code
stringlengths
22
1.05M
apis
listlengths
1
3.31k
extract_api
stringlengths
75
3.25M
import SLIX if SLIX.toolbox.gpu_available: print(SLIX.toolbox.gpu_available) from SLIX.GPU import _toolbox as ntoolbox import cupy from numba import cuda threads_per_block = (1, 1) blocks_per_grid = (1, 1) class TestNumbaToolboxGPU: def test_peak_cleanup(self): test_one_peak = cupy.array([0, 1, 0, 0]).reshape((1, 1, 4)) result = cupy.zeros(test_one_peak.shape, dtype='int8') ntoolbox._peaks[blocks_per_grid, threads_per_block](test_one_peak, result) cuda.synchronize() assert cupy.all(cupy.array([0, 1, 0, 0]) == result) test_two_peak = cupy.array([0, 1, 1, 0]).reshape((1, 1, 4)) result = cupy.zeros(test_two_peak.shape, dtype='int8') ntoolbox._peaks[blocks_per_grid, threads_per_block](test_two_peak, result) assert cupy.all(cupy.array([0, 1, 0, 0]) == result) test_three_peak = cupy.array([0, 1, 1, 1, 0]).reshape((1, 1, 5)) result = cupy.zeros(test_three_peak.shape, dtype='int8') ntoolbox._peaks[blocks_per_grid, threads_per_block](test_three_peak, result) assert cupy.all(cupy.array([0, 0, 1, 0, 0]) == result) test_double_three_peak = cupy.array([0, 1, 1, 1, 0, 1, 1, 1, 0]).reshape((1, 1, 9)) result = cupy.zeros(test_double_three_peak.shape, dtype='int8') ntoolbox._peaks[blocks_per_grid, threads_per_block](test_double_three_peak, result) assert cupy.all(cupy.array([0, 0, 1, 0, 0, 0, 1, 0, 0]) == result) def test_prominence(self): test_array = cupy.array([0, 0.1, 0.2, 0.4, 0.8, 1, 0.5, 0.7, 0.9, 0.5, 0.3, 0.95, 0], dtype='float32')\ .reshape((1, 1, 13)) peaks = cupy.array([0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0], dtype='int8').reshape((1, 1, 13)) expected_prominence = cupy.array([0, 0, 0, 0, 0, 1, 0, 0, 0.4, 0, 0, 0.65, 0]).reshape((1, 1, 13)) toolbox_prominence = cupy.zeros(expected_prominence.shape, dtype='float32') ntoolbox._prominence[blocks_per_grid, threads_per_block](test_array, peaks, toolbox_prominence) print(toolbox_prominence) assert cupy.all(cupy.isclose(expected_prominence, toolbox_prominence)) def test_peakwidth(self): test_array = cupy.array([0, 0.1, 0.2, 0.5, 0.8, 1, 0.77, 0.7, 0.66, 0.5, 0.74, 0.98, 0.74], dtype='float32')\ .reshape((1, 1, 13)) peaks = cupy.array([0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0], dtype='int8').reshape((1, 1, 13)) prominence = cupy.array([0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0.48, 0], dtype='float32').reshape((1, 1, 13)) expected_width = cupy.array([0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 2, 0]).reshape((1, 1, 13)) toolbox_width = cupy.zeros(expected_width.shape, dtype='float32') ntoolbox._peakwidth[blocks_per_grid, threads_per_block](test_array, peaks, prominence, toolbox_width, 0.5) assert cupy.all(toolbox_width == expected_width) def test_peakdistance(self): test_arr = cupy.array(([False, False, True, False, False, False, False, True, False] + [False] * 15), dtype='int8')\ .reshape((1, 1, 24)) expected_distance = 75 toolbox_distance = cupy.zeros(test_arr.shape, dtype='float32') ntoolbox._peakdistance[blocks_per_grid, threads_per_block]\ (test_arr, cupy.zeros(test_arr.shape, dtype='float32'), cupy.array([[2]], dtype='int8'), toolbox_distance) assert toolbox_distance[0, 0, 2] == expected_distance assert toolbox_distance[0, 0, 7] == 360 - expected_distance def test_direction(self): # Test for one peak one_peak_arr = cupy.array([0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])\ .reshape((1, 1, 24)).astype('int8') expected_direction = cupy.array([45, ntoolbox.BACKGROUND_COLOR, ntoolbox.BACKGROUND_COLOR]) toolbox_direction = cupy.zeros((1, 1, 3), dtype='float32') ntoolbox._direction[blocks_per_grid, threads_per_block]\ (one_peak_arr, cupy.zeros(one_peak_arr.shape, dtype='float32'), cupy.array([[1]], dtype='int8'), toolbox_direction, 0) assert cupy.all(expected_direction == toolbox_direction) # Test for one direction with 180°+-35° distance two_peak_arr = cupy.array([0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0])\ .reshape((1, 1, 24)).astype('int8') expected_direction = cupy.array([135, ntoolbox.BACKGROUND_COLOR, ntoolbox.BACKGROUND_COLOR]) ntoolbox._direction[blocks_per_grid, threads_per_block]\ (two_peak_arr, cupy.zeros(two_peak_arr.shape, dtype='float32'), cupy.array([[2]], dtype='int8'), toolbox_direction, 0) assert cupy.all(expected_direction == toolbox_direction) # Test for (invalid) two directions with 180°+-35° distance four_peak_arr = cupy.array([0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0]) \ .reshape((1, 1, 24)).astype('int8') expected_direction = cupy.array([ntoolbox.BACKGROUND_COLOR, ntoolbox.BACKGROUND_COLOR, ntoolbox.BACKGROUND_COLOR]) ntoolbox._direction[blocks_per_grid, threads_per_block] \ (four_peak_arr, cupy.zeros(four_peak_arr.shape, dtype='float32'), cupy.array([[4]], dtype='int8'), toolbox_direction, 0) assert cupy.all(expected_direction == toolbox_direction) def test_centroid_correction_bases(self): # simple test case: one distinct peak test_array = cupy.array([0] * 9 + [1] + [0] * 14).reshape((1, 1, 24)) test_high_peaks = SLIX.toolbox.peaks(test_array) test_reverse_peaks = SLIX.toolbox.peaks(-test_array) left_bases = cupy.zeros(test_array.shape, dtype='uint8') right_bases = cupy.zeros(test_array.shape, dtype='uint8') ntoolbox._centroid_correction_bases[blocks_per_grid, threads_per_block]\ (test_array, test_high_peaks, test_reverse_peaks, left_bases, right_bases) assert cupy.sum(left_bases) == 1 assert cupy.sum(right_bases) == 1 # simple test case: one distinct peak test_array = cupy.array([0] * 8 + [0.95, 1, 0.5] + [0] * 13, dtype='float32').reshape((1, 1, 24)) test_high_peaks = SLIX.toolbox.peaks(test_array) test_reverse_peaks = SLIX.toolbox.peaks(-test_array) ntoolbox._centroid_correction_bases[blocks_per_grid, threads_per_block] \ (test_array, test_high_peaks, test_reverse_peaks, left_bases, right_bases) assert cupy.sum(left_bases) == 2 assert cupy.sum(right_bases) == 1 # simple test case: centroid is between two measurements test_array = cupy.array([0] * 8 + [1, 1] + [0] * 14).reshape((1, 1, 24)) test_high_peaks = SLIX.toolbox.peaks(test_array) test_reverse_peaks = SLIX.toolbox.peaks(-test_array) ntoolbox._centroid_correction_bases[blocks_per_grid, threads_per_block] \ (test_array, test_high_peaks, test_reverse_peaks, left_bases, right_bases) assert cupy.sum(left_bases) == 1 assert cupy.sum(right_bases) == 2 # more complicated test case: wide peak plateau test_array = cupy.array([0] * 8 + [1, 1, 1] + [0] * 13).reshape((1, 1, 24)) test_high_peaks = SLIX.toolbox.peaks(test_array) test_reverse_peaks = SLIX.toolbox.peaks(-test_array) ntoolbox._centroid_correction_bases[blocks_per_grid, threads_per_block] \ (test_array, test_high_peaks, test_reverse_peaks, left_bases, right_bases) assert cupy.sum(left_bases) == 2 assert cupy.sum(right_bases) == 2 def test_centroid(self): image = cupy.array([0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])\ .reshape((1, 1, 24)) left = cupy.array([0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])\ .reshape((1, 1, 24)) right = cupy.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])\ .reshape((1, 1, 24)) peak = cupy.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])\ .reshape((1, 1, 24)) result_centroid = cupy.zeros(image.shape, dtype='float32') ntoolbox._centroid[blocks_per_grid, threads_per_block](image, peak, left, right, result_centroid) assert cupy.sum(result_centroid) == 0
[ "cupy.all", "cupy.zeros", "cupy.isclose", "cupy.array", "cupy.sum", "SLIX.toolbox.peaks", "numba.cuda.synchronize" ]
[((395, 440), 'cupy.zeros', 'cupy.zeros', (['test_one_peak.shape'], {'dtype': '"""int8"""'}), "(test_one_peak.shape, dtype='int8')\n", (405, 440), False, 'import cupy\n'), ((540, 558), 'numba.cuda.synchronize', 'cuda.synchronize', ([], {}), '()\n', (556, 558), False, 'from numba import cuda\n'), ((717, 762), 'cupy.zeros', 'cupy.zeros', (['test_two_peak.shape'], {'dtype': '"""int8"""'}), "(test_two_peak.shape, dtype='int8')\n", (727, 762), False, 'import cupy\n'), ((1013, 1060), 'cupy.zeros', 'cupy.zeros', (['test_three_peak.shape'], {'dtype': '"""int8"""'}), "(test_three_peak.shape, dtype='int8')\n", (1023, 1060), False, 'import cupy\n'), ((1335, 1389), 'cupy.zeros', 'cupy.zeros', (['test_double_three_peak.shape'], {'dtype': '"""int8"""'}), "(test_double_three_peak.shape, dtype='int8')\n", (1345, 1389), False, 'import cupy\n'), ((2018, 2072), 'cupy.zeros', 'cupy.zeros', (['expected_prominence.shape'], {'dtype': '"""float32"""'}), "(expected_prominence.shape, dtype='float32')\n", (2028, 2072), False, 'import cupy\n'), ((2862, 2911), 'cupy.zeros', 'cupy.zeros', (['expected_width.shape'], {'dtype': '"""float32"""'}), "(expected_width.shape, dtype='float32')\n", (2872, 2911), False, 'import cupy\n'), ((3050, 3091), 'cupy.all', 'cupy.all', (['(toolbox_width == expected_width)'], {}), '(toolbox_width == expected_width)\n', (3058, 3091), False, 'import cupy\n'), ((3408, 3451), 'cupy.zeros', 'cupy.zeros', (['test_arr.shape'], {'dtype': '"""float32"""'}), "(test_arr.shape, dtype='float32')\n", (3418, 3451), False, 'import cupy\n'), ((4117, 4187), 'cupy.array', 'cupy.array', (['[45, ntoolbox.BACKGROUND_COLOR, ntoolbox.BACKGROUND_COLOR]'], {}), '([45, ntoolbox.BACKGROUND_COLOR, ntoolbox.BACKGROUND_COLOR])\n', (4127, 4187), False, 'import cupy\n'), ((4220, 4258), 'cupy.zeros', 'cupy.zeros', (['(1, 1, 3)'], {'dtype': '"""float32"""'}), "((1, 1, 3), dtype='float32')\n", (4230, 4258), False, 'import cupy\n'), ((4550, 4599), 'cupy.all', 'cupy.all', (['(expected_direction == toolbox_direction)'], {}), '(expected_direction == toolbox_direction)\n', (4558, 4599), False, 'import cupy\n'), ((4876, 4947), 'cupy.array', 'cupy.array', (['[135, ntoolbox.BACKGROUND_COLOR, ntoolbox.BACKGROUND_COLOR]'], {}), '([135, ntoolbox.BACKGROUND_COLOR, ntoolbox.BACKGROUND_COLOR])\n', (4886, 4947), False, 'import cupy\n'), ((5239, 5288), 'cupy.all', 'cupy.all', (['(expected_direction == toolbox_direction)'], {}), '(expected_direction == toolbox_direction)\n', (5247, 5288), False, 'import cupy\n'), ((5562, 5660), 'cupy.array', 'cupy.array', (['[ntoolbox.BACKGROUND_COLOR, ntoolbox.BACKGROUND_COLOR, ntoolbox.\n BACKGROUND_COLOR]'], {}), '([ntoolbox.BACKGROUND_COLOR, ntoolbox.BACKGROUND_COLOR, ntoolbox.\n BACKGROUND_COLOR])\n', (5572, 5660), False, 'import cupy\n'), ((5950, 5999), 'cupy.all', 'cupy.all', (['(expected_direction == toolbox_direction)'], {}), '(expected_direction == toolbox_direction)\n', (5958, 5999), False, 'import cupy\n'), ((6213, 6243), 'SLIX.toolbox.peaks', 'SLIX.toolbox.peaks', (['test_array'], {}), '(test_array)\n', (6231, 6243), False, 'import SLIX\n'), ((6277, 6308), 'SLIX.toolbox.peaks', 'SLIX.toolbox.peaks', (['(-test_array)'], {}), '(-test_array)\n', (6295, 6308), False, 'import SLIX\n'), ((6335, 6378), 'cupy.zeros', 'cupy.zeros', (['test_array.shape'], {'dtype': '"""uint8"""'}), "(test_array.shape, dtype='uint8')\n", (6345, 6378), False, 'import cupy\n'), ((6405, 6448), 'cupy.zeros', 'cupy.zeros', (['test_array.shape'], {'dtype': '"""uint8"""'}), "(test_array.shape, dtype='uint8')\n", (6415, 6448), False, 'import cupy\n'), ((6975, 7005), 'SLIX.toolbox.peaks', 'SLIX.toolbox.peaks', (['test_array'], {}), '(test_array)\n', (6993, 7005), False, 'import SLIX\n'), ((7039, 7070), 'SLIX.toolbox.peaks', 'SLIX.toolbox.peaks', (['(-test_array)'], {}), '(-test_array)\n', (7057, 7070), False, 'import SLIX\n'), ((7593, 7623), 'SLIX.toolbox.peaks', 'SLIX.toolbox.peaks', (['test_array'], {}), '(test_array)\n', (7611, 7623), False, 'import SLIX\n'), ((7657, 7688), 'SLIX.toolbox.peaks', 'SLIX.toolbox.peaks', (['(-test_array)'], {}), '(-test_array)\n', (7675, 7688), False, 'import SLIX\n'), ((8205, 8235), 'SLIX.toolbox.peaks', 'SLIX.toolbox.peaks', (['test_array'], {}), '(test_array)\n', (8223, 8235), False, 'import SLIX\n'), ((8269, 8300), 'SLIX.toolbox.peaks', 'SLIX.toolbox.peaks', (['(-test_array)'], {}), '(-test_array)\n', (8287, 8300), False, 'import SLIX\n'), ((9308, 9348), 'cupy.zeros', 'cupy.zeros', (['image.shape'], {'dtype': '"""float32"""'}), "(image.shape, dtype='float32')\n", (9318, 9348), False, 'import cupy\n'), ((2247, 2300), 'cupy.isclose', 'cupy.isclose', (['expected_prominence', 'toolbox_prominence'], {}), '(expected_prominence, toolbox_prominence)\n', (2259, 2300), False, 'import cupy\n'), ((3568, 3611), 'cupy.zeros', 'cupy.zeros', (['test_arr.shape'], {'dtype': '"""float32"""'}), "(test_arr.shape, dtype='float32')\n", (3578, 3611), False, 'import cupy\n'), ((3630, 3661), 'cupy.array', 'cupy.array', (['[[2]]'], {'dtype': '"""int8"""'}), "([[2]], dtype='int8')\n", (3640, 3661), False, 'import cupy\n'), ((4376, 4423), 'cupy.zeros', 'cupy.zeros', (['one_peak_arr.shape'], {'dtype': '"""float32"""'}), "(one_peak_arr.shape, dtype='float32')\n", (4386, 4423), False, 'import cupy\n'), ((4442, 4473), 'cupy.array', 'cupy.array', (['[[1]]'], {'dtype': '"""int8"""'}), "([[1]], dtype='int8')\n", (4452, 4473), False, 'import cupy\n'), ((5065, 5112), 'cupy.zeros', 'cupy.zeros', (['two_peak_arr.shape'], {'dtype': '"""float32"""'}), "(two_peak_arr.shape, dtype='float32')\n", (5075, 5112), False, 'import cupy\n'), ((5131, 5162), 'cupy.array', 'cupy.array', (['[[2]]'], {'dtype': '"""int8"""'}), "([[2]], dtype='int8')\n", (5141, 5162), False, 'import cupy\n'), ((5775, 5823), 'cupy.zeros', 'cupy.zeros', (['four_peak_arr.shape'], {'dtype': '"""float32"""'}), "(four_peak_arr.shape, dtype='float32')\n", (5785, 5823), False, 'import cupy\n'), ((5842, 5873), 'cupy.array', 'cupy.array', (['[[4]]'], {'dtype': '"""int8"""'}), "([[4]], dtype='int8')\n", (5852, 5873), False, 'import cupy\n'), ((6712, 6732), 'cupy.sum', 'cupy.sum', (['left_bases'], {}), '(left_bases)\n', (6720, 6732), False, 'import cupy\n'), ((6757, 6778), 'cupy.sum', 'cupy.sum', (['right_bases'], {}), '(right_bases)\n', (6765, 6778), False, 'import cupy\n'), ((7336, 7356), 'cupy.sum', 'cupy.sum', (['left_bases'], {}), '(left_bases)\n', (7344, 7356), False, 'import cupy\n'), ((7381, 7402), 'cupy.sum', 'cupy.sum', (['right_bases'], {}), '(right_bases)\n', (7389, 7402), False, 'import cupy\n'), ((7954, 7974), 'cupy.sum', 'cupy.sum', (['left_bases'], {}), '(left_bases)\n', (7962, 7974), False, 'import cupy\n'), ((7999, 8020), 'cupy.sum', 'cupy.sum', (['right_bases'], {}), '(right_bases)\n', (8007, 8020), False, 'import cupy\n'), ((8567, 8587), 'cupy.sum', 'cupy.sum', (['left_bases'], {}), '(left_bases)\n', (8575, 8587), False, 'import cupy\n'), ((8612, 8633), 'cupy.sum', 'cupy.sum', (['right_bases'], {}), '(right_bases)\n', (8620, 8633), False, 'import cupy\n'), ((9479, 9504), 'cupy.sum', 'cupy.sum', (['result_centroid'], {}), '(result_centroid)\n', (9487, 9504), False, 'import cupy\n'), ((329, 353), 'cupy.array', 'cupy.array', (['[0, 1, 0, 0]'], {}), '([0, 1, 0, 0])\n', (339, 353), False, 'import cupy\n'), ((587, 611), 'cupy.array', 'cupy.array', (['[0, 1, 0, 0]'], {}), '([0, 1, 0, 0])\n', (597, 611), False, 'import cupy\n'), ((652, 676), 'cupy.array', 'cupy.array', (['[0, 1, 1, 0]'], {}), '([0, 1, 1, 0])\n', (662, 676), False, 'import cupy\n'), ((878, 902), 'cupy.array', 'cupy.array', (['[0, 1, 0, 0]'], {}), '([0, 1, 0, 0])\n', (888, 902), False, 'import cupy\n'), ((945, 972), 'cupy.array', 'cupy.array', (['[0, 1, 1, 1, 0]'], {}), '([0, 1, 1, 1, 0])\n', (955, 972), False, 'import cupy\n'), ((1178, 1205), 'cupy.array', 'cupy.array', (['[0, 0, 1, 0, 0]'], {}), '([0, 0, 1, 0, 0])\n', (1188, 1205), False, 'import cupy\n'), ((1255, 1294), 'cupy.array', 'cupy.array', (['[0, 1, 1, 1, 0, 1, 1, 1, 0]'], {}), '([0, 1, 1, 1, 0, 1, 1, 1, 0])\n', (1265, 1294), False, 'import cupy\n'), ((1514, 1553), 'cupy.array', 'cupy.array', (['[0, 0, 1, 0, 0, 0, 1, 0, 0]'], {}), '([0, 0, 1, 0, 0, 0, 1, 0, 0])\n', (1524, 1553), False, 'import cupy\n'), ((1626, 1719), 'cupy.array', 'cupy.array', (['[0, 0.1, 0.2, 0.4, 0.8, 1, 0.5, 0.7, 0.9, 0.5, 0.3, 0.95, 0]'], {'dtype': '"""float32"""'}), "([0, 0.1, 0.2, 0.4, 0.8, 1, 0.5, 0.7, 0.9, 0.5, 0.3, 0.95, 0],\n dtype='float32')\n", (1636, 1719), False, 'import cupy\n'), ((1787, 1852), 'cupy.array', 'cupy.array', (['[0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0]'], {'dtype': '"""int8"""'}), "([0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0], dtype='int8')\n", (1797, 1852), False, 'import cupy\n'), ((1908, 1964), 'cupy.array', 'cupy.array', (['[0, 0, 0, 0, 0, 1, 0, 0, 0.4, 0, 0, 0.65, 0]'], {}), '([0, 0, 0, 0, 0, 1, 0, 0, 0.4, 0, 0, 0.65, 0])\n', (1918, 1964), False, 'import cupy\n'), ((2362, 2462), 'cupy.array', 'cupy.array', (['[0, 0.1, 0.2, 0.5, 0.8, 1, 0.77, 0.7, 0.66, 0.5, 0.74, 0.98, 0.74]'], {'dtype': '"""float32"""'}), "([0, 0.1, 0.2, 0.5, 0.8, 1, 0.77, 0.7, 0.66, 0.5, 0.74, 0.98, \n 0.74], dtype='float32')\n", (2372, 2462), False, 'import cupy\n'), ((2529, 2594), 'cupy.array', 'cupy.array', (['[0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0]'], {'dtype': '"""int8"""'}), "([0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0], dtype='int8')\n", (2539, 2594), False, 'import cupy\n'), ((2640, 2711), 'cupy.array', 'cupy.array', (['[0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0.48, 0]'], {'dtype': '"""float32"""'}), "([0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0.48, 0], dtype='float32')\n", (2650, 2711), False, 'import cupy\n'), ((2761, 2812), 'cupy.array', 'cupy.array', (['[0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 2, 0]'], {}), '([0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 2, 0])\n', (2771, 2812), False, 'import cupy\n'), ((3153, 3260), 'cupy.array', 'cupy.array', (['([False, False, True, False, False, False, False, True, False] + [False] * 15)'], {'dtype': '"""int8"""'}), "([False, False, True, False, False, False, False, True, False] + \n [False] * 15, dtype='int8')\n", (3163, 3260), False, 'import cupy\n'), ((6126, 6162), 'cupy.array', 'cupy.array', (['([0] * 9 + [1] + [0] * 14)'], {}), '([0] * 9 + [1] + [0] * 14)\n', (6136, 6162), False, 'import cupy\n'), ((6860, 6924), 'cupy.array', 'cupy.array', (['([0] * 8 + [0.95, 1, 0.5] + [0] * 13)'], {'dtype': '"""float32"""'}), "([0] * 8 + [0.95, 1, 0.5] + [0] * 13, dtype='float32')\n", (6870, 6924), False, 'import cupy\n'), ((7503, 7542), 'cupy.array', 'cupy.array', (['([0] * 8 + [1, 1] + [0] * 14)'], {}), '([0] * 8 + [1, 1] + [0] * 14)\n', (7513, 7542), False, 'import cupy\n'), ((8112, 8154), 'cupy.array', 'cupy.array', (['([0] * 8 + [1, 1, 1] + [0] * 13)'], {}), '([0] * 8 + [1, 1, 1] + [0] * 13)\n', (8122, 8154), False, 'import cupy\n'), ((8693, 8782), 'cupy.array', 'cupy.array', (['[0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]'], {}), '([0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \n 0, 0, 0])\n', (8703, 8782), False, 'import cupy\n'), ((8844, 8933), 'cupy.array', 'cupy.array', (['[0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]'], {}), '([0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n 0, 0, 0])\n', (8854, 8933), False, 'import cupy\n'), ((8996, 9085), 'cupy.array', 'cupy.array', (['[0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]'], {}), '([0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \n 0, 0, 0])\n', (9006, 9085), False, 'import cupy\n'), ((9147, 9236), 'cupy.array', 'cupy.array', (['[0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]'], {}), '([0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \n 0, 0, 0])\n', (9157, 9236), False, 'import cupy\n'), ((3930, 4019), 'cupy.array', 'cupy.array', (['[0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]'], {}), '([0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \n 0, 0, 0])\n', (3940, 4019), False, 'import cupy\n'), ((4689, 4778), 'cupy.array', 'cupy.array', (['[0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0]'], {}), '([0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, \n 0, 0, 0])\n', (4699, 4778), False, 'import cupy\n'), ((5390, 5479), 'cupy.array', 'cupy.array', (['[0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0]'], {}), '([0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, \n 0, 0, 0])\n', (5400, 5479), False, 'import cupy\n')]
import os, csv, json from py2neo import Graph with open("./AWSNEoConfig.json") as c: conf = json.load(c) c.close graph = Graph(conf[0]["NeoParametes"][0]["Url"], auth=(conf[0]["NeoParametes"][0]["Username"], conf[0]["NeoParametes"][0]["Password"])) regions ="US East (Ohio),us-east-2\n\ US East (N. Virginia),us-east-1\n\ US West (N. California),us-west-1\n\ US West (Oregon),us-west-2\n\ Asia Pacific (Hong Kong),ap-east-1\n\ Asia Pacific (Mumbai),ap-south-1\n\ Asia Pacific (Osaka-Local),ap-northeast-3\n\ Asia Pacific (Seoul),ap-northeast-2\n\ Asia Pacific (Singapore),ap-southeast-1\n\ Asia Pacific (Sydney),ap-southeast-2\n\ Asia Pacific (Tokyo),ap-northeast-1\n\ Canada (Central),ca-central-1\n\ Europe (Frankfurt),eu-central-1\n\ Europe (Ireland),eu-west-1\n\ Europe (London),eu-west-2\n\ Europe (Paris),eu-west-3\n\ Europe (Stockholm),eu-north-1\n\ Middle East (Bahrain),me-south-1\n\ South America (São Paulo),sa-east-1" def NeoInsertRegions(Name,id):# query = 'MERGE (: AWSRegion { Name: "'+Name+'" , Id : "'+id+'" })' print(query) result = graph.run(query).to_table() print(result) #print(regions) reader = csv.reader(regions.split('\n'), delimiter=',') for row in reader: NeoInsertRegions(row[0],row[1])
[ "py2neo.Graph", "json.load" ]
[((127, 259), 'py2neo.Graph', 'Graph', (["conf[0]['NeoParametes'][0]['Url']"], {'auth': "(conf[0]['NeoParametes'][0]['Username'], conf[0]['NeoParametes'][0]['Password']\n )"}), "(conf[0]['NeoParametes'][0]['Url'], auth=(conf[0]['NeoParametes'][0][\n 'Username'], conf[0]['NeoParametes'][0]['Password']))\n", (132, 259), False, 'from py2neo import Graph\n'), ((97, 109), 'json.load', 'json.load', (['c'], {}), '(c)\n', (106, 109), False, 'import os, csv, json\n')]
#!/usr/bin/env python3 """Test the hashutils module.""" import hashlib import os from shutil import copyfile, rmtree import pytest from bbarchivist import hashutils as bh try: import unittest.mock as mock except ImportError: import mock __author__ = "Thurask" __license__ = "WTFPL v2" __copyright__ = "2015-2019 Thurask" def setup_module(module): """ Create necessary files. """ if not os.path.exists("temp_hashutils"): os.mkdir("temp_hashutils") os.chdir("temp_hashutils") with open("tempfile.txt", "w") as targetfile: targetfile.write("Jackdaws love my big sphinx of quartz") os.mkdir("skipme") def teardown_module(module): """ Delete necessary files. """ os.chdir("..") rmtree("temp_hashutils", ignore_errors=True) class TestClassHashutils: """ Test hash utilities. """ def test_crc32(self): """ Test CRC32 checksum. """ assert bh.zlib_hash("tempfile.txt", "crc32") == "ed5d3f26" def test_adler32(self): """ Test Adler32 checksum. """ assert bh.zlib_hash("tempfile.txt", "adler32") == "02470dcd" def test_sha0(self): """ Test SHA-0 hash. """ if "sha" not in hashlib.algorithms_available: pass else: assert bh.ssl_hash("tempfile.txt", "sha") == "d26b25f6170daf49e31e68bf57f6164815c368d8" def test_sha0_unavail(self, capsys): """ Test SHA-0 hash, if not available. """ with mock.patch("hashlib.new", mock.MagicMock(side_effect=ValueError)): bh.ssl_hash("tempfile.txt", "sha") assert "SHA HASH FAILED" in capsys.readouterr()[0] def test_sha1(self): """ Test SHA-1 hash. """ assert bh.hashlib_hash("tempfile.txt", hashlib.sha1()) == "71dc7ce8f27c11b792be3f169ecf985865e276d0" def test_sha224(self): """ Test SHA-224 hash. """ assert bh.hashlib_hash("tempfile.txt", hashlib.sha224()) == "7bcd7b77f63633bf0f7db181106f08eb630a58c521b109be1cc4a404" def test_sha256(self): """ Test SHA-256 hash. """ assert bh.hashlib_hash("tempfile.txt", hashlib.sha256()) == "f118871c45171d5fe4e9049980959e033eeeabcfa12046c243fda310580e8a0b" def test_sha384(self): """ Test SHA-384 hash. """ assert bh.hashlib_hash("tempfile.txt", hashlib.sha384()) == "76620873c0d27873c137b082425c6e87e3d601c4b19241a1f2222f7f700a2fe8d3c648b26f62325a411cb020bff527be" def test_sha512(self): """ Test SHA-512 hash. """ assert bh.hashlib_hash("tempfile.txt", hashlib.sha512()) == "b66a5e8aa9b9705748c2ee585b0e1a3a41288d2dafc3be2db12fa89d2f2a3e14f9dec11de4ba865bb51eaa6c2cfeb294139455e34da7d827a19504b0906c01c1" def test_md4(self): """ Test MD4 hash. """ if "md4" not in hashlib.algorithms_available: pass else: assert bh.ssl_hash("tempfile.txt", "md4") == "df26ada1a895f94e1f1257fad984e809" def test_md4_unavail(self, capsys): """ Test MD4 hash, if not available. """ with mock.patch("hashlib.new", mock.MagicMock(side_effect=ValueError)): bh.ssl_hash("tempfile.txt", "md4") assert "MD4 HASH FAILED" in capsys.readouterr()[0] def test_md5(self): """ Test MD5 hash. """ assert bh.hashlib_hash("tempfile.txt", hashlib.md5()) == "822e1187fde7c8d55aff8cc688701650" def test_ripemd160(self): """ Test RIPEMD160 hash. """ if "ripemd160" not in hashlib.algorithms_available: pass else: assert bh.ssl_hash("tempfile.txt", "ripemd160") == "f3e191024c33768e2589e2efca53d55f4e4945ee" def test_ripemd160_unavail(self, capsys): """ Test RIPEMD160 hash, if not available. """ with mock.patch("hashlib.new", mock.MagicMock(side_effect=ValueError)): bh.ssl_hash("tempfile.txt", "ripemd160") assert "RIPEMD160 HASH FAILED" in capsys.readouterr()[0] def test_sha3224(self): """ Test SHA3-224 hash. """ if "sha3_224" not in hashlib.algorithms_available: pass else: assert bh.hashlib_hash("tempfile.txt", hashlib.sha3_224()) == "93cc89107b9bd807dead1ae95ce8c4b0f9b8acb2a3eef704e2fad109" def test_sha3256(self): """ Test SHA3-256 hash. """ if "sha3_256" not in hashlib.algorithms_available: pass else: assert bh.hashlib_hash("tempfile.txt", hashlib.sha3_256()) == "a9797b62d8b3573c9134406f42e601219e086150e6c2f32c90c5cee0149b6877" def test_sha3384(self): """ Test SHA3-384 hash. """ if "sha3_384" not in hashlib.algorithms_available: pass else: assert bh.hashlib_hash("tempfile.txt", hashlib.sha3_384()) == "1ae83352968f601e16eff076f5967dd356edce4c4c5629e3939123b7507efbaafd1dabc1e459f8e47f7a05df718e5927" def test_sha3512(self): """ Test SHA3-512 hash. """ if "sha3_512" not in hashlib.algorithms_available: pass else: assert bh.hashlib_hash("tempfile.txt", hashlib.sha3_512()) == "2ca12b585486d0f775f9fd438a73525b37b1214bc36a8b0ae611d0f1261e8d32b47b923b406c46cc80cc178598d41d42abee3eae5b1c23164b817342e22580e2" def test_whirlpool(self): """ Test Whirlpool hash. """ if "whirlpool" not in hashlib.algorithms_available: pass else: assert bh.ssl_hash("tempfile.txt", "whirlpool") == "9835d12f3cb3ea3934635e4a7cc918e489379ed69d894ebc2c09bbf99fe72567bfd26c919ad666e170752abfc4b8c37b376f5102f9e5de59af2b65efc2e01293" def test_whirlpool_unavail(self, capsys): """ Test Whirlpool hash, if not available. """ with mock.patch("hashlib.new", mock.MagicMock(side_effect=ValueError)): bh.ssl_hash("tempfile.txt", "whirlpool") assert "WHIRLPOOL HASH FAILED" in capsys.readouterr()[0] def test_escreens(self): """ Test EScreens code generation. """ pin = "acdcacdc" app = "10.3.2.500" uptime = "69696969" assert bh.calculate_escreens(pin, app, uptime, duration=2) == "E4A25067" def test_verifier(self): """ Test batch hashing. """ confload = {} confload['adler32'] = True confload['crc32'] = True confload['md4'] = True if "md4" in hashlib.algorithms_available else False confload['md5'] = True confload['sha0'] = True if "sha" in hashlib.algorithms_available else False confload['sha1'] = True confload['sha224'] = True confload['sha256'] = True confload['sha384'] = True confload['sha512'] = True confload['ripemd160'] = True if "ripemd160" in hashlib.algorithms_available else False confload['whirlpool'] = True if "whirlpool" in hashlib.algorithms_available else False confload['sha3224'] = True if "sha3_224" in hashlib.algorithms_available else False confload['sha3256'] = True if "sha3_256" in hashlib.algorithms_available else False confload['sha3384'] = True if "sha3_384" in hashlib.algorithms_available else False confload['sha3512'] = True if "sha3_512" in hashlib.algorithms_available else False confload['blocksize'] = "16777216" print(confload) with mock.patch('bbarchivist.hashutils.verifier_config_loader', mock.MagicMock(return_value=confload)): bh.verifier(os.getcwd()) stocklines = [ b"ADLER32", b"02470DCD tempfile.txt", b"CRC32", b"ED5D3F26 tempfile.txt"] if confload["md4"]: stocklines.extend([ b"MD4", b"DF26ADA1A895F94E1F1257FAD984E809 tempfile.txt"]) stocklines.extend([ b"MD5", b"822E1187FDE7C8D55AFF8CC688701650 tempfile.txt"]) if confload["sha0"]: stocklines.extend([ b"SHA0", b"D26B25F6170DAF49E31E68BF57F6164815C368D8 tempfile.txt"]) stocklines.extend([ b"SHA1", b"71DC7CE8F27C11B792BE3F169ECF985865E276D0 tempfile.txt", b"SHA224", b"7BCD7B77F63633BF0F7DB181106F08EB630A58C521B109BE1CC4A404 tempfile.txt", b"SHA256", b"F118871C45171D5FE4E9049980959E033EEEABCFA12046C243FDA310580E8A0B tempfile.txt", b"SHA384", b"76620873C0D27873C137B082425C6E87E3D601C4B19241A1F2222F7F700A2FE8D3C648B26F62325A411CB020BFF527BE tempfile.txt", b"SHA512", b"B66A5E8AA9B9705748C2EE585B0E1A3A41288D2DAFC3BE2DB12FA89D2F2A3E14F9DEC11DE4BA865BB51EAA6C2CFEB294139455E34DA7D827A19504B0906C01C1 tempfile.txt"]) if confload["ripemd160"]: stocklines.extend([ b"RIPEMD160", b"F3E191024C33768E2589E2EFCA53D55F4E4945EE tempfile.txt"]) if confload["whirlpool"]: stocklines.extend([ b"WHIRLPOOL", b"9835D12F3CB3EA3934635E4A7CC918E489379ED69D894EBC2C09BBF99FE72567BFD26C919AD666E170752ABFC4B8C37B376F5102F9E5DE59AF2B65EFC2E01293 tempfile.txt"]) if confload["sha3224"]: stocklines.extend([ b"SHA3224", b"93CC89107B9BD807DEAD1AE95CE8C4B0F9B8ACB2A3EEF704E2FAD109 tempfile.txt"]) if confload["sha3256"]: stocklines.extend([ b"SHA3256", b"A9797B62D8B3573C9134406F42E601219E086150E6C2F32C90C5CEE0149B6877 tempfile.txt"]) if confload["sha3384"]: stocklines.extend([ b"SHA3384", b"1AE83352968F601E16EFF076F5967DD356EDCE4C4C5629E3939123B7507EFBAAFD1DABC1E459F8E47F7A05DF718E5927 tempfile.txt"]) if confload["sha3512"]: stocklines.extend([ b"SHA3512", b"2CA12B585486D0F775F9FD438A73525B37B1214BC36A8B0AE611D0F1261E8D32B47B923B406C46CC80CC178598D41D42ABEE3EAE5B1C23164B817342E22580E2 tempfile.txt"]) stocklines2 = [] for item in stocklines: item2 = item.strip() item2 = item2.replace(b'\r\n', b'') item2 = item2.replace(b'\n', b'') item2 = item2.replace(b'\r', b'') stocklines2.append(item2) filename = "tempfile.txt.cksum" with open(filename, "rb") as checksumfile: content = checksumfile.read().splitlines() content2 = [] for item in content: item2 = item.strip() item2 = item2.replace(b'\r\n', b'') item2 = item2.replace(b'\n', b'') item2 = item2.replace(b'\r', b'') content2.append(item2) for idx, value in enumerate(content2): assert stocklines2[idx] == value def test_verifier_multiple(self): """ Test batch hashing, but with multiple files. """ for i in range(17): copyfile("tempfile.txt", "tempfile{0}.txt".format(i)) self.test_verifier() def test_verifier_fail(self, capsys): """ Test batch hashing failure. """ with mock.patch("concurrent.futures.ThreadPoolExecutor.submit", mock.MagicMock(side_effect=Exception)): with pytest.raises(SystemExit): bh.verifier(os.getcwd()) assert "SOMETHING WENT WRONG" in capsys.readouterr()[0] class TestClassHashutilsConfig: """ Test reading/writing configs with ConfigParser. """ @classmethod def setup_class(cls): """ Create dictionaries for self. """ cls.hashdict = {} cls.hashdict['crc32'] = False cls.hashdict['adler32'] = False cls.hashdict['sha1'] = True cls.hashdict['sha224'] = False cls.hashdict['sha256'] = True cls.hashdict['sha384'] = False cls.hashdict['sha512'] = False cls.hashdict['sha3224'] = False cls.hashdict['sha3256'] = False cls.hashdict['sha3384'] = False cls.hashdict['sha3512'] = False cls.hashdict['md5'] = True cls.hashdict['md4'] = False cls.hashdict['ripemd160'] = False cls.hashdict['whirlpool'] = False cls.hashdict['sha0'] = False cls.hashdict['blocksize'] = 16777216 def test_hash_loader(self): """ Test reading hash settings. """ try: os.remove("bbarchivist.ini") except (OSError, IOError): pass with mock.patch('bbarchivist.iniconfig.config_homepath', mock.MagicMock(return_value=os.getcwd())): assert bh.verifier_config_loader() == self.hashdict def test_hash_writer(self): """ Test writing hash settings. """ hash2 = self.hashdict hash2['sha512'] = True try: os.remove("bbarchivist.ini") except (OSError, IOError): pass with mock.patch('bbarchivist.iniconfig.config_homepath', mock.MagicMock(return_value=os.getcwd())): with mock.patch('bbarchivist.hashutils.verifier_config_loader', mock.MagicMock(return_value=hash2)): bh.verifier_config_writer() assert bh.verifier_config_loader() == hash2
[ "os.mkdir", "os.remove", "hashlib.sha512", "shutil.rmtree", "hashlib.sha3_256", "hashlib.sha3_384", "os.chdir", "hashlib.sha1", "os.path.exists", "hashlib.sha384", "hashlib.sha256", "pytest.raises", "hashlib.sha224", "bbarchivist.hashutils.verifier_config_loader", "hashlib.md5", "bbarchivist.hashutils.ssl_hash", "hashlib.sha3_224", "hashlib.sha3_512", "bbarchivist.hashutils.verifier_config_writer", "os.getcwd", "bbarchivist.hashutils.zlib_hash", "bbarchivist.hashutils.calculate_escreens", "mock.MagicMock" ]
[((489, 515), 'os.chdir', 'os.chdir', (['"""temp_hashutils"""'], {}), "('temp_hashutils')\n", (497, 515), False, 'import os\n'), ((636, 654), 'os.mkdir', 'os.mkdir', (['"""skipme"""'], {}), "('skipme')\n", (644, 654), False, 'import os\n'), ((734, 748), 'os.chdir', 'os.chdir', (['""".."""'], {}), "('..')\n", (742, 748), False, 'import os\n'), ((753, 797), 'shutil.rmtree', 'rmtree', (['"""temp_hashutils"""'], {'ignore_errors': '(True)'}), "('temp_hashutils', ignore_errors=True)\n", (759, 797), False, 'from shutil import copyfile, rmtree\n'), ((416, 448), 'os.path.exists', 'os.path.exists', (['"""temp_hashutils"""'], {}), "('temp_hashutils')\n", (430, 448), False, 'import os\n'), ((458, 484), 'os.mkdir', 'os.mkdir', (['"""temp_hashutils"""'], {}), "('temp_hashutils')\n", (466, 484), False, 'import os\n'), ((962, 999), 'bbarchivist.hashutils.zlib_hash', 'bh.zlib_hash', (['"""tempfile.txt"""', '"""crc32"""'], {}), "('tempfile.txt', 'crc32')\n", (974, 999), True, 'from bbarchivist import hashutils as bh\n'), ((1113, 1152), 'bbarchivist.hashutils.zlib_hash', 'bh.zlib_hash', (['"""tempfile.txt"""', '"""adler32"""'], {}), "('tempfile.txt', 'adler32')\n", (1125, 1152), True, 'from bbarchivist import hashutils as bh\n'), ((1628, 1662), 'bbarchivist.hashutils.ssl_hash', 'bh.ssl_hash', (['"""tempfile.txt"""', '"""sha"""'], {}), "('tempfile.txt', 'sha')\n", (1639, 1662), True, 'from bbarchivist import hashutils as bh\n'), ((3301, 3335), 'bbarchivist.hashutils.ssl_hash', 'bh.ssl_hash', (['"""tempfile.txt"""', '"""md4"""'], {}), "('tempfile.txt', 'md4')\n", (3312, 3335), True, 'from bbarchivist import hashutils as bh\n'), ((4062, 4102), 'bbarchivist.hashutils.ssl_hash', 'bh.ssl_hash', (['"""tempfile.txt"""', '"""ripemd160"""'], {}), "('tempfile.txt', 'ripemd160')\n", (4073, 4102), True, 'from bbarchivist import hashutils as bh\n'), ((6087, 6127), 'bbarchivist.hashutils.ssl_hash', 'bh.ssl_hash', (['"""tempfile.txt"""', '"""whirlpool"""'], {}), "('tempfile.txt', 'whirlpool')\n", (6098, 6127), True, 'from bbarchivist import hashutils as bh\n'), ((6385, 6436), 'bbarchivist.hashutils.calculate_escreens', 'bh.calculate_escreens', (['pin', 'app', 'uptime'], {'duration': '(2)'}), '(pin, app, uptime, duration=2)\n', (6406, 6436), True, 'from bbarchivist import hashutils as bh\n'), ((12682, 12710), 'os.remove', 'os.remove', (['"""bbarchivist.ini"""'], {}), "('bbarchivist.ini')\n", (12691, 12710), False, 'import os\n'), ((13114, 13142), 'os.remove', 'os.remove', (['"""bbarchivist.ini"""'], {}), "('bbarchivist.ini')\n", (13123, 13142), False, 'import os\n'), ((1346, 1380), 'bbarchivist.hashutils.ssl_hash', 'bh.ssl_hash', (['"""tempfile.txt"""', '"""sha"""'], {}), "('tempfile.txt', 'sha')\n", (1357, 1380), True, 'from bbarchivist import hashutils as bh\n'), ((1575, 1613), 'mock.MagicMock', 'mock.MagicMock', ([], {'side_effect': 'ValueError'}), '(side_effect=ValueError)\n', (1589, 1613), False, 'import mock\n'), ((1848, 1862), 'hashlib.sha1', 'hashlib.sha1', ([], {}), '()\n', (1860, 1862), False, 'import hashlib\n'), ((2036, 2052), 'hashlib.sha224', 'hashlib.sha224', ([], {}), '()\n', (2050, 2052), False, 'import hashlib\n'), ((2242, 2258), 'hashlib.sha256', 'hashlib.sha256', ([], {}), '()\n', (2256, 2258), False, 'import hashlib\n'), ((2456, 2472), 'hashlib.sha384', 'hashlib.sha384', ([], {}), '()\n', (2470, 2472), False, 'import hashlib\n'), ((2702, 2718), 'hashlib.sha512', 'hashlib.sha512', ([], {}), '()\n', (2716, 2718), False, 'import hashlib\n'), ((3030, 3064), 'bbarchivist.hashutils.ssl_hash', 'bh.ssl_hash', (['"""tempfile.txt"""', '"""md4"""'], {}), "('tempfile.txt', 'md4')\n", (3041, 3064), True, 'from bbarchivist import hashutils as bh\n'), ((3248, 3286), 'mock.MagicMock', 'mock.MagicMock', ([], {'side_effect': 'ValueError'}), '(side_effect=ValueError)\n', (3262, 3286), False, 'import mock\n'), ((3518, 3531), 'hashlib.md5', 'hashlib.md5', ([], {}), '()\n', (3529, 3531), False, 'import hashlib\n'), ((3765, 3805), 'bbarchivist.hashutils.ssl_hash', 'bh.ssl_hash', (['"""tempfile.txt"""', '"""ripemd160"""'], {}), "('tempfile.txt', 'ripemd160')\n", (3776, 3805), True, 'from bbarchivist import hashutils as bh\n'), ((4009, 4047), 'mock.MagicMock', 'mock.MagicMock', ([], {'side_effect': 'ValueError'}), '(side_effect=ValueError)\n', (4023, 4047), False, 'import mock\n'), ((5702, 5742), 'bbarchivist.hashutils.ssl_hash', 'bh.ssl_hash', (['"""tempfile.txt"""', '"""whirlpool"""'], {}), "('tempfile.txt', 'whirlpool')\n", (5713, 5742), True, 'from bbarchivist import hashutils as bh\n'), ((6034, 6072), 'mock.MagicMock', 'mock.MagicMock', ([], {'side_effect': 'ValueError'}), '(side_effect=ValueError)\n', (6048, 6072), False, 'import mock\n'), ((7686, 7723), 'mock.MagicMock', 'mock.MagicMock', ([], {'return_value': 'confload'}), '(return_value=confload)\n', (7700, 7723), False, 'import mock\n'), ((7750, 7761), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (7759, 7761), False, 'import os\n'), ((11468, 11505), 'mock.MagicMock', 'mock.MagicMock', ([], {'side_effect': 'Exception'}), '(side_effect=Exception)\n', (11482, 11505), False, 'import mock\n'), ((11525, 11550), 'pytest.raises', 'pytest.raises', (['SystemExit'], {}), '(SystemExit)\n', (11538, 11550), False, 'import pytest\n'), ((12890, 12917), 'bbarchivist.hashutils.verifier_config_loader', 'bh.verifier_config_loader', ([], {}), '()\n', (12915, 12917), True, 'from bbarchivist import hashutils as bh\n'), ((13432, 13459), 'bbarchivist.hashutils.verifier_config_writer', 'bh.verifier_config_writer', ([], {}), '()\n', (13457, 13459), True, 'from bbarchivist import hashutils as bh\n'), ((13479, 13506), 'bbarchivist.hashutils.verifier_config_loader', 'bh.verifier_config_loader', ([], {}), '()\n', (13504, 13506), True, 'from bbarchivist import hashutils as bh\n'), ((4394, 4412), 'hashlib.sha3_224', 'hashlib.sha3_224', ([], {}), '()\n', (4410, 4412), False, 'import hashlib\n'), ((4698, 4716), 'hashlib.sha3_256', 'hashlib.sha3_256', ([], {}), '()\n', (4714, 4716), False, 'import hashlib\n'), ((5010, 5028), 'hashlib.sha3_384', 'hashlib.sha3_384', ([], {}), '()\n', (5026, 5028), False, 'import hashlib\n'), ((5354, 5372), 'hashlib.sha3_512', 'hashlib.sha3_512', ([], {}), '()\n', (5370, 5372), False, 'import hashlib\n'), ((11580, 11591), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (11589, 11591), False, 'import os\n'), ((13379, 13413), 'mock.MagicMock', 'mock.MagicMock', ([], {'return_value': 'hash2'}), '(return_value=hash2)\n', (13393, 13413), False, 'import mock\n'), ((12856, 12867), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (12865, 12867), False, 'import os\n'), ((13288, 13299), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (13297, 13299), False, 'import os\n')]
import os import requests from bs4 import BeautifulSoup from fake_useragent import UserAgent class Dictionary: """audio related parts""" def __init__(self, word, files_path='~/.sayit'): self.word = word self.user_agent = UserAgent().random # Random user_agent for http calls self.files_path = os.path.expanduser(files_path) if not os.path.isdir(files_path): os.makedirs(files_path, exist_ok=True) def show(self): """ who the definition part of the word """ file_path = self._get_file(self.word) if not os.path.exists(file_path): raise Exception("File cannot be found for {}.".format(self.word)) with open(file_path, 'r') as html: soup = BeautifulSoup(html, 'html.parser') # Phonetics phonetics = soup.find('div', class_="phons_br") if phonetics: print(phonetics.get_text()) # Origin origin = soup.find('span', unbox="wordorigin") if origin: print(origin.get_text(" ")) # Definitions senses = soup.find('ol', class_='senses_multiple') if senses: self._print_definitions(senses) # Idioms idioms = soup.find_all('span', class_='idm-g') if idioms: self._print_idioms(idioms) def _get_file(self, word): """ download if not already downloaded """ word_audio = word + "__gb" # to save the file in audio sharded format word_path = "{}/oxford/uk/{}/{}/{}".format(self.files_path, word_audio[0], word_audio[0: 3], word_audio[0: 5]) file_path = "{}/{}.html".format(word_path, word) if not os.path.exists(file_path): os.makedirs(word_path, exist_ok=True) self._save_word(word, word_path) return file_path def _save_word(self, word, path): """ download and save the binary file to the given path """ uri = self._create_uri(word) headers = {'User-Agent': self.user_agent} request = requests.get(uri, headers=headers) if request.status_code != 200: raise Exception("{} cannot be found on the server.".format(word)) with open('{}/{}.html'.format(path, word), 'wb') as f: for chunk in request: f.write(chunk) return uri def _create_uri(self, word): """create oxford learner dictionary mp3 uri""" base = "https://www.oxfordlearnersdictionaries.com/definition/english/" return base + word def _print_definitions(self, html): """prints definitions""" for i, sense in enumerate(html): if str(sense) != " ": meaning = sense.find('span', class_='def') if meaning: meaning = meaning.text title = sense.find('span', class_='cf') label = sense.find('span', class_='dtxt') labels = sense.find('span', class_='labels') if label: meaning = "({}) {}".format(label.text, meaning) if labels: meaning = "{} {}".format(labels.text, meaning) if title: meaning = "{}: {}".format(title.text, meaning) print("{}. {}".format(i+1, meaning)) examples = [item.text for item in sense.find_all('li', class_="") if item] for example in examples: if example: print(" • {}".format(example)) def _print_idioms(self, html): """prints idioms""" print("\nIdioms:") for idiom in html: if idiom: print(" ⦾ {}".format(idiom.find('div').get_text(" ", strip=True))) label = idiom.find('span', class_='labels') description = idiom.find('span', class_='def').get_text(" ", strip=True) if label: description = "{} {}".format(label.text, description) print(" {}".format(description)) for example in idiom.find_all('span', class_='x'): print(" . {}".format(example.text))
[ "os.makedirs", "os.path.isdir", "fake_useragent.UserAgent", "os.path.exists", "requests.get", "bs4.BeautifulSoup", "os.path.expanduser" ]
[((329, 359), 'os.path.expanduser', 'os.path.expanduser', (['files_path'], {}), '(files_path)\n', (347, 359), False, 'import os\n'), ((2261, 2295), 'requests.get', 'requests.get', (['uri'], {'headers': 'headers'}), '(uri, headers=headers)\n', (2273, 2295), False, 'import requests\n'), ((248, 259), 'fake_useragent.UserAgent', 'UserAgent', ([], {}), '()\n', (257, 259), False, 'from fake_useragent import UserAgent\n'), ((375, 400), 'os.path.isdir', 'os.path.isdir', (['files_path'], {}), '(files_path)\n', (388, 400), False, 'import os\n'), ((414, 452), 'os.makedirs', 'os.makedirs', (['files_path'], {'exist_ok': '(True)'}), '(files_path, exist_ok=True)\n', (425, 452), False, 'import os\n'), ((587, 612), 'os.path.exists', 'os.path.exists', (['file_path'], {}), '(file_path)\n', (601, 612), False, 'import os\n'), ((754, 788), 'bs4.BeautifulSoup', 'BeautifulSoup', (['html', '"""html.parser"""'], {}), "(html, 'html.parser')\n", (767, 788), False, 'from bs4 import BeautifulSoup\n'), ((1902, 1927), 'os.path.exists', 'os.path.exists', (['file_path'], {}), '(file_path)\n', (1916, 1927), False, 'import os\n'), ((1941, 1978), 'os.makedirs', 'os.makedirs', (['word_path'], {'exist_ok': '(True)'}), '(word_path, exist_ok=True)\n', (1952, 1978), False, 'import os\n')]
""" Control global computation context """ from __future__ import absolute_import, division, print_function from collections import defaultdict _globals = defaultdict(lambda: None) _globals['callbacks'] = set() class set_options(object): """ Set global state within controled context This lets you specify various global settings in a tightly controlled ``with`` block. Valid keyword arguments currently include the following:: get - the scheduler to use pool - a thread or process pool cache - Cache to use for intermediate results func_loads/func_dumps - loads/dumps functions for serialization of data likely to contain functions. Defaults to cloudpickle.loads/cloudpickle.dumps optimizations - List of additional optimizations to run Examples -------- >>> with set_options(get=dask.get): # doctest: +SKIP ... x = np.array(x) # uses dask.get internally """ def __init__(self, **kwargs): self.old = _globals.copy() _globals.update(kwargs) def __enter__(self): return def __exit__(self, type, value, traceback): _globals.clear() _globals.update(self.old)
[ "collections.defaultdict" ]
[((157, 183), 'collections.defaultdict', 'defaultdict', (['(lambda : None)'], {}), '(lambda : None)\n', (168, 183), False, 'from collections import defaultdict\n')]
""" Copyright 2019 Satellite Applications Catapult Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import unittest from urllib.error import HTTPError from sedas_pyapi.sedas_api import SeDASAPI class TestSeDASAPI(unittest.TestCase): def test_login_bad_creds(self): sedas = SeDASAPI("bogus", "<PASSWORD> real password") self.assertRaises( HTTPError, sedas.login ) def test_blank_username(self): sedas = SeDASAPI("", "is not a real password") self.assertRaises( ValueError, sedas.login ) def test_blank_password(self): sedas = SeDASAPI("is not a real username", "") self.assertRaises( ValueError, sedas.login )
[ "sedas_pyapi.sedas_api.SeDASAPI" ]
[((820, 865), 'sedas_pyapi.sedas_api.SeDASAPI', 'SeDASAPI', (['"""bogus"""', '"""<PASSWORD> real password"""'], {}), "('bogus', '<PASSWORD> real password')\n", (828, 865), False, 'from sedas_pyapi.sedas_api import SeDASAPI\n'), ((1009, 1047), 'sedas_pyapi.sedas_api.SeDASAPI', 'SeDASAPI', (['""""""', '"""is not a real password"""'], {}), "('', 'is not a real password')\n", (1017, 1047), False, 'from sedas_pyapi.sedas_api import SeDASAPI\n'), ((1192, 1230), 'sedas_pyapi.sedas_api.SeDASAPI', 'SeDASAPI', (['"""is not a real username"""', '""""""'], {}), "('is not a real username', '')\n", (1200, 1230), False, 'from sedas_pyapi.sedas_api import SeDASAPI\n')]
#coding=utf-8 ''' Created on 2015-10-23 @author: Devuser ''' from doraemon.project.models import Project,ProjectMember,Product,ProjectModule,Version from gatesidelib.common.simplelogger import SimpleLogger from django.contrib.admin.models import DELETION,CHANGE,ADDITION from business.project.version_service import VersionService from business.auth_user.user_service import UserService import random class ProjectService(object): ''' classdocs ''' @staticmethod def get_latest_projects_include_me(request): result = list() latest_projects = ProjectService.get_latest_projects(request) my_projects = ProjectService.get_projects_include_me(request) my_project_ids = [project.id for project in my_projects] for project in latest_projects: if project and project.id in my_project_ids: result.append(project) return result[0:6] @staticmethod def get_latest_projects(request): result=list() latest_project_ids=VersionService.get_latests_project_ids(request) for project_id in latest_project_ids: temp_project=Project.objects.get(project_id) result.append(temp_project) return result @staticmethod def get_projects_include_me(request,product_id='all'): if product_id==None: product_id="0" if UserService.is_admin(request.user.id): return Project.objects.all() member_list= ProjectMember.objects.all().filter(PMMember=request.user.id) project_ids=[member.PMProjectID for member in member_list] if product_id.upper()=="ALL": result=Project.objects.all().filter(id__in=project_ids) else: result=Project.objects.all().filter(id__in=project_ids).filter(Product=int(product_id)) return result @staticmethod def get_products_include_me(request): my_projects=ProjectService.get_projects_include_me(request) prodcut_ids=list() for project in my_projects: if project.Product not in prodcut_ids: prodcut_ids.append(project.Product) return Product.objects.all().filter(id__in=prodcut_ids) @staticmethod def get_project_modules(project_id): return ProjectModule.objects.project_modules(int(project_id)) @staticmethod def create_project(request): try: project=Project() project=ProjectService.init_project(request.data, project) project.PBCreator=request.user.id project.save() if str(request.user.id)!=str(project.PBLead): ProjectService.add_member(request.user.id,project.id,5) ProjectService.add_member(project.PBLead,project.id,4) else: ProjectService.add_member(request.user.id,project.id,4) ProjectService.create_version(project,request.user) ProjectService.log_create_activity(request.user, project) except Exception as ex: SimpleLogger.error(ex) @staticmethod def create_version(project,user): version=Version() version.VProjectID=project.id version.VVersion='1.0.0' version.CFTCommitor=user.id version.save() VersionService.log_create_activity(user, version) @staticmethod def edit_project(request,projectid): temp_project=Project.objects.get(projectid) project=ProjectService.init_project(request.POST, temp_project) project.save() ProjectService.log_change_activity(request.user, project) @staticmethod def delete_project(request,projectid): print(projectid) project=Project.objects.get(projectid) project.IsActive=0 project.save() ProjectService.log_delete_activity(request.user, project) @staticmethod def init_project(validate_data,project): tmp_project=project tmp_project.PBTitle=validate_data.get('PBTitle') tmp_project.PBDescription=validate_data.get('PBDescription') tmp_project.PBKey=validate_data.get('PBKey') tmp_project.PBPlatform=validate_data.get('PBPlatform') tmp_project.PBVisiableLevel=validate_data.get('PBVisiableLevel') tmp_project.PBLead=validate_data.get('PBLead') tmp_project.Product=0 tmp_project.PBHttpUrl=validate_data.get('PBHttpUrl') tmp_project.PBAvatar="/static/global/images/project-icon/scenery-"+str(random.randint(1, 24))+".png" return tmp_project @staticmethod def add_member(user,projectid,Role): project_member=ProjectMember() project_member.PMProjectID=projectid project_member.PMMember=user project_member.PMRoleID=Role project_member.PMRoleType=1 project_member.save() @staticmethod def log_create_activity(user,project): Project.objects.log_action(user.id,project.id,project.PBTitle,ADDITION,"创建了项目",project.id) @staticmethod def log_delete_activity(user,project): Project.objects.log_action(user.id,project.id,project.PBTitle,DELETION,"删除了项目",project.id) @staticmethod def log_change_activity(user,project): Project.objects.log_action(user.id,project.id,project.PBTitle,CHANGE,"修改了项目",project.id)
[ "business.project.version_service.VersionService.log_create_activity", "doraemon.project.models.Project.objects.log_action", "doraemon.project.models.Project.objects.all", "doraemon.project.models.ProjectMember.objects.all", "doraemon.project.models.ProjectMember", "random.randint", "doraemon.project.models.Version", "gatesidelib.common.simplelogger.SimpleLogger.error", "doraemon.project.models.Project.objects.get", "business.project.version_service.VersionService.get_latests_project_ids", "doraemon.project.models.Product.objects.all", "doraemon.project.models.Project", "business.auth_user.user_service.UserService.is_admin" ]
[((1035, 1082), 'business.project.version_service.VersionService.get_latests_project_ids', 'VersionService.get_latests_project_ids', (['request'], {}), '(request)\n', (1073, 1082), False, 'from business.project.version_service import VersionService\n'), ((1418, 1455), 'business.auth_user.user_service.UserService.is_admin', 'UserService.is_admin', (['request.user.id'], {}), '(request.user.id)\n', (1438, 1455), False, 'from business.auth_user.user_service import UserService\n'), ((3194, 3203), 'doraemon.project.models.Version', 'Version', ([], {}), '()\n', (3201, 3203), False, 'from doraemon.project.models import Project, ProjectMember, Product, ProjectModule, Version\n'), ((3342, 3391), 'business.project.version_service.VersionService.log_create_activity', 'VersionService.log_create_activity', (['user', 'version'], {}), '(user, version)\n', (3376, 3391), False, 'from business.project.version_service import VersionService\n'), ((3476, 3506), 'doraemon.project.models.Project.objects.get', 'Project.objects.get', (['projectid'], {}), '(projectid)\n', (3495, 3506), False, 'from doraemon.project.models import Project, ProjectMember, Product, ProjectModule, Version\n'), ((3780, 3810), 'doraemon.project.models.Project.objects.get', 'Project.objects.get', (['projectid'], {}), '(projectid)\n', (3799, 3810), False, 'from doraemon.project.models import Project, ProjectMember, Product, ProjectModule, Version\n'), ((4716, 4731), 'doraemon.project.models.ProjectMember', 'ProjectMember', ([], {}), '()\n', (4729, 4731), False, 'from doraemon.project.models import Project, ProjectMember, Product, ProjectModule, Version\n'), ((4991, 5090), 'doraemon.project.models.Project.objects.log_action', 'Project.objects.log_action', (['user.id', 'project.id', 'project.PBTitle', 'ADDITION', '"""创建了项目"""', 'project.id'], {}), "(user.id, project.id, project.PBTitle, ADDITION,\n '创建了项目', project.id)\n", (5017, 5090), False, 'from doraemon.project.models import Project, ProjectMember, Product, ProjectModule, Version\n'), ((5156, 5255), 'doraemon.project.models.Project.objects.log_action', 'Project.objects.log_action', (['user.id', 'project.id', 'project.PBTitle', 'DELETION', '"""删除了项目"""', 'project.id'], {}), "(user.id, project.id, project.PBTitle, DELETION,\n '删除了项目', project.id)\n", (5182, 5255), False, 'from doraemon.project.models import Project, ProjectMember, Product, ProjectModule, Version\n'), ((5321, 5418), 'doraemon.project.models.Project.objects.log_action', 'Project.objects.log_action', (['user.id', 'project.id', 'project.PBTitle', 'CHANGE', '"""修改了项目"""', 'project.id'], {}), "(user.id, project.id, project.PBTitle, CHANGE,\n '修改了项目', project.id)\n", (5347, 5418), False, 'from doraemon.project.models import Project, ProjectMember, Product, ProjectModule, Version\n'), ((1154, 1185), 'doraemon.project.models.Project.objects.get', 'Project.objects.get', (['project_id'], {}), '(project_id)\n', (1173, 1185), False, 'from doraemon.project.models import Project, ProjectMember, Product, ProjectModule, Version\n'), ((1476, 1497), 'doraemon.project.models.Project.objects.all', 'Project.objects.all', ([], {}), '()\n', (1495, 1497), False, 'from doraemon.project.models import Project, ProjectMember, Product, ProjectModule, Version\n'), ((2475, 2484), 'doraemon.project.models.Project', 'Project', ([], {}), '()\n', (2482, 2484), False, 'from doraemon.project.models import Project, ProjectMember, Product, ProjectModule, Version\n'), ((1519, 1546), 'doraemon.project.models.ProjectMember.objects.all', 'ProjectMember.objects.all', ([], {}), '()\n', (1544, 1546), False, 'from doraemon.project.models import Project, ProjectMember, Product, ProjectModule, Version\n'), ((2203, 2224), 'doraemon.project.models.Product.objects.all', 'Product.objects.all', ([], {}), '()\n', (2222, 2224), False, 'from doraemon.project.models import Project, ProjectMember, Product, ProjectModule, Version\n'), ((3098, 3120), 'gatesidelib.common.simplelogger.SimpleLogger.error', 'SimpleLogger.error', (['ex'], {}), '(ex)\n', (3116, 3120), False, 'from gatesidelib.common.simplelogger import SimpleLogger\n'), ((1704, 1725), 'doraemon.project.models.Project.objects.all', 'Project.objects.all', ([], {}), '()\n', (1723, 1725), False, 'from doraemon.project.models import Project, ProjectMember, Product, ProjectModule, Version\n'), ((4572, 4593), 'random.randint', 'random.randint', (['(1)', '(24)'], {}), '(1, 24)\n', (4586, 4593), False, 'import random\n'), ((1786, 1807), 'doraemon.project.models.Project.objects.all', 'Project.objects.all', ([], {}), '()\n', (1805, 1807), False, 'from doraemon.project.models import Project, ProjectMember, Product, ProjectModule, Version\n')]
from jinja2 import Environment, PackageLoader, select_autoescape from IPython.display import HTML # MODULE INTRODUCTION """This module contains dislay functions to render the different data layers using Jinja2 templates and IPython rendering methods for Jupyter Notebook.""" # GLOBAL VARIABLE DECLARATIONS ENV = Environment( loader=PackageLoader('ga-capstone', 'templates'), autoescape=select_autoescape(['html', 'xml']) ) def div(format, data): # HTML formatting utility function """Wraps 'data' inside a div of class 'format' for HTML printing.""" d = '<div class="{}">{}</div>' # Basic div template return d.format(format, data) def char(i, char, map_char, state): """Formats character information for html display. state can be [blank/bold/plain/tag].""" top = div(map_char, char) # Create div for top part with characetr bottom = div(state, i) # Create div for botm part with index filling = top + bottom # Stick th two together to fill the charbox return div('charbox', filling) def line(raw, char_map, states, pad=True): """Formats line information for html display. 'raw' should come from data.raw, and 'char_map' should come from styler(data.map). pad=True will add black squares to fill the row up to 80 characters.""" filling = '' for i, (c, m, s) in zip(raw, char_map, states): filling += char(i, c, m, s) if pad: # Check line length and initialize pad_length if creating a pad pad_length = 80 - len(raw) for x in range(pad_length): filling += char(len(raw) + x, '', 'e', 'blank') return div('stringbox', filling) def show(content, style): """Takes a string representing HTML content and packages it for display in IPython/Jupyter Notebook""" window = div('window', content) return div('viewer', window)
[ "jinja2.PackageLoader", "jinja2.select_autoescape" ]
[((338, 379), 'jinja2.PackageLoader', 'PackageLoader', (['"""ga-capstone"""', '"""templates"""'], {}), "('ga-capstone', 'templates')\n", (351, 379), False, 'from jinja2 import Environment, PackageLoader, select_autoescape\n'), ((396, 430), 'jinja2.select_autoescape', 'select_autoescape', (["['html', 'xml']"], {}), "(['html', 'xml'])\n", (413, 430), False, 'from jinja2 import Environment, PackageLoader, select_autoescape\n')]
from abc import ABCMeta import numpy as np from six.moves import xrange import warnings import collections import cleverhans.utils as utils from cleverhans.model import Model, CallableModelWrapper class Attack(object): """ Abstract base class for all attack classes. """ __metaclass__ = ABCMeta def __init__(self, model, back='tf', sess=None): """ :param model: An instance of the Model class. :param back: The backend to use. Either 'tf' (default) or 'th'. :param sess: The tf session to run graphs in (use None for Theano) """ if not(back == 'tf' or back == 'th'): raise ValueError("Backend argument must either be 'tf' or 'th'.") if back == 'th' and sess is not None: raise Exception("A session should not be provided when using th.") if not isinstance(model, Model): if hasattr(model, '__call__'): pass else: raise ValueError("The model argument should be an instance of" " the Model class.") if back == 'th': warnings.warn("CleverHans support for Theano is deprecated and " "will be dropped on 2017-11-08.") # Prepare attributes self.model = model self.back = back self.sess = sess # We are going to keep track of old graphs and cache them. self.graphs = {} # When calling generate_np, arguments in the following set should be # fed into the graph, as they are not structural items that require # generating a new graph. # This dict should map names of arguments to the types they should # have. # (Usually, the target class will be a feedable keyword argument.) self.feedable_kwargs = {} # When calling generate_np, arguments in the following set should NOT # be fed into the graph, as they ARE structural items that require # generating a new graph. # This list should contain the names of the structural arguments. self.structural_kwargs = [] def generate(self, x, **kwargs): """ Generate the attack's symbolic graph for adversarial examples. This method should be overriden in any child class that implements an attack that is expressable symbolically. Otherwise, it will wrap the numerical implementation as a symbolic operator. :param x: The model's symbolic inputs. :param **kwargs: optional parameters used by child classes. :return: A symbolic representation of the adversarial examples. """ if self.back == 'th': raise NotImplementedError('Theano version not implemented.') error = "Sub-classes must implement generate." raise NotImplementedError(error) def construct_graph(self, fixed, feedable, x_val, hash_key): # try our very best to create a TF placeholder for each of the # feedable keyword arguments, and check the types are one of # the allowed types import tensorflow as tf new_kwargs = dict(x for x in fixed.items()) for name, value in feedable.items(): given_type = self.feedable_kwargs[name] if isinstance(value, np.ndarray): new_shape = [None] + list(value.shape[1:]) new_kwargs[name] = tf.placeholder(given_type, new_shape) elif isinstance(value, utils.known_number_types): new_kwargs[name] = tf.placeholder(given_type, shape=[]) else: raise ValueError("Could not identify type of argument " + name + ": " + str(value)) # x is a special placeholder we always want to have x_shape = [None] + list(x_val.shape)[1:] x = tf.placeholder(tf.float32, shape=x_shape) # now we generate the graph that we want x_adv = self.generate(x, **new_kwargs) self.graphs[hash_key] = (x, new_kwargs, x_adv) if len(self.graphs) >= 10: warnings.warn("Calling generate_np() with multiple different " "structural paramaters is inefficient and should" " be avoided. Calling generate() is preferred.") def generate_np(self, x_val, **kwargs): """ Generate adversarial examples and return them as a Numpy array. Sub-classes *should not* implement this method unless they must perform special handling of arguments. :param x_val: A Numpy array with the original inputs. :param **kwargs: optional parameters used by child classes. :return: A Numpy array holding the adversarial examples. """ if self.back == 'th': raise NotImplementedError('Theano version not implemented.') import tensorflow as tf if self.sess is None: raise ValueError("Cannot use `generate_np` when no `sess` was" " provided") # the set of arguments that are structural properties of the attack # if these arguments are different, we must construct a new graph fixed = dict((k, v) for k, v in kwargs.items() if k in self.structural_kwargs) # the set of arguments that are passed as placeholders to the graph # on each call, and can change without constructing a new graph feedable = dict((k, v) for k, v in kwargs.items() if k in self.feedable_kwargs) if len(fixed) + len(feedable) < len(kwargs): warnings.warn("Supplied extra keyword arguments that are not " "used in the graph computation. They have been " "ignored.") if not all(isinstance(value, collections.Hashable) for value in fixed.values()): # we have received a fixed value that isn't hashable # this means we can't cache this graph for later use, # and it will have to be discarded later hash_key = None else: # create a unique key for this set of fixed paramaters hash_key = tuple(sorted(fixed.items())) if hash_key not in self.graphs: self.construct_graph(fixed, feedable, x_val, hash_key) x, new_kwargs, x_adv = self.graphs[hash_key] feed_dict = {x: x_val} for name in feedable: feed_dict[new_kwargs[name]] = feedable[name] return self.sess.run(x_adv, feed_dict) def parse_params(self, params=None): """ Take in a dictionary of parameters and applies attack-specific checks before saving them as attributes. :param params: a dictionary of attack-specific parameters :return: True when parsing was successful """ return True class MultipleModelAttack(object): """ Abstract base class for all attack classes. """ __metaclass__ = ABCMeta def __init__(self, models, back='tf', sess=None): """ :param models: An instance of the Model class. :param back: The backend to use. Either 'tf' (default) or 'th'. :param sess: The tf session to run graphs in (use None for Theano) """ if not(back == 'tf' or back == 'th'): raise ValueError("Backend argument must either be 'tf' or 'th'.") if back == 'th' and sess is not None: raise Exception("A session should not be provided when using th.") for model in models: if not isinstance(model, Model): if hasattr(model, '__call__'): warnings.warn("CleverHans support for supplying a callable" " instead of an instance of the Model class is" " deprecated and will be dropped on 2018-01-11.") else: raise ValueError("The model argument should be an instance of" " the Model class.") if back == 'th': warnings.warn("CleverHans support for Theano is deprecated and " "will be dropped on 2017-11-08.") # Prepare attributes self.model1 = models[0] self.model2 = models[1] self.model3 = models[2] self.back = back self.sess = sess # We are going to keep track of old graphs and cache them. self.graphs = {} # When calling generate_np, arguments in the following set should be # fed into the graph, as they are not structural items that require # generating a new graph. # This dict should map names of arguments to the types they should # have. # (Usually, the target class will be a feedable keyword argument.) self.feedable_kwargs = {} # When calling generate_np, arguments in the following set should NOT # be fed into the graph, as they ARE structural items that require # generating a new graph. # This list should contain the names of the structural arguments. self.structural_kwargs = [] def generate(self, x, **kwargs): """ Generate the attack's symbolic graph for adversarial examples. This method should be overriden in any child class that implements an attack that is expressable symbolically. Otherwise, it will wrap the numerical implementation as a symbolic operator. :param x: The model's symbolic inputs. :param **kwargs: optional parameters used by child classes. :return: A symbolic representation of the adversarial examples. """ if self.back == 'th': raise NotImplementedError('Theano version not implemented.') error = "Sub-classes must implement generate." raise NotImplementedError(error) def construct_graph(self, fixed, feedable, x_val, hash_key): # try our very best to create a TF placeholder for each of the # feedable keyword arguments, and check the types are one of # the allowed types import tensorflow as tf new_kwargs = dict(x for x in fixed.items()) for name, value in feedable.items(): given_type = self.feedable_kwargs[name] if isinstance(value, np.ndarray): new_shape = [None] + list(value.shape[1:]) new_kwargs[name] = tf.placeholder(given_type, new_shape) elif isinstance(value, utils.known_number_types): new_kwargs[name] = tf.placeholder(given_type, shape=[]) else: raise ValueError("Could not identify type of argument " + name + ": " + str(value)) # x is a special placeholder we always want to have x_shape = [None] + list(x_val.shape)[1:] x = tf.placeholder(tf.float32, shape=x_shape) # now we generate the graph that we want x_adv = self.generate(x, **new_kwargs) self.graphs[hash_key] = (x, new_kwargs, x_adv) if len(self.graphs) >= 10: warnings.warn("Calling generate_np() with multiple different " "structural paramaters is inefficient and should" " be avoided. Calling generate() is preferred.") def generate_np(self, x_val, **kwargs): """ Generate adversarial examples and return them as a Numpy array. Sub-classes *should not* implement this method unless they must perform special handling of arguments. :param x_val: A Numpy array with the original inputs. :param **kwargs: optional parameters used by child classes. :return: A Numpy array holding the adversarial examples. """ if self.back == 'th': raise NotImplementedError('Theano version not implemented.') import tensorflow as tf if self.sess is None: raise ValueError("Cannot use `generate_np` when no `sess` was" " provided") # the set of arguments that are structural properties of the attack # if these arguments are different, we must construct a new graph fixed = dict((k, v) for k, v in kwargs.items() if k in self.structural_kwargs) # the set of arguments that are passed as placeholders to the graph # on each call, and can change without constructing a new graph feedable = dict((k, v) for k, v in kwargs.items() if k in self.feedable_kwargs) if len(fixed) + len(feedable) < len(kwargs): warnings.warn("Supplied extra keyword arguments that are not " "used in the graph computation. They have been " "ignored.") if not all(isinstance(value, collections.Hashable) for value in fixed.values()): # we have received a fixed value that isn't hashable # this means we can't cache this graph for later use, # and it will have to be discarded later hash_key = None else: # create a unique key for this set of fixed paramaters hash_key = tuple(sorted(fixed.items())) if hash_key not in self.graphs: self.construct_graph(fixed, feedable, x_val, hash_key) x, new_kwargs, x_adv = self.graphs[hash_key] feed_dict = {x: x_val} for name in feedable: feed_dict[new_kwargs[name]] = feedable[name] return self.sess.run(x_adv, feed_dict) def parse_params(self, params=None): """ Take in a dictionary of parameters and applies attack-specific checks before saving them as attributes. :param params: a dictionary of attack-specific parameters :return: True when parsing was successful """ return True class FastGradientMethod(Attack): """ This attack was originally implemented by Goodfellow et al. (2015) with the infinity norm (and is known as the "Fast Gradient Sign Method"). This implementation extends the attack to other norms, and is therefore called the Fast Gradient Method. Paper link: https://arxiv.org/abs/1412.6572 """ def __init__(self, model, back='tf', sess=None): """ Create a FastGradientMethod instance. """ super(FastGradientMethod, self).__init__(model, back, sess) self.feedable_kwargs = {'eps': np.float32, 'y': np.float32, 'clip_min': np.float32, 'clip_max': np.float32} self.structural_kwargs = ['ord'] if not isinstance(self.model, Model): self.model = CallableModelWrapper(self.model, 'probs') def generate(self, x, **kwargs): """ Generate symbolic graph for adversarial examples and return. :param x: The model's symbolic inputs. :param eps: (optional float) attack step size (input variation) :param ord: (optional) Order of the norm (mimics Numpy). Possible values: np.inf, 1 or 2. :param y: (optional) A tensor with the model labels. Only provide this parameter if you'd like to use true labels when crafting adversarial samples. Otherwise, model predictions are used as labels to avoid the "label leaking" effect (explained in this paper: https://arxiv.org/abs/1611.01236). Default is None. Labels should be one-hot-encoded. :param clip_min: (optional float) Minimum input component value :param clip_max: (optional float) Maximum input component value """ # Parse and save attack-specific parameters assert self.parse_params(**kwargs) if self.back == 'tf': from .attacks_tf import fgm else: from .attacks_th import fgm return fgm(x, self.model.get_probs(x), y=self.y, eps=self.eps, ord=self.ord, clip_min=self.clip_min, clip_max=self.clip_max) def parse_params(self, eps=0.3, ord=np.inf, y=None, clip_min=None, clip_max=None, **kwargs): """ Take in a dictionary of parameters and applies attack-specific checks before saving them as attributes. Attack-specific parameters: :param eps: (optional float) attack step size (input variation) :param ord: (optional) Order of the norm (mimics Numpy). Possible values: np.inf, 1 or 2. :param y: (optional) A tensor with the model labels. Only provide this parameter if you'd like to use true labels when crafting adversarial samples. Otherwise, model predictions are used as labels to avoid the "label leaking" effect (explained in this paper: https://arxiv.org/abs/1611.01236). Default is None. Labels should be one-hot-encoded. :param clip_min: (optional float) Minimum input component value :param clip_max: (optional float) Maximum input component value """ # Save attack-specific parameters self.eps = eps self.ord = ord self.y = y self.clip_min = clip_min self.clip_max = clip_max # Check if order of the norm is acceptable given current implementation if self.ord not in [np.inf, int(1), int(2)]: raise ValueError("Norm order must be either np.inf, 1, or 2.") if self.back == 'th' and self.ord != np.inf: raise NotImplementedError("The only FastGradientMethod norm " "implemented for Theano is np.inf.") return True class MultiModelIterativeMethod(MultipleModelAttack): """ The Basic Iterative Method (Kurakin et al. 2016). The original paper used hard labels for this attack; no label smoothing. """ def __init__(self, models, back='tf', sess=None): """ Create a BasicIterativeMethod instance. """ super(MultiModelIterativeMethod, self).__init__(models, back, sess) self.feedable_kwargs = {'eps': np.float32, 'eps_iter': np.float32, 'y': np.float32, 'clip_min': np.float32, 'clip_max': np.float32} self.structural_kwargs = ['ord', 'nb_iter'] if not isinstance(self.model1, Model): self.model1 = CallableModelWrapper(self.model1, 'probs') if not isinstance(self.model2, Model): self.model2 = CallableModelWrapper(self.model2, 'probs') if not isinstance(self.model3, Model): self.model3 = CallableModelWrapper(self.model3, 'probs') def generate(self, x, **kwargs): """ Generate symbolic graph for adversarial examples and return. :param x: The model's symbolic inputs. :param eps: (required float) maximum distortion of adversarial example compared to original input :param eps_iter: (required float) step size for each attack iteration :param nb_iter: (required int) Number of attack iterations. :param y: (required) A tensor with the model labels. :param ord: (optional) Order of the norm (mimics Numpy). Possible values: np.inf, 1 or 2. :param clip_min: (optional float) Minimum input component value :param clip_max: (optional float) Maximum input component value """ import tensorflow as tf # Parse and save attack-specific parameters assert self.parse_params(**kwargs) # Initialize loop variables eta = 0 # Fix labels to the first model predictions for loss computation # model_preds1 = self.model1.get_probs(x) # model_preds2 = self.model2.get_probs(x) model_preds3 = self.model3.get_probs(x) model_preds = model_preds3 preds_max = tf.reduce_max(model_preds, 1, keep_dims=True) y = tf.to_float(tf.equal(model_preds, preds_max)) fgsm_params = {'eps': self.eps_iter, 'y': y, 'ord': self.ord} for i in range(self.nb_iter): FGSM1 = FastGradientMethod(self.model1, back=self.back, sess=self.sess) FGSM2 = FastGradientMethod(self.model2, back=self.back, sess=self.sess) FGSM3 = FastGradientMethod(self.model3, back=self.back, sess=self.sess) # Compute this step's perturbation eta1 = FGSM1.generate(x + eta, **fgsm_params) - x eta2 = FGSM2.generate(x + eta, **fgsm_params) - x eta3 = FGSM3.generate(x + eta, **fgsm_params) - x eta = eta1 * 0.333 + eta2 * 0.333 + eta3 * 0.333 # Clipping perturbation eta to self.ord norm ball if self.ord == np.inf: eta = tf.clip_by_value(eta, -self.eps, self.eps) elif self.ord in [1, 2]: reduc_ind = list(xrange(1, len(eta.get_shape()))) if self.ord == 1: norm = tf.reduce_sum(tf.abs(eta), reduction_indices=reduc_ind, keep_dims=True) elif self.ord == 2: norm = tf.sqrt(tf.reduce_sum(tf.square(eta), reduction_indices=reduc_ind, keep_dims=True)) eta = eta * self.eps / norm # Define adversarial example (and clip if necessary) adv_x = x + eta if self.clip_min is not None and self.clip_max is not None: adv_x = tf.clip_by_value(adv_x, self.clip_min, self.clip_max) return adv_x def parse_params(self, eps=0.3, eps_iter=0.05, nb_iter=10, y=None, ord=np.inf, clip_min=None, clip_max=None, **kwargs): """ Take in a dictionary of parameters and applies attack-specific checks before saving them as attributes. Attack-specific parameters: :param eps: (required float) maximum distortion of adversarial example compared to original input :param eps_iter: (required float) step size for each attack iteration :param nb_iter: (required int) Number of attack iterations. :param y: (required) A tensor with the model labels. :param ord: (optional) Order of the norm (mimics Numpy). Possible values: np.inf, 1 or 2. :param clip_min: (optional float) Minimum input component value :param clip_max: (optional float) Maximum input component value """ # Save attack-specific parameters self.eps = eps self.eps_iter = eps_iter self.nb_iter = nb_iter self.y = y self.ord = ord self.clip_min = clip_min self.clip_max = clip_max # Check if order of the norm is acceptable given current implementation if self.ord not in [np.inf, 1, 2]: raise ValueError("Norm order must be either np.inf, 1, or 2.") if self.back == 'th': error_string = "BasicIterativeMethod is not implemented in Theano" raise NotImplementedError(error_string) return True
[ "tensorflow.abs", "tensorflow.clip_by_value", "tensorflow.placeholder", "tensorflow.square", "cleverhans.model.CallableModelWrapper", "warnings.warn", "tensorflow.reduce_max", "tensorflow.equal" ]
