code
stringlengths
22
1.05M
apis
listlengths
1
3.31k
extract_api
stringlengths
75
3.25M
"""Unit tests for q0202.py.""" import unittest from src.utils.linkedlist import LinkedList from src.q0202 import kth_element_to_last class TestKthElementToLast(unittest.TestCase): """Tests for kth element to last.""" def test_kth_element_to_last(self): linked_list = LinkedList() self.assertEqual(kth_element_to_last(None, 1), None) self.assertEqual(kth_element_to_last(linked_list, 1), None) linked_list.insert_at_head(3) self.assertEqual(kth_element_to_last(linked_list, 0), None) self.assertEqual(kth_element_to_last(linked_list, 1), 3) self.assertEqual(kth_element_to_last(linked_list, 2), None) linked_list.insert_at_head(2) self.assertEqual(kth_element_to_last(linked_list, 0), None) self.assertEqual(kth_element_to_last(linked_list, 1), 3) self.assertEqual(kth_element_to_last(linked_list, 2), 2) self.assertEqual(kth_element_to_last(linked_list, 3), None) if __name__ == '__main__': unittest.main()
[ "unittest.main", "src.q0202.kth_element_to_last", "src.utils.linkedlist.LinkedList" ]
[((1007, 1022), 'unittest.main', 'unittest.main', ([], {}), '()\n', (1020, 1022), False, 'import unittest\n'), ((287, 299), 'src.utils.linkedlist.LinkedList', 'LinkedList', ([], {}), '()\n', (297, 299), False, 'from src.utils.linkedlist import LinkedList\n'), ((325, 353), 'src.q0202.kth_element_to_last', 'kth_element_to_last', (['None', '(1)'], {}), '(None, 1)\n', (344, 353), False, 'from src.q0202 import kth_element_to_last\n'), ((386, 421), 'src.q0202.kth_element_to_last', 'kth_element_to_last', (['linked_list', '(1)'], {}), '(linked_list, 1)\n', (405, 421), False, 'from src.q0202 import kth_element_to_last\n'), ((493, 528), 'src.q0202.kth_element_to_last', 'kth_element_to_last', (['linked_list', '(0)'], {}), '(linked_list, 0)\n', (512, 528), False, 'from src.q0202 import kth_element_to_last\n'), ((561, 596), 'src.q0202.kth_element_to_last', 'kth_element_to_last', (['linked_list', '(1)'], {}), '(linked_list, 1)\n', (580, 596), False, 'from src.q0202 import kth_element_to_last\n'), ((626, 661), 'src.q0202.kth_element_to_last', 'kth_element_to_last', (['linked_list', '(2)'], {}), '(linked_list, 2)\n', (645, 661), False, 'from src.q0202 import kth_element_to_last\n'), ((733, 768), 'src.q0202.kth_element_to_last', 'kth_element_to_last', (['linked_list', '(0)'], {}), '(linked_list, 0)\n', (752, 768), False, 'from src.q0202 import kth_element_to_last\n'), ((801, 836), 'src.q0202.kth_element_to_last', 'kth_element_to_last', (['linked_list', '(1)'], {}), '(linked_list, 1)\n', (820, 836), False, 'from src.q0202 import kth_element_to_last\n'), ((866, 901), 'src.q0202.kth_element_to_last', 'kth_element_to_last', (['linked_list', '(2)'], {}), '(linked_list, 2)\n', (885, 901), False, 'from src.q0202 import kth_element_to_last\n'), ((931, 966), 'src.q0202.kth_element_to_last', 'kth_element_to_last', (['linked_list', '(3)'], {}), '(linked_list, 3)\n', (950, 966), False, 'from src.q0202 import kth_element_to_last\n')]
""" This file provides endpoints for everything URL shortener related """ from flask import Blueprint, request, make_response, redirect, json import time import validators from rushapi.reusables.context import db_cursor from rushapi.reusables.context import db_connection from rushapi.reusables.rng import get_random_string from rushapi.reusables.user_validation import get_user_context url_shortener = Blueprint("url_shortener", __name__) @url_shortener.route('/create_redirect', methods=['POST']) @url_shortener.route('/create_redirect/<desired_id>', methods=['POST', 'PUT']) def create_redirect(desired_id=None): """ This endpoint handles the POST data submitted by the client. It will process this information and create a shortened a URL. :return: A newly created shortened URL. """ if desired_id: user_context = get_user_context() if not (user_context and user_context.premium): return json.dumps({ "error": "Creating a custom redirect requires a premium account. " "If you already have one, put your token in the headers.", }), 401 premium = 1 url_id = desired_id author_id = user_context.id else: premium = 0 url_id = get_random_string(7) author_id = None if request.method == 'POST': url = request.form['url'] delete_after = request.form['delete_after'] if len(delete_after) > 0: try: delete_after = int(delete_after) except ValueError: delete_after = 0 else: delete_after = int(time.time()) + 2.592e+6 if not len(url) < 250: return json.dumps({ "error": "URL length must be below 250 characters.", }), 403 if not validators.url(url): return json.dumps({ "error": "URL is not valid", }), 403 domain_blacklist = tuple(db_cursor.execute("SELECT domain FROM domain_blacklist")) for blacklisted_domain in domain_blacklist: if blacklisted_domain[0] in url: return json.dumps({ "error": "This domain is blacklisted.", }), 403 db_cursor.execute("INSERT INTO urls " "(id, author_id, url, creation_timestamp, premium, visits, delete_after, last_visit) " "VALUES (?, ?, ?, ?, ?, ?, ?, ?)", [url_id, author_id, url, int(time.time()), premium, 0, delete_after, int(time.time())]) db_connection.commit() return json.dumps({ "shortened_url": f"https://{request.host}/u/{url_id}" }), 200 @url_shortener.route('/u/<url_id>') def redirect_url(url_id): """ This endpoint looks up the unique identifier of the URL and redirects the user there. Along the way it takes note of the time visited and increase the visit count. :param url_id: URL's unique identifier :return: A redirect to that URL """ post_url_lookup = tuple(db_cursor.execute("SELECT url, visits, delete_after FROM urls WHERE id = ?", [url_id])) if not post_url_lookup: return make_response(redirect("https://www.youtube.com/watch?v=dQw4w9WgXcQ")) visits = int(post_url_lookup[0][1]) db_cursor.execute("UPDATE urls SET visits = ? AND last_visit = ? WHERE id = ?", [(visits+1), int(time.time()), url_id]) db_connection.commit() return make_response(redirect(post_url_lookup[0][0])) @url_shortener.route('/my_urls') def my_urls(): """ :return: This endpoint returns all the URLs the user has created. """ user_context = get_user_context() if not user_context: return json.dumps({ "error": "This endpoint requires an account. " "If you already have one, put your token in the headers.", }), 401 urls = db_cursor.execute("SELECT id, author_id, url, creation_timestamp, premium, visits, delete_after, last_visit " "FROM urls WHERE author_id = ?", [user_context.id]) buffer = [] for url in urls: buffer.append({ "id": url[0], "author_id": url[1], "url": url[2], "creation_timestamp": url[3], "premium": url[4], "visits": url[5], "delete_after": url[6], "last_visit": url[7], }) return json.dumps(buffer)
[ "rushapi.reusables.context.db_cursor.execute", "flask.Blueprint", "flask.redirect", "rushapi.reusables.rng.get_random_string", "validators.url", "time.time", "flask.json.dumps", "rushapi.reusables.context.db_connection.commit", "rushapi.reusables.user_validation.get_user_context" ]
[((407, 443), 'flask.Blueprint', 'Blueprint', (['"""url_shortener"""', '__name__'], {}), "('url_shortener', __name__)\n", (416, 443), False, 'from flask import Blueprint, request, make_response, redirect, json\n'), ((3527, 3549), 'rushapi.reusables.context.db_connection.commit', 'db_connection.commit', ([], {}), '()\n', (3547, 3549), False, 'from rushapi.reusables.context import db_connection\n'), ((3765, 3783), 'rushapi.reusables.user_validation.get_user_context', 'get_user_context', ([], {}), '()\n', (3781, 3783), False, 'from rushapi.reusables.user_validation import get_user_context\n'), ((4004, 4172), 'rushapi.reusables.context.db_cursor.execute', 'db_cursor.execute', (['"""SELECT id, author_id, url, creation_timestamp, premium, visits, delete_after, last_visit FROM urls WHERE author_id = ?"""', '[user_context.id]'], {}), "(\n 'SELECT id, author_id, url, creation_timestamp, premium, visits, delete_after, last_visit FROM urls WHERE author_id = ?'\n , [user_context.id])\n", (4021, 4172), False, 'from rushapi.reusables.context import db_cursor\n'), ((4538, 4556), 'flask.json.dumps', 'json.dumps', (['buffer'], {}), '(buffer)\n', (4548, 4556), False, 'from flask import Blueprint, request, make_response, redirect, json\n'), ((858, 876), 'rushapi.reusables.user_validation.get_user_context', 'get_user_context', ([], {}), '()\n', (874, 876), False, 'from rushapi.reusables.user_validation import get_user_context\n'), ((1299, 1319), 'rushapi.reusables.rng.get_random_string', 'get_random_string', (['(7)'], {}), '(7)\n', (1316, 1319), False, 'from rushapi.reusables.rng import get_random_string\n'), ((2638, 2660), 'rushapi.reusables.context.db_connection.commit', 'db_connection.commit', ([], {}), '()\n', (2658, 2660), False, 'from rushapi.reusables.context import db_connection\n'), ((3133, 3223), 'rushapi.reusables.context.db_cursor.execute', 'db_cursor.execute', (['"""SELECT url, visits, delete_after FROM urls WHERE id = ?"""', '[url_id]'], {}), "('SELECT url, visits, delete_after FROM urls WHERE id = ?',\n [url_id])\n", (3150, 3223), False, 'from rushapi.reusables.context import db_cursor\n'), ((3576, 3607), 'flask.redirect', 'redirect', (['post_url_lookup[0][0]'], {}), '(post_url_lookup[0][0])\n', (3584, 3607), False, 'from flask import Blueprint, request, make_response, redirect, json\n'), ((1868, 1887), 'validators.url', 'validators.url', (['url'], {}), '(url)\n', (1882, 1887), False, 'import validators\n'), ((2020, 2076), 'rushapi.reusables.context.db_cursor.execute', 'db_cursor.execute', (['"""SELECT domain FROM domain_blacklist"""'], {}), "('SELECT domain FROM domain_blacklist')\n", (2037, 2076), False, 'from rushapi.reusables.context import db_cursor\n'), ((2677, 2744), 'flask.json.dumps', 'json.dumps', (["{'shortened_url': f'https://{request.host}/u/{url_id}'}"], {}), "({'shortened_url': f'https://{request.host}/u/{url_id}'})\n", (2687, 2744), False, 'from flask import Blueprint, request, make_response, redirect, json\n'), ((3278, 3333), 'flask.redirect', 'redirect', (['"""https://www.youtube.com/watch?v=dQw4w9WgXcQ"""'], {}), "('https://www.youtube.com/watch?v=dQw4w9WgXcQ')\n", (3286, 3333), False, 'from flask import Blueprint, request, make_response, redirect, json\n'), ((3824, 3948), 'flask.json.dumps', 'json.dumps', (["{'error':\n 'This endpoint requires an account. If you already have one, put your token in the headers.'\n }"], {}), "({'error':\n 'This endpoint requires an account. If you already have one, put your token in the headers.'\n })\n", (3834, 3948), False, 'from flask import Blueprint, request, make_response, redirect, json\n'), ((952, 1096), 'flask.json.dumps', 'json.dumps', (["{'error':\n 'Creating a custom redirect requires a premium account. If you already have one, put your token in the headers.'\n }"], {}), "({'error':\n 'Creating a custom redirect requires a premium account. If you already have one, put your token in the headers.'\n })\n", (962, 1096), False, 'from flask import Blueprint, request, make_response, redirect, json\n'), ((1750, 1815), 'flask.json.dumps', 'json.dumps', (["{'error': 'URL length must be below 250 characters.'}"], {}), "({'error': 'URL length must be below 250 characters.'})\n", (1760, 1815), False, 'from flask import Blueprint, request, make_response, redirect, json\n'), ((1908, 1949), 'flask.json.dumps', 'json.dumps', (["{'error': 'URL is not valid'}"], {}), "({'error': 'URL is not valid'})\n", (1918, 1949), False, 'from flask import Blueprint, request, make_response, redirect, json\n'), ((3500, 3511), 'time.time', 'time.time', ([], {}), '()\n', (3509, 3511), False, 'import time\n'), ((1675, 1686), 'time.time', 'time.time', ([], {}), '()\n', (1684, 1686), False, 'import time\n'), ((2198, 2250), 'flask.json.dumps', 'json.dumps', (["{'error': 'This domain is blacklisted.'}"], {}), "({'error': 'This domain is blacklisted.'})\n", (2208, 2250), False, 'from flask import Blueprint, request, make_response, redirect, json\n'), ((2571, 2582), 'time.time', 'time.time', ([], {}), '()\n', (2580, 2582), False, 'import time\n'), ((2615, 2626), 'time.time', 'time.time', ([], {}), '()\n', (2624, 2626), False, 'import time\n')]
from nipype.interfaces.ants.base import ANTSCommandInputSpec, ANTSCommand from nipype.interfaces.ants.segmentation import N4BiasFieldCorrectionOutputSpec from nipype.interfaces.base import (File, traits, isdefined) from nipype.utils.filemanip import split_filename import nipype.pipeline.engine as pe import nipype.interfaces.utility as niu import nipype.interfaces.fsl as fsl import os from nipype.workflows.dmri.fsl.artifacts import _xfm_jacobian, _checkrnum from nipype.workflows.dmri.fsl.utils import b0_average, apply_all_corrections, insert_mat, \ rotate_bvecs, vsm2warp, extract_bval, recompose_xfm, recompose_dwi, _checkinitxfm, enhance __author__ = '<NAME>' __date__ = "2015-05-08" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" """This module overwrites some parts of Nipype since they did not work correctly. The idea is that at a low level two functions did not work correctly. To enable nipype to use the fixed versions of these functions we have to copy the entire chain to make it work. Also, the original implementation calculated the read out times from the EPI parameters. This implementation requires you to predefine the read out times. """ def all_peb_pipeline(name='hmc_sdc_ecc', epi_params={'read_out_times': None, 'enc_dir': 'y-'}, altepi_params={'read_out_times': None, 'enc_dir': 'y'}): """ Builds a pipeline including three artifact corrections: head-motion correction (HMC), susceptibility-derived distortion correction (SDC), and Eddy currents-derived distortion correction (ECC). .. warning:: this workflow rotates the gradients table (*b*-vectors) [Leemans09]_. Examples -------- >>> from nipype.workflows.dmri.fsl.artifacts import all_peb_pipeline >>> allcorr = all_peb_pipeline() >>> allcorr.inputs.inputnode.in_file = 'epi.nii' >>> allcorr.inputs.inputnode.alt_file = 'epi_rev.nii' >>> allcorr.inputs.inputnode.in_bval = 'diffusion.bval' >>> allcorr.inputs.inputnode.in_bvec = 'diffusion.bvec' >>> allcorr.run() # doctest: +SKIP """ inputnode = pe.Node(niu.IdentityInterface(fields=['in_file', 'in_bvec', 'in_bval', 'alt_file']), name='inputnode') outputnode = pe.Node(niu.IdentityInterface(fields=['out_file', 'out_mask', 'out_bvec']), name='outputnode') avg_b0_0 = pe.Node(niu.Function(input_names=['in_dwi', 'in_bval'], output_names=['out_file'], function=b0_average), name='b0_avg_pre') avg_b0_1 = pe.Node(niu.Function(input_names=['in_dwi', 'in_bval'], output_names=['out_file'], function=b0_average), name='b0_avg_post') bet_dwi0 = pe.Node(fsl.BET(frac=0.3, mask=True, robust=True), name='bet_dwi_pre') bet_dwi1 = pe.Node(fsl.BET(frac=0.3, mask=True, robust=True), name='bet_dwi_post') hmc = hmc_pipeline() sdc = sdc_peb(epi_params=epi_params, altepi_params=altepi_params) ecc = ecc_pipeline() unwarp = apply_all_corrections() wf = pe.Workflow(name=name) wf.connect([ (inputnode, hmc, [('in_file', 'inputnode.in_file'), ('in_bvec', 'inputnode.in_bvec'), ('in_bval', 'inputnode.in_bval')]), (inputnode, avg_b0_0, [('in_file', 'in_dwi'), ('in_bval', 'in_bval')]), (avg_b0_0, bet_dwi0, [('out_file', 'in_file')]), (bet_dwi0, hmc, [('mask_file', 'inputnode.in_mask')]), (hmc, sdc, [('outputnode.out_file', 'inputnode.in_file')]), (bet_dwi0, sdc, [('mask_file', 'inputnode.in_mask')]), (inputnode, sdc, [('in_bval', 'inputnode.in_bval'), ('alt_file', 'inputnode.alt_file')]), (inputnode, ecc, [('in_file', 'inputnode.in_file'), ('in_bval', 'inputnode.in_bval')]), (bet_dwi0, ecc, [('mask_file', 'inputnode.in_mask')]), (hmc, ecc, [('outputnode.out_xfms', 'inputnode.in_xfms')]), (ecc, avg_b0_1, [('outputnode.out_file', 'in_dwi')]), (inputnode, avg_b0_1, [('in_bval', 'in_bval')]), (avg_b0_1, bet_dwi1, [('out_file', 'in_file')]), (inputnode, unwarp, [('in_file', 'inputnode.in_dwi')]), (hmc, unwarp, [('outputnode.out_xfms', 'inputnode.in_hmc')]), (ecc, unwarp, [('outputnode.out_xfms', 'inputnode.in_ecc')]), (sdc, unwarp, [('outputnode.out_warp', 'inputnode.in_sdc')]), (hmc, outputnode, [('outputnode.out_bvec', 'out_bvec')]), (unwarp, outputnode, [('outputnode.out_file', 'out_file')]), (bet_dwi1, outputnode, [('mask_file', 'out_mask')]) ]) return wf def hmc_pipeline(name='motion_correct'): """ HMC stands for head-motion correction. Creates a pipeline that corrects for head motion artifacts in dMRI sequences. It takes a series of diffusion weighted images and rigidly co-registers them to one reference image. Finally, the `b`-matrix is rotated accordingly [Leemans09]_ making use of the rotation matrix obtained by FLIRT. Search angles have been limited to 4 degrees, based on results in [Yendiki13]_. A list of rigid transformation matrices is provided, so that transforms can be chained. This is useful to correct for artifacts with only one interpolation process (as previously discussed `here <https://github.com/nipy/nipype/pull/530#issuecomment-14505042>`_), and also to compute nuisance regressors as proposed by [Yendiki13]_. .. warning:: This workflow rotates the `b`-vectors, so please be advised that not all the dicom converters ensure the consistency between the resulting nifti orientation and the gradients table (e.g. dcm2nii checks it). .. admonition:: References .. [Leemans09] <NAME>, and <NAME>, `The B-matrix must be rotated when correcting for subject motion in DTI data <http://dx.doi.org/10.1002/mrm.21890>`_, Magn Reson Med. 61(6):1336-49. 2009. doi: 10.1002/mrm.21890. .. [Yendiki13] <NAME> et al., `Spurious group differences due to head motion in a diffusion MRI study <http://dx.doi.org/10.1016/j.neuroimage.2013.11.027>`_. Neuroimage. 21(88C):79-90. 2013. doi: 10.1016/j.neuroimage.2013.11.027 Example ------- >>> from nipype.workflows.dmri.fsl.artifacts import hmc_pipeline >>> hmc = hmc_pipeline() >>> hmc.inputs.inputnode.in_file = 'diffusion.nii' >>> hmc.inputs.inputnode.in_bvec = 'diffusion.bvec' >>> hmc.inputs.inputnode.in_bval = 'diffusion.bval' >>> hmc.inputs.inputnode.in_mask = 'mask.nii' >>> hmc.run() # doctest: +SKIP Inputs:: inputnode.in_file - input dwi file inputnode.in_mask - weights mask of reference image (a file with data \ range in [0.0, 1.0], indicating the weight of each voxel when computing the \ metric. inputnode.in_bvec - gradients file (b-vectors) inputnode.ref_num (optional, default=0) index of the b0 volume that \ should be taken as reference Outputs:: outputnode.out_file - corrected dwi file outputnode.out_bvec - rotated gradient vectors table outputnode.out_xfms - list of transformation matrices """ from nipype.workflows.data import get_flirt_schedule params = dict(dof=6, bgvalue=0, save_log=True, no_search=True, # cost='mutualinfo', cost_func='mutualinfo', bins=64, schedule=get_flirt_schedule('hmc')) inputnode = pe.Node(niu.IdentityInterface(fields=['in_file', 'ref_num', 'in_bvec', 'in_bval', 'in_mask']), name='inputnode') split = pe.Node(niu.Function(function=hmc_split, input_names=['in_file', 'in_bval', 'ref_num'], output_names=['out_ref', 'out_mov', 'out_bval', 'volid']), name='SplitDWI') flirt = dwi_flirt(flirt_param=params) insmat = pe.Node(niu.Function(input_names=['inlist', 'volid'], output_names=['out'], function=insert_mat), name='InsertRefmat') rot_bvec = pe.Node(niu.Function(input_names=['in_bvec', 'in_matrix'], output_names=['out_file'], function=rotate_bvecs), name='Rotate_Bvec') outputnode = pe.Node(niu.IdentityInterface(fields=['out_file', 'out_bvec', 'out_xfms']), name='outputnode') wf = pe.Workflow(name=name) wf.connect([ (inputnode, split, [('in_file', 'in_file'), ('in_bval', 'in_bval'), ('ref_num', 'ref_num')]), (inputnode, flirt, [('in_mask', 'inputnode.ref_mask')]), (split, flirt, [('out_ref', 'inputnode.reference'), ('out_mov', 'inputnode.in_file'), ('out_bval', 'inputnode.in_bval')]), (flirt, insmat, [('outputnode.out_xfms', 'inlist')]), (split, insmat, [('volid', 'volid')]), (inputnode, rot_bvec, [('in_bvec', 'in_bvec')]), (insmat, rot_bvec, [('out', 'in_matrix')]), (rot_bvec, outputnode, [('out_file', 'out_bvec')]), (flirt, outputnode, [('outputnode.out_file', 'out_file')]), (insmat, outputnode, [('out', 'out_xfms')]) ]) return wf def ecc_pipeline(name='eddy_correct'): """ ECC stands for Eddy currents correction. Creates a pipeline that corrects for artifacts induced by Eddy currents in dMRI sequences. It takes a series of diffusion weighted images and linearly co-registers them to one reference image (the average of all b0s in the dataset). DWIs are also modulated by the determinant of the Jacobian as indicated by [Jones10]_ and [Rohde04]_. A list of rigid transformation matrices can be provided, sourcing from a :func:`.hmc_pipeline` workflow, to initialize registrations in a *motion free* framework. A list of affine transformation matrices is available as output, so that transforms can be chained (discussion `here <https://github.com/nipy/nipype/pull/530#issuecomment-14505042>`_). .. admonition:: References .. [Jones10] Jones DK, `The signal intensity must be modulated by the determinant of the Jacobian when correcting for eddy currents in diffusion MRI <http://cds.ismrm.org/protected/10MProceedings/files/1644_129.pdf>`_, Proc. ISMRM 18th Annual Meeting, (2010). .. [Rohde04] Rohde et al., `Comprehensive Approach for Correction of Motion and Distortion in Diffusion-Weighted MRI <http://stbb.nichd.nih.gov/pdf/com_app_cor_mri04.pdf>`_, MRM 51:103-114 (2004). Example ------- >>> from nipype.workflows.dmri.fsl.artifacts import ecc_pipeline >>> ecc = ecc_pipeline() >>> ecc.inputs.inputnode.in_file = 'diffusion.nii' >>> ecc.inputs.inputnode.in_bval = 'diffusion.bval' >>> ecc.inputs.inputnode.in_mask = 'mask.nii' >>> ecc.run() # doctest: +SKIP Inputs:: inputnode.in_file - input dwi file inputnode.in_mask - weights mask of reference image (a file with data \ range sin [0.0, 1.0], indicating the weight of each voxel when computing the \ metric. inputnode.in_bval - b-values table inputnode.in_xfms - list of matrices to initialize registration (from \ head-motion correction) Outputs:: outputnode.out_file - corrected dwi file outputnode.out_xfms - list of transformation matrices """ from nipype.workflows.data import get_flirt_schedule params = dict(dof=12, no_search=True, interp='spline', bgvalue=0, schedule=get_flirt_schedule('ecc')) # cost='normmi', cost_func='normmi', bins=64, inputnode = pe.Node(niu.IdentityInterface(fields=['in_file', 'in_bval', 'in_mask', 'in_xfms']), name='inputnode') avg_b0 = pe.Node(niu.Function(input_names=['in_dwi', 'in_bval'], output_names=['out_file'], function=b0_average), name='b0_avg') pick_dws = pe.Node(niu.Function(input_names=['in_dwi', 'in_bval', 'b'], output_names=['out_file'], function=extract_bval), name='ExtractDWI') pick_dws.inputs.b = 'diff' flirt = dwi_flirt(flirt_param=params, excl_nodiff=True) mult = pe.MapNode(fsl.BinaryMaths(operation='mul'), name='ModulateDWIs', iterfield=['in_file', 'operand_value']) thres = pe.MapNode(fsl.Threshold(thresh=0.0), iterfield=['in_file'], name='RemoveNegative') split = pe.Node(fsl.Split(dimension='t'), name='SplitDWIs') get_mat = pe.Node(niu.Function(input_names=['in_bval', 'in_xfms'], output_names=['out_files'], function=recompose_xfm), name='GatherMatrices') merge = pe.Node(niu.Function(input_names=['in_dwi', 'in_bval', 'in_corrected'], output_names=['out_file'], function=recompose_dwi), name='MergeDWIs') outputnode = pe.Node(niu.IdentityInterface(fields=['out_file', 'out_xfms']), name='outputnode') wf = pe.Workflow(name=name) wf.connect([ (inputnode, avg_b0, [('in_file', 'in_dwi'), ('in_bval', 'in_bval')]), (inputnode, pick_dws, [('in_file', 'in_dwi'), ('in_bval', 'in_bval')]), (inputnode, merge, [('in_file', 'in_dwi'), ('in_bval', 'in_bval')]), (inputnode, flirt, [('in_mask', 'inputnode.ref_mask'), ('in_xfms', 'inputnode.in_xfms'), ('in_bval', 'inputnode.in_bval')]), (inputnode, get_mat, [('in_bval', 'in_bval')]), (avg_b0, flirt, [('out_file', 'inputnode.reference')]), (pick_dws, flirt, [('out_file', 'inputnode.in_file')]), (flirt, get_mat, [('outputnode.out_xfms', 'in_xfms')]), (flirt, mult, [(('outputnode.out_xfms', _xfm_jacobian), 'operand_value')]), (flirt, split, [('outputnode.out_file', 'in_file')]), (split, mult, [('out_files', 'in_file')]), (mult, thres, [('out_file', 'in_file')]), (thres, merge, [('out_file', 'in_corrected')]), (get_mat, outputnode, [('out_files', 'out_xfms')]), (merge, outputnode, [('out_file', 'out_file')]) ]) return wf def sdc_peb(name='peb_correction', epi_params={'read_out_times': None, 'enc_dir': 'y-'}, altepi_params={'read_out_times': None, 'enc_dir': 'y'}): """ SDC stands for susceptibility distortion correction. PEB stands for phase-encoding-based. The phase-encoding-based (PEB) method implements SDC by acquiring diffusion images with two different enconding directions [Andersson2003]_. The most typical case is acquiring with opposed phase-gradient blips (e.g. *A>>>P* and *P>>>A*, or equivalently, *-y* and *y*) as in [Chiou2000]_, but it is also possible to use orthogonal configurations [Cordes2000]_ (e.g. *A>>>P* and *L>>>R*, or equivalently *-y* and *x*). This workflow uses the implementation of FSL (`TOPUP <http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/TOPUP>`_). Example ------- >>> from nipype.workflows.dmri.fsl.artifacts import sdc_peb >>> peb = sdc_peb() >>> peb.inputs.inputnode.in_file = 'epi.nii' >>> peb.inputs.inputnode.alt_file = 'epi_rev.nii' >>> peb.inputs.inputnode.in_bval = 'diffusion.bval' >>> peb.inputs.inputnode.in_mask = 'mask.nii' >>> peb.run() # doctest: +SKIP .. admonition:: References .. [Andersson2003] <NAME>L et al., `How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging <http://dx.doi.org/10.1016/S1053-8119(03)00336-7>`_. Neuroimage. 2003 Oct;20(2):870-88. doi: 10.1016/S1053-8119(03)00336-7 .. [Cordes2000] <NAME> et al., Geometric distortion correction in EPI using two images with orthogonal phase-encoding directions, in Proc. ISMRM (8), p.1712, Denver, US, 2000. .. [Chiou2000] <NAME>, and <NAME>, A simple method to correct off-resonance related distortion in echo planar imaging, in Proc. ISMRM (8), p.1712, Denver, US, 2000. """ inputnode = pe.Node(niu.IdentityInterface(fields=['in_file', 'in_bval', 'in_mask', 'alt_file', 'ref_num']), name='inputnode') outputnode = pe.Node(niu.IdentityInterface(fields=['out_file', 'out_vsm', 'out_warp']), name='outputnode') b0_ref = pe.Node(fsl.ExtractROI(t_size=1), name='b0_ref') b0_alt = pe.Node(fsl.ExtractROI(t_size=1), name='b0_alt') b0_comb = pe.Node(niu.Merge(2), name='b0_list') b0_merge = pe.Node(fsl.Merge(dimension='t'), name='b0_merged') topup = pe.Node(fsl.TOPUP(), name='topup') topup.inputs.encoding_direction = [epi_params['enc_dir'], altepi_params['enc_dir']] readout = epi_params['read_out_time'] topup.inputs.readout_times = [readout, altepi_params['read_out_time']] unwarp = pe.Node(fsl.ApplyTOPUP(in_index=[1], method='jac'), name='unwarp') # scaling = pe.Node(niu.Function(input_names=['in_file', 'enc_dir'], # output_names=['factor'], function=_get_zoom), # name='GetZoom') # scaling.inputs.enc_dir = epi_params['enc_dir'] vsm2dfm = vsm2warp() vsm2dfm.inputs.inputnode.enc_dir = epi_params['enc_dir'] vsm2dfm.inputs.inputnode.scaling = readout wf = pe.Workflow(name=name) wf.connect([ (inputnode, b0_ref, [('in_file', 'in_file'), (('ref_num', _checkrnum), 't_min')]), (inputnode, b0_alt, [('alt_file', 'in_file'), (('ref_num', _checkrnum), 't_min')]), (b0_ref, b0_comb, [('roi_file', 'in1')]), (b0_alt, b0_comb, [('roi_file', 'in2')]), (b0_comb, b0_merge, [('out', 'in_files')]), (b0_merge, topup, [('merged_file', 'in_file')]), (topup, unwarp, [('out_fieldcoef', 'in_topup_fieldcoef'), ('out_movpar', 'in_topup_movpar'), ('out_enc_file', 'encoding_file')]), (inputnode, unwarp, [('in_file', 'in_files')]), (unwarp, outputnode, [('out_corrected', 'out_file')]), # (b0_ref, scaling, [('roi_file', 'in_file')]), # (scaling, vsm2dfm, [('factor', 'inputnode.scaling')]), (b0_ref, vsm2dfm, [('roi_file', 'inputnode.in_ref')]), (topup, vsm2dfm, [('out_field', 'inputnode.in_vsm')]), (topup, outputnode, [('out_field', 'out_vsm')]), (vsm2dfm, outputnode, [('outputnode.out_warp', 'out_warp')]) ]) return wf def hmc_split(in_file, in_bval, ref_num=0, lowbval=25.0): """ Selects the reference and moving volumes from a dwi dataset for the purpose of HMC. """ import numpy as np import nibabel as nb import os.path as op from nipype.interfaces.base import isdefined im = nb.load(in_file) data = im.get_data() hdr = im.get_header().copy() bval = np.loadtxt(in_bval) lowbs = np.where(bval <= lowbval)[0] volid = lowbs[0] if (isdefined(ref_num) and (ref_num < len(lowbs))): volid = [ref_num] # todo add next two lines in Nipype git if len(volid) == 1: volid = volid[0] if volid == 0: data = data[..., 1:] bval = bval[1:] elif volid == (data.shape[-1] - 1): data = data[..., :-1] bval = bval[:-1] else: data = np.concatenate((data[..., :volid], data[..., (volid + 1):]), axis=3) bval = np.hstack((bval[:volid], bval[(volid + 1):])) out_ref = op.abspath('hmc_ref.nii.gz') out_mov = op.abspath('hmc_mov.nii.gz') out_bval = op.abspath('bval_split.txt') refdata = data[..., volid] hdr.set_data_shape(refdata.shape) nb.Nifti1Image(refdata, im.get_affine(), hdr).to_filename(out_ref) hdr.set_data_shape(data.shape) nb.Nifti1Image(data, im.get_affine(), hdr).to_filename(out_mov) np.savetxt(out_bval, bval) return [out_ref, out_mov, out_bval, volid] class N4BiasFieldCorrectionInputSpec(ANTSCommandInputSpec): # todo dimensionality in Nipype git dimension = traits.Enum(3, 2, argstr='--image-dimensionality %d', usedefault=True, desc='image dimension (2 or 3)') input_image = File(argstr='--input-image %s', mandatory=True, desc=('image to apply transformation to (generally a ' 'coregistered functional)')) mask_image = File(argstr='--mask-image %s') weight_image = File(argstr='--weight-image %s') output_image = traits.Str(argstr='--output %s', desc='output file name', genfile=True, hash_files=False) bspline_fitting_distance = traits.Float(argstr="--bspline-fitting %s") bspline_order = traits.Int(requires=['bspline_fitting_distance']) shrink_factor = traits.Int(argstr="--shrink-factor %d") n_iterations = traits.List(traits.Int(), argstr="--convergence %s", requires=['convergence_threshold']) convergence_threshold = traits.Float(requires=['n_iterations']) save_bias = traits.Bool(False, mandatory=True, usedefault=True, desc=('True if the estimated bias should be saved' ' to file.'), xor=['bias_image']) bias_image = File(desc='Filename for the estimated bias.', hash_files=False) class N4BiasFieldCorrection(ANTSCommand): """N4 is a variant of the popular N3 (nonparameteric nonuniform normalization) retrospective bias correction algorithm. Based on the assumption that the corruption of the low frequency bias field can be modeled as a convolution of the intensity histogram by a Gaussian, the basic algorithmic protocol is to iterate between deconvolving the intensity histogram by a Gaussian, remapping the intensities, and then spatially smoothing this result by a B-spline modeling of the bias field itself. The modifications from and improvements obtained over the original N3 algorithm are described in [Tustison2010]_. .. [Tustison2010] <NAME> et al., N4ITK: Improved N3 Bias Correction, IEEE Transactions on Medical Imaging, 29(6):1310-1320, June 2010. Examples -------- >>> import copy >>> from nipype.interfaces.ants import N4BiasFieldCorrection >>> n4 = N4BiasFieldCorrection() >>> n4.inputs.dimension = 3 >>> n4.inputs.input_image = 'structural.nii' >>> n4.inputs.bspline_fitting_distance = 300 >>> n4.inputs.shrink_factor = 3 >>> n4.inputs.n_iterations = [50,50,30,20] >>> n4.inputs.convergence_threshold = 1e-6 >>> n4.cmdline 'N4BiasFieldCorrection --bspline-fitting [ 300 ] \ --image-dimension 3 --input-image structural.nii \ --convergence [ 50x50x30x20, 1e-06 ] --output structural_corrected.nii \ --shrink-factor 3' >>> n4_2 = copy.deepcopy(n4) >>> n4_2.inputs.bspline_order = 5 >>> n4_2.cmdline 'N4BiasFieldCorrection --bspline-fitting [ 300, 5 ] \ --image-dimension 3 --input-image structural.nii \ --convergence [ 50x50x30x20, 1e-06 ] --output structural_corrected.nii \ --shrink-factor 3' >>> n4_3 = N4BiasFieldCorrection() >>> n4_3.inputs.input_image = 'structural.nii' >>> n4_3.inputs.save_bias = True >>> n4_3.cmdline 'N4BiasFieldCorrection --image-dimension 3 --input-image structural.nii \ --output [ structural_corrected.nii, structural_bias.nii ]' """ _cmd = 'N4BiasFieldCorrection' input_spec = N4BiasFieldCorrectionInputSpec output_spec = N4BiasFieldCorrectionOutputSpec def _gen_filename(self, name): if name == 'output_image': output = self.inputs.output_image if not isdefined(output): _, name, ext = split_filename(self.inputs.input_image) output = name + '_corrected' + ext return output if name == 'bias_image': output = self.inputs.bias_image if not isdefined(output): _, name, ext = split_filename(self.inputs.input_image) output = name + '_bias' + ext return output return None def _format_arg(self, name, trait_spec, value): if ((name == 'output_image') and (self.inputs.save_bias or isdefined(self.inputs.bias_image))): bias_image = self._gen_filename('bias_image') output = self._gen_filename('output_image') newval = '[ %s, %s ]' % (output, bias_image) return trait_spec.argstr % newval if name == 'bspline_fitting_distance': if isdefined(self.inputs.bspline_order): newval = '[ %g, %d ]' % (value, self.inputs.bspline_order) else: newval = '[ %g ]' % value return trait_spec.argstr % newval if ((name == 'n_iterations') and (isdefined(self.inputs.convergence_threshold))): newval = '[ %s, %g ]' % ('x'.join([str(elt) for elt in value]), self.inputs.convergence_threshold) return trait_spec.argstr % newval return super(N4BiasFieldCorrection, self)._format_arg(name, trait_spec, value) def _parse_inputs(self, skip=None): if skip is None: skip = [] skip += ['save_bias', 'bias_image'] return super(N4BiasFieldCorrection, self)._parse_inputs(skip=skip) def _list_outputs(self): outputs = self._outputs().get() outputs['output_image'] = os.path.abspath(self._gen_filename('output_image')) if self.inputs.save_bias or isdefined(self.inputs.bias_image): outputs['bias_image'] = os.path.abspath(self._gen_filename('bias_image')) return outputs # todo remove this if N4BiasFieldCorrection works again def dwi_flirt(name='DWICoregistration', excl_nodiff=False, flirt_param={}): """ Generates a workflow for linear registration of dwi volumes """ inputnode = pe.Node(niu.IdentityInterface(fields=['reference', 'in_file', 'ref_mask', 'in_xfms', 'in_bval']), name='inputnode') initmat = pe.Node(niu.Function(input_names=['in_bval', 'in_xfms', 'excl_nodiff'], output_names=['init_xfms'], function=_checkinitxfm), name='InitXforms') initmat.inputs.excl_nodiff = excl_nodiff dilate = pe.Node(fsl.maths.MathsCommand(nan2zeros=True, args='-kernel sphere 5 -dilM'), name='MskDilate') split = pe.Node(fsl.Split(dimension='t'), name='SplitDWIs') pick_ref = pe.Node(niu.Select(), name='Pick_b0') n4 = pe.Node(N4BiasFieldCorrection(dimension=3), name='Bias') enhb0 = pe.Node(niu.Function(input_names=['in_file', 'in_mask', 'clip_limit'], output_names=['out_file'], function=enhance), name='B0Equalize') enhb0.inputs.clip_limit = 0.015 enhdw = pe.MapNode(niu.Function(input_names=['in_file', 'in_mask'], output_names=['out_file'], function=enhance), name='DWEqualize', iterfield=['in_file']) flirt = pe.MapNode(fsl.FLIRT(**flirt_param), name='CoRegistration', iterfield=['in_file', 'in_matrix_file']) thres = pe.MapNode(fsl.Threshold(thresh=0.0), iterfield=['in_file'], name='RemoveNegative') merge = pe.Node(fsl.Merge(dimension='t'), name='MergeDWIs') outputnode = pe.Node(niu.IdentityInterface(fields=['out_file', 'out_xfms']), name='outputnode') wf = pe.Workflow(name=name) wf.connect([ (inputnode, split, [('in_file', 'in_file')]), (inputnode, dilate, [('ref_mask', 'in_file')]), (inputnode, enhb0, [('ref_mask', 'in_mask')]), (inputnode, initmat, [('in_xfms', 'in_xfms'), ('in_bval', 'in_bval')]), (inputnode, n4, [('reference', 'input_image'), ('ref_mask', 'mask_image')]), (dilate, flirt, [('out_file', 'ref_weight'), ('out_file', 'in_weight')]), (n4, enhb0, [('output_image', 'in_file')]), (split, enhdw, [('out_files', 'in_file')]), (dilate, enhdw, [('out_file', 'in_mask')]), (enhb0, flirt, [('out_file', 'reference')]), (enhdw, flirt, [('out_file', 'in_file')]), (initmat, flirt, [('init_xfms', 'in_matrix_file')]), (flirt, thres, [('out_file', 'in_file')]), (thres, merge, [('out_file', 'in_files')]), (merge, outputnode, [('merged_file', 'out_file')]), (flirt, outputnode, [('out_matrix_file', 'out_xfms')]) ]) return wf
[ "nipype.interfaces.fsl.ApplyTOPUP", "nipype.interfaces.base.traits.Float", "nipype.interfaces.utility.IdentityInterface", "nipype.interfaces.fsl.ExtractROI", "nipype.interfaces.fsl.Split", "nipype.interfaces.fsl.Merge", "nipype.workflows.dmri.fsl.utils.apply_all_corrections", "nipype.interfaces.base.isdefined", "os.path.abspath", "nipype.interfaces.fsl.Threshold", "numpy.savetxt", "nipype.interfaces.base.traits.Int", "nipype.interfaces.base.traits.Bool", "numpy.loadtxt", "nipype.workflows.data.get_flirt_schedule", "nipype.pipeline.engine.Workflow", "nipype.utils.filemanip.split_filename", "nipype.interfaces.fsl.TOPUP", "nipype.interfaces.base.traits.Enum", "nipype.interfaces.utility.Merge", "numpy.hstack", "nipype.interfaces.utility.Select", "nipype.interfaces.fsl.FLIRT", "nipype.interfaces.utility.Function", "numpy.concatenate", "nipype.interfaces.fsl.BET", "nipype.interfaces.base.traits.Str", "nipype.workflows.dmri.fsl.utils.vsm2warp", "nibabel.load", "nipype.interfaces.fsl.maths.MathsCommand", "nipype.interfaces.base.File", "numpy.where", "nipype.interfaces.fsl.BinaryMaths" ]
[((3100, 3123), 'nipype.workflows.dmri.fsl.utils.apply_all_corrections', 'apply_all_corrections', ([], {}), '()\n', (3121, 3123), False, 'from nipype.workflows.dmri.fsl.utils import b0_average, apply_all_corrections, insert_mat, rotate_bvecs, vsm2warp, extract_bval, recompose_xfm, recompose_dwi, _checkinitxfm, enhance\n'), ((3134, 3156), 'nipype.pipeline.engine.Workflow', 'pe.Workflow', ([], {'name': 'name'}), '(name=name)\n', (3145, 3156), True, 'import nipype.pipeline.engine as pe\n'), ((8736, 8758), 'nipype.pipeline.engine.Workflow', 'pe.Workflow', ([], {'name': 'name'}), '(name=name)\n', (8747, 8758), True, 'import nipype.pipeline.engine as pe\n'), ((13563, 13585), 'nipype.pipeline.engine.Workflow', 'pe.Workflow', ([], {'name': 'name'}), '(name=name)\n', (13574, 13585), True, 'import nipype.pipeline.engine as pe\n'), ((18116, 18126), 'nipype.workflows.dmri.fsl.utils.vsm2warp', 'vsm2warp', ([], {}), '()\n', (18124, 18126), False, 'from nipype.workflows.dmri.fsl.utils import b0_average, apply_all_corrections, insert_mat, rotate_bvecs, vsm2warp, extract_bval, recompose_xfm, recompose_dwi, _checkinitxfm, enhance\n'), ((18245, 18267), 'nipype.pipeline.engine.Workflow', 'pe.Workflow', ([], {'name': 'name'}), '(name=name)\n', (18256, 18267), True, 'import nipype.pipeline.engine as pe\n'), ((19860, 19876), 'nibabel.load', 'nb.load', (['in_file'], {}), '(in_file)\n', (19867, 19876), True, 'import nibabel as nb\n'), ((19946, 19965), 'numpy.loadtxt', 'np.loadtxt', (['in_bval'], {}), '(in_bval)\n', (19956, 19965), True, 'import numpy as np\n'), ((20574, 20602), 'os.path.abspath', 'op.abspath', (['"""hmc_ref.nii.gz"""'], {}), "('hmc_ref.nii.gz')\n", (20584, 20602), True, 'import os.path as op\n'), ((20617, 20645), 'os.path.abspath', 'op.abspath', (['"""hmc_mov.nii.gz"""'], {}), "('hmc_mov.nii.gz')\n", (20627, 20645), True, 'import os.path as op\n'), ((20661, 20689), 'os.path.abspath', 'op.abspath', (['"""bval_split.txt"""'], {}), "('bval_split.txt')\n", (20671, 20689), True, 'import os.path as op\n'), ((20939, 20965), 'numpy.savetxt', 'np.savetxt', (['out_bval', 'bval'], {}), '(out_bval, bval)\n', (20949, 20965), True, 'import numpy as np\n'), ((21131, 21239), 'nipype.interfaces.base.traits.Enum', 'traits.Enum', (['(3)', '(2)'], {'argstr': '"""--image-dimensionality %d"""', 'usedefault': '(True)', 'desc': '"""image dimension (2 or 3)"""'}), "(3, 2, argstr='--image-dimensionality %d', usedefault=True, desc\n ='image dimension (2 or 3)')\n", (21142, 21239), False, 'from nipype.interfaces.base import File, traits, isdefined\n'), ((21309, 21440), 'nipype.interfaces.base.File', 'File', ([], {'argstr': '"""--input-image %s"""', 'mandatory': '(True)', 'desc': '"""image to apply transformation to (generally a coregistered functional)"""'}), "(argstr='--input-image %s', mandatory=True, desc=\n 'image to apply transformation to (generally a coregistered functional)')\n", (21313, 21440), False, 'from nipype.interfaces.base import File, traits, isdefined\n'), ((21510, 21540), 'nipype.interfaces.base.File', 'File', ([], {'argstr': '"""--mask-image %s"""'}), "(argstr='--mask-image %s')\n", (21514, 21540), False, 'from nipype.interfaces.base import File, traits, isdefined\n'), ((21560, 21592), 'nipype.interfaces.base.File', 'File', ([], {'argstr': '"""--weight-image %s"""'}), "(argstr='--weight-image %s')\n", (21564, 21592), False, 'from nipype.interfaces.base import File, traits, isdefined\n'), ((21612, 21705), 'nipype.interfaces.base.traits.Str', 'traits.Str', ([], {'argstr': '"""--output %s"""', 'desc': '"""output file name"""', 'genfile': '(True)', 'hash_files': '(False)'}), "(argstr='--output %s', desc='output file name', genfile=True,\n hash_files=False)\n", (21622, 21705), False, 'from nipype.interfaces.base import File, traits, isdefined\n'), ((21793, 21836), 'nipype.interfaces.base.traits.Float', 'traits.Float', ([], {'argstr': '"""--bspline-fitting %s"""'}), "(argstr='--bspline-fitting %s')\n", (21805, 21836), False, 'from nipype.interfaces.base import File, traits, isdefined\n'), ((21857, 21906), 'nipype.interfaces.base.traits.Int', 'traits.Int', ([], {'requires': "['bspline_fitting_distance']"}), "(requires=['bspline_fitting_distance'])\n", (21867, 21906), False, 'from nipype.interfaces.base import File, traits, isdefined\n'), ((21927, 21966), 'nipype.interfaces.base.traits.Int', 'traits.Int', ([], {'argstr': '"""--shrink-factor %d"""'}), "(argstr='--shrink-factor %d')\n", (21937, 21966), False, 'from nipype.interfaces.base import File, traits, isdefined\n'), ((22134, 22173), 'nipype.interfaces.base.traits.Float', 'traits.Float', ([], {'requires': "['n_iterations']"}), "(requires=['n_iterations'])\n", (22146, 22173), False, 'from nipype.interfaces.base import File, traits, isdefined\n'), ((22190, 22326), 'nipype.interfaces.base.traits.Bool', 'traits.Bool', (['(False)'], {'mandatory': '(True)', 'usedefault': '(True)', 'desc': '"""True if the estimated bias should be saved to file."""', 'xor': "['bias_image']"}), "(False, mandatory=True, usedefault=True, desc=\n 'True if the estimated bias should be saved to file.', xor=['bias_image'])\n", (22201, 22326), False, 'from nipype.interfaces.base import File, traits, isdefined\n'), ((22406, 22469), 'nipype.interfaces.base.File', 'File', ([], {'desc': '"""Filename for the estimated bias."""', 'hash_files': '(False)'}), "(desc='Filename for the estimated bias.', hash_files=False)\n", (22410, 22469), False, 'from nipype.interfaces.base import File, traits, isdefined\n'), ((28747, 28769), 'nipype.pipeline.engine.Workflow', 'pe.Workflow', ([], {'name': 'name'}), '(name=name)\n', (28758, 28769), True, 'import nipype.pipeline.engine as pe\n'), ((2117, 2192), 'nipype.interfaces.utility.IdentityInterface', 'niu.IdentityInterface', ([], {'fields': "['in_file', 'in_bvec', 'in_bval', 'alt_file']"}), "(fields=['in_file', 'in_bvec', 'in_bval', 'alt_file'])\n", (2138, 2192), True, 'import nipype.interfaces.utility as niu\n'), ((2262, 2328), 'nipype.interfaces.utility.IdentityInterface', 'niu.IdentityInterface', ([], {'fields': "['out_file', 'out_mask', 'out_bvec']"}), "(fields=['out_file', 'out_mask', 'out_bvec'])\n", (2283, 2328), True, 'import nipype.interfaces.utility as niu\n'), ((2398, 2497), 'nipype.interfaces.utility.Function', 'niu.Function', ([], {'input_names': "['in_dwi', 'in_bval']", 'output_names': "['out_file']", 'function': 'b0_average'}), "(input_names=['in_dwi', 'in_bval'], output_names=['out_file'],\n function=b0_average)\n", (2410, 2497), True, 'import nipype.interfaces.utility as niu\n'), ((2583, 2682), 'nipype.interfaces.utility.Function', 'niu.Function', ([], {'input_names': "['in_dwi', 'in_bval']", 'output_names': "['out_file']", 'function': 'b0_average'}), "(input_names=['in_dwi', 'in_bval'], output_names=['out_file'],\n function=b0_average)\n", (2595, 2682), True, 'import nipype.interfaces.utility as niu\n'), ((2769, 2810), 'nipype.interfaces.fsl.BET', 'fsl.BET', ([], {'frac': '(0.3)', 'mask': '(True)', 'robust': '(True)'}), '(frac=0.3, mask=True, robust=True)\n', (2776, 2810), True, 'import nipype.interfaces.fsl as fsl\n'), ((2878, 2919), 'nipype.interfaces.fsl.BET', 'fsl.BET', ([], {'frac': '(0.3)', 'mask': '(True)', 'robust': '(True)'}), '(frac=0.3, mask=True, robust=True)\n', (2885, 2919), True, 'import nipype.interfaces.fsl as fsl\n'), ((7792, 7881), 'nipype.interfaces.utility.IdentityInterface', 'niu.IdentityInterface', ([], {'fields': "['in_file', 'ref_num', 'in_bvec', 'in_bval', 'in_mask']"}), "(fields=['in_file', 'ref_num', 'in_bvec', 'in_bval',\n 'in_mask'])\n", (7813, 7881), True, 'import nipype.interfaces.utility as niu\n'), ((7941, 8082), 'nipype.interfaces.utility.Function', 'niu.Function', ([], {'function': 'hmc_split', 'input_names': "['in_file', 'in_bval', 'ref_num']", 'output_names': "['out_ref', 'out_mov', 'out_bval', 'volid']"}), "(function=hmc_split, input_names=['in_file', 'in_bval',\n 'ref_num'], output_names=['out_ref', 'out_mov', 'out_bval', 'volid'])\n", (7953, 8082), True, 'import nipype.interfaces.utility as niu\n'), ((8220, 8312), 'nipype.interfaces.utility.Function', 'niu.Function', ([], {'input_names': "['inlist', 'volid']", 'output_names': "['out']", 'function': 'insert_mat'}), "(input_names=['inlist', 'volid'], output_names=['out'],\n function=insert_mat)\n", (8232, 8312), True, 'import nipype.interfaces.utility as niu\n'), ((8396, 8501), 'nipype.interfaces.utility.Function', 'niu.Function', ([], {'input_names': "['in_bvec', 'in_matrix']", 'output_names': "['out_file']", 'function': 'rotate_bvecs'}), "(input_names=['in_bvec', 'in_matrix'], output_names=['out_file'\n ], function=rotate_bvecs)\n", (8408, 8501), True, 'import nipype.interfaces.utility as niu\n'), ((8589, 8655), 'nipype.interfaces.utility.IdentityInterface', 'niu.IdentityInterface', ([], {'fields': "['out_file', 'out_bvec', 'out_xfms']"}), "(fields=['out_file', 'out_bvec', 'out_xfms'])\n", (8610, 8655), True, 'import nipype.interfaces.utility as niu\n'), ((12161, 12235), 'nipype.interfaces.utility.IdentityInterface', 'niu.IdentityInterface', ([], {'fields': "['in_file', 'in_bval', 'in_mask', 'in_xfms']"}), "(fields=['in_file', 'in_bval', 'in_mask', 'in_xfms'])\n", (12182, 12235), True, 'import nipype.interfaces.utility as niu\n'), ((12300, 12399), 'nipype.interfaces.utility.Function', 'niu.Function', ([], {'input_names': "['in_dwi', 'in_bval']", 'output_names': "['out_file']", 'function': 'b0_average'}), "(input_names=['in_dwi', 'in_bval'], output_names=['out_file'],\n function=b0_average)\n", (12312, 12399), True, 'import nipype.interfaces.utility as niu\n'), ((12477, 12584), 'nipype.interfaces.utility.Function', 'niu.Function', ([], {'input_names': "['in_dwi', 'in_bval', 'b']", 'output_names': "['out_file']", 'function': 'extract_bval'}), "(input_names=['in_dwi', 'in_bval', 'b'], output_names=[\n 'out_file'], function=extract_bval)\n", (12489, 12584), True, 'import nipype.interfaces.utility as niu\n'), ((12761, 12793), 'nipype.interfaces.fsl.BinaryMaths', 'fsl.BinaryMaths', ([], {'operation': '"""mul"""'}), "(operation='mul')\n", (12776, 12793), True, 'import nipype.interfaces.fsl as fsl\n'), ((12901, 12926), 'nipype.interfaces.fsl.Threshold', 'fsl.Threshold', ([], {'thresh': '(0.0)'}), '(thresh=0.0)\n', (12914, 12926), True, 'import nipype.interfaces.fsl as fsl\n'), ((13018, 13042), 'nipype.interfaces.fsl.Split', 'fsl.Split', ([], {'dimension': '"""t"""'}), "(dimension='t')\n", (13027, 13042), True, 'import nipype.interfaces.fsl as fsl\n'), ((13084, 13188), 'nipype.interfaces.utility.Function', 'niu.Function', ([], {'input_names': "['in_bval', 'in_xfms']", 'output_names': "['out_files']", 'function': 'recompose_xfm'}), "(input_names=['in_bval', 'in_xfms'], output_names=['out_files'],\n function=recompose_xfm)\n", (13096, 13188), True, 'import nipype.interfaces.utility as niu\n'), ((13273, 13391), 'nipype.interfaces.utility.Function', 'niu.Function', ([], {'input_names': "['in_dwi', 'in_bval', 'in_corrected']", 'output_names': "['out_file']", 'function': 'recompose_dwi'}), "(input_names=['in_dwi', 'in_bval', 'in_corrected'],\n output_names=['out_file'], function=recompose_dwi)\n", (13285, 13391), True, 'import nipype.interfaces.utility as niu\n'), ((13453, 13507), 'nipype.interfaces.utility.IdentityInterface', 'niu.IdentityInterface', ([], {'fields': "['out_file', 'out_xfms']"}), "(fields=['out_file', 'out_xfms'])\n", (13474, 13507), True, 'import nipype.interfaces.utility as niu\n'), ((16923, 17013), 'nipype.interfaces.utility.IdentityInterface', 'niu.IdentityInterface', ([], {'fields': "['in_file', 'in_bval', 'in_mask', 'alt_file', 'ref_num']"}), "(fields=['in_file', 'in_bval', 'in_mask', 'alt_file',\n 'ref_num'])\n", (16944, 17013), True, 'import nipype.interfaces.utility as niu\n'), ((17102, 17167), 'nipype.interfaces.utility.IdentityInterface', 'niu.IdentityInterface', ([], {'fields': "['out_file', 'out_vsm', 'out_warp']"}), "(fields=['out_file', 'out_vsm', 'out_warp'])\n", (17123, 17167), True, 'import nipype.interfaces.utility as niu\n'), ((17235, 17259), 'nipype.interfaces.fsl.ExtractROI', 'fsl.ExtractROI', ([], {'t_size': '(1)'}), '(t_size=1)\n', (17249, 17259), True, 'import nipype.interfaces.fsl as fsl\n'), ((17297, 17321), 'nipype.interfaces.fsl.ExtractROI', 'fsl.ExtractROI', ([], {'t_size': '(1)'}), '(t_size=1)\n', (17311, 17321), True, 'import nipype.interfaces.fsl as fsl\n'), ((17360, 17372), 'nipype.interfaces.utility.Merge', 'niu.Merge', (['(2)'], {}), '(2)\n', (17369, 17372), True, 'import nipype.interfaces.utility as niu\n'), ((17413, 17437), 'nipype.interfaces.fsl.Merge', 'fsl.Merge', ([], {'dimension': '"""t"""'}), "(dimension='t')\n", (17422, 17437), True, 'import nipype.interfaces.fsl as fsl\n'), ((17478, 17489), 'nipype.interfaces.fsl.TOPUP', 'fsl.TOPUP', ([], {}), '()\n', (17487, 17489), True, 'import nipype.interfaces.fsl as fsl\n'), ((17806, 17848), 'nipype.interfaces.fsl.ApplyTOPUP', 'fsl.ApplyTOPUP', ([], {'in_index': '[1]', 'method': '"""jac"""'}), "(in_index=[1], method='jac')\n", (17820, 17848), True, 'import nipype.interfaces.fsl as fsl\n'), ((19979, 20004), 'numpy.where', 'np.where', (['(bval <= lowbval)'], {}), '(bval <= lowbval)\n', (19987, 20004), True, 'import numpy as np\n'), ((20038, 20056), 'nipype.interfaces.base.isdefined', 'isdefined', (['ref_num'], {}), '(ref_num)\n', (20047, 20056), False, 'from nipype.interfaces.base import isdefined\n'), ((21998, 22010), 'nipype.interfaces.base.traits.Int', 'traits.Int', ([], {}), '()\n', (22008, 22010), False, 'from nipype.interfaces.base import File, traits, isdefined\n'), ((27120, 27212), 'nipype.interfaces.utility.IdentityInterface', 'niu.IdentityInterface', ([], {'fields': "['reference', 'in_file', 'ref_mask', 'in_xfms', 'in_bval']"}), "(fields=['reference', 'in_file', 'ref_mask', 'in_xfms',\n 'in_bval'])\n", (27141, 27212), True, 'import nipype.interfaces.utility as niu\n'), ((27299, 27418), 'nipype.interfaces.utility.Function', 'niu.Function', ([], {'input_names': "['in_bval', 'in_xfms', 'excl_nodiff']", 'output_names': "['init_xfms']", 'function': '_checkinitxfm'}), "(input_names=['in_bval', 'in_xfms', 'excl_nodiff'],\n output_names=['init_xfms'], function=_checkinitxfm)\n", (27311, 27418), True, 'import nipype.interfaces.utility as niu\n'), ((27558, 27627), 'nipype.interfaces.fsl.maths.MathsCommand', 'fsl.maths.MathsCommand', ([], {'nan2zeros': '(True)', 'args': '"""-kernel sphere 5 -dilM"""'}), "(nan2zeros=True, args='-kernel sphere 5 -dilM')\n", (27580, 27627), True, 'import nipype.interfaces.fsl as fsl\n'), ((27688, 27712), 'nipype.interfaces.fsl.Split', 'fsl.Split', ([], {'dimension': '"""t"""'}), "(dimension='t')\n", (27697, 27712), True, 'import nipype.interfaces.fsl as fsl\n'), ((27755, 27767), 'nipype.interfaces.utility.Select', 'niu.Select', ([], {}), '()\n', (27765, 27767), True, 'import nipype.interfaces.utility as niu\n'), ((27871, 27983), 'nipype.interfaces.utility.Function', 'niu.Function', ([], {'input_names': "['in_file', 'in_mask', 'clip_limit']", 'output_names': "['out_file']", 'function': 'enhance'}), "(input_names=['in_file', 'in_mask', 'clip_limit'], output_names\n =['out_file'], function=enhance)\n", (27883, 27983), True, 'import nipype.interfaces.utility as niu\n'), ((28111, 28208), 'nipype.interfaces.utility.Function', 'niu.Function', ([], {'input_names': "['in_file', 'in_mask']", 'output_names': "['out_file']", 'function': 'enhance'}), "(input_names=['in_file', 'in_mask'], output_names=['out_file'],\n function=enhance)\n", (28123, 28208), True, 'import nipype.interfaces.utility as niu\n'), ((28317, 28341), 'nipype.interfaces.fsl.FLIRT', 'fsl.FLIRT', ([], {}), '(**flirt_param)\n', (28326, 28341), True, 'import nipype.interfaces.fsl as fsl\n'), ((28453, 28478), 'nipype.interfaces.fsl.Threshold', 'fsl.Threshold', ([], {'thresh': '(0.0)'}), '(thresh=0.0)\n', (28466, 28478), True, 'import nipype.interfaces.fsl as fsl\n'), ((28569, 28593), 'nipype.interfaces.fsl.Merge', 'fsl.Merge', ([], {'dimension': '"""t"""'}), "(dimension='t')\n", (28578, 28593), True, 'import nipype.interfaces.fsl as fsl\n'), ((28638, 28692), 'nipype.interfaces.utility.IdentityInterface', 'niu.IdentityInterface', ([], {'fields': "['out_file', 'out_xfms']"}), "(fields=['out_file', 'out_xfms'])\n", (28659, 28692), True, 'import nipype.interfaces.utility as niu\n'), ((7740, 7765), 'nipype.workflows.data.get_flirt_schedule', 'get_flirt_schedule', (['"""hmc"""'], {}), "('hmc')\n", (7758, 7765), False, 'from nipype.workflows.data import get_flirt_schedule\n'), ((12059, 12084), 'nipype.workflows.data.get_flirt_schedule', 'get_flirt_schedule', (['"""ecc"""'], {}), "('ecc')\n", (12077, 12084), False, 'from nipype.workflows.data import get_flirt_schedule\n'), ((20399, 20465), 'numpy.concatenate', 'np.concatenate', (['(data[..., :volid], data[..., volid + 1:])'], {'axis': '(3)'}), '((data[..., :volid], data[..., volid + 1:]), axis=3)\n', (20413, 20465), True, 'import numpy as np\n'), ((20513, 20556), 'numpy.hstack', 'np.hstack', (['(bval[:volid], bval[volid + 1:])'], {}), '((bval[:volid], bval[volid + 1:]))\n', (20522, 20556), True, 'import numpy as np\n'), ((25700, 25736), 'nipype.interfaces.base.isdefined', 'isdefined', (['self.inputs.bspline_order'], {}), '(self.inputs.bspline_order)\n', (25709, 25736), False, 'from nipype.interfaces.base import isdefined\n'), ((25973, 26017), 'nipype.interfaces.base.isdefined', 'isdefined', (['self.inputs.convergence_threshold'], {}), '(self.inputs.convergence_threshold)\n', (25982, 26017), False, 'from nipype.interfaces.base import isdefined\n'), ((26724, 26757), 'nipype.interfaces.base.isdefined', 'isdefined', (['self.inputs.bias_image'], {}), '(self.inputs.bias_image)\n', (26733, 26757), False, 'from nipype.interfaces.base import isdefined\n'), ((24806, 24823), 'nipype.interfaces.base.isdefined', 'isdefined', (['output'], {}), '(output)\n', (24815, 24823), False, 'from nipype.interfaces.base import isdefined\n'), ((24856, 24895), 'nipype.utils.filemanip.split_filename', 'split_filename', (['self.inputs.input_image'], {}), '(self.inputs.input_image)\n', (24870, 24895), False, 'from nipype.utils.filemanip import split_filename\n'), ((25070, 25087), 'nipype.interfaces.base.isdefined', 'isdefined', (['output'], {}), '(output)\n', (25079, 25087), False, 'from nipype.interfaces.base import isdefined\n'), ((25120, 25159), 'nipype.utils.filemanip.split_filename', 'split_filename', (['self.inputs.input_image'], {}), '(self.inputs.input_image)\n', (25134, 25159), False, 'from nipype.utils.filemanip import split_filename\n'), ((25383, 25416), 'nipype.interfaces.base.isdefined', 'isdefined', (['self.inputs.bias_image'], {}), '(self.inputs.bias_image)\n', (25392, 25416), False, 'from nipype.interfaces.base import isdefined\n')]
# -*- coding: utf-8 -*- """ Created on Fri Dec 2 14:02:26 2016 MIT License Copyright (c) 2016 <NAME> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from zeex.core.ctrls.bookmark import BookmarkManager from zeex.core.compat import QtGui, QtCore Qt = QtCore.Qt class BookMarkModel(QtGui.QStandardItemModel): """ A QStandardItemModel representing the data stored in a BookmarkManager. """ header = ['name', 'file_path'] def __init__(self, manager: BookmarkManager): QtGui.QStandardItemModel.__init__(self) self.manager = manager self.header = self.header.copy() def headerData(self, col, orientation, role): if role != Qt.DisplayRole: return None if orientation == Qt.Horizontal: return self.header[col] elif orientation == Qt.Vertical: return col return None def rowCount(self): return len(self.manager.names) def columnCount(self): return len(self.header) def data(self, index, role): if not index.isValid(): return None elif role not in (Qt.DisplayRole, Qt.EditRole): return None mark = self.manager.names[index.row()] row = self.manager.bookmark(mark) name = self.fields[index.column()] return str(getattr(row, name)) def flags(self): return Qt.ItemIsEnabled | Qt.ItemIsSelectable | Qt.ItemIsDragEnabled | Qt.ItemIsDropEnabled
[ "zeex.core.compat.QtGui.QStandardItemModel.__init__" ]
[((1483, 1522), 'zeex.core.compat.QtGui.QStandardItemModel.__init__', 'QtGui.QStandardItemModel.__init__', (['self'], {}), '(self)\n', (1516, 1522), False, 'from zeex.core.compat import QtGui, QtCore\n')]
import os import glob import numpy as np import pandas as pd # geospatial libaries from osgeo import gdal, osr from xml.etree import ElementTree def read_geo_info(fname): """ This function takes as input the geotiff name and the path of the folder that the images are stored, reads the geographic information of the image Parameters ---------- fname : string path and file name of a geotiff image Returns ------- spatialRef : string osr.SpatialReference in well known text geoTransform : tuple, size=(8,1) affine transformation coefficients, but also giving the image dimensions targetprj : osgeo.osr.SpatialReference() object coordinate reference system (CRS) rows : integer number of rows in the image, that is its height cols : integer number of collumns in the image, that is its width bands : integer number of bands in the image, that is its depth See Also -------- read_geo_image : basic function to import geographic imagery data """ assert len(glob.glob(fname)) != 0, ('file does not seem to be present') img = gdal.Open(fname) spatialRef = img.GetProjection() geoTransform = img.GetGeoTransform() targetprj = osr.SpatialReference(wkt=img.GetProjection()) rows = img.RasterYSize cols = img.RasterXSize bands = img.RasterCount geoTransform += (rows, cols,) return spatialRef, geoTransform, targetprj, rows, cols, bands def read_geo_image(fname, boi=np.array([])): """ This function takes as input the geotiff name and the path of the folder that the images are stored, reads the image and returns the data as an array Parameters ---------- fname : string geotiff file name and path. boi : numpy.array, size=(k,1) bands of interest, if a multispectral image is read, a selection can be specified Returns ------- data : numpy.array, size=(m,n), ndim=2 data array of the band spatialRef : string osr.SpatialReference in well known text geoTransform : tuple, size=(6,1) affine transformation coefficients. targetprj : osgeo.osr.SpatialReference() object coordinate reference system (CRS) See Also -------- make_geo_im : basic function to write out geographic data read_geo_info : basic function to get meta data of geographic imagery Example ------- >>> import os >>> fpath = os.path.join(os.getcwd(), "data.jp2" ) >>> (I, spatialRef, geoTransform, targetPrj) = read_geo_image(fpath) >>> I_ones = np.zeros(I.shape, dtype=bool) >>> make_geo_im(I_ones, geoTransformM, spatialRefM, "ones.tif") assert os.path.exists(fname), ('file must exist') """ assert len(glob.glob(fname)) != 0, ('file does not seem to be present') img = gdal.Open(fname) # imagery can consist of multiple bands if len(boi) == 0: for counter in range(img.RasterCount): band = np.array(img.GetRasterBand(counter+1).ReadAsArray()) data = band if counter == 0 else np.dstack((data, band[:,:,np.newaxis])) else: num_bands = img.RasterCount assert (np.max(boi)+1)<=num_bands, 'bands of interest is out of range' for band_id, counter in enumerate(boi): band = np.array(img.GetRasterBand(band_id+1).ReadAsArray()) data = band if counter==0 else np.dstack((data, band[:, :, np.newaxis])) spatialRef = img.GetProjection() geoTransform = img.GetGeoTransform() targetprj = osr.SpatialReference(wkt=img.GetProjection()) return data, spatialRef, geoTransform, targetprj # output functions def make_geo_im(I, R, crs, fName, meta_descr='project Eratosthenes', no_dat=np.nan, sun_angles='az:360-zn:90', date_created='-0276-00-00'): """ Create georeferenced tiff file (a GeoTIFF) Parameters ---------- I : numpy.array, size=(m,n) band image R : list, size=(1,6) GDAL georeference transform of an image crs : string coordinate reference string fname : string filename for the image with extension no_dat : datatype, integer no data value sun_angles : string string giving meta data about the illumination angles date_created : string string given the acquistion date in YYYY-MM-DD Example ------- >>> import os >>> fpath = os.path.join(os.getcwd(), "data.jp2") >>> (I, spatialRef, geoTransform, targetPrj) = read_geo_image(fpath) >>> I_ones = np.zeros(I.shape, dtype=bool) >>> make_geo_im(I_ones, geoTransformM, spatialRefM, ‘ones.tif’) """ drv = gdal.GetDriverByName("GTiff") # export image if I.ndim == 3: bands=I.shape[2] else: bands = 1 # make it type dependent if I.dtype == 'float64': ds = drv.Create(fName,xsize=I.shape[1], ysize=I.shape[0],bands=bands, eType=gdal.GDT_Float64) elif I.dtype == 'float32': ds = drv.Create(fName,xsize=I.shape[1], ysize=I.shape[0],bands=bands, eType=gdal.GDT_Float32) elif I.dtype == 'bool': ds = drv.Create(fName, xsize=I.shape[1], ysize=I.shape[0], bands=bands, eType=gdal.GDT_Byte) else: ds = drv.Create(fName, xsize=I.shape[1], ysize=I.shape[0], bands=bands, eType=gdal.GDT_Int32) # set metadata in datasource ds.SetMetadata({'TIFFTAG_SOFTWARE':'dhdt v0.1', 'TIFFTAG_ARTIST':'bas altena and team Atlas', 'TIFFTAG_COPYRIGHT': 'contains modified Copernicus data', 'TIFFTAG_IMAGEDESCRIPTION': meta_descr, 'TIFFTAG_RESOLUTIONUNIT' : sun_angles, 'TIFFTAG_DATETIME': date_created}) # set georeferencing metadata if len(R)!=6: R = R[:6] ds.SetGeoTransform(R) if not isinstance(crs, str): crs = crs.ExportToWkt() ds.SetProjection(crs) if I.ndim == 3: for count in np.arange(1,I.shape[2]+1,1): band = ds.GetRasterBand(int(count)) band.WriteArray(I[:,:,count-1],0,0) if count==1: band.SetNoDataValue(no_dat) band = None else: ds.GetRasterBand(1).WriteArray(I) ds.GetRasterBand(1).SetNoDataValue(no_dat) ds = None del ds def make_multispectral_vrt(df, fpath=None, fname='multispec.vrt'): """ virtual raster tile (VRT) is a description of datasets written in an XML format, it eases the display of multi-spectral data or other means. Parameters ---------- df : pandas.DataFrame organization of the different spectral bands fpath : string path of the directory of interest fname : string file name of the virtual raster tile """ assert isinstance(df, pd.DataFrame), ('please provide a dataframe') assert 'filepath' in df, ('please first run "get_S2_image_locations"'+ ' to find the proper file locations') if fpath is None: fpath = os.path.commonpath(df.filepath.tolist()) ffull = os.path.join(fpath, fname) vrt_options = gdal.BuildVRTOptions(resampleAlg=gdal.GRA_NearestNeighbour, addAlpha=False, separate=True, srcNodata=0) my_vrt = gdal.BuildVRT(ffull, [f+'.jp2' for f in df['filepath']], options=vrt_options) my_vrt = None # modify the vrt-file to include band names tree = ElementTree.parse(ffull) root = tree.getroot() for idx, band in enumerate(root.iter("VRTRasterBand")): description = ElementTree.SubElement(band, "Description") description.text = df.common_name[idx] tree.write(ffull) # update the file on disk return
[ "numpy.dstack", "xml.etree.ElementTree.parse", "os.path.join", "numpy.max", "numpy.array", "numpy.arange", "osgeo.gdal.BuildVRTOptions", "xml.etree.ElementTree.SubElement", "glob.glob", "osgeo.gdal.Open", "osgeo.gdal.GetDriverByName", "osgeo.gdal.BuildVRT" ]
[((1163, 1179), 'osgeo.gdal.Open', 'gdal.Open', (['fname'], {}), '(fname)\n', (1172, 1179), False, 'from osgeo import gdal, osr\n'), ((1538, 1550), 'numpy.array', 'np.array', (['[]'], {}), '([])\n', (1546, 1550), True, 'import numpy as np\n'), ((2892, 2908), 'osgeo.gdal.Open', 'gdal.Open', (['fname'], {}), '(fname)\n', (2901, 2908), False, 'from osgeo import gdal, osr\n'), ((4848, 4877), 'osgeo.gdal.GetDriverByName', 'gdal.GetDriverByName', (['"""GTiff"""'], {}), "('GTiff')\n", (4868, 4877), False, 'from osgeo import gdal, osr\n'), ((7354, 7380), 'os.path.join', 'os.path.join', (['fpath', 'fname'], {}), '(fpath, fname)\n', (7366, 7380), False, 'import os\n'), ((7399, 7506), 'osgeo.gdal.BuildVRTOptions', 'gdal.BuildVRTOptions', ([], {'resampleAlg': 'gdal.GRA_NearestNeighbour', 'addAlpha': '(False)', 'separate': '(True)', 'srcNodata': '(0)'}), '(resampleAlg=gdal.GRA_NearestNeighbour, addAlpha=False,\n separate=True, srcNodata=0)\n', (7419, 7506), False, 'from osgeo import gdal, osr\n'), ((7633, 7719), 'osgeo.gdal.BuildVRT', 'gdal.BuildVRT', (['ffull', "[(f + '.jp2') for f in df['filepath']]"], {'options': 'vrt_options'}), "(ffull, [(f + '.jp2') for f in df['filepath']], options=\n vrt_options)\n", (7646, 7719), False, 'from osgeo import gdal, osr\n'), ((7816, 7840), 'xml.etree.ElementTree.parse', 'ElementTree.parse', (['ffull'], {}), '(ffull)\n', (7833, 7840), False, 'from xml.etree import ElementTree\n'), ((6233, 6264), 'numpy.arange', 'np.arange', (['(1)', '(I.shape[2] + 1)', '(1)'], {}), '(1, I.shape[2] + 1, 1)\n', (6242, 6264), True, 'import numpy as np\n'), ((7949, 7992), 'xml.etree.ElementTree.SubElement', 'ElementTree.SubElement', (['band', '"""Description"""'], {}), "(band, 'Description')\n", (7971, 7992), False, 'from xml.etree import ElementTree\n'), ((1091, 1107), 'glob.glob', 'glob.glob', (['fname'], {}), '(fname)\n', (1100, 1107), False, 'import glob\n'), ((2820, 2836), 'glob.glob', 'glob.glob', (['fname'], {}), '(fname)\n', (2829, 2836), False, 'import glob\n'), ((3139, 3180), 'numpy.dstack', 'np.dstack', (['(data, band[:, :, np.newaxis])'], {}), '((data, band[:, :, np.newaxis]))\n', (3148, 3180), True, 'import numpy as np\n'), ((3297, 3308), 'numpy.max', 'np.max', (['boi'], {}), '(boi)\n', (3303, 3308), True, 'import numpy as np\n'), ((3523, 3564), 'numpy.dstack', 'np.dstack', (['(data, band[:, :, np.newaxis])'], {}), '((data, band[:, :, np.newaxis]))\n', (3532, 3564), True, 'import numpy as np\n')]
# # import modules # from ahvl.helper import AhvlMsg, AhvlHelper import subprocess # # helper/message # msg = AhvlMsg() hlp = AhvlHelper() # # process # class Process(object): def __init__(self, proc=None, cmd=[], failonstderr=True, shell=False): # set process name and command self.setprocess(proc) # set process name self.setcmd(cmd) # set command self.failonstderr = failonstderr # fail on stderr self.stderr = None self.stdout = None self.stderrlines = [] self.stdoutlines = [] self.shell = shell # function to remove sensitive information from commands # by deleting the arguments from a copy of the list def __get_safe_args(self): # set list for unknown processes sensitive = [] # check for which process the arguments need to be cleaned if self.proc == "ssh-keygen": sensitive = []#["-f", "-N", "-P"] if self.proc == "openssl": sensitive = ["pass:", "-passin", "-passout"] if self.proc == "puttygen": sensitive = ["--password-file"] if self.proc == "gpg": sensitive = ["--passphrase-file"] # create a copy of the list to prevent iteration issues when removing items safeargs = list(self.cmd) for a in self.cmd: if a.strip('"').strip("'").startswith(tuple(sensitive)): safeargs.remove(a) # return safe to print argument list return safeargs # useless lines removed def __clean_stderr(self): # remove empty lines self.stderrlines = list(filter(None, self.stderrlines)) # function to fail on stderr messages def __fail_on_stderr(self): # clean output self.__clean_stderr() # check if stderr contains any lines if len(self.stderrlines) > 0 and self.failonstderr: msg.fail("the process generated an error:\n{}".format("\n".join(self.stderrlines))) # set stderr and stdout def __set_result(self): # convert stdout and stderr to individual lines self.stdoutlines = self.stdout.rstrip('\n').split("\n") self.stderrlines = self.stderr.rstrip('\n').split("\n") # set process to run; accepts known processes only def setprocess(self, proc): # sanity check accepted = ["ssh-keygen", "openssl", "puttygen", "gpg"] if not proc in accepted: msg.fail("given process name [{}] is unknown".format(proc)) # set process and return self.proc = proc return self # set command to run def setcmd(self, cmd): self.cmd = cmd return self # determine if process should fail if any stderr messages are generated def setfailonstderr(self, fail): self.failonstderr = fail # return stdout messages def getstdout(self): return self.stdoutlines # return stderr messages def getstderr(self): return self.stderrlines # run the process def run(self): # output debug info if self.shell == True: msg.vvvv("about to run the following subprocess (shell): [{}]".format(self.proc)) msg.vvvv("[{}]".format(self.cmd)) else: # remove sensitive arguments before printing debug info printable = self.__get_safe_args() msg.vvvv("about to run the following subprocess (sensitive information has been removed): [{}]".format(self.proc)) msg.vvvv("[{}]".format(subprocess.list2cmdline(printable))) # spawn subprocess sp = subprocess.Popen(self.cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=self.shell) (self.stdout, self.stderr) = sp.communicate(); rc = sp.returncode # get the exit code # check exit/return code if rc != 0: msg.fail("an error occurred for [{}]; the process exited with code [{}]\n".format(self.proc, rc) + "the process provided the following output: [{}]".format(self.stderr)) # set result and fail on error self.__set_result() self.__fail_on_stderr() # return the result return self
[ "subprocess.Popen", "ahvl.helper.AhvlMsg", "subprocess.list2cmdline", "ahvl.helper.AhvlHelper" ]
[((111, 120), 'ahvl.helper.AhvlMsg', 'AhvlMsg', ([], {}), '()\n', (118, 120), False, 'from ahvl.helper import AhvlMsg, AhvlHelper\n'), ((127, 139), 'ahvl.helper.AhvlHelper', 'AhvlHelper', ([], {}), '()\n', (137, 139), False, 'from ahvl.helper import AhvlMsg, AhvlHelper\n'), ((3736, 3832), 'subprocess.Popen', 'subprocess.Popen', (['self.cmd'], {'stdout': 'subprocess.PIPE', 'stderr': 'subprocess.PIPE', 'shell': 'self.shell'}), '(self.cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE,\n shell=self.shell)\n', (3752, 3832), False, 'import subprocess\n'), ((3646, 3680), 'subprocess.list2cmdline', 'subprocess.list2cmdline', (['printable'], {}), '(printable)\n', (3669, 3680), False, 'import subprocess\n')]
