repo
stringlengths 7
55
| path
stringlengths 4
127
| func_name
stringlengths 1
88
| original_string
stringlengths 75
19.8k
| language
stringclasses 1
value | code
stringlengths 75
19.8k
| code_tokens
list | docstring
stringlengths 3
17.3k
| docstring_tokens
list | sha
stringlengths 40
40
| url
stringlengths 87
242
| partition
stringclasses 1
value |
---|---|---|---|---|---|---|---|---|---|---|---|
linode/linode_api4-python | linode_api4/objects/nodebalancer.py | NodeBalancerConfig.nodes | def nodes(self):
"""
This is a special derived_class relationship because NodeBalancerNode is the
only api object that requires two parent_ids
"""
if not hasattr(self, '_nodes'):
base_url = "{}/{}".format(NodeBalancerConfig.api_endpoint, NodeBalancerNode.derived_url_path)
result = self._client._get_objects(base_url, NodeBalancerNode, model=self, parent_id=(self.id, self.nodebalancer_id))
self._set('_nodes', result)
return self._nodes | python | def nodes(self):
"""
This is a special derived_class relationship because NodeBalancerNode is the
only api object that requires two parent_ids
"""
if not hasattr(self, '_nodes'):
base_url = "{}/{}".format(NodeBalancerConfig.api_endpoint, NodeBalancerNode.derived_url_path)
result = self._client._get_objects(base_url, NodeBalancerNode, model=self, parent_id=(self.id, self.nodebalancer_id))
self._set('_nodes', result)
return self._nodes | [
"def",
"nodes",
"(",
"self",
")",
":",
"if",
"not",
"hasattr",
"(",
"self",
",",
"'_nodes'",
")",
":",
"base_url",
"=",
"\"{}/{}\"",
".",
"format",
"(",
"NodeBalancerConfig",
".",
"api_endpoint",
",",
"NodeBalancerNode",
".",
"derived_url_path",
")",
"result",
"=",
"self",
".",
"_client",
".",
"_get_objects",
"(",
"base_url",
",",
"NodeBalancerNode",
",",
"model",
"=",
"self",
",",
"parent_id",
"=",
"(",
"self",
".",
"id",
",",
"self",
".",
"nodebalancer_id",
")",
")",
"self",
".",
"_set",
"(",
"'_nodes'",
",",
"result",
")",
"return",
"self",
".",
"_nodes"
]
| This is a special derived_class relationship because NodeBalancerNode is the
only api object that requires two parent_ids | [
"This",
"is",
"a",
"special",
"derived_class",
"relationship",
"because",
"NodeBalancerNode",
"is",
"the",
"only",
"api",
"object",
"that",
"requires",
"two",
"parent_ids"
]
| 1dd7318d2aed014c746d48c7957464c57af883ca | https://github.com/linode/linode_api4-python/blob/1dd7318d2aed014c746d48c7957464c57af883ca/linode_api4/objects/nodebalancer.py#L73-L84 | train |
linode/linode_api4-python | linode_api4/objects/volume.py | Volume.attach | def attach(self, to_linode, config=None):
"""
Attaches this Volume to the given Linode
"""
result = self._client.post('{}/attach'.format(Volume.api_endpoint), model=self,
data={
"linode_id": to_linode.id if issubclass(type(to_linode), Base) else to_linode,
"config": None if not config else config.id if issubclass(type(config), Base) else config,
})
if not 'id' in result:
raise UnexpectedResponseError('Unexpected response when attaching volume!', json=result)
self._populate(result)
return True | python | def attach(self, to_linode, config=None):
"""
Attaches this Volume to the given Linode
"""
result = self._client.post('{}/attach'.format(Volume.api_endpoint), model=self,
data={
"linode_id": to_linode.id if issubclass(type(to_linode), Base) else to_linode,
"config": None if not config else config.id if issubclass(type(config), Base) else config,
})
if not 'id' in result:
raise UnexpectedResponseError('Unexpected response when attaching volume!', json=result)
self._populate(result)
return True | [
"def",
"attach",
"(",
"self",
",",
"to_linode",
",",
"config",
"=",
"None",
")",
":",
"result",
"=",
"self",
".",
"_client",
".",
"post",
"(",
"'{}/attach'",
".",
"format",
"(",
"Volume",
".",
"api_endpoint",
")",
",",
"model",
"=",
"self",
",",
"data",
"=",
"{",
"\"linode_id\"",
":",
"to_linode",
".",
"id",
"if",
"issubclass",
"(",
"type",
"(",
"to_linode",
")",
",",
"Base",
")",
"else",
"to_linode",
",",
"\"config\"",
":",
"None",
"if",
"not",
"config",
"else",
"config",
".",
"id",
"if",
"issubclass",
"(",
"type",
"(",
"config",
")",
",",
"Base",
")",
"else",
"config",
",",
"}",
")",
"if",
"not",
"'id'",
"in",
"result",
":",
"raise",
"UnexpectedResponseError",
"(",
"'Unexpected response when attaching volume!'",
",",
"json",
"=",
"result",
")",
"self",
".",
"_populate",
"(",
"result",
")",
"return",
"True"
]
| Attaches this Volume to the given Linode | [
"Attaches",
"this",
"Volume",
"to",
"the",
"given",
"Linode"
]
| 1dd7318d2aed014c746d48c7957464c57af883ca | https://github.com/linode/linode_api4-python/blob/1dd7318d2aed014c746d48c7957464c57af883ca/linode_api4/objects/volume.py#L22-L36 | train |
linode/linode_api4-python | linode_api4/objects/volume.py | Volume.detach | def detach(self):
"""
Detaches this Volume if it is attached
"""
self._client.post('{}/detach'.format(Volume.api_endpoint), model=self)
return True | python | def detach(self):
"""
Detaches this Volume if it is attached
"""
self._client.post('{}/detach'.format(Volume.api_endpoint), model=self)
return True | [
"def",
"detach",
"(",
"self",
")",
":",
"self",
".",
"_client",
".",
"post",
"(",
"'{}/detach'",
".",
"format",
"(",
"Volume",
".",
"api_endpoint",
")",
",",
"model",
"=",
"self",
")",
"return",
"True"
]
| Detaches this Volume if it is attached | [
"Detaches",
"this",
"Volume",
"if",
"it",
"is",
"attached"
]
| 1dd7318d2aed014c746d48c7957464c57af883ca | https://github.com/linode/linode_api4-python/blob/1dd7318d2aed014c746d48c7957464c57af883ca/linode_api4/objects/volume.py#L38-L44 | train |
linode/linode_api4-python | linode_api4/objects/volume.py | Volume.resize | def resize(self, size):
"""
Resizes this Volume
"""
result = self._client.post('{}/resize'.format(Volume.api_endpoint, model=self,
data={ "size": size }))
self._populate(result.json)
return True | python | def resize(self, size):
"""
Resizes this Volume
"""
result = self._client.post('{}/resize'.format(Volume.api_endpoint, model=self,
data={ "size": size }))
self._populate(result.json)
return True | [
"def",
"resize",
"(",
"self",
",",
"size",
")",
":",
"result",
"=",
"self",
".",
"_client",
".",
"post",
"(",
"'{}/resize'",
".",
"format",
"(",
"Volume",
".",
"api_endpoint",
",",
"model",
"=",
"self",
",",
"data",
"=",
"{",
"\"size\"",
":",
"size",
"}",
")",
")",
"self",
".",
"_populate",
"(",
"result",
".",
"json",
")",
"return",
"True"
]
| Resizes this Volume | [
"Resizes",
"this",
"Volume"
]
| 1dd7318d2aed014c746d48c7957464c57af883ca | https://github.com/linode/linode_api4-python/blob/1dd7318d2aed014c746d48c7957464c57af883ca/linode_api4/objects/volume.py#L46-L55 | train |
linode/linode_api4-python | linode_api4/objects/volume.py | Volume.clone | def clone(self, label):
"""
Clones this volume to a new volume in the same region with the given label
:param label: The label for the new volume.
:returns: The new volume object.
"""
result = self._client.post('{}/clone'.format(Volume.api_endpoint),
model=self, data={'label': label})
if not 'id' in result:
raise UnexpectedResponseError('Unexpected response cloning volume!')
return Volume(self._client, result['id'], result) | python | def clone(self, label):
"""
Clones this volume to a new volume in the same region with the given label
:param label: The label for the new volume.
:returns: The new volume object.
"""
result = self._client.post('{}/clone'.format(Volume.api_endpoint),
model=self, data={'label': label})
if not 'id' in result:
raise UnexpectedResponseError('Unexpected response cloning volume!')
return Volume(self._client, result['id'], result) | [
"def",
"clone",
"(",
"self",
",",
"label",
")",
":",
"result",
"=",
"self",
".",
"_client",
".",
"post",
"(",
"'{}/clone'",
".",
"format",
"(",
"Volume",
".",
"api_endpoint",
")",
",",
"model",
"=",
"self",
",",
"data",
"=",
"{",
"'label'",
":",
"label",
"}",
")",
"if",
"not",
"'id'",
"in",
"result",
":",
"raise",
"UnexpectedResponseError",
"(",
"'Unexpected response cloning volume!'",
")",
"return",
"Volume",
"(",
"self",
".",
"_client",
",",
"result",
"[",
"'id'",
"]",
",",
"result",
")"
]
| Clones this volume to a new volume in the same region with the given label
:param label: The label for the new volume.
:returns: The new volume object. | [
"Clones",
"this",
"volume",
"to",
"a",
"new",
"volume",
"in",
"the",
"same",
"region",
"with",
"the",
"given",
"label"
]
| 1dd7318d2aed014c746d48c7957464c57af883ca | https://github.com/linode/linode_api4-python/blob/1dd7318d2aed014c746d48c7957464c57af883ca/linode_api4/objects/volume.py#L57-L71 | train |
linode/linode_api4-python | linode_api4/objects/tag.py | Tag._get_raw_objects | def _get_raw_objects(self):
"""
Helper function to populate the first page of raw objects for this tag.
This has the side effect of creating the ``_raw_objects`` attribute of
this object.
"""
if not hasattr(self, '_raw_objects'):
result = self._client.get(type(self).api_endpoint, model=self)
# I want to cache this to avoid making duplicate requests, but I don't
# want it in the __init__
self._raw_objects = result # pylint: disable=attribute-defined-outside-init
return self._raw_objects | python | def _get_raw_objects(self):
"""
Helper function to populate the first page of raw objects for this tag.
This has the side effect of creating the ``_raw_objects`` attribute of
this object.
"""
if not hasattr(self, '_raw_objects'):
result = self._client.get(type(self).api_endpoint, model=self)
# I want to cache this to avoid making duplicate requests, but I don't
# want it in the __init__
self._raw_objects = result # pylint: disable=attribute-defined-outside-init
return self._raw_objects | [
"def",
"_get_raw_objects",
"(",
"self",
")",
":",
"if",
"not",
"hasattr",
"(",
"self",
",",
"'_raw_objects'",
")",
":",
"result",
"=",
"self",
".",
"_client",
".",
"get",
"(",
"type",
"(",
"self",
")",
".",
"api_endpoint",
",",
"model",
"=",
"self",
")",
"# I want to cache this to avoid making duplicate requests, but I don't",
"# want it in the __init__",
"self",
".",
"_raw_objects",
"=",
"result",
"# pylint: disable=attribute-defined-outside-init",
"return",
"self",
".",
"_raw_objects"
]
| Helper function to populate the first page of raw objects for this tag.
This has the side effect of creating the ``_raw_objects`` attribute of
this object. | [
"Helper",
"function",
"to",
"populate",
"the",
"first",
"page",
"of",
"raw",
"objects",
"for",
"this",
"tag",
".",
"This",
"has",
"the",
"side",
"effect",
"of",
"creating",
"the",
"_raw_objects",
"attribute",
"of",
"this",
"object",
"."
]
| 1dd7318d2aed014c746d48c7957464c57af883ca | https://github.com/linode/linode_api4-python/blob/1dd7318d2aed014c746d48c7957464c57af883ca/linode_api4/objects/tag.py#L32-L45 | train |
linode/linode_api4-python | linode_api4/objects/tag.py | Tag.objects | def objects(self):
"""
Returns a list of objects with this Tag. This list may contain any
taggable object type.
"""
data = self._get_raw_objects()
return PaginatedList.make_paginated_list(data, self._client, TaggedObjectProxy,
page_url=type(self).api_endpoint.format(**vars(self))) | python | def objects(self):
"""
Returns a list of objects with this Tag. This list may contain any
taggable object type.
"""
data = self._get_raw_objects()
return PaginatedList.make_paginated_list(data, self._client, TaggedObjectProxy,
page_url=type(self).api_endpoint.format(**vars(self))) | [
"def",
"objects",
"(",
"self",
")",
":",
"data",
"=",
"self",
".",
"_get_raw_objects",
"(",
")",
"return",
"PaginatedList",
".",
"make_paginated_list",
"(",
"data",
",",
"self",
".",
"_client",
",",
"TaggedObjectProxy",
",",
"page_url",
"=",
"type",
"(",
"self",
")",
".",
"api_endpoint",
".",
"format",
"(",
"*",
"*",
"vars",
"(",
"self",
")",
")",
")"
]
| Returns a list of objects with this Tag. This list may contain any
taggable object type. | [
"Returns",
"a",
"list",
"of",
"objects",
"with",
"this",
"Tag",
".",
"This",
"list",
"may",
"contain",
"any",
"taggable",
"object",
"type",
"."
]
| 1dd7318d2aed014c746d48c7957464c57af883ca | https://github.com/linode/linode_api4-python/blob/1dd7318d2aed014c746d48c7957464c57af883ca/linode_api4/objects/tag.py#L60-L68 | train |
linode/linode_api4-python | linode_api4/objects/tag.py | TaggedObjectProxy.make_instance | def make_instance(cls, id, client, parent_id=None, json=None):
"""
Overrides Base's ``make_instance`` to allow dynamic creation of objects
based on the defined type in the response json.
:param cls: The class this was called on
:param id: The id of the instance to create
:param client: The client to use for this instance
:param parent_id: The parent id for derived classes
:param json: The JSON to populate the instance with
:returns: A new instance of this type, populated with json
"""
make_cls = CLASS_MAP.get(id) # in this case, ID is coming in as the type
if make_cls is None:
# we don't recognize this entity type - do nothing?
return None
# discard the envelope
real_json = json['data']
real_id = real_json['id']
# make the real object type
return Base.make(real_id, client, make_cls, parent_id=None, json=real_json) | python | def make_instance(cls, id, client, parent_id=None, json=None):
"""
Overrides Base's ``make_instance`` to allow dynamic creation of objects
based on the defined type in the response json.
:param cls: The class this was called on
:param id: The id of the instance to create
:param client: The client to use for this instance
:param parent_id: The parent id for derived classes
:param json: The JSON to populate the instance with
:returns: A new instance of this type, populated with json
"""
make_cls = CLASS_MAP.get(id) # in this case, ID is coming in as the type
if make_cls is None:
# we don't recognize this entity type - do nothing?
return None
# discard the envelope
real_json = json['data']
real_id = real_json['id']
# make the real object type
return Base.make(real_id, client, make_cls, parent_id=None, json=real_json) | [
"def",
"make_instance",
"(",
"cls",
",",
"id",
",",
"client",
",",
"parent_id",
"=",
"None",
",",
"json",
"=",
"None",
")",
":",
"make_cls",
"=",
"CLASS_MAP",
".",
"get",
"(",
"id",
")",
"# in this case, ID is coming in as the type",
"if",
"make_cls",
"is",
"None",
":",
"# we don't recognize this entity type - do nothing?",
"return",
"None",
"# discard the envelope",
"real_json",
"=",
"json",
"[",
"'data'",
"]",
"real_id",
"=",
"real_json",
"[",
"'id'",
"]",
"# make the real object type",
"return",
"Base",
".",
"make",
"(",
"real_id",
",",
"client",
",",
"make_cls",
",",
"parent_id",
"=",
"None",
",",
"json",
"=",
"real_json",
")"
]
| Overrides Base's ``make_instance`` to allow dynamic creation of objects
based on the defined type in the response json.
:param cls: The class this was called on
:param id: The id of the instance to create
:param client: The client to use for this instance
:param parent_id: The parent id for derived classes
:param json: The JSON to populate the instance with
:returns: A new instance of this type, populated with json | [
"Overrides",
"Base",
"s",
"make_instance",
"to",
"allow",
"dynamic",
"creation",
"of",
"objects",
"based",
"on",
"the",
"defined",
"type",
"in",
"the",
"response",
"json",
"."
]
| 1dd7318d2aed014c746d48c7957464c57af883ca | https://github.com/linode/linode_api4-python/blob/1dd7318d2aed014c746d48c7957464c57af883ca/linode_api4/objects/tag.py#L89-L113 | train |
linode/linode_api4-python | linode_api4/objects/linode.py | Disk.resize | def resize(self, new_size):
"""
Resizes this disk. The Linode Instance this disk belongs to must have
sufficient space available to accommodate the new size, and must be
offline.
**NOTE** If resizing a disk down, the filesystem on the disk must still
fit on the new disk size. You may need to resize the filesystem on the
disk first before performing this action.
:param new_size: The intended new size of the disk, in MB
:type new_size: int
:returns: True if the resize was initiated successfully.
:rtype: bool
"""
self._client.post('{}/resize'.format(Disk.api_endpoint), model=self, data={"size": new_size})
return True | python | def resize(self, new_size):
"""
Resizes this disk. The Linode Instance this disk belongs to must have
sufficient space available to accommodate the new size, and must be
offline.
**NOTE** If resizing a disk down, the filesystem on the disk must still
fit on the new disk size. You may need to resize the filesystem on the
disk first before performing this action.
:param new_size: The intended new size of the disk, in MB
:type new_size: int
:returns: True if the resize was initiated successfully.
:rtype: bool
"""
self._client.post('{}/resize'.format(Disk.api_endpoint), model=self, data={"size": new_size})
return True | [
"def",
"resize",
"(",
"self",
",",
"new_size",
")",
":",
"self",
".",
"_client",
".",
"post",
"(",
"'{}/resize'",
".",
"format",
"(",
"Disk",
".",
"api_endpoint",
")",
",",
"model",
"=",
"self",
",",
"data",
"=",
"{",
"\"size\"",
":",
"new_size",
"}",
")",
"return",
"True"
]
| Resizes this disk. The Linode Instance this disk belongs to must have
sufficient space available to accommodate the new size, and must be
offline.
**NOTE** If resizing a disk down, the filesystem on the disk must still
fit on the new disk size. You may need to resize the filesystem on the
disk first before performing this action.
:param new_size: The intended new size of the disk, in MB
:type new_size: int
:returns: True if the resize was initiated successfully.
:rtype: bool | [
"Resizes",
"this",
"disk",
".",
"The",
"Linode",
"Instance",
"this",
"disk",
"belongs",
"to",
"must",
"have",
"sufficient",
"space",
"available",
"to",
"accommodate",
"the",
"new",
"size",
"and",
"must",
"be",
"offline",
"."
]
| 1dd7318d2aed014c746d48c7957464c57af883ca | https://github.com/linode/linode_api4-python/blob/1dd7318d2aed014c746d48c7957464c57af883ca/linode_api4/objects/linode.py#L98-L116 | train |
linode/linode_api4-python | linode_api4/objects/linode.py | Config._populate | def _populate(self, json):
"""
Map devices more nicely while populating.
"""
from .volume import Volume
DerivedBase._populate(self, json)
devices = {}
for device_index, device in json['devices'].items():
if not device:
devices[device_index] = None
continue
dev = None
if 'disk_id' in device and device['disk_id']: # this is a disk
dev = Disk.make_instance(device['disk_id'], self._client,
parent_id=self.linode_id)
else:
dev = Volume.make_instance(device['volume_id'], self._client,
parent_id=self.linode_id)
devices[device_index] = dev
self._set('devices', MappedObject(**devices)) | python | def _populate(self, json):
"""
Map devices more nicely while populating.
"""
from .volume import Volume
DerivedBase._populate(self, json)
devices = {}
for device_index, device in json['devices'].items():
if not device:
devices[device_index] = None
continue
dev = None
if 'disk_id' in device and device['disk_id']: # this is a disk
dev = Disk.make_instance(device['disk_id'], self._client,
parent_id=self.linode_id)
else:
dev = Volume.make_instance(device['volume_id'], self._client,
parent_id=self.linode_id)
devices[device_index] = dev
self._set('devices', MappedObject(**devices)) | [
"def",
"_populate",
"(",
"self",
",",
"json",
")",
":",
"from",
".",
"volume",
"import",
"Volume",
"DerivedBase",
".",
"_populate",
"(",
"self",
",",
"json",
")",
"devices",
"=",
"{",
"}",
"for",
"device_index",
",",
"device",
"in",
"json",
"[",
"'devices'",
"]",
".",
"items",
"(",
")",
":",
"if",
"not",
"device",
":",
"devices",
"[",
"device_index",
"]",
"=",
"None",
"continue",
"dev",
"=",
"None",
"if",
"'disk_id'",
"in",
"device",
"and",
"device",
"[",
"'disk_id'",
"]",
":",
"# this is a disk",
"dev",
"=",
"Disk",
".",
"make_instance",
"(",
"device",
"[",
"'disk_id'",
"]",
",",
"self",
".",
"_client",
",",
"parent_id",
"=",
"self",
".",
"linode_id",
")",
"else",
":",
"dev",
"=",
"Volume",
".",
"make_instance",
"(",
"device",
"[",
"'volume_id'",
"]",
",",
"self",
".",
"_client",
",",
"parent_id",
"=",
"self",
".",
"linode_id",
")",
"devices",
"[",
"device_index",
"]",
"=",
"dev",
"self",
".",
"_set",
"(",
"'devices'",
",",
"MappedObject",
"(",
"*",
"*",
"devices",
")",
")"
]
| Map devices more nicely while populating. | [
"Map",
"devices",
"more",
"nicely",
"while",
"populating",
"."
]
| 1dd7318d2aed014c746d48c7957464c57af883ca | https://github.com/linode/linode_api4-python/blob/1dd7318d2aed014c746d48c7957464c57af883ca/linode_api4/objects/linode.py#L172-L195 | train |
linode/linode_api4-python | linode_api4/objects/linode.py | Instance.ips | def ips(self):
"""
The ips related collection is not normalized like the others, so we have to
make an ad-hoc object to return for its response
"""
if not hasattr(self, '_ips'):
result = self._client.get("{}/ips".format(Instance.api_endpoint), model=self)
if not "ipv4" in result:
raise UnexpectedResponseError('Unexpected response loading IPs', json=result)
v4pub = []
for c in result['ipv4']['public']:
i = IPAddress(self._client, c['address'], c)
v4pub.append(i)
v4pri = []
for c in result['ipv4']['private']:
i = IPAddress(self._client, c['address'], c)
v4pri.append(i)
shared_ips = []
for c in result['ipv4']['shared']:
i = IPAddress(self._client, c['address'], c)
shared_ips.append(i)
slaac = IPAddress(self._client, result['ipv6']['slaac']['address'],
result['ipv6']['slaac'])
link_local = IPAddress(self._client, result['ipv6']['link_local']['address'],
result['ipv6']['link_local'])
pools = []
for p in result['ipv6']['global']:
pools.append(IPv6Pool(self._client, p['range']))
ips = MappedObject(**{
"ipv4": {
"public": v4pub,
"private": v4pri,
"shared": shared_ips,
},
"ipv6": {
"slaac": slaac,
"link_local": link_local,
"pools": pools,
},
})
self._set('_ips', ips)
return self._ips | python | def ips(self):
"""
The ips related collection is not normalized like the others, so we have to
make an ad-hoc object to return for its response
"""
if not hasattr(self, '_ips'):
result = self._client.get("{}/ips".format(Instance.api_endpoint), model=self)
if not "ipv4" in result:
raise UnexpectedResponseError('Unexpected response loading IPs', json=result)
v4pub = []
for c in result['ipv4']['public']:
i = IPAddress(self._client, c['address'], c)
v4pub.append(i)
v4pri = []
for c in result['ipv4']['private']:
i = IPAddress(self._client, c['address'], c)
v4pri.append(i)
shared_ips = []
for c in result['ipv4']['shared']:
i = IPAddress(self._client, c['address'], c)
shared_ips.append(i)
slaac = IPAddress(self._client, result['ipv6']['slaac']['address'],
result['ipv6']['slaac'])
link_local = IPAddress(self._client, result['ipv6']['link_local']['address'],
result['ipv6']['link_local'])
pools = []
for p in result['ipv6']['global']:
pools.append(IPv6Pool(self._client, p['range']))
ips = MappedObject(**{
"ipv4": {
"public": v4pub,
"private": v4pri,
"shared": shared_ips,
},
"ipv6": {
"slaac": slaac,
"link_local": link_local,
"pools": pools,
},
})
self._set('_ips', ips)
return self._ips | [
"def",
"ips",
"(",
"self",
")",
":",
"if",
"not",
"hasattr",
"(",
"self",
",",
"'_ips'",
")",
":",
"result",
"=",
"self",
".",
"_client",
".",
"get",
"(",
"\"{}/ips\"",
".",
"format",
"(",
"Instance",
".",
"api_endpoint",
")",
",",
"model",
"=",
"self",
")",
"if",
"not",
"\"ipv4\"",
"in",
"result",
":",
"raise",
"UnexpectedResponseError",
"(",
"'Unexpected response loading IPs'",
",",
"json",
"=",
"result",
")",
"v4pub",
"=",
"[",
"]",
"for",
"c",
"in",
"result",
"[",
"'ipv4'",
"]",
"[",
"'public'",
"]",
":",
"i",
"=",
"IPAddress",
"(",
"self",
".",
"_client",
",",
"c",
"[",
"'address'",
"]",
",",
"c",
")",
"v4pub",
".",
"append",
"(",
"i",
")",
"v4pri",
"=",
"[",
"]",
"for",
"c",
"in",
"result",
"[",
"'ipv4'",
"]",
"[",
"'private'",
"]",
":",
"i",
"=",
"IPAddress",
"(",
"self",
".",
"_client",
",",
"c",
"[",
"'address'",
"]",
",",
"c",
")",
"v4pri",
".",
"append",
"(",
"i",
")",
"shared_ips",
"=",
"[",
"]",
"for",
"c",
"in",
"result",
"[",
"'ipv4'",
"]",
"[",
"'shared'",
"]",
":",
"i",
"=",
"IPAddress",
"(",
"self",
".",
"_client",
",",
"c",
"[",
"'address'",
"]",
",",
"c",
")",
"shared_ips",
".",
"append",
"(",
"i",
")",
"slaac",
"=",
"IPAddress",
"(",
"self",
".",
"_client",
",",
"result",
"[",
"'ipv6'",
"]",
"[",
"'slaac'",
"]",
"[",
"'address'",
"]",
",",
"result",
"[",
"'ipv6'",
"]",
"[",
"'slaac'",
"]",
")",
"link_local",
"=",
"IPAddress",
"(",
"self",
".",
"_client",
",",
"result",
"[",
"'ipv6'",
"]",
"[",
"'link_local'",
"]",
"[",
"'address'",
"]",
",",
"result",
"[",
"'ipv6'",
"]",
"[",
"'link_local'",
"]",
")",
"pools",
"=",
"[",
"]",
"for",
"p",
"in",
"result",
"[",
"'ipv6'",
"]",
"[",
"'global'",
"]",
":",
"pools",
".",
"append",
"(",
"IPv6Pool",
"(",
"self",
".",
"_client",
",",
"p",
"[",
"'range'",
"]",
")",
")",
"ips",
"=",
"MappedObject",
"(",
"*",
"*",
"{",
"\"ipv4\"",
":",
"{",
"\"public\"",
":",
"v4pub",
",",
"\"private\"",
":",
"v4pri",
",",
"\"shared\"",
":",
"shared_ips",
",",
"}",
",",
"\"ipv6\"",
":",
"{",
"\"slaac\"",
":",
"slaac",
",",
"\"link_local\"",
":",
"link_local",
",",
"\"pools\"",
":",
"pools",
",",
"}",
",",
"}",
")",
"self",
".",
"_set",
"(",
"'_ips'",
",",
"ips",
")",
"return",
"self",
".",
"_ips"
]
| The ips related collection is not normalized like the others, so we have to
make an ad-hoc object to return for its response | [
"The",
"ips",
"related",
"collection",
"is",
"not",
"normalized",
"like",
"the",
"others",
"so",
"we",
"have",
"to",
"make",
"an",
"ad",
"-",
"hoc",
"object",
"to",
"return",
"for",
"its",
"response"
]
| 1dd7318d2aed014c746d48c7957464c57af883ca | https://github.com/linode/linode_api4-python/blob/1dd7318d2aed014c746d48c7957464c57af883ca/linode_api4/objects/linode.py#L222-L272 | train |
linode/linode_api4-python | linode_api4/objects/linode.py | Instance.available_backups | def available_backups(self):
"""
The backups response contains what backups are available to be restored.
"""
if not hasattr(self, '_avail_backups'):
result = self._client.get("{}/backups".format(Instance.api_endpoint), model=self)
if not 'automatic' in result:
raise UnexpectedResponseError('Unexpected response loading available backups!', json=result)
automatic = []
for a in result['automatic']:
cur = Backup(self._client, a['id'], self.id, a)
automatic.append(cur)
snap = None
if result['snapshot']['current']:
snap = Backup(self._client, result['snapshot']['current']['id'], self.id,
result['snapshot']['current'])
psnap = None
if result['snapshot']['in_progress']:
psnap = Backup(self._client, result['snapshot']['in_progress']['id'], self.id,
result['snapshot']['in_progress'])
self._set('_avail_backups', MappedObject(**{
"automatic": automatic,
"snapshot": {
"current": snap,
"in_progress": psnap,
}
}))
return self._avail_backups | python | def available_backups(self):
"""
The backups response contains what backups are available to be restored.
"""
if not hasattr(self, '_avail_backups'):
result = self._client.get("{}/backups".format(Instance.api_endpoint), model=self)
if not 'automatic' in result:
raise UnexpectedResponseError('Unexpected response loading available backups!', json=result)
automatic = []
for a in result['automatic']:
cur = Backup(self._client, a['id'], self.id, a)
automatic.append(cur)
snap = None
if result['snapshot']['current']:
snap = Backup(self._client, result['snapshot']['current']['id'], self.id,
result['snapshot']['current'])
psnap = None
if result['snapshot']['in_progress']:
psnap = Backup(self._client, result['snapshot']['in_progress']['id'], self.id,
result['snapshot']['in_progress'])
self._set('_avail_backups', MappedObject(**{
"automatic": automatic,
"snapshot": {
"current": snap,
"in_progress": psnap,
}
}))
return self._avail_backups | [
"def",
"available_backups",
"(",
"self",
")",
":",
"if",
"not",
"hasattr",
"(",
"self",
",",
"'_avail_backups'",
")",
":",
"result",
"=",
"self",
".",
"_client",
".",
"get",
"(",
"\"{}/backups\"",
".",
"format",
"(",
"Instance",
".",
"api_endpoint",
")",
",",
"model",
"=",
"self",
")",
"if",
"not",
"'automatic'",
"in",
"result",
":",
"raise",
"UnexpectedResponseError",
"(",
"'Unexpected response loading available backups!'",
",",
"json",
"=",
"result",
")",
"automatic",
"=",
"[",
"]",
"for",
"a",
"in",
"result",
"[",
"'automatic'",
"]",
":",
"cur",
"=",
"Backup",
"(",
"self",
".",
"_client",
",",
"a",
"[",
"'id'",
"]",
",",
"self",
".",
"id",
",",
"a",
")",
"automatic",
".",
"append",
"(",
"cur",
")",
"snap",
"=",
"None",
"if",
"result",
"[",
"'snapshot'",
"]",
"[",
"'current'",
"]",
":",
"snap",
"=",
"Backup",
"(",
"self",
".",
"_client",
",",
"result",
"[",
"'snapshot'",
"]",
"[",
"'current'",
"]",
"[",
"'id'",
"]",
",",
"self",
".",
"id",
",",
"result",
"[",
"'snapshot'",
"]",
"[",
"'current'",
"]",
")",
"psnap",
"=",
"None",
"if",
"result",
"[",
"'snapshot'",
"]",
"[",
"'in_progress'",
"]",
":",
"psnap",
"=",
"Backup",
"(",
"self",
".",
"_client",
",",
"result",
"[",
"'snapshot'",
"]",
"[",
"'in_progress'",
"]",
"[",
"'id'",
"]",
",",
"self",
".",
"id",
",",
"result",
"[",
"'snapshot'",
"]",
"[",
"'in_progress'",
"]",
")",
"self",
".",
"_set",
"(",
"'_avail_backups'",
",",
"MappedObject",
"(",
"*",
"*",
"{",
"\"automatic\"",
":",
"automatic",
",",
"\"snapshot\"",
":",
"{",
"\"current\"",
":",
"snap",
",",
"\"in_progress\"",
":",
"psnap",
",",
"}",
"}",
")",
")",
"return",
"self",
".",
"_avail_backups"
]
| The backups response contains what backups are available to be restored. | [
"The",
"backups",
"response",
"contains",
"what",
"backups",
"are",
"available",
"to",
"be",
"restored",
"."
]
| 1dd7318d2aed014c746d48c7957464c57af883ca | https://github.com/linode/linode_api4-python/blob/1dd7318d2aed014c746d48c7957464c57af883ca/linode_api4/objects/linode.py#L275-L308 | train |
linode/linode_api4-python | linode_api4/objects/linode.py | Instance.invalidate | def invalidate(self):
""" Clear out cached properties """
if hasattr(self, '_avail_backups'):
del self._avail_backups
if hasattr(self, '_ips'):
del self._ips
Base.invalidate(self) | python | def invalidate(self):
""" Clear out cached properties """
if hasattr(self, '_avail_backups'):
del self._avail_backups
if hasattr(self, '_ips'):
del self._ips
Base.invalidate(self) | [
"def",
"invalidate",
"(",
"self",
")",
":",
"if",
"hasattr",
"(",
"self",
",",
"'_avail_backups'",
")",
":",
"del",
"self",
".",
"_avail_backups",
"if",
"hasattr",
"(",
"self",
",",
"'_ips'",
")",
":",
"del",
"self",
".",
"_ips",
"Base",
".",
"invalidate",
"(",
"self",
")"
]
| Clear out cached properties | [
"Clear",
"out",
"cached",
"properties"
]
| 1dd7318d2aed014c746d48c7957464c57af883ca | https://github.com/linode/linode_api4-python/blob/1dd7318d2aed014c746d48c7957464c57af883ca/linode_api4/objects/linode.py#L321-L328 | train |
linode/linode_api4-python | linode_api4/objects/linode.py | Instance.config_create | def config_create(self, kernel=None, label=None, devices=[], disks=[],
volumes=[], **kwargs):
"""
Creates a Linode Config with the given attributes.
:param kernel: The kernel to boot with.
:param label: The config label
:param disks: The list of disks, starting at sda, to map to this config.
:param volumes: The volumes, starting after the last disk, to map to this
config
:param devices: A list of devices to assign to this config, in device
index order. Values must be of type Disk or Volume. If this is
given, you may not include disks or volumes.
:param **kwargs: Any other arguments accepted by the api.
:returns: A new Linode Config
"""
from .volume import Volume
hypervisor_prefix = 'sd' if self.hypervisor == 'kvm' else 'xvd'
device_names = [hypervisor_prefix + string.ascii_lowercase[i] for i in range(0, 8)]
device_map = {device_names[i]: None for i in range(0, len(device_names))}
if devices and (disks or volumes):
raise ValueError('You may not call config_create with "devices" and '
'either of "disks" or "volumes" specified!')
if not devices:
if not isinstance(disks, list):
disks = [disks]
if not isinstance(volumes, list):
volumes = [volumes]
devices = []
for d in disks:
if d is None:
devices.append(None)
elif isinstance(d, Disk):
devices.append(d)
else:
devices.append(Disk(self._client, int(d), self.id))
for v in volumes:
if v is None:
devices.append(None)
elif isinstance(v, Volume):
devices.append(v)
else:
devices.append(Volume(self._client, int(v)))
if not devices:
raise ValueError('Must include at least one disk or volume!')
for i, d in enumerate(devices):
if d is None:
pass
elif isinstance(d, Disk):
device_map[device_names[i]] = {'disk_id': d.id }
elif isinstance(d, Volume):
device_map[device_names[i]] = {'volume_id': d.id }
else:
raise TypeError('Disk or Volume expected!')
params = {
'kernel': kernel.id if issubclass(type(kernel), Base) else kernel,
'label': label if label else "{}_config_{}".format(self.label, len(self.configs)),
'devices': device_map,
}
params.update(kwargs)
result = self._client.post("{}/configs".format(Instance.api_endpoint), model=self, data=params)
self.invalidate()
if not 'id' in result:
raise UnexpectedResponseError('Unexpected response creating config!', json=result)
c = Config(self._client, result['id'], self.id, result)
return c | python | def config_create(self, kernel=None, label=None, devices=[], disks=[],
volumes=[], **kwargs):
"""
Creates a Linode Config with the given attributes.
:param kernel: The kernel to boot with.
:param label: The config label
:param disks: The list of disks, starting at sda, to map to this config.
:param volumes: The volumes, starting after the last disk, to map to this
config
:param devices: A list of devices to assign to this config, in device
index order. Values must be of type Disk or Volume. If this is
given, you may not include disks or volumes.
:param **kwargs: Any other arguments accepted by the api.
:returns: A new Linode Config
"""
from .volume import Volume
hypervisor_prefix = 'sd' if self.hypervisor == 'kvm' else 'xvd'
device_names = [hypervisor_prefix + string.ascii_lowercase[i] for i in range(0, 8)]
device_map = {device_names[i]: None for i in range(0, len(device_names))}
if devices and (disks or volumes):
raise ValueError('You may not call config_create with "devices" and '
'either of "disks" or "volumes" specified!')
if not devices:
if not isinstance(disks, list):
disks = [disks]
if not isinstance(volumes, list):
volumes = [volumes]
devices = []
for d in disks:
if d is None:
devices.append(None)
elif isinstance(d, Disk):
devices.append(d)
else:
devices.append(Disk(self._client, int(d), self.id))
for v in volumes:
if v is None:
devices.append(None)
elif isinstance(v, Volume):
devices.append(v)
else:
devices.append(Volume(self._client, int(v)))
if not devices:
raise ValueError('Must include at least one disk or volume!')
for i, d in enumerate(devices):
if d is None:
pass
elif isinstance(d, Disk):
device_map[device_names[i]] = {'disk_id': d.id }
elif isinstance(d, Volume):
device_map[device_names[i]] = {'volume_id': d.id }
else:
raise TypeError('Disk or Volume expected!')
params = {
'kernel': kernel.id if issubclass(type(kernel), Base) else kernel,
'label': label if label else "{}_config_{}".format(self.label, len(self.configs)),
'devices': device_map,
}
params.update(kwargs)
result = self._client.post("{}/configs".format(Instance.api_endpoint), model=self, data=params)
self.invalidate()
if not 'id' in result:
raise UnexpectedResponseError('Unexpected response creating config!', json=result)
c = Config(self._client, result['id'], self.id, result)
return c | [
"def",
"config_create",
"(",
"self",
",",
"kernel",
"=",
"None",
",",
"label",
"=",
"None",
",",
"devices",
"=",
"[",
"]",
",",
"disks",
"=",
"[",
"]",
",",
"volumes",
"=",
"[",
"]",
",",
"*",
"*",
"kwargs",
")",
":",
"from",
".",
"volume",
"import",
"Volume",
"hypervisor_prefix",
"=",
"'sd'",
"if",
"self",
".",
"hypervisor",
"==",
"'kvm'",
"else",
"'xvd'",
"device_names",
"=",
"[",
"hypervisor_prefix",
"+",
"string",
".",
"ascii_lowercase",
"[",
"i",
"]",
"for",
"i",
"in",
"range",
"(",
"0",
",",
"8",
")",
"]",
"device_map",
"=",
"{",
"device_names",
"[",
"i",
"]",
":",
"None",
"for",
"i",
"in",
"range",
"(",
"0",
",",
"len",
"(",
"device_names",
")",
")",
"}",
"if",
"devices",
"and",
"(",
"disks",
"or",
"volumes",
")",
":",
"raise",
"ValueError",
"(",
"'You may not call config_create with \"devices\" and '",
"'either of \"disks\" or \"volumes\" specified!'",
")",
"if",
"not",
"devices",
":",
"if",
"not",
"isinstance",
"(",
"disks",
",",
"list",
")",
":",
"disks",
"=",
"[",
"disks",
"]",
"if",
"not",
"isinstance",
"(",
"volumes",
",",
"list",
")",
":",
"volumes",
"=",
"[",
"volumes",
"]",
"devices",
"=",
"[",
"]",
"for",
"d",
"in",
"disks",
":",
"if",
"d",
"is",
"None",
":",
"devices",
".",
"append",
"(",
"None",
")",
"elif",
"isinstance",
"(",
"d",
",",
"Disk",
")",
":",
"devices",
".",
"append",
"(",
"d",
")",
"else",
":",
"devices",
".",
"append",
"(",
"Disk",
"(",
"self",
".",
"_client",
",",
"int",
"(",
"d",
")",
",",
"self",
".",
"id",
")",
")",
"for",
"v",
"in",
"volumes",
":",
"if",
"v",
"is",
"None",
":",
"devices",
".",
"append",
"(",
"None",
")",
"elif",
"isinstance",
"(",
"v",
",",
"Volume",
")",
":",
"devices",
".",
"append",
"(",
"v",
")",
"else",
":",
"devices",
".",
"append",
"(",
"Volume",
"(",
"self",
".",
"_client",
",",
"int",
"(",
"v",
")",
")",
")",
"if",
"not",
"devices",
":",
"raise",
"ValueError",
"(",
"'Must include at least one disk or volume!'",
")",
"for",
"i",
",",
"d",
"in",
"enumerate",
"(",
"devices",
")",
":",
"if",
"d",
"is",
"None",
":",
"pass",
"elif",
"isinstance",
"(",
"d",
",",
"Disk",
")",
":",
"device_map",
"[",
"device_names",
"[",
"i",
"]",
"]",
"=",
"{",
"'disk_id'",
":",
"d",
".",
"id",
"}",
"elif",
"isinstance",
"(",
"d",
",",
"Volume",
")",
":",
"device_map",
"[",
"device_names",
"[",
"i",
"]",
"]",
"=",
"{",
"'volume_id'",
":",
"d",
".",
"id",
"}",
"else",
":",
"raise",
"TypeError",
"(",
"'Disk or Volume expected!'",
")",
"params",
"=",
"{",
"'kernel'",
":",
"kernel",
".",
"id",
"if",
"issubclass",
"(",
"type",
"(",
"kernel",
")",
",",
"Base",
")",
"else",
"kernel",
",",
"'label'",
":",
"label",
"if",
"label",
"else",
"\"{}_config_{}\"",
".",
"format",
"(",
"self",
".",
"label",
",",
"len",
"(",
"self",
".",
"configs",
")",
")",
",",
"'devices'",
":",
"device_map",
",",
"}",
"params",
".",
"update",
"(",
"kwargs",
")",
"result",
"=",
"self",
".",
"_client",
".",
"post",
"(",
"\"{}/configs\"",
".",
"format",
"(",
"Instance",
".",
"api_endpoint",
")",
",",
"model",
"=",
"self",
",",
"data",
"=",
"params",
")",
"self",
".",
"invalidate",
"(",
")",
"if",
"not",
"'id'",
"in",
"result",
":",
"raise",
"UnexpectedResponseError",
"(",
"'Unexpected response creating config!'",
",",
"json",
"=",
"result",
")",
"c",
"=",
"Config",
"(",
"self",
".",
"_client",
",",
"result",
"[",
"'id'",
"]",
",",
"self",
".",
"id",
",",
"result",
")",
"return",
"c"
]
| Creates a Linode Config with the given attributes.
:param kernel: The kernel to boot with.
:param label: The config label
:param disks: The list of disks, starting at sda, to map to this config.
:param volumes: The volumes, starting after the last disk, to map to this
config
:param devices: A list of devices to assign to this config, in device
index order. Values must be of type Disk or Volume. If this is
given, you may not include disks or volumes.
:param **kwargs: Any other arguments accepted by the api.
:returns: A new Linode Config | [
"Creates",
"a",
"Linode",
"Config",
"with",
"the",
"given",
"attributes",
"."
]
| 1dd7318d2aed014c746d48c7957464c57af883ca | https://github.com/linode/linode_api4-python/blob/1dd7318d2aed014c746d48c7957464c57af883ca/linode_api4/objects/linode.py#L378-L456 | train |
linode/linode_api4-python | linode_api4/objects/linode.py | Instance.enable_backups | def enable_backups(self):
"""
Enable Backups for this Instance. When enabled, we will automatically
backup your Instance's data so that it can be restored at a later date.
For more information on Instance's Backups service and pricing, see our
`Backups Page`_
.. _Backups Page: https://www.linode.com/backups
"""
self._client.post("{}/backups/enable".format(Instance.api_endpoint), model=self)
self.invalidate()
return True | python | def enable_backups(self):
"""
Enable Backups for this Instance. When enabled, we will automatically
backup your Instance's data so that it can be restored at a later date.
For more information on Instance's Backups service and pricing, see our
`Backups Page`_
.. _Backups Page: https://www.linode.com/backups
"""
self._client.post("{}/backups/enable".format(Instance.api_endpoint), model=self)
self.invalidate()
return True | [
"def",
"enable_backups",
"(",
"self",
")",
":",
"self",
".",
"_client",
".",
"post",
"(",
"\"{}/backups/enable\"",
".",
"format",
"(",
"Instance",
".",
"api_endpoint",
")",
",",
"model",
"=",
"self",
")",
"self",
".",
"invalidate",
"(",
")",
"return",
"True"
]
| Enable Backups for this Instance. When enabled, we will automatically
backup your Instance's data so that it can be restored at a later date.
