prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Jun 18 08:32:19 2021 revi take: plot time series of deal amount for SEI/P2015 clusters (5 or 10) on settelament level and then on the right a map with corohpleths with mean/median value for this, i need to prepare the muni shapefile with RC in it. @author: shlomi """ from MA_paths import work_david from shapely.geometry import * nadlan_path = work_david / 'Nadlan_deals' apts = ['דירה', 'דירה בבית קומות'] muni_path = work_david/'gis/muni_il' dis_dict = {} dis_dict['ירושלים'] = 1 dis_dict['הצפון'] = 2 dis_dict['חיפה'] = 3 dis_dict['המרכז'] = 4 dis_dict['תל אביב'] = 5 dis_dict['הדרום'] = 6 dis_dict['יו"ש'] = 7 dis_en = {1: 'Jerusalem', 2: 'North', 3: 'Haifa', 4: 'Center', 5: 'Tel-Aviv', 6: 'South', 7: 'J&S'} P2015_2_dict = {1: 1, 2: 1, 3: 2, 4: 2, 5: 3, 6: 4, 7: 4, 8: 5, 9: 5, 10: 5} P2015_2_name = {1: 'Very Peripheral', 2: 'Peripheral', 3: 'In Between', 4: 'Centralized', 5: 'Very Centralized'} SEI2_dict = {1: 1, 2: 1, 3: 2, 4: 2, 5: 3, 6: 3, 7: 4, 8: 4, 9: 5, 10: 5} def convert_df_variable_names(df, path=work_david, drop=True): import pandas as pd vlist = pd.read_csv(path/'nadlan_database_variable_list.csv', header=None) vlist.columns = ['old', 'new', 'final'] vlist['final'] = vlist['final'].fillna(vlist['new']) vlist.set_index('old', inplace=True) di = vlist['final'].to_dict() df = df.rename(di, axis=1) df = df[[x for x in df.columns if 'to_drop' not in x]] return df def extract_JS_settelments_from_stat_areas(path=work_david, muni_path=muni_path): from cbs_procedures import read_statistical_areas_gis_file from cbs_procedures import read_bycode_city_data import pandas as pd import geopandas as gpd st = read_statistical_areas_gis_file(path) print('extrcting JS big settelments...') # J&S city codes from nadlan database: js_cc = [3780, 3616, 3730, 3797, 3760, 3570, 3769, 3640, 3720, 3778] # js_st = st[st['city_code'].isin(js_cc)] ccs = st[st['city_code'].isin(js_cc)]['city_code'].unique() js = st[st['city_code'].isin(ccs)] sers = [] for cc in ccs: cols = js[js['city_code']==cc].loc[:, ['city_code', 'NameHe', 'NameEn']] ser = gpd.GeoSeries(js[js['city_code']==cc]['geometry'].unary_union) ser['city_code'] = cols['city_code'].unique()[0] ser['NameHe'] = cols['NameHe'].unique()[0] ser['NameEn'] = cols['NameEn'].unique()[0] ser = ser.rename({0: 'geometry'}) sers.append(ser) gdf = gpd.GeoDataFrame(sers, geometry='geometry') geos_to_complete = [1, 2, 4, 8, 9] city_codes_to_complete = [ccs[x] for x in geos_to_complete] bycode = read_bycode_city_data(path) names = [bycode.loc[x]['NameHe'] for x in city_codes_to_complete] js = gpd.read_file(muni_path/'JS_plans.shp') geos = [js[js['P_NAME']==x].geometry.unary_union for x in names] sers = [] for i, geo in zip(geos_to_complete, geos): ser = gpd.GeoSeries(geo) ser['city_code'] = gdf.iloc[i]['city_code'] ser['NameHe'] = gdf.iloc[i]['NameHe'] ser['NameEn'] = gdf.iloc[i]['NameEn'] ser = ser.rename({0: 'geometry'}) sers.append(ser) gdf = gdf.drop(geos_to_complete, axis=0) gdf1 = gpd.GeoDataFrame(sers, geometry='geometry') gdf = pd.concat([gdf, gdf1], axis=0) gdf['district'] = 'יו"ש' return gdf def prepare_just_city_codes_gis_areas(path=work_david, muni_path=muni_path): import geopandas as gpd import pandas as pd from cbs_procedures import read_statistical_areas_gis_file js = extract_JS_settelments_from_stat_areas(path, muni_path) js = js.drop('district', axis=1) js_ccs = js['city_code'].unique() st = read_statistical_areas_gis_file(path) ccs = st['city_code'].unique() sers = [] ccs = [x for x in ccs if x not in js_ccs] for cc in ccs: geo = st[st['city_code'] == cc]['geometry'].unary_union geo = remove_third_dimension(geo) ser = gpd.GeoSeries(geo) ser['city_code'] = cc ser['NameHe'] = st[st['city_code'] == cc]['NameHe'].unique()[0] ser['NameEn'] = st[st['city_code'] == cc]['NameEn'].unique()[0] ser = ser.rename({0: 'geometry'}) sers.append(ser) gdf_cc = gpd.GeoDataFrame(sers, geometry='geometry') gdf = pd.concat([gdf_cc, js], axis=0) gdf = gdf.set_index('city_code') filename = 'Municipal+J&S+city_code_level.shp' gdf.to_file(muni_path/filename, encoding='cp1255', index=True, na_rep='None') print('{} was saved to {}.'.format(filename, muni_path)) return gdf def prepare_municiapal_level_and_RC_gis_areas(path=work_david, muni_path=muni_path): import geopandas as gpd import pandas as pd js = extract_JS_settelments_from_stat_areas(path, muni_path) muni = gpd.read_file(path/'gis/muni_il/muni_il.shp') muni['city_code'] = pd.to_numeric(muni['CR_LAMAS']) muni['Machoz'] = muni['Machoz'].str.replace('צפון', 'הצפון') muni['Machoz'] = muni['Machoz'].str.replace('דרום', 'הדרום') muni['Machoz'] = muni['Machoz'].str.replace('מרכז', 'המרכז') muni_type_dict = {} muni_type_dict['עירייה'] = 'City' muni_type_dict['מועצה מקומית'] = 'LC' muni_type_dict['מועצה אזורית'] = 'RC' muni_type_dict['ללא שיפוט'] = 'NA' muni_type_dict['מועצה מקומית תעשייתית'] = 'ILC' muni['muni_type'] = muni['Sug_Muni'].map(muni_type_dict) muni['rc_code'] = muni[muni['muni_type'] == 'RC']['CR_PNIM'].str[2:4].astype(int) print('aggragating polygons to city/rc level...') rc = muni[muni['muni_type'] == 'RC'] non_rc = muni[muni['muni_type'] != 'RC'] sers = [] for nrc in rc['rc_code'].unique(): geo = rc[rc['rc_code'] == nrc]['geometry'].unary_union geo = remove_third_dimension(geo) ser = gpd.GeoSeries(geo) ser['rc_code'] = nrc ser['NameHe'] = rc[rc['rc_code'] == nrc]['Muni_Heb'].unique()[0] ser['NameEn'] = rc[rc['rc_code'] == nrc]['Muni_Eng'].unique()[0] ser['district'] = rc[rc['rc_code'] == nrc]['Machoz'].unique()[0] ser = ser.rename({0: 'geometry'}) sers.append(ser) gdf_rc = gpd.GeoDataFrame(sers, geometry='geometry') sers = [] ccs = non_rc[~non_rc['city_code'].isnull()]['city_code'].unique() for cc in ccs: # print(cc) geo = non_rc[non_rc['city_code'] == cc]['geometry'].unary_union geo = remove_third_dimension(geo) ser = gpd.GeoSeries(geo) ser['city_code'] = cc ser['NameHe'] = non_rc[non_rc['city_code'] == cc]['Muni_Heb'].unique()[ 0] ser['NameEn'] = non_rc[non_rc['city_code'] == cc]['Muni_Eng'].unique()[ 0] ser['district'] = non_rc[non_rc['city_code'] == cc]['Machoz'].unique()[ 0] ser = ser.rename({0: 'geometry'}) sers.append(ser) gdf_nonrc = gpd.GeoDataFrame(sers, geometry='geometry') gdf = pd.concat([gdf_rc, gdf_nonrc, js], axis=0) gdf = gdf.reset_index(drop=True) filename = 'Municipal+J&S+Regional.shp' gdf.to_file(muni_path/filename, encoding='cp1255') print('{} was saved to {}.'.format(filename, muni_path)) return gdf def remove_third_dimension(geom): if geom.is_empty: return geom if isinstance(geom, Polygon): exterior = geom.exterior new_exterior = remove_third_dimension(exterior) interiors = geom.interiors new_interiors = [] for int in interiors: new_interiors.append(remove_third_dimension(int)) return Polygon(new_exterior, new_interiors) elif isinstance(geom, LinearRing): return LinearRing([xy[0:2] for xy in list(geom.coords)]) elif isinstance(geom, LineString): return LineString([xy[0:2] for xy in list(geom.coords)]) elif isinstance(geom, Point): return Point([xy[0:2] for xy in list(geom.coords)]) elif isinstance(geom, MultiPoint): points = list(geom.geoms) new_points = [] for point in points: new_points.append(remove_third_dimension(point)) return MultiPoint(new_points) elif isinstance(geom, MultiLineString): lines = list(geom.geoms) new_lines = [] for line in lines: new_lines.append(remove_third_dimension(line)) return MultiLineString(new_lines) elif isinstance(geom, MultiPolygon): pols = list(geom.geoms) new_pols = [] for pol in pols: new_pols.append(remove_third_dimension(pol)) return MultiPolygon(new_pols) elif isinstance(geom, GeometryCollection): geoms = list(geom.geoms) new_geoms = [] for geom in geoms: new_geoms.append(remove_third_dimension(geom)) return GeometryCollection(new_geoms) else: raise RuntimeError("Currently this type of geometry is not supported: {}".format(type(geom))) def create_israel_districts(path=muni_path): import geopandas as gpd import pandas as pd from shapely.geometry import MultiPolygon, Polygon, LineString from shapely.ops import cascaded_union muni = gpd.read_file(path/'muni_il.shp') muni['Machoz'] = muni['Machoz'].str.replace('צפון', 'הצפון') muni['Machoz'] = muni['Machoz'].str.replace('דרום', 'הדרום') muni['Machoz'] = muni['Machoz'].str.replace('מרכז', 'המרכז') dists = muni['Machoz'].unique() sers = [] for dis in dists: print(dis) # print(dis) geo = muni[muni['Machoz'] == dis].geometry.unary_union if isinstance(geo, MultiPolygon): eps = 0.01 omega = cascaded_union([ Polygon(component.exterior).buffer(eps).buffer(-eps) for component in geo ]) geo = omega[0] geo = remove_third_dimension(geo) ser = gpd.GeoSeries(geo) ser = ser.rename({0: 'geometry'}) # print(type(ser)) ser['district'] = dis ser['district_EN'] = dis_en[dis_dict[dis]] ser['district_code'] = dis_dict[dis] bound = ser['geometry'].boundary if not isinstance(bound, LineString): ser['geometry'] = Polygon(bound[0]) # ser['geometry'] = ser['geometry'].simplify(0.1) # ser.crs = muni.crs sers.append(ser) # now add J&S: js = gpd.read_file(path/'J&S_matakim.geojson') js = js.to_crs(2039) js1 = gpd.GeoSeries(js.geometry.unary_union) js1 = js1.rename({0: 'geometry'}) js1['district'] = 'יו"ש' js1['district_EN'] = 'J&S' js1['district_code'] = 7 js1 = gpd.GeoDataFrame([js1]) b = js1.geometry.boundary.values[0] js1['geometry'] = Polygon(b[0]) js1.index = [6] # sers.append(js1) dgf = gpd.GeoDataFrame(sers, geometry='geometry', crs=muni.crs) dgf = pd.concat([dgf, js1], axis=0) dgf = dgf.rename( {'district': 'NameHe', 'district_EN': 'NameEn', 'district_code': 'Code'}, axis=1) dgf.geometry = dgf.geometry.simplify(10) filename = 'Israel_districts_incl_J&S.shp' dgf.to_file(path/filename) print('{} was saved to {}.'.format(filename, path)) return dgf def create_higher_group_category(df, existing_col='SEI_cluster', n_groups=2, new_col='SEI2_cluster', names=None): import pandas as pd lower_group = sorted(df[existing_col].dropna().unique()) new_group = [lower_group[i:i+n_groups+1] for i in range(0, len(lower_group), n_groups+1)] new_dict = {} if names is not None: assert len(names) == len(new_group) for i, item in enumerate(new_group): if names is not None: new_dict[names[i]] = new_group[i] else: new_dict[i+1] = new_group[i] m = pd.Series(new_dict).explode().sort_values() d = {x: y for (x, y) in zip(m.values, m.index)} df[new_col] = df[existing_col].map(d) return df # def geolocate_nadlan_deals_within_city_or_rc(df, muni_path=muni_path, # savepath=work_david): # import geopandas as gpd # import pandas as pd # # run load_nadlan_combined_deal with return_XY and without add_geo_layers: # gdf = gpd.read_file(muni_path/'Municipal+J&S+Regional.shp') # print('geolocating nadlan deals within city or RC...') # total = gdf.index.size # keys = [] # for i, row in gdf.iterrows(): # print('index: {} / {}'.format(i, total)) # within = df.geometry.within(row['geometry']) # if within.sum() == 0: # print('no deals found in {}'.format(row['NameHe'])) # continue # inds = df.loc[within].index # dff = pd.DataFrame(df.loc[inds, 'KEYVALUE']) # dff['muni_gdf_index'] = i # keys.append(dff) # filename = 'Muni_gdf_KEYVALUE_index.csv' # dff = pd.concat(keys, axis=0) # dff.to_csv(savepath/filename, na_rep='None') # print('Done!') # return dff def load_nadlan_combined_deal(path=work_david, times=['1998Q1', '2021Q1'], dealamount_iqr=2, return_XY=False, add_bgr=None, add_geo_layers=False, add_mean_salaries=False, rename_vars=True, agg_rooms_345=True): import pandas as pd from Migration_main import path_glob import geopandas as gpd from cbs_procedures import read_statistical_areas_gis_file import numpy as np from cbs_procedures import read_mean_salary def add_bgr_func(grp, bgr, rooms='Total'): import numpy as np cc_as_str = str(grp['city_code'].unique()[0]) try: gr = bgr.loc[cc_as_str][rooms] except KeyError: gr = np.nan grp['Building_Growth_Rate'] = gr return grp def add_stat_area_func(grp, stat_gdf): city_code11 = grp['city_stat_code'].unique()[0] geo = stat_gdf[stat_gdf['city_stat11']==city_code11].geometry.item() grp['stat_geo'] = [geo]*len(grp) return grp def add_district_area_func(grp, dis_df): district_code = grp['district_code'].unique()[0] geo = dis_df[dis_df['Code']==district_code].geometry.item() grp['district_geo'] = [geo]*len(grp) return grp def add_mean_salary_func(grp, sal): year = grp['year'].unique()[0] salary = sal[sal['year']==year]['mean_salary'].item() grp['mean_salary'] = [salary]*len(grp) return grp file = path_glob( path, 'Nadlan_deals_neighborhood_combined_processed_*.csv')[0] print(file) dtypes = {'FULLADRESS': 'object', 'Street': 'object', 'FLOORNO': float, 'NEWPROJECTTEXT': bool, 'PROJECTNAME': 'object', 'DEALAMOUNT': float} df = pd.read_csv(file, na_values='None', parse_dates=['DEALDATETIME'], dtype=dtypes) # filter nans: # df = df[~df['district'].isnull()] if times is not None: print('Slicing to times {} to {}.'.format(*times)) # df = df[df['year'].isin(np.arange(years[0], years[1] + 1))] df = df.set_index('DEALDATETIME') df = df.loc[times[0]:times[1]] df = df.reset_index() if dealamount_iqr is not None: print('Filtering DEALAMOUNT with IQR of {}.'.format(dealamount_iqr)) df = df[~df.groupby('year')['DEALAMOUNT'].apply( is_outlier, method='iqr', k=dealamount_iqr)] df = df.reset_index(drop=True) # print('loading gdf muni index...') df['P2015_cluster2'] = df['P2015_cluster'].map(P2015_2_dict) if return_XY: inds = df[df['X'] == 0].index df.loc[inds, 'X'] = np.nan inds = df[df['Y'] == 0].index df.loc[inds, 'Y'] = np.nan df = gpd.GeoDataFrame( df, geometry=gpd.points_from_xy(df['X'], df['Y'])) if add_mean_salaries: print('adding mean salaries.') sal = read_mean_salary() df = df.groupby('year').apply(add_mean_salary_func, sal) df['MSAL_per_ASSET'] = (df['DEALAMOUNT'] / df['mean_salary']).round() if add_bgr is not None: print('Adding Building Growth rate.') file = path_glob(path, 'Building_*_growth_rate_*.csv')[0] bgr = pd.read_csv(file, na_values='None', index_col='ID') df = df.groupby('city_code').apply(add_bgr_func, bgr, rooms=add_bgr) df.loc[df['Building_Growth_Rate'] == 0] = np.nan if add_geo_layers: print('adding statistical area geometry') stat_gdf = read_statistical_areas_gis_file(path) df = df.groupby('city_stat_code').apply(add_stat_area_func, stat_gdf) print('adding district area geometry') dis_df = gpd.read_file(path/'gis/muni_il/Israel_districts_incl_J&S.shp') df['district_code'] = df['district'].map(dis_dict) df = df.groupby('district_code').apply(add_district_area_func, dis_df) if agg_rooms_345: inds = df.loc[(df['ASSETROOMNUM']>=3) & (df['ASSETROOMNUM']<4)].index df.loc[inds, 'Rooms_345'] = 3 inds = df.loc[(df['ASSETROOMNUM']>=4) & (df['ASSETROOMNUM']<5)].index df.loc[inds, 'Rooms_345'] = 4 inds = df.loc[(df['ASSETROOMNUM']>=5) & (df['ASSETROOMNUM']<6)].index df.loc[inds, 'Rooms_345'] = 5 df['Rooms_345'] = df['Rooms_345'].astype(pd.Int64Dtype()).astype('category') if rename_vars: print('renaming vars.') var_names = pd.read_excel(path/'nadlan_database_variable_list.xls', header=None) var_di = dict(zip(var_names[0], var_names[1])) df = df.rename(var_di, axis=1) return df def load_nadlan_deals(path=work_david, csv=True, times=['1998Q1', '2021Q1'], dealamount_iqr=2, fix_new_status=True, add_SEI2_cluster=True, add_peripheri_data=True, add_bycode_data=True ): import pandas as pd import numpy as np from Migration_main import path_glob from cbs_procedures import read_periphery_index from cbs_procedures import read_bycode_city_data if csv: file = path_glob(path, 'Nadlan_deals_processed_*.csv') dtypes = {'FULLADRESS': 'object', 'Street': 'object', 'FLOORNO': 'object', 'NEWPROJECTTEXT': 'object', 'PROJECTNAME': 'object', 'DEALAMOUNT': float} df = pd.read_csv(file[0], na_values='None', parse_dates=['DEALDATETIME'], dtype=dtypes) else: file = path_glob(path, 'Nadlan_deals_processed_*.hdf') df = pd.read_hdf(file) df['year'] = df['DEALDATETIME'].dt.year df['month'] = df['DEALDATETIME'].dt.month df['quarter'] = df['DEALDATETIME'].dt.quarter df['YQ'] = df['year'].astype(str) + 'Q' + df['quarter'].astype(str) if times is not None: print('Slicing to times {} to {}.'.format(*times)) # df = df[df['year'].isin(np.arange(years[0], years[1] + 1))] df = df.set_index('DEALDATETIME') df = df.loc[times[0]:times[1]] df = df.reset_index() if dealamount_iqr is not None: print('Filtering DEALAMOUNT with IQR of {}.'.format(dealamount_iqr)) df = df[~df.groupby('year')['DEALAMOUNT'].apply( is_outlier, method='iqr', k=dealamount_iqr)] if fix_new_status: inds = df.loc[(df['Age'] < 0) & (df['Age'] > -5)].index df.loc[inds, 'New'] = True df['NEWPROJECTTEXT'] = pd.to_numeric(df['NEWPROJECTTEXT']).fillna(0) df['NEWPROJECTTEXT'] = df['NEWPROJECTTEXT'].astype(bool) if add_SEI2_cluster: SEI_cluster = [x+1 for x in range(10)] new = [SEI_cluster[i:i+2] for i in range(0, len(SEI_cluster), 2)] SEI2 = {} for i, item in enumerate(new): SEI2[i+1] = new[i] m = pd.Series(SEI2).explode().sort_values() d = {x: y for (x, y) in zip(m.values, m.index)} df['SEI2_cluster'] = df['SEI_cluster'].map(d) if add_peripheri_data: pdf = read_periphery_index() cols = ['TLV_proximity_value', 'TLV_proximity_rank', 'PAI_value', 'PAI_rank', 'P2015_value', 'P2015_rank', 'P2015_cluster'] dicts = [pdf[x].to_dict() for x in cols] series = [df['city_code'].map(x) for x in dicts] pdf1 = pd.concat(series, axis=1) pdf1.columns = cols df = pd.concat([df, pdf1], axis=1) if add_bycode_data: bdf = read_bycode_city_data() cols = ['district', 'district_EN', 'region', 'natural_area'] dicts = [bdf[x].to_dict() for x in cols] series = [df['city_code'].map(x) for x in dicts] bdf1 =
pd.concat(series, axis=1)
pandas.concat
## for data import pandas as pd import numpy as np import requests import json import os from datetime import datetime, date from dotenv import load_dotenv from sklearn.preprocessing import PolynomialFeatures from sklearn.linear_model import LinearRegression ## for plotting import matplotlib.pyplot as plt import matplotlib.patches as pltpatches ## for stationarity test import statsmodels.api as sm ## for outliers detection, models tuning, clustering from sklearn import preprocessing, svm, model_selection, metrics, cluster ## for autoregressive models import pmdarima import statsmodels.tsa.api as smt import arch import tensorflow as tf ## for deep learning from tensorflow.python.keras import models, layers, preprocessing as kprocessing ## for prophet from fbprophet import Prophet pd.plotting.register_matplotlib_converters() ## for parametric fit and resistence/support from scipy import optimize, stats, signal, cluster as sci_cluster ## for clustering from tslearn.metrics import dtw from tslearn.utils import to_time_series_dataset from tslearn.clustering import TimeSeriesKMeans ############################################################################### # TS ANALYSIS # ############################################################################### def get_data_api_toTs(ini,coin): coin_url = os.getenv(coin.upper()+"_HISTOHOUR") if ini == 0 : request = requests.get(coin_url) else: request = requests.get(coin_url+f"&toTs={ini}") todo = json.loads(request.content) return todo['Data']['Data'] def convertToDF(dfJSON): return(pd.json_normalize(dfJSON)) ''' get cryptocurrency dataSet :parameter     :param coin: coin name (BTC,ETH or XRP)     :param researches: number of observations * 2001 ''' def get_data_df(coin,researches): load_dotenv() data = get_data_api_toTs(0,coin) df_aux = convertToDF(data) for x in range(researches-1): ini = df_aux['time'][0] print("Buscando dados de : ",datetime.fromtimestamp(ini)) data1=get_data_api_toTs(ini,coin) df_aux1 = convertToDF(data1) df_aux = df_aux1.append(df_aux,ignore_index=True) return df_aux ''' get cryptocurrency dataSet :parameter     :param coin: coin name (BTC,ETH or XRP)     :param sample_data: get sample data from api? (true or false) ''' def get_data(coin, sample_data=True): if coin.upper() not in ('BTC', 'ETH', 'XRP'): err_msg = coin + ' is a invalid coin!' raise ValueError(err_msg) name_coin = "_SAMPLE_DATA" if sample_data else "_ALL_DATA" name_coin = coin.upper() + name_coin print("\nBuscando ", "amostra" if sample_data else "todas", " observações da moeda", coin.upper()) load_dotenv() coin_url = os.getenv(name_coin) request = requests.get(coin_url) data = json.loads(request.content) content = data.get("Data") content = content.get("Data") print("Dataset foi carregado! Formatando Dataset ...") df = pd.json_normalize(content[0]) for i in range(1, len(content)): observation = content[i] df_temp = pd.json_normalize(observation) df = pd.DataFrame.append(df, df_temp) return df ''' Plot ts with rolling mean and 95% confidence interval with rolling std. :parameter     :param ts: pandas Series     :param window: num for rolling stats :param plot_intervals: bool - if True plots the conf interval :param plot_ma: bool - if True plots the moving avg ''' def plot_ts(ts, plot_ma=True, plot_intervals=True, window=30, figsize=(15,5)): rolling_mean = ts.rolling(window=window).mean() rolling_std = ts.rolling(window=window).std() plt.figure(figsize=figsize) plt.title(ts.name) plt.plot(ts[window:], label='ts', color="black") if plot_ma: plt.plot(rolling_mean, 'g', label='MA'+str(window), color="red") if plot_intervals: lower_bound = rolling_mean - (1.96 * rolling_std) upper_bound = rolling_mean + (1.96 * rolling_std) plt.fill_between(x=ts.index, y1=lower_bound, y2=upper_bound, color='lightskyblue', alpha=0.4) plt.legend(loc='best') plt.grid(True) plt.show() ''' Fit a parametric trend line. :parameter     :param ts: pandas Series     :param degree: polynomial order, ex. if 1 --> trend line = constant + slope*x, if 2 --> trend line = constant + a*x + b*x^2 ''' def fit_trend(ts, degree=1, plot=True, figsize=(15,5)): ## fit trend dtf = ts.to_frame(name="ts") params = np.polyfit(ts.reset_index().index, ts.values, deg=degree) costant = params[-1] dtf["trend"] = costant X = np.array(range(1,len(ts)+1)) for i in range(1,degree+1): dtf["trend"] = dtf["trend"] + params[i-1]*(X**i) ## plot if plot is True: ax = dtf.plot(grid=True, title="Fitting Trend", figsize=figsize, color=["black","red"]) ax.set(xlabel=None) plt.show() return dtf, params ''' Fit a parametric trend poly. :parameter     :param ts: pandas Series     :param degree: polynomial order, ex. if 2 --> trend line = constant + a*x + b*x^2 ... ''' def fit_poly(ts_train, ts_test, degree=2, plot=True, figsize=(6,6)): ts = ts_train.append(ts_test) x = ts.reset_index().index y = ts.values params = np.polyfit(x, y,degree) poly1d_fn = np.poly1d(params) y_pred = poly1d_fn(x) ts_plot = ts.reset_index() poly = pd.DataFrame({'forecast': y_pred, 'x': ts.reset_index()['date'], 'ts': ts_plot['sales']}) ## plot if plot is True: plt.figure(figsize=figsize) es_ts = poly[["x","ts"]] es_fc = poly[["x","forecast"]] print(es_fc) plt.plot(es_ts['x'], es_ts['ts'],color="black", label = "Histórico") plt.plot(es_fc['x'], es_fc['forecast'],color="green", label = "Treinamento") plt.xlabel("Data") plt.xticks(rotation=45) plt.ylabel("US$") plt.grid(True) plt.legend() if degree > 1 : plt.savefig('regressao_polinomial_train.png', format='png', bbox_inches='tight') else: plt.savefig('regressao_linear_train.png', format='png', bbox_inches='tight') plt.show() print('Figura Salva!') plt.figure(figsize=figsize) first_idx = poly[pd.notnull(poly["forecast"])].index[0] first_loc = poly.index.tolist().index(first_idx) zoom_idx = poly.index[first_loc-len(ts_test)] es_ts = poly.loc[zoom_idx:][["x","ts"]] es_fc = poly.loc[zoom_idx:][["x","forecast"]] plt.plot(es_ts['x'], es_ts['ts'],color="black", label = "Histórico") plt.plot(es_fc['x'], es_fc['forecast'],color="green", label = "Teste") plt.xlabel("Data") plt.xticks(rotation=45) plt.ylabel("US$") plt.grid(True) plt.legend() if degree > 1 : plt.savefig('regressao_polinomial_test.png', format='png', bbox_inches='tight') else: plt.savefig('regressao_linear_test.png', format='png', bbox_inches='tight') plt.show() print('Figura Salva!') d = y - y_pred mape = np.mean(np.abs(d / y)) * 100 mse = np.mean(d**2) mae = np.mean(abs(d)) rmse = np.sqrt(mse) print("Results by manual calculation: Treinamento") print("MAPE:%.4f" %mape,"%") print("MAE:%.4f" %mae) print("MSE:%.4f" %mse) print("RMSE:%.4f" %rmse) es_ts = poly.loc[zoom_idx:][["x","ts"]] es_fc = poly.loc[zoom_idx:][["x","forecast"]] poly["error"] = es_ts["ts"] - es_fc["forecast"] poly["error_pct"] = poly["error"] / es_ts["ts"] ### kpi error_mean = poly["error"].mean() error_std = poly["error"].std() mae = poly["error"].apply(lambda x: np.abs(x)).mean() #mean absolute error mape = poly["error_pct"].apply(lambda x: np.abs(x)).mean() *100 #mean absolute error % mse = poly["error"].apply(lambda x: x**2).mean() #mean squared error rmse = np.sqrt(mse) #root mean squared error print("Results by manual calculation Teste:") print("MAPE:%.4f" %mape,"%") print("MAE:%.4f" %mae) print("MSE:%.4f" %mse) print("RMSE:%.4f" %rmse) ''' Defferenciate ts. :parameter     :param ts: pandas Series :param lag: num - diff[t] = y[t] - y[t-lag]     :param order: num - how many times it has to differenciate: diff[t]^order = diff[t] - diff[t-lag] :param drop_na: logic - if True Na are dropped, else are filled with last observation ''' def diff_ts(ts, lag=1, order=1, drop_na=True): for i in range(order): ts = ts - ts.shift(lag) ts = ts[(pd.notnull(ts))] if drop_na is True else ts.fillna(method="bfill") return ts ''' Find outliers using sklearn unsupervised support vetcor machine. :parameter     :param ts: pandas Series :param perc: float - percentage of outliers to look for :return dtf with raw ts, outlier 1/0 (yes/no), numeric index ''' def find_outliers(ts, perc=0.01, figsize=(6,6)): ## fit svm scaler = preprocessing.StandardScaler() ts_scaled = scaler.fit_transform(ts.values.reshape(-1,1)) model = svm.OneClassSVM(nu=perc, kernel="rbf", gamma=0.01) model.fit(ts_scaled) ## dtf output dtf_outliers = ts.to_frame(name="ts") dtf_outliers["outlier"] = model.predict(ts_scaled) dtf_outliers["outlier"] = dtf_outliers["outlier"].apply(lambda x: 1 if x == -1 else 0) ## plot fig, ax = plt.subplots(figsize=figsize) ax.set(title="Outliers detection: found "+str(sum(dtf_outliers["outlier"] == 1))) ax.plot(dtf_outliers.index, dtf_outliers["ts"], color="black") ax.scatter(x=dtf_outliers[dtf_outliers["outlier"]==1].index, y=dtf_outliers[dtf_outliers["outlier"]==1]['ts'], color='red') ax.grid(True) plt.show() return dtf_outliers ''' Interpolate outliers in a ts. ''' def remove_outliers(ts, outliers_idx, figsize=(6,6)): ts_clean = ts.copy() ts_clean.loc[outliers_idx] = np.nan ts_clean = ts_clean.interpolate(method="linear") ax = ts.plot(figsize=figsize, color="red", alpha=0.5, label="Histórico", legend=True) ts_clean.plot(ax=ax, grid=True, color="black", label="Interpolado", legend=True) ax.set(xlabel=None) plt.xlabel("Data") plt.ylabel("US$") plt.legend() plt.savefig('remocao_outliers.png', format='png', bbox_inches='tight') plt.show() return ts_clean ''' Finds Maxs, Mins, Resistence and Support levels. :parameter     :param ts: pandas Series :param window: int - rolling window :param trend: bool - False if ts is flat :return dtf with raw ts, max, min, resistence, support ''' def resistence_support(ts, window=30, trend=False, plot=True, figsize=(15,5)): dtf = ts.to_frame(name="ts") dtf["max"], dtf["min"] = [np.nan, np.nan] rolling = dtf['ts'].rolling(window=window).mean().dropna() ## maxs local_max = signal.argrelextrema(rolling.values, np.greater)[0] local_max_idx = [dtf.iloc[i-window:i+window]['ts'].idxmax() for i in local_max if (i > window) and (i < len(dtf)-window)] dtf["max"].loc[local_max_idx] = dtf["ts"].loc[local_max_idx] ## mins local_min = signal.argrelextrema(rolling.values, np.less)[0] local_min_idx = [dtf.iloc[i-window:i+window]['ts'].idxmin() for i in local_min if (i > window) and (i < len(dtf)-window)] dtf["min"].loc[local_min_idx] = dtf["ts"].loc[local_min_idx] ## resistence/support dtf["resistence"] = dtf["max"].interpolate(method="linear") if trend is True else dtf["max"].fillna(method="ffill") dtf["support"] = dtf["min"].interpolate(method="linear") if trend is True else dtf["min"].fillna(method="ffill") ## plot if plot is True: ax = dtf["ts"].plot(color="black", figsize=figsize, grid=True) dtf["resistence"].plot(ax=ax, color="darkviolet", label="resistence", grid=True, linestyle="--") dtf["support"].plot(ax=ax, color="green", label="support", grid=True, linestyle="--") ax.scatter(x=dtf["max"].index, y=dtf["max"].values, color="darkviolet", label="max") ax.scatter(x=dtf["min"].index, y=dtf["min"].values, color="green", label="min") ax.set(xlabel=None) ax.legend() plt.show() return dtf ############################################################################### # MODEL DESIGN & TESTING - FORECASTING # ############################################################################### ''' Split train/test from any given data point. :parameter     :param ts: pandas Series     :param exog: array len(ts) x n regressors :param test: num or str - test size (ex. 0.20) or index position (ex. "yyyy-mm-dd", 1000) :return     ts_train, ts_test, exog_train, exog_test ''' def split_train_test(ts, exog=None, test=0.20, plot=True, figsize=(6,6)): ## define splitting point if type(test) is float: split = int(len(ts)*(1-test)) perc = test elif type(test) is str: split = ts.reset_index()[ts.reset_index().iloc[:,0]==test].index[0] perc = round(len(ts[split:])/len(ts), 2) else: split = test perc = round(len(ts[split:])/len(ts), 2) print("--- splitting at index: ", split, "|", ts.index[split], "| test size:", perc, " ---") ## split ts ts_train = ts.head(split) ts_test = ts.tail(len(ts)-split) upper_bound = max(ts) * 1.05 lower_bound = min(ts) * 1.05 if plot is True: ts_train.plot(grid=True, title="", color="black") plt.xlabel('Data') plt.ylabel('US$') plt.savefig('dados_treino.png', format='png', bbox_inches='tight') plt.show() ts_test.plot(grid=True, title="", color="black") plt.xlabel('Data') plt.ylabel('US$') plt.savefig('dados_teste.png', format='png', bbox_inches='tight') plt.show() ## split exog if exog is not None: exog_train = exog[0:split] exog_test = exog[split:] return ts_train, ts_test, exog_train, exog_test else: return ts_train, ts_test ''' Compute the confidence interval for predictions: [y[t+h] +- (c*σ*√h)] :parameter :param lst_values: list or array :param error_std: σ (standard dev of residuals) :param conf: num - confidence level (90%, 95%, 99%) :return array with 2 columns (upper and lower bounds) ''' def utils_conf_int(lst_values, error_std, conf=0.95): lst_values = list(lst_values) if type(lst_values) != list else lst_values c = round( stats.norm.ppf(1-(1-conf)/2), 2) lst_ci = [] for x in lst_values: lst_x = lst_values[:lst_values.index(x)+1] h = len(lst_x) ci = [x - (c*error_std*np.sqrt(h)), x + (c*error_std*np.sqrt(h))] lst_ci.append(ci) return np.array(lst_ci) ''' Evaluation metrics for predictions. :parameter     :param dtf: DataFrame with columns "ts", "model", "forecast", and "lower"/"upper" (if available) :return dtf with columns "ts", "model", "residuals", "lower", "forecast", "upper", "error" ''' def utils_evaluate_ts_model(dtf, conf=0.95, title=None, plot=True, figsize=(20,13)): try: ## residuals from fitting ### add column dtf["residuals"] = dtf["ts"] - dtf["model"] ### kpi residuals_mean = dtf["residuals"].mean() residuals_std = dtf["residuals"].std() ## Model error ### add column dtf["model_error_pct"] = dtf["residuals"] / dtf["ts"] ### kpi model_error_mean = dtf["residuals"].mean() model_error_std = dtf["residuals"].std() model_mae = dtf["residuals"].apply(lambda x: np.abs(x)).mean() #mean absolute error model_mape = dtf["model_error_pct"].apply(lambda x: np.abs(x)).mean() #mean absolute error % model_mse = dtf["residuals"].apply(lambda x: x**2).mean() #mean squared error model_rmse = np.sqrt(model_mse) #root mean squared error ## forecasting error ### add column dtf["error"] = dtf["ts"] - dtf["forecast"] dtf["error_pct"] = dtf["error"] / dtf["ts"] ### kpi error_mean = dtf["error"].mean() error_std = dtf["error"].std() mae = dtf["error"].apply(lambda x: np.abs(x)).mean() #mean absolute error mape = dtf["error_pct"].apply(lambda x: np.abs(x)).mean() #mean absolute error % mse = dtf["error"].apply(lambda x: x**2).mean() #mean squared error rmse = np.sqrt(mse) #root mean squared error ## interval if "upper" not in dtf.columns: print("--- computing confidence interval ---") dtf["lower"], dtf["upper"] = [np.nan, np.nan] dtf.loc[dtf["forecast"].notnull(), ["lower","upper"]] = utils_conf_int( dtf[dtf["forecast"].notnull()]["forecast"], residuals_std, conf) ## plot if plot is True: plt.figure(figsize=figsize) ### training ts = dtf[pd.notnull(dtf["model"])][["ts"]] print(ts.reset_index().head()) model = dtf[pd.notnull(dtf["model"])][["model"]] print(model.reset_index().head()) plt.plot(ts, color='black', label='Histórico') plt.plot(model, color='green', label='Treinamento') plt.xlabel("Data") plt.xticks(rotation=45) plt.ylabel("US$") plt.grid(True) plt.legend() plt.savefig(title+'treinamento.png', format='png', bbox_inches='tight') plt.show() print('\nFigura Salva!\n') ### testing plt.figure(figsize=figsize) ts = dtf[pd.isnull(dtf["model"])][["ts"]] forecast = dtf[pd.isnull(dtf["model"])][["forecast"]] plt.plot(ts, color='black', label='Histórico') plt.plot(forecast, color='green', label='Teste') plt.xlabel("Data") plt.fill_between(x=dtf.index, y1=dtf['lower'], y2=dtf['upper'], color='b', alpha=0.2) plt.xticks(rotation=45) plt.ylabel("US$") plt.grid(True) plt.legend() plt.savefig(title+'teste.png', format='png', bbox_inches='tight') plt.show() print('\nFigura Salva!\n') print("Training --> Residuals mean:", np.round(residuals_mean), " | std:", np.round(residuals_std), " | mae:",np.round(model_mae), " | mape:",np.round(model_mape*100), "% | mse:",np.round(model_mse), " | rmse:",np.round(model_rmse)) print("Test --> Error mean:", np.round(error_mean), " | std:", np.round(error_std), " | mae:",np.round(mae), " | mape:",np.round(mape*100), "% | mse:",np.round(mse), " | rmse:",np.round(rmse)) return dtf[["ts", "model", "residuals", "lower", "forecast", "upper", "error"]] except Exception as e: print("--- got error ---") print(e) ''' Generate dates to index predictions. :parameter :param start: str - "yyyy-mm-dd" :param end: str - "yyyy-mm-dd" :param n: num - length of index :param freq: None or str - 'B' business day, 'D' daily, 'W' weekly, 'M' monthly, 'A' annual, 'Q' quarterly ''' def utils_generate_indexdate(start, end=None, n=None, freq="D"): if end is not None: index = pd.date_range(start=start, end=end, freq=freq) else: index = pd.date_range(start=start, periods=n, freq=freq) index = index[1:] print("--- generating index date --> start:", index[0], "| end:", index[-1], "| len:", len(index), "---") return index ''' Plot unknown future forecast and produce conf_int with residual_std and pred_int if an error_std is given. :parameter :param dtf: DataFrame with columns "ts", "model", "forecast", and "lower"/"upper" (if available) :param conf: num - confidence level (90%, 95%, 99%) :param zoom: int - plots the focus on the last zoom days :return dtf with columns "ts", "model", "residuals", "lower", "forecast", "upper" (No error) ''' def utils_add_forecast_int(dtf, conf=0.95, plot=True, zoom=30, figsize=(6,6), title=None): ## residuals from fitting ### add column dtf["residuals"] = dtf["ts"] - dtf["model"] ### kpi residuals_std = dtf["residuals"].std() ## interval if "upper" not in dtf.columns: print("--- computing confidence interval ---") dtf["lower"], dtf["upper"] = [np.nan, np.nan] dtf.loc[dtf["forecast"].notnull(), ["lower","upper"]] = utils_conf_int( dtf[dtf["forecast"].notnull()]["forecast"], residuals_std, conf) ## plot if plot is True: plt.figure(figsize=figsize) ### entire series es_ts = dtf[["ts"]] es_fc = dtf[["forecast"]] plt.plot(es_ts,color="black", label = "Histórico") plt.plot(es_fc,color="red", label = "Projeção") plt.xlabel("Data") plt.fill_between(x=dtf.index, y1=dtf['lower'], y2=dtf['upper'], color='b', alpha=0.2) plt.xticks(rotation=45) plt.ylabel("US$") plt.grid(True) plt.legend() plt.savefig(title+'_entire_series.png', format='png', bbox_inches='tight') plt.show() ### focus on last plt.figure(figsize=figsize) first_idx = dtf[pd.notnull(dtf["forecast"])].index[0] first_loc = dtf.index.tolist().index(first_idx) zoom_idx = dtf.index[first_loc-zoom] es_ts = dtf.loc[zoom_idx:][["ts"]] es_fc = dtf.loc[zoom_idx:][["forecast"]] plt.plot(es_ts,color="black", label = "Histórico") plt.plot(es_fc,color="red", label = "Projeção") plt.xlabel("Data") plt.fill_between(x=dtf.loc[zoom_idx:].index, y1=dtf.loc[zoom_idx:]['lower'], y2=dtf.loc[zoom_idx:]['upper'], color='b', alpha=0.2) plt.xticks(rotation=45) plt.ylabel("US$") plt.grid(True) plt.legend() plt.savefig(title+'_zoom.png', format='png', bbox_inches='tight') plt.show() return dtf[["ts", "model", "residuals", "lower", "forecast", "upper"]] ############################################################################### # AUTOREGRESSIVE # ############################################################################### ''' Tune Holt-Winters Exponential Smoothing :parameter :param ts_train: pandas timeseries :param s: num - number of observations per seasonal (ex. 7 for weekly seasonality with daily data, 12 for yearly seasonality with monthly data) :param val_size: num - size of validation fold :param scoring: function(y_true, y_pred) :param top: num - plot top models only :return dtf with results ''' def tune_expsmooth_model(ts_train, s=7, val_size=0.2, scoring=None, top=None, figsize=(15,5)): ## split dtf_fit, dtf_val = model_selection.train_test_split(ts_train, test_size=val_size, shuffle=False) dtf_fit, dtf_val = dtf_fit.to_frame(name="ts"), dtf_val.to_frame(name="ts") ## scoring scoring = metrics.mean_absolute_error if scoring is None else scoring ## hyperamater space trend = ['add', 'mul', None] damped = [True, False] seasonal = ['add', 'mult', None] ## grid search dtf_search = pd.DataFrame(columns=["combo","score","model"]) combinations = [] for t in trend: for d in damped: for ss in seasonal: combo = "trend="+str(t)+", damped="+str(d)+", seas="+str(ss) if combo not in combinations: combinations.append(combo) try: ### fit model = smt.ExponentialSmoothing(dtf_fit, trend=t, damped=d, seasonal=ss, seasonal_periods=s).fit() ### predict pred = model.forecast(len(dtf_val)) if pred.isna().sum() == 0: dtf_val[combo] = pred.values score = scoring(dtf_val["ts"].values, dtf_val[combo].values) dtf_search = dtf_search.append(pd.DataFrame({"combo":[combo],"score":[score],"model":[model]})) except: continue ## find best dtf_search = dtf_search.sort_values("score").reset_index(drop=True) best = dtf_search["combo"].iloc[0] dtf_val = dtf_val.rename(columns={best:best+" [BEST]"}) dtf_val = dtf_val[["ts",best+" [BEST]"] + list(dtf_search["combo"].unique())[1:]] ## plot fig, ax = plt.subplots(nrows=1, ncols=2, figsize=figsize) fig.suptitle("Model Tuning", fontsize=15) combos = dtf_val.drop("ts", axis=1).columns[:top] if (len(combos) <= 7) or ((top is not None) and (top <= 7)): colors = ["red","blue","green","violet","sienna","orange","yellow"] else: colors = [tuple(np.random.rand(3,)) for i in range(len(combos))] ### main ts_train.plot(ax=ax[0], grid=True, color="black", legend=True, label="ts") ax[0].fill_between(x=dtf_fit.index, y1=ts_train.max(), color='grey', alpha=0.2) dtf_val[combos].plot(grid=True, ax=ax[0], color=colors, legend=True) ax[0].legend(loc="upper left") ax[0].set(xlabel=None) ### zoom dtf_val["ts"].plot(grid=True, ax=ax[1], color="black", legend=False) for i,col in enumerate(combos): linewidth = 2 if col == best+" [BEST]" else 1 dtf_val[col].plot(grid=True, ax=ax[1], color=colors[i], legend=False, linewidth=linewidth) ax[1].set(xlabel=None) plt.show() return dtf_search ''' Fits Exponential Smoothing: Simple (level) --> trend=None + seasonal=None y[t+i] = α*y[t] + α(1-α)^1*y[t-1] + α(1-α)^2*y[t-2] + ... = (α)*y[t] + (1-α)*yhat[t] Holt (level + trend) --> trend=["add","mul"] + seasonal=None y[t+i] = level_f(α) + i*trend_f(β) Holt-Winters (level + trend + seasonality) --> trend=["add","mul"] + seasonal=["add","mul"] y[t+i] = level_f(α) + i*trend_f(β) + seasonality_f(γ) :parameter :param ts_train: pandas timeseries :param ts_test: pandas timeseries :param trend: str - "additive" (linear), "multiplicative" (non-linear) :param damped: bool - damp trend :param seasonal: str - "additive" (ex. +100 every 7 days), "multiplicative" (ex. x10 every 7 days) :param s: num - number of observations per seasonal (ex. 7 for weekly seasonality with daily data, 12 for yearly seasonality with monthly data) :param factors: tuple - (α,β,γ) smoothing factor for the level (ex 0.94), trend, seasonal :return dtf with predictons and the model ''' def fit_expsmooth(ts_train, ts_test, trend="additive", damped=False, seasonal="multiplicative", s=None, factors=(None,None,None), conf=0.95, figsize=(15,10)): ## checks check_seasonality = "Seasonal parameters: No Seasonality" if (seasonal is None) & (s is None) else "Seasonal parameters: "+str(seasonal)+" Seasonality every "+str(s)+" observations" print(check_seasonality) ## train model = smt.ExponentialSmoothing(ts_train, trend=trend, damped=damped, seasonal=seasonal, seasonal_periods=s).fit(factors[0], factors[1], factors[2]) dtf_train = ts_train.to_frame(name="ts") dtf_train["model"] = model.fittedvalues ## test dtf_test = ts_test.to_frame(name="ts") dtf_test["forecast"] = model.predict(start=len(ts_train), end=len(ts_train)+len(ts_test)-1) ## evaluate dtf = dtf_train.append(dtf_test) alpha, beta, gamma = round(model.params["smoothing_level"],2), round(model.params["smoothing_slope"],2), round(model.params["smoothing_seasonal"],2) dtf = utils_evaluate_ts_model(dtf, conf=conf, figsize=figsize, title="Holt-Winters "+str((alpha, beta, gamma))) return dtf, model ''' Tune ARIMA :parameter :param ts_train: pandas timeseries :param s: num - number of observations per seasonal (ex. 7 for weekly seasonality with daily data, 12 for yearly seasonality with monthly data) :param val_size: num - size of validation fold :param max_order: tuple - max (p,d,q) values :param seasonal_order: tuple - max (P,D,Q) values :param scoring: function(y_true, y_pred) :param top: num - plot top models only :return dtf with results ''' def tune_arima_model(ts_train, s=7, val_size=0.2, max_order=(3,1,3), seasonal_order=(1,1,1), scoring=None, top=None, figsize=(15,5)): ## split dtf_fit, dtf_val = model_selection.train_test_split(ts_train, test_size=val_size, shuffle=False) dtf_fit, dtf_val = dtf_fit.to_frame(name="ts"), dtf_val.to_frame(name="ts") ## scoring scoring = metrics.mean_absolute_error if scoring is None else scoring ## hyperamater space ps = range(0,max_order[0]+1) ds = range(0,max_order[1]+1) qs = range(0,max_order[2]+1) Ps = range(0,seasonal_order[0]+1) Ds = range(0,seasonal_order[1]+1) Qs = range(0,seasonal_order[2]+1) ## grid search dtf_search = pd.DataFrame(columns=["combo","score","model"]) combinations = [] for p in ps: for d in ds: for q in qs: for P in Ps: for D in Ds: for Q in Qs: combo = "("+str(p)+","+str(d)+","+str(q)+")x("+str(P)+","+str(D)+","+str(Q)+")" if combo not in combinations: combinations.append(combo) try: ### fit model = smt.SARIMAX(ts_train, order=(p,d,q), seasonal_order=(P,D,Q,s)).fit() ### predict pred = model.forecast(len(dtf_val)) if pred.isna().sum() == 0: dtf_val[combo] = pred.values score = scoring(dtf_val["ts"].values, dtf_val[combo].values) dtf_search = dtf_search.append(pd.DataFrame({"combo":[combo],"score":[score],"model":[model]})) except: continue ## find best dtf_search = dtf_search.sort_values("score").reset_index(drop=True) best = dtf_search["combo"].iloc[0] dtf_val = dtf_val.rename(columns={best:best+" [BEST]"}) dtf_val = dtf_val[["ts",best+" [BEST]"] + list(dtf_search["combo"].unique())[1:]] ## plot fig, ax = plt.subplots(nrows=1, ncols=2, figsize=figsize) fig.suptitle("Model Tuning", fontsize=15) combos = dtf_val.drop("ts", axis=1).columns[:top] if (len(combos) <= 7) or ((top is not None) and (top <= 7)): colors = ["red","blue","green","violet","sienna","orange","yellow"] else: colors = [tuple(np.random.rand(3,)) for i in range(len(combos))] ### main ts_train.plot(ax=ax[0], grid=True, color="black", legend=True, label="ts") ax[0].fill_between(x=dtf_fit.index, y1=ts_train.max(), color='grey', alpha=0.2) dtf_val[combos].plot(grid=True, ax=ax[0], color=colors, legend=True) ax[0].legend(loc="upper left") ax[0].set(xlabel=None) ### zoom dtf_val["ts"].plot(grid=True, ax=ax[1], color="black", legend=False) for i,col in enumerate(combos): linewidth = 2 if col == best+" [BEST]" else 1 dtf_val[col].plot(grid=True, ax=ax[1], color=colors[i], legend=False, linewidth=linewidth) ax[1].set(xlabel=None) plt.show() return dtf_search ''' Find best Seasonal-ARIMAX parameters. :parameter :param ts: pandas timeseries :param exog: pandas dataframe or numpy array :param s: num - number of observations per seasonal (ex. 7 for weekly seasonality with daily data, 12 for yearly seasonality with monthly data) :return best model ''' def find_best_sarimax(ts, seasonal=True, stationary=False, s=1, exog=None, max_p=10, max_d=3, max_q=10, max_P=10, max_D=3, max_Q=10): best_model = pmdarima.auto_arima(ts, exogenous=exog, seasonal=seasonal, stationary=stationary, m=s, information_criterion='aic', max_order=20, max_p=max_p, max_d=max_d, max_q=max_q, max_P=max_P, max_D=max_D, max_Q=max_Q, error_action='ignore') print("best model --> (p, d, q):", best_model.order, " and (P, D, Q, s):", best_model.seasonal_order) return best_model.summary() ''' Fits SARIMAX (Seasonal ARIMA with External Regressors) (p,d,q)x(P,D,Q,s): y[t+1] = (c + a0*y[t] + a1*y[t-1] +...