[((3880, 3921), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32'], {'shape': 'x_shape'}), '(tf.float32, shape=x_shape)\n', (3894, 3921), True, 'import tensorflow as tf\n'), ((10986, 11027), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32'], {'shape': 'x_shape'}), '(tf.float32, shape=x_shape)\n', (11000, 11027), True, 'import tensorflow as tf\n'), ((20310, 20355), 'tensorflow.reduce_max', 'tf.reduce_max', (['model_preds', '(1)'], {'keep_dims': '(True)'}), '(model_preds, 1, keep_dims=True)\n', (20323, 20355), True, 'import tensorflow as tf\n'), ((1136, 1241), 'warnings.warn', 'warnings.warn', (['"""CleverHans support for Theano is deprecated and will be dropped on 2017-11-08."""'], {}), "(\n 'CleverHans support for Theano is deprecated and will be dropped on 2017-11-08.'\n )\n", (1149, 1241), False, 'import warnings\n'), ((4123, 4288), 'warnings.warn', 'warnings.warn', (['"""Calling generate_np() with multiple different structural paramaters is inefficient and should be avoided. Calling generate() is preferred."""'], {}), "(\n 'Calling generate_np() with multiple different structural paramaters is inefficient and should be avoided. Calling generate() is preferred.'\n )\n", (4136, 4288), False, 'import warnings\n'), ((5662, 5789), 'warnings.warn', 'warnings.warn', (['"""Supplied extra keyword arguments that are not used in the graph computation. They have been ignored."""'], {}), "(\n 'Supplied extra keyword arguments that are not used in the graph computation. They have been ignored.'\n )\n", (5675, 5789), False, 'import warnings\n'), ((8173, 8278), 'warnings.warn', 'warnings.warn', (['"""CleverHans support for Theano is deprecated and will be dropped on 2017-11-08."""'], {}), "(\n 'CleverHans support for Theano is deprecated and will be dropped on 2017-11-08.'\n )\n", (8186, 8278), False, 'import warnings\n'), ((11229, 11394), 'warnings.warn', 'warnings.warn', (['"""Calling generate_np() with multiple different structural paramaters is inefficient and should be avoided. Calling generate() is preferred."""'], {}), "(\n 'Calling generate_np() with multiple different structural paramaters is inefficient and should be avoided. Calling generate() is preferred.'\n )\n", (11242, 11394), False, 'import warnings\n'), ((12768, 12895), 'warnings.warn', 'warnings.warn', (['"""Supplied extra keyword arguments that are not used in the graph computation. They have been ignored."""'], {}), "(\n 'Supplied extra keyword arguments that are not used in the graph computation. They have been ignored.'\n )\n", (12781, 12895), False, 'import warnings\n'), ((14930, 14971), 'cleverhans.model.CallableModelWrapper', 'CallableModelWrapper', (['self.model', '"""probs"""'], {}), "(self.model, 'probs')\n", (14950, 14971), False, 'from cleverhans.model import Model, CallableModelWrapper\n'), ((18801, 18843), 'cleverhans.model.CallableModelWrapper', 'CallableModelWrapper', (['self.model1', '"""probs"""'], {}), "(self.model1, 'probs')\n", (18821, 18843), False, 'from cleverhans.model import Model, CallableModelWrapper\n'), ((18918, 18960), 'cleverhans.model.CallableModelWrapper', 'CallableModelWrapper', (['self.model2', '"""probs"""'], {}), "(self.model2, 'probs')\n", (18938, 18960), False, 'from cleverhans.model import Model, CallableModelWrapper\n'), ((19035, 19077), 'cleverhans.model.CallableModelWrapper', 'CallableModelWrapper', (['self.model3', '"""probs"""'], {}), "(self.model3, 'probs')\n", (19055, 19077), False, 'from cleverhans.model import Model, CallableModelWrapper\n'), ((20380, 20412), 'tensorflow.equal', 'tf.equal', (['model_preds', 'preds_max'], {}), '(model_preds, preds_max)\n', (20388, 20412), True, 'import tensorflow as tf\n'), ((22015, 22068), 'tensorflow.clip_by_value', 'tf.clip_by_value', (['adv_x', 'self.clip_min', 'self.clip_max'], {}), '(adv_x, self.clip_min, self.clip_max)\n', (22031, 22068), True, 'import tensorflow as tf\n'), ((3435, 3472), 'tensorflow.placeholder', 'tf.placeholder', (['given_type', 'new_shape'], {}), '(given_type, new_shape)\n', (3449, 3472), True, 'import tensorflow as tf\n'), ((10541, 10578), 'tensorflow.placeholder', 'tf.placeholder', (['given_type', 'new_shape'], {}), '(given_type, new_shape)\n', (10555, 10578), True, 'import tensorflow as tf\n'), ((21191, 21233), 'tensorflow.clip_by_value', 'tf.clip_by_value', (['eta', '(-self.eps)', 'self.eps'], {}), '(eta, -self.eps, self.eps)\n', (21207, 21233), True, 'import tensorflow as tf\n'), ((3570, 3606), 'tensorflow.placeholder', 'tf.placeholder', (['given_type'], {'shape': '[]'}), '(given_type, shape=[])\n', (3584, 3606), True, 'import tensorflow as tf\n'), ((7746, 7907), 'warnings.warn', 'warnings.warn', (['"""CleverHans support for supplying a callable instead of an instance of the Model class is deprecated and will be dropped on 2018-01-11."""'], {}), "(\n 'CleverHans support for supplying a callable instead of an instance of the Model class is deprecated and will be dropped on 2018-01-11.'\n )\n", (7759, 7907), False, 'import warnings\n'), ((10676, 10712), 'tensorflow.placeholder', 'tf.placeholder', (['given_type'], {'shape': '[]'}), '(given_type, shape=[])\n', (10690, 10712), True, 'import tensorflow as tf\n'), ((21412, 21423), 'tensorflow.abs', 'tf.abs', (['eta'], {}), '(eta)\n', (21418, 21423), True, 'import tensorflow as tf\n'), ((21637, 21651), 'tensorflow.square', 'tf.square', (['eta'], {}), '(eta)\n', (21646, 21651), True, 'import tensorflow as tf\n')]
import pytest from medicare_appeals.appeals import models from medicare_appeals.tests import factories @pytest.fixture(scope='function') def build_an_appeal(): """ Build a single appeal """ appeal = factories.AppealFactory() @pytest.fixture(scope='function') def build_two_appeals(): """ Build two appeals with the description 'test{n}' """ appeal1 = factories.AppealFactory(description='test0') appeal2 = factories.AppealFactory(description='test1') @pytest.mark.django_db def test_appeal(build_an_appeal): """ An appeal should be created """ assert models.Appeal.objects.count() == 1 @pytest.mark.django_db def test_two_appeals(build_two_appeals): """ Two appeals should be created with description 'test{n}' """ appeals = models.Appeal.objects.all() assert appeals.count() == 2 for idx, appeal in enumerate(appeals): assert appeal.description == 'test{0}'.format(idx)
[ "medicare_appeals.appeals.models.Appeal.objects.count", "medicare_appeals.appeals.models.Appeal.objects.all", "pytest.fixture", "medicare_appeals.tests.factories.AppealFactory" ]
[((106, 138), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""function"""'}), "(scope='function')\n", (120, 138), False, 'import pytest\n'), ((246, 278), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""function"""'}), "(scope='function')\n", (260, 278), False, 'import pytest\n'), ((217, 242), 'medicare_appeals.tests.factories.AppealFactory', 'factories.AppealFactory', ([], {}), '()\n', (240, 242), False, 'from medicare_appeals.tests import factories\n'), ((387, 431), 'medicare_appeals.tests.factories.AppealFactory', 'factories.AppealFactory', ([], {'description': '"""test0"""'}), "(description='test0')\n", (410, 431), False, 'from medicare_appeals.tests import factories\n'), ((446, 490), 'medicare_appeals.tests.factories.AppealFactory', 'factories.AppealFactory', ([], {'description': '"""test1"""'}), "(description='test1')\n", (469, 490), False, 'from medicare_appeals.tests import factories\n'), ((801, 828), 'medicare_appeals.appeals.models.Appeal.objects.all', 'models.Appeal.objects.all', ([], {}), '()\n', (826, 828), False, 'from medicare_appeals.appeals import models\n'), ((609, 638), 'medicare_appeals.appeals.models.Appeal.objects.count', 'models.Appeal.objects.count', ([], {}), '()\n', (636, 638), False, 'from medicare_appeals.appeals import models\n')]
from __future__ import absolute_import from theanompi.lib.base import MPI_GPU_Process from mpi4py import MPI server_alpha = 0.5 class EASGD_Server(MPI_GPU_Process): ''' An implementation of the server process in the Elastic Averaging SGD rule https://arxiv.org/abs/1412.6651 implementation idea from platoon: https://github.com/mila-udem/platoon/tree/master/platoon/channel ''' def __init__(self, device): MPI_GPU_Process.__init__(self, device) # setup ctx, comm self.worker_gpucomm = {} # gpucomm to be setup through worker registration self.worker_id = {} self.first_worker_id = None self.valid = {} self.uidx = {} self.adj_lr = {} self.last = None self.last_uidx = 0 self.start_time = None self.uepoch = 0 self.last_uepoch = 0 def process_request(self, model, worker_id, worker_rank, message): reply = None import time # Connection related request if message in ['sync_register']: if self.first_worker_id == None: self.first_worker_id = worker_id print('[Server] recording worker is %s' % worker_id) reply = 'first' # rank -> id -> gpucomm self.worker_id[str(worker_rank)] = int(worker_id) print('[Server] registered worker %d' % worker_id) return reply try: valid = self.valid['%s' % worker_id] amount = self.uidx['%s' % worker_id] adj_lr = self.adj_lr['%s' % worker_id] except KeyError: self.valid['%s' % worker_id] = False self.adj_lr['%s' % worker_id] = False self.uidx['%s' % worker_id] = 0 # when a new worker joins self.adj_lr = self.adj_lr.fromkeys(self.adj_lr, True) # Training related requests if message == 'next': if self.start_time is None: self.start_time = time.time() # stop when finish all epochs if sum(self.uidx.values()) >= self.validFreq*model.n_epochs: print("[Server] Total training time %.2fh" % \ ((time.time() - self.start_time)/3600.0)) reply = 'stop' elif self.valid['%s' % worker_id]: self.valid['%s' % worker_id] = False reply = 'val' elif self.adj_lr['%s' % worker_id]: self.adj_lr['%s' % worker_id] = False reply = 'adjust_hyperp' else: reply = 'train' elif 'done' in message: self.uidx['%s' % worker_id] += message['done'] #print '[Server] uidx %d' % sum(self.uidx.values()) elif message == 'uepoch': reply = [self.uepoch, len(self.worker_gpucomm)] if message in ['next', 'uepoch'] or 'done' in message: now_uidx = sum(self.uidx.values()) self.uepoch = int(now_uidx/self.validFreq) if self.last_uepoch != self.uepoch: #print "[Server] now global epoch %d" % self.uepoch self.last_uepoch = self.uepoch # when a epoch is finished self.adj_lr = self.adj_lr.fromkeys(self.adj_lr, True) #self.valid = self.valid.fromkeys(self.valid, True) # only the first worker validates self.valid["%s" % self.first_worker_id] = True if self.last == None: self.last = float(time.time()) if now_uidx - self.last_uidx >= 40: now = float(time.time()) print('[Server] %d time per 40 batches: %.2f s' % \ (self.uepoch, (now - self.last))) self.last_uidx = now_uidx self.last = now return reply def action_after(self, model, worker_id, worker_rank, message): if message == 'disconnect': self.worker_gpucomm.pop(str(worker_id)) print('[Server] disconnected with worker %d' % worker_id) elif message == 'stop': print('[Server] stopped by %d' % worker_id) import sys sys.exit(0) if message == 'sync_register': gpucomm = self.get_intranode_pair_comm(pair=(0,worker_rank)) self.worker_gpucomm[str(worker_id)]= gpucomm elif message == 'exchange': self.exchanger.gpucomm = self.worker_gpucomm[str(worker_id)] # self.exchanger.dest = worker_rank self.exchanger.exchange() elif message == 'copy_to_local': self.exchanger.gpucomm = self.worker_gpucomm[str(worker_id)] # self.exchanger.dest = worker_rank self.exchanger.copy_to_local() def build(self, model): from theanompi.lib.helper_funcs import check_model # check model has necessary attributes check_model(model) # choose the type of exchanger from theanompi.lib.exchanger import EASGD_Exchanger self.exchanger = EASGD_Exchanger(alpha=server_alpha, param_list=model.params, etype='server') self.validFreq = model.data.n_batch_train def run(self, model): if self.comm == None: print('Server communicator not initialized') return print('server started') while True: # Wait for next request from client request = self.comm.recv(source=MPI.ANY_SOURCE, tag=199) # Do some process work and formulate a reply reply = self.process_request(model, request['id'], request['rank'],request['message']) # Send reply back to client self.comm.send(reply, dest=request['rank'], tag=200) # Do some action work after reply self.action_after(model, request['id'], request['rank'], request['message']) if __name__ == '__main__': import sys device = sys.argv[1] modelfile = sys.argv[2] modelclass = sys.argv[3] try: cpulist = sys.argv[4] except: pass else: # optional binding cores using hwloc from theanompi.lib.hwloc_utils import bind_to_socket_mem,detect_socket_num bind_to_socket_mem(cpulist, label='train') detect_socket_num(debug=True, label='train') server = EASGD_Server(device) config={} config['verbose'] = False #(server.rank==0) config['rank'] = 0 config['size'] = 1 config['no_paraload'] = True import importlib mod = importlib.import_module(modelfile) modcls = getattr(mod, modelclass) model = modcls(config) server.build(model) server.run(model)
[ "theanompi.lib.exchanger.EASGD_Exchanger", "theanompi.lib.helper_funcs.check_model", "importlib.import_module", "theanompi.lib.hwloc_utils.detect_socket_num", "time.time", "theanompi.lib.base.MPI_GPU_Process.__init__", "sys.exit", "theanompi.lib.hwloc_utils.bind_to_socket_mem" ]
[((7467, 7501), 'importlib.import_module', 'importlib.import_module', (['modelfile'], {}), '(modelfile)\n', (7490, 7501), False, 'import importlib\n'), ((461, 499), 'theanompi.lib.base.MPI_GPU_Process.__init__', 'MPI_GPU_Process.__init__', (['self', 'device'], {}), '(self, device)\n', (485, 499), False, 'from theanompi.lib.base import MPI_GPU_Process\n'), ((5433, 5451), 'theanompi.lib.helper_funcs.check_model', 'check_model', (['model'], {}), '(model)\n', (5444, 5451), False, 'from theanompi.lib.helper_funcs import check_model\n'), ((5585, 5661), 'theanompi.lib.exchanger.EASGD_Exchanger', 'EASGD_Exchanger', ([], {'alpha': 'server_alpha', 'param_list': 'model.params', 'etype': '"""server"""'}), "(alpha=server_alpha, param_list=model.params, etype='server')\n", (5600, 5661), False, 'from theanompi.lib.exchanger import EASGD_Exchanger\n'), ((7154, 7196), 'theanompi.lib.hwloc_utils.bind_to_socket_mem', 'bind_to_socket_mem', (['cpulist'], {'label': '"""train"""'}), "(cpulist, label='train')\n", (7172, 7196), False, 'from theanompi.lib.hwloc_utils import bind_to_socket_mem, detect_socket_num\n'), ((7205, 7249), 'theanompi.lib.hwloc_utils.detect_socket_num', 'detect_socket_num', ([], {'debug': '(True)', 'label': '"""train"""'}), "(debug=True, label='train')\n", (7222, 7249), False, 'from theanompi.lib.hwloc_utils import bind_to_socket_mem, detect_socket_num\n'), ((2158, 2169), 'time.time', 'time.time', ([], {}), '()\n', (2167, 2169), False, 'import time\n'), ((4588, 4599), 'sys.exit', 'sys.exit', (['(0)'], {}), '(0)\n', (4596, 4599), False, 'import sys\n'), ((3827, 3838), 'time.time', 'time.time', ([], {}), '()\n', (3836, 3838), False, 'import time\n'), ((3934, 3945), 'time.time', 'time.time', ([], {}), '()\n', (3943, 3945), False, 'import time\n'), ((2375, 2386), 'time.time', 'time.time', ([], {}), '()\n', (2384, 2386), False, 'import time\n')]
from tgbot import plugintest from sample_plugin import TestPlugin class TestPluginTest(plugintest.PluginTestCase): def setUp(self): self.plugin = TestPlugin() self.bot = self.fake_bot( '', plugins=[self.plugin], ) def test_print_commands(self): from cStringIO import StringIO out = StringIO() self.bot.print_commands(out=out) self.assertEqual(out.getvalue(), '''\ echo - right back at ya echo2 - right back at ya save - save a note read - read a note savegroup - save a group note readgroup - read a group note ''') def test_reply(self): self.receive_message('/echo test') self.assertReplied('test') self.receive_message('/echo sound 1 2 3') self.assertReplied('sound 1 2 3') def test_need_reply_user(self): self.receive_message('test') self.assertNoReplies() self.receive_message('/echo') self.assertReplied('echo what?') self.receive_message('test') self.assertReplied('test') self.receive_message('sound') self.assertNoReplies() def test_need_reply_by_message_id(self): self.receive_message('/echo') self.assertReplied('echo what?') self.clear_queues() # wrong reply id, should be ignored self.receive_message('test', reply_to_message=3) self.assertNoReplies() # correct reply id self.receive_message('test', reply_to_message=2) self.assertReplied('test') def test_need_reply_group(self): chat = { 'id': 1, 'title': 'test group', 'type': 'group', } self.receive_message('/echo', chat=chat) self.assertReplied('echo what?') # non-selective need_reply, should accept from any user self.receive_message( 'test', chat=chat, sender={ 'id': 2, 'first_name': 'Jane', 'last_name': 'Doe', } ) self.assertReplied('test') def test_need_reply_selective_group(self): chat = { 'id': 1, 'title': 'test group', 'type': 'group', } self.receive_message('/echo2', chat=chat) self.assertReplied('echo what?') # selective need_reply, should ignore other user self.receive_message( 'test', chat=chat, sender={ 'id': 2, 'first_name': 'Jane', 'last_name': 'Doe', } ) self.assertNoReplies() self.receive_message( 'test', chat=chat, ) self.assertReplied('test') def test_plugin_data_single(self): self.receive_message('/save test 123') self.assertReplied('saved') self.receive_message('/read', sender={ 'id': 2, 'first_name': 'Jane', 'last_name': 'Doe', }) self.assertReplied('no note saved') self.receive_message('/read') self.assertReplied('your note: test 123') self.receive_message('/save test 321') self.assertReplied('saved') self.receive_message('/read') self.assertReplied('your note: test 321') def test_plugin_data_group(self): chat = { 'id': 99, 'title': 'test group', } self.receive_message('/savegroup test 123', chat=chat) self.assertReplied('saved') self.receive_message('/readgroup') self.assertReplied('no note saved') self.receive_message('/readgroup', chat=chat) self.assertReplied('this group note: test 123') self.receive_message('/readgroup', chat=chat, sender={ 'id': 2, 'first_name': 'Jane', 'last_name': 'Doe', }) self.assertReplied('this group note: test 123') def test_prefix_cmd(self): self.receive_message('/prefixcmd1') self.assertReplied('1') self.receive_message('/prefixcmd12@test_bot') self.assertReplied('12') self.receive_message('/prefixcmd@test_bot 123') self.assertReplied('123') def test_list_keys(self): sender2 = { 'id': 2, 'first_name': 'Jane', 'last_name': 'Doe', } chat1 = { 'id': 3, 'title': 'test chat', } self.receive_message('/save note1') # 1 1 self.receive_message('/save note2', sender=sender2) # 2 2 self.receive_message('/save note3', chat=chat1) # 3 1 self.receive_message('/save note4', sender=sender2, chat=chat1) # 3 2 self.assertEqual( list(self.plugin.iter_data_keys()), ['1', '2', '3'], ) self.assertEqual( list(self.plugin.iter_data_key_keys()), [], ) self.assertEqual( list(self.plugin.iter_data_key_keys('1')), ['1'], ) self.assertEqual( list(self.plugin.iter_data_key_keys('2')), ['2'], ) self.assertEqual( list(self.plugin.iter_data_key_keys('3')), ['1', '2'], ) self.plugin.save_data(3, key2=2) self.assertEqual( list(self.plugin.iter_data_key_keys('3')), ['1'], )
[ "cStringIO.StringIO", "sample_plugin.TestPlugin" ]
[((160, 172), 'sample_plugin.TestPlugin', 'TestPlugin', ([], {}), '()\n', (170, 172), False, 'from sample_plugin import TestPlugin\n'), ((357, 367), 'cStringIO.StringIO', 'StringIO', ([], {}), '()\n', (365, 367), False, 'from cStringIO import StringIO\n')]
import cv2 import numpy as np import sys, getopt import time import dlib import math i=False class Controller(): def __init__(self): self.detector = dlib.get_frontal_face_detector() self.predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat") self.frame = None self.ret = None self.faces = None self.cap = cv2.VideoCapture(0) #open phone camera API self.address = None#"https://192.168.43.1:8080/video" self.threshold = 35 self.grayFrame = None self.cutEyes = None self.img = cv2.imread("anime.jpg") self.cutEyesGray = None self.contours = None self.capThreshold = None self.left_eye = None self.maskEyes = None self.landmarks = None self.min_x = None self.max_x = None self.min_y = None self.max_y = None self.otps = None self.args = None self.cameraIs = False self.thresholdIs = False self.rgbIs = False self.eyeLinesIs = False self.fx = 1 self.fy = 1 self.check = True self.calibrationIsOkey = False self.testImage = None self.background = None self.eyeCenter = None self.maxArray = np.array([[0,0]]) self.maxMean = None self.minArray = np.array([[0,0]]) self.minMean = None self.key = None self.time = 0 self.optIfBlock = 2 self.startTimeIfBlock = True self.CalibFinishBlock = False self.finalScreen = False self.screenSizeX=1920 self.screenSizeY=1080 def getOtps(self): try: self.otps, self.args = getopt.getopt(sys.argv[1:],"h:c:t:r:a:e:",["help","cameradress","threshold","rgb","eyeline","halfcut","quartercut","calib"]) except getopt.GetoptError as err: print(err) sys.exit() #self.otps = [] def nothing(self,x): pass def main(self): self.getOtps() for otp, arg in self.otps: if otp == '-a': self.address = str(arg) self.cap.open(self.address) elif otp == '--threshold': self.thresholdIs = True for ot , ar in self.otps: if ot == '-t': self.threshold = int(ar) elif (otp == '-r' and arg == 'True'): self.rgbIs = True elif otp == '-e' and arg == 'True': self.eyeLinesIs = True elif otp == '-c' and arg == 'True': self.cameraIs = True elif otp == '--halfcut': self.fx = 0.5 self.fy = 0.5 elif otp == '--quartercut': self.fx = 0.25 self.fy = 0.25 elif otp == '--calib': self.calibrationIsOkey = True #TODO #print(self.otps, self.args) #self.optimizationEyesLooking() array1 = [[0,0]] openImage = False o = False while True: #first open cam try: self.readSelf() self.frame = cv2.resize(self.frame,None,fx=self.fx,fy=self.fy) #TODO #self.frame = cv2.rotate(self.frame,cv2.ROTATE_90_COUNTERCLOCKWISE) self.grayFrame = cv2.cvtColor(self.frame, cv2.COLOR_BGR2GRAY) except: print("error") self.faces = self.detector(self.grayFrame) self.lanmarkingLeftEyes() if self.eyeLinesIs == True: self.eyeLines() if self.cameraIs == True and self.ret: cv2.imshow("Frame", self.frame) #second isteğe göre açılan seçenekler (thershold vb) göz seçim ayarları için if self.thresholdIs == True: cv2.imshow("2",self.capThreshold) if self.cutEyesGray is not None: cv2.imshow("3", self.cutEyesGray) self.key = cv2.waitKey(1) #third kalibrasyyon #key 'o' if self.key == 79 or self.key == 111: o = True self.cameraIs = False self.thresholdIs = False cv2.destroyAllWindows() #key 'space' if self.key == 32: cv2.destroyAllWindows() o = False openImage = True if self.calibrationIsOkey == True and o == True: self.optimizationEyesLooking() if openImage == True: self.lookingPointDrawCircle() #four final if self.finalScreen: self.final_screen() if self.key == 27: break self.cap.release() cv2.destroyAllWindows() def showImage(self): self.testImage = cv2.imread('anime.jpg') imageH, imageW, imageChannels= self.testImage.shape cv2.circle(self.testImage, ( (self.eyeCenter[0] * imageW) / self.rightMean[0], (self.eyeCenter[1] * imageH) / self.bottomMean[1])) def lookingPointDrawCircle(self): self.thresholdIs = False cv2.imshow("",self.img) def readSelf(self): self.ret, self.frame=self.cap.read() def lanmarkingLeftEyes(self): for face in self.faces: #x = face.left() #y = face.top() #x1 = face.right() #y1 = face.bottom() self.landmarks = self.predictor(self.grayFrame, face) self.left_eye = np.array([(self.landmarks.part(36).x, self.landmarks.part(36).y), (self.landmarks.part(37).x, self.landmarks.part(37).y), (self.landmarks.part(38).x, self.landmarks.part(38).y), (self.landmarks.part(39).x, self.landmarks.part(39).y), (self.landmarks.part(40).x, self.landmarks.part(40).y), (self.landmarks.part(41).x, self.landmarks.part(41).y)], np.int32) h, w, _ = self.frame.shape mask = np.zeros((h, w), np.uint8) cv2.polylines(mask, [self.left_eye], True, 255, 2) cv2.fillPoly(mask, [self.left_eye], 255) self.maskEyes = cv2.bitwise_and(self.grayFrame, self.grayFrame, mask=mask) self.maskEyes = np.where(self.maskEyes==0, 255,self.maskEyes) self.min_x = np.min(self.left_eye[:,0]) self.max_x = np.max(self.left_eye[:,0]) self.min_y = np.min(self.left_eye[:,1]) self.max_y = np.max(self.left_eye[:,1]) self.cutEyes = self.maskEyes[self.min_y : self.max_y, self.min_x : self.max_x] self.cutEyes = cv2.resize(self.cutEyes, None, fx=5, fy=5) self.capThreshold = cv2.GaussianBlur(self.cutEyes, (5,5), 0) _, self.capThreshold = cv2.threshold(self.capThreshold, self.threshold, 255, cv2.THRESH_BINARY_INV) self.contours, _ = cv2.findContours(self.capThreshold, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) for cnt in self.contours: (x, y, w, h) = cv2.boundingRect(cnt) cv2.rectangle(self.capThreshold, (x, y), (x + w, y + h), (255, 0, 0), 1) #middle point x = x + int(w/2) y = y + int(h/2) cv2.circle(self.cutEyes, (x+int(w/2),y+int(h/2)) ,5, (255,0,0),-1) self.eyeCenter = [x+int(w/2),y+int(h/2)] break if self.rgbIs == True: cv2.imshow("c", self.cutEyes) def final_screen(self): x,y=self.pC() cv2.namedWindow("dd", cv2.WND_PROP_FULLSCREEN) cv2.moveWindow("dd", screen.x - 1, screen.y - 1) cv2.setWindowProperty("dd", cv2.WND_PROP_FULLSCREEN,cv2.WINDOW_FULLSCREEN) if (x-int(x))<0.5: x=math.floor(x) else: x = x + 1 x = math.floor(x) if (y-int(y))<0.5: y=math.floor(y) else: y = y + 1 y = math.floor(y) cv2.circle(self.img, (int(x),int(y)), 5, (0,0,0), -1) #print("x:",x," y:",y, " eyecenter:",self.eyeCenter) cv2.imshow("dd",self.img) def pC(self): #print(self.minMean) return (self.screenSizeX*(self.eyeCenter[0]-self.minMean[0]))/(self.maxMean[0]-self.minMean[0]),(self.screenSizeY*(self.eyeCenter[1]-self.minMean[1]))/(self.maxMean[1]-self.minMean[1]) def eyeLines(self): horizontalLineLeft = (self.landmarks.part(36).x, self.landmarks.part(36).y) horizontalLineRight = (self.landmarks.part(39).x, self.landmarks.part(39).y) verticalLineTop = (self.landmarks.part(38).x, self.landmarks.part(38).y) verticalLineBottom = (self.landmarks.part(40).x, self.landmarks.part(40).y) cv2.line(self.frame, horizontalLineLeft, horizontalLineRight,(0,255,0),1) cv2.line(self.frame, verticalLineTop, verticalLineBottom,(0,255,0),1) def getCutEyeShape(self,x,y,x1,y1): return self.frame[y:y1, x:x1] def optimizationEyesLooking(self): background = np.zeros((screen.height,screen.width),np.uint8) cv2.namedWindow("aa", cv2.WND_PROP_FULLSCREEN) cv2.moveWindow("aa", screen.x - 1, screen.y - 1) cv2.setWindowProperty("aa", cv2.WND_PROP_FULLSCREEN,cv2.WINDOW_FULLSCREEN) if self.optIfBlock==1: self.startTime(time.perf_counter()) if time.perf_counter()-self.time < 3: if self.eyeCenter != None: self.minArray = np.append(self.minArray, [self.eyeCenter],axis=0) cv2.circle(background, (10,10), 5, (255,255,255), -1) (text_width, text_height) = cv2.getTextSize("Follow point", cv2.FONT_HERSHEY_SIMPLEX, 0.8, 1)[0] cv2.putText(background, "Follow point", ((screen.width//2)-(text_width//2),(screen.height//2)-30), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (255,255,255), 1 , cv2.LINE_AA) elif time.perf_counter()-self.time < 6 and time.perf_counter()-self.time > 3: if self.eyeCenter != None: self.maxArray = np.append(self.maxArray, [self.eyeCenter],axis=0) cv2.circle(background, (screen.width-10,screen.height-10), 5, (255,255,255), -1) (text_width, text_height) = cv2.getTextSize("Follow point", cv2.FONT_HERSHEY_SIMPLEX, 0.8, 1)[0] cv2.putText(background, "Follow point", ((screen.width//2)-(text_width//2),(screen.height//2)-30), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (255,255,255), 1 , cv2.LINE_AA) elif time.perf_counter()-self.time == 6: cv2.destroyAllWindows() else: self.CalibFinishBlock = True self.calibrationIsOkey = True self.check = True self.optIfBlock=3 elif self.optIfBlock==2: (text_width, text_height) = cv2.getTextSize("Kalibrasyonu ayarlamak için 's' tuşuna basın", cv2.FONT_HERSHEY_SIMPLEX, 0.8, 1)[0] cv2.putText(background, "Kalibrasyonu ayarlamak için 's' tuşuna basın", ((screen.width//2)-(text_width//2),(screen.height//2)-30), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (255,255,255), 1 , cv2.LINE_AA) elif self.optIfBlock==3: self.optFinish(background) #key 's' if self.key == 83 or self.key == 115: self.optIfBlock = 1 #key 'i' if self.key == 73 or self.key == 105: self.minArray = self.minArray[1:] self.maxArray = self.maxArray[1:] #self.minMean = self.minArray.mean(0) self.minMean = self.minArray.min(0) #self.maxMean = self.maxArray.mean(0) self.maxMean = self.maxArray.max(0) self.calibrationIsOkey=False self.finalScreen=True cv2.destroyWindow("aa") else: cv2.imshow("aa",background) def optFinish(self, stage): (text_width, text_height) = cv2.getTextSize("Go to do image 'i'", cv2.FONT_HERSHEY_SIMPLEX, 0.8, 1)[0] cv2.putText(stage, "Go to do image 'i'", ((screen.width//2)-(text_width//2),(screen.height//2)-30), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (255,255,255), 1 , cv2.LINE_AA) cv2.imshow("aa",stage) def startTime(self, time): if self.startTimeIfBlock: self.time = time self.startTimeIfBlock = False def getCameraShape(self): for i in range(3): print(self.frame.shape[i]) return self.frame[1], self.frame[0] if __name__ == "__main__": import screeninfo screen = screeninfo.get_monitors()[0] ct = Controller() ct.main()
[ "cv2.GaussianBlur", "getopt.getopt", "cv2.bitwise_and", "cv2.fillPoly", "cv2.rectangle", "screeninfo.get_monitors", "cv2.imshow", "dlib.shape_predictor", "cv2.line", "cv2.cvtColor", "numpy.append", "numpy.max", "cv2.destroyAllWindows", "cv2.boundingRect", "cv2.resize", "cv2.circle", "cv2.waitKey", "time.perf_counter", "numpy.min", "dlib.get_frontal_face_detector", "sys.exit", "cv2.findContours", "cv2.putText", "cv2.polylines", "cv2.threshold", "cv2.getTextSize", "cv2.setWindowProperty", "numpy.zeros", "math.floor", "cv2.VideoCapture", "cv2.imread", "numpy.where", "numpy.array", "cv2.destroyWindow", "cv2.moveWindow", "cv2.namedWindow" ]
[((161, 193), 'dlib.get_frontal_face_detector', 'dlib.get_frontal_face_detector', ([], {}), '()\n', (191, 193), False, 'import dlib\n'), ((219, 280), 'dlib.shape_predictor', 'dlib.shape_predictor', (['"""shape_predictor_68_face_landmarks.dat"""'], {}), "('shape_predictor_68_face_landmarks.dat')\n", (239, 280), False, 'import dlib\n'), ((376, 395), 'cv2.VideoCapture', 'cv2.VideoCapture', (['(0)'], {}), '(0)\n', (392, 395), False, 'import cv2\n'), ((594, 617), 'cv2.imread', 'cv2.imread', (['"""anime.jpg"""'], {}), "('anime.jpg')\n", (604, 617), False, 'import cv2\n'), ((1296, 1314), 'numpy.array', 'np.array', (['[[0, 0]]'], {}), '([[0, 0]])\n', (1304, 1314), True, 'import numpy as np\n'), ((1366, 1384), 'numpy.array', 'np.array', (['[[0, 0]]'], {}), '([[0, 0]])\n', (1374, 1384), True, 'import numpy as np\n'), ((4946, 4969), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (4967, 4969), False, 'import cv2\n'), ((5020, 5043), 'cv2.imread', 'cv2.imread', (['"""anime.jpg"""'], {}), "('anime.jpg')\n", (5030, 5043), False, 'import cv2\n'), ((5112, 5241), 'cv2.circle', 'cv2.circle', (['self.testImage', '(self.eyeCenter[0] * imageW / self.rightMean[0], self.eyeCenter[1] * imageH /\n self.bottomMean[1])'], {}), '(self.testImage, (self.eyeCenter[0] * imageW / self.rightMean[0],\n self.eyeCenter[1] * imageH / self.bottomMean[1]))\n', (5122, 5241), False, 'import cv2\n'), ((5322, 5346), 'cv2.imshow', 'cv2.imshow', (['""""""', 'self.img'], {}), "('', self.img)\n", (5332, 5346), False, 'import cv2\n'), ((7799, 7845), 'cv2.namedWindow', 'cv2.namedWindow', (['"""dd"""', 'cv2.WND_PROP_FULLSCREEN'], {}), "('dd', cv2.WND_PROP_FULLSCREEN)\n", (7814, 7845), False, 'import cv2\n'), ((7854, 7902), 'cv2.moveWindow', 'cv2.moveWindow', (['"""dd"""', '(screen.x - 1)', '(screen.y - 1)'], {}), "('dd', screen.x - 1, screen.y - 1)\n", (7868, 7902), False, 'import cv2\n'), ((7911, 7986), 'cv2.setWindowProperty', 'cv2.setWindowProperty', (['"""dd"""', 'cv2.WND_PROP_FULLSCREEN', 'cv2.WINDOW_FULLSCREEN'], {}), "('dd', cv2.WND_PROP_FULLSCREEN, cv2.WINDOW_FULLSCREEN)\n", (7932, 7986), False, 'import cv2\n'), ((8359, 8385), 'cv2.imshow', 'cv2.imshow', (['"""dd"""', 'self.img'], {}), "('dd', self.img)\n", (8369, 8385), False, 'import cv2\n'), ((8997, 9074), 'cv2.line', 'cv2.line', (['self.frame', 'horizontalLineLeft', 'horizontalLineRight', '(0, 255, 0)', '(1)'], {}), '(self.frame, horizontalLineLeft, horizontalLineRight, (0, 255, 0), 1)\n', (9005, 9074), False, 'import cv2\n'), ((9079, 9152), 'cv2.line', 'cv2.line', (['self.frame', 'verticalLineTop', 'verticalLineBottom', '(0, 255, 0)', '(1)'], {}), '(self.frame, verticalLineTop, verticalLineBottom, (0, 255, 0), 1)\n', (9087, 9152), False, 'import cv2\n'), ((9304, 9353), 'numpy.zeros', 'np.zeros', (['(screen.height, screen.width)', 'np.uint8'], {}), '((screen.height, screen.width), np.uint8)\n', (9312, 9353), True, 'import numpy as np\n'), ((9360, 9406), 'cv2.namedWindow', 'cv2.namedWindow', (['"""aa"""', 'cv2.WND_PROP_FULLSCREEN'], {}), "('aa', cv2.WND_PROP_FULLSCREEN)\n", (9375, 9406), False, 'import cv2\n'), ((9415, 9463), 'cv2.moveWindow', 'cv2.moveWindow', (['"""aa"""', '(screen.x - 1)', '(screen.y - 1)'], {}), "('aa', screen.x - 1, screen.y - 1)\n", (9429, 9463), False, 'import cv2\n'), ((9472, 9547), 'cv2.setWindowProperty', 'cv2.setWindowProperty', (['"""aa"""', 'cv2.WND_PROP_FULLSCREEN', 'cv2.WINDOW_FULLSCREEN'], {}), "('aa', cv2.WND_PROP_FULLSCREEN, cv2.WINDOW_FULLSCREEN)\n", (9493, 9547), False, 'import cv2\n'), ((12299, 12476), 'cv2.putText', 'cv2.putText', (['stage', '"""Go to do image \'i\'"""', '(screen.width // 2 - text_width // 2, screen.height // 2 - 30)', 'cv2.FONT_HERSHEY_SIMPLEX', '(0.8)', '(255, 255, 255)', '(1)', 'cv2.LINE_AA'], {}), '(stage, "Go to do image \'i\'", (screen.width // 2 - text_width //\n 2, screen.height // 2 - 30), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (255, 255, \n 255), 1, cv2.LINE_AA)\n', (12310, 12476), False, 'import cv2\n'), ((12470, 12493), 'cv2.imshow', 'cv2.imshow', (['"""aa"""', 'stage'], {}), "('aa', stage)\n", (12480, 12493), False, 'import cv2\n'), ((12837, 12862), 'screeninfo.get_monitors', 'screeninfo.get_monitors', ([], {}), '()\n', (12860, 12862), False, 'import screeninfo\n'), ((1725, 1862), 'getopt.getopt', 'getopt.getopt', (['sys.argv[1:]', '"""h:c:t:r:a:e:"""', "['help', 'cameradress', 'threshold', 'rgb', 'eyeline', 'halfcut',\n 'quartercut', 'calib']"], {}), "(sys.argv[1:], 'h:c:t:r:a:e:', ['help', 'cameradress',\n 'threshold', 'rgb', 'eyeline', 'halfcut', 'quartercut', 'calib'])\n", (1738, 1862), False, 'import sys, getopt\n'), ((4116, 4130), 'cv2.waitKey', 'cv2.waitKey', (['(1)'], {}), '(1)\n', (4127, 4130), False, 'import cv2\n'), ((6283, 6309), 'numpy.zeros', 'np.zeros', (['(h, w)', 'np.uint8'], {}), '((h, w), np.uint8)\n', (6291, 6309), True, 'import numpy as np\n'), ((6322, 6372), 'cv2.polylines', 'cv2.polylines', (['mask', '[self.left_eye]', '(True)', '(255)', '(2)'], {}), '(mask, [self.left_eye], True, 255, 2)\n', (6335, 6372), False, 'import cv2\n'), ((6385, 6425), 'cv2.fillPoly', 'cv2.fillPoly', (['mask', '[self.left_eye]', '(255)'], {}), '(mask, [self.left_eye], 255)\n', (6397, 6425), False, 'import cv2\n'), ((6454, 6512), 'cv2.bitwise_and', 'cv2.bitwise_and', (['self.grayFrame', 'self.grayFrame'], {'mask': 'mask'}), '(self.grayFrame, self.grayFrame, mask=mask)\n', (6469, 6512), False, 'import cv2\n'), ((6541, 6589), 'numpy.where', 'np.where', (['(self.maskEyes == 0)', '(255)', 'self.maskEyes'], {}), '(self.maskEyes == 0, 255, self.maskEyes)\n', (6549, 6589), True, 'import numpy as np\n'), ((6613, 6640), 'numpy.min', 'np.min', (['self.left_eye[:, 0]'], {}), '(self.left_eye[:, 0])\n', (6619, 6640), True, 'import numpy as np\n'), ((6665, 6692), 'numpy.max', 'np.max', (['self.left_eye[:, 0]'], {}), '(self.left_eye[:, 0])\n', (6671, 6692), True, 'import numpy as np\n'), ((6717, 6744), 'numpy.min', 'np.min', (['self.left_eye[:, 1]'], {}), '(self.left_eye[:, 1])\n', (6723, 6744), True, 'import numpy as np\n'), ((6769, 6796), 'numpy.max', 'np.max', (['self.left_eye[:, 1]'], {}), '(self.left_eye[:, 1])\n', (6775, 6796), True, 'import numpy as np\n'), ((6915, 6957), 'cv2.resize', 'cv2.resize', (['self.cutEyes', 'None'], {'fx': '(5)', 'fy': '(5)'}), '(self.cutEyes, None, fx=5, fy=5)\n', (6925, 6957), False, 'import cv2\n'), ((6991, 7032), 'cv2.GaussianBlur', 'cv2.GaussianBlur', (['self.cutEyes', '(5, 5)', '(0)'], {}), '(self.cutEyes, (5, 5), 0)\n', (7007, 7032), False, 'import cv2\n'), ((7067, 7143), 'cv2.threshold', 'cv2.threshold', (['self.capThreshold', 'self.threshold', '(255)', 'cv2.THRESH_BINARY_INV'], {}), '(self.capThreshold, self.threshold, 255, cv2.THRESH_BINARY_INV)\n', (7080, 7143), False, 'import cv2\n'), ((7175, 7250), 'cv2.findContours', 'cv2.findContours', (['self.capThreshold', 'cv2.RETR_TREE', 'cv2.CHAIN_APPROX_SIMPLE'], {}), '(self.capThreshold, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)\n', (7191, 7250), False, 'import cv2\n'), ((8027, 8040), 'math.floor', 'math.floor', (['x'], {}), '(x)\n', (8037, 8040), False, 'import math\n'), ((8093, 8106), 'math.floor', 'math.floor', (['x'], {}), '(x)\n', (8103, 8106), False, 'import math\n'), ((8148, 8161), 'math.floor', 'math.floor', (['y'], {}), '(y)\n', (8158, 8161), False, 'import math\n'), ((8214, 8227), 'math.floor', 'math.floor', (['y'], {}), '(y)\n', (8224, 8227), False, 'import math\n'), ((12068, 12091), 'cv2.destroyWindow', 'cv2.destroyWindow', (['"""aa"""'], {}), "('aa')\n", (12085, 12091), False, 'import cv2\n'), ((12118, 12146), 'cv2.imshow', 'cv2.imshow', (['"""aa"""', 'background'], {}), "('aa', background)\n", (12128, 12146), False, 'import cv2\n'), ((12216, 12287), 'cv2.getTextSize', 'cv2.getTextSize', (['"""Go to do image \'i\'"""', 'cv2.FONT_HERSHEY_SIMPLEX', '(0.8)', '(1)'], {}), '("Go to do image \'i\'", cv2.FONT_HERSHEY_SIMPLEX, 0.8, 1)\n', (12231, 12287), False, 'import cv2\n'), ((1927, 1937), 'sys.exit', 'sys.exit', ([], {}), '()\n', (1935, 1937), False, 'import sys, getopt\n'), ((3238, 3290), 'cv2.resize', 'cv2.resize', (['self.frame', 'None'], {'fx': 'self.fx', 'fy': 'self.fy'}), '(self.frame, None, fx=self.fx, fy=self.fy)\n', (3248, 3290), False, 'import cv2\n'), ((3427, 3471), 'cv2.cvtColor', 'cv2.cvtColor', (['self.frame', 'cv2.COLOR_BGR2GRAY'], {}), '(self.frame, cv2.COLOR_BGR2GRAY)\n', (3439, 3471), False, 'import cv2\n'), ((3768, 3799), 'cv2.imshow', 'cv2.imshow', (['"""Frame"""', 'self.frame'], {}), "('Frame', self.frame)\n", (3778, 3799), False, 'import cv2\n'), ((3962, 3996), 'cv2.imshow', 'cv2.imshow', (['"""2"""', 'self.capThreshold'], {}), "('2', self.capThreshold)\n", (3972, 3996), False, 'import cv2\n'), ((4057, 4090), 'cv2.imshow', 'cv2.imshow', (['"""3"""', 'self.cutEyesGray'], {}), "('3', self.cutEyesGray)\n", (4067, 4090), False, 'import cv2\n'), ((4355, 4378), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (4376, 4378), False, 'import cv2\n'), ((4451, 4474), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (4472, 4474), False, 'import cv2\n'), ((7321, 7342), 'cv2.boundingRect', 'cv2.boundingRect', (['cnt'], {}), '(cnt)\n', (7337, 7342), False, 'import cv2\n'), ((7359, 7431), 'cv2.rectangle', 'cv2.rectangle', (['self.capThreshold', '(x, y)', '(x + w, y + h)', '(255, 0, 0)', '(1)'], {}), '(self.capThreshold, (x, y), (x + w, y + h), (255, 0, 0), 1)\n', (7372, 7431), False, 'import cv2\n'), ((7711, 7740), 'cv2.imshow', 'cv2.imshow', (['"""c"""', 'self.cutEyes'], {}), "('c', self.cutEyes)\n", (7721, 7740), False, 'import cv2\n'), ((9615, 9634), 'time.perf_counter', 'time.perf_counter', ([], {}), '()\n', (9632, 9634), False, 'import time\n'), ((9831, 9887), 'cv2.circle', 'cv2.circle', (['background', '(10, 10)', '(5)', '(255, 255, 255)', '(-1)'], {}), '(background, (10, 10), 5, (255, 255, 255), -1)\n', (9841, 9887), False, 'import cv2\n'), ((10014, 10191), 'cv2.putText', 'cv2.putText', (['background', '"""Follow point"""', '(screen.width // 2 - text_width // 2, screen.height // 2 - 30)', 'cv2.FONT_HERSHEY_SIMPLEX', '(0.8)', '(255, 255, 255)', '(1)', 'cv2.LINE_AA'], {}), "(background, 'Follow point', (screen.width // 2 - text_width // \n 2, screen.height // 2 - 30), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (255, 255, \n 255), 1, cv2.LINE_AA)\n", (10025, 10191), False, 'import cv2\n'), ((11253, 11462), 'cv2.putText', 'cv2.putText', (['background', '"""Kalibrasyonu ayarlamak için \'s\' tuşuna basın"""', '(screen.width // 2 - text_width // 2, screen.height // 2 - 30)', 'cv2.FONT_HERSHEY_SIMPLEX', '(0.8)', '(255, 255, 255)', '(1)', 'cv2.LINE_AA'], {}), '(background, "Kalibrasyonu ayarlamak için \'s\' tuşuna basın", (\n screen.width // 2 - text_width // 2, screen.height // 2 - 30), cv2.\n FONT_HERSHEY_SIMPLEX, 0.8, (255, 255, 255), 1, cv2.LINE_AA)\n', (11264, 11462), False, 'import cv2\n'), ((9651, 9670), 'time.perf_counter', 'time.perf_counter', ([], {}), '()\n', (9668, 9670), False, 'import time\n'), ((9765, 9815), 'numpy.append', 'np.append', (['self.minArray', '[self.eyeCenter]'], {'axis': '(0)'}), '(self.minArray, [self.eyeCenter], axis=0)\n', (9774, 9815), True, 'import numpy as np\n'), ((9929, 9994), 'cv2.getTextSize', 'cv2.getTextSize', (['"""Follow point"""', 'cv2.FONT_HERSHEY_SIMPLEX', '(0.8)', '(1)'], {}), "('Follow point', cv2.FONT_HERSHEY_SIMPLEX, 0.8, 1)\n", (9944, 9994), False, 'import cv2\n'), ((10412, 10504), 'cv2.circle', 'cv2.circle', (['background', '(screen.width - 10, screen.height - 10)', '(5)', '(255, 255, 255)', '(-1)'], {}), '(background, (screen.width - 10, screen.height - 10), 5, (255, \n 255, 255), -1)\n', (10422, 10504), False, 'import cv2\n'), ((10622, 10799), 'cv2.putText', 'cv2.putText', (['background', '"""Follow point"""', '(screen.width // 2 - text_width // 2, screen.height // 2 - 30)', 'cv2.FONT_HERSHEY_SIMPLEX', '(0.8)', '(255, 255, 255)', '(1)', 'cv2.LINE_AA'], {}), "(background, 'Follow point', (screen.width // 2 - text_width // \n 2, screen.height // 2 - 30), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (255, 255, \n 255), 1, cv2.LINE_AA)\n", (10633, 10799), False, 'import cv2\n'), ((11140, 11242), 'cv2.getTextSize', 'cv2.getTextSize', (['"""Kalibrasyonu ayarlamak için \'s\' tuşuna basın"""', 'cv2.FONT_HERSHEY_SIMPLEX', '(0.8)', '(1)'], {}), '("Kalibrasyonu ayarlamak için \'s\' tuşuna basın", cv2.\n FONT_HERSHEY_SIMPLEX, 0.8, 1)\n', (11155, 11242), False, 'import cv2\n'), ((10346, 10396), 'numpy.append', 'np.append', (['self.maxArray', '[self.eyeCenter]'], {'axis': '(0)'}), '(self.maxArray, [self.eyeCenter], axis=0)\n', (10355, 10396), True, 'import numpy as np\n'), ((10537, 10602), 'cv2.getTextSize', 'cv2.getTextSize', (['"""Follow point"""', 'cv2.FONT_HERSHEY_SIMPLEX', '(0.8)', '(1)'], {}), "('Follow point', cv2.FONT_HERSHEY_SIMPLEX, 0.8, 1)\n", (10552, 10602), False, 'import cv2\n'), ((10853, 10876), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (10874, 10876), False, 'import cv2\n'), ((10194, 10213), 'time.perf_counter', 'time.perf_counter', ([], {}), '()\n', (10211, 10213), False, 'import time\n'), ((10232, 10251), 'time.perf_counter', 'time.perf_counter', ([], {}), '()\n', (10249, 10251), False, 'import time\n'), ((10801, 10820), 'time.perf_counter', 'time.perf_counter', ([], {}), '()\n', (10818, 10820), False, 'import time\n')]
# Copyright (c) The Diem Core Contributors # SPDX-License-Identifier: Apache-2.0 """Provides utilities for working with Diem Testnet. ```python from diem import testnet from diem.testing import LocalAccount # create client connects to testnet client = testnet.create_client() # create faucet for minting coins for your testing account faucet = testnet.Faucet(client) # create a local account and mint some coins for it account: LocalAccount = faucet.gen_account() ``` """ import requests import typing from . import diem_types, jsonrpc, utils, chain_ids, bcs, identifier, stdlib from .testing import LocalAccount, DD_ADDRESS JSON_RPC_URL: str = "https://testnet.diem.com/v1" FAUCET_URL: str = "https://testnet.diem.com/mint" CHAIN_ID: diem_types.ChainId = chain_ids.TESTNET DESIGNATED_DEALER_ADDRESS: diem_types.AccountAddress = utils.account_address(DD_ADDRESS) TEST_CURRENCY_CODE: str = "XUS" HRP: str = identifier.TDM def create_client() -> jsonrpc.Client: """create a jsonrpc.Client connects to Testnet public full node cluster""" return jsonrpc.Client(JSON_RPC_URL) def gen_vasp_account(client: jsonrpc.Client, base_url: str) -> LocalAccount: raise Exception("deprecated: use `gen_account` instead") def gen_account( client: jsonrpc.Client, dd_account: bool = False, base_url: typing.Optional[str] = None ) -> LocalAccount: """generates a Testnet onchain account""" account = Faucet(client).gen_account(dd_account=dd_account) if base_url: payload = stdlib.encode_rotate_dual_attestation_info_script_function( new_url=base_url.encode("utf-8"), new_key=account.compliance_public_key_bytes ) apply_txn(client, account, payload) return account def gen_child_vasp( client: jsonrpc.Client, parent_vasp: LocalAccount, initial_balance: int = 10_000_000_000, currency: str = TEST_CURRENCY_CODE, ) -> LocalAccount: child, payload = parent_vasp.new_child_vasp(initial_balance, currency) apply_txn(client, parent_vasp, payload) return child def apply_txn( client: jsonrpc.Client, vasp: LocalAccount, payload: diem_types.TransactionPayload ) -> jsonrpc.Transaction: seq = client.get_account_sequence(vasp.account_address) txn = vasp.create_signed_txn(seq, payload) client.submit(txn) return client.wait_for_transaction(txn) class Faucet: """Faucet service is a proxy server to mint coins for your test account on Testnet See https://github.com/diem/diem/blob/master/json-rpc/docs/service_testnet_faucet.md for more details """ def __init__( self, client: jsonrpc.Client, url: typing.Union[str, None] = None, retry: typing.Union[jsonrpc.Retry, None] = None, ) -> None: self._client: jsonrpc.Client = client self._url: str = url or FAUCET_URL self._retry: jsonrpc.Retry = retry or jsonrpc.Retry(5, 0.2, Exception) self._session: requests.Session = requests.Session() def gen_account(self, currency_code: str = TEST_CURRENCY_CODE, dd_account: bool = False) -> LocalAccount: account = LocalAccount.generate() self.mint(account.auth_key.hex(), 100_000_000_000, currency_code, dd_account) return account def mint( self, authkey: str, amount: int, currency_code: str, dd_account: bool = False, vasp_domain: typing.Optional[str] = None, is_remove_domain: bool = False, ) -> None: self._retry.execute( lambda: self._mint_without_retry(authkey, amount, currency_code, dd_account, vasp_domain, is_remove_domain) ) def _mint_without_retry( self, authkey: str, amount: int, currency_code: str, dd_account: bool = False, vasp_domain: typing.Optional[str] = None, is_remove_domain: bool = False, ) -> None: response = self._session.post( self._url, params={ "amount": amount, "auth_key": authkey, "currency_code": currency_code, "return_txns": "true", "is_designated_dealer": "true" if dd_account else "false", "vasp_domain": vasp_domain, "is_remove_domain": "true" if is_remove_domain else "false", }, ) response.raise_for_status() de = bcs.BcsDeserializer(bytes.fromhex(response.text)) length = de.deserialize_len() for i in range(length): txn = de.deserialize_any(diem_types.SignedTransaction) try: self._client.wait_for_transaction(txn) except jsonrpc.TransactionExecutionFailed as e: if e.txn.vm_status.explanation.reason == "EDOMAIN_ALREADY_EXISTS": continue raise e
[ "requests.Session" ]
[((2967, 2985), 'requests.Session', 'requests.Session', ([], {}), '()\n', (2983, 2985), False, 'import requests\n')]
# coding: utf-8 """ Cloudsmith API The API to the Cloudsmith Service OpenAPI spec version: v1 Contact: <EMAIL> Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import sys import os import re # python 2 and python 3 compatibility library from six import iteritems from ..configuration import Configuration from ..api_client import ApiClient class WebhooksApi(object): """ NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. Ref: https://github.com/swagger-api/swagger-codegen """ def __init__(self, api_client=None): config = Configuration() if api_client: self.api_client = api_client else: if not config.api_client: config.api_client = ApiClient() self.api_client = config.api_client def webhooks_create(self, owner, repo, **kwargs): """ Create a specific webhook in a repository. Create a specific webhook in a repository. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.webhooks_create(owner, repo, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str owner: (required) :param str repo: (required) :param WebhooksCreate data: :return: RepositoryWebhook If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('callback'): return self.webhooks_create_with_http_info(owner, repo, **kwargs) else: (data) = self.webhooks_create_with_http_info(owner, repo, **kwargs) return data def webhooks_create_with_http_info(self, owner, repo, **kwargs): """ Create a specific webhook in a repository. Create a specific webhook in a repository. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.webhooks_create_with_http_info(owner, repo, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str owner: (required) :param str repo: (required) :param WebhooksCreate data: :return: RepositoryWebhook If the method is called asynchronously, returns the request thread. """ all_params = ['owner', 'repo', 'data'] all_params.append('callback') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method webhooks_create" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'owner' is set if ('owner' not in params) or (params['owner'] is None): raise ValueError("Missing the required parameter `owner` when calling `webhooks_create`") # verify the required parameter 'repo' is set if ('repo' not in params) or (params['repo'] is None): raise ValueError("Missing the required parameter `repo` when calling `webhooks_create`") collection_formats = {} path_params = {} if 'owner' in params: path_params['owner'] = params['owner'] if 'repo' in params: path_params['repo'] = params['repo'] query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = None if 'data' in params: body_params = params['data'] # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.\ select_header_content_type(['application/json']) # Authentication setting auth_settings = ['apikey'] return self.api_client.call_api('/webhooks/{owner}/{repo}/', 'POST', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='RepositoryWebhook', auth_settings=auth_settings, callback=params.get('callback'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def webhooks_delete(self, owner, repo, identifier, **kwargs): """ Delete a specific webhook in a repository. Delete a specific webhook in a repository. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.webhooks_delete(owner, repo, identifier, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str owner: (required) :param str repo: (required) :param str identifier: (required) :return: None If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('callback'): return self.webhooks_delete_with_http_info(owner, repo, identifier, **kwargs) else: (data) = self.webhooks_delete_with_http_info(owner, repo, identifier, **kwargs) return data def webhooks_delete_with_http_info(self, owner, repo, identifier, **kwargs): """ Delete a specific webhook in a repository. Delete a specific webhook in a repository. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.webhooks_delete_with_http_info(owner, repo, identifier, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str owner: (required) :param str repo: (required) :param str identifier: (required) :return: None If the method is called asynchronously, returns the request thread. """ all_params = ['owner', 'repo', 'identifier'] all_params.append('callback') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method webhooks_delete" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'owner' is set if ('owner' not in params) or (params['owner'] is None): raise ValueError("Missing the required parameter `owner` when calling `webhooks_delete`") # verify the required parameter 'repo' is set if ('repo' not in params) or (params['repo'] is None): raise ValueError("Missing the required parameter `repo` when calling `webhooks_delete`") # verify the required parameter 'identifier' is set if ('identifier' not in params) or (params['identifier'] is None): raise ValueError("Missing the required parameter `identifier` when calling `webhooks_delete`") collection_formats = {} path_params = {} if 'owner' in params: path_params['owner'] = params['owner'] if 'repo' in params: path_params['repo'] = params['repo'] if 'identifier' in params: path_params['identifier'] = params['identifier'] query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = None # Authentication setting auth_settings = ['apikey'] return self.api_client.call_api('/webhooks/{owner}/{repo}/{identifier}/', 'DELETE', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type=None, auth_settings=auth_settings, callback=params.get('callback'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def webhooks_list(self, owner, repo, **kwargs): """ Get a list of all webhooks in a repository. Get a list of all webhooks in a repository. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.webhooks_list(owner, repo, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str owner: (required) :param str repo: (required) :param int page: A page number within the paginated result set. :param int page_size: Number of results to return per page. :return: list[RepositoryWebhook] If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('callback'): return self.webhooks_list_with_http_info(owner, repo, **kwargs) else: (data) = self.webhooks_list_with_http_info(owner, repo, **kwargs) return data def webhooks_list_with_http_info(self, owner, repo, **kwargs): """ Get a list of all webhooks in a repository. Get a list of all webhooks in a repository. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.webhooks_list_with_http_info(owner, repo, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str owner: (required) :param str repo: (required) :param int page: A page number within the paginated result set. :param int page_size: Number of results to return per page. :return: list[RepositoryWebhook] If the method is called asynchronously, returns the request thread. """ all_params = ['owner', 'repo', 'page', 'page_size'] all_params.append('callback') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method webhooks_list" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'owner' is set if ('owner' not in params) or (params['owner'] is None): raise ValueError("Missing the required parameter `owner` when calling `webhooks_list`") # verify the required parameter 'repo' is set if ('repo' not in params) or (params['repo'] is None): raise ValueError("Missing the required parameter `repo` when calling `webhooks_list`") collection_formats = {} path_params = {} if 'owner' in params: path_params['owner'] = params['owner'] if 'repo' in params: path_params['repo'] = params['repo'] query_params = [] if 'page' in params: query_params.append(('page', params['page'])) if 'page_size' in params: query_params.append(('page_size', params['page_size'])) header_params = {} form_params = [] local_var_files = {} body_params = None # Authentication setting auth_settings = ['apikey'] return self.api_client.call_api('/webhooks/{owner}/{repo}/', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='list[RepositoryWebhook]', auth_settings=auth_settings, callback=params.get('callback'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def webhooks_partial_update(self, owner, repo, identifier, **kwargs): """ Update a specific webhook in a repository. Update a specific webhook in a repository. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.webhooks_partial_update(owner, repo, identifier, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str owner: (required) :param str repo: (required) :param str identifier: (required) :param WebhooksPartialUpdate data: :return: RepositoryWebhook If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('callback'): return self.webhooks_partial_update_with_http_info(owner, repo, identifier, **kwargs) else: (data) = self.webhooks_partial_update_with_http_info(owner, repo, identifier, **kwargs) return data def webhooks_partial_update_with_http_info(self, owner, repo, identifier, **kwargs): """ Update a specific webhook in a repository. Update a specific webhook in a repository. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.webhooks_partial_update_with_http_info(owner, repo, identifier, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str owner: (required) :param str repo: (required) :param str identifier: (required) :param WebhooksPartialUpdate data: :return: RepositoryWebhook If the method is called asynchronously, returns the request thread. """ all_params = ['owner', 'repo', 'identifier', 'data'] all_params.append('callback') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method webhooks_partial_update" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'owner' is set if ('owner' not in params) or (params['owner'] is None): raise ValueError("Missing the required parameter `owner` when calling `webhooks_partial_update`") # verify the required parameter 'repo' is set if ('repo' not in params) or (params['repo'] is None): raise ValueError("Missing the required parameter `repo` when calling `webhooks_partial_update`") # verify the required parameter 'identifier' is set if ('identifier' not in params) or (params['identifier'] is None): raise ValueError("Missing the required parameter `identifier` when calling `webhooks_partial_update`") collection_formats = {} path_params = {} if 'owner' in params: path_params['owner'] = params['owner'] if 'repo' in params: path_params['repo'] = params['repo'] if 'identifier' in params: path_params['identifier'] = params['identifier'] query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = None if 'data' in params: body_params = params['data'] # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.\ select_header_content_type(['application/json']) # Authentication setting auth_settings = ['apikey'] return self.api_client.call_api('/webhooks/{owner}/{repo}/{identifier}/', 'PATCH', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='RepositoryWebhook', auth_settings=auth_settings, callback=params.get('callback'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def webhooks_read(self, owner, repo, identifier, **kwargs): """ Views for working with repository webhooks. Views for working with repository webhooks. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.webhooks_read(owner, repo, identifier, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str owner: (required) :param str repo: (required) :param str identifier: (required) :return: RepositoryWebhook If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('callback'): return self.webhooks_read_with_http_info(owner, repo, identifier, **kwargs) else: (data) = self.webhooks_read_with_http_info(owner, repo, identifier, **kwargs) return data def webhooks_read_with_http_info(self, owner, repo, identifier, **kwargs): """ Views for working with repository webhooks. Views for working with repository webhooks. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.webhooks_read_with_http_info(owner, repo, identifier, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str owner: (required) :param str repo: (required) :param str identifier: (required) :return: RepositoryWebhook If the method is called asynchronously, returns the request thread. """ all_params = ['owner', 'repo', 'identifier'] all_params.append('callback') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method webhooks_read" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'owner' is set if ('owner' not in params) or (params['owner'] is None): raise ValueError("Missing the required parameter `owner` when calling `webhooks_read`") # verify the required parameter 'repo' is set if ('repo' not in params) or (params['repo'] is None): raise ValueError("Missing the required parameter `repo` when calling `webhooks_read`") # verify the required parameter 'identifier' is set if ('identifier' not in params) or (params['identifier'] is None): raise ValueError("Missing the required parameter `identifier` when calling `webhooks_read`") collection_formats = {} path_params = {} if 'owner' in params: path_params['owner'] = params['owner'] if 'repo' in params: path_params['repo'] = params['repo'] if 'identifier' in params: path_params['identifier'] = params['identifier'] query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = None # Authentication setting auth_settings = ['apikey'] return self.api_client.call_api('/webhooks/{owner}/{repo}/{identifier}/', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='RepositoryWebhook', auth_settings=auth_settings, callback=params.get('callback'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats)
[ "six.iteritems" ]
[((3329, 3356), 'six.iteritems', 'iteritems', (["params['kwargs']"], {}), "(params['kwargs'])\n", (3338, 3356), False, 'from six import iteritems\n'), ((8188, 8215), 'six.iteritems', 'iteritems', (["params['kwargs']"], {}), "(params['kwargs'])\n", (8197, 8215), False, 'from six import iteritems\n'), ((13317, 13344), 'six.iteritems', 'iteritems', (["params['kwargs']"], {}), "(params['kwargs'])\n", (13326, 13344), False, 'from six import iteritems\n'), ((18305, 18332), 'six.iteritems', 'iteritems', (["params['kwargs']"], {}), "(params['kwargs'])\n", (18314, 18332), False, 'from six import iteritems\n'), ((23566, 23593), 'six.iteritems', 'iteritems', (["params['kwargs']"], {}), "(params['kwargs'])\n", (23575, 23593), False, 'from six import iteritems\n')]
""" Books Author model factory. """ import random from factory import DjangoModelFactory, LazyAttribute from books.models import Author from .factory_faker import Faker __all__ = ( 'AuthorFactory', 'LimitedAuthorFactory', 'SingleAuthorFactory', ) class BaseAuthorFactory(DjangoModelFactory): """Base author factory.""" salutation = Faker('text', max_nb_chars=10) name = Faker('name') email = Faker('email') birth_date = Faker('date') biography = Faker('text') phone_number = Faker('phone_number') website = Faker('url') company = Faker('company') company_phone_number = Faker('phone_number') company_email = Faker('email') company_website = Faker('url') class Meta(object): """Meta class.""" model = Author abstract = True class AuthorFactory(BaseAuthorFactory): """Author factory.""" class LimitedAuthorFactory(BaseAuthorFactory): """Author factory, but limited to 20 authors.""" id = LazyAttribute( lambda __x: random.randint(1, 20) ) class Meta(object): """Meta class.""" django_get_or_create = ('id',) class SingleAuthorFactory(BaseAuthorFactory): """Author factory, limited to a single author.""" id = 999999 name = "<NAME>" email = "<EMAIL>" class Meta(object): """Meta class.""" django_get_or_create = ('id',)
[ "random.randint" ]
[((1036, 1057), 'random.randint', 'random.randint', (['(1)', '(20)'], {}), '(1, 20)\n', (1050, 1057), False, 'import random\n')]
import typing as T from pathlib import Path import re class Globals: cwd = Path(".").absolute() def cd(p: str): Globals.cwd.joinpath(p).absolute() def pwd() -> Path: return Globals.cwd def ls(p: str = ".") -> T.List[Path]: path = Globals.cwd.joinpath(p) return [p for p in path.iterdir()] def batch_rename(regex, name_template): r = re.compile(regex) for p in ls(): match = r.match(p.name) if match is None: continue groups = match.groups() new_name = name_template.format(*groups) p.rename(p.parent.joinpath(new_name)) # TODO: name conflict
[ "pathlib.Path", "re.compile" ]
[((362, 379), 're.compile', 're.compile', (['regex'], {}), '(regex)\n', (372, 379), False, 'import re\n'), ((80, 89), 'pathlib.Path', 'Path', (['"""."""'], {}), "('.')\n", (84, 89), False, 'from pathlib import Path\n')]
from input_functions import safe_input, numbered_choice from display_funcs import decorate class Location(): def __init__(self, name, short_desc, long_desc, contains=[], level=0, starting_location=False, input_func=safe_input, output_func=print): self.name = name self.short_desc = short_desc self.long_desc = long_desc self.contains = contains self.starting_location = starting_location self.level = level self.input_func = input_func self.output_func = output_func self.first_visit = None for l in self.contains: if type(l) == Location: l.contains.append(self) def enter(self): numbered_choice("What/Who/Where would you like to interact with?", [s.name for s in self.contains], self.contains, self.input_func, self.output_func).interact() def interact(self): self.output_func(self.name + " : " + self.short_desc) def get_fancy(self): return decorate(self)
[ "input_functions.numbered_choice", "display_funcs.decorate" ]
[((1002, 1016), 'display_funcs.decorate', 'decorate', (['self'], {}), '(self)\n', (1010, 1016), False, 'from display_funcs import decorate\n'), ((709, 862), 'input_functions.numbered_choice', 'numbered_choice', (['"""What/Who/Where would you like to interact with?"""', '[s.name for s in self.contains]', 'self.contains', 'self.input_func', 'self.output_func'], {}), "('What/Who/Where would you like to interact with?', [s.name for\n s in self.contains], self.contains, self.input_func, self.output_func)\n", (724, 862), False, 'from input_functions import safe_input, numbered_choice\n')]
from flask import Blueprint from flask_login import current_user from app.models import Category category_routes= Blueprint('category', __name__) @category_routes.route("") def get_categories(): user_categories = Category.query.filter_by(user_id=current_user.id) default_categories = Category.query.filter_by(user_id=None) return { "defaultCategories": [default_category.to_dict() for default_category in default_categories], "userCategories": [user_category.to_dict() for user_category in user_categories] }
[ "app.models.Category.query.filter_by", "flask.Blueprint" ]
[((115, 146), 'flask.Blueprint', 'Blueprint', (['"""category"""', '__name__'], {}), "('category', __name__)\n", (124, 146), False, 'from flask import Blueprint\n'), ((220, 269), 'app.models.Category.query.filter_by', 'Category.query.filter_by', ([], {'user_id': 'current_user.id'}), '(user_id=current_user.id)\n', (244, 269), False, 'from app.models import Category\n'), ((295, 333), 'app.models.Category.query.filter_by', 'Category.query.filter_by', ([], {'user_id': 'None'}), '(user_id=None)\n', (319, 333), False, 'from app.models import Category\n')]
import time from mobyle.common.connection import connection from mobyle.common import users def groupFinder(userid, request): #try to find user in database: user = connection.User.find_one({"email": userid}) if user is not None: groups = user['groups'] if user['admin']: groups.append('group:admin') return groups
[ "mobyle.common.connection.connection.User.find_one" ]
[((176, 219), 'mobyle.common.connection.connection.User.find_one', 'connection.User.find_one', (["{'email': userid}"], {}), "({'email': userid})\n", (200, 219), False, 'from mobyle.common.connection import connection\n')]
import sys import os import json import json_lines output_file = 'output.jl' if not os.path.exists(output_file): print('Did not find expected output file!') sys.exit(1) change_id_to_change_number = {} with open(output_file, 'rb') as fp: for item in json_lines.reader(fp): if 'ChangeIdToChangeNumber' in item: change_id_to_change_number.update(item['ChangeIdToChangeNumber']) with open(os.path.join('mirror', 'ChangeIdToChangeNumber.json'), 'w') as fp: json.dump(change_id_to_change_number, fp)
[ "json.dump", "json_lines.reader", "os.path.exists", "os.path.join", "sys.exit" ]
[((86, 113), 'os.path.exists', 'os.path.exists', (['output_file'], {}), '(output_file)\n', (100, 113), False, 'import os\n'), ((167, 178), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (175, 178), False, 'import sys\n'), ((264, 285), 'json_lines.reader', 'json_lines.reader', (['fp'], {}), '(fp)\n', (281, 285), False, 'import json_lines\n'), ((493, 534), 'json.dump', 'json.dump', (['change_id_to_change_number', 'fp'], {}), '(change_id_to_change_number, fp)\n', (502, 534), False, 'import json\n'), ((422, 475), 'os.path.join', 'os.path.join', (['"""mirror"""', '"""ChangeIdToChangeNumber.json"""'], {}), "('mirror', 'ChangeIdToChangeNumber.json')\n", (434, 475), False, 'import os\n')]
# -*- coding: utf8 -*- import kfp def flip_coin(): return kfp.dsl.ContainerOp( name='Flip a coin', image='python:alpine3.6', command=['python', '-c', """ import random res = "heads" if random.randint(0, 1) == 0 else "tails" with open('/output', 'w') as f: f.write(res) """], file_outputs={'output': '/output'} ) def end(): return kfp.dsl.ContainerOp(name='End', image="alpine:3.6", command=["sh", "-c", 'echo "Flip coin ends"']) def heads(): return kfp.dsl.ContainerOp(name='Heads', image="alpine:3.6", command=["sh", "-c", 'echo "it was heads"']) def tails(): return kfp.dsl.ContainerOp(name='Tails', image="alpine:3.6", command=["sh", "-c", 'echo "it was tails"']) @kfp.dsl.pipeline(name='Coin-flip', description='Flip a coin') def coin_flip_pipeline(): flip_op = flip_coin() result_op = None with kfp.dsl.Condition(flip_op.output == 'heads'): result_op = heads() with kfp.dsl.Condition(flip_op.output == 'tails'): result_op = tails() end_op = end() end_op.after(result_op) def main(): kfp.compiler.Compiler().compile(coin_flip_pipeline, __file__ + ".yaml") if __name__ == '__main__': main()
[ "kfp.dsl.ContainerOp", "kfp.dsl.pipeline", "kfp.compiler.Compiler", "kfp.dsl.Condition" ]
[((743, 804), 'kfp.dsl.pipeline', 'kfp.dsl.pipeline', ([], {'name': '"""Coin-flip"""', 'description': '"""Flip a coin"""'}), "(name='Coin-flip', description='Flip a coin')\n", (759, 804), False, 'import kfp\n'), ((65, 342), 'kfp.dsl.ContainerOp', 'kfp.dsl.ContainerOp', ([], {'name': '"""Flip a coin"""', 'image': '"""python:alpine3.6"""', 'command': '[\'python\', \'-c\',\n """\nimport random\nres = "heads" if random.randint(0, 1) == 0 else "tails"\nwith open(\'/output\', \'w\') as f:\n f.write(res)\n """\n ]', 'file_outputs': "{'output': '/output'}"}), '(name=\'Flip a coin\', image=\'python:alpine3.6\', command=[\n \'python\', \'-c\',\n """\nimport random\nres = "heads" if random.randint(0, 1) == 0 else "tails"\nwith open(\'/output\', \'w\') as f:\n f.write(res)\n """\n ], file_outputs={\'output\': \'/output\'})\n', (84, 342), False, 'import kfp\n'), ((391, 493), 'kfp.dsl.ContainerOp', 'kfp.dsl.ContainerOp', ([], {'name': '"""End"""', 'image': '"""alpine:3.6"""', 'command': '[\'sh\', \'-c\', \'echo "Flip coin ends"\']'}), '(name=\'End\', image=\'alpine:3.6\', command=[\'sh\', \'-c\',\n \'echo "Flip coin ends"\'])\n', (410, 493), False, 'import kfp\n'), ((516, 618), 'kfp.dsl.ContainerOp', 'kfp.dsl.ContainerOp', ([], {'name': '"""Heads"""', 'image': '"""alpine:3.6"""', 'command': '[\'sh\', \'-c\', \'echo "it was heads"\']'}), '(name=\'Heads\', image=\'alpine:3.6\', command=[\'sh\', \'-c\',\n \'echo "it was heads"\'])\n', (535, 618), False, 'import kfp\n'), ((641, 743), 'kfp.dsl.ContainerOp', 'kfp.dsl.ContainerOp', ([], {'name': '"""Tails"""', 'image': '"""alpine:3.6"""', 'command': '[\'sh\', \'-c\', \'echo "it was tails"\']'}), '(name=\'Tails\', image=\'alpine:3.6\', command=[\'sh\', \'-c\',\n \'echo "it was tails"\'])\n', (660, 743), False, 'import kfp\n'), ((887, 931), 'kfp.dsl.Condition', 'kfp.dsl.Condition', (["(flip_op.output == 'heads')"], {}), "(flip_op.output == 'heads')\n", (904, 931), False, 'import kfp\n'), ((970, 1014), 'kfp.dsl.Condition', 'kfp.dsl.Condition', (["(flip_op.output == 'tails')"], {}), "(flip_op.output == 'tails')\n", (987, 1014), False, 'import kfp\n'), ((1109, 1132), 'kfp.compiler.Compiler', 'kfp.compiler.Compiler', ([], {}), '()\n', (1130, 1132), False, 'import kfp\n')]
import pandas as pd from dateutil.parser import parse import numpy as np from pandas_datareader.base import _BaseReader import json import re class GoogleQuotesReader(_BaseReader): """Get current google quote""" @property def url(self): return 'http://www.google.com/finance/info' @property def params(self): if isinstance(self.symbols, pd.compat.string_types): sym_list = self.symbols else: sym_list = ','.join(self.symbols) params = {'q': sym_list} return params def _read_lines(self, out): buffer = out.read() m = re.search('// ', buffer) result = json.loads(buffer[m.start() + len('// '):]) return pd.DataFrame([[float(x['cp']), float(x['l'].replace(',', '')), np.datetime64(parse(x['lt']).isoformat())] for x in result], columns=['change_pct', 'last', 'time'], index=[x['t'] for x in result])
[ "dateutil.parser.parse", "re.search" ]
[((628, 652), 're.search', 're.search', (['"""// """', 'buffer'], {}), "('// ', buffer)\n", (637, 652), False, 'import re\n'), ((836, 850), 'dateutil.parser.parse', 'parse', (["x['lt']"], {}), "(x['lt'])\n", (841, 850), False, 'from dateutil.parser import parse\n')]
import matplotlib.pyplot as plt import pandas as pd def main(): if 0: data = pd.read_html("https://csdms.colorado.edu/wiki/CSDMS_models_by_numbers")[ 2 ] languages = pd.DataFrame( {"Count": data["Count"].values}, index=data["Program language"] ) languages.to_csv("languages.csv") else: languages = pd.read_csv("languages.csv", index_col=0, header=0) other = languages[languages["Count"] < 10] languages.loc["Other", "Count"] += other["Count"].sum() languages = languages[languages["Count"] >= 10] languages.sort_index(inplace=True) # explode = [0.1, 0.1, 0.1, 0.1, 0.0, 0.0, 0.1] explode = [0.1] * len(languages) plt.pie( languages["Count"], autopct="%1.1f%%", labels=languages.index, explode=explode, shadow=True, ) plt.show() if __name__ == "__main__": main()
[ "pandas.read_html", "pandas.DataFrame", "matplotlib.pyplot.show", "pandas.read_csv", "matplotlib.pyplot.pie" ]
[((728, 832), 'matplotlib.pyplot.pie', 'plt.pie', (["languages['Count']"], {'autopct': '"""%1.1f%%"""', 'labels': 'languages.index', 'explode': 'explode', 'shadow': '(True)'}), "(languages['Count'], autopct='%1.1f%%', labels=languages.index,\n explode=explode, shadow=True)\n", (735, 832), True, 'import matplotlib.pyplot as plt\n'), ((880, 890), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (888, 890), True, 'import matplotlib.pyplot as plt\n'), ((209, 286), 'pandas.DataFrame', 'pd.DataFrame', (["{'Count': data['Count'].values}"], {'index': "data['Program language']"}), "({'Count': data['Count'].values}, index=data['Program language'])\n", (221, 286), True, 'import pandas as pd\n'), ((381, 432), 'pandas.read_csv', 'pd.read_csv', (['"""languages.csv"""'], {'index_col': '(0)', 'header': '(0)'}), "('languages.csv', index_col=0, header=0)\n", (392, 432), True, 'import pandas as pd\n'), ((91, 162), 'pandas.read_html', 'pd.read_html', (['"""https://csdms.colorado.edu/wiki/CSDMS_models_by_numbers"""'], {}), "('https://csdms.colorado.edu/wiki/CSDMS_models_by_numbers')\n", (103, 162), True, 'import pandas as pd\n')]
import os import shutil path = r'C:\Users\<NAME>\Desktop\Work' destination = 'F:\\HERE' allfile = os.listdir(path) for f in allfile: if f[-3:] == 'txt': #print(f) source = os.path.join(path,f) dest = os.path.join(destination,f) print(source) print(dest) shutil.copy2(source,dest) print('----')
[ "shutil.copy2", "os.path.join", "os.listdir" ]
[((104, 120), 'os.listdir', 'os.listdir', (['path'], {}), '(path)\n', (114, 120), False, 'import os\n'), ((206, 227), 'os.path.join', 'os.path.join', (['path', 'f'], {}), '(path, f)\n', (218, 227), False, 'import os\n'), ((243, 271), 'os.path.join', 'os.path.join', (['destination', 'f'], {}), '(destination, f)\n', (255, 271), False, 'import os\n'), ((324, 350), 'shutil.copy2', 'shutil.copy2', (['source', 'dest'], {}), '(source, dest)\n', (336, 350), False, 'import shutil\n')]
from rubenesque.codecs.sec import encode, decode from rubenesque.signatures import ecdsa import rubenesque.curves from hashlib import sha256 from ..formatters import encode_sig, decode_sig from ...convert import int_to_hex_str from .common import point_to_hex_str, split_str_to_halves from .errors import ( UnknownPointFormatError, UnknownSignatureFormatError, UnknownPublicKeyFormatError ) backend_name = 'rubenesque' class CurveByAttrName: @property def P256(self): return rubenesque.curves.find('secp256r1') curve = CurveByAttrName() def gen_private_key(curve=curve.P256, hashfunc=sha256): priv_key = curve.private_key() return int_to_hex_str(priv_key) def get_public_key(priv_key, curve=curve.P256, hashfunc=sha256, fmt='RAW'): if fmt in ['RAW', '04']: priv_key = int(priv_key, 16) pub_key_obj = curve.generator() * priv_key return point_to_hex_str(pub_key_obj, fmt=fmt) else: raise UnknownPublicKeyFormatError("fmt: '%s'" % fmt) def gen_keypair(curve=curve.P256, hashfunc=sha256, pub_key_fmt='RAW'): priv_key = gen_private_key(curve=curve, hashfunc=hashfunc) pub_key = get_public_key(priv_key, curve=curve, hashfunc=hashfunc, fmt=pub_key_fmt) return priv_key, pub_key def sign(priv_key, data, hashfunc=sha256, curve=curve.P256, sign_fmt='DER', sign_size=32): h = hashfunc(data.encode('utf-8')).digest() r, s = ecdsa.sign(curve, int(priv_key, 16), h) if sign_fmt in ['DER', 'RAW']: return encode_sig(r, s, fmt=sign_fmt, size=sign_size).hex() else: raise UnknownSignatureFormatError("fmt: '%s'" % sign_fmt) def verify(pub_key, data, signature, hashfunc=sha256, curve=curve.P256, sign_fmt='DER', sign_size=32, pub_key_fmt='RAW'): if pub_key_fmt == 'RAW': pub_key_encoded = pub_key elif pub_key_fmt == '04': pub_key_encoded = pub_key[2:] else: raise UnknownPublicKeyFormatError("fmt: '%s'" % pub_key_fmt) x, y = split_str_to_halves(pub_key_encoded) x, y = int(x, 16), int(y, 16) pub_key_point = curve(x, y) if sign_fmt in ['DER', 'RAW']: r, s = decode_sig(bytes.fromhex(signature), fmt=sign_fmt) else: raise UnknownSignatureFormatError("fmt: '%s'" % sign_fmt) data_bytes = data.encode() h = hashfunc(data_bytes).digest() return ecdsa.verify(pub_key_point, h, r, s)
[ "rubenesque.signatures.ecdsa.verify" ]
[((2390, 2426), 'rubenesque.signatures.ecdsa.verify', 'ecdsa.verify', (['pub_key_point', 'h', 'r', 's'], {}), '(pub_key_point, h, r, s)\n', (2402, 2426), False, 'from rubenesque.signatures import ecdsa\n')]
from datetime import date from io import BytesIO from django.core.mail import send_mail from django.http import HttpResponse from django.template import loader from django.template.loader import get_template from xhtml2pdf import pisa from .models import * def match_skill(job_list, skill_list, preferred_job_list): recommendation_list = [] for skill in skill_list: for job in job_list: split_text = skill.skill_title.lower().split(' ') for s in split_text: index = job.requirements.lower().find(s) index1 = job.job_title.lower().find(s) if (index >= 0 or index1 >= 0) and job not in recommendation_list: recommendation_list.append(job) for preferred_job in preferred_job_list: for job in job_list: split_text = preferred_job.details.lower().split(' ') for s in split_text: index = job.requirements.lower().find(s) index1 = job.job_title.lower().find(s) if (index >= 0 or index1 >= 0) and job not in recommendation_list: recommendation_list.append(job) return recommendation_list def rateAvg(rates, length): summation = 0 if length == 0: return 0 else: for r in rates: summation = summation + r.rate if (summation / length) % 1 > 0: return summation / length else: return summation // length def increaseViewCount(user_one, user_two): if user_one.is_company: applicant = ApplicantProfileModel.objects.get(user=user_two) if applicant.totalViewCount is None: applicant.totalViewCount = 0 applicant.totalViewCount = applicant.totalViewCount + 1 applicant.save() elif user_one.is_applicant: company = CompanyProfileModel.objects.get(user=user_two) if company.totalViewCount is None: company.totalViewCount = 0 company.totalViewCount = company.totalViewCount + 1 company.save() ProfileViewDetails.objects.create( viewedBy=user_one, viewed=user_two, ) return def extractFirstName(name): first_name = name.split(' ') return first_name[0] def calculate_age(born): today = date.today() return today.year - born.year - ((today.month, today.day) < (born.month, born.day)) def add_to_employee_keyword(user, keyword): if keyword is not None: EmployeeSearchKeywordModel.objects.create( searched_by=user, searched_for=keyword, ) return def add_to_job_keyword(user, keyword): if keyword is not None: JobSearchKeywordModel.objects.create( searched_by=user, searched_for=keyword, ) return def deactivate_user(user): user.is_active = False user.save() return def render_to_pdf(template_src, context={}): template = get_template(template_src) html = template.render(context) result = BytesIO() pdf = pisa.pisaDocument(BytesIO(html.encode("ISO-8859-1")), result) if not pdf.err: return HttpResponse(result.getvalue(), content_type='application/pdf') return None def send_registration_mail(user): subject = "Welcome to JobLand" from_email = '<EMAIL>' home_link = "http://127.0.0.1:8000" about_link = "http://127.0.0.1:8000" contact_link = "http://127.0.0.1:8000" context = { "user": user, "home_link": home_link, "about_link": about_link, "contact_link": contact_link, } msg_plain = loader.render_to_string('email/registration.txt', context) msg_html = loader.render_to_string('email/registration.html', context) send_mail(subject, msg_plain, from_email, [user.email], fail_silently=True, html_message=msg_html) return
[ "io.BytesIO", "django.core.mail.send_mail", "django.template.loader.render_to_string", "datetime.date.today", "django.template.loader.get_template" ]
[((2297, 2309), 'datetime.date.today', 'date.today', ([], {}), '()\n', (2307, 2309), False, 'from datetime import date\n'), ((2953, 2979), 'django.template.loader.get_template', 'get_template', (['template_src'], {}), '(template_src)\n', (2965, 2979), False, 'from django.template.loader import get_template\n'), ((3029, 3038), 'io.BytesIO', 'BytesIO', ([], {}), '()\n', (3036, 3038), False, 'from io import BytesIO\n'), ((3613, 3671), 'django.template.loader.render_to_string', 'loader.render_to_string', (['"""email/registration.txt"""', 'context'], {}), "('email/registration.txt', context)\n", (3636, 3671), False, 'from django.template import loader\n'), ((3687, 3746), 'django.template.loader.render_to_string', 'loader.render_to_string', (['"""email/registration.html"""', 'context'], {}), "('email/registration.html', context)\n", (3710, 3746), False, 'from django.template import loader\n'), ((3752, 3854), 'django.core.mail.send_mail', 'send_mail', (['subject', 'msg_plain', 'from_email', '[user.email]'], {'fail_silently': '(True)', 'html_message': 'msg_html'}), '(subject, msg_plain, from_email, [user.email], fail_silently=True,\n html_message=msg_html)\n', (3761, 3854), False, 'from django.core.mail import send_mail\n')]