import json import sys from flask import (Blueprint, Markup, flash, g, jsonify, redirect, render_template, request, session, url_for) from flask_login import current_user, login_user, logout_user from app.main.admin import (get_admin_control_by_id, get_admin_control_by_name, get_admin_controls) from app.main.database.tables import User from app.main.forms import LoginForm, RegisterForm from app.main.helpers import svg_contents from app.main.roles import change_user_permission, set_user_permission from app.main.users import (delete_user, get_all_users_with_permissions, get_user, is_admin, register_user) bp = Blueprint('main', __name__) @bp.route('/', methods=['GET', 'POST']) def index(): '''Login form to enter a room.''' if current_user.is_authenticated: return redirect(url_for('.chat')) admin = is_admin(g.session, current_user) form = LoginForm() if form.validate_on_submit(): username = form.username.data password = form.password.data try: user = get_user(g.session, username, password) login_user(user) session['username'] = username session['name'] = f'{user.first_name} {user.last_name}' session['room'] = form.room.data return redirect(url_for('.chat')) except Exception as err: return render_template('index.html', msg=str(err), form=form, admin=admin, svg=Markup(svg_contents('./app/static/socks.svg'))) elif request.method == 'GET': form.username.data = session.get('name', '') form.room.data = session.get('room', '') return render_template('index.html', form=form, admin=admin, svg=Markup(svg_contents('./app/static/socks.svg'))) @bp.route('/about') def about(): admin = is_admin(g.session, current_user) return render_template('about.html', svg=Markup(svg_contents('./app/static/socks.svg')), admin=admin, github=Markup(svg_contents('./app/static/github.svg'))) @bp.route('/admin', methods=['GET', 'PATCH', 'DELETE']) def admin(): admin = is_admin(g.session, current_user) if admin: if request.method == 'GET': users = get_all_users_with_permissions(g.session) controls = get_admin_controls(g.session) return render_template('admin.html', svg=Markup(svg_contents( './app/static/socks.svg')), trash=Markup(svg_contents( './app/static/trash.svg')), admin=admin, users=users, controls=controls) elif request.method == 'PATCH': if request.json.get('control'): try: control_id = request.json.get('control') get_admin_control_by_id(g.session, control_id).switch() g.session.commit() return jsonify({'msg': f'Control ID: {control_id} successfull changed'}), 200 except: return jsonify({'msg': 'Something went wrong changing the control'}), 500 elif request.json.get('user'): try: user_id = request.json.get('user') change_user_permission(g.session, user_id) g.session.commit() return jsonify({'msg': f'User permissions changed for ID {user_id}'}), 200 except Exception as err: return jsonify({'msg': str(err)}), 500 except: return jsonify({'msg': 'Something went wrong changing the user permission'}), 500 else: return jsonify({'msg': 'A known value was not supplied'}), 400 else: # request.method == 'DELETE': if request.json.get('user'): user_id = request.json.get('user') delete_user(g.session, user_id) g.session.commit() return jsonify({'msg': f'User with ID {user_id} successfully deleted'}), 200 else: return jsonify({'msg': 'A known value was not supplied'}), 400 else: return 'Access denied', 401 @bp.route('/chat') def chat(): '''Chat room. The user's name and room must be stored in the session.''' admin = is_admin(g.session, current_user) username = session.get('username', '') name = session.get('name', '') room = session.get('room', '') if name == '' or room == '': flash('You must be logged in to access the chatroom') return redirect(url_for('.index')) return render_template('chat.html', name=name, room=room, admin=admin, svg=Markup(svg_contents('./app/static/socks.svg')), send_logo=Markup(svg_contents('./app/static/send.svg'))) @bp.route('/logout', methods=['GET']) def logout(): admin = is_admin(g.session, current_user) logout_user() session.clear() flash('You have been successfully logged out') return redirect(url_for('.index')) @bp.route('/register', methods=['GET', 'POST']) def register(): admin = is_admin(g.session, current_user) form = RegisterForm() # Check if 'new_users' is turned on or off if not get_admin_control_by_name(g.session, 'new_users').value: return render_template('register.html', form=form, admin=admin, msg='New user registration has been disabled at this time', svg=Markup(svg_contents('./app/static/socks.svg'))) if request.method == 'GET': return render_template('register.html', form=form, svg=Markup(svg_contents('./app/static/socks.svg'))) elif request.method == 'POST': if form.validate_on_submit(): username = request.form.get('username') password = request.form.get('password') password_conf = request.form.get('password_conf') first_name = request.form.get('first_name') last_name = request.form.get('last_name') if password != password_conf: return render_template('register.html', form=form, admin=admin, msg='Passwords did not match', svg=Markup(svg_contents('./app/static/socks.svg'))) try: new_user = register_user( g.session, username, password, first_name, last_name) try: # add the new user to the database g.session.add(new_user) g.session.commit() except: g.session.rollback() raise Exception('Error adding new user') # Set user's role as 'user' user_permission = set_user_permission( g.session, 'user', new_user.id) try: # add the new user's related permission to the database g.session.add(user_permission) g.session.commit() except: g.session.rollback() raise Exception('Error setting user permissions') except Exception as err: return render_template('register.html', form=form, admin=admin, msg=str(err), svg=Markup(svg_contents('./app/static/socks.svg'))) except: return render_template('register.html', form=form, admin=admin, msg=f'Unexpected error: {sys.exc_info()[0]}', svg=Markup(svg_contents('./app/static/socks.svg'))) else: return render_template('register.html', form=form, admin=admin, msg='Not all required fields provided', svg=Markup(svg_contents('./app/static/socks.svg'))) flash('Registration successful') return redirect(url_for('.index'))
[ "flask.flash", "app.main.users.register_user", "app.main.users.get_user", "app.main.users.get_all_users_with_permissions", "flask.request.form.get", "app.main.admin.get_admin_control_by_name", "app.main.users.delete_user", "app.main.users.is_admin", "flask.url_for", "flask.jsonify", "sys.exc_info", "app.main.helpers.svg_contents", "flask.g.session.commit", "flask.Blueprint", "app.main.forms.LoginForm", "flask_login.login_user", "flask.g.session.add", "flask_login.logout_user", "app.main.admin.get_admin_controls", "app.main.forms.RegisterForm", "flask.g.session.rollback", "flask.request.json.get", "app.main.admin.get_admin_control_by_id", "flask.session.get", "app.main.roles.change_user_permission", "app.main.roles.set_user_permission", "flask.session.clear" ]
[((693, 720), 'flask.Blueprint', 'Blueprint', (['"""main"""', '__name__'], {}), "('main', __name__)\n", (702, 720), False, 'from flask import Blueprint, Markup, flash, g, jsonify, redirect, render_template, request, session, url_for\n'), ((906, 939), 'app.main.users.is_admin', 'is_admin', (['g.session', 'current_user'], {}), '(g.session, current_user)\n', (914, 939), False, 'from app.main.users import delete_user, get_all_users_with_permissions, get_user, is_admin, register_user\n'), ((951, 962), 'app.main.forms.LoginForm', 'LoginForm', ([], {}), '()\n', (960, 962), False, 'from app.main.forms import LoginForm, RegisterForm\n'), ((1988, 2021), 'app.main.users.is_admin', 'is_admin', (['g.session', 'current_user'], {}), '(g.session, current_user)\n', (1996, 2021), False, 'from app.main.users import delete_user, get_all_users_with_permissions, get_user, is_admin, register_user\n'), ((2348, 2381), 'app.main.users.is_admin', 'is_admin', (['g.session', 'current_user'], {}), '(g.session, current_user)\n', (2356, 2381), False, 'from app.main.users import delete_user, get_all_users_with_permissions, get_user, is_admin, register_user\n'), ((4717, 4750), 'app.main.users.is_admin', 'is_admin', (['g.session', 'current_user'], {}), '(g.session, current_user)\n', (4725, 4750), False, 'from app.main.users import delete_user, get_all_users_with_permissions, get_user, is_admin, register_user\n'), ((4766, 4793), 'flask.session.get', 'session.get', (['"""username"""', '""""""'], {}), "('username', '')\n", (4777, 4793), False, 'from flask import Blueprint, Markup, flash, g, jsonify, redirect, render_template, request, session, url_for\n'), ((4805, 4828), 'flask.session.get', 'session.get', (['"""name"""', '""""""'], {}), "('name', '')\n", (4816, 4828), False, 'from flask import Blueprint, Markup, flash, g, jsonify, redirect, render_template, request, session, url_for\n'), ((4840, 4863), 'flask.session.get', 'session.get', (['"""room"""', '""""""'], {}), "('room', '')\n", (4851, 4863), False, 'from flask import Blueprint, Markup, flash, g, jsonify, redirect, render_template, request, session, url_for\n'), ((5387, 5420), 'app.main.users.is_admin', 'is_admin', (['g.session', 'current_user'], {}), '(g.session, current_user)\n', (5395, 5420), False, 'from app.main.users import delete_user, get_all_users_with_permissions, get_user, is_admin, register_user\n'), ((5425, 5438), 'flask_login.logout_user', 'logout_user', ([], {}), '()\n', (5436, 5438), False, 'from flask_login import current_user, login_user, logout_user\n'), ((5443, 5458), 'flask.session.clear', 'session.clear', ([], {}), '()\n', (5456, 5458), False, 'from flask import Blueprint, Markup, flash, g, jsonify, redirect, render_template, request, session, url_for\n'), ((5463, 5509), 'flask.flash', 'flash', (['"""You have been successfully logged out"""'], {}), "('You have been successfully logged out')\n", (5468, 5509), False, 'from flask import Blueprint, Markup, flash, g, jsonify, redirect, render_template, request, session, url_for\n'), ((5627, 5660), 'app.main.users.is_admin', 'is_admin', (['g.session', 'current_user'], {}), '(g.session, current_user)\n', (5635, 5660), False, 'from app.main.users import delete_user, get_all_users_with_permissions, get_user, is_admin, register_user\n'), ((5672, 5686), 'app.main.forms.RegisterForm', 'RegisterForm', ([], {}), '()\n', (5684, 5686), False, 'from app.main.forms import LoginForm, RegisterForm\n'), ((8873, 8905), 'flask.flash', 'flash', (['"""Registration successful"""'], {}), "('Registration successful')\n", (8878, 8905), False, 'from flask import Blueprint, Markup, flash, g, jsonify, redirect, render_template, request, session, url_for\n'), ((4905, 4958), 'flask.flash', 'flash', (['"""You must be logged in to access the chatroom"""'], {}), "('You must be logged in to access the chatroom')\n", (4910, 4958), False, 'from flask import Blueprint, Markup, flash, g, jsonify, redirect, render_template, request, session, url_for\n'), ((5530, 5547), 'flask.url_for', 'url_for', (['""".index"""'], {}), "('.index')\n", (5537, 5547), False, 'from flask import Blueprint, Markup, flash, g, jsonify, redirect, render_template, request, session, url_for\n'), ((8926, 8943), 'flask.url_for', 'url_for', (['""".index"""'], {}), "('.index')\n", (8933, 8943), False, 'from flask import Blueprint, Markup, flash, g, jsonify, redirect, render_template, request, session, url_for\n'), ((876, 892), 'flask.url_for', 'url_for', (['""".chat"""'], {}), "('.chat')\n", (883, 892), False, 'from flask import Blueprint, Markup, flash, g, jsonify, redirect, render_template, request, session, url_for\n'), ((1105, 1144), 'app.main.users.get_user', 'get_user', (['g.session', 'username', 'password'], {}), '(g.session, username, password)\n', (1113, 1144), False, 'from app.main.users import delete_user, get_all_users_with_permissions, get_user, is_admin, register_user\n'), ((1157, 1173), 'flask_login.login_user', 'login_user', (['user'], {}), '(user)\n', (1167, 1173), False, 'from flask_login import current_user, login_user, logout_user\n'), ((1751, 1774), 'flask.session.get', 'session.get', (['"""name"""', '""""""'], {}), "('name', '')\n", (1762, 1774), False, 'from flask import Blueprint, Markup, flash, g, jsonify, redirect, render_template, request, session, url_for\n'), ((1800, 1823), 'flask.session.get', 'session.get', (['"""room"""', '""""""'], {}), "('room', '')\n", (1811, 1823), False, 'from flask import Blueprint, Markup, flash, g, jsonify, redirect, render_template, request, session, url_for\n'), ((2452, 2493), 'app.main.users.get_all_users_with_permissions', 'get_all_users_with_permissions', (['g.session'], {}), '(g.session)\n', (2482, 2493), False, 'from app.main.users import delete_user, get_all_users_with_permissions, get_user, is_admin, register_user\n'), ((2517, 2546), 'app.main.admin.get_admin_controls', 'get_admin_controls', (['g.session'], {}), '(g.session)\n', (2535, 2546), False, 'from app.main.admin import get_admin_control_by_id, get_admin_control_by_name, get_admin_controls\n'), ((4983, 5000), 'flask.url_for', 'url_for', (['""".index"""'], {}), "('.index')\n", (4990, 5000), False, 'from flask import Blueprint, Markup, flash, g, jsonify, redirect, render_template, request, session, url_for\n'), ((5745, 5794), 'app.main.admin.get_admin_control_by_name', 'get_admin_control_by_name', (['g.session', '"""new_users"""'], {}), "(g.session, 'new_users')\n", (5770, 5794), False, 'from app.main.admin import get_admin_control_by_id, get_admin_control_by_name, get_admin_controls\n'), ((1358, 1374), 'flask.url_for', 'url_for', (['""".chat"""'], {}), "('.chat')\n", (1365, 1374), False, 'from flask import Blueprint, Markup, flash, g, jsonify, redirect, render_template, request, session, url_for\n'), ((1900, 1938), 'app.main.helpers.svg_contents', 'svg_contents', (['"""./app/static/socks.svg"""'], {}), "('./app/static/socks.svg')\n", (1912, 1938), False, 'from app.main.helpers import svg_contents\n'), ((2101, 2139), 'app.main.helpers.svg_contents', 'svg_contents', (['"""./app/static/socks.svg"""'], {}), "('./app/static/socks.svg')\n", (2113, 2139), False, 'from app.main.helpers import svg_contents\n'), ((2223, 2262), 'app.main.helpers.svg_contents', 'svg_contents', (['"""./app/static/github.svg"""'], {}), "('./app/static/github.svg')\n", (2235, 2262), False, 'from app.main.helpers import svg_contents\n'), ((3057, 3084), 'flask.request.json.get', 'request.json.get', (['"""control"""'], {}), "('control')\n", (3073, 3084), False, 'from flask import Blueprint, Markup, flash, g, jsonify, redirect, render_template, request, session, url_for\n'), ((4199, 4223), 'flask.request.json.get', 'request.json.get', (['"""user"""'], {}), "('user')\n", (4215, 4223), False, 'from flask import Blueprint, Markup, flash, g, jsonify, redirect, render_template, request, session, url_for\n'), ((5196, 5234), 'app.main.helpers.svg_contents', 'svg_contents', (['"""./app/static/socks.svg"""'], {}), "('./app/static/socks.svg')\n", (5208, 5234), False, 'from app.main.helpers import svg_contents\n'), ((5281, 5318), 'app.main.helpers.svg_contents', 'svg_contents', (['"""./app/static/send.svg"""'], {}), "('./app/static/send.svg')\n", (5293, 5318), False, 'from app.main.helpers import svg_contents\n'), ((6349, 6377), 'flask.request.form.get', 'request.form.get', (['"""username"""'], {}), "('username')\n", (6365, 6377), False, 'from flask import Blueprint, Markup, flash, g, jsonify, redirect, render_template, request, session, url_for\n'), ((6401, 6429), 'flask.request.form.get', 'request.form.get', (['"""password"""'], {}), "('password')\n", (6417, 6429), False, 'from flask import Blueprint, Markup, flash, g, jsonify, redirect, render_template, request, session, url_for\n'), ((6458, 6491), 'flask.request.form.get', 'request.form.get', (['"""password_conf"""'], {}), "('password_conf')\n", (6474, 6491), False, 'from flask import Blueprint, Markup, flash, g, jsonify, redirect, render_template, request, session, url_for\n'), ((6517, 6547), 'flask.request.form.get', 'request.form.get', (['"""first_name"""'], {}), "('first_name')\n", (6533, 6547), False, 'from flask import Blueprint, Markup, flash, g, jsonify, redirect, render_template, request, session, url_for\n'), ((6572, 6601), 'flask.request.form.get', 'request.form.get', (['"""last_name"""'], {}), "('last_name')\n", (6588, 6601), False, 'from flask import Blueprint, Markup, flash, g, jsonify, redirect, render_template, request, session, url_for\n'), ((3516, 3540), 'flask.request.json.get', 'request.json.get', (['"""user"""'], {}), "('user')\n", (3532, 3540), False, 'from flask import Blueprint, Markup, flash, g, jsonify, redirect, render_template, request, session, url_for\n'), ((4251, 4275), 'flask.request.json.get', 'request.json.get', (['"""user"""'], {}), "('user')\n", (4267, 4275), False, 'from flask import Blueprint, Markup, flash, g, jsonify, redirect, render_template, request, session, url_for\n'), ((4292, 4323), 'app.main.users.delete_user', 'delete_user', (['g.session', 'user_id'], {}), '(g.session, user_id)\n', (4303, 4323), False, 'from app.main.users import delete_user, get_all_users_with_permissions, get_user, is_admin, register_user\n'), ((4340, 4358), 'flask.g.session.commit', 'g.session.commit', ([], {}), '()\n', (4356, 4358), False, 'from flask import Blueprint, Markup, flash, g, jsonify, redirect, render_template, request, session, url_for\n'), ((6069, 6107), 'app.main.helpers.svg_contents', 'svg_contents', (['"""./app/static/socks.svg"""'], {}), "('./app/static/socks.svg')\n", (6081, 6107), False, 'from app.main.helpers import svg_contents\n'), ((6212, 6250), 'app.main.helpers.svg_contents', 'svg_contents', (['"""./app/static/socks.svg"""'], {}), "('./app/static/socks.svg')\n", (6224, 6250), False, 'from app.main.helpers import svg_contents\n'), ((7007, 7074), 'app.main.users.register_user', 'register_user', (['g.session', 'username', 'password', 'first_name', 'last_name'], {}), '(g.session, username, password, first_name, last_name)\n', (7020, 7074), False, 'from app.main.users import delete_user, get_all_users_with_permissions, get_user, is_admin, register_user\n'), ((7459, 7510), 'app.main.roles.set_user_permission', 'set_user_permission', (['g.session', '"""user"""', 'new_user.id'], {}), "(g.session, 'user', new_user.id)\n", (7478, 7510), False, 'from app.main.roles import change_user_permission, set_user_permission\n'), ((2642, 2680), 'app.main.helpers.svg_contents', 'svg_contents', (['"""./app/static/socks.svg"""'], {}), "('./app/static/socks.svg')\n", (2654, 2680), False, 'from app.main.helpers import svg_contents\n'), ((2771, 2809), 'app.main.helpers.svg_contents', 'svg_contents', (['"""./app/static/trash.svg"""'], {}), "('./app/static/trash.svg')\n", (2783, 2809), False, 'from app.main.helpers import svg_contents\n'), ((3140, 3167), 'flask.request.json.get', 'request.json.get', (['"""control"""'], {}), "('control')\n", (3156, 3167), False, 'from flask import Blueprint, Markup, flash, g, jsonify, redirect, render_template, request, session, url_for\n'), ((3264, 3282), 'flask.g.session.commit', 'g.session.commit', ([], {}), '()\n', (3280, 3282), False, 'from flask import Blueprint, Markup, flash, g, jsonify, redirect, render_template, request, session, url_for\n'), ((4382, 4446), 'flask.jsonify', 'jsonify', (["{'msg': f'User with ID {user_id} successfully deleted'}"], {}), "({'msg': f'User with ID {user_id} successfully deleted'})\n", (4389, 4446), False, 'from flask import Blueprint, Markup, flash, g, jsonify, redirect, render_template, request, session, url_for\n'), ((4493, 4543), 'flask.jsonify', 'jsonify', (["{'msg': 'A known value was not supplied'}"], {}), "({'msg': 'A known value was not supplied'})\n", (4500, 4543), False, 'from flask import Blueprint, Markup, flash, g, jsonify, redirect, render_template, request, session, url_for\n'), ((7192, 7215), 'flask.g.session.add', 'g.session.add', (['new_user'], {}), '(new_user)\n', (7205, 7215), False, 'from flask import Blueprint, Markup, flash, g, jsonify, redirect, render_template, request, session, url_for\n'), ((7236, 7254), 'flask.g.session.commit', 'g.session.commit', ([], {}), '()\n', (7252, 7254), False, 'from flask import Blueprint, Markup, flash, g, jsonify, redirect, render_template, request, session, url_for\n'), ((7649, 7679), 'flask.g.session.add', 'g.session.add', (['user_permission'], {}), '(user_permission)\n', (7662, 7679), False, 'from flask import Blueprint, Markup, flash, g, jsonify, redirect, render_template, request, session, url_for\n'), ((7700, 7718), 'flask.g.session.commit', 'g.session.commit', ([], {}), '()\n', (7716, 7718), False, 'from flask import Blueprint, Markup, flash, g, jsonify, redirect, render_template, request, session, url_for\n'), ((1647, 1685), 'app.main.helpers.svg_contents', 'svg_contents', (['"""./app/static/socks.svg"""'], {}), "('./app/static/socks.svg')\n", (1659, 1685), False, 'from app.main.helpers import svg_contents\n'), ((3310, 3375), 'flask.jsonify', 'jsonify', (["{'msg': f'Control ID: {control_id} successfull changed'}"], {}), "({'msg': f'Control ID: {control_id} successfull changed'})\n", (3317, 3375), False, 'from flask import Blueprint, Markup, flash, g, jsonify, redirect, render_template, request, session, url_for\n'), ((3593, 3617), 'flask.request.json.get', 'request.json.get', (['"""user"""'], {}), "('user')\n", (3609, 3617), False, 'from flask import Blueprint, Markup, flash, g, jsonify, redirect, render_template, request, session, url_for\n'), ((3638, 3680), 'app.main.roles.change_user_permission', 'change_user_permission', (['g.session', 'user_id'], {}), '(g.session, user_id)\n', (3660, 3680), False, 'from app.main.roles import change_user_permission, set_user_permission\n'), ((3701, 3719), 'flask.g.session.commit', 'g.session.commit', ([], {}), '()\n', (3717, 3719), False, 'from flask import Blueprint, Markup, flash, g, jsonify, redirect, render_template, request, session, url_for\n'), ((4082, 4132), 'flask.jsonify', 'jsonify', (["{'msg': 'A known value was not supplied'}"], {}), "({'msg': 'A known value was not supplied'})\n", (4089, 4132), False, 'from flask import Blueprint, Markup, flash, g, jsonify, redirect, render_template, request, session, url_for\n'), ((7299, 7319), 'flask.g.session.rollback', 'g.session.rollback', ([], {}), '()\n', (7317, 7319), False, 'from flask import Blueprint, Markup, flash, g, jsonify, redirect, render_template, request, session, url_for\n'), ((7763, 7783), 'flask.g.session.rollback', 'g.session.rollback', ([], {}), '()\n', (7781, 7783), False, 'from flask import Blueprint, Markup, flash, g, jsonify, redirect, render_template, request, session, url_for\n'), ((8828, 8866), 'app.main.helpers.svg_contents', 'svg_contents', (['"""./app/static/socks.svg"""'], {}), "('./app/static/socks.svg')\n", (8840, 8866), False, 'from app.main.helpers import svg_contents\n'), ((3188, 3234), 'app.main.admin.get_admin_control_by_id', 'get_admin_control_by_id', (['g.session', 'control_id'], {}), '(g.session, control_id)\n', (3211, 3234), False, 'from app.main.admin import get_admin_control_by_id, get_admin_control_by_name, get_admin_controls\n'), ((3432, 3493), 'flask.jsonify', 'jsonify', (["{'msg': 'Something went wrong changing the control'}"], {}), "({'msg': 'Something went wrong changing the control'})\n", (3439, 3493), False, 'from flask import Blueprint, Markup, flash, g, jsonify, redirect, render_template, request, session, url_for\n'), ((3747, 3809), 'flask.jsonify', 'jsonify', (["{'msg': f'User permissions changed for ID {user_id}'}"], {}), "({'msg': f'User permissions changed for ID {user_id}'})\n", (3754, 3809), False, 'from flask import Blueprint, Markup, flash, g, jsonify, redirect, render_template, request, session, url_for\n'), ((6922, 6960), 'app.main.helpers.svg_contents', 'svg_contents', (['"""./app/static/socks.svg"""'], {}), "('./app/static/socks.svg')\n", (6934, 6960), False, 'from app.main.helpers import svg_contents\n'), ((3966, 4035), 'flask.jsonify', 'jsonify', (["{'msg': 'Something went wrong changing the user permission'}"], {}), "({'msg': 'Something went wrong changing the user permission'})\n", (3973, 4035), False, 'from flask import Blueprint, Markup, flash, g, jsonify, redirect, render_template, request, session, url_for\n'), ((8152, 8190), 'app.main.helpers.svg_contents', 'svg_contents', (['"""./app/static/socks.svg"""'], {}), "('./app/static/socks.svg')\n", (8164, 8190), False, 'from app.main.helpers import svg_contents\n'), ((8506, 8544), 'app.main.helpers.svg_contents', 'svg_contents', (['"""./app/static/socks.svg"""'], {}), "('./app/static/socks.svg')\n", (8518, 8544), False, 'from app.main.helpers import svg_contents\n'), ((8435, 8449), 'sys.exc_info', 'sys.exc_info', ([], {}), '()\n', (8447, 8449), False, 'import sys\n')]
import os from nlp_tools.preprocessing import Preprocessing from nlp_tools.loaders import MdLoader from nlp_tools.representations import MergedMatrixRepresentation from nlp_tools.classifiers import ClassificationProcessor, NaiveBayseTfIdfClassifier from nlp_tools.utils import get_random_message from quelfilm.settings import * def build_classifier(): loader = MdLoader(TRAINING_PATH) processor = Preprocessing(loader) repres = MergedMatrixRepresentation(processor.data) classifier = ClassificationProcessor(NaiveBayseTfIdfClassifier(), repres.data) classifier.train() def predict(text: str): message = repres.process_new_data(processor.process_sentence(text)) intent, score = classifier.predict(message) response = get_random_message(processor.responses[intent]) return intent, score, response return predict class Classifier: def __init__(self): self.predict = build_classifier()
[ "nlp_tools.representations.MergedMatrixRepresentation", "nlp_tools.preprocessing.Preprocessing", "nlp_tools.classifiers.NaiveBayseTfIdfClassifier", "nlp_tools.utils.get_random_message", "nlp_tools.loaders.MdLoader" ]
[((368, 391), 'nlp_tools.loaders.MdLoader', 'MdLoader', (['TRAINING_PATH'], {}), '(TRAINING_PATH)\n', (376, 391), False, 'from nlp_tools.loaders import MdLoader\n'), ((408, 429), 'nlp_tools.preprocessing.Preprocessing', 'Preprocessing', (['loader'], {}), '(loader)\n', (421, 429), False, 'from nlp_tools.preprocessing import Preprocessing\n'), ((443, 485), 'nlp_tools.representations.MergedMatrixRepresentation', 'MergedMatrixRepresentation', (['processor.data'], {}), '(processor.data)\n', (469, 485), False, 'from nlp_tools.representations import MergedMatrixRepresentation\n'), ((527, 554), 'nlp_tools.classifiers.NaiveBayseTfIdfClassifier', 'NaiveBayseTfIdfClassifier', ([], {}), '()\n', (552, 554), False, 'from nlp_tools.classifiers import ClassificationProcessor, NaiveBayseTfIdfClassifier\n'), ((768, 815), 'nlp_tools.utils.get_random_message', 'get_random_message', (['processor.responses[intent]'], {}), '(processor.responses[intent])\n', (786, 815), False, 'from nlp_tools.utils import get_random_message\n')]
from socket import * import argparse # Parameters #TCP_IP = 'localhost' #TCP_PORT = 12003 BUFFER_SIZE = 1024 # Arguments parser = argparse.ArgumentParser() parser.add_argument('server_host') parser.add_argument('server_port') parser.add_argument('filename') args = parser.parse_args() # Prepare a client socket clientSocket = socket(AF_INET, SOCK_STREAM) clientSocket.connect((args.server_host, int(args.server_port))) # Send message to GET HTML file # Filename: HelloWorld.html MESSAGE = f'GET {args.filename}' MESSAGE = bytes(MESSAGE, 'utf-8') clientSocket.send(MESSAGE) # GET the full content from the HTML file full_content = '' while True: data = clientSocket.recv(BUFFER_SIZE) if not data: break data = data.decode('utf-8') full_content += data with open('files_from_server/HelloWorld.html', 'w') as f: f.write(full_content) print("received data:", full_content) # Close Client clientSocket.close() print("\n\nClient close successfully!")
[ "argparse.ArgumentParser" ]
[((133, 158), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (156, 158), False, 'import argparse\n')]
#!/usr/bin/python import os import datetime import PyRSS2Gen kInDir = "raw_post" kTmplDir = "template" kBlogDir = "site/blog" kPostsDir = "site/blog/posts" def main(): postlist = posts() archive(postlist) def posts(): postlist = [] # Create the output directory if it doesn't already exist os.makedirs(kPostsDir, exist_ok=True) postHeader = getTemplate("posthead.htm") postFooter = getTemplate("postfoot.htm") postTitle = getTemplate("postitle.htm") for fInName in os.listdir(kInDir): fInPath = os.path.join(kInDir, fInName) fOutName = os.path.splitext(fInName)[0] + ".htm" fOutPath = os.path.join(kPostsDir, fOutName) fIn = open(fInPath, "r") fOut = open(fOutPath, "w") # emit post header fOut.write(postHeader) # parse & consume 1st input line -> title title = fIn.readline() # parse & consume 2nd input line -> date date = fIn.readline() # store (title, date, filename) postlist.append((title, date, fOutName)) # emit post titlebox fOut.write(postTitle % (len(title) + 4, title, date)) # write remaining lines # wrapping with <pre></pre> unless input was a .htm file if not fInName.endswith(".htm"): fOut.write("<pre>\n") while 1: line = fIn.readline() if not line: break fOut.write(line) if not fInName.endswith(".htm"): fOut.write("</pre>\n") # emit post footer fOut.write(postFooter) fIn.close() # close post htm file fOut.close() return postlist def archive(postlist): archiveHeader = getTemplate("archhead.htm") archiveFooter = getTemplate("archfoot.htm") archiveDiv = getTemplate("archdiv.htm") redirectHtml = getTemplate("redirect.htm") # sort the (title, date, filename) data structure by date # (ASCIIbetical descending) postlist.sort(key=lambda t: t[1], reverse=True) # create redirect htm file fRdOutPath = os.path.join(kBlogDir, "index.htm") with open(fRdOutPath, "w") as f: # emit filename of newest post f.write(redirectHtml % postlist[0][2]) # create archive htm file fOutPath = os.path.join(kPostsDir, "index.htm") fOut = open(fOutPath, "w") # create archive rss feed rss = PyRSS2Gen.RSS2( title = "VGA Blog", link = "http://example.com/blog", description = "", lastBuildDate = datetime.datetime.now()) # emit archive header fOut.write(archiveHeader) # for each datum for tup in postlist: (title, date, filename) = tup date = date.strip() # emit div s = archiveDiv % (date.strip(), filename, title.strip()) fOut.write(s) # emit rss entry rss.items.append( PyRSS2Gen.RSSItem( title = title, link = "https://example.com/blog/posts/%s" % filename, description = "", pubDate = datetime.datetime.strptime(date, "%Y-%m-%d"))) # emit archive footer fOut.write(archiveFooter) # close archive htm file fOut.close() # write rss feed with open(os.path.join(kBlogDir, "rss.xml"), "w") as rssFile: rss.write_xml(rssFile) def getTemplate(name): path = os.path.join(kTmplDir, name) with open(path, "r") as f: contents = "".join(f.readlines()) return contents if __name__ == "__main__": main()
[ "os.makedirs", "datetime.datetime.now", "datetime.datetime.strptime", "os.path.splitext", "os.path.join", "os.listdir" ]
[((316, 353), 'os.makedirs', 'os.makedirs', (['kPostsDir'], {'exist_ok': '(True)'}), '(kPostsDir, exist_ok=True)\n', (327, 353), False, 'import os\n'), ((509, 527), 'os.listdir', 'os.listdir', (['kInDir'], {}), '(kInDir)\n', (519, 527), False, 'import os\n'), ((2095, 2130), 'os.path.join', 'os.path.join', (['kBlogDir', '"""index.htm"""'], {}), "(kBlogDir, 'index.htm')\n", (2107, 2130), False, 'import os\n'), ((2300, 2336), 'os.path.join', 'os.path.join', (['kPostsDir', '"""index.htm"""'], {}), "(kPostsDir, 'index.htm')\n", (2312, 2336), False, 'import os\n'), ((3413, 3441), 'os.path.join', 'os.path.join', (['kTmplDir', 'name'], {}), '(kTmplDir, name)\n', (3425, 3441), False, 'import os\n'), ((547, 576), 'os.path.join', 'os.path.join', (['kInDir', 'fInName'], {}), '(kInDir, fInName)\n', (559, 576), False, 'import os\n'), ((653, 686), 'os.path.join', 'os.path.join', (['kPostsDir', 'fOutName'], {}), '(kPostsDir, fOutName)\n', (665, 686), False, 'import os\n'), ((2545, 2568), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (2566, 2568), False, 'import datetime\n'), ((3295, 3328), 'os.path.join', 'os.path.join', (['kBlogDir', '"""rss.xml"""'], {}), "(kBlogDir, 'rss.xml')\n", (3307, 3328), False, 'import os\n'), ((596, 621), 'os.path.splitext', 'os.path.splitext', (['fInName'], {}), '(fInName)\n', (612, 621), False, 'import os\n'), ((3110, 3154), 'datetime.datetime.strptime', 'datetime.datetime.strptime', (['date', '"""%Y-%m-%d"""'], {}), "(date, '%Y-%m-%d')\n", (3136, 3154), False, 'import datetime\n')]
import logging import math import re from collections import defaultdict from dataclasses import dataclass from typing import Dict, Iterable, Iterator, List, Optional, Sequence, Set, Tuple import cv2 import numpy as np import scipy.spatial from lib.image_processing import ( Point, Rectangle, _contains_start_graphic, find_boxes_with_rgb, find_in_image, ) from lib.instrument_tex import Detectable, FontSize from lib.parse_formula_tex import TexSymbol, TexToken logger = logging.getLogger("texsymdetect") PageNumber = int MathMl = str @dataclass(frozen=True) class Id: """ To uniquely identify a symbol in the symbol search functionality (i.e., not confuse two symbols with each other), one needs both the MathML for the symbol, and the size it was rendered at. """ mathml: str level: FontSize @dataclass class TokenInstance: id_: Id location: Rectangle @dataclass class SymbolInstance: id_: Id location: Rectangle @dataclass class TokenTemplate: symbol: Id images: List[np.array] @dataclass class Component: symbol_id: Id center: Point " Position of center of component, relative to center of anchor component. " @dataclass class SymbolTemplate: anchor: Id " Leftmost member of the composite template. " members: List[Component] " All members of the composite template except for the anchor. " def create_symbol_template( symbol_image: np.array, token_images: Dict[MathMl, Dict[FontSize, List[np.array]]], token_mathmls: Iterable[str], require_blank_border_around_tokens: bool = True, ) -> Optional[SymbolTemplate]: # Unpack token images into a 1-D list. token_image_list: List[np.array] = [] mathmls: List[MathMl] = [] font_sizes: List[FontSize] = [] for mathml, sizes in token_images.items(): if mathml not in token_mathmls: continue for font_size, images in sizes.items(): for image in images: token_image_list.append(image) font_sizes.append(font_size) mathmls.append(mathml) # Search in image for tokens. rects = find_in_image( token_image_list, symbol_image, require_blank_border=require_blank_border_around_tokens, ) # Unroll tokens into a 1-D list. rects_unrolled: List[Rectangle] = [] mathmls_unrolled: List[MathMl] = [] font_sizes_unrolled: List[FontSize] = [] for mathml, font_size, rect_list in zip(mathmls, font_sizes, rects): for rect in rect_list: rects_unrolled.append(rect) mathmls_unrolled.append(mathml) font_sizes_unrolled.append(font_size) # Find positions of child symbols in the composite symbol image. components: List[Component] = [] # Add tokens to the template left-to-right. for (mathml, font_size, rect) in sorted( zip(mathmls_unrolled, font_sizes_unrolled, rects_unrolled), key=lambda t: t[2].left, ): if mathml in token_mathmls: center = Point(rect.left + rect.width / 2.0, rect.top + rect.height / 2.0) component = Component(Id(mathml, font_size), center) if component not in components: components.append(component) # Composite symbol needs at least one component. if not components: return None # Select 'anchor' for the template as the leftmost component. components.sort(key=lambda c: c.center.x) anchor = components.pop(0) # Normalize the positions of components relative to the anchor. for component in components: component.center.x -= anchor.center.x component.center.y -= anchor.center.y # assert ( # False # ), "May want to filter out overlapping tokens... for instance, by blanking out the part of the image that matches." return SymbolTemplate(anchor.symbol_id, components) def extract_templates( page_images: Dict[PageNumber, np.array], detectables: Sequence[Detectable], ) -> Tuple[Dict[Detectable, List[np.array]], Dict[Detectable, SymbolTemplate]]: """ Given images of pages from a paper that has been modified to include appearances of many tokens and symbols (i.e., 'detectables'), extract templates for those tokens and symbols that can be used to identify them in other documents. Returns a collection of token templates (images), and symbol templates (a flexible template format). Note that both tokens and symbols must be passed in as detectables; symbols cannot be found without first finding their component tokens. All detectables should be provided in the order that they appear in the TeX, which should include all tokens first, followed by all symbols. """ sorted_page_images = [page_images[pn] for pn in sorted(page_images.keys())] def dequeue_page() -> Optional[np.array]: " Remove image of the next page from the list of all pages in the document. " if not sorted_page_images: return None image = sorted_page_images.pop(0) return image page_image = dequeue_page() next_page_image = dequeue_page() # Scan all pages until the marker is found that suggests that the original LaTeX # document has ended, and the detectables (i.e., colorized tokens and symbols) # are about to appear. while True: if not _contains_start_graphic(page_image): page_image = next_page_image next_page_image = dequeue_page() continue # Once the marker has been found, skip forward one more page so that # symbols and tokens will be detected on the page after the marker. page_image = next_page_image next_page_image = dequeue_page() break # Templates are extracted for detecting both tokens and symbols. Templates # for tokens are images of single letters or marks. Templates for symbols # are groups of tokens and the expected (but somewhat flexible) spatial # relationships between them. token_images: Dict[Detectable, List[np.array]] = defaultdict(list) token_images_lookup: Dict[MathMl, Dict[FontSize, List[np.array]]] = defaultdict( dict ) symbol_templates: Dict[Detectable, SymbolTemplate] = {} for d in detectables: # Find a bounding box around the token / symbol. red, green, blue = d.color rects = find_boxes_with_rgb(page_image, red, green, blue) if next_page_image is not None: if not rects: rects = find_boxes_with_rgb(next_page_image, red, green, blue) if not rects: logger.warning("Could not find detectable %s.", d) continue page_image = next_page_image next_page_image = dequeue_page() else: rects.extend(find_boxes_with_rgb(next_page_image, red, green, blue)) if len(rects) > 1: logger.warning( "Unexpectedly more than one instance of detectable %s. " + "There may have been a problem in the coloring code.", d, ) if not rects: logger.warning("Could not find detectable %s.", d) box = rects[0] logger.debug(f"Found symbol at {box}.") # Extract a cropped, black-and-white image of the token or symbol. cropped_bw = page_image[ box.top : box.top + box.height, box.left : box.left + box.width ] cropped_bw[ np.where( (cropped_bw[:, :, 0] != 255) | (cropped_bw[:, :, 1] != 255) | (cropped_bw[:, :, 2] != 255) ) ] = [0, 0, 0] cropped_bw = cv2.cvtColor(cropped_bw, cv2.COLOR_BGR2GRAY) # For simple symbols, extract images. if isinstance(d.entity, TexToken): # Only save a template if it has a different appearance from the other templates # saved for a symbol. This is important as a bunch of templates for the symbol # at the same size are created to try to make sure that templates are saved for # every way that extra space might have been introduced between characters in the # symbol when the PDF was rendered to an image. already_saved = False for img in token_images[d]: if np.array_equal(img, cropped_bw): already_saved = True break if not already_saved: token_images[d].append(cropped_bw) lookup_dict = token_images_lookup[d.entity.mathml] if d.font_size not in lookup_dict: lookup_dict[d.font_size] = [] lookup_dict[d.font_size].append(cropped_bw) # Note that, if the caller of this function did their job in ordering the list of # detectables, symbols will be processed only after all tokens have been processed. if isinstance(d.entity, TexSymbol): token_mathmls = [t.mathml for t in d.entity.tokens] template = create_symbol_template( cropped_bw, token_images_lookup, token_mathmls ) if template: symbol_templates[d] = template return token_images, symbol_templates class TokenIndex: " Index of appearances of all tokens on a page. " def __init__(self, tokens: Iterable[TokenInstance]) -> None: self._tokens: List[TokenInstance] = list(tokens) # Build a KD search tree over symbols to support faster spatial querying. token_centers = [ ( t.location.left + t.location.width / 2.0, t.location.top + t.location.height / 2.0, ) for t in tokens ] if not tokens: token_centers = np.empty(shape=(0, 2)) self._tree = scipy.spatial.KDTree(token_centers) def get_instances(self, id_: Id = None) -> List[TokenInstance]: " Get all tokens with a specific key. " if not id_: return list(self._tokens) return [t for t in self._tokens if t.id_ == id_] def find( self, id_: Id, center: Point, tolerance: Optional[Point] = None, ) -> List[TokenInstance]: """ Get all tokens near a specific point matching a specification for the token (its key and level). Matching tokens are returned if: * its center x falls within [center[0] - tolerance[0], center[0] + tolerance[0]] * its center y falls within [center[1] - tolerance[1], center[1] + tolerance[1]] """ tolerance = tolerance or Point(1.0, 1.0) # Initial query for candidate symbols is made using the KDTree 'query_ball_point' method, # as it will in many cases filter symbols according to position in two-dimensional space # than an iteratively searching over a list of all symbols. radius = math.sqrt(tolerance.x * tolerance.x + tolerance.y * tolerance.y) nearby_points = self._tree.query_ball_point(x=[center.x, center.y], r=radius) matches = [] for token_i in nearby_points: # Rule out symbols that are not the requested symbol. token = self._tokens[token_i] if token.id_ != id_: continue # Rule out symbols that are not within the tolerated distance of the query point. token_center_x = token.location.left + token.location.width / 2.0 token_center_y = token.location.top + token.location.height / 2.0 if ( abs(token_center_x - center.x) > tolerance.x or abs(token_center_y - center.y) > tolerance.y ): continue matches.append(token) return matches def detect_tokens( page_images: Dict[PageNumber, np.array], token_images: Dict[Detectable, List[np.array]], require_blank_border: bool = True, ) -> Dict[PageNumber, TokenIndex]: """ Detect appearances of tokens in images of pages. If 'require_blank_border' is set, filter the detected tokens to just those that are surrounded with whitespace. This option is intended to help reduce the number of false positives. See the implementation comments below for more details. """ tokens: Dict[PageNumber, TokenIndex] = {} # Unpack token images into a 1-D list. token_image_list = [] token_list = [] for (token, images) in token_images.items(): for image in images: token_image_list.append(image) token_list.append(token) for page_no, page_image in sorted(page_images.items(), key=lambda t: t[0]): logger.debug("Detecting tokens on page %d.", page_no) page_image_gray = cv2.cvtColor(page_image, cv2.COLOR_BGR2GRAY) rects = find_in_image( token_image_list, page_image_gray, require_blank_border=require_blank_border, ) token_instances: List[TokenInstance] = [] for (token, rect_list) in zip(token_list, rects): for rect in rect_list: token_instances.append( TokenInstance( id_=Id(token.entity.mathml, token.font_size), location=rect ) ) tokens[page_no] = TokenIndex(token_instances) return tokens def detect_symbols( token_instances: Dict[PageNumber, TokenIndex], symbol_templates: Dict[Detectable, SymbolTemplate], ) -> Dict[PageNumber, List[SymbolInstance]]: symbol_instances: Dict[PageNumber, List[SymbolInstance]] = defaultdict(list) for page_no, token_index in token_instances.items(): logger.debug("Scanning page %d for symbols.", page_no) for detectable, template in symbol_templates.items(): for rect in find_symbols(template, token_index): instance = SymbolInstance( Id(detectable.entity.mathml, detectable.font_size), rect ) # Deduplicate symbols, in case two symbols are actually the same symbol (as # may happen if two symbols had different TeX, but the same MathML). if instance not in symbol_instances[page_no]: symbol_instances[page_no].append(instance) return symbol_instances def find_symbols(template: SymbolTemplate, index: TokenIndex) -> Iterator[Rectangle]: """ Search for appearances of a symbol given an index of tokens. """ # Search for anchors---that is, leftmost glyphs in a symbol, relative # to which all other tokens in a composite symbol will be searched. anchor_candidates = index.get_instances(template.anchor) # For each anchor found, attempt to fill out the rest of the composite symbol template. for a in anchor_candidates: template_incomplete = False member_matches: List[TokenInstance] = [] anchor_center_x = a.location.left + a.location.width / 2.0 anchor_center_y = a.location.top + a.location.height / 2.0 # For each expected member of the composite symbol (i.e., all simple symbols the composite # symbol should be made up of), search for appearances of the member at the expected # location relative to the anchor. for member in template.members: expected_center = Point( anchor_center_x + member.center.x, anchor_center_y + member.center.y ) # Note that the tolerance for the position of a member symbol is higher the further away # that member is from the anchor, as it is assumed that TeX might insert or remove space # between members, which will accumulate the further away the member is from the anchor. tolerance = Point( math.ceil(abs(member.center.x) / 5.0) + 1, math.ceil(abs(member.center.y) / 5.0) + 1, ) member_candidates = index.find( id_=member.symbol_id, center=expected_center, tolerance=tolerance, ) # If multiple symbols could fill the member slot in the composite symbol, select the # leftmost symbol that has not yet been used to fill a slot. member_found = False member_candidates.sort(key=lambda c: c.location.left) for m in member_candidates: if m not in member_matches: member_matches.append(m) member_found = True break # If any member slot of the template cannot be filled, a composite symbol cannot be # created. Advance to the next potential anchor. if not member_found: template_incomplete = True break # Create an instance of the composite symbol if the template has been completed. if not template_incomplete: tokens = [a] + member_matches left = min([t.location.left for t in tokens]) top = min([t.location.top for t in tokens]) right = max([t.location.left + t.location.width for t in tokens]) bottom = max([t.location.top + t.location.height for t in tokens]) yield Rectangle(left, top, right - left, bottom - top)
[ "lib.image_processing.Point", "lib.image_processing._contains_start_graphic", "numpy.array_equal", "lib.image_processing.Rectangle", "math.sqrt", "cv2.cvtColor", "numpy.empty", "logging.getLogger", "lib.image_processing.find_boxes_with_rgb", "collections.defaultdict", "numpy.where", "lib.image_processing.find_in_image", "dataclasses.dataclass" ]
[((494, 527), 'logging.getLogger', 'logging.getLogger', (['"""texsymdetect"""'], {}), "('texsymdetect')\n", (511, 527), False, 'import logging\n'), ((562, 584), 'dataclasses.dataclass', 'dataclass', ([], {'frozen': '(True)'}), '(frozen=True)\n', (571, 584), False, 'from dataclasses import dataclass\n'), ((2173, 2280), 'lib.image_processing.find_in_image', 'find_in_image', (['token_image_list', 'symbol_image'], {'require_blank_border': 'require_blank_border_around_tokens'}), '(token_image_list, symbol_image, require_blank_border=\n require_blank_border_around_tokens)\n', (2186, 2280), False, 'from lib.image_processing import Point, Rectangle, _contains_start_graphic, find_boxes_with_rgb, find_in_image\n'), ((6140, 6157), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (6151, 6157), False, 'from collections import defaultdict\n'), ((6230, 6247), 'collections.defaultdict', 'defaultdict', (['dict'], {}), '(dict)\n', (6241, 6247), False, 'from collections import defaultdict\n'), ((13804, 13821), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (13815, 13821), False, 'from collections import defaultdict\n'), ((6458, 6507), 'lib.image_processing.find_boxes_with_rgb', 'find_boxes_with_rgb', (['page_image', 'red', 'green', 'blue'], {}), '(page_image, red, green, blue)\n', (6477, 6507), False, 'from lib.image_processing import Point, Rectangle, _contains_start_graphic, find_boxes_with_rgb, find_in_image\n'), ((7854, 7898), 'cv2.cvtColor', 'cv2.cvtColor', (['cropped_bw', 'cv2.COLOR_BGR2GRAY'], {}), '(cropped_bw, cv2.COLOR_BGR2GRAY)\n', (7866, 7898), False, 'import cv2\n'), ((11107, 11171), 'math.sqrt', 'math.sqrt', (['(tolerance.x * tolerance.x + tolerance.y * tolerance.y)'], {}), '(tolerance.x * tolerance.x + tolerance.y * tolerance.y)\n', (11116, 11171), False, 'import math\n'), ((12951, 12995), 'cv2.cvtColor', 'cv2.cvtColor', (['page_image', 'cv2.COLOR_BGR2GRAY'], {}), '(page_image, cv2.COLOR_BGR2GRAY)\n', (12963, 12995), False, 'import cv2\n'), ((13012, 13108), 'lib.image_processing.find_in_image', 'find_in_image', (['token_image_list', 'page_image_gray'], {'require_blank_border': 'require_blank_border'}), '(token_image_list, page_image_gray, require_blank_border=\n require_blank_border)\n', (13025, 13108), False, 'from lib.image_processing import Point, Rectangle, _contains_start_graphic, find_boxes_with_rgb, find_in_image\n'), ((3075, 3140), 'lib.image_processing.Point', 'Point', (['(rect.left + rect.width / 2.0)', '(rect.top + rect.height / 2.0)'], {}), '(rect.left + rect.width / 2.0, rect.top + rect.height / 2.0)\n', (3080, 3140), False, 'from lib.image_processing import Point, Rectangle, _contains_start_graphic, find_boxes_with_rgb, find_in_image\n'), ((5429, 5464), 'lib.image_processing._contains_start_graphic', '_contains_start_graphic', (['page_image'], {}), '(page_image)\n', (5452, 5464), False, 'from lib.image_processing import Point, Rectangle, _contains_start_graphic, find_boxes_with_rgb, find_in_image\n'), ((7648, 7753), 'numpy.where', 'np.where', (['((cropped_bw[:, :, 0] != 255) | (cropped_bw[:, :, 1] != 255) | (cropped_bw[\n :, :, 2] != 255))'], {}), '((cropped_bw[:, :, 0] != 255) | (cropped_bw[:, :, 1] != 255) | (\n cropped_bw[:, :, 2] != 255))\n', (7656, 7753), True, 'import numpy as np\n'), ((9996, 10018), 'numpy.empty', 'np.empty', ([], {'shape': '(0, 2)'}), '(shape=(0, 2))\n', (10004, 10018), True, 'import numpy as np\n'), ((10810, 10825), 'lib.image_processing.Point', 'Point', (['(1.0)', '(1.0)'], {}), '(1.0, 1.0)\n', (10815, 10825), False, 'from lib.image_processing import Point, Rectangle, _contains_start_graphic, find_boxes_with_rgb, find_in_image\n'), ((15562, 15637), 'lib.image_processing.Point', 'Point', (['(anchor_center_x + member.center.x)', '(anchor_center_y + member.center.y)'], {}), '(anchor_center_x + member.center.x, anchor_center_y + member.center.y)\n', (15567, 15637), False, 'from lib.image_processing import Point, Rectangle, _contains_start_graphic, find_boxes_with_rgb, find_in_image\n'), ((6599, 6653), 'lib.image_processing.find_boxes_with_rgb', 'find_boxes_with_rgb', (['next_page_image', 'red', 'green', 'blue'], {}), '(next_page_image, red, green, blue)\n', (6618, 6653), False, 'from lib.image_processing import Point, Rectangle, _contains_start_graphic, find_boxes_with_rgb, find_in_image\n'), ((8513, 8544), 'numpy.array_equal', 'np.array_equal', (['img', 'cropped_bw'], {}), '(img, cropped_bw)\n', (8527, 8544), True, 'import numpy as np\n'), ((17452, 17500), 'lib.image_processing.Rectangle', 'Rectangle', (['left', 'top', '(right - left)', '(bottom - top)'], {}), '(left, top, right - left, bottom - top)\n', (17461, 17500), False, 'from lib.image_processing import Point, Rectangle, _contains_start_graphic, find_boxes_with_rgb, find_in_image\n'), ((6925, 6979), 'lib.image_processing.find_boxes_with_rgb', 'find_boxes_with_rgb', (['next_page_image', 'red', 'green', 'blue'], {}), '(next_page_image, red, green, blue)\n', (6944, 6979), False, 'from lib.image_processing import Point, Rectangle, _contains_start_graphic, find_boxes_with_rgb, find_in_image\n')]
import re def check_userID(ID): ''' Rule : UserID consists of [A-Z|a-z|0-9] ''' match = re.search(r'\w+', ID) #print match.group(0), if match: return True else: return False def check_jobTitleName(Job_Title): ''' Rule: Employee Job title starts with [A-Z] then multiple occurrence of [a-z] and 1 space, [A-Z] and multiple occurrences of [a-z] as optional. ''' match = re.search(r'(^[A-Z][a-z]+)( [A-Z][a-z]+)?$', Job_Title) if match: '''print "Job Title", match.group(0), print "First part of Job title:", match.group(1), print "Second part of Job title:", match.group(2), ''' return True else: return False def check_firstName(First_Name): ''' Rule: Starts with [A-Z] the multiple occurrences of [a-z]. ''' match = re.search(r'^[A-z][a-z]+$', First_Name) if match: #print match.group(0), return True else: return False def check_lastName(Last_Name): ''' Rule: Starts with [A-Z] the multiple occurrences of [a-z]. ''' match = re.search(r'^[A-z][a-z]+$', Last_Name) if match: #print match.group(0), return True else: return False def check_preferredFullName(Full_Name): ''' Rule: Combination of first and last names. ''' match = re.search(r'(^[A-Z][a-z]+) ([A-Z][a-z]+)$', Full_Name) if match: '''print "Full Name:", match.group(0), print "First Name:", match.group(1), print "Last Name:", match.group(2), ''' return True else: return False def check_employeeCode(Emp_Code): ''' Rule: Starts with 'E' and followed by multiple occurrences of [0-9]. ''' match = re.search(r'^E\d+', Emp_Code) if match: #print match.group(0), return True else: return False def check_region(Working_Place): ''' Rule: Short form of states in US. ''' match = re.search(r'[A-Z]{2}', Working_Place) if match: #print match.group(0), return True else: return False def check_phoneNumber(Contact_Number): ''' Rule: Total 10 digits. First 3 digits for province code then followed by - and 7 digits. ''' match = re.search(r'\d{3}-\d{7}', Contact_Number) if match: #print match.group(0), return True else: return False def check_emailAddress(Email_Address): ''' Rule: <host name>@<provider name>.<DNS type> ''' match = re.search(r'(^\w+\.?\w+)@(\w+\.\w+$)', Email_Address) if match: '''print "Email Address:", match.group(0), print "Host part:", match.group(1), print "Domain part:", match.group(2), ''' return True else: return False
[ "re.search" ]
[((98, 119), 're.search', 're.search', (['"""\\\\w+"""', 'ID'], {}), "('\\\\w+', ID)\n", (107, 119), False, 'import re\n'), ((420, 474), 're.search', 're.search', (['"""(^[A-Z][a-z]+)( [A-Z][a-z]+)?$"""', 'Job_Title'], {}), "('(^[A-Z][a-z]+)( [A-Z][a-z]+)?$', Job_Title)\n", (429, 474), False, 'import re\n'), ((826, 864), 're.search', 're.search', (['"""^[A-z][a-z]+$"""', 'First_Name'], {}), "('^[A-z][a-z]+$', First_Name)\n", (835, 864), False, 'import re\n'), ((1077, 1114), 're.search', 're.search', (['"""^[A-z][a-z]+$"""', 'Last_Name'], {}), "('^[A-z][a-z]+$', Last_Name)\n", (1086, 1114), False, 'import re\n'), ((1321, 1374), 're.search', 're.search', (['"""(^[A-Z][a-z]+) ([A-Z][a-z]+)$"""', 'Full_Name'], {}), "('(^[A-Z][a-z]+) ([A-Z][a-z]+)$', Full_Name)\n", (1330, 1374), False, 'import re\n'), ((1711, 1740), 're.search', 're.search', (['"""^E\\\\d+"""', 'Emp_Code'], {}), "('^E\\\\d+', Emp_Code)\n", (1720, 1740), False, 'import re\n'), ((1931, 1967), 're.search', 're.search', (['"""[A-Z]{2}"""', 'Working_Place'], {}), "('[A-Z]{2}', Working_Place)\n", (1940, 1967), False, 'import re\n'), ((2220, 2262), 're.search', 're.search', (['"""\\\\d{3}-\\\\d{7}"""', 'Contact_Number'], {}), "('\\\\d{3}-\\\\d{7}', Contact_Number)\n", (2229, 2262), False, 'import re\n'), ((2469, 2527), 're.search', 're.search', (['"""(^\\\\w+\\\\.?\\\\w+)@(\\\\w+\\\\.\\\\w+$)"""', 'Email_Address'], {}), "('(^\\\\w+\\\\.?\\\\w+)@(\\\\w+\\\\.\\\\w+$)', Email_Address)\n", (2478, 2527), False, 'import re\n')]
"""The implementation of a Hera workflow for Argo-based workflows""" from typing import Dict, List, Optional, Tuple from argo_workflows.models import ( IoArgoprojWorkflowV1alpha1DAGTemplate, IoArgoprojWorkflowV1alpha1Template, IoArgoprojWorkflowV1alpha1VolumeClaimGC, IoArgoprojWorkflowV1alpha1Workflow, IoArgoprojWorkflowV1alpha1WorkflowSpec, IoArgoprojWorkflowV1alpha1WorkflowTemplateRef, LocalObjectReference, ObjectMeta, ) from hera.affinity import Affinity from hera.host_alias import HostAlias from hera.security_context import WorkflowSecurityContext from hera.task import Task from hera.ttl_strategy import TTLStrategy from hera.volume_claim_gc import VolumeClaimGCStrategy from hera.workflow_editors import add_head, add_tail, add_task, add_tasks, on_exit from hera.workflow_service import WorkflowService class Workflow: """A workflow representation. The workflow is used as a functional representation for a collection of tasks and steps. The workflow context controls the overall behaviour of tasks, such as whether to notify completion, whether to execute retires, overall parallelism, etc. The workflow can be constructed and submitted to multiple Argo endpoints as long as a token can be associated with the endpoint at the given domain. Parameters ---------- name: str The workflow name. Note that the workflow initiation will replace underscores with dashes. service: Optional[WorkflowService] = None A workflow service to use for submissions. See `hera.v1.workflow_service.WorkflowService`. parallelism: int = 50 The number of parallel tasks to run in case a task group is executed for multiple tasks. service_account_name: Optional[str] = None The name of the service account to use in all workflow tasks. labels: Optional[Dict[str, str]] = None A Dict of labels to attach to the Workflow object metadata annotations: Optional[Dict[str, str]] = None A Dict of annotations to attach to the Workflow object metadata namespace: Optional[str] = 'default' The namespace to use for creating the Workflow. Defaults to "default" security_context: Optional[WorkflowSecurityContext] = None Define security settings for all containers in the workflow. image_pull_secrets: Optional[List[str]] = None A list of image pull secrets. This is used to authenticate with the private image registry of the images used by tasks. workflow_template_ref: Optional[str] = None The name of the workflowTemplate reference. WorkflowTemplateRef is a reference to a WorkflowTemplate resource. If you create a WorkflowTemplate resource either clusterWorkflowTemplate or not (clusterScope attribute bool) you can reference it again and again when you create a new Workflow without specifying the same tasks and dependencies. Official doc: https://argoproj.github.io/argo-workflows/fields/#workflowtemplateref ttl_strategy: Optional[TTLStrategy] = None The time to live strategy of the workflow. volume_claim_gc_strategy: Optional[VolumeClaimGCStrategy] = None Define how to delete volumes from completed Workflows. host_aliases: Optional[List[HostAlias]] = None Mappings between IP and hostnames. node_selectors: Optional[Dict[str, str]] = None A collection of key value pairs that denote node selectors. This is used for scheduling purposes. If the task requires GPU resources, clients are encouraged to add a node selector for a node that can satisfy the requested resources. In addition, clients are encouraged to specify a GPU toleration, depending on the platform they submit the workflow to. affinity: Optional[Affinity] = None The task affinity. This dictates the scheduling protocol of the pods running the tasks of the workflow. """ def __init__( self, name: str, service: Optional[WorkflowService] = None, parallelism: int = 50, service_account_name: Optional[str] = None, labels: Optional[Dict[str, str]] = None, annotations: Optional[Dict[str, str]] = None, namespace: Optional[str] = None, security_context: Optional[WorkflowSecurityContext] = None, image_pull_secrets: Optional[List[str]] = None, workflow_template_ref: Optional[str] = None, ttl_strategy: Optional[TTLStrategy] = None, volume_claim_gc_strategy: Optional[VolumeClaimGCStrategy] = None, host_aliases: Optional[List[HostAlias]] = None, node_selectors: Optional[Dict[str, str]] = None, affinity: Optional[Affinity] = None, ): self.name = f'{name.replace("_", "-")}' # RFC1123 self.namespace = namespace or 'default' self.service = service or WorkflowService() self.parallelism = parallelism self.security_context = security_context self.service_account_name = service_account_name self.labels = labels self.annotations = annotations self.image_pull_secrets = image_pull_secrets self.workflow_template_ref = workflow_template_ref self.node_selector = node_selectors self.ttl_strategy = ttl_strategy self.affinity = affinity self.dag_template = IoArgoprojWorkflowV1alpha1DAGTemplate(tasks=[]) self.exit_template = IoArgoprojWorkflowV1alpha1Template( name='exit-template', steps=[], dag=IoArgoprojWorkflowV1alpha1DAGTemplate(tasks=[]), parallelism=self.parallelism, ) self.template = IoArgoprojWorkflowV1alpha1Template( name=self.name, steps=[], dag=self.dag_template, parallelism=self.parallelism, ) if self.workflow_template_ref: self.workflow_template = IoArgoprojWorkflowV1alpha1WorkflowTemplateRef(name=self.workflow_template_ref) self.spec = IoArgoprojWorkflowV1alpha1WorkflowSpec( workflow_template_ref=self.workflow_template, entrypoint=self.workflow_template_ref, volumes=[], volume_claim_templates=[], parallelism=self.parallelism, ) else: self.spec = IoArgoprojWorkflowV1alpha1WorkflowSpec( templates=[self.template], entrypoint=self.name, volumes=[], volume_claim_templates=[], parallelism=self.parallelism, ) if ttl_strategy: setattr(self.spec, 'ttl_strategy', ttl_strategy.argo_ttl_strategy) if volume_claim_gc_strategy: setattr( self.spec, 'volume_claim_gc', IoArgoprojWorkflowV1alpha1VolumeClaimGC(strategy=volume_claim_gc_strategy.value), ) if host_aliases: setattr(self.spec, 'host_aliases', [h.argo_host_alias for h in host_aliases]) if self.security_context: security_context = self.security_context.get_security_context() setattr(self.spec, 'security_context', security_context) if self.service_account_name: setattr(self.template, 'service_account_name', self.service_account_name) setattr(self.spec, 'service_account_name', self.service_account_name) if self.image_pull_secrets: secret_refs = [LocalObjectReference(name=name) for name in self.image_pull_secrets] setattr(self.spec, 'image_pull_secrets', secret_refs) if self.affinity: setattr(self.exit_template, 'affinity', self.affinity.get_spec()) setattr(self.template, 'affinity', self.affinity.get_spec()) self.metadata = ObjectMeta(name=self.name) if self.labels: setattr(self.metadata, 'labels', self.labels) if self.annotations: setattr(self.metadata, 'annotations', self.annotations) if self.node_selector: setattr(self.dag_template, 'node_selector', self.node_selector) setattr(self.template, 'node_selector', self.node_selector) setattr(self.exit_template, 'node_selector', self.node_selector) self.workflow = IoArgoprojWorkflowV1alpha1Workflow(metadata=self.metadata, spec=self.spec) def add_task(self, t: Task) -> None: add_task(self, t) def add_tasks(self, *ts: Task) -> None: add_tasks(self, *ts) def add_head(self, t: Task, append: bool = True) -> None: add_head(self, t, append=append) def add_tail(self, t: Task, append: bool = True) -> None: add_tail(self, t, append=append) def create(self, namespace: Optional[str] = None) -> IoArgoprojWorkflowV1alpha1Workflow: """Creates the workflow""" if namespace is None: namespace = self.namespace return self.service.create(self.workflow, namespace) def on_exit(self, *t: Task) -> None: on_exit(self, *t) def delete(self, namespace: Optional[str] = None) -> Tuple[object, int, dict]: """Deletes the workflow""" if namespace is None: namespace = self.name return self.service.delete(self.name)
[ "argo_workflows.models.IoArgoprojWorkflowV1alpha1DAGTemplate", "argo_workflows.models.IoArgoprojWorkflowV1alpha1VolumeClaimGC", "hera.workflow_editors.on_exit", "argo_workflows.models.IoArgoprojWorkflowV1alpha1WorkflowTemplateRef", "argo_workflows.models.IoArgoprojWorkflowV1alpha1Workflow", "argo_workflows.models.IoArgoprojWorkflowV1alpha1WorkflowSpec", "hera.workflow_editors.add_task", "hera.workflow_editors.add_tail", "argo_workflows.models.IoArgoprojWorkflowV1alpha1Template", "hera.workflow_editors.add_head", "hera.workflow_service.WorkflowService", "hera.workflow_editors.add_tasks", "argo_workflows.models.LocalObjectReference", "argo_workflows.models.ObjectMeta" ]
[((5366, 5413), 'argo_workflows.models.IoArgoprojWorkflowV1alpha1DAGTemplate', 'IoArgoprojWorkflowV1alpha1DAGTemplate', ([], {'tasks': '[]'}), '(tasks=[])\n', (5403, 5413), False, 'from argo_workflows.models import IoArgoprojWorkflowV1alpha1DAGTemplate, IoArgoprojWorkflowV1alpha1Template, IoArgoprojWorkflowV1alpha1VolumeClaimGC, IoArgoprojWorkflowV1alpha1Workflow, IoArgoprojWorkflowV1alpha1WorkflowSpec, IoArgoprojWorkflowV1alpha1WorkflowTemplateRef, LocalObjectReference, ObjectMeta\n'), ((5677, 5795), 'argo_workflows.models.IoArgoprojWorkflowV1alpha1Template', 'IoArgoprojWorkflowV1alpha1Template', ([], {'name': 'self.name', 'steps': '[]', 'dag': 'self.dag_template', 'parallelism': 'self.parallelism'}), '(name=self.name, steps=[], dag=self.\n dag_template, parallelism=self.parallelism)\n', (5711, 5795), False, 'from argo_workflows.models import IoArgoprojWorkflowV1alpha1DAGTemplate, IoArgoprojWorkflowV1alpha1Template, IoArgoprojWorkflowV1alpha1VolumeClaimGC, IoArgoprojWorkflowV1alpha1Workflow, IoArgoprojWorkflowV1alpha1WorkflowSpec, IoArgoprojWorkflowV1alpha1WorkflowTemplateRef, LocalObjectReference, ObjectMeta\n'), ((7851, 7877), 'argo_workflows.models.ObjectMeta', 'ObjectMeta', ([], {'name': 'self.name'}), '(name=self.name)\n', (7861, 7877), False, 'from argo_workflows.models import IoArgoprojWorkflowV1alpha1DAGTemplate, IoArgoprojWorkflowV1alpha1Template, IoArgoprojWorkflowV1alpha1VolumeClaimGC, IoArgoprojWorkflowV1alpha1Workflow, IoArgoprojWorkflowV1alpha1WorkflowSpec, IoArgoprojWorkflowV1alpha1WorkflowTemplateRef, LocalObjectReference, ObjectMeta\n'), ((8339, 8413), 'argo_workflows.models.IoArgoprojWorkflowV1alpha1Workflow', 'IoArgoprojWorkflowV1alpha1Workflow', ([], {'metadata': 'self.metadata', 'spec': 'self.spec'}), '(metadata=self.metadata, spec=self.spec)\n', (8373, 8413), False, 'from argo_workflows.models import IoArgoprojWorkflowV1alpha1DAGTemplate, IoArgoprojWorkflowV1alpha1Template, IoArgoprojWorkflowV1alpha1VolumeClaimGC, IoArgoprojWorkflowV1alpha1Workflow, IoArgoprojWorkflowV1alpha1WorkflowSpec, IoArgoprojWorkflowV1alpha1WorkflowTemplateRef, LocalObjectReference, ObjectMeta\n'), ((8464, 8481), 'hera.workflow_editors.add_task', 'add_task', (['self', 't'], {}), '(self, t)\n', (8472, 8481), False, 'from hera.workflow_editors import add_head, add_tail, add_task, add_tasks, on_exit\n'), ((8535, 8555), 'hera.workflow_editors.add_tasks', 'add_tasks', (['self', '*ts'], {}), '(self, *ts)\n', (8544, 8555), False, 'from hera.workflow_editors import add_head, add_tail, add_task, add_tasks, on_exit\n'), ((8627, 8659), 'hera.workflow_editors.add_head', 'add_head', (['self', 't'], {'append': 'append'}), '(self, t, append=append)\n', (8635, 8659), False, 'from hera.workflow_editors import add_head, add_tail, add_task, add_tasks, on_exit\n'), ((8731, 8763), 'hera.workflow_editors.add_tail', 'add_tail', (['self', 't'], {'append': 'append'}), '(self, t, append=append)\n', (8739, 8763), False, 'from hera.workflow_editors import add_head, add_tail, add_task, add_tasks, on_exit\n'), ((9073, 9090), 'hera.workflow_editors.on_exit', 'on_exit', (['self', '*t'], {}), '(self, *t)\n', (9080, 9090), False, 'from hera.workflow_editors import add_head, add_tail, add_task, add_tasks, on_exit\n'), ((4876, 4893), 'hera.workflow_service.WorkflowService', 'WorkflowService', ([], {}), '()\n', (4891, 4893), False, 'from hera.workflow_service import WorkflowService\n'), ((5927, 6005), 'argo_workflows.models.IoArgoprojWorkflowV1alpha1WorkflowTemplateRef', 'IoArgoprojWorkflowV1alpha1WorkflowTemplateRef', ([], {'name': 'self.workflow_template_ref'}), '(name=self.workflow_template_ref)\n', (5972, 6005), False, 'from argo_workflows.models import IoArgoprojWorkflowV1alpha1DAGTemplate, IoArgoprojWorkflowV1alpha1Template, IoArgoprojWorkflowV1alpha1VolumeClaimGC, IoArgoprojWorkflowV1alpha1Workflow, IoArgoprojWorkflowV1alpha1WorkflowSpec, IoArgoprojWorkflowV1alpha1WorkflowTemplateRef, LocalObjectReference, ObjectMeta\n'), ((6030, 6231), 'argo_workflows.models.IoArgoprojWorkflowV1alpha1WorkflowSpec', 'IoArgoprojWorkflowV1alpha1WorkflowSpec', ([], {'workflow_template_ref': 'self.workflow_template', 'entrypoint': 'self.workflow_template_ref', 'volumes': '[]', 'volume_claim_templates': '[]', 'parallelism': 'self.parallelism'}), '(workflow_template_ref=self.\n workflow_template, entrypoint=self.workflow_template_ref, volumes=[],\n volume_claim_templates=[], parallelism=self.parallelism)\n', (6068, 6231), False, 'from argo_workflows.models import IoArgoprojWorkflowV1alpha1DAGTemplate, IoArgoprojWorkflowV1alpha1Template, IoArgoprojWorkflowV1alpha1VolumeClaimGC, IoArgoprojWorkflowV1alpha1Workflow, IoArgoprojWorkflowV1alpha1WorkflowSpec, IoArgoprojWorkflowV1alpha1WorkflowTemplateRef, LocalObjectReference, ObjectMeta\n'), ((6356, 6520), 'argo_workflows.models.IoArgoprojWorkflowV1alpha1WorkflowSpec', 'IoArgoprojWorkflowV1alpha1WorkflowSpec', ([], {'templates': '[self.template]', 'entrypoint': 'self.name', 'volumes': '[]', 'volume_claim_templates': '[]', 'parallelism': 'self.parallelism'}), '(templates=[self.template],\n entrypoint=self.name, volumes=[], volume_claim_templates=[],\n parallelism=self.parallelism)\n', (6394, 6520), False, 'from argo_workflows.models import IoArgoprojWorkflowV1alpha1DAGTemplate, IoArgoprojWorkflowV1alpha1Template, IoArgoprojWorkflowV1alpha1VolumeClaimGC, IoArgoprojWorkflowV1alpha1Workflow, IoArgoprojWorkflowV1alpha1WorkflowSpec, IoArgoprojWorkflowV1alpha1WorkflowTemplateRef, LocalObjectReference, ObjectMeta\n'), ((5551, 5598), 'argo_workflows.models.IoArgoprojWorkflowV1alpha1DAGTemplate', 'IoArgoprojWorkflowV1alpha1DAGTemplate', ([], {'tasks': '[]'}), '(tasks=[])\n', (5588, 5598), False, 'from argo_workflows.models import IoArgoprojWorkflowV1alpha1DAGTemplate, IoArgoprojWorkflowV1alpha1Template, IoArgoprojWorkflowV1alpha1VolumeClaimGC, IoArgoprojWorkflowV1alpha1Workflow, IoArgoprojWorkflowV1alpha1WorkflowSpec, IoArgoprojWorkflowV1alpha1WorkflowTemplateRef, LocalObjectReference, ObjectMeta\n'), ((6850, 6935), 'argo_workflows.models.IoArgoprojWorkflowV1alpha1VolumeClaimGC', 'IoArgoprojWorkflowV1alpha1VolumeClaimGC', ([], {'strategy': 'volume_claim_gc_strategy.value'}), '(strategy=volume_claim_gc_strategy.value\n )\n', (6889, 6935), False, 'from argo_workflows.models import IoArgoprojWorkflowV1alpha1DAGTemplate, IoArgoprojWorkflowV1alpha1Template, IoArgoprojWorkflowV1alpha1VolumeClaimGC, IoArgoprojWorkflowV1alpha1Workflow, IoArgoprojWorkflowV1alpha1WorkflowSpec, IoArgoprojWorkflowV1alpha1WorkflowTemplateRef, LocalObjectReference, ObjectMeta\n'), ((7513, 7544), 'argo_workflows.models.LocalObjectReference', 'LocalObjectReference', ([], {'name': 'name'}), '(name=name)\n', (7533, 7544), False, 'from argo_workflows.models import IoArgoprojWorkflowV1alpha1DAGTemplate, IoArgoprojWorkflowV1alpha1Template, IoArgoprojWorkflowV1alpha1VolumeClaimGC, IoArgoprojWorkflowV1alpha1Workflow, IoArgoprojWorkflowV1alpha1WorkflowSpec, IoArgoprojWorkflowV1alpha1WorkflowTemplateRef, LocalObjectReference, ObjectMeta\n')]
import collections class Solution: def isAnagram(self, s: str, t: str) -> bool: if not s and not t: return True if not s or not t: return False if len(s) != len(t): return False s_hash = collections.defaultdict(int) t_hash = collections.defaultdict(int) for i in range(len(s)): s_hash[s[i]] += 1 t_hash[t[i]] += 1 if len(s_hash) != len(t_hash): return False for x in s_hash: if s_hash[x] != t_hash[x]: return False return True if __name__== '__main__': solution = Solution() s = "anagram" t = "nagaram" result = solution.isAnagram(s, t) print(result)
[ "collections.defaultdict" ]