For more information on Instance's Backups service and pricing, see our
`Backups Page`_
.. _Backups Page: https://www.linode.com/backups | [
"Enable",
"Backups",
"for",
"this",
"Instance",
".",
"When",
"enabled",
"we",
"will",
"automatically",
"backup",
"your",
"Instance",
"s",
"data",
"so",
"that",
"it",
"can",
"be",
"restored",
"at",
"a",
"later",
"date",
".",
"For",
"more",
"information",
"on",
"Instance",
"s",
"Backups",
"service",
"and",
"pricing",
"see",
"our",
"Backups",
"Page",
"_"
]
| 1dd7318d2aed014c746d48c7957464c57af883ca | https://github.com/linode/linode_api4-python/blob/1dd7318d2aed014c746d48c7957464c57af883ca/linode_api4/objects/linode.py#L502-L513 | train |
linode/linode_api4-python | linode_api4/objects/linode.py | Instance.mutate | def mutate(self):
"""
Upgrades this Instance to the latest generation type
"""
self._client.post('{}/mutate'.format(Instance.api_endpoint), model=self)
return True | python | def mutate(self):
"""
Upgrades this Instance to the latest generation type
"""
self._client.post('{}/mutate'.format(Instance.api_endpoint), model=self)
return True | [
"def",
"mutate",
"(",
"self",
")",
":",
"self",
".",
"_client",
".",
"post",
"(",
"'{}/mutate'",
".",
"format",
"(",
"Instance",
".",
"api_endpoint",
")",
",",
"model",
"=",
"self",
")",
"return",
"True"
]
| Upgrades this Instance to the latest generation type | [
"Upgrades",
"this",
"Instance",
"to",
"the",
"latest",
"generation",
"type"
]
| 1dd7318d2aed014c746d48c7957464c57af883ca | https://github.com/linode/linode_api4-python/blob/1dd7318d2aed014c746d48c7957464c57af883ca/linode_api4/objects/linode.py#L635-L641 | train |
linode/linode_api4-python | linode_api4/objects/linode.py | Instance.initiate_migration | def initiate_migration(self):
"""
Initiates a pending migration that is already scheduled for this Linode
Instance
"""
self._client.post('{}/migrate'.format(Instance.api_endpoint), model=self) | python | def initiate_migration(self):
"""
Initiates a pending migration that is already scheduled for this Linode
Instance
"""
self._client.post('{}/migrate'.format(Instance.api_endpoint), model=self) | [
"def",
"initiate_migration",
"(",
"self",
")",
":",
"self",
".",
"_client",
".",
"post",
"(",
"'{}/migrate'",
".",
"format",
"(",
"Instance",
".",
"api_endpoint",
")",
",",
"model",
"=",
"self",
")"
]
| Initiates a pending migration that is already scheduled for this Linode
Instance | [
"Initiates",
"a",
"pending",
"migration",
"that",
"is",
"already",
"scheduled",
"for",
"this",
"Linode",
"Instance"
]
| 1dd7318d2aed014c746d48c7957464c57af883ca | https://github.com/linode/linode_api4-python/blob/1dd7318d2aed014c746d48c7957464c57af883ca/linode_api4/objects/linode.py#L643-L648 | train |
linode/linode_api4-python | linode_api4/objects/linode.py | Instance.clone | def clone(self, to_linode=None, region=None, service=None, configs=[], disks=[],
label=None, group=None, with_backups=None):
""" Clones this linode into a new linode or into a new linode in the given region """
if to_linode and region:
raise ValueError('You may only specify one of "to_linode" and "region"')
if region and not service:
raise ValueError('Specifying a region requires a "service" as well')
if not isinstance(configs, list) and not isinstance(configs, PaginatedList):
configs = [configs]
if not isinstance(disks, list) and not isinstance(disks, PaginatedList):
disks = [disks]
cids = [ c.id if issubclass(type(c), Base) else c for c in configs ]
dids = [ d.id if issubclass(type(d), Base) else d for d in disks ]
params = {
"linode_id": to_linode.id if issubclass(type(to_linode), Base) else to_linode,
"region": region.id if issubclass(type(region), Base) else region,
"type": service.id if issubclass(type(service), Base) else service,
"configs": cids if cids else None,
"disks": dids if dids else None,
"label": label,
"group": group,
"with_backups": with_backups,
}
result = self._client.post('{}/clone'.format(Instance.api_endpoint), model=self, data=params)
if not 'id' in result:
raise UnexpectedResponseError('Unexpected response cloning Instance!', json=result)
l = Instance(self._client, result['id'], result)
return l | python | def clone(self, to_linode=None, region=None, service=None, configs=[], disks=[],
label=None, group=None, with_backups=None):
""" Clones this linode into a new linode or into a new linode in the given region """
if to_linode and region:
raise ValueError('You may only specify one of "to_linode" and "region"')
if region and not service:
raise ValueError('Specifying a region requires a "service" as well')
if not isinstance(configs, list) and not isinstance(configs, PaginatedList):
configs = [configs]
if not isinstance(disks, list) and not isinstance(disks, PaginatedList):
disks = [disks]
cids = [ c.id if issubclass(type(c), Base) else c for c in configs ]
dids = [ d.id if issubclass(type(d), Base) else d for d in disks ]
params = {
"linode_id": to_linode.id if issubclass(type(to_linode), Base) else to_linode,
"region": region.id if issubclass(type(region), Base) else region,
"type": service.id if issubclass(type(service), Base) else service,
"configs": cids if cids else None,
"disks": dids if dids else None,
"label": label,
"group": group,
"with_backups": with_backups,
}
result = self._client.post('{}/clone'.format(Instance.api_endpoint), model=self, data=params)
if not 'id' in result:
raise UnexpectedResponseError('Unexpected response cloning Instance!', json=result)
l = Instance(self._client, result['id'], result)
return l | [
"def",
"clone",
"(",
"self",
",",
"to_linode",
"=",
"None",
",",
"region",
"=",
"None",
",",
"service",
"=",
"None",
",",
"configs",
"=",
"[",
"]",
",",
"disks",
"=",
"[",
"]",
",",
"label",
"=",
"None",
",",
"group",
"=",
"None",
",",
"with_backups",
"=",
"None",
")",
":",
"if",
"to_linode",
"and",
"region",
":",
"raise",
"ValueError",
"(",
"'You may only specify one of \"to_linode\" and \"region\"'",
")",
"if",
"region",
"and",
"not",
"service",
":",
"raise",
"ValueError",
"(",
"'Specifying a region requires a \"service\" as well'",
")",
"if",
"not",
"isinstance",
"(",
"configs",
",",
"list",
")",
"and",
"not",
"isinstance",
"(",
"configs",
",",
"PaginatedList",
")",
":",
"configs",
"=",
"[",
"configs",
"]",
"if",
"not",
"isinstance",
"(",
"disks",
",",
"list",
")",
"and",
"not",
"isinstance",
"(",
"disks",
",",
"PaginatedList",
")",
":",
"disks",
"=",
"[",
"disks",
"]",
"cids",
"=",
"[",
"c",
".",
"id",
"if",
"issubclass",
"(",
"type",
"(",
"c",
")",
",",
"Base",
")",
"else",
"c",
"for",
"c",
"in",
"configs",
"]",
"dids",
"=",
"[",
"d",
".",
"id",
"if",
"issubclass",
"(",
"type",
"(",
"d",
")",
",",
"Base",
")",
"else",
"d",
"for",
"d",
"in",
"disks",
"]",
"params",
"=",
"{",
"\"linode_id\"",
":",
"to_linode",
".",
"id",
"if",
"issubclass",
"(",
"type",
"(",
"to_linode",
")",
",",
"Base",
")",
"else",
"to_linode",
",",
"\"region\"",
":",
"region",
".",
"id",
"if",
"issubclass",
"(",
"type",
"(",
"region",
")",
",",
"Base",
")",
"else",
"region",
",",
"\"type\"",
":",
"service",
".",
"id",
"if",
"issubclass",
"(",
"type",
"(",
"service",
")",
",",
"Base",
")",
"else",
"service",
",",
"\"configs\"",
":",
"cids",
"if",
"cids",
"else",
"None",
",",
"\"disks\"",
":",
"dids",
"if",
"dids",
"else",
"None",
",",
"\"label\"",
":",
"label",
",",
"\"group\"",
":",
"group",
",",
"\"with_backups\"",
":",
"with_backups",
",",
"}",
"result",
"=",
"self",
".",
"_client",
".",
"post",
"(",
"'{}/clone'",
".",
"format",
"(",
"Instance",
".",
"api_endpoint",
")",
",",
"model",
"=",
"self",
",",
"data",
"=",
"params",
")",
"if",
"not",
"'id'",
"in",
"result",
":",
"raise",
"UnexpectedResponseError",
"(",
"'Unexpected response cloning Instance!'",
",",
"json",
"=",
"result",
")",
"l",
"=",
"Instance",
"(",
"self",
".",
"_client",
",",
"result",
"[",
"'id'",
"]",
",",
"result",
")",
"return",
"l"
]
| Clones this linode into a new linode or into a new linode in the given region | [
"Clones",
"this",
"linode",
"into",
"a",
"new",
"linode",
"or",
"into",
"a",
"new",
"linode",
"in",
"the",
"given",
"region"
]
| 1dd7318d2aed014c746d48c7957464c57af883ca | https://github.com/linode/linode_api4-python/blob/1dd7318d2aed014c746d48c7957464c57af883ca/linode_api4/objects/linode.py#L650-L684 | train |
linode/linode_api4-python | linode_api4/objects/linode.py | Instance.stats | def stats(self):
"""
Returns the JSON stats for this Instance
"""
# TODO - this would be nicer if we formatted the stats
return self._client.get('{}/stats'.format(Instance.api_endpoint), model=self) | python | def stats(self):
"""
Returns the JSON stats for this Instance
"""
# TODO - this would be nicer if we formatted the stats
return self._client.get('{}/stats'.format(Instance.api_endpoint), model=self) | [
"def",
"stats",
"(",
"self",
")",
":",
"# TODO - this would be nicer if we formatted the stats",
"return",
"self",
".",
"_client",
".",
"get",
"(",
"'{}/stats'",
".",
"format",
"(",
"Instance",
".",
"api_endpoint",
")",
",",
"model",
"=",
"self",
")"
]
| Returns the JSON stats for this Instance | [
"Returns",
"the",
"JSON",
"stats",
"for",
"this",
"Instance"
]
| 1dd7318d2aed014c746d48c7957464c57af883ca | https://github.com/linode/linode_api4-python/blob/1dd7318d2aed014c746d48c7957464c57af883ca/linode_api4/objects/linode.py#L687-L692 | train |
linode/linode_api4-python | linode_api4/objects/linode.py | Instance.stats_for | def stats_for(self, dt):
"""
Returns stats for the month containing the given datetime
"""
# TODO - this would be nicer if we formatted the stats
if not isinstance(dt, datetime):
raise TypeError('stats_for requires a datetime object!')
return self._client.get('{}/stats/'.format(dt.strftime('%Y/%m'))) | python | def stats_for(self, dt):
"""
Returns stats for the month containing the given datetime
"""
# TODO - this would be nicer if we formatted the stats
if not isinstance(dt, datetime):
raise TypeError('stats_for requires a datetime object!')
return self._client.get('{}/stats/'.format(dt.strftime('%Y/%m'))) | [
"def",
"stats_for",
"(",
"self",
",",
"dt",
")",
":",
"# TODO - this would be nicer if we formatted the stats",
"if",
"not",
"isinstance",
"(",
"dt",
",",
"datetime",
")",
":",
"raise",
"TypeError",
"(",
"'stats_for requires a datetime object!'",
")",
"return",
"self",
".",
"_client",
".",
"get",
"(",
"'{}/stats/'",
".",
"format",
"(",
"dt",
".",
"strftime",
"(",
"'%Y/%m'",
")",
")",
")"
]
| Returns stats for the month containing the given datetime | [
"Returns",
"stats",
"for",
"the",
"month",
"containing",
"the",
"given",
"datetime"
]
| 1dd7318d2aed014c746d48c7957464c57af883ca | https://github.com/linode/linode_api4-python/blob/1dd7318d2aed014c746d48c7957464c57af883ca/linode_api4/objects/linode.py#L694-L701 | train |
linode/linode_api4-python | linode_api4/objects/linode.py | StackScript._populate | def _populate(self, json):
"""
Override the populate method to map user_defined_fields to
fancy values
"""
Base._populate(self, json)
mapped_udfs = []
for udf in self.user_defined_fields:
t = UserDefinedFieldType.text
choices = None
if hasattr(udf, 'oneof'):
t = UserDefinedFieldType.select_one
choices = udf.oneof.split(',')
elif hasattr(udf, 'manyof'):
t = UserDefinedFieldType.select_many
choices = udf.manyof.split(',')
mapped_udfs.append(UserDefinedField(udf.name,
udf.label if hasattr(udf, 'label') else None,
udf.example if hasattr(udf, 'example') else None,
t, choices=choices))
self._set('user_defined_fields', mapped_udfs)
ndist = [ Image(self._client, d) for d in self.images ]
self._set('images', ndist) | python | def _populate(self, json):
"""
Override the populate method to map user_defined_fields to
fancy values
"""
Base._populate(self, json)
mapped_udfs = []
for udf in self.user_defined_fields:
t = UserDefinedFieldType.text
choices = None
if hasattr(udf, 'oneof'):
t = UserDefinedFieldType.select_one
choices = udf.oneof.split(',')
elif hasattr(udf, 'manyof'):
t = UserDefinedFieldType.select_many
choices = udf.manyof.split(',')
mapped_udfs.append(UserDefinedField(udf.name,
udf.label if hasattr(udf, 'label') else None,
udf.example if hasattr(udf, 'example') else None,
t, choices=choices))
self._set('user_defined_fields', mapped_udfs)
ndist = [ Image(self._client, d) for d in self.images ]
self._set('images', ndist) | [
"def",
"_populate",
"(",
"self",
",",
"json",
")",
":",
"Base",
".",
"_populate",
"(",
"self",
",",
"json",
")",
"mapped_udfs",
"=",
"[",
"]",
"for",
"udf",
"in",
"self",
".",
"user_defined_fields",
":",
"t",
"=",
"UserDefinedFieldType",
".",
"text",
"choices",
"=",
"None",
"if",
"hasattr",
"(",
"udf",
",",
"'oneof'",
")",
":",
"t",
"=",
"UserDefinedFieldType",
".",
"select_one",
"choices",
"=",
"udf",
".",
"oneof",
".",
"split",
"(",
"','",
")",
"elif",
"hasattr",
"(",
"udf",
",",
"'manyof'",
")",
":",
"t",
"=",
"UserDefinedFieldType",
".",
"select_many",
"choices",
"=",
"udf",
".",
"manyof",
".",
"split",
"(",
"','",
")",
"mapped_udfs",
".",
"append",
"(",
"UserDefinedField",
"(",
"udf",
".",
"name",
",",
"udf",
".",
"label",
"if",
"hasattr",
"(",
"udf",
",",
"'label'",
")",
"else",
"None",
",",
"udf",
".",
"example",
"if",
"hasattr",
"(",
"udf",
",",
"'example'",
")",
"else",
"None",
",",
"t",
",",
"choices",
"=",
"choices",
")",
")",
"self",
".",
"_set",
"(",
"'user_defined_fields'",
",",
"mapped_udfs",
")",
"ndist",
"=",
"[",
"Image",
"(",
"self",
".",
"_client",
",",
"d",
")",
"for",
"d",
"in",
"self",
".",
"images",
"]",
"self",
".",
"_set",
"(",
"'images'",
",",
"ndist",
")"
]
| Override the populate method to map user_defined_fields to
fancy values | [
"Override",
"the",
"populate",
"method",
"to",
"map",
"user_defined_fields",
"to",
"fancy",
"values"
]
| 1dd7318d2aed014c746d48c7957464c57af883ca | https://github.com/linode/linode_api4-python/blob/1dd7318d2aed014c746d48c7957464c57af883ca/linode_api4/objects/linode.py#L738-L763 | train |
linode/linode_api4-python | linode_api4/objects/account.py | InvoiceItem._populate | def _populate(self, json):
"""
Allows population of "from_date" from the returned "from" attribute which
is a reserved word in python. Also populates "to_date" to be complete.
"""
super(InvoiceItem, self)._populate(json)
self.from_date = datetime.strptime(json['from'], DATE_FORMAT)
self.to_date = datetime.strptime(json['to'], DATE_FORMAT) | python | def _populate(self, json):
"""
Allows population of "from_date" from the returned "from" attribute which
is a reserved word in python. Also populates "to_date" to be complete.
"""
super(InvoiceItem, self)._populate(json)
self.from_date = datetime.strptime(json['from'], DATE_FORMAT)
self.to_date = datetime.strptime(json['to'], DATE_FORMAT) | [
"def",
"_populate",
"(",
"self",
",",
"json",
")",
":",
"super",
"(",
"InvoiceItem",
",",
"self",
")",
".",
"_populate",
"(",
"json",
")",
"self",
".",
"from_date",
"=",
"datetime",
".",
"strptime",
"(",
"json",
"[",
"'from'",
"]",
",",
"DATE_FORMAT",
")",
"self",
".",
"to_date",
"=",
"datetime",
".",
"strptime",
"(",
"json",
"[",
"'to'",
"]",
",",
"DATE_FORMAT",
")"
]
| Allows population of "from_date" from the returned "from" attribute which
is a reserved word in python. Also populates "to_date" to be complete. | [
"Allows",
"population",
"of",
"from_date",
"from",
"the",
"returned",
"from",
"attribute",
"which",
"is",
"a",
"reserved",
"word",
"in",
"python",
".",
"Also",
"populates",
"to_date",
"to",
"be",
"complete",
"."
]
| 1dd7318d2aed014c746d48c7957464c57af883ca | https://github.com/linode/linode_api4-python/blob/1dd7318d2aed014c746d48c7957464c57af883ca/linode_api4/objects/account.py#L128-L136 | train |
linode/linode_api4-python | linode_api4/objects/account.py | OAuthClient.reset_secret | def reset_secret(self):
"""
Resets the client secret for this client.
"""
result = self._client.post("{}/reset_secret".format(OAuthClient.api_endpoint), model=self)
if not 'id' in result:
raise UnexpectedResponseError('Unexpected response when resetting secret!', json=result)
self._populate(result)
return self.secret | python | def reset_secret(self):
"""
Resets the client secret for this client.
"""
result = self._client.post("{}/reset_secret".format(OAuthClient.api_endpoint), model=self)
if not 'id' in result:
raise UnexpectedResponseError('Unexpected response when resetting secret!', json=result)
self._populate(result)
return self.secret | [
"def",
"reset_secret",
"(",
"self",
")",
":",
"result",
"=",
"self",
".",
"_client",
".",
"post",
"(",
"\"{}/reset_secret\"",
".",
"format",
"(",
"OAuthClient",
".",
"api_endpoint",
")",
",",
"model",
"=",
"self",
")",
"if",
"not",
"'id'",
"in",
"result",
":",
"raise",
"UnexpectedResponseError",
"(",
"'Unexpected response when resetting secret!'",
",",
"json",
"=",
"result",
")",
"self",
".",
"_populate",
"(",
"result",
")",
"return",
"self",
".",
"secret"
]
| Resets the client secret for this client. | [
"Resets",
"the",
"client",
"secret",
"for",
"this",
"client",
"."
]
| 1dd7318d2aed014c746d48c7957464c57af883ca | https://github.com/linode/linode_api4-python/blob/1dd7318d2aed014c746d48c7957464c57af883ca/linode_api4/objects/account.py#L163-L173 | train |
linode/linode_api4-python | linode_api4/objects/account.py | OAuthClient.thumbnail | def thumbnail(self, dump_to=None):
"""
This returns binary data that represents a 128x128 image.
If dump_to is given, attempts to write the image to a file
at the given location.
"""
headers = {
"Authorization": "token {}".format(self._client.token)
}
result = requests.get('{}/{}/thumbnail'.format(self._client.base_url,
OAuthClient.api_endpoint.format(id=self.id)),
headers=headers)
if not result.status_code == 200:
raise ApiError('No thumbnail found for OAuthClient {}'.format(self.id))
if dump_to:
with open(dump_to, 'wb+') as f:
f.write(result.content)
return result.content | python | def thumbnail(self, dump_to=None):
"""
This returns binary data that represents a 128x128 image.
If dump_to is given, attempts to write the image to a file
at the given location.
"""
headers = {
"Authorization": "token {}".format(self._client.token)
}
result = requests.get('{}/{}/thumbnail'.format(self._client.base_url,
OAuthClient.api_endpoint.format(id=self.id)),
headers=headers)
if not result.status_code == 200:
raise ApiError('No thumbnail found for OAuthClient {}'.format(self.id))
if dump_to:
with open(dump_to, 'wb+') as f:
f.write(result.content)
return result.content | [
"def",
"thumbnail",
"(",
"self",
",",
"dump_to",
"=",
"None",
")",
":",
"headers",
"=",
"{",
"\"Authorization\"",
":",
"\"token {}\"",
".",
"format",
"(",
"self",
".",
"_client",
".",
"token",
")",
"}",
"result",
"=",
"requests",
".",
"get",
"(",
"'{}/{}/thumbnail'",
".",
"format",
"(",
"self",
".",
"_client",
".",
"base_url",
",",
"OAuthClient",
".",
"api_endpoint",
".",
"format",
"(",
"id",
"=",
"self",
".",
"id",
")",
")",
",",
"headers",
"=",
"headers",
")",
"if",
"not",
"result",
".",
"status_code",
"==",
"200",
":",
"raise",
"ApiError",
"(",
"'No thumbnail found for OAuthClient {}'",
".",
"format",
"(",
"self",
".",
"id",
")",
")",
"if",
"dump_to",
":",
"with",
"open",
"(",
"dump_to",
",",
"'wb+'",
")",
"as",
"f",
":",
"f",
".",
"write",
"(",
"result",
".",
"content",
")",
"return",
"result",
".",
"content"
]
| This returns binary data that represents a 128x128 image.
If dump_to is given, attempts to write the image to a file
at the given location. | [
"This",
"returns",
"binary",
"data",
"that",
"represents",
"a",
"128x128",
"image",
".",
"If",
"dump_to",
"is",
"given",
"attempts",
"to",
"write",
"the",
"image",
"to",
"a",
"file",
"at",
"the",
"given",
"location",
"."
]
| 1dd7318d2aed014c746d48c7957464c57af883ca | https://github.com/linode/linode_api4-python/blob/1dd7318d2aed014c746d48c7957464c57af883ca/linode_api4/objects/account.py#L175-L195 | train |
linode/linode_api4-python | linode_api4/objects/account.py | OAuthClient.set_thumbnail | def set_thumbnail(self, thumbnail):
"""
Sets the thumbnail for this OAuth Client. If thumbnail is bytes,
uploads it as a png. Otherwise, assumes thumbnail is a path to the
thumbnail and reads it in as bytes before uploading.
"""
headers = {
"Authorization": "token {}".format(self._client.token),
"Content-type": "image/png",
}
# TODO this check needs to be smarter - python2 doesn't do it right
if not isinstance(thumbnail, bytes):
with open(thumbnail, 'rb') as f:
thumbnail = f.read()
result = requests.put('{}/{}/thumbnail'.format(self._client.base_url,
OAuthClient.api_endpoint.format(id=self.id)),
headers=headers, data=thumbnail)
if not result.status_code == 200:
errors = []
j = result.json()
if 'errors' in j:
errors = [ e['reason'] for e in j['errors'] ]
raise ApiError('{}: {}'.format(result.status_code, errors), json=j)
return True | python | def set_thumbnail(self, thumbnail):
"""
Sets the thumbnail for this OAuth Client. If thumbnail is bytes,
uploads it as a png. Otherwise, assumes thumbnail is a path to the
thumbnail and reads it in as bytes before uploading.
"""
headers = {
"Authorization": "token {}".format(self._client.token),
"Content-type": "image/png",
}
# TODO this check needs to be smarter - python2 doesn't do it right
if not isinstance(thumbnail, bytes):
with open(thumbnail, 'rb') as f:
thumbnail = f.read()
result = requests.put('{}/{}/thumbnail'.format(self._client.base_url,
OAuthClient.api_endpoint.format(id=self.id)),
headers=headers, data=thumbnail)
if not result.status_code == 200:
errors = []
j = result.json()
if 'errors' in j:
errors = [ e['reason'] for e in j['errors'] ]
raise ApiError('{}: {}'.format(result.status_code, errors), json=j)
return True | [
"def",
"set_thumbnail",
"(",
"self",
",",
"thumbnail",
")",
":",
"headers",
"=",
"{",
"\"Authorization\"",
":",
"\"token {}\"",
".",
"format",
"(",
"self",
".",
"_client",
".",
"token",
")",
",",
"\"Content-type\"",
":",
"\"image/png\"",
",",
"}",
"# TODO this check needs to be smarter - python2 doesn't do it right",
"if",
"not",
"isinstance",
"(",
"thumbnail",
",",
"bytes",
")",
":",
"with",
"open",
"(",
"thumbnail",
",",
"'rb'",
")",
"as",
"f",
":",
"thumbnail",
"=",
"f",
".",
"read",
"(",
")",
"result",
"=",
"requests",
".",
"put",
"(",
"'{}/{}/thumbnail'",
".",
"format",
"(",
"self",
".",
"_client",
".",
"base_url",
",",
"OAuthClient",
".",
"api_endpoint",
".",
"format",
"(",
"id",
"=",
"self",
".",
"id",
")",
")",
",",
"headers",
"=",
"headers",
",",
"data",
"=",
"thumbnail",
")",
"if",
"not",
"result",
".",
"status_code",
"==",
"200",
":",
"errors",
"=",
"[",
"]",
"j",
"=",
"result",
".",
"json",
"(",
")",
"if",
"'errors'",
"in",
"j",
":",
"errors",
"=",
"[",
"e",
"[",
"'reason'",
"]",
"for",
"e",
"in",
"j",
"[",
"'errors'",
"]",
"]",
"raise",
"ApiError",
"(",
"'{}: {}'",
".",
"format",
"(",
"result",
".",
"status_code",
",",
"errors",
")",
",",
"json",
"=",
"j",
")",
"return",
"True"
]
| Sets the thumbnail for this OAuth Client. If thumbnail is bytes,
uploads it as a png. Otherwise, assumes thumbnail is a path to the
thumbnail and reads it in as bytes before uploading. | [
"Sets",
"the",
"thumbnail",
"for",
"this",
"OAuth",
"Client",
".",
"If",
"thumbnail",
"is",
"bytes",
"uploads",
"it",
"as",
"a",
"png",
".",
"Otherwise",
"assumes",
"thumbnail",
"is",
"a",
"path",
"to",
"the",
"thumbnail",
"and",
"reads",
"it",
"in",
"as",
"bytes",
"before",
"uploading",
"."
]
| 1dd7318d2aed014c746d48c7957464c57af883ca | https://github.com/linode/linode_api4-python/blob/1dd7318d2aed014c746d48c7957464c57af883ca/linode_api4/objects/account.py#L197-L224 | train |
linode/linode_api4-python | linode_api4/objects/account.py | User.grants | def grants(self):
"""
Retrieves the grants for this user. If the user is unrestricted, this
will result in an ApiError. This is smart, and will only fetch from the
api once unless the object is invalidated.
:returns: The grants for this user.
:rtype: linode.objects.account.UserGrants
"""
from linode_api4.objects.account import UserGrants
if not hasattr(self, '_grants'):
resp = self._client.get(UserGrants.api_endpoint.format(username=self.username))
grants = UserGrants(self._client, self.username, resp)
self._set('_grants', grants)
return self._grants | python | def grants(self):
"""
Retrieves the grants for this user. If the user is unrestricted, this
will result in an ApiError. This is smart, and will only fetch from the
api once unless the object is invalidated.
:returns: The grants for this user.
:rtype: linode.objects.account.UserGrants
"""
from linode_api4.objects.account import UserGrants
if not hasattr(self, '_grants'):
resp = self._client.get(UserGrants.api_endpoint.format(username=self.username))
grants = UserGrants(self._client, self.username, resp)
self._set('_grants', grants)
return self._grants | [
"def",
"grants",
"(",
"self",
")",
":",
"from",
"linode_api4",
".",
"objects",
".",
"account",
"import",
"UserGrants",
"if",
"not",
"hasattr",
"(",
"self",
",",
"'_grants'",
")",
":",
"resp",
"=",
"self",
".",
"_client",
".",
"get",
"(",
"UserGrants",
".",
"api_endpoint",
".",
"format",
"(",
"username",
"=",
"self",
".",
"username",
")",
")",
"grants",
"=",
"UserGrants",
"(",
"self",
".",
"_client",
",",
"self",
".",
"username",
",",
"resp",
")",
"self",
".",
"_set",
"(",
"'_grants'",
",",
"grants",
")",
"return",
"self",
".",
"_grants"
]
| Retrieves the grants for this user. If the user is unrestricted, this
will result in an ApiError. This is smart, and will only fetch from the
api once unless the object is invalidated.
:returns: The grants for this user.
:rtype: linode.objects.account.UserGrants | [
"Retrieves",
"the",
"grants",
"for",
"this",
"user",
".",
"If",
"the",
"user",
"is",
"unrestricted",
"this",
"will",
"result",
"in",
"an",
"ApiError",
".",
"This",
"is",
"smart",
"and",
"will",
"only",
"fetch",
"from",
"the",
"api",
"once",
"unless",
"the",
"object",
"is",
"invalidated",
"."
]
| 1dd7318d2aed014c746d48c7957464c57af883ca | https://github.com/linode/linode_api4-python/blob/1dd7318d2aed014c746d48c7957464c57af883ca/linode_api4/objects/account.py#L248-L264 | train |
linode/linode_api4-python | linode_api4/objects/base.py | Base.save | def save(self):
"""
Send this object's mutable values to the server in a PUT request
"""
resp = self._client.put(type(self).api_endpoint, model=self,
data=self._serialize())
if 'error' in resp:
return False
return True | python | def save(self):
"""
Send this object's mutable values to the server in a PUT request
"""
resp = self._client.put(type(self).api_endpoint, model=self,
data=self._serialize())
if 'error' in resp:
return False
return True | [
"def",
"save",
"(",
"self",
")",
":",
"resp",
"=",
"self",
".",
"_client",
".",
"put",
"(",
"type",
"(",
"self",
")",
".",
"api_endpoint",
",",
"model",
"=",
"self",
",",
"data",
"=",
"self",
".",
"_serialize",
"(",
")",
")",
"if",
"'error'",
"in",
"resp",
":",
"return",
"False",
"return",
"True"
]
| Send this object's mutable values to the server in a PUT request | [
"Send",
"this",
"object",
"s",
"mutable",
"values",
"to",
"the",
"server",
"in",
"a",
"PUT",
"request"
]
| 1dd7318d2aed014c746d48c7957464c57af883ca | https://github.com/linode/linode_api4-python/blob/1dd7318d2aed014c746d48c7957464c57af883ca/linode_api4/objects/base.py#L150-L159 | train |
linode/linode_api4-python | linode_api4/objects/base.py | Base.delete | def delete(self):
"""
Sends a DELETE request for this object
"""
resp = self._client.delete(type(self).api_endpoint, model=self)
if 'error' in resp:
return False
self.invalidate()
return True | python | def delete(self):
"""
Sends a DELETE request for this object
"""
resp = self._client.delete(type(self).api_endpoint, model=self)
if 'error' in resp:
return False
self.invalidate()
return True | [
"def",
"delete",
"(",
"self",
")",
":",
"resp",
"=",
"self",
".",
"_client",
".",
"delete",
"(",
"type",
"(",
"self",
")",
".",
"api_endpoint",
",",
"model",
"=",
"self",
")",
"if",
"'error'",
"in",
"resp",
":",
"return",
"False",
"self",
".",
"invalidate",
"(",
")",
"return",
"True"
]
| Sends a DELETE request for this object | [
"Sends",
"a",
"DELETE",
"request",
"for",
"this",
"object"
]
| 1dd7318d2aed014c746d48c7957464c57af883ca | https://github.com/linode/linode_api4-python/blob/1dd7318d2aed014c746d48c7957464c57af883ca/linode_api4/objects/base.py#L161-L170 | train |
linode/linode_api4-python | linode_api4/objects/base.py | Base.invalidate | def invalidate(self):
"""
Invalidates all non-identifier Properties this object has locally,
causing the next access to re-fetch them from the server
"""
for key in [k for k in type(self).properties.keys()
if not type(self).properties[k].identifier]:
self._set(key, None)
self._set('_populated', False) | python | def invalidate(self):
"""
Invalidates all non-identifier Properties this object has locally,
causing the next access to re-fetch them from the server
"""
for key in [k for k in type(self).properties.keys()
if not type(self).properties[k].identifier]:
self._set(key, None)
self._set('_populated', False) | [
"def",
"invalidate",
"(",
"self",
")",
":",
"for",
"key",
"in",
"[",
"k",
"for",
"k",
"in",
"type",
"(",
"self",
")",
".",
"properties",
".",
"keys",
"(",
")",
"if",
"not",
"type",
"(",
"self",
")",
".",
"properties",
"[",
"k",
"]",
".",
"identifier",
"]",
":",
"self",
".",
"_set",
"(",
"key",
",",
"None",
")",
"self",
".",
"_set",
"(",
"'_populated'",
",",
"False",
")"
]
| Invalidates all non-identifier Properties this object has locally,
causing the next access to re-fetch them from the server | [
"Invalidates",
"all",
"non",
"-",
"identifier",
"Properties",
"this",
"object",
"has",
"locally",
"causing",
"the",
"next",
"access",
"to",
"re",
"-",
"fetch",
"them",
"from",
"the",
"server"
]
| 1dd7318d2aed014c746d48c7957464c57af883ca | https://github.com/linode/linode_api4-python/blob/1dd7318d2aed014c746d48c7957464c57af883ca/linode_api4/objects/base.py#L172-L181 | train |
linode/linode_api4-python | linode_api4/objects/base.py | Base._serialize | def _serialize(self):
"""
A helper method to build a dict of all mutable Properties of
this object
"""
result = { a: getattr(self, a) for a in type(self).properties
if type(self).properties[a].mutable }
for k, v in result.items():
if isinstance(v, Base):
result[k] = v.id
return result | python | def _serialize(self):
"""
A helper method to build a dict of all mutable Properties of
this object
"""
result = { a: getattr(self, a) for a in type(self).properties
if type(self).properties[a].mutable }
for k, v in result.items():
if isinstance(v, Base):
result[k] = v.id
return result | [
"def",
"_serialize",
"(",
"self",
")",
":",
"result",
"=",
"{",
"a",
":",
"getattr",
"(",
"self",
",",
"a",
")",
"for",
"a",
"in",
"type",
"(",
"self",
")",
".",
"properties",
"if",
"type",
"(",
"self",
")",
".",
"properties",
"[",
"a",
"]",
".",
"mutable",
"}",
"for",
"k",
",",
"v",
"in",
"result",
".",
"items",
"(",
")",
":",
"if",
"isinstance",
"(",
"v",
",",
"Base",
")",
":",
"result",
"[",
"k",
"]",
"=",
"v",
".",
"id",
"return",
"result"
]
| A helper method to build a dict of all mutable Properties of
this object | [
"A",
"helper",
"method",
"to",
"build",
"a",
"dict",
"of",
"all",
"mutable",
"Properties",
"of",
"this",
"object"
]
| 1dd7318d2aed014c746d48c7957464c57af883ca | https://github.com/linode/linode_api4-python/blob/1dd7318d2aed014c746d48c7957464c57af883ca/linode_api4/objects/base.py#L183-L195 | train |
linode/linode_api4-python | linode_api4/objects/base.py | Base._api_get | def _api_get(self):
"""
A helper method to GET this object from the server
"""
json = self._client.get(type(self).api_endpoint, model=self)
self._populate(json) | python | def _api_get(self):
"""
A helper method to GET this object from the server
"""
json = self._client.get(type(self).api_endpoint, model=self)
self._populate(json) | [
"def",
"_api_get",
"(",
"self",
")",
":",
"json",
"=",
"self",
".",
"_client",
".",
"get",
"(",
"type",
"(",
"self",
")",
".",
"api_endpoint",
",",
"model",
"=",
"self",
")",
"self",
".",
"_populate",
"(",
"json",
")"
]
| A helper method to GET this object from the server | [
"A",
"helper",
"method",
"to",
"GET",
"this",
"object",
"from",
"the",
"server"
]
| 1dd7318d2aed014c746d48c7957464c57af883ca | https://github.com/linode/linode_api4-python/blob/1dd7318d2aed014c746d48c7957464c57af883ca/linode_api4/objects/base.py#L197-L202 | train |
linode/linode_api4-python | linode_api4/objects/base.py | Base._populate | def _populate(self, json):
"""
A helper method that, given a JSON object representing this object,
assigns values based on the properties dict and the attributes of
its Properties.
"""
if not json:
return
# hide the raw JSON away in case someone needs it
self._set('_raw_json', json)
for key in json:
if key in (k for k in type(self).properties.keys()
if not type(self).properties[k].identifier):
if type(self).properties[key].relationship \
and not json[key] is None:
if isinstance(json[key], list):
objs = []
for d in json[key]:
if not 'id' in d:
continue
new_class = type(self).properties[key].relationship
obj = new_class.make_instance(d['id'],
getattr(self,'_client'))
if obj:
obj._populate(d)
objs.append(obj)
self._set(key, objs)
else:
if isinstance(json[key], dict):
related_id = json[key]['id']
else:
related_id = json[key]
new_class = type(self).properties[key].relationship
obj = new_class.make_instance(related_id, getattr(self,'_client'))
if obj and isinstance(json[key], dict):
obj._populate(json[key])
self._set(key, obj)
elif type(self).properties[key].slug_relationship \
and not json[key] is None:
# create an object of the expected type with the given slug
self._set(key, type(self).properties[key].slug_relationship(self._client, json[key]))
elif type(json[key]) is dict:
self._set(key, MappedObject(**json[key]))
elif type(json[key]) is list:
# we're going to use MappedObject's behavior with lists to
# expand these, then grab the resulting value to set
mapping = MappedObject(_list=json[key])
self._set(key, mapping._list) # pylint: disable=no-member
elif type(self).properties[key].is_datetime:
try:
t = time.strptime(json[key], DATE_FORMAT)
self._set(key, datetime.fromtimestamp(time.mktime(t)))
except:
#TODO - handle this better (or log it?)
self._set(key, json[key])
else:
self._set(key, json[key])
self._set('_populated', True)
self._set('_last_updated', datetime.now()) | python | def _populate(self, json):
"""
A helper method that, given a JSON object representing this object,
assigns values based on the properties dict and the attributes of
its Properties.
"""
if not json:
return
# hide the raw JSON away in case someone needs it
self._set('_raw_json', json)
for key in json:
if key in (k for k in type(self).properties.keys()
if not type(self).properties[k].identifier):
if type(self).properties[key].relationship \
and not json[key] is None:
if isinstance(json[key], list):
objs = []
for d in json[key]:
if not 'id' in d:
continue
new_class = type(self).properties[key].relationship
obj = new_class.make_instance(d['id'],
getattr(self,'_client'))
if obj:
obj._populate(d)
objs.append(obj)
self._set(key, objs)
else:
if isinstance(json[key], dict):
related_id = json[key]['id']
else:
related_id = json[key]
new_class = type(self).properties[key].relationship
obj = new_class.make_instance(related_id, getattr(self,'_client'))
if obj and isinstance(json[key], dict):
obj._populate(json[key])
self._set(key, obj)
elif type(self).properties[key].slug_relationship \
and not json[key] is None:
# create an object of the expected type with the given slug
self._set(key, type(self).properties[key].slug_relationship(self._client, json[key]))
elif type(json[key]) is dict:
self._set(key, MappedObject(**json[key]))
elif type(json[key]) is list:
# we're going to use MappedObject's behavior with lists to
# expand these, then grab the resulting value to set
mapping = MappedObject(_list=json[key])
self._set(key, mapping._list) # pylint: disable=no-member
elif type(self).properties[key].is_datetime:
try:
t = time.strptime(json[key], DATE_FORMAT)
self._set(key, datetime.fromtimestamp(time.mktime(t)))
except:
#TODO - handle this better (or log it?)
self._set(key, json[key])
else:
self._set(key, json[key])
self._set('_populated', True)
self._set('_last_updated', datetime.now()) | [
"def",
"_populate",
"(",
"self",
",",
"json",
")",
":",
"if",
"not",
"json",
":",
"return",
"# hide the raw JSON away in case someone needs it",
"self",
".",
"_set",
"(",
"'_raw_json'",
",",
"json",
")",
"for",
"key",
"in",
"json",
":",
"if",
"key",
"in",
"(",
"k",
"for",
"k",
"in",
"type",
"(",
"self",
")",
".",
"properties",
".",
"keys",
"(",
")",
"if",
"not",
"type",
"(",
"self",
")",
".",
"properties",
"[",
"k",
"]",
".",
"identifier",
")",
":",
"if",
"type",
"(",
"self",
")",
".",
"properties",
"[",
"key",
"]",
".",
"relationship",
"and",
"not",
"json",
"[",
"key",
"]",
"is",
"None",
":",
"if",
"isinstance",
"(",
"json",
"[",
"key",
"]",
",",
"list",
")",
":",
"objs",
"=",
"[",
"]",
"for",
"d",
"in",
"json",
"[",
"key",
"]",
":",
"if",
"not",
"'id'",
"in",
"d",
":",
"continue",
"new_class",
"=",
"type",
"(",
"self",
")",
".",
"properties",
"[",
"key",
"]",
".",
"relationship",
"obj",
"=",
"new_class",
".",
"make_instance",
"(",
"d",
"[",
"'id'",
"]",
",",
"getattr",
"(",
"self",
",",
"'_client'",
")",
")",
"if",
"obj",
":",
"obj",
".",
"_populate",
"(",
"d",
")",
"objs",
".",
"append",
"(",
"obj",
")",
"self",
".",
"_set",
"(",
"key",
",",
"objs",
")",
"else",
":",
"if",
"isinstance",
"(",
"json",
"[",
"key",
"]",
",",
"dict",
")",
":",
"related_id",
"=",
"json",
"[",
"key",
"]",
"[",
"'id'",
"]",
"else",
":",
"related_id",
"=",
"json",
"[",
"key",
"]",
"new_class",
"=",
"type",
"(",
"self",
")",
".",
"properties",
"[",
"key",
"]",
".",
"relationship",
"obj",
"=",
"new_class",
".",
"make_instance",
"(",
"related_id",
",",
"getattr",
"(",
"self",
",",
"'_client'",
")",
")",
"if",
"obj",
"and",
"isinstance",
"(",
"json",
"[",
"key",
"]",
",",
"dict",
")",
":",
"obj",
".",
"_populate",
"(",
"json",
"[",
"key",
"]",
")",
"self",
".",
"_set",
"(",
"key",
",",
"obj",
")",
"elif",
"type",
"(",
"self",
")",
".",
"properties",
"[",
"key",
"]",
".",
"slug_relationship",
"and",
"not",
"json",
"[",
"key",
"]",
"is",
"None",
":",
"# create an object of the expected type with the given slug",
"self",
".",
"_set",
"(",
"key",
",",
"type",
"(",
"self",
")",
".",
"properties",
"[",
"key",
"]",
".",
"slug_relationship",
"(",
"self",
".",
"_client",
",",
"json",
"[",
"key",
"]",
")",
")",
"elif",
"type",
"(",
"json",
"[",
"key",
"]",
")",
"is",
"dict",
":",
"self",
".",
"_set",
"(",
"key",
",",
"MappedObject",
"(",
"*",
"*",
"json",
"[",
"key",
"]",
")",
")",
"elif",
"type",
"(",
"json",
"[",
"key",
"]",
")",
"is",
"list",
":",
"# we're going to use MappedObject's behavior with lists to",
"# expand these, then grab the resulting value to set",
"mapping",
"=",
"MappedObject",
"(",
"_list",
"=",
"json",
"[",
"key",
"]",
")",
"self",
".",
"_set",
"(",
"key",
",",
"mapping",
".",
"_list",
")",
"# pylint: disable=no-member",
"elif",
"type",
"(",
"self",
")",
".",
"properties",
"[",
"key",
"]",
".",
"is_datetime",
":",
"try",
":",
"t",
"=",
"time",
".",
"strptime",
"(",
"json",
"[",
"key",
"]",
",",
"DATE_FORMAT",
")",
"self",
".",
"_set",
"(",
"key",
",",
"datetime",
".",
"fromtimestamp",
"(",
"time",
".",
"mktime",
"(",
"t",
")",
")",
")",
"except",
":",
"#TODO - handle this better (or log it?)",
"self",
".",
"_set",
"(",
"key",
",",
"json",
"[",
"key",
"]",
")",
"else",
":",
"self",
".",
"_set",
"(",
"key",
",",
"json",
"[",
"key",
"]",
")",
"self",
".",
"_set",
"(",
"'_populated'",
",",
"True",
")",
"self",
".",
"_set",
"(",
"'_last_updated'",
",",
"datetime",
".",
"now",
"(",
")",
")"
]
| A helper method that, given a JSON object representing this object,
assigns values based on the properties dict and the attributes of
its Properties. | [
"A",
"helper",
"method",
"that",
"given",
"a",
"JSON",
"object",
"representing",
"this",
"object",
"assigns",
"values",
"based",
"on",
"the",
"properties",
"dict",
"and",
"the",
"attributes",
"of",
"its",
"Properties",
"."
]
| 1dd7318d2aed014c746d48c7957464c57af883ca | https://github.com/linode/linode_api4-python/blob/1dd7318d2aed014c746d48c7957464c57af883ca/linode_api4/objects/base.py#L204-L265 | train |
linode/linode_api4-python | linode_api4/objects/base.py | Base.make | def make(id, client, cls, parent_id=None, json=None):
"""
Makes an api object based on an id and class.
:param id: The id of the object to create
:param client: The LinodeClient to give the new object
:param cls: The class type to instantiate
:param parent_id: The parent id for derived classes
:param json: The JSON to use to populate the new class
:returns: An instance of cls with the given id
"""
from .dbase import DerivedBase
if issubclass(cls, DerivedBase):
return cls(client, id, parent_id, json)
else:
return cls(client, id, json) | python | def make(id, client, cls, parent_id=None, json=None):
"""
Makes an api object based on an id and class.
:param id: The id of the object to create
:param client: The LinodeClient to give the new object
:param cls: The class type to instantiate
:param parent_id: The parent id for derived classes
:param json: The JSON to use to populate the new class
:returns: An instance of cls with the given id
"""
from .dbase import DerivedBase
if issubclass(cls, DerivedBase):
return cls(client, id, parent_id, json)
else:
return cls(client, id, json) | [
"def",
"make",
"(",
"id",
",",
"client",
",",
"cls",
",",
"parent_id",
"=",
"None",
",",
"json",
"=",
"None",
")",
":",
"from",
".",
"dbase",
"import",
"DerivedBase",
"if",
"issubclass",
"(",
"cls",
",",
"DerivedBase",
")",
":",
"return",
"cls",
"(",
"client",
",",
"id",
",",
"parent_id",
",",
"json",
")",
"else",
":",
"return",
"cls",
"(",
"client",
",",
"id",
",",
"json",
")"
]
| Makes an api object based on an id and class.
:param id: The id of the object to create
:param client: The LinodeClient to give the new object
:param cls: The class type to instantiate
:param parent_id: The parent id for derived classes
:param json: The JSON to use to populate the new class
:returns: An instance of cls with the given id | [
"Makes",
"an",
"api",
"object",
"based",
"on",
"an",
"id",
"and",
"class",
"."
]
| 1dd7318d2aed014c746d48c7957464c57af883ca | https://github.com/linode/linode_api4-python/blob/1dd7318d2aed014c746d48c7957464c57af883ca/linode_api4/objects/base.py#L283-L300 | train |
linode/linode_api4-python | linode_api4/objects/base.py | Base.make_instance | def make_instance(cls, id, client, parent_id=None, json=None):
"""
Makes an instance of the class this is called on and returns it.
The intended usage is:
instance = Linode.make_instance(123, client, json=response)
:param cls: The class this was called on.
:param id: The id of the instance to create
:param client: The client to use for this instance
:param parent_id: The parent id for derived classes
:param json: The JSON to populate the instance with
:returns: A new instance of this type, populated with json
"""
return Base.make(id, client, cls, parent_id=parent_id, json=json) | python | def make_instance(cls, id, client, parent_id=None, json=None):
"""
Makes an instance of the class this is called on and returns it.
The intended usage is:
instance = Linode.make_instance(123, client, json=response)
:param cls: The class this was called on.
:param id: The id of the instance to create
:param client: The client to use for this instance
:param parent_id: The parent id for derived classes
:param json: The JSON to populate the instance with
:returns: A new instance of this type, populated with json
"""
return Base.make(id, client, cls, parent_id=parent_id, json=json) | [
"def",
"make_instance",
"(",
"cls",
",",
"id",
",",
"client",
",",
"parent_id",
"=",
"None",
",",
"json",
"=",
"None",
")",
":",
"return",
"Base",
".",
"make",
"(",
"id",
",",
"client",
",",
"cls",
",",
"parent_id",
"=",
"parent_id",
",",
"json",
"=",
"json",
")"
]
| Makes an instance of the class this is called on and returns it.
The intended usage is:
instance = Linode.make_instance(123, client, json=response)
:param cls: The class this was called on.
:param id: The id of the instance to create
:param client: The client to use for this instance
:param parent_id: The parent id for derived classes
:param json: The JSON to populate the instance with
:returns: A new instance of this type, populated with json | [
"Makes",
"an",
"instance",
"of",
"the",
"class",
"this",
"is",
"called",
"on",
"and",
"returns",
"it",
"."
]
| 1dd7318d2aed014c746d48c7957464c57af883ca | https://github.com/linode/linode_api4-python/blob/1dd7318d2aed014c746d48c7957464c57af883ca/linode_api4/objects/base.py#L303-L318 | train |
linode/linode_api4-python | linode_api4/objects/networking.py | IPAddress.to | def to(self, linode):
"""
This is a helper method for ip-assign, and should not be used outside
of that context. It's used to cleanly build an IP Assign request with
pretty python syntax.
"""
from .linode import Instance
if not isinstance(linode, Instance):
raise ValueError("IP Address can only be assigned to a Linode!")
return { "address": self.address, "linode_id": linode.id } | python | def to(self, linode):
"""
This is a helper method for ip-assign, and should not be used outside
of that context. It's used to cleanly build an IP Assign request with
pretty python syntax.
"""
from .linode import Instance
if not isinstance(linode, Instance):
raise ValueError("IP Address can only be assigned to a Linode!")
return { "address": self.address, "linode_id": linode.id } | [
"def",
"to",
"(",
"self",
",",
"linode",
")",
":",
"from",
".",
"linode",
"import",
"Instance",
"if",
"not",
"isinstance",
"(",
"linode",
",",
"Instance",
")",
":",
"raise",
"ValueError",
"(",
"\"IP Address can only be assigned to a Linode!\"",
")",
"return",
"{",
"\"address\"",
":",
"self",
".",
"address",
",",
"\"linode_id\"",
":",
"linode",
".",
"id",
"}"
]
| This is a helper method for ip-assign, and should not be used outside
of that context. It's used to cleanly build an IP Assign request with
pretty python syntax. | [
"This",
"is",
"a",
"helper",
"method",
"for",
"ip",
"-",
"assign",
"and",
"should",
"not",
"be",
"used",
"outside",
"of",
"that",
"context",
".",
"It",
"s",
"used",
"to",
"cleanly",
"build",
"an",
"IP",
"Assign",
"request",
"with",
"pretty",
"python",
"syntax",
"."
]
| 1dd7318d2aed014c746d48c7957464c57af883ca | https://github.com/linode/linode_api4-python/blob/1dd7318d2aed014c746d48c7957464c57af883ca/linode_api4/objects/networking.py#L49-L58 | train |
linode/linode_api4-python | linode_api4/linode_client.py | ProfileGroup.token_create | def token_create(self, label=None, expiry=None, scopes=None, **kwargs):
"""
Creates and returns a new Personal Access Token
"""
if label:
kwargs['label'] = label
if expiry:
if isinstance(expiry, datetime):
expiry = datetime.strftime(expiry, "%Y-%m-%dT%H:%M:%S")
kwargs['expiry'] = expiry
if scopes:
kwargs['scopes'] = scopes
result = self.client.post('/profile/tokens', data=kwargs)
if not 'id' in result:
raise UnexpectedResponseError('Unexpected response when creating Personal Access '
'Token!', json=result)
token = PersonalAccessToken(self.client, result['id'], result)
return token | python | def token_create(self, label=None, expiry=None, scopes=None, **kwargs):
"""
Creates and returns a new Personal Access Token
"""
if label:
kwargs['label'] = label
if expiry:
if isinstance(expiry, datetime):
expiry = datetime.strftime(expiry, "%Y-%m-%dT%H:%M:%S")
kwargs['expiry'] = expiry
if scopes:
kwargs['scopes'] = scopes
result = self.client.post('/profile/tokens', data=kwargs)
if not 'id' in result:
raise UnexpectedResponseError('Unexpected response when creating Personal Access '
'Token!', json=result)
token = PersonalAccessToken(self.client, result['id'], result)
return token | [
"def",
"token_create",
"(",
"self",
",",
"label",
"=",
"None",
",",
"expiry",
"=",
"None",
",",
"scopes",
"=",
"None",
",",
"*",
"*",
"kwargs",
")",
":",
"if",
"label",
":",
"kwargs",
"[",
"'label'",
"]",
"=",
"label",
"if",
"expiry",
":",
"if",
"isinstance",
"(",
"expiry",
",",
"datetime",
")",
":",
"expiry",
"=",
"datetime",
".",
"strftime",
"(",
"expiry",
",",
"\"%Y-%m-%dT%H:%M:%S\"",
")",
"kwargs",
"[",
"'expiry'",
"]",
"=",
"expiry",
"if",
"scopes",
":",
"kwargs",
"[",
"'scopes'",
"]",
"=",
"scopes",
"result",
"=",
"self",
".",
"client",
".",
"post",
"(",
"'/profile/tokens'",
",",
"data",
"=",
"kwargs",
")",
"if",
"not",
"'id'",
"in",
"result",
":",
"raise",
"UnexpectedResponseError",
"(",
"'Unexpected response when creating Personal Access '",
"'Token!'",
",",
"json",
"=",
"result",
")",
"token",
"=",
"PersonalAccessToken",
"(",
"self",
".",
"client",
",",
"result",
"[",
"'id'",
"]",
",",
"result",
")",
"return",
"token"
]
| Creates and returns a new Personal Access Token | [
"Creates",
"and",
"returns",
"a",
"new",
"Personal",
"Access",
"Token"
]
| 1dd7318d2aed014c746d48c7957464c57af883ca | https://github.com/linode/linode_api4-python/blob/1dd7318d2aed014c746d48c7957464c57af883ca/linode_api4/linode_client.py#L358-L378 | train |
linode/linode_api4-python | linode_api4/linode_client.py | ProfileGroup.ssh_key_upload | def ssh_key_upload(self, key, label):
"""
Uploads a new SSH Public Key to your profile This key can be used in
later Linode deployments.
:param key: The ssh key, or a path to the ssh key. If a path is provided,
the file at the path must exist and be readable or an exception
will be thrown.
:type key: str
:param label: The name to give this key. This is purely aesthetic.
:type label: str
:returns: The newly uploaded SSH Key
:rtype: SSHKey
:raises ValueError: If the key provided does not appear to be valid, and
does not appear to be a path to a valid key.
"""
if not key.startswith(SSH_KEY_TYPES):
# this might be a file path - look for it
path = os.path.expanduser(key)
if os.path.isfile(path):
with open(path) as f:
key = f.read().strip()
if not key.startswith(SSH_KEY_TYPES):
raise ValueError('Invalid SSH Public Key')
params = {
'ssh_key': key,
'label': label,
}
result = self.client.post('/profile/sshkeys', data=params)
if not 'id' in result:
raise UnexpectedResponseError('Unexpected response when uploading SSH Key!',
json=result)
ssh_key = SSHKey(self.client, result['id'], result)
return ssh_key | python | def ssh_key_upload(self, key, label):
"""
Uploads a new SSH Public Key to your profile This key can be used in
later Linode deployments.
:param key: The ssh key, or a path to the ssh key. If a path is provided,
the file at the path must exist and be readable or an exception
will be thrown.
:type key: str
:param label: The name to give this key. This is purely aesthetic.
:type label: str
:returns: The newly uploaded SSH Key
:rtype: SSHKey
:raises ValueError: If the key provided does not appear to be valid, and
does not appear to be a path to a valid key.
"""
if not key.startswith(SSH_KEY_TYPES):
# this might be a file path - look for it
path = os.path.expanduser(key)
if os.path.isfile(path):
with open(path) as f:
key = f.read().strip()
if not key.startswith(SSH_KEY_TYPES):
raise ValueError('Invalid SSH Public Key')
params = {
'ssh_key': key,
'label': label,
}
result = self.client.post('/profile/sshkeys', data=params)
if not 'id' in result:
raise UnexpectedResponseError('Unexpected response when uploading SSH Key!',
json=result)
ssh_key = SSHKey(self.client, result['id'], result)
return ssh_key | [
"def",
"ssh_key_upload",
"(",
"self",
",",
"key",
",",
"label",
")",
":",
"if",
"not",
"key",
".",
"startswith",
"(",
"SSH_KEY_TYPES",
")",
":",
"# this might be a file path - look for it",
"path",
"=",
"os",
".",
"path",
".",
"expanduser",
"(",
"key",
")",
"if",
"os",
".",
"path",
".",
"isfile",
"(",
"path",
")",
":",
"with",
"open",
"(",
"path",
")",
"as",
"f",
":",
"key",
"=",
"f",
".",
"read",
"(",
")",
".",
"strip",
"(",
")",
"if",
"not",
"key",
".",
"startswith",
"(",
"SSH_KEY_TYPES",
")",
":",
"raise",
"ValueError",
"(",
"'Invalid SSH Public Key'",
")",
"params",
"=",
"{",
"'ssh_key'",
":",
"key",
",",
"'label'",
":",
"label",
",",
"}",
"result",
"=",
"self",
".",
"client",
".",
"post",
"(",
"'/profile/sshkeys'",
",",
"data",
"=",
"params",
")",
"if",
"not",
"'id'",
"in",
"result",
":",
"raise",
"UnexpectedResponseError",
"(",
"'Unexpected response when uploading SSH Key!'",
",",
"json",
"=",
"result",
")",
"ssh_key",
"=",
"SSHKey",
"(",
"self",
".",
"client",
",",
"result",
"[",
"'id'",
"]",
",",
"result",
")",
"return",
"ssh_key"
]
| Uploads a new SSH Public Key to your profile This key can be used in
later Linode deployments.
:param key: The ssh key, or a path to the ssh key. If a path is provided,
the file at the path must exist and be readable or an exception
will be thrown.
:type key: str
:param label: The name to give this key. This is purely aesthetic.
:type label: str
:returns: The newly uploaded SSH Key
:rtype: SSHKey
:raises ValueError: If the key provided does not appear to be valid, and
does not appear to be a path to a valid key. | [
"Uploads",
"a",
"new",
"SSH",
"Public",
"Key",
"to",
"your",
"profile",
"This",
"key",
"can",
"be",
"used",
"in",
"later",
"Linode",
"deployments",
"."
]
| 1dd7318d2aed014c746d48c7957464c57af883ca | https://github.com/linode/linode_api4-python/blob/1dd7318d2aed014c746d48c7957464c57af883ca/linode_api4/linode_client.py#L392-L430 | train |
linode/linode_api4-python | linode_api4/linode_client.py | LongviewGroup.client_create | def client_create(self, label=None):
"""
Creates a new LongviewClient, optionally with a given label.
:param label: The label for the new client. If None, a default label based
on the new client's ID will be used.
:returns: A new LongviewClient
:raises ApiError: If a non-200 status code is returned
:raises UnexpectedResponseError: If the returned data from the api does
not look as expected.
"""
result = self.client.post('/longview/clients', data={
"label": label
})
if not 'id' in result:
raise UnexpectedResponseError('Unexpected response when creating Longivew '
'Client!', json=result)
c = LongviewClient(self.client, result['id'], result)
return c | python | def client_create(self, label=None):
"""
Creates a new LongviewClient, optionally with a given label.
:param label: The label for the new client. If None, a default label based
on the new client's ID will be used.