+ ap*y[t-p]) + (e[t] + b1*e[t-1] + b2*e[t-2] +...+ bq*e[t-q]) + (B*X[t]) :parameter :param ts_train: pandas timeseries :param ts_test: pandas timeseries :param order: tuple - (p,d,q) --> p: lag order (AR), d: degree of differencing (to remove trend), q: order of moving average (MA) :param seasonal_order: tuple - (P,D,Q) --> seasonal lag orders (ex. lag from the last 2 seasons) :param s: num - number of observations per seasonal (ex. 7 for weekly seasonality with daily data, 12 for yearly seasonality with monthly data) :param exog_train: pandas dataframe or numpy array :param exog_test: pandas dataframe or numpy array :return dtf with predictons and the model ''' def fit_sarimax(ts_train, ts_test, order=(1,0,1), seasonal_order=(1,0,1), s=7, exog_train=None, exog_test=None, conf=0.95, figsize=(15,10)): ## checks check_trend = "Trend parameters: No differencing" if order[1] == 0 else "Trend parameters: d="+str(order[1]) print(check_trend) check_seasonality = "Seasonal parameters: No Seasonality" if (s == 0) & (np.sum(seasonal_order[0:2]) == 0) else "Seasonal parameters: Seasonality every "+str(s)+" observations" print(check_seasonality) check_exog = "Exog parameters: Not given" if (exog_train is None) & (exog_test is None) else "Exog parameters: number of regressors="+str(exog_train.shape[1]) print(check_exog) ## train model = smt.SARIMAX(ts_train, order=order, seasonal_order=seasonal_order+(s,), exog=exog_train, enforce_stationarity=False, enforce_invertibility=False).fit() dtf_train = ts_train.to_frame(name="ts") dtf_train["model"] = model.fittedvalues ## test dtf_test = ts_test.to_frame(name="ts") dtf_test["forecast"] = model.predict(start=len(ts_train), end=len(ts_train)+len(ts_test)-1, exog=exog_test) ## add conf_int ci = model.get_forecast(len(ts_test)).conf_int(1-conf).values dtf_test["lower"], dtf_test["upper"] = ci[:,0], ci[:,1] ## evaluate dtf = dtf_train.append(dtf_test) title = "ARIMA "+str(order) if exog_train is None else "ARIMAX "+str(order) title = "S"+title+" x "+str(seasonal_order) if np.sum(seasonal_order) > 0 else title dtf = utils_evaluate_ts_model(dtf, conf=conf, figsize=figsize, title=title) return dtf, model ''' Forecast unknown future with sarimax or expsmooth. :parameter :param ts: pandas series :param model: model object :param pred_ahead: number of observations to forecast (ex. pred_ahead=30) :param end: string - date to forecast (ex. end="2016-12-31") :param freq: None or str - 'B' business day, 'D' daily, 'W' weekly, 'M' monthly, 'A' annual, 'Q' quarterly :param zoom: for plotting ''' def forecast_autoregressive(ts, model=None, pred_ahead=None, end=None, freq="D", conf=0.95, zoom=30, figsize=(6,6)): ## model model = smt.SARIMAX(ts, order=(1,1,1), seasonal_order=(0,0,0,0)).fit() if model is None else model ## fit dtf = ts.to_frame(name="ts") dtf["model"] = model.fittedvalues dtf["residuals"] = dtf["ts"] - dtf["model"] ## index index = utils_generate_indexdate(start=ts.index[-1], end=end, n=pred_ahead, freq=freq) ## forecast if "holtwinters" in str(model): preds = model.forecast(len(index)) dtf_preds = preds.to_frame(name="forecast") else: preds = model.get_forecast(len(index)) dtf_preds = preds.predicted_mean.to_frame(name="forecast") ci = preds.conf_int(1-conf).values dtf_preds["lower"], dtf_preds["upper"] = ci[:,0], ci[:,1] #dtf_preds.index, dtf_preds.index.freq = index, 'D' #print(dtf_preds) ## add intervals and plot dtf = dtf.append(dtf_preds) dtf = utils_add_forecast_int(dtf, conf=conf, zoom=zoom, title="SARIMAX", figsize=figsize) return dtf ############################################################################### # RNN # ############################################################################### ''' Plot loss and metrics of keras training. ''' def utils_plot_keras_training(training): metrics = [k for k in training.history.keys() if ("loss" not in k) and ("val" not in k)] fig, ax = plt.subplots(nrows=1, ncols=2, sharey=True, figsize=(15,3)) ## training ax[0].set(title="Training") ax11 = ax[0].twinx() ax[0].plot(training.history['loss'], color='black') ax[0].set_xlabel('Epochs') ax[0].set_ylabel('Loss', color='black') for metric in metrics: ax11.plot(training.history[metric], label=metric) ax11.set_ylabel("Score", color='steelblue') ax11.legend() ## validation ax[1].set(title="Validation") ax22 = ax[1].twinx() ax[1].plot(training.history['val_loss'], color='black') ax[1].set_xlabel('Epochs') ax[1].set_ylabel('Loss', color='black') for metric in metrics: ax22.plot(training.history['val_'+metric], label=metric) ax22.set_ylabel("Score", color="steelblue") plt.show() ''' Preprocess a ts for LSTM partitioning into X and y. :parameter :param ts: pandas timeseries :param s: num - number of observations per seasonal (ex. 7 for weekly seasonality with daily data, 12 for yearly seasonality with monthly data) :param scaler: sklearn scaler object - if None is fitted :param exog: pandas dataframe or numpy array :return X with shape: (len(ts)-s, s, features) y with shape: (len(ts)-s,) the fitted scaler ''' def utils_preprocess_lstm(ts, s, scaler=None, exog=None): ## scale if scaler is None: scaler = preprocessing.MinMaxScaler(feature_range=(0,1)) ts_preprocessed = scaler.fit_transform(ts.values.reshape(-1,1)).reshape(-1) ## create X (N,s,x) and y (N,) ts_preprocessed = kprocessing.sequence.TimeseriesGenerator(data=ts_preprocessed, targets=ts_preprocessed, length=s, batch_size=1) lst_X, lst_y = [], [] for i in range(len(ts_preprocessed)): xi, yi = ts_preprocessed[i] lst_X.append(xi[0]) lst_y.append(yi[0]) X = np.expand_dims(np.array(lst_X), axis=2) y = np.array(lst_y) return X, y, scaler ''' Get fitted values from LSTM. ''' def utils_fitted_lstm(ts, model, scaler, exog=None): ## scale s = model.input_shape[1] ts_preprocessed = scaler.transform(ts.values.reshape(-1,1)).reshape(-1) ## create Xy, predict = fitted lst_fitted = [np.nan]*s for i in range(len(ts_preprocessed)): end_ix = i + s if end_ix > len(ts_preprocessed)-1: break X = ts_preprocessed[i:end_ix] X = np.array(X) X = np.reshape(X, (1,s,1)) fit = model.predict(X) fit = scaler.inverse_transform(fit)[0][0] lst_fitted.append(fit) return np.array(lst_fitted) ''' Predict ts with LSTM using previous predictions. ''' def utils_predict_lstm(last_s_obs, model, scaler, pred_ahead, exog=None): ## scale s = model.input_shape[1] ts_preprocessed = list(scaler.transform(last_s_obs.values.reshape(-1,1))) ## predict, append, re-predict lst_preds = [] for i in range(pred_ahead): X = np.array(ts_preprocessed[len(ts_preprocessed)-s:]) X = np.reshape(X, (1,s,1)) pred = model.predict(X) ts_preprocessed.append(pred[0]) pred = scaler.inverse_transform(pred)[0][0] lst_preds.append(pred) return np.array(lst_preds) ''' Fit Long Short-Term Memory neural network. :parameter :param ts: pandas timeseries :param exog: pandas dataframe or numpy array :param s: num - number of observations per seasonal (ex. 7 for weekly seasonality with daily data, 12 for yearly seasonality with monthly data) :return dtf with predictons and the model ''' def fit_lstm(ts_train, ts_test, model, exog=None, s=20, epochs=100, conf=0.95, figsize=(15,5)): ## check print("Seasonality: using the last", s, "observations to predict the next 1") ## preprocess train X_train, y_train, scaler = utils_preprocess_lstm(ts_train, scaler=None, exog=exog, s=s) print("--- X:", X_train.shape, "| y:", y_train.shape, "---") ## lstm if model is None: model = models.Sequential() model.add( layers.LSTM(input_shape=X_train.shape[1:], units=50, activation='relu', return_sequences=False) ) model.add( layers.Dense(1) ) model.compile(optimizer='adam', loss='mean_absolute_error') print(model.summary()) ## train verbose = 0 if epochs > 1 else 1 training = model.fit(x=X_train, y=y_train, batch_size=1, epochs=epochs, shuffle=True, verbose=verbose, validation_split=0.3) dtf_train = ts_train.to_frame(name="ts") dtf_train["model"] = utils_fitted_lstm(ts_train, training.model, scaler, exog) dtf_train["model"] = dtf_train["model"].fillna(method='bfill') ## test last_s_obs = ts_train[-s:] preds = utils_predict_lstm(last_s_obs, training.model, scaler, pred_ahead=len(ts_test), exog=None) dtf_test = ts_test.to_frame(name="ts").merge(
pd.DataFrame(data=preds, index=ts_test.index, columns=["forecast"])
pandas.DataFrame
""" This module contains methods for generating H2H data for games """ import pandas as pd from scrapenhl2.manipulate import manipulate as manip, add_onice_players as onice from scrapenhl2.scrape import general_helpers as helpers, parse_toi, parse_pbp, team_info, teams def get_game_combo_toi(season, game, player_n=2, *hrcodes): """ This method gets H2H TOI at 5v5 for the given game. :param season: int, the season :param game: int, the game :param player_n: int. E.g. 1 gives you a list of players and TOI, 2 gives you h2h, 3 gives you groups of 3, etc. :param hrcodes: to limit exploding joins, specify strings containing 'H' and 'R' and 'A', each of length player_n For example, if player_n=3, specify 'HHH' to only get home team player combos. If this is left unspecified, will do all combos, which can be problematic when player_n > 3. 'R' for road, 'H' for home, 'A' for all (both) :return: a df with [P1, P1Team, P2, P2Team, TOI, etc]. Entries will be duplicated. """ if len(hrcodes) == 0: hrcodes = ['A'*player_n] for hrcode in hrcodes: assert len(hrcode) == player_n home, road = parse_toi.get_melted_home_road_5v5_toi(season, game) return _combo_secs_from_hrcodes(home, road, *hrcodes) def get_game_combo_corsi(season, game, player_n=2, cfca=None, *hrcodes): """ This method gets H2H Corsi at 5v5 for the given game. :param season: int, the season :param game: int, the game :param player_n: int. E.g. 1 gives you a list of players and TOI, 2 gives you h2h, 3 gives you groups of 3, etc. :param cfca: str, or None. If you specify 'cf', returns CF only. For CA, use 'ca'. None returns CF - CA. :param hrcodes: to limit exploding joins, specify strings containing 'H' and 'R' and 'A', each of length player_n For example, if player_n=3, specify 'HHH' to only get home team player combos. If this is left unspecified, will do all combos, which can be problematic when player_n > 3. 'R' for road, 'H' for home, 'A' for all (both) :return: a df with [P1, P1Team, P2, P2Team, TOI, etc]. Entries will be duplicated. """ if len(hrcodes) == 0: hrcodes = ['A'*player_n] for hrcode in hrcodes: assert len(hrcode) == player_n corsipm = parse_pbp.get_5v5_corsi_pm(season, game) home, road = parse_toi.get_melted_home_road_5v5_toi(season, game) return _combo_corsi_from_hrcodes(home, road, corsipm, cfca, *hrcodes) def _combo_corsi_from_hrcodes(homedf=None, roaddf=None, corsidf=None, cfca=None, *hrcodes): """ Joins the homedf and roaddf as specified by hrcodes. :param homedf: home team df (e.g. for TOI) :param roaddf: road team df (e.g. for TOI) :param corsidf: a dataframe with Time and HomeCorsi (1 or -1), one row per event :param hrcodes: to limit exploding joins, specify strings containing 'H' and 'R' and 'A', each of length player_n For example, if player_n=3, specify 'HHH' to only get home team player combos. If this is left unspecified, will do all combos, which can be problematic when player_n > 3. 'R' for road, 'H' for home, 'A' for all (both) :return: joined df, grouped and summed by player combos """ alldf =
pd.concat([homedf, roaddf])
pandas.concat
"""Contains functions for preprocessing data Classes ------- Person Functions ---------- recurcive_append create_pedigree add_control prepare_data """ import logging import pandas as pd import numpy as np from pysnptools.snpreader import Bed from bgen_reader import open_bgen, read_bgen from config import nan_integer class Person: """Just a simple data structure representing individuals Args: id : str IID of the individual. fid : str FID of the individual. pid : str IID of the father of that individual. mid : str IID of the mother of that individual. """ def __init__(self, id, fid=None, pid=None, mid=None): self.id = id self.fid = fid self.pid = pid self.mid = mid def recurcive_append(dictionary, index, element): """Adds an element to value of all the keys that can be reached from index with using get recursively. Args: dictionary : dict A dictionary of objects to list index The start point element What should be added to values """ queue = {index} seen_so_far = set() while queue: current_index = queue.pop() seen_so_far.add(current_index) dictionary[current_index].add(element) queue = queue.union(dictionary[current_index]) queue = queue.difference(seen_so_far) def create_pedigree(king_address, agesex_address): """Creates pedigree table from agesex file and kinship file in KING format. Args: king_address : str Address of a kinship file in KING format. kinship file is a '\t' seperated csv with columns "FID1", "ID1", "FID2", "ID2, "InfType". Each row represents a relationship between two individuals. InfType column states the relationship between two individuals. The only relationships that matter for this script are full sibling and parent-offspring which are shown by 'FS' and 'PO' respectively. This file is used in creating a pedigree file and can be generated using KING. As fids starting with '_' are reserved for control there should be no fids starting with '_'. agesex_address : str Address of the agesex file. This is a " " seperated CSV with columns "FID", "IID", "FATHER_ID", "MOTHER_ID", "sex", "age". Each row contains the age and sex of one individual. Male and Female sex should be represented with 'M' and 'F'. Age column is used for distinguishing between parent and child in a parent-offspring relationship inferred from the kinship file. ID1 is a parent of ID2 if there is a 'PO' relationship between them and 'ID1' is at least 12 years older than ID2. Returns: pd.DataFrame: A pedigree table with 'FID', 'IID', 'FATHER_ID', 'MOTHER_ID'. Each row represents an individual. """ kinship = pd.read_csv(king_address, delimiter="\t").astype(str) logging.info("loaded kinship file") agesex = pd.read_csv(agesex_address, delim_whitespace=True) agesex["IID"] = agesex["IID"].astype(str) agesex["FID"] = agesex["FID"].astype(str) logging.info("loaded agesex file") agesex = agesex.set_index("IID") logging.info("creating age and sex dictionaries") kinship = pd.merge(kinship, agesex.rename(columns={"sex":"sex1", "age":"age1"}), left_on="ID1", right_index=True) kinship = pd.merge(kinship, agesex.rename(columns={"sex":"sex2", "age":"age2"}), left_on="ID2", right_index=True) logging.info("dictionaries created") people = {} fid_counter = 0 dropouts = [] kinship_cols = kinship.columns.tolist() index_id1 = kinship_cols.index("ID1") index_id2 = kinship_cols.index("ID2") index_sex1 = kinship_cols.index("sex1") index_sex2 = kinship_cols.index("sex2") index_age1 = kinship_cols.index("age1") index_age2 = kinship_cols.index("age2") index_inftype = kinship_cols.index("InfType") logging.info("creating pedigree objects") pop_size = kinship.values.shape[0] t = kinship.values.tolist() for row in range(pop_size): relation = t[row][index_inftype] id1 = t[row][index_id1] id2 = t[row][index_id2] age1 = t[row][index_age1] age2 = t[row][index_age2] sex1 = t[row][index_sex1] sex2 = t[row][index_sex2] p1 = people.get(id1) if p1 is None: p1 = Person(id1) people[id1] = p1 p2 = people.get(id2) if p2 is None: p2 = Person(id2) people[id2] = p2 if relation == "PO": if age1 > age2+12: if sex1 == "F": p2.mid = p1.id if sex1 == "M": p2.pid = p1.id if age2 > age1+12: if sex2 == "F": p1.mid = p2.id if sex2 == "M": p1.pid = p2.id if relation == "FS": if p1.fid is None and p2.fid is None: p1.fid = str(fid_counter) p2.fid = str(fid_counter) fid_counter += 1 if p1.fid is None and p2.fid is not None: p1.fid = p2.fid if p1.fid is not None and p2.fid is None: p2.fid = p1.fid for excess in dropouts: people.pop(excess) data = [] for p in people.values(): if p.fid is None: p.fid = str(fid_counter) fid_counter += 1 if p.mid is None: #default mother id p.mid = p.fid + "___M" if p.pid is None: #default father ir p.pid = p.fid + "___P" data.append((p.fid, p.id, p.pid, p.mid)) data = pd.DataFrame(data, columns = ['FID' , 'IID', 'FATHER_ID' , 'MOTHER_ID']).astype(str) return data def add_control(pedigree): """Adds control families to the pedigree table for testing. For each family that has two or more siblings and both parents, creates a 3 new familes, one has no parents, one with no mother and one with no father. gFID of these families are x+original_fid where x is "_o_", "_p_", "_m_" for these cases: no parent, only has father, only has mother. IIDs are the same in both families. Args: pedigree : pd.DataFrame A pedigree table with 'FID', 'IID', 'FATHER_ID', 'MOTHER_ID'. Each row represents an individual. fids starting with "_" are reserved for control. Returns: pd.DataFrame A pedigree table with 'FID', 'IID', 'FATHER_ID', 'MOTHER_ID'. Each row represents an individual. For each family with both parents and more than one offspring, it has a control family(fids for control families start with '_') """ pedigree["has_mother"] = pedigree["MOTHER_ID"].isin(pedigree["IID"]) pedigree["has_father"] = pedigree["FATHER_ID"].isin(pedigree["IID"]) families_with_both_parents = pedigree[pedigree["has_father"] & pedigree["has_mother"]] count_of_sibs_in_fam = families_with_both_parents.groupby(["FID", "FATHER_ID", "MOTHER_ID"]).count().reset_index() FIDs_with_multiple_sibs = count_of_sibs_in_fam[count_of_sibs_in_fam["IID"] > 1][["FID"]] families_with_multiple_sibs = families_with_both_parents.merge(FIDs_with_multiple_sibs, on = "FID") families_with_multiple_sibs["FID"] = "_o_" + families_with_multiple_sibs["FID"].astype(str) families_with_multiple_sibs["MOTHER_ID"] = families_with_multiple_sibs["FID"].astype(str) + "_M" families_with_multiple_sibs["FATHER_ID"] = families_with_multiple_sibs["FID"].astype(str) + "_P" keep_mother = families_with_both_parents.copy() keep_mother["FID"] = "_m_" + keep_mother["FID"].astype(str) keep_mother["FATHER_ID"] = keep_mother["FID"].astype(str) + "_P" keep_father = families_with_both_parents.copy() keep_father["FID"] = "_p_" + keep_father["FID"].astype(str) keep_father["MOTHER_ID"] = keep_father["FID"].astype(str) + "_M" pedigree = pedigree.append(families_with_multiple_sibs).append(keep_father).append(keep_mother) pedigree = pedigree[['FID' , 'IID', 'FATHER_ID' , 'MOTHER_ID']] return pedigree #TODO raise error if file is multi chrom def preprocess_king(ibd, segs, bim, chromosomes, sibships): ibd["Chr"] = ibd["Chr"].astype(int) segs["Chr"] = segs["Chr"].astype(int) chromosomes = [int(x) for x in chromosomes] if len(chromosomes)>1: ibd = ibd[ibd["Chr"].isin(chromosomes)][["ID1", "ID2", "IBDType", "StartSNP", "StopSNP"]] else: ibd = ibd[ibd["Chr"]==chromosomes[0]][["ID1", "ID2", "IBDType", "StartSNP", "StopSNP"]] #TODO cancel or generalize this if set(ibd["IBDType"].unique().tolist()) == {"IBD1", "IBD2"}: ibd["IBDType"] = ibd["IBDType"].apply(lambda x: 2 if x=="IBD2" else 1) ibd["IBDType"] = ibd["IBDType"].astype(int) temp = bim[["id", "coordinate"]].rename(columns = {"id":"StartSNP","coordinate":"StartSNPLoc"}) ibd= ibd.merge(temp, on="StartSNP") temp = bim[["id", "coordinate"]].rename(columns = {"id":"StopSNP","coordinate":"StopSNPLoc"}) ibd = ibd.merge(temp, on="StopSNP") ibd['segment'] = ibd[['StartSNPLoc', 'StopSNPLoc', "IBDType"]].values.tolist() ibd = ibd.groupby(["ID1", "ID2"]).agg({'segment':sorted}).reset_index() if len(chromosomes)>1: segs = segs[segs["Chr"].isin(chromosomes)][["StartSNP", "StopSNP"]] else: segs = segs[segs["Chr"]==chromosomes[0]][["StartSNP", "StopSNP"]] temp = bim[["id", "coordinate"]].rename(columns = {"id":"StartSNP","coordinate":"StartSNPLoc"}) segs= segs.merge(temp, on="StartSNP") temp = bim[["id", "coordinate"]].rename(columns = {"id":"StopSNP","coordinate":"StopSNPLoc"}) segs = segs.merge(temp, on="StopSNP") segs = segs[['StartSNPLoc', 'StopSNPLoc']].sort_values('StartSNPLoc').values.tolist() flatten_seg_as_ibd0 = [] for l in segs: flatten_seg_as_ibd0 = flatten_seg_as_ibd0 + l + [0] #TODO does this work with multichromosome in the ibd file? it won't work if snplocs are indexed from zero in each snp all_ibd_segs = [] for index, row in ibd.iterrows(): id1, id2, segments = row["ID1"], row["ID2"], row["segment"] seg_counter = 0 row_ibd0 = [] start, end = segs[seg_counter] prev_end = start for seg_start, seg_end, ibd_type in segments: while seg_start>end: if prev_end<end: row_ibd0.append([prev_end, end, 0]) if (seg_counter+1) < len(segs): seg_counter+=1 start, end = segs[seg_counter] prev_end = start else: raise Exception("this segments starts after all meaningfull segments") if seg_start<start: raise Exception("segment starts sooner than it should") if seg_start>prev_end: row_ibd0.append([prev_end, seg_start, 0]) if seg_end>end: raise Exception("segment ends outside where it should have") prev_end=seg_end if prev_end<end: row_ibd0.append([prev_end, end, 0]) row_ibd0 = row_ibd0 + [[start, end, 0] for start, end in segs[seg_counter+1:]] row_ibd = segments+row_ibd0 row_ibd = sorted(row_ibd, key=lambda x:x[0]) flatten_row_ibd = [] for l in row_ibd: for el in l: flatten_row_ibd.append(el) all_ibd_segs.append(flatten_row_ibd) ibd["segment"] = pd.Series(all_ibd_segs) ibd_dict = ibd.set_index(["ID1", "ID2"]).to_dict()["segment"] for index, row in sibships.iterrows(): sibs = row["IID"] nsibs = len(sibs) if nsibs > 1: for i in range(1, nsibs): for j in range(0, i): sib1 = sibs[i].decode() sib2 = sibs[j].decode() if not((sib1, sib2) in ibd_dict or (sib2, sib1) in ibd_dict): ibd_dict[(sib1, sib2)] = flatten_seg_as_ibd0 return ibd_dict def prepare_data(pedigree, phased_address, unphased_address, king_ibd = None, king_segs = None, snipar_ibd = None, bim_address = None, fam_address = None, chromosome = None, pedigree_nan = '0'): """Processes the non_gts required data for the imputation and returns it. Outputs for used for the imputation have ascii bytes instead of strings. Args: pedigree : pd.DataFrame The pedigree table. It contains 'FID', 'IID', 'FATHER_ID' and, 'MOTHER_ID' columns. phased_address : str Address of the phased bgen file (does not inlude '.bgen'). Only one of unphased_address and phased_address is neccessary. unphased_address : str Address of the bed file (does not inlude '.bed'). Only one of unphased_address and phased_address is neccessary. king_ibd : pd.DataFrame, optional A pandas dataframe containing IBD statuses for all SNPs. This It has these columns: "chr", "ID1", "ID2", "IBDType", "StartSNP", "StopSNP". Each line states an IBD segment between a pair on individuals. This can be generated using King software. Either king inputs or snipar should be provided. king_segs : pd.DataFrame, optional A pandas dataframe containing IBD segments that have been processed. This It has these columns: Segment, Chr, StartSNP, StopSNP Each line states a segment that's been processed. This can be generated using King software. Either king inputs or snipar should be provided. snipar_ibd : pd.DataFrame, optional A pandas dataframe containing IBD statuses for all SNPs. This It has these columns: ID1, ID2, IBDType, Chr, start_coordinate, stop_coordinate Each line states an IBD segment between a pair on individuals. This can be generated using snipar. Either king inputs or snipar should be provided. bim_address : str, optional Address of the bim file if it's different from the address of the bed file. Does not include '.bim'. chromosome: str, optional Number of the chromosome that's going to be loaded. pedigree_nan: str, optional Value that's considered nan in the pedigree Returns: tuple(pandas.Dataframe, dict, numpy.ndarray, pandas.Dataframe, numpy.ndarray, numpy.ndarray) Returns the data required for the imputation. This data is a tuple of multiple objects. sibships: pandas.DataFrame A pandas DataFrame with columns ['FID', 'FATHER_ID', 'MOTHER_ID', 'IID', 'has_father', 'has_mother', 'single_parent'] where IID columns is a list of the IIDs of individuals in that family. It only contains families that have more than one child or only one parent. ibd: pandas.DataFrame A pandas DataFrame with columns "ID1", "ID2", 'segment'. The segments column is a list of IBD segments between ID1 and ID2. Each segment consists of a start, an end, and an IBD status. The segment list is flattened meaning it's like [start0, end0, ibd_status0, start1, end1, ibd_status1, ...] bim: pandas.DataFrame A dataframe with these columns(dtype str): Chr id morgans coordinate allele1 allele2 chromosomes: str A string containing all the chromosomes present in the data. ped_ids: set Set of ids of individuals with missing parents. pedigree_output: np.array Pedigree with added parental status. """ logging.info("For file "+str(phased_address)+";"+str(unphased_address)+": Finding which chromosomes") if unphased_address: if bim_address is None: bim_address = unphased_address+'.bim' bim = pd.read_csv(bim_address, delim_whitespace=True, header=None, names=["Chr", "id", "morgans", "coordinate", "allele1", "allele2"]) if fam_address is None: fam_address = unphased_address+'.fam' fam = pd.read_csv(fam_address, delim_whitespace=True, header=None, names=["FID", "IID", "PID", "MID", "SEX", "Phen"]) else: if bim_address is None: bim_address = phased_address+'.bgen' if fam_address is None: fam_address = phased_address+'.bgen' bgen = read_bgen(bim_address, verbose=False) bim = bgen["variants"].compute().rename(columns={"chrom":"Chr", "pos":"coordinate"}) #TODO this line should be replaced bim["id"]=bim["rsid"] if chromosome is None: raise Exception("chromosome should be specified when using phased data") bim["Chr"] = chromosome bgen = read_bgen(bim_address, verbose=False) bim = bgen["variants"].compute().rename(columns={"chrom":"Chr", "pos":"coordinate"}) #TODO this line should be replaced bim["id"]=bim["rsid"] if chromosome is None: raise Exception("chromosome should be specified when using phased data") bim["Chr"] = chromosome fam = pd.DataFrame({"IID":read_bgen(fam_address)["samples"]}) chromosomes = bim["Chr"].unique().astype(int) logging.info(f"with chromosomes {chromosomes} initializing non_gts data") logging.info(f"with chromosomes {chromosomes} loading and filtering pedigree file ...") #keeping individuals with no parents pedigree["has_father"] = pedigree["FATHER_ID"].isin(pedigree["IID"]) & pedigree["FATHER_ID"].isin(fam["IID"]) pedigree["has_mother"] = pedigree["MOTHER_ID"].isin(pedigree["IID"]) & pedigree["MOTHER_ID"].isin(fam["IID"]) no_parent_pedigree = pedigree[~(pedigree["has_mother"] & pedigree["has_father"])] #removing individual whose parents are nan no_parent_pedigree = no_parent_pedigree[(no_parent_pedigree["MOTHER_ID"] != pedigree_nan) & (no_parent_pedigree["FATHER_ID"] != pedigree_nan)] no_parent_pedigree[["FID", "IID", "FATHER_ID", "MOTHER_ID"]] = no_parent_pedigree[["FID", "IID", "FATHER_ID", "MOTHER_ID"]].astype("S") ped_ids = set(no_parent_pedigree["IID"].tolist()) #finding siblings in each family sibships = no_parent_pedigree.groupby(["FID", "FATHER_ID", "MOTHER_ID", "has_father", "has_mother"]).agg({'IID':lambda x: list(x)}).reset_index() sibships["sib_count"] = sibships["IID"].apply(len) sibships["single_parent"] = sibships["has_father"] ^ sibships["has_mother"] sibships = sibships[(sibships["sib_count"]>1) | sibships["single_parent"]] fids = set([i for i in sibships["FID"].values.tolist() if i.startswith(b"_")]) logging.info(f"with chromosomes {chromosomes} loading bim file ...") logging.info(f"with chromosomes {chromosomes} loading and transforming ibd file ...") if snipar_ibd is None: ibd = preprocess_king(king_ibd, king_segs, bim, chromosomes, sibships) else: ibd = snipar_ibd.astype(str) ibd[["IBDType", "start_coordinate", "stop_coordinate"]] = ibd[["IBDType", "start_coordinate", "stop_coordinate"]].astype(int) #Adding location of start and end of each chromosomes = chromosomes.astype(str) if len(chromosomes)>1: ibd = ibd[ibd["Chr"].isin(chromosomes)] else: ibd = ibd[ibd["Chr"]==chromosomes[0]] #TODO cancel or generalize this ibd['segment'] = ibd[['start_coordinate', 'stop_coordinate', "IBDType"]].values.tolist() def create_seg_list(x): elements = list(x) result = [] for el in elements: result = result+el return result ibd = ibd.groupby(["ID1", "ID2"]).agg({'segment':lambda x:create_seg_list(x)}).to_dict()["segment"] logging.info(f"with chromosomes {chromosomes} loading genotype file ...") logging.info(f"with chromosomes {chromosomes} initializing non_gts data done ...") pedigree[["FID", "IID", "FATHER_ID", "MOTHER_ID"]] = pedigree[["FID", "IID", "FATHER_ID", "MOTHER_ID"]].astype(str) pedigree_output = np.concatenate(([pedigree.columns.values.tolist()], pedigree.values)) return sibships, ibd, bim, chromosomes, ped_ids, pedigree_output def prepare_gts(phased_address, unphased_address, bim, pedigree_output, ped_ids, chromosomes, start=None, end=None): """ Processes the gts required data for the imputation and returns it. Outputs for used for the imputation have ascii bytes instead of strings. Args: phased_address : str Address of the phased bgen file (does not inlude '.bgen'). Only one of unphased_address and phased_address is neccessary. unphased_address : str Address of the bed file (does not inlude '.bed'). Only one of unphased_address and phased_address is neccessary. bim: pandas.DataFrame A dataframe with these columns(dtype str): Chr id morgans coordinate allele1 allele2 pedigree_output: np.array Pedigree with added parental status. ped_ids: set Set of ids of individuals with missing parents. chromosomes: str A string containing all the chromosomes present in the data. start : int, optional This function can be used for preparing a slice of a chromosome. This is the location of the start of the slice. end : int, optional This function can be used for preparing a slice of a chromosome. This is the location of the end of the slice. Returns: tuple(np.array[signed char], np.array[signed char], str->int, np.array[int], np.array[float], dict) phased_gts: np.array[signed char], optional A three-dimensional array containing genotypes for all individuals, SNPs and, haplotypes respectively. unphased_gts: np.array[signed char] A two-dimensional array containing genotypes for all individuals and SNPs respectively. iid_to_bed_index: str->int A str->int dictionary mapping IIDs of people to their location in bed file. pos: np.array[int] A numpy array with the position of each SNP in the order of appearance in gts. freqs: np.array[float] Min allele frequency for all the SNPs present in the genotypes in that order. hdf5_output_dict: dict A dictionary whose values will be written in the imputation output under its keys. """ logging.info(f"with chromosomes {chromosomes} initializing gts data with start={start} end={end}") phased_gts = None unphased_gts = None if unphased_address: bim_as_csv =
pd.read_csv(unphased_address+".bim", delim_whitespace=True, header=None)
pandas.read_csv
''' OptiSS tool for optimizing spatial joining of big social media data Arcpy 2.6 and Python 3 Local app that optimize spatial join of social media posts with regions layer. Check read me file of repository for more details of how it works. Thanks to the methodological development of Vuokko Heikinheimo in SOME project and the method performance evaluation of <NAME> this app helps to researchers in the enrichment process of social media posting history as first step for Origin (home) Detection (country, county, municipality) Author: <NAME>/Digital Geography Lab Project: Borderspace Project Date: 10-2021 ''' import streamlit as st import pandas as pd import glob import os import sys import time from datetime import datetime import geopandas as gpd from pyproj import CRS from shapely.geometry import Point import matplotlib.pyplot as plt # directory homefolder = os.getcwd() # __________________FUNCTIONS___________________ def data_list(): '''Function that gives back a list of [ULRS of files, names of files] in folder app_data''' files_list = glob.glob(os.path.join(homefolder, 'app_data/*.csv')) names_list = [os.path.basename(file) for file in files_list] return [files_list, names_list] def read_data(selectbox_button): '''Function that reads CSV file selected in selectionbox''' path = os.path.join(homefolder, 'app_data/{}'.format(str(selectbox_button))) dataset = pd.read_csv(path, sep=';') return dataset def read_geodata(selectbox_button): '''Function that reads CSV file selected in selectionbox''' path = os.path.join(homefolder, 'regions_layer/{}'.format(str(selectbox_button))) dataset = gpd.read_file(path) return dataset def create_geomlist(dataframe, long_selection, lat_selection): '''Function that gives back a list of geometries of input data''' try: geom_list = [Point(lon, lat) for lon, lat in zip(dataframe[long_selection].to_list(), dataframe[lat_selection].to_list())] return geom_list except: st.warning('Select the correct columns!') def plot_geodata(geodata_layer): '''Function that plot the GADM layer - extra functionality''' plt.style.use('seaborn') fig, ax = plt.subplots() geodata_layer.plot(ax=ax, facecolor="lightgray", edgecolor="black") plt.axis('off') return fig # ______________________________________ st.title('Welcome to OptiSS 🧐') st.header('Tool for optimizing spatial joining of big social media data') st.write('Follow the next steps that help you in the optimization of the spatial join process. The app comes with a sample dataset of twitter posting history but you can add your own social media datasets and regions. Check instructions before using it.') st.markdown('[How to use OptiSS?](https://github.com/DigitalGeographyLab/OptimizedSpatialJoin-tool)') # 1. ______________________READ SOCIAL MEDIA DATASET_________________________ st.header('1. Upload your social media posting history dataset') st.write('Dataset must be in **.csv** and delimited by **semicolons**') filepath = st.selectbox('Files in <app_data> folder:', options=data_list()[1]) data = read_data(filepath) columns = list(data.columns) st.write('**Timestamp** column, and **User ID** column are used only for displaying info (optional columns) ') datacol1, datacol2, datacol3, datacol4 = st.columns(4) time_col = datacol1.selectbox('Timestamp column', options=columns) long_col = datacol2.selectbox('Longitude', options=columns) lat_col = datacol3.selectbox('Latitude', options=columns) userid_col = datacol4.selectbox('User ID', options=columns) # DATA data =
pd.DataFrame(data[[time_col, long_col, lat_col, userid_col]])
pandas.DataFrame