[((259, 287), 'collections.defaultdict', 'collections.defaultdict', (['int'], {}), '(int)\n', (282, 287), False, 'import collections\n'), ((305, 333), 'collections.defaultdict', 'collections.defaultdict', (['int'], {}), '(int)\n', (328, 333), False, 'import collections\n')]
# Copyright (c) 2013 Qubell Inc., http://qubell.com # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. __author__ = "<NAME>" __copyright__ = "Copyright 2013, Qubell.com" __license__ = "Apache" __version__ = "1.0.1" __email__ = "<EMAIL>" import logging as log import requests import simplejson as json from qubellclient.private.organization import Organization import qubellclient.tools as tools class Application(Organization): """ Base class for applications. It should create application and services+environment requested """ rawResponse = None def __parse(self, values): ret = {} for val in values: ret[val['id']] = val['value'] return ret def __init__(self, context, id=None, manifest=None, name=None): self.context = context self.name = name or "test-app-"+tools.rand() self.manifest = manifest # Create application if not id: newapp = self._create() assert newapp self.applicationId = newapp['id'] # Use existing app else: self.applicationId = id self.context.applicationId = self.applicationId def _create(self): log.info("Creating application: %s" % self.name) url = self.context.api+'/organizations/'+self.context.organizationId+'/applications.json' resp = requests.post(url, files={'path': self.manifest.content}, data={'manifestSource': 'upload', 'name': self.name}, verify=False, cookies=self.context.cookies) log.debug(resp.text) if resp.status_code == 200: return resp.json() else: return False def delete(self): log.info("Removing application: %s" % self.name) url = self.context.api+'/organizations/'+self.context.organizationId+'/applications/'+self.applicationId+'.json' resp = requests.delete(url, verify=False, cookies=self.context.cookies) log.debug(resp.text) if resp.status_code == 200: return True else: return False def clean(self): instances = self.instances import instance if instances: for ins in instances: obj = instance.Instance(context=self.context, id=ins['id']) st = obj.status if st not in ['Destroyed', 'Destroying', 'Launching', 'Executing']: # Tests could fail and we can get any statye here log.info("Destroying instance %s" % obj.name) obj.delete() assert obj.destroyed(timeout=10) revisions = self.revisions import revision if revisions: for rev in revisions: obj = revision.Revision(context=self.context, id=rev['id']) obj.delete() return True def json(self, key=None): url = self.context.api+'/organizations/'+self.context.organizationId+'/applications/'+self.applicationId+'.json' resp = requests.get(url, cookies=self.context.cookies, data="{}", verify=False) log.debug(resp.text) self.rawRespose = resp if resp.status_code == 200: # return same way public api does # if key and (key in ['instances', 'environments']): # return self.__parse(resp.json()[key]) # else: # return resp.json()[key] return resp.json() else: return None def __getattr__(self, key): resp = self.json() return resp[key] or False def upload(self, manifest): log.info("Uploading manifest") url = self.context.api+'/organizations/'+self.context.organizationId+'/applications/'+self.applicationId+'/manifests.json' resp = requests.post(url, files={'path': manifest.content}, data={'manifestSource': 'upload', 'name': self.name}, verify=False, cookies=self.context.cookies) log.debug(resp.text) self.rawResponse = resp if resp.status_code == 200: self.manifest = manifest return resp.json() else: log.error('Cannot upload manifest: %s' % resp.content) return False def launch(self, **argv): url = self.context.api+'/organizations/'+self.context.organizationId+'/applications/'+self.applicationId+'/launch.json' headers = {'Content-Type': 'application/json'} data = json.dumps(argv) resp = requests.post(url, cookies=self.context.cookies, data=data, verify=False, headers=headers) log.debug(resp.text) self.rawResponse = resp if resp.status_code == 200: instance_id = resp.json()['id'] from qubellclient.private.instance import Instance return Instance(context=self.context, id=instance_id) else: log.error('Unable to launch instance: %s' % resp.content) return False def revisionCreate(self, name, instance, parameters=[], version=None): if not version: version=self.getManifest()['version'] url = self.context.api+'/organizations/'+self.context.organizationId+'/applications/'+self.applicationId+'/revisions.json' headers = {'Content-Type': 'application/json'} payload = json.dumps({ 'name': name, 'parameters': parameters, 'submoduleRevisions': {}, 'returnValues': [], 'applicationId': self.context.applicationId, 'applicationName': "api", 'version': version, 'instanceId': instance.instanceId}) resp = requests.post(url, cookies=self.context.cookies, data=payload, verify=False, headers=headers) log.debug(resp.text) self.rawRespose = resp if resp.status_code==200: import revision return revision.Revision(context=self.context, name=name, id=resp.json()['id']) else: return False def getManifest(self): url = self.context.api+'/organizations/'+self.context.organizationId+'/applications/'+self.applicationId+'/refreshManifest.json' headers = {'Content-Type': 'application/json'} payload = json.dumps({}) resp = requests.post(url, cookies=self.context.cookies, data=payload, verify=False, headers=headers) log.debug(resp.text) self.rawRespose = resp if resp.status_code == 200: return resp.json() else: return False
[ "logging.error", "logging.debug", "simplejson.dumps", "logging.info", "qubellclient.tools.rand", "requests.delete", "instance.Instance", "revision.Revision", "requests.get", "requests.post", "qubellclient.private.instance.Instance" ]
[((1706, 1754), 'logging.info', 'log.info', (["('Creating application: %s' % self.name)"], {}), "('Creating application: %s' % self.name)\n", (1714, 1754), True, 'import logging as log\n'), ((1868, 2033), 'requests.post', 'requests.post', (['url'], {'files': "{'path': self.manifest.content}", 'data': "{'manifestSource': 'upload', 'name': self.name}", 'verify': '(False)', 'cookies': 'self.context.cookies'}), "(url, files={'path': self.manifest.content}, data={\n 'manifestSource': 'upload', 'name': self.name}, verify=False, cookies=\n self.context.cookies)\n", (1881, 2033), False, 'import requests\n'), ((2032, 2052), 'logging.debug', 'log.debug', (['resp.text'], {}), '(resp.text)\n', (2041, 2052), True, 'import logging as log\n'), ((2190, 2238), 'logging.info', 'log.info', (["('Removing application: %s' % self.name)"], {}), "('Removing application: %s' % self.name)\n", (2198, 2238), True, 'import logging as log\n'), ((2375, 2439), 'requests.delete', 'requests.delete', (['url'], {'verify': '(False)', 'cookies': 'self.context.cookies'}), '(url, verify=False, cookies=self.context.cookies)\n', (2390, 2439), False, 'import requests\n'), ((2448, 2468), 'logging.debug', 'log.debug', (['resp.text'], {}), '(resp.text)\n', (2457, 2468), True, 'import logging as log\n'), ((3508, 3580), 'requests.get', 'requests.get', (['url'], {'cookies': 'self.context.cookies', 'data': '"""{}"""', 'verify': '(False)'}), "(url, cookies=self.context.cookies, data='{}', verify=False)\n", (3520, 3580), False, 'import requests\n'), ((3589, 3609), 'logging.debug', 'log.debug', (['resp.text'], {}), '(resp.text)\n', (3598, 3609), True, 'import logging as log\n'), ((4107, 4137), 'logging.info', 'log.info', (['"""Uploading manifest"""'], {}), "('Uploading manifest')\n", (4115, 4137), True, 'import logging as log\n'), ((4284, 4438), 'requests.post', 'requests.post', (['url'], {'files': "{'path': manifest.content}", 'data': "{'manifestSource': 'upload', 'name': self.name}", 'verify': '(False)', 'cookies': 'self.context.cookies'}), "(url, files={'path': manifest.content}, data={'manifestSource':\n 'upload', 'name': self.name}, verify=False, cookies=self.context.cookies)\n", (4297, 4438), False, 'import requests\n'), ((4443, 4463), 'logging.debug', 'log.debug', (['resp.text'], {}), '(resp.text)\n', (4452, 4463), True, 'import logging as log\n'), ((4936, 4952), 'simplejson.dumps', 'json.dumps', (['argv'], {}), '(argv)\n', (4946, 4952), True, 'import simplejson as json\n'), ((4968, 5062), 'requests.post', 'requests.post', (['url'], {'cookies': 'self.context.cookies', 'data': 'data', 'verify': '(False)', 'headers': 'headers'}), '(url, cookies=self.context.cookies, data=data, verify=False,\n headers=headers)\n', (4981, 5062), False, 'import requests\n'), ((5067, 5087), 'logging.debug', 'log.debug', (['resp.text'], {}), '(resp.text)\n', (5076, 5087), True, 'import logging as log\n'), ((5792, 6030), 'simplejson.dumps', 'json.dumps', (["{'name': name, 'parameters': parameters, 'submoduleRevisions': {},\n 'returnValues': [], 'applicationId': self.context.applicationId,\n 'applicationName': 'api', 'version': version, 'instanceId': instance.\n instanceId}"], {}), "({'name': name, 'parameters': parameters, 'submoduleRevisions': {\n }, 'returnValues': [], 'applicationId': self.context.applicationId,\n 'applicationName': 'api', 'version': version, 'instanceId': instance.\n instanceId})\n", (5802, 6030), True, 'import simplejson as json\n'), ((6173, 6270), 'requests.post', 'requests.post', (['url'], {'cookies': 'self.context.cookies', 'data': 'payload', 'verify': '(False)', 'headers': 'headers'}), '(url, cookies=self.context.cookies, data=payload, verify=False,\n headers=headers)\n', (6186, 6270), False, 'import requests\n'), ((6275, 6295), 'logging.debug', 'log.debug', (['resp.text'], {}), '(resp.text)\n', (6284, 6295), True, 'import logging as log\n'), ((6758, 6772), 'simplejson.dumps', 'json.dumps', (['{}'], {}), '({})\n', (6768, 6772), True, 'import simplejson as json\n'), ((6788, 6885), 'requests.post', 'requests.post', (['url'], {'cookies': 'self.context.cookies', 'data': 'payload', 'verify': '(False)', 'headers': 'headers'}), '(url, cookies=self.context.cookies, data=payload, verify=False,\n headers=headers)\n', (6801, 6885), False, 'import requests\n'), ((6890, 6910), 'logging.debug', 'log.debug', (['resp.text'], {}), '(resp.text)\n', (6899, 6910), True, 'import logging as log\n'), ((4627, 4681), 'logging.error', 'log.error', (["('Cannot upload manifest: %s' % resp.content)"], {}), "('Cannot upload manifest: %s' % resp.content)\n", (4636, 4681), True, 'import logging as log\n'), ((5282, 5328), 'qubellclient.private.instance.Instance', 'Instance', ([], {'context': 'self.context', 'id': 'instance_id'}), '(context=self.context, id=instance_id)\n', (5290, 5328), False, 'from qubellclient.private.instance import Instance\n'), ((5355, 5412), 'logging.error', 'log.error', (["('Unable to launch instance: %s' % resp.content)"], {}), "('Unable to launch instance: %s' % resp.content)\n", (5364, 5412), True, 'import logging as log\n'), ((1338, 1350), 'qubellclient.tools.rand', 'tools.rand', ([], {}), '()\n', (1348, 1350), True, 'import qubellclient.tools as tools\n'), ((2727, 2780), 'instance.Instance', 'instance.Instance', ([], {'context': 'self.context', 'id': "ins['id']"}), "(context=self.context, id=ins['id'])\n", (2744, 2780), False, 'import instance\n'), ((3237, 3290), 'revision.Revision', 'revision.Revision', ([], {'context': 'self.context', 'id': "rev['id']"}), "(context=self.context, id=rev['id'])\n", (3254, 3290), False, 'import revision\n'), ((2967, 3012), 'logging.info', 'log.info', (["('Destroying instance %s' % obj.name)"], {}), "('Destroying instance %s' % obj.name)\n", (2975, 3012), True, 'import logging as log\n')]
"""Configurations Copyright (c) 2021 <NAME> """ # The MIT License (MIT) # # Copyright (c) 2021. <NAME> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import logging import os from config42 import ConfigManager class Config: @staticmethod def _get_cur_dir_config_file_path(environment): """Top priority configuration file :param environment: :return: """ filename = '{}.yml'.format(environment) return os.path.join(os.getcwd(), filename) @staticmethod def _get_user_dir_config_file_path(project_name, environment): """Second priority configuration file :param environment: :return: """ config_directory = '{}'.format(project_name) filename = '{}/{}.yml'.format(config_directory, environment) return os.path.join(os.path.expanduser('~'), filename) @staticmethod def _get_config_file_path(project_name, environment): """Third priority configuration file :param environment: :return: """ config_directory = '{}'.format(project_name) filename = '{}/{}.yml'.format(config_directory, environment) return os.path.join('/var/opt/sc', filename) @staticmethod def create(*, project_name, encoding='utf-8', environment=None, defaults=None): if defaults is None: defaults = {} # load defaults from home directory config_file = Config._get_config_file_path(project_name, "default") found_config_file = False if os.path.exists(config_file): logging.getLogger(__name__).info("loading default configurations from %s", config_file) config = ConfigManager(path=config_file, encoding=encoding, defaults=defaults) found_config_file = True # load environment configurations from environment variables # fix prefix to be SC prefix = "SC" env_config = ConfigManager(prefix=prefix) key_env = "environment" if environment is None: environment = env_config.get(key_env) if environment is None: # use production configuration if not specified environment environment = "production" logging.getLogger(__name__).info("did not specify environment, using %s", environment) else: logging.getLogger(__name__).info("using environment: %s", environment) # load environment configurations from /var/opt/sc directory env_config_file = Config._get_config_file_path(project_name, environment) if os.path.exists(env_config_file): logging.getLogger(__name__).info("loading environmental configurations from %s", env_config_file) if not found_config_file: config = ConfigManager(path=env_config_file, encoding=encoding, defaults=defaults) found_config_file = True else: config.set_many(ConfigManager(path=env_config_file, encoding=encoding).as_dict()) # load environment configurations from user directory user_config_file = Config._get_user_dir_config_file_path(project_name, environment) if os.path.exists(user_config_file): logging.getLogger(__name__).info("loading user directory configurations from %s", user_config_file) if not found_config_file: config = ConfigManager(path=user_config_file, encoding=encoding, defaults=defaults) found_config_file = True else: config.set_many(ConfigManager(path=user_config_file, encoding=encoding).as_dict()) # load environment configurations from current directory current_dir_config_file = Config._get_cur_dir_config_file_path(environment) if os.path.exists(current_dir_config_file): logging.getLogger(__name__).info("loading current directory configurations from %s", current_dir_config_file) logging.getLogger(__name__).info(f"found_config_file: {found_config_file}") if not found_config_file: config = ConfigManager(path=current_dir_config_file, encoding=encoding, defaults=defaults) found_config_file = True else: config.set_many(ConfigManager(path=current_dir_config_file, encoding=encoding).as_dict()) if not found_config_file: config = ConfigManager(defaults=defaults) config.set_many(env_config.as_dict()) config.set(key_env, environment) return config
[ "config42.ConfigManager", "os.path.expanduser", "os.getcwd", "os.path.exists", "os.path.join", "logging.getLogger" ]
[((2220, 2257), 'os.path.join', 'os.path.join', (['"""/var/opt/sc"""', 'filename'], {}), "('/var/opt/sc', filename)\n", (2232, 2257), False, 'import os\n'), ((2581, 2608), 'os.path.exists', 'os.path.exists', (['config_file'], {}), '(config_file)\n', (2595, 2608), False, 'import os\n'), ((2980, 3008), 'config42.ConfigManager', 'ConfigManager', ([], {'prefix': 'prefix'}), '(prefix=prefix)\n', (2993, 3008), False, 'from config42 import ConfigManager\n'), ((3642, 3673), 'os.path.exists', 'os.path.exists', (['env_config_file'], {}), '(env_config_file)\n', (3656, 3673), False, 'import os\n'), ((4245, 4277), 'os.path.exists', 'os.path.exists', (['user_config_file'], {}), '(user_config_file)\n', (4259, 4277), False, 'import os\n'), ((4848, 4887), 'os.path.exists', 'os.path.exists', (['current_dir_config_file'], {}), '(current_dir_config_file)\n', (4862, 4887), False, 'import os\n'), ((1505, 1516), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (1514, 1516), False, 'import os\n'), ((1868, 1891), 'os.path.expanduser', 'os.path.expanduser', (['"""~"""'], {}), "('~')\n", (1886, 1891), False, 'import os\n'), ((2731, 2800), 'config42.ConfigManager', 'ConfigManager', ([], {'path': 'config_file', 'encoding': 'encoding', 'defaults': 'defaults'}), '(path=config_file, encoding=encoding, defaults=defaults)\n', (2744, 2800), False, 'from config42 import ConfigManager\n'), ((5473, 5505), 'config42.ConfigManager', 'ConfigManager', ([], {'defaults': 'defaults'}), '(defaults=defaults)\n', (5486, 5505), False, 'from config42 import ConfigManager\n'), ((3848, 3921), 'config42.ConfigManager', 'ConfigManager', ([], {'path': 'env_config_file', 'encoding': 'encoding', 'defaults': 'defaults'}), '(path=env_config_file, encoding=encoding, defaults=defaults)\n', (3861, 3921), False, 'from config42 import ConfigManager\n'), ((4454, 4528), 'config42.ConfigManager', 'ConfigManager', ([], {'path': 'user_config_file', 'encoding': 'encoding', 'defaults': 'defaults'}), '(path=user_config_file, encoding=encoding, defaults=defaults)\n', (4467, 4528), False, 'from config42 import ConfigManager\n'), ((5162, 5248), 'config42.ConfigManager', 'ConfigManager', ([], {'path': 'current_dir_config_file', 'encoding': 'encoding', 'defaults': 'defaults'}), '(path=current_dir_config_file, encoding=encoding, defaults=\n defaults)\n', (5175, 5248), False, 'from config42 import ConfigManager\n'), ((2622, 2649), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (2639, 2649), False, 'import logging\n'), ((3408, 3435), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (3425, 3435), False, 'import logging\n'), ((3687, 3714), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (3704, 3714), False, 'import logging\n'), ((4291, 4318), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (4308, 4318), False, 'import logging\n'), ((4901, 4928), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (4918, 4928), False, 'import logging\n'), ((5023, 5050), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (5040, 5050), False, 'import logging\n'), ((3295, 3322), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (3312, 3322), False, 'import logging\n'), ((4013, 4067), 'config42.ConfigManager', 'ConfigManager', ([], {'path': 'env_config_file', 'encoding': 'encoding'}), '(path=env_config_file, encoding=encoding)\n', (4026, 4067), False, 'from config42 import ConfigManager\n'), ((4620, 4675), 'config42.ConfigManager', 'ConfigManager', ([], {'path': 'user_config_file', 'encoding': 'encoding'}), '(path=user_config_file, encoding=encoding)\n', (4633, 4675), False, 'from config42 import ConfigManager\n'), ((5335, 5397), 'config42.ConfigManager', 'ConfigManager', ([], {'path': 'current_dir_config_file', 'encoding': 'encoding'}), '(path=current_dir_config_file, encoding=encoding)\n', (5348, 5397), False, 'from config42 import ConfigManager\n')]
import logging from pathlib import Path import hydra from omegaconf import DictConfig from omegaconf import OmegaConf from src.evaluate import evaluate from src.plot import plot_feature from src.plot import plot_residual from src.train import train logger = logging.getLogger(__name__) @hydra.main(config_path="../configs", config_name="default") def main(cfg: DictConfig): logger.info(OmegaConf.to_yaml(cfg=cfg)) path = Path(hydra.utils.get_original_cwd()) logger.info("Train model") X_train, y_train, X_test, y_test, model = train( current_path=path, data_config=cfg.data, model_config=cfg.model ) logger.info("Evaluate model") evaluate( x_train=X_train, y_train=y_train, x_test=X_test, y_test=y_test, model=model, ) logger.info("Plot features") plot_feature( model=model, labels=X_train.columns, image_config=cfg.visualization.image, ) logger.info("Plot residual") plot_residual( x_test=X_test, y_test=y_test, model=model, image_config=cfg.visualization.image, ) if __name__ == "__main__": main()
[ "omegaconf.OmegaConf.to_yaml", "hydra.utils.get_original_cwd", "src.train.train", "src.plot.plot_residual", "hydra.main", "src.evaluate.evaluate", "src.plot.plot_feature", "logging.getLogger" ]
[((261, 288), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (278, 288), False, 'import logging\n'), ((292, 351), 'hydra.main', 'hydra.main', ([], {'config_path': '"""../configs"""', 'config_name': '"""default"""'}), "(config_path='../configs', config_name='default')\n", (302, 351), False, 'import hydra\n'), ((550, 620), 'src.train.train', 'train', ([], {'current_path': 'path', 'data_config': 'cfg.data', 'model_config': 'cfg.model'}), '(current_path=path, data_config=cfg.data, model_config=cfg.model)\n', (555, 620), False, 'from src.train import train\n'), ((674, 763), 'src.evaluate.evaluate', 'evaluate', ([], {'x_train': 'X_train', 'y_train': 'y_train', 'x_test': 'X_test', 'y_test': 'y_test', 'model': 'model'}), '(x_train=X_train, y_train=y_train, x_test=X_test, y_test=y_test,\n model=model)\n', (682, 763), False, 'from src.evaluate import evaluate\n'), ((845, 937), 'src.plot.plot_feature', 'plot_feature', ([], {'model': 'model', 'labels': 'X_train.columns', 'image_config': 'cfg.visualization.image'}), '(model=model, labels=X_train.columns, image_config=cfg.\n visualization.image)\n', (857, 937), False, 'from src.plot import plot_feature\n'), ((1002, 1101), 'src.plot.plot_residual', 'plot_residual', ([], {'x_test': 'X_test', 'y_test': 'y_test', 'model': 'model', 'image_config': 'cfg.visualization.image'}), '(x_test=X_test, y_test=y_test, model=model, image_config=cfg.\n visualization.image)\n', (1015, 1101), False, 'from src.plot import plot_residual\n'), ((395, 421), 'omegaconf.OmegaConf.to_yaml', 'OmegaConf.to_yaml', ([], {'cfg': 'cfg'}), '(cfg=cfg)\n', (412, 421), False, 'from omegaconf import OmegaConf\n'), ((440, 470), 'hydra.utils.get_original_cwd', 'hydra.utils.get_original_cwd', ([], {}), '()\n', (468, 470), False, 'import hydra\n')]
import itertools import operator from functools import wraps, cached_property from .._utils import safe_repr from ..functions import fn from ..typing import Iterator, Tuple, T, TYPE_CHECKING if TYPE_CHECKING: from .. import api as sk # noqa: F401 NOT_GIVEN = object() _iter = iter class Iter(Iterator[T]): """ Base sidekick iterator class. This class extends classical Python iterators with a few extra operators. Sidekick iterators accepts slicing, indexing, concatenation (with the + sign) repetition (with the * sign) and pretty printing. Operations that return new iterators (e.g., slicing, concatenation, etc) consume the data stream. Operations that simply peek at data execute the generator (and thus may produce side-effects), but cache values and do not consume data stream. """ __slots__ = ("_iterator", "_size_hint") _iterator: Iterator[T] if TYPE_CHECKING: from .. import seq as _mod _mod = _mod else: @cached_property def _mod(self): from .. import seq return seq def __new__(cls, iterator: Iterator[T], size_hint: int = None): if isinstance(iterator, Iter): return iterator new = object.__new__(cls) new._iterator = _iter(iterator) new._size_hint = size_hint return new def __next__(self, _next=next): return _next(self._iterator) def __iter__(self): return self._iterator def __repr__(self): it = self._iterator head = [] for _ in range(7): try: head.append(next(it)) except StopIteration: display = map(safe_repr, head) self._iterator = _iter(head) self._size_hint = len(head) break except Exception as ex: ex_name = type(ex).__name__ display = [*map(safe_repr, head), f"... ({ex_name})"] self._iterator = yield_and_raise(head, ex) self._size_hint = len(head) break else: self._iterator = itertools.chain(_iter(head), it) display = [*map(safe_repr, head[:-1]), "..."] data = ", ".join(display) return f"sk.iter([{data}])" def __getitem__(self, item, _chain=itertools.chain): if isinstance(item, int): if item >= 0: head = [] for i, x in enumerate(self._iterator): head.append(x) if i == item: self._iterator = _chain(head, self._iterator) return x else: self._iterator = _iter(head) self._size_hint = len(head) raise IndexError(item) else: raise IndexError("negative indexes are not supported") elif isinstance(item, slice): a, b, c = item.start, item.step, item.stop return Iter(itertools.islice(self._iterator, a, b, c)) elif callable(item): return Iter(filter(item, self._iterator), self._size_hint) elif isinstance(item, list): if not item: return [] if isinstance(item[0], bool): self._iterator, data = itertools.tee(self._iterator, 2) return [x for key, x in zip(item, data) if key] elif isinstance(item[0], int): self._iterator, data = itertools.tee(self._iterator, 2) data = list(itertools.islice(data, max(item) + 1)) return [data[i] for i in item] else: raise TypeError("index must contain only integers or booleans") else: size = operator.length_hint(item, -1) size = None if size == -1 else size return Iter(compress_or_select(item, self._iterator), size) def __add__(self, other, _chain=itertools.chain): if hasattr(other, "__iter__"): return Iter(_chain(self._iterator, other)) return NotImplemented def __radd__(self, other, _chain=itertools.chain): if hasattr(other, "__iter__"): return Iter(_chain(other, self._iterator)) return NotImplemented def __iadd__(self, other, _chain=itertools.chain): self._iterator = _chain(self._iterator, other) def __mul__(self, other): if isinstance(other, int): if other < 0: raise ValueError("cannot multiply by negative integers") return Iter(cycle_n(self._iterator, other)) try: data = _iter(other) except TypeError: return NotImplemented return Iter(itertools.product([self._iterator, data])) def __rmul__(self, other): if isinstance(other, int): return self.__mul__(other) try: data = _iter(other) except TypeError: return NotImplemented return Iter(itertools.product([data, self._iterator])) def __rmatmul__(self, func): if callable(func): return Iter(map(func, self._iterator), self._size_hint) return NotImplemented def __length_hint__(self): if self._size_hint is None: return operator.length_hint(self._iterator) return self._size_hint # # Conversion to collections # def list(self) -> list: """ Convert iterator to list consuming iterator. Infinite operators do not terminate. """ return list(self) def tuple(self) -> tuple: """ Convert iterator to tuple consuming iterator. Infinite operators do not terminate. """ return tuple(self) def set(self) -> set: """ Convert iterator to tuple consuming iterator. Infinite operators do not terminate. """ return set(self) def frozenset(self) -> frozenset: """ Convert iterator to tuple consuming iterator. Infinite operators do not terminate. """ return frozenset(self) def str(self) -> str: """ Convert iterator to string consuming iterator and concatenating elements. Infinite operators do not terminate. """ return "".join(self) def bytes(self) -> str: """ Convert iterator to bytes consuming iterator and concatenating elements. Infinite operators do not terminate. """ return b"".join(self) # # API # def copy(self) -> "Iter": """ Return a copy of iterator. Consuming the copy do not consume the original iterator. Internally, this method uses itertools.tee to perform the copy. If you known that the iterator will be consumed, it is faster and more memory efficient to convert it to a list and produce multiple iterators. """ self._iterator, other = itertools.tee(self._iterator, 2) return Iter(other, self._size_hint) def tee(self, n=1) -> Tuple["Iter", ...]: """ Split iterator into n additional copies. The copy method is simply an alias to iter.tee(1)[0] """ self._iterator, *rest = itertools.tee(self._iterator, n + 1) n = self._size_hint return tuple(Iter(it, n) for it in rest) def peek(self, n: int) -> Tuple: """ Peek the first n elements without consuming the iterator. """ data = tuple(itertools.islice(self._iterator, n)) self._iterator = itertools.chain(data, self._iterator) return data # # Wrapping the iterator API # def cycle_n(seq, n): data = [] store = data.append consumed = False while n > 0: if consumed: yield from data else: for x in seq: store(x) yield x if data: consumed = True else: return n -= 1 def compress(keys, seq): for x, pred in zip(seq, keys): if pred: yield x def select(keys, seq): data = [] for i in keys: try: yield data[i] except IndexError: data.extend(itertools.islice(seq, i - len(data) + 1)) yield data[i] def compress_or_select(keys, seq): keys = _iter(keys) seq = _iter(seq) try: key = next(keys) if key is True: func = compress yield next(seq) elif key is False: func = compress next(seq) elif isinstance(key, int): func = select keys = itertools.chain([key], keys) else: raise TypeError(f"invalid key: {key!r}") except StopIteration: return yield from func(keys, seq) @fn def generator(func): """ Decorates generator function to return a sidekick iterator instead of a regular Python generator. Examples: >>> @sk.generator ... def fibonacci(): ... x = y = 1 ... while True: ... yield x ... x, y = y, x + y >>> fibonacci() sk.iter([1, 1, 2, 3, 5, 8, ...]) """ @fn @wraps(func) def gen(*args, **kwargs): return Iter(func(*args, **kwargs)) return gen def stop(x=None): """ Raise StopIteration with the given argument. """ raise StopIteration(x) def yield_and_raise(data, exc): """ Return content from data and then raise exception afterwards. """ yield from data raise exc fn.generator = staticmethod(generator)
[ "operator.length_hint", "functools.wraps", "itertools.product", "itertools.tee", "itertools.islice", "itertools.chain" ]
[((9405, 9416), 'functools.wraps', 'wraps', (['func'], {}), '(func)\n', (9410, 9416), False, 'from functools import wraps, cached_property\n'), ((7084, 7116), 'itertools.tee', 'itertools.tee', (['self._iterator', '(2)'], {}), '(self._iterator, 2)\n', (7097, 7116), False, 'import itertools\n'), ((7375, 7411), 'itertools.tee', 'itertools.tee', (['self._iterator', '(n + 1)'], {}), '(self._iterator, n + 1)\n', (7388, 7411), False, 'import itertools\n'), ((7701, 7738), 'itertools.chain', 'itertools.chain', (['data', 'self._iterator'], {}), '(data, self._iterator)\n', (7716, 7738), False, 'import itertools\n'), ((4803, 4844), 'itertools.product', 'itertools.product', (['[self._iterator, data]'], {}), '([self._iterator, data])\n', (4820, 4844), False, 'import itertools\n'), ((5077, 5118), 'itertools.product', 'itertools.product', (['[data, self._iterator]'], {}), '([data, self._iterator])\n', (5094, 5118), False, 'import itertools\n'), ((5366, 5402), 'operator.length_hint', 'operator.length_hint', (['self._iterator'], {}), '(self._iterator)\n', (5386, 5402), False, 'import operator\n'), ((7639, 7674), 'itertools.islice', 'itertools.islice', (['self._iterator', 'n'], {}), '(self._iterator, n)\n', (7655, 7674), False, 'import itertools\n'), ((3064, 3105), 'itertools.islice', 'itertools.islice', (['self._iterator', 'a', 'b', 'c'], {}), '(self._iterator, a, b, c)\n', (3080, 3105), False, 'import itertools\n'), ((8819, 8847), 'itertools.chain', 'itertools.chain', (['[key]', 'keys'], {}), '([key], keys)\n', (8834, 8847), False, 'import itertools\n'), ((3836, 3866), 'operator.length_hint', 'operator.length_hint', (['item', '(-1)'], {}), '(item, -1)\n', (3856, 3866), False, 'import operator\n'), ((3378, 3410), 'itertools.tee', 'itertools.tee', (['self._iterator', '(2)'], {}), '(self._iterator, 2)\n', (3391, 3410), False, 'import itertools\n'), ((3557, 3589), 'itertools.tee', 'itertools.tee', (['self._iterator', '(2)'], {}), '(self._iterator, 2)\n', (3570, 3589), False, 'import itertools\n')]
import requests import webbrowser from os.path import dirname, exists, join, realpath from typing import List from PySide6.QtCore import QTimer, Qt, Slot from PySide6.QtGui import QIcon from PySide6.QtWidgets import * from win10toast import ToastNotifier from pathlib import Path from productiveware import encryption from productiveware.client import base_url, check_cookie, get_headers from productiveware.config import * from productiveware.widgets.log import LogWidget from productiveware.widgets.login import LoginWidget todo_url = f'{base_url}/todo' test_url = f'{base_url}/api/user' icon_path = str(Path.cwd().joinpath("productiveware", "widgets", "res", "productiveware.ico")) toaster = ToastNotifier() class MainWidget(QMainWindow): def __init__(self): super().__init__() self.setWindowTitle('productiveware') self.setWindowIcon( QIcon(join(dirname(realpath(__file__)), 'res/productiveware.png'))) widget = QWidget() layout = QGridLayout() # Backend stuff self.status = QStatusBar() self.status_refresh = QPushButton('Refresh Connection') self.sent_no_encrypt_message = False self.set_connected(self._check_connection()) # Profile specific elements self.pw_profile = QPushButton('View Todo List') self.pw_logout = QPushButton('Log out') # Directory list elements self.dir_list = QListWidget() self.dir_add = QPushButton('Add Directory') self.dir_browse = QPushButton('Browse Directory...') self.dir_remove = QPushButton('Remove Directory') for path in get_target_folders(): self.dir_list.addItem(QListWidgetItem(path)) self.old_list = self._get_list_items() # Encryption/decryption elements self.decrypt_select = QPushButton('Decrypt file...') self.decrypt_log = QPushButton('View encryption log...') self.timer = QTimer() self.delay = 5000 self.timer.timeout.connect(self.on_timer_timeout) # Save state elements self.save_list = QPushButton('Save') self.save_list.setEnabled(False) # Directory list events self.dir_list.itemDoubleClicked.connect( self.on_dir_list_double_clicked) self.dir_list.currentItemChanged.connect(self.on_dir_list_item_changed) # Button events self.pw_profile.clicked.connect(self.on_pw_profile_clicked) self.pw_logout.clicked.connect(self.on_pw_logout_clicked) self.dir_add.clicked.connect(self.on_dir_add_clicked) self.dir_browse.clicked.connect(self.on_dir_browse_clicked) self.dir_remove.clicked.connect(self.on_dir_remove_clicked) self.decrypt_select.clicked.connect(self.on_decrypt_select_clicked) self.status_refresh.clicked.connect(self.on_status_refresh_clicked) self.save_list.clicked.connect(self.on_save_list_clicked) self.decrypt_log.clicked.connect(self.on_decrypt_log_clicked) layout.addWidget(self.pw_profile, 0, 0, Qt.AlignLeft) # layout.addWidget(QLabel('Targeted files: '), 0, 1) # layout.addWidget(QLabel('Encrypted files: '), 0, 2) layout.addWidget(self.pw_logout, 0, 3, Qt.AlignRight) layout.addWidget(self.dir_list, 1, 0, 5, 3) layout.addWidget(self.dir_add, 1, 3) layout.addWidget(self.dir_browse, 2, 3) layout.addWidget(self.dir_remove, 3, 3) layout.addWidget(QLabel('Decryptions earned: '), 4, 3, Qt.AlignBottom) layout.addWidget(self.decrypt_select, 5, 3) layout.addWidget(self.status_refresh, 6, 0, Qt.AlignLeft) layout.addWidget(self.save_list, 6, 2, Qt.AlignRight) layout.addWidget(self.decrypt_log, 6, 3) widget.setLayout(layout) self.setCentralWidget(widget) self.setStatusBar(self.status) # Children widgets self.window_log = LogWidget() self.window_login = LoginWidget(self) if not check_cookie(): self.window_login.setFixedSize(300, 150) self.window_login.show() else: self.timer.start(self.delay) self.resize(800, 500) self.show() @Slot() def on_timer_timeout(self): try: response = requests.get(f"{base_url}/api/todos/overdue", headers=get_headers()) except requests.exceptions.ConnectionError: return if response.status_code == 200: for todo in response.json()["todos"]: if not todo["encrypted"]: try: path = encryption.encrypt_random_file() except RuntimeError: if not self.sent_no_encrypt_message: toaster.show_toast("You missed a todo!", f"Since you missed the due date for your todo \"{todo['text']}\", we tried to encrypt one of your files. Lucky for you, we couldn't find anything to encrypt.", icon_path=icon_path, threaded=True) self.sent_no_encrypt_message = True else: toaster.show_toast("You missed a todo!", f"Since you missed the due date for your todo \"{todo['text']}\", we encrypted this file: {path}", icon_path=icon_path, threaded=True) requests.put(f"{base_url}/api/todos/encrypt", headers=get_headers(), json={"id": todo["_id"]}) self.timer.start(self.delay) @Slot() def on_pw_profile_clicked(self): webbrowser.open(todo_url) @Slot() def on_pw_logout_clicked(self): set_cookie(None) self.hide() self.window_login.show() @Slot() def on_dir_list_double_clicked(self, item: QListWidgetItem): item.setFlags(item.flags() | Qt.ItemIsEditable) @Slot() def on_dir_list_item_changed(self, current: QListWidgetItem, prev: QListWidgetItem): new_list = self._get_list_items() if new_list != self.old_list: self.save_list.setEnabled(True) if prev is not None and prev.flags() & Qt.ItemIsEditable != 0: prev.setFlags(prev.flags() ^ Qt.ItemIsEditable) @Slot() def on_dir_add_clicked(self): self.dir_list.addItem(QListWidgetItem('Double click to edit...')) @Slot() def on_dir_browse_clicked(self): browser = QFileDialog(self) browser.setFileMode(QFileDialog.Directory) if browser.exec(): self.dir_list.addItems(browser.selectedFiles()) self.save_list.setEnabled(True) @Slot() def on_dir_remove_clicked(self): current = self.dir_list.currentItem() if current is not None: remove_target_folder(current.text()) self.dir_list.takeItem(self.dir_list.row(current)) @Slot() def on_decrypt_select_clicked(self): browser = QFileDialog(self, filter='*.pw_encrypt') browser.setFileMode(QFileDialog.ExistingFiles) if browser.exec(): for target in browser.selectedFiles(): encryption.decrypt_file(target) @Slot() def on_status_refresh_clicked(self): if self._check_connection(): self.status_refresh.setEnabled(False) @Slot() def on_save_list_clicked(self): items = self._get_list_items() clear_target_folders() for item in items: if not exists(item): warn = QMessageBox(QMessageBox.Warning, 'Invalid Path', f'The entry "{item}" is invalid.', QMessageBox.Ok) warn.show() return warn.exec() for item in items: add_target_folder(item) self.sent_no_encrypt_message = False self.save_list.setEnabled(False) @Slot() def on_decrypt_log_clicked(self): self.window_log.resize(700, 400) self.window_log.show() def set_connected(self, connected: bool): if connected: self.status.setStyleSheet('QStatusBar { color: green; }') self.status.showMessage('Connected') else: self.status.setStyleSheet('QStatusBar { color: red; }') self.status.showMessage('Disconnected') def _get_list_items(self) -> List[str]: items = [] for i in range(self.dir_list.count()): items.append(self.dir_list.item(i).text()) return items def _check_connection(self) -> bool: try: # Not the greatest solution but it works requests.get(test_url) self.set_connected(True) self.status_refresh.setEnabled(False) return True except requests.exceptions.ConnectionError: self.set_connected(False) not_connected = QMessageBox(QMessageBox.Critical, 'Unable to Connect', 'The productiveware client was unable to connect to the server. ' + 'Please check your internet connection and click on "Refresh Connection".', QMessageBox.Ok) not_connected.show() not_connected.exec() return False
[ "productiveware.client.get_headers", "webbrowser.open", "productiveware.widgets.login.LoginWidget", "pathlib.Path.cwd", "os.path.realpath", "PySide6.QtCore.Slot", "os.path.exists", "PySide6.QtCore.QTimer", "productiveware.encryption.decrypt_file", "requests.get", "win10toast.ToastNotifier", "productiveware.encryption.encrypt_random_file", "productiveware.client.check_cookie", "productiveware.widgets.log.LogWidget" ]
[((698, 713), 'win10toast.ToastNotifier', 'ToastNotifier', ([], {}), '()\n', (711, 713), False, 'from win10toast import ToastNotifier\n'), ((4257, 4263), 'PySide6.QtCore.Slot', 'Slot', ([], {}), '()\n', (4261, 4263), False, 'from PySide6.QtCore import QTimer, Qt, Slot\n'), ((5512, 5518), 'PySide6.QtCore.Slot', 'Slot', ([], {}), '()\n', (5516, 5518), False, 'from PySide6.QtCore import QTimer, Qt, Slot\n'), ((5596, 5602), 'PySide6.QtCore.Slot', 'Slot', ([], {}), '()\n', (5600, 5602), False, 'from PySide6.QtCore import QTimer, Qt, Slot\n'), ((5723, 5729), 'PySide6.QtCore.Slot', 'Slot', ([], {}), '()\n', (5727, 5729), False, 'from PySide6.QtCore import QTimer, Qt, Slot\n'), ((5857, 5863), 'PySide6.QtCore.Slot', 'Slot', ([], {}), '()\n', (5861, 5863), False, 'from PySide6.QtCore import QTimer, Qt, Slot\n'), ((6216, 6222), 'PySide6.QtCore.Slot', 'Slot', ([], {}), '()\n', (6220, 6222), False, 'from PySide6.QtCore import QTimer, Qt, Slot\n'), ((6337, 6343), 'PySide6.QtCore.Slot', 'Slot', ([], {}), '()\n', (6341, 6343), False, 'from PySide6.QtCore import QTimer, Qt, Slot\n'), ((6606, 6612), 'PySide6.QtCore.Slot', 'Slot', ([], {}), '()\n', (6610, 6612), False, 'from PySide6.QtCore import QTimer, Qt, Slot\n'), ((6847, 6853), 'PySide6.QtCore.Slot', 'Slot', ([], {}), '()\n', (6851, 6853), False, 'from PySide6.QtCore import QTimer, Qt, Slot\n'), ((7150, 7156), 'PySide6.QtCore.Slot', 'Slot', ([], {}), '()\n', (7154, 7156), False, 'from PySide6.QtCore import QTimer, Qt, Slot\n'), ((7291, 7297), 'PySide6.QtCore.Slot', 'Slot', ([], {}), '()\n', (7295, 7297), False, 'from PySide6.QtCore import QTimer, Qt, Slot\n'), ((7842, 7848), 'PySide6.QtCore.Slot', 'Slot', ([], {}), '()\n', (7846, 7848), False, 'from PySide6.QtCore import QTimer, Qt, Slot\n'), ((1956, 1964), 'PySide6.QtCore.QTimer', 'QTimer', ([], {}), '()\n', (1962, 1964), False, 'from PySide6.QtCore import QTimer, Qt, Slot\n'), ((3957, 3968), 'productiveware.widgets.log.LogWidget', 'LogWidget', ([], {}), '()\n', (3966, 3968), False, 'from productiveware.widgets.log import LogWidget\n'), ((3997, 4014), 'productiveware.widgets.login.LoginWidget', 'LoginWidget', (['self'], {}), '(self)\n', (4008, 4014), False, 'from productiveware.widgets.login import LoginWidget\n'), ((5564, 5589), 'webbrowser.open', 'webbrowser.open', (['todo_url'], {}), '(todo_url)\n', (5579, 5589), False, 'import webbrowser\n'), ((609, 619), 'pathlib.Path.cwd', 'Path.cwd', ([], {}), '()\n', (617, 619), False, 'from pathlib import Path\n'), ((4031, 4045), 'productiveware.client.check_cookie', 'check_cookie', ([], {}), '()\n', (4043, 4045), False, 'from productiveware.client import base_url, check_cookie, get_headers\n'), ((8590, 8612), 'requests.get', 'requests.get', (['test_url'], {}), '(test_url)\n', (8602, 8612), False, 'import requests\n'), ((7112, 7143), 'productiveware.encryption.decrypt_file', 'encryption.decrypt_file', (['target'], {}), '(target)\n', (7135, 7143), False, 'from productiveware import encryption\n'), ((7451, 7463), 'os.path.exists', 'exists', (['item'], {}), '(item)\n', (7457, 7463), False, 'from os.path import dirname, exists, join, realpath\n'), ((4386, 4399), 'productiveware.client.get_headers', 'get_headers', ([], {}), '()\n', (4397, 4399), False, 'from productiveware.client import base_url, check_cookie, get_headers\n'), ((904, 922), 'os.path.realpath', 'realpath', (['__file__'], {}), '(__file__)\n', (912, 922), False, 'from os.path import dirname, exists, join, realpath\n'), ((4660, 4692), 'productiveware.encryption.encrypt_random_file', 'encryption.encrypt_random_file', ([], {}), '()\n', (4690, 4692), False, 'from productiveware import encryption\n'), ((5428, 5441), 'productiveware.client.get_headers', 'get_headers', ([], {}), '()\n', (5439, 5441), False, 'from productiveware.client import base_url, check_cookie, get_headers\n')]
# Generated by Django 3.1 on 2022-02-28 10:11 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='MortalityFact', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('gender', models.IntegerField(choices=[(0, 'Male'), (1, 'Female')])), ('age_group', models.IntegerField(choices=[(0, '0 - 4'), (1, '5 - 9'), (2, '10 - 14'), (3, '15 - 19'), (4, '20 - 24'), (5, '25 - 29'), (6, '30 - 34'), (7, '35 - 39'), (8, '40 - 44'), (9, '45 - 49'), (10, '50 - 54'), (11, '55 - 59'), (12, '60 - 64'), (13, '65 - 69'), (14, '70 - 74'), (15, '75 - 79'), (16, '80 - 84'), (17, '85 - 89'), (18, '90 +')])), ('region', models.IntegerField(choices=[(0, 'Dolnośląskie'), (1, 'Kujawsko-pomorskie'), (2, 'Lubelskie'), (3, 'Lubuskie'), (4, 'Łódzkie'), (5, 'Małopolskie'), (6, 'Mazowieckie'), (7, 'Opolskie'), (8, 'Podkarpackie'), (9, 'Podlaskie'), (10, 'Pomorskie'), (11, 'Śląskie'), (12, 'Świętokrzyskie'), (13, 'Warmińsko-mazurskie'), (14, 'Wielkopolskie'), (15, 'Zachodniopomorskie')])), ('year', models.IntegerField()), ('week', models.IntegerField()), ('deceased_actuals', models.IntegerField()), ], ), ]
[ "django.db.models.IntegerField", "django.db.models.AutoField" ]
[((307, 400), 'django.db.models.AutoField', 'models.AutoField', ([], {'auto_created': '(True)', 'primary_key': '(True)', 'serialize': '(False)', 'verbose_name': '"""ID"""'}), "(auto_created=True, primary_key=True, serialize=False,\n verbose_name='ID')\n", (323, 400), False, 'from django.db import migrations, models\n'), ((426, 483), 'django.db.models.IntegerField', 'models.IntegerField', ([], {'choices': "[(0, 'Male'), (1, 'Female')]"}), "(choices=[(0, 'Male'), (1, 'Female')])\n", (445, 483), False, 'from django.db import migrations, models\n'), ((516, 867), 'django.db.models.IntegerField', 'models.IntegerField', ([], {'choices': "[(0, '0 - 4'), (1, '5 - 9'), (2, '10 - 14'), (3, '15 - 19'), (4, '20 - 24'),\n (5, '25 - 29'), (6, '30 - 34'), (7, '35 - 39'), (8, '40 - 44'), (9,\n '45 - 49'), (10, '50 - 54'), (11, '55 - 59'), (12, '60 - 64'), (13,\n '65 - 69'), (14, '70 - 74'), (15, '75 - 79'), (16, '80 - 84'), (17,\n '85 - 89'), (18, '90 +')]"}), "(choices=[(0, '0 - 4'), (1, '5 - 9'), (2, '10 - 14'), (3,\n '15 - 19'), (4, '20 - 24'), (5, '25 - 29'), (6, '30 - 34'), (7,\n '35 - 39'), (8, '40 - 44'), (9, '45 - 49'), (10, '50 - 54'), (11,\n '55 - 59'), (12, '60 - 64'), (13, '65 - 69'), (14, '70 - 74'), (15,\n '75 - 79'), (16, '80 - 84'), (17, '85 - 89'), (18, '90 +')])\n", (535, 867), False, 'from django.db import migrations, models\n'), ((881, 1266), 'django.db.models.IntegerField', 'models.IntegerField', ([], {'choices': "[(0, 'Dolnośląskie'), (1, 'Kujawsko-pomorskie'), (2, 'Lubelskie'), (3,\n 'Lubuskie'), (4, 'Łódzkie'), (5, 'Małopolskie'), (6, 'Mazowieckie'), (7,\n 'Opolskie'), (8, 'Podkarpackie'), (9, 'Podlaskie'), (10, 'Pomorskie'),\n (11, 'Śląskie'), (12, 'Świętokrzyskie'), (13, 'Warmińsko-mazurskie'), (\n 14, 'Wielkopolskie'), (15, 'Zachodniopomorskie')]"}), "(choices=[(0, 'Dolnośląskie'), (1, 'Kujawsko-pomorskie'),\n (2, 'Lubelskie'), (3, 'Lubuskie'), (4, 'Łódzkie'), (5, 'Małopolskie'),\n (6, 'Mazowieckie'), (7, 'Opolskie'), (8, 'Podkarpackie'), (9,\n 'Podlaskie'), (10, 'Pomorskie'), (11, 'Śląskie'), (12, 'Świętokrzyskie'\n ), (13, 'Warmińsko-mazurskie'), (14, 'Wielkopolskie'), (15,\n 'Zachodniopomorskie')])\n", (900, 1266), False, 'from django.db import migrations, models\n'), ((1273, 1294), 'django.db.models.IntegerField', 'models.IntegerField', ([], {}), '()\n', (1292, 1294), False, 'from django.db import migrations, models\n'), ((1322, 1343), 'django.db.models.IntegerField', 'models.IntegerField', ([], {}), '()\n', (1341, 1343), False, 'from django.db import migrations, models\n'), ((1383, 1404), 'django.db.models.IntegerField', 'models.IntegerField', ([], {}), '()\n', (1402, 1404), False, 'from django.db import migrations, models\n')]
from jinja2 import Environment, PackageLoader from threading import Timer import os from collections import OrderedDict from IPython.display import IFrame env = Environment( loader=PackageLoader('pyhandsontable', 'templates') ) def generate_html(data, **kwargs): renderers = kwargs.pop('renderers', dict()) config = kwargs.pop('config', dict()) if isinstance(data[0], (dict, OrderedDict)): headers = sum((list(d.keys()) for d in data), list()) headers = [h for i, h in enumerate(headers) if h not in headers[:i]] config['colHeaders'] = list(headers) else: headers = range(len(data[0])) columns = [] for header in headers: columnData = { 'data': header, 'renderer': 'jsonRenderer' } if header in renderers.keys(): columnData['renderer'] = renderers.get(header) columns.append(columnData) template = env.get_template('sheet.html') return template.render(data=data, columns=columns, config=config, **kwargs) def view_table(data, width=1000, height=500, filename='temp.handsontable.html', autodelete=True, **kwargs): # A TemporaryFile does not work with Jupyter Notebook try: with open(filename, 'w') as f: f.write(generate_html(data=data, width=width, height=height, **kwargs)) return IFrame(filename, width=width, height=height) finally: if autodelete: Timer(5, os.unlink, args=[filename]).start()
[ "jinja2.PackageLoader", "IPython.display.IFrame", "threading.Timer" ]
[((186, 230), 'jinja2.PackageLoader', 'PackageLoader', (['"""pyhandsontable"""', '"""templates"""'], {}), "('pyhandsontable', 'templates')\n", (199, 230), False, 'from jinja2 import Environment, PackageLoader\n'), ((1380, 1424), 'IPython.display.IFrame', 'IFrame', (['filename'], {'width': 'width', 'height': 'height'}), '(filename, width=width, height=height)\n', (1386, 1424), False, 'from IPython.display import IFrame\n'), ((1473, 1509), 'threading.Timer', 'Timer', (['(5)', 'os.unlink'], {'args': '[filename]'}), '(5, os.unlink, args=[filename])\n', (1478, 1509), False, 'from threading import Timer\n')]
import sys import socket try: import riak except ImportError: print("Riak test requested, but riak library not installed. " "Try 'pip install riak' and try again.") sys.exit(1) def riak_check(config): host = config.get("host", "localhost") port = int(config.get("port", 8087)) def_timeout = socket.getdefaulttimeout() socket.setdefaulttimeout(1.5) rc = riak.RiakClient(nodes=[{"host": host, "pb_port": port}]) try: res = rc.ping() except: return False else: return True finally: rc.close() socket.setdefaulttimeout(def_timeout)
[ "riak.RiakClient", "socket.setdefaulttimeout", "socket.getdefaulttimeout", "sys.exit" ]
[((326, 352), 'socket.getdefaulttimeout', 'socket.getdefaulttimeout', ([], {}), '()\n', (350, 352), False, 'import socket\n'), ((357, 386), 'socket.setdefaulttimeout', 'socket.setdefaulttimeout', (['(1.5)'], {}), '(1.5)\n', (381, 386), False, 'import socket\n'), ((396, 452), 'riak.RiakClient', 'riak.RiakClient', ([], {'nodes': "[{'host': host, 'pb_port': port}]"}), "(nodes=[{'host': host, 'pb_port': port}])\n", (411, 452), False, 'import riak\n'), ((187, 198), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (195, 198), False, 'import sys\n'), ((589, 626), 'socket.setdefaulttimeout', 'socket.setdefaulttimeout', (['def_timeout'], {}), '(def_timeout)\n', (613, 626), False, 'import socket\n')]
from django.shortcuts import render from django.views.generic import CreateView from django.core.urlresolvers import reverse_lazy from .models import User from .forms import UserAdminCreationForm class RegisterView(CreateView): model = User template_name = 'accounts/register.html' form_class = UserAdminCreationForm success_url = reverse_lazy('index') register = RegisterView.as_view()
[ "django.core.urlresolvers.reverse_lazy" ]
[((338, 359), 'django.core.urlresolvers.reverse_lazy', 'reverse_lazy', (['"""index"""'], {}), "('index')\n", (350, 359), False, 'from django.core.urlresolvers import reverse_lazy\n')]
import pytest from pytorch_lightning import Trainer from pyannote.audio.models.segmentation.debug import SimpleSegmentationModel from pyannote.audio.tasks import ( OverlappedSpeechDetection, Segmentation, VoiceActivityDetection, ) from pyannote.database import FileFinder, get_protocol @pytest.fixture() def protocol(): return get_protocol( "Debug.SpeakerDiarization.Debug", preprocessors={"audio": FileFinder()} ) def test_train_segmentation(protocol): segmentation = Segmentation(protocol) model = SimpleSegmentationModel(task=segmentation) trainer = Trainer(fast_dev_run=True) trainer.fit(model) def test_train_voice_activity_detection(protocol): voice_activity_detection = VoiceActivityDetection(protocol) model = SimpleSegmentationModel(task=voice_activity_detection) trainer = Trainer(fast_dev_run=True) trainer.fit(model) def test_train_overlapped_speech_detection(protocol): overlapped_speech_detection = OverlappedSpeechDetection(protocol) model = SimpleSegmentationModel(task=overlapped_speech_detection) trainer = Trainer(fast_dev_run=True) trainer.fit(model) def test_finetune_with_task_that_does_not_need_setup_for_specs(protocol): voice_activity_detection = VoiceActivityDetection(protocol) model = SimpleSegmentationModel(task=voice_activity_detection) trainer = Trainer(fast_dev_run=True) trainer.fit(model) voice_activity_detection = VoiceActivityDetection(protocol) model.task = voice_activity_detection trainer = Trainer(fast_dev_run=True) trainer.fit(model) def test_finetune_with_task_that_needs_setup_for_specs(protocol): segmentation = Segmentation(protocol) model = SimpleSegmentationModel(task=segmentation) trainer = Trainer(fast_dev_run=True) trainer.fit(model) segmentation = Segmentation(protocol) model.task = segmentation trainer = Trainer(fast_dev_run=True) trainer.fit(model) def test_transfer_with_task_that_does_not_need_setup_for_specs(protocol): segmentation = Segmentation(protocol) model = SimpleSegmentationModel(task=segmentation) trainer = Trainer(fast_dev_run=True) trainer.fit(model) voice_activity_detection = VoiceActivityDetection(protocol) model.task = voice_activity_detection trainer = Trainer(fast_dev_run=True) trainer.fit(model) def test_transfer_with_task_that_needs_setup_for_specs(protocol): voice_activity_detection = VoiceActivityDetection(protocol) model = SimpleSegmentationModel(task=voice_activity_detection) trainer = Trainer(fast_dev_run=True) trainer.fit(model) segmentation = Segmentation(protocol) model.task = segmentation trainer = Trainer(fast_dev_run=True) trainer.fit(model) def test_finetune_freeze_with_task_that_needs_setup_for_specs(protocol): segmentation = Segmentation(protocol) model = SimpleSegmentationModel(task=segmentation) trainer = Trainer(fast_dev_run=True) trainer.fit(model) segmentation = Segmentation(protocol) model.task = segmentation model.freeze_up_to("mfcc") trainer = Trainer(fast_dev_run=True) trainer.fit(model) def test_finetune_freeze_with_task_that_does_not_need_setup_for_specs(protocol): vad = VoiceActivityDetection(protocol) model = SimpleSegmentationModel(task=vad) trainer = Trainer(fast_dev_run=True) trainer.fit(model) vad = VoiceActivityDetection(protocol) model.task = vad model.freeze_up_to("mfcc") trainer = Trainer(fast_dev_run=True) trainer.fit(model) def test_transfer_freeze_with_task_that_does_not_need_setup_for_specs(protocol): segmentation = Segmentation(protocol) model = SimpleSegmentationModel(task=segmentation) trainer = Trainer(fast_dev_run=True) trainer.fit(model) voice_activity_detection = VoiceActivityDetection(protocol) model.task = voice_activity_detection model.freeze_up_to("mfcc") trainer = Trainer(fast_dev_run=True) trainer.fit(model) def test_transfer_freeze_with_task_that_needs_setup_for_specs(protocol): voice_activity_detection = VoiceActivityDetection(protocol) model = SimpleSegmentationModel(task=voice_activity_detection) trainer = Trainer(fast_dev_run=True) trainer.fit(model) segmentation = Segmentation(protocol) model.task = segmentation model.freeze_up_to("mfcc") trainer = Trainer(fast_dev_run=True) trainer.fit(model)
[ "pytorch_lightning.Trainer", "pytest.fixture", "pyannote.audio.models.segmentation.debug.SimpleSegmentationModel", "pyannote.audio.tasks.VoiceActivityDetection", "pyannote.database.FileFinder", "pyannote.audio.tasks.OverlappedSpeechDetection", "pyannote.audio.tasks.Segmentation" ]
[((302, 318), 'pytest.fixture', 'pytest.fixture', ([], {}), '()\n', (316, 318), False, 'import pytest\n'), ((506, 528), 'pyannote.audio.tasks.Segmentation', 'Segmentation', (['protocol'], {}), '(protocol)\n', (518, 528), False, 'from pyannote.audio.tasks import OverlappedSpeechDetection, Segmentation, VoiceActivityDetection\n'), ((541, 583), 'pyannote.audio.models.segmentation.debug.SimpleSegmentationModel', 'SimpleSegmentationModel', ([], {'task': 'segmentation'}), '(task=segmentation)\n', (564, 583), False, 'from pyannote.audio.models.segmentation.debug import SimpleSegmentationModel\n'), ((598, 624), 'pytorch_lightning.Trainer', 'Trainer', ([], {'fast_dev_run': '(True)'}), '(fast_dev_run=True)\n', (605, 624), False, 'from pytorch_lightning import Trainer\n'), ((732, 764), 'pyannote.audio.tasks.VoiceActivityDetection', 'VoiceActivityDetection', (['protocol'], {}), '(protocol)\n', (754, 764), False, 'from pyannote.audio.tasks import OverlappedSpeechDetection, Segmentation, VoiceActivityDetection\n'), ((777, 831), 'pyannote.audio.models.segmentation.debug.SimpleSegmentationModel', 'SimpleSegmentationModel', ([], {'task': 'voice_activity_detection'}), '(task=voice_activity_detection)\n', (800, 831), False, 'from pyannote.audio.models.segmentation.debug import SimpleSegmentationModel\n'), ((846, 872), 'pytorch_lightning.Trainer', 'Trainer', ([], {'fast_dev_run': '(True)'}), '(fast_dev_run=True)\n', (853, 872), False, 'from pytorch_lightning import Trainer\n'), ((986, 1021), 'pyannote.audio.tasks.OverlappedSpeechDetection', 'OverlappedSpeechDetection', (['protocol'], {}), '(protocol)\n', (1011, 1021), False, 'from pyannote.audio.tasks import OverlappedSpeechDetection, Segmentation, VoiceActivityDetection\n'), ((1034, 1091), 'pyannote.audio.models.segmentation.debug.SimpleSegmentationModel', 'SimpleSegmentationModel', ([], {'task': 'overlapped_speech_detection'}), '(task=overlapped_speech_detection)\n', (1057, 1091), False, 'from pyannote.audio.models.segmentation.debug import SimpleSegmentationModel\n'), ((1106, 1132), 'pytorch_lightning.Trainer', 'Trainer', ([], {'fast_dev_run': '(True)'}), '(fast_dev_run=True)\n', (1113, 1132), False, 'from pytorch_lightning import Trainer\n'), ((1263, 1295), 'pyannote.audio.tasks.VoiceActivityDetection', 'VoiceActivityDetection', (['protocol'], {}), '(protocol)\n', (1285, 1295), False, 'from pyannote.audio.tasks import OverlappedSpeechDetection, Segmentation, VoiceActivityDetection\n'), ((1308, 1362), 'pyannote.audio.models.segmentation.debug.SimpleSegmentationModel', 'SimpleSegmentationModel', ([], {'task': 'voice_activity_detection'}), '(task=voice_activity_detection)\n', (1331, 1362), False, 'from pyannote.audio.models.segmentation.debug import SimpleSegmentationModel\n'), ((1377, 1403), 'pytorch_lightning.Trainer', 'Trainer', ([], {'fast_dev_run': '(True)'}), '(fast_dev_run=True)\n', (1384, 1403), False, 'from pytorch_lightning import Trainer\n'), ((1459, 1491), 'pyannote.audio.tasks.VoiceActivityDetection', 'VoiceActivityDetection', (['protocol'], {}), '(protocol)\n', (1481, 1491), False, 'from pyannote.audio.tasks import OverlappedSpeechDetection, Segmentation, VoiceActivityDetection\n'), ((1548, 1574), 'pytorch_lightning.Trainer', 'Trainer', ([], {'fast_dev_run': '(True)'}), '(fast_dev_run=True)\n', (1555, 1574), False, 'from pytorch_lightning import Trainer\n'), ((1685, 1707), 'pyannote.audio.tasks.Segmentation', 'Segmentation', (['protocol'], {}), '(protocol)\n', (1697, 1707), False, 'from pyannote.audio.tasks import OverlappedSpeechDetection, Segmentation, VoiceActivityDetection\n'), ((1720, 1762), 'pyannote.audio.models.segmentation.debug.SimpleSegmentationModel', 'SimpleSegmentationModel', ([], {'task': 'segmentation'}), '(task=segmentation)\n', (1743, 1762), False, 'from pyannote.audio.models.segmentation.debug import SimpleSegmentationModel\n'), ((1777, 1803), 'pytorch_lightning.Trainer', 'Trainer', ([], {'fast_dev_run': '(True)'}), '(fast_dev_run=True)\n', (1784, 1803), False, 'from pytorch_lightning import Trainer\n'), ((1847, 1869), 'pyannote.audio.tasks.Segmentation', 'Segmentation', (['protocol'], {}), '(protocol)\n', (1859, 1869), False, 'from pyannote.audio.tasks import OverlappedSpeechDetection, Segmentation, VoiceActivityDetection\n'), ((1914, 1940), 'pytorch_lightning.Trainer', 'Trainer', ([], {'fast_dev_run': '(True)'}), '(fast_dev_run=True)\n', (1921, 1940), False, 'from pytorch_lightning import Trainer\n'), ((2060, 2082), 'pyannote.audio.tasks.Segmentation', 'Segmentation', (['protocol'], {}), '(protocol)\n', (2072, 2082), False, 'from pyannote.audio.tasks import OverlappedSpeechDetection, Segmentation, VoiceActivityDetection\n'), ((2095, 2137), 'pyannote.audio.models.segmentation.debug.SimpleSegmentationModel', 'SimpleSegmentationModel', ([], {'task': 'segmentation'}), '(task=segmentation)\n', (2118, 2137), False, 'from pyannote.audio.models.segmentation.debug import SimpleSegmentationModel\n'), ((2152, 2178), 'pytorch_lightning.Trainer', 'Trainer', ([], {'fast_dev_run': '(True)'}), '(fast_dev_run=True)\n', (2159, 2178), False, 'from pytorch_lightning import Trainer\n'), ((2234, 2266), 'pyannote.audio.tasks.VoiceActivityDetection', 'VoiceActivityDetection', (['protocol'], {}), '(protocol)\n', (2256, 2266), False, 'from pyannote.audio.tasks import OverlappedSpeechDetection, Segmentation, VoiceActivityDetection\n'), ((2323, 2349), 'pytorch_lightning.Trainer', 'Trainer', ([], {'fast_dev_run': '(True)'}), '(fast_dev_run=True)\n', (2330, 2349), False, 'from pytorch_lightning import Trainer\n'), ((2473, 2505), 'pyannote.audio.tasks.VoiceActivityDetection', 'VoiceActivityDetection', (['protocol'], {}), '(protocol)\n', (2495, 2505), False, 'from pyannote.audio.tasks import OverlappedSpeechDetection, Segmentation, VoiceActivityDetection\n'), ((2518, 2572), 'pyannote.audio.models.segmentation.debug.SimpleSegmentationModel', 'SimpleSegmentationModel', ([], {'task': 'voice_activity_detection'}), '(task=voice_activity_detection)\n', (2541, 2572), False, 'from pyannote.audio.models.segmentation.debug import SimpleSegmentationModel\n'), ((2587, 2613), 'pytorch_lightning.Trainer', 'Trainer', ([], {'fast_dev_run': '(True)'}), '(fast_dev_run=True)\n', (2594, 2613), False, 'from pytorch_lightning import Trainer\n'), ((2657, 2679), 'pyannote.audio.tasks.Segmentation', 'Segmentation', (['protocol'], {}), '(protocol)\n', (2669, 2679), False, 'from pyannote.audio.tasks import OverlappedSpeechDetection, Segmentation, VoiceActivityDetection\n'), ((2724, 2750), 'pytorch_lightning.Trainer', 'Trainer', ([], {'fast_dev_run': '(True)'}), '(fast_dev_run=True)\n', (2731, 2750), False, 'from pytorch_lightning import Trainer\n'), ((2869, 2891), 'pyannote.audio.tasks.Segmentation', 'Segmentation', (['protocol'], {}), '(protocol)\n', (2881, 2891), False, 'from pyannote.audio.tasks import OverlappedSpeechDetection, Segmentation, VoiceActivityDetection\n'), ((2904, 2946), 'pyannote.audio.models.segmentation.debug.SimpleSegmentationModel', 'SimpleSegmentationModel', ([], {'task': 'segmentation'}), '(task=segmentation)\n', (2927, 2946), False, 'from pyannote.audio.models.segmentation.debug import SimpleSegmentationModel\n'), ((2961, 2987), 'pytorch_lightning.Trainer', 'Trainer', ([], {'fast_dev_run': '(True)'}), '(fast_dev_run=True)\n', (2968, 2987), False, 'from pytorch_lightning import Trainer\n'), ((3031, 3053), 'pyannote.audio.tasks.Segmentation', 'Segmentation', (['protocol'], {}), '(protocol)\n', (3043, 3053), False, 'from pyannote.audio.tasks import OverlappedSpeechDetection, Segmentation, VoiceActivityDetection\n'), ((3129, 3155), 'pytorch_lightning.Trainer', 'Trainer', ([], {'fast_dev_run': '(True)'}), '(fast_dev_run=True)\n', (3136, 3155), False, 'from pytorch_lightning import Trainer\n'), ((3273, 3305), 'pyannote.audio.tasks.VoiceActivityDetection', 'VoiceActivityDetection', (['protocol'], {}), '(protocol)\n', (3295, 3305), False, 'from pyannote.audio.tasks import OverlappedSpeechDetection, Segmentation, VoiceActivityDetection\n'), ((3318, 3351), 'pyannote.audio.models.segmentation.debug.SimpleSegmentationModel', 'SimpleSegmentationModel', ([], {'task': 'vad'}), '(task=vad)\n', (3341, 3351), False, 'from pyannote.audio.models.segmentation.debug import SimpleSegmentationModel\n'), ((3366, 3392), 'pytorch_lightning.Trainer', 'Trainer', ([], {'fast_dev_run': '(True)'}), '(fast_dev_run=True)\n', (3373, 3392), False, 'from pytorch_lightning import Trainer\n'), ((3427, 3459), 'pyannote.audio.tasks.VoiceActivityDetection', 'VoiceActivityDetection', (['protocol'], {}), '(protocol)\n', (3449, 3459), False, 'from pyannote.audio.tasks import OverlappedSpeechDetection, Segmentation, VoiceActivityDetection\n'), ((3526, 3552), 'pytorch_lightning.Trainer', 'Trainer', ([], {'fast_dev_run': '(True)'}), '(fast_dev_run=True)\n', (3533, 3552), False, 'from pytorch_lightning import Trainer\n'), ((3679, 3701), 'pyannote.audio.tasks.Segmentation', 'Segmentation', (['protocol'], {}), '(protocol)\n', (3691, 3701), False, 'from pyannote.audio.tasks import OverlappedSpeechDetection, Segmentation, VoiceActivityDetection\n'), ((3714, 3756), 'pyannote.audio.models.segmentation.debug.SimpleSegmentationModel', 'SimpleSegmentationModel', ([], {'task': 'segmentation'}), '(task=segmentation)\n', (3737, 3756), False, 'from pyannote.audio.models.segmentation.debug import SimpleSegmentationModel\n'), ((3771, 3797), 'pytorch_lightning.Trainer', 'Trainer', ([], {'fast_dev_run': '(True)'}), '(fast_dev_run=True)\n', (3778, 3797), False, 'from pytorch_lightning import Trainer\n'), ((3853, 3885), 'pyannote.audio.tasks.VoiceActivityDetection', 'VoiceActivityDetection', (['protocol'], {}), '(protocol)\n', (3875, 3885), False, 'from pyannote.audio.tasks import OverlappedSpeechDetection, Segmentation, VoiceActivityDetection\n'), ((3973, 3999), 'pytorch_lightning.Trainer', 'Trainer', ([], {'fast_dev_run': '(True)'}), '(fast_dev_run=True)\n', (3980, 3999), False, 'from pytorch_lightning import Trainer\n'), ((4130, 4162), 'pyannote.audio.tasks.VoiceActivityDetection', 'VoiceActivityDetection', (['protocol'], {}), '(protocol)\n', (4152, 4162), False, 'from pyannote.audio.tasks import OverlappedSpeechDetection, Segmentation, VoiceActivityDetection\n'), ((4175, 4229), 'pyannote.audio.models.segmentation.debug.SimpleSegmentationModel', 'SimpleSegmentationModel', ([], {'task': 'voice_activity_detection'}), '(task=voice_activity_detection)\n', (4198, 4229), False, 'from pyannote.audio.models.segmentation.debug import SimpleSegmentationModel\n'), ((4244, 4270), 'pytorch_lightning.Trainer', 'Trainer', ([], {'fast_dev_run': '(True)'}), '(fast_dev_run=True)\n', (4251, 4270), False, 'from pytorch_lightning import Trainer\n'), ((4314, 4336), 'pyannote.audio.tasks.Segmentation', 'Segmentation', (['protocol'], {}), '(protocol)\n', (4326, 4336), False, 'from pyannote.audio.tasks import OverlappedSpeechDetection, Segmentation, VoiceActivityDetection\n'), ((4412, 4438), 'pytorch_lightning.Trainer', 'Trainer', ([], {'fast_dev_run': '(True)'}), '(fast_dev_run=True)\n', (4419, 4438), False, 'from pytorch_lightning import Trainer\n'), ((426, 438), 'pyannote.database.FileFinder', 'FileFinder', ([], {}), '()\n', (436, 438), False, 'from pyannote.database import FileFinder, get_protocol\n')]
import quadratic_provers as q data = q.eval_across_field([1, 2, 3, 4], 11) qproof = q.mk_quadratic_proof(data, 4, 11) assert q.check_quadratic_proof(data, qproof, 4, 5, 11) data2 = q.eval_across_field(range(36), 97) cproof = q.mk_column_proof(data2, 36, 97) assert q.check_column_proof(data2, cproof, 36, 10, 97)
[ "quadratic_provers.mk_column_proof", "quadratic_provers.mk_quadratic_proof", "quadratic_provers.check_quadratic_proof", "quadratic_provers.check_column_proof", "quadratic_provers.eval_across_field" ]
[((38, 75), 'quadratic_provers.eval_across_field', 'q.eval_across_field', (['[1, 2, 3, 4]', '(11)'], {}), '([1, 2, 3, 4], 11)\n', (57, 75), True, 'import quadratic_provers as q\n'), ((85, 118), 'quadratic_provers.mk_quadratic_proof', 'q.mk_quadratic_proof', (['data', '(4)', '(11)'], {}), '(data, 4, 11)\n', (105, 118), True, 'import quadratic_provers as q\n'), ((126, 173), 'quadratic_provers.check_quadratic_proof', 'q.check_quadratic_proof', (['data', 'qproof', '(4)', '(5)', '(11)'], {}), '(data, qproof, 4, 5, 11)\n', (149, 173), True, 'import quadratic_provers as q\n'), ((226, 258), 'quadratic_provers.mk_column_proof', 'q.mk_column_proof', (['data2', '(36)', '(97)'], {}), '(data2, 36, 97)\n', (243, 258), True, 'import quadratic_provers as q\n'), ((266, 313), 'quadratic_provers.check_column_proof', 'q.check_column_proof', (['data2', 'cproof', '(36)', '(10)', '(97)'], {}), '(data2, cproof, 36, 10, 97)\n', (286, 313), True, 'import quadratic_provers as q\n')]
import logging from typing import List import numpy as np import tensorflow as tf try: import tensorflow_probability as tfp distributions = tfp.distributions except: distributions = tf.distributions from sklearn.base import BaseEstimator, ClassifierMixin from sklearn.utils import check_X_y from sklearn.utils.validation import check_array, check_is_fitted from spn.algorithms.LearningWrappers import learn_classifier, learn_parametric from spn.algorithms.MPE import mpe from spn.gpu.TensorFlow import optimize_tf from spn.structure.Base import Context, get_nodes_by_type from spn.structure.leaves.parametric.Parametric import Categorical, Gaussian, Parametric logger = logging.getLogger(__name__) class SPNClassifier(BaseEstimator, ClassifierMixin): """ :class:`SPNClassifier` wraps the SPN structure learning, tensorflow weight optimization and MPE procedures into a single class that follows the sklearn estimator interace. Therefore, :class:`SPNClassifier` is usable in the sklearn framework as estimator in :meth:`sklearn.model_selection.cross_val_score`, :meth:`sklearn.model_selection.GridSearchCV` and more. """ def __init__( self, parametric_types: List[Parametric] = None, n_jobs=-1, tf_optimize_weights=False, tf_n_epochs=100, tf_batch_size: int = None, tf_optimizer=tf.compat.v1.train.AdamOptimizer(learning_rate=0.001), tf_pre_optimization_hook=None, tf_post_optimization_hook=None, ): """ Create an :class:`SPNClassifier`. Parameters: parametric_types : List Parametric types of leaf nodes. If None, all are assumed to be Gaussian n_jobs : int Number of parallel jobs for learning the SPN structure tf_optimize_weights : bool Optimize weights in tensorflow tf_n_epochs : int Number of tensorflow optimization epochs tf_batch_size : int Batch size for tensorflow optimization tf_optimizer Tensorflow optimizer to use for optimization tf_pre_optimization_hook Hook that takes an SPN and returns an SPN before the optimization step tf_post_optimization_hook Hook that takes an SPN and returns an SPN after the optimization step """ self.n_jobs = n_jobs self.tf_optimize_weights = tf_optimize_weights self.tf_n_epochs = tf_n_epochs self.tf_optimizer = tf_optimizer self.tf_batch_size = tf_batch_size self.parametric_types = parametric_types self.tf_pre_optimization_hook = tf_pre_optimization_hook self.tf_post_optimization_hook = tf_post_optimization_hook def fit(self, X, y): """ Fit the :class:`SPNClassifier` object. Parameters ---------- X : np.ndarray Training variables y : np.ndarray Training labels Returns ------- SPNClassifier Fitted classifier """ # Check that X and y have correct shape X, y = check_X_y(X, y, multi_output=True) # Merge X and y train_data = np.c_[X, y].astype(np.float32) # If no parametric types were given: Assumen that all leafs are gaussian if self.parametric_types is None: parametric_types = [Gaussian] * X.shape[1] + [Categorical] else: parametric_types = self.parametric_types # Learn classifier self._spn = learn_classifier( train_data, ds_context=Context(parametric_types=parametric_types).add_domains(train_data), spn_learn_wrapper=learn_parametric, label_idx=X.shape[1], cpus=self.n_jobs, ) # If pre optimization hook has been defined, run now if self.tf_pre_optimization_hook: self._spn = self.tf_pre_optimization_hook(self._spn) # If optimization flag is set: optimize weights in tf if self.tf_optimize_weights: self._spn, self.loss = optimize_tf( spn=self._spn, data=train_data, optimizer=self.tf_optimizer, batch_size=self.tf_batch_size, epochs=self.tf_n_epochs, return_loss=True, ) # If post optimization hook has been defined, run now if self.tf_post_optimization_hook: self._spn = self.tf_post_optimization_hook(self._spn) self.X_ = X self.y_ = y # Return the classifier return self def predict(self, X): """ Make a prediction of the given data. Parameters ---------- X : np.ndarray Test data Returns ------- np.ndarray Label predictions for the given test data """ # Check is fit had been called check_is_fitted(self, ["X_", "y_"]) # Input validation X = check_array(X) # Classify n_test = X.shape[0] y_empty = np.full((n_test, 1), fill_value=np.nan) data = np.c_[X, y_empty] data_filled = mpe(self._spn, data) y_pred = data_filled[:, -1] return y_pred def get_params(self, deep=True): """Method to make SPNClassifier usable in sklearn procedures such as cross_val_score etc.""" return { "parametric_types": self.parametric_types, "n_jobs": self.n_jobs, "tf_optimize_weights": self.tf_optimize_weights, "tf_n_epochs": self.tf_n_epochs, "tf_batch_size": self.tf_batch_size, "tf_optimizer": self.tf_optimizer, "tf_pre_optimization_hook": self.tf_pre_optimization_hook, "tf_post_optimization_hook": self.tf_post_optimization_hook, } def set_params(self, **parameters): """Method to make SPNClassifier usable in sklearn procedures such as cross_val_score etc.""" for parameter, value in parameters.items(): setattr(self, parameter, value) return self def classification_categorical_to_tf_graph( node, data_placeholder=None, log_space=True, variable_dict=None, dtype=np.float32 ): """ Fix categorical to tf graph for classification problem. For a binary class label, there will be two categorical leaf nodes in the SPN. One which one-hot encodes the first class as [0, 1] and one that encodes the second clas as [1, 0]. Since the tf optimizes the log likelihood, these one-hot represented probabilities will be projected into logspace which results in log([1,0])=[0, -inf] and therefore NaNs in further computations. Therefore, this custom method adds a small epsilon, such that the zero probability value in the one-hot vector will not degrade to negative infinity. """ with tf.compat.v1.variable_scope("%s_%s" % (node.__class__.__name__, node.id)): p = np.array(node.p, dtype=dtype) # Epsilon to make sure there are no zero values eps = 1e-20 p += eps # Renormalize such that the sum over all probabilities is one p /= np.sum(p) assert np.all(p > 0), "Probabilities in the class leaf nodes have to be greater than zero but were %s" % p softmaxInverse = np.log(p / np.max(p)).astype(dtype) probs = tf.nn.softmax(tf.constant(softmaxInverse)) variable_dict[node] = probs if log_space: return distributions.Categorical(probs=probs).log_prob(data_placeholder[:, node.scope[0]]) return distributions.Categorical(probs=probs).prob(data_placeholder[:, node.scope[0]])
