
with open(rdf_out, 'wb') as fh:
fh.write(rdf.encode('utf-8'))
bp = process_belrdf(rdf, print_output=print_output)
return bp | [
"def",
"process_ndex_neighborhood",
"(",
"gene_names",
",",
"network_id",
"=",
"None",
",",
"rdf_out",
"=",
"'bel_output.rdf'",
",",
"print_output",
"=",
"True",
")",
":",
"logger",
".",
"warning",
"(",
"'This method is deprecated and the results are not '",
"'guaranteed to be correct. Please use '",
"'process_pybel_neighborhood instead.'",
")",
"if",
"network_id",
"is",
"None",
":",
"network_id",
"=",
"'9ea3c170-01ad-11e5-ac0f-000c29cb28fb'",
"url",
"=",
"ndex_bel2rdf",
"+",
"'/network/%s/asBELRDF/query'",
"%",
"network_id",
"params",
"=",
"{",
"'searchString'",
":",
"' '",
".",
"join",
"(",
"gene_names",
")",
"}",
"# The ndex_client returns the rdf as the content of a json dict",
"res_json",
"=",
"ndex_client",
".",
"send_request",
"(",
"url",
",",
"params",
",",
"is_json",
"=",
"True",
")",
"if",
"not",
"res_json",
":",
"logger",
".",
"error",
"(",
"'No response for NDEx neighborhood query.'",
")",
"return",
"None",
"if",
"res_json",
".",
"get",
"(",
"'error'",
")",
":",
"error_msg",
"=",
"res_json",
".",
"get",
"(",
"'message'",
")",
"logger",
".",
"error",
"(",
"'BEL/RDF response contains error: %s'",
"%",
"error_msg",
")",
"return",
"None",
"rdf",
"=",
"res_json",
".",
"get",
"(",
"'content'",
")",
"if",
"not",
"rdf",
":",
"logger",
".",
"error",
"(",
"'BEL/RDF response is empty.'",
")",
"return",
"None",
"with",
"open",
"(",
"rdf_out",
",",
"'wb'",
")",
"as",
"fh",
":",
"fh",
".",
"write",
"(",
"rdf",
".",
"encode",
"(",
"'utf-8'",
")",
")",
"bp",
"=",
"process_belrdf",
"(",
"rdf",
",",
"print_output",
"=",
"print_output",
")",
"return",
"bp"
]
| Return a BelRdfProcessor for an NDEx network neighborhood.
Parameters
----------
gene_names : list
A list of HGNC gene symbols to search the neighborhood of.
Example: ['BRAF', 'MAP2K1']
network_id : Optional[str]
The UUID of the network in NDEx. By default, the BEL Large Corpus
network is used.
rdf_out : Optional[str]
Name of the output file to save the RDF returned by the web service.
This is useful for debugging purposes or to repeat the same query
on an offline RDF file later. Default: bel_output.rdf
Returns
-------
bp : BelRdfProcessor
A BelRdfProcessor object which contains INDRA Statements in bp.statements.
Notes
-----
This function calls process_belrdf to the returned RDF string from the
webservice. | [
"Return",
"a",
"BelRdfProcessor",
"for",
"an",
"NDEx",
"network",
"neighborhood",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/sources/bel/api.py#L20-L71 | train |
sorgerlab/indra | indra/sources/bel/api.py | process_pybel_neighborhood | def process_pybel_neighborhood(gene_names, network_file=None,
network_type='belscript', **kwargs):
"""Return PybelProcessor around neighborhood of given genes in a network.
This function processes the given network file and filters the returned
Statements to ones that contain genes in the given list.
Parameters
----------
network_file : Optional[str]
Path to the network file to process. If not given, by default, the
BEL Large Corpus is used.
network_type : Optional[str]
This function allows processing both BEL Script files and JSON files.
This argument controls which type is assumed to be processed, and the
value can be either 'belscript' or 'json'. Default: bel_script
Returns
-------
bp : PybelProcessor
A PybelProcessor object which contains INDRA Statements in
bp.statements.
"""
if network_file is None:
# Use large corpus as base network
network_file = os.path.join(os.path.dirname(os.path.abspath(__file__)),
os.path.pardir, os.path.pardir,
os.path.pardir, 'data', 'large_corpus.bel')
if network_type == 'belscript':
bp = process_belscript(network_file, **kwargs)
elif network_type == 'json':
bp = process_json_file(network_file)
filtered_stmts = []
for stmt in bp.statements:
found = False
for agent in stmt.agent_list():
if agent is not None:
if agent.name in gene_names:
found = True
if found:
filtered_stmts.append(stmt)
bp.statements = filtered_stmts
return bp | python | def process_pybel_neighborhood(gene_names, network_file=None,
network_type='belscript', **kwargs):
"""Return PybelProcessor around neighborhood of given genes in a network.
This function processes the given network file and filters the returned
Statements to ones that contain genes in the given list.
Parameters
----------
network_file : Optional[str]
Path to the network file to process. If not given, by default, the
BEL Large Corpus is used.
network_type : Optional[str]
This function allows processing both BEL Script files and JSON files.
This argument controls which type is assumed to be processed, and the
value can be either 'belscript' or 'json'. Default: bel_script
Returns
-------
bp : PybelProcessor
A PybelProcessor object which contains INDRA Statements in
bp.statements.
"""
if network_file is None:
# Use large corpus as base network
network_file = os.path.join(os.path.dirname(os.path.abspath(__file__)),
os.path.pardir, os.path.pardir,
os.path.pardir, 'data', 'large_corpus.bel')
if network_type == 'belscript':
bp = process_belscript(network_file, **kwargs)
elif network_type == 'json':
bp = process_json_file(network_file)
filtered_stmts = []
for stmt in bp.statements:
found = False
for agent in stmt.agent_list():
if agent is not None:
if agent.name in gene_names:
found = True
if found:
filtered_stmts.append(stmt)
bp.statements = filtered_stmts
return bp | [
"def",
"process_pybel_neighborhood",
"(",
"gene_names",
",",
"network_file",
"=",
"None",
",",
"network_type",
"=",
"'belscript'",
",",
"*",
"*",
"kwargs",
")",
":",
"if",
"network_file",
"is",
"None",
":",
"# Use large corpus as base network",
"network_file",
"=",
"os",
".",
"path",
".",
"join",
"(",
"os",
".",
"path",
".",
"dirname",
"(",
"os",
".",
"path",
".",
"abspath",
"(",
"__file__",
")",
")",
",",
"os",
".",
"path",
".",
"pardir",
",",
"os",
".",
"path",
".",
"pardir",
",",
"os",
".",
"path",
".",
"pardir",
",",
"'data'",
",",
"'large_corpus.bel'",
")",
"if",
"network_type",
"==",
"'belscript'",
":",
"bp",
"=",
"process_belscript",
"(",
"network_file",
",",
"*",
"*",
"kwargs",
")",
"elif",
"network_type",
"==",
"'json'",
":",
"bp",
"=",
"process_json_file",
"(",
"network_file",
")",
"filtered_stmts",
"=",
"[",
"]",
"for",
"stmt",
"in",
"bp",
".",
"statements",
":",
"found",
"=",
"False",
"for",
"agent",
"in",
"stmt",
".",
"agent_list",
"(",
")",
":",
"if",
"agent",
"is",
"not",
"None",
":",
"if",
"agent",
".",
"name",
"in",
"gene_names",
":",
"found",
"=",
"True",
"if",
"found",
":",
"filtered_stmts",
".",
"append",
"(",
"stmt",
")",
"bp",
".",
"statements",
"=",
"filtered_stmts",
"return",
"bp"
]
| Return PybelProcessor around neighborhood of given genes in a network.
This function processes the given network file and filters the returned
Statements to ones that contain genes in the given list.
Parameters
----------
network_file : Optional[str]
Path to the network file to process. If not given, by default, the
BEL Large Corpus is used.
network_type : Optional[str]
This function allows processing both BEL Script files and JSON files.
This argument controls which type is assumed to be processed, and the
value can be either 'belscript' or 'json'. Default: bel_script
Returns
-------
bp : PybelProcessor
A PybelProcessor object which contains INDRA Statements in
bp.statements. | [
"Return",
"PybelProcessor",
"around",
"neighborhood",
"of",
"given",
"genes",
"in",
"a",
"network",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/sources/bel/api.py#L74-L119 | train |
sorgerlab/indra | indra/sources/bel/api.py | process_pybel_graph | def process_pybel_graph(graph):
"""Return a PybelProcessor by processing a PyBEL graph.
Parameters
----------
graph : pybel.struct.BELGraph
A PyBEL graph to process
Returns
-------
bp : PybelProcessor
A PybelProcessor object which contains INDRA Statements in
bp.statements.
"""
bp = PybelProcessor(graph)
bp.get_statements()
if bp.annot_manager.failures:
logger.warning('missing %d annotation pairs',
sum(len(v)
for v in bp.annot_manager.failures.values()))
return bp | python | def process_pybel_graph(graph):
"""Return a PybelProcessor by processing a PyBEL graph.
Parameters
----------
graph : pybel.struct.BELGraph
A PyBEL graph to process
Returns
-------
bp : PybelProcessor
A PybelProcessor object which contains INDRA Statements in
bp.statements.
"""
bp = PybelProcessor(graph)
bp.get_statements()
if bp.annot_manager.failures:
logger.warning('missing %d annotation pairs',
sum(len(v)
for v in bp.annot_manager.failures.values()))
return bp | [
"def",
"process_pybel_graph",
"(",
"graph",
")",
":",
"bp",
"=",
"PybelProcessor",
"(",
"graph",
")",
"bp",
".",
"get_statements",
"(",
")",
"if",
"bp",
".",
"annot_manager",
".",
"failures",
":",
"logger",
".",
"warning",
"(",
"'missing %d annotation pairs'",
",",
"sum",
"(",
"len",
"(",
"v",
")",
"for",
"v",
"in",
"bp",
".",
"annot_manager",
".",
"failures",
".",
"values",
"(",
")",
")",
")",
"return",
"bp"
]
| Return a PybelProcessor by processing a PyBEL graph.
Parameters
----------
graph : pybel.struct.BELGraph
A PyBEL graph to process
Returns
-------
bp : PybelProcessor
A PybelProcessor object which contains INDRA Statements in
bp.statements. | [
"Return",
"a",
"PybelProcessor",
"by",
"processing",
"a",
"PyBEL",
"graph",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/sources/bel/api.py#L167-L187 | train |
sorgerlab/indra | indra/sources/bel/api.py | process_belscript | def process_belscript(file_name, **kwargs):
"""Return a PybelProcessor by processing a BEL script file.
Key word arguments are passed directly to pybel.from_path,
for further information, see
pybel.readthedocs.io/en/latest/io.html#pybel.from_path
Some keyword arguments we use here differ from the defaults
of PyBEL, namely we set `citation_clearing` to False
and `no_identifier_validation` to True.
Parameters
----------
file_name : str
The path to a BEL script file.
Returns
-------
bp : PybelProcessor
A PybelProcessor object which contains INDRA Statements in
bp.statements.
"""
if 'citation_clearing' not in kwargs:
kwargs['citation_clearing'] = False
if 'no_identifier_validation' not in kwargs:
kwargs['no_identifier_validation'] = True
pybel_graph = pybel.from_path(file_name, **kwargs)
return process_pybel_graph(pybel_graph) | python | def process_belscript(file_name, **kwargs):
"""Return a PybelProcessor by processing a BEL script file.
Key word arguments are passed directly to pybel.from_path,
for further information, see
pybel.readthedocs.io/en/latest/io.html#pybel.from_path
Some keyword arguments we use here differ from the defaults
of PyBEL, namely we set `citation_clearing` to False
and `no_identifier_validation` to True.
Parameters
----------
file_name : str
The path to a BEL script file.
Returns
-------
bp : PybelProcessor
A PybelProcessor object which contains INDRA Statements in
bp.statements.
"""
if 'citation_clearing' not in kwargs:
kwargs['citation_clearing'] = False
if 'no_identifier_validation' not in kwargs:
kwargs['no_identifier_validation'] = True
pybel_graph = pybel.from_path(file_name, **kwargs)
return process_pybel_graph(pybel_graph) | [
"def",
"process_belscript",
"(",
"file_name",
",",
"*",
"*",
"kwargs",
")",
":",
"if",
"'citation_clearing'",
"not",
"in",
"kwargs",
":",
"kwargs",
"[",
"'citation_clearing'",
"]",
"=",
"False",
"if",
"'no_identifier_validation'",
"not",
"in",
"kwargs",
":",
"kwargs",
"[",
"'no_identifier_validation'",
"]",
"=",
"True",
"pybel_graph",
"=",
"pybel",
".",
"from_path",
"(",
"file_name",
",",
"*",
"*",
"kwargs",
")",
"return",
"process_pybel_graph",
"(",
"pybel_graph",
")"
]
| Return a PybelProcessor by processing a BEL script file.
Key word arguments are passed directly to pybel.from_path,
for further information, see
pybel.readthedocs.io/en/latest/io.html#pybel.from_path
Some keyword arguments we use here differ from the defaults
of PyBEL, namely we set `citation_clearing` to False
and `no_identifier_validation` to True.
Parameters
----------
file_name : str
The path to a BEL script file.
Returns
-------
bp : PybelProcessor
A PybelProcessor object which contains INDRA Statements in
bp.statements. | [
"Return",
"a",
"PybelProcessor",
"by",
"processing",
"a",
"BEL",
"script",
"file",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/sources/bel/api.py#L190-L216 | train |
sorgerlab/indra | indra/sources/bel/api.py | process_json_file | def process_json_file(file_name):
"""Return a PybelProcessor by processing a Node-Link JSON file.
For more information on this format, see:
http://pybel.readthedocs.io/en/latest/io.html#node-link-json
Parameters
----------
file_name : str
The path to a Node-Link JSON file.
Returns
-------
bp : PybelProcessor
A PybelProcessor object which contains INDRA Statements in
bp.statements.
"""
with open(file_name, 'rt') as fh:
pybel_graph = pybel.from_json_file(fh, False)
return process_pybel_graph(pybel_graph) | python | def process_json_file(file_name):
"""Return a PybelProcessor by processing a Node-Link JSON file.
For more information on this format, see:
http://pybel.readthedocs.io/en/latest/io.html#node-link-json
Parameters
----------
file_name : str
The path to a Node-Link JSON file.
Returns
-------
bp : PybelProcessor
A PybelProcessor object which contains INDRA Statements in
bp.statements.
"""
with open(file_name, 'rt') as fh:
pybel_graph = pybel.from_json_file(fh, False)
return process_pybel_graph(pybel_graph) | [
"def",
"process_json_file",
"(",
"file_name",
")",
":",
"with",
"open",
"(",
"file_name",
",",
"'rt'",
")",
"as",
"fh",
":",
"pybel_graph",
"=",
"pybel",
".",
"from_json_file",
"(",
"fh",
",",
"False",
")",
"return",
"process_pybel_graph",
"(",
"pybel_graph",
")"
]
| Return a PybelProcessor by processing a Node-Link JSON file.
For more information on this format, see:
http://pybel.readthedocs.io/en/latest/io.html#node-link-json
Parameters
----------
file_name : str
The path to a Node-Link JSON file.
Returns
-------
bp : PybelProcessor
A PybelProcessor object which contains INDRA Statements in
bp.statements. | [
"Return",
"a",
"PybelProcessor",
"by",
"processing",
"a",
"Node",
"-",
"Link",
"JSON",
"file",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/sources/bel/api.py#L219-L238 | train |
sorgerlab/indra | indra/sources/bel/api.py | process_cbn_jgif_file | def process_cbn_jgif_file(file_name):
"""Return a PybelProcessor by processing a CBN JGIF JSON file.
Parameters
----------
file_name : str
The path to a CBN JGIF JSON file.
Returns
-------
bp : PybelProcessor
A PybelProcessor object which contains INDRA Statements in
bp.statements.
"""
with open(file_name, 'r') as jgf:
return process_pybel_graph(pybel.from_cbn_jgif(json.load(jgf))) | python | def process_cbn_jgif_file(file_name):
"""Return a PybelProcessor by processing a CBN JGIF JSON file.
Parameters
----------
file_name : str
The path to a CBN JGIF JSON file.
Returns
-------
bp : PybelProcessor
A PybelProcessor object which contains INDRA Statements in
bp.statements.
"""
with open(file_name, 'r') as jgf:
return process_pybel_graph(pybel.from_cbn_jgif(json.load(jgf))) | [
"def",
"process_cbn_jgif_file",
"(",
"file_name",
")",
":",
"with",
"open",
"(",
"file_name",
",",
"'r'",
")",
"as",
"jgf",
":",
"return",
"process_pybel_graph",
"(",
"pybel",
".",
"from_cbn_jgif",
"(",
"json",
".",
"load",
"(",
"jgf",
")",
")",
")"
]
| Return a PybelProcessor by processing a CBN JGIF JSON file.
Parameters
----------
file_name : str
The path to a CBN JGIF JSON file.
Returns
-------
bp : PybelProcessor
A PybelProcessor object which contains INDRA Statements in
bp.statements. | [
"Return",
"a",
"PybelProcessor",
"by",
"processing",
"a",
"CBN",
"JGIF",
"JSON",
"file",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/sources/bel/api.py#L241-L256 | train |
sorgerlab/indra | indra/resources/update_resources.py | update_famplex | def update_famplex():
"""Update all the CSV files that form the FamPlex resource."""
famplex_url_pattern = \
'https://raw.githubusercontent.com/sorgerlab/famplex/master/%s.csv'
csv_names = ['entities', 'equivalences', 'gene_prefixes',
'grounding_map', 'relations']
for csv_name in csv_names:
url = famplex_url_pattern % csv_name
save_from_http(url, os.path.join(path,'famplex/%s.csv' % csv_name)) | python | def update_famplex():
"""Update all the CSV files that form the FamPlex resource."""
famplex_url_pattern = \
'https://raw.githubusercontent.com/sorgerlab/famplex/master/%s.csv'
csv_names = ['entities', 'equivalences', 'gene_prefixes',
'grounding_map', 'relations']
for csv_name in csv_names:
url = famplex_url_pattern % csv_name
save_from_http(url, os.path.join(path,'famplex/%s.csv' % csv_name)) | [
"def",
"update_famplex",
"(",
")",
":",
"famplex_url_pattern",
"=",
"'https://raw.githubusercontent.com/sorgerlab/famplex/master/%s.csv'",
"csv_names",
"=",
"[",
"'entities'",
",",
"'equivalences'",
",",
"'gene_prefixes'",
",",
"'grounding_map'",
",",
"'relations'",
"]",
"for",
"csv_name",
"in",
"csv_names",
":",
"url",
"=",
"famplex_url_pattern",
"%",
"csv_name",
"save_from_http",
"(",
"url",
",",
"os",
".",
"path",
".",
"join",
"(",
"path",
",",
"'famplex/%s.csv'",
"%",
"csv_name",
")",
")"
]
| Update all the CSV files that form the FamPlex resource. | [
"Update",
"all",
"the",
"CSV",
"files",
"that",
"form",
"the",
"FamPlex",
"resource",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/resources/update_resources.py#L421-L429 | train |
sorgerlab/indra | indra/resources/update_resources.py | update_lincs_small_molecules | def update_lincs_small_molecules():
"""Load the csv of LINCS small molecule metadata into a dict.
Produces a dict keyed by HMS LINCS small molecule ids, with the metadata
contained in a dict of row values keyed by the column headers extracted
from the csv.
"""
url = 'http://lincs.hms.harvard.edu/db/sm/'
sm_data = load_lincs_csv(url)
sm_dict = {d['HMS LINCS ID']: d.copy() for d in sm_data}
assert len(sm_dict) == len(sm_data), "We lost data."
fname = os.path.join(path, 'lincs_small_molecules.json')
with open(fname, 'w') as fh:
json.dump(sm_dict, fh, indent=1) | python | def update_lincs_small_molecules():
"""Load the csv of LINCS small molecule metadata into a dict.
Produces a dict keyed by HMS LINCS small molecule ids, with the metadata
contained in a dict of row values keyed by the column headers extracted
from the csv.
"""
url = 'http://lincs.hms.harvard.edu/db/sm/'
sm_data = load_lincs_csv(url)
sm_dict = {d['HMS LINCS ID']: d.copy() for d in sm_data}
assert len(sm_dict) == len(sm_data), "We lost data."
fname = os.path.join(path, 'lincs_small_molecules.json')
with open(fname, 'w') as fh:
json.dump(sm_dict, fh, indent=1) | [
"def",
"update_lincs_small_molecules",
"(",
")",
":",
"url",
"=",
"'http://lincs.hms.harvard.edu/db/sm/'",
"sm_data",
"=",
"load_lincs_csv",
"(",
"url",
")",
"sm_dict",
"=",
"{",
"d",
"[",
"'HMS LINCS ID'",
"]",
":",
"d",
".",
"copy",
"(",
")",
"for",
"d",
"in",
"sm_data",
"}",
"assert",
"len",
"(",
"sm_dict",
")",
"==",
"len",
"(",
"sm_data",
")",
",",
"\"We lost data.\"",
"fname",
"=",
"os",
".",
"path",
".",
"join",
"(",
"path",
",",
"'lincs_small_molecules.json'",
")",
"with",
"open",
"(",
"fname",
",",
"'w'",
")",
"as",
"fh",
":",
"json",
".",
"dump",
"(",
"sm_dict",
",",
"fh",
",",
"indent",
"=",
"1",
")"
]
| Load the csv of LINCS small molecule metadata into a dict.
Produces a dict keyed by HMS LINCS small molecule ids, with the metadata
contained in a dict of row values keyed by the column headers extracted
from the csv. | [
"Load",
"the",
"csv",
"of",
"LINCS",
"small",
"molecule",
"metadata",
"into",
"a",
"dict",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/resources/update_resources.py#L439-L452 | train |
sorgerlab/indra | indra/resources/update_resources.py | update_lincs_proteins | def update_lincs_proteins():
"""Load the csv of LINCS protein metadata into a dict.
Produces a dict keyed by HMS LINCS protein ids, with the metadata
contained in a dict of row values keyed by the column headers extracted
from the csv.
"""
url = 'http://lincs.hms.harvard.edu/db/proteins/'
prot_data = load_lincs_csv(url)
prot_dict = {d['HMS LINCS ID']: d.copy() for d in prot_data}
assert len(prot_dict) == len(prot_data), "We lost data."
fname = os.path.join(path, 'lincs_proteins.json')
with open(fname, 'w') as fh:
json.dump(prot_dict, fh, indent=1) | python | def update_lincs_proteins():
"""Load the csv of LINCS protein metadata into a dict.
Produces a dict keyed by HMS LINCS protein ids, with the metadata
contained in a dict of row values keyed by the column headers extracted
from the csv.
"""
url = 'http://lincs.hms.harvard.edu/db/proteins/'
prot_data = load_lincs_csv(url)
prot_dict = {d['HMS LINCS ID']: d.copy() for d in prot_data}
assert len(prot_dict) == len(prot_data), "We lost data."
fname = os.path.join(path, 'lincs_proteins.json')
with open(fname, 'w') as fh:
json.dump(prot_dict, fh, indent=1) | [
"def",
"update_lincs_proteins",
"(",
")",
":",
"url",
"=",
"'http://lincs.hms.harvard.edu/db/proteins/'",
"prot_data",
"=",
"load_lincs_csv",
"(",
"url",
")",
"prot_dict",
"=",
"{",
"d",
"[",
"'HMS LINCS ID'",
"]",
":",
"d",
".",
"copy",
"(",
")",
"for",
"d",
"in",
"prot_data",
"}",
"assert",
"len",
"(",
"prot_dict",
")",
"==",
"len",
"(",
"prot_data",
")",
",",
"\"We lost data.\"",
"fname",
"=",
"os",
".",
"path",
".",
"join",
"(",
"path",
",",
"'lincs_proteins.json'",
")",
"with",
"open",
"(",
"fname",
",",
"'w'",
")",
"as",
"fh",
":",
"json",
".",
"dump",
"(",
"prot_dict",
",",
"fh",
",",
"indent",
"=",
"1",
")"
]
| Load the csv of LINCS protein metadata into a dict.
Produces a dict keyed by HMS LINCS protein ids, with the metadata
contained in a dict of row values keyed by the column headers extracted
from the csv. | [
"Load",
"the",
"csv",
"of",
"LINCS",
"protein",
"metadata",
"into",
"a",
"dict",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/resources/update_resources.py#L455-L468 | train |
sorgerlab/indra | indra/assemblers/index_card/assembler.py | _get_is_direct | def _get_is_direct(stmt):
'''Returns true if there is evidence that the statement is a direct
interaction. If any of the evidences associated with the statement
indicates a direct interatcion then we assume the interaction
is direct. If there is no evidence for the interaction being indirect
then we default to direct.'''
any_indirect = False
for ev in stmt.evidence:
if ev.epistemics.get('direct') is True:
return True
elif ev.epistemics.get('direct') is False:
# This guarantees that we have seen at least
# some evidence that the statement is indirect
any_indirect = True
if any_indirect:
return False
return True | python | def _get_is_direct(stmt):
'''Returns true if there is evidence that the statement is a direct
interaction. If any of the evidences associated with the statement
indicates a direct interatcion then we assume the interaction
is direct. If there is no evidence for the interaction being indirect
then we default to direct.'''
any_indirect = False
for ev in stmt.evidence:
if ev.epistemics.get('direct') is True:
return True
elif ev.epistemics.get('direct') is False:
# This guarantees that we have seen at least
# some evidence that the statement is indirect
any_indirect = True
if any_indirect:
return False
return True | [
"def",
"_get_is_direct",
"(",
"stmt",
")",
":",
"any_indirect",
"=",
"False",
"for",
"ev",
"in",
"stmt",
".",
"evidence",
":",
"if",
"ev",
".",
"epistemics",
".",
"get",
"(",
"'direct'",
")",
"is",
"True",
":",
"return",
"True",
"elif",
"ev",
".",
"epistemics",
".",
"get",
"(",
"'direct'",
")",
"is",
"False",
":",
"# This guarantees that we have seen at least",
"# some evidence that the statement is indirect",
"any_indirect",
"=",
"True",
"if",
"any_indirect",
":",
"return",
"False",
"return",
"True"
]
| Returns true if there is evidence that the statement is a direct
interaction. If any of the evidences associated with the statement
indicates a direct interatcion then we assume the interaction
is direct. If there is no evidence for the interaction being indirect
then we default to direct. | [
"Returns",
"true",
"if",
"there",
"is",
"evidence",
"that",
"the",
"statement",
"is",
"a",
"direct",
"interaction",
".",
"If",
"any",
"of",
"the",
"evidences",
"associated",
"with",
"the",
"statement",
"indicates",
"a",
"direct",
"interatcion",
"then",
"we",
"assume",
"the",
"interaction",
"is",
"direct",
".",
"If",
"there",
"is",
"no",
"evidence",
"for",
"the",
"interaction",
"being",
"indirect",
"then",
"we",
"default",
"to",
"direct",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/assemblers/index_card/assembler.py#L418-L434 | train |
sorgerlab/indra | indra/assemblers/index_card/assembler.py | IndexCardAssembler.make_model | def make_model(self):
"""Assemble statements into index cards."""
for stmt in self.statements:
if isinstance(stmt, Modification):
card = assemble_modification(stmt)
elif isinstance(stmt, SelfModification):
card = assemble_selfmodification(stmt)
elif isinstance(stmt, Complex):
card = assemble_complex(stmt)
elif isinstance(stmt, Translocation):
card = assemble_translocation(stmt)
elif isinstance(stmt, RegulateActivity):
card = assemble_regulate_activity(stmt)
elif isinstance(stmt, RegulateAmount):
card = assemble_regulate_amount(stmt)
else:
continue
if card is not None:
card.card['meta'] = {'id': stmt.uuid, 'belief': stmt.belief}
if self.pmc_override is not None:
card.card['pmc_id'] = self.pmc_override
else:
card.card['pmc_id'] = get_pmc_id(stmt)
self.cards.append(card) | python | def make_model(self):
"""Assemble statements into index cards."""
for stmt in self.statements:
if isinstance(stmt, Modification):
card = assemble_modification(stmt)
elif isinstance(stmt, SelfModification):
card = assemble_selfmodification(stmt)
elif isinstance(stmt, Complex):
card = assemble_complex(stmt)
elif isinstance(stmt, Translocation):
card = assemble_translocation(stmt)
elif isinstance(stmt, RegulateActivity):
card = assemble_regulate_activity(stmt)
elif isinstance(stmt, RegulateAmount):
card = assemble_regulate_amount(stmt)
else:
continue
if card is not None:
card.card['meta'] = {'id': stmt.uuid, 'belief': stmt.belief}
if self.pmc_override is not None:
card.card['pmc_id'] = self.pmc_override
else:
card.card['pmc_id'] = get_pmc_id(stmt)
self.cards.append(card) | [
"def",
"make_model",
"(",
"self",
")",
":",
"for",
"stmt",
"in",
"self",
".",
"statements",
":",
"if",
"isinstance",
"(",
"stmt",
",",
"Modification",
")",
":",
"card",
"=",
"assemble_modification",
"(",
"stmt",
")",
"elif",
"isinstance",
"(",
"stmt",
",",
"SelfModification",
")",
":",
"card",
"=",
"assemble_selfmodification",
"(",
"stmt",
")",
"elif",
"isinstance",
"(",
"stmt",
",",
"Complex",
")",
":",
"card",
"=",
"assemble_complex",
"(",
"stmt",
")",
"elif",
"isinstance",
"(",
"stmt",
",",
"Translocation",
")",
":",
"card",
"=",
"assemble_translocation",
"(",
"stmt",
")",
"elif",
"isinstance",
"(",
"stmt",
",",
"RegulateActivity",
")",
":",
"card",
"=",
"assemble_regulate_activity",
"(",
"stmt",
")",
"elif",
"isinstance",
"(",
"stmt",
",",
"RegulateAmount",
")",
":",
"card",
"=",
"assemble_regulate_amount",
"(",
"stmt",
")",
"else",
":",
"continue",
"if",
"card",
"is",
"not",
"None",
":",
"card",
".",
"card",
"[",
"'meta'",
"]",
"=",
"{",
"'id'",
":",
"stmt",
".",
"uuid",
",",
"'belief'",
":",
"stmt",
".",
"belief",
"}",
"if",
"self",
".",
"pmc_override",
"is",
"not",
"None",
":",
"card",
".",
"card",
"[",
"'pmc_id'",
"]",
"=",
"self",
".",
"pmc_override",
"else",
":",
"card",
".",
"card",
"[",
"'pmc_id'",
"]",
"=",
"get_pmc_id",
"(",
"stmt",
")",
"self",
".",
"cards",
".",
"append",
"(",
"card",
")"
]
| Assemble statements into index cards. | [
"Assemble",
"statements",
"into",
"index",
"cards",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/assemblers/index_card/assembler.py#L48-L71 | train |
sorgerlab/indra | indra/assemblers/index_card/assembler.py | IndexCardAssembler.print_model | def print_model(self):
"""Return the assembled cards as a JSON string.
Returns
-------
cards_json : str
The JSON string representing the assembled cards.
"""
cards = [c.card for c in self.cards]
# If there is only one card, print it as a single
# card not as a list
if len(cards) == 1:
cards = cards[0]
cards_json = json.dumps(cards, indent=1)
return cards_json | python | def print_model(self):
"""Return the assembled cards as a JSON string.
Returns
-------
cards_json : str
The JSON string representing the assembled cards.
"""
cards = [c.card for c in self.cards]
# If there is only one card, print it as a single
# card not as a list
if len(cards) == 1:
cards = cards[0]
cards_json = json.dumps(cards, indent=1)
return cards_json | [
"def",
"print_model",
"(",
"self",
")",
":",
"cards",
"=",
"[",
"c",
".",
"card",
"for",
"c",
"in",
"self",
".",
"cards",
"]",
"# If there is only one card, print it as a single",
"# card not as a list",
"if",
"len",
"(",
"cards",
")",
"==",
"1",
":",
"cards",
"=",
"cards",
"[",
"0",
"]",
"cards_json",
"=",
"json",
".",
"dumps",
"(",
"cards",
",",
"indent",
"=",
"1",
")",
"return",
"cards_json"
]
| Return the assembled cards as a JSON string.
Returns
-------
cards_json : str
The JSON string representing the assembled cards. | [
"Return",
"the",
"assembled",
"cards",
"as",
"a",
"JSON",
"string",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/assemblers/index_card/assembler.py#L73-L87 | train |
sorgerlab/indra | indra/sources/geneways/processor.py | geneways_action_to_indra_statement_type | def geneways_action_to_indra_statement_type(actiontype, plo):
"""Return INDRA Statement corresponding to Geneways action type.
Parameters
----------
actiontype : str
The verb extracted by the Geneways processor
plo : str
A one character string designating whether Geneways classifies
this verb as a physical, logical, or other interaction
Returns
-------
statement_generator :
If there is no mapping to INDRA statements from this action type
the return value is None.
If there is such a mapping, statement_generator is an anonymous
function that takes in the subject agent, object agent, and evidence,
in that order, and returns an INDRA statement object.
"""
actiontype = actiontype.lower()
statement_generator = None
is_direct = (plo == 'P')
if actiontype == 'bind':
statement_generator = lambda substance1, substance2, evidence: \
Complex([substance1, substance2], evidence=evidence)
is_direct = True
elif actiontype == 'phosphorylate':
statement_generator = lambda substance1, substance2, evidence: \
Phosphorylation(substance1, substance2, evidence=evidence)
is_direct = True
return (statement_generator, is_direct) | python | def geneways_action_to_indra_statement_type(actiontype, plo):
"""Return INDRA Statement corresponding to Geneways action type.
Parameters
----------
actiontype : str
The verb extracted by the Geneways processor
plo : str
A one character string designating whether Geneways classifies
this verb as a physical, logical, or other interaction
Returns
-------
statement_generator :
If there is no mapping to INDRA statements from this action type
the return value is None.
If there is such a mapping, statement_generator is an anonymous
function that takes in the subject agent, object agent, and evidence,
in that order, and returns an INDRA statement object.
"""
actiontype = actiontype.lower()
statement_generator = None
is_direct = (plo == 'P')
if actiontype == 'bind':
statement_generator = lambda substance1, substance2, evidence: \
Complex([substance1, substance2], evidence=evidence)
is_direct = True
elif actiontype == 'phosphorylate':
statement_generator = lambda substance1, substance2, evidence: \
Phosphorylation(substance1, substance2, evidence=evidence)
is_direct = True
return (statement_generator, is_direct) | [
"def",
"geneways_action_to_indra_statement_type",
"(",
"actiontype",
",",
"plo",
")",
":",
"actiontype",
"=",
"actiontype",
".",
"lower",
"(",
")",
"statement_generator",
"=",
"None",
"is_direct",
"=",
"(",
"plo",
"==",
"'P'",
")",
"if",
"actiontype",
"==",
"'bind'",
":",
"statement_generator",
"=",
"lambda",
"substance1",
",",
"substance2",
",",
"evidence",
":",
"Complex",
"(",
"[",
"substance1",
",",
"substance2",
"]",
",",
"evidence",
"=",
"evidence",
")",
"is_direct",
"=",
"True",
"elif",
"actiontype",
"==",
"'phosphorylate'",
":",
"statement_generator",
"=",
"lambda",
"substance1",
",",
"substance2",
",",
"evidence",
":",
"Phosphorylation",
"(",
"substance1",
",",
"substance2",
",",
"evidence",
"=",
"evidence",
")",
"is_direct",
"=",
"True",
"return",
"(",
"statement_generator",
",",
"is_direct",
")"
]
| Return INDRA Statement corresponding to Geneways action type.