:returns: A new LongviewClient
:raises ApiError: If a non-200 status code is returned
:raises UnexpectedResponseError: If the returned data from the api does
not look as expected.
"""
result = self.client.post('/longview/clients', data={
"label": label
})
if not 'id' in result:
raise UnexpectedResponseError('Unexpected response when creating Longivew '
'Client!', json=result)
c = LongviewClient(self.client, result['id'], result)
return c | [
"def",
"client_create",
"(",
"self",
",",
"label",
"=",
"None",
")",
":",
"result",
"=",
"self",
".",
"client",
".",
"post",
"(",
"'/longview/clients'",
",",
"data",
"=",
"{",
"\"label\"",
":",
"label",
"}",
")",
"if",
"not",
"'id'",
"in",
"result",
":",
"raise",
"UnexpectedResponseError",
"(",
"'Unexpected response when creating Longivew '",
"'Client!'",
",",
"json",
"=",
"result",
")",
"c",
"=",
"LongviewClient",
"(",
"self",
".",
"client",
",",
"result",
"[",
"'id'",
"]",
",",
"result",
")",
"return",
"c"
]
| Creates a new LongviewClient, optionally with a given label.
:param label: The label for the new client. If None, a default label based
on the new client's ID will be used.
:returns: A new LongviewClient
:raises ApiError: If a non-200 status code is returned
:raises UnexpectedResponseError: If the returned data from the api does
not look as expected. | [
"Creates",
"a",
"new",
"LongviewClient",
"optionally",
"with",
"a",
"given",
"label",
"."
]
| 1dd7318d2aed014c746d48c7957464c57af883ca | https://github.com/linode/linode_api4-python/blob/1dd7318d2aed014c746d48c7957464c57af883ca/linode_api4/linode_client.py#L441-L463 | train |
linode/linode_api4-python | linode_api4/linode_client.py | AccountGroup.events_mark_seen | def events_mark_seen(self, event):
"""
Marks event as the last event we have seen. If event is an int, it is treated
as an event_id, otherwise it should be an event object whose id will be used.
"""
last_seen = event if isinstance(event, int) else event.id
self.client.post('{}/seen'.format(Event.api_endpoint), model=Event(self.client, last_seen)) | python | def events_mark_seen(self, event):
"""
Marks event as the last event we have seen. If event is an int, it is treated
as an event_id, otherwise it should be an event object whose id will be used.
"""
last_seen = event if isinstance(event, int) else event.id
self.client.post('{}/seen'.format(Event.api_endpoint), model=Event(self.client, last_seen)) | [
"def",
"events_mark_seen",
"(",
"self",
",",
"event",
")",
":",
"last_seen",
"=",
"event",
"if",
"isinstance",
"(",
"event",
",",
"int",
")",
"else",
"event",
".",
"id",
"self",
".",
"client",
".",
"post",
"(",
"'{}/seen'",
".",
"format",
"(",
"Event",
".",
"api_endpoint",
")",
",",
"model",
"=",
"Event",
"(",
"self",
".",
"client",
",",
"last_seen",
")",
")"
]
| Marks event as the last event we have seen. If event is an int, it is treated
as an event_id, otherwise it should be an event object whose id will be used. | [
"Marks",
"event",
"as",
"the",
"last",
"event",
"we",
"have",
"seen",
".",
"If",
"event",
"is",
"an",
"int",
"it",
"is",
"treated",
"as",
"an",
"event_id",
"otherwise",
"it",
"should",
"be",
"an",
"event",
"object",
"whose",
"id",
"will",
"be",
"used",
"."
]
| 1dd7318d2aed014c746d48c7957464c57af883ca | https://github.com/linode/linode_api4-python/blob/1dd7318d2aed014c746d48c7957464c57af883ca/linode_api4/linode_client.py#L495-L501 | train |
linode/linode_api4-python | linode_api4/linode_client.py | AccountGroup.settings | def settings(self):
"""
Resturns the account settings data for this acocunt. This is not a
listing endpoint.
"""
result = self.client.get('/account/settings')
if not 'managed' in result:
raise UnexpectedResponseError('Unexpected response when getting account settings!',
json=result)
s = AccountSettings(self.client, result['managed'], result)
return s | python | def settings(self):
"""
Resturns the account settings data for this acocunt. This is not a
listing endpoint.
"""
result = self.client.get('/account/settings')
if not 'managed' in result:
raise UnexpectedResponseError('Unexpected response when getting account settings!',
json=result)
s = AccountSettings(self.client, result['managed'], result)
return s | [
"def",
"settings",
"(",
"self",
")",
":",
"result",
"=",
"self",
".",
"client",
".",
"get",
"(",
"'/account/settings'",
")",
"if",
"not",
"'managed'",
"in",
"result",
":",
"raise",
"UnexpectedResponseError",
"(",
"'Unexpected response when getting account settings!'",
",",
"json",
"=",
"result",
")",
"s",
"=",
"AccountSettings",
"(",
"self",
".",
"client",
",",
"result",
"[",
"'managed'",
"]",
",",
"result",
")",
"return",
"s"
]
| Resturns the account settings data for this acocunt. This is not a
listing endpoint. | [
"Resturns",
"the",
"account",
"settings",
"data",
"for",
"this",
"acocunt",
".",
"This",
"is",
"not",
"a",
"listing",
"endpoint",
"."
]
| 1dd7318d2aed014c746d48c7957464c57af883ca | https://github.com/linode/linode_api4-python/blob/1dd7318d2aed014c746d48c7957464c57af883ca/linode_api4/linode_client.py#L503-L515 | train |
linode/linode_api4-python | linode_api4/linode_client.py | AccountGroup.oauth_client_create | def oauth_client_create(self, name, redirect_uri, **kwargs):
"""
Make a new OAuth Client and return it
"""
params = {
"label": name,
"redirect_uri": redirect_uri,
}
params.update(kwargs)
result = self.client.post('/account/oauth-clients', data=params)
if not 'id' in result:
raise UnexpectedResponseError('Unexpected response when creating OAuth Client!',
json=result)
c = OAuthClient(self.client, result['id'], result)
return c | python | def oauth_client_create(self, name, redirect_uri, **kwargs):
"""
Make a new OAuth Client and return it
"""
params = {
"label": name,
"redirect_uri": redirect_uri,
}
params.update(kwargs)
result = self.client.post('/account/oauth-clients', data=params)
if not 'id' in result:
raise UnexpectedResponseError('Unexpected response when creating OAuth Client!',
json=result)
c = OAuthClient(self.client, result['id'], result)
return c | [
"def",
"oauth_client_create",
"(",
"self",
",",
"name",
",",
"redirect_uri",
",",
"*",
"*",
"kwargs",
")",
":",
"params",
"=",
"{",
"\"label\"",
":",
"name",
",",
"\"redirect_uri\"",
":",
"redirect_uri",
",",
"}",
"params",
".",
"update",
"(",
"kwargs",
")",
"result",
"=",
"self",
".",
"client",
".",
"post",
"(",
"'/account/oauth-clients'",
",",
"data",
"=",
"params",
")",
"if",
"not",
"'id'",
"in",
"result",
":",
"raise",
"UnexpectedResponseError",
"(",
"'Unexpected response when creating OAuth Client!'",
",",
"json",
"=",
"result",
")",
"c",
"=",
"OAuthClient",
"(",
"self",
".",
"client",
",",
"result",
"[",
"'id'",
"]",
",",
"result",
")",
"return",
"c"
]
| Make a new OAuth Client and return it | [
"Make",
"a",
"new",
"OAuth",
"Client",
"and",
"return",
"it"
]
| 1dd7318d2aed014c746d48c7957464c57af883ca | https://github.com/linode/linode_api4-python/blob/1dd7318d2aed014c746d48c7957464c57af883ca/linode_api4/linode_client.py#L535-L552 | train |
linode/linode_api4-python | linode_api4/linode_client.py | AccountGroup.transfer | def transfer(self):
"""
Returns a MappedObject containing the account's transfer pool data
"""
result = self.client.get('/account/transfer')
if not 'used' in result:
raise UnexpectedResponseError('Unexpected response when getting Transfer Pool!')
return MappedObject(**result) | python | def transfer(self):
"""
Returns a MappedObject containing the account's transfer pool data
"""
result = self.client.get('/account/transfer')
if not 'used' in result:
raise UnexpectedResponseError('Unexpected response when getting Transfer Pool!')
return MappedObject(**result) | [
"def",
"transfer",
"(",
"self",
")",
":",
"result",
"=",
"self",
".",
"client",
".",
"get",
"(",
"'/account/transfer'",
")",
"if",
"not",
"'used'",
"in",
"result",
":",
"raise",
"UnexpectedResponseError",
"(",
"'Unexpected response when getting Transfer Pool!'",
")",
"return",
"MappedObject",
"(",
"*",
"*",
"result",
")"
]
| Returns a MappedObject containing the account's transfer pool data | [
"Returns",
"a",
"MappedObject",
"containing",
"the",
"account",
"s",
"transfer",
"pool",
"data"
]
| 1dd7318d2aed014c746d48c7957464c57af883ca | https://github.com/linode/linode_api4-python/blob/1dd7318d2aed014c746d48c7957464c57af883ca/linode_api4/linode_client.py#L560-L569 | train |
linode/linode_api4-python | linode_api4/linode_client.py | NetworkingGroup.ip_allocate | def ip_allocate(self, linode, public=True):
"""
Allocates an IP to a Instance you own. Additional IPs must be requested
by opening a support ticket first.
:param linode: The Instance to allocate the new IP for.
:type linode: Instance or int
:param public: If True, allocate a public IP address. Defaults to True.
:type public: bool
:returns: The new IPAddress
:rtype: IPAddress
"""
result = self.client.post('/networking/ipv4/', data={
"linode_id": linode.id if isinstance(linode, Base) else linode,
"type": "ipv4",
"public": public,
})
if not 'address' in result:
raise UnexpectedResponseError('Unexpected response when adding IPv4 address!',
json=result)
ip = IPAddress(self.client, result['address'], result)
return ip | python | def ip_allocate(self, linode, public=True):
"""
Allocates an IP to a Instance you own. Additional IPs must be requested
by opening a support ticket first.
:param linode: The Instance to allocate the new IP for.
:type linode: Instance or int
:param public: If True, allocate a public IP address. Defaults to True.
:type public: bool
:returns: The new IPAddress
:rtype: IPAddress
"""
result = self.client.post('/networking/ipv4/', data={
"linode_id": linode.id if isinstance(linode, Base) else linode,
"type": "ipv4",
"public": public,
})
if not 'address' in result:
raise UnexpectedResponseError('Unexpected response when adding IPv4 address!',
json=result)
ip = IPAddress(self.client, result['address'], result)
return ip | [
"def",
"ip_allocate",
"(",
"self",
",",
"linode",
",",
"public",
"=",
"True",
")",
":",
"result",
"=",
"self",
".",
"client",
".",
"post",
"(",
"'/networking/ipv4/'",
",",
"data",
"=",
"{",
"\"linode_id\"",
":",
"linode",
".",
"id",
"if",
"isinstance",
"(",
"linode",
",",
"Base",
")",
"else",
"linode",
",",
"\"type\"",
":",
"\"ipv4\"",
",",
"\"public\"",
":",
"public",
",",
"}",
")",
"if",
"not",
"'address'",
"in",
"result",
":",
"raise",
"UnexpectedResponseError",
"(",
"'Unexpected response when adding IPv4 address!'",
",",
"json",
"=",
"result",
")",
"ip",
"=",
"IPAddress",
"(",
"self",
".",
"client",
",",
"result",
"[",
"'address'",
"]",
",",
"result",
")",
"return",
"ip"
]
| Allocates an IP to a Instance you own. Additional IPs must be requested
by opening a support ticket first.
:param linode: The Instance to allocate the new IP for.
:type linode: Instance or int
:param public: If True, allocate a public IP address. Defaults to True.
:type public: bool
:returns: The new IPAddress
:rtype: IPAddress | [
"Allocates",
"an",
"IP",
"to",
"a",
"Instance",
"you",
"own",
".",
"Additional",
"IPs",
"must",
"be",
"requested",
"by",
"opening",
"a",
"support",
"ticket",
"first",
"."
]
| 1dd7318d2aed014c746d48c7957464c57af883ca | https://github.com/linode/linode_api4-python/blob/1dd7318d2aed014c746d48c7957464c57af883ca/linode_api4/linode_client.py#L658-L682 | train |
linode/linode_api4-python | linode_api4/linode_client.py | LinodeClient.load | def load(self, target_type, target_id, target_parent_id=None):
"""
Constructs and immediately loads the object, circumventing the
lazy-loading scheme by immediately making an API request. Does not
load related objects.
For example, if you wanted to load an :any:`Instance` object with ID 123,
you could do this::
loaded_linode = client.load(Instance, 123)
Similarly, if you instead wanted to load a :any:`NodeBalancerConfig`,
you could do so like this::
loaded_nodebalancer_config = client.load(NodeBalancerConfig, 456, 432)
:param target_type: The type of object to create.
:type target_type: type
:param target_id: The ID of the object to create.
:type target_id: int or str
:param target_parent_id: The parent ID of the object to create, if
applicable.
:type target_parent_id: int, str, or None
:returns: The resulting object, fully loaded.
:rtype: target_type
:raise ApiError: if the requested object could not be loaded.
"""
result = target_type.make_instance(target_id, self, parent_id=target_parent_id)
result._api_get()
return result | python | def load(self, target_type, target_id, target_parent_id=None):
"""
Constructs and immediately loads the object, circumventing the
lazy-loading scheme by immediately making an API request. Does not
load related objects.
For example, if you wanted to load an :any:`Instance` object with ID 123,
you could do this::
loaded_linode = client.load(Instance, 123)
Similarly, if you instead wanted to load a :any:`NodeBalancerConfig`,
you could do so like this::
loaded_nodebalancer_config = client.load(NodeBalancerConfig, 456, 432)
:param target_type: The type of object to create.
:type target_type: type
:param target_id: The ID of the object to create.
:type target_id: int or str
:param target_parent_id: The parent ID of the object to create, if
applicable.
:type target_parent_id: int, str, or None
:returns: The resulting object, fully loaded.
:rtype: target_type
:raise ApiError: if the requested object could not be loaded.
"""
result = target_type.make_instance(target_id, self, parent_id=target_parent_id)
result._api_get()
return result | [
"def",
"load",
"(",
"self",
",",
"target_type",
",",
"target_id",
",",
"target_parent_id",
"=",
"None",
")",
":",
"result",
"=",
"target_type",
".",
"make_instance",
"(",
"target_id",
",",
"self",
",",
"parent_id",
"=",
"target_parent_id",
")",
"result",
".",
"_api_get",
"(",
")",
"return",
"result"
]
| Constructs and immediately loads the object, circumventing the
lazy-loading scheme by immediately making an API request. Does not
load related objects.
For example, if you wanted to load an :any:`Instance` object with ID 123,
you could do this::
loaded_linode = client.load(Instance, 123)
Similarly, if you instead wanted to load a :any:`NodeBalancerConfig`,
you could do so like this::
loaded_nodebalancer_config = client.load(NodeBalancerConfig, 456, 432)
:param target_type: The type of object to create.
:type target_type: type
:param target_id: The ID of the object to create.
:type target_id: int or str
:param target_parent_id: The parent ID of the object to create, if
applicable.
:type target_parent_id: int, str, or None
:returns: The resulting object, fully loaded.
:rtype: target_type
:raise ApiError: if the requested object could not be loaded. | [
"Constructs",
"and",
"immediately",
"loads",
"the",
"object",
"circumventing",
"the",
"lazy",
"-",
"loading",
"scheme",
"by",
"immediately",
"making",
"an",
"API",
"request",
".",
"Does",
"not",
"load",
"related",
"objects",
"."
]
| 1dd7318d2aed014c746d48c7957464c57af883ca | https://github.com/linode/linode_api4-python/blob/1dd7318d2aed014c746d48c7957464c57af883ca/linode_api4/linode_client.py#L808-L839 | train |
linode/linode_api4-python | linode_api4/linode_client.py | LinodeClient._api_call | def _api_call(self, endpoint, model=None, method=None, data=None, filters=None):
"""
Makes a call to the linode api. Data should only be given if the method is
POST or PUT, and should be a dictionary
"""
if not self.token:
raise RuntimeError("You do not have an API token!")
if not method:
raise ValueError("Method is required for API calls!")
if model:
endpoint = endpoint.format(**vars(model))
url = '{}{}'.format(self.base_url, endpoint)
headers = {
'Authorization': "Bearer {}".format(self.token),
'Content-Type': 'application/json',
'User-Agent': self._user_agent,
}
if filters:
headers['X-Filter'] = json.dumps(filters)
body = None
if data is not None:
body = json.dumps(data)
response = method(url, headers=headers, data=body)
warning = response.headers.get('Warning', None)
if warning:
logger.warning('Received warning from server: {}'.format(warning))
if 399 < response.status_code < 600:
j = None
error_msg = '{}: '.format(response.status_code)
try:
j = response.json()
if 'errors' in j.keys():
for e in j['errors']:
error_msg += '{}; '.format(e['reason']) \
if 'reason' in e.keys() else ''
except:
pass
raise ApiError(error_msg, status=response.status_code, json=j)
if response.status_code != 204:
j = response.json()
else:
j = None # handle no response body
return j | python | def _api_call(self, endpoint, model=None, method=None, data=None, filters=None):
"""
Makes a call to the linode api. Data should only be given if the method is
POST or PUT, and should be a dictionary
"""
if not self.token:
raise RuntimeError("You do not have an API token!")
if not method:
raise ValueError("Method is required for API calls!")
if model:
endpoint = endpoint.format(**vars(model))
url = '{}{}'.format(self.base_url, endpoint)
headers = {
'Authorization': "Bearer {}".format(self.token),
'Content-Type': 'application/json',
'User-Agent': self._user_agent,
}
if filters:
headers['X-Filter'] = json.dumps(filters)
body = None
if data is not None:
body = json.dumps(data)
response = method(url, headers=headers, data=body)
warning = response.headers.get('Warning', None)
if warning:
logger.warning('Received warning from server: {}'.format(warning))
if 399 < response.status_code < 600:
j = None
error_msg = '{}: '.format(response.status_code)
try:
j = response.json()
if 'errors' in j.keys():
for e in j['errors']:
error_msg += '{}; '.format(e['reason']) \
if 'reason' in e.keys() else ''
except:
pass
raise ApiError(error_msg, status=response.status_code, json=j)
if response.status_code != 204:
j = response.json()
else:
j = None # handle no response body
return j | [
"def",
"_api_call",
"(",
"self",
",",
"endpoint",
",",
"model",
"=",
"None",
",",
"method",
"=",
"None",
",",
"data",
"=",
"None",
",",
"filters",
"=",
"None",
")",
":",
"if",
"not",
"self",
".",
"token",
":",
"raise",
"RuntimeError",
"(",
"\"You do not have an API token!\"",
")",
"if",
"not",
"method",
":",
"raise",
"ValueError",
"(",
"\"Method is required for API calls!\"",
")",
"if",
"model",
":",
"endpoint",
"=",
"endpoint",
".",
"format",
"(",
"*",
"*",
"vars",
"(",
"model",
")",
")",
"url",
"=",
"'{}{}'",
".",
"format",
"(",
"self",
".",
"base_url",
",",
"endpoint",
")",
"headers",
"=",
"{",
"'Authorization'",
":",
"\"Bearer {}\"",
".",
"format",
"(",
"self",
".",
"token",
")",
",",
"'Content-Type'",
":",
"'application/json'",
",",
"'User-Agent'",
":",
"self",
".",
"_user_agent",
",",
"}",
"if",
"filters",
":",
"headers",
"[",
"'X-Filter'",
"]",
"=",
"json",
".",
"dumps",
"(",
"filters",
")",
"body",
"=",
"None",
"if",
"data",
"is",
"not",
"None",
":",
"body",
"=",
"json",
".",
"dumps",
"(",
"data",
")",
"response",
"=",
"method",
"(",
"url",
",",
"headers",
"=",
"headers",
",",
"data",
"=",
"body",
")",
"warning",
"=",
"response",
".",
"headers",
".",
"get",
"(",
"'Warning'",
",",
"None",
")",
"if",
"warning",
":",
"logger",
".",
"warning",
"(",
"'Received warning from server: {}'",
".",
"format",
"(",
"warning",
")",
")",
"if",
"399",
"<",
"response",
".",
"status_code",
"<",
"600",
":",
"j",
"=",
"None",
"error_msg",
"=",
"'{}: '",
".",
"format",
"(",
"response",
".",
"status_code",
")",
"try",
":",
"j",
"=",
"response",
".",
"json",
"(",
")",
"if",
"'errors'",
"in",
"j",
".",
"keys",
"(",
")",
":",
"for",
"e",
"in",
"j",
"[",
"'errors'",
"]",
":",
"error_msg",
"+=",
"'{}; '",
".",
"format",
"(",
"e",
"[",
"'reason'",
"]",
")",
"if",
"'reason'",
"in",
"e",
".",
"keys",
"(",
")",
"else",
"''",
"except",
":",
"pass",
"raise",
"ApiError",
"(",
"error_msg",
",",
"status",
"=",
"response",
".",
"status_code",
",",
"json",
"=",
"j",
")",
"if",
"response",
".",
"status_code",
"!=",
"204",
":",
"j",
"=",
"response",
".",
"json",
"(",
")",
"else",
":",
"j",
"=",
"None",
"# handle no response body",
"return",
"j"
]
| Makes a call to the linode api. Data should only be given if the method is
POST or PUT, and should be a dictionary | [
"Makes",
"a",
"call",
"to",
"the",
"linode",
"api",
".",
"Data",
"should",
"only",
"be",
"given",
"if",
"the",
"method",
"is",
"POST",
"or",
"PUT",
"and",
"should",
"be",
"a",
"dictionary"
]
| 1dd7318d2aed014c746d48c7957464c57af883ca | https://github.com/linode/linode_api4-python/blob/1dd7318d2aed014c746d48c7957464c57af883ca/linode_api4/linode_client.py#L841-L892 | train |
linode/linode_api4-python | linode_api4/linode_client.py | LinodeClient.image_create | def image_create(self, disk, label=None, description=None):
"""
Creates a new Image from a disk you own.
:param disk: The Disk to imagize.
:type disk: Disk or int
:param label: The label for the resulting Image (defaults to the disk's
label.
:type label: str
:param description: The description for the new Image.
:type description: str
:returns: The new Image.
:rtype: Image
"""
params = {
"disk_id": disk.id if issubclass(type(disk), Base) else disk,
}
if label is not None:
params["label"] = label
if description is not None:
params["description"] = description
result = self.post('/images', data=params)
if not 'id' in result:
raise UnexpectedResponseError('Unexpected response when creating an '
'Image from disk {}'.format(disk))
return Image(self, result['id'], result) | python | def image_create(self, disk, label=None, description=None):
"""
Creates a new Image from a disk you own.
:param disk: The Disk to imagize.
:type disk: Disk or int
:param label: The label for the resulting Image (defaults to the disk's
label.
:type label: str
:param description: The description for the new Image.
:type description: str
:returns: The new Image.
:rtype: Image
"""
params = {
"disk_id": disk.id if issubclass(type(disk), Base) else disk,
}
if label is not None:
params["label"] = label
if description is not None:
params["description"] = description
result = self.post('/images', data=params)
if not 'id' in result:
raise UnexpectedResponseError('Unexpected response when creating an '
'Image from disk {}'.format(disk))
return Image(self, result['id'], result) | [
"def",
"image_create",
"(",
"self",
",",
"disk",
",",
"label",
"=",
"None",
",",
"description",
"=",
"None",
")",
":",
"params",
"=",
"{",
"\"disk_id\"",
":",
"disk",
".",
"id",
"if",
"issubclass",
"(",
"type",
"(",
"disk",
")",
",",
"Base",
")",
"else",
"disk",
",",
"}",
"if",
"label",
"is",
"not",
"None",
":",
"params",
"[",
"\"label\"",
"]",
"=",
"label",
"if",
"description",
"is",
"not",
"None",
":",
"params",
"[",
"\"description\"",
"]",
"=",
"description",
"result",
"=",
"self",
".",
"post",
"(",
"'/images'",
",",
"data",
"=",
"params",
")",
"if",
"not",
"'id'",
"in",
"result",
":",
"raise",
"UnexpectedResponseError",
"(",
"'Unexpected response when creating an '",
"'Image from disk {}'",
".",
"format",
"(",
"disk",
")",
")",
"return",
"Image",
"(",
"self",
",",
"result",
"[",
"'id'",
"]",
",",
"result",
")"
]
| Creates a new Image from a disk you own.
:param disk: The Disk to imagize.
:type disk: Disk or int
:param label: The label for the resulting Image (defaults to the disk's
label.
:type label: str
:param description: The description for the new Image.
:type description: str
:returns: The new Image.
:rtype: Image | [
"Creates",
"a",
"new",
"Image",
"from",
"a",
"disk",
"you",
"own",
"."
]
| 1dd7318d2aed014c746d48c7957464c57af883ca | https://github.com/linode/linode_api4-python/blob/1dd7318d2aed014c746d48c7957464c57af883ca/linode_api4/linode_client.py#L950-L981 | train |
linode/linode_api4-python | linode_api4/linode_client.py | LinodeClient.nodebalancer_create | def nodebalancer_create(self, region, **kwargs):
"""
Creates a new NodeBalancer in the given Region.
:param region: The Region in which to create the NodeBalancer.
:type region: Region or str
:returns: The new NodeBalancer
:rtype: NodeBalancer
"""
params = {
"region": region.id if isinstance(region, Base) else region,
}
params.update(kwargs)
result = self.post('/nodebalancers', data=params)
if not 'id' in result:
raise UnexpectedResponseError('Unexpected response when creating Nodebalaner!', json=result)
n = NodeBalancer(self, result['id'], result)
return n | python | def nodebalancer_create(self, region, **kwargs):
"""
Creates a new NodeBalancer in the given Region.
:param region: The Region in which to create the NodeBalancer.
:type region: Region or str
:returns: The new NodeBalancer
:rtype: NodeBalancer
"""
params = {
"region": region.id if isinstance(region, Base) else region,
}
params.update(kwargs)
result = self.post('/nodebalancers', data=params)
if not 'id' in result:
raise UnexpectedResponseError('Unexpected response when creating Nodebalaner!', json=result)
n = NodeBalancer(self, result['id'], result)
return n | [
"def",
"nodebalancer_create",
"(",
"self",
",",
"region",
",",
"*",
"*",
"kwargs",
")",
":",
"params",
"=",
"{",
"\"region\"",
":",
"region",
".",
"id",
"if",
"isinstance",
"(",
"region",
",",
"Base",
")",
"else",
"region",
",",
"}",
"params",
".",
"update",
"(",
"kwargs",
")",
"result",
"=",
"self",
".",
"post",
"(",
"'/nodebalancers'",
",",
"data",
"=",
"params",
")",
"if",
"not",
"'id'",
"in",
"result",
":",
"raise",
"UnexpectedResponseError",
"(",
"'Unexpected response when creating Nodebalaner!'",
",",
"json",
"=",
"result",
")",
"n",
"=",
"NodeBalancer",
"(",
"self",
",",
"result",
"[",
"'id'",
"]",
",",
"result",
")",
"return",
"n"
]
| Creates a new NodeBalancer in the given Region.
:param region: The Region in which to create the NodeBalancer.
:type region: Region or str
:returns: The new NodeBalancer
:rtype: NodeBalancer | [
"Creates",
"a",
"new",
"NodeBalancer",
"in",
"the",
"given",
"Region",
"."
]
| 1dd7318d2aed014c746d48c7957464c57af883ca | https://github.com/linode/linode_api4-python/blob/1dd7318d2aed014c746d48c7957464c57af883ca/linode_api4/linode_client.py#L1005-L1026 | train |
linode/linode_api4-python | linode_api4/linode_client.py | LinodeClient.domain_create | def domain_create(self, domain, master=True, **kwargs):
"""
Registers a new Domain on the acting user's account. Make sure to point
your registrar to Linode's nameservers so that Linode's DNS manager will
correctly serve your domain.
:param domain: The domain to register to Linode's DNS manager.
:type domain: str
:param master: Whether this is a master (defaults to true)
:type master: bool
:returns: The new Domain object.
:rtype: Domain
"""
params = {
'domain': domain,
'type': 'master' if master else 'slave',
}
params.update(kwargs)
result = self.post('/domains', data=params)
if not 'id' in result:
raise UnexpectedResponseError('Unexpected response when creating Domain!', json=result)
d = Domain(self, result['id'], result)
return d | python | def domain_create(self, domain, master=True, **kwargs):
"""
Registers a new Domain on the acting user's account. Make sure to point
your registrar to Linode's nameservers so that Linode's DNS manager will
correctly serve your domain.
:param domain: The domain to register to Linode's DNS manager.
:type domain: str
:param master: Whether this is a master (defaults to true)
:type master: bool
:returns: The new Domain object.
:rtype: Domain
"""
params = {
'domain': domain,
'type': 'master' if master else 'slave',
}
params.update(kwargs)
result = self.post('/domains', data=params)
if not 'id' in result:
raise UnexpectedResponseError('Unexpected response when creating Domain!', json=result)
d = Domain(self, result['id'], result)
return d | [
"def",
"domain_create",
"(",
"self",
",",
"domain",
",",
"master",
"=",
"True",
",",
"*",
"*",
"kwargs",
")",
":",
"params",
"=",
"{",
"'domain'",
":",
"domain",
",",
"'type'",
":",
"'master'",
"if",
"master",
"else",
"'slave'",
",",
"}",
"params",
".",
"update",
"(",
"kwargs",
")",
"result",
"=",
"self",
".",
"post",
"(",
"'/domains'",
",",
"data",
"=",
"params",
")",
"if",
"not",
"'id'",
"in",
"result",
":",
"raise",
"UnexpectedResponseError",
"(",
"'Unexpected response when creating Domain!'",
",",
"json",
"=",
"result",
")",
"d",
"=",
"Domain",
"(",
"self",
",",
"result",
"[",
"'id'",
"]",
",",
"result",
")",
"return",
"d"
]
| Registers a new Domain on the acting user's account. Make sure to point
your registrar to Linode's nameservers so that Linode's DNS manager will
correctly serve your domain.
:param domain: The domain to register to Linode's DNS manager.
:type domain: str
:param master: Whether this is a master (defaults to true)
:type master: bool
:returns: The new Domain object.
:rtype: Domain | [
"Registers",
"a",
"new",
"Domain",
"on",
"the",
"acting",
"user",
"s",
"account",
".",
"Make",
"sure",
"to",
"point",
"your",
"registrar",
"to",
"Linode",
"s",
"nameservers",
"so",
"that",
"Linode",
"s",
"DNS",
"manager",
"will",
"correctly",
"serve",
"your",
"domain",
"."
]
| 1dd7318d2aed014c746d48c7957464c57af883ca | https://github.com/linode/linode_api4-python/blob/1dd7318d2aed014c746d48c7957464c57af883ca/linode_api4/linode_client.py#L1028-L1054 | train |
linode/linode_api4-python | linode_api4/linode_client.py | LinodeClient.tag_create | def tag_create(self, label, instances=None, domains=None, nodebalancers=None,
volumes=None, entities=[]):
"""
Creates a new Tag and optionally applies it to the given entities.
:param label: The label for the new Tag
:type label: str
:param entities: A list of objects to apply this Tag to upon creation.
May only be taggable types (Linode Instances, Domains,
NodeBalancers, or Volumes). These are applied *in addition
to* any IDs specified with ``instances``, ``domains``,
``nodebalancers``, or ``volumes``, and is a convenience
for sending multiple entity types without sorting them
yourself.
:type entities: list of Instance, Domain, NodeBalancer, and/or Volume
:param instances: A list of Linode Instances to apply this Tag to upon
creation
:type instances: list of Instance or list of int
:param domains: A list of Domains to apply this Tag to upon
creation
:type domains: list of Domain or list of int
:param nodebalancers: A list of NodeBalancers to apply this Tag to upon
creation
:type nodebalancers: list of NodeBalancer or list of int
:param volumes: A list of Volumes to apply this Tag to upon
creation
:type volumes: list of Volumes or list of int
:returns: The new Tag
:rtype: Tag
"""
linode_ids, nodebalancer_ids, domain_ids, volume_ids = [], [], [], []
# filter input into lists of ids
sorter = zip((linode_ids, nodebalancer_ids, domain_ids, volume_ids),
(instances, nodebalancers, domains, volumes))
for id_list, input_list in sorter:
# if we got something, we need to find its ID
if input_list is not None:
for cur in input_list:
if isinstance(cur, int):
id_list.append(cur)
else:
id_list.append(cur.id)
# filter entities into id lists too
type_map = {
Instance: linode_ids,
NodeBalancer: nodebalancer_ids,
Domain: domain_ids,
Volume: volume_ids,
}
for e in entities:
if type(e) in type_map:
type_map[type(e)].append(e.id)
else:
raise ValueError('Unsupported entity type {}'.format(type(e)))
# finally, omit all id lists that are empty
params = {
'label': label,
'linodes': linode_ids or None,
'nodebalancers': nodebalancer_ids or None,
'domains': domain_ids or None,
'volumes': volume_ids or None,
}
result = self.post('/tags', data=params)
if not 'label' in result:
raise UnexpectedResponseError('Unexpected response when creating Tag!', json=result)
t = Tag(self, result['label'], result)
return t | python | def tag_create(self, label, instances=None, domains=None, nodebalancers=None,
volumes=None, entities=[]):
"""
Creates a new Tag and optionally applies it to the given entities.
:param label: The label for the new Tag
:type label: str
:param entities: A list of objects to apply this Tag to upon creation.
May only be taggable types (Linode Instances, Domains,
NodeBalancers, or Volumes). These are applied *in addition
to* any IDs specified with ``instances``, ``domains``,
``nodebalancers``, or ``volumes``, and is a convenience
for sending multiple entity types without sorting them
yourself.
:type entities: list of Instance, Domain, NodeBalancer, and/or Volume
:param instances: A list of Linode Instances to apply this Tag to upon
creation
:type instances: list of Instance or list of int
:param domains: A list of Domains to apply this Tag to upon
creation
:type domains: list of Domain or list of int
:param nodebalancers: A list of NodeBalancers to apply this Tag to upon
creation
:type nodebalancers: list of NodeBalancer or list of int
:param volumes: A list of Volumes to apply this Tag to upon
creation
:type volumes: list of Volumes or list of int
:returns: The new Tag
:rtype: Tag
"""
linode_ids, nodebalancer_ids, domain_ids, volume_ids = [], [], [], []
# filter input into lists of ids
sorter = zip((linode_ids, nodebalancer_ids, domain_ids, volume_ids),
(instances, nodebalancers, domains, volumes))
for id_list, input_list in sorter:
# if we got something, we need to find its ID
if input_list is not None:
for cur in input_list:
if isinstance(cur, int):
id_list.append(cur)
else:
id_list.append(cur.id)
# filter entities into id lists too
type_map = {
Instance: linode_ids,
NodeBalancer: nodebalancer_ids,
Domain: domain_ids,
Volume: volume_ids,
}
for e in entities:
if type(e) in type_map:
type_map[type(e)].append(e.id)
else:
raise ValueError('Unsupported entity type {}'.format(type(e)))
# finally, omit all id lists that are empty
params = {
'label': label,
'linodes': linode_ids or None,
'nodebalancers': nodebalancer_ids or None,
'domains': domain_ids or None,
'volumes': volume_ids or None,
}
result = self.post('/tags', data=params)
if not 'label' in result:
raise UnexpectedResponseError('Unexpected response when creating Tag!', json=result)
t = Tag(self, result['label'], result)
return t | [
"def",
"tag_create",
"(",
"self",
",",
"label",
",",
"instances",
"=",
"None",
",",
"domains",
"=",
"None",
",",
"nodebalancers",
"=",
"None",
",",
"volumes",
"=",
"None",
",",
"entities",
"=",
"[",
"]",
")",
":",
"linode_ids",
",",
"nodebalancer_ids",
",",
"domain_ids",
",",
"volume_ids",
"=",
"[",
"]",
",",
"[",
"]",
",",
"[",
"]",
",",
"[",
"]",
"# filter input into lists of ids",
"sorter",
"=",
"zip",
"(",
"(",
"linode_ids",
",",
"nodebalancer_ids",
",",
"domain_ids",
",",
"volume_ids",
")",
",",
"(",
"instances",
",",
"nodebalancers",
",",
"domains",
",",
"volumes",
")",
")",
"for",
"id_list",
",",
"input_list",
"in",
"sorter",
":",
"# if we got something, we need to find its ID",
"if",
"input_list",
"is",
"not",
"None",
":",
"for",
"cur",
"in",
"input_list",
":",
"if",
"isinstance",
"(",
"cur",
",",
"int",
")",
":",
"id_list",
".",
"append",
"(",
"cur",
")",
"else",
":",
"id_list",
".",
"append",
"(",
"cur",
".",
"id",
")",
"# filter entities into id lists too",
"type_map",
"=",
"{",
"Instance",
":",
"linode_ids",
",",
"NodeBalancer",
":",
"nodebalancer_ids",
",",
"Domain",
":",
"domain_ids",
",",
"Volume",
":",
"volume_ids",
",",
"}",
"for",
"e",
"in",
"entities",
":",
"if",
"type",
"(",
"e",
")",
"in",
"type_map",
":",
"type_map",
"[",
"type",
"(",
"e",
")",
"]",
".",
"append",
"(",
"e",
".",
"id",
")",
"else",
":",
"raise",
"ValueError",
"(",
"'Unsupported entity type {}'",
".",
"format",
"(",
"type",
"(",
"e",
")",
")",
")",
"# finally, omit all id lists that are empty",
"params",
"=",
"{",
"'label'",
":",
"label",
",",
"'linodes'",
":",
"linode_ids",
"or",
"None",
",",
"'nodebalancers'",
":",
"nodebalancer_ids",
"or",
"None",
",",
"'domains'",
":",
"domain_ids",
"or",
"None",
",",
"'volumes'",
":",
"volume_ids",
"or",
"None",
",",
"}",
"result",
"=",
"self",
".",
"post",
"(",
"'/tags'",
",",
"data",
"=",
"params",
")",
"if",
"not",
"'label'",
"in",
"result",
":",
"raise",
"UnexpectedResponseError",
"(",
"'Unexpected response when creating Tag!'",
",",
"json",
"=",
"result",
")",
"t",
"=",
"Tag",
"(",
"self",
",",
"result",
"[",
"'label'",
"]",
",",
"result",
")",
"return",
"t"
]
| Creates a new Tag and optionally applies it to the given entities.
:param label: The label for the new Tag
:type label: str
:param entities: A list of objects to apply this Tag to upon creation.
May only be taggable types (Linode Instances, Domains,
NodeBalancers, or Volumes). These are applied *in addition
to* any IDs specified with ``instances``, ``domains``,
``nodebalancers``, or ``volumes``, and is a convenience
for sending multiple entity types without sorting them
yourself.
:type entities: list of Instance, Domain, NodeBalancer, and/or Volume
:param instances: A list of Linode Instances to apply this Tag to upon
creation
:type instances: list of Instance or list of int
:param domains: A list of Domains to apply this Tag to upon
creation
:type domains: list of Domain or list of int
:param nodebalancers: A list of NodeBalancers to apply this Tag to upon
creation
:type nodebalancers: list of NodeBalancer or list of int
:param volumes: A list of Volumes to apply this Tag to upon
creation
:type volumes: list of Volumes or list of int
:returns: The new Tag
:rtype: Tag | [
"Creates",
"a",
"new",
"Tag",
"and",
"optionally",
"applies",
"it",
"to",
"the",
"given",
"entities",
"."
]
| 1dd7318d2aed014c746d48c7957464c57af883ca | https://github.com/linode/linode_api4-python/blob/1dd7318d2aed014c746d48c7957464c57af883ca/linode_api4/linode_client.py#L1068-L1143 | train |
linode/linode_api4-python | linode_api4/linode_client.py | LinodeClient.volume_create | def volume_create(self, label, region=None, linode=None, size=20, **kwargs):
"""
Creates a new Block Storage Volume, either in the given Region or
attached to the given Instance.
:param label: The label for the new Volume.
:type label: str
:param region: The Region to create this Volume in. Not required if
`linode` is provided.
:type region: Region or str
:param linode: The Instance to attach this Volume to. If not given, the
new Volume will not be attached to anything.
:type linode: Instance or int
:param size: The size, in GB, of the new Volume. Defaults to 20.
:type size: int
:returns: The new Volume.
:rtype: Volume
"""
if not (region or linode):
raise ValueError('region or linode required!')
params = {
"label": label,
"size": size,
"region": region.id if issubclass(type(region), Base) else region,
"linode_id": linode.id if issubclass(type(linode), Base) else linode,
}
params.update(kwargs)
result = self.post('/volumes', data=params)
if not 'id' in result:
raise UnexpectedResponseError('Unexpected response when creating volume!', json=result)
v = Volume(self, result['id'], result)
return v | python | def volume_create(self, label, region=None, linode=None, size=20, **kwargs):
"""
Creates a new Block Storage Volume, either in the given Region or
attached to the given Instance.
:param label: The label for the new Volume.
:type label: str
:param region: The Region to create this Volume in. Not required if
`linode` is provided.
:type region: Region or str
:param linode: The Instance to attach this Volume to. If not given, the
new Volume will not be attached to anything.
:type linode: Instance or int
:param size: The size, in GB, of the new Volume. Defaults to 20.
:type size: int
:returns: The new Volume.
:rtype: Volume
"""
if not (region or linode):
raise ValueError('region or linode required!')
params = {
"label": label,
"size": size,
"region": region.id if issubclass(type(region), Base) else region,
"linode_id": linode.id if issubclass(type(linode), Base) else linode,
}
params.update(kwargs)
result = self.post('/volumes', data=params)
if not 'id' in result:
raise UnexpectedResponseError('Unexpected response when creating volume!', json=result)
v = Volume(self, result['id'], result)
return v | [
"def",
"volume_create",
"(",
"self",
",",
"label",
",",
"region",
"=",
"None",
",",
"linode",
"=",
"None",
",",
"size",
"=",
"20",
",",
"*",
"*",
"kwargs",
")",
":",
"if",
"not",
"(",
"region",
"or",
"linode",
")",
":",
"raise",
"ValueError",
"(",
"'region or linode required!'",
")",
"params",
"=",
"{",
"\"label\"",
":",
"label",
",",
"\"size\"",
":",
"size",
",",
"\"region\"",
":",
"region",
".",
"id",
"if",
"issubclass",
"(",
"type",
"(",
"region",
")",
",",
"Base",
")",
"else",
"region",
",",
"\"linode_id\"",
":",
"linode",
".",
"id",
"if",
"issubclass",
"(",
"type",
"(",
"linode",
")",
",",
"Base",
")",
"else",
"linode",
",",
"}",
"params",
".",
"update",
"(",
"kwargs",
")",
"result",
"=",
"self",
".",
"post",
"(",
"'/volumes'",
",",
"data",
"=",
"params",
")",
"if",
"not",
"'id'",
"in",
"result",
":",
"raise",
"UnexpectedResponseError",
"(",
"'Unexpected response when creating volume!'",
",",
"json",
"=",
"result",
")",
"v",
"=",
"Volume",
"(",
"self",
",",
"result",
"[",
"'id'",
"]",
",",
"result",
")",
"return",
"v"
]
| Creates a new Block Storage Volume, either in the given Region or
attached to the given Instance.
:param label: The label for the new Volume.
:type label: str
:param region: The Region to create this Volume in. Not required if
`linode` is provided.
:type region: Region or str
:param linode: The Instance to attach this Volume to. If not given, the
new Volume will not be attached to anything.
:type linode: Instance or int
:param size: The size, in GB, of the new Volume. Defaults to 20.
:type size: int
:returns: The new Volume.
:rtype: Volume | [
"Creates",
"a",
"new",
"Block",
"Storage",
"Volume",
"either",
"in",
"the",
"given",
"Region",
"or",
"attached",
"to",
"the",
"given",
"Instance",
"."
]
| 1dd7318d2aed014c746d48c7957464c57af883ca | https://github.com/linode/linode_api4-python/blob/1dd7318d2aed014c746d48c7957464c57af883ca/linode_api4/linode_client.py#L1156-L1192 | train |
linode/linode_api4-python | linode_api4/login_client.py | LinodeLoginClient.expire_token | def expire_token(self, token):
"""
Given a token, makes a request to the authentication server to expire
it immediately. This is considered a responsible way to log out a
user. If you simply remove the session your application has for the
user without expiring their token, the user is not _really_ logged out.
:param token: The OAuth token you wish to expire
:type token: str
:returns: If the expiration attempt succeeded.
:rtype: bool
:raises ApiError: If the expiration attempt failed.
"""
r = requests.post(self._login_uri("/oauth/token/expire"),
data={
"client_id": self.client_id,
"client_secret": self.client_secret,
"token": token,
})
if r.status_code != 200:
raise ApiError("Failed to expire token!", r)
return True | python | def expire_token(self, token):
"""
Given a token, makes a request to the authentication server to expire
it immediately. This is considered a responsible way to log out a
user. If you simply remove the session your application has for the
user without expiring their token, the user is not _really_ logged out.
:param token: The OAuth token you wish to expire
:type token: str
:returns: If the expiration attempt succeeded.
:rtype: bool
:raises ApiError: If the expiration attempt failed.
"""
r = requests.post(self._login_uri("/oauth/token/expire"),
data={
"client_id": self.client_id,
"client_secret": self.client_secret,
"token": token,
})
if r.status_code != 200:
raise ApiError("Failed to expire token!", r)
return True | [
"def",
"expire_token",
"(",
"self",
",",
"token",
")",
":",
"r",
"=",
"requests",
".",
"post",
"(",
"self",
".",
"_login_uri",
"(",
"\"/oauth/token/expire\"",
")",
",",
"data",
"=",
"{",
"\"client_id\"",
":",
"self",
".",
"client_id",
",",
"\"client_secret\"",
":",
"self",
".",
"client_secret",
",",
"\"token\"",
":",
"token",
",",
"}",
")",
"if",
"r",
".",
"status_code",
"!=",
"200",
":",
"raise",
"ApiError",
"(",
"\"Failed to expire token!\"",
",",
"r",
")",
"return",
"True"
]
| Given a token, makes a request to the authentication server to expire
it immediately. This is considered a responsible way to log out a
user. If you simply remove the session your application has for the
user without expiring their token, the user is not _really_ logged out.
:param token: The OAuth token you wish to expire
:type token: str
:returns: If the expiration attempt succeeded.
:rtype: bool
:raises ApiError: If the expiration attempt failed. | [
"Given",
"a",
"token",
"makes",
"a",
"request",
"to",
"the",
"authentication",
"server",
"to",
"expire",
"it",
"immediately",
".",
"This",
"is",
"considered",
"a",
"responsible",
"way",
"to",
"log",
"out",
"a",
"user",
".",
"If",
"you",
"simply",
"remove",
"the",
"session",
"your",
"application",
"has",
"for",
"the",
"user",
"without",
"expiring",
"their",
"token",
"the",
"user",
"is",
"not",
"_really_",
"logged",
"out",
"."
]
| 1dd7318d2aed014c746d48c7957464c57af883ca | https://github.com/linode/linode_api4-python/blob/1dd7318d2aed014c746d48c7957464c57af883ca/linode_api4/login_client.py#L417-L441 | train |
linode/linode_api4-python | linode_api4/objects/profile.py | Profile.grants | def grants(self):
"""
Returns grants for the current user
"""
from linode_api4.objects.account import UserGrants
resp = self._client.get('/profile/grants') # use special endpoint for restricted users
grants = None
if resp is not None:
# if resp is None, we're unrestricted and do not have grants
grants = UserGrants(self._client, self.username, resp)
return grants | python | def grants(self):
"""
Returns grants for the current user
"""
from linode_api4.objects.account import UserGrants
resp = self._client.get('/profile/grants') # use special endpoint for restricted users
grants = None
if resp is not None:
# if resp is None, we're unrestricted and do not have grants
grants = UserGrants(self._client, self.username, resp)
return grants | [
"def",
"grants",
"(",
"self",
")",
":",
"from",
"linode_api4",
".",
"objects",
".",
"account",
"import",
"UserGrants",
"resp",
"=",
"self",
".",
"_client",
".",
"get",
"(",
"'/profile/grants'",
")",
"# use special endpoint for restricted users",
"grants",
"=",
"None",
"if",
"resp",
"is",
"not",
"None",
":",
"# if resp is None, we're unrestricted and do not have grants",
"grants",
"=",
"UserGrants",
"(",
"self",
".",
"_client",
",",
"self",
".",
"username",
",",
"resp",
")",
"return",
"grants"
]
| Returns grants for the current user | [
"Returns",
"grants",
"for",
"the",
"current",
"user"
]
| 1dd7318d2aed014c746d48c7957464c57af883ca | https://github.com/linode/linode_api4-python/blob/1dd7318d2aed014c746d48c7957464c57af883ca/linode_api4/objects/profile.py#L91-L103 | train |
linode/linode_api4-python | linode_api4/objects/profile.py | Profile.add_whitelist_entry | def add_whitelist_entry(self, address, netmask, note=None):
"""
Adds a new entry to this user's IP whitelist, if enabled
"""
result = self._client.post("{}/whitelist".format(Profile.api_endpoint),
data={
"address": address,
"netmask": netmask,
"note": note,
})
if not 'id' in result:
raise UnexpectedResponseError("Unexpected response creating whitelist entry!")
return WhitelistEntry(result['id'], self._client, json=result) | python | def add_whitelist_entry(self, address, netmask, note=None):
"""
Adds a new entry to this user's IP whitelist, if enabled
"""
result = self._client.post("{}/whitelist".format(Profile.api_endpoint),
data={
"address": address,
"netmask": netmask,
"note": note,
})
if not 'id' in result:
raise UnexpectedResponseError("Unexpected response creating whitelist entry!")
return WhitelistEntry(result['id'], self._client, json=result) | [
"def",
"add_whitelist_entry",
"(",
"self",
",",
"address",
",",
"netmask",
",",
"note",
"=",
"None",
")",
":",
"result",
"=",
"self",
".",
"_client",
".",
"post",
"(",
"\"{}/whitelist\"",
".",
"format",
"(",
"Profile",
".",
"api_endpoint",
")",
",",
"data",
"=",
"{",
"\"address\"",
":",
"address",
",",
"\"netmask\"",
":",
"netmask",
",",
"\"note\"",
":",
"note",
",",
"}",
")",
"if",
"not",
"'id'",
"in",
"result",
":",
"raise",
"UnexpectedResponseError",
"(",
"\"Unexpected response creating whitelist entry!\"",
")",
"return",
"WhitelistEntry",
"(",
"result",
"[",
"'id'",
"]",
",",
"self",
".",
"_client",
",",
"json",
"=",
"result",
")"
]
| Adds a new entry to this user's IP whitelist, if enabled | [
"Adds",
"a",
"new",
"entry",
"to",
"this",
"user",
"s",
"IP",
"whitelist",
"if",
"enabled"
]
| 1dd7318d2aed014c746d48c7957464c57af883ca | https://github.com/linode/linode_api4-python/blob/1dd7318d2aed014c746d48c7957464c57af883ca/linode_api4/objects/profile.py#L112-L126 | train |
tmm/django-username-email | cuser/forms.py | AuthenticationForm.confirm_login_allowed | def confirm_login_allowed(self, user):
"""
Controls whether the given User may log in. This is a policy setting,
independent of end-user authentication. This default behavior is to
allow login by active users, and reject login by inactive users.
If the given user cannot log in, this method should raise a
``forms.ValidationError``.
If the given user may log in, this method should return None.
"""
if not user.is_active:
raise forms.ValidationError(
self.error_messages['inactive'],
code='inactive',
) | python | def confirm_login_allowed(self, user):
"""
Controls whether the given User may log in. This is a policy setting,
independent of end-user authentication. This default behavior is to
allow login by active users, and reject login by inactive users.
If the given user cannot log in, this method should raise a
``forms.ValidationError``.
If the given user may log in, this method should return None.
"""
if not user.is_active:
raise forms.ValidationError(
self.error_messages['inactive'],
code='inactive',
) | [
"def",
"confirm_login_allowed",
"(",
"self",
",",
"user",
")",
":",
"if",
"not",
"user",
".",
"is_active",
":",
"raise",
"forms",
".",
"ValidationError",
"(",
"self",
".",
"error_messages",
"[",
"'inactive'",
"]",
",",
"code",
"=",
"'inactive'",
",",
")"
]
| Controls whether the given User may log in. This is a policy setting,
independent of end-user authentication. This default behavior is to
allow login by active users, and reject login by inactive users.
If the given user cannot log in, this method should raise a
``forms.ValidationError``.
If the given user may log in, this method should return None. | [
"Controls",
"whether",
"the",
"given",
"User",
"may",
"log",
"in",
".",
"This",
"is",
"a",
"policy",
"setting",
"independent",
"of",
"end",
"-",
"user",
"authentication",
".",
"This",
"default",
"behavior",
"is",
"to",
"allow",
"login",
"by",
"active",
"users",
"and",
"reject",
"login",
"by",
"inactive",
"users",
"."