[ "numpy.full", "spn.gpu.TensorFlow.optimize_tf", "numpy.sum", "tensorflow.compat.v1.variable_scope", "sklearn.utils.check_X_y", "numpy.all", "tensorflow.constant", "sklearn.utils.validation.check_is_fitted", "tensorflow.compat.v1.train.AdamOptimizer", "numpy.max", "numpy.array", "spn.structure.Base.Context", "spn.algorithms.MPE.mpe", "logging.getLogger", "sklearn.utils.validation.check_array" ]
[((685, 712), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (702, 712), False, 'import logging\n'), ((1378, 1431), 'tensorflow.compat.v1.train.AdamOptimizer', 'tf.compat.v1.train.AdamOptimizer', ([], {'learning_rate': '(0.001)'}), '(learning_rate=0.001)\n', (1410, 1431), True, 'import tensorflow as tf\n'), ((3133, 3167), 'sklearn.utils.check_X_y', 'check_X_y', (['X', 'y'], {'multi_output': '(True)'}), '(X, y, multi_output=True)\n', (3142, 3167), False, 'from sklearn.utils import check_X_y\n'), ((4971, 5006), 'sklearn.utils.validation.check_is_fitted', 'check_is_fitted', (['self', "['X_', 'y_']"], {}), "(self, ['X_', 'y_'])\n", (4986, 5006), False, 'from sklearn.utils.validation import check_array, check_is_fitted\n'), ((5047, 5061), 'sklearn.utils.validation.check_array', 'check_array', (['X'], {}), '(X)\n', (5058, 5061), False, 'from sklearn.utils.validation import check_array, check_is_fitted\n'), ((5128, 5167), 'numpy.full', 'np.full', (['(n_test, 1)'], {'fill_value': 'np.nan'}), '((n_test, 1), fill_value=np.nan)\n', (5135, 5167), True, 'import numpy as np\n'), ((5223, 5243), 'spn.algorithms.MPE.mpe', 'mpe', (['self._spn', 'data'], {}), '(self._spn, data)\n', (5226, 5243), False, 'from spn.algorithms.MPE import mpe\n'), ((6941, 7014), 'tensorflow.compat.v1.variable_scope', 'tf.compat.v1.variable_scope', (["('%s_%s' % (node.__class__.__name__, node.id))"], {}), "('%s_%s' % (node.__class__.__name__, node.id))\n", (6968, 7014), True, 'import tensorflow as tf\n'), ((7028, 7057), 'numpy.array', 'np.array', (['node.p'], {'dtype': 'dtype'}), '(node.p, dtype=dtype)\n', (7036, 7057), True, 'import numpy as np\n'), ((7236, 7245), 'numpy.sum', 'np.sum', (['p'], {}), '(p)\n', (7242, 7245), True, 'import numpy as np\n'), ((7262, 7275), 'numpy.all', 'np.all', (['(p > 0)'], {}), '(p > 0)\n', (7268, 7275), True, 'import numpy as np\n'), ((4114, 4264), 'spn.gpu.TensorFlow.optimize_tf', 'optimize_tf', ([], {'spn': 'self._spn', 'data': 'train_data', 'optimizer': 'self.tf_optimizer', 'batch_size': 'self.tf_batch_size', 'epochs': 'self.tf_n_epochs', 'return_loss': '(True)'}), '(spn=self._spn, data=train_data, optimizer=self.tf_optimizer,\n batch_size=self.tf_batch_size, epochs=self.tf_n_epochs, return_loss=True)\n', (4125, 4264), False, 'from spn.gpu.TensorFlow import optimize_tf\n'), ((7454, 7481), 'tensorflow.constant', 'tf.constant', (['softmaxInverse'], {}), '(softmaxInverse)\n', (7465, 7481), True, 'import tensorflow as tf\n'), ((3620, 3662), 'spn.structure.Base.Context', 'Context', ([], {'parametric_types': 'parametric_types'}), '(parametric_types=parametric_types)\n', (3627, 3662), False, 'from spn.structure.Base import Context, get_nodes_by_type\n'), ((7399, 7408), 'numpy.max', 'np.max', (['p'], {}), '(p)\n', (7405, 7408), True, 'import numpy as np\n')]
import pygame, random, time from machine import Machine import utilities from equipment import * from character import Fighter class Section: def __init__(self, pos, prodLine): #self.image = img self.prodLine = prodLine self.tilePos = pos self.machine = None self.neighbors = [] class ProductionLine: def __init__(self, factory, inGate): print("production line init") self.fighters = [] self.inGate = inGate self.outGates = [(0,0), (0,9)] self.factory = factory self.debugLayer = pygame.Surface(self.factory.surface.get_rect().size) self.debugLayer.set_colorkey((255, 0, 255)) self.debugLayer.fill((255, 0, 255)) self.stats = { "step": 0 } self.line = { utilities.tilePosId(self.inGate): Section(self.inGate, self), } for s in self.factory.getTilesByLayer("prodLine"): newSection = Section(s, self) self.line[utilities.tilePosId(s)] = newSection # add connections for section in self.line: pos = self.line[section].tilePos #print("section in", pos) for n in self.neighboringSections(pos): n.neighbors.append(self.line[section]) self.line[section].neighbors.append(n) pygame.draw.line( self.debugLayer, [242, 132, 45], utilities.tilePosToScreenPos(48, pos), utilities.tilePosToScreenPos(48, n.tilePos), 5 ) # add machines to random sections (not on the sides) for s in self.line: if self.line[s].tilePos[0] not in [0, 9] and self.line[s].tilePos[1] not in [0, 9]: if random.randint(0, 100) < 20: self.line[s].machine = Machine(self.line[s]) def availableDirections(self, fromPos): destSections = [] if not fromPos in self.line: return(destSections) destSections += self.line[fromPos].neighbors #print("destinations from", fromPos, len(destSections)) return(destSections) def neighboringSections(self, pos): neighbors = [] posString = utilities.tilePosId(pos) if posString in self.line: for x, y in [[-1, 0], [1, 0], [0, -1], [0, 1]]: testKey = utilities.tilePosId((pos[0] + x, pos[1] + y)) if testKey in self.line: n = self.line[testKey] neighbors.append(n) #print(" is connected to", len(neighbors)) return(neighbors) def addFighter(self, newFighter): tilePos = utilities.screenPosToTilePos(48, newFighter.rect.center) newFighter.prodLineLastSections = [tilePos] posString = utilities.tilePosId(tilePos) newFighter.state = posString #print(self.stats["step"], "add fighter to factory tile", tilePos) self.fighters.append(newFighter) def fightersAt(self, pos): posString = utilities.tilePosId(pos) occupiers = [] for f in self.fighters: if utilities.screenPosToTilePos(48, f.rect.center) == pos: occupiers.append(f) return(occupiers) def lineAdvance(self): # move fighters fightersToGrinder = [] for fighter in self.fighters: if fighter.state == "IN_MACHINE": continue if self.stats["step"] - fighter.timeStamps["move"] < 10 + random.randint(0, 10): continue if fighter.prodLineLastSections[-1] in self.outGates: fightersToGrinder.append(fighter) for sect in self.availableDirections(fighter.state): if not sect.tilePos in fighter.prodLineLastSections: if len(self.fightersAt(sect.tilePos)) == 0: fighter.state = utilities.tilePosId(sect.tilePos) fighter.rect.center = utilities.tilePosToScreenPos(48, sect.tilePos) fighter.timeStamps["move"] = self.stats["step"] fighter.prodLineLastSections.append(sect.tilePos) break for f in fightersToGrinder: self.fighters.remove(f) fightersToGrinder.remove(f) f.kill() x, y = utilities.tilePosToScreenPos(48, f.prodLineLastSections[-1]) x = self.factory.grinder.surface.get_width() - 12 y -= 24 self.factory.grinder.fighters.append(Fighter( world=self.factory.grinder, team=self.factory.team, spawnPos=[x, y], speed=1, selectedEquipment=[Skin(), Fist()] )) # step all machines for s in self.line: if self.line[s].machine: self.line[s].machine.step() def step(self): self.stats["step"] += 1 self.lineAdvance()
[ "random.randint", "utilities.screenPosToTilePos", "machine.Machine", "utilities.tilePosId", "utilities.tilePosToScreenPos" ]
[((1886, 1910), 'utilities.tilePosId', 'utilities.tilePosId', (['pos'], {}), '(pos)\n', (1905, 1910), False, 'import utilities\n'), ((2249, 2305), 'utilities.screenPosToTilePos', 'utilities.screenPosToTilePos', (['(48)', 'newFighter.rect.center'], {}), '(48, newFighter.rect.center)\n', (2277, 2305), False, 'import utilities\n'), ((2366, 2394), 'utilities.tilePosId', 'utilities.tilePosId', (['tilePos'], {}), '(tilePos)\n', (2385, 2394), False, 'import utilities\n'), ((2574, 2598), 'utilities.tilePosId', 'utilities.tilePosId', (['pos'], {}), '(pos)\n', (2593, 2598), False, 'import utilities\n'), ((699, 731), 'utilities.tilePosId', 'utilities.tilePosId', (['self.inGate'], {}), '(self.inGate)\n', (718, 731), False, 'import utilities\n'), ((3620, 3680), 'utilities.tilePosToScreenPos', 'utilities.tilePosToScreenPos', (['(48)', 'f.prodLineLastSections[-1]'], {}), '(48, f.prodLineLastSections[-1])\n', (3648, 3680), False, 'import utilities\n'), ((865, 887), 'utilities.tilePosId', 'utilities.tilePosId', (['s'], {}), '(s)\n', (884, 887), False, 'import utilities\n'), ((2005, 2050), 'utilities.tilePosId', 'utilities.tilePosId', (['(pos[0] + x, pos[1] + y)'], {}), '((pos[0] + x, pos[1] + y))\n', (2024, 2050), False, 'import utilities\n'), ((2648, 2695), 'utilities.screenPosToTilePos', 'utilities.screenPosToTilePos', (['(48)', 'f.rect.center'], {}), '(48, f.rect.center)\n', (2676, 2695), False, 'import utilities\n'), ((1216, 1253), 'utilities.tilePosToScreenPos', 'utilities.tilePosToScreenPos', (['(48)', 'pos'], {}), '(48, pos)\n', (1244, 1253), False, 'import utilities\n'), ((1260, 1303), 'utilities.tilePosToScreenPos', 'utilities.tilePosToScreenPos', (['(48)', 'n.tilePos'], {}), '(48, n.tilePos)\n', (1288, 1303), False, 'import utilities\n'), ((1490, 1512), 'random.randint', 'random.randint', (['(0)', '(100)'], {}), '(0, 100)\n', (1504, 1512), False, 'import pygame, random, time\n'), ((1547, 1568), 'machine.Machine', 'Machine', (['self.line[s]'], {}), '(self.line[s])\n', (1554, 1568), False, 'from machine import Machine\n'), ((2961, 2982), 'random.randint', 'random.randint', (['(0)', '(10)'], {}), '(0, 10)\n', (2975, 2982), False, 'import pygame, random, time\n'), ((3278, 3311), 'utilities.tilePosId', 'utilities.tilePosId', (['sect.tilePos'], {}), '(sect.tilePos)\n', (3297, 3311), False, 'import utilities\n'), ((3340, 3386), 'utilities.tilePosToScreenPos', 'utilities.tilePosToScreenPos', (['(48)', 'sect.tilePos'], {}), '(48, sect.tilePos)\n', (3368, 3386), False, 'import utilities\n')]
import tkinter as tk from utils.fonts import _getFont from re import search Y_OFFSET = 220 PANEL_HEIGHT = 127 PANEL_WIDTH = 140 class ButtonGroup: def __init__(self, root, label, id, position, buttons, callback=None): self.id = id self.root = root self.x, self.y = position self.label = label self.buttons = buttons self.callback = callback self._loadPanel() def _sendPacket(self, tag): packet = self.root.udpPacket panel = int(search(r'([12])L?$', tag)[1]) payload = packet.CommandPacket() payload.type = packet.COMMAND payload.command = self.id payload.panel = self.buttons[panel - 1].upper() self.root.gameConnection.send(payload) def toggleButton(self, tag, flag): if flag: self.root.itemconfig(tag, image=self.root.btn_on) else: self.root.itemconfig(tag, image=self.root.btn_off) self._sendPacket(tag) def _loadPanel(self): btn_off = tk.PhotoImage(file='assets/controls/TextButtonOff.png') btn_on = tk.PhotoImage(file='assets/controls/TextButtonOn.png') if not hasattr(self.root, 'btn_off'): self.root.btn_off = btn_off self.root.btn_on = btn_on self.root.addPanel(width=2, height=2, gridPos=(self.x, self.y)) self.root.create_text(145 + PANEL_WIDTH * self.x, Y_OFFSET + 50 + PANEL_HEIGHT * self.y, text=self.label, fill='black', font=_getFont('body')) self.root.create_image(145 + PANEL_WIDTH * self.x, Y_OFFSET + 105 + PANEL_HEIGHT * self.y, image=self.root.btn_off, tags='{}1'.format(self.id)) self.root.create_image(145 + PANEL_WIDTH * self.x, Y_OFFSET + 180 + PANEL_HEIGHT * self.y, image=self.root.btn_off, tags='{}2'.format(self.id)) self.root.create_text(145 + PANEL_WIDTH * self.x, Y_OFFSET + 105 + PANEL_HEIGHT * self.y, text=self.buttons[0], fill='white', font=_getFont('heading-2s'), tags='{}1L'.format(self.id)) self.root.create_text(145 + PANEL_WIDTH * self.x, Y_OFFSET + 180 + PANEL_HEIGHT * self.y, text=self.buttons[1], fill='white', font=_getFont('heading-2s'), tags='{}2L'.format(self.id)) self.root.tag_bind('{}1'.format(self.id), '<Button-1>', lambda _: self.toggleButton('{}1'.format(self.id), True)) self.root.tag_bind('{}1'.format(self.id), '<ButtonRelease-1>', lambda _: self.toggleButton('{}1'.format(self.id), False)) self.root.tag_bind('{}2'.format(self.id), '<Button-1>', lambda _: self.toggleButton('{}2'.format(self.id), True)) self.root.tag_bind('{}2'.format(self.id), '<ButtonRelease-1>', lambda _: self.toggleButton('{}2'.format(self.id), False)) self.root.tag_bind('{}1L'.format(self.id), '<Button-1>', lambda _: self.toggleButton('{}1'.format(self.id), True)) self.root.tag_bind('{}1L'.format(self.id), '<ButtonRelease-1>', lambda _: self.toggleButton('{}1'.format(self.id), False)) self.root.tag_bind('{}2L'.format(self.id), '<Button-1>', lambda _: self.toggleButton('{}2'.format(self.id), True)) self.root.tag_bind('{}2L'.format(self.id), '<ButtonRelease-1>', lambda _: self.toggleButton('{}2'.format(self.id), False))
[ "utils.fonts._getFont", "tkinter.PhotoImage", "re.search" ]
[((942, 997), 'tkinter.PhotoImage', 'tk.PhotoImage', ([], {'file': '"""assets/controls/TextButtonOff.png"""'}), "(file='assets/controls/TextButtonOff.png')\n", (955, 997), True, 'import tkinter as tk\n'), ((1011, 1065), 'tkinter.PhotoImage', 'tk.PhotoImage', ([], {'file': '"""assets/controls/TextButtonOn.png"""'}), "(file='assets/controls/TextButtonOn.png')\n", (1024, 1065), True, 'import tkinter as tk\n'), ((473, 497), 're.search', 'search', (['"""([12])L?$"""', 'tag'], {}), "('([12])L?$', tag)\n", (479, 497), False, 'from re import search\n'), ((1373, 1389), 'utils.fonts._getFont', '_getFont', (['"""body"""'], {}), "('body')\n", (1381, 1389), False, 'from utils.fonts import _getFont\n'), ((1822, 1844), 'utils.fonts._getFont', '_getFont', (['"""heading-2s"""'], {}), "('heading-2s')\n", (1830, 1844), False, 'from utils.fonts import _getFont\n'), ((2010, 2032), 'utils.fonts._getFont', '_getFont', (['"""heading-2s"""'], {}), "('heading-2s')\n", (2018, 2032), False, 'from utils.fonts import _getFont\n')]
# Copyright 2020 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import importlib from base64 import b64decode from time import time from flask import current_app, session, request, redirect, make_response, Blueprint from auth.drivers.oidc import _validate_basic_auth, _validate_token_auth from auth.utils.redis_client import RedisClient bp = Blueprint("root", __name__) def handle_auth(auth_header: str): redis_client = RedisClient() if redis_client.check_auth_token(auth_header=auth_header): return make_response("OK", 200) try: auth_key, auth_value = auth_header.strip().split(" ") except ValueError: return make_response("KO", 401) else: if auth_key.lower() == "basic": username, password = b64decode(auth_value.strip()).decode().split(":", 1) if _validate_basic_auth(username, password): redis_client.set_auth_token(auth_header=auth_header) return make_response("OK", 200) elif auth_key.lower() == "bearer": if _validate_token_auth(auth_value): redis_client.set_auth_token(auth_header=auth_header) return make_response("OK", 200) return make_response("KO", 401) @bp.route("/auth") def auth(): if "X-Forwarded-Uri" in request.headers and request.headers["X-Forwarded-Uri"].startswith("/static"): return make_response("OK") # Check if need to login target = request.args.get("target") scope = request.args.get("scope") for header in ("X-Forwarded-Proto", "X-Forwarded-Host", "X-Forwarded-Port", "X-Forwarded-Uri"): if header in request.headers: session[header] = request.headers[header] if "Authorization" in request.headers: return handle_auth(auth_header=request.headers.get("Authorization", "")) if not session.get("auth_attributes") or session["auth_attributes"]["exp"] < int(time()): return redirect(current_app.config["auth"]["login_handler"], 302) if not session.get("auth", False) and not current_app.config["global"]["disable_auth"]: # Redirect to login return redirect(current_app.config["auth"].get("auth_redirect", f"{request.base_url}{request.script_root}/login")) if target is None: target = "raw" # Map auth response response = make_response("OK") try: mapper = importlib.import_module(f"auth.mappers.{target}") response = mapper.auth(scope, response) except (ImportError, AttributeError, TypeError): from traceback import format_exc current_app.logger.error(f"Failed to map auth data {format_exc()}") return response @bp.route("/token") def token(): return redirect(current_app.config["auth"]["token_handler"], 302) @bp.route("/login") def login(): return redirect(current_app.config["auth"]["login_handler"], 302) @bp.route("/logout") def logout(): to = request.args.get("to") return redirect(current_app.config["auth"]["logout_handler"] + (f"?to={to}" if to is not None else ""))
[ "flask.Blueprint", "flask.redirect", "flask.request.args.get", "importlib.import_module", "auth.drivers.oidc._validate_basic_auth", "auth.drivers.oidc._validate_token_auth", "flask.request.headers.get", "flask.session.get", "time.time", "auth.utils.redis_client.RedisClient", "traceback.format_exc", "flask.make_response" ]
[((865, 892), 'flask.Blueprint', 'Blueprint', (['"""root"""', '__name__'], {}), "('root', __name__)\n", (874, 892), False, 'from flask import current_app, session, request, redirect, make_response, Blueprint\n'), ((949, 962), 'auth.utils.redis_client.RedisClient', 'RedisClient', ([], {}), '()\n', (960, 962), False, 'from auth.utils.redis_client import RedisClient\n'), ((1731, 1755), 'flask.make_response', 'make_response', (['"""KO"""', '(401)'], {}), "('KO', 401)\n", (1744, 1755), False, 'from flask import current_app, session, request, redirect, make_response, Blueprint\n'), ((1972, 1998), 'flask.request.args.get', 'request.args.get', (['"""target"""'], {}), "('target')\n", (1988, 1998), False, 'from flask import current_app, session, request, redirect, make_response, Blueprint\n'), ((2011, 2036), 'flask.request.args.get', 'request.args.get', (['"""scope"""'], {}), "('scope')\n", (2027, 2036), False, 'from flask import current_app, session, request, redirect, make_response, Blueprint\n'), ((2904, 2923), 'flask.make_response', 'make_response', (['"""OK"""'], {}), "('OK')\n", (2917, 2923), False, 'from flask import current_app, session, request, redirect, make_response, Blueprint\n'), ((3284, 3342), 'flask.redirect', 'redirect', (["current_app.config['auth']['token_handler']", '(302)'], {}), "(current_app.config['auth']['token_handler'], 302)\n", (3292, 3342), False, 'from flask import current_app, session, request, redirect, make_response, Blueprint\n'), ((3389, 3447), 'flask.redirect', 'redirect', (["current_app.config['auth']['login_handler']", '(302)'], {}), "(current_app.config['auth']['login_handler'], 302)\n", (3397, 3447), False, 'from flask import current_app, session, request, redirect, make_response, Blueprint\n'), ((3494, 3516), 'flask.request.args.get', 'request.args.get', (['"""to"""'], {}), "('to')\n", (3510, 3516), False, 'from flask import current_app, session, request, redirect, make_response, Blueprint\n'), ((3528, 3629), 'flask.redirect', 'redirect', (["(current_app.config['auth']['logout_handler'] + (f'?to={to}' if to is not\n None else ''))"], {}), "(current_app.config['auth']['logout_handler'] + (f'?to={to}' if to\n is not None else ''))\n", (3536, 3629), False, 'from flask import current_app, session, request, redirect, make_response, Blueprint\n'), ((1041, 1065), 'flask.make_response', 'make_response', (['"""OK"""', '(200)'], {}), "('OK', 200)\n", (1054, 1065), False, 'from flask import current_app, session, request, redirect, make_response, Blueprint\n'), ((1910, 1929), 'flask.make_response', 'make_response', (['"""OK"""'], {}), "('OK')\n", (1923, 1929), False, 'from flask import current_app, session, request, redirect, make_response, Blueprint\n'), ((2462, 2520), 'flask.redirect', 'redirect', (["current_app.config['auth']['login_handler']", '(302)'], {}), "(current_app.config['auth']['login_handler'], 302)\n", (2470, 2520), False, 'from flask import current_app, session, request, redirect, make_response, Blueprint\n'), ((2950, 2999), 'importlib.import_module', 'importlib.import_module', (['f"""auth.mappers.{target}"""'], {}), "(f'auth.mappers.{target}')\n", (2973, 2999), False, 'import importlib\n'), ((1175, 1199), 'flask.make_response', 'make_response', (['"""KO"""', '(401)'], {}), "('KO', 401)\n", (1188, 1199), False, 'from flask import current_app, session, request, redirect, make_response, Blueprint\n'), ((1351, 1391), 'auth.drivers.oidc._validate_basic_auth', '_validate_basic_auth', (['username', 'password'], {}), '(username, password)\n', (1371, 1391), False, 'from auth.drivers.oidc import _validate_basic_auth, _validate_token_auth\n'), ((2364, 2394), 'flask.session.get', 'session.get', (['"""auth_attributes"""'], {}), "('auth_attributes')\n", (2375, 2394), False, 'from flask import current_app, session, request, redirect, make_response, Blueprint\n'), ((2532, 2558), 'flask.session.get', 'session.get', (['"""auth"""', '(False)'], {}), "('auth', False)\n", (2543, 2558), False, 'from flask import current_app, session, request, redirect, make_response, Blueprint\n'), ((1485, 1509), 'flask.make_response', 'make_response', (['"""OK"""', '(200)'], {}), "('OK', 200)\n", (1498, 1509), False, 'from flask import current_app, session, request, redirect, make_response, Blueprint\n'), ((1568, 1600), 'auth.drivers.oidc._validate_token_auth', '_validate_token_auth', (['auth_value'], {}), '(auth_value)\n', (1588, 1600), False, 'from auth.drivers.oidc import _validate_basic_auth, _validate_token_auth\n'), ((2311, 2351), 'flask.request.headers.get', 'request.headers.get', (['"""Authorization"""', '""""""'], {}), "('Authorization', '')\n", (2330, 2351), False, 'from flask import current_app, session, request, redirect, make_response, Blueprint\n'), ((2438, 2444), 'time.time', 'time', ([], {}), '()\n', (2442, 2444), False, 'from time import time\n'), ((1694, 1718), 'flask.make_response', 'make_response', (['"""OK"""', '(200)'], {}), "('OK', 200)\n", (1707, 1718), False, 'from flask import current_app, session, request, redirect, make_response, Blueprint\n'), ((3202, 3214), 'traceback.format_exc', 'format_exc', ([], {}), '()\n', (3212, 3214), False, 'from traceback import format_exc\n')]
""" render_rgb.py renders obj file to rgb image Aviable function: - clear_mash: delete all the mesh in the secene - scene_setting_init: set scene configurations - node_setting_init: set node configurations - render: render rgb image for one obj file and one viewpoint - render_obj_by_vp_lists: wrapper function for render() render one obj file by multiple viewpoints - render_objs_by_one_vp: wrapper function for render() render multiple obj file by one viewpoint - init_all: a wrapper function, initialize all configurations = set_image_path: reset defualt image output folder author baiyu """ import sys import os import pickle import numpy as np import bpy from mathutils import Matrix import argparse abs_path = os.path.abspath(__file__) sys.path.append(os.path.dirname(abs_path)) from render_helper import * from settings import * from data_config import camera_setting_path, total_view_nums def clear_mesh(): """ clear all meshes in the secene """ for block in bpy.data.meshes: if block.users == 0: bpy.data.meshes.remove(block) for block in bpy.data.materials: if block.users == 0: bpy.data.materials.remove(block) for block in bpy.data.textures: if block.users == 0: bpy.data.textures.remove(block) for block in bpy.data.images: if block.users == 0: bpy.data.images.remove(block) bpy.ops.object.select_all(action='DESELECT') for obj in bpy.data.objects: if obj.type == 'MESH' or obj.type == 'EMPTY': obj.select = True bpy.ops.object.delete() def scene_setting_init(use_gpu): """initialize blender setting configurations """ sce = bpy.context.scene.name bpy.data.scenes[sce].render.engine = g_engine_type bpy.data.scenes[sce].cycles.film_transparent = g_use_film_transparent #output bpy.data.scenes[sce].render.image_settings.color_mode = g_color_mode bpy.data.scenes[sce].render.image_settings.color_depth = g_color_depth bpy.data.scenes[sce].render.image_settings.file_format = g_file_format bpy.data.scenes[sce].render.use_file_extension = g_use_file_extension #dimensions bpy.data.scenes[sce].render.resolution_x = g_resolution_x bpy.data.scenes[sce].render.resolution_y = g_resolution_y bpy.data.scenes[sce].render.resolution_percentage = g_resolution_percentage if use_gpu: bpy.data.scenes[sce].render.engine = 'CYCLES' #only cycles engine can use gpu bpy.data.scenes[sce].render.tile_x = g_hilbert_spiral bpy.data.scenes[sce].render.tile_x = g_hilbert_spiral cycles_prefs = bpy.context.user_preferences.addons['cycles'].preferences for device in cycles_prefs.devices: if device.type == 'CUDA': device.use = True bpy.context.user_preferences.addons['cycles'].preferences.compute_device_type = 'CUDA' bpy.types.CyclesRenderSettings.device = 'GPU' bpy.data.scenes[sce].cycles.device = 'GPU' def node_setting_init(): """node settings for render rgb images mainly for compositing the background images """ bpy.context.scene.use_nodes = True tree = bpy.context.scene.node_tree links = tree.links for node in tree.nodes: tree.nodes.remove(node) image_node = tree.nodes.new('CompositorNodeImage') scale_node = tree.nodes.new('CompositorNodeScale') alpha_over_node = tree.nodes.new('CompositorNodeAlphaOver') render_layer_node = tree.nodes.new('CompositorNodeRLayers') img_file_output_node = tree.nodes.new('CompositorNodeOutputFile') depth_file_output_node = tree.nodes.new("CompositorNodeOutputFile") scale_node.space = g_scale_space img_file_output_node.format.color_mode = g_rgb_color_mode img_file_output_node.format.color_depth = g_rgb_color_depth img_file_output_node.format.file_format = g_rgb_file_format img_file_output_node.base_path = g_syn_data_folder depth_file_output_node.format.color_mode = g_depth_color_mode depth_file_output_node.format.color_depth = g_depth_color_depth depth_file_output_node.format.file_format = g_depth_file_format depth_file_output_node.base_path = g_syn_data_folder links.new(image_node.outputs[0], scale_node.inputs[0]) links.new(scale_node.outputs[0], alpha_over_node.inputs[1]) links.new(render_layer_node.outputs[0], alpha_over_node.inputs[2]) links.new(alpha_over_node.outputs[0], img_file_output_node.inputs[0]) links.new(render_layer_node.outputs['Depth'], depth_file_output_node.inputs[0]) def render(viewpoint, viewpoint_id, rendering_dir): """render rgb image and depth maps render a object rgb image by a given camera viewpoint and choose random image as background, only render one image at a time. Args: viewpoint: a vp parameter(contains azimuth,elevation,tilt angles and distance) viewpoint_id: the index of viewpoint rendering_dir: path to store camera info """ vp = viewpoint cam_location = camera_location(vp.azimuth, vp.elevation, vp.distance) cam_rot = camera_rot_XYZEuler(vp.azimuth, vp.elevation, vp.tilt) cam_obj = bpy.data.objects['Camera'] cam_obj.location[0] = cam_location[0] cam_obj.location[1] = cam_location[1] cam_obj.location[2] = cam_location[2] cam_obj.rotation_euler[0] = cam_rot[0] cam_obj.rotation_euler[1] = cam_rot[1] cam_obj.rotation_euler[2] = cam_rot[2] if g_background_image_path == 'TRANSPARENT': bpy.context.scene.render.alpha_mode = g_background_image_path else: background_images = os.listdir(g_background_image_path) image_name = random.choice(background_images) image_path = os.path.join(g_background_image_path, image_name) image_node = bpy.context.scene.node_tree.nodes[0] image_node.image = bpy.data.images.load(image_path) img_file_output_node = bpy.context.scene.node_tree.nodes[4] img_file_output_node.file_slots[0].path = 'color_###.png' # blender placeholder # depth_file_output_node = bpy.context.scene.node_tree.nodes[5] depth_file_output_node.file_slots[0].path = 'depth_###.exr' # blender placeholder # #start rendering bpy.context.scene.frame_set(viewpoint_id + 1) bpy.ops.render.render(write_still=True) # write camera info cam_K_file = os.path.join(cam_K_path, 'cam_K.txt') if (not os.path.isfile(cam_K_file)) or (len(os.listdir(cam_RT_path))<total_view_nums): K, RT = get_3x4_P_matrix_from_blender(cam_obj) np.savetxt(cam_K_file, K) np.savetxt(os.path.join(cam_RT_path, 'cam_RT_{0:03d}.txt'.format(viewpoint_id + 1)), RT) print('Camera parameters written.') def render_obj_by_vp_lists(rendering_dir, viewpoints): """ render one obj file by a given viewpoint list a wrapper function for render() Args: rendering_dir: a string variable indicate the rendering path of the model. viewpoints: an iterable object of vp parameter(contains azimuth,elevation,tilt angles and distance) """ if isinstance(viewpoints, tuple): vp_lists = [viewpoints] try: vp_lists = iter(viewpoints) except TypeError: print("viewpoints is not an iterable object") for vp_id, vp in enumerate(vp_lists): set_image_path(rendering_dir) set_depth_path(rendering_dir) render(vp, vp_id, rendering_dir) def render_objs_by_one_vp(obj_pathes, viewpoint): """ render multiple obj files by a given viewpoint Args: obj_paths: an iterable object contains multiple obj file pathes viewpoint: a namedtuple object contains azimuth, elevation,tilt angles and distance """ if isinstance(obj_pathes, str): obj_lists = [obj_pathes] try: obj_lists = iter(obj_lists) except TypeError: print("obj_pathes is not an iterable object") for obj_path in obj_lists: rendering_dir = os.path.join(output_folder, obj_path.split('/')[4]) if not os.path.exists(rendering_dir): os.makedirs(rendering_dir) clear_mesh() bpy.ops.import_scene.obj(filepath=obj_path) set_image_path(rendering_dir) set_depth_path(rendering_dir) render(viewpoint, 1, rendering_dir) def camera_setting_init(): """ camera settings for renderer """ bpy.data.objects['Camera'].rotation_mode = g_rotation_mode def light_setting_init(): """ light settings for renderer """ # Make light just directional, disable shadows. world = bpy.data.worlds['World'] world.use_nodes = True # changing these values does affect the render. bg = world.node_tree.nodes['Background'] bg.inputs[1].default_value = 10.0 def init_all(): """init everything we need for rendering an image """ scene_setting_init(g_gpu_render_enable) camera_setting_init() node_setting_init() light_setting_init() def set_image_path(new_path): """ set image output path to new_path Args: new rendered image output path """ file_output_node = bpy.context.scene.node_tree.nodes[4] file_output_node.base_path = new_path def set_depth_path(new_path): """ set image output path to new_path Args: new rendered depth output path """ file_output_node = bpy.context.scene.node_tree.nodes[5] file_output_node.base_path = new_path #--------------------------------------------------------------- # 3x4 P matrix from Blender camera #--------------------------------------------------------------- # BKE_camera_sensor_size def get_sensor_size(sensor_fit, sensor_x, sensor_y): if sensor_fit == 'VERTICAL': return sensor_y return sensor_x # BKE_camera_sensor_fit def get_sensor_fit(sensor_fit, size_x, size_y): if sensor_fit == 'AUTO': if size_x >= size_y: return 'HORIZONTAL' else: return 'VERTICAL' return sensor_fit # Build intrinsic camera parameters from Blender camera data # # See notes on this in # blender.stackexchange.com/questions/15102/what-is-blenders-camera-projection-matrix-model # as well as # https://blender.stackexchange.com/a/120063/3581 def get_calibration_matrix_K_from_blender(camd): if camd.type != 'PERSP': raise ValueError('Non-perspective cameras not supported') scene = bpy.context.scene f_in_mm = camd.lens scale = scene.render.resolution_percentage / 100 resolution_x_in_px = scale * scene.render.resolution_x resolution_y_in_px = scale * scene.render.resolution_y sensor_size_in_mm = get_sensor_size(camd.sensor_fit, camd.sensor_width, camd.sensor_height) sensor_fit = get_sensor_fit( camd.sensor_fit, scene.render.pixel_aspect_x * resolution_x_in_px, scene.render.pixel_aspect_y * resolution_y_in_px ) pixel_aspect_ratio = scene.render.pixel_aspect_y / scene.render.pixel_aspect_x if sensor_fit == 'HORIZONTAL': view_fac_in_px = resolution_x_in_px else: view_fac_in_px = pixel_aspect_ratio * resolution_y_in_px pixel_size_mm_per_px = sensor_size_in_mm / f_in_mm / view_fac_in_px s_u = 1 / pixel_size_mm_per_px s_v = 1 / pixel_size_mm_per_px / pixel_aspect_ratio # Parameters of intrinsic calibration matrix K u_0 = resolution_x_in_px / 2 - camd.shift_x * view_fac_in_px v_0 = resolution_y_in_px / 2 + camd.shift_y * view_fac_in_px / pixel_aspect_ratio skew = 0 # only use rectangular pixels K = Matrix( ((s_u, skew, u_0), ( 0, s_v, v_0), ( 0, 0, 1))) return K # Returns camera rotation and translation matrices from Blender. # # There are 3 coordinate systems involved: # 1. The World coordinates: "world" # - right-handed # 2. The Blender camera coordinates: "bcam" # - x is horizontal # - y is up # - right-handed: negative z look-at direction # 3. The desired computer vision camera coordinates: "cv" # - x is horizontal # - y is down (to align to the actual pixel coordinates # used in digital images) # - right-handed: positive z look-at direction def get_3x4_RT_matrix_from_blender(cam): # bcam stands for blender camera R_blender2shapenet = Matrix( ((1, 0, 0), (0, 0, -1), (0, 1, 0))) R_bcam2cv = Matrix( ((1, 0, 0), (0, -1, 0), (0, 0, -1))) # Transpose since the rotation is object rotation, # and we want coordinate rotation # R_world2bcam = cam.rotation_euler.to_matrix().transposed() # T_world2bcam = -1*R_world2bcam * location # # Use matrix_world instead to account for all constraints location, rotation = cam.matrix_world.decompose()[0:2] R_world2bcam = rotation.to_matrix().transposed() # Convert camera location to translation vector used in coordinate changes # T_world2bcam = -1*R_world2bcam*cam.location # Use location from matrix_world to account for constraints: T_world2bcam = -1*R_world2bcam * location # Build the coordinate transform matrix from world to computer vision camera R_world2cv = R_bcam2cv*R_world2bcam*R_blender2shapenet T_world2cv = R_bcam2cv*T_world2bcam # put into 3x4 matrix RT = Matrix(( R_world2cv[0][:] + (T_world2cv[0],), R_world2cv[1][:] + (T_world2cv[1],), R_world2cv[2][:] + (T_world2cv[2],) )) return RT def get_3x4_P_matrix_from_blender(cam): K = get_calibration_matrix_K_from_blender(cam.data) RT = get_3x4_RT_matrix_from_blender(cam) return K, RT ### YOU CAN WRITE YOUR OWN IMPLEMENTATION TO GENERATE DATA def parse_args(): argv = sys.argv if "--" not in argv: argv = [] # as if no args are passed else: argv = argv[argv.index("--") + 1:] # get all args after "--" parser = argparse.ArgumentParser(description='Blender renderer.') parser.add_argument("dict", type=str, help="model-view file for rendering.") args = parser.parse_args(argv) return args if __name__ == '__main__': args = parse_args() init_all() result_list = pickle.load(open(args.dict, 'rb')) cam_K_path = os.path.join(camera_setting_path, 'cam_K') cam_RT_path = os.path.join(camera_setting_path, 'cam_RT') if not os.path.exists(cam_K_path): os.makedirs(cam_K_path) if not os.path.exists(cam_RT_path): os.makedirs(cam_RT_path) for model in result_list: cat = model.path.split('/')[3] output_folder = os.path.join(g_syn_data_folder, cat) if not os.path.exists(output_folder): os.makedirs(output_folder) rendering_dir = os.path.join(output_folder, model.path.split('/')[4]) if not os.path.exists(rendering_dir): os.makedirs(rendering_dir) if len(os.listdir(rendering_dir)) == 40: print('Rendering has been done with this model.') continue clear_mesh() bpy.ops.import_scene.obj(filepath=model.path) render_obj_by_vp_lists(rendering_dir, model.vps)
[ "argparse.ArgumentParser", "bpy.context.scene.frame_set", "os.path.isfile", "bpy.data.textures.remove", "bpy.ops.import_scene.obj", "os.path.join", "bpy.ops.object.select_all", "os.path.abspath", "os.path.dirname", "numpy.savetxt", "os.path.exists", "bpy.data.meshes.remove", "bpy.ops.object.delete", "bpy.data.materials.remove", "bpy.ops.render.render", "bpy.data.images.remove", "os.listdir", "os.makedirs", "bpy.data.images.load", "mathutils.Matrix" ]
[((770, 795), 'os.path.abspath', 'os.path.abspath', (['__file__'], {}), '(__file__)\n', (785, 795), False, 'import os\n'), ((812, 837), 'os.path.dirname', 'os.path.dirname', (['abs_path'], {}), '(abs_path)\n', (827, 837), False, 'import os\n'), ((1457, 1501), 'bpy.ops.object.select_all', 'bpy.ops.object.select_all', ([], {'action': '"""DESELECT"""'}), "(action='DESELECT')\n", (1482, 1501), False, 'import bpy\n'), ((1623, 1646), 'bpy.ops.object.delete', 'bpy.ops.object.delete', ([], {}), '()\n', (1644, 1646), False, 'import bpy\n'), ((6285, 6330), 'bpy.context.scene.frame_set', 'bpy.context.scene.frame_set', (['(viewpoint_id + 1)'], {}), '(viewpoint_id + 1)\n', (6312, 6330), False, 'import bpy\n'), ((6335, 6374), 'bpy.ops.render.render', 'bpy.ops.render.render', ([], {'write_still': '(True)'}), '(write_still=True)\n', (6356, 6374), False, 'import bpy\n'), ((6417, 6454), 'os.path.join', 'os.path.join', (['cam_K_path', '"""cam_K.txt"""'], {}), "(cam_K_path, 'cam_K.txt')\n", (6429, 6454), False, 'import os\n'), ((11610, 11662), 'mathutils.Matrix', 'Matrix', (['((s_u, skew, u_0), (0, s_v, v_0), (0, 0, 1))'], {}), '(((s_u, skew, u_0), (0, s_v, v_0), (0, 0, 1)))\n', (11616, 11662), False, 'from mathutils import Matrix\n'), ((12369, 12411), 'mathutils.Matrix', 'Matrix', (['((1, 0, 0), (0, 0, -1), (0, 1, 0))'], {}), '(((1, 0, 0), (0, 0, -1), (0, 1, 0)))\n', (12375, 12411), False, 'from mathutils import Matrix\n'), ((12456, 12499), 'mathutils.Matrix', 'Matrix', (['((1, 0, 0), (0, -1, 0), (0, 0, -1))'], {}), '(((1, 0, 0), (0, -1, 0), (0, 0, -1)))\n', (12462, 12499), False, 'from mathutils import Matrix\n'), ((13371, 13495), 'mathutils.Matrix', 'Matrix', (['(R_world2cv[0][:] + (T_world2cv[0],), R_world2cv[1][:] + (T_world2cv[1],), \n R_world2cv[2][:] + (T_world2cv[2],))'], {}), '((R_world2cv[0][:] + (T_world2cv[0],), R_world2cv[1][:] + (T_world2cv\n [1],), R_world2cv[2][:] + (T_world2cv[2],)))\n', (13377, 13495), False, 'from mathutils import Matrix\n'), ((13961, 14017), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Blender renderer."""'}), "(description='Blender renderer.')\n", (13984, 14017), False, 'import argparse\n'), ((14315, 14357), 'os.path.join', 'os.path.join', (['camera_setting_path', '"""cam_K"""'], {}), "(camera_setting_path, 'cam_K')\n", (14327, 14357), False, 'import os\n'), ((14376, 14419), 'os.path.join', 'os.path.join', (['camera_setting_path', '"""cam_RT"""'], {}), "(camera_setting_path, 'cam_RT')\n", (14388, 14419), False, 'import os\n'), ((5674, 5709), 'os.listdir', 'os.listdir', (['g_background_image_path'], {}), '(g_background_image_path)\n', (5684, 5709), False, 'import os\n'), ((5785, 5834), 'os.path.join', 'os.path.join', (['g_background_image_path', 'image_name'], {}), '(g_background_image_path, image_name)\n', (5797, 5834), False, 'import os\n'), ((5920, 5952), 'bpy.data.images.load', 'bpy.data.images.load', (['image_path'], {}), '(image_path)\n', (5940, 5952), False, 'import bpy\n'), ((6609, 6634), 'numpy.savetxt', 'np.savetxt', (['cam_K_file', 'K'], {}), '(cam_K_file, K)\n', (6619, 6634), True, 'import numpy as np\n'), ((8227, 8270), 'bpy.ops.import_scene.obj', 'bpy.ops.import_scene.obj', ([], {'filepath': 'obj_path'}), '(filepath=obj_path)\n', (8251, 8270), False, 'import bpy\n'), ((14431, 14457), 'os.path.exists', 'os.path.exists', (['cam_K_path'], {}), '(cam_K_path)\n', (14445, 14457), False, 'import os\n'), ((14467, 14490), 'os.makedirs', 'os.makedirs', (['cam_K_path'], {}), '(cam_K_path)\n', (14478, 14490), False, 'import os\n'), ((14502, 14529), 'os.path.exists', 'os.path.exists', (['cam_RT_path'], {}), '(cam_RT_path)\n', (14516, 14529), False, 'import os\n'), ((14539, 14563), 'os.makedirs', 'os.makedirs', (['cam_RT_path'], {}), '(cam_RT_path)\n', (14550, 14563), False, 'import os\n'), ((14658, 14694), 'os.path.join', 'os.path.join', (['g_syn_data_folder', 'cat'], {}), '(g_syn_data_folder, cat)\n', (14670, 14694), False, 'import os\n'), ((15105, 15150), 'bpy.ops.import_scene.obj', 'bpy.ops.import_scene.obj', ([], {'filepath': 'model.path'}), '(filepath=model.path)\n', (15129, 15150), False, 'import bpy\n'), ((1094, 1123), 'bpy.data.meshes.remove', 'bpy.data.meshes.remove', (['block'], {}), '(block)\n', (1116, 1123), False, 'import bpy\n'), ((1203, 1235), 'bpy.data.materials.remove', 'bpy.data.materials.remove', (['block'], {}), '(block)\n', (1228, 1235), False, 'import bpy\n'), ((1314, 1345), 'bpy.data.textures.remove', 'bpy.data.textures.remove', (['block'], {}), '(block)\n', (1338, 1345), False, 'import bpy\n'), ((1422, 1451), 'bpy.data.images.remove', 'bpy.data.images.remove', (['block'], {}), '(block)\n', (1444, 1451), False, 'import bpy\n'), ((6467, 6493), 'os.path.isfile', 'os.path.isfile', (['cam_K_file'], {}), '(cam_K_file)\n', (6481, 6493), False, 'import os\n'), ((8127, 8156), 'os.path.exists', 'os.path.exists', (['rendering_dir'], {}), '(rendering_dir)\n', (8141, 8156), False, 'import os\n'), ((8170, 8196), 'os.makedirs', 'os.makedirs', (['rendering_dir'], {}), '(rendering_dir)\n', (8181, 8196), False, 'import os\n'), ((14710, 14739), 'os.path.exists', 'os.path.exists', (['output_folder'], {}), '(output_folder)\n', (14724, 14739), False, 'import os\n'), ((14753, 14779), 'os.makedirs', 'os.makedirs', (['output_folder'], {}), '(output_folder)\n', (14764, 14779), False, 'import os\n'), ((14874, 14903), 'os.path.exists', 'os.path.exists', (['rendering_dir'], {}), '(rendering_dir)\n', (14888, 14903), False, 'import os\n'), ((14917, 14943), 'os.makedirs', 'os.makedirs', (['rendering_dir'], {}), '(rendering_dir)\n', (14928, 14943), False, 'import os\n'), ((6503, 6526), 'os.listdir', 'os.listdir', (['cam_RT_path'], {}), '(cam_RT_path)\n', (6513, 6526), False, 'import os\n'), ((14959, 14984), 'os.listdir', 'os.listdir', (['rendering_dir'], {}), '(rendering_dir)\n', (14969, 14984), False, 'import os\n')]
'''read ENVI/raw binary format. Dimensions from header, data from .bin file.. ..then segment image using flood-fill segmentation''' import os import sys import pickle import numpy as np from flood import flood import matplotlib.pyplot as plt from dist import normalize, to_list, centroid def read_hdr(hdr): # read the image dimensions cols, rows, bands = 0, 0, 0 for line in open(hdr).readlines(): chunks = line.strip().split('=') try: # pull off two chunks delimited by '=' f, g = [x.strip() for x in chunks[0:2]] if f == 'samples': cols = g if f == 'lines': rows = g if f == 'bands': bands = g except: pass return [int(x) for x in [cols, rows, bands]] # string to int def read_float(fn): # read the raw binary file return np.fromfile(fn, dtype=np.float32) / 255. # put data in range [0, 1] '''pixel @ (row, col) = (i, j): npx = nrow * ncol # number of pixels in image red value: dat[ i * ncol + j] grn value: dat[ npx + i * ncol + j] blu value: dat[2 * npx + i * ncol + j]''' def plot(dat, rows, cols, bands, file_name): # plot "raw binary" image dat = dat.reshape((bands, rows * cols)) rgb = np.zeros((rows, cols, bands)) for i in range(bands): rgb[:, :, i] = dat[i, :].reshape((rows, cols)) plt.imshow(rgb) plt.show() # might uncomment this to zoom in to determine line numbers plt.savefig(file_name) plt.close() class image: def __init__(self, fn=None): if fn: self.fn = fn self.load() def load(self): self.cols, self.rows, self.bands = read_hdr(self.fn[:-4] + '.hdr') self.dat, self.npx = read_float(self.fn), self.rows * self.cols plot(self.dat, self.rows, self.cols, self.bands, self.fn[:-4] + '.png') def png(self): if type(self.dat) == list: self.dat = np.array(self.dat) plot(self.dat, self.rows, self.cols, self.bands, self.fn + '.png') def gather_points(self): # list points for each label self.points = [[] for i in range(self.next_label)] for i in range(self.rows): for j in range(self.cols): ix = i * self.cols + j # linear index if self.labels[ix] > 0: # skip background label = self.labels[ix] # label this point self.points[label] += [[i, j]] c = {} # count the number of pixels per segment for point in self.points: n = len(point) c[n] = (c[n] + 1) if (n in c) else 1 counts = [[k, c[k]] for k in c] # sort the counts counts.sort() ffn = self.fn + '_seg_count.png' if not os.path.exists(ffn): print('+w ' + ffn) plt.figure(figsize=(8, 8)) fig = plt.barh([str(x[0]) for x in counts], [str(x[1]) for x in counts]) plt.title("Pixel-count vs. number of segments w that count " + "(total segments: " + str(len(self.points)) + ")") plt.xlabel("Number of segments with a given pixel count") plt.ylabel("Pixel-count for a segment (total pixel counts = " + str(len(counts)) + ")") plt.tight_layout() plt.savefig(ffn) plt.close() def segment(self, flood_lines=None, use_normalize=False): print('segment ' + self.fn) self.name = self.fn[:-4] a = os.system('mkdir -p ' + self.name) self.rgb = [[self.dat[i], # format data into list of rgb tuples self.dat[self.npx + i], self.dat[2 * self.npx + i]] for i in range(0, self.npx)] c = {} # count rgb values for x in self.rgb: x = str(x) c[x] = c[x] + 1 if x in c else 1 ffn = self.fn + '_rgb_count.png' if not os.path.exists(ffn): plt.figure() plt.bar(c.keys(), np.log(list(c.values())) / np.log(10.)) plt.title("Log of count of color values") print('+w ' + ffn) plt.savefig(ffn) plt.close() counts = [[c[k], k] for k in c] counts.sort() self.max_color = counts[-1][1] # assume most-prevalent col is bg if sys.getrecursionlimit() < self.npx: # increase recursion limit sys.setrecursionlimit(self.npx) # labels for segmentation self.labels = [0 for i in range(self.npx)] # 0 == unlabelled! self.next_label = 1 r_i = flood_lines if flood_lines else range(self.rows) for i in r_i: for j in range(self.cols): flood(self, i, j) self.gather_points() # list (i,j) points by segment fn = None is_truth = (self.name == 'truth') # is this truth data? truth = None if is_truth: truth = [x for x in open('truth_chars.txt').read()] for pi in range(len(self.points)): # plot image rep. of each truth point = self.points[pi] if pi > 0: # 0 is bg / unlabelled try: ns = truth[pi - 1] if is_truth else str(pi) fn = self.name + os.path.sep + ns + '.png' if not os.path.exists(fn): plt.figure() plt.scatter([x[1] for x in point], [-x[0] for x in point]) plt.title(ns) print('+w ' + fn) if use_normalize: plt.xlim([-.5, self.cols - .5]) plt.ylim([-(self.rows - .5), .5]) plt.xlabel('col ix') plt.ylabel('-row ix') plt.savefig(fn) plt.close() fn = self.name + os.path.sep + ns + '.centroid' if not os.path.exists(fn): print(' +w ' + fn) xL, yL = to_list(point) cX, cY = centroid(xL, yL) open(fn, 'wb').write((str(cX) + ' ' + str(cY)).encode()) # nb run cleanup.py before changing truth inputs fn = self.name + os.path.sep + ns + '.p' if not os.path.exists(fn): print(' +w ' + fn) pickle.dump(point, open(fn, 'wb')) except: pass # don't plot / save the background if __name__ == "__main__": # example image data to demonstrate floodfill args = sys.argv if len(args) < 2: dat = [0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0] a = image() a.dat, a.rows, a.cols, a.bands = dat, 4, 4, 3 a.npx = a.rows * a.cols a.fn = '4x4.bin' a.png() a.segment(use_normalize=False) else: a = image('truth.bin', [745, 838, 932]) a.segment()
[ "matplotlib.pyplot.title", "matplotlib.pyplot.figure", "sys.setrecursionlimit", "matplotlib.pyplot.tight_layout", "matplotlib.pyplot.imshow", "matplotlib.pyplot.close", "os.path.exists", "dist.to_list", "dist.centroid", "matplotlib.pyplot.show", "matplotlib.pyplot.ylim", "os.system", "matplotlib.pyplot.ylabel", "sys.getrecursionlimit", "matplotlib.pyplot.xlim", "numpy.log", "numpy.fromfile", "matplotlib.pyplot.scatter", "numpy.zeros", "numpy.array", "flood.flood", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.savefig" ]
[((1278, 1307), 'numpy.zeros', 'np.zeros', (['(rows, cols, bands)'], {}), '((rows, cols, bands))\n', (1286, 1307), True, 'import numpy as np\n'), ((1394, 1409), 'matplotlib.pyplot.imshow', 'plt.imshow', (['rgb'], {}), '(rgb)\n', (1404, 1409), True, 'import matplotlib.pyplot as plt\n'), ((1414, 1424), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1422, 1424), True, 'import matplotlib.pyplot as plt\n'), ((1490, 1512), 'matplotlib.pyplot.savefig', 'plt.savefig', (['file_name'], {}), '(file_name)\n', (1501, 1512), True, 'import matplotlib.pyplot as plt\n'), ((1517, 1528), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (1526, 1528), True, 'import matplotlib.pyplot as plt\n'), ((881, 914), 'numpy.fromfile', 'np.fromfile', (['fn'], {'dtype': 'np.float32'}), '(fn, dtype=np.float32)\n', (892, 914), True, 'import numpy as np\n'), ((3562, 3596), 'os.system', 'os.system', (["('mkdir -p ' + self.name)"], {}), "('mkdir -p ' + self.name)\n", (3571, 3596), False, 'import os\n'), ((1967, 1985), 'numpy.array', 'np.array', (['self.dat'], {}), '(self.dat)\n', (1975, 1985), True, 'import numpy as np\n'), ((2790, 2809), 'os.path.exists', 'os.path.exists', (['ffn'], {}), '(ffn)\n', (2804, 2809), False, 'import os\n'), ((2854, 2880), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(8, 8)'}), '(figsize=(8, 8))\n', (2864, 2880), True, 'import matplotlib.pyplot as plt\n'), ((3153, 3210), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Number of segments with a given pixel count"""'], {}), "('Number of segments with a given pixel count')\n", (3163, 3210), True, 'import matplotlib.pyplot as plt\n'), ((3346, 3364), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (3362, 3364), True, 'import matplotlib.pyplot as plt\n'), ((3377, 3393), 'matplotlib.pyplot.savefig', 'plt.savefig', (['ffn'], {}), '(ffn)\n', (3388, 3393), True, 'import matplotlib.pyplot as plt\n'), ((3406, 3417), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (3415, 3417), True, 'import matplotlib.pyplot as plt\n'), ((3981, 4000), 'os.path.exists', 'os.path.exists', (['ffn'], {}), '(ffn)\n', (3995, 4000), False, 'import os\n'), ((4014, 4026), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (4024, 4026), True, 'import matplotlib.pyplot as plt\n'), ((4109, 4150), 'matplotlib.pyplot.title', 'plt.title', (['"""Log of count of color values"""'], {}), "('Log of count of color values')\n", (4118, 4150), True, 'import matplotlib.pyplot as plt\n'), ((4194, 4210), 'matplotlib.pyplot.savefig', 'plt.savefig', (['ffn'], {}), '(ffn)\n', (4205, 4210), True, 'import matplotlib.pyplot as plt\n'), ((4223, 4234), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (4232, 4234), True, 'import matplotlib.pyplot as plt\n'), ((4384, 4407), 'sys.getrecursionlimit', 'sys.getrecursionlimit', ([], {}), '()\n', (4405, 4407), False, 'import sys\n'), ((4460, 4491), 'sys.setrecursionlimit', 'sys.setrecursionlimit', (['self.npx'], {}), '(self.npx)\n', (4481, 4491), False, 'import sys\n'), ((4767, 4784), 'flood.flood', 'flood', (['self', 'i', 'j'], {}), '(self, i, j)\n', (4772, 4784), False, 'from flood import flood\n'), ((4084, 4096), 'numpy.log', 'np.log', (['(10.0)'], {}), '(10.0)\n', (4090, 4096), True, 'import numpy as np\n'), ((5373, 5391), 'os.path.exists', 'os.path.exists', (['fn'], {}), '(fn)\n', (5387, 5391), False, 'import os\n'), ((5417, 5429), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (5427, 5429), True, 'import matplotlib.pyplot as plt\n'), ((5454, 5514), 'matplotlib.pyplot.scatter', 'plt.scatter', (['[x[1] for x in point]', '[(-x[0]) for x in point]'], {}), '([x[1] for x in point], [(-x[0]) for x in point])\n', (5465, 5514), True, 'import matplotlib.pyplot as plt\n'), ((5573, 5586), 'matplotlib.pyplot.title', 'plt.title', (['ns'], {}), '(ns)\n', (5582, 5586), True, 'import matplotlib.pyplot as plt\n'), ((5817, 5837), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""col ix"""'], {}), "('col ix')\n", (5827, 5837), True, 'import matplotlib.pyplot as plt\n'), ((5862, 5883), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""-row ix"""'], {}), "('-row ix')\n", (5872, 5883), True, 'import matplotlib.pyplot as plt\n'), ((5908, 5923), 'matplotlib.pyplot.savefig', 'plt.savefig', (['fn'], {}), '(fn)\n', (5919, 5923), True, 'import matplotlib.pyplot as plt\n'), ((5948, 5959), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (5957, 5959), True, 'import matplotlib.pyplot as plt\n'), ((6056, 6074), 'os.path.exists', 'os.path.exists', (['fn'], {}), '(fn)\n', (6070, 6074), False, 'import os\n'), ((6153, 6167), 'dist.to_list', 'to_list', (['point'], {}), '(point)\n', (6160, 6167), False, 'from dist import normalize, to_list, centroid\n'), ((6201, 6217), 'dist.centroid', 'centroid', (['xL', 'yL'], {}), '(xL, yL)\n', (6209, 6217), False, 'from dist import normalize, to_list, centroid\n'), ((6503, 6521), 'os.path.exists', 'os.path.exists', (['fn'], {}), '(fn)\n', (6517, 6521), False, 'import os\n'), ((5699, 5732), 'matplotlib.pyplot.xlim', 'plt.xlim', (['[-0.5, self.cols - 0.5]'], {}), '([-0.5, self.cols - 0.5])\n', (5707, 5732), True, 'import matplotlib.pyplot as plt\n'), ((5759, 5794), 'matplotlib.pyplot.ylim', 'plt.ylim', (['[-(self.rows - 0.5), 0.5]'], {}), '([-(self.rows - 0.5), 0.5])\n', (5767, 5794), True, 'import matplotlib.pyplot as plt\n')]
################################################################## # Utils.py # Client side utilities ################################################################## import platform class Utils(object): def __init__(self, parent): self.parent = parent self.ae = parent.ae self.cfg = parent.cfg def get_size_uint32(self): """ Let's do things right. Calculate the size of an unsigned long for this architecture. Or 4 :) """ try: import ctypes return ctypes.sizeof(ctypes.c_uint32) except: self.ae.m_warn("WARNING: Could not find ctypes. Assuming uint32 is 4 bytes :(") return 4 def hit_bin(self, n): """ Given a hit number, return the corresponding bin Hit bins: {1, 2, 3, 4-7, 8-15, 16-31, 32-127, 128+} """ # TODO: fix this monkey code! if n < 4: return n elif n << 3 == 0: return 4 elif n << 4 == 0: return 5 elif n << 5 == 0: return 6 elif n >= 32 and n <= 127: return 7 else: return 8 def get_platform_info(self): """ Information regarding the computer where the fuzzer is running """ try: node_properties = { 'node_name' : platform.node(), 'os_release': platform.release(), 'os_version': platform.version(), 'machine' : platform.machine(), 'processor' : platform.processor() } except: self.ae.m_alert('[x] Error getting platform information') return None return node_properties
[ "platform.processor", "platform.node", "ctypes.sizeof", "platform.version", "platform.release", "platform.machine" ]
[((559, 589), 'ctypes.sizeof', 'ctypes.sizeof', (['ctypes.c_uint32'], {}), '(ctypes.c_uint32)\n', (572, 589), False, 'import ctypes\n'), ((1410, 1425), 'platform.node', 'platform.node', ([], {}), '()\n', (1423, 1425), False, 'import platform\n'), ((1457, 1475), 'platform.release', 'platform.release', ([], {}), '()\n', (1473, 1475), False, 'import platform\n'), ((1507, 1525), 'platform.version', 'platform.version', ([], {}), '()\n', (1523, 1525), False, 'import platform\n'), ((1557, 1575), 'platform.machine', 'platform.machine', ([], {}), '()\n', (1573, 1575), False, 'import platform\n'), ((1607, 1627), 'platform.processor', 'platform.processor', ([], {}), '()\n', (1625, 1627), False, 'import platform\n')]
from django.db.models import ForeignKey from django.urls import path from django.utils.functional import cached_property from django.utils.translation import gettext as _ from wagtail.admin.forms.models import register_form_field_override from wagtail.admin.views.generic import chooser as chooser_views from wagtail.admin.widgets.chooser import BaseChooser from .base import ViewSet class ChooserViewSet(ViewSet): """ A viewset that creates a chooser modal interface for choosing model instances. """ icon = "snippet" #: The icon to use in the header of the chooser modal, and on the chooser widget choose_one_text = _( "Choose" ) #: Label for the 'choose' button in the chooser widget when choosing an initial item page_title = None #: Title text for the chooser modal (defaults to the same as ``choose_one_text``)` choose_another_text = _( "Choose another" ) #: Label for the 'choose' button in the chooser widget, when an item has already been chosen edit_item_text = _("Edit") #: Label for the 'edit' button in the chooser widget #: The view class to use for the overall chooser modal; must be a subclass of ``wagtail.admin.views.generic.chooser.ChooseView``. choose_view_class = chooser_views.ChooseView #: The view class used to render just the results panel within the chooser modal; must be a subclass of ``wagtail.admin.views.generic.chooser.ChooseResultsView``. choose_results_view_class = chooser_views.ChooseResultsView #: The view class used after an item has been chosen; must be a subclass of ``wagtail.admin.views.generic.chooser.ChosenView``. chosen_view_class = chooser_views.ChosenView #: The base Widget class that the chooser widget will be derived from. base_widget_class = BaseChooser #: Defaults to True; if False, the chooser widget will not automatically be registered for use in admin forms. register_widget = True def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) if self.page_title is None: self.page_title = self.choose_one_text @property def choose_view(self): return self.choose_view_class.as_view( model=self.model, chosen_url_name=self.get_url_name("chosen"), results_url_name=self.get_url_name("choose_results"), icon=self.icon, page_title=self.page_title, ) @property def choose_results_view(self): return self.choose_results_view_class.as_view( model=self.model, chosen_url_name=self.get_url_name("chosen"), results_url_name=self.get_url_name("choose_results"), ) @property def chosen_view(self): return self.chosen_view_class.as_view( model=self.model, ) @cached_property def widget_class(self): """ Returns the form widget class for this chooser. """ return type( "%sChooserWidget" % self.model.__name__, (self.base_widget_class,), { "model": self.model, "choose_one_text": self.choose_one_text, "choose_another_text": self.choose_another_text, "link_to_chosen_text": self.edit_item_text, "chooser_modal_url_name": self.get_url_name("choose"), "icon": self.icon, }, ) def get_urlpatterns(self): return super().get_urlpatterns() + [ path("", self.choose_view, name="choose"), path("results/", self.choose_results_view, name="choose_results"), path("chosen/<str:pk>/", self.chosen_view, name="chosen"), ] def on_register(self): if self.register_widget: register_form_field_override( ForeignKey, to=self.model, override={"widget": self.widget_class} )
[ "django.urls.path", "wagtail.admin.forms.models.register_form_field_override", "django.utils.translation.gettext" ]
[((644, 655), 'django.utils.translation.gettext', '_', (['"""Choose"""'], {}), "('Choose')\n", (645, 655), True, 'from django.utils.translation import gettext as _\n'), ((888, 907), 'django.utils.translation.gettext', '_', (['"""Choose another"""'], {}), "('Choose another')\n", (889, 907), True, 'from django.utils.translation import gettext as _\n'), ((1037, 1046), 'django.utils.translation.gettext', '_', (['"""Edit"""'], {}), "('Edit')\n", (1038, 1046), True, 'from django.utils.translation import gettext as _\n'), ((3814, 3913), 'wagtail.admin.forms.models.register_form_field_override', 'register_form_field_override', (['ForeignKey'], {'to': 'self.model', 'override': "{'widget': self.widget_class}"}), "(ForeignKey, to=self.model, override={'widget':\n self.widget_class})\n", (3842, 3913), False, 'from wagtail.admin.forms.models import register_form_field_override\n'), ((3538, 3579), 'django.urls.path', 'path', (['""""""', 'self.choose_view'], {'name': '"""choose"""'}), "('', self.choose_view, name='choose')\n", (3542, 3579), False, 'from django.urls import path\n'), ((3593, 3658), 'django.urls.path', 'path', (['"""results/"""', 'self.choose_results_view'], {'name': '"""choose_results"""'}), "('results/', self.choose_results_view, name='choose_results')\n", (3597, 3658), False, 'from django.urls import path\n'), ((3672, 3729), 'django.urls.path', 'path', (['"""chosen/<str:pk>/"""', 'self.chosen_view'], {'name': '"""chosen"""'}), "('chosen/<str:pk>/', self.chosen_view, name='chosen')\n", (3676, 3729), False, 'from django.urls import path\n')]
import pandas as pd import zipfile import os def get_media_data(**cfg): '''retrive media dataset''' for url in cfg['URLs']: print(url) infile = os.path.join(cfg['outpath'],url.split('/')[-1]) os.system(cfg['wget_fmt']%(url,infile)) print(infile) with zipfile.ZipFile(infile, 'r') as zip_ref: zip_ref.extractall(infile) def process_media_data(**cfg): '''get COVID-19 related news out of news dataset''' result = [] for chunk in pd.read_csv(cfg['infile'],usecols=range(2,12), parse_dates=['date'], chunksize=chunksize): result.append(chunk[chunk.year==2020]) all2020 = pd.concat(result) COVID = all2020[ (all2020.title.str.contains('virus'))| (all2020.title.str.contains('COVID'))| (all2020.title.str.contains('stay-at-home'))| (all2020.title.str.contains('COVID-19'))| # (all2020.title.str.contains('toll'))| (all2020.title.str.contains('coronavirus')) ].reset_index(drop=True) COVID.to_csv(cfg['outfile'])
[ "zipfile.ZipFile", "os.system", "pandas.concat" ]
[((680, 697), 'pandas.concat', 'pd.concat', (['result'], {}), '(result)\n', (689, 697), True, 'import pandas as pd\n'), ((225, 267), 'os.system', 'os.system', (["(cfg['wget_fmt'] % (url, infile))"], {}), "(cfg['wget_fmt'] % (url, infile))\n", (234, 267), False, 'import os\n'), ((297, 325), 'zipfile.ZipFile', 'zipfile.ZipFile', (['infile', '"""r"""'], {}), "(infile, 'r')\n", (312, 325), False, 'import zipfile\n')]
import asyncio from decouple import config from motor.motor_asyncio import AsyncIOMotorClient cs = config("MONGODB_CS") client = AsyncIOMotorClient(cs) client.get_io_loop = asyncio.get_running_loop buchi = client.get_database('buchi')
[ "decouple.config", "motor.motor_asyncio.AsyncIOMotorClient" ]
[((100, 120), 'decouple.config', 'config', (['"""MONGODB_CS"""'], {}), "('MONGODB_CS')\n", (106, 120), False, 'from decouple import config\n'), ((130, 152), 'motor.motor_asyncio.AsyncIOMotorClient', 'AsyncIOMotorClient', (['cs'], {}), '(cs)\n', (148, 152), False, 'from motor.motor_asyncio import AsyncIOMotorClient\n')]
# Standard library import argparse import os # Third party import openai # Consts PROMPT = """ Given a cooking ingredient and quantity, return only the ingredient name 2 cups flour Flour Cinnamon ~1 tablespoon Cinnamon About one tsp salt Salt 1.5-2 cups grated raw zucchini Raw zucchini 1c walnuts (optional) Walnuts %s """ def parse(ingredient_description): try: openai.api_key = os.environ["OPENAI_API_KEY"] response = openai.Completion.create( engine="davinci", prompt=PROMPT % (ingredient_description), temperature=0, max_tokens=64, top_p=1, frequency_penalty=0, presence_penalty=0, stop=["\n"] ) return response.choices[0].text except: return ingredient_description if __name__ == "__main__": parser = argparse.ArgumentParser(description="Parse ingredients using OpenAI") parser.add_argument("-i", "--ingredient", help="Ingredient description to parse") args = parser.parse_args() print(parse(args.ingredient))
[ "argparse.ArgumentParser", "openai.Completion.create" ]
[((862, 931), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Parse ingredients using OpenAI"""'}), "(description='Parse ingredients using OpenAI')\n", (885, 931), False, 'import argparse\n'), ((445, 628), 'openai.Completion.create', 'openai.Completion.create', ([], {'engine': '"""davinci"""', 'prompt': '(PROMPT % ingredient_description)', 'temperature': '(0)', 'max_tokens': '(64)', 'top_p': '(1)', 'frequency_penalty': '(0)', 'presence_penalty': '(0)', 'stop': "['\\n']"}), "(engine='davinci', prompt=PROMPT %\n ingredient_description, temperature=0, max_tokens=64, top_p=1,\n frequency_penalty=0, presence_penalty=0, stop=['\\n'])\n", (469, 628), False, 'import openai\n')]
from .serializers import ReviewSerializer, ShopSerializer, UserReviewSerializer from rest_framework import viewsets from rest_framework.pagination import LimitOffsetPagination from .models import ReviewModel, ShopModel from rest_framework.generics import ListAPIView from rest_framework import filters from django.db.models import Count, Avg from rest_framework import permissions from .permissions import IsOwnerOrReadOnly from django.contrib.auth import get_user_model UserModel = get_user_model() class ReviewViewSet(viewsets.ModelViewSet): """ ViewSet for Reviews """ queryset = ReviewModel.objects.all() serializer_class = ReviewSerializer pagination_class = LimitOffsetPagination permission_classes = [permissions.IsAuthenticatedOrReadOnly, IsOwnerOrReadOnly] def perform_create(self, serializer): serializer.save(user=self.request.user) class ShopView(ListAPIView): queryset = ShopModel.objects.annotate(review_count=Count('reviews'), avg_rating=Avg('reviews__rating')) serializer_class = ShopSerializer filter_backends = [filters.OrderingFilter, filters.SearchFilter] ordering_fields = ['review_count', 'avg_rating'] ordering = ['avg_rating'] search_fields = ['domain'] class UserReviewView(ListAPIView): queryset = UserModel.objects.all() serializer_class = UserReviewSerializer
[ "django.db.models.Count", "django.db.models.Avg", "django.contrib.auth.get_user_model" ]
[((485, 501), 'django.contrib.auth.get_user_model', 'get_user_model', ([], {}), '()\n', (499, 501), False, 'from django.contrib.auth import get_user_model\n'), ((975, 991), 'django.db.models.Count', 'Count', (['"""reviews"""'], {}), "('reviews')\n", (980, 991), False, 'from django.db.models import Count, Avg\n'), ((1004, 1026), 'django.db.models.Avg', 'Avg', (['"""reviews__rating"""'], {}), "('reviews__rating')\n", (1007, 1026), False, 'from django.db.models import Count, Avg\n')]
