repo
stringlengths
7
55
path
stringlengths
4
127
func_name
stringlengths
1
88
original_string
stringlengths
75
19.8k
language
stringclasses
1 value
code
stringlengths
75
19.8k
code_tokens
list
docstring
stringlengths
3
17.3k
docstring_tokens
list
sha
stringlengths
40
40
url
stringlengths
87
242
partition
stringclasses
1 value
sorgerlab/indra
indra/mechlinker/__init__.py
MechLinker.gather_implicit_activities
def gather_implicit_activities(self): """Aggregate all implicit activities and active forms of Agents. Iterate over self.statements and collect the implied activities and active forms of Agents that appear in the Statements. Note that using this function to collect implied Agent activities can be risky. Assume, for instance, that a Statement from a reading system states that EGF bound to EGFR phosphorylates ERK. This would be interpreted as implicit evidence for the EGFR-bound form of EGF to have 'kinase' activity, which is clearly incorrect. In contrast the alternative pair of this function: gather_explicit_activities collects only explicitly stated activities. """ for stmt in self.statements: if isinstance(stmt, Phosphorylation) or \ isinstance(stmt, Transphosphorylation) or \ isinstance(stmt, Autophosphorylation): if stmt.enz is not None: enz_base = self._get_base(stmt.enz) enz_base.add_activity('kinase') enz_base.add_active_state('kinase', stmt.enz.mods) elif isinstance(stmt, Dephosphorylation): if stmt.enz is not None: enz_base = self._get_base(stmt.enz) enz_base.add_activity('phosphatase') enz_base.add_active_state('phosphatase', stmt.enz.mods) elif isinstance(stmt, Modification): if stmt.enz is not None: enz_base = self._get_base(stmt.enz) enz_base.add_activity('catalytic') enz_base.add_active_state('catalytic', stmt.enz.mods) elif isinstance(stmt, SelfModification): if stmt.enz is not None: enz_base = self._get_base(stmt.enz) enz_base.add_activity('catalytic') enz_base.add_active_state('catalytic', stmt.enz.mods) elif isinstance(stmt, Gef): if stmt.gef is not None: gef_base = self._get_base(stmt.gef) gef_base.add_activity('gef') if stmt.gef.activity is not None: act = stmt.gef.activity.activity_type else: act = 'activity' gef_base.add_active_state(act, stmt.gef.mods) elif isinstance(stmt, Gap): if stmt.gap is not None: gap_base = self._get_base(stmt.gap) gap_base.add_activity('gap') if stmt.gap.activity is not None: act = stmt.gap.activity.activity_type else: act = 'activity' gap_base.add_active_state('act', stmt.gap.mods) elif isinstance(stmt, RegulateActivity): if stmt.subj is not None: subj_base = self._get_base(stmt.subj) subj_base.add_activity(stmt.j)
python
def gather_implicit_activities(self): """Aggregate all implicit activities and active forms of Agents. Iterate over self.statements and collect the implied activities and active forms of Agents that appear in the Statements. Note that using this function to collect implied Agent activities can be risky. Assume, for instance, that a Statement from a reading system states that EGF bound to EGFR phosphorylates ERK. This would be interpreted as implicit evidence for the EGFR-bound form of EGF to have 'kinase' activity, which is clearly incorrect. In contrast the alternative pair of this function: gather_explicit_activities collects only explicitly stated activities. """ for stmt in self.statements: if isinstance(stmt, Phosphorylation) or \ isinstance(stmt, Transphosphorylation) or \ isinstance(stmt, Autophosphorylation): if stmt.enz is not None: enz_base = self._get_base(stmt.enz) enz_base.add_activity('kinase') enz_base.add_active_state('kinase', stmt.enz.mods) elif isinstance(stmt, Dephosphorylation): if stmt.enz is not None: enz_base = self._get_base(stmt.enz) enz_base.add_activity('phosphatase') enz_base.add_active_state('phosphatase', stmt.enz.mods) elif isinstance(stmt, Modification): if stmt.enz is not None: enz_base = self._get_base(stmt.enz) enz_base.add_activity('catalytic') enz_base.add_active_state('catalytic', stmt.enz.mods) elif isinstance(stmt, SelfModification): if stmt.enz is not None: enz_base = self._get_base(stmt.enz) enz_base.add_activity('catalytic') enz_base.add_active_state('catalytic', stmt.enz.mods) elif isinstance(stmt, Gef): if stmt.gef is not None: gef_base = self._get_base(stmt.gef) gef_base.add_activity('gef') if stmt.gef.activity is not None: act = stmt.gef.activity.activity_type else: act = 'activity' gef_base.add_active_state(act, stmt.gef.mods) elif isinstance(stmt, Gap): if stmt.gap is not None: gap_base = self._get_base(stmt.gap) gap_base.add_activity('gap') if stmt.gap.activity is not None: act = stmt.gap.activity.activity_type else: act = 'activity' gap_base.add_active_state('act', stmt.gap.mods) elif isinstance(stmt, RegulateActivity): if stmt.subj is not None: subj_base = self._get_base(stmt.subj) subj_base.add_activity(stmt.j)
[ "def", "gather_implicit_activities", "(", "self", ")", ":", "for", "stmt", "in", "self", ".", "statements", ":", "if", "isinstance", "(", "stmt", ",", "Phosphorylation", ")", "or", "isinstance", "(", "stmt", ",", "Transphosphorylation", ")", "or", "isinstance", "(", "stmt", ",", "Autophosphorylation", ")", ":", "if", "stmt", ".", "enz", "is", "not", "None", ":", "enz_base", "=", "self", ".", "_get_base", "(", "stmt", ".", "enz", ")", "enz_base", ".", "add_activity", "(", "'kinase'", ")", "enz_base", ".", "add_active_state", "(", "'kinase'", ",", "stmt", ".", "enz", ".", "mods", ")", "elif", "isinstance", "(", "stmt", ",", "Dephosphorylation", ")", ":", "if", "stmt", ".", "enz", "is", "not", "None", ":", "enz_base", "=", "self", ".", "_get_base", "(", "stmt", ".", "enz", ")", "enz_base", ".", "add_activity", "(", "'phosphatase'", ")", "enz_base", ".", "add_active_state", "(", "'phosphatase'", ",", "stmt", ".", "enz", ".", "mods", ")", "elif", "isinstance", "(", "stmt", ",", "Modification", ")", ":", "if", "stmt", ".", "enz", "is", "not", "None", ":", "enz_base", "=", "self", ".", "_get_base", "(", "stmt", ".", "enz", ")", "enz_base", ".", "add_activity", "(", "'catalytic'", ")", "enz_base", ".", "add_active_state", "(", "'catalytic'", ",", "stmt", ".", "enz", ".", "mods", ")", "elif", "isinstance", "(", "stmt", ",", "SelfModification", ")", ":", "if", "stmt", ".", "enz", "is", "not", "None", ":", "enz_base", "=", "self", ".", "_get_base", "(", "stmt", ".", "enz", ")", "enz_base", ".", "add_activity", "(", "'catalytic'", ")", "enz_base", ".", "add_active_state", "(", "'catalytic'", ",", "stmt", ".", "enz", ".", "mods", ")", "elif", "isinstance", "(", "stmt", ",", "Gef", ")", ":", "if", "stmt", ".", "gef", "is", "not", "None", ":", "gef_base", "=", "self", ".", "_get_base", "(", "stmt", ".", "gef", ")", "gef_base", ".", "add_activity", "(", "'gef'", ")", "if", "stmt", ".", "gef", ".", "activity", "is", "not", "None", ":", "act", "=", "stmt", ".", "gef", ".", "activity", ".", "activity_type", "else", ":", "act", "=", "'activity'", "gef_base", ".", "add_active_state", "(", "act", ",", "stmt", ".", "gef", ".", "mods", ")", "elif", "isinstance", "(", "stmt", ",", "Gap", ")", ":", "if", "stmt", ".", "gap", "is", "not", "None", ":", "gap_base", "=", "self", ".", "_get_base", "(", "stmt", ".", "gap", ")", "gap_base", ".", "add_activity", "(", "'gap'", ")", "if", "stmt", ".", "gap", ".", "activity", "is", "not", "None", ":", "act", "=", "stmt", ".", "gap", ".", "activity", ".", "activity_type", "else", ":", "act", "=", "'activity'", "gap_base", ".", "add_active_state", "(", "'act'", ",", "stmt", ".", "gap", ".", "mods", ")", "elif", "isinstance", "(", "stmt", ",", "RegulateActivity", ")", ":", "if", "stmt", ".", "subj", "is", "not", "None", ":", "subj_base", "=", "self", ".", "_get_base", "(", "stmt", ".", "subj", ")", "subj_base", ".", "add_activity", "(", "stmt", ".", "j", ")" ]
Aggregate all implicit activities and active forms of Agents. Iterate over self.statements and collect the implied activities and active forms of Agents that appear in the Statements. Note that using this function to collect implied Agent activities can be risky. Assume, for instance, that a Statement from a reading system states that EGF bound to EGFR phosphorylates ERK. This would be interpreted as implicit evidence for the EGFR-bound form of EGF to have 'kinase' activity, which is clearly incorrect. In contrast the alternative pair of this function: gather_explicit_activities collects only explicitly stated activities.
[ "Aggregate", "all", "implicit", "activities", "and", "active", "forms", "of", "Agents", "." ]
79a70415832c5702d7a820c7c9ccc8e25010124b
https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/mechlinker/__init__.py#L68-L127
train
sorgerlab/indra
indra/mechlinker/__init__.py
MechLinker.require_active_forms
def require_active_forms(self): """Rewrites Statements with Agents' active forms in active positions. As an example, the enzyme in a Modification Statement can be expected to be in an active state. Similarly, subjects of RegulateAmount and RegulateActivity Statements can be expected to be in an active form. This function takes the collected active states of Agents in their corresponding BaseAgents and then rewrites other Statements to apply the active Agent states to them. Returns ------- new_stmts : list[indra.statements.Statement] A list of Statements which includes the newly rewritten Statements. This list is also set as the internal Statement list of the MechLinker. """ logger.info('Setting required active forms on %d statements...' % len(self.statements)) new_stmts = [] for stmt in self.statements: if isinstance(stmt, Modification): if stmt.enz is None: new_stmts.append(stmt) continue enz_base = self._get_base(stmt.enz) active_forms = enz_base.get_active_forms() if not active_forms: new_stmts.append(stmt) else: for af in active_forms: new_stmt = fast_deepcopy(stmt) new_stmt.uuid = str(uuid.uuid4()) evs = af.apply_to(new_stmt.enz) new_stmt.partial_evidence = evs new_stmts.append(new_stmt) elif isinstance(stmt, RegulateAmount) or \ isinstance(stmt, RegulateActivity): if stmt.subj is None: new_stmts.append(stmt) continue subj_base = self._get_base(stmt.subj) active_forms = subj_base.get_active_forms() if not active_forms: new_stmts.append(stmt) else: for af in active_forms: new_stmt = fast_deepcopy(stmt) new_stmt.uuid = str(uuid.uuid4()) evs = af.apply_to(new_stmt.subj) new_stmt.partial_evidence = evs new_stmts.append(new_stmt) else: new_stmts.append(stmt) self.statements = new_stmts return new_stmts
python
def require_active_forms(self): """Rewrites Statements with Agents' active forms in active positions. As an example, the enzyme in a Modification Statement can be expected to be in an active state. Similarly, subjects of RegulateAmount and RegulateActivity Statements can be expected to be in an active form. This function takes the collected active states of Agents in their corresponding BaseAgents and then rewrites other Statements to apply the active Agent states to them. Returns ------- new_stmts : list[indra.statements.Statement] A list of Statements which includes the newly rewritten Statements. This list is also set as the internal Statement list of the MechLinker. """ logger.info('Setting required active forms on %d statements...' % len(self.statements)) new_stmts = [] for stmt in self.statements: if isinstance(stmt, Modification): if stmt.enz is None: new_stmts.append(stmt) continue enz_base = self._get_base(stmt.enz) active_forms = enz_base.get_active_forms() if not active_forms: new_stmts.append(stmt) else: for af in active_forms: new_stmt = fast_deepcopy(stmt) new_stmt.uuid = str(uuid.uuid4()) evs = af.apply_to(new_stmt.enz) new_stmt.partial_evidence = evs new_stmts.append(new_stmt) elif isinstance(stmt, RegulateAmount) or \ isinstance(stmt, RegulateActivity): if stmt.subj is None: new_stmts.append(stmt) continue subj_base = self._get_base(stmt.subj) active_forms = subj_base.get_active_forms() if not active_forms: new_stmts.append(stmt) else: for af in active_forms: new_stmt = fast_deepcopy(stmt) new_stmt.uuid = str(uuid.uuid4()) evs = af.apply_to(new_stmt.subj) new_stmt.partial_evidence = evs new_stmts.append(new_stmt) else: new_stmts.append(stmt) self.statements = new_stmts return new_stmts
[ "def", "require_active_forms", "(", "self", ")", ":", "logger", ".", "info", "(", "'Setting required active forms on %d statements...'", "%", "len", "(", "self", ".", "statements", ")", ")", "new_stmts", "=", "[", "]", "for", "stmt", "in", "self", ".", "statements", ":", "if", "isinstance", "(", "stmt", ",", "Modification", ")", ":", "if", "stmt", ".", "enz", "is", "None", ":", "new_stmts", ".", "append", "(", "stmt", ")", "continue", "enz_base", "=", "self", ".", "_get_base", "(", "stmt", ".", "enz", ")", "active_forms", "=", "enz_base", ".", "get_active_forms", "(", ")", "if", "not", "active_forms", ":", "new_stmts", ".", "append", "(", "stmt", ")", "else", ":", "for", "af", "in", "active_forms", ":", "new_stmt", "=", "fast_deepcopy", "(", "stmt", ")", "new_stmt", ".", "uuid", "=", "str", "(", "uuid", ".", "uuid4", "(", ")", ")", "evs", "=", "af", ".", "apply_to", "(", "new_stmt", ".", "enz", ")", "new_stmt", ".", "partial_evidence", "=", "evs", "new_stmts", ".", "append", "(", "new_stmt", ")", "elif", "isinstance", "(", "stmt", ",", "RegulateAmount", ")", "or", "isinstance", "(", "stmt", ",", "RegulateActivity", ")", ":", "if", "stmt", ".", "subj", "is", "None", ":", "new_stmts", ".", "append", "(", "stmt", ")", "continue", "subj_base", "=", "self", ".", "_get_base", "(", "stmt", ".", "subj", ")", "active_forms", "=", "subj_base", ".", "get_active_forms", "(", ")", "if", "not", "active_forms", ":", "new_stmts", ".", "append", "(", "stmt", ")", "else", ":", "for", "af", "in", "active_forms", ":", "new_stmt", "=", "fast_deepcopy", "(", "stmt", ")", "new_stmt", ".", "uuid", "=", "str", "(", "uuid", ".", "uuid4", "(", ")", ")", "evs", "=", "af", ".", "apply_to", "(", "new_stmt", ".", "subj", ")", "new_stmt", ".", "partial_evidence", "=", "evs", "new_stmts", ".", "append", "(", "new_stmt", ")", "else", ":", "new_stmts", ".", "append", "(", "stmt", ")", "self", ".", "statements", "=", "new_stmts", "return", "new_stmts" ]
Rewrites Statements with Agents' active forms in active positions. As an example, the enzyme in a Modification Statement can be expected to be in an active state. Similarly, subjects of RegulateAmount and RegulateActivity Statements can be expected to be in an active form. This function takes the collected active states of Agents in their corresponding BaseAgents and then rewrites other Statements to apply the active Agent states to them. Returns ------- new_stmts : list[indra.statements.Statement] A list of Statements which includes the newly rewritten Statements. This list is also set as the internal Statement list of the MechLinker.
[ "Rewrites", "Statements", "with", "Agents", "active", "forms", "in", "active", "positions", "." ]
79a70415832c5702d7a820c7c9ccc8e25010124b
https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/mechlinker/__init__.py#L166-L221
train
sorgerlab/indra
indra/mechlinker/__init__.py
MechLinker.reduce_activities
def reduce_activities(self): """Rewrite the activity types referenced in Statements for consistency. Activity types are reduced to the most specific form whenever possible. For instance, if 'kinase' is the only specific activity type known for the BaseAgent of BRAF, its generic 'activity' forms are rewritten to 'kinase'. """ for stmt in self.statements: agents = stmt.agent_list() for agent in agents: if agent is not None and agent.activity is not None: agent_base = self._get_base(agent) act_red = agent_base.get_activity_reduction( agent.activity.activity_type) if act_red is not None: agent.activity.activity_type = act_red if isinstance(stmt, RegulateActivity): if stmt.obj is not None: obj_base = self._get_base(stmt.obj) act_red = \ obj_base.get_activity_reduction(stmt.obj_activity) if act_red is not None: stmt.obj_activity = act_red elif isinstance(stmt, ActiveForm): agent_base = self._get_base(stmt.agent) act_red = agent_base.get_activity_reduction(stmt.activity) if act_red is not None: stmt.activity = act_red
python
def reduce_activities(self): """Rewrite the activity types referenced in Statements for consistency. Activity types are reduced to the most specific form whenever possible. For instance, if 'kinase' is the only specific activity type known for the BaseAgent of BRAF, its generic 'activity' forms are rewritten to 'kinase'. """ for stmt in self.statements: agents = stmt.agent_list() for agent in agents: if agent is not None and agent.activity is not None: agent_base = self._get_base(agent) act_red = agent_base.get_activity_reduction( agent.activity.activity_type) if act_red is not None: agent.activity.activity_type = act_red if isinstance(stmt, RegulateActivity): if stmt.obj is not None: obj_base = self._get_base(stmt.obj) act_red = \ obj_base.get_activity_reduction(stmt.obj_activity) if act_red is not None: stmt.obj_activity = act_red elif isinstance(stmt, ActiveForm): agent_base = self._get_base(stmt.agent) act_red = agent_base.get_activity_reduction(stmt.activity) if act_red is not None: stmt.activity = act_red
[ "def", "reduce_activities", "(", "self", ")", ":", "for", "stmt", "in", "self", ".", "statements", ":", "agents", "=", "stmt", ".", "agent_list", "(", ")", "for", "agent", "in", "agents", ":", "if", "agent", "is", "not", "None", "and", "agent", ".", "activity", "is", "not", "None", ":", "agent_base", "=", "self", ".", "_get_base", "(", "agent", ")", "act_red", "=", "agent_base", ".", "get_activity_reduction", "(", "agent", ".", "activity", ".", "activity_type", ")", "if", "act_red", "is", "not", "None", ":", "agent", ".", "activity", ".", "activity_type", "=", "act_red", "if", "isinstance", "(", "stmt", ",", "RegulateActivity", ")", ":", "if", "stmt", ".", "obj", "is", "not", "None", ":", "obj_base", "=", "self", ".", "_get_base", "(", "stmt", ".", "obj", ")", "act_red", "=", "obj_base", ".", "get_activity_reduction", "(", "stmt", ".", "obj_activity", ")", "if", "act_red", "is", "not", "None", ":", "stmt", ".", "obj_activity", "=", "act_red", "elif", "isinstance", "(", "stmt", ",", "ActiveForm", ")", ":", "agent_base", "=", "self", ".", "_get_base", "(", "stmt", ".", "agent", ")", "act_red", "=", "agent_base", ".", "get_activity_reduction", "(", "stmt", ".", "activity", ")", "if", "act_red", "is", "not", "None", ":", "stmt", ".", "activity", "=", "act_red" ]
Rewrite the activity types referenced in Statements for consistency. Activity types are reduced to the most specific form whenever possible. For instance, if 'kinase' is the only specific activity type known for the BaseAgent of BRAF, its generic 'activity' forms are rewritten to 'kinase'.
[ "Rewrite", "the", "activity", "types", "referenced", "in", "Statements", "for", "consistency", "." ]
79a70415832c5702d7a820c7c9ccc8e25010124b
https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/mechlinker/__init__.py#L223-L251
train
sorgerlab/indra
indra/mechlinker/__init__.py
MechLinker.infer_complexes
def infer_complexes(stmts): """Return inferred Complex from Statements implying physical interaction. Parameters ---------- stmts : list[indra.statements.Statement] A list of Statements to infer Complexes from. Returns ------- linked_stmts : list[indra.mechlinker.LinkedStatement] A list of LinkedStatements representing the inferred Statements. """ interact_stmts = _get_statements_by_type(stmts, Modification) linked_stmts = [] for mstmt in interact_stmts: if mstmt.enz is None: continue st = Complex([mstmt.enz, mstmt.sub], evidence=mstmt.evidence) linked_stmts.append(st) return linked_stmts
python
def infer_complexes(stmts): """Return inferred Complex from Statements implying physical interaction. Parameters ---------- stmts : list[indra.statements.Statement] A list of Statements to infer Complexes from. Returns ------- linked_stmts : list[indra.mechlinker.LinkedStatement] A list of LinkedStatements representing the inferred Statements. """ interact_stmts = _get_statements_by_type(stmts, Modification) linked_stmts = [] for mstmt in interact_stmts: if mstmt.enz is None: continue st = Complex([mstmt.enz, mstmt.sub], evidence=mstmt.evidence) linked_stmts.append(st) return linked_stmts
[ "def", "infer_complexes", "(", "stmts", ")", ":", "interact_stmts", "=", "_get_statements_by_type", "(", "stmts", ",", "Modification", ")", "linked_stmts", "=", "[", "]", "for", "mstmt", "in", "interact_stmts", ":", "if", "mstmt", ".", "enz", "is", "None", ":", "continue", "st", "=", "Complex", "(", "[", "mstmt", ".", "enz", ",", "mstmt", ".", "sub", "]", ",", "evidence", "=", "mstmt", ".", "evidence", ")", "linked_stmts", ".", "append", "(", "st", ")", "return", "linked_stmts" ]
Return inferred Complex from Statements implying physical interaction. Parameters ---------- stmts : list[indra.statements.Statement] A list of Statements to infer Complexes from. Returns ------- linked_stmts : list[indra.mechlinker.LinkedStatement] A list of LinkedStatements representing the inferred Statements.
[ "Return", "inferred", "Complex", "from", "Statements", "implying", "physical", "interaction", "." ]
79a70415832c5702d7a820c7c9ccc8e25010124b
https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/mechlinker/__init__.py#L254-L274
train
sorgerlab/indra
indra/mechlinker/__init__.py
MechLinker.infer_activations
def infer_activations(stmts): """Return inferred RegulateActivity from Modification + ActiveForm. This function looks for combinations of Modification and ActiveForm Statements and infers Activation/Inhibition Statements from them. For example, if we know that A phosphorylates B, and the phosphorylated form of B is active, then we can infer that A activates B. This can also be viewed as having "explained" a given Activation/Inhibition Statement with a combination of more mechanistic Modification + ActiveForm Statements. Parameters ---------- stmts : list[indra.statements.Statement] A list of Statements to infer RegulateActivity from. Returns ------- linked_stmts : list[indra.mechlinker.LinkedStatement] A list of LinkedStatements representing the inferred Statements. """ linked_stmts = [] af_stmts = _get_statements_by_type(stmts, ActiveForm) mod_stmts = _get_statements_by_type(stmts, Modification) for af_stmt, mod_stmt in itertools.product(*(af_stmts, mod_stmts)): # There has to be an enzyme and the substrate and the # agent of the active form have to match if mod_stmt.enz is None or \ (not af_stmt.agent.entity_matches(mod_stmt.sub)): continue # We now check the modifications to make sure they are consistent if not af_stmt.agent.mods: continue found = False for mc in af_stmt.agent.mods: if mc.mod_type == modclass_to_modtype[mod_stmt.__class__] and \ mc.residue == mod_stmt.residue and \ mc.position == mod_stmt.position: found = True if not found: continue # Collect evidence ev = mod_stmt.evidence # Finally, check the polarity of the ActiveForm if af_stmt.is_active: st = Activation(mod_stmt.enz, mod_stmt.sub, af_stmt.activity, evidence=ev) else: st = Inhibition(mod_stmt.enz, mod_stmt.sub, af_stmt.activity, evidence=ev) linked_stmts.append(LinkedStatement([af_stmt, mod_stmt], st)) return linked_stmts
python
def infer_activations(stmts): """Return inferred RegulateActivity from Modification + ActiveForm. This function looks for combinations of Modification and ActiveForm Statements and infers Activation/Inhibition Statements from them. For example, if we know that A phosphorylates B, and the phosphorylated form of B is active, then we can infer that A activates B. This can also be viewed as having "explained" a given Activation/Inhibition Statement with a combination of more mechanistic Modification + ActiveForm Statements. Parameters ---------- stmts : list[indra.statements.Statement] A list of Statements to infer RegulateActivity from. Returns ------- linked_stmts : list[indra.mechlinker.LinkedStatement] A list of LinkedStatements representing the inferred Statements. """ linked_stmts = [] af_stmts = _get_statements_by_type(stmts, ActiveForm) mod_stmts = _get_statements_by_type(stmts, Modification) for af_stmt, mod_stmt in itertools.product(*(af_stmts, mod_stmts)): # There has to be an enzyme and the substrate and the # agent of the active form have to match if mod_stmt.enz is None or \ (not af_stmt.agent.entity_matches(mod_stmt.sub)): continue # We now check the modifications to make sure they are consistent if not af_stmt.agent.mods: continue found = False for mc in af_stmt.agent.mods: if mc.mod_type == modclass_to_modtype[mod_stmt.__class__] and \ mc.residue == mod_stmt.residue and \ mc.position == mod_stmt.position: found = True if not found: continue # Collect evidence ev = mod_stmt.evidence # Finally, check the polarity of the ActiveForm if af_stmt.is_active: st = Activation(mod_stmt.enz, mod_stmt.sub, af_stmt.activity, evidence=ev) else: st = Inhibition(mod_stmt.enz, mod_stmt.sub, af_stmt.activity, evidence=ev) linked_stmts.append(LinkedStatement([af_stmt, mod_stmt], st)) return linked_stmts
[ "def", "infer_activations", "(", "stmts", ")", ":", "linked_stmts", "=", "[", "]", "af_stmts", "=", "_get_statements_by_type", "(", "stmts", ",", "ActiveForm", ")", "mod_stmts", "=", "_get_statements_by_type", "(", "stmts", ",", "Modification", ")", "for", "af_stmt", ",", "mod_stmt", "in", "itertools", ".", "product", "(", "*", "(", "af_stmts", ",", "mod_stmts", ")", ")", ":", "# There has to be an enzyme and the substrate and the", "# agent of the active form have to match", "if", "mod_stmt", ".", "enz", "is", "None", "or", "(", "not", "af_stmt", ".", "agent", ".", "entity_matches", "(", "mod_stmt", ".", "sub", ")", ")", ":", "continue", "# We now check the modifications to make sure they are consistent", "if", "not", "af_stmt", ".", "agent", ".", "mods", ":", "continue", "found", "=", "False", "for", "mc", "in", "af_stmt", ".", "agent", ".", "mods", ":", "if", "mc", ".", "mod_type", "==", "modclass_to_modtype", "[", "mod_stmt", ".", "__class__", "]", "and", "mc", ".", "residue", "==", "mod_stmt", ".", "residue", "and", "mc", ".", "position", "==", "mod_stmt", ".", "position", ":", "found", "=", "True", "if", "not", "found", ":", "continue", "# Collect evidence", "ev", "=", "mod_stmt", ".", "evidence", "# Finally, check the polarity of the ActiveForm", "if", "af_stmt", ".", "is_active", ":", "st", "=", "Activation", "(", "mod_stmt", ".", "enz", ",", "mod_stmt", ".", "sub", ",", "af_stmt", ".", "activity", ",", "evidence", "=", "ev", ")", "else", ":", "st", "=", "Inhibition", "(", "mod_stmt", ".", "enz", ",", "mod_stmt", ".", "sub", ",", "af_stmt", ".", "activity", ",", "evidence", "=", "ev", ")", "linked_stmts", ".", "append", "(", "LinkedStatement", "(", "[", "af_stmt", ",", "mod_stmt", "]", ",", "st", ")", ")", "return", "linked_stmts" ]
Return inferred RegulateActivity from Modification + ActiveForm. This function looks for combinations of Modification and ActiveForm Statements and infers Activation/Inhibition Statements from them. For example, if we know that A phosphorylates B, and the phosphorylated form of B is active, then we can infer that A activates B. This can also be viewed as having "explained" a given Activation/Inhibition Statement with a combination of more mechanistic Modification + ActiveForm Statements. Parameters ---------- stmts : list[indra.statements.Statement] A list of Statements to infer RegulateActivity from. Returns ------- linked_stmts : list[indra.mechlinker.LinkedStatement] A list of LinkedStatements representing the inferred Statements.
[ "Return", "inferred", "RegulateActivity", "from", "Modification", "+", "ActiveForm", "." ]
79a70415832c5702d7a820c7c9ccc8e25010124b
https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/mechlinker/__init__.py#L277-L328
train
sorgerlab/indra
indra/mechlinker/__init__.py
MechLinker.infer_active_forms
def infer_active_forms(stmts): """Return inferred ActiveForm from RegulateActivity + Modification. This function looks for combinations of Activation/Inhibition Statements and Modification Statements, and infers an ActiveForm from them. For example, if we know that A activates B and A phosphorylates B, then we can infer that the phosphorylated form of B is active. Parameters ---------- stmts : list[indra.statements.Statement] A list of Statements to infer ActiveForms from. Returns ------- linked_stmts : list[indra.mechlinker.LinkedStatement] A list of LinkedStatements representing the inferred Statements. """ linked_stmts = [] for act_stmt in _get_statements_by_type(stmts, RegulateActivity): # TODO: revise the conditions here if not (act_stmt.subj.activity is not None and act_stmt.subj.activity.activity_type == 'kinase' and act_stmt.subj.activity.is_active): continue matching = [] ev = act_stmt.evidence for mod_stmt in _get_statements_by_type(stmts, Modification): if mod_stmt.enz is not None: if mod_stmt.enz.entity_matches(act_stmt.subj) and \ mod_stmt.sub.entity_matches(act_stmt.obj): matching.append(mod_stmt) ev.extend(mod_stmt.evidence) if not matching: continue mods = [] for mod_stmt in matching: mod_type_name = mod_stmt.__class__.__name__.lower() if isinstance(mod_stmt, AddModification): is_modified = True else: is_modified = False mod_type_name = mod_type_name[2:] mc = ModCondition(mod_type_name, mod_stmt.residue, mod_stmt.position, is_modified) mods.append(mc) source_stmts = [act_stmt] + [m for m in matching] st = ActiveForm(Agent(act_stmt.obj.name, mods=mods, db_refs=act_stmt.obj.db_refs), act_stmt.obj_activity, act_stmt.is_activation, evidence=ev) linked_stmts.append(LinkedStatement(source_stmts, st)) logger.info('inferred: %s' % st) return linked_stmts
python
def infer_active_forms(stmts): """Return inferred ActiveForm from RegulateActivity + Modification. This function looks for combinations of Activation/Inhibition Statements and Modification Statements, and infers an ActiveForm from them. For example, if we know that A activates B and A phosphorylates B, then we can infer that the phosphorylated form of B is active. Parameters ---------- stmts : list[indra.statements.Statement] A list of Statements to infer ActiveForms from. Returns ------- linked_stmts : list[indra.mechlinker.LinkedStatement] A list of LinkedStatements representing the inferred Statements. """ linked_stmts = [] for act_stmt in _get_statements_by_type(stmts, RegulateActivity): # TODO: revise the conditions here if not (act_stmt.subj.activity is not None and act_stmt.subj.activity.activity_type == 'kinase' and act_stmt.subj.activity.is_active): continue matching = [] ev = act_stmt.evidence for mod_stmt in _get_statements_by_type(stmts, Modification): if mod_stmt.enz is not None: if mod_stmt.enz.entity_matches(act_stmt.subj) and \ mod_stmt.sub.entity_matches(act_stmt.obj): matching.append(mod_stmt) ev.extend(mod_stmt.evidence) if not matching: continue mods = [] for mod_stmt in matching: mod_type_name = mod_stmt.__class__.__name__.lower() if isinstance(mod_stmt, AddModification): is_modified = True else: is_modified = False mod_type_name = mod_type_name[2:] mc = ModCondition(mod_type_name, mod_stmt.residue, mod_stmt.position, is_modified) mods.append(mc) source_stmts = [act_stmt] + [m for m in matching] st = ActiveForm(Agent(act_stmt.obj.name, mods=mods, db_refs=act_stmt.obj.db_refs), act_stmt.obj_activity, act_stmt.is_activation, evidence=ev) linked_stmts.append(LinkedStatement(source_stmts, st)) logger.info('inferred: %s' % st) return linked_stmts
[ "def", "infer_active_forms", "(", "stmts", ")", ":", "linked_stmts", "=", "[", "]", "for", "act_stmt", "in", "_get_statements_by_type", "(", "stmts", ",", "RegulateActivity", ")", ":", "# TODO: revise the conditions here", "if", "not", "(", "act_stmt", ".", "subj", ".", "activity", "is", "not", "None", "and", "act_stmt", ".", "subj", ".", "activity", ".", "activity_type", "==", "'kinase'", "and", "act_stmt", ".", "subj", ".", "activity", ".", "is_active", ")", ":", "continue", "matching", "=", "[", "]", "ev", "=", "act_stmt", ".", "evidence", "for", "mod_stmt", "in", "_get_statements_by_type", "(", "stmts", ",", "Modification", ")", ":", "if", "mod_stmt", ".", "enz", "is", "not", "None", ":", "if", "mod_stmt", ".", "enz", ".", "entity_matches", "(", "act_stmt", ".", "subj", ")", "and", "mod_stmt", ".", "sub", ".", "entity_matches", "(", "act_stmt", ".", "obj", ")", ":", "matching", ".", "append", "(", "mod_stmt", ")", "ev", ".", "extend", "(", "mod_stmt", ".", "evidence", ")", "if", "not", "matching", ":", "continue", "mods", "=", "[", "]", "for", "mod_stmt", "in", "matching", ":", "mod_type_name", "=", "mod_stmt", ".", "__class__", ".", "__name__", ".", "lower", "(", ")", "if", "isinstance", "(", "mod_stmt", ",", "AddModification", ")", ":", "is_modified", "=", "True", "else", ":", "is_modified", "=", "False", "mod_type_name", "=", "mod_type_name", "[", "2", ":", "]", "mc", "=", "ModCondition", "(", "mod_type_name", ",", "mod_stmt", ".", "residue", ",", "mod_stmt", ".", "position", ",", "is_modified", ")", "mods", ".", "append", "(", "mc", ")", "source_stmts", "=", "[", "act_stmt", "]", "+", "[", "m", "for", "m", "in", "matching", "]", "st", "=", "ActiveForm", "(", "Agent", "(", "act_stmt", ".", "obj", ".", "name", ",", "mods", "=", "mods", ",", "db_refs", "=", "act_stmt", ".", "obj", ".", "db_refs", ")", ",", "act_stmt", ".", "obj_activity", ",", "act_stmt", ".", "is_activation", ",", "evidence", "=", "ev", ")", "linked_stmts", ".", "append", "(", "LinkedStatement", "(", "source_stmts", ",", "st", ")", ")", "logger", ".", "info", "(", "'inferred: %s'", "%", "st", ")", "return", "linked_stmts" ]
Return inferred ActiveForm from RegulateActivity + Modification. This function looks for combinations of Activation/Inhibition Statements and Modification Statements, and infers an ActiveForm from them. For example, if we know that A activates B and A phosphorylates B, then we can infer that the phosphorylated form of B is active. Parameters ---------- stmts : list[indra.statements.Statement] A list of Statements to infer ActiveForms from. Returns ------- linked_stmts : list[indra.mechlinker.LinkedStatement] A list of LinkedStatements representing the inferred Statements.
[ "Return", "inferred", "ActiveForm", "from", "RegulateActivity", "+", "Modification", "." ]
79a70415832c5702d7a820c7c9ccc8e25010124b
https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/mechlinker/__init__.py#L331-L385
train
sorgerlab/indra
indra/mechlinker/__init__.py
MechLinker.infer_modifications
def infer_modifications(stmts): """Return inferred Modification from RegulateActivity + ActiveForm. This function looks for combinations of Activation/Inhibition Statements and ActiveForm Statements that imply a Modification Statement. For example, if we know that A activates B, and phosphorylated B is active, then we can infer that A leads to the phosphorylation of B. An additional requirement when making this assumption is that the activity of B should only be dependent on the modified state and not other context - otherwise the inferred Modification is not necessarily warranted. Parameters ---------- stmts : list[indra.statements.Statement] A list of Statements to infer Modifications from. Returns ------- linked_stmts : list[indra.mechlinker.LinkedStatement] A list of LinkedStatements representing the inferred Statements. """ linked_stmts = [] for act_stmt in _get_statements_by_type(stmts, RegulateActivity): for af_stmt in _get_statements_by_type(stmts, ActiveForm): if not af_stmt.agent.entity_matches(act_stmt.obj): continue mods = af_stmt.agent.mods # Make sure the ActiveForm only involves modified sites if af_stmt.agent.mutations or \ af_stmt.agent.bound_conditions or \ af_stmt.agent.location: continue if not af_stmt.agent.mods: continue for mod in af_stmt.agent.mods: evs = act_stmt.evidence + af_stmt.evidence for ev in evs: ev.epistemics['direct'] = False if mod.is_modified: mod_type_name = mod.mod_type else: mod_type_name = modtype_to_inverse[mod.mod_type] mod_class = modtype_to_modclass[mod_type_name] if not mod_class: continue st = mod_class(act_stmt.subj, act_stmt.obj, mod.residue, mod.position, evidence=evs) ls = LinkedStatement([act_stmt, af_stmt], st) linked_stmts.append(ls) logger.info('inferred: %s' % st) return linked_stmts
python
def infer_modifications(stmts): """Return inferred Modification from RegulateActivity + ActiveForm. This function looks for combinations of Activation/Inhibition Statements and ActiveForm Statements that imply a Modification Statement. For example, if we know that A activates B, and phosphorylated B is active, then we can infer that A leads to the phosphorylation of B. An additional requirement when making this assumption is that the activity of B should only be dependent on the modified state and not other context - otherwise the inferred Modification is not necessarily warranted. Parameters ---------- stmts : list[indra.statements.Statement] A list of Statements to infer Modifications from. Returns ------- linked_stmts : list[indra.mechlinker.LinkedStatement] A list of LinkedStatements representing the inferred Statements. """ linked_stmts = [] for act_stmt in _get_statements_by_type(stmts, RegulateActivity): for af_stmt in _get_statements_by_type(stmts, ActiveForm): if not af_stmt.agent.entity_matches(act_stmt.obj): continue mods = af_stmt.agent.mods # Make sure the ActiveForm only involves modified sites if af_stmt.agent.mutations or \ af_stmt.agent.bound_conditions or \ af_stmt.agent.location: continue if not af_stmt.agent.mods: continue for mod in af_stmt.agent.mods: evs = act_stmt.evidence + af_stmt.evidence for ev in evs: ev.epistemics['direct'] = False if mod.is_modified: mod_type_name = mod.mod_type else: mod_type_name = modtype_to_inverse[mod.mod_type] mod_class = modtype_to_modclass[mod_type_name] if not mod_class: continue st = mod_class(act_stmt.subj, act_stmt.obj, mod.residue, mod.position, evidence=evs) ls = LinkedStatement([act_stmt, af_stmt], st) linked_stmts.append(ls) logger.info('inferred: %s' % st) return linked_stmts
[ "def", "infer_modifications", "(", "stmts", ")", ":", "linked_stmts", "=", "[", "]", "for", "act_stmt", "in", "_get_statements_by_type", "(", "stmts", ",", "RegulateActivity", ")", ":", "for", "af_stmt", "in", "_get_statements_by_type", "(", "stmts", ",", "ActiveForm", ")", ":", "if", "not", "af_stmt", ".", "agent", ".", "entity_matches", "(", "act_stmt", ".", "obj", ")", ":", "continue", "mods", "=", "af_stmt", ".", "agent", ".", "mods", "# Make sure the ActiveForm only involves modified sites", "if", "af_stmt", ".", "agent", ".", "mutations", "or", "af_stmt", ".", "agent", ".", "bound_conditions", "or", "af_stmt", ".", "agent", ".", "location", ":", "continue", "if", "not", "af_stmt", ".", "agent", ".", "mods", ":", "continue", "for", "mod", "in", "af_stmt", ".", "agent", ".", "mods", ":", "evs", "=", "act_stmt", ".", "evidence", "+", "af_stmt", ".", "evidence", "for", "ev", "in", "evs", ":", "ev", ".", "epistemics", "[", "'direct'", "]", "=", "False", "if", "mod", ".", "is_modified", ":", "mod_type_name", "=", "mod", ".", "mod_type", "else", ":", "mod_type_name", "=", "modtype_to_inverse", "[", "mod", ".", "mod_type", "]", "mod_class", "=", "modtype_to_modclass", "[", "mod_type_name", "]", "if", "not", "mod_class", ":", "continue", "st", "=", "mod_class", "(", "act_stmt", ".", "subj", ",", "act_stmt", ".", "obj", ",", "mod", ".", "residue", ",", "mod", ".", "position", ",", "evidence", "=", "evs", ")", "ls", "=", "LinkedStatement", "(", "[", "act_stmt", ",", "af_stmt", "]", ",", "st", ")", "linked_stmts", ".", "append", "(", "ls", ")", "logger", ".", "info", "(", "'inferred: %s'", "%", "st", ")", "return", "linked_stmts" ]
Return inferred Modification from RegulateActivity + ActiveForm. This function looks for combinations of Activation/Inhibition Statements and ActiveForm Statements that imply a Modification Statement. For example, if we know that A activates B, and phosphorylated B is active, then we can infer that A leads to the phosphorylation of B. An additional requirement when making this assumption is that the activity of B should only be dependent on the modified state and not other context - otherwise the inferred Modification is not necessarily warranted. Parameters ---------- stmts : list[indra.statements.Statement] A list of Statements to infer Modifications from. Returns ------- linked_stmts : list[indra.mechlinker.LinkedStatement] A list of LinkedStatements representing the inferred Statements.