]
| 36e56bcbf79d46af101ba4c8f4bd848856306329 | https://github.com/tmm/django-username-email/blob/36e56bcbf79d46af101ba4c8f4bd848856306329/cuser/forms.py#L68-L83 | train |
dwavesystems/dwave-system | dwave/embedding/chain_breaks.py | broken_chains | def broken_chains(samples, chains):
"""Find the broken chains.
Args:
samples (array_like):
Samples as a nS x nV array_like object where nS is the number of samples and nV is the
number of variables. The values should all be 0/1 or -1/+1.
chains (list[array_like]):
List of chains of length nC where nC is the number of chains.
Each chain should be an array_like collection of column indices in samples.
Returns:
:obj:`numpy.ndarray`: A nS x nC boolean array. If i, j is True, then chain j in sample i is
broken.
Examples:
>>> samples = np.array([[-1, +1, -1, +1], [-1, -1, +1, +1]], dtype=np.int8)
>>> chains = [[0, 1], [2, 3]]
>>> dwave.embedding.broken_chains(samples, chains)
array([[True, True],
[ False, False]])
>>> samples = np.array([[-1, +1, -1, +1], [-1, -1, +1, +1]], dtype=np.int8)
>>> chains = [[0, 2], [1, 3]]
>>> dwave.embedding.broken_chains(samples, chains)
array([[False, False],
[ True, True]])
"""
samples = np.asarray(samples)
if samples.ndim != 2:
raise ValueError("expected samples to be a numpy 2D array")
num_samples, num_variables = samples.shape
num_chains = len(chains)
broken = np.zeros((num_samples, num_chains), dtype=bool, order='F')
for cidx, chain in enumerate(chains):
if isinstance(chain, set):
chain = list(chain)
chain = np.asarray(chain)
if chain.ndim > 1:
raise ValueError("chains should be 1D array_like objects")
# chains of length 1, or 0 cannot be broken
if len(chain) <= 1:
continue
all_ = (samples[:, chain] == 1).all(axis=1)
any_ = (samples[:, chain] == 1).any(axis=1)
broken[:, cidx] = np.bitwise_xor(all_, any_)
return broken | python | def broken_chains(samples, chains):
"""Find the broken chains.
Args:
samples (array_like):
Samples as a nS x nV array_like object where nS is the number of samples and nV is the
number of variables. The values should all be 0/1 or -1/+1.
chains (list[array_like]):
List of chains of length nC where nC is the number of chains.
Each chain should be an array_like collection of column indices in samples.
Returns:
:obj:`numpy.ndarray`: A nS x nC boolean array. If i, j is True, then chain j in sample i is
broken.
Examples:
>>> samples = np.array([[-1, +1, -1, +1], [-1, -1, +1, +1]], dtype=np.int8)
>>> chains = [[0, 1], [2, 3]]
>>> dwave.embedding.broken_chains(samples, chains)
array([[True, True],
[ False, False]])
>>> samples = np.array([[-1, +1, -1, +1], [-1, -1, +1, +1]], dtype=np.int8)
>>> chains = [[0, 2], [1, 3]]
>>> dwave.embedding.broken_chains(samples, chains)
array([[False, False],
[ True, True]])
"""
samples = np.asarray(samples)
if samples.ndim != 2:
raise ValueError("expected samples to be a numpy 2D array")
num_samples, num_variables = samples.shape
num_chains = len(chains)
broken = np.zeros((num_samples, num_chains), dtype=bool, order='F')
for cidx, chain in enumerate(chains):
if isinstance(chain, set):
chain = list(chain)
chain = np.asarray(chain)
if chain.ndim > 1:
raise ValueError("chains should be 1D array_like objects")
# chains of length 1, or 0 cannot be broken
if len(chain) <= 1:
continue
all_ = (samples[:, chain] == 1).all(axis=1)
any_ = (samples[:, chain] == 1).any(axis=1)
broken[:, cidx] = np.bitwise_xor(all_, any_)
return broken | [
"def",
"broken_chains",
"(",
"samples",
",",
"chains",
")",
":",
"samples",
"=",
"np",
".",
"asarray",
"(",
"samples",
")",
"if",
"samples",
".",
"ndim",
"!=",
"2",
":",
"raise",
"ValueError",
"(",
"\"expected samples to be a numpy 2D array\"",
")",
"num_samples",
",",
"num_variables",
"=",
"samples",
".",
"shape",
"num_chains",
"=",
"len",
"(",
"chains",
")",
"broken",
"=",
"np",
".",
"zeros",
"(",
"(",
"num_samples",
",",
"num_chains",
")",
",",
"dtype",
"=",
"bool",
",",
"order",
"=",
"'F'",
")",
"for",
"cidx",
",",
"chain",
"in",
"enumerate",
"(",
"chains",
")",
":",
"if",
"isinstance",
"(",
"chain",
",",
"set",
")",
":",
"chain",
"=",
"list",
"(",
"chain",
")",
"chain",
"=",
"np",
".",
"asarray",
"(",
"chain",
")",
"if",
"chain",
".",
"ndim",
">",
"1",
":",
"raise",
"ValueError",
"(",
"\"chains should be 1D array_like objects\"",
")",
"# chains of length 1, or 0 cannot be broken",
"if",
"len",
"(",
"chain",
")",
"<=",
"1",
":",
"continue",
"all_",
"=",
"(",
"samples",
"[",
":",
",",
"chain",
"]",
"==",
"1",
")",
".",
"all",
"(",
"axis",
"=",
"1",
")",
"any_",
"=",
"(",
"samples",
"[",
":",
",",
"chain",
"]",
"==",
"1",
")",
".",
"any",
"(",
"axis",
"=",
"1",
")",
"broken",
"[",
":",
",",
"cidx",
"]",
"=",
"np",
".",
"bitwise_xor",
"(",
"all_",
",",
"any_",
")",
"return",
"broken"
]
| Find the broken chains.
Args:
samples (array_like):
Samples as a nS x nV array_like object where nS is the number of samples and nV is the
number of variables. The values should all be 0/1 or -1/+1.
chains (list[array_like]):
List of chains of length nC where nC is the number of chains.
Each chain should be an array_like collection of column indices in samples.
Returns:
:obj:`numpy.ndarray`: A nS x nC boolean array. If i, j is True, then chain j in sample i is
broken.
Examples:
>>> samples = np.array([[-1, +1, -1, +1], [-1, -1, +1, +1]], dtype=np.int8)
>>> chains = [[0, 1], [2, 3]]
>>> dwave.embedding.broken_chains(samples, chains)
array([[True, True],
[ False, False]])
>>> samples = np.array([[-1, +1, -1, +1], [-1, -1, +1, +1]], dtype=np.int8)
>>> chains = [[0, 2], [1, 3]]
>>> dwave.embedding.broken_chains(samples, chains)
array([[False, False],
[ True, True]]) | [
"Find",
"the",
"broken",
"chains",
"."
]
| 86a1698f15ccd8b0ece0ed868ee49292d3f67f5b | https://github.com/dwavesystems/dwave-system/blob/86a1698f15ccd8b0ece0ed868ee49292d3f67f5b/dwave/embedding/chain_breaks.py#L33-L88 | train |
dwavesystems/dwave-system | dwave/embedding/chain_breaks.py | discard | def discard(samples, chains):
"""Discard broken chains.
Args:
samples (array_like):
Samples as a nS x nV array_like object where nS is the number of samples and nV is the
number of variables. The values should all be 0/1 or -1/+1.
chains (list[array_like]):
List of chains of length nC where nC is the number of chains.
Each chain should be an array_like collection of column indices in samples.
Returns:
tuple: A 2-tuple containing:
:obj:`numpy.ndarray`: An array of unembedded samples. Broken chains are discarded. The
array has dtype 'int8'.
:obj:`numpy.ndarray`: The indicies of the rows with unbroken chains.
Examples:
This example unembeds two samples that chains nodes 0 and 1 to represent a single source
node. The first sample has an unbroken chain, the second a broken chain.
>>> import dimod
>>> import numpy as np
...
>>> chains = [(0, 1), (2,)]
>>> samples = np.array([[1, 1, 0], [1, 0, 0]], dtype=np.int8)
>>> unembedded, idx = dwave.embedding.discard(samples, chains)
>>> unembedded
array([[1, 0]], dtype=int8)
>>> idx
array([0])
"""
samples = np.asarray(samples)
if samples.ndim != 2:
raise ValueError("expected samples to be a numpy 2D array")
num_samples, num_variables = samples.shape
num_chains = len(chains)
broken = broken_chains(samples, chains)
unbroken_idxs, = np.where(~broken.any(axis=1))
chain_variables = np.fromiter((np.asarray(tuple(chain))[0] if isinstance(chain, set) else np.asarray(chain)[0]
for chain in chains),
count=num_chains, dtype=int)
return samples[np.ix_(unbroken_idxs, chain_variables)], unbroken_idxs | python | def discard(samples, chains):
"""Discard broken chains.
Args:
samples (array_like):
Samples as a nS x nV array_like object where nS is the number of samples and nV is the
number of variables. The values should all be 0/1 or -1/+1.
chains (list[array_like]):
List of chains of length nC where nC is the number of chains.
Each chain should be an array_like collection of column indices in samples.
Returns:
tuple: A 2-tuple containing:
:obj:`numpy.ndarray`: An array of unembedded samples. Broken chains are discarded. The
array has dtype 'int8'.
:obj:`numpy.ndarray`: The indicies of the rows with unbroken chains.
Examples:
This example unembeds two samples that chains nodes 0 and 1 to represent a single source
node. The first sample has an unbroken chain, the second a broken chain.
>>> import dimod
>>> import numpy as np
...
>>> chains = [(0, 1), (2,)]
>>> samples = np.array([[1, 1, 0], [1, 0, 0]], dtype=np.int8)
>>> unembedded, idx = dwave.embedding.discard(samples, chains)
>>> unembedded
array([[1, 0]], dtype=int8)
>>> idx
array([0])
"""
samples = np.asarray(samples)
if samples.ndim != 2:
raise ValueError("expected samples to be a numpy 2D array")
num_samples, num_variables = samples.shape
num_chains = len(chains)
broken = broken_chains(samples, chains)
unbroken_idxs, = np.where(~broken.any(axis=1))
chain_variables = np.fromiter((np.asarray(tuple(chain))[0] if isinstance(chain, set) else np.asarray(chain)[0]
for chain in chains),
count=num_chains, dtype=int)
return samples[np.ix_(unbroken_idxs, chain_variables)], unbroken_idxs | [
"def",
"discard",
"(",
"samples",
",",
"chains",
")",
":",
"samples",
"=",
"np",
".",
"asarray",
"(",
"samples",
")",
"if",
"samples",
".",
"ndim",
"!=",
"2",
":",
"raise",
"ValueError",
"(",
"\"expected samples to be a numpy 2D array\"",
")",
"num_samples",
",",
"num_variables",
"=",
"samples",
".",
"shape",
"num_chains",
"=",
"len",
"(",
"chains",
")",
"broken",
"=",
"broken_chains",
"(",
"samples",
",",
"chains",
")",
"unbroken_idxs",
",",
"=",
"np",
".",
"where",
"(",
"~",
"broken",
".",
"any",
"(",
"axis",
"=",
"1",
")",
")",
"chain_variables",
"=",
"np",
".",
"fromiter",
"(",
"(",
"np",
".",
"asarray",
"(",
"tuple",
"(",
"chain",
")",
")",
"[",
"0",
"]",
"if",
"isinstance",
"(",
"chain",
",",
"set",
")",
"else",
"np",
".",
"asarray",
"(",
"chain",
")",
"[",
"0",
"]",
"for",
"chain",
"in",
"chains",
")",
",",
"count",
"=",
"num_chains",
",",
"dtype",
"=",
"int",
")",
"return",
"samples",
"[",
"np",
".",
"ix_",
"(",
"unbroken_idxs",
",",
"chain_variables",
")",
"]",
",",
"unbroken_idxs"
]
| Discard broken chains.
Args:
samples (array_like):
Samples as a nS x nV array_like object where nS is the number of samples and nV is the
number of variables. The values should all be 0/1 or -1/+1.
chains (list[array_like]):
List of chains of length nC where nC is the number of chains.
Each chain should be an array_like collection of column indices in samples.
Returns:
tuple: A 2-tuple containing:
:obj:`numpy.ndarray`: An array of unembedded samples. Broken chains are discarded. The
array has dtype 'int8'.
:obj:`numpy.ndarray`: The indicies of the rows with unbroken chains.
Examples:
This example unembeds two samples that chains nodes 0 and 1 to represent a single source
node. The first sample has an unbroken chain, the second a broken chain.
>>> import dimod
>>> import numpy as np
...
>>> chains = [(0, 1), (2,)]
>>> samples = np.array([[1, 1, 0], [1, 0, 0]], dtype=np.int8)
>>> unembedded, idx = dwave.embedding.discard(samples, chains)
>>> unembedded
array([[1, 0]], dtype=int8)
>>> idx
array([0]) | [
"Discard",
"broken",
"chains",
"."
]
| 86a1698f15ccd8b0ece0ed868ee49292d3f67f5b | https://github.com/dwavesystems/dwave-system/blob/86a1698f15ccd8b0ece0ed868ee49292d3f67f5b/dwave/embedding/chain_breaks.py#L91-L142 | train |
dwavesystems/dwave-system | dwave/embedding/chain_breaks.py | majority_vote | def majority_vote(samples, chains):
"""Use the most common element in broken chains.
Args:
samples (array_like):
Samples as a nS x nV array_like object where nS is the number of samples and nV is the
number of variables. The values should all be 0/1 or -1/+1.
chains (list[array_like]):
List of chains of length nC where nC is the number of chains.
Each chain should be an array_like collection of column indices in samples.
Returns:
tuple: A 2-tuple containing:
:obj:`numpy.ndarray`: A nS x nC array of unembedded samples. The array has dtype 'int8'.
Where there is a chain break, the value is chosen to match the most common value in the
chain. For broken chains without a majority, the value is chosen arbitrarily.
:obj:`numpy.ndarray`: Equivalent to :code:`np.arange(nS)` because all samples are kept
and no samples are added.
Examples:
This example unembeds samples from a target graph that chains nodes 0 and 1 to
represent one source node and nodes 2, 3, and 4 to represent another.
Both samples have one broken chain, with different majority values.
>>> import dimod
>>> import numpy as np
...
>>> chains = [(0, 1), (2, 3, 4)]
>>> samples = np.array([[1, 1, 0, 0, 1], [1, 1, 1, 0, 1]], dtype=np.int8)
>>> unembedded, idx = dwave.embedding.majority_vote(samples, chains)
>>> unembedded
array([[1, 0],
[1, 1]], dtype=int8)
>>> idx
array([0, 1])
"""
samples = np.asarray(samples)
if samples.ndim != 2:
raise ValueError("expected samples to be a numpy 2D array")
num_samples, num_variables = samples.shape
num_chains = len(chains)
unembedded = np.empty((num_samples, num_chains), dtype='int8', order='F')
# determine if spin or binary. If samples are all 1, then either method works, so we use spin
# because it is faster
if samples.all(): # spin-valued
for cidx, chain in enumerate(chains):
# we just need the sign for spin. We don't use np.sign because in that can return 0
# and fixing the 0s is slow.
unembedded[:, cidx] = 2*(samples[:, chain].sum(axis=1) >= 0) - 1
else: # binary-valued
for cidx, chain in enumerate(chains):
mid = len(chain) / 2
unembedded[:, cidx] = (samples[:, chain].sum(axis=1) >= mid)
return unembedded, np.arange(num_samples) | python | def majority_vote(samples, chains):
"""Use the most common element in broken chains.
Args:
samples (array_like):
Samples as a nS x nV array_like object where nS is the number of samples and nV is the
number of variables. The values should all be 0/1 or -1/+1.
chains (list[array_like]):
List of chains of length nC where nC is the number of chains.
Each chain should be an array_like collection of column indices in samples.
Returns:
tuple: A 2-tuple containing:
:obj:`numpy.ndarray`: A nS x nC array of unembedded samples. The array has dtype 'int8'.
Where there is a chain break, the value is chosen to match the most common value in the
chain. For broken chains without a majority, the value is chosen arbitrarily.
:obj:`numpy.ndarray`: Equivalent to :code:`np.arange(nS)` because all samples are kept
and no samples are added.
Examples:
This example unembeds samples from a target graph that chains nodes 0 and 1 to
represent one source node and nodes 2, 3, and 4 to represent another.
Both samples have one broken chain, with different majority values.
>>> import dimod
>>> import numpy as np
...
>>> chains = [(0, 1), (2, 3, 4)]
>>> samples = np.array([[1, 1, 0, 0, 1], [1, 1, 1, 0, 1]], dtype=np.int8)
>>> unembedded, idx = dwave.embedding.majority_vote(samples, chains)
>>> unembedded
array([[1, 0],
[1, 1]], dtype=int8)
>>> idx
array([0, 1])
"""
samples = np.asarray(samples)
if samples.ndim != 2:
raise ValueError("expected samples to be a numpy 2D array")
num_samples, num_variables = samples.shape
num_chains = len(chains)
unembedded = np.empty((num_samples, num_chains), dtype='int8', order='F')
# determine if spin or binary. If samples are all 1, then either method works, so we use spin
# because it is faster
if samples.all(): # spin-valued
for cidx, chain in enumerate(chains):
# we just need the sign for spin. We don't use np.sign because in that can return 0
# and fixing the 0s is slow.
unembedded[:, cidx] = 2*(samples[:, chain].sum(axis=1) >= 0) - 1
else: # binary-valued
for cidx, chain in enumerate(chains):
mid = len(chain) / 2
unembedded[:, cidx] = (samples[:, chain].sum(axis=1) >= mid)
return unembedded, np.arange(num_samples) | [
"def",
"majority_vote",
"(",
"samples",
",",
"chains",
")",
":",
"samples",
"=",
"np",
".",
"asarray",
"(",
"samples",
")",
"if",
"samples",
".",
"ndim",
"!=",
"2",
":",
"raise",
"ValueError",
"(",
"\"expected samples to be a numpy 2D array\"",
")",
"num_samples",
",",
"num_variables",
"=",
"samples",
".",
"shape",
"num_chains",
"=",
"len",
"(",
"chains",
")",
"unembedded",
"=",
"np",
".",
"empty",
"(",
"(",
"num_samples",
",",
"num_chains",
")",
",",
"dtype",
"=",
"'int8'",
",",
"order",
"=",
"'F'",
")",
"# determine if spin or binary. If samples are all 1, then either method works, so we use spin",
"# because it is faster",
"if",
"samples",
".",
"all",
"(",
")",
":",
"# spin-valued",
"for",
"cidx",
",",
"chain",
"in",
"enumerate",
"(",
"chains",
")",
":",
"# we just need the sign for spin. We don't use np.sign because in that can return 0",
"# and fixing the 0s is slow.",
"unembedded",
"[",
":",
",",
"cidx",
"]",
"=",
"2",
"*",
"(",
"samples",
"[",
":",
",",
"chain",
"]",
".",
"sum",
"(",
"axis",
"=",
"1",
")",
">=",
"0",
")",
"-",
"1",
"else",
":",
"# binary-valued",
"for",
"cidx",
",",
"chain",
"in",
"enumerate",
"(",
"chains",
")",
":",
"mid",
"=",
"len",
"(",
"chain",
")",
"/",
"2",
"unembedded",
"[",
":",
",",
"cidx",
"]",
"=",
"(",
"samples",
"[",
":",
",",
"chain",
"]",
".",
"sum",
"(",
"axis",
"=",
"1",
")",
">=",
"mid",
")",
"return",
"unembedded",
",",
"np",
".",
"arange",
"(",
"num_samples",
")"
]
| Use the most common element in broken chains.
Args:
samples (array_like):
Samples as a nS x nV array_like object where nS is the number of samples and nV is the
number of variables. The values should all be 0/1 or -1/+1.
chains (list[array_like]):
List of chains of length nC where nC is the number of chains.
Each chain should be an array_like collection of column indices in samples.
Returns:
tuple: A 2-tuple containing:
:obj:`numpy.ndarray`: A nS x nC array of unembedded samples. The array has dtype 'int8'.
Where there is a chain break, the value is chosen to match the most common value in the
chain. For broken chains without a majority, the value is chosen arbitrarily.
:obj:`numpy.ndarray`: Equivalent to :code:`np.arange(nS)` because all samples are kept
and no samples are added.
Examples:
This example unembeds samples from a target graph that chains nodes 0 and 1 to
represent one source node and nodes 2, 3, and 4 to represent another.
Both samples have one broken chain, with different majority values.
>>> import dimod
>>> import numpy as np
...
>>> chains = [(0, 1), (2, 3, 4)]
>>> samples = np.array([[1, 1, 0, 0, 1], [1, 1, 1, 0, 1]], dtype=np.int8)
>>> unembedded, idx = dwave.embedding.majority_vote(samples, chains)
>>> unembedded
array([[1, 0],
[1, 1]], dtype=int8)
>>> idx
array([0, 1]) | [
"Use",
"the",
"most",
"common",
"element",
"in",
"broken",
"chains",
"."
]
| 86a1698f15ccd8b0ece0ed868ee49292d3f67f5b | https://github.com/dwavesystems/dwave-system/blob/86a1698f15ccd8b0ece0ed868ee49292d3f67f5b/dwave/embedding/chain_breaks.py#L145-L206 | train |
dwavesystems/dwave-system | dwave/embedding/chain_breaks.py | weighted_random | def weighted_random(samples, chains):
"""Determine the sample values of chains by weighed random choice.
Args:
samples (array_like):
Samples as a nS x nV array_like object where nS is the number of samples and nV is the
number of variables. The values should all be 0/1 or -1/+1.
chains (list[array_like]):
List of chains of length nC where nC is the number of chains.
Each chain should be an array_like collection of column indices in samples.
Returns:
tuple: A 2-tuple containing:
:obj:`numpy.ndarray`: A nS x nC array of unembedded samples. The array has dtype 'int8'.
Where there is a chain break, the value is chosen randomly, weighted by frequency of the
chain's value.
:obj:`numpy.ndarray`: Equivalent to :code:`np.arange(nS)` because all samples are kept
and no samples are added.
Examples:
This example unembeds samples from a target graph that chains nodes 0 and 1 to
represent one source node and nodes 2, 3, and 4 to represent another.
The sample has broken chains for both source nodes.
>>> import dimod
>>> import numpy as np
...
>>> chains = [(0, 1), (2, 3, 4)]
>>> samples = np.array([[1, 0, 1, 0, 1]], dtype=np.int8)
>>> unembedded, idx = dwave.embedding.weighted_random(samples, chains) # doctest: +SKIP
>>> unembedded # doctest: +SKIP
array([[1, 1]], dtype=int8)
>>> idx # doctest: +SKIP
array([0, 1])
"""
samples = np.asarray(samples)
if samples.ndim != 2:
raise ValueError("expected samples to be a numpy 2D array")
# it sufficies to choose a random index from each chain and use that to construct the matrix
idx = [np.random.choice(chain) for chain in chains]
num_samples, num_variables = samples.shape
return samples[:, idx], np.arange(num_samples) | python | def weighted_random(samples, chains):
"""Determine the sample values of chains by weighed random choice.
Args:
samples (array_like):
Samples as a nS x nV array_like object where nS is the number of samples and nV is the
number of variables. The values should all be 0/1 or -1/+1.
chains (list[array_like]):
List of chains of length nC where nC is the number of chains.
Each chain should be an array_like collection of column indices in samples.
Returns:
tuple: A 2-tuple containing:
:obj:`numpy.ndarray`: A nS x nC array of unembedded samples. The array has dtype 'int8'.
Where there is a chain break, the value is chosen randomly, weighted by frequency of the
chain's value.
:obj:`numpy.ndarray`: Equivalent to :code:`np.arange(nS)` because all samples are kept
and no samples are added.
Examples:
This example unembeds samples from a target graph that chains nodes 0 and 1 to
represent one source node and nodes 2, 3, and 4 to represent another.
The sample has broken chains for both source nodes.
>>> import dimod
>>> import numpy as np
...
>>> chains = [(0, 1), (2, 3, 4)]
>>> samples = np.array([[1, 0, 1, 0, 1]], dtype=np.int8)
>>> unembedded, idx = dwave.embedding.weighted_random(samples, chains) # doctest: +SKIP
>>> unembedded # doctest: +SKIP
array([[1, 1]], dtype=int8)
>>> idx # doctest: +SKIP
array([0, 1])
"""
samples = np.asarray(samples)
if samples.ndim != 2:
raise ValueError("expected samples to be a numpy 2D array")
# it sufficies to choose a random index from each chain and use that to construct the matrix
idx = [np.random.choice(chain) for chain in chains]
num_samples, num_variables = samples.shape
return samples[:, idx], np.arange(num_samples) | [
"def",
"weighted_random",
"(",
"samples",
",",
"chains",
")",
":",
"samples",
"=",
"np",
".",
"asarray",
"(",
"samples",
")",
"if",
"samples",
".",
"ndim",
"!=",
"2",
":",
"raise",
"ValueError",
"(",
"\"expected samples to be a numpy 2D array\"",
")",
"# it sufficies to choose a random index from each chain and use that to construct the matrix",
"idx",
"=",
"[",
"np",
".",
"random",
".",
"choice",
"(",
"chain",
")",
"for",
"chain",
"in",
"chains",
"]",
"num_samples",
",",
"num_variables",
"=",
"samples",
".",
"shape",
"return",
"samples",
"[",
":",
",",
"idx",
"]",
",",
"np",
".",
"arange",
"(",
"num_samples",
")"
]
| Determine the sample values of chains by weighed random choice.
Args:
samples (array_like):
Samples as a nS x nV array_like object where nS is the number of samples and nV is the
number of variables. The values should all be 0/1 or -1/+1.
chains (list[array_like]):
List of chains of length nC where nC is the number of chains.
Each chain should be an array_like collection of column indices in samples.
Returns:
tuple: A 2-tuple containing:
:obj:`numpy.ndarray`: A nS x nC array of unembedded samples. The array has dtype 'int8'.
Where there is a chain break, the value is chosen randomly, weighted by frequency of the
chain's value.
:obj:`numpy.ndarray`: Equivalent to :code:`np.arange(nS)` because all samples are kept
and no samples are added.
Examples:
This example unembeds samples from a target graph that chains nodes 0 and 1 to
represent one source node and nodes 2, 3, and 4 to represent another.
The sample has broken chains for both source nodes.
>>> import dimod
>>> import numpy as np
...
>>> chains = [(0, 1), (2, 3, 4)]
>>> samples = np.array([[1, 0, 1, 0, 1]], dtype=np.int8)
>>> unembedded, idx = dwave.embedding.weighted_random(samples, chains) # doctest: +SKIP
>>> unembedded # doctest: +SKIP
array([[1, 1]], dtype=int8)
>>> idx # doctest: +SKIP
array([0, 1]) | [
"Determine",
"the",
"sample",
"values",
"of",
"chains",
"by",
"weighed",
"random",
"choice",
"."
]
| 86a1698f15ccd8b0ece0ed868ee49292d3f67f5b | https://github.com/dwavesystems/dwave-system/blob/86a1698f15ccd8b0ece0ed868ee49292d3f67f5b/dwave/embedding/chain_breaks.py#L209-L256 | train |
dwavesystems/dwave-system | dwave/system/samplers/dwave_sampler.py | DWaveSampler.validate_anneal_schedule | def validate_anneal_schedule(self, anneal_schedule):
"""Raise an exception if the specified schedule is invalid for the sampler.
Args:
anneal_schedule (list):
An anneal schedule variation is defined by a series of pairs of floating-point
numbers identifying points in the schedule at which to change slope. The first
element in the pair is time t in microseconds; the second, normalized persistent
current s in the range [0,1]. The resulting schedule is the piecewise-linear curve
that connects the provided points.
Raises:
ValueError: If the schedule violates any of the conditions listed below.
RuntimeError: If the sampler does not accept the `anneal_schedule` parameter or
if it does not have `annealing_time_range` or `max_anneal_schedule_points`
properties.
An anneal schedule must satisfy the following conditions:
* Time t must increase for all points in the schedule.
* For forward annealing, the first point must be (0,0) and the anneal fraction s must
increase monotonically.
* For reverse annealing, the anneal fraction s must start and end at s=1.
* In the final point, anneal fraction s must equal 1 and time t must not exceed the
maximum value in the `annealing_time_range` property.
* The number of points must be >=2.
* The upper bound is system-dependent; check the `max_anneal_schedule_points` property.
For reverse annealing, the maximum number of points allowed is one more than the
number given by this property.
Examples:
This example sets a quench schedule on a D-Wave system selected by the user's default
:std:doc:`D-Wave Cloud Client configuration file <cloud-client:intro>`.
>>> from dwave.system.samplers import DWaveSampler
>>> sampler = DWaveSampler()
>>> quench_schedule=[[0.0, 0.0], [12.0, 0.6], [12.8, 1.0]]
>>> DWaveSampler().validate_anneal_schedule(quench_schedule) # doctest: +SKIP
>>>
"""
if 'anneal_schedule' not in self.parameters:
raise RuntimeError("anneal_schedule is not an accepted parameter for this sampler")
properties = self.properties
try:
min_anneal_time, max_anneal_time = properties['annealing_time_range']
max_anneal_schedule_points = properties['max_anneal_schedule_points']
except KeyError:
raise RuntimeError("annealing_time_range and max_anneal_schedule_points are not properties of this solver")
# The number of points must be >= 2.
# The upper bound is system-dependent; check the max_anneal_schedule_points property
if not isinstance(anneal_schedule, list):
raise TypeError("anneal_schedule should be a list")
elif len(anneal_schedule) < 2 or len(anneal_schedule) > max_anneal_schedule_points:
msg = ("anneal_schedule must contain between 2 and {} points (contains {})"
).format(max_anneal_schedule_points, len(anneal_schedule))
raise ValueError(msg)
try:
t_list, s_list = zip(*anneal_schedule)
except ValueError:
raise ValueError("anneal_schedule should be a list of 2-tuples")
# Time t must increase for all points in the schedule.
if not all(tail_t < lead_t for tail_t, lead_t in zip(t_list, t_list[1:])):
raise ValueError("Time t must increase for all points in the schedule")
# max t cannot exceed max_anneal_time
if t_list[-1] > max_anneal_time:
raise ValueError("schedule cannot be longer than the maximum anneal time of {}".format(max_anneal_time))
start_s, end_s = s_list[0], s_list[-1]
if end_s != 1:
raise ValueError("In the final point, anneal fraction s must equal 1.")
if start_s == 1:
# reverse annealing
pass
elif start_s == 0:
# forward annealing, s must monotonically increase.
if not all(tail_s <= lead_s for tail_s, lead_s in zip(s_list, s_list[1:])):
raise ValueError("For forward anneals, anneal fraction s must monotonically increase")
else:
msg = ("In the first point, anneal fraction s must equal 0 for forward annealing or "
"1 for reverse annealing")
raise ValueError(msg)
# finally check the slope abs(slope) < 1/min_anneal_time
max_slope = 1.0 / min_anneal_time
for (t0, s0), (t1, s1) in zip(anneal_schedule, anneal_schedule[1:]):
if abs((s0 - s1) / (t0 - t1)) > max_slope:
raise ValueError("the maximum slope cannot exceed {}".format(max_slope)) | python | def validate_anneal_schedule(self, anneal_schedule):
"""Raise an exception if the specified schedule is invalid for the sampler.
Args:
anneal_schedule (list):
An anneal schedule variation is defined by a series of pairs of floating-point
numbers identifying points in the schedule at which to change slope. The first
element in the pair is time t in microseconds; the second, normalized persistent
current s in the range [0,1]. The resulting schedule is the piecewise-linear curve
that connects the provided points.
Raises:
ValueError: If the schedule violates any of the conditions listed below.
RuntimeError: If the sampler does not accept the `anneal_schedule` parameter or
if it does not have `annealing_time_range` or `max_anneal_schedule_points`
properties.
An anneal schedule must satisfy the following conditions:
* Time t must increase for all points in the schedule.
* For forward annealing, the first point must be (0,0) and the anneal fraction s must
increase monotonically.
* For reverse annealing, the anneal fraction s must start and end at s=1.
* In the final point, anneal fraction s must equal 1 and time t must not exceed the
maximum value in the `annealing_time_range` property.
* The number of points must be >=2.
* The upper bound is system-dependent; check the `max_anneal_schedule_points` property.
For reverse annealing, the maximum number of points allowed is one more than the
number given by this property.
Examples:
This example sets a quench schedule on a D-Wave system selected by the user's default
:std:doc:`D-Wave Cloud Client configuration file <cloud-client:intro>`.
>>> from dwave.system.samplers import DWaveSampler
>>> sampler = DWaveSampler()
>>> quench_schedule=[[0.0, 0.0], [12.0, 0.6], [12.8, 1.0]]
>>> DWaveSampler().validate_anneal_schedule(quench_schedule) # doctest: +SKIP
>>>
"""
if 'anneal_schedule' not in self.parameters:
raise RuntimeError("anneal_schedule is not an accepted parameter for this sampler")
properties = self.properties
try:
min_anneal_time, max_anneal_time = properties['annealing_time_range']
max_anneal_schedule_points = properties['max_anneal_schedule_points']
except KeyError:
raise RuntimeError("annealing_time_range and max_anneal_schedule_points are not properties of this solver")
# The number of points must be >= 2.
# The upper bound is system-dependent; check the max_anneal_schedule_points property
if not isinstance(anneal_schedule, list):
raise TypeError("anneal_schedule should be a list")
elif len(anneal_schedule) < 2 or len(anneal_schedule) > max_anneal_schedule_points:
msg = ("anneal_schedule must contain between 2 and {} points (contains {})"
).format(max_anneal_schedule_points, len(anneal_schedule))
raise ValueError(msg)
try:
t_list, s_list = zip(*anneal_schedule)
except ValueError:
raise ValueError("anneal_schedule should be a list of 2-tuples")
# Time t must increase for all points in the schedule.
if not all(tail_t < lead_t for tail_t, lead_t in zip(t_list, t_list[1:])):
raise ValueError("Time t must increase for all points in the schedule")
# max t cannot exceed max_anneal_time
if t_list[-1] > max_anneal_time:
raise ValueError("schedule cannot be longer than the maximum anneal time of {}".format(max_anneal_time))
start_s, end_s = s_list[0], s_list[-1]
if end_s != 1:
raise ValueError("In the final point, anneal fraction s must equal 1.")
if start_s == 1:
# reverse annealing
pass
elif start_s == 0:
# forward annealing, s must monotonically increase.
if not all(tail_s <= lead_s for tail_s, lead_s in zip(s_list, s_list[1:])):
raise ValueError("For forward anneals, anneal fraction s must monotonically increase")
else:
msg = ("In the first point, anneal fraction s must equal 0 for forward annealing or "
"1 for reverse annealing")
raise ValueError(msg)
# finally check the slope abs(slope) < 1/min_anneal_time
max_slope = 1.0 / min_anneal_time
for (t0, s0), (t1, s1) in zip(anneal_schedule, anneal_schedule[1:]):
if abs((s0 - s1) / (t0 - t1)) > max_slope:
raise ValueError("the maximum slope cannot exceed {}".format(max_slope)) | [
"def",
"validate_anneal_schedule",
"(",
"self",
",",
"anneal_schedule",
")",
":",
"if",
"'anneal_schedule'",
"not",
"in",
"self",
".",
"parameters",
":",
"raise",
"RuntimeError",
"(",
"\"anneal_schedule is not an accepted parameter for this sampler\"",
")",
"properties",
"=",
"self",
".",
"properties",
"try",
":",
"min_anneal_time",
",",
"max_anneal_time",
"=",
"properties",
"[",
"'annealing_time_range'",
"]",
"max_anneal_schedule_points",
"=",
"properties",
"[",
"'max_anneal_schedule_points'",
"]",
"except",
"KeyError",
":",
"raise",
"RuntimeError",
"(",
"\"annealing_time_range and max_anneal_schedule_points are not properties of this solver\"",
")",
"# The number of points must be >= 2.",
"# The upper bound is system-dependent; check the max_anneal_schedule_points property",
"if",
"not",
"isinstance",
"(",
"anneal_schedule",
",",
"list",
")",
":",
"raise",
"TypeError",
"(",
"\"anneal_schedule should be a list\"",
")",
"elif",
"len",
"(",
"anneal_schedule",
")",
"<",
"2",
"or",
"len",
"(",
"anneal_schedule",
")",
">",
"max_anneal_schedule_points",
":",
"msg",
"=",
"(",
"\"anneal_schedule must contain between 2 and {} points (contains {})\"",
")",
".",
"format",
"(",
"max_anneal_schedule_points",
",",
"len",
"(",
"anneal_schedule",
")",
")",
"raise",
"ValueError",
"(",
"msg",
")",
"try",
":",
"t_list",
",",
"s_list",
"=",
"zip",
"(",
"*",
"anneal_schedule",
")",
"except",
"ValueError",
":",
"raise",
"ValueError",
"(",
"\"anneal_schedule should be a list of 2-tuples\"",
")",
"# Time t must increase for all points in the schedule.",
"if",
"not",
"all",
"(",
"tail_t",
"<",
"lead_t",
"for",
"tail_t",
",",
"lead_t",
"in",
"zip",
"(",
"t_list",
",",
"t_list",
"[",
"1",
":",
"]",
")",
")",
":",
"raise",
"ValueError",
"(",
"\"Time t must increase for all points in the schedule\"",
")",
"# max t cannot exceed max_anneal_time",
"if",
"t_list",
"[",
"-",
"1",
"]",
">",
"max_anneal_time",
":",
"raise",
"ValueError",
"(",
"\"schedule cannot be longer than the maximum anneal time of {}\"",
".",
"format",
"(",
"max_anneal_time",
")",
")",
"start_s",
",",
"end_s",
"=",
"s_list",
"[",
"0",
"]",
",",
"s_list",
"[",
"-",
"1",
"]",
"if",
"end_s",
"!=",
"1",
":",
"raise",
"ValueError",
"(",
"\"In the final point, anneal fraction s must equal 1.\"",
")",
"if",
"start_s",
"==",
"1",
":",
"# reverse annealing",
"pass",
"elif",
"start_s",
"==",
"0",
":",
"# forward annealing, s must monotonically increase.",
"if",
"not",
"all",
"(",
"tail_s",
"<=",
"lead_s",
"for",
"tail_s",
",",
"lead_s",
"in",
"zip",
"(",
"s_list",
",",
"s_list",
"[",
"1",
":",
"]",
")",
")",
":",
"raise",
"ValueError",
"(",
"\"For forward anneals, anneal fraction s must monotonically increase\"",
")",
"else",
":",
"msg",
"=",
"(",
"\"In the first point, anneal fraction s must equal 0 for forward annealing or \"",
"\"1 for reverse annealing\"",
")",
"raise",
"ValueError",
"(",
"msg",
")",
"# finally check the slope abs(slope) < 1/min_anneal_time",
"max_slope",
"=",
"1.0",
"/",
"min_anneal_time",
"for",
"(",
"t0",
",",
"s0",
")",
",",
"(",
"t1",
",",
"s1",
")",
"in",
"zip",
"(",
"anneal_schedule",
",",
"anneal_schedule",
"[",
"1",
":",
"]",
")",
":",
"if",
"abs",
"(",
"(",
"s0",
"-",
"s1",
")",
"/",
"(",
"t0",
"-",
"t1",
")",
")",
">",
"max_slope",
":",
"raise",
"ValueError",
"(",
"\"the maximum slope cannot exceed {}\"",
".",
"format",
"(",
"max_slope",
")",
")"
]
| Raise an exception if the specified schedule is invalid for the sampler.
Args:
anneal_schedule (list):
An anneal schedule variation is defined by a series of pairs of floating-point
numbers identifying points in the schedule at which to change slope. The first
element in the pair is time t in microseconds; the second, normalized persistent
current s in the range [0,1]. The resulting schedule is the piecewise-linear curve
that connects the provided points.
Raises:
ValueError: If the schedule violates any of the conditions listed below.
RuntimeError: If the sampler does not accept the `anneal_schedule` parameter or
if it does not have `annealing_time_range` or `max_anneal_schedule_points`
properties.
An anneal schedule must satisfy the following conditions:
* Time t must increase for all points in the schedule.
* For forward annealing, the first point must be (0,0) and the anneal fraction s must
increase monotonically.
* For reverse annealing, the anneal fraction s must start and end at s=1.
* In the final point, anneal fraction s must equal 1 and time t must not exceed the
maximum value in the `annealing_time_range` property.
* The number of points must be >=2.
* The upper bound is system-dependent; check the `max_anneal_schedule_points` property.
For reverse annealing, the maximum number of points allowed is one more than the
number given by this property.
Examples:
This example sets a quench schedule on a D-Wave system selected by the user's default
:std:doc:`D-Wave Cloud Client configuration file <cloud-client:intro>`.
>>> from dwave.system.samplers import DWaveSampler
>>> sampler = DWaveSampler()
>>> quench_schedule=[[0.0, 0.0], [12.0, 0.6], [12.8, 1.0]]
>>> DWaveSampler().validate_anneal_schedule(quench_schedule) # doctest: +SKIP
>>> | [
"Raise",
"an",
"exception",
"if",
"the",
"specified",
"schedule",
"is",
"invalid",
"for",
"the",
"sampler",
"."
]
| 86a1698f15ccd8b0ece0ed868ee49292d3f67f5b | https://github.com/dwavesystems/dwave-system/blob/86a1698f15ccd8b0ece0ed868ee49292d3f67f5b/dwave/system/samplers/dwave_sampler.py#L318-L412 | train |
dwavesystems/dwave-system | dwave/embedding/utils.py | target_to_source | def target_to_source(target_adjacency, embedding):
"""Derive the source adjacency from an embedding and target adjacency.
Args:
target_adjacency (dict/:class:`networkx.Graph`):
A dict of the form {v: Nv, ...} where v is a node in the target graph and Nv is the
neighbors of v as an iterable. This can also be a networkx graph.
embedding (dict):
A mapping from a source graph to a target graph.
Returns:
dict: The adjacency of the source graph.
Raises:
ValueError: If any node in the target_adjacency is assigned more
than one node in the source graph by embedding.
Examples:
>>> target_adjacency = {0: {1, 3}, 1: {0, 2}, 2: {1, 3}, 3: {0, 2}} # a square graph
>>> embedding = {'a': {0}, 'b': {1}, 'c': {2, 3}}
>>> source_adjacency = dimod.embedding.target_to_source(target_adjacency, embedding)
>>> source_adjacency # triangle
{'a': {'b', 'c'}, 'b': {'a', 'c'}, 'c': {'a', 'b'}}
This function also works with networkx graphs.
>>> import networkx as nx
>>> target_graph = nx.complete_graph(5)
>>> embedding = {'a': {0, 1, 2}, 'b': {3, 4}}
>>> dimod.embedding.target_to_source(target_graph, embedding)
"""
# the nodes in the source adjacency are just the keys of the embedding
source_adjacency = {v: set() for v in embedding}
# we need the mapping from each node in the target to its source node
reverse_embedding = {}
for v, chain in iteritems(embedding):
for u in chain:
if u in reverse_embedding:
raise ValueError("target node {} assigned to more than one source node".format(u))
reverse_embedding[u] = v
# v is node in target, n node in source
for v, n in iteritems(reverse_embedding):
neighbors = target_adjacency[v]
# u is node in target
for u in neighbors:
# some nodes might not be assigned to chains
if u not in reverse_embedding:
continue
# m is node in source
m = reverse_embedding[u]
if m == n:
continue
source_adjacency[n].add(m)
source_adjacency[m].add(n)
return source_adjacency | python | def target_to_source(target_adjacency, embedding):
"""Derive the source adjacency from an embedding and target adjacency.
Args:
target_adjacency (dict/:class:`networkx.Graph`):
A dict of the form {v: Nv, ...} where v is a node in the target graph and Nv is the
neighbors of v as an iterable. This can also be a networkx graph.
embedding (dict):
A mapping from a source graph to a target graph.
Returns:
dict: The adjacency of the source graph.
Raises:
ValueError: If any node in the target_adjacency is assigned more
than one node in the source graph by embedding.
Examples:
>>> target_adjacency = {0: {1, 3}, 1: {0, 2}, 2: {1, 3}, 3: {0, 2}} # a square graph
>>> embedding = {'a': {0}, 'b': {1}, 'c': {2, 3}}
>>> source_adjacency = dimod.embedding.target_to_source(target_adjacency, embedding)
>>> source_adjacency # triangle
{'a': {'b', 'c'}, 'b': {'a', 'c'}, 'c': {'a', 'b'}}
This function also works with networkx graphs.
>>> import networkx as nx
>>> target_graph = nx.complete_graph(5)
>>> embedding = {'a': {0, 1, 2}, 'b': {3, 4}}
>>> dimod.embedding.target_to_source(target_graph, embedding)
"""
# the nodes in the source adjacency are just the keys of the embedding
source_adjacency = {v: set() for v in embedding}
# we need the mapping from each node in the target to its source node
reverse_embedding = {}
for v, chain in iteritems(embedding):
for u in chain:
if u in reverse_embedding:
raise ValueError("target node {} assigned to more than one source node".format(u))
reverse_embedding[u] = v
# v is node in target, n node in source
for v, n in iteritems(reverse_embedding):
neighbors = target_adjacency[v]
# u is node in target
for u in neighbors:
# some nodes might not be assigned to chains
if u not in reverse_embedding:
continue
# m is node in source
m = reverse_embedding[u]
if m == n:
continue
source_adjacency[n].add(m)
source_adjacency[m].add(n)
return source_adjacency | [
"def",
"target_to_source",
"(",
"target_adjacency",
",",
"embedding",
")",
":",
"# the nodes in the source adjacency are just the keys of the embedding",
"source_adjacency",
"=",
"{",
"v",
":",
"set",
"(",
")",
"for",
"v",
"in",
"embedding",
"}",
"# we need the mapping from each node in the target to its source node",
"reverse_embedding",
"=",
"{",
"}",
"for",
"v",
",",
"chain",
"in",
"iteritems",
"(",
"embedding",
")",
":",
"for",
"u",
"in",
"chain",
":",
"if",
"u",
"in",
"reverse_embedding",
":",
"raise",
"ValueError",
"(",
"\"target node {} assigned to more than one source node\"",
".",
"format",
"(",
"u",
")",
")",
"reverse_embedding",
"[",
"u",
"]",
"=",
"v",
"# v is node in target, n node in source",
"for",
"v",
",",
"n",
"in",
"iteritems",
"(",
"reverse_embedding",
")",
":",
"neighbors",
"=",
"target_adjacency",
"[",
"v",
"]",
"# u is node in target",
"for",
"u",
"in",
"neighbors",
":",
"# some nodes might not be assigned to chains",
"if",
"u",
"not",
"in",
"reverse_embedding",
":",
"continue",
"# m is node in source",
"m",
"=",
"reverse_embedding",
"[",
"u",
"]",
"if",
"m",
"==",
"n",
":",
"continue",
"source_adjacency",
"[",
"n",
"]",
".",
"add",
"(",
"m",
")",
"source_adjacency",
"[",
"m",
"]",
".",
"add",
"(",
"n",
")",
"return",
"source_adjacency"
]
| Derive the source adjacency from an embedding and target adjacency.
Args:
target_adjacency (dict/:class:`networkx.Graph`):
A dict of the form {v: Nv, ...} where v is a node in the target graph and Nv is the
neighbors of v as an iterable. This can also be a networkx graph.
embedding (dict):
A mapping from a source graph to a target graph.
Returns:
dict: The adjacency of the source graph.
Raises:
ValueError: If any node in the target_adjacency is assigned more
than one node in the source graph by embedding.
Examples:
>>> target_adjacency = {0: {1, 3}, 1: {0, 2}, 2: {1, 3}, 3: {0, 2}} # a square graph
>>> embedding = {'a': {0}, 'b': {1}, 'c': {2, 3}}
>>> source_adjacency = dimod.embedding.target_to_source(target_adjacency, embedding)
>>> source_adjacency # triangle
{'a': {'b', 'c'}, 'b': {'a', 'c'}, 'c': {'a', 'b'}}
This function also works with networkx graphs.
>>> import networkx as nx
>>> target_graph = nx.complete_graph(5)
>>> embedding = {'a': {0, 1, 2}, 'b': {3, 4}}
>>> dimod.embedding.target_to_source(target_graph, embedding) | [
"Derive",
"the",
"source",
"adjacency",
"from",
"an",
"embedding",
"and",
"target",
"adjacency",
"."
]
| 86a1698f15ccd8b0ece0ed868ee49292d3f67f5b | https://github.com/dwavesystems/dwave-system/blob/86a1698f15ccd8b0ece0ed868ee49292d3f67f5b/dwave/embedding/utils.py#L30-L95 | train |
dwavesystems/dwave-system | dwave/embedding/utils.py | chain_to_quadratic | def chain_to_quadratic(chain, target_adjacency, chain_strength):
"""Determine the quadratic biases that induce the given chain.
Args:
chain (iterable):
The variables that make up a chain.
target_adjacency (dict/:class:`networkx.Graph`):
Should be a dict of the form {s: Ns, ...} where s is a variable
in the target graph and Ns is the set of neighbours of s.
chain_strength (float):
The magnitude of the quadratic bias that should be used to create chains.
Returns:
dict[edge, float]: The quadratic biases that induce the given chain.
Raises:
ValueError: If the variables in chain do not form a connected subgraph of target.
Examples:
>>> chain = {1, 2}
>>> target_adjacency = {0: {1, 2}, 1: {0, 2}, 2: {0, 1}}
>>> dimod.embedding.chain_to_quadratic(chain, target_adjacency, 1)
{(1, 2): -1}
"""
quadratic = {} # we will be adding the edges that make the chain here
# do a breadth first search
seen = set()
try:
next_level = {next(iter(chain))}
except StopIteration:
raise ValueError("chain must have at least one variable")
while next_level:
this_level = next_level
next_level = set()
for v in this_level:
if v not in seen:
seen.add(v)
for u in target_adjacency[v]:
if u not in chain:
continue
next_level.add(u)
if u != v and (u, v) not in quadratic:
quadratic[(v, u)] = -chain_strength
if len(chain) != len(seen):
raise ValueError('{} is not a connected chain'.format(chain))
return quadratic | python | def chain_to_quadratic(chain, target_adjacency, chain_strength):
"""Determine the quadratic biases that induce the given chain.
Args:
chain (iterable):
The variables that make up a chain.
target_adjacency (dict/:class:`networkx.Graph`):
Should be a dict of the form {s: Ns, ...} where s is a variable
in the target graph and Ns is the set of neighbours of s.
chain_strength (float):
The magnitude of the quadratic bias that should be used to create chains.
Returns:
dict[edge, float]: The quadratic biases that induce the given chain.
Raises:
ValueError: If the variables in chain do not form a connected subgraph of target.
Examples:
>>> chain = {1, 2}
>>> target_adjacency = {0: {1, 2}, 1: {0, 2}, 2: {0, 1}}
>>> dimod.embedding.chain_to_quadratic(chain, target_adjacency, 1)
{(1, 2): -1}
"""
quadratic = {} # we will be adding the edges that make the chain here
# do a breadth first search
seen = set()
try:
next_level = {next(iter(chain))}
except StopIteration:
raise ValueError("chain must have at least one variable")
while next_level:
this_level = next_level
next_level = set()
for v in this_level:
if v not in seen:
seen.add(v)
for u in target_adjacency[v]:
if u not in chain:
continue
next_level.add(u)
if u != v and (u, v) not in quadratic:
quadratic[(v, u)] = -chain_strength
if len(chain) != len(seen):
raise ValueError('{} is not a connected chain'.format(chain))
return quadratic | [
"def",
"chain_to_quadratic",
"(",
"chain",
",",
"target_adjacency",
",",
"chain_strength",
")",
":",
"quadratic",
"=",
"{",
"}",
"# we will be adding the edges that make the chain here",
"# do a breadth first search",
"seen",
"=",
"set",
"(",
")",
"try",
":",
"next_level",
"=",
"{",
"next",
"(",
"iter",
"(",
"chain",
")",
")",
"}",
"except",
"StopIteration",
":",
"raise",
"ValueError",
"(",
"\"chain must have at least one variable\"",
")",
"while",
"next_level",
":",
"this_level",
"=",
"next_level",
"next_level",
"=",
"set",
"(",
")",
"for",
"v",
"in",
"this_level",
":",
"if",
"v",
"not",
"in",
"seen",
":",
"seen",
".",
"add",
"(",
"v",
")",
"for",
"u",
"in",
"target_adjacency",
"[",
"v",
"]",
":",
"if",
"u",
"not",
"in",
"chain",
":",
"continue",
"next_level",
".",
"add",
"(",
"u",
")",
"if",
"u",
"!=",
"v",
"and",
"(",
"u",
",",
"v",
")",
"not",
"in",
"quadratic",
":",
"quadratic",
"[",
"(",
"v",
",",
"u",
")",
"]",
"=",
"-",
"chain_strength",
"if",
"len",
"(",
"chain",
")",
"!=",
"len",
"(",
"seen",
")",
":",
"raise",
"ValueError",
"(",
"'{} is not a connected chain'",
".",
"format",
"(",
"chain",
")",
")",
"return",
"quadratic"
]
| Determine the quadratic biases that induce the given chain.