# stdlib import subprocess from typing import List # local from lib.io import read_value_from_file from lib.log import log, log_pretty # ============================================================================= # # private utility functions # # ============================================================================= # ============================================================================= # _parse_packer_machine_readable_output_line # ============================================================================= def _parse_packer_machine_readable_output_line(output_line: str) -> dict: # machine readable format # from https://www.packer.io/docs/commands/index.html parsed_line = None if output_line: message_item: dict = { "timestamp": None, "target": None, "type": None, "data": [], } # split each line on commas line_tokens: list = output_line.split(",") for i, line_token in enumerate(line_tokens): # assign payload fields based on token number if i == 0: message_item["timestamp"] = line_token elif i == 1: message_item["target"] = line_token elif i == 2: message_item["type"] = line_token elif i > 2: # strip trailing newline from data message_item["data"].append(line_token.rstrip("\n")) parsed_line = message_item return parsed_line # ============================================================================= # _format_packer_machine_readable_output_line # ============================================================================= def _format_packer_machine_readable_output_line( timestamp: str, target: str, output_type: str, data: str, subtype=None ) -> str: # most messages won't have a target which means it's global if not target: target = "global" # consistent padding for the 'version' types if output_type.startswith("version"): output_type = f"{output_type:16}" # replace the packer comma data = data.replace("%!(PACKER_COMMA)", ",") if subtype: return f"{timestamp} | {target} | {output_type} | {subtype:8} | {data}" return f"{timestamp} | {target} | {output_type} | {data}" # ============================================================================= # _print_parsed_packer_machine_readable_output_line # ============================================================================= def _print_parsed_packer_machine_readable_output_line(parsed_line: dict) -> None: if parsed_line: if len(parsed_line["data"]) > 0: subtype = None # check for subtype if parsed_line["data"][0] in ["say", "error", "message"]: # pop found subtype from the parsed line subtype = parsed_line["data"].pop(0) for item in parsed_line["data"]: # split on \\n item_lines = item.split("\\n") for item_line in item_lines: log( _format_packer_machine_readable_output_line( parsed_line["timestamp"], parsed_line["target"], parsed_line["type"], item_line, subtype=subtype, ) ) # ============================================================================= # _parse_packer_parsed_output_for_build_manifest # ============================================================================= def _parse_packer_parsed_output_for_build_manifest(parsed_output: List[dict]) -> dict: manifest = {"artifacts": {}} # create collection of targets targets = {} for parsed_item in parsed_output: if parsed_item["target"]: target_name = parsed_item["target"] if target_name not in targets: targets[target_name] = [] del parsed_item["target"] targets[target_name].append(parsed_item) # iterate on targets for target_key, target_value in targets.items(): # split into artifacts target_artifacts = {} for target_item in target_value: if target_item["type"] == "artifact": # first index of data will be the artifact number artifact_number = target_item["data"][0] # second index of data will be the artifact key artifact_key = target_item["data"][1] # skip adding the 'end' key if artifact_key == "end": continue # third index of data will be the artifact value, if present if len(target_item["data"]) > 2: artifact_value = target_item["data"][2] else: artifact_value = None # create the target artifact dict, if missing if artifact_number not in target_artifacts: target_artifacts[artifact_number] = {} # assign the artifact key and value target_artifacts[artifact_number][artifact_key] = artifact_value manifest["artifacts"][target_key] = target_artifacts return manifest # ============================================================================= # # private exe functions # # ============================================================================= # ============================================================================= # _packer # ============================================================================= def _packer(*args: str, working_dir=None) -> List[dict]: # runs packer bin with forced machine readable output process_args = ["packer", "-machine-readable", *args] parsed_lines = [] # use Popen so we can read lines as they come with subprocess.Popen( process_args, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, # redirect stderr to stdout bufsize=1, universal_newlines=True, stdin=None, cwd=working_dir, ) as pipe: for line in pipe.stdout or "": if "fmt" in args: # determine log level log_level = "warning" if "fmt" in args else "info" # directly log the output log(f"global | ui | {log_level} | {line.rstrip()}") else: # parse the machine readable output as it arrives parsed_line = _parse_packer_machine_readable_output_line(line) parsed_lines.append(parsed_line) _print_parsed_packer_machine_readable_output_line(parsed_line) if pipe.returncode != 0: # args are masked to prevent credentials leaking raise subprocess.CalledProcessError(pipe.returncode, ["packer"]) return parsed_lines # ============================================================================= # # public packer functions # # ============================================================================= # ============================================================================= # version # ============================================================================= def version() -> None: # execute version command _packer("version") # ============================================================================= # init # ============================================================================= def init(working_dir_path: str, template_file_path: str) -> None: # execute init command _packer("init", template_file_path, working_dir=working_dir_path) # ============================================================================= # format # ============================================================================= def format_packer_cmd(working_dir_path: str, template_file_path: str) -> None: # execute format command _packer("fmt", "-check", "-diff", template_file_path, working_dir=working_dir_path) # ============================================================================= # validate # ============================================================================= def validate( working_dir_path: str, template_file_path: str, var_file_paths: List[str] = None, template_vars: dict = None, vars_from_files: dict = None, only: List[str] = None, excepts: List[str] = None, syntax_only: bool = False, debug: bool = False, ) -> None: packer_command_args = [] # add any specified var file paths if var_file_paths: for var_file_path in var_file_paths: packer_command_args.append(f"-var-file={var_file_path}") # add any specified vars if template_vars: for var_name, var_value in template_vars.items(): packer_command_args.append(f"-var={var_name}={var_value}") # add any vars from files if vars_from_files: for var_name, file_path in vars_from_files.items(): var_value = read_value_from_file(file_path, working_dir=working_dir_path) packer_command_args.append(f"-var={var_name}={var_value}") # only build specified sources if only: packer_command_args.append(f"-only={','.join(only)}") # build all sources except those specified elif excepts: packer_command_args.append(f"-except={','.join(excepts)}") # optionally check only syntax if syntax_only: packer_command_args.append("-syntax-only") # dump args on debug if debug: log("validate args:") log_pretty(packer_command_args) # execute validate command _packer( "validate", *packer_command_args, template_file_path, working_dir=working_dir_path, ) # ============================================================================= # build # ============================================================================= def build( working_dir_path: str, template_file_path: str, var_file_paths: List[str] = None, template_vars: dict = None, vars_from_files: dict = None, only: List[str] = None, excepts: List[str] = None, debug: bool = False, force: bool = False, ) -> dict: packer_command_args = [] # add any specified var file paths if var_file_paths: for var_file_path in var_file_paths: packer_command_args.append(f"-var-file={var_file_path}") # add any specified vars if template_vars: for var_name, var_value in template_vars.items(): packer_command_args.append(f"-var={var_name}={var_value}") # add any vars from files if vars_from_files: for var_name, file_path in vars_from_files.items(): var_value = read_value_from_file(file_path, working_dir=working_dir_path) packer_command_args.append(f"-var={var_name}={var_value}") # only build specified sources if only: packer_command_args.append(f"-only={','.join(only)}") # build all sources except those specified elif excepts: packer_command_args.append(f"-except={','.join(excepts)}") # add force if requested if force: packer_command_args.append("-force") # dump args on debug if debug: log("build args:") log_pretty(packer_command_args) # execute build command packer_command_result = _packer( "build", *packer_command_args, template_file_path, working_dir=working_dir_path ) # get build manifest from output packer_build_manifest = _parse_packer_parsed_output_for_build_manifest( packer_command_result ) # return the manifest return packer_build_manifest
[ "subprocess.Popen", "lib.log.log_pretty", "subprocess.CalledProcessError", "lib.io.read_value_from_file", "lib.log.log" ]
[((6011, 6161), 'subprocess.Popen', 'subprocess.Popen', (['process_args'], {'stdout': 'subprocess.PIPE', 'stderr': 'subprocess.STDOUT', 'bufsize': '(1)', 'universal_newlines': '(True)', 'stdin': 'None', 'cwd': 'working_dir'}), '(process_args, stdout=subprocess.PIPE, stderr=subprocess.\n STDOUT, bufsize=1, universal_newlines=True, stdin=None, cwd=working_dir)\n', (6027, 6161), False, 'import subprocess\n'), ((6933, 6991), 'subprocess.CalledProcessError', 'subprocess.CalledProcessError', (['pipe.returncode', "['packer']"], {}), "(pipe.returncode, ['packer'])\n", (6962, 6991), False, 'import subprocess\n'), ((9678, 9699), 'lib.log.log', 'log', (['"""validate args:"""'], {}), "('validate args:')\n", (9681, 9699), False, 'from lib.log import log, log_pretty\n'), ((9708, 9739), 'lib.log.log_pretty', 'log_pretty', (['packer_command_args'], {}), '(packer_command_args)\n', (9718, 9739), False, 'from lib.log import log, log_pretty\n'), ((11400, 11418), 'lib.log.log', 'log', (['"""build args:"""'], {}), "('build args:')\n", (11403, 11418), False, 'from lib.log import log, log_pretty\n'), ((11427, 11458), 'lib.log.log_pretty', 'log_pretty', (['packer_command_args'], {}), '(packer_command_args)\n', (11437, 11458), False, 'from lib.log import log, log_pretty\n'), ((9150, 9211), 'lib.io.read_value_from_file', 'read_value_from_file', (['file_path'], {'working_dir': 'working_dir_path'}), '(file_path, working_dir=working_dir_path)\n', (9170, 9211), False, 'from lib.io import read_value_from_file\n'), ((10890, 10951), 'lib.io.read_value_from_file', 'read_value_from_file', (['file_path'], {'working_dir': 'working_dir_path'}), '(file_path, working_dir=working_dir_path)\n', (10910, 10951), False, 'from lib.io import read_value_from_file\n')]
from typing import Optional from fastapi import APIRouter, Depends import httpx from app.models.models import User from app.schema import User_Pydantic router = APIRouter() @router.get("/") async def homepage(): # httpx代替requests进行异步请求 async with httpx.AsyncClient() as client: res = await client.get('https://www.baidu.com') return {"data": res.status_code} @router.get("/test/items/{item_id}") async def read_item(item_id: int, q: Optional[str] = None): return {"item_id": item_id, "q": q} @router.get('/test/users') async def get_users(): # 创建用户 # user = User() # user.name = 'test2' # user.phone = '123' # user.set_password('<PASSWORD>') # await user.save() # return 1 # QuerySet不进行数据库查询 users = User.all() # User_Pydantic为序列化的模型,users为处理的QuerySet对象 data = await User_Pydantic.from_queryset(users) return data
[ "app.models.models.User.all", "httpx.AsyncClient", "app.schema.User_Pydantic.from_queryset", "fastapi.APIRouter" ]
[((164, 175), 'fastapi.APIRouter', 'APIRouter', ([], {}), '()\n', (173, 175), False, 'from fastapi import APIRouter, Depends\n'), ((770, 780), 'app.models.models.User.all', 'User.all', ([], {}), '()\n', (778, 780), False, 'from app.models.models import User\n'), ((260, 279), 'httpx.AsyncClient', 'httpx.AsyncClient', ([], {}), '()\n', (277, 279), False, 'import httpx\n'), ((845, 879), 'app.schema.User_Pydantic.from_queryset', 'User_Pydantic.from_queryset', (['users'], {}), '(users)\n', (872, 879), False, 'from app.schema import User_Pydantic\n')]
# -*- coding: utf-8 -*- # # Copyright 2020 Google LLC. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Get a PEM-format certificate chain for a given version.""" from __future__ import absolute_import from __future__ import division from __future__ import unicode_literals from googlecloudsdk.api_lib.cloudkms import base as cloudkms_base from googlecloudsdk.calliope import base from googlecloudsdk.calliope import exceptions from googlecloudsdk.command_lib.kms import exceptions as kms_exceptions from googlecloudsdk.command_lib.kms import flags from googlecloudsdk.core import log from googlecloudsdk.core.util import files DETAILED_HELP = { 'EXAMPLES': """\ The following command saves the Cavium certificate chain for CryptoKey ``frodo'' Version 2 to ``/tmp/my/cavium.pem'': $ {command} 2 --key=frodo --keyring=fellowship --location=us-east1 --certificate-chain-type=cavium --output-file=/tmp/my/cavium.pem """, } def _GetCertificateChainPem(chains, chain_type): """Returns the specified certificate chain(s) from a CertChains object. Args: chains: a KeyOperationAttestation.CertChains object. chain_type: a string specifying the chain(s) to retrieve. Returns: A string containing the PEM-encoded certificate chain(s). Raises: exceptions.InvalidArgumentException if chain_type is not a valid chain type. """ if chain_type == 'cavium': return ''.join(chains.caviumCerts) elif chain_type == 'google-card': return ''.join(chains.googleCardCerts) elif chain_type == 'google-partition': return ''.join(chains.googlePartitionCerts) elif chain_type == 'all': return ''.join(chains.caviumCerts + chains.googlePartitionCerts + chains.googleCardCerts) raise exceptions.InvalidArgumentException( '{} is not a valid chain type.'.format(chain_type)) @base.ReleaseTracks(base.ReleaseTrack.ALPHA, base.ReleaseTrack.BETA, base.ReleaseTrack.GA) class GetCertificateChain(base.DescribeCommand): r"""Get a certificate chain for a given version. Returns the PEM-format certificate chain for the specified key version. The optional flag `output-file` indicates the path to store the PEM. If not specified, the PEM will be printed to stdout. """ detailed_help = DETAILED_HELP @staticmethod def Args(parser): flags.AddKeyVersionResourceArgument( parser, 'from which to get the certificate chain') flags.AddCertificateChainFlag(parser) flags.AddOutputFileFlag(parser, 'to store PEM') def Run(self, args): client = cloudkms_base.GetClientInstance() messages = cloudkms_base.GetMessagesModule() version_ref = flags.ParseCryptoKeyVersionName(args) if not version_ref.Name(): raise exceptions.InvalidArgumentException( 'version', 'version id must be non-empty.') versions = client.projects_locations_keyRings_cryptoKeys_cryptoKeyVersions version = versions.Get( messages .CloudkmsProjectsLocationsKeyRingsCryptoKeysCryptoKeyVersionsGetRequest( name=version_ref.RelativeName())) if (version.protectionLevel != messages.CryptoKeyVersion.ProtectionLevelValueValuesEnum.HSM): raise kms_exceptions.ArgumentError( 'Certificate chains are only available for HSM key versions.') if (version.state == messages.CryptoKeyVersion.StateValueValuesEnum.PENDING_GENERATION): raise kms_exceptions.ArgumentError( 'Certificate chains are unavailable until the version is generated.') try: log.WriteToFileOrStdout( args.output_file if args.output_file else '-', _GetCertificateChainPem(version.attestation.certChains, args.certificate_chain_type), overwrite=True, binary=False) except files.Error as e: raise exceptions.BadFileException(e)
[ "googlecloudsdk.command_lib.kms.flags.AddKeyVersionResourceArgument", "googlecloudsdk.api_lib.cloudkms.base.GetMessagesModule", "googlecloudsdk.command_lib.kms.flags.AddOutputFileFlag", "googlecloudsdk.calliope.exceptions.BadFileException", "googlecloudsdk.command_lib.kms.exceptions.ArgumentError", "googlecloudsdk.calliope.base.ReleaseTracks", "googlecloudsdk.calliope.exceptions.InvalidArgumentException", "googlecloudsdk.command_lib.kms.flags.ParseCryptoKeyVersionName", "googlecloudsdk.api_lib.cloudkms.base.GetClientInstance", "googlecloudsdk.command_lib.kms.flags.AddCertificateChainFlag" ]
[((2397, 2491), 'googlecloudsdk.calliope.base.ReleaseTracks', 'base.ReleaseTracks', (['base.ReleaseTrack.ALPHA', 'base.ReleaseTrack.BETA', 'base.ReleaseTrack.GA'], {}), '(base.ReleaseTrack.ALPHA, base.ReleaseTrack.BETA, base.\n ReleaseTrack.GA)\n', (2415, 2491), False, 'from googlecloudsdk.calliope import base\n'), ((2888, 2978), 'googlecloudsdk.command_lib.kms.flags.AddKeyVersionResourceArgument', 'flags.AddKeyVersionResourceArgument', (['parser', '"""from which to get the certificate chain"""'], {}), "(parser,\n 'from which to get the certificate chain')\n", (2923, 2978), False, 'from googlecloudsdk.command_lib.kms import flags\n'), ((2988, 3025), 'googlecloudsdk.command_lib.kms.flags.AddCertificateChainFlag', 'flags.AddCertificateChainFlag', (['parser'], {}), '(parser)\n', (3017, 3025), False, 'from googlecloudsdk.command_lib.kms import flags\n'), ((3030, 3077), 'googlecloudsdk.command_lib.kms.flags.AddOutputFileFlag', 'flags.AddOutputFileFlag', (['parser', '"""to store PEM"""'], {}), "(parser, 'to store PEM')\n", (3053, 3077), False, 'from googlecloudsdk.command_lib.kms import flags\n'), ((3115, 3148), 'googlecloudsdk.api_lib.cloudkms.base.GetClientInstance', 'cloudkms_base.GetClientInstance', ([], {}), '()\n', (3146, 3148), True, 'from googlecloudsdk.api_lib.cloudkms import base as cloudkms_base\n'), ((3164, 3197), 'googlecloudsdk.api_lib.cloudkms.base.GetMessagesModule', 'cloudkms_base.GetMessagesModule', ([], {}), '()\n', (3195, 3197), True, 'from googlecloudsdk.api_lib.cloudkms import base as cloudkms_base\n'), ((3216, 3253), 'googlecloudsdk.command_lib.kms.flags.ParseCryptoKeyVersionName', 'flags.ParseCryptoKeyVersionName', (['args'], {}), '(args)\n', (3247, 3253), False, 'from googlecloudsdk.command_lib.kms import flags\n'), ((3297, 3376), 'googlecloudsdk.calliope.exceptions.InvalidArgumentException', 'exceptions.InvalidArgumentException', (['"""version"""', '"""version id must be non-empty."""'], {}), "('version', 'version id must be non-empty.')\n", (3332, 3376), False, 'from googlecloudsdk.calliope import exceptions\n'), ((3757, 3853), 'googlecloudsdk.command_lib.kms.exceptions.ArgumentError', 'kms_exceptions.ArgumentError', (['"""Certificate chains are only available for HSM key versions."""'], {}), "(\n 'Certificate chains are only available for HSM key versions.')\n", (3785, 3853), True, 'from googlecloudsdk.command_lib.kms import exceptions as kms_exceptions\n'), ((3973, 4076), 'googlecloudsdk.command_lib.kms.exceptions.ArgumentError', 'kms_exceptions.ArgumentError', (['"""Certificate chains are unavailable until the version is generated."""'], {}), "(\n 'Certificate chains are unavailable until the version is generated.')\n", (4001, 4076), True, 'from googlecloudsdk.command_lib.kms import exceptions as kms_exceptions\n'), ((4401, 4431), 'googlecloudsdk.calliope.exceptions.BadFileException', 'exceptions.BadFileException', (['e'], {}), '(e)\n', (4428, 4431), False, 'from googlecloudsdk.calliope import exceptions\n')]
#import libraries import face_recognition import numpy as np from PIL import Image, ImageDraw import matplotlib.image as mpimg from IPython.display import display import cv2 import os, re import pyrebase import time cv2.VideoCapture(0).isOpened() from dronekit import connect, VehicleMode, LocationGlobalRelative import firebase_admin from firebase_admin import credentials from google.cloud import firestore ''' A rajouter, tes librairies ''' #Config de firestore et storage: firebaseConfig = { "apiKey": "<KEY>", "authDomain": "delivreapp-5221e.firebaseapp.com", "projectId": "delivreapp-5221e", "databaseURL": "https://del-ivre-default-rtdb.europe-west1.firebasedatabase.app", "storageBucket": "delivreapp-5221e.appspot.com", "messagingSenderId": "661920641786", "appId": "1:661920641786:web:dca2c085b5ff60f1b18f43", "measurementId": "G-CLR5PFH3G4" }; nDrone=5 #numéro du drone associé firebase=pyrebase.initialize_app(firebaseConfig) storage=firebase.storage() try: firebase_admin.get_app() #print('firebase intialized.') except ValueError as e: #print('firebase not initialized. But now initialize.') cred = credentials.Certificate("serviceAccountKey.json") firebase_admin.initialize_app(cred) os.environ["GOOGLE_APPLICATION_CREDENTIALS"]="serviceAccountKey.json" db = firestore.Client() ###récupération Coord GPS print("Initialisation terminée, début de la boucle") while True: nbImg=[]; go=True while True: try: doc=db.collection('Users').where("Drone","==",nDrone).get()[0] break except: continue nom=doc.get("Nom") prenom=doc.get("Prenom") coord=doc.get("GPS") image=nom+"#"+prenom+".jpg" print(nom,end=' ') print(prenom,end="\n") print(doc.get("Commande"),end="\n") print(coord) #téléchargement image storage.child(image).download(image) img1 = Image.open(image) img1.save("img1.jpg","JPEG") try: time.sleep(0.001) img1 = Image.open(image) img1.save("img1.jpg","JPEG") time.sleep(0.001) img2=img1.rotate(90) img2.show() time.sleep(0.001) img2.save("img2.jpg","JPEG") img3=img2.rotate(90) time.sleep(0.001) img3.save("img3.jpg","JPEG") img4=img3.rotate(90) time.sleep(0.001) img4.save("img4.jpg","JPEG") #os.remove(image) print("image enregistrée") except: print("probleme dans le téléchargement de l'image") ###variables d'initiation reconnaissance faciale known_face_encodings = [] known_face_names = [] face_locations = [] face_encodings = [] process_this_frame = True #Image enregistrée dans la base de donnée for i in range(1,5): try: new_image=face_recognition.load_image_file("img"+ str(nbImg) + ".jpg") new_face_encoding = face_recognition.face_encodings(new_image)[0] known_face_encodings.append(new_face_encoding) known_face_names.append(prenom + " " + nom) nbImg=i print("photo" , str(i) , " dans reconaissance faciale") except: os.remove("img"+ str(i) + ".jpg") print(i) print("photo ", str(i) , "non prise en compte") Reco=True #algo reconnaissance faciale print("lancement algorithme de reconnaissance faciale") while Reco: # Grab a single frame of video ret, frame = cv2.VideoCapture(0).read() # Resize frame of video to 1/4 size for faster face recognition processing small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25) # Convert the image from BGR color (which OpenCV uses) to RGB color (which face_recognition uses) rgb_small_frame = small_frame[:, :, ::-1] # Only process every other frame of video to save time if process_this_frame: # Find all the faces and face encodings in the current frame of video face_locations = face_recognition.face_locations(rgb_small_frame) face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations) for face_encoding in face_encodings: # See if the face is a match for the known face(s) matches = face_recognition.compare_faces(known_face_encodings, face_encoding) name = "Unknown" # If a match was found in known_face_encodings, just use the first one. if True in matches: first_match_index = matches.index(True) name = known_face_names[first_match_index] if name==prenom+" "+nom: print(name, end=' ') print("a bien été reconnu, on procède donc a l'attérissage.") Reco=False process_this_frame = not process_this_frame #suppression image du PC print("image supprimé de la mémoire du rpi") for i in range(len(nbImg)): os.remove("img"+ str(nbImg[i]) + ".jpg") try: id=str(int(doc.get("Id"))) db.collection('Users').document(id).delete() print("la commande a été supprimée") storage.delete_blob(image) storage.delete() except: print("la commande était déja supprimée")
[ "cv2.resize", "firebase_admin.credentials.Certificate", "face_recognition.compare_faces", "face_recognition.face_encodings", "google.cloud.firestore.Client", "pyrebase.initialize_app", "PIL.Image.open", "cv2.VideoCapture", "time.sleep", "firebase_admin.initialize_app", "face_recognition.face_locations", "firebase_admin.get_app" ]
[((923, 962), 'pyrebase.initialize_app', 'pyrebase.initialize_app', (['firebaseConfig'], {}), '(firebaseConfig)\n', (946, 962), False, 'import pyrebase\n'), ((1322, 1340), 'google.cloud.firestore.Client', 'firestore.Client', ([], {}), '()\n', (1338, 1340), False, 'from google.cloud import firestore\n'), ((1001, 1025), 'firebase_admin.get_app', 'firebase_admin.get_app', ([], {}), '()\n', (1023, 1025), False, 'import firebase_admin\n'), ((1919, 1936), 'PIL.Image.open', 'Image.open', (['image'], {}), '(image)\n', (1929, 1936), False, 'from PIL import Image, ImageDraw\n'), ((216, 235), 'cv2.VideoCapture', 'cv2.VideoCapture', (['(0)'], {}), '(0)\n', (232, 235), False, 'import cv2\n'), ((1156, 1205), 'firebase_admin.credentials.Certificate', 'credentials.Certificate', (['"""serviceAccountKey.json"""'], {}), "('serviceAccountKey.json')\n", (1179, 1205), False, 'from firebase_admin import credentials\n'), ((1210, 1245), 'firebase_admin.initialize_app', 'firebase_admin.initialize_app', (['cred'], {}), '(cred)\n', (1239, 1245), False, 'import firebase_admin\n'), ((1987, 2004), 'time.sleep', 'time.sleep', (['(0.001)'], {}), '(0.001)\n', (1997, 2004), False, 'import time\n'), ((2020, 2037), 'PIL.Image.open', 'Image.open', (['image'], {}), '(image)\n', (2030, 2037), False, 'from PIL import Image, ImageDraw\n'), ((2083, 2100), 'time.sleep', 'time.sleep', (['(0.001)'], {}), '(0.001)\n', (2093, 2100), False, 'import time\n'), ((2158, 2175), 'time.sleep', 'time.sleep', (['(0.001)'], {}), '(0.001)\n', (2168, 2175), False, 'import time\n'), ((2250, 2267), 'time.sleep', 'time.sleep', (['(0.001)'], {}), '(0.001)\n', (2260, 2267), False, 'import time\n'), ((2342, 2359), 'time.sleep', 'time.sleep', (['(0.001)'], {}), '(0.001)\n', (2352, 2359), False, 'import time\n'), ((3627, 3670), 'cv2.resize', 'cv2.resize', (['frame', '(0, 0)'], {'fx': '(0.25)', 'fy': '(0.25)'}), '(frame, (0, 0), fx=0.25, fy=0.25)\n', (3637, 3670), False, 'import cv2\n'), ((4034, 4082), 'face_recognition.face_locations', 'face_recognition.face_locations', (['rgb_small_frame'], {}), '(rgb_small_frame)\n', (4065, 4082), False, 'import face_recognition\n'), ((4112, 4176), 'face_recognition.face_encodings', 'face_recognition.face_encodings', (['rgb_small_frame', 'face_locations'], {}), '(rgb_small_frame, face_locations)\n', (4143, 4176), False, 'import face_recognition\n'), ((2918, 2960), 'face_recognition.face_encodings', 'face_recognition.face_encodings', (['new_image'], {}), '(new_image)\n', (2949, 2960), False, 'import face_recognition\n'), ((3494, 3513), 'cv2.VideoCapture', 'cv2.VideoCapture', (['(0)'], {}), '(0)\n', (3510, 3513), False, 'import cv2\n'), ((4320, 4387), 'face_recognition.compare_faces', 'face_recognition.compare_faces', (['known_face_encodings', 'face_encoding'], {}), '(known_face_encodings, face_encoding)\n', (4350, 4387), False, 'import face_recognition\n')]
import re, os, json root = os.path.dirname(os.path.dirname(__file__)) source_folder = os.path.join(root, 'src', 'HoneybeeSchema', 'Model') #NamedReferenceable class_files = [x for x in os.listdir(source_folder) if (x.endswith("Abridged.cs") and not x.endswith("SetAbridged.cs") and not x.endswith("PropertiesAbridged.cs") and not x.endswith("ScheduleRuleAbridged.cs") ) ] abridged_file = os.path.join(root, 'src', 'HoneybeeSchema', 'BaseClasses', 'NamedReferenceable.cs') with open(abridged_file, "wt", encoding='utf-8') as abridgeFile: data = [] data.append('namespace HoneybeeSchema\n') data.append('{\n') for f in class_files: type_name = f data.append('public partial class %s: INamed {}\n' % f.replace('.cs','')) data.append('public partial class ConstructionSetAbridged: INamed{}\n') data.append('}') abridgeFile.writelines(data) abridgeFile.close() #EnergyWindowMaterial class_files = [x for x in os.listdir(source_folder) if (x.startswith("EnergyWindowMaterial")) ] abridged_file = os.path.join(root, 'src', 'HoneybeeSchema', 'BaseClasses', 'EnergyWindowMaterial.cs') with open(abridged_file, "wt", encoding='utf-8') as abridgeFile: data = [] data.append('namespace HoneybeeSchema\n') data.append('{\n') for f in class_files: type_name = f data.append('public partial class %s: IEnergyWindowMaterial {}\n' % f.replace('.cs','')) data.append('}') abridgeFile.writelines(data) abridgeFile.close() #EnergyMaterial class_files = [x for x in os.listdir(source_folder) if (x.startswith("EnergyMaterial")) ] abridged_file = os.path.join(root, 'src', 'HoneybeeSchema', 'BaseClasses', 'EnergyMaterial.cs') with open(abridged_file, "wt", encoding='utf-8') as abridgeFile: data = [] data.append('namespace HoneybeeSchema\n') data.append('{\n') for f in class_files: type_name = f data.append('public partial class %s: IEnergyMaterial {}\n' % f.replace('.cs','')) data.append('}') abridgeFile.writelines(data) abridgeFile.close()
[ "os.path.dirname", "os.path.join", "os.listdir" ]
[((88, 140), 'os.path.join', 'os.path.join', (['root', '"""src"""', '"""HoneybeeSchema"""', '"""Model"""'], {}), "(root, 'src', 'HoneybeeSchema', 'Model')\n", (100, 140), False, 'import re, os, json\n'), ((391, 478), 'os.path.join', 'os.path.join', (['root', '"""src"""', '"""HoneybeeSchema"""', '"""BaseClasses"""', '"""NamedReferenceable.cs"""'], {}), "(root, 'src', 'HoneybeeSchema', 'BaseClasses',\n 'NamedReferenceable.cs')\n", (403, 478), False, 'import re, os, json\n'), ((1043, 1132), 'os.path.join', 'os.path.join', (['root', '"""src"""', '"""HoneybeeSchema"""', '"""BaseClasses"""', '"""EnergyWindowMaterial.cs"""'], {}), "(root, 'src', 'HoneybeeSchema', 'BaseClasses',\n 'EnergyWindowMaterial.cs')\n", (1055, 1132), False, 'import re, os, json\n'), ((1624, 1703), 'os.path.join', 'os.path.join', (['root', '"""src"""', '"""HoneybeeSchema"""', '"""BaseClasses"""', '"""EnergyMaterial.cs"""'], {}), "(root, 'src', 'HoneybeeSchema', 'BaseClasses', 'EnergyMaterial.cs')\n", (1636, 1703), False, 'import re, os, json\n'), ((45, 70), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (60, 70), False, 'import re, os, json\n'), ((188, 213), 'os.listdir', 'os.listdir', (['source_folder'], {}), '(source_folder)\n', (198, 213), False, 'import re, os, json\n'), ((957, 982), 'os.listdir', 'os.listdir', (['source_folder'], {}), '(source_folder)\n', (967, 982), False, 'import re, os, json\n'), ((1544, 1569), 'os.listdir', 'os.listdir', (['source_folder'], {}), '(source_folder)\n', (1554, 1569), False, 'import re, os, json\n')]
import sys import os from settings import beaver_broker_ip, beaver_broker_port, autotestdir, beaver_datanode_file, gflagsfile, config_path, log_dir, index_forsearch, pb_forsearch import psutil import time import numpy as np import requests #MEM_MAX = psutil.virtual_memory().total MEM_MAX = 0.8*32*1024*1024*1024 # memory size of tikv node, not current PC #------------------knob controller------------------ # disable_auto_compactions def set_disable_auto_compactions(ip, port, val): cmd="./tikv-ctl --host "+ip+":"+port+" modify-tikv-config -m kvdb -n default.disable_auto_compactions -v "+str(val) res=os.popen(cmd).read() # will return "success" return(res) knob_set=\ { "--max_concurrency_tasks_per_search": { "changebyyml": True, "set_func": None, "minval": 0, # if type==int, indicate min possible value "maxval": 0, # if type==int, indicate max possible value "enumval": [4, 6, 8], # if type==enum, list all valid values "type": "enum", # int / enum "default": 0 # default value }, "--max_per_search_ram": { "changebyyml": True, "set_func": None, "minval": 0, # if type==int, indicate min possible value "maxval": 0, # if type==int, indicate max possible value "enumval": [198], # if type==enum, list all valid values "type": "enum", # int / enum "default": 0 # default value }, "--max_per_sub_search_ram": { "changebyyml": True, "set_func": None, "minval": 0, # if type==int, indicate min possible value "maxval": 0, # if type==int, indicate max possible value "enumval": [99], # if type==enum, list all valid values "type": "enum", # int / enum "default": 0 # default value }, "--block_ids_per_batch": { "changebyyml": True, "set_func": None, "minval": 0, # if type==int, indicate min possible value "maxval": 0, # if type==int, indicate max possible value "enumval": [16, 18, 20], # if type==enum, list all valid values "type": "enum", # int / enum "default": 0 # default value }, "--lease_timeout": { "changebyyml": True, "set_func": None, "minval": 0, # if type==int, indicate min possible value "maxval": 0, # if type==int, indicate max possible value "enumval": [4, 8, 16, 32, 64], # if type==enum, list all valid values "type": "enum", # int / enum "default": 0 # default value }, "--enable_query_cache": { "changebyyml": True, "set_func": None, "minval": 0, # if type==int, indicate min possible value "maxval": 0, # if type==int, indicate max possible value "enumval": ['false', 'true'], # if type==enum, list all valid values "type": "bool", # int / enum "default": 0 # default value }, } #------------------metric controller------------------ def read_write_throughput(ip, port): return(0) # DEPRECATED FUNCTION: throughput is instant and could be read from go-ycsb. No need to read in this function def read_write_latency(ip, port): return(0) # DEPRECATED FUNCTION: latency is instant and could be read from go-ycsb. No need to read in this function def read_get_throughput(ip, port): return(0) # DEPRECATED FUNCTION: throughput is instant and could be read from go-ycsb. No need to read in this function def read_get_latency(ip, port): return(0) # DEPRECATED FUNCTION: latency is instant and could be read from go-ycsb. No need to read in this function def read_scan_throughput(ip, port): return(0) # DEPRECATED FUNCTION: throughput is instant and could be read from go-ycsb. No need to read in this function def read_scan_latency(ip, port): return(0) # DEPRECATED FUNCTION: latency is instant and could be read from go-ycsb. No need to read in this function def read_store_size(ip, port): return(0) def read_compaction_cpu(ip, port): cmd="ps -aux|grep beaver_datanode|grep -v 'grep'|grep -v '/bin/sh'|awk -F' *' '{print $3}'" res=os.popen(cmd).read() if len(res) == 0: return 0 else: return(res) def read_compaction_mem(ip, port): cmd="ps -aux|grep beaver_datanode|grep -v 'grep'|grep -v '/bin/sh'|awk -F' *' '{print $4}'" res=os.popen(cmd).read() if len(res) == 0: return 0 else: return(res) def read_search_latency(ip, port): url = "http://"+ip+":"+port+"/_search?index="+index_forsearch+"&sid=test&rpc_timeout=60" data = pb_forsearch testnum = 20 num = 100 restime = [] # costime = [] for i in range(num + testnum): start_api = beaverrequest(url, data) if i >= testnum: # restime.append(start_api[1]) restime.append(start_api[0]["timecost"]) sortedRestime = sorted(restime) newrestime = sortedRestime[:-10] return sum(newrestime) / len(newrestime) def beaverrequest(url, data): r = requests.post(url, data=data) return [r.json(), r.elapsed.total_seconds(), r.status_code] metric_set=\ {"write_throughput": { "read_func": read_write_throughput, "lessisbetter": 0, # whether less value of this metric is better(1: yes) "calc": "ins", #incremental }, "write_latency": { "read_func": read_write_latency, "lessisbetter": 1, # whether less value of this metric is better(1: yes) "calc": "ins", #instant }, "get_throughput": { "read_func": read_get_throughput, "lessisbetter": 0, # whether less value of this metric is better(1: yes) "calc": "ins", #incremental }, "get_latency": { "read_func": read_get_latency, "lessisbetter": 1, # whether less value of this metric is better(1: yes) "calc": "ins", #instant }, "scan_throughput": { "read_func": read_scan_throughput, "lessisbetter": 0, # whether less value of this metric is better(1: yes) "calc": "ins", #incremental }, "scan_latency": { "read_func": read_scan_latency, "lessisbetter": 1, # whether less value of this metric is better(1: yes) "calc": "ins", #instant }, "store_size": { "read_func": read_store_size, "lessisbetter": 1, # whether less value of this metric is better(1: yes) "calc": "ins", #instant }, "compaction_cpu": { "read_func": read_compaction_cpu, "lessisbetter": 1, # whether less value of this metric is better(1: yes) "calc": "ins", #incremental }, "compaction_mem": { "read_func": read_compaction_mem, "lessisbetter": 1, # whether less value of this metric is better(1: yes) "calc": "ins", #incremental }, "search_latency": { "read_func": read_search_latency, "lessisbetter": 1, # whether less value of this metric is better(1: yes) "calc": "ins", #incremental }, } #------------------workload controller------------------ def run_workload(wl_type): return(None) def load_workload(wl_type): return(None) #------------------common functions------------------ def set_tikvyml(knob_sessname, knob_val): ymldir=os.path.join(autotestdir,"conf","beaver_test.gflags_new") tmpdir=os.path.join(autotestdir,"conf","beaver_test.gflags") if not os.path.exists(os.path.dirname(tmpdir)): os.makedirs(os.path.dirname(tmpdir)) os.popen("cp "+gflagsfile+" "+tmpdir).read() with open(tmpdir, 'r') as read_file, open(ymldir, 'w') as write_file: dic={} for line in read_file: value = line.strip().split("=") if len(value) > 1: dic[value[0]] = value[1] if(knob_set[knob_sessname]['type']=='enum'): idx=knob_val knob_val=knob_set[knob_sessname]['enumval'][idx] if(knob_set[knob_sessname]['type']=='bool'): if(knob_val==0): knob_val='false' else: knob_val='true' if(knob_sessname=='--max_shard_size'): knob_val=str(knob_val)+"g" if(knob_sessname=='--max_per_search_ram' or knob_sessname=='--max_per_sub_search_ram'): knob_val=str(knob_val)+"m" if(knob_sessname in dic): dic[knob_sessname] = knob_val else: return('failed') print("set_beaver_datanode_gflags:: ",knob_sessname, knob_val) for kkk in dic: write_file.write(kkk+"="+str(dic[kkk])+'\n') # os.popen("rm "+tmpdir+" && "+"mv "+ymldir+" "+tmpdir) os.remove(tmpdir) os.rename(ymldir, tmpdir) time.sleep(0.5) return('success') # if(knob_name=='block-size'): # knob_val=str(knob_val)+"KB" # if(knob_name=='write-buffer-size' or knob_name=='max-bytes-for-level-base' or knob_name=='target-file-size-base'): # knob_val=str(knob_val)+"MB" # if(knob_name in tmpcontent[knob_sess[0]][knob_sess[1]]): # TODO: only support 2 level of knob_sess currently # tmpcontent[knob_sess[0]][knob_sess[1]][knob_name]=knob_val # else: # return('failed') # print("set_tikvyml:: ",knob_sessname, knob_sess, knob_name, knob_val) # ymlf=open(ymldir, 'w') # yaml.dump(tmpcontent, ymlf, Dumper=yaml.RoundTripDumper) # os.popen("rm "+tmpdir+" && "+"mv "+ymldir+" "+tmpdir) # time.sleep(0.5) # return('success') def set_knob(knob_name, knob_val): changebyyml=knob_set[knob_name]["changebyyml"] if(changebyyml): res=set_tikvyml(knob_name, knob_val) else: func=knob_set[knob_name]["set_func"] res=func(beaver_broker_ip, beaver_broker_port, knob_val) return res def read_knob(knob_name, knob_cache): res=knob_cache[knob_name] return res def read_metric(metric_name, rres=None): if(rres!=None): rl=rres.split('\n') rl.reverse() if(metric_name=="write_latency"): i=0 while((not rl[i].startswith('UPDATE ')) and (not rl[i].startswith('INSERT '))): i+=1 dat=rl[i][rl[i].find("Avg(us):") + 9:].split(",")[0] dat=int(dat) return(dat) elif(metric_name=="get_latency"): i=0 while(not rl[i].startswith('READ ')): i+=1 dat=rl[i][rl[i].find("Avg(us):") + 9:].split(",")[0] dat=int(dat) return(dat) elif(metric_name=="scan_latency"): i=0 while(not rl[i].startswith('SCAN ')): i+=1 dat=rl[i][rl[i].find("Avg(us):") + 9:].split(",")[0] dat=int(dat) return(dat) elif(metric_name=="write_throughput"): i=0 while((not rl[i].startswith('UPDATE ')) and (not rl[i].startswith('INSERT '))): i+=1 dat=rl[i][rl[i].find("OPS:") + 5:].split(",")[0] dat=float(dat) return(dat) elif(metric_name=="get_throughput"): i=0 while(not rl[i].startswith('READ ')): i+=1 dat=rl[i][rl[i].find("OPS:") + 5:].split(",")[0] dat=float(dat) return(dat) elif(metric_name=="scan_throughput"): i=0 while(not rl[i].startswith('SCAN ')): i+=1 dat=rl[i][rl[i].find("OPS:") + 5:].split(",")[0] dat=float(dat) return(dat) func=metric_set[metric_name]["read_func"] res=func(beaver_broker_ip, beaver_broker_port) return res def init_knobs(): # if there are knobs whose range is related to PC memory size, initialize them here pass def calc_metric(metric_after, metric_before, metric_list): num_metrics = len(metric_list) new_metric = np.zeros([1, num_metrics]) for i, x in enumerate(metric_list): if(metric_set[x]["calc"]=="inc"): new_metric[0][i]=metric_after[0][i]-metric_before[0][i] elif(metric_set[x]["calc"]=="ins"): new_metric[0][i]=metric_after[0][i] return(new_metric) # def restart_db(): # #cmd="cd /home/tidb/tidb-ansible/ && ansible-playbook unsafe_cleanup_data.yml" # dircmd="cd "+ autotestdir + " && " # clrcmd="ansible-playbook unsafe_cleanup_data.yml" # depcmd="ansible-playbook deploy.yml" # runcmd="ansible-playbook start.yml" # ntpcmd="ansible-playbook -i hosts.ini deploy_ntp.yml -u tidb -b" #need sleep 10s after ntpcmd # print("-------------------------------------------------------") # clrres = os.popen(dircmd+clrcmd).read() # if("Congrats! All goes well" in clrres): # print("unsafe_cleanup_data finished, res == "+clrres.split('\n')[-2]) # else: # print(clrres) # print("unsafe_cleanup_data failed") # exit() # print("-------------------------------------------------------") # ntpres = os.popen(dircmd + ntpcmd).read() # time.sleep(10) # if ("Congrats! All goes well" in ntpres): # print("set ntp finished, res == " + ntpres.split('\n')[-2]) # else: # print(ntpres) # print("set ntp failed") # exit() # print("-------------------------------------------------------") # depres = os.popen(dircmd + depcmd).read() # if ("Congrats! All goes well" in depres): # print("deploy finished, res == "+depres.split('\n')[-2]) # else: # print(depres) # print("deploy failed") # exit() # print("-------------------------------------------------------") # runres = os.popen(dircmd + runcmd).read() # if ("Congrats! All goes well" in runres): # print("start finished, res == "+runres.split('\n')[-2]) # else: # print(runres) # print("start failed") # exit() # print("-------------------------------------------------------") def restart_beaver_datanode(): dircmd="cd "+ autotestdir + " && " stopcmd="ps -ef|grep beaver_datanode|grep -v 'grep'|awk -F' *' '{print $2}'|xargs kill" querycmd="ps -ef|grep beaver_datanode|grep -v 'grep'|awk -F' *' '{print $2}'" beaver_conf=os.path.join(autotestdir,"conf","beaver_datanode.gflags") test_conf=os.path.join(autotestdir,"conf","beaver_test.gflags") startcmd=beaver_datanode_file+" --flagfile="+beaver_conf+" --config_path="+config_path+" --log_dir="+log_dir+" > /dev/null 2>&1" print("-----------------------------stop beaver datanode--------------------------") stopres = os.popen(stopcmd).read() if len(os.popen(querycmd).read()) != 0: for i in range(5): time.sleep(2) psres = os.popen(querycmd).read() if len(psres) == 0 : print("Beaver has been closed successfully!") break else: print("Waiting beaver to close, pid is %s" % psres) if i == 4: print("Beaver close failed!") exit() else: print("Beaver closed successfully!") print("-----------------------------replace config file--------------------------") if os.path.exists(beaver_conf): os.remove(beaver_conf) replaceres = os.popen("cp "+test_conf+" "+beaver_conf).read() if len(replaceres) == 0: print("replace config file finished!") else: print(replaceres) print("replace config file failed!") exit() print("-----------------------------start beaver datanode--------------------------") startres = os.popen(startcmd) beaver_url = "http://"+beaver_broker_ip+":"+beaver_broker_port+"/_search?index="+index_forsearch+"&sid=test&rpc_timeout=60" for i in range(20): time.sleep(10) curlres = requests.post(beaver_url, data=pb_forsearch).json() if "result" in curlres and curlres['result'] == False: print("Waiting beaver datanode to be available...") else: print("Beaver datanode is available!") break if i == 19: print(curlres) print("Beaver start failed!") exit() print("---------------------------------------------------------------------------")
[ "os.remove", "os.rename", "os.popen", "numpy.zeros", "os.path.exists", "os.path.dirname", "time.sleep", "requests.post", "os.path.join" ]
[((6072, 6101), 'requests.post', 'requests.post', (['url'], {'data': 'data'}), '(url, data=data)\n', (6085, 6101), False, 'import requests\n'), ((8870, 8929), 'os.path.join', 'os.path.join', (['autotestdir', '"""conf"""', '"""beaver_test.gflags_new"""'], {}), "(autotestdir, 'conf', 'beaver_test.gflags_new')\n", (8882, 8929), False, 'import os\n'), ((8939, 8994), 'os.path.join', 'os.path.join', (['autotestdir', '"""conf"""', '"""beaver_test.gflags"""'], {}), "(autotestdir, 'conf', 'beaver_test.gflags')\n", (8951, 8994), False, 'import os\n'), ((10239, 10256), 'os.remove', 'os.remove', (['tmpdir'], {}), '(tmpdir)\n', (10248, 10256), False, 'import os\n'), ((10261, 10286), 'os.rename', 'os.rename', (['ymldir', 'tmpdir'], {}), '(ymldir, tmpdir)\n', (10270, 10286), False, 'import os\n'), ((10291, 10306), 'time.sleep', 'time.sleep', (['(0.5)'], {}), '(0.5)\n', (10301, 10306), False, 'import time\n'), ((13447, 13473), 'numpy.zeros', 'np.zeros', (['[1, num_metrics]'], {}), '([1, num_metrics])\n', (13455, 13473), True, 'import numpy as np\n'), ((15787, 15846), 'os.path.join', 'os.path.join', (['autotestdir', '"""conf"""', '"""beaver_datanode.gflags"""'], {}), "(autotestdir, 'conf', 'beaver_datanode.gflags')\n", (15799, 15846), False, 'import os\n'), ((15859, 15914), 'os.path.join', 'os.path.join', (['autotestdir', '"""conf"""', '"""beaver_test.gflags"""'], {}), "(autotestdir, 'conf', 'beaver_test.gflags')\n", (15871, 15914), False, 'import os\n'), ((16762, 16789), 'os.path.exists', 'os.path.exists', (['beaver_conf'], {}), '(beaver_conf)\n', (16776, 16789), False, 'import os\n'), ((17165, 17183), 'os.popen', 'os.popen', (['startcmd'], {}), '(startcmd)\n', (17173, 17183), False, 'import os\n'), ((16799, 16821), 'os.remove', 'os.remove', (['beaver_conf'], {}), '(beaver_conf)\n', (16808, 16821), False, 'import os\n'), ((17344, 17358), 'time.sleep', 'time.sleep', (['(10)'], {}), '(10)\n', (17354, 17358), False, 'import time\n'), ((633, 646), 'os.popen', 'os.popen', (['cmd'], {}), '(cmd)\n', (641, 646), False, 'import os\n'), ((5174, 5187), 'os.popen', 'os.popen', (['cmd'], {}), '(cmd)\n', (5182, 5187), False, 'import os\n'), ((5404, 5417), 'os.popen', 'os.popen', (['cmd'], {}), '(cmd)\n', (5412, 5417), False, 'import os\n'), ((9019, 9042), 'os.path.dirname', 'os.path.dirname', (['tmpdir'], {}), '(tmpdir)\n', (9034, 9042), False, 'import os\n'), ((9065, 9088), 'os.path.dirname', 'os.path.dirname', (['tmpdir'], {}), '(tmpdir)\n', (9080, 9088), False, 'import os\n'), ((16149, 16166), 'os.popen', 'os.popen', (['stopcmd'], {}), '(stopcmd)\n', (16157, 16166), False, 'import os\n'), ((16257, 16270), 'time.sleep', 'time.sleep', (['(2)'], {}), '(2)\n', (16267, 16270), False, 'import time\n'), ((16839, 16886), 'os.popen', 'os.popen', (["('cp ' + test_conf + ' ' + beaver_conf)"], {}), "('cp ' + test_conf + ' ' + beaver_conf)\n", (16847, 16886), False, 'import os\n'), ((9098, 9141), 'os.popen', 'os.popen', (["('cp ' + gflagsfile + ' ' + tmpdir)"], {}), "('cp ' + gflagsfile + ' ' + tmpdir)\n", (9106, 9141), False, 'import os\n'), ((17377, 17421), 'requests.post', 'requests.post', (['beaver_url'], {'data': 'pb_forsearch'}), '(beaver_url, data=pb_forsearch)\n', (17390, 17421), False, 'import requests\n'), ((16185, 16203), 'os.popen', 'os.popen', (['querycmd'], {}), '(querycmd)\n', (16193, 16203), False, 'import os\n'), ((16291, 16309), 'os.popen', 'os.popen', (['querycmd'], {}), '(querycmd)\n', (16299, 16309), False, 'import os\n')]
import os from musicscore.musictree.treescoretimewise import TreeScoreTimewise from musurgia.unittest import TestCase from musurgia.fractaltree.fractalmusic import FractalMusic path = str(os.path.abspath(__file__).split('.')[0]) class Test(TestCase): def setUp(self) -> None: self.score = TreeScoreTimewise() fm = FractalMusic(tempo=60, quarter_duration=10, reading_direction='vertical') fm.add_layer() fm.add_layer() self.fm = fm.get_children()[1] self.deep_copied = self.fm.__deepcopy__() def test(self, exp=None, act=None): if not exp: exp = self.fm if not act: act = self.deep_copied self.assertEqual(exp.value, act.value) self.assertEqual(exp.proportions, act.proportions) self.assertEqual(exp.value, act.value) self.assertEqual(exp.proportions, act.proportions) self.assertEqual(exp.tree_permutation_order, act.tree_permutation_order) self.assertEqual(exp.fractal_order, act.fractal_order) self.assertEqual(exp.reading_direction, act.reading_direction) self.assertEqual(exp._name, act._name) self.assertEqual(exp.tree_directions, act.tree_directions) self.assertEqual(exp.tempo, act.tempo) self.assertEqual(exp.midi_value, act.midi_value) def test_1(self): self.assertIsNone(self.deep_copied.up) def test_2(self): self.assertNotEqual(self.deep_copied.name, self.fm.name) def test_3(self): for leaf in self.fm.traverse_leaves(): leaf.chord.add_words(leaf.fractal_order) copied = self.fm.__deepcopy__() copied.get_simple_format().to_stream_voice().add_to_score(self.score) xml_path = path + '_test_3.xml' self.score.write(xml_path) expected_path = path + '_test_3_expected.xml' expected_score = TreeScoreTimewise() self.fm.get_simple_format().to_stream_voice().add_to_score(expected_score) expected_score.write(expected_path) self.assertCompareFiles(xml_path, expected_path) def test_deep_copied_child_midi_values(self): fm = FractalMusic(proportions=[1, 2, 3, 4], tree_permutation_order=[3, 1, 4, 2], quarter_duration=20, tempo=70) fm.midi_generator.midi_range = [36, 60] fm.add_layer() selected_node = fm.get_children()[0] copied_node = selected_node.__deepcopy__() copied_node.add_layer() actual = [node.midi_value for node in copied_node.get_children()] selected_node.add_layer() expected = [node.midi_value for node in selected_node.get_children()] self.assertEqual(expected, actual)
[ "musicscore.musictree.treescoretimewise.TreeScoreTimewise", "os.path.abspath", "musurgia.fractaltree.fractalmusic.FractalMusic" ]
[((306, 325), 'musicscore.musictree.treescoretimewise.TreeScoreTimewise', 'TreeScoreTimewise', ([], {}), '()\n', (323, 325), False, 'from musicscore.musictree.treescoretimewise import TreeScoreTimewise\n'), ((339, 412), 'musurgia.fractaltree.fractalmusic.FractalMusic', 'FractalMusic', ([], {'tempo': '(60)', 'quarter_duration': '(10)', 'reading_direction': '"""vertical"""'}), "(tempo=60, quarter_duration=10, reading_direction='vertical')\n", (351, 412), False, 'from musurgia.fractaltree.fractalmusic import FractalMusic\n'), ((1892, 1911), 'musicscore.musictree.treescoretimewise.TreeScoreTimewise', 'TreeScoreTimewise', ([], {}), '()\n', (1909, 1911), False, 'from musicscore.musictree.treescoretimewise import TreeScoreTimewise\n'), ((2160, 2270), 'musurgia.fractaltree.fractalmusic.FractalMusic', 'FractalMusic', ([], {'proportions': '[1, 2, 3, 4]', 'tree_permutation_order': '[3, 1, 4, 2]', 'quarter_duration': '(20)', 'tempo': '(70)'}), '(proportions=[1, 2, 3, 4], tree_permutation_order=[3, 1, 4, 2],\n quarter_duration=20, tempo=70)\n', (2172, 2270), False, 'from musurgia.fractaltree.fractalmusic import FractalMusic\n'), ((191, 216), 'os.path.abspath', 'os.path.abspath', (['__file__'], {}), '(__file__)\n', (206, 216), False, 'import os\n')]
import functools import collections from django.template.loader import render_to_string from pagination.settings import MARGIN_PAGES_DISPLAYED, PAGE_RANGE_DISPLAYED class PageRepresentation(int): def __new__(cls, x, querystring): obj = int.__new__(cls, x) obj.querystring = querystring return obj def add_page_querystring(func): @functools.wraps(func) def wrapper(self, *args, **kwargs): result = func(self, *args, **kwargs) if isinstance(result, int): querystring = self._other_page_querystring(result) return PageRepresentation(result, querystring) elif isinstance(result, collections.Iterable): new_result = [] for number in result: if isinstance(number, int): querystring = self._other_page_querystring(number) new_result.append(PageRepresentation(number, querystring)) else: new_result.append(number) return new_result return result return wrapper class Page(object): template = 'pagination.html' def __init__(self, object_list, number, paginator): self.object_list = object_list self.paginator = paginator if paginator.request: self.base_queryset = self.paginator.request.GET.copy() self.number = PageRepresentation(number, self._other_page_querystring(number)) def __repr__(self): return '<Page %s of %s>' % (self.number, self.paginator.num_pages) def has_next(self): return self.number < self.paginator.num_pages def has_previous(self): return self.number > 1 def has_other_pages(self): return self.has_previous() or self.has_next() @add_page_querystring def next_page_number(self): return self.number + 1 @add_page_querystring def previous_page_number(self): return self.number - 1 def start_index(self): """ Returns the 1-based index of the first object on this page, relative to total objects in the paginator. """ # Special case, return zero if no items. if self.paginator.count == 0: return 0 return (self.paginator.per_page * (self.number - 1)) + 1 def end_index(self): """ Returns the 1-based index of the last object on this page, relative to total objects found (hits). """ # Special case for the last page because there can be orphans. if self.number == self.paginator.num_pages: return self.paginator.count return self.number * self.paginator.per_page @add_page_querystring def pages(self): if self.paginator.num_pages <= PAGE_RANGE_DISPLAYED: return range(1, self.paginator.num_pages + 1) result = [] left_side = PAGE_RANGE_DISPLAYED / 2 right_side = PAGE_RANGE_DISPLAYED - left_side if self.number > self.paginator.num_pages - PAGE_RANGE_DISPLAYED / 2: right_side = self.paginator.num_pages - self.number left_side = PAGE_RANGE_DISPLAYED - right_side elif self.number < PAGE_RANGE_DISPLAYED / 2: left_side = self.number right_side = PAGE_RANGE_DISPLAYED - left_side for page in range(1, self.paginator.num_pages + 1): if page <= MARGIN_PAGES_DISPLAYED: result.append(page) continue if page > self.paginator.num_pages - MARGIN_PAGES_DISPLAYED: result.append(page) continue if (page >= self.number - left_side) and (page <= self.number + right_side): result.append(page) continue if result[-1]: result.append(None) return result def _other_page_querystring(self, page_number): """ Returns a query string for the given page, preserving any GET parameters present. """ if self.paginator.request: self.base_queryset['page'] = page_number return self.base_queryset.urlencode() # raise Warning("You must supply Paginator() with the request object for a proper querystring.") return 'page=%s' % page_number def render(self): return render_to_string(self.template, { 'current_page': self, 'page_obj': self, # Issue 9 https://github.com/jamespacileo/django-pure-pagination/issues/9 # Use same naming conventions as Django })
[ "django.template.loader.render_to_string", "functools.wraps" ]
[((369, 390), 'functools.wraps', 'functools.wraps', (['func'], {}), '(func)\n', (384, 390), False, 'import functools\n'), ((4361, 4434), 'django.template.loader.render_to_string', 'render_to_string', (['self.template', "{'current_page': self, 'page_obj': self}"], {}), "(self.template, {'current_page': self, 'page_obj': self})\n", (4377, 4434), False, 'from django.template.loader import render_to_string\n')]
import sys input = bin(int(sys.stdin.readline().strip(), base=16))[2:] # filling missing leading 0 input = input.zfill(-(-len(input)//4)*4) def decode(msg): if msg == '' or int(msg) == 0: return 0 version = int(msg[0:3], 2) type_id = int(msg[3:6], 2) if type_id == 4: last_group = False cursor = 6 while not last_group: if msg[cursor] == '0': last_group = True cursor += 5 return version + decode(msg[cursor:]) length_type_id = msg[6] if length_type_id == '0': total_sub_packets_len = int(msg[7:22], 2) return version + decode(msg[22:22+total_sub_packets_len]) + decode(msg[22+total_sub_packets_len:]) return version + decode(msg[18:]) # result # sample1: 16 # smaple2: 12 # sample3: 23 # sample4: 31 # puzzle: 971 print(decode(input))
[ "sys.stdin.readline" ]
[((28, 48), 'sys.stdin.readline', 'sys.stdin.readline', ([], {}), '()\n', (46, 48), False, 'import sys\n')]
from arm_prosthesis.external_communication.models.dto.entity_dto import EntityDto from arm_prosthesis.external_communication.models.dto.gesture_dto import GestureDto from gestures_pb2 import SaveGesture class SaveGestureDto(EntityDto): def __init__(self): self._time_sync = 0 self._gesture_dto = None @property def time_sync(self) -> int: return self._time_sync @property def gesture_dto(self) -> GestureDto: return self._gesture_dto def serialize(self) -> bytes: raise NotImplementedError def deserialize(self, byte_array: bytes): save_gesture_protobuf = SaveGesture() save_gesture_protobuf.ParseFromString(byte_array) self._time_sync = save_gesture_protobuf.time_sync self._gesture_dto = GestureDto() self._gesture_dto.create_from_protobuf_gesture(save_gesture_protobuf.gesture)
[ "arm_prosthesis.external_communication.models.dto.gesture_dto.GestureDto", "gestures_pb2.SaveGesture" ]
[((662, 675), 'gestures_pb2.SaveGesture', 'SaveGesture', ([], {}), '()\n', (673, 675), False, 'from gestures_pb2 import SaveGesture\n'), ((825, 837), 'arm_prosthesis.external_communication.models.dto.gesture_dto.GestureDto', 'GestureDto', ([], {}), '()\n', (835, 837), False, 'from arm_prosthesis.external_communication.models.dto.gesture_dto import GestureDto\n')]
from process.process import Process class Load(Process): def __init__(self, settings=None): Process.__init__(self, settings=settings) # import_file_name is full local file name or url to source #self.import_file_list=import_file_list #self.dataframe=None #self.dictionary={} #self.list={} #print('Load') ''' def get_dictionary(self): return self.dictionary def get_dataframe(self): return self.dataframe def get_list(self): return self.list '''
[ "process.process.Process.__init__" ]
[((104, 145), 'process.process.Process.__init__', 'Process.__init__', (['self'], {'settings': 'settings'}), '(self, settings=settings)\n', (120, 145), False, 'from process.process import Process\n')]
import json from typing import List, Mapping, Optional, Sequence, Tuple, Union, cast import pulumi_aws as aws import pulumi_docker as docker from infra.cache import Cache from infra.config import ( DEPLOYMENT_NAME, REAL_DEPLOYMENT, SERVICE_LOG_RETENTION_DAYS, configured_version_for, ) from infra.ec2 import Ec2Port from infra.emitter import EventEmitter from infra.metric_forwarder import MetricForwarder from infra.network import Network from infra.policies import ECR_TOKEN_POLICY, attach_policy from infra.repository import Repository, registry_credentials from infra.service_queue import ServiceQueue import pulumi class GraplDockerBuild(docker.DockerBuild): def __init__( self, dockerfile: str, target: str, context: Optional[str] = None, args: Optional[Mapping[str, pulumi.Input[str]]] = None, env: Optional[Mapping[str, str]] = None, ): super().__init__( context=context, dockerfile=dockerfile, env={**(env or {}), "DOCKER_BUILDKIT": 1}, args={**(args or {}), "RUST_BUILD": "debug"}, target=target, # Quiet the Docker builds at `pulumi up` time # ...except it doesn't work with `buildx` yet # https://github.com/docker/buildx/issues/401 # extra_options=("--quiet",), ) class FargateTaskRole(aws.iam.Role): def __init__( self, name: str, opts: Optional[pulumi.ResourceOptions] = None ) -> None: super().__init__( f"{name}-task-role", description=f"Fargate task role for {name}", assume_role_policy=json.dumps( { "Version": "2012-10-17", "Statement": [ { "Effect": "Allow", "Action": "sts:AssumeRole", "Principal": {"Service": "ecs-tasks.amazonaws.com"}, } ], } ), opts=opts, ) class FargateExecutionRole(aws.iam.Role): def __init__( self, name: str, opts: Optional[pulumi.ResourceOptions] = None ) -> None: super().__init__( f"{name}-execution-role", description=f"Fargate execution role for {name}", assume_role_policy=json.dumps( { "Version": "2012-10-17", "Statement": [ { "Effect": "Allow", "Action": "sts:AssumeRole", "Principal": {"Service": "ecs-tasks.amazonaws.com"}, } ], } ), opts=opts, ) class _AWSFargateService(pulumi.ComponentResource): def __init__( self, name: str, cluster: aws.ecs.Cluster, queue: ServiceQueue, input_emitter: EventEmitter, output_emitter: EventEmitter, network: Network, image: pulumi.Output[str], env: Mapping[str, Union[str, pulumi.Output[str]]], forwarder: MetricForwarder, entrypoint: Optional[List[str]] = None, command: Optional[List[str]] = None, opts: Optional[pulumi.ResourceOptions] = None, ) -> None: """ :param command: supply an override to the CMD defined in the Dockerfile. """ super().__init__("grapl:AWSFargateService", name, None, opts) self.task_role = FargateTaskRole(name, opts=pulumi.ResourceOptions(parent=self)) ######################################################################## # TODO: CDK code has us consuming from all queues, but that's # likely excessive. The default service probably just needs to # consume from the main queue; similarly for the retry service # and retry queue # # We should probably bundle this concept up into a single # policy (one for the "default" case and one for the "retry" # case), and then put this into the ServiceQueue object. Then, # anything that needs to behave as a "default service" can # just attach the appropriate policy; similarly for things # that behave like "retry services". # # That would likely allow us to unify the Fargate- and # Lambda-based services, too. queue.grant_main_queue_consumption_to(self.task_role) queue.grant_retry_queue_consumption_to(self.task_role) queue.grant_dead_letter_queue_consumption_to(self.task_role) ######################################################################## ######################################################################## # TODO: As above, we don't need everything to be able to send # to all our queues. # # If we take the approach advocated above with a single policy # laying out the behavior we want, then these attachments can # go away, since they will have been subsumed into the ones # above. queue.grant_main_queue_send_to(self.task_role) queue.grant_retry_queue_send_to(self.task_role) queue.grant_dead_letter_queue_send_to(self.task_role) ######################################################################## input_emitter.grant_read_to(self.task_role) output_emitter.grant_write_to(self.task_role) self.execution_role = FargateExecutionRole( name, opts=pulumi.ResourceOptions(parent=self) ) # Incorporating the stack name into this log group name; # otherwise we'll end up dumping logs from different stacks # together. # # TODO: Consider a helper function for generating log group # names that adheres to this convention for all our services # (though this will be less of an issue once we migrate to # Kafka) self.log_group = aws.cloudwatch.LogGroup( f"{name}-log-group", name=f"/grapl/{DEPLOYMENT_NAME}/{name}", retention_in_days=SERVICE_LOG_RETENTION_DAYS, opts=pulumi.ResourceOptions(parent=self), ) aws.iam.RolePolicy( f"{name}-write-log-events", role=self.execution_role.name, policy=self.log_group.arn.apply( lambda arn: json.dumps( { "Version": "2012-10-17", "Statement": [ { "Effect": "Allow", "Action": ["logs:CreateLogStream", "logs:PutLogEvents"], "Resource": f"{arn}:*", } ], } ) ), opts=pulumi.ResourceOptions(parent=self.execution_role), ) # This is only needed if we're actually pulling from ECR, # which we don't do in production (because we're pulling from # Cloudsmith). The only time we use ECR is when we build a # Docker container locally, and that'll only happen for # individual developer sandbox deployments. # TODO: This feels hacky; consider other ways to model this. if not REAL_DEPLOYMENT: attach_policy(ECR_TOKEN_POLICY, self.execution_role) forwarder.subscribe_to_log_group(name, self.log_group) self.task = aws.ecs.TaskDefinition( # type: ignore[call-overload] f"{name}-task", family=f"{DEPLOYMENT_NAME}-{name}-task", container_definitions=pulumi.Output.all( queue_url=queue.main_queue_url, retry_url=queue.retry_queue_url, dead_letter_url=queue.dead_letter_queue_url, log_group=self.log_group.name, bucket=output_emitter.bucket.bucket, image=image, env=env, ).apply( lambda inputs: json.dumps( [ { # NOTE: it seems that *all* our containers # are named this. Perhaps due to CDK's # QueueProcessingFargateService abstraction? "name": "QueueProcessingContainer", "image": inputs["image"], "environment": _environment_from_map( { "QUEUE_URL": inputs["queue_url"], "SOURCE_QUEUE_URL": inputs["queue_url"], "DEST_BUCKET_NAME": inputs["bucket"], "DEPLOYMENT_NAME": DEPLOYMENT_NAME, "DEAD_LETTER_QUEUE_URL": inputs["dead_letter_url"], "RETRY_QUEUE_URL": inputs["retry_url"], **inputs["env"], } ), "logConfiguration": { "logDriver": "awslogs", "options": { "awslogs-stream-prefix": "logs", "awslogs-region": aws.get_region().name, "awslogs-group": inputs["log_group"], }, }, **({"entryPoint": entrypoint} if entrypoint else {}), **({"command": command} if command else {}), }, ] ) ), requires_compatibilities=["FARGATE"], cpu=256, memory=512, network_mode="awsvpc", # only option for Fargate task_role_arn=self.task_role.arn, execution_role_arn=self.execution_role.arn, opts=pulumi.ResourceOptions( parent=self, ), ) self.security_group = aws.ec2.SecurityGroup( f"{name}-security-group", vpc_id=network.vpc.id, opts=pulumi.ResourceOptions(parent=self), ) self.service = aws.ecs.Service( f"{name}-service", cluster=cluster.arn, network_configuration=aws.ecs.ServiceNetworkConfigurationArgs( assign_public_ip=False, subnets=[net.id for net in network.private_subnets], security_groups=[self.security_group.id], ), launch_type="FARGATE", desired_count=1, # TODO: Set this to 1 or 0 depending on default vs. retry deployment_minimum_healthy_percent=50, task_definition=self.task.arn, opts=pulumi.ResourceOptions( parent=self, ), ) self.register_outputs({}) class FargateService(pulumi.ComponentResource): def __init__( self, name: str, input_emitter: EventEmitter, output_emitter: EventEmitter, network: Network, image: docker.DockerBuild, env: Mapping[str, Union[str, pulumi.Output[str]]], forwarder: MetricForwarder, entrypoint: Optional[List[str]] = None, command: Optional[List[str]] = None, retry_image: Optional[docker.DockerBuild] = None, retry_entrypoint: Optional[List[str]] = None, retry_command: Optional[List[str]] = None, opts: Optional[pulumi.ResourceOptions] = None, ) -> None: super().__init__("grapl:FargateService", name, None, opts) self.queue = ServiceQueue(name, opts=pulumi.ResourceOptions(parent=self)) self.queue.subscribe_to_emitter(input_emitter) self.ecs_cluster = aws.ecs.Cluster( f"{name}-cluster", opts=pulumi.ResourceOptions(parent=self), ) # We're not calling this image, e.g., "foo-default" to account # for the (common) case that the corresponding retry service # uses the same image. (repository, image_name) = self._repository_and_image(name, image) self.default_service = _AWSFargateService( f"{name}-default", cluster=self.ecs_cluster, queue=self.queue, input_emitter=input_emitter, output_emitter=output_emitter, network=network, image=image_name, entrypoint=entrypoint, command=command, env=env, forwarder=forwarder, opts=pulumi.ResourceOptions(parent=self), ) if repository: repository.grant_access_to(self.default_service.execution_role) # If a separate retry image was provided, create a separate # repository for it; otherwise, reuse the existing repository # and image. retry_name = f"{name}-retry" (retry_repository, retry_image_name) = ( self._repository_and_image(retry_name, retry_image) if retry_image else (repository, image_name) ) self.retry_service = _AWSFargateService( retry_name, cluster=self.ecs_cluster, queue=self.queue, input_emitter=input_emitter, output_emitter=output_emitter, network=network, image=retry_image_name, entrypoint=retry_entrypoint or entrypoint, command=retry_command or command, env=env, forwarder=forwarder, opts=pulumi.ResourceOptions(parent=self), ) if retry_repository: retry_repository.grant_access_to(self.retry_service.execution_role) self.services = (self.default_service, self.retry_service) self._setup_default_ports() self.register_outputs({}) def _setup_default_ports(self) -> None: """ Can be overridden by subclasses. Most services are fine having an outbound 443. Has a cognate in service.py. """ for svc in self.services: Ec2Port("tcp", 443).allow_outbound_any_ip(svc.security_group) def allow_egress_to_cache(self, cache: Cache) -> None: """ Allow both the default and retry services to connect to the `cache`. """ for svc in self.services: cache.allow_egress_to_cache_for(svc._name, svc.security_group) def _repository_and_image( self, name: str, build: docker.DockerBuild ) -> Tuple[Optional[Repository], pulumi.Output[str]]: version = configured_version_for(name) if version: image_name = f"docker.cloudsmith.io/grapl/raw/{name}:{version}" pulumi.info(f"Version found for {name}: {version} ({image_name})") # It's a bit of a bummer to need this cast :/ return (None, cast(pulumi.Output[str], image_name)) else: # create ECR, build image, push to ECR, return output pulumi.info( f"Version NOT found for {name}; performing local container image build" ) repository = Repository(name, opts=pulumi.ResourceOptions(parent=self)) image = docker.Image( name, image_name=repository.registry_qualified_name, build=build, registry=registry_credentials(), opts=pulumi.ResourceOptions(parent=self), ) # The built image name will have a checksum appended to it, # thus eliminating the need to use tags. return (repository, image.image_name) def _environment_from_map(env: Mapping[str, str]) -> Sequence[Mapping[str, str]]: """ Generate a list of environment variable dictionaries for an ECS task container definition from a standard dictionary. """ return [{"name": k, "value": v} for (k, v) in env.items()]
[ "pulumi.info", "infra.policies.attach_policy", "typing.cast", "pulumi.ResourceOptions", "pulumi_aws.ecs.ServiceNetworkConfigurationArgs", "infra.config.configured_version_for", "json.dumps", "infra.ec2.Ec2Port", "pulumi.Output.all", "infra.repository.registry_credentials", "pulumi_aws.get_region" ]
[((14859, 14887), 'infra.config.configured_version_for', 'configured_version_for', (['name'], {}), '(name)\n', (14881, 14887), False, 'from infra.config import DEPLOYMENT_NAME, REAL_DEPLOYMENT, SERVICE_LOG_RETENTION_DAYS, configured_version_for\n'), ((7471, 7523), 'infra.policies.attach_policy', 'attach_policy', (['ECR_TOKEN_POLICY', 'self.execution_role'], {}), '(ECR_TOKEN_POLICY, self.execution_role)\n', (7484, 7523), False, 'from infra.policies import ECR_TOKEN_POLICY, attach_policy\n'), ((14996, 15062), 'pulumi.info', 'pulumi.info', (['f"""Version found for {name}: {version} ({image_name})"""'], {}), "(f'Version found for {name}: {version} ({image_name})')\n", (15007, 15062), False, 'import pulumi\n'), ((15277, 15366), 'pulumi.info', 'pulumi.info', (['f"""Version NOT found for {name}; performing local container image build"""'], {}), "(\n f'Version NOT found for {name}; performing local container image build')\n", (15288, 15366), False, 'import pulumi\n'), ((1667, 1829), 'json.dumps', 'json.dumps', (["{'Version': '2012-10-17', 'Statement': [{'Effect': 'Allow', 'Action':\n 'sts:AssumeRole', 'Principal': {'Service': 'ecs-tasks.amazonaws.com'}}]}"], {}), "({'Version': '2012-10-17', 'Statement': [{'Effect': 'Allow',\n 'Action': 'sts:AssumeRole', 'Principal': {'Service':\n 'ecs-tasks.amazonaws.com'}}]})\n", (1677, 1829), False, 'import json\n'), ((2407, 2569), 'json.dumps', 'json.dumps', (["{'Version': '2012-10-17', 'Statement': [{'Effect': 'Allow', 'Action':\n 'sts:AssumeRole', 'Principal': {'Service': 'ecs-tasks.amazonaws.com'}}]}"], {}), "({'Version': '2012-10-17', 'Statement': [{'Effect': 'Allow',\n 'Action': 'sts:AssumeRole', 'Principal': {'Service':\n 'ecs-tasks.amazonaws.com'}}]})\n", (2417, 2569), False, 'import json\n'), ((3633, 3668), 'pulumi.ResourceOptions', 'pulumi.ResourceOptions', ([], {'parent': 'self'}), '(parent=self)\n', (3655, 3668), False, 'import pulumi\n'), ((5625, 5660), 'pulumi.ResourceOptions', 'pulumi.ResourceOptions', ([], {'parent': 'self'}), '(parent=self)\n', (5647, 5660), False, 'import pulumi\n'), ((6267, 6302), 'pulumi.ResourceOptions', 'pulumi.ResourceOptions', ([], {'parent': 'self'}), '(parent=self)\n', (6289, 6302), False, 'import pulumi\n'), ((6976, 7026), 'pulumi.ResourceOptions', 'pulumi.ResourceOptions', ([], {'parent': 'self.execution_role'}), '(parent=self.execution_role)\n', (6998, 7026), False, 'import pulumi\n'), ((10176, 10211), 'pulumi.ResourceOptions', 'pulumi.ResourceOptions', ([], {'parent': 'self'}), '(parent=self)\n', (10198, 10211), False, 'import pulumi\n'), ((10398, 10433), 'pulumi.ResourceOptions', 'pulumi.ResourceOptions', ([], {'parent': 'self'}), '(parent=self)\n', (10420, 10433), False, 'import pulumi\n'), ((10584, 10752), 'pulumi_aws.ecs.ServiceNetworkConfigurationArgs', 'aws.ecs.ServiceNetworkConfigurationArgs', ([], {'assign_public_ip': '(False)', 'subnets': '[net.id for net in network.private_subnets]', 'security_groups': '[self.security_group.id]'}), '(assign_public_ip=False, subnets=[\n net.id for net in network.private_subnets], security_groups=[self.\n security_group.id])\n', (10623, 10752), True, 'import pulumi_aws as aws\n'), ((11041, 11076), 'pulumi.ResourceOptions', 'pulumi.ResourceOptions', ([], {'parent': 'self'}), '(parent=self)\n', (11063, 11076), False, 'import pulumi\n'), ((11925, 11960), 'pulumi.ResourceOptions', 'pulumi.ResourceOptions', ([], {'parent': 'self'}), '(parent=self)\n', (11947, 11960), False, 'import pulumi\n'), ((12110, 12145), 'pulumi.ResourceOptions', 'pulumi.ResourceOptions', ([], {'parent': 'self'}), '(parent=self)\n', (12132, 12145), False, 'import pulumi\n'), ((12833, 12868), 'pulumi.ResourceOptions', 'pulumi.ResourceOptions', ([], {'parent': 'self'}), '(parent=self)\n', (12855, 12868), False, 'import pulumi\n'), ((13831, 13866), 'pulumi.ResourceOptions', 'pulumi.ResourceOptions', ([], {'parent': 'self'}), '(parent=self)\n', (13853, 13866), False, 'import pulumi\n'), ((15147, 15183), 'typing.cast', 'cast', (['pulumi.Output[str]', 'image_name'], {}), '(pulumi.Output[str], image_name)\n', (15151, 15183), False, 'from typing import List, Mapping, Optional, Sequence, Tuple, Union, cast\n'), ((14367, 14386), 'infra.ec2.Ec2Port', 'Ec2Port', (['"""tcp"""', '(443)'], {}), "('tcp', 443)\n", (14374, 14386), False, 'from infra.ec2 import Ec2Port\n'), ((15440, 15475), 'pulumi.ResourceOptions', 'pulumi.ResourceOptions', ([], {'parent': 'self'}), '(parent=self)\n', (15462, 15475), False, 'import pulumi\n'), ((15651, 15673), 'infra.repository.registry_credentials', 'registry_credentials', ([], {}), '()\n', (15671, 15673), False, 'from infra.repository import Repository, registry_credentials\n'), ((15696, 15731), 'pulumi.ResourceOptions', 'pulumi.ResourceOptions', ([], {'parent': 'self'}), '(parent=self)\n', (15718, 15731), False, 'import pulumi\n'), ((6499, 6661), 'json.dumps', 'json.dumps', (["{'Version': '2012-10-17', 'Statement': [{'Effect': 'Allow', 'Action': [\n 'logs:CreateLogStream', 'logs:PutLogEvents'], 'Resource': f'{arn}:*'}]}"], {}), "({'Version': '2012-10-17', 'Statement': [{'Effect': 'Allow',\n 'Action': ['logs:CreateLogStream', 'logs:PutLogEvents'], 'Resource':\n f'{arn}:*'}]})\n", (6509, 6661), False, 'import json\n'), ((7779, 8010), 'pulumi.Output.all', 'pulumi.Output.all', ([], {'queue_url': 'queue.main_queue_url', 'retry_url': 'queue.retry_queue_url', 'dead_letter_url': 'queue.dead_letter_queue_url', 'log_group': 'self.log_group.name', 'bucket': 'output_emitter.bucket.bucket', 'image': 'image', 'env': 'env'}), '(queue_url=queue.main_queue_url, retry_url=queue.\n retry_queue_url, dead_letter_url=queue.dead_letter_queue_url, log_group\n =self.log_group.name, bucket=output_emitter.bucket.bucket, image=image,\n env=env)\n', (7796, 8010), False, 'import pulumi\n'), ((9500, 9516), 'pulumi_aws.get_region', 'aws.get_region', ([], {}), '()\n', (9514, 9516), True, 'import pulumi_aws as aws\n')]