#!/usr/bin/env python # Program: $Id: $ # Author: <NAME> <<EMAIL>> # Description: Example use of sc_warts_writer library. # import sys import time from sc_warts_writer import WartsWriter, WartsTrace if __name__ == "__main__": assert len(sys.argv) == 2 now = time.time() w = WartsWriter(sys.argv[1]) w.write_list(1, 1, 'sc_sample_writer demo') w.write_cycle(1, 1, 1, now) tr = WartsTrace() tr.add({'listid' : 1, 'srcport' : 1234, 'dstport' : 80, 'srcaddr' : '1.2.3.4', 'dstaddr' : '5.6.7.8', 'attempts' : 2, 'tracetyp' : 2, 'probehop' : 7, 'probesent' : 5, 'firsttl' : 4, 'timeval' : now + 1}) # hopflags (SCAMPER_TRACE_HOP_FLAG_REPLY_TTL) reply = {'addr' : '4.4.4.4', 'rtt' : 23456, 'ipid' : 1234, 'probesize' : 60, 'replysize' : 54, 'probettl' : 4, 'replyttl' : 60, 'tos' : 0, 'icmp' : 4, 'hopflags' : 0x10} tr.add_reply(reply) reply = {'addr' : '6.6.6.6', 'rtt' : 834567, 'ipid' : 1234, 'probesize' : 60, 'replysize' : 54, 'probettl' : 6, 'replyttl' : 58, 'tos' : 0, 'icmp' : 4, 'hopflags' : 0x10} tr.add_reply(reply) w.write_object(tr) # finish w.write_cycle_stop(1, now+10)
[ "sc_warts_writer.WartsWriter", "sc_warts_writer.WartsTrace", "time.time" ]
[((281, 292), 'time.time', 'time.time', ([], {}), '()\n', (290, 292), False, 'import time\n'), ((299, 323), 'sc_warts_writer.WartsWriter', 'WartsWriter', (['sys.argv[1]'], {}), '(sys.argv[1])\n', (310, 323), False, 'from sc_warts_writer import WartsWriter, WartsTrace\n'), ((407, 419), 'sc_warts_writer.WartsTrace', 'WartsTrace', ([], {}), '()\n', (417, 419), False, 'from sc_warts_writer import WartsWriter, WartsTrace\n')]
from portfolio_admin.models import Project from rest_framework import serializers class ProjectSerializer(serializers.ModelSerializer): skills = serializers.StringRelatedField(many=True) class Meta: model = Project exclude = ['id', 'created_at', 'updated_at', 'portfolio', 'private']
[ "rest_framework.serializers.StringRelatedField" ]
[((151, 192), 'rest_framework.serializers.StringRelatedField', 'serializers.StringRelatedField', ([], {'many': '(True)'}), '(many=True)\n', (181, 192), False, 'from rest_framework import serializers\n')]
from __future__ import absolute_import from __future__ import division from __future__ import print_function import shutil import sys import tempfile from observations.r.friendship import friendship def test_friendship(): """Test module friendship.py by downloading friendship.csv and testing shape of extracted data has 0 rows and 7 columns """ test_path = tempfile.mkdtemp() x_train, metadata = friendship(test_path) try: assert x_train.shape == (0, 7) except: shutil.rmtree(test_path) raise()
[ "shutil.rmtree", "tempfile.mkdtemp", "observations.r.friendship.friendship" ]
[((374, 392), 'tempfile.mkdtemp', 'tempfile.mkdtemp', ([], {}), '()\n', (390, 392), False, 'import tempfile\n'), ((415, 436), 'observations.r.friendship.friendship', 'friendship', (['test_path'], {}), '(test_path)\n', (425, 436), False, 'from observations.r.friendship import friendship\n'), ((493, 517), 'shutil.rmtree', 'shutil.rmtree', (['test_path'], {}), '(test_path)\n', (506, 517), False, 'import shutil\n')]
# ============================================================================ # ~/cerebstats/cerebstats/stat_scores/chi2GOFScore.py # # This py-file contains custum score functions initiated by # # from cerebstats import scoreScores # from cerebstats.scoreScores import ABCScore # ============================================================================ import numpy as np from scipy.stats import chisquare import sciunit # ==============================Chi2GOFScore================================== class Chi2GOFScore(sciunit.Score): """ Compute chi2-statistic for chi-squared goodness-of-fit Test of proportions. One may think of this as a **one-way contingency table.** +--------------+-------------------------------------------------------------+ | sample size | :math:`k` categories of a categorial variable of interest | + +--------------+--------------+----------------+--------------+ | :math:`n` | :math:`x_1` | :math:`x_2` | :math:`\\ldots` | :math:`x_k` | +==============+==============+==============+================+==============+ | observations | :math:`O_1` | :math:`O_2` | :math:`\\ldots` | :math:`O_k` | +--------------+--------------+--------------+----------------+--------------+ | probabilities| :math:`p_1` | :math:`p_2` | :math:`\\ldots` | :math:`p_k` | +--------------+--------------+--------------+----------------+--------------+ | expected | :math:`np_1` | :math:`np_2` | :math:`\\ldots` | :math:`np_k` | +--------------+--------------+--------------+----------------+--------------+ Notice that for probabilities of *k* categories :math:`\\sum_{\\forall i} p_i = 1`. The expected counts for each category can be derived from it (or already given) such that :math:`\\sum_{\\forall i} np_i = n`. .. table:: Title here ==================== ============================================================================== Definitions Interpretation ==================== ============================================================================== :math:`n` sample size; total number of experiments done :math:`k` number of categorical variables :math:`O_i` observed count (frequency) for :math:`i^{th}` variable :math:`p_i` probability for :math:`i^{th}` category such that :math:`\\sum_{\\forall i} p_i = 1` :math:`E_i` expected count for :math:`i^{th}` category such that :math:`E_i = n p_i` test-statistic :math:`\\chi^2 = \\sum_{\\forall i} \\frac{(O_i - E_i)^2}{E_i}` :math:`df` degrees of freedom, :math:`df = k-1` ==================== ============================================================================== *Note* the modification made when compared with a two-way :math:`\\chi^2` test is - the calculation of expected counts :math:`E_i = n p_i` - the degree of freedom :math:`df = k-1` This class uses `scipy.stats.chisquare <https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.chisquare.html>`_. **Use Case:** :: x = Chi2GOFScoreForProportionChi2GOFTest.compute( observation, prediction ) score = Chi2GOFScoreForProportionChi2GOFTest(x) *Note*: As part of the `SciUnit <http://scidash.github.io/sciunit.html>`_ framework this custom :py:class:`.TScore` should have the following methods, * :py:meth:`.compute` (class method) * :py:meth:`.sort_key` (property) * :py:meth:`.__str__` """ #_allowed_types = (float,) _description = ( "ZScoreForSignTest gives the z-statistic applied to medians. " + "The experimental data (observation) is taken as the sample. " + "The sample statistic is 'median' or computed median form 'raw_data'. " + "The null-value is the 'some' specified value whic is taken to be the predicted value generated from running the model. " ) @classmethod def compute(cls, observation, prediction): """ +---------------------+-----------------------------------------------------------------------+ | Argument | Value type | +=====================+=======================================================================+ | first argument |dictionary; observation/experimental data must have keys "sample_size" | | |with a number as its value and "observed_freq" whose value is an array | +---------------------+-----------------------------------------------------------------------+ | second argument |dictionary; model prediction must have either "probabilities" or | | |"expected" whose value is an array (same length as "observed_freq") | +---------------------+-----------------------------------------------------------------------+ *Note:* * chi squared tests (for goodness-of-fit or contingency table) by nature are two-sided so there is not option for one-sidedness. """ name = "chi2_goodness_of_fit_test_for_proportions" if "probabilities" in prediction: probabilities = np.array( prediction["probabilities"] ) expected_counts = observation["sample_size"] * probabilities elif "expected" in prediction: expected_counts = np.array( prediction["expected"] ) probabilities = expected_counts / observation["sample_size"] # k_categories = expected_counts.size score, pvalue = chisquare( observation["observed_freq"], f_exp = expected_counts ) #return self.score # chi2_statistic return {"name": name, "sample_statistic": probabilities, "expected_values": expected_counts, "test_statistic": score, "df": k_categories-1, "p_value": pvalue} @property def sort_key(self): return self.score def __str__(self): return "ChiSqGOFScore is " + str(self.score) # ============================================================================
[ "numpy.array", "scipy.stats.chisquare" ]
[((5745, 5807), 'scipy.stats.chisquare', 'chisquare', (["observation['observed_freq']"], {'f_exp': 'expected_counts'}), "(observation['observed_freq'], f_exp=expected_counts)\n", (5754, 5807), False, 'from scipy.stats import chisquare\n'), ((5377, 5414), 'numpy.array', 'np.array', (["prediction['probabilities']"], {}), "(prediction['probabilities'])\n", (5385, 5414), True, 'import numpy as np\n'), ((5559, 5591), 'numpy.array', 'np.array', (["prediction['expected']"], {}), "(prediction['expected'])\n", (5567, 5591), True, 'import numpy as np\n')]
""" A simple script for generating sample data for learning to give personalised offers. """ import json import pandas as pd import numpy as np import gzip import random import logging GENERATE_INBALANCED_DATA = False NUM_INTERACTIONS_PER_USER = 3 FIRST_TIMESTAMP = 1591803782 # 2020-06-10, 18:43:02 LAST_TIMESTAMP = 1599579782 # 2020-09-08, 18:43:02 RANDOM_SEED = 1 IN_PRODUCTS_FILENAME = "src/products/src/products-service/data/products.yaml" IN_USERS_FILENAME = "src/users/src/users-service/data/users.json.gz" IN_OFFERS_FILENAME = "src/offers/src/offers-service/data/offers.json" # Where to put the generated data so that it is picked up by stage.sh GENERATED_DATA_ROOT = "src/aws-lambda/personalize-pre-create-resources/data" def generate_data(interactions_filename, users_df, offers_df): """Script for writing to a file simulated user-offer interactions""" random.seed(RANDOM_SEED) np.random.seed(RANDOM_SEED) num_users = users_df.shape[0] num_interactions = NUM_INTERACTIONS_PER_USER * num_users if GENERATE_INBALANCED_DATA: # We may wish to assume probability is proportional to ID to show off how we can add # business logic around Personalize offer_probs = offers_df.id.values.astype(float) else: # Or we can work around inbalance at the data munging stage offer_probs = np.ones(len(offers_df.id.values), dtype=float) # Normalise so that we have probabilities offer_probs = offer_probs / offer_probs.sum() # generate timestamps time_between_events = (LAST_TIMESTAMP - FIRST_TIMESTAMP) / num_interactions timestamps = np.arange(FIRST_TIMESTAMP, LAST_TIMESTAMP, time_between_events).astype(int) # pre-shuffle them as we will be using them as a randomising key when we sort by timestamp np.random.shuffle(timestamps) # generate all users Ids sample_user_ids = np.tile(users_df['id'].values.astype(int), NUM_INTERACTIONS_PER_USER) # only one event type event_type = ['OfferConverted'] * num_interactions # we sort it to ensure there is a correlation between user ID and offer ID. # This correlation is what the personalisation will learn. sampled_offers = sorted(np.random.choice(offers_df.id.values, num_interactions, p=offer_probs)) interactions_df = pd.DataFrame({'ITEM_ID': sampled_offers, 'USER_ID': sample_user_ids, 'EVENT_TYPE': event_type, 'TIMESTAMP': timestamps}) # by sorting by timestamp, other elements get shuffled interactions_df = interactions_df.sort_values('TIMESTAMP') with open(interactions_filename, 'w') as outfile: interactions_df.to_csv(outfile, index=False) globals().update(locals()) # This can be used for inspecting in console after script ran or if run with ipython. print('Generation script finished - created offers dataset') if __name__ == '__main__': # User info is stored in the repository - it was automatically generated with gzip.open(IN_USERS_FILENAME, 'r') as f: users = json.load(f) users_df = pd.DataFrame(users) # Offers info is stored in repository with open(IN_OFFERS_FILENAME, 'r') as f: offers = json.load(f) offers_df = pd.DataFrame(offers) logging.basicConfig(level=logging.INFO) generate_data(GENERATED_DATA_ROOT + '/offer_interactions.csv', users_df, offers_df)
[ "pandas.DataFrame", "json.load", "numpy.random.seed", "gzip.open", "logging.basicConfig", "random.seed", "numpy.arange", "numpy.random.choice", "numpy.random.shuffle" ]
[((880, 904), 'random.seed', 'random.seed', (['RANDOM_SEED'], {}), '(RANDOM_SEED)\n', (891, 904), False, 'import random\n'), ((909, 936), 'numpy.random.seed', 'np.random.seed', (['RANDOM_SEED'], {}), '(RANDOM_SEED)\n', (923, 936), True, 'import numpy as np\n'), ((1803, 1832), 'numpy.random.shuffle', 'np.random.shuffle', (['timestamps'], {}), '(timestamps)\n', (1820, 1832), True, 'import numpy as np\n'), ((2303, 2427), 'pandas.DataFrame', 'pd.DataFrame', (["{'ITEM_ID': sampled_offers, 'USER_ID': sample_user_ids, 'EVENT_TYPE':\n event_type, 'TIMESTAMP': timestamps}"], {}), "({'ITEM_ID': sampled_offers, 'USER_ID': sample_user_ids,\n 'EVENT_TYPE': event_type, 'TIMESTAMP': timestamps})\n", (2315, 2427), True, 'import pandas as pd\n'), ((3148, 3167), 'pandas.DataFrame', 'pd.DataFrame', (['users'], {}), '(users)\n', (3160, 3167), True, 'import pandas as pd\n'), ((3303, 3323), 'pandas.DataFrame', 'pd.DataFrame', (['offers'], {}), '(offers)\n', (3315, 3323), True, 'import pandas as pd\n'), ((3329, 3368), 'logging.basicConfig', 'logging.basicConfig', ([], {'level': 'logging.INFO'}), '(level=logging.INFO)\n', (3348, 3368), False, 'import logging\n'), ((2208, 2278), 'numpy.random.choice', 'np.random.choice', (['offers_df.id.values', 'num_interactions'], {'p': 'offer_probs'}), '(offers_df.id.values, num_interactions, p=offer_probs)\n', (2224, 2278), True, 'import numpy as np\n'), ((3063, 3096), 'gzip.open', 'gzip.open', (['IN_USERS_FILENAME', '"""r"""'], {}), "(IN_USERS_FILENAME, 'r')\n", (3072, 3096), False, 'import gzip\n'), ((3119, 3131), 'json.load', 'json.load', (['f'], {}), '(f)\n', (3128, 3131), False, 'import json\n'), ((3273, 3285), 'json.load', 'json.load', (['f'], {}), '(f)\n', (3282, 3285), False, 'import json\n'), ((1628, 1691), 'numpy.arange', 'np.arange', (['FIRST_TIMESTAMP', 'LAST_TIMESTAMP', 'time_between_events'], {}), '(FIRST_TIMESTAMP, LAST_TIMESTAMP, time_between_events)\n', (1637, 1691), True, 'import numpy as np\n')]
import mock import unittest from mock import patch, Mock, MagicMock import boto3 from botocore.stub import Stubber import sys sys.path.append("..") import awslambda class TestHandler(unittest.TestCase): def test_handler(self): """ Test the handler operates as expected. """ pass # test_event = MagicMock() # test_context = MagicMock() # aws_account_id.return_value = '1234567890' # index.handler(test_event, test_context) def main(): unittest.main() if __name__ == '__main__': main()
[ "sys.path.append", "unittest.main" ]
[((127, 148), 'sys.path.append', 'sys.path.append', (['""".."""'], {}), "('..')\n", (142, 148), False, 'import sys\n'), ((512, 527), 'unittest.main', 'unittest.main', ([], {}), '()\n', (525, 527), False, 'import unittest\n')]
from kmodes.util.dissim import num_TZ_dissim,cat_TZ_dissim from sklearn.decomposition import PCA import numpy centroid = [ [1,2,3], [5,6,6] ] Xnum = [ [54,2,44], [89,6,4], [1.5,0,-5], [5346,874,212] ] centroid = numpy.array(centroid) Xnum = numpy.array(Xnum) x = numpy.array([[1,2,3],[2,3,3],[12938,9999,666],[54,11,21354]]) pca = PCA(n_components=1) newx = pca.fit_transform(x) print(newx)
[ "numpy.array", "sklearn.decomposition.PCA" ]
[((236, 257), 'numpy.array', 'numpy.array', (['centroid'], {}), '(centroid)\n', (247, 257), False, 'import numpy\n'), ((265, 282), 'numpy.array', 'numpy.array', (['Xnum'], {}), '(Xnum)\n', (276, 282), False, 'import numpy\n'), ((288, 360), 'numpy.array', 'numpy.array', (['[[1, 2, 3], [2, 3, 3], [12938, 9999, 666], [54, 11, 21354]]'], {}), '([[1, 2, 3], [2, 3, 3], [12938, 9999, 666], [54, 11, 21354]])\n', (299, 360), False, 'import numpy\n'), ((356, 375), 'sklearn.decomposition.PCA', 'PCA', ([], {'n_components': '(1)'}), '(n_components=1)\n', (359, 375), False, 'from sklearn.decomposition import PCA\n')]
""" The Sims 4 Community Library is licensed under the Creative Commons Attribution 4.0 International public license (CC BY 4.0). https://creativecommons.org/licenses/by/4.0/ https://creativecommons.org/licenses/by/4.0/legalcode Copyright (c) COLONOLNUTTY """ from typing import Union, List, Tuple, Iterator from buffs.buff import Buff from distributor.shared_messages import IconInfoData from protocolbuffers.Localization_pb2 import LocalizedString from server_commands.argument_helpers import TunableInstanceParam, OptionalTargetParam from sims.sim_info import SimInfo from sims4.commands import Command, CommandType, CheatOutput from sims4.resources import Types from sims4communitylib.enums.buffs_enum import CommonBuffId from sims4communitylib.enums.strings_enum import CommonStringId from sims4communitylib.enums.types.component_types import CommonComponentType from sims4communitylib.exceptions.common_exceptions_handler import CommonExceptionHandler from sims4communitylib.logging.has_class_log import HasClassLog from sims4communitylib.mod_support.mod_identity import CommonModIdentity from sims4communitylib.modinfo import ModInfo from sims4communitylib.notifications.common_basic_notification import CommonBasicNotification from sims4communitylib.utils.common_component_utils import CommonComponentUtils from sims4communitylib.utils.localization.common_localization_utils import CommonLocalizationUtils from sims4communitylib.utils.sims.common_sim_name_utils import CommonSimNameUtils from sims4communitylib.utils.sims.common_sim_utils import CommonSimUtils class CommonBuffUtils(HasClassLog): """Utilities for manipulating Buffs on Sims. """ # noinspection PyMissingOrEmptyDocstring @classmethod def get_mod_identity(cls) -> CommonModIdentity: return ModInfo.get_identity() # noinspection PyMissingOrEmptyDocstring @classmethod def get_log_identifier(cls) -> str: return 'common_buff_utils' @staticmethod def has_fertility_boosting_buff(sim_info: SimInfo) -> bool: """has_fertility_boosting_buff(sim_info) Determine if any fertility boosting buffs are currently active on a sim. .. note:: Fertility Boosting Buffs: - Fertility Potion - Fertility Potion Masterwork - Fertility Potion Normal - Fertility Potion Outstanding - Massage Table Fertility Boost - Massage Table Fertility Boost Incense :param sim_info: The Sim to check. :type sim_info: SimInfo :return: True, if they have any fertility boosting buffs. False, if not. :rtype: bool """ buff_ids = ( CommonBuffId.OBJECT_HERBALIST_POTION_FERTILITY_POTION, CommonBuffId.OBJECT_HERBALIST_POTION_FERTILITY_POTION_MASTERWORK, CommonBuffId.OBJECT_HERBALIST_POTION_FERTILITY_POTION_NORMAL, CommonBuffId.OBJECT_HERBALIST_POTION_FERTILITY_POTION_OUTSTANDING, CommonBuffId.OBJECT_MASSAGE_TABLE_FERTILITY_BOOST, CommonBuffId.OBJECT_MASSAGE_TABLE_FERTILITY_BOOST_INCENSE ) return CommonBuffUtils.has_buff(sim_info, *buff_ids) @staticmethod def has_morning_person_buff(sim_info: SimInfo) -> bool: """has_morning_person_buff(sim_info) Determine if any Morning Person Trait buffs are currently active on a Sim. :param sim_info: The Sim to check. :type sim_info: SimInfo :return: True, if they have any morning person buffs. False, if not. :rtype: bool """ buff_ids = ( CommonBuffId.TRAIT_MORNING_PERSON, CommonBuffId.TRAIT_MORNING_PERSON_ACTIVE, CommonBuffId.TRAIT_MORNING_PERSON_CHECK_ACTIVE ) return CommonBuffUtils.has_buff(sim_info, *buff_ids) @staticmethod def has_night_owl_buff(sim_info: SimInfo) -> bool: """has_night_owl_buff(sim_info) Determine if any Night Owl Trait buffs are currently active on a sim. :param sim_info: The Sim to check. :type sim_info: SimInfo :return: True, if they have any night owl buffs. False, if not. :rtype: bool """ buff_ids = ( CommonBuffId.TRAIT_NIGHT_OWL, CommonBuffId.TRAIT_NIGHT_OWL_ACTIVE, CommonBuffId.TRAIT_NIGHT_OWL_CHECK_ACTIVE ) return CommonBuffUtils.has_buff(sim_info, *buff_ids) @staticmethod def has_buff(sim_info: SimInfo, *buffs: Union[int, CommonBuffId, Buff]) -> bool: """has_buff(sim_info, *buffs) Determine if any of the specified buffs are currently active on a sim. :param sim_info: The sim being checked. :type sim_info: SimInfo :param buffs: The identifiers of Buffs. :type buffs: Union[int, CommonBuffId, Buff] :return: True, if the sim has any of the specified buffs. :rtype: int """ if sim_info is None: raise AssertionError('Argument sim_info was None') if not CommonComponentUtils.has_component(sim_info, CommonComponentType.BUFF): return False if not buffs: return False buff_ids = [CommonBuffUtils.get_buff_id(buff) for buff in buffs] sim_buff_ids = CommonBuffUtils.get_buff_ids(sim_info) for sim_buff_id in sim_buff_ids: if sim_buff_id in buff_ids: return True return False @staticmethod def get_buffs(sim_info: SimInfo) -> List[Buff]: """get_buffs(sim_info) Retrieve all buffs currently active on a Sim. :param sim_info: The Sim to retrieve the buffs of. :type sim_info: SimInfo :return: A collection of currently active buffs on the Sim. :rtype: Tuple[Buff] """ if sim_info is None: raise AssertionError('Argument sim_info was None') if not CommonComponentUtils.has_component(sim_info, CommonComponentType.BUFF): return list() from objects.components.buff_component import BuffComponent buff_component: BuffComponent = CommonComponentUtils.get_component(sim_info, CommonComponentType.BUFF) buffs = list() for buff in buff_component: if buff is None or not isinstance(buff, Buff): continue buffs.append(buff) return buffs @staticmethod def get_buff_ids(sim_info: SimInfo) -> List[int]: """get_buff_ids(sim_info) Retrieve decimal identifiers for all Buffs of a sim. :param sim_info: The sim to checked. :type sim_info: SimInfo :return: A collection of Buff identifiers on a Sim. :rtype: List[int] """ if sim_info is None: raise AssertionError('Argument sim_info was None') if not CommonComponentUtils.has_component(sim_info, CommonComponentType.BUFF): return list() buff_ids = list() sim_buffs = CommonBuffUtils.get_buffs(sim_info) for buff in sim_buffs: buff_id = CommonBuffUtils.get_buff_id(buff) if buff_id is None: continue buff_ids.append(buff_id) return buff_ids @classmethod def add_buff(cls, sim_info: SimInfo, *buffs: Union[int, CommonBuffId], buff_reason: Union[int, str, LocalizedString, CommonStringId]=None) -> bool: """add_buff(sim_info, *buffs, buff_reason=None) Add the specified buffs to a sim. :param sim_info: The sim to add the specified buffs to. :type sim_info: SimInfo :param buffs: An iterable of identifiers of buffs being added. :type buffs: Union[int, CommonBuffId, Buff] :param buff_reason: The text that will display when the player hovers over the buffs. What caused the buffs to be added. :type buff_reason: Union[int, str, LocalizedString, CommonStringId], optional :return: True, if all of the specified buffs were successfully added. False, if not. :rtype: bool """ if sim_info is None: raise AssertionError('Argument sim_info was None') if not CommonComponentUtils.has_component(sim_info, CommonComponentType.BUFF): cls.get_log().format_with_message('Failed to add Buff to Sim. They did not have a Buff component!', buffs=buffs, sim=sim_info, buff_reason=buff_reason) return False localized_buff_reason = None if buff_reason is not None: localized_buff_reason = CommonLocalizationUtils.create_localized_string(buff_reason) has_any = False success = True for buff_id in buffs: buff = CommonBuffUtils.load_buff_by_id(buff_id) if buff is None: cls.get_log().format_with_message('No buff found using identifier.', buffs=buffs, sim=sim_info, buff_reason=buff_reason, buff_id=buff_id) continue if not sim_info.add_buff_from_op(buff, buff_reason=localized_buff_reason): cls.get_log().format_with_message('Failed to add buff for unknown reasons.', buff=buff, sim=sim_info, buff_reason=buff_reason) success = False else: cls.get_log().format_with_message('Successfully added buff.', buff=buff, sim=sim_info, buff_reason=buff_reason) has_any = True cls.get_log().format_with_message('Finished adding buffs to Sim.', buffs=buffs, sim=sim_info, buff_reason=buff_reason, success=success, has_any=has_any) return success and has_any @staticmethod def remove_buff(sim_info: SimInfo, *buffs: Union[int, CommonBuffId, Buff]) -> bool: """remove_buff(sim_info, *buffs) Remove the specified buffs from a sim. :param sim_info: The sim to remove the specified buffs from. :type sim_info: SimInfo :param buffs: An iterable of identifiers of buffs being removed. :type buffs: Union[int, CommonBuffId, Buff] :return: True, if all of the specified buffs were successfully removed. False, if not. :rtype: bool """ if sim_info is None: raise AssertionError('Argument sim_info was None') if not CommonComponentUtils.has_component(sim_info, CommonComponentType.BUFF): return False has_any = False success = True for buff in buffs: buff = CommonBuffUtils.load_buff_by_id(buff) if buff is None: continue sim_info.remove_buff_by_type(buff) has_any = True if CommonBuffUtils.has_buff(sim_info, buff): success = False return success and has_any @staticmethod def get_buff_id(buff_identifier: Union[int, Buff]) -> Union[int, None]: """get_buff_id(buff_identifier) Retrieve the decimal identifier of a Buff. :param buff_identifier: The identifier or instance of a Buff. :type buff_identifier: Union[int, Buff] :return: The decimal identifier of the Buff or None if the Buff does not have an id. :rtype: Union[int, None] """ if isinstance(buff_identifier, int): return buff_identifier return getattr(buff_identifier, 'guid64', None) @staticmethod def get_buff_name(buff: Buff) -> Union[str, None]: """get_buff_name(buff) Retrieve the Name of a Buff. :param buff: An instance of a Buff. :type buff: Buff :return: The name of a Buff or None if a problem occurs. :rtype: Union[str, None] """ if buff is None: return None # noinspection PyBroadException try: return buff.__class__.__name__ or '' except: return '' @staticmethod def get_buff_names(buffs: Iterator[Buff]) -> Tuple[str]: """get_buff_names(buffs) Retrieve the Names of a collection of Buffs. :param buffs: A collection of Buff instances. :type buffs: Iterator[Buff] :return: A collection of names for all specified Buffs. :rtype: Tuple[str] """ if buffs is None or not buffs: return tuple() names: List[str] = [] for buff in buffs: # noinspection PyBroadException try: name = CommonBuffUtils.get_buff_name(buff) if not name: continue except: continue names.append(name) return tuple(names) @staticmethod def load_buff_by_id(buff: Union[int, CommonBuffId, Buff]) -> Union[Buff, None]: """load_buff_by_id(buff) Load an instance of a Buff by its identifier. :param buff: The identifier of a Buff. :type buff: Union[int, CommonBuffId, Buff] :return: An instance of a Buff matching the decimal identifier or None if not found. :rtype: Union[Buff, None] """ if isinstance(buff, Buff): return buff # noinspection PyBroadException try: buff: int = int(buff) except: buff: Buff = buff return buff from sims4.resources import Types from sims4communitylib.utils.common_resource_utils import CommonResourceUtils return CommonResourceUtils.load_instance(Types.BUFF, buff) @Command('s4clib.add_buff', command_type=CommandType.Live) def _common_add_buff(buff: TunableInstanceParam(Types.BUFF), opt_sim: OptionalTargetParam=None, buff_reason: str=None, _connection: int=None): from server_commands.argument_helpers import get_optional_target output = CheatOutput(_connection) if buff is None: output('Failed, Buff not specified or Buff did not exist! s4clib.add_buff <buff_name_or_id> [opt_sim=None]') return sim_info = CommonSimUtils.get_sim_info(get_optional_target(opt_sim, _connection)) if sim_info is None: output('Failed, no Sim was specified or the specified Sim was not found!') return sim_name = CommonSimNameUtils.get_full_name(sim_info) output('Adding buff {} to Sim {}'.format(str(buff), sim_name)) try: if CommonBuffUtils.add_buff(sim_info, buff, buff_reason=buff_reason): output('Successfully added buff.') else: output('Failed to add buff.') except Exception as ex: CommonExceptionHandler.log_exception(ModInfo.get_identity(), 'Failed to add buff {} to Sim {}.'.format(str(buff), sim_name), exception=ex) output('Failed to add buff {} to Sim {}. {}'.format(str(buff), sim_name, str(ex))) @Command('s4clib.remove_buff', command_type=CommandType.Live) def _common_remove_buff(buff: TunableInstanceParam(Types.BUFF), opt_sim: OptionalTargetParam=None, _connection: int=None): from server_commands.argument_helpers import get_optional_target output = CheatOutput(_connection) if buff is None: output('Failed, Buff not specified or Buff did not exist! s4clib.remove_buff <buff_name_or_id> [opt_sim=None]') return sim_info = CommonSimUtils.get_sim_info(get_optional_target(opt_sim, _connection)) if sim_info is None: output('Failed, no Sim was specified or the specified Sim was not found!') return sim_name = CommonSimNameUtils.get_full_name(sim_info) output('Removing buff {} from Sim {}'.format(str(buff), sim_name)) try: if CommonBuffUtils.remove_buff(sim_info, buff): output('Successfully removed buff.') else: output('Failed to remove buff.') except Exception as ex: CommonExceptionHandler.log_exception(ModInfo.get_identity(), 'Failed to remove buff {} from Sim {}.'.format(str(buff), sim_name), exception=ex) output('Failed to remove buff {} from Sim {}. {}'.format(str(buff), sim_name, str(ex))) @Command('s4clib.show_active_buffs', command_type=CommandType.Live) def _common_show_active_buffs(opt_sim: OptionalTargetParam=None, _connection: int=None): from server_commands.argument_helpers import get_optional_target output = CheatOutput(_connection) sim = get_optional_target(opt_sim, _connection) sim_info = CommonSimUtils.get_sim_info(sim) if sim_info is None: output('Failed, no Sim was specified or the specified Sim was not found!') return sim_name = CommonSimNameUtils.get_full_name(sim_info) output('Showing active buffs of Sim {}'.format(sim_name)) try: sim_buff_strings: List[str] = list() for buff in CommonBuffUtils.get_buffs(sim_info): buff_name = CommonBuffUtils.get_buff_name(buff) buff_id = CommonBuffUtils.get_buff_id(buff) sim_buff_strings.append('{} ({})'.format(buff_name, buff_id)) sim_buff_strings = sorted(sim_buff_strings, key=lambda x: x) sim_buffs = ', '.join(sim_buff_strings) text = '' text += 'Active Buffs:\n{}\n\n'.format(sim_buffs) CommonBasicNotification( CommonLocalizationUtils.create_localized_string('{} Active Buffs ({})'.format(sim_name, CommonSimUtils.get_sim_id(sim_info))), CommonLocalizationUtils.create_localized_string(text) ).show( icon=IconInfoData(obj_instance=CommonSimUtils.get_sim_instance(sim_info)) ) except Exception as ex: CommonExceptionHandler.log_exception(ModInfo.get_identity(), 'Failed to show active buffs of Sim {}.'.format(sim_name), exception=ex) output('Failed to show active buffs of Sim {}. {}'.format(sim_name, str(ex)))
[ "sims4communitylib.utils.sims.common_sim_utils.CommonSimUtils.get_sim_id", "sims4communitylib.utils.common_component_utils.CommonComponentUtils.get_component", "server_commands.argument_helpers.get_optional_target", "sims4communitylib.utils.sims.common_sim_name_utils.CommonSimNameUtils.get_full_name", "sims4.commands.Command", "server_commands.argument_helpers.TunableInstanceParam", "sims4communitylib.utils.common_component_utils.CommonComponentUtils.has_component", "sims4communitylib.utils.localization.common_localization_utils.CommonLocalizationUtils.create_localized_string", "sims4communitylib.utils.common_resource_utils.CommonResourceUtils.load_instance", "sims4communitylib.utils.sims.common_sim_utils.CommonSimUtils.get_sim_info", "sims4communitylib.modinfo.ModInfo.get_identity", "sims4.commands.CheatOutput", "sims4communitylib.utils.sims.common_sim_utils.CommonSimUtils.get_sim_instance" ]
[((13429, 13486), 'sims4.commands.Command', 'Command', (['"""s4clib.add_buff"""'], {'command_type': 'CommandType.Live'}), "('s4clib.add_buff', command_type=CommandType.Live)\n", (13436, 13486), False, 'from sims4.commands import Command, CommandType, CheatOutput\n'), ((14683, 14743), 'sims4.commands.Command', 'Command', (['"""s4clib.remove_buff"""'], {'command_type': 'CommandType.Live'}), "('s4clib.remove_buff', command_type=CommandType.Live)\n", (14690, 14743), False, 'from sims4.commands import Command, CommandType, CheatOutput\n'), ((15920, 15986), 'sims4.commands.Command', 'Command', (['"""s4clib.show_active_buffs"""'], {'command_type': 'CommandType.Live'}), "('s4clib.show_active_buffs', command_type=CommandType.Live)\n", (15927, 15986), False, 'from sims4.commands import Command, CommandType, CheatOutput\n'), ((13712, 13736), 'sims4.commands.CheatOutput', 'CheatOutput', (['_connection'], {}), '(_connection)\n', (13723, 13736), False, 'from sims4.commands import Command, CommandType, CheatOutput\n'), ((14114, 14156), 'sims4communitylib.utils.sims.common_sim_name_utils.CommonSimNameUtils.get_full_name', 'CommonSimNameUtils.get_full_name', (['sim_info'], {}), '(sim_info)\n', (14146, 14156), False, 'from sims4communitylib.utils.sims.common_sim_name_utils import CommonSimNameUtils\n'), ((14949, 14973), 'sims4.commands.CheatOutput', 'CheatOutput', (['_connection'], {}), '(_connection)\n', (14960, 14973), False, 'from sims4.commands import Command, CommandType, CheatOutput\n'), ((15354, 15396), 'sims4communitylib.utils.sims.common_sim_name_utils.CommonSimNameUtils.get_full_name', 'CommonSimNameUtils.get_full_name', (['sim_info'], {}), '(sim_info)\n', (15386, 15396), False, 'from sims4communitylib.utils.sims.common_sim_name_utils import CommonSimNameUtils\n'), ((16158, 16182), 'sims4.commands.CheatOutput', 'CheatOutput', (['_connection'], {}), '(_connection)\n', (16169, 16182), False, 'from sims4.commands import Command, CommandType, CheatOutput\n'), ((16193, 16234), 'server_commands.argument_helpers.get_optional_target', 'get_optional_target', (['opt_sim', '_connection'], {}), '(opt_sim, _connection)\n', (16212, 16234), False, 'from server_commands.argument_helpers import get_optional_target\n'), ((16250, 16282), 'sims4communitylib.utils.sims.common_sim_utils.CommonSimUtils.get_sim_info', 'CommonSimUtils.get_sim_info', (['sim'], {}), '(sim)\n', (16277, 16282), False, 'from sims4communitylib.utils.sims.common_sim_utils import CommonSimUtils\n'), ((16421, 16463), 'sims4communitylib.utils.sims.common_sim_name_utils.CommonSimNameUtils.get_full_name', 'CommonSimNameUtils.get_full_name', (['sim_info'], {}), '(sim_info)\n', (16453, 16463), False, 'from sims4communitylib.utils.sims.common_sim_name_utils import CommonSimNameUtils\n'), ((1797, 1819), 'sims4communitylib.modinfo.ModInfo.get_identity', 'ModInfo.get_identity', ([], {}), '()\n', (1817, 1819), False, 'from sims4communitylib.modinfo import ModInfo\n'), ((6138, 6208), 'sims4communitylib.utils.common_component_utils.CommonComponentUtils.get_component', 'CommonComponentUtils.get_component', (['sim_info', 'CommonComponentType.BUFF'], {}), '(sim_info, CommonComponentType.BUFF)\n', (6172, 6208), False, 'from sims4communitylib.utils.common_component_utils import CommonComponentUtils\n'), ((13374, 13425), 'sims4communitylib.utils.common_resource_utils.CommonResourceUtils.load_instance', 'CommonResourceUtils.load_instance', (['Types.BUFF', 'buff'], {}), '(Types.BUFF, buff)\n', (13407, 13425), False, 'from sims4communitylib.utils.common_resource_utils import CommonResourceUtils\n'), ((13514, 13546), 'server_commands.argument_helpers.TunableInstanceParam', 'TunableInstanceParam', (['Types.BUFF'], {}), '(Types.BUFF)\n', (13534, 13546), False, 'from server_commands.argument_helpers import TunableInstanceParam, OptionalTargetParam\n'), ((13933, 13974), 'server_commands.argument_helpers.get_optional_target', 'get_optional_target', (['opt_sim', '_connection'], {}), '(opt_sim, _connection)\n', (13952, 13974), False, 'from server_commands.argument_helpers import get_optional_target\n'), ((14774, 14806), 'server_commands.argument_helpers.TunableInstanceParam', 'TunableInstanceParam', (['Types.BUFF'], {}), '(Types.BUFF)\n', (14794, 14806), False, 'from server_commands.argument_helpers import TunableInstanceParam, OptionalTargetParam\n'), ((15173, 15214), 'server_commands.argument_helpers.get_optional_target', 'get_optional_target', (['opt_sim', '_connection'], {}), '(opt_sim, _connection)\n', (15192, 15214), False, 'from server_commands.argument_helpers import get_optional_target\n'), ((5059, 5129), 'sims4communitylib.utils.common_component_utils.CommonComponentUtils.has_component', 'CommonComponentUtils.has_component', (['sim_info', 'CommonComponentType.BUFF'], {}), '(sim_info, CommonComponentType.BUFF)\n', (5093, 5129), False, 'from sims4communitylib.utils.common_component_utils import CommonComponentUtils\n'), ((5932, 6002), 'sims4communitylib.utils.common_component_utils.CommonComponentUtils.has_component', 'CommonComponentUtils.has_component', (['sim_info', 'CommonComponentType.BUFF'], {}), '(sim_info, CommonComponentType.BUFF)\n', (5966, 6002), False, 'from sims4communitylib.utils.common_component_utils import CommonComponentUtils\n'), ((6856, 6926), 'sims4communitylib.utils.common_component_utils.CommonComponentUtils.has_component', 'CommonComponentUtils.has_component', (['sim_info', 'CommonComponentType.BUFF'], {}), '(sim_info, CommonComponentType.BUFF)\n', (6890, 6926), False, 'from sims4communitylib.utils.common_component_utils import CommonComponentUtils\n'), ((8178, 8248), 'sims4communitylib.utils.common_component_utils.CommonComponentUtils.has_component', 'CommonComponentUtils.has_component', (['sim_info', 'CommonComponentType.BUFF'], {}), '(sim_info, CommonComponentType.BUFF)\n', (8212, 8248), False, 'from sims4communitylib.utils.common_component_utils import CommonComponentUtils\n'), ((8548, 8608), 'sims4communitylib.utils.localization.common_localization_utils.CommonLocalizationUtils.create_localized_string', 'CommonLocalizationUtils.create_localized_string', (['buff_reason'], {}), '(buff_reason)\n', (8595, 8608), False, 'from sims4communitylib.utils.localization.common_localization_utils import CommonLocalizationUtils\n'), ((10247, 10317), 'sims4communitylib.utils.common_component_utils.CommonComponentUtils.has_component', 'CommonComponentUtils.has_component', (['sim_info', 'CommonComponentType.BUFF'], {}), '(sim_info, CommonComponentType.BUFF)\n', (10281, 10317), False, 'from sims4communitylib.utils.common_component_utils import CommonComponentUtils\n'), ((14487, 14509), 'sims4communitylib.modinfo.ModInfo.get_identity', 'ModInfo.get_identity', ([], {}), '()\n', (14507, 14509), False, 'from sims4communitylib.modinfo import ModInfo\n'), ((15714, 15736), 'sims4communitylib.modinfo.ModInfo.get_identity', 'ModInfo.get_identity', ([], {}), '()\n', (15734, 15736), False, 'from sims4communitylib.modinfo import ModInfo\n'), ((17443, 17465), 'sims4communitylib.modinfo.ModInfo.get_identity', 'ModInfo.get_identity', ([], {}), '()\n', (17463, 17465), False, 'from sims4communitylib.modinfo import ModInfo\n'), ((17204, 17257), 'sims4communitylib.utils.localization.common_localization_utils.CommonLocalizationUtils.create_localized_string', 'CommonLocalizationUtils.create_localized_string', (['text'], {}), '(text)\n', (17251, 17257), False, 'from sims4communitylib.utils.localization.common_localization_utils import CommonLocalizationUtils\n'), ((17317, 17358), 'sims4communitylib.utils.sims.common_sim_utils.CommonSimUtils.get_sim_instance', 'CommonSimUtils.get_sim_instance', (['sim_info'], {}), '(sim_info)\n', (17348, 17358), False, 'from sims4communitylib.utils.sims.common_sim_utils import CommonSimUtils\n'), ((17153, 17188), 'sims4communitylib.utils.sims.common_sim_utils.CommonSimUtils.get_sim_id', 'CommonSimUtils.get_sim_id', (['sim_info'], {}), '(sim_info)\n', (17178, 17188), False, 'from sims4communitylib.utils.sims.common_sim_utils import CommonSimUtils\n')]
# Copyright 2008-2010 Nokia Siemens Networks Oyj # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Module that adds directories needed by Robot to sys.path when imported.""" import sys import os import fnmatch def add_path(path, to_beginning=False, force=False): if _should_be_added(path, force): if to_beginning: sys.path.insert(0, path) else: sys.path.append(path) def remove_path(path): path = _normpath(path) sys.path = [p for p in sys.path if _normpath(p) != path] def _should_be_added(path, force): if (not path) or _find_in_syspath_normalized(path): return False return force or os.path.exists(path) def _find_in_syspath_normalized(path): path = _normpath(path) for element in sys.path: if _normpath(element) == path: return element return None def _normpath(path): return os.path.normcase(os.path.normpath(path)) ROBOTDIR = os.path.dirname(os.path.abspath(__file__)) PARENTDIR = os.path.dirname(ROBOTDIR) add_path(os.path.join(ROBOTDIR, 'libraries'), to_beginning=True, force=True) add_path(PARENTDIR, to_beginning=True) # Handles egg installations if fnmatch.fnmatchcase(os.path.basename(PARENTDIR), 'robotframework-*.egg'): add_path(os.path.dirname(PARENTDIR), to_beginning=True) # Remove ROBOTDIR dir to disallow importing robot internal modules directly remove_path(ROBOTDIR) # Elements from PYTHONPATH. By default it is not processed in Jython and in # Python valid non-absolute paths may be ignored. PYPATH = os.environ.get('PYTHONPATH') if PYPATH: for path in PYPATH.split(os.pathsep): add_path(path) del path # Current dir (it seems to be in Jython by default so let's be consistent) add_path('.') del _find_in_syspath_normalized, _normpath, add_path, remove_path, ROBOTDIR, PARENTDIR, PYPATH
[ "sys.path.append", "os.path.abspath", "os.path.basename", "os.path.dirname", "os.path.exists", "sys.path.insert", "os.environ.get", "os.path.normpath", "os.path.join" ]
[((1511, 1536), 'os.path.dirname', 'os.path.dirname', (['ROBOTDIR'], {}), '(ROBOTDIR)\n', (1526, 1536), False, 'import os\n'), ((2062, 2090), 'os.environ.get', 'os.environ.get', (['"""PYTHONPATH"""'], {}), "('PYTHONPATH')\n", (2076, 2090), False, 'import os\n'), ((1472, 1497), 'os.path.abspath', 'os.path.abspath', (['__file__'], {}), '(__file__)\n', (1487, 1497), False, 'import os\n'), ((1547, 1582), 'os.path.join', 'os.path.join', (['ROBOTDIR', '"""libraries"""'], {}), "(ROBOTDIR, 'libraries')\n", (1559, 1582), False, 'import os\n'), ((1713, 1740), 'os.path.basename', 'os.path.basename', (['PARENTDIR'], {}), '(PARENTDIR)\n', (1729, 1740), False, 'import os\n'), ((1170, 1190), 'os.path.exists', 'os.path.exists', (['path'], {}), '(path)\n', (1184, 1190), False, 'import os\n'), ((1419, 1441), 'os.path.normpath', 'os.path.normpath', (['path'], {}), '(path)\n', (1435, 1441), False, 'import os\n'), ((1780, 1806), 'os.path.dirname', 'os.path.dirname', (['PARENTDIR'], {}), '(PARENTDIR)\n', (1795, 1806), False, 'import os\n'), ((852, 876), 'sys.path.insert', 'sys.path.insert', (['(0)', 'path'], {}), '(0, path)\n', (867, 876), False, 'import sys\n'), ((903, 924), 'sys.path.append', 'sys.path.append', (['path'], {}), '(path)\n', (918, 924), False, 'import sys\n')]
"""Tests for log_linear_exp function.""" import chex import jax import jax.numpy as jnp import numpy as np from vmcnet.utils.log_linear_exp import log_linear_exp import vmcnet.utils.slog_helpers as slog_helpers def test_log_linear_exp_shape(): """Test output shape of log linear exp.""" signs = jnp.ones((5, 2, 4, 3)) vals = jnp.zeros((5, 2, 4, 3)) weights = jnp.ones((2, 7)) out = log_linear_exp(signs, vals, weights, axis=-3) out_no_weights = log_linear_exp(signs, vals, axis=-3) desired_shape = (5, 7, 4, 3) desired_shape_no_weights = (5, 1, 4, 3) chex.assert_shape(out, desired_shape) chex.assert_shape(out_no_weights, desired_shape_no_weights) def test_log_linear_exp_no_overflow(): """Test that the log-linear-exp trick avoids overflow when any vals are big.""" signs = jnp.array([-1.0, -1.0, 1.0, 1.0]) vals = jnp.array([300.0, 100.0, 3000.0, 1.5]) weights = jnp.reshape(jnp.array([-1.0, 2.0, 0.5, 0.6]), (4, 1)) sign_out, log_out = log_linear_exp(signs, vals, weights, axis=0) # the output should be sign_out=1.0, log_out=log|0.5 * exp(3000) + tinier stuff| assert jnp.isfinite(log_out) np.testing.assert_allclose(sign_out, 1.0) np.testing.assert_allclose(log_out, jnp.log(0.5) + 3000.0) def test_log_linear_exp_no_underflow(): """Test that the log-linear-exp trick avoids underflow when all vals are small.""" signs = jnp.array([-1.0, -1.0, 1.0, 1.0]) vals = jnp.array([-4000.0, -5500.0, -3000.0, -1234.5]) sign_out, log_out = log_linear_exp(signs, vals, axis=0) # the output should be sign_out=1.0, log_out=log|exp(-1234.5) + tinier stuff| np.testing.assert_allclose(sign_out, 1.0) np.testing.assert_allclose(log_out, -1234.5) def test_log_linear_equals_log_linear_exp_log(): """Test that log-linear-exp of sign(x), log|x| is just log-linear.""" key = jax.random.PRNGKey(0) key, subkey = jax.random.split(key) x = jax.random.normal(subkey, (9, 5)) sign_x, log_x = slog_helpers.array_to_slog(x) key, subkey = jax.random.split(key) kernel = jax.random.normal(subkey, (5, 7)) sign_linear_out, log_linear_out = slog_helpers.array_to_slog(jnp.dot(x, kernel)) sign_linear_exp_log_out, log_linear_exp_log_out = log_linear_exp( sign_x, log_x, kernel, axis=-1 ) np.testing.assert_allclose(sign_linear_exp_log_out, sign_linear_out) np.testing.assert_allclose(log_linear_exp_log_out, log_linear_out, rtol=1e-5)
[ "jax.numpy.array", "vmcnet.utils.slog_helpers.array_to_slog", "jax.numpy.isfinite", "jax.numpy.log", "chex.assert_shape", "jax.random.normal", "jax.numpy.dot", "numpy.testing.assert_allclose", "jax.random.PRNGKey", "jax.numpy.ones", "jax.numpy.zeros", "vmcnet.utils.log_linear_exp.log_linear_exp", "jax.random.split" ]
[((307, 329), 'jax.numpy.ones', 'jnp.ones', (['(5, 2, 4, 3)'], {}), '((5, 2, 4, 3))\n', (315, 329), True, 'import jax.numpy as jnp\n'), ((341, 364), 'jax.numpy.zeros', 'jnp.zeros', (['(5, 2, 4, 3)'], {}), '((5, 2, 4, 3))\n', (350, 364), True, 'import jax.numpy as jnp\n'), ((379, 395), 'jax.numpy.ones', 'jnp.ones', (['(2, 7)'], {}), '((2, 7))\n', (387, 395), True, 'import jax.numpy as jnp\n'), ((407, 452), 'vmcnet.utils.log_linear_exp.log_linear_exp', 'log_linear_exp', (['signs', 'vals', 'weights'], {'axis': '(-3)'}), '(signs, vals, weights, axis=-3)\n', (421, 452), False, 'from vmcnet.utils.log_linear_exp import log_linear_exp\n'), ((474, 510), 'vmcnet.utils.log_linear_exp.log_linear_exp', 'log_linear_exp', (['signs', 'vals'], {'axis': '(-3)'}), '(signs, vals, axis=-3)\n', (488, 510), False, 'from vmcnet.utils.log_linear_exp import log_linear_exp\n'), ((593, 630), 'chex.assert_shape', 'chex.assert_shape', (['out', 'desired_shape'], {}), '(out, desired_shape)\n', (610, 630), False, 'import chex\n'), ((635, 694), 'chex.assert_shape', 'chex.assert_shape', (['out_no_weights', 'desired_shape_no_weights'], {}), '(out_no_weights, desired_shape_no_weights)\n', (652, 694), False, 'import chex\n'), ((832, 865), 'jax.numpy.array', 'jnp.array', (['[-1.0, -1.0, 1.0, 1.0]'], {}), '([-1.0, -1.0, 1.0, 1.0])\n', (841, 865), True, 'import jax.numpy as jnp\n'), ((877, 915), 'jax.numpy.array', 'jnp.array', (['[300.0, 100.0, 3000.0, 1.5]'], {}), '([300.0, 100.0, 3000.0, 1.5])\n', (886, 915), True, 'import jax.numpy as jnp\n'), ((1009, 1053), 'vmcnet.utils.log_linear_exp.log_linear_exp', 'log_linear_exp', (['signs', 'vals', 'weights'], {'axis': '(0)'}), '(signs, vals, weights, axis=0)\n', (1023, 1053), False, 'from vmcnet.utils.log_linear_exp import log_linear_exp\n'), ((1151, 1172), 'jax.numpy.isfinite', 'jnp.isfinite', (['log_out'], {}), '(log_out)\n', (1163, 1172), True, 'import jax.numpy as jnp\n'), ((1177, 1218), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['sign_out', '(1.0)'], {}), '(sign_out, 1.0)\n', (1203, 1218), True, 'import numpy as np\n'), ((1423, 1456), 'jax.numpy.array', 'jnp.array', (['[-1.0, -1.0, 1.0, 1.0]'], {}), '([-1.0, -1.0, 1.0, 1.0])\n', (1432, 1456), True, 'import jax.numpy as jnp\n'), ((1468, 1515), 'jax.numpy.array', 'jnp.array', (['[-4000.0, -5500.0, -3000.0, -1234.5]'], {}), '([-4000.0, -5500.0, -3000.0, -1234.5])\n', (1477, 1515), True, 'import jax.numpy as jnp\n'), ((1541, 1576), 'vmcnet.utils.log_linear_exp.log_linear_exp', 'log_linear_exp', (['signs', 'vals'], {'axis': '(0)'}), '(signs, vals, axis=0)\n', (1555, 1576), False, 'from vmcnet.utils.log_linear_exp import log_linear_exp\n'), ((1664, 1705), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['sign_out', '(1.0)'], {}), '(sign_out, 1.0)\n', (1690, 1705), True, 'import numpy as np\n'), ((1710, 1754), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['log_out', '(-1234.5)'], {}), '(log_out, -1234.5)\n', (1736, 1754), True, 'import numpy as np\n'), ((1890, 1911), 'jax.random.PRNGKey', 'jax.random.PRNGKey', (['(0)'], {}), '(0)\n', (1908, 1911), False, 'import jax\n'), ((1930, 1951), 'jax.random.split', 'jax.random.split', (['key'], {}), '(key)\n', (1946, 1951), False, 'import jax\n'), ((1960, 1993), 'jax.random.normal', 'jax.random.normal', (['subkey', '(9, 5)'], {}), '(subkey, (9, 5))\n', (1977, 1993), False, 'import jax\n'), ((2014, 2043), 'vmcnet.utils.slog_helpers.array_to_slog', 'slog_helpers.array_to_slog', (['x'], {}), '(x)\n', (2040, 2043), True, 'import vmcnet.utils.slog_helpers as slog_helpers\n'), ((2063, 2084), 'jax.random.split', 'jax.random.split', (['key'], {}), '(key)\n', (2079, 2084), False, 'import jax\n'), ((2098, 2131), 'jax.random.normal', 'jax.random.normal', (['subkey', '(5, 7)'], {}), '(subkey, (5, 7))\n', (2115, 2131), False, 'import jax\n'), ((2272, 2318), 'vmcnet.utils.log_linear_exp.log_linear_exp', 'log_linear_exp', (['sign_x', 'log_x', 'kernel'], {'axis': '(-1)'}), '(sign_x, log_x, kernel, axis=-1)\n', (2286, 2318), False, 'from vmcnet.utils.log_linear_exp import log_linear_exp\n'), ((2338, 2406), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['sign_linear_exp_log_out', 'sign_linear_out'], {}), '(sign_linear_exp_log_out, sign_linear_out)\n', (2364, 2406), True, 'import numpy as np\n'), ((2411, 2489), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['log_linear_exp_log_out', 'log_linear_out'], {'rtol': '(1e-05)'}), '(log_linear_exp_log_out, log_linear_out, rtol=1e-05)\n', (2437, 2489), True, 'import numpy as np\n'), ((942, 974), 'jax.numpy.array', 'jnp.array', (['[-1.0, 2.0, 0.5, 0.6]'], {}), '([-1.0, 2.0, 0.5, 0.6])\n', (951, 974), True, 'import jax.numpy as jnp\n'), ((2198, 2216), 'jax.numpy.dot', 'jnp.dot', (['x', 'kernel'], {}), '(x, kernel)\n', (2205, 2216), True, 'import jax.numpy as jnp\n'), ((1259, 1271), 'jax.numpy.log', 'jnp.log', (['(0.5)'], {}), '(0.5)\n', (1266, 1271), True, 'import jax.numpy as jnp\n')]
# Copyright 2015 Hewlett-Packard Development Company, L.P. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from ironic_python_agent import hardware from proliantutils.hpssa import manager as hpssa_manager from proliantutils.hpsum import hpsum_controller class ProliantHardwareManager(hardware.GenericHardwareManager): HARDWARE_MANAGER_VERSION = "3" def get_clean_steps(self, node, ports): """Return the clean steps supported by this hardware manager. This method returns the clean steps that are supported by proliant hardware manager. This method is invoked on every hardware manager by Ironic Python Agent to give this information back to Ironic. :param node: A dictionary of the node object :param ports: A list of dictionaries containing information of ports for the node :returns: A list of dictionaries, each item containing the step name, interface and priority for the clean step. """ return [{'step': 'create_configuration', 'interface': 'raid', 'priority': 0}, {'step': 'delete_configuration', 'interface': 'raid', 'priority': 0}, {'step': 'erase_devices', 'interface': 'deploy', 'priority': 0}, {'step': 'update_firmware', 'interface': 'management', 'priority': 0}] def evaluate_hardware_support(cls): return hardware.HardwareSupport.SERVICE_PROVIDER def create_configuration(self, node, ports): """Create RAID configuration on the bare metal. This method creates the desired RAID configuration as read from node['target_raid_config']. :param node: A dictionary of the node object :param ports: A list of dictionaries containing information of ports for the node :returns: The current RAID configuration of the below format. raid_config = { 'logical_disks': [{ 'size_gb': 100, 'raid_level': 1, 'physical_disks': [ '5I:0:1', '5I:0:2'], 'controller': 'Smart array controller' }, ] } """ target_raid_config = node.get('target_raid_config', {}).copy() return hpssa_manager.create_configuration( raid_config=target_raid_config) def delete_configuration(self, node, ports): """Deletes RAID configuration on the bare metal. This method deletes all the RAID disks on the bare metal. :param node: A dictionary of the node object :param ports: A list of dictionaries containing information of ports for the node """ return hpssa_manager.delete_configuration() def erase_devices(self, node, port): """Erase the drives on the bare metal. This method erase all the drives which supports sanitize and the drives which are not part of any logical volume on the bare metal. It calls generic erase method after the success of Sanitize disk erase. :param node: A dictionary of the node object. :param port: A list of dictionaries containing information of ports for the node. :raises exception.HPSSAOperationError, if there is a failure on the erase operation on the controllers. :returns: The dictionary of controllers with the drives and erase status for each drive. """ result = {} result['Disk Erase Status'] = hpssa_manager.erase_devices() result.update(super(ProliantHardwareManager, self).erase_devices(node, port)) return result def update_firmware(self, node, port): """Performs HPSUM based firmware update on the bare metal node. This method performs firmware update on all or some of the firmware components on the bare metal node. :returns: A string with return code and the statistics of updated/failed components. :raises: HpsumOperationError, when the hpsum firmware update operation on the node fails. """ return hpsum_controller.update_firmware(node)
[ "proliantutils.hpssa.manager.delete_configuration", "proliantutils.hpssa.manager.erase_devices", "proliantutils.hpsum.hpsum_controller.update_firmware", "proliantutils.hpssa.manager.create_configuration" ]
[((2978, 3044), 'proliantutils.hpssa.manager.create_configuration', 'hpssa_manager.create_configuration', ([], {'raid_config': 'target_raid_config'}), '(raid_config=target_raid_config)\n', (3012, 3044), True, 'from proliantutils.hpssa import manager as hpssa_manager\n'), ((3414, 3450), 'proliantutils.hpssa.manager.delete_configuration', 'hpssa_manager.delete_configuration', ([], {}), '()\n', (3448, 3450), True, 'from proliantutils.hpssa import manager as hpssa_manager\n'), ((4228, 4257), 'proliantutils.hpssa.manager.erase_devices', 'hpssa_manager.erase_devices', ([], {}), '()\n', (4255, 4257), True, 'from proliantutils.hpssa import manager as hpssa_manager\n'), ((4870, 4908), 'proliantutils.hpsum.hpsum_controller.update_firmware', 'hpsum_controller.update_firmware', (['node'], {}), '(node)\n', (4902, 4908), False, 'from proliantutils.hpsum import hpsum_controller\n')]
import pyopencl as cl import pyopencl.array as cl_array import numpy import numpy.linalg as la a = numpy.random.rand(50000).astype(numpy.float32) b = numpy.random.rand(50000).astype(numpy.float32) ctx = cl.create_some_context() queue = cl.CommandQueue(ctx) a_dev = cl_array.to_device(queue, a) b_dev = cl_array.to_device(queue, b) dest_dev = cl_array.empty_like(a_dev) prg = cl.Program(ctx, """ __kernel void sum(__global const float *a, __global const float *b, __global float *c) { int gid = get_global_id(0); c[gid] = a[gid] + b[gid]; } """).build() prg.sum(queue, a.shape, None, a_dev.data, b_dev.data, dest_dev.data) print(la.norm((dest_dev - (a_dev+b_dev)).get()))
[ "pyopencl.array.empty_like", "pyopencl.create_some_context", "pyopencl.array.to_device", "pyopencl.CommandQueue", "pyopencl.Program", "numpy.random.rand" ]
[((205, 229), 'pyopencl.create_some_context', 'cl.create_some_context', ([], {}), '()\n', (227, 229), True, 'import pyopencl as cl\n'), ((238, 258), 'pyopencl.CommandQueue', 'cl.CommandQueue', (['ctx'], {}), '(ctx)\n', (253, 258), True, 'import pyopencl as cl\n'), ((268, 296), 'pyopencl.array.to_device', 'cl_array.to_device', (['queue', 'a'], {}), '(queue, a)\n', (286, 296), True, 'import pyopencl.array as cl_array\n'), ((305, 333), 'pyopencl.array.to_device', 'cl_array.to_device', (['queue', 'b'], {}), '(queue, b)\n', (323, 333), True, 'import pyopencl.array as cl_array\n'), ((345, 371), 'pyopencl.array.empty_like', 'cl_array.empty_like', (['a_dev'], {}), '(a_dev)\n', (364, 371), True, 'import pyopencl.array as cl_array\n'), ((100, 124), 'numpy.random.rand', 'numpy.random.rand', (['(50000)'], {}), '(50000)\n', (117, 124), False, 'import numpy\n'), ((151, 175), 'numpy.random.rand', 'numpy.random.rand', (['(50000)'], {}), '(50000)\n', (168, 175), False, 'import numpy\n'), ((379, 589), 'pyopencl.Program', 'cl.Program', (['ctx', '"""\n __kernel void sum(__global const float *a,\n __global const float *b, __global float *c)\n {\n int gid = get_global_id(0);\n c[gid] = a[gid] + b[gid];\n }\n """'], {}), '(ctx,\n """\n __kernel void sum(__global const float *a,\n __global const float *b, __global float *c)\n {\n int gid = get_global_id(0);\n c[gid] = a[gid] + b[gid];\n }\n """\n )\n', (389, 589), True, 'import pyopencl as cl\n')]
import tensorflow as tf class Scalar_LR(tf.keras.callbacks.Callback): def __init__(self, name, TENSORBOARD_DIR): super().__init__() self.name = name # self.previous_loss = None self.file_writer = tf.summary.create_file_writer(TENSORBOARD_DIR) self.file_writer.set_as_default() # def on_epoch_begin(self, epoch, logs=None): # logs['learning rate'] = self.model.optimizer.lr # tf.summary.scalar("lr", logs['learning rate'], step=epoch) def on_epoch_end(self, epoch, logs=None): logs['learning rate'] = self.model.optimizer.lr # with self.file_writer.as_default(): # # img = self.model.predict(dummy_data) # # y_pred = self.model.predict(self.validation_data[0]) # tf.summary.image("Training data", img, step=0) tf.summary.scalar("end_lr", logs['learning rate'], step=epoch) # # # #self.previous_loss = logs['loss'] # # def on_train_batch_begin(self, batch, logs=None): # logs['learning rate'] = self.model.optimizer.lr # # tf.summary.scalar("my_metric", logs['learning rate'], step=batch) # # # def on_train_batch_end(self, batch, logs=None): # print('test') # # # tensor = self.model.get_layer('block3b_add').output # # tensor = self.model.layers[0].output # # tensor = tensor[0,:,:,:] # # print(tensor) # # plt.imshow(tensor) # # plt.show() # # # intermediate_layer_model = tf.keras.Model(inputs=self.model.input, # # outputs=self.model.get_layer('block3b_add').output) # # intermediate_output = intermediate_layer_model.predict(self.validation_data[0]) # # print(intermediate_output) # # # output_images = tf.cast(self.model.call(self.data['image']),dtype=tf.float32) # # output_images *= 255 # # print(output_images) # # # tf.summary.image('test', tensor, step=batch, max_outputs=1) # #
[ "tensorflow.summary.create_file_writer", "tensorflow.summary.scalar" ]
[((233, 279), 'tensorflow.summary.create_file_writer', 'tf.summary.create_file_writer', (['TENSORBOARD_DIR'], {}), '(TENSORBOARD_DIR)\n', (262, 279), True, 'import tensorflow as tf\n'), ((840, 902), 'tensorflow.summary.scalar', 'tf.summary.scalar', (['"""end_lr"""', "logs['learning rate']"], {'step': 'epoch'}), "('end_lr', logs['learning rate'], step=epoch)\n", (857, 902), True, 'import tensorflow as tf\n')]
#!/home/gontz/miniconda3/envs/ih/bin/python3 from itertools import product import click from conf import RACES from src import dbops, procyclingstats @click.command() @click.argument("items") @click.option("-v", "--verbose", is_flag=True) def scrape(items, verbose): """Scrape ITEMS from procyclingstats.com.""" items = items.lower() # Invalid argument if items not in ["riders", "stages"]: raise click.UsageError("ITEMS must be STAGES or RIDERS") # Scrape stages if items == "stages": for race, params in RACES.items(): (start_year, stop_year), no_races = params iter_years = range(start_year, stop_year) iter_number = range(1, no_races + 1) for year, number in product(iter_years, iter_number): stage = [race, year, number] if dbops.check_exists(stage): if verbose: click.echo(f"{stage} already in database.") continue stage_data = procyclingstats.get_stage(race, year, number) # HTTP error if isinstance(stage_data, int): if verbose: click.echo(f"{stage} could not be retrieved. Status code: {stage_data}") continue # Is TTT if not stage_data: if verbose: click.echo(f"{stage} is a team time trial. Skipping...") continue inserted_id = dbops.insert_stage(stage_data) if verbose: click.echo(f"{stage} inserted with ID: {inserted_id}") # Srape riders else: stages = dbops.fetch_stages(project="result") riders = [rider for stage in stages for rider in stage["result"]] for rider in riders: if dbops.check_exists(rider): if verbose: click.echo(f"{rider} already in database.") continue rider_data = procyclingstats.get_rider(rider) # HTTP error if isinstance(rider_data, int): if verbose: click.echo(f"{rider} could not be retrieved. Status code: {rider_data}") continue inserted_id = dbops.insert_rider(rider_data) if verbose: click.echo(f"{rider} inserted with ID: {inserted_id}") if __name__ == "__main__": scrape()
[ "src.dbops.check_exists", "src.procyclingstats.get_rider", "src.procyclingstats.get_stage", "click.argument", "src.dbops.insert_rider", "src.dbops.insert_stage", "conf.RACES.items", "click.option", "click.UsageError", "click.command", "click.echo", "src.dbops.fetch_stages", "itertools.product" ]
[((154, 169), 'click.command', 'click.command', ([], {}), '()\n', (167, 169), False, 'import click\n'), ((171, 194), 'click.argument', 'click.argument', (['"""items"""'], {}), "('items')\n", (185, 194), False, 'import click\n'), ((196, 241), 'click.option', 'click.option', (['"""-v"""', '"""--verbose"""'], {'is_flag': '(True)'}), "('-v', '--verbose', is_flag=True)\n", (208, 241), False, 'import click\n'), ((425, 475), 'click.UsageError', 'click.UsageError', (['"""ITEMS must be STAGES or RIDERS"""'], {}), "('ITEMS must be STAGES or RIDERS')\n", (441, 475), False, 'import click\n'), ((551, 564), 'conf.RACES.items', 'RACES.items', ([], {}), '()\n', (562, 564), False, 'from conf import RACES\n'), ((1738, 1774), 'src.dbops.fetch_stages', 'dbops.fetch_stages', ([], {'project': '"""result"""'}), "(project='result')\n", (1756, 1774), False, 'from src import dbops, procyclingstats\n'), ((757, 789), 'itertools.product', 'product', (['iter_years', 'iter_number'], {}), '(iter_years, iter_number)\n', (764, 789), False, 'from itertools import product\n'), ((1894, 1919), 'src.dbops.check_exists', 'dbops.check_exists', (['rider'], {}), '(rider)\n', (1912, 1919), False, 'from src import dbops, procyclingstats\n'), ((2064, 2096), 'src.procyclingstats.get_rider', 'procyclingstats.get_rider', (['rider'], {}), '(rider)\n', (2089, 2096), False, 'from src import dbops, procyclingstats\n'), ((2340, 2370), 'src.dbops.insert_rider', 'dbops.insert_rider', (['rider_data'], {}), '(rider_data)\n', (2358, 2370), False, 'from src import dbops, procyclingstats\n'), ((855, 880), 'src.dbops.check_exists', 'dbops.check_exists', (['stage'], {}), '(stage)\n', (873, 880), False, 'from src import dbops, procyclingstats\n'), ((1041, 1086), 'src.procyclingstats.get_stage', 'procyclingstats.get_stage', (['race', 'year', 'number'], {}), '(race, year, number)\n', (1066, 1086), False, 'from src import dbops, procyclingstats\n'), ((1557, 1587), 'src.dbops.insert_stage', 'dbops.insert_stage', (['stage_data'], {}), '(stage_data)\n', (1575, 1587), False, 'from src import dbops, procyclingstats\n'), ((2411, 2465), 'click.echo', 'click.echo', (['f"""{rider} inserted with ID: {inserted_id}"""'], {}), "(f'{rider} inserted with ID: {inserted_id}')\n", (2421, 2465), False, 'import click\n'), ((1636, 1690), 'click.echo', 'click.echo', (['f"""{stage} inserted with ID: {inserted_id}"""'], {}), "(f'{stage} inserted with ID: {inserted_id}')\n", (1646, 1690), False, 'import click\n'), ((1969, 2012), 'click.echo', 'click.echo', (['f"""{rider} already in database."""'], {}), "(f'{rider} already in database.')\n", (1979, 2012), False, 'import click\n'), ((2215, 2287), 'click.echo', 'click.echo', (['f"""{rider} could not be retrieved. Status code: {rider_data}"""'], {}), "(f'{rider} could not be retrieved. Status code: {rider_data}')\n", (2225, 2287), False, 'import click\n'), ((938, 981), 'click.echo', 'click.echo', (['f"""{stage} already in database."""'], {}), "(f'{stage} already in database.')\n", (948, 981), False, 'import click\n'), ((1221, 1293), 'click.echo', 'click.echo', (['f"""{stage} could not be retrieved. Status code: {stage_data}"""'], {}), "(f'{stage} could not be retrieved. Status code: {stage_data}')\n", (1231, 1293), False, 'import click\n'), ((1440, 1496), 'click.echo', 'click.echo', (['f"""{stage} is a team time trial. Skipping..."""'], {}), "(f'{stage} is a team time trial. Skipping...')\n", (1450, 1496), False, 'import click\n')]
from __future__ import annotations from dataclasses import dataclass from dataclasses import field from ..ec2common.ec2exceptions import * @dataclass class NetworkInterfaceAttributes: Association: object = None Attachment: object = None Description: str = None Groups: object = field(default_factory=list) Ipv6Addresses: object = field(default_factory=list) MacAddress: str = None NetworkInterfaceId: str = None OwnerId: str = None PrivateDnsName: str = None PrivateIpAddress: str = None PrivateIpAddresses: object = field(default_factory=list) SourceDestCheck: bool = None Status: str = None SubnetId: str = None VpcId: str = None InterfaceType: str = None Ipv4Prefixes: object = field(default_factory=list) Ipv6Prefixes: object = field(default_factory=list) class NetworkInterfaceManager: def __init__(self): pass # def dict_to_networkinterface(self, dict): # new_networkinterface = NetworkInterface() # new_networkinterface.attributes = NetworkInterfaceAttributes(**dict) # return new_networkinterface # def dict_list_to_networkinterface_list(self, dict_list): # networkinterface_list = [] # for dict_item in dict_list: # networkinterface_list.append(self.dict_to_networkinterface(dict_item)) # return networkinterface_list class NetworkInterface: def __init__(self): self.attributes = NetworkInterfaceAttributes()
[ "dataclasses.field" ]
[((298, 325), 'dataclasses.field', 'field', ([], {'default_factory': 'list'}), '(default_factory=list)\n', (303, 325), False, 'from dataclasses import field\n'), ((354, 381), 'dataclasses.field', 'field', ([], {'default_factory': 'list'}), '(default_factory=list)\n', (359, 381), False, 'from dataclasses import field\n'), ((565, 592), 'dataclasses.field', 'field', ([], {'default_factory': 'list'}), '(default_factory=list)\n', (570, 592), False, 'from dataclasses import field\n'), ((753, 780), 'dataclasses.field', 'field', ([], {'default_factory': 'list'}), '(default_factory=list)\n', (758, 780), False, 'from dataclasses import field\n'), ((808, 835), 'dataclasses.field', 'field', ([], {'default_factory': 'list'}), '(default_factory=list)\n', (813, 835), False, 'from dataclasses import field\n')]
from bs4 import BeautifulSoup import requests import time import pymysql.cursors import unittest from validate_email import validate_email class UnitTestsDataMinerYellowPagesUsa(unittest.TestCase): def test_web_scraper_email_usa(self): activites = [ {'id': '1', 'url': 'https://www.yellowpages.com/search?search_terms=Temporary+Employment+Agencies&geo_location_terms='}, {'id': '2', 'url': 'https://www.yellowpages.com/search?search_terms=real+estate&geo_location_terms='}, {'id': '3', 'url': 'https://www.yellowpages.com/search?search_terms=Recruiter&geo_location_terms='}, {'id': '4', 'url': 'https://www.yellowpages.com/search?search_terms=software&geo_location_terms='}, {'id': '5', 'url': 'https://www.yellowpages.com/search?search_terms=hotel&geo_location_terms='}, {'id': '6', 'url': 'https://www.yellowpages.com/search?search_terms=social+landlord&geo_location_terms='}, {'id': '7', 'url': 'https://www.yellowpages.com/search?search_terms=cleaning&geo_location_terms='}, {'id': '8', 'url': 'https://www.yellowpages.com/search?search_terms=Charities&geo_location_terms='}, {'id': '9', 'url': 'https://www.yellowpages.com/search?search_terms=financial&geo_location_terms='}, {'id': '10', 'url': 'https://www.yellowpages.com/search?search_terms=restaurant&geo_location_terms='}, {'id': '11', 'url': 'https://www.yellowpages.com/search?search_terms=building&geo_location_terms='}, {'id': '12', 'url': 'https://www.yellowpages.com/search?search_terms=hairdresser&geo_location_terms='}, {'id': '13', 'url': 'https://www.yellowpages.com/search?search_terms=florist&geo_location_terms='}, {'id': '14', 'url': 'https://www.yellowpages.com/search?search_terms=locksmith&geo_location_terms='}, {'id': '15', 'url': 'https://www.yellowpages.com/search?search_terms=bakery&geo_location_terms='}, {'id': '16', 'url': 'https://www.yellowpages.com/search?search_terms=insurance&geo_location_terms='}, {'id': '17', 'url': 'https://www.yellowpages.com/search?search_terms=Pharmacies&geo_location_terms='}, {'id': '18', 'url': 'https://www.yellowpages.com/search?search_terms=movers&geo_location_terms='}, {'id': '19', 'url': 'https://www.yellowpages.com/search?search_terms=electricity&geo_location_terms='}, {'id': '20', 'url': 'https://www.yellowpages.com/search?search_terms=plumbing&geo_location_terms='}, {'id': '21', 'url': 'https://www.yellowpages.com/search?search_terms=security&geo_location_terms='}, {'id': '22', 'url': 'https://www.yellowpages.com/search?search_terms=attorney&geo_location_terms='}, {'id': '23', 'url': 'https://www.yellowpages.com/search?search_terms=bank&geo_location_terms='}, {'id': '24', 'url': 'https://www.yellowpages.com/search?search_terms=mechanic&geo_location_terms='}, {'id': '25', 'url': 'https://www.yellowpages.com/search?search_terms=dentist&geo_location_terms='}, {'id': '26', 'url': 'https://www.yellowpages.com/search?search_terms=doctor&geo_location_terms='}, {'id': '27', 'url': 'https://www.yellowpages.com/search?search_terms=accountant&geo_location_terms='}, {'id': '28', 'url': 'https://www.yellowpages.com/search?search_terms=Grocery+Stores&geo_location_terms='}, {'id': '29', 'url': 'https://www.yellowpages.com/search?search_terms=notary&geo_location_terms='}, {'id': '30', 'url': 'https://www.yellowpages.com/search?search_terms=jewellery&geo_location_terms='}, {'id': '31', 'url': 'https://www.yellowpages.com/search?search_terms=tailors&geo_location_terms='}, {'id': '32', 'url': 'https://www.yellowpages.com/search?search_terms=butcher&geo_location_terms='}, {'id': '33', 'url': 'https://www.yellowpages.com/search?search_terms=library&geo_location_terms='}, {'id': '34', 'url': 'https://www.yellowpages.com/search?search_terms=Architects&geo_location_terms='} ] capitales_du_monde = [ {'id': '2', 'nom': 'New+York%2C+NY'}, # {'id': '4', 'nom': 'Chicago%2C+IL'}, # {'id': '5', 'nom': 'Atlanta%2C+GA'}, # {'id': '6', 'nom': 'Houston%2C+TX'}, # {'id': '7', 'nom': 'Los+Angeles%2C+CA'}, # {'id': '9', 'nom': 'Albany%2C+NY'}, # {'id': '36', 'nom': 'Montgomery%2C+AL'}, # {'id': '37', 'nom': 'Birmingham%2C+AL'}, # {'id': '38', 'nom': 'Juneau%2C+AK'}, # {'id': '39', 'nom': 'Anchorage%2C+AK'}, # {'id': '40', 'nom': 'Phoenix%2C+AZ'}, # {'id': '41', 'nom': 'Little+Rock%2C+AR'}, # {'id': '42', 'nom': 'Sacramento%2C+CA'}, # {'id': '43', 'nom': 'Denver%2C+CO'}, # {'id': '44', 'nom': 'Hartford%2C+CT'}, # {'id': '45', 'nom': 'Bridgeport%2C+CT'}, # {'id': '46', 'nom': 'Dover%2C+DE'}, # {'id': '47', 'nom': 'Wilmington%2C+DE'}, # {'id': '48', 'nom': 'Tallahassee%2C+FL'}, # {'id': '49', 'nom': 'Jacksonville%2C+FL'}, # {'id': '50', 'nom': 'Honolulu%2C+HI'}, # {'id': '51', 'nom': 'Boise%2C+ID'}, # {'id': '52', 'nom': 'Springfield%2C+IL'}, # {'id': '53', 'nom': 'Indianapolis%2C+IN'}, # {'id': '54', 'nom': 'Des+Moines%2C+IA'}, # {'id': '55', 'nom': 'Topeka%2C+KS'}, # {'id': '56', 'nom': 'Wichita%2C+KS'}, # {'id': '57', 'nom': 'Frankfort%2C+KY'}, # {'id': '58', 'nom': 'Louisville%2C+KY'}, # {'id': '59', 'nom': 'Baton+Rouge%2C+LA'}, # {'id': '60', 'nom': 'New+Orleans%2C+LA'}, # {'id': '61', 'nom': 'Augusta%2C+ME'}, # {'id': '62', 'nom': 'Portland%2C+ME'}, # {'id': '63', 'nom': 'Annapolis%2C+MD'}, # {'id': '64', 'nom': 'Baltimore%2C+MD'}, # {'id': '65', 'nom': 'Boston%2C+MA'}, # {'id': '66', 'nom': 'Lansing%2C+MI'}, # {'id': '67', 'nom': 'Detroit%2C+MI'}, # {'id': '68', 'nom': 'Saint+Paul%2C+MN'}, # {'id': '69', 'nom': 'Minneapolis%2C+MN'}, # {'id': '70', 'nom': 'Jackson%2C+MS'}, # {'id': '71', 'nom': 'Jefferson+City%2C+MO'}, # {'id': '72', 'nom': 'Kansas+City%2C+MO'}, # {'id': '73', 'nom': 'Helena%2C+MT'}, # {'id': '74', 'nom': 'Billings%2C+MT'}, # {'id': '75', 'nom': 'Lincoln%2C+NE'}, # {'id': '76', 'nom': 'Omaha%2C+NE'}, # {'id': '77', 'nom': 'Carson+City%2C+NV'}, # {'id': '78', 'nom': 'Las+Vegas%2C+NV'}, # {'id': '79', 'nom': 'Concord%2C+NH'}, # {'id': '80', 'nom': 'Manchester%2C+NH'} # {'id': '81', 'nom': 'Trenton%2C+NJ'}, # {'id': '82', 'nom': 'Newark%2C+NJ'}, # {'id': '83', 'nom': 'Santa+Fe%2C+NM'}, # {'id': '84', 'nom': 'Albuquerque%2C+NM'}, # {'id': '85', 'nom': 'Raleigh%2C+NC'}, # {'id': '86', 'nom': 'Charlotte%2C+NC'}, # {'id': '87', 'nom': 'Bismarck%2C+ND'}, # {'id': '88', 'nom': 'Columbus%2C+OH'}, # {'id': '89', 'nom': 'Oklahoma+City%2C+OK'}, # {'id': '90', 'nom': 'Salem%2C+OR'}, # {'id': '91', 'nom': 'Portland%2C+OR'}, # {'id': '92', 'nom': 'Harrisburg%2C+PA'}, # {'id': '93', 'nom': 'Philadelphia%2C+PA'}, # {'id': '94', 'nom': 'Providence%2C+RI'}, # {'id': '95', 'nom': 'Columbia%2C+SC'}, # {'id': '96', 'nom': 'Pierre%2C+SD'}, # {'id': '97', 'nom': 'Sioux+Falls%2C+SD'}, # {'id': '98', 'nom': 'Nashville%2C+TN'}, # {'id': '99', 'nom': 'Memphis%2C+TN'}, # {'id': '100', 'nom': 'Austin%2C+TX'}, # {'id': '101', 'nom': 'Salt+Lake+City%2C+UT'}, # {'id': '102', 'nom': 'Montpelier%2C+VT'}, # {'id': '103', 'nom': 'Burlington%2C+VT'}, # {'id': '104', 'nom': 'Richmond%2C+VA'}, # {'id': '105', 'nom': 'Olympia%2C+WA'}, # {'id': '106', 'nom': 'Seattle%2C+WA'}, # {'id': '107', 'nom': 'Charleston%2C+WV'}, # {'id': '108', 'nom': 'Madison%2C+WI'}, # {'id': '109', 'nom': 'Milwaukee%2C+WI'}, # {'id': '110', 'nom': 'Cheyenne%2C+WY'} ] try: for capitale_du_monde in capitales_du_monde: for activite in activites: i_1 = 0 i = 1 var = 1 while var == 1 and i < 102: try: url = activite.get('url') + capitale_du_monde.get('nom') + "&page=" + str(i) # Request the content of a page from the url html = requests.get(url) time.sleep(3) # Parse the content of html_doc soup = BeautifulSoup(html.content, 'html.parser') print(url) if soup.find("a", {"class", "business-name"}) is None: print('sorry there is nothing') break else: try: for link in soup.find_all("a", {"class": "business-name"}): i_1 += 1 # Request the content of a page from the url url_page = "https://www.yellowpages.com" + link.get('href') html_doc = requests.get(url_page) time.sleep(3) # Parse the content of html_doc soup_link = BeautifulSoup(html_doc.content, 'html.parser') if soup_link.find("a", {"class": "email-business"}) is not None: email_business = soup_link.select(".email-business")[0].get('href')[7:] suffixes = [ "info@" ] for suffix in suffixes: email = str(suffix + email_business.split("@")[1]) try: is_valid = validate_email( email_address=email, check_regex=True, check_mx=True, from_address='', helo_host='', smtp_timeout=10, dns_timeout=10, use_blacklist=True ) if is_valid: try: # Connect to the database connection = pymysql.connect( host='localhost', port=3306, user='', password='', db='contacts_professionnels', charset='utf8mb4', cursorclass=pymysql.cursors.DictCursor ) with connection.cursor() as cursor: try: sql = "INSERT INTO `emails` (" \ "`id_activite`, " \ "`id_capitale_du_monde`, " \ "`email`) VALUE (%s, %s, %s)" cursor.execute(sql, ( activite.get('id'), capitale_du_monde.get('id'), email)) connection.commit() print(str(i_1) + " The record is stored : " + str(email)) connection.close() except Exception as e: print(str(i_1) + " The record already exists : " + str(email) + " " + str(e)) connection.close() except Exception as e: print("Problem connection MySQL : " + str(e)) else: print( str(i_1) + " The email : " + email + " doesn't exist.") except Exception as e: print(str( i_1) + " An error with the email : " + email + " " + str(e)) else: print(str(i_1) + " no email business") except Exception as e: print("There is an error connection at url_page : " + str(e)) except Exception as e: print("There is an error connection at url : " + str(e)) i += 1 finally: print('done') if __name__ == '__main__': unittest.main()
[ "unittest.main", "validate_email.validate_email", "time.sleep", "requests.get", "bs4.BeautifulSoup" ]
[((15377, 15392), 'unittest.main', 'unittest.main', ([], {}), '()\n', (15390, 15392), False, 'import unittest\n'), ((9068, 9085), 'requests.get', 'requests.get', (['url'], {}), '(url)\n', (9080, 9085), False, 'import requests\n'), ((9115, 9128), 'time.sleep', 'time.sleep', (['(3)'], {}), '(3)\n', (9125, 9128), False, 'import time\n'), ((9225, 9267), 'bs4.BeautifulSoup', 'BeautifulSoup', (['html.content', '"""html.parser"""'], {}), "(html.content, 'html.parser')\n", (9238, 9267), False, 'from bs4 import BeautifulSoup\n'), ((9948, 9970), 'requests.get', 'requests.get', (['url_page'], {}), '(url_page)\n', (9960, 9970), False, 'import requests\n'), ((10012, 10025), 'time.sleep', 'time.sleep', (['(3)'], {}), '(3)\n', (10022, 10025), False, 'import time\n'), ((10151, 10197), 'bs4.BeautifulSoup', 'BeautifulSoup', (['html_doc.content', '"""html.parser"""'], {}), "(html_doc.content, 'html.parser')\n", (10164, 10197), False, 'from bs4 import BeautifulSoup\n'), ((10865, 11025), 'validate_email.validate_email', 'validate_email', ([], {'email_address': 'email', 'check_regex': '(True)', 'check_mx': '(True)', 'from_address': '""""""', 'helo_host': '""""""', 'smtp_timeout': '(10)', 'dns_timeout': '(10)', 'use_blacklist': '(True)'}), "(email_address=email, check_regex=True, check_mx=True,\n from_address='', helo_host='', smtp_timeout=10, dns_timeout=10,\n use_blacklist=True)\n", (10879, 11025), False, 'from validate_email import validate_email\n')]
# Copyright 2017 gRPC authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import collections import threading from grpc_testing import _common from grpc_testing._channel import _rpc_state class TimeoutException(Exception): pass class State(_common.ChannelHandler): def __init__(self): self._condition = threading.Condition() self._rpc_states = collections.defaultdict(list) def invoke_rpc(self, method_full_rpc_name, invocation_metadata, requests, requests_closed, timeout): rpc_state = _rpc_state.State(invocation_metadata, requests, requests_closed) with self._condition: self._rpc_states[method_full_rpc_name].append(rpc_state) self._condition.notify_all() return rpc_state def take_rpc_state(self, method_descriptor, timeout): method_full_rpc_name = '/{}/{}'.format( method_descriptor.containing_service.full_name, method_descriptor.name) with self._condition: while True: method_rpc_states = self._rpc_states[method_full_rpc_name] if method_rpc_states: return method_rpc_states.pop(0) else: if not self._condition.wait(timeout=timeout): raise TimeoutException("Timeout while waiting for rpc.")