Args:
chain (iterable):
The variables that make up a chain.
target_adjacency (dict/:class:`networkx.Graph`):
Should be a dict of the form {s: Ns, ...} where s is a variable
in the target graph and Ns is the set of neighbours of s.
chain_strength (float):
The magnitude of the quadratic bias that should be used to create chains.
Returns:
dict[edge, float]: The quadratic biases that induce the given chain.
Raises:
ValueError: If the variables in chain do not form a connected subgraph of target.
Examples:
>>> chain = {1, 2}
>>> target_adjacency = {0: {1, 2}, 1: {0, 2}, 2: {0, 1}}
>>> dimod.embedding.chain_to_quadratic(chain, target_adjacency, 1)
{(1, 2): -1} | [
"Determine",
"the",
"quadratic",
"biases",
"that",
"induce",
"the",
"given",
"chain",
"."
]
| 86a1698f15ccd8b0ece0ed868ee49292d3f67f5b | https://github.com/dwavesystems/dwave-system/blob/86a1698f15ccd8b0ece0ed868ee49292d3f67f5b/dwave/embedding/utils.py#L98-L150 | train |
dwavesystems/dwave-system | dwave/embedding/utils.py | chain_break_frequency | def chain_break_frequency(samples_like, embedding):
"""Determine the frequency of chain breaks in the given samples.
Args:
samples_like (samples_like/:obj:`dimod.SampleSet`):
A collection of raw samples. 'samples_like' is an extension of NumPy's array_like.
See :func:`dimod.as_samples`.
embedding (dict):
Mapping from source graph to target graph as a dict of form {s: {t, ...}, ...},
where s is a source-model variable and t is a target-model variable.
Returns:
dict: Frequency of chain breaks as a dict in the form {s: f, ...}, where s
is a variable in the source graph, and frequency, a float, is the fraction
of broken chains.
Examples:
This example embeds a single source node, 'a', as a chain of two target nodes (0, 1)
and uses :func:`.chain_break_frequency` to show that out of two synthetic samples,
one ([-1, +1]) represents a broken chain.
>>> import dimod
>>> import numpy as np
>>> samples = np.array([[-1, +1], [+1, +1]])
>>> embedding = {'a': {0, 1}}
>>> print(dimod.chain_break_frequency(samples, embedding)['a'])
0.5
This example embeds a single source node (0) as a chain of two target nodes (a, b)
and uses :func:`.chain_break_frequency` to show that out of two samples in a
dimod response, one ({'a': 1, 'b': 0}) represents a broken chain.
>>> import dimod
...
>>> response = dimod.SampleSet.from_samples([{'a': 1, 'b': 0}, {'a': 0, 'b': 0}],
... {'energy': [1, 0]}, {}, dimod.BINARY)
>>> embedding = {0: {'a', 'b'}}
>>> print(dimod.chain_break_frequency(response, embedding)[0])
0.5
"""
if isinstance(samples_like, dimod.SampleSet):
labels = samples_like.variables
samples = samples_like.record.sample
num_occurrences = samples_like.record.num_occurrences
else:
samples, labels = dimod.as_samples(samples_like)
num_occurrences = np.ones(samples.shape[0])
if not all(v == idx for idx, v in enumerate(labels)):
labels_to_idx = {v: idx for idx, v in enumerate(labels)}
embedding = {v: {labels_to_idx[u] for u in chain} for v, chain in embedding.items()}
if not embedding:
return {}
variables, chains = zip(*embedding.items())
broken = broken_chains(samples, chains)
return {v: float(np.average(broken[:, cidx], weights=num_occurrences))
for cidx, v in enumerate(variables)} | python | def chain_break_frequency(samples_like, embedding):
"""Determine the frequency of chain breaks in the given samples.
Args:
samples_like (samples_like/:obj:`dimod.SampleSet`):
A collection of raw samples. 'samples_like' is an extension of NumPy's array_like.
See :func:`dimod.as_samples`.
embedding (dict):
Mapping from source graph to target graph as a dict of form {s: {t, ...}, ...},
where s is a source-model variable and t is a target-model variable.
Returns:
dict: Frequency of chain breaks as a dict in the form {s: f, ...}, where s
is a variable in the source graph, and frequency, a float, is the fraction
of broken chains.
Examples:
This example embeds a single source node, 'a', as a chain of two target nodes (0, 1)
and uses :func:`.chain_break_frequency` to show that out of two synthetic samples,
one ([-1, +1]) represents a broken chain.
>>> import dimod
>>> import numpy as np
>>> samples = np.array([[-1, +1], [+1, +1]])
>>> embedding = {'a': {0, 1}}
>>> print(dimod.chain_break_frequency(samples, embedding)['a'])
0.5
This example embeds a single source node (0) as a chain of two target nodes (a, b)
and uses :func:`.chain_break_frequency` to show that out of two samples in a
dimod response, one ({'a': 1, 'b': 0}) represents a broken chain.
>>> import dimod
...
>>> response = dimod.SampleSet.from_samples([{'a': 1, 'b': 0}, {'a': 0, 'b': 0}],
... {'energy': [1, 0]}, {}, dimod.BINARY)
>>> embedding = {0: {'a', 'b'}}
>>> print(dimod.chain_break_frequency(response, embedding)[0])
0.5
"""
if isinstance(samples_like, dimod.SampleSet):
labels = samples_like.variables
samples = samples_like.record.sample
num_occurrences = samples_like.record.num_occurrences
else:
samples, labels = dimod.as_samples(samples_like)
num_occurrences = np.ones(samples.shape[0])
if not all(v == idx for idx, v in enumerate(labels)):
labels_to_idx = {v: idx for idx, v in enumerate(labels)}
embedding = {v: {labels_to_idx[u] for u in chain} for v, chain in embedding.items()}
if not embedding:
return {}
variables, chains = zip(*embedding.items())
broken = broken_chains(samples, chains)
return {v: float(np.average(broken[:, cidx], weights=num_occurrences))
for cidx, v in enumerate(variables)} | [
"def",
"chain_break_frequency",
"(",
"samples_like",
",",
"embedding",
")",
":",
"if",
"isinstance",
"(",
"samples_like",
",",
"dimod",
".",
"SampleSet",
")",
":",
"labels",
"=",
"samples_like",
".",
"variables",
"samples",
"=",
"samples_like",
".",
"record",
".",
"sample",
"num_occurrences",
"=",
"samples_like",
".",
"record",
".",
"num_occurrences",
"else",
":",
"samples",
",",
"labels",
"=",
"dimod",
".",
"as_samples",
"(",
"samples_like",
")",
"num_occurrences",
"=",
"np",
".",
"ones",
"(",
"samples",
".",
"shape",
"[",
"0",
"]",
")",
"if",
"not",
"all",
"(",
"v",
"==",
"idx",
"for",
"idx",
",",
"v",
"in",
"enumerate",
"(",
"labels",
")",
")",
":",
"labels_to_idx",
"=",
"{",
"v",
":",
"idx",
"for",
"idx",
",",
"v",
"in",
"enumerate",
"(",
"labels",
")",
"}",
"embedding",
"=",
"{",
"v",
":",
"{",
"labels_to_idx",
"[",
"u",
"]",
"for",
"u",
"in",
"chain",
"}",
"for",
"v",
",",
"chain",
"in",
"embedding",
".",
"items",
"(",
")",
"}",
"if",
"not",
"embedding",
":",
"return",
"{",
"}",
"variables",
",",
"chains",
"=",
"zip",
"(",
"*",
"embedding",
".",
"items",
"(",
")",
")",
"broken",
"=",
"broken_chains",
"(",
"samples",
",",
"chains",
")",
"return",
"{",
"v",
":",
"float",
"(",
"np",
".",
"average",
"(",
"broken",
"[",
":",
",",
"cidx",
"]",
",",
"weights",
"=",
"num_occurrences",
")",
")",
"for",
"cidx",
",",
"v",
"in",
"enumerate",
"(",
"variables",
")",
"}"
]
| Determine the frequency of chain breaks in the given samples.
Args:
samples_like (samples_like/:obj:`dimod.SampleSet`):
A collection of raw samples. 'samples_like' is an extension of NumPy's array_like.
See :func:`dimod.as_samples`.
embedding (dict):
Mapping from source graph to target graph as a dict of form {s: {t, ...}, ...},
where s is a source-model variable and t is a target-model variable.
Returns:
dict: Frequency of chain breaks as a dict in the form {s: f, ...}, where s
is a variable in the source graph, and frequency, a float, is the fraction
of broken chains.
Examples:
This example embeds a single source node, 'a', as a chain of two target nodes (0, 1)
and uses :func:`.chain_break_frequency` to show that out of two synthetic samples,
one ([-1, +1]) represents a broken chain.
>>> import dimod
>>> import numpy as np
>>> samples = np.array([[-1, +1], [+1, +1]])
>>> embedding = {'a': {0, 1}}
>>> print(dimod.chain_break_frequency(samples, embedding)['a'])
0.5
This example embeds a single source node (0) as a chain of two target nodes (a, b)
and uses :func:`.chain_break_frequency` to show that out of two samples in a
dimod response, one ({'a': 1, 'b': 0}) represents a broken chain.
>>> import dimod
...
>>> response = dimod.SampleSet.from_samples([{'a': 1, 'b': 0}, {'a': 0, 'b': 0}],
... {'energy': [1, 0]}, {}, dimod.BINARY)
>>> embedding = {0: {'a', 'b'}}
>>> print(dimod.chain_break_frequency(response, embedding)[0])
0.5 | [
"Determine",
"the",
"frequency",
"of",
"chain",
"breaks",
"in",
"the",
"given",
"samples",
"."
]
| 86a1698f15ccd8b0ece0ed868ee49292d3f67f5b | https://github.com/dwavesystems/dwave-system/blob/86a1698f15ccd8b0ece0ed868ee49292d3f67f5b/dwave/embedding/utils.py#L153-L216 | train |
dwavesystems/dwave-system | dwave/embedding/utils.py | edgelist_to_adjacency | def edgelist_to_adjacency(edgelist):
"""Converts an iterator of edges to an adjacency dict.
Args:
edgelist (iterable):
An iterator over 2-tuples where each 2-tuple is an edge.
Returns:
dict: The adjacency dict. A dict of the form {v: Nv, ...} where v is a node in a graph and
Nv is the neighbors of v as an set.
"""
adjacency = dict()
for u, v in edgelist:
if u in adjacency:
adjacency[u].add(v)
else:
adjacency[u] = {v}
if v in adjacency:
adjacency[v].add(u)
else:
adjacency[v] = {u}
return adjacency | python | def edgelist_to_adjacency(edgelist):
"""Converts an iterator of edges to an adjacency dict.
Args:
edgelist (iterable):
An iterator over 2-tuples where each 2-tuple is an edge.
Returns:
dict: The adjacency dict. A dict of the form {v: Nv, ...} where v is a node in a graph and
Nv is the neighbors of v as an set.
"""
adjacency = dict()
for u, v in edgelist:
if u in adjacency:
adjacency[u].add(v)
else:
adjacency[u] = {v}
if v in adjacency:
adjacency[v].add(u)
else:
adjacency[v] = {u}
return adjacency | [
"def",
"edgelist_to_adjacency",
"(",
"edgelist",
")",
":",
"adjacency",
"=",
"dict",
"(",
")",
"for",
"u",
",",
"v",
"in",
"edgelist",
":",
"if",
"u",
"in",
"adjacency",
":",
"adjacency",
"[",
"u",
"]",
".",
"add",
"(",
"v",
")",
"else",
":",
"adjacency",
"[",
"u",
"]",
"=",
"{",
"v",
"}",
"if",
"v",
"in",
"adjacency",
":",
"adjacency",
"[",
"v",
"]",
".",
"add",
"(",
"u",
")",
"else",
":",
"adjacency",
"[",
"v",
"]",
"=",
"{",
"u",
"}",
"return",
"adjacency"
]
| Converts an iterator of edges to an adjacency dict.
Args:
edgelist (iterable):
An iterator over 2-tuples where each 2-tuple is an edge.
Returns:
dict: The adjacency dict. A dict of the form {v: Nv, ...} where v is a node in a graph and
Nv is the neighbors of v as an set. | [
"Converts",
"an",
"iterator",
"of",
"edges",
"to",
"an",
"adjacency",
"dict",
"."
]
| 86a1698f15ccd8b0ece0ed868ee49292d3f67f5b | https://github.com/dwavesystems/dwave-system/blob/86a1698f15ccd8b0ece0ed868ee49292d3f67f5b/dwave/embedding/utils.py#L219-L241 | train |
dwavesystems/dwave-system | dwave/system/composites/tiling.py | TilingComposite.sample | def sample(self, bqm, **kwargs):
"""Sample from the specified binary quadratic model.
Args:
bqm (:obj:`dimod.BinaryQuadraticModel`):
Binary quadratic model to be sampled from.
**kwargs:
Optional keyword arguments for the sampling method, specified per solver.
Returns:
:class:`dimod.SampleSet`
Examples:
This example submits a simple Ising problem of just two variables on a
D-Wave system selected by the user's default
:std:doc:`D-Wave Cloud Client configuration file <cloud-client:intro>`.
Because the problem fits in a single :term:`Chimera` unit cell, it is tiled
across the solver's entire Chimera graph, resulting in multiple samples
(the exact number depends on the working Chimera graph of the D-Wave system).
>>> from dwave.system.samplers import DWaveSampler
>>> from dwave.system.composites import EmbeddingComposite
>>> from dwave.system.composites import EmbeddingComposite, TilingComposite
...
>>> sampler = EmbeddingComposite(TilingComposite(DWaveSampler(), 1, 1, 4))
>>> response = sampler.sample_ising({},{('a', 'b'): 1})
>>> len(response) # doctest: +SKIP
246
See `Ocean Glossary <https://docs.ocean.dwavesys.com/en/latest/glossary.html>`_
for explanations of technical terms in descriptions of Ocean tools.
"""
# apply the embeddings to the given problem to tile it across the child sampler
embedded_bqm = dimod.BinaryQuadraticModel.empty(bqm.vartype)
__, __, target_adjacency = self.child.structure
for embedding in self.embeddings:
embedded_bqm.update(dwave.embedding.embed_bqm(bqm, embedding, target_adjacency))
# solve the problem on the child system
tiled_response = self.child.sample(embedded_bqm, **kwargs)
responses = []
for embedding in self.embeddings:
embedding = {v: chain for v, chain in embedding.items() if v in bqm.variables}
responses.append(dwave.embedding.unembed_sampleset(tiled_response, embedding, bqm))
return dimod.concatenate(responses) | python | def sample(self, bqm, **kwargs):
"""Sample from the specified binary quadratic model.
Args:
bqm (:obj:`dimod.BinaryQuadraticModel`):
Binary quadratic model to be sampled from.
**kwargs:
Optional keyword arguments for the sampling method, specified per solver.
Returns:
:class:`dimod.SampleSet`
Examples:
This example submits a simple Ising problem of just two variables on a
D-Wave system selected by the user's default
:std:doc:`D-Wave Cloud Client configuration file <cloud-client:intro>`.
Because the problem fits in a single :term:`Chimera` unit cell, it is tiled
across the solver's entire Chimera graph, resulting in multiple samples
(the exact number depends on the working Chimera graph of the D-Wave system).
>>> from dwave.system.samplers import DWaveSampler
>>> from dwave.system.composites import EmbeddingComposite
>>> from dwave.system.composites import EmbeddingComposite, TilingComposite
...
>>> sampler = EmbeddingComposite(TilingComposite(DWaveSampler(), 1, 1, 4))
>>> response = sampler.sample_ising({},{('a', 'b'): 1})
>>> len(response) # doctest: +SKIP
246
See `Ocean Glossary <https://docs.ocean.dwavesys.com/en/latest/glossary.html>`_
for explanations of technical terms in descriptions of Ocean tools.
"""
# apply the embeddings to the given problem to tile it across the child sampler
embedded_bqm = dimod.BinaryQuadraticModel.empty(bqm.vartype)
__, __, target_adjacency = self.child.structure
for embedding in self.embeddings:
embedded_bqm.update(dwave.embedding.embed_bqm(bqm, embedding, target_adjacency))
# solve the problem on the child system
tiled_response = self.child.sample(embedded_bqm, **kwargs)
responses = []
for embedding in self.embeddings:
embedding = {v: chain for v, chain in embedding.items() if v in bqm.variables}
responses.append(dwave.embedding.unembed_sampleset(tiled_response, embedding, bqm))
return dimod.concatenate(responses) | [
"def",
"sample",
"(",
"self",
",",
"bqm",
",",
"*",
"*",
"kwargs",
")",
":",
"# apply the embeddings to the given problem to tile it across the child sampler",
"embedded_bqm",
"=",
"dimod",
".",
"BinaryQuadraticModel",
".",
"empty",
"(",
"bqm",
".",
"vartype",
")",
"__",
",",
"__",
",",
"target_adjacency",
"=",
"self",
".",
"child",
".",
"structure",
"for",
"embedding",
"in",
"self",
".",
"embeddings",
":",
"embedded_bqm",
".",
"update",
"(",
"dwave",
".",
"embedding",
".",
"embed_bqm",
"(",
"bqm",
",",
"embedding",
",",
"target_adjacency",
")",
")",
"# solve the problem on the child system",
"tiled_response",
"=",
"self",
".",
"child",
".",
"sample",
"(",
"embedded_bqm",
",",
"*",
"*",
"kwargs",
")",
"responses",
"=",
"[",
"]",
"for",
"embedding",
"in",
"self",
".",
"embeddings",
":",
"embedding",
"=",
"{",
"v",
":",
"chain",
"for",
"v",
",",
"chain",
"in",
"embedding",
".",
"items",
"(",
")",
"if",
"v",
"in",
"bqm",
".",
"variables",
"}",
"responses",
".",
"append",
"(",
"dwave",
".",
"embedding",
".",
"unembed_sampleset",
"(",
"tiled_response",
",",
"embedding",
",",
"bqm",
")",
")",
"return",
"dimod",
".",
"concatenate",
"(",
"responses",
")"
]
| Sample from the specified binary quadratic model.
Args:
bqm (:obj:`dimod.BinaryQuadraticModel`):
Binary quadratic model to be sampled from.
**kwargs:
Optional keyword arguments for the sampling method, specified per solver.
Returns:
:class:`dimod.SampleSet`
Examples:
This example submits a simple Ising problem of just two variables on a
D-Wave system selected by the user's default
:std:doc:`D-Wave Cloud Client configuration file <cloud-client:intro>`.
Because the problem fits in a single :term:`Chimera` unit cell, it is tiled
across the solver's entire Chimera graph, resulting in multiple samples
(the exact number depends on the working Chimera graph of the D-Wave system).
>>> from dwave.system.samplers import DWaveSampler
>>> from dwave.system.composites import EmbeddingComposite
>>> from dwave.system.composites import EmbeddingComposite, TilingComposite
...
>>> sampler = EmbeddingComposite(TilingComposite(DWaveSampler(), 1, 1, 4))
>>> response = sampler.sample_ising({},{('a', 'b'): 1})
>>> len(response) # doctest: +SKIP
246
See `Ocean Glossary <https://docs.ocean.dwavesys.com/en/latest/glossary.html>`_
for explanations of technical terms in descriptions of Ocean tools. | [
"Sample",
"from",
"the",
"specified",
"binary",
"quadratic",
"model",
"."
]
| 86a1698f15ccd8b0ece0ed868ee49292d3f67f5b | https://github.com/dwavesystems/dwave-system/blob/86a1698f15ccd8b0ece0ed868ee49292d3f67f5b/dwave/system/composites/tiling.py#L199-L250 | train |
dwavesystems/dwave-system | dwave/system/cache/database_manager.py | cache_connect | def cache_connect(database=None):
"""Returns a connection object to a sqlite database.
Args:
database (str, optional): The path to the database the user wishes
to connect to. If not specified, a default is chosen using
:func:`.cache_file`. If the special database name ':memory:'
is given, then a temporary database is created in memory.
Returns:
:class:`sqlite3.Connection`
"""
if database is None:
database = cache_file()
if os.path.isfile(database):
# just connect to the database as-is
conn = sqlite3.connect(database)
else:
# we need to populate the database
conn = sqlite3.connect(database)
conn.executescript(schema)
with conn as cur:
# turn on foreign keys, allows deletes to cascade.
cur.execute("PRAGMA foreign_keys = ON;")
conn.row_factory = sqlite3.Row
return conn | python | def cache_connect(database=None):
"""Returns a connection object to a sqlite database.
Args:
database (str, optional): The path to the database the user wishes
to connect to. If not specified, a default is chosen using
:func:`.cache_file`. If the special database name ':memory:'
is given, then a temporary database is created in memory.
Returns:
:class:`sqlite3.Connection`
"""
if database is None:
database = cache_file()
if os.path.isfile(database):
# just connect to the database as-is
conn = sqlite3.connect(database)
else:
# we need to populate the database
conn = sqlite3.connect(database)
conn.executescript(schema)
with conn as cur:
# turn on foreign keys, allows deletes to cascade.
cur.execute("PRAGMA foreign_keys = ON;")
conn.row_factory = sqlite3.Row
return conn | [
"def",
"cache_connect",
"(",
"database",
"=",
"None",
")",
":",
"if",
"database",
"is",
"None",
":",
"database",
"=",
"cache_file",
"(",
")",
"if",
"os",
".",
"path",
".",
"isfile",
"(",
"database",
")",
":",
"# just connect to the database as-is",
"conn",
"=",
"sqlite3",
".",
"connect",
"(",
"database",
")",
"else",
":",
"# we need to populate the database",
"conn",
"=",
"sqlite3",
".",
"connect",
"(",
"database",
")",
"conn",
".",
"executescript",
"(",
"schema",
")",
"with",
"conn",
"as",
"cur",
":",
"# turn on foreign keys, allows deletes to cascade.",
"cur",
".",
"execute",
"(",
"\"PRAGMA foreign_keys = ON;\"",
")",
"conn",
".",
"row_factory",
"=",
"sqlite3",
".",
"Row",
"return",
"conn"
]
| Returns a connection object to a sqlite database.
Args:
database (str, optional): The path to the database the user wishes
to connect to. If not specified, a default is chosen using
:func:`.cache_file`. If the special database name ':memory:'
is given, then a temporary database is created in memory.
Returns:
:class:`sqlite3.Connection` | [
"Returns",
"a",
"connection",
"object",
"to",
"a",
"sqlite",
"database",
"."
]
| 86a1698f15ccd8b0ece0ed868ee49292d3f67f5b | https://github.com/dwavesystems/dwave-system/blob/86a1698f15ccd8b0ece0ed868ee49292d3f67f5b/dwave/system/cache/database_manager.py#L37-L67 | train |
dwavesystems/dwave-system | dwave/system/cache/database_manager.py | insert_chain | def insert_chain(cur, chain, encoded_data=None):
"""Insert a chain into the cache.
Args:
cur (:class:`sqlite3.Cursor`):
An sqlite3 cursor. This function is meant to be run within a :obj:`with` statement.
chain (iterable):
A collection of nodes. Chains in embedding act as one node.
encoded_data (dict, optional):
If a dictionary is provided, it will be populated with the serialized data. This is
useful for preventing encoding the same information many times.
Notes:
This function assumes that the nodes in chain are index-labeled.
"""
if encoded_data is None:
encoded_data = {}
if 'nodes' not in encoded_data:
encoded_data['nodes'] = json.dumps(sorted(chain), separators=(',', ':'))
if 'chain_length' not in encoded_data:
encoded_data['chain_length'] = len(chain)
insert = "INSERT OR IGNORE INTO chain(chain_length, nodes) VALUES (:chain_length, :nodes);"
cur.execute(insert, encoded_data) | python | def insert_chain(cur, chain, encoded_data=None):
"""Insert a chain into the cache.
Args:
cur (:class:`sqlite3.Cursor`):
An sqlite3 cursor. This function is meant to be run within a :obj:`with` statement.
chain (iterable):
A collection of nodes. Chains in embedding act as one node.
encoded_data (dict, optional):
If a dictionary is provided, it will be populated with the serialized data. This is
useful for preventing encoding the same information many times.
Notes:
This function assumes that the nodes in chain are index-labeled.
"""
if encoded_data is None:
encoded_data = {}
if 'nodes' not in encoded_data:
encoded_data['nodes'] = json.dumps(sorted(chain), separators=(',', ':'))
if 'chain_length' not in encoded_data:
encoded_data['chain_length'] = len(chain)
insert = "INSERT OR IGNORE INTO chain(chain_length, nodes) VALUES (:chain_length, :nodes);"
cur.execute(insert, encoded_data) | [
"def",
"insert_chain",
"(",
"cur",
",",
"chain",
",",
"encoded_data",
"=",
"None",
")",
":",
"if",
"encoded_data",
"is",
"None",
":",
"encoded_data",
"=",
"{",
"}",
"if",
"'nodes'",
"not",
"in",
"encoded_data",
":",
"encoded_data",
"[",
"'nodes'",
"]",
"=",
"json",
".",
"dumps",
"(",
"sorted",
"(",
"chain",
")",
",",
"separators",
"=",
"(",
"','",
",",
"':'",
")",
")",
"if",
"'chain_length'",
"not",
"in",
"encoded_data",
":",
"encoded_data",
"[",
"'chain_length'",
"]",
"=",
"len",
"(",
"chain",
")",
"insert",
"=",
"\"INSERT OR IGNORE INTO chain(chain_length, nodes) VALUES (:chain_length, :nodes);\"",
"cur",
".",
"execute",
"(",
"insert",
",",
"encoded_data",
")"
]
| Insert a chain into the cache.
Args:
cur (:class:`sqlite3.Cursor`):
An sqlite3 cursor. This function is meant to be run within a :obj:`with` statement.
chain (iterable):
A collection of nodes. Chains in embedding act as one node.
encoded_data (dict, optional):
If a dictionary is provided, it will be populated with the serialized data. This is
useful for preventing encoding the same information many times.
Notes:
This function assumes that the nodes in chain are index-labeled. | [
"Insert",
"a",
"chain",
"into",
"the",
"cache",
"."
]
| 86a1698f15ccd8b0ece0ed868ee49292d3f67f5b | https://github.com/dwavesystems/dwave-system/blob/86a1698f15ccd8b0ece0ed868ee49292d3f67f5b/dwave/system/cache/database_manager.py#L70-L98 | train |
dwavesystems/dwave-system | dwave/system/cache/database_manager.py | iter_chain | def iter_chain(cur):
"""Iterate over all of the chains in the database.
Args:
cur (:class:`sqlite3.Cursor`):
An sqlite3 cursor. This function is meant to be run within a :obj:`with` statement.
Yields:
list: The chain.
"""
select = "SELECT nodes FROM chain"
for nodes, in cur.execute(select):
yield json.loads(nodes) | python | def iter_chain(cur):
"""Iterate over all of the chains in the database.
Args:
cur (:class:`sqlite3.Cursor`):
An sqlite3 cursor. This function is meant to be run within a :obj:`with` statement.
Yields:
list: The chain.
"""
select = "SELECT nodes FROM chain"
for nodes, in cur.execute(select):
yield json.loads(nodes) | [
"def",
"iter_chain",
"(",
"cur",
")",
":",
"select",
"=",
"\"SELECT nodes FROM chain\"",
"for",
"nodes",
",",
"in",
"cur",
".",
"execute",
"(",
"select",
")",
":",
"yield",
"json",
".",
"loads",
"(",
"nodes",
")"
]
| Iterate over all of the chains in the database.
Args:
cur (:class:`sqlite3.Cursor`):
An sqlite3 cursor. This function is meant to be run within a :obj:`with` statement.
Yields:
list: The chain. | [
"Iterate",
"over",
"all",
"of",
"the",
"chains",
"in",
"the",
"database",
"."
]
| 86a1698f15ccd8b0ece0ed868ee49292d3f67f5b | https://github.com/dwavesystems/dwave-system/blob/86a1698f15ccd8b0ece0ed868ee49292d3f67f5b/dwave/system/cache/database_manager.py#L101-L114 | train |
dwavesystems/dwave-system | dwave/system/cache/database_manager.py | insert_system | def insert_system(cur, system_name, encoded_data=None):
"""Insert a system name into the cache.
Args:
cur (:class:`sqlite3.Cursor`):
An sqlite3 cursor. This function is meant to be run within a :obj:`with` statement.
system_name (str):
The unique name of a system
encoded_data (dict, optional):
If a dictionary is provided, it will be populated with the serialized data. This is
useful for preventing encoding the same information many times.
"""
if encoded_data is None:
encoded_data = {}
if 'system_name' not in encoded_data:
encoded_data['system_name'] = system_name
insert = "INSERT OR IGNORE INTO system(system_name) VALUES (:system_name);"
cur.execute(insert, encoded_data) | python | def insert_system(cur, system_name, encoded_data=None):
"""Insert a system name into the cache.
Args:
cur (:class:`sqlite3.Cursor`):
An sqlite3 cursor. This function is meant to be run within a :obj:`with` statement.
system_name (str):
The unique name of a system
encoded_data (dict, optional):
If a dictionary is provided, it will be populated with the serialized data. This is
useful for preventing encoding the same information many times.
"""
if encoded_data is None:
encoded_data = {}
if 'system_name' not in encoded_data:
encoded_data['system_name'] = system_name
insert = "INSERT OR IGNORE INTO system(system_name) VALUES (:system_name);"
cur.execute(insert, encoded_data) | [
"def",
"insert_system",
"(",
"cur",
",",
"system_name",
",",
"encoded_data",
"=",
"None",
")",
":",
"if",
"encoded_data",
"is",
"None",
":",
"encoded_data",
"=",
"{",
"}",
"if",
"'system_name'",
"not",
"in",
"encoded_data",
":",
"encoded_data",
"[",
"'system_name'",
"]",
"=",
"system_name",
"insert",
"=",
"\"INSERT OR IGNORE INTO system(system_name) VALUES (:system_name);\"",
"cur",
".",
"execute",
"(",
"insert",
",",
"encoded_data",
")"
]
| Insert a system name into the cache.
Args:
cur (:class:`sqlite3.Cursor`):
An sqlite3 cursor. This function is meant to be run within a :obj:`with` statement.
system_name (str):
The unique name of a system
encoded_data (dict, optional):
If a dictionary is provided, it will be populated with the serialized data. This is
useful for preventing encoding the same information many times. | [
"Insert",
"a",
"system",
"name",
"into",
"the",
"cache",
"."
]
| 86a1698f15ccd8b0ece0ed868ee49292d3f67f5b | https://github.com/dwavesystems/dwave-system/blob/86a1698f15ccd8b0ece0ed868ee49292d3f67f5b/dwave/system/cache/database_manager.py#L117-L139 | train |
dwavesystems/dwave-system | dwave/system/cache/database_manager.py | insert_flux_bias | def insert_flux_bias(cur, chain, system, flux_bias, chain_strength, encoded_data=None):
"""Insert a flux bias offset into the cache.
Args:
cur (:class:`sqlite3.Cursor`):
An sqlite3 cursor. This function is meant to be run within a :obj:`with` statement.
chain (iterable):
A collection of nodes. Chains in embedding act as one node.
system (str):
The unique name of a system.
flux_bias (float):
The flux bias offset associated with the given chain.
chain_strength (float):
The magnitude of the negative quadratic bias that induces the given chain in an Ising
problem.
encoded_data (dict, optional):
If a dictionary is provided, it will be populated with the serialized data. This is
useful for preventing encoding the same information many times.
"""
if encoded_data is None:
encoded_data = {}
insert_chain(cur, chain, encoded_data)
insert_system(cur, system, encoded_data)
if 'flux_bias' not in encoded_data:
encoded_data['flux_bias'] = _encode_real(flux_bias)
if 'chain_strength' not in encoded_data:
encoded_data['chain_strength'] = _encode_real(chain_strength)
if 'insert_time' not in encoded_data:
encoded_data['insert_time'] = datetime.datetime.now()
insert = \
"""
INSERT OR REPLACE INTO flux_bias(chain_id, system_id, insert_time, flux_bias, chain_strength)
SELECT
chain.id,
system.id,
:insert_time,
:flux_bias,
:chain_strength
FROM chain, system
WHERE
chain.chain_length = :chain_length AND
chain.nodes = :nodes AND
system.system_name = :system_name;
"""
cur.execute(insert, encoded_data) | python | def insert_flux_bias(cur, chain, system, flux_bias, chain_strength, encoded_data=None):
"""Insert a flux bias offset into the cache.
Args:
cur (:class:`sqlite3.Cursor`):
An sqlite3 cursor. This function is meant to be run within a :obj:`with` statement.
chain (iterable):
A collection of nodes. Chains in embedding act as one node.
system (str):
The unique name of a system.
flux_bias (float):
The flux bias offset associated with the given chain.
chain_strength (float):
The magnitude of the negative quadratic bias that induces the given chain in an Ising
problem.
encoded_data (dict, optional):
If a dictionary is provided, it will be populated with the serialized data. This is
useful for preventing encoding the same information many times.
"""
if encoded_data is None:
encoded_data = {}
insert_chain(cur, chain, encoded_data)
insert_system(cur, system, encoded_data)
if 'flux_bias' not in encoded_data:
encoded_data['flux_bias'] = _encode_real(flux_bias)
if 'chain_strength' not in encoded_data:
encoded_data['chain_strength'] = _encode_real(chain_strength)
if 'insert_time' not in encoded_data:
encoded_data['insert_time'] = datetime.datetime.now()
insert = \
"""
INSERT OR REPLACE INTO flux_bias(chain_id, system_id, insert_time, flux_bias, chain_strength)
SELECT
chain.id,
system.id,
:insert_time,
:flux_bias,
:chain_strength
FROM chain, system
WHERE
chain.chain_length = :chain_length AND
chain.nodes = :nodes AND
system.system_name = :system_name;
"""
cur.execute(insert, encoded_data) | [
"def",
"insert_flux_bias",
"(",
"cur",
",",
"chain",
",",
"system",
",",
"flux_bias",
",",
"chain_strength",
",",
"encoded_data",
"=",
"None",
")",
":",
"if",
"encoded_data",
"is",
"None",
":",
"encoded_data",
"=",
"{",
"}",
"insert_chain",
"(",
"cur",
",",
"chain",
",",
"encoded_data",
")",
"insert_system",
"(",
"cur",
",",
"system",
",",
"encoded_data",
")",
"if",
"'flux_bias'",
"not",
"in",
"encoded_data",
":",
"encoded_data",
"[",
"'flux_bias'",
"]",
"=",
"_encode_real",
"(",
"flux_bias",
")",
"if",
"'chain_strength'",
"not",
"in",
"encoded_data",
":",
"encoded_data",
"[",
"'chain_strength'",
"]",
"=",
"_encode_real",
"(",
"chain_strength",
")",
"if",
"'insert_time'",
"not",
"in",
"encoded_data",
":",
"encoded_data",
"[",
"'insert_time'",
"]",
"=",
"datetime",
".",
"datetime",
".",
"now",
"(",
")",
"insert",
"=",
"\"\"\"\n INSERT OR REPLACE INTO flux_bias(chain_id, system_id, insert_time, flux_bias, chain_strength)\n SELECT\n chain.id,\n system.id,\n :insert_time,\n :flux_bias,\n :chain_strength\n FROM chain, system\n WHERE\n chain.chain_length = :chain_length AND\n chain.nodes = :nodes AND\n system.system_name = :system_name;\n \"\"\"",
"cur",
".",
"execute",
"(",
"insert",
",",
"encoded_data",
")"
]
| Insert a flux bias offset into the cache.
Args:
cur (:class:`sqlite3.Cursor`):
An sqlite3 cursor. This function is meant to be run within a :obj:`with` statement.
chain (iterable):
A collection of nodes. Chains in embedding act as one node.
system (str):
The unique name of a system.
flux_bias (float):
The flux bias offset associated with the given chain.
chain_strength (float):
The magnitude of the negative quadratic bias that induces the given chain in an Ising
problem.
encoded_data (dict, optional):
If a dictionary is provided, it will be populated with the serialized data. This is
useful for preventing encoding the same information many times. | [
"Insert",
"a",
"flux",
"bias",
"offset",
"into",
"the",
"cache",
"."
]
| 86a1698f15ccd8b0ece0ed868ee49292d3f67f5b | https://github.com/dwavesystems/dwave-system/blob/86a1698f15ccd8b0ece0ed868ee49292d3f67f5b/dwave/system/cache/database_manager.py#L158-L212 | train |
dwavesystems/dwave-system | dwave/system/cache/database_manager.py | get_flux_biases_from_cache | def get_flux_biases_from_cache(cur, chains, system_name, chain_strength, max_age=3600):
"""Determine the flux biases for all of the the given chains, system and chain strength.
Args:
cur (:class:`sqlite3.Cursor`):
An sqlite3 cursor. This function is meant to be run within a :obj:`with` statement.
chains (iterable):
An iterable of chains. Each chain is a collection of nodes. Chains in embedding act as
one node.
system_name (str):
The unique name of a system.
chain_strength (float):
The magnitude of the negative quadratic bias that induces the given chain in an Ising
problem.
max_age (int, optional, default=3600):
The maximum age (in seconds) for the flux_bias offsets.
Returns:
dict: A dict where the keys are the nodes in the chains and the values are the flux biases.
"""
select = \
"""
SELECT
flux_bias
FROM flux_bias_view WHERE
chain_length = :chain_length AND
nodes = :nodes AND
chain_strength = :chain_strength AND
system_name = :system_name AND
insert_time >= :time_limit;
"""
encoded_data = {'chain_strength': _encode_real(chain_strength),
'system_name': system_name,
'time_limit': datetime.datetime.now() + datetime.timedelta(seconds=-max_age)}
flux_biases = {}
for chain in chains:
encoded_data['chain_length'] = len(chain)
encoded_data['nodes'] = json.dumps(sorted(chain), separators=(',', ':'))
row = cur.execute(select, encoded_data).fetchone()
if row is None:
raise MissingFluxBias
flux_bias = _decode_real(*row)
if flux_bias == 0:
continue
flux_biases.update({v: flux_bias for v in chain})
return flux_biases | python | def get_flux_biases_from_cache(cur, chains, system_name, chain_strength, max_age=3600):
"""Determine the flux biases for all of the the given chains, system and chain strength.
Args:
cur (:class:`sqlite3.Cursor`):
An sqlite3 cursor. This function is meant to be run within a :obj:`with` statement.
chains (iterable):
An iterable of chains. Each chain is a collection of nodes. Chains in embedding act as
one node.
system_name (str):
The unique name of a system.
chain_strength (float):
The magnitude of the negative quadratic bias that induces the given chain in an Ising
problem.
max_age (int, optional, default=3600):
The maximum age (in seconds) for the flux_bias offsets.
Returns:
dict: A dict where the keys are the nodes in the chains and the values are the flux biases.
"""
select = \
"""
SELECT
flux_bias
FROM flux_bias_view WHERE
chain_length = :chain_length AND
nodes = :nodes AND
chain_strength = :chain_strength AND
system_name = :system_name AND
insert_time >= :time_limit;
"""
encoded_data = {'chain_strength': _encode_real(chain_strength),
'system_name': system_name,
'time_limit': datetime.datetime.now() + datetime.timedelta(seconds=-max_age)}
flux_biases = {}
for chain in chains:
encoded_data['chain_length'] = len(chain)
encoded_data['nodes'] = json.dumps(sorted(chain), separators=(',', ':'))
row = cur.execute(select, encoded_data).fetchone()
if row is None:
raise MissingFluxBias
flux_bias = _decode_real(*row)
if flux_bias == 0:
continue
flux_biases.update({v: flux_bias for v in chain})
return flux_biases | [
"def",
"get_flux_biases_from_cache",
"(",
"cur",
",",
"chains",
",",
"system_name",
",",
"chain_strength",
",",
"max_age",
"=",
"3600",
")",
":",
"select",
"=",
"\"\"\"\n SELECT\n flux_bias\n FROM flux_bias_view WHERE\n chain_length = :chain_length AND\n nodes = :nodes AND\n chain_strength = :chain_strength AND\n system_name = :system_name AND\n insert_time >= :time_limit;\n \"\"\"",
"encoded_data",
"=",
"{",
"'chain_strength'",
":",
"_encode_real",
"(",
"chain_strength",
")",
",",
"'system_name'",
":",
"system_name",
",",
"'time_limit'",
":",
"datetime",
".",
"datetime",
".",
"now",
"(",
")",
"+",
"datetime",
".",
"timedelta",
"(",
"seconds",
"=",
"-",
"max_age",
")",
"}",
"flux_biases",
"=",
"{",
"}",
"for",
"chain",
"in",
"chains",
":",
"encoded_data",
"[",
"'chain_length'",
"]",
"=",
"len",
"(",
"chain",
")",
"encoded_data",
"[",
"'nodes'",
"]",
"=",
"json",
".",
"dumps",
"(",
"sorted",
"(",
"chain",
")",
",",
"separators",
"=",
"(",
"','",
",",
"':'",
")",
")",
"row",
"=",
"cur",
".",
"execute",
"(",
"select",
",",
"encoded_data",
")",
".",
"fetchone",
"(",
")",
"if",
"row",
"is",
"None",
":",
"raise",
"MissingFluxBias",
"flux_bias",
"=",
"_decode_real",
"(",
"*",
"row",
")",
"if",
"flux_bias",
"==",
"0",
":",
"continue",
"flux_biases",
".",
"update",
"(",
"{",
"v",
":",
"flux_bias",
"for",
"v",
"in",
"chain",
"}",
")",
"return",
"flux_biases"
]
| Determine the flux biases for all of the the given chains, system and chain strength.
Args:
cur (:class:`sqlite3.Cursor`):
An sqlite3 cursor. This function is meant to be run within a :obj:`with` statement.
chains (iterable):
An iterable of chains. Each chain is a collection of nodes. Chains in embedding act as
one node.
system_name (str):
The unique name of a system.
chain_strength (float):
The magnitude of the negative quadratic bias that induces the given chain in an Ising
problem.
max_age (int, optional, default=3600):
The maximum age (in seconds) for the flux_bias offsets.
Returns:
dict: A dict where the keys are the nodes in the chains and the values are the flux biases. | [
"Determine",
"the",
"flux",
"biases",
"for",
"all",
"of",
"the",
"the",
"given",
"chains",
"system",
"and",
"chain",
"strength",
"."
]
| 86a1698f15ccd8b0ece0ed868ee49292d3f67f5b | https://github.com/dwavesystems/dwave-system/blob/86a1698f15ccd8b0ece0ed868ee49292d3f67f5b/dwave/system/cache/database_manager.py#L255-L312 | train |
dwavesystems/dwave-system | dwave/system/cache/database_manager.py | insert_graph | def insert_graph(cur, nodelist, edgelist, encoded_data=None):
"""Insert a graph into the cache.
A graph is stored by number of nodes, number of edges and a
json-encoded list of edges.
Args:
cur (:class:`sqlite3.Cursor`): An sqlite3 cursor. This function
is meant to be run within a :obj:`with` statement.
nodelist (list): The nodes in the graph.
edgelist (list): The edges in the graph.
encoded_data (dict, optional): If a dictionary is provided, it
will be populated with the serialized data. This is useful for
preventing encoding the same information many times.
Notes:
This function assumes that the nodes are index-labeled and range
from 0 to num_nodes - 1.
In order to minimize the total size of the cache, it is a good
idea to sort the nodelist and edgelist before inserting.
Examples:
>>> nodelist = [0, 1, 2]
>>> edgelist = [(0, 1), (1, 2)]
>>> with pmc.cache_connect(':memory:') as cur:
... pmc.insert_graph(cur, nodelist, edgelist)
>>> nodelist = [0, 1, 2]
>>> edgelist = [(0, 1), (1, 2)]
>>> encoded_data = {}
>>> with pmc.cache_connect(':memory:') as cur:
... pmc.insert_graph(cur, nodelist, edgelist, encoded_data)
>>> encoded_data['num_nodes']
3
>>> encoded_data['num_edges']
2
>>> encoded_data['edges']
'[[0,1],[1,2]]'
"""
if encoded_data is None:
encoded_data = {}
if 'num_nodes' not in encoded_data:
encoded_data['num_nodes'] = len(nodelist)
if 'num_edges' not in encoded_data:
encoded_data['num_edges'] = len(edgelist)
if 'edges' not in encoded_data:
encoded_data['edges'] = json.dumps(edgelist, separators=(',', ':'))
insert = \
"""
INSERT OR IGNORE INTO graph(num_nodes, num_edges, edges)
VALUES (:num_nodes, :num_edges, :edges);
"""
cur.execute(insert, encoded_data) | python | def insert_graph(cur, nodelist, edgelist, encoded_data=None):
"""Insert a graph into the cache.
A graph is stored by number of nodes, number of edges and a
json-encoded list of edges.
Args:
cur (:class:`sqlite3.Cursor`): An sqlite3 cursor. This function
is meant to be run within a :obj:`with` statement.
nodelist (list): The nodes in the graph.
edgelist (list): The edges in the graph.
encoded_data (dict, optional): If a dictionary is provided, it
will be populated with the serialized data. This is useful for
preventing encoding the same information many times.
Notes:
This function assumes that the nodes are index-labeled and range
from 0 to num_nodes - 1.
In order to minimize the total size of the cache, it is a good
idea to sort the nodelist and edgelist before inserting.
Examples:
>>> nodelist = [0, 1, 2]
>>> edgelist = [(0, 1), (1, 2)]
>>> with pmc.cache_connect(':memory:') as cur:
... pmc.insert_graph(cur, nodelist, edgelist)
>>> nodelist = [0, 1, 2]
>>> edgelist = [(0, 1), (1, 2)]
>>> encoded_data = {}
>>> with pmc.cache_connect(':memory:') as cur:
... pmc.insert_graph(cur, nodelist, edgelist, encoded_data)
>>> encoded_data['num_nodes']
3
>>> encoded_data['num_edges']
2
>>> encoded_data['edges']
'[[0,1],[1,2]]'
"""
if encoded_data is None:
encoded_data = {}
if 'num_nodes' not in encoded_data:
encoded_data['num_nodes'] = len(nodelist)
if 'num_edges' not in encoded_data:
encoded_data['num_edges'] = len(edgelist)
if 'edges' not in encoded_data:
encoded_data['edges'] = json.dumps(edgelist, separators=(',', ':'))
insert = \
"""
INSERT OR IGNORE INTO graph(num_nodes, num_edges, edges)
VALUES (:num_nodes, :num_edges, :edges);
"""
cur.execute(insert, encoded_data) | [
"def",
"insert_graph",
"(",
"cur",
",",
"nodelist",
",",
"edgelist",
",",
"encoded_data",
"=",
"None",
")",
":",
"if",
"encoded_data",
"is",
"None",
":",
"encoded_data",
"=",
"{",
"}",
"if",
"'num_nodes'",
"not",
"in",
"encoded_data",
":",
"encoded_data",
"[",
"'num_nodes'",
"]",
"=",
"len",
"(",
"nodelist",
")",
"if",
"'num_edges'",
"not",
"in",
"encoded_data",
":",
"encoded_data",
"[",
"'num_edges'",
"]",
"=",
"len",
"(",
"edgelist",
")",
"if",
"'edges'",
"not",
"in",
"encoded_data",
":",
"encoded_data",
"[",
"'edges'",
"]",
"=",
"json",
".",
"dumps",
"(",
"edgelist",
",",
"separators",
"=",
"(",
"','",
",",
"':'",
")",
")",
"insert",
"=",
"\"\"\"\n INSERT OR IGNORE INTO graph(num_nodes, num_edges, edges)\n VALUES (:num_nodes, :num_edges, :edges);\n \"\"\"",
"cur",
".",
"execute",
"(",
"insert",
",",
"encoded_data",
")"
]
| Insert a graph into the cache.
A graph is stored by number of nodes, number of edges and a
json-encoded list of edges.
Args:
cur (:class:`sqlite3.Cursor`): An sqlite3 cursor. This function
is meant to be run within a :obj:`with` statement.
nodelist (list): The nodes in the graph.
edgelist (list): The edges in the graph.
encoded_data (dict, optional): If a dictionary is provided, it
will be populated with the serialized data. This is useful for
preventing encoding the same information many times.
Notes:
This function assumes that the nodes are index-labeled and range
from 0 to num_nodes - 1.
In order to minimize the total size of the cache, it is a good
idea to sort the nodelist and edgelist before inserting.
Examples:
>>> nodelist = [0, 1, 2]
>>> edgelist = [(0, 1), (1, 2)]
>>> with pmc.cache_connect(':memory:') as cur:
... pmc.insert_graph(cur, nodelist, edgelist)
>>> nodelist = [0, 1, 2]
>>> edgelist = [(0, 1), (1, 2)]
>>> encoded_data = {}
>>> with pmc.cache_connect(':memory:') as cur:
... pmc.insert_graph(cur, nodelist, edgelist, encoded_data)
>>> encoded_data['num_nodes']
3
>>> encoded_data['num_edges']
2
>>> encoded_data['edges']
'[[0,1],[1,2]]' | [
"Insert",
"a",
"graph",
"into",
"the",
"cache",
"."
]
| 86a1698f15ccd8b0ece0ed868ee49292d3f67f5b | https://github.com/dwavesystems/dwave-system/blob/86a1698f15ccd8b0ece0ed868ee49292d3f67f5b/dwave/system/cache/database_manager.py#L315-L372 | train |
dwavesystems/dwave-system | dwave/system/cache/database_manager.py | select_embedding_from_tag | def select_embedding_from_tag(cur, embedding_tag, target_nodelist, target_edgelist):
"""Select an embedding from the given tag and target graph.
Args:
cur (:class:`sqlite3.Cursor`):
An sqlite3 cursor. This function is meant to be run within a :obj:`with` statement.
source_nodelist (list):
The nodes in the source graph. Should be integer valued.
source_edgelist (list):
The edges in the source graph.
target_nodelist (list):
The nodes in the target graph. Should be integer valued.
target_edgelist (list):
The edges in the target graph.
Returns:
dict: The mapping from the source graph to the target graph.
In the form {v: {s, ...}, ...} where v is a variable in the
source model and s is a variable in the target model.
"""
encoded_data = {'num_nodes': len(target_nodelist),
'num_edges': len(target_edgelist),
'edges': json.dumps(target_edgelist, separators=(',', ':')),
'tag': embedding_tag}
select = \
"""
SELECT
source_node,
chain
FROM
embedding_component_view
WHERE
embedding_tag = :tag AND
target_edges = :edges AND
target_num_nodes = :num_nodes AND
target_num_edges = :num_edges
"""
embedding = {v: json.loads(chain) for v, chain in cur.execute(select, encoded_data)}
return embedding | python | def select_embedding_from_tag(cur, embedding_tag, target_nodelist, target_edgelist):
"""Select an embedding from the given tag and target graph.
Args:
cur (:class:`sqlite3.Cursor`):
An sqlite3 cursor. This function is meant to be run within a :obj:`with` statement.
source_nodelist (list):
The nodes in the source graph. Should be integer valued.
source_edgelist (list):
The edges in the source graph.
target_nodelist (list):
The nodes in the target graph. Should be integer valued.
target_edgelist (list):
The edges in the target graph.
Returns:
dict: The mapping from the source graph to the target graph.
In the form {v: {s, ...}, ...} where v is a variable in the
source model and s is a variable in the target model.
"""
encoded_data = {'num_nodes': len(target_nodelist),
'num_edges': len(target_edgelist),
'edges': json.dumps(target_edgelist, separators=(',', ':')),
'tag': embedding_tag}
select = \
"""
SELECT
source_node,
chain
FROM
embedding_component_view
WHERE
embedding_tag = :tag AND
target_edges = :edges AND
target_num_nodes = :num_nodes AND
target_num_edges = :num_edges
"""
embedding = {v: json.loads(chain) for v, chain in cur.execute(select, encoded_data)}
return embedding | [
"def",
"select_embedding_from_tag",
"(",
"cur",
",",
"embedding_tag",
",",
"target_nodelist",
",",
"target_edgelist",
")",
":",
"encoded_data",
"=",
"{",
"'num_nodes'",
":",
"len",
"(",
"target_nodelist",
")",
",",
"'num_edges'",
":",
"len",
"(",
"target_edgelist",
")",
",",
"'edges'",
":",
"json",
".",
"dumps",
"(",
"target_edgelist",
",",
"separators",
"=",
"(",
"','",
",",
"':'",
")",
")",
",",
"'tag'",
":",
"embedding_tag",
"}",
"select",
"=",
"\"\"\"\n SELECT\n source_node,\n chain\n FROM\n embedding_component_view\n WHERE\n embedding_tag = :tag AND\n target_edges = :edges AND\n target_num_nodes = :num_nodes AND\n target_num_edges = :num_edges\n \"\"\"",
"embedding",
"=",
"{",
"v",
":",
"json",
".",
"loads",
"(",
"chain",
")",
"for",
"v",
",",
"chain",
"in",
"cur",
".",
"execute",
"(",
"select",
",",
"encoded_data",
")",
"}",
"return",
"embedding"
]
| Select an embedding from the given tag and target graph.