[ "Return", "inferred", "Modification", "from", "RegulateActivity", "+", "ActiveForm", "." ]
79a70415832c5702d7a820c7c9ccc8e25010124b
https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/mechlinker/__init__.py#L388-L441
train
sorgerlab/indra
indra/mechlinker/__init__.py
MechLinker.replace_complexes
def replace_complexes(self, linked_stmts=None): """Remove Complex Statements that can be inferred out. This function iterates over self.statements and looks for Complex Statements that either match or are refined by inferred Complex Statements that were linked (provided as the linked_stmts argument). It removes Complex Statements from self.statements that can be explained by the linked statements. Parameters ---------- linked_stmts : Optional[list[indra.mechlinker.LinkedStatement]] A list of linked statements, optionally passed from outside. If None is passed, the MechLinker runs self.infer_complexes to infer Complexes and obtain a list of LinkedStatements that are then used for removing existing Complexes in self.statements. """ if linked_stmts is None: linked_stmts = self.infer_complexes(self.statements) new_stmts = [] for stmt in self.statements: if not isinstance(stmt, Complex): new_stmts.append(stmt) continue found = False for linked_stmt in linked_stmts: if linked_stmt.refinement_of(stmt, hierarchies): found = True if not found: new_stmts.append(stmt) else: logger.info('Removing complex: %s' % stmt) self.statements = new_stmts
python
def replace_complexes(self, linked_stmts=None): """Remove Complex Statements that can be inferred out. This function iterates over self.statements and looks for Complex Statements that either match or are refined by inferred Complex Statements that were linked (provided as the linked_stmts argument). It removes Complex Statements from self.statements that can be explained by the linked statements. Parameters ---------- linked_stmts : Optional[list[indra.mechlinker.LinkedStatement]] A list of linked statements, optionally passed from outside. If None is passed, the MechLinker runs self.infer_complexes to infer Complexes and obtain a list of LinkedStatements that are then used for removing existing Complexes in self.statements. """ if linked_stmts is None: linked_stmts = self.infer_complexes(self.statements) new_stmts = [] for stmt in self.statements: if not isinstance(stmt, Complex): new_stmts.append(stmt) continue found = False for linked_stmt in linked_stmts: if linked_stmt.refinement_of(stmt, hierarchies): found = True if not found: new_stmts.append(stmt) else: logger.info('Removing complex: %s' % stmt) self.statements = new_stmts
[ "def", "replace_complexes", "(", "self", ",", "linked_stmts", "=", "None", ")", ":", "if", "linked_stmts", "is", "None", ":", "linked_stmts", "=", "self", ".", "infer_complexes", "(", "self", ".", "statements", ")", "new_stmts", "=", "[", "]", "for", "stmt", "in", "self", ".", "statements", ":", "if", "not", "isinstance", "(", "stmt", ",", "Complex", ")", ":", "new_stmts", ".", "append", "(", "stmt", ")", "continue", "found", "=", "False", "for", "linked_stmt", "in", "linked_stmts", ":", "if", "linked_stmt", ".", "refinement_of", "(", "stmt", ",", "hierarchies", ")", ":", "found", "=", "True", "if", "not", "found", ":", "new_stmts", ".", "append", "(", "stmt", ")", "else", ":", "logger", ".", "info", "(", "'Removing complex: %s'", "%", "stmt", ")", "self", ".", "statements", "=", "new_stmts" ]
Remove Complex Statements that can be inferred out. This function iterates over self.statements and looks for Complex Statements that either match or are refined by inferred Complex Statements that were linked (provided as the linked_stmts argument). It removes Complex Statements from self.statements that can be explained by the linked statements. Parameters ---------- linked_stmts : Optional[list[indra.mechlinker.LinkedStatement]] A list of linked statements, optionally passed from outside. If None is passed, the MechLinker runs self.infer_complexes to infer Complexes and obtain a list of LinkedStatements that are then used for removing existing Complexes in self.statements.
[ "Remove", "Complex", "Statements", "that", "can", "be", "inferred", "out", "." ]
79a70415832c5702d7a820c7c9ccc8e25010124b
https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/mechlinker/__init__.py#L443-L475
train
sorgerlab/indra
indra/mechlinker/__init__.py
MechLinker.replace_activations
def replace_activations(self, linked_stmts=None): """Remove RegulateActivity Statements that can be inferred out. This function iterates over self.statements and looks for RegulateActivity Statements that either match or are refined by inferred RegulateActivity Statements that were linked (provided as the linked_stmts argument). It removes RegulateActivity Statements from self.statements that can be explained by the linked statements. Parameters ---------- linked_stmts : Optional[list[indra.mechlinker.LinkedStatement]] A list of linked statements, optionally passed from outside. If None is passed, the MechLinker runs self.infer_activations to infer RegulateActivities and obtain a list of LinkedStatements that are then used for removing existing Complexes in self.statements. """ if linked_stmts is None: linked_stmts = self.infer_activations(self.statements) new_stmts = [] for stmt in self.statements: if not isinstance(stmt, RegulateActivity): new_stmts.append(stmt) continue found = False for linked_stmt in linked_stmts: inferred_stmt = linked_stmt.inferred_stmt if stmt.is_activation == inferred_stmt.is_activation and \ stmt.subj.entity_matches(inferred_stmt.subj) and \ stmt.obj.entity_matches(inferred_stmt.obj): found = True if not found: new_stmts.append(stmt) else: logger.info('Removing regulate activity: %s' % stmt) self.statements = new_stmts
python
def replace_activations(self, linked_stmts=None): """Remove RegulateActivity Statements that can be inferred out. This function iterates over self.statements and looks for RegulateActivity Statements that either match or are refined by inferred RegulateActivity Statements that were linked (provided as the linked_stmts argument). It removes RegulateActivity Statements from self.statements that can be explained by the linked statements. Parameters ---------- linked_stmts : Optional[list[indra.mechlinker.LinkedStatement]] A list of linked statements, optionally passed from outside. If None is passed, the MechLinker runs self.infer_activations to infer RegulateActivities and obtain a list of LinkedStatements that are then used for removing existing Complexes in self.statements. """ if linked_stmts is None: linked_stmts = self.infer_activations(self.statements) new_stmts = [] for stmt in self.statements: if not isinstance(stmt, RegulateActivity): new_stmts.append(stmt) continue found = False for linked_stmt in linked_stmts: inferred_stmt = linked_stmt.inferred_stmt if stmt.is_activation == inferred_stmt.is_activation and \ stmt.subj.entity_matches(inferred_stmt.subj) and \ stmt.obj.entity_matches(inferred_stmt.obj): found = True if not found: new_stmts.append(stmt) else: logger.info('Removing regulate activity: %s' % stmt) self.statements = new_stmts
[ "def", "replace_activations", "(", "self", ",", "linked_stmts", "=", "None", ")", ":", "if", "linked_stmts", "is", "None", ":", "linked_stmts", "=", "self", ".", "infer_activations", "(", "self", ".", "statements", ")", "new_stmts", "=", "[", "]", "for", "stmt", "in", "self", ".", "statements", ":", "if", "not", "isinstance", "(", "stmt", ",", "RegulateActivity", ")", ":", "new_stmts", ".", "append", "(", "stmt", ")", "continue", "found", "=", "False", "for", "linked_stmt", "in", "linked_stmts", ":", "inferred_stmt", "=", "linked_stmt", ".", "inferred_stmt", "if", "stmt", ".", "is_activation", "==", "inferred_stmt", ".", "is_activation", "and", "stmt", ".", "subj", ".", "entity_matches", "(", "inferred_stmt", ".", "subj", ")", "and", "stmt", ".", "obj", ".", "entity_matches", "(", "inferred_stmt", ".", "obj", ")", ":", "found", "=", "True", "if", "not", "found", ":", "new_stmts", ".", "append", "(", "stmt", ")", "else", ":", "logger", ".", "info", "(", "'Removing regulate activity: %s'", "%", "stmt", ")", "self", ".", "statements", "=", "new_stmts" ]
Remove RegulateActivity Statements that can be inferred out. This function iterates over self.statements and looks for RegulateActivity Statements that either match or are refined by inferred RegulateActivity Statements that were linked (provided as the linked_stmts argument). It removes RegulateActivity Statements from self.statements that can be explained by the linked statements. Parameters ---------- linked_stmts : Optional[list[indra.mechlinker.LinkedStatement]] A list of linked statements, optionally passed from outside. If None is passed, the MechLinker runs self.infer_activations to infer RegulateActivities and obtain a list of LinkedStatements that are then used for removing existing Complexes in self.statements.
[ "Remove", "RegulateActivity", "Statements", "that", "can", "be", "inferred", "out", "." ]
79a70415832c5702d7a820c7c9ccc8e25010124b
https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/mechlinker/__init__.py#L477-L514
train
sorgerlab/indra
indra/mechlinker/__init__.py
BaseAgentSet.get_create_base_agent
def get_create_base_agent(self, agent): """Return BaseAgent from an Agent, creating it if needed. Parameters ---------- agent : indra.statements.Agent Returns ------- base_agent : indra.mechlinker.BaseAgent """ try: base_agent = self.agents[agent.name] except KeyError: base_agent = BaseAgent(agent.name) self.agents[agent.name] = base_agent return base_agent
python
def get_create_base_agent(self, agent): """Return BaseAgent from an Agent, creating it if needed. Parameters ---------- agent : indra.statements.Agent Returns ------- base_agent : indra.mechlinker.BaseAgent """ try: base_agent = self.agents[agent.name] except KeyError: base_agent = BaseAgent(agent.name) self.agents[agent.name] = base_agent return base_agent
[ "def", "get_create_base_agent", "(", "self", ",", "agent", ")", ":", "try", ":", "base_agent", "=", "self", ".", "agents", "[", "agent", ".", "name", "]", "except", "KeyError", ":", "base_agent", "=", "BaseAgent", "(", "agent", ".", "name", ")", "self", ".", "agents", "[", "agent", ".", "name", "]", "=", "base_agent", "return", "base_agent" ]
Return BaseAgent from an Agent, creating it if needed. Parameters ---------- agent : indra.statements.Agent Returns ------- base_agent : indra.mechlinker.BaseAgent
[ "Return", "BaseAgent", "from", "an", "Agent", "creating", "it", "if", "needed", "." ]
79a70415832c5702d7a820c7c9ccc8e25010124b
https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/mechlinker/__init__.py#L540-L557
train
sorgerlab/indra
indra/mechlinker/__init__.py
AgentState.apply_to
def apply_to(self, agent): """Apply this object's state to an Agent. Parameters ---------- agent : indra.statements.Agent The agent to which the state should be applied """ agent.bound_conditions = self.bound_conditions agent.mods = self.mods agent.mutations = self.mutations agent.location = self.location return self.evidence
python
def apply_to(self, agent): """Apply this object's state to an Agent. Parameters ---------- agent : indra.statements.Agent The agent to which the state should be applied """ agent.bound_conditions = self.bound_conditions agent.mods = self.mods agent.mutations = self.mutations agent.location = self.location return self.evidence
[ "def", "apply_to", "(", "self", ",", "agent", ")", ":", "agent", ".", "bound_conditions", "=", "self", ".", "bound_conditions", "agent", ".", "mods", "=", "self", ".", "mods", "agent", ".", "mutations", "=", "self", ".", "mutations", "agent", ".", "location", "=", "self", ".", "location", "return", "self", ".", "evidence" ]
Apply this object's state to an Agent. Parameters ---------- agent : indra.statements.Agent The agent to which the state should be applied
[ "Apply", "this", "object", "s", "state", "to", "an", "Agent", "." ]
79a70415832c5702d7a820c7c9ccc8e25010124b
https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/mechlinker/__init__.py#L713-L725
train
sorgerlab/indra
indra/tools/live_curation.py
submit_curation
def submit_curation(): """Submit curations for a given corpus. The submitted curations are handled to update the probability model but there is no return value here. The update_belief function can be called separately to calculate update belief scores. Parameters ---------- corpus_id : str The ID of the corpus for which the curation is submitted. curations : dict A set of curations where each key is a Statement UUID in the given corpus and each key is 0 or 1 with 0 corresponding to incorrect and 1 corresponding to correct. """ if request.json is None: abort(Response('Missing application/json header.', 415)) # Get input parameters corpus_id = request.json.get('corpus_id') curations = request.json.get('curations', {}) try: curator.submit_curation(corpus_id, curations) except InvalidCorpusError: abort(Response('The corpus_id "%s" is unknown.' % corpus_id, 400)) return return jsonify({})
python
def submit_curation(): """Submit curations for a given corpus. The submitted curations are handled to update the probability model but there is no return value here. The update_belief function can be called separately to calculate update belief scores. Parameters ---------- corpus_id : str The ID of the corpus for which the curation is submitted. curations : dict A set of curations where each key is a Statement UUID in the given corpus and each key is 0 or 1 with 0 corresponding to incorrect and 1 corresponding to correct. """ if request.json is None: abort(Response('Missing application/json header.', 415)) # Get input parameters corpus_id = request.json.get('corpus_id') curations = request.json.get('curations', {}) try: curator.submit_curation(corpus_id, curations) except InvalidCorpusError: abort(Response('The corpus_id "%s" is unknown.' % corpus_id, 400)) return return jsonify({})
[ "def", "submit_curation", "(", ")", ":", "if", "request", ".", "json", "is", "None", ":", "abort", "(", "Response", "(", "'Missing application/json header.'", ",", "415", ")", ")", "# Get input parameters", "corpus_id", "=", "request", ".", "json", ".", "get", "(", "'corpus_id'", ")", "curations", "=", "request", ".", "json", ".", "get", "(", "'curations'", ",", "{", "}", ")", "try", ":", "curator", ".", "submit_curation", "(", "corpus_id", ",", "curations", ")", "except", "InvalidCorpusError", ":", "abort", "(", "Response", "(", "'The corpus_id \"%s\" is unknown.'", "%", "corpus_id", ",", "400", ")", ")", "return", "return", "jsonify", "(", "{", "}", ")" ]
Submit curations for a given corpus. The submitted curations are handled to update the probability model but there is no return value here. The update_belief function can be called separately to calculate update belief scores. Parameters ---------- corpus_id : str The ID of the corpus for which the curation is submitted. curations : dict A set of curations where each key is a Statement UUID in the given corpus and each key is 0 or 1 with 0 corresponding to incorrect and 1 corresponding to correct.
[ "Submit", "curations", "for", "a", "given", "corpus", "." ]
79a70415832c5702d7a820c7c9ccc8e25010124b
https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/tools/live_curation.py#L239-L265
train
sorgerlab/indra
indra/tools/live_curation.py
update_beliefs
def update_beliefs(): """Return updated beliefs based on current probability model.""" if request.json is None: abort(Response('Missing application/json header.', 415)) # Get input parameters corpus_id = request.json.get('corpus_id') try: belief_dict = curator.update_beliefs(corpus_id) except InvalidCorpusError: abort(Response('The corpus_id "%s" is unknown.' % corpus_id, 400)) return return jsonify(belief_dict)
python
def update_beliefs(): """Return updated beliefs based on current probability model.""" if request.json is None: abort(Response('Missing application/json header.', 415)) # Get input parameters corpus_id = request.json.get('corpus_id') try: belief_dict = curator.update_beliefs(corpus_id) except InvalidCorpusError: abort(Response('The corpus_id "%s" is unknown.' % corpus_id, 400)) return return jsonify(belief_dict)
[ "def", "update_beliefs", "(", ")", ":", "if", "request", ".", "json", "is", "None", ":", "abort", "(", "Response", "(", "'Missing application/json header.'", ",", "415", ")", ")", "# Get input parameters", "corpus_id", "=", "request", ".", "json", ".", "get", "(", "'corpus_id'", ")", "try", ":", "belief_dict", "=", "curator", ".", "update_beliefs", "(", "corpus_id", ")", "except", "InvalidCorpusError", ":", "abort", "(", "Response", "(", "'The corpus_id \"%s\" is unknown.'", "%", "corpus_id", ",", "400", ")", ")", "return", "return", "jsonify", "(", "belief_dict", ")" ]
Return updated beliefs based on current probability model.
[ "Return", "updated", "beliefs", "based", "on", "current", "probability", "model", "." ]
79a70415832c5702d7a820c7c9ccc8e25010124b
https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/tools/live_curation.py#L269-L280
train
sorgerlab/indra
indra/tools/live_curation.py
LiveCurator.reset_scorer
def reset_scorer(self): """Reset the scorer used for couration.""" self.scorer = get_eidos_bayesian_scorer() for corpus_id, corpus in self.corpora.items(): corpus.curations = {}
python
def reset_scorer(self): """Reset the scorer used for couration.""" self.scorer = get_eidos_bayesian_scorer() for corpus_id, corpus in self.corpora.items(): corpus.curations = {}
[ "def", "reset_scorer", "(", "self", ")", ":", "self", ".", "scorer", "=", "get_eidos_bayesian_scorer", "(", ")", "for", "corpus_id", ",", "corpus", "in", "self", ".", "corpora", ".", "items", "(", ")", ":", "corpus", ".", "curations", "=", "{", "}" ]
Reset the scorer used for couration.
[ "Reset", "the", "scorer", "used", "for", "couration", "." ]
79a70415832c5702d7a820c7c9ccc8e25010124b
https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/tools/live_curation.py#L95-L99
train
sorgerlab/indra
indra/tools/live_curation.py
LiveCurator.get_corpus
def get_corpus(self, corpus_id): """Return a corpus given an ID. If the corpus ID cannot be found, an InvalidCorpusError is raised. Parameters ---------- corpus_id : str The ID of the corpus to return. Returns ------- Corpus The corpus with the given ID. """ try: corpus = self.corpora[corpus_id] return corpus except KeyError: raise InvalidCorpusError
python
def get_corpus(self, corpus_id): """Return a corpus given an ID. If the corpus ID cannot be found, an InvalidCorpusError is raised. Parameters ---------- corpus_id : str The ID of the corpus to return. Returns ------- Corpus The corpus with the given ID. """ try: corpus = self.corpora[corpus_id] return corpus except KeyError: raise InvalidCorpusError
[ "def", "get_corpus", "(", "self", ",", "corpus_id", ")", ":", "try", ":", "corpus", "=", "self", ".", "corpora", "[", "corpus_id", "]", "return", "corpus", "except", "KeyError", ":", "raise", "InvalidCorpusError" ]
Return a corpus given an ID. If the corpus ID cannot be found, an InvalidCorpusError is raised. Parameters ---------- corpus_id : str The ID of the corpus to return. Returns ------- Corpus The corpus with the given ID.
[ "Return", "a", "corpus", "given", "an", "ID", "." ]
79a70415832c5702d7a820c7c9ccc8e25010124b
https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/tools/live_curation.py#L101-L120
train
sorgerlab/indra
indra/tools/live_curation.py
LiveCurator.update_beliefs
def update_beliefs(self, corpus_id): """Return updated belief scores for a given corpus. Parameters ---------- corpus_id : str The ID of the corpus for which beliefs are to be updated. Returns ------- dict A dictionary of belief scores with keys corresponding to Statement UUIDs and values to new belief scores. """ corpus = self.get_corpus(corpus_id) be = BeliefEngine(self.scorer) stmts = list(corpus.statements.values()) be.set_prior_probs(stmts) # Here we set beliefs based on actual curation for uuid, correct in corpus.curations.items(): stmt = corpus.statements.get(uuid) if stmt is None: logger.warning('%s is not in the corpus.' % uuid) continue stmt.belief = correct belief_dict = {st.uuid: st.belief for st in stmts} return belief_dict
python
def update_beliefs(self, corpus_id): """Return updated belief scores for a given corpus. Parameters ---------- corpus_id : str The ID of the corpus for which beliefs are to be updated. Returns ------- dict A dictionary of belief scores with keys corresponding to Statement UUIDs and values to new belief scores. """ corpus = self.get_corpus(corpus_id) be = BeliefEngine(self.scorer) stmts = list(corpus.statements.values()) be.set_prior_probs(stmts) # Here we set beliefs based on actual curation for uuid, correct in corpus.curations.items(): stmt = corpus.statements.get(uuid) if stmt is None: logger.warning('%s is not in the corpus.' % uuid) continue stmt.belief = correct belief_dict = {st.uuid: st.belief for st in stmts} return belief_dict
[ "def", "update_beliefs", "(", "self", ",", "corpus_id", ")", ":", "corpus", "=", "self", ".", "get_corpus", "(", "corpus_id", ")", "be", "=", "BeliefEngine", "(", "self", ".", "scorer", ")", "stmts", "=", "list", "(", "corpus", ".", "statements", ".", "values", "(", ")", ")", "be", ".", "set_prior_probs", "(", "stmts", ")", "# Here we set beliefs based on actual curation", "for", "uuid", ",", "correct", "in", "corpus", ".", "curations", ".", "items", "(", ")", ":", "stmt", "=", "corpus", ".", "statements", ".", "get", "(", "uuid", ")", "if", "stmt", "is", "None", ":", "logger", ".", "warning", "(", "'%s is not in the corpus.'", "%", "uuid", ")", "continue", "stmt", ".", "belief", "=", "correct", "belief_dict", "=", "{", "st", ".", "uuid", ":", "st", ".", "belief", "for", "st", "in", "stmts", "}", "return", "belief_dict" ]
Return updated belief scores for a given corpus. Parameters ---------- corpus_id : str The ID of the corpus for which beliefs are to be updated. Returns ------- dict A dictionary of belief scores with keys corresponding to Statement UUIDs and values to new belief scores.
[ "Return", "updated", "belief", "scores", "for", "a", "given", "corpus", "." ]
79a70415832c5702d7a820c7c9ccc8e25010124b
https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/tools/live_curation.py#L174-L200
train
sorgerlab/indra
indra/sources/eidos/scala_utils.py
get_python_list
def get_python_list(scala_list): """Return list from elements of scala.collection.immutable.List""" python_list = [] for i in range(scala_list.length()): python_list.append(scala_list.apply(i)) return python_list
python
def get_python_list(scala_list): """Return list from elements of scala.collection.immutable.List""" python_list = [] for i in range(scala_list.length()): python_list.append(scala_list.apply(i)) return python_list
[ "def", "get_python_list", "(", "scala_list", ")", ":", "python_list", "=", "[", "]", "for", "i", "in", "range", "(", "scala_list", ".", "length", "(", ")", ")", ":", "python_list", ".", "append", "(", "scala_list", ".", "apply", "(", "i", ")", ")", "return", "python_list" ]
Return list from elements of scala.collection.immutable.List
[ "Return", "list", "from", "elements", "of", "scala", ".", "collection", ".", "immutable", ".", "List" ]
79a70415832c5702d7a820c7c9ccc8e25010124b
https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/sources/eidos/scala_utils.py#L7-L12
train
sorgerlab/indra
indra/sources/eidos/scala_utils.py
get_python_dict
def get_python_dict(scala_map): """Return a dict from entries in a scala.collection.immutable.Map""" python_dict = {} keys = get_python_list(scala_map.keys().toList()) for key in keys: python_dict[key] = scala_map.apply(key) return python_dict
python
def get_python_dict(scala_map): """Return a dict from entries in a scala.collection.immutable.Map""" python_dict = {} keys = get_python_list(scala_map.keys().toList()) for key in keys: python_dict[key] = scala_map.apply(key) return python_dict
[ "def", "get_python_dict", "(", "scala_map", ")", ":", "python_dict", "=", "{", "}", "keys", "=", "get_python_list", "(", "scala_map", ".", "keys", "(", ")", ".", "toList", "(", ")", ")", "for", "key", "in", "keys", ":", "python_dict", "[", "key", "]", "=", "scala_map", ".", "apply", "(", "key", ")", "return", "python_dict" ]
Return a dict from entries in a scala.collection.immutable.Map
[ "Return", "a", "dict", "from", "entries", "in", "a", "scala", ".", "collection", ".", "immutable", ".", "Map" ]
79a70415832c5702d7a820c7c9ccc8e25010124b
https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/sources/eidos/scala_utils.py#L15-L21
train
sorgerlab/indra
indra/sources/eidos/scala_utils.py
get_python_json
def get_python_json(scala_json): """Return a JSON dict from a org.json4s.JsonAST""" def convert_node(node): if node.__class__.__name__ in ('org.json4s.JsonAST$JValue', 'org.json4s.JsonAST$JObject'): # Make a dictionary and then convert each value values_raw = get_python_dict(node.values()) values = {} for k, v in values_raw.items(): values[k] = convert_node(v) return values elif node.__class__.__name__.startswith('scala.collection.immutable.Map') or \ node.__class__.__name__ == \ 'scala.collection.immutable.HashMap$HashTrieMap': values_raw = get_python_dict(node) values = {} for k, v in values_raw.items(): values[k] = convert_node(v) return values elif node.__class__.__name__ == 'org.json4s.JsonAST$JArray': entries_raw = get_python_list(node.values()) entries = [] for entry in entries_raw: entries.append(convert_node(entry)) return entries elif node.__class__.__name__ == 'scala.collection.immutable.$colon$colon': entries_raw = get_python_list(node) entries = [] for entry in entries_raw: entries.append(convert_node(entry)) return entries elif node.__class__.__name__ == 'scala.math.BigInt': return node.intValue() elif node.__class__.__name__ == 'scala.None$': return None elif node.__class__.__name__ == 'scala.collection.immutable.Nil$': return [] elif isinstance(node, (str, int, float)): return node else: logger.error('Cannot convert %s into Python' % node.__class__.__name__) return node.__class__.__name__ python_json = convert_node(scala_json) return python_json
python
def get_python_json(scala_json): """Return a JSON dict from a org.json4s.JsonAST""" def convert_node(node): if node.__class__.__name__ in ('org.json4s.JsonAST$JValue', 'org.json4s.JsonAST$JObject'): # Make a dictionary and then convert each value values_raw = get_python_dict(node.values()) values = {} for k, v in values_raw.items(): values[k] = convert_node(v) return values elif node.__class__.__name__.startswith('scala.collection.immutable.Map') or \ node.__class__.__name__ == \ 'scala.collection.immutable.HashMap$HashTrieMap': values_raw = get_python_dict(node) values = {} for k, v in values_raw.items(): values[k] = convert_node(v) return values elif node.__class__.__name__ == 'org.json4s.JsonAST$JArray': entries_raw = get_python_list(node.values()) entries = [] for entry in entries_raw: entries.append(convert_node(entry)) return entries elif node.__class__.__name__ == 'scala.collection.immutable.$colon$colon': entries_raw = get_python_list(node) entries = [] for entry in entries_raw: entries.append(convert_node(entry)) return entries elif node.__class__.__name__ == 'scala.math.BigInt': return node.intValue() elif node.__class__.__name__ == 'scala.None$': return None elif node.__class__.__name__ == 'scala.collection.immutable.Nil$': return [] elif isinstance(node, (str, int, float)): return node else: logger.error('Cannot convert %s into Python' % node.__class__.__name__) return node.__class__.__name__ python_json = convert_node(scala_json) return python_json
[ "def", "get_python_json", "(", "scala_json", ")", ":", "def", "convert_node", "(", "node", ")", ":", "if", "node", ".", "__class__", ".", "__name__", "in", "(", "'org.json4s.JsonAST$JValue'", ",", "'org.json4s.JsonAST$JObject'", ")", ":", "# Make a dictionary and then convert each value", "values_raw", "=", "get_python_dict", "(", "node", ".", "values", "(", ")", ")", "values", "=", "{", "}", "for", "k", ",", "v", "in", "values_raw", ".", "items", "(", ")", ":", "values", "[", "k", "]", "=", "convert_node", "(", "v", ")", "return", "values", "elif", "node", ".", "__class__", ".", "__name__", ".", "startswith", "(", "'scala.collection.immutable.Map'", ")", "or", "node", ".", "__class__", ".", "__name__", "==", "'scala.collection.immutable.HashMap$HashTrieMap'", ":", "values_raw", "=", "get_python_dict", "(", "node", ")", "values", "=", "{", "}", "for", "k", ",", "v", "in", "values_raw", ".", "items", "(", ")", ":", "values", "[", "k", "]", "=", "convert_node", "(", "v", ")", "return", "values", "elif", "node", ".", "__class__", ".", "__name__", "==", "'org.json4s.JsonAST$JArray'", ":", "entries_raw", "=", "get_python_list", "(", "node", ".", "values", "(", ")", ")", "entries", "=", "[", "]", "for", "entry", "in", "entries_raw", ":", "entries", ".", "append", "(", "convert_node", "(", "entry", ")", ")", "return", "entries", "elif", "node", ".", "__class__", ".", "__name__", "==", "'scala.collection.immutable.$colon$colon'", ":", "entries_raw", "=", "get_python_list", "(", "node", ")", "entries", "=", "[", "]", "for", "entry", "in", "entries_raw", ":", "entries", ".", "append", "(", "convert_node", "(", "entry", ")", ")", "return", "entries", "elif", "node", ".", "__class__", ".", "__name__", "==", "'scala.math.BigInt'", ":", "return", "node", ".", "intValue", "(", ")", "elif", "node", ".", "__class__", ".", "__name__", "==", "'scala.None$'", ":", "return", "None", "elif", "node", ".", "__class__", ".", "__name__", "==", "'scala.collection.immutable.Nil$'", ":", "return", "[", "]", "elif", "isinstance", "(", "node", ",", "(", "str", ",", "int", ",", "float", ")", ")", ":", "return", "node", "else", ":", "logger", ".", "error", "(", "'Cannot convert %s into Python'", "%", "node", ".", "__class__", ".", "__name__", ")", "return", "node", ".", "__class__", ".", "__name__", "python_json", "=", "convert_node", "(", "scala_json", ")", "return", "python_json" ]
Return a JSON dict from a org.json4s.JsonAST
[ "Return", "a", "JSON", "dict", "from", "a", "org", ".", "json4s", ".", "JsonAST" ]
79a70415832c5702d7a820c7c9ccc8e25010124b
https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/sources/eidos/scala_utils.py#L24-L69
train
sorgerlab/indra
indra/databases/relevance_client.py
get_heat_kernel
def get_heat_kernel(network_id): """Return the identifier of a heat kernel calculated for a given network. Parameters ---------- network_id : str The UUID of the network in NDEx. Returns ------- kernel_id : str The identifier of the heat kernel calculated for the given network. """ url = ndex_relevance + '/%s/generate_ndex_heat_kernel' % network_id res = ndex_client.send_request(url, {}, is_json=True, use_get=True) if res is None: logger.error('Could not get heat kernel for network %s.' % network_id) return None kernel_id = res.get('kernel_id') if kernel_id is None: logger.error('Could not get heat kernel for network %s.' % network_id) return None return kernel_id
python
def get_heat_kernel(network_id): """Return the identifier of a heat kernel calculated for a given network. Parameters ---------- network_id : str The UUID of the network in NDEx. Returns ------- kernel_id : str The identifier of the heat kernel calculated for the given network. """ url = ndex_relevance + '/%s/generate_ndex_heat_kernel' % network_id res = ndex_client.send_request(url, {}, is_json=True, use_get=True) if res is None: logger.error('Could not get heat kernel for network %s.' % network_id) return None kernel_id = res.get('kernel_id') if kernel_id is None: logger.error('Could not get heat kernel for network %s.' % network_id) return None return kernel_id
[ "def", "get_heat_kernel", "(", "network_id", ")", ":", "url", "=", "ndex_relevance", "+", "'/%s/generate_ndex_heat_kernel'", "%", "network_id", "res", "=", "ndex_client", ".", "send_request", "(", "url", ",", "{", "}", ",", "is_json", "=", "True", ",", "use_get", "=", "True", ")", "if", "res", "is", "None", ":", "logger", ".", "error", "(", "'Could not get heat kernel for network %s.'", "%", "network_id", ")", "return", "None", "kernel_id", "=", "res", ".", "get", "(", "'kernel_id'", ")", "if", "kernel_id", "is", "None", ":", "logger", ".", "error", "(", "'Could not get heat kernel for network %s.'", "%", "network_id", ")", "return", "None", "return", "kernel_id" ]
Return the identifier of a heat kernel calculated for a given network. Parameters ---------- network_id : str The UUID of the network in NDEx. Returns ------- kernel_id : str The identifier of the heat kernel calculated for the given network.
[ "Return", "the", "identifier", "of", "a", "heat", "kernel", "calculated", "for", "a", "given", "network", "." ]
79a70415832c5702d7a820c7c9ccc8e25010124b
https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/databases/relevance_client.py#L17-L40
train
sorgerlab/indra
indra/databases/relevance_client.py
get_relevant_nodes
def get_relevant_nodes(network_id, query_nodes): """Return a set of network nodes relevant to a given query set. A heat diffusion algorithm is used on a pre-computed heat kernel for the given network which starts from the given query nodes. The nodes in the network are ranked according to heat score which is a measure of relevance with respect to the query nodes. Parameters ---------- network_id : str The UUID of the network in NDEx. query_nodes : list[str] A list of node names with respect to which relevance is queried. Returns ------- ranked_entities : list[(str, float)] A list containing pairs of node names and their relevance scores. """ url = ndex_relevance + '/rank_entities' kernel_id = get_heat_kernel(network_id) if kernel_id is None: return None if isinstance(query_nodes, basestring): query_nodes = [query_nodes] params = {'identifier_set': query_nodes, 'kernel_id': kernel_id} res = ndex_client.send_request(url, params, is_json=True) if res is None: logger.error("ndex_client.send_request returned None.") return None ranked_entities = res.get('ranked_entities') if ranked_entities is None: logger.error('Could not get ranked entities.') return None return ranked_entities
python
def get_relevant_nodes(network_id, query_nodes): """Return a set of network nodes relevant to a given query set. A heat diffusion algorithm is used on a pre-computed heat kernel for the given network which starts from the given query nodes. The nodes in the network are ranked according to heat score which is a measure of relevance with respect to the query nodes. Parameters ---------- network_id : str The UUID of the network in NDEx. query_nodes : list[str] A list of node names with respect to which relevance is queried. Returns ------- ranked_entities : list[(str, float)] A list containing pairs of node names and their relevance scores. """ url = ndex_relevance + '/rank_entities' kernel_id = get_heat_kernel(network_id) if kernel_id is None: return None if isinstance(query_nodes, basestring): query_nodes = [query_nodes] params = {'identifier_set': query_nodes, 'kernel_id': kernel_id} res = ndex_client.send_request(url, params, is_json=True) if res is None: logger.error("ndex_client.send_request returned None.") return None ranked_entities = res.get('ranked_entities') if ranked_entities is None: logger.error('Could not get ranked entities.') return None return ranked_entities
[ "def", "get_relevant_nodes", "(", "network_id", ",", "query_nodes", ")", ":", "url", "=", "ndex_relevance", "+", "'/rank_entities'", "kernel_id", "=", "get_heat_kernel", "(", "network_id", ")", "if", "kernel_id", "is", "None", ":", "return", "None", "if", "isinstance", "(", "query_nodes", ",", "basestring", ")", ":", "query_nodes", "=", "[", "query_nodes", "]", "params", "=", "{", "'identifier_set'", ":", "query_nodes", ",", "'kernel_id'", ":", "kernel_id", "}", "res", "=", "ndex_client", ".", "send_request", "(", "url", ",", "params", ",", "is_json", "=", "True", ")", "if", "res", "is", "None", ":", "logger", ".", "error", "(", "\"ndex_client.send_request returned None.\"", ")", "return", "None", "ranked_entities", "=", "res", ".", "get", "(", "'ranked_entities'", ")", "if", "ranked_entities", "is", "None", ":", "logger", ".", "error", "(", "'Could not get ranked entities.'", ")", "return", "None", "return", "ranked_entities" ]
Return a set of network nodes relevant to a given query set. A heat diffusion algorithm is used on a pre-computed heat kernel for the given network which starts from the given query nodes. The nodes in the network are ranked according to heat score which is a measure of relevance with respect to the query nodes. Parameters ---------- network_id : str The UUID of the network in NDEx. query_nodes : list[str] A list of node names with respect to which relevance is queried. Returns ------- ranked_entities : list[(str, float)] A list containing pairs of node names and their relevance scores.
[ "Return", "a", "set", "of", "network", "nodes", "relevant", "to", "a", "given", "query", "set", "." ]
79a70415832c5702d7a820c7c9ccc8e25010124b
https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/databases/relevance_client.py#L43-L79
train
sorgerlab/indra
indra/belief/__init__.py
_get_belief_package
def _get_belief_package(stmt): """Return the belief packages of a given statement recursively.""" # This list will contain the belief packages for the given statement belief_packages = [] # Iterate over all the support parents for st in stmt.supports: # Recursively get all the belief packages of the parent parent_packages = _get_belief_package(st) package_stmt_keys = [pkg.statement_key for pkg in belief_packages] for package in parent_packages: # Only add this belief package if it hasn't already been added if package.statement_key not in package_stmt_keys: belief_packages.append(package) # Now make the Statement's own belief package and append it to the list belief_package = BeliefPackage(stmt.matches_key(), stmt.evidence) belief_packages.append(belief_package) return belief_packages
python
def _get_belief_package(stmt): """Return the belief packages of a given statement recursively.""" # This list will contain the belief packages for the given statement belief_packages = [] # Iterate over all the support parents for st in stmt.supports: # Recursively get all the belief packages of the parent parent_packages = _get_belief_package(st) package_stmt_keys = [pkg.statement_key for pkg in belief_packages] for package in parent_packages: # Only add this belief package if it hasn't already been added if package.statement_key not in package_stmt_keys: belief_packages.append(package) # Now make the Statement's own belief package and append it to the list belief_package = BeliefPackage(stmt.matches_key(), stmt.evidence) belief_packages.append(belief_package) return belief_packages
[ "def", "_get_belief_package", "(", "stmt", ")", ":", "# This list will contain the belief packages for the given statement", "belief_packages", "=", "[", "]", "# Iterate over all the support parents", "for", "st", "in", "stmt", ".", "supports", ":", "# Recursively get all the belief packages of the parent", "parent_packages", "=", "_get_belief_package", "(", "st", ")", "package_stmt_keys", "=", "[", "pkg", ".", "statement_key", "for", "pkg", "in", "belief_packages", "]", "for", "package", "in", "parent_packages", ":", "# Only add this belief package if it hasn't already been added", "if", "package", ".", "statement_key", "not", "in", "package_stmt_keys", ":", "belief_packages", ".", "append", "(", "package", ")", "# Now make the Statement's own belief package and append it to the list", "belief_package", "=", "BeliefPackage", "(", "stmt", ".", "matches_key", "(", ")", ",", "stmt", ".", "evidence", ")", "belief_packages", ".", "append", "(", "belief_package", ")", "return", "belief_packages" ]
Return the belief packages of a given statement recursively.
[ "Return", "the", "belief", "packages", "of", "a", "given", "statement", "recursively", "." ]
79a70415832c5702d7a820c7c9ccc8e25010124b
https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/belief/__init__.py#L415-L431
train
sorgerlab/indra
indra/belief/__init__.py
sample_statements
def sample_statements(stmts, seed=None): """Return statements sampled according to belief. Statements are sampled independently according to their belief scores. For instance, a Staement with a belief score of 0.7 will end up in the returned Statement list with probability 0.7. Parameters ---------- stmts : list[indra.statements.Statement] A list of INDRA Statements to sample. seed : Optional[int] A seed for the random number generator used for sampling. Returns ------- new_stmts : list[indra.statements.Statement] A list of INDRA Statements that were chosen by random sampling according to their respective belief scores. """ if seed: numpy.random.seed(seed) new_stmts = [] r = numpy.random.rand(len(stmts)) for i, stmt in enumerate(stmts): if r[i] < stmt.belief: new_stmts.append(stmt) return new_stmts
python
def sample_statements(stmts, seed=None): """Return statements sampled according to belief. Statements are sampled independently according to their belief scores. For instance, a Staement with a belief score of 0.7 will end up in the returned Statement list with probability 0.7. Parameters ---------- stmts : list[indra.statements.Statement] A list of INDRA Statements to sample. seed : Optional[int] A seed for the random number generator used for sampling. Returns ------- new_stmts : list[indra.statements.Statement] A list of INDRA Statements that were chosen by random sampling according to their respective belief scores. """ if seed: numpy.random.seed(seed) new_stmts = [] r = numpy.random.rand(len(stmts)) for i, stmt in enumerate(stmts): if r[i] < stmt.belief: new_stmts.append(stmt) return new_stmts
[ "def", "sample_statements", "(", "stmts", ",", "seed", "=", "None", ")", ":", "if", "seed", ":", "numpy", ".", "random", ".", "seed", "(", "seed", ")", "new_stmts", "=", "[", "]", "r", "=", "numpy", ".", "random", ".", "rand", "(", "len", "(", "stmts", ")", ")", "for", "i", ",", "stmt", "in", "enumerate", "(", "stmts", ")", ":", "if", "r", "[", "i", "]", "<", "stmt", ".", "belief", ":", "new_stmts", ".", "append", "(", "stmt", ")", "return", "new_stmts" ]
Return statements sampled according to belief. Statements are sampled independently according to their belief scores. For instance, a Staement with a belief score of 0.7 will end up in the returned Statement list with probability 0.7. Parameters ---------- stmts : list[indra.statements.Statement] A list of INDRA Statements to sample. seed : Optional[int] A seed for the random number generator used for sampling. Returns ------- new_stmts : list[indra.statements.Statement] A list of INDRA Statements that were chosen by random sampling according to their respective belief scores.
[ "Return", "statements", "sampled", "according", "to", "belief", "." ]
79a70415832c5702d7a820c7c9ccc8e25010124b
https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/belief/__init__.py#L434-L462
train
sorgerlab/indra
indra/belief/__init__.py
evidence_random_noise_prior
def evidence_random_noise_prior(evidence, type_probs, subtype_probs): """Determines the random-noise prior probability for this evidence. If the evidence corresponds to a subtype, and that subtype has a curated prior noise probability, use that. Otherwise, gives the random-noise prior for the overall rule type. """ (stype, subtype) = tag_evidence_subtype(evidence) # Get the subtype, if available # Return the subtype random noise prior, if available if subtype_probs is not None: if stype in subtype_probs: if subtype in subtype_probs[stype]: return subtype_probs[stype][subtype] # Fallback to just returning the overall evidence type random noise prior return type_probs[stype]
python
def evidence_random_noise_prior(evidence, type_probs, subtype_probs): """Determines the random-noise prior probability for this evidence. If the evidence corresponds to a subtype, and that subtype has a curated prior noise probability, use that. Otherwise, gives the random-noise prior for the overall rule type. """ (stype, subtype) = tag_evidence_subtype(evidence) # Get the subtype, if available # Return the subtype random noise prior, if available if subtype_probs is not None: if stype in subtype_probs: if subtype in subtype_probs[stype]: return subtype_probs[stype][subtype] # Fallback to just returning the overall evidence type random noise prior return type_probs[stype]
[ "def", "evidence_random_noise_prior", "(", "evidence", ",", "type_probs", ",", "subtype_probs", ")", ":", "(", "stype", ",", "subtype", ")", "=", "tag_evidence_subtype", "(", "evidence", ")", "# Get the subtype, if available", "# Return the subtype random noise prior, if available", "if", "subtype_probs", "is", "not", "None", ":", "if", "stype", "in", "subtype_probs", ":", "if", "subtype", "in", "subtype_probs", "[", "stype", "]", ":", "return", "subtype_probs", "[", "stype", "]", "[", "subtype", "]", "# Fallback to just returning the overall evidence type random noise prior", "return", "type_probs", "[", "stype", "]" ]
Determines the random-noise prior probability for this evidence. If the evidence corresponds to a subtype, and that subtype has a curated prior noise probability, use that. Otherwise, gives the random-noise prior for the overall rule type.