[ "collections.defaultdict", "threading.Condition", "grpc_testing._channel._rpc_state.State" ]
[((829, 850), 'threading.Condition', 'threading.Condition', ([], {}), '()\n', (848, 850), False, 'import threading\n'), ((878, 907), 'collections.defaultdict', 'collections.defaultdict', (['list'], {}), '(list)\n', (901, 907), False, 'import collections\n'), ((1053, 1117), 'grpc_testing._channel._rpc_state.State', '_rpc_state.State', (['invocation_metadata', 'requests', 'requests_closed'], {}), '(invocation_metadata, requests, requests_closed)\n', (1069, 1117), False, 'from grpc_testing._channel import _rpc_state\n')]
#!/usr/bin/python # # This file is part of Ansible # # Ansible is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Ansible is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Ansible. If not, see <http://www.gnu.org/licenses/>. # DOCUMENTATION = ''' --- module: nxos_gir version_added: "2.2" short_description: Trigger a graceful removal or insertion (GIR) of the switch. description: - Trigger a graceful removal or insertion (GIR) of the switch. extends_documentation_fragment: nxos author: - <NAME> (@GGabriele) notes: - C(state) has effect only in combination with C(system_mode_maintenance_timeout) or C(system_mode_maintenance_on_reload_reset_reason). - Using C(system_mode_maintenance) and C(system_mode_maintenance_dont_generate_profile) would make the module fail, but the system mode will be triggered anyway. options: system_mode_maintenance: description: - When C(system_mode_maintenance=true) it puts all enabled protocols in maintenance mode (using the isolate command). When C(system_mode_maintenance=false) it puts all enabled protocols in normal mode (using the no isolate command). required: false default: null choices: ['true','false'] system_mode_maintenance_dont_generate_profile: description: - When C(system_mode_maintenance_dont_generate_profile=true) it prevents the dynamic searching of enabled protocols and executes commands configured in a maintenance-mode profile. Use this option if you want the system to use a maintenance-mode profile that you have created. When C(system_mode_maintenance_dont_generate_profile=false) it prevents the dynamic searching of enabled protocols and executes commands configured in a normal-mode profile. Use this option if you want the system to use a normal-mode profile that you have created. required: false default: null choices: ['true','false'] system_mode_maintenance_timeout: description: - Keeps the switch in maintenance mode for a specified number of minutes. Range is 5-65535. required: false default: null system_mode_maintenance_shutdown: description: - Shuts down all protocols, vPC domains, and interfaces except the management interface (using the shutdown command). This option is disruptive while C(system_mode_maintenance) (which uses the isolate command) is not. required: false default: null choices: ['true','false'] system_mode_maintenance_on_reload_reset_reason: description: - Boots the switch into maintenance mode automatically in the event of a specified system crash. required: false default: null choices: ['hw_error','svc_failure','kern_failure','wdog_timeout', 'fatal_error','lc_failure','match_any','manual_reload'] state: description: - Specify desired state of the resource. required: true default: present choices: ['present','absent'] ''' EXAMPLES = ''' # Trigger system maintenance mode - nxos_gir: system_mode_maintenance: true host: "{{ inventory_hostname }}" username: "{{ un }}" password: "{{ <PASSWORD> }}" # Trigger system normal mode - nxos_gir: system_mode_maintenance: false host: "{{ inventory_hostname }}" username: "{{ un }}" password: "{{ <PASSWORD> }}" # Configure on-reload reset-reason for maintenance mode - nxos_gir: system_mode_maintenance_on_reload_reset_reason: manual_reload state: present host: "{{ inventory_hostname }}" username: "{{ un }}" password: "{{ <PASSWORD> }}" # Add on-reload reset-reason for maintenance mode - nxos_gir: system_mode_maintenance_on_reload_reset_reason: hw_error state: present host: "{{ inventory_hostname }}" username: "{{ un }}" password: "{{ <PASSWORD> }}" # Remove on-reload reset-reason for maintenance mode - nxos_gir: system_mode_maintenance_on_reload_reset_reason: manual_reload state: absent host: "{{ inventory_hostname }}" username: "{{ un }}" password: "{{ <PASSWORD> }}" # Set timeout for maintenance mode - nxos_gir: system_mode_maintenance_timeout: 30 state: present host: "{{ inventory_hostname }}" username: "{{ un }}" password: "{{ <PASSWORD> }}" # Remove timeout for maintenance mode - nxos_gir: system_mode_maintenance_timeout: 30 state: absent host: "{{ inventory_hostname }}" username: "{{ un }}" password: "{{ <PASSWORD> }}" ''' RETURN = ''' final_system_mode: description: describe the last system mode returned: verbose mode type: string sample: normal updates: description: commands sent to the device returned: verbose mode type: list sample: ["terminal dont-ask", "system mode maintenance timeout 10"] changed: description: check to see if a change was made on the device returned: always type: boolean sample: true ''' # COMMON CODE FOR MIGRATION import re from ansible.module_utils.basic import get_exception from ansible.module_utils.netcfg import NetworkConfig, ConfigLine from ansible.module_utils.shell import ShellError try: from ansible.module_utils.nxos import get_module except ImportError: from ansible.module_utils.nxos import NetworkModule, NetworkError def to_list(val): if isinstance(val, (list, tuple)): return list(val) elif val is not None: return [val] else: return list() class CustomNetworkConfig(NetworkConfig): def expand_section(self, configobj, S=None): if S is None: S = list() S.append(configobj) for child in configobj.children: if child in S: continue self.expand_section(child, S) return S def get_object(self, path): for item in self.items: if item.text == path[-1]: parents = [p.text for p in item.parents] if parents == path[:-1]: return item def to_block(self, section): return '\n'.join([item.raw for item in section]) def get_section(self, path): try: section = self.get_section_objects(path) return self.to_block(section) except ValueError: return list() def get_section_objects(self, path): if not isinstance(path, list): path = [path] obj = self.get_object(path) if not obj: raise ValueError('path does not exist in config') return self.expand_section(obj) def add(self, lines, parents=None): """Adds one or lines of configuration """ ancestors = list() offset = 0 obj = None ## global config command if not parents: for line in to_list(lines): item = ConfigLine(line) item.raw = line if item not in self.items: self.items.append(item) else: for index, p in enumerate(parents): try: i = index + 1 obj = self.get_section_objects(parents[:i])[0] ancestors.append(obj) except ValueError: # add parent to config offset = index * self.indent obj = ConfigLine(p) obj.raw = p.rjust(len(p) + offset) if ancestors: obj.parents = list(ancestors) ancestors[-1].children.append(obj) self.items.append(obj) ancestors.append(obj) # add child objects for line in to_list(lines): # check if child already exists for child in ancestors[-1].children: if child.text == line: break else: offset = len(parents) * self.indent item = ConfigLine(line) item.raw = line.rjust(len(line) + offset) item.parents = ancestors ancestors[-1].children.append(item) self.items.append(item) def get_network_module(**kwargs): try: return get_module(**kwargs) except NameError: return NetworkModule(**kwargs) def get_config(module, include_defaults=False): config = module.params['config'] if not config: try: config = module.get_config() except AttributeError: defaults = module.params['include_defaults'] config = module.config.get_config(include_defaults=defaults) return CustomNetworkConfig(indent=2, contents=config) def load_config(module, candidate): config = get_config(module) commands = candidate.difference(config) commands = [str(c).strip() for c in commands] save_config = module.params['save'] result = dict(changed=False) if commands: if not module.check_mode: try: module.configure(commands) except AttributeError: module.config(commands) if save_config: try: module.config.save_config() except AttributeError: module.execute(['copy running-config startup-config']) result['changed'] = True result['updates'] = commands return result # END OF COMMON CODE def execute_show(cmds, module, command_type=None): command_type_map = { 'cli_show': 'json', 'cli_show_ascii': 'text' } try: if command_type: response = module.execute(cmds, command_type=command_type) else: response = module.execute(cmds) except ShellError: clie = get_exception() module.fail_json(msg='Error sending {0}'.format(cmds), error=str(clie)) except AttributeError: try: if command_type: command_type = command_type_map.get(command_type) module.cli.add_commands(cmds, output=command_type) response = module.cli.run_commands() else: module.cli.add_commands(cmds, output=command_type) response = module.cli.run_commands() except NetworkError: clie = get_exception() module.fail_json(msg='Error sending {0}'.format(cmds), error=str(clie)) return response def execute_show_command(command, module, command_type='cli_show_ascii'): cmds = [command] if module.params['transport'] == 'cli': body = execute_show(cmds, module) elif module.params['transport'] == 'nxapi': body = execute_show(cmds, module, command_type=command_type) return body def execute_config_command(commands, module): try: module.configure(commands) except ShellError: clie = get_exception() module.fail_json(msg='Error sending CLI commands', error=str(clie), commands=commands) except AttributeError: try: module.config.load_config(commands) except NetworkError: clie = get_exception() module.fail_json(msg='Error sending CLI commands', error=str(clie), commands=commands) def get_system_mode(module): command = 'show system mode' body = execute_show_command(command, module)[0] if 'normal' in body.lower(): mode = 'normal' else: mode = 'maintenance' return mode def get_maintenance_timeout(module): command = 'show maintenance timeout' body = execute_show_command(command, module)[0] timeout = body.split()[4] return timeout def get_reset_reasons(module): command = 'show maintenance on-reload reset-reasons' body = execute_show_command(command, module)[0] return body def get_commands(module, state, mode): commands = list() system_mode = '' if module.params['system_mode_maintenance'] is True and mode == 'normal': commands.append('system mode maintenance') elif (module.params['system_mode_maintenance'] is False and mode == 'maintenance'): commands.append('no system mode maintenance') elif (module.params[ 'system_mode_maintenance_dont_generate_profile'] is True and mode == 'normal'): commands.append('system mode maintenance dont-generate-profile') elif (module.params[ 'system_mode_maintenance_dont_generate_profile'] is False and mode == 'maintenance'): commands.append('no system mode maintenance dont-generate-profile') elif module.params['system_mode_maintenance_timeout']: timeout = get_maintenance_timeout(module) if (state == 'present' and timeout != module.params['system_mode_maintenance_timeout']): commands.append('system mode maintenance timeout {0}'.format( module.params['system_mode_maintenance_timeout'])) elif (state == 'absent' and timeout == module.params['system_mode_maintenance_timeout']): commands.append('no system mode maintenance timeout {0}'.format( module.params['system_mode_maintenance_timeout'])) elif module.params['system_mode_maintenance_shutdown'] is True: commands.append('system mode maintenance shutdown') elif module.params['system_mode_maintenance_on_reload_reset_reason']: reset_reasons = get_reset_reasons(module) if (state == 'present' and module.params[ 'system_mode_maintenance_on_reload_reset_reason'].lower() not in reset_reasons.lower()): commands.append('system mode maintenance on-reload ' 'reset-reason {0}'.format( module.params[ 'system_mode_maintenance_on_reload_reset_reason'])) elif (state == 'absent' and module.params[ 'system_mode_maintenance_on_reload_reset_reason'].lower() in reset_reasons.lower()): commands.append('no system mode maintenance on-reload ' 'reset-reason {0}'.format( module.params[ 'system_mode_maintenance_on_reload_reset_reason'])) if commands: commands.insert(0, 'terminal dont-ask') return commands def main(): argument_spec = dict( system_mode_maintenance=dict(required=False, type='bool'), system_mode_maintenance_dont_generate_profile=dict(required=False, type='bool'), system_mode_maintenance_timeout=dict(required=False, type='str'), system_mode_maintenance_shutdown=dict(required=False, type='bool'), system_mode_maintenance_on_reload_reset_reason=dict(required=False, choices=['hw_error','svc_failure','kern_failure', 'wdog_timeout','fatal_error','lc_failure', 'match_any','manual_reload']), state=dict(choices=['absent', 'present', 'default'], default='present', required=False) ) module = get_network_module(argument_spec=argument_spec, mutually_exclusive=[[ 'system_mode_maintenance', 'system_mode_maintenance_dont_generate_profile', 'system_mode_maintenance_timeout', 'system_mode_maintenance_shutdown', 'system_mode_maintenance_on_reload_reset_reason' ]], required_one_of=[[ 'system_mode_maintenance', 'system_mode_maintenance_dont_generate_profile', 'system_mode_maintenance_timeout', 'system_mode_maintenance_shutdown', 'system_mode_maintenance_on_reload_reset_reason' ]], supports_check_mode=True) state = module.params['state'] mode = get_system_mode(module) commands = get_commands(module, state, mode) changed = False if commands: if module.check_mode: module.exit_json(changed=True, commands=commands) else: execute_config_command(commands, module) changed = True result = {} result['connected'] = module.connected result['changed'] = changed if module._verbosity > 0: final_system_mode = get_system_mode(module) result['final_system_mode'] = final_system_mode result['updates'] = commands module.exit_json(**result) if __name__ == '__main__': main()
[ "ansible.module_utils.nxos.get_module", "ansible.module_utils.nxos.NetworkModule", "ansible.module_utils.netcfg.ConfigLine", "ansible.module_utils.basic.get_exception" ]
[((9075, 9095), 'ansible.module_utils.nxos.get_module', 'get_module', ([], {}), '(**kwargs)\n', (9085, 9095), False, 'from ansible.module_utils.nxos import get_module\n'), ((9133, 9156), 'ansible.module_utils.nxos.NetworkModule', 'NetworkModule', ([], {}), '(**kwargs)\n', (9146, 9156), False, 'from ansible.module_utils.nxos import NetworkModule, NetworkError\n'), ((10631, 10646), 'ansible.module_utils.basic.get_exception', 'get_exception', ([], {}), '()\n', (10644, 10646), False, 'from ansible.module_utils.basic import get_exception\n'), ((11789, 11804), 'ansible.module_utils.basic.get_exception', 'get_exception', ([], {}), '()\n', (11802, 11804), False, 'from ansible.module_utils.basic import get_exception\n'), ((7621, 7637), 'ansible.module_utils.netcfg.ConfigLine', 'ConfigLine', (['line'], {}), '(line)\n', (7631, 7637), False, 'from ansible.module_utils.netcfg import NetworkConfig, ConfigLine\n'), ((8791, 8807), 'ansible.module_utils.netcfg.ConfigLine', 'ConfigLine', (['line'], {}), '(line)\n', (8801, 8807), False, 'from ansible.module_utils.netcfg import NetworkConfig, ConfigLine\n'), ((11193, 11208), 'ansible.module_utils.basic.get_exception', 'get_exception', ([], {}), '()\n', (11206, 11208), False, 'from ansible.module_utils.basic import get_exception\n'), ((12061, 12076), 'ansible.module_utils.basic.get_exception', 'get_exception', ([], {}), '()\n', (12074, 12076), False, 'from ansible.module_utils.basic import get_exception\n'), ((8138, 8151), 'ansible.module_utils.netcfg.ConfigLine', 'ConfigLine', (['p'], {}), '(p)\n', (8148, 8151), False, 'from ansible.module_utils.netcfg import NetworkConfig, ConfigLine\n')]
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django import template from .likert_star_tools import render_stars from django.utils.safestring import mark_safe register = template.Library() # Font-awesome stars ver 3 star_set_3 = { 'star': "<i class='icon-star likert-star'></i>", 'unlit': "<i class='icon-star-empty likert-star'></i>", 'noanswer': "<i class='icon-ban-circle likert-star'></i>" } # Font-awesome stars ver 4 star_set_4 = { 'star': "<i class='fa fa-star likert-star'></i>", 'unlit': "<i class='fa fa-star-o likert-star'></i>", 'noanswer': "<i class='fa fa-ban likert-star'></i>" } def fa_stars3(num, max_stars=5): """ Stars for Font Awesome 3 If num is not None, the returned string will contain num solid stars followed by max_stars - num empty stars """ return mark_safe(render_stars(num, max_stars, star_set_3)) register.filter('fa_stars3', fa_stars3) def fa_stars4(num, max_stars=5): """ Stars for Font Awesome 4 If num is not None, the returned string will contain num solid stars followed by max_stars - num empty stars """ return mark_safe(render_stars(num, max_stars, star_set_4)) register.filter('fa_stars4', fa_stars4)
[ "django.template.Library" ]
[((197, 215), 'django.template.Library', 'template.Library', ([], {}), '()\n', (213, 215), False, 'from django import template\n')]
import sys sys.path.append("PerceptualSimilarity\\") import os import utils import torch import numpy as np from torch import nn import torchgeometry from kornia import color import torch.nn.functional as F from torchvision import transforms class Dense(nn.Module): def __init__(self, in_features, out_features, activation='relu', kernel_initializer='he_normal'): super(Dense, self).__init__() self.in_features = in_features self.out_features = out_features self.activation = activation self.kernel_initializer = kernel_initializer self.linear = nn.Linear(in_features, out_features) # initialization if kernel_initializer == 'he_normal': nn.init.kaiming_normal_(self.linear.weight) else: raise NotImplementedError def forward(self, inputs): outputs = self.linear(inputs) if self.activation is not None: if self.activation == 'relu': outputs = nn.ReLU(inplace=True)(outputs) return outputs class Conv2D(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=3, activation='relu', strides=1): super(Conv2D, self).__init__() self.in_channels = in_channels self.out_channels = out_channels self.kernel_size = kernel_size self.activation = activation self.strides = strides self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, strides, int((kernel_size - 1) / 2)) # default: using he_normal as the kernel initializer nn.init.kaiming_normal_(self.conv.weight) def forward(self, inputs): outputs = self.conv(inputs) if self.activation is not None: if self.activation == 'relu': outputs = nn.ReLU(inplace=True)(outputs) else: raise NotImplementedError return outputs class Flatten(nn.Module): def __init__(self): super(Flatten, self).__init__() def forward(self, input): return input.view(input.size(0), -1) class StegaStampEncoder(nn.Module): def __init__(self): super(StegaStampEncoder, self).__init__() self.secret_dense = Dense(100, 7500, activation='relu', kernel_initializer='he_normal') self.conv1 = Conv2D(6, 32, 3, activation='relu') self.conv2 = Conv2D(32, 32, 3, activation='relu', strides=2) self.conv3 = Conv2D(32, 64, 3, activation='relu', strides=2) self.conv4 = Conv2D(64, 128, 3, activation='relu', strides=2) self.conv5 = Conv2D(128, 256, 3, activation='relu', strides=2) self.up6 = Conv2D(256, 128, 3, activation='relu') self.conv6 = Conv2D(256, 128, 3, activation='relu') self.up7 = Conv2D(128, 64, 3, activation='relu') self.conv7 = Conv2D(128, 64, 3, activation='relu') self.up8 = Conv2D(64, 32, 3, activation='relu') self.conv8 = Conv2D(64, 32, 3, activation='relu') self.up9 = Conv2D(32, 32, 3, activation='relu') self.conv9 = Conv2D(70, 32, 3, activation='relu') self.residual = Conv2D(32, 3, 1, activation=None) def forward(self, inputs): secrect, image = inputs secrect = secrect - .5 image = image - .5 secrect = self.secret_dense(secrect) secrect = secrect.reshape(-1, 3, 50, 50) secrect_enlarged = nn.Upsample(scale_factor=(8, 8))(secrect) inputs = torch.cat([secrect_enlarged, image], dim=1) conv1 = self.conv1(inputs) conv2 = self.conv2(conv1) conv3 = self.conv3(conv2) conv4 = self.conv4(conv3) conv5 = self.conv5(conv4) up6 = self.up6(nn.Upsample(scale_factor=(2, 2))(conv5)) merge6 = torch.cat([conv4, up6], dim=1) conv6 = self.conv6(merge6) up7 = self.up7(nn.Upsample(scale_factor=(2, 2))(conv6)) merge7 = torch.cat([conv3, up7], dim=1) conv7 = self.conv7(merge7) up8 = self.up8(nn.Upsample(scale_factor=(2, 2))(conv7)) merge8 = torch.cat([conv2, up8], dim=1) conv8 = self.conv8(merge8) up9 = self.up9(nn.Upsample(scale_factor=(2, 2))(conv8)) merge9 = torch.cat([conv1, up9, inputs], dim=1) conv9 = self.conv9(merge9) residual = self.residual(conv9) return residual class SpatialTransformerNetwork(nn.Module): def __init__(self): super(SpatialTransformerNetwork, self).__init__() self.localization = nn.Sequential( Conv2D(3, 32, 3, strides=2, activation='relu'), Conv2D(32, 64, 3, strides=2, activation='relu'), Conv2D(64, 128, 3, strides=2, activation='relu'), Flatten(), Dense(320000, 128, activation='relu'), nn.Linear(128, 6) ) self.localization[-1].weight.data.fill_(0) self.localization[-1].bias.data = torch.FloatTensor([1, 0, 0, 0, 1, 0]) def forward(self, image): theta = self.localization(image) theta = theta.view(-1, 2, 3) grid = F.affine_grid(theta, image.size(), align_corners=False) transformed_image = F.grid_sample(image, grid, align_corners=False) return transformed_image class StegaStampDecoder(nn.Module): def __init__(self, secret_size=100): super(StegaStampDecoder, self).__init__() self.secret_size = secret_size self.stn = SpatialTransformerNetwork() self.decoder = nn.Sequential( Conv2D(3, 32, 3, strides=2, activation='relu'), Conv2D(32, 32, 3, activation='relu'), Conv2D(32, 64, 3, strides=2, activation='relu'), Conv2D(64, 64, 3, activation='relu'), Conv2D(64, 64, 3, strides=2, activation='relu'), Conv2D(64, 128, 3, strides=2, activation='relu'), Conv2D(128, 128, 3, strides=2, activation='relu'), Flatten(), Dense(21632, 512, activation='relu'), Dense(512, secret_size, activation=None)) def forward(self, image): image = image - .5 transformed_image = self.stn(image) return torch.sigmoid(self.decoder(transformed_image)) class Discriminator(nn.Module): def __init__(self): super(Discriminator, self).__init__() self.model = nn.Sequential( Conv2D(3, 8, 3, strides=2, activation='relu'), Conv2D(8, 16, 3, strides=2, activation='relu'), Conv2D(16, 32, 3, strides=2, activation='relu'), Conv2D(32, 64, 3, strides=2, activation='relu'), Conv2D(64, 1, 3, activation=None)) def forward(self, image): x = image - .5 x = self.model(x) output = torch.mean(x) return output, x def transform_net(encoded_image, args, global_step): sh = encoded_image.size() ramp_fn = lambda ramp: np.min([global_step / ramp, 1.]) rnd_bri = ramp_fn(args.rnd_bri_ramp) * args.rnd_bri rnd_hue = ramp_fn(args.rnd_hue_ramp) * args.rnd_hue rnd_brightness = utils.get_rnd_brightness_torch(rnd_bri, rnd_hue, args.batch_size) # [batch_size, 3, 1, 1] jpeg_quality = 100. - torch.rand(1)[0] * ramp_fn(args.jpeg_quality_ramp) * (100. - args.jpeg_quality) rnd_noise = torch.rand(1)[0] * ramp_fn(args.rnd_noise_ramp) * args.rnd_noise contrast_low = 1. - (1. - args.contrast_low) * ramp_fn(args.contrast_ramp) contrast_high = 1. + (args.contrast_high - 1.) * ramp_fn(args.contrast_ramp) contrast_params = [contrast_low, contrast_high] rnd_sat = torch.rand(1)[0] * ramp_fn(args.rnd_sat_ramp) * args.rnd_sat # blur N_blur = 7 f = utils.random_blur_kernel(probs=[.25, .25], N_blur=N_blur, sigrange_gauss=[1., 3.], sigrange_line=[.25, 1.], wmin_line=3) if args.cuda: f = f.cuda() encoded_image = F.conv2d(encoded_image, f, bias=None, padding=int((N_blur - 1) / 2)) # noise noise = torch.normal(mean=0, std=rnd_noise, size=encoded_image.size(), dtype=torch.float32) if args.cuda: noise = noise.cuda() encoded_image = encoded_image + noise encoded_image = torch.clamp(encoded_image, 0, 1) # contrast & brightness contrast_scale = torch.Tensor(encoded_image.size()[0]).uniform_(contrast_params[0], contrast_params[1]) contrast_scale = contrast_scale.reshape(encoded_image.size()[0], 1, 1, 1) if args.cuda: contrast_scale = contrast_scale.cuda() rnd_brightness = rnd_brightness.cuda() encoded_image = encoded_image * contrast_scale encoded_image = encoded_image + rnd_brightness encoded_image = torch.clamp(encoded_image, 0, 1) # saturation sat_weight = torch.FloatTensor([.3, .6, .1]).reshape(1, 3, 1, 1) if args.cuda: sat_weight = sat_weight.cuda() encoded_image_lum = torch.mean(encoded_image * sat_weight, dim=1).unsqueeze_(1) encoded_image = (1 - rnd_sat) * encoded_image + rnd_sat * encoded_image_lum # jpeg encoded_image = encoded_image.reshape([-1, 3, 400, 400]) if not args.no_jpeg: encoded_image = utils.jpeg_compress_decompress(encoded_image, rounding=utils.round_only_at_0, quality=jpeg_quality) return encoded_image def get_secret_acc(secret_true, secret_pred): if 'cuda' in str(secret_pred.device): secret_pred = secret_pred.cpu() secret_true = secret_true.cpu() secret_pred = torch.round(secret_pred) correct_pred = torch.sum((secret_pred - secret_true) == 0, dim=1) str_acc = 1.0 - torch.sum((correct_pred - secret_pred.size()[1]) != 0).numpy() / correct_pred.size()[0] bit_acc = torch.sum(correct_pred).numpy() / secret_pred.numel() return bit_acc, str_acc def build_model(encoder, decoder, discriminator, lpips_fn, secret_input, image_input, l2_edge_gain, borders, secret_size, M, loss_scales, yuv_scales, args, global_step, writer): test_transform = transform_net(image_input, args, global_step) input_warped = torchgeometry.warp_perspective(image_input, M[:, 1, :, :], dsize=(400, 400), flags='bilinear') mask_warped = torchgeometry.warp_perspective(torch.ones_like(input_warped), M[:, 1, :, :], dsize=(400, 400), flags='bilinear') input_warped += (1 - mask_warped) * image_input residual_warped = encoder((secret_input, input_warped)) encoded_warped = residual_warped + input_warped residual = torchgeometry.warp_perspective(residual_warped, M[:, 0, :, :], dsize=(400, 400), flags='bilinear') if borders == 'no_edge': encoded_image = image_input + residual elif borders == 'black': encoded_image = residual_warped + input_warped encoded_image = torchgeometry.warp_perspective(encoded_image, M[:, 0, :, :], dsize=(400, 400), flags='bilinear') input_unwarped = torchgeometry.warp_perspective(image_input, M[:, 0, :, :], dsize=(400, 400), flags='bilinear') elif borders.startswith('random'): mask = torchgeometry.warp_perspective(torch.ones_like(residual), M[:, 0, :, :], dsize=(400, 400), flags='bilinear') encoded_image = residual_warped + input_unwarped encoded_image = torchgeometry.warp_perspective(encoded_image, M[:, 0, :, :], dsize=(400, 400), flags='bilinear') input_unwarped = torchgeometry.warp_perspective(input_warped, M[:, 0, :, :], dsize=(400, 400), flags='bilinear') ch = 3 if borders.endswith('rgb') else 1 encoded_image += (1 - mask) * torch.ones_like(residual) * torch.rand([ch]) elif borders == 'white': mask = torchgeometry.warp_perspective(torch.ones_like(residual), M[:, 0, :, :], dsize=(400, 400), flags='bilinear') encoded_image = residual_warped + input_warped encoded_image = torchgeometry.warp_perspective(encoded_image, M[:, 0, :, :], dsize=(400, 400), flags='bilinear') input_unwarped = torchgeometry.warp_perspective(input_warped, M[:, 0, :, :], dsize=(400, 400), flags='bilinear') encoded_image += (1 - mask) * torch.ones_like(residual) elif borders == 'image': mask = torchgeometry.warp_perspective(torch.ones_like(residual), M[:, 0, :, :], dsize=(400, 400), flags='bilinear') encoded_image = residual_warped + input_warped encoded_image = torchgeometry.warp_perspective(encoded_image, M[:, 0, :, :], dsize=(400, 400), flags='bilinear') encoded_image += (1 - mask) * torch.roll(image_input, 1, 0) if borders == 'no_edge': D_output_real, _ = discriminator(image_input) D_output_fake, D_heatmap = discriminator(encoded_image) else: D_output_real, _ = discriminator(input_warped) D_output_fake, D_heatmap = discriminator(encoded_warped) transformed_image = transform_net(encoded_image, args, global_step) decoded_secret = decoder(transformed_image) bit_acc, str_acc = get_secret_acc(secret_input, decoded_secret) normalized_input = image_input * 2 - 1 normalized_encoded = encoded_image * 2 - 1 lpips_loss = torch.mean(lpips_fn(normalized_input, normalized_encoded)) cross_entropy = nn.BCELoss() if args.cuda: cross_entropy = cross_entropy.cuda() secret_loss = cross_entropy(decoded_secret, secret_input) size = (int(image_input.shape[2]), int(image_input.shape[3])) gain = 10 falloff_speed = 4 falloff_im = np.ones(size) for i in range(int(falloff_im.shape[0] / falloff_speed)): # for i in range 100 falloff_im[-i, :] *= (np.cos(4 * np.pi * i / size[0] + np.pi) + 1) / 2 # [cos[(4*pi*i/400)+pi] + 1]/2 falloff_im[i, :] *= (np.cos(4 * np.pi * i / size[0] + np.pi) + 1) / 2 # [cos[(4*pi*i/400)+pi] + 1]/2 for j in range(int(falloff_im.shape[1] / falloff_speed)): falloff_im[:, -j] *= (np.cos(4 * np.pi * j / size[0] + np.pi) + 1) / 2 falloff_im[:, j] *= (np.cos(4 * np.pi * j / size[0] + np.pi) + 1) / 2 falloff_im = 1 - falloff_im falloff_im = torch.from_numpy(falloff_im).float() if args.cuda: falloff_im = falloff_im.cuda() falloff_im *= l2_edge_gain encoded_image_yuv = color.rgb_to_yuv(encoded_image) image_input_yuv = color.rgb_to_yuv(image_input) im_diff = encoded_image_yuv - image_input_yuv im_diff += im_diff * falloff_im.unsqueeze_(0) yuv_loss = torch.mean((im_diff) ** 2, axis=[0, 2, 3]) yuv_scales = torch.Tensor(yuv_scales) if args.cuda: yuv_scales = yuv_scales.cuda() image_loss = torch.dot(yuv_loss, yuv_scales) D_loss = D_output_real - D_output_fake G_loss = D_output_fake loss = loss_scales[0] * image_loss + loss_scales[1] * lpips_loss + loss_scales[2] * secret_loss if not args.no_gan: loss += loss_scales[3] * G_loss writer.add_scalar('loss/image_loss', image_loss, global_step) writer.add_scalar('loss/lpips_loss', lpips_loss, global_step) writer.add_scalar('loss/secret_loss', secret_loss, global_step) writer.add_scalar('loss/G_loss', G_loss, global_step) writer.add_scalar('loss/loss', loss, global_step) writer.add_scalar('metric/bit_acc', bit_acc, global_step) writer.add_scalar('metric/str_acc', str_acc, global_step) if global_step % 20 == 0: writer.add_image('input/image_input', image_input[0], global_step) writer.add_image('input/image_warped', input_warped[0], global_step) writer.add_image('encoded/encoded_warped', encoded_warped[0], global_step) writer.add_image('encoded/residual_warped', residual_warped[0] + 0.5, global_step) writer.add_image('encoded/encoded_image', encoded_image[0], global_step) writer.add_image('transformed/transformed_image', transformed_image[0], global_step) writer.add_image('transformed/test', test_transform[0], global_step) return loss, secret_loss, D_loss, bit_acc, str_acc
[ "utils.get_rnd_brightness_torch", "torch.dot", "numpy.ones", "torch.cat", "torch.roll", "utils.random_blur_kernel", "sys.path.append", "torch.nn.BCELoss", "torch.nn.init.kaiming_normal_", "torch.nn.functional.grid_sample", "torch.FloatTensor", "torch.nn.Upsample", "kornia.color.rgb_to_yuv", "torch.Tensor", "utils.jpeg_compress_decompress", "torch.nn.Linear", "torch.mean", "numpy.min", "torch.clamp", "numpy.cos", "torch.rand", "torch.sum", "torch.from_numpy", "torch.ones_like", "torch.nn.ReLU", "torchgeometry.warp_perspective", "torch.round" ]
[((12, 53), 'sys.path.append', 'sys.path.append', (['"""PerceptualSimilarity\\\\"""'], {}), "('PerceptualSimilarity\\\\')\n", (27, 53), False, 'import sys\n'), ((7002, 7067), 'utils.get_rnd_brightness_torch', 'utils.get_rnd_brightness_torch', (['rnd_bri', 'rnd_hue', 'args.batch_size'], {}), '(rnd_bri, rnd_hue, args.batch_size)\n', (7032, 7067), False, 'import utils\n'), ((7604, 7735), 'utils.random_blur_kernel', 'utils.random_blur_kernel', ([], {'probs': '[0.25, 0.25]', 'N_blur': 'N_blur', 'sigrange_gauss': '[1.0, 3.0]', 'sigrange_line': '[0.25, 1.0]', 'wmin_line': '(3)'}), '(probs=[0.25, 0.25], N_blur=N_blur, sigrange_gauss=\n [1.0, 3.0], sigrange_line=[0.25, 1.0], wmin_line=3)\n', (7628, 7735), False, 'import utils\n'), ((8104, 8136), 'torch.clamp', 'torch.clamp', (['encoded_image', '(0)', '(1)'], {}), '(encoded_image, 0, 1)\n', (8115, 8136), False, 'import torch\n'), ((8586, 8618), 'torch.clamp', 'torch.clamp', (['encoded_image', '(0)', '(1)'], {}), '(encoded_image, 0, 1)\n', (8597, 8618), False, 'import torch\n'), ((9418, 9442), 'torch.round', 'torch.round', (['secret_pred'], {}), '(secret_pred)\n', (9429, 9442), False, 'import torch\n'), ((9462, 9510), 'torch.sum', 'torch.sum', (['(secret_pred - secret_true == 0)'], {'dim': '(1)'}), '(secret_pred - secret_true == 0, dim=1)\n', (9471, 9510), False, 'import torch\n'), ((10000, 10098), 'torchgeometry.warp_perspective', 'torchgeometry.warp_perspective', (['image_input', 'M[:, 1, :, :]'], {'dsize': '(400, 400)', 'flags': '"""bilinear"""'}), "(image_input, M[:, 1, :, :], dsize=(400, 400),\n flags='bilinear')\n", (10030, 10098), False, 'import torchgeometry\n'), ((10456, 10559), 'torchgeometry.warp_perspective', 'torchgeometry.warp_perspective', (['residual_warped', 'M[:, 0, :, :]'], {'dsize': '(400, 400)', 'flags': '"""bilinear"""'}), "(residual_warped, M[:, 0, :, :], dsize=(400, \n 400), flags='bilinear')\n", (10486, 10559), False, 'import torchgeometry\n'), ((13255, 13267), 'torch.nn.BCELoss', 'nn.BCELoss', ([], {}), '()\n', (13265, 13267), False, 'from torch import nn\n'), ((13513, 13526), 'numpy.ones', 'np.ones', (['size'], {}), '(size)\n', (13520, 13526), True, 'import numpy as np\n'), ((14250, 14281), 'kornia.color.rgb_to_yuv', 'color.rgb_to_yuv', (['encoded_image'], {}), '(encoded_image)\n', (14266, 14281), False, 'from kornia import color\n'), ((14304, 14333), 'kornia.color.rgb_to_yuv', 'color.rgb_to_yuv', (['image_input'], {}), '(image_input)\n', (14320, 14333), False, 'from kornia import color\n'), ((14449, 14489), 'torch.mean', 'torch.mean', (['(im_diff ** 2)'], {'axis': '[0, 2, 3]'}), '(im_diff ** 2, axis=[0, 2, 3])\n', (14459, 14489), False, 'import torch\n'), ((14509, 14533), 'torch.Tensor', 'torch.Tensor', (['yuv_scales'], {}), '(yuv_scales)\n', (14521, 14533), False, 'import torch\n'), ((14608, 14639), 'torch.dot', 'torch.dot', (['yuv_loss', 'yuv_scales'], {}), '(yuv_loss, yuv_scales)\n', (14617, 14639), False, 'import torch\n'), ((602, 638), 'torch.nn.Linear', 'nn.Linear', (['in_features', 'out_features'], {}), '(in_features, out_features)\n', (611, 638), False, 'from torch import nn\n'), ((1576, 1617), 'torch.nn.init.kaiming_normal_', 'nn.init.kaiming_normal_', (['self.conv.weight'], {}), '(self.conv.weight)\n', (1599, 1617), False, 'from torch import nn\n'), ((3445, 3488), 'torch.cat', 'torch.cat', (['[secrect_enlarged, image]'], {'dim': '(1)'}), '([secrect_enlarged, image], dim=1)\n', (3454, 3488), False, 'import torch\n'), ((3741, 3771), 'torch.cat', 'torch.cat', (['[conv4, up6]'], {'dim': '(1)'}), '([conv4, up6], dim=1)\n', (3750, 3771), False, 'import torch\n'), ((3888, 3918), 'torch.cat', 'torch.cat', (['[conv3, up7]'], {'dim': '(1)'}), '([conv3, up7], dim=1)\n', (3897, 3918), False, 'import torch\n'), ((4035, 4065), 'torch.cat', 'torch.cat', (['[conv2, up8]'], {'dim': '(1)'}), '([conv2, up8], dim=1)\n', (4044, 4065), False, 'import torch\n'), ((4182, 4220), 'torch.cat', 'torch.cat', (['[conv1, up9, inputs]'], {'dim': '(1)'}), '([conv1, up9, inputs], dim=1)\n', (4191, 4220), False, 'import torch\n'), ((4881, 4918), 'torch.FloatTensor', 'torch.FloatTensor', (['[1, 0, 0, 0, 1, 0]'], {}), '([1, 0, 0, 0, 1, 0])\n', (4898, 4918), False, 'import torch\n'), ((5127, 5174), 'torch.nn.functional.grid_sample', 'F.grid_sample', (['image', 'grid'], {'align_corners': '(False)'}), '(image, grid, align_corners=False)\n', (5140, 5174), True, 'import torch.nn.functional as F\n'), ((6684, 6697), 'torch.mean', 'torch.mean', (['x'], {}), '(x)\n', (6694, 6697), False, 'import torch\n'), ((6835, 6868), 'numpy.min', 'np.min', (['[global_step / ramp, 1.0]'], {}), '([global_step / ramp, 1.0])\n', (6841, 6868), True, 'import numpy as np\n'), ((9049, 9153), 'utils.jpeg_compress_decompress', 'utils.jpeg_compress_decompress', (['encoded_image'], {'rounding': 'utils.round_only_at_0', 'quality': 'jpeg_quality'}), '(encoded_image, rounding=utils.\n round_only_at_0, quality=jpeg_quality)\n', (9079, 9153), False, 'import utils\n'), ((10144, 10173), 'torch.ones_like', 'torch.ones_like', (['input_warped'], {}), '(input_warped)\n', (10159, 10173), False, 'import torch\n'), ((722, 765), 'torch.nn.init.kaiming_normal_', 'nn.init.kaiming_normal_', (['self.linear.weight'], {}), '(self.linear.weight)\n', (745, 765), False, 'from torch import nn\n'), ((3385, 3417), 'torch.nn.Upsample', 'nn.Upsample', ([], {'scale_factor': '(8, 8)'}), '(scale_factor=(8, 8))\n', (3396, 3417), False, 'from torch import nn\n'), ((4760, 4777), 'torch.nn.Linear', 'nn.Linear', (['(128)', '(6)'], {}), '(128, 6)\n', (4769, 4777), False, 'from torch import nn\n'), ((8654, 8688), 'torch.FloatTensor', 'torch.FloatTensor', (['[0.3, 0.6, 0.1]'], {}), '([0.3, 0.6, 0.1])\n', (8671, 8688), False, 'import torch\n'), ((8787, 8832), 'torch.mean', 'torch.mean', (['(encoded_image * sat_weight)'], {'dim': '(1)'}), '(encoded_image * sat_weight, dim=1)\n', (8797, 8832), False, 'import torch\n'), ((10740, 10841), 'torchgeometry.warp_perspective', 'torchgeometry.warp_perspective', (['encoded_image', 'M[:, 0, :, :]'], {'dsize': '(400, 400)', 'flags': '"""bilinear"""'}), "(encoded_image, M[:, 0, :, :], dsize=(400, \n 400), flags='bilinear')\n", (10770, 10841), False, 'import torchgeometry\n'), ((10862, 10960), 'torchgeometry.warp_perspective', 'torchgeometry.warp_perspective', (['image_input', 'M[:, 0, :, :]'], {'dsize': '(400, 400)', 'flags': '"""bilinear"""'}), "(image_input, M[:, 0, :, :], dsize=(400, 400),\n flags='bilinear')\n", (10892, 10960), False, 'import torchgeometry\n'), ((14100, 14128), 'torch.from_numpy', 'torch.from_numpy', (['falloff_im'], {}), '(falloff_im)\n', (14116, 14128), False, 'import torch\n'), ((3683, 3715), 'torch.nn.Upsample', 'nn.Upsample', ([], {'scale_factor': '(2, 2)'}), '(scale_factor=(2, 2))\n', (3694, 3715), False, 'from torch import nn\n'), ((3830, 3862), 'torch.nn.Upsample', 'nn.Upsample', ([], {'scale_factor': '(2, 2)'}), '(scale_factor=(2, 2))\n', (3841, 3862), False, 'from torch import nn\n'), ((3977, 4009), 'torch.nn.Upsample', 'nn.Upsample', ([], {'scale_factor': '(2, 2)'}), '(scale_factor=(2, 2))\n', (3988, 4009), False, 'from torch import nn\n'), ((4124, 4156), 'torch.nn.Upsample', 'nn.Upsample', ([], {'scale_factor': '(2, 2)'}), '(scale_factor=(2, 2))\n', (4135, 4156), False, 'from torch import nn\n'), ((7215, 7228), 'torch.rand', 'torch.rand', (['(1)'], {}), '(1)\n', (7225, 7228), False, 'import torch\n'), ((7508, 7521), 'torch.rand', 'torch.rand', (['(1)'], {}), '(1)\n', (7518, 7521), False, 'import torch\n'), ((9635, 9658), 'torch.sum', 'torch.sum', (['correct_pred'], {}), '(correct_pred)\n', (9644, 9658), False, 'import torch\n'), ((11247, 11348), 'torchgeometry.warp_perspective', 'torchgeometry.warp_perspective', (['encoded_image', 'M[:, 0, :, :]'], {'dsize': '(400, 400)', 'flags': '"""bilinear"""'}), "(encoded_image, M[:, 0, :, :], dsize=(400, \n 400), flags='bilinear')\n", (11277, 11348), False, 'import torchgeometry\n'), ((11369, 11469), 'torchgeometry.warp_perspective', 'torchgeometry.warp_perspective', (['input_warped', 'M[:, 0, :, :]'], {'dsize': '(400, 400)', 'flags': '"""bilinear"""'}), "(input_warped, M[:, 0, :, :], dsize=(400, 400\n ), flags='bilinear')\n", (11399, 11469), False, 'import torchgeometry\n'), ((13641, 13680), 'numpy.cos', 'np.cos', (['(4 * np.pi * i / size[0] + np.pi)'], {}), '(4 * np.pi * i / size[0] + np.pi)\n', (13647, 13680), True, 'import numpy as np\n'), ((13751, 13790), 'numpy.cos', 'np.cos', (['(4 * np.pi * i / size[0] + np.pi)'], {}), '(4 * np.pi * i / size[0] + np.pi)\n', (13757, 13790), True, 'import numpy as np\n'), ((13924, 13963), 'numpy.cos', 'np.cos', (['(4 * np.pi * j / size[0] + np.pi)'], {}), '(4 * np.pi * j / size[0] + np.pi)\n', (13930, 13963), True, 'import numpy as np\n'), ((14002, 14041), 'numpy.cos', 'np.cos', (['(4 * np.pi * j / size[0] + np.pi)'], {}), '(4 * np.pi * j / size[0] + np.pi)\n', (14008, 14041), True, 'import numpy as np\n'), ((996, 1017), 'torch.nn.ReLU', 'nn.ReLU', ([], {'inplace': '(True)'}), '(inplace=True)\n', (1003, 1017), False, 'from torch import nn\n'), ((1794, 1815), 'torch.nn.ReLU', 'nn.ReLU', ([], {'inplace': '(True)'}), '(inplace=True)\n', (1801, 1815), False, 'from torch import nn\n'), ((7119, 7132), 'torch.rand', 'torch.rand', (['(1)'], {}), '(1)\n', (7129, 7132), False, 'import torch\n'), ((11042, 11067), 'torch.ones_like', 'torch.ones_like', (['residual'], {}), '(residual)\n', (11057, 11067), False, 'import torch\n'), ((11580, 11596), 'torch.rand', 'torch.rand', (['[ch]'], {}), '([ch])\n', (11590, 11596), False, 'import torch\n'), ((11875, 11976), 'torchgeometry.warp_perspective', 'torchgeometry.warp_perspective', (['encoded_image', 'M[:, 0, :, :]'], {'dsize': '(400, 400)', 'flags': '"""bilinear"""'}), "(encoded_image, M[:, 0, :, :], dsize=(400, \n 400), flags='bilinear')\n", (11905, 11976), False, 'import torchgeometry\n'), ((11997, 12097), 'torchgeometry.warp_perspective', 'torchgeometry.warp_perspective', (['input_warped', 'M[:, 0, :, :]'], {'dsize': '(400, 400)', 'flags': '"""bilinear"""'}), "(input_warped, M[:, 0, :, :], dsize=(400, 400\n ), flags='bilinear')\n", (12027, 12097), False, 'import torchgeometry\n'), ((11552, 11577), 'torch.ones_like', 'torch.ones_like', (['residual'], {}), '(residual)\n', (11567, 11577), False, 'import torch\n'), ((11672, 11697), 'torch.ones_like', 'torch.ones_like', (['residual'], {}), '(residual)\n', (11687, 11697), False, 'import torch\n'), ((12131, 12156), 'torch.ones_like', 'torch.ones_like', (['residual'], {}), '(residual)\n', (12146, 12156), False, 'import torch\n'), ((12435, 12536), 'torchgeometry.warp_perspective', 'torchgeometry.warp_perspective', (['encoded_image', 'M[:, 0, :, :]'], {'dsize': '(400, 400)', 'flags': '"""bilinear"""'}), "(encoded_image, M[:, 0, :, :], dsize=(400, \n 400), flags='bilinear')\n", (12465, 12536), False, 'import torchgeometry\n'), ((12232, 12257), 'torch.ones_like', 'torch.ones_like', (['residual'], {}), '(residual)\n', (12247, 12257), False, 'import torch\n'), ((12570, 12599), 'torch.roll', 'torch.roll', (['image_input', '(1)', '(0)'], {}), '(image_input, 1, 0)\n', (12580, 12599), False, 'import torch\n')]
""" (C) Copyright 2021 IBM Corp. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Created on June 30, 2021 """ import unittest import random from fuse.utils import Uniform, Choice, RandInt, RandBool, draw_samples_recursively , Seed class TestParamSampler(unittest.TestCase): """ Test ParamSampleBase sub classes """ def test_uniform(self): Seed.set_seed(0) min = random.random() * 1000 max = random.random() * 1000 + min uniform = Uniform(min, max) value = uniform.sample() # test range self.assertGreaterEqual(value, min) self.assertLessEqual(uniform.sample(), max) # test generate more than a single number self.assertNotEqual(value, uniform.sample()) # test fixed per seed Seed.set_seed(1234) value0 = uniform.sample() Seed.set_seed(1234) value1 = uniform.sample() self.assertEqual(value0, value1) def test_randint(self): Seed.set_seed(0) min = random.randint(0, 1000) max = random.randint(0, 1000) + min randint = RandInt(min, max) value = randint.sample() # test range self.assertGreaterEqual(value, min) self.assertLessEqual(randint.sample(), max) # test generate more than a single number self.assertNotEqual(value, randint.sample()) # test fixed per seed Seed.set_seed(1234) value0 = randint.sample() Seed.set_seed(1234) value1 = randint.sample() self.assertEqual(value0, value1) def test_randbool(self): Seed.set_seed(0) randbool = RandBool(0.5) value = randbool.sample() # test range self.assertIn(value, [True, False]) # test generate more than a single number Seed.set_seed(0) values = [randbool.sample() for _ in range(4)] self.assertIn(True, values) self.assertIn(False, values) # test fixed per seed Seed.set_seed(1234) value0 = randbool.sample() Seed.set_seed(1234) value1 = randbool.sample() self.assertEqual(value0, value1) # test probs Seed.set_seed(0) randbool = RandBool(0.99) count = 0 for _ in range(1000): if randbool.sample() == True: count += 1 self.assertGreaterEqual(count, 980) def test_choice(self): Seed.set_seed(0) lst = list(range(1000)) choice = Choice(lst) value = choice.sample() # test range self.assertIn(value, lst) # test generate more than a single number self.assertNotEqual(value, choice.sample()) # test fixed per seed Seed.set_seed(1234) value0 = choice.sample() Seed.set_seed(1234) value1 = choice.sample() self.assertEqual(value0, value1) # test probs Seed.set_seed(0) probs = [0.01 / 999] * 1000 probs[5] = 0.99 choice = Choice(lst, probs) count = 0 for _ in range(1000): if choice.sample() == 5: count += 1 self.assertGreaterEqual(count, 980) def test_draw_samples_recursively(self): Seed.set_seed(0) a = {"a": 5, "b": [3, RandInt(1, 5), 9], "c": {"d": 3, "f": [1, 2, RandBool(0.5), {"h": RandInt(10, 15)}]}, "e": {"g": Choice([6, 7, 8])}} b = draw_samples_recursively (a) self.assertEqual(a["a"], a["a"]) self.assertEqual(b["b"][0], a["b"][0]) self.assertEqual(b["b"][2], a["b"][2]) self.assertEqual(b["c"]["d"], a["c"]["d"]) self.assertEqual(b["c"]["f"][1], a["c"]["f"][1]) self.assertIn(b["b"][1], [1, 2, 3, 4, 5]) self.assertIn(b["c"]["f"][2], [True, False]) self.assertIn(b["c"]["f"][3]["h"], [10, 11, 12, 13, 14, 15]) self.assertIn(b["e"]["g"], [6, 7, 8]) if __name__ == '__main__': unittest.main()
[ "unittest.main", "fuse.utils.Seed.set_seed", "random.randint", "fuse.utils.Uniform", "fuse.utils.RandBool", "random.random", "fuse.utils.draw_samples_recursively", "fuse.utils.RandInt", "fuse.utils.Choice" ]
[((4522, 4537), 'unittest.main', 'unittest.main', ([], {}), '()\n', (4535, 4537), False, 'import unittest\n'), ((847, 863), 'fuse.utils.Seed.set_seed', 'Seed.set_seed', (['(0)'], {}), '(0)\n', (860, 863), False, 'from fuse.utils import Uniform, Choice, RandInt, RandBool, draw_samples_recursively, Seed\n'), ((962, 979), 'fuse.utils.Uniform', 'Uniform', (['min', 'max'], {}), '(min, max)\n', (969, 979), False, 'from fuse.utils import Uniform, Choice, RandInt, RandBool, draw_samples_recursively, Seed\n'), ((1290, 1309), 'fuse.utils.Seed.set_seed', 'Seed.set_seed', (['(1234)'], {}), '(1234)\n', (1303, 1309), False, 'from fuse.utils import Uniform, Choice, RandInt, RandBool, draw_samples_recursively, Seed\n'), ((1352, 1371), 'fuse.utils.Seed.set_seed', 'Seed.set_seed', (['(1234)'], {}), '(1234)\n', (1365, 1371), False, 'from fuse.utils import Uniform, Choice, RandInt, RandBool, draw_samples_recursively, Seed\n'), ((1484, 1500), 'fuse.utils.Seed.set_seed', 'Seed.set_seed', (['(0)'], {}), '(0)\n', (1497, 1500), False, 'from fuse.utils import Uniform, Choice, RandInt, RandBool, draw_samples_recursively, Seed\n'), ((1515, 1538), 'random.randint', 'random.randint', (['(0)', '(1000)'], {}), '(0, 1000)\n', (1529, 1538), False, 'import random\n'), ((1601, 1618), 'fuse.utils.RandInt', 'RandInt', (['min', 'max'], {}), '(min, max)\n', (1608, 1618), False, 'from fuse.utils import Uniform, Choice, RandInt, RandBool, draw_samples_recursively, Seed\n'), ((1929, 1948), 'fuse.utils.Seed.set_seed', 'Seed.set_seed', (['(1234)'], {}), '(1234)\n', (1942, 1948), False, 'from fuse.utils import Uniform, Choice, RandInt, RandBool, draw_samples_recursively, Seed\n'), ((1991, 2010), 'fuse.utils.Seed.set_seed', 'Seed.set_seed', (['(1234)'], {}), '(1234)\n', (2004, 2010), False, 'from fuse.utils import Uniform, Choice, RandInt, RandBool, draw_samples_recursively, Seed\n'), ((2125, 2141), 'fuse.utils.Seed.set_seed', 'Seed.set_seed', (['(0)'], {}), '(0)\n', (2138, 2141), False, 'from fuse.utils import Uniform, Choice, RandInt, RandBool, draw_samples_recursively, Seed\n'), ((2161, 2174), 'fuse.utils.RandBool', 'RandBool', (['(0.5)'], {}), '(0.5)\n', (2169, 2174), False, 'from fuse.utils import Uniform, Choice, RandInt, RandBool, draw_samples_recursively, Seed\n'), ((2350, 2366), 'fuse.utils.Seed.set_seed', 'Seed.set_seed', (['(0)'], {}), '(0)\n', (2363, 2366), False, 'from fuse.utils import Uniform, Choice, RandInt, RandBool, draw_samples_recursively, Seed\n'), ((2534, 2553), 'fuse.utils.Seed.set_seed', 'Seed.set_seed', (['(1234)'], {}), '(1234)\n', (2547, 2553), False, 'from fuse.utils import Uniform, Choice, RandInt, RandBool, draw_samples_recursively, Seed\n'), ((2597, 2616), 'fuse.utils.Seed.set_seed', 'Seed.set_seed', (['(1234)'], {}), '(1234)\n', (2610, 2616), False, 'from fuse.utils import Uniform, Choice, RandInt, RandBool, draw_samples_recursively, Seed\n'), ((2724, 2740), 'fuse.utils.Seed.set_seed', 'Seed.set_seed', (['(0)'], {}), '(0)\n', (2737, 2740), False, 'from fuse.utils import Uniform, Choice, RandInt, RandBool, draw_samples_recursively, Seed\n'), ((2760, 2774), 'fuse.utils.RandBool', 'RandBool', (['(0.99)'], {}), '(0.99)\n', (2768, 2774), False, 'from fuse.utils import Uniform, Choice, RandInt, RandBool, draw_samples_recursively, Seed\n'), ((2973, 2989), 'fuse.utils.Seed.set_seed', 'Seed.set_seed', (['(0)'], {}), '(0)\n', (2986, 2989), False, 'from fuse.utils import Uniform, Choice, RandInt, RandBool, draw_samples_recursively, Seed\n'), ((3039, 3050), 'fuse.utils.Choice', 'Choice', (['lst'], {}), '(lst)\n', (3045, 3050), False, 'from fuse.utils import Uniform, Choice, RandInt, RandBool, draw_samples_recursively, Seed\n'), ((3297, 3316), 'fuse.utils.Seed.set_seed', 'Seed.set_seed', (['(1234)'], {}), '(1234)\n', (3310, 3316), False, 'from fuse.utils import Uniform, Choice, RandInt, RandBool, draw_samples_recursively, Seed\n'), ((3358, 3377), 'fuse.utils.Seed.set_seed', 'Seed.set_seed', (['(1234)'], {}), '(1234)\n', (3371, 3377), False, 'from fuse.utils import Uniform, Choice, RandInt, RandBool, draw_samples_recursively, Seed\n'), ((3482, 3498), 'fuse.utils.Seed.set_seed', 'Seed.set_seed', (['(0)'], {}), '(0)\n', (3495, 3498), False, 'from fuse.utils import Uniform, Choice, RandInt, RandBool, draw_samples_recursively, Seed\n'), ((3577, 3595), 'fuse.utils.Choice', 'Choice', (['lst', 'probs'], {}), '(lst, probs)\n', (3583, 3595), False, 'from fuse.utils import Uniform, Choice, RandInt, RandBool, draw_samples_recursively, Seed\n'), ((3806, 3822), 'fuse.utils.Seed.set_seed', 'Seed.set_seed', (['(0)'], {}), '(0)\n', (3819, 3822), False, 'from fuse.utils import Uniform, Choice, RandInt, RandBool, draw_samples_recursively, Seed\n'), ((3982, 4009), 'fuse.utils.draw_samples_recursively', 'draw_samples_recursively', (['a'], {}), '(a)\n', (4006, 4009), False, 'from fuse.utils import Uniform, Choice, RandInt, RandBool, draw_samples_recursively, Seed\n'), ((878, 893), 'random.random', 'random.random', ([], {}), '()\n', (891, 893), False, 'import random\n'), ((1553, 1576), 'random.randint', 'random.randint', (['(0)', '(1000)'], {}), '(0, 1000)\n', (1567, 1576), False, 'import random\n'), ((915, 930), 'random.random', 'random.random', ([], {}), '()\n', (928, 930), False, 'import random\n'), ((3853, 3866), 'fuse.utils.RandInt', 'RandInt', (['(1)', '(5)'], {}), '(1, 5)\n', (3860, 3866), False, 'from fuse.utils import Uniform, Choice, RandInt, RandBool, draw_samples_recursively, Seed\n'), ((3950, 3967), 'fuse.utils.Choice', 'Choice', (['[6, 7, 8]'], {}), '([6, 7, 8])\n', (3956, 3967), False, 'from fuse.utils import Uniform, Choice, RandInt, RandBool, draw_samples_recursively, Seed\n'), ((3898, 3911), 'fuse.utils.RandBool', 'RandBool', (['(0.5)'], {}), '(0.5)\n', (3906, 3911), False, 'from fuse.utils import Uniform, Choice, RandInt, RandBool, draw_samples_recursively, Seed\n'), ((3919, 3934), 'fuse.utils.RandInt', 'RandInt', (['(10)', '(15)'], {}), '(10, 15)\n', (3926, 3934), False, 'from fuse.utils import Uniform, Choice, RandInt, RandBool, draw_samples_recursively, Seed\n')]
#!/usr/bin/python import os, sys import string def usage(): print >> sys.stderr, "usage: " + sys.argv[0] + " orthomcl.out base.tree" sys.exit(1) def plausi(): if len(sys.argv) != 3: usage() inOrtho, inTree = sys.argv[1:3] return inOrtho, inTree class OrthoCluster(): def __init__(self, line): descr, genedefs = line.split("\t") genedefs = genedefs.split() self.name = descr[:descr.index('(')].lower() self.geneHash = {} self.speciesHash = {} for genedef in genedefs: geneid = genedef[:genedef.index('(')] species = genedef[genedef.index('(')+1:-1] + "1" self.geneHash[geneid] = species if self.speciesHash.has_key(species): self.speciesHash[species].append(geneid) else: self.speciesHash[species] = [geneid] def get_name(self): return self.name def get_count(self): return len(self.geneHash) def get_gene_hash(self): return self.geneHash def get_species_hash(self): return self.speciesHash def get_species_from_first_line(inFile): fo = open(inFile) line = fo.readline() o = OrthoCluster(line.rstrip()) fo.close() species = o.get_species_hash().keys() species.sort() return species def parse_orthocml_out(inFile, tree): fo = open(inFile) for line in fo: o = OrthoCluster(line.rstrip()) speciesHash = o.get_species_hash() name = o.get_name() for species, genelist in speciesHash.iteritems(): if len(genelist) > 1: break replacement = '(' + species[:-1] + '1 #1,' + species[:-1] + '2)' tree_repl_1 = tree.replace(species, replacement) replacement = '(' + species[:-1] + '1,' + species[:-1] + '2 #1)' tree_repl_2 = tree.replace(species, replacement) fw = open(name + ".tree.1", "w") fw.write(tree_repl_1) fw.close() fw = open(name + ".tree.2", "w") fw.write(tree_repl_2) fw.close() fo.close() def read_tree_from_file(file): fo = open(file) tree = "" for line in fo: tree += line.strip() fo.close() return tree def main(): inOrtho, inTree = plausi() tree = read_tree_from_file(inTree) parse_orthocml_out(inOrtho, tree) main()
[ "sys.exit" ]
[((140, 151), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (148, 151), False, 'import os, sys\n')]
from ...database import Base from sqlalchemy import Column, Integer, String from sqlalchemy import Column, Integer, String, ForeignKey from sqlalchemy.orm import relationship from sqlalchemy.dialects.postgresql import ARRAY from ...database import Base class ApiKey(Base): api_key_id = Column(Integer, primary_key=True, autoincrement=False) key = Column(String) vcode = Column(String) mask = Column(Integer) character_1_id = Column(Integer, ForeignKey('character.character_id')) character_2_id = Column(Integer, ForeignKey('character.character_id')) character_3_id = Column(Integer, ForeignKey('character.character_id')) corporation_id = Column(Integer, ForeignKey('corporation.corporation_id'))
[ "sqlalchemy.ForeignKey", "sqlalchemy.Column" ]
[((294, 348), 'sqlalchemy.Column', 'Column', (['Integer'], {'primary_key': '(True)', 'autoincrement': '(False)'}), '(Integer, primary_key=True, autoincrement=False)\n', (300, 348), False, 'from sqlalchemy import Column, Integer, String, ForeignKey\n'), ((359, 373), 'sqlalchemy.Column', 'Column', (['String'], {}), '(String)\n', (365, 373), False, 'from sqlalchemy import Column, Integer, String, ForeignKey\n'), ((386, 400), 'sqlalchemy.Column', 'Column', (['String'], {}), '(String)\n', (392, 400), False, 'from sqlalchemy import Column, Integer, String, ForeignKey\n'), ((413, 428), 'sqlalchemy.Column', 'Column', (['Integer'], {}), '(Integer)\n', (419, 428), False, 'from sqlalchemy import Column, Integer, String, ForeignKey\n'), ((467, 503), 'sqlalchemy.ForeignKey', 'ForeignKey', (['"""character.character_id"""'], {}), "('character.character_id')\n", (477, 503), False, 'from sqlalchemy import Column, Integer, String, ForeignKey\n'), ((542, 578), 'sqlalchemy.ForeignKey', 'ForeignKey', (['"""character.character_id"""'], {}), "('character.character_id')\n", (552, 578), False, 'from sqlalchemy import Column, Integer, String, ForeignKey\n'), ((617, 653), 'sqlalchemy.ForeignKey', 'ForeignKey', (['"""character.character_id"""'], {}), "('character.character_id')\n", (627, 653), False, 'from sqlalchemy import Column, Integer, String, ForeignKey\n'), ((693, 733), 'sqlalchemy.ForeignKey', 'ForeignKey', (['"""corporation.corporation_id"""'], {}), "('corporation.corporation_id')\n", (703, 733), False, 'from sqlalchemy import Column, Integer, String, ForeignKey\n')]
import sys sys.path.append('..') from tighthash import pmap from testutils import testing_map testing_map("TightHashMap", pmap)
[ "sys.path.append", "testutils.testing_map" ]
[((12, 33), 'sys.path.append', 'sys.path.append', (['""".."""'], {}), "('..')\n", (27, 33), False, 'import sys\n'), ((97, 130), 'testutils.testing_map', 'testing_map', (['"""TightHashMap"""', 'pmap'], {}), "('TightHashMap', pmap)\n", (108, 130), False, 'from testutils import testing_map\n')]
import json import random import numpy as np from Source.Utility.Pathfinding.Graph import Graph def get_distance_to_players(game_state): own_player = game_state["players"][str(game_state["you"])] distances = [0, 0, 0, 0, 0, 0] current_position = (own_player["x"], own_player["y"]) if game_state["players"][str(game_state["you"])]["active"]: for i in range(6): if i + 1 == game_state["you"]: distances[i] = 0 else: try: if game_state["players"][str(i + 1)]["active"]: enemy_position = (game_state["players"][str(i + 1)]["x"], game_state["players"][str(i + 1)]["y"]) distance = np.sqrt(np.power(current_position[0] - enemy_position[0], 2) + np.power( current_position[1] - enemy_position[1], 2)) distances[i] = distance else: distances[i] = 0 except KeyError: distances[i] = 0 max_distance = np.sqrt(np.power(game_state["width"], 2) + np.power(game_state["height"], 2)) for i in range(len(distances)): distances[i] = distances[i] / max_distance return distances def get_average_distance(distances): sum = counter = 0.0 for i in range(len(distances)): if distances[i] == 0: pass else: sum += distances[i] counter += 1 if counter == 0: return 0 else: return sum / counter def get_free_spaces(new_position, game_state): own_player = game_state["players"][str(game_state["you"])] speed = own_player["speed"] number_of_free_spaces = 0 for i in range(-2, 3): for j in range(-2, 3): try: if game_state["cells"][new_position[1] + i][new_position[0] + j] == 0: number_of_free_spaces += 1 except IndexError: pass normalised_num = (number_of_free_spaces - speed) / 25.0 return normalised_num def get_avg_speed(game_state): sum = 0.0 counter = 0.0 avg = 0.0 if game_state["players"][str(game_state["you"])]["active"]: for i in range(6): if i + 1 == game_state["you"]: pass else: try: if game_state["players"][str(i + 1)]["active"]: sum += game_state["players"][str(i + 1)]["speed"] counter += 1 except KeyError: pass if counter > 0: avg = sum / counter norm_avg = avg / 10 return norm_avg def get_num_living_players(game_state): num = 0 for i in range (6): if game_state["players"][str(i+1)]["active"]: num += 1 return num def get_player_data(game_state, id): x = game_state["players"][str(id + 1)]["x"] y = game_state["players"][str(id + 1)]["y"] speed = game_state["players"][str(id + 1)]["speed"] return x, y, speed def get_distances_to_borders(game_state, id): board_height = game_state["height"] board_width = game_state["width"] position = game_state["players"][str(id + 1)]["x"], game_state["players"][str(id + 1)]["y"] top_distance = position[1] - 1 bottom_distance = (board_height - 1) - (position[1] - 1) right_distance = (board_width - 1) - (position[0] - 1) left_distance = position[0] - 1 return top_distance, bottom_distance, right_distance, left_distance def get_own_speed(game_state): own_player = game_state["players"][str(game_state["you"])] speed = own_player["speed"] return speed def get_connected_fields_for_new_position( x, y, new_direction, game_state, field_size): game_state = json.loads(game_state) graph = Graph(game_state["cells"],x,y, game_state["width"], game_state["height"], new_direction, field_size) return len(graph.get_connected_components())
[ "numpy.power", "Source.Utility.Pathfinding.Graph.Graph", "json.loads" ]
[((3807, 3829), 'json.loads', 'json.loads', (['game_state'], {}), '(game_state)\n', (3817, 3829), False, 'import json\n'), ((3842, 3948), 'Source.Utility.Pathfinding.Graph.Graph', 'Graph', (["game_state['cells']", 'x', 'y', "game_state['width']", "game_state['height']", 'new_direction', 'field_size'], {}), "(game_state['cells'], x, y, game_state['width'], game_state['height'],\n new_direction, field_size)\n", (3847, 3948), False, 'from Source.Utility.Pathfinding.Graph import Graph\n'), ((1083, 1115), 'numpy.power', 'np.power', (["game_state['width']", '(2)'], {}), "(game_state['width'], 2)\n", (1091, 1115), True, 'import numpy as np\n'), ((1118, 1151), 'numpy.power', 'np.power', (["game_state['height']", '(2)'], {}), "(game_state['height'], 2)\n", (1126, 1151), True, 'import numpy as np\n'), ((733, 785), 'numpy.power', 'np.power', (['(current_position[0] - enemy_position[0])', '(2)'], {}), '(current_position[0] - enemy_position[0], 2)\n', (741, 785), True, 'import numpy as np\n'), ((788, 840), 'numpy.power', 'np.power', (['(current_position[1] - enemy_position[1])', '(2)'], {}), '(current_position[1] - enemy_position[1], 2)\n', (796, 840), True, 'import numpy as np\n')]
from django.shortcuts import render, redirect from django.contrib import messages from django.http import HttpResponseForbidden from django.contrib.auth.decorators import login_required from .forms import * from .models import * from urllib.request import urlopen, Request import json import random # Create your views here. def landing(request): return render(request, 'start.html') def signup(request): if request.user.is_authenticated: return redirect('home') if request.method == "POST": form = UserRegisterForm(request.POST) if form.is_valid(): user = form.save() prof = Profile(user=user) prof.save() messages.success( request, f"Your account has been created! You are now able to log in" ) return redirect("login") else: form = UserRegisterForm() return render(request, 'signup.html', {'form': form}) def home(request): if request.method == "POST": form = CarForm(request.POST) if form.is_valid(): vin = form.cleaned_data['vin'] thing = Request(f'https://vpic.nhtsa.dot.gov/api/vehicles/decodevin/{vin}?format=json') response_body = {d['Variable']: d['Value'].upper() for d in json.loads(urlopen(thing).read())['Results'] if d['Value'] != '0' and d['Value'] != 0 and d['Value'] is not None and d['Value'] != '' and d['Value'] != 'Not Applicable' and d['Variable'] != 'Error Text'} return render(request, 'results.html', {'info': response_body}) messages.error(request, 'This VIN is invalid. It must be 17 characters long.') vins = ['3GNEC12078G276688', '5GRGN23U83H132227', '1C3CDFBB5FD165342', '1FMZU62E12ZC12617', '2FAFP71W93X138259', '1FTPW12V17FA12080', '1FT8W3BT4FEA96950', 'WDXPD944555842209', 'WVGBV7AX6CW559712', 'SCFAC23302B500083', 'JH4KA7630NC013822', 'JH4DA175XGS009825', '1GCEK14K8RE106083', '4F2CU08102KM50866', 'JH4DA1850HS006058', '5N1AN0NU6BC506916', '1FVACYDC37HW59012'] return render(request, 'home.html', {'form': CarForm(), 'vin': random.choice(vins)})
[ "urllib.request.Request", "django.shortcuts.redirect", "django.contrib.messages.error", "random.choice", "urllib.request.urlopen", "django.shortcuts.render", "django.contrib.messages.success" ]