Args:
cur (:class:`sqlite3.Cursor`):
An sqlite3 cursor. This function is meant to be run within a :obj:`with` statement.
source_nodelist (list):
The nodes in the source graph. Should be integer valued.
source_edgelist (list):
The edges in the source graph.
target_nodelist (list):
The nodes in the target graph. Should be integer valued.
target_edgelist (list):
The edges in the target graph.
Returns:
dict: The mapping from the source graph to the target graph.
In the form {v: {s, ...}, ...} where v is a variable in the
source model and s is a variable in the target model. | [
"Select",
"an",
"embedding",
"from",
"the",
"given",
"tag",
"and",
"target",
"graph",
"."
]
| 86a1698f15ccd8b0ece0ed868ee49292d3f67f5b | https://github.com/dwavesystems/dwave-system/blob/86a1698f15ccd8b0ece0ed868ee49292d3f67f5b/dwave/system/cache/database_manager.py#L512-L557 | train |
dwavesystems/dwave-system | dwave/system/cache/database_manager.py | select_embedding_from_source | def select_embedding_from_source(cur, source_nodelist, source_edgelist,
target_nodelist, target_edgelist):
"""Select an embedding from the source graph and target graph.
Args:
cur (:class:`sqlite3.Cursor`):
An sqlite3 cursor. This function is meant to be run within a :obj:`with` statement.
target_nodelist (list):
The nodes in the target graph. Should be integer valued.
target_edgelist (list):
The edges in the target graph.
embedding_tag (str):
A string tag to associate with the embedding.
Returns:
dict: The mapping from the source graph to the target graph.
In the form {v: {s, ...}, ...} where v is a variable in the
source model and s is a variable in the target model.
"""
encoded_data = {'target_num_nodes': len(target_nodelist),
'target_num_edges': len(target_edgelist),
'target_edges': json.dumps(target_edgelist, separators=(',', ':')),
'source_num_nodes': len(source_nodelist),
'source_num_edges': len(source_edgelist),
'source_edges': json.dumps(source_edgelist, separators=(',', ':'))}
select = \
"""
SELECT
source_node,
chain
FROM
embedding_component_view
WHERE
source_num_edges = :source_num_edges AND
source_edges = :source_edges AND
source_num_nodes = :source_num_nodes AND
target_num_edges = :target_num_edges AND
target_edges = :target_edges AND
target_num_nodes = :target_num_nodes
"""
embedding = {v: json.loads(chain) for v, chain in cur.execute(select, encoded_data)}
return embedding | python | def select_embedding_from_source(cur, source_nodelist, source_edgelist,
target_nodelist, target_edgelist):
"""Select an embedding from the source graph and target graph.
Args:
cur (:class:`sqlite3.Cursor`):
An sqlite3 cursor. This function is meant to be run within a :obj:`with` statement.
target_nodelist (list):
The nodes in the target graph. Should be integer valued.
target_edgelist (list):
The edges in the target graph.
embedding_tag (str):
A string tag to associate with the embedding.
Returns:
dict: The mapping from the source graph to the target graph.
In the form {v: {s, ...}, ...} where v is a variable in the
source model and s is a variable in the target model.
"""
encoded_data = {'target_num_nodes': len(target_nodelist),
'target_num_edges': len(target_edgelist),
'target_edges': json.dumps(target_edgelist, separators=(',', ':')),
'source_num_nodes': len(source_nodelist),
'source_num_edges': len(source_edgelist),
'source_edges': json.dumps(source_edgelist, separators=(',', ':'))}
select = \
"""
SELECT
source_node,
chain
FROM
embedding_component_view
WHERE
source_num_edges = :source_num_edges AND
source_edges = :source_edges AND
source_num_nodes = :source_num_nodes AND
target_num_edges = :target_num_edges AND
target_edges = :target_edges AND
target_num_nodes = :target_num_nodes
"""
embedding = {v: json.loads(chain) for v, chain in cur.execute(select, encoded_data)}
return embedding | [
"def",
"select_embedding_from_source",
"(",
"cur",
",",
"source_nodelist",
",",
"source_edgelist",
",",
"target_nodelist",
",",
"target_edgelist",
")",
":",
"encoded_data",
"=",
"{",
"'target_num_nodes'",
":",
"len",
"(",
"target_nodelist",
")",
",",
"'target_num_edges'",
":",
"len",
"(",
"target_edgelist",
")",
",",
"'target_edges'",
":",
"json",
".",
"dumps",
"(",
"target_edgelist",
",",
"separators",
"=",
"(",
"','",
",",
"':'",
")",
")",
",",
"'source_num_nodes'",
":",
"len",
"(",
"source_nodelist",
")",
",",
"'source_num_edges'",
":",
"len",
"(",
"source_edgelist",
")",
",",
"'source_edges'",
":",
"json",
".",
"dumps",
"(",
"source_edgelist",
",",
"separators",
"=",
"(",
"','",
",",
"':'",
")",
")",
"}",
"select",
"=",
"\"\"\"\n SELECT\n source_node,\n chain\n FROM\n embedding_component_view\n WHERE\n source_num_edges = :source_num_edges AND\n source_edges = :source_edges AND\n source_num_nodes = :source_num_nodes AND\n\n target_num_edges = :target_num_edges AND\n target_edges = :target_edges AND\n target_num_nodes = :target_num_nodes\n \"\"\"",
"embedding",
"=",
"{",
"v",
":",
"json",
".",
"loads",
"(",
"chain",
")",
"for",
"v",
",",
"chain",
"in",
"cur",
".",
"execute",
"(",
"select",
",",
"encoded_data",
")",
"}",
"return",
"embedding"
]
| Select an embedding from the source graph and target graph.
Args:
cur (:class:`sqlite3.Cursor`):
An sqlite3 cursor. This function is meant to be run within a :obj:`with` statement.
target_nodelist (list):
The nodes in the target graph. Should be integer valued.
target_edgelist (list):
The edges in the target graph.
embedding_tag (str):
A string tag to associate with the embedding.
Returns:
dict: The mapping from the source graph to the target graph.
In the form {v: {s, ...}, ...} where v is a variable in the
source model and s is a variable in the target model. | [
"Select",
"an",
"embedding",
"from",
"the",
"source",
"graph",
"and",
"target",
"graph",
"."
]
| 86a1698f15ccd8b0ece0ed868ee49292d3f67f5b | https://github.com/dwavesystems/dwave-system/blob/86a1698f15ccd8b0ece0ed868ee49292d3f67f5b/dwave/system/cache/database_manager.py#L560-L608 | train |
dwavesystems/dwave-system | dwave/embedding/drawing.py | draw_chimera_bqm | def draw_chimera_bqm(bqm, width=None, height=None):
"""Draws a Chimera Graph representation of a Binary Quadratic Model.
If cell width and height not provided assumes square cell dimensions.
Throws an error if drawing onto a Chimera graph of the given dimensions fails.
Args:
bqm (:obj:`dimod.BinaryQuadraticModel`):
Should be equivalent to a Chimera graph or a subgraph of a Chimera graph produced by dnx.chimera_graph.
The nodes and edges should have integer variables as in the dnx.chimera_graph.
width (int, optional):
An integer representing the number of cells of the Chimera graph will be in width.
height (int, optional):
An integer representing the number of cells of the Chimera graph will be in height.
Examples:
>>> from dwave.embedding.drawing import draw_chimera_bqm
>>> from dimod import BinaryQuadraticModel
>>> Q={(0, 0): 2, (1, 1): 1, (2, 2): 0, (3, 3): -1, (4, 4): -2, (5, 5): -2, (6, 6): -2, (7, 7): -2,
... (0, 4): 2, (0, 4): -1, (1, 7): 1, (1, 5): 0, (2, 5): -2, (2, 6): -2, (3, 4): -2, (3, 7): -2}
>>> draw_chimera_bqm(BinaryQuadraticModel.from_qubo(Q), width=1, height=1)
"""
linear = bqm.linear.keys()
quadratic = bqm.quadratic.keys()
if width is None and height is None:
# Create a graph large enough to fit the input networkx graph.
graph_size = ceil(sqrt((max(linear) + 1) / 8.0))
width = graph_size
height = graph_size
if not width or not height:
raise Exception("Both dimensions must be defined, not just one.")
# A background image of the same size is created to show the complete graph.
G0 = chimera_graph(height, width, 4)
G = chimera_graph(height, width, 4)
# Check if input graph is chimera graph shaped, by making sure that no edges are invalid.
# Invalid edges can also appear if the size of the chimera graph is incompatible with the input graph in cell dimensions.
non_chimera_nodes = []
non_chimera_edges = []
for node in linear:
if not node in G.nodes:
non_chimera_nodes.append(node)
for edge in quadratic:
if not edge in G.edges:
non_chimera_edges.append(edge)
linear_set = set(linear)
g_node_set = set(G.nodes)
quadratic_set = set(map(frozenset, quadratic))
g_edge_set = set(map(frozenset, G.edges))
non_chimera_nodes = linear_set - g_node_set
non_chimera_edges = quadratic_set - g_edge_set
if non_chimera_nodes or non_chimera_edges:
raise Exception("Input graph is not a chimera graph: Nodes: %s Edges: %s" % (non_chimera_nodes, non_chimera_edges))
# Get lists of nodes and edges to remove from the complete graph to turn the complete graph into your graph.
remove_nodes = list(g_node_set - linear_set)
remove_edges = list(g_edge_set - quadratic_set)
# Remove the nodes and edges from the graph.
for edge in remove_edges:
G.remove_edge(*edge)
for node in remove_nodes:
G.remove_node(node)
node_size = 100
# Draw the complete chimera graph as the background.
draw_chimera(G0, node_size=node_size*0.5, node_color='black', edge_color='black')
# Draw your graph over the complete graph to show the connectivity.
draw_chimera(G, node_size=node_size, linear_biases=bqm.linear, quadratic_biases=bqm.quadratic,
width=3)
return | python | def draw_chimera_bqm(bqm, width=None, height=None):
"""Draws a Chimera Graph representation of a Binary Quadratic Model.
If cell width and height not provided assumes square cell dimensions.
Throws an error if drawing onto a Chimera graph of the given dimensions fails.
Args:
bqm (:obj:`dimod.BinaryQuadraticModel`):
Should be equivalent to a Chimera graph or a subgraph of a Chimera graph produced by dnx.chimera_graph.
The nodes and edges should have integer variables as in the dnx.chimera_graph.
width (int, optional):
An integer representing the number of cells of the Chimera graph will be in width.
height (int, optional):
An integer representing the number of cells of the Chimera graph will be in height.
Examples:
>>> from dwave.embedding.drawing import draw_chimera_bqm
>>> from dimod import BinaryQuadraticModel
>>> Q={(0, 0): 2, (1, 1): 1, (2, 2): 0, (3, 3): -1, (4, 4): -2, (5, 5): -2, (6, 6): -2, (7, 7): -2,
... (0, 4): 2, (0, 4): -1, (1, 7): 1, (1, 5): 0, (2, 5): -2, (2, 6): -2, (3, 4): -2, (3, 7): -2}
>>> draw_chimera_bqm(BinaryQuadraticModel.from_qubo(Q), width=1, height=1)
"""
linear = bqm.linear.keys()
quadratic = bqm.quadratic.keys()
if width is None and height is None:
# Create a graph large enough to fit the input networkx graph.
graph_size = ceil(sqrt((max(linear) + 1) / 8.0))
width = graph_size
height = graph_size
if not width or not height:
raise Exception("Both dimensions must be defined, not just one.")
# A background image of the same size is created to show the complete graph.
G0 = chimera_graph(height, width, 4)
G = chimera_graph(height, width, 4)
# Check if input graph is chimera graph shaped, by making sure that no edges are invalid.
# Invalid edges can also appear if the size of the chimera graph is incompatible with the input graph in cell dimensions.
non_chimera_nodes = []
non_chimera_edges = []
for node in linear:
if not node in G.nodes:
non_chimera_nodes.append(node)
for edge in quadratic:
if not edge in G.edges:
non_chimera_edges.append(edge)
linear_set = set(linear)
g_node_set = set(G.nodes)
quadratic_set = set(map(frozenset, quadratic))
g_edge_set = set(map(frozenset, G.edges))
non_chimera_nodes = linear_set - g_node_set
non_chimera_edges = quadratic_set - g_edge_set
if non_chimera_nodes or non_chimera_edges:
raise Exception("Input graph is not a chimera graph: Nodes: %s Edges: %s" % (non_chimera_nodes, non_chimera_edges))
# Get lists of nodes and edges to remove from the complete graph to turn the complete graph into your graph.
remove_nodes = list(g_node_set - linear_set)
remove_edges = list(g_edge_set - quadratic_set)
# Remove the nodes and edges from the graph.
for edge in remove_edges:
G.remove_edge(*edge)
for node in remove_nodes:
G.remove_node(node)
node_size = 100
# Draw the complete chimera graph as the background.
draw_chimera(G0, node_size=node_size*0.5, node_color='black', edge_color='black')
# Draw your graph over the complete graph to show the connectivity.
draw_chimera(G, node_size=node_size, linear_biases=bqm.linear, quadratic_biases=bqm.quadratic,
width=3)
return | [
"def",
"draw_chimera_bqm",
"(",
"bqm",
",",
"width",
"=",
"None",
",",
"height",
"=",
"None",
")",
":",
"linear",
"=",
"bqm",
".",
"linear",
".",
"keys",
"(",
")",
"quadratic",
"=",
"bqm",
".",
"quadratic",
".",
"keys",
"(",
")",
"if",
"width",
"is",
"None",
"and",
"height",
"is",
"None",
":",
"# Create a graph large enough to fit the input networkx graph.",
"graph_size",
"=",
"ceil",
"(",
"sqrt",
"(",
"(",
"max",
"(",
"linear",
")",
"+",
"1",
")",
"/",
"8.0",
")",
")",
"width",
"=",
"graph_size",
"height",
"=",
"graph_size",
"if",
"not",
"width",
"or",
"not",
"height",
":",
"raise",
"Exception",
"(",
"\"Both dimensions must be defined, not just one.\"",
")",
"# A background image of the same size is created to show the complete graph.",
"G0",
"=",
"chimera_graph",
"(",
"height",
",",
"width",
",",
"4",
")",
"G",
"=",
"chimera_graph",
"(",
"height",
",",
"width",
",",
"4",
")",
"# Check if input graph is chimera graph shaped, by making sure that no edges are invalid.",
"# Invalid edges can also appear if the size of the chimera graph is incompatible with the input graph in cell dimensions.",
"non_chimera_nodes",
"=",
"[",
"]",
"non_chimera_edges",
"=",
"[",
"]",
"for",
"node",
"in",
"linear",
":",
"if",
"not",
"node",
"in",
"G",
".",
"nodes",
":",
"non_chimera_nodes",
".",
"append",
"(",
"node",
")",
"for",
"edge",
"in",
"quadratic",
":",
"if",
"not",
"edge",
"in",
"G",
".",
"edges",
":",
"non_chimera_edges",
".",
"append",
"(",
"edge",
")",
"linear_set",
"=",
"set",
"(",
"linear",
")",
"g_node_set",
"=",
"set",
"(",
"G",
".",
"nodes",
")",
"quadratic_set",
"=",
"set",
"(",
"map",
"(",
"frozenset",
",",
"quadratic",
")",
")",
"g_edge_set",
"=",
"set",
"(",
"map",
"(",
"frozenset",
",",
"G",
".",
"edges",
")",
")",
"non_chimera_nodes",
"=",
"linear_set",
"-",
"g_node_set",
"non_chimera_edges",
"=",
"quadratic_set",
"-",
"g_edge_set",
"if",
"non_chimera_nodes",
"or",
"non_chimera_edges",
":",
"raise",
"Exception",
"(",
"\"Input graph is not a chimera graph: Nodes: %s Edges: %s\"",
"%",
"(",
"non_chimera_nodes",
",",
"non_chimera_edges",
")",
")",
"# Get lists of nodes and edges to remove from the complete graph to turn the complete graph into your graph.",
"remove_nodes",
"=",
"list",
"(",
"g_node_set",
"-",
"linear_set",
")",
"remove_edges",
"=",
"list",
"(",
"g_edge_set",
"-",
"quadratic_set",
")",
"# Remove the nodes and edges from the graph.",
"for",
"edge",
"in",
"remove_edges",
":",
"G",
".",
"remove_edge",
"(",
"*",
"edge",
")",
"for",
"node",
"in",
"remove_nodes",
":",
"G",
".",
"remove_node",
"(",
"node",
")",
"node_size",
"=",
"100",
"# Draw the complete chimera graph as the background.",
"draw_chimera",
"(",
"G0",
",",
"node_size",
"=",
"node_size",
"*",
"0.5",
",",
"node_color",
"=",
"'black'",
",",
"edge_color",
"=",
"'black'",
")",
"# Draw your graph over the complete graph to show the connectivity.",
"draw_chimera",
"(",
"G",
",",
"node_size",
"=",
"node_size",
",",
"linear_biases",
"=",
"bqm",
".",
"linear",
",",
"quadratic_biases",
"=",
"bqm",
".",
"quadratic",
",",
"width",
"=",
"3",
")",
"return"
]
| Draws a Chimera Graph representation of a Binary Quadratic Model.
If cell width and height not provided assumes square cell dimensions.
Throws an error if drawing onto a Chimera graph of the given dimensions fails.
Args:
bqm (:obj:`dimod.BinaryQuadraticModel`):
Should be equivalent to a Chimera graph or a subgraph of a Chimera graph produced by dnx.chimera_graph.
The nodes and edges should have integer variables as in the dnx.chimera_graph.
width (int, optional):
An integer representing the number of cells of the Chimera graph will be in width.
height (int, optional):
An integer representing the number of cells of the Chimera graph will be in height.
Examples:
>>> from dwave.embedding.drawing import draw_chimera_bqm
>>> from dimod import BinaryQuadraticModel
>>> Q={(0, 0): 2, (1, 1): 1, (2, 2): 0, (3, 3): -1, (4, 4): -2, (5, 5): -2, (6, 6): -2, (7, 7): -2,
... (0, 4): 2, (0, 4): -1, (1, 7): 1, (1, 5): 0, (2, 5): -2, (2, 6): -2, (3, 4): -2, (3, 7): -2}
>>> draw_chimera_bqm(BinaryQuadraticModel.from_qubo(Q), width=1, height=1) | [
"Draws",
"a",
"Chimera",
"Graph",
"representation",
"of",
"a",
"Binary",
"Quadratic",
"Model",
"."
]
| 86a1698f15ccd8b0ece0ed868ee49292d3f67f5b | https://github.com/dwavesystems/dwave-system/blob/86a1698f15ccd8b0ece0ed868ee49292d3f67f5b/dwave/embedding/drawing.py#L23-L104 | train |
dwavesystems/dwave-system | dwave/embedding/transforms.py | embed_bqm | def embed_bqm(source_bqm, embedding, target_adjacency, chain_strength=1.0,
smear_vartype=None):
"""Embed a binary quadratic model onto a target graph.
Args:
source_bqm (:obj:`.BinaryQuadraticModel`):
Binary quadratic model to embed.
embedding (dict):
Mapping from source graph to target graph as a dict of form {s: {t, ...}, ...},
where s is a source-model variable and t is a target-model variable.
target_adjacency (dict/:class:`networkx.Graph`):
Adjacency of the target graph as a dict of form {t: Nt, ...},
where t is a variable in the target graph and Nt is its set of neighbours.
chain_strength (float, optional):
Magnitude of the quadratic bias (in SPIN-space) applied between variables to create chains. Note
that the energy penalty of chain breaks is 2 * `chain_strength`.
smear_vartype (:class:`.Vartype`, optional, default=None):
When a single variable is embedded, it's linear bias is 'smeared' evenly over the
chain. This parameter determines whether the variable is smeared in SPIN or BINARY
space. By default the embedding is done according to the given source_bqm.
Returns:
:obj:`.BinaryQuadraticModel`: Target binary quadratic model.
Examples:
This example embeds a fully connected :math:`K_3` graph onto a square target graph.
Embedding is accomplished by an edge contraction operation on the target graph:
target-nodes 2 and 3 are chained to represent source-node c.
>>> import dimod
>>> import networkx as nx
>>> # Binary quadratic model for a triangular source graph
>>> bqm = dimod.BinaryQuadraticModel.from_ising({}, {('a', 'b'): 1, ('b', 'c'): 1, ('a', 'c'): 1})
>>> # Target graph is a graph
>>> target = nx.cycle_graph(4)
>>> # Embedding from source to target graphs
>>> embedding = {'a': {0}, 'b': {1}, 'c': {2, 3}}
>>> # Embed the BQM
>>> target_bqm = dimod.embed_bqm(bqm, embedding, target)
>>> target_bqm.quadratic[(0, 1)] == bqm.quadratic[('a', 'b')]
True
>>> target_bqm.quadratic # doctest: +SKIP
{(0, 1): 1.0, (0, 3): 1.0, (1, 2): 1.0, (2, 3): -1.0}
This example embeds a fully connected :math:`K_3` graph onto the target graph
of a dimod reference structured sampler, `StructureComposite`, using the dimod reference
`ExactSolver` sampler with a square graph specified. Target-nodes 2 and 3
are chained to represent source-node c.
>>> import dimod
>>> # Binary quadratic model for a triangular source graph
>>> bqm = dimod.BinaryQuadraticModel.from_ising({}, {('a', 'b'): 1, ('b', 'c'): 1, ('a', 'c'): 1})
>>> # Structured dimod sampler with a structure defined by a square graph
>>> sampler = dimod.StructureComposite(dimod.ExactSolver(), [0, 1, 2, 3], [(0, 1), (1, 2), (2, 3), (0, 3)])
>>> # Embedding from source to target graph
>>> embedding = {'a': {0}, 'b': {1}, 'c': {2, 3}}
>>> # Embed the BQM
>>> target_bqm = dimod.embed_bqm(bqm, embedding, sampler.adjacency)
>>> # Sample
>>> samples = sampler.sample(target_bqm)
>>> samples.record.sample # doctest: +SKIP
array([[-1, -1, -1, -1],
[ 1, -1, -1, -1],
[ 1, 1, -1, -1],
[-1, 1, -1, -1],
[-1, 1, 1, -1],
>>> # Snipped above samples for brevity
"""
if smear_vartype is dimod.SPIN and source_bqm.vartype is dimod.BINARY:
return embed_bqm(source_bqm.spin, embedding, target_adjacency,
chain_strength=chain_strength, smear_vartype=None).binary
elif smear_vartype is dimod.BINARY and source_bqm.vartype is dimod.SPIN:
return embed_bqm(source_bqm.binary, embedding, target_adjacency,
chain_strength=chain_strength, smear_vartype=None).spin
# create a new empty binary quadratic model with the same class as source_bqm
target_bqm = source_bqm.empty(source_bqm.vartype)
# add the offset
target_bqm.add_offset(source_bqm.offset)
# start with the linear biases, spreading the source bias equally over the target variables in
# the chain
for v, bias in iteritems(source_bqm.linear):
if v in embedding:
chain = embedding[v]
else:
raise MissingChainError(v)
if any(u not in target_adjacency for u in chain):
raise InvalidNodeError(v, next(u not in target_adjacency for u in chain))
b = bias / len(chain)
target_bqm.add_variables_from({u: b for u in chain})
# next up the quadratic biases, spread the quadratic biases evenly over the available
# interactions
for (u, v), bias in iteritems(source_bqm.quadratic):
available_interactions = {(s, t) for s in embedding[u] for t in embedding[v] if s in target_adjacency[t]}
if not available_interactions:
raise MissingEdgeError(u, v)
b = bias / len(available_interactions)
target_bqm.add_interactions_from((u, v, b) for u, v in available_interactions)
for chain in itervalues(embedding):
# in the case where the chain has length 1, there are no chain quadratic biases, but we
# none-the-less want the chain variables to appear in the target_bqm
if len(chain) == 1:
v, = chain
target_bqm.add_variable(v, 0.0)
continue
quadratic_chain_biases = chain_to_quadratic(chain, target_adjacency, chain_strength)
target_bqm.add_interactions_from(quadratic_chain_biases, vartype=dimod.SPIN) # these are spin
# add the energy for satisfied chains to the offset
energy_diff = -sum(itervalues(quadratic_chain_biases))
target_bqm.add_offset(energy_diff)
return target_bqm | python | def embed_bqm(source_bqm, embedding, target_adjacency, chain_strength=1.0,
smear_vartype=None):
"""Embed a binary quadratic model onto a target graph.
Args:
source_bqm (:obj:`.BinaryQuadraticModel`):
Binary quadratic model to embed.
embedding (dict):
Mapping from source graph to target graph as a dict of form {s: {t, ...}, ...},
where s is a source-model variable and t is a target-model variable.
target_adjacency (dict/:class:`networkx.Graph`):
Adjacency of the target graph as a dict of form {t: Nt, ...},
where t is a variable in the target graph and Nt is its set of neighbours.
chain_strength (float, optional):
Magnitude of the quadratic bias (in SPIN-space) applied between variables to create chains. Note
that the energy penalty of chain breaks is 2 * `chain_strength`.
smear_vartype (:class:`.Vartype`, optional, default=None):
When a single variable is embedded, it's linear bias is 'smeared' evenly over the
chain. This parameter determines whether the variable is smeared in SPIN or BINARY
space. By default the embedding is done according to the given source_bqm.
Returns:
:obj:`.BinaryQuadraticModel`: Target binary quadratic model.
Examples:
This example embeds a fully connected :math:`K_3` graph onto a square target graph.
Embedding is accomplished by an edge contraction operation on the target graph:
target-nodes 2 and 3 are chained to represent source-node c.
>>> import dimod
>>> import networkx as nx
>>> # Binary quadratic model for a triangular source graph
>>> bqm = dimod.BinaryQuadraticModel.from_ising({}, {('a', 'b'): 1, ('b', 'c'): 1, ('a', 'c'): 1})
>>> # Target graph is a graph
>>> target = nx.cycle_graph(4)
>>> # Embedding from source to target graphs
>>> embedding = {'a': {0}, 'b': {1}, 'c': {2, 3}}
>>> # Embed the BQM
>>> target_bqm = dimod.embed_bqm(bqm, embedding, target)
>>> target_bqm.quadratic[(0, 1)] == bqm.quadratic[('a', 'b')]
True
>>> target_bqm.quadratic # doctest: +SKIP
{(0, 1): 1.0, (0, 3): 1.0, (1, 2): 1.0, (2, 3): -1.0}
This example embeds a fully connected :math:`K_3` graph onto the target graph
of a dimod reference structured sampler, `StructureComposite`, using the dimod reference
`ExactSolver` sampler with a square graph specified. Target-nodes 2 and 3
are chained to represent source-node c.
>>> import dimod
>>> # Binary quadratic model for a triangular source graph
>>> bqm = dimod.BinaryQuadraticModel.from_ising({}, {('a', 'b'): 1, ('b', 'c'): 1, ('a', 'c'): 1})
>>> # Structured dimod sampler with a structure defined by a square graph
>>> sampler = dimod.StructureComposite(dimod.ExactSolver(), [0, 1, 2, 3], [(0, 1), (1, 2), (2, 3), (0, 3)])
>>> # Embedding from source to target graph
>>> embedding = {'a': {0}, 'b': {1}, 'c': {2, 3}}
>>> # Embed the BQM
>>> target_bqm = dimod.embed_bqm(bqm, embedding, sampler.adjacency)
>>> # Sample
>>> samples = sampler.sample(target_bqm)
>>> samples.record.sample # doctest: +SKIP
array([[-1, -1, -1, -1],
[ 1, -1, -1, -1],
[ 1, 1, -1, -1],
[-1, 1, -1, -1],
[-1, 1, 1, -1],
>>> # Snipped above samples for brevity
"""
if smear_vartype is dimod.SPIN and source_bqm.vartype is dimod.BINARY:
return embed_bqm(source_bqm.spin, embedding, target_adjacency,
chain_strength=chain_strength, smear_vartype=None).binary
elif smear_vartype is dimod.BINARY and source_bqm.vartype is dimod.SPIN:
return embed_bqm(source_bqm.binary, embedding, target_adjacency,
chain_strength=chain_strength, smear_vartype=None).spin
# create a new empty binary quadratic model with the same class as source_bqm
target_bqm = source_bqm.empty(source_bqm.vartype)
# add the offset
target_bqm.add_offset(source_bqm.offset)
# start with the linear biases, spreading the source bias equally over the target variables in
# the chain
for v, bias in iteritems(source_bqm.linear):
if v in embedding:
chain = embedding[v]
else:
raise MissingChainError(v)
if any(u not in target_adjacency for u in chain):
raise InvalidNodeError(v, next(u not in target_adjacency for u in chain))
b = bias / len(chain)
target_bqm.add_variables_from({u: b for u in chain})
# next up the quadratic biases, spread the quadratic biases evenly over the available
# interactions
for (u, v), bias in iteritems(source_bqm.quadratic):
available_interactions = {(s, t) for s in embedding[u] for t in embedding[v] if s in target_adjacency[t]}
if not available_interactions:
raise MissingEdgeError(u, v)
b = bias / len(available_interactions)
target_bqm.add_interactions_from((u, v, b) for u, v in available_interactions)
for chain in itervalues(embedding):
# in the case where the chain has length 1, there are no chain quadratic biases, but we
# none-the-less want the chain variables to appear in the target_bqm
if len(chain) == 1:
v, = chain
target_bqm.add_variable(v, 0.0)
continue
quadratic_chain_biases = chain_to_quadratic(chain, target_adjacency, chain_strength)
target_bqm.add_interactions_from(quadratic_chain_biases, vartype=dimod.SPIN) # these are spin
# add the energy for satisfied chains to the offset
energy_diff = -sum(itervalues(quadratic_chain_biases))
target_bqm.add_offset(energy_diff)
return target_bqm | [
"def",
"embed_bqm",
"(",
"source_bqm",
",",
"embedding",
",",
"target_adjacency",
",",
"chain_strength",
"=",
"1.0",
",",
"smear_vartype",
"=",
"None",
")",
":",
"if",
"smear_vartype",
"is",
"dimod",
".",
"SPIN",
"and",
"source_bqm",
".",
"vartype",
"is",
"dimod",
".",
"BINARY",
":",
"return",
"embed_bqm",
"(",
"source_bqm",
".",
"spin",
",",
"embedding",
",",
"target_adjacency",
",",
"chain_strength",
"=",
"chain_strength",
",",
"smear_vartype",
"=",
"None",
")",
".",
"binary",
"elif",
"smear_vartype",
"is",
"dimod",
".",
"BINARY",
"and",
"source_bqm",
".",
"vartype",
"is",
"dimod",
".",
"SPIN",
":",
"return",
"embed_bqm",
"(",
"source_bqm",
".",
"binary",
",",
"embedding",
",",
"target_adjacency",
",",
"chain_strength",
"=",
"chain_strength",
",",
"smear_vartype",
"=",
"None",
")",
".",
"spin",
"# create a new empty binary quadratic model with the same class as source_bqm",
"target_bqm",
"=",
"source_bqm",
".",
"empty",
"(",
"source_bqm",
".",
"vartype",
")",
"# add the offset",
"target_bqm",
".",
"add_offset",
"(",
"source_bqm",
".",
"offset",
")",
"# start with the linear biases, spreading the source bias equally over the target variables in",
"# the chain",
"for",
"v",
",",
"bias",
"in",
"iteritems",
"(",
"source_bqm",
".",
"linear",
")",
":",
"if",
"v",
"in",
"embedding",
":",
"chain",
"=",
"embedding",
"[",
"v",
"]",
"else",
":",
"raise",
"MissingChainError",
"(",
"v",
")",
"if",
"any",
"(",
"u",
"not",
"in",
"target_adjacency",
"for",
"u",
"in",
"chain",
")",
":",
"raise",
"InvalidNodeError",
"(",
"v",
",",
"next",
"(",
"u",
"not",
"in",
"target_adjacency",
"for",
"u",
"in",
"chain",
")",
")",
"b",
"=",
"bias",
"/",
"len",
"(",
"chain",
")",
"target_bqm",
".",
"add_variables_from",
"(",
"{",
"u",
":",
"b",
"for",
"u",
"in",
"chain",
"}",
")",
"# next up the quadratic biases, spread the quadratic biases evenly over the available",
"# interactions",
"for",
"(",
"u",
",",
"v",
")",
",",
"bias",
"in",
"iteritems",
"(",
"source_bqm",
".",
"quadratic",
")",
":",
"available_interactions",
"=",
"{",
"(",
"s",
",",
"t",
")",
"for",
"s",
"in",
"embedding",
"[",
"u",
"]",
"for",
"t",
"in",
"embedding",
"[",
"v",
"]",
"if",
"s",
"in",
"target_adjacency",
"[",
"t",
"]",
"}",
"if",
"not",
"available_interactions",
":",
"raise",
"MissingEdgeError",
"(",
"u",
",",
"v",
")",
"b",
"=",
"bias",
"/",
"len",
"(",
"available_interactions",
")",
"target_bqm",
".",
"add_interactions_from",
"(",
"(",
"u",
",",
"v",
",",
"b",
")",
"for",
"u",
",",
"v",
"in",
"available_interactions",
")",
"for",
"chain",
"in",
"itervalues",
"(",
"embedding",
")",
":",
"# in the case where the chain has length 1, there are no chain quadratic biases, but we",
"# none-the-less want the chain variables to appear in the target_bqm",
"if",
"len",
"(",
"chain",
")",
"==",
"1",
":",
"v",
",",
"=",
"chain",
"target_bqm",
".",
"add_variable",
"(",
"v",
",",
"0.0",
")",
"continue",
"quadratic_chain_biases",
"=",
"chain_to_quadratic",
"(",
"chain",
",",
"target_adjacency",
",",
"chain_strength",
")",
"target_bqm",
".",
"add_interactions_from",
"(",
"quadratic_chain_biases",
",",
"vartype",
"=",
"dimod",
".",
"SPIN",
")",
"# these are spin",
"# add the energy for satisfied chains to the offset",
"energy_diff",
"=",
"-",
"sum",
"(",
"itervalues",
"(",
"quadratic_chain_biases",
")",
")",
"target_bqm",
".",
"add_offset",
"(",
"energy_diff",
")",
"return",
"target_bqm"
]
| Embed a binary quadratic model onto a target graph.
Args:
source_bqm (:obj:`.BinaryQuadraticModel`):
Binary quadratic model to embed.
embedding (dict):
Mapping from source graph to target graph as a dict of form {s: {t, ...}, ...},
where s is a source-model variable and t is a target-model variable.
target_adjacency (dict/:class:`networkx.Graph`):
Adjacency of the target graph as a dict of form {t: Nt, ...},
where t is a variable in the target graph and Nt is its set of neighbours.
chain_strength (float, optional):
Magnitude of the quadratic bias (in SPIN-space) applied between variables to create chains. Note
that the energy penalty of chain breaks is 2 * `chain_strength`.
smear_vartype (:class:`.Vartype`, optional, default=None):
When a single variable is embedded, it's linear bias is 'smeared' evenly over the
chain. This parameter determines whether the variable is smeared in SPIN or BINARY
space. By default the embedding is done according to the given source_bqm.
Returns:
:obj:`.BinaryQuadraticModel`: Target binary quadratic model.
Examples:
This example embeds a fully connected :math:`K_3` graph onto a square target graph.
Embedding is accomplished by an edge contraction operation on the target graph:
target-nodes 2 and 3 are chained to represent source-node c.
>>> import dimod
>>> import networkx as nx
>>> # Binary quadratic model for a triangular source graph
>>> bqm = dimod.BinaryQuadraticModel.from_ising({}, {('a', 'b'): 1, ('b', 'c'): 1, ('a', 'c'): 1})
>>> # Target graph is a graph
>>> target = nx.cycle_graph(4)
>>> # Embedding from source to target graphs
>>> embedding = {'a': {0}, 'b': {1}, 'c': {2, 3}}
>>> # Embed the BQM
>>> target_bqm = dimod.embed_bqm(bqm, embedding, target)
>>> target_bqm.quadratic[(0, 1)] == bqm.quadratic[('a', 'b')]
True
>>> target_bqm.quadratic # doctest: +SKIP
{(0, 1): 1.0, (0, 3): 1.0, (1, 2): 1.0, (2, 3): -1.0}
This example embeds a fully connected :math:`K_3` graph onto the target graph
of a dimod reference structured sampler, `StructureComposite`, using the dimod reference
`ExactSolver` sampler with a square graph specified. Target-nodes 2 and 3
are chained to represent source-node c.
>>> import dimod
>>> # Binary quadratic model for a triangular source graph
>>> bqm = dimod.BinaryQuadraticModel.from_ising({}, {('a', 'b'): 1, ('b', 'c'): 1, ('a', 'c'): 1})
>>> # Structured dimod sampler with a structure defined by a square graph
>>> sampler = dimod.StructureComposite(dimod.ExactSolver(), [0, 1, 2, 3], [(0, 1), (1, 2), (2, 3), (0, 3)])
>>> # Embedding from source to target graph
>>> embedding = {'a': {0}, 'b': {1}, 'c': {2, 3}}
>>> # Embed the BQM
>>> target_bqm = dimod.embed_bqm(bqm, embedding, sampler.adjacency)
>>> # Sample
>>> samples = sampler.sample(target_bqm)
>>> samples.record.sample # doctest: +SKIP
array([[-1, -1, -1, -1],
[ 1, -1, -1, -1],
[ 1, 1, -1, -1],
[-1, 1, -1, -1],
[-1, 1, 1, -1],
>>> # Snipped above samples for brevity | [
"Embed",
"a",
"binary",
"quadratic",
"model",
"onto",
"a",
"target",
"graph",
"."
]
| 86a1698f15ccd8b0ece0ed868ee49292d3f67f5b | https://github.com/dwavesystems/dwave-system/blob/86a1698f15ccd8b0ece0ed868ee49292d3f67f5b/dwave/embedding/transforms.py#L38-L168 | train |
dwavesystems/dwave-system | dwave/embedding/transforms.py | embed_ising | def embed_ising(source_h, source_J, embedding, target_adjacency, chain_strength=1.0):
"""Embed an Ising problem onto a target graph.
Args:
source_h (dict[variable, bias]/list[bias]):
Linear biases of the Ising problem. If a list, the list's indices are used as
variable labels.
source_J (dict[(variable, variable), bias]):
Quadratic biases of the Ising problem.
embedding (dict):
Mapping from source graph to target graph as a dict of form {s: {t, ...}, ...},
where s is a source-model variable and t is a target-model variable.
target_adjacency (dict/:class:`networkx.Graph`):
Adjacency of the target graph as a dict of form {t: Nt, ...},
where t is a target-graph variable and Nt is its set of neighbours.
chain_strength (float, optional):
Magnitude of the quadratic bias (in SPIN-space) applied between variables to form a chain. Note
that the energy penalty of chain breaks is 2 * `chain_strength`.
Returns:
tuple: A 2-tuple:
dict[variable, bias]: Linear biases of the target Ising problem.
dict[(variable, variable), bias]: Quadratic biases of the target Ising problem.
Examples:
This example embeds a fully connected :math:`K_3` graph onto a square target graph.
Embedding is accomplished by an edge contraction operation on the target graph: target-nodes
2 and 3 are chained to represent source-node c.
>>> import dimod
>>> import networkx as nx
>>> # Ising problem for a triangular source graph
>>> h = {}
>>> J = {('a', 'b'): 1, ('b', 'c'): 1, ('a', 'c'): 1}
>>> # Target graph is a square graph
>>> target = nx.cycle_graph(4)
>>> # Embedding from source to target graph
>>> embedding = {'a': {0}, 'b': {1}, 'c': {2, 3}}
>>> # Embed the Ising problem
>>> target_h, target_J = dimod.embed_ising(h, J, embedding, target)
>>> target_J[(0, 1)] == J[('a', 'b')]
True
>>> target_J # doctest: +SKIP
{(0, 1): 1.0, (0, 3): 1.0, (1, 2): 1.0, (2, 3): -1.0}
This example embeds a fully connected :math:`K_3` graph onto the target graph
of a dimod reference structured sampler, `StructureComposite`, using the dimod reference
`ExactSolver` sampler with a square graph specified. Target-nodes 2 and 3 are chained to
represent source-node c.
>>> import dimod
>>> # Ising problem for a triangular source graph
>>> h = {}
>>> J = {('a', 'b'): 1, ('b', 'c'): 1, ('a', 'c'): 1}
>>> # Structured dimod sampler with a structure defined by a square graph
>>> sampler = dimod.StructureComposite(dimod.ExactSolver(), [0, 1, 2, 3], [(0, 1), (1, 2), (2, 3), (0, 3)])
>>> # Embedding from source to target graph
>>> embedding = {'a': {0}, 'b': {1}, 'c': {2, 3}}
>>> # Embed the Ising problem
>>> target_h, target_J = dimod.embed_ising(h, J, embedding, sampler.adjacency)
>>> # Sample
>>> samples = sampler.sample_ising(target_h, target_J)
>>> for sample in samples.samples(n=3, sorted_by='energy'): # doctest: +SKIP
... print(sample)
...
{0: 1, 1: -1, 2: -1, 3: -1}
{0: 1, 1: 1, 2: -1, 3: -1}
{0: -1, 1: 1, 2: -1, 3: -1}
"""
source_bqm = dimod.BinaryQuadraticModel.from_ising(source_h, source_J)
target_bqm = embed_bqm(source_bqm, embedding, target_adjacency, chain_strength=chain_strength)
target_h, target_J, __ = target_bqm.to_ising()
return target_h, target_J | python | def embed_ising(source_h, source_J, embedding, target_adjacency, chain_strength=1.0):
"""Embed an Ising problem onto a target graph.
Args:
source_h (dict[variable, bias]/list[bias]):
Linear biases of the Ising problem. If a list, the list's indices are used as
variable labels.
source_J (dict[(variable, variable), bias]):
Quadratic biases of the Ising problem.
embedding (dict):
Mapping from source graph to target graph as a dict of form {s: {t, ...}, ...},
where s is a source-model variable and t is a target-model variable.
target_adjacency (dict/:class:`networkx.Graph`):
Adjacency of the target graph as a dict of form {t: Nt, ...},
where t is a target-graph variable and Nt is its set of neighbours.
chain_strength (float, optional):
Magnitude of the quadratic bias (in SPIN-space) applied between variables to form a chain. Note
that the energy penalty of chain breaks is 2 * `chain_strength`.
Returns:
tuple: A 2-tuple:
dict[variable, bias]: Linear biases of the target Ising problem.
dict[(variable, variable), bias]: Quadratic biases of the target Ising problem.
Examples:
This example embeds a fully connected :math:`K_3` graph onto a square target graph.
Embedding is accomplished by an edge contraction operation on the target graph: target-nodes
2 and 3 are chained to represent source-node c.
>>> import dimod
>>> import networkx as nx
>>> # Ising problem for a triangular source graph
>>> h = {}
>>> J = {('a', 'b'): 1, ('b', 'c'): 1, ('a', 'c'): 1}
>>> # Target graph is a square graph
>>> target = nx.cycle_graph(4)
>>> # Embedding from source to target graph
>>> embedding = {'a': {0}, 'b': {1}, 'c': {2, 3}}
>>> # Embed the Ising problem
>>> target_h, target_J = dimod.embed_ising(h, J, embedding, target)
>>> target_J[(0, 1)] == J[('a', 'b')]
True
>>> target_J # doctest: +SKIP
{(0, 1): 1.0, (0, 3): 1.0, (1, 2): 1.0, (2, 3): -1.0}
This example embeds a fully connected :math:`K_3` graph onto the target graph
of a dimod reference structured sampler, `StructureComposite`, using the dimod reference
`ExactSolver` sampler with a square graph specified. Target-nodes 2 and 3 are chained to
represent source-node c.
>>> import dimod
>>> # Ising problem for a triangular source graph
>>> h = {}
>>> J = {('a', 'b'): 1, ('b', 'c'): 1, ('a', 'c'): 1}
>>> # Structured dimod sampler with a structure defined by a square graph
>>> sampler = dimod.StructureComposite(dimod.ExactSolver(), [0, 1, 2, 3], [(0, 1), (1, 2), (2, 3), (0, 3)])
>>> # Embedding from source to target graph
>>> embedding = {'a': {0}, 'b': {1}, 'c': {2, 3}}
>>> # Embed the Ising problem
>>> target_h, target_J = dimod.embed_ising(h, J, embedding, sampler.adjacency)
>>> # Sample
>>> samples = sampler.sample_ising(target_h, target_J)
>>> for sample in samples.samples(n=3, sorted_by='energy'): # doctest: +SKIP
... print(sample)
...
{0: 1, 1: -1, 2: -1, 3: -1}
{0: 1, 1: 1, 2: -1, 3: -1}
{0: -1, 1: 1, 2: -1, 3: -1}
"""
source_bqm = dimod.BinaryQuadraticModel.from_ising(source_h, source_J)
target_bqm = embed_bqm(source_bqm, embedding, target_adjacency, chain_strength=chain_strength)
target_h, target_J, __ = target_bqm.to_ising()
return target_h, target_J | [
"def",
"embed_ising",
"(",
"source_h",
",",
"source_J",
",",
"embedding",
",",
"target_adjacency",
",",
"chain_strength",
"=",
"1.0",
")",
":",
"source_bqm",
"=",
"dimod",
".",
"BinaryQuadraticModel",
".",
"from_ising",
"(",
"source_h",
",",
"source_J",
")",
"target_bqm",
"=",
"embed_bqm",
"(",
"source_bqm",
",",
"embedding",
",",
"target_adjacency",
",",
"chain_strength",
"=",
"chain_strength",
")",
"target_h",
",",
"target_J",
",",
"__",
"=",
"target_bqm",
".",
"to_ising",
"(",
")",
"return",
"target_h",
",",
"target_J"
]
| Embed an Ising problem onto a target graph.
Args:
source_h (dict[variable, bias]/list[bias]):
Linear biases of the Ising problem. If a list, the list's indices are used as
variable labels.
source_J (dict[(variable, variable), bias]):
Quadratic biases of the Ising problem.
embedding (dict):
Mapping from source graph to target graph as a dict of form {s: {t, ...}, ...},
where s is a source-model variable and t is a target-model variable.
target_adjacency (dict/:class:`networkx.Graph`):
Adjacency of the target graph as a dict of form {t: Nt, ...},
where t is a target-graph variable and Nt is its set of neighbours.
chain_strength (float, optional):
Magnitude of the quadratic bias (in SPIN-space) applied between variables to form a chain. Note
that the energy penalty of chain breaks is 2 * `chain_strength`.
Returns:
tuple: A 2-tuple:
dict[variable, bias]: Linear biases of the target Ising problem.
dict[(variable, variable), bias]: Quadratic biases of the target Ising problem.
Examples:
This example embeds a fully connected :math:`K_3` graph onto a square target graph.
Embedding is accomplished by an edge contraction operation on the target graph: target-nodes
2 and 3 are chained to represent source-node c.
>>> import dimod
>>> import networkx as nx
>>> # Ising problem for a triangular source graph
>>> h = {}
>>> J = {('a', 'b'): 1, ('b', 'c'): 1, ('a', 'c'): 1}
>>> # Target graph is a square graph
>>> target = nx.cycle_graph(4)
>>> # Embedding from source to target graph
>>> embedding = {'a': {0}, 'b': {1}, 'c': {2, 3}}
>>> # Embed the Ising problem
>>> target_h, target_J = dimod.embed_ising(h, J, embedding, target)
>>> target_J[(0, 1)] == J[('a', 'b')]
True
>>> target_J # doctest: +SKIP
{(0, 1): 1.0, (0, 3): 1.0, (1, 2): 1.0, (2, 3): -1.0}
This example embeds a fully connected :math:`K_3` graph onto the target graph
of a dimod reference structured sampler, `StructureComposite`, using the dimod reference
`ExactSolver` sampler with a square graph specified. Target-nodes 2 and 3 are chained to
represent source-node c.
>>> import dimod
>>> # Ising problem for a triangular source graph
>>> h = {}
>>> J = {('a', 'b'): 1, ('b', 'c'): 1, ('a', 'c'): 1}
>>> # Structured dimod sampler with a structure defined by a square graph
>>> sampler = dimod.StructureComposite(dimod.ExactSolver(), [0, 1, 2, 3], [(0, 1), (1, 2), (2, 3), (0, 3)])
>>> # Embedding from source to target graph
>>> embedding = {'a': {0}, 'b': {1}, 'c': {2, 3}}
>>> # Embed the Ising problem
>>> target_h, target_J = dimod.embed_ising(h, J, embedding, sampler.adjacency)
>>> # Sample
>>> samples = sampler.sample_ising(target_h, target_J)
>>> for sample in samples.samples(n=3, sorted_by='energy'): # doctest: +SKIP
... print(sample)
...
{0: 1, 1: -1, 2: -1, 3: -1}
{0: 1, 1: 1, 2: -1, 3: -1}
{0: -1, 1: 1, 2: -1, 3: -1} | [
"Embed",
"an",
"Ising",
"problem",
"onto",
"a",
"target",
"graph",
"."
]
| 86a1698f15ccd8b0ece0ed868ee49292d3f67f5b | https://github.com/dwavesystems/dwave-system/blob/86a1698f15ccd8b0ece0ed868ee49292d3f67f5b/dwave/embedding/transforms.py#L171-L250 | train |
dwavesystems/dwave-system | dwave/embedding/transforms.py | embed_qubo | def embed_qubo(source_Q, embedding, target_adjacency, chain_strength=1.0):
"""Embed a QUBO onto a target graph.
Args:
source_Q (dict[(variable, variable), bias]):
Coefficients of a quadratic unconstrained binary optimization (QUBO) model.
embedding (dict):
Mapping from source graph to target graph as a dict of form {s: {t, ...}, ...},
where s is a source-model variable and t is a target-model variable.
target_adjacency (dict/:class:`networkx.Graph`):
Adjacency of the target graph as a dict of form {t: Nt, ...},
where t is a target-graph variable and Nt is its set of neighbours.
chain_strength (float, optional):
Magnitude of the quadratic bias (in SPIN-space) applied between variables to form a chain. Note
that the energy penalty of chain breaks is 2 * `chain_strength`.
Returns:
dict[(variable, variable), bias]: Quadratic biases of the target QUBO.
Examples:
This example embeds a square source graph onto fully connected :math:`K_5` graph.
Embedding is accomplished by an edge deletion operation on the target graph: target-node
0 is not used.
>>> import dimod
>>> import networkx as nx
>>> # QUBO problem for a square graph
>>> Q = {(1, 1): -4.0, (1, 2): 4.0, (2, 2): -4.0, (2, 3): 4.0,
... (3, 3): -4.0, (3, 4): 4.0, (4, 1): 4.0, (4, 4): -4.0}
>>> # Target graph is a fully connected k5 graph
>>> K_5 = nx.complete_graph(5)
>>> 0 in K_5
True
>>> # Embedding from source to target graph
>>> embedding = {1: {4}, 2: {3}, 3: {1}, 4: {2}}
>>> # Embed the QUBO
>>> target_Q = dimod.embed_qubo(Q, embedding, K_5)
>>> (0, 0) in target_Q
False
>>> target_Q # doctest: +SKIP
{(1, 1): -4.0,
(1, 2): 4.0,
(2, 2): -4.0,
(2, 4): 4.0,
(3, 1): 4.0,
(3, 3): -4.0,
(4, 3): 4.0,
(4, 4): -4.0}
This example embeds a square graph onto the target graph of a dimod reference structured
sampler, `StructureComposite`, using the dimod reference `ExactSolver` sampler with a
fully connected :math:`K_5` graph specified.
>>> import dimod
>>> import networkx as nx
>>> # QUBO problem for a square graph
>>> Q = {(1, 1): -4.0, (1, 2): 4.0, (2, 2): -4.0, (2, 3): 4.0,
... (3, 3): -4.0, (3, 4): 4.0, (4, 1): 4.0, (4, 4): -4.0}
>>> # Structured dimod sampler with a structure defined by a K5 graph
>>> sampler = dimod.StructureComposite(dimod.ExactSolver(), list(K_5.nodes), list(K_5.edges))
>>> sampler.adjacency # doctest: +SKIP
{0: {1, 2, 3, 4},
1: {0, 2, 3, 4},
2: {0, 1, 3, 4},
3: {0, 1, 2, 4},
4: {0, 1, 2, 3}}
>>> # Embedding from source to target graph
>>> embedding = {0: [4], 1: [3], 2: [1], 3: [2], 4: [0]}
>>> # Embed the QUBO
>>> target_Q = dimod.embed_qubo(Q, embedding, sampler.adjacency)
>>> # Sample
>>> samples = sampler.sample_qubo(target_Q)
>>> for datum in samples.data(): # doctest: +SKIP
... print(datum)
...
Sample(sample={1: 0, 2: 1, 3: 1, 4: 0}, energy=-8.0)
Sample(sample={1: 1, 2: 0, 3: 0, 4: 1}, energy=-8.0)
Sample(sample={1: 1, 2: 0, 3: 0, 4: 0}, energy=-4.0)
Sample(sample={1: 1, 2: 1, 3: 0, 4: 0}, energy=-4.0)
Sample(sample={1: 0, 2: 1, 3: 0, 4: 0}, energy=-4.0)
Sample(sample={1: 1, 2: 1, 3: 1, 4: 0}, energy=-4.0)
>>> # Snipped above samples for brevity
"""
source_bqm = dimod.BinaryQuadraticModel.from_qubo(source_Q)
target_bqm = embed_bqm(source_bqm, embedding, target_adjacency, chain_strength=chain_strength)
target_Q, __ = target_bqm.to_qubo()
return target_Q | python | def embed_qubo(source_Q, embedding, target_adjacency, chain_strength=1.0):
"""Embed a QUBO onto a target graph.