Parameters
----------
actiontype : str
The verb extracted by the Geneways processor
plo : str
A one character string designating whether Geneways classifies
this verb as a physical, logical, or other interaction
Returns
-------
statement_generator :
If there is no mapping to INDRA statements from this action type
the return value is None.
If there is such a mapping, statement_generator is an anonymous
function that takes in the subject agent, object agent, and evidence,
in that order, and returns an INDRA statement object. | [
"Return",
"INDRA",
"Statement",
"corresponding",
"to",
"Geneways",
"action",
"type",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/sources/geneways/processor.py#L155-L189 | train |
sorgerlab/indra | indra/sources/geneways/processor.py | GenewaysProcessor.make_statement | def make_statement(self, action, mention):
"""Makes an INDRA statement from a Geneways action and action mention.
Parameters
----------
action : GenewaysAction
The mechanism that the Geneways mention maps to. Note that
several text mentions can correspond to the same action if they are
referring to the same relationship - there may be multiple
Geneways action mentions corresponding to each action.
mention : GenewaysActionMention
The Geneways action mention object corresponding to a single
mention of a mechanism in a specific text. We make a new INDRA
statement corresponding to each action mention.
Returns
-------
statement : indra.statements.Statement
An INDRA statement corresponding to the provided Geneways action
mention, or None if the action mention's type does not map onto
any INDRA statement type in geneways_action_type_mapper.
"""
(statement_generator, is_direct) = \
geneways_action_to_indra_statement_type(mention.actiontype,
action.plo)
if statement_generator is None:
# Geneways statement does not map onto an indra statement
return None
# Try to find the full-text sentence
# Unfortunately, the sentence numbers in the Geneways dataset
# don't correspond to an obvious sentence segmentation.
# This code looks for sentences with the subject, object, and verb
# listed by the Geneways action mention table and only includes
# it in the evidence if there is exactly one such sentence
text = None
if self.get_ft_mention:
try:
content, content_type = get_full_text(mention.pmid, 'pmid')
if content is not None:
ftm = FullTextMention(mention, content)
sentences = ftm.find_matching_sentences()
if len(sentences) == 1:
text = sentences[0]
except Exception:
logger.warning('Could not fetch full text for PMID ' +
mention.pmid)
# Make an evidence object
epistemics = dict()
epistemics['direct'] = is_direct
annotations = mention.make_annotation()
annotations['plo'] = action.plo # plo only in action table
evidence = Evidence(source_api='geneways',
source_id=mention.actionmentionid,
pmid=mention.pmid, text=text,
epistemics=epistemics,
annotations=annotations)
# Construct the grounded and name standardized agents
# Note that this involves grounding the agent by
# converting the Entrez ID listed in the Geneways data with
# HGNC and UniProt
upstream_agent = get_agent(mention.upstream, action.up)
downstream_agent = get_agent(mention.downstream, action.dn)
# Make the statement
return statement_generator(upstream_agent, downstream_agent, evidence) | python | def make_statement(self, action, mention):
"""Makes an INDRA statement from a Geneways action and action mention.
Parameters
----------
action : GenewaysAction
The mechanism that the Geneways mention maps to. Note that
several text mentions can correspond to the same action if they are
referring to the same relationship - there may be multiple
Geneways action mentions corresponding to each action.
mention : GenewaysActionMention
The Geneways action mention object corresponding to a single
mention of a mechanism in a specific text. We make a new INDRA
statement corresponding to each action mention.
Returns
-------
statement : indra.statements.Statement
An INDRA statement corresponding to the provided Geneways action
mention, or None if the action mention's type does not map onto
any INDRA statement type in geneways_action_type_mapper.
"""
(statement_generator, is_direct) = \
geneways_action_to_indra_statement_type(mention.actiontype,
action.plo)
if statement_generator is None:
# Geneways statement does not map onto an indra statement
return None
# Try to find the full-text sentence
# Unfortunately, the sentence numbers in the Geneways dataset
# don't correspond to an obvious sentence segmentation.
# This code looks for sentences with the subject, object, and verb
# listed by the Geneways action mention table and only includes
# it in the evidence if there is exactly one such sentence
text = None
if self.get_ft_mention:
try:
content, content_type = get_full_text(mention.pmid, 'pmid')
if content is not None:
ftm = FullTextMention(mention, content)
sentences = ftm.find_matching_sentences()
if len(sentences) == 1:
text = sentences[0]
except Exception:
logger.warning('Could not fetch full text for PMID ' +
mention.pmid)
# Make an evidence object
epistemics = dict()
epistemics['direct'] = is_direct
annotations = mention.make_annotation()
annotations['plo'] = action.plo # plo only in action table
evidence = Evidence(source_api='geneways',
source_id=mention.actionmentionid,
pmid=mention.pmid, text=text,
epistemics=epistemics,
annotations=annotations)
# Construct the grounded and name standardized agents
# Note that this involves grounding the agent by
# converting the Entrez ID listed in the Geneways data with
# HGNC and UniProt
upstream_agent = get_agent(mention.upstream, action.up)
downstream_agent = get_agent(mention.downstream, action.dn)
# Make the statement
return statement_generator(upstream_agent, downstream_agent, evidence) | [
"def",
"make_statement",
"(",
"self",
",",
"action",
",",
"mention",
")",
":",
"(",
"statement_generator",
",",
"is_direct",
")",
"=",
"geneways_action_to_indra_statement_type",
"(",
"mention",
".",
"actiontype",
",",
"action",
".",
"plo",
")",
"if",
"statement_generator",
"is",
"None",
":",
"# Geneways statement does not map onto an indra statement",
"return",
"None",
"# Try to find the full-text sentence",
"# Unfortunately, the sentence numbers in the Geneways dataset",
"# don't correspond to an obvious sentence segmentation.",
"# This code looks for sentences with the subject, object, and verb",
"# listed by the Geneways action mention table and only includes",
"# it in the evidence if there is exactly one such sentence",
"text",
"=",
"None",
"if",
"self",
".",
"get_ft_mention",
":",
"try",
":",
"content",
",",
"content_type",
"=",
"get_full_text",
"(",
"mention",
".",
"pmid",
",",
"'pmid'",
")",
"if",
"content",
"is",
"not",
"None",
":",
"ftm",
"=",
"FullTextMention",
"(",
"mention",
",",
"content",
")",
"sentences",
"=",
"ftm",
".",
"find_matching_sentences",
"(",
")",
"if",
"len",
"(",
"sentences",
")",
"==",
"1",
":",
"text",
"=",
"sentences",
"[",
"0",
"]",
"except",
"Exception",
":",
"logger",
".",
"warning",
"(",
"'Could not fetch full text for PMID '",
"+",
"mention",
".",
"pmid",
")",
"# Make an evidence object",
"epistemics",
"=",
"dict",
"(",
")",
"epistemics",
"[",
"'direct'",
"]",
"=",
"is_direct",
"annotations",
"=",
"mention",
".",
"make_annotation",
"(",
")",
"annotations",
"[",
"'plo'",
"]",
"=",
"action",
".",
"plo",
"# plo only in action table",
"evidence",
"=",
"Evidence",
"(",
"source_api",
"=",
"'geneways'",
",",
"source_id",
"=",
"mention",
".",
"actionmentionid",
",",
"pmid",
"=",
"mention",
".",
"pmid",
",",
"text",
"=",
"text",
",",
"epistemics",
"=",
"epistemics",
",",
"annotations",
"=",
"annotations",
")",
"# Construct the grounded and name standardized agents",
"# Note that this involves grounding the agent by",
"# converting the Entrez ID listed in the Geneways data with",
"# HGNC and UniProt",
"upstream_agent",
"=",
"get_agent",
"(",
"mention",
".",
"upstream",
",",
"action",
".",
"up",
")",
"downstream_agent",
"=",
"get_agent",
"(",
"mention",
".",
"downstream",
",",
"action",
".",
"dn",
")",
"# Make the statement",
"return",
"statement_generator",
"(",
"upstream_agent",
",",
"downstream_agent",
",",
"evidence",
")"
]
| Makes an INDRA statement from a Geneways action and action mention.
Parameters
----------
action : GenewaysAction
The mechanism that the Geneways mention maps to. Note that
several text mentions can correspond to the same action if they are
referring to the same relationship - there may be multiple
Geneways action mentions corresponding to each action.
mention : GenewaysActionMention
The Geneways action mention object corresponding to a single
mention of a mechanism in a specific text. We make a new INDRA
statement corresponding to each action mention.
Returns
-------
statement : indra.statements.Statement
An INDRA statement corresponding to the provided Geneways action
mention, or None if the action mention's type does not map onto
any INDRA statement type in geneways_action_type_mapper. | [
"Makes",
"an",
"INDRA",
"statement",
"from",
"a",
"Geneways",
"action",
"and",
"action",
"mention",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/sources/geneways/processor.py#L71-L139 | train |
sorgerlab/indra | indra/preassembler/hierarchy_manager.py | HierarchyManager.load_from_rdf_file | def load_from_rdf_file(self, rdf_file):
"""Initialize given an RDF input file representing the hierarchy."
Parameters
----------
rdf_file : str
Path to an RDF file.
"""
self.graph = rdflib.Graph()
self.graph.parse(os.path.abspath(rdf_file), format='nt')
self.initialize() | python | def load_from_rdf_file(self, rdf_file):
"""Initialize given an RDF input file representing the hierarchy."
Parameters
----------
rdf_file : str
Path to an RDF file.
"""
self.graph = rdflib.Graph()
self.graph.parse(os.path.abspath(rdf_file), format='nt')
self.initialize() | [
"def",
"load_from_rdf_file",
"(",
"self",
",",
"rdf_file",
")",
":",
"self",
".",
"graph",
"=",
"rdflib",
".",
"Graph",
"(",
")",
"self",
".",
"graph",
".",
"parse",
"(",
"os",
".",
"path",
".",
"abspath",
"(",
"rdf_file",
")",
",",
"format",
"=",
"'nt'",
")",
"self",
".",
"initialize",
"(",
")"
]
| Initialize given an RDF input file representing the hierarchy."
Parameters
----------
rdf_file : str
Path to an RDF file. | [
"Initialize",
"given",
"an",
"RDF",
"input",
"file",
"representing",
"the",
"hierarchy",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/preassembler/hierarchy_manager.py#L62-L72 | train |
sorgerlab/indra | indra/preassembler/hierarchy_manager.py | HierarchyManager.load_from_rdf_string | def load_from_rdf_string(self, rdf_str):
"""Initialize given an RDF string representing the hierarchy."
Parameters
----------
rdf_str : str
An RDF string.
"""
self.graph = rdflib.Graph()
self.graph.parse(data=rdf_str, format='nt')
self.initialize() | python | def load_from_rdf_string(self, rdf_str):
"""Initialize given an RDF string representing the hierarchy."
Parameters
----------
rdf_str : str
An RDF string.
"""
self.graph = rdflib.Graph()
self.graph.parse(data=rdf_str, format='nt')
self.initialize() | [
"def",
"load_from_rdf_string",
"(",
"self",
",",
"rdf_str",
")",
":",
"self",
".",
"graph",
"=",
"rdflib",
".",
"Graph",
"(",
")",
"self",
".",
"graph",
".",
"parse",
"(",
"data",
"=",
"rdf_str",
",",
"format",
"=",
"'nt'",
")",
"self",
".",
"initialize",
"(",
")"
]
| Initialize given an RDF string representing the hierarchy."
Parameters
----------
rdf_str : str
An RDF string. | [
"Initialize",
"given",
"an",
"RDF",
"string",
"representing",
"the",
"hierarchy",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/preassembler/hierarchy_manager.py#L74-L84 | train |
sorgerlab/indra | indra/preassembler/hierarchy_manager.py | HierarchyManager.extend_with | def extend_with(self, rdf_file):
"""Extend the RDF graph of this HierarchyManager with another RDF file.
Parameters
----------
rdf_file : str
An RDF file which is parsed such that the current graph and the
graph described by the file are merged.
"""
self.graph.parse(os.path.abspath(rdf_file), format='nt')
self.initialize() | python | def extend_with(self, rdf_file):
"""Extend the RDF graph of this HierarchyManager with another RDF file.
Parameters
----------
rdf_file : str
An RDF file which is parsed such that the current graph and the
graph described by the file are merged.
"""
self.graph.parse(os.path.abspath(rdf_file), format='nt')
self.initialize() | [
"def",
"extend_with",
"(",
"self",
",",
"rdf_file",
")",
":",
"self",
".",
"graph",
".",
"parse",
"(",
"os",
".",
"path",
".",
"abspath",
"(",
"rdf_file",
")",
",",
"format",
"=",
"'nt'",
")",
"self",
".",
"initialize",
"(",
")"
]
| Extend the RDF graph of this HierarchyManager with another RDF file.
Parameters
----------
rdf_file : str
An RDF file which is parsed such that the current graph and the
graph described by the file are merged. | [
"Extend",
"the",
"RDF",
"graph",
"of",
"this",
"HierarchyManager",
"with",
"another",
"RDF",
"file",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/preassembler/hierarchy_manager.py#L116-L126 | train |
sorgerlab/indra | indra/preassembler/hierarchy_manager.py | HierarchyManager.build_transitive_closures | def build_transitive_closures(self):
"""Build the transitive closures of the hierarchy.
This method constructs dictionaries which contain terms in the
hierarchy as keys and either all the "isa+" or "partof+" related terms
as values.
"""
self.component_counter = 0
for rel, tc_dict in ((self.isa_objects, self.isa_closure),
(self.partof_objects, self.partof_closure),
(self.isa_or_partof_objects,
self.isa_or_partof_closure)):
self.build_transitive_closure(rel, tc_dict) | python | def build_transitive_closures(self):
"""Build the transitive closures of the hierarchy.
This method constructs dictionaries which contain terms in the
hierarchy as keys and either all the "isa+" or "partof+" related terms
as values.
"""
self.component_counter = 0
for rel, tc_dict in ((self.isa_objects, self.isa_closure),
(self.partof_objects, self.partof_closure),
(self.isa_or_partof_objects,
self.isa_or_partof_closure)):
self.build_transitive_closure(rel, tc_dict) | [
"def",
"build_transitive_closures",
"(",
"self",
")",
":",
"self",
".",
"component_counter",
"=",
"0",
"for",
"rel",
",",
"tc_dict",
"in",
"(",
"(",
"self",
".",
"isa_objects",
",",
"self",
".",
"isa_closure",
")",
",",
"(",
"self",
".",
"partof_objects",
",",
"self",
".",
"partof_closure",
")",
",",
"(",
"self",
".",
"isa_or_partof_objects",
",",
"self",
".",
"isa_or_partof_closure",
")",
")",
":",
"self",
".",
"build_transitive_closure",
"(",
"rel",
",",
"tc_dict",
")"
]
| Build the transitive closures of the hierarchy.
This method constructs dictionaries which contain terms in the
hierarchy as keys and either all the "isa+" or "partof+" related terms
as values. | [
"Build",
"the",
"transitive",
"closures",
"of",
"the",
"hierarchy",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/preassembler/hierarchy_manager.py#L128-L140 | train |
sorgerlab/indra | indra/preassembler/hierarchy_manager.py | HierarchyManager.build_transitive_closure | def build_transitive_closure(self, rel, tc_dict):
"""Build a transitive closure for a given relation in a given dict."""
# Make a function with the righ argument structure
rel_fun = lambda node, graph: rel(node)
for x in self.graph.all_nodes():
rel_closure = self.graph.transitiveClosure(rel_fun, x)
xs = x.toPython()
for y in rel_closure:
ys = y.toPython()
if xs == ys:
continue
try:
tc_dict[xs].append(ys)
except KeyError:
tc_dict[xs] = [ys]
if rel == self.isa_or_partof_objects:
self._add_component(xs, ys) | python | def build_transitive_closure(self, rel, tc_dict):
"""Build a transitive closure for a given relation in a given dict."""
# Make a function with the righ argument structure
rel_fun = lambda node, graph: rel(node)
for x in self.graph.all_nodes():
rel_closure = self.graph.transitiveClosure(rel_fun, x)
xs = x.toPython()
for y in rel_closure:
ys = y.toPython()
if xs == ys:
continue
try:
tc_dict[xs].append(ys)
except KeyError:
tc_dict[xs] = [ys]
if rel == self.isa_or_partof_objects:
self._add_component(xs, ys) | [
"def",
"build_transitive_closure",
"(",
"self",
",",
"rel",
",",
"tc_dict",
")",
":",
"# Make a function with the righ argument structure",
"rel_fun",
"=",
"lambda",
"node",
",",
"graph",
":",
"rel",
"(",
"node",
")",
"for",
"x",
"in",
"self",
".",
"graph",
".",
"all_nodes",
"(",
")",
":",
"rel_closure",
"=",
"self",
".",
"graph",
".",
"transitiveClosure",
"(",
"rel_fun",
",",
"x",
")",
"xs",
"=",
"x",
".",
"toPython",
"(",
")",
"for",
"y",
"in",
"rel_closure",
":",
"ys",
"=",
"y",
".",
"toPython",
"(",
")",
"if",
"xs",
"==",
"ys",
":",
"continue",
"try",
":",
"tc_dict",
"[",
"xs",
"]",
".",
"append",
"(",
"ys",
")",
"except",
"KeyError",
":",
"tc_dict",
"[",
"xs",
"]",
"=",
"[",
"ys",
"]",
"if",
"rel",
"==",
"self",
".",
"isa_or_partof_objects",
":",
"self",
".",
"_add_component",
"(",
"xs",
",",
"ys",
")"
]
| Build a transitive closure for a given relation in a given dict. | [
"Build",
"a",
"transitive",
"closure",
"for",
"a",
"given",
"relation",
"in",
"a",
"given",
"dict",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/preassembler/hierarchy_manager.py#L142-L158 | train |
sorgerlab/indra | indra/preassembler/hierarchy_manager.py | HierarchyManager.directly_or_indirectly_related | def directly_or_indirectly_related(self, ns1, id1, ns2, id2, closure_dict,
relation_func):
"""Return True if two entities have the speicified relationship.
This relation is constructed possibly through multiple links connecting
the two entities directly or indirectly.
Parameters
----------
ns1 : str
Namespace code for an entity.
id1 : str
URI for an entity.
ns2 : str
Namespace code for an entity.
id2 : str
URI for an entity.
closure_dict: dict
A dictionary mapping node names to nodes that have the
specified relationship, directly or indirectly. Empty if this
has not been precomputed.
relation_func: function
Function with arguments (node, graph) that generates objects
with some relationship with node on the given graph.
Returns
-------
bool
True if t1 has the specified relationship with t2, either
directly or through a series of intermediates; False otherwise.
"""
# if id2 is None, or both are None, then it's by definition isa:
if id2 is None or (id2 is None and id1 is None):
return True
# If only id1 is None, then it cannot be isa
elif id1 is None:
return False
if closure_dict:
term1 = self.get_uri(ns1, id1)
term2 = self.get_uri(ns2, id2)
ec = closure_dict.get(term1)
if ec is not None and term2 in ec:
return True
else:
return False
else:
if not self.uri_as_name:
e1 = self.find_entity(id1)
e2 = self.find_entity(id2)
if e1 is None or e2 is None:
return False
t1 = rdflib.term.URIRef(e1)
t2 = rdflib.term.URIRef(e2)
else:
u1 = self.get_uri(ns1, id1)
u2 = self.get_uri(ns2, id2)
t1 = rdflib.term.URIRef(u1)
t2 = rdflib.term.URIRef(u2)
to = self.graph.transitiveClosure(relation_func, t1)
if t2 in to:
return True
else:
return False | python | def directly_or_indirectly_related(self, ns1, id1, ns2, id2, closure_dict,
relation_func):
"""Return True if two entities have the speicified relationship.
This relation is constructed possibly through multiple links connecting
the two entities directly or indirectly.
Parameters
----------
ns1 : str
Namespace code for an entity.
id1 : str
URI for an entity.
ns2 : str
Namespace code for an entity.
id2 : str
URI for an entity.
closure_dict: dict
A dictionary mapping node names to nodes that have the
specified relationship, directly or indirectly. Empty if this
has not been precomputed.
relation_func: function
Function with arguments (node, graph) that generates objects
with some relationship with node on the given graph.
Returns
-------
bool
True if t1 has the specified relationship with t2, either
directly or through a series of intermediates; False otherwise.
"""
# if id2 is None, or both are None, then it's by definition isa:
if id2 is None or (id2 is None and id1 is None):
return True
# If only id1 is None, then it cannot be isa
elif id1 is None:
return False
if closure_dict:
term1 = self.get_uri(ns1, id1)
term2 = self.get_uri(ns2, id2)
ec = closure_dict.get(term1)
if ec is not None and term2 in ec:
return True
else:
return False
else:
if not self.uri_as_name:
e1 = self.find_entity(id1)
e2 = self.find_entity(id2)
if e1 is None or e2 is None:
return False
t1 = rdflib.term.URIRef(e1)
t2 = rdflib.term.URIRef(e2)
else:
u1 = self.get_uri(ns1, id1)
u2 = self.get_uri(ns2, id2)
t1 = rdflib.term.URIRef(u1)
t2 = rdflib.term.URIRef(u2)
to = self.graph.transitiveClosure(relation_func, t1)
if t2 in to:
return True
else:
return False | [
"def",
"directly_or_indirectly_related",
"(",
"self",
",",
"ns1",
",",
"id1",
",",
"ns2",
",",
"id2",
",",
"closure_dict",
",",
"relation_func",
")",
":",
"# if id2 is None, or both are None, then it's by definition isa:",
"if",
"id2",
"is",
"None",
"or",
"(",
"id2",
"is",
"None",
"and",
"id1",
"is",
"None",
")",
":",
"return",
"True",
"# If only id1 is None, then it cannot be isa",
"elif",
"id1",
"is",
"None",
":",
"return",
"False",
"if",
"closure_dict",
":",
"term1",
"=",
"self",
".",
"get_uri",
"(",
"ns1",
",",
"id1",
")",
"term2",
"=",
"self",
".",
"get_uri",
"(",
"ns2",
",",
"id2",
")",
"ec",
"=",
"closure_dict",
".",
"get",
"(",
"term1",
")",
"if",
"ec",
"is",
"not",
"None",
"and",
"term2",
"in",
"ec",
":",
"return",
"True",
"else",
":",
"return",
"False",
"else",
":",
"if",
"not",
"self",
".",
"uri_as_name",
":",
"e1",
"=",
"self",
".",
"find_entity",
"(",
"id1",
")",
"e2",
"=",
"self",
".",
"find_entity",
"(",
"id2",
")",
"if",
"e1",
"is",
"None",
"or",
"e2",
"is",
"None",
":",
"return",
"False",
"t1",
"=",
"rdflib",
".",
"term",
".",
"URIRef",
"(",
"e1",
")",
"t2",
"=",
"rdflib",
".",
"term",
".",
"URIRef",
"(",
"e2",
")",
"else",
":",
"u1",
"=",
"self",
".",
"get_uri",
"(",
"ns1",
",",
"id1",
")",
"u2",
"=",
"self",
".",
"get_uri",
"(",
"ns2",
",",
"id2",
")",
"t1",
"=",
"rdflib",
".",
"term",
".",
"URIRef",
"(",
"u1",
")",
"t2",
"=",
"rdflib",
".",
"term",
".",
"URIRef",
"(",
"u2",
")",
"to",
"=",
"self",
".",
"graph",
".",
"transitiveClosure",
"(",
"relation_func",
",",
"t1",
")",
"if",
"t2",
"in",
"to",
":",
"return",
"True",
"else",
":",
"return",
"False"
]
| Return True if two entities have the speicified relationship.
This relation is constructed possibly through multiple links connecting
the two entities directly or indirectly.
Parameters
----------
ns1 : str
Namespace code for an entity.
id1 : str
URI for an entity.
ns2 : str
Namespace code for an entity.
id2 : str
URI for an entity.
closure_dict: dict
A dictionary mapping node names to nodes that have the
specified relationship, directly or indirectly. Empty if this
has not been precomputed.
relation_func: function
Function with arguments (node, graph) that generates objects
with some relationship with node on the given graph.
Returns
-------
bool
True if t1 has the specified relationship with t2, either
directly or through a series of intermediates; False otherwise. | [
"Return",
"True",
"if",
"two",
"entities",
"have",
"the",
"speicified",
"relationship",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/preassembler/hierarchy_manager.py#L240-L304 | train |
sorgerlab/indra | indra/preassembler/hierarchy_manager.py | HierarchyManager.isa | def isa(self, ns1, id1, ns2, id2):
"""Return True if one entity has an "isa" relationship to another.
Parameters
----------
ns1 : str
Namespace code for an entity.
id1 : string
URI for an entity.
ns2 : str
Namespace code for an entity.
id2 : str
URI for an entity.
Returns
-------
bool
True if t1 has an "isa" relationship with t2, either directly or
through a series of intermediates; False otherwise.
"""
rel_fun = lambda node, graph: self.isa_objects(node)
return self.directly_or_indirectly_related(ns1, id1, ns2, id2,
self.isa_closure,
rel_fun) | python | def isa(self, ns1, id1, ns2, id2):
"""Return True if one entity has an "isa" relationship to another.
Parameters
----------
ns1 : str
Namespace code for an entity.
id1 : string
URI for an entity.
ns2 : str
Namespace code for an entity.
id2 : str
URI for an entity.
Returns
-------
bool
True if t1 has an "isa" relationship with t2, either directly or
through a series of intermediates; False otherwise.
"""
rel_fun = lambda node, graph: self.isa_objects(node)
return self.directly_or_indirectly_related(ns1, id1, ns2, id2,
self.isa_closure,
rel_fun) | [
"def",
"isa",
"(",
"self",
",",
"ns1",
",",
"id1",
",",
"ns2",
",",
"id2",
")",
":",
"rel_fun",
"=",
"lambda",
"node",
",",
"graph",
":",
"self",
".",
"isa_objects",
"(",
"node",
")",
"return",
"self",
".",
"directly_or_indirectly_related",
"(",
"ns1",
",",
"id1",
",",
"ns2",
",",
"id2",
",",
"self",
".",
"isa_closure",
",",
"rel_fun",
")"
]
| Return True if one entity has an "isa" relationship to another.
Parameters
----------
ns1 : str
Namespace code for an entity.
id1 : string
URI for an entity.
ns2 : str
Namespace code for an entity.
id2 : str
URI for an entity.
Returns
-------
bool
True if t1 has an "isa" relationship with t2, either directly or
through a series of intermediates; False otherwise. | [
"Return",
"True",
"if",
"one",
"entity",
"has",
"an",
"isa",
"relationship",
"to",
"another",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/preassembler/hierarchy_manager.py#L306-L329 | train |
sorgerlab/indra | indra/preassembler/hierarchy_manager.py | HierarchyManager.partof | def partof(self, ns1, id1, ns2, id2):
"""Return True if one entity is "partof" another.
Parameters
----------
ns1 : str
Namespace code for an entity.
id1 : str
URI for an entity.
ns2 : str
Namespace code for an entity.
id2 : str
URI for an entity.
Returns
-------
bool
True if t1 has a "partof" relationship with t2, either directly or
through a series of intermediates; False otherwise.
"""
rel_fun = lambda node, graph: self.partof_objects(node)
return self.directly_or_indirectly_related(ns1, id1, ns2, id2,
self.partof_closure,
rel_fun) | python | def partof(self, ns1, id1, ns2, id2):
"""Return True if one entity is "partof" another.
Parameters
----------
ns1 : str
Namespace code for an entity.
id1 : str
URI for an entity.
ns2 : str
Namespace code for an entity.
id2 : str
URI for an entity.
Returns
-------
bool
True if t1 has a "partof" relationship with t2, either directly or
through a series of intermediates; False otherwise.
"""
rel_fun = lambda node, graph: self.partof_objects(node)
return self.directly_or_indirectly_related(ns1, id1, ns2, id2,
self.partof_closure,
rel_fun) | [
"def",
"partof",
"(",
"self",
",",
"ns1",
",",
"id1",
",",
"ns2",
",",
"id2",
")",
":",
"rel_fun",
"=",
"lambda",
"node",
",",
"graph",
":",
"self",
".",
"partof_objects",
"(",
"node",
")",
"return",
"self",
".",
"directly_or_indirectly_related",
"(",
"ns1",
",",
"id1",
",",
"ns2",
",",
"id2",
",",
"self",
".",
"partof_closure",
",",
"rel_fun",
")"
]
| Return True if one entity is "partof" another.
Parameters
----------
ns1 : str
Namespace code for an entity.
id1 : str
URI for an entity.
ns2 : str
Namespace code for an entity.
id2 : str
URI for an entity.
Returns
-------
bool
True if t1 has a "partof" relationship with t2, either directly or
through a series of intermediates; False otherwise. | [
"Return",
"True",
"if",
"one",
"entity",
"is",
"partof",
"another",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/preassembler/hierarchy_manager.py#L331-L354 | train |
sorgerlab/indra | indra/preassembler/hierarchy_manager.py | HierarchyManager.isa_or_partof | def isa_or_partof(self, ns1, id1, ns2, id2):
"""Return True if two entities are in an "isa" or "partof" relationship
Parameters
----------
ns1 : str
Namespace code for an entity.
id1 : str
URI for an entity.
ns2 : str
Namespace code for an entity.
id2 : str
URI for an entity.
Returns
-------
bool
True if t1 has a "isa" or "partof" relationship with t2, either
directly or through a series of intermediates; False otherwise.
"""
rel_fun = lambda node, graph: self.isa_or_partof_objects(node)
return self.directly_or_indirectly_related(ns1, id1, ns2, id2,
self.isa_or_partof_closure,
rel_fun) | python | def isa_or_partof(self, ns1, id1, ns2, id2):
"""Return True if two entities are in an "isa" or "partof" relationship
Parameters
----------
ns1 : str
Namespace code for an entity.
id1 : str
URI for an entity.
ns2 : str
Namespace code for an entity.
id2 : str
URI for an entity.
Returns
-------
bool
True if t1 has a "isa" or "partof" relationship with t2, either
directly or through a series of intermediates; False otherwise.
"""
rel_fun = lambda node, graph: self.isa_or_partof_objects(node)
return self.directly_or_indirectly_related(ns1, id1, ns2, id2,
self.isa_or_partof_closure,
rel_fun) | [
"def",
"isa_or_partof",
"(",
"self",
",",
"ns1",
",",
"id1",
",",
"ns2",
",",
"id2",
")",
":",
"rel_fun",
"=",
"lambda",
"node",
",",
"graph",
":",
"self",
".",
"isa_or_partof_objects",
"(",
"node",
")",
"return",
"self",
".",
"directly_or_indirectly_related",
"(",
"ns1",
",",
"id1",
",",
"ns2",
",",
"id2",
",",
"self",
".",
"isa_or_partof_closure",
",",
"rel_fun",
")"
]
| Return True if two entities are in an "isa" or "partof" relationship
Parameters
----------
ns1 : str
Namespace code for an entity.
id1 : str
URI for an entity.
ns2 : str
Namespace code for an entity.
id2 : str
URI for an entity.
Returns
-------
bool
True if t1 has a "isa" or "partof" relationship with t2, either
directly or through a series of intermediates; False otherwise. | [
"Return",
"True",
"if",
"two",
"entities",
"are",
"in",
"an",
"isa",
"or",
"partof",
"relationship"
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/preassembler/hierarchy_manager.py#L356-L379 | train |
sorgerlab/indra | indra/preassembler/hierarchy_manager.py | HierarchyManager.is_opposite | def is_opposite(self, ns1, id1, ns2, id2):
"""Return True if two entities are in an "is_opposite" relationship
Parameters
----------
ns1 : str
Namespace code for an entity.
id1 : str
URI for an entity.
ns2 : str
Namespace code for an entity.
id2 : str
URI for an entity.
Returns
-------
bool
True if t1 has an "is_opposite" relationship with t2.
"""
u1 = self.get_uri(ns1, id1)
u2 = self.get_uri(ns2, id2)
t1 = rdflib.term.URIRef(u1)
t2 = rdflib.term.URIRef(u2)
rel = rdflib.term.URIRef(self.relations_prefix + 'is_opposite')
to = self.graph.objects(t1, rel)
if t2 in to:
return True
return False | python | def is_opposite(self, ns1, id1, ns2, id2):
"""Return True if two entities are in an "is_opposite" relationship
Parameters
----------
ns1 : str
Namespace code for an entity.
id1 : str
URI for an entity.
ns2 : str
Namespace code for an entity.
id2 : str
URI for an entity.
Returns
-------
bool
True if t1 has an "is_opposite" relationship with t2.
"""
u1 = self.get_uri(ns1, id1)
u2 = self.get_uri(ns2, id2)
t1 = rdflib.term.URIRef(u1)
t2 = rdflib.term.URIRef(u2)
rel = rdflib.term.URIRef(self.relations_prefix + 'is_opposite')
to = self.graph.objects(t1, rel)
if t2 in to:
return True
return False | [
"def",
"is_opposite",
"(",
"self",
",",
"ns1",
",",
"id1",
",",
"ns2",
",",
"id2",
")",
":",
"u1",
"=",
"self",
".",
"get_uri",
"(",
"ns1",
",",
"id1",
")",
"u2",
"=",
"self",
".",
"get_uri",
"(",
"ns2",
",",
"id2",
")",
"t1",
"=",
"rdflib",
".",
"term",
".",
"URIRef",
"(",
"u1",
")",
"t2",
"=",
"rdflib",
".",
"term",
".",
"URIRef",
"(",
"u2",
")",
"rel",
"=",
"rdflib",
".",
"term",
".",
"URIRef",
"(",
"self",
".",
"relations_prefix",
"+",
"'is_opposite'",
")",
"to",
"=",
"self",
".",
"graph",
".",
"objects",
"(",
"t1",
",",
"rel",
")",
"if",
"t2",
"in",
"to",
":",
"return",
"True",
"return",
"False"
]
| Return True if two entities are in an "is_opposite" relationship
Parameters
----------
ns1 : str
Namespace code for an entity.
id1 : str
URI for an entity.
ns2 : str
Namespace code for an entity.
id2 : str
URI for an entity.
Returns
-------
bool
True if t1 has an "is_opposite" relationship with t2. | [
"Return",
"True",
"if",
"two",
"entities",
"are",
"in",
"an",
"is_opposite",
"relationship"
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/preassembler/hierarchy_manager.py#L381-L409 | train |
sorgerlab/indra | indra/preassembler/hierarchy_manager.py | HierarchyManager.get_parents | def get_parents(self, uri, type='all'):
"""Return parents of a given entry.