[ "Determines", "the", "random", "-", "noise", "prior", "probability", "for", "this", "evidence", "." ]
79a70415832c5702d7a820c7c9ccc8e25010124b
https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/belief/__init__.py#L465-L483
train
sorgerlab/indra
indra/belief/__init__.py
tag_evidence_subtype
def tag_evidence_subtype(evidence): """Returns the type and subtype of an evidence object as a string, typically the extraction rule or database from which the statement was generated. For biopax, this is just the database name. Parameters ---------- statement: indra.statements.Evidence The statement which we wish to subtype Returns ------- types: tuple A tuple with (type, subtype), both strings Returns (type, None) if the type of statement is not yet handled in this function. """ source_api = evidence.source_api annotations = evidence.annotations if source_api == 'biopax': subtype = annotations.get('source_sub_id') elif source_api in ('reach', 'eidos'): if 'found_by' in annotations: from indra.sources.reach.processor import determine_reach_subtype if source_api == 'reach': subtype = determine_reach_subtype(annotations['found_by']) elif source_api == 'eidos': subtype = annotations['found_by'] else: subtype = None else: logger.debug('Could not find found_by attribute in reach ' 'statement annoations') subtype = None elif source_api == 'geneways': subtype = annotations['actiontype'] else: subtype = None return (source_api, subtype)
python
def tag_evidence_subtype(evidence): """Returns the type and subtype of an evidence object as a string, typically the extraction rule or database from which the statement was generated. For biopax, this is just the database name. Parameters ---------- statement: indra.statements.Evidence The statement which we wish to subtype Returns ------- types: tuple A tuple with (type, subtype), both strings Returns (type, None) if the type of statement is not yet handled in this function. """ source_api = evidence.source_api annotations = evidence.annotations if source_api == 'biopax': subtype = annotations.get('source_sub_id') elif source_api in ('reach', 'eidos'): if 'found_by' in annotations: from indra.sources.reach.processor import determine_reach_subtype if source_api == 'reach': subtype = determine_reach_subtype(annotations['found_by']) elif source_api == 'eidos': subtype = annotations['found_by'] else: subtype = None else: logger.debug('Could not find found_by attribute in reach ' 'statement annoations') subtype = None elif source_api == 'geneways': subtype = annotations['actiontype'] else: subtype = None return (source_api, subtype)
[ "def", "tag_evidence_subtype", "(", "evidence", ")", ":", "source_api", "=", "evidence", ".", "source_api", "annotations", "=", "evidence", ".", "annotations", "if", "source_api", "==", "'biopax'", ":", "subtype", "=", "annotations", ".", "get", "(", "'source_sub_id'", ")", "elif", "source_api", "in", "(", "'reach'", ",", "'eidos'", ")", ":", "if", "'found_by'", "in", "annotations", ":", "from", "indra", ".", "sources", ".", "reach", ".", "processor", "import", "determine_reach_subtype", "if", "source_api", "==", "'reach'", ":", "subtype", "=", "determine_reach_subtype", "(", "annotations", "[", "'found_by'", "]", ")", "elif", "source_api", "==", "'eidos'", ":", "subtype", "=", "annotations", "[", "'found_by'", "]", "else", ":", "subtype", "=", "None", "else", ":", "logger", ".", "debug", "(", "'Could not find found_by attribute in reach '", "'statement annoations'", ")", "subtype", "=", "None", "elif", "source_api", "==", "'geneways'", ":", "subtype", "=", "annotations", "[", "'actiontype'", "]", "else", ":", "subtype", "=", "None", "return", "(", "source_api", ",", "subtype", ")" ]
Returns the type and subtype of an evidence object as a string, typically the extraction rule or database from which the statement was generated. For biopax, this is just the database name. Parameters ---------- statement: indra.statements.Evidence The statement which we wish to subtype Returns ------- types: tuple A tuple with (type, subtype), both strings Returns (type, None) if the type of statement is not yet handled in this function.
[ "Returns", "the", "type", "and", "subtype", "of", "an", "evidence", "object", "as", "a", "string", "typically", "the", "extraction", "rule", "or", "database", "from", "which", "the", "statement", "was", "generated", "." ]
79a70415832c5702d7a820c7c9ccc8e25010124b
https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/belief/__init__.py#L486-L528
train
sorgerlab/indra
indra/belief/__init__.py
SimpleScorer.score_evidence_list
def score_evidence_list(self, evidences): """Return belief score given a list of supporting evidences.""" def _score(evidences): if not evidences: return 0 # Collect all unique sources sources = [ev.source_api for ev in evidences] uniq_sources = numpy.unique(sources) # Calculate the systematic error factors given unique sources syst_factors = {s: self.prior_probs['syst'][s] for s in uniq_sources} # Calculate the radom error factors for each source rand_factors = {k: [] for k in uniq_sources} for ev in evidences: rand_factors[ev.source_api].append( evidence_random_noise_prior( ev, self.prior_probs['rand'], self.subtype_probs)) # The probability of incorrectness is the product of the # source-specific probabilities neg_prob_prior = 1 for s in uniq_sources: neg_prob_prior *= (syst_factors[s] + numpy.prod(rand_factors[s])) # Finally, the probability of correctness is one minus incorrect prob_prior = 1 - neg_prob_prior return prob_prior pos_evidence = [ev for ev in evidences if not ev.epistemics.get('negated')] neg_evidence = [ev for ev in evidences if ev.epistemics.get('negated')] pp = _score(pos_evidence) np = _score(neg_evidence) # The basic assumption is that the positive and negative evidence # can't simultaneously be correct. # There are two cases to consider. (1) If the positive evidence is # incorrect then there is no Statement and the belief should be 0, # irrespective of the negative evidence. # (2) If the positive evidence is correct and the negative evidence # is incorrect. # This amounts to the following formula: # 0 * (1-pp) + 1 * (pp * (1-np)) which we simplify below score = pp * (1 - np) return score
python
def score_evidence_list(self, evidences): """Return belief score given a list of supporting evidences.""" def _score(evidences): if not evidences: return 0 # Collect all unique sources sources = [ev.source_api for ev in evidences] uniq_sources = numpy.unique(sources) # Calculate the systematic error factors given unique sources syst_factors = {s: self.prior_probs['syst'][s] for s in uniq_sources} # Calculate the radom error factors for each source rand_factors = {k: [] for k in uniq_sources} for ev in evidences: rand_factors[ev.source_api].append( evidence_random_noise_prior( ev, self.prior_probs['rand'], self.subtype_probs)) # The probability of incorrectness is the product of the # source-specific probabilities neg_prob_prior = 1 for s in uniq_sources: neg_prob_prior *= (syst_factors[s] + numpy.prod(rand_factors[s])) # Finally, the probability of correctness is one minus incorrect prob_prior = 1 - neg_prob_prior return prob_prior pos_evidence = [ev for ev in evidences if not ev.epistemics.get('negated')] neg_evidence = [ev for ev in evidences if ev.epistemics.get('negated')] pp = _score(pos_evidence) np = _score(neg_evidence) # The basic assumption is that the positive and negative evidence # can't simultaneously be correct. # There are two cases to consider. (1) If the positive evidence is # incorrect then there is no Statement and the belief should be 0, # irrespective of the negative evidence. # (2) If the positive evidence is correct and the negative evidence # is incorrect. # This amounts to the following formula: # 0 * (1-pp) + 1 * (pp * (1-np)) which we simplify below score = pp * (1 - np) return score
[ "def", "score_evidence_list", "(", "self", ",", "evidences", ")", ":", "def", "_score", "(", "evidences", ")", ":", "if", "not", "evidences", ":", "return", "0", "# Collect all unique sources", "sources", "=", "[", "ev", ".", "source_api", "for", "ev", "in", "evidences", "]", "uniq_sources", "=", "numpy", ".", "unique", "(", "sources", ")", "# Calculate the systematic error factors given unique sources", "syst_factors", "=", "{", "s", ":", "self", ".", "prior_probs", "[", "'syst'", "]", "[", "s", "]", "for", "s", "in", "uniq_sources", "}", "# Calculate the radom error factors for each source", "rand_factors", "=", "{", "k", ":", "[", "]", "for", "k", "in", "uniq_sources", "}", "for", "ev", "in", "evidences", ":", "rand_factors", "[", "ev", ".", "source_api", "]", ".", "append", "(", "evidence_random_noise_prior", "(", "ev", ",", "self", ".", "prior_probs", "[", "'rand'", "]", ",", "self", ".", "subtype_probs", ")", ")", "# The probability of incorrectness is the product of the", "# source-specific probabilities", "neg_prob_prior", "=", "1", "for", "s", "in", "uniq_sources", ":", "neg_prob_prior", "*=", "(", "syst_factors", "[", "s", "]", "+", "numpy", ".", "prod", "(", "rand_factors", "[", "s", "]", ")", ")", "# Finally, the probability of correctness is one minus incorrect", "prob_prior", "=", "1", "-", "neg_prob_prior", "return", "prob_prior", "pos_evidence", "=", "[", "ev", "for", "ev", "in", "evidences", "if", "not", "ev", ".", "epistemics", ".", "get", "(", "'negated'", ")", "]", "neg_evidence", "=", "[", "ev", "for", "ev", "in", "evidences", "if", "ev", ".", "epistemics", ".", "get", "(", "'negated'", ")", "]", "pp", "=", "_score", "(", "pos_evidence", ")", "np", "=", "_score", "(", "neg_evidence", ")", "# The basic assumption is that the positive and negative evidence", "# can't simultaneously be correct.", "# There are two cases to consider. (1) If the positive evidence is", "# incorrect then there is no Statement and the belief should be 0,", "# irrespective of the negative evidence.", "# (2) If the positive evidence is correct and the negative evidence", "# is incorrect.", "# This amounts to the following formula:", "# 0 * (1-pp) + 1 * (pp * (1-np)) which we simplify below", "score", "=", "pp", "*", "(", "1", "-", "np", ")", "return", "score" ]
Return belief score given a list of supporting evidences.
[ "Return", "belief", "score", "given", "a", "list", "of", "supporting", "evidences", "." ]
79a70415832c5702d7a820c7c9ccc8e25010124b
https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/belief/__init__.py#L110-L154
train
sorgerlab/indra
indra/belief/__init__.py
SimpleScorer.score_statement
def score_statement(self, st, extra_evidence=None): """Computes the prior belief probability for an INDRA Statement. The Statement is assumed to be de-duplicated. In other words, the Statement is assumed to have a list of Evidence objects that supports it. The prior probability of the Statement is calculated based on the number of Evidences it has and their sources. Parameters ---------- st : indra.statements.Statement An INDRA Statements whose belief scores are to be calculated. extra_evidence : list[indra.statements.Evidence] A list of Evidences that are supporting the Statement (that aren't already included in the Statement's own evidence list. Returns ------- belief_score : float The computed prior probability for the statement """ if extra_evidence is None: extra_evidence = [] all_evidence = st.evidence + extra_evidence return self.score_evidence_list(all_evidence)
python
def score_statement(self, st, extra_evidence=None): """Computes the prior belief probability for an INDRA Statement. The Statement is assumed to be de-duplicated. In other words, the Statement is assumed to have a list of Evidence objects that supports it. The prior probability of the Statement is calculated based on the number of Evidences it has and their sources. Parameters ---------- st : indra.statements.Statement An INDRA Statements whose belief scores are to be calculated. extra_evidence : list[indra.statements.Evidence] A list of Evidences that are supporting the Statement (that aren't already included in the Statement's own evidence list. Returns ------- belief_score : float The computed prior probability for the statement """ if extra_evidence is None: extra_evidence = [] all_evidence = st.evidence + extra_evidence return self.score_evidence_list(all_evidence)
[ "def", "score_statement", "(", "self", ",", "st", ",", "extra_evidence", "=", "None", ")", ":", "if", "extra_evidence", "is", "None", ":", "extra_evidence", "=", "[", "]", "all_evidence", "=", "st", ".", "evidence", "+", "extra_evidence", "return", "self", ".", "score_evidence_list", "(", "all_evidence", ")" ]
Computes the prior belief probability for an INDRA Statement. The Statement is assumed to be de-duplicated. In other words, the Statement is assumed to have a list of Evidence objects that supports it. The prior probability of the Statement is calculated based on the number of Evidences it has and their sources. Parameters ---------- st : indra.statements.Statement An INDRA Statements whose belief scores are to be calculated. extra_evidence : list[indra.statements.Evidence] A list of Evidences that are supporting the Statement (that aren't already included in the Statement's own evidence list. Returns ------- belief_score : float The computed prior probability for the statement
[ "Computes", "the", "prior", "belief", "probability", "for", "an", "INDRA", "Statement", "." ]
79a70415832c5702d7a820c7c9ccc8e25010124b
https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/belief/__init__.py#L156-L182
train
sorgerlab/indra
indra/belief/__init__.py
SimpleScorer.check_prior_probs
def check_prior_probs(self, statements): """Throw Exception if BeliefEngine parameter is missing. Make sure the scorer has all the information needed to compute belief scores of each statement in the provided list, and raises an exception otherwise. Parameters ---------- statements : list[indra.statements.Statement] List of statements to check """ sources = set() for stmt in statements: sources |= set([ev.source_api for ev in stmt.evidence]) for err_type in ('rand', 'syst'): for source in sources: if source not in self.prior_probs[err_type]: msg = 'BeliefEngine missing probability parameter' + \ ' for source: %s' % source raise Exception(msg)
python
def check_prior_probs(self, statements): """Throw Exception if BeliefEngine parameter is missing. Make sure the scorer has all the information needed to compute belief scores of each statement in the provided list, and raises an exception otherwise. Parameters ---------- statements : list[indra.statements.Statement] List of statements to check """ sources = set() for stmt in statements: sources |= set([ev.source_api for ev in stmt.evidence]) for err_type in ('rand', 'syst'): for source in sources: if source not in self.prior_probs[err_type]: msg = 'BeliefEngine missing probability parameter' + \ ' for source: %s' % source raise Exception(msg)
[ "def", "check_prior_probs", "(", "self", ",", "statements", ")", ":", "sources", "=", "set", "(", ")", "for", "stmt", "in", "statements", ":", "sources", "|=", "set", "(", "[", "ev", ".", "source_api", "for", "ev", "in", "stmt", ".", "evidence", "]", ")", "for", "err_type", "in", "(", "'rand'", ",", "'syst'", ")", ":", "for", "source", "in", "sources", ":", "if", "source", "not", "in", "self", ".", "prior_probs", "[", "err_type", "]", ":", "msg", "=", "'BeliefEngine missing probability parameter'", "+", "' for source: %s'", "%", "source", "raise", "Exception", "(", "msg", ")" ]
Throw Exception if BeliefEngine parameter is missing. Make sure the scorer has all the information needed to compute belief scores of each statement in the provided list, and raises an exception otherwise. Parameters ---------- statements : list[indra.statements.Statement] List of statements to check
[ "Throw", "Exception", "if", "BeliefEngine", "parameter", "is", "missing", "." ]
79a70415832c5702d7a820c7c9ccc8e25010124b
https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/belief/__init__.py#L184-L204
train
sorgerlab/indra
indra/belief/__init__.py
BayesianScorer.update_probs
def update_probs(self): """Update the internal probability values given the counts.""" # We deal with the prior probsfirst # This is a fixed assumed value for systematic error syst_error = 0.05 prior_probs = {'syst': {}, 'rand': {}} for source, (p, n) in self.prior_counts.items(): # Skip if there are no actual counts if n + p == 0: continue prior_probs['syst'][source] = syst_error prior_probs['rand'][source] = \ 1 - min((float(p) / (n + p), 1-syst_error)) - syst_error # Next we deal with subtype probs based on counts subtype_probs = {} for source, entry in self.subtype_counts.items(): for rule, (p, n) in entry.items(): # Skip if there are no actual counts if n + p == 0: continue if source not in subtype_probs: subtype_probs[source] = {} subtype_probs[source][rule] = \ 1 - min((float(p) / (n + p), 1-syst_error)) - syst_error # Finally we propagate this into the full probability # data structures of the parent class super(BayesianScorer, self).update_probs(prior_probs, subtype_probs)
python
def update_probs(self): """Update the internal probability values given the counts.""" # We deal with the prior probsfirst # This is a fixed assumed value for systematic error syst_error = 0.05 prior_probs = {'syst': {}, 'rand': {}} for source, (p, n) in self.prior_counts.items(): # Skip if there are no actual counts if n + p == 0: continue prior_probs['syst'][source] = syst_error prior_probs['rand'][source] = \ 1 - min((float(p) / (n + p), 1-syst_error)) - syst_error # Next we deal with subtype probs based on counts subtype_probs = {} for source, entry in self.subtype_counts.items(): for rule, (p, n) in entry.items(): # Skip if there are no actual counts if n + p == 0: continue if source not in subtype_probs: subtype_probs[source] = {} subtype_probs[source][rule] = \ 1 - min((float(p) / (n + p), 1-syst_error)) - syst_error # Finally we propagate this into the full probability # data structures of the parent class super(BayesianScorer, self).update_probs(prior_probs, subtype_probs)
[ "def", "update_probs", "(", "self", ")", ":", "# We deal with the prior probsfirst", "# This is a fixed assumed value for systematic error", "syst_error", "=", "0.05", "prior_probs", "=", "{", "'syst'", ":", "{", "}", ",", "'rand'", ":", "{", "}", "}", "for", "source", ",", "(", "p", ",", "n", ")", "in", "self", ".", "prior_counts", ".", "items", "(", ")", ":", "# Skip if there are no actual counts", "if", "n", "+", "p", "==", "0", ":", "continue", "prior_probs", "[", "'syst'", "]", "[", "source", "]", "=", "syst_error", "prior_probs", "[", "'rand'", "]", "[", "source", "]", "=", "1", "-", "min", "(", "(", "float", "(", "p", ")", "/", "(", "n", "+", "p", ")", ",", "1", "-", "syst_error", ")", ")", "-", "syst_error", "# Next we deal with subtype probs based on counts", "subtype_probs", "=", "{", "}", "for", "source", ",", "entry", "in", "self", ".", "subtype_counts", ".", "items", "(", ")", ":", "for", "rule", ",", "(", "p", ",", "n", ")", "in", "entry", ".", "items", "(", ")", ":", "# Skip if there are no actual counts", "if", "n", "+", "p", "==", "0", ":", "continue", "if", "source", "not", "in", "subtype_probs", ":", "subtype_probs", "[", "source", "]", "=", "{", "}", "subtype_probs", "[", "source", "]", "[", "rule", "]", "=", "1", "-", "min", "(", "(", "float", "(", "p", ")", "/", "(", "n", "+", "p", ")", ",", "1", "-", "syst_error", ")", ")", "-", "syst_error", "# Finally we propagate this into the full probability", "# data structures of the parent class", "super", "(", "BayesianScorer", ",", "self", ")", ".", "update_probs", "(", "prior_probs", ",", "subtype_probs", ")" ]
Update the internal probability values given the counts.
[ "Update", "the", "internal", "probability", "values", "given", "the", "counts", "." ]
79a70415832c5702d7a820c7c9ccc8e25010124b
https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/belief/__init__.py#L232-L258
train
sorgerlab/indra
indra/belief/__init__.py
BayesianScorer.update_counts
def update_counts(self, prior_counts, subtype_counts): """Update the internal counts based on given new counts. Parameters ---------- prior_counts : dict A dictionary of counts of the form [pos, neg] for each source. subtype_counts : dict A dictionary of counts of the form [pos, neg] for each subtype within a source. """ for source, (pos, neg) in prior_counts.items(): if source not in self.prior_counts: self.prior_counts[source] = [0, 0] self.prior_counts[source][0] += pos self.prior_counts[source][1] += neg for source, subtype_dict in subtype_counts.items(): if source not in self.subtype_counts: self.subtype_counts[source] = {} for subtype, (pos, neg) in subtype_dict.items(): if subtype not in self.subtype_counts[source]: self.subtype_counts[source][subtype] = [0, 0] self.subtype_counts[source][subtype][0] += pos self.subtype_counts[source][subtype][1] += neg self.update_probs()
python
def update_counts(self, prior_counts, subtype_counts): """Update the internal counts based on given new counts. Parameters ---------- prior_counts : dict A dictionary of counts of the form [pos, neg] for each source. subtype_counts : dict A dictionary of counts of the form [pos, neg] for each subtype within a source. """ for source, (pos, neg) in prior_counts.items(): if source not in self.prior_counts: self.prior_counts[source] = [0, 0] self.prior_counts[source][0] += pos self.prior_counts[source][1] += neg for source, subtype_dict in subtype_counts.items(): if source not in self.subtype_counts: self.subtype_counts[source] = {} for subtype, (pos, neg) in subtype_dict.items(): if subtype not in self.subtype_counts[source]: self.subtype_counts[source][subtype] = [0, 0] self.subtype_counts[source][subtype][0] += pos self.subtype_counts[source][subtype][1] += neg self.update_probs()
[ "def", "update_counts", "(", "self", ",", "prior_counts", ",", "subtype_counts", ")", ":", "for", "source", ",", "(", "pos", ",", "neg", ")", "in", "prior_counts", ".", "items", "(", ")", ":", "if", "source", "not", "in", "self", ".", "prior_counts", ":", "self", ".", "prior_counts", "[", "source", "]", "=", "[", "0", ",", "0", "]", "self", ".", "prior_counts", "[", "source", "]", "[", "0", "]", "+=", "pos", "self", ".", "prior_counts", "[", "source", "]", "[", "1", "]", "+=", "neg", "for", "source", ",", "subtype_dict", "in", "subtype_counts", ".", "items", "(", ")", ":", "if", "source", "not", "in", "self", ".", "subtype_counts", ":", "self", ".", "subtype_counts", "[", "source", "]", "=", "{", "}", "for", "subtype", ",", "(", "pos", ",", "neg", ")", "in", "subtype_dict", ".", "items", "(", ")", ":", "if", "subtype", "not", "in", "self", ".", "subtype_counts", "[", "source", "]", ":", "self", ".", "subtype_counts", "[", "source", "]", "[", "subtype", "]", "=", "[", "0", ",", "0", "]", "self", ".", "subtype_counts", "[", "source", "]", "[", "subtype", "]", "[", "0", "]", "+=", "pos", "self", ".", "subtype_counts", "[", "source", "]", "[", "subtype", "]", "[", "1", "]", "+=", "neg", "self", ".", "update_probs", "(", ")" ]
Update the internal counts based on given new counts. Parameters ---------- prior_counts : dict A dictionary of counts of the form [pos, neg] for each source. subtype_counts : dict A dictionary of counts of the form [pos, neg] for each subtype within a source.
[ "Update", "the", "internal", "counts", "based", "on", "given", "new", "counts", "." ]
79a70415832c5702d7a820c7c9ccc8e25010124b
https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/belief/__init__.py#L260-L285
train
sorgerlab/indra
indra/belief/__init__.py
BeliefEngine.set_prior_probs
def set_prior_probs(self, statements): """Sets the prior belief probabilities for a list of INDRA Statements. The Statements are assumed to be de-duplicated. In other words, each Statement in the list passed to this function is assumed to have a list of Evidence objects that support it. The prior probability of each Statement is calculated based on the number of Evidences it has and their sources. Parameters ---------- statements : list[indra.statements.Statement] A list of INDRA Statements whose belief scores are to be calculated. Each Statement object's belief attribute is updated by this function. """ self.scorer.check_prior_probs(statements) for st in statements: st.belief = self.scorer.score_statement(st)
python
def set_prior_probs(self, statements): """Sets the prior belief probabilities for a list of INDRA Statements. The Statements are assumed to be de-duplicated. In other words, each Statement in the list passed to this function is assumed to have a list of Evidence objects that support it. The prior probability of each Statement is calculated based on the number of Evidences it has and their sources. Parameters ---------- statements : list[indra.statements.Statement] A list of INDRA Statements whose belief scores are to be calculated. Each Statement object's belief attribute is updated by this function. """ self.scorer.check_prior_probs(statements) for st in statements: st.belief = self.scorer.score_statement(st)
[ "def", "set_prior_probs", "(", "self", ",", "statements", ")", ":", "self", ".", "scorer", ".", "check_prior_probs", "(", "statements", ")", "for", "st", "in", "statements", ":", "st", ".", "belief", "=", "self", ".", "scorer", ".", "score_statement", "(", "st", ")" ]
Sets the prior belief probabilities for a list of INDRA Statements. The Statements are assumed to be de-duplicated. In other words, each Statement in the list passed to this function is assumed to have a list of Evidence objects that support it. The prior probability of each Statement is calculated based on the number of Evidences it has and their sources. Parameters ---------- statements : list[indra.statements.Statement] A list of INDRA Statements whose belief scores are to be calculated. Each Statement object's belief attribute is updated by this function.
[ "Sets", "the", "prior", "belief", "probabilities", "for", "a", "list", "of", "INDRA", "Statements", "." ]
79a70415832c5702d7a820c7c9ccc8e25010124b
https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/belief/__init__.py#L311-L329
train
sorgerlab/indra
indra/belief/__init__.py
BeliefEngine.set_hierarchy_probs
def set_hierarchy_probs(self, statements): """Sets hierarchical belief probabilities for INDRA Statements. The Statements are assumed to be in a hierarchical relation graph with the supports and supported_by attribute of each Statement object having been set. The hierarchical belief probability of each Statement is calculated based on its prior probability and the probabilities propagated from Statements supporting it in the hierarchy graph. Parameters ---------- statements : list[indra.statements.Statement] A list of INDRA Statements whose belief scores are to be calculated. Each Statement object's belief attribute is updated by this function. """ def build_hierarchy_graph(stmts): """Return a DiGraph based on matches keys and Statement supports""" g = networkx.DiGraph() for st1 in stmts: g.add_node(st1.matches_key(), stmt=st1) for st2 in st1.supported_by: g.add_node(st2.matches_key(), stmt=st2) g.add_edge(st2.matches_key(), st1.matches_key()) return g def get_ranked_stmts(g): """Return a topological sort of statement matches keys from a graph. """ node_ranks = networkx.algorithms.dag.topological_sort(g) node_ranks = reversed(list(node_ranks)) stmts = [g.node[n]['stmt'] for n in node_ranks] return stmts def assert_no_cycle(g): """If the graph has cycles, throws AssertionError.""" try: cyc = networkx.algorithms.cycles.find_cycle(g) except networkx.exception.NetworkXNoCycle: return msg = 'Cycle found in hierarchy graph: %s' % cyc assert False, msg g = build_hierarchy_graph(statements) assert_no_cycle(g) ranked_stmts = get_ranked_stmts(g) for st in ranked_stmts: bps = _get_belief_package(st) supporting_evidences = [] # NOTE: the last belief package in the list is this statement's own for bp in bps[:-1]: # Iterate over all the parent evidences and add only # non-negated ones for ev in bp.evidences: if not ev.epistemics.get('negated'): supporting_evidences.append(ev) # Now add the Statement's own evidence # Now score all the evidences belief = self.scorer.score_statement(st, supporting_evidences) st.belief = belief
python
def set_hierarchy_probs(self, statements): """Sets hierarchical belief probabilities for INDRA Statements. The Statements are assumed to be in a hierarchical relation graph with the supports and supported_by attribute of each Statement object having been set. The hierarchical belief probability of each Statement is calculated based on its prior probability and the probabilities propagated from Statements supporting it in the hierarchy graph. Parameters ---------- statements : list[indra.statements.Statement] A list of INDRA Statements whose belief scores are to be calculated. Each Statement object's belief attribute is updated by this function. """ def build_hierarchy_graph(stmts): """Return a DiGraph based on matches keys and Statement supports""" g = networkx.DiGraph() for st1 in stmts: g.add_node(st1.matches_key(), stmt=st1) for st2 in st1.supported_by: g.add_node(st2.matches_key(), stmt=st2) g.add_edge(st2.matches_key(), st1.matches_key()) return g def get_ranked_stmts(g): """Return a topological sort of statement matches keys from a graph. """ node_ranks = networkx.algorithms.dag.topological_sort(g) node_ranks = reversed(list(node_ranks)) stmts = [g.node[n]['stmt'] for n in node_ranks] return stmts def assert_no_cycle(g): """If the graph has cycles, throws AssertionError.""" try: cyc = networkx.algorithms.cycles.find_cycle(g) except networkx.exception.NetworkXNoCycle: return msg = 'Cycle found in hierarchy graph: %s' % cyc assert False, msg g = build_hierarchy_graph(statements) assert_no_cycle(g) ranked_stmts = get_ranked_stmts(g) for st in ranked_stmts: bps = _get_belief_package(st) supporting_evidences = [] # NOTE: the last belief package in the list is this statement's own for bp in bps[:-1]: # Iterate over all the parent evidences and add only # non-negated ones for ev in bp.evidences: if not ev.epistemics.get('negated'): supporting_evidences.append(ev) # Now add the Statement's own evidence # Now score all the evidences belief = self.scorer.score_statement(st, supporting_evidences) st.belief = belief
[ "def", "set_hierarchy_probs", "(", "self", ",", "statements", ")", ":", "def", "build_hierarchy_graph", "(", "stmts", ")", ":", "\"\"\"Return a DiGraph based on matches keys and Statement supports\"\"\"", "g", "=", "networkx", ".", "DiGraph", "(", ")", "for", "st1", "in", "stmts", ":", "g", ".", "add_node", "(", "st1", ".", "matches_key", "(", ")", ",", "stmt", "=", "st1", ")", "for", "st2", "in", "st1", ".", "supported_by", ":", "g", ".", "add_node", "(", "st2", ".", "matches_key", "(", ")", ",", "stmt", "=", "st2", ")", "g", ".", "add_edge", "(", "st2", ".", "matches_key", "(", ")", ",", "st1", ".", "matches_key", "(", ")", ")", "return", "g", "def", "get_ranked_stmts", "(", "g", ")", ":", "\"\"\"Return a topological sort of statement matches keys from a graph.\n \"\"\"", "node_ranks", "=", "networkx", ".", "algorithms", ".", "dag", ".", "topological_sort", "(", "g", ")", "node_ranks", "=", "reversed", "(", "list", "(", "node_ranks", ")", ")", "stmts", "=", "[", "g", ".", "node", "[", "n", "]", "[", "'stmt'", "]", "for", "n", "in", "node_ranks", "]", "return", "stmts", "def", "assert_no_cycle", "(", "g", ")", ":", "\"\"\"If the graph has cycles, throws AssertionError.\"\"\"", "try", ":", "cyc", "=", "networkx", ".", "algorithms", ".", "cycles", ".", "find_cycle", "(", "g", ")", "except", "networkx", ".", "exception", ".", "NetworkXNoCycle", ":", "return", "msg", "=", "'Cycle found in hierarchy graph: %s'", "%", "cyc", "assert", "False", ",", "msg", "g", "=", "build_hierarchy_graph", "(", "statements", ")", "assert_no_cycle", "(", "g", ")", "ranked_stmts", "=", "get_ranked_stmts", "(", "g", ")", "for", "st", "in", "ranked_stmts", ":", "bps", "=", "_get_belief_package", "(", "st", ")", "supporting_evidences", "=", "[", "]", "# NOTE: the last belief package in the list is this statement's own", "for", "bp", "in", "bps", "[", ":", "-", "1", "]", ":", "# Iterate over all the parent evidences and add only", "# non-negated ones", "for", "ev", "in", "bp", ".", "evidences", ":", "if", "not", "ev", ".", "epistemics", ".", "get", "(", "'negated'", ")", ":", "supporting_evidences", ".", "append", "(", "ev", ")", "# Now add the Statement's own evidence", "# Now score all the evidences", "belief", "=", "self", ".", "scorer", ".", "score_statement", "(", "st", ",", "supporting_evidences", ")", "st", ".", "belief", "=", "belief" ]
Sets hierarchical belief probabilities for INDRA Statements. The Statements are assumed to be in a hierarchical relation graph with the supports and supported_by attribute of each Statement object having been set. The hierarchical belief probability of each Statement is calculated based on its prior probability and the probabilities propagated from Statements supporting it in the hierarchy graph. Parameters ---------- statements : list[indra.statements.Statement] A list of INDRA Statements whose belief scores are to be calculated. Each Statement object's belief attribute is updated by this function.
[ "Sets", "hierarchical", "belief", "probabilities", "for", "INDRA", "Statements", "." ]
79a70415832c5702d7a820c7c9ccc8e25010124b
https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/belief/__init__.py#L331-L391
train
sorgerlab/indra
indra/belief/__init__.py
BeliefEngine.set_linked_probs
def set_linked_probs(self, linked_statements): """Sets the belief probabilities for a list of linked INDRA Statements. The list of LinkedStatement objects is assumed to come from the MechanismLinker. The belief probability of the inferred Statement is assigned the joint probability of its source Statements. Parameters ---------- linked_statements : list[indra.mechlinker.LinkedStatement] A list of INDRA LinkedStatements whose belief scores are to be calculated. The belief attribute of the inferred Statement in the LinkedStatement object is updated by this function. """ for st in linked_statements: source_probs = [s.belief for s in st.source_stmts] st.inferred_stmt.belief = numpy.prod(source_probs)
python
def set_linked_probs(self, linked_statements): """Sets the belief probabilities for a list of linked INDRA Statements. The list of LinkedStatement objects is assumed to come from the MechanismLinker. The belief probability of the inferred Statement is assigned the joint probability of its source Statements. Parameters ---------- linked_statements : list[indra.mechlinker.LinkedStatement] A list of INDRA LinkedStatements whose belief scores are to be calculated. The belief attribute of the inferred Statement in the LinkedStatement object is updated by this function. """ for st in linked_statements: source_probs = [s.belief for s in st.source_stmts] st.inferred_stmt.belief = numpy.prod(source_probs)
[ "def", "set_linked_probs", "(", "self", ",", "linked_statements", ")", ":", "for", "st", "in", "linked_statements", ":", "source_probs", "=", "[", "s", ".", "belief", "for", "s", "in", "st", ".", "source_stmts", "]", "st", ".", "inferred_stmt", ".", "belief", "=", "numpy", ".", "prod", "(", "source_probs", ")" ]
Sets the belief probabilities for a list of linked INDRA Statements. The list of LinkedStatement objects is assumed to come from the MechanismLinker. The belief probability of the inferred Statement is assigned the joint probability of its source Statements. Parameters ---------- linked_statements : list[indra.mechlinker.LinkedStatement] A list of INDRA LinkedStatements whose belief scores are to be calculated. The belief attribute of the inferred Statement in the LinkedStatement object is updated by this function.
[ "Sets", "the", "belief", "probabilities", "for", "a", "list", "of", "linked", "INDRA", "Statements", "." ]
79a70415832c5702d7a820c7c9ccc8e25010124b
https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/belief/__init__.py#L393-L409
train
sorgerlab/indra
indra/sources/rlimsp/processor.py
RlimspProcessor.extract_statements
def extract_statements(self): """Extract the statements from the json.""" for p_info in self._json: para = RlimspParagraph(p_info, self.doc_id_type) self.statements.extend(para.get_statements()) return
python
def extract_statements(self): """Extract the statements from the json.""" for p_info in self._json: para = RlimspParagraph(p_info, self.doc_id_type) self.statements.extend(para.get_statements()) return
[ "def", "extract_statements", "(", "self", ")", ":", "for", "p_info", "in", "self", ".", "_json", ":", "para", "=", "RlimspParagraph", "(", "p_info", ",", "self", ".", "doc_id_type", ")", "self", ".", "statements", ".", "extend", "(", "para", ".", "get_statements", "(", ")", ")", "return" ]
Extract the statements from the json.
[ "Extract", "the", "statements", "from", "the", "json", "." ]
79a70415832c5702d7a820c7c9ccc8e25010124b
https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/sources/rlimsp/processor.py#L19-L24
train
sorgerlab/indra
indra/sources/rlimsp/processor.py
RlimspParagraph._get_agent
def _get_agent(self, entity_id): """Convert the entity dictionary into an INDRA Agent.""" if entity_id is None: return None entity_info = self._entity_dict.get(entity_id) if entity_info is None: logger.warning("Entity key did not resolve to entity.") return None return get_agent_from_entity_info(entity_info)
python
def _get_agent(self, entity_id): """Convert the entity dictionary into an INDRA Agent.""" if entity_id is None: return None entity_info = self._entity_dict.get(entity_id) if entity_info is None: logger.warning("Entity key did not resolve to entity.") return None return get_agent_from_entity_info(entity_info)
[ "def", "_get_agent", "(", "self", ",", "entity_id", ")", ":", "if", "entity_id", "is", "None", ":", "return", "None", "entity_info", "=", "self", ".", "_entity_dict", ".", "get", "(", "entity_id", ")", "if", "entity_info", "is", "None", ":", "logger", ".", "warning", "(", "\"Entity key did not resolve to entity.\"", ")", "return", "None", "return", "get_agent_from_entity_info", "(", "entity_info", ")" ]
Convert the entity dictionary into an INDRA Agent.
[ "Convert", "the", "entity", "dictionary", "into", "an", "INDRA", "Agent", "." ]
79a70415832c5702d7a820c7c9ccc8e25010124b
https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/sources/rlimsp/processor.py#L49-L58
train
sorgerlab/indra
indra/sources/rlimsp/processor.py
RlimspParagraph._get_evidence
def _get_evidence(self, trigger_id, args, agent_coords, site_coords): """Get the evidence using the info in the trigger entity.""" trigger_info = self._entity_dict[trigger_id] # Get the sentence index from the trigger word. s_idx_set = {self._entity_dict[eid]['sentenceIndex'] for eid in args.values() if 'sentenceIndex' in self._entity_dict[eid]} if s_idx_set: i_min = min(s_idx_set) i_max = max(s_idx_set) text = '. '.join(self._sentences[i_min:(i_max+1)]) + '.' s_start = self._sentence_starts[i_min] annotations = { 'agents': {'coords': [_fix_coords(coords, s_start) for coords in agent_coords]}, 'trigger': {'coords': _fix_coords([trigger_info['charStart'], trigger_info['charEnd']], s_start)} } else: logger.info('Unable to get sentence index') annotations = {} text = None if site_coords: annotations['site'] = {'coords': _fix_coords(site_coords, s_start)} return Evidence(text_refs=self._text_refs.copy(), text=text, source_api='rlimsp', pmid=self._text_refs.get('PMID'), annotations=annotations)
python
def _get_evidence(self, trigger_id, args, agent_coords, site_coords): """Get the evidence using the info in the trigger entity.""" trigger_info = self._entity_dict[trigger_id] # Get the sentence index from the trigger word. s_idx_set = {self._entity_dict[eid]['sentenceIndex'] for eid in args.values() if 'sentenceIndex' in self._entity_dict[eid]} if s_idx_set: i_min = min(s_idx_set) i_max = max(s_idx_set) text = '. '.join(self._sentences[i_min:(i_max+1)]) + '.' s_start = self._sentence_starts[i_min] annotations = { 'agents': {'coords': [_fix_coords(coords, s_start) for coords in agent_coords]}, 'trigger': {'coords': _fix_coords([trigger_info['charStart'], trigger_info['charEnd']], s_start)} } else: logger.info('Unable to get sentence index') annotations = {} text = None if site_coords: annotations['site'] = {'coords': _fix_coords(site_coords, s_start)} return Evidence(text_refs=self._text_refs.copy(), text=text, source_api='rlimsp', pmid=self._text_refs.get('PMID'), annotations=annotations)
[ "def", "_get_evidence", "(", "self", ",", "trigger_id", ",", "args", ",", "agent_coords", ",", "site_coords", ")", ":", "trigger_info", "=", "self", ".", "_entity_dict", "[", "trigger_id", "]", "# Get the sentence index from the trigger word.", "s_idx_set", "=", "{", "self", ".", "_entity_dict", "[", "eid", "]", "[", "'sentenceIndex'", "]", "for", "eid", "in", "args", ".", "values", "(", ")", "if", "'sentenceIndex'", "in", "self", ".", "_entity_dict", "[", "eid", "]", "}", "if", "s_idx_set", ":", "i_min", "=", "min", "(", "s_idx_set", ")", "i_max", "=", "max", "(", "s_idx_set", ")", "text", "=", "'. '", ".", "join", "(", "self", ".", "_sentences", "[", "i_min", ":", "(", "i_max", "+", "1", ")", "]", ")", "+", "'.'", "s_start", "=", "self", ".", "_sentence_starts", "[", "i_min", "]", "annotations", "=", "{", "'agents'", ":", "{", "'coords'", ":", "[", "_fix_coords", "(", "coords", ",", "s_start", ")", "for", "coords", "in", "agent_coords", "]", "}", ",", "'trigger'", ":", "{", "'coords'", ":", "_fix_coords", "(", "[", "trigger_info", "[", "'charStart'", "]", ",", "trigger_info", "[", "'charEnd'", "]", "]", ",", "s_start", ")", "}", "}", "else", ":", "logger", ".", "info", "(", "'Unable to get sentence index'", ")", "annotations", "=", "{", "}", "text", "=", "None", "if", "site_coords", ":", "annotations", "[", "'site'", "]", "=", "{", "'coords'", ":", "_fix_coords", "(", "site_coords", ",", "s_start", ")", "}", "return", "Evidence", "(", "text_refs", "=", "self", ".", "_text_refs", ".", "copy", "(", ")", ",", "text", "=", "text", ",", "source_api", "=", "'rlimsp'", ",", "pmid", "=", "self", ".", "_text_refs", ".", "get", "(", "'PMID'", ")", ",", "annotations", "=", "annotations", ")" ]
Get the evidence using the info in the trigger entity.
[ "Get", "the", "evidence", "using", "the", "info", "in", "the", "trigger", "entity", "." ]
79a70415832c5702d7a820c7c9ccc8e25010124b
https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/sources/rlimsp/processor.py#L84-L115
train
sorgerlab/indra
indra/tools/reading/readers.py
get_reader_classes
def get_reader_classes(parent=Reader): """Get all childless the descendants of a parent class, recursively.""" children = parent.__subclasses__() descendants = children[:] for child in children: grandchildren = get_reader_classes(child) if grandchildren: descendants.remove(child) descendants.extend(grandchildren) return descendants
python
def get_reader_classes(parent=Reader): """Get all childless the descendants of a parent class, recursively.""" children = parent.__subclasses__() descendants = children[:] for child in children: grandchildren = get_reader_classes(child) if grandchildren: descendants.remove(child) descendants.extend(grandchildren) return descendants
[ "def", "get_reader_classes", "(", "parent", "=", "Reader", ")", ":", "children", "=", "parent", ".", "__subclasses__", "(", ")", "descendants", "=", "children", "[", ":", "]", "for", "child", "in", "children", ":", "grandchildren", "=", "get_reader_classes", "(", "child", ")", "if", "grandchildren", ":", "descendants", ".", "remove", "(", "child", ")", "descendants", ".", "extend", "(", "grandchildren", ")", "return", "descendants" ]
Get all childless the descendants of a parent class, recursively.
[ "Get", "all", "childless", "the", "descendants", "of", "a", "parent", "class", "recursively", "." ]
79a70415832c5702d7a820c7c9ccc8e25010124b
https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/tools/reading/readers.py#L761-L770
train
sorgerlab/indra
indra/tools/reading/readers.py
get_reader_class
def get_reader_class(reader_name): """Get a particular reader class by name.""" for reader_class in get_reader_classes(): if reader_class.name.lower() == reader_name.lower(): return reader_class else: logger.error("No such reader: %s" % reader_name) return None
python
def get_reader_class(reader_name): """Get a particular reader class by name.""" for reader_class in get_reader_classes(): if reader_class.name.lower() == reader_name.lower(): return reader_class else: logger.error("No such reader: %s" % reader_name) return None
[ "def", "get_reader_class", "(", "reader_name", ")", ":", "for", "reader_class", "in", "get_reader_classes", "(", ")", ":", "if", "reader_class", ".", "name", ".", "lower", "(", ")", "==", "reader_name", ".", "lower", "(", ")", ":", "return", "reader_class", "else", ":", "logger", ".", "error", "(", "\"No such reader: %s\"", "%", "reader_name", ")", "return", "None" ]
Get a particular reader class by name.
[ "Get", "a", "particular", "reader", "class", "by", "name", "." ]
79a70415832c5702d7a820c7c9ccc8e25010124b
https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/tools/reading/readers.py#L773-L780
train
sorgerlab/indra
indra/tools/reading/readers.py
Content.from_file
def from_file(cls, file_path, compressed=False, encoded=False): """Create a content object from a file path.""" file_id = '.'.join(path.basename(file_path).split('.')[:-1]) file_format = file_path.split('.')[-1] content = cls(file_id, file_format, compressed, encoded) content.file_exists = True content._location = path.dirname(file_path) return content
python
def from_file(cls, file_path, compressed=False, encoded=False): """Create a content object from a file path.""" file_id = '.'.join(path.basename(file_path).split('.')[:-1]) file_format = file_path.split('.')[-1] content = cls(file_id, file_format, compressed, encoded) content.file_exists = True content._location = path.dirname(file_path) return content
[ "def", "from_file", "(", "cls", ",", "file_path", ",", "compressed", "=", "False", ",", "encoded", "=", "False", ")", ":", "file_id", "=", "'.'", ".", "join", "(", "path", ".", "basename", "(", "file_path", ")", ".", "split", "(", "'.'", ")", "[", ":", "-", "1", "]", ")", "file_format", "=", "file_path", ".", "split", "(", "'.'", ")", "[", "-", "1", "]", "content", "=", "cls", "(", "file_id", ",", "file_format", ",", "compressed", ",", "encoded", ")", "content", ".", "file_exists", "=", "True", "content", ".", "_location", "=", "path", ".", "dirname", "(", "file_path", ")", "return", "content" ]
Create a content object from a file path.