Args:
source_Q (dict[(variable, variable), bias]):
Coefficients of a quadratic unconstrained binary optimization (QUBO) model.
embedding (dict):
Mapping from source graph to target graph as a dict of form {s: {t, ...}, ...},
where s is a source-model variable and t is a target-model variable.
target_adjacency (dict/:class:`networkx.Graph`):
Adjacency of the target graph as a dict of form {t: Nt, ...},
where t is a target-graph variable and Nt is its set of neighbours.
chain_strength (float, optional):
Magnitude of the quadratic bias (in SPIN-space) applied between variables to form a chain. Note
that the energy penalty of chain breaks is 2 * `chain_strength`.
Returns:
dict[(variable, variable), bias]: Quadratic biases of the target QUBO.
Examples:
This example embeds a square source graph onto fully connected :math:`K_5` graph.
Embedding is accomplished by an edge deletion operation on the target graph: target-node
0 is not used.
>>> import dimod
>>> import networkx as nx
>>> # QUBO problem for a square graph
>>> Q = {(1, 1): -4.0, (1, 2): 4.0, (2, 2): -4.0, (2, 3): 4.0,
... (3, 3): -4.0, (3, 4): 4.0, (4, 1): 4.0, (4, 4): -4.0}
>>> # Target graph is a fully connected k5 graph
>>> K_5 = nx.complete_graph(5)
>>> 0 in K_5
True
>>> # Embedding from source to target graph
>>> embedding = {1: {4}, 2: {3}, 3: {1}, 4: {2}}
>>> # Embed the QUBO
>>> target_Q = dimod.embed_qubo(Q, embedding, K_5)
>>> (0, 0) in target_Q
False
>>> target_Q # doctest: +SKIP
{(1, 1): -4.0,
(1, 2): 4.0,
(2, 2): -4.0,
(2, 4): 4.0,
(3, 1): 4.0,
(3, 3): -4.0,
(4, 3): 4.0,
(4, 4): -4.0}
This example embeds a square graph onto the target graph of a dimod reference structured
sampler, `StructureComposite`, using the dimod reference `ExactSolver` sampler with a
fully connected :math:`K_5` graph specified.
>>> import dimod
>>> import networkx as nx
>>> # QUBO problem for a square graph
>>> Q = {(1, 1): -4.0, (1, 2): 4.0, (2, 2): -4.0, (2, 3): 4.0,
... (3, 3): -4.0, (3, 4): 4.0, (4, 1): 4.0, (4, 4): -4.0}
>>> # Structured dimod sampler with a structure defined by a K5 graph
>>> sampler = dimod.StructureComposite(dimod.ExactSolver(), list(K_5.nodes), list(K_5.edges))
>>> sampler.adjacency # doctest: +SKIP
{0: {1, 2, 3, 4},
1: {0, 2, 3, 4},
2: {0, 1, 3, 4},
3: {0, 1, 2, 4},
4: {0, 1, 2, 3}}
>>> # Embedding from source to target graph
>>> embedding = {0: [4], 1: [3], 2: [1], 3: [2], 4: [0]}
>>> # Embed the QUBO
>>> target_Q = dimod.embed_qubo(Q, embedding, sampler.adjacency)
>>> # Sample
>>> samples = sampler.sample_qubo(target_Q)
>>> for datum in samples.data(): # doctest: +SKIP
... print(datum)
...
Sample(sample={1: 0, 2: 1, 3: 1, 4: 0}, energy=-8.0)
Sample(sample={1: 1, 2: 0, 3: 0, 4: 1}, energy=-8.0)
Sample(sample={1: 1, 2: 0, 3: 0, 4: 0}, energy=-4.0)
Sample(sample={1: 1, 2: 1, 3: 0, 4: 0}, energy=-4.0)
Sample(sample={1: 0, 2: 1, 3: 0, 4: 0}, energy=-4.0)
Sample(sample={1: 1, 2: 1, 3: 1, 4: 0}, energy=-4.0)
>>> # Snipped above samples for brevity
"""
source_bqm = dimod.BinaryQuadraticModel.from_qubo(source_Q)
target_bqm = embed_bqm(source_bqm, embedding, target_adjacency, chain_strength=chain_strength)
target_Q, __ = target_bqm.to_qubo()
return target_Q | [
"def",
"embed_qubo",
"(",
"source_Q",
",",
"embedding",
",",
"target_adjacency",
",",
"chain_strength",
"=",
"1.0",
")",
":",
"source_bqm",
"=",
"dimod",
".",
"BinaryQuadraticModel",
".",
"from_qubo",
"(",
"source_Q",
")",
"target_bqm",
"=",
"embed_bqm",
"(",
"source_bqm",
",",
"embedding",
",",
"target_adjacency",
",",
"chain_strength",
"=",
"chain_strength",
")",
"target_Q",
",",
"__",
"=",
"target_bqm",
".",
"to_qubo",
"(",
")",
"return",
"target_Q"
]
| Embed a QUBO onto a target graph.
Args:
source_Q (dict[(variable, variable), bias]):
Coefficients of a quadratic unconstrained binary optimization (QUBO) model.
embedding (dict):
Mapping from source graph to target graph as a dict of form {s: {t, ...}, ...},
where s is a source-model variable and t is a target-model variable.
target_adjacency (dict/:class:`networkx.Graph`):
Adjacency of the target graph as a dict of form {t: Nt, ...},
where t is a target-graph variable and Nt is its set of neighbours.
chain_strength (float, optional):
Magnitude of the quadratic bias (in SPIN-space) applied between variables to form a chain. Note
that the energy penalty of chain breaks is 2 * `chain_strength`.
Returns:
dict[(variable, variable), bias]: Quadratic biases of the target QUBO.
Examples:
This example embeds a square source graph onto fully connected :math:`K_5` graph.
Embedding is accomplished by an edge deletion operation on the target graph: target-node
0 is not used.
>>> import dimod
>>> import networkx as nx
>>> # QUBO problem for a square graph
>>> Q = {(1, 1): -4.0, (1, 2): 4.0, (2, 2): -4.0, (2, 3): 4.0,
... (3, 3): -4.0, (3, 4): 4.0, (4, 1): 4.0, (4, 4): -4.0}
>>> # Target graph is a fully connected k5 graph
>>> K_5 = nx.complete_graph(5)
>>> 0 in K_5
True
>>> # Embedding from source to target graph
>>> embedding = {1: {4}, 2: {3}, 3: {1}, 4: {2}}
>>> # Embed the QUBO
>>> target_Q = dimod.embed_qubo(Q, embedding, K_5)
>>> (0, 0) in target_Q
False
>>> target_Q # doctest: +SKIP
{(1, 1): -4.0,
(1, 2): 4.0,
(2, 2): -4.0,
(2, 4): 4.0,
(3, 1): 4.0,
(3, 3): -4.0,
(4, 3): 4.0,
(4, 4): -4.0}
This example embeds a square graph onto the target graph of a dimod reference structured
sampler, `StructureComposite`, using the dimod reference `ExactSolver` sampler with a
fully connected :math:`K_5` graph specified.
>>> import dimod
>>> import networkx as nx
>>> # QUBO problem for a square graph
>>> Q = {(1, 1): -4.0, (1, 2): 4.0, (2, 2): -4.0, (2, 3): 4.0,
... (3, 3): -4.0, (3, 4): 4.0, (4, 1): 4.0, (4, 4): -4.0}
>>> # Structured dimod sampler with a structure defined by a K5 graph
>>> sampler = dimod.StructureComposite(dimod.ExactSolver(), list(K_5.nodes), list(K_5.edges))
>>> sampler.adjacency # doctest: +SKIP
{0: {1, 2, 3, 4},
1: {0, 2, 3, 4},
2: {0, 1, 3, 4},
3: {0, 1, 2, 4},
4: {0, 1, 2, 3}}
>>> # Embedding from source to target graph
>>> embedding = {0: [4], 1: [3], 2: [1], 3: [2], 4: [0]}
>>> # Embed the QUBO
>>> target_Q = dimod.embed_qubo(Q, embedding, sampler.adjacency)
>>> # Sample
>>> samples = sampler.sample_qubo(target_Q)
>>> for datum in samples.data(): # doctest: +SKIP
... print(datum)
...
Sample(sample={1: 0, 2: 1, 3: 1, 4: 0}, energy=-8.0)
Sample(sample={1: 1, 2: 0, 3: 0, 4: 1}, energy=-8.0)
Sample(sample={1: 1, 2: 0, 3: 0, 4: 0}, energy=-4.0)
Sample(sample={1: 1, 2: 1, 3: 0, 4: 0}, energy=-4.0)
Sample(sample={1: 0, 2: 1, 3: 0, 4: 0}, energy=-4.0)
Sample(sample={1: 1, 2: 1, 3: 1, 4: 0}, energy=-4.0)
>>> # Snipped above samples for brevity | [
"Embed",
"a",
"QUBO",
"onto",
"a",
"target",
"graph",
"."
]
| 86a1698f15ccd8b0ece0ed868ee49292d3f67f5b | https://github.com/dwavesystems/dwave-system/blob/86a1698f15ccd8b0ece0ed868ee49292d3f67f5b/dwave/embedding/transforms.py#L253-L343 | train |
dwavesystems/dwave-system | dwave/embedding/transforms.py | unembed_sampleset | def unembed_sampleset(target_sampleset, embedding, source_bqm,
chain_break_method=None, chain_break_fraction=False):
"""Unembed the samples set.
Construct a sample set for the source binary quadratic model (BQM) by
unembedding the given samples from the target BQM.
Args:
target_sampleset (:obj:`dimod.SampleSet`):
SampleSet from the target BQM.
embedding (dict):
Mapping from source graph to target graph as a dict of form
{s: {t, ...}, ...}, where s is a source variable and t is a target
variable.
source_bqm (:obj:`dimod.BinaryQuadraticModel`):
Source binary quadratic model.
chain_break_method (function, optional):
Method used to resolve chain breaks.
See :mod:`dwave.embedding.chain_breaks`.
chain_break_fraction (bool, optional, default=False):
If True, a 'chain_break_fraction' field is added to the unembedded
samples which report what fraction of the chains were broken before
unembedding.
Returns:
:obj:`.SampleSet`:
Examples:
>>> import dimod
...
>>> # say we have a bqm on a triangle and an embedding
>>> J = {('a', 'b'): -1, ('b', 'c'): -1, ('a', 'c'): -1}
>>> bqm = dimod.BinaryQuadraticModel.from_ising({}, J)
>>> embedding = {'a': [0, 1], 'b': [2], 'c': [3]}
...
>>> # and some samples from the embedding
>>> samples = [{0: -1, 1: -1, 2: -1, 3: -1}, # [0, 1] is unbroken
{0: -1, 1: +1, 2: +1, 3: +1}] # [0, 1] is broken
>>> energies = [-3, 1]
>>> embedded = dimod.SampleSet.from_samples(samples, dimod.SPIN, energies)
...
>>> # unembed
>>> samples = dwave.embedding.unembed_sampleset(embedded, embedding, bqm)
>>> samples.record.sample # doctest: +SKIP
array([[-1, -1, -1],
[ 1, 1, 1]], dtype=int8)
"""
if chain_break_method is None:
chain_break_method = majority_vote
variables = list(source_bqm)
try:
chains = [embedding[v] for v in variables]
except KeyError:
raise ValueError("given bqm does not match the embedding")
chain_idxs = [[target_sampleset.variables.index[v] for v in chain] for chain in chains]
record = target_sampleset.record
unembedded, idxs = chain_break_method(record.sample, chain_idxs)
# dev note: this is a bug in dimod that empty unembedded is not handled,
# in the future this try-except can be removed
try:
energies = source_bqm.energies((unembedded, variables))
except ValueError:
datatypes = [('sample', np.dtype(np.int8), (len(variables),)), ('energy', np.float)]
datatypes.extend((name, record[name].dtype, record[name].shape[1:])
for name in record.dtype.names
if name not in {'sample', 'energy'})
if chain_break_fraction:
datatypes.append(('chain_break_fraction', np.float64))
# there are no samples so everything is empty
data = np.rec.array(np.empty(0, dtype=datatypes))
return dimod.SampleSet(data, variables, target_sampleset.info.copy(), target_sampleset.vartype)
reserved = {'sample', 'energy'}
vectors = {name: record[name][idxs]
for name in record.dtype.names if name not in reserved}
if chain_break_fraction:
vectors['chain_break_fraction'] = broken_chains(record.sample, chain_idxs).mean(axis=1)[idxs]
return dimod.SampleSet.from_samples((unembedded, variables),
target_sampleset.vartype,
energy=energies,
info=target_sampleset.info.copy(),
**vectors) | python | def unembed_sampleset(target_sampleset, embedding, source_bqm,
chain_break_method=None, chain_break_fraction=False):
"""Unembed the samples set.
Construct a sample set for the source binary quadratic model (BQM) by
unembedding the given samples from the target BQM.
Args:
target_sampleset (:obj:`dimod.SampleSet`):
SampleSet from the target BQM.
embedding (dict):
Mapping from source graph to target graph as a dict of form
{s: {t, ...}, ...}, where s is a source variable and t is a target
variable.
source_bqm (:obj:`dimod.BinaryQuadraticModel`):
Source binary quadratic model.
chain_break_method (function, optional):
Method used to resolve chain breaks.
See :mod:`dwave.embedding.chain_breaks`.
chain_break_fraction (bool, optional, default=False):
If True, a 'chain_break_fraction' field is added to the unembedded
samples which report what fraction of the chains were broken before
unembedding.
Returns:
:obj:`.SampleSet`:
Examples:
>>> import dimod
...
>>> # say we have a bqm on a triangle and an embedding
>>> J = {('a', 'b'): -1, ('b', 'c'): -1, ('a', 'c'): -1}
>>> bqm = dimod.BinaryQuadraticModel.from_ising({}, J)
>>> embedding = {'a': [0, 1], 'b': [2], 'c': [3]}
...
>>> # and some samples from the embedding
>>> samples = [{0: -1, 1: -1, 2: -1, 3: -1}, # [0, 1] is unbroken
{0: -1, 1: +1, 2: +1, 3: +1}] # [0, 1] is broken
>>> energies = [-3, 1]
>>> embedded = dimod.SampleSet.from_samples(samples, dimod.SPIN, energies)
...
>>> # unembed
>>> samples = dwave.embedding.unembed_sampleset(embedded, embedding, bqm)
>>> samples.record.sample # doctest: +SKIP
array([[-1, -1, -1],
[ 1, 1, 1]], dtype=int8)
"""
if chain_break_method is None:
chain_break_method = majority_vote
variables = list(source_bqm)
try:
chains = [embedding[v] for v in variables]
except KeyError:
raise ValueError("given bqm does not match the embedding")
chain_idxs = [[target_sampleset.variables.index[v] for v in chain] for chain in chains]
record = target_sampleset.record
unembedded, idxs = chain_break_method(record.sample, chain_idxs)
# dev note: this is a bug in dimod that empty unembedded is not handled,
# in the future this try-except can be removed
try:
energies = source_bqm.energies((unembedded, variables))
except ValueError:
datatypes = [('sample', np.dtype(np.int8), (len(variables),)), ('energy', np.float)]
datatypes.extend((name, record[name].dtype, record[name].shape[1:])
for name in record.dtype.names
if name not in {'sample', 'energy'})
if chain_break_fraction:
datatypes.append(('chain_break_fraction', np.float64))
# there are no samples so everything is empty
data = np.rec.array(np.empty(0, dtype=datatypes))
return dimod.SampleSet(data, variables, target_sampleset.info.copy(), target_sampleset.vartype)
reserved = {'sample', 'energy'}
vectors = {name: record[name][idxs]
for name in record.dtype.names if name not in reserved}
if chain_break_fraction:
vectors['chain_break_fraction'] = broken_chains(record.sample, chain_idxs).mean(axis=1)[idxs]
return dimod.SampleSet.from_samples((unembedded, variables),
target_sampleset.vartype,
energy=energies,
info=target_sampleset.info.copy(),
**vectors) | [
"def",
"unembed_sampleset",
"(",
"target_sampleset",
",",
"embedding",
",",
"source_bqm",
",",
"chain_break_method",
"=",
"None",
",",
"chain_break_fraction",
"=",
"False",
")",
":",
"if",
"chain_break_method",
"is",
"None",
":",
"chain_break_method",
"=",
"majority_vote",
"variables",
"=",
"list",
"(",
"source_bqm",
")",
"try",
":",
"chains",
"=",
"[",
"embedding",
"[",
"v",
"]",
"for",
"v",
"in",
"variables",
"]",
"except",
"KeyError",
":",
"raise",
"ValueError",
"(",
"\"given bqm does not match the embedding\"",
")",
"chain_idxs",
"=",
"[",
"[",
"target_sampleset",
".",
"variables",
".",
"index",
"[",
"v",
"]",
"for",
"v",
"in",
"chain",
"]",
"for",
"chain",
"in",
"chains",
"]",
"record",
"=",
"target_sampleset",
".",
"record",
"unembedded",
",",
"idxs",
"=",
"chain_break_method",
"(",
"record",
".",
"sample",
",",
"chain_idxs",
")",
"# dev note: this is a bug in dimod that empty unembedded is not handled,",
"# in the future this try-except can be removed",
"try",
":",
"energies",
"=",
"source_bqm",
".",
"energies",
"(",
"(",
"unembedded",
",",
"variables",
")",
")",
"except",
"ValueError",
":",
"datatypes",
"=",
"[",
"(",
"'sample'",
",",
"np",
".",
"dtype",
"(",
"np",
".",
"int8",
")",
",",
"(",
"len",
"(",
"variables",
")",
",",
")",
")",
",",
"(",
"'energy'",
",",
"np",
".",
"float",
")",
"]",
"datatypes",
".",
"extend",
"(",
"(",
"name",
",",
"record",
"[",
"name",
"]",
".",
"dtype",
",",
"record",
"[",
"name",
"]",
".",
"shape",
"[",
"1",
":",
"]",
")",
"for",
"name",
"in",
"record",
".",
"dtype",
".",
"names",
"if",
"name",
"not",
"in",
"{",
"'sample'",
",",
"'energy'",
"}",
")",
"if",
"chain_break_fraction",
":",
"datatypes",
".",
"append",
"(",
"(",
"'chain_break_fraction'",
",",
"np",
".",
"float64",
")",
")",
"# there are no samples so everything is empty",
"data",
"=",
"np",
".",
"rec",
".",
"array",
"(",
"np",
".",
"empty",
"(",
"0",
",",
"dtype",
"=",
"datatypes",
")",
")",
"return",
"dimod",
".",
"SampleSet",
"(",
"data",
",",
"variables",
",",
"target_sampleset",
".",
"info",
".",
"copy",
"(",
")",
",",
"target_sampleset",
".",
"vartype",
")",
"reserved",
"=",
"{",
"'sample'",
",",
"'energy'",
"}",
"vectors",
"=",
"{",
"name",
":",
"record",
"[",
"name",
"]",
"[",
"idxs",
"]",
"for",
"name",
"in",
"record",
".",
"dtype",
".",
"names",
"if",
"name",
"not",
"in",
"reserved",
"}",
"if",
"chain_break_fraction",
":",
"vectors",
"[",
"'chain_break_fraction'",
"]",
"=",
"broken_chains",
"(",
"record",
".",
"sample",
",",
"chain_idxs",
")",
".",
"mean",
"(",
"axis",
"=",
"1",
")",
"[",
"idxs",
"]",
"return",
"dimod",
".",
"SampleSet",
".",
"from_samples",
"(",
"(",
"unembedded",
",",
"variables",
")",
",",
"target_sampleset",
".",
"vartype",
",",
"energy",
"=",
"energies",
",",
"info",
"=",
"target_sampleset",
".",
"info",
".",
"copy",
"(",
")",
",",
"*",
"*",
"vectors",
")"
]
| Unembed the samples set.
Construct a sample set for the source binary quadratic model (BQM) by
unembedding the given samples from the target BQM.
Args:
target_sampleset (:obj:`dimod.SampleSet`):
SampleSet from the target BQM.
embedding (dict):
Mapping from source graph to target graph as a dict of form
{s: {t, ...}, ...}, where s is a source variable and t is a target
variable.
source_bqm (:obj:`dimod.BinaryQuadraticModel`):
Source binary quadratic model.
chain_break_method (function, optional):
Method used to resolve chain breaks.
See :mod:`dwave.embedding.chain_breaks`.
chain_break_fraction (bool, optional, default=False):
If True, a 'chain_break_fraction' field is added to the unembedded
samples which report what fraction of the chains were broken before
unembedding.
Returns:
:obj:`.SampleSet`:
Examples:
>>> import dimod
...
>>> # say we have a bqm on a triangle and an embedding
>>> J = {('a', 'b'): -1, ('b', 'c'): -1, ('a', 'c'): -1}
>>> bqm = dimod.BinaryQuadraticModel.from_ising({}, J)
>>> embedding = {'a': [0, 1], 'b': [2], 'c': [3]}
...
>>> # and some samples from the embedding
>>> samples = [{0: -1, 1: -1, 2: -1, 3: -1}, # [0, 1] is unbroken
{0: -1, 1: +1, 2: +1, 3: +1}] # [0, 1] is broken
>>> energies = [-3, 1]
>>> embedded = dimod.SampleSet.from_samples(samples, dimod.SPIN, energies)
...
>>> # unembed
>>> samples = dwave.embedding.unembed_sampleset(embedded, embedding, bqm)
>>> samples.record.sample # doctest: +SKIP
array([[-1, -1, -1],
[ 1, 1, 1]], dtype=int8) | [
"Unembed",
"the",
"samples",
"set",
"."
]
| 86a1698f15ccd8b0ece0ed868ee49292d3f67f5b | https://github.com/dwavesystems/dwave-system/blob/86a1698f15ccd8b0ece0ed868ee49292d3f67f5b/dwave/embedding/transforms.py#L346-L441 | train |
dwavesystems/dwave-system | dwave/system/composites/embedding.py | LazyFixedEmbeddingComposite.sample | def sample(self, bqm, chain_strength=1.0, chain_break_fraction=True, **parameters):
"""Sample the binary quadratic model.
Note: At the initial sample(..) call, it will find a suitable embedding and initialize the remaining attributes
before sampling the bqm. All following sample(..) calls will reuse that initial embedding.
Args:
bqm (:obj:`dimod.BinaryQuadraticModel`):
Binary quadratic model to be sampled from.
chain_strength (float, optional, default=1.0):
Magnitude of the quadratic bias (in SPIN-space) applied between variables to create
chains. Note that the energy penalty of chain breaks is 2 * `chain_strength`.
chain_break_fraction (bool, optional, default=True):
If True, a ‘chain_break_fraction’ field is added to the unembedded response which report
what fraction of the chains were broken before unembedding.
**parameters:
Parameters for the sampling method, specified by the child sampler.
Returns:
:class:`dimod.SampleSet`
"""
if self.embedding is None:
# Find embedding
child = self.child # Solve the problem on the child system
__, target_edgelist, target_adjacency = child.structure
source_edgelist = list(bqm.quadratic) + [(v, v) for v in bqm.linear] # Add self-loops for single variables
embedding = minorminer.find_embedding(source_edgelist, target_edgelist)
# Initialize properties that need embedding
super(LazyFixedEmbeddingComposite, self)._set_graph_related_init(embedding=embedding)
return super(LazyFixedEmbeddingComposite, self).sample(bqm, chain_strength=chain_strength,
chain_break_fraction=chain_break_fraction, **parameters) | python | def sample(self, bqm, chain_strength=1.0, chain_break_fraction=True, **parameters):
"""Sample the binary quadratic model.
Note: At the initial sample(..) call, it will find a suitable embedding and initialize the remaining attributes
before sampling the bqm. All following sample(..) calls will reuse that initial embedding.
Args:
bqm (:obj:`dimod.BinaryQuadraticModel`):
Binary quadratic model to be sampled from.
chain_strength (float, optional, default=1.0):
Magnitude of the quadratic bias (in SPIN-space) applied between variables to create
chains. Note that the energy penalty of chain breaks is 2 * `chain_strength`.
chain_break_fraction (bool, optional, default=True):
If True, a ‘chain_break_fraction’ field is added to the unembedded response which report
what fraction of the chains were broken before unembedding.
**parameters:
Parameters for the sampling method, specified by the child sampler.
Returns:
:class:`dimod.SampleSet`
"""
if self.embedding is None:
# Find embedding
child = self.child # Solve the problem on the child system
__, target_edgelist, target_adjacency = child.structure
source_edgelist = list(bqm.quadratic) + [(v, v) for v in bqm.linear] # Add self-loops for single variables
embedding = minorminer.find_embedding(source_edgelist, target_edgelist)
# Initialize properties that need embedding
super(LazyFixedEmbeddingComposite, self)._set_graph_related_init(embedding=embedding)
return super(LazyFixedEmbeddingComposite, self).sample(bqm, chain_strength=chain_strength,
chain_break_fraction=chain_break_fraction, **parameters) | [
"def",
"sample",
"(",
"self",
",",
"bqm",
",",
"chain_strength",
"=",
"1.0",
",",
"chain_break_fraction",
"=",
"True",
",",
"*",
"*",
"parameters",
")",
":",
"if",
"self",
".",
"embedding",
"is",
"None",
":",
"# Find embedding",
"child",
"=",
"self",
".",
"child",
"# Solve the problem on the child system",
"__",
",",
"target_edgelist",
",",
"target_adjacency",
"=",
"child",
".",
"structure",
"source_edgelist",
"=",
"list",
"(",
"bqm",
".",
"quadratic",
")",
"+",
"[",
"(",
"v",
",",
"v",
")",
"for",
"v",
"in",
"bqm",
".",
"linear",
"]",
"# Add self-loops for single variables",
"embedding",
"=",
"minorminer",
".",
"find_embedding",
"(",
"source_edgelist",
",",
"target_edgelist",
")",
"# Initialize properties that need embedding",
"super",
"(",
"LazyFixedEmbeddingComposite",
",",
"self",
")",
".",
"_set_graph_related_init",
"(",
"embedding",
"=",
"embedding",
")",
"return",
"super",
"(",
"LazyFixedEmbeddingComposite",
",",
"self",
")",
".",
"sample",
"(",
"bqm",
",",
"chain_strength",
"=",
"chain_strength",
",",
"chain_break_fraction",
"=",
"chain_break_fraction",
",",
"*",
"*",
"parameters",
")"
]
| Sample the binary quadratic model.
Note: At the initial sample(..) call, it will find a suitable embedding and initialize the remaining attributes
before sampling the bqm. All following sample(..) calls will reuse that initial embedding.
Args:
bqm (:obj:`dimod.BinaryQuadraticModel`):
Binary quadratic model to be sampled from.
chain_strength (float, optional, default=1.0):
Magnitude of the quadratic bias (in SPIN-space) applied between variables to create
chains. Note that the energy penalty of chain breaks is 2 * `chain_strength`.
chain_break_fraction (bool, optional, default=True):
If True, a ‘chain_break_fraction’ field is added to the unembedded response which report
what fraction of the chains were broken before unembedding.
**parameters:
Parameters for the sampling method, specified by the child sampler.
Returns:
:class:`dimod.SampleSet` | [
"Sample",
"the",
"binary",
"quadratic",
"model",
"."
]
| 86a1698f15ccd8b0ece0ed868ee49292d3f67f5b | https://github.com/dwavesystems/dwave-system/blob/86a1698f15ccd8b0ece0ed868ee49292d3f67f5b/dwave/system/composites/embedding.py#L461-L495 | train |
dwavesystems/dwave-system | dwave/embedding/polynomialembedder.py | _accumulate_random | def _accumulate_random(count, found, oldthing, newthing):
"""This performs on-line random selection.
We have a stream of objects
o_1,c_1; o_2,c_2; ...
where there are c_i equivalent objects like o_1. We'd like to pick
a random object o uniformly at random from the list
[o_1]*c_1 + [o_2]*c_2 + ...
(actually, this algorithm allows arbitrary positive weights, not
necessarily integers) without spending the time&space to actually
create that list. Luckily, the following works:
thing = None
c_tot
for o_n, c_n in things:
c_tot += c_n
if randint(1,c_tot) <= c_n:
thing = o_n
This function is written in an accumulator format, so it can be
used one call at a time:
EXAMPLE:
> thing = None
> count = 0
> for i in range(10):
> c = 10-i
> count, thing = accumulate_random(count,c,thing,i)
INPUTS:
count: integer, sum of weights found before newthing
found: integer, weight for newthing
oldthing: previously selected object (will never be selected
if count == 0)
newthing: incoming object
OUTPUT:
(newcount, pick): newcount is count+found, pick is the newly
selected object.
"""
if randint(1, count + found) <= found:
return count + found, newthing
else:
return count + found, oldthing | python | def _accumulate_random(count, found, oldthing, newthing):
"""This performs on-line random selection.
We have a stream of objects
o_1,c_1; o_2,c_2; ...
where there are c_i equivalent objects like o_1. We'd like to pick
a random object o uniformly at random from the list
[o_1]*c_1 + [o_2]*c_2 + ...
(actually, this algorithm allows arbitrary positive weights, not
necessarily integers) without spending the time&space to actually
create that list. Luckily, the following works:
thing = None
c_tot
for o_n, c_n in things:
c_tot += c_n
if randint(1,c_tot) <= c_n:
thing = o_n
This function is written in an accumulator format, so it can be
used one call at a time:
EXAMPLE:
> thing = None
> count = 0
> for i in range(10):
> c = 10-i
> count, thing = accumulate_random(count,c,thing,i)
INPUTS:
count: integer, sum of weights found before newthing
found: integer, weight for newthing
oldthing: previously selected object (will never be selected
if count == 0)
newthing: incoming object
OUTPUT:
(newcount, pick): newcount is count+found, pick is the newly
selected object.
"""
if randint(1, count + found) <= found:
return count + found, newthing
else:
return count + found, oldthing | [
"def",
"_accumulate_random",
"(",
"count",
",",
"found",
",",
"oldthing",
",",
"newthing",
")",
":",
"if",
"randint",
"(",
"1",
",",
"count",
"+",
"found",
")",
"<=",
"found",
":",
"return",
"count",
"+",
"found",
",",
"newthing",
"else",
":",
"return",
"count",
"+",
"found",
",",
"oldthing"
]
| This performs on-line random selection.
We have a stream of objects
o_1,c_1; o_2,c_2; ...
where there are c_i equivalent objects like o_1. We'd like to pick
a random object o uniformly at random from the list
[o_1]*c_1 + [o_2]*c_2 + ...
(actually, this algorithm allows arbitrary positive weights, not
necessarily integers) without spending the time&space to actually
create that list. Luckily, the following works:
thing = None
c_tot
for o_n, c_n in things:
c_tot += c_n
if randint(1,c_tot) <= c_n:
thing = o_n
This function is written in an accumulator format, so it can be
used one call at a time:
EXAMPLE:
> thing = None
> count = 0
> for i in range(10):
> c = 10-i
> count, thing = accumulate_random(count,c,thing,i)
INPUTS:
count: integer, sum of weights found before newthing
found: integer, weight for newthing
oldthing: previously selected object (will never be selected
if count == 0)
newthing: incoming object
OUTPUT:
(newcount, pick): newcount is count+found, pick is the newly
selected object. | [
"This",
"performs",
"on",
"-",
"line",
"random",
"selection",
"."
]
| 86a1698f15ccd8b0ece0ed868ee49292d3f67f5b | https://github.com/dwavesystems/dwave-system/blob/86a1698f15ccd8b0ece0ed868ee49292d3f67f5b/dwave/embedding/polynomialembedder.py#L60-L108 | train |
dwavesystems/dwave-system | dwave/embedding/polynomialembedder.py | _bulk_to_linear | def _bulk_to_linear(M, N, L, qubits):
"Converts a list of chimera coordinates to linear indices."
return [2 * L * N * x + 2 * L * y + L * u + k for x, y, u, k in qubits] | python | def _bulk_to_linear(M, N, L, qubits):
"Converts a list of chimera coordinates to linear indices."
return [2 * L * N * x + 2 * L * y + L * u + k for x, y, u, k in qubits] | [
"def",
"_bulk_to_linear",
"(",
"M",
",",
"N",
",",
"L",
",",
"qubits",
")",
":",
"return",
"[",
"2",
"*",
"L",
"*",
"N",
"*",
"x",
"+",
"2",
"*",
"L",
"*",
"y",
"+",
"L",
"*",
"u",
"+",
"k",
"for",
"x",
",",
"y",
",",
"u",
",",
"k",
"in",
"qubits",
"]"
]
| Converts a list of chimera coordinates to linear indices. | [
"Converts",
"a",
"list",
"of",
"chimera",
"coordinates",
"to",
"linear",
"indices",
"."
]
| 86a1698f15ccd8b0ece0ed868ee49292d3f67f5b | https://github.com/dwavesystems/dwave-system/blob/86a1698f15ccd8b0ece0ed868ee49292d3f67f5b/dwave/embedding/polynomialembedder.py#L1161-L1163 | train |
dwavesystems/dwave-system | dwave/embedding/polynomialembedder.py | _to_linear | def _to_linear(M, N, L, q):
"Converts a qubit in chimera coordinates to its linear index."
(x, y, u, k) = q
return 2 * L * N * x + 2 * L * y + L * u + k | python | def _to_linear(M, N, L, q):
"Converts a qubit in chimera coordinates to its linear index."
(x, y, u, k) = q
return 2 * L * N * x + 2 * L * y + L * u + k | [
"def",
"_to_linear",
"(",
"M",
",",
"N",
",",
"L",
",",
"q",
")",
":",
"(",
"x",
",",
"y",
",",
"u",
",",
"k",
")",
"=",
"q",
"return",
"2",
"*",
"L",
"*",
"N",
"*",
"x",
"+",
"2",
"*",
"L",
"*",
"y",
"+",
"L",
"*",
"u",
"+",
"k"
]
| Converts a qubit in chimera coordinates to its linear index. | [
"Converts",
"a",
"qubit",
"in",
"chimera",
"coordinates",
"to",
"its",
"linear",
"index",
"."
]
| 86a1698f15ccd8b0ece0ed868ee49292d3f67f5b | https://github.com/dwavesystems/dwave-system/blob/86a1698f15ccd8b0ece0ed868ee49292d3f67f5b/dwave/embedding/polynomialembedder.py#L1166-L1169 | train |
dwavesystems/dwave-system | dwave/embedding/polynomialembedder.py | _bulk_to_chimera | def _bulk_to_chimera(M, N, L, qubits):
"Converts a list of linear indices to chimera coordinates."
return [(q // N // L // 2, (q // L // 2) % N, (q // L) % 2, q % L) for q in qubits] | python | def _bulk_to_chimera(M, N, L, qubits):
"Converts a list of linear indices to chimera coordinates."
return [(q // N // L // 2, (q // L // 2) % N, (q // L) % 2, q % L) for q in qubits] | [
"def",
"_bulk_to_chimera",
"(",
"M",
",",
"N",
",",
"L",
",",
"qubits",
")",
":",
"return",
"[",
"(",
"q",
"//",
"N",
"//",
"L",
"//",
"2",
",",
"(",
"q",
"//",
"L",
"//",
"2",
")",
"%",
"N",
",",
"(",
"q",
"//",
"L",
")",
"%",
"2",
",",
"q",
"%",
"L",
")",
"for",
"q",
"in",
"qubits",
"]"
]
| Converts a list of linear indices to chimera coordinates. | [
"Converts",
"a",
"list",
"of",
"linear",
"indices",
"to",
"chimera",
"coordinates",
"."
]
| 86a1698f15ccd8b0ece0ed868ee49292d3f67f5b | https://github.com/dwavesystems/dwave-system/blob/86a1698f15ccd8b0ece0ed868ee49292d3f67f5b/dwave/embedding/polynomialembedder.py#L1172-L1174 | train |
dwavesystems/dwave-system | dwave/embedding/polynomialembedder.py | _to_chimera | def _to_chimera(M, N, L, q):
"Converts a qubit's linear index to chimera coordinates."
return (q // N // L // 2, (q // L // 2) % N, (q // L) % 2, q % L) | python | def _to_chimera(M, N, L, q):
"Converts a qubit's linear index to chimera coordinates."
return (q // N // L // 2, (q // L // 2) % N, (q // L) % 2, q % L) | [
"def",
"_to_chimera",
"(",
"M",
",",
"N",
",",
"L",
",",
"q",
")",
":",
"return",
"(",
"q",
"//",
"N",
"//",
"L",
"//",
"2",
",",
"(",
"q",
"//",
"L",
"//",
"2",
")",
"%",
"N",
",",
"(",
"q",
"//",
"L",
")",
"%",
"2",
",",
"q",
"%",
"L",
")"
]
| Converts a qubit's linear index to chimera coordinates. | [
"Converts",
"a",
"qubit",
"s",
"linear",
"index",
"to",
"chimera",
"coordinates",
"."
]
| 86a1698f15ccd8b0ece0ed868ee49292d3f67f5b | https://github.com/dwavesystems/dwave-system/blob/86a1698f15ccd8b0ece0ed868ee49292d3f67f5b/dwave/embedding/polynomialembedder.py#L1177-L1179 | train |
dwavesystems/dwave-system | dwave/embedding/polynomialembedder.py | eden_processor._compute_vline_scores | def _compute_vline_scores(self):
"""Does the hard work to prepare ``vline_score``.
"""
M, N, L = self.M, self.N, self.L
vline_score = {}
for x in range(M):
laststart = [0 if (x, 0, 1, k) in self else None for k in range(L)]
for y in range(N):
block = [0] * (y + 1)
for k in range(L):
if (x, y, 1, k) not in self:
laststart[k] = None
elif laststart[k] is None:
laststart[k] = y
block[y] += 1
elif y and (x, y, 1, k) not in self[x, y - 1, 1, k]:
laststart[k] = y
else:
for y1 in range(laststart[k], y + 1):
block[y1] += 1
for y1 in range(y + 1):
vline_score[x, y1, y] = block[y1]
self._vline_score = vline_score | python | def _compute_vline_scores(self):
"""Does the hard work to prepare ``vline_score``.
"""
M, N, L = self.M, self.N, self.L
vline_score = {}
for x in range(M):
laststart = [0 if (x, 0, 1, k) in self else None for k in range(L)]
for y in range(N):
block = [0] * (y + 1)
for k in range(L):
if (x, y, 1, k) not in self:
laststart[k] = None
elif laststart[k] is None:
laststart[k] = y
block[y] += 1
elif y and (x, y, 1, k) not in self[x, y - 1, 1, k]:
laststart[k] = y
else:
for y1 in range(laststart[k], y + 1):
block[y1] += 1
for y1 in range(y + 1):
vline_score[x, y1, y] = block[y1]
self._vline_score = vline_score | [
"def",
"_compute_vline_scores",
"(",
"self",
")",
":",
"M",
",",
"N",
",",
"L",
"=",
"self",
".",
"M",
",",
"self",
".",
"N",
",",
"self",
".",
"L",
"vline_score",
"=",
"{",
"}",
"for",
"x",
"in",
"range",
"(",
"M",
")",
":",
"laststart",
"=",
"[",
"0",
"if",
"(",
"x",
",",
"0",
",",
"1",
",",
"k",
")",
"in",
"self",
"else",
"None",
"for",
"k",
"in",
"range",
"(",
"L",
")",
"]",
"for",
"y",
"in",
"range",
"(",
"N",
")",
":",
"block",
"=",
"[",
"0",
"]",
"*",
"(",
"y",
"+",
"1",
")",
"for",
"k",
"in",
"range",
"(",
"L",
")",
":",
"if",
"(",
"x",
",",
"y",
",",
"1",
",",
"k",
")",
"not",
"in",
"self",
":",
"laststart",
"[",
"k",
"]",
"=",
"None",
"elif",
"laststart",
"[",
"k",
"]",
"is",
"None",
":",
"laststart",
"[",
"k",
"]",
"=",
"y",
"block",
"[",
"y",
"]",
"+=",
"1",
"elif",
"y",
"and",
"(",
"x",
",",
"y",
",",
"1",
",",
"k",
")",
"not",
"in",
"self",
"[",
"x",
",",
"y",
"-",
"1",
",",
"1",
",",
"k",
"]",
":",
"laststart",
"[",
"k",
"]",
"=",
"y",
"else",
":",
"for",
"y1",
"in",
"range",
"(",
"laststart",
"[",
"k",
"]",
",",
"y",
"+",
"1",
")",
":",
"block",
"[",
"y1",
"]",
"+=",
"1",
"for",
"y1",
"in",
"range",
"(",
"y",
"+",
"1",
")",
":",
"vline_score",
"[",
"x",
",",
"y1",
",",
"y",
"]",
"=",
"block",
"[",
"y1",
"]",
"self",
".",
"_vline_score",
"=",
"vline_score"
]
| Does the hard work to prepare ``vline_score``. | [
"Does",
"the",
"hard",
"work",
"to",
"prepare",
"vline_score",
"."
]
| 86a1698f15ccd8b0ece0ed868ee49292d3f67f5b | https://github.com/dwavesystems/dwave-system/blob/86a1698f15ccd8b0ece0ed868ee49292d3f67f5b/dwave/embedding/polynomialembedder.py#L188-L210 | train |
dwavesystems/dwave-system | dwave/embedding/polynomialembedder.py | eden_processor._compute_hline_scores | def _compute_hline_scores(self):
"""Does the hard work to prepare ``hline_score``.
"""
M, N, L = self.M, self.N, self.L
hline_score = {}
for y in range(N):
laststart = [0 if (0, y, 0, k) in self else None for k in range(L)]
for x in range(M):
block = [0] * (x + 1)
for k in range(L):
if (x, y, 0, k) not in self:
laststart[k] = None
elif laststart[k] is None:
laststart[k] = x
block[x] += 1
elif x and (x, y, 0, k) not in self[x - 1, y, 0, k]:
laststart[k] = x
else:
for x1 in range(laststart[k], x + 1):
block[x1] += 1
for x1 in range(x + 1):
hline_score[y, x1, x] = block[x1]
self._hline_score = hline_score | python | def _compute_hline_scores(self):
"""Does the hard work to prepare ``hline_score``.
"""
M, N, L = self.M, self.N, self.L
hline_score = {}
for y in range(N):
laststart = [0 if (0, y, 0, k) in self else None for k in range(L)]
for x in range(M):
block = [0] * (x + 1)
for k in range(L):
if (x, y, 0, k) not in self:
laststart[k] = None
elif laststart[k] is None:
laststart[k] = x
block[x] += 1
elif x and (x, y, 0, k) not in self[x - 1, y, 0, k]:
laststart[k] = x
else:
for x1 in range(laststart[k], x + 1):
block[x1] += 1
for x1 in range(x + 1):
hline_score[y, x1, x] = block[x1]
self._hline_score = hline_score | [
"def",
"_compute_hline_scores",
"(",
"self",
")",
":",
"M",
",",
"N",
",",
"L",
"=",
"self",
".",
"M",
",",
"self",
".",
"N",
",",
"self",
".",
"L",
"hline_score",
"=",
"{",
"}",
"for",
"y",
"in",
"range",
"(",
"N",
")",
":",
"laststart",
"=",
"[",
"0",
"if",
"(",
"0",
",",
"y",
",",
"0",
",",
"k",
")",
"in",
"self",
"else",
"None",
"for",
"k",
"in",
"range",
"(",
"L",
")",
"]",
"for",
"x",
"in",
"range",
"(",
"M",
")",
":",
"block",
"=",
"[",
"0",
"]",
"*",
"(",
"x",
"+",
"1",
")",
"for",
"k",
"in",
"range",
"(",
"L",
")",
":",
"if",
"(",
"x",
",",
"y",
",",
"0",
",",
"k",
")",
"not",
"in",
"self",
":",
"laststart",
"[",
"k",
"]",
"=",
"None",
"elif",
"laststart",
"[",
"k",
"]",
"is",
"None",
":",
"laststart",
"[",
"k",
"]",
"=",
"x",
"block",
"[",
"x",
"]",
"+=",
"1",
"elif",
"x",
"and",
"(",
"x",
",",
"y",
",",
"0",
",",
"k",
")",
"not",
"in",
"self",
"[",
"x",
"-",
"1",
",",
"y",
",",
"0",
",",
"k",
"]",
":",
"laststart",
"[",
"k",
"]",
"=",
"x",
"else",
":",
"for",
"x1",
"in",
"range",
"(",
"laststart",
"[",
"k",
"]",
",",
"x",
"+",
"1",
")",
":",
"block",
"[",
"x1",
"]",
"+=",
"1",
"for",
"x1",
"in",
"range",
"(",
"x",
"+",
"1",
")",
":",
"hline_score",
"[",
"y",
",",
"x1",
",",
"x",
"]",
"=",
"block",
"[",
"x1",
"]",
"self",
".",
"_hline_score",
"=",
"hline_score"
]
| Does the hard work to prepare ``hline_score``. | [
"Does",
"the",
"hard",
"work",
"to",
"prepare",
"hline_score",
"."
]
| 86a1698f15ccd8b0ece0ed868ee49292d3f67f5b | https://github.com/dwavesystems/dwave-system/blob/86a1698f15ccd8b0ece0ed868ee49292d3f67f5b/dwave/embedding/polynomialembedder.py#L212-L234 | train |
dwavesystems/dwave-system | dwave/embedding/polynomialembedder.py | eden_processor.biclique | def biclique(self, xmin, xmax, ymin, ymax):
"""Compute a maximum-sized complete bipartite graph contained in the
rectangle defined by ``xmin, xmax, ymin, ymax`` where each chain of
qubits is either a vertical line or a horizontal line.
INPUTS:
xmin,xmax,ymin,ymax: integers defining the bounds of a rectangle
where we look for unbroken chains. These ranges include both
endpoints.
OUTPUT:
(A_side, B_side): a tuple of two lists containing lists of qubits.
the lists found in ``A_side`` and ``B_side`` are chains of qubits.
These lists of qubits are arranged so that
>>> [zip(chain,chain[1:]) for chain in A_side]
and
>>> [zip(chain,chain[1:]) for chain in B_side]
are lists of valid couplers.
"""
Aside = sum((self.maximum_hline_bundle(y, xmin, xmax)
for y in range(ymin, ymax + 1)), [])
Bside = sum((self.maximum_vline_bundle(x, ymin, ymax)
for x in range(xmin, xmax + 1)), [])
return Aside, Bside | python | def biclique(self, xmin, xmax, ymin, ymax):
"""Compute a maximum-sized complete bipartite graph contained in the
rectangle defined by ``xmin, xmax, ymin, ymax`` where each chain of
qubits is either a vertical line or a horizontal line.
INPUTS:
xmin,xmax,ymin,ymax: integers defining the bounds of a rectangle
where we look for unbroken chains. These ranges include both
endpoints.
OUTPUT:
(A_side, B_side): a tuple of two lists containing lists of qubits.
the lists found in ``A_side`` and ``B_side`` are chains of qubits.
These lists of qubits are arranged so that
>>> [zip(chain,chain[1:]) for chain in A_side]
and
>>> [zip(chain,chain[1:]) for chain in B_side]
are lists of valid couplers.
"""
Aside = sum((self.maximum_hline_bundle(y, xmin, xmax)
for y in range(ymin, ymax + 1)), [])
Bside = sum((self.maximum_vline_bundle(x, ymin, ymax)
for x in range(xmin, xmax + 1)), [])
return Aside, Bside | [
"def",
"biclique",
"(",
"self",
",",
"xmin",
",",
"xmax",
",",
"ymin",
",",
"ymax",
")",
":",
"Aside",
"=",
"sum",
"(",
"(",
"self",
".",
"maximum_hline_bundle",
"(",
"y",
",",
"xmin",
",",
"xmax",
")",
"for",
"y",
"in",
"range",
"(",
"ymin",
",",
"ymax",
"+",
"1",
")",
")",
",",
"[",
"]",
")",
"Bside",
"=",
"sum",
"(",
"(",
"self",
".",
"maximum_vline_bundle",
"(",
"x",
",",
"ymin",
",",
"ymax",
")",
"for",
"x",
"in",
"range",
"(",
"xmin",
",",
"xmax",
"+",
"1",
")",
")",
",",
"[",
"]",
")",
"return",
"Aside",
",",
"Bside"
]
| Compute a maximum-sized complete bipartite graph contained in the
rectangle defined by ``xmin, xmax, ymin, ymax`` where each chain of
qubits is either a vertical line or a horizontal line.
INPUTS:
xmin,xmax,ymin,ymax: integers defining the bounds of a rectangle
where we look for unbroken chains. These ranges include both
endpoints.
OUTPUT:
(A_side, B_side): a tuple of two lists containing lists of qubits.
the lists found in ``A_side`` and ``B_side`` are chains of qubits.
These lists of qubits are arranged so that
>>> [zip(chain,chain[1:]) for chain in A_side]
and
>>> [zip(chain,chain[1:]) for chain in B_side]
are lists of valid couplers. | [
"Compute",
"a",
"maximum",
"-",
"sized",
"complete",
"bipartite",
"graph",
"contained",
"in",
"the",
"rectangle",
"defined",
"by",
"xmin",
"xmax",
"ymin",
"ymax",
"where",
"each",
"chain",
"of",
"qubits",
"is",
"either",
"a",
"vertical",
"line",
"or",
"a",
"horizontal",
"line",
"."
]
| 86a1698f15ccd8b0ece0ed868ee49292d3f67f5b | https://github.com/dwavesystems/dwave-system/blob/86a1698f15ccd8b0ece0ed868ee49292d3f67f5b/dwave/embedding/polynomialembedder.py#L291-L319 | train |
dwavesystems/dwave-system | dwave/embedding/polynomialembedder.py | eden_processor._contains_line | def _contains_line(self, line):
"""Test if a chain of qubits is completely contained in ``self``. In
particular, test if all qubits are present and the couplers
connecting those qubits are also connected.
NOTE: this function assumes that ``line`` is a list or tuple of
qubits which satisfies the precondition that ``(line[i],line[i+1])``
is supposed to be a coupler for all ``i``.
INPUTS:
line: a list of qubits satisfying the above precondition
OUTPUT:
boolean
"""
return all(v in self for v in line) and all(u in self[v] for u, v in zip(line, line[1::])) | python | def _contains_line(self, line):
"""Test if a chain of qubits is completely contained in ``self``. In
particular, test if all qubits are present and the couplers
connecting those qubits are also connected.
NOTE: this function assumes that ``line`` is a list or tuple of
qubits which satisfies the precondition that ``(line[i],line[i+1])``
is supposed to be a coupler for all ``i``.
INPUTS:
line: a list of qubits satisfying the above precondition
OUTPUT:
boolean
"""
return all(v in self for v in line) and all(u in self[v] for u, v in zip(line, line[1::])) | [
"def",
"_contains_line",
"(",
"self",
",",
"line",
")",
":",
"return",
"all",
"(",
"v",
"in",
"self",
"for",
"v",
"in",
"line",
")",
"and",
"all",
"(",
"u",
"in",
"self",
"[",
"v",
"]",
"for",
"u",
",",
"v",
"in",
"zip",
"(",
"line",
",",
"line",
"[",
"1",
":",
":",
"]",
")",
")"
]
| Test if a chain of qubits is completely contained in ``self``. In
particular, test if all qubits are present and the couplers
connecting those qubits are also connected.
NOTE: this function assumes that ``line`` is a list or tuple of
qubits which satisfies the precondition that ``(line[i],line[i+1])``
is supposed to be a coupler for all ``i``.
INPUTS:
line: a list of qubits satisfying the above precondition
OUTPUT:
boolean | [
"Test",
"if",
"a",
"chain",
"of",
"qubits",
"is",
"completely",
"contained",
"in",
"self",
".",
"In",
"particular",
"test",
"if",
"all",
"qubits",
"are",
"present",
"and",
"the",
"couplers",
"connecting",
"those",
"qubits",
"are",
"also",
"connected",
"."
]
| 86a1698f15ccd8b0ece0ed868ee49292d3f67f5b | https://github.com/dwavesystems/dwave-system/blob/86a1698f15ccd8b0ece0ed868ee49292d3f67f5b/dwave/embedding/polynomialembedder.py#L322-L337 | train |
dwavesystems/dwave-system | dwave/embedding/polynomialembedder.py | eden_processor.maximum_ell_bundle | def maximum_ell_bundle(self, ell):
"""Return a maximum ell bundle in the rectangle bounded by
:math:`\{x0,x1\} \\times \{y0,y1\}`
with vertical component
:math:`(x0,y0) ... (x0,y1) = {x0} \\times \{y0,...,y1\}`
and horizontal component
:math:`(x0,y0) ... (x1,y0) = \{x0,...,x1\} \\times \{y0\}`.
Note that we don't require :math:`x0 \leq x1` or :math:`y0 \leq y1`. We go
through some shenanigans so that the qubits we return
are all in a path. A nice side-effect of this is that
>>> chains = maximum_ell_bundle(...)