Parameters
----------
uri : str
The URI of the entry whose parents are to be returned. See the
get_uri method to construct this URI from a name space and id.
type : str
'all': return all parents irrespective of level;
'immediate': return only the immediate parents;
'top': return only the highest level parents
"""
# First do a quick dict lookup to see if there are any parents
all_parents = set(self.isa_or_partof_closure.get(uri, []))
# If there are no parents or we are looking for all, we can return here
if not all_parents or type == 'all':
return all_parents
# If we need immediate parents, we search again, this time knowing that
# the uri is definitely in the graph since it has some parents
if type == 'immediate':
node = rdflib.term.URIRef(uri)
immediate_parents = list(set(self.isa_or_partof_objects(node)))
return [p.toPython() for p in immediate_parents]
elif type == 'top':
top_parents = [p for p in all_parents if
not self.isa_or_partof_closure.get(p)]
return top_parents | python | def get_parents(self, uri, type='all'):
"""Return parents of a given entry.
Parameters
----------
uri : str
The URI of the entry whose parents are to be returned. See the
get_uri method to construct this URI from a name space and id.
type : str
'all': return all parents irrespective of level;
'immediate': return only the immediate parents;
'top': return only the highest level parents
"""
# First do a quick dict lookup to see if there are any parents
all_parents = set(self.isa_or_partof_closure.get(uri, []))
# If there are no parents or we are looking for all, we can return here
if not all_parents or type == 'all':
return all_parents
# If we need immediate parents, we search again, this time knowing that
# the uri is definitely in the graph since it has some parents
if type == 'immediate':
node = rdflib.term.URIRef(uri)
immediate_parents = list(set(self.isa_or_partof_objects(node)))
return [p.toPython() for p in immediate_parents]
elif type == 'top':
top_parents = [p for p in all_parents if
not self.isa_or_partof_closure.get(p)]
return top_parents | [
"def",
"get_parents",
"(",
"self",
",",
"uri",
",",
"type",
"=",
"'all'",
")",
":",
"# First do a quick dict lookup to see if there are any parents",
"all_parents",
"=",
"set",
"(",
"self",
".",
"isa_or_partof_closure",
".",
"get",
"(",
"uri",
",",
"[",
"]",
")",
")",
"# If there are no parents or we are looking for all, we can return here",
"if",
"not",
"all_parents",
"or",
"type",
"==",
"'all'",
":",
"return",
"all_parents",
"# If we need immediate parents, we search again, this time knowing that",
"# the uri is definitely in the graph since it has some parents",
"if",
"type",
"==",
"'immediate'",
":",
"node",
"=",
"rdflib",
".",
"term",
".",
"URIRef",
"(",
"uri",
")",
"immediate_parents",
"=",
"list",
"(",
"set",
"(",
"self",
".",
"isa_or_partof_objects",
"(",
"node",
")",
")",
")",
"return",
"[",
"p",
".",
"toPython",
"(",
")",
"for",
"p",
"in",
"immediate_parents",
"]",
"elif",
"type",
"==",
"'top'",
":",
"top_parents",
"=",
"[",
"p",
"for",
"p",
"in",
"all_parents",
"if",
"not",
"self",
".",
"isa_or_partof_closure",
".",
"get",
"(",
"p",
")",
"]",
"return",
"top_parents"
]
| Return parents of a given entry.
Parameters
----------
uri : str
The URI of the entry whose parents are to be returned. See the
get_uri method to construct this URI from a name space and id.
type : str
'all': return all parents irrespective of level;
'immediate': return only the immediate parents;
'top': return only the highest level parents | [
"Return",
"parents",
"of",
"a",
"given",
"entry",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/preassembler/hierarchy_manager.py#L411-L439 | train |
sorgerlab/indra | indra/sources/trips/drum_reader.py | _get_perf | def _get_perf(text, msg_id):
"""Return a request message for a given text."""
msg = KQMLPerformative('REQUEST')
msg.set('receiver', 'READER')
content = KQMLList('run-text')
content.sets('text', text)
msg.set('content', content)
msg.set('reply-with', msg_id)
return msg | python | def _get_perf(text, msg_id):
"""Return a request message for a given text."""
msg = KQMLPerformative('REQUEST')
msg.set('receiver', 'READER')
content = KQMLList('run-text')
content.sets('text', text)
msg.set('content', content)
msg.set('reply-with', msg_id)
return msg | [
"def",
"_get_perf",
"(",
"text",
",",
"msg_id",
")",
":",
"msg",
"=",
"KQMLPerformative",
"(",
"'REQUEST'",
")",
"msg",
".",
"set",
"(",
"'receiver'",
",",
"'READER'",
")",
"content",
"=",
"KQMLList",
"(",
"'run-text'",
")",
"content",
".",
"sets",
"(",
"'text'",
",",
"text",
")",
"msg",
".",
"set",
"(",
"'content'",
",",
"content",
")",
"msg",
".",
"set",
"(",
"'reply-with'",
",",
"msg_id",
")",
"return",
"msg"
]
| Return a request message for a given text. | [
"Return",
"a",
"request",
"message",
"for",
"a",
"given",
"text",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/sources/trips/drum_reader.py#L156-L164 | train |
sorgerlab/indra | indra/sources/trips/drum_reader.py | DrumReader.read_pmc | def read_pmc(self, pmcid):
"""Read a given PMC article.
Parameters
----------
pmcid : str
The PMC ID of the article to read. Note that only
articles in the open-access subset of PMC will work.
"""
msg = KQMLPerformative('REQUEST')
msg.set('receiver', 'READER')
content = KQMLList('run-pmcid')
content.sets('pmcid', pmcid)
content.set('reply-when-done', 'true')
msg.set('content', content)
msg.set('reply-with', 'P-%s' % pmcid)
self.reply_counter += 1
self.send(msg) | python | def read_pmc(self, pmcid):
"""Read a given PMC article.
Parameters
----------
pmcid : str
The PMC ID of the article to read. Note that only
articles in the open-access subset of PMC will work.
"""
msg = KQMLPerformative('REQUEST')
msg.set('receiver', 'READER')
content = KQMLList('run-pmcid')
content.sets('pmcid', pmcid)
content.set('reply-when-done', 'true')
msg.set('content', content)
msg.set('reply-with', 'P-%s' % pmcid)
self.reply_counter += 1
self.send(msg) | [
"def",
"read_pmc",
"(",
"self",
",",
"pmcid",
")",
":",
"msg",
"=",
"KQMLPerformative",
"(",
"'REQUEST'",
")",
"msg",
".",
"set",
"(",
"'receiver'",
",",
"'READER'",
")",
"content",
"=",
"KQMLList",
"(",
"'run-pmcid'",
")",
"content",
".",
"sets",
"(",
"'pmcid'",
",",
"pmcid",
")",
"content",
".",
"set",
"(",
"'reply-when-done'",
",",
"'true'",
")",
"msg",
".",
"set",
"(",
"'content'",
",",
"content",
")",
"msg",
".",
"set",
"(",
"'reply-with'",
",",
"'P-%s'",
"%",
"pmcid",
")",
"self",
".",
"reply_counter",
"+=",
"1",
"self",
".",
"send",
"(",
"msg",
")"
]
| Read a given PMC article.
Parameters
----------
pmcid : str
The PMC ID of the article to read. Note that only
articles in the open-access subset of PMC will work. | [
"Read",
"a",
"given",
"PMC",
"article",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/sources/trips/drum_reader.py#L87-L104 | train |
sorgerlab/indra | indra/sources/trips/drum_reader.py | DrumReader.read_text | def read_text(self, text):
"""Read a given text phrase.
Parameters
----------
text : str
The text to read. Typically a sentence or a paragraph.
"""
logger.info('Reading: "%s"' % text)
msg_id = 'RT000%s' % self.msg_counter
kqml_perf = _get_perf(text, msg_id)
self.reply_counter += 1
self.msg_counter += 1
self.send(kqml_perf) | python | def read_text(self, text):
"""Read a given text phrase.
Parameters
----------
text : str
The text to read. Typically a sentence or a paragraph.
"""
logger.info('Reading: "%s"' % text)
msg_id = 'RT000%s' % self.msg_counter
kqml_perf = _get_perf(text, msg_id)
self.reply_counter += 1
self.msg_counter += 1
self.send(kqml_perf) | [
"def",
"read_text",
"(",
"self",
",",
"text",
")",
":",
"logger",
".",
"info",
"(",
"'Reading: \"%s\"'",
"%",
"text",
")",
"msg_id",
"=",
"'RT000%s'",
"%",
"self",
".",
"msg_counter",
"kqml_perf",
"=",
"_get_perf",
"(",
"text",
",",
"msg_id",
")",
"self",
".",
"reply_counter",
"+=",
"1",
"self",
".",
"msg_counter",
"+=",
"1",
"self",
".",
"send",
"(",
"kqml_perf",
")"
]
| Read a given text phrase.
Parameters
----------
text : str
The text to read. Typically a sentence or a paragraph. | [
"Read",
"a",
"given",
"text",
"phrase",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/sources/trips/drum_reader.py#L106-L119 | train |
sorgerlab/indra | indra/sources/trips/drum_reader.py | DrumReader.receive_reply | def receive_reply(self, msg, content):
"""Handle replies with reading results."""
reply_head = content.head()
if reply_head == 'error':
comment = content.gets('comment')
logger.error('Got error reply: "%s"' % comment)
else:
extractions = content.gets('ekb')
self.extractions.append(extractions)
self.reply_counter -= 1
if self.reply_counter == 0:
self.exit(0) | python | def receive_reply(self, msg, content):
"""Handle replies with reading results."""
reply_head = content.head()
if reply_head == 'error':
comment = content.gets('comment')
logger.error('Got error reply: "%s"' % comment)
else:
extractions = content.gets('ekb')
self.extractions.append(extractions)
self.reply_counter -= 1
if self.reply_counter == 0:
self.exit(0) | [
"def",
"receive_reply",
"(",
"self",
",",
"msg",
",",
"content",
")",
":",
"reply_head",
"=",
"content",
".",
"head",
"(",
")",
"if",
"reply_head",
"==",
"'error'",
":",
"comment",
"=",
"content",
".",
"gets",
"(",
"'comment'",
")",
"logger",
".",
"error",
"(",
"'Got error reply: \"%s\"'",
"%",
"comment",
")",
"else",
":",
"extractions",
"=",
"content",
".",
"gets",
"(",
"'ekb'",
")",
"self",
".",
"extractions",
".",
"append",
"(",
"extractions",
")",
"self",
".",
"reply_counter",
"-=",
"1",
"if",
"self",
".",
"reply_counter",
"==",
"0",
":",
"self",
".",
"exit",
"(",
"0",
")"
]
| Handle replies with reading results. | [
"Handle",
"replies",
"with",
"reading",
"results",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/sources/trips/drum_reader.py#L121-L132 | train |
sorgerlab/indra | indra/sources/hume/visualize_causal.py | split_long_sentence | def split_long_sentence(sentence, words_per_line):
"""Takes a sentence and adds a newline every "words_per_line" words.
Parameters
----------
sentence: str
Sentene to split
words_per_line: double
Add a newline every this many words
"""
words = sentence.split(' ')
split_sentence = ''
for i in range(len(words)):
split_sentence = split_sentence + words[i]
if (i+1) % words_per_line == 0:
split_sentence = split_sentence + '\n'
elif i != len(words) - 1:
split_sentence = split_sentence + " "
return split_sentence | python | def split_long_sentence(sentence, words_per_line):
"""Takes a sentence and adds a newline every "words_per_line" words.
Parameters
----------
sentence: str
Sentene to split
words_per_line: double
Add a newline every this many words
"""
words = sentence.split(' ')
split_sentence = ''
for i in range(len(words)):
split_sentence = split_sentence + words[i]
if (i+1) % words_per_line == 0:
split_sentence = split_sentence + '\n'
elif i != len(words) - 1:
split_sentence = split_sentence + " "
return split_sentence | [
"def",
"split_long_sentence",
"(",
"sentence",
",",
"words_per_line",
")",
":",
"words",
"=",
"sentence",
".",
"split",
"(",
"' '",
")",
"split_sentence",
"=",
"''",
"for",
"i",
"in",
"range",
"(",
"len",
"(",
"words",
")",
")",
":",
"split_sentence",
"=",
"split_sentence",
"+",
"words",
"[",
"i",
"]",
"if",
"(",
"i",
"+",
"1",
")",
"%",
"words_per_line",
"==",
"0",
":",
"split_sentence",
"=",
"split_sentence",
"+",
"'\\n'",
"elif",
"i",
"!=",
"len",
"(",
"words",
")",
"-",
"1",
":",
"split_sentence",
"=",
"split_sentence",
"+",
"\" \"",
"return",
"split_sentence"
]
| Takes a sentence and adds a newline every "words_per_line" words.
Parameters
----------
sentence: str
Sentene to split
words_per_line: double
Add a newline every this many words | [
"Takes",
"a",
"sentence",
"and",
"adds",
"a",
"newline",
"every",
"words_per_line",
"words",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/sources/hume/visualize_causal.py#L7-L25 | train |
sorgerlab/indra | indra/sources/hume/visualize_causal.py | shorter_name | def shorter_name(key):
"""Return a shorter name for an id.
Does this by only taking the last part of the URI,
after the last / and the last #. Also replaces - and . with _.
Parameters
----------
key: str
Some URI
Returns
-------
key_short: str
A shortened, but more ambiguous, identifier
"""
key_short = key
for sep in ['#', '/']:
ind = key_short.rfind(sep)
if ind is not None:
key_short = key_short[ind+1:]
else:
key_short = key_short
return key_short.replace('-', '_').replace('.', '_') | python | def shorter_name(key):
"""Return a shorter name for an id.
Does this by only taking the last part of the URI,
after the last / and the last #. Also replaces - and . with _.
Parameters
----------
key: str
Some URI
Returns
-------
key_short: str
A shortened, but more ambiguous, identifier
"""
key_short = key
for sep in ['#', '/']:
ind = key_short.rfind(sep)
if ind is not None:
key_short = key_short[ind+1:]
else:
key_short = key_short
return key_short.replace('-', '_').replace('.', '_') | [
"def",
"shorter_name",
"(",
"key",
")",
":",
"key_short",
"=",
"key",
"for",
"sep",
"in",
"[",
"'#'",
",",
"'/'",
"]",
":",
"ind",
"=",
"key_short",
".",
"rfind",
"(",
"sep",
")",
"if",
"ind",
"is",
"not",
"None",
":",
"key_short",
"=",
"key_short",
"[",
"ind",
"+",
"1",
":",
"]",
"else",
":",
"key_short",
"=",
"key_short",
"return",
"key_short",
".",
"replace",
"(",
"'-'",
",",
"'_'",
")",
".",
"replace",
"(",
"'.'",
",",
"'_'",
")"
]
| Return a shorter name for an id.
Does this by only taking the last part of the URI,
after the last / and the last #. Also replaces - and . with _.
Parameters
----------
key: str
Some URI
Returns
-------
key_short: str
A shortened, but more ambiguous, identifier | [
"Return",
"a",
"shorter",
"name",
"for",
"an",
"id",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/sources/hume/visualize_causal.py#L28-L51 | train |
sorgerlab/indra | indra/sources/hume/visualize_causal.py | add_event_property_edges | def add_event_property_edges(event_entity, entries):
"""Adds edges to the graph for event properties."""
do_not_log = ['@type', '@id',
'http://worldmodelers.com/DataProvenance#sourced_from']
for prop in event_entity:
if prop not in do_not_log:
value = event_entity[prop]
value_entry = None
value_str = None
if '@id' in value[0]:
value = value[0]['@id']
if value in entries:
value_str = get_entry_compact_text_repr(entries[value],
entries)
#get_entry_compact_text_repr(entry, entries)
if value_str is not None:
edges.append([shorter_name(event_entity['@id']),
shorter_name(value),
shorter_name(prop)])
node_labels[shorter_name(value)] = value_str | python | def add_event_property_edges(event_entity, entries):
"""Adds edges to the graph for event properties."""
do_not_log = ['@type', '@id',
'http://worldmodelers.com/DataProvenance#sourced_from']
for prop in event_entity:
if prop not in do_not_log:
value = event_entity[prop]
value_entry = None
value_str = None
if '@id' in value[0]:
value = value[0]['@id']
if value in entries:
value_str = get_entry_compact_text_repr(entries[value],
entries)
#get_entry_compact_text_repr(entry, entries)
if value_str is not None:
edges.append([shorter_name(event_entity['@id']),
shorter_name(value),
shorter_name(prop)])
node_labels[shorter_name(value)] = value_str | [
"def",
"add_event_property_edges",
"(",
"event_entity",
",",
"entries",
")",
":",
"do_not_log",
"=",
"[",
"'@type'",
",",
"'@id'",
",",
"'http://worldmodelers.com/DataProvenance#sourced_from'",
"]",
"for",
"prop",
"in",
"event_entity",
":",
"if",
"prop",
"not",
"in",
"do_not_log",
":",
"value",
"=",
"event_entity",
"[",
"prop",
"]",
"value_entry",
"=",
"None",
"value_str",
"=",
"None",
"if",
"'@id'",
"in",
"value",
"[",
"0",
"]",
":",
"value",
"=",
"value",
"[",
"0",
"]",
"[",
"'@id'",
"]",
"if",
"value",
"in",
"entries",
":",
"value_str",
"=",
"get_entry_compact_text_repr",
"(",
"entries",
"[",
"value",
"]",
",",
"entries",
")",
"#get_entry_compact_text_repr(entry, entries)",
"if",
"value_str",
"is",
"not",
"None",
":",
"edges",
".",
"append",
"(",
"[",
"shorter_name",
"(",
"event_entity",
"[",
"'@id'",
"]",
")",
",",
"shorter_name",
"(",
"value",
")",
",",
"shorter_name",
"(",
"prop",
")",
"]",
")",
"node_labels",
"[",
"shorter_name",
"(",
"value",
")",
"]",
"=",
"value_str"
]
| Adds edges to the graph for event properties. | [
"Adds",
"edges",
"to",
"the",
"graph",
"for",
"event",
"properties",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/sources/hume/visualize_causal.py#L54-L76 | train |
sorgerlab/indra | indra/sources/hume/visualize_causal.py | get_sourced_from | def get_sourced_from(entry):
"""Get a list of values from the source_from attribute"""
sourced_from = 'http://worldmodelers.com/DataProvenance#sourced_from'
if sourced_from in entry:
values = entry[sourced_from]
values = [i['@id'] for i in values]
return values | python | def get_sourced_from(entry):
"""Get a list of values from the source_from attribute"""
sourced_from = 'http://worldmodelers.com/DataProvenance#sourced_from'
if sourced_from in entry:
values = entry[sourced_from]
values = [i['@id'] for i in values]
return values | [
"def",
"get_sourced_from",
"(",
"entry",
")",
":",
"sourced_from",
"=",
"'http://worldmodelers.com/DataProvenance#sourced_from'",
"if",
"sourced_from",
"in",
"entry",
":",
"values",
"=",
"entry",
"[",
"sourced_from",
"]",
"values",
"=",
"[",
"i",
"[",
"'@id'",
"]",
"for",
"i",
"in",
"values",
"]",
"return",
"values"
]
| Get a list of values from the source_from attribute | [
"Get",
"a",
"list",
"of",
"values",
"from",
"the",
"source_from",
"attribute"
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/sources/hume/visualize_causal.py#L127-L134 | train |
sorgerlab/indra | indra/sources/hume/visualize_causal.py | get_entry_compact_text_repr | def get_entry_compact_text_repr(entry, entries):
"""If the entry has a text value, return that.
If the entry has a source_from value, return the text value of the source.
Otherwise, return None."""
text = get_shortest_text_value(entry)
if text is not None:
return text
else:
sources = get_sourced_from(entry)
# There are a lot of references to this entity, each of which refer
# to it by a different text label. For the sake of visualization,
# let's pick one of these labels (in this case, the shortest one)
if sources is not None:
texts = []
for source in sources:
source_entry = entries[source]
texts.append(get_shortest_text_value(source_entry))
return get_shortest_string(texts) | python | def get_entry_compact_text_repr(entry, entries):
"""If the entry has a text value, return that.
If the entry has a source_from value, return the text value of the source.
Otherwise, return None."""
text = get_shortest_text_value(entry)
if text is not None:
return text
else:
sources = get_sourced_from(entry)
# There are a lot of references to this entity, each of which refer
# to it by a different text label. For the sake of visualization,
# let's pick one of these labels (in this case, the shortest one)
if sources is not None:
texts = []
for source in sources:
source_entry = entries[source]
texts.append(get_shortest_text_value(source_entry))
return get_shortest_string(texts) | [
"def",
"get_entry_compact_text_repr",
"(",
"entry",
",",
"entries",
")",
":",
"text",
"=",
"get_shortest_text_value",
"(",
"entry",
")",
"if",
"text",
"is",
"not",
"None",
":",
"return",
"text",
"else",
":",
"sources",
"=",
"get_sourced_from",
"(",
"entry",
")",
"# There are a lot of references to this entity, each of which refer",
"# to it by a different text label. For the sake of visualization,",
"# let's pick one of these labels (in this case, the shortest one)",
"if",
"sources",
"is",
"not",
"None",
":",
"texts",
"=",
"[",
"]",
"for",
"source",
"in",
"sources",
":",
"source_entry",
"=",
"entries",
"[",
"source",
"]",
"texts",
".",
"append",
"(",
"get_shortest_text_value",
"(",
"source_entry",
")",
")",
"return",
"get_shortest_string",
"(",
"texts",
")"
]
| If the entry has a text value, return that.
If the entry has a source_from value, return the text value of the source.
Otherwise, return None. | [
"If",
"the",
"entry",
"has",
"a",
"text",
"value",
"return",
"that",
".",
"If",
"the",
"entry",
"has",
"a",
"source_from",
"value",
"return",
"the",
"text",
"value",
"of",
"the",
"source",
".",
"Otherwise",
"return",
"None",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/sources/hume/visualize_causal.py#L137-L154 | train |
sorgerlab/indra | indra/sources/sparser/api.py | process_text | def process_text(text, output_fmt='json', outbuf=None, cleanup=True, key='',
**kwargs):
"""Return processor with Statements extracted by reading text with Sparser.
Parameters
----------
text : str
The text to be processed
output_fmt: Optional[str]
The output format to obtain from Sparser, with the two options being
'json' and 'xml'. Default: 'json'
outbuf : Optional[file]
A file like object that the Sparser output is written to.
cleanup : Optional[bool]
If True, the temporary file created, which is used as an input
file for Sparser, as well as the output file created by Sparser
are removed. Default: True
key : Optional[str]
A key which is embedded into the name of the temporary file
passed to Sparser for reading. Default is empty string.
Returns
-------
SparserXMLProcessor or SparserJSONProcessor depending on what output
format was chosen.
"""
nxml_str = make_nxml_from_text(text)
return process_nxml_str(nxml_str, output_fmt, outbuf, cleanup, key,
**kwargs) | python | def process_text(text, output_fmt='json', outbuf=None, cleanup=True, key='',
**kwargs):
"""Return processor with Statements extracted by reading text with Sparser.
Parameters
----------
text : str
The text to be processed
output_fmt: Optional[str]
The output format to obtain from Sparser, with the two options being
'json' and 'xml'. Default: 'json'
outbuf : Optional[file]
A file like object that the Sparser output is written to.
cleanup : Optional[bool]
If True, the temporary file created, which is used as an input
file for Sparser, as well as the output file created by Sparser
are removed. Default: True
key : Optional[str]
A key which is embedded into the name of the temporary file
passed to Sparser for reading. Default is empty string.
Returns
-------
SparserXMLProcessor or SparserJSONProcessor depending on what output
format was chosen.
"""
nxml_str = make_nxml_from_text(text)
return process_nxml_str(nxml_str, output_fmt, outbuf, cleanup, key,
**kwargs) | [
"def",
"process_text",
"(",
"text",
",",
"output_fmt",
"=",
"'json'",
",",
"outbuf",
"=",
"None",
",",
"cleanup",
"=",
"True",
",",
"key",
"=",
"''",
",",
"*",
"*",
"kwargs",
")",
":",
"nxml_str",
"=",
"make_nxml_from_text",
"(",
"text",
")",
"return",
"process_nxml_str",
"(",
"nxml_str",
",",
"output_fmt",
",",
"outbuf",
",",
"cleanup",
",",
"key",
",",
"*",
"*",
"kwargs",
")"
]
| Return processor with Statements extracted by reading text with Sparser.
Parameters
----------
text : str
The text to be processed
output_fmt: Optional[str]
The output format to obtain from Sparser, with the two options being
'json' and 'xml'. Default: 'json'
outbuf : Optional[file]
A file like object that the Sparser output is written to.
cleanup : Optional[bool]
If True, the temporary file created, which is used as an input
file for Sparser, as well as the output file created by Sparser
are removed. Default: True
key : Optional[str]
A key which is embedded into the name of the temporary file
passed to Sparser for reading. Default is empty string.
Returns
-------
SparserXMLProcessor or SparserJSONProcessor depending on what output
format was chosen. | [
"Return",
"processor",
"with",
"Statements",
"extracted",
"by",
"reading",
"text",
"with",
"Sparser",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/sources/sparser/api.py#L31-L59 | train |
sorgerlab/indra | indra/sources/sparser/api.py | process_nxml_str | def process_nxml_str(nxml_str, output_fmt='json', outbuf=None, cleanup=True,
key='', **kwargs):
"""Return processor with Statements extracted by reading an NXML string.
Parameters
----------
nxml_str : str
The string value of the NXML-formatted paper to be read.
output_fmt: Optional[str]
The output format to obtain from Sparser, with the two options being
'json' and 'xml'. Default: 'json'
outbuf : Optional[file]
A file like object that the Sparser output is written to.
cleanup : Optional[bool]
If True, the temporary file created in this function,
which is used as an input file for Sparser, as well as the
output file created by Sparser are removed. Default: True
key : Optional[str]
A key which is embedded into the name of the temporary file
passed to Sparser for reading. Default is empty string.
Returns
-------
SparserXMLProcessor or SparserJSONProcessor depending on what output
format was chosen.
"""
tmp_fname = 'PMC%s_%d.nxml' % (key, mp.current_process().pid)
with open(tmp_fname, 'wb') as fh:
fh.write(nxml_str.encode('utf-8'))
try:
sp = process_nxml_file(tmp_fname, output_fmt, outbuf, cleanup,
**kwargs)
finally:
if cleanup and os.path.exists(tmp_fname):
os.remove(tmp_fname)
return sp | python | def process_nxml_str(nxml_str, output_fmt='json', outbuf=None, cleanup=True,
key='', **kwargs):
"""Return processor with Statements extracted by reading an NXML string.
Parameters
----------
nxml_str : str
The string value of the NXML-formatted paper to be read.
output_fmt: Optional[str]
The output format to obtain from Sparser, with the two options being
'json' and 'xml'. Default: 'json'
outbuf : Optional[file]
A file like object that the Sparser output is written to.
cleanup : Optional[bool]
If True, the temporary file created in this function,
which is used as an input file for Sparser, as well as the
output file created by Sparser are removed. Default: True
key : Optional[str]
A key which is embedded into the name of the temporary file
passed to Sparser for reading. Default is empty string.
Returns
-------
SparserXMLProcessor or SparserJSONProcessor depending on what output
format was chosen.
"""
tmp_fname = 'PMC%s_%d.nxml' % (key, mp.current_process().pid)
with open(tmp_fname, 'wb') as fh:
fh.write(nxml_str.encode('utf-8'))
try:
sp = process_nxml_file(tmp_fname, output_fmt, outbuf, cleanup,
**kwargs)
finally:
if cleanup and os.path.exists(tmp_fname):
os.remove(tmp_fname)
return sp | [
"def",
"process_nxml_str",
"(",
"nxml_str",
",",
"output_fmt",
"=",
"'json'",
",",
"outbuf",
"=",
"None",
",",
"cleanup",
"=",
"True",
",",
"key",
"=",
"''",
",",
"*",
"*",
"kwargs",
")",
":",
"tmp_fname",
"=",
"'PMC%s_%d.nxml'",
"%",
"(",
"key",
",",
"mp",
".",
"current_process",
"(",
")",
".",
"pid",
")",
"with",
"open",
"(",
"tmp_fname",
",",
"'wb'",
")",
"as",
"fh",
":",
"fh",
".",
"write",
"(",
"nxml_str",
".",
"encode",
"(",
"'utf-8'",
")",
")",
"try",
":",
"sp",
"=",
"process_nxml_file",
"(",
"tmp_fname",
",",
"output_fmt",
",",
"outbuf",
",",
"cleanup",
",",
"*",
"*",
"kwargs",
")",
"finally",
":",
"if",
"cleanup",
"and",
"os",
".",
"path",
".",
"exists",
"(",
"tmp_fname",
")",
":",
"os",
".",
"remove",
"(",
"tmp_fname",
")",
"return",
"sp"
]
| Return processor with Statements extracted by reading an NXML string.
Parameters
----------
nxml_str : str
The string value of the NXML-formatted paper to be read.
output_fmt: Optional[str]
The output format to obtain from Sparser, with the two options being
'json' and 'xml'. Default: 'json'
outbuf : Optional[file]
A file like object that the Sparser output is written to.
cleanup : Optional[bool]
If True, the temporary file created in this function,
which is used as an input file for Sparser, as well as the
output file created by Sparser are removed. Default: True
key : Optional[str]
A key which is embedded into the name of the temporary file
passed to Sparser for reading. Default is empty string.
Returns
-------
SparserXMLProcessor or SparserJSONProcessor depending on what output
format was chosen. | [
"Return",
"processor",
"with",
"Statements",
"extracted",
"by",
"reading",
"an",
"NXML",
"string",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/sources/sparser/api.py#L62-L97 | train |
sorgerlab/indra | indra/sources/sparser/api.py | process_nxml_file | def process_nxml_file(fname, output_fmt='json', outbuf=None, cleanup=True,
**kwargs):
"""Return processor with Statements extracted by reading an NXML file.
Parameters
----------
fname : str
The path to the NXML file to be read.
output_fmt: Optional[str]
The output format to obtain from Sparser, with the two options being
'json' and 'xml'. Default: 'json'
outbuf : Optional[file]
A file like object that the Sparser output is written to.
cleanup : Optional[bool]
If True, the output file created by Sparser is removed.
Default: True
Returns
-------
sp : SparserXMLProcessor or SparserJSONProcessor depending on what output
format was chosen.
"""
sp = None
out_fname = None
try:
out_fname = run_sparser(fname, output_fmt, outbuf, **kwargs)
sp = process_sparser_output(out_fname, output_fmt)
except Exception as e:
logger.error("Sparser failed to run on %s." % fname)
logger.exception(e)
finally:
if out_fname is not None and os.path.exists(out_fname) and cleanup:
os.remove(out_fname)
return sp | python | def process_nxml_file(fname, output_fmt='json', outbuf=None, cleanup=True,
**kwargs):
"""Return processor with Statements extracted by reading an NXML file.
Parameters
----------
fname : str
The path to the NXML file to be read.
output_fmt: Optional[str]
The output format to obtain from Sparser, with the two options being
'json' and 'xml'. Default: 'json'
outbuf : Optional[file]
A file like object that the Sparser output is written to.
cleanup : Optional[bool]
If True, the output file created by Sparser is removed.
Default: True
Returns
-------
sp : SparserXMLProcessor or SparserJSONProcessor depending on what output
format was chosen.
"""
sp = None
out_fname = None
try:
out_fname = run_sparser(fname, output_fmt, outbuf, **kwargs)
sp = process_sparser_output(out_fname, output_fmt)
except Exception as e:
logger.error("Sparser failed to run on %s." % fname)
logger.exception(e)
finally:
if out_fname is not None and os.path.exists(out_fname) and cleanup:
os.remove(out_fname)
return sp | [
"def",
"process_nxml_file",
"(",
"fname",
",",
"output_fmt",
"=",
"'json'",
",",
"outbuf",
"=",
"None",
",",
"cleanup",
"=",
"True",
",",
"*",
"*",
"kwargs",
")",
":",
"sp",
"=",
"None",
"out_fname",
"=",
"None",
"try",
":",
"out_fname",
"=",
"run_sparser",
"(",
"fname",
",",
"output_fmt",
",",
"outbuf",
",",
"*",
"*",
"kwargs",
")",
"sp",
"=",
"process_sparser_output",
"(",
"out_fname",
",",
"output_fmt",
")",
"except",
"Exception",
"as",
"e",
":",
"logger",
".",
"error",
"(",
"\"Sparser failed to run on %s.\"",
"%",
"fname",
")",
"logger",
".",
"exception",
"(",
"e",
")",
"finally",
":",
"if",
"out_fname",
"is",
"not",
"None",
"and",
"os",
".",
"path",
".",
"exists",
"(",
"out_fname",
")",
"and",
"cleanup",
":",
"os",
".",
"remove",
"(",
"out_fname",
")",
"return",
"sp"
]
| Return processor with Statements extracted by reading an NXML file.
Parameters
----------
fname : str
The path to the NXML file to be read.
output_fmt: Optional[str]
The output format to obtain from Sparser, with the two options being
'json' and 'xml'. Default: 'json'
outbuf : Optional[file]
A file like object that the Sparser output is written to.
cleanup : Optional[bool]
If True, the output file created by Sparser is removed.
Default: True
Returns
-------
sp : SparserXMLProcessor or SparserJSONProcessor depending on what output
format was chosen. | [
"Return",
"processor",
"with",
"Statements",
"extracted",
"by",
"reading",
"an",
"NXML",
"file",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/sources/sparser/api.py#L100-L134 | train |
sorgerlab/indra | indra/sources/sparser/api.py | process_sparser_output | def process_sparser_output(output_fname, output_fmt='json'):
"""Return a processor with Statements extracted from Sparser XML or JSON
Parameters
----------
output_fname : str
The path to the Sparser output file to be processed. The file can
either be JSON or XML output from Sparser, with the output_fmt
parameter defining what format is assumed to be processed.
output_fmt : Optional[str]
The format of the Sparser output to be processed, can either be
'json' or 'xml'. Default: 'json'
Returns
-------
sp : SparserXMLProcessor or SparserJSONProcessor depending on what output
format was chosen.
"""
if output_fmt not in ['json', 'xml']:
logger.error("Unrecognized output format '%s'." % output_fmt)
return None
sp = None
with open(output_fname, 'rt') as fh:
if output_fmt == 'json':
json_dict = json.load(fh)
sp = process_json_dict(json_dict)
else:
xml_str = fh.read()
sp = process_xml(xml_str)
return sp | python | def process_sparser_output(output_fname, output_fmt='json'):
"""Return a processor with Statements extracted from Sparser XML or JSON
Parameters
----------
output_fname : str
The path to the Sparser output file to be processed. The file can
either be JSON or XML output from Sparser, with the output_fmt
parameter defining what format is assumed to be processed.
output_fmt : Optional[str]
The format of the Sparser output to be processed, can either be
'json' or 'xml'. Default: 'json'
Returns
-------
sp : SparserXMLProcessor or SparserJSONProcessor depending on what output
format was chosen.