[ "Create", "a", "content", "object", "from", "a", "file", "path", "." ]
79a70415832c5702d7a820c7c9ccc8e25010124b
https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/tools/reading/readers.py#L100-L107
train
sorgerlab/indra
indra/tools/reading/readers.py
Content.change_id
def change_id(self, new_id): """Change the id of this content.""" self._load_raw_content() self._id = new_id self.get_filename(renew=True) self.get_filepath(renew=True) return
python
def change_id(self, new_id): """Change the id of this content.""" self._load_raw_content() self._id = new_id self.get_filename(renew=True) self.get_filepath(renew=True) return
[ "def", "change_id", "(", "self", ",", "new_id", ")", ":", "self", ".", "_load_raw_content", "(", ")", "self", ".", "_id", "=", "new_id", "self", ".", "get_filename", "(", "renew", "=", "True", ")", "self", ".", "get_filepath", "(", "renew", "=", "True", ")", "return" ]
Change the id of this content.
[ "Change", "the", "id", "of", "this", "content", "." ]
79a70415832c5702d7a820c7c9ccc8e25010124b
https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/tools/reading/readers.py#L123-L129
train
sorgerlab/indra
indra/tools/reading/readers.py
Content.change_format
def change_format(self, new_format): """Change the format label of this content. Note that this does NOT actually alter the format of the content, only the label. """ self._load_raw_content() self._format = new_format self.get_filename(renew=True) self.get_filepath(renew=True) return
python
def change_format(self, new_format): """Change the format label of this content. Note that this does NOT actually alter the format of the content, only the label. """ self._load_raw_content() self._format = new_format self.get_filename(renew=True) self.get_filepath(renew=True) return
[ "def", "change_format", "(", "self", ",", "new_format", ")", ":", "self", ".", "_load_raw_content", "(", ")", "self", ".", "_format", "=", "new_format", "self", ".", "get_filename", "(", "renew", "=", "True", ")", "self", ".", "get_filepath", "(", "renew", "=", "True", ")", "return" ]
Change the format label of this content. Note that this does NOT actually alter the format of the content, only the label.
[ "Change", "the", "format", "label", "of", "this", "content", "." ]
79a70415832c5702d7a820c7c9ccc8e25010124b
https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/tools/reading/readers.py#L131-L141
train
sorgerlab/indra
indra/tools/reading/readers.py
Content.get_text
def get_text(self): """Get the loaded, decompressed, and decoded text of this content.""" self._load_raw_content() if self._text is None: assert self._raw_content is not None ret_cont = self._raw_content if self.compressed: ret_cont = zlib.decompress(ret_cont, zlib.MAX_WBITS+16) if self.encoded: ret_cont = ret_cont.decode('utf-8') self._text = ret_cont assert self._text is not None return self._text
python
def get_text(self): """Get the loaded, decompressed, and decoded text of this content.""" self._load_raw_content() if self._text is None: assert self._raw_content is not None ret_cont = self._raw_content if self.compressed: ret_cont = zlib.decompress(ret_cont, zlib.MAX_WBITS+16) if self.encoded: ret_cont = ret_cont.decode('utf-8') self._text = ret_cont assert self._text is not None return self._text
[ "def", "get_text", "(", "self", ")", ":", "self", ".", "_load_raw_content", "(", ")", "if", "self", ".", "_text", "is", "None", ":", "assert", "self", ".", "_raw_content", "is", "not", "None", "ret_cont", "=", "self", ".", "_raw_content", "if", "self", ".", "compressed", ":", "ret_cont", "=", "zlib", ".", "decompress", "(", "ret_cont", ",", "zlib", ".", "MAX_WBITS", "+", "16", ")", "if", "self", ".", "encoded", ":", "ret_cont", "=", "ret_cont", ".", "decode", "(", "'utf-8'", ")", "self", ".", "_text", "=", "ret_cont", "assert", "self", ".", "_text", "is", "not", "None", "return", "self", ".", "_text" ]
Get the loaded, decompressed, and decoded text of this content.
[ "Get", "the", "loaded", "decompressed", "and", "decoded", "text", "of", "this", "content", "." ]
79a70415832c5702d7a820c7c9ccc8e25010124b
https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/tools/reading/readers.py#L164-L176
train
sorgerlab/indra
indra/tools/reading/readers.py
Content.get_filename
def get_filename(self, renew=False): """Get the filename of this content. If the file name doesn't already exist, we created it as {id}.{format}. """ if self._fname is None or renew: self._fname = '%s.%s' % (self._id, self._format) return self._fname
python
def get_filename(self, renew=False): """Get the filename of this content. If the file name doesn't already exist, we created it as {id}.{format}. """ if self._fname is None or renew: self._fname = '%s.%s' % (self._id, self._format) return self._fname
[ "def", "get_filename", "(", "self", ",", "renew", "=", "False", ")", ":", "if", "self", ".", "_fname", "is", "None", "or", "renew", ":", "self", ".", "_fname", "=", "'%s.%s'", "%", "(", "self", ".", "_id", ",", "self", ".", "_format", ")", "return", "self", ".", "_fname" ]
Get the filename of this content. If the file name doesn't already exist, we created it as {id}.{format}.
[ "Get", "the", "filename", "of", "this", "content", "." ]
79a70415832c5702d7a820c7c9ccc8e25010124b
https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/tools/reading/readers.py#L178-L185
train
sorgerlab/indra
indra/tools/reading/readers.py
Content.get_filepath
def get_filepath(self, renew=False): """Get the file path, joining the name and location for this file. If no location is given, it is assumed to be "here", e.g. ".". """ if self._location is None or renew: self._location = '.' return path.join(self._location, self.get_filename())
python
def get_filepath(self, renew=False): """Get the file path, joining the name and location for this file. If no location is given, it is assumed to be "here", e.g. ".". """ if self._location is None or renew: self._location = '.' return path.join(self._location, self.get_filename())
[ "def", "get_filepath", "(", "self", ",", "renew", "=", "False", ")", ":", "if", "self", ".", "_location", "is", "None", "or", "renew", ":", "self", ".", "_location", "=", "'.'", "return", "path", ".", "join", "(", "self", ".", "_location", ",", "self", ".", "get_filename", "(", ")", ")" ]
Get the file path, joining the name and location for this file. If no location is given, it is assumed to be "here", e.g. ".".
[ "Get", "the", "file", "path", "joining", "the", "name", "and", "location", "for", "this", "file", "." ]
79a70415832c5702d7a820c7c9ccc8e25010124b
https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/tools/reading/readers.py#L187-L194
train
sorgerlab/indra
indra/tools/reading/readers.py
ReadingData.get_statements
def get_statements(self, reprocess=False): """General method to create statements.""" if self._statements is None or reprocess: # Handle the case that there is no content. if self.content is None: self._statements = [] return [] # Map to the different processors. if self.reader == ReachReader.name: if self.format == formats.JSON: # Process the reach json into statements. json_str = json.dumps(self.content) processor = reach.process_json_str(json_str) else: raise ReadingError("Incorrect format for Reach output: %s." % self.format) elif self.reader == SparserReader.name: if self.format == formats.JSON: # Process the sparser content into statements processor = sparser.process_json_dict(self.content) if processor is not None: processor.set_statements_pmid(None) else: raise ReadingError("Sparser should only ever be JSON, not " "%s." % self.format) elif self.reader == TripsReader.name: processor = trips.process_xml(self.content) else: raise ReadingError("Unknown reader: %s." % self.reader) # Get the statements from the processor, if it was resolved. if processor is None: logger.error("Production of statements from %s failed for %s." % (self.reader, self.content_id)) stmts = [] else: stmts = processor.statements self._statements = stmts[:] else: stmts = self._statements[:] return stmts
python
def get_statements(self, reprocess=False): """General method to create statements.""" if self._statements is None or reprocess: # Handle the case that there is no content. if self.content is None: self._statements = [] return [] # Map to the different processors. if self.reader == ReachReader.name: if self.format == formats.JSON: # Process the reach json into statements. json_str = json.dumps(self.content) processor = reach.process_json_str(json_str) else: raise ReadingError("Incorrect format for Reach output: %s." % self.format) elif self.reader == SparserReader.name: if self.format == formats.JSON: # Process the sparser content into statements processor = sparser.process_json_dict(self.content) if processor is not None: processor.set_statements_pmid(None) else: raise ReadingError("Sparser should only ever be JSON, not " "%s." % self.format) elif self.reader == TripsReader.name: processor = trips.process_xml(self.content) else: raise ReadingError("Unknown reader: %s." % self.reader) # Get the statements from the processor, if it was resolved. if processor is None: logger.error("Production of statements from %s failed for %s." % (self.reader, self.content_id)) stmts = [] else: stmts = processor.statements self._statements = stmts[:] else: stmts = self._statements[:] return stmts
[ "def", "get_statements", "(", "self", ",", "reprocess", "=", "False", ")", ":", "if", "self", ".", "_statements", "is", "None", "or", "reprocess", ":", "# Handle the case that there is no content.", "if", "self", ".", "content", "is", "None", ":", "self", ".", "_statements", "=", "[", "]", "return", "[", "]", "# Map to the different processors.", "if", "self", ".", "reader", "==", "ReachReader", ".", "name", ":", "if", "self", ".", "format", "==", "formats", ".", "JSON", ":", "# Process the reach json into statements.", "json_str", "=", "json", ".", "dumps", "(", "self", ".", "content", ")", "processor", "=", "reach", ".", "process_json_str", "(", "json_str", ")", "else", ":", "raise", "ReadingError", "(", "\"Incorrect format for Reach output: %s.\"", "%", "self", ".", "format", ")", "elif", "self", ".", "reader", "==", "SparserReader", ".", "name", ":", "if", "self", ".", "format", "==", "formats", ".", "JSON", ":", "# Process the sparser content into statements", "processor", "=", "sparser", ".", "process_json_dict", "(", "self", ".", "content", ")", "if", "processor", "is", "not", "None", ":", "processor", ".", "set_statements_pmid", "(", "None", ")", "else", ":", "raise", "ReadingError", "(", "\"Sparser should only ever be JSON, not \"", "\"%s.\"", "%", "self", ".", "format", ")", "elif", "self", ".", "reader", "==", "TripsReader", ".", "name", ":", "processor", "=", "trips", ".", "process_xml", "(", "self", ".", "content", ")", "else", ":", "raise", "ReadingError", "(", "\"Unknown reader: %s.\"", "%", "self", ".", "reader", ")", "# Get the statements from the processor, if it was resolved.", "if", "processor", "is", "None", ":", "logger", ".", "error", "(", "\"Production of statements from %s failed for %s.\"", "%", "(", "self", ".", "reader", ",", "self", ".", "content_id", ")", ")", "stmts", "=", "[", "]", "else", ":", "stmts", "=", "processor", ".", "statements", "self", ".", "_statements", "=", "stmts", "[", ":", "]", "else", ":", "stmts", "=", "self", ".", "_statements", "[", ":", "]", "return", "stmts" ]
General method to create statements.
[ "General", "method", "to", "create", "statements", "." ]
79a70415832c5702d7a820c7c9ccc8e25010124b
https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/tools/reading/readers.py#L241-L282
train
sorgerlab/indra
indra/tools/reading/readers.py
Reader.add_result
def add_result(self, content_id, content, **kwargs): """"Add a result to the list of results.""" result_object = self.ResultClass(content_id, self.name, self.version, formats.JSON, content, **kwargs) self.results.append(result_object) return
python
def add_result(self, content_id, content, **kwargs): """"Add a result to the list of results.""" result_object = self.ResultClass(content_id, self.name, self.version, formats.JSON, content, **kwargs) self.results.append(result_object) return
[ "def", "add_result", "(", "self", ",", "content_id", ",", "content", ",", "*", "*", "kwargs", ")", ":", "result_object", "=", "self", ".", "ResultClass", "(", "content_id", ",", "self", ".", "name", ",", "self", ".", "version", ",", "formats", ".", "JSON", ",", "content", ",", "*", "*", "kwargs", ")", "self", ".", "results", ".", "append", "(", "result_object", ")", "return" ]
Add a result to the list of results.
[ "Add", "a", "result", "to", "the", "list", "of", "results", "." ]
79a70415832c5702d7a820c7c9ccc8e25010124b
https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/tools/reading/readers.py#L316-L321
train
sorgerlab/indra
indra/tools/reading/readers.py
Reader._check_content
def _check_content(self, content_str): """Check if the content is likely to be successfully read.""" if self.do_content_check: space_ratio = float(content_str.count(' '))/len(content_str) if space_ratio > self.max_space_ratio: return "space-ratio: %f > %f" % (space_ratio, self.max_space_ratio) if len(content_str) > self.input_character_limit: return "too long: %d > %d" % (len(content_str), self.input_character_limit) return None
python
def _check_content(self, content_str): """Check if the content is likely to be successfully read.""" if self.do_content_check: space_ratio = float(content_str.count(' '))/len(content_str) if space_ratio > self.max_space_ratio: return "space-ratio: %f > %f" % (space_ratio, self.max_space_ratio) if len(content_str) > self.input_character_limit: return "too long: %d > %d" % (len(content_str), self.input_character_limit) return None
[ "def", "_check_content", "(", "self", ",", "content_str", ")", ":", "if", "self", ".", "do_content_check", ":", "space_ratio", "=", "float", "(", "content_str", ".", "count", "(", "' '", ")", ")", "/", "len", "(", "content_str", ")", "if", "space_ratio", ">", "self", ".", "max_space_ratio", ":", "return", "\"space-ratio: %f > %f\"", "%", "(", "space_ratio", ",", "self", ".", "max_space_ratio", ")", "if", "len", "(", "content_str", ")", ">", "self", ".", "input_character_limit", ":", "return", "\"too long: %d > %d\"", "%", "(", "len", "(", "content_str", ")", ",", "self", ".", "input_character_limit", ")", "return", "None" ]
Check if the content is likely to be successfully read.
[ "Check", "if", "the", "content", "is", "likely", "to", "be", "successfully", "read", "." ]
79a70415832c5702d7a820c7c9ccc8e25010124b
https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/tools/reading/readers.py#L323-L333
train
sorgerlab/indra
indra/tools/reading/readers.py
ReachReader._check_reach_env
def _check_reach_env(): """Check that the environment supports runnig reach.""" # Get the path to the REACH JAR path_to_reach = get_config('REACHPATH') if path_to_reach is None: path_to_reach = environ.get('REACHPATH', None) if path_to_reach is None or not path.exists(path_to_reach): raise ReachError( 'Reach path unset or invalid. Check REACHPATH environment var ' 'and/or config file.' ) logger.debug('Using REACH jar at: %s' % path_to_reach) # Get the reach version. reach_version = get_config('REACH_VERSION') if reach_version is None: reach_version = environ.get('REACH_VERSION', None) if reach_version is None: logger.debug('REACH version not set in REACH_VERSION') m = re.match('reach-(.*?)\.jar', path.basename(path_to_reach)) reach_version = re.sub('-SNAP.*?$', '', m.groups()[0]) logger.debug('Using REACH version: %s' % reach_version) return path_to_reach, reach_version
python
def _check_reach_env(): """Check that the environment supports runnig reach.""" # Get the path to the REACH JAR path_to_reach = get_config('REACHPATH') if path_to_reach is None: path_to_reach = environ.get('REACHPATH', None) if path_to_reach is None or not path.exists(path_to_reach): raise ReachError( 'Reach path unset or invalid. Check REACHPATH environment var ' 'and/or config file.' ) logger.debug('Using REACH jar at: %s' % path_to_reach) # Get the reach version. reach_version = get_config('REACH_VERSION') if reach_version is None: reach_version = environ.get('REACH_VERSION', None) if reach_version is None: logger.debug('REACH version not set in REACH_VERSION') m = re.match('reach-(.*?)\.jar', path.basename(path_to_reach)) reach_version = re.sub('-SNAP.*?$', '', m.groups()[0]) logger.debug('Using REACH version: %s' % reach_version) return path_to_reach, reach_version
[ "def", "_check_reach_env", "(", ")", ":", "# Get the path to the REACH JAR", "path_to_reach", "=", "get_config", "(", "'REACHPATH'", ")", "if", "path_to_reach", "is", "None", ":", "path_to_reach", "=", "environ", ".", "get", "(", "'REACHPATH'", ",", "None", ")", "if", "path_to_reach", "is", "None", "or", "not", "path", ".", "exists", "(", "path_to_reach", ")", ":", "raise", "ReachError", "(", "'Reach path unset or invalid. Check REACHPATH environment var '", "'and/or config file.'", ")", "logger", ".", "debug", "(", "'Using REACH jar at: %s'", "%", "path_to_reach", ")", "# Get the reach version.", "reach_version", "=", "get_config", "(", "'REACH_VERSION'", ")", "if", "reach_version", "is", "None", ":", "reach_version", "=", "environ", ".", "get", "(", "'REACH_VERSION'", ",", "None", ")", "if", "reach_version", "is", "None", ":", "logger", ".", "debug", "(", "'REACH version not set in REACH_VERSION'", ")", "m", "=", "re", ".", "match", "(", "'reach-(.*?)\\.jar'", ",", "path", ".", "basename", "(", "path_to_reach", ")", ")", "reach_version", "=", "re", ".", "sub", "(", "'-SNAP.*?$'", ",", "''", ",", "m", ".", "groups", "(", ")", "[", "0", "]", ")", "logger", ".", "debug", "(", "'Using REACH version: %s'", "%", "reach_version", ")", "return", "path_to_reach", ",", "reach_version" ]
Check that the environment supports runnig reach.
[ "Check", "that", "the", "environment", "supports", "runnig", "reach", "." ]
79a70415832c5702d7a820c7c9ccc8e25010124b
https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/tools/reading/readers.py#L409-L433
train
sorgerlab/indra
indra/tools/reading/readers.py
ReachReader.prep_input
def prep_input(self, read_list): """Apply the readers to the content.""" logger.info("Prepping input.") i = 0 for content in read_list: # Check the quality of the text, and skip if there are any issues. quality_issue = self._check_content(content.get_text()) if quality_issue is not None: logger.warning("Skipping %d due to: %s" % (content.get_id(), quality_issue)) continue # Look for things that are more like file names, rather than ids. cid = content.get_id() if isinstance(cid, str) and re.match('^\w*?\d+$', cid) is None: new_id = 'FILE%06d' % i i += 1 self.id_maps[new_id] = cid content.change_id(new_id) new_fpath = content.copy_to(self.input_dir) else: # Put the content in the appropriate directory. new_fpath = content.copy_to(self.input_dir) self.num_input += 1 logger.debug('%s saved for reading by reach.' % new_fpath) return
python
def prep_input(self, read_list): """Apply the readers to the content.""" logger.info("Prepping input.") i = 0 for content in read_list: # Check the quality of the text, and skip if there are any issues. quality_issue = self._check_content(content.get_text()) if quality_issue is not None: logger.warning("Skipping %d due to: %s" % (content.get_id(), quality_issue)) continue # Look for things that are more like file names, rather than ids. cid = content.get_id() if isinstance(cid, str) and re.match('^\w*?\d+$', cid) is None: new_id = 'FILE%06d' % i i += 1 self.id_maps[new_id] = cid content.change_id(new_id) new_fpath = content.copy_to(self.input_dir) else: # Put the content in the appropriate directory. new_fpath = content.copy_to(self.input_dir) self.num_input += 1 logger.debug('%s saved for reading by reach.' % new_fpath) return
[ "def", "prep_input", "(", "self", ",", "read_list", ")", ":", "logger", ".", "info", "(", "\"Prepping input.\"", ")", "i", "=", "0", "for", "content", "in", "read_list", ":", "# Check the quality of the text, and skip if there are any issues.", "quality_issue", "=", "self", ".", "_check_content", "(", "content", ".", "get_text", "(", ")", ")", "if", "quality_issue", "is", "not", "None", ":", "logger", ".", "warning", "(", "\"Skipping %d due to: %s\"", "%", "(", "content", ".", "get_id", "(", ")", ",", "quality_issue", ")", ")", "continue", "# Look for things that are more like file names, rather than ids.", "cid", "=", "content", ".", "get_id", "(", ")", "if", "isinstance", "(", "cid", ",", "str", ")", "and", "re", ".", "match", "(", "'^\\w*?\\d+$'", ",", "cid", ")", "is", "None", ":", "new_id", "=", "'FILE%06d'", "%", "i", "i", "+=", "1", "self", ".", "id_maps", "[", "new_id", "]", "=", "cid", "content", ".", "change_id", "(", "new_id", ")", "new_fpath", "=", "content", ".", "copy_to", "(", "self", ".", "input_dir", ")", "else", ":", "# Put the content in the appropriate directory.", "new_fpath", "=", "content", ".", "copy_to", "(", "self", ".", "input_dir", ")", "self", ".", "num_input", "+=", "1", "logger", ".", "debug", "(", "'%s saved for reading by reach.'", "%", "new_fpath", ")", "return" ]
Apply the readers to the content.
[ "Apply", "the", "readers", "to", "the", "content", "." ]
79a70415832c5702d7a820c7c9ccc8e25010124b
https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/tools/reading/readers.py#L440-L466
train
sorgerlab/indra
indra/tools/reading/readers.py
ReachReader.get_output
def get_output(self): """Get the output of a reading job as a list of filenames.""" logger.info("Getting outputs.") # Get the set of prefixes (each will correspond to three json files.) json_files = glob.glob(path.join(self.output_dir, '*.json')) json_prefixes = set() for json_file in json_files: # Remove .uaz.<subfile type>.json prefix = '.'.join(path.basename(json_file).split('.')[:-3]) json_prefixes.add(path.join(self.output_dir, prefix)) # Join each set of json files and store the json dict. for prefix in json_prefixes: base_prefix = path.basename(prefix) if base_prefix.isdecimal(): base_prefix = int(base_prefix) elif base_prefix in self.id_maps.keys(): base_prefix = self.id_maps[base_prefix] try: content = self._join_json_files(prefix, clear=True) except Exception as e: logger.exception(e) logger.error("Could not load result for prefix %s." % prefix) content = None self.add_result(base_prefix, content) logger.debug('Joined files for prefix %s.' % base_prefix) return self.results
python
def get_output(self): """Get the output of a reading job as a list of filenames.""" logger.info("Getting outputs.") # Get the set of prefixes (each will correspond to three json files.) json_files = glob.glob(path.join(self.output_dir, '*.json')) json_prefixes = set() for json_file in json_files: # Remove .uaz.<subfile type>.json prefix = '.'.join(path.basename(json_file).split('.')[:-3]) json_prefixes.add(path.join(self.output_dir, prefix)) # Join each set of json files and store the json dict. for prefix in json_prefixes: base_prefix = path.basename(prefix) if base_prefix.isdecimal(): base_prefix = int(base_prefix) elif base_prefix in self.id_maps.keys(): base_prefix = self.id_maps[base_prefix] try: content = self._join_json_files(prefix, clear=True) except Exception as e: logger.exception(e) logger.error("Could not load result for prefix %s." % prefix) content = None self.add_result(base_prefix, content) logger.debug('Joined files for prefix %s.' % base_prefix) return self.results
[ "def", "get_output", "(", "self", ")", ":", "logger", ".", "info", "(", "\"Getting outputs.\"", ")", "# Get the set of prefixes (each will correspond to three json files.)", "json_files", "=", "glob", ".", "glob", "(", "path", ".", "join", "(", "self", ".", "output_dir", ",", "'*.json'", ")", ")", "json_prefixes", "=", "set", "(", ")", "for", "json_file", "in", "json_files", ":", "# Remove .uaz.<subfile type>.json", "prefix", "=", "'.'", ".", "join", "(", "path", ".", "basename", "(", "json_file", ")", ".", "split", "(", "'.'", ")", "[", ":", "-", "3", "]", ")", "json_prefixes", ".", "add", "(", "path", ".", "join", "(", "self", ".", "output_dir", ",", "prefix", ")", ")", "# Join each set of json files and store the json dict.", "for", "prefix", "in", "json_prefixes", ":", "base_prefix", "=", "path", ".", "basename", "(", "prefix", ")", "if", "base_prefix", ".", "isdecimal", "(", ")", ":", "base_prefix", "=", "int", "(", "base_prefix", ")", "elif", "base_prefix", "in", "self", ".", "id_maps", ".", "keys", "(", ")", ":", "base_prefix", "=", "self", ".", "id_maps", "[", "base_prefix", "]", "try", ":", "content", "=", "self", ".", "_join_json_files", "(", "prefix", ",", "clear", "=", "True", ")", "except", "Exception", "as", "e", ":", "logger", ".", "exception", "(", "e", ")", "logger", ".", "error", "(", "\"Could not load result for prefix %s.\"", "%", "prefix", ")", "content", "=", "None", "self", ".", "add_result", "(", "base_prefix", ",", "content", ")", "logger", ".", "debug", "(", "'Joined files for prefix %s.'", "%", "base_prefix", ")", "return", "self", ".", "results" ]
Get the output of a reading job as a list of filenames.
[ "Get", "the", "output", "of", "a", "reading", "job", "as", "a", "list", "of", "filenames", "." ]
79a70415832c5702d7a820c7c9ccc8e25010124b
https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/tools/reading/readers.py#L468-L494
train
sorgerlab/indra
indra/tools/reading/readers.py
ReachReader.read
def read(self, read_list, verbose=False, log=False): """Read the content, returning a list of ReadingData objects.""" ret = [] mem_tot = _get_mem_total() if mem_tot is not None and mem_tot <= self.REACH_MEM + self.MEM_BUFFER: logger.error( "Too little memory to run reach. At least %s required." % (self.REACH_MEM + self.MEM_BUFFER) ) logger.info("REACH not run.") return ret # Prep the content self.prep_input(read_list) if self.num_input > 0: # Run REACH! logger.info("Beginning reach.") args = [ 'java', '-Dconfig.file=%s' % self.conf_file_path, '-jar', self.exec_path ] p = subprocess.Popen(args, stdout=subprocess.PIPE, stderr=subprocess.PIPE) log_file_str = '' for line in iter(p.stdout.readline, b''): log_line = 'REACH: ' + line.strip().decode('utf8') if verbose: logger.info(log_line) if log: log_file_str += log_line + '\n' if log: with open('reach_run.log', 'ab') as f: f.write(log_file_str.encode('utf8')) p_out, p_err = p.communicate() if p.returncode: logger.error('Problem running REACH:') logger.error('Stdout: %s' % p_out.decode('utf-8')) logger.error('Stderr: %s' % p_err.decode('utf-8')) raise ReachError("Problem running REACH") logger.info("Reach finished.") ret = self.get_output() self.clear_input() return ret
python
def read(self, read_list, verbose=False, log=False): """Read the content, returning a list of ReadingData objects.""" ret = [] mem_tot = _get_mem_total() if mem_tot is not None and mem_tot <= self.REACH_MEM + self.MEM_BUFFER: logger.error( "Too little memory to run reach. At least %s required." % (self.REACH_MEM + self.MEM_BUFFER) ) logger.info("REACH not run.") return ret # Prep the content self.prep_input(read_list) if self.num_input > 0: # Run REACH! logger.info("Beginning reach.") args = [ 'java', '-Dconfig.file=%s' % self.conf_file_path, '-jar', self.exec_path ] p = subprocess.Popen(args, stdout=subprocess.PIPE, stderr=subprocess.PIPE) log_file_str = '' for line in iter(p.stdout.readline, b''): log_line = 'REACH: ' + line.strip().decode('utf8') if verbose: logger.info(log_line) if log: log_file_str += log_line + '\n' if log: with open('reach_run.log', 'ab') as f: f.write(log_file_str.encode('utf8')) p_out, p_err = p.communicate() if p.returncode: logger.error('Problem running REACH:') logger.error('Stdout: %s' % p_out.decode('utf-8')) logger.error('Stderr: %s' % p_err.decode('utf-8')) raise ReachError("Problem running REACH") logger.info("Reach finished.") ret = self.get_output() self.clear_input() return ret
[ "def", "read", "(", "self", ",", "read_list", ",", "verbose", "=", "False", ",", "log", "=", "False", ")", ":", "ret", "=", "[", "]", "mem_tot", "=", "_get_mem_total", "(", ")", "if", "mem_tot", "is", "not", "None", "and", "mem_tot", "<=", "self", ".", "REACH_MEM", "+", "self", ".", "MEM_BUFFER", ":", "logger", ".", "error", "(", "\"Too little memory to run reach. At least %s required.\"", "%", "(", "self", ".", "REACH_MEM", "+", "self", ".", "MEM_BUFFER", ")", ")", "logger", ".", "info", "(", "\"REACH not run.\"", ")", "return", "ret", "# Prep the content", "self", ".", "prep_input", "(", "read_list", ")", "if", "self", ".", "num_input", ">", "0", ":", "# Run REACH!", "logger", ".", "info", "(", "\"Beginning reach.\"", ")", "args", "=", "[", "'java'", ",", "'-Dconfig.file=%s'", "%", "self", ".", "conf_file_path", ",", "'-jar'", ",", "self", ".", "exec_path", "]", "p", "=", "subprocess", ".", "Popen", "(", "args", ",", "stdout", "=", "subprocess", ".", "PIPE", ",", "stderr", "=", "subprocess", ".", "PIPE", ")", "log_file_str", "=", "''", "for", "line", "in", "iter", "(", "p", ".", "stdout", ".", "readline", ",", "b''", ")", ":", "log_line", "=", "'REACH: '", "+", "line", ".", "strip", "(", ")", ".", "decode", "(", "'utf8'", ")", "if", "verbose", ":", "logger", ".", "info", "(", "log_line", ")", "if", "log", ":", "log_file_str", "+=", "log_line", "+", "'\\n'", "if", "log", ":", "with", "open", "(", "'reach_run.log'", ",", "'ab'", ")", "as", "f", ":", "f", ".", "write", "(", "log_file_str", ".", "encode", "(", "'utf8'", ")", ")", "p_out", ",", "p_err", "=", "p", ".", "communicate", "(", ")", "if", "p", ".", "returncode", ":", "logger", ".", "error", "(", "'Problem running REACH:'", ")", "logger", ".", "error", "(", "'Stdout: %s'", "%", "p_out", ".", "decode", "(", "'utf-8'", ")", ")", "logger", ".", "error", "(", "'Stderr: %s'", "%", "p_err", ".", "decode", "(", "'utf-8'", ")", ")", "raise", "ReachError", "(", "\"Problem running REACH\"", ")", "logger", ".", "info", "(", "\"Reach finished.\"", ")", "ret", "=", "self", ".", "get_output", "(", ")", "self", ".", "clear_input", "(", ")", "return", "ret" ]
Read the content, returning a list of ReadingData objects.
[ "Read", "the", "content", "returning", "a", "list", "of", "ReadingData", "objects", "." ]
79a70415832c5702d7a820c7c9ccc8e25010124b
https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/tools/reading/readers.py#L505-L549
train
sorgerlab/indra
indra/tools/reading/readers.py
SparserReader.prep_input
def prep_input(self, read_list): "Prepare the list of files or text content objects to be read." logger.info('Prepping input for sparser.') self.file_list = [] for content in read_list: quality_issue = self._check_content(content.get_text()) if quality_issue is not None: logger.warning("Skipping %d due to: %s" % (content.get_id(), quality_issue)) continue if content.is_format('nxml'): # If it is already an nxml, we just need to adjust the # name a bit, if anything. if not content.get_filename().startswith('PMC'): content.change_id('PMC' + str(content.get_id())) fpath = content.copy_to(self.tmp_dir) self.file_list.append(fpath) elif content.is_format('txt', 'text'): # Otherwise we need to frame the content in xml and put it # in a new file with the appropriate name. nxml_str = sparser.make_nxml_from_text(content.get_text()) new_content = Content.from_string('PMC' + str(content.get_id()), 'nxml', nxml_str) fpath = new_content.copy_to(self.tmp_dir) self.file_list.append(fpath) else: raise SparserError("Unrecognized format %s." % content.format) return
python
def prep_input(self, read_list): "Prepare the list of files or text content objects to be read." logger.info('Prepping input for sparser.') self.file_list = [] for content in read_list: quality_issue = self._check_content(content.get_text()) if quality_issue is not None: logger.warning("Skipping %d due to: %s" % (content.get_id(), quality_issue)) continue if content.is_format('nxml'): # If it is already an nxml, we just need to adjust the # name a bit, if anything. if not content.get_filename().startswith('PMC'): content.change_id('PMC' + str(content.get_id())) fpath = content.copy_to(self.tmp_dir) self.file_list.append(fpath) elif content.is_format('txt', 'text'): # Otherwise we need to frame the content in xml and put it # in a new file with the appropriate name. nxml_str = sparser.make_nxml_from_text(content.get_text()) new_content = Content.from_string('PMC' + str(content.get_id()), 'nxml', nxml_str) fpath = new_content.copy_to(self.tmp_dir) self.file_list.append(fpath) else: raise SparserError("Unrecognized format %s." % content.format) return
[ "def", "prep_input", "(", "self", ",", "read_list", ")", ":", "logger", ".", "info", "(", "'Prepping input for sparser.'", ")", "self", ".", "file_list", "=", "[", "]", "for", "content", "in", "read_list", ":", "quality_issue", "=", "self", ".", "_check_content", "(", "content", ".", "get_text", "(", ")", ")", "if", "quality_issue", "is", "not", "None", ":", "logger", ".", "warning", "(", "\"Skipping %d due to: %s\"", "%", "(", "content", ".", "get_id", "(", ")", ",", "quality_issue", ")", ")", "continue", "if", "content", ".", "is_format", "(", "'nxml'", ")", ":", "# If it is already an nxml, we just need to adjust the", "# name a bit, if anything.", "if", "not", "content", ".", "get_filename", "(", ")", ".", "startswith", "(", "'PMC'", ")", ":", "content", ".", "change_id", "(", "'PMC'", "+", "str", "(", "content", ".", "get_id", "(", ")", ")", ")", "fpath", "=", "content", ".", "copy_to", "(", "self", ".", "tmp_dir", ")", "self", ".", "file_list", ".", "append", "(", "fpath", ")", "elif", "content", ".", "is_format", "(", "'txt'", ",", "'text'", ")", ":", "# Otherwise we need to frame the content in xml and put it", "# in a new file with the appropriate name.", "nxml_str", "=", "sparser", ".", "make_nxml_from_text", "(", "content", ".", "get_text", "(", ")", ")", "new_content", "=", "Content", ".", "from_string", "(", "'PMC'", "+", "str", "(", "content", ".", "get_id", "(", ")", ")", ",", "'nxml'", ",", "nxml_str", ")", "fpath", "=", "new_content", ".", "copy_to", "(", "self", ".", "tmp_dir", ")", "self", ".", "file_list", ".", "append", "(", "fpath", ")", "else", ":", "raise", "SparserError", "(", "\"Unrecognized format %s.\"", "%", "content", ".", "format", ")", "return" ]
Prepare the list of files or text content objects to be read.
[ "Prepare", "the", "list", "of", "files", "or", "text", "content", "objects", "to", "be", "read", "." ]
79a70415832c5702d7a820c7c9ccc8e25010124b
https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/tools/reading/readers.py#L567-L598
train
sorgerlab/indra
indra/tools/reading/readers.py
SparserReader.get_output
def get_output(self, output_files, clear=True): "Get the output files as an id indexed dict." patt = re.compile(r'(.*?)-semantics.*?') for outpath in output_files: if outpath is None: logger.warning("Found outpath with value None. Skipping.") continue re_out = patt.match(path.basename(outpath)) if re_out is None: raise SparserError("Could not get prefix from output path %s." % outpath) prefix = re_out.groups()[0] if prefix.startswith('PMC'): prefix = prefix[3:] if prefix.isdecimal(): # In this case we assume the prefix is a tcid. prefix = int(prefix) try: with open(outpath, 'rt') as f: content = json.load(f) except Exception as e: logger.exception(e) logger.error("Could not load reading content from %s." % outpath) content = None self.add_result(prefix, content) if clear: input_path = outpath.replace('-semantics.json', '.nxml') try: remove(outpath) remove(input_path) except Exception as e: logger.exception(e) logger.error("Could not remove sparser files %s and %s." % (outpath, input_path)) return self.results
python
def get_output(self, output_files, clear=True): "Get the output files as an id indexed dict." patt = re.compile(r'(.*?)-semantics.*?') for outpath in output_files: if outpath is None: logger.warning("Found outpath with value None. Skipping.") continue re_out = patt.match(path.basename(outpath)) if re_out is None: raise SparserError("Could not get prefix from output path %s." % outpath) prefix = re_out.groups()[0] if prefix.startswith('PMC'): prefix = prefix[3:] if prefix.isdecimal(): # In this case we assume the prefix is a tcid. prefix = int(prefix) try: with open(outpath, 'rt') as f: content = json.load(f) except Exception as e: logger.exception(e) logger.error("Could not load reading content from %s." % outpath) content = None self.add_result(prefix, content) if clear: input_path = outpath.replace('-semantics.json', '.nxml') try: remove(outpath) remove(input_path) except Exception as e: logger.exception(e) logger.error("Could not remove sparser files %s and %s." % (outpath, input_path)) return self.results
[ "def", "get_output", "(", "self", ",", "output_files", ",", "clear", "=", "True", ")", ":", "patt", "=", "re", ".", "compile", "(", "r'(.*?)-semantics.*?'", ")", "for", "outpath", "in", "output_files", ":", "if", "outpath", "is", "None", ":", "logger", ".", "warning", "(", "\"Found outpath with value None. Skipping.\"", ")", "continue", "re_out", "=", "patt", ".", "match", "(", "path", ".", "basename", "(", "outpath", ")", ")", "if", "re_out", "is", "None", ":", "raise", "SparserError", "(", "\"Could not get prefix from output path %s.\"", "%", "outpath", ")", "prefix", "=", "re_out", ".", "groups", "(", ")", "[", "0", "]", "if", "prefix", ".", "startswith", "(", "'PMC'", ")", ":", "prefix", "=", "prefix", "[", "3", ":", "]", "if", "prefix", ".", "isdecimal", "(", ")", ":", "# In this case we assume the prefix is a tcid.", "prefix", "=", "int", "(", "prefix", ")", "try", ":", "with", "open", "(", "outpath", ",", "'rt'", ")", "as", "f", ":", "content", "=", "json", ".", "load", "(", "f", ")", "except", "Exception", "as", "e", ":", "logger", ".", "exception", "(", "e", ")", "logger", ".", "error", "(", "\"Could not load reading content from %s.\"", "%", "outpath", ")", "content", "=", "None", "self", ".", "add_result", "(", "prefix", ",", "content", ")", "if", "clear", ":", "input_path", "=", "outpath", ".", "replace", "(", "'-semantics.json'", ",", "'.nxml'", ")", "try", ":", "remove", "(", "outpath", ")", "remove", "(", "input_path", ")", "except", "Exception", "as", "e", ":", "logger", ".", "exception", "(", "e", ")", "logger", ".", "error", "(", "\"Could not remove sparser files %s and %s.\"", "%", "(", "outpath", ",", "input_path", ")", ")", "return", "self", ".", "results" ]
Get the output files as an id indexed dict.
[ "Get", "the", "output", "files", "as", "an", "id", "indexed", "dict", "." ]
79a70415832c5702d7a820c7c9ccc8e25010124b
https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/tools/reading/readers.py#L600-L639
train
sorgerlab/indra
indra/tools/reading/readers.py
SparserReader.read_some
def read_some(self, fpath_list, outbuf=None, verbose=False): "Perform a few readings." outpath_list = [] for fpath in fpath_list: output, outbuf = self.read_one(fpath, outbuf, verbose) if output is not None: outpath_list.append(output) return outpath_list, outbuf
python
def read_some(self, fpath_list, outbuf=None, verbose=False): "Perform a few readings." outpath_list = [] for fpath in fpath_list: output, outbuf = self.read_one(fpath, outbuf, verbose) if output is not None: outpath_list.append(output) return outpath_list, outbuf
[ "def", "read_some", "(", "self", ",", "fpath_list", ",", "outbuf", "=", "None", ",", "verbose", "=", "False", ")", ":", "outpath_list", "=", "[", "]", "for", "fpath", "in", "fpath_list", ":", "output", ",", "outbuf", "=", "self", ".", "read_one", "(", "fpath", ",", "outbuf", ",", "verbose", ")", "if", "output", "is", "not", "None", ":", "outpath_list", ".", "append", "(", "output", ")", "return", "outpath_list", ",", "outbuf" ]
Perform a few readings.