import random import string from flask import Flask, jsonify app = Flask(__name__) @app.route('/') def root(): return jsonify(result=''.join(random.choice(string.ascii_uppercase + string.digits) for _ in range(2 ** 10))) if __name__ == '__main__': app.run(debug=False, host='0.0.0.0')
[ "flask.Flask", "random.choice" ]
[((69, 84), 'flask.Flask', 'Flask', (['__name__'], {}), '(__name__)\n', (74, 84), False, 'from flask import Flask, jsonify\n'), ((149, 202), 'random.choice', 'random.choice', (['(string.ascii_uppercase + string.digits)'], {}), '(string.ascii_uppercase + string.digits)\n', (162, 202), False, 'import random\n')]
import torch import torch.nn as nn import torch.nn.functional as F import numpy as np from . import MultiheadAttention class MultiBranch(nn.Module): def __init__(self, branches, embed_dim_list): super().__init__() self.branches = nn.ModuleList(branches) self.embed_dim_list = embed_dim_list def forward(self, query, key, value, key_padding_mask=None, incremental_state=None, need_weights=True, static_kv=False, attn_mask=None): tgt_len, bsz, embed_size = query.size() assert sum(self.embed_dim_list) == embed_size out = [] attn = None start = 0 for idx, embed_dim in enumerate(self.embed_dim_list): branch = self.branches[idx] branch_type = type(branch) q = query[...,start:start+embed_dim] if key is not None: assert value is not None k, v = key[..., start:start+embed_dim], value[..., start:start+embed_dim] start += embed_dim if branch_type == MultiheadAttention: x, attn = branch(q, k, v, key_padding_mask, incremental_state, need_weights, static_kv, attn_mask) else: mask = key_padding_mask if mask is not None: q = q.masked_fill(mask.transpose(0, 1).unsqueeze(2), 0) x = branch(q.contiguous(), incremental_state=incremental_state) out.append(x) out = torch.cat(out, dim=-1) return out, attn
[ "torch.cat", "torch.nn.ModuleList" ]
[((253, 276), 'torch.nn.ModuleList', 'nn.ModuleList', (['branches'], {}), '(branches)\n', (266, 276), True, 'import torch.nn as nn\n'), ((1465, 1487), 'torch.cat', 'torch.cat', (['out'], {'dim': '(-1)'}), '(out, dim=-1)\n', (1474, 1487), False, 'import torch\n')]
import fnmatch from . import jobs from . import config log = config.log # # { # At least one match from this array must succeed, or array must be empty # "any": [ # ["file.type", "dicom" ] # Match the file's type # ["file.name", "*.dcm" ] # Match a shell glob for the file name # ["file.measurements", "diffusion" ] # Match any of the file's measurements # ["container.measurement", "diffusion" ] # Match the container's primary measurment # ["container.has-type", "bvec" ] # Match the container having any file (including this one) with this type # ] # # All matches from array must succeed, or array must be empty # "all": [ # ] # # Algorithm to run if both sets of rules match # "alg": "dcm2nii" # } # MATCH_TYPES = [ 'file.type', 'file.name', 'file.measurements', 'container.measurement', 'container.has-type' ] # TODO: replace with default rules, which get persisted, maintained, upgraded, and reasoned intelligently HARDCODED_RULES = [ { 'alg': 'dicom_mr_classifier', 'all': [ ['file.type', 'dicom'] ] }, { 'alg': 'dcm_convert', 'all': [ ['file.type', 'dicom'] ] }, { 'alg': 'qa-report-fmri', 'all': [ ['file.type', 'nifti'] ] } ] def _log_file_key_error(file_, container, error): log.warning('file ' + file_.get('name', '?') + ' in container ' + str(container.get('_id', '?')) + ' ' + error) def eval_match(match_type, match_param, file_, container): """ Given a match entry, return if the match succeeded. """ # Match the file's type if match_type == 'file.type': try: return file_['type'] == match_param except KeyError: _log_file_key_error(file_, container, 'has no type key') return False # Match a shell glob for the file name elif match_type == 'file.name': return fnmatch.fnmatch(file_['name'], match_param) # Match any of the file's measurements elif match_type == 'file.measurements': try: return match_param in file_['measurements'] except KeyError: _log_file_key_error(file_, container, 'has no measurements key') return False # Match the container's primary measurment elif match_type == 'container.measurement': return container['measurement'] == match_param # Match the container having any file (including this one) with this type elif match_type == 'container.has-type': for c_file in container['files']: if match_param in c_file['measurements']: return True return False raise Exception('Unimplemented match type ' + match_type) def eval_rule(rule, file_, container): """ Decide if a rule should spawn a job. """ # Are there matches in the 'any' set? must_match = len(rule.get('any', [])) > 0 has_match = False for match in rule.get('any', []): if eval_match(match[0], match[1], file_, container): has_match = True break # If there were matches in the 'any' array and none of them succeeded if must_match and not has_match: return False # Are there matches in the 'all' set? for match in rule.get('all', []): if not eval_match(match[0], match[1], file_, container): return False return True def create_jobs(db, container, container_type, file_): """ Check all rules that apply to this file, and enqueue the jobs that should be run. Returns the algorithm names that were queued. """ job_list = [] # Get configured rules for this project rules = get_rules_for_container(db, container) # Add hardcoded rules that cannot be removed or changed for hardcoded_rule in HARDCODED_RULES: rules.append(hardcoded_rule) for rule in rules: if eval_rule(rule, file_, container): alg_name = rule['alg'] input = jobs.create_fileinput_from_reference(container, container_type, file_) jobs.queue_job(db, alg_name, input) job_list.append(alg_name) return job_list # TODO: consider moving to a module that has a variety of hierarchy-management helper functions def get_rules_for_container(db, container): """ Recursively walk the hierarchy until the project object is found. """ if 'session' in container: session = db.sessions.find_one({'_id': container['session']}) return get_rules_for_container(db, session) elif 'project' in container: project = db.projects.find_one({'_id': container['project']}) return get_rules_for_container(db, project) else: # Assume container is a project, or a collection (which currently cannot have a rules property) return container.get('rules', [])
[ "fnmatch.fnmatch" ]
[((2022, 2065), 'fnmatch.fnmatch', 'fnmatch.fnmatch', (["file_['name']", 'match_param'], {}), "(file_['name'], match_param)\n", (2037, 2065), False, 'import fnmatch\n')]
''' Script used to pull voting information from benty-fields.com. Must be logged in to access the benty-fields. NOTES: 1) benty-fields mostly organizes paper suggestions based upon voting history and chosen preferences (machine learning involved), so these voting totals can be considered as a control sample (in a way?). 2) Additionally, can only see the total votes for the "most popular"; the total votes per paper is not information available through the search. --> (so smaller sample than VoxCharta votes) 3) "last year" not an option THOUGHT: how new is benty-fields? ''' from selenium import webdriver from selenium.webdriver.common.keys import Keys from datetime import datetime import threading, time, getpass, sys, subprocess import pandas as pd import numpy as np from datetime import datetime as dt from datetime import timedelta __author__ = '<NAME>' __email__ = '<EMAIL>' # amount of time to wait timeit = 2 # seconds # ------------------------ # # -- creating dataframe -- # # ------------------------ # df_dtypes = {'id':str,'total_votes':int} # will be creating them inside the outermost for loop # ------------------------ # logmein = True # option to log into benty-fields account # opening browser & going to benty-fields if logmein == True: # pulling information to access arXiv account username = '<EMAIL>' password = '<PASSWORD>!' #username = input('\nBenty-Fields username: ') assert len(username) > 0, "Need to provide a username" #password = input('Benty-Fields password: ') assert len(password) > 0, "Need to provide account password" driver = webdriver.Firefox() driver.get("https://www.benty-fields.com/login") assert "Login" in driver.title # finding log in cells usern = driver.find_element_by_id("email") passw = driver.find_element_by_id("password") usern.clear() passw.clear() # adding log in info usern.send_keys(username) passw.send_keys(password) # locating "Log In" button buttons = driver.find_element_by_class_name("modal-footer") login = buttons.find_element_by_xpath("//button[@type='submit' and contains(.,'Login')]") login.click() else: driver = webdriver.Firefox() driver.get("https://www.benty-fields.com/most_popular") # going to Most Popular page driver.get("https://www.benty-fields.com/most_popular") frequencies = ['last week','last month','last 6 months'] freq_days = [7,30,180] for freq in frequencies: # running through frequencies print(f'''\n--------------------------------------- Looking at Most Popular: {freq} ---------------------------------------\n''') df = pd.DataFrame({'id':[],'total_votes':[]}) # dataframe for the frequency idx = frequencies.index(freq) if freq != 'last week': # have to change frequency period = driver.find_element_by_xpath("//button[@data-toggle='dropdown']") period.click() # this works # THIS WORKS!!! Can I tell you how long this took me to figure out....... loc = f"//ul[@class='dropdown-menu inner']/li[contains(.,'{freq}')]" last_month = driver.find_element_by_xpath(loc) last_month.click() # this works time.sleep(5) # let it load # ... just realized I could have just used the URL # most_popular/1?period=180 # where period == number of days # -- most popular votes -- # # ------------------------ # i = 0 for page in range(1,50): # start with page 1, go to page 50 # going page by page for at least 20 pages items = driver.find_elements_by_class_name("paper") # running through the posts to pull out arXiv ID for item in items: print(f"{i}) ",end=' ') arxiv_id = item.get_attribute('id') # "paper####.#####v#" arxiv_id = arxiv_id.lstrip('paper') arxiv_id = arxiv_id.rsplit('v')[0] print(arxiv_id,end='\t') # total votes votes = item.find_element_by_tag_name("h3").text votes = votes.rsplit('Votes ')[1].rsplit(')')[0] # pulling out just vote count votes = int(votes) # just because print(f"{votes} votes") # adding value to dataframe filler_df = pd.DataFrame({'id':[arxiv_id],'total_votes':[votes]}) df = df.append(filler_df,ignore_index=True) i += 1 # going to the next page using the link (instead of clicking the buttons) next_page = f"https://www.benty-fields.com/most_popular/{page+1}?period={freq_days[idx]}" driver.get(next_page) # saving dataframe freq_dash = freq.replace(' ','-') df_dtypes = {'id':str,'total_votes':int} sub_df = pd.read_csv(f'votes_benty-fields/benty-fields_voting-{freq_dash}.txt',sep='\t',dtype=df_dtypes) # reading in to add df = df.astype(df_dtypes) # to make sure column dtypes don't change # appending on data final_df = sub_df.append(df,ignore_index=True) # checking for duplicates ids = set(final_df.id.values) # creates 'set' of unique values if len(ids) != len(final_df): # SO checking for duplicates added in to table print(f'\nLength of sub_df: \t\t\t\t\t{len(sub_df)}') print(f'Length of df: \t\t\t\t\t\t{len(df)}') print(f'Length of combined df: \t\t\t\t\t{len(final_df)}') final_df.drop_duplicates(inplace=True,subset='id',keep='last') # want most up-to-date #'s print(f'Length of final_df after dropping id duplicates: \t{len(final_df)}') else: print(f'\nNo duplicates, check passed.') final_df.to_csv(f'votes_benty-fields/benty-fields_voting-{freq_dash}.txt',sep='\t',index=False) print(f"\nData saved to 'benty-fields_voting-{freq_dash}.txt'",end='\n\n') # Wait until before closing browser (so we can see the "pycon" search) time.sleep(timeit) driver.close()
[ "pandas.DataFrame", "pandas.read_csv", "selenium.webdriver.Firefox", "time.sleep" ]
[((5469, 5487), 'time.sleep', 'time.sleep', (['timeit'], {}), '(timeit)\n', (5479, 5487), False, 'import threading, time, getpass, sys, subprocess\n'), ((1610, 1629), 'selenium.webdriver.Firefox', 'webdriver.Firefox', ([], {}), '()\n', (1627, 1629), False, 'from selenium import webdriver\n'), ((2147, 2166), 'selenium.webdriver.Firefox', 'webdriver.Firefox', ([], {}), '()\n', (2164, 2166), False, 'from selenium import webdriver\n'), ((2586, 2629), 'pandas.DataFrame', 'pd.DataFrame', (["{'id': [], 'total_votes': []}"], {}), "({'id': [], 'total_votes': []})\n", (2598, 2629), True, 'import pandas as pd\n'), ((4407, 4509), 'pandas.read_csv', 'pd.read_csv', (['f"""votes_benty-fields/benty-fields_voting-{freq_dash}.txt"""'], {'sep': '"""\t"""', 'dtype': 'df_dtypes'}), "(f'votes_benty-fields/benty-fields_voting-{freq_dash}.txt', sep=\n '\\t', dtype=df_dtypes)\n", (4418, 4509), True, 'import pandas as pd\n'), ((3081, 3094), 'time.sleep', 'time.sleep', (['(5)'], {}), '(5)\n', (3091, 3094), False, 'import threading, time, getpass, sys, subprocess\n'), ((3994, 4050), 'pandas.DataFrame', 'pd.DataFrame', (["{'id': [arxiv_id], 'total_votes': [votes]}"], {}), "({'id': [arxiv_id], 'total_votes': [votes]})\n", (4006, 4050), True, 'import pandas as pd\n')]
import pygame # local import from base.base import GUIBase from solver.solver import Solver class Board(GUIBase): """Screen Board :param board: Sudoku board represent as two dimensional array :type board: list :param size: screen dimensions (pixels) (width, height) :type size: tuple :param screen: pygame screen :type screen: pygame.Surface """ def __init__(self, size: tuple, board: list, screen: pygame.Surface): super().__init__((size[1], size[1], size[0] - size[1]), screen) self.__board = board self.__solver = Solver(self) # create squares list self.__squares = [ [ Square( self.__board[c][r], (r, c), (self.size[0], self.size[2]), self.screen, True if self.__board[c][r] == 0 else False, ) for r in range(9) ] for c in range(9) ] self.__selected = None self.__wrong = None @property def wrong(self): """wrong property (getter)""" return self.__wrong @property def squares(self) -> list: """squares property (getter)""" return self.__squares def update_squares(self): """squares property (updatter)""" # iterate over all squares for r in range(9): for c in range(9): # update values self.__squares[r][c].value = self.__board[r][c] self.__squares[r][c].pencil = 0 @property def board(self) -> list: """board property (getter)""" return self.__board @board.setter def board(self, board: list): """board property (setter) & update squares :param board: Sudoku board represent as two dimensional array :type board: list """ # set new board self.__board = board # reinit squares self.__squares = [ [ Square( self.__board[c][r], (r, c), (self.size[0], self.size[2]), self.screen, True if self.__board[c][r] == 0 else False, ) for r in range(9) ] for c in range(9) ] @property def selected(self) -> tuple: """selected property (getter)""" return self.__selected @selected.setter def selected(self, pos: tuple): """selected property (setter) & refresh squares :param pos: selected square position (row, column) :type pos: tuple """ if not self.__wrong: # clear previous selection if self.__selected != None: self.__squares[self.__selected[0]][self.__selected[1]].selected = False if pos: # select new square self.__selected = pos self.__squares[self.__selected[0]][self.__selected[1]].selected = True else: # set selected to None if pos out of board self.__selected = None @property def get_pencil(self) -> int: """selected square pencil (getter)""" # get selected square r, c = self.__selected return self.__squares[r][c].pencil def set_pencil(self, value: int): """set pencil value :param value: pencil value :type value: int """ # get selected square r, c = self.__selected if self.__squares[r][c].value == 0: self.__squares[r][c].pencil = value @property def get_value(self) -> int: """selected square value (getter)""" # get selected square r, c = self.__selected return self.__squares[r][c].value def set_value(self) -> str: """set square value :returns: board state ('s' -> success, 'w' -> wrong, 'c' -> unsolvable board) :rtype: str """ # get selected square r, c = self.__selected if self.get_value == 0: # chock for non-0 pencil value pencil = self.get_pencil if pencil != 0: # check the number match Sudoku rules w = self.__solver.exists(self.__board, pencil, (r, c)) if w: # change squares state to wrong (red color) self.__squares[r][c].wrong = True self.__squares[w[0]][w[1]].wrong = True self.__squares[r][c].value = pencil self.__board[r][c] = pencil self.__wrong = w return "w" else: # change set square value and return true self.__squares[r][c].value = pencil self.__board[r][c] = pencil # copy board # init copy as two dimensional array with 9 rows copy = [[] for r in range(9)] # iterate over all rows for r in range(9): # iterate over all columns for c in range(9): # append the num copy[r].append(self.__board[r][c]) # check if the board unsolvable if not self.__solver.solve(copy): return "c" return "s" @property def clear(self): """clear selected square value""" # get selected square r, c = self.__selected # clear square value and pencil self.__squares[r][c].value = 0 self.__squares[r][c].pencil = 0 self.__board[r][c] = 0 # change wrong state if self.__wrong: self.__squares[r][c].wrong = False self.__squares[self.__wrong[0]][self.__wrong[1]].wrong = False self.__wrong = None @property def isfinished(self): """return true if there's no more empty squares else false :returns: true if there's no more empty squares else false :rtype: bool """ return not self.__solver.nextpos(self.board) def set_sq_value(self, value: int, pos: tuple): """change square value by position :param value: new square value :type value: int :param pos: square position :type pos: tuple """ self.__squares[pos[0]][pos[1]].value = value def draw(self): """Draw the board on the screen""" # Draw squares # iterate over all rows for r in range(9): # iterate over all columns for c in range(9): # draw square value self.__squares[c][r].draw() # Draw grid # set space between squares space = self.size[0] // 9 # drow 10 lines HvV for r in range(10): # set line weight (bold at the end of 3*3 area) w = 4 if r % 3 == 0 and r != 0 else 1 # draw horizontal line (screen, (color), (start_pos), (end_pos), width) pygame.draw.line( self.screen, (72, 234, 54), (self.size[2], r * space), (self.size[0] + self.size[2], r * space), w, ) # draw vertical line (screen, (color), (start_pos), (end_pos), width) pygame.draw.line( self.screen, (72, 234, 54), (r * space + self.size[2], 0), (r * space + self.size[2], self.size[1]), w, ) class Square(GUIBase): """Board squeares :param value: square display number :type value: int :param pos: square position (row, column) :type pos: tuple :param width: screen width and left gap (width, gap) :type width: tuple :param screen: pygame screen :type screen: pygame.Surface :param changeable: changeabllity :type changeable: bool """ def __init__( self, value: int, pos: tuple, widthpos: tuple, screen: pygame.Surface, changeable: bool, ): super().__init__(0, screen) self.__value = value self.__pos = pos self.__widthpos = widthpos self.__pencil = 0 self.__selected = False self.__changeable = changeable self.__wrong = False @property def changeable(self): """changeable property (getter)""" return self.__changeable @property def selected(self) -> tuple: """selected property (getter)""" return self.__selected @selected.setter def selected(self, v: bool): """selected property (setter) :param v: selected value :type v: bool """ self.__selected = v @property def value(self) -> int: """value property (getter)""" return self.__value @value.setter def value(self, value: int): """value property (setter) :param value: square value :type value: int """ if self.__changeable: self.__value = value @property def pencil(self) -> int: """pencil property (getter)""" return self.__pencil @pencil.setter def pencil(self, value: int): """pencil property (setter) :param value: pencil square value :type value: int """ if self.__changeable: self.__pencil = value @property def wrong(self): """wrong property (getter)""" return self.__wrong @wrong.setter def wrong(self, w: bool): """wrong property (setter) :param w: wrong value :type w: bool """ self.__wrong = w def draw(self): """Draw square value""" # set space between squares space = self.__widthpos[0] // 9 # set actuall square position on the screen r, c = self.__pos[0] * space + self.__widthpos[1], self.__pos[1] * space # fill unchangeable square background if not self.__changeable: sqsize = self.__widthpos[0] // 9 # draw rectangle (frame) pygame.draw.rect(self.screen, (10, 30, 0), ((r, c), (sqsize, sqsize))) # check for none 0's squares if self.__value != 0: font = pygame.font.Font("../assets/Rubik-font/Rubik-Regular.ttf", 38) # set color rgb = (72, 234, 54) if not self.__wrong else (234, 72, 54) # create suface object v = font.render(str(self.__value), 1, rgb) # draw in on the screen self.screen.blit( v, ( int(r + ((space / 2) - (v.get_width() / 2))), int(c + ((space / 2) - (v.get_height() / 2))), ), ) elif self.__pencil != 0: font = pygame.font.Font("../assets/Rubik-font/Rubik-Regular.ttf", 30) # create suface object v = font.render(str(self.__pencil), 1, (2, 164, 0)) # draw in on the screen self.screen.blit( v, ( int(r + ((space / 2) - (v.get_width() / 2)) - 20), int(c + ((space / 2) - (v.get_height() / 2)) - 15), ), ) # draw bold outline around selected square if self.__selected: # draw rectangle (frame) pygame.draw.rect(self.screen, (52, 214, 34), ((r, c), (space, space)), 3)
[ "pygame.draw.rect", "pygame.draw.line", "solver.solver.Solver", "pygame.font.Font" ]
[((583, 595), 'solver.solver.Solver', 'Solver', (['self'], {}), '(self)\n', (589, 595), False, 'from solver.solver import Solver\n'), ((7266, 7387), 'pygame.draw.line', 'pygame.draw.line', (['self.screen', '(72, 234, 54)', '(self.size[2], r * space)', '(self.size[0] + self.size[2], r * space)', 'w'], {}), '(self.screen, (72, 234, 54), (self.size[2], r * space), (\n self.size[0] + self.size[2], r * space), w)\n', (7282, 7387), False, 'import pygame\n'), ((7572, 7696), 'pygame.draw.line', 'pygame.draw.line', (['self.screen', '(72, 234, 54)', '(r * space + self.size[2], 0)', '(r * space + self.size[2], self.size[1])', 'w'], {}), '(self.screen, (72, 234, 54), (r * space + self.size[2], 0),\n (r * space + self.size[2], self.size[1]), w)\n', (7588, 7696), False, 'import pygame\n'), ((10413, 10483), 'pygame.draw.rect', 'pygame.draw.rect', (['self.screen', '(10, 30, 0)', '((r, c), (sqsize, sqsize))'], {}), '(self.screen, (10, 30, 0), ((r, c), (sqsize, sqsize)))\n', (10429, 10483), False, 'import pygame\n'), ((10570, 10632), 'pygame.font.Font', 'pygame.font.Font', (['"""../assets/Rubik-font/Rubik-Regular.ttf"""', '(38)'], {}), "('../assets/Rubik-font/Rubik-Regular.ttf', 38)\n", (10586, 10632), False, 'import pygame\n'), ((11708, 11781), 'pygame.draw.rect', 'pygame.draw.rect', (['self.screen', '(52, 214, 34)', '((r, c), (space, space))', '(3)'], {}), '(self.screen, (52, 214, 34), ((r, c), (space, space)), 3)\n', (11724, 11781), False, 'import pygame\n'), ((11139, 11201), 'pygame.font.Font', 'pygame.font.Font', (['"""../assets/Rubik-font/Rubik-Regular.ttf"""', '(30)'], {}), "('../assets/Rubik-font/Rubik-Regular.ttf', 30)\n", (11155, 11201), False, 'import pygame\n')]
""" Example headers { "X-Screenly-hostname": "srly-jmar75ko6xp651j", "X-Screenly-screen-name": "dizzy cherry", "X-Screenly-location-name": "Cape Town", "X-Screenly-hardware": "x86", "X-Screenly-version": "v2", "X-Screenly-lat": "-33.925278", "X-Screenly-lng": "18.423889", "X-Screenly-tags": "srly-jmar75ko6xp651j,custom-label" }""" from os import environ from flask import Flask, render_template, request app = Flask(__name__) @app.route("/") def render_metadata_headers(): return render_template( "metadata_headers.html", headers=request.headers, apiKey=environ.get("GOOGLE_MAPS_API_KEY"), ) if __name__ == "__main__": app.run(host="0.0.0.0")
[ "os.environ.get", "flask.Flask" ]
[((448, 463), 'flask.Flask', 'Flask', (['__name__'], {}), '(__name__)\n', (453, 463), False, 'from flask import Flask, render_template, request\n'), ((622, 656), 'os.environ.get', 'environ.get', (['"""GOOGLE_MAPS_API_KEY"""'], {}), "('GOOGLE_MAPS_API_KEY')\n", (633, 656), False, 'from os import environ\n')]
from django.core import mail from django.test import TestCase, TransactionTestCase from django.contrib.auth.models import User from news.models import News class NewsTest(TestCase): def test_feed(self): response = self.client.get('/feeds/news/') self.assertEqual(response.status_code, 200) def test_sitemap(self): response = self.client.get('/sitemap-news.xml') self.assertEqual(response.status_code, 200) def test_news_sitemap(self): response = self.client.get('/news-sitemap.xml') self.assertEqual(response.status_code, 200) def test_newsitem(self): response = self.client.get('/news/404', follow=True) self.assertEqual(response.status_code, 404) class NewsCrud(TransactionTestCase): def setUp(self): password = '<PASSWORD>' self.user = User.objects.create_superuser('admin', '<EMAIL>', password) self.client.post('/login/', { 'username': self.user.username, 'password': password }) def tearDown(self): News.objects.all().delete() self.user.delete() def create(self, title='Bash broken', content='Broken in [testing]', announce=False): data = { 'title': title, 'content': content, } if announce: data['send_announce'] = 'on' return self.client.post('/news/add/', data, follow=True) def testCreateItem(self): title = 'Bash broken' response = self.create(title) self.assertEqual(response.status_code, 200) news = News.objects.first() self.assertEqual(news.author, self.user) self.assertEqual(news.title, title) def testView(self): self.create() news = News.objects.first() response = self.client.get(news.get_absolute_url()) self.assertEqual(response.status_code, 200) def testRedirectId(self): self.create() news = News.objects.first() response = self.client.get('/news/{}'.format(news.id), follow=True) self.assertEqual(response.status_code, 200) def testSendAnnounce(self): title = 'New glibc' self.create(title, announce=True) self.assertEqual(len(mail.outbox), 1) self.assertIn(title, mail.outbox[0].subject) def testPreview(self): response = self.client.post('/news/preview/', {'data': '**body**'}, follow=True) self.assertEqual(response.status_code, 200) self.assertEqual('<p><strong>body</strong></p>', response.content.decode())
[ "django.contrib.auth.models.User.objects.create_superuser", "news.models.News.objects.first", "news.models.News.objects.all" ]
[((879, 938), 'django.contrib.auth.models.User.objects.create_superuser', 'User.objects.create_superuser', (['"""admin"""', '"""<EMAIL>"""', 'password'], {}), "('admin', '<EMAIL>', password)\n", (908, 938), False, 'from django.contrib.auth.models import User\n'), ((1799, 1819), 'news.models.News.objects.first', 'News.objects.first', ([], {}), '()\n', (1817, 1819), False, 'from news.models import News\n'), ((1981, 2001), 'news.models.News.objects.first', 'News.objects.first', ([], {}), '()\n', (1999, 2001), False, 'from news.models import News\n'), ((2190, 2210), 'news.models.News.objects.first', 'News.objects.first', ([], {}), '()\n', (2208, 2210), False, 'from news.models import News\n'), ((1255, 1273), 'news.models.News.objects.all', 'News.objects.all', ([], {}), '()\n', (1271, 1273), False, 'from news.models import News\n')]
import time import bisect import numpy as np import pandas as pd import networkx as nx import scipy import scipy.optimize import scipy as sp import os import matplotlib.pyplot as plt import random from bayes_opt import BayesianOptimization from bayes_opt.util import UtilityFunction, Colours import asyncio import threading import json import tornado.ioloop import tornado.httpserver from tornado.web import RequestHandler import requests from lib.priorityqueue import PriorityQueue from lib.dynamics import DiseaseModel from lib.mobilitysim import MobilitySimulator from bayes_opt import BayesianOptimization from lib.parallel import * SIMPLIFIED_OPT = True def format_opt_to_sim(opt_params, n_betas): ''' Convert bayes_opt parameter format into our format ''' if SIMPLIFIED_OPT: return { 'betas' : [opt_params['beta'] for _ in range(n_betas)], 'alpha': opt_params['alpha'], 'mu': opt_params['mu'] } else: sim_params = { 'betas' : [None for _ in range(n_betas)], 'alpha': None, 'mu': None } for k, v, in opt_params.items(): if 'betas' in k: sim_params['betas'][int(k[5:])] = v else: sim_params[k] = v return sim_params def format_sim_to_opt(sim_params): ''' Convert our format into bayes opt format ''' if SIMPLIFIED_OPT: return { 'beta' : sim_params['betas'][0], 'alpha': sim_params['alpha'], 'mu': opt_params['mu'] } else: opt_params = {'betas' + str(i) : p for i, p in enumerate(sim_params['betas'])} opt_params.update({ 'alpha': sim_params['alpha'], 'mu': sim_params['mu'] }) return opt_params def convert_timings_to_daily(timings, time_horizon): ''' Converts batch of size N of timings of M individuals in a time horizon of `time_horizon` in hours into daily aggregate cases Argument: timings : np.array of shape (N, M) Argument: timings : np.array of shape (N, T / 24) ''' if len(timings.shape) == 1: timings = np.expand_dims(timings, axis=0) arr = np.array([ np.sum((timings >= t * 24) & (timings < (t + 1) * 24), axis=1) for t in range(0, int(time_horizon // 24))]).T return arr def convert_timings_to_cumulative_daily(timings, time_horizon): ''' Converts batch of size N of timings of M individuals in a time horizon of `time_horizon` in hours into daily cumulative aggregate cases Argument: timings : np.array of shape (N, M) Argument: timings : np.array of shape (N, T / 24) ''' if len(timings.shape) == 1: timings = np.expand_dims(timings, axis=0) cumulative = np.array([ np.sum((timings < (t + 1) * 24), axis=1) for t in range(0, int(time_horizon // 24))]).T return cumulative def loss_daily(predicted_confirmed_times, targets_daily, time_horizon, power=2.0): ''' Daily loss: total squared error between average predicted daily cases and true daily cases ''' # predicted_confirmed_daily = convert_timings_to_daily(predicted_confirmed_times, time_horizon) predicted_confirmed_daily = convert_timings_to_cumulative_daily(predicted_confirmed_times, time_horizon) ave_predicted_confirmed_daily = predicted_confirmed_daily.mean(axis=0) loss = np.power(np.abs(ave_predicted_confirmed_daily - targets_daily), power).mean() return loss def multimodal_loss_daily(preds, weights, targets, time_horizon, power=2.0): ''' Multimodal Daily loss: Same as loss_daily but considering several weighted metrics (e.g. positive, recovered, deceased) ''' loss = 0 for w, pred, target in zip(weights, preds, targets): # pred = convert_timings_to_daily(pred, time_horizon) pred = convert_timings_to_cumulative_daily(pred, time_horizon) ave_pred = pred.mean(axis=0) loss += w * np.power(np.abs(ave_pred - target), power).mean() return loss def make_loss_function(mob_settings, distributions, targets, time_horizon, param_bounds, initial_seeds, testing_params, random_repeats, num_site_types, cpu_count, measure_list, loss, num_people, site_loc, home_loc, c, extra_params=None): ''' Returns function executable by optimizer with desired loss ''' with open(f'logger_{c}.txt', 'w+') as logfile: logfile.write(f'Log run: seed = {c}\n\n') def f(opt_params): # convert bayes_opt parameter format into our format sim_params = format_opt_to_sim(opt_params, n_betas=num_site_types) # launch in parallel summary = launch_parallel_simulations( mob_settings=mob_settings, distributions=distributions, random_repeats=random_repeats, cpu_count=cpu_count, params=sim_params, initial_seeds=initial_seeds, testing_params=testing_params, measure_list=measure_list, max_time=time_horizon, num_people=num_people, site_loc=site_loc, home_loc=home_loc, verbose=False) if loss == 'loss_daily': return summary.state_started_at['posi'] elif loss == 'multimodal_loss_daily': return (summary.state_started_at['posi'], summary.state_started_at['resi'], summary.state_started_at['dead']) else: raise ValueError('Unknown loss function') if loss == 'loss_daily': def loss_function(**kwargv): predicted_confirmed_times = f(kwargv) l = loss_daily( predicted_confirmed_times=predicted_confirmed_times, targets_daily=targets, time_horizon=time_horizon, power=2.0) ave_pred = convert_timings_to_cumulative_daily( predicted_confirmed_times, time_horizon).mean(axis=0) loginfo = f'{-l} ' + str(kwargv) + '\n' with open(f'logger_{c}.txt', 'a') as logfile: logfile.write(loginfo) # bayes_opt maximizes return - l return loss_function elif loss == 'multimodal_loss_daily': # here `extra_params` are weights if extra_params: weights = extra_params['weights'] else: weights = np.ones(len(targets)) def loss_function(**kwargv): preds = f(kwargv) l = multimodal_loss_daily( preds=preds, weights=weights, targets=targets, time_horizon=time_horizon, power=2.0) # bayes_opt maximizes return - l return loss_function else: raise ValueError('Unknown loss function')
[ "numpy.abs", "numpy.sum", "numpy.expand_dims" ]
[((2226, 2257), 'numpy.expand_dims', 'np.expand_dims', (['timings'], {'axis': '(0)'}), '(timings, axis=0)\n', (2240, 2257), True, 'import numpy as np\n'), ((2841, 2872), 'numpy.expand_dims', 'np.expand_dims', (['timings'], {'axis': '(0)'}), '(timings, axis=0)\n', (2855, 2872), True, 'import numpy as np\n'), ((2288, 2350), 'numpy.sum', 'np.sum', (['((timings >= t * 24) & (timings < (t + 1) * 24))'], {'axis': '(1)'}), '((timings >= t * 24) & (timings < (t + 1) * 24), axis=1)\n', (2294, 2350), True, 'import numpy as np\n'), ((2910, 2948), 'numpy.sum', 'np.sum', (['(timings < (t + 1) * 24)'], {'axis': '(1)'}), '(timings < (t + 1) * 24, axis=1)\n', (2916, 2948), True, 'import numpy as np\n'), ((3538, 3591), 'numpy.abs', 'np.abs', (['(ave_predicted_confirmed_daily - targets_daily)'], {}), '(ave_predicted_confirmed_daily - targets_daily)\n', (3544, 3591), True, 'import numpy as np\n'), ((4120, 4145), 'numpy.abs', 'np.abs', (['(ave_pred - target)'], {}), '(ave_pred - target)\n', (4126, 4145), True, 'import numpy as np\n')]
#!/bin/env python # coding=utf8 from Crypto.PublicKey import RSA from Crypto.Cipher import PKCS1_v1_5 as Cipher_pkcs1_v1_5 import base64 import requests import json import urllib import time import random import datetime import hashlib # 获得响应头信息中的Content-Type域 def urlOpenGetHeaders(url): req = urllib.request.Request(url) req.add_header('User-Agent', 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/39.0.2171.95 Safari/537.36') page = urllib.request.urlopen(req) html = page.getheader('Content-Type') return html # 获得url的源码 def urlOpen(url): req = urllib.request.Request(url) req.add_header('User-Agent', 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/39.0.2171.95 Safari/537.36') if False: proxies = ['192.168.127.12:8123', '172.16.31.10:8123', '192.168.3.11:8118'] proxy = random.choice(proxies) proxy_support = urllib.request.ProxyHandler({'http':proxy}) opener = urllib.request.build_opener(proxy_support) opener.addheaders = [('User-Agent','Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/39.0.2171.95 Safari/537.36')] urllib.request.install_opener(opener) page = urllib.request.urlopen(url) else: page = urllib.request.urlopen(req) html = page.read() return html # 根据名字、后缀和url下载到本地文件夹 def download(title,post,url): filename = title + "." +post with open(filename, 'wb') as f: music = urlOpen(url) f.write(music) def getPostStr(pKey, song_id): rsaKey = RSA.importKey(pKey) cipher = Cipher_pkcs1_v1_5.new(rsaKey) encry = cipher.encrypt(song_id) return base64.b64encode(encry) # 获取歌曲的实际的url def getSongRealUrl(songidVal,timeVal,md5Val): url = 'http://www.aekun.com/api/getMusicbyid/' r = requests.post(url, { 'songid': songidVal, 't':timeVal, 'sign':md5Val }) return r.content # 将需要的数据写入本地文件 def writeStrToFile(writeStr): print(writeStr) with open("downurl.txt","a",encoding="UTF-8") as f: f.write(writeStr) f.write("\n") # 获取最新的推荐歌曲编号 def getMaxSongs(): url = "http://www.aekun.com/new/" html = urlOpen(url).decode('utf-8') a = html.find('<tr musicid=') + 13 b = html.find('"',a) result = int(html[a:b]) return result # 获取目前已经获得的最大曲目编号 def getNowSongId(songIdInt): f = open("downurl.txt","r",encoding="UTF-8") lines = f.readlines() #读取全部内容 for line in lines: if line.find('|')!=-1: line = line.split("|") line = int(line[0]) if line > songIdInt: songIdInt = line return songIdInt # 下载歌曲的主程序部分 def downloadMusicMain(): # 获取pKey f = open('public.pem') pKey = f.read() f.close() songIdInt = 3509719 songIdInt = getNowSongId(songIdInt) songIdInt = songIdInt + 1 maxSong = getMaxSongs() print("start from:%s,end with:%s"%(songIdInt,maxSong)) # 3505251 |10 |2015084685 |▌▌Chillout ▌▌Losing Ground Michael FK & Groundfold -----3505251.mp3 while(False): if songIdInt > maxSong: break time.sleep(10) try: urlOpen("http://www.aekun.com/song/" + str(songIdInt)) except ConnectionResetError: print("Error occur") songId = str(songIdInt).encode('utf-8') print(songId) songidVal = getPostStr(pKey, songId) songidVal = songidVal.decode('utf-8') t = time.time() t = int(round(t * 1000)) timeVal = getPostStr(pKey,str(t).encode('utf-8')) timeVal = timeVal.decode('utf-8') m2 = hashlib.md5() src = str(songIdInt) + "|" + str(t) m2.update(src.encode("utf8")) t = m2.hexdigest() md5Val = getPostStr(pKey,str(t).encode('utf-8')) md5Val = md5Val.decode('utf-8') try: print(songidVal) print(timeVal) print(md5Val) ret = getSongRealUrl(songidVal,timeVal,md5Val) except (ConnectionError , ConnectionResetError): print("ConnectionError") time.sleep(3) continue ret = ret.decode('utf-8') #ret = '{"state":"success","message":"ok","action":null,"data":{"url":"http://us.aekun.com/upload/75AAB77BC2D16123F9F2E8B6C68FCB8E.mp3","song_name":"就算遇到挫折、受到嘲笑,也要勇敢的向前跑!","coll":0,"singername":"小哥","singerpic":"https://m4.aekun.com/user_l_5973822_20170513135220.png"}}' print(ret) ret = json.loads(ret) print(ret) status = ret['state'] if status != 'success': print(status) break downUrl = ret['data'] if isinstance(downUrl,str): if downUrl.strip() == '': html = urlOpen("http://www.aekun.com/song/" + str(songIdInt)).decode('utf-8') songIdInt = songIdInt + 1 continue elif isinstance(downUrl,dict): pass else: continue downUrl = ret['data']['url'] if downUrl is None: continue if downUrl.strip() == "": continue post = downUrl[-3:] post = post.lower() if post != 'mp3' and post != 'm4a': tmp = urlOpenGetHeaders(downUrl) if tmp.find('mp3') != -1: post = 'mp3' songName = ret['data']['song_name'] writeStr = "%-10s|%-50s|%-5s|%s"%(songIdInt,songName,post,downUrl) writeStrToFile(writeStr) songIdInt = songIdInt + 1 now = datetime.datetime.now() now = now.strftime('%Y-%m-%d %H:%M:%S') writeStrToFile(str(now) + '\t\t\t' + str(maxSong)) if __name__ == '__main__': downloadMusicMain()
[ "urllib.request.ProxyHandler", "hashlib.md5", "urllib.request.Request", "json.loads", "urllib.request.urlopen", "random.choice", "urllib.request.build_opener", "time.sleep", "urllib.request.install_opener", "time.time", "base64.b64encode", "Crypto.PublicKey.RSA.importKey", "requests.post", "datetime.datetime.now", "Crypto.Cipher.PKCS1_v1_5.new" ]
[((300, 327), 'urllib.request.Request', 'urllib.request.Request', (['url'], {}), '(url)\n', (322, 327), False, 'import urllib\n'), ((496, 523), 'urllib.request.urlopen', 'urllib.request.urlopen', (['req'], {}), '(req)\n', (518, 523), False, 'import urllib\n'), ((622, 649), 'urllib.request.Request', 'urllib.request.Request', (['url'], {}), '(url)\n', (644, 649), False, 'import urllib\n'), ((1650, 1669), 'Crypto.PublicKey.RSA.importKey', 'RSA.importKey', (['pKey'], {}), '(pKey)\n', (1663, 1669), False, 'from Crypto.PublicKey import RSA\n'), ((1683, 1712), 'Crypto.Cipher.PKCS1_v1_5.new', 'Cipher_pkcs1_v1_5.new', (['rsaKey'], {}), '(rsaKey)\n', (1704, 1712), True, 'from Crypto.Cipher import PKCS1_v1_5 as Cipher_pkcs1_v1_5\n'), ((1760, 1783), 'base64.b64encode', 'base64.b64encode', (['encry'], {}), '(encry)\n', (1776, 1783), False, 'import base64\n'), ((1904, 1975), 'requests.post', 'requests.post', (['url', "{'songid': songidVal, 't': timeVal, 'sign': md5Val}"], {}), "(url, {'songid': songidVal, 't': timeVal, 'sign': md5Val})\n", (1917, 1975), False, 'import requests\n'), ((5659, 5682), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (5680, 5682), False, 'import datetime\n'), ((922, 944), 'random.choice', 'random.choice', (['proxies'], {}), '(proxies)\n', (935, 944), False, 'import random\n'), ((969, 1013), 'urllib.request.ProxyHandler', 'urllib.request.ProxyHandler', (["{'http': proxy}"], {}), "({'http': proxy})\n", (996, 1013), False, 'import urllib\n'), ((1030, 1072), 'urllib.request.build_opener', 'urllib.request.build_opener', (['proxy_support'], {}), '(proxy_support)\n', (1057, 1072), False, 'import urllib\n'), ((1249, 1286), 'urllib.request.install_opener', 'urllib.request.install_opener', (['opener'], {}), '(opener)\n', (1278, 1286), False, 'import urllib\n'), ((1302, 1329), 'urllib.request.urlopen', 'urllib.request.urlopen', (['url'], {}), '(url)\n', (1324, 1329), False, 'import urllib\n'), ((1355, 1382), 'urllib.request.urlopen', 'urllib.request.urlopen', (['req'], {}), '(req)\n', (1377, 1382), False, 'import urllib\n'), ((3242, 3256), 'time.sleep', 'time.sleep', (['(10)'], {}), '(10)\n', (3252, 3256), False, 'import time\n'), ((3581, 3592), 'time.time', 'time.time', ([], {}), '()\n', (3590, 3592), False, 'import time\n'), ((3740, 3753), 'hashlib.md5', 'hashlib.md5', ([], {}), '()\n', (3751, 3753), False, 'import hashlib\n'), ((4611, 4626), 'json.loads', 'json.loads', (['ret'], {}), '(ret)\n', (4621, 4626), False, 'import json\n'), ((4229, 4242), 'time.sleep', 'time.sleep', (['(3)'], {}), '(3)\n', (4239, 4242), False, 'import time\n')]
import os import numpy as np import pytest from ananse.network import Network from .test_02_utils import write_file @pytest.fixture def binding_fname(): return "tests/example_data/binding2.tsv" @pytest.fixture def network(): genome = "tests/data/genome.fa" if not os.path.exists(genome): write_file(genome, [">chr1", "N"]) return Network(genome=genome, gene_bed="ananse/db/hg38.genes.bed") def test_unique_enhancer(network, binding_fname): regions = network.unique_enhancers(binding_fname) regions = regions.as_df() assert regions.shape[0] == 6 assert sorted(list(regions["Chromosome"].unique())) == ["chr1", "chr10", "chr17"] assert sorted(list(regions["Start"].unique())) == [7677184, 7687827] def test_distance_weight(network): dw = network.distance_weight( include_promoter=True, promoter_region=20, full_weight_region=50, maximum_distance=100, alpha=5, ) assert list(dw.columns) == ["weight", "dist"] dw = dw.set_index("dist") assert dw.loc[0, "weight"] == 1 assert dw.loc[25, "weight"] == 1 assert dw.loc[50, "weight"] == 1 assert dw.loc[51, "weight"] < 1 assert np.isclose(dw.loc[100, "weight"], 0, atol=1e-4) assert dw.shape[0] == 101 dw = network.distance_weight( include_promoter=False, promoter_region=20, full_weight_region=50, maximum_distance=100, alpha=5, ) assert list(dw.columns) == ["weight", "dist"] dw = dw.set_index("dist") assert dw.loc[0, "weight"] == 0 assert dw.loc[20, "weight"] == 0 assert dw.loc[21, "weight"] == 1 assert dw.shape[0] == 101
[ "numpy.isclose", "os.path.exists", "ananse.network.Network" ]
[((361, 420), 'ananse.network.Network', 'Network', ([], {'genome': 'genome', 'gene_bed': '"""ananse/db/hg38.genes.bed"""'}), "(genome=genome, gene_bed='ananse/db/hg38.genes.bed')\n", (368, 420), False, 'from ananse.network import Network\n'), ((1202, 1251), 'numpy.isclose', 'np.isclose', (["dw.loc[100, 'weight']", '(0)'], {'atol': '(0.0001)'}), "(dw.loc[100, 'weight'], 0, atol=0.0001)\n", (1212, 1251), True, 'import numpy as np\n'), ((282, 304), 'os.path.exists', 'os.path.exists', (['genome'], {}), '(genome)\n', (296, 304), False, 'import os\n')]
import setuptools from configparser import ConfigParser from pkg_resources import parse_version from sys import platform assert parse_version(setuptools.__version__) >= parse_version('36.2') config = ConfigParser(delimiters=['=']) config.read('settings.ini') cfg = config['DEFAULT'] license_options = { 'apache2': ( 'Apache Software License 2.0', 'OSI Approved :: Apache Software License' ), 'MIT': ( 'MIT License', 'OSI Approved :: MIT License' ) } status_options = { '1': 'Planning', '2': 'Pre-Alpha', '3': 'Alpha', '4': 'Beta', '5': 'Production/Stable', '6': 'Mature', '7': 'Inactive' } maximum_python3_available = 8 with open("requirements.txt") as requirements_file: requirements = [] for line in requirements_file: line = line.strip() requirements.append(line) setuptools.setup( name=cfg["lib_name"], license=license_options[cfg["license"]][0], classifiers=[ f'Development Status :: {cfg["status"]} - {status_options[cfg["status"]]}', f'Intended Audience :: {cfg["audience"]}', f'License :: {license_options[cfg["license"]][1]}', f'Natural Language :: {cfg["language"]}', ] + [ f'Programming Language :: Python :: 3.{i}' for i in range( int(cfg["min_python"].split(".")[1]), maximum_python3_available + 1 ) ], version=cfg["version"], description=cfg["description"], keywords=cfg["keywords"], author=cfg["author"], author_email=cfg["author_email"], url=cfg["url"], packages=setuptools.find_packages(), # TODO: Modifying this should allow to remove the MAINFEST.in include_package_data=True, install_requires=requirements, python_requires=f'>={cfg["min_python"]},<{cfg["max_python"]}', zip_safe=False, )
[ "pkg_resources.parse_version", "configparser.ConfigParser", "setuptools.find_packages" ]
[((201, 231), 'configparser.ConfigParser', 'ConfigParser', ([], {'delimiters': "['=']"}), "(delimiters=['='])\n", (213, 231), False, 'from configparser import ConfigParser\n'), ((128, 165), 'pkg_resources.parse_version', 'parse_version', (['setuptools.__version__'], {}), '(setuptools.__version__)\n', (141, 165), False, 'from pkg_resources import parse_version\n'), ((169, 190), 'pkg_resources.parse_version', 'parse_version', (['"""36.2"""'], {}), "('36.2')\n", (182, 190), False, 'from pkg_resources import parse_version\n'), ((1603, 1629), 'setuptools.find_packages', 'setuptools.find_packages', ([], {}), '()\n', (1627, 1629), False, 'import setuptools\n')]
# -*- coding: utf-8 -*- # Generated by Django 1.9.7 on 2017-06-28 20:54 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ('providers', '0001_initial'), ] operations = [ migrations.CreateModel( name='Category', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=200, verbose_name='Nombre')), ('img', models.ImageField(upload_to='uploads/category/', verbose_name='Imagen')), ], options={ 'ordering': ['name'], 'verbose_name': 'Categoria', 'verbose_name_plural': 'Categorias', }, ), migrations.CreateModel( name='Product', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=200, verbose_name='Nombre del producto ')), ('description', models.TextField(blank=True, null=True, verbose_name='Descripci\xf3n del producto ')), ('img', models.ImageField(upload_to='uploads/products/', verbose_name='Imagen del producto ')), ('category', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='products.Category', verbose_name='Categoria')), ('provider', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='providers.Provider', verbose_name='Marca o Retail')), ], options={ 'ordering': ['name'], 'verbose_name': 'Producto', 'verbose_name_plural': 'Productos', }, ), ]
[ "django.db.models.TextField", "django.db.models.CharField", "django.db.models.ForeignKey", "django.db.models.AutoField", "django.db.models.ImageField" ]
[((440, 533), 'django.db.models.AutoField', 'models.AutoField', ([], {'auto_created': '(True)', 'primary_key': '(True)', 'serialize': '(False)', 'verbose_name': '"""ID"""'}), "(auto_created=True, primary_key=True, serialize=False,\n verbose_name='ID')\n", (456, 533), False, 'from django.db import migrations, models\n'), ((557, 612), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(200)', 'verbose_name': '"""Nombre"""'}), "(max_length=200, verbose_name='Nombre')\n", (573, 612), False, 'from django.db import migrations, models\n'), ((639, 710), 'django.db.models.ImageField', 'models.ImageField', ([], {'upload_to': '"""uploads/category/"""', 'verbose_name': '"""Imagen"""'}), "(upload_to='uploads/category/', verbose_name='Imagen')\n", (656, 710), False, 'from django.db import migrations, models\n'), ((1016, 1109), 'django.db.models.AutoField', 'models.AutoField', ([], {'auto_created': '(True)', 'primary_key': '(True)', 'serialize': '(False)', 'verbose_name': '"""ID"""'}), "(auto_created=True, primary_key=True, serialize=False,\n verbose_name='ID')\n", (1032, 1109), False, 'from django.db import migrations, models\n'), ((1133, 1202), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(200)', 'verbose_name': '"""Nombre del producto """'}), "(max_length=200, verbose_name='Nombre del producto ')\n", (1149, 1202), False, 'from django.db import migrations, models\n'), ((1237, 1323), 'django.db.models.TextField', 'models.TextField', ([], {'blank': '(True)', 'null': '(True)', 'verbose_name': '"""Descripción del producto """'}), "(blank=True, null=True, verbose_name=\n 'Descripción del producto ')\n", (1253, 1323), False, 'from django.db import migrations, models\n'), ((1348, 1438), 'django.db.models.ImageField', 'models.ImageField', ([], {'upload_to': '"""uploads/products/"""', 'verbose_name': '"""Imagen del producto """'}), "(upload_to='uploads/products/', verbose_name=\n 'Imagen del producto ')\n", (1365, 1438), False, 'from django.db import migrations, models\n'), ((1465, 1582), 'django.db.models.ForeignKey', 'models.ForeignKey', ([], {'on_delete': 'django.db.models.deletion.CASCADE', 'to': '"""products.Category"""', 'verbose_name': '"""Categoria"""'}), "(on_delete=django.db.models.deletion.CASCADE, to=\n 'products.Category', verbose_name='Categoria')\n", (1482, 1582), False, 'from django.db import migrations, models\n'), ((1609, 1732), 'django.db.models.ForeignKey', 'models.ForeignKey', ([], {'on_delete': 'django.db.models.deletion.CASCADE', 'to': '"""providers.Provider"""', 'verbose_name': '"""Marca o Retail"""'}), "(on_delete=django.db.models.deletion.CASCADE, to=\n 'providers.Provider', verbose_name='Marca o Retail')\n", (1626, 1732), False, 'from django.db import migrations, models\n')]
import matplotlib.pyplot as plt from matplotlib.text import Text class DragHandler(object): # NOTE: DOES NOT HANDLE TEXT WITH ARBITRARY TRANSFORMS!!!! """ A simple class to handle Drag n Drop. This is a simple example, which works for Text objects only """ def __init__(self, figure=None): """ Create a new drag handler and connect it to the figure's event system. If the figure handler is not given, the current figure is used instead """ if figure is None: figure = plt.gcf() # simple attibute to store the dragged text object self.dragged = None # Connect events and callbacks figure.canvas.mpl_connect("pick_event", self.on_pick_event) figure.canvas.mpl_connect("button_release_event", self.on_release_event) def on_pick_event(self, event): " Store which text object was picked and were the pick event occurs." if isinstance(event.artist, Text): self.dragged = event.artist self.pick_pos = (event.mouseevent.xdata, event.mouseevent.ydata) return True def on_release_event(self, event): " Update text position and redraw" if self.dragged is not None: old_pos = self.dragged.get_position() new_pos = (old_pos[0] + event.xdata - self.pick_pos[0], old_pos[1] + event.ydata - self.pick_pos[1]) self.dragged.set_position(new_pos) self.dragged = None plt.draw() return True
[ "matplotlib.pyplot.draw", "matplotlib.pyplot.gcf" ]
[((541, 550), 'matplotlib.pyplot.gcf', 'plt.gcf', ([], {}), '()\n', (548, 550), True, 'import matplotlib.pyplot as plt\n'), ((1521, 1531), 'matplotlib.pyplot.draw', 'plt.draw', ([], {}), '()\n', (1529, 1531), True, 'import matplotlib.pyplot as plt\n')]
import yaml import argparse from attrdict import AttrDict from matplotlib import pyplot as plt import torch from torch.autograd import Variable from models.generator import Generator def test(params): G = Generator(params.network.generator) if params.restore.G: G.load_state_dict(torch.load(params.restore.G)) gen_input = \ Variable(torch.FloatTensor( 1, params.network.generator.z_size, 1, 1 ).normal_(0, 1)) torch_cat = G(gen_input) np_cat = torch_cat.data.numpy()[0] / 2.0 + 0.5 np_cat = np_cat.transpose((1, 2, 0)) fig = plt.gcf() fig.canvas.set_window_title('Random cat') plt.imshow(np_cat) plt.show() if __name__ == '__main__': parser = argparse.ArgumentParser( description='GAN testing script' ) parser.add_argument('--conf', '-c', required=True, help='a path to the configuration file') args = parser.parse_args() with open(args.conf, 'r') as stream: try: args = yaml.load(stream) except yaml.YAMLError as exc: print(exc) test(AttrDict(args))
[ "yaml.load", "matplotlib.pyplot.show", "argparse.ArgumentParser", "matplotlib.pyplot.imshow", "torch.load", "torch.FloatTensor", "models.generator.Generator", "matplotlib.pyplot.gcf", "attrdict.AttrDict" ]
[((214, 249), 'models.generator.Generator', 'Generator', (['params.network.generator'], {}), '(params.network.generator)\n', (223, 249), False, 'from models.generator import Generator\n'), ((610, 619), 'matplotlib.pyplot.gcf', 'plt.gcf', ([], {}), '()\n', (617, 619), True, 'from matplotlib import pyplot as plt\n'), ((671, 689), 'matplotlib.pyplot.imshow', 'plt.imshow', (['np_cat'], {}), '(np_cat)\n', (681, 689), True, 'from matplotlib import pyplot as plt\n'), ((694, 704), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (702, 704), True, 'from matplotlib import pyplot as plt\n'), ((747, 804), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""GAN testing script"""'}), "(description='GAN testing script')\n", (770, 804), False, 'import argparse\n'), ((1133, 1147), 'attrdict.AttrDict', 'AttrDict', (['args'], {}), '(args)\n', (1141, 1147), False, 'from attrdict import AttrDict\n'), ((302, 330), 'torch.load', 'torch.load', (['params.restore.G'], {}), '(params.restore.G)\n', (312, 330), False, 'import torch\n'), ((1044, 1061), 'yaml.load', 'yaml.load', (['stream'], {}), '(stream)\n', (1053, 1061), False, 'import yaml\n'), ((368, 427), 'torch.FloatTensor', 'torch.FloatTensor', (['(1)', 'params.network.generator.z_size', '(1)', '(1)'], {}), '(1, params.network.generator.z_size, 1, 1)\n', (385, 427), False, 'import torch\n')]
"""mcpython - a minecraft clone written in python licenced under MIT-licence authors: uuk, xkcdjerry original game by forgleman licenced under MIT-licence minecraft by Mojang blocks based on 1.14.4.jar of minecraft, downloaded on 20th of July, 2019""" from world.gen.layer.Layer import Layer, LayerConfig import globals as G import random import opensimplex import world.Chunk @G.worldgenerationhandler class DefaultLandMassLayer(Layer): noise1 = opensimplex.OpenSimplex(seed=random.randint(-10000, 10000)) noise2 = opensimplex.OpenSimplex(seed=random.randint(-10000, 10000)) noise3 = opensimplex.OpenSimplex(seed=random.randint(-10000, 10000)) @staticmethod def normalize_config(config: LayerConfig): if not hasattr(config, "masses"): config.masses = ["land"] # todo: add underwaterbiomes if not hasattr(config, "size"): config.size = 1 @staticmethod def get_name() -> str: return "landmass_default" @staticmethod def add_generate_functions_to_chunk(config: LayerConfig, chunk): chunk.chunkgenerationtasks.append([DefaultLandMassLayer.generate_landmass, [chunk, config], {}]) @staticmethod def generate_landmass(chunk, config): cx, cz = chunk.position landmap = chunk.get_value("landmassmap") factor = 10**config.size for x in range(cx*16, cx*16+16): for z in range(cz*16, cz*16+16): v = sum([DefaultLandMassLayer.noise1.noise2d(x/factor, z/factor) * 0.5 + 0.5, DefaultLandMassLayer.noise2.noise2d(x/factor, z/factor) * 0.5 + 0.5, DefaultLandMassLayer.noise3.noise2d(x/factor, z/factor) * 0.5 + 0.5]) / 3 v *= len(config.masses) v = round(v) if v == len(config.masses): v = 0 landmap[(x, z)] = config.masses[v] """ if v < 0: chunk.add_add_block_gen_task((x, 5, z), "minecraft:stone") else: chunk.add_add_block_gen_task((x, 5, z), "minecraft:dirt") """ authcode = world.Chunk.Chunk.add_default_attribute("landmassmap", DefaultLandMassLayer, {})
[ "random.randint" ]
[((485, 514), 'random.randint', 'random.randint', (['(-10000)', '(10000)'], {}), '(-10000, 10000)\n', (499, 514), False, 'import random\n'), ((558, 587), 'random.randint', 'random.randint', (['(-10000)', '(10000)'], {}), '(-10000, 10000)\n', (572, 587), False, 'import random\n'), ((631, 660), 'random.randint', 'random.randint', (['(-10000)', '(10000)'], {}), '(-10000, 10000)\n', (645, 660), False, 'import random\n')]
from functools import partial from keras.optimizers import SGD from fire import Fire from src.dataset import KaggleDataset, PseudoDataset, ExtraDataset, DataCollection from src.model import get_model, get_callbacks from src.aug import augment from src.utils import logger def fit_once(model, model_name, loss, train, val, stage, n_fold, start_epoch, initial=False): logger.info(f'Stage {stage} started: loss {loss}, fold {n_fold}') steps_per_epoch = 500 validation_steps = 100 model.compile(optimizer=SGD(lr=0.01 if initial else 0.001, clipvalue=4, momentum=.9, nesterov=True), loss=loss, metrics=['accuracy']) history = model.fit_generator(train, epochs=500, steps_per_epoch=steps_per_epoch, validation_data=val, workers=8, max_queue_size=32, use_multiprocessing=False, validation_steps=validation_steps, callbacks=get_callbacks(model_name, loss, stage, n_fold), initial_epoch=start_epoch, ) return model, max(history.epoch) def fit_model(model_name, batch_size=16, n_fold=1, shape=384): n_classes = 10 aug = partial(augment, expected_shape=shape) n_fold = int(n_fold) batch_size = int(batch_size) model, preprocess = get_model(model_name, shape, n_classes=n_classes) def make_config(**kwargs): d = {'n_fold': int(n_fold), 'transform': preprocess, 'batch_size': batch_size, 'train': True, 'size': shape, 'aug': aug, 'center_crop_size': 0} d.update(kwargs) return d kaggle_train = KaggleDataset(**make_config()) kaggle_val = KaggleDataset(**make_config(train=False)) pseudo_train = PseudoDataset(**make_config()) pseudo_val = PseudoDataset(**make_config(train=False)) extra_train = ExtraDataset(**make_config()) extra_val = ExtraDataset(**make_config(train=False)) frozen_epochs = 1 steps_per_epoch = 500 validation_steps = 50 loss = 'categorical_crossentropy' model.compile(optimizer='adam', loss=loss, metrics=['accuracy']) model.fit_generator(DataCollection(kaggle_train, extra_train, pseudo_train), epochs=frozen_epochs, steps_per_epoch=steps_per_epoch, validation_data=DataCollection(kaggle_val, extra_val, pseudo_val), workers=8, validation_steps=validation_steps, use_multiprocessing=False, max_queue_size=50, ) for layer in model.layers: layer.trainable = True epoch = frozen_epochs for stage, (train, val) in enumerate(((DataCollection(kaggle_train, extra_train, pseudo_train), DataCollection(kaggle_val, extra_val, pseudo_val)), (DataCollection(kaggle_train, pseudo_train), DataCollection(kaggle_val, pseudo_val)), (DataCollection(pseudo_train), DataCollection(pseudo_val)), )): model, epoch = fit_once(model=model, model_name=model_name, loss='categorical_crossentropy', train=train, val=val, start_epoch=epoch, stage=stage, n_fold=n_fold, initial=True if stage > 0 else False ) if __name__ == '__main__': Fire(fit_model)
[ "src.utils.logger.info", "functools.partial", "fire.Fire", "keras.optimizers.SGD", "src.model.get_callbacks", "src.dataset.DataCollection", "src.model.get_model" ]
[((374, 439), 'src.utils.logger.info', 'logger.info', (['f"""Stage {stage} started: loss {loss}, fold {n_fold}"""'], {}), "(f'Stage {stage} started: loss {loss}, fold {n_fold}')\n", (385, 439), False, 'from src.utils import logger\n'), ((1425, 1463), 'functools.partial', 'partial', (['augment'], {'expected_shape': 'shape'}), '(augment, expected_shape=shape)\n', (1432, 1463), False, 'from functools import partial\n'), ((1547, 1596), 'src.model.get_model', 'get_model', (['model_name', 'shape'], {'n_classes': 'n_classes'}), '(model_name, shape, n_classes=n_classes)\n', (1556, 1596), False, 'from src.model import get_model, get_callbacks\n'), ((4032, 4047), 'fire.Fire', 'Fire', (['fit_model'], {}), '(fit_model)\n', (4036, 4047), False, 'from fire import Fire\n'), ((2433, 2488), 'src.dataset.DataCollection', 'DataCollection', (['kaggle_train', 'extra_train', 'pseudo_train'], {}), '(kaggle_train, extra_train, pseudo_train)\n', (2447, 2488), False, 'from src.dataset import KaggleDataset, PseudoDataset, ExtraDataset, DataCollection\n'), ((522, 598), 'keras.optimizers.SGD', 'SGD', ([], {'lr': '(0.01 if initial else 0.001)', 'clipvalue': '(4)', 'momentum': '(0.9)', 'nesterov': '(True)'}), '(lr=0.01 if initial else 0.001, clipvalue=4, momentum=0.9, nesterov=True)\n', (525, 598), False, 'from keras.optimizers import SGD\n'), ((1149, 1195), 'src.model.get_callbacks', 'get_callbacks', (['model_name', 'loss', 'stage', 'n_fold'], {}), '(model_name, loss, stage, n_fold)\n', (1162, 1195), False, 'from src.model import get_model, get_callbacks\n'), ((2633, 2682), 'src.dataset.DataCollection', 'DataCollection', (['kaggle_val', 'extra_val', 'pseudo_val'], {}), '(kaggle_val, extra_val, pseudo_val)\n', (2647, 2682), False, 'from src.dataset import KaggleDataset, PseudoDataset, ExtraDataset, DataCollection\n'), ((3031, 3086), 'src.dataset.DataCollection', 'DataCollection', (['kaggle_train', 'extra_train', 'pseudo_train'], {}), '(kaggle_train, extra_train, pseudo_train)\n', (3045, 3086), False, 'from src.dataset import KaggleDataset, PseudoDataset, ExtraDataset, DataCollection\n'), ((3131, 3180), 'src.dataset.DataCollection', 'DataCollection', (['kaggle_val', 'extra_val', 'pseudo_val'], {}), '(kaggle_val, extra_val, pseudo_val)\n', (3145, 3180), False, 'from src.dataset import KaggleDataset, PseudoDataset, ExtraDataset, DataCollection\n'), ((3226, 3268), 'src.dataset.DataCollection', 'DataCollection', (['kaggle_train', 'pseudo_train'], {}), '(kaggle_train, pseudo_train)\n', (3240, 3268), False, 'from src.dataset import KaggleDataset, PseudoDataset, ExtraDataset, DataCollection\n'), ((3313, 3351), 'src.dataset.DataCollection', 'DataCollection', (['kaggle_val', 'pseudo_val'], {}), '(kaggle_val, pseudo_val)\n', (3327, 3351), False, 'from src.dataset import KaggleDataset, PseudoDataset, ExtraDataset, DataCollection\n'), ((3397, 3425), 'src.dataset.DataCollection', 'DataCollection', (['pseudo_train'], {}), '(pseudo_train)\n', (3411, 3425), False, 'from src.dataset import KaggleDataset, PseudoDataset, ExtraDataset, DataCollection\n'), ((3427, 3453), 'src.dataset.DataCollection', 'DataCollection', (['pseudo_val'], {}), '(pseudo_val)\n', (3441, 3453), False, 'from src.dataset import KaggleDataset, PseudoDataset, ExtraDataset, DataCollection\n')]
############################################################################## # # Copyright (c) 2004, 2005 Zope Corporation and Contributors. # All Rights Reserved. # # This software is subject to the provisions of the Zope Public License, # Version 2.1 (ZPL). A copy of the ZPL should accompany this distribution. # THIS SOFTWARE IS PROVIDED "AS IS" AND ANY AND ALL EXPRESS OR IMPLIED # WARRANTIES ARE DISCLAIMED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF TITLE, MERCHANTABILITY, AGAINST INFRINGEMENT, AND FITNESS # FOR A PARTICULAR PURPOSE. # ############################################################################## """Size adapters for testing $Id: test_size.py 61072 2005-10-31 17:43:51Z philikon $ """ import os, sys if __name__ == '__main__': execfile(os.path.join(sys.path[0], 'framework.py')) from zope.interface import implements from zope.app.size.interfaces import ISized def test_emailmessage(): """ Test searching Set up: >>> from zope.app.testing.placelesssetup import setUp, tearDown >>> setUp() >>> import Products.Five >>> import Products.XWFMailingListManager >>> from Products.GSSearch import queries >>> from Products.Five import zcml >>> from Products.ZSQLAlchemy.ZSQLAlchemy import manage_addZSQLAlchemy >>> zcml.load_config('meta.zcml', Products.Five) >>> zcml.load_config('permissions.zcml', Products.Five) >>> zcml.load_config('configure.zcml', Products.XWFMailingListManager) >>> alchemy_adaptor = manage_addZSQLAlchemy(app, 'zalchemy') >>> alchemy_adaptor.manage_changeProperties( hostname='localhost', ... port=5433, ... username='onlinegroups', ... password='', ... dbtype='postgres', ... database='onlinegroups.net') >>> mq = queries.MessageQuery( {}, alchemy_adaptor ) >>> from zope.component import createObject Clean up: >>> tearDown() """ def test_suite(): from Testing.ZopeTestCase import ZopeDocTestSuite return ZopeDocTestSuite() if __name__ == '__main__': framework()
[ "Testing.ZopeTestCase.ZopeDocTestSuite", "os.path.join" ]
[((2279, 2297), 'Testing.ZopeTestCase.ZopeDocTestSuite', 'ZopeDocTestSuite', ([], {}), '()\n', (2295, 2297), False, 'from Testing.ZopeTestCase import ZopeDocTestSuite\n'), ((788, 829), 'os.path.join', 'os.path.join', (['sys.path[0]', '"""framework.py"""'], {}), "(sys.path[0], 'framework.py')\n", (800, 829), False, 'import os, sys\n')]
from paver.easy import * import os DLLS = ['h5py_hdf5.dll', 'h5py_hdf5_hl.dll', 'szip.dll', 'zlib.dll'] @task def release_unix(): sh('python setup.py clean') sh('python setup.py configure --reset --hdf5-version=1.8.4') sh('python setup.py build -f') sh('python setup.py test') sh('python setup.py sdist') print("Unix release done. Distribution tar file is in dist/") @task def release_windows(): for pyver in (27, 34): exe = r'C:\Python%d\Python.exe' % pyver hdf5 = r'c:\hdf5\Python%d' % pyver sh('%s setup.py clean' % exe) sh('%s setup.py configure --reset --hdf5-version=1.8.13 --hdf5=%s' % (exe, hdf5)) for dll in DLLS: sh('copy c:\\hdf5\\Python%d\\bin\\%s h5py /Y' % (pyver, dll)) sh('%s setup.py build -f' % exe) sh('%s setup.py test' % exe) sh('%s setup.py bdist_wininst' % exe) print ("Windows exe release done. Distribution files are in dist/") for dll in DLLS: os.unlink('h5py\\%s' % dll) @task @consume_args def git_summary(options): sh('git log --no-merges --pretty=oneline --abbrev-commit %s..HEAD'%options.args[0]) sh('git shortlog -s -n %s..HEAD'%options.args[0])
[ "os.unlink" ]
[((995, 1022), 'os.unlink', 'os.unlink', (["('h5py\\\\%s' % dll)"], {}), "('h5py\\\\%s' % dll)\n", (1004, 1022), False, 'import os\n')]
"""Miscellaneous utility functions.""" from functools import reduce from PIL import Image import numpy as np from matplotlib.colors import rgb_to_hsv, hsv_to_rgb import spacy import re import cv2 import time from keras_bert.tokenizer import Tokenizer from keras_bert.loader import load_trained_model_from_checkpoint, load_vocabulary from keras_bert import extract_embeddings import os def compose(*funcs): """Compose arbitrarily many functions, evaluated left to right. Reference: https://mathieularose.com/function-composition-in-python/ """ # return lambda x: reduce(lambda v, f: f(v), funcs, x) if funcs: return reduce(lambda f, g: lambda *a, **kw: g(f(*a, **kw)), funcs) else: raise ValueError('Composition of empty sequence not supported.') def letterbox_image(image, size): '''resize image with unchanged aspect ratio using padding''' iw, ih = image.size w, h = size scale = min(w/iw, h/ih) nw = int(iw*scale) nh = int(ih*scale) image = image.resize((nw,nh), Image.BICUBIC) new_image = Image.new('RGB', size, (128,128,128)) new_image.paste(image, ((w-nw)//2, (h-nh)//2)) return new_image def rand(a=0, b=1): return np.random.rand()*(b-a) + a def get_bert_input(text,vocabs,max_len=512): tokenizer = Tokenizer(vocabs, cased=False) token=[] segment=[] token, segment = tokenizer.encode(text, max_len=max_len) token.append(token) segment.append(segment) token.extend([0] * (max_len - len(token))) segment.extend([0] * (max_len - len(token))) return [token,segment] def seq_to_list(s): ''' note: 2018.10.3 use for process sentences ''' t_str = s.lower() for i in [r'\?', r'\!', r'\'', r'\"', r'\$', r'\:', r'\@', r'\(', r'\)', r'\,', r'\.', r'\;', r'\n']: t_str = re.sub(i, '', t_str) for i in [r'\-', r'\/']: t_str = re.sub(i, ' ', t_str) q_list = re.sub(r'\?', '', t_str.lower()).split(' ') q_list = list(filter(lambda x: len(x) > 0, q_list)) return q_list def qlist_to_vec(max_length, q_list,embed): ''' note: 2018.10.3 use for process sentences ''' glove_matrix = [] glove_dict = {} q_len = len(q_list) if q_len > max_length: q_len = max_length for i in range(max_length): if i < q_len: w=q_list[i] if w not in glove_dict: glove_dict[w]=embed(u'%s'%w).vector glove_matrix.append(glove_dict[w]) else: glove_matrix.append(np.zeros(300,dtype=float)) return np.array(glove_matrix) def get_random_data(annotation_line, input_shape,embed,config, train_mode=True, max_boxes=1): '''random preprocessing for real-time data augmentation''' SEG_DIR=config['seg_gt_path'] line = annotation_line.split() h, w = input_shape stop=len(line) for i in range(1,len(line)): if (line[i]=='~'): stop=i break # print(line[1:stop]) box_ = np.array([np.array(list(map(int,box.split(',')))) for box in line[1:stop]]) box=np.zeros([1,5]) seg_id=box_[0][-1] box[0]=box_[0][:-1] seg_map=np.load(os.path.join(SEG_DIR,str(seg_id)+'.npy')) seg_map_ori=np.array(seg_map).astype(np.float32) seg_map=Image.fromarray(seg_map_ori) # print(np.shape(box)) # print(box) ##################################### #sentence process maxlength set to 20 and random choose one for train sentences=[] sent_stop=stop+1 for i in range(stop+1,len(line)): if line[i]=='~': sentences.append(line[sent_stop:i]) sent_stop=i+1 sentences.append(line[sent_stop:len(line)]) choose_index=np.random.choice(len(sentences)) sentence=sentences[choose_index] # print(qlist) if config['use_bert']: vocabs = load_vocabulary(config['bert_path']+'/vocab.txt') word_vec=get_bert_input(sentence,vocabs,512) else: word_vec=qlist_to_vec(config['word_len'], sentence,embed) # print(word_vec) # print(np.shape(word_vec)) ####################################### image = Image.open(os.path.join(config['image_path'],line[0])) iw, ih = image.size scale = min(w / iw, h / ih) nw = int(iw * scale) nh = int(ih * scale) dx = (w - nw) // 2 dy = (h - nh) // 2 ori_image = image image = image.resize((nw, nh), Image.BICUBIC) new_image = Image.new('RGB', (w, h), (128, 128, 128)) new_image.paste(image, (dx, dy)) image_data = np.array(new_image) / 255. seg_map = seg_map.resize((nw, nh)) new_map = Image.new('L', (w, h), (0)) new_map.paste(seg_map, (dx, dy)) seg_map_data = np.array(new_map) seg_map_data = cv2.resize(seg_map_data, ( seg_map_data.shape[0] // config['seg_out_stride'], seg_map_data.shape[0] // config['seg_out_stride']),interpolation=cv2.INTER_NEAREST) seg_map_data = np.reshape(seg_map_data, [np.shape(seg_map_data)[0], np.shape(seg_map_data)[1], 1]) # print(new_image.size) # correct boxes box_data = np.zeros((max_boxes, 5)) if len(box) > 0: if len(box) > max_boxes: box = box[:max_boxes] box[:, [0, 2]] = box[:, [0, 2]] * scale + dx box[:, [1, 3]] = box[:, [1, 3]] * scale + dy box_data[:len(box)] = box box_data = box_data[:, 0:4] #delete classfy if not train_mode: word_vec=[qlist_to_vec(config['word_len'], sent,embed) for sent in sentences] return image_data, box_data,word_vec,ori_image,sentences,np.expand_dims(seg_map_ori ,-1) return image_data, box_data,word_vec,seg_map_data def lr_step_decay(lr_start=0.001, steps=[30, 40]): def get_lr(epoch): decay_rate = len(steps) for i, e in enumerate(steps): if epoch < e: decay_rate = i break lr = lr_start / (10 ** (decay_rate)) return lr return get_lr #powre decay def lr_power_decay(lr_start=2.5e-4,lr_power=0.9, warm_up_lr=0.,step_all=45*1414,warm_up_step=1000): # step_per_epoch=3286 def warm_up(base_lr, lr, cur_step, end_step): return base_lr + (lr - base_lr) * cur_step / end_step def get_learningrate(epoch): if epoch<warm_up_step: lr = warm_up(warm_up_lr, lr_start, epoch, warm_up_step) else: lr = lr_start * ((1 - float(epoch-warm_up_step) / (step_all-warm_up_step)) ** lr_power) return lr # print("learning rate is", lr) return get_learningrate