"""
if output_fmt not in ['json', 'xml']:
logger.error("Unrecognized output format '%s'." % output_fmt)
return None
sp = None
with open(output_fname, 'rt') as fh:
if output_fmt == 'json':
json_dict = json.load(fh)
sp = process_json_dict(json_dict)
else:
xml_str = fh.read()
sp = process_xml(xml_str)
return sp | [
"def",
"process_sparser_output",
"(",
"output_fname",
",",
"output_fmt",
"=",
"'json'",
")",
":",
"if",
"output_fmt",
"not",
"in",
"[",
"'json'",
",",
"'xml'",
"]",
":",
"logger",
".",
"error",
"(",
"\"Unrecognized output format '%s'.\"",
"%",
"output_fmt",
")",
"return",
"None",
"sp",
"=",
"None",
"with",
"open",
"(",
"output_fname",
",",
"'rt'",
")",
"as",
"fh",
":",
"if",
"output_fmt",
"==",
"'json'",
":",
"json_dict",
"=",
"json",
".",
"load",
"(",
"fh",
")",
"sp",
"=",
"process_json_dict",
"(",
"json_dict",
")",
"else",
":",
"xml_str",
"=",
"fh",
".",
"read",
"(",
")",
"sp",
"=",
"process_xml",
"(",
"xml_str",
")",
"return",
"sp"
]
| Return a processor with Statements extracted from Sparser XML or JSON
Parameters
----------
output_fname : str
The path to the Sparser output file to be processed. The file can
either be JSON or XML output from Sparser, with the output_fmt
parameter defining what format is assumed to be processed.
output_fmt : Optional[str]
The format of the Sparser output to be processed, can either be
'json' or 'xml'. Default: 'json'
Returns
-------
sp : SparserXMLProcessor or SparserJSONProcessor depending on what output
format was chosen. | [
"Return",
"a",
"processor",
"with",
"Statements",
"extracted",
"from",
"Sparser",
"XML",
"or",
"JSON"
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/sources/sparser/api.py#L137-L167 | train |
sorgerlab/indra | indra/sources/sparser/api.py | process_xml | def process_xml(xml_str):
"""Return processor with Statements extracted from a Sparser XML.
Parameters
----------
xml_str : str
The XML string obtained by reading content with Sparser, using the
'xml' output mode.
Returns
-------
sp : SparserXMLProcessor
A SparserXMLProcessor which has extracted Statements as its
statements attribute.
"""
try:
tree = ET.XML(xml_str, parser=UTB())
except ET.ParseError as e:
logger.error('Could not parse XML string')
logger.error(e)
return None
sp = _process_elementtree(tree)
return sp | python | def process_xml(xml_str):
"""Return processor with Statements extracted from a Sparser XML.
Parameters
----------
xml_str : str
The XML string obtained by reading content with Sparser, using the
'xml' output mode.
Returns
-------
sp : SparserXMLProcessor
A SparserXMLProcessor which has extracted Statements as its
statements attribute.
"""
try:
tree = ET.XML(xml_str, parser=UTB())
except ET.ParseError as e:
logger.error('Could not parse XML string')
logger.error(e)
return None
sp = _process_elementtree(tree)
return sp | [
"def",
"process_xml",
"(",
"xml_str",
")",
":",
"try",
":",
"tree",
"=",
"ET",
".",
"XML",
"(",
"xml_str",
",",
"parser",
"=",
"UTB",
"(",
")",
")",
"except",
"ET",
".",
"ParseError",
"as",
"e",
":",
"logger",
".",
"error",
"(",
"'Could not parse XML string'",
")",
"logger",
".",
"error",
"(",
"e",
")",
"return",
"None",
"sp",
"=",
"_process_elementtree",
"(",
"tree",
")",
"return",
"sp"
]
| Return processor with Statements extracted from a Sparser XML.
Parameters
----------
xml_str : str
The XML string obtained by reading content with Sparser, using the
'xml' output mode.
Returns
-------
sp : SparserXMLProcessor
A SparserXMLProcessor which has extracted Statements as its
statements attribute. | [
"Return",
"processor",
"with",
"Statements",
"extracted",
"from",
"a",
"Sparser",
"XML",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/sources/sparser/api.py#L190-L212 | train |
sorgerlab/indra | indra/sources/sparser/api.py | run_sparser | def run_sparser(fname, output_fmt, outbuf=None, timeout=600):
"""Return the path to reading output after running Sparser reading.
Parameters
----------
fname : str
The path to an input file to be processed. Due to the Spaser
executable's assumptions, the file name needs to start with PMC
and should be an NXML formatted file.
output_fmt : Optional[str]
The format in which Sparser should produce its output, can either be
'json' or 'xml'.
outbuf : Optional[file]
A file like object that the Sparser output is written to.
timeout : int
The number of seconds to wait until giving up on this one reading. The
default is 600 seconds (i.e. 10 minutes). Sparcer is a fast reader and
the typical type to read a single full text is a matter of seconds.
Returns
-------
output_path : str
The path to the output file created by Sparser.
"""
if not sparser_path or not os.path.exists(sparser_path):
logger.error('Sparser executable not set in %s' % sparser_path_var)
return None
if output_fmt == 'xml':
format_flag = '-x'
suffix = '.xml'
elif output_fmt == 'json':
format_flag = '-j'
suffix = '.json'
else:
logger.error('Unknown output format: %s' % output_fmt)
return None
sparser_exec_path = os.path.join(sparser_path, 'save-semantics.sh')
output_path = fname.split('.')[0] + '-semantics' + suffix
for fpath in [sparser_exec_path, fname]:
if not os.path.exists(fpath):
raise Exception("'%s' is not a valid path." % fpath)
cmd_list = [sparser_exec_path, format_flag, fname]
# This is mostly a copy of the code found in subprocess.run, with the
# key change that proc.kill is replaced with os.killpg. This allows the
# process to be killed even if it has children. Solution developed from:
# https://stackoverflow.com/questions/36952245/subprocess-timeout-failure
with sp.Popen(cmd_list, stdout=sp.PIPE) as proc:
try:
stdout, stderr = proc.communicate(timeout=timeout)
except sp.TimeoutExpired:
# Yes, this is about as bad as it looks. But it is the only way to
# be sure the script actually dies.
sp.check_call(['pkill', '-f', 'r3.core.*%s' % fname])
stdout, stderr = proc.communicate()
raise sp.TimeoutExpired(proc.args, timeout, output=stdout,
stderr=stderr)
except BaseException:
# See comment on above instance.
sp.check_call(['pkill', '-f', fname])
proc.wait()
raise
retcode = proc.poll()
if retcode:
raise sp.CalledProcessError(retcode, proc.args, output=stdout,
stderr=stderr)
if outbuf is not None:
outbuf.write(stdout)
outbuf.flush()
assert os.path.exists(output_path),\
'No output file \"%s\" created by sparser.' % output_path
return output_path | python | def run_sparser(fname, output_fmt, outbuf=None, timeout=600):
"""Return the path to reading output after running Sparser reading.
Parameters
----------
fname : str
The path to an input file to be processed. Due to the Spaser
executable's assumptions, the file name needs to start with PMC
and should be an NXML formatted file.
output_fmt : Optional[str]
The format in which Sparser should produce its output, can either be
'json' or 'xml'.
outbuf : Optional[file]
A file like object that the Sparser output is written to.
timeout : int
The number of seconds to wait until giving up on this one reading. The
default is 600 seconds (i.e. 10 minutes). Sparcer is a fast reader and
the typical type to read a single full text is a matter of seconds.
Returns
-------
output_path : str
The path to the output file created by Sparser.
"""
if not sparser_path or not os.path.exists(sparser_path):
logger.error('Sparser executable not set in %s' % sparser_path_var)
return None
if output_fmt == 'xml':
format_flag = '-x'
suffix = '.xml'
elif output_fmt == 'json':
format_flag = '-j'
suffix = '.json'
else:
logger.error('Unknown output format: %s' % output_fmt)
return None
sparser_exec_path = os.path.join(sparser_path, 'save-semantics.sh')
output_path = fname.split('.')[0] + '-semantics' + suffix
for fpath in [sparser_exec_path, fname]:
if not os.path.exists(fpath):
raise Exception("'%s' is not a valid path." % fpath)
cmd_list = [sparser_exec_path, format_flag, fname]
# This is mostly a copy of the code found in subprocess.run, with the
# key change that proc.kill is replaced with os.killpg. This allows the
# process to be killed even if it has children. Solution developed from:
# https://stackoverflow.com/questions/36952245/subprocess-timeout-failure
with sp.Popen(cmd_list, stdout=sp.PIPE) as proc:
try:
stdout, stderr = proc.communicate(timeout=timeout)
except sp.TimeoutExpired:
# Yes, this is about as bad as it looks. But it is the only way to
# be sure the script actually dies.
sp.check_call(['pkill', '-f', 'r3.core.*%s' % fname])
stdout, stderr = proc.communicate()
raise sp.TimeoutExpired(proc.args, timeout, output=stdout,
stderr=stderr)
except BaseException:
# See comment on above instance.
sp.check_call(['pkill', '-f', fname])
proc.wait()
raise
retcode = proc.poll()
if retcode:
raise sp.CalledProcessError(retcode, proc.args, output=stdout,
stderr=stderr)
if outbuf is not None:
outbuf.write(stdout)
outbuf.flush()
assert os.path.exists(output_path),\
'No output file \"%s\" created by sparser.' % output_path
return output_path | [
"def",
"run_sparser",
"(",
"fname",
",",
"output_fmt",
",",
"outbuf",
"=",
"None",
",",
"timeout",
"=",
"600",
")",
":",
"if",
"not",
"sparser_path",
"or",
"not",
"os",
".",
"path",
".",
"exists",
"(",
"sparser_path",
")",
":",
"logger",
".",
"error",
"(",
"'Sparser executable not set in %s'",
"%",
"sparser_path_var",
")",
"return",
"None",
"if",
"output_fmt",
"==",
"'xml'",
":",
"format_flag",
"=",
"'-x'",
"suffix",
"=",
"'.xml'",
"elif",
"output_fmt",
"==",
"'json'",
":",
"format_flag",
"=",
"'-j'",
"suffix",
"=",
"'.json'",
"else",
":",
"logger",
".",
"error",
"(",
"'Unknown output format: %s'",
"%",
"output_fmt",
")",
"return",
"None",
"sparser_exec_path",
"=",
"os",
".",
"path",
".",
"join",
"(",
"sparser_path",
",",
"'save-semantics.sh'",
")",
"output_path",
"=",
"fname",
".",
"split",
"(",
"'.'",
")",
"[",
"0",
"]",
"+",
"'-semantics'",
"+",
"suffix",
"for",
"fpath",
"in",
"[",
"sparser_exec_path",
",",
"fname",
"]",
":",
"if",
"not",
"os",
".",
"path",
".",
"exists",
"(",
"fpath",
")",
":",
"raise",
"Exception",
"(",
"\"'%s' is not a valid path.\"",
"%",
"fpath",
")",
"cmd_list",
"=",
"[",
"sparser_exec_path",
",",
"format_flag",
",",
"fname",
"]",
"# This is mostly a copy of the code found in subprocess.run, with the",
"# key change that proc.kill is replaced with os.killpg. This allows the",
"# process to be killed even if it has children. Solution developed from:",
"# https://stackoverflow.com/questions/36952245/subprocess-timeout-failure",
"with",
"sp",
".",
"Popen",
"(",
"cmd_list",
",",
"stdout",
"=",
"sp",
".",
"PIPE",
")",
"as",
"proc",
":",
"try",
":",
"stdout",
",",
"stderr",
"=",
"proc",
".",
"communicate",
"(",
"timeout",
"=",
"timeout",
")",
"except",
"sp",
".",
"TimeoutExpired",
":",
"# Yes, this is about as bad as it looks. But it is the only way to",
"# be sure the script actually dies.",
"sp",
".",
"check_call",
"(",
"[",
"'pkill'",
",",
"'-f'",
",",
"'r3.core.*%s'",
"%",
"fname",
"]",
")",
"stdout",
",",
"stderr",
"=",
"proc",
".",
"communicate",
"(",
")",
"raise",
"sp",
".",
"TimeoutExpired",
"(",
"proc",
".",
"args",
",",
"timeout",
",",
"output",
"=",
"stdout",
",",
"stderr",
"=",
"stderr",
")",
"except",
"BaseException",
":",
"# See comment on above instance.",
"sp",
".",
"check_call",
"(",
"[",
"'pkill'",
",",
"'-f'",
",",
"fname",
"]",
")",
"proc",
".",
"wait",
"(",
")",
"raise",
"retcode",
"=",
"proc",
".",
"poll",
"(",
")",
"if",
"retcode",
":",
"raise",
"sp",
".",
"CalledProcessError",
"(",
"retcode",
",",
"proc",
".",
"args",
",",
"output",
"=",
"stdout",
",",
"stderr",
"=",
"stderr",
")",
"if",
"outbuf",
"is",
"not",
"None",
":",
"outbuf",
".",
"write",
"(",
"stdout",
")",
"outbuf",
".",
"flush",
"(",
")",
"assert",
"os",
".",
"path",
".",
"exists",
"(",
"output_path",
")",
",",
"'No output file \\\"%s\\\" created by sparser.'",
"%",
"output_path",
"return",
"output_path"
]
| Return the path to reading output after running Sparser reading.
Parameters
----------
fname : str
The path to an input file to be processed. Due to the Spaser
executable's assumptions, the file name needs to start with PMC
and should be an NXML formatted file.
output_fmt : Optional[str]
The format in which Sparser should produce its output, can either be
'json' or 'xml'.
outbuf : Optional[file]
A file like object that the Sparser output is written to.
timeout : int
The number of seconds to wait until giving up on this one reading. The
default is 600 seconds (i.e. 10 minutes). Sparcer is a fast reader and
the typical type to read a single full text is a matter of seconds.
Returns
-------
output_path : str
The path to the output file created by Sparser. | [
"Return",
"the",
"path",
"to",
"reading",
"output",
"after",
"running",
"Sparser",
"reading",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/sources/sparser/api.py#L215-L287 | train |
sorgerlab/indra | indra/sources/sparser/api.py | get_version | def get_version():
"""Return the version of the Sparser executable on the path.
Returns
-------
version : str
The version of Sparser that is found on the Sparser path.
"""
assert sparser_path is not None, "Sparser path is not defined."
with open(os.path.join(sparser_path, 'version.txt'), 'r') as f:
version = f.read().strip()
return version | python | def get_version():
"""Return the version of the Sparser executable on the path.
Returns
-------
version : str
The version of Sparser that is found on the Sparser path.
"""
assert sparser_path is not None, "Sparser path is not defined."
with open(os.path.join(sparser_path, 'version.txt'), 'r') as f:
version = f.read().strip()
return version | [
"def",
"get_version",
"(",
")",
":",
"assert",
"sparser_path",
"is",
"not",
"None",
",",
"\"Sparser path is not defined.\"",
"with",
"open",
"(",
"os",
".",
"path",
".",
"join",
"(",
"sparser_path",
",",
"'version.txt'",
")",
",",
"'r'",
")",
"as",
"f",
":",
"version",
"=",
"f",
".",
"read",
"(",
")",
".",
"strip",
"(",
")",
"return",
"version"
]
| Return the version of the Sparser executable on the path.
Returns
-------
version : str
The version of Sparser that is found on the Sparser path. | [
"Return",
"the",
"version",
"of",
"the",
"Sparser",
"executable",
"on",
"the",
"path",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/sources/sparser/api.py#L290-L301 | train |
sorgerlab/indra | indra/sources/sparser/api.py | make_nxml_from_text | def make_nxml_from_text(text):
"""Return raw text wrapped in NXML structure.
Parameters
----------
text : str
The raw text content to be wrapped in an NXML structure.
Returns
-------
nxml_str : str
The NXML string wrapping the raw text input.
"""
text = _escape_xml(text)
header = '<?xml version="1.0" encoding="UTF-8" ?>' + \
'<OAI-PMH><article><body><sec id="s1"><p>'
footer = '</p></sec></body></article></OAI-PMH>'
nxml_str = header + text + footer
return nxml_str | python | def make_nxml_from_text(text):
"""Return raw text wrapped in NXML structure.
Parameters
----------
text : str
The raw text content to be wrapped in an NXML structure.
Returns
-------
nxml_str : str
The NXML string wrapping the raw text input.
"""
text = _escape_xml(text)
header = '<?xml version="1.0" encoding="UTF-8" ?>' + \
'<OAI-PMH><article><body><sec id="s1"><p>'
footer = '</p></sec></body></article></OAI-PMH>'
nxml_str = header + text + footer
return nxml_str | [
"def",
"make_nxml_from_text",
"(",
"text",
")",
":",
"text",
"=",
"_escape_xml",
"(",
"text",
")",
"header",
"=",
"'<?xml version=\"1.0\" encoding=\"UTF-8\" ?>'",
"+",
"'<OAI-PMH><article><body><sec id=\"s1\"><p>'",
"footer",
"=",
"'</p></sec></body></article></OAI-PMH>'",
"nxml_str",
"=",
"header",
"+",
"text",
"+",
"footer",
"return",
"nxml_str"
]
| Return raw text wrapped in NXML structure.
Parameters
----------
text : str
The raw text content to be wrapped in an NXML structure.
Returns
-------
nxml_str : str
The NXML string wrapping the raw text input. | [
"Return",
"raw",
"text",
"wrapped",
"in",
"NXML",
"structure",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/sources/sparser/api.py#L304-L322 | train |
sorgerlab/indra | indra/databases/hgnc_client.py | get_hgnc_name | def get_hgnc_name(hgnc_id):
"""Return the HGNC symbol corresponding to the given HGNC ID.
Parameters
----------
hgnc_id : str
The HGNC ID to be converted.
Returns
-------
hgnc_name : str
The HGNC symbol corresponding to the given HGNC ID.
"""
try:
hgnc_name = hgnc_names[hgnc_id]
except KeyError:
xml_tree = get_hgnc_entry(hgnc_id)
if xml_tree is None:
return None
hgnc_name_tag =\
xml_tree.find("result/doc/str[@name='symbol']")
if hgnc_name_tag is None:
return None
hgnc_name = hgnc_name_tag.text.strip()
return hgnc_name | python | def get_hgnc_name(hgnc_id):
"""Return the HGNC symbol corresponding to the given HGNC ID.
Parameters
----------
hgnc_id : str
The HGNC ID to be converted.
Returns
-------
hgnc_name : str
The HGNC symbol corresponding to the given HGNC ID.
"""
try:
hgnc_name = hgnc_names[hgnc_id]
except KeyError:
xml_tree = get_hgnc_entry(hgnc_id)
if xml_tree is None:
return None
hgnc_name_tag =\
xml_tree.find("result/doc/str[@name='symbol']")
if hgnc_name_tag is None:
return None
hgnc_name = hgnc_name_tag.text.strip()
return hgnc_name | [
"def",
"get_hgnc_name",
"(",
"hgnc_id",
")",
":",
"try",
":",
"hgnc_name",
"=",
"hgnc_names",
"[",
"hgnc_id",
"]",
"except",
"KeyError",
":",
"xml_tree",
"=",
"get_hgnc_entry",
"(",
"hgnc_id",
")",
"if",
"xml_tree",
"is",
"None",
":",
"return",
"None",
"hgnc_name_tag",
"=",
"xml_tree",
".",
"find",
"(",
"\"result/doc/str[@name='symbol']\"",
")",
"if",
"hgnc_name_tag",
"is",
"None",
":",
"return",
"None",
"hgnc_name",
"=",
"hgnc_name_tag",
".",
"text",
".",
"strip",
"(",
")",
"return",
"hgnc_name"
]
| Return the HGNC symbol corresponding to the given HGNC ID.
Parameters
----------
hgnc_id : str
The HGNC ID to be converted.
Returns
-------
hgnc_name : str
The HGNC symbol corresponding to the given HGNC ID. | [
"Return",
"the",
"HGNC",
"symbol",
"corresponding",
"to",
"the",
"given",
"HGNC",
"ID",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/databases/hgnc_client.py#L83-L107 | train |
sorgerlab/indra | indra/databases/hgnc_client.py | get_hgnc_entry | def get_hgnc_entry(hgnc_id):
"""Return the HGNC entry for the given HGNC ID from the web service.
Parameters
----------
hgnc_id : str
The HGNC ID to be converted.
Returns
-------
xml_tree : ElementTree
The XML ElementTree corresponding to the entry for the
given HGNC ID.
"""
url = hgnc_url + 'hgnc_id/%s' % hgnc_id
headers = {'Accept': '*/*'}
res = requests.get(url, headers=headers)
if not res.status_code == 200:
return None
xml_tree = ET.XML(res.content, parser=UTB())
return xml_tree | python | def get_hgnc_entry(hgnc_id):
"""Return the HGNC entry for the given HGNC ID from the web service.
Parameters
----------
hgnc_id : str
The HGNC ID to be converted.
Returns
-------
xml_tree : ElementTree
The XML ElementTree corresponding to the entry for the
given HGNC ID.
"""
url = hgnc_url + 'hgnc_id/%s' % hgnc_id
headers = {'Accept': '*/*'}
res = requests.get(url, headers=headers)
if not res.status_code == 200:
return None
xml_tree = ET.XML(res.content, parser=UTB())
return xml_tree | [
"def",
"get_hgnc_entry",
"(",
"hgnc_id",
")",
":",
"url",
"=",
"hgnc_url",
"+",
"'hgnc_id/%s'",
"%",
"hgnc_id",
"headers",
"=",
"{",
"'Accept'",
":",
"'*/*'",
"}",
"res",
"=",
"requests",
".",
"get",
"(",
"url",
",",
"headers",
"=",
"headers",
")",
"if",
"not",
"res",
".",
"status_code",
"==",
"200",
":",
"return",
"None",
"xml_tree",
"=",
"ET",
".",
"XML",
"(",
"res",
".",
"content",
",",
"parser",
"=",
"UTB",
"(",
")",
")",
"return",
"xml_tree"
]
| Return the HGNC entry for the given HGNC ID from the web service.
Parameters
----------
hgnc_id : str
The HGNC ID to be converted.
Returns
-------
xml_tree : ElementTree
The XML ElementTree corresponding to the entry for the
given HGNC ID. | [
"Return",
"the",
"HGNC",
"entry",
"for",
"the",
"given",
"HGNC",
"ID",
"from",
"the",
"web",
"service",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/databases/hgnc_client.py#L224-L244 | train |
sorgerlab/indra | indra/tools/reading/util/log_analysis_tools.py | analyze_reach_log | def analyze_reach_log(log_fname=None, log_str=None):
"""Return unifinished PMIDs given a log file name."""
assert bool(log_fname) ^ bool(log_str), 'Must specify log_fname OR log_str'
started_patt = re.compile('Starting ([\d]+)')
# TODO: it might be interesting to get the time it took to read
# each paper here
finished_patt = re.compile('Finished ([\d]+)')
def get_content_nums(txt):
pat = 'Retrieved content for ([\d]+) / ([\d]+) papers to be read'
res = re.match(pat, txt)
has_content, total = res.groups() if res else None, None
return has_content, total
if log_fname:
with open(log_fname, 'r') as fh:
log_str = fh.read()
# has_content, total = get_content_nums(log_str) # unused
pmids = {}
pmids['started'] = started_patt.findall(log_str)
pmids['finished'] = finished_patt.findall(log_str)
pmids['not_done'] = set(pmids['started']) - set(pmids['finished'])
return pmids | python | def analyze_reach_log(log_fname=None, log_str=None):
"""Return unifinished PMIDs given a log file name."""
assert bool(log_fname) ^ bool(log_str), 'Must specify log_fname OR log_str'
started_patt = re.compile('Starting ([\d]+)')
# TODO: it might be interesting to get the time it took to read
# each paper here
finished_patt = re.compile('Finished ([\d]+)')
def get_content_nums(txt):
pat = 'Retrieved content for ([\d]+) / ([\d]+) papers to be read'
res = re.match(pat, txt)
has_content, total = res.groups() if res else None, None
return has_content, total
if log_fname:
with open(log_fname, 'r') as fh:
log_str = fh.read()
# has_content, total = get_content_nums(log_str) # unused
pmids = {}
pmids['started'] = started_patt.findall(log_str)
pmids['finished'] = finished_patt.findall(log_str)
pmids['not_done'] = set(pmids['started']) - set(pmids['finished'])
return pmids | [
"def",
"analyze_reach_log",
"(",
"log_fname",
"=",
"None",
",",
"log_str",
"=",
"None",
")",
":",
"assert",
"bool",
"(",
"log_fname",
")",
"^",
"bool",
"(",
"log_str",
")",
",",
"'Must specify log_fname OR log_str'",
"started_patt",
"=",
"re",
".",
"compile",
"(",
"'Starting ([\\d]+)'",
")",
"# TODO: it might be interesting to get the time it took to read",
"# each paper here",
"finished_patt",
"=",
"re",
".",
"compile",
"(",
"'Finished ([\\d]+)'",
")",
"def",
"get_content_nums",
"(",
"txt",
")",
":",
"pat",
"=",
"'Retrieved content for ([\\d]+) / ([\\d]+) papers to be read'",
"res",
"=",
"re",
".",
"match",
"(",
"pat",
",",
"txt",
")",
"has_content",
",",
"total",
"=",
"res",
".",
"groups",
"(",
")",
"if",
"res",
"else",
"None",
",",
"None",
"return",
"has_content",
",",
"total",
"if",
"log_fname",
":",
"with",
"open",
"(",
"log_fname",
",",
"'r'",
")",
"as",
"fh",
":",
"log_str",
"=",
"fh",
".",
"read",
"(",
")",
"# has_content, total = get_content_nums(log_str) # unused",
"pmids",
"=",
"{",
"}",
"pmids",
"[",
"'started'",
"]",
"=",
"started_patt",
".",
"findall",
"(",
"log_str",
")",
"pmids",
"[",
"'finished'",
"]",
"=",
"finished_patt",
".",
"findall",
"(",
"log_str",
")",
"pmids",
"[",
"'not_done'",
"]",
"=",
"set",
"(",
"pmids",
"[",
"'started'",
"]",
")",
"-",
"set",
"(",
"pmids",
"[",
"'finished'",
"]",
")",
"return",
"pmids"
]
| Return unifinished PMIDs given a log file name. | [
"Return",
"unifinished",
"PMIDs",
"given",
"a",
"log",
"file",
"name",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/tools/reading/util/log_analysis_tools.py#L6-L28 | train |
sorgerlab/indra | indra/tools/reading/util/log_analysis_tools.py | get_logs_from_db_reading | def get_logs_from_db_reading(job_prefix, reading_queue='run_db_reading_queue'):
"""Get the logs stashed on s3 for a particular reading."""
s3 = boto3.client('s3')
gen_prefix = 'reading_results/%s/logs/%s' % (job_prefix, reading_queue)
job_log_data = s3.list_objects_v2(Bucket='bigmech',
Prefix=join(gen_prefix, job_prefix))
# TODO: Track success/failure
log_strs = []
for fdict in job_log_data['Contents']:
resp = s3.get_object(Bucket='bigmech', Key=fdict['Key'])
log_strs.append(resp['Body'].read().decode('utf-8'))
return log_strs | python | def get_logs_from_db_reading(job_prefix, reading_queue='run_db_reading_queue'):
"""Get the logs stashed on s3 for a particular reading."""
s3 = boto3.client('s3')
gen_prefix = 'reading_results/%s/logs/%s' % (job_prefix, reading_queue)
job_log_data = s3.list_objects_v2(Bucket='bigmech',
Prefix=join(gen_prefix, job_prefix))
# TODO: Track success/failure
log_strs = []
for fdict in job_log_data['Contents']:
resp = s3.get_object(Bucket='bigmech', Key=fdict['Key'])
log_strs.append(resp['Body'].read().decode('utf-8'))
return log_strs | [
"def",
"get_logs_from_db_reading",
"(",
"job_prefix",
",",
"reading_queue",
"=",
"'run_db_reading_queue'",
")",
":",
"s3",
"=",
"boto3",
".",
"client",
"(",
"'s3'",
")",
"gen_prefix",
"=",
"'reading_results/%s/logs/%s'",
"%",
"(",
"job_prefix",
",",
"reading_queue",
")",
"job_log_data",
"=",
"s3",
".",
"list_objects_v2",
"(",
"Bucket",
"=",
"'bigmech'",
",",
"Prefix",
"=",
"join",
"(",
"gen_prefix",
",",
"job_prefix",
")",
")",
"# TODO: Track success/failure",
"log_strs",
"=",
"[",
"]",
"for",
"fdict",
"in",
"job_log_data",
"[",
"'Contents'",
"]",
":",
"resp",
"=",
"s3",
".",
"get_object",
"(",
"Bucket",
"=",
"'bigmech'",
",",
"Key",
"=",
"fdict",
"[",
"'Key'",
"]",
")",
"log_strs",
".",
"append",
"(",
"resp",
"[",
"'Body'",
"]",
".",
"read",
"(",
")",
".",
"decode",
"(",
"'utf-8'",
")",
")",
"return",
"log_strs"
]
| Get the logs stashed on s3 for a particular reading. | [
"Get",
"the",
"logs",
"stashed",
"on",
"s3",
"for",
"a",
"particular",
"reading",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/tools/reading/util/log_analysis_tools.py#L36-L47 | train |
sorgerlab/indra | indra/tools/reading/util/log_analysis_tools.py | separate_reach_logs | def separate_reach_logs(log_str):
"""Get the list of reach logs from the overall logs."""
log_lines = log_str.splitlines()
reach_logs = []
reach_lines = []
adding_reach_lines = False
for l in log_lines[:]:
if not adding_reach_lines and 'Beginning reach' in l:
adding_reach_lines = True
elif adding_reach_lines and 'Reach finished' in l:
adding_reach_lines = False
reach_logs.append(('SUCCEEDED', '\n'.join(reach_lines)))
reach_lines = []
elif adding_reach_lines:
reach_lines.append(l.split('readers - ')[1])
log_lines.remove(l)
if adding_reach_lines:
reach_logs.append(('FAILURE', '\n'.join(reach_lines)))
return '\n'.join(log_lines), reach_logs | python | def separate_reach_logs(log_str):
"""Get the list of reach logs from the overall logs."""
log_lines = log_str.splitlines()
reach_logs = []
reach_lines = []
adding_reach_lines = False
for l in log_lines[:]:
if not adding_reach_lines and 'Beginning reach' in l:
adding_reach_lines = True
elif adding_reach_lines and 'Reach finished' in l:
adding_reach_lines = False
reach_logs.append(('SUCCEEDED', '\n'.join(reach_lines)))
reach_lines = []
elif adding_reach_lines:
reach_lines.append(l.split('readers - ')[1])
log_lines.remove(l)
if adding_reach_lines:
reach_logs.append(('FAILURE', '\n'.join(reach_lines)))
return '\n'.join(log_lines), reach_logs | [
"def",
"separate_reach_logs",
"(",
"log_str",
")",
":",
"log_lines",
"=",
"log_str",
".",
"splitlines",
"(",
")",
"reach_logs",
"=",
"[",
"]",
"reach_lines",
"=",
"[",
"]",
"adding_reach_lines",
"=",
"False",
"for",
"l",
"in",
"log_lines",
"[",
":",
"]",
":",
"if",
"not",
"adding_reach_lines",
"and",
"'Beginning reach'",
"in",
"l",
":",
"adding_reach_lines",
"=",
"True",
"elif",
"adding_reach_lines",
"and",
"'Reach finished'",
"in",
"l",
":",
"adding_reach_lines",
"=",
"False",
"reach_logs",
".",
"append",
"(",
"(",
"'SUCCEEDED'",
",",
"'\\n'",
".",
"join",
"(",
"reach_lines",
")",
")",
")",
"reach_lines",
"=",
"[",
"]",
"elif",
"adding_reach_lines",
":",
"reach_lines",
".",
"append",
"(",
"l",
".",
"split",
"(",
"'readers - '",
")",
"[",
"1",
"]",
")",
"log_lines",
".",
"remove",
"(",
"l",
")",
"if",
"adding_reach_lines",
":",
"reach_logs",
".",
"append",
"(",
"(",
"'FAILURE'",
",",
"'\\n'",
".",
"join",
"(",
"reach_lines",
")",
")",
")",
"return",
"'\\n'",
".",
"join",
"(",
"log_lines",
")",
",",
"reach_logs"
]
| Get the list of reach logs from the overall logs. | [
"Get",
"the",
"list",
"of",
"reach",
"logs",
"from",
"the",
"overall",
"logs",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/tools/reading/util/log_analysis_tools.py#L50-L68 | train |
sorgerlab/indra | indra/tools/reading/util/log_analysis_tools.py | get_unyielding_tcids | def get_unyielding_tcids(log_str):
"""Extract the set of tcids for which no statements were created."""
tcid_strs = re.findall('INFO: \[.*?\].*? - Got no statements for (\d+).*',
log_str)
return {int(tcid_str) for tcid_str in tcid_strs} | python | def get_unyielding_tcids(log_str):
"""Extract the set of tcids for which no statements were created."""
tcid_strs = re.findall('INFO: \[.*?\].*? - Got no statements for (\d+).*',
log_str)
return {int(tcid_str) for tcid_str in tcid_strs} | [
"def",
"get_unyielding_tcids",
"(",
"log_str",
")",
":",
"tcid_strs",
"=",
"re",
".",
"findall",
"(",
"'INFO: \\[.*?\\].*? - Got no statements for (\\d+).*'",
",",
"log_str",
")",
"return",
"{",
"int",
"(",
"tcid_str",
")",
"for",
"tcid_str",
"in",
"tcid_strs",
"}"
]
| Extract the set of tcids for which no statements were created. | [
"Extract",
"the",
"set",
"of",
"tcids",
"for",
"which",
"no",
"statements",
"were",
"created",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/tools/reading/util/log_analysis_tools.py#L115-L119 | train |
sorgerlab/indra | indra/tools/reading/util/log_analysis_tools.py | analyze_db_reading | def analyze_db_reading(job_prefix, reading_queue='run_db_reading_queue'):
"""Run various analysis on a particular reading job."""
# Analyze reach failures
log_strs = get_logs_from_db_reading(job_prefix, reading_queue)
indra_log_strs = []
all_reach_logs = []
log_stats = []
for log_str in log_strs:
log_str, reach_logs = separate_reach_logs(log_str)
all_reach_logs.extend(reach_logs)
indra_log_strs.append(log_str)
log_stats.append(get_reading_stats(log_str))
# Analayze the reach failures.
failed_reach_logs = [reach_log_str
for result, reach_log_str in all_reach_logs
if result == 'FAILURE']
failed_id_dicts = [analyze_reach_log(log_str=reach_log)
for reach_log in failed_reach_logs if bool(reach_log)]
tcids_unfinished = {id_dict['not_done'] for id_dict in failed_id_dicts}
print("Found %d unfinished tcids." % len(tcids_unfinished))
# Summarize the global stats
if log_stats:
sum_dict = dict.fromkeys(log_stats[0].keys())
for log_stat in log_stats:
for k in log_stat.keys():
if isinstance(log_stat[k], list):
if k not in sum_dict.keys():
sum_dict[k] = [0]*len(log_stat[k])
sum_dict[k] = [sum_dict[k][i] + log_stat[k][i]
for i in range(len(log_stat[k]))]
else:
if k not in sum_dict.keys():
sum_dict[k] = 0
sum_dict[k] += log_stat[k]
else:
sum_dict = {}
return tcids_unfinished, sum_dict, log_stats | python | def analyze_db_reading(job_prefix, reading_queue='run_db_reading_queue'):
"""Run various analysis on a particular reading job."""