[ "Perform", "a", "few", "readings", "." ]
79a70415832c5702d7a820c7c9ccc8e25010124b
https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/tools/reading/readers.py#L662-L669
train
sorgerlab/indra
indra/tools/reading/readers.py
SparserReader.read
def read(self, read_list, verbose=False, log=False, n_per_proc=None): "Perform the actual reading." ret = [] self.prep_input(read_list) L = len(self.file_list) if L == 0: return ret logger.info("Beginning to run sparser.") output_file_list = [] if log: log_name = 'sparser_run_%s.log' % _time_stamp() outbuf = open(log_name, 'wb') else: outbuf = None try: if self.n_proc == 1: for fpath in self.file_list: outpath, _ = self.read_one(fpath, outbuf, verbose) if outpath is not None: output_file_list.append(outpath) else: if n_per_proc is None: n_per_proc = max(1, min(1000, L//self.n_proc//2)) pool = None try: pool = Pool(self.n_proc) if n_per_proc is not 1: batches = [self.file_list[n*n_per_proc:(n+1)*n_per_proc] for n in range(L//n_per_proc + 1)] out_lists_and_buffs = pool.map(self.read_some, batches) else: out_files_and_buffs = pool.map(self.read_one, self.file_list) out_lists_and_buffs = [([out_files], buffs) for out_files, buffs in out_files_and_buffs] finally: if pool is not None: pool.close() pool.join() for i, (out_list, buff) in enumerate(out_lists_and_buffs): if out_list is not None: output_file_list += out_list if log: outbuf.write(b'Log for producing output %d/%d.\n' % (i, len(out_lists_and_buffs))) if buff is not None: buff.seek(0) outbuf.write(buff.read() + b'\n') else: outbuf.write(b'ERROR: no buffer was None. ' b'No logs available.\n') outbuf.flush() finally: if log: outbuf.close() if verbose: logger.info("Sparser logs may be found at %s." % log_name) ret = self.get_output(output_file_list) return ret
python
def read(self, read_list, verbose=False, log=False, n_per_proc=None): "Perform the actual reading." ret = [] self.prep_input(read_list) L = len(self.file_list) if L == 0: return ret logger.info("Beginning to run sparser.") output_file_list = [] if log: log_name = 'sparser_run_%s.log' % _time_stamp() outbuf = open(log_name, 'wb') else: outbuf = None try: if self.n_proc == 1: for fpath in self.file_list: outpath, _ = self.read_one(fpath, outbuf, verbose) if outpath is not None: output_file_list.append(outpath) else: if n_per_proc is None: n_per_proc = max(1, min(1000, L//self.n_proc//2)) pool = None try: pool = Pool(self.n_proc) if n_per_proc is not 1: batches = [self.file_list[n*n_per_proc:(n+1)*n_per_proc] for n in range(L//n_per_proc + 1)] out_lists_and_buffs = pool.map(self.read_some, batches) else: out_files_and_buffs = pool.map(self.read_one, self.file_list) out_lists_and_buffs = [([out_files], buffs) for out_files, buffs in out_files_and_buffs] finally: if pool is not None: pool.close() pool.join() for i, (out_list, buff) in enumerate(out_lists_and_buffs): if out_list is not None: output_file_list += out_list if log: outbuf.write(b'Log for producing output %d/%d.\n' % (i, len(out_lists_and_buffs))) if buff is not None: buff.seek(0) outbuf.write(buff.read() + b'\n') else: outbuf.write(b'ERROR: no buffer was None. ' b'No logs available.\n') outbuf.flush() finally: if log: outbuf.close() if verbose: logger.info("Sparser logs may be found at %s." % log_name) ret = self.get_output(output_file_list) return ret
[ "def", "read", "(", "self", ",", "read_list", ",", "verbose", "=", "False", ",", "log", "=", "False", ",", "n_per_proc", "=", "None", ")", ":", "ret", "=", "[", "]", "self", ".", "prep_input", "(", "read_list", ")", "L", "=", "len", "(", "self", ".", "file_list", ")", "if", "L", "==", "0", ":", "return", "ret", "logger", ".", "info", "(", "\"Beginning to run sparser.\"", ")", "output_file_list", "=", "[", "]", "if", "log", ":", "log_name", "=", "'sparser_run_%s.log'", "%", "_time_stamp", "(", ")", "outbuf", "=", "open", "(", "log_name", ",", "'wb'", ")", "else", ":", "outbuf", "=", "None", "try", ":", "if", "self", ".", "n_proc", "==", "1", ":", "for", "fpath", "in", "self", ".", "file_list", ":", "outpath", ",", "_", "=", "self", ".", "read_one", "(", "fpath", ",", "outbuf", ",", "verbose", ")", "if", "outpath", "is", "not", "None", ":", "output_file_list", ".", "append", "(", "outpath", ")", "else", ":", "if", "n_per_proc", "is", "None", ":", "n_per_proc", "=", "max", "(", "1", ",", "min", "(", "1000", ",", "L", "//", "self", ".", "n_proc", "//", "2", ")", ")", "pool", "=", "None", "try", ":", "pool", "=", "Pool", "(", "self", ".", "n_proc", ")", "if", "n_per_proc", "is", "not", "1", ":", "batches", "=", "[", "self", ".", "file_list", "[", "n", "*", "n_per_proc", ":", "(", "n", "+", "1", ")", "*", "n_per_proc", "]", "for", "n", "in", "range", "(", "L", "//", "n_per_proc", "+", "1", ")", "]", "out_lists_and_buffs", "=", "pool", ".", "map", "(", "self", ".", "read_some", ",", "batches", ")", "else", ":", "out_files_and_buffs", "=", "pool", ".", "map", "(", "self", ".", "read_one", ",", "self", ".", "file_list", ")", "out_lists_and_buffs", "=", "[", "(", "[", "out_files", "]", ",", "buffs", ")", "for", "out_files", ",", "buffs", "in", "out_files_and_buffs", "]", "finally", ":", "if", "pool", "is", "not", "None", ":", "pool", ".", "close", "(", ")", "pool", ".", "join", "(", ")", "for", "i", ",", "(", "out_list", ",", "buff", ")", "in", "enumerate", "(", "out_lists_and_buffs", ")", ":", "if", "out_list", "is", "not", "None", ":", "output_file_list", "+=", "out_list", "if", "log", ":", "outbuf", ".", "write", "(", "b'Log for producing output %d/%d.\\n'", "%", "(", "i", ",", "len", "(", "out_lists_and_buffs", ")", ")", ")", "if", "buff", "is", "not", "None", ":", "buff", ".", "seek", "(", "0", ")", "outbuf", ".", "write", "(", "buff", ".", "read", "(", ")", "+", "b'\\n'", ")", "else", ":", "outbuf", ".", "write", "(", "b'ERROR: no buffer was None. '", "b'No logs available.\\n'", ")", "outbuf", ".", "flush", "(", ")", "finally", ":", "if", "log", ":", "outbuf", ".", "close", "(", ")", "if", "verbose", ":", "logger", ".", "info", "(", "\"Sparser logs may be found at %s.\"", "%", "log_name", ")", "ret", "=", "self", ".", "get_output", "(", "output_file_list", ")", "return", "ret" ]
Perform the actual reading.
[ "Perform", "the", "actual", "reading", "." ]
79a70415832c5702d7a820c7c9ccc8e25010124b
https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/tools/reading/readers.py#L671-L733
train
sorgerlab/indra
indra/sources/isi/api.py
process_text
def process_text(text, pmid=None, cleanup=True, add_grounding=True): """Process a string using the ISI reader and extract INDRA statements. Parameters ---------- text : str A text string to process pmid : Optional[str] The PMID associated with this text (or None if not specified) cleanup : Optional[bool] If True, the temporary folders created for preprocessed reading input and output are removed. Default: True add_grounding : Optional[bool] If True the extracted Statements' grounding is mapped Returns ------- ip : indra.sources.isi.processor.IsiProcessor A processor containing statements """ # Create a temporary directory to store the proprocessed input pp_dir = tempfile.mkdtemp('indra_isi_pp_output') pp = IsiPreprocessor(pp_dir) extra_annotations = {} pp.preprocess_plain_text_string(text, pmid, extra_annotations) # Run the ISI reader and extract statements ip = process_preprocessed(pp) if add_grounding: ip.add_grounding() if cleanup: # Remove temporary directory with processed input shutil.rmtree(pp_dir) else: logger.info('Not cleaning up %s' % pp_dir) return ip
python
def process_text(text, pmid=None, cleanup=True, add_grounding=True): """Process a string using the ISI reader and extract INDRA statements. Parameters ---------- text : str A text string to process pmid : Optional[str] The PMID associated with this text (or None if not specified) cleanup : Optional[bool] If True, the temporary folders created for preprocessed reading input and output are removed. Default: True add_grounding : Optional[bool] If True the extracted Statements' grounding is mapped Returns ------- ip : indra.sources.isi.processor.IsiProcessor A processor containing statements """ # Create a temporary directory to store the proprocessed input pp_dir = tempfile.mkdtemp('indra_isi_pp_output') pp = IsiPreprocessor(pp_dir) extra_annotations = {} pp.preprocess_plain_text_string(text, pmid, extra_annotations) # Run the ISI reader and extract statements ip = process_preprocessed(pp) if add_grounding: ip.add_grounding() if cleanup: # Remove temporary directory with processed input shutil.rmtree(pp_dir) else: logger.info('Not cleaning up %s' % pp_dir) return ip
[ "def", "process_text", "(", "text", ",", "pmid", "=", "None", ",", "cleanup", "=", "True", ",", "add_grounding", "=", "True", ")", ":", "# Create a temporary directory to store the proprocessed input", "pp_dir", "=", "tempfile", ".", "mkdtemp", "(", "'indra_isi_pp_output'", ")", "pp", "=", "IsiPreprocessor", "(", "pp_dir", ")", "extra_annotations", "=", "{", "}", "pp", ".", "preprocess_plain_text_string", "(", "text", ",", "pmid", ",", "extra_annotations", ")", "# Run the ISI reader and extract statements", "ip", "=", "process_preprocessed", "(", "pp", ")", "if", "add_grounding", ":", "ip", ".", "add_grounding", "(", ")", "if", "cleanup", ":", "# Remove temporary directory with processed input", "shutil", ".", "rmtree", "(", "pp_dir", ")", "else", ":", "logger", ".", "info", "(", "'Not cleaning up %s'", "%", "pp_dir", ")", "return", "ip" ]
Process a string using the ISI reader and extract INDRA statements. Parameters ---------- text : str A text string to process pmid : Optional[str] The PMID associated with this text (or None if not specified) cleanup : Optional[bool] If True, the temporary folders created for preprocessed reading input and output are removed. Default: True add_grounding : Optional[bool] If True the extracted Statements' grounding is mapped Returns ------- ip : indra.sources.isi.processor.IsiProcessor A processor containing statements
[ "Process", "a", "string", "using", "the", "ISI", "reader", "and", "extract", "INDRA", "statements", "." ]
79a70415832c5702d7a820c7c9ccc8e25010124b
https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/sources/isi/api.py#L17-L55
train
sorgerlab/indra
indra/sources/isi/api.py
process_nxml
def process_nxml(nxml_filename, pmid=None, extra_annotations=None, cleanup=True, add_grounding=True): """Process an NXML file using the ISI reader First converts NXML to plain text and preprocesses it, then runs the ISI reader, and processes the output to extract INDRA Statements. Parameters ---------- nxml_filename : str nxml file to process pmid : Optional[str] pmid of this nxml file, to be added to the Evidence object of the extracted INDRA statements extra_annotations : Optional[dict] Additional annotations to add to the Evidence object of all extracted INDRA statements. Extra annotations called 'interaction' are ignored since this is used by the processor to store the corresponding raw ISI output. cleanup : Optional[bool] If True, the temporary folders created for preprocessed reading input and output are removed. Default: True add_grounding : Optional[bool] If True the extracted Statements' grounding is mapped Returns ------- ip : indra.sources.isi.processor.IsiProcessor A processor containing extracted Statements """ if extra_annotations is None: extra_annotations = {} # Create a temporary directory to store the proprocessed input pp_dir = tempfile.mkdtemp('indra_isi_pp_output') pp = IsiPreprocessor(pp_dir) extra_annotations = {} pp.preprocess_nxml_file(nxml_filename, pmid, extra_annotations) # Run the ISI reader and extract statements ip = process_preprocessed(pp) if add_grounding: ip.add_grounding() if cleanup: # Remove temporary directory with processed input shutil.rmtree(pp_dir) else: logger.info('Not cleaning up %s' % pp_dir) return ip
python
def process_nxml(nxml_filename, pmid=None, extra_annotations=None, cleanup=True, add_grounding=True): """Process an NXML file using the ISI reader First converts NXML to plain text and preprocesses it, then runs the ISI reader, and processes the output to extract INDRA Statements. Parameters ---------- nxml_filename : str nxml file to process pmid : Optional[str] pmid of this nxml file, to be added to the Evidence object of the extracted INDRA statements extra_annotations : Optional[dict] Additional annotations to add to the Evidence object of all extracted INDRA statements. Extra annotations called 'interaction' are ignored since this is used by the processor to store the corresponding raw ISI output. cleanup : Optional[bool] If True, the temporary folders created for preprocessed reading input and output are removed. Default: True add_grounding : Optional[bool] If True the extracted Statements' grounding is mapped Returns ------- ip : indra.sources.isi.processor.IsiProcessor A processor containing extracted Statements """ if extra_annotations is None: extra_annotations = {} # Create a temporary directory to store the proprocessed input pp_dir = tempfile.mkdtemp('indra_isi_pp_output') pp = IsiPreprocessor(pp_dir) extra_annotations = {} pp.preprocess_nxml_file(nxml_filename, pmid, extra_annotations) # Run the ISI reader and extract statements ip = process_preprocessed(pp) if add_grounding: ip.add_grounding() if cleanup: # Remove temporary directory with processed input shutil.rmtree(pp_dir) else: logger.info('Not cleaning up %s' % pp_dir) return ip
[ "def", "process_nxml", "(", "nxml_filename", ",", "pmid", "=", "None", ",", "extra_annotations", "=", "None", ",", "cleanup", "=", "True", ",", "add_grounding", "=", "True", ")", ":", "if", "extra_annotations", "is", "None", ":", "extra_annotations", "=", "{", "}", "# Create a temporary directory to store the proprocessed input", "pp_dir", "=", "tempfile", ".", "mkdtemp", "(", "'indra_isi_pp_output'", ")", "pp", "=", "IsiPreprocessor", "(", "pp_dir", ")", "extra_annotations", "=", "{", "}", "pp", ".", "preprocess_nxml_file", "(", "nxml_filename", ",", "pmid", ",", "extra_annotations", ")", "# Run the ISI reader and extract statements", "ip", "=", "process_preprocessed", "(", "pp", ")", "if", "add_grounding", ":", "ip", ".", "add_grounding", "(", ")", "if", "cleanup", ":", "# Remove temporary directory with processed input", "shutil", ".", "rmtree", "(", "pp_dir", ")", "else", ":", "logger", ".", "info", "(", "'Not cleaning up %s'", "%", "pp_dir", ")", "return", "ip" ]
Process an NXML file using the ISI reader First converts NXML to plain text and preprocesses it, then runs the ISI reader, and processes the output to extract INDRA Statements. Parameters ---------- nxml_filename : str nxml file to process pmid : Optional[str] pmid of this nxml file, to be added to the Evidence object of the extracted INDRA statements extra_annotations : Optional[dict] Additional annotations to add to the Evidence object of all extracted INDRA statements. Extra annotations called 'interaction' are ignored since this is used by the processor to store the corresponding raw ISI output. cleanup : Optional[bool] If True, the temporary folders created for preprocessed reading input and output are removed. Default: True add_grounding : Optional[bool] If True the extracted Statements' grounding is mapped Returns ------- ip : indra.sources.isi.processor.IsiProcessor A processor containing extracted Statements
[ "Process", "an", "NXML", "file", "using", "the", "ISI", "reader" ]
79a70415832c5702d7a820c7c9ccc8e25010124b
https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/sources/isi/api.py#L58-L109
train
sorgerlab/indra
indra/sources/isi/api.py
process_output_folder
def process_output_folder(folder_path, pmids=None, extra_annotations=None, add_grounding=True): """Recursively extracts statements from all ISI output files in the given directory and subdirectories. Parameters ---------- folder_path : str The directory to traverse pmids : Optional[str] PMID mapping to be added to the Evidence of the extracted INDRA Statements extra_annotations : Optional[dict] Additional annotations to add to the Evidence object of all extracted INDRA statements. Extra annotations called 'interaction' are ignored since this is used by the processor to store the corresponding raw ISI output. add_grounding : Optional[bool] If True the extracted Statements' grounding is mapped """ pmids = pmids if pmids is not None else {} extra_annotations = extra_annotations if \ extra_annotations is not None else {} ips = [] for entry in glob.glob(os.path.join(folder_path, '*.json')): entry_key = os.path.splitext(os.path.basename(entry))[0] # Extract the corresponding file id pmid = pmids.get(entry_key) extra_annotation = extra_annotations.get(entry_key) ip = process_json_file(entry, pmid, extra_annotation, False) ips.append(ip) if len(ips) > 1: for ip in ips[1:]: ips[0].statements += ip.statements if ips: if add_grounding: ips[0].add_grounding() return ips[0] else: return None
python
def process_output_folder(folder_path, pmids=None, extra_annotations=None, add_grounding=True): """Recursively extracts statements from all ISI output files in the given directory and subdirectories. Parameters ---------- folder_path : str The directory to traverse pmids : Optional[str] PMID mapping to be added to the Evidence of the extracted INDRA Statements extra_annotations : Optional[dict] Additional annotations to add to the Evidence object of all extracted INDRA statements. Extra annotations called 'interaction' are ignored since this is used by the processor to store the corresponding raw ISI output. add_grounding : Optional[bool] If True the extracted Statements' grounding is mapped """ pmids = pmids if pmids is not None else {} extra_annotations = extra_annotations if \ extra_annotations is not None else {} ips = [] for entry in glob.glob(os.path.join(folder_path, '*.json')): entry_key = os.path.splitext(os.path.basename(entry))[0] # Extract the corresponding file id pmid = pmids.get(entry_key) extra_annotation = extra_annotations.get(entry_key) ip = process_json_file(entry, pmid, extra_annotation, False) ips.append(ip) if len(ips) > 1: for ip in ips[1:]: ips[0].statements += ip.statements if ips: if add_grounding: ips[0].add_grounding() return ips[0] else: return None
[ "def", "process_output_folder", "(", "folder_path", ",", "pmids", "=", "None", ",", "extra_annotations", "=", "None", ",", "add_grounding", "=", "True", ")", ":", "pmids", "=", "pmids", "if", "pmids", "is", "not", "None", "else", "{", "}", "extra_annotations", "=", "extra_annotations", "if", "extra_annotations", "is", "not", "None", "else", "{", "}", "ips", "=", "[", "]", "for", "entry", "in", "glob", ".", "glob", "(", "os", ".", "path", ".", "join", "(", "folder_path", ",", "'*.json'", ")", ")", ":", "entry_key", "=", "os", ".", "path", ".", "splitext", "(", "os", ".", "path", ".", "basename", "(", "entry", ")", ")", "[", "0", "]", "# Extract the corresponding file id", "pmid", "=", "pmids", ".", "get", "(", "entry_key", ")", "extra_annotation", "=", "extra_annotations", ".", "get", "(", "entry_key", ")", "ip", "=", "process_json_file", "(", "entry", ",", "pmid", ",", "extra_annotation", ",", "False", ")", "ips", ".", "append", "(", "ip", ")", "if", "len", "(", "ips", ")", ">", "1", ":", "for", "ip", "in", "ips", "[", "1", ":", "]", ":", "ips", "[", "0", "]", ".", "statements", "+=", "ip", ".", "statements", "if", "ips", ":", "if", "add_grounding", ":", "ips", "[", "0", "]", ".", "add_grounding", "(", ")", "return", "ips", "[", "0", "]", "else", ":", "return", "None" ]
Recursively extracts statements from all ISI output files in the given directory and subdirectories. Parameters ---------- folder_path : str The directory to traverse pmids : Optional[str] PMID mapping to be added to the Evidence of the extracted INDRA Statements extra_annotations : Optional[dict] Additional annotations to add to the Evidence object of all extracted INDRA statements. Extra annotations called 'interaction' are ignored since this is used by the processor to store the corresponding raw ISI output. add_grounding : Optional[bool] If True the extracted Statements' grounding is mapped
[ "Recursively", "extracts", "statements", "from", "all", "ISI", "output", "files", "in", "the", "given", "directory", "and", "subdirectories", "." ]
79a70415832c5702d7a820c7c9ccc8e25010124b
https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/sources/isi/api.py#L196-L237
train
sorgerlab/indra
indra/sources/isi/api.py
process_json_file
def process_json_file(file_path, pmid=None, extra_annotations=None, add_grounding=True): """Extracts statements from the given ISI output file. Parameters ---------- file_path : str The ISI output file from which to extract statements pmid : int The PMID of the document being preprocessed, or None if not specified extra_annotations : dict Extra annotations to be added to each statement from this document (can be the empty dictionary) add_grounding : Optional[bool] If True the extracted Statements' grounding is mapped """ logger.info('Extracting from %s' % file_path) with open(file_path, 'rb') as fh: jd = json.load(fh) ip = IsiProcessor(jd, pmid, extra_annotations) ip.get_statements() if add_grounding: ip.add_grounding() return ip
python
def process_json_file(file_path, pmid=None, extra_annotations=None, add_grounding=True): """Extracts statements from the given ISI output file. Parameters ---------- file_path : str The ISI output file from which to extract statements pmid : int The PMID of the document being preprocessed, or None if not specified extra_annotations : dict Extra annotations to be added to each statement from this document (can be the empty dictionary) add_grounding : Optional[bool] If True the extracted Statements' grounding is mapped """ logger.info('Extracting from %s' % file_path) with open(file_path, 'rb') as fh: jd = json.load(fh) ip = IsiProcessor(jd, pmid, extra_annotations) ip.get_statements() if add_grounding: ip.add_grounding() return ip
[ "def", "process_json_file", "(", "file_path", ",", "pmid", "=", "None", ",", "extra_annotations", "=", "None", ",", "add_grounding", "=", "True", ")", ":", "logger", ".", "info", "(", "'Extracting from %s'", "%", "file_path", ")", "with", "open", "(", "file_path", ",", "'rb'", ")", "as", "fh", ":", "jd", "=", "json", ".", "load", "(", "fh", ")", "ip", "=", "IsiProcessor", "(", "jd", ",", "pmid", ",", "extra_annotations", ")", "ip", ".", "get_statements", "(", ")", "if", "add_grounding", ":", "ip", ".", "add_grounding", "(", ")", "return", "ip" ]
Extracts statements from the given ISI output file. Parameters ---------- file_path : str The ISI output file from which to extract statements pmid : int The PMID of the document being preprocessed, or None if not specified extra_annotations : dict Extra annotations to be added to each statement from this document (can be the empty dictionary) add_grounding : Optional[bool] If True the extracted Statements' grounding is mapped
[ "Extracts", "statements", "from", "the", "given", "ISI", "output", "file", "." ]
79a70415832c5702d7a820c7c9ccc8e25010124b
https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/sources/isi/api.py#L240-L264
train
sorgerlab/indra
indra/sources/cwms/api.py
process_text
def process_text(text, save_xml='cwms_output.xml'): """Processes text using the CWMS web service. Parameters ---------- text : str Text to process Returns ------- cp : indra.sources.cwms.CWMSProcessor A CWMSProcessor, which contains a list of INDRA statements in its statements attribute. """ xml = client.send_query(text, 'cwmsreader') # There are actually two EKBs in the xml document. Extract the second. first_end = xml.find('</ekb>') # End of first EKB second_start = xml.find('<ekb', first_end) # Start of second EKB second_end = xml.find('</ekb>', second_start) # End of second EKB second_ekb = xml[second_start:second_end+len('</ekb>')] # second EKB if save_xml: with open(save_xml, 'wb') as fh: fh.write(second_ekb.encode('utf-8')) return process_ekb(second_ekb)
python
def process_text(text, save_xml='cwms_output.xml'): """Processes text using the CWMS web service. Parameters ---------- text : str Text to process Returns ------- cp : indra.sources.cwms.CWMSProcessor A CWMSProcessor, which contains a list of INDRA statements in its statements attribute. """ xml = client.send_query(text, 'cwmsreader') # There are actually two EKBs in the xml document. Extract the second. first_end = xml.find('</ekb>') # End of first EKB second_start = xml.find('<ekb', first_end) # Start of second EKB second_end = xml.find('</ekb>', second_start) # End of second EKB second_ekb = xml[second_start:second_end+len('</ekb>')] # second EKB if save_xml: with open(save_xml, 'wb') as fh: fh.write(second_ekb.encode('utf-8')) return process_ekb(second_ekb)
[ "def", "process_text", "(", "text", ",", "save_xml", "=", "'cwms_output.xml'", ")", ":", "xml", "=", "client", ".", "send_query", "(", "text", ",", "'cwmsreader'", ")", "# There are actually two EKBs in the xml document. Extract the second.", "first_end", "=", "xml", ".", "find", "(", "'</ekb>'", ")", "# End of first EKB", "second_start", "=", "xml", ".", "find", "(", "'<ekb'", ",", "first_end", ")", "# Start of second EKB", "second_end", "=", "xml", ".", "find", "(", "'</ekb>'", ",", "second_start", ")", "# End of second EKB", "second_ekb", "=", "xml", "[", "second_start", ":", "second_end", "+", "len", "(", "'</ekb>'", ")", "]", "# second EKB", "if", "save_xml", ":", "with", "open", "(", "save_xml", ",", "'wb'", ")", "as", "fh", ":", "fh", ".", "write", "(", "second_ekb", ".", "encode", "(", "'utf-8'", ")", ")", "return", "process_ekb", "(", "second_ekb", ")" ]
Processes text using the CWMS web service. Parameters ---------- text : str Text to process Returns ------- cp : indra.sources.cwms.CWMSProcessor A CWMSProcessor, which contains a list of INDRA statements in its statements attribute.
[ "Processes", "text", "using", "the", "CWMS", "web", "service", "." ]
79a70415832c5702d7a820c7c9ccc8e25010124b
https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/sources/cwms/api.py#L11-L35
train
sorgerlab/indra
indra/sources/cwms/api.py
process_ekb_file
def process_ekb_file(fname): """Processes an EKB file produced by CWMS. Parameters ---------- fname : str Path to the EKB file to process. Returns ------- cp : indra.sources.cwms.CWMSProcessor A CWMSProcessor, which contains a list of INDRA statements in its statements attribute. """ # Process EKB XML file into statements with open(fname, 'rb') as fh: ekb_str = fh.read().decode('utf-8') return process_ekb(ekb_str)
python
def process_ekb_file(fname): """Processes an EKB file produced by CWMS. Parameters ---------- fname : str Path to the EKB file to process. Returns ------- cp : indra.sources.cwms.CWMSProcessor A CWMSProcessor, which contains a list of INDRA statements in its statements attribute. """ # Process EKB XML file into statements with open(fname, 'rb') as fh: ekb_str = fh.read().decode('utf-8') return process_ekb(ekb_str)
[ "def", "process_ekb_file", "(", "fname", ")", ":", "# Process EKB XML file into statements", "with", "open", "(", "fname", ",", "'rb'", ")", "as", "fh", ":", "ekb_str", "=", "fh", ".", "read", "(", ")", ".", "decode", "(", "'utf-8'", ")", "return", "process_ekb", "(", "ekb_str", ")" ]
Processes an EKB file produced by CWMS. Parameters ---------- fname : str Path to the EKB file to process. Returns ------- cp : indra.sources.cwms.CWMSProcessor A CWMSProcessor, which contains a list of INDRA statements in its statements attribute.
[ "Processes", "an", "EKB", "file", "produced", "by", "CWMS", "." ]
79a70415832c5702d7a820c7c9ccc8e25010124b
https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/sources/cwms/api.py#L38-L55
train
sorgerlab/indra
indra/assemblers/pysb/kappa_util.py
im_json_to_graph
def im_json_to_graph(im_json): """Return networkx graph from Kappy's influence map JSON. Parameters ---------- im_json : dict A JSON dict which contains an influence map generated by Kappy. Returns ------- graph : networkx.MultiDiGraph A graph representing the influence map. """ imap_data = im_json['influence map']['map'] # Initialize the graph graph = MultiDiGraph() id_node_dict = {} # Add each node to the graph for node_dict in imap_data['nodes']: # There is always just one entry here with the node type e.g. "rule" # as key, and all the node data as the value node_type, node = list(node_dict.items())[0] # Add the node to the graph with its label and type attrs = {'fillcolor': '#b7d2ff' if node_type == 'rule' else '#cdffc9', 'shape': 'box' if node_type == 'rule' else 'oval', 'style': 'filled'} graph.add_node(node['label'], node_type=node_type, **attrs) # Save the key of the node to refer to it later new_key = '%s%s' % (node_type, node['id']) id_node_dict[new_key] = node['label'] def add_edges(link_list, edge_sign): attrs = {'sign': edge_sign, 'color': 'green' if edge_sign == 1 else 'red', 'arrowhead': 'normal' if edge_sign == 1 else 'tee'} for link_dict in link_list: source = link_dict['source'] for target_dict in link_dict['target map']: target = target_dict['target'] src_id = '%s%s' % list(source.items())[0] tgt_id = '%s%s' % list(target.items())[0] graph.add_edge(id_node_dict[src_id], id_node_dict[tgt_id], **attrs) # Add all the edges from the positive and negative influences add_edges(imap_data['wake-up map'], 1) add_edges(imap_data['inhibition map'], -1) return graph
python
def im_json_to_graph(im_json): """Return networkx graph from Kappy's influence map JSON. Parameters ---------- im_json : dict A JSON dict which contains an influence map generated by Kappy. Returns ------- graph : networkx.MultiDiGraph A graph representing the influence map. """ imap_data = im_json['influence map']['map'] # Initialize the graph graph = MultiDiGraph() id_node_dict = {} # Add each node to the graph for node_dict in imap_data['nodes']: # There is always just one entry here with the node type e.g. "rule" # as key, and all the node data as the value node_type, node = list(node_dict.items())[0] # Add the node to the graph with its label and type attrs = {'fillcolor': '#b7d2ff' if node_type == 'rule' else '#cdffc9', 'shape': 'box' if node_type == 'rule' else 'oval', 'style': 'filled'} graph.add_node(node['label'], node_type=node_type, **attrs) # Save the key of the node to refer to it later new_key = '%s%s' % (node_type, node['id']) id_node_dict[new_key] = node['label'] def add_edges(link_list, edge_sign): attrs = {'sign': edge_sign, 'color': 'green' if edge_sign == 1 else 'red', 'arrowhead': 'normal' if edge_sign == 1 else 'tee'} for link_dict in link_list: source = link_dict['source'] for target_dict in link_dict['target map']: target = target_dict['target'] src_id = '%s%s' % list(source.items())[0] tgt_id = '%s%s' % list(target.items())[0] graph.add_edge(id_node_dict[src_id], id_node_dict[tgt_id], **attrs) # Add all the edges from the positive and negative influences add_edges(imap_data['wake-up map'], 1) add_edges(imap_data['inhibition map'], -1) return graph
[ "def", "im_json_to_graph", "(", "im_json", ")", ":", "imap_data", "=", "im_json", "[", "'influence map'", "]", "[", "'map'", "]", "# Initialize the graph", "graph", "=", "MultiDiGraph", "(", ")", "id_node_dict", "=", "{", "}", "# Add each node to the graph", "for", "node_dict", "in", "imap_data", "[", "'nodes'", "]", ":", "# There is always just one entry here with the node type e.g. \"rule\"", "# as key, and all the node data as the value", "node_type", ",", "node", "=", "list", "(", "node_dict", ".", "items", "(", ")", ")", "[", "0", "]", "# Add the node to the graph with its label and type", "attrs", "=", "{", "'fillcolor'", ":", "'#b7d2ff'", "if", "node_type", "==", "'rule'", "else", "'#cdffc9'", ",", "'shape'", ":", "'box'", "if", "node_type", "==", "'rule'", "else", "'oval'", ",", "'style'", ":", "'filled'", "}", "graph", ".", "add_node", "(", "node", "[", "'label'", "]", ",", "node_type", "=", "node_type", ",", "*", "*", "attrs", ")", "# Save the key of the node to refer to it later", "new_key", "=", "'%s%s'", "%", "(", "node_type", ",", "node", "[", "'id'", "]", ")", "id_node_dict", "[", "new_key", "]", "=", "node", "[", "'label'", "]", "def", "add_edges", "(", "link_list", ",", "edge_sign", ")", ":", "attrs", "=", "{", "'sign'", ":", "edge_sign", ",", "'color'", ":", "'green'", "if", "edge_sign", "==", "1", "else", "'red'", ",", "'arrowhead'", ":", "'normal'", "if", "edge_sign", "==", "1", "else", "'tee'", "}", "for", "link_dict", "in", "link_list", ":", "source", "=", "link_dict", "[", "'source'", "]", "for", "target_dict", "in", "link_dict", "[", "'target map'", "]", ":", "target", "=", "target_dict", "[", "'target'", "]", "src_id", "=", "'%s%s'", "%", "list", "(", "source", ".", "items", "(", ")", ")", "[", "0", "]", "tgt_id", "=", "'%s%s'", "%", "list", "(", "target", ".", "items", "(", ")", ")", "[", "0", "]", "graph", ".", "add_edge", "(", "id_node_dict", "[", "src_id", "]", ",", "id_node_dict", "[", "tgt_id", "]", ",", "*", "*", "attrs", ")", "# Add all the edges from the positive and negative influences", "add_edges", "(", "imap_data", "[", "'wake-up map'", "]", ",", "1", ")", "add_edges", "(", "imap_data", "[", "'inhibition map'", "]", ",", "-", "1", ")", "return", "graph" ]
Return networkx graph from Kappy's influence map JSON. Parameters ---------- im_json : dict A JSON dict which contains an influence map generated by Kappy. Returns ------- graph : networkx.MultiDiGraph A graph representing the influence map.
[ "Return", "networkx", "graph", "from", "Kappy", "s", "influence", "map", "JSON", "." ]
79a70415832c5702d7a820c7c9ccc8e25010124b
https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/assemblers/pysb/kappa_util.py#L7-L57
train
sorgerlab/indra
indra/assemblers/pysb/kappa_util.py
cm_json_to_graph
def cm_json_to_graph(im_json): """Return pygraphviz Agraph from Kappy's contact map JSON. Parameters ---------- im_json : dict A JSON dict which contains a contact map generated by Kappy. Returns ------- graph : pygraphviz.Agraph A graph representing the contact map. """ cmap_data = im_json['contact map']['map'] # Initialize the graph graph = AGraph() # In this loop we add sites as nodes and clusters around sites to the # graph. We also collect edges to be added between sites later. edges = [] for node_idx, node in enumerate(cmap_data): sites_in_node = [] for site_idx, site in enumerate(node['node_sites']): # We map the unique ID of the site to its name site_key = (node_idx, site_idx) sites_in_node.append(site_key) graph.add_node(site_key, label=site['site_name'], style='filled', shape='ellipse') # Each port link is an edge from the current site to the # specified site if not site['site_type'] or not site['site_type'][0] == 'port': continue for port_link in site['site_type'][1]['port_links']: edge = (site_key, tuple(port_link)) edges.append(edge) graph.add_subgraph(sites_in_node, name='cluster_%s' % node['node_type'], label=node['node_type']) # Finally we add the edges between the sites for source, target in edges: graph.add_edge(source, target) return graph
python
def cm_json_to_graph(im_json): """Return pygraphviz Agraph from Kappy's contact map JSON. Parameters ---------- im_json : dict A JSON dict which contains a contact map generated by Kappy. Returns ------- graph : pygraphviz.Agraph A graph representing the contact map. """ cmap_data = im_json['contact map']['map'] # Initialize the graph graph = AGraph() # In this loop we add sites as nodes and clusters around sites to the # graph. We also collect edges to be added between sites later. edges = [] for node_idx, node in enumerate(cmap_data): sites_in_node = [] for site_idx, site in enumerate(node['node_sites']): # We map the unique ID of the site to its name site_key = (node_idx, site_idx) sites_in_node.append(site_key) graph.add_node(site_key, label=site['site_name'], style='filled', shape='ellipse') # Each port link is an edge from the current site to the # specified site if not site['site_type'] or not site['site_type'][0] == 'port': continue for port_link in site['site_type'][1]['port_links']: edge = (site_key, tuple(port_link)) edges.append(edge) graph.add_subgraph(sites_in_node, name='cluster_%s' % node['node_type'], label=node['node_type']) # Finally we add the edges between the sites for source, target in edges: graph.add_edge(source, target) return graph
[ "def", "cm_json_to_graph", "(", "im_json", ")", ":", "cmap_data", "=", "im_json", "[", "'contact map'", "]", "[", "'map'", "]", "# Initialize the graph", "graph", "=", "AGraph", "(", ")", "# In this loop we add sites as nodes and clusters around sites to the", "# graph. We also collect edges to be added between sites later.", "edges", "=", "[", "]", "for", "node_idx", ",", "node", "in", "enumerate", "(", "cmap_data", ")", ":", "sites_in_node", "=", "[", "]", "for", "site_idx", ",", "site", "in", "enumerate", "(", "node", "[", "'node_sites'", "]", ")", ":", "# We map the unique ID of the site to its name", "site_key", "=", "(", "node_idx", ",", "site_idx", ")", "sites_in_node", ".", "append", "(", "site_key", ")", "graph", ".", "add_node", "(", "site_key", ",", "label", "=", "site", "[", "'site_name'", "]", ",", "style", "=", "'filled'", ",", "shape", "=", "'ellipse'", ")", "# Each port link is an edge from the current site to the", "# specified site", "if", "not", "site", "[", "'site_type'", "]", "or", "not", "site", "[", "'site_type'", "]", "[", "0", "]", "==", "'port'", ":", "continue", "for", "port_link", "in", "site", "[", "'site_type'", "]", "[", "1", "]", "[", "'port_links'", "]", ":", "edge", "=", "(", "site_key", ",", "tuple", "(", "port_link", ")", ")", "edges", ".", "append", "(", "edge", ")", "graph", ".", "add_subgraph", "(", "sites_in_node", ",", "name", "=", "'cluster_%s'", "%", "node", "[", "'node_type'", "]", ",", "label", "=", "node", "[", "'node_type'", "]", ")", "# Finally we add the edges between the sites", "for", "source", ",", "target", "in", "edges", ":", "graph", ".", "add_edge", "(", "source", ",", "target", ")", "return", "graph" ]
Return pygraphviz Agraph from Kappy's contact map JSON. Parameters ---------- im_json : dict A JSON dict which contains a contact map generated by Kappy. Returns ------- graph : pygraphviz.Agraph A graph representing the contact map.
[ "Return", "pygraphviz", "Agraph", "from", "Kappy", "s", "contact", "map", "JSON", "." ]
79a70415832c5702d7a820c7c9ccc8e25010124b
https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/assemblers/pysb/kappa_util.py#L60-L104
train
sorgerlab/indra
indra/tools/machine/gmail_client.py
fetch_email
def fetch_email(M, msg_id): """Returns the given email message as a unicode string.""" res, data = M.fetch(msg_id, '(RFC822)') if res == 'OK': # Data here is a list with 1 element containing a tuple # whose 2nd element is a long string containing the email # The content is a bytes that must be decoded raw_msg_txt = data[0][1] # In Python3, we call message_from_bytes, but this function doesn't # exist in Python 2. try: msg = email.message_from_bytes(raw_msg_txt) except AttributeError: msg = email.message_from_string(raw_msg_txt) # At this point, we have a message containing bytes (not unicode) # fields that will still need to be decoded, ideally according to the # character set specified in the message. return msg else: return None
python
def fetch_email(M, msg_id): """Returns the given email message as a unicode string.""" res, data = M.fetch(msg_id, '(RFC822)') if res == 'OK': # Data here is a list with 1 element containing a tuple # whose 2nd element is a long string containing the email # The content is a bytes that must be decoded raw_msg_txt = data[0][1] # In Python3, we call message_from_bytes, but this function doesn't # exist in Python 2. try: msg = email.message_from_bytes(raw_msg_txt) except AttributeError: msg = email.message_from_string(raw_msg_txt) # At this point, we have a message containing bytes (not unicode) # fields that will still need to be decoded, ideally according to the # character set specified in the message. return msg else: return None
[ "def", "fetch_email", "(", "M", ",", "msg_id", ")", ":", "res", ",", "data", "=", "M", ".", "fetch", "(", "msg_id", ",", "'(RFC822)'", ")", "if", "res", "==", "'OK'", ":", "# Data here is a list with 1 element containing a tuple", "# whose 2nd element is a long string containing the email", "# The content is a bytes that must be decoded", "raw_msg_txt", "=", "data", "[", "0", "]", "[", "1", "]", "# In Python3, we call message_from_bytes, but this function doesn't", "# exist in Python 2.", "try", ":", "msg", "=", "email", ".", "message_from_bytes", "(", "raw_msg_txt", ")", "except", "AttributeError", ":", "msg", "=", "email", ".", "message_from_string", "(", "raw_msg_txt", ")", "# At this point, we have a message containing bytes (not unicode)", "# fields that will still need to be decoded, ideally according to the", "# character set specified in the message.", "return", "msg", "else", ":", "return", "None" ]
Returns the given email message as a unicode string.
[ "Returns", "the", "given", "email", "message", "as", "a", "unicode", "string", "." ]
79a70415832c5702d7a820c7c9ccc8e25010124b
https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/tools/machine/gmail_client.py#L28-L47
train
sorgerlab/indra
indra/tools/machine/gmail_client.py
get_headers
def get_headers(msg): """Takes email.message.Message object initialized from unicode string, returns dict with header fields.""" headers = {} for k in msg.keys(): # decode_header decodes header but does not convert charset, so these # may still be bytes, even in Python 3. However, if it's ASCII # only (hence unambiguous encoding), the header fields come back # as str (unicode) in Python 3. (header_txt, charset) = email.header.decode_header(msg[k])[0] if charset is not None: header_txt = header_txt.decode(charset) headers[k] = header_txt return headers
python
def get_headers(msg): """Takes email.message.Message object initialized from unicode string, returns dict with header fields.""" headers = {} for k in msg.keys(): # decode_header decodes header but does not convert charset, so these # may still be bytes, even in Python 3. However, if it's ASCII # only (hence unambiguous encoding), the header fields come back # as str (unicode) in Python 3. (header_txt, charset) = email.header.decode_header(msg[k])[0] if charset is not None: header_txt = header_txt.decode(charset) headers[k] = header_txt return headers
[ "def", "get_headers", "(", "msg", ")", ":", "headers", "=", "{", "}", "for", "k", "in", "msg", ".", "keys", "(", ")", ":", "# decode_header decodes header but does not convert charset, so these", "# may still be bytes, even in Python 3. However, if it's ASCII", "# only (hence unambiguous encoding), the header fields come back", "# as str (unicode) in Python 3.", "(", "header_txt", ",", "charset", ")", "=", "email", ".", "header", ".", "decode_header", "(", "msg", "[", "k", "]", ")", "[", "0", "]", "if", "charset", "is", "not", "None", ":", "header_txt", "=", "header_txt", ".", "decode", "(", "charset", ")", "headers", "[", "k", "]", "=", "header_txt", "return", "headers" ]
Takes email.message.Message object initialized from unicode string, returns dict with header fields.
[ "Takes", "email", ".", "message", ".", "Message", "object", "initialized", "from", "unicode", "string", "returns", "dict", "with", "header", "fields", "." ]
79a70415832c5702d7a820c7c9ccc8e25010124b
https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/tools/machine/gmail_client.py#L49-L62
train
sorgerlab/indra
indra/config.py
populate_config_dict
def populate_config_dict(config_path): """Load the configuration file into the config_file dictionary A ConfigParser-style configuration file can have multiple sections, but we ignore the section distinction and load the key/value pairs from all sections into a single key/value list. """ try: config_dict = {} parser = RawConfigParser() parser.optionxform = lambda x: x parser.read(config_path) sections = parser.sections() for section in sections: options = parser.options(section) for option in options: config_dict[option] = str(parser.get(section, option)) except Exception as e: logger.warning("Could not load configuration file due to exception. " "Only environment variable equivalents will be used.") return None for key in config_dict.keys(): if config_dict[key] == '': config_dict[key] = None elif isinstance(config_dict[key], str): config_dict[key] = os.path.expanduser(config_dict[key]) return config_dict
python
def populate_config_dict(config_path): """Load the configuration file into the config_file dictionary A ConfigParser-style configuration file can have multiple sections, but we ignore the section distinction and load the key/value pairs from all sections into a single key/value list. """ try: config_dict = {} parser = RawConfigParser() parser.optionxform = lambda x: x parser.read(config_path) sections = parser.sections() for section in sections: options = parser.options(section) for option in options: config_dict[option] = str(parser.get(section, option)) except Exception as e: logger.warning("Could not load configuration file due to exception. " "Only environment variable equivalents will be used.") return None for key in config_dict.keys(): if config_dict[key] == '': config_dict[key] = None elif isinstance(config_dict[key], str): config_dict[key] = os.path.expanduser(config_dict[key]) return config_dict
[ "def", "populate_config_dict", "(", "config_path", ")", ":", "try", ":", "config_dict", "=", "{", "}", "parser", "=", "RawConfigParser", "(", ")", "parser", ".", "optionxform", "=", "lambda", "x", ":", "x", "parser", ".", "read", "(", "config_path", ")", "sections", "=", "parser", ".", "sections", "(", ")", "for", "section", "in", "sections", ":", "options", "=", "parser", ".", "options", "(", "section", ")", "for", "option", "in", "options", ":", "config_dict", "[", "option", "]", "=", "str", "(", "parser", ".", "get", "(", "section", ",", "option", ")", ")", "except", "Exception", "as", "e", ":", "logger", ".", "warning", "(", "\"Could not load configuration file due to exception. \"", "\"Only environment variable equivalents will be used.\"", ")", "return", "None", "for", "key", "in", "config_dict", ".", "keys", "(", ")", ":", "if", "config_dict", "[", "key", "]", "==", "''", ":", "config_dict", "[", "key", "]", "=", "None", "elif", "isinstance", "(", "config_dict", "[", "key", "]", ",", "str", ")", ":", "config_dict", "[", "key", "]", "=", "os", ".", "path", ".", "expanduser", "(", "config_dict", "[", "key", "]", ")", "return", "config_dict" ]
Load the configuration file into the config_file dictionary A ConfigParser-style configuration file can have multiple sections, but we ignore the section distinction and load the key/value pairs from all sections into a single key/value list.