[((360, 389), 'django.shortcuts.render', 'render', (['request', '"""start.html"""'], {}), "(request, 'start.html')\n", (366, 389), False, 'from django.shortcuts import render, redirect\n'), ((908, 954), 'django.shortcuts.render', 'render', (['request', '"""signup.html"""', "{'form': form}"], {}), "(request, 'signup.html', {'form': form})\n", (914, 954), False, 'from django.shortcuts import render, redirect\n'), ((466, 482), 'django.shortcuts.redirect', 'redirect', (['"""home"""'], {}), "('home')\n", (474, 482), False, 'from django.shortcuts import render, redirect\n'), ((1579, 1657), 'django.contrib.messages.error', 'messages.error', (['request', '"""This VIN is invalid. It must be 17 characters long."""'], {}), "(request, 'This VIN is invalid. It must be 17 characters long.')\n", (1593, 1657), False, 'from django.contrib import messages\n'), ((697, 788), 'django.contrib.messages.success', 'messages.success', (['request', 'f"""Your account has been created! You are now able to log in"""'], {}), "(request,\n f'Your account has been created! You are now able to log in')\n", (713, 788), False, 'from django.contrib import messages\n'), ((834, 851), 'django.shortcuts.redirect', 'redirect', (['"""login"""'], {}), "('login')\n", (842, 851), False, 'from django.shortcuts import render, redirect\n'), ((1138, 1217), 'urllib.request.Request', 'Request', (['f"""https://vpic.nhtsa.dot.gov/api/vehicles/decodevin/{vin}?format=json"""'], {}), "(f'https://vpic.nhtsa.dot.gov/api/vehicles/decodevin/{vin}?format=json')\n", (1145, 1217), False, 'from urllib.request import urlopen, Request\n'), ((1514, 1570), 'django.shortcuts.render', 'render', (['request', '"""results.html"""', "{'info': response_body}"], {}), "(request, 'results.html', {'info': response_body})\n", (1520, 1570), False, 'from django.shortcuts import render, redirect\n'), ((2095, 2114), 'random.choice', 'random.choice', (['vins'], {}), '(vins)\n', (2108, 2114), False, 'import random\n'), ((1302, 1316), 'urllib.request.urlopen', 'urlopen', (['thing'], {}), '(thing)\n', (1309, 1316), False, 'from urllib.request import urlopen, Request\n')]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Functions for estimating the precision matrix based on the covariance of either the residuals (temporal based precision matrix) or of the measurements (instance based precision matrix) """ from collections.abc import Iterable import numpy as np from rsatoolbox.data import average_dataset_by from rsatoolbox.util.data_utils import get_unique_inverse def _check_demean(matrix): """ checks that an input has 2 or 3 dimensions and subtracts the mean. returns a 2D matrix for covariance/precision computation and the degrees of freedom Args: matrix (np.ndarray): n_conditions x n_channels Returns: numpy.ndarray: demeaned matrix """ assert isinstance(matrix, np.ndarray), "input must be ndarray" if matrix.ndim in [1, 2]: matrix = matrix - np.mean(matrix, axis=0, keepdims=True) dof = matrix.shape[0] - 1 elif matrix.ndim == 3: matrix -= np.mean(matrix, axis=2, keepdims=True) dof = (matrix.shape[0] - 1) * matrix.shape[2] matrix = matrix.transpose(0, 2, 1).reshape( matrix.shape[0] * matrix.shape[2], matrix.shape[1]) else: raise ValueError('Matrix for covariance estimation has wrong # of dimensions!') return matrix, dof def _estimate_covariance(matrix, dof, method): """ calls the right covariance estimation function based on the ""method" argument Args: matrix (np.ndarray): n_conditions x n_channels dof (int): degrees of freedom method (string): which estimator to use Returns: numpy.ndarray, numpy.ndarray: cov_mat: n_channels x n_channels sample covariance matrix """ matrix, dof_nat = _check_demean(matrix) if dof is None: dof = dof_nat # calculate sample covariance matrix s if method == 'shrinkage_eye': cov_mat = _covariance_eye(matrix, dof) elif method == 'shrinkage_diag': cov_mat = _covariance_diag(matrix, dof) elif method == 'diag': cov_mat = _variance(matrix, dof) elif method == 'full': cov_mat = _covariance_full(matrix, dof) return cov_mat def _variance(matrix, dof): """ returns the vector of variances per measurement channel. The formula used here implies that the mean was already removed. Args: matrix (np.ndarray): n_conditions x n_channels Returns: numpy.ndarray: variance vector """ return np.diag(np.einsum('ij, ij-> j', matrix, matrix) / dof) def _covariance_full(matrix, dof): """ computes the sample covariance matrix from a 2d-array. matrix should be demeaned before! Args: matrix (np.ndarray): n_conditions x n_channels Returns: numpy.ndarray, numpy.ndarray: s_mean: n_channels x n_channels sample covariance matrix """ return np.einsum('ij, ik-> jk', matrix, matrix) / dof def _covariance_eye(matrix, dof): """ computes the sample covariance matrix from a 2d-array. matrix should be demeaned before! Computes an optimal shrinkage estimate of a sample covariance matrix as described by the following publication: <NAME> Wolfe (2004): "A well-conditioned estimator for large-dimensional covariance matrices" Args: matrix (np.ndarray): n_conditions x n_channels Returns: numpy.ndarray, numpy.ndarray: s_mean: n_channels x n_channels sample covariance matrix xt_x: Einstein summation form of the matrix product of the 2d-array with itself """ s_sum = np.zeros((matrix.shape[1], matrix.shape[1])) s2_sum = np.zeros((matrix.shape[1], matrix.shape[1])) for m_line in matrix: xt_x = np.outer(m_line, m_line) s_sum += xt_x s2_sum += xt_x ** 2 s = s_sum / matrix.shape[0] b2 = np.sum(s2_sum / matrix.shape[0] - s * s) / matrix.shape[0] # calculate the scalar estimators to find the optimal shrinkage: # m, d^2, b^2 as in Ledoit & Wolfe paper m = np.sum(np.diag(s)) / s.shape[0] d2 = np.sum((s - m * np.eye(s.shape[0])) ** 2) b2 = min(d2, b2) # shrink covariance matrix s_shrink = b2 / d2 * m * np.eye(s.shape[0]) \ + (d2-b2) / d2 * s # correction for degrees of freedom s_shrink = s_shrink * matrix.shape[0] / dof return s_shrink def _covariance_diag(matrix, dof, mem_threshold=(10**9)/8): """ computes the sample covariance matrix from a 2d-array. matrix should be demeaned before! Computes an optimal shrinkage estimate of a sample covariance matrix as described by the following publication: <NAME>., & <NAME>. (2005). "A Shrinkage Approach to Large-Scale Covariance Matrix Estimation and Implications for Functional Genomics."" Args: matrix (np.ndarray): n_conditions x n_channels Returns: numpy.ndarray, numpy.ndarray: s_mean: n_channels x n_channels sample covariance matrix xt_x: Einstein summation form of the matrix product of the 2d-array with itself """ s_sum = np.zeros((matrix.shape[1], matrix.shape[1])) s2_sum = np.zeros((matrix.shape[1], matrix.shape[1])) for m_line in matrix: xt_x = np.outer(m_line, m_line) s_sum += xt_x s2_sum += xt_x ** 2 s = s_sum / dof var = np.diag(s) std = np.sqrt(var) s_mean = s_sum / np.expand_dims(std, 0) / np.expand_dims(std, 1) / (matrix.shape[0] - 1) s2_mean = s2_sum / np.expand_dims(var, 0) / np.expand_dims(var, 1) / (matrix.shape[0] - 1) var_hat = matrix.shape[0] / dof ** 2 \ * (s2_mean - s_mean ** 2) mask = ~np.eye(s.shape[0], dtype=np.bool) lamb = np.sum(var_hat[mask]) / np.sum(s_mean[mask] ** 2) lamb = max(min(lamb, 1), 0) scaling = np.eye(s.shape[0]) + (1-lamb) * mask s_shrink = s * scaling return s_shrink def sample_covariance_3d(tensor): """ computes the sample covariance matrix from a tensor by estimating the sample covariance for each slice along the third dimension and averaging the estimated covariance matrices. Args: tensor (numpy.ndarray): n_conditions x n_channels x n_measurements Returns: numpy.ndarray: s_mean: n_channels x n_channels expected sample covariance matrix """ xt_x = np.einsum('ij, ik-> ijk', tensor, tensor) s = np.mean(xt_x, axis=0) return s, xt_x def cov_from_residuals(residuals, dof=None, method='shrinkage_diag'): """ Estimates a covariance matrix from measurements. Allows for shrinkage estimates. Use 'method' to choose which estimation method is used. Args: residuals(numpy.ndarray or list of these): n_residuals x n_channels matrix of residuals dof(int or list of int): degrees of freedom for covariance estimation defaults to n_res - 1, should be corrected for the number of regressors in a GLM if applicable. method(str): which estimate to use: 'diag': provides a diagonal matrix, i.e. univariate noise normalizer 'full': computes the sample covariance without shrinkage 'shrinkage_eye': shrinks the data covariance towards a multiple of the identity. 'shrinkage_diag': shrinks the covariance matrix towards the diagonal covariance matrix. Returns: numpy.ndarray (or list): sigma_p: covariance matrix over channels """ if not isinstance(residuals, np.ndarray) or len(residuals.shape) > 2: cov_mat = [] for i, residual in enumerate(residuals): if dof is None: cov_mat.append(cov_from_residuals( residual, method=method)) elif isinstance(dof, Iterable): cov_mat.append(cov_from_residuals( residuals, method=method, dof=dof[i])) else: cov_mat.append(cov_from_residuals( residual, method=method, dof=dof)) else: cov_mat = _estimate_covariance(residuals, dof, method) return cov_mat def prec_from_residuals(residuals, dof=None, method='shrinkage_diag'): """ Estimates the covariance matrix from residuals and finds its multiplicative inverse (= the precision matrix) Use 'method' to choose which estimation method is used. Args: residuals(numpy.ndarray or list of these): n_residuals x n_channels matrix of residuals dof(int or list of int): degrees of freedom for covariance estimation defaults to n_res - 1, should be corrected for the number of regressors in a GLM if applicable. method(str): which estimate to use: 'diag': provides a diagonal matrix, i.e. univariate noise normalizer 'full': computes the sample covariance without shrinkage 'shrinkage_eye': shrinks the data covariance towards a multiple of the identity. 'shrinkage_diag': shrinks the covariance matrix towards the diagonal covariance matrix. Returns: numpy.ndarray (or list): sigma_p: precision matrix over channels """ cov = cov_from_residuals(residuals=residuals, dof=dof, method=method) if not isinstance(cov, np.ndarray): prec = [None] * len(cov) for i, cov_i in enumerate(cov): prec[i] = np.linalg.inv(cov_i) elif len(cov.shape) > 2: prec = np.zeros(cov.shape) for i, cov_i in enumerate(cov): prec[i] = np.linalg.inv(cov_i) else: prec = np.linalg.inv(cov) return prec def cov_from_measurements(dataset, obs_desc, dof=None, method='shrinkage_diag'): """ Estimates a covariance matrix from measurements. Allows for shrinkage estimates. Use 'method' to choose which estimation method is used. Args: dataset(data.Dataset): rsatoolbox Dataset object dof(int or list of int): degrees of freedom for covariance estimation defaults to n_res - 1, should be corrected for the number of regressors in a GLM if applicable. method(str): which estimate to use: 'diag': provides a diagonal matrix, i.e. univariate noise normalizer 'full': computes the sample covariance without shrinkage 'shrinkage_eye': shrinks the data covariance towards a multiple of the identity. 'shrinkage_diag': shrinks the covariance matrix towards the diagonal covariance matrix. Returns: numpy.ndarray (or list): sigma_p: covariance matrix over channels """ if isinstance(dataset, Iterable): cov_mat = [] for i, dat in enumerate(dataset): if dof is None: cov_mat.append(cov_from_unbalanced( dat, obs_desc=obs_desc, method=method)) elif isinstance(dof, Iterable): cov_mat.append(cov_from_unbalanced( dat, obs_desc=obs_desc, method=method, dof=dof[i])) else: cov_mat.append(cov_from_unbalanced( dat, obs_desc=obs_desc, method=method, dof=dof)) else: assert "Dataset" in str(type(dataset)), "Provided object is not a dataset" assert obs_desc in dataset.obs_descriptors.keys(), \ "obs_desc not contained in the dataset's obs_descriptors" tensor, _ = dataset.get_measurements_tensor(obs_desc) # calculate sample covariance matrix s cov_mat = _estimate_covariance(tensor, dof, method) return cov_mat def prec_from_measurements(dataset, obs_desc, dof=None, method='shrinkage_diag'): """ Estimates the covariance matrix from measurements and finds its multiplicative inverse (= the precision matrix) Use 'method' to choose which estimation method is used. Args: residuals(numpy.ndarray or list of these): n_residuals x n_channels matrix of residuals dof(int or list of int): degrees of freedom for covariance estimation defaults to n_res - 1, should be corrected for the number of regressors in a GLM if applicable. method(str): which estimate to use: 'diag': provides a diagonal matrix, i.e. univariate noise normalizer 'full': computes the sample covariance without shrinkage 'shrinkage_eye': shrinks the data covariance towards a multiple of the identity. 'shrinkage_diag': shrinks the covariance matrix towards the diagonal covariance matrix. Returns: numpy.ndarray (or list): sigma_p: precision matrix over channels """ cov = cov_from_measurements(dataset, obs_desc, dof=dof, method=method) if not isinstance(cov, np.ndarray): prec = [None] * len(cov) for i, cov_i in enumerate(cov): prec[i] = np.linalg.inv(cov_i) elif len(cov.shape) > 2: prec = np.zeros(cov.shape) for i, cov_i in enumerate(cov): prec[i] = np.linalg.inv(cov_i) else: prec = np.linalg.inv(cov) return prec def cov_from_unbalanced(dataset, obs_desc, dof=None, method='shrinkage_diag'): """ Estimates a covariance matrix from an unbalanced dataset, i.e. from a dataset that contains different numbers of samples for different stimuli. Args: dataset(data.Dataset): rsatoolbox Dataset object dof(int or list of int): degrees of freedom for covariance estimation defaults to n_measurements - n_stimuli, should be corrected if this is not the case method(str): which estimate to use: 'diag': provides a diagonal matrix, i.e. univariate noise normalizer 'full': computes the sample covariance without shrinkage 'shrinkage_eye': shrinks the data covariance towards a multiple of the identity. 'shrinkage_diag': shrinks the covariance matrix towards the diagonal covariance matrix. Returns: numpy.ndarray (or list): sigma_p: covariance matrix over channels """ if isinstance(dataset, Iterable): cov_mat = [] for i, dat in enumerate(dataset): if dof is None: cov_mat.append(cov_from_unbalanced( dat, obs_desc=obs_desc, method=method)) elif isinstance(dof, Iterable): cov_mat.append(cov_from_unbalanced( dat, obs_desc=obs_desc, method=method, dof=dof[i])) else: cov_mat.append(cov_from_unbalanced( dat, obs_desc=obs_desc, method=method, dof=dof)) else: assert "Dataset" in str(type(dataset)), "Provided object is not a dataset" assert obs_desc in dataset.obs_descriptors.keys(), \ "obs_desc not contained in the dataset's obs_descriptors" matrix = dataset.measurements means, values, _ = average_dataset_by(dataset, obs_desc) values, inverse = get_unique_inverse(dataset.obs_descriptors[obs_desc]) matrix -= means[inverse] # calculate sample covariance matrix s if dof is None: dof = matrix.shape[0] - len(values) cov_mat = _estimate_covariance(matrix, dof, method) return cov_mat def prec_from_unbalanced(dataset, obs_desc, dof=None, method='shrinkage_diag'): """ Estimates the covariance matrix from measurements and finds its multiplicative inverse (= the precision matrix) Use 'method' to choose which estimation method is used. Args: residuals(numpy.ndarray or list of these): n_residuals x n_channels matrix of residuals dof(int or list of int): degrees of freedom for covariance estimation defaults to n_res - 1, should be corrected for the number of regressors in a GLM if applicable. method(str): which estimate to use: 'diag': provides a diagonal matrix, i.e. univariate noise normalizer 'full': computes the sample covariance without shrinkage 'shrinkage_eye': shrinks the data covariance towards a multiple of the identity. 'shrinkage_diag': shrinks the covariance matrix towards the diagonal covariance matrix. Returns: numpy.ndarray (or list): sigma_p: precision matrix over channels """ cov = cov_from_unbalanced(dataset, obs_desc, dof=dof, method=method) if not isinstance(cov, np.ndarray): prec = [None] * len(cov) for i, cov_i in enumerate(cov): prec[i] = np.linalg.inv(cov_i) elif len(cov.shape) > 2: prec = np.zeros(cov.shape) for i, cov_i in enumerate(cov): prec[i] = np.linalg.inv(cov_i) else: prec = np.linalg.inv(cov) return prec
[ "numpy.outer", "numpy.sum", "numpy.eye", "rsatoolbox.util.data_utils.get_unique_inverse", "rsatoolbox.data.average_dataset_by", "numpy.zeros", "numpy.einsum", "numpy.expand_dims", "numpy.mean", "numpy.linalg.inv", "numpy.diag", "numpy.sqrt" ]
[((3735, 3779), 'numpy.zeros', 'np.zeros', (['(matrix.shape[1], matrix.shape[1])'], {}), '((matrix.shape[1], matrix.shape[1]))\n', (3743, 3779), True, 'import numpy as np\n'), ((3793, 3837), 'numpy.zeros', 'np.zeros', (['(matrix.shape[1], matrix.shape[1])'], {}), '((matrix.shape[1], matrix.shape[1]))\n', (3801, 3837), True, 'import numpy as np\n'), ((5267, 5311), 'numpy.zeros', 'np.zeros', (['(matrix.shape[1], matrix.shape[1])'], {}), '((matrix.shape[1], matrix.shape[1]))\n', (5275, 5311), True, 'import numpy as np\n'), ((5325, 5369), 'numpy.zeros', 'np.zeros', (['(matrix.shape[1], matrix.shape[1])'], {}), '((matrix.shape[1], matrix.shape[1]))\n', (5333, 5369), True, 'import numpy as np\n'), ((5516, 5526), 'numpy.diag', 'np.diag', (['s'], {}), '(s)\n', (5523, 5526), True, 'import numpy as np\n'), ((5537, 5549), 'numpy.sqrt', 'np.sqrt', (['var'], {}), '(var)\n', (5544, 5549), True, 'import numpy as np\n'), ((6520, 6561), 'numpy.einsum', 'np.einsum', (['"""ij, ik-> ijk"""', 'tensor', 'tensor'], {}), "('ij, ik-> ijk', tensor, tensor)\n", (6529, 6561), True, 'import numpy as np\n'), ((6570, 6591), 'numpy.mean', 'np.mean', (['xt_x'], {'axis': '(0)'}), '(xt_x, axis=0)\n', (6577, 6591), True, 'import numpy as np\n'), ((2986, 3026), 'numpy.einsum', 'np.einsum', (['"""ij, ik-> jk"""', 'matrix', 'matrix'], {}), "('ij, ik-> jk', matrix, matrix)\n", (2995, 3026), True, 'import numpy as np\n'), ((3879, 3903), 'numpy.outer', 'np.outer', (['m_line', 'm_line'], {}), '(m_line, m_line)\n', (3887, 3903), True, 'import numpy as np\n'), ((3995, 4035), 'numpy.sum', 'np.sum', (['(s2_sum / matrix.shape[0] - s * s)'], {}), '(s2_sum / matrix.shape[0] - s * s)\n', (4001, 4035), True, 'import numpy as np\n'), ((5411, 5435), 'numpy.outer', 'np.outer', (['m_line', 'm_line'], {}), '(m_line, m_line)\n', (5419, 5435), True, 'import numpy as np\n'), ((5827, 5860), 'numpy.eye', 'np.eye', (['s.shape[0]'], {'dtype': 'np.bool'}), '(s.shape[0], dtype=np.bool)\n', (5833, 5860), True, 'import numpy as np\n'), ((5872, 5893), 'numpy.sum', 'np.sum', (['var_hat[mask]'], {}), '(var_hat[mask])\n', (5878, 5893), True, 'import numpy as np\n'), ((5896, 5921), 'numpy.sum', 'np.sum', (['(s_mean[mask] ** 2)'], {}), '(s_mean[mask] ** 2)\n', (5902, 5921), True, 'import numpy as np\n'), ((5968, 5986), 'numpy.eye', 'np.eye', (['s.shape[0]'], {}), '(s.shape[0])\n', (5974, 5986), True, 'import numpy as np\n'), ((15071, 15108), 'rsatoolbox.data.average_dataset_by', 'average_dataset_by', (['dataset', 'obs_desc'], {}), '(dataset, obs_desc)\n', (15089, 15108), False, 'from rsatoolbox.data import average_dataset_by\n'), ((15135, 15188), 'rsatoolbox.util.data_utils.get_unique_inverse', 'get_unique_inverse', (['dataset.obs_descriptors[obs_desc]'], {}), '(dataset.obs_descriptors[obs_desc])\n', (15153, 15188), False, 'from rsatoolbox.util.data_utils import get_unique_inverse\n'), ((877, 915), 'numpy.mean', 'np.mean', (['matrix'], {'axis': '(0)', 'keepdims': '(True)'}), '(matrix, axis=0, keepdims=True)\n', (884, 915), True, 'import numpy as np\n'), ((995, 1033), 'numpy.mean', 'np.mean', (['matrix'], {'axis': '(2)', 'keepdims': '(True)'}), '(matrix, axis=2, keepdims=True)\n', (1002, 1033), True, 'import numpy as np\n'), ((2578, 2617), 'numpy.einsum', 'np.einsum', (['"""ij, ij-> j"""', 'matrix', 'matrix'], {}), "('ij, ij-> j', matrix, matrix)\n", (2587, 2617), True, 'import numpy as np\n'), ((4183, 4193), 'numpy.diag', 'np.diag', (['s'], {}), '(s)\n', (4190, 4193), True, 'import numpy as np\n'), ((4340, 4358), 'numpy.eye', 'np.eye', (['s.shape[0]'], {}), '(s.shape[0])\n', (4346, 4358), True, 'import numpy as np\n'), ((5596, 5618), 'numpy.expand_dims', 'np.expand_dims', (['std', '(1)'], {}), '(std, 1)\n', (5610, 5618), True, 'import numpy as np\n'), ((5691, 5713), 'numpy.expand_dims', 'np.expand_dims', (['var', '(1)'], {}), '(var, 1)\n', (5705, 5713), True, 'import numpy as np\n'), ((9543, 9563), 'numpy.linalg.inv', 'np.linalg.inv', (['cov_i'], {}), '(cov_i)\n', (9556, 9563), True, 'import numpy as np\n'), ((9608, 9627), 'numpy.zeros', 'np.zeros', (['cov.shape'], {}), '(cov.shape)\n', (9616, 9627), True, 'import numpy as np\n'), ((9736, 9754), 'numpy.linalg.inv', 'np.linalg.inv', (['cov'], {}), '(cov)\n', (9749, 9754), True, 'import numpy as np\n'), ((13011, 13031), 'numpy.linalg.inv', 'np.linalg.inv', (['cov_i'], {}), '(cov_i)\n', (13024, 13031), True, 'import numpy as np\n'), ((13076, 13095), 'numpy.zeros', 'np.zeros', (['cov.shape'], {}), '(cov.shape)\n', (13084, 13095), True, 'import numpy as np\n'), ((13204, 13222), 'numpy.linalg.inv', 'np.linalg.inv', (['cov'], {}), '(cov)\n', (13217, 13222), True, 'import numpy as np\n'), ((16698, 16718), 'numpy.linalg.inv', 'np.linalg.inv', (['cov_i'], {}), '(cov_i)\n', (16711, 16718), True, 'import numpy as np\n'), ((16763, 16782), 'numpy.zeros', 'np.zeros', (['cov.shape'], {}), '(cov.shape)\n', (16771, 16782), True, 'import numpy as np\n'), ((16891, 16909), 'numpy.linalg.inv', 'np.linalg.inv', (['cov'], {}), '(cov)\n', (16904, 16909), True, 'import numpy as np\n'), ((5571, 5593), 'numpy.expand_dims', 'np.expand_dims', (['std', '(0)'], {}), '(std, 0)\n', (5585, 5593), True, 'import numpy as np\n'), ((5666, 5688), 'numpy.expand_dims', 'np.expand_dims', (['var', '(0)'], {}), '(var, 0)\n', (5680, 5688), True, 'import numpy as np\n'), ((9690, 9710), 'numpy.linalg.inv', 'np.linalg.inv', (['cov_i'], {}), '(cov_i)\n', (9703, 9710), True, 'import numpy as np\n'), ((13158, 13178), 'numpy.linalg.inv', 'np.linalg.inv', (['cov_i'], {}), '(cov_i)\n', (13171, 13178), True, 'import numpy as np\n'), ((16845, 16865), 'numpy.linalg.inv', 'np.linalg.inv', (['cov_i'], {}), '(cov_i)\n', (16858, 16865), True, 'import numpy as np\n'), ((4233, 4251), 'numpy.eye', 'np.eye', (['s.shape[0]'], {}), '(s.shape[0])\n', (4239, 4251), True, 'import numpy as np\n')]
import sys import h5py import numpy as np import torch from torch.autograd import Variable def print_args(args): print("===== Experiment Configuration =====") options = vars(args) for key, value in options.items(): print(f'{key}: {value}') print("====================================") def rand_float(lo, hi): return np.random.rand() * (hi - lo) + lo def rand_int(lo, hi): return np.random.randint(lo, hi) def calc_dis(a, b): return np.sqrt((a[0] - b[0]) ** 2 + (a[1] - b[1]) ** 2) def norm(x, p=2): return np.power(np.sum(x ** p), 1. / p) def store_data(data_names, data, path): hf = h5py.File(path, 'w') for i in range(len(data_names)): hf.create_dataset(data_names[i], data=data[i]) hf.close() def load_data(data_names, path): hf = h5py.File(path, 'r') data = [] for i in range(len(data_names)): d = np.array(hf.get(data_names[i])) data.append(d) hf.close() return data def combine_stat(stat_0, stat_1): mean_0, std_0, n_0 = stat_0[:, 0], stat_0[:, 1], stat_0[:, 2] mean_1, std_1, n_1 = stat_1[:, 0], stat_1[:, 1], stat_1[:, 2] mean = (mean_0 * n_0 + mean_1 * n_1) / (n_0 + n_1) std = np.sqrt( (std_0 ** 2 * n_0 + std_1 ** 2 * n_1 + (mean_0 - mean) ** 2 * n_0 + (mean_1 - mean) ** 2 * n_1) / (n_0 + n_1)) n = n_0 + n_1 return np.stack([mean, std, n], axis=-1) def init_stat(dim): # mean, std, count return np.zeros((dim, 3)) def var_norm(x): return torch.sqrt((x ** 2).sum()).item() def count_parameters(model): return sum(p.numel() for p in model.parameters() if p.requires_grad) def get_flat(x, keep_dim=False): if keep_dim: return x.reshape(torch.Size([1, x.size(0) * x.size(1)]) + x.size()[2:]) return x.reshape(torch.Size([x.size(0) * x.size(1)]) + x.size()[2:]) def to_var(tensor, use_gpu, requires_grad=False): if use_gpu: return Variable(torch.FloatTensor(tensor).cuda(), requires_grad=requires_grad) else: return Variable(torch.FloatTensor(tensor), requires_grad=requires_grad) def to_np(x): return x.detach().cpu().numpy() def mix_iters(iters): table = [] for i, iter in enumerate(iters): table += [i] * len(iter) np.random.shuffle(table) for i in table: yield iters[i].next() class Tee(object): def __init__(self, name, mode): self.file = open(name, mode) self.stdout = sys.stdout sys.stdout = self def __del__(self): sys.stdout = self.stdout self.file.close() def write(self, data): self.file.write(data) self.stdout.write(data) def flush(self): self.file.flush() def close(self): self.__del__() class AverageMeter(object): def __init__(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count
[ "numpy.stack", "h5py.File", "numpy.sum", "numpy.zeros", "torch.FloatTensor", "numpy.random.randint", "numpy.random.rand", "numpy.random.shuffle", "numpy.sqrt" ]
[((417, 442), 'numpy.random.randint', 'np.random.randint', (['lo', 'hi'], {}), '(lo, hi)\n', (434, 442), True, 'import numpy as np\n'), ((476, 524), 'numpy.sqrt', 'np.sqrt', (['((a[0] - b[0]) ** 2 + (a[1] - b[1]) ** 2)'], {}), '((a[0] - b[0]) ** 2 + (a[1] - b[1]) ** 2)\n', (483, 524), True, 'import numpy as np\n'), ((640, 660), 'h5py.File', 'h5py.File', (['path', '"""w"""'], {}), "(path, 'w')\n", (649, 660), False, 'import h5py\n'), ((812, 832), 'h5py.File', 'h5py.File', (['path', '"""r"""'], {}), "(path, 'r')\n", (821, 832), False, 'import h5py\n'), ((1216, 1338), 'numpy.sqrt', 'np.sqrt', (['((std_0 ** 2 * n_0 + std_1 ** 2 * n_1 + (mean_0 - mean) ** 2 * n_0 + (\n mean_1 - mean) ** 2 * n_1) / (n_0 + n_1))'], {}), '((std_0 ** 2 * n_0 + std_1 ** 2 * n_1 + (mean_0 - mean) ** 2 * n_0 +\n (mean_1 - mean) ** 2 * n_1) / (n_0 + n_1))\n', (1223, 1338), True, 'import numpy as np\n'), ((1374, 1407), 'numpy.stack', 'np.stack', (['[mean, std, n]'], {'axis': '(-1)'}), '([mean, std, n], axis=-1)\n', (1382, 1407), True, 'import numpy as np\n'), ((1464, 1482), 'numpy.zeros', 'np.zeros', (['(dim, 3)'], {}), '((dim, 3))\n', (1472, 1482), True, 'import numpy as np\n'), ((2266, 2290), 'numpy.random.shuffle', 'np.random.shuffle', (['table'], {}), '(table)\n', (2283, 2290), True, 'import numpy as np\n'), ((565, 579), 'numpy.sum', 'np.sum', (['(x ** p)'], {}), '(x ** p)\n', (571, 579), True, 'import numpy as np\n'), ((348, 364), 'numpy.random.rand', 'np.random.rand', ([], {}), '()\n', (362, 364), True, 'import numpy as np\n'), ((2045, 2070), 'torch.FloatTensor', 'torch.FloatTensor', (['tensor'], {}), '(tensor)\n', (2062, 2070), False, 'import torch\n'), ((1948, 1973), 'torch.FloatTensor', 'torch.FloatTensor', (['tensor'], {}), '(tensor)\n', (1965, 1973), False, 'import torch\n')]
#!/usr/bin/env python __description__ = 'Decode VBE script' __author__ = '<NAME>' __version__ = '0.0.2' __date__ = '2016/03/29' """ Source code put in public domain by Didier Stevens, no Copyright https://DidierStevens.com Use at your own risk History: 2016/03/28: start 2016/03/29: 0.0.2 added support for ZIP files and literal arguments with File2StringHash Todo: Reference: https://gallery.technet.microsoft.com/Encode-and-Decode-a-VB-a480d74c """ import optparse import sys import os import signal import textwrap import re import zipfile import binascii MALWARE_PASSWORD = '<PASSWORD>' def PrintManual(): manual = ''' Manual: This program reads from the given file or standard input, and converts the encoded VBE script to VBS. The provided file can be a password protected ZIP file (with password infected) containing the VBE script. The content of the VBE script can also be passed as a literal argument. This is similar to a Here Document in Unix. Start the argument (the "filename") with character # to pass a literal argument. Example: decode-vbe.py "##@~^DgAAAA==\ko$K6,JCV^GJqAQAAA==^#~@" Result: MsgBox "Hello" It's also possible to use hexadecimal (prefix #h#) or base64 (prefix #b#) to pass a literal argument. Example: decode-vbe.py #h#23407E5E4467414141413D3D5C6B6F244B362C4A437F565E474A7141514141413D3D5E237E40 Result: MsgBox "Hello" Example: decode-vbe.py #b#I<KEY>= Result: MsgBox "Hello" ''' for line in manual.split('\n'): print(textwrap.fill(line)) #Convert 2 Bytes If Python 3 def C2BIP3(string): if sys.version_info[0] > 2: return bytes([ord(x) for x in string]) else: return string def File2String(filename): try: f = open(filename, 'rb') except: return None try: return f.read() except: return None finally: f.close() def File2StringHash(filename): decoded = None if filename.startswith('#h#'): try: decoded = binascii.a2b_hex(filename[3:]) finally: return decoded elif filename.startswith('#b#'): try: decoded = binascii.a2b_base64(filename[3:]) finally: return decoded elif filename.startswith('#'): return filename[1:] elif filename.lower().endswith('.zip'): oZipfile = zipfile.ZipFile(filename, 'r') if len(oZipfile.infolist()) == 1: oZipContent = oZipfile.open(oZipfile.infolist()[0], 'r', C2BIP3(MALWARE_PASSWORD)) data = oZipContent.read() oZipContent.close() else: data = File2String(filename) oZipfile.close() return data else: return File2String(filename) def FixPipe(): try: signal.signal(signal.SIGPIPE, signal.SIG_DFL) except: pass #Fix for http://bugs.python.org/issue11395 def StdoutWriteChunked(data): while data != '': sys.stdout.write(data[0:10000]) sys.stdout.flush() data = data[10000:] def Decode(data): dDecode = {} dDecode[9] = '\x57\x6E\x7B' dDecode[10] = '\x4A\x4C\x41' dDecode[11] = '\x0B\x0B\x0B' dDecode[12] = '\x0C\x0C\x0C' dDecode[13] = '\x4A\x4C\x41' dDecode[14] = '\x0E\x0E\x0E' dDecode[15] = '\x0F\x0F\x0F' dDecode[16] = '\x10\x10\x10' dDecode[17] = '\x11\x11\x11' dDecode[18] = '\x12\x12\x12' dDecode[19] = '\x13\x13\x13' dDecode[20] = '\x14\x14\x14' dDecode[21] = '\x15\x15\x15' dDecode[22] = '\x16\x16\x16' dDecode[23] = '\x17\x17\x17' dDecode[24] = '\x18\x18\x18' dDecode[25] = '\x19\x19\x19' dDecode[26] = '\x1A\x1A\x1A' dDecode[27] = '\x1B\x1B\x1B' dDecode[28] = '\x1C\x1C\x1C' dDecode[29] = '\x1D\x1D\x1D' dDecode[30] = '\x1E\x1E\x1E' dDecode[31] = '\x1F\x1F\x1F' dDecode[32] = '\x2E\x2D\x32' dDecode[33] = '\x47\x75\x30' dDecode[34] = '\x7A\x52\x21' dDecode[35] = '\x56\x60\x29' dDecode[36] = '\x42\x71\x5B' dDecode[37] = '\x6A\x5E\x38' dDecode[38] = '\x2F\x49\x33' dDecode[39] = '\x26\x5C\x3D' dDecode[40] = '\x49\x62\x58' dDecode[41] = '\x41\x7D\x3A' dDecode[42] = '\x34\x29\x35' dDecode[43] = '\x32\x36\x65' dDecode[44] = '\x5B\x20\x39' dDecode[45] = '\x76\x7C\x5C' dDecode[46] = '\x72\x7A\x56' dDecode[47] = '\x43\x7F\x73' dDecode[48] = '\x38\x6B\x66' dDecode[49] = '\x39\x63\x4E' dDecode[50] = '\x70\x33\x45' dDecode[51] = '\x45\x2B\x6B' dDecode[52] = '\x68\x68\x62' dDecode[53] = '\x71\x51\x59' dDecode[54] = '\x4F\x66\x78' dDecode[55] = '\x09\x76\x5E' dDecode[56] = '\x62\x31\x7D' dDecode[57] = '\x44\x64\x4A' dDecode[58] = '\x23\x54\x6D' dDecode[59] = '\x75\x43\x71' dDecode[60] = '\x4A\x4C\x41' dDecode[61] = '\x7E\x3A\x60' dDecode[62] = '\x4A\x4C\x41' dDecode[63] = '\x5E\x7E\x53' dDecode[64] = '\x40\x4C\x40' dDecode[65] = '\x77\x45\x42' dDecode[66] = '\x4A\x2C\x27' dDecode[67] = '\x61\x2A\x48' dDecode[68] = '\x5D\x74\x72' dDecode[69] = '\x22\x27\x75' dDecode[70] = '\x4B\x37\x31' dDecode[71] = '\x6F\x44\x37' dDecode[72] = '\x4E\x79\x4D' dDecode[73] = '\x3B\x59\x52' dDecode[74] = '\x4C\x2F\x22' dDecode[75] = '\x50\x6F\x54' dDecode[76] = '\x67\x26\x6A' dDecode[77] = '\x2A\x72\x47' dDecode[78] = '\x7D\x6A\x64' dDecode[79] = '\x74\x39\x2D' dDecode[80] = '\x54\x7B\x20' dDecode[81] = '\x2B\x3F\x7F' dDecode[82] = '\x2D\x38\x2E' dDecode[83] = '\x2C\x77\x4C' dDecode[84] = '\x30\x67\x5D' dDecode[85] = '\x6E\x53\x7E' dDecode[86] = '\x6B\x47\x6C' dDecode[87] = '\x66\x34\x6F' dDecode[88] = '\x35\x78\x79' dDecode[89] = '\x25\x5D\x74' dDecode[90] = '\x21\x30\x43' dDecode[91] = '\x64\x23\x26' dDecode[92] = '\x4D\x5A\x76' dDecode[93] = '\x52\x5B\x25' dDecode[94] = '\x63\x6C\x24' dDecode[95] = '\x3F\x48\x2B' dDecode[96] = '\x7B\x55\x28' dDecode[97] = '\x78\x70\x23' dDecode[98] = '\x29\x69\x41' dDecode[99] = '\x28\x2E\x34' dDecode[100] = '\x73\x4C\x09' dDecode[101] = '\x59\x21\x2A' dDecode[102] = '\x33\x24\x44' dDecode[103] = '\x7F\x4E\x3F' dDecode[104] = '\x6D\x50\x77' dDecode[105] = '\x55\x09\x3B' dDecode[106] = '\x53\x56\x55' dDecode[107] = '\x7C\x73\x69' dDecode[108] = '\x3A\x35\x61' dDecode[109] = '\x5F\x61\x63' dDecode[110] = '\x65\x4B\x50' dDecode[111] = '\x46\x58\x67' dDecode[112] = '\x58\x3B\x51' dDecode[113] = '\x31\x57\x49' dDecode[114] = '\x69\x22\x4F' dDecode[115] = '\x6C\x6D\x46' dDecode[116] = '\x5A\x4D\x68' dDecode[117] = '\x48\x25\x7C' dDecode[118] = '\x27\x28\x36' dDecode[119] = '\x5C\x46\x70' dDecode[120] = '\x3D\x4A\x6E' dDecode[121] = '\x24\x32\x7A' dDecode[122] = '\x79\x41\x2F' dDecode[123] = '\x37\x3D\x5F' dDecode[124] = '\x60\x5F\x4B' dDecode[125] = '\x51\x4F\x5A' dDecode[126] = '\x20\x42\x2C' dDecode[127] = '\x36\x65\x57' dCombination = {} dCombination[0] = 0 dCombination[1] = 1 dCombination[2] = 2 dCombination[3] = 0 dCombination[4] = 1 dCombination[5] = 2 dCombination[6] = 1 dCombination[7] = 2 dCombination[8] = 2 dCombination[9] = 1 dCombination[10] = 2 dCombination[11] = 1 dCombination[12] = 0 dCombination[13] = 2 dCombination[14] = 1 dCombination[15] = 2 dCombination[16] = 0 dCombination[17] = 2 dCombination[18] = 1 dCombination[19] = 2 dCombination[20] = 0 dCombination[21] = 0 dCombination[22] = 1 dCombination[23] = 2 dCombination[24] = 2 dCombination[25] = 1 dCombination[26] = 0 dCombination[27] = 2 dCombination[28] = 1 dCombination[29] = 2 dCombination[30] = 2 dCombination[31] = 1 dCombination[32] = 0 dCombination[33] = 0 dCombination[34] = 2 dCombination[35] = 1 dCombination[36] = 2 dCombination[37] = 1 dCombination[38] = 2 dCombination[39] = 0 dCombination[40] = 2 dCombination[41] = 0 dCombination[42] = 0 dCombination[43] = 1 dCombination[44] = 2 dCombination[45] = 0 dCombination[46] = 2 dCombination[47] = 1 dCombination[48] = 0 dCombination[49] = 2 dCombination[50] = 1 dCombination[51] = 2 dCombination[52] = 0 dCombination[53] = 0 dCombination[54] = 1 dCombination[55] = 2 dCombination[56] = 2 dCombination[57] = 0 dCombination[58] = 0 dCombination[59] = 1 dCombination[60] = 2 dCombination[61] = 0 dCombination[62] = 2 dCombination[63] = 1 result = '' index = -1 for char in data.replace('@&', chr(10)).replace('@#', chr(13)).replace('@*', '>').replace('@!', '<').replace('@$', '@'): byte = ord(char) if byte < 128: index = index + 1 if (byte == 9 or byte > 31 and byte < 128) and byte != 60 and byte != 62 and byte != 64: char = [c for c in dDecode[byte]][dCombination[index % 64]] result += char return result def DecodeVBE(filename, options): FixPipe() if sys.platform == 'win32': import msvcrt msvcrt.setmode(sys.stdout.fileno(), os.O_BINARY) if filename == '': content = sys.stdin.read() else: content = File2StringHash(filename) oMatch = re.search(r'#@~\^......==(.+)......==\^#~@', content) if oMatch == None: print('No encoded script found!') else: StdoutWriteChunked(Decode(oMatch.groups()[0])) def Main(): oParser = optparse.OptionParser(usage='usage: %prog [options] [file]\n' + __description__, version='%prog ' + __version__) oParser.add_option('-m', '--man', action='store_true', default=False, help='Print manual') (options, args) = oParser.parse_args() if options.man: oParser.print_help() PrintManual() return if len(args) > 1: oParser.print_help() print('') print(' Source code put in the public domain by <NAME>, no Copyright') print(' Use at your own risk') print(' https://DidierStevens.com') return elif len(args) == 0: DecodeVBE('', options) else: DecodeVBE(args[0], options) if __name__ == '__main__': Main()
[ "sys.stdout.write", "sys.stdin.read", "textwrap.fill", "optparse.OptionParser", "zipfile.ZipFile", "sys.stdout.fileno", "binascii.a2b_hex", "sys.stdout.flush", "signal.signal", "re.search", "binascii.a2b_base64" ]
[((9354, 9408), 're.search', 're.search', (['"""#@~\\\\^......==(.+)......==\\\\^#~@"""', 'content'], {}), "('#@~\\\\^......==(.+)......==\\\\^#~@', content)\n", (9363, 9408), False, 'import re\n'), ((9565, 9681), 'optparse.OptionParser', 'optparse.OptionParser', ([], {'usage': "('usage: %prog [options] [file]\\n' + __description__)", 'version': "('%prog ' + __version__)"}), "(usage='usage: %prog [options] [file]\\n' +\n __description__, version='%prog ' + __version__)\n", (9586, 9681), False, 'import optparse\n'), ((2758, 2803), 'signal.signal', 'signal.signal', (['signal.SIGPIPE', 'signal.SIG_DFL'], {}), '(signal.SIGPIPE, signal.SIG_DFL)\n', (2771, 2803), False, 'import signal\n'), ((2933, 2964), 'sys.stdout.write', 'sys.stdout.write', (['data[0:10000]'], {}), '(data[0:10000])\n', (2949, 2964), False, 'import sys\n'), ((2973, 2991), 'sys.stdout.flush', 'sys.stdout.flush', ([], {}), '()\n', (2989, 2991), False, 'import sys\n'), ((9270, 9286), 'sys.stdin.read', 'sys.stdin.read', ([], {}), '()\n', (9284, 9286), False, 'import sys\n'), ((1488, 1507), 'textwrap.fill', 'textwrap.fill', (['line'], {}), '(line)\n', (1501, 1507), False, 'import textwrap\n'), ((1989, 2019), 'binascii.a2b_hex', 'binascii.a2b_hex', (['filename[3:]'], {}), '(filename[3:])\n', (2005, 2019), False, 'import binascii\n'), ((9195, 9214), 'sys.stdout.fileno', 'sys.stdout.fileno', ([], {}), '()\n', (9212, 9214), False, 'import sys\n'), ((2136, 2169), 'binascii.a2b_base64', 'binascii.a2b_base64', (['filename[3:]'], {}), '(filename[3:])\n', (2155, 2169), False, 'import binascii\n'), ((2340, 2370), 'zipfile.ZipFile', 'zipfile.ZipFile', (['filename', '"""r"""'], {}), "(filename, 'r')\n", (2355, 2370), False, 'import zipfile\n')]
import os import time import numpy as np import pandas as pd from nltk import word_tokenize from nltk.util import ngrams import tensorflow as tf from transformers import TFBertModel from transformers import BertTokenizer from transformers import TFBertModel from tensorflow.keras.layers import Dense, Flatten bert_model_name = 'bert-base-uncased' tokenizer = BertTokenizer.from_pretrained(bert_model_name, do_lower_case=True) print('...BERT tokenizer loading complete') cols_to_use = [ 'Note', 'LGBTQ', 'ADULT_CONTENT', 'HEALTH', 'DRUGS_ALCOHOL_GAMBLING', 'RACE', 'VIOLENCE_CRIME', 'POLITICS', 'RELATION', 'LOCATION' ] label_cols = cols_to_use[1:] #exclude note (input) class BertClassifier(tf.keras.Model): def __init__(self, bert: TFBertModel, num_classes: int): super().__init__() self.bert = bert self.classifier = Dense(num_classes, activation='sigmoid') @tf.function def call(self, input_ids, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None): outputs = self.bert(input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask) cls_output = outputs[1] cls_output = self.classifier(cls_output) return cls_output def read_df(path): df = pd.read_csv(path) df = df[cols_to_use] print('Number of all sentences: {}'.format(len(df))) df['Note'] = df.Note.replace('NA',np.nan) df = df.dropna().sample(frac=1).reset_index(drop=True) print('Number of non-empty sentences: {}'.format(len(df))) return df def get_ids_masks(sentences, MAX_LEN): ids = [] masks = [] for sent in sentences: encoded_dict = tokenizer.encode_plus( sent, # Sentence to encode. add_special_tokens = True, # Add '[CLS]' and '[SEP]' truncation = 'longest_first', max_length = MAX_LEN, # Pad & truncate all sentences. padding = 'max_length', return_attention_mask = True, # Construct attn. masks. ) ids.append(encoded_dict['input_ids']) masks.append(encoded_dict['attention_mask']) return ids, masks def create_dataset(data_tuple, epochs=1, batch_size=32, buffer_size=100, train=True): dataset = tf.data.Dataset.from_tensor_slices(data_tuple) if train: dataset = dataset.shuffle(buffer_size=buffer_size) dataset = dataset.batch(batch_size) if train: dataset = dataset.prefetch(1) return dataset def get_keywords(): # retrieve keywords if exist if os.path.exists("./data/keyword_list.txt"): print("...Keyword list loading complete") with open("./data/keyword_list.txt", 'r') as keyword_file: keywords = set() for word in keyword_file.readlines(): keywords.add(word.strip()) return keywords # construct keywords if not exist keywords_path = "./data/Lexicon/" filenames = [os.path.join(keywords_path, f) for f in os.listdir(keywords_path) if os.path.isfile(os.path.join(keywords_path, f))] keywords = set() for fn in filenames: with open(fn, 'r') as keyword_file: for line in keyword_file.readlines(): word = line.strip() if word: keywords.add(word.lower()) with open("./data/keyword_list.txt", 'w') as keyword_file: for word in keywords: keyword_file.write("{}\n".format(word)) print("...Keyword list building complete") return keywords def not_in_keywords(note, keywords): unigrams = word_tokenize(note) bigrams = ngrams(unigrams, 2) bigrams = [' '.join(bg) for bg in bigrams] trigrams = ngrams(unigrams, 3) trigrams = [' '.join(tg) for tg in trigrams] tokens = unigrams + bigrams + trigrams for t in tokens: if t in keywords: return False return True
[ "os.listdir", "nltk.util.ngrams", "tensorflow.keras.layers.Dense", "pandas.read_csv", "os.path.exists", "tensorflow.data.Dataset.from_tensor_slices", "transformers.BertTokenizer.from_pretrained", "os.path.join", "nltk.word_tokenize" ]
[((360, 426), 'transformers.BertTokenizer.from_pretrained', 'BertTokenizer.from_pretrained', (['bert_model_name'], {'do_lower_case': '(True)'}), '(bert_model_name, do_lower_case=True)\n', (389, 426), False, 'from transformers import BertTokenizer\n'), ((1281, 1298), 'pandas.read_csv', 'pd.read_csv', (['path'], {}), '(path)\n', (1292, 1298), True, 'import pandas as pd\n'), ((2141, 2187), 'tensorflow.data.Dataset.from_tensor_slices', 'tf.data.Dataset.from_tensor_slices', (['data_tuple'], {}), '(data_tuple)\n', (2175, 2187), True, 'import tensorflow as tf\n'), ((2403, 2444), 'os.path.exists', 'os.path.exists', (['"""./data/keyword_list.txt"""'], {}), "('./data/keyword_list.txt')\n", (2417, 2444), False, 'import os\n'), ((3289, 3308), 'nltk.word_tokenize', 'word_tokenize', (['note'], {}), '(note)\n', (3302, 3308), False, 'from nltk import word_tokenize\n'), ((3320, 3339), 'nltk.util.ngrams', 'ngrams', (['unigrams', '(2)'], {}), '(unigrams, 2)\n', (3326, 3339), False, 'from nltk.util import ngrams\n'), ((3396, 3415), 'nltk.util.ngrams', 'ngrams', (['unigrams', '(3)'], {}), '(unigrams, 3)\n', (3402, 3415), False, 'from nltk.util import ngrams\n'), ((833, 873), 'tensorflow.keras.layers.Dense', 'Dense', (['num_classes'], {'activation': '"""sigmoid"""'}), "(num_classes, activation='sigmoid')\n", (838, 873), False, 'from tensorflow.keras.layers import Dense, Flatten\n'), ((2746, 2776), 'os.path.join', 'os.path.join', (['keywords_path', 'f'], {}), '(keywords_path, f)\n', (2758, 2776), False, 'import os\n'), ((2786, 2811), 'os.listdir', 'os.listdir', (['keywords_path'], {}), '(keywords_path)\n', (2796, 2811), False, 'import os\n'), ((2830, 2860), 'os.path.join', 'os.path.join', (['keywords_path', 'f'], {}), '(keywords_path, f)\n', (2842, 2860), False, 'import os\n')]
# # Copyright 2021 Open Raven Inc. and the Mockingbird project authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from typing import final from docx import Document from mockingbird.__base import __BaseDocument from .__base import __BaseUnstructuredDataType class DOCXDocument(__BaseDocument): def __init__(self): super().__init__(extension="docx") # Create a list of docx formats we're going to export. self._docx_styles = [] active_styles = self._configurable_dict["unstructured_data"]["docx_document"]["active_styles"] if active_styles["paragraph_style"]: self._docx_styles.append(_DocxParagraphStyle) if active_styles["footer_style"]: self._docx_styles.append(_DocxFooterStyle) if active_styles["bullet_point_style"]: self._docx_styles.append(_DocxBulletPointStyle) if active_styles["chat_style"]: self._docx_styles.append(_DocxChatStyle) @final def save(self, save_path: str) -> None: for style in self._docx_styles: instantiated_style = style() instantiated_style.clone_sensitive_data(other=self) instantiated_style.save(save_path=save_path) self._meta_data_object.add_other_meta_data(instantiated_style._meta_data_object) class _DocxParagraphStyle(__BaseUnstructuredDataType): """ Writes a simple paragraph containing sensitive-soup. """ def __init__(self): super().__init__(extension="docx") @final def save(self, save_path: str) -> None: """ """ save_file = self.setup_save_file(save_path=save_path, extension=self.extension) document = Document() document.add_heading('Paragraph Styled Document', 0) sensitive_soup = self._get_sensitive_soup() document.add_paragraph(sensitive_soup) document.save(save_file) self._log_save(save_file) class _DocxFooterStyle(__BaseUnstructuredDataType): """ Writes a simple document with sensitive-soup in the footer. """ def __init__(self): super().__init__(extension="docx") @final def save(self, save_path: str) -> None: """ """ save_file = self.setup_save_file(save_path=save_path, extension=self.extension) sensitive_soup = self._get_sensitive_soup() document = Document() document.add_heading('Sensitive-Data in Footer Styled Document', 0) section = document.sections[0] footer = section.footer footer.paragraphs[0].text = sensitive_soup document.save(save_file) self._log_save(save_file) class _DocxBulletPointStyle(__BaseUnstructuredDataType): """ Writes a simple document with sensitive-soup in the footer. """ def __init__(self): super().__init__(extension="docx") @final def save(self, save_path: str) -> None: """ """ save_file = self.setup_save_file(save_path=save_path, extension=self.extension) enumerated_groups = self._get_enumerated_style() document = Document() document.add_heading('Sensitive Data Stored in Bullet Points', 0) for group in enumerated_groups: key, enumerated_items = group document.add_heading(key, level=1) for item in enumerated_items: document.add_paragraph(item, style="List Bullet") document.save(save_file) self._log_save(save_file) class _DocxChatStyle(__BaseUnstructuredDataType): """ Writes a simple document with sensitive-soup in the footer. """ def __init__(self): super().__init__(extension="docx") @final def save(self, save_path: str) -> None: """ """ save_file = self.setup_save_file(save_path=save_path, extension=self.extension) chat_log = self._get_chat_log() document = Document() document.add_heading('A chat between two people', 0) for line in chat_log: document.add_paragraph(line) document.save(save_file) self._log_save(save_file)
[ "docx.Document" ]
[((2215, 2225), 'docx.Document', 'Document', ([], {}), '()\n', (2223, 2225), False, 'from docx import Document\n'), ((2897, 2907), 'docx.Document', 'Document', ([], {}), '()\n', (2905, 2907), False, 'from docx import Document\n'), ((3628, 3638), 'docx.Document', 'Document', ([], {}), '()\n', (3636, 3638), False, 'from docx import Document\n'), ((4450, 4460), 'docx.Document', 'Document', ([], {}), '()\n', (4458, 4460), False, 'from docx import Document\n')]
# -*-coding:Utf-8 -* # Copyright (c) 2010-2017 <NAME> # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # * Neither the name of the copyright holder nor the names of its contributors # may be used to endorse or promote products derived from this software # without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT # OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # pereIBILITY OF SUCH DAMAGE. """Ce fichier définit le contexte-éditeur 'SelectionTags'.""" from primaires.interpreteur.editeur.selection import Selection from primaires.format.fonctions import supprimer_accents class SelectionTags(Selection): """Contexte-éditeur pour la sélection de tags.""" nom = "editeur:tags:selection" def __init__(self, pere, objet=None, attribut=None, liste=None, tagge=None): Selection.__init__(self, pere, objet, attribut, liste) self.tagge = tagge @staticmethod def afficher_apercu(apercu, objet, valeur, liste=None, tagge=None): """Affichage de l'aperçu.""" return Selection.afficher_apercu(apercu, objet, valeur, liste) def interpreter(self, msg): """Interprétation du contexte""" nom = msg msg_sa = supprimer_accents(msg).lower() liste = getattr(self.objet, self.attribut) cles = list(self.liste) cles_sa = [supprimer_accents(c).lower() for c in cles] if msg_sa in cles_sa: cle = cles[cles_sa.index(msg_sa)] if cle in liste: while cle in liste: liste.remove(cle) else: liste.append(cle) # Ajout des évènements à l'objet taggé tag = importeur.tags.tags[cle] script = tag.script for evenement in script.evenements.values(): evt = self.tagge.script[evenement.nom] evt.copier_depuis(evenement) self.pere << "Copie de l'évènement {}.".format( evenement.nom) liste[:] = [e for e in liste if e] self.actualiser() else: self.pere << "|err|La clé {} est introuvable.|ff|".format( repr(msg))
[ "primaires.format.fonctions.supprimer_accents", "primaires.interpreteur.editeur.selection.Selection.afficher_apercu", "primaires.interpreteur.editeur.selection.Selection.__init__" ]
[((1967, 2021), 'primaires.interpreteur.editeur.selection.Selection.__init__', 'Selection.__init__', (['self', 'pere', 'objet', 'attribut', 'liste'], {}), '(self, pere, objet, attribut, liste)\n', (1985, 2021), False, 'from primaires.interpreteur.editeur.selection import Selection\n'), ((2192, 2247), 'primaires.interpreteur.editeur.selection.Selection.afficher_apercu', 'Selection.afficher_apercu', (['apercu', 'objet', 'valeur', 'liste'], {}), '(apercu, objet, valeur, liste)\n', (2217, 2247), False, 'from primaires.interpreteur.editeur.selection import Selection\n'), ((2357, 2379), 'primaires.format.fonctions.supprimer_accents', 'supprimer_accents', (['msg'], {}), '(msg)\n', (2374, 2379), False, 'from primaires.format.fonctions import supprimer_accents\n'), ((2490, 2510), 'primaires.format.fonctions.supprimer_accents', 'supprimer_accents', (['c'], {}), '(c)\n', (2507, 2510), False, 'from primaires.format.fonctions import supprimer_accents\n')]
"""Models instantiated by the vessels api.""" from dataclasses import dataclass from datetime import datetime from typing import Optional @dataclass(frozen=True) class VesselClass: """Vessel class characteristics. Detailed characteristics of each vessel class, including its defining measurement and the range that corresponds to this vessel class. Attributes: id: The vessel class id e.g. 81 (refers to Panamax), 86 (Aframax), 85 (Suezmax). vessel_type_id: Numeric ID corresponding to the different values of the VesselType field. 1-> Tanker, 3-> Dry, 4 -> Containers, 5 ->LNG(Liquified Natural gas) , 6-> LPG(Liquified Petroleum Gas). from_size: The minimum value that corresponds to this vessel class (Deadweight/TEU/CubicSize). to_size: The maximum value that corresponds to this vessel class (Deadweight/TEU/CubicSize). name: The vessel class e.g. Panamax, Aframax, Suezmax. vessel_type: Description of the type of the vessel, based on the carried cargo. Main categories are Tankers, Dry (bulk carriers), Containers, LNG and LPG. defining_size: The attribute(DeadWeight, TEU, CubicSize) that defines the size of the vesselClass. size: The units of the DefiningSize attribute. DeadWeight-> kt(kilotons), TEU-> TEU, CubicSize-> cbm(cubic meters). """ id: int vessel_type_id: int from_size: int to_size: int name: Optional[str] = None vessel_type: Optional[str] = None defining_size: Optional[str] = None size: Optional[str] = None @dataclass(frozen=True) class VesselType: """A vessel type. Attributes: id: The vessel type id, e.g. 1 -> Tanker, 3 -> Dry, 4 -> Containers, 5 -> LNG (Liquified Natural gas), 6-> LPG (Liquified Petroleum Gas). name: The vessel type name, e.g. Tanker, Dry, Containers, LNG (Liquified Natural gas), LPG (Liquified Petroleum Gas). """ id: int name: str @dataclass(frozen=True) class Vessel: """Contains all details of a vessel. Attributes: imo: A seven-digits number that uniquely identifies a ship and does not change when the ship's owner, country of registry or name of the vessel changes. vessel_type_id: Numeric ID corresponding to the different values of the VesselType field. 1 -> Tanker, 3 -> Dry, 4 -> Containers, 5 -> LNG(Liquified Natural gas), 6 -> LPG(Liquified Petroleum Gas). built_for_trade_id: Numeric ID corresponding to the different values of the BuiltForTrade field. 1 -> Crude, 2 -> Product, 3 -> Chemical. trade_id: Numeric ID that takes the same values as the BuiltForTradeID field. 1 -> Crude, 2 -> Product, 3 -> Chemical. vessel_class_id: Numeric ID corresponding to the different vessel classes of a certain vessel type. commercial_operator_id: Numeric ID corresponding to the maritime company that manages the vessel commercially. deadweight: Numeric, measured in tonnes [t], often shortened as DWT, denotes the total carrying capacity of the vessel including cargo, ballast water, stores, provisions, crew and so on. breadth_extreme: Numeric, measured in meters [m], denotes the width of a ship over the outside of all planking or plating at the widest frame. gross_rated_tonnage: Numeric, measured in register tons, often shortened as GRT, denotes the sum of all the closed and/or closable spaces. reduced_gross_tonnage: Numeric, measured in register tons, often shortened as RGT, denotes a measure applicable for open-top container ships and tankers with a double hull (ships equipped with segregated ballast tanks).This quantity can be used to compute various tonnage-based fees. net_rated_tonnage: Numeric, measured in register tons, often shortened as NRT, denotes the difference between the GRT and the sum of all spaces which are not used for the purpose for which the ship is built. draught: Numeric, measured in meters [m], denotes the distance between the ship’s keel and the waterline of the vessel. As the instantaneous draught of a vessel is a function of the vessel's loading status, this vessel characteristics refers to the maximum draught of the vessel. length_overall: Numeric, measured in meters [m], denotes the vessel's maximum length between the extremes points, forward and aft. moulded_depth: Numeric, measured in meters [m], denotes the vertical distance between the moulded base line and the top of the beams of the uppermost continuous deck. year_built: Numeric, year format, the year the vessel was built. geared: Boolean, denotes whether the vessel has cranes installed for handling its cargo or not. clean_dirty_willing: Boolean, indicates whether a tanker vessel is ‘willing’ to compete in the market complementary to the one shown in Trade. For example an LR willing dirty will have Trade=Product and CleanDirtyWilling=true. main_engine_manufacturer_id: Numeric ID corresponding to the different values of the MainEngine field. 1-> MAN B&W, 2-> Wartsila, 3-> Mitsubishi. classification_register_id: The id of the classification register. Default value: -2. updated_date: Date, format YYYY-MM-DD HH:MM:SS, corresponding to the latest update. vessel_name: The current vessel name corresponding to that IMO. call_sign: Alphanumeric code that uniquely identifies a vessel and is used for radio communication with land based operators or stations and between the vessels. vessel_type: Description of the type of the vessel, based on the carried cargo. Main categories are Tankers, Dry (bulk carriers), Containers, LNG and LPG. built_for_trade: Additional attribute to specify a Tanker vessel with finer granularity. This classification is derived by the vessel characteristics only. It indicates the initial cargo the vessel was designed for, here called "trade". For example, an LR2 is a vessel of VesselClass Aframax and BuiltForTrade Clean. trade: Time-dependent version of the attribute BuiltForTrade. It is specified by the last cargo carried by the vessel at the time of query. For example, an LR2 with fueloil as last cargo has BuiltForTrade = Crude and Trade = Product. vessel_class: Name of the vessel class the vessel belongs to. Assignment of a vessel to a certain VesselClass is based on the VesselType and the value of its Deadweight (if Tanker or Dry), its LiquidCap (if LNG/LPG) or its TEU (if Containers). For example, an Aframax is a Tanker vessel with Deadweight within the range 82kt - 125kt, while a Capesize is a Dry vessel with Deadweight within the range 120kt-220kt. LR2 are defined as Aframax, as only Deadweight is used to define vessel classes. flag_code: ISO 3166-1 alpha-2 code representing the vessel's country of registration. flag: The country where the vessel has been registered and whose law is subject to. commercial_operator: Name of the maritime company that manages the vessel commercially. built_country_code: Two letters code representing the country where the vessel was built. built_country_name: String, the name of the country where the vessel was built. scrapped_date: Date, with format YYYY-MM-DD, indicates when the vessel was scrapped. If the vessel is active, ScrappedDate is null. shipyard_built_id: Numeric ID corresponding to the geo location where the vessel was built, for example the specific shipyard. shipyard_built_name: String, the name of the shipyard where the vessel was built, e.g. Hyundai Heavy Industries Co. ice_class: Alphanumeric code that denotes the vessel's additional level of strengthening as well as other arrangements that make navigation through frozen seas possible. For example 1A, 1D, etc. cranes_ton_capacity: Numeric, measured in tonnes [t], denotes the capacity of the vessel's cranes whenever applicable. teu: Numeric, measured in TEU (Twenty-Foot Equivalent Unit), denotes a volumetric measure of a container's cargo carrying capacity. Used for Containers, that is vessels with VesselType=4. te_u14: Numeric, denotes the capacity of the vessel measured in twenty- foot equivalent units (TEU) loaded at 14 tons. reefers: Numeric, denotes the capacity of the vessel measured in refrigerated twenty-foot equivalent units (TEU), i.e., the maximum number of refrigerated containers that could be carried. panama_canal_net_tonnage: Numeric, measured in register tons, volumetric measure derived by the NRT (NetRatedTonnage) and modified for Panama Canal purposes. Often used to compute tonnage- based fees. cubic_size: Numeric, measured in cubic meters [cbm] denotes the carrying capacity of Gas vessels (LNG, LPG). For tankers it is the volume of cargo tanks. scrubbers_date: Date, format YYYY-MM-DD HH:MM:SS, best estimate of the scrubbers installation date. summer_tpc: Numeric, measured in [metric tonnes/cm], acronym of Summer Tonnes Per Centimeter, denotes the cargo in metric tonnes (10^3 kg) needed to further increase the vessel's salt water draught by one centimeter. lightship_tonnes: The weight of the vessels without any cargo or bunkers. It is an important parameter to estimate the scrap value of the vessel as it represents the amount of steel that can be recycled. main_engine_manufacturer: String denoting the brand of the vessel's main engine. delivery_date: Date, with format YYYY-MM-DD, indicates when the vessel was delivered to the owner and commenced its first voyage. classification_register: The name of the organization that issued the vessel's classification certificate. Default value: Not set. number_of_holds: Numeric, the number of separate enclosed spaces within a ship designed for storing cargo. grain_capacity: This is the space available for a liquid-type cargo, like bulk grain, which can flow into every corner. bale_capacity: This is the space available for solid cargo. Bale space is usually about 7–10% less than grain space. """ imo: int vessel_type_id: int built_for_trade_id: int trade_id: int vessel_class_id: int commercial_operator_id: int deadweight: int breadth_extreme: int gross_rated_tonnage: int reduced_gross_tonnage: int net_rated_tonnage: int draught: float length_overall: float moulded_depth: float year_built: int geared: bool clean_dirty_willing: bool main_engine_manufacturer_id: int classification_register_id: int updated_date: datetime vessel_name: Optional[str] = None call_sign: Optional[str] = None vessel_type: Optional[str] = None built_for_trade: Optional[str] = None trade: Optional[str] = None vessel_class: Optional[str] = None flag_code: Optional[str] = None flag: Optional[str] = None commercial_operator: Optional[str] = None built_country_code: Optional[str] = None built_country_name: Optional[str] = None scrapped_date: Optional[datetime] = None shipyard_built_id: Optional[int] = None shipyard_built_name: Optional[str] = None ice_class: Optional[str] = None cranes_ton_capacity: Optional[int] = None teu: Optional[int] = None te_u14: Optional[int] = None reefers: Optional[int] = None panama_canal_net_tonnage: Optional[int] = None cubic_size: Optional[int] = None scrubbers_date: Optional[datetime] = None summer_tpc: Optional[float] = None lightship_tonnes: Optional[int] = None main_engine_manufacturer: Optional[str] = None delivery_date: Optional[datetime] = None classification_register: Optional[str] = None number_of_holds: Optional[int] = None grain_capacity: Optional[int] = None bale_capacity: Optional[int] = None
[ "dataclasses.dataclass" ]
[((141, 163), 'dataclasses.dataclass', 'dataclass', ([], {'frozen': '(True)'}), '(frozen=True)\n', (150, 163), False, 'from dataclasses import dataclass\n'), ((1668, 1690), 'dataclasses.dataclass', 'dataclass', ([], {'frozen': '(True)'}), '(frozen=True)\n', (1677, 1690), False, 'from dataclasses import dataclass\n'), ((2094, 2116), 'dataclasses.dataclass', 'dataclass', ([], {'frozen': '(True)'}), '(frozen=True)\n', (2103, 2116), False, 'from dataclasses import dataclass\n')]
from PySide2 import QtWidgets, QtGui, QtCore class RulePartWidget(QtWidgets.QWidget): def __init__(self, parent=None, feature_ranges={'feature X': [0, 100]}, rule_number=-1): QtWidgets.QWidget.__init__(self, parent) self.layout = QtWidgets.QHBoxLayout(self) # combobox self.combo_box = QtWidgets.QComboBox() self.feature_ranges = feature_ranges self.features = list(self.feature_ranges.keys()) print(self.features) for feature in self.features: self.combo_box.addItem(feature) # create widgets feat_range = self.feature_ranges[self.features[0]] self.min_box = QtWidgets.QDoubleSpinBox() self.min_box.valueChanged.connect(self._min_box_changed) self.max_box = QtWidgets.QDoubleSpinBox() self.max_box.valueChanged.connect(self._max_box_changed) self.min_box.setRange(*feat_range) self.max_box.setRange(*feat_range) self.min_box.setValue(feat_range[0]) self.max_box.setValue(feat_range[1]) self.rule_id = f'Rule Part {rule_number if rule_number != -1 else "X"}' # add to layout self.layout.addWidget(QtWidgets.QLabel(self.rule_id, self)) self.layout.addWidget(self.combo_box) self.layout.addWidget(QtWidgets.QLabel('between', self)) self.layout.addWidget(self.min_box) self.layout.addWidget(QtWidgets.QLabel('and', self)) self.layout.addWidget(self.max_box) self.combo_box.activated.connect(self.feature_change) def feature_change(self): print('Current Feature:', self.combo_box.currentText()) selected_feature = self.combo_box.currentText() feat_range = self.feature_ranges[selected_feature] self.min_box.setRange(*feat_range) self.max_box.setRange(*feat_range) self.min_box.setValue(feat_range[0]) self.max_box.setValue(feat_range[1]) def _min_box_changed(self, val): selected_feature = self.combo_box.currentText() feat_range = self.feature_ranges[selected_feature] # limit by chosen minimum self.max_box.setRange(val, feat_range[1]) def _max_box_changed(self, val): selected_feature = self.combo_box.currentText() feat_range = self.feature_ranges[selected_feature] # limit by chosen minimum self.min_box.setRange(feat_range[0], val) def get_rule(self): selected_feature = self.combo_box.currentText() min_val = self.min_box.value() max_val = self.max_box.value() return {'rule_id': self.rule_id, 'feature': selected_feature, 'range': [min_val, max_val]}
[ "PySide2.QtWidgets.QDoubleSpinBox", "PySide2.QtWidgets.QWidget.__init__", "PySide2.QtWidgets.QLabel", "PySide2.QtWidgets.QComboBox", "PySide2.QtWidgets.QHBoxLayout" ]
[((189, 229), 'PySide2.QtWidgets.QWidget.__init__', 'QtWidgets.QWidget.__init__', (['self', 'parent'], {}), '(self, parent)\n', (215, 229), False, 'from PySide2 import QtWidgets, QtGui, QtCore\n'), ((253, 280), 'PySide2.QtWidgets.QHBoxLayout', 'QtWidgets.QHBoxLayout', (['self'], {}), '(self)\n', (274, 280), False, 'from PySide2 import QtWidgets, QtGui, QtCore\n'), ((326, 347), 'PySide2.QtWidgets.QComboBox', 'QtWidgets.QComboBox', ([], {}), '()\n', (345, 347), False, 'from PySide2 import QtWidgets, QtGui, QtCore\n'), ((668, 694), 'PySide2.QtWidgets.QDoubleSpinBox', 'QtWidgets.QDoubleSpinBox', ([], {}), '()\n', (692, 694), False, 'from PySide2 import QtWidgets, QtGui, QtCore\n'), ((783, 809), 'PySide2.QtWidgets.QDoubleSpinBox', 'QtWidgets.QDoubleSpinBox', ([], {}), '()\n', (807, 809), False, 'from PySide2 import QtWidgets, QtGui, QtCore\n'), ((1193, 1229), 'PySide2.QtWidgets.QLabel', 'QtWidgets.QLabel', (['self.rule_id', 'self'], {}), '(self.rule_id, self)\n', (1209, 1229), False, 'from PySide2 import QtWidgets, QtGui, QtCore\n'), ((1307, 1340), 'PySide2.QtWidgets.QLabel', 'QtWidgets.QLabel', (['"""between"""', 'self'], {}), "('between', self)\n", (1323, 1340), False, 'from PySide2 import QtWidgets, QtGui, QtCore\n'), ((1416, 1445), 'PySide2.QtWidgets.QLabel', 'QtWidgets.QLabel', (['"""and"""', 'self'], {}), "('and', self)\n", (1432, 1445), False, 'from PySide2 import QtWidgets, QtGui, QtCore\n')]
import numpy as np class LinearConstraints(): def __init__(self, A, b, mode='Intersection'): """ Defines linear functions f(x) = Ax + b. The integration domain is defined as the union of where all of these functions are positive if mode='Union' or the domain where any of the functions is positive, when mode='Intersection' :param A: matrix A with shape (M, D) where M is the number of constraints and D the dimension :param b: offset, shape (M, 1) """ self.A = A self.b = b self.N_constraints = b.shape[0] self.N_dim = A.shape[1] self.mode = mode def evaluate(self, x): """ Evaluate linear functions at N locations x :param x: location, shape (D, N) :return: Ax + b """ return np.dot(self.A, x) + self.b def integration_domain(self, x): """ is 1 if x is in the integration domain, else 0 :param x: location, shape (D, N) :return: either self.indicator_union or self.indicator_intersection, depending on setting of self.mode """ if self.mode == 'Union': return self.indicator_union(x) elif self.mode == 'Intersection': return self.indicator_intersection(x) else: raise NotImplementedError def indicator_intersection(self, x): """ Intersection of indicator functions taken to be 1 when the linear function is >= 0 :param x: location, shape (D, N) :return: 1 if all linear functions are >= 0, else 0. """ return np.where(self.evaluate(x) >= 0, 1, 0).prod(axis=0) def indicator_union(self, x): """ Union of indicator functions taken to be 1 when the linear function is >= 0 :param x: location, shape (D, N) :return: 1 if any of the linear functions is >= 0, else 0. """ return 1 - (np.where(self.evaluate(x) >= 0, 0, 1)).prod(axis=0) class ShiftedLinearConstraints(LinearConstraints): def __init__(self, A, b, shift): """ Class for shifted linear constraints that appear in multilevel splitting method :param A: matrix A with shape (M, D) where M is the number of constraints and D the dimension :param b: offset, shape (M, 1) :param shift: (positive) scalar value denoting the shift """ self.shift = shift super(ShiftedLinearConstraints, self).__init__(A, b + shift)
[ "numpy.dot" ]
[((832, 849), 'numpy.dot', 'np.dot', (['self.A', 'x'], {}), '(self.A, x)\n', (838, 849), True, 'import numpy as np\n')]
from time import sleep from tensorboardX import SummaryWriter with SummaryWriter(logdir='runs/purge') as w: for i in range(100): w.add_scalar('purgetest', i, i) sleep(1.0) with SummaryWriter(logdir='runs/purge', purge_step=42) as w: # event 42~99 are removed (inclusively) for i in range(42, 100): w.add_scalar('purgetest', 42, i)
[ "tensorboardX.SummaryWriter", "time.sleep" ]
[((175, 185), 'time.sleep', 'sleep', (['(1.0)'], {}), '(1.0)\n', (180, 185), False, 'from time import sleep\n'), ((68, 102), 'tensorboardX.SummaryWriter', 'SummaryWriter', ([], {'logdir': '"""runs/purge"""'}), "(logdir='runs/purge')\n", (81, 102), False, 'from tensorboardX import SummaryWriter\n'), ((192, 241), 'tensorboardX.SummaryWriter', 'SummaryWriter', ([], {'logdir': '"""runs/purge"""', 'purge_step': '(42)'}), "(logdir='runs/purge', purge_step=42)\n", (205, 241), False, 'from tensorboardX import SummaryWriter\n')]
# Imports import math import numpy as np import matplotlib.pyplot as plt class ParkingTrajectoryGenerator: # Class Variables # Vehicle Parameters __l = 0.356 # length between front and rear axle in m __b = 0.37 # width of car in m __l_1 = 0.12 # length between front axle and bumper in m __l_2 = 0.108 # length between rear axle and bumper in m __alpha_max = math.radians(45) # maximum steering angle in rad # alpha_c = alpha_max # constant steering angle in rad __rho_min = 1/math.tan(__alpha_max) # radius of the turning cycle of the car in m # Driving lane and parking spot parameters __h_cd = 0.974-2*0.03 # width of driving lane in m __h_pd = (0.96-3*0.02)/2 # width of parking space in m __h_pw = 0.85 # depth of parking space in m __h_ps = (__h_pd - __b)/2 # = h_pr = h_pl = h_ps -> for symmetrical parking -> space between car and parking space boundaries in m # Parameters for calculation of the Trajectory Points __num_points_per_segment = 100 __pull_out_left_straight_offset = 0.2 __r_B2 = math.sqrt((__l + __l_1)**2 + (__rho_min + __b/2)**2) __s_m = -math.sqrt((__rho_min - __b/2)**2 - (__rho_min - __h_pd/2)**2) __s_max = __h_cd - __r_B2 __s = max(abs(__s_m), abs(__s_max)) # Points of Parking Trajectory __parkingTrajectoryPoints_x_rear_axle = np.zeros(2*__num_points_per_segment) __parkingTrajectoryPoints_y_rear_axle = np.zeros(2*__num_points_per_segment) #__parkingTrajectoryPoints_x_front_axle = np.zeros(2*__num_points_per_segment) #__parkingTrajectoryPoints_y_front_axle = np.zeros(2*__num_points_per_segment) __pullOutLeftTrajectoryPoints_x_rear_axle = np.zeros(2*__num_points_per_segment) __pullOutLeftTrajectoryPoints_y_rear_axle = np.zeros(2*__num_points_per_segment) #__pullOutLeftTrajectoryPoints_x_front_axle = np.zeros(2*__num_points_per_segment) #__pullOutLeftTrajectoryPoints_y_front_axle = np.zeros(2*__num_points_per_segment) # Heading of Parking Trajectory __parkingTrajectoryHeading_rear_axle = np.zeros(2*__num_points_per_segment) # Parameter for Representing Circle Arc as Polynomial (Bezier) __c = 0.55191502449 # Parameters of Steering Angle Controller (Saturated Control) from Paper __K_t = 8 __K = 5.85 __a_0 = 0.17 __u = np.tan(__alpha_max)/__l # Vehicle Heading for test purposes (idealised) __theta = np.zeros(2*__num_points_per_segment) # Constructor def __init__(self, targetParkingSpot_x = 0, targetParkingSpot_y = 0): self.__targetPoint_x_rear_axle = targetParkingSpot_x + self.__h_pw - self.__l_2 - self.__h_ps self.__targetPoint_y_rear_axle = targetParkingSpot_y self.__targetPoint_x_front_axle = targetParkingSpot_x + self.__h_pw - self.__l_2 - self.__h_ps - self.__l self.__targetPoint_y_front_axle = targetParkingSpot_y self.calcParkingTrajectory() self.calcPullOutLeftTrajectory() # Setter def setTargetParkingSpot(self, targetParkingSpot_x = 0, targetParkingSpot_y = 0): self.__targetPoint_x_rear_axle = targetParkingSpot_x + self.__h_pw - self.__l_2 - self.__h_ps self.__targetPoint_y_rear_axle = targetParkingSpot_y self.__targetPoint_x_front_axle = targetParkingSpot_x + self.__h_pw - self.__l_2 - self.__h_ps - self.__l self.__targetPoint_y_front_axle = targetParkingSpot_y self.calcParkingTrajectory() self.calcPullOutLeftTrajectory() # Getter def getParkingStartPoint(self): return self.__parkingTrajectoryPoints_x_rear_axle[-1], self.__parkingTrajectoryPoints_y_rear_axle[-1] def getParkingEndPoint(self): return self.__targetPoint_x_rear_axle, self.__targetPoint_y_rear_axle def getParkingTrajectoryPolynomials(self): return self.__parkingTrajectory_polynomial_coefficients_circle_arc_x, self.__parkingTrajectory_polynomial_coefficients_circle_arc_y, self.__parkingTrajectory_polynomial_coefficients_straight_x, self.__parkingTrajectory_polynomial_coefficients_straight_y def gePullOutLeftTrajectoryPolynomials(self): return self.__pullOutLeftTrajectory_polynomial_coefficients_circle_arc_x, self.__pullOutLeftTrajectory_polynomial_coefficients_circle_arc_y, self.__pullOutLeftTrajectory_polynomial_coefficients_straight_x, self.__pullOutLeftTrajectory_polynomial_coefficients_straight_y # Functions def calcParkingTrajectory(self): # = Pull Out Right Trajectory # Target Point Rear End of the Parking Spot (Rear end of the axle) S_x_rear_axle = self.__targetPoint_x_rear_axle - self.__h_pw + self.__l_2 + self.__h_ps + self.__s S_y_rear_axle = self.__targetPoint_y_rear_axle #S_x_front_axle = self.targetPoint_x_front_axle - self.h_pw + self.l_2 + self.h_ps + self.s + self.l #S_y_front_axle = self.targetPoint_y_front_axle O_x_rear_axle = S_x_rear_axle O_y_rear_axle = S_y_rear_axle + self.__rho_min #O_x_front_axle = S_x_front_axle #O_y_front_axle = S_y_front_axle + self.rho_min # Points on Unit circle with Origin O P_0_circle_arc_x = O_x_rear_axle P_0_circle_arc_y = O_y_rear_axle - 1 P_1_circle_arc_x = O_x_rear_axle - self.__c P_1_circle_arc_y = O_y_rear_axle - 1 P_2_circle_arc_x = O_x_rear_axle - 1 P_2_circle_arc_y = O_y_rear_axle - self.__c P_3_circle_arc_x = O_x_rear_axle - 1 P_3_circle_arc_y = O_y_rear_axle # Polynomial of the circle arc self.__parkingTrajectory_polynomial_coefficients_circle_arc_x = np.poly1d([self.__rho_min*(P_3_circle_arc_x + 3.*P_1_circle_arc_x - 3.*P_2_circle_arc_x - P_0_circle_arc_x), self.__rho_min*3*(P_2_circle_arc_x - 2*P_1_circle_arc_x + P_0_circle_arc_x), self.__rho_min*3*(P_1_circle_arc_x - P_0_circle_arc_x), self.__rho_min*P_0_circle_arc_x]) self.__parkingTrajectory_polynomial_coefficients_circle_arc_y = np.poly1d([self.__rho_min*(P_3_circle_arc_y + 3.*P_1_circle_arc_y - 3.*P_2_circle_arc_y - P_0_circle_arc_y), self.__rho_min*3*(P_2_circle_arc_y - 2*P_1_circle_arc_y + P_0_circle_arc_y), self.__rho_min*3*(P_1_circle_arc_y - P_0_circle_arc_y), self.__rho_min*P_0_circle_arc_y]) # Polynomial of the straight self.__parkingTrajectory_polynomial_coefficients_straight_x = np.poly1d([0, 0, S_x_rear_axle - self.__targetPoint_x_rear_axle, self.__targetPoint_x_rear_axle]) self.__parkingTrajectory_polynomial_coefficients_straight_y = np.poly1d([0, 0, S_y_rear_axle - self.__targetPoint_y_rear_axle, self.__targetPoint_y_rear_axle]) self.__parkingTrajectoryPoints_x_rear_axle[ : self.__num_points_per_segment] = np.linspace(self.__targetPoint_x_rear_axle, S_x_rear_axle, self.__num_points_per_segment) self.__parkingTrajectoryPoints_y_rear_axle[ : self.__num_points_per_segment] = np.ones(self.__num_points_per_segment)*self.__targetPoint_y_rear_axle #self.__parkingTrajectoryHeading_rear_axle[ : self.__num_points_per_segment] = np.ones(self.__num_points_per_segment)*math.pi #self.parkingTrajectoryPoints_x_front_axle[0 : self.num_points_per_segment] = np.linspace(self.targetPoint_x_front_axle, S_x_front_axle, self.num_points_per_segment) #self.parkingTrajectoryPoints_y_front_axle[0 : self.num_points_per_segment] = np.ones(self.num_points_per_segment)*self.targetPoint_y_front_axle circle_arc_angle = np.linspace(math.pi, math.pi*(3/2), self.__num_points_per_segment) #heading_angle = np.linspace(math.pi, math.pi/2, self.__num_points_per_segment) # Vehicle Heading for test self.__theta[ : self.__num_points_per_segment] = math.pi self.__theta[self.__num_points_per_segment : ] = np.linspace(math.pi, math.pi/2, self.__num_points_per_segment) #i = self.__num_points_per_segment #for angle in circle_arc_angle : self.__parkingTrajectoryPoints_x_rear_axle[self.__num_points_per_segment : ] = self.__rho_min*np.cos(circle_arc_angle) + O_x_rear_axle self.__parkingTrajectoryPoints_y_rear_axle[self.__num_points_per_segment : ] = self.__rho_min*np.sin(circle_arc_angle) + O_y_rear_axle #self.__parkingTrajectoryPoints_x_front_axle[ : self.__num_points_per_segment] = self.__parkingTrajectoryPoints_x_rear_axle[ : self.__num_points_per_segment] - self.__l #self.__parkingTrajectoryPoints_y_front_axle[ : self.__num_points_per_segment] = self.__parkingTrajectoryPoints_y_rear_axle[ : self.__num_points_per_segment] #self.__parkingTrajectoryPoints_x_front_axle[self.__num_points_per_segment : ] = self.__parkingTrajectoryPoints_x_rear_axle[self.__num_points_per_segment : ] + np.cos(self.__theta[self.__num_points_per_segment : ])*self.__l #self.__parkingTrajectoryPoints_y_front_axle[self.__num_points_per_segment : ] = self.__parkingTrajectoryPoints_y_rear_axle[self.__num_points_per_segment : ] + np.sin(self.__theta[self.__num_points_per_segment : ])*self.__l #self.__parkingTrajectoryHeading_rear_axle[self.__num_points_per_segment : ] = heading_angle #self.parkingTrajectoryPoints_x_front_axle[i] = self.rho_min*math.cos(angle) + O_x_front_axle #self.parkingTrajectoryPoints_y_front_axle[i] = self.rho_min*math.sin(angle) + O_y_front_axle # i += 1 # Printing #t = np.linspace(0, 1, 100) #poly_circle_arc_x = self.__parkingTrajectory_polynomial_coefficients_circle_arc_x(t) #poly_circle_arc_y = self.__parkingTrajectory_polynomial_coefficients_circle_arc_y(t) #poly_straight_x = self.__parkingTrajectory_polynomial_coefficients_straight_x(t) #poly_straight_y = self.__parkingTrajectory_polynomial_coefficients_straight_y(t) #plt.plot(self.__parkingTrajectoryPoints_x_rear_axle, self.__parkingTrajectoryPoints_y_rear_axle, 'b.') #plt.plot(poly_circle_arc_x, poly_circle_arc_y, 'r.') #plt.plot(poly_straight_x, poly_straight_y, 'r.') #plt.show() #plt.stem(self.__parkingTrajectoryHeading_rear_axle) #plt.show() return self.__parkingTrajectory_polynomial_coefficients_circle_arc_x, self.__parkingTrajectory_polynomial_coefficients_circle_arc_y, self.__parkingTrajectory_polynomial_coefficients_straight_x, self.__parkingTrajectory_polynomial_coefficients_straight_y def calcPullOutLeftTrajectory(self): # Target Point Rear End of the Parking Spot (Rear end of the axle) S_x_rear_axle = self.__targetPoint_x_rear_axle - self.__h_pw + self.__l_2 + self.__h_ps + self.__s - self.__pull_out_left_straight_offset S_y_rear_axle = self.__targetPoint_y_rear_axle #S_x_front_axle = self.targetPoint_x_front_axle - self.h_pw + self.l_2 + self.h_ps + self.s + self.l #S_y_front_axle = self.targetPoint_y_front_axle O_x_rear_axle = S_x_rear_axle O_y_rear_axle = S_y_rear_axle - self.__rho_min #O_x_front_axle = S_x_front_axle #O_y_front_axle = S_y_front_axle + self.rho_min # Points on Unit circle with Origin O P_0_circle_arc_x = O_x_rear_axle - 1 P_0_circle_arc_y = O_y_rear_axle P_1_circle_arc_x = O_x_rear_axle - 1 P_1_circle_arc_y = O_y_rear_axle + self.__c P_2_circle_arc_x = O_x_rear_axle - self.__c P_2_circle_arc_y = O_y_rear_axle + 1 P_3_circle_arc_x = O_x_rear_axle P_3_circle_arc_y = O_y_rear_axle + 1 # Polynomial of the circle arc self.__pullOutLeftTrajectory_polynomial_coefficients_circle_arc_x = np.poly1d([self.__rho_min*(P_3_circle_arc_x + 3.*P_1_circle_arc_x - 3.*P_2_circle_arc_x - P_0_circle_arc_x), self.__rho_min*3*(P_2_circle_arc_x - 2*P_1_circle_arc_x + P_0_circle_arc_x), self.__rho_min*3*(P_1_circle_arc_x - P_0_circle_arc_x), self.__rho_min*P_0_circle_arc_x]) self.__pullOutLeftTrajectory_polynomial_coefficients_circle_arc_y = np.poly1d([self.__rho_min*(P_3_circle_arc_y + 3.*P_1_circle_arc_y - 3.*P_2_circle_arc_y - P_0_circle_arc_y), self.__rho_min*3*(P_2_circle_arc_y - 2*P_1_circle_arc_y + P_0_circle_arc_y), self.__rho_min*3*(P_1_circle_arc_y - P_0_circle_arc_y), self.__rho_min*P_0_circle_arc_y]) # Polynomial of the straight self.__pullOutLeftTrajectory_polynomial_coefficients_straight_x = np.poly1d([0, 0, S_x_rear_axle - self.__targetPoint_x_rear_axle, self.__targetPoint_x_rear_axle]) self.__pullOutLeftTrajectory_polynomial_coefficients_straight_y = np.poly1d([0, 0, S_y_rear_axle - self.__targetPoint_y_rear_axle, self.__targetPoint_y_rear_axle]) self.__pullOutLeftTrajectoryPoints_x_rear_axle[0 : self.__num_points_per_segment] = np.linspace(self.__targetPoint_x_rear_axle, S_x_rear_axle, self.__num_points_per_segment) self.__pullOutLeftTrajectoryPoints_y_rear_axle[0 : self.__num_points_per_segment] = np.ones(self.__num_points_per_segment)*self.__targetPoint_y_rear_axle #self.parkingTrajectoryPoints_x_front_axle[0 : self.num_points_per_segment] = np.linspace(self.targetPoint_x_front_axle, S_x_front_axle, self.num_points_per_segment) #self.parkingTrajectoryPoints_y_front_axle[0 : self.num_points_per_segment] = np.ones(self.num_points_per_segment)*self.targetPoint_y_front_axle circle_arc_angle = np.linspace(math.pi, math.pi/2, self.__num_points_per_segment) i = self.__num_points_per_segment for angle in circle_arc_angle : self.__pullOutLeftTrajectoryPoints_x_rear_axle[i] = self.__rho_min*np.cos(angle) + O_x_rear_axle self.__pullOutLeftTrajectoryPoints_y_rear_axle[i] = self.__rho_min*np.sin(angle) + O_y_rear_axle #self.parkingTrajectoryPoints_x_front_axle[i] = self.rho_min*math.cos(angle) + O_x_front_axle #self.parkingTrajectoryPoints_y_front_axle[i] = self.rho_min*math.sin(angle) + O_y_front_axle i += 1 # Printing #t = np.linspace(0, 1, 100) #poly_circle_arc_x = self.__pullOutLeftTrajectory_polynomial_coefficients_circle_arc_x(t) #poly_circle_arc_y = self.__pullOutLeftTrajectory_polynomial_coefficients_circle_arc_y(t) #poly_straight_x = self.__pullOutLeftTrajectory_polynomial_coefficients_straight_x(t) #poly_straight_y = self.__pullOutLeftTrajectory_polynomial_coefficients_straight_y(t) #plt.plot(self.__parkingTrajectoryPoints_x_rear_axle, self.__parkingTrajectoryPoints_y_rear_axle, 'b.') #plt.plot(self.__pullOutLeftTrajectoryPoints_x_rear_axle, self.__pullOutLeftTrajectoryPoints_y_rear_axle, 'b.') #plt.plot(poly_circle_arc_x, poly_circle_arc_y, 'r.') #plt.plot(poly_straight_x, poly_straight_y, 'r.') #plt.show() return self.__pullOutLeftTrajectory_polynomial_coefficients_circle_arc_x, self.__pullOutLeftTrajectory_polynomial_coefficients_circle_arc_y, self.__pullOutLeftTrajectory_polynomial_coefficients_straight_x, self.__pullOutLeftTrajectory_polynomial_coefficients_straight_y def getSteeringAngle(self, actualPoint_y, vehicle_heading): theta = vehicle_heading - math.pi print(theta) v = self.__K*(theta - self.__a_0*actualPoint_y) alpha = np.arctan(self.__l*self.__u*np.tanh(self.__K_t*v)) return alpha ParkingTrajectoryGenerator1 = ParkingTrajectoryGenerator() [a, b, c, d] = ParkingTrajectoryGenerator1.getParkingTrajectoryPolynomials() print(a) print(b) print(c) print(d) #plt.plot(ParkingTrajectoryGenerator1._ParkingTrajectoryGenerator__parkingTrajectoryPoints_x_front_axle, ParkingTrajectoryGenerator1._ParkingTrajectoryGenerator__parkingTrajectoryPoints_y_front_axle, 'b.', ParkingTrajectoryGenerator1._ParkingTrajectoryGenerator__parkingTrajectoryPoints_x_rear_axle, ParkingTrajectoryGenerator1._ParkingTrajectoryGenerator__parkingTrajectoryPoints_y_rear_axle, 'r.') #plt.show() steering_angle = np.zeros(ParkingTrajectoryGenerator1._ParkingTrajectoryGenerator__parkingTrajectoryPoints_y_rear_axle.size) i = 0 for elem in ParkingTrajectoryGenerator1._ParkingTrajectoryGenerator__parkingTrajectoryPoints_y_rear_axle : steering_angle[i] = ParkingTrajectoryGenerator1.getSteeringAngle(ParkingTrajectoryGenerator1._ParkingTrajectoryGenerator__parkingTrajectoryPoints_y_rear_axle[i], ParkingTrajectoryGenerator1._ParkingTrajectoryGenerator__theta[i]) i += 1 plt.stem(ParkingTrajectoryGenerator1._ParkingTrajectoryGenerator__theta) plt.show() plt.stem(np.degrees(steering_angle)) plt.show() #ParkingTrajectoryGenerator1.calcPullOutLeftTrajectory()
[ "numpy.poly1d", "matplotlib.pyplot.show", "numpy.tanh", "math.sqrt", "numpy.degrees", "math.radians", "math.tan", "numpy.zeros", "matplotlib.pyplot.stem", "numpy.ones", "numpy.tan", "numpy.sin", "numpy.linspace", "numpy.cos" ]