# Analyze reach failures
log_strs = get_logs_from_db_reading(job_prefix, reading_queue)
indra_log_strs = []
all_reach_logs = []
log_stats = []
for log_str in log_strs:
log_str, reach_logs = separate_reach_logs(log_str)
all_reach_logs.extend(reach_logs)
indra_log_strs.append(log_str)
log_stats.append(get_reading_stats(log_str))
# Analayze the reach failures.
failed_reach_logs = [reach_log_str
for result, reach_log_str in all_reach_logs
if result == 'FAILURE']
failed_id_dicts = [analyze_reach_log(log_str=reach_log)
for reach_log in failed_reach_logs if bool(reach_log)]
tcids_unfinished = {id_dict['not_done'] for id_dict in failed_id_dicts}
print("Found %d unfinished tcids." % len(tcids_unfinished))
# Summarize the global stats
if log_stats:
sum_dict = dict.fromkeys(log_stats[0].keys())
for log_stat in log_stats:
for k in log_stat.keys():
if isinstance(log_stat[k], list):
if k not in sum_dict.keys():
sum_dict[k] = [0]*len(log_stat[k])
sum_dict[k] = [sum_dict[k][i] + log_stat[k][i]
for i in range(len(log_stat[k]))]
else:
if k not in sum_dict.keys():
sum_dict[k] = 0
sum_dict[k] += log_stat[k]
else:
sum_dict = {}
return tcids_unfinished, sum_dict, log_stats | [
"def",
"analyze_db_reading",
"(",
"job_prefix",
",",
"reading_queue",
"=",
"'run_db_reading_queue'",
")",
":",
"# Analyze reach failures",
"log_strs",
"=",
"get_logs_from_db_reading",
"(",
"job_prefix",
",",
"reading_queue",
")",
"indra_log_strs",
"=",
"[",
"]",
"all_reach_logs",
"=",
"[",
"]",
"log_stats",
"=",
"[",
"]",
"for",
"log_str",
"in",
"log_strs",
":",
"log_str",
",",
"reach_logs",
"=",
"separate_reach_logs",
"(",
"log_str",
")",
"all_reach_logs",
".",
"extend",
"(",
"reach_logs",
")",
"indra_log_strs",
".",
"append",
"(",
"log_str",
")",
"log_stats",
".",
"append",
"(",
"get_reading_stats",
"(",
"log_str",
")",
")",
"# Analayze the reach failures.",
"failed_reach_logs",
"=",
"[",
"reach_log_str",
"for",
"result",
",",
"reach_log_str",
"in",
"all_reach_logs",
"if",
"result",
"==",
"'FAILURE'",
"]",
"failed_id_dicts",
"=",
"[",
"analyze_reach_log",
"(",
"log_str",
"=",
"reach_log",
")",
"for",
"reach_log",
"in",
"failed_reach_logs",
"if",
"bool",
"(",
"reach_log",
")",
"]",
"tcids_unfinished",
"=",
"{",
"id_dict",
"[",
"'not_done'",
"]",
"for",
"id_dict",
"in",
"failed_id_dicts",
"}",
"print",
"(",
"\"Found %d unfinished tcids.\"",
"%",
"len",
"(",
"tcids_unfinished",
")",
")",
"# Summarize the global stats",
"if",
"log_stats",
":",
"sum_dict",
"=",
"dict",
".",
"fromkeys",
"(",
"log_stats",
"[",
"0",
"]",
".",
"keys",
"(",
")",
")",
"for",
"log_stat",
"in",
"log_stats",
":",
"for",
"k",
"in",
"log_stat",
".",
"keys",
"(",
")",
":",
"if",
"isinstance",
"(",
"log_stat",
"[",
"k",
"]",
",",
"list",
")",
":",
"if",
"k",
"not",
"in",
"sum_dict",
".",
"keys",
"(",
")",
":",
"sum_dict",
"[",
"k",
"]",
"=",
"[",
"0",
"]",
"*",
"len",
"(",
"log_stat",
"[",
"k",
"]",
")",
"sum_dict",
"[",
"k",
"]",
"=",
"[",
"sum_dict",
"[",
"k",
"]",
"[",
"i",
"]",
"+",
"log_stat",
"[",
"k",
"]",
"[",
"i",
"]",
"for",
"i",
"in",
"range",
"(",
"len",
"(",
"log_stat",
"[",
"k",
"]",
")",
")",
"]",
"else",
":",
"if",
"k",
"not",
"in",
"sum_dict",
".",
"keys",
"(",
")",
":",
"sum_dict",
"[",
"k",
"]",
"=",
"0",
"sum_dict",
"[",
"k",
"]",
"+=",
"log_stat",
"[",
"k",
"]",
"else",
":",
"sum_dict",
"=",
"{",
"}",
"return",
"tcids_unfinished",
",",
"sum_dict",
",",
"log_stats"
]
| Run various analysis on a particular reading job. | [
"Run",
"various",
"analysis",
"on",
"a",
"particular",
"reading",
"job",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/tools/reading/util/log_analysis_tools.py#L156-L195 | train |
sorgerlab/indra | indra/sources/biopax/api.py | process_pc_neighborhood | def process_pc_neighborhood(gene_names, neighbor_limit=1,
database_filter=None):
"""Returns a BiopaxProcessor for a PathwayCommons neighborhood query.
The neighborhood query finds the neighborhood around a set of source genes.
http://www.pathwaycommons.org/pc2/#graph
http://www.pathwaycommons.org/pc2/#graph_kind
Parameters
----------
gene_names : list
A list of HGNC gene symbols to search the neighborhood of.
Examples: ['BRAF'], ['BRAF', 'MAP2K1']
neighbor_limit : Optional[int]
The number of steps to limit the size of the neighborhood around
the gene names being queried. Default: 1
database_filter : Optional[list]
A list of database identifiers to which the query is restricted.
Examples: ['reactome'], ['biogrid', 'pid', 'psp']
If not given, all databases are used in the query. For a full
list of databases see http://www.pathwaycommons.org/pc2/datasources
Returns
-------
bp : BiopaxProcessor
A BiopaxProcessor containing the obtained BioPAX model in bp.model.
"""
model = pcc.graph_query('neighborhood', gene_names,
neighbor_limit=neighbor_limit,
database_filter=database_filter)
if model is not None:
return process_model(model) | python | def process_pc_neighborhood(gene_names, neighbor_limit=1,
database_filter=None):
"""Returns a BiopaxProcessor for a PathwayCommons neighborhood query.
The neighborhood query finds the neighborhood around a set of source genes.
http://www.pathwaycommons.org/pc2/#graph
http://www.pathwaycommons.org/pc2/#graph_kind
Parameters
----------
gene_names : list
A list of HGNC gene symbols to search the neighborhood of.
Examples: ['BRAF'], ['BRAF', 'MAP2K1']
neighbor_limit : Optional[int]
The number of steps to limit the size of the neighborhood around
the gene names being queried. Default: 1
database_filter : Optional[list]
A list of database identifiers to which the query is restricted.
Examples: ['reactome'], ['biogrid', 'pid', 'psp']
If not given, all databases are used in the query. For a full
list of databases see http://www.pathwaycommons.org/pc2/datasources
Returns
-------
bp : BiopaxProcessor
A BiopaxProcessor containing the obtained BioPAX model in bp.model.
"""
model = pcc.graph_query('neighborhood', gene_names,
neighbor_limit=neighbor_limit,
database_filter=database_filter)
if model is not None:
return process_model(model) | [
"def",
"process_pc_neighborhood",
"(",
"gene_names",
",",
"neighbor_limit",
"=",
"1",
",",
"database_filter",
"=",
"None",
")",
":",
"model",
"=",
"pcc",
".",
"graph_query",
"(",
"'neighborhood'",
",",
"gene_names",
",",
"neighbor_limit",
"=",
"neighbor_limit",
",",
"database_filter",
"=",
"database_filter",
")",
"if",
"model",
"is",
"not",
"None",
":",
"return",
"process_model",
"(",
"model",
")"
]
| Returns a BiopaxProcessor for a PathwayCommons neighborhood query.
The neighborhood query finds the neighborhood around a set of source genes.
http://www.pathwaycommons.org/pc2/#graph
http://www.pathwaycommons.org/pc2/#graph_kind
Parameters
----------
gene_names : list
A list of HGNC gene symbols to search the neighborhood of.
Examples: ['BRAF'], ['BRAF', 'MAP2K1']
neighbor_limit : Optional[int]
The number of steps to limit the size of the neighborhood around
the gene names being queried. Default: 1
database_filter : Optional[list]
A list of database identifiers to which the query is restricted.
Examples: ['reactome'], ['biogrid', 'pid', 'psp']
If not given, all databases are used in the query. For a full
list of databases see http://www.pathwaycommons.org/pc2/datasources
Returns
-------
bp : BiopaxProcessor
A BiopaxProcessor containing the obtained BioPAX model in bp.model. | [
"Returns",
"a",
"BiopaxProcessor",
"for",
"a",
"PathwayCommons",
"neighborhood",
"query",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/sources/biopax/api.py#L8-L41 | train |
sorgerlab/indra | indra/sources/biopax/api.py | process_pc_pathsbetween | def process_pc_pathsbetween(gene_names, neighbor_limit=1,
database_filter=None, block_size=None):
"""Returns a BiopaxProcessor for a PathwayCommons paths-between query.
The paths-between query finds the paths between a set of genes. Here
source gene names are given in a single list and all directions of paths
between these genes are considered.
http://www.pathwaycommons.org/pc2/#graph
http://www.pathwaycommons.org/pc2/#graph_kind
Parameters
----------
gene_names : list
A list of HGNC gene symbols to search for paths between.
Examples: ['BRAF', 'MAP2K1']
neighbor_limit : Optional[int]
The number of steps to limit the length of the paths between
the gene names being queried. Default: 1
database_filter : Optional[list]
A list of database identifiers to which the query is restricted.
Examples: ['reactome'], ['biogrid', 'pid', 'psp']
If not given, all databases are used in the query. For a full
list of databases see http://www.pathwaycommons.org/pc2/datasources
block_size : Optional[int]
Large paths-between queries (above ~60 genes) can error on the server
side. In this case, the query can be replaced by a series of
smaller paths-between and paths-from-to queries each of which contains
block_size genes.
Returns
-------
bp : BiopaxProcessor
A BiopaxProcessor containing the obtained BioPAX model in bp.model.
"""
if not block_size:
model = pcc.graph_query('pathsbetween', gene_names,
neighbor_limit=neighbor_limit,
database_filter=database_filter)
if model is not None:
return process_model(model)
else:
gene_blocks = [gene_names[i:i + block_size] for i in
range(0, len(gene_names), block_size)]
stmts = []
# Run pathsfromto between pairs of blocks and pathsbetween
# within each block. This breaks up a single call with N genes into
# (N/block_size)*(N/blocksize) calls with block_size genes
for genes1, genes2 in itertools.product(gene_blocks, repeat=2):
if genes1 == genes2:
bp = process_pc_pathsbetween(genes1,
database_filter=database_filter,
block_size=None)
else:
bp = process_pc_pathsfromto(genes1, genes2,
database_filter=database_filter)
stmts += bp.statements | python | def process_pc_pathsbetween(gene_names, neighbor_limit=1,
database_filter=None, block_size=None):
"""Returns a BiopaxProcessor for a PathwayCommons paths-between query.
The paths-between query finds the paths between a set of genes. Here
source gene names are given in a single list and all directions of paths
between these genes are considered.
http://www.pathwaycommons.org/pc2/#graph
http://www.pathwaycommons.org/pc2/#graph_kind
Parameters
----------
gene_names : list
A list of HGNC gene symbols to search for paths between.
Examples: ['BRAF', 'MAP2K1']
neighbor_limit : Optional[int]
The number of steps to limit the length of the paths between
the gene names being queried. Default: 1
database_filter : Optional[list]
A list of database identifiers to which the query is restricted.
Examples: ['reactome'], ['biogrid', 'pid', 'psp']
If not given, all databases are used in the query. For a full
list of databases see http://www.pathwaycommons.org/pc2/datasources
block_size : Optional[int]
Large paths-between queries (above ~60 genes) can error on the server
side. In this case, the query can be replaced by a series of
smaller paths-between and paths-from-to queries each of which contains
block_size genes.
Returns
-------
bp : BiopaxProcessor
A BiopaxProcessor containing the obtained BioPAX model in bp.model.
"""
if not block_size:
model = pcc.graph_query('pathsbetween', gene_names,
neighbor_limit=neighbor_limit,
database_filter=database_filter)
if model is not None:
return process_model(model)
else:
gene_blocks = [gene_names[i:i + block_size] for i in
range(0, len(gene_names), block_size)]
stmts = []
# Run pathsfromto between pairs of blocks and pathsbetween
# within each block. This breaks up a single call with N genes into
# (N/block_size)*(N/blocksize) calls with block_size genes
for genes1, genes2 in itertools.product(gene_blocks, repeat=2):
if genes1 == genes2:
bp = process_pc_pathsbetween(genes1,
database_filter=database_filter,
block_size=None)
else:
bp = process_pc_pathsfromto(genes1, genes2,
database_filter=database_filter)
stmts += bp.statements | [
"def",
"process_pc_pathsbetween",
"(",
"gene_names",
",",
"neighbor_limit",
"=",
"1",
",",
"database_filter",
"=",
"None",
",",
"block_size",
"=",
"None",
")",
":",
"if",
"not",
"block_size",
":",
"model",
"=",
"pcc",
".",
"graph_query",
"(",
"'pathsbetween'",
",",
"gene_names",
",",
"neighbor_limit",
"=",
"neighbor_limit",
",",
"database_filter",
"=",
"database_filter",
")",
"if",
"model",
"is",
"not",
"None",
":",
"return",
"process_model",
"(",
"model",
")",
"else",
":",
"gene_blocks",
"=",
"[",
"gene_names",
"[",
"i",
":",
"i",
"+",
"block_size",
"]",
"for",
"i",
"in",
"range",
"(",
"0",
",",
"len",
"(",
"gene_names",
")",
",",
"block_size",
")",
"]",
"stmts",
"=",
"[",
"]",
"# Run pathsfromto between pairs of blocks and pathsbetween",
"# within each block. This breaks up a single call with N genes into",
"# (N/block_size)*(N/blocksize) calls with block_size genes",
"for",
"genes1",
",",
"genes2",
"in",
"itertools",
".",
"product",
"(",
"gene_blocks",
",",
"repeat",
"=",
"2",
")",
":",
"if",
"genes1",
"==",
"genes2",
":",
"bp",
"=",
"process_pc_pathsbetween",
"(",
"genes1",
",",
"database_filter",
"=",
"database_filter",
",",
"block_size",
"=",
"None",
")",
"else",
":",
"bp",
"=",
"process_pc_pathsfromto",
"(",
"genes1",
",",
"genes2",
",",
"database_filter",
"=",
"database_filter",
")",
"stmts",
"+=",
"bp",
".",
"statements"
]
| Returns a BiopaxProcessor for a PathwayCommons paths-between query.
The paths-between query finds the paths between a set of genes. Here
source gene names are given in a single list and all directions of paths
between these genes are considered.
http://www.pathwaycommons.org/pc2/#graph
http://www.pathwaycommons.org/pc2/#graph_kind
Parameters
----------
gene_names : list
A list of HGNC gene symbols to search for paths between.
Examples: ['BRAF', 'MAP2K1']
neighbor_limit : Optional[int]
The number of steps to limit the length of the paths between
the gene names being queried. Default: 1
database_filter : Optional[list]
A list of database identifiers to which the query is restricted.
Examples: ['reactome'], ['biogrid', 'pid', 'psp']
If not given, all databases are used in the query. For a full
list of databases see http://www.pathwaycommons.org/pc2/datasources
block_size : Optional[int]
Large paths-between queries (above ~60 genes) can error on the server
side. In this case, the query can be replaced by a series of
smaller paths-between and paths-from-to queries each of which contains
block_size genes.
Returns
-------
bp : BiopaxProcessor
A BiopaxProcessor containing the obtained BioPAX model in bp.model. | [
"Returns",
"a",
"BiopaxProcessor",
"for",
"a",
"PathwayCommons",
"paths",
"-",
"between",
"query",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/sources/biopax/api.py#L44-L101 | train |
sorgerlab/indra | indra/sources/biopax/api.py | process_pc_pathsfromto | def process_pc_pathsfromto(source_genes, target_genes, neighbor_limit=1,
database_filter=None):
"""Returns a BiopaxProcessor for a PathwayCommons paths-from-to query.
The paths-from-to query finds the paths from a set of source genes to
a set of target genes.
http://www.pathwaycommons.org/pc2/#graph
http://www.pathwaycommons.org/pc2/#graph_kind
Parameters
----------
source_genes : list
A list of HGNC gene symbols that are the sources of paths being
searched for.
Examples: ['BRAF', 'RAF1', 'ARAF']
target_genes : list
A list of HGNC gene symbols that are the targets of paths being
searched for.
Examples: ['MAP2K1', 'MAP2K2']
neighbor_limit : Optional[int]
The number of steps to limit the length of the paths
between the source genes and target genes being queried. Default: 1
database_filter : Optional[list]
A list of database identifiers to which the query is restricted.
Examples: ['reactome'], ['biogrid', 'pid', 'psp']
If not given, all databases are used in the query. For a full
list of databases see http://www.pathwaycommons.org/pc2/datasources
Returns
-------
bp : BiopaxProcessor
A BiopaxProcessor containing the obtained BioPAX model in bp.model.
"""
model = pcc.graph_query('pathsfromto', source_genes,
target_genes, neighbor_limit=neighbor_limit,
database_filter=database_filter)
if model is not None:
return process_model(model) | python | def process_pc_pathsfromto(source_genes, target_genes, neighbor_limit=1,
database_filter=None):
"""Returns a BiopaxProcessor for a PathwayCommons paths-from-to query.
The paths-from-to query finds the paths from a set of source genes to
a set of target genes.
http://www.pathwaycommons.org/pc2/#graph
http://www.pathwaycommons.org/pc2/#graph_kind
Parameters
----------
source_genes : list
A list of HGNC gene symbols that are the sources of paths being
searched for.
Examples: ['BRAF', 'RAF1', 'ARAF']
target_genes : list
A list of HGNC gene symbols that are the targets of paths being
searched for.
Examples: ['MAP2K1', 'MAP2K2']
neighbor_limit : Optional[int]
The number of steps to limit the length of the paths
between the source genes and target genes being queried. Default: 1
database_filter : Optional[list]
A list of database identifiers to which the query is restricted.
Examples: ['reactome'], ['biogrid', 'pid', 'psp']
If not given, all databases are used in the query. For a full
list of databases see http://www.pathwaycommons.org/pc2/datasources
Returns
-------
bp : BiopaxProcessor
A BiopaxProcessor containing the obtained BioPAX model in bp.model.
"""
model = pcc.graph_query('pathsfromto', source_genes,
target_genes, neighbor_limit=neighbor_limit,
database_filter=database_filter)
if model is not None:
return process_model(model) | [
"def",
"process_pc_pathsfromto",
"(",
"source_genes",
",",
"target_genes",
",",
"neighbor_limit",
"=",
"1",
",",
"database_filter",
"=",
"None",
")",
":",
"model",
"=",
"pcc",
".",
"graph_query",
"(",
"'pathsfromto'",
",",
"source_genes",
",",
"target_genes",
",",
"neighbor_limit",
"=",
"neighbor_limit",
",",
"database_filter",
"=",
"database_filter",
")",
"if",
"model",
"is",
"not",
"None",
":",
"return",
"process_model",
"(",
"model",
")"
]
| Returns a BiopaxProcessor for a PathwayCommons paths-from-to query.
The paths-from-to query finds the paths from a set of source genes to
a set of target genes.
http://www.pathwaycommons.org/pc2/#graph
http://www.pathwaycommons.org/pc2/#graph_kind
Parameters
----------
source_genes : list
A list of HGNC gene symbols that are the sources of paths being
searched for.
Examples: ['BRAF', 'RAF1', 'ARAF']
target_genes : list
A list of HGNC gene symbols that are the targets of paths being
searched for.
Examples: ['MAP2K1', 'MAP2K2']
neighbor_limit : Optional[int]
The number of steps to limit the length of the paths
between the source genes and target genes being queried. Default: 1
database_filter : Optional[list]
A list of database identifiers to which the query is restricted.
Examples: ['reactome'], ['biogrid', 'pid', 'psp']
If not given, all databases are used in the query. For a full
list of databases see http://www.pathwaycommons.org/pc2/datasources
Returns
-------
bp : BiopaxProcessor
A BiopaxProcessor containing the obtained BioPAX model in bp.model. | [
"Returns",
"a",
"BiopaxProcessor",
"for",
"a",
"PathwayCommons",
"paths",
"-",
"from",
"-",
"to",
"query",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/sources/biopax/api.py#L104-L143 | train |
sorgerlab/indra | indra/sources/biopax/api.py | process_model | def process_model(model):
"""Returns a BiopaxProcessor for a BioPAX model object.
Parameters
----------
model : org.biopax.paxtools.model.Model
A BioPAX model object.
Returns
-------
bp : BiopaxProcessor
A BiopaxProcessor containing the obtained BioPAX model in bp.model.
"""
bp = BiopaxProcessor(model)
bp.get_modifications()
bp.get_regulate_activities()
bp.get_regulate_amounts()
bp.get_activity_modification()
bp.get_gef()
bp.get_gap()
bp.get_conversions()
# bp.get_complexes()
bp.eliminate_exact_duplicates()
return bp | python | def process_model(model):
"""Returns a BiopaxProcessor for a BioPAX model object.
Parameters
----------
model : org.biopax.paxtools.model.Model
A BioPAX model object.
Returns
-------
bp : BiopaxProcessor
A BiopaxProcessor containing the obtained BioPAX model in bp.model.
"""
bp = BiopaxProcessor(model)
bp.get_modifications()
bp.get_regulate_activities()
bp.get_regulate_amounts()
bp.get_activity_modification()
bp.get_gef()
bp.get_gap()
bp.get_conversions()
# bp.get_complexes()
bp.eliminate_exact_duplicates()
return bp | [
"def",
"process_model",
"(",
"model",
")",
":",
"bp",
"=",
"BiopaxProcessor",
"(",
"model",
")",
"bp",
".",
"get_modifications",
"(",
")",
"bp",
".",
"get_regulate_activities",
"(",
")",
"bp",
".",
"get_regulate_amounts",
"(",
")",
"bp",
".",
"get_activity_modification",
"(",
")",
"bp",
".",
"get_gef",
"(",
")",
"bp",
".",
"get_gap",
"(",
")",
"bp",
".",
"get_conversions",
"(",
")",
"# bp.get_complexes()",
"bp",
".",
"eliminate_exact_duplicates",
"(",
")",
"return",
"bp"
]
| Returns a BiopaxProcessor for a BioPAX model object.
Parameters
----------
model : org.biopax.paxtools.model.Model
A BioPAX model object.
Returns
-------
bp : BiopaxProcessor
A BiopaxProcessor containing the obtained BioPAX model in bp.model. | [
"Returns",
"a",
"BiopaxProcessor",
"for",
"a",
"BioPAX",
"model",
"object",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/sources/biopax/api.py#L163-L186 | train |
sorgerlab/indra | indra/benchmarks/assembly_eval/batch4/assembly_eval.py | is_background_knowledge | def is_background_knowledge(stmt):
'''Return True if Statement is only supported by background knowledge.'''
any_background = False
# Iterate over all evidence for the statement
for ev in stmt.evidence:
epi = ev.epistemics
if epi is not None:
sec = epi.get('section_type')
# If there is at least one evidence not from a
# background section then we consider this to be
# a non-background knowledge finding.
if sec is not None and sec not in background_secs:
return False
# If there is at least one evidence that is explicitly
# from a background section then we keep track of that.
elif sec in background_secs:
any_background = True
# If there is any explicit evidence for this statement being
# background info (and no evidence otherwise) then we return
# True, otherwise (for instnace of there is no section info at all)
# we return False.
return any_background | python | def is_background_knowledge(stmt):
'''Return True if Statement is only supported by background knowledge.'''
any_background = False
# Iterate over all evidence for the statement
for ev in stmt.evidence:
epi = ev.epistemics
if epi is not None:
sec = epi.get('section_type')
# If there is at least one evidence not from a
# background section then we consider this to be
# a non-background knowledge finding.
if sec is not None and sec not in background_secs:
return False
# If there is at least one evidence that is explicitly
# from a background section then we keep track of that.
elif sec in background_secs:
any_background = True
# If there is any explicit evidence for this statement being
# background info (and no evidence otherwise) then we return
# True, otherwise (for instnace of there is no section info at all)
# we return False.
return any_background | [
"def",
"is_background_knowledge",
"(",
"stmt",
")",
":",
"any_background",
"=",
"False",
"# Iterate over all evidence for the statement",
"for",
"ev",
"in",
"stmt",
".",
"evidence",
":",
"epi",
"=",
"ev",
".",
"epistemics",
"if",
"epi",
"is",
"not",
"None",
":",
"sec",
"=",
"epi",
".",
"get",
"(",
"'section_type'",
")",
"# If there is at least one evidence not from a ",
"# background section then we consider this to be",
"# a non-background knowledge finding.",
"if",
"sec",
"is",
"not",
"None",
"and",
"sec",
"not",
"in",
"background_secs",
":",
"return",
"False",
"# If there is at least one evidence that is explicitly",
"# from a background section then we keep track of that.",
"elif",
"sec",
"in",
"background_secs",
":",
"any_background",
"=",
"True",
"# If there is any explicit evidence for this statement being",
"# background info (and no evidence otherwise) then we return",
"# True, otherwise (for instnace of there is no section info at all)",
"# we return False.",
"return",
"any_background"
]
| Return True if Statement is only supported by background knowledge. | [
"Return",
"True",
"if",
"Statement",
"is",
"only",
"supported",
"by",
"background",
"knowledge",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/benchmarks/assembly_eval/batch4/assembly_eval.py#L45-L66 | train |
sorgerlab/indra | indra/benchmarks/assembly_eval/batch4/assembly_eval.py | multiple_sources | def multiple_sources(stmt):
'''Return True if statement is supported by multiple sources.
Note: this is currently not used and replaced by BeliefEngine score cutoff
'''
sources = list(set([e.source_api for e in stmt.evidence]))
if len(sources) > 1:
return True
return False | python | def multiple_sources(stmt):
'''Return True if statement is supported by multiple sources.
Note: this is currently not used and replaced by BeliefEngine score cutoff
'''
sources = list(set([e.source_api for e in stmt.evidence]))
if len(sources) > 1:
return True
return False | [
"def",
"multiple_sources",
"(",
"stmt",
")",
":",
"sources",
"=",
"list",
"(",
"set",
"(",
"[",
"e",
".",
"source_api",
"for",
"e",
"in",
"stmt",
".",
"evidence",
"]",
")",
")",
"if",
"len",
"(",
"sources",
")",
">",
"1",
":",
"return",
"True",
"return",
"False"
]
| Return True if statement is supported by multiple sources.
Note: this is currently not used and replaced by BeliefEngine score cutoff | [
"Return",
"True",
"if",
"statement",
"is",
"supported",
"by",
"multiple",
"sources",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/benchmarks/assembly_eval/batch4/assembly_eval.py#L68-L76 | train |
sorgerlab/indra | indra/sources/geneways/symbols_parser.py | GenewaysSymbols.id_to_symbol | def id_to_symbol(self, entrez_id):
"""Gives the symbol for a given entrez id)"""
entrez_id = str(entrez_id)
if entrez_id not in self.ids_to_symbols:
m = 'Could not look up symbol for Entrez ID ' + entrez_id
raise Exception(m)
return self.ids_to_symbols[entrez_id] | python | def id_to_symbol(self, entrez_id):
"""Gives the symbol for a given entrez id)"""
entrez_id = str(entrez_id)
if entrez_id not in self.ids_to_symbols:
m = 'Could not look up symbol for Entrez ID ' + entrez_id
raise Exception(m)
return self.ids_to_symbols[entrez_id] | [
"def",
"id_to_symbol",
"(",
"self",
",",
"entrez_id",
")",
":",
"entrez_id",
"=",
"str",
"(",
"entrez_id",
")",
"if",
"entrez_id",
"not",
"in",
"self",
".",
"ids_to_symbols",
":",
"m",
"=",
"'Could not look up symbol for Entrez ID '",
"+",
"entrez_id",
"raise",
"Exception",
"(",
"m",
")",
"return",
"self",
".",
"ids_to_symbols",
"[",
"entrez_id",
"]"
]
| Gives the symbol for a given entrez id) | [
"Gives",
"the",
"symbol",
"for",
"a",
"given",
"entrez",
"id",
")"
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/sources/geneways/symbols_parser.py#L59-L66 | train |
sorgerlab/indra | indra/assemblers/tsv/assembler.py | TsvAssembler.make_model | def make_model(self, output_file, add_curation_cols=False, up_only=False):
"""Export the statements into a tab-separated text file.
Parameters
----------
output_file : str
Name of the output file.
add_curation_cols : bool
Whether to add columns to facilitate statement curation. Default
is False (no additional columns).
up_only : bool
Whether to include identifiers.org links *only* for the Uniprot
grounding of an agent when one is available. Because most
spreadsheets allow only a single hyperlink per cell, this can makes
it easier to link to Uniprot information pages for curation
purposes. Default is False.
"""
stmt_header = ['INDEX', 'UUID', 'TYPE', 'STR',
'AG_A_TEXT', 'AG_A_LINKS', 'AG_A_STR',
'AG_B_TEXT', 'AG_B_LINKS', 'AG_B_STR',
'PMID', 'TEXT', 'IS_HYP', 'IS_DIRECT']
if add_curation_cols:
stmt_header = stmt_header + \
['AG_A_IDS_CORRECT', 'AG_A_STATE_CORRECT',
'AG_B_IDS_CORRECT', 'AG_B_STATE_CORRECT',
'EVENT_CORRECT',
'RES_CORRECT', 'POS_CORRECT', 'SUBJ_ACT_CORRECT',
'OBJ_ACT_CORRECT', 'HYP_CORRECT', 'DIRECT_CORRECT']
rows = [stmt_header]
for ix, stmt in enumerate(self.statements):
# Complexes
if len(stmt.agent_list()) > 2:
logger.info("Skipping statement with more than two members: %s"
% stmt)
continue
# Self-modifications, ActiveForms
elif len(stmt.agent_list()) == 1:
ag_a = stmt.agent_list()[0]
ag_b = None
# All others
else:
(ag_a, ag_b) = stmt.agent_list()
# Put together the data row
row = [ix+1, stmt.uuid, stmt.__class__.__name__, str(stmt)] + \
_format_agent_entries(ag_a, up_only) + \
_format_agent_entries(ag_b, up_only) + \
[stmt.evidence[0].pmid, stmt.evidence[0].text,
stmt.evidence[0].epistemics.get('hypothesis', ''),
stmt.evidence[0].epistemics.get('direct', '')]
if add_curation_cols:
row = row + ([''] * 11)
rows.append(row)
# Write to file
write_unicode_csv(output_file, rows, delimiter='\t') | python | def make_model(self, output_file, add_curation_cols=False, up_only=False):
"""Export the statements into a tab-separated text file.
Parameters
----------
output_file : str
Name of the output file.
add_curation_cols : bool
Whether to add columns to facilitate statement curation. Default
is False (no additional columns).
up_only : bool
Whether to include identifiers.org links *only* for the Uniprot
grounding of an agent when one is available. Because most
spreadsheets allow only a single hyperlink per cell, this can makes
it easier to link to Uniprot information pages for curation
purposes. Default is False.
"""
stmt_header = ['INDEX', 'UUID', 'TYPE', 'STR',
'AG_A_TEXT', 'AG_A_LINKS', 'AG_A_STR',
'AG_B_TEXT', 'AG_B_LINKS', 'AG_B_STR',
'PMID', 'TEXT', 'IS_HYP', 'IS_DIRECT']
if add_curation_cols:
stmt_header = stmt_header + \
['AG_A_IDS_CORRECT', 'AG_A_STATE_CORRECT',
'AG_B_IDS_CORRECT', 'AG_B_STATE_CORRECT',
'EVENT_CORRECT',
'RES_CORRECT', 'POS_CORRECT', 'SUBJ_ACT_CORRECT',
'OBJ_ACT_CORRECT', 'HYP_CORRECT', 'DIRECT_CORRECT']
rows = [stmt_header]
for ix, stmt in enumerate(self.statements):
# Complexes
if len(stmt.agent_list()) > 2:
logger.info("Skipping statement with more than two members: %s"
% stmt)
continue
# Self-modifications, ActiveForms
elif len(stmt.agent_list()) == 1:
ag_a = stmt.agent_list()[0]
ag_b = None
# All others
else:
(ag_a, ag_b) = stmt.agent_list()
# Put together the data row
row = [ix+1, stmt.uuid, stmt.__class__.__name__, str(stmt)] + \
_format_agent_entries(ag_a, up_only) + \
_format_agent_entries(ag_b, up_only) + \
[stmt.evidence[0].pmid, stmt.evidence[0].text,
stmt.evidence[0].epistemics.get('hypothesis', ''),
stmt.evidence[0].epistemics.get('direct', '')]
if add_curation_cols:
row = row + ([''] * 11)
rows.append(row)
# Write to file
write_unicode_csv(output_file, rows, delimiter='\t') | [
"def",
"make_model",
"(",
"self",
",",
"output_file",
",",
"add_curation_cols",
"=",
"False",
",",
"up_only",
"=",
"False",
")",
":",
"stmt_header",
"=",
"[",
"'INDEX'",
",",
"'UUID'",
",",
"'TYPE'",
",",
"'STR'",
",",
"'AG_A_TEXT'",
",",
"'AG_A_LINKS'",
",",
"'AG_A_STR'",
",",
"'AG_B_TEXT'",
",",
"'AG_B_LINKS'",
",",
"'AG_B_STR'",
",",
"'PMID'",
",",
"'TEXT'",
",",
"'IS_HYP'",
",",
"'IS_DIRECT'",
"]",
"if",
"add_curation_cols",
":",
"stmt_header",
"=",
"stmt_header",
"+",
"[",
"'AG_A_IDS_CORRECT'",
",",
"'AG_A_STATE_CORRECT'",
",",
"'AG_B_IDS_CORRECT'",
",",
"'AG_B_STATE_CORRECT'",
",",
"'EVENT_CORRECT'",
",",
"'RES_CORRECT'",
",",
"'POS_CORRECT'",
",",
"'SUBJ_ACT_CORRECT'",
",",
"'OBJ_ACT_CORRECT'",
",",
"'HYP_CORRECT'",
",",
"'DIRECT_CORRECT'",
"]",
"rows",
"=",
"[",
"stmt_header",
"]",
"for",
"ix",
",",
"stmt",
"in",
"enumerate",
"(",
"self",
".",
"statements",
")",
":",
"# Complexes",
"if",
"len",
"(",
"stmt",
".",
"agent_list",
"(",
")",
")",
">",
"2",
":",
"logger",
".",
"info",
"(",
"\"Skipping statement with more than two members: %s\"",
"%",
"stmt",
")",
"continue",
"# Self-modifications, ActiveForms",
"elif",
"len",
"(",
"stmt",
".",
"agent_list",
"(",
")",
")",
"==",
"1",
":",
"ag_a",
"=",
"stmt",
".",
"agent_list",
"(",
")",
"[",
"0",
"]",
"ag_b",
"=",
"None",
"# All others",
"else",
":",
"(",
"ag_a",
",",
"ag_b",
")",
"=",
"stmt",
".",
"agent_list",
"(",
")",
"# Put together the data row",
"row",
"=",
"[",
"ix",
"+",
"1",
",",
"stmt",
".",
"uuid",
",",
"stmt",
".",
"__class__",
".",
"__name__",
",",
"str",
"(",
"stmt",
")",
"]",
"+",
"_format_agent_entries",
"(",
"ag_a",
",",
"up_only",
")",
"+",
"_format_agent_entries",
"(",
"ag_b",
",",
"up_only",
")",
"+",
"[",
"stmt",
".",
"evidence",
"[",
"0",
"]",
".",
"pmid",
",",
"stmt",
".",
"evidence",
"[",
"0",
"]",
".",
"text",
",",
"stmt",
".",
"evidence",
"[",
"0",
"]",
".",
"epistemics",
".",
"get",
"(",
"'hypothesis'",
",",
"''",
")",
",",
"stmt",
".",
"evidence",
"[",
"0",
"]",
".",
"epistemics",
".",
"get",
"(",
"'direct'",
",",
"''",
")",
"]",
"if",
"add_curation_cols",
":",
"row",
"=",
"row",
"+",
"(",
"[",
"''",
"]",
"*",
"11",
")",
"rows",
".",
"append",
"(",
"row",
")",
"# Write to file",
"write_unicode_csv",
"(",
"output_file",
",",
"rows",
",",
"delimiter",
"=",
"'\\t'",
")"
]
| Export the statements into a tab-separated text file.