from __future__ import division # brings in Python 3.0 mixed type calculation rules import datetime import inspect import numpy as np import numpy.testing as npt import os.path import pandas as pd import sys from tabulate import tabulate import unittest print("Python version: " + sys.version) print("Numpy version: " + np.__version__) from ..ted_exe import Ted test = {} class TestTed(unittest.TestCase): """ Unit tests for TED model. """ print("ted unittests conducted at " + str(datetime.datetime.today())) def setUp(self): """ Setup routine for ted unit tests. :return: """ pass def tearDown(self): """ Teardown routine for ted unit tests. :return: """ pass # teardown called after each test # e.g. maybe write test results to some text file def create_ted_object(self): # create empty pandas dataframes to create empty object for testing df_empty = pd.DataFrame() # create an empty ted object ted_empty = Ted(df_empty, df_empty) return ted_empty def test_daily_app_flag(self): """ :description generates a daily flag to denote whether a pesticide is applied that day or not (1 - applied, 0 - anot applied) :param num_apps; number of applications :param app_interval; number of days between applications :NOTE in TED model there are two application scenarios per simulation (one for a min/max exposure scenario) (this is why the parameters are passed in) :return: """ # create empty pandas dataframes to create empty object for this unittest ted_empty = self.create_ted_object() expected_results = pd.Series([], dtype='bool') result = pd.Series([[]], dtype='bool') expected_results = [[True, False, False, True, False, False, True, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False], [True, False, False, False, False, False, False, True, False, False, False, False, False, False, True, False, False, False, False, False, False, True, False, False, False, False, False, False, True, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False], [True, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False]] try: # internal model constants ted_empty.num_simulation_days = 366 # input varialbles that change per simulation ted_empty.num_apps_min = pd.Series([3, 5, 1]) ted_empty.app_interval_min = pd.Series([3, 7, 1]) for i in range (3): result[i] = ted_empty.daily_app_flag(ted_empty.num_apps_min[i], ted_empty.app_interval_min[i]) np.array_equal(result[i],expected_results[i]) finally: for i in range(3): tab = [result[i], expected_results[i]] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_set_drift_parameters(self): """ :description provides parmaeter values to use when calculating distances from edge of application source area to concentration of interest :param app_method; application method (aerial/ground/airblast) :param boom_hgt; height of boom (low/high) - 'NA' if not ground application :param drop_size; droplet spectrum for application (see list below for aerial/ground - 'NA' if airblast) :param param_a (result[i][0]; parameter a for spray drift distance calculation :param param_b (result[i][1]; parameter b for spray drift distance calculation :param param_c (result[i][2]; parameter c for spray drift distance calculation :return: """ # create empty pandas dataframes to create empty object for this unittest ted_empty = self.create_ted_object() expected_results = pd.Series([], dtype='float') result = pd.Series(9*[[0.,0.,0.]], dtype='float') expected_results = [[0.0292,0.822,0.6539],[0.043,1.03,0.5],[0.0721,1.0977,0.4999],[0.1014,1.1344,0.4999], [1.0063,0.9998,1.0193],[5.5513,0.8523,1.0079],[0.1913,1.2366,1.0552], [2.4154,0.9077,1.0128],[0.0351,2.4586,0.4763]] try: # input variable that change per simulation ted_empty.app_method_min = pd.Series(['aerial','aerial','aerial','aerial','ground','ground','ground','ground','airblast']) ted_empty.boom_hgt_min = pd.Series(['','','','','low','low','high','high','']) ted_empty.droplet_spec_min = pd.Series(['very_fine_to_fine','fine_to_medium','medium_to_coarse','coarse_to_very_coarse', 'very_fine_to_fine','fine_to_medium-coarse','very_fine_to_fine','fine_to_medium-coarse','']) for i in range (9): # test that the nine combinations are accessed result[i][0], result[i][1], result[i][2] = ted_empty.set_drift_parameters(ted_empty.app_method_min[i], ted_empty.boom_hgt_min[i], ted_empty.droplet_spec_min[i]) npt.assert_allclose(result[i],expected_results[i],rtol=1e-4, atol=0, err_msg='', verbose=True) finally: for i in range (9): tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_drift_distance_calc(self): """ :description provides parmaeter values to use when calculating distances from edge of application source area to concentration of interest :param app_rate_frac; fraction of active ingredient application rate equivalent to the health threshold of concern :param param_a; parameter a for spray drift distance calculation :param param_b; parameter b for spray drift distance calculation :param param_c; parameter c for spray drift distance calculation :return: """ # create empty pandas dataframes to create empty object for this unittest ted_empty = self.create_ted_object() expected_results = pd.Series([], dtype='float') result = pd.Series([], dtype='float') expected_results = [302.050738, 11.484378, 0.0] try: # internal model constants ted_empty.max_distance_from_source = 1000. # input variable that is internally specified from among options param_a = pd.Series([0.0292, 0.1913, 0.0351], dtype='float') param_b = pd.Series([0.822, 1.2366, 2.4586], dtype='float') param_c = pd.Series([0.6539, 1.0522, 0.4763], dtype='float') # internally calculated variables app_rate_frac = pd.Series([0.1,0.25,0.88], dtype='float') for i in range(3): result[i] = ted_empty.drift_distance_calc(app_rate_frac[i], param_a[i], param_b[i], param_c[i], ted_empty.max_distance_from_source) npt.assert_allclose(result,expected_results,rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_conc_timestep(self): """ :description unittest for function conc_timestep: :param conc_ini; initial concentration for day (actually previous day concentration) :param half_life; halflife of pesiticde representing either foliar dissipation halflife or aerobic soil metabolism halflife (days) :return: """ # create empty pandas dataframes to create empty object for this unittest ted_empty = self.create_ted_object() expected_results = pd.Series([], dtype='float') result = pd.Series([], dtype='float') expected_results = [9.803896e-4, 0.106066, 1.220703e-3] try: # input variable that is internally specified from among options half_life = pd.Series([35., 2., .1]) # internally calculated variables conc_ini = pd.Series([1.e-3, 0.15, 1.25]) result = ted_empty.conc_timestep(conc_ini, half_life) npt.assert_allclose(result,expected_results,rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_conc_initial_canopy_air(self): """ :description calculates initial (1st application day) air concentration of pesticide within plant canopy (ug/mL) :param application rate; active ingredient application rate (lbs a.i./acre) :param mass_pest; mass of pesticide on treated field (mg) :param volume_air; volume of air in 1 hectare to a height equal to the height of the crop canopy :param biotransfer_factor; the volume_based biotransfer factor; function of Henry's las constant and Log Kow NOTE: this represents Eq 24 (and supporting eqs 25,26,27) of Attachment 1-7 of 'Biological Evaluation Chapters for Diazinon ESA Assessment' :return: """ # create empty pandas dataframes to create empty object for this unittest ted_empty = self.create_ted_object() expected_results = pd.Series([], dtype='float') result = pd.Series([], dtype='float') expected_results = [1.152526e-7, 1.281910e-5, 7.925148e-8] try: # internal model constants ted_empty.hectare_to_acre = 2.47105 ted_empty.gms_to_mg = 1000. ted_empty.lbs_to_gms = 453.592 ted_empty.crop_hgt = 1. #m ted_empty.hectare_area = 10000. #m2 ted_empty.m3_to_liters = 1000. ted_empty.mass_plant = 25000. # kg/hectare ted_empty.density_plant = 0.77 #kg/L # input variables that change per simulation ted_empty.log_kow = pd.Series([2., 4., 6.], dtype='float') ted_empty.log_unitless_hlc = pd.Series([-5., -3., -4.], dtype='float') ted_empty.app_rate_min = pd.Series([1.e-3, 0.15, 1.25]) # lbs a.i./acre for i in range(3): #let's do 3 iterations result[i] = ted_empty.conc_initial_canopy_air(i, ted_empty.app_rate_min[i]) npt.assert_allclose(result,expected_results,rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_conc_initial_soil_h2o(self): """ :description calculates initial (1st application day) concentration in soil pore water or surface puddles(ug/L) :param application rate; active ingredient application rate (lbs a.i./acre) :param soil_depth :param soil_bulk_density; kg/L :param porosity; soil porosity :param frac_org_cont_soil; fraction organic carbon in soil :param app_rate_conv; conversion factor used to convert units of application rate (lbs a.i./acre) to (ug a.i./mL) :NOTE this represents Eq 3 of Attachment 1-7 of 'Biological Evaluation Chapters for Diazinon ESA Assessment' (the depth of water in this equation is assumed to be 0.0 and therefore not included here) :return: """ # create empty pandas dataframes to create empty object for this unittest ted_empty = self.create_ted_object() expected_results = pd.Series([], dtype='float') result = pd.Series([], dtype='float') expected_results = [5.067739e-3, 1.828522, 6.13194634] try: # internal model constants ted_empty.app_rate_conv1 = 11.2 ted_empty.soil_depth = 2.6 # cm ted_empty.soil_porosity = 0.35 ted_empty.soil_bulk_density = 1.5 # kg/L ted_empty.soil_foc = 0.015 ted_empty.h2o_depth_soil = 0.0 ted_empty.h2o_depth_puddles = 1.3 # internally specified variable ted_empty.water_type = pd.Series(["puddles", "pore_water", "puddles"]) # input variables that change per simulation ted_empty.koc = pd.Series([1.e-3, 0.15, 1.25]) ted_empty.app_rate_min = pd.Series([1.e-3, 0.15, 1.25]) # lbs a.i./acre for i in range(3): #let's do 3 iterations result[i] = ted_empty.conc_initial_soil_h2o(i, ted_empty.app_rate_min[i], ted_empty.water_type[i]) npt.assert_allclose(result,expected_results,rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_conc_initial_plant(self): """ :description calculates initial (1st application day) dietary based EEC (residue concentration) from pesticide application (mg/kg-diet for food items including short/tall grass, broadleaf plants, seeds/fruit/pods, and above ground arthropods) :param application rate; active ingredient application rate (lbs a.i./acre) :param food_multiplier; factor by which application rate of active ingredient is multiplied to estimate dietary based EECs :return: """ # create empty pandas dataframes to create empty object for this unittest ted_empty = self.create_ted_object() expected_results = pd.Series([], dtype='float') result = pd.Series([], dtype='float') expected_results = [1.5e-2, 22.5, 300.] try: # input variables that change per simulation ted_empty.food_multiplier = pd.Series([15., 150., 240.]) ted_empty.app_rate_min = pd.Series([1.e-3, 0.15, 1.25]) # lbs a.i./acre result = ted_empty.conc_initial_plant(ted_empty.app_rate_min, ted_empty.food_multiplier) npt.assert_allclose(result,expected_results,rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_animal_dietary_intake(self): """ :description generates pesticide intake via consumption of diet containing pesticide for animals (mammals, birds, amphibians, reptiles) :param a1; coefficient of allometric expression :param b1; exponent of allometric expression :param body_wgt; body weight of species (g) :param frac_h2o; fraction of water in food item # this represents Eqs 6 of Attachment 1-7 of 'Biological Evaluation Chapters for Diazinon ESA Assessment' :return: """ # create empty pandas dataframes to create empty object for this unittest ted_empty = self.create_ted_object() expected_results = pd.Series([], dtype='float') result = pd.Series([], dtype='float') expected_results = [8.050355, 3.507997, 64.92055] try: # internally specified parameters a1 = pd.Series([.398, .013, .621], dtype='float') b1 = pd.Series([.850, .773, .564], dtype='float') # variables from external database body_wgt = pd.Series([10., 120., 450.], dtype='float') frac_h2o = pd.Series([0.65, 0.85, 0.7], dtype='float') result = ted_empty.animal_dietary_intake(a1, b1, body_wgt, frac_h2o) npt.assert_allclose(result,expected_results,rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_animal_dietary_dose(self): """ :description generates pesticide dietary-based dose for animals (mammals, birds, amphibians, reptiles) :param body_wgt; body weight of species (g) :param frac_h2o; fraction of water in food item :param food_intake_rate; ingestion rate of food item (g/day-ww) :param food_pest_conc; pesticide concentration in food item (mg a.i./kg) # this represents Eqs 5 of Attachment 1-7 of 'Biological Evaluation Chapters for Diazinon ESA Assessment' :return: """ # create empty pandas dataframes to create empty object for this unittest ted_empty = self.create_ted_object() expected_results = pd.Series([], dtype='float') result = pd.Series([], dtype='float') expected_results = [3.e-4, 3.45e-2, 4.5] try: # variables from external database body_wgt = pd.Series([10., 120., 450.], dtype='float') # internally calculated variables food_intake_rate = pd.Series([3., 12., 45.], dtype='float') food_pest_conc = pd.Series([1.e-3, 3.45e-1, 4.50e+1], dtype='float') result = ted_empty.animal_dietary_dose(body_wgt, food_intake_rate, food_pest_conc) npt.assert_allclose(result,expected_results,rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_daily_plant_timeseries(self): """ :description generates annual timeseries of daily pesticide residue concentration (EECs) for a food item :param i; simulation number/index :param application rate; active ingredient application rate (lbs a.i./acre) :param food_multiplier; factor by which application rate of active ingredient is multiplied to estimate dietary based EECs :param daily_flag; daily flag denoting if pesticide is applied (0 - not applied, 1 - applied) :Notes # calculations are performed daily from day of first application (assumed day 0) through the last day of a year # note: day numbers are synchronized with 0-based array indexing; thus the year does not have a calendar specific # assoication, rather it is one year from the day of 1st pesticide application #expected results generated by running OPP spreadsheet with appropriate inputs :return: """ # create empty pandas dataframes to create empty object for this unittest ted_empty = self.create_ted_object() expected_results = pd.Series([], dtype='float') result = pd.Series([], dtype='float') expected_results = [[2.700000E+00,2.578072E+00,2.461651E+00,5.050487E+00,4.822415E+00,4.604642E+00,7.096704E+00, 6.776228E+00,6.470225E+00,6.178040E+00,5.899049E+00,5.632658E+00,5.378296E+00,5.135421E+00, 4.903513E+00,4.682078E+00,4.470643E+00,4.268756E+00,4.075986E+00,3.891921E+00,3.716168E+00, 3.548352E+00,3.388114E+00,3.235112E+00,3.089020E+00,2.949525E+00,2.816329E+00,2.689148E+00, 2.567710E+00,2.451757E+00,2.341039E+00,2.235322E+00,2.134378E+00,2.037993E+00,1.945961E+00, 1.858084E+00,1.774176E+00,1.694057E+00,1.617556E+00,1.544510E+00,1.474762E+00,1.408164E+00, 1.344574E+00,1.283855E+00,1.225878E+00,1.170520E+00,1.117661E+00,1.067189E+00,1.018997E+00, 9.729803E-01,9.290420E-01,8.870880E-01,8.470285E-01,8.087781E-01,7.722549E-01,7.373812E-01, 7.040822E-01,6.722870E-01,6.419276E-01,6.129392E-01,5.852598E-01,5.588304E-01,5.335945E-01, 5.094983E-01,4.864901E-01,4.645210E-01,4.435440E-01,4.235143E-01,4.043890E-01,3.861275E-01, 3.686906E-01,3.520411E-01,3.361435E-01,3.209638E-01,3.064696E-01,2.926299E-01,2.794152E-01, 2.667973E-01,2.547491E-01,2.432451E-01,2.322605E-01,2.217720E-01,2.117571E-01,2.021945E-01, 1.930637E-01,1.843453E-01,1.760206E-01,1.680717E-01,1.604819E-01,1.532348E-01,1.463150E-01, 1.397076E-01,1.333986E-01,1.273746E-01,1.216225E-01,1.161303E-01,1.108860E-01,1.058786E-01, 1.010973E-01,9.653187E-02,9.217264E-02,8.801028E-02,8.403587E-02,8.024095E-02,7.661739E-02, 7.315748E-02,6.985380E-02,6.669932E-02,6.368728E-02,6.081127E-02,5.806513E-02,5.544300E-02, 5.293928E-02,5.054863E-02,4.826593E-02,4.608632E-02,4.400514E-02,4.201794E-02,4.012047E-02, 3.830870E-02,3.657874E-02,3.492690E-02,3.334966E-02,3.184364E-02,3.040563E-02,2.903256E-02, 2.772150E-02,2.646964E-02,2.527431E-02,2.413297E-02,2.304316E-02,2.200257E-02,2.100897E-02, 2.006024E-02,1.915435E-02,1.828937E-02,1.746345E-02,1.667483E-02,1.592182E-02,1.520282E-02, 1.451628E-02,1.386075E-02,1.323482E-02,1.263716E-02,1.206648E-02,1.152158E-02,1.100128E-02, 1.050448E-02,1.003012E-02,9.577174E-03,9.144684E-03,8.731725E-03,8.337415E-03,7.960910E-03, 7.601408E-03,7.258141E-03,6.930375E-03,6.617410E-03,6.318579E-03,6.033242E-03,5.760790E-03, 5.500642E-03,5.252242E-03,5.015059E-03,4.788587E-03,4.572342E-03,4.365863E-03,4.168707E-03, 3.980455E-03,3.800704E-03,3.629070E-03,3.465187E-03,3.308705E-03,3.159289E-03,3.016621E-03, 2.880395E-03,2.750321E-03,2.626121E-03,2.507530E-03,2.394294E-03,2.286171E-03,2.182931E-03, 2.084354E-03,1.990228E-03,1.900352E-03,1.814535E-03,1.732594E-03,1.654353E-03,1.579645E-03, 1.508310E-03,1.440198E-03,1.375161E-03,1.313061E-03,1.253765E-03,1.197147E-03,1.143086E-03, 1.091466E-03,1.042177E-03,9.951138E-04,9.501760E-04,9.072676E-04,8.662969E-04,8.271763E-04, 7.898223E-04,7.541552E-04,7.200988E-04,6.875803E-04,6.565303E-04,6.268824E-04,5.985734E-04, 5.715428E-04,5.457328E-04,5.210884E-04,4.975569E-04,4.750880E-04,4.536338E-04,4.331484E-04, 4.135881E-04,3.949112E-04,3.770776E-04,3.600494E-04,3.437901E-04,3.282651E-04,3.134412E-04, 2.992867E-04,2.857714E-04,2.728664E-04,2.605442E-04,2.487784E-04,2.375440E-04,2.268169E-04, 2.165742E-04,2.067941E-04,1.974556E-04,1.885388E-04,1.800247E-04,1.718951E-04,1.641326E-04, 1.567206E-04,1.496433E-04,1.428857E-04,1.364332E-04,1.302721E-04,1.243892E-04,1.187720E-04, 1.134085E-04,1.082871E-04,1.033970E-04,9.872779E-05,9.426940E-05,9.001235E-05,8.594753E-05, 8.206628E-05,7.836030E-05,7.482167E-05,7.144285E-05,6.821660E-05,6.513605E-05,6.219461E-05, 5.938600E-05,5.670423E-05,5.414355E-05,5.169852E-05,4.936390E-05,4.713470E-05,4.500617E-05, 4.297377E-05,4.103314E-05,3.918015E-05,3.741084E-05,3.572142E-05,3.410830E-05,3.256803E-05, 3.109731E-05,2.969300E-05,2.835211E-05,2.707178E-05,2.584926E-05,2.468195E-05,2.356735E-05, 2.250309E-05,2.148688E-05,2.051657E-05,1.959007E-05,1.870542E-05,1.786071E-05,1.705415E-05, 1.628401E-05,1.554865E-05,1.484650E-05,1.417606E-05,1.353589E-05,1.292463E-05,1.234097E-05, 1.178368E-05,1.125154E-05,1.074344E-05,1.025829E-05,9.795037E-06,9.352709E-06,8.930356E-06, 8.527075E-06,8.142006E-06,7.774326E-06,7.423250E-06,7.088028E-06,6.767944E-06,6.462315E-06, 6.170487E-06,5.891838E-06,5.625772E-06,5.371721E-06,5.129143E-06,4.897519E-06,4.676355E-06, 4.465178E-06,4.263538E-06,4.071003E-06,3.887163E-06,3.711625E-06,3.544014E-06,3.383972E-06, 3.231157E-06,3.085243E-06,2.945919E-06,2.812886E-06,2.685860E-06,2.564571E-06,2.448759E-06, 2.338177E-06,2.232589E-06,2.131769E-06,2.035502E-06,1.943582E-06,1.855813E-06,1.772007E-06, 1.691986E-06,1.615579E-06,1.542622E-06,1.472959E-06,1.406443E-06,1.342930E-06,1.282286E-06, 1.224380E-06,1.169089E-06,1.116294E-06,1.065884E-06,1.017751E-06,9.717908E-07,9.279063E-07, 8.860035E-07,8.459930E-07,8.077893E-07,7.713109E-07,7.364797E-07,7.032215E-07,6.714651E-07, 6.411428E-07,6.121898E-07,5.845443E-07,5.581472E-07,5.329422E-07,5.088754E-07,4.858954E-07, 4.639531E-07,4.430018E-07], [5.500000E+01,5.349602E+01,5.203317E+01,5.061032E+01,4.922638E+01,4.788028E+01,4.657099E+01, 1.002975E+02,9.755487E+01,9.488722E+01,9.229253E+01,8.976878E+01,8.731405E+01,8.492644E+01, 1.376041E+02,1.338413E+02,1.301814E+02,1.266216E+02,1.231591E+02,1.197913E+02,1.165156E+02, 1.683295E+02,1.637265E+02,1.592494E+02,1.548947E+02,1.506591E+02,1.465394E+02,1.425322E+02, 1.936347E+02,1.883397E+02,1.831896E+02,1.781802E+02,1.733079E+02,1.685688E+02,1.639593E+02, 1.594758E+02,1.551149E+02,1.508733E+02,1.467476E+02,1.427348E+02,1.388317E+02,1.350354E+02, 1.313428E+02,1.277512E+02,1.242579E+02,1.208600E+02,1.175551E+02,1.143406E+02,1.112139E+02, 1.081728E+02,1.052148E+02,1.023377E+02,9.953925E+01,9.681734E+01,9.416987E+01,9.159479E+01, 8.909012E+01,8.665395E+01,8.428439E+01,8.197963E+01,7.973789E+01,7.755746E+01,7.543664E+01, 7.337382E+01,7.136741E+01,6.941587E+01,6.751769E+01,6.567141E+01,6.387562E+01,6.212894E+01, 6.043002E+01,5.877756E+01,5.717028E+01,5.560696E+01,5.408638E+01,5.260739E+01,5.116884E+01, 4.976962E+01,4.840867E+01,4.708493E+01,4.579739E+01,4.454506E+01,4.332697E+01,4.214220E+01, 4.098981E+01,3.986895E+01,3.877873E+01,3.771832E+01,3.668691E+01,3.568371E+01,3.470793E+01, 3.375884E+01,3.283571E+01,3.193781E+01,3.106447E+01,3.021501E+01,2.938878E+01,2.858514E+01, 2.780348E+01,2.704319E+01,2.630369E+01,2.558442E+01,2.488481E+01,2.420434E+01,2.354247E+01, 2.289870E+01,2.227253E+01,2.166349E+01,2.107110E+01,2.049491E+01,1.993447E+01,1.938936E+01, 1.885916E+01,1.834346E+01,1.784185E+01,1.735397E+01,1.687942E+01,1.641785E+01,1.596891E+01, 1.553224E+01,1.510751E+01,1.469439E+01,1.429257E+01,1.390174E+01,1.352160E+01,1.315185E+01, 1.279221E+01,1.244241E+01,1.210217E+01,1.177123E+01,1.144935E+01,1.113627E+01,1.083174E+01, 1.053555E+01,1.024745E+01,9.967237E+00,9.694682E+00,9.429580E+00,9.171728E+00,8.920927E+00, 8.676983E+00,8.439711E+00,8.208926E+00,7.984453E+00,7.766118E+00,7.553753E+00,7.347195E+00, 7.146286E+00,6.950870E+00,6.760798E+00,6.575924E+00,6.396105E+00,6.221203E+00,6.051084E+00, 5.885617E+00,5.724674E+00,5.568133E+00,5.415872E+00,5.267774E+00,5.123727E+00,4.983618E+00, 4.847341E+00,4.714790E+00,4.585864E+00,4.460463E+00,4.338492E+00,4.219855E+00,4.104463E+00, 3.992226E+00,3.883059E+00,3.776876E+00,3.673597E+00,3.573143E+00,3.475435E+00,3.380399E+00, 3.287962E+00,3.198052E+00,3.110601E+00,3.025542E+00,2.942808E+00,2.862337E+00,2.784066E+00, 2.707936E+00,2.633887E+00,2.561863E+00,2.491809E+00,2.423670E+00,2.357395E+00,2.292932E+00, 2.230232E+00,2.169246E+00,2.109928E+00,2.052232E+00,1.996113E+00,1.941529E+00,1.888438E+00, 1.836799E+00,1.786571E+00,1.737718E+00,1.690200E+00,1.643981E+00,1.599026E+00,1.555301E+00, 1.512771E+00,1.471404E+00,1.431169E+00,1.392033E+00,1.353968E+00,1.316944E+00,1.280932E+00, 1.245905E+00,1.211835E+00,1.178698E+00,1.146466E+00,1.115116E+00,1.084623E+00,1.054964E+00, 1.026116E+00,9.980566E-01,9.707647E-01,9.442191E-01,9.183994E-01,8.932857E-01,8.688588E-01, 8.450998E-01,8.219905E-01,7.995131E-01,7.776504E-01,7.563855E-01,7.357021E-01,7.155843E-01, 6.960166E-01,6.769840E-01,6.584718E-01,6.404659E-01,6.229523E-01,6.059176E-01,5.893488E-01, 5.732330E-01,5.575579E-01,5.423115E-01,5.274819E-01,5.130579E-01,4.990283E-01,4.853824E-01, 4.721095E-01,4.591997E-01,4.466428E-01,4.344294E-01,4.225499E-01,4.109952E-01,3.997565E-01, 3.888252E-01,3.781927E-01,3.678510E-01,3.577921E-01,3.480083E-01,3.384920E-01,3.292359E-01, 3.202329E-01,3.114761E-01,3.029588E-01,2.946744E-01,2.866165E-01,2.787790E-01,2.711557E-01, 2.637410E-01,2.565290E-01,2.495142E-01,2.426912E-01,2.360548E-01,2.295998E-01,2.233214E-01, 2.172147E-01,2.112749E-01,2.054976E-01,1.998783E-01,1.944126E-01,1.890964E-01,1.839255E-01, 1.788961E-01,1.740041E-01,1.692460E-01,1.646180E-01,1.601165E-01,1.557381E-01,1.514794E-01, 1.473372E-01,1.433082E-01,1.393895E-01,1.355779E-01,1.318705E-01,1.282645E-01,1.247571E-01, 1.213456E-01,1.180274E-01,1.147999E-01,1.116607E-01,1.086073E-01,1.056375E-01,1.027488E-01, 9.993914E-02,9.720630E-02,9.454818E-02,9.196276E-02,8.944803E-02,8.700207E-02,8.462300E-02, 8.230898E-02,8.005823E-02,7.786904E-02,7.573970E-02,7.366860E-02,7.165412E-02,6.969474E-02, 6.778893E-02,6.593524E-02,6.413224E-02,6.237854E-02,6.067279E-02,5.901369E-02,5.739996E-02, 5.583036E-02,5.430367E-02,5.281874E-02,5.137440E-02,4.996957E-02,4.860315E-02,4.727409E-02, 4.598138E-02,4.472402E-02,4.350104E-02,4.231150E-02,4.115449E-02,4.002912E-02,3.893452E-02, 3.786985E-02,3.683430E-02,3.582706E-02,3.484737E-02,3.389447E-02,3.296762E-02,3.206612E-02, 3.118927E-02,3.033640E-02,2.950685E-02,2.869998E-02,2.791518E-02,2.715184E-02,2.640937E-02, 2.568720E-02,2.498478E-02,2.430157E-02,2.363705E-02,2.299069E-02,2.236201E-02,2.175052E-02, 2.115575E-02,2.057724E-02,2.001456E-02,1.946726E-02,1.893493E-02,1.841715E-02,1.791353E-02, 1.742368E-02,1.694723E-02], [3.000000E+02,2.941172E+02,2.883497E+02,2.826954E+02,2.771519E+02,2.717171E+02,2.663889E+02, 2.611652E+02,2.560439E+02,2.510230E+02,2.461006E+02,2.412747E+02,2.365435E+02,2.319050E+02, 2.273575E+02,2.228991E+02,2.185282E+02,2.142430E+02,2.100418E+02,2.059231E+02,2.018850E+02, 1.979262E+02,1.940450E+02,1.902399E+02,1.865094E+02,1.828520E+02,1.792664E+02,1.757511E+02, 1.723048E+02,1.689260E+02,1.656134E+02,1.623658E+02,1.591820E+02,1.560605E+02,1.530002E+02, 1.500000E+02,1.470586E+02,1.441749E+02,1.413477E+02,1.385759E+02,1.358585E+02,1.331944E+02, 1.305826E+02,1.280219E+02,1.255115E+02,1.230503E+02,1.206374E+02,1.182717E+02,1.159525E+02, 1.136787E+02,1.114496E+02,1.092641E+02,1.071215E+02,1.050209E+02,1.029615E+02,1.009425E+02, 9.896309E+01,9.702249E+01,9.511994E+01,9.325469E+01,9.142602E+01,8.963322E+01,8.787556E+01, 8.615238E+01,8.446298E+01,8.280671E+01,8.118292E+01,7.959098E+01,7.803025E+01,7.650012E+01, 7.500000E+01,7.352930E+01,7.208743E+01,7.067384E+01,6.928797E+01,6.792927E+01,6.659722E+01, 6.529129E+01,6.401097E+01,6.275575E+01,6.152515E+01,6.031868E+01,5.913587E+01,5.797625E+01, 5.683937E+01,5.572479E+01,5.463206E+01,5.356076E+01,5.251046E+01,5.148076E+01,5.047126E+01, 4.948155E+01,4.851124E+01,4.755997E+01,4.662735E+01,4.571301E+01,4.481661E+01,4.393778E+01, 4.307619E+01,4.223149E+01,4.140336E+01,4.059146E+01,3.979549E+01,3.901512E+01,3.825006E+01, 3.750000E+01,3.676465E+01,3.604372E+01,3.533692E+01,3.464398E+01,3.396464E+01,3.329861E+01, 3.264565E+01,3.200548E+01,3.137788E+01,3.076258E+01,3.015934E+01,2.956793E+01,2.898813E+01, 2.841969E+01,2.786239E+01,2.731603E+01,2.678038E+01,2.625523E+01,2.574038E+01,2.523563E+01, 2.474077E+01,2.425562E+01,2.377998E+01,2.331367E+01,2.285651E+01,2.240830E+01,2.196889E+01, 2.153809E+01,2.111575E+01,2.070168E+01,2.029573E+01,1.989774E+01,1.950756E+01,1.912503E+01, 1.875000E+01,1.838232E+01,1.802186E+01,1.766846E+01,1.732199E+01,1.698232E+01,1.664931E+01, 1.632282E+01,1.600274E+01,1.568894E+01,1.538129E+01,1.507967E+01,1.478397E+01,1.449406E+01, 1.420984E+01,1.393120E+01,1.365801E+01,1.339019E+01,1.312762E+01,1.287019E+01,1.261781E+01, 1.237039E+01,1.212781E+01,1.188999E+01,1.165684E+01,1.142825E+01,1.120415E+01,1.098445E+01, 1.076905E+01,1.055787E+01,1.035084E+01,1.014787E+01,9.948872E+00,9.753781E+00,9.562515E+00, 9.375000E+00,9.191162E+00,9.010929E+00,8.834230E+00,8.660996E+00,8.491159E+00,8.324653E+00, 8.161412E+00,8.001371E+00,7.844469E+00,7.690644E+00,7.539835E+00,7.391984E+00,7.247031E+00, 7.104921E+00,6.965598E+00,6.829007E+00,6.695094E+00,6.563808E+00,6.435095E+00,6.308907E+00, 6.185193E+00,6.063905E+00,5.944996E+00,5.828418E+00,5.714127E+00,5.602076E+00,5.492223E+00, 5.384524E+00,5.278936E+00,5.175420E+00,5.073933E+00,4.974436E+00,4.876890E+00,4.781258E+00, 4.687500E+00,4.595581E+00,4.505464E+00,4.417115E+00,4.330498E+00,4.245580E+00,4.162326E+00, 4.080706E+00,4.000686E+00,3.922235E+00,3.845322E+00,3.769918E+00,3.695992E+00,3.623516E+00, 3.552461E+00,3.482799E+00,3.414504E+00,3.347547E+00,3.281904E+00,3.217548E+00,3.154454E+00, 3.092597E+00,3.031953E+00,2.972498E+00,2.914209E+00,2.857063E+00,2.801038E+00,2.746111E+00, 2.692262E+00,2.639468E+00,2.587710E+00,2.536966E+00,2.487218E+00,2.438445E+00,2.390629E+00, 2.343750E+00,2.297790E+00,2.252732E+00,2.208558E+00,2.165249E+00,2.122790E+00,2.081163E+00, 2.040353E+00,2.000343E+00,1.961117E+00,1.922661E+00,1.884959E+00,1.847996E+00,1.811758E+00, 1.776230E+00,1.741400E+00,1.707252E+00,1.673774E+00,1.640952E+00,1.608774E+00,1.577227E+00, 1.546298E+00,1.515976E+00,1.486249E+00,1.457105E+00,1.428532E+00,1.400519E+00,1.373056E+00, 1.346131E+00,1.319734E+00,1.293855E+00,1.268483E+00,1.243609E+00,1.219223E+00,1.195314E+00, 1.171875E+00,1.148895E+00,1.126366E+00,1.104279E+00,1.082625E+00,1.061395E+00,1.040582E+00, 1.020176E+00,1.000171E+00,9.805587E-01,9.613305E-01,9.424794E-01,9.239979E-01,9.058789E-01, 8.881152E-01,8.706998E-01,8.536259E-01,8.368868E-01,8.204760E-01,8.043869E-01,7.886134E-01, 7.731492E-01,7.579882E-01,7.431245E-01,7.285523E-01,7.142658E-01,7.002595E-01,6.865278E-01, 6.730654E-01,6.598670E-01,6.469274E-01,6.342416E-01,6.218045E-01,6.096113E-01,5.976572E-01, 5.859375E-01,5.744476E-01,5.631831E-01,5.521394E-01,5.413123E-01,5.306975E-01,5.202908E-01, 5.100882E-01,5.000857E-01,4.902793E-01,4.806652E-01,4.712397E-01,4.619990E-01,4.529395E-01, 4.440576E-01,4.353499E-01,4.268129E-01,4.184434E-01,4.102380E-01,4.021935E-01,3.943067E-01, 3.865746E-01,3.789941E-01,3.715622E-01,3.642761E-01,3.571329E-01,3.501297E-01,3.432639E-01, 3.365327E-01,3.299335E-01,3.234637E-01,3.171208E-01,3.109023E-01,3.048056E-01,2.988286E-01, 2.929687E-01,2.872238E-01,2.815915E-01,2.760697E-01,2.706561E-01,2.653487E-01,2.601454E-01, 2.550441E-01,2.500429E-01,2.451397E-01,2.403326E-01,2.356198E-01,2.309995E-01,2.264697E-01, 2.220288E-01,2.176749E-01]] try: # internal model constants ted_empty.num_simulation_days = 366 # internally specified variable (from internal database) food_multiplier = pd.Series([15., 110., 240.]) # input variables that change per simulation ted_empty.foliar_diss_hlife = pd.Series([15., 25., 35.]) ted_empty.app_rate_min = pd.Series([0.18, 0.5, 1.25]) # lbs a.i./acre # application scenarios generated from 'daily_app_flag' tests and reused here daily_flag = pd.Series([[True, False, False, True, False, False, True, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False], [True, False, False, False, False, False, False, True, False, False, False, False, False, False, True, False, False, False, False, False, False, True, False, False, False, False, False, False, True, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False], [True, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False]], dtype='bool') for i in range(3): result[i] = ted_empty.daily_plant_timeseries(i, ted_empty.app_rate_min[i], food_multiplier[i], daily_flag[i]) npt.assert_allclose(result[i],expected_results[i],rtol=1e-4, atol=0, err_msg='', verbose=True) finally: for i in range(3): tab = [result[i], expected_results[i]] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_daily_soil_h2o_timeseries(self): """ :description generates annual timeseries of daily pesticide concentrations in soil pore water and surface puddles :param i; simulation number/index :param application rate; active ingredient application rate (lbs a.i./acre) :param food_multiplier; factor by which application rate of active ingredient is multiplied to estimate dietary based EECs :param daily_flag; daily flag denoting if pesticide is applied (0 - not applied, 1 - applied) :param water_type; type of water (pore water or surface puddles) :Notes # calculations are performed daily from day of first application (assumed day 0) through the last day of a year # note: day numbers are synchronized with 0-based array indexing; thus the year does not have a calendar specific # assoication, rather it is one year from the day of 1st pesticide application :return: """ # create empty pandas dataframes to create empty object for this unittest ted_empty = self.create_ted_object() expected_results = pd.Series([], dtype='float') result = pd.Series([], dtype='float') expected_results = [[2.235571E-02,2.134616E-02,2.038220E-02,4.181749E-02,3.992908E-02,3.812594E-02, 5.875995E-02,5.610644E-02,5.357277E-02,5.115350E-02,4.884349E-02,4.663780E-02, 4.453171E-02,4.252073E-02,4.060056E-02,3.876711E-02,3.701645E-02,3.534484E-02, 3.374873E-02,3.222469E-02,3.076947E-02,2.937997E-02,2.805322E-02,2.678638E-02, 2.557675E-02,2.442175E-02,2.331890E-02,2.226586E-02,2.126037E-02,2.030028E-02, 1.938355E-02,1.850822E-02,1.767242E-02,1.687436E-02,1.611234E-02,1.538474E-02, 1.468999E-02,1.402661E-02,1.339319E-02,1.278838E-02,1.221087E-02,1.165945E-02, 1.113293E-02,1.063018E-02,1.015014E-02,9.691777E-03,9.254112E-03,8.836211E-03, 8.437182E-03,8.056172E-03,7.692368E-03,7.344993E-03,7.013305E-03,6.696596E-03, 6.394188E-03,6.105437E-03,5.829725E-03,5.566464E-03,5.315091E-03,5.075070E-03, 4.845888E-03,4.627056E-03,4.418105E-03,4.218591E-03,4.028086E-03,3.846184E-03, 3.672497E-03,3.506653E-03,3.348298E-03,3.197094E-03,3.052718E-03,2.914863E-03, 2.783232E-03,2.657546E-03,2.537535E-03,2.422944E-03,2.313528E-03,2.209053E-03, 2.109295E-03,2.014043E-03,1.923092E-03,1.836248E-03,1.753326E-03,1.674149E-03, 1.598547E-03,1.526359E-03,1.457431E-03,1.391616E-03,1.328773E-03,1.268768E-03, 1.211472E-03,1.156764E-03,1.104526E-03,1.054648E-03,1.007022E-03,9.615460E-04, 9.181242E-04,8.766632E-04,8.370745E-04,7.992735E-04,7.631796E-04,7.287156E-04, 6.958080E-04,6.643864E-04,6.343838E-04,6.057361E-04,5.783820E-04,5.522632E-04, 5.273239E-04,5.035108E-04,4.807730E-04,4.590621E-04,4.383316E-04,4.185372E-04, 3.996368E-04,3.815898E-04,3.643578E-04,3.479040E-04,3.321932E-04,3.171919E-04, 3.028680E-04,2.891910E-04,2.761316E-04,2.636619E-04,2.517554E-04,2.403865E-04, 2.295310E-04,2.191658E-04,2.092686E-04,1.998184E-04,1.907949E-04,1.821789E-04, 1.739520E-04,1.660966E-04,1.585960E-04,1.514340E-04,1.445955E-04,1.380658E-04, 1.318310E-04,1.258777E-04,1.201933E-04,1.147655E-04,1.095829E-04,1.046343E-04, 9.990919E-05,9.539745E-05,9.108945E-05,8.697600E-05,8.304830E-05,7.929798E-05, 7.571701E-05,7.229775E-05,6.903290E-05,6.591548E-05,6.293885E-05,6.009663E-05, 5.738276E-05,5.479145E-05,5.231715E-05,4.995459E-05,4.769873E-05,4.554473E-05, 4.348800E-05,4.152415E-05,3.964899E-05,3.785850E-05,3.614887E-05,3.451645E-05, 3.295774E-05,3.146942E-05,3.004831E-05,2.869138E-05,2.739572E-05,2.615858E-05, 2.497730E-05,2.384936E-05,2.277236E-05,2.174400E-05,2.076208E-05,1.982449E-05, 1.892925E-05,1.807444E-05,1.725822E-05,1.647887E-05,1.573471E-05,1.502416E-05, 1.434569E-05,1.369786E-05,1.307929E-05,1.248865E-05,1.192468E-05,1.138618E-05, 1.087200E-05,1.038104E-05,9.912247E-06,9.464626E-06,9.037219E-06,8.629112E-06, 8.239435E-06,7.867356E-06,7.512079E-06,7.172845E-06,6.848931E-06,6.539644E-06, 6.244324E-06,5.962341E-06,5.693091E-06,5.436000E-06,5.190519E-06,4.956124E-06, 4.732313E-06,4.518609E-06,4.314556E-06,4.119718E-06,3.933678E-06,3.756039E-06, 3.586423E-06,3.424465E-06,3.269822E-06,3.122162E-06,2.981170E-06,2.846545E-06, 2.718000E-06,2.595260E-06,2.478062E-06,2.366156E-06,2.259305E-06,2.157278E-06, 2.059859E-06,1.966839E-06,1.878020E-06,1.793211E-06,1.712233E-06,1.634911E-06, 1.561081E-06,1.490585E-06,1.423273E-06,1.359000E-06,1.297630E-06,1.239031E-06, 1.183078E-06,1.129652E-06,1.078639E-06,1.029929E-06,9.834195E-07,9.390098E-07, 8.966056E-07,8.561164E-07,8.174555E-07,7.805405E-07,7.452926E-07,7.116364E-07, 6.795000E-07,6.488149E-07,6.195154E-07,5.915391E-07,5.648262E-07,5.393195E-07, 5.149647E-07,4.917097E-07,4.695049E-07,4.483028E-07,4.280582E-07,4.087278E-07, 3.902703E-07,3.726463E-07,3.558182E-07,3.397500E-07,3.244074E-07,3.097577E-07, 2.957696E-07,2.824131E-07,2.696598E-07,2.574824E-07,2.458549E-07,2.347525E-07, 2.241514E-07,2.140291E-07,2.043639E-07,1.951351E-07,1.863231E-07,1.779091E-07, 1.698750E-07,1.622037E-07,1.548789E-07,1.478848E-07,1.412065E-07,1.348299E-07, 1.287412E-07,1.229274E-07,1.173762E-07,1.120757E-07,1.070145E-07,1.021819E-07, 9.756757E-08,9.316157E-08,8.895455E-08,8.493750E-08,8.110186E-08,7.743943E-08, 7.394239E-08,7.060327E-08,6.741494E-08,6.437059E-08,6.146372E-08,5.868811E-08, 5.603785E-08,5.350727E-08,5.109097E-08,4.878378E-08,4.658079E-08,4.447727E-08, 4.246875E-08,4.055093E-08,3.871971E-08,3.697119E-08,3.530163E-08,3.370747E-08, 3.218529E-08,3.073186E-08,2.934406E-08,2.801893E-08,2.675364E-08,2.554549E-08, 2.439189E-08,2.329039E-08,2.223864E-08,2.123438E-08,2.027546E-08,1.935986E-08, 1.848560E-08,1.765082E-08,1.685373E-08,1.609265E-08,1.536593E-08,1.467203E-08, 1.400946E-08,1.337682E-08,1.277274E-08,1.219595E-08,1.164520E-08,1.111932E-08, 1.061719E-08,1.013773E-08,9.679929E-09,9.242799E-09,8.825409E-09,8.426867E-09, 8.046324E-09,7.682965E-09,7.336014E-09,7.004732E-09,6.688409E-09,6.386371E-09, 6.097973E-09,5.822598E-09,5.559659E-09,5.308594E-09,5.068866E-09,4.839964E-09, 4.621399E-09,4.412704E-09,4.213434E-09,4.023162E-09,3.841482E-09,3.668007E-09], [9.391514E-02,8.762592E-02,8.175787E-02,7.628279E-02,7.117436E-02,6.640803E-02, 6.196088E-02,1.517267E-01,1.415660E-01,1.320858E-01,1.232404E-01,1.149873E-01, 1.072870E-01,1.001023E-01,1.873139E-01,1.747700E-01,1.630662E-01,1.521461E-01, 1.419574E-01,1.324509E-01,1.235811E-01,2.092203E-01,1.952095E-01,1.821369E-01, 1.699397E-01,1.585594E-01,1.479411E-01,1.380340E-01,2.227054E-01,2.077915E-01, 1.938763E-01,1.808930E-01,1.687791E-01,1.574765E-01,1.469307E-01,1.370912E-01, 1.279106E-01,1.193449E-01,1.113527E-01,1.038957E-01,9.693814E-02,9.044648E-02, 8.438955E-02,7.873824E-02,7.346537E-02,6.854562E-02,6.395532E-02,5.967242E-02, 5.567634E-02,5.194786E-02,4.846907E-02,4.522324E-02,4.219478E-02,3.936912E-02, 3.673269E-02,3.427281E-02,3.197766E-02,2.983621E-02,2.783817E-02,2.597393E-02, 2.423454E-02,2.261162E-02,2.109739E-02,1.968456E-02,1.836634E-02,1.713640E-02, 1.598883E-02,1.491811E-02,1.391909E-02,1.298697E-02,1.211727E-02,1.130581E-02, 1.054869E-02,9.842280E-03,9.183172E-03,8.568202E-03,7.994415E-03,7.459053E-03, 6.959543E-03,6.493483E-03,6.058634E-03,5.652905E-03,5.274347E-03,4.921140E-03, 4.591586E-03,4.284101E-03,3.997208E-03,3.729527E-03,3.479771E-03,3.246741E-03, 3.029317E-03,2.826453E-03,2.637174E-03,2.460570E-03,2.295793E-03,2.142051E-03, 1.998604E-03,1.864763E-03,1.739886E-03,1.623371E-03,1.514658E-03,1.413226E-03, 1.318587E-03,1.230285E-03,1.147896E-03,1.071025E-03,9.993019E-04,9.323816E-04, 8.699428E-04,8.116854E-04,7.573292E-04,7.066131E-04,6.592934E-04,6.151425E-04, 5.739482E-04,5.355126E-04,4.996509E-04,4.661908E-04,4.349714E-04,4.058427E-04, 3.786646E-04,3.533066E-04,3.296467E-04,3.075712E-04,2.869741E-04,2.677563E-04, 2.498255E-04,2.330954E-04,2.174857E-04,2.029213E-04,1.893323E-04,1.766533E-04, 1.648233E-04,1.537856E-04,1.434871E-04,1.338782E-04,1.249127E-04,1.165477E-04, 1.087429E-04,1.014607E-04,9.466615E-05,8.832664E-05,8.241167E-05,7.689281E-05, 7.174353E-05,6.693908E-05,6.245637E-05,5.827385E-05,5.437143E-05,5.073034E-05, 4.733308E-05,4.416332E-05,4.120584E-05,3.844640E-05,3.587176E-05,3.346954E-05, 3.122818E-05,2.913693E-05,2.718571E-05,2.536517E-05,2.366654E-05,2.208166E-05, 2.060292E-05,1.922320E-05,1.793588E-05,1.673477E-05,1.561409E-05,1.456846E-05, 1.359286E-05,1.268258E-05,1.183327E-05,1.104083E-05,1.030146E-05,9.611601E-06, 8.967941E-06,8.367385E-06,7.807046E-06,7.284232E-06,6.796428E-06,6.341292E-06, 5.916635E-06,5.520415E-06,5.150730E-06,4.805801E-06,4.483971E-06,4.183692E-06, 3.903523E-06,3.642116E-06,3.398214E-06,3.170646E-06,2.958317E-06,2.760208E-06, 2.575365E-06,2.402900E-06,2.241985E-06,2.091846E-06,1.951762E-06,1.821058E-06, 1.699107E-06,1.585323E-06,1.479159E-06,1.380104E-06,1.287682E-06,1.201450E-06, 1.120993E-06,1.045923E-06,9.758808E-07,9.105289E-07,8.495535E-07,7.926615E-07, 7.395793E-07,6.900519E-07,6.438412E-07,6.007251E-07,5.604963E-07,5.229616E-07, 4.879404E-07,4.552645E-07,4.247768E-07,3.963307E-07,3.697897E-07,3.450260E-07, 3.219206E-07,3.003625E-07,2.802482E-07,2.614808E-07,2.439702E-07,2.276322E-07, 2.123884E-07,1.981654E-07,1.848948E-07,1.725130E-07,1.609603E-07,1.501813E-07, 1.401241E-07,1.307404E-07,1.219851E-07,1.138161E-07,1.061942E-07,9.908269E-08, 9.244741E-08,8.625649E-08,8.048015E-08,7.509063E-08,7.006204E-08,6.537019E-08, 6.099255E-08,5.690806E-08,5.309710E-08,4.954134E-08,4.622371E-08,4.312824E-08, 4.024007E-08,3.754532E-08,3.503102E-08,3.268510E-08,3.049627E-08,2.845403E-08, 2.654855E-08,2.477067E-08,2.311185E-08,2.156412E-08,2.012004E-08,1.877266E-08, 1.751551E-08,1.634255E-08,1.524814E-08,1.422702E-08,1.327427E-08,1.238534E-08, 1.155593E-08,1.078206E-08,1.006002E-08,9.386329E-09,8.757755E-09,8.171274E-09, 7.624068E-09,7.113507E-09,6.637137E-09,6.192668E-09,5.777963E-09,5.391030E-09, 5.030009E-09,4.693165E-09,4.378877E-09,4.085637E-09,3.812034E-09,3.556754E-09, 3.318569E-09,3.096334E-09,2.888982E-09,2.695515E-09,2.515005E-09,2.346582E-09, 2.189439E-09,2.042819E-09,1.906017E-09,1.778377E-09,1.659284E-09,1.548167E-09, 1.444491E-09,1.347758E-09,1.257502E-09,1.173291E-09,1.094719E-09,1.021409E-09, 9.530086E-10,8.891884E-10,8.296421E-10,7.740835E-10,7.222454E-10,6.738788E-10, 6.287512E-10,5.866456E-10,5.473597E-10,5.107046E-10,4.765043E-10,4.445942E-10, 4.148211E-10,3.870417E-10,3.611227E-10,3.369394E-10,3.143756E-10,2.933228E-10, 2.736798E-10,2.553523E-10,2.382521E-10,2.222971E-10,2.074105E-10,1.935209E-10, 1.805614E-10,1.684697E-10,1.571878E-10,1.466614E-10,1.368399E-10,1.276762E-10, 1.191261E-10,1.111486E-10,1.037053E-10,9.676043E-11,9.028068E-11,8.423485E-11, 7.859390E-11,7.333070E-11,6.841996E-11,6.383808E-11,5.956303E-11,5.557428E-11, 5.185263E-11,4.838022E-11,4.514034E-11,4.211743E-11,3.929695E-11,3.666535E-11, 3.420998E-11,3.191904E-11,2.978152E-11,2.778714E-11,2.592632E-11,2.419011E-11, 2.257017E-11,2.105871E-11,1.964847E-11,1.833267E-11,1.710499E-11,1.595952E-11], [1.172251E-01,1.132320E-01,1.093749E-01,1.056492E-01,1.020504E-01,9.857420E-02, 9.521640E-02,9.197298E-02,8.884005E-02,8.581383E-02,8.289069E-02,8.006713E-02, 7.733975E-02,7.470528E-02,7.216054E-02,6.970249E-02,6.732817E-02,6.503472E-02, 6.281940E-02,6.067954E-02,5.861257E-02,5.661601E-02,5.468746E-02,5.282461E-02, 5.102521E-02,4.928710E-02,4.760820E-02,4.598649E-02,4.442002E-02,4.290691E-02, 4.144535E-02,4.003357E-02,3.866988E-02,3.735264E-02,3.608027E-02,3.485124E-02, 3.366408E-02,3.251736E-02,3.140970E-02,3.033977E-02,2.930629E-02,2.830801E-02, 2.734373E-02,2.641230E-02,2.551260E-02,2.464355E-02,2.380410E-02,2.299325E-02, 2.221001E-02,2.145346E-02,2.072267E-02,2.001678E-02,1.933494E-02,1.867632E-02, 1.804014E-02,1.742562E-02,1.683204E-02,1.625868E-02,1.570485E-02,1.516989E-02, 1.465314E-02,1.415400E-02,1.367187E-02,1.320615E-02,1.275630E-02,1.232178E-02, 1.190205E-02,1.149662E-02,1.110501E-02,1.072673E-02,1.036134E-02,1.000839E-02, 9.667469E-03,9.338160E-03,9.020068E-03,8.712811E-03,8.416021E-03,8.129340E-03, 7.852425E-03,7.584943E-03,7.326572E-03,7.077002E-03,6.835933E-03,6.603076E-03, 6.378151E-03,6.160888E-03,5.951025E-03,5.748312E-03,5.552503E-03,5.363364E-03, 5.180668E-03,5.004196E-03,4.833735E-03,4.669080E-03,4.510034E-03,4.356406E-03, 4.208010E-03,4.064670E-03,3.926212E-03,3.792471E-03,3.663286E-03,3.538501E-03, 3.417966E-03,3.301538E-03,3.189075E-03,3.080444E-03,2.975513E-03,2.874156E-03, 2.776251E-03,2.681682E-03,2.590334E-03,2.502098E-03,2.416867E-03,2.334540E-03, 2.255017E-03,2.178203E-03,2.104005E-03,2.032335E-03,1.963106E-03,1.896236E-03, 1.831643E-03,1.769250E-03,1.708983E-03,1.650769E-03,1.594538E-03,1.540222E-03, 1.487756E-03,1.437078E-03,1.388126E-03,1.340841E-03,1.295167E-03,1.251049E-03, 1.208434E-03,1.167270E-03,1.127508E-03,1.089101E-03,1.052003E-03,1.016168E-03, 9.815531E-04,9.481178E-04,9.158214E-04,8.846252E-04,8.544916E-04,8.253845E-04, 7.972689E-04,7.701110E-04,7.438782E-04,7.185389E-04,6.940629E-04,6.704205E-04, 6.475836E-04,6.255245E-04,6.042168E-04,5.836350E-04,5.637542E-04,5.445507E-04, 5.260013E-04,5.080838E-04,4.907766E-04,4.740589E-04,4.579107E-04,4.423126E-04, 4.272458E-04,4.126923E-04,3.986344E-04,3.850555E-04,3.719391E-04,3.592695E-04, 3.470314E-04,3.352103E-04,3.237918E-04,3.127622E-04,3.021084E-04,2.918175E-04, 2.818771E-04,2.722753E-04,2.630006E-04,2.540419E-04,2.453883E-04,2.370295E-04, 2.289554E-04,2.211563E-04,2.136229E-04,2.063461E-04,1.993172E-04,1.925277E-04, 1.859695E-04,1.796347E-04,1.735157E-04,1.676051E-04,1.618959E-04,1.563811E-04, 1.510542E-04,1.459087E-04,1.409386E-04,1.361377E-04,1.315003E-04,1.270209E-04, 1.226941E-04,1.185147E-04,1.144777E-04,1.105782E-04,1.068115E-04,1.031731E-04, 9.965861E-05,9.626387E-05,9.298477E-05,8.981737E-05,8.675786E-05,8.380257E-05, 8.094794E-05,7.819056E-05,7.552710E-05,7.295437E-05,7.046928E-05,6.806884E-05, 6.575016E-05,6.351047E-05,6.134707E-05,5.925736E-05,5.723884E-05,5.528908E-05, 5.340573E-05,5.158653E-05,4.982930E-05,4.813194E-05,4.649239E-05,4.490868E-05, 4.337893E-05,4.190128E-05,4.047397E-05,3.909528E-05,3.776355E-05,3.647719E-05, 3.523464E-05,3.403442E-05,3.287508E-05,3.175523E-05,3.067354E-05,2.962868E-05, 2.861942E-05,2.764454E-05,2.670286E-05,2.579327E-05,2.491465E-05,2.406597E-05, 2.324619E-05,2.245434E-05,2.168946E-05,2.095064E-05,2.023699E-05,1.954764E-05, 1.888178E-05,1.823859E-05,1.761732E-05,1.701721E-05,1.643754E-05,1.587762E-05, 1.533677E-05,1.481434E-05,1.430971E-05,1.382227E-05,1.335143E-05,1.289663E-05, 1.245733E-05,1.203298E-05,1.162310E-05,1.122717E-05,1.084473E-05,1.047532E-05, 1.011849E-05,9.773820E-06,9.440888E-06,9.119297E-06,8.808660E-06,8.508605E-06, 8.218770E-06,7.938809E-06,7.668384E-06,7.407170E-06,7.154855E-06,6.911134E-06, 6.675716E-06,6.448316E-06,6.228663E-06,6.016492E-06,5.811548E-06,5.613585E-06, 5.422366E-06,5.237660E-06,5.059247E-06,4.886910E-06,4.720444E-06,4.559648E-06, 4.404330E-06,4.254302E-06,4.109385E-06,3.969404E-06,3.834192E-06,3.703585E-06, 3.577428E-06,3.455567E-06,3.337858E-06,3.224158E-06,3.114332E-06,3.008246E-06, 2.905774E-06,2.806793E-06,2.711183E-06,2.618830E-06,2.529623E-06,2.443455E-06, 2.360222E-06,2.279824E-06,2.202165E-06,2.127151E-06,2.054693E-06,1.984702E-06, 1.917096E-06,1.851793E-06,1.788714E-06,1.727784E-06,1.668929E-06,1.612079E-06, 1.557166E-06,1.504123E-06,1.452887E-06,1.403396E-06,1.355592E-06,1.309415E-06, 1.264812E-06,1.221728E-06,1.180111E-06,1.139912E-06,1.101082E-06,1.063576E-06, 1.027346E-06,9.923511E-07,9.585480E-07,9.258963E-07,8.943569E-07,8.638918E-07, 8.344645E-07,8.060396E-07,7.785829E-07,7.520615E-07,7.264435E-07,7.016982E-07, 6.777958E-07,6.547076E-07,6.324058E-07,6.108638E-07,5.900555E-07,5.699560E-07, 5.505412E-07,5.317878E-07,5.136731E-07,4.961755E-07,4.792740E-07,4.629482E-07, 4.471784E-07,4.319459E-07,4.172322E-07,4.030198E-07,3.892914E-07,3.760307E-07]] try: # internal model constants ted_empty.num_simulation_days = 366 ted_empty.app_rate_conv1 = 11.2 ted_empty.h2o_depth_puddles = 1.3 ted_empty.soil_depth = 2.6 ted_empty.soil_porosity = 0.4339623 ted_empty.soil_bulk_density = 1.5 ted_empty.h2o_depth_soil = 0.0 ted_empty.soil_foc = 0.015 # internally specified variable water_type = ['puddles', 'pore_water', 'puddles'] # input variables that change per simulation ted_empty.aerobic_soil_meta_hlife = pd.Series([15., 10., 20.], dtype='float') ted_empty.koc = pd.Series([1500., 1000., 2000.], dtype='float') ted_empty.app_rate_min =
pd.Series([0.18, 0.5, 1.25])
pandas.Series