[((15864, 15976), 'numpy.zeros', 'np.zeros', (['ParkingTrajectoryGenerator1._ParkingTrajectoryGenerator__parkingTrajectoryPoints_y_rear_axle.size'], {}), '(ParkingTrajectoryGenerator1.\n _ParkingTrajectoryGenerator__parkingTrajectoryPoints_y_rear_axle.size)\n', (15872, 15976), True, 'import numpy as np\n'), ((16330, 16402), 'matplotlib.pyplot.stem', 'plt.stem', (['ParkingTrajectoryGenerator1._ParkingTrajectoryGenerator__theta'], {}), '(ParkingTrajectoryGenerator1._ParkingTrajectoryGenerator__theta)\n', (16338, 16402), True, 'import matplotlib.pyplot as plt\n'), ((16403, 16413), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (16411, 16413), True, 'import matplotlib.pyplot as plt\n'), ((16452, 16462), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (16460, 16462), True, 'import matplotlib.pyplot as plt\n'), ((394, 410), 'math.radians', 'math.radians', (['(45)'], {}), '(45)\n', (406, 410), False, 'import math\n'), ((1082, 1140), 'math.sqrt', 'math.sqrt', (['((__l + __l_1) ** 2 + (__rho_min + __b / 2) ** 2)'], {}), '((__l + __l_1) ** 2 + (__rho_min + __b / 2) ** 2)\n', (1091, 1140), False, 'import math\n'), ((1360, 1398), 'numpy.zeros', 'np.zeros', (['(2 * __num_points_per_segment)'], {}), '(2 * __num_points_per_segment)\n', (1368, 1398), True, 'import numpy as np\n'), ((1441, 1479), 'numpy.zeros', 'np.zeros', (['(2 * __num_points_per_segment)'], {}), '(2 * __num_points_per_segment)\n', (1449, 1479), True, 'import numpy as np\n'), ((1692, 1730), 'numpy.zeros', 'np.zeros', (['(2 * __num_points_per_segment)'], {}), '(2 * __num_points_per_segment)\n', (1700, 1730), True, 'import numpy as np\n'), ((1777, 1815), 'numpy.zeros', 'np.zeros', (['(2 * __num_points_per_segment)'], {}), '(2 * __num_points_per_segment)\n', (1785, 1815), True, 'import numpy as np\n'), ((2068, 2106), 'numpy.zeros', 'np.zeros', (['(2 * __num_points_per_segment)'], {}), '(2 * __num_points_per_segment)\n', (2076, 2106), True, 'import numpy as np\n'), ((2422, 2460), 'numpy.zeros', 'np.zeros', (['(2 * __num_points_per_segment)'], {}), '(2 * __num_points_per_segment)\n', (2430, 2460), True, 'import numpy as np\n'), ((16424, 16450), 'numpy.degrees', 'np.degrees', (['steering_angle'], {}), '(steering_angle)\n', (16434, 16450), True, 'import numpy as np\n'), ((520, 541), 'math.tan', 'math.tan', (['__alpha_max'], {}), '(__alpha_max)\n', (528, 541), False, 'import math\n'), ((1148, 1217), 'math.sqrt', 'math.sqrt', (['((__rho_min - __b / 2) ** 2 - (__rho_min - __h_pd / 2) ** 2)'], {}), '((__rho_min - __b / 2) ** 2 - (__rho_min - __h_pd / 2) ** 2)\n', (1157, 1217), False, 'import math\n'), ((2331, 2350), 'numpy.tan', 'np.tan', (['__alpha_max'], {}), '(__alpha_max)\n', (2337, 2350), True, 'import numpy as np\n'), ((5624, 5938), 'numpy.poly1d', 'np.poly1d', (['[self.__rho_min * (P_3_circle_arc_x + 3.0 * P_1_circle_arc_x - 3.0 *\n P_2_circle_arc_x - P_0_circle_arc_x), self.__rho_min * 3 * (\n P_2_circle_arc_x - 2 * P_1_circle_arc_x + P_0_circle_arc_x), self.\n __rho_min * 3 * (P_1_circle_arc_x - P_0_circle_arc_x), self.__rho_min *\n P_0_circle_arc_x]'], {}), '([self.__rho_min * (P_3_circle_arc_x + 3.0 * P_1_circle_arc_x - \n 3.0 * P_2_circle_arc_x - P_0_circle_arc_x), self.__rho_min * 3 * (\n P_2_circle_arc_x - 2 * P_1_circle_arc_x + P_0_circle_arc_x), self.\n __rho_min * 3 * (P_1_circle_arc_x - P_0_circle_arc_x), self.__rho_min *\n P_0_circle_arc_x])\n', (5633, 5938), True, 'import numpy as np\n'), ((5972, 6286), 'numpy.poly1d', 'np.poly1d', (['[self.__rho_min * (P_3_circle_arc_y + 3.0 * P_1_circle_arc_y - 3.0 *\n P_2_circle_arc_y - P_0_circle_arc_y), self.__rho_min * 3 * (\n P_2_circle_arc_y - 2 * P_1_circle_arc_y + P_0_circle_arc_y), self.\n __rho_min * 3 * (P_1_circle_arc_y - P_0_circle_arc_y), self.__rho_min *\n P_0_circle_arc_y]'], {}), '([self.__rho_min * (P_3_circle_arc_y + 3.0 * P_1_circle_arc_y - \n 3.0 * P_2_circle_arc_y - P_0_circle_arc_y), self.__rho_min * 3 * (\n P_2_circle_arc_y - 2 * P_1_circle_arc_y + P_0_circle_arc_y), self.\n __rho_min * 3 * (P_1_circle_arc_y - P_0_circle_arc_y), self.__rho_min *\n P_0_circle_arc_y])\n', (5981, 6286), True, 'import numpy as np\n'), ((6364, 6466), 'numpy.poly1d', 'np.poly1d', (['[0, 0, S_x_rear_axle - self.__targetPoint_x_rear_axle, self.\n __targetPoint_x_rear_axle]'], {}), '([0, 0, S_x_rear_axle - self.__targetPoint_x_rear_axle, self.\n __targetPoint_x_rear_axle])\n', (6373, 6466), True, 'import numpy as np\n'), ((6532, 6634), 'numpy.poly1d', 'np.poly1d', (['[0, 0, S_y_rear_axle - self.__targetPoint_y_rear_axle, self.\n __targetPoint_y_rear_axle]'], {}), '([0, 0, S_y_rear_axle - self.__targetPoint_y_rear_axle, self.\n __targetPoint_y_rear_axle])\n', (6541, 6634), True, 'import numpy as np\n'), ((6718, 6812), 'numpy.linspace', 'np.linspace', (['self.__targetPoint_x_rear_axle', 'S_x_rear_axle', 'self.__num_points_per_segment'], {}), '(self.__targetPoint_x_rear_axle, S_x_rear_axle, self.\n __num_points_per_segment)\n', (6729, 6812), True, 'import numpy as np\n'), ((7453, 7523), 'numpy.linspace', 'np.linspace', (['math.pi', '(math.pi * (3 / 2))', 'self.__num_points_per_segment'], {}), '(math.pi, math.pi * (3 / 2), self.__num_points_per_segment)\n', (7464, 7523), True, 'import numpy as np\n'), ((7767, 7831), 'numpy.linspace', 'np.linspace', (['math.pi', '(math.pi / 2)', 'self.__num_points_per_segment'], {}), '(math.pi, math.pi / 2, self.__num_points_per_segment)\n', (7778, 7831), True, 'import numpy as np\n'), ((11578, 11892), 'numpy.poly1d', 'np.poly1d', (['[self.__rho_min * (P_3_circle_arc_x + 3.0 * P_1_circle_arc_x - 3.0 *\n P_2_circle_arc_x - P_0_circle_arc_x), self.__rho_min * 3 * (\n P_2_circle_arc_x - 2 * P_1_circle_arc_x + P_0_circle_arc_x), self.\n __rho_min * 3 * (P_1_circle_arc_x - P_0_circle_arc_x), self.__rho_min *\n P_0_circle_arc_x]'], {}), '([self.__rho_min * (P_3_circle_arc_x + 3.0 * P_1_circle_arc_x - \n 3.0 * P_2_circle_arc_x - P_0_circle_arc_x), self.__rho_min * 3 * (\n P_2_circle_arc_x - 2 * P_1_circle_arc_x + P_0_circle_arc_x), self.\n __rho_min * 3 * (P_1_circle_arc_x - P_0_circle_arc_x), self.__rho_min *\n P_0_circle_arc_x])\n', (11587, 11892), True, 'import numpy as np\n'), ((11930, 12244), 'numpy.poly1d', 'np.poly1d', (['[self.__rho_min * (P_3_circle_arc_y + 3.0 * P_1_circle_arc_y - 3.0 *\n P_2_circle_arc_y - P_0_circle_arc_y), self.__rho_min * 3 * (\n P_2_circle_arc_y - 2 * P_1_circle_arc_y + P_0_circle_arc_y), self.\n __rho_min * 3 * (P_1_circle_arc_y - P_0_circle_arc_y), self.__rho_min *\n P_0_circle_arc_y]'], {}), '([self.__rho_min * (P_3_circle_arc_y + 3.0 * P_1_circle_arc_y - \n 3.0 * P_2_circle_arc_y - P_0_circle_arc_y), self.__rho_min * 3 * (\n P_2_circle_arc_y - 2 * P_1_circle_arc_y + P_0_circle_arc_y), self.\n __rho_min * 3 * (P_1_circle_arc_y - P_0_circle_arc_y), self.__rho_min *\n P_0_circle_arc_y])\n', (11939, 12244), True, 'import numpy as np\n'), ((12326, 12428), 'numpy.poly1d', 'np.poly1d', (['[0, 0, S_x_rear_axle - self.__targetPoint_x_rear_axle, self.\n __targetPoint_x_rear_axle]'], {}), '([0, 0, S_x_rear_axle - self.__targetPoint_x_rear_axle, self.\n __targetPoint_x_rear_axle])\n', (12335, 12428), True, 'import numpy as np\n'), ((12498, 12600), 'numpy.poly1d', 'np.poly1d', (['[0, 0, S_y_rear_axle - self.__targetPoint_y_rear_axle, self.\n __targetPoint_y_rear_axle]'], {}), '([0, 0, S_y_rear_axle - self.__targetPoint_y_rear_axle, self.\n __targetPoint_y_rear_axle])\n', (12507, 12600), True, 'import numpy as np\n'), ((12689, 12783), 'numpy.linspace', 'np.linspace', (['self.__targetPoint_x_rear_axle', 'S_x_rear_axle', 'self.__num_points_per_segment'], {}), '(self.__targetPoint_x_rear_axle, S_x_rear_axle, self.\n __num_points_per_segment)\n', (12700, 12783), True, 'import numpy as np\n'), ((13295, 13359), 'numpy.linspace', 'np.linspace', (['math.pi', '(math.pi / 2)', 'self.__num_points_per_segment'], {}), '(math.pi, math.pi / 2, self.__num_points_per_segment)\n', (13306, 13359), True, 'import numpy as np\n'), ((6895, 6933), 'numpy.ones', 'np.ones', (['self.__num_points_per_segment'], {}), '(self.__num_points_per_segment)\n', (6902, 6933), True, 'import numpy as np\n'), ((12871, 12909), 'numpy.ones', 'np.ones', (['self.__num_points_per_segment'], {}), '(self.__num_points_per_segment)\n', (12878, 12909), True, 'import numpy as np\n'), ((8017, 8041), 'numpy.cos', 'np.cos', (['circle_arc_angle'], {}), '(circle_arc_angle)\n', (8023, 8041), True, 'import numpy as np\n'), ((8160, 8184), 'numpy.sin', 'np.sin', (['circle_arc_angle'], {}), '(circle_arc_angle)\n', (8166, 8184), True, 'import numpy as np\n'), ((15216, 15239), 'numpy.tanh', 'np.tanh', (['(self.__K_t * v)'], {}), '(self.__K_t * v)\n', (15223, 15239), True, 'import numpy as np\n'), ((13520, 13533), 'numpy.cos', 'np.cos', (['angle'], {}), '(angle)\n', (13526, 13533), True, 'import numpy as np\n'), ((13629, 13642), 'numpy.sin', 'np.sin', (['angle'], {}), '(angle)\n', (13635, 13642), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- """ Created on Fri Jan 12 13:07:35 2018 @author: Sunny """ import numpy as np import cv2 print(cv2.__version__) TOTAL_CAMERAS=1 HEIGHT = 240 WIDTH = 320 RECORD_WIDTH = WIDTH*3 RECORD_HEIGHT = HEIGHT FPS = 90 cam = [] frame = [] ret = [] rgb = [] i = 0 rgb_current=0 cam = cv2.VideoCapture(0) #cam1 = cv2.VideoCapture(1) #cam2 = cv2.VideoCapture(2) cam.set(3,WIDTH) cam.set(4,HEIGHT) cam.set(cv2.CAP_PROP_FPS,FPS) print(cam.get(3)) print(cam.get(4)) print(cam.get(5)) print(cam.get(cv2.CAP_PROP_FPS)) fourcc = cv2.VideoWriter_fourcc(*'DIVX') out = cv2.VideoWriter('C:\\Users\\Sunny\\Desktop\\saveOutput.avi',fourcc, FPS, (RECORD_WIDTH,RECORD_HEIGHT)) x=0 rgb_previous = 0 cv2.namedWindow("Live Feed") flag_record=True while(True): final_frame=0 j = 0 ret_current, frame_current = cam.read() # Our operations on the frame come here #gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) rgb_current = cv2.cvtColor(frame_current, cv2.COLOR_RGBA2RGB) rgb_current = cv2.resize(rgb_current,(WIDTH,HEIGHT),interpolation=cv2.INTER_CUBIC); horizontal_img = cv2.flip(rgb_current, 1 ) # Display the resulting frame numpy_horizontal = np.hstack((horizontal_img, rgb_current, horizontal_img)) numpy_vertical = np.vstack((numpy_horizontal,numpy_horizontal)) if(flag_record == True ): out.write(numpy_horizontal) cv2.imshow("Live Feed",numpy_horizontal) if cv2.waitKey(1) & 0xFF == ord('q'): break elif cv2.waitKey(1) & 0xFF == ord('r'): if(flag_record==False): flag_record = True else: flag_record = False cam.release() if(flag_record==True): out.release() cv2.destroyAllWindows()
[ "cv2.resize", "cv2.VideoWriter_fourcc", "cv2.cvtColor", "cv2.waitKey", "cv2.imshow", "numpy.hstack", "cv2.VideoCapture", "numpy.vstack", "cv2.VideoWriter", "cv2.flip", "cv2.destroyAllWindows", "cv2.namedWindow" ]
[((302, 321), 'cv2.VideoCapture', 'cv2.VideoCapture', (['(0)'], {}), '(0)\n', (318, 321), False, 'import cv2\n'), ((543, 574), 'cv2.VideoWriter_fourcc', 'cv2.VideoWriter_fourcc', (["*'DIVX'"], {}), "(*'DIVX')\n", (565, 574), False, 'import cv2\n'), ((581, 690), 'cv2.VideoWriter', 'cv2.VideoWriter', (['"""C:\\\\Users\\\\Sunny\\\\Desktop\\\\saveOutput.avi"""', 'fourcc', 'FPS', '(RECORD_WIDTH, RECORD_HEIGHT)'], {}), "('C:\\\\Users\\\\Sunny\\\\Desktop\\\\saveOutput.avi', fourcc, FPS, (\n RECORD_WIDTH, RECORD_HEIGHT))\n", (596, 690), False, 'import cv2\n'), ((705, 733), 'cv2.namedWindow', 'cv2.namedWindow', (['"""Live Feed"""'], {}), "('Live Feed')\n", (720, 733), False, 'import cv2\n'), ((1722, 1745), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (1743, 1745), False, 'import cv2\n'), ((961, 1008), 'cv2.cvtColor', 'cv2.cvtColor', (['frame_current', 'cv2.COLOR_RGBA2RGB'], {}), '(frame_current, cv2.COLOR_RGBA2RGB)\n', (973, 1008), False, 'import cv2\n'), ((1035, 1106), 'cv2.resize', 'cv2.resize', (['rgb_current', '(WIDTH, HEIGHT)'], {'interpolation': 'cv2.INTER_CUBIC'}), '(rgb_current, (WIDTH, HEIGHT), interpolation=cv2.INTER_CUBIC)\n', (1045, 1106), False, 'import cv2\n'), ((1126, 1150), 'cv2.flip', 'cv2.flip', (['rgb_current', '(1)'], {}), '(rgb_current, 1)\n', (1134, 1150), False, 'import cv2\n'), ((1210, 1266), 'numpy.hstack', 'np.hstack', (['(horizontal_img, rgb_current, horizontal_img)'], {}), '((horizontal_img, rgb_current, horizontal_img))\n', (1219, 1266), True, 'import numpy as np\n'), ((1288, 1335), 'numpy.vstack', 'np.vstack', (['(numpy_horizontal, numpy_horizontal)'], {}), '((numpy_horizontal, numpy_horizontal))\n', (1297, 1335), True, 'import numpy as np\n'), ((1415, 1456), 'cv2.imshow', 'cv2.imshow', (['"""Live Feed"""', 'numpy_horizontal'], {}), "('Live Feed', numpy_horizontal)\n", (1425, 1456), False, 'import cv2\n'), ((1464, 1478), 'cv2.waitKey', 'cv2.waitKey', (['(1)'], {}), '(1)\n', (1475, 1478), False, 'import cv2\n'), ((1522, 1536), 'cv2.waitKey', 'cv2.waitKey', (['(1)'], {}), '(1)\n', (1533, 1536), False, 'import cv2\n')]
# Generated by Django 2.2.3 on 2019-09-20 05:05 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('contract', '0001_initial'), ] operations = [ migrations.CreateModel( name='UserSettings', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('usernamename', models.CharField(max_length=20)), ('realname', models.CharField(max_length=20)), ('passwordword', models.CharField(max_length=20)), ('created', models.DateTimeField(auto_now_add=True, db_index=True)), ('telphone_num', models.CharField(max_length=20)), ('comment', models.TextField(null=True)), ('user', models.OneToOneField(null=True, on_delete=django.db.models.deletion.CASCADE, related_name='settings', to=settings.AUTH_USER_MODEL)), ('vendor', models.ManyToManyField(related_name='user_settings', to='contract.Vendor')), ], options={ 'verbose_name_plural': 'User Settings', }, ), ]
[ "django.db.models.TextField", "django.db.models.OneToOneField", "django.db.migrations.swappable_dependency", "django.db.models.ManyToManyField", "django.db.models.CharField", "django.db.models.AutoField", "django.db.models.DateTimeField" ]
[((247, 304), 'django.db.migrations.swappable_dependency', 'migrations.swappable_dependency', (['settings.AUTH_USER_MODEL'], {}), '(settings.AUTH_USER_MODEL)\n', (278, 304), False, 'from django.db import migrations, models\n'), ((479, 572), 'django.db.models.AutoField', 'models.AutoField', ([], {'auto_created': '(True)', 'primary_key': '(True)', 'serialize': '(False)', 'verbose_name': '"""ID"""'}), "(auto_created=True, primary_key=True, serialize=False,\n verbose_name='ID')\n", (495, 572), False, 'from django.db import migrations, models\n'), ((604, 635), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(20)'}), '(max_length=20)\n', (620, 635), False, 'from django.db import migrations, models\n'), ((667, 698), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(20)'}), '(max_length=20)\n', (683, 698), False, 'from django.db import migrations, models\n'), ((734, 765), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(20)'}), '(max_length=20)\n', (750, 765), False, 'from django.db import migrations, models\n'), ((796, 850), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now_add': '(True)', 'db_index': '(True)'}), '(auto_now_add=True, db_index=True)\n', (816, 850), False, 'from django.db import migrations, models\n'), ((886, 917), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(20)'}), '(max_length=20)\n', (902, 917), False, 'from django.db import migrations, models\n'), ((948, 975), 'django.db.models.TextField', 'models.TextField', ([], {'null': '(True)'}), '(null=True)\n', (964, 975), False, 'from django.db import migrations, models\n'), ((1003, 1137), 'django.db.models.OneToOneField', 'models.OneToOneField', ([], {'null': '(True)', 'on_delete': 'django.db.models.deletion.CASCADE', 'related_name': '"""settings"""', 'to': 'settings.AUTH_USER_MODEL'}), "(null=True, on_delete=django.db.models.deletion.CASCADE,\n related_name='settings', to=settings.AUTH_USER_MODEL)\n", (1023, 1137), False, 'from django.db import migrations, models\n'), ((1163, 1237), 'django.db.models.ManyToManyField', 'models.ManyToManyField', ([], {'related_name': '"""user_settings"""', 'to': '"""contract.Vendor"""'}), "(related_name='user_settings', to='contract.Vendor')\n", (1185, 1237), False, 'from django.db import migrations, models\n')]
import discord from discord import Embed from discord.errors import NotFound from discord.ext import commands import requests import asyncio from lib.bot import bot class Filter(commands.Cog): def __init__(self, client: bot): self.client = client @commands.Cog.listener() async def on_message(self, message): if not message.author.bot: check = requests.get( f"https://www.purgomalum.com/service/containsprofanity?text=${message.content}") check = check.text if str(message.guild.id) in self.client.guilds_: guild = self.client.guilds_[str(message.guild.id)] filter = guild["filter"] words = guild["filterWords"] delete = guild["filterDelete"] else: return if filter: if check == 'true': if delete == True: try: await message.delete() except NotFound: return elif delete == False: response = requests.get( "https://insult.mattbas.org/api/insult") embed = Embed( colour=0x000ff0000, description=response.text ) await message.channel.send(embed=embed) elif message.content in words: if delete == True: try: await message.delete() except NotFound: return elif delete == False: response = requests.get( "https://insult.mattbas.org/api/insult") embed = Embed( colour=0x000ff0000, description=response.text ) await message.channel.send(embed=embed)
[ "discord.Embed", "requests.get", "discord.ext.commands.Cog.listener" ]
[((269, 292), 'discord.ext.commands.Cog.listener', 'commands.Cog.listener', ([], {}), '()\n', (290, 292), False, 'from discord.ext import commands\n'), ((389, 492), 'requests.get', 'requests.get', (['f"""https://www.purgomalum.com/service/containsprofanity?text=${message.content}"""'], {}), "(\n f'https://www.purgomalum.com/service/containsprofanity?text=${message.content}'\n )\n", (401, 492), False, 'import requests\n'), ((1168, 1221), 'requests.get', 'requests.get', (['"""https://insult.mattbas.org/api/insult"""'], {}), "('https://insult.mattbas.org/api/insult')\n", (1180, 1221), False, 'import requests\n'), ((1284, 1333), 'discord.Embed', 'Embed', ([], {'colour': '(16711680)', 'description': 'response.text'}), '(colour=16711680, description=response.text)\n', (1289, 1333), False, 'from discord import Embed\n'), ((1804, 1857), 'requests.get', 'requests.get', (['"""https://insult.mattbas.org/api/insult"""'], {}), "('https://insult.mattbas.org/api/insult')\n", (1816, 1857), False, 'import requests\n'), ((1920, 1969), 'discord.Embed', 'Embed', ([], {'colour': '(16711680)', 'description': 'response.text'}), '(colour=16711680, description=response.text)\n', (1925, 1969), False, 'from discord import Embed\n')]
#!/usr/bin/env python # -*- coding: utf-8 -*- """Master module for dlotter.arguments Called from dlotter.__main__ """ import sys import argparse from argparse import ArgumentDefaultsHelpFormatter class MyParser(argparse.ArgumentParser): def error(self, message): sys.stderr.write('error: %s\n' % message) self.print_help() sys.exit(2) class arguments: def __init__(self) -> None: return def get_args(self, sysargs): parent_parser = MyParser( description='Plot data quick and dirty from NWP output', formatter_class=ArgumentDefaultsHelpFormatter) subparser = parent_parser.add_subparsers(dest="cmd") # Parser for NWP Deterministic parser_plot = subparser.add_parser('plot', help='Plot NWP output') parser_plot.add_argument('-p', '--parameters', metavar='PARAMETERS', type=str, help='Parameters to plot. Seperate with ":", eg: "t2m:w10m:precip:slp:td2m:tcc:lmhc".', required=True) parser_plot.add_argument('-f', '--filetype', metavar='FILETYPE', type=str, help='What filetype are we using? (Options are: grib2)', default='grib2', required=False) parser_plot.add_argument('-d', '--directory', type=str, help='directory to read data from', default='.') parser_plot.add_argument('--prefix', type=str, help='Set to prefix of files if any', default='', required=False) parser_plot.add_argument('--postfix', type=str, help='Set to postfix of files if any', default='', required=False) parser_plot.add_argument('-o', '--output-dir', metavar='OUTDIR', type=str, help='Directory to place output into', default='.', required=False) parser_plot.add_argument('-l', '--limit-files', metavar='LIMIT', type=int, help='Only use the first LIMIT files. If set to 0, not limit is used. If Limit > 0, files will be sorted by name first', default=0, required=False) parser_plot.add_argument('-a', '--area', metavar='AREA', type=str, help='Over which area to plot (Options are: dk, neu, sjalland, disko)', default="dk", required=False) parser_plot.add_argument('--verbose', action='store_true', help='Verbose output', default=False) if len(sysargs)==1: parent_parser.print_help() sys.exit(2) args = parent_parser.parse_args() return args
[ "sys.stderr.write", "sys.exit" ]
[((277, 318), 'sys.stderr.write', 'sys.stderr.write', (["('error: %s\\n' % message)"], {}), "('error: %s\\n' % message)\n", (293, 318), False, 'import sys\n'), ((353, 364), 'sys.exit', 'sys.exit', (['(2)'], {}), '(2)\n', (361, 364), False, 'import sys\n'), ((3387, 3398), 'sys.exit', 'sys.exit', (['(2)'], {}), '(2)\n', (3395, 3398), False, 'import sys\n')]
import numpy as np from instResp.polezero import polezero from instResp.plotResp import plotResponse import os import logging logging.basicConfig(format='%(levelname)s:%(message)s', level=logging.INFO) logger = logging.getLogger(__name__) ''' This module contains a collection of non-bulletproof codes for creating/manipulating instrument response stages, particularly the first stage = analog polezero stage. ''' def evalResp(pz, f): s = 0.000 + 1.000j numerator = 1.000 + 0.000j denominator = 1.000 + 0.000j if pz.type == 'A': s *= 2.*np.pi*f elif pz.type == 'B': s *= f else: logger.warn("Unknown pz response type=[%s]" % pz.type) for j in range(pz.nzeros): numerator *= (s - pz.zeros[j]) for j in range(pz.npoles): denominator *= (s - pz.poles[j]) Gf = numerator * pz.a0 # Make sure this is complex Gf /= denominator return Gf; def getResponse(pz, freqs, removeZero=False, useSensitivity=True): ''' We're expecting a standard IRIS polezero file for displacement, so if velocity=True try to shed one zero at origin ''' if removeZero: success = pz.remove_zero() #zeros = np.zeros((pz.zeros.size-1,), dtype=np.complex128) #success = remove_zero(pz.zeros, zeros) if success: logger.debug("Zero successfully removed from origin") #pz.zeros = zeros #pz.nzeros = zeros.size else: logger.warn("Problem removing zero from origin!") resp = np.zeros((len(freqs),), dtype=np.complex128) for i, f in enumerate(freqs): resp[i] = evalResp(pz, f) if useSensitivity: resp[i] *= pz.sensitivity return resp def read_sacpz_file(filename): """ * ********************************** * NETWORK (KNETWK): AU * STATION (KSTNM): WR1 * LOCATION (KHOLE): * CHANNEL (KCMPNM): BHZ * CREATED : 2017-02-02T01:23:27 * START : 2005-01-31T00:00:00 * END : 2599-12-31T23:59:59 * DESCRIPTION : Warramunga Array, Australia * LATITUDE : -19.942600 * LONGITUDE : 134.339500 * ELEVATION : 389.0 * DEPTH : 0.0 * DIP : 0.0 * AZIMUTH : 0.0 * SAMPLE RATE : 40.0 * INPUT UNIT : M * OUTPUT UNIT : COUNTS * INSTTYPE : Guralp CMG3ESP_30sec_ims/Guralp DM24-MK3 Datalogge * INSTGAIN : 4.000290e+03 (M/S) * COMMENT : V3180 A3242 * SENSITIVITY : 2.797400e+09 (M/S) * A0 : 8.883050e-02 * ********************************** ZEROS 5 +0.000000e+00 +0.000000e+00 +0.000000e+00 +0.000000e+00 +0.000000e+00 +0.000000e+00 +8.670000e+02 +9.050000e+02 +8.670000e+02 -9.050000e+02 POLES 4 -1.486000e-01 +1.486000e-01 -1.486000e-01 -1.486000e-01 -3.140000e+02 +2.023000e+02 -3.140000e+02 -2.023000e+02 CONSTANT 2.484944e+08 """ fname = 'read_sacpz_file' with open(filename, 'r') as f: lines = f.readlines() zeros = None poles = None sensitivity = None a0 = None unitsIn = None unitsOut = None knet = "" ksta = "" kloc = "" kchan = "" for i in range(len(lines)): line = lines[i] #print "i=[%d] line=[%s]" % (i, line) if line[0] == '*': if line[2] != '*': split_list = line.split(':') field = split_list[0][1:] val = split_list[1] # could have val = "" or val = 2.79E9 (M/S) val_list = val.split() nsplit=len(val_list) #print "field=", field, " val=", val if 'SENSITIVITY' in field: sensitivity = float(val_list[0]) elif 'A0' in field: a0 = float(val_list[0]) elif 'INPUT UNIT' in field: unitsIn = val.strip() elif 'OUTPUT UNIT' in field: unitsOut = val.strip() elif 'NETWORK' in field: knet = val.strip() elif 'STATION' in field: ksta = val.strip() elif 'LOCATION' in field: kloc = val.strip() elif 'CHANNEL' in field: kchan = val.strip() elif line[0:5] == 'ZEROS': try: nzeros = int(line[6:len(line)]) except: logger.error("%s.%s Error: can't read nzeros from line=[%s]" % (__name__, fname, line)) exit(1) #zeros = np.zeros((nzeros,), dtype=np.complex128) zeros = np.zeros(nzeros, dtype=np.complex128) for j in range(nzeros): i += 1 line = lines[i] (z_re, z_im) = line.split() zeros[j] = complex( float(z_re), float(z_im) ) elif line[0:5] == 'POLES': try: npoles = int(line[6:len(line)]) except: logger.error("%s.%s Error: can't read npoles from line=[%s]" % (__name__, fname, line)) exit(1) poles = np.zeros(npoles, dtype=np.complex128) for j in range(npoles): i += 1 line = lines[i] (p_re, p_im) = line.split() poles[j] = complex( float(p_re), float(p_im) ) #print "knet=%s ksta=%s kloc=%s kchan=%s" % (knet, ksta, kloc, kchan) name = "%s.%s %s.%s" % (knet, ksta, kloc, kchan) pz_ = polezero(name = name, type = 'A', #type = 'A[Laplace Transform (Rad/sec)]', unitsIn = unitsIn, unitsOut = unitsOut, a0 = a0, sensitivity = sensitivity, sensitivity_f = 1.0, poles = poles, zeros = zeros) return pz_ def get_corner_freq_from_pole(pole): ''' get distance [rad/s] from lowest order pole to origin and return Hz [/s] ''' return np.sqrt(pole.real**2 + pole.imag**2) / (2.*np.pi) def test_RC(): from instResp.libNom import RC R = 4. C = 1.25/(2.*np.pi) pzs = RC(tau=R*C) freqs = np.logspace(-5, 4., num=1000) resp = getResponse(pzs, freqs, removeZero=False) title = 'RC filter: R=4 ohms, C=1.25F/2pi' plotResponse(resp, freqs, title=title, xmin=.001, xmax=100., ymin=0.01, ymax=1.2) logger.info("Corner freq:%f" % get_corner_freq_from_pole(pzs.poles[0])) return def test_WA(damp=.18, gain=1., f0=14, fnorm=100.): from instResp.libNom import WA, Accelerometer pzs = WA(per=1/f0, damp=damp, gain=gain, normalize=True, normalize_freq=fnorm) logger.info(pzs) freqs = np.logspace(-5, 4., num=500) resp = getResponse(pzs, freqs, removeZero=False) #print(np.max(np.abs(resp))) title='WA for f0=%.2f Hz damp=%.3f gain=%.0f' % (f0,damp, gain) logger.info("Corner freq:%.2f" % get_corner_freq_from_pole(pzs.poles[0])) plotResponse(resp, freqs, title=title, xmin=1, xmax=5000., ymin=.01, ymax=1.2) return def plot_pz_resp(pzfile=None): pzs = read_sacpz_file(pzfile) logger.info(pzs) freqs = np.logspace(-5, 3., num=500) resp = getResponse(pzs, freqs, removeZero=True, useSensitivity=False) title=pzfile plotResponse(resp, freqs, title=title, xmin=.001, xmax=100., ymin=.01, ymax=1e3) return def main(): #test_RC() test_WA(damp=0.6) exit() pz_dir = '/Users/mth/mth/Data/IRIS_Request/pz/' pz_fil = 'SACPZ.II.AAK.10.BHZ' plot_pz_resp(pzfile=os.path.join(pz_dir, pz_fil)) exit() if __name__=="__main__": main()
[ "instResp.libNom.RC", "logging.basicConfig", "numpy.logspace", "instResp.polezero.polezero", "numpy.zeros", "instResp.libNom.WA", "instResp.plotResp.plotResponse", "os.path.join", "logging.getLogger", "numpy.sqrt" ]
[((129, 204), 'logging.basicConfig', 'logging.basicConfig', ([], {'format': '"""%(levelname)s:%(message)s"""', 'level': 'logging.INFO'}), "(format='%(levelname)s:%(message)s', level=logging.INFO)\n", (148, 204), False, 'import logging\n'), ((214, 241), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (231, 241), False, 'import logging\n'), ((5619, 5765), 'instResp.polezero.polezero', 'polezero', ([], {'name': 'name', 'type': '"""A"""', 'unitsIn': 'unitsIn', 'unitsOut': 'unitsOut', 'a0': 'a0', 'sensitivity': 'sensitivity', 'sensitivity_f': '(1.0)', 'poles': 'poles', 'zeros': 'zeros'}), "(name=name, type='A', unitsIn=unitsIn, unitsOut=unitsOut, a0=a0,\n sensitivity=sensitivity, sensitivity_f=1.0, poles=poles, zeros=zeros)\n", (5627, 5765), False, 'from instResp.polezero import polezero\n'), ((6345, 6358), 'instResp.libNom.RC', 'RC', ([], {'tau': '(R * C)'}), '(tau=R * C)\n', (6347, 6358), False, 'from instResp.libNom import RC\n'), ((6369, 6399), 'numpy.logspace', 'np.logspace', (['(-5)', '(4.0)'], {'num': '(1000)'}), '(-5, 4.0, num=1000)\n', (6380, 6399), True, 'import numpy as np\n'), ((6504, 6591), 'instResp.plotResp.plotResponse', 'plotResponse', (['resp', 'freqs'], {'title': 'title', 'xmin': '(0.001)', 'xmax': '(100.0)', 'ymin': '(0.01)', 'ymax': '(1.2)'}), '(resp, freqs, title=title, xmin=0.001, xmax=100.0, ymin=0.01,\n ymax=1.2)\n', (6516, 6591), False, 'from instResp.plotResp import plotResponse\n'), ((6787, 6861), 'instResp.libNom.WA', 'WA', ([], {'per': '(1 / f0)', 'damp': 'damp', 'gain': 'gain', 'normalize': '(True)', 'normalize_freq': 'fnorm'}), '(per=1 / f0, damp=damp, gain=gain, normalize=True, normalize_freq=fnorm)\n', (6789, 6861), False, 'from instResp.libNom import WA, Accelerometer\n'), ((6894, 6923), 'numpy.logspace', 'np.logspace', (['(-5)', '(4.0)'], {'num': '(500)'}), '(-5, 4.0, num=500)\n', (6905, 6923), True, 'import numpy as np\n'), ((7160, 7245), 'instResp.plotResp.plotResponse', 'plotResponse', (['resp', 'freqs'], {'title': 'title', 'xmin': '(1)', 'xmax': '(5000.0)', 'ymin': '(0.01)', 'ymax': '(1.2)'}), '(resp, freqs, title=title, xmin=1, xmax=5000.0, ymin=0.01, ymax=1.2\n )\n', (7172, 7245), False, 'from instResp.plotResp import plotResponse\n'), ((7351, 7380), 'numpy.logspace', 'np.logspace', (['(-5)', '(3.0)'], {'num': '(500)'}), '(-5, 3.0, num=500)\n', (7362, 7380), True, 'import numpy as np\n'), ((7476, 7566), 'instResp.plotResp.plotResponse', 'plotResponse', (['resp', 'freqs'], {'title': 'title', 'xmin': '(0.001)', 'xmax': '(100.0)', 'ymin': '(0.01)', 'ymax': '(1000.0)'}), '(resp, freqs, title=title, xmin=0.001, xmax=100.0, ymin=0.01,\n ymax=1000.0)\n', (7488, 7566), False, 'from instResp.plotResp import plotResponse\n'), ((6197, 6237), 'numpy.sqrt', 'np.sqrt', (['(pole.real ** 2 + pole.imag ** 2)'], {}), '(pole.real ** 2 + pole.imag ** 2)\n', (6204, 6237), True, 'import numpy as np\n'), ((7743, 7771), 'os.path.join', 'os.path.join', (['pz_dir', 'pz_fil'], {}), '(pz_dir, pz_fil)\n', (7755, 7771), False, 'import os\n'), ((4740, 4777), 'numpy.zeros', 'np.zeros', (['nzeros'], {'dtype': 'np.complex128'}), '(nzeros, dtype=np.complex128)\n', (4748, 4777), True, 'import numpy as np\n'), ((5244, 5281), 'numpy.zeros', 'np.zeros', (['npoles'], {'dtype': 'np.complex128'}), '(npoles, dtype=np.complex128)\n', (5252, 5281), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- # pylint: disable=R0903, C0115 """ log_it.extensions.marshmallow.log --------------------------------- Marshmallow Log Models :copyright: (c) 2021 by <NAME> :license: BSD, see LICENSE for more details """ from datetime import datetime from marshmallow_sqlalchemy import SQLAlchemyAutoSchema, auto_field from marshmallow_sqlalchemy.fields import Nested from log_it.log.model import ( TLog, TField, TLogField, TMessage, TMessageType, TTag, TTagMessage, TUserPermission, TRolePermission, ) from . import FixtureSchema from .user import UserFixture, RoleFixture, ActionFixture class LogSchema(SQLAlchemyAutoSchema): class Meta: model = TLog class FieldSchema(SQLAlchemyAutoSchema): class Meta: model = TField class LogFieldSchema(SQLAlchemyAutoSchema): class Meta: model = TLogField class MessageSchema(SQLAlchemyAutoSchema): class Meta: model = TMessage class MessageTypeSchema(SQLAlchemyAutoSchema): class Meta: model = TMessageType class TagSchema(SQLAlchemyAutoSchema): class Meta: model = TTag class TagMessageSchema(SQLAlchemyAutoSchema): class Meta: model = TTagMessage class UserPermissionSchema(SQLAlchemyAutoSchema): class Meta: model = TUserPermission class RolePermissionSchema(SQLAlchemyAutoSchema): class Meta: model = TRolePermission # FixtureSchema class LogFixture(FixtureSchema): """Barebones Log Fixture for stubs""" class Meta(FixtureSchema.Meta): model = TLog filter_attrs = ["sLog"] sLog = auto_field() class FieldFixture(FixtureSchema): class Meta(FixtureSchema.Meta): model = TField filter_attrs = ["sField"] sField = auto_field() class LogFieldFixture(FixtureSchema): class Meta(FixtureSchema.Meta): model = TLogField filter_attrs = [ "log.ixLog", "field.ixField", ] log = Nested(LogFixture, many=False) field = Nested(FieldFixture, many=False) sValue = auto_field() iOrder = auto_field(missing=None) class MessageTypeFixture(FixtureSchema): class Meta(FixtureSchema.Meta): model = TMessageType filter_attrs = ["sMessageType"] class TagFixture(FixtureSchema): class Meta(FixtureSchema.Meta): model = TTag filter_attrs = ["sTag"] sTag = auto_field() class TagMessageFixture(FixtureSchema): class Meta(FixtureSchema.Meta): model = TTagMessage class MessageFixture(FixtureSchema): class Meta(FixtureSchema.Meta): model = TMessage # message fixtures are always inserted, never looked up filter_attrs = None log = Nested(LogFixture, many=False) message_type = Nested(MessageTypeFixture, many=False) user = Nested(UserFixture, many=False) utcMessage = auto_field(missing=datetime.utcnow) sMessage = auto_field() tags = Nested(TagFixture, many=True) class UserPermissionFixture(FixtureSchema): class Meta(FixtureSchema.Meta): model = TUserPermission log = Nested(LogFixture, many=False) user = Nested(UserFixture, many=False) action = Nested(ActionFixture, many=False) class RolePermissionFixture(FixtureSchema): class Meta(FixtureSchema.Meta): model = TRolePermission log = Nested(LogFixture, many=False) role = Nested(RoleFixture, many=False) action = Nested(ActionFixture, many=False) class LogFullFixture(FixtureSchema): class Meta(FixtureSchema.Meta): model = TLog filter_attrs = ["sLog"] sLog = auto_field() user = Nested(UserFixture, many=False) fields = Nested(FieldFixture, many=True) user_permissions = Nested(UserPermissionFixture) role_permissions = Nested(RolePermissionFixture)
[ "marshmallow_sqlalchemy.auto_field", "marshmallow_sqlalchemy.fields.Nested" ]
[((1652, 1664), 'marshmallow_sqlalchemy.auto_field', 'auto_field', ([], {}), '()\n', (1662, 1664), False, 'from marshmallow_sqlalchemy import SQLAlchemyAutoSchema, auto_field\n'), ((1809, 1821), 'marshmallow_sqlalchemy.auto_field', 'auto_field', ([], {}), '()\n', (1819, 1821), False, 'from marshmallow_sqlalchemy import SQLAlchemyAutoSchema, auto_field\n'), ((2024, 2054), 'marshmallow_sqlalchemy.fields.Nested', 'Nested', (['LogFixture'], {'many': '(False)'}), '(LogFixture, many=False)\n', (2030, 2054), False, 'from marshmallow_sqlalchemy.fields import Nested\n'), ((2067, 2099), 'marshmallow_sqlalchemy.fields.Nested', 'Nested', (['FieldFixture'], {'many': '(False)'}), '(FieldFixture, many=False)\n', (2073, 2099), False, 'from marshmallow_sqlalchemy.fields import Nested\n'), ((2113, 2125), 'marshmallow_sqlalchemy.auto_field', 'auto_field', ([], {}), '()\n', (2123, 2125), False, 'from marshmallow_sqlalchemy import SQLAlchemyAutoSchema, auto_field\n'), ((2139, 2163), 'marshmallow_sqlalchemy.auto_field', 'auto_field', ([], {'missing': 'None'}), '(missing=None)\n', (2149, 2163), False, 'from marshmallow_sqlalchemy import SQLAlchemyAutoSchema, auto_field\n'), ((2448, 2460), 'marshmallow_sqlalchemy.auto_field', 'auto_field', ([], {}), '()\n', (2458, 2460), False, 'from marshmallow_sqlalchemy import SQLAlchemyAutoSchema, auto_field\n'), ((2770, 2800), 'marshmallow_sqlalchemy.fields.Nested', 'Nested', (['LogFixture'], {'many': '(False)'}), '(LogFixture, many=False)\n', (2776, 2800), False, 'from marshmallow_sqlalchemy.fields import Nested\n'), ((2820, 2858), 'marshmallow_sqlalchemy.fields.Nested', 'Nested', (['MessageTypeFixture'], {'many': '(False)'}), '(MessageTypeFixture, many=False)\n', (2826, 2858), False, 'from marshmallow_sqlalchemy.fields import Nested\n'), ((2870, 2901), 'marshmallow_sqlalchemy.fields.Nested', 'Nested', (['UserFixture'], {'many': '(False)'}), '(UserFixture, many=False)\n', (2876, 2901), False, 'from marshmallow_sqlalchemy.fields import Nested\n'), ((2919, 2954), 'marshmallow_sqlalchemy.auto_field', 'auto_field', ([], {'missing': 'datetime.utcnow'}), '(missing=datetime.utcnow)\n', (2929, 2954), False, 'from marshmallow_sqlalchemy import SQLAlchemyAutoSchema, auto_field\n'), ((2970, 2982), 'marshmallow_sqlalchemy.auto_field', 'auto_field', ([], {}), '()\n', (2980, 2982), False, 'from marshmallow_sqlalchemy import SQLAlchemyAutoSchema, auto_field\n'), ((2994, 3023), 'marshmallow_sqlalchemy.fields.Nested', 'Nested', (['TagFixture'], {'many': '(True)'}), '(TagFixture, many=True)\n', (3000, 3023), False, 'from marshmallow_sqlalchemy.fields import Nested\n'), ((3149, 3179), 'marshmallow_sqlalchemy.fields.Nested', 'Nested', (['LogFixture'], {'many': '(False)'}), '(LogFixture, many=False)\n', (3155, 3179), False, 'from marshmallow_sqlalchemy.fields import Nested\n'), ((3191, 3222), 'marshmallow_sqlalchemy.fields.Nested', 'Nested', (['UserFixture'], {'many': '(False)'}), '(UserFixture, many=False)\n', (3197, 3222), False, 'from marshmallow_sqlalchemy.fields import Nested\n'), ((3236, 3269), 'marshmallow_sqlalchemy.fields.Nested', 'Nested', (['ActionFixture'], {'many': '(False)'}), '(ActionFixture, many=False)\n', (3242, 3269), False, 'from marshmallow_sqlalchemy.fields import Nested\n'), ((3395, 3425), 'marshmallow_sqlalchemy.fields.Nested', 'Nested', (['LogFixture'], {'many': '(False)'}), '(LogFixture, many=False)\n', (3401, 3425), False, 'from marshmallow_sqlalchemy.fields import Nested\n'), ((3437, 3468), 'marshmallow_sqlalchemy.fields.Nested', 'Nested', (['RoleFixture'], {'many': '(False)'}), '(RoleFixture, many=False)\n', (3443, 3468), False, 'from marshmallow_sqlalchemy.fields import Nested\n'), ((3482, 3515), 'marshmallow_sqlalchemy.fields.Nested', 'Nested', (['ActionFixture'], {'many': '(False)'}), '(ActionFixture, many=False)\n', (3488, 3515), False, 'from marshmallow_sqlalchemy.fields import Nested\n'), ((3656, 3668), 'marshmallow_sqlalchemy.auto_field', 'auto_field', ([], {}), '()\n', (3666, 3668), False, 'from marshmallow_sqlalchemy import SQLAlchemyAutoSchema, auto_field\n'), ((3680, 3711), 'marshmallow_sqlalchemy.fields.Nested', 'Nested', (['UserFixture'], {'many': '(False)'}), '(UserFixture, many=False)\n', (3686, 3711), False, 'from marshmallow_sqlalchemy.fields import Nested\n'), ((3725, 3756), 'marshmallow_sqlalchemy.fields.Nested', 'Nested', (['FieldFixture'], {'many': '(True)'}), '(FieldFixture, many=True)\n', (3731, 3756), False, 'from marshmallow_sqlalchemy.fields import Nested\n'), ((3780, 3809), 'marshmallow_sqlalchemy.fields.Nested', 'Nested', (['UserPermissionFixture'], {}), '(UserPermissionFixture)\n', (3786, 3809), False, 'from marshmallow_sqlalchemy.fields import Nested\n'), ((3833, 3862), 'marshmallow_sqlalchemy.fields.Nested', 'Nested', (['RolePermissionFixture'], {}), '(RolePermissionFixture)\n', (3839, 3862), False, 'from marshmallow_sqlalchemy.fields import Nested\n')]
# -*- coding: utf-8 -*- import graphene from graphene import relay from graphene_gae import NdbObjectType, NdbConnectionField from messaging.models.accounts import ( Account as AccountModel, create, update, delete, generate_api_key, ) from messaging.models.services import Service as ServiceModel from messaging.models.messages import Message as MessageModel from messaging.schema.services import Service as ServiceType from messaging.schema.messages import Message as MessageType from messaging.utils import pick from messaging.helpers import get_key from messaging.exceptions import ExecutionUnauthorized class Account(NdbObjectType): class Meta: model = AccountModel exclude_fields = AccountModel._excluded_keys interfaces = (relay.Node,) services = NdbConnectionField(ServiceType) def resolve_services(self, info, **args): return ServiceModel.query(ancestor=self.key) messages = NdbConnectionField(MessageType) def resolve_messages(self, info, **args): return MessageModel.query(ancestor=self.key) @classmethod def accounts_resolver(cls, root, info): return AccountModel.query(ancestor=info.context.user_key) class CreateAccount(relay.ClientIDMutation): class Input: site = graphene.String(required=True) name = graphene.String(required=True) account = graphene.Field(Account) @classmethod def mutate_and_get_payload(cls, root, info, **input): account = create( fields=cls.Input._meta.fields.keys(), user=info.context.user_key, body=input, as_obj=True, ) return CreateAccount(account=account) class UpdateAccount(relay.ClientIDMutation): class Input: id = graphene.ID(required=True) site = graphene.String() name = graphene.String() account = graphene.Field(Account) @classmethod def mutate_and_get_payload(cls, root, info, **input): account_key = get_key(input.get("id")) if account_key.parent() != info.context.user_key: raise ExecutionUnauthorized account = update( fields=filter(lambda x: x != "id", cls.Input._meta.fields.keys()), account=account_key, body=pick(["site", "name"], input), as_obj=True, ) return UpdateAccount(account=account) class DeleteAccount(relay.ClientIDMutation): class Input: id = graphene.ID(required=True) @classmethod def mutate_and_get_payload(cls, root, info, id): account_key = get_key(id) if account_key.parent() != info.context.user_key: raise ExecutionUnauthorized delete(account_key) return DeleteAccount() class CreateAccountKey(relay.ClientIDMutation): class Input: id = graphene.ID(required=True) key = graphene.String() @classmethod def mutate_and_get_payload(cls, root, info, **input): account_key = get_key(input.get("id")) if account_key.parent() != info.context.user_key: raise ExecutionUnauthorized key = generate_api_key(account_key) return CreateAccountKey(key=key)
[ "graphene.String", "messaging.models.accounts.Account.query", "graphene.ID", "messaging.models.accounts.generate_api_key", "messaging.utils.pick", "graphene_gae.NdbConnectionField", "messaging.models.accounts.delete", "messaging.models.messages.Message.query", "messaging.models.services.Service.query", "graphene.Field", "messaging.helpers.get_key" ]
[((810, 841), 'graphene_gae.NdbConnectionField', 'NdbConnectionField', (['ServiceType'], {}), '(ServiceType)\n', (828, 841), False, 'from graphene_gae import NdbObjectType, NdbConnectionField\n'), ((958, 989), 'graphene_gae.NdbConnectionField', 'NdbConnectionField', (['MessageType'], {}), '(MessageType)\n', (976, 989), False, 'from graphene_gae import NdbObjectType, NdbConnectionField\n'), ((1389, 1412), 'graphene.Field', 'graphene.Field', (['Account'], {}), '(Account)\n', (1403, 1412), False, 'import graphene\n'), ((1895, 1918), 'graphene.Field', 'graphene.Field', (['Account'], {}), '(Account)\n', (1909, 1918), False, 'import graphene\n'), ((2891, 2908), 'graphene.String', 'graphene.String', ([], {}), '()\n', (2906, 2908), False, 'import graphene\n'), ((904, 941), 'messaging.models.services.Service.query', 'ServiceModel.query', ([], {'ancestor': 'self.key'}), '(ancestor=self.key)\n', (922, 941), True, 'from messaging.models.services import Service as ServiceModel\n'), ((1052, 1089), 'messaging.models.messages.Message.query', 'MessageModel.query', ([], {'ancestor': 'self.key'}), '(ancestor=self.key)\n', (1070, 1089), True, 'from messaging.models.messages import Message as MessageModel\n'), ((1167, 1217), 'messaging.models.accounts.Account.query', 'AccountModel.query', ([], {'ancestor': 'info.context.user_key'}), '(ancestor=info.context.user_key)\n', (1185, 1217), True, 'from messaging.models.accounts import Account as AccountModel, create, update, delete, generate_api_key\n'), ((1297, 1327), 'graphene.String', 'graphene.String', ([], {'required': '(True)'}), '(required=True)\n', (1312, 1327), False, 'import graphene\n'), ((1343, 1373), 'graphene.String', 'graphene.String', ([], {'required': '(True)'}), '(required=True)\n', (1358, 1373), False, 'import graphene\n'), ((1787, 1813), 'graphene.ID', 'graphene.ID', ([], {'required': '(True)'}), '(required=True)\n', (1798, 1813), False, 'import graphene\n'), ((1829, 1846), 'graphene.String', 'graphene.String', ([], {}), '()\n', (1844, 1846), False, 'import graphene\n'), ((1862, 1879), 'graphene.String', 'graphene.String', ([], {}), '()\n', (1877, 1879), False, 'import graphene\n'), ((2484, 2510), 'graphene.ID', 'graphene.ID', ([], {'required': '(True)'}), '(required=True)\n', (2495, 2510), False, 'import graphene\n'), ((2604, 2615), 'messaging.helpers.get_key', 'get_key', (['id'], {}), '(id)\n', (2611, 2615), False, 'from messaging.helpers import get_key\n'), ((2722, 2741), 'messaging.models.accounts.delete', 'delete', (['account_key'], {}), '(account_key)\n', (2728, 2741), False, 'from messaging.models.accounts import Account as AccountModel, create, update, delete, generate_api_key\n'), ((2853, 2879), 'graphene.ID', 'graphene.ID', ([], {'required': '(True)'}), '(required=True)\n', (2864, 2879), False, 'import graphene\n'), ((3144, 3173), 'messaging.models.accounts.generate_api_key', 'generate_api_key', (['account_key'], {}), '(account_key)\n', (3160, 3173), False, 'from messaging.models.accounts import Account as AccountModel, create, update, delete, generate_api_key\n'), ((2295, 2324), 'messaging.utils.pick', 'pick', (["['site', 'name']", 'input'], {}), "(['site', 'name'], input)\n", (2299, 2324), False, 'from messaging.utils import pick\n')]
from datetime import datetime import argparse from config.settings import DEFAULT_TIME_FORMAT def valid_date(date): try: return datetime.strptime(date,DEFAULT_TIME_FORMAT) except ValueError: msg = "Not a valid date: '{0}'.".format(date) raise argparse.ArgumentTypeError(msg)
[ "datetime.datetime.strptime", "argparse.ArgumentTypeError" ]
[((142, 186), 'datetime.datetime.strptime', 'datetime.strptime', (['date', 'DEFAULT_TIME_FORMAT'], {}), '(date, DEFAULT_TIME_FORMAT)\n', (159, 186), False, 'from datetime import datetime\n'), ((282, 313), 'argparse.ArgumentTypeError', 'argparse.ArgumentTypeError', (['msg'], {}), '(msg)\n', (308, 313), False, 'import argparse\n')]
"""Crypto API Views""" from typing import Optional from cryptography.hazmat.backends import default_backend from cryptography.hazmat.primitives.serialization import load_pem_private_key from cryptography.x509 import load_pem_x509_certificate from django.http.response import HttpResponse from django.urls import reverse from django.utils.translation import gettext_lazy as _ from django_filters import FilterSet from django_filters.filters import BooleanFilter from drf_spectacular.types import OpenApiTypes from drf_spectacular.utils import OpenApiParameter, OpenApiResponse, extend_schema from rest_framework.decorators import action from rest_framework.fields import CharField, DateTimeField, IntegerField, SerializerMethodField from rest_framework.request import Request from rest_framework.response import Response from rest_framework.serializers import ModelSerializer, ValidationError from rest_framework.viewsets import ModelViewSet from structlog.stdlib import get_logger from authentik.api.decorators import permission_required from authentik.core.api.used_by import UsedByMixin from authentik.core.api.utils import PassiveSerializer from authentik.crypto.builder import CertificateBuilder from authentik.crypto.managed import MANAGED_KEY from authentik.crypto.models import CertificateKeyPair from authentik.events.models import Event, EventAction LOGGER = get_logger() class CertificateKeyPairSerializer(ModelSerializer): """CertificateKeyPair Serializer""" cert_expiry = DateTimeField(source="certificate.not_valid_after", read_only=True) cert_subject = SerializerMethodField() private_key_available = SerializerMethodField() private_key_type = SerializerMethodField() certificate_download_url = SerializerMethodField() private_key_download_url = SerializerMethodField() def get_cert_subject(self, instance: CertificateKeyPair) -> str: """Get certificate subject as full rfc4514""" return instance.certificate.subject.rfc4514_string() def get_private_key_available(self, instance: CertificateKeyPair) -> bool: """Show if this keypair has a private key configured or not""" return instance.key_data != "" and instance.key_data is not None def get_private_key_type(self, instance: CertificateKeyPair) -> Optional[str]: """Get the private key's type, if set""" key = instance.private_key if key: return key.__class__.__name__.replace("_", "").lower().replace("privatekey", "") return None def get_certificate_download_url(self, instance: CertificateKeyPair) -> str: """Get URL to download certificate""" return ( reverse( "authentik_api:certificatekeypair-view-certificate", kwargs={"pk": instance.pk}, ) + "?download" ) def get_private_key_download_url(self, instance: CertificateKeyPair) -> str: """Get URL to download private key""" return ( reverse( "authentik_api:certificatekeypair-view-private-key", kwargs={"pk": instance.pk}, ) + "?download" ) def validate_certificate_data(self, value: str) -> str: """Verify that input is a valid PEM x509 Certificate""" try: # Cast to string to fully load and parse certificate # Prevents issues like https://github.com/goauthentik/authentik/issues/2082 str(load_pem_x509_certificate(value.encode("utf-8"), default_backend())) except ValueError as exc: LOGGER.warning("Failed to load certificate", exc=exc) raise ValidationError("Unable to load certificate.") return value def validate_key_data(self, value: str) -> str: """Verify that input is a valid PEM Key""" # Since this field is optional, data can be empty. if value != "": try: # Cast to string to fully load and parse certificate # Prevents issues like https://github.com/goauthentik/authentik/issues/2082 str( load_pem_private_key( str.encode("\n".join([x.strip() for x in value.split("\n")])), password=None, backend=default_backend(), ) ) except (ValueError, TypeError) as exc: LOGGER.warning("Failed to load private key", exc=exc) raise ValidationError("Unable to load private key (possibly encrypted?).") return value class Meta: model = CertificateKeyPair fields = [ "pk", "name", "fingerprint_sha256", "fingerprint_sha1", "certificate_data", "key_data", "cert_expiry", "cert_subject", "private_key_available", "private_key_type", "certificate_download_url", "private_key_download_url", "managed", ] extra_kwargs = { "key_data": {"write_only": True}, "certificate_data": {"write_only": True}, } class CertificateDataSerializer(PassiveSerializer): """Get CertificateKeyPair's data""" data = CharField(read_only=True) class CertificateGenerationSerializer(PassiveSerializer): """Certificate generation parameters""" common_name = CharField() subject_alt_name = CharField(required=False, allow_blank=True, label=_("Subject-alt name")) validity_days = IntegerField(initial=365) class CertificateKeyPairFilter(FilterSet): """Filter for certificates""" has_key = BooleanFilter( label="Only return certificate-key pairs with keys", method="filter_has_key" ) # pylint: disable=unused-argument def filter_has_key(self, queryset, name, value): # pragma: no cover """Only return certificate-key pairs with keys""" return queryset.exclude(key_data__exact="") class Meta: model = CertificateKeyPair fields = ["name", "managed"] class CertificateKeyPairViewSet(UsedByMixin, ModelViewSet): """CertificateKeyPair Viewset""" queryset = CertificateKeyPair.objects.exclude(managed=MANAGED_KEY) serializer_class = CertificateKeyPairSerializer filterset_class = CertificateKeyPairFilter ordering = ["name"] search_fields = ["name"] @permission_required(None, ["authentik_crypto.add_certificatekeypair"]) @extend_schema( request=CertificateGenerationSerializer(), responses={ 200: CertificateKeyPairSerializer, 400: OpenApiResponse(description="Bad request"), }, ) @action(detail=False, methods=["POST"]) def generate(self, request: Request) -> Response: """Generate a new, self-signed certificate-key pair""" data = CertificateGenerationSerializer(data=request.data) if not data.is_valid(): return Response(data.errors, status=400) builder = CertificateBuilder() builder.common_name = data.validated_data["common_name"] builder.build( subject_alt_names=data.validated_data.get("subject_alt_name", "").split(","), validity_days=int(data.validated_data["validity_days"]), ) instance = builder.save() serializer = self.get_serializer(instance) return Response(serializer.data) @extend_schema( parameters=[ OpenApiParameter( name="download", location=OpenApiParameter.QUERY, type=OpenApiTypes.BOOL, ) ], responses={200: CertificateDataSerializer(many=False)}, ) @action(detail=True, pagination_class=None, filter_backends=[]) # pylint: disable=invalid-name, unused-argument def view_certificate(self, request: Request, pk: str) -> Response: """Return certificate-key pairs certificate and log access""" certificate: CertificateKeyPair = self.get_object() Event.new( # noqa # nosec EventAction.SECRET_VIEW, secret=certificate, type="certificate", ).from_http(request) if "download" in request.query_params: # Mime type from https://pki-tutorial.readthedocs.io/en/latest/mime.html response = HttpResponse( certificate.certificate_data, content_type="application/x-pem-file" ) response[ "Content-Disposition" ] = f'attachment; filename="{certificate.name}_certificate.pem"' return response return Response(CertificateDataSerializer({"data": certificate.certificate_data}).data) @extend_schema( parameters=[ OpenApiParameter( name="download", location=OpenApiParameter.QUERY, type=OpenApiTypes.BOOL, ) ], responses={200: CertificateDataSerializer(many=False)}, ) @action(detail=True, pagination_class=None, filter_backends=[]) # pylint: disable=invalid-name, unused-argument def view_private_key(self, request: Request, pk: str) -> Response: """Return certificate-key pairs private key and log access""" certificate: CertificateKeyPair = self.get_object() Event.new( # noqa # nosec EventAction.SECRET_VIEW, secret=certificate, type="private_key", ).from_http(request) if "download" in request.query_params: # Mime type from https://pki-tutorial.readthedocs.io/en/latest/mime.html response = HttpResponse(certificate.key_data, content_type="application/x-pem-file") response[ "Content-Disposition" ] = f'attachment; filename="{certificate.name}_private_key.pem"' return response return Response(CertificateDataSerializer({"data": certificate.key_data}).data)
[ "rest_framework.fields.IntegerField", "authentik.api.decorators.permission_required", "rest_framework.response.Response", "structlog.stdlib.get_logger", "drf_spectacular.utils.OpenApiResponse", "authentik.crypto.builder.CertificateBuilder", "rest_framework.fields.SerializerMethodField", "rest_framework.fields.CharField", "authentik.crypto.models.CertificateKeyPair.objects.exclude", "django_filters.filters.BooleanFilter", "django.utils.translation.gettext_lazy", "django.urls.reverse", "drf_spectacular.utils.OpenApiParameter", "authentik.events.models.Event.new", "cryptography.hazmat.backends.default_backend", "rest_framework.fields.DateTimeField", "rest_framework.decorators.action", "django.http.response.HttpResponse", "rest_framework.serializers.ValidationError" ]
[((1371, 1383), 'structlog.stdlib.get_logger', 'get_logger', ([], {}), '()\n', (1381, 1383), False, 'from structlog.stdlib import get_logger\n'), ((1498, 1565), 'rest_framework.fields.DateTimeField', 'DateTimeField', ([], {'source': '"""certificate.not_valid_after"""', 'read_only': '(True)'}), "(source='certificate.not_valid_after', read_only=True)\n", (1511, 1565), False, 'from rest_framework.fields import CharField, DateTimeField, IntegerField, SerializerMethodField\n'), ((1585, 1608), 'rest_framework.fields.SerializerMethodField', 'SerializerMethodField', ([], {}), '()\n', (1606, 1608), False, 'from rest_framework.fields import CharField, DateTimeField, IntegerField, SerializerMethodField\n'), ((1637, 1660), 'rest_framework.fields.SerializerMethodField', 'SerializerMethodField', ([], {}), '()\n', (1658, 1660), False, 'from rest_framework.fields import CharField, DateTimeField, IntegerField, SerializerMethodField\n'), ((1684, 1707), 'rest_framework.fields.SerializerMethodField', 'SerializerMethodField', ([], {}), '()\n', (1705, 1707), False, 'from rest_framework.fields import CharField, DateTimeField, IntegerField, SerializerMethodField\n'), ((1740, 1763), 'rest_framework.fields.SerializerMethodField', 'SerializerMethodField', ([], {}), '()\n', (1761, 1763), False, 'from rest_framework.fields import CharField, DateTimeField, IntegerField, SerializerMethodField\n'), ((1795, 1818), 'rest_framework.fields.SerializerMethodField', 'SerializerMethodField', ([], {}), '()\n', (1816, 1818), False, 'from rest_framework.fields import CharField, DateTimeField, IntegerField, SerializerMethodField\n'), ((5333, 5358), 'rest_framework.fields.CharField', 'CharField', ([], {'read_only': '(True)'}), '(read_only=True)\n', (5342, 5358), False, 'from rest_framework.fields import CharField, DateTimeField, IntegerField, SerializerMethodField\n'), ((5482, 5493), 'rest_framework.fields.CharField', 'CharField', ([], {}), '()\n', (5491, 5493), False, 'from rest_framework.fields import CharField, DateTimeField, IntegerField, SerializerMethodField\n'), ((5610, 5635), 'rest_framework.fields.IntegerField', 'IntegerField', ([], {'initial': '(365)'}), '(initial=365)\n', (5622, 5635), False, 'from rest_framework.fields import CharField, DateTimeField, IntegerField, SerializerMethodField\n'), ((5730, 5826), 'django_filters.filters.BooleanFilter', 'BooleanFilter', ([], {'label': '"""Only return certificate-key pairs with keys"""', 'method': '"""filter_has_key"""'}), "(label='Only return certificate-key pairs with keys', method=\n 'filter_has_key')\n", (5743, 5826), False, 'from django_filters.filters import BooleanFilter\n'), ((6262, 6317), 'authentik.crypto.models.CertificateKeyPair.objects.exclude', 'CertificateKeyPair.objects.exclude', ([], {'managed': 'MANAGED_KEY'}), '(managed=MANAGED_KEY)\n', (6296, 6317), False, 'from authentik.crypto.models import CertificateKeyPair\n'), ((6476, 6546), 'authentik.api.decorators.permission_required', 'permission_required', (['None', "['authentik_crypto.add_certificatekeypair']"], {}), "(None, ['authentik_crypto.add_certificatekeypair'])\n", (6495, 6546), False, 'from authentik.api.decorators import permission_required\n'), ((6768, 6806), 'rest_framework.decorators.action', 'action', ([], {'detail': '(False)', 'methods': "['POST']"}), "(detail=False, methods=['POST'])\n", (6774, 6806), False, 'from rest_framework.decorators import action\n'), ((7791, 7853), 'rest_framework.decorators.action', 'action', ([], {'detail': '(True)', 'pagination_class': 'None', 'filter_backends': '[]'}), '(detail=True, pagination_class=None, filter_backends=[])\n', (7797, 7853), False, 'from rest_framework.decorators import action\n'), ((9094, 9156), 'rest_framework.decorators.action', 'action', ([], {'detail': '(True)', 'pagination_class': 'None', 'filter_backends': '[]'}), '(detail=True, pagination_class=None, filter_backends=[])\n', (9100, 9156), False, 'from rest_framework.decorators import action\n'), ((7093, 7113), 'authentik.crypto.builder.CertificateBuilder', 'CertificateBuilder', ([], {}), '()\n', (7111, 7113), False, 'from authentik.crypto.builder import CertificateBuilder\n'), ((7471, 7496), 'rest_framework.response.Response', 'Response', (['serializer.data'], {}), '(serializer.data)\n', (7479, 7496), False, 'from rest_framework.response import Response\n'), ((2682, 2774), 'django.urls.reverse', 'reverse', (['"""authentik_api:certificatekeypair-view-certificate"""'], {'kwargs': "{'pk': instance.pk}"}), "('authentik_api:certificatekeypair-view-certificate', kwargs={'pk':\n instance.pk})\n", (2689, 2774), False, 'from django.urls import reverse\n'), ((3011, 3103), 'django.urls.reverse', 'reverse', (['"""authentik_api:certificatekeypair-view-private-key"""'], {'kwargs': "{'pk': instance.pk}"}), "('authentik_api:certificatekeypair-view-private-key', kwargs={'pk':\n instance.pk})\n", (3018, 3103), False, 'from django.urls import reverse\n'), ((5567, 5588), 'django.utils.translation.gettext_lazy', '_', (['"""Subject-alt name"""'], {}), "('Subject-alt name')\n", (5568, 5588), True, 'from django.utils.translation import gettext_lazy as _\n'), ((7041, 7074), 'rest_framework.response.Response', 'Response', (['data.errors'], {'status': '(400)'}), '(data.errors, status=400)\n', (7049, 7074), False, 'from rest_framework.response import Response\n'), ((8427, 8513), 'django.http.response.HttpResponse', 'HttpResponse', (['certificate.certificate_data'], {'content_type': '"""application/x-pem-file"""'}), "(certificate.certificate_data, content_type=\n 'application/x-pem-file')\n", (8439, 8513), False, 'from django.http.response import HttpResponse\n'), ((9730, 9803), 'django.http.response.HttpResponse', 'HttpResponse', (['certificate.key_data'], {'content_type': '"""application/x-pem-file"""'}), "(certificate.key_data, content_type='application/x-pem-file')\n", (9742, 9803), False, 'from django.http.response import HttpResponse\n'), ((3677, 3723), 'rest_framework.serializers.ValidationError', 'ValidationError', (['"""Unable to load certificate."""'], {}), "('Unable to load certificate.')\n", (3692, 3723), False, 'from rest_framework.serializers import ModelSerializer, ValidationError\n'), ((6702, 6744), 'drf_spectacular.utils.OpenApiResponse', 'OpenApiResponse', ([], {'description': '"""Bad request"""'}), "(description='Bad request')\n", (6717, 6744), False, 'from drf_spectacular.utils import OpenApiParameter, OpenApiResponse, extend_schema\n'), ((8115, 8189), 'authentik.events.models.Event.new', 'Event.new', (['EventAction.SECRET_VIEW'], {'secret': 'certificate', 'type': '"""certificate"""'}), "(EventAction.SECRET_VIEW, secret=certificate, type='certificate')\n", (8124, 8189), False, 'from authentik.events.models import Event, EventAction\n'), ((7551, 7646), 'drf_spectacular.utils.OpenApiParameter', 'OpenApiParameter', ([], {'name': '"""download"""', 'location': 'OpenApiParameter.QUERY', 'type': 'OpenApiTypes.BOOL'}), "(name='download', location=OpenApiParameter.QUERY, type=\n OpenApiTypes.BOOL)\n", (7567, 7646), False, 'from drf_spectacular.utils import OpenApiParameter, OpenApiResponse, extend_schema\n'), ((9418, 9492), 'authentik.events.models.Event.new', 'Event.new', (['EventAction.SECRET_VIEW'], {'secret': 'certificate', 'type': '"""private_key"""'}), "(EventAction.SECRET_VIEW, secret=certificate, type='private_key')\n", (9427, 9492), False, 'from authentik.events.models import Event, EventAction\n'), ((8854, 8949), 'drf_spectacular.utils.OpenApiParameter', 'OpenApiParameter', ([], {'name': '"""download"""', 'location': 'OpenApiParameter.QUERY', 'type': 'OpenApiTypes.BOOL'}), "(name='download', location=OpenApiParameter.QUERY, type=\n OpenApiTypes.BOOL)\n", (8870, 8949), False, 'from drf_spectacular.utils import OpenApiParameter, OpenApiResponse, extend_schema\n'), ((3539, 3556), 'cryptography.hazmat.backends.default_backend', 'default_backend', ([], {}), '()\n', (3554, 3556), False, 'from cryptography.hazmat.backends import default_backend\n'), ((4533, 4601), 'rest_framework.serializers.ValidationError', 'ValidationError', (['"""Unable to load private key (possibly encrypted?)."""'], {}), "('Unable to load private key (possibly encrypted?).')\n", (4548, 4601), False, 'from rest_framework.serializers import ModelSerializer, ValidationError\n'), ((4331, 4348), 'cryptography.hazmat.backends.default_backend', 'default_backend', ([], {}), '()\n', (4346, 4348), False, 'from cryptography.hazmat.backends import default_backend\n')]