Parameters
----------
output_file : str
Name of the output file.
add_curation_cols : bool
Whether to add columns to facilitate statement curation. Default
is False (no additional columns).
up_only : bool
Whether to include identifiers.org links *only* for the Uniprot
grounding of an agent when one is available. Because most
spreadsheets allow only a single hyperlink per cell, this can makes
it easier to link to Uniprot information pages for curation
purposes. Default is False. | [
"Export",
"the",
"statements",
"into",
"a",
"tab",
"-",
"separated",
"text",
"file",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/assemblers/tsv/assembler.py#L109-L163 | train |
sorgerlab/indra | indra/assemblers/pysb/base_agents.py | BaseAgentSet.get_create_base_agent | def get_create_base_agent(self, agent):
"""Return base agent with given name, creating it if needed."""
try:
base_agent = self.agents[_n(agent.name)]
except KeyError:
base_agent = BaseAgent(_n(agent.name))
self.agents[_n(agent.name)] = base_agent
# If it's a molecular agent
if isinstance(agent, Agent):
# Handle bound conditions
for bc in agent.bound_conditions:
bound_base_agent = self.get_create_base_agent(bc.agent)
bound_base_agent.create_site(get_binding_site_name(agent))
base_agent.create_site(get_binding_site_name(bc.agent))
# Handle modification conditions
for mc in agent.mods:
base_agent.create_mod_site(mc)
# Handle mutation conditions
for mc in agent.mutations:
res_from = mc.residue_from if mc.residue_from else 'mut'
res_to = mc.residue_to if mc.residue_to else 'X'
if mc.position is None:
mut_site_name = res_from
else:
mut_site_name = res_from + mc.position
base_agent.create_site(mut_site_name, states=['WT', res_to])
# Handle location condition
if agent.location is not None:
base_agent.create_site('loc', [_n(agent.location)])
# Handle activity
if agent.activity is not None:
site_name = agent.activity.activity_type
base_agent.create_site(site_name, ['inactive', 'active'])
# There might be overwrites here
for db_name, db_ref in agent.db_refs.items():
base_agent.db_refs[db_name] = db_ref
return base_agent | python | def get_create_base_agent(self, agent):
"""Return base agent with given name, creating it if needed."""
try:
base_agent = self.agents[_n(agent.name)]
except KeyError:
base_agent = BaseAgent(_n(agent.name))
self.agents[_n(agent.name)] = base_agent
# If it's a molecular agent
if isinstance(agent, Agent):
# Handle bound conditions
for bc in agent.bound_conditions:
bound_base_agent = self.get_create_base_agent(bc.agent)
bound_base_agent.create_site(get_binding_site_name(agent))
base_agent.create_site(get_binding_site_name(bc.agent))
# Handle modification conditions
for mc in agent.mods:
base_agent.create_mod_site(mc)
# Handle mutation conditions
for mc in agent.mutations:
res_from = mc.residue_from if mc.residue_from else 'mut'
res_to = mc.residue_to if mc.residue_to else 'X'
if mc.position is None:
mut_site_name = res_from
else:
mut_site_name = res_from + mc.position
base_agent.create_site(mut_site_name, states=['WT', res_to])
# Handle location condition
if agent.location is not None:
base_agent.create_site('loc', [_n(agent.location)])
# Handle activity
if agent.activity is not None:
site_name = agent.activity.activity_type
base_agent.create_site(site_name, ['inactive', 'active'])
# There might be overwrites here
for db_name, db_ref in agent.db_refs.items():
base_agent.db_refs[db_name] = db_ref
return base_agent | [
"def",
"get_create_base_agent",
"(",
"self",
",",
"agent",
")",
":",
"try",
":",
"base_agent",
"=",
"self",
".",
"agents",
"[",
"_n",
"(",
"agent",
".",
"name",
")",
"]",
"except",
"KeyError",
":",
"base_agent",
"=",
"BaseAgent",
"(",
"_n",
"(",
"agent",
".",
"name",
")",
")",
"self",
".",
"agents",
"[",
"_n",
"(",
"agent",
".",
"name",
")",
"]",
"=",
"base_agent",
"# If it's a molecular agent",
"if",
"isinstance",
"(",
"agent",
",",
"Agent",
")",
":",
"# Handle bound conditions",
"for",
"bc",
"in",
"agent",
".",
"bound_conditions",
":",
"bound_base_agent",
"=",
"self",
".",
"get_create_base_agent",
"(",
"bc",
".",
"agent",
")",
"bound_base_agent",
".",
"create_site",
"(",
"get_binding_site_name",
"(",
"agent",
")",
")",
"base_agent",
".",
"create_site",
"(",
"get_binding_site_name",
"(",
"bc",
".",
"agent",
")",
")",
"# Handle modification conditions",
"for",
"mc",
"in",
"agent",
".",
"mods",
":",
"base_agent",
".",
"create_mod_site",
"(",
"mc",
")",
"# Handle mutation conditions",
"for",
"mc",
"in",
"agent",
".",
"mutations",
":",
"res_from",
"=",
"mc",
".",
"residue_from",
"if",
"mc",
".",
"residue_from",
"else",
"'mut'",
"res_to",
"=",
"mc",
".",
"residue_to",
"if",
"mc",
".",
"residue_to",
"else",
"'X'",
"if",
"mc",
".",
"position",
"is",
"None",
":",
"mut_site_name",
"=",
"res_from",
"else",
":",
"mut_site_name",
"=",
"res_from",
"+",
"mc",
".",
"position",
"base_agent",
".",
"create_site",
"(",
"mut_site_name",
",",
"states",
"=",
"[",
"'WT'",
",",
"res_to",
"]",
")",
"# Handle location condition",
"if",
"agent",
".",
"location",
"is",
"not",
"None",
":",
"base_agent",
".",
"create_site",
"(",
"'loc'",
",",
"[",
"_n",
"(",
"agent",
".",
"location",
")",
"]",
")",
"# Handle activity",
"if",
"agent",
".",
"activity",
"is",
"not",
"None",
":",
"site_name",
"=",
"agent",
".",
"activity",
".",
"activity_type",
"base_agent",
".",
"create_site",
"(",
"site_name",
",",
"[",
"'inactive'",
",",
"'active'",
"]",
")",
"# There might be overwrites here",
"for",
"db_name",
",",
"db_ref",
"in",
"agent",
".",
"db_refs",
".",
"items",
"(",
")",
":",
"base_agent",
".",
"db_refs",
"[",
"db_name",
"]",
"=",
"db_ref",
"return",
"base_agent"
]
| Return base agent with given name, creating it if needed. | [
"Return",
"base",
"agent",
"with",
"given",
"name",
"creating",
"it",
"if",
"needed",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/assemblers/pysb/base_agents.py#L13-L57 | train |
sorgerlab/indra | indra/assemblers/pysb/base_agents.py | BaseAgent.create_site | def create_site(self, site, states=None):
"""Create a new site on an agent if it doesn't already exist."""
if site not in self.sites:
self.sites.append(site)
if states is not None:
self.site_states.setdefault(site, [])
try:
states = list(states)
except TypeError:
return
self.add_site_states(site, states) | python | def create_site(self, site, states=None):
"""Create a new site on an agent if it doesn't already exist."""
if site not in self.sites:
self.sites.append(site)
if states is not None:
self.site_states.setdefault(site, [])
try:
states = list(states)
except TypeError:
return
self.add_site_states(site, states) | [
"def",
"create_site",
"(",
"self",
",",
"site",
",",
"states",
"=",
"None",
")",
":",
"if",
"site",
"not",
"in",
"self",
".",
"sites",
":",
"self",
".",
"sites",
".",
"append",
"(",
"site",
")",
"if",
"states",
"is",
"not",
"None",
":",
"self",
".",
"site_states",
".",
"setdefault",
"(",
"site",
",",
"[",
"]",
")",
"try",
":",
"states",
"=",
"list",
"(",
"states",
")",
"except",
"TypeError",
":",
"return",
"self",
".",
"add_site_states",
"(",
"site",
",",
"states",
")"
]
| Create a new site on an agent if it doesn't already exist. | [
"Create",
"a",
"new",
"site",
"on",
"an",
"agent",
"if",
"it",
"doesn",
"t",
"already",
"exist",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/assemblers/pysb/base_agents.py#L90-L100 | train |
sorgerlab/indra | indra/assemblers/pysb/base_agents.py | BaseAgent.create_mod_site | def create_mod_site(self, mc):
"""Create modification site for the BaseAgent from a ModCondition."""
site_name = get_mod_site_name(mc)
(unmod_site_state, mod_site_state) = states[mc.mod_type]
self.create_site(site_name, (unmod_site_state, mod_site_state))
site_anns = [Annotation((site_name, mod_site_state), mc.mod_type,
'is_modification')]
if mc.residue:
site_anns.append(Annotation(site_name, mc.residue, 'is_residue'))
if mc.position:
site_anns.append(Annotation(site_name, mc.position, 'is_position'))
self.site_annotations += site_anns | python | def create_mod_site(self, mc):
"""Create modification site for the BaseAgent from a ModCondition."""
site_name = get_mod_site_name(mc)
(unmod_site_state, mod_site_state) = states[mc.mod_type]
self.create_site(site_name, (unmod_site_state, mod_site_state))
site_anns = [Annotation((site_name, mod_site_state), mc.mod_type,
'is_modification')]
if mc.residue:
site_anns.append(Annotation(site_name, mc.residue, 'is_residue'))
if mc.position:
site_anns.append(Annotation(site_name, mc.position, 'is_position'))
self.site_annotations += site_anns | [
"def",
"create_mod_site",
"(",
"self",
",",
"mc",
")",
":",
"site_name",
"=",
"get_mod_site_name",
"(",
"mc",
")",
"(",
"unmod_site_state",
",",
"mod_site_state",
")",
"=",
"states",
"[",
"mc",
".",
"mod_type",
"]",
"self",
".",
"create_site",
"(",
"site_name",
",",
"(",
"unmod_site_state",
",",
"mod_site_state",
")",
")",
"site_anns",
"=",
"[",
"Annotation",
"(",
"(",
"site_name",
",",
"mod_site_state",
")",
",",
"mc",
".",
"mod_type",
",",
"'is_modification'",
")",
"]",
"if",
"mc",
".",
"residue",
":",
"site_anns",
".",
"append",
"(",
"Annotation",
"(",
"site_name",
",",
"mc",
".",
"residue",
",",
"'is_residue'",
")",
")",
"if",
"mc",
".",
"position",
":",
"site_anns",
".",
"append",
"(",
"Annotation",
"(",
"site_name",
",",
"mc",
".",
"position",
",",
"'is_position'",
")",
")",
"self",
".",
"site_annotations",
"+=",
"site_anns"
]
| Create modification site for the BaseAgent from a ModCondition. | [
"Create",
"modification",
"site",
"for",
"the",
"BaseAgent",
"from",
"a",
"ModCondition",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/assemblers/pysb/base_agents.py#L102-L113 | train |
sorgerlab/indra | indra/assemblers/pysb/base_agents.py | BaseAgent.add_site_states | def add_site_states(self, site, states):
"""Create new states on an agent site if the state doesn't exist."""
for state in states:
if state not in self.site_states[site]:
self.site_states[site].append(state) | python | def add_site_states(self, site, states):
"""Create new states on an agent site if the state doesn't exist."""
for state in states:
if state not in self.site_states[site]:
self.site_states[site].append(state) | [
"def",
"add_site_states",
"(",
"self",
",",
"site",
",",
"states",
")",
":",
"for",
"state",
"in",
"states",
":",
"if",
"state",
"not",
"in",
"self",
".",
"site_states",
"[",
"site",
"]",
":",
"self",
".",
"site_states",
"[",
"site",
"]",
".",
"append",
"(",
"state",
")"
]
| Create new states on an agent site if the state doesn't exist. | [
"Create",
"new",
"states",
"on",
"an",
"agent",
"site",
"if",
"the",
"state",
"doesn",
"t",
"exist",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/assemblers/pysb/base_agents.py#L115-L119 | train |
sorgerlab/indra | indra/assemblers/pysb/base_agents.py | BaseAgent.add_activity_form | def add_activity_form(self, activity_pattern, is_active):
"""Adds the pattern as an active or inactive form to an Agent.
Parameters
----------
activity_pattern : dict
A dictionary of site names and their states.
is_active : bool
Is True if the given pattern corresponds to an active state.
"""
if is_active:
if activity_pattern not in self.active_forms:
self.active_forms.append(activity_pattern)
else:
if activity_pattern not in self.inactive_forms:
self.inactive_forms.append(activity_pattern) | python | def add_activity_form(self, activity_pattern, is_active):
"""Adds the pattern as an active or inactive form to an Agent.
Parameters
----------
activity_pattern : dict
A dictionary of site names and their states.
is_active : bool
Is True if the given pattern corresponds to an active state.
"""
if is_active:
if activity_pattern not in self.active_forms:
self.active_forms.append(activity_pattern)
else:
if activity_pattern not in self.inactive_forms:
self.inactive_forms.append(activity_pattern) | [
"def",
"add_activity_form",
"(",
"self",
",",
"activity_pattern",
",",
"is_active",
")",
":",
"if",
"is_active",
":",
"if",
"activity_pattern",
"not",
"in",
"self",
".",
"active_forms",
":",
"self",
".",
"active_forms",
".",
"append",
"(",
"activity_pattern",
")",
"else",
":",
"if",
"activity_pattern",
"not",
"in",
"self",
".",
"inactive_forms",
":",
"self",
".",
"inactive_forms",
".",
"append",
"(",
"activity_pattern",
")"
]
| Adds the pattern as an active or inactive form to an Agent.
Parameters
----------
activity_pattern : dict
A dictionary of site names and their states.
is_active : bool
Is True if the given pattern corresponds to an active state. | [
"Adds",
"the",
"pattern",
"as",
"an",
"active",
"or",
"inactive",
"form",
"to",
"an",
"Agent",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/assemblers/pysb/base_agents.py#L121-L136 | train |
sorgerlab/indra | indra/assemblers/pysb/base_agents.py | BaseAgent.add_activity_type | def add_activity_type(self, activity_type):
"""Adds an activity type to an Agent.
Parameters
----------
activity_type : str
The type of activity to add such as 'activity', 'kinase',
'gtpbound'
"""
if activity_type not in self.activity_types:
self.activity_types.append(activity_type) | python | def add_activity_type(self, activity_type):
"""Adds an activity type to an Agent.
Parameters
----------
activity_type : str
The type of activity to add such as 'activity', 'kinase',
'gtpbound'
"""
if activity_type not in self.activity_types:
self.activity_types.append(activity_type) | [
"def",
"add_activity_type",
"(",
"self",
",",
"activity_type",
")",
":",
"if",
"activity_type",
"not",
"in",
"self",
".",
"activity_types",
":",
"self",
".",
"activity_types",
".",
"append",
"(",
"activity_type",
")"
]
| Adds an activity type to an Agent.
Parameters
----------
activity_type : str
The type of activity to add such as 'activity', 'kinase',
'gtpbound' | [
"Adds",
"an",
"activity",
"type",
"to",
"an",
"Agent",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/assemblers/pysb/base_agents.py#L138-L148 | train |
sorgerlab/indra | indra/sources/geneways/action_parser.py | GenewaysAction.make_annotation | def make_annotation(self):
"""Returns a dictionary with all properties of the action
and each of its action mentions."""
annotation = dict()
# Put all properties of the action object into the annotation
for item in dir(self):
if len(item) > 0 and item[0] != '_' and \
not inspect.ismethod(getattr(self, item)):
annotation[item] = getattr(self, item)
# Add properties of each action mention
annotation['action_mentions'] = list()
for action_mention in self.action_mentions:
annotation_mention = action_mention.make_annotation()
annotation['action_mentions'].append(annotation_mention)
return annotation | python | def make_annotation(self):
"""Returns a dictionary with all properties of the action
and each of its action mentions."""
annotation = dict()
# Put all properties of the action object into the annotation
for item in dir(self):
if len(item) > 0 and item[0] != '_' and \
not inspect.ismethod(getattr(self, item)):
annotation[item] = getattr(self, item)
# Add properties of each action mention
annotation['action_mentions'] = list()
for action_mention in self.action_mentions:
annotation_mention = action_mention.make_annotation()
annotation['action_mentions'].append(annotation_mention)
return annotation | [
"def",
"make_annotation",
"(",
"self",
")",
":",
"annotation",
"=",
"dict",
"(",
")",
"# Put all properties of the action object into the annotation",
"for",
"item",
"in",
"dir",
"(",
"self",
")",
":",
"if",
"len",
"(",
"item",
")",
">",
"0",
"and",
"item",
"[",
"0",
"]",
"!=",
"'_'",
"and",
"not",
"inspect",
".",
"ismethod",
"(",
"getattr",
"(",
"self",
",",
"item",
")",
")",
":",
"annotation",
"[",
"item",
"]",
"=",
"getattr",
"(",
"self",
",",
"item",
")",
"# Add properties of each action mention",
"annotation",
"[",
"'action_mentions'",
"]",
"=",
"list",
"(",
")",
"for",
"action_mention",
"in",
"self",
".",
"action_mentions",
":",
"annotation_mention",
"=",
"action_mention",
".",
"make_annotation",
"(",
")",
"annotation",
"[",
"'action_mentions'",
"]",
".",
"append",
"(",
"annotation_mention",
")",
"return",
"annotation"
]
| Returns a dictionary with all properties of the action
and each of its action mentions. | [
"Returns",
"a",
"dictionary",
"with",
"all",
"properties",
"of",
"the",
"action",
"and",
"each",
"of",
"its",
"action",
"mentions",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/sources/geneways/action_parser.py#L35-L52 | train |
sorgerlab/indra | indra/sources/geneways/action_parser.py | GenewaysActionParser._search_path | def _search_path(self, directory_name, filename):
"""Searches for a given file in the specified directory."""
full_path = path.join(directory_name, filename)
if path.exists(full_path):
return full_path
# Could not find the requested file in any of the directories
return None | python | def _search_path(self, directory_name, filename):
"""Searches for a given file in the specified directory."""
full_path = path.join(directory_name, filename)
if path.exists(full_path):
return full_path
# Could not find the requested file in any of the directories
return None | [
"def",
"_search_path",
"(",
"self",
",",
"directory_name",
",",
"filename",
")",
":",
"full_path",
"=",
"path",
".",
"join",
"(",
"directory_name",
",",
"filename",
")",
"if",
"path",
".",
"exists",
"(",
"full_path",
")",
":",
"return",
"full_path",
"# Could not find the requested file in any of the directories",
"return",
"None"
]
| Searches for a given file in the specified directory. | [
"Searches",
"for",
"a",
"given",
"file",
"in",
"the",
"specified",
"directory",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/sources/geneways/action_parser.py#L96-L103 | train |
sorgerlab/indra | indra/sources/geneways/action_parser.py | GenewaysActionParser._init_action_list | def _init_action_list(self, action_filename):
"""Parses the file and populates the data."""
self.actions = list()
self.hiid_to_action_index = dict()
f = codecs.open(action_filename, 'r', encoding='latin-1')
first_line = True
for line in f:
line = line.rstrip()
if first_line:
# Ignore the first line
first_line = False
else:
self.actions.append(GenewaysAction(line))
latestInd = len(self.actions)-1
hiid = self.actions[latestInd].hiid
if hiid in self.hiid_to_action_index:
raise Exception('action hiid not unique: %d' % hiid)
self.hiid_to_action_index[hiid] = latestInd | python | def _init_action_list(self, action_filename):
"""Parses the file and populates the data."""
self.actions = list()
self.hiid_to_action_index = dict()
f = codecs.open(action_filename, 'r', encoding='latin-1')
first_line = True
for line in f:
line = line.rstrip()
if first_line:
# Ignore the first line
first_line = False
else:
self.actions.append(GenewaysAction(line))
latestInd = len(self.actions)-1
hiid = self.actions[latestInd].hiid
if hiid in self.hiid_to_action_index:
raise Exception('action hiid not unique: %d' % hiid)
self.hiid_to_action_index[hiid] = latestInd | [
"def",
"_init_action_list",
"(",
"self",
",",
"action_filename",
")",
":",
"self",
".",
"actions",
"=",
"list",
"(",
")",
"self",
".",
"hiid_to_action_index",
"=",
"dict",
"(",
")",
"f",
"=",
"codecs",
".",
"open",
"(",
"action_filename",
",",
"'r'",
",",
"encoding",
"=",
"'latin-1'",
")",
"first_line",
"=",
"True",
"for",
"line",
"in",
"f",
":",
"line",
"=",
"line",
".",
"rstrip",
"(",
")",
"if",
"first_line",
":",
"# Ignore the first line",
"first_line",
"=",
"False",
"else",
":",
"self",
".",
"actions",
".",
"append",
"(",
"GenewaysAction",
"(",
"line",
")",
")",
"latestInd",
"=",
"len",
"(",
"self",
".",
"actions",
")",
"-",
"1",
"hiid",
"=",
"self",
".",
"actions",
"[",
"latestInd",
"]",
".",
"hiid",
"if",
"hiid",
"in",
"self",
".",
"hiid_to_action_index",
":",
"raise",
"Exception",
"(",
"'action hiid not unique: %d'",
"%",
"hiid",
")",
"self",
".",
"hiid_to_action_index",
"[",
"hiid",
"]",
"=",
"latestInd"
]
| Parses the file and populates the data. | [
"Parses",
"the",
"file",
"and",
"populates",
"the",
"data",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/sources/geneways/action_parser.py#L105-L125 | train |
sorgerlab/indra | indra/sources/geneways/action_parser.py | GenewaysActionParser._link_to_action_mentions | def _link_to_action_mentions(self, actionmention_filename):
"""Add action mentions"""
parser = GenewaysActionMentionParser(actionmention_filename)
self.action_mentions = parser.action_mentions
for action_mention in self.action_mentions:
hiid = action_mention.hiid
if hiid not in self.hiid_to_action_index:
m1 = 'Parsed action mention has hiid %d, which does not exist'
m2 = ' in table of action hiids'
raise Exception((m1 + m2) % hiid)
else:
idx = self.hiid_to_action_index[hiid]
self.actions[idx].action_mentions.append(action_mention) | python | def _link_to_action_mentions(self, actionmention_filename):
"""Add action mentions"""
parser = GenewaysActionMentionParser(actionmention_filename)
self.action_mentions = parser.action_mentions
for action_mention in self.action_mentions:
hiid = action_mention.hiid
if hiid not in self.hiid_to_action_index:
m1 = 'Parsed action mention has hiid %d, which does not exist'
m2 = ' in table of action hiids'
raise Exception((m1 + m2) % hiid)
else:
idx = self.hiid_to_action_index[hiid]
self.actions[idx].action_mentions.append(action_mention) | [
"def",
"_link_to_action_mentions",
"(",
"self",
",",
"actionmention_filename",
")",
":",
"parser",
"=",
"GenewaysActionMentionParser",
"(",
"actionmention_filename",
")",
"self",
".",
"action_mentions",
"=",
"parser",
".",
"action_mentions",
"for",
"action_mention",
"in",
"self",
".",
"action_mentions",
":",
"hiid",
"=",
"action_mention",
".",
"hiid",
"if",
"hiid",
"not",
"in",
"self",
".",
"hiid_to_action_index",
":",
"m1",
"=",
"'Parsed action mention has hiid %d, which does not exist'",
"m2",
"=",
"' in table of action hiids'",
"raise",
"Exception",
"(",
"(",
"m1",
"+",
"m2",
")",
"%",
"hiid",
")",
"else",
":",
"idx",
"=",
"self",
".",
"hiid_to_action_index",
"[",
"hiid",
"]",
"self",
".",
"actions",
"[",
"idx",
"]",
".",
"action_mentions",
".",
"append",
"(",
"action_mention",
")"
]
| Add action mentions | [
"Add",
"action",
"mentions"
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/sources/geneways/action_parser.py#L127-L140 | train |
sorgerlab/indra | indra/sources/geneways/action_parser.py | GenewaysActionParser._lookup_symbols | def _lookup_symbols(self, symbols_filename):
"""Look up symbols for actions and action mentions"""
symbol_lookup = GenewaysSymbols(symbols_filename)
for action in self.actions:
action.up_symbol = symbol_lookup.id_to_symbol(action.up)
action.dn_symbol = symbol_lookup.id_to_symbol(action.dn) | python | def _lookup_symbols(self, symbols_filename):
"""Look up symbols for actions and action mentions"""
symbol_lookup = GenewaysSymbols(symbols_filename)
for action in self.actions:
action.up_symbol = symbol_lookup.id_to_symbol(action.up)
action.dn_symbol = symbol_lookup.id_to_symbol(action.dn) | [
"def",
"_lookup_symbols",
"(",
"self",
",",
"symbols_filename",
")",
":",
"symbol_lookup",
"=",
"GenewaysSymbols",
"(",
"symbols_filename",
")",
"for",
"action",
"in",
"self",
".",
"actions",
":",
"action",
".",
"up_symbol",
"=",
"symbol_lookup",
".",
"id_to_symbol",
"(",
"action",
".",
"up",
")",
"action",
".",
"dn_symbol",
"=",
"symbol_lookup",
".",
"id_to_symbol",
"(",
"action",
".",
"dn",
")"
]
| Look up symbols for actions and action mentions | [
"Look",
"up",
"symbols",
"for",
"actions",
"and",
"action",
"mentions"
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/sources/geneways/action_parser.py#L142-L147 | train |
sorgerlab/indra | indra/sources/geneways/action_parser.py | GenewaysActionParser.get_top_n_action_types | def get_top_n_action_types(self, top_n):
"""Returns the top N actions by count."""
# Count action types
action_type_to_counts = dict()
for action in self.actions:
actiontype = action.actiontype
if actiontype not in action_type_to_counts:
action_type_to_counts[actiontype] = 1
else:
action_type_to_counts[actiontype] = \
action_type_to_counts[actiontype] + 1
# Convert the dictionary representation into a pair of lists
action_types = list()
counts = list()
for actiontype in action_type_to_counts.keys():
action_types.append(actiontype)
counts.append(action_type_to_counts[actiontype])
# How many actions in total?
num_actions = len(self.actions)
num_actions2 = 0
for count in counts:
num_actions2 = num_actions2 + count
if num_actions != num_actions2:
raise(Exception('Problem counting everything up!'))
# Sort action types by count (lowest to highest)
sorted_inds = np.argsort(counts)
last_ind = len(sorted_inds)-1
# Return the top N actions
top_actions = list()
if top_n > len(sorted_inds):
raise Exception('Asked for top %d action types, ' +
'but there are only %d action types'
% (top_n, len(sorted_inds)))
for i in range(top_n):
top_actions.append(action_types[sorted_inds[last_ind-i]])
return top_actions | python | def get_top_n_action_types(self, top_n):
"""Returns the top N actions by count."""
# Count action types
action_type_to_counts = dict()
for action in self.actions:
actiontype = action.actiontype
if actiontype not in action_type_to_counts:
action_type_to_counts[actiontype] = 1
else:
action_type_to_counts[actiontype] = \
action_type_to_counts[actiontype] + 1
# Convert the dictionary representation into a pair of lists
action_types = list()
counts = list()
for actiontype in action_type_to_counts.keys():
action_types.append(actiontype)
counts.append(action_type_to_counts[actiontype])
# How many actions in total?
num_actions = len(self.actions)
num_actions2 = 0
for count in counts:
num_actions2 = num_actions2 + count
if num_actions != num_actions2:
raise(Exception('Problem counting everything up!'))
# Sort action types by count (lowest to highest)
sorted_inds = np.argsort(counts)
last_ind = len(sorted_inds)-1
# Return the top N actions
top_actions = list()
if top_n > len(sorted_inds):
raise Exception('Asked for top %d action types, ' +
'but there are only %d action types'
% (top_n, len(sorted_inds)))
for i in range(top_n):
top_actions.append(action_types[sorted_inds[last_ind-i]])
return top_actions | [
"def",
"get_top_n_action_types",
"(",
"self",
",",
"top_n",
")",
":",
"# Count action types",
"action_type_to_counts",
"=",
"dict",
"(",
")",
"for",
"action",
"in",
"self",
".",
"actions",
":",
"actiontype",
"=",
"action",
".",
"actiontype",
"if",
"actiontype",
"not",
"in",
"action_type_to_counts",
":",
"action_type_to_counts",
"[",
"actiontype",
"]",
"=",
"1",
"else",
":",
"action_type_to_counts",
"[",
"actiontype",
"]",
"=",
"action_type_to_counts",
"[",
"actiontype",
"]",
"+",
"1",
"# Convert the dictionary representation into a pair of lists",
"action_types",
"=",
"list",
"(",
")",
"counts",
"=",
"list",
"(",
")",
"for",
"actiontype",
"in",
"action_type_to_counts",
".",
"keys",
"(",
")",
":",
"action_types",
".",
"append",
"(",
"actiontype",
")",
"counts",
".",
"append",
"(",
"action_type_to_counts",
"[",
"actiontype",
"]",
")",
"# How many actions in total?",
"num_actions",
"=",
"len",
"(",
"self",
".",
"actions",
")",
"num_actions2",
"=",
"0",
"for",
"count",
"in",
"counts",
":",
"num_actions2",
"=",
"num_actions2",
"+",
"count",
"if",
"num_actions",
"!=",
"num_actions2",
":",
"raise",
"(",
"Exception",
"(",
"'Problem counting everything up!'",
")",
")",
"# Sort action types by count (lowest to highest)",
"sorted_inds",
"=",
"np",
".",
"argsort",
"(",
"counts",
")",
"last_ind",
"=",
"len",
"(",
"sorted_inds",
")",
"-",
"1",
"# Return the top N actions",
"top_actions",
"=",
"list",
"(",
")",
"if",
"top_n",
">",
"len",
"(",
"sorted_inds",
")",
":",
"raise",
"Exception",
"(",
"'Asked for top %d action types, '",
"+",
"'but there are only %d action types'",
"%",
"(",
"top_n",
",",
"len",
"(",
"sorted_inds",
")",
")",
")",
"for",
"i",
"in",
"range",
"(",
"top_n",
")",
":",
"top_actions",
".",
"append",
"(",
"action_types",
"[",
"sorted_inds",
"[",
"last_ind",
"-",
"i",
"]",
"]",
")",
"return",
"top_actions"
]
| Returns the top N actions by count. | [
"Returns",
"the",
"top",
"N",
"actions",
"by",
"count",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/sources/geneways/action_parser.py#L149-L188 | train |
sorgerlab/indra | indra/assemblers/graph/assembler.py | GraphAssembler.get_string | def get_string(self):
"""Return the assembled graph as a string.
Returns
-------
graph_string : str
The assembled graph as a string.
"""
graph_string = self.graph.to_string()
graph_string = graph_string.replace('\\N', '\\n')
return graph_string | python | def get_string(self):
"""Return the assembled graph as a string.
Returns
-------
graph_string : str
The assembled graph as a string.
"""
graph_string = self.graph.to_string()
graph_string = graph_string.replace('\\N', '\\n')
return graph_string | [
"def",
"get_string",
"(",
"self",
")",
":",
"graph_string",
"=",
"self",
".",
"graph",
".",
"to_string",
"(",
")",
"graph_string",
"=",
"graph_string",
".",
"replace",
"(",
"'\\\\N'",
",",
"'\\\\n'",
")",
"return",
"graph_string"
]
| Return the assembled graph as a string.
Returns
-------
graph_string : str
The assembled graph as a string. | [
"Return",
"the",
"assembled",
"graph",
"as",
"a",
"string",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/assemblers/graph/assembler.py#L146-L156 | train |
sorgerlab/indra | indra/assemblers/graph/assembler.py | GraphAssembler.save_dot | def save_dot(self, file_name='graph.dot'):
"""Save the graph in a graphviz dot file.
Parameters
----------
file_name : Optional[str]
The name of the file to save the graph dot string to.
"""
s = self.get_string()
with open(file_name, 'wt') as fh:
fh.write(s) | python | def save_dot(self, file_name='graph.dot'):
"""Save the graph in a graphviz dot file.
Parameters
----------
file_name : Optional[str]
The name of the file to save the graph dot string to.
"""
s = self.get_string()
with open(file_name, 'wt') as fh:
fh.write(s) | [
"def",
"save_dot",
"(",
"self",
",",
"file_name",
"=",
"'graph.dot'",
")",
":",
"s",
"=",
"self",
".",
"get_string",
"(",
")",
"with",
"open",
"(",
"file_name",
",",
"'wt'",
")",
"as",
"fh",
":",
"fh",
".",
"write",
"(",
"s",
")"
]
| Save the graph in a graphviz dot file.