""" SCRIPT TO CONVERT WRITE CHARMM RTF AND PRM FILES FROM BOSS ZMATRIX Created on Mon Feb 15 15:40:05 2016 @author: <NAME> <EMAIL> @author: <NAME> Usage: python OPM_Routines.py -z phenol.z -r PHN REQUIREMENTS: BOSS (need to set BOSSdir in bashrc and cshrc) Preferably Anaconda python with following modules pandas argparse numpy """ from LigParGen.BOSSReader import bossPdbAtom2Element,bossElement2Mass,ucomb import pickle import pandas as pd import numpy as np def retDihedImp(df): odihed = [] if np.sum([df['V' + str(pot)] for pot in range(1, 5)]) != 0.0: for pot in range(1, 5): if (df['V' + str(pot)] != 0.0): odihed.append('%s %4.5f %d %4.5f \n' % (df['NAME'].replace( "-", " "), df['V' + str(pot)], pot, 180.00 * abs(pot % 2 - 1))) else: pot = 2 odihed.append('%s %4.5f %d %4.5f \n' % (df['NAME'].replace( "-", " "), df['V' + str(pot)], pot, 180.00 * abs(pot % 2 - 1))) return (odihed) def retDihed(df): odihed = [] for pot in range(1, 5): odihed.append('%s %4.5f %d %4.5f \n' % (df['NAME'].replace( "-", " "), df['V' + str(pot)], pot, 180.00 * abs(pot % 2 - 1))) return (odihed) def Boss2CharmmRTF(num2typ2symb, Qs, resid, bnd_df, imps): charges = [float(Qs[i][1]) for i in range(len(Qs))] rtf = open(resid + '.rtf', 'w+') rtf.write('! LigParGen generated RFT file for NAMD/CHARMM \n') Mass = ['MASS %d %s %3.4f %s \n' % ((i + 1), num2typ2symb[i][2], bossElement2Mass( bossPdbAtom2Element(num2typ2symb[i][0])), bossPdbAtom2Element(num2typ2symb[i][0])) for i in range(len(Qs))] for i in range(len(Mass)): rtf.write('%s' % Mass[i]) rtf.write('AUTO ANGLES DIHE \n') rtf.write('RESI %5s %3.3f \n' % (resid, sum(charges))) for i in range(len(Qs)): rtf.write('ATOM %s %s %s \n' % (num2typ2symb[i][0], bossPdbAtom2Element( num2typ2symb[i][0]) + num2typ2symb[i][1][-3:], Qs[i][1])) for (x, y) in zip(bnd_df.cl1, bnd_df.cl2): rtf.write('BOND %s %s \n' % (num2typ2symb[x][0], num2typ2symb[y][0])) for i in imps: rtf.write('IMPR %s \n' % (i.replace("-", " "))) rtf.write('PATCH FIRST NONE LAST NONE \n') rtf.write('END \n') rtf.close() return None def Boss2CharmmPRM(resid, num2typ2symb, Qs, bnd_df, ang_df, tor_df): #### COLLECTING NONBONDING PART ####### prm = open(resid + '.prm', 'w+') prm.write('! LigParGen generated PRM file for NAMD/CHARMM \n') # bnd_df = bnd_df.drop_duplicates(['TIJ']) prm.write('\nBOND \n') for i in bnd_df.index: prm.write('%s %s %4.3f %4.3f \n' % (num2typ2symb[bnd_df.cl1[i]][ 2], num2typ2symb[bnd_df.cl2[i]][2], bnd_df.KIJ[i], bnd_df.RIJ[i])) # ang_df = ang_df.drop_duplicates(['TY', 'R', 'K']) prm.write('\nANGLE \n') for i in ang_df.index: prm.write('%s %s %s %4.3f %4.3f \n' % (num2typ2symb[ang_df.cl1[i]][2], num2typ2symb[ ang_df.cl2[i]][2], num2typ2symb[ang_df.cl3[i]][2], ang_df.K[i], ang_df.R[i])) prm.write('\nDIHEDRAL \n') if len(tor_df.index) > 0: tor_df = tor_df.drop_duplicates(['NAME', 'TY']) pro_df = tor_df[tor_df.TY == 'Proper'] for i in list(pro_df.index): ndf = pro_df.ix[i] pro_out = retDihed(ndf.to_dict()) for i in range(4): prm.write('%s' % pro_out[i]) prm.write( 'X X X X 0.00000 1 0.000000 ! WILD CARD FOR MISSING TORSION PARAMETERS\n') prm.write('\nIMPROPER \n') imp_df = tor_df[tor_df.TY == 'Improper'] for i in list(imp_df.index): ndf = tor_df.ix[i] imp_out = retDihedImp(ndf.to_dict()) for i in range(len(imp_out)): prm.write('%s' % imp_out[i]) prm.write( 'X X X X 0.00000 1 0.000000 ! WILD CARD FOR MISSING IMPROPER PARAMETERS \n') prm.write( '\nNONBONDED nbxmod 5 atom cdiel switch vatom vdistance vswitch - \ncutnb 14.0 ctofnb 12.0 ctonnb 11.5 eps 1.0 e14fac 0.5 geom\n') Qlines = ['%s 0.00 %3.6f %3.6f 0.00 %3.6f %3.6f \n' % (num2typ2symb[i][2], float(Qs[i][3]) * -1.00, float(Qs[i][2]) * 0.561231, float(Qs[i][3]) * -0.50, float(Qs[i][2]) * 0.561231) for i in range(len(Qs))] # uniqQs = list(set(Qlines)) for i in range(len(Qlines)): prm.write('%s' % Qlines[i]) prm.close() return None def Boss2CharmmTorsion(bnd_df, num2opls, st_no, molecule_data, num2typ2symb): # print num2opls dhd = [] for line in molecule_data.MolData['TORSIONS']: dt = [float(l) for l in line] dhd.append(dt) dhd = np.array(dhd) dhd = dhd # kcal to kj conversion dhd = dhd / 2.0 # Komm = Vopls/2 dhd_df = pd.DataFrame(dhd, columns=['V1', 'V2', 'V3', 'V4']) ats = [] for line in molecule_data.MolData['ATOMS'][3:]: dt = [line.split()[0], line.split()[4], line.split()[6], line.split()[8]] dt = [int(d) for d in dt] ats.append(dt) for line in molecule_data.MolData['ADD_DIHED']: dt = [int(l) for l in line] ats.append(dt) assert len(ats) == len( dhd), 'Number of Dihedral angles in Zmatrix and Out file dont match' ats = np.array(ats) - st_no for i in range(len(ats)): for j in range(len(ats[0])): if ats[i][j] < 0: ats[i][j] = 0 at_df = pd.DataFrame(ats, columns=['I', 'J', 'K', 'L']) final_df = pd.concat([dhd_df, at_df], axis=1, join_axes=[at_df.index]) bndlist = list(bnd_df.UR) + (list(bnd_df.UR)) final_df['TY'] = ['Proper' if ucomb(list([final_df.I[n], final_df.J[n], final_df.K[ n], final_df.L[n]]), bndlist) == 3 else 'Improper' for n in range(len(final_df.I))] # final_df['SumV'] = np.abs( # final_df.V1) + np.abs(final_df.V2) + np.abs(final_df.V3) + np.abs(final_df.V4) # final_df = final_df[final_df['SumV'] != 0.00] final_df['TI'] = [num2typ2symb[j][2] for j in final_df.I] final_df['TJ'] = [num2typ2symb[j][2] for j in final_df.J] final_df['TK'] = [num2typ2symb[j][2] for j in final_df.K] final_df['TL'] = [num2typ2symb[j][2] for j in final_df.L] final_df['SYMB'] = ['-'.join([num2typ2symb[final_df.I[i]][0], num2typ2symb[final_df.J[i]][ 0], num2typ2symb[final_df.K[i]][0], num2typ2symb[final_df.L[i]][0]]) for i in final_df.index] if len(final_df.index) > 0: final_df['NAME'] = final_df.TI + '-' + final_df.TJ + \ '-' + final_df.TK + '-' + final_df.TL return final_df def boss2CharmmBond(molecule_data, st_no): bdat = molecule_data.MolData['BONDS'] bdat['cl1'] = [x - st_no if not x - st_no < 0 else 0 for x in bdat['cl1']] bdat['cl2'] = [x - st_no if not x - st_no < 0 else 0 for x in bdat['cl2']] bnd_df =
pd.DataFrame(bdat)
pandas.DataFrame
from pandas import DataFrame from pandas import Series from pandas import concat from pandas import read_csv from pandas import datetime from sklearn.metrics import mean_squared_error from sklearn.preprocessing import MinMaxScaler from keras.models import Sequential from keras.layers import Dense from keras.layers import LSTM from math import sqrt import matplotlib import numpy from numpy import concatenate # date-time parsing function for loading the dataset def parser(x): return datetime.strptime('190'+x, '%Y-%m') # frame a sequence as a supervised learning problem def timeseries_to_supervised(data, lag=1): df = DataFrame(data) columns = [df.shift(i) for i in range(1, lag+1)] columns.append(df) df = concat(columns, axis=1) df = df.drop(0) return df # create a differenced series def difference(dataset, interval=1): diff = list() for i in range(interval, len(dataset)): value = dataset[i] - dataset[i - interval] diff.append(value) return Series(diff) # invert differenced value def inverse_difference(history, yhat, interval=1): return yhat + history[-interval] # scale train and test data to [-1, 1] def scale(train, test): # fit scaler scaler = MinMaxScaler(feature_range=(-1, 1)) scaler = scaler.fit(train) # transform train train = train.reshape(train.shape[0], train.shape[1]) train_scaled = scaler.transform(train) # transform test test = test.reshape(test.shape[0], test.shape[1]) test_scaled = scaler.transform(test) return scaler, train_scaled, test_scaled # inverse scaling for a forecasted value def invert_scale(scaler, X, yhat): new_row = [x for x in X] + [yhat] array = numpy.array(new_row) array = array.reshape(1, len(array)) inverted = scaler.inverse_transform(array) return inverted[0, -1] # fit an LSTM network to training data def fit_lstm(train, batch_size, nb_epoch, neurons): X, y = train[:, 0:-1], train[:, -1] X = X.reshape(X.shape[0], 1, X.shape[1]) model = Sequential() model.add(LSTM(neurons, batch_input_shape=(batch_size, X.shape[1], X.shape[2]), stateful=True)) model.add(Dense(1)) model.compile(loss='mean_squared_error', optimizer='adam') for i in range(nb_epoch): model.fit(X, y, epochs=1, batch_size=batch_size, verbose=0, shuffle=False) model.reset_states() return model # make a one-step forecast def forecast_lstm(model, batch_size, X): X = X.reshape(1, 1, len(X)) yhat = model.predict(X, batch_size=batch_size) return yhat[0,0] # run a repeated experiment def experiment(repeats, series): # transform data to be stationary raw_values = series.values diff_values = difference(raw_values, 1) # transform data to be supervised learning supervised = timeseries_to_supervised(diff_values, 1) supervised_values = supervised.values # split data into train and test-sets train, test = supervised_values[0:-12], supervised_values[-12:] # transform the scale of the data scaler, train_scaled, test_scaled = scale(train, test) # run experiment error_scores = list() for r in range(repeats): # fit the base model lstm_model = fit_lstm(train_scaled, 1, 500, 1) # forecast test dataset predictions = list() for i in range(len(test_scaled)): # predict X, y = test_scaled[i, 0:-1], test_scaled[i, -1] yhat = forecast_lstm(lstm_model, 1, X) # invert scaling yhat = invert_scale(scaler, X, yhat) # invert differencing yhat = inverse_difference(raw_values, yhat, len(test_scaled)+1-i) # store forecast predictions.append(yhat) # report performance rmse = sqrt(mean_squared_error(raw_values[-12:], predictions)) print('%d) Test RMSE: %.3f' % (r+1, rmse)) error_scores.append(rmse) return error_scores # execute the experiment def run(): # load dataset series = read_csv('shampoo-sales.csv', header=0, parse_dates=[0], index_col=0, squeeze=True, date_parser=parser) # experiment repeats = 10 results =
DataFrame()
pandas.DataFrame
from flask import Flask, render_template, request, redirect, url_for, session import pandas as pd import pymysql import os import io #from werkzeug.utils import secure_filename from pulp import * import numpy as np import pymysql import pymysql.cursors from pandas.io import sql #from sqlalchemy import create_engine import pandas as pd import numpy as np #import io import statsmodels.formula.api as smf import statsmodels.api as sm import scipy.optimize as optimize import matplotlib.mlab as mlab import matplotlib.pyplot as plt #from flask import Flask, render_template, request, redirect, url_for, session, g from sklearn.linear_model import LogisticRegression from math import sin, cos, sqrt, atan2, radians from statsmodels.tsa.arima_model import ARIMA #from sqlalchemy import create_engine from collections import defaultdict from sklearn import linear_model import statsmodels.api as sm import scipy.stats as st import pandas as pd import numpy as np from pulp import * import pymysql import math app = Flask(__name__) app.secret_key = os.urandom(24) localaddress="D:\\home\\site\\wwwroot" localpath=localaddress os.chdir(localaddress) @app.route('/') def index(): return redirect(url_for('home')) @app.route('/home') def home(): return render_template('home.html') @app.route('/demandplanning') def demandplanning(): return render_template("Demand_Planning.html") @app.route("/elasticopt",methods = ['GET','POST']) def elasticopt(): if request.method== 'POST': start_date =request.form['from'] end_date=request.form['to'] prdct_name=request.form['typedf'] # connection = pymysql.connect(host='localhost', # user='user', # password='', # db='test', # charset='utf8mb4', # cursorclass=pymysql.cursors.DictCursor) # # x=connection.cursor() # x.execute("select * from `transcdata`") # connection.commit() # datass=pd.DataFrame(x.fetchall()) datass = pd.read_csv("C:\\Users\\1026819\\Downloads\\optimizdata.csv") # datas = datass[(datass['Week']>=start_date) & (datass['Week']<=end_date )] datas=datass df = datas[datas['Product'] == prdct_name] df=datass changeData=pd.concat([df['Product_Price'],df['Product_Qty']],axis=1) changep=[] changed=[] for i in range(0,len(changeData)-1): changep.append(changeData['Product_Price'].iloc[i]-changeData['Product_Price'].iloc[i+1]) changed.append(changeData['Product_Qty'].iloc[1]-changeData['Product_Qty'].iloc[i+1]) cpd=pd.concat([pd.DataFrame(changep),pd.DataFrame(changed)],axis=1) cpd.columns=['Product_Price','Product_Qty'] sortedpricedata=df.sort_values(['Product_Price'], ascending=[True]) spq=pd.concat([sortedpricedata['Product_Price'],sortedpricedata['Product_Qty']],axis=1).reset_index(drop=True) pint=[] dint=[] x = spq['Product_Price'] num_bins = 5 # n, pint, patches = plt.hist(x, num_bins, facecolor='blue', alpha=0.5) y = spq['Product_Qty'] num_bins = 5 # n, dint, patches = plt.hist(y, num_bins, facecolor='blue', alpha=0.5) arr= np.zeros(shape=(len(pint),len(dint))) count=0 for i in range(0, len(pint)): lbp=pint[i] if i==len(pint)-1: ubp=pint[i]+1 else: ubp=pint[i+1] for j in range(0, len(dint)): lbd=dint[j] if j==len(dint)-1: ubd=dint[j]+1 else: ubd=dint[j+1] print(lbd,ubd) for k in range(0, len(spq)): if (spq['Product_Price'].iloc[k]>=lbp\ and spq['Product_Price'].iloc[k]<ubp): if(spq['Product_Qty'].iloc[k]>=lbd\ and spq['Product_Qty'].iloc[k]<ubd): count+=1 arr[i][j]+=1 price_range=np.zeros(shape=(len(pint),2)) for j in range(0,len(pint)): lbp=pint[j] price_range[j][0]=lbp if j==len(pint)-1: ubp=pint[j]+1 price_range[j][1]=ubp else: ubp=pint[j+1] price_range[j][1]=ubp demand_range=np.zeros(shape=(len(dint),2)) for j in range(0,len(dint)): lbd=dint[j] demand_range[j][0]=lbd if j==len(dint)-1: ubd=dint[j]+1 demand_range[j][1]=ubd else: ubd=dint[j+1] demand_range[j][1]=ubd pr=pd.DataFrame(price_range) pr.columns=['Price','Demand'] dr=pd.DataFrame(demand_range) dr.columns=['Price','Demand'] priceranges=pr.Price.astype(str).str.cat(pr.Demand.astype(str), sep='-') demandranges=dr.Price.astype(str).str.cat(dr.Demand.astype(str), sep='-') price=pd.DataFrame(arr) price.columns=demandranges price.index=priceranges pp=price.reset_index() global data data=pd.concat([df['Week'],df['Product_Qty'],df['Product_Price'],df['Comp_Prod_Price'],df['Promo1'],df['Promo2'],df['overallsale']],axis=1) return render_template('dataview.html',cpd=cpd.values,pp=pp.to_html(index=False),data=data.to_html(index=False),graphdata=data.values,ss=1) return render_template('dataview.html') @app.route('/priceelasticity',methods = ['GET','POST']) def priceelasticity(): return render_template('Optimisation_heatmap_revenue.html') @app.route("/elasticity",methods = ['GET','POST']) def elasticity(): if request.method== 'POST': Price=0 Average_Price=0 Promotions=0 Promotionss=0 if request.form.get('Price'): Price=1 if request.form.get('Average_Price'): Average_Price=1 if request.form.get('Promotion_1'): Promotions=1 if request.form.get('Promotion_2'): Promotionss=1 Modeldata=pd.DataFrame() Modeldata['Product_Qty']=data.Product_Qty lst=[] for row in data.index: lst.append(row+1) Modeldata['Week']=np.log(lst) if Price == 1: Modeldata['Product_Price']=data['Product_Price'] if Price == 0: Modeldata['Product_Price']=0 if Average_Price==1: Modeldata['Comp_Prod_Price']=data['Comp_Prod_Price'] if Average_Price==0: Modeldata['Comp_Prod_Price']=0 if Promotions==1: Modeldata['Promo1']=data['Promo1'] if Promotions==0: Modeldata['Promo1']=0 if Promotionss==1: Modeldata['Promo2']=data['Promo2'] if Promotionss==0: Modeldata['Promo2']=0 diffpriceprodvscomp= (Modeldata['Product_Price']-Modeldata['Comp_Prod_Price']) promo1=Modeldata.Promo1 promo2=Modeldata.Promo2 week=Modeldata.Week quantityproduct=Modeldata.Product_Qty df=pd.concat([quantityproduct,diffpriceprodvscomp,promo1,promo2,week],axis=1) df.columns=['quantityproduct','diffpriceprodvscomp','promo1','promo2','week'] Model = smf.ols(formula='df.quantityproduct ~ df.diffpriceprodvscomp + df.promo1 + df.promo2 + df.week', data=df) res = Model.fit() global intercept,diffpriceprodvscomp_param,promo1_param,promo2_param,week_param intercept=res.params[0] diffpriceprodvscomp_param=res.params[1] promo1_param=res.params[2] promo2_param=res.params[3] week_param=res.params[4] Product_Price_min=0 maxvalue_of_price=int(Modeldata['Product_Price'].max()) Product_Price_max=int(Modeldata['Product_Price'].max()) if maxvalue_of_price==0: Product_Price_max=1 maxfunction=[] pricev=[] weeks=[] dd=[] ddl=[] for vatr in range(0,len(Modeldata)): weeks.append(lst[vatr]) for Product_Price in range(Product_Price_min,Product_Price_max+1): function=0 function=(intercept+(Modeldata['Promo1'].iloc[vatr]*promo1_param)+(Modeldata['Promo2'].iloc[vatr]*promo2_param) + (diffpriceprodvscomp_param*(Product_Price-Modeldata['Comp_Prod_Price'].iloc[vatr]))+(Modeldata['Week'].iloc[vatr]*lst[vatr])) maxfunction.append(function) dd.append(Product_Price) ddl.append(vatr) for Product_Price in range(Product_Price_min,Product_Price_max+1): pricev.append(Product_Price) df1=pd.DataFrame(maxfunction) df2=pd.DataFrame(dd) df3=pd.DataFrame(ddl) dfo=pd.concat([df3,df2,df1],axis=1) dfo.columns=['weeks','prices','Demandfunctions'] demand=[] for rows in dfo.values: w=int(rows[0]) p=int(rows[1]) d=int(rows[2]) demand.append([w,p,d]) Co_eff=pd.DataFrame(res.params.values)#intercept standard_error=pd.DataFrame(res.bse.values)#standard error p_values=pd.DataFrame(res.pvalues.values) conf_lower =pd.DataFrame(res.conf_int()[0].values) conf_higher =pd.DataFrame(res.conf_int()[1].values) R_square=res.rsquared atr=['Intercept','DeltaPrice','Promo1','Promo2','Week'] atribute=pd.DataFrame(atr) SummaryTable=pd.concat([atribute,Co_eff,standard_error,p_values,conf_lower,conf_higher],axis=1) SummaryTable.columns=['Atributes','Co_eff','Standard_error','P_values','conf_lower','conf_higher'] reshapedf=df1.values.reshape(len(Modeldata),(-Product_Price_min+(Product_Price_max+1))) dataofmas=pd.DataFrame(reshapedf) maxv=dataofmas.apply( max, axis=1 ) minv=dataofmas.apply(min,axis=1) avgv=dataofmas.sum(axis=1)/(-Product_Price_min+(Product_Price_max+1)) wks=pd.DataFrame(weeks) ddofs=pd.concat([wks,minv,avgv,maxv],axis=1) dataofmas=pd.DataFrame(reshapedf) kk=pd.DataFrame() sums=0 for i in range(0,len(dataofmas.columns)): sums=sums+i vv=i*dataofmas[[i]] kk=pd.concat([kk,vv],axis=1) dfr=pd.DataFrame(kk) mrevenue=dfr.apply( max, axis=1 ) prices=dfr.idxmax(axis=1) wks=pd.DataFrame(weeks) revenuedf=pd.concat([wks,mrevenue,prices],axis=1) return render_template('Optimisation_heatmap_revenue.html',revenuedf=revenuedf.values,ddofs=ddofs.values,SummaryTable=SummaryTable.to_html(index=False),ss=1,weeks=weeks,demand=demand,pricev=pricev,R_square=R_square) @app.route('/inputtomaxm',methods=["GET","POST"]) def inputtomaxm(): return render_template("Optimize.html") @app.route("/maxm",methods=["GET","POST"]) def maxm(): if request.method=="POST": week=request.form['TimePeriod'] price_low=request.form['Price_Lower'] price_max=request.form['Price_Upper'] promofirst=request.form['Promotion_1'] promosecond=request.form['Promotion_2'] # week=24 # price_low=6 # price_max=20 # promofirst=1 # promosecond=0 # # time_period=24 # # global a # a=243.226225 # global b # b=-9.699634 # global d # d=1.671505 # global pr1 # pr1=21.866260 # global pr2 # pr2=-0.511606 # global cm # cm=-14.559594 # global s_0 # s_0= 2000 # promo1=1 # promo2=0 time_period=int(week) global a a=intercept global b b=diffpriceprodvscomp_param global d d=week_param global pr1 pr1=promo1_param global pr2 pr2=promo2_param global s_0 s_0= 2000 promo1=int(promofirst) promo2=int(promosecond) global comp comp=np.random.randint(7,15,time_period) def demand(p, a=a, b=b, d=d, promo1=promo1,promo2_param=promo2,comp=comp, t=np.linspace(1,time_period,time_period)): """ Return demand given an array of prices p for times t (see equation 5 above)""" return a+(b*(p-comp))+(d*t)+(promo1*pr1)+(promo2*pr2) def objective(p_t, a, b, d,promo1,promo2, comp, t=np.linspace(1,time_period,time_period)): return -1.0 * np.sum( p_t * demand(p_t, a, b, d,promo1,promo2, comp, t) ) def constraint_1(p_t, s_0, a, b, d, promo1,promo2, comp, t=np.linspace(1,time_period,time_period)): """ Inventory constraint. s_0 - np.sum(x_t) >= 0. This is an inequality constraint. See more below. """ return s_0 - np.sum(demand(p_t, a, b, d,promo1,promo2, comp, t)) def constraint_2(p_t): #""" Positive demand. Another inequality constraint x_t >= 0 """ return p_t t = np.linspace(1,time_period,time_period) # Starting values : b_min=int(price_low) p_start = b_min * np.ones(len(t)) # bounds on the values : bmax=int(price_max) bounds = tuple((0,bmax) for x in p_start) import scipy.optimize as optimize # Constraints : constraints = ({'type': 'ineq', 'fun': lambda x, s_0=s_0: constraint_1(x,s_0, a, b, d,promo1,promo2, comp, t=t)}, {'type': 'ineq', 'fun': lambda x: constraint_2(x)} ) opt_results = optimize.minimize(objective, p_start, args=(a, b, d,promo1,promo2, comp, t), method='SLSQP', bounds=bounds, constraints=constraints) np.sum(opt_results['x']) opt_price=opt_results['x'] opt_demand=demand(opt_results['x'], a, b, d, promo1,promo2_param, comp, t=t) weeks=[] for row in range(1,len(opt_price)+1): weeks.append(row) d=pd.DataFrame(weeks).astype(int) dd=pd.DataFrame(opt_price) optimumumprice_perweek=pd.concat([d,dd,pd.DataFrame(opt_demand).astype(int)],axis=1) optimumumprice_perweek.columns=['Week','Price','Demand'] dataval=optimumumprice_perweek diff=[] diffs=[] for i in range(0,len(opt_demand)-1): valss=opt_demand[i]-opt_demand[i+1] diff.append(valss) diffs.append(i+1) differenceofdemand_df=pd.concat([pd.DataFrame(diffs),pd.DataFrame(diff)],axis=1) MP=round(optimumumprice_perweek.loc[optimumumprice_perweek['Price'].idxmin()],1) minimumprice=pd.DataFrame(MP).T MaxP=round(optimumumprice_perweek.loc[optimumumprice_perweek['Price'].idxmax()],1) maximumprice=pd.DataFrame(MaxP).T averageprice=round((optimumumprice_perweek['Price'].sum()/len(optimumumprice_perweek)),2) MD=round(optimumumprice_perweek.loc[optimumumprice_perweek['Demand'].idxmin()],0) minimumDemand=pd.DataFrame(MD).T MaxD=round(optimumumprice_perweek.loc[optimumumprice_perweek['Demand'].idxmax()],0) maximumDemand=pd.DataFrame(MaxD).T averageDemand=round((optimumumprice_perweek['Demand'].sum()/len(optimumumprice_perweek)),0) totaldemand=round(optimumumprice_perweek['Demand'].sum(),0) return render_template("Optimize.html",totaldemand=totaldemand,averageDemand=averageDemand,maximumDemand=maximumDemand.values,minimumDemand=minimumDemand.values,averageprice=averageprice,maximumprice=maximumprice.values,minimumprice=minimumprice.values,dataval=dataval.values,differenceofdemand_df=differenceofdemand_df.values,optimumumprice_perweek=optimumumprice_perweek.to_html(index=False),ll=1) @app.route("/Inventorymanagment",methods=["GET","POST"]) def Inventorymanagment(): return render_template("Inventory_Management.html") @app.route("/DISTRIBUTION_NETWORK_OPT",methods=["GET","POST"]) def DISTRIBUTION_NETWORK_OPT(): return render_template("DISTRIBUTION_NETWORK_OPTIMIZATION.html") @app.route("/Procurement_Plan",methods=["GET","POST"]) def Procurement_Plan(): return render_template("Procurement_Planning.html") #<NAME> @app.route("/fleetallocation") def fleetallocation(): return render_template('fleetallocation.html') @app.route("/reset") def reset(): conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = conn.cursor() cur.execute("DELETE FROM `input`") cur.execute("DELETE FROM `output`") cur.execute("DELETE FROM `Scenario`") conn.commit() conn.close() open(localaddress+'\\static\\demodata.txt', 'w').close() return render_template('fleetallocation.html') @app.route("/dalink",methods = ['GET','POST']) def dalink(): sql = "INSERT INTO `input` (`Route`,`SLoc`,`Ship-to Abb`,`Primary Equipment`,`Batch`,`Prod Dt`,`SW`,`Met Held`,`Heat No`,`Delivery Qty`,`Width`,`Length`,`Test Cut`,`Customer Priority`) VALUES( %s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s)" conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = conn.cursor() if request.method == 'POST': typ = request.form.get('type') frm = request.form.get('from') to = request.form.get('to') if typ and frm and to: conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = conn.cursor() curr = conn.cursor() cur.execute("SELECT * FROM `inventory_data` WHERE `Primary Equipment` = '" + typ + "' AND `Prod Dt` BETWEEN '" + frm + "' AND '" + to + "'") res = cur.fetchall() if len(res)==0: conn.close() return render_template('fleetallocation.html',alert='No data available') sfile = pd.DataFrame(res) df1 = pd.DataFrame(sfile) df1['Prod Dt'] =df1['Prod Dt'].astype(object) for index, i in df1.iterrows(): data = (i['Route'],i['SLoc'],i['Ship-to Abb'],i['Primary Equipment'],i['Batch'],i['Prod Dt'],i['SW'],i['Met Held'],i['Heat No'],i['Delivery Qty'],i['Width'],i['Length'],i['Test Cut'],i['Customer Priority']) curr.execute(sql,data) conn.commit() conn.close() return render_template('fleetallocation.html',typ=" Equipment type: "+typ,frm="From: "+frm,to=" To:"+to,data = sfile.to_html(index=False)) else: return render_template('fleetallocation.html',alert ='All input fields are required') return render_template('fleetallocation.html') @app.route('/optimise', methods=['GET', 'POST']) def optimise(): open(localaddress+'\\static\\demodata.txt', 'w').close() conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = conn.cursor() curr = conn.cursor() cur.execute("DELETE FROM `output`") conn.commit() os.system('python optimising.py') sa=1 cur.execute("SELECT * FROM `output`") result = cur.fetchall() if len(result)==0: say=0 else: say=1 curr.execute("SELECT * FROM `input`") sfile = curr.fetchall() if len(sfile)==0: conn.close() return render_template('fleetallocation.html',say=say,sa=sa,alert='No data available') sfile = pd.DataFrame(sfile) conn.close() with open(localaddress+"\\static\\demodata.txt", "r") as f: content = f.read() return render_template('fleetallocation.html',say=say,sa=sa,data = sfile.to_html(index=False),content=content) @app.route("/scenario") def scenario(): return render_template('scenario.html') @app.route("/scenario_insert", methods=['GET','POST']) def scenario_insert(): if request.method == 'POST': scenario = request.form.getlist("scenario[]") customer_priority = request.form.getlist("customer_priority[]") oldest_sw = request.form.getlist("oldest_sw[]") production_date = request.form.getlist("production_date[]") met_held_group = request.form.getlist("met_held_group[]") test_cut_group = request.form.getlist("test_cut_group[]") sub_grouping_rules = request.form.getlist("sub_grouping_rules[]") load_lower_bounds = request.form.getlist("load_lower_bounds[]") load_upper_bounds = request.form.getlist("load_upper_bounds[]") width_bounds = request.form.getlist("width_bounds[]") length_bounds = request.form.getlist("length_bounds[]") description = request.form.getlist("description[]") conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = conn.cursor() curr = conn.cursor() lngth = len(scenario) curr.execute("DELETE FROM `scenario`") if scenario and customer_priority and oldest_sw and production_date and met_held_group and test_cut_group and sub_grouping_rules and load_lower_bounds and load_upper_bounds and width_bounds and length_bounds and description: say=0 for i in range(lngth): scenario_clean = scenario[i] customer_priority_clean = customer_priority[i] oldest_sw_clean = oldest_sw[i] production_date_clean = production_date[i] met_held_group_clean = met_held_group[i] test_cut_group_clean = test_cut_group[i] sub_grouping_rules_clean = sub_grouping_rules[i] load_lower_bounds_clean = load_lower_bounds[i] load_upper_bounds_clean = load_upper_bounds[i] width_bounds_clean = width_bounds[i] length_bounds_clean = length_bounds[i] description_clean = description[i] if scenario_clean and customer_priority_clean and oldest_sw_clean and production_date_clean and met_held_group_clean and test_cut_group_clean and sub_grouping_rules_clean and load_lower_bounds_clean and load_upper_bounds_clean and width_bounds_clean and length_bounds_clean: cur.execute("INSERT INTO `scenario`(scenario, customer_priority, oldest_sw, production_date, met_held_group, test_cut_group, sub_grouping_rules, load_lower_bounds, load_upper_bounds, width_bounds, length_bounds, description) VALUES('"+scenario_clean+"' ,'"+customer_priority_clean+"','"+oldest_sw_clean+"','"+production_date_clean+"','"+met_held_group_clean+"','"+test_cut_group_clean+"', '"+sub_grouping_rules_clean+"','"+load_lower_bounds_clean+"', '"+load_upper_bounds_clean+"','"+width_bounds_clean+"','"+length_bounds_clean+"','"+description_clean+"')") else: say = 1 conn.commit() if(say==0): alert='All Scenarios inserted' else: alert='Some scenarios were not inserted' return (alert) conn.close() return ('All fields are required!') return ('Failed!!!') @app.route("/fetch", methods=['GET','POST']) def fetch(): if request.method == 'POST': conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = conn.cursor() cur.execute("SELECT * FROM scenario") result = cur.fetchall() if len(result)==0: conn.close() return render_template('scenario.html',alert1='No scenarios Available') result1 = pd.DataFrame(result) result1 = result1.drop('Sub-grouping rules', axis=1) conn.close() return render_template('scenario.html',sdata = result1.to_html(index=False)) return ("Error") @app.route("/delete", methods=['GET','POST']) def delete(): if request.method == 'POST': conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = conn.cursor() cur.execute("DELETE FROM scenario") conn.commit() conn.close() return render_template('scenario.html',alert1="All the scenerios were dropped!") return ("Error") @app.route('/papadashboard', methods=['GET', 'POST']) def papadashboard(): sql1 = "SELECT `Scenario`, MAX(`Wagon-No`) AS 'Wagon Used', COUNT(`Batch`) AS 'Products Allocated', SUM(`Delivery Qty`) AS 'Total Product Allocated', SUM(`Delivery Qty`)/(MAX(`Wagon-No`)) AS 'Average Load Carried', SUM(`Width`)/(MAX(`Wagon-No`)) AS 'Average Width Used' FROM `output` WHERE `Wagon-No`>0 GROUP BY `Scenario`" conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) curs = conn.cursor() curs.execute("SELECT `scenario` FROM `scenario`") sdata = curs.fetchall() if len(sdata)==0: conn.close() return render_template('warning.html',alert='No data available') cur1 = conn.cursor() cur1.execute(sql1) data1 = cur1.fetchall() if len(data1)==0: conn.close() return render_template('warning.html',alert='Infeasible to due Insufficient Load') cu = conn.cursor() cu.execute("SELECT `length_bounds`,`width_bounds`,`load_lower_bounds`,`load_upper_bounds` FROM `scenario`") sdaa = cu.fetchall() sdaa = pd.DataFrame(sdaa) asa=list() for index, i in sdaa.iterrows(): hover = "Length Bound:"+str(i['length_bounds'])+", Width Bound:"+str(i['width_bounds'])+", Load Upper Bound:"+str(i['load_upper_bounds'])+", Load Lower Bound:"+str(i['load_lower_bounds']) asa.append(hover) asa=pd.DataFrame(asa) asa.columns=['Details'] data1 = pd.DataFrame(data1) data1['Average Width Used'] = data1['Average Width Used'].astype(int) data1['Total Product Allocated'] = data1['Total Product Allocated'].astype(int) data1['Average Load Carried'] = data1['Average Load Carried'].astype(float) data1['Average Load Carried'] = round(data1['Average Load Carried'],2) data1['Average Load Carried'] = data1['Average Load Carried'].astype(str) fdata = pd.DataFrame(columns=['Scenario','Wagon Used','Products Allocated','Total Product Allocated','Average Load Carried','Average Width Used','Details']) fdata[['Scenario','Wagon Used','Products Allocated','Total Product Allocated','Average Load Carried','Average Width Used']] = data1[['Scenario','Wagon Used','Products Allocated','Total Product Allocated','Average Load Carried','Average Width Used']] fdata['Details'] = asa['Details'] fdata = fdata.values sql11 = "SELECT `Scenario`, SUM(`Delivery Qty`)/(MAX(`Wagon-No`)) AS 'Average Load Carried', COUNT(`Batch`) AS 'Allocated', SUM(`Delivery Qty`) AS 'Load Allocated' FROM `output`WHERE `Wagon-No`>0 GROUP BY `Scenario`" sql21 = "SELECT COUNT(`Batch`) AS 'Total Allocated' FROM `output` GROUP BY `Scenario`" sql31 = "SELECT `load_upper_bounds` FROM `scenario`" conn1 = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur11 = conn1.cursor() cur21 = conn1.cursor() cur31 = conn1.cursor() cur11.execute(sql11) data11 = cur11.fetchall() data11 = pd.DataFrame(data11) cur21.execute(sql21) data21 = cur21.fetchall() data21 = pd.DataFrame(data21) cur31.execute(sql31) data31 = cur31.fetchall() data31 = pd.DataFrame(data31) data11['Average Load Carried']=data11['Average Load Carried'].astype(float) fdata1 = pd.DataFrame(columns=['Scenario','Utilisation Percent','Allocation Percent','Total Load Allocated']) fdata1['Utilisation Percent'] = round(100*(data11['Average Load Carried']/data31['load_upper_bounds']),2) data11['Load Allocated']=data11['Load Allocated'].astype(int) fdata1[['Scenario','Total Load Allocated']]=data11[['Scenario','Load Allocated']] data11['Allocated']=data11['Allocated'].astype(float) data21['Total Allocated']=data21['Total Allocated'].astype(float) fdata1['Allocation Percent'] = round(100*(data11['Allocated']/data21['Total Allocated']),2) fdata1['Allocation Percent'] = fdata1['Allocation Percent'].astype(str) fdat1 = fdata1.values conn1.close() if request.method == 'POST': conn2 = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = conn2.cursor() ata = request.form['name'] cur.execute("SELECT * FROM `output` WHERE `Scenario` = '"+ata+"' ") ssdata = cur.fetchall() datasss = pd.DataFrame(ssdata) data=datasss.replace("Not Allocated", 0) df=data[['Delivery Qty','Wagon-No','Width','Group-Number']] df['Wagon-No']=df['Wagon-No'].astype(int) a=df['Wagon-No'].max() ##bar1 result_array = np.array([]) for i in range (a): data_i = df[df['Wagon-No'] == i+1] del_sum_i = data_i['Delivery Qty'].sum() per_i=[((del_sum_i)/(205000)*100)] result_array = np.append(result_array, per_i) result_array1 = np.array([]) for j in range (a): data_j = df[df['Wagon-No'] == j+1] del_sum_j = data_j['Width'].sum() per_util_j=[((del_sum_j)/(370)*100)] result_array1 = np.append(result_array1, per_util_j) ##pie1 df112 = df[df['Wagon-No'] == 0] pie1 = df112 ['Width'].sum() df221 = df[df['Wagon-No'] > 0] pie11 = df221['Width'].sum() df1=data[['SW','Group-Number']] dff1 = df1[data['Wagon-No'] == 0] da1 =dff1.groupby(['SW']).count() re11 = np.array([]) res12 = np.append(re11,da1) da1['SW'] = da1.index r1 = np.array([]) r12 = np.append(r1, da1['SW']) df0=data[['Group-Number','Route','SLoc','Ship-to Abb','Wagon-No','Primary Equipment']] df1=df0.replace("Not Allocated", 0) f2 = pd.DataFrame(df1) f2['Wagon-No']=f2['Wagon-No'].astype(int) ####Not-Allocated f2['Group']=data['Group-Number'] df=f2[['Group','Wagon-No']] dee = df[df['Wagon-No'] == 0] deer =dee.groupby(['Group']).count()##Not Allocated deer['Group'] = deer.index ##Total-Data f2['Group1']=data['Group-Number'] dfc=f2[['Group1','Wagon-No']] dfa=pd.DataFrame(dfc) der = dfa[dfa['Wagon-No'] >= 0] dear =der.groupby(['Group1']).count()##Wagons >1 dear['Group1'] = dear.index dear.rename(columns={'Wagon-No': 'Allocated'}, inplace=True) result = pd.concat([deer, dear], axis=1, join_axes=[dear.index]) resu=result[['Group1','Wagon-No','Allocated']] result1=resu.fillna(00) r5 = np.array([]) r6 = np.append(r5, result1['Wagon-No']) r66=r6[0:73]###Not Allocated r7 = np.append(r5, result1['Allocated']) r77=r7[0:73]####total r8 = np.append(r5, result1['Group1']) r88=r8[0:73]###group conn2.close() return render_template('papadashboard.html',say=1,data=fdata,data1=fdat1,ata=ata,bar1=result_array,bar11=result_array1,pie11=pie1,pie111=pie11,x=r12,y=res12,xname=r88, bar7=r77,bar8=r66) conn.close() return render_template('papadashboard.html',data=fdata,data1=fdat1) @app.route('/facilityallocation') def facilityallocation(): return render_template('facilityhome.html') @app.route('/dataimport') def dataimport(): return render_template('facilityimport.html') @app.route('/dataimport1') def dataimport1(): return redirect(url_for('dataimport')) @app.route('/facility_location') def facility_location(): return render_template('facility_location.html') @app.route('/facility') def facility(): return redirect(url_for('facilityallocation')) @app.route("/imprt", methods=['GET','POST']) def imprt(): global customerdata global factorydata global Facyy global Custo customerfile = request.files['CustomerData'].read() factoryfile = request.files['FactoryData'].read() if len(customerfile)==0 or len(factoryfile)==0: return render_template('facilityhome.html',warning='Data Invalid') cdat=pd.read_csv(io.StringIO(customerfile.decode('utf-8'))) customerdata=pd.DataFrame(cdat) fdat=pd.read_csv(io.StringIO(factoryfile.decode('utf-8'))) factorydata=pd.DataFrame(fdat) Custo=customerdata.drop(['Lat','Long'],axis=1) Facyy=factorydata.drop(['Lat','Long'],axis=1) return render_template('facilityimport1.html',loc1=factorydata.values,loc2=customerdata.values,factory=Facyy.to_html(index=False),customer=Custo.to_html(index=False)) @app.route("/gmap") def gmap(): custdata=customerdata Factorydata=factorydata price=1 #to get distance beetween customer and factory #first get the Dimension #get no of factories Numberoffact=len(Factorydata) #get Number of Customer Numberofcust=len(custdata) #Get The dist/unit cost cost=price #def function for distance calculation # approximate radius of earth in km def dist(lati1,long1,lati2,long2,cost): R = 6373.0 lat1 = radians(lati1) lon1 = radians(long1) lat2 = radians(lati2) lon2 = radians(long2) dlon = lon2 - lon1 dlat = lat2 - lat1 a = sin(dlat / 2)**2 + cos(lat1) * cos(lat2) * sin(dlon / 2)**2 c = 2 * atan2(sqrt(a), sqrt(1 - a)) distance =round(R * c,2) return distance*cost #Create a list for customer and factory def costtable(custdata,Factorydata): distance=list() for lat1,long1 in zip(custdata.Lat, custdata.Long): for lat2,long2 in zip(Factorydata.Lat, Factorydata.Long): distance.append(dist(lat1,long1,lat2,long2,cost)) distable=np.reshape(distance, (Numberofcust,Numberoffact)).T tab=pd.DataFrame(distable,index=[Factorydata.Factory],columns=[custdata.Customer]) return tab DelCost=costtable(custdata,Factorydata)#return cost table of the customer and factoery #creating Demand Table demand=np.array(custdata.Demand) col1=np.array(custdata.Customer) Demand=pd.DataFrame(demand,col1).T cols=sorted(col1) #Creating capacity table fact=np.array(Factorydata.Capacity) col2=np.array(Factorydata.Factory) Capacity=pd.DataFrame(fact,index=col2).T colo=sorted(col2) #creating Fixed cost table fixed_c=np.array(Factorydata.FixedCost) col3=np.array(Factorydata.Factory) FixedCost= pd.DataFrame(fixed_c,index=col3) # Create the 'prob' variable to contain the problem data model = LpProblem("Min Cost Facility Location problem",LpMinimize) production = pulp.LpVariable.dicts("Production", ((factory, cust) for factory in Capacity for cust in Demand), lowBound=0, cat='Integer') factory_status =pulp.LpVariable.dicts("factory_status", (factory for factory in Capacity), cat='Binary') cap_slack =pulp.LpVariable.dicts("capslack", (cust for cust in Demand), lowBound=0, cat='Integer') model += pulp.lpSum( [DelCost.loc[factory, cust] * production[factory, cust] for factory in Capacity for cust in Demand] + [FixedCost.loc[factory] * factory_status[factory] for factory in Capacity] + 5000000*cap_slack[cust] for cust in Demand) for cust in Demand: model += pulp.lpSum(production[factory, cust] for factory in Capacity)+cap_slack[cust] == Demand[cust] for factory in Capacity: model += pulp.lpSum(production[factory, cust] for cust in Demand) <= Capacity[factory]*factory_status[factory] model.solve() print("Status:", LpStatus[model.status]) for v in model.variables(): print(v.name, "=", v.varValue) print("Total Cost of Ingredients per can = ", value(model.objective)) # Getting the table for the Factorywise Allocation def factoryalloc(model,Numberoffact,Numberofcust,listoffac,listofcus): listj=list() listk=list() listcaps=list() for v in model.variables(): listj.append(v.varValue) customer=listj[(len(listj)-Numberofcust-Numberoffact):(len(listj)-Numberoffact)] del listj[(len(listj)-Numberoffact-Numberofcust):len(listj)] for row in listj: if row==0: listk.append(0) else: listk.append(1) x=np.reshape(listj,(Numberoffact,Numberofcust)) y=np.reshape(listk,(Numberoffact,Numberofcust)) FactoryAlloc_table=pd.DataFrame(x,index=listoffac,columns=listofcus) Factorystatus=pd.DataFrame(y,index=listoffac,columns=listofcus) return FactoryAlloc_table,Factorystatus,customer Alltable,FactorystatusTable,ded=factoryalloc(model,Numberoffact,Numberofcust,colo,cols) Allstatus=list() dede=pd.DataFrame(ded,columns=['UnSatisfied']) finaldede=dede[dede.UnSatisfied != 0] colss=pd.DataFrame(cols,columns=['CustomerLocation']) fina=pd.concat([colss,finaldede],axis=1, join='inner') print(fina) for i in range(len(Alltable)): for j in range(len(Alltable.columns)): if (Alltable.loc[Alltable.index[i], Alltable.columns[j]]>0): all=[Alltable.index[i], Alltable.columns[j], Alltable.loc[Alltable.index[i], Alltable.columns[j]]] Allstatus.append(all) Status=pd.DataFrame(Allstatus,columns=['Factory','Customer','Allocation']).astype(str) #To get the Factory Data con = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) #Making Connection to the Database cur = con.cursor() engine = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) Status.to_sql(con=engine, name='facilityallocation',index=False, if_exists='replace') cur = con.cursor() cur1 = con.cursor() cur.execute("SELECT * FROM `facilityallocation`") file=cur.fetchall() dat=pd.DataFrame(file) lst=dat[['Factory','Customer']] mlst=[] names=lst['Factory'].unique().tolist() for name in names: lsty=lst.loc[lst.Factory==name] mlst.append(lsty.values) data=dat[['Factory','Customer','Allocation']] sql="SELECT SUM(`Allocation`) AS 'UseCapacity', `Factory` FROM `facilityallocation` GROUP BY `Factory`" cur1.execute(sql) file2=cur1.fetchall() udata=pd.DataFrame(file2) bdata=factorydata.sort_values(by=['Factory']) adata=bdata['Capacity'] con.close() infdata=dat[['Customer','Factory','Allocation']] infodata=infdata.sort_values(by=['Customer']) namess=infodata.Customer.unique() lstyy=[] for nam in namess: bb=infodata[infodata.Customer==nam] comment=bb['Factory']+":"+bb['Allocation'] prin=[nam,str(comment.values).strip('[]')] lstyy.append(prin) return render_template('facilityoptimise.html',say=1,lstyy=lstyy,x1=adata.values,x2=udata.values,dat=mlst,loc1=factorydata.values, loc2=customerdata.values,factory=Facyy.to_html(index=False),customer=Custo.to_html(index=False),summary=data.to_html(index=False)) #Demand Forecast @app.route('/demandforecast') def demandforecast(): return render_template('demandforecast.html') @app.route("/demandforecastdataimport",methods = ['GET','POST']) def demandforecastdataimport(): if request.method== 'POST': global actualforecastdata flat=request.files['flat'].read() if len(flat)==0: return('No Data Selected') cdat=pd.read_csv(io.StringIO(flat.decode('utf-8'))) actualforecastdata=pd.DataFrame(cdat) return render_template('demandforecast.html',data=actualforecastdata.to_html(index=False)) @app.route('/demandforecastinput', methods = ['GET', 'POST']) def demandforecastinput(): if request.method=='POST': global demandforecastfrm global demandforecasttoo global demandforecastinputdata demandforecastfrm=request.form['from'] demandforecasttoo=request.form['to'] value=request.form['typedf'] demandforecastinputdata=actualforecastdata[(actualforecastdata['Date'] >= demandforecastfrm) & (actualforecastdata['Date'] <= demandforecasttoo)] if value=='monthly': ##monthly engine = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) demandforecastinputdata.to_sql(con=engine, name='demandforecastinputdata', index=False,if_exists='replace') return redirect(url_for('monthlyforecast')) if value=='quarterly': ##quarterly global Quaterdata dated2 = demandforecastinputdata['Date'] nlst=[] for var in dated2: var1 = int(var[5:7]) if var1 >=1 and var1 <4: varr=var[:4]+'-01-01' elif var1 >=4 and var1 <7: varr=var[:4]+'-04-01' elif var1 >=7 and var1 <10: varr=var[:4]+'-07-01' else: varr=var[:4]+'-10-01' nlst.append(varr) nwlst=pd.DataFrame(nlst,columns=['Newyear']) demandforecastinputdata=demandforecastinputdata.reset_index() demandforecastinputdata['Date']=nwlst['Newyear'] Quaterdata=demandforecastinputdata.groupby(['Date']).sum() Quaterdata=Quaterdata.reset_index() Quaterdata=Quaterdata.drop('index',axis=1) engine = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) Quaterdata.to_sql(con=engine, name='demandforecastinputdata', index=False,if_exists='replace') return redirect(url_for('quarterlyforecast')) if value=='yearly': ##yearly global Yeardata #copydata=demandforecastinputdata dated1 = demandforecastinputdata['Date'] lst=[] for var in dated1: var1 = var[:4]+'-01-01' lst.append(var1) newlst=pd.DataFrame(lst,columns=['NewYear']) demandforecastinputdata=demandforecastinputdata.reset_index() demandforecastinputdata['Date']=newlst['NewYear'] Yeardata=demandforecastinputdata.groupby(['Date']).sum() Yeardata=Yeardata.reset_index() Yeardata=Yeardata.drop('index',axis=1) engine = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) Yeardata.to_sql(con=engine, name='demandforecastinputdata', index=False,if_exists='replace') return redirect(url_for('yearlyforecast')) #if value=='weakly': ##weakly # return redirect(url_for('output4')) return render_template('demandforecast.html') @app.route("/monthlyforecast",methods = ['GET','POST']) def monthlyforecast(): data = pd.DataFrame(demandforecastinputdata) # container1 a1=data.sort_values(['GDP','TotalDemand'], ascending=[True,True]) # container2 a2=data.sort_values(['Pi_Exports','TotalDemand'], ascending=[True,True]) # container3 a3=data.sort_values(['Market_Share','TotalDemand'], ascending=[True,True]) # container4 a4=data.sort_values(['Advertisement_Expense','TotalDemand'], ascending=[True,True]) # container1 df=a1[['GDP']] re11 = np.array([]) res11 = np.append(re11,df) df1=a1[['TotalDemand']] r1 = np.array([]) r11 = np.append(r1, df1) # top graph tdf=data['Date'].astype(str) tre11 = np.array([]) tres11 = np.append(tre11,tdf) tr1 = np.array([]) tr11 = np.append(tr1, df1) # container2 udf=a2[['Pi_Exports']] ure11 = np.array([]) ures11 = np.append(ure11,udf) ur1 = np.array([]) ur11 = np.append(ur1, df1) # container3 vdf=a3[['Market_Share']] vre11 = np.array([]) vres11 = np.append(vre11,vdf) vr1 = np.array([]) vr11 = np.append(vr1, df1) # container4 wdf=a4[['Advertisement_Expense']] wre11 = np.array([]) wres11 = np.append(wre11,wdf) wr1 = np.array([]) wr11 = np.append(wr1, df1) if request.method == 'POST': mov=0 exp=0 reg=0 ari=0 arx=0 till = request.form.get('till') if request.form.get('moving'): mov=1 if request.form.get('ESPO'): exp=1 if request.form.get('regression'): reg=1 if request.form.get('ARIMA'): ari=1 if request.form.get('ARIMAX'): arx=1 con = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = con.cursor() cur.execute("CREATE TABLE IF NOT EXISTS `ftech` (`mov` VARCHAR(1),`exp` VARCHAR(1), `reg` VARCHAR(1),`ari` VARCHAR(1),`arx` VARCHAR(1),`till` VARCHAR(10))") cur.execute("DELETE FROM `ftech`") con.commit() cur.execute("INSERT INTO `ftech` VALUES('"+str(mov)+"','"+str(exp)+"','"+str(reg)+"','"+str(ari)+"','"+str(arx)+"','"+str(till)+"')") con.commit() cur.execute("CREATE TABLE IF NOT EXISTS `forecastoutput`(`Model` VARCHAR(25),`Date` VARCHAR(10),`TotalDemand` VARCHAR(10),`RatioIncrease` VARCHAR(10),`Spain` VARCHAR(10),`Austria` VARCHAR(10),`Japan` VARCHAR(10),`Hungary` VARCHAR(10),`Germany` VARCHAR(10),`Polland` VARCHAR(10),`UK` VARCHAR(10),`France` VARCHAR(10),`Romania` VARCHAR(10),`Italy` VARCHAR(10),`Greece` VARCHAR(10),`Crotia` VARCHAR(10),`Holland` VARCHAR(10),`Finland` VARCHAR(10),`Hongkong` VARCHAR(10))") con.commit() cur.execute("DELETE FROM `forecastoutput`") con.commit() sql = "INSERT INTO `forecastoutput` (`Model`,`Date`,`TotalDemand`,`RatioIncrease`,`Spain`,`Austria`,`Japan`,`Hungary`,`Germany`,`Polland`,`UK`,`France`,`Romania`,`Italy`,`Greece`,`Crotia`,`Holland`,`Finland`,`Hongkong`) VALUES (%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s)" #read the monthly file and index that with time df=data.set_index('Date') split_point =int(0.7*len(df)) D, V = df[0:split_point],df[split_point:] data=pd.DataFrame(D) #Functions for ME, MAE, MAPE #ME def ME(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(y_true - y_pred) #MAE def MAE(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(np.abs(y_true - y_pred)) #MAPE def MAPE(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(np.abs((y_true - y_pred) / y_pred)) * 100 cur1=con.cursor() cur1.execute("SELECT * FROM `ftech`") ftech=pd.DataFrame(cur1.fetchall()) ari=int(ftech['ari']) arx=int(ftech['arx']) exp=int(ftech['exp']) mov=int(ftech['mov']) reg=int(ftech['reg']) start_index1=str(D['GDP'].index[-1]) end_index1=str(ftech['till'][0]) #end_index1=indx[:4] df2 = pd.DataFrame(data=0,index=["ME","MAE","MAPE"],columns=["Moving Average","ARIMA","Exponential Smoothing","Regression"]) if mov==1: #2---------------simple moving average------------------------- #################################MovingAverage####################### list1=list() def mavg(data): m=len(data.columns.tolist()) for i in range(0,m-5): #Arima Model Fitting model1=ARIMA(data[data.columns.tolist()[i]].astype(float), order=(0,0,1)) results_ARIMA1=model1.fit(disp=0) # start_index1 = '2017-01-01' # end_index1 = '2022-01-01' #4 year forecast ARIMA_fit1= results_ARIMA1.fittedvalues forecast2=results_ARIMA1.predict(start=start_index1, end=end_index1) list1.append(forecast2) if(i==0): #ME s=ME(data['TotalDemand'],ARIMA_fit1) #MAE so=MAE(data['TotalDemand'],ARIMA_fit1) #MAPE son=MAPE(data['TotalDemand'],ARIMA_fit1) df2["Moving Average"].iloc[0]=s df2["Moving Average"].iloc[1]=so df2["Moving Average"].iloc[2]=son s=pd.DataFrame(forecast2) ratio_inc=[] ratio_inc.append(0) for j in range(2,len(s)+1): a=s.iloc[j-2] b=s.iloc[j-1] ratio_inc.append(int(((b-a)/a)*100)) return list1,ratio_inc print(data) Ma_Out,ratio_incma=mavg(data) dfs=pd.DataFrame(Ma_Out) tdfs=dfs.T print(tdfs) tdfs.