[ "Load", "the", "configuration", "file", "into", "the", "config_file", "dictionary" ]
79a70415832c5702d7a820c7c9ccc8e25010124b
https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/config.py#L31-L58
train
sorgerlab/indra
indra/config.py
get_config
def get_config(key, failure_ok=True): """Get value by key from config file or environment. Returns the configuration value, first checking the environment variables and then, if it's not present there, checking the configuration file. Parameters ---------- key : str The key for the configuration value to fetch failure_ok : Optional[bool] If False and the configuration is missing, an IndraConfigError is raised. If True, None is returned and no error is raised in case of a missing configuration. Default: True Returns ------- value : str or None The configuration value or None if the configuration value doesn't exist and failure_ok is set to True. """ err_msg = "Key %s not in environment or config file." % key if key in os.environ: return os.environ[key] elif key in CONFIG_DICT: val = CONFIG_DICT[key] # We interpret an empty value in the config file as a failure if val is None and not failure_ok: msg = 'Key %s is set to an empty value in config file.' % key raise IndraConfigError(msg) else: return val elif not failure_ok: raise IndraConfigError(err_msg) else: logger.warning(err_msg) return None
python
def get_config(key, failure_ok=True): """Get value by key from config file or environment. Returns the configuration value, first checking the environment variables and then, if it's not present there, checking the configuration file. Parameters ---------- key : str The key for the configuration value to fetch failure_ok : Optional[bool] If False and the configuration is missing, an IndraConfigError is raised. If True, None is returned and no error is raised in case of a missing configuration. Default: True Returns ------- value : str or None The configuration value or None if the configuration value doesn't exist and failure_ok is set to True. """ err_msg = "Key %s not in environment or config file." % key if key in os.environ: return os.environ[key] elif key in CONFIG_DICT: val = CONFIG_DICT[key] # We interpret an empty value in the config file as a failure if val is None and not failure_ok: msg = 'Key %s is set to an empty value in config file.' % key raise IndraConfigError(msg) else: return val elif not failure_ok: raise IndraConfigError(err_msg) else: logger.warning(err_msg) return None
[ "def", "get_config", "(", "key", ",", "failure_ok", "=", "True", ")", ":", "err_msg", "=", "\"Key %s not in environment or config file.\"", "%", "key", "if", "key", "in", "os", ".", "environ", ":", "return", "os", ".", "environ", "[", "key", "]", "elif", "key", "in", "CONFIG_DICT", ":", "val", "=", "CONFIG_DICT", "[", "key", "]", "# We interpret an empty value in the config file as a failure", "if", "val", "is", "None", "and", "not", "failure_ok", ":", "msg", "=", "'Key %s is set to an empty value in config file.'", "%", "key", "raise", "IndraConfigError", "(", "msg", ")", "else", ":", "return", "val", "elif", "not", "failure_ok", ":", "raise", "IndraConfigError", "(", "err_msg", ")", "else", ":", "logger", ".", "warning", "(", "err_msg", ")", "return", "None" ]
Get value by key from config file or environment. Returns the configuration value, first checking the environment variables and then, if it's not present there, checking the configuration file. Parameters ---------- key : str The key for the configuration value to fetch failure_ok : Optional[bool] If False and the configuration is missing, an IndraConfigError is raised. If True, None is returned and no error is raised in case of a missing configuration. Default: True Returns ------- value : str or None The configuration value or None if the configuration value doesn't exist and failure_ok is set to True.
[ "Get", "value", "by", "key", "from", "config", "file", "or", "environment", "." ]
79a70415832c5702d7a820c7c9ccc8e25010124b
https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/config.py#L85-L122
train
sorgerlab/indra
indra/util/__init__.py
read_unicode_csv_fileobj
def read_unicode_csv_fileobj(fileobj, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL, lineterminator='\n', encoding='utf-8', skiprows=0): """fileobj can be a StringIO in Py3, but should be a BytesIO in Py2.""" # Python 3 version if sys.version_info[0] >= 3: # Next, get the csv reader, with unicode delimiter and quotechar csv_reader = csv.reader(fileobj, delimiter=delimiter, quotechar=quotechar, quoting=quoting, lineterminator=lineterminator) # Now, return the (already decoded) unicode csv_reader generator # Skip rows if necessary for skip_ix in range(skiprows): next(csv_reader) for row in csv_reader: yield row # Python 2 version else: # Next, get the csv reader, passing delimiter and quotechar as # bytestrings rather than unicode csv_reader = csv.reader(fileobj, delimiter=delimiter.encode(encoding), quotechar=quotechar.encode(encoding), quoting=quoting, lineterminator=lineterminator) # Iterate over the file and decode each string into unicode # Skip rows if necessary for skip_ix in range(skiprows): next(csv_reader) for row in csv_reader: yield [cell.decode(encoding) for cell in row]
python
def read_unicode_csv_fileobj(fileobj, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL, lineterminator='\n', encoding='utf-8', skiprows=0): """fileobj can be a StringIO in Py3, but should be a BytesIO in Py2.""" # Python 3 version if sys.version_info[0] >= 3: # Next, get the csv reader, with unicode delimiter and quotechar csv_reader = csv.reader(fileobj, delimiter=delimiter, quotechar=quotechar, quoting=quoting, lineterminator=lineterminator) # Now, return the (already decoded) unicode csv_reader generator # Skip rows if necessary for skip_ix in range(skiprows): next(csv_reader) for row in csv_reader: yield row # Python 2 version else: # Next, get the csv reader, passing delimiter and quotechar as # bytestrings rather than unicode csv_reader = csv.reader(fileobj, delimiter=delimiter.encode(encoding), quotechar=quotechar.encode(encoding), quoting=quoting, lineterminator=lineterminator) # Iterate over the file and decode each string into unicode # Skip rows if necessary for skip_ix in range(skiprows): next(csv_reader) for row in csv_reader: yield [cell.decode(encoding) for cell in row]
[ "def", "read_unicode_csv_fileobj", "(", "fileobj", ",", "delimiter", "=", "','", ",", "quotechar", "=", "'\"'", ",", "quoting", "=", "csv", ".", "QUOTE_MINIMAL", ",", "lineterminator", "=", "'\\n'", ",", "encoding", "=", "'utf-8'", ",", "skiprows", "=", "0", ")", ":", "# Python 3 version", "if", "sys", ".", "version_info", "[", "0", "]", ">=", "3", ":", "# Next, get the csv reader, with unicode delimiter and quotechar", "csv_reader", "=", "csv", ".", "reader", "(", "fileobj", ",", "delimiter", "=", "delimiter", ",", "quotechar", "=", "quotechar", ",", "quoting", "=", "quoting", ",", "lineterminator", "=", "lineterminator", ")", "# Now, return the (already decoded) unicode csv_reader generator", "# Skip rows if necessary", "for", "skip_ix", "in", "range", "(", "skiprows", ")", ":", "next", "(", "csv_reader", ")", "for", "row", "in", "csv_reader", ":", "yield", "row", "# Python 2 version", "else", ":", "# Next, get the csv reader, passing delimiter and quotechar as", "# bytestrings rather than unicode", "csv_reader", "=", "csv", ".", "reader", "(", "fileobj", ",", "delimiter", "=", "delimiter", ".", "encode", "(", "encoding", ")", ",", "quotechar", "=", "quotechar", ".", "encode", "(", "encoding", ")", ",", "quoting", "=", "quoting", ",", "lineterminator", "=", "lineterminator", ")", "# Iterate over the file and decode each string into unicode", "# Skip rows if necessary", "for", "skip_ix", "in", "range", "(", "skiprows", ")", ":", "next", "(", "csv_reader", ")", "for", "row", "in", "csv_reader", ":", "yield", "[", "cell", ".", "decode", "(", "encoding", ")", "for", "cell", "in", "row", "]" ]
fileobj can be a StringIO in Py3, but should be a BytesIO in Py2.
[ "fileobj", "can", "be", "a", "StringIO", "in", "Py3", "but", "should", "be", "a", "BytesIO", "in", "Py2", "." ]
79a70415832c5702d7a820c7c9ccc8e25010124b
https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/util/__init__.py#L113-L141
train
sorgerlab/indra
indra/util/__init__.py
fast_deepcopy
def fast_deepcopy(obj): """This is a faster implementation of deepcopy via pickle. It is meant primarily for sets of Statements with complex hierarchies but can be used for any object. """ with BytesIO() as buf: pickle.dump(obj, buf) buf.seek(0) obj_new = pickle.load(buf) return obj_new
python
def fast_deepcopy(obj): """This is a faster implementation of deepcopy via pickle. It is meant primarily for sets of Statements with complex hierarchies but can be used for any object. """ with BytesIO() as buf: pickle.dump(obj, buf) buf.seek(0) obj_new = pickle.load(buf) return obj_new
[ "def", "fast_deepcopy", "(", "obj", ")", ":", "with", "BytesIO", "(", ")", "as", "buf", ":", "pickle", ".", "dump", "(", "obj", ",", "buf", ")", "buf", ".", "seek", "(", "0", ")", "obj_new", "=", "pickle", ".", "load", "(", "buf", ")", "return", "obj_new" ]
This is a faster implementation of deepcopy via pickle. It is meant primarily for sets of Statements with complex hierarchies but can be used for any object.
[ "This", "is", "a", "faster", "implementation", "of", "deepcopy", "via", "pickle", "." ]
79a70415832c5702d7a820c7c9ccc8e25010124b
https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/util/__init__.py#L198-L208
train
sorgerlab/indra
indra/util/__init__.py
batch_iter
def batch_iter(iterator, batch_size, return_func=None, padding=None): """Break an iterable into batches of size batch_size Note that `padding` should be set to something (anything) which is NOT a valid member of the iterator. For example, None works for [0,1,2,...10], but not for ['a', None, 'c', 'd']. Parameters ---------- iterator : iterable A python object which is iterable. batch_size : int The size of batches you wish to produce from the iterator. return_func : executable or None Pass a function that takes a generator and returns an iterable (e.g. `list` or `set`). If None, a generator will be returned. padding : anything This is used internally to ensure that the remainder of the list is included. This MUST NOT be a valid element of the iterator. Returns ------- An iterator over lists or generators, depending on `return_lists`. """ for batch in zip_longest(*[iter(iterator)]*batch_size, fillvalue=padding): gen = (thing for thing in batch if thing is not padding) if return_func is None: yield gen else: yield return_func(gen)
python
def batch_iter(iterator, batch_size, return_func=None, padding=None): """Break an iterable into batches of size batch_size Note that `padding` should be set to something (anything) which is NOT a valid member of the iterator. For example, None works for [0,1,2,...10], but not for ['a', None, 'c', 'd']. Parameters ---------- iterator : iterable A python object which is iterable. batch_size : int The size of batches you wish to produce from the iterator. return_func : executable or None Pass a function that takes a generator and returns an iterable (e.g. `list` or `set`). If None, a generator will be returned. padding : anything This is used internally to ensure that the remainder of the list is included. This MUST NOT be a valid element of the iterator. Returns ------- An iterator over lists or generators, depending on `return_lists`. """ for batch in zip_longest(*[iter(iterator)]*batch_size, fillvalue=padding): gen = (thing for thing in batch if thing is not padding) if return_func is None: yield gen else: yield return_func(gen)
[ "def", "batch_iter", "(", "iterator", ",", "batch_size", ",", "return_func", "=", "None", ",", "padding", "=", "None", ")", ":", "for", "batch", "in", "zip_longest", "(", "*", "[", "iter", "(", "iterator", ")", "]", "*", "batch_size", ",", "fillvalue", "=", "padding", ")", ":", "gen", "=", "(", "thing", "for", "thing", "in", "batch", "if", "thing", "is", "not", "padding", ")", "if", "return_func", "is", "None", ":", "yield", "gen", "else", ":", "yield", "return_func", "(", "gen", ")" ]
Break an iterable into batches of size batch_size Note that `padding` should be set to something (anything) which is NOT a valid member of the iterator. For example, None works for [0,1,2,...10], but not for ['a', None, 'c', 'd']. Parameters ---------- iterator : iterable A python object which is iterable. batch_size : int The size of batches you wish to produce from the iterator. return_func : executable or None Pass a function that takes a generator and returns an iterable (e.g. `list` or `set`). If None, a generator will be returned. padding : anything This is used internally to ensure that the remainder of the list is included. This MUST NOT be a valid element of the iterator. Returns ------- An iterator over lists or generators, depending on `return_lists`.
[ "Break", "an", "iterable", "into", "batches", "of", "size", "batch_size" ]
79a70415832c5702d7a820c7c9ccc8e25010124b
https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/util/__init__.py#L227-L256
train
sorgerlab/indra
indra/tools/reading/run_drum_reading.py
read_pmid_sentences
def read_pmid_sentences(pmid_sentences, **drum_args): """Read sentences from a PMID-keyed dictonary and return all Statements Parameters ---------- pmid_sentences : dict[str, list[str]] A dictonary where each key is a PMID pointing to a list of sentences to be read. **drum_args Keyword arguments passed directly to the DrumReader. Typical things to specify are `host` and `port`. If `run_drum` is specified as True, this process will internally run the DRUM reading system as a subprocess. Otherwise, DRUM is expected to be running independently. Returns ------- all_statements : list[indra.statement.Statement] A list of INDRA Statements resulting from the reading """ def _set_pmid(statements, pmid): for stmt in statements: for evidence in stmt.evidence: evidence.pmid = pmid # See if we need to start DRUM as a subprocess run_drum = drum_args.get('run_drum', False) drum_process = None all_statements = {} # Iterate over all the keys and sentences to read for pmid, sentences in pmid_sentences.items(): logger.info('================================') logger.info('Processing %d sentences for %s' % (len(sentences), pmid)) ts = time.time() # Make a DrumReader instance drum_args['name'] = 'DrumReader%s' % pmid dr = DrumReader(**drum_args) time.sleep(3) # If there is no DRUM process set yet, we get the one that was # just started by the DrumReader if run_drum and drum_process is None: drum_args.pop('run_drum', None) drum_process = dr.drum_system # By setting this, we ensuer that the reference to the # process is passed in to all future DrumReaders drum_args['drum_system'] = drum_process # Now read each sentence for this key for sentence in sentences: dr.read_text(sentence) # Start receiving results and exit when done try: dr.start() except SystemExit: pass statements = [] # Process all the extractions into INDRA Statements for extraction in dr.extractions: # Sometimes we get nothing back if not extraction: continue tp = process_xml(extraction) statements += tp.statements # Set the PMIDs for the evidences of the Statements _set_pmid(statements, pmid) te = time.time() logger.info('Reading took %d seconds and produced %d Statements.' % (te-ts, len(statements))) all_statements[pmid] = statements # If we were running a DRUM process, we should kill it if drum_process and dr.drum_system: dr._kill_drum() return all_statements
python
def read_pmid_sentences(pmid_sentences, **drum_args): """Read sentences from a PMID-keyed dictonary and return all Statements Parameters ---------- pmid_sentences : dict[str, list[str]] A dictonary where each key is a PMID pointing to a list of sentences to be read. **drum_args Keyword arguments passed directly to the DrumReader. Typical things to specify are `host` and `port`. If `run_drum` is specified as True, this process will internally run the DRUM reading system as a subprocess. Otherwise, DRUM is expected to be running independently. Returns ------- all_statements : list[indra.statement.Statement] A list of INDRA Statements resulting from the reading """ def _set_pmid(statements, pmid): for stmt in statements: for evidence in stmt.evidence: evidence.pmid = pmid # See if we need to start DRUM as a subprocess run_drum = drum_args.get('run_drum', False) drum_process = None all_statements = {} # Iterate over all the keys and sentences to read for pmid, sentences in pmid_sentences.items(): logger.info('================================') logger.info('Processing %d sentences for %s' % (len(sentences), pmid)) ts = time.time() # Make a DrumReader instance drum_args['name'] = 'DrumReader%s' % pmid dr = DrumReader(**drum_args) time.sleep(3) # If there is no DRUM process set yet, we get the one that was # just started by the DrumReader if run_drum and drum_process is None: drum_args.pop('run_drum', None) drum_process = dr.drum_system # By setting this, we ensuer that the reference to the # process is passed in to all future DrumReaders drum_args['drum_system'] = drum_process # Now read each sentence for this key for sentence in sentences: dr.read_text(sentence) # Start receiving results and exit when done try: dr.start() except SystemExit: pass statements = [] # Process all the extractions into INDRA Statements for extraction in dr.extractions: # Sometimes we get nothing back if not extraction: continue tp = process_xml(extraction) statements += tp.statements # Set the PMIDs for the evidences of the Statements _set_pmid(statements, pmid) te = time.time() logger.info('Reading took %d seconds and produced %d Statements.' % (te-ts, len(statements))) all_statements[pmid] = statements # If we were running a DRUM process, we should kill it if drum_process and dr.drum_system: dr._kill_drum() return all_statements
[ "def", "read_pmid_sentences", "(", "pmid_sentences", ",", "*", "*", "drum_args", ")", ":", "def", "_set_pmid", "(", "statements", ",", "pmid", ")", ":", "for", "stmt", "in", "statements", ":", "for", "evidence", "in", "stmt", ".", "evidence", ":", "evidence", ".", "pmid", "=", "pmid", "# See if we need to start DRUM as a subprocess", "run_drum", "=", "drum_args", ".", "get", "(", "'run_drum'", ",", "False", ")", "drum_process", "=", "None", "all_statements", "=", "{", "}", "# Iterate over all the keys and sentences to read", "for", "pmid", ",", "sentences", "in", "pmid_sentences", ".", "items", "(", ")", ":", "logger", ".", "info", "(", "'================================'", ")", "logger", ".", "info", "(", "'Processing %d sentences for %s'", "%", "(", "len", "(", "sentences", ")", ",", "pmid", ")", ")", "ts", "=", "time", ".", "time", "(", ")", "# Make a DrumReader instance", "drum_args", "[", "'name'", "]", "=", "'DrumReader%s'", "%", "pmid", "dr", "=", "DrumReader", "(", "*", "*", "drum_args", ")", "time", ".", "sleep", "(", "3", ")", "# If there is no DRUM process set yet, we get the one that was", "# just started by the DrumReader", "if", "run_drum", "and", "drum_process", "is", "None", ":", "drum_args", ".", "pop", "(", "'run_drum'", ",", "None", ")", "drum_process", "=", "dr", ".", "drum_system", "# By setting this, we ensuer that the reference to the", "# process is passed in to all future DrumReaders", "drum_args", "[", "'drum_system'", "]", "=", "drum_process", "# Now read each sentence for this key", "for", "sentence", "in", "sentences", ":", "dr", ".", "read_text", "(", "sentence", ")", "# Start receiving results and exit when done", "try", ":", "dr", ".", "start", "(", ")", "except", "SystemExit", ":", "pass", "statements", "=", "[", "]", "# Process all the extractions into INDRA Statements", "for", "extraction", "in", "dr", ".", "extractions", ":", "# Sometimes we get nothing back", "if", "not", "extraction", ":", "continue", "tp", "=", "process_xml", "(", "extraction", ")", "statements", "+=", "tp", ".", "statements", "# Set the PMIDs for the evidences of the Statements", "_set_pmid", "(", "statements", ",", "pmid", ")", "te", "=", "time", ".", "time", "(", ")", "logger", ".", "info", "(", "'Reading took %d seconds and produced %d Statements.'", "%", "(", "te", "-", "ts", ",", "len", "(", "statements", ")", ")", ")", "all_statements", "[", "pmid", "]", "=", "statements", "# If we were running a DRUM process, we should kill it", "if", "drum_process", "and", "dr", ".", "drum_system", ":", "dr", ".", "_kill_drum", "(", ")", "return", "all_statements" ]
Read sentences from a PMID-keyed dictonary and return all Statements Parameters ---------- pmid_sentences : dict[str, list[str]] A dictonary where each key is a PMID pointing to a list of sentences to be read. **drum_args Keyword arguments passed directly to the DrumReader. Typical things to specify are `host` and `port`. If `run_drum` is specified as True, this process will internally run the DRUM reading system as a subprocess. Otherwise, DRUM is expected to be running independently. Returns ------- all_statements : list[indra.statement.Statement] A list of INDRA Statements resulting from the reading
[ "Read", "sentences", "from", "a", "PMID", "-", "keyed", "dictonary", "and", "return", "all", "Statements" ]
79a70415832c5702d7a820c7c9ccc8e25010124b
https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/tools/reading/run_drum_reading.py#L14-L86
train
sorgerlab/indra
indra/sources/biopax/pathway_commons_client.py
graph_query
def graph_query(kind, source, target=None, neighbor_limit=1, database_filter=None): """Perform a graph query on PathwayCommons. For more information on these queries, see http://www.pathwaycommons.org/pc2/#graph Parameters ---------- kind : str The kind of graph query to perform. Currently 3 options are implemented, 'neighborhood', 'pathsbetween' and 'pathsfromto'. source : list[str] A list of gene names which are the source set for the graph query. target : Optional[list[str]] A list of gene names which are the target set for the graph query. Only needed for 'pathsfromto' queries. neighbor_limit : Optional[int] This limits the length of the longest path considered in the graph query. Default: 1 Returns ------- model : org.biopax.paxtools.model.Model A BioPAX model (java object). """ default_databases = ['wp', 'smpdb', 'reconx', 'reactome', 'psp', 'pid', 'panther', 'netpath', 'msigdb', 'mirtarbase', 'kegg', 'intact', 'inoh', 'humancyc', 'hprd', 'drugbank', 'dip', 'corum'] if not database_filter: query_databases = default_databases else: query_databases = database_filter # excluded: ctd params = {} params['format'] = 'BIOPAX' params['organism'] = '9606' params['datasource'] = query_databases # Get the "kind" string kind_str = kind.lower() if kind not in ['neighborhood', 'pathsbetween', 'pathsfromto']: logger.warn('Invalid query type %s' % kind_str) return None params['kind'] = kind_str # Get the source string if isinstance(source, basestring): source_str = source else: source_str = ','.join(source) params['source'] = source_str try: neighbor_limit = int(neighbor_limit) params['limit'] = neighbor_limit except (TypeError, ValueError): logger.warn('Invalid neighborhood limit %s' % neighbor_limit) return None if target is not None: if isinstance(target, basestring): target_str = target else: target_str = ','.join(target) params['target'] = target_str logger.info('Sending Pathway Commons query with parameters: ') for k, v in params.items(): logger.info(' %s: %s' % (k, v)) logger.info('Sending Pathway Commons query...') res = requests.get(pc2_url + 'graph', params=params) if not res.status_code == 200: logger.error('Response is HTTP code %d.' % res.status_code) if res.status_code == 500: logger.error('Note: HTTP code 500 can mean empty ' 'results for a valid query.') return None # We don't decode to Unicode here because owl_str_to_model expects # a byte stream model = owl_str_to_model(res.content) if model is not None: logger.info('Pathway Commons query returned a model...') return model
python
def graph_query(kind, source, target=None, neighbor_limit=1, database_filter=None): """Perform a graph query on PathwayCommons. For more information on these queries, see http://www.pathwaycommons.org/pc2/#graph Parameters ---------- kind : str The kind of graph query to perform. Currently 3 options are implemented, 'neighborhood', 'pathsbetween' and 'pathsfromto'. source : list[str] A list of gene names which are the source set for the graph query. target : Optional[list[str]] A list of gene names which are the target set for the graph query. Only needed for 'pathsfromto' queries. neighbor_limit : Optional[int] This limits the length of the longest path considered in the graph query. Default: 1 Returns ------- model : org.biopax.paxtools.model.Model A BioPAX model (java object). """ default_databases = ['wp', 'smpdb', 'reconx', 'reactome', 'psp', 'pid', 'panther', 'netpath', 'msigdb', 'mirtarbase', 'kegg', 'intact', 'inoh', 'humancyc', 'hprd', 'drugbank', 'dip', 'corum'] if not database_filter: query_databases = default_databases else: query_databases = database_filter # excluded: ctd params = {} params['format'] = 'BIOPAX' params['organism'] = '9606' params['datasource'] = query_databases # Get the "kind" string kind_str = kind.lower() if kind not in ['neighborhood', 'pathsbetween', 'pathsfromto']: logger.warn('Invalid query type %s' % kind_str) return None params['kind'] = kind_str # Get the source string if isinstance(source, basestring): source_str = source else: source_str = ','.join(source) params['source'] = source_str try: neighbor_limit = int(neighbor_limit) params['limit'] = neighbor_limit except (TypeError, ValueError): logger.warn('Invalid neighborhood limit %s' % neighbor_limit) return None if target is not None: if isinstance(target, basestring): target_str = target else: target_str = ','.join(target) params['target'] = target_str logger.info('Sending Pathway Commons query with parameters: ') for k, v in params.items(): logger.info(' %s: %s' % (k, v)) logger.info('Sending Pathway Commons query...') res = requests.get(pc2_url + 'graph', params=params) if not res.status_code == 200: logger.error('Response is HTTP code %d.' % res.status_code) if res.status_code == 500: logger.error('Note: HTTP code 500 can mean empty ' 'results for a valid query.') return None # We don't decode to Unicode here because owl_str_to_model expects # a byte stream model = owl_str_to_model(res.content) if model is not None: logger.info('Pathway Commons query returned a model...') return model
[ "def", "graph_query", "(", "kind", ",", "source", ",", "target", "=", "None", ",", "neighbor_limit", "=", "1", ",", "database_filter", "=", "None", ")", ":", "default_databases", "=", "[", "'wp'", ",", "'smpdb'", ",", "'reconx'", ",", "'reactome'", ",", "'psp'", ",", "'pid'", ",", "'panther'", ",", "'netpath'", ",", "'msigdb'", ",", "'mirtarbase'", ",", "'kegg'", ",", "'intact'", ",", "'inoh'", ",", "'humancyc'", ",", "'hprd'", ",", "'drugbank'", ",", "'dip'", ",", "'corum'", "]", "if", "not", "database_filter", ":", "query_databases", "=", "default_databases", "else", ":", "query_databases", "=", "database_filter", "# excluded: ctd", "params", "=", "{", "}", "params", "[", "'format'", "]", "=", "'BIOPAX'", "params", "[", "'organism'", "]", "=", "'9606'", "params", "[", "'datasource'", "]", "=", "query_databases", "# Get the \"kind\" string", "kind_str", "=", "kind", ".", "lower", "(", ")", "if", "kind", "not", "in", "[", "'neighborhood'", ",", "'pathsbetween'", ",", "'pathsfromto'", "]", ":", "logger", ".", "warn", "(", "'Invalid query type %s'", "%", "kind_str", ")", "return", "None", "params", "[", "'kind'", "]", "=", "kind_str", "# Get the source string", "if", "isinstance", "(", "source", ",", "basestring", ")", ":", "source_str", "=", "source", "else", ":", "source_str", "=", "','", ".", "join", "(", "source", ")", "params", "[", "'source'", "]", "=", "source_str", "try", ":", "neighbor_limit", "=", "int", "(", "neighbor_limit", ")", "params", "[", "'limit'", "]", "=", "neighbor_limit", "except", "(", "TypeError", ",", "ValueError", ")", ":", "logger", ".", "warn", "(", "'Invalid neighborhood limit %s'", "%", "neighbor_limit", ")", "return", "None", "if", "target", "is", "not", "None", ":", "if", "isinstance", "(", "target", ",", "basestring", ")", ":", "target_str", "=", "target", "else", ":", "target_str", "=", "','", ".", "join", "(", "target", ")", "params", "[", "'target'", "]", "=", "target_str", "logger", ".", "info", "(", "'Sending Pathway Commons query with parameters: '", ")", "for", "k", ",", "v", "in", "params", ".", "items", "(", ")", ":", "logger", ".", "info", "(", "' %s: %s'", "%", "(", "k", ",", "v", ")", ")", "logger", ".", "info", "(", "'Sending Pathway Commons query...'", ")", "res", "=", "requests", ".", "get", "(", "pc2_url", "+", "'graph'", ",", "params", "=", "params", ")", "if", "not", "res", ".", "status_code", "==", "200", ":", "logger", ".", "error", "(", "'Response is HTTP code %d.'", "%", "res", ".", "status_code", ")", "if", "res", ".", "status_code", "==", "500", ":", "logger", ".", "error", "(", "'Note: HTTP code 500 can mean empty '", "'results for a valid query.'", ")", "return", "None", "# We don't decode to Unicode here because owl_str_to_model expects", "# a byte stream", "model", "=", "owl_str_to_model", "(", "res", ".", "content", ")", "if", "model", "is", "not", "None", ":", "logger", ".", "info", "(", "'Pathway Commons query returned a model...'", ")", "return", "model" ]
Perform a graph query on PathwayCommons. For more information on these queries, see http://www.pathwaycommons.org/pc2/#graph Parameters ---------- kind : str The kind of graph query to perform. Currently 3 options are implemented, 'neighborhood', 'pathsbetween' and 'pathsfromto'. source : list[str] A list of gene names which are the source set for the graph query. target : Optional[list[str]] A list of gene names which are the target set for the graph query. Only needed for 'pathsfromto' queries. neighbor_limit : Optional[int] This limits the length of the longest path considered in the graph query. Default: 1 Returns ------- model : org.biopax.paxtools.model.Model A BioPAX model (java object).
[ "Perform", "a", "graph", "query", "on", "PathwayCommons", "." ]
79a70415832c5702d7a820c7c9ccc8e25010124b
https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/sources/biopax/pathway_commons_client.py#L17-L99
train
sorgerlab/indra
indra/sources/biopax/pathway_commons_client.py
owl_str_to_model
def owl_str_to_model(owl_str): """Return a BioPAX model object from an OWL string. Parameters ---------- owl_str : str The model as an OWL string. Returns ------- biopax_model : org.biopax.paxtools.model.Model A BioPAX model object (java object). """ io_class = autoclass('org.biopax.paxtools.io.SimpleIOHandler') io = io_class(autoclass('org.biopax.paxtools.model.BioPAXLevel').L3) bais = autoclass('java.io.ByteArrayInputStream') scs = autoclass('java.nio.charset.StandardCharsets') jstr = autoclass('java.lang.String') istream = bais(owl_str) biopax_model = io.convertFromOWL(istream) return biopax_model
python
def owl_str_to_model(owl_str): """Return a BioPAX model object from an OWL string. Parameters ---------- owl_str : str The model as an OWL string. Returns ------- biopax_model : org.biopax.paxtools.model.Model A BioPAX model object (java object). """ io_class = autoclass('org.biopax.paxtools.io.SimpleIOHandler') io = io_class(autoclass('org.biopax.paxtools.model.BioPAXLevel').L3) bais = autoclass('java.io.ByteArrayInputStream') scs = autoclass('java.nio.charset.StandardCharsets') jstr = autoclass('java.lang.String') istream = bais(owl_str) biopax_model = io.convertFromOWL(istream) return biopax_model
[ "def", "owl_str_to_model", "(", "owl_str", ")", ":", "io_class", "=", "autoclass", "(", "'org.biopax.paxtools.io.SimpleIOHandler'", ")", "io", "=", "io_class", "(", "autoclass", "(", "'org.biopax.paxtools.model.BioPAXLevel'", ")", ".", "L3", ")", "bais", "=", "autoclass", "(", "'java.io.ByteArrayInputStream'", ")", "scs", "=", "autoclass", "(", "'java.nio.charset.StandardCharsets'", ")", "jstr", "=", "autoclass", "(", "'java.lang.String'", ")", "istream", "=", "bais", "(", "owl_str", ")", "biopax_model", "=", "io", ".", "convertFromOWL", "(", "istream", ")", "return", "biopax_model" ]
Return a BioPAX model object from an OWL string. Parameters ---------- owl_str : str The model as an OWL string. Returns ------- biopax_model : org.biopax.paxtools.model.Model A BioPAX model object (java object).
[ "Return", "a", "BioPAX", "model", "object", "from", "an", "OWL", "string", "." ]
79a70415832c5702d7a820c7c9ccc8e25010124b
https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/sources/biopax/pathway_commons_client.py#L101-L121
train
sorgerlab/indra
indra/sources/biopax/pathway_commons_client.py
owl_to_model
def owl_to_model(fname): """Return a BioPAX model object from an OWL file. Parameters ---------- fname : str The name of the OWL file containing the model. Returns ------- biopax_model : org.biopax.paxtools.model.Model A BioPAX model object (java object). """ io_class = autoclass('org.biopax.paxtools.io.SimpleIOHandler') io = io_class(autoclass('org.biopax.paxtools.model.BioPAXLevel').L3) try: file_is = autoclass('java.io.FileInputStream')(fname) except JavaException: logger.error('Could not open data file %s' % fname) return try: biopax_model = io.convertFromOWL(file_is) except JavaException as e: logger.error('Could not convert data file %s to BioPax model' % fname) logger.error(e) return file_is.close() return biopax_model
python
def owl_to_model(fname): """Return a BioPAX model object from an OWL file. Parameters ---------- fname : str The name of the OWL file containing the model. Returns ------- biopax_model : org.biopax.paxtools.model.Model A BioPAX model object (java object). """ io_class = autoclass('org.biopax.paxtools.io.SimpleIOHandler') io = io_class(autoclass('org.biopax.paxtools.model.BioPAXLevel').L3) try: file_is = autoclass('java.io.FileInputStream')(fname) except JavaException: logger.error('Could not open data file %s' % fname) return try: biopax_model = io.convertFromOWL(file_is) except JavaException as e: logger.error('Could not convert data file %s to BioPax model' % fname) logger.error(e) return file_is.close() return biopax_model
[ "def", "owl_to_model", "(", "fname", ")", ":", "io_class", "=", "autoclass", "(", "'org.biopax.paxtools.io.SimpleIOHandler'", ")", "io", "=", "io_class", "(", "autoclass", "(", "'org.biopax.paxtools.model.BioPAXLevel'", ")", ".", "L3", ")", "try", ":", "file_is", "=", "autoclass", "(", "'java.io.FileInputStream'", ")", "(", "fname", ")", "except", "JavaException", ":", "logger", ".", "error", "(", "'Could not open data file %s'", "%", "fname", ")", "return", "try", ":", "biopax_model", "=", "io", ".", "convertFromOWL", "(", "file_is", ")", "except", "JavaException", "as", "e", ":", "logger", ".", "error", "(", "'Could not convert data file %s to BioPax model'", "%", "fname", ")", "logger", ".", "error", "(", "e", ")", "return", "file_is", ".", "close", "(", ")", "return", "biopax_model" ]
Return a BioPAX model object from an OWL file. Parameters ---------- fname : str The name of the OWL file containing the model. Returns ------- biopax_model : org.biopax.paxtools.model.Model A BioPAX model object (java object).
[ "Return", "a", "BioPAX", "model", "object", "from", "an", "OWL", "file", "." ]
79a70415832c5702d7a820c7c9ccc8e25010124b
https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/sources/biopax/pathway_commons_client.py#L123-L153
train
sorgerlab/indra
indra/sources/biopax/pathway_commons_client.py
model_to_owl
def model_to_owl(model, fname): """Save a BioPAX model object as an OWL file. Parameters ---------- model : org.biopax.paxtools.model.Model A BioPAX model object (java object). fname : str The name of the OWL file to save the model in. """ io_class = autoclass('org.biopax.paxtools.io.SimpleIOHandler') io = io_class(autoclass('org.biopax.paxtools.model.BioPAXLevel').L3) try: fileOS = autoclass('java.io.FileOutputStream')(fname) except JavaException: logger.error('Could not open data file %s' % fname) return l3_factory = autoclass('org.biopax.paxtools.model.BioPAXLevel').L3.getDefaultFactory() model_out = l3_factory.createModel() for r in model.getObjects().toArray(): model_out.add(r) io.convertToOWL(model_out, fileOS) fileOS.close()
python
def model_to_owl(model, fname): """Save a BioPAX model object as an OWL file. Parameters ---------- model : org.biopax.paxtools.model.Model A BioPAX model object (java object). fname : str The name of the OWL file to save the model in. """ io_class = autoclass('org.biopax.paxtools.io.SimpleIOHandler') io = io_class(autoclass('org.biopax.paxtools.model.BioPAXLevel').L3) try: fileOS = autoclass('java.io.FileOutputStream')(fname) except JavaException: logger.error('Could not open data file %s' % fname) return l3_factory = autoclass('org.biopax.paxtools.model.BioPAXLevel').L3.getDefaultFactory() model_out = l3_factory.createModel() for r in model.getObjects().toArray(): model_out.add(r) io.convertToOWL(model_out, fileOS) fileOS.close()
[ "def", "model_to_owl", "(", "model", ",", "fname", ")", ":", "io_class", "=", "autoclass", "(", "'org.biopax.paxtools.io.SimpleIOHandler'", ")", "io", "=", "io_class", "(", "autoclass", "(", "'org.biopax.paxtools.model.BioPAXLevel'", ")", ".", "L3", ")", "try", ":", "fileOS", "=", "autoclass", "(", "'java.io.FileOutputStream'", ")", "(", "fname", ")", "except", "JavaException", ":", "logger", ".", "error", "(", "'Could not open data file %s'", "%", "fname", ")", "return", "l3_factory", "=", "autoclass", "(", "'org.biopax.paxtools.model.BioPAXLevel'", ")", ".", "L3", ".", "getDefaultFactory", "(", ")", "model_out", "=", "l3_factory", ".", "createModel", "(", ")", "for", "r", "in", "model", ".", "getObjects", "(", ")", ".", "toArray", "(", ")", ":", "model_out", ".", "add", "(", "r", ")", "io", ".", "convertToOWL", "(", "model_out", ",", "fileOS", ")", "fileOS", ".", "close", "(", ")" ]
Save a BioPAX model object as an OWL file. Parameters ---------- model : org.biopax.paxtools.model.Model A BioPAX model object (java object). fname : str The name of the OWL file to save the model in.
[ "Save", "a", "BioPAX", "model", "object", "as", "an", "OWL", "file", "." ]
79a70415832c5702d7a820c7c9ccc8e25010124b
https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/sources/biopax/pathway_commons_client.py#L155-L179
train
sorgerlab/indra
indra/assemblers/cyjs/assembler.py
CyJSAssembler.make_model
def make_model(self, *args, **kwargs): """Assemble a Cytoscape JS network from INDRA Statements. This method assembles a Cytoscape JS network from the set of INDRA Statements added to the assembler. Parameters ---------- grouping : bool If True, the nodes with identical incoming and outgoing edges are grouped and the corresponding edges are merged. Returns ------- cyjs_str : str The json serialized Cytoscape JS model. """ for stmt in self.statements: if isinstance(stmt, RegulateActivity): self._add_regulate_activity(stmt) elif isinstance(stmt, RegulateAmount): self._add_regulate_amount(stmt) elif isinstance(stmt, Modification): self._add_modification(stmt) elif isinstance(stmt, SelfModification): self._add_selfmodification(stmt) elif isinstance(stmt, Gef): self._add_gef(stmt) elif isinstance(stmt, Gap): self._add_gap(stmt) elif isinstance(stmt, Complex): self._add_complex(stmt) else: logger.warning('Unhandled statement type: %s' % stmt.__class__.__name__) if kwargs.get('grouping'): self._group_nodes() self._group_edges() return self.print_cyjs_graph()
python
def make_model(self, *args, **kwargs): """Assemble a Cytoscape JS network from INDRA Statements. This method assembles a Cytoscape JS network from the set of INDRA Statements added to the assembler. Parameters ---------- grouping : bool If True, the nodes with identical incoming and outgoing edges are grouped and the corresponding edges are merged. Returns ------- cyjs_str : str The json serialized Cytoscape JS model. """ for stmt in self.statements: if isinstance(stmt, RegulateActivity): self._add_regulate_activity(stmt) elif isinstance(stmt, RegulateAmount): self._add_regulate_amount(stmt) elif isinstance(stmt, Modification): self._add_modification(stmt) elif isinstance(stmt, SelfModification): self._add_selfmodification(stmt) elif isinstance(stmt, Gef): self._add_gef(stmt) elif isinstance(stmt, Gap): self._add_gap(stmt) elif isinstance(stmt, Complex): self._add_complex(stmt) else: logger.warning('Unhandled statement type: %s' % stmt.__class__.__name__) if kwargs.get('grouping'): self._group_nodes() self._group_edges() return self.print_cyjs_graph()
[ "def", "make_model", "(", "self", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "for", "stmt", "in", "self", ".", "statements", ":", "if", "isinstance", "(", "stmt", ",", "RegulateActivity", ")", ":", "self", ".", "_add_regulate_activity", "(", "stmt", ")", "elif", "isinstance", "(", "stmt", ",", "RegulateAmount", ")", ":", "self", ".", "_add_regulate_amount", "(", "stmt", ")", "elif", "isinstance", "(", "stmt", ",", "Modification", ")", ":", "self", ".", "_add_modification", "(", "stmt", ")", "elif", "isinstance", "(", "stmt", ",", "SelfModification", ")", ":", "self", ".", "_add_selfmodification", "(", "stmt", ")", "elif", "isinstance", "(", "stmt", ",", "Gef", ")", ":", "self", ".", "_add_gef", "(", "stmt", ")", "elif", "isinstance", "(", "stmt", ",", "Gap", ")", ":", "self", ".", "_add_gap", "(", "stmt", ")", "elif", "isinstance", "(", "stmt", ",", "Complex", ")", ":", "self", ".", "_add_complex", "(", "stmt", ")", "else", ":", "logger", ".", "warning", "(", "'Unhandled statement type: %s'", "%", "stmt", ".", "__class__", ".", "__name__", ")", "if", "kwargs", ".", "get", "(", "'grouping'", ")", ":", "self", ".", "_group_nodes", "(", ")", "self", ".", "_group_edges", "(", ")", "return", "self", ".", "print_cyjs_graph", "(", ")" ]
Assemble a Cytoscape JS network from INDRA Statements. This method assembles a Cytoscape JS network from the set of INDRA Statements added to the assembler. Parameters ---------- grouping : bool If True, the nodes with identical incoming and outgoing edges are grouped and the corresponding edges are merged. Returns ------- cyjs_str : str The json serialized Cytoscape JS model.