[ "PIL.Image.new", "os.path.join", "numpy.random.rand", "numpy.zeros", "numpy.expand_dims", "numpy.shape", "numpy.array", "keras_bert.loader.load_vocabulary", "re.sub", "PIL.Image.fromarray", "keras_bert.tokenizer.Tokenizer", "cv2.resize" ]
[((1069, 1108), 'PIL.Image.new', 'Image.new', (['"""RGB"""', 'size', '(128, 128, 128)'], {}), "('RGB', size, (128, 128, 128))\n", (1078, 1108), False, 'from PIL import Image\n'), ((1302, 1332), 'keras_bert.tokenizer.Tokenizer', 'Tokenizer', (['vocabs'], {'cased': '(False)'}), '(vocabs, cased=False)\n', (1311, 1332), False, 'from keras_bert.tokenizer import Tokenizer\n'), ((2576, 2598), 'numpy.array', 'np.array', (['glove_matrix'], {}), '(glove_matrix)\n', (2584, 2598), True, 'import numpy as np\n'), ((3085, 3101), 'numpy.zeros', 'np.zeros', (['[1, 5]'], {}), '([1, 5])\n', (3093, 3101), True, 'import numpy as np\n'), ((3275, 3303), 'PIL.Image.fromarray', 'Image.fromarray', (['seg_map_ori'], {}), '(seg_map_ori)\n', (3290, 3303), False, 'from PIL import Image\n'), ((4426, 4467), 'PIL.Image.new', 'Image.new', (['"""RGB"""', '(w, h)', '(128, 128, 128)'], {}), "('RGB', (w, h), (128, 128, 128))\n", (4435, 4467), False, 'from PIL import Image\n'), ((4603, 4628), 'PIL.Image.new', 'Image.new', (['"""L"""', '(w, h)', '(0)'], {}), "('L', (w, h), 0)\n", (4612, 4628), False, 'from PIL import Image\n'), ((4687, 4704), 'numpy.array', 'np.array', (['new_map'], {}), '(new_map)\n', (4695, 4704), True, 'import numpy as np\n'), ((4724, 4894), 'cv2.resize', 'cv2.resize', (['seg_map_data', "(seg_map_data.shape[0] // config['seg_out_stride'], seg_map_data.shape[0] //\n config['seg_out_stride'])"], {'interpolation': 'cv2.INTER_NEAREST'}), "(seg_map_data, (seg_map_data.shape[0] // config['seg_out_stride'],\n seg_map_data.shape[0] // config['seg_out_stride']), interpolation=cv2.\n INTER_NEAREST)\n", (4734, 4894), False, 'import cv2\n'), ((5061, 5085), 'numpy.zeros', 'np.zeros', (['(max_boxes, 5)'], {}), '((max_boxes, 5))\n', (5069, 5085), True, 'import numpy as np\n'), ((1829, 1849), 're.sub', 're.sub', (['i', '""""""', 't_str'], {}), "(i, '', t_str)\n", (1835, 1849), False, 'import re\n'), ((1895, 1916), 're.sub', 're.sub', (['i', '""" """', 't_str'], {}), "(i, ' ', t_str)\n", (1901, 1916), False, 'import re\n'), ((3839, 3890), 'keras_bert.loader.load_vocabulary', 'load_vocabulary', (["(config['bert_path'] + '/vocab.txt')"], {}), "(config['bert_path'] + '/vocab.txt')\n", (3854, 3890), False, 'from keras_bert.loader import load_trained_model_from_checkpoint, load_vocabulary\n'), ((4139, 4182), 'os.path.join', 'os.path.join', (["config['image_path']", 'line[0]'], {}), "(config['image_path'], line[0])\n", (4151, 4182), False, 'import os\n'), ((4522, 4541), 'numpy.array', 'np.array', (['new_image'], {}), '(new_image)\n', (4530, 4541), True, 'import numpy as np\n'), ((1211, 1227), 'numpy.random.rand', 'np.random.rand', ([], {}), '()\n', (1225, 1227), True, 'import numpy as np\n'), ((3226, 3243), 'numpy.array', 'np.array', (['seg_map'], {}), '(seg_map)\n', (3234, 3243), True, 'import numpy as np\n'), ((5526, 5557), 'numpy.expand_dims', 'np.expand_dims', (['seg_map_ori', '(-1)'], {}), '(seg_map_ori, -1)\n', (5540, 5557), True, 'import numpy as np\n'), ((2538, 2564), 'numpy.zeros', 'np.zeros', (['(300)'], {'dtype': 'float'}), '(300, dtype=float)\n', (2546, 2564), True, 'import numpy as np\n'), ((4935, 4957), 'numpy.shape', 'np.shape', (['seg_map_data'], {}), '(seg_map_data)\n', (4943, 4957), True, 'import numpy as np\n'), ((4962, 4984), 'numpy.shape', 'np.shape', (['seg_map_data'], {}), '(seg_map_data)\n', (4970, 4984), True, 'import numpy as np\n')]
#!env/bin/python3 import datetime import sched import pandas as pd import plotly.graph_objs as go import plotly.plotly as py import requests CSV_FILE = 'OholPlayersByServer.csv' def process_current_player_counts(): data = fetch() write(data, CSV_FILE) draw(CSV_FILE) def fetch(): timestamp = datetime.datetime.utcnow().replace(microsecond=0).isoformat() response = requests.get('http://onehouronelife.com/reflector/server.php?action=report') response.raise_for_status() raw = response.content player_counts = [parse_player_count(line) for line in parse_server_lines(raw)] return [timestamp] + player_counts def parse_server_lines(raw): return [line for line in str(raw).split('<br><br>') if line.startswith('|--> server')] def parse_player_count(server_line): return '' if server_line.endswith('OFFLINE') else server_line.split()[-3] def write(data, filename): data_line = ';'.join(data) with open(filename, "a") as file: file.write(data_line + '\n') print(data_line) def periodic(scheduler, interval, action): scheduler.enter(interval, 1, periodic, (scheduler, interval, action)) action() def draw(filename): fig = dict( data=arrange_plot_data(filename), layout=dict( title='OHOL Players by Server', xaxis=dict( rangeslider=dict(visible=True), type='date' ) )) upload_plot(fig) def upload_plot(figure): try: py.plot(figure, filename=figure['layout']['title'], auto_open=False) except Exception as e: print('ERROR creating plot:\n{0}'.format(e)) def arrange_plot_data(filename): servers = ['server%s' % (n + 1) for n in range(15)] df = pd.read_csv(filename, sep=';', names=['timestamp'] + servers) df['sum'] = df.apply(calculate_sum, axis=1) data = [plot_column(name, df) for name in servers + ['sum']] return data def calculate_sum(row): return sum(row[1:]) def plot_column(name, df): return go.Scatter(x=df.timestamp, y=df[name], name=name) if __name__ == '__main__': s = sched.scheduler() periodic(s, 5 * 60, process_current_player_counts) s.run()
[ "pandas.read_csv", "plotly.graph_objs.Scatter", "sched.scheduler", "datetime.datetime.utcnow", "requests.get", "plotly.plotly.plot" ]
[((391, 467), 'requests.get', 'requests.get', (['"""http://onehouronelife.com/reflector/server.php?action=report"""'], {}), "('http://onehouronelife.com/reflector/server.php?action=report')\n", (403, 467), False, 'import requests\n'), ((1766, 1827), 'pandas.read_csv', 'pd.read_csv', (['filename'], {'sep': '""";"""', 'names': "(['timestamp'] + servers)"}), "(filename, sep=';', names=['timestamp'] + servers)\n", (1777, 1827), True, 'import pandas as pd\n'), ((2050, 2099), 'plotly.graph_objs.Scatter', 'go.Scatter', ([], {'x': 'df.timestamp', 'y': 'df[name]', 'name': 'name'}), '(x=df.timestamp, y=df[name], name=name)\n', (2060, 2099), True, 'import plotly.graph_objs as go\n'), ((2137, 2154), 'sched.scheduler', 'sched.scheduler', ([], {}), '()\n', (2152, 2154), False, 'import sched\n'), ((1516, 1584), 'plotly.plotly.plot', 'py.plot', (['figure'], {'filename': "figure['layout']['title']", 'auto_open': '(False)'}), "(figure, filename=figure['layout']['title'], auto_open=False)\n", (1523, 1584), True, 'import plotly.plotly as py\n'), ((313, 339), 'datetime.datetime.utcnow', 'datetime.datetime.utcnow', ([], {}), '()\n', (337, 339), False, 'import datetime\n')]
from os import getenv from os.path import join, dirname from dotenv import load_dotenv # Create .env file path. dotenv_path = join(dirname(__file__), ".env") # Load file from the path. load_dotenv(dotenv_path) BOT_TOKEN = getenv('BOT_TOKEN', "") CHAT_NAME = getenv('CHAT_NAME', "") INSIDE_CHANNEL = getenv('INSIDE_CHANNEL', "")
[ "dotenv.load_dotenv", "os.path.dirname", "os.getenv" ]
[((187, 211), 'dotenv.load_dotenv', 'load_dotenv', (['dotenv_path'], {}), '(dotenv_path)\n', (198, 211), False, 'from dotenv import load_dotenv\n'), ((225, 248), 'os.getenv', 'getenv', (['"""BOT_TOKEN"""', '""""""'], {}), "('BOT_TOKEN', '')\n", (231, 248), False, 'from os import getenv\n'), ((261, 284), 'os.getenv', 'getenv', (['"""CHAT_NAME"""', '""""""'], {}), "('CHAT_NAME', '')\n", (267, 284), False, 'from os import getenv\n'), ((302, 330), 'os.getenv', 'getenv', (['"""INSIDE_CHANNEL"""', '""""""'], {}), "('INSIDE_CHANNEL', '')\n", (308, 330), False, 'from os import getenv\n'), ((132, 149), 'os.path.dirname', 'dirname', (['__file__'], {}), '(__file__)\n', (139, 149), False, 'from os.path import join, dirname\n')]
import pandas as pd from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression from sklearn.preprocessing import LabelEncoder from sklearn.metrics import mean_squared_error import matplotlib.pyplot as plt #Import the data data = pd.read_csv("TSLA.csv") print('Raw data from Yahoo Finance : ') print(data.head()) #Remove date and Adj Close columns data = data.drop('Date',axis=1) data = data.drop('Adj Close',axis = 1) print('\n\nData after removing Date and Adj Close : ') print(data.head()) #Split into train and test data data_X = data.loc[:,data.columns != 'Close' ] data_Y = data['Close'] train_X, test_X, train_y,test_y = train_test_split(data_X,data_Y,test_size=0.25) print('\n\nTraining Set') print(train_X.head()) print(train_y.head()) #Creating the Regressor regressor = LinearRegression() regressor.fit(train_X,train_y) #Make Predictions and Evaluate them predict_y = regressor.predict(test_X) print('Prediction Score : ' , regressor.score(test_X,test_y)) error = mean_squared_error(test_y,predict_y) print('Mean Squared Error : ',error) #Plot the predicted and the expected values fig = plt.figure() ax = plt.axes() ax.grid() ax.set(xlabel='Close ($)',ylabel='Open ($)', title='Tesla Stock Prediction using Linear Regression') ax.plot(test_X['Open'],test_y) ax.plot(test_X['Open'],predict_y) fig.savefig('LRPlot.png') plt.show()
[ "matplotlib.pyplot.show", "pandas.read_csv", "sklearn.model_selection.train_test_split", "matplotlib.pyplot.axes", "sklearn.linear_model.LinearRegression", "matplotlib.pyplot.figure", "sklearn.metrics.mean_squared_error" ]
[((275, 298), 'pandas.read_csv', 'pd.read_csv', (['"""TSLA.csv"""'], {}), "('TSLA.csv')\n", (286, 298), True, 'import pandas as pd\n'), ((677, 725), 'sklearn.model_selection.train_test_split', 'train_test_split', (['data_X', 'data_Y'], {'test_size': '(0.25)'}), '(data_X, data_Y, test_size=0.25)\n', (693, 725), False, 'from sklearn.model_selection import train_test_split\n'), ((831, 849), 'sklearn.linear_model.LinearRegression', 'LinearRegression', ([], {}), '()\n', (847, 849), False, 'from sklearn.linear_model import LinearRegression\n'), ((1027, 1064), 'sklearn.metrics.mean_squared_error', 'mean_squared_error', (['test_y', 'predict_y'], {}), '(test_y, predict_y)\n', (1045, 1064), False, 'from sklearn.metrics import mean_squared_error\n'), ((1153, 1165), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (1163, 1165), True, 'import matplotlib.pyplot as plt\n'), ((1171, 1181), 'matplotlib.pyplot.axes', 'plt.axes', ([], {}), '()\n', (1179, 1181), True, 'import matplotlib.pyplot as plt\n'), ((1385, 1395), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1393, 1395), True, 'import matplotlib.pyplot as plt\n')]
"""Utilities to scan all Python files in a directory and aggregate the names of all the imported packages """ import argparse import ast import os from collections import Counter from typing import Dict, Iterable, List, Optional, Tuple from iscan.std_lib import separate_third_party_from_std_lib class ImportScanner(ast.NodeVisitor): """Scanner to look for imported packages.""" def __init__(self) -> None: self.imports = [] # type: ignore def visit_Import(self, node: ast.Import) -> None: """Extract imports of the form `import foo`. >>> import_statement = 'import os.path.join as jn, datetime.datetime as dt' >>> ast.dump(ast.parse(import_statement)) "Module(body=[ Import(names=[alias(name='os.path.join', asname='jn'), alias(name='datetime.datetime', asname='dt')]) ])" """ for alias in node.names: self.imports.append(alias.name) self.generic_visit(node) def visit_ImportFrom(self, node: ast.ImportFrom) -> None: """Extract imports of the form `from foo import bar`. Relative imports such as `from ..utils import foo` will be ignored. >>> import_statement = 'from os.path import join as jn, split' >>> ast.dump(ast.parse(import_statement)) "Module(body=[ ImportFrom(module='os.path', names=[alias(name='join', asname='jn'), alias(name='split', asname=None)], level=0) ])" """ # Ignore relative imports, for which node.level > 0 # E.g., `from ..utils import foo` has a node.level of 2 if node.level == 0: self.imports.append(node.module) self.generic_visit(node) def get_imports(self) -> List[str]: return sorted(self.imports) def convert_source_to_tree(fpath: str) -> ast.Module: """Convert source code into abstract syntax tree. Args: fpath: Path to the Python file of interest Returns: AST representation of the source code """ with open(fpath, 'r') as f: tree = ast.parse(f.read()) return tree def scan_directory(dir_to_scan: str, dir_to_exclude: Optional[str] = None) -> List[str]: """Extract packages imported across all Python files in a directory. Args: dir_to_scan: Path to the directory of interest dir_to_exclude: Path to the directory to be excluded during scanning Returns: Imported packages; might contain duplicates """ all_imports = [] for root_dir, _, fnames in os.walk(top=dir_to_scan): # Skip excluded directory if dir_to_exclude is not None: if os.path.abspath(dir_to_exclude) in os.path.abspath(root_dir): continue for fname in fnames: # Skip non-Python files if not fname.endswith('.py'): continue # Convert source code into tree fpath = os.path.join(root_dir, fname) tree = convert_source_to_tree(fpath) # Extract imports for current file scanner = ImportScanner() scanner.visit(tree) all_imports.extend(scanner.get_imports()) return all_imports def get_base_name(full_name: str) -> str: """Extract the base name of a package. Args: full_name: Full name of the package of interest, e.g., pandas.testing Returns: Base name of the provided package, e.g., pandas """ return full_name.split('.')[0] def sort_counter(counter: Counter, alphabetical: bool) -> Dict[str, int]: """Sort counter according to custom logic. Args: counter: Imported packages and their corresponding count alphabetical: Whether to sort counter alphabetically Returns: Sorted counter """ def custom_order(tup): # Sort first by count (descending), and then by name return -tup[1], tup[0] sort_key = None if alphabetical else custom_order return dict(sorted(counter.items(), key=sort_key)) def show_result(third_party: Dict[str, int], std_lib: Dict[str, int], ignore_std_lib: bool) -> None: """Print the result of running iscan. Args: third_party: Imported third-party packages and count std_lib: Imported standard library modules and count ignore_std_lib: Whether to omit standard library modules in the output """ result = ''' -------------------------- Third-party packages -------------------------- NAME COUNT ''' for name, count in third_party.items(): result += f'{name:<20} {count:>5}\n' if not ignore_std_lib: result += ''' -------------------------- Standard library modules -------------------------- NAME COUNT ''' for name, count in std_lib.items(): result += f'{name:<20} {count:>5}\n' print(result) def run(dir_to_scan: str, dir_to_exclude: Optional[str] = None) -> Tuple[Counter, Counter]: """Run iscan for a given set of parameters. Args: dir_to_scan: Path to the directory of interest dir_to_exclude: Path to the directory to be excluded during scanning Returns: Imported third-party packages and count Imported standard library modules and count """ full_packages = scan_directory(dir_to_scan, dir_to_exclude) base_packages = map(get_base_name, full_packages) third_party, std_lib = separate_third_party_from_std_lib(base_packages) return Counter(third_party), Counter(std_lib) def cli() -> argparse.Namespace: """Command line interface.""" parser = argparse.ArgumentParser( allow_abbrev=False, description='Aggregate third-party packages and standard library modules imported across all Python files in a given directory.' # noqa: E501 ) parser.add_argument( 'DIR_TO_SCAN', help='target directory to scan' ) parser.add_argument( '-x', default=None, dest='DIR_TO_EXCLUDE', help='directory to exclude during scanning' ) parser.add_argument( '--ignore-std-lib', dest='IGNORE_STD_LIB', action='store_const', const=True, default=False, help='whether to leave standard library modules out of the report' ) parser.add_argument( '--alphabetical', dest='ALPHABETICAL', action='store_const', const=True, default=False, help='whether to sort the report alphabetically' ) return parser.parse_args() def main() -> None: args = cli() third_party, std_lib = run(args.DIR_TO_SCAN, args.DIR_TO_EXCLUDE) third_party = sort_counter(third_party, args.ALPHABETICAL) # type: ignore std_lib = sort_counter(std_lib, args.ALPHABETICAL) # type: ignore show_result(third_party, std_lib, args.IGNORE_STD_LIB)
[ "os.path.abspath", "argparse.ArgumentParser", "os.walk", "iscan.std_lib.separate_third_party_from_std_lib", "collections.Counter", "os.path.join" ]
[((2635, 2659), 'os.walk', 'os.walk', ([], {'top': 'dir_to_scan'}), '(top=dir_to_scan)\n', (2642, 2659), False, 'import os\n'), ((5537, 5585), 'iscan.std_lib.separate_third_party_from_std_lib', 'separate_third_party_from_std_lib', (['base_packages'], {}), '(base_packages)\n', (5570, 5585), False, 'from iscan.std_lib import separate_third_party_from_std_lib\n'), ((5718, 5901), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'allow_abbrev': '(False)', 'description': '"""Aggregate third-party packages and standard library modules imported across all Python files in a given directory."""'}), "(allow_abbrev=False, description=\n 'Aggregate third-party packages and standard library modules imported across all Python files in a given directory.'\n )\n", (5741, 5901), False, 'import argparse\n'), ((5597, 5617), 'collections.Counter', 'Counter', (['third_party'], {}), '(third_party)\n', (5604, 5617), False, 'from collections import Counter\n'), ((5619, 5635), 'collections.Counter', 'Counter', (['std_lib'], {}), '(std_lib)\n', (5626, 5635), False, 'from collections import Counter\n'), ((3034, 3063), 'os.path.join', 'os.path.join', (['root_dir', 'fname'], {}), '(root_dir, fname)\n', (3046, 3063), False, 'import os\n'), ((2749, 2780), 'os.path.abspath', 'os.path.abspath', (['dir_to_exclude'], {}), '(dir_to_exclude)\n', (2764, 2780), False, 'import os\n'), ((2784, 2809), 'os.path.abspath', 'os.path.abspath', (['root_dir'], {}), '(root_dir)\n', (2799, 2809), False, 'import os\n')]
# Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import requests import json URL = "https://awspolicygen.s3.amazonaws.com/js/policies.js" def main(): raw_data = requests.get(URL).text data = json.loads(raw_data[raw_data.find('=') + 1:]) perms = {} for _, svc in data['serviceMap'].items(): perms[svc['StringPrefix']] = svc['Actions'] sorted_perms = {} for k in sorted(perms): sorted_perms[k] = sorted(perms[k]) with open('iam-permissions.json', 'w') as fh: json.dump(sorted_perms, fp=fh, indent=2) if __name__ == '__main__': main()
[ "json.dump", "requests.get" ]
[((736, 753), 'requests.get', 'requests.get', (['URL'], {}), '(URL)\n', (748, 753), False, 'import requests\n'), ((1083, 1123), 'json.dump', 'json.dump', (['sorted_perms'], {'fp': 'fh', 'indent': '(2)'}), '(sorted_perms, fp=fh, indent=2)\n', (1092, 1123), False, 'import json\n')]
#!/usr/bin/env python2 ''' This submodule lets the user download the data files necessary for running the GOMAP pipline from CyVerse Currently the files are stored in Gokul's personal directory so the download has to be initiated by gokul's own CyVerse account with icommands ''' import os, re, logging, json, sys, argparse, jsonmerge, gzip, shutil from pprint import pprint from code.utils.basic_utils import check_output_and_run import tarfile cyverse_path="i:/iplant/home/shared/dillpicl/gomap/GOMAP-data/" from code.utils.logging_utils import setlogging def setup(config): setlogging(config,"setup") """ setup(config) This function downloads the **GOMAP-data.tar.gz** directory from CyVerse and extracts the content to the **data** directory. The steps run by this function is given below 1. asdsdsa 2. sadsadsad 3. sadsadsad Parameters ---------- config : dict The config dict generated in the gomap.py script. """ outdir="data/" cmd = ["irsync","-rsv",cyverse_path,outdir] logging.info("Downloading file from Cyverse using irsync") #The irsync will checksum the files on both ends and dtermine if the download is necessary and will only download if necessary # might take time to check if the files needs to be downloaded print(os.getcwd()) print(" ".join(cmd)) check_output_and_run("outfile",cmd) with open("data/compress_files.txt","r") as comp_files: counter=0 for infile in comp_files.readlines(): counter=counter+1 outfile = outdir+infile.strip() gzfile = outdir+infile.strip()+".gz" if os.path.exists(gzfile): if os.path.exists(outfile): print( gzfile + " already extracted") else: print("Extracting " + gzfile) with gzip.open(gzfile,"rb") as in_f: with open(outfile,"wb") as out_f: shutil.copyfileobj(in_f,out_f) os.remove(gzfile) else: print(gzfile + " doesn't exist") with open("data/tar_files.txt","r") as comp_files: for infile in comp_files.readlines(): infile=infile.strip() outfile = outdir+infile.strip() tar_f = outdir+infile.strip()+".tar.gz" base_dir=os.path.basename(outfile) if os.path.exists(tar_f): if os.path.exists(outfile): print(tar_f + " already extracted") else: print("Extracting " + tar_f) with tarfile.open(tar_f) as tar: tar.extractall("data/") os.remove(tar_f) else: print(tar_f + " doesn't exist")
[ "os.remove", "gzip.open", "os.path.basename", "os.getcwd", "code.utils.basic_utils.check_output_and_run", "os.path.exists", "logging.info", "code.utils.logging_utils.setlogging", "tarfile.open", "shutil.copyfileobj" ]
[((585, 612), 'code.utils.logging_utils.setlogging', 'setlogging', (['config', '"""setup"""'], {}), "(config, 'setup')\n", (595, 612), False, 'from code.utils.logging_utils import setlogging\n'), ((1055, 1113), 'logging.info', 'logging.info', (['"""Downloading file from Cyverse using irsync"""'], {}), "('Downloading file from Cyverse using irsync')\n", (1067, 1113), False, 'import os, re, logging, json, sys, argparse, jsonmerge, gzip, shutil\n'), ((1364, 1400), 'code.utils.basic_utils.check_output_and_run', 'check_output_and_run', (['"""outfile"""', 'cmd'], {}), "('outfile', cmd)\n", (1384, 1400), False, 'from code.utils.basic_utils import check_output_and_run\n'), ((1322, 1333), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (1331, 1333), False, 'import os, re, logging, json, sys, argparse, jsonmerge, gzip, shutil\n'), ((1663, 1685), 'os.path.exists', 'os.path.exists', (['gzfile'], {}), '(gzfile)\n', (1677, 1685), False, 'import os, re, logging, json, sys, argparse, jsonmerge, gzip, shutil\n'), ((2394, 2419), 'os.path.basename', 'os.path.basename', (['outfile'], {}), '(outfile)\n', (2410, 2419), False, 'import os, re, logging, json, sys, argparse, jsonmerge, gzip, shutil\n'), ((2435, 2456), 'os.path.exists', 'os.path.exists', (['tar_f'], {}), '(tar_f)\n', (2449, 2456), False, 'import os, re, logging, json, sys, argparse, jsonmerge, gzip, shutil\n'), ((1706, 1729), 'os.path.exists', 'os.path.exists', (['outfile'], {}), '(outfile)\n', (1720, 1729), False, 'import os, re, logging, json, sys, argparse, jsonmerge, gzip, shutil\n'), ((2477, 2500), 'os.path.exists', 'os.path.exists', (['outfile'], {}), '(outfile)\n', (2491, 2500), False, 'import os, re, logging, json, sys, argparse, jsonmerge, gzip, shutil\n'), ((2056, 2073), 'os.remove', 'os.remove', (['gzfile'], {}), '(gzfile)\n', (2065, 2073), False, 'import os, re, logging, json, sys, argparse, jsonmerge, gzip, shutil\n'), ((2751, 2767), 'os.remove', 'os.remove', (['tar_f'], {}), '(tar_f)\n', (2760, 2767), False, 'import os, re, logging, json, sys, argparse, jsonmerge, gzip, shutil\n'), ((1887, 1910), 'gzip.open', 'gzip.open', (['gzfile', '"""rb"""'], {}), "(gzfile, 'rb')\n", (1896, 1910), False, 'import os, re, logging, json, sys, argparse, jsonmerge, gzip, shutil\n'), ((2655, 2674), 'tarfile.open', 'tarfile.open', (['tar_f'], {}), '(tar_f)\n', (2667, 2674), False, 'import tarfile\n'), ((2005, 2036), 'shutil.copyfileobj', 'shutil.copyfileobj', (['in_f', 'out_f'], {}), '(in_f, out_f)\n', (2023, 2036), False, 'import os, re, logging, json, sys, argparse, jsonmerge, gzip, shutil\n')]
#!/usr/bin/env python import argparse from functools import partial from pathlib import Path from requests_futures.sessions import FuturesSession import pandas as pd import numpy as np # see https://stackoverflow.com/a/50039149 import resource resource.setrlimit(resource.RLIMIT_NOFILE, (110000, 110000)) __version__ = '0.3' HEADERS = { 'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.11 (KHTML, like Gecko) Chrome/23.0.1271.64 Safari/537.11', 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8', 'Accept-Charset': 'ISO-8859-1,utf-8;q=0.7,*;q=0.3', 'Accept-Encoding': 'none', 'Accept-Language': 'en-US,en;q=0.8', 'Connection': 'keep-alive' } def get_html(response, verbose=False): try: result = response.result() if verbose: print('Response from {} has status code {}.'.format(result.url, result.status_code)) assert result.status_code // 100 == 2 return result.content.decode() except: if verbose: print('Error occured for {}'.format(response)) return None def get_htmls(urls, max_workers=8, verbose=False, timeout=60): session = FuturesSession(max_workers=max_workers) if verbose: n = len(urls) print('Submitting {} jobs...'.format(n)) responses = [session.get(url, headers=HEADERS, timeout=timeout) for url in urls] if verbose: print('Executing {} jobs...'.format(n)) # if verbose, run a for loop to show progress explicitly if verbose: result = [] for i, response in enumerate(responses): print('{} done, {} to go...'.format(i, n - i)) result.append(get_html(response, verbose=verbose)) return result else: return [get_html(response, verbose=verbose) for response in responses] def get_htmls_archive(urls, max_workers=8, verbose=False, timeout=60): urls = ['https://web.archive.org/web/' + url for url in urls] return get_htmls(urls, max_workers=max_workers, verbose=verbose, timeout=timeout) def main(path, output, verbose, worker, timeout): df = pd.read_hdf(path) # if output already existed, updates: if Path(output).is_file(): df_old = pd.read_hdf(output) # merging dfs df_merged = df.merge(df_old[['html']], how='outer', left_index=True, right_index=True) df = df_merged # merging might have changed the orders df.sort_values('time_added', inplace=True) na_idx = df.html.isna() n = np.count_nonzero(na_idx) print('{} out of {} urls are new, fetching...'.format(n, df.shape[0])) # fetch html n_workers = worker if worker else n df.loc[na_idx, 'html'] = get_htmls(df[na_idx].index, max_workers=n_workers, verbose=verbose, timeout=timeout) else: n = df.shape[0] print('{} urls to fetch...'.format(n)) n_workers = worker if worker else n df['html'] = get_htmls(df.index, max_workers=n_workers, verbose=verbose, timeout=timeout) # no response df['archive'] = df.html.isna() n = np.count_nonzero(df.archive) print('{} out of {} urls cannot be fetched, try fetching from archive.org...'.format(n, df.shape[0])) n_workers = worker if worker else n df.loc[df.archive, 'html'] = get_htmls_archive(df[df.archive].index, max_workers=n_workers, verbose=verbose, timeout=timeout) df.to_hdf( output, 'df', format='table', complevel=9, ) def cli(): parser = argparse.ArgumentParser(description="Save url content in HDF5.") parser.add_argument('input', help='Input urls in HDF5.') parser.add_argument('-o', '--output', help='Output HDF5. Update file if exists.') parser.add_argument('-p', '--worker', type=int, help='No. of workers used. If not specified, use as many as needed.') parser.add_argument('-t', '--timeout', type=float, default=60., help='Timeout specified for requests. Default: 60.') parser.add_argument('-v', '--version', action='version', version='%(prog)s {}'.format(__version__)) parser.add_argument('-V', '--verbose', action='store_true', help='verbose to stdout.') args = parser.parse_args() main(args.input, args.output, args.verbose, args.worker, args.timeout) if __name__ == "__main__": cli()
[ "numpy.count_nonzero", "pandas.read_hdf", "argparse.ArgumentParser", "resource.setrlimit", "requests_futures.sessions.FuturesSession", "pathlib.Path" ]
[((247, 307), 'resource.setrlimit', 'resource.setrlimit', (['resource.RLIMIT_NOFILE', '(110000, 110000)'], {}), '(resource.RLIMIT_NOFILE, (110000, 110000))\n', (265, 307), False, 'import resource\n'), ((1187, 1226), 'requests_futures.sessions.FuturesSession', 'FuturesSession', ([], {'max_workers': 'max_workers'}), '(max_workers=max_workers)\n', (1201, 1226), False, 'from requests_futures.sessions import FuturesSession\n'), ((2128, 2145), 'pandas.read_hdf', 'pd.read_hdf', (['path'], {}), '(path)\n', (2139, 2145), True, 'import pandas as pd\n'), ((3116, 3144), 'numpy.count_nonzero', 'np.count_nonzero', (['df.archive'], {}), '(df.archive)\n', (3132, 3144), True, 'import numpy as np\n'), ((3544, 3608), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Save url content in HDF5."""'}), "(description='Save url content in HDF5.')\n", (3567, 3608), False, 'import argparse\n'), ((2237, 2256), 'pandas.read_hdf', 'pd.read_hdf', (['output'], {}), '(output)\n', (2248, 2256), True, 'import pandas as pd\n'), ((2543, 2567), 'numpy.count_nonzero', 'np.count_nonzero', (['na_idx'], {}), '(na_idx)\n', (2559, 2567), True, 'import numpy as np\n'), ((2196, 2208), 'pathlib.Path', 'Path', (['output'], {}), '(output)\n', (2200, 2208), False, 'from pathlib import Path\n')]
import sqlite3 import urllib import re from urllib.request import urlopen from bs4 import BeautifulSoup from phyllo.phyllo_logger import logger # Note: The original ordering of chapters and verses was extremely complex. # As a result, chapters are the bold headers and subsections are each p tag. # Case 1: Sections split by numbers (Roman or not) followed by a period, or bracketed. Subsections split by <p> tags def parsecase1(ptags, c, colltitle, title, author, date, URL): # ptags contains all <p> tags. c is the cursor object. chapter = '-1' verse = 0 for p in ptags: # make sure it's not a paragraph without the main text try: if p['class'][0].lower() in ['border', 'pagehead', 'shortborder', 'smallboarder', 'margin', 'internal_navigation']: # these are not part of the main t continue except: pass passage = '' text = p.get_text().strip() # Skip empty paragraphs. and skip the last part with the collection link. if len(text) <= 0 or text.startswith('Asconius\n'): continue chapterb = p.find('b') if chapterb is not None and text[0].isalpha(): test = chapterb.find(text = True) if text == test: chapter = text verse = 0 continue passage = text verse+=1 if passage.startswith('Asconius'): continue c.execute("INSERT INTO texts VALUES (?,?,?,?,?,?,?, ?, ?, ?, ?)", (None, colltitle, title, 'Latin', author, date, chapter, verse, passage.strip(), URL, 'prose')) def main(): collURL = 'http://www.thelatinlibrary.com/asconius.html' collOpen = urllib.request.urlopen(collURL) collSOUP = BeautifulSoup(collOpen, 'html5lib') author = collSOUP.title.string.strip() colltitle = 'QUINTUS ASCONIUS PEDIANUS' date = 'c. 9 B.C. - c. A.D. 76' textsURL = [collURL] with sqlite3.connect('texts.db') as db: c = db.cursor() c.execute( 'CREATE TABLE IF NOT EXISTS texts (id INTEGER PRIMARY KEY, title TEXT, book TEXT,' ' language TEXT, author TEXT, date TEXT, chapter TEXT, verse TEXT, passage TEXT,' ' link TEXT, documentType TEXT)') c.execute("DELETE FROM texts WHERE author='Asconius'") for url in textsURL: openurl = urllib.request.urlopen(url) textsoup = BeautifulSoup(openurl, 'html5lib') try: title = textsoup.title.string.split(':')[1].strip() except: title = textsoup.title.string.strip() getp = textsoup.find_all('p') parsecase1(getp, c, colltitle, title, author, date, url) logger.info("Program runs successfully.") if __name__ == '__main__': main()
[ "bs4.BeautifulSoup", "phyllo.phyllo_logger.logger.info", "sqlite3.connect", "urllib.request.urlopen" ]
[((1840, 1871), 'urllib.request.urlopen', 'urllib.request.urlopen', (['collURL'], {}), '(collURL)\n', (1862, 1871), False, 'import urllib\n'), ((1888, 1923), 'bs4.BeautifulSoup', 'BeautifulSoup', (['collOpen', '"""html5lib"""'], {}), "(collOpen, 'html5lib')\n", (1901, 1923), False, 'from bs4 import BeautifulSoup\n'), ((2883, 2924), 'phyllo.phyllo_logger.logger.info', 'logger.info', (['"""Program runs successfully."""'], {}), "('Program runs successfully.')\n", (2894, 2924), False, 'from phyllo.phyllo_logger import logger\n'), ((2090, 2117), 'sqlite3.connect', 'sqlite3.connect', (['"""texts.db"""'], {}), "('texts.db')\n", (2105, 2117), False, 'import sqlite3\n'), ((2513, 2540), 'urllib.request.urlopen', 'urllib.request.urlopen', (['url'], {}), '(url)\n', (2535, 2540), False, 'import urllib\n'), ((2565, 2599), 'bs4.BeautifulSoup', 'BeautifulSoup', (['openurl', '"""html5lib"""'], {}), "(openurl, 'html5lib')\n", (2578, 2599), False, 'from bs4 import BeautifulSoup\n')]
from django.shortcuts import render, redirect from django.contrib.auth.models import User from django.contrib import auth def login(request): context = {} if request.method == "POST": user = auth.authenticate(username=request.POST["email"], password=request.POST["password"]) if user is not None: auth.login(request, user) return redirect("home") else: context["error"] = "Email or Password incorrect." return render(request, "accounts/login.html", context) def signup(request): context = {} if request.method == "POST": # Check if the password and the confrom are the same if request.POST["password1"] == request.POST["password2"]: # Check if email is alrady been used try: user = User.objects.get(email=request.POST["email"]) context["error"] = "This email is already registred." except User.DoesNotExist: user = User.objects.create_user(request.POST["email"], email=request.POST["email"], password=request.POST["<PASSWORD>"]) auth.login(request, user) return redirect("home") else: context["error"] = "Passwords must match." return render(request, "accounts/signup.html", context) def logout(request): auth.logout(request) return redirect("login")
[ "django.contrib.auth.models.User.objects.get", "django.shortcuts.redirect", "django.contrib.auth.models.User.objects.create_user", "django.contrib.auth.logout", "django.contrib.auth.authenticate", "django.shortcuts.render", "django.contrib.auth.login" ]
[((432, 479), 'django.shortcuts.render', 'render', (['request', '"""accounts/login.html"""', 'context'], {}), "(request, 'accounts/login.html', context)\n", (438, 479), False, 'from django.shortcuts import render, redirect\n'), ((1103, 1151), 'django.shortcuts.render', 'render', (['request', '"""accounts/signup.html"""', 'context'], {}), "(request, 'accounts/signup.html', context)\n", (1109, 1151), False, 'from django.shortcuts import render, redirect\n'), ((1176, 1196), 'django.contrib.auth.logout', 'auth.logout', (['request'], {}), '(request)\n', (1187, 1196), False, 'from django.contrib import auth\n'), ((1205, 1222), 'django.shortcuts.redirect', 'redirect', (['"""login"""'], {}), "('login')\n", (1213, 1222), False, 'from django.shortcuts import render, redirect\n'), ((198, 287), 'django.contrib.auth.authenticate', 'auth.authenticate', ([], {'username': "request.POST['email']", 'password': "request.POST['password']"}), "(username=request.POST['email'], password=request.POST[\n 'password'])\n", (215, 287), False, 'from django.contrib import auth\n'), ((309, 334), 'django.contrib.auth.login', 'auth.login', (['request', 'user'], {}), '(request, user)\n', (319, 334), False, 'from django.contrib import auth\n'), ((345, 361), 'django.shortcuts.redirect', 'redirect', (['"""home"""'], {}), "('home')\n", (353, 361), False, 'from django.shortcuts import render, redirect\n'), ((723, 768), 'django.contrib.auth.models.User.objects.get', 'User.objects.get', ([], {'email': "request.POST['email']"}), "(email=request.POST['email'])\n", (739, 768), False, 'from django.contrib.auth.models import User\n'), ((867, 984), 'django.contrib.auth.models.User.objects.create_user', 'User.objects.create_user', (["request.POST['email']"], {'email': "request.POST['email']", 'password': "request.POST['<PASSWORD>']"}), "(request.POST['email'], email=request.POST['email'],\n password=request.POST['<PASSWORD>'])\n", (891, 984), False, 'from django.contrib.auth.models import User\n'), ((985, 1010), 'django.contrib.auth.login', 'auth.login', (['request', 'user'], {}), '(request, user)\n', (995, 1010), False, 'from django.contrib import auth\n'), ((1022, 1038), 'django.shortcuts.redirect', 'redirect', (['"""home"""'], {}), "('home')\n", (1030, 1038), False, 'from django.shortcuts import render, redirect\n')]
import collections import pandas as pd big_list = [[{'автопродление': 1}, {'аккаунт': 1}, {'акция': 2}, {'безумный': 1}, {'бесплатно': 1}, {'бесплатнои': 1}, {'бесплатныи': 1}, {'бесплатный': 1}, {'бесценок': 1}, {'билет': 2}, {'бритва': 1}, {'бритвеныи': 1}, {'важный': 2}, {'вводить': 1}, {'деиствует': 1}, {'забудь': 1}, {'заполнять': 1}, {'заходить': 1}, {'заявка': 1}, {'идти': 1}, {'канал': 1}, {'карта': 1}, {'кино': 2}, {'кинопоиск': 1}, {'ленись': 1}, {'наидете': 1}, {'неделя': 1}, {'новыи': 1}, {'отключить': 1}, {'пара': 1}, {'первый': 1}, {'переходить': 1}, {'подписка': 2}, {'подписываися': 1}, {'покупка': 2}, {'покупке': 1}, {'получать': 1}, {'получение': 1}, {'почту': 1}, {'премиум': 1}, {'привязывать': 1}, {'прийти': 1}, {'промо': 1}, {'промокоду': 1}, {'регистрировать': 1}, {'регистрируемся': 1}, {'саит': 1}, {'сеичас': 1}, {'скидка': 2}, {'совершенно': 1}, {'станок': 1}, {'телеграм': 1}, {'экономить': 1}], [{'неделя': 1}, {'получать': 1}, {'саит': 1}, {'скидка': 6}, {'автоматически': 1}, {'антивирус': 1}, {'антивирусы': 1}, {'бит': 1}, {'возможность': 1}, {'временной': 1}, {'выбрать': 1}, {'даваите': 1}, {'деиствительно': 1}, {'деиствия': 1}, {'деиствовать': 1}, {'дополнительнои': 1}, {'дополнительный': 1}, {'других': 1}, {'другое': 1}, {'ждать': 1}, {'запись': 1}, {'запустить': 1}, {'защитный': 1}, {'использовать': 1}, {'ключ': 2}, {'код': 3}, {'компьютер': 1}, {'мочь': 1}, {'наиболее': 1}, {'новость': 1}, {'обеспечение': 4}, {'обновить': 1}, {'ограничить': 2}, {'отличный': 1}, {'парк': 1}, {'планировать': 1}, {'полугодовой': 1}, {'получить': 1}, {'популярный': 1}, {'посмотреть': 1}, {'предложение': 1}, {'применение': 1}, {'программный': 4}, {'продукт': 2}, {'распродажа': 2}, {'саите': 1}, {'скидкои': 1}, {'следующии': 1}, {'следующий': 1}, {'снижение': 1}, {'специальный': 1}, {'срок': 1}, {'супер': 2}, {'течение': 1}, {'упустить': 1}, {'устроиств': 1}, {'устроиства': 1}, {'учётный': 1}, {'хотеть': 1}, {'цена': 9}], [{'наидете': 1}, {'неделя': 1}, {'первый': 2}, {'скидка': 4}, {'деиствительно': 2}, {'других': 1}, {'предложение': 2}, {'распродажа': 2}, {'снижение': 1}, {'цена': 5}, {'instagram': 1}, {'twitter': 1}, {'большинство': 1}, {'бренд': 1}, {'верить': 1}, {'вернее': 1}, {'вид': 1}, {'видео': 2}, {'витрина': 1}, {'витринный': 1}, {'выгодный': 1}, {'гарантию': 1}, {'делать': 1}, {'день': 1}, {'диктофон': 1}, {'другои': 1}, {'жж': 1}, {'закрываться': 2}, {'интересный': 1}, {'каждыи': 1}, {'количество': 1}, {'кстати': 1}, {'купить': 1}, {'логотип': 1}, {'магазин': 2}, {'маркет': 1}, {'медиамаркт': 1}, {'наидется': 1}, {'наидутся': 1}, {'например': 1}, {'находиться': 1}, {'небольшой': 3}, {'недавно': 1}, {'низкий': 2}, {'обещать': 2}, {'обман': 1}, {'общий': 1}, {'остаться': 2}, {'осуществлять': 1}, {'пестреть': 1}, {'писать': 1}, {'повыбирать': 1}, {'позиция': 1}, {'понадобиться': 1}, {'посетителеи': 1}, {'правда': 1}, {'правильно': 1}, {'продавать': 1}, {'производитель': 1}, {'размер': 1}, {'распродажный': 1}, {'рекламировать': 1}, {'связь': 1}, {'сервис': 1}, {'скореи': 1}, {'случай': 4}, {'случиться': 1}, {'сменить': 1}, {'смотреть': 1}, {'событие': 1}, {'сообщение': 1}, {'сообщить': 1}, {'соцсеть': 2}, {'сравниваите': 1}, {'сравнивать': 1}, {'старт': 1}, {'существенно': 1}, {'товар': 2}, {'трансляция': 2}, {'тщательно': 1}, {'увеличивать': 1}, {'уменьшаться': 1}, {'уникальныи': 1}, {'финальный': 1}, {'ходовой': 1}, {'центр': 1}, {'экземпляр': 1}], [{'покупка': 1}, {'выбрать': 1}, {'продукт': 1}, {'саите': 2}, {'магазин': 1}, {'сервис': 1}, {'товар': 3}, {'уникальныи': 1}, {'брать': 2}, {'выбор': 1}, {'выкуп': 1}, {'груз': 1}, {'днеи': 1}, {'забота': 2}, {'заказ': 2}, {'заниматься': 1}, {'интернет': 3}, {'каталог': 2}, {'категория': 1}, {'мелко': 1}, {'мск': 1}, {'набор': 2}, {'нужный': 1}, {'объединение': 1}, {'оставить': 1}, {'остальные': 1}, {'откроить': 1}, {'оформление': 1}, {'параметр': 1}, {'перепаковке': 1}, {'подарочныи': 1}, {'подарочный': 1}, {'поддержка': 1}, {'полностью': 1}, {'полныи': 1}, {'посылка': 1}, {'праздничный': 1}, {'разный': 1}, {'сделать': 1}, {'служба': 1}, {'соблюдение': 1}, {'собрать': 1}, {'ссылка': 1}, {'таможенный': 1}, {'телефон': 1}, {'требовании': 1}, {'удобныи': 1}, {'указание': 1}, {'шопинг': 1}], [{'канал': 1}, {'мочь': 1}, {'цена': 1}, {'видео': 1}, {'смотреть': 1}, {'товар': 4}, {'ссылка': 1}, {'безусловно': 1}, {'большои': 1}, {'боцманскии': 1}, {'вариант': 1}, {'внутренний': 1}, {'военнои': 1}, {'возможный': 1}, {'входить': 1}, {'глаз': 1}, {'дерево': 1}, {'довольно': 1}, {'доступный': 1}, {'друг': 1}, {'жми': 1}, {'защёлка': 1}, {'иметь': 2}, {'инструмент': 1}, {'карман': 1}, {'классный': 1}, {'кольцо': 1}, {'комплект': 1}, {'которои': 1}, {'крепление': 1}, {'крутой': 2}, {'лезвие': 1}, {'марлина': 1}, {'металического': 1}, {'металом': 1}, {'модификациеи': 1}, {'молния': 1}, {'морской': 1}, {'мужик': 1}, {'мужчик': 1}, {'наидет': 1}, {'наити': 1}, {'найти': 1}, {'накладка': 1}, {'наличие': 1}, {'настоящий': 1}, {'начать': 1}, {'нежелательный': 1}, {'необходимый': 1}, {'нержавеики': 1}, {'нож': 2}, {'основнои': 1}, {'основный': 1}, {'особенность': 1}, {'отличительнои': 1}, {'палированным': 1}, {'пластик': 1}, {'поддеть': 1}, {'популярнои': 1}, {'потаиным': 1}, {'поэтому': 1}, {'правило': 1}, {'представлять': 1}, {'преимущество': 1}, {'привет': 1}, {'простота': 1}, {'работа': 1}, {'ремень': 6}, {'ремня': 1}, {'рукоятка': 1}, {'самое': 1}, {'связке': 1}, {'складный': 1}, {'слишком': 1}, {'смочь': 1}, {'собои': 1}, {'сокровенный': 1}, {'статья': 1}, {'страховочный': 1}, {'таиника': 1}, {'таиником': 1}, {'такои': 1}, {'твёрдый': 1}, {'тканевыи': 1}, {'толстыи': 1}, {'топчик': 1}, {'увидеть': 1}, {'узел': 1}, {'часть': 1}, {'шип': 1}, {'являться': 2}], [{'канал': 1}, {'покупка': 1}, {'сеичас': 1}, {'скидка': 5}, {'других': 1}, {'супер': 1}, {'товар': 3}, {'нужный': 1}, {'подарочныи': 1}, {'подарочный': 1}, {'разный': 1}, {'ремень': 1}, {'барсучий': 1}, {'благородный': 1}, {'больший': 1}, {'бритьё': 1}, {'быстрый': 1}, {'восторженный': 1}, {'вставка': 1}, {'выделка': 1}, {'выполнить': 1}, {'высокий': 1}, {'год': 1}, {'двоиными': 1}, {'длина': 1}, {'добавить': 1}, {'документ': 1}, {'доставка': 1}, {'древесина': 1}, {'дужки': 1}, {'зажимами': 1}, {'защитои': 1}, {'зеркальный': 1}, {'изготовить': 1}, {'исполнение': 1}, {'качество': 1}, {'кисть': 2}, {'клапанах': 1}, {'ключеи': 1}, {'кожа': 1}, {'кожаный': 2}, {'комфортный': 1}, {'коричневыи': 1}, {'коробка': 1}, {'кошелёк': 1}, {'красивый': 1}, {'красота': 1}, {'крем': 1}, {'круглый': 1}, {'лаик': 1}, {'линза': 1}, {'лицо': 1}, {'материал': 2}, {'мелочеи': 1}, {'металлическии': 1}, {'металлический': 2}, {'мех': 1}, {'моделеи': 1}, {'модель': 1}, {'модный': 1}, {'молниях': 1}, {'мужской': 1}, {'мужчина': 2}, {'накладками': 1}, {'нанесение': 2}, {'наплечныи': 1}, {'наслаждение': 1}, {'натуральный': 1}, {'нежный': 1}, {'новинка': 1}, {'ноутбук': 1}, {'оправа': 1}, {'отделение': 2}, {'отзыв': 2}, {'отзывы': 1}, {'отличнои': 1}, {'очень': 2}, {'очки': 1}, {'пена': 2}, {'плохой': 1}, {'подписываитесь': 1}, {'подтяжка': 1}, {'покупателеи': 1}, {'покупатель': 1}, {'полный': 1}, {'помазок': 1}, {'понравиться': 1}, {'портфель': 1}, {'превращаться': 1}, {'прекрасныи': 1}, {'прекрасный': 1}, {'признателен': 1}, {'продавец': 1}, {'пружинои': 1}, {'рекомендовать': 2}, {'ретро': 1}, {'решение': 1}, {'ручка': 2}, {'сантиметр': 2}, {'сдержанный': 1}, {'сегодня': 1}, {'спандекс': 1}, {'сплава': 1}, {'стекло': 1}, {'стиль': 1}, {'стильный': 1}, {'сумка': 1}, {'темно': 1}, {'тысяча': 1}, {'удобный': 2}, {'удобство': 1}, {'удовольствие': 1}, {'ультрафиолет': 1}, {'упаковать': 2}, {'фотохромный': 1}, {'футляр': 1}, {'хороший': 1}, {'худой': 1}, {'цвет': 1}, {'цветовой': 1}, {'цинк': 1}, {'черныи': 1}, {'ширина': 1}, {'эластичныи': 1}], [{'покупка': 4}, {'даваите': 1}, {'использовать': 1}, {'посмотреть': 2}, {'цена': 2}, {'интересный': 1}, {'магазин': 2}, {'товар': 5}, {'набор': 2}, {'разный': 1}, {'самое': 1}, {'складный': 1}, {'статья': 1}, {'качество': 1}, {'кожа': 1}, {'коробка': 1}, {'крем': 1}, {'новинка': 7}, {'подписываитесь': 1}, {'цвет': 4}, {'автомобилист': 1}, {'апрель': 4}, {'аромат': 1}, {'ассортимент': 2}, {'банныи': 1}, {'бельё': 1}, {'блокноты': 1}, {'вакуумный': 1}, {'весёлый': 1}, {'волос': 1}, {'гель': 1}, {'гигиена': 1}, {'горшки': 1}, {'губка': 1}, {'дача': 1}, {'двухъярусная': 1}, {'детеи': 1}, {'детский': 2}, {'дизаинами': 1}, {'дизаины': 1}, {'дом': 2}, {'душе': 1}, {'желать': 1}, {'забываите': 1}, {'завезти': 1}, {'завершить': 1}, {'зеркало': 1}, {'зонт': 1}, {'иванов': 1}, {'игрушка': 4}, {'идея': 1}, {'канцелярия': 1}, {'кинетический': 1}, {'клавиатура': 1}, {'компас': 1}, {'конец': 2}, {'конструктор': 1}, {'копилка': 1}, {'корзина': 1}, {'коробочка': 1}, {'косметика': 2}, {'крышкои': 1}, {'лаванда': 1}, {'лаики': 1}, {'летний': 1}, {'магнитик': 1}, {'март': 6}, {'мочалка': 1}, {'мытьё': 1}, {'надувной': 1}, {'наносить': 1}, {'начало': 1}, {'новинками': 1}, {'новый': 1}, {'обзор': 9}, {'отдел': 1}, {'отделе': 1}, {'отдых': 1}, {'отсек': 1}, {'пакет': 1}, {'песок': 1}, {'песочница': 1}, {'подарок': 1}, {'подготовить': 1}, {'подробныи': 1}, {'полезный': 1}, {'полка': 1}, {'полотенце': 2}, {'полочка': 1}, {'постельный': 1}, {'посуда': 3}, {'появиться': 3}, {'предполагать': 1}, {'представить': 2}, {'приятный': 1}, {'проводной': 1}, {'проидемся': 1}, {'производство': 1}, {'пропустить': 1}, {'просмотр': 1}, {'простынь': 1}, {'прямо': 1}, {'пятёрочка': 3}, {'ремешок': 1}, {'роза': 1}, {'рублеи': 14}, {'светодиодныи': 1}, {'сказать': 1}, {'см': 2}, {'снова': 2}, {'сожаление': 1}, {'состав': 1}, {'спасибо': 1}, {'ставить': 1}, {'страничка': 1}, {'сушка': 1}, {'творчество': 1}, {'тело': 1}, {'трость': 1}, {'удачный': 1}, {'указать': 2}, {'уход': 2}, {'хранение': 2}, {'цветок': 1}, {'цифровой': 1}, {'читаите': 1}, {'щётка': 1}], [{'покупка': 3}, {'деиствительно': 1}, {'дополнительнои': 1}, {'получить': 1}, {'цена': 4}, {'выгодный': 3}, {'купить': 4}, {'магазин': 5}, {'продавать': 1}, {'товар': 2}, {'заказ': 1}, {'интернет': 2}, {'комплект': 2}, {'смочь': 2}, {'покупатель': 1}, {'желать': 1}, {'приятный': 1}, {'рублеи': 2}, {'база': 1}, {'батарейка': 1}, {'быстро': 1}, {'вагин': 6}, {'вагины': 1}, {'вибрациеи': 5}, {'внимание': 1}, {'волосик': 1}, {'вставляться': 1}, {'выгоднои': 1}, {'выносной': 1}, {'джанин': 8}, {'известнои': 1}, {'интим': 1}, {'качественныи': 1}, {'лицензионныи': 1}, {'лобке': 1}, {'любрикант': 1}, {'максимально': 1}, {'название': 1}, {'недорого': 1}, {'описание': 1}, {'особый': 1}, {'отверстие': 1}, {'оформить': 1}, {'пальчиковый': 1}, {'положить': 1}, {'порнозвезды': 1}, {'пульт': 1}, {'работать': 1}, {'светлый': 1}, {'секс': 2}, {'слепок': 1}, {'совершение': 1}, {'стимуляция': 1}, {'тип': 1}, {'уважаемые': 1}, {'яицо': 1}], [{'планировать': 1}, {'цена': 2}, {'продавать': 4}, {'экземпляр': 1}, {'модель': 1}, {'очень': 3}, {'рублеи': 1}, {'спасибо': 1}, {'акрил': 1}, {'бахроме': 1}, {'белыи': 1}, {'буклированные': 1}, {'вещь': 1}, {'длинныи': 2}, {'достаточно': 1}, {'единственный': 1}, {'изменю': 1}, {'метр': 1}, {'моеи': 1}, {'мягкий': 1}, {'наматываться': 1}, {'нежныи': 1}, {'неузнаваемость': 1}, {'нитка': 2}, {'огромный': 1}, {'оксана': 1}, {'повтор': 1}, {'повторю': 1}, {'пушистый': 1}, {'радуга': 1}, {'руб': 3}, {'сиреневыи': 1}, {'тонкии': 1}, {'фиолетовый': 1}, {'черно': 1}, {'шарф': 2}, {'шею': 1}], [{'срок': 1}, {'цена': 1}, {'другои': 1}, {'днеи': 1}, {'заказ': 1}, {'оформление': 1}, {'работа': 1}, {'длина': 1}, {'модель': 1}, {'цвет': 3}, {'рублеи': 1}, {'см': 1}, {'нитка': 1}, {'шарф': 1}, {'белый': 1}, {'выполню': 1}, {'двустороннии': 1}, {'двухслоиныи': 1}, {'красный': 1}, {'крючок': 1}, {'молот': 1}, {'надпись': 1}, {'однои': 1}, {'подарить': 1}, {'пряжи': 1}, {'связать': 1}, {'серп': 1}, {'сторона': 1}, {'шерстянои': 1}, {'шерстяной': 1}], [{'других': 1}, {'хотеть': 2}, {'цена': 2}, {'купить': 2}, {'размер': 1}, {'товар': 4}, {'брать': 1}, {'полностью': 1}, {'сделать': 1}, {'мех': 1}, {'приятный': 1}, {'рублеи': 1}, {'состав': 1}, {'руб': 1}, {'ангора': 1}, {'вопрос': 1}, {'гольф': 1}, {'дело': 1}, {'засунуть': 1}, {'знать': 1}, {'китае': 1}, {'место': 1}, {'меховой': 1}, {'новогодний': 1}, {'носок': 1}, {'ощупь': 1}, {'полиамид': 1}, {'полиэстер': 2}, {'рассчитать': 1}, {'рука': 1}, {'самом': 1}, {'светофор': 4}, {'тёплый': 1}, {'успеть': 1}, {'эластан': 1}]] flat_list = [item for sublist in big_list for item in sublist] result = {} for i in flat_list: result.update(i) counter = collections.Counter(result).most_common() print(counter) dframe = pd.DataFrame(counter, columns=["Word", "Count"]) dframe.to_csv('a12_freq_done.csv')
[ "pandas.DataFrame", "collections.Counter" ]
[((14011, 14059), 'pandas.DataFrame', 'pd.DataFrame', (['counter'], {'columns': "['Word', 'Count']"}), "(counter, columns=['Word', 'Count'])\n", (14023, 14059), True, 'import pandas as pd\n'), ((13945, 13972), 'collections.Counter', 'collections.Counter', (['result'], {}), '(result)\n', (13964, 13972), False, 'import collections\n')]
import uuid from typing import List, Optional from .utils import logging logger = logging.get_logger(__name__) class Conversation: """ Utility class containing a conversation and its history. This class is meant to be used as an input to the :class:`~transformers.ConversationalPipeline`. The conversation contains a number of utility function to manage the addition of new user input and generated model responses. A conversation needs to contain an unprocessed user input before being passed to the :class:`~transformers.ConversationalPipeline`. This user input is either created when the class is instantiated, or by calling :obj:`conversational_pipeline.append_response("input")` after a conversation turn. Arguments: text (:obj:`str`, `optional`): The initial user input to start the conversation. If not provided, a user input needs to be provided manually using the :meth:`~transformers.Conversation.add_user_input` method before the conversation can begin. conversation_id (:obj:`uuid.UUID`, `optional`): Unique identifier for the conversation. If not provided, a random UUID4 id will be assigned to the conversation. past_user_inputs (:obj:`List[str]`, `optional`): Eventual past history of the conversation of the user. You don't need to pass it manually if you use the pipeline interactively but if you want to recreate history you need to set both :obj:`past_user_inputs` and :obj:`generated_responses` with equal length lists of strings generated_responses (:obj:`List[str]`, `optional`): Eventual past history of the conversation of the model. You don't need to pass it manually if you use the pipeline interactively but if you want to recreate history you need to set both :obj:`past_user_inputs` and :obj:`generated_responses` with equal length lists of strings Usage:: conversation = Conversation("Going to the movies tonight - any suggestions?") # Steps usually performed by the model when generating a response: # 1. Mark the user input as processed (moved to the history) conversation.mark_processed() # 2. Append a mode response conversation.append_response("The Big lebowski.") conversation.add_user_input("Is it good?") """ def __init__( self, text: str = None, conversation_id: uuid.UUID = None, past_user_inputs=None, generated_responses=None ): if not conversation_id: conversation_id = uuid.uuid4() if past_user_inputs is None: past_user_inputs = [] if generated_responses is None: generated_responses = [] self.uuid: uuid.UUID = conversation_id self.past_user_inputs: List[str] = past_user_inputs self.generated_responses: List[str] = generated_responses self.new_user_input: Optional[str] = text def __eq__(self, other): if not isinstance(other, Conversation): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def add_user_input(self, text: str, overwrite: bool = False): """ Add a user input to the conversation for the next round. This populates the internal :obj:`new_user_input` field. Args: text (:obj:`str`): The user input for the next conversation round. overwrite (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not existing and unprocessed user input should be overwritten when this function is called. """ if self.new_user_input: if overwrite: logger.warning( f'User input added while unprocessed input was existing: "{self.new_user_input}" was overwritten ' f'with: "{text}".' ) self.new_user_input = text else: logger.warning( f'User input added while unprocessed input was existing: "{self.new_user_input}" new input ' f'ignored: "{text}". Set `overwrite` to True to overwrite unprocessed user input' ) else: self.new_user_input = text def mark_processed(self): """ Mark the conversation as processed (moves the content of :obj:`new_user_input` to :obj:`past_user_inputs`) and empties the :obj:`new_user_input` field. """ if self.new_user_input: self.past_user_inputs.append(self.new_user_input) self.new_user_input = None def append_response(self, response: str): """ Append a response to the list of generated responses. Args: response (:obj:`str`): The model generated response. """ self.generated_responses.append(response) def iter_texts(self): """ Iterates over all blobs of the conversation. Returns: Iterator of (is_user, text_chunk) in chronological order of the conversation. ``is_user`` is a :obj:`bool`, ``text_chunks`` is a :obj:`str`. """ for user_input, generated_response in zip(self.past_user_inputs, self.generated_responses): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__(self): """ Generates a string representation of the conversation. Return: :obj:`str`: Example: Conversation id: 7d15686b-dc94-49f2-9c4b-c9eac6a1f114 user >> Going to the movies tonight - any suggestions? bot >> The Big Lebowski """ output = f"Conversation id: {self.uuid} \n" for is_user, text in self.iter_texts(): name = "user" if is_user else "bot" output += f"{name} >> {text} \n" return output
[ "uuid.uuid4" ]
[((2622, 2634), 'uuid.uuid4', 'uuid.uuid4', ([], {}), '()\n', (2632, 2634), False, 'import uuid\n')]
import argparse from datetime import datetime from Common.functions import add_data, get_filtered_stb, get_data parser = argparse.ArgumentParser(description='Data-stream import and searching. Expected input data-stream line\n' + 'of the form: STB|TITLE|PROVIDER|DATE|REVENUE|TIME\n') parser.add_argument('-i', dest='filename', help='import FILENAME to import data to datastore') parser.add_argument('-s', dest='select', help='SELECT from comma separated list of columns (STB,TITLE,PROVIDER,DATE,REV,TIME)') parser.add_argument('-f', dest='filter', help='FILTER from one column=value pair. CASE SENSITIVE. ex -f date=2017-04-21') parser.add_argument('-o', dest='order', help='ORDER from comma separated list of columns (STB,TITLE,PROVIDER,DATE,REV,TIME)') args = parser.parse_args() """ If importing data: Import data stream from argument filename. Expected format: STB|TITLE|PROVIDER|DATE|REVENUE|TIME\n """ if args.filename: count = 0 with open(args.filename, 'r') as file: for line in file: try: box_id, title, provider, date, revenue, time = line.rstrip('\r\n').split('|') time = datetime.strptime(time, '%H:%M') date = datetime.strptime(date, '%Y-%m-%d') data = { 'stb': box_id, 'date': date.strftime('%Y-%m-%d'), 'title': title, 'provider': provider, 'rev': "{0:.2f}".format(float(revenue)), 'time': time.strftime('%H:%M') } add_data(data) count += 1 except ValueError as e: print("Mal-formatted line. Skipping.") print("Imported {} records.".format(count)) # Else, retrieving data. Data retrieval from SELECT, FILTER, and ORDER arguments else: # Error checking retrieval arguments columns = {'stb', 'title', 'provider', 'date', 'rev', 'time'} selection = args.select.lower().split(',') if args.select else None if not selection or not set(selection) < columns: print("Invalid SELECT argument(s). See --help for help.") exit(1) order = args.order.lower().split(',') if args.order else None if order and not set(order) < columns and not set(order) < set(selection): print("Invalid ORDER arguments(s). See --help for help.") exit(1) filter_by = () if args.filter: key, value = tuple(args.filter.split('=')) if key not in columns: print("Invalid FILTER argument(s). See --help for help.") exit(1) if key == 'rev': try: value = "{0:.2f}".format(float(value)) except ValueError: print("Invalid number for rev filter.") exit(1) filter_by = (key, value) # Retrieve set of matching STB id numbers based on the filter matching_stb = get_filtered_stb(filter_by) # If there are any matching STB id numbers, get actual data, order, and print SELECT results. if matching_stb: results = get_data(matching_stb, selection, filter_by, order) # Print results in order of SELECT for entry in results: print(','.join([entry[key] for key in selection]))
[ "Common.functions.get_data", "argparse.ArgumentParser", "Common.functions.add_data", "datetime.datetime.strptime", "Common.functions.get_filtered_stb" ]
[((122, 296), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '(\'Data-stream import and searching. Expected input data-stream line\\n\' +\n """of the form: STB|TITLE|PROVIDER|DATE|REVENUE|TIME\n""")'}), '(description=\n """Data-stream import and searching. Expected input data-stream line\n""" +\n \'of the form: STB|TITLE|PROVIDER|DATE|REVENUE|TIME\\n\')\n', (145, 296), False, 'import argparse\n'), ((3023, 3050), 'Common.functions.get_filtered_stb', 'get_filtered_stb', (['filter_by'], {}), '(filter_by)\n', (3039, 3050), False, 'from Common.functions import add_data, get_filtered_stb, get_data\n'), ((3189, 3240), 'Common.functions.get_data', 'get_data', (['matching_stb', 'selection', 'filter_by', 'order'], {}), '(matching_stb, selection, filter_by, order)\n', (3197, 3240), False, 'from Common.functions import add_data, get_filtered_stb, get_data\n'), ((1241, 1273), 'datetime.datetime.strptime', 'datetime.strptime', (['time', '"""%H:%M"""'], {}), "(time, '%H:%M')\n", (1258, 1273), False, 'from datetime import datetime\n'), ((1297, 1332), 'datetime.datetime.strptime', 'datetime.strptime', (['date', '"""%Y-%m-%d"""'], {}), "(date, '%Y-%m-%d')\n", (1314, 1332), False, 'from datetime import datetime\n'), ((1672, 1686), 'Common.functions.add_data', 'add_data', (['data'], {}), '(data)\n', (1680, 1686), False, 'from Common.functions import add_data, get_filtered_stb, get_data\n')]
import os, fnmatch, sys, time import dill as pickle import scipy.interpolate as interp import numpy as np import matplotlib.pyplot as plt import matplotlib.mlab as mlab import bead_util as bu import calib_util as cu import configuration as config import time dirname = '/data/old_trap/20201202/power/init' files, _ = bu.find_all_fnames(dirname, sort_time=True) fb_set = [] power = [] for filname in files: df = bu.DataFile() df.load(filname) fb_set.append(np.mean(df.pos_fb[2])) power.append(np.abs(np.mean(df.power))) plt.plot(fb_set, power) plt.show()
[ "matplotlib.pyplot.show", "matplotlib.pyplot.plot", "bead_util.find_all_fnames", "numpy.mean", "bead_util.DataFile" ]
[((325, 368), 'bead_util.find_all_fnames', 'bu.find_all_fnames', (['dirname'], {'sort_time': '(True)'}), '(dirname, sort_time=True)\n', (343, 368), True, 'import bead_util as bu\n'), ((549, 572), 'matplotlib.pyplot.plot', 'plt.plot', (['fb_set', 'power'], {}), '(fb_set, power)\n', (557, 572), True, 'import matplotlib.pyplot as plt\n'), ((573, 583), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (581, 583), True, 'import matplotlib.pyplot as plt\n'), ((426, 439), 'bead_util.DataFile', 'bu.DataFile', ([], {}), '()\n', (437, 439), True, 'import bead_util as bu\n'), ((480, 501), 'numpy.mean', 'np.mean', (['df.pos_fb[2]'], {}), '(df.pos_fb[2])\n', (487, 501), True, 'import numpy as np\n'), ((527, 544), 'numpy.mean', 'np.mean', (['df.power'], {}), '(df.power)\n', (534, 544), True, 'import numpy as np\n')]
"""Carletproject URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.1/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path from Carletapp import views from django.views.decorators.csrf import csrf_exempt from django.conf import settings from django.conf.urls.static import static urlpatterns = [ path('admin/', admin.site.urls), path('signup1/', csrf_exempt(views.SignUp1.as_view())), path('signup2/', csrf_exempt(views.SignUp2.as_view())), path('login/', csrf_exempt(views.Login.as_view())), path('uservalidation/', csrf_exempt(views.UserRegistrationValidation.as_view())), path('userregister/', csrf_exempt(views.UserRegistration.as_view())), path('forgotpassword/', csrf_exempt(views.ForgetPassword.as_view())), path('changepassword/', csrf_exempt(views.ChangePassword.as_view())), path('checkverification/', csrf_exempt(views.CheckVerification.as_view())), path('checkregistration/', csrf_exempt(views.CheckRegistration.as_view())), path('searchvehicle/', csrf_exempt(views.SearchVehicle.as_view())), path('registervehicle/', csrf_exempt(views.VehicleRegistration.as_view())), path('licensevalidation/', csrf_exempt(views.VehicleDetailValidation.as_view())), path('requestvehicle/', csrf_exempt(views.RequestVehicle.as_view())), path('approverequest/', csrf_exempt(views.ApproveRequest.as_view())), path('ratevehicle/', csrf_exempt(views.RaterReviewVehicle.as_view())), path('raterenter/', csrf_exempt(views.RateReviewRenter.as_view())), path('sentrentrequest/', csrf_exempt(views.SentRentRequest.as_view())), path('rcvrentrequest/', csrf_exempt(views.RecvRentRequest.as_view())), path('generatereceipt/', csrf_exempt(views.GenerateReceipt.as_view())), path('uploadreceipt/', csrf_exempt(views.UploadReceipt.as_view())), path('getprofileinfo/', csrf_exempt(views.GetProfileInfo.as_view())), path('payment/', csrf_exempt(views.Payment.as_view())), path('accountsetting/<str:pk>/', csrf_exempt(views.ProfileAccountSetting.as_view())), path('uservehicle/<str:pk>/', csrf_exempt(views.UserVehicleList.as_view())), path('vehiclesetting/<str:pk>/', csrf_exempt(views.VehicleSetting.as_view())), path('triphistory/<str:pk>/', csrf_exempt(views.TripHistory.as_view())), path('profilepic/<str:pk>/', csrf_exempt(views.RetreiveProfilePicture.as_view())), path('vehiclepictures/<str:pk>/', csrf_exempt(views.DisplayVehiclePictures.as_view())), path('redeemamount/<str:pk>/', csrf_exempt(views.RedeemAmount.as_view())), path('removefromrent/<str:pk>/', csrf_exempt(views.RemoveVehicleForRent.as_view())), path('updateprofilepic/<str:pk>/', csrf_exempt(views.UpdateProfilePicture.as_view())), path('addfav/', csrf_exempt(views.AddFavorite.as_view())), path('removefav/<str:pk>/', csrf_exempt(views.RemoveFavorite.as_view())), path('displayfav/<str:pk>/', csrf_exempt(views.FavoriteList.as_view())), ] + static(settings.STATIC_URL, document_root=settings.STATIC_ROOT)+ static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
[ "Carletapp.views.SignUp1.as_view", "Carletapp.views.FavoriteList.as_view", "Carletapp.views.ChangePassword.as_view", "Carletapp.views.RequestVehicle.as_view", "Carletapp.views.UserRegistrationValidation.as_view", "Carletapp.views.SearchVehicle.as_view", "Carletapp.views.ProfileAccountSetting.as_view", "Carletapp.views.Payment.as_view", "Carletapp.views.Login.as_view", "Carletapp.views.SentRentRequest.as_view", "django.urls.path", "Carletapp.views.RemoveVehicleForRent.as_view", "Carletapp.views.VehicleDetailValidation.as_view", "Carletapp.views.SignUp2.as_view", "Carletapp.views.VehicleRegistration.as_view", "Carletapp.views.GetProfileInfo.as_view", "Carletapp.views.CheckVerification.as_view", "Carletapp.views.DisplayVehiclePictures.as_view", "Carletapp.views.CheckRegistration.as_view", "Carletapp.views.GenerateReceipt.as_view", "Carletapp.views.RemoveFavorite.as_view", "Carletapp.views.TripHistory.as_view", "Carletapp.views.RedeemAmount.as_view", "Carletapp.views.UpdateProfilePicture.as_view", "Carletapp.views.UploadReceipt.as_view", "Carletapp.views.AddFavorite.as_view", "django.conf.urls.static.static", "Carletapp.views.UserVehicleList.as_view", "Carletapp.views.RetreiveProfilePicture.as_view", "Carletapp.views.UserRegistration.as_view", "Carletapp.views.RaterReviewVehicle.as_view", "Carletapp.views.VehicleSetting.as_view", "Carletapp.views.RecvRentRequest.as_view", "Carletapp.views.ForgetPassword.as_view", "Carletapp.views.RateReviewRenter.as_view", "Carletapp.views.ApproveRequest.as_view" ]
[((3578, 3639), 'django.conf.urls.static.static', 'static', (['settings.MEDIA_URL'], {'document_root': 'settings.MEDIA_ROOT'}), '(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)\n', (3584, 3639), False, 'from django.conf.urls.static import static\n'), ((3513, 3576), 'django.conf.urls.static.static', 'static', (['settings.STATIC_URL'], {'document_root': 'settings.STATIC_ROOT'}), '(settings.STATIC_URL, document_root=settings.STATIC_ROOT)\n', (3519, 3576), False, 'from django.conf.urls.static import static\n'), ((877, 908), 'django.urls.path', 'path', (['"""admin/"""', 'admin.site.urls'], {}), "('admin/', admin.site.urls)\n", (881, 908), False, 'from django.urls import path\n'), ((943, 966), 'Carletapp.views.SignUp1.as_view', 'views.SignUp1.as_view', ([], {}), '()\n', (964, 966), False, 'from Carletapp import views\n'), ((1003, 1026), 'Carletapp.views.SignUp2.as_view', 'views.SignUp2.as_view', ([], {}), '()\n', (1024, 1026), False, 'from Carletapp import views\n'), ((1061, 1082), 'Carletapp.views.Login.as_view', 'views.Login.as_view', ([], {}), '()\n', (1080, 1082), False, 'from Carletapp import views\n'), ((1126, 1168), 'Carletapp.views.UserRegistrationValidation.as_view', 'views.UserRegistrationValidation.as_view', ([], {}), '()\n', (1166, 1168), False, 'from Carletapp import views\n'), ((1210, 1242), 'Carletapp.views.UserRegistration.as_view', 'views.UserRegistration.as_view', ([], {}), '()\n', (1240, 1242), False, 'from Carletapp import views\n'), ((1286, 1316), 'Carletapp.views.ForgetPassword.as_view', 'views.ForgetPassword.as_view', ([], {}), '()\n', (1314, 1316), False, 'from Carletapp import views\n'), ((1360, 1390), 'Carletapp.views.ChangePassword.as_view', 'views.ChangePassword.as_view', ([], {}), '()\n', (1388, 1390), False, 'from Carletapp import views\n'), ((1437, 1470), 'Carletapp.views.CheckVerification.as_view', 'views.CheckVerification.as_view', ([], {}), '()\n', (1468, 1470), False, 'from Carletapp import views\n'), ((1517, 1550), 'Carletapp.views.CheckRegistration.as_view', 'views.CheckRegistration.as_view', ([], {}), '()\n', (1548, 1550), False, 'from Carletapp import views\n'), ((1593, 1622), 'Carletapp.views.SearchVehicle.as_view', 'views.SearchVehicle.as_view', ([], {}), '()\n', (1620, 1622), False, 'from Carletapp import views\n'), ((1667, 1702), 'Carletapp.views.VehicleRegistration.as_view', 'views.VehicleRegistration.as_view', ([], {}), '()\n', (1700, 1702), False, 'from Carletapp import views\n'), ((1749, 1788), 'Carletapp.views.VehicleDetailValidation.as_view', 'views.VehicleDetailValidation.as_view', ([], {}), '()\n', (1786, 1788), False, 'from Carletapp import views\n'), ((1832, 1862), 'Carletapp.views.RequestVehicle.as_view', 'views.RequestVehicle.as_view', ([], {}), '()\n', (1860, 1862), False, 'from Carletapp import views\n'), ((1906, 1936), 'Carletapp.views.ApproveRequest.as_view', 'views.ApproveRequest.as_view', ([], {}), '()\n', (1934, 1936), False, 'from Carletapp import views\n'), ((1977, 2011), 'Carletapp.views.RaterReviewVehicle.as_view', 'views.RaterReviewVehicle.as_view', ([], {}), '()\n', (2009, 2011), False, 'from Carletapp import views\n'), ((2051, 2083), 'Carletapp.views.RateReviewRenter.as_view', 'views.RateReviewRenter.as_view', ([], {}), '()\n', (2081, 2083), False, 'from Carletapp import views\n'), ((2128, 2159), 'Carletapp.views.SentRentRequest.as_view', 'views.SentRentRequest.as_view', ([], {}), '()\n', (2157, 2159), False, 'from Carletapp import views\n'), ((2203, 2234), 'Carletapp.views.RecvRentRequest.as_view', 'views.RecvRentRequest.as_view', ([], {}), '()\n', (2232, 2234), False, 'from Carletapp import views\n'), ((2279, 2310), 'Carletapp.views.GenerateReceipt.as_view', 'views.GenerateReceipt.as_view', ([], {}), '()\n', (2308, 2310), False, 'from Carletapp import views\n'), ((2353, 2382), 'Carletapp.views.UploadReceipt.as_view', 'views.UploadReceipt.as_view', ([], {}), '()\n', (2380, 2382), False, 'from Carletapp import views\n'), ((2426, 2456), 'Carletapp.views.GetProfileInfo.as_view', 'views.GetProfileInfo.as_view', ([], {}), '()\n', (2454, 2456), False, 'from Carletapp import views\n'), ((2493, 2516), 'Carletapp.views.Payment.as_view', 'views.Payment.as_view', ([], {}), '()\n', (2514, 2516), False, 'from Carletapp import views\n'), ((2569, 2606), 'Carletapp.views.ProfileAccountSetting.as_view', 'views.ProfileAccountSetting.as_view', ([], {}), '()\n', (2604, 2606), False, 'from Carletapp import views\n'), ((2656, 2687), 'Carletapp.views.UserVehicleList.as_view', 'views.UserVehicleList.as_view', ([], {}), '()\n', (2685, 2687), False, 'from Carletapp import views\n'), ((2740, 2770), 'Carletapp.views.VehicleSetting.as_view', 'views.VehicleSetting.as_view', ([], {}), '()\n', (2768, 2770), False, 'from Carletapp import views\n'), ((2820, 2847), 'Carletapp.views.TripHistory.as_view', 'views.TripHistory.as_view', ([], {}), '()\n', (2845, 2847), False, 'from Carletapp import views\n'), ((2896, 2934), 'Carletapp.views.RetreiveProfilePicture.as_view', 'views.RetreiveProfilePicture.as_view', ([], {}), '()\n', (2932, 2934), False, 'from Carletapp import views\n'), ((2988, 3026), 'Carletapp.views.DisplayVehiclePictures.as_view', 'views.DisplayVehiclePictures.as_view', ([], {}), '()\n', (3024, 3026), False, 'from Carletapp import views\n'), ((3077, 3105), 'Carletapp.views.RedeemAmount.as_view', 'views.RedeemAmount.as_view', ([], {}), '()\n', (3103, 3105), False, 'from Carletapp import views\n'), ((3158, 3194), 'Carletapp.views.RemoveVehicleForRent.as_view', 'views.RemoveVehicleForRent.as_view', ([], {}), '()\n', (3192, 3194), False, 'from Carletapp import views\n'), ((3249, 3285), 'Carletapp.views.UpdateProfilePicture.as_view', 'views.UpdateProfilePicture.as_view', ([], {}), '()\n', (3283, 3285), False, 'from Carletapp import views\n'), ((3321, 3348), 'Carletapp.views.AddFavorite.as_view', 'views.AddFavorite.as_view', ([], {}), '()\n', (3346, 3348), False, 'from Carletapp import views\n'), ((3396, 3426), 'Carletapp.views.RemoveFavorite.as_view', 'views.RemoveFavorite.as_view', ([], {}), '()\n', (3424, 3426), False, 'from Carletapp import views\n'), ((3475, 3503), 'Carletapp.views.FavoriteList.as_view', 'views.FavoriteList.as_view', ([], {}), '()\n', (3501, 3503), False, 'from Carletapp import views\n')]