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] tdfs['Model']='Moving Average' tdfs['RatioIncrease']=ratio_incma tdfs['Date']=(tdfs.index).strftime("20%y-%m-%d") tdfs.astype(str) for index, i in tdfs.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() if ari==1: ##--------------min errors--ARIMA (1,0,0)----------------------------- ############################for Total Demand Monthly#################################### list2=list() def AutoRimavg(data): m=len(data.columns.tolist()) for i in range(0,m-5): #Arima Model Fitting model1=ARIMA(data[data.columns.tolist()[i]].astype(float), order=(1,0,0)) results_ARIMA1=model1.fit(disp=0) ARIMA_fit1= results_ARIMA1.fittedvalues forecast2=results_ARIMA1.predict(start=start_index1, end=end_index1) list2.append(forecast2) if(i==0): #ME s=ME(data['TotalDemand'],ARIMA_fit1) #MAE so=MAE(data['TotalDemand'],ARIMA_fit1) #MAPE son=MAPE(data['TotalDemand'],ARIMA_fit1) df2["ARIMA"].iloc[0]=s df2["ARIMA"].iloc[1]=so df2["ARIMA"].iloc[2]=son Ars=pd.DataFrame(forecast2) ratio_inc=[] ratio_inc.append(0) for j in range(2,len(Ars)+1): As=(Ars.iloc[j-2]) bs=(Ars.iloc[j-1]) ratio_inc.append(int(((As-bs)/As)*100)) return list1,ratio_inc Arimamodel,ratio_inc=AutoRimavg(data) Amodel=pd.DataFrame(Arimamodel) Results=Amodel.T Results.astype(str) Results.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] Results['Model']="ARIMA" Results['RatioIncrease']=ratio_inc Results['Date']=Results.index.astype(str) for index, i in Results.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() if reg==1: #Linear Regression #Regression Modeling dates=pd.date_range(start_index1,end_index1,freq='M') lprd=len(dates) dateofterms= pd.PeriodIndex(freq='M', start=start_index1, periods=lprd+1) dofterm=dateofterms.strftime("20%y-%m-%d") Rdate=pd.DataFrame(dofterm) noofterms=len(dofterm) def regression(data,V,noofterms): #Getting length of Data Frame lenofdf=len(data.columns.tolist()) #Getting List Of Atributes in Data Frame listofatr=list() listofatr=data.columns.tolist() #making list of pred pred=pd.DataFrame() #now riun for each row for i in range(0,(lenofdf)-5): df=pd.DataFrame(data[data.columns.tolist()[i]].reset_index()) xvar=list() for row in df[listofatr[i]]: xvar.append(row) df5=pd.DataFrame(xvar) yvar=list() for j in range(0,len(df[listofatr[i]])): yvar.append(j) dfss=pd.DataFrame(yvar) clf = linear_model.LinearRegression() clf.fit(dfss,df5) # Make predictions using the testing set dfv=pd.DataFrame(V[V.columns.tolist()[i]].reset_index()) k=list() for l in range(len(df[listofatr[i]]),len(df[listofatr[i]])+len(dfv)): k.append(l) ks=pd.DataFrame(k) #Future prediction predlist=list() for j in range(len(df[listofatr[i]]),len(df[listofatr[i]])+noofterms): predlist.append(j) dataframeoflenofpred=pd.DataFrame(predlist) dateframeofpred=pd.DataFrame(clf.predict(dataframeoflenofpred)) pred=pd.concat([pred,dateframeofpred],axis=1) #Accuracy Of the mODEL y_pred = clf.predict(ks) if(i==0): meanerror=ME(dfv[listofatr[i]], y_pred) mae=MAE(dfv[listofatr[i]], y_pred) mape=MAPE(dfv[listofatr[i]],y_pred) df2["Regression"].iloc[0]=meanerror df2["Regression"].iloc[1]=mae df2["Regression"].iloc[2]=mape regp=pd.DataFrame(pred) ratio_incrr=[] ratio_incrr.append(0) for j in range(2,len(regp)+1): Ra=regp.iloc[j-2] Rb=regp.iloc[j-1] ratio_incrr.append(int(((Rb-Ra)/Ra)*100)) return pred,ratio_incrr monthlyRegression,ratio_incrr=regression(data,V,noofterms) r=pd.DataFrame(monthlyRegression) r.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] r['Model']="Regression" r['Date']=Rdate r['RatioIncrease']=ratio_incrr r.astype(str) for index, i in r.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() if exp==1: #Exponential Smoothing dates=pd.date_range(start_index1,end_index1,freq='M') lengthofprd=len(dates) dateofterm= pd.PeriodIndex(freq='M', start=start_index1, periods=lengthofprd+1) dateofterms=dateofterm.strftime("20%y-%m-%d") Edate=pd.DataFrame(dateofterms) predictonterm=len(Edate) def exponential_smoothing(series, alpha,predictonterm): result = [series[0]] # first value is same as series for i in range(1,len(series)): result.append(alpha * series[i] + (1 - alpha) * result[i-1]) preds=result[len(series)-1]#pred actual=series[len(series)-1]#actual forecastlist=[] for i in range(0,predictonterm): forecast=(alpha*actual)+((1-alpha)*preds) forecastlist.append(forecast) actual=preds preds=forecast return result,forecastlist def Exponentialmooth(data,alpha,predicterm): predexp=list() forecaste=pd.DataFrame() m=len(data.columns.tolist()) for i in range(0,m-5): pred,forecasts=exponential_smoothing(data[data.columns.tolist()[i]],0.5,predictonterm) ss=pd.DataFrame(forecasts) predexp.append(pred) forecaste=pd.concat([forecaste,ss],axis=1) if(i==0): meanerr=ME(len(data[data.columns.tolist()[i]]),predexp) meanaverr=MAE(data[data.columns.tolist()[i]],predexp) mperr=MAPE(data[data.columns.tolist()[i]],predexp) df2["Exponential Smoothing"].iloc[0]=meanerr df2["Exponential Smoothing"].iloc[1]=meanaverr df2["Exponential Smoothing"].iloc[2]=mperr Exponentials=pd.DataFrame(forecaste) ratio_incex=[] ratio_incex.append(0) for j in range(2,len(Exponentials)+1): Ea=Exponentials.iloc[j-2] Eb=Exponentials.iloc[j-1] ratio_incex.append(int(((Eb-Ea)/Ea)*100)) return forecaste,ratio_incex fore,ratio_incex=Exponentialmooth(data,0.5,predictonterm) skf=pd.DataFrame(fore) skf.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] skf['Model']="Exponential Smoothing" skf['Date']=Edate skf['RatioIncrease']=ratio_incex skf.astype(str) for index, i in skf.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() dates=pd.date_range(start_index1,end_index1,freq='M') lengthofprd=len(dates) dateofterm= pd.PeriodIndex(freq='M', start=start_index1, periods=lengthofprd+1) dateofterms=dateofterm.strftime("20%y-%m-%d") ss=pd.DataFrame(dateofterms,columns=['Date']) dataframeforsum=pd.concat([ss]) if mov==1: cur.execute("SELECT `TotalDemand` FROM `forecastoutput` WHERE `Model`= 'Moving Average'" ) Xmdata = cur.fetchall() Xmadata = pd.DataFrame(Xmdata) movsummm=pd.DataFrame(Xmadata) movsummm.columns=['Moving Average'] dataframeforsum=pd.concat([dataframeforsum,movsummm],axis=1) if ari==1: cur.execute("SELECT `TotalDemand` FROM `forecastoutput` WHERE `Model`= 'ARIMA'" ) Xadata = cur.fetchall() Xardata = pd.DataFrame(Xadata) movsumma=pd.DataFrame(Xardata) movsumma.columns=['ARIMA'] dataframeforsum=pd.concat([dataframeforsum,movsumma],axis=1) if exp==1: cur.execute("SELECT `TotalDemand` FROM `forecastoutput` WHERE `Model`= 'Exponential Smoothing'" ) Xedata = cur.fetchall() Xesdata = pd.DataFrame(Xedata) exp=pd.DataFrame(Xesdata) exp.columns=['Exponential Smoothing'] dataframeforsum=pd.concat([dataframeforsum,exp],axis=1) if reg==1: cur.execute("SELECT `TotalDemand` FROM `forecastoutput` WHERE `Model`= 'Regression'" ) Xrdata = cur.fetchall() Xredata = pd.DataFrame(Xrdata) regr=pd.DataFrame(Xredata) regr.columns=['Regression'] dataframeforsum=pd.concat([dataframeforsum,regr],axis=1) dataframeforsum.astype(str) from pandas.io import sql engine = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) dataframeforsum.to_sql(con=engine, name='summaryoutput',index=False, if_exists='replace') engine2 = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) df2.to_sql(con=engine2, name='summaryerror',index=False, if_exists='replace') con.commit() cnr=con.cursor() cnr.execute("SELECT * FROM `summaryoutput`") sdata = cnr.fetchall() summaryq = pd.DataFrame(sdata) con.close() return render_template('monthly.html',summaryq=summaryq.to_html(index=False),sayy=1,smt='Monthly',yr1=demandforecastfrm+' to ',yr2=demandforecasttoo,x=res11,y=r11,x1=tres11,y1=tr11,x2=ures11,y2=ur11,x3=vres11,y3=vr11,x4=wres11,y4=wr11) return render_template('monthly.html',sayy=1,smt='Monthly',yr1=demandforecastfrm+' to ',yr2=demandforecasttoo,x=res11,y=r11,x1=tres11,y1=tr11,x2=ures11,y2=ur11,x3=vres11,y3=vr11,x4=wres11,y4=wr11) ##quarterly @app.route("/quarterlyforecast",methods = ['GET','POST']) def quarterlyforecast(): data = pd.DataFrame(Quaterdata) a1=data.sort_values(['GDP','TotalDemand'], ascending=[True,True])# container1 a2=data.sort_values(['Pi_Exports','TotalDemand'], ascending=[True,True])# container2 a3=data.sort_values(['Market_Share','TotalDemand'], ascending=[True,True])# container3 a4=data.sort_values(['Advertisement_Expense','TotalDemand'], ascending=[True,True])# container4 # container1 df=a1[['GDP']]/3 re11 = np.array([]) res11 = np.append(re11,df) df1=a1[['TotalDemand']] r1 = np.array([]) r11 = np.append(r1, df1) # top graph tdf=data['Date'].astype(str) tre11 = np.array([]) tres11 = np.append(tre11,tdf) tr1 = np.array([]) tr11 = np.append(tr1, df1) # container2 udf=a2[['Pi_Exports']] ure11 = np.array([]) ures11 = np.append(ure11,udf) ur1 = np.array([]) ur11 = np.append(ur1, df1) # container3 vdf=a3[['Market_Share']]/3 vre11 = np.array([]) vres11 = np.append(vre11,vdf) vr1 = np.array([]) vr11 = np.append(vr1, df1) # container4 wdf=a4[['Advertisement_Expense']] wre11 = np.array([]) wres11 = np.append(wre11,wdf) wr1 = np.array([]) wr11 = np.append(wr1, df1) if request.method == 'POST': mov=0 exp=0 reg=0 ari=0 arx=0 till = request.form.get('till') if request.form.get('moving'): mov=1 if request.form.get('ESPO'): exp=1 if request.form.get('regression'): reg=1 if request.form.get('ARIMA'): ari=1 if request.form.get('ARIMAX'): arx=1 con = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = con.cursor() cur.execute("CREATE TABLE IF NOT EXISTS `ftech` (`mov` VARCHAR(1),`exp` VARCHAR(1), `reg` VARCHAR(1),`ari` VARCHAR(1),`arx` VARCHAR(1),`till` VARCHAR(10))") cur.execute("DELETE FROM `ftech`") con.commit() cur.execute("INSERT INTO `ftech` VALUES('"+str(mov)+"','"+str(exp)+"','"+str(reg)+"','"+str(ari)+"','"+str(arx)+"','"+str(till)+"')") con.commit() cur.execute("CREATE TABLE IF NOT EXISTS `forecastoutputq`(`Model` VARCHAR(25),`Date` VARCHAR(10),`TotalDemand` VARCHAR(10),`RatioIncrease` VARCHAR(10),`Spain` VARCHAR(10),`Austria` VARCHAR(10),`Japan` VARCHAR(10),`Hungary` VARCHAR(10),`Germany` VARCHAR(10),`Polland` VARCHAR(10),`UK` VARCHAR(10),`France` VARCHAR(10),`Romania` VARCHAR(10),`Italy` VARCHAR(10),`Greece` VARCHAR(10),`Crotia` VARCHAR(10),`Holland` VARCHAR(10),`Finland` VARCHAR(10),`Hongkong` VARCHAR(10))") con.commit() cur.execute("DELETE FROM `forecastoutputq`") con.commit() sql = "INSERT INTO `forecastoutputq` (`Model`,`Date`,`TotalDemand`,`RatioIncrease`,`Spain`,`Austria`,`Japan`,`Hungary`,`Germany`,`Polland`,`UK`,`France`,`Romania`,`Italy`,`Greece`,`Crotia`,`Holland`,`Finland`,`Hongkong`) VALUES (%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s)" #read the monthly file and index that with time df=data.set_index('Date') split_point =int(0.7*len(df)) D, V = df[0:split_point],df[split_point:] data=pd.DataFrame(D) #Functions for ME, MAE, MAPE #ME def ME(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(y_true - y_pred) #MAE def MAE(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(np.abs(y_true - y_pred)) #MAPE def MAPE(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(np.abs((y_true - y_pred) / y_pred)) * 100 cur1=con.cursor() cur1.execute("SELECT * FROM `ftech`") ftech=pd.DataFrame(cur1.fetchall()) ari=int(ftech['ari']) arx=int(ftech['arx']) exp=int(ftech['exp']) mov=int(ftech['mov']) reg=int(ftech['reg']) start_index1=str(D['GDP'].index[-1]) end_index1=str(ftech['till'][0]) #end_index1=indx[:4] df2 = pd.DataFrame(data=0,index=["ME","MAE","MAPE"],columns=["Moving Average","ARIMA","Exponential Smoothing","Regression"]) if mov==1: #2---------------simple moving average------------------------- #################################MovingAverage####################### list1=list() def mavg(data): m=len(data.columns.tolist()) for i in range(0,m-5): #Arima Model Fitting model1=ARIMA(data[data.columns.tolist()[i]].astype(float), order=(0,0,1)) results_ARIMA1=model1.fit(disp=0) # start_index1 = '2017-01-01' # end_index1 = '2022-01-01' #4 year forecast ARIMA_fit1= results_ARIMA1.fittedvalues forecast2=results_ARIMA1.predict(start=start_index1, end=end_index1) list1.append(forecast2) if(i==0): #ME s=ME(data['TotalDemand'],ARIMA_fit1) #MAE so=MAE(data['TotalDemand'],ARIMA_fit1) #MAPE son=MAPE(data['TotalDemand'],ARIMA_fit1) df2["Moving Average"].iloc[0]=s df2["Moving Average"].iloc[1]=so df2["Moving Average"].iloc[2]=son s=pd.DataFrame(forecast2) ratio_inc=[] ratio_inc.append(0) for j in range(2,len(s)+1): a=s.iloc[j-2] b=s.iloc[j-1] ratio_inc.append(int(((b-a)/a)*100)) return list1,ratio_inc print(data) Ma_Out,ratio_incma=mavg(data) dfs=pd.DataFrame(Ma_Out) tdfs=dfs.T print(tdfs) tdfs.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] tdfs['Model']='Moving Average' tdfs['RatioIncrease']=ratio_incma tdfs['Date']=(tdfs.index).strftime("20%y-%m-%d") tdfs.astype(str) for index, i in tdfs.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() if ari==1: ##--------------min errors--ARIMA (1,0,0)----------------------------- ############################for Total Demand Monthly#################################### list2=list() def AutoRimavg(data): m=len(data.columns.tolist()) for i in range(0,m-5): #Arima Model Fitting model1=ARIMA(data[data.columns.tolist()[i]].astype(float), order=(1,0,0)) results_ARIMA1=model1.fit(disp=0) ARIMA_fit1= results_ARIMA1.fittedvalues forecast2=results_ARIMA1.predict(start=start_index1, end=end_index1) list2.append(forecast2) if(i==0): #ME s=ME(data['TotalDemand'],ARIMA_fit1) #MAE so=MAE(data['TotalDemand'],ARIMA_fit1) #MAPE son=MAPE(data['TotalDemand'],ARIMA_fit1) df2["ARIMA"].iloc[0]=s df2["ARIMA"].iloc[1]=so df2["ARIMA"].iloc[2]=son Ars=pd.DataFrame(forecast2) ratio_inc=[] ratio_inc.append(0) for j in range(2,len(Ars)+1): As=(Ars.iloc[j-2]) bs=(Ars.iloc[j-1]) ratio_inc.append(int(((As-bs)/As)*100)) return list1,ratio_inc Arimamodel,ratio_inc=AutoRimavg(data) Amodel=pd.DataFrame(Arimamodel) Results=Amodel.T Results.astype(str) Results.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] Results['Model']="ARIMA" Results['RatioIncrease']=ratio_inc Results['Date']=Results.index.astype(str) for index, i in Results.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() if reg==1: #Linear Regression #Regression Modeling dates=pd.date_range(start_index1,end_index1,freq='3M') lprd=len(dates) dateofterms= pd.PeriodIndex(freq='3M', start=start_index1, periods=lprd+1) dofterm=dateofterms.strftime("20%y-%m-%d") Rdate=pd.DataFrame(dofterm) noofterms=len(dofterm) def regression(data,V,noofterms): #Getting length of Data Frame lenofdf=len(data.columns.tolist()) #Getting List Of Atributes in Data Frame listofatr=list() listofatr=data.columns.tolist() #making list of pred pred=pd.DataFrame() #now riun for each row for i in range(0,(lenofdf)-5): df=pd.DataFrame(data[data.columns.tolist()[i]].reset_index()) xvar=list() for row in df[listofatr[i]]: xvar.append(row) df5=pd.DataFrame(xvar) yvar=list() for j in range(0,len(df[listofatr[i]])): yvar.append(j) dfss=pd.DataFrame(yvar) clf = linear_model.LinearRegression() clf.fit(dfss,df5) # Make predictions using the testing set dfv=pd.DataFrame(V[V.columns.tolist()[i]].reset_index()) k=list() for l in range(len(df[listofatr[i]]),len(df[listofatr[i]])+len(dfv)): k.append(l) ks=pd.DataFrame(k) #Future prediction predlist=list() for j in range(len(df[listofatr[i]]),len(df[listofatr[i]])+noofterms): predlist.append(j) dataframeoflenofpred=pd.DataFrame(predlist) dateframeofpred=pd.DataFrame(clf.predict(dataframeoflenofpred)) pred=pd.concat([pred,dateframeofpred],axis=1) #Accuracy Of the mODEL y_pred = clf.predict(ks) if(i==0): meanerror=ME(dfv[listofatr[i]], y_pred) mae=MAE(dfv[listofatr[i]], y_pred) mape=MAPE(dfv[listofatr[i]],y_pred) df2["Regression"].iloc[0]=meanerror df2["Regression"].iloc[1]=mae df2["Regression"].iloc[2]=mape regp=pd.DataFrame(pred) ratio_incrr=[] ratio_incrr.append(0) for j in range(2,len(regp)+1): Ra=regp.iloc[j-2] Rb=regp.iloc[j-1] ratio_incrr.append(int(((Rb-Ra)/Ra)*100)) return pred,ratio_incrr monthlyRegression,ratio_incrr=regression(data,V,noofterms) r=pd.DataFrame(monthlyRegression) r.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] r['Model']="Regression" r['Date']=Rdate r['RatioIncrease']=ratio_incrr r.astype(str) for index, i in r.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() if exp==1: #Exponential Smoothing dates=pd.date_range(start_index1,end_index1,freq='3M') lengthofprd=len(dates) dateofterm= pd.PeriodIndex(freq='3M', start=start_index1, periods=lengthofprd+1) dateofterms=dateofterm.strftime("20%y-%m-%d") Edate=pd.DataFrame(dateofterms) predictonterm=len(Edate) def exponential_smoothing(series, alpha,predictonterm): result = [series[0]] # first value is same as series for i in range(1,len(series)): result.append(alpha * series[i] + (1 - alpha) * result[i-1]) preds=result[len(series)-1]#pred actual=series[len(series)-1]#actual forecastlist=[] for i in range(0,predictonterm): forecast=(alpha*actual)+((1-alpha)*preds) forecastlist.append(forecast) actual=preds preds=forecast return result,forecastlist def Exponentialmooth(data,alpha,predicterm): predexp=list() forecaste=pd.DataFrame() m=len(data.columns.tolist()) for i in range(0,m-5): pred,forecasts=exponential_smoothing(data[data.columns.tolist()[i]],0.5,predictonterm) ss=pd.DataFrame(forecasts) predexp.append(pred) forecaste=pd.concat([forecaste,ss],axis=1) if(i==0): meanerr=ME(len(data[data.columns.tolist()[i]]),predexp) meanaverr=MAE(data[data.columns.tolist()[i]],predexp) mperr=MAPE(data[data.columns.tolist()[i]],predexp) df2["Exponential Smoothing"].iloc[0]=meanerr df2["Exponential Smoothing"].iloc[1]=meanaverr df2["Exponential Smoothing"].iloc[2]=mperr Exponentials=pd.DataFrame(forecaste) ratio_incex=[] ratio_incex.append(0) for j in range(2,len(Exponentials)+1): Ea=Exponentials.iloc[j-2] Eb=Exponentials.iloc[j-1] ratio_incex.append(int(((Eb-Ea)/Ea)*100)) return forecaste,ratio_incex fore,ratio_incex=Exponentialmooth(data,0.5,predictonterm) skf=pd.DataFrame(fore) skf.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] skf['Model']="Exponential Smoothing" skf['Date']=Edate skf['RatioIncrease']=ratio_incex skf.astype(str) for index, i in skf.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() dates=pd.date_range(start_index1,end_index1,freq='3M') lengthofprd=len(dates) dateofterm= pd.PeriodIndex(freq='3M', start=start_index1, periods=lengthofprd+1) dateofterms=dateofterm.strftime("20%y-%m-%d") ss=pd.DataFrame(dateofterms,columns=['Date']) dataframeforsum=pd.concat([ss]) if mov==1: cur.execute("SELECT `TotalDemand` FROM `forecastoutputq` WHERE `Model`= 'Moving Average'" ) Xmdata = cur.fetchall() Xmadata = pd.DataFrame(Xmdata) movsummm=pd.DataFrame(Xmadata) movsummm.columns=['Moving Average'] dataframeforsum=pd.concat([dataframeforsum,movsummm],axis=1) if ari==1: cur.execute("SELECT `TotalDemand` FROM `forecastoutputq` WHERE `Model`= 'ARIMA'" ) Xadata = cur.fetchall() Xardata = pd.DataFrame(Xadata) movsumma=pd.DataFrame(Xardata) movsumma.columns=['ARIMA'] dataframeforsum=pd.concat([dataframeforsum,movsumma],axis=1) if exp==1: cur.execute("SELECT `TotalDemand` FROM `forecastoutputq` WHERE `Model`= 'Exponential Smoothing'" ) Xedata = cur.fetchall() Xesdata = pd.DataFrame(Xedata) exp=pd.DataFrame(Xesdata) exp.columns=['Exponential Smoothing'] dataframeforsum=pd.concat([dataframeforsum,exp],axis=1) if reg==1: cur.execute("SELECT `TotalDemand` FROM `forecastoutputq` WHERE `Model`= 'Regression'" ) Xrdata = cur.fetchall() Xredata = pd.DataFrame(Xrdata) regr=pd.DataFrame(Xredata) regr.columns=['Regression'] dataframeforsum=pd.concat([dataframeforsum,regr],axis=1) dataframeforsum.astype(str) from pandas.io import sql engine = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) dataframeforsum.to_sql(con=engine, name='summaryoutputq',index=False, if_exists='replace') engine2 = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) df2.to_sql(con=engine2, name='summaryerror',index=False, if_exists='replace') con.commit() cnr=con.cursor() cnr.execute("SELECT * FROM `summaryoutputq`") sdata = cnr.fetchall() summaryq = pd.DataFrame(sdata) con.close() return render_template('quarterly.html',summaryq=summaryq.to_html(index=False),sayy=1,smt='Quarterly',yr1=demandforecastfrm+' to ',yr2=demandforecasttoo,x=res11,y=r11,x1=tres11,y1=tr11,x2=ures11,y2=ur11,x3=vres11,y3=vr11,x4=wres11,y4=wr11) return render_template('quarterly.html',sayy=1,smt='Quarterly',yr1=demandforecastfrm+' to ',yr2=demandforecasttoo,x=res11,y=r11,x1=tres11,y1=tr11,x2=ures11,y2=ur11,x3=vres11,y3=vr11,x4=wres11,y4=wr11) ##yearly @app.route("/yearlyforecast",methods = ['GET','POST']) def yearlyforecast(): data = pd.DataFrame(Yeardata) a1=data.sort_values(['GDP','TotalDemand'], ascending=[True,True])# container1 a2=data.sort_values(['Pi_Exports','TotalDemand'], ascending=[True,True])# container2 a3=data.sort_values(['Market_Share','TotalDemand'], ascending=[True,True])# container3 a4=data.sort_values(['Advertisement_Expense','TotalDemand'], ascending=[True,True])# container4 # container1 df=a1[['GDP']]/12 re11 = np.array([]) res11 = np.append(re11,df) df1=a1[['TotalDemand']] r1 = np.array([]) r11 = np.append(r1, df1) # top graph tdf=data['Date'] vari=[] for var in tdf: vari.append(var[:4]) tres11 = vari tr1 = np.array([]) tr11 = np.append(tr1, df1) # container2 udf=a2[['Pi_Exports']] ure11 = np.array([]) ures11 = np.append(ure11,udf) ur1 = np.array([]) ur11 = np.append(ur1, df1) # container3 vdf=a3[['Market_Share']]/12 vre11 = np.array([]) vres11 = np.append(vre11,vdf) vr1 = np.array([]) vr11 = np.append(vr1, df1) # container4 wdf=a4[['Advertisement_Expense']] wre11 = np.array([]) wres11 = np.append(wre11,wdf) wr1 = np.array([]) wr11 = np.append(wr1, df1) if request.method == 'POST': mov=0 exp=0 reg=0 ari=0 arx=0 till = request.form.get('till') if request.form.get('moving'): mov=1 if request.form.get('ESPO'): exp=1 if request.form.get('regression'): reg=1 if request.form.get('ARIMA'): ari=1 if request.form.get('ARIMAX'): arx=1 con = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = con.cursor() cur.execute("CREATE TABLE IF NOT EXISTS `ftech` (`mov` VARCHAR(1),`exp` VARCHAR(1), `reg` VARCHAR(1),`ari` VARCHAR(1),`arx` VARCHAR(1),`till` VARCHAR(10))") cur.execute("DELETE FROM `ftech`") con.commit() cur.execute("INSERT INTO `ftech` VALUES('"+str(mov)+"','"+str(exp)+"','"+str(reg)+"','"+str(ari)+"','"+str(arx)+"','"+str(till)+"')") con.commit() cur.execute("CREATE TABLE IF NOT EXISTS `forecastoutputy`(`Model` VARCHAR(25),`Date` VARCHAR(10),`TotalDemand` VARCHAR(10),`RatioIncrease` VARCHAR(10),`Spain` VARCHAR(10),`Austria` VARCHAR(10),`Japan` VARCHAR(10),`Hungary` VARCHAR(10),`Germany` VARCHAR(10),`Polland` VARCHAR(10),`UK` VARCHAR(10),`France` VARCHAR(10),`Romania` VARCHAR(10),`Italy` VARCHAR(10),`Greece` VARCHAR(10),`Crotia` VARCHAR(10),`Holland` VARCHAR(10),`Finland` VARCHAR(10),`Hongkong` VARCHAR(10))") con.commit() cur.execute("DELETE FROM `forecastoutputy`") con.commit() sql = "INSERT INTO `forecastoutputy` (`Model`,`Date`,`TotalDemand`,`RatioIncrease`,`Spain`,`Austria`,`Japan`,`Hungary`,`Germany`,`Polland`,`UK`,`France`,`Romania`,`Italy`,`Greece`,`Crotia`,`Holland`,`Finland`,`Hongkong`) VALUES (%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s)" #read the monthly file and index that with time df=data.set_index('Date') split_point =int(0.7*len(df)) D, V = df[0:split_point],df[split_point:] data=pd.DataFrame(D) #Functions for ME, MAE, MAPE #ME def ME(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(y_true - y_pred) #MAE def MAE(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(np.abs(y_true - y_pred)) #MAPE def MAPE(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(np.abs((y_true - y_pred) / y_pred)) * 100 cur1=con.cursor() cur1.execute("SELECT * FROM `ftech`") ftech=pd.DataFrame(cur1.fetchall()) ari=int(ftech['ari']) arx=int(ftech['arx']) exp=int(ftech['exp']) mov=int(ftech['mov']) reg=int(ftech['reg']) start_index1=str(D['GDP'].index[-1]) end_index1=str(ftech['till'][0]) #end_index1=indx[:4] df2 = pd.DataFrame(data=0,index=["ME","MAE","MAPE"],columns=["Moving Average","ARIMA","Exponential Smoothing","Regression"]) if mov==1: #2---------------simple moving average------------------------- #################################MovingAverage####################### list1=list() def mavg(data): m=len(data.columns.tolist()) for i in range(0,m-5): #Arima Model Fitting model1=ARIMA(data[data.columns.tolist()[i]].astype(float), order=(0,0,1)) results_ARIMA1=model1.fit(disp=0) # start_index1 = '2017-01-01' # end_index1 = '2022-01-01' #4 year forecast ARIMA_fit1= results_ARIMA1.fittedvalues forecast2=results_ARIMA1.predict(start=start_index1, end=end_index1) list1.append(forecast2) if(i==0): #ME s=ME(data['TotalDemand'],ARIMA_fit1) #MAE so=MAE(data['TotalDemand'],ARIMA_fit1) #MAPE son=MAPE(data['TotalDemand'],ARIMA_fit1) df2["Moving Average"].iloc[0]=s df2["Moving Average"].iloc[1]=so df2["Moving Average"].iloc[2]=son s=pd.DataFrame(forecast2) ratio_inc=[] ratio_inc.append(0) for j in range(2,len(s)+1): a=s.iloc[j-2] b=s.iloc[j-1] ratio_inc.append(int(((b-a)/a)*100)) return list1,ratio_inc print(data) Ma_Out,ratio_incma=mavg(data) dfs=pd.DataFrame(Ma_Out) tdfs=dfs.T print(tdfs) tdfs.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] tdfs['Model']='Moving Average' tdfs['RatioIncrease']=ratio_incma dindex=(tdfs.index).strftime("20%y") tdfs['Date']=(dindex) tdfs.astype(str) for index, i in tdfs.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() if ari==1: ##--------------min errors--ARIMA (1,0,0)----------------------------- ############################for Total Demand Monthly#################################### list2=list() def AutoRimavg(data): m=len(data.columns.tolist()) for i in range(0,m-5): #Arima Model Fitting model1=ARIMA(data[data.columns.tolist()[i]].astype(float), order=(1,0,0)) results_ARIMA1=model1.fit(disp=0) ARIMA_fit1= results_ARIMA1.fittedvalues forecast2=results_ARIMA1.predict(start=start_index1, end=end_index1) list2.append(forecast2) if(i==0): #ME s=ME(data['TotalDemand'],ARIMA_fit1) #MAE so=MAE(data['TotalDemand'],ARIMA_fit1) #MAPE son=MAPE(data['TotalDemand'],ARIMA_fit1) df2["ARIMA"].iloc[0]=s df2["ARIMA"].iloc[1]=so df2["ARIMA"].iloc[2]=son Ars=pd.DataFrame(forecast2) ratio_inc=[] ratio_inc.append(0) for j in range(2,len(Ars)+1): As=(Ars.iloc[j-2]) bs=(Ars.iloc[j-1]) ratio_inc.append(int(((As-bs)/As)*100)) return list1,ratio_inc Arimamodel,ratio_inc=AutoRimavg(data) Amodel=pd.DataFrame(Arimamodel) Results=Amodel.T Results.astype(str) Results.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] Results['Model']="ARIMA" Results['RatioIncrease']=ratio_inc Results['Date']=Results.index.astype(str) for index, i in Results.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() if reg==1: #Linear Regression #Regression Modeling dates=pd.date_range(start_index1,end_index1,freq='A') lprd=len(dates) dateofterms= pd.PeriodIndex(freq='A', start=start_index1, periods=lprd+1) dofterm=dateofterms.strftime("20%y") Rdate=pd.DataFrame(dofterm) noofterms=len(dofterm) def regression(data,V,noofterms): #Getting length of Data Frame lenofdf=len(data.columns.tolist()) #Getting List Of Atributes in Data Frame listofatr=list() listofatr=data.columns.tolist() #making list of pred pred=pd.DataFrame() #now riun for each row for i in range(0,(lenofdf)-5): df=pd.DataFrame(data[data.columns.tolist()[i]].reset_index()) xvar=list() for row in df[listofatr[i]]: xvar.append(row) df5=pd.DataFrame(xvar) yvar=list() for j in range(0,len(df[listofatr[i]])): yvar.append(j) dfss=pd.DataFrame(yvar) clf = linear_model.LinearRegression() clf.fit(dfss,df5) # Make predictions using the testing set dfv=pd.DataFrame(V[V.columns.tolist()[i]].reset_index()) k=list() for l in range(len(df[listofatr[i]]),len(df[listofatr[i]])+len(dfv)): k.append(l) ks=pd.DataFrame(k) #Future prediction predlist=list() for j in range(len(df[listofatr[i]]),len(df[listofatr[i]])+noofterms): predlist.append(j) dataframeoflenofpred=pd.DataFrame(predlist) dateframeofpred=pd.DataFrame(clf.predict(dataframeoflenofpred)) pred=pd.concat([pred,dateframeofpred],axis=1) #Accuracy Of the mODEL y_pred = clf.predict(ks) if(i==0): meanerror=ME(dfv[listofatr[i]], y_pred) mae=MAE(dfv[listofatr[i]], y_pred) mape=MAPE(dfv[listofatr[i]],y_pred) df2["Regression"].iloc[0]=meanerror df2["Regression"].iloc[1]=mae df2["Regression"].iloc[2]=mape regp=pd.DataFrame(pred) ratio_incrr=[] ratio_incrr.append(0) for j in range(2,len(regp)+1): Ra=regp.iloc[j-2] Rb=regp.iloc[j-1] ratio_incrr.append(int(((Rb-Ra)/Ra)*100)) return pred,ratio_incrr monthlyRegression,ratio_incrr=regression(data,V,noofterms) r=pd.DataFrame(monthlyRegression) r.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] r['Model']="Regression" r['Date']=Rdate r['RatioIncrease']=ratio_incrr r.astype(str) for index, i in r.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() if exp==1: #Exponential Smoothing dates=pd.date_range(start_index1,end_index1,freq='A') lengthofprd=len(dates) dateofterm= pd.PeriodIndex(freq='A', start=start_index1, periods=lengthofprd+1) dateofterms=dateofterm.strftime("20%y") Edate=pd.DataFrame(dateofterms) predictonterm=len(Edate) def exponential_smoothing(series, alpha,predictonterm): result = [series[0]] # first value is same as series for i in range(1,len(series)): result.append(alpha * series[i] + (1 - alpha) * result[i-1]) preds=result[len(series)-1]#pred actual=series[len(series)-1]#actual forecastlist=[] for i in range(0,predictonterm): forecast=(alpha*actual)+((1-alpha)*preds) forecastlist.append(forecast) actual=preds preds=forecast return result,forecastlist def Exponentialmooth(data,alpha,predicterm): predexp=list() forecaste=pd.DataFrame() m=len(data.columns.tolist()) for i in range(0,m-5): pred,forecasts=exponential_smoothing(data[data.columns.tolist()[i]],0.5,predictonterm) ss=pd.DataFrame(forecasts) predexp.append(pred) forecaste=pd.concat([forecaste,ss],axis=1) if(i==0): meanerr=ME(len(data[data.columns.tolist()[i]]),predexp) meanaverr=MAE(data[data.columns.tolist()[i]],predexp) mperr=MAPE(data[data.columns.tolist()[i]],predexp) df2["Exponential Smoothing"].iloc[0]=meanerr df2["Exponential Smoothing"].iloc[1]=meanaverr df2["Exponential Smoothing"].iloc[2]=mperr Exponentials=pd.DataFrame(forecaste) ratio_incex=[] ratio_incex.append(0) for j in range(2,len(Exponentials)+1): Ea=Exponentials.iloc[j-2] Eb=Exponentials.iloc[j-1] ratio_incex.append(int(((Eb-Ea)/Ea)*100)) return forecaste,ratio_incex fore,ratio_incex=Exponentialmooth(data,0.5,predictonterm) skf=pd.DataFrame(fore) skf.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] skf['Model']="Exponential Smoothing" skf['Date']=Edate skf['RatioIncrease']=ratio_incex skf.astype(str) for index, i in skf.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() dates=pd.date_range(start_index1,end_index1,freq='A') lengthofprd=len(dates) dateofterm= pd.PeriodIndex(freq='A', start=start_index1, periods=lengthofprd+1) dateofterms=dateofterm.strftime("20%y") ss=pd.DataFrame(dateofterms,columns=['Date']) dataframeforsum=pd.concat([ss]) if mov==1: cur.execute("SELECT `TotalDemand` FROM `forecastoutputy` WHERE `Model`= 'Moving Average'" ) Xmdata = cur.fetchall() Xmadata = pd.DataFrame(Xmdata) movsummm=pd.DataFrame(Xmadata) movsummm.columns=['Moving Average'] dataframeforsum=pd.concat([dataframeforsum,movsummm],axis=1) if ari==1: cur.execute("SELECT `TotalDemand` FROM `forecastoutputy` WHERE `Model`= 'ARIMA'" ) Xadata = cur.fetchall() Xardata = pd.DataFrame(Xadata) movsumma=pd.DataFrame(Xardata) movsumma.columns=['ARIMA'] dataframeforsum=pd.concat([dataframeforsum,movsumma],axis=1) if exp==1: cur.execute("SELECT `TotalDemand` FROM `forecastoutputy` WHERE `Model`= 'Exponential Smoothing'" ) Xedata = cur.fetchall() Xesdata = pd.DataFrame(Xedata) exp=pd.DataFrame(Xesdata) exp.columns=['Exponential Smoothing'] dataframeforsum=pd.concat([dataframeforsum,exp],axis=1) if reg==1: cur.execute("SELECT `TotalDemand` FROM `forecastoutputy` WHERE `Model`= 'Regression'" ) Xrdata = cur.fetchall() Xredata = pd.DataFrame(Xrdata) regr=pd.DataFrame(Xredata) regr.columns=['Regression'] dataframeforsum=pd.concat([dataframeforsum,regr],axis=1) dataframeforsum.astype(str) from pandas.io import sql engine = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) dataframeforsum.to_sql(con=engine, name='summaryoutputy',index=False, if_exists='replace') engine2 = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) df2.to_sql(con=engine2, name='summaryerror',index=False, if_exists='replace') con.commit() cnr=con.cursor() cnr.execute("SELECT * FROM `summaryoutputy`") sdata = cnr.fetchall() summaryq = pd.DataFrame(sdata) con.close() return render_template('yearly.html',summaryq=summaryq.to_html(index=False),sayy=1,smt='Yearly',yr1=demandforecastfrm+' to ',yr2=demandforecasttoo,x=res11,y=r11,x1=tres11,y1=tr11,x2=ures11,y2=ur11,x3=vres11,y3=vr11,x4=wres11,y4=wr11) return render_template('yearly.html',sayy=1,smt='Yearly',yr1=demandforecastfrm+' to ',yr2=demandforecasttoo,x=res11,y=r11,x1=tres11,y1=tr11,x2=ures11,y2=ur11,x3=vres11,y3=vr11,x4=wres11,y4=wr11) #############################Dashboard####################################### #yearly @app.route('/youtgraph', methods = ['GET','POST']) def youtgraph(): con = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = con.cursor() cur.execute("SELECT `Model` FROM `forecastoutputy` GROUP BY `Model`") sfile=cur.fetchall() global yqst qlist=pd.DataFrame(sfile) qlst=qlist['Model'].astype(str) yqst=qlst.values con.close() return render_template('ydashboard.html',qulist=yqst) @app.route('/youtgraph1', methods = ['GET', 'POST']) def youtgraph1(): if request.method=='POST': value=request.form['item'] qconn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) qcur = qconn.cursor() qcur.execute("SELECT * FROM `demandforecastinputdata") qsdata = qcur.fetchall() qdata = pd.DataFrame(qsdata) #graph1 adata=qdata['TotalDemand'] x_axis=qdata['Date'].astype(str) #predictedgraph1 pcur = qconn.cursor() pcur.execute("SELECT * FROM `forecastoutputy` WHERE `Model`='"+value+"'") psdata = pcur.fetchall() edata = pd.DataFrame(psdata) eedata=edata['TotalDemand'].astype(float) ldata=eedata.values nur = qconn.cursor() nur.execute("SELECT MIN(`Date`) AS 'MIN' FROM `forecastoutputy` WHERE `Model`='"+value+"'") MIN=nur.fetchone() pdata=[] i=0 k=0 a="null" while(x_axis[i]<MIN['MIN']): pdata.append(a) i=i+1 k=k+1 ata=np.concatenate((pdata,ldata),axis=0) #x axis fcur = qconn.cursor() fcur.execute("SELECT `Date` FROM `demandforecastinputdata` WHERE `Date`<'"+MIN['MIN']+"'") fsdata = fcur.fetchall() indx = pd.DataFrame(fsdata) indx=indx['Date'] index=np.concatenate((indx,edata['Date'].values),axis=0) yindx=[] for var in index: var1 = var[:4] yindx.append(var1) #bargraph bcur = qconn.cursor() bcur.execute("SELECT * FROM `forecastoutputy` WHERE `Model`='"+value+"'") bsdata = bcur.fetchall() bdata = pd.DataFrame(bsdata) btdf=bdata['Date'].astype(str) btre11 = np.array([]) btres11 = np.append(btre11,btdf) b1tdf1=bdata[['Spain']] #spain b1tr1 = np.array([]) b1tr11 = np.append(b1tr1, b1tdf1) b2tdf1=bdata[['Austria']] #austria b2tr1 = np.array([]) b2tr11 = np.append(b2tr1, b2tdf1) b3tdf1=bdata[['Japan']] #japan b3tr1 = np.array([]) b3tr11 = np.append(b3tr1, b3tdf1) b4tdf1=bdata[['Hungary']] #hungry b4tr1 = np.array([]) b4tr11 = np.append(b4tr1, b4tdf1) b5tdf1=bdata[['Germany']] #germany b5tr1 = np.array([]) b5tr11 = np.append(b5tr1, b5tdf1) b6tdf1=bdata[['TotalDemand']] #total b6tr1 = np.array([]) b6tr11 = np.append(b6tr1, b6tdf1) #comparisonbar ccur = qconn.cursor() ccur.execute("SELECT * FROM `forecastoutputy` WHERE `Model`='"+value+"'") csdata = ccur.fetchall() cdata = pd.DataFrame(csdata) ctdf=cdata['Date'].astype(str) ctre11 = np.array([]) ctres11 = np.append(ctre11,ctdf) c1tdf1=cdata[['RatioIncrease']] #ratioincrease c1tr1 = np.array([]) c1tr11 = np.append(c1tr1, c1tdf1) qcur.execute("SELECT * FROM `summaryerror`") sdata = qcur.fetchall() mape = pd.DataFrame(sdata) qconn.close() return render_template('ydashboard.html',mon=value,qulist=yqst,mape=mape.to_html(index=False),say=1,pdata=ata,adata=adata.values,x_axis=yindx,frm=len(qdata)-1,to=k,x13=btres11,x14=ctres11,y13=b1tr11,y14=b2tr11,y15=b3tr11,y16=b4tr11,y17=b5tr11,y18=b6tr11,y19=c1tr11) #monthly @app.route('/moutgraph', methods = ['GET','POST']) def moutgraph(): con = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = con.cursor() cur.execute("SELECT `Model` FROM `forecastoutput` GROUP BY `Model`") sfile=cur.fetchall() global mqst qlist=pd.DataFrame(sfile) qlst=qlist['Model'].astype(str) mqst=qlst.values con.close() return render_template('mdashboard.html',qulist=mqst) @app.route('/moutgraph1', methods = ['GET', 'POST']) def moutgraph1(): if request.method=='POST': value=request.form['item'] qconn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) qcur = qconn.cursor() qcur.execute("SELECT * FROM `demandforecastinputdata") qsdata = qcur.fetchall() qdata = pd.DataFrame(qsdata) #graph1 adata=qdata['TotalDemand'] x_axis=qdata['Date'].astype(str) #predictedgraph1 pcur = qconn.cursor() pcur.execute("SELECT * FROM `forecastoutput` WHERE `Model`='"+value+"'") psdata = pcur.fetchall() edata = pd.DataFrame(psdata) eedata=edata['TotalDemand'].astype(float) ldata=eedata.values nur = qconn.cursor() nur.execute("SELECT MIN(`Date`) AS 'MIN' FROM `forecastoutput` WHERE `Model`='"+value+"'") MIN=nur.fetchone() pdata=[] i=0 k=0 a="null" while(x_axis[i]<MIN['MIN']): pdata.append(a) i=i+1 k=k+1 ata=np.concatenate((pdata,ldata),axis=0) #x axis fcur = qconn.cursor() fcur.execute("SELECT `Date` FROM `demandforecastinputdata` WHERE `Date`<'"+MIN['MIN']+"'") fsdata = fcur.fetchall() indx = pd.DataFrame(fsdata) indx=indx['Date'].astype(str).values index=np.concatenate((indx,edata['Date'].values),axis=0) #bargraph bcur = qconn.cursor() bcur.execute("SELECT * FROM `forecastoutput` WHERE `Model`='"+value+"'") bsdata = bcur.fetchall() bdata = pd.DataFrame(bsdata) btdf=bdata['Date'].astype(str) btre11 = np.array([]) btres11 = np.append(btre11,btdf) b1tdf1=bdata[['Spain']] #spain b1tr1 = np.array([]) b1tr11 = np.append(b1tr1, b1tdf1) b2tdf1=bdata[['Austria']] #austria b2tr1 = np.array([]) b2tr11 = np.append(b2tr1, b2tdf1) b3tdf1=bdata[['Japan']] #japan b3tr1 = np.array([]) b3tr11 = np.append(b3tr1, b3tdf1) b4tdf1=bdata[['Hungary']] #hungry b4tr1 = np.array([]) b4tr11 = np.append(b4tr1, b4tdf1) b5tdf1=bdata[['Germany']] #germany b5tr1 = np.array([]) b5tr11 = np.append(b5tr1, b5tdf1) b6tdf1=bdata[['TotalDemand']] #total b6tr1 = np.array([]) b6tr11 = np.append(b6tr1, b6tdf1) #comparisonbar ccur = qconn.cursor() ccur.execute("SELECT * FROM `forecastoutput` WHERE `Model`='"+value+"'") csdata = ccur.fetchall() cdata = pd.DataFrame(csdata) ctdf=cdata['Date'].astype(str) ctre11 = np.array([]) ctres11 = np.append(ctre11,ctdf) c1tdf1=cdata[['RatioIncrease']] #ratioincrease c1tr1 = np.array([]) c1tr11 = np.append(c1tr1, c1tdf1) qcur.execute("SELECT * FROM `summaryerror`") sdata = qcur.fetchall() mape = pd.DataFrame(sdata) qconn.close() return render_template('mdashboard.html',mon=value,qulist=mqst,mape=mape.to_html(index=False),say=1,pdata=ata,adata=adata.values,x_axis=index,frm=len(qdata)-1,to=k,x13=btres11,x14=ctres11,y13=b1tr11,y14=b2tr11,y15=b3tr11,y16=b4tr11,y17=b5tr11,y18=b6tr11,y19=c1tr11) #quarterly @app.route('/qoutgraph', methods = ['GET','POST']) def qoutgraph(): con = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = con.cursor() cur.execute("SELECT `Model` FROM `forecastoutputq` GROUP BY `Model`") sfile=cur.fetchall() global qst qlist=pd.DataFrame(sfile) qlst=qlist['Model'].astype(str) qst=qlst.values con.close() return render_template('qdashboard.html',qulist=qst) @app.route('/qoutgraph1', methods = ['GET', 'POST']) def qoutgraph1(): if request.method=='POST': value=request.form['item'] qconn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) qcur = qconn.cursor() qcur.execute("SELECT * FROM `demandforecastinputdata") qsdata = qcur.fetchall() qdata = pd.DataFrame(qsdata) #graph1 adata=qdata['TotalDemand'] x_axis=qdata['Date'].astype(str) #predictedgraph1 pcur = qconn.cursor() pcur.execute("SELECT * FROM `forecastoutputq` WHERE `Model`='"+value+"'") psdata = pcur.fetchall() edata = pd.DataFrame(psdata) eedata=edata['TotalDemand'].astype(float) ldata=eedata.values nur = qconn.cursor() nur.execute("SELECT MIN(`Date`) AS 'MIN' FROM `forecastoutputq` WHERE `Model`='"+value+"'") MIN=nur.fetchone() pdata=[] i=0 k=0 a="null" while(x_axis[i]<MIN['MIN']): pdata.append(a) i=i+1 k=k+1 ata=np.concatenate((pdata,ldata),axis=0) #x axis fcur = qconn.cursor() fcur.execute("SELECT `Date` FROM `demandforecastinputdata` WHERE `Date`<'"+MIN['MIN']+"'") fsdata = fcur.fetchall() indx = pd.DataFrame(fsdata) indx=indx['Date'].astype(str).values index=np.concatenate((indx,edata['Date'].values),axis=0) #bargraph bcur = qconn.cursor() bcur.execute("SELECT * FROM `forecastoutputq` WHERE `Model`='"+value+"'") bsdata = bcur.fetchall() bdata = pd.DataFrame(bsdata) btdf=bdata['Date'].astype(str) btre11 = np.array([]) btres11 = np.append(btre11,btdf) b1tdf1=bdata[['Spain']] #spain b1tr1 = np.array([]) b1tr11 = np.append(b1tr1, b1tdf1) b2tdf1=bdata[['Austria']] #austria b2tr1 = np.array([]) b2tr11 = np.append(b2tr1, b2tdf1) b3tdf1=bdata[['Japan']] #japan b3tr1 = np.array([]) b3tr11 = np.append(b3tr1, b3tdf1) b4tdf1=bdata[['Hungary']] #hungry b4tr1 = np.array([]) b4tr11 = np.append(b4tr1, b4tdf1) b5tdf1=bdata[['Germany']] #germany b5tr1 = np.array([]) b5tr11 = np.append(b5tr1, b5tdf1) b6tdf1=bdata[['TotalDemand']] #total b6tr1 = np.array([]) b6tr11 = np.append(b6tr1, b6tdf1) #comparisonbar ccur = qconn.cursor() ccur.execute("SELECT * FROM `forecastoutputq` WHERE `Model`='"+value+"'") csdata = ccur.fetchall() cdata = pd.DataFrame(csdata) ctdf=cdata['Date'].astype(str) ctre11 = np.array([]) ctres11 = np.append(ctre11,ctdf) c1tdf1=cdata[['RatioIncrease']] #ratioincrease c1tr1 = np.array([]) c1tr11 = np.append(c1tr1, c1tdf1) qcur.execute("SELECT * FROM `summaryerror`") sdata = qcur.fetchall() mape = pd.DataFrame(sdata) qconn.close() return render_template('qdashboard.html',mon=value,qulist=qst,mape=mape.to_html(index=False),say=1,pdata=ata,adata=adata.values,x_axis=index,frm=len(qdata)-1,to=k,x13=btres11,x14=ctres11,y13=b1tr11,y14=b2tr11,y15=b3tr11,y16=b4tr11,y17=b5tr11,y18=b6tr11,y19=c1tr11) @app.route("/yearlysimulation",methods = ['GET','POST']) def yearlysimulation(): if request.method == 'POST': gdp=0 pi=0 ms=0 adv=0 gdp_dis=request.form.get('gdp_dis') pi_dis=request.form.get('pi_dis') ms_dis=request.form.get('ms_dis') adv_dis=request.form.get('adv_dis') min=request.form.get('min') max=request.form.get('max') mue=request.form.get('mue') sig=request.form.get('sig') cval=request.form.get('cval') min1=request.form.get('min1') max1=request.form.get('max1') mue1=request.form.get('mue1') sig1=request.form.get('sig1') cval1=request.form.get('cval1') min2=request.form.get('min2') max2=request.form.get('max2') mue2=request.form.get('mue2') sig2=request.form.get('sig2') cval2=request.form.get('cval2') min3=request.form.get('min3') max3=request.form.get('max3') mue3=request.form.get('mue3') sig3=request.form.get('sig3') cval3=request.form.get('cval3') itr= int(request.form.get('itr')) frm = request.form.get('from') sfrm=int(frm[:4]) to = request.form.get('to') sto=int(to[:4]) kwargs={} atrtable=[] if request.form.get('gdp'): gdp=1 atrtable.append('Gdp') if gdp_dis == 'gdp_dis1': min=request.form.get('min') max=request.form.get('max') kwargs['Gdp_dis']='Uniform' kwargs['gdpvalues']=[min,max] if gdp_dis == 'gdp_dis2': mue=request.form.get('mue') sig=request.form.get('sig') kwargs['Gdp_dis']='Normal' kwargs['gdpvalues']=[mue,sig] if gdp_dis == 'gdp_dis3': kwargs['Gdp_dis']='Random' pass if gdp_dis == 'gdp_dis4': cval=request.form.get('cval') kwargs['Gdp_dis']='Constant' kwargs['gdpvalues']=[cval] if request.form.get('pi'): pi=1 atrtable.append('Pi') if pi_dis == 'pi_dis1': min1=request.form.get('min1') max1=request.form.get('max1') kwargs['Pi_dis']='Uniform' kwargs['pivalues']=[min1,max1] if pi_dis == 'pi_dis2': mue1=request.form.get('mue1') sig1=request.form.get('sig1') kwargs['Pi_dis']='Normal' kwargs['pivalues']=[mue1,sig1] if pi_dis == 'pi_dis3': kwargs['Pi_dis']='Random' pass if pi_dis == 'pi_dis4': cval1=request.form.get('cval1') kwargs['Pi_dis']='Constant' kwargs['pivalues']=[cval1] if request.form.get('ms'): ms=1 atrtable.append('Ms') if ms_dis == 'ms_dis1': min=request.form.get('min2') max=request.form.get('max2') kwargs['Ms_dis']='Uniform' kwargs['msvalues']=[min2,max2] if ms_dis == 'ms_dis2': mue=request.form.get('mue2') sig=request.form.get('sig2') kwargs['Ms_dis']='Normal' kwargs['msvalues']=[mue2,sig2] if ms_dis == 'ms_dis3': kwargs['Ms_dis']='Random' pass if ms_dis == 'ms_dis4': cval=request.form.get('cval2') kwargs['Ms_dis']='Constant' kwargs['msvalues']=[cval2] if request.form.get('adv'): adv=1 atrtable.append('Adv') if adv_dis == 'adv_dis1': min=request.form.get('min3') max=request.form.get('max3') kwargs['Adv_dis']='Uniform' kwargs['advvalues']=[min3,max3] if adv_dis == 'adv_dis2': mue=request.form.get('mue3') sig=request.form.get('sig3') kwargs['Adv_dis']='Normal' kwargs['advvalues']=[mue3,sig3] if adv_dis == 'adv_dis3': kwargs['Adv_dis']='Random' pass if adv_dis == 'adv_dis4': cval=request.form.get('cval3') kwargs['Adv_dis']='Constant' kwargs['advvalues']=[cval3] #print(kwargs) #print(atrtable) con = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = con.cursor() cur.execute("CREATE TABLE IF NOT EXISTS `stech` (`gdp` VARCHAR(1),`pi` VARCHAR(1), `ms` VARCHAR(1),`adv` VARCHAR(1),`itr` VARCHAR(5),`sfrm` VARCHAR(10),`sto` VARCHAR(10))") cur.execute("DELETE FROM `stech`") con.commit() cur.execute("INSERT INTO `stech` VALUES('"+str(gdp)+"','"+str(pi)+"','"+str(ms)+"','"+str(adv)+"','"+str(itr)+"','"+str(sfrm)+"','"+str(sto)+"')") con.commit() data = pd.DataFrame(Yeardata) #print(data) data.columns xvar=pd.concat([data['GDP'],data['Pi_Exports'],data['Market_Share'],data['Advertisement_Expense']],axis=1) yvar=pd.DataFrame(data['TotalDemand']) regr = linear_model.LinearRegression() regr.fit(xvar,yvar) # predict=regr.predict(xvar) #Error Measures def ME(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(y_true - y_pred) #MAE def MAE(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(np.abs(y_true - y_pred)) #MAPE def MAPE(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(np.abs((y_true - y_pred) / y_pred)) * 100 def sim(iteration,data,startyear,endyear,atrtable,Gdp_dis=None,gdpvalues=None,Adv_dis=None,advvalues=None,Ms_dis=None,msvalues=None,Pi_dis=None,pivalues=None): preddata=pd.DataFrame() simdata=pd.DataFrame() #Errordf=pd.DataFrame() Errormsr=pd.DataFrame() date=pd.date_range(start=pd.datetime(startyear, 1, 1), end=pd.datetime(endyear+1, 1, 1),freq='A') date=pd.DataFrame(date.strftime("%Y")) #Fetching The Orignal Data Of Available Years of the Orignal Data That We Have Actually m=len(date) Arrayofdates=data['Date'] vari=[] for var in Arrayofdates: vari.append(var[:4]) Arrayofdates=pd.DataFrame(vari) dates=[] Fetchdata=[] for i in range(0,m): years=date.loc[i] for j in range(0,len(Arrayofdates)): if int(Arrayofdates.loc[j])==int(years): da=data['TotalDemand'].loc[j] Fetchdata.append(da) #Gives Data In the Given Range That we have actually dates.extend(years) #Gives Years that we have data for i in range(0,iteration): df=pd.DataFrame() #for The Gdp S='flag' for row in atrtable: if row=='Gdp': S='Gdp' if S=='Gdp': for row in Gdp_dis: if row=='Normal': gdpdf=pd.DataFrame(np.random.normal(gdpvalues[0],gdpvalues[1],m)) elif row=='Uniform': gdpdf=pd.DataFrame(np.random.normal(gdpvalues[0],gdpvalues[1],m)) elif row=='Constant': gdpdf=pd.DataFrame(np.random.choice([gdpvalues[0]],m)) else: gdpdf=pd.DataFrame(np.random.uniform(-4,4,m)) else: gdpdf=pd.DataFrame(np.random.uniform(0,0,m)) # for the pi dataframe O='flag' for row in atrtable: if row=='Pi': O='Pi' if O=='Pi': for row in Pi_dis: if row=='Normal': pidf=pd.DataFrame(np.random.normal(pivalues[0],pivalues[1],m)) elif row=='Uniform': pidf=pd.DataFrame(np.random.normal(pivalues[0],pivalues[1],m)) elif row=='Constant': pidf=pd.DataFrame(np.random.choice([pivalues[0]],m)) else: pidf=pd.DataFrame(np.random.random_integers(80,120,m)) else: pidf=pd.DataFrame(np.random.uniform(0,0,m)) #for the Adv Dataframe N='flag' for row in atrtable: if row=='Adv': N='Adv' if N=='Adv': for row in Adv_dis: if row=='Normal': advdf=pd.DataFrame(np.random.normal(advvalues[0],advvalues[1],m)) elif row=='Uniform': advdf=pd.DataFrame(np.random.normal(advvalues[0],advvalues[1],m)) elif row=='Constant': advdf=pd.DataFrame(np.random.choice([advvalues[0]],m)) else: advdf=pd.DataFrame(np.random.random_integers(500000,1000000,m)) else: advdf=pd.DataFrame(np.random.uniform(0,0,m)) #for the Ms dataframe U='flag' for row in atrtable: if row=='Ms': U='Ms' if U=='Ms': for row in Ms_dis: if row=='Normal': msdf=pd.DataFrame(np.random.normal(msvalues[0],msvalues[1],m)) elif row=='Uniform': msdf=pd.DataFrame(np.random.normal(msvalues[0],msvalues[1],m)) elif row=='Constant': msdf=pd.DataFrame(np.random.choice([msvalues[0]],m)) else: msdf=pd.DataFrame(np.random.uniform(0.1,0.5,m)) else: msdf=pd.DataFrame(np.random.uniform(0,0,m)) #Concatenating All the dataframes for Simulation Data df=pd.concat([gdpdf,pidf,msdf,advdf],axis=1) simid=pd.DataFrame(np.random.choice([i+1],m)) dd=pd.concat([simid,gdpdf,pidf,advdf,msdf],axis=1) dd.columns=['Year','Gdp','Pi','Adv','Ms'] simdata=pd.concat([simdata,dd],axis=0) #Predicting the Data And store in pred data through onhand Regression Method dfs=pd.DataFrame(regr.predict(df)) datatable=pd.concat([simid,date,dfs],axis=1) datatable.columns=['simid','Year','Total_Demand(Tonnes)'] preddata=pd.concat([datatable,preddata],axis=0) datas=list() #Geting Data With Respective Dates # print(datatable) for row in dates: # print(dates) datas.extend(datatable.loc[datatable['Year'] ==row, 'Total_Demand(Tonnes)']) kkk=pd.DataFrame(datas) me=ME(Fetchdata,kkk) mae=MAE(Fetchdata,kkk) mape=MAPE(Fetchdata,kkk) dfe=pd.DataFrame([me,mae,mape],index=['ME','MAE','MAPE']).T Errormsr=pd.concat([Errormsr,dfe],axis=0).reset_index(drop=True) return preddata,simdata,Errormsr preddata,simdata,Errormsr=sim(itr,data,sfrm,sto,atrtable,**kwargs) engine = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) preddata.to_sql(con=engine, name='predicteddata',index=False, if_exists='replace') engine2 = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) simdata.to_sql(con=engine2, name='simulationdata',index=False, if_exists='replace') con.commit() engine3 = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) Errormsr.to_sql(con=engine3, name='simerror',index=False, if_exists='replace') con.commit() cnr=con.cursor() cnr.execute("SELECT * FROM `simerror`") sdata = cnr.fetchall() simerror = pd.DataFrame(sdata) con.close() return render_template('ysimulation.html',sayy=1,simerror=simerror.to_html(index=False)) return render_template('ysimulation.html') ##PROCURMENT PLANNING @app.route('/procurementplanning') def procurementplanning(): return render_template('vendorselection_criterianumberask.html') @app.route("/criteriagenerate", methods=['GET','POST']) def criteriagenerate(): if request.method == 'POST': global cnmbr global vnmbr cnmbr = int(request.form['cnmbr']) vnmbr = int(request.form['vnmbr']) if cnmbr == 0 or vnmbr==0: return render_template('criterianumberask.html',warning='Data Invalid') cmainlist=[] global cnames cnames = [] for i in range (1,cnmbr+1): lst=[] name='cname'+str(i) lst.append(i) lst.append(name) cmainlist.append(lst) cnames.append(name) vmainlist=[] global vnames vnames = [] for i in range (1,vnmbr+1): lst=[] name='vname'+str(i) lst.append(i) lst.append(name) vmainlist.append(lst) vnames.append(name) return render_template('vendorselection_criteriagenerate.html',cmainlist=cmainlist,vmainlist=vmainlist) return render_template('vendorselection_criterianumberask.html') @app.route("/criteriagenerated", methods=['GET','POST']) def criteriagenerated(): if request.method == 'POST': global criterianames criterianames=[] for name in cnames: criterianame = request.form[name] criterianames.append(criterianame) global vendornames vendornames=[] for name in vnames: vendorname = request.form[name] vendornames.append(vendorname) mcrlst=[] cn=len(criterianames) k=1 global maincriteriaoption maincriteriaoption=[] global maincritriacri maincritriacri=[] for i in range(cn-1): for j in range (i+1,cn): cri='criteriaorder'+str(k) opt='coption'+str(k) crlst=[k,cri,criterianames[i],criterianames[j],opt] mcrlst.append(crlst) k=k+1 maincriteriaoption.append(opt) maincritriacri.append(cri) mvrlst=[] vn=len(vendornames) k=1 global mainvendoroption mainvendoroption=[] global mainvendorcri mainvendorcri=[] for z in criterianames: mvrlst1=[] vcri=[] vopt=[] for i in range(vn-1): for j in range (i+1,vn): cri='vendororder'+z+str(k) opt='voption'+z+str(k) vrlst=[k,cri,vendornames[i],vendornames[j],opt] mvrlst1.append(vrlst) k=k+1 vcri.append(cri) vopt.append(opt) mvrlst.append(mvrlst1) mainvendorcri.append(vcri) mainvendoroption.append(vopt) return render_template('vendorselection_maincriteria.html',mcrlst=mcrlst,mvrlst=mvrlst) return render_template('vendorselection_criteriagenerated.html') def tablecreator(imp,val,crit): n=len(imp) for i in range(n): if imp[i]==1: val[i]=float(1/val[i]) fdata=pd.DataFrame(columns=[crit],index=[crit]) i=0 k=0 for index in fdata.index: j=0 for columns in fdata.columns: if i==j: fdata[index][columns]=1 if i<j: fdata[index][columns]=round((float(val[k])),2) fdata[columns][index]=round((1/val[k]),2) k=k+1 j=j+1 i=i+1 return fdata @app.route("/criteriaread", methods=['GET','POST']) def criteriaread(): if request.method == 'POST': importances = [] values = [] for name1 in maincritriacri: imp = int(request.form[name1]) importances.append(imp) for name2 in maincriteriaoption: val = int(request.form[name2]) values.append(val) #global maincriteriadata maincriteriadata=tablecreator(importances,values,criterianames) mainimportances=[] for crioption in mainvendorcri: importance=[] for option1 in crioption: impc = int(request.form[option1]) importance.append(impc) mainimportances.append(importance) mainvalues=[] for vendoroption in mainvendoroption: vvalues=[] for option2 in vendoroption: valuev = int(request.form[option2]) vvalues.append(valuev) mainvalues.append(vvalues) maindf=[] for z in range(len(criterianames)): df=tablecreator(mainimportances[z],mainvalues[z],vendornames) maindf.append(df) dictmain={'crit':maincriteriadata} names=criterianames dfs=maindf dictionary=dict((n,d) for (n,d) in zip(names,dfs)) def ahpmain(dictmain): global wt_Crit wt_Crit=[] key=[] key=list(dictmain.keys()) for i in key: Crit=np.dot(dictmain[i],dictmain[i]) row_sum=[] for j in range(len(Crit)): row_sum.append(sum(Crit[j])) wt_Crit.append([s/sum(row_sum) for s in row_sum]) Crit=[] return wt_Crit def ahp(dictmain,dictionary): global output main= ahpmain(dictmain) submain= ahpmain(dictionary) dd=pd.DataFrame(submain).T df=pd.DataFrame(main).T output=np.dot(dd,df) return output,dd yaxis,dd=ahp(dictmain,dictionary) yax=pd.DataFrame(yaxis,index=vendornames,columns=['Score']).sort_values('Score',ascending=False).T ynames=yax.columns yval=yax.T.values dd.index=vendornames dd.columns=names dd=dd.T opq23=[] for column in dd.columns: opq21=[] opq22=[] opq21.append(column) for val in dd[column]: opq22.append(val) opq21.append(opq22) opq23.append(opq21) return render_template('vendorselection_ahp_final_output.html',ynames=ynames,yval=yval,dd=opq23,names=names) return render_template('vendorselection_criteriagenerated.html') #DETERMINISTIC STARTS @app.route("/spt") def spt(): return render_template('SinglePeriod.html') @app.route("/ppbreak") def ppbreak(): return render_template('pbreak.html') @app.route('/pbrk', methods=['GET','POST']) def pbrk(): return render_template('pbrk.html') @app.route('/eoq', methods=['GET','POST']) def eoq(): ##setUpCost::setting up cost prior(>>setUpCost;<<moving rate) AnnulaUnitsDemand=100##purchase demand of product per year FixedCost=500 ##cost fixed for the product AnnHoldingcost=0.25 ##remaining goods cost UnitCost=445 ##purchasing cost LeadTime=10 ##time b/w initiation and completion of a production process. SafetyStock=100##extra stock if request.method == 'POST': AnnulaUnitsDemand= request.form['AnnulaUnitsDemand'] FixedCost=request.form['FixedCost'] AnnHoldingcost=request.form['AnnHoldingcost'] UnitCost=request.form['UnitCost'] LeadTime=request.form['LeadTime'] SafetyStock=request.form['SafetyStock'] AnnulaUnitsDemand=float(AnnulaUnitsDemand) FixedCost=float(FixedCost) AnnHoldingcost=float(AnnHoldingcost) UnitCost=float(UnitCost) LeadTime=float(LeadTime) SafetyStock=float(SafetyStock) sgap=1 pgap=1 HoldingCost=AnnHoldingcost*UnitCost EOQ=round((math.sqrt((2*AnnulaUnitsDemand*FixedCost)/(HoldingCost*pgap))*sgap),2) REOQ=round((math.sqrt((2*AnnulaUnitsDemand*FixedCost)/(HoldingCost*pgap))*sgap),0) totOrderCost=round((FixedCost*AnnulaUnitsDemand/EOQ),2) totHoldCost=round(((HoldingCost*EOQ*pgap)/2),2) TotalCost=round((totOrderCost+totHoldCost),2) NumOrders=round((AnnulaUnitsDemand/EOQ),2) OrderTime=round((365/NumOrders),2) ReorderPoint=round((((AnnulaUnitsDemand/365)*LeadTime)+SafetyStock),0) count=round((EOQ*.75),0) qtylist1=[] hclist=[] sclist=[] mtlist=[] tclist=[] while (count < EOQ): qtylist1.append(count) hclist.append(round((count/2*HoldingCost),2)) sclist.append(round((AnnulaUnitsDemand/count*FixedCost),2)) mtlist.append(round((AnnulaUnitsDemand*UnitCost),2)) tclist.append(round((count/2*HoldingCost+AnnulaUnitsDemand/count*FixedCost),2)) count +=2 qtylist1.append(EOQ) hclist.append(totHoldCost) sclist.append(totOrderCost) tclist.append(totHoldCost+totOrderCost) while (count < (EOQ*2)): qtylist1.append(count) hclist.append(round((count/2*HoldingCost),2)) sclist.append(round((AnnulaUnitsDemand/count*FixedCost),2)) mtlist.append(round((AnnulaUnitsDemand*UnitCost),2)) tclist.append(round((count/2*HoldingCost+AnnulaUnitsDemand/count*FixedCost),2)) count +=2 val=0 for i in range(len(tclist)): if(EOQ==qtylist1[i]): val=i # sstock=int(math.sqrt((LeadTime^2)+(int(ReorderPoint)^2))) return render_template('eoq.html',NumOrders=NumOrders,OrderTime=OrderTime, ReorderPoint=ReorderPoint,HoldCost=totHoldCost,TotalCost=TotalCost, EOQ=EOQ,REOQ=REOQ, sclist=sclist,hclist=hclist,tclist=tclist,val=val,qtylist1=qtylist1, AnnulaUnitsDemand=AnnulaUnitsDemand,FixedCost=FixedCost, AnnHoldingcost=AnnHoldingcost,UnitCost=UnitCost,LeadTime=LeadTime, SafetyStock=SafetyStock) ########################EEEEppppppppppQQQQQQ############ ########################EEEEppppppppppQQQQQQ############ @app.route('/eproduction', methods=['GET','POST']) def eproduction(): AnnulaUnitsDemand=100 Prodrate=125 FixedCost=500 AnnHoldingcost=0.1 UnitCost=25000 LeadTime=10 SafetyStock=100 if request.method == 'POST': AnnulaUnitsDemand= request.form['AnnulaUnitsDemand'] Prodrate=request.form['Prodrate'] FixedCost=request.form['FixedCost'] AnnHoldingcost=request.form['AnnHoldingcost'] UnitCost=request.form['UnitCost'] LeadTime=request.form['LeadTime'] SafetyStock=request.form['SafetyStock'] AnnulaUnitsDemand=int(AnnulaUnitsDemand) Prodrate=int(Prodrate) FixedCost=int(FixedCost) AnnHoldingcost=float(AnnHoldingcost) UnitCost=int(UnitCost) LeadTime=int(LeadTime) SafetyStock=int(SafetyStock) if(Prodrate<=AnnulaUnitsDemand): return render_template('eproduction.html',warning='Production date should not be least than Annual Demand', AnnulaUnitsDemand=AnnulaUnitsDemand,FixedCost=FixedCost, AnnHoldingcost=AnnHoldingcost,UnitCost=UnitCost,Prodrate=Prodrate, LeadTime=LeadTime,SafetyStock=SafetyStock ) pgap=round((1-(AnnulaUnitsDemand/Prodrate)),2) HoldingCost=float(AnnHoldingcost*UnitCost) EOQ=round((math.sqrt((2*AnnulaUnitsDemand*FixedCost)/(HoldingCost*pgap))),2) REOQ=round((math.sqrt((2*AnnulaUnitsDemand*FixedCost)/(HoldingCost*pgap))),0) totOrderCost=round((FixedCost*AnnulaUnitsDemand/EOQ),2) totHoldCost=round(((HoldingCost*EOQ*pgap)/2),2) TotalCost=round((totOrderCost+totHoldCost),2) NumOrders=round((AnnulaUnitsDemand/EOQ),2) OrderTime=round((365/NumOrders),2) ReorderPoint=round((((AnnulaUnitsDemand/365)*LeadTime)+SafetyStock),0) count=EOQ*.75 qtylist1=[] hclist=[] sclist=[] mtlist=[] tclist=[] while (count < EOQ): qtylist1.append(int(count)) hclist.append(round((count/2*HoldingCost*pgap),2)) sclist.append(round((AnnulaUnitsDemand/count*FixedCost),2)) mtlist.append(round((AnnulaUnitsDemand*UnitCost),2)) tclist.append(round(((count/2*HoldingCost*pgap+AnnulaUnitsDemand/count*FixedCost)),2)) count +=2 qtylist1.append(EOQ) hclist.append(totHoldCost) sclist.append(totOrderCost) tclist.append(totOrderCost+totHoldCost) while (count < (EOQ*1.7)): qtylist1.append(int(count)) hclist.append(round((count/2*HoldingCost*pgap),2)) sclist.append(round((AnnulaUnitsDemand/count*FixedCost),2)) mtlist.append(round((AnnulaUnitsDemand*UnitCost),2)) tclist.append(round(((count/2*HoldingCost*pgap+AnnulaUnitsDemand/count*FixedCost)),2)) count +=2 val=0 for i in range(len(tclist)): if(EOQ==qtylist1[i]): val=i return render_template('eproduction.html',NumOrders=NumOrders,OrderTime=OrderTime, ReorderPoint=ReorderPoint,HoldCost=totHoldCost,TotalCost=TotalCost, EOQ=EOQ,REOQ=REOQ, sclist=sclist,hclist=hclist,tclist=tclist,val=val,qtylist1=qtylist1, AnnulaUnitsDemand=AnnulaUnitsDemand,FixedCost=FixedCost, AnnHoldingcost=AnnHoldingcost,UnitCost=UnitCost,Prodrate=Prodrate, LeadTime=LeadTime,SafetyStock=SafetyStock ) ######################EEEEppppppppppQQQQQQ############ ######################EEEEppppppppppQQQQQQ############ @app.route('/eoq_backorders', methods=['GET','POST']) def eoq_backorders(): AnnulaUnitsDemand=12000 shortcost=1.1 FixedCost=8000 AnnHoldingcost=0.3 UnitCost=1 LeadTime=10 SafetyStock=100 if request.method == 'POST': AnnulaUnitsDemand= request.form['AnnulaUnitsDemand'] shortcost=request.form['shortcost'] FixedCost=request.form['FixedCost'] AnnHoldingcost=request.form['AnnHoldingcost'] UnitCost=request.form['UnitCost'] LeadTime=request.form['LeadTime'] SafetyStock=request.form['SafetyStock'] AnnulaUnitsDemand=int(AnnulaUnitsDemand) shortcost=int(shortcost) FixedCost=int(FixedCost) AnnHoldingcost=float(AnnHoldingcost) UnitCost=int(UnitCost) LeadTime=int(LeadTime) SafetyStock=int(SafetyStock) HoldingCost=float(AnnHoldingcost*UnitCost) sgap=(shortcost+HoldingCost)/shortcost EOQ=round((math.sqrt((2*AnnulaUnitsDemand*FixedCost)/HoldingCost))*(math.sqrt(sgap)),2) REOQ=round(math.sqrt((2*AnnulaUnitsDemand*FixedCost)/(HoldingCost)*sgap),0) totbackorder=EOQ*(HoldingCost/(shortcost+HoldingCost)) totOrderCost=round(((FixedCost*AnnulaUnitsDemand)/EOQ),2) totHoldCost=round(((HoldingCost*((EOQ-totbackorder)**2))/(2*EOQ)),2) totshortcost=round((shortcost*(totbackorder**2)/(2*EOQ)),2) TotalCost=round((totOrderCost+totHoldCost+totshortcost),2) NumOrders=round((AnnulaUnitsDemand/EOQ),2) OrderTime=round((365/NumOrders),2) ReorderPoint=round((((AnnulaUnitsDemand/365)*LeadTime)+SafetyStock),0) count= EOQ*.75 qtylist1=[] hclist=[] sclist=[] mtlist=[] shlist=[] tclist=[] while (count < EOQ): qtylist1.append(int((count))) hclist.append(round(((HoldingCost*((count-totbackorder)**2))/(2*count)),2)) sclist.append(round((AnnulaUnitsDemand/count*FixedCost),2)) mtlist.append(round((AnnulaUnitsDemand*UnitCost),2)) shlist.append(round((shortcost*((totbackorder)**2)/(2*count)),2)) tclist.append(round(((((HoldingCost*((count-totbackorder)**2))/(2*count))+AnnulaUnitsDemand/count*FixedCost)+shortcost*((totbackorder)**2)/(2*count)),2)) count +=2 qtylist1.append(EOQ) hclist.append(totHoldCost) sclist.append(totOrderCost) shlist.append(totshortcost) tclist.append(totOrderCost+totshortcost+totHoldCost) while (count < (EOQ*1.7)): qtylist1.append(int((count))) hclist.append(round(((HoldingCost*((count-totbackorder)**2))/(2*count)),2)) sclist.append(round((AnnulaUnitsDemand/count*FixedCost),2)) mtlist.append(round((AnnulaUnitsDemand*UnitCost),2)) shlist.append(round((shortcost*((totbackorder)**2)/(2*count)),2)) tclist.append(round(((((HoldingCost*((count-totbackorder)**2))/(2*count))+AnnulaUnitsDemand/count*FixedCost)+shortcost*((totbackorder)**2)/(2*count)),2)) count +=2 val=0 for i in range(len(tclist)): if(EOQ==qtylist1[i]): val=i return render_template('eoq_backorders.html',NumOrders=NumOrders,OrderTime=OrderTime, ReorderPoint=ReorderPoint,HoldCost=totHoldCost,TotalCost=TotalCost, EOQ=EOQ,REOQ=REOQ, shlist=shlist,sclist=sclist,hclist=hclist,tclist=tclist,val=val,qtylist1=qtylist1, AnnulaUnitsDemand=AnnulaUnitsDemand,FixedCost=FixedCost, AnnHoldingcost=AnnHoldingcost,UnitCost=UnitCost,shortcost=shortcost, LeadTime=LeadTime,SafetyStock=SafetyStock) #################pbreak###################### @app.route("/pbreak_insert", methods=['GET','POST']) def pbreak_insert(): if request.method == 'POST': quantity = request.form.getlist("quantity[]") price = request.form.getlist("price[]") conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_classification',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) curr = conn.cursor() curr.execute("CREATE TABLE IF NOT EXISTS `pbreaktable` (quantity int(8),price int(8))") curr.execute("DELETE FROM `pbreaktable`") conn.commit() say=1 for i in range(len(quantity)): quantity_clean = quantity[i] price_clean = price[i] if quantity_clean and price_clean: curr.execute("INSERT INTO `pbreaktable`(`quantity`,`price`) VALUES('"+quantity_clean+"','"+price_clean+"')") conn.commit() else: say=0 if say==0: message="Some values were not inserted!" else: message="All values were inserted!" return(message) @app.route('/view', methods=['GET','POST']) def view(): if request.method == 'POST': conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_classification',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) curr = conn.cursor() curr.execute("SELECT * FROM `pbreaktable`") res = curr.fetchall() ress=pd.DataFrame(res) return render_template('pbrk.html',username=username,ress =ress.to_html()) @app.route('/pbreakcalculate', methods=['GET','POST']) def pbreakcalculate(): AnnulaUnitsDemand=10 FixedCost=1 AnnHoldingcost=0.1 UnitCost=445 LeadTime=10 SafetyStock=100 if request.method == 'POST': if request.form['AnnulaUnitsDemand']: AnnulaUnitsDemand= request.form['AnnulaUnitsDemand'] AnnulaUnitsDemand=float(AnnulaUnitsDemand) if request.form['FixedCost']: FixedCost=request.form['FixedCost'] FixedCost=float(FixedCost) if request.form['AnnHoldingcost']: AnnHoldingcost=request.form['AnnHoldingcost'] AnnHoldingcost=float(AnnHoldingcost) conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_classification',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) curr = conn.cursor() curr.execute("SELECT * FROM `pbreaktable`") res = curr.fetchall() ress=pd.DataFrame(res) conn.close() datatable=pd.DataFrame(columns=['Quantity','Price','EOQ','TotalCost']) mainlist=[] Qu=ress['quantity'] Qm=0 for index, i in ress.iterrows(): tcl=[] quantity = i['quantity'] price = i['price'] HoldingCost1=AnnHoldingcost*price eoq1=round((math.sqrt((2*AnnulaUnitsDemand*FixedCost)/(HoldingCost1))),2) REOQ=round(eoq1,0) totOrderCost1=round((FixedCost*AnnulaUnitsDemand/eoq1),2) totHoldCost1=round(((HoldingCost1*eoq1)/2),2) totalcost1=float(round((totOrderCost1+totHoldCost1),2)) lst=[quantity,price,eoq1,totalcost1] a=pd.DataFrame(lst).T a.columns=['Quantity','Price','EOQ','TotalCost'] datatable=pd.concat([datatable,a],ignore_index=True) name='TotalCost (Price='+str(a['Price'][0])+')' tcl.append(name) Qmin=1 Qmax=Qu[Qm] qtylist2=[] tclist1=[] while (Qmin < Qmax): qtylist2.append(Qmin) tclist1.append(round((Qmin/2*totHoldCost1+AnnulaUnitsDemand/Qmin*FixedCost),2)) Qmin +=2 Qmin=Qmax+1 qtylist2.append(eoq1) tclist1.append(totalcost1) tcl.append(tclist1) mainlist.append(tcl) Eu=datatable['EOQ'] Qu=datatable['Quantity'] Tu=datatable['TotalCost'] minlst=[] for i in range(len(Eu)): if i ==0: if Eu[i]<=Qu[i]: minlst.append(i) else: if Eu[i]<=Qu[i] and Eu[i]>Qu[i-1]: minlst.append(i) if len(minlst)==0: minnval='Solution not feasible' else: minval=Tu[minlst[0]] minnval=Eu[minlst[0]] for j in minlst: if Tu[j]<minval: minval=Tu[j] minnval=Eu[j] val1=0 for i in range(len(tclist1)): if (round(minnval))==qtylist2[i]: val1=i minival=round(minval) minnival=round(minnval) NumOrders=round((AnnulaUnitsDemand/minnval),2) OrderTime=round((365/NumOrders),2) ReorderPoint=round((((AnnulaUnitsDemand/365)*LeadTime)+SafetyStock),0) return render_template('pbreak.html', NumOrders=NumOrders,OrderTime=OrderTime,REOQ=REOQ,ReorderPoint=ReorderPoint, AnnulaUnitsDemand=AnnulaUnitsDemand,FixedCost=FixedCost, AnnHoldingcost=AnnHoldingcost,UnitCost=UnitCost,LeadTime=LeadTime, SafetyStock=SafetyStock,minnval=minnval,minval=minval,minival=minival,minnival=minnival, datatable=datatable.to_html(index=False),mainlist=mainlist, val1=val1,tclist1=tclist1,qtylist2=qtylist2) #################Demand problalstic###################### @app.route('/demand', methods=['GET', 'POST']) def demand(): cost=10 price=12 salvage=2 if request.method == 'POST': cost=request.form['cost'] price=request.form['price'] salvage=request.form['salvage'] cost=int(cost) price=int(price) salvage=int(salvage) data=pd.read_csv(localpath+"\\Demand.csv") data = pd.DataFrame(data) cdf=[] sum=0 for row in data['Prob']: sum=sum+row cdf.append(sum) cumm_freq=(pd.DataFrame(cdf)).values##y-axis overcost=cost-salvage undercost=price-cost CSl=undercost/(undercost+overcost) k=[row>CSl for row in cumm_freq] count=1 for row in k: if row==False: count=count+1 demand=(data['Demand']).values w=data['Demand'].loc[count]##line across x-axis val=0 for i in range(len(cumm_freq)): if(w==demand[i]): val=i return render_template('demand.html',cost=cost,price=price,salvage=salvage, cumm_freq=cumm_freq,demand=demand,val=val) @app.route('/normal', methods=['GET', 'POST']) def normal(): cost=10 price=12 salvage=9 sd=2 if request.method == 'POST': cost=request.form['cost'] price=request.form['price'] salvage=request.form['salvage'] cost=int(cost) price=int(price) salvage=int(salvage) data=pd.read_csv(localpath+"\\Demand.csv") data = pd.DataFrame(data) overcost1=cost-salvage undercost1=price-cost CSl=undercost1/(undercost1+overcost1) zz=st.norm.ppf(CSl)##x-line z=float(format(zz, '.2f')) # Expecteddemand=round(mea+(z*sd)) mean = 0; sd = 1; variance = np.square(sd) x = np.arange(-4,4,.01)##x-axis f =(np.exp(-np.square(x-mean)/2*variance)/(np.sqrt(2*np.pi*variance)))##y-axis val=0 for i in range(len(f)): if(z==round((x[i]),2)): val=i return render_template('normal.html',x=x,f=f,val=val,cost=cost,price=price,salvage=salvage) @app.route('/utype', methods=['GET','POST']) def utype(): cost=10 price=12 salvage=2 mini=1 maxi=10 if request.method == 'POST': cost=request.form['cost'] price=request.form['price'] salvage=request.form['salvage'] mini=request.form['mini'] maxi=request.form['maxi'] cost=int(cost) price=int(price) salvage=int(salvage) mini=int(mini) maxi=int(maxi) data=pd.read_csv(localpath+"\\Demand.csv") data = pd.DataFrame(data) overcost=cost-salvage undercost=price-cost CSl=undercost/(undercost+overcost) expdemand1=round(mini+((maxi-mini)*CSl)) # a=[mini,0] # b=[mini,100] # c=[maxi,0] # d=[maxi,100] # width = c[0] - b[0] # height = d[1] - a[1] lims = np.arange(0,maxi,1) val=0 for i in range(len(lims)): if(expdemand1==lims[i]): val=i return render_template('utype.html',x=lims,f=lims,val=val,cost=cost,price=price,salvage=salvage,mini=mini,maxi=maxi) @app.route('/outputx', methods=['GET', 'POST']) def outputx(): conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_classification',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = conn.cursor() cur.execute("SELECT * FROM `abc`") all_data = cur.fetchall() all_data = pd.DataFrame(all_data) A_ccat=.8 B_ccat=.95 A_ucat=.1 B_ucat=.25 tot_cost=all_data['Cost'].sum() tot_usage=all_data['Annual Usage'].sum() all_data['perc_cost']=all_data['Cost']/tot_cost all_data['perc_usage']=all_data['Annual Usage']/tot_usage all_data.sort_values(by=['perc_cost'], inplace=True, ascending=False) sort_data=all_data.reset_index() sort_data['cum_cperc']=np.nan sort_data['cum_uperc']=np.nan sort_data['Class']='' for i in range(len(sort_data)): if(i==0): sort_data.set_value(i, 'cum_cperc', sort_data['perc_cost'][i]) sort_data.set_value(i, 'cum_uperc', sort_data['perc_usage'][i]) # cperc_data.append(all_data['perc_cost'][i]) sort_data.set_value(i,'Class','A') else: sort_data.set_value(i, 'cum_cperc', sort_data['perc_cost'][i]+sort_data['cum_cperc'][i-1]) sort_data.set_value(i, 'cum_uperc', sort_data['perc_usage'][i]+sort_data['cum_uperc'][i-1]) if(sort_data['cum_cperc'][i]<=A_ccat and sort_data['cum_uperc'][i]<=A_ucat): sort_data.set_value(i,'Class','A') elif(sort_data['cum_cperc'][i]<=B_ccat and sort_data['cum_uperc'][i]<=B_ucat): sort_data.set_value(i,'Class','B') else: sort_data.set_value(i,'Class','C') x7=sort_data[['cum_cperc']] x1=x7*100 x3=np.round(x1) x2=np.array([]) x5 = np.append(x2,x3) y7= sort_data[['cum_uperc']] y1=y7*100 y3=np.round(y1) y2=np.array([]) y5 = np.append(y2,y3) ###############% of Total cost// a= sort_data[(sort_data['Class']=='A')][['perc_cost']] j=a.sum() k=j*100 pd.DataFrame(k) kf=k[0] b= sort_data[(sort_data['Class']=='B')][['perc_cost']] n=b.sum() m=n*100 pd.DataFrame(m) mf=m[0] c= sort_data[(sort_data['Class']=='C')][['perc_cost']] o=c.sum() p=o*100 pd.DataFrame(p) pf=p[0] tes=k,m,p t2 = np.array([]) te2 = np.append(t2,tes) ###################Items // Annual Usage # z=sort_data[['Product number']] # z1=z.sum() f= sort_data[(sort_data['Class']=='A')][['Product number']] v=f.sum() pd.DataFrame(v) vif=v[0] f1= sort_data[(sort_data['Class']=='B')][['Product number']] u=f1.sum() pd.DataFrame(u) uif=u[0] f2= sort_data[(sort_data['Class']=='C')][['Product number']] vf=f2.sum() pd.DataFrame(vf) kif=vf[0] #################% of Total units // Annual Usage t= sort_data[(sort_data['Class']=='A')][['perc_usage']] i=t.sum() p1=i*100 pd.DataFrame(p1) nf=p1[0] l= sort_data[(sort_data['Class']=='B')][['perc_usage']] t=l.sum() q1=t*100 pd.DataFrame(q1) qf=q1[0] u= sort_data[(sort_data['Class']=='C')][['perc_usage']] w=u.sum() s1=w*100 pd.DataFrame(s1) sf=s1[0] test=p1,q1,s1 tt2 = np.array([]) tte2 = np.append(tt2,test) #############values//Cost*Annual Usage sort_data['Value'] = sort_data['Cost'] * sort_data['Annual Usage'] fz= sort_data[(sort_data['Class']=='A')][['Value']] vz=fz.sum() pd.DataFrame(vz) vzz=vz[0] fz1= sort_data[(sort_data['Class']=='B')][['Value']] uz=fz1.sum() pd.DataFrame(uz) uzf=uz[0] fz2= sort_data[(sort_data['Class']=='C')][['Value']] vzf=fz2.sum() pd.DataFrame(vzf) kzf=vzf[0] h=[{'Scenario':'A','Values':vzz,'product number':vif,'perc_usage':nf,'perc_cost ':kf}, {'Scenario':'B','Values':uzf,'product number':uif,'perc_usage':qf,'perc_cost ':mf}, {'Scenario':'C','Values':kzf,'product number':kif,'perc_usage':sf,'perc_cost ':pf}] df = pd.DataFrame(h) lo=sort_data[['Product Description','Product number','Cost','Annual Usage','Class']] cur = conn.cursor() cur.execute("SELECT * FROM `abc1`") all_data4 = cur.fetchall() all_data4 = pd.DataFrame(all_data4) lolz=all_data4[['Product number','Product Description','Cost','Annual Usage','Average Stay','Average Consumption','Criticality']] ######################FFFFFFFFSSSSSSSSSNNNNNNNNNNNN######################### ######################FFFFFFFFSSSSSSSSSNNNNNNNNNNNN######################### ######################FFFFFFFFSSSSSSSSSNNNNNNNNNNNN######################### curr = conn.cursor() curr.execute("SELECT * FROM `fsn`") all_data1 = curr.fetchall() all_data1 = pd.DataFrame(all_data1) F_cat=.2 S_cat=.5 tot_stay=all_data1['Average Stay'].sum() tot_consupt=all_data1['Average Consumption'].sum() all_data1['perc_stay']=all_data1['Average Stay']/tot_stay all_data1['perc_cons']=all_data1['Average Consumption']/tot_consupt all_data1.sort_values(by=['perc_stay'], inplace=True, ascending=True) sort_data1=all_data1.reset_index() sort_data1['cum_stay']=np.nan sort_data1['cum_cons']=np.nan sort_data1['Class']='' for i in range(len(sort_data1)): if(i==0): sort_data1.set_value(i, 'cum_stay', sort_data1['perc_stay'][i]) sort_data1.set_value(i, 'cum_cons', sort_data1['perc_cons'][i]) sort_data1.set_value(i,'Class','F') else: sort_data1.set_value(i, 'cum_stay', sort_data1['perc_stay'][i]+sort_data1['cum_stay'][i-1]) sort_data1.set_value(i, 'cum_cons', sort_data1['perc_cons'][i]+sort_data1['cum_cons'][i-1]) if(sort_data1['cum_stay'][i]<=F_cat) : sort_data1.set_value(i,'Class','F') elif(sort_data1['cum_stay'][i]<=S_cat): sort_data1.set_value(i,'Class','S') else: sort_data1.set_value(i,'Class','N') x71=sort_data1[['cum_stay']] x11=x71*100 x31=np.round(x11) x21=np.array([]) x51 = np.append(x21,x31) y71= sort_data1[['cum_cons']] y11=y71*100 y31=np.round(y11) y21=np.array([]) y51 = np.append(y21,y31) ###############% of Total cost// a1= sort_data1[(sort_data1['Class']=='F')][['perc_stay']] j1=a1.sum() k1=j1*100 pd.DataFrame(k1) kf1=k1[0] b1= sort_data1[(sort_data1['Class']=='S')][['perc_stay']] n1=b1.sum() m1=n1*100 pd.DataFrame(m1) mf1=m1[0] c1= sort_data1[(sort_data1['Class']=='N')][['perc_stay']] o1=c1.sum() p1=o1*100 pd.DataFrame(p1) pf1=p1[0] tes1=k1,m1,p1 t21 = np.array([]) te21 = np.append(t21,tes1) ###################Items // Annual Usage # z=sort_data[['Product number']] # z1=z.sum() f1= sort_data1[(sort_data1['Class']=='F')][['Product number']] v1=f1.sum() pd.DataFrame(v1) vif1=v1[0] f11= sort_data1[(sort_data1['Class']=='S')][['Product number']] u1=f11.sum() pd.DataFrame(u1) uif1=u1[0] f21= sort_data1[(sort_data1['Class']=='N')][['Product number']] vf1=f21.sum() pd.DataFrame(vf1) kif1=vf1[0] #################% of Total units // Annual Usage t1= sort_data1[(sort_data1['Class']=='F')][['perc_cons']] i1=t1.sum() p11=i1*100 pd.DataFrame(p11) nf1=p11[0] l1= sort_data1[(sort_data1['Class']=='S')][['perc_cons']] t1=l1.sum() q11=t1*100 pd.DataFrame(q11) qf1=q11[0] u1= sort_data1[(sort_data1['Class']=='N')][['perc_cons']] w1=u1.sum() s11=w1*100 pd.DataFrame(s11) sf1=s11[0] test1=p11,q11,s11 tt21 = np.array([]) tte21 = np.append(tt21,test1) #############values//Cost*Annual Usage sort_data1['Value'] = sort_data1['Average Stay'] * sort_data1['Average Consumption'] fz1= sort_data1[(sort_data1['Class']=='F')][['Value']] vz1=fz1.sum() pd.DataFrame(vz1) vzz1=vz1[0] fz11= sort_data1[(sort_data1['Class']=='S')][['Value']] uz1=fz11.sum() pd.DataFrame(uz1) uzf1=uz1[0] fz21= sort_data1[(sort_data1['Class']=='N')][['Value']] vzf1=fz21.sum() pd.DataFrame(vzf1) kzf1=vzf1[0] h1=[{'Scenario':'F','Values':vzz1,'product number':vif1,'perc_cons':nf1,'perc_stay ':kf1}, {'Scenario':'S','Values':uzf1,'product number':uif1,'perc_cons':qf1,'perc_stay ':mf1}, {'Scenario':'N','Values':kzf1,'product number':kif1,'perc_cons':sf1,'perc_stay ':pf1}] df1 = pd.DataFrame(h1) lo1=sort_data1[['Product Description','Product number','perc_stay','perc_cons','Class']] ##############VVVVVVVVVEEEEEEEEEEEEDDDDDDDDD######### ##############VVVVVVVVVEEEEEEEEEEEEDDDDDDDDD######### cur1 = conn.cursor() cur1.execute("SELECT * FROM `ved`") all_data2 = cur1.fetchall() all_data2 = pd.DataFrame(all_data2) all_data2['values']=all_data2['Class'] + all_data2["Criticality"] AV= all_data2[(all_data2['values']=='AV')] AV=AV.index.max() AE= all_data2[(all_data2['values']=='AE')] AE= AE.index.max() AE=np.nan_to_num(AE) AD= all_data2[(all_data2['values']=='AD')] AD=AD.index.max() AD=np.nan_to_num(AD) BV=all_data2[(all_data2['values']=='BV')] BV=BV.index.max() BE=all_data2[(all_data2['values']=='BE')] BE=BE.index.max() BD=all_data2[(all_data2['values']=='BD')] BD=BD.index.max() BD=np.nan_to_num(BD) CV=all_data2[(all_data2['values']=='CV')] CV=CV.index.max() CV=np.nan_to_num(CV) CE=all_data2[(all_data2['values']=='CE')] CE=CE.index.max() CD=all_data2[(all_data2['values']=='CD')] CD=CD.index.max() ############################################### xx71=all_data2[['cum_cperc']] xx71=xx71.astype(float) xx11=xx71*100 xx31=xx11.round() xx21=np.array([]) xx51 = np.append(xx21,xx31) yy71= all_data2[['cum_uperc']] yy71=yy71.astype(float) yy11=yy71*100 yy31=yy11.round(0) yy21=np.array([]) yy51 = np.append(yy21,yy31) ###############% of Total cost// aa= all_data2[(all_data2['Criticality']=='V')][['perc_cost']] jj=aa.sum() kk=jj*100 #k=pd.DataFrame(k) kkf=kk[0] bb= all_data2[(all_data2['Criticality']=='E')][['perc_cost']] nn=bb.sum() mm=nn*100 # m=pd.DataFrame(m) mmf=mm[0] cc= all_data2[(all_data2['Criticality']=='D')][['perc_cost']] oo=cc.sum() pp=oo*100 # p=pd.DataFrame(p) ppf=pp[0] ttes=[kk,mm,pp] ttes=pd.concat(ttes) th2 = np.array([]) the2 = np.append(th2,ttes) ###################Items // Annual Usage # z=sort_data[['Product number']] # z1=z.sum() ff= all_data2[(all_data2['Criticality']=='V')][['Product number']] vv=ff.sum() pd.DataFrame(vv) vvif=vv[0] ff1= all_data2[(all_data2['Criticality']=='E')][['Product number']] uu=ff1.sum() pd.DataFrame(uu) uuif=uu[0] ff2= all_data2[(all_data2['Criticality']=='D')][['Product number']] vvf=ff2.sum() pd.DataFrame(vvf) kkif=vvf[0] #################% of Total units // Annual Usage tt= all_data2[(all_data2['Criticality']=='V')][['perc_usage']] ii=tt.sum() pp1=ii*100 