from django.test import TestCase from django.urls import reverse from rest_framework.test import APIClient from rest_framework import status from core.models import Item from order.serializers import ItemSerializer from core.tests.user_test_utils import create_user from core.tests.order_test_utils import sample_order, sample_item ITEMS_URL = reverse('order:item-list') class PublicItemAPITest(TestCase): def setUp(self): self.client = APIClient() def test_authentication_required(self): response = self.client.get(ITEMS_URL) self.assertEqual(response.status_code, status.HTTP_401_UNAUTHORIZED) class PrivateItemAPITest(TestCase): def setUp(self): self.client = APIClient() self.user_data = { 'name': 'Name', 'email': '<EMAIL>', 'password': 'password' } self.user = create_user(**self.user_data) self.client.force_authenticate(user=self.user) def test_get_items_success(self): Item.objects.create(user=self.user, name='Item 1') Item.objects.create(user=self.user, name='Item 2') items = Item.objects.all().order_by('-name') serializer = ItemSerializer(items, many=True) response = self.client.get(ITEMS_URL) self.assertEqual(response.status_code, status.HTTP_200_OK) self.assertEqual(serializer.data, response.data) def test_get_items_user_specific(self): other_user_data = self.user_data.copy() other_user_data['email'] = '<EMAIL>' other_user = create_user(**other_user_data) item = Item.objects.create(user=self.user, name='Item 1') Item.objects.create(user=other_user, name='Item 2') response = self.client.get(ITEMS_URL) self.assertEqual(response.status_code, status.HTTP_200_OK) self.assertEqual(len(response.data), 1) self.assertEqual(response.data[0]['name'], item.name) def test_post_item_success(self): payload = {'name': 'Item'} response = self.client.post(ITEMS_URL, payload) exists = Item.objects.filter( user=self.user, name=payload['name'] ).exists() self.assertEqual(response.status_code, status.HTTP_201_CREATED) self.assertTrue(exists) def test_post_item_fail(self): payload = {} response = self.client.post(ITEMS_URL, payload) exists = Item.objects.filter( user=self.user, name=None ).exists() self.assertEqual( response.status_code, status.HTTP_400_BAD_REQUEST ) self.assertFalse(exists) def test_filter_items_by_assignment(self): order = sample_order(user=self.user) item_1 = sample_item(user=self.user, name='Item 1') item_2 = sample_item(user=self.user, name='Item 2') order.items.add(item_1) response_1 = self.client.get(ITEMS_URL, {'assigned': 1}) response_2 = self.client.get(ITEMS_URL) self.assertEqual(response_1.status_code, status.HTTP_200_OK) self.assertEqual(response_2.status_code, status.HTTP_200_OK) self.assertEqual(len(response_1.data), 1) self.assertEqual(len(response_2.data), 2) self.assertEqual(response_1.data[0]['name'], item_1.name) item_1_name_match = \ response_2.data[0]['name'] == item_1.name or \ response_2.data[1]['name'] == item_1.name item_2_name_match = \ response_2.data[0]['name'] == item_2.name or \ response_2.data[1]['name'] == item_2.name self.assertTrue(item_1_name_match) self.assertTrue(item_2_name_match) def test_filter_items_by_assignment_unique(self): order_1 = sample_order(user=self.user) order_2 = sample_order(user=self.user) item = sample_item(user=self.user, name='Item 1') sample_item(user=self.user, name='Item 2') order_1.items.add(item) order_2.items.add(item) response = self.client.get(ITEMS_URL, {'assigned': 1}) self.assertEqual(response.status_code, status.HTTP_200_OK) self.assertEqual(len(response.data), 1)
[ "core.models.Item.objects.create", "core.models.Item.objects.filter", "core.tests.order_test_utils.sample_order", "order.serializers.ItemSerializer", "django.urls.reverse", "core.models.Item.objects.all", "rest_framework.test.APIClient", "core.tests.user_test_utils.create_user", "core.tests.order_test_utils.sample_item" ]
[((347, 373), 'django.urls.reverse', 'reverse', (['"""order:item-list"""'], {}), "('order:item-list')\n", (354, 373), False, 'from django.urls import reverse\n'), ((454, 465), 'rest_framework.test.APIClient', 'APIClient', ([], {}), '()\n', (463, 465), False, 'from rest_framework.test import APIClient\n'), ((715, 726), 'rest_framework.test.APIClient', 'APIClient', ([], {}), '()\n', (724, 726), False, 'from rest_framework.test import APIClient\n'), ((879, 908), 'core.tests.user_test_utils.create_user', 'create_user', ([], {}), '(**self.user_data)\n', (890, 908), False, 'from core.tests.user_test_utils import create_user\n'), ((1011, 1061), 'core.models.Item.objects.create', 'Item.objects.create', ([], {'user': 'self.user', 'name': '"""Item 1"""'}), "(user=self.user, name='Item 1')\n", (1030, 1061), False, 'from core.models import Item\n'), ((1070, 1120), 'core.models.Item.objects.create', 'Item.objects.create', ([], {'user': 'self.user', 'name': '"""Item 2"""'}), "(user=self.user, name='Item 2')\n", (1089, 1120), False, 'from core.models import Item\n'), ((1196, 1228), 'order.serializers.ItemSerializer', 'ItemSerializer', (['items'], {'many': '(True)'}), '(items, many=True)\n', (1210, 1228), False, 'from order.serializers import ItemSerializer\n'), ((1560, 1590), 'core.tests.user_test_utils.create_user', 'create_user', ([], {}), '(**other_user_data)\n', (1571, 1590), False, 'from core.tests.user_test_utils import create_user\n'), ((1607, 1657), 'core.models.Item.objects.create', 'Item.objects.create', ([], {'user': 'self.user', 'name': '"""Item 1"""'}), "(user=self.user, name='Item 1')\n", (1626, 1657), False, 'from core.models import Item\n'), ((1666, 1717), 'core.models.Item.objects.create', 'Item.objects.create', ([], {'user': 'other_user', 'name': '"""Item 2"""'}), "(user=other_user, name='Item 2')\n", (1685, 1717), False, 'from core.models import Item\n'), ((2716, 2744), 'core.tests.order_test_utils.sample_order', 'sample_order', ([], {'user': 'self.user'}), '(user=self.user)\n', (2728, 2744), False, 'from core.tests.order_test_utils import sample_order, sample_item\n'), ((2763, 2805), 'core.tests.order_test_utils.sample_item', 'sample_item', ([], {'user': 'self.user', 'name': '"""Item 1"""'}), "(user=self.user, name='Item 1')\n", (2774, 2805), False, 'from core.tests.order_test_utils import sample_order, sample_item\n'), ((2823, 2865), 'core.tests.order_test_utils.sample_item', 'sample_item', ([], {'user': 'self.user', 'name': '"""Item 2"""'}), "(user=self.user, name='Item 2')\n", (2834, 2865), False, 'from core.tests.order_test_utils import sample_order, sample_item\n'), ((3767, 3795), 'core.tests.order_test_utils.sample_order', 'sample_order', ([], {'user': 'self.user'}), '(user=self.user)\n', (3779, 3795), False, 'from core.tests.order_test_utils import sample_order, sample_item\n'), ((3814, 3842), 'core.tests.order_test_utils.sample_order', 'sample_order', ([], {'user': 'self.user'}), '(user=self.user)\n', (3826, 3842), False, 'from core.tests.order_test_utils import sample_order, sample_item\n'), ((3859, 3901), 'core.tests.order_test_utils.sample_item', 'sample_item', ([], {'user': 'self.user', 'name': '"""Item 1"""'}), "(user=self.user, name='Item 1')\n", (3870, 3901), False, 'from core.tests.order_test_utils import sample_order, sample_item\n'), ((3910, 3952), 'core.tests.order_test_utils.sample_item', 'sample_item', ([], {'user': 'self.user', 'name': '"""Item 2"""'}), "(user=self.user, name='Item 2')\n", (3921, 3952), False, 'from core.tests.order_test_utils import sample_order, sample_item\n'), ((1138, 1156), 'core.models.Item.objects.all', 'Item.objects.all', ([], {}), '()\n', (1154, 1156), False, 'from core.models import Item\n'), ((2092, 2149), 'core.models.Item.objects.filter', 'Item.objects.filter', ([], {'user': 'self.user', 'name': "payload['name']"}), "(user=self.user, name=payload['name'])\n", (2111, 2149), False, 'from core.models import Item\n'), ((2430, 2476), 'core.models.Item.objects.filter', 'Item.objects.filter', ([], {'user': 'self.user', 'name': 'None'}), '(user=self.user, name=None)\n', (2449, 2476), False, 'from core.models import Item\n')]
from unittest import TestCase from databuild import settings from databuild.adapters.locmem.models import LocMemBook from databuild.functions import data settings.LANGUAGES['noop'] = 'databuild.environments.noop.NoopEnvironment' class FunctionsTestCase(TestCase): def test_cross(self): a_data = [ {'id': 1, 'x': 2, 'y': 3}, {'id': 2, 'x': 2, 'y': 3.5}, {'id': 3, 'x': 1, 'y': 3.5}, ] b_data = [ {'id': 3, 'z': 3}, {'id': 1, 'z': 4}, {'id': 2, 'z': 4.5}, ] book = LocMemBook('project1') env = book.operator.languages['noop'] a = book.add_sheet('a', ['id', 'x', 'y']) b = book.add_sheet('b', ['id', 'z']) a.extend(a_data) b.extend(b_data) result = [data.cross(env, book, row, 'b', 'z', 'id') for row in a.all()] assert result == [4, 4.5, 3] def test_column(self): a_data = [ {'id': 1, 'x': 2, 'y': 3}, {'id': 2, 'x': 2, 'y': 3.5}, {'id': 3, 'x': 1, 'y': 3.5}, ] b_data = [ {'id': 3, 'z': 3}, {'id': 1, 'z': 4}, {'id': 2, 'z': 4.5}, ] book = LocMemBook('project1') env = book.operator.languages['noop'] a = book.add_sheet('a', ['id', 'x', 'y']) b = book.add_sheet('b', ['id', 'z']) a.extend(a_data) b.extend(b_data) result = data.column(env, book, 'a', 'b', 'z', 'id') assert result == [4, 4.5, 3]
[ "databuild.functions.data.cross", "databuild.adapters.locmem.models.LocMemBook", "databuild.functions.data.column" ]
[((584, 606), 'databuild.adapters.locmem.models.LocMemBook', 'LocMemBook', (['"""project1"""'], {}), "('project1')\n", (594, 606), False, 'from databuild.adapters.locmem.models import LocMemBook\n'), ((1237, 1259), 'databuild.adapters.locmem.models.LocMemBook', 'LocMemBook', (['"""project1"""'], {}), "('project1')\n", (1247, 1259), False, 'from databuild.adapters.locmem.models import LocMemBook\n'), ((1471, 1514), 'databuild.functions.data.column', 'data.column', (['env', 'book', '"""a"""', '"""b"""', '"""z"""', '"""id"""'], {}), "(env, book, 'a', 'b', 'z', 'id')\n", (1482, 1514), False, 'from databuild.functions import data\n'), ((819, 861), 'databuild.functions.data.cross', 'data.cross', (['env', 'book', 'row', '"""b"""', '"""z"""', '"""id"""'], {}), "(env, book, row, 'b', 'z', 'id')\n", (829, 861), False, 'from databuild.functions import data\n')]
from starcluster.clustersetup import ClusterSetup from starcluster.logger import log class PicardInstaller(ClusterSetup): def run(self, nodes, master, user, user_shell, volumes): for node in nodes: log.info("Installing Picard tools 1.121 on %s" % (node.alias)) node.ssh.execute('wget -c -P /opt/software/picard https://github.com/broadinstitute/picard/releases/download/1.121/picard-tools-1.121.zip') node.ssh.execute('unzip -d /opt/software/picard /opt/software/picard/picard-tools-1.121.zip') node.ssh.execute('find /opt/software/picard/picard-tools-1.121/*.jar -exec chmod 755 {} +') node.ssh.execute('mkdir -p /usr/local/Modules/applications/picard/;touch /usr/local/Modules/applications/picard/1.121') node.ssh.execute('echo "#%Module" >> /usr/local/Modules/applications/picard/1.121') node.ssh.execute('echo "set root /opt/software/picard/picard-tools-1.121" >> /usr/local/Modules/applications/picard/1.121') node.ssh.execute('echo -e "prepend-path\tPATH\t\$root" >> /usr/local/Modules/applications/picard/1.121')
[ "starcluster.logger.log.info" ]
[((205, 265), 'starcluster.logger.log.info', 'log.info', (["('Installing Picard tools 1.121 on %s' % node.alias)"], {}), "('Installing Picard tools 1.121 on %s' % node.alias)\n", (213, 265), False, 'from starcluster.logger import log\n')]
#!/usr/bin/env python3 import argparse import sys from fennec import __version__ as VERSION, __citation__ as CITATION if __name__ == "__main__": parser = argparse.ArgumentParser( prog="fennec", description="Fennec", formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) parser.add_argument("-v", "--version", action="version", version=VERSION) parser.add_argument("--citation", action="version", version=CITATION) subparsers = parser.add_subparsers() # - "model" subparser m_parser = subparsers.add_parser( "model", help="Extract features from sequences", add_help=False, formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) m_req = m_parser.add_argument_group("mandatory arguments") m_req.add_argument( "--input", default=argparse.SUPPRESS, help="Input file", required=True, metavar="FASTA", ) m_req.add_argument("--_PROG", default="model", help=argparse.SUPPRESS) m_opt = m_parser.add_argument_group("optionnal arguments") m_opt.add_argument( "--min_length", type=int, default=1000, help="Minimum sequence length to consider" ) m_opt.add_argument("--chunk_size", type=int, default=10000, help="Chunk size") m_opt.add_argument( "--overlap", type=str, default="auto", help="Overlap between chunks. Must be 'auto' or 0+", ) m_opt.add_argument("--outfile", default="<input.h5>", help="Output file") m_opt.add_argument( "--verbosity", type=int, default=3, choices=[0, 1, 2, 3, 4], help="Verbosity level" ) m_opt.add_argument("--n_jobs", type=int, default=1, help="Number of CPU to use") m_opt.add_argument( "-h", "--help", action="help", help="show this help message and exit" ) # - "describe" subparser d_parser = subparsers.add_parser( "describe", help="Describe modelled sequences", add_help=False, formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) d_req = d_parser.add_argument_group("mandatory arguments") d_req.add_argument( "--input", required=True, default=argparse.SUPPRESS, help="Input HDF5 file" ) d_req.add_argument("--_PROG", default="describe", help=argparse.SUPPRESS) d_opt = d_parser.add_argument_group("optionnal arguments") d_opt.add_argument( "--db_size", action="store_true", help="Print number of sequence fragements in the database", default=argparse.SUPPRESS, ) d_opt.add_argument( "--list_models", action="store_true", help="List available models in the database", default=argparse.SUPPRESS, ) d_opt.add_argument( "--repack", action="store_true", help=argparse.SUPPRESS, # help="Repack the HDF5 file", default=argparse.SUPPRESS, ) d_opt.add_argument( "-h", "--help", action="help", help="show this help message and exit" ) # - "extract" subparser e_parser = subparsers.add_parser( "extract", help="Extract bins from modelled sequences", add_help=False, formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) e_req = e_parser.add_argument_group("mandatory arguments") e_req.add_argument( "--input", required=True, default=argparse.SUPPRESS, help="Input HDF5 file" ) e_req.add_argument( "--models", required=True, default=["kmers4", "kmers110011", "contig2vec4", "cov_gattaca31"], nargs="+", help="List of models to use", metavar="MODEL", ) e_req.add_argument("--_PROG", default="extract", help=argparse.SUPPRESS) e_opt = e_parser.add_argument_group("optionnal arguments") e_opt.add_argument("--label", type=str, default="fennec", help="Label") e_opt.add_argument( "--max_iter", type=int, default=25, help="Maximum number of iteration" ) e_opt.add_argument( "--max_cluster", type=int, default=600, help="Maximum number of cluster" ) e_opt.add_argument( "--kpca_inertia", type=float, default=0.85, help="Inertia to keep after kernel PCA", metavar="[0.0-1.0]", ) e_opt.add_argument( "--kpca_t", type=float, default=0.33, help="Proportion of data to use to fit kernel PCA", metavar="[0.0-1.0]", ) e_opt.add_argument( "--ppmode", type=str, default="reassigntiny", choices=["nopostprocessing", "reassigntiny"], help="Postprocessing mode", ) e_opt.add_argument( "--verbosity", type=int, default=3, choices=[0, 1, 2, 3, 4], help="Verbosity level" ) e_opt.add_argument( "--min_cluster_size", type=int, default=50, help=argparse.SUPPRESS, # help="Minimum number of sequence per cluster", ) e_opt.add_argument("--n_jobs", type=int, default=1, help="Number of CPU to use") e_opt.add_argument( "-h", "--help", action="help", help="show this help message and exit" ) args = parser.parse_args() print(args) if not args.__dict__: # print usage if there is no args parser.error("No argument given") elif args._PROG == "model": print("== model") sys.exit(0) elif args._PROG == "describe": print("== describe") sys.exit(0) elif args._PROG == "extract": print("== extract") sys.exit(0) else: print("== ERROR ==") sys.exit(1)
[ "argparse.ArgumentParser", "sys.exit" ]
[((162, 282), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'prog': '"""fennec"""', 'description': '"""Fennec"""', 'formatter_class': 'argparse.ArgumentDefaultsHelpFormatter'}), "(prog='fennec', description='Fennec',\n formatter_class=argparse.ArgumentDefaultsHelpFormatter)\n", (185, 282), False, 'import argparse\n'), ((5381, 5392), 'sys.exit', 'sys.exit', (['(0)'], {}), '(0)\n', (5389, 5392), False, 'import sys\n'), ((5465, 5476), 'sys.exit', 'sys.exit', (['(0)'], {}), '(0)\n', (5473, 5476), False, 'import sys\n'), ((5547, 5558), 'sys.exit', 'sys.exit', (['(0)'], {}), '(0)\n', (5555, 5558), False, 'import sys\n'), ((5606, 5617), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (5614, 5617), False, 'import sys\n')]
# Generated by Django 2.0.2 on 2018-03-03 02:54 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('Contacts', '0002_auto_20180303_0253'), ] operations = [ migrations.RenameModel( old_name='Contacts', new_name='Contact', ), ]
[ "django.db.migrations.RenameModel" ]
[((228, 291), 'django.db.migrations.RenameModel', 'migrations.RenameModel', ([], {'old_name': '"""Contacts"""', 'new_name': '"""Contact"""'}), "(old_name='Contacts', new_name='Contact')\n", (250, 291), False, 'from django.db import migrations\n')]
# coding: utf-8 ''' <NAME>ard corpus magnitude check. ''' import io import os def main(): count = 0 for filename in os.listdir('./data/bc_hansard'): with io.open('./data/bc_hansard/%s'%filename, encoding='utf-8') as text_file: count += len(text_file.read().split()) print(count) if __name__ == '__main__': main()
[ "os.listdir", "io.open" ]
[((119, 150), 'os.listdir', 'os.listdir', (['"""./data/bc_hansard"""'], {}), "('./data/bc_hansard')\n", (129, 150), False, 'import os\n'), ((159, 219), 'io.open', 'io.open', (["('./data/bc_hansard/%s' % filename)"], {'encoding': '"""utf-8"""'}), "('./data/bc_hansard/%s' % filename, encoding='utf-8')\n", (166, 219), False, 'import io\n')]
from PIL import Image, ImageDraw, ImageFont class _Image: @staticmethod def draw_picture_with_text(image_file, text, size, x, y): image = Image.open(image_file) draw = ImageDraw.Draw(image) width_image, height_image = image.size font = ImageFont.truetype("arial.ttf", size=size) draw.text((x, y), text, font=font, fill='white') image.save(f'{image_file}') @staticmethod def draw_cross_on_picture(image_file, color, width): with Image.open(image_file) as im: draw = ImageDraw.Draw(im) draw.line((0, 0) + im.size, fill=color, width=width) draw.line((0, im.size[1], im.size[0], 0), fill=color, width=width) # write to stdout im.save(image_file) @staticmethod def draw_rect_on_picture(image_file, x0, y0, x1, y1, color, width): with Image.open(image_file) as im: draw = ImageDraw.Draw(im) draw.rectangle((x0,y0,x1,y1), outline=color, width=width) # write to stdout im.save(image_file)
[ "PIL.ImageDraw.Draw", "PIL.ImageFont.truetype", "PIL.Image.open" ]
[((156, 178), 'PIL.Image.open', 'Image.open', (['image_file'], {}), '(image_file)\n', (166, 178), False, 'from PIL import Image, ImageDraw, ImageFont\n'), ((194, 215), 'PIL.ImageDraw.Draw', 'ImageDraw.Draw', (['image'], {}), '(image)\n', (208, 215), False, 'from PIL import Image, ImageDraw, ImageFont\n'), ((278, 320), 'PIL.ImageFont.truetype', 'ImageFont.truetype', (['"""arial.ttf"""'], {'size': 'size'}), "('arial.ttf', size=size)\n", (296, 320), False, 'from PIL import Image, ImageDraw, ImageFont\n'), ((502, 524), 'PIL.Image.open', 'Image.open', (['image_file'], {}), '(image_file)\n', (512, 524), False, 'from PIL import Image, ImageDraw, ImageFont\n'), ((551, 569), 'PIL.ImageDraw.Draw', 'ImageDraw.Draw', (['im'], {}), '(im)\n', (565, 569), False, 'from PIL import Image, ImageDraw, ImageFont\n'), ((880, 902), 'PIL.Image.open', 'Image.open', (['image_file'], {}), '(image_file)\n', (890, 902), False, 'from PIL import Image, ImageDraw, ImageFont\n'), ((929, 947), 'PIL.ImageDraw.Draw', 'ImageDraw.Draw', (['im'], {}), '(im)\n', (943, 947), False, 'from PIL import Image, ImageDraw, ImageFont\n')]
# Module file for conductance measurements with the # SR830. Implementing the good ideas of <NAME> from typing import Union, Optional from time import sleep import numpy as np import qcodes as qc from qcodes.instrument.parameter import Parameter from qdev_wrappers.sweep_functions import _do_measurement from qcodes.instrument_drivers.QDev.QDac_channels import QDac as QDacch from qdev_wrappers.T3.customised_instruments import SR830_T3 def do2Dconductance(outer_param: Parameter, outer_start: Union[float, int], outer_stop: Union[float, int], outer_npts: int, inner_param: Parameter, inner_start: Union[float, int], inner_stop: Union[float, int], inner_npts: int, lockin: SR830_T3, delay: Optional[float]=None): """ Function to perform a sped-up 2D conductance measurement Args: outer_param: The outer loop voltage parameter outer_start: The outer loop start voltage outer_stop: The outer loop stop voltage outer_npts: The number of points in the outer loop inner_param: The inner loop voltage parameter inner_start: The inner loop start voltage inner_stop: The inner loop stop voltage inner_npts: The number of points in the inner loop lockin: The lock-in amplifier to use delay: Delay to wait after setting inner parameter before triggering lockin. If None will use default delay, otherwise used the supplied. """ station = qc.Station.default sr = lockin # Validate the instruments if sr.name not in station.components: raise KeyError('Unknown lock-in! Refusing to proceed until the ' 'lock-in has been added to the station.') if (outer_param._instrument.name not in station.components and outer_param._instrument._parent.name not in station.components): raise KeyError('Unknown instrument for outer parameter. ' 'Please add that instrument to the station.') if (inner_param._instrument.name not in station.components and inner_param._instrument._parent.name not in station.components): raise KeyError('Unknown instrument for inner parameter. ' 'Please add that instrument to the station.') tau = sr.time_constant() min_delay = 0.002 # what's the physics behind this number? if delay is None: delay = tau + min_delay # Prepare for the first iteration # Some of these things have to be repeated during the loop sr.buffer_reset() sr.buffer_start() #sr.buffer_trig_mode('ON') sr.buffer_SR('Trigger') sr.conductance.shape = (inner_npts,) sr.conductance.setpoint_names = (inner_param.name,) sr.conductance.setpoint_labels = (inner_param.label,) sr.conductance.setpoint_units = ('V',) sr.conductance.setpoints = (tuple(np.linspace(inner_start, inner_stop, inner_npts)),) def trigger(): sleep(delay) sr.send_trigger() def prepare_buffer(): # here it should be okay to call ch1_databuffer... I think... sr.ch1_databuffer.prepare_buffer_readout() # For the dataset/plotting, put in the correct setpoints sr.conductance.setpoint_names = (inner_param.name,) sr.conductance.setpoint_labels = (inner_param.label,) sr.conductance.setpoint_units = ('V',) sr.conductance.setpoints = (tuple(np.linspace(inner_start, inner_stop, inner_npts)),) def start_buffer(): sr.buffer_start() sr.conductance.shape = (inner_npts,) # This is something def reset_buffer(): sr.buffer_reset() trig_task = qc.Task(trigger) reset_task = qc.Task(reset_buffer) start_task = qc.Task(start_buffer) inner_loop = qc.Loop(inner_param.sweep(inner_start, inner_stop, num=inner_npts)).each(trig_task) outer_loop = qc.Loop(outer_param.sweep(outer_start, outer_stop, num=outer_npts)).each(start_task, inner_loop, sr.conductance, reset_task) set_params = ((inner_param, inner_start, inner_stop), (outer_param, outer_start, outer_stop)) meas_params = (sr.conductance,) prepare_buffer() qdac = None # ensure that any waveform generator is unbound from the qdac channels that we step if # we are stepping the qdac if isinstance(inner_param._instrument, QDacch): qdacch = inner_param._instrument qdacch.slope('Inf') if isinstance(outer_param._instrument, QDacch): qdacch = outer_param._instrument qdacch.slope('Inf') if qdac: qdac.fast_voltage_set(True) # now that we have unbound the function generators # we don't need to do it in the loop qdac.voltage_set_dont_wait(False) # this is un safe and highly experimental plot, data = _do_measurement(outer_loop, set_params, meas_params, do_plots=True) return plot, data
[ "qcodes.Task", "qdev_wrappers.sweep_functions._do_measurement", "numpy.linspace", "time.sleep" ]
[((3995, 4011), 'qcodes.Task', 'qc.Task', (['trigger'], {}), '(trigger)\n', (4002, 4011), True, 'import qcodes as qc\n'), ((4029, 4050), 'qcodes.Task', 'qc.Task', (['reset_buffer'], {}), '(reset_buffer)\n', (4036, 4050), True, 'import qcodes as qc\n'), ((4068, 4089), 'qcodes.Task', 'qc.Task', (['start_buffer'], {}), '(start_buffer)\n', (4075, 4089), True, 'import qcodes as qc\n'), ((5531, 5598), 'qdev_wrappers.sweep_functions._do_measurement', '_do_measurement', (['outer_loop', 'set_params', 'meas_params'], {'do_plots': '(True)'}), '(outer_loop, set_params, meas_params, do_plots=True)\n', (5546, 5598), False, 'from qdev_wrappers.sweep_functions import _do_measurement\n'), ((3187, 3199), 'time.sleep', 'sleep', (['delay'], {}), '(delay)\n', (3192, 3199), False, 'from time import sleep\n'), ((3007, 3055), 'numpy.linspace', 'np.linspace', (['inner_start', 'inner_stop', 'inner_npts'], {}), '(inner_start, inner_stop, inner_npts)\n', (3018, 3055), True, 'import numpy as np\n'), ((3650, 3698), 'numpy.linspace', 'np.linspace', (['inner_start', 'inner_stop', 'inner_npts'], {}), '(inner_start, inner_stop, inner_npts)\n', (3661, 3698), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- from south.utils import datetime_utils as datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Adding model 'Role' db.create_table('pta_role', ( ('id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('name', self.gf('django.db.models.fields.CharField')(max_length=100)), ('description', self.gf('django.db.models.fields.CharField')(max_length=500)), )) db.send_create_signal('pta', ['Role']) # Adding model 'Staff' db.create_table('pta_staff', ( ('id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('mob_no', self.gf('django.db.models.fields.CharField')(max_length=20)), ('adress', self.gf('django.db.models.fields.CharField')(max_length=100)), ('role', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['pta.Role'])), ('user', self.gf('django.db.models.fields.related.OneToOneField')(to=orm['auth.User'], unique=True)), )) db.send_create_signal('pta', ['Staff']) # Adding model 'Language' db.create_table('pta_language', ( ('id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('language', self.gf('django.db.models.fields.CharField')(max_length=100)), ('language_code', self.gf('django.db.models.fields.CharField')(max_length=20)), )) db.send_create_signal('pta', ['Language']) # Adding model 'Patient' db.create_table('pta_patient', ( ('id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('first_name', self.gf('django.db.models.fields.CharField')(max_length=100)), ('last_name', self.gf('django.db.models.fields.CharField')(max_length=100)), ('initials', self.gf('django.db.models.fields.CharField')(max_length=3)), ('original_address', self.gf('django.db.models.fields.CharField')(max_length=400)), ('bed_no', self.gf('django.db.models.fields.IntegerField')()), ('ward_no', self.gf('django.db.models.fields.IntegerField')()), ('pta_cleared', self.gf('django.db.models.fields.BooleanField')(default=False)), ('language', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['pta.Language'])), )) db.send_create_signal('pta', ['Patient']) # Adding model 'Question' db.create_table('pta_question', ( ('id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('name', self.gf('django.db.models.fields.CharField')(max_length=500)), ('question_type', self.gf('django.db.models.fields.CharField')(max_length=50)), )) db.send_create_signal('pta', ['Question']) # Adding model 'Answer' db.create_table('pta_answer', ( ('id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('question', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['pta.Question'])), ('text', self.gf('django.db.models.fields.CharField')(max_length=200)), ('isAnswerRight', self.gf('django.db.models.fields.BooleanField')(default=False)), )) db.send_create_signal('pta', ['Answer']) # Adding model 'PatientResponses' db.create_table('pta_patientresponses', ( ('id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('patient', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['pta.Patient'])), ('date', self.gf('django.db.models.fields.DateTimeField')()), ('answer', self.gf('django.db.models.fields.CharField')(max_length=200)), ('answerStatus', self.gf('django.db.models.fields.BooleanField')(default=False)), ('question', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['pta.Question'])), )) db.send_create_signal('pta', ['PatientResponses']) # Adding model 'PTAQuestionaire' db.create_table('pta_ptaquestionaire', ( ('id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('patient', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['pta.Patient'])), ('date', self.gf('django.db.models.fields.DateTimeField')()), ('correctAnswers', self.gf('django.db.models.fields.IntegerField')()), ('totalQuestions', self.gf('django.db.models.fields.IntegerField')()), ('staff', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['auth.User'])), )) db.send_create_signal('pta', ['PTAQuestionaire']) def backwards(self, orm): # Deleting model 'Role' db.delete_table('pta_role') # Deleting model 'Staff' db.delete_table('pta_staff') # Deleting model 'Language' db.delete_table('pta_language') # Deleting model 'Patient' db.delete_table('pta_patient') # Deleting model 'Question' db.delete_table('pta_question') # Deleting model 'Answer' db.delete_table('pta_answer') # Deleting model 'PatientResponses' db.delete_table('pta_patientresponses') # Deleting model 'PTAQuestionaire' db.delete_table('pta_ptaquestionaire') models = { 'auth.group': { 'Meta': {'object_name': 'Group'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '80'}), 'permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}) }, 'auth.permission': { 'Meta': {'ordering': "('content_type__app_label', 'content_type__model', 'codename')", 'unique_together': "(('content_type', 'codename'),)", 'object_name': 'Permission'}, 'codename': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['contenttypes.ContentType']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, 'auth.user': { 'Meta': {'object_name': 'User'}, 'date_joined': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'blank': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Group']", 'symmetrical': 'False', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'is_staff': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_superuser': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'last_login': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'password': ('<PASSWORD>.fields.CharField', [], {'max_length': '<PASSWORD>'}), 'user_permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}), 'username': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '30'}) }, 'contenttypes.contenttype': { 'Meta': {'ordering': "('name',)", 'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, 'pta.answer': { 'Meta': {'object_name': 'Answer'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'isAnswerRight': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'question': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['pta.Question']"}), 'text': ('django.db.models.fields.CharField', [], {'max_length': '200'}) }, 'pta.language': { 'Meta': {'object_name': 'Language'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'language': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'language_code': ('django.db.models.fields.CharField', [], {'max_length': '20'}) }, 'pta.patient': { 'Meta': {'object_name': 'Patient'}, 'bed_no': ('django.db.models.fields.IntegerField', [], {}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'initials': ('django.db.models.fields.CharField', [], {'max_length': '3'}), 'language': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['pta.Language']"}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'original_address': ('django.db.models.fields.CharField', [], {'max_length': '400'}), 'pta_cleared': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'ward_no': ('django.db.models.fields.IntegerField', [], {}) }, 'pta.patientresponses': { 'Meta': {'object_name': 'PatientResponses'}, 'answer': ('django.db.models.fields.CharField', [], {'max_length': '200'}), 'answerStatus': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'date': ('django.db.models.fields.DateTimeField', [], {}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'patient': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['pta.Patient']"}), 'question': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['pta.Question']"}) }, 'pta.ptaquestionaire': { 'Meta': {'object_name': 'PTAQuestionaire'}, 'correctAnswers': ('django.db.models.fields.IntegerField', [], {}), 'date': ('django.db.models.fields.DateTimeField', [], {}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'patient': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['pta.Patient']"}), 'staff': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['auth.User']"}), 'totalQuestions': ('django.db.models.fields.IntegerField', [], {}) }, 'pta.question': { 'Meta': {'object_name': 'Question'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '500'}), 'question_type': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, 'pta.role': { 'Meta': {'object_name': 'Role'}, 'description': ('django.db.models.fields.CharField', [], {'max_length': '500'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, 'pta.staff': { 'Meta': {'object_name': 'Staff'}, 'adress': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'mob_no': ('django.db.models.fields.CharField', [], {'max_length': '20'}), 'role': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['pta.Role']"}), 'user': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['auth.User']", 'unique': 'True'}) } } complete_apps = ['pta']
[ "south.db.db.delete_table", "south.db.db.send_create_signal" ]
[((577, 615), 'south.db.db.send_create_signal', 'db.send_create_signal', (['"""pta"""', "['Role']"], {}), "('pta', ['Role'])\n", (598, 615), False, 'from south.db import db\n'), ((1172, 1211), 'south.db.db.send_create_signal', 'db.send_create_signal', (['"""pta"""', "['Staff']"], {}), "('pta', ['Staff'])\n", (1193, 1211), False, 'from south.db import db\n'), ((1572, 1614), 'south.db.db.send_create_signal', 'db.send_create_signal', (['"""pta"""', "['Language']"], {}), "('pta', ['Language'])\n", (1593, 1614), False, 'from south.db import db\n'), ((2503, 2544), 'south.db.db.send_create_signal', 'db.send_create_signal', (['"""pta"""', "['Patient']"], {}), "('pta', ['Patient'])\n", (2524, 2544), False, 'from south.db import db\n'), ((2901, 2943), 'south.db.db.send_create_signal', 'db.send_create_signal', (['"""pta"""', "['Question']"], {}), "('pta', ['Question'])\n", (2922, 2943), False, 'from south.db import db\n'), ((3404, 3444), 'south.db.db.send_create_signal', 'db.send_create_signal', (['"""pta"""', "['Answer']"], {}), "('pta', ['Answer'])\n", (3425, 3444), False, 'from south.db import db\n'), ((4103, 4153), 'south.db.db.send_create_signal', 'db.send_create_signal', (['"""pta"""', "['PatientResponses']"], {}), "('pta', ['PatientResponses'])\n", (4124, 4153), False, 'from south.db import db\n'), ((4790, 4839), 'south.db.db.send_create_signal', 'db.send_create_signal', (['"""pta"""', "['PTAQuestionaire']"], {}), "('pta', ['PTAQuestionaire'])\n", (4811, 4839), False, 'from south.db import db\n'), ((4912, 4939), 'south.db.db.delete_table', 'db.delete_table', (['"""pta_role"""'], {}), "('pta_role')\n", (4927, 4939), False, 'from south.db import db\n'), ((4982, 5010), 'south.db.db.delete_table', 'db.delete_table', (['"""pta_staff"""'], {}), "('pta_staff')\n", (4997, 5010), False, 'from south.db import db\n'), ((5056, 5087), 'south.db.db.delete_table', 'db.delete_table', (['"""pta_language"""'], {}), "('pta_language')\n", (5071, 5087), False, 'from south.db import db\n'), ((5132, 5162), 'south.db.db.delete_table', 'db.delete_table', (['"""pta_patient"""'], {}), "('pta_patient')\n", (5147, 5162), False, 'from south.db import db\n'), ((5208, 5239), 'south.db.db.delete_table', 'db.delete_table', (['"""pta_question"""'], {}), "('pta_question')\n", (5223, 5239), False, 'from south.db import db\n'), ((5283, 5312), 'south.db.db.delete_table', 'db.delete_table', (['"""pta_answer"""'], {}), "('pta_answer')\n", (5298, 5312), False, 'from south.db import db\n'), ((5366, 5405), 'south.db.db.delete_table', 'db.delete_table', (['"""pta_patientresponses"""'], {}), "('pta_patientresponses')\n", (5381, 5405), False, 'from south.db import db\n'), ((5458, 5496), 'south.db.db.delete_table', 'db.delete_table', (['"""pta_ptaquestionaire"""'], {}), "('pta_ptaquestionaire')\n", (5473, 5496), False, 'from south.db import db\n')]
import re from locustio.common_utils import init_logger, confluence_measure logger = init_logger(app_type='confluence') @confluence_measure def app_specific_action(locust): r = locust.client.get('/plugin/report') # navigate to page content = r.content.decode('utf-8') # parse page content token_pattern_example = '"token":"(.+?)"' id_pattern_example = '"id":"(.+?)"' token = re.findall(token_pattern_example, content) # parse variables from response using regexp id = re.findall(id_pattern_example, content) logger.locust_info(f'token: {token}, id: {id}') # logger for debug when verbose is true in confluence.yml file if 'assertion string' not in content: logger.error(f"'assertion string' was not found in {content}") assert 'assertion string' in content # assertion after GET request body = {"id": id, "token": token} # include parsed variables to POST body headers = {'content-type': 'application/json'} r = locust.client.post('/plugin/post/endpoint', body, headers) # send some POST request content = r.content.decode('utf-8') if 'assertion string after successful post request' not in content: logger.error(f"'assertion string after successful post request' was not found in {content}") assert 'assertion string after successful post request' in content # assertion after POST request
[ "locustio.common_utils.init_logger", "re.findall" ]
[((86, 120), 'locustio.common_utils.init_logger', 'init_logger', ([], {'app_type': '"""confluence"""'}), "(app_type='confluence')\n", (97, 120), False, 'from locustio.common_utils import init_logger, confluence_measure\n'), ((402, 444), 're.findall', 're.findall', (['token_pattern_example', 'content'], {}), '(token_pattern_example, content)\n', (412, 444), False, 'import re\n'), ((500, 539), 're.findall', 're.findall', (['id_pattern_example', 'content'], {}), '(id_pattern_example, content)\n', (510, 539), False, 'import re\n')]
# imports - module imports from ezros.exception import ( EzrosError ) # imports - test imports import pytest def test_ezros_error(): with pytest.raises(EzrosError): raise EzrosError
[ "pytest.raises" ]
[((150, 175), 'pytest.raises', 'pytest.raises', (['EzrosError'], {}), '(EzrosError)\n', (163, 175), False, 'import pytest\n')]
import MySQLdb ''' 数据库实例目前部署一台就可以了,然后通过这个脚本进行数据的同步操作 插入测试数据 每次开发完成新的模块 使用这个脚本 动态的添加数据 ''' # 重新创建模式 为 create 追加数据使用 append 删除并且重新添加 为 refresh DB_OP_MODE = "append" # 数据库链接用户名 MYSQL_CONN_NAME = "mysqlname" #数据库远程链接地址 MYSQL_CONN_ADDR = "mysqllinkpath" #数据库登录密码 MYSQL_CONN_PASSWORD = "<PASSWORD>" #数据库默认的链接编码 MYSQL_CONN_CHARSET = "utf8" # 默认的数据库名称 CREATE_DB_NAME = "you_money" def check_db_exists(db_name,db): ''' 检查当前数据库是否已经存在 :param db_name: :return: ''' cursor = db.cursor() cursor.execute("SHOW DATABASES") rows = cursor.fetchall(); for row in rows: tmp = '%2s'%row if tmp == CREATE_DB_NAME: return True return False #TODO 创建数据库脚本未完成 def drop_db(db): ''' 创建数据库 :return: ''' cursor = db.cursor() cursor.execute("DROP DATABASE IF EXISTS " + CREATE_DB_NAME) cursor.execute("CREATE DATABASE IF NOT EXISTS " + CREATE_DB_NAME) def create_table(tab_name,engine,charset): ''' 创建表函数 :param tab_name: :param engine: :param charset: :return: ''' pass def append_data(sql_query): ''' 追加数据 :param sql_query: :return: ''' pass def clean_table(tab_name): ''' 清理表数据 :param tab_name: :return: ''' pass if __name__ == '__main__': db = MySQLdb.connect(MYSQL_CONN_ADDR, MYSQL_CONN_NAME, MYSQL_CONN_PASSWORD, MYSQL_CONN_CHARSET ) if check_db_exists(CREATE_DB_NAME,db): pass db.close()
[ "MySQLdb.connect" ]
[((1332, 1426), 'MySQLdb.connect', 'MySQLdb.connect', (['MYSQL_CONN_ADDR', 'MYSQL_CONN_NAME', 'MYSQL_CONN_PASSWORD', 'MYSQL_CONN_CHARSET'], {}), '(MYSQL_CONN_ADDR, MYSQL_CONN_NAME, MYSQL_CONN_PASSWORD,\n MYSQL_CONN_CHARSET)\n', (1347, 1426), False, 'import MySQLdb\n')]
from django.conf.urls import url from alipay.create_direct_pay_by_user.dpn import views urlpatterns = [ url(r'^$', views.dpn, {'item_check_callable': None}, name='alipay-dpn'), ]
[ "django.conf.urls.url" ]
[((110, 180), 'django.conf.urls.url', 'url', (['"""^$"""', 'views.dpn', "{'item_check_callable': None}"], {'name': '"""alipay-dpn"""'}), "('^$', views.dpn, {'item_check_callable': None}, name='alipay-dpn')\n", (113, 180), False, 'from django.conf.urls import url\n')]
from django.shortcuts import render # Create your views here. from rest_framework.viewsets import ReadOnlyModelViewSet from rest_framework_extensions.cache.mixins import CacheResponseMixin from areas.models import Area from areas.serializers import AreaSerializer, SubAreaSerializer class AreasViewSet(CacheResponseMixin, ReadOnlyModelViewSet): """ 行政区划信息 # GET /areas/(?P<pk>\d+)/ request: pk(int) response: id(int) name(str) subs(list) 定义 查询集 和 序列化器的类 后面的源码方法就是 get_queryset 和 get_serializer_class ,这里根据需要直接重写方法 """ pagination_class = None # 区划信息不分页 def get_queryset(self): """ 提供数据集 """ if self.action == 'list': return Area.objects.filter(parent=None) else: return Area.objects.all() def get_serializer_class(self): """ 提供序列化器 """ if self.action == 'list': return AreaSerializer else: return SubAreaSerializer
[ "areas.models.Area.objects.all", "areas.models.Area.objects.filter" ]
[((704, 736), 'areas.models.Area.objects.filter', 'Area.objects.filter', ([], {'parent': 'None'}), '(parent=None)\n', (723, 736), False, 'from areas.models import Area\n'), ((770, 788), 'areas.models.Area.objects.all', 'Area.objects.all', ([], {}), '()\n', (786, 788), False, 'from areas.models import Area\n')]
""" This module is a wrapper for lxu.command.BasicCommand. It improves and simplifies command implementations including popups, sPresetText fields, and Form Command Lists. This is based on Adam O'Hern Commander code but is vastly enhanced. https://github.com/adamohern/commander """ import time import traceback import operator import lx, lxu, lxifc import modo from xfrm import TransformUtils from item import ItemUtils from message import Message from setup import SetupMode from run import run def bless(commandClass, commandName): """ Custom bless function. """ commandClass.NAME = commandName try: lx.bless(commandClass, commandName) except TypeError: lx.out('Blessing failed: %s, %s' % (str(commandClass), str(commandName))) class Argument(object): """ Argument represents single command argument. Arguments should be added as this class instances to the command. """ # These datatypes will be treated as Float values sTYPE_FLOATs = [ 'acceleration', 'angle', 'axis', 'color1', 'distance', 'float', 'force', 'light', 'mass', 'percent', 'speed', 'time', 'uvcoord' ] # Treated as Str values sTYPE_STRINGs = [ 'date', 'datetime', 'filepath', 'string', 'vertmapname', '&item' ] # Treated as Str values in the MODO UI, # but parsed into [Float, Float, Float] for use in the execute() sTYPE_STRING_vectors = [ 'angle3', 'color', 'float3', 'percent3' ] # Treated as Int values sTYPE_INTEGERs = [ 'integer' ] # Treated as Bool values sTYPE_BOOLEANs = [ 'boolean' ] DATATYPES = sTYPE_FLOATs + sTYPE_STRINGs + sTYPE_STRING_vectors + sTYPE_INTEGERs + sTYPE_BOOLEANs def __init__(self, name="", datatype=None): self.name = name self.label = None self.defaultValue = None self.datatype = None if datatype is not None: self.datatype = datatype.lower() self.valuesList = None self.valuesListUIType = None self.flags = None self.index = -1 self.hints = None def __str__ (self): """ Represent argument as its name and string datatype. """ reprString = "Command argument: " + self.name if isinstance(self.datatype, str): reprString += " type: " reprString += self.datatype return reprString def __eq__(self, other): if isinstance(other, str): return self.name == other elif isinstance(other, Argument): return self.name == other.name elif isinstance(other, int): return self.index == other else: return False class ArgumentPopupContent(object): """ Use this class for filling contents of a popup. """ def __init__(self): self._entries = [] self.iconWidth = None self.iconHeight = None def __len__(self): return len(self._entries) def __getitem__(self, key): if not isinstance(key, int): raise TypeError if key >= len(self._entries): raise KeyError return self._entries[key] def __iter__(self): return iter(self._entries) def addEntry(self, entry): self._entries.append(entry) def getEntry(self, index): return self._entries[index] @property def entriesCount(self): return len(self._entries) class ArgumentPopupEntry(object): def __init__(self, internalName="", userName=""): self.internalName = internalName self.userName = userName self.iconImage = None self.iconResource = None class ArgumentItemsContent(object): """ Use this class to define values for the item popup argument. """ def __init__(self): self.noneOption = False self.testOnRawItems = False # use lx.object.Item rather then modo.Item. self.itemTestFunction = False class ArgumentValuesListType(object): """ When argument represents a list of values these can show up in UI as Popup, sPresetText or Form Command List. A popup with item list is also supported. """ POPUP = 1 S_PRESET_TEXT = 2 FORM_COMMAND_LIST = 3 ITEM_POPUP = 4 class Command(lxu.command.BasicCommand): """Wrapper for lxu.command.BasicCommand. Based on Adam OHern commander code. https://github.com/adamohern/commander """ # NAME is only used for debugging purposes. NAME = '' @property def name(self): return self.NAME # --- Public methods, to be overriden by user. def init(self): """ Performs any extra initialisation steps that the command requires. This is called from commands __init__() method. """ pass def interact(self): """ Perform interaction with user before command is actually executed. Typically this means opening file dialogs, confirm messages, etc. Interact() happens before command posts its dialog with arguments. Returns ------- bool False if command should not be executed, True if it should go ahead. """ return True def enable(self, msg): """ Decides if the command should be enabled or disabled. Parameters ---------- msg : modox.Message Wrapper around lx.object.Message, use it to set disable/enable message. Returns ------- bool True for enabled command, False otherwise. """ return True def flags(self): """ Command flags. """ return lx.symbol.fCMD_UNDO def arguments(self): """ Gets a list of arguments for a command. Returns ------- list of Argument or single Argument Return either single or a list of Argument objects, one for each argument. """ return [] def getArgument(self, ident): """ Gets argument by index or name. Parameters ---------- ident : str or int Either argument name or its index. Returns ------- Argument Raises ------ LookupError? """ if type(ident) == str: ident = self._argumentsByName[ident] return self._argumentsList[ident] def isArgumentSet(self, ident): """ Returns whether given argument is set in a command or not. Parameters ---------- ident : str or int Either argument name or its index. Returns ------- bool """ arg = self.getArgument(ident) return self.dyna_IsSet(arg.index) def getArgumentValue(self, ident): """Return a command argument value by index. If no argument value exists, returns the default parameter. NOTE: The commander_args() method is simpler to use than this method. You should probably use that one unless you have a reason to find a specific argument by index. :param index: (int) index of argument to retrieve :param default: value to return if argument is not set :returns: argument value (str, int, float, or boolean as appropriate) """ arg = self.getArgument(ident) # If no value is set, return the default. if not self.dyna_IsSet(arg.index): return self._resolveDefaultValue(arg.defaultValue) # TODO: I think it's about variable argument value? #if 'variable' in self.commander_arguments()[index].get(FLAGS, []): #datatype = self.basic_ArgType(index) #else: #datatype = self.commander_arguments()[index][DATATYPE].lower() # If it's a string, use dyna_String to grab it. if arg.datatype in Argument.sTYPE_STRINGs: return self.dyna_String(arg.index) # If the value is a vector, use dyna_String to grab it, then parse it # into a list of float vlues. elif arg.datatype in Argument.sTYPE_STRING_vectors: return [float(i) for i in self.dyna_String(arg.index).split(" ")] # If the value is an integer, use dyna_Int to grab it. elif arg.datatype in Argument.sTYPE_INTEGERs: return self.dyna_Int(arg.index) # If the value is a float, use dyna_Float to grab it. elif arg.datatype in Argument.sTYPE_FLOATs: return self.dyna_Float(arg.index) # If the value is a boolean, use dyna_Bool to grab it. elif arg.datatype in Argument.sTYPE_BOOLEANs: return self.dyna_Bool(arg.index) elif arg.datatype == '&item': return self.dyna_String(arg.index) # If something bonkers is going on, use the default. return self._resolveDefaultValue(arg.defaultValue) def uiHints(self, argument, hints): """ Set UI hints for a given argument by calling methods on the given hints object. """ pass def icon(self): """ Returns string with icon name for command button. """ return None def notifiers(self): """ Returns a list of notifiers for a command. Should return a list of tuples, for example: [('notifier.editAction',''), ("select.event", "item +ldt"), ("tagger.notifier", "")] """ return [] def setupMode(self): """ Sets setup mode for the command. This will be set at the beginning of execute. Returns ------- bool or None True/False to switch Setup Mode to a given state. None to not affect setup mode (this is default). """ return None def restoreSetupMode(self): """ Restores setup mode to its previous value once command is executed. Returns ------- bool Return True to restore setup mode to its state prior to command execution. """ return False def preExecute(self): """ Called after interact() but before execute block is called. Use this if you want to verify the command is ok to run after dialog with command arguments was closed by user. Returns ------- bool False if command should not be executed, True if it should go ahead. """ return True def executeStart(self): """ Called from within basic_Execute at the very beginning of execution code. Use this function to perform actions from within the actual execute block but right before execute() is called. """ pass def execute(self, msg, flags): """ This is the place for main command execution code. """ pass def executeEnd(self): """ Called from basic_Execute, after execute() was called. Typically used for clean up/restore operations. """ pass def query(self, argument): """ Returns a value based on and argument being queried. This method can return string, boolean, integer or float.""" return None def enableTimersOn(self): """ Enable/disable log output that says how long enable() takes. This can help with optimising performance of enable(). This method should be as fast as possible so it doesn't slow down UI. Returns ------- bool True to enable timers log output. """ return False def queryTimersOn(self): """ Enable/disable log output that says how long query() method takes. This can help with optimising performance of query(). This method should be as fast as possible so it doesn't slow down UI. Returns ------- bool True to enable log output. """ return False def restoreItemSelection(self): """ Restores item selection after command is executed. Returns ------- bool True if item selection should be restored to a state prior to firing the command. """ return False def autoFocusItemListWhenDone(self): """ Automatically focuses item list on selected items when command execution is over. """ return False def applyEditActionPre(self): """ Applies edit action before the command is executed so there are no 'hanging' edits. Returns ------- bool True if edit action should be applied. Default is False. """ return False def applyEditActionPost(self): """ Applies edit action after the command is executed so there are no 'hanging' edits left. Returns ------- bool True if edit action should be applied. Default is False. """ return False def dropToolPre(self): """ Drops any active tool before command execution starts. Returns ------- bool True to drop a tool (if any is active). """ return False # --- Private methods, do not touch. def cmd_Flags(self): """ Command is scene altering, undoable by default. """ return self.flags() def cmd_Interact(self): result = self.interact() if not result: msg = lx.object.Message(self.cmd_Message()) msg.SetCode(lx.symbol.e_ABORT) def cmd_PreExecute(self): result = self.preExecute() if not result: msg = lx.object.Message(self.cmd_Message()) msg.SetCode(lx.symbol.e_ABORT) def cmd_Icon(self): return self.icon() def basic_Enable(self, msg): if self.enableTimersOn(): timeStart = time.clock() msgWrap = Message(msg) enabled = self.enable(msgWrap) if self.enableTimersOn(): timeEnd = time.clock() lx.out("ENABLE (%s) : %f s." % (self.NAME, (timeEnd - timeStart))) return enabled def basic_ArgType(self, index): pass def cmd_DialogInit(self): """ Sets default values for arguments in command dialogs. Once this method is implemented MODO's default mechanism for storing argument values is not used. This method is called right before command's dialog pops up. Note that this method uses command argument's .defaultValue property. This property can be a function (or callable as a matter of fact). If you set a function as default value it'll always be called to retrieve the actual default value and used instead of the stored value in the dialog. Sadly, using function as argument, due to the way MODO seems to work (possible bug) makes it impossible to set the argument in command string, it will always be overridden by what default function returns. """ arguments = self.arguments() for n, argument in enumerate(arguments): datatype = argument.datatype defaultValue = arguments[n].defaultValue # Default value can be a function. # If it's a function we always want to call this function # to get the default value. This is because sometimes MODO seems # to report that the dyna_IsSet() for an argument even if it's not set # and should be pulled from default value. # In this case we do not want to miss retrieving value from function. if hasattr(defaultValue, '__call__'): storedValue = defaultValue() else: # If we already have a value, use it. # This is especially important when a command is run with args # via command line or form button. if self.dyna_IsSet(n): continue storedValue = self._argumentValuesCache[n] # If there's no stored value, we're done. if not storedValue: continue # The correct attr_Set... method depends on datatype. if datatype in Argument.sTYPE_STRINGs + Argument.sTYPE_STRING_vectors: self.attr_SetString(n, str(storedValue)) elif datatype in Argument.sTYPE_INTEGERs + Argument.sTYPE_BOOLEANs: self.attr_SetInt(n, int(storedValue)) elif datatype in Argument.sTYPE_FLOATs: self.attr_SetFlt(n, float(storedValue)) def basic_Execute(self, msg, flags): """Stores recent command values for next run and wraps commander_execute in a try/except statement with traceback. Do NOT override this method. Use commander_execute() instead. You should never need to touch this. CRUCIAL: When turning off listening never just turn it back on! Set it to whatever the state was prior to executing this command. Otherwise, firing rs command from within other rs command is going to mess things up. Listening will be back to True as soon as first sub command is done. Returns ------- bool, None Return False to exit command with ABORT message code. """ scene = modo.Scene() self.executeStart() if self.dropToolPre(): run('!tool.drop') if self.restoreItemSelection(): selection = scene.selected setupMode = SetupMode() if self.restoreSetupMode(): setupMode.store() if self.setupMode() is not None and setupMode.state != self.setupMode(): setupMode.state = self.setupMode() if self.applyEditActionPre(): TransformUtils.applyEdit() msgWrap = Message(msg) try: cmdResult = self.execute(msgWrap, flags) except: cmdResult = False lx.out(traceback.format_exc()) if self.applyEditActionPost(): TransformUtils.applyEdit() if self.restoreItemSelection(): scene.select(selection, add=False) if self.restoreSetupMode(): setupMode.restore() self.executeEnd() if not cmdResult and cmdResult is not None: msgWrap.setCode(Message.Code.ABORT) return # This is executed only when command did not abort if self.autoFocusItemListWhenDone(): ItemUtils.autoFocusItemListOnSelection() def cmd_Query(self, index, vaQuery): if self.queryTimersOn(): timeStart = time.clock() # Create the ValueArray object va = lx.object.ValueArray() va.set(vaQuery) # To keep things simpler for commander users, let them return # a value using only an index (no ValueArray nonsense) commander_query_result = self.query(self._argumentsList[index]) # Need to add the proper datatype based on result from commander_query if isinstance(commander_query_result, basestring): va.AddString(commander_query_result) elif isinstance(commander_query_result, int): va.AddInt(commander_query_result) elif isinstance(commander_query_result, float): va.AddFloat(commander_query_result) elif isinstance(commander_query_result, (modo.Item, lx.object.Item, lxu.object.Item)): valRef = lx.object.ValueReference(va.AddEmptyValue()) valRef.SetObject(commander_query_result) if self.queryTimersOn(): timeEnd = time.clock() lx.out("QUERY (%s) : %f s." % (self.NAME, (timeEnd - timeStart))) return lx.result.OK def arg_UIHints(self, index, hints): """Adds pretty labels to arguments in command dialogs. If no label parameter is explicitly included, we create a pseudo-label by capitalizing the argument name and replacing underscores with spaces. Labels can either be literal strings or method/function objects. In the latter case, the method or function will be called when needed. If any popup fields of type sPresetText are present, adds the appropriate hint. You should never need to touch this.""" try: arg = self._argumentsList[index] except IndexError: return # If an explicit label is provided, use it. if arg.label is not None: label = "" if isinstance(arg.label, str): label = arg.label elif type(arg.label) == bool and arg.label: label = arg.name.replace("_", " ").title() # Labels can be functions. If so, run the function to get the string. elif hasattr(arg.label, '__call__'): label = label() # Apply the label. if (label): hints.Label(label) # If the popup type is sPresetText, apply the appropriate class. if arg.valuesListUIType == ArgumentValuesListType.S_PRESET_TEXT: hints.Class("sPresetText") # Allow command implementation to do its custom work. self.uiHints(arg, hints) def arg_UIValueHints(self, index): """Popups and sPresetText arguments fire this method whenever they update. Note that the 'hints' parameter can be a literal list or tuple, but can also be a method or function. For dynamic lists, be sure to pass in the generator method or function object itself, not its result. (i.e. pass in 'myGreatFunction', NOT 'myGreatFunction()') You should never need to touch this.""" try: arg = self._argumentsList[index] except IndexError: return arg_data = None # Try to grab the values_list for the argument. if arg.valuesList is not None: arg_data = arg.valuesList # If our values_list is empty, don't bother. if not arg_data: return # If the values_list is a list/tuple, use it as-is. if isinstance(arg_data, (list, tuple)): values = arg_data # This is very hacky here for the time being. # It's testing values against being the items popup content object. elif isinstance(arg_data, ArgumentItemsContent): values = arg_data # If the values_list is a method/function, fire it and use the result. elif hasattr(arg_data, '__call__'): values = arg_data() # In some rare cases you may want to manually instantiate your own # popup class as a subclass of UIValueHints. In those cases, we # ignore the below and just use yours. # isinstance(arg_data, type) tests whether arg_data is class # TODO: Think whether this logic has the best flow. # the return statement here doesn't fit and breaks the flow. if isinstance(arg_data, type) and issubclass(arg_data, lxifc.UIValueHints): return arg_data() # If values is None or "" or someother nonsense, return an empty list. if not values: values = [] # Argument can be a normal popup, an sPresetText popup, or a # Form Command List. We'll need to return a different class # depending on the 'values_list_type'. if arg.valuesListUIType == ArgumentValuesListType.POPUP: return PopupClass(values) elif arg.valuesListUIType == ArgumentValuesListType.S_PRESET_TEXT: return PopupClass(values) elif arg.valuesListUIType == ArgumentValuesListType.FORM_COMMAND_LIST: return FormCommandListClass(values) elif arg.valuesListUIType == ArgumentValuesListType.ITEM_POPUP: return ItemPopupClass(arg_data) def cmd_NotifyAddClient(self, argument, object): """Add notifier clients as needed. You should never need to touch this.""" for i, tup in enumerate(self._notifier_tuples): if self._notifiers[i] is None: self._notifiers[i] = self.not_svc.Spawn (self._notifier_tuples[i][0], self._notifier_tuples[i][1]) self._notifiers[i].AddClient(object) def cmd_NotifyRemoveClient(self, object): """Remove notifier clients as needed. You should never need to touch this.""" for i, tup in enumerate(self._notifier_tuples): if self._notifiers[i] is not None: self._notifiers[i].RemoveClient(object) # -------- Private methods def _resolveDefaultValue(self, defaultValue): """ Resolves default value in case default value is a function. """ if hasattr(defaultValue, '__call__'): return defaultValue() return defaultValue def _setupNotifiers(self): # CommandClass can implement the commander_notifiers() method to update # FormCommandLists and Popups. If implemented, add the notifiers. self.not_svc = lx.service.NotifySys() self._notifiers = [] self._notifier_tuples = tuple([i for i in self.notifiers()]) for i in self._notifier_tuples: self._notifiers.append(None) @classmethod def _setupArgumentValuesCache(cls): """ We manually cache all argument values between command executions during single session. """ try: cls._argumentValuesCache except AttributeError: cls._argumentValuesCache = [] @classmethod def _cacheArgumentDefaultValue(cls, value): """Add an argument to the class variable _commander_stored_values. You should never need to touch this. """ cls._argumentValuesCache.append(value) def _setupArguments(self): """ Setup command arguments based on arguments() method. Parse the list of Argument objects that the arguments method returns. """ arguments = self.arguments() # The command does not have arguments if not arguments: return True result = True if not isinstance(arguments, list): arguments = [arguments] for argument in arguments: if not isinstance(argument, Argument): continue if not self._addArgument(argument): result = False return result def _addArgument(self, argument): if argument.datatype is None or argument.name is None: return False datatype = self._resolveArgumentDatatype(argument.datatype) if not datatype: return False argument.index = len(self._argumentsList) self.dyna_Add(argument.name, datatype) # This is setting up default value for this argument. # If this is the first time running the command, the class variable # _argumentValuesCache will be empty. In that case, populate it. # This should really go on the argument level, not command class level. if argument.index >= len(self._argumentValuesCache): # The default value can be a function. If it's a function # it will be called each time the command dialog is about to be opened. # In such case do not cache the default value, just make it a None. if hasattr(argument.defaultValue, '__call__'): self._cacheArgumentDefaultValue(None) else: self._cacheArgumentDefaultValue(argument.defaultValue) flags = self._resolveArgumentFlagsList(argument.flags) if flags: self.basic_SetFlags(argument.index, reduce(operator.ior, flags)) if argument.hints is not None: self.dyna_SetHint(argument.index, argument.hints) self._argumentsList.append(argument) self._argumentsByName[argument.name] = argument.index return True def _resolveArgumentDatatype(self, datatype): """ Resolve argument datatype into proper string that can be used by raw API. Args: datatype: (str) one of command argument type constants or one of lx.symbol.sTYPE_ raw API constants. """ try: resolvedDatatype = getattr(lx.symbol, 'sTYPE_' + datatype.upper()) except AttributeError: resolvedDatatype = datatype return resolvedDatatype def _resolveArgumentFlagsList(self, flagsList): if not isinstance(flagsList, list): flagsList = [flagsList] flags = [] for flag in flagsList: if flag is None: continue try: flags.append(getattr(lx.symbol, 'fCMDARG_' + flag.upper())) except AttributeError: flags.append(flag) return flags def __init__(self): lxu.command.BasicCommand.__init__(self) self._name = "" self._argumentsList = [] self._argumentsByName = {} self._setupArgumentValuesCache() self._setupArguments() self._setupNotifiers() self.init() class FormCommandListClass(lxifc.UIValueHints): """Special class for creating Form Command Lists. This is instantiated by CommanderClass objects if an FCL argument provided. Expects a list of valid MODO commands to be provided to init. NOTE: Any invalid command will crash MODO. You should never need to touch this.""" def __init__(self, items): self._items = items def uiv_Flags(self): return lx.symbol.fVALHINT_FORM_COMMAND_LIST def uiv_FormCommandListCount(self): return len(self._items) def uiv_FormCommandListByIndex(self,index): return self._items[index] class PopupClass(lxifc.UIValueHints): """Special class for creating popups and sPresetText fields. Accepts either a simple list of values, or a list of (internal, user facing) tuples: [1, 2, 3] or [(1, "The Number One"), (2, "The Number Two"), (3, "The Number Three")] You should never need to touch this.""" def __init__(self, items): self._content = ArgumentPopupContent() if isinstance(items, (list, tuple)): for item in items: # If the list item is a list or tuple, assume the format (ugly, pretty) if isinstance(item, (list, tuple)): entry = ArgumentPopupEntry(str(item[0]), str(item[1])) self._content.addEntry(entry) # Otherwise just use the value for both Ugly and Pretty else: entry = ArgumentPopupEntry(str(item), str(item)) self._content.addEntry(entry) elif isinstance(items, ArgumentPopupContent): self._content = items def uiv_Flags(self): return lx.symbol.fVALHINT_POPUPS def uiv_PopCount(self): return len(self._content) def uiv_PopUserName(self, index): return self._content[index].userName def uiv_PopInternalName(self,index): return self._content[index].internalName def uiv_PopIconSize(self): if self._content.iconWidth is not None and self._content.iconHeight is not None: return(1 ,self._content.iconWidth, self._content.iconHeight) lx.notimpl() def uiv_PopIconImage(self, index): iconImage = self._content[index].iconImage if iconImage is not None: return iconImage lx.notimpl() def uiv_PopIconResource(self, index): iconResource = self._content[index].iconResource if iconResource is not None: return iconResource lx.notimpl() class ItemPopupClass(lxu.command.BasicHints): """Special class for creating popup with item list. """ def __init__(self, itemContent): self._itemContent = itemContent def uiv_Flags(self): flags = lx.symbol.fVALHINT_ITEMS if self._itemContent.noneOption: flags |= lx.symbol.fVALHINT_ITEMS_NONE return flags def uiv_ItemTest(self, item): # item comes here as lx.object.Unknown. # Cast it to lx.object.Item by default. item = lx.object.Item(item) if not self._itemContent.testOnRawItems: item = modo.Item(item) return self._itemContent.itemTestFunction(item)
[ "lx.out", "lx.object.Item", "run.run", "time.clock", "item.ItemUtils.autoFocusItemListOnSelection", "lx.bless", "message.Message", "lx.service.NotifySys", "setup.SetupMode", "modo.Scene", "lxu.command.BasicCommand.__init__", "lx.notimpl", "modo.Item", "traceback.format_exc", "xfrm.TransformUtils.applyEdit", "lx.object.ValueArray" ]