>>> edges = [zip(path,path[:-1]) for path in chains]
where ``edges`` will be a list of lists of chain edges.
INPUTS::
ell: a tuple of 4 integers defining the ell, ``(x0, x1, y0, y1)``
OUTPUT::
chains: list of lists of qubits
Note: this function only to be called to construct a
native clique embedding *after* the block embedding has
been constructed. Using this to evaluate the goodness
of an ell block will be slow.
"""
(x0, x1, y0, y1) = ell
hlines = self.maximum_hline_bundle(y0, x0, x1)
vlines = self.maximum_vline_bundle(x0, y0, y1)
if self.random_bundles:
shuffle(hlines)
shuffle(vlines)
return [v + h for h, v in zip(hlines, vlines)] | python | def maximum_ell_bundle(self, ell):
"""Return a maximum ell bundle in the rectangle bounded by
:math:`\{x0,x1\} \\times \{y0,y1\}`
with vertical component
:math:`(x0,y0) ... (x0,y1) = {x0} \\times \{y0,...,y1\}`
and horizontal component
:math:`(x0,y0) ... (x1,y0) = \{x0,...,x1\} \\times \{y0\}`.
Note that we don't require :math:`x0 \leq x1` or :math:`y0 \leq y1`. We go
through some shenanigans so that the qubits we return
are all in a path. A nice side-effect of this is that
>>> chains = maximum_ell_bundle(...)
>>> edges = [zip(path,path[:-1]) for path in chains]
where ``edges`` will be a list of lists of chain edges.
INPUTS::
ell: a tuple of 4 integers defining the ell, ``(x0, x1, y0, y1)``
OUTPUT::
chains: list of lists of qubits
Note: this function only to be called to construct a
native clique embedding *after* the block embedding has
been constructed. Using this to evaluate the goodness
of an ell block will be slow.
"""
(x0, x1, y0, y1) = ell
hlines = self.maximum_hline_bundle(y0, x0, x1)
vlines = self.maximum_vline_bundle(x0, y0, y1)
if self.random_bundles:
shuffle(hlines)
shuffle(vlines)
return [v + h for h, v in zip(hlines, vlines)] | [
"def",
"maximum_ell_bundle",
"(",
"self",
",",
"ell",
")",
":",
"(",
"x0",
",",
"x1",
",",
"y0",
",",
"y1",
")",
"=",
"ell",
"hlines",
"=",
"self",
".",
"maximum_hline_bundle",
"(",
"y0",
",",
"x0",
",",
"x1",
")",
"vlines",
"=",
"self",
".",
"maximum_vline_bundle",
"(",
"x0",
",",
"y0",
",",
"y1",
")",
"if",
"self",
".",
"random_bundles",
":",
"shuffle",
"(",
"hlines",
")",
"shuffle",
"(",
"vlines",
")",
"return",
"[",
"v",
"+",
"h",
"for",
"h",
",",
"v",
"in",
"zip",
"(",
"hlines",
",",
"vlines",
")",
"]"
]
| Return a maximum ell bundle in the rectangle bounded by
:math:`\{x0,x1\} \\times \{y0,y1\}`
with vertical component
:math:`(x0,y0) ... (x0,y1) = {x0} \\times \{y0,...,y1\}`
and horizontal component
:math:`(x0,y0) ... (x1,y0) = \{x0,...,x1\} \\times \{y0\}`.
Note that we don't require :math:`x0 \leq x1` or :math:`y0 \leq y1`. We go
through some shenanigans so that the qubits we return
are all in a path. A nice side-effect of this is that
>>> chains = maximum_ell_bundle(...)
>>> edges = [zip(path,path[:-1]) for path in chains]
where ``edges`` will be a list of lists of chain edges.
INPUTS::
ell: a tuple of 4 integers defining the ell, ``(x0, x1, y0, y1)``
OUTPUT::
chains: list of lists of qubits
Note: this function only to be called to construct a
native clique embedding *after* the block embedding has
been constructed. Using this to evaluate the goodness
of an ell block will be slow. | [
"Return",
"a",
"maximum",
"ell",
"bundle",
"in",
"the",
"rectangle",
"bounded",
"by"
]
| 86a1698f15ccd8b0ece0ed868ee49292d3f67f5b | https://github.com/dwavesystems/dwave-system/blob/86a1698f15ccd8b0ece0ed868ee49292d3f67f5b/dwave/embedding/polynomialembedder.py#L368-L409 | train |
dwavesystems/dwave-system | dwave/embedding/polynomialembedder.py | eden_processor.nativeCliqueEmbed | def nativeCliqueEmbed(self, width):
"""Compute a maximum-sized native clique embedding in an induced
subgraph of chimera with all chainlengths ``width+1``.
INPUTS:
width: width of the squares to search, also `chainlength`-1
OUTPUT:
score: the score for the returned clique (just ``len(clique)``
in the class :class:`eden_processor`; may differ in subclasses)
clique: a list containing lists of qubits, each associated
to a chain. These lists of qubits are carefully
arranged so that
>>> [zip(chain,chain[1:]) for chain in clique]
is a list of valid couplers.
"""
maxCWR = {}
M, N = self.M, self.N
maxscore = None
count = 0
key = None
for w in range(width + 2):
h = width - w - 2
for ymin in range(N - h):
ymax = ymin + h
for xmin in range(M - w):
xmax = xmin + w
R = (xmin, xmax, ymin, ymax)
score, best = self.maxCliqueWithRectangle(R, maxCWR)
maxCWR[R] = best
if maxscore is None or (score is not None and maxscore < score):
maxscore = score
key = None # this gets overwritten immediately
count = 0 # this gets overwritten immediately
if maxscore == score:
count, key = _accumulate_random(count, best[3], key, R)
clique = []
while key in maxCWR:
score, ell, key, num = maxCWR[key]
if ell is not None:
meb = self.maximum_ell_bundle(ell)
clique.extend(meb)
return maxscore, clique | python | def nativeCliqueEmbed(self, width):
"""Compute a maximum-sized native clique embedding in an induced
subgraph of chimera with all chainlengths ``width+1``.
INPUTS:
width: width of the squares to search, also `chainlength`-1
OUTPUT:
score: the score for the returned clique (just ``len(clique)``
in the class :class:`eden_processor`; may differ in subclasses)
clique: a list containing lists of qubits, each associated
to a chain. These lists of qubits are carefully
arranged so that
>>> [zip(chain,chain[1:]) for chain in clique]
is a list of valid couplers.
"""
maxCWR = {}
M, N = self.M, self.N
maxscore = None
count = 0
key = None
for w in range(width + 2):
h = width - w - 2
for ymin in range(N - h):
ymax = ymin + h
for xmin in range(M - w):
xmax = xmin + w
R = (xmin, xmax, ymin, ymax)
score, best = self.maxCliqueWithRectangle(R, maxCWR)
maxCWR[R] = best
if maxscore is None or (score is not None and maxscore < score):
maxscore = score
key = None # this gets overwritten immediately
count = 0 # this gets overwritten immediately
if maxscore == score:
count, key = _accumulate_random(count, best[3], key, R)
clique = []
while key in maxCWR:
score, ell, key, num = maxCWR[key]
if ell is not None:
meb = self.maximum_ell_bundle(ell)
clique.extend(meb)
return maxscore, clique | [
"def",
"nativeCliqueEmbed",
"(",
"self",
",",
"width",
")",
":",
"maxCWR",
"=",
"{",
"}",
"M",
",",
"N",
"=",
"self",
".",
"M",
",",
"self",
".",
"N",
"maxscore",
"=",
"None",
"count",
"=",
"0",
"key",
"=",
"None",
"for",
"w",
"in",
"range",
"(",
"width",
"+",
"2",
")",
":",
"h",
"=",
"width",
"-",
"w",
"-",
"2",
"for",
"ymin",
"in",
"range",
"(",
"N",
"-",
"h",
")",
":",
"ymax",
"=",
"ymin",
"+",
"h",
"for",
"xmin",
"in",
"range",
"(",
"M",
"-",
"w",
")",
":",
"xmax",
"=",
"xmin",
"+",
"w",
"R",
"=",
"(",
"xmin",
",",
"xmax",
",",
"ymin",
",",
"ymax",
")",
"score",
",",
"best",
"=",
"self",
".",
"maxCliqueWithRectangle",
"(",
"R",
",",
"maxCWR",
")",
"maxCWR",
"[",
"R",
"]",
"=",
"best",
"if",
"maxscore",
"is",
"None",
"or",
"(",
"score",
"is",
"not",
"None",
"and",
"maxscore",
"<",
"score",
")",
":",
"maxscore",
"=",
"score",
"key",
"=",
"None",
"# this gets overwritten immediately",
"count",
"=",
"0",
"# this gets overwritten immediately",
"if",
"maxscore",
"==",
"score",
":",
"count",
",",
"key",
"=",
"_accumulate_random",
"(",
"count",
",",
"best",
"[",
"3",
"]",
",",
"key",
",",
"R",
")",
"clique",
"=",
"[",
"]",
"while",
"key",
"in",
"maxCWR",
":",
"score",
",",
"ell",
",",
"key",
",",
"num",
"=",
"maxCWR",
"[",
"key",
"]",
"if",
"ell",
"is",
"not",
"None",
":",
"meb",
"=",
"self",
".",
"maximum_ell_bundle",
"(",
"ell",
")",
"clique",
".",
"extend",
"(",
"meb",
")",
"return",
"maxscore",
",",
"clique"
]
| Compute a maximum-sized native clique embedding in an induced
subgraph of chimera with all chainlengths ``width+1``.
INPUTS:
width: width of the squares to search, also `chainlength`-1
OUTPUT:
score: the score for the returned clique (just ``len(clique)``
in the class :class:`eden_processor`; may differ in subclasses)
clique: a list containing lists of qubits, each associated
to a chain. These lists of qubits are carefully
arranged so that
>>> [zip(chain,chain[1:]) for chain in clique]
is a list of valid couplers. | [
"Compute",
"a",
"maximum",
"-",
"sized",
"native",
"clique",
"embedding",
"in",
"an",
"induced",
"subgraph",
"of",
"chimera",
"with",
"all",
"chainlengths",
"width",
"+",
"1",
"."
]
| 86a1698f15ccd8b0ece0ed868ee49292d3f67f5b | https://github.com/dwavesystems/dwave-system/blob/86a1698f15ccd8b0ece0ed868ee49292d3f67f5b/dwave/embedding/polynomialembedder.py#L496-L544 | train |
dwavesystems/dwave-system | dwave/embedding/polynomialembedder.py | processor._compute_all_deletions | def _compute_all_deletions(self):
"""Returns all minimal edge covers of the set of evil edges.
"""
minimum_evil = []
for disabled_qubits in map(set, product(*self._evil)):
newmin = []
for s in minimum_evil:
if s < disabled_qubits:
break
elif disabled_qubits < s:
continue
newmin.append(s)
else:
minimum_evil = newmin + [disabled_qubits]
return minimum_evil | python | def _compute_all_deletions(self):
"""Returns all minimal edge covers of the set of evil edges.
"""
minimum_evil = []
for disabled_qubits in map(set, product(*self._evil)):
newmin = []
for s in minimum_evil:
if s < disabled_qubits:
break
elif disabled_qubits < s:
continue
newmin.append(s)
else:
minimum_evil = newmin + [disabled_qubits]
return minimum_evil | [
"def",
"_compute_all_deletions",
"(",
"self",
")",
":",
"minimum_evil",
"=",
"[",
"]",
"for",
"disabled_qubits",
"in",
"map",
"(",
"set",
",",
"product",
"(",
"*",
"self",
".",
"_evil",
")",
")",
":",
"newmin",
"=",
"[",
"]",
"for",
"s",
"in",
"minimum_evil",
":",
"if",
"s",
"<",
"disabled_qubits",
":",
"break",
"elif",
"disabled_qubits",
"<",
"s",
":",
"continue",
"newmin",
".",
"append",
"(",
"s",
")",
"else",
":",
"minimum_evil",
"=",
"newmin",
"+",
"[",
"disabled_qubits",
"]",
"return",
"minimum_evil"
]
| Returns all minimal edge covers of the set of evil edges. | [
"Returns",
"all",
"minimal",
"edge",
"covers",
"of",
"the",
"set",
"of",
"evil",
"edges",
"."
]
| 86a1698f15ccd8b0ece0ed868ee49292d3f67f5b | https://github.com/dwavesystems/dwave-system/blob/86a1698f15ccd8b0ece0ed868ee49292d3f67f5b/dwave/embedding/polynomialembedder.py#L810-L824 | train |
dwavesystems/dwave-system | dwave/embedding/polynomialembedder.py | processor._compute_deletions | def _compute_deletions(self):
"""If there are fewer than self._proc_limit possible deletion
sets, compute all subprocessors obtained by deleting a
minimal subset of qubits.
"""
M, N, L, edgelist = self.M, self.N, self.L, self._edgelist
if 2**len(self._evil) <= self._proc_limit:
deletions = self._compute_all_deletions()
self._processors = [self._subprocessor(d) for d in deletions]
else:
self._processors = None | python | def _compute_deletions(self):
"""If there are fewer than self._proc_limit possible deletion
sets, compute all subprocessors obtained by deleting a
minimal subset of qubits.
"""
M, N, L, edgelist = self.M, self.N, self.L, self._edgelist
if 2**len(self._evil) <= self._proc_limit:
deletions = self._compute_all_deletions()
self._processors = [self._subprocessor(d) for d in deletions]
else:
self._processors = None | [
"def",
"_compute_deletions",
"(",
"self",
")",
":",
"M",
",",
"N",
",",
"L",
",",
"edgelist",
"=",
"self",
".",
"M",
",",
"self",
".",
"N",
",",
"self",
".",
"L",
",",
"self",
".",
"_edgelist",
"if",
"2",
"**",
"len",
"(",
"self",
".",
"_evil",
")",
"<=",
"self",
".",
"_proc_limit",
":",
"deletions",
"=",
"self",
".",
"_compute_all_deletions",
"(",
")",
"self",
".",
"_processors",
"=",
"[",
"self",
".",
"_subprocessor",
"(",
"d",
")",
"for",
"d",
"in",
"deletions",
"]",
"else",
":",
"self",
".",
"_processors",
"=",
"None"
]
| If there are fewer than self._proc_limit possible deletion
sets, compute all subprocessors obtained by deleting a
minimal subset of qubits. | [
"If",
"there",
"are",
"fewer",
"than",
"self",
".",
"_proc_limit",
"possible",
"deletion",
"sets",
"compute",
"all",
"subprocessors",
"obtained",
"by",
"deleting",
"a",
"minimal",
"subset",
"of",
"qubits",
"."
]
| 86a1698f15ccd8b0ece0ed868ee49292d3f67f5b | https://github.com/dwavesystems/dwave-system/blob/86a1698f15ccd8b0ece0ed868ee49292d3f67f5b/dwave/embedding/polynomialembedder.py#L836-L846 | train |
dwavesystems/dwave-system | dwave/embedding/polynomialembedder.py | processor._random_subprocessor | def _random_subprocessor(self):
"""Creates a random subprocessor where there is a coupler between
every pair of working qubits on opposite sides of the same cell.
This is guaranteed to be minimal in that adding a qubit back in
will reintroduce a bad coupler, but not to have minimum size.
OUTPUT:
an :class:`eden_processor` instance
"""
deletion = set()
for e in self._evil:
if e[0] in deletion or e[1] in deletion:
continue
deletion.add(choice(e))
return self._subprocessor(deletion) | python | def _random_subprocessor(self):
"""Creates a random subprocessor where there is a coupler between
every pair of working qubits on opposite sides of the same cell.
This is guaranteed to be minimal in that adding a qubit back in
will reintroduce a bad coupler, but not to have minimum size.
OUTPUT:
an :class:`eden_processor` instance
"""
deletion = set()
for e in self._evil:
if e[0] in deletion or e[1] in deletion:
continue
deletion.add(choice(e))
return self._subprocessor(deletion) | [
"def",
"_random_subprocessor",
"(",
"self",
")",
":",
"deletion",
"=",
"set",
"(",
")",
"for",
"e",
"in",
"self",
".",
"_evil",
":",
"if",
"e",
"[",
"0",
"]",
"in",
"deletion",
"or",
"e",
"[",
"1",
"]",
"in",
"deletion",
":",
"continue",
"deletion",
".",
"add",
"(",
"choice",
"(",
"e",
")",
")",
"return",
"self",
".",
"_subprocessor",
"(",
"deletion",
")"
]
| Creates a random subprocessor where there is a coupler between
every pair of working qubits on opposite sides of the same cell.
This is guaranteed to be minimal in that adding a qubit back in
will reintroduce a bad coupler, but not to have minimum size.
OUTPUT:
an :class:`eden_processor` instance | [
"Creates",
"a",
"random",
"subprocessor",
"where",
"there",
"is",
"a",
"coupler",
"between",
"every",
"pair",
"of",
"working",
"qubits",
"on",
"opposite",
"sides",
"of",
"the",
"same",
"cell",
".",
"This",
"is",
"guaranteed",
"to",
"be",
"minimal",
"in",
"that",
"adding",
"a",
"qubit",
"back",
"in",
"will",
"reintroduce",
"a",
"bad",
"coupler",
"but",
"not",
"to",
"have",
"minimum",
"size",
"."
]
| 86a1698f15ccd8b0ece0ed868ee49292d3f67f5b | https://github.com/dwavesystems/dwave-system/blob/86a1698f15ccd8b0ece0ed868ee49292d3f67f5b/dwave/embedding/polynomialembedder.py#L848-L862 | train |
dwavesystems/dwave-system | dwave/embedding/polynomialembedder.py | processor._objective_bestscore | def _objective_bestscore(self, old, new):
"""An objective function that returns True if new has a better score
than old, and ``False`` otherwise.
INPUTS:
old (tuple): a tuple (score, embedding)
new (tuple): a tuple (score, embedding)
"""
(oldscore, oldthing) = old
(newscore, newthing) = new
if oldscore is None:
return True
if newscore is None:
return False
return oldscore < newscore | python | def _objective_bestscore(self, old, new):
"""An objective function that returns True if new has a better score
than old, and ``False`` otherwise.
INPUTS:
old (tuple): a tuple (score, embedding)
new (tuple): a tuple (score, embedding)
"""
(oldscore, oldthing) = old
(newscore, newthing) = new
if oldscore is None:
return True
if newscore is None:
return False
return oldscore < newscore | [
"def",
"_objective_bestscore",
"(",
"self",
",",
"old",
",",
"new",
")",
":",
"(",
"oldscore",
",",
"oldthing",
")",
"=",
"old",
"(",
"newscore",
",",
"newthing",
")",
"=",
"new",
"if",
"oldscore",
"is",
"None",
":",
"return",
"True",
"if",
"newscore",
"is",
"None",
":",
"return",
"False",
"return",
"oldscore",
"<",
"newscore"
]
| An objective function that returns True if new has a better score
than old, and ``False`` otherwise.
INPUTS:
old (tuple): a tuple (score, embedding)
new (tuple): a tuple (score, embedding) | [
"An",
"objective",
"function",
"that",
"returns",
"True",
"if",
"new",
"has",
"a",
"better",
"score",
"than",
"old",
"and",
"False",
"otherwise",
"."
]
| 86a1698f15ccd8b0ece0ed868ee49292d3f67f5b | https://github.com/dwavesystems/dwave-system/blob/86a1698f15ccd8b0ece0ed868ee49292d3f67f5b/dwave/embedding/polynomialembedder.py#L913-L929 | train |
dwavesystems/dwave-system | dwave/embedding/polynomialembedder.py | processor.nativeCliqueEmbed | def nativeCliqueEmbed(self, width):
"""Compute a maximum-sized native clique embedding in an induced
subgraph of chimera with chainsize ``width+1``. If possible,
returns a uniform choice among all largest cliques.
INPUTS:
width: width of the squares to search, also `chainlength-1`
OUTPUT:
clique: a list containing lists of qubits, each associated
to a chain. These lists of qubits are carefully
arranged so that
>>> [zip(chain,chain[1:]) for chain in clique]
is a list of valid couplers.
Note: this fails to return a uniform choice if there are broken
intra-cell couplers between working qubits. (the choice is
uniform on a particular subprocessor)
"""
def f(x):
return x.nativeCliqueEmbed(width)
objective = self._objective_bestscore
return self._translate(self._map_to_processors(f, objective)) | python | def nativeCliqueEmbed(self, width):
"""Compute a maximum-sized native clique embedding in an induced
subgraph of chimera with chainsize ``width+1``. If possible,
returns a uniform choice among all largest cliques.
INPUTS:
width: width of the squares to search, also `chainlength-1`
OUTPUT:
clique: a list containing lists of qubits, each associated
to a chain. These lists of qubits are carefully
arranged so that
>>> [zip(chain,chain[1:]) for chain in clique]
is a list of valid couplers.
Note: this fails to return a uniform choice if there are broken
intra-cell couplers between working qubits. (the choice is
uniform on a particular subprocessor)
"""
def f(x):
return x.nativeCliqueEmbed(width)
objective = self._objective_bestscore
return self._translate(self._map_to_processors(f, objective)) | [
"def",
"nativeCliqueEmbed",
"(",
"self",
",",
"width",
")",
":",
"def",
"f",
"(",
"x",
")",
":",
"return",
"x",
".",
"nativeCliqueEmbed",
"(",
"width",
")",
"objective",
"=",
"self",
".",
"_objective_bestscore",
"return",
"self",
".",
"_translate",
"(",
"self",
".",
"_map_to_processors",
"(",
"f",
",",
"objective",
")",
")"
]
| Compute a maximum-sized native clique embedding in an induced
subgraph of chimera with chainsize ``width+1``. If possible,
returns a uniform choice among all largest cliques.
INPUTS:
width: width of the squares to search, also `chainlength-1`
OUTPUT:
clique: a list containing lists of qubits, each associated
to a chain. These lists of qubits are carefully
arranged so that
>>> [zip(chain,chain[1:]) for chain in clique]
is a list of valid couplers.
Note: this fails to return a uniform choice if there are broken
intra-cell couplers between working qubits. (the choice is
uniform on a particular subprocessor) | [
"Compute",
"a",
"maximum",
"-",
"sized",
"native",
"clique",
"embedding",
"in",
"an",
"induced",
"subgraph",
"of",
"chimera",
"with",
"chainsize",
"width",
"+",
"1",
".",
"If",
"possible",
"returns",
"a",
"uniform",
"choice",
"among",
"all",
"largest",
"cliques",
"."
]
| 86a1698f15ccd8b0ece0ed868ee49292d3f67f5b | https://github.com/dwavesystems/dwave-system/blob/86a1698f15ccd8b0ece0ed868ee49292d3f67f5b/dwave/embedding/polynomialembedder.py#L1038-L1062 | train |
dwavesystems/dwave-system | dwave/embedding/polynomialembedder.py | processor._translate | def _translate(self, embedding):
"Translates an embedding back to linear coordinates if necessary."
if embedding is None:
return None
if not self._linear:
return embedding
return [_bulk_to_linear(self.M, self.N, self.L, chain) for chain in embedding] | python | def _translate(self, embedding):
"Translates an embedding back to linear coordinates if necessary."
if embedding is None:
return None
if not self._linear:
return embedding
return [_bulk_to_linear(self.M, self.N, self.L, chain) for chain in embedding] | [
"def",
"_translate",
"(",
"self",
",",
"embedding",
")",
":",
"if",
"embedding",
"is",
"None",
":",
"return",
"None",
"if",
"not",
"self",
".",
"_linear",
":",
"return",
"embedding",
"return",
"[",
"_bulk_to_linear",
"(",
"self",
".",
"M",
",",
"self",
".",
"N",
",",
"self",
".",
"L",
",",
"chain",
")",
"for",
"chain",
"in",
"embedding",
"]"
]
| Translates an embedding back to linear coordinates if necessary. | [
"Translates",
"an",
"embedding",
"back",
"to",
"linear",
"coordinates",
"if",
"necessary",
"."
]
| 86a1698f15ccd8b0ece0ed868ee49292d3f67f5b | https://github.com/dwavesystems/dwave-system/blob/86a1698f15ccd8b0ece0ed868ee49292d3f67f5b/dwave/embedding/polynomialembedder.py#L1152-L1158 | train |
dwavesystems/dwave-system | dwave/system/composites/virtual_graph.py | _validate_chain_strength | def _validate_chain_strength(sampler, chain_strength):
"""Validate the provided chain strength, checking J-ranges of the sampler's children.
Args:
chain_strength (float) The provided chain strength. Use None to use J-range.
Returns (float):
A valid chain strength, either provided or based on available J-range. Positive finite float.
"""
properties = sampler.properties
if 'extended_j_range' in properties:
max_chain_strength = - min(properties['extended_j_range'])
elif 'j_range' in properties:
max_chain_strength = - min(properties['j_range'])
else:
raise ValueError("input sampler should have 'j_range' and/or 'extended_j_range' property.")
if chain_strength is None:
chain_strength = max_chain_strength
elif chain_strength > max_chain_strength:
raise ValueError("Provided chain strength exceedds the allowed range.")
return chain_strength | python | def _validate_chain_strength(sampler, chain_strength):
"""Validate the provided chain strength, checking J-ranges of the sampler's children.
Args:
chain_strength (float) The provided chain strength. Use None to use J-range.
Returns (float):
A valid chain strength, either provided or based on available J-range. Positive finite float.
"""
properties = sampler.properties
if 'extended_j_range' in properties:
max_chain_strength = - min(properties['extended_j_range'])
elif 'j_range' in properties:
max_chain_strength = - min(properties['j_range'])
else:
raise ValueError("input sampler should have 'j_range' and/or 'extended_j_range' property.")
if chain_strength is None:
chain_strength = max_chain_strength
elif chain_strength > max_chain_strength:
raise ValueError("Provided chain strength exceedds the allowed range.")
return chain_strength | [
"def",
"_validate_chain_strength",
"(",
"sampler",
",",
"chain_strength",
")",
":",
"properties",
"=",
"sampler",
".",
"properties",
"if",
"'extended_j_range'",
"in",
"properties",
":",
"max_chain_strength",
"=",
"-",
"min",
"(",
"properties",
"[",
"'extended_j_range'",
"]",
")",
"elif",
"'j_range'",
"in",
"properties",
":",
"max_chain_strength",
"=",
"-",
"min",
"(",
"properties",
"[",
"'j_range'",
"]",
")",
"else",
":",
"raise",
"ValueError",
"(",
"\"input sampler should have 'j_range' and/or 'extended_j_range' property.\"",
")",
"if",
"chain_strength",
"is",
"None",
":",
"chain_strength",
"=",
"max_chain_strength",
"elif",
"chain_strength",
">",
"max_chain_strength",
":",
"raise",
"ValueError",
"(",
"\"Provided chain strength exceedds the allowed range.\"",
")",
"return",
"chain_strength"
]
| Validate the provided chain strength, checking J-ranges of the sampler's children.
Args:
chain_strength (float) The provided chain strength. Use None to use J-range.
Returns (float):
A valid chain strength, either provided or based on available J-range. Positive finite float. | [
"Validate",
"the",
"provided",
"chain",
"strength",
"checking",
"J",
"-",
"ranges",
"of",
"the",
"sampler",
"s",
"children",
"."
]
| 86a1698f15ccd8b0ece0ed868ee49292d3f67f5b | https://github.com/dwavesystems/dwave-system/blob/86a1698f15ccd8b0ece0ed868ee49292d3f67f5b/dwave/system/composites/virtual_graph.py#L368-L392 | train |
dwavesystems/dwave-system | dwave/system/composites/virtual_graph.py | VirtualGraphComposite.sample | def sample(self, bqm, apply_flux_bias_offsets=True, **kwargs):
"""Sample from the given Ising model.
Args:
h (list/dict):
Linear biases of the Ising model. If a list, the list's indices
are used as variable labels.
J (dict of (int, int):float):
Quadratic biases of the Ising model.
apply_flux_bias_offsets (bool, optional):
If True, use the calculated flux_bias offsets (if available).
**kwargs:
Optional keyword arguments for the sampling method, specified per solver.
Examples:
This example uses :class:`.VirtualGraphComposite` to instantiate a composed sampler
that submits an Ising problem to a D-Wave solver selected by the user's
default
:std:doc:`D-Wave Cloud Client configuration file <cloud-client:intro>`.
The problem represents a logical
NOT gate using penalty function :math:`P = xy`, where variable x is the gate's input
and y the output. This simple two-variable problem is manually minor-embedded
to a single :std:doc:`Chimera <system:intro>` unit cell: each variable
is represented by a chain of half the cell's qubits, x as qubits 0, 1, 4, 5,
and y as qubits 2, 3, 6, 7.
The chain strength is set to half the maximum allowed found from querying the solver's extended
J range. In this example, the ten returned samples all represent valid states of
the NOT gate.
>>> from dwave.system.samplers import DWaveSampler
>>> from dwave.system.composites import VirtualGraphComposite
>>> embedding = {'x': {0, 4, 1, 5}, 'y': {2, 6, 3, 7}}
>>> DWaveSampler().properties['extended_j_range'] # doctest: +SKIP
[-2.0, 1.0]
>>> sampler = VirtualGraphComposite(DWaveSampler(), embedding, chain_strength=1) # doctest: +SKIP
>>> h = {}
>>> J = {('x', 'y'): 1}
>>> response = sampler.sample_ising(h, J, num_reads=10) # doctest: +SKIP
>>> for sample in response.samples(): # doctest: +SKIP
... print(sample)
...
{'y': -1, 'x': 1}
{'y': 1, 'x': -1}
{'y': -1, 'x': 1}
{'y': -1, 'x': 1}
{'y': -1, 'x': 1}
{'y': 1, 'x': -1}
{'y': 1, 'x': -1}
{'y': 1, 'x': -1}
{'y': -1, 'x': 1}
{'y': 1, 'x': -1}
See `Ocean Glossary <https://docs.ocean.dwavesys.com/en/latest/glossary.html>`_
for explanations of technical terms in descriptions of Ocean tools.
"""
child = self.child
if apply_flux_bias_offsets:
if self.flux_biases is not None:
kwargs[FLUX_BIAS_KWARG] = self.flux_biases
return child.sample(bqm, **kwargs) | python | def sample(self, bqm, apply_flux_bias_offsets=True, **kwargs):
"""Sample from the given Ising model.
Args:
h (list/dict):
Linear biases of the Ising model. If a list, the list's indices
are used as variable labels.
J (dict of (int, int):float):
Quadratic biases of the Ising model.
apply_flux_bias_offsets (bool, optional):
If True, use the calculated flux_bias offsets (if available).
**kwargs:
Optional keyword arguments for the sampling method, specified per solver.
Examples:
This example uses :class:`.VirtualGraphComposite` to instantiate a composed sampler
that submits an Ising problem to a D-Wave solver selected by the user's
default
:std:doc:`D-Wave Cloud Client configuration file <cloud-client:intro>`.
The problem represents a logical
NOT gate using penalty function :math:`P = xy`, where variable x is the gate's input
and y the output. This simple two-variable problem is manually minor-embedded
to a single :std:doc:`Chimera <system:intro>` unit cell: each variable
is represented by a chain of half the cell's qubits, x as qubits 0, 1, 4, 5,
and y as qubits 2, 3, 6, 7.
The chain strength is set to half the maximum allowed found from querying the solver's extended
J range. In this example, the ten returned samples all represent valid states of
the NOT gate.
>>> from dwave.system.samplers import DWaveSampler
>>> from dwave.system.composites import VirtualGraphComposite
>>> embedding = {'x': {0, 4, 1, 5}, 'y': {2, 6, 3, 7}}
>>> DWaveSampler().properties['extended_j_range'] # doctest: +SKIP
[-2.0, 1.0]
>>> sampler = VirtualGraphComposite(DWaveSampler(), embedding, chain_strength=1) # doctest: +SKIP
>>> h = {}
>>> J = {('x', 'y'): 1}
>>> response = sampler.sample_ising(h, J, num_reads=10) # doctest: +SKIP
>>> for sample in response.samples(): # doctest: +SKIP
... print(sample)
...
{'y': -1, 'x': 1}
{'y': 1, 'x': -1}
{'y': -1, 'x': 1}
{'y': -1, 'x': 1}
{'y': -1, 'x': 1}
{'y': 1, 'x': -1}
{'y': 1, 'x': -1}
{'y': 1, 'x': -1}
{'y': -1, 'x': 1}
{'y': 1, 'x': -1}
See `Ocean Glossary <https://docs.ocean.dwavesys.com/en/latest/glossary.html>`_
for explanations of technical terms in descriptions of Ocean tools.
"""
child = self.child
if apply_flux_bias_offsets:
if self.flux_biases is not None:
kwargs[FLUX_BIAS_KWARG] = self.flux_biases
return child.sample(bqm, **kwargs) | [
"def",
"sample",
"(",
"self",
",",
"bqm",
",",
"apply_flux_bias_offsets",
"=",
"True",
",",
"*",
"*",
"kwargs",
")",
":",
"child",
"=",
"self",
".",
"child",
"if",
"apply_flux_bias_offsets",
":",
"if",
"self",
".",
"flux_biases",
"is",
"not",
"None",
":",
"kwargs",
"[",
"FLUX_BIAS_KWARG",
"]",
"=",
"self",
".",
"flux_biases",
"return",
"child",
".",
"sample",
"(",
"bqm",
",",
"*",
"*",
"kwargs",
")"
]
| Sample from the given Ising model.
Args:
h (list/dict):
Linear biases of the Ising model. If a list, the list's indices
are used as variable labels.
J (dict of (int, int):float):
Quadratic biases of the Ising model.
apply_flux_bias_offsets (bool, optional):
If True, use the calculated flux_bias offsets (if available).
**kwargs:
Optional keyword arguments for the sampling method, specified per solver.
Examples:
This example uses :class:`.VirtualGraphComposite` to instantiate a composed sampler
that submits an Ising problem to a D-Wave solver selected by the user's
default
:std:doc:`D-Wave Cloud Client configuration file <cloud-client:intro>`.
The problem represents a logical
NOT gate using penalty function :math:`P = xy`, where variable x is the gate's input
and y the output. This simple two-variable problem is manually minor-embedded
to a single :std:doc:`Chimera <system:intro>` unit cell: each variable
is represented by a chain of half the cell's qubits, x as qubits 0, 1, 4, 5,
and y as qubits 2, 3, 6, 7.
The chain strength is set to half the maximum allowed found from querying the solver's extended
J range. In this example, the ten returned samples all represent valid states of
the NOT gate.
>>> from dwave.system.samplers import DWaveSampler
>>> from dwave.system.composites import VirtualGraphComposite
>>> embedding = {'x': {0, 4, 1, 5}, 'y': {2, 6, 3, 7}}
>>> DWaveSampler().properties['extended_j_range'] # doctest: +SKIP
[-2.0, 1.0]
>>> sampler = VirtualGraphComposite(DWaveSampler(), embedding, chain_strength=1) # doctest: +SKIP
>>> h = {}
>>> J = {('x', 'y'): 1}
>>> response = sampler.sample_ising(h, J, num_reads=10) # doctest: +SKIP
>>> for sample in response.samples(): # doctest: +SKIP
... print(sample)
...
{'y': -1, 'x': 1}
{'y': 1, 'x': -1}
{'y': -1, 'x': 1}
{'y': -1, 'x': 1}
{'y': -1, 'x': 1}
{'y': 1, 'x': -1}
{'y': 1, 'x': -1}
{'y': 1, 'x': -1}
{'y': -1, 'x': 1}
{'y': 1, 'x': -1}
See `Ocean Glossary <https://docs.ocean.dwavesys.com/en/latest/glossary.html>`_
for explanations of technical terms in descriptions of Ocean tools. | [
"Sample",
"from",
"the",
"given",
"Ising",
"model",
"."
]
| 86a1698f15ccd8b0ece0ed868ee49292d3f67f5b | https://github.com/dwavesystems/dwave-system/blob/86a1698f15ccd8b0ece0ed868ee49292d3f67f5b/dwave/system/composites/virtual_graph.py#L299-L365 | train |
dwavesystems/dwave-system | dwave/system/flux_bias_offsets.py | get_flux_biases | def get_flux_biases(sampler, embedding, chain_strength, num_reads=1000, max_age=3600):
"""Get the flux bias offsets for sampler and embedding.
Args:
sampler (:obj:`.DWaveSampler`):
A D-Wave sampler.
embedding (dict[hashable, iterable]):
Mapping from a source graph to the specified sampler’s graph (the target graph). The
keys of embedding should be nodes in the source graph, the values should be an iterable
of nodes in the target graph.
chain_strength (number):
Desired chain coupling strength. This is the magnitude of couplings between qubits
in a chain.
num_reads (int, optional, default=1000):
The number of reads per system call if new flux biases need to be calculated.
max_age (int, optional, default=3600):
The maximum age (in seconds) allowed for previously calculated flux bias offsets.
Returns:
dict: A dict where the keys are the nodes in the chains and the values are the flux biases.
"""
if not isinstance(sampler, dimod.Sampler):
raise TypeError("input sampler should be DWaveSampler")
# try to read the chip_id, otherwise get the name
system_name = sampler.properties.get('chip_id', str(sampler.__class__))
try:
with cache_connect() as cur:
fbo = get_flux_biases_from_cache(cur, embedding.values(), system_name,
chain_strength=chain_strength,
max_age=max_age)
return fbo
except MissingFluxBias:
pass
# if dwave-drivers is not available, then we can't calculate the biases
try:
import dwave.drivers as drivers
except ImportError:
msg = ("dwave-drivers not found, cannot calculate flux biases. dwave-drivers can be "
"installed with "
"'pip install dwave-drivers --extra-index-url https://pypi.dwavesys.com/simple'. "
"See documentation for dwave-drivers license.")
raise RuntimeError(msg)
fbo = drivers.oneshot_flux_bias(sampler, embedding.values(), num_reads=num_reads,
chain_strength=chain_strength)
# store them in the cache
with cache_connect() as cur:
for chain in embedding.values():
v = next(iter(chain))
flux_bias = fbo.get(v, 0.0)
insert_flux_bias(cur, chain, system_name, flux_bias, chain_strength)
return fbo | python | def get_flux_biases(sampler, embedding, chain_strength, num_reads=1000, max_age=3600):
"""Get the flux bias offsets for sampler and embedding.
Args:
sampler (:obj:`.DWaveSampler`):
A D-Wave sampler.
embedding (dict[hashable, iterable]):
Mapping from a source graph to the specified sampler’s graph (the target graph). The
keys of embedding should be nodes in the source graph, the values should be an iterable
of nodes in the target graph.
chain_strength (number):
Desired chain coupling strength. This is the magnitude of couplings between qubits
in a chain.
num_reads (int, optional, default=1000):
The number of reads per system call if new flux biases need to be calculated.
max_age (int, optional, default=3600):
The maximum age (in seconds) allowed for previously calculated flux bias offsets.
Returns:
dict: A dict where the keys are the nodes in the chains and the values are the flux biases.
"""
if not isinstance(sampler, dimod.Sampler):
raise TypeError("input sampler should be DWaveSampler")
# try to read the chip_id, otherwise get the name
system_name = sampler.properties.get('chip_id', str(sampler.__class__))
try:
with cache_connect() as cur:
fbo = get_flux_biases_from_cache(cur, embedding.values(), system_name,
chain_strength=chain_strength,
max_age=max_age)
return fbo
except MissingFluxBias:
pass
# if dwave-drivers is not available, then we can't calculate the biases
try:
import dwave.drivers as drivers
except ImportError:
msg = ("dwave-drivers not found, cannot calculate flux biases. dwave-drivers can be "
"installed with "
"'pip install dwave-drivers --extra-index-url https://pypi.dwavesys.com/simple'. "
"See documentation for dwave-drivers license.")
raise RuntimeError(msg)
fbo = drivers.oneshot_flux_bias(sampler, embedding.values(), num_reads=num_reads,
chain_strength=chain_strength)
# store them in the cache
with cache_connect() as cur:
for chain in embedding.values():
v = next(iter(chain))
flux_bias = fbo.get(v, 0.0)
insert_flux_bias(cur, chain, system_name, flux_bias, chain_strength)
return fbo | [
"def",
"get_flux_biases",
"(",
"sampler",
",",
"embedding",
",",
"chain_strength",
",",
"num_reads",
"=",
"1000",
",",
"max_age",
"=",
"3600",
")",
":",
"if",
"not",
"isinstance",
"(",
"sampler",
",",
"dimod",
".",
"Sampler",
")",
":",
"raise",
"TypeError",
"(",
"\"input sampler should be DWaveSampler\"",
")",
"# try to read the chip_id, otherwise get the name",
"system_name",
"=",
"sampler",
".",
"properties",
".",
"get",
"(",
"'chip_id'",
",",
"str",
"(",
"sampler",
".",
"__class__",
")",
")",
"try",
":",
"with",
"cache_connect",
"(",
")",
"as",
"cur",
":",
"fbo",
"=",
"get_flux_biases_from_cache",
"(",
"cur",
",",
"embedding",
".",
"values",
"(",
")",
",",
"system_name",
",",
"chain_strength",
"=",
"chain_strength",
",",
"max_age",
"=",
"max_age",
")",
"return",
"fbo",
"except",
"MissingFluxBias",
":",
"pass",
"# if dwave-drivers is not available, then we can't calculate the biases",
"try",
":",
"import",
"dwave",
".",
"drivers",
"as",
"drivers",
"except",
"ImportError",
":",
"msg",
"=",
"(",
"\"dwave-drivers not found, cannot calculate flux biases. dwave-drivers can be \"",
"\"installed with \"",
"\"'pip install dwave-drivers --extra-index-url https://pypi.dwavesys.com/simple'. \"",
"\"See documentation for dwave-drivers license.\"",
")",
"raise",
"RuntimeError",
"(",
"msg",
")",
"fbo",
"=",
"drivers",
".",
"oneshot_flux_bias",
"(",
"sampler",
",",
"embedding",
".",
"values",
"(",
")",
",",
"num_reads",
"=",
"num_reads",
",",
"chain_strength",
"=",
"chain_strength",
")",
"# store them in the cache",
"with",
"cache_connect",
"(",
")",
"as",
"cur",
":",
"for",
"chain",
"in",
"embedding",
".",
"values",
"(",
")",
":",
"v",
"=",
"next",
"(",
"iter",
"(",
"chain",
")",
")",
"flux_bias",
"=",
"fbo",
".",
"get",
"(",
"v",
",",
"0.0",
")",
"insert_flux_bias",
"(",
"cur",
",",
"chain",
",",
"system_name",
",",
"flux_bias",
",",
"chain_strength",
")",
"return",
"fbo"
]
| Get the flux bias offsets for sampler and embedding.
Args:
sampler (:obj:`.DWaveSampler`):
A D-Wave sampler.
embedding (dict[hashable, iterable]):
Mapping from a source graph to the specified sampler’s graph (the target graph). The
keys of embedding should be nodes in the source graph, the values should be an iterable
of nodes in the target graph.
chain_strength (number):
Desired chain coupling strength. This is the magnitude of couplings between qubits
in a chain.
num_reads (int, optional, default=1000):
The number of reads per system call if new flux biases need to be calculated.
max_age (int, optional, default=3600):
The maximum age (in seconds) allowed for previously calculated flux bias offsets.
Returns:
dict: A dict where the keys are the nodes in the chains and the values are the flux biases. | [
"Get",
"the",
"flux",
"bias",
"offsets",
"for",
"sampler",
"and",
"embedding",
"."
]
| 86a1698f15ccd8b0ece0ed868ee49292d3f67f5b | https://github.com/dwavesystems/dwave-system/blob/86a1698f15ccd8b0ece0ed868ee49292d3f67f5b/dwave/system/flux_bias_offsets.py#L26-L88 | train |
dwavesystems/dwave-system | dwave/embedding/chimera.py | find_clique_embedding | def find_clique_embedding(k, m, n=None, t=None, target_edges=None):
"""Find an embedding for a clique in a Chimera graph.
Given a target :term:`Chimera` graph size, and a clique (fully connect graph),
attempts to find an embedding.
Args:
k (int/iterable):
Clique to embed. If k is an integer, generates an embedding for a clique of size k
labelled [0,k-1].
If k is an iterable, generates an embedding for a clique of size len(k), where
iterable k is the variable labels.
m (int):
Number of rows in the Chimera lattice.
n (int, optional, default=m):
Number of columns in the Chimera lattice.
t (int, optional, default 4):
Size of the shore within each Chimera tile.
target_edges (iterable[edge]):
A list of edges in the target Chimera graph. Nodes are labelled as
returned by :func:`~dwave_networkx.generators.chimera_graph`.
Returns:
dict: An embedding mapping a clique to the Chimera lattice.
Examples:
The first example finds an embedding for a :math:`K_4` complete graph in a single
Chimera unit cell. The second for an alphanumerically labeled :math:`K_3`
graph in 4 unit cells.
>>> from dwave.embedding.chimera import find_clique_embedding
...
>>> embedding = find_clique_embedding(4, 1, 1)
>>> embedding # doctest: +SKIP
{0: [4, 0], 1: [5, 1], 2: [6, 2], 3: [7, 3]}
>>> from dwave.embedding.chimera import find_clique_embedding
...
>>> embedding = find_clique_embedding(['a', 'b', 'c'], m=2, n=2, t=4)
>>> embedding # doctest: +SKIP
{'a': [20, 16], 'b': [21, 17], 'c': [22, 18]}
"""
import random
_, nodes = k
m, n, t, target_edges = _chimera_input(m, n, t, target_edges)
# Special cases to return optimal embeddings for small k. The general clique embedder uses chains of length
# at least 2, whereas cliques of size 1 and 2 can be embedded with single-qubit chains.
if len(nodes) == 1:
# If k == 1 we simply return a single chain consisting of a randomly sampled qubit.
qubits = set().union(*target_edges)
qubit = random.choice(tuple(qubits))
embedding = [[qubit]]
elif len(nodes) == 2:
# If k == 2 we simply return two one-qubit chains that are the endpoints of a randomly sampled coupler.
if not isinstance(target_edges, list):
edges = list(target_edges)
edge = edges[random.randrange(len(edges))]
embedding = [[edge[0]], [edge[1]]]
else:
# General case for k > 2.
embedding = processor(target_edges, M=m, N=n, L=t).tightestNativeClique(len(nodes))
if not embedding:
raise ValueError("cannot find a K{} embedding for given Chimera lattice".format(k))
return dict(zip(nodes, embedding)) | python | def find_clique_embedding(k, m, n=None, t=None, target_edges=None):
"""Find an embedding for a clique in a Chimera graph.
Given a target :term:`Chimera` graph size, and a clique (fully connect graph),
attempts to find an embedding.
Args:
k (int/iterable):
Clique to embed. If k is an integer, generates an embedding for a clique of size k
labelled [0,k-1].
If k is an iterable, generates an embedding for a clique of size len(k), where
iterable k is the variable labels.
m (int):
Number of rows in the Chimera lattice.
n (int, optional, default=m):
Number of columns in the Chimera lattice.
t (int, optional, default 4):
Size of the shore within each Chimera tile.
target_edges (iterable[edge]):
A list of edges in the target Chimera graph. Nodes are labelled as
returned by :func:`~dwave_networkx.generators.chimera_graph`.
Returns:
dict: An embedding mapping a clique to the Chimera lattice.
Examples:
The first example finds an embedding for a :math:`K_4` complete graph in a single
Chimera unit cell. The second for an alphanumerically labeled :math:`K_3`
graph in 4 unit cells.
>>> from dwave.embedding.chimera import find_clique_embedding
...
>>> embedding = find_clique_embedding(4, 1, 1)
>>> embedding # doctest: +SKIP
{0: [4, 0], 1: [5, 1], 2: [6, 2], 3: [7, 3]}
>>> from dwave.embedding.chimera import find_clique_embedding
...
>>> embedding = find_clique_embedding(['a', 'b', 'c'], m=2, n=2, t=4)
>>> embedding # doctest: +SKIP
{'a': [20, 16], 'b': [21, 17], 'c': [22, 18]}
"""
import random
_, nodes = k
m, n, t, target_edges = _chimera_input(m, n, t, target_edges)
# Special cases to return optimal embeddings for small k. The general clique embedder uses chains of length
# at least 2, whereas cliques of size 1 and 2 can be embedded with single-qubit chains.
if len(nodes) == 1:
# If k == 1 we simply return a single chain consisting of a randomly sampled qubit.
qubits = set().union(*target_edges)
qubit = random.choice(tuple(qubits))
embedding = [[qubit]]
elif len(nodes) == 2:
# If k == 2 we simply return two one-qubit chains that are the endpoints of a randomly sampled coupler.
if not isinstance(target_edges, list):
edges = list(target_edges)
edge = edges[random.randrange(len(edges))]
embedding = [[edge[0]], [edge[1]]]
else:
# General case for k > 2.
embedding = processor(target_edges, M=m, N=n, L=t).tightestNativeClique(len(nodes))
if not embedding:
raise ValueError("cannot find a K{} embedding for given Chimera lattice".format(k))
return dict(zip(nodes, embedding)) | [
"def",
"find_clique_embedding",
"(",
"k",
",",
"m",
",",
"n",
"=",
"None",
",",
"t",
"=",
"None",
",",
"target_edges",
"=",
"None",
")",
":",
"import",
"random",
"_",
",",
"nodes",
"=",
"k",
"m",
",",
"n",
",",
"t",
",",
"target_edges",
"=",
"_chimera_input",
"(",
"m",
",",
"n",
",",
"t",
",",
"target_edges",
")",
"# Special cases to return optimal embeddings for small k. The general clique embedder uses chains of length",
"# at least 2, whereas cliques of size 1 and 2 can be embedded with single-qubit chains.",
"if",
"len",
"(",
"nodes",
")",
"==",
"1",
":",
"# If k == 1 we simply return a single chain consisting of a randomly sampled qubit.",
"qubits",
"=",
"set",
"(",
")",
".",
"union",
"(",
"*",
"target_edges",
")",
"qubit",
"=",
"random",
".",
"choice",
"(",
"tuple",
"(",
"qubits",
")",
")",
"embedding",
"=",
"[",
"[",
"qubit",
"]",
"]",
"elif",
"len",
"(",
"nodes",
")",
"==",
"2",
":",
"# If k == 2 we simply return two one-qubit chains that are the endpoints of a randomly sampled coupler.",
"if",
"not",
"isinstance",
"(",
"target_edges",
",",
"list",
")",
":",
"edges",
"=",
"list",
"(",
"target_edges",
")",
"edge",
"=",
"edges",
"[",
"random",
".",
"randrange",
"(",
"len",
"(",
"edges",
")",
")",
"]",
"embedding",
"=",
"[",
"[",
"edge",
"[",
"0",
"]",
"]",
",",
"[",
"edge",
"[",
"1",
"]",
"]",
"]",
"else",
":",
"# General case for k > 2.",
"embedding",
"=",
"processor",
"(",
"target_edges",
",",
"M",
"=",
"m",
",",
"N",
"=",
"n",
",",
"L",
"=",
"t",
")",
".",
"tightestNativeClique",
"(",
"len",
"(",
"nodes",
")",
")",
"if",
"not",
"embedding",
":",
"raise",
"ValueError",
"(",
"\"cannot find a K{} embedding for given Chimera lattice\"",
".",
"format",
"(",
"k",
")",
")",
"return",
"dict",
"(",
"zip",
"(",
"nodes",
",",
"embedding",
")",
")"
]
| Find an embedding for a clique in a Chimera graph.
Given a target :term:`Chimera` graph size, and a clique (fully connect graph),
attempts to find an embedding.
Args:
k (int/iterable):
Clique to embed. If k is an integer, generates an embedding for a clique of size k
labelled [0,k-1].
If k is an iterable, generates an embedding for a clique of size len(k), where
iterable k is the variable labels.
m (int):
Number of rows in the Chimera lattice.
n (int, optional, default=m):
Number of columns in the Chimera lattice.
t (int, optional, default 4):
Size of the shore within each Chimera tile.
target_edges (iterable[edge]):
A list of edges in the target Chimera graph. Nodes are labelled as
returned by :func:`~dwave_networkx.generators.chimera_graph`.
Returns:
dict: An embedding mapping a clique to the Chimera lattice.
Examples:
The first example finds an embedding for a :math:`K_4` complete graph in a single
Chimera unit cell. The second for an alphanumerically labeled :math:`K_3`
graph in 4 unit cells.
>>> from dwave.embedding.chimera import find_clique_embedding
...
>>> embedding = find_clique_embedding(4, 1, 1)
>>> embedding # doctest: +SKIP
{0: [4, 0], 1: [5, 1], 2: [6, 2], 3: [7, 3]}
>>> from dwave.embedding.chimera import find_clique_embedding
...
>>> embedding = find_clique_embedding(['a', 'b', 'c'], m=2, n=2, t=4)
>>> embedding # doctest: +SKIP
{'a': [20, 16], 'b': [21, 17], 'c': [22, 18]} | [
"Find",
"an",
"embedding",
"for",
"a",
"clique",
"in",
"a",
"Chimera",
"graph",
"."
]
| 86a1698f15ccd8b0ece0ed868ee49292d3f67f5b | https://github.com/dwavesystems/dwave-system/blob/86a1698f15ccd8b0ece0ed868ee49292d3f67f5b/dwave/embedding/chimera.py#L27-L106 | train |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.