Parameters
----------
file_name : Optional[str]
The name of the file to save the graph dot string to. | [
"Save",
"the",
"graph",
"in",
"a",
"graphviz",
"dot",
"file",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/assemblers/graph/assembler.py#L158-L168 | train |
sorgerlab/indra | indra/assemblers/graph/assembler.py | GraphAssembler.save_pdf | def save_pdf(self, file_name='graph.pdf', prog='dot'):
"""Draw the graph and save as an image or pdf file.
Parameters
----------
file_name : Optional[str]
The name of the file to save the graph as. Default: graph.pdf
prog : Optional[str]
The graphviz program to use for graph layout. Default: dot
"""
self.graph.draw(file_name, prog=prog) | python | def save_pdf(self, file_name='graph.pdf', prog='dot'):
"""Draw the graph and save as an image or pdf file.
Parameters
----------
file_name : Optional[str]
The name of the file to save the graph as. Default: graph.pdf
prog : Optional[str]
The graphviz program to use for graph layout. Default: dot
"""
self.graph.draw(file_name, prog=prog) | [
"def",
"save_pdf",
"(",
"self",
",",
"file_name",
"=",
"'graph.pdf'",
",",
"prog",
"=",
"'dot'",
")",
":",
"self",
".",
"graph",
".",
"draw",
"(",
"file_name",
",",
"prog",
"=",
"prog",
")"
]
| Draw the graph and save as an image or pdf file.
Parameters
----------
file_name : Optional[str]
The name of the file to save the graph as. Default: graph.pdf
prog : Optional[str]
The graphviz program to use for graph layout. Default: dot | [
"Draw",
"the",
"graph",
"and",
"save",
"as",
"an",
"image",
"or",
"pdf",
"file",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/assemblers/graph/assembler.py#L170-L180 | train |
sorgerlab/indra | indra/assemblers/graph/assembler.py | GraphAssembler._add_edge | def _add_edge(self, source, target, **kwargs):
"""Add an edge to the graph."""
# Start with default edge properties
edge_properties = self.edge_properties
# Overwrite ones that are given in function call explicitly
for k, v in kwargs.items():
edge_properties[k] = v
self.graph.add_edge(source, target, **edge_properties) | python | def _add_edge(self, source, target, **kwargs):
"""Add an edge to the graph."""
# Start with default edge properties
edge_properties = self.edge_properties
# Overwrite ones that are given in function call explicitly
for k, v in kwargs.items():
edge_properties[k] = v
self.graph.add_edge(source, target, **edge_properties) | [
"def",
"_add_edge",
"(",
"self",
",",
"source",
",",
"target",
",",
"*",
"*",
"kwargs",
")",
":",
"# Start with default edge properties",
"edge_properties",
"=",
"self",
".",
"edge_properties",
"# Overwrite ones that are given in function call explicitly",
"for",
"k",
",",
"v",
"in",
"kwargs",
".",
"items",
"(",
")",
":",
"edge_properties",
"[",
"k",
"]",
"=",
"v",
"self",
".",
"graph",
".",
"add_edge",
"(",
"source",
",",
"target",
",",
"*",
"*",
"edge_properties",
")"
]
| Add an edge to the graph. | [
"Add",
"an",
"edge",
"to",
"the",
"graph",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/assemblers/graph/assembler.py#L182-L189 | train |
sorgerlab/indra | indra/assemblers/graph/assembler.py | GraphAssembler._add_node | def _add_node(self, agent):
"""Add an Agent as a node to the graph."""
if agent is None:
return
node_label = _get_node_label(agent)
if isinstance(agent, Agent) and agent.bound_conditions:
bound_agents = [bc.agent for bc in agent.bound_conditions if
bc.is_bound]
if bound_agents:
bound_names = [_get_node_label(a) for a in bound_agents]
node_label = _get_node_label(agent) + '/' + \
'/'.join(bound_names)
self._complex_nodes.append([agent] + bound_agents)
else:
node_label = _get_node_label(agent)
node_key = _get_node_key(agent)
if node_key in self.existing_nodes:
return
self.existing_nodes.append(node_key)
self.graph.add_node(node_key,
label=node_label,
**self.node_properties) | python | def _add_node(self, agent):
"""Add an Agent as a node to the graph."""
if agent is None:
return
node_label = _get_node_label(agent)
if isinstance(agent, Agent) and agent.bound_conditions:
bound_agents = [bc.agent for bc in agent.bound_conditions if
bc.is_bound]
if bound_agents:
bound_names = [_get_node_label(a) for a in bound_agents]
node_label = _get_node_label(agent) + '/' + \
'/'.join(bound_names)
self._complex_nodes.append([agent] + bound_agents)
else:
node_label = _get_node_label(agent)
node_key = _get_node_key(agent)
if node_key in self.existing_nodes:
return
self.existing_nodes.append(node_key)
self.graph.add_node(node_key,
label=node_label,
**self.node_properties) | [
"def",
"_add_node",
"(",
"self",
",",
"agent",
")",
":",
"if",
"agent",
"is",
"None",
":",
"return",
"node_label",
"=",
"_get_node_label",
"(",
"agent",
")",
"if",
"isinstance",
"(",
"agent",
",",
"Agent",
")",
"and",
"agent",
".",
"bound_conditions",
":",
"bound_agents",
"=",
"[",
"bc",
".",
"agent",
"for",
"bc",
"in",
"agent",
".",
"bound_conditions",
"if",
"bc",
".",
"is_bound",
"]",
"if",
"bound_agents",
":",
"bound_names",
"=",
"[",
"_get_node_label",
"(",
"a",
")",
"for",
"a",
"in",
"bound_agents",
"]",
"node_label",
"=",
"_get_node_label",
"(",
"agent",
")",
"+",
"'/'",
"+",
"'/'",
".",
"join",
"(",
"bound_names",
")",
"self",
".",
"_complex_nodes",
".",
"append",
"(",
"[",
"agent",
"]",
"+",
"bound_agents",
")",
"else",
":",
"node_label",
"=",
"_get_node_label",
"(",
"agent",
")",
"node_key",
"=",
"_get_node_key",
"(",
"agent",
")",
"if",
"node_key",
"in",
"self",
".",
"existing_nodes",
":",
"return",
"self",
".",
"existing_nodes",
".",
"append",
"(",
"node_key",
")",
"self",
".",
"graph",
".",
"add_node",
"(",
"node_key",
",",
"label",
"=",
"node_label",
",",
"*",
"*",
"self",
".",
"node_properties",
")"
]
| Add an Agent as a node to the graph. | [
"Add",
"an",
"Agent",
"as",
"a",
"node",
"to",
"the",
"graph",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/assemblers/graph/assembler.py#L191-L212 | train |
sorgerlab/indra | indra/assemblers/graph/assembler.py | GraphAssembler._add_stmt_edge | def _add_stmt_edge(self, stmt):
"""Assemble a Modification statement."""
# Skip statements with None in the subject position
source = _get_node_key(stmt.agent_list()[0])
target = _get_node_key(stmt.agent_list()[1])
edge_key = (source, target, stmt.__class__.__name__)
if edge_key in self.existing_edges:
return
self.existing_edges.append(edge_key)
if isinstance(stmt, RemoveModification) or \
isinstance(stmt, Inhibition) or \
isinstance(stmt, DecreaseAmount) or \
isinstance(stmt, Gap) or \
(isinstance(stmt, Influence) and stmt.overall_polarity() == -1):
color = '#ff0000'
else:
color = '#000000'
params = {'color': color,
'arrowhead': 'normal',
'dir': 'forward'}
self._add_edge(source, target, **params) | python | def _add_stmt_edge(self, stmt):
"""Assemble a Modification statement."""
# Skip statements with None in the subject position
source = _get_node_key(stmt.agent_list()[0])
target = _get_node_key(stmt.agent_list()[1])
edge_key = (source, target, stmt.__class__.__name__)
if edge_key in self.existing_edges:
return
self.existing_edges.append(edge_key)
if isinstance(stmt, RemoveModification) or \
isinstance(stmt, Inhibition) or \
isinstance(stmt, DecreaseAmount) or \
isinstance(stmt, Gap) or \
(isinstance(stmt, Influence) and stmt.overall_polarity() == -1):
color = '#ff0000'
else:
color = '#000000'
params = {'color': color,
'arrowhead': 'normal',
'dir': 'forward'}
self._add_edge(source, target, **params) | [
"def",
"_add_stmt_edge",
"(",
"self",
",",
"stmt",
")",
":",
"# Skip statements with None in the subject position",
"source",
"=",
"_get_node_key",
"(",
"stmt",
".",
"agent_list",
"(",
")",
"[",
"0",
"]",
")",
"target",
"=",
"_get_node_key",
"(",
"stmt",
".",
"agent_list",
"(",
")",
"[",
"1",
"]",
")",
"edge_key",
"=",
"(",
"source",
",",
"target",
",",
"stmt",
".",
"__class__",
".",
"__name__",
")",
"if",
"edge_key",
"in",
"self",
".",
"existing_edges",
":",
"return",
"self",
".",
"existing_edges",
".",
"append",
"(",
"edge_key",
")",
"if",
"isinstance",
"(",
"stmt",
",",
"RemoveModification",
")",
"or",
"isinstance",
"(",
"stmt",
",",
"Inhibition",
")",
"or",
"isinstance",
"(",
"stmt",
",",
"DecreaseAmount",
")",
"or",
"isinstance",
"(",
"stmt",
",",
"Gap",
")",
"or",
"(",
"isinstance",
"(",
"stmt",
",",
"Influence",
")",
"and",
"stmt",
".",
"overall_polarity",
"(",
")",
"==",
"-",
"1",
")",
":",
"color",
"=",
"'#ff0000'",
"else",
":",
"color",
"=",
"'#000000'",
"params",
"=",
"{",
"'color'",
":",
"color",
",",
"'arrowhead'",
":",
"'normal'",
",",
"'dir'",
":",
"'forward'",
"}",
"self",
".",
"_add_edge",
"(",
"source",
",",
"target",
",",
"*",
"*",
"params",
")"
]
| Assemble a Modification statement. | [
"Assemble",
"a",
"Modification",
"statement",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/assemblers/graph/assembler.py#L214-L234 | train |
sorgerlab/indra | indra/assemblers/graph/assembler.py | GraphAssembler._add_complex | def _add_complex(self, members, is_association=False):
"""Assemble a Complex statement."""
params = {'color': '#0000ff',
'arrowhead': 'dot',
'arrowtail': 'dot',
'dir': 'both'}
for m1, m2 in itertools.combinations(members, 2):
if self._has_complex_node(m1, m2):
continue
if is_association:
m1_key = _get_node_key(m1.concept)
m2_key = _get_node_key(m2.concept)
else:
m1_key = _get_node_key(m1)
m2_key = _get_node_key(m2)
edge_key = (set([m1_key, m2_key]), 'complex')
if edge_key in self.existing_edges:
return
self.existing_edges.append(edge_key)
self._add_edge(m1_key, m2_key, **params) | python | def _add_complex(self, members, is_association=False):
"""Assemble a Complex statement."""
params = {'color': '#0000ff',
'arrowhead': 'dot',
'arrowtail': 'dot',
'dir': 'both'}
for m1, m2 in itertools.combinations(members, 2):
if self._has_complex_node(m1, m2):
continue
if is_association:
m1_key = _get_node_key(m1.concept)
m2_key = _get_node_key(m2.concept)
else:
m1_key = _get_node_key(m1)
m2_key = _get_node_key(m2)
edge_key = (set([m1_key, m2_key]), 'complex')
if edge_key in self.existing_edges:
return
self.existing_edges.append(edge_key)
self._add_edge(m1_key, m2_key, **params) | [
"def",
"_add_complex",
"(",
"self",
",",
"members",
",",
"is_association",
"=",
"False",
")",
":",
"params",
"=",
"{",
"'color'",
":",
"'#0000ff'",
",",
"'arrowhead'",
":",
"'dot'",
",",
"'arrowtail'",
":",
"'dot'",
",",
"'dir'",
":",
"'both'",
"}",
"for",
"m1",
",",
"m2",
"in",
"itertools",
".",
"combinations",
"(",
"members",
",",
"2",
")",
":",
"if",
"self",
".",
"_has_complex_node",
"(",
"m1",
",",
"m2",
")",
":",
"continue",
"if",
"is_association",
":",
"m1_key",
"=",
"_get_node_key",
"(",
"m1",
".",
"concept",
")",
"m2_key",
"=",
"_get_node_key",
"(",
"m2",
".",
"concept",
")",
"else",
":",
"m1_key",
"=",
"_get_node_key",
"(",
"m1",
")",
"m2_key",
"=",
"_get_node_key",
"(",
"m2",
")",
"edge_key",
"=",
"(",
"set",
"(",
"[",
"m1_key",
",",
"m2_key",
"]",
")",
",",
"'complex'",
")",
"if",
"edge_key",
"in",
"self",
".",
"existing_edges",
":",
"return",
"self",
".",
"existing_edges",
".",
"append",
"(",
"edge_key",
")",
"self",
".",
"_add_edge",
"(",
"m1_key",
",",
"m2_key",
",",
"*",
"*",
"params",
")"
]
| Assemble a Complex statement. | [
"Assemble",
"a",
"Complex",
"statement",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/assemblers/graph/assembler.py#L236-L255 | train |
sorgerlab/indra | indra/sources/signor/api.py | process_from_file | def process_from_file(signor_data_file, signor_complexes_file=None):
"""Process Signor interaction data from CSV files.
Parameters
----------
signor_data_file : str
Path to the Signor interaction data file in CSV format.
signor_complexes_file : str
Path to the Signor complexes data in CSV format. If unspecified,
Signor complexes will not be expanded to their constitutents.
Returns
-------
indra.sources.signor.SignorProcessor
SignorProcessor containing Statements extracted from the Signor data.
"""
# Get generator over the CSV file
data_iter = read_unicode_csv(signor_data_file, delimiter=';', skiprows=1)
complexes_iter = None
if signor_complexes_file:
complexes_iter = read_unicode_csv(signor_complexes_file, delimiter=';',
skiprows=1)
else:
logger.warning('Signor complex mapping file not provided, Statements '
'involving complexes will not be expanded to members.')
return _processor_from_data(data_iter, complexes_iter) | python | def process_from_file(signor_data_file, signor_complexes_file=None):
"""Process Signor interaction data from CSV files.
Parameters
----------
signor_data_file : str
Path to the Signor interaction data file in CSV format.
signor_complexes_file : str
Path to the Signor complexes data in CSV format. If unspecified,
Signor complexes will not be expanded to their constitutents.
Returns
-------
indra.sources.signor.SignorProcessor
SignorProcessor containing Statements extracted from the Signor data.
"""
# Get generator over the CSV file
data_iter = read_unicode_csv(signor_data_file, delimiter=';', skiprows=1)
complexes_iter = None
if signor_complexes_file:
complexes_iter = read_unicode_csv(signor_complexes_file, delimiter=';',
skiprows=1)
else:
logger.warning('Signor complex mapping file not provided, Statements '
'involving complexes will not be expanded to members.')
return _processor_from_data(data_iter, complexes_iter) | [
"def",
"process_from_file",
"(",
"signor_data_file",
",",
"signor_complexes_file",
"=",
"None",
")",
":",
"# Get generator over the CSV file",
"data_iter",
"=",
"read_unicode_csv",
"(",
"signor_data_file",
",",
"delimiter",
"=",
"';'",
",",
"skiprows",
"=",
"1",
")",
"complexes_iter",
"=",
"None",
"if",
"signor_complexes_file",
":",
"complexes_iter",
"=",
"read_unicode_csv",
"(",
"signor_complexes_file",
",",
"delimiter",
"=",
"';'",
",",
"skiprows",
"=",
"1",
")",
"else",
":",
"logger",
".",
"warning",
"(",
"'Signor complex mapping file not provided, Statements '",
"'involving complexes will not be expanded to members.'",
")",
"return",
"_processor_from_data",
"(",
"data_iter",
",",
"complexes_iter",
")"
]
| Process Signor interaction data from CSV files.
Parameters
----------
signor_data_file : str
Path to the Signor interaction data file in CSV format.
signor_complexes_file : str
Path to the Signor complexes data in CSV format. If unspecified,
Signor complexes will not be expanded to their constitutents.
Returns
-------
indra.sources.signor.SignorProcessor
SignorProcessor containing Statements extracted from the Signor data. | [
"Process",
"Signor",
"interaction",
"data",
"from",
"CSV",
"files",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/sources/signor/api.py#L47-L72 | train |
sorgerlab/indra | indra/sources/signor/api.py | _handle_response | def _handle_response(res, delimiter):
"""Get an iterator over the CSV data from the response."""
if res.status_code == 200:
# Python 2 -- csv.reader will need bytes
if sys.version_info[0] < 3:
csv_io = BytesIO(res.content)
# Python 3 -- csv.reader needs str
else:
csv_io = StringIO(res.text)
data_iter = read_unicode_csv_fileobj(csv_io, delimiter=delimiter,
skiprows=1)
else:
raise Exception('Could not download Signor data.')
return data_iter | python | def _handle_response(res, delimiter):
"""Get an iterator over the CSV data from the response."""
if res.status_code == 200:
# Python 2 -- csv.reader will need bytes
if sys.version_info[0] < 3:
csv_io = BytesIO(res.content)
# Python 3 -- csv.reader needs str
else:
csv_io = StringIO(res.text)
data_iter = read_unicode_csv_fileobj(csv_io, delimiter=delimiter,
skiprows=1)
else:
raise Exception('Could not download Signor data.')
return data_iter | [
"def",
"_handle_response",
"(",
"res",
",",
"delimiter",
")",
":",
"if",
"res",
".",
"status_code",
"==",
"200",
":",
"# Python 2 -- csv.reader will need bytes",
"if",
"sys",
".",
"version_info",
"[",
"0",
"]",
"<",
"3",
":",
"csv_io",
"=",
"BytesIO",
"(",
"res",
".",
"content",
")",
"# Python 3 -- csv.reader needs str",
"else",
":",
"csv_io",
"=",
"StringIO",
"(",
"res",
".",
"text",
")",
"data_iter",
"=",
"read_unicode_csv_fileobj",
"(",
"csv_io",
",",
"delimiter",
"=",
"delimiter",
",",
"skiprows",
"=",
"1",
")",
"else",
":",
"raise",
"Exception",
"(",
"'Could not download Signor data.'",
")",
"return",
"data_iter"
]
| Get an iterator over the CSV data from the response. | [
"Get",
"an",
"iterator",
"over",
"the",
"CSV",
"data",
"from",
"the",
"response",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/sources/signor/api.py#L89-L102 | train |
sorgerlab/indra | indra/databases/context_client.py | get_protein_expression | def get_protein_expression(gene_names, cell_types):
"""Return the protein expression levels of genes in cell types.
Parameters
----------
gene_names : list
HGNC gene symbols for which expression levels are queried.
cell_types : list
List of cell type names in which expression levels are queried.
The cell type names follow the CCLE database conventions.
Example: LOXIMVI_SKIN, BT20_BREAST
Returns
-------
res : dict[dict[float]]
A dictionary keyed by cell line, which contains another dictionary
that is keyed by gene name, with estimated protein amounts as values.
"""
A = 0.2438361
B = 3.0957627
mrna_amounts = cbio_client.get_ccle_mrna(gene_names, cell_types)
protein_amounts = copy(mrna_amounts)
for cell_type in cell_types:
amounts = mrna_amounts.get(cell_type)
if amounts is None:
continue
for gene_name, amount in amounts.items():
if amount is not None:
protein_amount = 10**(A * amount + B)
protein_amounts[cell_type][gene_name] = protein_amount
return protein_amounts | python | def get_protein_expression(gene_names, cell_types):
"""Return the protein expression levels of genes in cell types.
Parameters
----------
gene_names : list
HGNC gene symbols for which expression levels are queried.
cell_types : list
List of cell type names in which expression levels are queried.
The cell type names follow the CCLE database conventions.
Example: LOXIMVI_SKIN, BT20_BREAST
Returns
-------
res : dict[dict[float]]
A dictionary keyed by cell line, which contains another dictionary
that is keyed by gene name, with estimated protein amounts as values.
"""
A = 0.2438361
B = 3.0957627
mrna_amounts = cbio_client.get_ccle_mrna(gene_names, cell_types)
protein_amounts = copy(mrna_amounts)
for cell_type in cell_types:
amounts = mrna_amounts.get(cell_type)
if amounts is None:
continue
for gene_name, amount in amounts.items():
if amount is not None:
protein_amount = 10**(A * amount + B)
protein_amounts[cell_type][gene_name] = protein_amount
return protein_amounts | [
"def",
"get_protein_expression",
"(",
"gene_names",
",",
"cell_types",
")",
":",
"A",
"=",
"0.2438361",
"B",
"=",
"3.0957627",
"mrna_amounts",
"=",
"cbio_client",
".",
"get_ccle_mrna",
"(",
"gene_names",
",",
"cell_types",
")",
"protein_amounts",
"=",
"copy",
"(",
"mrna_amounts",
")",
"for",
"cell_type",
"in",
"cell_types",
":",
"amounts",
"=",
"mrna_amounts",
".",
"get",
"(",
"cell_type",
")",
"if",
"amounts",
"is",
"None",
":",
"continue",
"for",
"gene_name",
",",
"amount",
"in",
"amounts",
".",
"items",
"(",
")",
":",
"if",
"amount",
"is",
"not",
"None",
":",
"protein_amount",
"=",
"10",
"**",
"(",
"A",
"*",
"amount",
"+",
"B",
")",
"protein_amounts",
"[",
"cell_type",
"]",
"[",
"gene_name",
"]",
"=",
"protein_amount",
"return",
"protein_amounts"
]
| Return the protein expression levels of genes in cell types.
Parameters
----------
gene_names : list
HGNC gene symbols for which expression levels are queried.
cell_types : list
List of cell type names in which expression levels are queried.
The cell type names follow the CCLE database conventions.
Example: LOXIMVI_SKIN, BT20_BREAST
Returns
-------
res : dict[dict[float]]
A dictionary keyed by cell line, which contains another dictionary
that is keyed by gene name, with estimated protein amounts as values. | [
"Return",
"the",
"protein",
"expression",
"levels",
"of",
"genes",
"in",
"cell",
"types",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/databases/context_client.py#L13-L44 | train |
sorgerlab/indra | indra/assemblers/cx/hub_layout.py | get_aspect | def get_aspect(cx, aspect_name):
"""Return an aspect given the name of the aspect"""
if isinstance(cx, dict):
return cx.get(aspect_name)
for entry in cx:
if list(entry.keys())[0] == aspect_name:
return entry[aspect_name] | python | def get_aspect(cx, aspect_name):
"""Return an aspect given the name of the aspect"""
if isinstance(cx, dict):
return cx.get(aspect_name)
for entry in cx:
if list(entry.keys())[0] == aspect_name:
return entry[aspect_name] | [
"def",
"get_aspect",
"(",
"cx",
",",
"aspect_name",
")",
":",
"if",
"isinstance",
"(",
"cx",
",",
"dict",
")",
":",
"return",
"cx",
".",
"get",
"(",
"aspect_name",
")",
"for",
"entry",
"in",
"cx",
":",
"if",
"list",
"(",
"entry",
".",
"keys",
"(",
")",
")",
"[",
"0",
"]",
"==",
"aspect_name",
":",
"return",
"entry",
"[",
"aspect_name",
"]"
]
| Return an aspect given the name of the aspect | [
"Return",
"an",
"aspect",
"given",
"the",
"name",
"of",
"the",
"aspect"
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/assemblers/cx/hub_layout.py#L13-L19 | train |
sorgerlab/indra | indra/assemblers/cx/hub_layout.py | classify_nodes | def classify_nodes(graph, hub):
"""Classify each node based on its type and relationship to the hub."""
node_stats = defaultdict(lambda: defaultdict(list))
for u, v, data in graph.edges(data=True):
# This means the node is downstream of the hub
if hub == u:
h, o = u, v
if data['i'] != 'Complex':
node_stats[o]['up'].append(-1)
else:
node_stats[o]['up'].append(0)
# This means the node is upstream of the hub
elif hub == v:
h, o = v, u
if data['i'] != 'Complex':
node_stats[o]['up'].append(1)
else:
node_stats[o]['up'].append(0)
else:
continue
node_stats[o]['interaction'].append(edge_type_to_class(data['i']))
node_classes = {}
for node_id, stats in node_stats.items():
up = max(set(stats['up']), key=stats['up'].count)
# Special case: if up is not 0 then we should exclude complexes
# from the edge_type states so that we don't end up with
# (-1, complex, ...) or (1, complex, ...) as the node class
interactions = [i for i in stats['interaction'] if
not (up != 0 and i == 'complex')]
edge_type = max(set(interactions), key=interactions.count)
node_type = graph.nodes[node_id]['type']
node_classes[node_id] = (up, edge_type, node_type)
return node_classes | python | def classify_nodes(graph, hub):
"""Classify each node based on its type and relationship to the hub."""
node_stats = defaultdict(lambda: defaultdict(list))
for u, v, data in graph.edges(data=True):
# This means the node is downstream of the hub
if hub == u:
h, o = u, v
if data['i'] != 'Complex':
node_stats[o]['up'].append(-1)
else:
node_stats[o]['up'].append(0)
# This means the node is upstream of the hub
elif hub == v:
h, o = v, u
if data['i'] != 'Complex':
node_stats[o]['up'].append(1)
else:
node_stats[o]['up'].append(0)
else:
continue
node_stats[o]['interaction'].append(edge_type_to_class(data['i']))
node_classes = {}
for node_id, stats in node_stats.items():
up = max(set(stats['up']), key=stats['up'].count)
# Special case: if up is not 0 then we should exclude complexes
# from the edge_type states so that we don't end up with
# (-1, complex, ...) or (1, complex, ...) as the node class
interactions = [i for i in stats['interaction'] if
not (up != 0 and i == 'complex')]
edge_type = max(set(interactions), key=interactions.count)
node_type = graph.nodes[node_id]['type']
node_classes[node_id] = (up, edge_type, node_type)
return node_classes | [
"def",
"classify_nodes",
"(",
"graph",
",",
"hub",
")",
":",
"node_stats",
"=",
"defaultdict",
"(",
"lambda",
":",
"defaultdict",
"(",
"list",
")",
")",
"for",
"u",
",",
"v",
",",
"data",
"in",
"graph",
".",
"edges",
"(",
"data",
"=",
"True",
")",
":",
"# This means the node is downstream of the hub",
"if",
"hub",
"==",
"u",
":",
"h",
",",
"o",
"=",
"u",
",",
"v",
"if",
"data",
"[",
"'i'",
"]",
"!=",
"'Complex'",
":",
"node_stats",
"[",
"o",
"]",
"[",
"'up'",
"]",
".",
"append",
"(",
"-",
"1",
")",
"else",
":",
"node_stats",
"[",
"o",
"]",
"[",
"'up'",
"]",
".",
"append",
"(",
"0",
")",
"# This means the node is upstream of the hub",
"elif",
"hub",
"==",
"v",
":",
"h",
",",
"o",
"=",
"v",
",",
"u",
"if",
"data",
"[",
"'i'",
"]",
"!=",
"'Complex'",
":",
"node_stats",
"[",
"o",
"]",
"[",
"'up'",
"]",
".",
"append",
"(",
"1",
")",
"else",
":",
"node_stats",
"[",
"o",
"]",
"[",
"'up'",
"]",
".",
"append",
"(",
"0",
")",
"else",
":",
"continue",
"node_stats",
"[",
"o",
"]",
"[",
"'interaction'",
"]",
".",
"append",
"(",
"edge_type_to_class",
"(",
"data",
"[",
"'i'",
"]",
")",
")",
"node_classes",
"=",
"{",
"}",
"for",
"node_id",
",",
"stats",
"in",
"node_stats",
".",
"items",
"(",
")",
":",
"up",
"=",
"max",
"(",
"set",
"(",
"stats",
"[",
"'up'",
"]",
")",
",",
"key",
"=",
"stats",
"[",
"'up'",
"]",
".",
"count",
")",
"# Special case: if up is not 0 then we should exclude complexes",
"# from the edge_type states so that we don't end up with",
"# (-1, complex, ...) or (1, complex, ...) as the node class",
"interactions",
"=",
"[",
"i",
"for",
"i",
"in",
"stats",
"[",
"'interaction'",
"]",
"if",
"not",
"(",
"up",
"!=",
"0",
"and",
"i",
"==",
"'complex'",
")",
"]",
"edge_type",
"=",
"max",
"(",
"set",
"(",
"interactions",
")",
",",
"key",
"=",
"interactions",
".",
"count",
")",
"node_type",
"=",
"graph",
".",
"nodes",
"[",
"node_id",
"]",
"[",
"'type'",
"]",
"node_classes",
"[",
"node_id",
"]",
"=",
"(",
"up",
",",
"edge_type",
",",
"node_type",
")",
"return",
"node_classes"
]
| Classify each node based on its type and relationship to the hub. | [
"Classify",
"each",
"node",
"based",
"on",
"its",
"type",
"and",
"relationship",
"to",
"the",
"hub",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/assemblers/cx/hub_layout.py#L34-L67 | train |
sorgerlab/indra | indra/assemblers/cx/hub_layout.py | get_attributes | def get_attributes(aspect, id):
"""Return the attributes pointing to a given ID in a given aspect."""
attributes = {}
for entry in aspect:
if entry['po'] == id:
attributes[entry['n']] = entry['v']
return attributes | python | def get_attributes(aspect, id):
"""Return the attributes pointing to a given ID in a given aspect."""
attributes = {}
for entry in aspect:
if entry['po'] == id:
attributes[entry['n']] = entry['v']
return attributes | [
"def",
"get_attributes",
"(",
"aspect",
",",
"id",
")",
":",
"attributes",
"=",
"{",
"}",
"for",
"entry",
"in",
"aspect",
":",
"if",
"entry",
"[",
"'po'",
"]",
"==",
"id",
":",
"attributes",
"[",
"entry",
"[",
"'n'",
"]",
"]",
"=",
"entry",
"[",
"'v'",
"]",
"return",
"attributes"
]
| Return the attributes pointing to a given ID in a given aspect. | [
"Return",
"the",
"attributes",
"pointing",
"to",
"a",
"given",
"ID",
"in",
"a",
"given",
"aspect",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/assemblers/cx/hub_layout.py#L70-L76 | train |
sorgerlab/indra | indra/assemblers/cx/hub_layout.py | cx_to_networkx | def cx_to_networkx(cx):
"""Return a MultiDiGraph representation of a CX network."""
graph = networkx.MultiDiGraph()
for node_entry in get_aspect(cx, 'nodes'):
id = node_entry['@id']
attrs = get_attributes(get_aspect(cx, 'nodeAttributes'), id)
attrs['n'] = node_entry['n']
graph.add_node(id, **attrs)
for edge_entry in get_aspect(cx, 'edges'):
id = edge_entry['@id']
attrs = get_attributes(get_aspect(cx, 'edgeAttributes'), id)
attrs['i'] = edge_entry['i']
graph.add_edge(edge_entry['s'], edge_entry['t'], key=id, **attrs)
return graph | python | def cx_to_networkx(cx):
"""Return a MultiDiGraph representation of a CX network."""
graph = networkx.MultiDiGraph()
for node_entry in get_aspect(cx, 'nodes'):
id = node_entry['@id']
attrs = get_attributes(get_aspect(cx, 'nodeAttributes'), id)
attrs['n'] = node_entry['n']
graph.add_node(id, **attrs)
for edge_entry in get_aspect(cx, 'edges'):
id = edge_entry['@id']
attrs = get_attributes(get_aspect(cx, 'edgeAttributes'), id)
attrs['i'] = edge_entry['i']
graph.add_edge(edge_entry['s'], edge_entry['t'], key=id, **attrs)
return graph | [
"def",
"cx_to_networkx",
"(",
"cx",
")",
":",
"graph",
"=",
"networkx",
".",
"MultiDiGraph",
"(",
")",
"for",
"node_entry",
"in",
"get_aspect",
"(",
"cx",
",",
"'nodes'",
")",
":",
"id",
"=",
"node_entry",
"[",
"'@id'",
"]",
"attrs",
"=",
"get_attributes",
"(",
"get_aspect",
"(",
"cx",
",",
"'nodeAttributes'",
")",
",",
"id",
")",
"attrs",
"[",
"'n'",
"]",
"=",
"node_entry",
"[",
"'n'",
"]",
"graph",
".",
"add_node",
"(",
"id",
",",
"*",
"*",
"attrs",
")",
"for",
"edge_entry",
"in",
"get_aspect",
"(",
"cx",
",",
"'edges'",
")",
":",
"id",
"=",
"edge_entry",
"[",
"'@id'",
"]",
"attrs",
"=",
"get_attributes",
"(",
"get_aspect",
"(",
"cx",
",",
"'edgeAttributes'",
")",
",",
"id",
")",
"attrs",
"[",
"'i'",
"]",
"=",
"edge_entry",
"[",
"'i'",
"]",
"graph",
".",
"add_edge",
"(",
"edge_entry",
"[",
"'s'",
"]",
",",
"edge_entry",
"[",
"'t'",
"]",
",",
"key",
"=",
"id",
",",
"*",
"*",
"attrs",
")",
"return",
"graph"
]
| Return a MultiDiGraph representation of a CX network. | [
"Return",
"a",
"MultiDiGraph",
"representation",
"of",
"a",
"CX",
"network",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/assemblers/cx/hub_layout.py#L79-L92 | train |
sorgerlab/indra | indra/assemblers/cx/hub_layout.py | get_quadrant_from_class | def get_quadrant_from_class(node_class):
"""Return the ID of the segment of the plane corresponding to a class."""
up, edge_type, _ = node_class
if up == 0:
return 0 if random.random() < 0.5 else 7
mappings = {(-1, 'modification'): 1,
(-1, 'amount'): 2,
(-1, 'activity'): 3,
(1, 'activity'): 4,
(1, 'amount'): 5,
(1, 'modification'): 6}
return mappings[(up, edge_type)] | python | def get_quadrant_from_class(node_class):
"""Return the ID of the segment of the plane corresponding to a class."""
up, edge_type, _ = node_class
if up == 0:
return 0 if random.random() < 0.5 else 7
mappings = {(-1, 'modification'): 1,
(-1, 'amount'): 2,
(-1, 'activity'): 3,
(1, 'activity'): 4,
(1, 'amount'): 5,
(1, 'modification'): 6}
return mappings[(up, edge_type)] | [
"def",
"get_quadrant_from_class",
"(",
"node_class",
")",
":",
"up",
",",
"edge_type",
",",
"_",
"=",
"node_class",
"if",
"up",
"==",
"0",
":",
"return",
"0",
"if",
"random",
".",
"random",
"(",
")",
"<",
"0.5",
"else",
"7",
"mappings",
"=",
"{",
"(",
"-",
"1",
",",
"'modification'",
")",
":",
"1",
",",
"(",
"-",
"1",
",",
"'amount'",
")",
":",
"2",
",",
"(",
"-",
"1",
",",
"'activity'",
")",
":",
"3",
",",
"(",
"1",
",",
"'activity'",
")",
":",
"4",
",",
"(",
"1",
",",
"'amount'",
")",
":",
"5",
",",
"(",
"1",
",",
"'modification'",
")",
":",
"6",
"}",
"return",
"mappings",
"[",
"(",
"up",
",",
"edge_type",
")",
"]"
]
| Return the ID of the segment of the plane corresponding to a class. | [
"Return",
"the",
"ID",
"of",
"the",
"segment",
"of",
"the",
"plane",
"corresponding",
"to",
"a",
"class",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/assemblers/cx/hub_layout.py#L95-L106 | train |
sorgerlab/indra | indra/assemblers/cx/hub_layout.py | get_coordinates | def get_coordinates(node_class):
"""Generate coordinates for a node in a given class."""