pd.DataFrame(pp1) nnf=pp1[0] ll= all_data2[(all_data2['Criticality']=='E')][['perc_usage']] tq=ll.sum() qq1=tq*100 pd.DataFrame(qq1) qqf=qq1[0] uw= all_data2[(all_data2['Criticality']=='D')][['perc_usage']] wu=uw.sum() sc1=wu*100 pd.DataFrame(sc1) ssf=sc1[0] testt=[pp1,qq1,sc1] testt=pd.concat(testt) ttt2 = np.array([]) ttte2 = np.append(ttt2,testt) #############values//Cost*Annual Usage all_data2['Value'] = all_data2['Cost'] * all_data2['Annual Usage'] fzz= all_data2[(all_data2['Criticality']=='V')][['Value']] vzz=fzz.sum() pd.DataFrame(vzz) vzzz=vzz[0] fzz1= all_data2[(all_data2['Criticality']=='E')][['Value']] uzz=fzz1.sum() pd.DataFrame(uzz) uzzf=uzz[0] fzz2= all_data2[(all_data2['Criticality']=='D')][['Value']] vzzf=fzz2.sum() pd.DataFrame(vzzf) kzzf=vzzf[0] hh=[{'Scenario':'V','Values':vzzz,'product number':vvif,'perc_usage':nnf,'perc_cost ':kkf}, {'Scenario':'E','Values':uzzf,'product number':uuif,'perc_usage':qqf,'perc_cost ':mmf}, {'Scenario':'D','Values':kzzf,'product number':kkif,'perc_usage':ssf,'perc_cost ':ppf}] dff = pd.DataFrame(hh) return render_template('inventoryclassification.html', x=y5,y=x5, barcost=te2 ,barusage=tte21, s=df.to_html(index=False), sam=lo.to_html(index=False), tale=lolz.to_html(index=False), x1=x51,y1=y51, bar1=te21 ,bar2=tte2, s1=df1.to_html(index=False), sam1=lo1.to_html(index=False), xx1=AV,xx2=AE,xx3=AD, yy1=BV,yy2=BE,yy3=BD, zz1=CV,zz2=CE,zz3=CD, bb1=the2 ,bb2=ttte2, zone1=yy51,zone2=xx51, sammy=dff.to_html(index=False)) @app.route('/vendormanagement') def vendormanagement(): return render_template('vendormanagement.html') @app.route('/vendormanagementimport',methods=['POST','GET']) def vendormanagementimport(): global vendordata global vendordataview db = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) vendordata = pd.read_sql("SELECT * from vendor_management", con=db) db.close() vendordata['POdate']=pd.to_datetime(vendordata['POdate']) vendordata['POdate_year']=vendordata['POdate'].dt.year vendordataview=vendordata.head(50) return render_template('vendormanagementview.html',vendordataview=vendordataview.to_html(index=False)) @app.route('/vendormanagementview',methods=['POST','GET']) def vendormanagementview(): return render_template('vendormanagementview.html',vendordataview=vendordataview.to_html(index=False)) @app.route('/vndrmngmnt1',methods=['POST','GET']) def vndrmngmnt1(): VENDORID=sorted(vendordata['Vendorid'].unique()) if request.method=='POST': vendorin=request.form['name1'] def Vendor(VendorId): datasetcomb34=vendordata[['Vendorid','Vendor_name','Vendor_address','Vendormin_order']][vendordata['Vendorid']== VendorId] return datasetcomb34.iloc[0,:] snglvw=Vendor(vendorin) singleview=pd.DataFrame(snglvw).T return render_template('vendormanagement1.html',say=1,vendorin=vendorin,VENDORID=VENDORID,singleview=singleview.to_html(index=False)) return render_template('vendormanagement1.html',VENDORID=VENDORID) @app.route('/vndrmngmnt2',methods=['POST','GET']) def vndrmngmnt2(): pouyear=sorted(vendordata['POdate_year'].unique()) if request.method == 'POST': SelectedYear = int(request.form['name1']) SelectedTop = int(request.form['name2']) def top10vendorspend(year,top_value): x=[] y=[] gg1=vendordata[(vendordata['POdate_year']==year)].groupby(['POdate_year','Vendorid'])['PO_Value'].sum() x=gg1.nlargest(top_value).index.get_level_values(1) y=gg1.nlargest(top_value).values df=pd.DataFrame({'VendorID':x,'Total':y}) return df vndrvspnd=top10vendorspend(SelectedYear,SelectedTop) def top10vendoravgspend(top): gg3=vendordata.groupby(['POdate_year','Vendorid'])['PO_Value'].mean() xxx=gg3.nlargest(top).index.get_level_values(1) yyy=round(gg3.nlargest(top),2).values df=pd.DataFrame({'VendorID':xxx,'Mean':yyy}) return df vndrvavgspnd=top10vendoravgspend(SelectedTop) return render_template('vendormanagement2.html',say=1,SelectedYear=SelectedYear,pouyear=pouyear,vndrval=vndrvspnd.values,vndrvavg=vndrvavgspnd.values) return render_template('vendormanagement2.html',pouyear=pouyear) @app.route('/vndrmngmnt3',methods=['POST','GET']) def vndrmngmnt3(): pouyear=sorted(vendordata['POdate_year'].unique()) if request.method == 'POST': SelectedYear = int(request.form['name1']) SelectedTop = int(request.form['name2']) def top10POvendorvalue(year,top_value): x=[] y=[] gg1=vendordata[(vendordata['POdate_year']==year)].groupby(['POdate_year','Vendorid'])['Inventoryreplenished'].sum() x=gg1.nlargest(top_value).index.get_level_values(1) y=gg1.nlargest(top_value).values df=pd.DataFrame({'VendorId':x,'Total':y}) return df vndrval=top10POvendorvalue(SelectedYear,SelectedTop) def top10POvendoravg(top): gg3=vendordata.groupby(['POdate_year','Vendorid'])['Inventoryreplenished'].mean() xxx=gg3.nlargest(top).index.get_level_values(1) yyy=round(gg3.nlargest(top),2).values df=pd.DataFrame({'VendorID':xxx,'Mean':yyy}) return df vndrvavg=top10POvendoravg(SelectedTop) return render_template('vendormanagement3.html',say=1,SelectedYear=SelectedYear,pouyear=pouyear,vndrval=vndrval.values,vndrvavg=vndrvavg.values) return render_template('vendormanagement3.html',pouyear=pouyear) @app.route('/vndrmngmnt4',methods=['POST','GET']) def vndrmngmnt4(): pouyear=sorted(vendordata['POdate_year'].unique()) if request.method == 'POST': SelectedYear = int(request.form['name1']) SelectedTop = int(request.form['name2']) def top10vendorPOcnt(year,top): x=[] y=[] gg1=vendordata[(vendordata['POdate_year']==year)].groupby(['POdate_year','Vendorid'])['POdate_year'].count() x=gg1.nlargest(top).index.get_level_values(1) y=gg1.nlargest(top).values df=pd.DataFrame({'MatID':x,'Total_count':y}) return df vndrvavgpoacnt=top10vendorPOcnt(SelectedYear,SelectedTop) def top10vendorPOavg(top): g=vendordata.groupby('Vendorid')['POdate_year'].size() xx=g.nlargest(top).index.get_level_values(0) yy=g.nlargest(top).values dfexp7=pd.DataFrame({'VendorID':xx,'Average_count':yy}) return dfexp7 vndrvavgpoavg=top10vendorPOavg(SelectedTop) return render_template('vendormanagement4.html',say=1,SelectedYear=SelectedYear,pouyear=pouyear,vndrval=vndrvavgpoacnt.values,vndrvavg=vndrvavgpoavg.values) return render_template('vendormanagement4.html',pouyear=pouyear) @app.route('/vendorperformanceanalysis') def vendorperformanceanalysis(): return render_template('vendorperformanceanalysis.html',say=0) @app.route('/vendorperformanceanalysisdata',methods=['POST','GET']) def vendorperformanceanalysisdata(): if request.method=='POST': global wdata global wtdata file1 = request.files['file1'].read() file2 = request.files['file2'].read() if len(file1)==0 or len(file2)==0: return render_template('vendorperformanceanalysis.html',say=0,warning='Data Invalid') data1=pd.read_csv(io.StringIO(file1.decode('utf-8'))) wdata=pd.DataFrame(data1) data2=pd.read_csv(io.StringIO(file2.decode('utf-8'))) wtdata=pd.DataFrame(data2) return render_template('vendorperformanceanalysis.html',say=1,data1=data1.to_html(index=False),data2=data2.to_html(index=False)) @app.route('/vendorperformanceanalys',methods=['POST','GET']) def vendorperformanceanalys(): wt=[] for ds in wtdata['Weight']: wt.append(round((float(ds)),2)) treatment=[] for ds in wtdata['Positive Attribute']: if ds=='Yes': treatment.append('+') else: treatment.append('-') def normalize(df,alpha,treatment): y=df.iloc[:,1:len(list(df))] for i, j in zip(list(y),treatment): if j== '-': y[i]=y[i].min()/y[i] elif j== '+': y[i]=y[i]/y[i].max() for i, t in zip(list(y),wt): y[i]=y[i]*t df['Score'] = y.sum(axis=1) df=df.sort_values('Score', ascending=False) df['Rank']=df['Score'].rank(ascending=False) df['Rank']=df['Rank'].astype(int) return df[['Rank','Vendor']] dff=normalize(wdata,wt,treatment) return render_template('vendorperformanceanalysisview.html',say=1,data=dff.to_html(index=False)) @app.route('/purchaseorderallocation') def purchaseorderallocation(): return render_template('purchaseorderallocation.html') @app.route('/purchaseorderallocationimport',methods=['POST','GET']) def purchaseorderallocationimport(): global ddemand1 global dsupply1 global maxy1 global miny1 global Vcost1 global Vrisk1 db = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) ddemand1 = pd.read_sql("SELECT * from opt_demand", con=db) dsupply1 = pd.read_sql("SELECT * from opt_supply", con=db) maxy1 = pd.read_sql("SELECT * from opt_maxcapacity", con=db) miny1 = pd.read_sql("SELECT * from opt_mincapacity", con=db) Vcost1 = pd.read_sql("SELECT * from opt_vcost", con=db) Vrisk1 = pd.read_sql("SELECT * from opt_vrisk", con=db) db.close() return render_template('purchaseorderallocationimport.html',ddemand=ddemand1.to_html(index=False),dsupply=dsupply1.to_html(index=False), maxy=maxy1.to_html(index=False),miny=miny1.to_html(index=False),Vcost=Vcost1.to_html(index=False),Vrisk=Vrisk1.to_html(index=False)) @app.route('/purchaseorderallocationanalyse',methods=['POST','GET']) def purchaseorderallocationanalyse(): ddemand=ddemand1.set_index("Product") dsupply=dsupply1.set_index("Vendor") maxy=maxy1.set_index("Vendors\Product List") miny=miny1.set_index("Vendors\Product List") Vcost =Vcost1.set_index("Vendors\Product List") Vrisk = Vrisk1.set_index("Vendors\Product List") demand=dict(zip(list(ddemand.index),ddemand.iloc[:,0].values)) supply=dict(zip(list(dsupply.index),dsupply.iloc[:,0].values)) max1=maxy.to_dict() min1=miny.to_dict() Vendors=list(dsupply.index) Products=list(ddemand.index) VcostNorm = Vcost.copy() VriskNorm = Vrisk.copy() if request.method=='POST': CostWeight=float(request.form['CostWeight']) RiskWeight=float(request.form['RiskWeight']) Total=[] for i in list(list(VcostNorm)): Tot = VcostNorm[i].sum() Total.append(Tot) for i, j in zip(list(VcostNorm),Total): VcostNorm[i]=VcostNorm[i]/j Total=[] for i in list(list(VriskNorm)): Tot = VriskNorm[i].sum() Total.append(Tot) for i, j in zip(list(VriskNorm),Total): VriskNorm[i]=VriskNorm[i]/j risk=VriskNorm.to_dict() cost=VcostNorm.to_dict() Total_cost=defaultdict(dict) Total_Risk=defaultdict(dict) Total_Cost=pd.DataFrame(CostWeight*pd.DataFrame(cost)) Total_Risk=pd.DataFrame(RiskWeight*pd.DataFrame(risk)) Decision_var=(Total_Cost+Total_Risk).to_dict() prob = pulp.LpProblem("Optimization", pulp.LpMinimize) routes = [(w,b) for w in Products for b in Vendors] x = LpVariable.dicts("route", (Products, Vendors), cat = 'LpInteger') prob += lpSum([x[w][b] * Decision_var[w][b] for (w,b) in routes]),"Objective function" for w in Products: prob += lpSum([x[w][b] for b in Vendors]) == demand[w] for b in Vendors: prob += lpSum([x[w][b] for w in Products]) <= supply[b] for w in Products: for b in Vendors: prob += x[w][b] <= max1[w][b] for w in Products: for b in Vendors: prob += x[w][b] >= min1[w][b] prob.writeLP("SO.lp") prob.solve() opt_status=pulp.LpStatus[prob.status] if opt_status=='Optimal': #print (pulp.value(prob.objective)) re=[] res=[] ress=[] i=0 for variable in prob.variables(): re.append(variable.varValue) res.append(variable.varValue) i=i+1 if (i==len(Total_Cost)): i=0 ress.append(re) re=[] Optimal_quantity1=pd.DataFrame(ress,columns=Vendors,index=Products).astype(int) opq13=[] for column in Optimal_quantity1.columns: opq11=[] opq12=[] opq11.append(column) for val in Optimal_quantity1[column]: opq12.append(val) opq11.append(opq12) opq13.append(opq11) Optimal_quantity2=Optimal_quantity1.T opq23=[] for column in Optimal_quantity2.columns: opq21=[] opq22=[] opq21.append(column) for val in Optimal_quantity2[column]: opq22.append(val) opq21.append(opq22) opq23.append(opq21) VCran=[] for column in Vcost.columns: for val in Vcost[column].values: VCran.append(val) VRran=[] for column in Vrisk.columns: for val in Vrisk[column].values: VRran.append(val) Costproduct=[i*j for (i,j) in zip(res,VCran)] sumCostproduct=sum(Costproduct) Riskproduct=[i*j for (i,j) in zip(res,VRran)] optrisk=sum(Riskproduct)/sum(res) return render_template('purchaseorderallocationoutput.html',username=username,say=1,optrisk=optrisk,sumCostproduct=sumCostproduct,Optimal_quantity1=opq13, Optimal_quantity2=opq23,grpi1=Optimal_quantity1.index,grpi2=Optimal_quantity2.index,warning2="The obtained solution was "+opt_status) return render_template('purchaseorderallocationoutput.html',warning1="The obtained solution was "+opt_status) return render_template('purchaseorderallocationoutput.html') @app.route('/purchaseordermanagement') def purchaseordermanagement(): return render_template('purchaseordermanagement.html') @app.route('/poimport',methods=['POST','GET']) def poimport(): global podata global podatahead db = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) podata = pd.read_sql("SELECT * from po_management", con=db) db.close() podata['POdate']=pd.to_datetime(podata['POdate']) podata['PO_year']=podata['POdate'].dt.year podata['Orderreceiveddate']=pd.to_datetime(podata['Orderreceiveddate']) podata['Orderreceivedyear']=podata['Orderreceiveddate'].dt.year podatahead=podata.head(50) return render_template('purchaseordermanagementview.html',podatahead=podatahead.to_html(index=False)) @app.route('/purchaseordermanagementview') def purchaseordermanagementview(): return render_template('purchaseordermanagementview.html',podatahead=podatahead.to_html(index=False)) @app.route('/pomtype1',methods=['POST','GET']) def pomtype1(): PONO=sorted(podata['POno'].unique()) if request.method=='POST': SelectedPOno=int(request.form['name1']) def POSingle(POno): podat=podata[['POno','POammendmentdate','POdate','POverificationdate','PO_Value']][podata['POno']== POno] return podat.iloc[0,:] snglvw=POSingle(SelectedPOno) svpodata=pd.DataFrame(snglvw).T return render_template('purchaseordermanagement1.html',say=1,sayy=1,PONO=PONO,svpodata=svpodata.to_html(index=False),SelectedPOno=SelectedPOno) return render_template('purchaseordermanagement1.html',say=1,PONO=PONO) @app.route('/pomtype2',methods=['POST','GET']) def pomtype2(): uyear=sorted(podata['PO_year'].unique()) if request.method=='POST': SelectedYear=int(request.form['name1']) podata.loc[(podata.PO_Value >= 0) & (podata.PO_Value < 10000), 'PO_Group'] = '0-10K' podata.loc[(podata.PO_Value >= 10000) & (podata.PO_Value < 50000), 'PO_Group'] = '10K-50K' podata.loc[(podata.PO_Value >= 50000) & (podata.PO_Value < 100000), 'PO_Group'] = '50K-100K' podata.loc[(podata.PO_Value >= 100000) & (podata.PO_Value < 500000), 'PO_Group'] = '100K-500K' podata.loc[(podata.PO_Value >= 500000) & (podata.PO_Value < 1000000), 'PO_Group'] = '500K-1M' podata.loc[podata.PO_Value >= 1000000, 'PO_Group'] = '>1M' podata.loc[podata.PO_Group == '0-10K', 'PO_GroupNo'] = 1 podata.loc[podata.PO_Group == '10K-50K', 'PO_GroupNo'] = 2 podata.loc[podata.PO_Group == '50K-100K', 'PO_GroupNo'] = 3 podata.loc[podata.PO_Group == '100K-500K', 'PO_GroupNo'] = 4 podata.loc[podata.PO_Group == '500K-1M', 'PO_GroupNo'] = 5 podata.loc[podata.PO_Group == '>1M', 'PO_GroupNo'] = 6 def top10POyrcount(year): x=[] y=[] gg1=podata[(podata['PO_year']==year)].groupby(['PO_year','PO_GroupNo','PO_Group'])['PO_year'].size() x=gg1.index.get_level_values(2) z=gg1.index.get_level_values(1) y=gg1.values df=pd.DataFrame({'z':z, 'PO Value':x,'Total Count':y}) df=df.sort_values('z') df=df.drop('z',axis=1) return df df=top10POyrcount(SelectedYear) return render_template('purchaseordermanagement2.html',say=1,sayy=1,uyear=uyear,data=df.values,SelectedYear=SelectedYear) return render_template('purchaseordermanagement2.html',say=1,uyear=uyear) @app.route('/pomtype3',methods=['POST','GET']) def pomtype3(): uyear=sorted(podata['PO_year'].unique()) if request.method=='POST': SelectedYear=int(request.form['name1']) podata.loc[(podata.Inventoryreplenished >= 0) & (podata.Inventoryreplenished < 100), 'Inventory_Group'] = '0-100' podata.loc[(podata.Inventoryreplenished >= 100) & (podata.Inventoryreplenished < 200), 'Inventory_Group'] = '100-200' podata.loc[(podata.Inventoryreplenished >= 200) & (podata.Inventoryreplenished < 300), 'Inventory_Group'] = '200-300' podata.loc[(podata.Inventoryreplenished >= 300) & (podata.Inventoryreplenished < 400), 'Inventory_Group'] = '300-400' podata.loc[(podata.Inventoryreplenished >= 400) & (podata.Inventoryreplenished < 500), 'Inventory_Group'] = '400-500' podata.loc[podata.Inventoryreplenished >= 500,'Inventory_Group'] = '>500' def top10poinvyrcount(year): x=[] y=[] gg1=podata[(podata['PO_year']==year)].groupby(['PO_year','Inventory_Group'])['Inventory_Group'].size() x=gg1.index.get_level_values(1) y=gg1.values df=pd.DataFrame({'Inventory Value':x,'Total Count':y}) df=df.sort_values('Inventory Value') return df df=top10poinvyrcount(SelectedYear) return render_template('purchaseordermanagement3.html',say=1,sayy=1,uyear=uyear,data=df.values,SelectedYear=SelectedYear) return render_template('purchaseordermanagement3.html',say=1,uyear=uyear) @app.route('/pomtype5',methods=['POST','GET']) def pomtype5(): uyear=sorted(podata['PO_year'].unique()) if request.method=='POST': SelectedYear=int(request.form['name1']) podata['date_diff']=podata['Orderreceiveddate']-podata['POdate'] podata.loc[(podata.date_diff >= '15 days') & (podata.date_diff < '18 days'), 'date_diff_Group'] = '15-18' podata.loc[(podata.date_diff >= '18 days') & (podata.date_diff < '21 days'), 'date_diff_Group'] = '18-20' podata.loc[(podata.date_diff >= '21 days') & (podata.date_diff <= '23 days'), 'date_diff_Group'] = '20-23' def topleadyear(year): x=[] y=[] gg1=podata[(podata['PO_year']==year)].groupby(['PO_year','date_diff_Group'])['date_diff_Group'].size() x=gg1.index.get_level_values(1) y=gg1.values df=pd.DataFrame({'Lead_Time':x,'Total Count':y}) return df df=topleadyear(SelectedYear) return render_template('purchaseordermanagement5.html',say=1,sayy=1,uyear=uyear,data=df.values,SelectedYear=SelectedYear) return render_template('purchaseordermanagement5.html',say=1,uyear=uyear) @app.route('/pomtype4',methods=['POST','GET']) def pomtype4(): pocdata=podata.groupby('PO_year')['PO_year'].size() year=pocdata.index.get_level_values(0) count=pocdata.values.astype(int) df=pd.DataFrame({'Year':year,'PO_Count':count}) return render_template('purchaseordermanagement4.html',data=df.values) #Aggregate Planning @app.route("/aggregate",methods = ['GET','POST']) def aggregate(): if request.method== 'POST': from_date=request.form['from'] to_date=request.form['to'] factory=request.form['typedf'] connection = pymysql.connect(host='localhost', user='user', password='', db='test', charset='utf8mb4', cursorclass=pymysql.cursors.DictCursor) x=connection.cursor() x.execute("select * from `agggendata`") connection.commit() data=pd.DataFrame(x.fetchall()) fromdifftodata= data[(data['Month'] > from_date) & (data['Month'] < to_date )] datas=fromdifftodata[fromdifftodata['Factory']==factory] global forecastedplaniingdata forecastedplaniingdata=pd.concat([datas['Month'],datas['Demand_Forecast']],axis=1) dataforecast=
pd.concat([datas['Month'],datas['Factory'],datas['Demand_Forecast']],axis=1)
pandas.concat
import copy import re from textwrap import dedent import numpy as np import pytest import pandas as pd from pandas import ( DataFrame, MultiIndex, ) import pandas._testing as tm jinja2 = pytest.importorskip("jinja2") from pandas.io.formats.style import ( # isort:skip Styler, ) from pandas.io.formats.style_render import ( _get_level_lengths, _get_trimming_maximums, maybe_convert_css_to_tuples, non_reducing_slice, ) @pytest.fixture def mi_df(): return DataFrame( [[1, 2], [3, 4]], index=MultiIndex.from_product([["i0"], ["i1_a", "i1_b"]]), columns=MultiIndex.from_product([["c0"], ["c1_a", "c1_b"]]), dtype=int, ) @pytest.fixture def mi_styler(mi_df): return
Styler(mi_df, uuid_len=0)
pandas.io.formats.style.Styler
import pathlib import numpy as np import pandas as pd import matplotlib as mpl import matplotlib.pyplot as plt from scipy.optimize import linear_sum_assignment from dicodile.config import DATA_HOME from dicodile.utils.viz import display_dictionaries OUTPUT_DIR = pathlib.Path('benchmarks_results') DATA_DIR = DATA_HOME / 'images' / 'text' # Matplotlib config mpl.rcParams['xtick.labelsize'] = 12 mpl.rcParams['ytick.labelsize'] = 12 # Figure config IM_NOISE_LEVEL = 3 def style_edge_axes(ax, style): """Color the border of an matplotlib Axes.""" for spine in ax.spines.values(): spine.set(**style) def plot_dictionary(result_file='dicodile_text.py_PAMI_20-06-29_15h35.pkl', res=None, s=1): if res is None: df = pd.read_pickle(OUTPUT_DIR / result_file) tl_max = df['text_length'].max() # noqa: F841 res = df.query( 'noise_level== @IM_NOISE_LEVEL & text_length == @tl_max' ) res = res.loc[res['score_cdl_2'].idxmax()] # compute ordering for the dictionary _, j = linear_sum_assignment(res['corr_cdl'], maximize=True) _, j_init = linear_sum_assignment(res['corr_init'], maximize=True) _, j_dl = linear_sum_assignment(res['corr_dl'], maximize=True) # Define display elements display_elements = { 'Pattern': { 'D': res['D'], 'style': dict(color='C3', linestyle='dotted', lw=3) }, 'Random Patches': { 'D': res['D_init'][j_init], 'style': dict(color='C2', linestyle='dotted', lw=3) }, 'DiCoDiLe': { 'D': res['D_cdl'][j], 'style': dict(color='C1', lw=3) }, 'Online DL': { 'D': res['D_dl'][j_dl], 'style': dict(color='C0', lw=3) } } labels = list(display_elements.keys()) list_D = [e['D'] for e in display_elements.values()] styles = [e['style'] for e in display_elements.values()] # compute layout n_dict = len(list_D) D_0 = res['D'] n_atoms = D_0.shape[0] n_cols = max(4, int(np.sqrt(n_atoms))) n_rows = int(np.ceil(n_atoms / n_cols)) nr = n_rows * n_dict fig = plt.figure(figsize=(6.4, 6.8)) gs = mpl.gridspec.GridSpec( nrows=nr + 2, ncols=n_cols, height_ratios=[.3, .1] + [.6 / nr] * nr ) # display all the atoms axes = np.array([[fig.add_subplot(gs[i + 2, j]) for j in range(n_cols)] for i in range(nr)]) display_dictionaries(*list_D, styles=styles, axes=axes) # Add a legend handles = [mpl.lines.Line2D([0], [0], **s) for s in styles] ax_legend = fig.add_subplot(gs[1, :]) ax_legend.set_axis_off() ax_legend.legend(handles, labels, loc='center', ncol=2, bbox_to_anchor=(0, 0.5, 1, .05), fontsize=14) # Display the original images data = np.load(DATA_DIR / res['filename']) im = data.get('X')[190:490, 250:750] ax = fig.add_subplot(gs[0, :n_cols // 2]) ax.imshow(im, cmap='gray') ax.set_axis_off() ax = fig.add_subplot(gs[0, n_cols // 2:]) noise = IM_NOISE_LEVEL * im.std() * np.random.randn(*im.shape) ax.imshow(im + noise, cmap='gray') ax.set_axis_off() # Adjust plot and save figure plt.subplots_adjust(wspace=.1, top=.99, bottom=0.01) fig.savefig(OUTPUT_DIR / 'dicodile_text_dict.pdf', dpi=300) def plot_performances(result_file='dicodile_text.py_20-06-26_13h49.pkl', noise_levels=[.1, IM_NOISE_LEVEL]): df =
pd.read_pickle(OUTPUT_DIR / result_file)
pandas.read_pickle
from os.path import join, exists, dirname, basename from os import makedirs import sys import pandas as pd from glob import glob import seaborn as sns import numpy as np from scipy import stats import xlsxwriter import matplotlib.pyplot as plt from scripts.parse_samplesheet import get_min_coverage, get_role, add_aliassamples, get_species from scripts.snupy import check_snupy_status import json import datetime import getpass import socket import requests from requests.auth import HTTPBasicAuth import urllib3 import yaml import pickle urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning) plt.switch_backend('Agg') RESULT_NOT_PRESENT = -5 def report_undertermined_filesizes(fp_filesizes, fp_output, fp_error, zscorethreshold=1): # read all data fps_sizes = glob(join(dirname(fp_filesizes), '*.txt')) pds_sizes = [] for fp_size in fps_sizes: data = pd.read_csv( fp_size, sep="\t", names=["filesize", "filename", "status"], index_col=1) # mark given read as isme=True while all other data in the dir # are isme=False data['isme'] = fp_filesizes in fp_size data['filesize'] /= 1024**3 pds_sizes.append(data) pd_sizes = pd.concat(pds_sizes) # compute z-score against non-bad known runs pd_sizes['z-score'] = np.nan idx_nonbad = pd_sizes[pd_sizes['status'] != 'bad'].index pd_sizes.loc[idx_nonbad, 'z-score'] = stats.zscore( pd_sizes.loc[idx_nonbad, 'filesize']) # plot figure fig = plt.figure() ax = sns.distplot( pd_sizes[(pd_sizes['isme'] == np.False_) & (pd_sizes['status'] != 'bad')]['filesize'], kde=False, rug=False, color="black", label='known runs') ax = sns.distplot( pd_sizes[(pd_sizes['isme'] == np.False_) & (pd_sizes['status'] == 'bad')]['filesize'], kde=False, rug=False, color="red", label='bad runs') ax = sns.distplot( pd_sizes[pd_sizes['isme'] == np.True_]['filesize'], kde=False, rug=True, color="green", label='this run') _ = ax.set_ylabel('number of files') _ = ax.set_xlabel('file-size in GB') ax.set_title('run %s' % basename(fp_filesizes)[:-4]) ax.legend() # raise error if current run contains surprisingly large undetermined # filesize if pd_sizes[(pd_sizes['isme'] == np.True_) & (pd_sizes['status'] == 'unknown')]['z-score'].max() > zscorethreshold: ax.set_title('ERROR: %s' % ax.get_title()) fig.savefig(fp_error, bbox_inches='tight') raise ValueError( ("Compared to known historic runs, your run contains surprisingly " "(z-score > %f) large file(s) of undetermined reads. You will find" " an supporting image at '%s'. Please do the following things:\n" "1. discuss with lab personal about the quality of the run.\n" "2. should you decide to keep going with this run, mark file " "status (3rd column) in file '%s' as 'good'.\n" "3. for future automatic considerations, mark file status (3rd " "column) as 'bad' if you have decided to abort processing due to" " too low quality (z-score kind of averages about known values)." ) % (zscorethreshold, fp_error, fp_filesizes)) else: fig.savefig(fp_output, bbox_inches='tight') def report_exome_coverage( fps_sample, fp_plot, min_coverage=30, min_targets=80, coverage_cutoff=200): """Creates an exome coverage plot for multiple samples. Parameters ---------- fps_sample : [str] A list of file-paths with coverage data in csv format. fp_plot : str Filepath of output graph. min_coverage : int Default: 30. An arbitraty threshold of minimal coverage that we expect. A vertical dashed line is drawn at this value. min_targets : float Default: 80. An arbitraty threshold of minimal targets that we expect to be covered. A horizontal dashed line is drawn at this value. coverage_cutoff : float Default: 200. Rightmost coverage cut-off value where X-axis is limited. Raises ------ ValueError : If one of the sample's coverage falls below expected thresholds. """ # Usually we aim for a 30X coverage on 80% of the sites. fig, ax = plt.subplots() ax.axhline(y=min_targets, xmin=0, xmax=coverage_cutoff, color='gray', linestyle='--') ax.axvline(x=min_coverage, ymin=0, ymax=100, color='gray', linestyle='--') samples_below_coverage_threshold = [] for fp_sample in fps_sample: coverage = pd.read_csv(fp_sample, sep="\t") samplename = fp_sample.split('/')[-1].split('.')[0] linewidth = 1 if coverage[coverage['#coverage'] == min_coverage]['percent_cumulative'].min() < min_targets: linewidth = 4 samples_below_coverage_threshold.append(samplename) ax.plot(coverage['#coverage'], coverage['percent_cumulative'], label=samplename, linewidth=linewidth) ax.set_xlim((0, coverage_cutoff)) ax.set_xlabel('Read Coverage') ax.set_ylabel('Targeted Exome Bases') ax.legend() if len(samples_below_coverage_threshold) > 0: fp_plot = fp_plot.replace('.pdf', '.error.pdf') fig.savefig(fp_plot, bbox_inches='tight') if len(samples_below_coverage_threshold) > 0: raise ValueError( "The following %i sample(s) have coverage below expected " "thresholds. Please discuss with project PIs on how to proceed. " "Maybe, samples need to be re-sequenced.\n\t%s\nYou will find more" " information in the generated coverage plot '%s'." % ( len(samples_below_coverage_threshold), '\n\t'.join(samples_below_coverage_threshold), fp_plot)) ACTION_PROGRAMS = [ {'action': 'background', 'program': 'GATK', 'fileending_snupy_extract': '.snp_indel.gatk', 'fileending_spike_calls': '.gatk.snp_indel.vcf', 'stepname_spike_calls': 'gatk_CombineVariants', }, {'action': 'background', 'program': 'Platypus', 'fileending_snupy_extract': '.indel.ptp', 'fileending_spike_calls': '.ptp.annotated.filtered.indels.vcf', 'stepname_spike_calls': 'platypus_filtered', }, {'action': 'tumornormal', 'program': 'Varscan', 'fileending_snupy_extract': '.somatic.varscan', 'fileending_spike_calls': {'homo sapiens': '.snp.somatic_germline.vcf', 'mus musculus': '.indel_snp.vcf'}, 'stepname_spike_calls': 'merge_somatic', }, {'action': 'tumornormal', 'program': 'Mutect', 'fileending_snupy_extract': '.somatic.mutect', 'fileending_spike_calls': '.all_calls.vcf', 'stepname_spike_calls': 'mutect', }, {'action': 'tumornormal', 'program': 'Excavator2', 'fileending_snupy_extract': '.somatic.cnv.excavator2', 'fileending_spike_calls': '.vcf', 'stepname_spike_calls': 'excavator_somatic', }, {'action': 'trio', 'program': 'Varscan\ndenovo', 'fileending_snupy_extract': '.denovo.varscan', 'fileending_spike_calls': '.var2denovo.vcf', 'stepname_spike_calls': 'writing_headers', }, {'action': 'trio', 'program': 'Excavator2', 'fileending_snupy_extract': '.trio.cnv.excavator2', 'fileending_spike_calls': '.vcf', 'stepname_spike_calls': 'excavator_trio', }, ] def _get_statusdata_demultiplex(samplesheets, prefix, config): demux_yields = [] for flowcell in samplesheets['run'].unique(): fp_yielddata = '%s%s%s/Data/%s.yield_data.csv' % (prefix, config['dirs']['intermediate'], config['stepnames']['yield_report'], flowcell) if exists(fp_yielddata): demux_yields.append(
pd.read_csv(fp_yielddata, sep="\t")
pandas.read_csv
"""Unit tests for functions in src/util.py""" import numpy as np import pandas as pd import pytest from pandas.testing import assert_frame_equal, assert_series_equal from src.util import ( StanInput, make_columns_lower_case, one_encode, stanify_dict, ) @pytest.mark.parametrize( "s_in,expected", [ ( pd.Series(["8", 1, "????"], index=["a", "b", "c"]), pd.Series([1, 2, 3], index=["a", "b", "c"]), ), ( pd.Series([1, "????", "????"], index=["a", "b", "c"]), pd.Series([1, 2, 2], index=["a", "b", "c"]), ), ], ) def test_one_encode(s_in: pd.Series, expected: pd.Series): assert_series_equal(one_encode(s_in), expected) @pytest.mark.parametrize( "df_in,expected", [ ( pd.DataFrame({"A": [1, 2, 3], "B": ["a", "b", "c"]}), pd.DataFrame({"a": [1, 2, 3], "b": ["a", "b", "c"]}), ), ( pd.DataFrame( [[1, 1]], columns=pd.MultiIndex.from_product([["A"], ["B", "C"]]), ), pd.DataFrame( [[1, 1]], columns=pd.MultiIndex.from_product([["a"], ["b", "c"]]), ), ), ], ) def test_make_columns_lower_case(df_in: pd.DataFrame, expected: pd.DataFrame): assert_frame_equal(make_columns_lower_case(df_in), expected) @pytest.mark.parametrize( "d_in,expected", [ ({"a":
pd.Series([1, 2, 3])
pandas.Series
import pandas as pd import numpy as np df_1 = pd.read_csv('./data_01.txt',sep="|", header=0, encoding='latin-1') df_2 = pd.read_csv('./data_02.txt',sep="|", header=0, encoding='latin-1') df_3 = pd.read_csv('./data_03.txt',sep="|", header=0, encoding='latin-1') df_4 =
pd.read_csv('./data_04.txt',sep="|", header=0, encoding='latin-1')
pandas.read_csv
# pylint: disable=E1101 from datetime import datetime, timedelta from pandas.compat import range, lrange, zip, product import numpy as np from pandas import Series, TimeSeries, DataFrame, Panel, isnull, notnull, Timestamp from pandas.tseries.index import date_range from pandas.tseries.offsets import Minute, BDay from pandas.tseries.period import period_range, PeriodIndex, Period from pandas.tseries.resample import DatetimeIndex, TimeGrouper import pandas.tseries.offsets as offsets import pandas as pd import unittest import nose from pandas.util.testing import (assert_series_equal, assert_almost_equal, assert_frame_equal) import pandas.util.testing as tm bday = BDay() def _skip_if_no_pytz(): try: import pytz except ImportError: raise nose.SkipTest class TestResample(unittest.TestCase): _multiprocess_can_split_ = True def setUp(self): dti = DatetimeIndex(start=datetime(2005, 1, 1), end=datetime(2005, 1, 10), freq='Min') self.series = Series(np.random.rand(len(dti)), dti) def test_custom_grouper(self): dti = DatetimeIndex(freq='Min', start=datetime(2005, 1, 1), end=datetime(2005, 1, 10)) s = Series(np.array([1] * len(dti)), index=dti, dtype='int64') b = TimeGrouper(Minute(5)) g = s.groupby(b) # check all cython functions work funcs = ['add', 'mean', 'prod', 'ohlc', 'min', 'max', 'var'] for f in funcs: g._cython_agg_general(f) b = TimeGrouper(Minute(5), closed='right', label='right') g = s.groupby(b) # check all cython functions work funcs = ['add', 'mean', 'prod', 'ohlc', 'min', 'max', 'var'] for f in funcs: g._cython_agg_general(f) self.assertEquals(g.ngroups, 2593) self.assert_(notnull(g.mean()).all()) # construct expected val arr = [1] + [5] * 2592 idx = dti[0:-1:5] idx = idx.append(dti[-1:]) expect = Series(arr, index=idx) # GH2763 - return in put dtype if we can result = g.agg(np.sum) assert_series_equal(result, expect) df = DataFrame(np.random.rand(len(dti), 10), index=dti, dtype='float64') r = df.groupby(b).agg(np.sum) self.assertEquals(len(r.columns), 10) self.assertEquals(len(r.index), 2593) def test_resample_basic(self): rng = date_range('1/1/2000 00:00:00', '1/1/2000 00:13:00', freq='min', name='index') s = Series(np.random.randn(14), index=rng) result = s.resample('5min', how='mean', closed='right', label='right') expected = Series([s[0], s[1:6].mean(), s[6:11].mean(), s[11:].mean()], index=date_range('1/1/2000', periods=4, freq='5min')) assert_series_equal(result, expected) self.assert_(result.index.name == 'index') result = s.resample('5min', how='mean', closed='left', label='right') expected = Series([s[:5].mean(), s[5:10].mean(), s[10:].mean()], index=date_range('1/1/2000 00:05', periods=3, freq='5min')) assert_series_equal(result, expected) s = self.series result = s.resample('5Min', how='last') grouper = TimeGrouper(Minute(5), closed='left', label='left') expect = s.groupby(grouper).agg(lambda x: x[-1]) assert_series_equal(result, expect) def test_resample_basic_from_daily(self): # from daily dti = DatetimeIndex( start=datetime(2005, 1, 1), end=datetime(2005, 1, 10), freq='D', name='index') s = Series(np.random.rand(len(dti)), dti) # to weekly result = s.resample('w-sun', how='last') self.assertEquals(len(result), 3) self.assert_((result.index.dayofweek == [6, 6, 6]).all()) self.assertEquals(result.irow(0), s['1/2/2005']) self.assertEquals(result.irow(1), s['1/9/2005']) self.assertEquals(result.irow(2), s.irow(-1)) result = s.resample('W-MON', how='last') self.assertEquals(len(result), 2) self.assert_((result.index.dayofweek == [0, 0]).all()) self.assertEquals(result.irow(0), s['1/3/2005']) self.assertEquals(result.irow(1), s['1/10/2005']) result = s.resample('W-TUE', how='last') self.assertEquals(len(result), 2) self.assert_((result.index.dayofweek == [1, 1]).all()) self.assertEquals(result.irow(0), s['1/4/2005']) self.assertEquals(result.irow(1), s['1/10/2005']) result = s.resample('W-WED', how='last') self.assertEquals(len(result), 2) self.assert_((result.index.dayofweek == [2, 2]).all()) self.assertEquals(result.irow(0), s['1/5/2005']) self.assertEquals(result.irow(1), s['1/10/2005']) result = s.resample('W-THU', how='last') self.assertEquals(len(result), 2) self.assert_((result.index.dayofweek == [3, 3]).all()) self.assertEquals(result.irow(0), s['1/6/2005']) self.assertEquals(result.irow(1), s['1/10/2005']) result = s.resample('W-FRI', how='last') self.assertEquals(len(result), 2) self.assert_((result.index.dayofweek == [4, 4]).all()) self.assertEquals(result.irow(0), s['1/7/2005']) self.assertEquals(result.irow(1), s['1/10/2005']) # to biz day result = s.resample('B', how='last') self.assertEquals(len(result), 7) self.assert_((result.index.dayofweek == [4, 0, 1, 2, 3, 4, 0]).all()) self.assertEquals(result.irow(0), s['1/2/2005']) self.assertEquals(result.irow(1), s['1/3/2005']) self.assertEquals(result.irow(5), s['1/9/2005']) self.assert_(result.index.name == 'index') def test_resample_frame_basic(self): df = tm.makeTimeDataFrame() b = TimeGrouper('M') g = df.groupby(b) # check all cython functions work funcs = ['add', 'mean', 'prod', 'min', 'max', 'var'] for f in funcs: g._cython_agg_general(f) result = df.resample('A') assert_series_equal(result['A'], df['A'].resample('A')) result = df.resample('M') assert_series_equal(result['A'], df['A'].resample('M')) df.resample('M', kind='period') df.resample('W-WED', kind='period') def test_resample_loffset(self): rng = date_range('1/1/2000 00:00:00', '1/1/2000 00:13:00', freq='min') s = Series(np.random.randn(14), index=rng) result = s.resample('5min', how='mean', closed='right', label='right', loffset=timedelta(minutes=1)) idx = date_range('1/1/2000', periods=4, freq='5min') expected = Series([s[0], s[1:6].mean(), s[6:11].mean(), s[11:].mean()], index=idx + timedelta(minutes=1)) assert_series_equal(result, expected) expected = s.resample( '5min', how='mean', closed='right', label='right', loffset='1min') assert_series_equal(result, expected) expected = s.resample( '5min', how='mean', closed='right', label='right', loffset=Minute(1)) assert_series_equal(result, expected) self.assert_(result.index.freq == Minute(5)) # from daily dti = DatetimeIndex( start=datetime(2005, 1, 1), end=datetime(2005, 1, 10), freq='D') ser = Series(np.random.rand(len(dti)), dti) # to weekly result = ser.resample('w-sun', how='last') expected = ser.resample('w-sun', how='last', loffset=-bday) self.assertEqual(result.index[0] - bday, expected.index[0]) def test_resample_upsample(self): # from daily dti = DatetimeIndex( start=datetime(2005, 1, 1), end=datetime(2005, 1, 10), freq='D', name='index') s = Series(np.random.rand(len(dti)), dti) # to minutely, by padding result = s.resample('Min', fill_method='pad') self.assertEquals(len(result), 12961) self.assertEquals(result[0], s[0]) self.assertEquals(result[-1], s[-1]) self.assert_(result.index.name == 'index') def test_upsample_with_limit(self): rng = date_range('1/1/2000', periods=3, freq='5t') ts = Series(np.random.randn(len(rng)), rng) result = ts.resample('t', fill_method='ffill', limit=2) expected = ts.reindex(result.index, method='ffill', limit=2) assert_series_equal(result, expected) def test_resample_ohlc(self): s = self.series grouper = TimeGrouper(Minute(5)) expect = s.groupby(grouper).agg(lambda x: x[-1]) result = s.resample('5Min', how='ohlc') self.assertEquals(len(result), len(expect)) self.assertEquals(len(result.columns), 4) xs = result.irow(-2) self.assertEquals(xs['open'], s[-6]) self.assertEquals(xs['high'], s[-6:-1].max()) self.assertEquals(xs['low'], s[-6:-1].min()) self.assertEquals(xs['close'], s[-2]) xs = result.irow(0) self.assertEquals(xs['open'], s[0]) self.assertEquals(xs['high'], s[:5].max()) self.assertEquals(xs['low'], s[:5].min()) self.assertEquals(xs['close'], s[4]) def test_resample_ohlc_dataframe(self): df = (pd.DataFrame({'PRICE': {Timestamp('2011-01-06 10:59:05', tz=None): 24990, Timestamp('2011-01-06 12:43:33', tz=None): 25499, Timestamp('2011-01-06 12:54:09', tz=None): 25499}, 'VOLUME': {Timestamp('2011-01-06 10:59:05', tz=None): 1500000000, Timestamp('2011-01-06 12:43:33', tz=None): 5000000000, Timestamp('2011-01-06 12:54:09', tz=None): 100000000}}) ).reindex_axis(['VOLUME', 'PRICE'], axis=1) res = df.resample('H', how='ohlc') exp = pd.concat([df['VOLUME'].resample('H', how='ohlc'), df['PRICE'].resample('H', how='ohlc')], axis=1, keys=['VOLUME', 'PRICE']) assert_frame_equal(exp, res) df.columns = [['a', 'b'], ['c', 'd']] res = df.resample('H', how='ohlc') exp.columns = pd.MultiIndex.from_tuples([('a', 'c', 'open'), ('a', 'c', 'high'), ('a', 'c', 'low'), ('a', 'c', 'close'), ('b', 'd', 'open'), ('b', 'd', 'high'), ('b', 'd', 'low'), ('b', 'd', 'close')]) assert_frame_equal(exp, res) # dupe columns fail atm # df.columns = ['PRICE', 'PRICE'] def test_resample_dup_index(self): # GH 4812 # dup columns with resample raising df = DataFrame(np.random.randn(4,12),index=[2000,2000,2000,2000],columns=[ Period(year=2000,month=i+1,freq='M') for i in range(12) ]) df.iloc[3,:] = np.nan result = df.resample('Q',axis=1) expected = df.groupby(lambda x: int((x.month-1)/3),axis=1).mean() expected.columns = [ Period(year=2000,quarter=i+1,freq='Q') for i in range(4) ] assert_frame_equal(result, expected) def test_resample_reresample(self): dti = DatetimeIndex( start=datetime(2005, 1, 1), end=datetime(2005, 1, 10), freq='D') s = Series(np.random.rand(len(dti)), dti) bs = s.resample('B', closed='right', label='right') result = bs.resample('8H') self.assertEquals(len(result), 22) tm.assert_isinstance(result.index.freq, offsets.DateOffset) self.assert_(result.index.freq == offsets.Hour(8)) def test_resample_timestamp_to_period(self): ts = _simple_ts('1/1/1990', '1/1/2000') result = ts.resample('A-DEC', kind='period') expected = ts.resample('A-DEC') expected.index = period_range('1990', '2000', freq='a-dec') assert_series_equal(result, expected) result = ts.resample('A-JUN', kind='period') expected = ts.resample('A-JUN') expected.index = period_range('1990', '2000', freq='a-jun') assert_series_equal(result, expected) result = ts.resample('M', kind='period') expected = ts.resample('M') expected.index = period_range('1990-01', '2000-01', freq='M') assert_series_equal(result, expected) result = ts.resample('M', kind='period') expected = ts.resample('M') expected.index = period_range('1990-01', '2000-01', freq='M') assert_series_equal(result, expected) def test_ohlc_5min(self): def _ohlc(group): if isnull(group).all(): return np.repeat(np.nan, 4) return [group[0], group.max(), group.min(), group[-1]] rng = date_range('1/1/2000 00:00:00', '1/1/2000 5:59:50', freq='10s') ts = Series(np.random.randn(len(rng)), index=rng) resampled = ts.resample('5min', how='ohlc', closed='right', label='right') self.assert_((resampled.ix['1/1/2000 00:00'] == ts[0]).all()) exp = _ohlc(ts[1:31]) self.assert_((resampled.ix['1/1/2000 00:05'] == exp).all()) exp = _ohlc(ts['1/1/2000 5:55:01':]) self.assert_((resampled.ix['1/1/2000 6:00:00'] == exp).all()) def test_downsample_non_unique(self): rng = date_range('1/1/2000', '2/29/2000') rng2 = rng.repeat(5).values ts = Series(np.random.randn(len(rng2)), index=rng2) result = ts.resample('M', how='mean') expected = ts.groupby(lambda x: x.month).mean() self.assertEquals(len(result), 2) assert_almost_equal(result[0], expected[1]) assert_almost_equal(result[1], expected[2]) def test_asfreq_non_unique(self): # GH #1077 rng = date_range('1/1/2000', '2/29/2000') rng2 = rng.repeat(2).values ts = Series(np.random.randn(len(rng2)), index=rng2) self.assertRaises(Exception, ts.asfreq, 'B') def test_resample_axis1(self): rng = date_range('1/1/2000', '2/29/2000') df = DataFrame(np.random.randn(3, len(rng)), columns=rng, index=['a', 'b', 'c']) result = df.resample('M', axis=1) expected = df.T.resample('M').T tm.assert_frame_equal(result, expected) def test_resample_panel(self): rng = date_range('1/1/2000', '6/30/2000') n = len(rng) panel = Panel(np.random.randn(3, n, 5), items=['one', 'two', 'three'], major_axis=rng, minor_axis=['a', 'b', 'c', 'd', 'e']) result = panel.resample('M', axis=1) def p_apply(panel, f): result = {} for item in panel.items: result[item] = f(panel[item]) return Panel(result, items=panel.items) expected = p_apply(panel, lambda x: x.resample('M')) tm.assert_panel_equal(result, expected) panel2 = panel.swapaxes(1, 2) result = panel2.resample('M', axis=2) expected = p_apply(panel2, lambda x: x.resample('M', axis=1)) tm.assert_panel_equal(result, expected) def test_resample_panel_numpy(self): rng = date_range('1/1/2000', '6/30/2000') n = len(rng) panel = Panel(np.random.randn(3, n, 5), items=['one', 'two', 'three'], major_axis=rng, minor_axis=['a', 'b', 'c', 'd', 'e']) result = panel.resample('M', how=lambda x: x.mean(1), axis=1) expected = panel.resample('M', how='mean', axis=1) tm.assert_panel_equal(result, expected) panel = panel.swapaxes(1, 2) result = panel.resample('M', how=lambda x: x.mean(2), axis=2) expected = panel.resample('M', how='mean', axis=2) tm.assert_panel_equal(result, expected) def test_resample_anchored_ticks(self): # If a fixed delta (5 minute, 4 hour) evenly divides a day, we should # "anchor" the origin at midnight so we get regular intervals rather # than starting from the first timestamp which might start in the middle # of a desired interval rng = date_range('1/1/2000 04:00:00', periods=86400, freq='s') ts = Series(np.random.randn(len(rng)), index=rng) ts[:2] = np.nan # so results are the same freqs = ['t', '5t', '15t', '30t', '4h', '12h'] for freq in freqs: result = ts[2:].resample(freq, closed='left', label='left') expected = ts.resample(freq, closed='left', label='left') assert_series_equal(result, expected) def test_resample_base(self): rng = date_range('1/1/2000 00:00:00', '1/1/2000 02:00', freq='s') ts = Series(np.random.randn(len(rng)), index=rng) resampled = ts.resample('5min', base=2) exp_rng = date_range('12/31/1999 23:57:00', '1/1/2000 01:57', freq='5min') self.assert_(resampled.index.equals(exp_rng)) def test_resample_daily_anchored(self): rng = date_range('1/1/2000 0:00:00', periods=10000, freq='T') ts = Series(np.random.randn(len(rng)), index=rng) ts[:2] = np.nan # so results are the same result = ts[2:].resample('D', closed='left', label='left') expected = ts.resample('D', closed='left', label='left') assert_series_equal(result, expected) def test_resample_to_period_monthly_buglet(self): # GH #1259 rng = date_range('1/1/2000', '12/31/2000') ts = Series(np.random.randn(len(rng)), index=rng) result = ts.resample('M', kind='period') exp_index = period_range('Jan-2000', 'Dec-2000', freq='M') self.assert_(result.index.equals(exp_index)) def test_resample_empty(self): ts = _simple_ts('1/1/2000', '2/1/2000')[:0] result = ts.resample('A') self.assert_(len(result) == 0) self.assert_(result.index.freqstr == 'A-DEC') result = ts.resample('A', kind='period') self.assert_(len(result) == 0) self.assert_(result.index.freqstr == 'A-DEC') xp = DataFrame() rs = xp.resample('A') assert_frame_equal(xp, rs) def test_weekly_resample_buglet(self): # #1327 rng = date_range('1/1/2000', freq='B', periods=20) ts = Series(np.random.randn(len(rng)), index=rng) resampled = ts.resample('W') expected = ts.resample('W-SUN') assert_series_equal(resampled, expected) def test_monthly_resample_error(self): # #1451 dates = date_range('4/16/2012 20:00', periods=5000, freq='h') ts = Series(np.random.randn(len(dates)), index=dates) # it works! result = ts.resample('M') def test_resample_anchored_intraday(self): # #1471, #1458 rng = date_range('1/1/2012', '4/1/2012', freq='100min') df = DataFrame(rng.month, index=rng) result = df.resample('M') expected = df.resample('M', kind='period').to_timestamp(how='end') tm.assert_frame_equal(result, expected) result = df.resample('M', closed='left') exp = df.tshift(1, freq='D').resample('M', kind='period') exp = exp.to_timestamp(how='end') tm.assert_frame_equal(result, exp) rng = date_range('1/1/2012', '4/1/2012', freq='100min') df = DataFrame(rng.month, index=rng) result = df.resample('Q') expected = df.resample('Q', kind='period').to_timestamp(how='end') tm.assert_frame_equal(result, expected) result = df.resample('Q', closed='left') expected = df.tshift(1, freq='D').resample('Q', kind='period', closed='left') expected = expected.to_timestamp(how='end') tm.assert_frame_equal(result, expected) ts = _simple_ts('2012-04-29 23:00', '2012-04-30 5:00', freq='h') resampled = ts.resample('M') self.assert_(len(resampled) == 1) def test_resample_anchored_monthstart(self): ts = _simple_ts('1/1/2000', '12/31/2002') freqs = ['MS', 'BMS', 'QS-MAR', 'AS-DEC', 'AS-JUN'] for freq in freqs: result = ts.resample(freq, how='mean') def test_corner_cases(self): # miscellaneous test coverage rng = date_range('1/1/2000', periods=12, freq='t') ts = Series(np.random.randn(len(rng)), index=rng) result = ts.resample('5t', closed='right', label='left') ex_index = date_range('1999-12-31 23:55', periods=4, freq='5t') self.assert_(result.index.equals(ex_index)) len0pts = _simple_pts('2007-01', '2010-05', freq='M')[:0] # it works result = len0pts.resample('A-DEC') self.assert_(len(result) == 0) # resample to periods ts = _simple_ts('2000-04-28', '2000-04-30 11:00', freq='h') result = ts.resample('M', kind='period') self.assert_(len(result) == 1) self.assert_(result.index[0] == Period('2000-04', freq='M')) def test_anchored_lowercase_buglet(self): dates = date_range('4/16/2012 20:00', periods=50000, freq='s') ts = Series(np.random.randn(len(dates)), index=dates) # it works! ts.resample('d') def test_upsample_apply_functions(self): # #1596 rng = pd.date_range('2012-06-12', periods=4, freq='h') ts = Series(np.random.randn(len(rng)), index=rng) result = ts.resample('20min', how=['mean', 'sum']) tm.assert_isinstance(result, DataFrame) def test_resample_not_monotonic(self): rng = pd.date_range('2012-06-12', periods=200, freq='h') ts = Series(np.random.randn(len(rng)), index=rng) ts = ts.take(np.random.permutation(len(ts))) result = ts.resample('D', how='sum') exp = ts.sort_index().resample('D', how='sum') assert_series_equal(result, exp) def test_resample_median_bug_1688(self): for dtype in ['int64','int32','float64','float32']: df = DataFrame([1, 2], index=[datetime(2012, 1, 1, 0, 0, 0), datetime(2012, 1, 1, 0, 5, 0)], dtype = dtype) result = df.resample("T", how=lambda x: x.mean()) exp = df.asfreq('T') tm.assert_frame_equal(result, exp) result = df.resample("T", how="median") exp = df.asfreq('T')
tm.assert_frame_equal(result, exp)