[ "Assemble", "a", "Cytoscape", "JS", "network", "from", "INDRA", "Statements", "." ]
79a70415832c5702d7a820c7c9ccc8e25010124b
https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/assemblers/cyjs/assembler.py#L69-L107
train
sorgerlab/indra
indra/assemblers/cyjs/assembler.py
CyJSAssembler.get_gene_names
def get_gene_names(self): """Gather gene names of all nodes and node members""" # Collect all gene names in network gene_names = [] for node in self._nodes: members = node['data'].get('members') if members: gene_names += list(members.keys()) else: if node['data']['name'].startswith('Group'): continue gene_names.append(node['data']['name']) self._gene_names = gene_names
python
def get_gene_names(self): """Gather gene names of all nodes and node members""" # Collect all gene names in network gene_names = [] for node in self._nodes: members = node['data'].get('members') if members: gene_names += list(members.keys()) else: if node['data']['name'].startswith('Group'): continue gene_names.append(node['data']['name']) self._gene_names = gene_names
[ "def", "get_gene_names", "(", "self", ")", ":", "# Collect all gene names in network", "gene_names", "=", "[", "]", "for", "node", "in", "self", ".", "_nodes", ":", "members", "=", "node", "[", "'data'", "]", ".", "get", "(", "'members'", ")", "if", "members", ":", "gene_names", "+=", "list", "(", "members", ".", "keys", "(", ")", ")", "else", ":", "if", "node", "[", "'data'", "]", "[", "'name'", "]", ".", "startswith", "(", "'Group'", ")", ":", "continue", "gene_names", ".", "append", "(", "node", "[", "'data'", "]", "[", "'name'", "]", ")", "self", ".", "_gene_names", "=", "gene_names" ]
Gather gene names of all nodes and node members
[ "Gather", "gene", "names", "of", "all", "nodes", "and", "node", "members" ]
79a70415832c5702d7a820c7c9ccc8e25010124b
https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/assemblers/cyjs/assembler.py#L109-L121
train
sorgerlab/indra
indra/assemblers/cyjs/assembler.py
CyJSAssembler.set_CCLE_context
def set_CCLE_context(self, cell_types): """Set context of all nodes and node members from CCLE.""" self.get_gene_names() # Get expression and mutations from context client exp_values = \ context_client.get_protein_expression(self._gene_names, cell_types) mut_values = \ context_client.get_mutations(self._gene_names, cell_types) # Make a dict of presence/absence of mutations muts = {cell_line: {} for cell_line in cell_types} for cell_line, entries in mut_values.items(): if entries is not None: for gene, mutations in entries.items(): if mutations: muts[cell_line][gene] = 1 else: muts[cell_line][gene] = 0 # Create bins for the exp values # because colorbrewer only does 3-9 bins and I don't feel like # reinventing color scheme theory, this will only bin 3-9 bins def bin_exp(expression_dict): d = expression_dict exp_values = [] for line in d: for gene in d[line]: val = d[line][gene] if val is not None: exp_values.append(val) thr_dict = {} for n_bins in range(3, 10): bin_thr = np.histogram(np.log10(exp_values), n_bins)[1][1:] thr_dict[n_bins] = bin_thr # this dict isn't yet binned, that happens in the loop binned_dict = {x: deepcopy(expression_dict) for x in range(3, 10)} for n_bins in binned_dict: for line in binned_dict[n_bins]: for gene in binned_dict[n_bins][line]: # last bin is reserved for None if binned_dict[n_bins][line][gene] is None: binned_dict[n_bins][line][gene] = n_bins else: val = np.log10(binned_dict[n_bins][line][gene]) for thr_idx, thr in enumerate(thr_dict[n_bins]): if val <= thr: binned_dict[n_bins][line][gene] = thr_idx break return binned_dict binned_exp = bin_exp(exp_values) context = {'bin_expression': binned_exp, 'mutation': muts} self._context['CCLE'] = context
python
def set_CCLE_context(self, cell_types): """Set context of all nodes and node members from CCLE.""" self.get_gene_names() # Get expression and mutations from context client exp_values = \ context_client.get_protein_expression(self._gene_names, cell_types) mut_values = \ context_client.get_mutations(self._gene_names, cell_types) # Make a dict of presence/absence of mutations muts = {cell_line: {} for cell_line in cell_types} for cell_line, entries in mut_values.items(): if entries is not None: for gene, mutations in entries.items(): if mutations: muts[cell_line][gene] = 1 else: muts[cell_line][gene] = 0 # Create bins for the exp values # because colorbrewer only does 3-9 bins and I don't feel like # reinventing color scheme theory, this will only bin 3-9 bins def bin_exp(expression_dict): d = expression_dict exp_values = [] for line in d: for gene in d[line]: val = d[line][gene] if val is not None: exp_values.append(val) thr_dict = {} for n_bins in range(3, 10): bin_thr = np.histogram(np.log10(exp_values), n_bins)[1][1:] thr_dict[n_bins] = bin_thr # this dict isn't yet binned, that happens in the loop binned_dict = {x: deepcopy(expression_dict) for x in range(3, 10)} for n_bins in binned_dict: for line in binned_dict[n_bins]: for gene in binned_dict[n_bins][line]: # last bin is reserved for None if binned_dict[n_bins][line][gene] is None: binned_dict[n_bins][line][gene] = n_bins else: val = np.log10(binned_dict[n_bins][line][gene]) for thr_idx, thr in enumerate(thr_dict[n_bins]): if val <= thr: binned_dict[n_bins][line][gene] = thr_idx break return binned_dict binned_exp = bin_exp(exp_values) context = {'bin_expression': binned_exp, 'mutation': muts} self._context['CCLE'] = context
[ "def", "set_CCLE_context", "(", "self", ",", "cell_types", ")", ":", "self", ".", "get_gene_names", "(", ")", "# Get expression and mutations from context client", "exp_values", "=", "context_client", ".", "get_protein_expression", "(", "self", ".", "_gene_names", ",", "cell_types", ")", "mut_values", "=", "context_client", ".", "get_mutations", "(", "self", ".", "_gene_names", ",", "cell_types", ")", "# Make a dict of presence/absence of mutations", "muts", "=", "{", "cell_line", ":", "{", "}", "for", "cell_line", "in", "cell_types", "}", "for", "cell_line", ",", "entries", "in", "mut_values", ".", "items", "(", ")", ":", "if", "entries", "is", "not", "None", ":", "for", "gene", ",", "mutations", "in", "entries", ".", "items", "(", ")", ":", "if", "mutations", ":", "muts", "[", "cell_line", "]", "[", "gene", "]", "=", "1", "else", ":", "muts", "[", "cell_line", "]", "[", "gene", "]", "=", "0", "# Create bins for the exp values", "# because colorbrewer only does 3-9 bins and I don't feel like", "# reinventing color scheme theory, this will only bin 3-9 bins", "def", "bin_exp", "(", "expression_dict", ")", ":", "d", "=", "expression_dict", "exp_values", "=", "[", "]", "for", "line", "in", "d", ":", "for", "gene", "in", "d", "[", "line", "]", ":", "val", "=", "d", "[", "line", "]", "[", "gene", "]", "if", "val", "is", "not", "None", ":", "exp_values", ".", "append", "(", "val", ")", "thr_dict", "=", "{", "}", "for", "n_bins", "in", "range", "(", "3", ",", "10", ")", ":", "bin_thr", "=", "np", ".", "histogram", "(", "np", ".", "log10", "(", "exp_values", ")", ",", "n_bins", ")", "[", "1", "]", "[", "1", ":", "]", "thr_dict", "[", "n_bins", "]", "=", "bin_thr", "# this dict isn't yet binned, that happens in the loop", "binned_dict", "=", "{", "x", ":", "deepcopy", "(", "expression_dict", ")", "for", "x", "in", "range", "(", "3", ",", "10", ")", "}", "for", "n_bins", "in", "binned_dict", ":", "for", "line", "in", "binned_dict", "[", "n_bins", "]", ":", "for", "gene", "in", "binned_dict", "[", "n_bins", "]", "[", "line", "]", ":", "# last bin is reserved for None", "if", "binned_dict", "[", "n_bins", "]", "[", "line", "]", "[", "gene", "]", "is", "None", ":", "binned_dict", "[", "n_bins", "]", "[", "line", "]", "[", "gene", "]", "=", "n_bins", "else", ":", "val", "=", "np", ".", "log10", "(", "binned_dict", "[", "n_bins", "]", "[", "line", "]", "[", "gene", "]", ")", "for", "thr_idx", ",", "thr", "in", "enumerate", "(", "thr_dict", "[", "n_bins", "]", ")", ":", "if", "val", "<=", "thr", ":", "binned_dict", "[", "n_bins", "]", "[", "line", "]", "[", "gene", "]", "=", "thr_idx", "break", "return", "binned_dict", "binned_exp", "=", "bin_exp", "(", "exp_values", ")", "context", "=", "{", "'bin_expression'", ":", "binned_exp", ",", "'mutation'", ":", "muts", "}", "self", ".", "_context", "[", "'CCLE'", "]", "=", "context" ]
Set context of all nodes and node members from CCLE.
[ "Set", "context", "of", "all", "nodes", "and", "node", "members", "from", "CCLE", "." ]
79a70415832c5702d7a820c7c9ccc8e25010124b
https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/assemblers/cyjs/assembler.py#L123-L177
train
sorgerlab/indra
indra/assemblers/cyjs/assembler.py
CyJSAssembler.print_cyjs_graph
def print_cyjs_graph(self): """Return the assembled Cytoscape JS network as a json string. Returns ------- cyjs_str : str A json string representation of the Cytoscape JS network. """ cyjs_dict = {'edges': self._edges, 'nodes': self._nodes} cyjs_str = json.dumps(cyjs_dict, indent=1, sort_keys=True) return cyjs_str
python
def print_cyjs_graph(self): """Return the assembled Cytoscape JS network as a json string. Returns ------- cyjs_str : str A json string representation of the Cytoscape JS network. """ cyjs_dict = {'edges': self._edges, 'nodes': self._nodes} cyjs_str = json.dumps(cyjs_dict, indent=1, sort_keys=True) return cyjs_str
[ "def", "print_cyjs_graph", "(", "self", ")", ":", "cyjs_dict", "=", "{", "'edges'", ":", "self", ".", "_edges", ",", "'nodes'", ":", "self", ".", "_nodes", "}", "cyjs_str", "=", "json", ".", "dumps", "(", "cyjs_dict", ",", "indent", "=", "1", ",", "sort_keys", "=", "True", ")", "return", "cyjs_str" ]
Return the assembled Cytoscape JS network as a json string. Returns ------- cyjs_str : str A json string representation of the Cytoscape JS network.
[ "Return", "the", "assembled", "Cytoscape", "JS", "network", "as", "a", "json", "string", "." ]
79a70415832c5702d7a820c7c9ccc8e25010124b
https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/assemblers/cyjs/assembler.py#L179-L189
train
sorgerlab/indra
indra/assemblers/cyjs/assembler.py
CyJSAssembler.print_cyjs_context
def print_cyjs_context(self): """Return a list of node names and their respective context. Returns ------- cyjs_str_context : str A json string of the context dictionary. e.g. - {'CCLE' : {'bin_expression' : {'cell_line1' : {'gene1':'val1'} }, 'bin_expression' : {'cell_line' : {'gene1':'val1'} } }} """ context = self._context context_str = json.dumps(context, indent=1, sort_keys=True) return context_str
python
def print_cyjs_context(self): """Return a list of node names and their respective context. Returns ------- cyjs_str_context : str A json string of the context dictionary. e.g. - {'CCLE' : {'bin_expression' : {'cell_line1' : {'gene1':'val1'} }, 'bin_expression' : {'cell_line' : {'gene1':'val1'} } }} """ context = self._context context_str = json.dumps(context, indent=1, sort_keys=True) return context_str
[ "def", "print_cyjs_context", "(", "self", ")", ":", "context", "=", "self", ".", "_context", "context_str", "=", "json", ".", "dumps", "(", "context", ",", "indent", "=", "1", ",", "sort_keys", "=", "True", ")", "return", "context_str" ]
Return a list of node names and their respective context. Returns ------- cyjs_str_context : str A json string of the context dictionary. e.g. - {'CCLE' : {'bin_expression' : {'cell_line1' : {'gene1':'val1'} }, 'bin_expression' : {'cell_line' : {'gene1':'val1'} } }}
[ "Return", "a", "list", "of", "node", "names", "and", "their", "respective", "context", "." ]
79a70415832c5702d7a820c7c9ccc8e25010124b
https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/assemblers/cyjs/assembler.py#L191-L204
train
sorgerlab/indra
indra/assemblers/cyjs/assembler.py
CyJSAssembler.save_json
def save_json(self, fname_prefix='model'): """Save the assembled Cytoscape JS network in a json file. This method saves two files based on the file name prefix given. It saves one json file with the graph itself, and another json file with the context. Parameters ---------- fname_prefix : Optional[str] The prefix of the files to save the Cytoscape JS network and context to. Default: model """ cyjs_str = self.print_cyjs_graph() # outputs the graph with open(fname_prefix + '.json', 'wb') as fh: fh.write(cyjs_str.encode('utf-8')) # outputs the context of graph nodes context_str = self.print_cyjs_context() with open(fname_prefix + '_context.json', 'wb') as fh: fh.write(context_str.encode('utf-8'))
python
def save_json(self, fname_prefix='model'): """Save the assembled Cytoscape JS network in a json file. This method saves two files based on the file name prefix given. It saves one json file with the graph itself, and another json file with the context. Parameters ---------- fname_prefix : Optional[str] The prefix of the files to save the Cytoscape JS network and context to. Default: model """ cyjs_str = self.print_cyjs_graph() # outputs the graph with open(fname_prefix + '.json', 'wb') as fh: fh.write(cyjs_str.encode('utf-8')) # outputs the context of graph nodes context_str = self.print_cyjs_context() with open(fname_prefix + '_context.json', 'wb') as fh: fh.write(context_str.encode('utf-8'))
[ "def", "save_json", "(", "self", ",", "fname_prefix", "=", "'model'", ")", ":", "cyjs_str", "=", "self", ".", "print_cyjs_graph", "(", ")", "# outputs the graph", "with", "open", "(", "fname_prefix", "+", "'.json'", ",", "'wb'", ")", "as", "fh", ":", "fh", ".", "write", "(", "cyjs_str", ".", "encode", "(", "'utf-8'", ")", ")", "# outputs the context of graph nodes", "context_str", "=", "self", ".", "print_cyjs_context", "(", ")", "with", "open", "(", "fname_prefix", "+", "'_context.json'", ",", "'wb'", ")", "as", "fh", ":", "fh", ".", "write", "(", "context_str", ".", "encode", "(", "'utf-8'", ")", ")" ]
Save the assembled Cytoscape JS network in a json file. This method saves two files based on the file name prefix given. It saves one json file with the graph itself, and another json file with the context. Parameters ---------- fname_prefix : Optional[str] The prefix of the files to save the Cytoscape JS network and context to. Default: model
[ "Save", "the", "assembled", "Cytoscape", "JS", "network", "in", "a", "json", "file", "." ]
79a70415832c5702d7a820c7c9ccc8e25010124b
https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/assemblers/cyjs/assembler.py#L206-L227
train
sorgerlab/indra
indra/assemblers/cyjs/assembler.py
CyJSAssembler.save_model
def save_model(self, fname='model.js'): """Save the assembled Cytoscape JS network in a js file. Parameters ---------- file_name : Optional[str] The name of the file to save the Cytoscape JS network to. Default: model.js """ exp_colorscale_str = json.dumps(self._exp_colorscale) mut_colorscale_str = json.dumps(self._mut_colorscale) cyjs_dict = {'edges': self._edges, 'nodes': self._nodes} model_str = json.dumps(cyjs_dict, indent=1, sort_keys=True) model_dict = {'exp_colorscale_str': exp_colorscale_str, 'mut_colorscale_str': mut_colorscale_str, 'model_elements_str': model_str} s = '' s += 'var exp_colorscale = %s;\n' % model_dict['exp_colorscale_str'] s += 'var mut_colorscale = %s;\n' % model_dict['mut_colorscale_str'] s += 'var model_elements = %s;\n' % model_dict['model_elements_str'] with open(fname, 'wb') as fh: fh.write(s.encode('utf-8'))
python
def save_model(self, fname='model.js'): """Save the assembled Cytoscape JS network in a js file. Parameters ---------- file_name : Optional[str] The name of the file to save the Cytoscape JS network to. Default: model.js """ exp_colorscale_str = json.dumps(self._exp_colorscale) mut_colorscale_str = json.dumps(self._mut_colorscale) cyjs_dict = {'edges': self._edges, 'nodes': self._nodes} model_str = json.dumps(cyjs_dict, indent=1, sort_keys=True) model_dict = {'exp_colorscale_str': exp_colorscale_str, 'mut_colorscale_str': mut_colorscale_str, 'model_elements_str': model_str} s = '' s += 'var exp_colorscale = %s;\n' % model_dict['exp_colorscale_str'] s += 'var mut_colorscale = %s;\n' % model_dict['mut_colorscale_str'] s += 'var model_elements = %s;\n' % model_dict['model_elements_str'] with open(fname, 'wb') as fh: fh.write(s.encode('utf-8'))
[ "def", "save_model", "(", "self", ",", "fname", "=", "'model.js'", ")", ":", "exp_colorscale_str", "=", "json", ".", "dumps", "(", "self", ".", "_exp_colorscale", ")", "mut_colorscale_str", "=", "json", ".", "dumps", "(", "self", ".", "_mut_colorscale", ")", "cyjs_dict", "=", "{", "'edges'", ":", "self", ".", "_edges", ",", "'nodes'", ":", "self", ".", "_nodes", "}", "model_str", "=", "json", ".", "dumps", "(", "cyjs_dict", ",", "indent", "=", "1", ",", "sort_keys", "=", "True", ")", "model_dict", "=", "{", "'exp_colorscale_str'", ":", "exp_colorscale_str", ",", "'mut_colorscale_str'", ":", "mut_colorscale_str", ",", "'model_elements_str'", ":", "model_str", "}", "s", "=", "''", "s", "+=", "'var exp_colorscale = %s;\\n'", "%", "model_dict", "[", "'exp_colorscale_str'", "]", "s", "+=", "'var mut_colorscale = %s;\\n'", "%", "model_dict", "[", "'mut_colorscale_str'", "]", "s", "+=", "'var model_elements = %s;\\n'", "%", "model_dict", "[", "'model_elements_str'", "]", "with", "open", "(", "fname", ",", "'wb'", ")", "as", "fh", ":", "fh", ".", "write", "(", "s", ".", "encode", "(", "'utf-8'", ")", ")" ]
Save the assembled Cytoscape JS network in a js file. Parameters ---------- file_name : Optional[str] The name of the file to save the Cytoscape JS network to. Default: model.js
[ "Save", "the", "assembled", "Cytoscape", "JS", "network", "in", "a", "js", "file", "." ]
79a70415832c5702d7a820c7c9ccc8e25010124b
https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/assemblers/cyjs/assembler.py#L229-L250
train
sorgerlab/indra
indra/assemblers/cyjs/assembler.py
CyJSAssembler._get_edge_dict
def _get_edge_dict(self): """Return a dict of edges. Keyed tuples of (i, source, target, polarity) with lists of edge ids [id1, id2, ...] """ edge_dict = collections.defaultdict(lambda: []) if len(self._edges) > 0: for e in self._edges: data = e['data'] key = tuple([data['i'], data['source'], data['target'], data['polarity']]) edge_dict[key] = data['id'] return edge_dict
python
def _get_edge_dict(self): """Return a dict of edges. Keyed tuples of (i, source, target, polarity) with lists of edge ids [id1, id2, ...] """ edge_dict = collections.defaultdict(lambda: []) if len(self._edges) > 0: for e in self._edges: data = e['data'] key = tuple([data['i'], data['source'], data['target'], data['polarity']]) edge_dict[key] = data['id'] return edge_dict
[ "def", "_get_edge_dict", "(", "self", ")", ":", "edge_dict", "=", "collections", ".", "defaultdict", "(", "lambda", ":", "[", "]", ")", "if", "len", "(", "self", ".", "_edges", ")", ">", "0", ":", "for", "e", "in", "self", ".", "_edges", ":", "data", "=", "e", "[", "'data'", "]", "key", "=", "tuple", "(", "[", "data", "[", "'i'", "]", ",", "data", "[", "'source'", "]", ",", "data", "[", "'target'", "]", ",", "data", "[", "'polarity'", "]", "]", ")", "edge_dict", "[", "key", "]", "=", "data", "[", "'id'", "]", "return", "edge_dict" ]
Return a dict of edges. Keyed tuples of (i, source, target, polarity) with lists of edge ids [id1, id2, ...]
[ "Return", "a", "dict", "of", "edges", "." ]
79a70415832c5702d7a820c7c9ccc8e25010124b
https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/assemblers/cyjs/assembler.py#L282-L295
train
sorgerlab/indra
indra/assemblers/cyjs/assembler.py
CyJSAssembler._get_node_key
def _get_node_key(self, node_dict_item): """Return a tuple of sorted sources and targets given a node dict.""" s = tuple(sorted(node_dict_item['sources'])) t = tuple(sorted(node_dict_item['targets'])) return (s, t)
python
def _get_node_key(self, node_dict_item): """Return a tuple of sorted sources and targets given a node dict.""" s = tuple(sorted(node_dict_item['sources'])) t = tuple(sorted(node_dict_item['targets'])) return (s, t)
[ "def", "_get_node_key", "(", "self", ",", "node_dict_item", ")", ":", "s", "=", "tuple", "(", "sorted", "(", "node_dict_item", "[", "'sources'", "]", ")", ")", "t", "=", "tuple", "(", "sorted", "(", "node_dict_item", "[", "'targets'", "]", ")", ")", "return", "(", "s", ",", "t", ")" ]
Return a tuple of sorted sources and targets given a node dict.
[ "Return", "a", "tuple", "of", "sorted", "sources", "and", "targets", "given", "a", "node", "dict", "." ]
79a70415832c5702d7a820c7c9ccc8e25010124b
https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/assemblers/cyjs/assembler.py#L360-L364
train
sorgerlab/indra
indra/assemblers/cyjs/assembler.py
CyJSAssembler._get_node_groups
def _get_node_groups(self): """Return a list of node id lists that are topologically identical. First construct a node_dict which is keyed to the node id and has a value which is a dict with keys 'sources' and 'targets'. The 'sources' and 'targets' each contain a list of tuples (i, polarity, source) edge of the node. node_dict is then processed by _get_node_key() which returns a tuple of (s,t) where s,t are sorted tuples of the ids for the source and target nodes. (s,t) is then used as a key in node_key_dict where the values are the node ids. node_groups is restricted to groups greater than 1 node. """ node_dict = {node['data']['id']: {'sources': [], 'targets': []} for node in self._nodes} for edge in self._edges: # Add edge as a source for its target node edge_data = (edge['data']['i'], edge['data']['polarity'], edge['data']['source']) node_dict[edge['data']['target']]['sources'].append(edge_data) # Add edge as target for its source node edge_data = (edge['data']['i'], edge['data']['polarity'], edge['data']['target']) node_dict[edge['data']['source']]['targets'].append(edge_data) # Make a dictionary of nodes based on source/target as a key node_key_dict = collections.defaultdict(lambda: []) for node_id, node_d in node_dict.items(): key = self._get_node_key(node_d) node_key_dict[key].append(node_id) # Constrain the groups to ones that have more than 1 member node_groups = [g for g in node_key_dict.values() if (len(g) > 1)] return node_groups
python
def _get_node_groups(self): """Return a list of node id lists that are topologically identical. First construct a node_dict which is keyed to the node id and has a value which is a dict with keys 'sources' and 'targets'. The 'sources' and 'targets' each contain a list of tuples (i, polarity, source) edge of the node. node_dict is then processed by _get_node_key() which returns a tuple of (s,t) where s,t are sorted tuples of the ids for the source and target nodes. (s,t) is then used as a key in node_key_dict where the values are the node ids. node_groups is restricted to groups greater than 1 node. """ node_dict = {node['data']['id']: {'sources': [], 'targets': []} for node in self._nodes} for edge in self._edges: # Add edge as a source for its target node edge_data = (edge['data']['i'], edge['data']['polarity'], edge['data']['source']) node_dict[edge['data']['target']]['sources'].append(edge_data) # Add edge as target for its source node edge_data = (edge['data']['i'], edge['data']['polarity'], edge['data']['target']) node_dict[edge['data']['source']]['targets'].append(edge_data) # Make a dictionary of nodes based on source/target as a key node_key_dict = collections.defaultdict(lambda: []) for node_id, node_d in node_dict.items(): key = self._get_node_key(node_d) node_key_dict[key].append(node_id) # Constrain the groups to ones that have more than 1 member node_groups = [g for g in node_key_dict.values() if (len(g) > 1)] return node_groups
[ "def", "_get_node_groups", "(", "self", ")", ":", "node_dict", "=", "{", "node", "[", "'data'", "]", "[", "'id'", "]", ":", "{", "'sources'", ":", "[", "]", ",", "'targets'", ":", "[", "]", "}", "for", "node", "in", "self", ".", "_nodes", "}", "for", "edge", "in", "self", ".", "_edges", ":", "# Add edge as a source for its target node", "edge_data", "=", "(", "edge", "[", "'data'", "]", "[", "'i'", "]", ",", "edge", "[", "'data'", "]", "[", "'polarity'", "]", ",", "edge", "[", "'data'", "]", "[", "'source'", "]", ")", "node_dict", "[", "edge", "[", "'data'", "]", "[", "'target'", "]", "]", "[", "'sources'", "]", ".", "append", "(", "edge_data", ")", "# Add edge as target for its source node", "edge_data", "=", "(", "edge", "[", "'data'", "]", "[", "'i'", "]", ",", "edge", "[", "'data'", "]", "[", "'polarity'", "]", ",", "edge", "[", "'data'", "]", "[", "'target'", "]", ")", "node_dict", "[", "edge", "[", "'data'", "]", "[", "'source'", "]", "]", "[", "'targets'", "]", ".", "append", "(", "edge_data", ")", "# Make a dictionary of nodes based on source/target as a key", "node_key_dict", "=", "collections", ".", "defaultdict", "(", "lambda", ":", "[", "]", ")", "for", "node_id", ",", "node_d", "in", "node_dict", ".", "items", "(", ")", ":", "key", "=", "self", ".", "_get_node_key", "(", "node_d", ")", "node_key_dict", "[", "key", "]", ".", "append", "(", "node_id", ")", "# Constrain the groups to ones that have more than 1 member", "node_groups", "=", "[", "g", "for", "g", "in", "node_key_dict", ".", "values", "(", ")", "if", "(", "len", "(", "g", ")", ">", "1", ")", "]", "return", "node_groups" ]
Return a list of node id lists that are topologically identical. First construct a node_dict which is keyed to the node id and has a value which is a dict with keys 'sources' and 'targets'. The 'sources' and 'targets' each contain a list of tuples (i, polarity, source) edge of the node. node_dict is then processed by _get_node_key() which returns a tuple of (s,t) where s,t are sorted tuples of the ids for the source and target nodes. (s,t) is then used as a key in node_key_dict where the values are the node ids. node_groups is restricted to groups greater than 1 node.
[ "Return", "a", "list", "of", "node", "id", "lists", "that", "are", "topologically", "identical", "." ]
79a70415832c5702d7a820c7c9ccc8e25010124b
https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/assemblers/cyjs/assembler.py#L366-L396
train
sorgerlab/indra
indra/assemblers/cyjs/assembler.py
CyJSAssembler._group_edges
def _group_edges(self): """Group all edges that are topologically identical. This means that (i, source, target, polarity) are the same, then sets edges on parent (i.e. - group) nodes to 'Virtual' and creates a new edge to represent all of them. """ # edit edges on parent nodes and make new edges for them edges_to_add = [[], []] # [group_edges, uuid_lists] for e in self._edges: new_edge = deepcopy(e) new_edge['data'].pop('id', None) uuid_list = new_edge['data'].pop('uuid_list', []) # Check if edge source or target are contained in a parent # If source or target in parent edit edge # Nodes may only point within their container source = e['data']['source'] target = e['data']['target'] source_node = [x for x in self._nodes if x['data']['id'] == source][0] target_node = [x for x in self._nodes if x['data']['id'] == target][0] # If the source node is in a group, we change the source of this # edge to the group if source_node['data']['parent'] != '': new_edge['data']['source'] = source_node['data']['parent'] e['data']['i'] = 'Virtual' # If the targete node is in a group, we change the target of this # edge to the group if target_node['data']['parent'] != '': new_edge['data']['target'] = target_node['data']['parent'] e['data']['i'] = 'Virtual' if e['data']['i'] == 'Virtual': if new_edge not in edges_to_add[0]: edges_to_add[0].append(new_edge) edges_to_add[1].append(uuid_list) else: idx = edges_to_add[0].index(new_edge) edges_to_add[1][idx] += uuid_list edges_to_add[1][idx] = list(set(edges_to_add[1][idx])) for ze in zip(*edges_to_add): edge = ze[0] edge['data']['id'] = self._get_new_id() edge['data']['uuid_list'] = ze[1] self._edges.append(edge)
python
def _group_edges(self): """Group all edges that are topologically identical. This means that (i, source, target, polarity) are the same, then sets edges on parent (i.e. - group) nodes to 'Virtual' and creates a new edge to represent all of them. """ # edit edges on parent nodes and make new edges for them edges_to_add = [[], []] # [group_edges, uuid_lists] for e in self._edges: new_edge = deepcopy(e) new_edge['data'].pop('id', None) uuid_list = new_edge['data'].pop('uuid_list', []) # Check if edge source or target are contained in a parent # If source or target in parent edit edge # Nodes may only point within their container source = e['data']['source'] target = e['data']['target'] source_node = [x for x in self._nodes if x['data']['id'] == source][0] target_node = [x for x in self._nodes if x['data']['id'] == target][0] # If the source node is in a group, we change the source of this # edge to the group if source_node['data']['parent'] != '': new_edge['data']['source'] = source_node['data']['parent'] e['data']['i'] = 'Virtual' # If the targete node is in a group, we change the target of this # edge to the group if target_node['data']['parent'] != '': new_edge['data']['target'] = target_node['data']['parent'] e['data']['i'] = 'Virtual' if e['data']['i'] == 'Virtual': if new_edge not in edges_to_add[0]: edges_to_add[0].append(new_edge) edges_to_add[1].append(uuid_list) else: idx = edges_to_add[0].index(new_edge) edges_to_add[1][idx] += uuid_list edges_to_add[1][idx] = list(set(edges_to_add[1][idx])) for ze in zip(*edges_to_add): edge = ze[0] edge['data']['id'] = self._get_new_id() edge['data']['uuid_list'] = ze[1] self._edges.append(edge)
[ "def", "_group_edges", "(", "self", ")", ":", "# edit edges on parent nodes and make new edges for them", "edges_to_add", "=", "[", "[", "]", ",", "[", "]", "]", "# [group_edges, uuid_lists]", "for", "e", "in", "self", ".", "_edges", ":", "new_edge", "=", "deepcopy", "(", "e", ")", "new_edge", "[", "'data'", "]", ".", "pop", "(", "'id'", ",", "None", ")", "uuid_list", "=", "new_edge", "[", "'data'", "]", ".", "pop", "(", "'uuid_list'", ",", "[", "]", ")", "# Check if edge source or target are contained in a parent", "# If source or target in parent edit edge", "# Nodes may only point within their container", "source", "=", "e", "[", "'data'", "]", "[", "'source'", "]", "target", "=", "e", "[", "'data'", "]", "[", "'target'", "]", "source_node", "=", "[", "x", "for", "x", "in", "self", ".", "_nodes", "if", "x", "[", "'data'", "]", "[", "'id'", "]", "==", "source", "]", "[", "0", "]", "target_node", "=", "[", "x", "for", "x", "in", "self", ".", "_nodes", "if", "x", "[", "'data'", "]", "[", "'id'", "]", "==", "target", "]", "[", "0", "]", "# If the source node is in a group, we change the source of this", "# edge to the group", "if", "source_node", "[", "'data'", "]", "[", "'parent'", "]", "!=", "''", ":", "new_edge", "[", "'data'", "]", "[", "'source'", "]", "=", "source_node", "[", "'data'", "]", "[", "'parent'", "]", "e", "[", "'data'", "]", "[", "'i'", "]", "=", "'Virtual'", "# If the targete node is in a group, we change the target of this", "# edge to the group", "if", "target_node", "[", "'data'", "]", "[", "'parent'", "]", "!=", "''", ":", "new_edge", "[", "'data'", "]", "[", "'target'", "]", "=", "target_node", "[", "'data'", "]", "[", "'parent'", "]", "e", "[", "'data'", "]", "[", "'i'", "]", "=", "'Virtual'", "if", "e", "[", "'data'", "]", "[", "'i'", "]", "==", "'Virtual'", ":", "if", "new_edge", "not", "in", "edges_to_add", "[", "0", "]", ":", "edges_to_add", "[", "0", "]", ".", "append", "(", "new_edge", ")", "edges_to_add", "[", "1", "]", ".", "append", "(", "uuid_list", ")", "else", ":", "idx", "=", "edges_to_add", "[", "0", "]", ".", "index", "(", "new_edge", ")", "edges_to_add", "[", "1", "]", "[", "idx", "]", "+=", "uuid_list", "edges_to_add", "[", "1", "]", "[", "idx", "]", "=", "list", "(", "set", "(", "edges_to_add", "[", "1", "]", "[", "idx", "]", ")", ")", "for", "ze", "in", "zip", "(", "*", "edges_to_add", ")", ":", "edge", "=", "ze", "[", "0", "]", "edge", "[", "'data'", "]", "[", "'id'", "]", "=", "self", ".", "_get_new_id", "(", ")", "edge", "[", "'data'", "]", "[", "'uuid_list'", "]", "=", "ze", "[", "1", "]", "self", ".", "_edges", ".", "append", "(", "edge", ")" ]
Group all edges that are topologically identical. This means that (i, source, target, polarity) are the same, then sets edges on parent (i.e. - group) nodes to 'Virtual' and creates a new edge to represent all of them.
[ "Group", "all", "edges", "that", "are", "topologically", "identical", "." ]
79a70415832c5702d7a820c7c9ccc8e25010124b
https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/assemblers/cyjs/assembler.py#L398-L442
train
sorgerlab/indra
indra/sources/trrust/processor.py
make_stmt
def make_stmt(stmt_cls, tf_agent, target_agent, pmid): """Return a Statement based on its type, agents, and PMID.""" ev = Evidence(source_api='trrust', pmid=pmid) return stmt_cls(deepcopy(tf_agent), deepcopy(target_agent), evidence=[ev])
python
def make_stmt(stmt_cls, tf_agent, target_agent, pmid): """Return a Statement based on its type, agents, and PMID.""" ev = Evidence(source_api='trrust', pmid=pmid) return stmt_cls(deepcopy(tf_agent), deepcopy(target_agent), evidence=[ev])
[ "def", "make_stmt", "(", "stmt_cls", ",", "tf_agent", ",", "target_agent", ",", "pmid", ")", ":", "ev", "=", "Evidence", "(", "source_api", "=", "'trrust'", ",", "pmid", "=", "pmid", ")", "return", "stmt_cls", "(", "deepcopy", "(", "tf_agent", ")", ",", "deepcopy", "(", "target_agent", ")", ",", "evidence", "=", "[", "ev", "]", ")" ]
Return a Statement based on its type, agents, and PMID.
[ "Return", "a", "Statement", "based", "on", "its", "type", "agents", "and", "PMID", "." ]
79a70415832c5702d7a820c7c9ccc8e25010124b
https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/sources/trrust/processor.py#L37-L41
train
sorgerlab/indra
indra/sources/trrust/processor.py
get_grounded_agent
def get_grounded_agent(gene_name): """Return a grounded Agent based on an HGNC symbol.""" db_refs = {'TEXT': gene_name} if gene_name in hgnc_map: gene_name = hgnc_map[gene_name] hgnc_id = hgnc_client.get_hgnc_id(gene_name) if hgnc_id: db_refs['HGNC'] = hgnc_id up_id = hgnc_client.get_uniprot_id(hgnc_id) if up_id: db_refs['UP'] = up_id agent = Agent(gene_name, db_refs=db_refs) return agent
python
def get_grounded_agent(gene_name): """Return a grounded Agent based on an HGNC symbol.""" db_refs = {'TEXT': gene_name} if gene_name in hgnc_map: gene_name = hgnc_map[gene_name] hgnc_id = hgnc_client.get_hgnc_id(gene_name) if hgnc_id: db_refs['HGNC'] = hgnc_id up_id = hgnc_client.get_uniprot_id(hgnc_id) if up_id: db_refs['UP'] = up_id agent = Agent(gene_name, db_refs=db_refs) return agent
[ "def", "get_grounded_agent", "(", "gene_name", ")", ":", "db_refs", "=", "{", "'TEXT'", ":", "gene_name", "}", "if", "gene_name", "in", "hgnc_map", ":", "gene_name", "=", "hgnc_map", "[", "gene_name", "]", "hgnc_id", "=", "hgnc_client", ".", "get_hgnc_id", "(", "gene_name", ")", "if", "hgnc_id", ":", "db_refs", "[", "'HGNC'", "]", "=", "hgnc_id", "up_id", "=", "hgnc_client", ".", "get_uniprot_id", "(", "hgnc_id", ")", "if", "up_id", ":", "db_refs", "[", "'UP'", "]", "=", "up_id", "agent", "=", "Agent", "(", "gene_name", ",", "db_refs", "=", "db_refs", ")", "return", "agent" ]
Return a grounded Agent based on an HGNC symbol.
[ "Return", "a", "grounded", "Agent", "based", "on", "an", "HGNC", "symbol", "." ]
79a70415832c5702d7a820c7c9ccc8e25010124b
https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/sources/trrust/processor.py#L44-L56
train
sorgerlab/indra
indra/sources/trrust/processor.py
TrrustProcessor.extract_statements
def extract_statements(self): """Process the table to extract Statements.""" for _, (tf, target, effect, refs) in self.df.iterrows(): tf_agent = get_grounded_agent(tf) target_agent = get_grounded_agent(target) if effect == 'Activation': stmt_cls = IncreaseAmount elif effect == 'Repression': stmt_cls = DecreaseAmount else: continue pmids = refs.split(';') for pmid in pmids: stmt = make_stmt(stmt_cls, tf_agent, target_agent, pmid) self.statements.append(stmt)
python
def extract_statements(self): """Process the table to extract Statements.""" for _, (tf, target, effect, refs) in self.df.iterrows(): tf_agent = get_grounded_agent(tf) target_agent = get_grounded_agent(target) if effect == 'Activation': stmt_cls = IncreaseAmount elif effect == 'Repression': stmt_cls = DecreaseAmount else: continue pmids = refs.split(';') for pmid in pmids: stmt = make_stmt(stmt_cls, tf_agent, target_agent, pmid) self.statements.append(stmt)
[ "def", "extract_statements", "(", "self", ")", ":", "for", "_", ",", "(", "tf", ",", "target", ",", "effect", ",", "refs", ")", "in", "self", ".", "df", ".", "iterrows", "(", ")", ":", "tf_agent", "=", "get_grounded_agent", "(", "tf", ")", "target_agent", "=", "get_grounded_agent", "(", "target", ")", "if", "effect", "==", "'Activation'", ":", "stmt_cls", "=", "IncreaseAmount", "elif", "effect", "==", "'Repression'", ":", "stmt_cls", "=", "DecreaseAmount", "else", ":", "continue", "pmids", "=", "refs", ".", "split", "(", "';'", ")", "for", "pmid", "in", "pmids", ":", "stmt", "=", "make_stmt", "(", "stmt_cls", ",", "tf_agent", ",", "target_agent", ",", "pmid", ")", "self", ".", "statements", ".", "append", "(", "stmt", ")" ]
Process the table to extract Statements.
[ "Process", "the", "table", "to", "extract", "Statements", "." ]
79a70415832c5702d7a820c7c9ccc8e25010124b
https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/sources/trrust/processor.py#L20-L34
train
sorgerlab/indra
indra/tools/machine/machine.py
process_paper
def process_paper(model_name, pmid): """Process a paper with the given pubmed identifier Parameters ---------- model_name : str The directory for the INDRA machine pmid : str The PMID to process. Returns ------- rp : ReachProcessor A ReachProcessor containing the extracted INDRA Statements in rp.statements. txt_format : str A string representing the format of the text """ json_directory = os.path.join(model_name, 'jsons') json_path = os.path.join(json_directory, 'PMID%s.json' % pmid) if pmid.startswith('api') or pmid.startswith('PMID'): logger.warning('Invalid PMID: %s' % pmid) # If the paper has been read, use the json output file if os.path.exists(json_path): rp = reach.process_json_file(json_path, citation=pmid) txt_format = 'existing_json' # If the paper has not been read, download the text and read else: try: txt, txt_format = get_full_text(pmid, 'pmid') except Exception: return None, None if txt_format == 'pmc_oa_xml': rp = reach.process_nxml_str(txt, citation=pmid, offline=True, output_fname=json_path) elif txt_format == 'elsevier_xml': # Extract the raw text from the Elsevier XML txt = elsevier_client.extract_text(txt) rp = reach.process_text(txt, citation=pmid, offline=True, output_fname=json_path) elif txt_format == 'abstract': rp = reach.process_text(txt, citation=pmid, offline=True, output_fname=json_path) else: rp = None if rp is not None: check_pmids(rp.statements) return rp, txt_format
python
def process_paper(model_name, pmid): """Process a paper with the given pubmed identifier Parameters ---------- model_name : str The directory for the INDRA machine pmid : str The PMID to process. Returns ------- rp : ReachProcessor A ReachProcessor containing the extracted INDRA Statements in rp.statements. txt_format : str A string representing the format of the text """ json_directory = os.path.join(model_name, 'jsons') json_path = os.path.join(json_directory, 'PMID%s.json' % pmid) if pmid.startswith('api') or pmid.startswith('PMID'): logger.warning('Invalid PMID: %s' % pmid) # If the paper has been read, use the json output file if os.path.exists(json_path): rp = reach.process_json_file(json_path, citation=pmid) txt_format = 'existing_json' # If the paper has not been read, download the text and read else: try: txt, txt_format = get_full_text(pmid, 'pmid') except Exception: return None, None if txt_format == 'pmc_oa_xml': rp = reach.process_nxml_str(txt, citation=pmid, offline=True, output_fname=json_path) elif txt_format == 'elsevier_xml': # Extract the raw text from the Elsevier XML txt = elsevier_client.extract_text(txt) rp = reach.process_text(txt, citation=pmid, offline=True, output_fname=json_path) elif txt_format == 'abstract': rp = reach.process_text(txt, citation=pmid, offline=True, output_fname=json_path) else: rp = None if rp is not None: check_pmids(rp.statements) return rp, txt_format
[ "def", "process_paper", "(", "model_name", ",", "pmid", ")", ":", "json_directory", "=", "os", ".", "path", ".", "join", "(", "model_name", ",", "'jsons'", ")", "json_path", "=", "os", ".", "path", ".", "join", "(", "json_directory", ",", "'PMID%s.json'", "%", "pmid", ")", "if", "pmid", ".", "startswith", "(", "'api'", ")", "or", "pmid", ".", "startswith", "(", "'PMID'", ")", ":", "logger", ".", "warning", "(", "'Invalid PMID: %s'", "%", "pmid", ")", "# If the paper has been read, use the json output file", "if", "os", ".", "path", ".", "exists", "(", "json_path", ")", ":", "rp", "=", "reach", ".", "process_json_file", "(", "json_path", ",", "citation", "=", "pmid", ")", "txt_format", "=", "'existing_json'", "# If the paper has not been read, download the text and read", "else", ":", "try", ":", "txt", ",", "txt_format", "=", "get_full_text", "(", "pmid", ",", "'pmid'", ")", "except", "Exception", ":", "return", "None", ",", "None", "if", "txt_format", "==", "'pmc_oa_xml'", ":", "rp", "=", "reach", ".", "process_nxml_str", "(", "txt", ",", "citation", "=", "pmid", ",", "offline", "=", "True", ",", "output_fname", "=", "json_path", ")", "elif", "txt_format", "==", "'elsevier_xml'", ":", "# Extract the raw text from the Elsevier XML", "txt", "=", "elsevier_client", ".", "extract_text", "(", "txt", ")", "rp", "=", "reach", ".", "process_text", "(", "txt", ",", "citation", "=", "pmid", ",", "offline", "=", "True", ",", "output_fname", "=", "json_path", ")", "elif", "txt_format", "==", "'abstract'", ":", "rp", "=", "reach", ".", "process_text", "(", "txt", ",", "citation", "=", "pmid", ",", "offline", "=", "True", ",", "output_fname", "=", "json_path", ")", "else", ":", "rp", "=", "None", "if", "rp", "is", "not", "None", ":", "check_pmids", "(", "rp", ".", "statements", ")", "return", "rp", ",", "txt_format" ]
Process a paper with the given pubmed identifier Parameters ---------- model_name : str The directory for the INDRA machine pmid : str The PMID to process. Returns ------- rp : ReachProcessor A ReachProcessor containing the extracted INDRA Statements in rp.statements. txt_format : str A string representing the format of the text
[ "Process", "a", "paper", "with", "the", "given", "pubmed", "identifier" ]
79a70415832c5702d7a820c7c9ccc8e25010124b
https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/tools/machine/machine.py#L91-L140
train
sorgerlab/indra
indra/tools/machine/machine.py
process_paper_helper
def process_paper_helper(model_name, pmid, start_time_local): """Wraps processing a paper by either a local or remote service and caches any uncaught exceptions""" try: if not aws_available: rp, txt_format = process_paper(model_name, pmid) else: rp, txt_format = process_paper_aws(pmid, start_time_local) except: logger.exception('uncaught exception while processing %s', pmid) return None, None return rp, txt_format
python
def process_paper_helper(model_name, pmid, start_time_local): """Wraps processing a paper by either a local or remote service and caches any uncaught exceptions""" try: if not aws_available: rp, txt_format = process_paper(model_name, pmid) else: rp, txt_format = process_paper_aws(pmid, start_time_local) except: logger.exception('uncaught exception while processing %s', pmid) return None, None return rp, txt_format
[ "def", "process_paper_helper", "(", "model_name", ",", "pmid", ",", "start_time_local", ")", ":", "try", ":", "if", "not", "aws_available", ":", "rp", ",", "txt_format", "=", "process_paper", "(", "model_name", ",", "pmid", ")", "else", ":", "rp", ",", "txt_format", "=", "process_paper_aws", "(", "pmid", ",", "start_time_local", ")", "except", ":", "logger", ".", "exception", "(", "'uncaught exception while processing %s'", ",", "pmid", ")", "return", "None", ",", "None", "return", "rp", ",", "txt_format" ]
Wraps processing a paper by either a local or remote service and caches any uncaught exceptions
[ "Wraps", "processing", "a", "paper", "by", "either", "a", "local", "or", "remote", "service", "and", "caches", "any", "uncaught", "exceptions" ]
79a70415832c5702d7a820c7c9ccc8e25010124b
https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/tools/machine/machine.py#L196-L208
train
sorgerlab/indra
indra/sources/tas/api.py
_load_data
def _load_data(): """Load the data from the csv in data. The "gene_id" is the Entrez gene id, and the "approved_symbol" is the standard gene symbol. The "hms_id" is the LINCS ID for the drug. Returns ------- data : list[dict] A list of dicts of row values keyed by the column headers extracted from the csv file, described above. """ # Get the cwv reader object. csv_path = path.join(HERE, path.pardir, path.pardir, 'resources', DATAFILE_NAME) data_iter = list(read_unicode_csv(csv_path)) # Get the headers. headers = data_iter[0] # For some reason this heading is oddly formatted and inconsistent with the # rest, or with the usual key-style for dicts. headers[headers.index('Approved.Symbol')] = 'approved_symbol' return [{header: val for header, val in zip(headers, line)} for line in data_iter[1:]]
python
def _load_data(): """Load the data from the csv in data. The "gene_id" is the Entrez gene id, and the "approved_symbol" is the standard gene symbol. The "hms_id" is the LINCS ID for the drug. Returns ------- data : list[dict] A list of dicts of row values keyed by the column headers extracted from the csv file, described above. """ # Get the cwv reader object. csv_path = path.join(HERE, path.pardir, path.pardir, 'resources', DATAFILE_NAME) data_iter = list(read_unicode_csv(csv_path)) # Get the headers. headers = data_iter[0] # For some reason this heading is oddly formatted and inconsistent with the # rest, or with the usual key-style for dicts. headers[headers.index('Approved.Symbol')] = 'approved_symbol' return [{header: val for header, val in zip(headers, line)} for line in data_iter[1:]]
[ "def", "_load_data", "(", ")", ":", "# Get the cwv reader object.", "csv_path", "=", "path", ".", "join", "(", "HERE", ",", "path", ".", "pardir", ",", "path", ".", "pardir", ",", "'resources'", ",", "DATAFILE_NAME", ")", "data_iter", "=", "list", "(", "read_unicode_csv", "(", "csv_path", ")", ")", "# Get the headers.", "headers", "=", "data_iter", "[", "0", "]", "# For some reason this heading is oddly formatted and inconsistent with the", "# rest, or with the usual key-style for dicts.", "headers", "[", "headers", ".", "index", "(", "'Approved.Symbol'", ")", "]", "=", "'approved_symbol'", "return", "[", "{", "header", ":", "val", "for", "header", ",", "val", "in", "zip", "(", "headers", ",", "line", ")", "}", "for", "line", "in", "data_iter", "[", "1", ":", "]", "]" ]
Load the data from the csv in data. The "gene_id" is the Entrez gene id, and the "approved_symbol" is the standard gene symbol. The "hms_id" is the LINCS ID for the drug. Returns ------- data : list[dict] A list of dicts of row values keyed by the column headers extracted from the csv file, described above.