quadrant_size = (2 * math.pi / 8.0)
quadrant = get_quadrant_from_class(node_class)
begin_angle = quadrant_size * quadrant
r = 200 + 800*random.random()
alpha = begin_angle + random.random() * quadrant_size
x = r * math.cos(alpha)
y = r * math.sin(alpha)
return x, y | python | def get_coordinates(node_class):
"""Generate coordinates for a node in a given class."""
quadrant_size = (2 * math.pi / 8.0)
quadrant = get_quadrant_from_class(node_class)
begin_angle = quadrant_size * quadrant
r = 200 + 800*random.random()
alpha = begin_angle + random.random() * quadrant_size
x = r * math.cos(alpha)
y = r * math.sin(alpha)
return x, y | [
"def",
"get_coordinates",
"(",
"node_class",
")",
":",
"quadrant_size",
"=",
"(",
"2",
"*",
"math",
".",
"pi",
"/",
"8.0",
")",
"quadrant",
"=",
"get_quadrant_from_class",
"(",
"node_class",
")",
"begin_angle",
"=",
"quadrant_size",
"*",
"quadrant",
"r",
"=",
"200",
"+",
"800",
"*",
"random",
".",
"random",
"(",
")",
"alpha",
"=",
"begin_angle",
"+",
"random",
".",
"random",
"(",
")",
"*",
"quadrant_size",
"x",
"=",
"r",
"*",
"math",
".",
"cos",
"(",
"alpha",
")",
"y",
"=",
"r",
"*",
"math",
".",
"sin",
"(",
"alpha",
")",
"return",
"x",
",",
"y"
]
| Generate coordinates for a node in a given class. | [
"Generate",
"coordinates",
"for",
"a",
"node",
"in",
"a",
"given",
"class",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/assemblers/cx/hub_layout.py#L109-L118 | train |
sorgerlab/indra | indra/assemblers/cx/hub_layout.py | get_layout_aspect | def get_layout_aspect(hub, node_classes):
"""Get the full layout aspect with coordinates for each node."""
aspect = [{'node': hub, 'x': 0.0, 'y': 0.0}]
for node, node_class in node_classes.items():
if node == hub:
continue
x, y = get_coordinates(node_class)
aspect.append({'node': node, 'x': x, 'y': y})
return aspect | python | def get_layout_aspect(hub, node_classes):
"""Get the full layout aspect with coordinates for each node."""
aspect = [{'node': hub, 'x': 0.0, 'y': 0.0}]
for node, node_class in node_classes.items():
if node == hub:
continue
x, y = get_coordinates(node_class)
aspect.append({'node': node, 'x': x, 'y': y})
return aspect | [
"def",
"get_layout_aspect",
"(",
"hub",
",",
"node_classes",
")",
":",
"aspect",
"=",
"[",
"{",
"'node'",
":",
"hub",
",",
"'x'",
":",
"0.0",
",",
"'y'",
":",
"0.0",
"}",
"]",
"for",
"node",
",",
"node_class",
"in",
"node_classes",
".",
"items",
"(",
")",
":",
"if",
"node",
"==",
"hub",
":",
"continue",
"x",
",",
"y",
"=",
"get_coordinates",
"(",
"node_class",
")",
"aspect",
".",
"append",
"(",
"{",
"'node'",
":",
"node",
",",
"'x'",
":",
"x",
",",
"'y'",
":",
"y",
"}",
")",
"return",
"aspect"
]
| Get the full layout aspect with coordinates for each node. | [
"Get",
"the",
"full",
"layout",
"aspect",
"with",
"coordinates",
"for",
"each",
"node",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/assemblers/cx/hub_layout.py#L121-L129 | train |
sorgerlab/indra | indra/assemblers/cx/hub_layout.py | get_node_by_name | def get_node_by_name(graph, name):
"""Return a node ID given its name."""
for id, attrs in graph.nodes(data=True):
if attrs['n'] == name:
return id | python | def get_node_by_name(graph, name):
"""Return a node ID given its name."""
for id, attrs in graph.nodes(data=True):
if attrs['n'] == name:
return id | [
"def",
"get_node_by_name",
"(",
"graph",
",",
"name",
")",
":",
"for",
"id",
",",
"attrs",
"in",
"graph",
".",
"nodes",
"(",
"data",
"=",
"True",
")",
":",
"if",
"attrs",
"[",
"'n'",
"]",
"==",
"name",
":",
"return",
"id"
]
| Return a node ID given its name. | [
"Return",
"a",
"node",
"ID",
"given",
"its",
"name",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/assemblers/cx/hub_layout.py#L132-L136 | train |
sorgerlab/indra | indra/assemblers/cx/hub_layout.py | add_semantic_hub_layout | def add_semantic_hub_layout(cx, hub):
"""Attach a layout aspect to a CX network given a hub node."""
graph = cx_to_networkx(cx)
hub_node = get_node_by_name(graph, hub)
node_classes = classify_nodes(graph, hub_node)
layout_aspect = get_layout_aspect(hub_node, node_classes)
cx['cartesianLayout'] = layout_aspect | python | def add_semantic_hub_layout(cx, hub):
"""Attach a layout aspect to a CX network given a hub node."""
graph = cx_to_networkx(cx)
hub_node = get_node_by_name(graph, hub)
node_classes = classify_nodes(graph, hub_node)
layout_aspect = get_layout_aspect(hub_node, node_classes)
cx['cartesianLayout'] = layout_aspect | [
"def",
"add_semantic_hub_layout",
"(",
"cx",
",",
"hub",
")",
":",
"graph",
"=",
"cx_to_networkx",
"(",
"cx",
")",
"hub_node",
"=",
"get_node_by_name",
"(",
"graph",
",",
"hub",
")",
"node_classes",
"=",
"classify_nodes",
"(",
"graph",
",",
"hub_node",
")",
"layout_aspect",
"=",
"get_layout_aspect",
"(",
"hub_node",
",",
"node_classes",
")",
"cx",
"[",
"'cartesianLayout'",
"]",
"=",
"layout_aspect"
]
| Attach a layout aspect to a CX network given a hub node. | [
"Attach",
"a",
"layout",
"aspect",
"to",
"a",
"CX",
"network",
"given",
"a",
"hub",
"node",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/assemblers/cx/hub_layout.py#L139-L145 | train |
sorgerlab/indra | indra/literature/crossref_client.py | get_metadata | def get_metadata(doi):
"""Returns the metadata of an article given its DOI from CrossRef
as a JSON dict"""
url = crossref_url + 'works/' + doi
res = requests.get(url)
if res.status_code != 200:
logger.info('Could not get CrossRef metadata for DOI %s, code %d' %
(doi, res.status_code))
return None
raw_message = res.json()
metadata = raw_message.get('message')
return metadata | python | def get_metadata(doi):
"""Returns the metadata of an article given its DOI from CrossRef
as a JSON dict"""
url = crossref_url + 'works/' + doi
res = requests.get(url)
if res.status_code != 200:
logger.info('Could not get CrossRef metadata for DOI %s, code %d' %
(doi, res.status_code))
return None
raw_message = res.json()
metadata = raw_message.get('message')
return metadata | [
"def",
"get_metadata",
"(",
"doi",
")",
":",
"url",
"=",
"crossref_url",
"+",
"'works/'",
"+",
"doi",
"res",
"=",
"requests",
".",
"get",
"(",
"url",
")",
"if",
"res",
".",
"status_code",
"!=",
"200",
":",
"logger",
".",
"info",
"(",
"'Could not get CrossRef metadata for DOI %s, code %d'",
"%",
"(",
"doi",
",",
"res",
".",
"status_code",
")",
")",
"return",
"None",
"raw_message",
"=",
"res",
".",
"json",
"(",
")",
"metadata",
"=",
"raw_message",
".",
"get",
"(",
"'message'",
")",
"return",
"metadata"
]
| Returns the metadata of an article given its DOI from CrossRef
as a JSON dict | [
"Returns",
"the",
"metadata",
"of",
"an",
"article",
"given",
"its",
"DOI",
"from",
"CrossRef",
"as",
"a",
"JSON",
"dict"
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/literature/crossref_client.py#L30-L41 | train |
sorgerlab/indra | indra/literature/crossref_client.py | doi_query | def doi_query(pmid, search_limit=10):
"""Get the DOI for a PMID by matching CrossRef and Pubmed metadata.
Searches CrossRef using the article title and then accepts search hits only
if they have a matching journal ISSN and page number with what is obtained
from the Pubmed database.
"""
# Get article metadata from PubMed
pubmed_meta_dict = pubmed_client.get_metadata_for_ids([pmid],
get_issns_from_nlm=True)
if pubmed_meta_dict is None or pubmed_meta_dict.get(pmid) is None:
logger.warning('No metadata found in Pubmed for PMID%s' % pmid)
return None
# The test above ensures we've got this now
pubmed_meta = pubmed_meta_dict[pmid]
# Check if we already got a DOI from Pubmed itself!
if pubmed_meta.get('doi'):
return pubmed_meta.get('doi')
# Check for the title, which we'll need for the CrossRef search
pm_article_title = pubmed_meta.get('title')
if pm_article_title is None:
logger.warning('No article title found in Pubmed for PMID%s' % pmid)
return None
# Get the ISSN list
pm_issn_list = pubmed_meta.get('issn_list')
if not pm_issn_list:
logger.warning('No ISSNs found in Pubmed for PMID%s' % pmid)
return None
# Get the page number
pm_page = pubmed_meta.get('page')
if not pm_page:
logger.debug('No page number found in Pubmed for PMID%s' % pmid)
return None
# Now query CrossRef using the title we've got
url = crossref_search_url
params = {'q': pm_article_title, 'sort': 'score'}
try:
res = requests.get(crossref_search_url, params)
except requests.exceptions.ConnectionError as e:
logger.error('CrossRef service could not be reached.')
logger.error(e)
return None
except Exception as e:
logger.error('Error accessing CrossRef service: %s' % str(e))
return None
if res.status_code != 200:
logger.info('PMID%s: no search results from CrossRef, code %d' %
(pmid, res.status_code))
return None
raw_message = res.json()
mapped_doi = None
# Iterate over the search results, looking up XREF metadata
for result_ix, result in enumerate(raw_message):
if result_ix > search_limit:
logger.info('PMID%s: No match found within first %s results, '
'giving up!' % (pmid, search_limit))
break
xref_doi_url = result['doi']
# Strip the URL prefix off of the DOI
m = re.match('^http://dx.doi.org/(.*)$', xref_doi_url)
xref_doi = m.groups()[0]
# Get the XREF metadata using the DOI
xref_meta = get_metadata(xref_doi)
if xref_meta is None:
continue
xref_issn_list = xref_meta.get('ISSN')
xref_page = xref_meta.get('page')
# If there's no ISSN info for this article, skip to the next result
if not xref_issn_list:
logger.debug('No ISSN found for DOI %s, skipping' % xref_doi_url)
continue
# If there's no page info for this article, skip to the next result
if not xref_page:
logger.debug('No page number found for DOI %s, skipping' %
xref_doi_url)
continue
# Now check for an ISSN match by looking for the set intersection
# between the Pubmed ISSN list and the CrossRef ISSN list.
matching_issns = set(pm_issn_list).intersection(set(xref_issn_list))
# Before comparing page numbers, regularize the page numbers a bit.
# Note that we only compare the first page number, since frequently
# the final page number will simply be missing in one of the data
# sources. We also canonicalize page numbers of the form '14E' to
# 'E14' (which is the format used by Pubmed).
pm_start_page = pm_page.split('-')[0].upper()
xr_start_page = xref_page.split('-')[0].upper()
if xr_start_page.endswith('E'):
xr_start_page = 'E' + xr_start_page[:-1]
# Now compare the ISSN list and page numbers
if matching_issns and pm_start_page == xr_start_page:
# We found a match!
mapped_doi = xref_doi
break
# Otherwise, keep looking through the results...
# Return a DOI, or None if we didn't find one that met our matching
# criteria
return mapped_doi | python | def doi_query(pmid, search_limit=10):
"""Get the DOI for a PMID by matching CrossRef and Pubmed metadata.
Searches CrossRef using the article title and then accepts search hits only
if they have a matching journal ISSN and page number with what is obtained
from the Pubmed database.
"""
# Get article metadata from PubMed
pubmed_meta_dict = pubmed_client.get_metadata_for_ids([pmid],
get_issns_from_nlm=True)
if pubmed_meta_dict is None or pubmed_meta_dict.get(pmid) is None:
logger.warning('No metadata found in Pubmed for PMID%s' % pmid)
return None
# The test above ensures we've got this now
pubmed_meta = pubmed_meta_dict[pmid]
# Check if we already got a DOI from Pubmed itself!
if pubmed_meta.get('doi'):
return pubmed_meta.get('doi')
# Check for the title, which we'll need for the CrossRef search
pm_article_title = pubmed_meta.get('title')
if pm_article_title is None:
logger.warning('No article title found in Pubmed for PMID%s' % pmid)
return None
# Get the ISSN list
pm_issn_list = pubmed_meta.get('issn_list')
if not pm_issn_list:
logger.warning('No ISSNs found in Pubmed for PMID%s' % pmid)
return None
# Get the page number
pm_page = pubmed_meta.get('page')
if not pm_page:
logger.debug('No page number found in Pubmed for PMID%s' % pmid)
return None
# Now query CrossRef using the title we've got
url = crossref_search_url
params = {'q': pm_article_title, 'sort': 'score'}
try:
res = requests.get(crossref_search_url, params)
except requests.exceptions.ConnectionError as e:
logger.error('CrossRef service could not be reached.')
logger.error(e)
return None
except Exception as e:
logger.error('Error accessing CrossRef service: %s' % str(e))
return None
if res.status_code != 200:
logger.info('PMID%s: no search results from CrossRef, code %d' %
(pmid, res.status_code))
return None
raw_message = res.json()
mapped_doi = None
# Iterate over the search results, looking up XREF metadata
for result_ix, result in enumerate(raw_message):
if result_ix > search_limit:
logger.info('PMID%s: No match found within first %s results, '
'giving up!' % (pmid, search_limit))
break
xref_doi_url = result['doi']
# Strip the URL prefix off of the DOI
m = re.match('^http://dx.doi.org/(.*)$', xref_doi_url)
xref_doi = m.groups()[0]
# Get the XREF metadata using the DOI
xref_meta = get_metadata(xref_doi)
if xref_meta is None:
continue
xref_issn_list = xref_meta.get('ISSN')
xref_page = xref_meta.get('page')
# If there's no ISSN info for this article, skip to the next result
if not xref_issn_list:
logger.debug('No ISSN found for DOI %s, skipping' % xref_doi_url)
continue
# If there's no page info for this article, skip to the next result
if not xref_page:
logger.debug('No page number found for DOI %s, skipping' %
xref_doi_url)
continue
# Now check for an ISSN match by looking for the set intersection
# between the Pubmed ISSN list and the CrossRef ISSN list.
matching_issns = set(pm_issn_list).intersection(set(xref_issn_list))
# Before comparing page numbers, regularize the page numbers a bit.
# Note that we only compare the first page number, since frequently
# the final page number will simply be missing in one of the data
# sources. We also canonicalize page numbers of the form '14E' to
# 'E14' (which is the format used by Pubmed).
pm_start_page = pm_page.split('-')[0].upper()
xr_start_page = xref_page.split('-')[0].upper()
if xr_start_page.endswith('E'):
xr_start_page = 'E' + xr_start_page[:-1]
# Now compare the ISSN list and page numbers
if matching_issns and pm_start_page == xr_start_page:
# We found a match!
mapped_doi = xref_doi
break
# Otherwise, keep looking through the results...
# Return a DOI, or None if we didn't find one that met our matching
# criteria
return mapped_doi | [
"def",
"doi_query",
"(",
"pmid",
",",
"search_limit",
"=",
"10",
")",
":",
"# Get article metadata from PubMed",
"pubmed_meta_dict",
"=",
"pubmed_client",
".",
"get_metadata_for_ids",
"(",
"[",
"pmid",
"]",
",",
"get_issns_from_nlm",
"=",
"True",
")",
"if",
"pubmed_meta_dict",
"is",
"None",
"or",
"pubmed_meta_dict",
".",
"get",
"(",
"pmid",
")",
"is",
"None",
":",
"logger",
".",
"warning",
"(",
"'No metadata found in Pubmed for PMID%s'",
"%",
"pmid",
")",
"return",
"None",
"# The test above ensures we've got this now",
"pubmed_meta",
"=",
"pubmed_meta_dict",
"[",
"pmid",
"]",
"# Check if we already got a DOI from Pubmed itself!",
"if",
"pubmed_meta",
".",
"get",
"(",
"'doi'",
")",
":",
"return",
"pubmed_meta",
".",
"get",
"(",
"'doi'",
")",
"# Check for the title, which we'll need for the CrossRef search",
"pm_article_title",
"=",
"pubmed_meta",
".",
"get",
"(",
"'title'",
")",
"if",
"pm_article_title",
"is",
"None",
":",
"logger",
".",
"warning",
"(",
"'No article title found in Pubmed for PMID%s'",
"%",
"pmid",
")",
"return",
"None",
"# Get the ISSN list",
"pm_issn_list",
"=",
"pubmed_meta",
".",
"get",
"(",
"'issn_list'",
")",
"if",
"not",
"pm_issn_list",
":",
"logger",
".",
"warning",
"(",
"'No ISSNs found in Pubmed for PMID%s'",
"%",
"pmid",
")",
"return",
"None",
"# Get the page number",
"pm_page",
"=",
"pubmed_meta",
".",
"get",
"(",
"'page'",
")",
"if",
"not",
"pm_page",
":",
"logger",
".",
"debug",
"(",
"'No page number found in Pubmed for PMID%s'",
"%",
"pmid",
")",
"return",
"None",
"# Now query CrossRef using the title we've got",
"url",
"=",
"crossref_search_url",
"params",
"=",
"{",
"'q'",
":",
"pm_article_title",
",",
"'sort'",
":",
"'score'",
"}",
"try",
":",
"res",
"=",
"requests",
".",
"get",
"(",
"crossref_search_url",
",",
"params",
")",
"except",
"requests",
".",
"exceptions",
".",
"ConnectionError",
"as",
"e",
":",
"logger",
".",
"error",
"(",
"'CrossRef service could not be reached.'",
")",
"logger",
".",
"error",
"(",
"e",
")",
"return",
"None",
"except",
"Exception",
"as",
"e",
":",
"logger",
".",
"error",
"(",
"'Error accessing CrossRef service: %s'",
"%",
"str",
"(",
"e",
")",
")",
"return",
"None",
"if",
"res",
".",
"status_code",
"!=",
"200",
":",
"logger",
".",
"info",
"(",
"'PMID%s: no search results from CrossRef, code %d'",
"%",
"(",
"pmid",
",",
"res",
".",
"status_code",
")",
")",
"return",
"None",
"raw_message",
"=",
"res",
".",
"json",
"(",
")",
"mapped_doi",
"=",
"None",
"# Iterate over the search results, looking up XREF metadata",
"for",
"result_ix",
",",
"result",
"in",
"enumerate",
"(",
"raw_message",
")",
":",
"if",
"result_ix",
">",
"search_limit",
":",
"logger",
".",
"info",
"(",
"'PMID%s: No match found within first %s results, '",
"'giving up!'",
"%",
"(",
"pmid",
",",
"search_limit",
")",
")",
"break",
"xref_doi_url",
"=",
"result",
"[",
"'doi'",
"]",
"# Strip the URL prefix off of the DOI",
"m",
"=",
"re",
".",
"match",
"(",
"'^http://dx.doi.org/(.*)$'",
",",
"xref_doi_url",
")",
"xref_doi",
"=",
"m",
".",
"groups",
"(",
")",
"[",
"0",
"]",
"# Get the XREF metadata using the DOI",
"xref_meta",
"=",
"get_metadata",
"(",
"xref_doi",
")",
"if",
"xref_meta",
"is",
"None",
":",
"continue",
"xref_issn_list",
"=",
"xref_meta",
".",
"get",
"(",
"'ISSN'",
")",
"xref_page",
"=",
"xref_meta",
".",
"get",
"(",
"'page'",
")",
"# If there's no ISSN info for this article, skip to the next result",
"if",
"not",
"xref_issn_list",
":",
"logger",
".",
"debug",
"(",
"'No ISSN found for DOI %s, skipping'",
"%",
"xref_doi_url",
")",
"continue",
"# If there's no page info for this article, skip to the next result",
"if",
"not",
"xref_page",
":",
"logger",
".",
"debug",
"(",
"'No page number found for DOI %s, skipping'",
"%",
"xref_doi_url",
")",
"continue",
"# Now check for an ISSN match by looking for the set intersection",
"# between the Pubmed ISSN list and the CrossRef ISSN list.",
"matching_issns",
"=",
"set",
"(",
"pm_issn_list",
")",
".",
"intersection",
"(",
"set",
"(",
"xref_issn_list",
")",
")",
"# Before comparing page numbers, regularize the page numbers a bit.",
"# Note that we only compare the first page number, since frequently",
"# the final page number will simply be missing in one of the data",
"# sources. We also canonicalize page numbers of the form '14E' to",
"# 'E14' (which is the format used by Pubmed).",
"pm_start_page",
"=",
"pm_page",
".",
"split",
"(",
"'-'",
")",
"[",
"0",
"]",
".",
"upper",
"(",
")",
"xr_start_page",
"=",
"xref_page",
".",
"split",
"(",
"'-'",
")",
"[",
"0",
"]",
".",
"upper",
"(",
")",
"if",
"xr_start_page",
".",
"endswith",
"(",
"'E'",
")",
":",
"xr_start_page",
"=",
"'E'",
"+",
"xr_start_page",
"[",
":",
"-",
"1",
"]",
"# Now compare the ISSN list and page numbers",
"if",
"matching_issns",
"and",
"pm_start_page",
"==",
"xr_start_page",
":",
"# We found a match!",
"mapped_doi",
"=",
"xref_doi",
"break",
"# Otherwise, keep looking through the results...",
"# Return a DOI, or None if we didn't find one that met our matching",
"# criteria",
"return",
"mapped_doi"
]
| Get the DOI for a PMID by matching CrossRef and Pubmed metadata.
Searches CrossRef using the article title and then accepts search hits only
if they have a matching journal ISSN and page number with what is obtained
from the Pubmed database. | [
"Get",
"the",
"DOI",
"for",
"a",
"PMID",
"by",
"matching",
"CrossRef",
"and",
"Pubmed",
"metadata",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/literature/crossref_client.py#L81-L177 | train |
sorgerlab/indra | indra/assemblers/pysb/assembler.py | get_agent_rule_str | def get_agent_rule_str(agent):
"""Construct a string from an Agent as part of a PySB rule name."""
rule_str_list = [_n(agent.name)]
# If it's a molecular agent
if isinstance(agent, ist.Agent):
for mod in agent.mods:
mstr = abbrevs[mod.mod_type]
if mod.residue is not None:
mstr += mod.residue
if mod.position is not None:
mstr += mod.position
rule_str_list.append('%s' % mstr)
for mut in agent.mutations:
res_from = mut.residue_from if mut.residue_from else 'mut'
res_to = mut.residue_to if mut.residue_to else 'X'
if mut.position is None:
mut_site_name = res_from
else:
mut_site_name = res_from + mut.position
mstr = mut_site_name + res_to
rule_str_list.append(mstr)
if agent.bound_conditions:
for b in agent.bound_conditions:
if b.is_bound:
rule_str_list.append(_n(b.agent.name))
else:
rule_str_list.append('n' + _n(b.agent.name))
if agent.location is not None:
rule_str_list.append(_n(agent.location))
if agent.activity is not None:
if agent.activity.is_active:
rule_str_list.append(agent.activity.activity_type[:3])
else:
rule_str_list.append(agent.activity.activity_type[:3] + '_inact')
rule_str = '_'.join(rule_str_list)
return rule_str | python | def get_agent_rule_str(agent):
"""Construct a string from an Agent as part of a PySB rule name."""
rule_str_list = [_n(agent.name)]
# If it's a molecular agent
if isinstance(agent, ist.Agent):
for mod in agent.mods:
mstr = abbrevs[mod.mod_type]
if mod.residue is not None:
mstr += mod.residue
if mod.position is not None:
mstr += mod.position
rule_str_list.append('%s' % mstr)
for mut in agent.mutations:
res_from = mut.residue_from if mut.residue_from else 'mut'
res_to = mut.residue_to if mut.residue_to else 'X'
if mut.position is None:
mut_site_name = res_from
else:
mut_site_name = res_from + mut.position
mstr = mut_site_name + res_to
rule_str_list.append(mstr)
if agent.bound_conditions:
for b in agent.bound_conditions:
if b.is_bound:
rule_str_list.append(_n(b.agent.name))
else:
rule_str_list.append('n' + _n(b.agent.name))
if agent.location is not None:
rule_str_list.append(_n(agent.location))
if agent.activity is not None:
if agent.activity.is_active:
rule_str_list.append(agent.activity.activity_type[:3])
else:
rule_str_list.append(agent.activity.activity_type[:3] + '_inact')
rule_str = '_'.join(rule_str_list)
return rule_str | [
"def",
"get_agent_rule_str",
"(",
"agent",
")",
":",
"rule_str_list",
"=",
"[",
"_n",
"(",
"agent",
".",
"name",
")",
"]",
"# If it's a molecular agent",
"if",
"isinstance",
"(",
"agent",
",",
"ist",
".",
"Agent",
")",
":",
"for",
"mod",
"in",
"agent",
".",
"mods",
":",
"mstr",
"=",
"abbrevs",
"[",
"mod",
".",
"mod_type",
"]",
"if",
"mod",
".",
"residue",
"is",
"not",
"None",
":",
"mstr",
"+=",
"mod",
".",
"residue",
"if",
"mod",
".",
"position",
"is",
"not",
"None",
":",
"mstr",
"+=",
"mod",
".",
"position",
"rule_str_list",
".",
"append",
"(",
"'%s'",
"%",
"mstr",
")",
"for",
"mut",
"in",
"agent",
".",
"mutations",
":",
"res_from",
"=",
"mut",
".",
"residue_from",
"if",
"mut",
".",
"residue_from",
"else",
"'mut'",
"res_to",
"=",
"mut",
".",
"residue_to",
"if",
"mut",
".",
"residue_to",
"else",
"'X'",
"if",
"mut",
".",
"position",
"is",
"None",
":",
"mut_site_name",
"=",
"res_from",
"else",
":",
"mut_site_name",
"=",
"res_from",
"+",
"mut",
".",
"position",
"mstr",
"=",
"mut_site_name",
"+",
"res_to",
"rule_str_list",
".",
"append",
"(",
"mstr",
")",
"if",
"agent",
".",
"bound_conditions",
":",
"for",
"b",
"in",
"agent",
".",
"bound_conditions",
":",
"if",
"b",
".",
"is_bound",
":",
"rule_str_list",
".",
"append",
"(",
"_n",
"(",
"b",
".",
"agent",
".",
"name",
")",
")",
"else",
":",
"rule_str_list",
".",
"append",
"(",
"'n'",
"+",
"_n",
"(",
"b",
".",
"agent",
".",
"name",
")",
")",
"if",
"agent",
".",
"location",
"is",
"not",
"None",
":",
"rule_str_list",
".",
"append",
"(",
"_n",
"(",
"agent",
".",
"location",
")",
")",
"if",
"agent",
".",
"activity",
"is",
"not",
"None",
":",
"if",
"agent",
".",
"activity",
".",
"is_active",
":",
"rule_str_list",
".",
"append",
"(",
"agent",
".",
"activity",
".",
"activity_type",
"[",
":",
"3",
"]",
")",
"else",
":",
"rule_str_list",
".",
"append",
"(",
"agent",
".",
"activity",
".",
"activity_type",
"[",
":",
"3",
"]",
"+",
"'_inact'",
")",
"rule_str",
"=",
"'_'",
".",
"join",
"(",
"rule_str_list",
")",
"return",
"rule_str"
]
| Construct a string from an Agent as part of a PySB rule name. | [
"Construct",
"a",
"string",
"from",
"an",
"Agent",
"as",
"part",
"of",
"a",
"PySB",
"rule",
"name",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/assemblers/pysb/assembler.py#L55-L90 | train |
sorgerlab/indra | indra/assemblers/pysb/assembler.py | add_rule_to_model | def add_rule_to_model(model, rule, annotations=None):
"""Add a Rule to a PySB model and handle duplicate component errors."""
try:
model.add_component(rule)
# If the rule was actually added, also add the annotations
if annotations:
model.annotations += annotations
# If this rule is already in the model, issue a warning and continue
except ComponentDuplicateNameError:
msg = "Rule %s already in model! Skipping." % rule.name
logger.debug(msg) | python | def add_rule_to_model(model, rule, annotations=None):
"""Add a Rule to a PySB model and handle duplicate component errors."""
try:
model.add_component(rule)
# If the rule was actually added, also add the annotations
if annotations:
model.annotations += annotations
# If this rule is already in the model, issue a warning and continue
except ComponentDuplicateNameError:
msg = "Rule %s already in model! Skipping." % rule.name
logger.debug(msg) | [
"def",
"add_rule_to_model",
"(",
"model",
",",
"rule",
",",
"annotations",
"=",
"None",
")",
":",
"try",
":",
"model",
".",
"add_component",
"(",
"rule",
")",
"# If the rule was actually added, also add the annotations",
"if",
"annotations",
":",
"model",
".",
"annotations",
"+=",
"annotations",
"# If this rule is already in the model, issue a warning and continue",
"except",
"ComponentDuplicateNameError",
":",
"msg",
"=",
"\"Rule %s already in model! Skipping.\"",
"%",
"rule",
".",
"name",
"logger",
".",
"debug",
"(",
"msg",
")"
]
| Add a Rule to a PySB model and handle duplicate component errors. | [
"Add",
"a",
"Rule",
"to",
"a",
"PySB",
"model",
"and",
"handle",
"duplicate",
"component",
"errors",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/assemblers/pysb/assembler.py#L93-L103 | train |
sorgerlab/indra | indra/assemblers/pysb/assembler.py | get_create_parameter | def get_create_parameter(model, param):
"""Return parameter with given name, creating it if needed.
If unique is false and the parameter exists, the value is not changed; if
it does not exist, it will be created. If unique is true then upon conflict
a number is added to the end of the parameter name.
Parameters
----------
model : pysb.Model
The model to add the parameter to
param : Param
An assembly parameter object
"""
norm_name = _n(param.name)
parameter = model.parameters.get(norm_name)
if not param.unique and parameter is not None:
return parameter
if param.unique:
pnum = 1
while True:
pname = norm_name + '_%d' % pnum
if model.parameters.get(pname) is None:
break
pnum += 1
else:
pname = norm_name
parameter = Parameter(pname, param.value)
model.add_component(parameter)
return parameter | python | def get_create_parameter(model, param):
"""Return parameter with given name, creating it if needed.
If unique is false and the parameter exists, the value is not changed; if
it does not exist, it will be created. If unique is true then upon conflict
a number is added to the end of the parameter name.
Parameters
----------
model : pysb.Model
The model to add the parameter to
param : Param
An assembly parameter object
"""
norm_name = _n(param.name)
parameter = model.parameters.get(norm_name)
if not param.unique and parameter is not None:
return parameter
if param.unique:
pnum = 1
while True:
pname = norm_name + '_%d' % pnum
if model.parameters.get(pname) is None:
break
pnum += 1
else:
pname = norm_name
parameter = Parameter(pname, param.value)
model.add_component(parameter)
return parameter | [
"def",
"get_create_parameter",
"(",
"model",
",",
"param",
")",
":",
"norm_name",
"=",
"_n",
"(",
"param",
".",
"name",
")",
"parameter",
"=",
"model",
".",
"parameters",
".",
"get",
"(",
"norm_name",
")",
"if",
"not",
"param",
".",
"unique",
"and",
"parameter",
"is",
"not",
"None",
":",
"return",
"parameter",
"if",
"param",
".",
"unique",
":",
"pnum",
"=",
"1",
"while",
"True",
":",
"pname",
"=",
"norm_name",
"+",
"'_%d'",
"%",
"pnum",
"if",
"model",
".",
"parameters",
".",
"get",
"(",
"pname",
")",
"is",
"None",
":",
"break",
"pnum",
"+=",
"1",
"else",
":",
"pname",
"=",
"norm_name",
"parameter",
"=",
"Parameter",
"(",
"pname",
",",
"param",
".",
"value",
")",
"model",
".",
"add_component",
"(",
"parameter",
")",
"return",
"parameter"
]
| Return parameter with given name, creating it if needed.
If unique is false and the parameter exists, the value is not changed; if
it does not exist, it will be created. If unique is true then upon conflict
a number is added to the end of the parameter name.
Parameters
----------
model : pysb.Model
The model to add the parameter to
param : Param
An assembly parameter object | [
"Return",
"parameter",
"with",
"given",
"name",
"creating",
"it",
"if",
"needed",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/assemblers/pysb/assembler.py#L106-L138 | train |
sorgerlab/indra | indra/assemblers/pysb/assembler.py | get_uncond_agent | def get_uncond_agent(agent):
"""Construct the unconditional state of an Agent.
The unconditional Agent is a copy of the original agent but
without any bound conditions and modification conditions.
Mutation conditions, however, are preserved since they are static.
"""
agent_uncond = ist.Agent(_n(agent.name), mutations=agent.mutations)
return agent_uncond | python | def get_uncond_agent(agent):
"""Construct the unconditional state of an Agent.
The unconditional Agent is a copy of the original agent but
without any bound conditions and modification conditions.
Mutation conditions, however, are preserved since they are static.
"""
agent_uncond = ist.Agent(_n(agent.name), mutations=agent.mutations)
return agent_uncond | [
"def",
"get_uncond_agent",
"(",
"agent",
")",
":",
"agent_uncond",
"=",
"ist",
".",
"Agent",
"(",
"_n",
"(",
"agent",
".",
"name",
")",
",",
"mutations",
"=",
"agent",
".",
"mutations",
")",
"return",
"agent_uncond"
]
| Construct the unconditional state of an Agent.
The unconditional Agent is a copy of the original agent but
without any bound conditions and modification conditions.
Mutation conditions, however, are preserved since they are static. | [
"Construct",
"the",
"unconditional",
"state",
"of",
"an",
"Agent",
"."
]
| 79a70415832c5702d7a820c7c9ccc8e25010124b | https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/assemblers/pysb/assembler.py#L141-L149 | train |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.