[((650, 685), 'lx.bless', 'lx.bless', (['commandClass', 'commandName'], {}), '(commandClass, commandName)\n', (658, 685), False, 'import lx, lxu, lxifc\n'), ((14311, 14323), 'message.Message', 'Message', (['msg'], {}), '(msg)\n', (14318, 14323), False, 'from message import Message\n'), ((17836, 17848), 'modo.Scene', 'modo.Scene', ([], {}), '()\n', (17846, 17848), False, 'import modo\n'), ((18041, 18052), 'setup.SetupMode', 'SetupMode', ([], {}), '()\n', (18050, 18052), False, 'from setup import SetupMode\n'), ((18345, 18357), 'message.Message', 'Message', (['msg'], {}), '(msg)\n', (18352, 18357), False, 'from message import Message\n'), ((19236, 19258), 'lx.object.ValueArray', 'lx.object.ValueArray', ([], {}), '()\n', (19256, 19258), False, 'import lx, lxu, lxifc\n'), ((25658, 25680), 'lx.service.NotifySys', 'lx.service.NotifySys', ([], {}), '()\n', (25678, 25680), False, 'import lx, lxu, lxifc\n'), ((29561, 29600), 'lxu.command.BasicCommand.__init__', 'lxu.command.BasicCommand.__init__', (['self'], {}), '(self)\n', (29594, 29600), False, 'import lx, lxu, lxifc\n'), ((32025, 32037), 'lx.notimpl', 'lx.notimpl', ([], {}), '()\n', (32035, 32037), False, 'import lx, lxu, lxifc\n'), ((32200, 32212), 'lx.notimpl', 'lx.notimpl', ([], {}), '()\n', (32210, 32212), False, 'import lx, lxu, lxifc\n'), ((32390, 32402), 'lx.notimpl', 'lx.notimpl', ([], {}), '()\n', (32400, 32402), False, 'import lx, lxu, lxifc\n'), ((32919, 32939), 'lx.object.Item', 'lx.object.Item', (['item'], {}), '(item)\n', (32933, 32939), False, 'import lx, lxu, lxifc\n'), ((14280, 14292), 'time.clock', 'time.clock', ([], {}), '()\n', (14290, 14292), False, 'import time\n'), ((14419, 14431), 'time.clock', 'time.clock', ([], {}), '()\n', (14429, 14431), False, 'import time\n'), ((14444, 14508), 'lx.out', 'lx.out', (["('ENABLE (%s) : %f s.' % (self.NAME, timeEnd - timeStart))"], {}), "('ENABLE (%s) : %f s.' % (self.NAME, timeEnd - timeStart))\n", (14450, 14508), False, 'import lx, lxu, lxifc\n'), ((17922, 17939), 'run.run', 'run', (['"""!tool.drop"""'], {}), "('!tool.drop')\n", (17925, 17939), False, 'from run import run\n'), ((18299, 18325), 'xfrm.TransformUtils.applyEdit', 'TransformUtils.applyEdit', ([], {}), '()\n', (18323, 18325), False, 'from xfrm import TransformUtils\n'), ((18566, 18592), 'xfrm.TransformUtils.applyEdit', 'TransformUtils.applyEdit', ([], {}), '()\n', (18590, 18592), False, 'from xfrm import TransformUtils\n'), ((19030, 19070), 'item.ItemUtils.autoFocusItemListOnSelection', 'ItemUtils.autoFocusItemListOnSelection', ([], {}), '()\n', (19068, 19070), False, 'from item import ItemUtils\n'), ((19170, 19182), 'time.clock', 'time.clock', ([], {}), '()\n', (19180, 19182), False, 'import time\n'), ((20175, 20187), 'time.clock', 'time.clock', ([], {}), '()\n', (20185, 20187), False, 'import time\n'), ((20200, 20263), 'lx.out', 'lx.out', (["('QUERY (%s) : %f s.' % (self.NAME, timeEnd - timeStart))"], {}), "('QUERY (%s) : %f s.' % (self.NAME, timeEnd - timeStart))\n", (20206, 20263), False, 'import lx, lxu, lxifc\n'), ((33008, 33023), 'modo.Item', 'modo.Item', (['item'], {}), '(item)\n', (33017, 33023), False, 'import modo\n'), ((18490, 18512), 'traceback.format_exc', 'traceback.format_exc', ([], {}), '()\n', (18510, 18512), False, 'import traceback\n')]
# Copyright 2017 MDSLAB - University of Messina # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from datetime import datetime from iotronic.common import rpc from iotronic.common import states from iotronic.conductor import rpcapi from iotronic import objects from iotronic.wamp import wampmessage as wm from oslo_config import cfg from oslo_log import log LOG = log.getLogger(__name__) CONF = cfg.CONF CONF(project='iotronic') rpc.init(CONF) topic = 'iotronic.conductor_manager' c = rpcapi.ConductorAPI(topic) class cont(object): def to_dict(self): return {} ctxt = cont() def echo(data): LOG.info("ECHO: %s" % data) return data def wamp_alive(board_uuid, board_name): LOG.debug("Alive board: %s (%s)", board_uuid, board_name) return "Iotronic alive @ " + datetime.now().strftime( '%Y-%m-%dT%H:%M:%S.%f') # to be removed def alive(): LOG.debug("Alive") return "Iotronic alive @ " + datetime.now().strftime( '%Y-%m-%dT%H:%M:%S.%f') def update_sessions(session_list, agent): session_list = set(session_list) list_from_db = objects.SessionWP.valid_list(ctxt, agent) list_db = set([int(elem.session_id) for elem in list_from_db]) LOG.debug('Wamp session list: %s', session_list) LOG.debug('DB session list: %s', list_db) if session_list == list_db: LOG.debug('Sessions on the database are updated.') return # list of board not connected anymore old_connected = list_db.difference(session_list) LOG.debug('no more valid session list: %s', old_connected) for elem in old_connected: old_session = objects.SessionWP.get(ctxt, elem) if old_session.valid: old_session.valid = False old_session.save() board = objects.Board.get_by_uuid(ctxt, old_session.board_uuid) board.status = states.OFFLINE board.save() LOG.debug('Session updated. Board %s is now %s', board.uuid, states.OFFLINE) if old_connected: LOG.warning('Some boards have been updated: status offline') # list of board still connected keep_connected = list_db.intersection(session_list) LOG.debug('still valid session list: %s', keep_connected) for elem in keep_connected: for x in list_from_db: if x.session_id == str(elem): LOG.debug('%s need to be restored.', x.board_uuid) break if keep_connected: LOG.warning('Some boards need to be restored.') def board_on_leave(session_id): LOG.debug('A board with %s disconnectd', session_id) try: old_session = objects.SessionWP.get(ctxt, session_id) if old_session.valid: old_session.valid = False old_session.save() board = objects.Board.get_by_uuid(ctxt, old_session.board_uuid) board.status = states.OFFLINE board.save() LOG.debug('Session updated. Board %s is now %s', board.uuid, states.OFFLINE) return LOG.debug('Session %s already set to not valid', session_id) except Exception: LOG.debug('session %s not found', session_id) def connection(uuid, session, info=None): LOG.debug('Received registration from %s with session %s', uuid, session) try: board = objects.Board.get_by_uuid(ctxt, uuid) except Exception as exc: msg = exc.message % {'board': uuid} LOG.error(msg) return wm.WampError(msg).serialize() try: old_ses = objects.SessionWP(ctxt) old_ses = old_ses.get_session_by_board_uuid(ctxt, board.uuid, valid=True) old_ses.valid = False old_ses.save() LOG.debug('old session for %s found: %s', board.uuid, old_ses.session_id) except Exception: LOG.debug('valid session for %s not found', board.uuid) session_data = {'board_id': board.id, 'board_uuid': board.uuid, 'session_id': session} session = objects.SessionWP(ctxt, **session_data) session.create() LOG.debug('new session for %s saved %s', board.uuid, session.session_id) board.status = states.ONLINE if info: LOG.debug('board infos %s', info) if 'lr_version' in info: if board.lr_version != info['lr_version']: board.lr_version = info['lr_version'] if 'connectivity' in info: board.connectivity = info['connectivity'] if 'mac_addr' in info: board.connectivity = {"mac_addr": info['mac_addr']} board.save() LOG.info('Board %s (%s) is now %s', board.uuid, board.name, states.ONLINE) return wm.WampSuccess('').serialize() def registration(code, session): return c.registration(ctxt, code, session) def board_on_join(session_id): LOG.debug('A board with %s joined', session_id['session']) def notify_result(board_uuid, wampmessage): wmsg = wm.deserialize(wampmessage) LOG.info('Board %s completed the its request %s with result: %s', board_uuid, wmsg.req_id, wmsg.result) res = objects.Result.get(ctxt, board_uuid, wmsg.req_id) res.result = wmsg.result res.message = wmsg.message res.save() filter = {"result": objects.result.RUNNING, "request_uuid": wmsg.req_id} list_result = objects.Result.get_results_list(ctxt, filter) if len(list_result) == 0: req = objects.Request.get_by_uuid(ctxt, wmsg.req_id) req.status = objects.request.COMPLETED req.save() if req.main_request_uuid: mreq = objects.Request.get_by_uuid(ctxt, req.main_request_uuid) mreq.pending_requests = mreq.pending_requests - 1 if mreq.pending_requests == 0: mreq.status = objects.request.COMPLETED mreq.save() return wm.WampSuccess('notification_received').serialize()
[ "oslo_log.log.getLogger", "iotronic.wamp.wampmessage.deserialize", "iotronic.conductor.rpcapi.ConductorAPI", "iotronic.objects.SessionWP", "iotronic.objects.SessionWP.get", "iotronic.objects.Board.get_by_uuid", "iotronic.objects.Request.get_by_uuid", "iotronic.wamp.wampmessage.WampError", "iotronic.common.rpc.init", "datetime.datetime.now", "iotronic.objects.Result.get_results_list", "iotronic.wamp.wampmessage.WampSuccess", "iotronic.objects.Result.get", "iotronic.objects.SessionWP.valid_list" ]
[((914, 937), 'oslo_log.log.getLogger', 'log.getLogger', (['__name__'], {}), '(__name__)\n', (927, 937), False, 'from oslo_log import log\n'), ((981, 995), 'iotronic.common.rpc.init', 'rpc.init', (['CONF'], {}), '(CONF)\n', (989, 995), False, 'from iotronic.common import rpc\n'), ((1038, 1064), 'iotronic.conductor.rpcapi.ConductorAPI', 'rpcapi.ConductorAPI', (['topic'], {}), '(topic)\n', (1057, 1064), False, 'from iotronic.conductor import rpcapi\n'), ((1648, 1689), 'iotronic.objects.SessionWP.valid_list', 'objects.SessionWP.valid_list', (['ctxt', 'agent'], {}), '(ctxt, agent)\n', (1676, 1689), False, 'from iotronic import objects\n'), ((4679, 4718), 'iotronic.objects.SessionWP', 'objects.SessionWP', (['ctxt'], {}), '(ctxt, **session_data)\n', (4696, 4718), False, 'from iotronic import objects\n'), ((5635, 5662), 'iotronic.wamp.wampmessage.deserialize', 'wm.deserialize', (['wampmessage'], {}), '(wampmessage)\n', (5649, 5662), True, 'from iotronic.wamp import wampmessage as wm\n'), ((5795, 5844), 'iotronic.objects.Result.get', 'objects.Result.get', (['ctxt', 'board_uuid', 'wmsg.req_id'], {}), '(ctxt, board_uuid, wmsg.req_id)\n', (5813, 5844), False, 'from iotronic import objects\n'), ((6031, 6076), 'iotronic.objects.Result.get_results_list', 'objects.Result.get_results_list', (['ctxt', 'filter'], {}), '(ctxt, filter)\n', (6062, 6076), False, 'from iotronic import objects\n'), ((2177, 2210), 'iotronic.objects.SessionWP.get', 'objects.SessionWP.get', (['ctxt', 'elem'], {}), '(ctxt, elem)\n', (2198, 2210), False, 'from iotronic import objects\n'), ((3208, 3247), 'iotronic.objects.SessionWP.get', 'objects.SessionWP.get', (['ctxt', 'session_id'], {}), '(ctxt, session_id)\n', (3229, 3247), False, 'from iotronic import objects\n'), ((3929, 3966), 'iotronic.objects.Board.get_by_uuid', 'objects.Board.get_by_uuid', (['ctxt', 'uuid'], {}), '(ctxt, uuid)\n', (3954, 3966), False, 'from iotronic import objects\n'), ((4135, 4158), 'iotronic.objects.SessionWP', 'objects.SessionWP', (['ctxt'], {}), '(ctxt)\n', (4152, 4158), False, 'from iotronic import objects\n'), ((6171, 6217), 'iotronic.objects.Request.get_by_uuid', 'objects.Request.get_by_uuid', (['ctxt', 'wmsg.req_id'], {}), '(ctxt, wmsg.req_id)\n', (6198, 6217), False, 'from iotronic import objects\n'), ((2330, 2385), 'iotronic.objects.Board.get_by_uuid', 'objects.Board.get_by_uuid', (['ctxt', 'old_session.board_uuid'], {}), '(ctxt, old_session.board_uuid)\n', (2355, 2385), False, 'from iotronic import objects\n'), ((3368, 3423), 'iotronic.objects.Board.get_by_uuid', 'objects.Board.get_by_uuid', (['ctxt', 'old_session.board_uuid'], {}), '(ctxt, old_session.board_uuid)\n', (3393, 3423), False, 'from iotronic import objects\n'), ((5369, 5387), 'iotronic.wamp.wampmessage.WampSuccess', 'wm.WampSuccess', (['""""""'], {}), "('')\n", (5383, 5387), True, 'from iotronic.wamp import wampmessage as wm\n'), ((6337, 6393), 'iotronic.objects.Request.get_by_uuid', 'objects.Request.get_by_uuid', (['ctxt', 'req.main_request_uuid'], {}), '(ctxt, req.main_request_uuid)\n', (6364, 6393), False, 'from iotronic import objects\n'), ((6591, 6630), 'iotronic.wamp.wampmessage.WampSuccess', 'wm.WampSuccess', (['"""notification_received"""'], {}), "('notification_received')\n", (6605, 6630), True, 'from iotronic.wamp import wampmessage as wm\n'), ((1347, 1361), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (1359, 1361), False, 'from datetime import datetime\n'), ((1491, 1505), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (1503, 1505), False, 'from datetime import datetime\n'), ((4078, 4095), 'iotronic.wamp.wampmessage.WampError', 'wm.WampError', (['msg'], {}), '(msg)\n', (4090, 4095), True, 'from iotronic.wamp import wampmessage as wm\n')]
r""" .. _ref_ex_composite: Creating a Composite Section ---------------------------- Create a section of mixed materials. The following example demonstrates how to create a composite cross-section by assigning different material properties to various regions of the mesh. A steel 310UB40.4 is modelled with a 50Dx600W timber panel placed on its top flange. The geometry and mesh are plotted, and the mesh information printed to the terminal before the analysis is carried out. All types of cross-section analyses are carried out, with an axial force, bending moment and shear force applied during the stress analysis. Once the analysis is complete, the cross-section properties are printed to the terminal and a plot of the centroids and cross-section stresses generated. """ # sphinx_gallery_thumbnail_number = 2 import sectionproperties.pre.library.primitive_sections as sections import sectionproperties.pre.library.steel_sections as steel_sections from sectionproperties.pre.geometry import CompoundGeometry from sectionproperties.pre.pre import Material from sectionproperties.analysis.section import Section # %% # Create material properties steel = Material( name="Steel", elastic_modulus=200e3, poissons_ratio=0.3, yield_strength=500, density=8.05e-6, color="grey", ) timber = Material( name="Timber", elastic_modulus=8e3, poissons_ratio=0.35, yield_strength=20, density=0.78e-6, color="burlywood", ) # %% # Create 310UB40.4 ub = steel_sections.i_section( d=304, b=165, t_f=10.2, t_w=6.1, r=11.4, n_r=8, material=steel ) # %% # Create timber panel on top of the UB panel = sections.rectangular_section(d=50, b=600, material=timber) panel = panel.align_center(ub).align_to(ub, on="top") # Create intermediate nodes in panel to match nodes in ub panel = (panel - ub) | panel # %% # Merge the two sections into one geometry object section_geometry = CompoundGeometry([ub, panel]) # %% # Create a mesh and a Section object. For the mesh use a mesh size of 5 for # the UB, 20 for the panel section_geometry.create_mesh(mesh_sizes=[5, 20]) comp_section = Section(section_geometry, time_info=True) comp_section.display_mesh_info() # display the mesh information # %% # Plot the mesh with coloured materials and a line transparency of 0.6 comp_section.plot_mesh(materials=True, alpha=0.6) # %% # Perform a geometric, warping and plastic analysis comp_section.calculate_geometric_properties() comp_section.calculate_warping_properties() comp_section.calculate_plastic_properties(verbose=True) # %% # Perform a stress analysis with N = 100 kN, Mxx = 120 kN.m and Vy = 75 kN stress_post = comp_section.calculate_stress(N=-100e3, Mxx=-120e6, Vy=-75e3) # %% # Print the results to the terminal comp_section.display_results() # %% # Plot the centroids comp_section.plot_centroids() # %% # Plot the axial stress stress_post.plot_stress_n_zz(pause=False) # %% # Plot the bending stress stress_post.plot_stress_m_zz(pause=False) # %% # Plot the shear stress stress_post.plot_stress_v_zxy()
[ "sectionproperties.pre.pre.Material", "sectionproperties.pre.library.steel_sections.i_section", "sectionproperties.pre.geometry.CompoundGeometry", "sectionproperties.pre.library.primitive_sections.rectangular_section", "sectionproperties.analysis.section.Section" ]
[((1163, 1287), 'sectionproperties.pre.pre.Material', 'Material', ([], {'name': '"""Steel"""', 'elastic_modulus': '(200000.0)', 'poissons_ratio': '(0.3)', 'yield_strength': '(500)', 'density': '(8.05e-06)', 'color': '"""grey"""'}), "(name='Steel', elastic_modulus=200000.0, poissons_ratio=0.3,\n yield_strength=500, density=8.05e-06, color='grey')\n", (1171, 1287), False, 'from sectionproperties.pre.pre import Material\n'), ((1316, 1443), 'sectionproperties.pre.pre.Material', 'Material', ([], {'name': '"""Timber"""', 'elastic_modulus': '(8000.0)', 'poissons_ratio': '(0.35)', 'yield_strength': '(20)', 'density': '(7.8e-07)', 'color': '"""burlywood"""'}), "(name='Timber', elastic_modulus=8000.0, poissons_ratio=0.35,\n yield_strength=20, density=7.8e-07, color='burlywood')\n", (1324, 1443), False, 'from sectionproperties.pre.pre import Material\n'), ((1494, 1586), 'sectionproperties.pre.library.steel_sections.i_section', 'steel_sections.i_section', ([], {'d': '(304)', 'b': '(165)', 't_f': '(10.2)', 't_w': '(6.1)', 'r': '(11.4)', 'n_r': '(8)', 'material': 'steel'}), '(d=304, b=165, t_f=10.2, t_w=6.1, r=11.4, n_r=8,\n material=steel)\n', (1518, 1586), True, 'import sectionproperties.pre.library.steel_sections as steel_sections\n'), ((1642, 1700), 'sectionproperties.pre.library.primitive_sections.rectangular_section', 'sections.rectangular_section', ([], {'d': '(50)', 'b': '(600)', 'material': 'timber'}), '(d=50, b=600, material=timber)\n', (1670, 1700), True, 'import sectionproperties.pre.library.primitive_sections as sections\n'), ((1917, 1946), 'sectionproperties.pre.geometry.CompoundGeometry', 'CompoundGeometry', (['[ub, panel]'], {}), '([ub, panel])\n', (1933, 1946), False, 'from sectionproperties.pre.geometry import CompoundGeometry\n'), ((2120, 2161), 'sectionproperties.analysis.section.Section', 'Section', (['section_geometry'], {'time_info': '(True)'}), '(section_geometry, time_info=True)\n', (2127, 2161), False, 'from sectionproperties.analysis.section import Section\n')]
# Copyright (c) 2015 Canonical Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from pylxd import api from pylxd import exceptions as lxd_exceptions def upload_image(image): alias = '{}/{}/{}/{}'.format(image['os'], image['release'], image['arch'], image['variant']) lxd = api.API() imgs = api.API(host='images.linuxcontainers.org') d = imgs.alias_show(alias) meta = d[1]['metadata'] tgt = meta['target'] try: lxd.alias_update(meta) except lxd_exceptions.APIError as ex: if ex.status_code == 404: lxd.alias_create(meta) return tgt def delete_image(image): lxd = api.API() lxd.image_delete(image)
[ "pylxd.api.API" ]
[((912, 921), 'pylxd.api.API', 'api.API', ([], {}), '()\n', (919, 921), False, 'from pylxd import api\n'), ((933, 975), 'pylxd.api.API', 'api.API', ([], {'host': '"""images.linuxcontainers.org"""'}), "(host='images.linuxcontainers.org')\n", (940, 975), False, 'from pylxd import api\n'), ((1266, 1275), 'pylxd.api.API', 'api.API', ([], {}), '()\n', (1273, 1275), False, 'from pylxd import api\n')]
"""create_words_and_results_tables Revision ID: 71d46639309e Revises: Create Date: 2022-03-29 15:45:02.382574 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = "71d46639309e" down_revision = None branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table( "words", sa.Column("id", sa.Integer(), nullable=False), sa.Column("created_at", sa.DateTime(), nullable=True), sa.Column("word", sa.String(length=5, collation="NOCASE"), nullable=False), sa.Column("enabled", sa.Boolean(), nullable=True), sa.Column("nsfw", sa.Boolean(), nullable=True), sa.PrimaryKeyConstraint("id", name=op.f("pk_words")), sa.UniqueConstraint("word", name=op.f("uq_words_word")), ) op.create_table( "results", sa.Column("id", sa.Integer(), nullable=False), sa.Column("created_at", sa.DateTime(), nullable=True), sa.Column("word_id", sa.Integer(), nullable=True), sa.Column("guessed_in_run", sa.Integer(), nullable=True), sa.ForeignKeyConstraint( ["word_id"], ["words.id"], name=op.f("fk_results_word_id_words"), ondelete="cascade", ), sa.PrimaryKeyConstraint("id", name=op.f("pk_results")), ) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_table("results") op.drop_table("words") # ### end Alembic commands ###
[ "alembic.op.drop_table", "sqlalchemy.DateTime", "alembic.op.f", "sqlalchemy.Boolean", "sqlalchemy.String", "sqlalchemy.Integer" ]
[((1517, 1541), 'alembic.op.drop_table', 'op.drop_table', (['"""results"""'], {}), "('results')\n", (1530, 1541), False, 'from alembic import op\n'), ((1546, 1568), 'alembic.op.drop_table', 'op.drop_table', (['"""words"""'], {}), "('words')\n", (1559, 1568), False, 'from alembic import op\n'), ((436, 448), 'sqlalchemy.Integer', 'sa.Integer', ([], {}), '()\n', (446, 448), True, 'import sqlalchemy as sa\n'), ((499, 512), 'sqlalchemy.DateTime', 'sa.DateTime', ([], {}), '()\n', (510, 512), True, 'import sqlalchemy as sa\n'), ((556, 595), 'sqlalchemy.String', 'sa.String', ([], {'length': '(5)', 'collation': '"""NOCASE"""'}), "(length=5, collation='NOCASE')\n", (565, 595), True, 'import sqlalchemy as sa\n'), ((643, 655), 'sqlalchemy.Boolean', 'sa.Boolean', ([], {}), '()\n', (653, 655), True, 'import sqlalchemy as sa\n'), ((699, 711), 'sqlalchemy.Boolean', 'sa.Boolean', ([], {}), '()\n', (709, 711), True, 'import sqlalchemy as sa\n'), ((926, 938), 'sqlalchemy.Integer', 'sa.Integer', ([], {}), '()\n', (936, 938), True, 'import sqlalchemy as sa\n'), ((989, 1002), 'sqlalchemy.DateTime', 'sa.DateTime', ([], {}), '()\n', (1000, 1002), True, 'import sqlalchemy as sa\n'), ((1049, 1061), 'sqlalchemy.Integer', 'sa.Integer', ([], {}), '()\n', (1059, 1061), True, 'import sqlalchemy as sa\n'), ((1115, 1127), 'sqlalchemy.Integer', 'sa.Integer', ([], {}), '()\n', (1125, 1127), True, 'import sqlalchemy as sa\n'), ((772, 788), 'alembic.op.f', 'op.f', (['"""pk_words"""'], {}), "('pk_words')\n", (776, 788), False, 'from alembic import op\n'), ((832, 853), 'alembic.op.f', 'op.f', (['"""uq_words_word"""'], {}), "('uq_words_word')\n", (836, 853), False, 'from alembic import op\n'), ((1246, 1278), 'alembic.op.f', 'op.f', (['"""fk_results_word_id_words"""'], {}), "('fk_results_word_id_words')\n", (1250, 1278), False, 'from alembic import op\n'), ((1366, 1384), 'alembic.op.f', 'op.f', (['"""pk_results"""'], {}), "('pk_results')\n", (1370, 1384), False, 'from alembic import op\n')]
# -*- coding: utf-8 -*- ''' Code based on the python-oletools package by <NAME> 2012-10-18 http://www.decalage.info/python/oletools ''' import os import tempfile from viper.common.abstracts import Module from viper.core.session import __sessions__ try: from oletools.rtfobj import RtfObjParser from oletools import oleobj HAVE_RTF = True except ImportError: HAVE_RTF = False class Rtf(Module): cmd = 'rtf' description = 'RTF Parser' authors = ['xorhex'] categories = ["document"] def __init__(self): super(Rtf, self).__init__() self.parser.add_argument('-l', "--list", action='store_true', help='List of ') self.parser.add_argument('-s', "--save", metavar='item_index', help='Save object') def parse_rtf(self, filename, data): ''' The bulk of this fuction is taken from python-oletools: https://github.com/decalage2/oletools/blob/master/oletools/rtfobj.py See link for license ''' self.log('success', 'File: {name} - size: {size} bytes'.format(name=filename, size=hex(len(data)))) table = [] h = ['id', 'index', 'OLE Object'] rtfp = RtfObjParser(data) rtfp.parse() for rtfobj in rtfp.objects: row = [] obj_col = [] if rtfobj.is_ole: obj_col.append('format_id: {id} '.format(id=rtfobj.format_id)) if rtfobj.format_id == oleobj.OleObject.TYPE_EMBEDDED: obj_col.append('(Embedded)') elif rtfobj.format_id == oleobj.OleObject.TYPE_LINKED: obj_col.append('(Linked)') else: obj_col.append('(Unknown)') obj_col.append('class name: {cls}'.format(cls=rtfobj.class_name)) # if the object is linked and not embedded, data_size=None: if rtfobj.oledata_size is None: obj_col.append('data size: N/A') else: obj_col.append('data size: %d' % rtfobj.oledata_size) if rtfobj.is_package: obj_col.append('OLE Package object:') obj_col.append('Filename: {name}'.format(name=rtfobj.filename)) obj_col.append('Source path: {path}'.format(path=rtfobj.src_path)) obj_col.append('Temp path = {path}'.format(path=rtfobj.temp_path)) obj_col.append('MD5 = {md5}'.format(md5=rtfobj.olepkgdata_md5)) # check if the file extension is executable: _, temp_ext = os.path.splitext(rtfobj.temp_path) self.log('debug', 'Temp path extension: {ext}'.format(ext=temp_ext)) _, file_ext = os.path.splitext(rtfobj.filename) self.log('debug', 'File extension: %r' % file_ext) if temp_ext != file_ext: obj_col.append("MODIFIED FILE EXTENSION") else: obj_col.append('MD5 = {md5}'.format(md5=rtfobj.oledata_md5)) if rtfobj.clsid is not None: obj_col.append('CLSID: {clsid}'.format(clsid=rtfobj.clsid)) obj_col.append(rtfobj.clsid_desc) # Detect OLE2Link exploit # http://www.kb.cert.org/vuls/id/921560 if rtfobj.class_name == b'OLE2Link': obj_col.append('Possibly an exploit for the OLE2Link vulnerability (VU#921560, CVE-2017-0199)') # Detect Equation Editor exploit # https://www.kb.cert.org/vuls/id/421280/ elif rtfobj.class_name.lower() == b'equation.3': obj_col.append('Possibly an exploit for the Equation Editor vulnerability (VU#421280, CVE-2017-11882)') else: obj_col.append('Not a well-formed OLE object') row.append(rtfp.objects.index(rtfobj)) row.append('%08Xh' % rtfobj.start) row.append('\n'.join(obj_col)) table.append(row) self.log('table', dict(rows=table, header=h)) def list(self): self.parse_rtf(__sessions__.current.file.name, __sessions__.current.file.data) def save_ole_objects(self, data, save_object, filename): ''' The bulk of this fuction is taken from python-oletools: https://github.com/decalage2/oletools/blob/master/oletools/rtfobj.py See link for license ''' rtfp = RtfObjParser(data) rtfp.parse() try: i = int(save_object) objects = [rtfp.objects[i]] except Exception as ex: self.log('error', 'The -s option must be followed by an object index, such as "-s 2"\n{ex}'.format(ex=ex)) return for rtfobj in objects: i = objects.index(rtfobj) tmp = tempfile.NamedTemporaryFile(delete=False) if rtfobj.is_package: self.log('info', 'Saving file from OLE Package in object #%d:' % i) self.log('info', ' Filename = %r' % rtfobj.filename) self.log('info', ' Source path = %r' % rtfobj.src_path) self.log('info', ' Temp path = %r' % rtfobj.temp_path) self.log('info', ' saving to file %s' % tmp.name) self.log('info', ' md5 %s' % rtfobj.olepkgdata_md5) tmp.write(rtfobj.olepkgdata) tmp.close() # When format_id=TYPE_LINKED, oledata_size=None elif rtfobj.is_ole and rtfobj.oledata_size is not None: self.log('info', 'Saving file embedded in OLE object #%d:' % i) self.log('info', ' format_id = %d' % rtfobj.format_id) self.log('info', ' class name = %r' % rtfobj.class_name) self.log('info', ' data size = %d' % rtfobj.oledata_size) # set a file extension according to the class name: self.log('info', ' saving to file %s' % tmp.name) self.log('info', ' md5 %s' % rtfobj.oledata_md5) tmp.write(rtfobj.oledata) tmp.close() else: self.log('info', 'Saving raw data in object #%d:' % i) self.log('info', ' saving object to file %s' % tmp.name) self.log('info', ' md5 %s' % rtfobj.rawdata_md5) tmp.write(rtfobj.rawdata) tmp.close() if not save_object == 'all': __sessions__.new(tmp.name) def save(self, idx): self.save_ole_objects(__sessions__.current.file.data, idx, __sessions__.current.file.name) # Main starts here def run(self): super(Rtf, self).run() if self.args is None: return if not __sessions__.is_set(): self.log('error', 'No open session. This command expects a file to be open.') return if not HAVE_RTF: self.log('error', 'Missing dependancy. install oletools (pip install oletools)') return if self.args.list: self.list() elif self.args.save: self.save(self.args.save) else: self.parser.print_usage()
[ "tempfile.NamedTemporaryFile", "viper.core.session.__sessions__.new", "viper.core.session.__sessions__.is_set", "os.path.splitext", "oletools.rtfobj.RtfObjParser" ]
[((1175, 1193), 'oletools.rtfobj.RtfObjParser', 'RtfObjParser', (['data'], {}), '(data)\n', (1187, 1193), False, 'from oletools.rtfobj import RtfObjParser\n'), ((4512, 4530), 'oletools.rtfobj.RtfObjParser', 'RtfObjParser', (['data'], {}), '(data)\n', (4524, 4530), False, 'from oletools.rtfobj import RtfObjParser\n'), ((4896, 4937), 'tempfile.NamedTemporaryFile', 'tempfile.NamedTemporaryFile', ([], {'delete': '(False)'}), '(delete=False)\n', (4923, 4937), False, 'import tempfile\n'), ((6531, 6557), 'viper.core.session.__sessions__.new', '__sessions__.new', (['tmp.name'], {}), '(tmp.name)\n', (6547, 6557), False, 'from viper.core.session import __sessions__\n'), ((6821, 6842), 'viper.core.session.__sessions__.is_set', '__sessions__.is_set', ([], {}), '()\n', (6840, 6842), False, 'from viper.core.session import __sessions__\n'), ((2607, 2641), 'os.path.splitext', 'os.path.splitext', (['rtfobj.temp_path'], {}), '(rtfobj.temp_path)\n', (2623, 2641), False, 'import os\n'), ((2765, 2798), 'os.path.splitext', 'os.path.splitext', (['rtfobj.filename'], {}), '(rtfobj.filename)\n', (2781, 2798), False, 'import os\n')]
# Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Process utilities. """ import os def append_to_path(*args, **kwargs): """ Appends one or more paths to the system path of an environment. The environment will be that of the current process unless another is passed using the 'env' keyword argument. :param args: paths to append :param kwargs: 'env' may be used to pass a custom environment to use """ _append_to_path('PATH', *args, **kwargs) def append_to_pythonpath(*args, **kwargs): """ Appends one or more paths to the python path of an environment. The environment will be that of the current process unless another is passed using the 'env' keyword argument. :param args: paths to append :param kwargs: 'env' may be used to pass a custom environment to use """ _append_to_path('PYTHONPATH', *args, **kwargs) def _append_to_path(path, *args, **kwargs): env = kwargs.get('env') or os.environ env[path] = '{0}{1}{2}'.format( os.pathsep.join(args), os.pathsep, env.get(path, '') )
[ "os.pathsep.join" ]
[((1750, 1771), 'os.pathsep.join', 'os.pathsep.join', (['args'], {}), '(args)\n', (1765, 1771), False, 'import os\n')]
import sys PRINT_BEEJ = 1 HALT = 2 PRINT_NUM = 3 SAVE = 4 PRINT_REGISTER = 5 ADD = 6 ''' SAVE takes 2 arguments saves value in [ARG1] to register [ARG2] ''' register = [0] * 8 memory = [0] * 128 # 128 bytes of RAM def load_memory(filename): try: address = 0 with open(filename) as f: for line in f: # Split before and after any comment symbols comment_split = line.split("#") num = comment_split[0].strip() # Ignore blanks if num == "": continue value = int(num) memory[address] = value address += 1 except FileNotFoundError: print(f"{sys.argv[0]}: {sys.argv[1]} not found") sys.exit(2) if len(sys.argv) != 2: print("usage: simple.py <filename>", file=sys.stderr) sys.exit(1) filepath = sys.argv[1] load_memory(filepath) pc = 0 running = True while running: command = memory[pc] if command == PRINT_BEEJ: print("Beej!") pc += 1 elif command == PRINT_NUM: num = memory[pc + 1] print(num) pc += 2 elif command == SAVE: num = memory[pc + 1] reg = memory[pc + 2] register[reg] = num pc += 3 elif command == PRINT_REGISTER: reg = memory[pc + 1] print(register[reg]) pc += 2 elif command == ADD: reg_a = memory[pc + 1] reg_b = memory[pc + 2] register[reg_a] += register[reg_b] pc += 3 elif command == HALT: running = False pc += 1 else: print(f"Unknown instruction: {command}") sys.exit(1)
[ "sys.exit" ]
[((926, 937), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (934, 937), False, 'import sys\n'), ((827, 838), 'sys.exit', 'sys.exit', (['(2)'], {}), '(2)\n', (835, 838), False, 'import sys\n'), ((1641, 1652), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (1649, 1652), False, 'import sys\n')]
from __future__ import unicode_literals from frappe import _ def get_data(): return [ { "label":_("Juggling Management"), "items": [ { "type": "doctype", "name": "Jugglingtrick_juggling_management", "label": _("Jugglingtrick"), "description": _("Description of Jugglingtricks"), }, { "type": "doctype", "name": "Routine_juggling_management", "label": _("Routine"), "description": _("Description of Lists"), }, { "type": "doctype", "name": "Category_juggling_management", "label": _("Category"), "description": _("Description of Categories"), }, { "type": "doctype", "name": "Prop_juggling_management", "label": _("Prop"), "description": _("Description of Props"), } ] } ]
[ "frappe._" ]
[((115, 139), 'frappe._', '_', (['"""Juggling Management"""'], {}), "('Juggling Management')\n", (116, 139), False, 'from frappe import _\n'), ((312, 330), 'frappe._', '_', (['"""Jugglingtrick"""'], {}), "('Jugglingtrick')\n", (313, 330), False, 'from frappe import _\n'), ((361, 395), 'frappe._', '_', (['"""Description of Jugglingtricks"""'], {}), "('Description of Jugglingtricks')\n", (362, 395), False, 'from frappe import _\n'), ((543, 555), 'frappe._', '_', (['"""Routine"""'], {}), "('Routine')\n", (544, 555), False, 'from frappe import _\n'), ((586, 611), 'frappe._', '_', (['"""Description of Lists"""'], {}), "('Description of Lists')\n", (587, 611), False, 'from frappe import _\n'), ((775, 788), 'frappe._', '_', (['"""Category"""'], {}), "('Category')\n", (776, 788), False, 'from frappe import _\n'), ((819, 849), 'frappe._', '_', (['"""Description of Categories"""'], {}), "('Description of Categories')\n", (820, 849), False, 'from frappe import _\n'), ((1009, 1018), 'frappe._', '_', (['"""Prop"""'], {}), "('Prop')\n", (1010, 1018), False, 'from frappe import _\n'), ((1049, 1074), 'frappe._', '_', (['"""Description of Props"""'], {}), "('Description of Props')\n", (1050, 1074), False, 'from frappe import _\n')]
import pytest from protean import Domain from protean.adapters.event_store.message_db import MessageDBStore from protean.exceptions import ConfigurationError @pytest.mark.message_db class TestMessageDBEventStore: def test_retrieving_message_store_from_domain(self, test_domain): assert test_domain.event_store is not None assert test_domain.event_store.store is not None assert isinstance(test_domain.event_store.store, MessageDBStore) def test_error_on_message_db_initialization(self): domain = Domain() domain.config["EVENT_STORE"][ "PROVIDER" ] = "protean.adapters.event_store.message_db.MessageDBStore" domain.config["EVENT_STORE"][ "DATABASE_URI" ] = "postgresql://message_store@localhost:5433/dummy" with pytest.raises(ConfigurationError) as exc: domain.event_store.store._write( "testStream-123", "Event1", {"foo": "bar"}, {"kind": "EVENT"} ) assert 'FATAL: database "dummy" does not exist' in str(exc.value) # Reset config value. # FIXME Config should be an argument to the domain domain.config["EVENT_STORE"][ "PROVIDER" ] = "protean.adapters.event_store.memory.MemoryEventStore" domain.config["EVENT_STORE"].pop("DATABASE_URI") def test_write_to_event_store(self, test_domain): position = test_domain.event_store.store._write( "testStream-123", "Event1", {"foo": "bar"} ) assert position == 0 def test_multiple_writes_to_event_store(self, test_domain): for i in range(5): position = test_domain.event_store.store._write( "testStream-123", "Event1", {"foo": f"bar{i}"} ) position = test_domain.event_store.store._write( "testStream-123", "Event1", {"foo": "bar"} ) assert position == 5 def test_reading_stream_message(self, test_domain): test_domain.event_store.store._write("testStream-123", "Event1", {"foo": "bar"}) messages = test_domain.event_store.store._read("testStream-123") assert len(messages) == 1 assert messages[0]["position"] == 0 assert messages[0]["data"] == {"foo": "bar"} def test_reading_multiple_stream_messages(self, test_domain): for i in range(5): test_domain.event_store.store._write( "testStream-123", "Event1", {"foo": f"bar{i}"} ) messages = test_domain.event_store.store._read("testStream-123") assert len(messages) == 5 assert messages[4]["data"] == {"foo": "bar4"} def test_reading_category_message(self, test_domain): test_domain.event_store.store._write("testStream-123", "Event1", {"foo": "bar"}) messages = test_domain.event_store.store._read("testStream") assert len(messages) == 1 assert messages[0]["position"] == 0 assert messages[0]["data"] == {"foo": "bar"} def test_reading_multiple_category_messages(self, test_domain): for i in range(5): test_domain.event_store.store._write( "testStream-123", "Event1", {"foo": f"bar{i}"} ) messages = test_domain.event_store.store._read("testStream") assert len(messages) == 5 assert messages[4]["data"] == {"foo": "bar4"} def test_reading_targeted_stream_messages(self, test_domain): for i in range(5): test_domain.event_store.store._write( "testStream-123", "Event1", {"foo": f"bar{i}"} ) for i in range(5): test_domain.event_store.store._write( "testStream-456", "Event1", {"foo": f"baz{i}"} ) messages = test_domain.event_store.store._read("testStream-456") assert len(messages) == 5 assert messages[4]["data"] == {"foo": "baz4"} def test_read_last_message(self, test_domain): for i in range(5): test_domain.event_store.store._write( "testStream-123", "Event1", {"foo": f"bar{i}"} ) message = test_domain.event_store.store._read_last_message("testStream-123") assert message["position"] == 4 def test_read_last_message_when_there_are_no_messages(self, test_domain): message = test_domain.event_store.store._read_last_message("foo-bar") assert message is None
[ "pytest.raises", "protean.Domain" ]
[((540, 548), 'protean.Domain', 'Domain', ([], {}), '()\n', (546, 548), False, 'from protean import Domain\n'), ((820, 853), 'pytest.raises', 'pytest.raises', (['ConfigurationError'], {}), '(ConfigurationError)\n', (833, 853), False, 'import pytest\n')]
# -*- test-case-name: pymeta.test.test_grammar -*- """ The definition of PyMeta's language is itself a PyMeta grammar, but something has to be able to read that. Most of the code in this module is generated from that grammar (in future versions, it will hopefully all be generated). """ import string from pymeta.runtime import OMetaBase, ParseError, EOFError, expected class BootOMetaGrammar(OMetaBase): """ The bootstrap grammar, generated from L{pymeta.grammar.OMetaGrammar} via L{pymeta.builder.PythonBuilder}. """ globals = globals() def __init__(self, input): OMetaBase.__init__(self, input) self._ruleNames = [] def parseGrammar(self, name, builder, *args): """ Entry point for converting a grammar to code (of some variety). @param name: The name for this grammar. @param builder: A class that implements the grammar-building interface (interface to be explicitly defined later) """ self.builder = builder(name, self, *args) res, err = self.apply("grammar") try: x = self.input.head() except EOFError: pass else: raise err return res def applicationArgs(self): args = [] while True: try: (arg, endchar), err = self.pythonExpr(" >") if not arg: break args.append(self.builder.expr(arg)) if endchar == '>': break except ParseError: break if args: return args else: raise ParseError(self.input.position, expected("python expression")) def ruleValueExpr(self): (expr, endchar), err = self.pythonExpr(endChars="\r\n)]") if str(endchar) in ")]": self.input = self.input.prev() return self.builder.expr(expr) def semanticActionExpr(self): return self.builder.action(self.pythonExpr(')')[0][0]) def semanticPredicateExpr(self): expr = self.builder.expr(self.pythonExpr(')')[0][0]) return self.builder.pred(expr) def eatWhitespace(self): """ Consume input until a non-whitespace character is reached. """ consumingComment = False e = None while True: try: c, e = self.input.head() except EOFError: break t = self.input.tail() if c.isspace() or consumingComment: self.input = t if c == '\n': consumingComment = False elif c == '#': consumingComment = True else: break return True, e rule_spaces = eatWhitespace def rule_number(self): _locals = {'self': self} self.locals['number'] = _locals _G_apply_1, lastError = self._apply(self.rule_spaces, "spaces", []) self.considerError(lastError) def _G_or_2(): _G_exactly_1, lastError = self.exactly('-') self.considerError(lastError) _G_apply_2, lastError = self._apply(self.rule_barenumber, "barenumber", []) self.considerError(lastError) _locals['x'] = _G_apply_2 _G_python_3, lastError = eval('self.builder.exactly(-x)', self.globals, _locals), None self.considerError(lastError) return (_G_python_3, self.currentError) def _G_or_3(): _G_apply_1, lastError = self._apply(self.rule_barenumber, "barenumber", []) self.considerError(lastError) _locals['x'] = _G_apply_1 _G_python_2, lastError = eval('self.builder.exactly(x)', self.globals, _locals), None self.considerError(lastError) return (_G_python_2, self.currentError) _G_or_4, lastError = self._or([_G_or_2, _G_or_3]) self.considerError(lastError) return (_G_or_4, self.currentError) def rule_barenumber(self): _locals = {'self': self} self.locals['barenumber'] = _locals def _G_or_1(): _G_exactly_1, lastError = self.exactly('0') self.considerError(lastError) def _G_or_2(): def _G_or_1(): _G_exactly_1, lastError = self.exactly('x') self.considerError(lastError) return (_G_exactly_1, self.currentError) def _G_or_2(): _G_exactly_1, lastError = self.exactly('X') self.considerError(lastError) return (_G_exactly_1, self.currentError) _G_or_3, lastError = self._or([_G_or_1, _G_or_2]) self.considerError(lastError) def _G_many_4(): _G_apply_1, lastError = self._apply(self.rule_hexdigit, "hexdigit", []) self.considerError(lastError) return (_G_apply_1, self.currentError) _G_many_5, lastError = self.many(_G_many_4) self.considerError(lastError) _locals['hs'] = _G_many_5 _G_python_6, lastError = eval("int(''.join(hs), 16)", self.globals, _locals), None self.considerError(lastError) return (_G_python_6, self.currentError) def _G_or_3(): def _G_many_1(): _G_apply_1, lastError = self._apply(self.rule_octaldigit, "octaldigit", []) self.considerError(lastError) return (_G_apply_1, self.currentError) _G_many_2, lastError = self.many(_G_many_1) self.considerError(lastError) _locals['ds'] = _G_many_2 _G_python_3, lastError = eval("int('0'+''.join(ds), 8)", self.globals, _locals), None self.considerError(lastError) return (_G_python_3, self.currentError) _G_or_4, lastError = self._or([_G_or_2, _G_or_3]) self.considerError(lastError) return (_G_or_4, self.currentError) def _G_or_2(): def _G_many1_1(): _G_apply_1, lastError = self._apply(self.rule_digit, "digit", []) self.considerError(lastError) return (_G_apply_1, self.currentError) _G_many1_2, lastError = self.many(_G_many1_1, _G_many1_1()) self.considerError(lastError) _locals['ds'] = _G_many1_2 _G_python_3, lastError = eval("int(''.join(ds))", self.globals, _locals), None self.considerError(lastError) return (_G_python_3, self.currentError) _G_or_3, lastError = self._or([_G_or_1, _G_or_2]) self.considerError(lastError) return (_G_or_3, self.currentError) def rule_octaldigit(self): _locals = {'self': self} self.locals['octaldigit'] = _locals _G_apply_1, lastError = self._apply(self.rule_anything, "anything", []) self.considerError(lastError) _locals['x'] = _G_apply_1 def _G_pred_2(): _G_python_1, lastError = eval('x in string.octdigits', self.globals, _locals), None self.considerError(lastError) return (_G_python_1, self.currentError) _G_pred_3, lastError = self.pred(_G_pred_2) self.considerError(lastError) _G_python_4, lastError = eval('x', self.globals, _locals), None self.considerError(lastError) return (_G_python_4, self.currentError) def rule_hexdigit(self): _locals = {'self': self} self.locals['hexdigit'] = _locals _G_apply_1, lastError = self._apply(self.rule_anything, "anything", []) self.considerError(lastError) _locals['x'] = _G_apply_1 def _G_pred_2(): _G_python_1, lastError = eval('x in string.hexdigits', self.globals, _locals), None self.considerError(lastError) return (_G_python_1, self.currentError) _G_pred_3, lastError = self.pred(_G_pred_2) self.considerError(lastError) _G_python_4, lastError = eval('x', self.globals, _locals), None self.considerError(lastError) return (_G_python_4, self.currentError) def rule_escapedChar(self): _locals = {'self': self} self.locals['escapedChar'] = _locals _G_exactly_1, lastError = self.exactly('\\') self.considerError(lastError) def _G_or_2(): _G_exactly_1, lastError = self.exactly('n') self.considerError(lastError) _G_python_2, lastError = eval('"\\n"', self.globals, _locals), None self.considerError(lastError) return (_G_python_2, self.currentError) def _G_or_3(): _G_exactly_1, lastError = self.exactly('r') self.considerError(lastError) _G_python_2, lastError = eval('"\\r"', self.globals, _locals), None self.considerError(lastError) return (_G_python_2, self.currentError) def _G_or_4(): _G_exactly_1, lastError = self.exactly('t') self.considerError(lastError) _G_python_2, lastError = eval('"\\t"', self.globals, _locals), None self.considerError(lastError) return (_G_python_2, self.currentError) def _G_or_5(): _G_exactly_1, lastError = self.exactly('b') self.considerError(lastError) _G_python_2, lastError = eval('"\\b"', self.globals, _locals), None self.considerError(lastError) return (_G_python_2, self.currentError) def _G_or_6(): _G_exactly_1, lastError = self.exactly('f') self.considerError(lastError) _G_python_2, lastError = eval('"\\f"', self.globals, _locals), None self.considerError(lastError) return (_G_python_2, self.currentError) def _G_or_7(): _G_exactly_1, lastError = self.exactly('"') self.considerError(lastError) _G_python_2, lastError = eval('\'"\'', self.globals, _locals), None self.considerError(lastError) return (_G_python_2, self.currentError) def _G_or_8(): _G_exactly_1, lastError = self.exactly("'") self.considerError(lastError) _G_python_2, lastError = eval('"\'"', self.globals, _locals), None self.considerError(lastError) return (_G_python_2, self.currentError) def _G_or_9(): _G_exactly_1, lastError = self.exactly('\\') self.considerError(lastError) _G_python_2, lastError = eval('"\\\\"', self.globals, _locals), None self.considerError(lastError) return (_G_python_2, self.currentError) _G_or_10, lastError = self._or([_G_or_2, _G_or_3, _G_or_4, _G_or_5, _G_or_6, _G_or_7, _G_or_8, _G_or_9]) self.considerError(lastError) return (_G_or_10, self.currentError) def rule_character(self): _locals = {'self': self} self.locals['character'] = _locals _G_python_1, lastError = eval('"\'"', self.globals, _locals), None self.considerError(lastError) _G_apply_2, lastError = self._apply(self.rule_token, "token", [_G_python_1]) self.considerError(lastError) def _G_or_3(): _G_apply_1, lastError = self._apply(self.rule_escapedChar, "escapedChar", []) self.considerError(lastError) return (_G_apply_1, self.currentError) def _G_or_4(): _G_apply_1, lastError = self._apply(self.rule_anything, "anything", []) self.considerError(lastError) return (_G_apply_1, self.currentError) _G_or_5, lastError = self._or([_G_or_3, _G_or_4]) self.considerError(lastError) _locals['c'] = _G_or_5 _G_python_6, lastError = eval('"\'"', self.globals, _locals), None self.considerError(lastError) _G_apply_7, lastError = self._apply(self.rule_token, "token", [_G_python_6]) self.considerError(lastError) _G_python_8, lastError = eval('self.builder.exactly(c)', self.globals, _locals), None self.considerError(lastError) return (_G_python_8, self.currentError) def rule_string(self): _locals = {'self': self} self.locals['string'] = _locals _G_python_1, lastError = eval('\'"\'', self.globals, _locals), None self.considerError(lastError) _G_apply_2, lastError = self._apply(self.rule_token, "token", [_G_python_1]) self.considerError(lastError) def _G_many_3(): def _G_or_1(): _G_apply_1, lastError = self._apply(self.rule_escapedChar, "escapedChar", []) self.considerError(lastError) return (_G_apply_1, self.currentError) def _G_or_2(): def _G_not_1(): _G_exactly_1, lastError = self.exactly('"') self.considerError(lastError) return (_G_exactly_1, self.currentError) _G_not_2, lastError = self._not(_G_not_1) self.considerError(lastError) _G_apply_3, lastError = self._apply(self.rule_anything, "anything", []) self.considerError(lastError) return (_G_apply_3, self.currentError) _G_or_3, lastError = self._or([_G_or_1, _G_or_2]) self.considerError(lastError) return (_G_or_3, self.currentError) _G_many_4, lastError = self.many(_G_many_3) self.considerError(lastError) _locals['c'] = _G_many_4 _G_python_5, lastError = eval('\'"\'', self.globals, _locals), None self.considerError(lastError) _G_apply_6, lastError = self._apply(self.rule_token, "token", [_G_python_5]) self.considerError(lastError) _G_python_7, lastError = eval("self.builder.exactly(''.join(c))", self.globals, _locals), None self.considerError(lastError) return (_G_python_7, self.currentError) def rule_name(self): _locals = {'self': self} self.locals['name'] = _locals _G_apply_1, lastError = self._apply(self.rule_letter, "letter", []) self.considerError(lastError) _locals['x'] = _G_apply_1 def _G_many_2(): _G_apply_1, lastError = self._apply(self.rule_letterOrDigit, "letterOrDigit", []) self.considerError(lastError) return (_G_apply_1, self.currentError) _G_many_3, lastError = self.many(_G_many_2) self.considerError(lastError) _locals['xs'] = _G_many_3 _G_python_4, lastError = eval('xs.insert(0, x)', self.globals, _locals), None self.considerError(lastError) _G_python_5, lastError = eval("''.join(xs)", self.globals, _locals), None self.considerError(lastError) return (_G_python_5, self.currentError) def rule_application(self): _locals = {'self': self} self.locals['application'] = _locals _G_python_1, lastError = eval("'<'", self.globals, _locals), None self.considerError(lastError) _G_apply_2, lastError = self._apply(self.rule_token, "token", [_G_python_1]) self.considerError(lastError) _G_apply_3, lastError = self._apply(self.rule_spaces, "spaces", []) self.considerError(lastError) _G_apply_4, lastError = self._apply(self.rule_name, "name", []) self.considerError(lastError) _locals['name'] = _G_apply_4 def _G_or_5(): _G_exactly_1, lastError = self.exactly(' ') self.considerError(lastError) _G_python_2, lastError = eval('self.applicationArgs()', self.globals, _locals), None self.considerError(lastError) _locals['args'] = _G_python_2 _G_python_3, lastError = eval('self.builder.apply(name, self.name, *args)', self.globals, _locals), None self.considerError(lastError) return (_G_python_3, self.currentError) def _G_or_6(): _G_python_1, lastError = eval("'>'", self.globals, _locals), None self.considerError(lastError) _G_apply_2, lastError = self._apply(self.rule_token, "token", [_G_python_1]) self.considerError(lastError) _G_python_3, lastError = eval('self.builder.apply(name, self.name)', self.globals, _locals), None self.considerError(lastError) return (_G_python_3, self.currentError) _G_or_7, lastError = self._or([_G_or_5, _G_or_6]) self.considerError(lastError) return (_G_or_7, self.currentError) def rule_expr1(self): _locals = {'self': self} self.locals['expr1'] = _locals def _G_or_1(): _G_apply_1, lastError = self._apply(self.rule_application, "application", []) self.considerError(lastError) return (_G_apply_1, self.currentError) def _G_or_2(): _G_apply_1, lastError = self._apply(self.rule_ruleValue, "ruleValue", []) self.considerError(lastError) return (_G_apply_1, self.currentError) def _G_or_3(): _G_apply_1, lastError = self._apply(self.rule_semanticPredicate, "semanticPredicate", []) self.considerError(lastError) return (_G_apply_1, self.currentError) def _G_or_4(): _G_apply_1, lastError = self._apply(self.rule_semanticAction, "semanticAction", []) self.considerError(lastError) return (_G_apply_1, self.currentError) def _G_or_5(): _G_apply_1, lastError = self._apply(self.rule_number, "number", []) self.considerError(lastError) return (_G_apply_1, self.currentError) def _G_or_6(): _G_apply_1, lastError = self._apply(self.rule_character, "character", []) self.considerError(lastError) return (_G_apply_1, self.currentError) def _G_or_7(): _G_apply_1, lastError = self._apply(self.rule_string, "string", []) self.considerError(lastError) return (_G_apply_1, self.currentError) def _G_or_8(): _G_python_1, lastError = eval("'('", self.globals, _locals), None self.considerError(lastError) _G_apply_2, lastError = self._apply(self.rule_token, "token", [_G_python_1]) self.considerError(lastError) _G_apply_3, lastError = self._apply(self.rule_expr, "expr", []) self.considerError(lastError) _locals['e'] = _G_apply_3 _G_python_4, lastError = eval("')'", self.globals, _locals), None self.considerError(lastError) _G_apply_5, lastError = self._apply(self.rule_token, "token", [_G_python_4]) self.considerError(lastError) _G_python_6, lastError = eval('e', self.globals, _locals), None self.considerError(lastError) return (_G_python_6, self.currentError) def _G_or_9(): _G_python_1, lastError = eval("'['", self.globals, _locals), None self.considerError(lastError) _G_apply_2, lastError = self._apply(self.rule_token, "token", [_G_python_1]) self.considerError(lastError) _G_apply_3, lastError = self._apply(self.rule_expr, "expr", []) self.considerError(lastError) _locals['e'] = _G_apply_3 _G_python_4, lastError = eval("']'", self.globals, _locals), None self.considerError(lastError) _G_apply_5, lastError = self._apply(self.rule_token, "token", [_G_python_4]) self.considerError(lastError) _G_python_6, lastError = eval('self.builder.listpattern(e)', self.globals, _locals), None self.considerError(lastError) return (_G_python_6, self.currentError) _G_or_10, lastError = self._or([_G_or_1, _G_or_2, _G_or_3, _G_or_4, _G_or_5, _G_or_6, _G_or_7, _G_or_8, _G_or_9]) self.considerError(lastError) return (_G_or_10, self.currentError) def rule_expr2(self): _locals = {'self': self} self.locals['expr2'] = _locals def _G_or_1(): _G_python_1, lastError = eval("'~'", self.globals, _locals), None self.considerError(lastError) _G_apply_2, lastError = self._apply(self.rule_token, "token", [_G_python_1]) self.considerError(lastError) def _G_or_3(): _G_python_1, lastError = eval("'~'", self.globals, _locals), None self.considerError(lastError) _G_apply_2, lastError = self._apply(self.rule_token, "token", [_G_python_1]) self.considerError(lastError) _G_apply_3, lastError = self._apply(self.rule_expr2, "expr2", []) self.considerError(lastError) _locals['e'] = _G_apply_3 _G_python_4, lastError = eval('self.builder.lookahead(e)', self.globals, _locals), None self.considerError(lastError) return (_G_python_4, self.currentError) def _G_or_4(): _G_apply_1, lastError = self._apply(self.rule_expr2, "expr2", []) self.considerError(lastError) _locals['e'] = _G_apply_1 _G_python_2, lastError = eval('self.builder._not(e)', self.globals, _locals), None self.considerError(lastError) return (_G_python_2, self.currentError) _G_or_5, lastError = self._or([_G_or_3, _G_or_4]) self.considerError(lastError) return (_G_or_5, self.currentError) def _G_or_2(): _G_apply_1, lastError = self._apply(self.rule_expr1, "expr1", []) self.considerError(lastError) return (_G_apply_1, self.currentError) _G_or_3, lastError = self._or([_G_or_1, _G_or_2]) self.considerError(lastError) return (_G_or_3, self.currentError) def rule_expr3(self): _locals = {'self': self} self.locals['expr3'] = _locals def _G_or_1(): _G_apply_1, lastError = self._apply(self.rule_expr2, "expr2", []) self.considerError(lastError) _locals['e'] = _G_apply_1 def _G_or_2(): _G_exactly_1, lastError = self.exactly('*') self.considerError(lastError) _G_python_2, lastError = eval('self.builder.many(e)', self.globals, _locals), None self.considerError(lastError) return (_G_python_2, self.currentError) def _G_or_3(): _G_exactly_1, lastError = self.exactly('+') self.considerError(lastError) _G_python_2, lastError = eval('self.builder.many1(e)', self.globals, _locals), None self.considerError(lastError) return (_G_python_2, self.currentError) def _G_or_4(): _G_exactly_1, lastError = self.exactly('?') self.considerError(lastError) _G_python_2, lastError = eval('self.builder.optional(e)', self.globals, _locals), None self.considerError(lastError) return (_G_python_2, self.currentError) def _G_or_5(): _G_python_1, lastError = eval('e', self.globals, _locals), None self.considerError(lastError) return (_G_python_1, self.currentError) _G_or_6, lastError = self._or([_G_or_2, _G_or_3, _G_or_4, _G_or_5]) self.considerError(lastError) _locals['r'] = _G_or_6 def _G_or_7(): _G_exactly_1, lastError = self.exactly(':') self.considerError(lastError) _G_apply_2, lastError = self._apply(self.rule_name, "name", []) self.considerError(lastError) _locals['n'] = _G_apply_2 _G_python_3, lastError = eval('self.builder.bind(r, n)', self.globals, _locals), None self.considerError(lastError) return (_G_python_3, self.currentError) def _G_or_8(): _G_python_1, lastError = eval('r', self.globals, _locals), None self.considerError(lastError) return (_G_python_1, self.currentError) _G_or_9, lastError = self._or([_G_or_7, _G_or_8]) self.considerError(lastError) return (_G_or_9, self.currentError) def _G_or_2(): _G_python_1, lastError = eval("':'", self.globals, _locals), None self.considerError(lastError) _G_apply_2, lastError = self._apply(self.rule_token, "token", [_G_python_1]) self.considerError(lastError) _G_apply_3, lastError = self._apply(self.rule_name, "name", []) self.considerError(lastError) _locals['n'] = _G_apply_3 _G_python_4, lastError = eval('self.builder.bind(self.builder.apply("anything", self.name), n)', self.globals, _locals), None self.considerError(lastError) return (_G_python_4, self.currentError) _G_or_3, lastError = self._or([_G_or_1, _G_or_2]) self.considerError(lastError) return (_G_or_3, self.currentError) def rule_expr4(self): _locals = {'self': self} self.locals['expr4'] = _locals def _G_many_1(): _G_apply_1, lastError = self._apply(self.rule_expr3, "expr3", []) self.considerError(lastError) return (_G_apply_1, self.currentError) _G_many_2, lastError = self.many(_G_many_1) self.considerError(lastError) _locals['es'] = _G_many_2 _G_python_3, lastError = eval('self.builder.sequence(es)', self.globals, _locals), None self.considerError(lastError) return (_G_python_3, self.currentError) def rule_expr(self): _locals = {'self': self} self.locals['expr'] = _locals _G_apply_1, lastError = self._apply(self.rule_expr4, "expr4", []) self.considerError(lastError) _locals['e'] = _G_apply_1 def _G_many_2(): _G_python_1, lastError = eval("'|'", self.globals, _locals), None self.considerError(lastError) _G_apply_2, lastError = self._apply(self.rule_token, "token", [_G_python_1]) self.considerError(lastError) _G_apply_3, lastError = self._apply(self.rule_expr4, "expr4", []) self.considerError(lastError) return (_G_apply_3, self.currentError) _G_many_3, lastError = self.many(_G_many_2) self.considerError(lastError) _locals['es'] = _G_many_3 _G_python_4, lastError = eval('es.insert(0, e)', self.globals, _locals), None self.considerError(lastError) _G_python_5, lastError = eval('self.builder._or(es)', self.globals, _locals), None self.considerError(lastError) return (_G_python_5, self.currentError) def rule_ruleValue(self): _locals = {'self': self} self.locals['ruleValue'] = _locals _G_python_1, lastError = eval('"=>"', self.globals, _locals), None self.considerError(lastError) _G_apply_2, lastError = self._apply(self.rule_token, "token", [_G_python_1]) self.considerError(lastError) _G_python_3, lastError = eval('self.ruleValueExpr()', self.globals, _locals), None self.considerError(lastError) return (_G_python_3, self.currentError) def rule_semanticPredicate(self): _locals = {'self': self} self.locals['semanticPredicate'] = _locals _G_python_1, lastError = eval('"?("', self.globals, _locals), None self.considerError(lastError) _G_apply_2, lastError = self._apply(self.rule_token, "token", [_G_python_1]) self.considerError(lastError) _G_python_3, lastError = eval('self.semanticPredicateExpr()', self.globals, _locals), None self.considerError(lastError) return (_G_python_3, self.currentError) def rule_semanticAction(self): _locals = {'self': self} self.locals['semanticAction'] = _locals _G_python_1, lastError = eval('"!("', self.globals, _locals), None self.considerError(lastError) _G_apply_2, lastError = self._apply(self.rule_token, "token", [_G_python_1]) self.considerError(lastError) _G_python_3, lastError = eval('self.semanticActionExpr()', self.globals, _locals), None self.considerError(lastError) return (_G_python_3, self.currentError) def rule_rulePart(self): _locals = {'self': self} self.locals['rulePart'] = _locals _G_apply_1, lastError = self._apply(self.rule_anything, "anything", []) self.considerError(lastError) _locals['requiredName'] = _G_apply_1 _G_apply_2, lastError = self._apply(self.rule_spaces, "spaces", []) self.considerError(lastError) _G_apply_3, lastError = self._apply(self.rule_name, "name", []) self.considerError(lastError) _locals['n'] = _G_apply_3 def _G_pred_4(): _G_python_1, lastError = eval('n == requiredName', self.globals, _locals), None self.considerError(lastError) return (_G_python_1, self.currentError) _G_pred_5, lastError = self.pred(_G_pred_4) self.considerError(lastError) _G_python_6, lastError = eval('setattr(self, "name", n)', self.globals, _locals), None self.considerError(lastError) _G_apply_7, lastError = self._apply(self.rule_expr4, "expr4", []) self.considerError(lastError) _locals['args'] = _G_apply_7 def _G_or_8(): _G_python_1, lastError = eval('"::="', self.globals, _locals), None self.considerError(lastError) _G_apply_2, lastError = self._apply(self.rule_token, "token", [_G_python_1]) self.considerError(lastError) _G_apply_3, lastError = self._apply(self.rule_expr, "expr", []) self.considerError(lastError) _locals['e'] = _G_apply_3 _G_python_4, lastError = eval('self.builder.sequence([args, e])', self.globals, _locals), None self.considerError(lastError) return (_G_python_4, self.currentError) def _G_or_9(): _G_python_1, lastError = eval('args', self.globals, _locals), None self.considerError(lastError) return (_G_python_1, self.currentError) _G_or_10, lastError = self._or([_G_or_8, _G_or_9]) self.considerError(lastError) return (_G_or_10, self.currentError) def rule_rule(self): _locals = {'self': self} self.locals['rule'] = _locals _G_apply_1, lastError = self._apply(self.rule_spaces, "spaces", []) self.considerError(lastError) def _G_lookahead_2(): _G_apply_1, lastError = self._apply(self.rule_name, "name", []) self.considerError(lastError) _locals['n'] = _G_apply_1 return (_locals['n'], self.currentError) _G_lookahead_3, lastError = self.lookahead(_G_lookahead_2) self.considerError(lastError) _G_python_4, lastError = eval('n', self.globals, _locals), None self.considerError(lastError) _G_apply_5, lastError = self._apply(self.rule_rulePart, "rulePart", [_G_python_4]) self.considerError(lastError) _locals['r'] = _G_apply_5 def _G_or_6(): def _G_many1_1(): _G_python_1, lastError = eval('n', self.globals, _locals), None self.considerError(lastError) _G_apply_2, lastError = self._apply(self.rule_rulePart, "rulePart", [_G_python_1]) self.considerError(lastError) return (_G_apply_2, self.currentError) _G_many1_2, lastError = self.many(_G_many1_1, _G_many1_1()) self.considerError(lastError) _locals['rs'] = _G_many1_2 _G_python_3, lastError = eval('self.builder.rule(n, self.builder._or([r] + rs))', self.globals, _locals), None self.considerError(lastError) return (_G_python_3, self.currentError) def _G_or_7(): _G_python_1, lastError = eval('self.builder.rule(n, r)', self.globals, _locals), None self.considerError(lastError) return (_G_python_1, self.currentError) _G_or_8, lastError = self._or([_G_or_6, _G_or_7]) self.considerError(lastError) return (_G_or_8, self.currentError) def rule_grammar(self): _locals = {'self': self} self.locals['grammar'] = _locals def _G_many_1(): _G_apply_1, lastError = self._apply(self.rule_rule, "rule", []) self.considerError(lastError) return (_G_apply_1, self.currentError) _G_many_2, lastError = self.many(_G_many_1) self.considerError(lastError) _locals['rs'] = _G_many_2 _G_apply_3, lastError = self._apply(self.rule_spaces, "spaces", []) self.considerError(lastError) _G_python_4, lastError = eval('self.builder.makeGrammar(rs)', self.globals, _locals), None self.considerError(lastError) return (_G_python_4, self.currentError)
[ "pymeta.runtime.expected", "pymeta.runtime.OMetaBase.__init__" ]
[((601, 632), 'pymeta.runtime.OMetaBase.__init__', 'OMetaBase.__init__', (['self', 'input'], {}), '(self, input)\n', (619, 632), False, 'from pymeta.runtime import OMetaBase, ParseError, EOFError, expected\n'), ((1698, 1727), 'pymeta.runtime.expected', 'expected', (['"""python expression"""'], {}), "('python expression')\n", (1706, 1727), False, 'from pymeta.runtime import OMetaBase, ParseError, EOFError, expected\n')]
import frappe def after_submit(self,method): if self.picklist_reference: frappe.db.set_value("Nanak Pick List", self.picklist_reference, "sales_invoice", self.name) frappe.db.set_value("Nanak Pick List", self.picklist_reference, "sales_invoice_status", "Created")
[ "frappe.db.set_value" ]
[((90, 185), 'frappe.db.set_value', 'frappe.db.set_value', (['"""Nanak Pick List"""', 'self.picklist_reference', '"""sales_invoice"""', 'self.name'], {}), "('Nanak Pick List', self.picklist_reference,\n 'sales_invoice', self.name)\n", (109, 185), False, 'import frappe\n'), ((191, 293), 'frappe.db.set_value', 'frappe.db.set_value', (['"""Nanak Pick List"""', 'self.picklist_reference', '"""sales_invoice_status"""', '"""Created"""'], {}), "('Nanak Pick List', self.picklist_reference,\n 'sales_invoice_status', 'Created')\n", (210, 293), False, 'import frappe\n')]
import json from pathlib import Path from typing import Dict from countdata import CountData from drawingdata import DrawingDataList class TransectData: """ Manages transect save data in a primitive data state, such that it can be easily serialized. """ def __init__(self, transectData: Dict[str, Dict[str, list]], fp: Path): """ { 'ImageName.jpg': { "drawings": [ DrawingData1.toDict(), DrawingData2.toDict(), ... ] } } Include `fp` for traceability. """ self._transectData: Dict[str, Dict[str, list]] = transectData self.fp = fp @staticmethod def load(fp): """ Loads a serialized file. If the data cannot be decoded, The save data is initialized with a blank dict. """ try: with open(fp, "r") as f: data = json.load(f) except json.decoder.JSONDecodeError: print( f"Badly formed JSON file. Data will be overwritten when file is saved: {fp}" ) data = {} return TransectData(data, fp) def dump(self, fp): """ Serialize save data and save to specified path. Writes this data on top of already existing data. """ with open(fp, "w") as f: json.dump(self._transectData, f, indent=4) def addImage(self, imageName): """ Ensure that an image with the name imageName is in this save data. """ if imageName not in self._transectData.keys(): self._transectData[imageName] = {} def addDrawings(self, imageName, drawings: DrawingDataList): """ Add drawings (for a specific image) to the save data. This will replace any drawings currently in this save data instance associated with this image. """ # Ensure image name is present self.addImage(imageName) # Add these drawings the image dict self._transectData[imageName]["drawings"] = drawings.toDict() def removeDrawings(self, imageName: str): """ Remove the drawings associated with an image. """ if imageName in self._transectData.keys(): try: self._transectData[imageName].pop("drawings") # There might not have been this data saved yet except KeyError: pass def imageHasDrawings(self, imageName: str, otherDrawings: DrawingDataList): """ Compares the drawings associated with `imageName`, and returns `True` if those drawings match `otherDrawings`. """ # Check if image has no drawings or data if imageName not in self._transectData.keys(): return False # Check if image has no drawings if "drawings" not in self._transectData[imageName].keys(): return False # Check if image drawings are the same as the input # also lol TODO stop this maddness drawings = DrawingDataList.loads( json.dumps(self._transectData[imageName]["drawings"]) ) return drawings == otherDrawings def drawings(self): """ Generator yielding a tuple of images with corresponding drawings. (imageName:str, drawings:DrawingDataList) """ for imageName, imageData in self._transectData.items(): if "drawings" in imageData.keys(): yield imageName, DrawingDataList.load(imageData["drawings"]) def imageCounts(self): """ Generator yielding tuple of images and their counts. (imageName:str, counts:CountData) """ for imageName, imageData in self._transectData.items(): if "drawings" in imageData.keys(): drawings = imageData["drawings"] for drawing in drawings: countData = CountData.fromDict(drawing["CountData"]) if not countData.isEmpty(): yield imageName, countData def uniqueSpecies(self): """ Returns a list of all the different species in this save file """ species = [] for _, countData in self.imageCounts(): if countData.species not in species: species.append(countData.species) return species def uniqueAnimals(self): """ Returns a list of the animals in this data set, excluding those marked as "duplicates". The length of this list is the total number of animals counted in this data set. """ animals = [] for _, countData in self.imageCounts(): if not countData.isDuplicate: animals.extend([countData.species] * countData.number) return animals def uniqueImages(self): """ Returns a list of unique images in this data set. """ imageNames = [] for imageName, _ in self.imageCounts(): if imageName not in imageNames: imageNames.append(imageName) return imageNames def __repr__(self): return f"TransectData({super().__repr__()})" def sorted(self): """Sort by key values (image names)""" return TransectData( dict(sorted(self._transectData.items(), key=lambda t: t[0])), self.fp )
[ "json.dump", "json.load", "countdata.CountData.fromDict", "json.dumps", "drawingdata.DrawingDataList.load" ]
[((1467, 1509), 'json.dump', 'json.dump', (['self._transectData', 'f'], {'indent': '(4)'}), '(self._transectData, f, indent=4)\n', (1476, 1509), False, 'import json\n'), ((3235, 3288), 'json.dumps', 'json.dumps', (["self._transectData[imageName]['drawings']"], {}), "(self._transectData[imageName]['drawings'])\n", (3245, 3288), False, 'import json\n'), ((1014, 1026), 'json.load', 'json.load', (['f'], {}), '(f)\n', (1023, 1026), False, 'import json\n'), ((4105, 4145), 'countdata.CountData.fromDict', 'CountData.fromDict', (["drawing['CountData']"], {}), "(drawing['CountData'])\n", (4123, 4145), False, 'from countdata import CountData\n'), ((3665, 3708), 'drawingdata.DrawingDataList.load', 'DrawingDataList.load', (["imageData['drawings']"], {}), "(imageData['drawings'])\n", (3685, 3708), False, 'from drawingdata import DrawingDataList\n')]