[ "Load", "the", "data", "from", "the", "csv", "in", "data", "." ]
79a70415832c5702d7a820c7c9ccc8e25010124b
https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/sources/tas/api.py#L15-L39
train
sorgerlab/indra
indra/sources/eidos/cli.py
run_eidos
def run_eidos(endpoint, *args): """Run a given enpoint of Eidos through the command line. Parameters ---------- endpoint : str The class within the Eidos package to run, for instance 'apps.ExtractFromDirectory' will run 'org.clulab.wm.eidos.apps.ExtractFromDirectory' *args Any further arguments to be passed as inputs to the class being run. """ # Make the full path to the class that should be used call_class = '%s.%s' % (eidos_package, endpoint) # Assemble the command line command and append optonal args cmd = ['java', '-Xmx12G', '-cp', eip, call_class] + list(args) logger.info('Running Eidos with command "%s"' % (' '.join(cmd))) subprocess.call(cmd)
python
def run_eidos(endpoint, *args): """Run a given enpoint of Eidos through the command line. Parameters ---------- endpoint : str The class within the Eidos package to run, for instance 'apps.ExtractFromDirectory' will run 'org.clulab.wm.eidos.apps.ExtractFromDirectory' *args Any further arguments to be passed as inputs to the class being run. """ # Make the full path to the class that should be used call_class = '%s.%s' % (eidos_package, endpoint) # Assemble the command line command and append optonal args cmd = ['java', '-Xmx12G', '-cp', eip, call_class] + list(args) logger.info('Running Eidos with command "%s"' % (' '.join(cmd))) subprocess.call(cmd)
[ "def", "run_eidos", "(", "endpoint", ",", "*", "args", ")", ":", "# Make the full path to the class that should be used", "call_class", "=", "'%s.%s'", "%", "(", "eidos_package", ",", "endpoint", ")", "# Assemble the command line command and append optonal args", "cmd", "=", "[", "'java'", ",", "'-Xmx12G'", ",", "'-cp'", ",", "eip", ",", "call_class", "]", "+", "list", "(", "args", ")", "logger", ".", "info", "(", "'Running Eidos with command \"%s\"'", "%", "(", "' '", ".", "join", "(", "cmd", ")", ")", ")", "subprocess", ".", "call", "(", "cmd", ")" ]
Run a given enpoint of Eidos through the command line. Parameters ---------- endpoint : str The class within the Eidos package to run, for instance 'apps.ExtractFromDirectory' will run 'org.clulab.wm.eidos.apps.ExtractFromDirectory' *args Any further arguments to be passed as inputs to the class being run.
[ "Run", "a", "given", "enpoint", "of", "Eidos", "through", "the", "command", "line", "." ]
79a70415832c5702d7a820c7c9ccc8e25010124b
https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/sources/eidos/cli.py#L20-L38
train
sorgerlab/indra
indra/sources/eidos/cli.py
extract_from_directory
def extract_from_directory(path_in, path_out): """Run Eidos on a set of text files in a folder. The output is produced in the specified output folder but the output files aren't processed by this function. Parameters ---------- path_in : str Path to an input folder with some text files path_out : str Path to an output folder in which Eidos places the output JSON-LD files """ path_in = os.path.realpath(os.path.expanduser(path_in)) path_out = os.path.realpath(os.path.expanduser(path_out)) logger.info('Running Eidos on input folder %s' % path_in) run_eidos('apps.ExtractFromDirectory', path_in, path_out)
python
def extract_from_directory(path_in, path_out): """Run Eidos on a set of text files in a folder. The output is produced in the specified output folder but the output files aren't processed by this function. Parameters ---------- path_in : str Path to an input folder with some text files path_out : str Path to an output folder in which Eidos places the output JSON-LD files """ path_in = os.path.realpath(os.path.expanduser(path_in)) path_out = os.path.realpath(os.path.expanduser(path_out)) logger.info('Running Eidos on input folder %s' % path_in) run_eidos('apps.ExtractFromDirectory', path_in, path_out)
[ "def", "extract_from_directory", "(", "path_in", ",", "path_out", ")", ":", "path_in", "=", "os", ".", "path", ".", "realpath", "(", "os", ".", "path", ".", "expanduser", "(", "path_in", ")", ")", "path_out", "=", "os", ".", "path", ".", "realpath", "(", "os", ".", "path", ".", "expanduser", "(", "path_out", ")", ")", "logger", ".", "info", "(", "'Running Eidos on input folder %s'", "%", "path_in", ")", "run_eidos", "(", "'apps.ExtractFromDirectory'", ",", "path_in", ",", "path_out", ")" ]
Run Eidos on a set of text files in a folder. The output is produced in the specified output folder but the output files aren't processed by this function. Parameters ---------- path_in : str Path to an input folder with some text files path_out : str Path to an output folder in which Eidos places the output JSON-LD files
[ "Run", "Eidos", "on", "a", "set", "of", "text", "files", "in", "a", "folder", "." ]
79a70415832c5702d7a820c7c9ccc8e25010124b
https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/sources/eidos/cli.py#L41-L58
train
sorgerlab/indra
indra/sources/eidos/cli.py
extract_and_process
def extract_and_process(path_in, path_out): """Run Eidos on a set of text files and process output with INDRA. The output is produced in the specified output folder but the output files aren't processed by this function. Parameters ---------- path_in : str Path to an input folder with some text files path_out : str Path to an output folder in which Eidos places the output JSON-LD files Returns ------- stmts : list[indra.statements.Statements] A list of INDRA Statements """ path_in = os.path.realpath(os.path.expanduser(path_in)) path_out = os.path.realpath(os.path.expanduser(path_out)) extract_from_directory(path_in, path_out) jsons = glob.glob(os.path.join(path_out, '*.jsonld')) logger.info('Found %d JSON-LD files to process in %s' % (len(jsons), path_out)) stmts = [] for json in jsons: ep = process_json_file(json) if ep: stmts += ep.statements return stmts
python
def extract_and_process(path_in, path_out): """Run Eidos on a set of text files and process output with INDRA. The output is produced in the specified output folder but the output files aren't processed by this function. Parameters ---------- path_in : str Path to an input folder with some text files path_out : str Path to an output folder in which Eidos places the output JSON-LD files Returns ------- stmts : list[indra.statements.Statements] A list of INDRA Statements """ path_in = os.path.realpath(os.path.expanduser(path_in)) path_out = os.path.realpath(os.path.expanduser(path_out)) extract_from_directory(path_in, path_out) jsons = glob.glob(os.path.join(path_out, '*.jsonld')) logger.info('Found %d JSON-LD files to process in %s' % (len(jsons), path_out)) stmts = [] for json in jsons: ep = process_json_file(json) if ep: stmts += ep.statements return stmts
[ "def", "extract_and_process", "(", "path_in", ",", "path_out", ")", ":", "path_in", "=", "os", ".", "path", ".", "realpath", "(", "os", ".", "path", ".", "expanduser", "(", "path_in", ")", ")", "path_out", "=", "os", ".", "path", ".", "realpath", "(", "os", ".", "path", ".", "expanduser", "(", "path_out", ")", ")", "extract_from_directory", "(", "path_in", ",", "path_out", ")", "jsons", "=", "glob", ".", "glob", "(", "os", ".", "path", ".", "join", "(", "path_out", ",", "'*.jsonld'", ")", ")", "logger", ".", "info", "(", "'Found %d JSON-LD files to process in %s'", "%", "(", "len", "(", "jsons", ")", ",", "path_out", ")", ")", "stmts", "=", "[", "]", "for", "json", "in", "jsons", ":", "ep", "=", "process_json_file", "(", "json", ")", "if", "ep", ":", "stmts", "+=", "ep", ".", "statements", "return", "stmts" ]
Run Eidos on a set of text files and process output with INDRA. The output is produced in the specified output folder but the output files aren't processed by this function. Parameters ---------- path_in : str Path to an input folder with some text files path_out : str Path to an output folder in which Eidos places the output JSON-LD files Returns ------- stmts : list[indra.statements.Statements] A list of INDRA Statements
[ "Run", "Eidos", "on", "a", "set", "of", "text", "files", "and", "process", "output", "with", "INDRA", "." ]
79a70415832c5702d7a820c7c9ccc8e25010124b
https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/sources/eidos/cli.py#L61-L91
train
sorgerlab/indra
indra/sources/indra_db_rest/api.py
get_statements
def get_statements(subject=None, object=None, agents=None, stmt_type=None, use_exact_type=False, persist=True, timeout=None, simple_response=False, ev_limit=10, best_first=True, tries=2, max_stmts=None): """Get a processor for the INDRA DB web API matching given agents and type. There are two types of responses available. You can just get a list of INDRA Statements, or you can get an IndraDBRestProcessor object, which allow Statements to be loaded in a background thread, providing a sample of the best* content available promptly in the sample_statements attribute, and populates the statements attribute when the paged load is complete. The latter should be used in all new code, and where convenient the prior should be converted to use the processor, as this option may be removed in the future. * In the sense of having the most supporting evidence. Parameters ---------- subject/object : str Optionally specify the subject and/or object of the statements in you wish to get from the database. By default, the namespace is assumed to be HGNC gene names, however you may specify another namespace by including `@<namespace>` at the end of the name string. For example, if you want to specify an agent by chebi, you could use `CHEBI:6801@CHEBI`, or if you wanted to use the HGNC id, you could use `6871@HGNC`. agents : list[str] A list of agents, specified in the same manner as subject and object, but without specifying their grammatical position. stmt_type : str Specify the types of interactions you are interested in, as indicated by the sub-classes of INDRA's Statements. This argument is *not* case sensitive. If the statement class given has sub-classes (e.g. RegulateAmount has IncreaseAmount and DecreaseAmount), then both the class itself, and its subclasses, will be queried, by default. If you do not want this behavior, set use_exact_type=True. Note that if max_stmts is set, it is possible only the exact statement type will be returned, as this is the first searched. The processor then cycles through the types, getting a page of results for each type and adding it to the quota, until the max number of statements is reached. use_exact_type : bool If stmt_type is given, and you only want to search for that specific statement type, set this to True. Default is False. persist : bool Default is True. When False, if a query comes back limited (not all results returned), just give up and pass along what was returned. Otherwise, make further queries to get the rest of the data (which may take some time). timeout : positive int or None If an int, block until the work is done and statements are retrieved, or until the timeout has expired, in which case the results so far will be returned in the response object, and further results will be added in a separate thread as they become available. If simple_response is True, all statements available will be returned. Otherwise (if None), block indefinitely until all statements are retrieved. Default is None. simple_response : bool If True, a simple list of statements is returned (thus block should also be True). If block is False, only the original sample will be returned (as though persist was False), until the statements are done loading, in which case the rest should appear in the list. This behavior is not encouraged. Default is False (which breaks backwards compatibility with usage of INDRA versions from before 1/22/2019). WE ENCOURAGE ALL NEW USE-CASES TO USE THE PROCESSOR, AS THIS FEATURE MAY BE REMOVED AT A LATER DATE. ev_limit : int or None Limit the amount of evidence returned per Statement. Default is 10. best_first : bool If True, the preassembled statements will be sorted by the amount of evidence they have, and those with the most evidence will be prioritized. When using `max_stmts`, this means you will get the "best" statements. If False, statements will be queried in arbitrary order. tries : int > 0 Set the number of times to try the query. The database often caches results, so if a query times out the first time, trying again after a timeout will often succeed fast enough to avoid a timeout. This can also help gracefully handle an unreliable connection, if you're willing to wait. Default is 2. max_stmts : int or None Select the maximum number of statements to return. When set less than 1000 the effect is much the same as setting persist to false, and will guarantee a faster response. Default is None. Returns ------- processor : :py:class:`IndraDBRestProcessor` An instance of the IndraDBRestProcessor, which has an attribute `statements` which will be populated when the query/queries are done. This is the default behavior, and is encouraged in all future cases, however a simple list of statements may be returned using the `simple_response` option described above. """ processor = IndraDBRestProcessor(subject, object, agents, stmt_type, use_exact_type, persist, timeout, ev_limit, best_first, tries, max_stmts) # Format the result appropriately. if simple_response: ret = processor.statements else: ret = processor return ret
python
def get_statements(subject=None, object=None, agents=None, stmt_type=None, use_exact_type=False, persist=True, timeout=None, simple_response=False, ev_limit=10, best_first=True, tries=2, max_stmts=None): """Get a processor for the INDRA DB web API matching given agents and type. There are two types of responses available. You can just get a list of INDRA Statements, or you can get an IndraDBRestProcessor object, which allow Statements to be loaded in a background thread, providing a sample of the best* content available promptly in the sample_statements attribute, and populates the statements attribute when the paged load is complete. The latter should be used in all new code, and where convenient the prior should be converted to use the processor, as this option may be removed in the future. * In the sense of having the most supporting evidence. Parameters ---------- subject/object : str Optionally specify the subject and/or object of the statements in you wish to get from the database. By default, the namespace is assumed to be HGNC gene names, however you may specify another namespace by including `@<namespace>` at the end of the name string. For example, if you want to specify an agent by chebi, you could use `CHEBI:6801@CHEBI`, or if you wanted to use the HGNC id, you could use `6871@HGNC`. agents : list[str] A list of agents, specified in the same manner as subject and object, but without specifying their grammatical position. stmt_type : str Specify the types of interactions you are interested in, as indicated by the sub-classes of INDRA's Statements. This argument is *not* case sensitive. If the statement class given has sub-classes (e.g. RegulateAmount has IncreaseAmount and DecreaseAmount), then both the class itself, and its subclasses, will be queried, by default. If you do not want this behavior, set use_exact_type=True. Note that if max_stmts is set, it is possible only the exact statement type will be returned, as this is the first searched. The processor then cycles through the types, getting a page of results for each type and adding it to the quota, until the max number of statements is reached. use_exact_type : bool If stmt_type is given, and you only want to search for that specific statement type, set this to True. Default is False. persist : bool Default is True. When False, if a query comes back limited (not all results returned), just give up and pass along what was returned. Otherwise, make further queries to get the rest of the data (which may take some time). timeout : positive int or None If an int, block until the work is done and statements are retrieved, or until the timeout has expired, in which case the results so far will be returned in the response object, and further results will be added in a separate thread as they become available. If simple_response is True, all statements available will be returned. Otherwise (if None), block indefinitely until all statements are retrieved. Default is None. simple_response : bool If True, a simple list of statements is returned (thus block should also be True). If block is False, only the original sample will be returned (as though persist was False), until the statements are done loading, in which case the rest should appear in the list. This behavior is not encouraged. Default is False (which breaks backwards compatibility with usage of INDRA versions from before 1/22/2019). WE ENCOURAGE ALL NEW USE-CASES TO USE THE PROCESSOR, AS THIS FEATURE MAY BE REMOVED AT A LATER DATE. ev_limit : int or None Limit the amount of evidence returned per Statement. Default is 10. best_first : bool If True, the preassembled statements will be sorted by the amount of evidence they have, and those with the most evidence will be prioritized. When using `max_stmts`, this means you will get the "best" statements. If False, statements will be queried in arbitrary order. tries : int > 0 Set the number of times to try the query. The database often caches results, so if a query times out the first time, trying again after a timeout will often succeed fast enough to avoid a timeout. This can also help gracefully handle an unreliable connection, if you're willing to wait. Default is 2. max_stmts : int or None Select the maximum number of statements to return. When set less than 1000 the effect is much the same as setting persist to false, and will guarantee a faster response. Default is None. Returns ------- processor : :py:class:`IndraDBRestProcessor` An instance of the IndraDBRestProcessor, which has an attribute `statements` which will be populated when the query/queries are done. This is the default behavior, and is encouraged in all future cases, however a simple list of statements may be returned using the `simple_response` option described above. """ processor = IndraDBRestProcessor(subject, object, agents, stmt_type, use_exact_type, persist, timeout, ev_limit, best_first, tries, max_stmts) # Format the result appropriately. if simple_response: ret = processor.statements else: ret = processor return ret
[ "def", "get_statements", "(", "subject", "=", "None", ",", "object", "=", "None", ",", "agents", "=", "None", ",", "stmt_type", "=", "None", ",", "use_exact_type", "=", "False", ",", "persist", "=", "True", ",", "timeout", "=", "None", ",", "simple_response", "=", "False", ",", "ev_limit", "=", "10", ",", "best_first", "=", "True", ",", "tries", "=", "2", ",", "max_stmts", "=", "None", ")", ":", "processor", "=", "IndraDBRestProcessor", "(", "subject", ",", "object", ",", "agents", ",", "stmt_type", ",", "use_exact_type", ",", "persist", ",", "timeout", ",", "ev_limit", ",", "best_first", ",", "tries", ",", "max_stmts", ")", "# Format the result appropriately.", "if", "simple_response", ":", "ret", "=", "processor", ".", "statements", "else", ":", "ret", "=", "processor", "return", "ret" ]
Get a processor for the INDRA DB web API matching given agents and type. There are two types of responses available. You can just get a list of INDRA Statements, or you can get an IndraDBRestProcessor object, which allow Statements to be loaded in a background thread, providing a sample of the best* content available promptly in the sample_statements attribute, and populates the statements attribute when the paged load is complete. The latter should be used in all new code, and where convenient the prior should be converted to use the processor, as this option may be removed in the future. * In the sense of having the most supporting evidence. Parameters ---------- subject/object : str Optionally specify the subject and/or object of the statements in you wish to get from the database. By default, the namespace is assumed to be HGNC gene names, however you may specify another namespace by including `@<namespace>` at the end of the name string. For example, if you want to specify an agent by chebi, you could use `CHEBI:6801@CHEBI`, or if you wanted to use the HGNC id, you could use `6871@HGNC`. agents : list[str] A list of agents, specified in the same manner as subject and object, but without specifying their grammatical position. stmt_type : str Specify the types of interactions you are interested in, as indicated by the sub-classes of INDRA's Statements. This argument is *not* case sensitive. If the statement class given has sub-classes (e.g. RegulateAmount has IncreaseAmount and DecreaseAmount), then both the class itself, and its subclasses, will be queried, by default. If you do not want this behavior, set use_exact_type=True. Note that if max_stmts is set, it is possible only the exact statement type will be returned, as this is the first searched. The processor then cycles through the types, getting a page of results for each type and adding it to the quota, until the max number of statements is reached. use_exact_type : bool If stmt_type is given, and you only want to search for that specific statement type, set this to True. Default is False. persist : bool Default is True. When False, if a query comes back limited (not all results returned), just give up and pass along what was returned. Otherwise, make further queries to get the rest of the data (which may take some time). timeout : positive int or None If an int, block until the work is done and statements are retrieved, or until the timeout has expired, in which case the results so far will be returned in the response object, and further results will be added in a separate thread as they become available. If simple_response is True, all statements available will be returned. Otherwise (if None), block indefinitely until all statements are retrieved. Default is None. simple_response : bool If True, a simple list of statements is returned (thus block should also be True). If block is False, only the original sample will be returned (as though persist was False), until the statements are done loading, in which case the rest should appear in the list. This behavior is not encouraged. Default is False (which breaks backwards compatibility with usage of INDRA versions from before 1/22/2019). WE ENCOURAGE ALL NEW USE-CASES TO USE THE PROCESSOR, AS THIS FEATURE MAY BE REMOVED AT A LATER DATE. ev_limit : int or None Limit the amount of evidence returned per Statement. Default is 10. best_first : bool If True, the preassembled statements will be sorted by the amount of evidence they have, and those with the most evidence will be prioritized. When using `max_stmts`, this means you will get the "best" statements. If False, statements will be queried in arbitrary order. tries : int > 0 Set the number of times to try the query. The database often caches results, so if a query times out the first time, trying again after a timeout will often succeed fast enough to avoid a timeout. This can also help gracefully handle an unreliable connection, if you're willing to wait. Default is 2. max_stmts : int or None Select the maximum number of statements to return. When set less than 1000 the effect is much the same as setting persist to false, and will guarantee a faster response. Default is None. Returns ------- processor : :py:class:`IndraDBRestProcessor` An instance of the IndraDBRestProcessor, which has an attribute `statements` which will be populated when the query/queries are done. This is the default behavior, and is encouraged in all future cases, however a simple list of statements may be returned using the `simple_response` option described above.
[ "Get", "a", "processor", "for", "the", "INDRA", "DB", "web", "API", "matching", "given", "agents", "and", "type", "." ]
79a70415832c5702d7a820c7c9ccc8e25010124b
https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/sources/indra_db_rest/api.py#L15-L116
train
sorgerlab/indra
indra/sources/indra_db_rest/api.py
get_statements_by_hash
def get_statements_by_hash(hash_list, ev_limit=100, best_first=True, tries=2): """Get fully formed statements from a list of hashes. Parameters ---------- hash_list : list[int or str] A list of statement hashes. ev_limit : int or None Limit the amount of evidence returned per Statement. Default is 100. best_first : bool If True, the preassembled statements will be sorted by the amount of evidence they have, and those with the most evidence will be prioritized. When using `max_stmts`, this means you will get the "best" statements. If False, statements will be queried in arbitrary order. tries : int > 0 Set the number of times to try the query. The database often caches results, so if a query times out the first time, trying again after a timeout will often succeed fast enough to avoid a timeout. This can also help gracefully handle an unreliable connection, if you're willing to wait. Default is 2. """ if not isinstance(hash_list, list): raise ValueError("The `hash_list` input is a list, not %s." % type(hash_list)) if not hash_list: return [] if isinstance(hash_list[0], str): hash_list = [int(h) for h in hash_list] if not all([isinstance(h, int) for h in hash_list]): raise ValueError("Hashes must be ints or strings that can be " "converted into ints.") resp = submit_statement_request('post', 'from_hashes', ev_limit=ev_limit, data={'hashes': hash_list}, best_first=best_first, tries=tries) return stmts_from_json(resp.json()['statements'].values())
python
def get_statements_by_hash(hash_list, ev_limit=100, best_first=True, tries=2): """Get fully formed statements from a list of hashes. Parameters ---------- hash_list : list[int or str] A list of statement hashes. ev_limit : int or None Limit the amount of evidence returned per Statement. Default is 100. best_first : bool If True, the preassembled statements will be sorted by the amount of evidence they have, and those with the most evidence will be prioritized. When using `max_stmts`, this means you will get the "best" statements. If False, statements will be queried in arbitrary order. tries : int > 0 Set the number of times to try the query. The database often caches results, so if a query times out the first time, trying again after a timeout will often succeed fast enough to avoid a timeout. This can also help gracefully handle an unreliable connection, if you're willing to wait. Default is 2. """ if not isinstance(hash_list, list): raise ValueError("The `hash_list` input is a list, not %s." % type(hash_list)) if not hash_list: return [] if isinstance(hash_list[0], str): hash_list = [int(h) for h in hash_list] if not all([isinstance(h, int) for h in hash_list]): raise ValueError("Hashes must be ints or strings that can be " "converted into ints.") resp = submit_statement_request('post', 'from_hashes', ev_limit=ev_limit, data={'hashes': hash_list}, best_first=best_first, tries=tries) return stmts_from_json(resp.json()['statements'].values())
[ "def", "get_statements_by_hash", "(", "hash_list", ",", "ev_limit", "=", "100", ",", "best_first", "=", "True", ",", "tries", "=", "2", ")", ":", "if", "not", "isinstance", "(", "hash_list", ",", "list", ")", ":", "raise", "ValueError", "(", "\"The `hash_list` input is a list, not %s.\"", "%", "type", "(", "hash_list", ")", ")", "if", "not", "hash_list", ":", "return", "[", "]", "if", "isinstance", "(", "hash_list", "[", "0", "]", ",", "str", ")", ":", "hash_list", "=", "[", "int", "(", "h", ")", "for", "h", "in", "hash_list", "]", "if", "not", "all", "(", "[", "isinstance", "(", "h", ",", "int", ")", "for", "h", "in", "hash_list", "]", ")", ":", "raise", "ValueError", "(", "\"Hashes must be ints or strings that can be \"", "\"converted into ints.\"", ")", "resp", "=", "submit_statement_request", "(", "'post'", ",", "'from_hashes'", ",", "ev_limit", "=", "ev_limit", ",", "data", "=", "{", "'hashes'", ":", "hash_list", "}", ",", "best_first", "=", "best_first", ",", "tries", "=", "tries", ")", "return", "stmts_from_json", "(", "resp", ".", "json", "(", ")", "[", "'statements'", "]", ".", "values", "(", ")", ")" ]
Get fully formed statements from a list of hashes. Parameters ---------- hash_list : list[int or str] A list of statement hashes. ev_limit : int or None Limit the amount of evidence returned per Statement. Default is 100. best_first : bool If True, the preassembled statements will be sorted by the amount of evidence they have, and those with the most evidence will be prioritized. When using `max_stmts`, this means you will get the "best" statements. If False, statements will be queried in arbitrary order. tries : int > 0 Set the number of times to try the query. The database often caches results, so if a query times out the first time, trying again after a timeout will often succeed fast enough to avoid a timeout. This can also help gracefully handle an unreliable connection, if you're willing to wait. Default is 2.
[ "Get", "fully", "formed", "statements", "from", "a", "list", "of", "hashes", "." ]
79a70415832c5702d7a820c7c9ccc8e25010124b
https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/sources/indra_db_rest/api.py#L120-L154
train
sorgerlab/indra
indra/sources/indra_db_rest/api.py
get_statements_for_paper
def get_statements_for_paper(ids, ev_limit=10, best_first=True, tries=2, max_stmts=None): """Get the set of raw Statements extracted from a paper given by the id. Parameters ---------- ids : list[(<id type>, <id value>)] A list of tuples with ids and their type. The type can be any one of 'pmid', 'pmcid', 'doi', 'pii', 'manuscript id', or 'trid', which is the primary key id of the text references in the database. ev_limit : int or None Limit the amount of evidence returned per Statement. Default is 10. best_first : bool If True, the preassembled statements will be sorted by the amount of evidence they have, and those with the most evidence will be prioritized. When using `max_stmts`, this means you will get the "best" statements. If False, statements will be queried in arbitrary order. tries : int > 0 Set the number of times to try the query. The database often caches results, so if a query times out the first time, trying again after a timeout will often succeed fast enough to avoid a timeout. This can also help gracefully handle an unreliable connection, if you're willing to wait. Default is 2. max_stmts : int or None Select a maximum number of statements to be returned. Default is None. Returns ------- stmts : list[:py:class:`indra.statements.Statement`] A list of INDRA Statement instances. """ id_l = [{'id': id_val, 'type': id_type} for id_type, id_val in ids] resp = submit_statement_request('post', 'from_papers', data={'ids': id_l}, ev_limit=ev_limit, best_first=best_first, tries=tries, max_stmts=max_stmts) stmts_json = resp.json()['statements'] return stmts_from_json(stmts_json.values())
python
def get_statements_for_paper(ids, ev_limit=10, best_first=True, tries=2, max_stmts=None): """Get the set of raw Statements extracted from a paper given by the id. Parameters ---------- ids : list[(<id type>, <id value>)] A list of tuples with ids and their type. The type can be any one of 'pmid', 'pmcid', 'doi', 'pii', 'manuscript id', or 'trid', which is the primary key id of the text references in the database. ev_limit : int or None Limit the amount of evidence returned per Statement. Default is 10. best_first : bool If True, the preassembled statements will be sorted by the amount of evidence they have, and those with the most evidence will be prioritized. When using `max_stmts`, this means you will get the "best" statements. If False, statements will be queried in arbitrary order. tries : int > 0 Set the number of times to try the query. The database often caches results, so if a query times out the first time, trying again after a timeout will often succeed fast enough to avoid a timeout. This can also help gracefully handle an unreliable connection, if you're willing to wait. Default is 2. max_stmts : int or None Select a maximum number of statements to be returned. Default is None. Returns ------- stmts : list[:py:class:`indra.statements.Statement`] A list of INDRA Statement instances. """ id_l = [{'id': id_val, 'type': id_type} for id_type, id_val in ids] resp = submit_statement_request('post', 'from_papers', data={'ids': id_l}, ev_limit=ev_limit, best_first=best_first, tries=tries, max_stmts=max_stmts) stmts_json = resp.json()['statements'] return stmts_from_json(stmts_json.values())
[ "def", "get_statements_for_paper", "(", "ids", ",", "ev_limit", "=", "10", ",", "best_first", "=", "True", ",", "tries", "=", "2", ",", "max_stmts", "=", "None", ")", ":", "id_l", "=", "[", "{", "'id'", ":", "id_val", ",", "'type'", ":", "id_type", "}", "for", "id_type", ",", "id_val", "in", "ids", "]", "resp", "=", "submit_statement_request", "(", "'post'", ",", "'from_papers'", ",", "data", "=", "{", "'ids'", ":", "id_l", "}", ",", "ev_limit", "=", "ev_limit", ",", "best_first", "=", "best_first", ",", "tries", "=", "tries", ",", "max_stmts", "=", "max_stmts", ")", "stmts_json", "=", "resp", ".", "json", "(", ")", "[", "'statements'", "]", "return", "stmts_from_json", "(", "stmts_json", ".", "values", "(", ")", ")" ]
Get the set of raw Statements extracted from a paper given by the id. Parameters ---------- ids : list[(<id type>, <id value>)] A list of tuples with ids and their type. The type can be any one of 'pmid', 'pmcid', 'doi', 'pii', 'manuscript id', or 'trid', which is the primary key id of the text references in the database. ev_limit : int or None Limit the amount of evidence returned per Statement. Default is 10. best_first : bool If True, the preassembled statements will be sorted by the amount of evidence they have, and those with the most evidence will be prioritized. When using `max_stmts`, this means you will get the "best" statements. If False, statements will be queried in arbitrary order. tries : int > 0 Set the number of times to try the query. The database often caches results, so if a query times out the first time, trying again after a timeout will often succeed fast enough to avoid a timeout. This can also help gracefully handle an unreliable connection, if you're willing to wait. Default is 2. max_stmts : int or None Select a maximum number of statements to be returned. Default is None. Returns ------- stmts : list[:py:class:`indra.statements.Statement`] A list of INDRA Statement instances.
[ "Get", "the", "set", "of", "raw", "Statements", "extracted", "from", "a", "paper", "given", "by", "the", "id", "." ]
79a70415832c5702d7a820c7c9ccc8e25010124b
https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/sources/indra_db_rest/api.py#L158-L194
train
sorgerlab/indra
indra/sources/indra_db_rest/api.py
submit_curation
def submit_curation(hash_val, tag, curator, text=None, source='indra_rest_client', ev_hash=None, is_test=False): """Submit a curation for the given statement at the relevant level. Parameters ---------- hash_val : int The hash corresponding to the statement. tag : str A very short phrase categorizing the error or type of curation, e.g. "grounding" for a grounding error, or "correct" if you are marking a statement as correct. curator : str The name or identifier for the curator. text : str A brief description of the problem. source : str The name of the access point through which the curation was performed. The default is 'direct_client', meaning this function was used directly. Any higher-level application should identify itself here. ev_hash : int A hash of the sentence and other evidence information. Elsewhere referred to as `source_hash`. is_test : bool Used in testing. If True, no curation will actually be added to the database. """ data = {'tag': tag, 'text': text, 'curator': curator, 'source': source, 'ev_hash': ev_hash} url = 'curation/submit/%s' % hash_val if is_test: qstr = '?test' else: qstr = '' return make_db_rest_request('post', url, qstr, data=data)
python
def submit_curation(hash_val, tag, curator, text=None, source='indra_rest_client', ev_hash=None, is_test=False): """Submit a curation for the given statement at the relevant level. Parameters ---------- hash_val : int The hash corresponding to the statement. tag : str A very short phrase categorizing the error or type of curation, e.g. "grounding" for a grounding error, or "correct" if you are marking a statement as correct. curator : str The name or identifier for the curator. text : str A brief description of the problem. source : str The name of the access point through which the curation was performed. The default is 'direct_client', meaning this function was used directly. Any higher-level application should identify itself here. ev_hash : int A hash of the sentence and other evidence information. Elsewhere referred to as `source_hash`. is_test : bool Used in testing. If True, no curation will actually be added to the database. """ data = {'tag': tag, 'text': text, 'curator': curator, 'source': source, 'ev_hash': ev_hash} url = 'curation/submit/%s' % hash_val if is_test: qstr = '?test' else: qstr = '' return make_db_rest_request('post', url, qstr, data=data)
[ "def", "submit_curation", "(", "hash_val", ",", "tag", ",", "curator", ",", "text", "=", "None", ",", "source", "=", "'indra_rest_client'", ",", "ev_hash", "=", "None", ",", "is_test", "=", "False", ")", ":", "data", "=", "{", "'tag'", ":", "tag", ",", "'text'", ":", "text", ",", "'curator'", ":", "curator", ",", "'source'", ":", "source", ",", "'ev_hash'", ":", "ev_hash", "}", "url", "=", "'curation/submit/%s'", "%", "hash_val", "if", "is_test", ":", "qstr", "=", "'?test'", "else", ":", "qstr", "=", "''", "return", "make_db_rest_request", "(", "'post'", ",", "url", ",", "qstr", ",", "data", "=", "data", ")" ]
Submit a curation for the given statement at the relevant level. Parameters ---------- hash_val : int The hash corresponding to the statement. tag : str A very short phrase categorizing the error or type of curation, e.g. "grounding" for a grounding error, or "correct" if you are marking a statement as correct. curator : str The name or identifier for the curator. text : str A brief description of the problem. source : str The name of the access point through which the curation was performed. The default is 'direct_client', meaning this function was used directly. Any higher-level application should identify itself here. ev_hash : int A hash of the sentence and other evidence information. Elsewhere referred to as `source_hash`. is_test : bool Used in testing. If True, no curation will actually be added to the database.
[ "Submit", "a", "curation", "for", "the", "given", "statement", "at", "the", "relevant", "level", "." ]
79a70415832c5702d7a820c7c9ccc8e25010124b
https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/sources/indra_db_rest/api.py#L197-L231
train
sorgerlab/indra
indra/sources/indra_db_rest/api.py
get_statement_queries
def get_statement_queries(stmts, **params): """Get queries used to search based on a statement. In addition to the stmts, you can enter any parameters standard to the query. See https://github.com/indralab/indra_db/rest_api for a full list. Parameters ---------- stmts : list[Statement] A list of INDRA statements. """ def pick_ns(ag): for ns in ['HGNC', 'FPLX', 'CHEMBL', 'CHEBI', 'GO', 'MESH']: if ns in ag.db_refs.keys(): dbid = ag.db_refs[ns] break else: ns = 'TEXT' dbid = ag.name return '%s@%s' % (dbid, ns) queries = [] url_base = get_url_base('statements/from_agents') non_binary_statements = [Complex, SelfModification, ActiveForm] for stmt in stmts: kwargs = {} if type(stmt) not in non_binary_statements: for pos, ag in zip(['subject', 'object'], stmt.agent_list()): if ag is not None: kwargs[pos] = pick_ns(ag) else: for i, ag in enumerate(stmt.agent_list()): if ag is not None: kwargs['agent%d' % i] = pick_ns(ag) kwargs['type'] = stmt.__class__.__name__ kwargs.update(params) query_str = '?' + '&'.join(['%s=%s' % (k, v) for k, v in kwargs.items() if v is not None]) queries.append(url_base + query_str) return queries
python
def get_statement_queries(stmts, **params): """Get queries used to search based on a statement. In addition to the stmts, you can enter any parameters standard to the query. See https://github.com/indralab/indra_db/rest_api for a full list. Parameters ---------- stmts : list[Statement] A list of INDRA statements. """ def pick_ns(ag): for ns in ['HGNC', 'FPLX', 'CHEMBL', 'CHEBI', 'GO', 'MESH']: if ns in ag.db_refs.keys(): dbid = ag.db_refs[ns] break else: ns = 'TEXT' dbid = ag.name return '%s@%s' % (dbid, ns) queries = [] url_base = get_url_base('statements/from_agents') non_binary_statements = [Complex, SelfModification, ActiveForm] for stmt in stmts: kwargs = {} if type(stmt) not in non_binary_statements: for pos, ag in zip(['subject', 'object'], stmt.agent_list()): if ag is not None: kwargs[pos] = pick_ns(ag) else: for i, ag in enumerate(stmt.agent_list()): if ag is not None: kwargs['agent%d' % i] = pick_ns(ag) kwargs['type'] = stmt.__class__.__name__ kwargs.update(params) query_str = '?' + '&'.join(['%s=%s' % (k, v) for k, v in kwargs.items() if v is not None]) queries.append(url_base + query_str) return queries
[ "def", "get_statement_queries", "(", "stmts", ",", "*", "*", "params", ")", ":", "def", "pick_ns", "(", "ag", ")", ":", "for", "ns", "in", "[", "'HGNC'", ",", "'FPLX'", ",", "'CHEMBL'", ",", "'CHEBI'", ",", "'GO'", ",", "'MESH'", "]", ":", "if", "ns", "in", "ag", ".", "db_refs", ".", "keys", "(", ")", ":", "dbid", "=", "ag", ".", "db_refs", "[", "ns", "]", "break", "else", ":", "ns", "=", "'TEXT'", "dbid", "=", "ag", ".", "name", "return", "'%s@%s'", "%", "(", "dbid", ",", "ns", ")", "queries", "=", "[", "]", "url_base", "=", "get_url_base", "(", "'statements/from_agents'", ")", "non_binary_statements", "=", "[", "Complex", ",", "SelfModification", ",", "ActiveForm", "]", "for", "stmt", "in", "stmts", ":", "kwargs", "=", "{", "}", "if", "type", "(", "stmt", ")", "not", "in", "non_binary_statements", ":", "for", "pos", ",", "ag", "in", "zip", "(", "[", "'subject'", ",", "'object'", "]", ",", "stmt", ".", "agent_list", "(", ")", ")", ":", "if", "ag", "is", "not", "None", ":", "kwargs", "[", "pos", "]", "=", "pick_ns", "(", "ag", ")", "else", ":", "for", "i", ",", "ag", "in", "enumerate", "(", "stmt", ".", "agent_list", "(", ")", ")", ":", "if", "ag", "is", "not", "None", ":", "kwargs", "[", "'agent%d'", "%", "i", "]", "=", "pick_ns", "(", "ag", ")", "kwargs", "[", "'type'", "]", "=", "stmt", ".", "__class__", ".", "__name__", "kwargs", ".", "update", "(", "params", ")", "query_str", "=", "'?'", "+", "'&'", ".", "join", "(", "[", "'%s=%s'", "%", "(", "k", ",", "v", ")", "for", "k", ",", "v", "in", "kwargs", ".", "items", "(", ")", "if", "v", "is", "not", "None", "]", ")", "queries", ".", "append", "(", "url_base", "+", "query_str", ")", "return", "queries" ]
Get queries used to search based on a statement. In addition to the stmts, you can enter any parameters standard to the query. See https://github.com/indralab/indra_db/rest_api for a full list. Parameters ---------- stmts : list[Statement] A list of INDRA statements.
[ "Get", "queries", "used", "to", "search", "based", "on", "a", "statement", "." ]
79a70415832c5702d7a820c7c9ccc8e25010124b
https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/sources/indra_db_rest/api.py#L234-L274
train