# Generated by Django 3.2 on 2021-12-02 01:28 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('home', '0007_alter_user_email'), ] operations = [ migrations.AlterField( model_name='notice', name='enabled', field=models.BooleanField(default=False, help_text='Display on the Galaxy Australia landing page.'), ), ]
[ "django.db.models.BooleanField" ]
[((330, 428), 'django.db.models.BooleanField', 'models.BooleanField', ([], {'default': '(False)', 'help_text': '"""Display on the Galaxy Australia landing page."""'}), "(default=False, help_text=\n 'Display on the Galaxy Australia landing page.')\n", (349, 428), False, 'from django.db import migrations, models\n')]
#!/usr/bin/env python # Read secrets from .env file import requests import csv import json import os from dotenv import load_dotenv load_dotenv() BOARD_ID = os.getenv("TRELLO_BOARD_ID") TRELLO_API_KEY = os.getenv('TRELLO_API_KEY') TRELLO_TOKEN = os.getenv('TRELLO_TOKEN') output_filename = f'output-{BOARD_ID}.csv' keep_fetching = True BASE_URL = "https://api.trello.com/1/boards/{board_id}/actions/?key={api_key}&token={token}&limit=1000".format( board_id=BOARD_ID, api_key=TRELLO_API_KEY, token=T<PASSWORD>LO_TOKEN) url = BASE_URL with open(output_filename, mode='w') as csv_file: # , quoting=csv.QUOTE_MINIMAL) csv_writer = csv.writer(csv_file, delimiter=',', quotechar='"') # headers csv_writer.writerow(['timestamp', 'type', 'card_id', 'card_name', 'card_shortLink', 'listAfter_id', 'listAfter_name', 'listBefore_id', 'listBefore_name', 'text', 'member_fullName', 'member_username']) while(keep_fetching): print(url) print("fetching...") response = requests.get(url) print("done.") # json_data = json.load(json_file) # for action in json_data.get('actions'): for action in response.json(): row = [] data = action.get('data') card = data.get('card', {}) # type row.append(action.get('date')) row.append(action.get('type')) # data.card.id # data.card.name # data.card.shortLink row.append(card.get('id', '')) row.append(card.get('name', '')) row.append(card.get('shortLink', '')) listAfter = data.get('listAfter', {}) # data.listAfter.id # data.listAfter.name row.append(listAfter.get('id', '')) row.append(listAfter.get('name', '')) listBefore = data.get('listBefore', {}) # data.listBefore.id # data.listBefore.name row.append(listBefore.get('id', '')) row.append(listBefore.get('name', '')) # data.text row.append(data.get('text', '')) memberCreator = action.get('memberCreator', {}) # memberCreator.fullName # memberCreator.username row.append(memberCreator.get('fullName', '')) row.append(memberCreator.get('username', '')) # Write to the CSV file csv_writer.writerow(row) # if we got data, then keep going keep_fetching = len(response.json()) > 0 if (keep_fetching): # last_action oldest_action = response.json()[-1] print(oldest_action.get('date')) url = "{base_url}&before={oldest_id}".format( base_url=BASE_URL, oldest_id=oldest_action.get('id')) else: print("No records") print("----------------------")
[ "dotenv.load_dotenv", "csv.writer", "os.getenv", "requests.get" ]
[((133, 146), 'dotenv.load_dotenv', 'load_dotenv', ([], {}), '()\n', (144, 146), False, 'from dotenv import load_dotenv\n'), ((159, 187), 'os.getenv', 'os.getenv', (['"""TRELLO_BOARD_ID"""'], {}), "('TRELLO_BOARD_ID')\n", (168, 187), False, 'import os\n'), ((205, 232), 'os.getenv', 'os.getenv', (['"""TRELLO_API_KEY"""'], {}), "('TRELLO_API_KEY')\n", (214, 232), False, 'import os\n'), ((248, 273), 'os.getenv', 'os.getenv', (['"""TRELLO_TOKEN"""'], {}), "('TRELLO_TOKEN')\n", (257, 273), False, 'import os\n'), ((653, 703), 'csv.writer', 'csv.writer', (['csv_file'], {'delimiter': '""","""', 'quotechar': '"""\\""""'}), '(csv_file, delimiter=\',\', quotechar=\'"\')\n', (663, 703), False, 'import csv\n'), ((1067, 1084), 'requests.get', 'requests.get', (['url'], {}), '(url)\n', (1079, 1084), False, 'import requests\n')]
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import argparse import logging import os import sys import threading from dataclasses import asdict from pprint import pformat from typing import Dict, List, Optional, Type import torchx.specs as specs from pyre_extensions import none_throws from torchx.cli.cmd_base import SubCommand from torchx.cli.cmd_log import get_logs from torchx.runner import Runner, config, get_runner from torchx.schedulers import get_default_scheduler_name, get_scheduler_factories from torchx.specs import CfgVal from torchx.specs.finder import ( ComponentNotFoundException, ComponentValidationException, _Component, get_builtin_source, get_components, ) from torchx.util.types import to_dict logger: logging.Logger = logging.getLogger(__name__) def _convert_to_option_type( value: str, option_type: Type[specs.CfgVal] ) -> specs.CfgVal: if option_type == bool: return value.lower() == "true" elif option_type == List[str]: return value.split(";") else: # pyre-ignore[19] return option_type(value) def _parse_run_config(arg: str, scheduler_opts: specs.runopts) -> Dict[str, CfgVal]: conf: Dict[str, CfgVal] = {} if not arg: return conf for key, value in to_dict(arg).items(): option = scheduler_opts.get(key) if option is None: raise ValueError(f"Unknown {key}, run `torchx runopts` for more info") option_type = option.opt_type typed_value = _convert_to_option_type(value, option_type) conf[key] = typed_value return conf class CmdBuiltins(SubCommand): def add_arguments(self, subparser: argparse.ArgumentParser) -> None: subparser.add_argument( "--print", type=str, help="prints the builtin's component def to stdout", ) def _builtins(self) -> Dict[str, _Component]: return get_components() def run(self, args: argparse.Namespace) -> None: builtin_name = args.print if not builtin_name: builtin_components = self._builtins() num_builtins = len(builtin_components) print(f"Found {num_builtins} builtin components:") for i, component in enumerate(builtin_components.values()): print(f" {i + 1:2d}. {component.name}") else: print(get_builtin_source(builtin_name)) class CmdRun(SubCommand): def __init__(self) -> None: self._subparser: Optional[argparse.ArgumentParser] = None def add_arguments(self, subparser: argparse.ArgumentParser) -> None: scheduler_names = get_scheduler_factories().keys() self._subparser = subparser subparser.add_argument( "-s", "--scheduler", type=str, help=f"Name of the scheduler to use. One of: [{','.join(scheduler_names)}]", default=get_default_scheduler_name(), ) subparser.add_argument( "-cfg", "--scheduler_args", type=str, help="Arguments to pass to the scheduler (Ex:`cluster=foo,user=bar`)." " For a list of scheduler run options run: `torchx runopts`" "", ) subparser.add_argument( "--dryrun", action="store_true", default=False, help="Does not actually submit the app," " just prints the scheduler request", ) subparser.add_argument( "--wait", action="store_true", default=False, help="Wait for the app to finish before exiting.", ) subparser.add_argument( "--log", action="store_true", default=False, help="Stream logs while waiting for app to finish.", ) subparser.add_argument( "conf_args", nargs=argparse.REMAINDER, ) def _run(self, runner: Runner, args: argparse.Namespace) -> None: if args.scheduler == "local": logger.warning( "`local` scheduler is deprecated and will be" " removed in the near future," " please use other variants of the local scheduler" " (e.g. `local_cwd`)" ) run_opts = get_runner().run_opts() scheduler_opts = run_opts[args.scheduler] cfg = _parse_run_config(args.scheduler_args, scheduler_opts) config.apply(scheduler=args.scheduler, cfg=cfg) if len(args.conf_args) < 1: none_throws(self._subparser).error( "the following arguments are required: conf_file, conf_args" ) # Python argparse would remove `--` if it was the first argument. This # does not work well for torchx, since torchx.specs.api uses another argparser to # parse component arguments. conf_file, conf_args = args.conf_args[0], args.conf_args[1:] try: if args.dryrun: dryrun_info = runner.dryrun_component( conf_file, conf_args, args.scheduler, cfg ) logger.info( "\n=== APPLICATION ===\n" f"{pformat(asdict(dryrun_info._app), indent=2, width=80)}" ) logger.info("\n=== SCHEDULER REQUEST ===\n" f"{dryrun_info}") else: app_handle = runner.run_component( conf_file, conf_args, args.scheduler, cfg, ) # DO NOT delete this line. It is used by slurm tests to retrieve the app id print(app_handle) if args.scheduler.startswith("local"): self._wait_and_exit(runner, app_handle, log=True) else: logger.info(f"Launched app: {app_handle}") status = runner.status(app_handle) logger.info(status) logger.info(f"Job URL: {none_throws(status).ui_url}") if args.wait: self._wait_and_exit(runner, app_handle, log=args.log) except (ComponentValidationException, ComponentNotFoundException) as e: error_msg = f"\nFailed to run component `{conf_file}` got errors: \n {e}" logger.error(error_msg) sys.exit(1) except specs.InvalidRunConfigException as e: error_msg = ( f"Scheduler arg is incorrect or missing required option: `{e.cfg_key}`\n" f"Run `torchx runopts` to check configuration for `{args.scheduler}` scheduler\n" f"Use `-cfg` to specify run cfg as `key1=value1,key2=value2` pair\n" "of setup `.torchxconfig` file, see: https://pytorch.org/torchx/main/experimental/runner.config.html" ) logger.error(error_msg) sys.exit(1) def run(self, args: argparse.Namespace) -> None: os.environ["TORCHX_CONTEXT_NAME"] = os.getenv("TORCHX_CONTEXT_NAME", "cli_run") with get_runner() as runner: self._run(runner, args) def _wait_and_exit(self, runner: Runner, app_handle: str, log: bool) -> None: logger.info("Waiting for the app to finish...") log_thread = self._start_log_thread(runner, app_handle) if log else None status = runner.wait(app_handle, wait_interval=1) if not status: raise RuntimeError(f"unknown status, wait returned {status}") logger.info(f"Job finished: {status.state}") if log_thread: log_thread.join() if status.state != specs.AppState.SUCCEEDED: logger.error(status) sys.exit(1) else: logger.debug(status) def _start_log_thread(self, runner: Runner, app_handle: str) -> threading.Thread: thread = threading.Thread( target=get_logs, kwargs={ "file": sys.stderr, "runner": runner, "identifier": app_handle, "regex": None, "should_tail": True, }, ) thread.daemon = True thread.start() return thread
[ "threading.Thread", "torchx.runner.get_runner", "torchx.schedulers.get_scheduler_factories", "torchx.schedulers.get_default_scheduler_name", "torchx.specs.finder.get_builtin_source", "torchx.util.types.to_dict", "torchx.specs.finder.get_components", "torchx.runner.config.apply", "sys.exit", "pyre_extensions.none_throws", "dataclasses.asdict", "os.getenv", "logging.getLogger" ]
[((927, 954), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (944, 954), False, 'import logging\n'), ((2085, 2101), 'torchx.specs.finder.get_components', 'get_components', ([], {}), '()\n', (2099, 2101), False, 'from torchx.specs.finder import ComponentNotFoundException, ComponentValidationException, _Component, get_builtin_source, get_components\n'), ((4654, 4701), 'torchx.runner.config.apply', 'config.apply', ([], {'scheduler': 'args.scheduler', 'cfg': 'cfg'}), '(scheduler=args.scheduler, cfg=cfg)\n', (4666, 4701), False, 'from torchx.runner import Runner, config, get_runner\n'), ((7279, 7322), 'os.getenv', 'os.getenv', (['"""TORCHX_CONTEXT_NAME"""', '"""cli_run"""'], {}), "('TORCHX_CONTEXT_NAME', 'cli_run')\n", (7288, 7322), False, 'import os\n'), ((8143, 8289), 'threading.Thread', 'threading.Thread', ([], {'target': 'get_logs', 'kwargs': "{'file': sys.stderr, 'runner': runner, 'identifier': app_handle, 'regex':\n None, 'should_tail': True}"}), "(target=get_logs, kwargs={'file': sys.stderr, 'runner':\n runner, 'identifier': app_handle, 'regex': None, 'should_tail': True})\n", (8159, 8289), False, 'import threading\n'), ((1436, 1448), 'torchx.util.types.to_dict', 'to_dict', (['arg'], {}), '(arg)\n', (1443, 1448), False, 'from torchx.util.types import to_dict\n'), ((7336, 7348), 'torchx.runner.get_runner', 'get_runner', ([], {}), '()\n', (7346, 7348), False, 'from torchx.runner import Runner, config, get_runner\n'), ((7980, 7991), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (7988, 7991), False, 'import sys\n'), ((2543, 2575), 'torchx.specs.finder.get_builtin_source', 'get_builtin_source', (['builtin_name'], {}), '(builtin_name)\n', (2561, 2575), False, 'from torchx.specs.finder import ComponentNotFoundException, ComponentValidationException, _Component, get_builtin_source, get_components\n'), ((2803, 2828), 'torchx.schedulers.get_scheduler_factories', 'get_scheduler_factories', ([], {}), '()\n', (2826, 2828), False, 'from torchx.schedulers import get_default_scheduler_name, get_scheduler_factories\n'), ((3080, 3108), 'torchx.schedulers.get_default_scheduler_name', 'get_default_scheduler_name', ([], {}), '()\n', (3106, 3108), False, 'from torchx.schedulers import get_default_scheduler_name, get_scheduler_factories\n'), ((4503, 4515), 'torchx.runner.get_runner', 'get_runner', ([], {}), '()\n', (4513, 4515), False, 'from torchx.runner import Runner, config, get_runner\n'), ((6625, 6636), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (6633, 6636), False, 'import sys\n'), ((7169, 7180), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (7177, 7180), False, 'import sys\n'), ((4751, 4779), 'pyre_extensions.none_throws', 'none_throws', (['self._subparser'], {}), '(self._subparser)\n', (4762, 4779), False, 'from pyre_extensions import none_throws\n'), ((5436, 5460), 'dataclasses.asdict', 'asdict', (['dryrun_info._app'], {}), '(dryrun_info._app)\n', (5442, 5460), False, 'from dataclasses import asdict\n'), ((6267, 6286), 'pyre_extensions.none_throws', 'none_throws', (['status'], {}), '(status)\n', (6278, 6286), False, 'from pyre_extensions import none_throws\n')]
#Bibliotecas import pandas as pd import numpy as np import matplotlib.pyplot as plt import investpy as py plt.style.use('fivethirtyeight') #Buscando dados bonds = py.get_bonds_overview(country='brazil') #print(bonds) print('') #Filtrando por nome e preço de fechamento bonds2 = py.get_bonds_overview(country='brazil')[['name', 'last_close']] #print(bonds2) #Visualização: plt.figure(figsize=(12, 6)); plt.title('Curva de Juros - Brazilians bonds'); plt.errorbar(bonds2.index, bonds2.last_close, marker='o', label='Curva de juros', color='blue', linewidth=1); #plt.xlabel('Nome'); plt.ylabel('Valores de fechamento'); plt.xticks(bonds2.index, bonds2.name); plt.legend() plt.show(); '''#Outra forma: pesq_fundos = py.funds.search_funds(by='name', value='Cdi') print(pesq_fundos.head(10)) #Escolhendo o fundo fundo = pesq_fundos['name'][1] print(fundo) #Buscando os dados data = py.get_fund_historical_data(fund=fundo, country='brazil', from_date='01/01/2020', to_date='30/11/2021')['Close'] print(data.head()) retorno = data.pct_change().iloc[1:] retorno_acum = (1 + retorno).cumprod() #Visualização plt.figure(figsize=(12, 6)); plt.title('Curva de Juros - Brazilians bonds'); plt.errorbar(retorno_acum.index, retorno_acum, label='Curva de juros', color='blue', linewidth=1) plt.show()'''
[ "matplotlib.pyplot.title", "investpy.get_bonds_overview", "matplotlib.pyplot.show", "matplotlib.pyplot.legend", "matplotlib.pyplot.style.use", "matplotlib.pyplot.figure", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xticks", "matplotlib.pyplot.errorbar" ]
[((109, 141), 'matplotlib.pyplot.style.use', 'plt.style.use', (['"""fivethirtyeight"""'], {}), "('fivethirtyeight')\n", (122, 141), True, 'import matplotlib.pyplot as plt\n'), ((168, 207), 'investpy.get_bonds_overview', 'py.get_bonds_overview', ([], {'country': '"""brazil"""'}), "(country='brazil')\n", (189, 207), True, 'import investpy as py\n'), ((381, 408), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(12, 6)'}), '(figsize=(12, 6))\n', (391, 408), True, 'import matplotlib.pyplot as plt\n'), ((410, 456), 'matplotlib.pyplot.title', 'plt.title', (['"""Curva de Juros - Brazilians bonds"""'], {}), "('Curva de Juros - Brazilians bonds')\n", (419, 456), True, 'import matplotlib.pyplot as plt\n'), ((458, 571), 'matplotlib.pyplot.errorbar', 'plt.errorbar', (['bonds2.index', 'bonds2.last_close'], {'marker': '"""o"""', 'label': '"""Curva de juros"""', 'color': '"""blue"""', 'linewidth': '(1)'}), "(bonds2.index, bonds2.last_close, marker='o', label=\n 'Curva de juros', color='blue', linewidth=1)\n", (470, 571), True, 'import matplotlib.pyplot as plt\n'), ((589, 624), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Valores de fechamento"""'], {}), "('Valores de fechamento')\n", (599, 624), True, 'import matplotlib.pyplot as plt\n'), ((626, 663), 'matplotlib.pyplot.xticks', 'plt.xticks', (['bonds2.index', 'bonds2.name'], {}), '(bonds2.index, bonds2.name)\n', (636, 663), True, 'import matplotlib.pyplot as plt\n'), ((665, 677), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (675, 677), True, 'import matplotlib.pyplot as plt\n'), ((678, 688), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (686, 688), True, 'import matplotlib.pyplot as plt\n'), ((285, 324), 'investpy.get_bonds_overview', 'py.get_bonds_overview', ([], {'country': '"""brazil"""'}), "(country='brazil')\n", (306, 324), True, 'import investpy as py\n')]
#!/usr/bin/env python3 """This engine enables to customize the stream joining very flexible by importing only few lines of code that define customized functionality. This framework ensures exactly-once time-series processing that are based on joins using the local stream buffering algorithm with Apache Kafka. Import constants and 'ingest_fct()' and 'on_join()' to customize the processing. A join rate of around 15000 time-series joins per second is reached with a exactly-once semantic for the consume-join-produce procedures using Apache Kafka. Don't forget to start the demo producers in in advance in order to produce records into the Kafka topic. """ import os import sys import socket import time import json from datetime import datetime import pytz from confluent_kafka import Producer, Consumer, TopicPartition try: from .LocalStreamBuffer.local_stream_buffer import Record, StreamBuffer, record_from_dict except (ModuleNotFoundError, ImportError): # noinspection PyUnresolvedReferences from LocalStreamBuffer.local_stream_buffer import Record, StreamBuffer, record_from_dict def delivery_report(err, msg): """Delivery callback for Kafka Produce. Called once for each message produced to indicate delivery result. Triggered by poll() or flush(). """ if err is not None: print('Message delivery failed: {}'.format(err)) else: if VERBOSE: # get the sent message using msg.value() print(f"Message '{msg.key().decode('utf-8')}' \tdelivered to topic '{msg.topic()}' [{msg.partition()}].") # define customized function for join def join_fct(record_left, record_right): try: # create a record dictionary from both join partners record_dict = on_join(record_left, record_right) if record_dict is not None: # adapt two time fields of the record record_dict["processingTime"] = time.time() if USE_ISO_TIMESTAMPS: record_dict["phenomenonTime"] = to_iso_time(record_dict.get("phenomenonTime")) record_dict["processingTime"] = to_iso_time(record_dict.get("processingTime")) # produce a Kafka message, the delivery report callback, the key must be thing + quantity kafka_producer.produce(f"{TARGET_SYSTEM}.ext", json.dumps(record_dict).encode('utf-8'), key=f"{record_dict.get('thing')}.{record_dict.get('quantity')}".encode('utf-8'), callback=delivery_report) except Exception as ex: # this block catches possible errors in custom code print(f"WARNING, Exception while joining streams: {ex}") print(f"left record: {record_left}") print(f"right record: {record_right}") raise ex def commit_transaction(verbose=False, commit_time=time.time()): # Send the consumer's position to transaction to commit them along with the transaction, committing both # input and outputs in the same transaction is what provides EOS. kafka_producer.send_offsets_to_transaction( kafka_consumer.position(kafka_consumer.assignment()), kafka_consumer.consumer_group_metadata()) # Commit the transaction kafka_producer.commit_transaction() # Begin new transaction kafka_producer.begin_transaction() # commit the offset of the latest records that got obsolete in order to consume and join always the same Records. latest_records = [] if stream_buffer.last_removed_left: latest_records.append(stream_buffer.last_removed_left.data.get("record")) if stream_buffer.last_removed_right: latest_records.append(stream_buffer.last_removed_right.data.get("record")) # Commit message’s offset + 1 kafka_consumer.commit(offsets=[TopicPartition(topic=rec.get("topic"), partition=rec.get("partition"), offset=rec.get("offset") + 1) # commit the next (n+1) offset for rec in latest_records]) if verbose: print(f"Committed to latest offsets at {commit_time:.6f}.") def to_iso_time(timestamp): """Receives an arbitrary timestamp in UTC format (most likely in unix timestamp) and returns it as ISO-format. :param timestamp: arbitrary timestamp :return: timestamp in ISO 8601 and UTC timezone """ if isinstance(timestamp, (int, float)): return datetime.utcfromtimestamp(timestamp).replace(tzinfo=pytz.UTC).isoformat() if timestamp is None: return datetime.utcnow().replace(tzinfo=pytz.UTC).isoformat() return timestamp if __name__ == "__main__": # Import the original, or if used in Docker the overwritten custom functions try: from .customization.custom_fct import * except (ModuleNotFoundError, ImportError): # noinspection PyUnresolvedReferences from customization.custom_fct import * if "--use-env-config" in sys.argv: print(f"Load environment variables: {os.environ}") try: STREAM_NAME = os.environ["STREAM_NAME"] SOURCE_SYSTEMS = os.environ["SOURCE_SYSTEM"] TARGET_SYSTEM = os.environ["TARGET_SYSTEM"] GOST_SERVER = os.environ["GOST_SERVER"] KAFKA_BOOTSTRAP_SERVERS = os.environ["KAFKA_BOOTSTRAP_SERVERS"] FILTER_LOGIC = os.environ["FILTER_LOGIC"] # Execute the customization passed as filter logic to load necessary constants and function. exec(FILTER_LOGIC) _ = TIME_DELTA # Check if it worked except Exception as e: print("Could not load config.") raise e print(f"Starting the stream join with the following configurations: " f"\n\tKAFKA_BOOTSTRAP_SERVERS: '{KAFKA_BOOTSTRAP_SERVERS}'" f"\n\tSTREAM_NAME: '{STREAM_NAME}'" f"\n\tSOURCE_SYSTEMS: '{SOURCE_SYSTEMS}'" f"\n\tTARGET_SYSTEM: '{TARGET_SYSTEM}'" f"\n\tTIME_DELTA: '{TIME_DELTA}'" f"\n\tADDITIONAL_ATTRIBUTES: '{ADDITIONAL_ATTRIBUTES}'") # Create a kafka producer and consumer instance and subscribe to the topics kafka_consumer = Consumer({ 'bootstrap.servers': KAFKA_BOOTSTRAP_SERVERS, 'group.id': f"TS-joiner_{socket.gethostname()}_1", 'auto.offset.reset': 'earliest', 'enable.auto.commit': False, 'enable.auto.offset.store': False }) kafka_topics_in = [f"{sys}.int" for sys in SOURCE_SYSTEMS.split(",")] kafka_consumer.subscribe(kafka_topics_in) # kafka_consumer.assign([TopicPartition(topic, 0) for topic in kafka_topics_in]) # manually assign to an offset # Create a Kafka producer kafka_producer = Producer({'bootstrap.servers': KAFKA_BOOTSTRAP_SERVERS, "transactional.id": f'ms-stream-app_{SOURCE_SYSTEMS}_{STREAM_NAME}'}) # Initialize producer transaction. kafka_producer.init_transactions() # Start producer transaction. kafka_producer.begin_transaction() print("Create a StreamBuffer instance.") stream_buffer = StreamBuffer(instant_emit=True, buffer_results=False, verbose=VERBOSE, join_function=join_fct) start_time = last_transaction_time = time.time() n_none_polls = 0 started = False try: print("Start the Stream Processing.") while True: # Here, a small timeout can be used, as the commit is done manually and based on TRANSACTION_TIME msgs = kafka_consumer.consume(num_messages=MAX_BATCH_SIZE, timeout=0.2) # iterate over each message that was consumed for msg in msgs: record_json = json.loads(msg.value().decode('utf-8')) if VERBOSE: print(f"Received new record: {record_json}") # create a Record from the json additional_attributes = {att: record_json.get(att.strip()) for att in ADDITIONAL_ATTRIBUTES.split(",") if att != ""} record = Record( thing=record_json.get("thing"), quantity=record_json.get("quantity"), timestamp=record_json.get("phenomenonTime"), result=record_json.get("result"), topic=msg.topic(), partition=msg.partition(), offset=msg.offset(), **additional_attributes) ingest_fct(record, stream_buffer) # commit the transaction every TRANSACTION_TIME cur_time = time.time() if cur_time >= last_transaction_time + TRANSACTION_TIME: last_transaction_time = cur_time commit_transaction(verbose=VERBOSE, commit_time=last_transaction_time) except KeyboardInterrupt: print("Gracefully stopping") finally: stop_time = time.time() # commit processed message offsets to the transaction kafka_producer.send_offsets_to_transaction( kafka_consumer.position(kafka_consumer.assignment()), kafka_consumer.consumer_group_metadata()) # commit transaction kafka_producer.commit_transaction() # Leave group and commit offsets kafka_consumer.close() print(f"\nRecords in |{TARGET_SYSTEM}| = {stream_buffer.get_join_counter()}, " f"|left buffer| = {stream_buffer.get_left_counter()}, " f"|right buffer| = {stream_buffer.get_right_counter()}.") if start_time != stop_time: print(f"Joined time-series {stop_time - start_time:.6f} s long, " f"that are {stream_buffer.get_join_counter() / (stop_time - start_time):.2f} joins per second.")
[ "json.dumps", "time.time", "socket.gethostname", "datetime.datetime.utcfromtimestamp", "datetime.datetime.utcnow", "confluent_kafka.Producer", "LocalStreamBuffer.local_stream_buffer.StreamBuffer" ]
[((2844, 2855), 'time.time', 'time.time', ([], {}), '()\n', (2853, 2855), False, 'import time\n'), ((6762, 6891), 'confluent_kafka.Producer', 'Producer', (["{'bootstrap.servers': KAFKA_BOOTSTRAP_SERVERS, 'transactional.id':\n f'ms-stream-app_{SOURCE_SYSTEMS}_{STREAM_NAME}'}"], {}), "({'bootstrap.servers': KAFKA_BOOTSTRAP_SERVERS, 'transactional.id':\n f'ms-stream-app_{SOURCE_SYSTEMS}_{STREAM_NAME}'})\n", (6770, 6891), False, 'from confluent_kafka import Producer, Consumer, TopicPartition\n'), ((7136, 7234), 'LocalStreamBuffer.local_stream_buffer.StreamBuffer', 'StreamBuffer', ([], {'instant_emit': '(True)', 'buffer_results': '(False)', 'verbose': 'VERBOSE', 'join_function': 'join_fct'}), '(instant_emit=True, buffer_results=False, verbose=VERBOSE,\n join_function=join_fct)\n', (7148, 7234), False, 'from LocalStreamBuffer.local_stream_buffer import Record, StreamBuffer, record_from_dict\n'), ((7306, 7317), 'time.time', 'time.time', ([], {}), '()\n', (7315, 7317), False, 'import time\n'), ((8949, 8960), 'time.time', 'time.time', ([], {}), '()\n', (8958, 8960), False, 'import time\n'), ((1919, 1930), 'time.time', 'time.time', ([], {}), '()\n', (1928, 1930), False, 'import time\n'), ((8631, 8642), 'time.time', 'time.time', ([], {}), '()\n', (8640, 8642), False, 'import time\n'), ((6320, 6340), 'socket.gethostname', 'socket.gethostname', ([], {}), '()\n', (6338, 6340), False, 'import socket\n'), ((2318, 2341), 'json.dumps', 'json.dumps', (['record_dict'], {}), '(record_dict)\n', (2328, 2341), False, 'import json\n'), ((4479, 4515), 'datetime.datetime.utcfromtimestamp', 'datetime.utcfromtimestamp', (['timestamp'], {}), '(timestamp)\n', (4504, 4515), False, 'from datetime import datetime\n'), ((4594, 4611), 'datetime.datetime.utcnow', 'datetime.utcnow', ([], {}), '()\n', (4609, 4611), False, 'from datetime import datetime\n')]
import datetime from enum import Enum from pymysqlreplication import BinLogStreamReader from pymysqlreplication.row_event import ( DeleteRowsEvent, UpdateRowsEvent, WriteRowsEvent, TableMapEvent ) from pymysqlreplication.event import ( BeginLoadQueryEvent, ExecuteLoadQueryEvent, QueryEvent, RotateEvent, HeartbeatLogEvent ) from lib.utils import Utils class EventType(Enum): LOG_STATE = 1 INSERT = 2 UPDATE = 3 DELETE = 4 TABLE = 5 OTHER = 6 class BinLogStreamReaderWrapper(object): ''' Wrapper class for the python-mysql-replication library ''' def __init__(self, mysql_settings,server_id=1,blocking=False, resume_stream=True, log_file=None, log_pos=None, slave_heartbeat=None): self.__stream = BinLogStreamReader( connection_settings = mysql_settings, server_id = server_id, blocking = blocking, resume_stream = resume_stream, only_events = [DeleteRowsEvent, WriteRowsEvent, UpdateRowsEvent, TableMapEvent, BeginLoadQueryEvent, ExecuteLoadQueryEvent, QueryEvent], # RotateEvent, QueryEvent, HeartbeatLogEvent log_file=log_file, log_pos=log_pos, slave_heartbeat=slave_heartbeat ) def close(self): self.__stream.close() def fetch_event(self): return self.__parse_event(self.__stream.fetchone()) def __iter__ (self): return iter(self.fetch_event, None) def __parse_event(self, binlogevent): event = { 'event_type': self.__get_event_type(binlogevent), 'pymysqlreplication_event_type': type(binlogevent).__name__, 'timestamp': binlogevent.timestamp, 'log_pos': binlogevent.packet.log_pos, 'log_file': self.__stream.log_file } if self.__is_query_event(binlogevent): event['log_pos'] = binlogevent.packet.log_pos event['log_file'] = self.__stream.log_file elif self.__is_rotate_event(binlogevent): event['log_pos'] = binlogevent.position event['log_file'] = binlogevent.next_binlog elif self.__is_row_event(binlogevent) or self.__is_table_event(binlogevent): if binlogevent.schema != 'auth': # For security event['schema'] = binlogevent.schema event['table'] = binlogevent.table if self.__is_row_event(binlogevent): for row in binlogevent.rows: event['primary_key'] = binlogevent.primary_key event['after_values'] = self.__get_before_values(binlogevent, row) event['before_values'] = self.__get_after_values(binlogevent, row) elif self.__is_heartbeat_event(binlogevent): event['log_file'] = binlogevent.ident return event def __get_event_type(self, binlogevent): event_type = None if self.__is_heartbeat_event(binlogevent) or self.__is_rotate_event(binlogevent) or self.__is_heartbeat_event(binlogevent): event_type = EventType.LOG_STATE elif self.__is_delete_event(binlogevent): event_type = EventType.DELETE elif self.__is_update_event(binlogevent): event_type = EventType.UPDATE elif self.__is_insert_event(binlogevent): event_type = EventType.INSERT elif self.__is_table_event(binlogevent): event_type = EventType.TABLE else: event_type = EventType.OTHER return event_type def __get_before_values(self, binlogevent, row): before_values = None if isinstance(binlogevent, UpdateRowsEvent): before_values = row['before_values'] elif isinstance(binlogevent, DeleteRowsEvent): before_values = row['values'] return before_values def __get_after_values(self, binlogevent, row): after_values = None if isinstance(binlogevent, WriteRowsEvent): after_values = row['values'] elif isinstance(binlogevent, UpdateRowsEvent): after_values = row['after_values'] return after_values def __is_row_event(self, binlogevent): return self.__is_insert_event(binlogevent) or self.__is_update_event(binlogevent) or self.__is_delete_event(binlogevent) def __is_delete_event(self, binlogevent): return isinstance(binlogevent, DeleteRowsEvent) def __is_update_event(self, binlogevent): return isinstance(binlogevent, UpdateRowsEvent) def __is_insert_event(self, binlogevent): return isinstance(binlogevent, WriteRowsEvent) def __is_table_event(self, binlogevent): return isinstance(binlogevent, (TableMapEvent)) def __is_query_event(self, binlogevent): return isinstance(binlogevent, (QueryEvent)) def __is_begin_query_event(self, binlogevent): return isinstance(binlogevent, (BeginLoadQueryEvent)) def __is_load_query_event(self, binlogevent): return isinstance(binlogevent, (ExecuteLoadQueryEvent)) def __is_rotate_event(self, binlogevent): return isinstance(binlogevent, (RotateEvent)) def __is_heartbeat_event(self, binlogevent): return isinstance(binlogevent, (HeartbeatLogEvent))
[ "pymysqlreplication.BinLogStreamReader" ]
[((777, 1122), 'pymysqlreplication.BinLogStreamReader', 'BinLogStreamReader', ([], {'connection_settings': 'mysql_settings', 'server_id': 'server_id', 'blocking': 'blocking', 'resume_stream': 'resume_stream', 'only_events': '[DeleteRowsEvent, WriteRowsEvent, UpdateRowsEvent, TableMapEvent,\n BeginLoadQueryEvent, ExecuteLoadQueryEvent, QueryEvent]', 'log_file': 'log_file', 'log_pos': 'log_pos', 'slave_heartbeat': 'slave_heartbeat'}), '(connection_settings=mysql_settings, server_id=server_id,\n blocking=blocking, resume_stream=resume_stream, only_events=[\n DeleteRowsEvent, WriteRowsEvent, UpdateRowsEvent, TableMapEvent,\n BeginLoadQueryEvent, ExecuteLoadQueryEvent, QueryEvent], log_file=\n log_file, log_pos=log_pos, slave_heartbeat=slave_heartbeat)\n', (795, 1122), False, 'from pymysqlreplication import BinLogStreamReader\n')]
import argparse import os import sys from collections import namedtuple from pathlib import Path import toml from ._build import build_journal from ._create import create_journal from ._data_classes import JournalConfiguration, WaldenConfiguration from ._delete import delete_journal from ._edit import edit_journal from ._errors import WaldenException from ._list import list_journals from ._utils import print_error # for initializing commands that need journal name ARGUMENTS = [ ("create", "create a new journal"), ("today", "edit today's entry"), ("delete", "delete specified journal"), ("build", "compile the specified journal"), ("view", "open the specified journal (OS dependent)"), ] # for initializing flags FLAGS = [ ("list", "list all journals managed by walden"), ] ARGUMENT_MAPPING = { "build": build_journal, "create": create_journal, "delete": delete_journal, "today": edit_journal, #"view": view_journal } FLAG_MAPPING = {"list": list_journals} def _parse_args() -> argparse.Namespace: """Create the arg parser from ARGUMENTS and return the parsed arguments""" parser = argparse.ArgumentParser(description="edit and manage your walden journals") ex_group = parser.add_mutually_exclusive_group(required=True) for cmd, help_txt in ARGUMENTS: ex_group.add_argument( f"-{cmd[0]}", f"--{cmd}", type=str, nargs=1, help=help_txt, metavar="JOURNAL_NAME", ) for flag, help_txt in FLAGS: ex_group.add_argument( f"-{flag[0]}", f"--{flag}", action="store_true", help=help_txt, ) if len(sys.argv) == 1: parser.print_help(sys.stderr) sys.exit(1) return parser.parse_args() def _create_walden_config(config_file_path: Path): """Write default configuration file at specified path""" config = { "walden": { "config_path": str(config_file_path), "default_journal_path": str(Path.home() / "journals"), } } config_file_path.write_text(toml.dumps(config)) def _validate_config(config: dict): """ensure that required fields are in config""" if not config.get("walden", {}).get("config_path"): raise WaldenException("Missing 'config_path' in walden configuration") if not config["walden"].get("default_journal_path"): raise WaldenException("Missing 'default_journal_path' in walden configuration") def _parse_walden_config(config: dict) -> WaldenConfiguration: """Parse raw configuration into a dataclass for easier access""" config_path, default_journal_path = Path(config["config_path"]), Path( config["default_journal_path"] ) journal_info = {} for journal_name, journal_path in config.items(): if journal_name == "config_path" or journal_name == "default_journal_path": continue journal_info[journal_name] = JournalConfiguration( name=journal_name, path=Path(journal_path) ) return WaldenConfiguration( config_path=config_path, default_journal_path=default_journal_path, journals=journal_info, ) def _get_config() -> WaldenConfiguration: """Create configuration if it doesn't exist and return an object representing the config""" config_dir = Path.home() / ".config" / "walden" config_dir.mkdir(parents=True, exist_ok=True) # config file is stored as a toml config_file_path = config_dir / "walden.conf" if not config_file_path.exists(): _create_walden_config(config_file_path) config = toml.load(config_file_path) _validate_config(config) return _parse_walden_config(config["walden"]) def main(): """Parse arguments, fetch config, and route command to appropriate function""" try: args = _parse_args() config = _get_config() cmd, value = next( (cmd, value) for cmd, value in vars(args).items() if value != None ) # check if command is a flag if value == True: sys.exit(FLAG_MAPPING[cmd](config)) if cmd in ["build", "delete", "view", "today"]: # verify journal exists and is accessible journal_name = value[0] journal_info = config.journals.get(journal_name) if not journal_info: raise WaldenException( f"'{journal_name}' not found! Please create a journal before attempting to access it." ) journal_path = journal_info.path if not journal_path.exists(): raise WaldenException( f"Expected to find '{journal_name}' at {journal_path}, but found nothing!" ) sys.exit(ARGUMENT_MAPPING[cmd](value, config)) except WaldenException as we: print_error(we) sys.exit(1) except Exception as e: raise e sys.exit(1)
[ "toml.dumps", "argparse.ArgumentParser", "pathlib.Path.home", "pathlib.Path", "toml.load", "sys.exit" ]
[((1147, 1222), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""edit and manage your walden journals"""'}), "(description='edit and manage your walden journals')\n", (1170, 1222), False, 'import argparse\n'), ((3684, 3711), 'toml.load', 'toml.load', (['config_file_path'], {}), '(config_file_path)\n', (3693, 3711), False, 'import toml\n'), ((1784, 1795), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (1792, 1795), False, 'import sys\n'), ((2144, 2162), 'toml.dumps', 'toml.dumps', (['config'], {}), '(config)\n', (2154, 2162), False, 'import toml\n'), ((2711, 2738), 'pathlib.Path', 'Path', (["config['config_path']"], {}), "(config['config_path'])\n", (2715, 2738), False, 'from pathlib import Path\n'), ((2740, 2776), 'pathlib.Path', 'Path', (["config['default_journal_path']"], {}), "(config['default_journal_path'])\n", (2744, 2776), False, 'from pathlib import Path\n'), ((3409, 3420), 'pathlib.Path.home', 'Path.home', ([], {}), '()\n', (3418, 3420), False, 'from pathlib import Path\n'), ((4959, 4970), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (4967, 4970), False, 'import sys\n'), ((5023, 5034), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (5031, 5034), False, 'import sys\n'), ((3068, 3086), 'pathlib.Path', 'Path', (['journal_path'], {}), '(journal_path)\n', (3072, 3086), False, 'from pathlib import Path\n'), ((2068, 2079), 'pathlib.Path.home', 'Path.home', ([], {}), '()\n', (2077, 2079), False, 'from pathlib import Path\n')]
from dataclasses import dataclass from decimal import Decimal from common.config import ( BTCProxyConfig, GRPCServerConfig, IPFSConfig, SQLAlchemyConfig, W3Config, ) @dataclass(frozen=True) class WebauthnConfig: rp_name: str rp_id: str origin: str @dataclass(frozen=True) class AuditorConfig: sqlalchemy_config: SQLAlchemyConfig grpc_server_config: GRPCServerConfig btc_proxy_config: BTCProxyConfig webauthn_config: WebauthnConfig w3_config: W3Config audit_folder: str ipfs_config: IPFSConfig audit_smart_contract_address: str acceptable_exchange_rate_epsilon: Decimal
[ "dataclasses.dataclass" ]
[((190, 212), 'dataclasses.dataclass', 'dataclass', ([], {'frozen': '(True)'}), '(frozen=True)\n', (199, 212), False, 'from dataclasses import dataclass\n'), ((286, 308), 'dataclasses.dataclass', 'dataclass', ([], {'frozen': '(True)'}), '(frozen=True)\n', (295, 308), False, 'from dataclasses import dataclass\n')]
from django.urls import path from chats import consumers websocket_urlpatterns = [ path('ws/v1/chat_rooms/<int:id>/', consumers.ChatConsumer), ]
[ "django.urls.path" ]
[((89, 147), 'django.urls.path', 'path', (['"""ws/v1/chat_rooms/<int:id>/"""', 'consumers.ChatConsumer'], {}), "('ws/v1/chat_rooms/<int:id>/', consumers.ChatConsumer)\n", (93, 147), False, 'from django.urls import path\n')]
import numpy as np from scipy.linalg import expm from pymanopt.manifolds.manifold import EuclideanEmbeddedSubmanifold from pymanopt.tools.multi import multiprod, multisym, multitransp class Stiefel(EuclideanEmbeddedSubmanifold): """ Factory class for the Stiefel manifold. Instantiation requires the dimensions n, p to be specified. Optional argument k allows the user to optimize over the product of k Stiefels. Elements are represented as n x p matrices (if k == 1), and as k x n x p matrices if k > 1 (Note that this is different to manopt!). """ def __init__(self, n, p, k=1): self._n = n self._p = p self._k = k # Check that n is greater than or equal to p if n < p or p < 1: raise ValueError("Need n >= p >= 1. Values supplied were n = %d " "and p = %d." % (n, p)) if k < 1: raise ValueError("Need k >= 1. Value supplied was k = %d." % k) if k == 1: name = "Stiefel manifold St(%d, %d)" % (n, p) elif k >= 2: name = "Product Stiefel manifold St(%d, %d)^%d" % (n, p, k) dimension = int(k * (n * p - p * (p + 1) / 2)) super().__init__(name, dimension) @property def typicaldist(self): return np.sqrt(self._p * self._k) def inner(self, X, G, H): # Inner product (Riemannian metric) on the tangent space # For the stiefel this is the Frobenius inner product. return np.tensordot(G, H, axes=G.ndim) def dist(self, X, Y): raise NotImplementedError( "The manifold '{:s}' currently provides no implementation of " "the 'dist' method".format(self._get_class_name())) def proj(self, X, U): return U - multiprod(X, multisym(multiprod(multitransp(X), U))) # TODO(nkoep): Implement the weingarten map instead. def ehess2rhess(self, X, egrad, ehess, H): XtG = multiprod(multitransp(X), egrad) symXtG = multisym(XtG) HsymXtG = multiprod(H, symXtG) return self.proj(X, ehess - HsymXtG) # Retract to the Stiefel using the qr decomposition of X + G. def retr(self, X, G): if self._k == 1: # Calculate 'thin' qr decomposition of X + G q, r = np.linalg.qr(X + G) # Unflip any flipped signs XNew = np.dot(q, np.diag(np.sign(np.sign(np.diag(r)) + 0.5))) else: XNew = X + G for i in range(self._k): q, r = np.linalg.qr(XNew[i]) XNew[i] = np.dot( q, np.diag(np.sign(np.sign(np.diag(r)) + 0.5))) return XNew def norm(self, X, G): # Norm on the tangent space of the Stiefel is simply the Euclidean # norm. return np.linalg.norm(G) # Generate random Stiefel point using qr of random normally distributed # matrix. def rand(self): if self._k == 1: X = np.random.randn(self._n, self._p) q, r = np.linalg.qr(X) return q X = np.zeros((self._k, self._n, self._p)) for i in range(self._k): X[i], r = np.linalg.qr(np.random.randn(self._n, self._p)) return X def randvec(self, X): U = np.random.randn(*np.shape(X)) U = self.proj(X, U) U = U / np.linalg.norm(U) return U def transp(self, x1, x2, d): return self.proj(x2, d) def exp(self, X, U): # TODO: Simplify these expressions. if self._k == 1: W = expm(np.bmat([[X.T.dot(U), -U.T.dot(U)], [np.eye(self._p), X.T.dot(U)]])) Z = np.bmat([[expm(-X.T.dot(U))], [np.zeros((self._p, self._p))]]) Y = np.bmat([X, U]).dot(W).dot(Z) else: Y = np.zeros(np.shape(X)) for i in range(self._k): W = expm(np.bmat([[X[i].T.dot(U[i]), -U[i].T.dot(U[i])], [np.eye(self._p), X[i].T.dot(U[i])]])) Z = np.bmat([[expm(-X[i].T.dot(U[i]))], [np.zeros((self._p, self._p))]]) Y[i] = np.bmat([X[i], U[i]]).dot(W).dot(Z) return Y def zerovec(self, X): if self._k == 1: return np.zeros((self._n, self._p)) return np.zeros((self._k, self._n, self._p))
[ "numpy.eye", "numpy.random.randn", "numpy.tensordot", "numpy.linalg.qr", "numpy.zeros", "pymanopt.tools.multi.multiprod", "numpy.shape", "numpy.bmat", "pymanopt.tools.multi.multitransp", "numpy.linalg.norm", "pymanopt.tools.multi.multisym", "numpy.diag", "numpy.sqrt" ]
[((1309, 1335), 'numpy.sqrt', 'np.sqrt', (['(self._p * self._k)'], {}), '(self._p * self._k)\n', (1316, 1335), True, 'import numpy as np\n'), ((1510, 1541), 'numpy.tensordot', 'np.tensordot', (['G', 'H'], {'axes': 'G.ndim'}), '(G, H, axes=G.ndim)\n', (1522, 1541), True, 'import numpy as np\n'), ((2011, 2024), 'pymanopt.tools.multi.multisym', 'multisym', (['XtG'], {}), '(XtG)\n', (2019, 2024), False, 'from pymanopt.tools.multi import multiprod, multisym, multitransp\n'), ((2043, 2063), 'pymanopt.tools.multi.multiprod', 'multiprod', (['H', 'symXtG'], {}), '(H, symXtG)\n', (2052, 2063), False, 'from pymanopt.tools.multi import multiprod, multisym, multitransp\n'), ((2812, 2829), 'numpy.linalg.norm', 'np.linalg.norm', (['G'], {}), '(G)\n', (2826, 2829), True, 'import numpy as np\n'), ((3085, 3122), 'numpy.zeros', 'np.zeros', (['(self._k, self._n, self._p)'], {}), '((self._k, self._n, self._p))\n', (3093, 3122), True, 'import numpy as np\n'), ((4341, 4378), 'numpy.zeros', 'np.zeros', (['(self._k, self._n, self._p)'], {}), '((self._k, self._n, self._p))\n', (4349, 4378), True, 'import numpy as np\n'), ((1971, 1985), 'pymanopt.tools.multi.multitransp', 'multitransp', (['X'], {}), '(X)\n', (1982, 1985), False, 'from pymanopt.tools.multi import multiprod, multisym, multitransp\n'), ((2303, 2322), 'numpy.linalg.qr', 'np.linalg.qr', (['(X + G)'], {}), '(X + G)\n', (2315, 2322), True, 'import numpy as np\n'), ((2982, 3015), 'numpy.random.randn', 'np.random.randn', (['self._n', 'self._p'], {}), '(self._n, self._p)\n', (2997, 3015), True, 'import numpy as np\n'), ((3035, 3050), 'numpy.linalg.qr', 'np.linalg.qr', (['X'], {}), '(X)\n', (3047, 3050), True, 'import numpy as np\n'), ((3356, 3373), 'numpy.linalg.norm', 'np.linalg.norm', (['U'], {}), '(U)\n', (3370, 3373), True, 'import numpy as np\n'), ((4297, 4325), 'numpy.zeros', 'np.zeros', (['(self._n, self._p)'], {}), '((self._n, self._p))\n', (4305, 4325), True, 'import numpy as np\n'), ((2535, 2556), 'numpy.linalg.qr', 'np.linalg.qr', (['XNew[i]'], {}), '(XNew[i])\n', (2547, 2556), True, 'import numpy as np\n'), ((3191, 3224), 'numpy.random.randn', 'np.random.randn', (['self._n', 'self._p'], {}), '(self._n, self._p)\n', (3206, 3224), True, 'import numpy as np\n'), ((3299, 3310), 'numpy.shape', 'np.shape', (['X'], {}), '(X)\n', (3307, 3310), True, 'import numpy as np\n'), ((3836, 3847), 'numpy.shape', 'np.shape', (['X'], {}), '(X)\n', (3844, 3847), True, 'import numpy as np\n'), ((1821, 1835), 'pymanopt.tools.multi.multitransp', 'multitransp', (['X'], {}), '(X)\n', (1832, 1835), False, 'from pymanopt.tools.multi import multiprod, multisym, multitransp\n'), ((3719, 3747), 'numpy.zeros', 'np.zeros', (['(self._p, self._p)'], {}), '((self._p, self._p))\n', (3727, 3747), True, 'import numpy as np\n'), ((3640, 3655), 'numpy.eye', 'np.eye', (['self._p'], {}), '(self._p)\n', (3646, 3655), True, 'import numpy as np\n'), ((3767, 3782), 'numpy.bmat', 'np.bmat', (['[X, U]'], {}), '([X, U])\n', (3774, 3782), True, 'import numpy as np\n'), ((4118, 4146), 'numpy.zeros', 'np.zeros', (['(self._p, self._p)'], {}), '((self._p, self._p))\n', (4126, 4146), True, 'import numpy as np\n'), ((2415, 2425), 'numpy.diag', 'np.diag', (['r'], {}), '(r)\n', (2422, 2425), True, 'import numpy as np\n'), ((3994, 4009), 'numpy.eye', 'np.eye', (['self._p'], {}), '(self._p)\n', (4000, 4009), True, 'import numpy as np\n'), ((4173, 4194), 'numpy.bmat', 'np.bmat', (['[X[i], U[i]]'], {}), '([X[i], U[i]])\n', (4180, 4194), True, 'import numpy as np\n'), ((2638, 2648), 'numpy.diag', 'np.diag', (['r'], {}), '(r)\n', (2645, 2648), True, 'import numpy as np\n')]
from mock import patch, Mock from tests.helpers.testbase import TestBase from cerami.datatype import String from cerami.datatype.translator import BaseDatatypeTranslator class TestBaseDatatypeTranslator(TestBase): def setUp(self): self.dt = String() self.translator = BaseDatatypeTranslator(self.dt) def test_to_dynamodb_none(self): """it returns the NULL object when value is None""" assert self.translator.to_dynamodb(None) == {'NULL': True} def test_to_dynamodb(self): """it returns a dict with the key the condition_type and the value the result of resolve() """ with patch('cerami.datatype.translator.BaseDatatypeTranslator.format_for_dynamodb') as resolve: resolve.return_value = "mocked" res = self.translator.to_dynamodb('test') assert res == {"S": "mocked"} def test_to_cerami_null(self): """it returns None when mapped_dict is NULL""" assert self.translator.to_cerami({'NULL': True}) == None def test_to_cerami_calls_format_for_cerami(self): """calls format_for_cerami when the value is not NULL""" self.translator.format_for_cerami = Mock() self.translator.to_cerami({'S': 'test'}) self.translator.format_for_cerami.assert_called_with('test') def test_format_for_cerami(self): """returns the value""" assert self.translator.format_for_cerami('test') == 'test'
[ "mock.Mock", "mock.patch", "cerami.datatype.translator.BaseDatatypeTranslator", "cerami.datatype.String" ]
[((254, 262), 'cerami.datatype.String', 'String', ([], {}), '()\n', (260, 262), False, 'from cerami.datatype import String\n'), ((289, 320), 'cerami.datatype.translator.BaseDatatypeTranslator', 'BaseDatatypeTranslator', (['self.dt'], {}), '(self.dt)\n', (311, 320), False, 'from cerami.datatype.translator import BaseDatatypeTranslator\n'), ((1210, 1216), 'mock.Mock', 'Mock', ([], {}), '()\n', (1214, 1216), False, 'from mock import patch, Mock\n'), ((659, 737), 'mock.patch', 'patch', (['"""cerami.datatype.translator.BaseDatatypeTranslator.format_for_dynamodb"""'], {}), "('cerami.datatype.translator.BaseDatatypeTranslator.format_for_dynamodb')\n", (664, 737), False, 'from mock import patch, Mock\n')]
from json import dumps from .base import Base class Show(Base): """Show the databases and the tables using this command. Usage: puchkidb show [options] options: dbs: show all the databases in the server tables: show all the tables inside a database Example: puchkidb show dbs """ def run(self): print('Hello, world!') print('You supplied the following options:', dumps(self.options, indent=2, sort_keys=True))
[ "json.dumps" ]
[((444, 489), 'json.dumps', 'dumps', (['self.options'], {'indent': '(2)', 'sort_keys': '(True)'}), '(self.options, indent=2, sort_keys=True)\n', (449, 489), False, 'from json import dumps\n')]
import logging from fuzzywuzzy import process from telegram import ( Update, InlineQuery, InlineQueryResultArticle, InlineKeyboardButton, InlineKeyboardMarkup, ) from telegram.ext import CallbackContext from typing import List, Optional from pythonidbot.constants import HINTS from pythonidbot.utils.helpers import article, build_menu class Hints: def __init__(self, hints: Optional[List[dict]] = None): self.logger = logging.getLogger(__name__) self.score_cutoff = 60 self.hints = hints or list(HINTS.values()) self.hints_q_dict = dict(enumerate([hint["help"] for hint in self.hints])) self.hashtag_q_dict = dict(enumerate([hint["key"] for hint in self.hints])) @property def hints_article(self): return [self.article(hint) for hint in self.hints] def __call__( self, query: str, limit: int = 10, score_cutoff: int = 60, ) -> List[InlineQueryResultArticle]: return self.find(query, limit, score_cutoff) def find( self, query: str, limit: int = 10, score_cutoff: int = 60, ) -> List[InlineQueryResultArticle]: self.logger.debug(f"Mencari hint dengan keyword `{query}`") best_hints = process.extractBests( query=query, choices=self.hints_q_dict, score_cutoff=score_cutoff, limit=limit, ) self.logger.debug(f"Ditemukan {len(best_hints)} kemungkinan hint") return [self.hints_article[z] for (x, y, z) in best_hints] if best_hints else [] def article( self, data: dict, query: Optional[str] = None, markup: Optional[InlineKeyboardMarkup] = None, ) -> InlineQueryResultArticle: message: str = data["message"] if "{query}" in message: query = query or data["default"] message = message.replace("{query}", query) if "buttons" in data: markup = self.make_button(data["buttons"]) return article( title=data["help"], description=f'{data["key"]}: {message}', message_text=message, reply_markup=markup, ) def make_button(self, buttons: List[dict]) -> InlineKeyboardMarkup: keyboards: List[InlineKeyboardButton] = list() for data in buttons: keyboards.append(InlineKeyboardButton(**data)) menu = build_menu(keyboards, 1) return InlineKeyboardMarkup(menu) def hashtag_handler(self, update: Update, context: CallbackContext): if not update.inline_query: return query = update.inline_query.query query = query.lstrip("#") hashtag = query.split(" ")[0] query = query.lstrip(hashtag) if len(hashtag) < 3: return result = process.extractOne( hashtag, choices=self.hashtag_q_dict, score_cutoff=self.score_cutoff, ) if not result: return value, score, index = result results = [self.article(self.hints[index], query=query)] return update.inline_query.answer(results)
[ "pythonidbot.utils.helpers.article", "fuzzywuzzy.process.extractOne", "telegram.InlineKeyboardButton", "fuzzywuzzy.process.extractBests", "pythonidbot.utils.helpers.build_menu", "telegram.InlineKeyboardMarkup", "pythonidbot.constants.HINTS.values", "logging.getLogger" ]
[((453, 480), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (470, 480), False, 'import logging\n'), ((1273, 1378), 'fuzzywuzzy.process.extractBests', 'process.extractBests', ([], {'query': 'query', 'choices': 'self.hints_q_dict', 'score_cutoff': 'score_cutoff', 'limit': 'limit'}), '(query=query, choices=self.hints_q_dict, score_cutoff=\n score_cutoff, limit=limit)\n', (1293, 1378), False, 'from fuzzywuzzy import process\n'), ((2049, 2164), 'pythonidbot.utils.helpers.article', 'article', ([], {'title': "data['help']", 'description': 'f"""{data[\'key\']}: {message}"""', 'message_text': 'message', 'reply_markup': 'markup'}), '(title=data[\'help\'], description=f"{data[\'key\']}: {message}",\n message_text=message, reply_markup=markup)\n', (2056, 2164), False, 'from pythonidbot.utils.helpers import article, build_menu\n'), ((2451, 2475), 'pythonidbot.utils.helpers.build_menu', 'build_menu', (['keyboards', '(1)'], {}), '(keyboards, 1)\n', (2461, 2475), False, 'from pythonidbot.utils.helpers import article, build_menu\n'), ((2491, 2517), 'telegram.InlineKeyboardMarkup', 'InlineKeyboardMarkup', (['menu'], {}), '(menu)\n', (2511, 2517), False, 'from telegram import Update, InlineQuery, InlineQueryResultArticle, InlineKeyboardButton, InlineKeyboardMarkup\n'), ((2864, 2957), 'fuzzywuzzy.process.extractOne', 'process.extractOne', (['hashtag'], {'choices': 'self.hashtag_q_dict', 'score_cutoff': 'self.score_cutoff'}), '(hashtag, choices=self.hashtag_q_dict, score_cutoff=self.\n score_cutoff)\n', (2882, 2957), False, 'from fuzzywuzzy import process\n'), ((547, 561), 'pythonidbot.constants.HINTS.values', 'HINTS.values', ([], {}), '()\n', (559, 561), False, 'from pythonidbot.constants import HINTS\n'), ((2406, 2434), 'telegram.InlineKeyboardButton', 'InlineKeyboardButton', ([], {}), '(**data)\n', (2426, 2434), False, 'from telegram import Update, InlineQuery, InlineQueryResultArticle, InlineKeyboardButton, InlineKeyboardMarkup\n')]
# Compare Algorithms import pandas import matplotlib as mpl mpl.use('Agg') import matplotlib.pyplot as plt from sklearn import model_selection from sklearn.linear_model import LogisticRegression from sklearn.tree import DecisionTreeClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.naive_bayes import GaussianNB from sklearn.svm import SVC from sklearn.preprocessing import RobustScaler from sklearn.preprocessing import label_binarize import os import sys config_path = "utilities/" sys.path.append(os.path.abspath(config_path)) from MyAPI import MyAPI api = MyAPI() X, Y = api.get_dataset(0, start_index=0,end_index=20000, nr=20000) # prepare models models = [] models.append(('KNN', KNeighborsClassifier())) models.append(('Decision Tree', DecisionTreeClassifier())) models.append(('Gaussian', GaussianNB())) models.append(('SVM', SVC())) classes=list(set(Y)) # prepare configuration for cross validation test harness seed = 7 # evaluate each model in turn results = [] names = [] scoring = 'accuracy' for name, model in models: kfold = model_selection.KFold(n_splits=10, random_state=seed) cv_results = model_selection.cross_val_score(model, X, Y, cv=kfold, scoring=scoring) results.append(cv_results) names.append(name) msg = "%s: %f (%f)" % (name, cv_results.mean(), cv_results.std()) print(msg) # boxplot algorithm comparison fig = plt.figure() fig.suptitle('Algorithm Comparison') ax = fig.add_subplot(111) plt.boxplot(results) ax.set_xticklabels(names) plt.savefig('compare.png')
[ "os.path.abspath", "sklearn.naive_bayes.GaussianNB", "matplotlib.pyplot.boxplot", "sklearn.model_selection.cross_val_score", "sklearn.model_selection.KFold", "sklearn.tree.DecisionTreeClassifier", "matplotlib.pyplot.figure", "matplotlib.use", "sklearn.neighbors.KNeighborsClassifier", "sklearn.svm.SVC", "MyAPI.MyAPI", "matplotlib.pyplot.savefig" ]
[((60, 74), 'matplotlib.use', 'mpl.use', (['"""Agg"""'], {}), "('Agg')\n", (67, 74), True, 'import matplotlib as mpl\n'), ((656, 663), 'MyAPI.MyAPI', 'MyAPI', ([], {}), '()\n', (661, 663), False, 'from MyAPI import MyAPI\n'), ((1464, 1476), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (1474, 1476), True, 'import matplotlib.pyplot as plt\n'), ((1540, 1560), 'matplotlib.pyplot.boxplot', 'plt.boxplot', (['results'], {}), '(results)\n', (1551, 1560), True, 'import matplotlib.pyplot as plt\n'), ((1587, 1613), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""compare.png"""'], {}), "('compare.png')\n", (1598, 1613), True, 'import matplotlib.pyplot as plt\n'), ((595, 623), 'os.path.abspath', 'os.path.abspath', (['config_path'], {}), '(config_path)\n', (610, 623), False, 'import os\n'), ((1145, 1198), 'sklearn.model_selection.KFold', 'model_selection.KFold', ([], {'n_splits': '(10)', 'random_state': 'seed'}), '(n_splits=10, random_state=seed)\n', (1166, 1198), False, 'from sklearn import model_selection\n'), ((1216, 1287), 'sklearn.model_selection.cross_val_score', 'model_selection.cross_val_score', (['model', 'X', 'Y'], {'cv': 'kfold', 'scoring': 'scoring'}), '(model, X, Y, cv=kfold, scoring=scoring)\n', (1247, 1287), False, 'from sklearn import model_selection\n'), ((783, 805), 'sklearn.neighbors.KNeighborsClassifier', 'KNeighborsClassifier', ([], {}), '()\n', (803, 805), False, 'from sklearn.neighbors import KNeighborsClassifier\n'), ((840, 864), 'sklearn.tree.DecisionTreeClassifier', 'DecisionTreeClassifier', ([], {}), '()\n', (862, 864), False, 'from sklearn.tree import DecisionTreeClassifier\n'), ((894, 906), 'sklearn.naive_bayes.GaussianNB', 'GaussianNB', ([], {}), '()\n', (904, 906), False, 'from sklearn.naive_bayes import GaussianNB\n'), ((931, 936), 'sklearn.svm.SVC', 'SVC', ([], {}), '()\n', (934, 936), False, 'from sklearn.svm import SVC\n')]
import os import subprocess as subp import sys class Bench: moreisbetter = False def run(interp): os.chdir(os.path.join(sys.path[0], 'vendor', 'jsnes', 'test')) res = subp.run([interp, 'shell-bench.js'], stdout=subp.PIPE, universal_newlines=True) if res.returncode != 0: return "Error when trying to run jsnes with interpreter " + interp + "!" warmup, result = 0., 0. nwarmup, nresult = 0., 0. for line in res.stdout.split('\n'): res = line.split(':') if len(res) != 2: continue if res[0] == 'warmup': warmup += float(res[1]) nwarmup += 1 elif res[0] == 'result': result += float(res[1]) nresult += 1 return { 'warmup': warmup / nwarmup, '~~~~ Result': result / nresult, }
[ "subprocess.run", "os.path.join" ]
[((193, 272), 'subprocess.run', 'subp.run', (["[interp, 'shell-bench.js']"], {'stdout': 'subp.PIPE', 'universal_newlines': '(True)'}), "([interp, 'shell-bench.js'], stdout=subp.PIPE, universal_newlines=True)\n", (201, 272), True, 'import subprocess as subp\n'), ((125, 177), 'os.path.join', 'os.path.join', (['sys.path[0]', '"""vendor"""', '"""jsnes"""', '"""test"""'], {}), "(sys.path[0], 'vendor', 'jsnes', 'test')\n", (137, 177), False, 'import os\n')]
############################################################### import os import cv2 import math import numpy as np from scipy.ndimage import interpolation as inter from scipy.ndimage import rotate ############################################################### C_percentage = 0 ACCEPTED_EXTENSIONS = (".jpeg", ".jpg", ".png", ".tif", ".tiff", ".bmp", ".dib", ".jpe", ".jp2", ".webp", ".pbm", ".pgm", ".ppm", ".sr", ".ras") ############################################################### def euclidian_distance(first, second): return math.sqrt(sum([pow(max(x, y) - min(x, y), 2) for x, y in zip(first, second)])) def color_difference(first, second, precision = 100): return euclidian_distance(first, second) > precision def precision(arr, angle): hit = np.sum(inter.rotate(arr, angle, reshape = False, order = 0), axis = 1) prec = np.sum((hit[1:]-hit[:-1])**2) return prec def rotateImage(image, angle): image_center = tuple(np.array(image.shape[1::-1]) / 2) rot_mat = cv2.getRotationMatrix2D(image_center, angle, 1.0) result = cv2.warpAffine(image, rot_mat, image.shape[1::-1], flags=cv2.INTER_LINEAR, borderMode=cv2.BORDER_CONSTANT, borderValue=(255,255,255)) return result def crop(abs_folder_in, abs_folder_out, debug): global C_percentage images_list = [i for i in os.listdir(abs_folder_in) if i.endswith(ACCEPTED_EXTENSIONS) and i[:2] != "ad"] if debug: print("\n".join(images_list)) images_list = sorted(images_list, key = lambda i: int(i[:-4])) for c, image_path in enumerate(images_list, 1): original_image = cv2.imread(os.path.join(abs_folder_in, image_path), 0) sheet = cv2.resize(original_image, (0, 0), fx = 0.125, fy = 0.125) ret, sheet = cv2.threshold(sheet, 127, 255, cv2.THRESH_BINARY) wd, ht = sheet.shape pix = np.array(sheet, np.uint8) bin_img = 1 - (pix / 255.0) limit, delta = 10, 1 angles = np.arange(-limit, limit+delta, delta) scores = [precision(bin_img, angle) for angle in angles] best = angles[scores.index(max(scores))] original_image = rotateImage(cv2.imread(os.path.join(abs_folder_in, image_path)), best) w, h, z = original_image.shape K = 500 / max(w, h) resized_image = cv2.resize(original_image, (0, 0), fx = K, fy = K) w, h, z = resized_image.shape mx, my = int(w / 2), int(h / 2) startx = 0 starty = 0 endx = w endy = h for i in range(1, w): if color_difference(resized_image[i, my], resized_image[i - 1, my]): startx = i break for i in range(w - 2, 0, -1): if color_difference(resized_image[i, my], resized_image[i + 1, my]): endx = i break for i in range(1, h): if color_difference(resized_image[mx, i], resized_image[mx, i - 1]): starty = i break for i in range(h - 2, 0, -1): if color_difference(resized_image[mx, i], resized_image[mx, i + 1]): endy = i break if endx <= startx: endx = w if endy <= starty: endy = h startx, starty, endx, endy = int(startx * (1 / K)), int(starty * (1 / K)), int(endx * (1 / K)), int(endy * (1 / K)) jump = int(1 / K * 10) if debug: print("Angle : ", best) print("K : ", K, " jump : ", jump) print("(", startx, ", ", starty, ") -> (", endx, ", ", endy, ")") print("Saving...") if (endx-jump) - (startx+jump) < (w*K)/3 or (endy-jump) - (starty+jump) < (h*K)/3: cv2.imwrite(os.path.join(abs_folder_out, str(c) + ".jpg"), original_image) else: cv2.imwrite(os.path.join(abs_folder_out, str(c) + ".jpg"), original_image[startx + jump : endx - jump, starty + jump : endy - jump]) if debug: print("Done ", c, " of ", len(images_list)) C_percentage += 1 / len(images_list) C_percentage = 0 def get_percentage(): global C_percentage return C_percentage ###############################################################
[ "os.listdir", "numpy.sum", "cv2.threshold", "scipy.ndimage.interpolation.rotate", "cv2.warpAffine", "numpy.array", "numpy.arange", "os.path.join", "cv2.getRotationMatrix2D", "cv2.resize" ]
[((847, 880), 'numpy.sum', 'np.sum', (['((hit[1:] - hit[:-1]) ** 2)'], {}), '((hit[1:] - hit[:-1]) ** 2)\n', (853, 880), True, 'import numpy as np\n'), ((997, 1046), 'cv2.getRotationMatrix2D', 'cv2.getRotationMatrix2D', (['image_center', 'angle', '(1.0)'], {}), '(image_center, angle, 1.0)\n', (1020, 1046), False, 'import cv2\n'), ((1060, 1199), 'cv2.warpAffine', 'cv2.warpAffine', (['image', 'rot_mat', 'image.shape[1::-1]'], {'flags': 'cv2.INTER_LINEAR', 'borderMode': 'cv2.BORDER_CONSTANT', 'borderValue': '(255, 255, 255)'}), '(image, rot_mat, image.shape[1::-1], flags=cv2.INTER_LINEAR,\n borderMode=cv2.BORDER_CONSTANT, borderValue=(255, 255, 255))\n', (1074, 1199), False, 'import cv2\n'), ((772, 820), 'scipy.ndimage.interpolation.rotate', 'inter.rotate', (['arr', 'angle'], {'reshape': '(False)', 'order': '(0)'}), '(arr, angle, reshape=False, order=0)\n', (784, 820), True, 'from scipy.ndimage import interpolation as inter\n'), ((1653, 1707), 'cv2.resize', 'cv2.resize', (['original_image', '(0, 0)'], {'fx': '(0.125)', 'fy': '(0.125)'}), '(original_image, (0, 0), fx=0.125, fy=0.125)\n', (1663, 1707), False, 'import cv2\n'), ((1733, 1782), 'cv2.threshold', 'cv2.threshold', (['sheet', '(127)', '(255)', 'cv2.THRESH_BINARY'], {}), '(sheet, 127, 255, cv2.THRESH_BINARY)\n', (1746, 1782), False, 'import cv2\n'), ((1826, 1851), 'numpy.array', 'np.array', (['sheet', 'np.uint8'], {}), '(sheet, np.uint8)\n', (1834, 1851), True, 'import numpy as np\n'), ((1934, 1973), 'numpy.arange', 'np.arange', (['(-limit)', '(limit + delta)', 'delta'], {}), '(-limit, limit + delta, delta)\n', (1943, 1973), True, 'import numpy as np\n'), ((2273, 2319), 'cv2.resize', 'cv2.resize', (['original_image', '(0, 0)'], {'fx': 'K', 'fy': 'K'}), '(original_image, (0, 0), fx=K, fy=K)\n', (2283, 2319), False, 'import cv2\n'), ((949, 977), 'numpy.array', 'np.array', (['image.shape[1::-1]'], {}), '(image.shape[1::-1])\n', (957, 977), True, 'import numpy as np\n'), ((1314, 1339), 'os.listdir', 'os.listdir', (['abs_folder_in'], {}), '(abs_folder_in)\n', (1324, 1339), False, 'import os\n'), ((1593, 1632), 'os.path.join', 'os.path.join', (['abs_folder_in', 'image_path'], {}), '(abs_folder_in, image_path)\n', (1605, 1632), False, 'import os\n'), ((2134, 2173), 'os.path.join', 'os.path.join', (['abs_folder_in', 'image_path'], {}), '(abs_folder_in, image_path)\n', (2146, 2173), False, 'import os\n')]
import turtle captain = turtle.Turtle() print("\n--------------------------") print("Ad ve Soyad : <NAME>\nOkul No : 203305028") print("----------------------------") kenar = float(input("Kenar Uzunluklarini Gir : ")) yariCap = float(input("Dairenin Yaricapini Gir : ")) x = 0 y = 0 count = 0 kenar += yariCap captain.shape("circle") for i in range(4): captain.up() captain.goto(x,y) captain.down() captain.circle(yariCap) count += 1 if(count == 1): x = kenar + yariCap elif(count == 2): x = 0 y = (-kenar) - yariCap elif(count == 3): x = kenar + yariCap captain.up() captain.goto(0,yariCap) captain.down() for i in range(4): captain.shape("arrow") captain.dot() captain.forward(x) captain.right(90)
[ "turtle.Turtle" ]
[((25, 40), 'turtle.Turtle', 'turtle.Turtle', ([], {}), '()\n', (38, 40), False, 'import turtle\n')]
from logging import error import numpy as np class Plane: def __init__(self, origin: np.array, vector1: np.array, vector2: np.array) -> None: self.origin = origin self.vector1 = vector1 self.vector2 = vector2 def getBarycentricCoordinates(self, point: np.array, direction: np.array): a = np.array([self.vector1, self.vector2, -direction]).T b = point - self.origin sol = np.linalg.solve(a, b) return np.array([sol[0], sol[1]]) def convertBarycentricCoordinates(self, x, y): return self.origin + x * self.vector1 + y * self.vector2 class Sphere: """https://math.stackexchange.com/questions/268064/move-a-point-up-and-down-along-a-sphere""" def __init__(self, radius) -> None: self.radius = radius self.current_pos = [90, -90] def rotate(self, x, y): self.current_pos[0] = (self.current_pos[0] + x) % 360 self.current_pos[1] = (self.current_pos[1] + y) % 360 theta, phi = np.deg2rad(self.current_pos[0]), np.deg2rad(self.current_pos[1]) return np.array( [ self.radius * np.sin(theta) * np.cos(phi), self.radius * np.sin(theta) * np.sin(phi), self.radius * np.cos(theta), ] ) class RotationMatrix3D: def __init__(self) -> None: pass def __call__( self, object_to_rotate: np.ndarray, axis: int, angle: float ) -> np.ndarray: if axis == 0: rotation_matrix = np.array( [ [1, 0, 0], [0, np.cos(angle), -np.sin(angle)], [0, np.sin(angle), np.cos(angle)], ] ) elif axis == 1: rotation_matrix = np.array( [ [np.cos(angle), 0, np.sin(angle)], [0, 1, 0], [-np.sin(angle), 0, np.cos(angle)], ] ) elif axis == 2: rotation_matrix = np.array( [ [np.cos(angle), -np.sin(angle), 0], [np.sin(angle), np.cos(angle), 0], [0, 0, 1], ] ) else: raise error("Invalid argument for axis, options are 0, 1, 2") return np.matmul(rotation_matrix, object_to_rotate) def getQuadrant(x: float, y: float): if x == 0 and y == 0: return -1 if x >= 0 and y >= 0: return 1 elif x > 0 and y < 0: return 2 elif x <= 0 and y <= 0: return 3 elif x < 0 and y > 0: return 4
[ "logging.error", "numpy.deg2rad", "numpy.sin", "numpy.array", "numpy.cos", "numpy.matmul", "numpy.linalg.solve" ]
[((430, 451), 'numpy.linalg.solve', 'np.linalg.solve', (['a', 'b'], {}), '(a, b)\n', (445, 451), True, 'import numpy as np\n'), ((468, 494), 'numpy.array', 'np.array', (['[sol[0], sol[1]]'], {}), '([sol[0], sol[1]])\n', (476, 494), True, 'import numpy as np\n'), ((2348, 2392), 'numpy.matmul', 'np.matmul', (['rotation_matrix', 'object_to_rotate'], {}), '(rotation_matrix, object_to_rotate)\n', (2357, 2392), True, 'import numpy as np\n'), ((331, 381), 'numpy.array', 'np.array', (['[self.vector1, self.vector2, -direction]'], {}), '([self.vector1, self.vector2, -direction])\n', (339, 381), True, 'import numpy as np\n'), ((1008, 1039), 'numpy.deg2rad', 'np.deg2rad', (['self.current_pos[0]'], {}), '(self.current_pos[0])\n', (1018, 1039), True, 'import numpy as np\n'), ((1041, 1072), 'numpy.deg2rad', 'np.deg2rad', (['self.current_pos[1]'], {}), '(self.current_pos[1])\n', (1051, 1072), True, 'import numpy as np\n'), ((1158, 1169), 'numpy.cos', 'np.cos', (['phi'], {}), '(phi)\n', (1164, 1169), True, 'import numpy as np\n'), ((1217, 1228), 'numpy.sin', 'np.sin', (['phi'], {}), '(phi)\n', (1223, 1228), True, 'import numpy as np\n'), ((1260, 1273), 'numpy.cos', 'np.cos', (['theta'], {}), '(theta)\n', (1266, 1273), True, 'import numpy as np\n'), ((2276, 2331), 'logging.error', 'error', (['"""Invalid argument for axis, options are 0, 1, 2"""'], {}), "('Invalid argument for axis, options are 0, 1, 2')\n", (2281, 2331), False, 'from logging import error\n'), ((1142, 1155), 'numpy.sin', 'np.sin', (['theta'], {}), '(theta)\n', (1148, 1155), True, 'import numpy as np\n'), ((1201, 1214), 'numpy.sin', 'np.sin', (['theta'], {}), '(theta)\n', (1207, 1214), True, 'import numpy as np\n'), ((1613, 1626), 'numpy.cos', 'np.cos', (['angle'], {}), '(angle)\n', (1619, 1626), True, 'import numpy as np\n'), ((1669, 1682), 'numpy.sin', 'np.sin', (['angle'], {}), '(angle)\n', (1675, 1682), True, 'import numpy as np\n'), ((1684, 1697), 'numpy.cos', 'np.cos', (['angle'], {}), '(angle)\n', (1690, 1697), True, 'import numpy as np\n'), ((1629, 1642), 'numpy.sin', 'np.sin', (['angle'], {}), '(angle)\n', (1635, 1642), True, 'import numpy as np\n'), ((1835, 1848), 'numpy.cos', 'np.cos', (['angle'], {}), '(angle)\n', (1841, 1848), True, 'import numpy as np\n'), ((1853, 1866), 'numpy.sin', 'np.sin', (['angle'], {}), '(angle)\n', (1859, 1866), True, 'import numpy as np\n'), ((1940, 1953), 'numpy.cos', 'np.cos', (['angle'], {}), '(angle)\n', (1946, 1953), True, 'import numpy as np\n'), ((1922, 1935), 'numpy.sin', 'np.sin', (['angle'], {}), '(angle)\n', (1928, 1935), True, 'import numpy as np\n'), ((2091, 2104), 'numpy.cos', 'np.cos', (['angle'], {}), '(angle)\n', (2097, 2104), True, 'import numpy as np\n'), ((2147, 2160), 'numpy.sin', 'np.sin', (['angle'], {}), '(angle)\n', (2153, 2160), True, 'import numpy as np\n'), ((2162, 2175), 'numpy.cos', 'np.cos', (['angle'], {}), '(angle)\n', (2168, 2175), True, 'import numpy as np\n'), ((2107, 2120), 'numpy.sin', 'np.sin', (['angle'], {}), '(angle)\n', (2113, 2120), True, 'import numpy as np\n')]