pandas.util.testing.assert_frame_equal
# -*- coding: utf-8 -*- from __future__ import print_function from datetime import datetime import itertools import numpy as np import pytest from pandas.compat import u import pandas as pd from pandas import ( DataFrame, Index, MultiIndex, Period, Series, Timedelta, date_range) from pandas.tests.frame.common import TestData import pandas.util.testing as tm from pandas.util.testing import assert_frame_equal, assert_series_equal class TestDataFrameReshape(TestData): def test_pivot(self): data = { 'index': ['A', 'B', 'C', 'C', 'B', 'A'], 'columns': ['One', 'One', 'One', 'Two', 'Two', 'Two'], 'values': [1., 2., 3., 3., 2., 1.] } frame = DataFrame(data) pivoted = frame.pivot( index='index', columns='columns', values='values') expected = DataFrame({ 'One': {'A': 1., 'B': 2., 'C': 3.}, 'Two': {'A': 1., 'B': 2., 'C': 3.} }) expected.index.name, expected.columns.name = 'index', 'columns' tm.assert_frame_equal(pivoted, expected) # name tracking assert pivoted.index.name == 'index' assert pivoted.columns.name == 'columns' # don't specify values pivoted = frame.pivot(index='index', columns='columns') assert pivoted.index.name == 'index' assert pivoted.columns.names == (None, 'columns') def test_pivot_duplicates(self): data = DataFrame({'a': ['bar', 'bar', 'foo', 'foo', 'foo'], 'b': ['one', 'two', 'one', 'one', 'two'], 'c': [1., 2., 3., 3., 4.]}) with pytest.raises(ValueError, match='duplicate entries'): data.pivot('a', 'b', 'c') def test_pivot_empty(self): df = DataFrame({}, columns=['a', 'b', 'c']) result = df.pivot('a', 'b', 'c') expected = DataFrame() tm.assert_frame_equal(result, expected, check_names=False) def test_pivot_integer_bug(self): df = DataFrame(data=[("A", "1", "A1"), ("B", "2", "B2")]) result = df.pivot(index=1, columns=0, values=2) repr(result) tm.assert_index_equal(result.columns, Index(['A', 'B'], name=0)) def test_pivot_index_none(self): # gh-3962 data = { 'index': ['A', 'B', 'C', 'C', 'B', 'A'], 'columns': ['One', 'One', 'One', 'Two', 'Two', 'Two'], 'values': [1., 2., 3., 3., 2., 1.] } frame = DataFrame(data).set_index('index') result = frame.pivot(columns='columns', values='values') expected = DataFrame({ 'One': {'A': 1., 'B': 2., 'C': 3.}, 'Two': {'A': 1., 'B': 2., 'C': 3.} }) expected.index.name, expected.columns.name = 'index', 'columns' assert_frame_equal(result, expected) # omit values result = frame.pivot(columns='columns') expected.columns = pd.MultiIndex.from_tuples([('values', 'One'), ('values', 'Two')], names=[None, 'columns']) expected.index.name = 'index' tm.assert_frame_equal(result, expected, check_names=False) assert result.index.name == 'index' assert result.columns.names == (None, 'columns') expected.columns = expected.columns.droplevel(0) result = frame.pivot(columns='columns', values='values') expected.columns.name = 'columns' tm.assert_frame_equal(result, expected) def test_stack_unstack(self): df = self.frame.copy() df[:] = np.arange(np.prod(df.shape)).reshape(df.shape) stacked = df.stack() stacked_df = DataFrame({'foo': stacked, 'bar': stacked}) unstacked = stacked.unstack() unstacked_df = stacked_df.unstack() assert_frame_equal(unstacked, df) assert_frame_equal(unstacked_df['bar'], df) unstacked_cols = stacked.unstack(0) unstacked_cols_df = stacked_df.unstack(0) assert_frame_equal(unstacked_cols.T, df) assert_frame_equal(unstacked_cols_df['bar'].T, df) def test_stack_mixed_level(self): # GH 18310 levels = [range(3), [3, 'a', 'b'], [1, 2]] # flat columns: df = DataFrame(1, index=levels[0], columns=levels[1]) result = df.stack() expected = Series(1, index=MultiIndex.from_product(levels[:2])) assert_series_equal(result, expected) # MultiIndex columns: df = DataFrame(1, index=levels[0], columns=MultiIndex.from_product(levels[1:])) result = df.stack(1) expected = DataFrame(1, index=MultiIndex.from_product([levels[0], levels[2]]), columns=levels[1]) assert_frame_equal(result, expected) # as above, but used labels in level are actually of homogeneous type result = df[['a', 'b']].stack(1) expected = expected[['a', 'b']] assert_frame_equal(result, expected) def test_unstack_fill(self): # GH #9746: fill_value keyword argument for Series # and DataFrame unstack # From a series data = Series([1, 2, 4, 5], dtype=np.int16) data.index = MultiIndex.from_tuples( [('x', 'a'), ('x', 'b'), ('y', 'b'), ('z', 'a')]) result = data.unstack(fill_value=-1) expected = DataFrame({'a': [1, -1, 5], 'b': [2, 4, -1]}, index=['x', 'y', 'z'], dtype=np.int16) assert_frame_equal(result, expected) # From a series with incorrect data type for fill_value result = data.unstack(fill_value=0.5) expected = DataFrame({'a': [1, 0.5, 5], 'b': [2, 4, 0.5]}, index=['x', 'y', 'z'], dtype=np.float) assert_frame_equal(result, expected) # GH #13971: fill_value when unstacking multiple levels: df = DataFrame({'x': ['a', 'a', 'b'], 'y': ['j', 'k', 'j'], 'z': [0, 1, 2], 'w': [0, 1, 2]}).set_index(['x', 'y', 'z']) unstacked = df.unstack(['x', 'y'], fill_value=0) key = ('<KEY>') expected = unstacked[key] result = pd.Series([0, 0, 2], index=unstacked.index, name=key) assert_series_equal(result, expected) stacked = unstacked.stack(['x', 'y']) stacked.index = stacked.index.reorder_levels(df.index.names) # Workaround for GH #17886 (unnecessarily casts to float): stacked = stacked.astype(np.int64) result = stacked.loc[df.index] assert_frame_equal(result, df) # From a series s = df['w'] result = s.unstack(['x', 'y'], fill_value=0) expected = unstacked['w'] assert_frame_equal(result, expected) def test_unstack_fill_frame(self): # From a dataframe rows = [[1, 2], [3, 4], [5, 6], [7, 8]] df = DataFrame(rows, columns=list('AB'), dtype=np.int32) df.index = MultiIndex.from_tuples( [('x', 'a'), ('x', 'b'), ('y', 'b'), ('z', 'a')]) result = df.unstack(fill_value=-1) rows = [[1, 3, 2, 4], [-1, 5, -1, 6], [7, -1, 8, -1]] expected = DataFrame(rows, index=list('xyz'), dtype=np.int32) expected.columns = MultiIndex.from_tuples( [('A', 'a'), ('A', 'b'), ('B', 'a'), ('B', 'b')]) assert_frame_equal(result, expected) # From a mixed type dataframe df['A'] = df['A'].astype(np.int16) df['B'] = df['B'].astype(np.float64) result = df.unstack(fill_value=-1) expected['A'] = expected['A'].astype(np.int16) expected['B'] = expected['B'].astype(np.float64) assert_frame_equal(result, expected) # From a dataframe with incorrect data type for fill_value result = df.unstack(fill_value=0.5) rows = [[1, 3, 2, 4], [0.5, 5, 0.5, 6], [7, 0.5, 8, 0.5]] expected = DataFrame(rows, index=list('xyz'), dtype=np.float) expected.columns = MultiIndex.from_tuples( [('A', 'a'), ('A', 'b'), ('B', 'a'), ('B', 'b')]) assert_frame_equal(result, expected) def test_unstack_fill_frame_datetime(self): # Test unstacking with date times dv = pd.date_range('2012-01-01', periods=4).values data = Series(dv) data.index = MultiIndex.from_tuples( [('x', 'a'), ('x', 'b'), ('y', 'b'), ('z', 'a')]) result = data.unstack() expected = DataFrame({'a': [dv[0], pd.NaT, dv[3]], 'b': [dv[1], dv[2], pd.NaT]}, index=['x', 'y', 'z']) assert_frame_equal(result, expected) result = data.unstack(fill_value=dv[0]) expected = DataFrame({'a': [dv[0], dv[0], dv[3]], 'b': [dv[1], dv[2], dv[0]]}, index=['x', 'y', 'z']) assert_frame_equal(result, expected) def test_unstack_fill_frame_timedelta(self): # Test unstacking with time deltas td = [Timedelta(days=i) for i in range(4)] data = Series(td) data.index = MultiIndex.from_tuples( [('x', 'a'), ('x', 'b'), ('y', 'b'), ('z', 'a')]) result = data.unstack() expected = DataFrame({'a': [td[0], pd.NaT, td[3]], 'b': [td[1], td[2], pd.NaT]}, index=['x', 'y', 'z']) assert_frame_equal(result, expected) result = data.unstack(fill_value=td[1]) expected = DataFrame({'a': [td[0], td[1], td[3]], 'b': [td[1], td[2], td[1]]}, index=['x', 'y', 'z']) assert_frame_equal(result, expected) def test_unstack_fill_frame_period(self): # Test unstacking with period periods = [Period('2012-01'), Period('2012-02'), Period('2012-03'), Period('2012-04')] data = Series(periods) data.index = MultiIndex.from_tuples( [('x', 'a'), ('x', 'b'), ('y', 'b'), ('z', 'a')]) result = data.unstack() expected = DataFrame({'a': [periods[0], None, periods[3]], 'b': [periods[1], periods[2], None]}, index=['x', 'y', 'z']) assert_frame_equal(result, expected) result = data.unstack(fill_value=periods[1]) expected = DataFrame({'a': [periods[0], periods[1], periods[3]], 'b': [periods[1], periods[2], periods[1]]}, index=['x', 'y', 'z']) assert_frame_equal(result, expected) def test_unstack_fill_frame_categorical(self): # Test unstacking with categorical data = pd.Series(['a', 'b', 'c', 'a'], dtype='category') data.index = pd.MultiIndex.from_tuples( [('x', 'a'), ('x', 'b'), ('y', 'b'), ('z', 'a')], ) # By default missing values will be NaN result = data.unstack() expected = DataFrame({'a': pd.Categorical(list('axa'), categories=list('abc')), 'b': pd.Categorical(list('bcx'), categories=list('abc'))}, index=list('xyz'))
assert_frame_equal(result, expected)
pandas.util.testing.assert_frame_equal
#! -*- coding: utf-8 -*- #%% from __future__ import print_function, division from keras import backend as K from keras.models import Model from keras.engine.topology import Layer from keras.layers import Conv1D, Dense, Dropout, Reshape, Flatten, add, MaxPooling1D, Input, UpSampling1D, BatchNormalization, GaussianNoise, Activation from keras.regularizers import l2 class Position_Embedding(Layer): def __init__(self, size=None, mode='sum', **kwargs): self.size = size #必须为偶数 self.mode = mode super(Position_Embedding, self).__init__(**kwargs) def call(self, x): if (self.size == None) or (self.mode == 'sum'): self.size = int(x.shape[-1]) batch_size,seq_len = K.shape(x)[0],K.shape(x)[1] position_j = 1. / K.pow(10000., \ 2 * K.arange(self.size / 2, dtype='float32' \ ) / self.size) position_j = K.expand_dims(position_j, 0) position_i = K.cumsum(K.ones_like(x[:,:,0]), 1)-1 #K.arange不支持变长,只好用这种方法生成 position_i = K.expand_dims(position_i, 2) position_ij = K.dot(position_i, position_j) position_ij = K.concatenate([K.cos(position_ij), K.sin(position_ij)], 2) if self.mode == 'sum': return position_ij + x elif self.mode == 'concat': return K.concatenate([position_ij, x], 2) def compute_output_shape(self, input_shape): if self.mode == 'sum': return input_shape elif self.mode == 'concat': return (input_shape[0], input_shape[1], input_shape[2]+self.size) class Attention(Layer): def __init__(self, nb_head, size_per_head, **kwargs): self.nb_head = nb_head self.size_per_head = size_per_head self.output_dim = nb_head*size_per_head super(Attention, self).__init__(**kwargs) def build(self, input_shape): self.WQ = self.add_weight(name='WQ', shape=(input_shape[0][-1], self.output_dim), initializer='glorot_uniform', trainable=True) self.WK = self.add_weight(name='WK', shape=(input_shape[1][-1], self.output_dim), initializer='glorot_uniform', trainable=True) self.WV = self.add_weight(name='WV', shape=(input_shape[2][-1], self.output_dim), initializer='glorot_uniform', trainable=True) super(Attention, self).build(input_shape) def Mask(self, inputs, seq_len, mode='mul'): if seq_len == None: return inputs else: mask = K.one_hot(seq_len[:,0], K.shape(inputs)[1]) mask = 1 - K.cumsum(mask, 1) for _ in range(len(inputs.shape)-2): mask = K.expand_dims(mask, 2) if mode == 'mul': return inputs * mask if mode == 'add': return inputs - (1 - mask) * 1e12 def call(self, x): #如果只传入Q_seq,K_seq,V_seq,那么就不做Mask #如果同时传入Q_seq,K_seq,V_seq,Q_len,V_len,那么对多余部分做Mask if len(x) == 3: Q_seq,K_seq,V_seq = x Q_len,V_len = None,None elif len(x) == 5: Q_seq,K_seq,V_seq,Q_len,V_len = x #对Q、K、V做线性变换 Q_seq = K.dot(Q_seq, self.WQ) Q_seq = K.reshape(Q_seq, (-1, K.shape(Q_seq)[1], self.nb_head, self.size_per_head)) Q_seq = K.permute_dimensions(Q_seq, (0,2,1,3)) K_seq = K.dot(K_seq, self.WK) K_seq = K.reshape(K_seq, (-1, K.shape(K_seq)[1], self.nb_head, self.size_per_head)) K_seq = K.permute_dimensions(K_seq, (0,2,1,3)) V_seq = K.dot(V_seq, self.WV) V_seq = K.reshape(V_seq, (-1, K.shape(V_seq)[1], self.nb_head, self.size_per_head)) V_seq = K.permute_dimensions(V_seq, (0,2,1,3)) #计算内积,然后mask,然后softmax A = K.batch_dot(Q_seq, K_seq, axes=[3,3]) / self.size_per_head**0.5 A = K.permute_dimensions(A, (0,3,2,1)) A = self.Mask(A, V_len, 'add') A = K.permute_dimensions(A, (0,3,2,1)) A = K.softmax(A) #输出并mask O_seq = K.batch_dot(A, V_seq, axes=[3,2]) O_seq = K.permute_dimensions(O_seq, (0,2,1,3)) O_seq = K.reshape(O_seq, (-1, K.shape(O_seq)[1], self.output_dim)) O_seq = self.Mask(O_seq, Q_len, 'mul') return O_seq def compute_output_shape(self, input_shape): return (input_shape[0][0], input_shape[0][1], self.output_dim) def resnet_layer(inputs, filters=16, kernel_size=3, strides=1, batch_normalization=True, conv_first=True, dilation_rate=7, std = 1e-4): conv = Conv1D(filters, kernel_size=kernel_size, strides=strides, padding='same', kernel_initializer='he_normal', kernel_regularizer=l2(1e-4), dilation_rate = dilation_rate) x = inputs x = conv(x) x = Activation('relu')(x) x = BatchNormalization()(x) x = GaussianNoise(stddev = std)(x) return x def coder(input, filters, kernel_size = 3, down_sample = True, size = 2): input = resnet_layer(input,filters=filters,kernel_size=kernel_size) x = resnet_layer(input,filters=filters,kernel_size=kernel_size) input = add([input, x]) x = resnet_layer(input,filters=filters,kernel_size=kernel_size) x = add([input, x]) if(down_sample): x = MaxPooling1D(pool_size=size)(x) else: x = UpSampling1D(size=size)(x) return x def begin(input, std=1e-5): x = Conv1D(filters=64, kernel_size=1, activation='sigmoid',padding='same')(input) x = BatchNormalization()(x) x = GaussianNoise(std)(x) return x def end(input): x = Conv1D(filters=1, kernel_size=3, activation='sigmoid', dilation_rate=7,padding='same')(input) x = BatchNormalization()(x) return x def midden(input): x = Attention(8,32)([input,input,input]) x = add([x,input]) return x def lr_schedule(epoch): """Learning Rate Schedule Learning rate is scheduled to be reduced after 80, 120, 160, 180 epochs. Called automatically every epoch as part of callbacks during training. # Arguments epoch (int): The number of epochs # Returns lr (float32): learning rate """ lr = 1e-5 if epoch > 80: lr *= 0.5e-3 elif epoch > 60: lr *= 1e-3 elif epoch > 40: lr *= 1e-2 elif epoch > 20: lr *= 1e-1 print('Learning rate: ', lr) return lr def generate_slide_window(arr, step=1, n=1800): i = 0 result = [] while(i < (len(arr)-n+1)): result.append(arr[i:i+n]) i+=step return np.array(result) # %% from warnings import warn from nilmtk.disaggregate import Disaggregator from keras.layers import Conv1D, Dense, Dropout, Reshape, Flatten, add, MaxPooling1D, Input import keras import pandas as pd import numpy as np from collections import OrderedDict from keras.optimizers import SGD import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from keras.callbacks import ModelCheckpoint, LearningRateScheduler, ReduceLROnPlateau import keras.backend as K from statistics import mean import os import pickle import random import json from .util import * random.seed(10) np.random.seed(10) class ADAE(Disaggregator): def __init__(self, params): """ Iniititalize the moel with the given parameters """ self.MODEL_NAME = "ADAE" self.chunk_wise_training = params.get('chunk_wise_training',False) self.sequence_length = params.get('sequence_length',1800) self.stride_length = params.get('stride_length',self.sequence_length) self.n_epochs = params.get('n_epochs', 10) self.batch_size = params.get('batch_size',16) self.mains_mean = params.get('mains_mean',1000) self.mains_std = params.get('mains_std',600) self.appliance_params = params.get('appliance_params',{}) self.save_model_path = params.get('save-model-path', None) self.load_model_path = params.get('pretrained-model-path',None) self.models = OrderedDict() if self.load_model_path: self.load_model() def partial_fit(self, train_main, train_appliances, do_preprocessing=True,**load_kwargs): """ The partial fit function """ # If no appliance wise parameters are specified, then they are computed from the data if len(self.appliance_params) == 0: self.set_appliance_params(train_appliances) # TO preprocess the data and bring it to a valid shape if do_preprocessing: print ("Doing Preprocessing") train_main,train_appliances = self.call_preprocessing(train_main,train_appliances,'train') train_main = pd.concat(train_main,axis=0).values train_main = train_main.reshape((-1,self.sequence_length,1)) new_train_appliances = [] for app_name, app_df in train_appliances: app_df = pd.concat(app_df,axis=0).values app_df = app_df.reshape((-1,self.sequence_length,1)) new_train_appliances.append((app_name, app_df)) train_appliances = new_train_appliances for appliance_name, power in train_appliances: if appliance_name not in self.models: print ("First model training for ",appliance_name) self.models[appliance_name] = self.return_network() print (self.models[appliance_name].summary()) print ("Started Retraining model for ",appliance_name) model = self.models[appliance_name] filepath = 'adae-temp-weights-'+str(random.randint(0,100000))+'.h5' checkpoint = ModelCheckpoint(filepath, monitor='val_loss', verbose=1, save_best_only=True, mode='min') train_x,v_x,train_y,v_y = train_test_split(train_main,power,test_size=.15,random_state=10) def data_generator(data, targets, batch_size): batches = (len(data) + batch_size - 1)//batch_size while(True): for i in range(batches): X = data[i*batch_size : (i+1)*batch_size] Y = targets[i*batch_size : (i+1)*batch_size] yield (X, Y) lr_scheduler = LearningRateScheduler(lr_schedule) lr_reducer = ReduceLROnPlateau(factor=np.sqrt(0.1), cooldown=0, patience=3, min_lr=0.5e-6) model.fit_generator(generator = data_generator(train_x, train_y, self.batch_size), steps_per_epoch = (len(train_x) + self.batch_size - 1) // self.batch_size, epochs = self.n_epochs, verbose = 1, callbacks = [checkpoint,lr_scheduler,lr_reducer], validation_data = (v_x, v_y) ) # model.fit(train_x,train_y,validation_data = [v_x,v_y],epochs = self.n_epochs, callbacks = [checkpoint,lr_scheduler,lr_reducer],shuffle=True,batch_size=self.batch_size) model.load_weights(filepath) if self.save_model_path: self.save_model() def load_model(self): print ("Loading the model using the pretrained-weights") model_folder = self.load_model_path with open(os.path.join(model_folder, "model.json"), "r") as f: model_string = f.read().strip() params_to_load = json.loads(model_string) self.sequence_length = int(params_to_load['sequence_length']) self.mains_mean = params_to_load['mains_mean'] self.mains_std = params_to_load['mains_std'] self.appliance_params = params_to_load['appliance_params'] for appliance_name in self.appliance_params: self.models[appliance_name] = self.return_network() self.models[appliance_name].load_weights(os.path.join(model_folder,appliance_name+".h5")) def save_model(self): if os.path.exists(self.save_model_path) == False: os.makedirs(self.save_model_path) params_to_save = {} params_to_save['appliance_params'] = self.appliance_params params_to_save['sequence_length'] = self.sequence_length params_to_save['mains_mean'] = self.mains_mean params_to_save['mains_std'] = self.mains_std for appliance_name in self.models: print ("Saving model for ", appliance_name) self.models[appliance_name].save_weights(os.path.join(self.save_model_path,appliance_name+".h5")) with open(os.path.join(self.save_model_path,'model.json'),'w') as file: file.write(json.dumps(params_to_save, cls=NumpyEncoder)) def disaggregate_chunk(self, test_main_list, do_preprocessing=True): if do_preprocessing: test_main_list = self.call_preprocessing(test_main_list,submeters_lst=None,method='test') test_predictions = [] for test_main in test_main_list: test_main = test_main.values test_main = test_main.reshape((-1,self.sequence_length,1)) disggregation_dict = {} for appliance in self.models: prediction = self.models[appliance].predict(test_main,batch_size=self.batch_size) app_mean = self.appliance_params[appliance]['mean'] app_std = self.appliance_params[appliance]['std'] prediction = self.denormalize_output(prediction,app_mean,app_std) valid_predictions = prediction.flatten() valid_predictions = np.where(valid_predictions>0,valid_predictions,0) series =
pd.Series(valid_predictions)
pandas.Series
import sqlite3 import time import public_function as pb_fnc import pandas as pd import numpy as np class InfoCheck: bu_name = "" db_path = "../data/_DB/" def __init__(self, bu): self.__class__.bu_name = bu # get all master data of single code def get_single_code_all_master_data(self, material_code, master_data_item_list): str_master_data = "" for item in master_data_item_list: str_master_data += item + "," str_master_data = str_master_data.rstrip(",") database_fullname = self.__class__.db_path + self.__class__.bu_name + "_Master_Data.db" datasheet_name = self.__class__.bu_name + "_Master_Data" conn = sqlite3.connect(database_fullname) c = conn.cursor() sql_cmd = 'SELECT %s FROM %s WHERE Material=\"%s\"' % (str_master_data, datasheet_name, material_code) c.execute(sql_cmd) result = c.fetchall() if result: return result[0] else: return 0 # 读取单个代码全部的master data def get_master_data(self, code): # 数据库完整路径加名称 db_fullname = self.__class__.db_path + "Master_Data.db" # 表格名称,等于文件名称 table_name = "MATERIAL_MASTER" conn = sqlite3.connect(db_fullname) c = conn.cursor() str_cmd = "SELECT Description, Chinese_Description, Hierarchy_4, Hierarchy_5, Sales_Status, Purchase_Status, " \ "Standard_Cost FROM " + table_name + " WHERE Material = \'" + code + "\' " c.execute(str_cmd) row = c.fetchall() list_title = ["Description", "Chinese_Description", "Hierarchy_4", "Hierarchy_5", "Sales_Status", "Purchase_Status", "Standard_Cost"] return [list_title, list(row[0])] # 读取全部的master data list def get_master_data_list(self): # 文件名,无后缀 file_name = self.__class__.bu_name + "_Master_Data" # 数据库完整路径加名称 db_fullname = self.__class__.db_path + file_name + ".db" # 表格名称,等于文件名称 tbl_name = file_name conn = sqlite3.connect(db_fullname) c = conn.cursor() result = c.execute("SELECT * from " + tbl_name) row = result.fetchall() conn.close() return list(row) # get master data for code list, phase out # def get_master_data_for_list(self, code_list, master_data_name): # file_name = self.__class__.bu_name + "_Master_Data" if master_data_name == "SAP_Price" else "Master_Data" # db_fullname = self.__class__.db_path + file_name + ".db" # table_name = self.__class__.bu_name + "_SAP_Price" if master_data_name == "SAP_Price" else "MATERIAL_MASTER" # master_data_result = [] # conn = sqlite3.connect(db_fullname) # c = conn.cursor() # for code_name in code_list: # if master_data_name == "SAP_Price": # sql_cmd = "SELECT Price FROM " + table_name + " WHERE Material = \'" + code_name + "\'" # else: # sql_cmd = "SELECT " + master_data_name + " FROM " + table_name + " WHERE Material = \'" + code_name + "\'" # c.execute(sql_cmd) # master_data_output = c.fetchall() # if master_data_output: # master_data_result.append(master_data_output[0][0]) # else: # master_data_result.append(0) # return master_data_result # get single column from bu master data def get_bu_master_data(self, code, column_name): file_name = self.__class__.bu_name + "_Master_Data" db_fullname = self.__class__.db_path + file_name + ".db" conn = sqlite3.connect(db_fullname) c = conn.cursor() sql_cmd = 'SELECT %s FROM %s WHERE Material = \"%s\"' % (column_name, file_name, code) c.execute(sql_cmd) md_result = c.fetchall() if md_result: return md_result[0][0] else: return "" # by H5的销量数据 def get_h5_sales_data(self, data_type, price_type, hierarchy, month_number): # 文件名,无后缀 tbl_name = self.__class__.bu_name + "_" + data_type # 数据库完整路径加名称 db_fullname = self.__class__.db_path + tbl_name + ".db" conn = sqlite3.connect(db_fullname) c = conn.cursor() # 创建命令 if price_type == "Standard_Cost": if hierarchy == "ALL": str_cmd = "SELECT month, sum(Value_Standard_Cost) from " + tbl_name + " GROUP BY month ORDER BY month" else: str_cmd = "SELECT month, sum(Value_Standard_Cost) from " + tbl_name + " WHERE Hierarchy_5 = '" + \ hierarchy + "\' COLLATE NOCASE GROUP BY month ORDER BY month" else: if hierarchy == "ALL": str_cmd = "SELECT month, sum(Value_SAP_Price) from " + tbl_name + " GROUP BY month ORDER BY month" else: str_cmd = "SELECT month, sum(Value_SAP_Price) from " + tbl_name + " WHERE Hierarchy_5 = \'" + \ hierarchy + "\' COLLATE NOCASE GROUP BY month ORDER BY month" c.execute(str_cmd) sales_result = self.data_mapping(c.fetchall(), pb_fnc.get_current_month(), 0 - month_number) return sales_result def get_h5_inventory_data(self, inv_type, price_type, h5_name, month_number): # 文件名,无后缀 file_name = self.__class__.bu_name + "_" + inv_type + "_INV" # 数据库完整路径加名称 db_fullname = self.__class__.db_path + file_name + ".db" # 表格名称,等于文件名称 tbl_name = file_name conn = sqlite3.connect(db_fullname) c = conn.cursor() if h5_name == "ALL": str_cmd = "SELECT month, SUM(Value_%s) from %s GROUP BY month" % (price_type, tbl_name) else: str_cmd = "SELECT month, SUM(Value_%s) from %s WHERE Hierarchy_5 = \"%s\" COLLATE NOCASE " \ "GROUP BY month " % (price_type, tbl_name, h5_name) c.execute(str_cmd) h5_inv_result = self.data_mapping(c.fetchall(), pb_fnc.get_current_month(), 0 - month_number) return h5_inv_result # get sap_price by code def get_code_sap_price(self, code_name): db_fullname = self.__class__.db_path + self.__class__.bu_name + "_Master_Data.db" table_name = self.__class__.bu_name + "_SAP_Price" conn = sqlite3.connect(db_fullname) c = conn.cursor() c.execute("SELECT Price FROM " + table_name + " WHERE Material = \'" + code_name + "\'") sap_price_result = c.fetchall() if not sap_price_result: return 0 else: return sap_price_result[0][0] # get gtin by code def get_code_gtin(self, code_name): db_fullname = self.__class__.db_path + "Master_Data.db" filename = "GTIN" conn = sqlite3.connect(db_fullname) c = conn.cursor() c.execute("SELECT Barcode from " + filename + " WHERE [Material code] = \'" + code_name + "\'") return c.fetchall()[0][0] # get RAG by code def get_code_rag(self, code_name): db_fullname = self.__class__.db_path + "Master_Data.db" filename = "RAG_Report" conn = sqlite3.connect(db_fullname) c = conn.cursor() c.execute("SELECT REGLICNO, REGAPDATE, REGEXDATE from " + filename + " WHERE MATNR = \'" + code_name + "\' ORDER by REGAPDATE") return c.fetchall() # get Phoenix Project Status by code def get_code_phoenix_result(self, material_code): db_fullname = self.__class__.db_path + self.__class__.bu_name + "_Master_Data.db" filename = "TU_Phoenix_List" conn = sqlite3.connect(db_fullname) c = conn.cursor() sql_cmd = "SELECT Month, [Target SKU] FROM " + filename + " WHERE [Exit SKU] = \'" + material_code + "\'" c.execute(sql_cmd) phoenix_result = c.fetchall() phoenix_title = ["Phoenix Status", "Stop Manufacturing Date", "Target SKU"] if len(phoenix_result) == 0: return [["Phoenix Status"], ["N"]] else: return [phoenix_title, ["Y"] + list(phoenix_result[0])] pass # by code的销量数据 def get_code_sales(self, data_type, code, month_number): # 文件名,无后缀 tbl_name = self.__class__.bu_name + "_" + data_type # 数据库完整路径加名称 db_fullname = self.__class__.db_path + tbl_name + ".db" conn = sqlite3.connect(db_fullname) c = conn.cursor() str_cmd = "SELECT month, SUM(quantity) from " + tbl_name + " WHERE material = \'" + code \ + "\' GROUP BY month ORDER BY month" c.execute(str_cmd) sales_result = self.data_mapping(c.fetchall(), pb_fnc.get_current_month(), 0 - month_number) conn.close() return sales_result # get inventory data by code # inventory_type: "JNJ", "LP", month_number: positive integer def get_code_inventory(self, material_code, inventory_type, month_number): tbl_name = self.__class__.bu_name + "_" + inventory_type + "_INV" db_fullname = self.__class__.db_path + tbl_name + ".db" conn = sqlite3.connect(db_fullname) c = conn.cursor() stock_column_name = 'Available_Stock' if inventory_type == 'JNJ' else 'quantity' sql_cmd = 'SELECT month, SUM(%s) FROM %s WHERE Material = \"%s\" GROUP BY month ' \ 'ORDER BY month' % (stock_column_name, tbl_name, material_code) c.execute(sql_cmd) inventory_result = self.data_mapping(c.fetchall(), pb_fnc.get_current_month(), 0 - month_number) return inventory_result # calculate inventory month @staticmethod def get_inventory_month(lst_inv, lst_sales, month_number, blank_type=0): # set blank value as None if blank_type is 1, else set zero lst_inv_month = [] # leave previous 6 month in blank for i in range(0, 6): lst_inv_month.append(0) if blank_type == 0 else lst_inv_month.append(None) for i in range(0, month_number-6): if sum(lst_sales[i: i+6]) == 0: lst_inv_month.append(0) if blank_type == 0 else lst_inv_month.append(None) else: lst_inv_month.append(round(lst_inv[i+6] / (sum(lst_sales[i: i+6])/6), 1)) return lst_inv_month # Generate month list. # The previous month list does not include current month. # The future month list include current month. @staticmethod def get_time_list(start_point, parameter): # Get month list in format YYYY-MM (start_point) # parameter, the month list we need to generate start_year, start_month = int(start_point[0:4]), int(start_point[-2:]) month_list = [] lower_limit = parameter if parameter <= 0 else 0 upper_limit = parameter if parameter > 0 else 0 for i in range(lower_limit, upper_limit): t = (start_year, start_month + i, 14, 3, 6, 3, 6, 0, 0) month_list.append(time.strftime("%Y-%m", time.localtime(time.mktime(t)))) return month_list # 将数据与指定月份mapping def data_mapping(self, data, start_month, months): month_list = self.get_time_list(start_month, months) result_value = [] for item_month in month_list: value = 0 for item_value in data: if item_value[0] == item_month: value = item_value[1] result_value.append(value) return result_value # get forecast of single code, set fcst_type as Statistical or Final def get_code_forecast(self, code_name, fcst_type, month_quantity): db_fullname = self.__class__.db_path + self.__class__.bu_name + "_" + fcst_type + "_Forecast.db" # get month list and generate blank dataframe current_month = time.strftime("%Y-%m", time.localtime()) month_list = self.get_time_list(current_month, month_quantity) df_forecast_final = pd.DataFrame(index=month_list) # connect to forecast database conn = sqlite3.connect(db_fullname) c = conn.cursor() # get the newest table c.execute("SELECT name from sqlite_master where type = \"table\" ORDER by name DESC") tbl_name = c.fetchone()[0] # get pivot table of forecast sql_cmd = 'SELECT Month, Quantity FROM %s WHERE Material =\"%s\"' % (tbl_name, code_name) df_forecast = pd.read_sql(con=conn, sql=sql_cmd, index_col='Month') # join the two dataframe to mapping df_forecast_final = df_forecast_final.join(df_forecast) df_forecast_final.fillna(0, inplace=True) output = [item[0] for item in df_forecast_final.values.tolist()] return [month_list, output] # get forecast of one hierarchy with pandas, set forecast_type as Statistical or Final def get_h5_forecast(self, h5_name, forecast_type, month_quantity): # Get future month list current_month = time.strftime("%Y-%m", time.localtime()) month_list = self.get_time_list(current_month, month_quantity) df_forecast_result =
pd.DataFrame(index=month_list, data=None)
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Jul 13 21:46:26 2021 @author: hk_nien @ Twitter """ from pathlib import Path from time import time import re import matplotlib.pyplot as plt import pandas as pd import numpy as np from tools import set_xaxis_dateformat, set_yaxis_log_minor_labels import ggd_data # Clone of the github.com/mzelst/covid-19 repo. test_path = '../mzelst-covid19-nobackup/data-rivm/tests' _CACHE = {} # store slow data here: (date_a, date_b) -> (tm, dataframe) #%% def load_testdata(min_date='2021-01-01', max_date='2099-01-01'): """Return DataFrame. Specify mindate as 'yyyy-mm-dd'. Use cache if available. Pull data from mzelst-covid19 repository (which should be up to date). Return DataFrame with: - index: multi-index (sdate, fdate). - n_tested: number of tests (sum over regions) - n_pos: number postiive """ if (min_date, max_date) in _CACHE: tm, df = _CACHE[(min_date, max_date)] if time() - tm < 3600: print('Loaded from cache.') return df.copy() # Lead dataframes for all requested dates. min_date, max_date = [pd.to_datetime(x) for x in [min_date, max_date]] fdate = min_date dfs = [] while fdate <= max_date: fdate_str = fdate.strftime('%Y-%m-%d') try: df = ggd_data.load_ggd_pos_tests(fdate_str, quiet=True) except FileNotFoundError: break df.reset_index(inplace=True) df.rename(columns={'Date_tested': 'sdate'}, inplace=True) df['fdate'] = fdate dfs.append(df) fdate += pd.Timedelta('1 d') if len(dfs) == 0: raise ValueError(f'No data loaded for range {min_date} .. {max_date}.') print(f'Loaded {len(dfs)} GGD test files, last one ' f'{dfs[-1].iloc[0]["fdate"].strftime("%Y-%m-%d")}') df = pd.concat(dfs) df = df[['sdate', 'fdate', 'n_tested', 'n_pos']] df = df.sort_values(['sdate', 'fdate']) df = df.loc[df['sdate'] >= min_date - pd.Timedelta(2, 'd')] _CACHE[(min_date, max_date)] = (time(), df.copy()) return df def plot_jump_10Aug(): """Plot jump in data due to changes in counting around 10 Aug 2020.""" df = load_testdata('2021-06-01', '2021-09-01') test_snapshots = {} for fdate in ['2021-08-09', '2021-08-11']: test_snapshots[fdate] = df.loc[df['fdate'] == fdate].set_index('sdate') fig, ax = plt.subplots(figsize=(8, 4), tight_layout=True) colors = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', '#8c564b'] # n = len(test_snapshots) for i, (fdate, df1) in enumerate(test_snapshots.items()): msize = (1.5-i)*40 ax.scatter(df1.index, df1['n_tested'], label=f'Tests GGD, gepub. {fdate}', color=colors[i], marker='o^'[i], s=msize) ax.scatter(df1.index, df1['n_pos'], label=f'Posi. GGD, gepub. {fdate}', color=colors[i], marker='+x'[i], s=msize*1.5) oneday = pd.Timedelta('1d') ax.set_xlim(df['sdate'].min()-oneday, df['sdate'].max()+oneday) ax.grid() ax.set_title('Aantal GGD tests per dag op twee publicatiedatums.') set_xaxis_dateformat(ax, xlabel='Datum monstername') ax.legend() fig.show() def plot_daily_tests_and_delays(date_min, date_max='2099-01-01', src_col='n_tested'): """Note: date_min, date_max refer to file dates. Test dates are generally up to two days earlier. Repository 'mzelst-covid19' should be up to date. Optionally set src_col='n_pos' """ # Convert to index 'sdate' and columns 2, 3, 4, ... with n_tested # at 2, 3, ... days after sampling date. df = load_testdata(date_min, date_max) n_days_wait = 5 for iw in range(2, n_days_wait+1): df1 = df.loc[df['sdate'] == df['fdate'] - pd.Timedelta(iw, 'd')] df[iw] = df1[src_col] df = df.groupby('sdate').max() # Manually tweak around 2021-08-10 when counting changed. for iw in range(3, n_days_wait+1): sdate = pd.to_datetime('2021-08-10') - pd.Timedelta(iw, 'd') for j in range(iw, n_days_wait+1): df.at[sdate, j] = np.nan fig, ax = plt.subplots(figsize=(9, 5), tight_layout=True) barwidth = pd.Timedelta(1, 'd') colors = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', '#8c564b', '#e377c2', '#7f7f7f', '#bcbd22', '#17becf', '#dddddd', '#bbbbbb', '#999999', '#777777', '#555555', '#333333', '#111111' ] * 2 for iw, color in zip(range(2, n_days_wait+1), colors): xs = df.index + pd.Timedelta(0.5, 'd') ytops = df[iw].values ybots = df[iw].values*0 if iw == 2 else df[iw-1].values edge_args = dict( edgecolor=('#444488' if len(xs) < 150 else 'none'), linewidth=min(1.5, 100/len(xs)-0.2), ) ax.bar(xs, ytops-ybots, bottom=ybots, color=color, width=barwidth, label=(f'Na {iw} dagen' if iw < 10 else None), **edge_args ) if iw == 2: xmask = df.index.dayofweek.isin([5,6]) color = '#1b629a' ax.bar( xs[xmask], (ytops-ybots)[xmask], bottom=ybots[xmask], color=color, width=barwidth, **edge_args ) if date_min < '2021-08-07' < date_max: ax.text(pd.to_datetime('2021-08-07T13:00'), 20500, 'Telmethode gewijzigd!', rotation=90, horizontalalignment='center', fontsize=8 ) ytops = df.loc[:, range(2, n_days_wait+1)].max(axis=1, skipna=True) # Series missing_day2 = (ytops - df[2])/ytops # Series missing_thresh = 0.005 row_mask = (missing_day2 >= missing_thresh) for tm, y in ytops.loc[row_mask].items(): if tm < pd.to_datetime(date_min): continue percent_late = np.around(missing_day2.loc[tm]*100, 1) ax.text( tm +
pd.Timedelta(0.55, 'd')
pandas.Timedelta
import os import glob import pandas as pd import streamlit as st @st.cache def get_local_feather_files(): list_of_files = glob.glob('*.feather') files_with_size = [(file_path, os.stat(file_path).st_size) for file_path in list_of_files] df = pd.DataFrame(files_with_size) df.columns = ['File Name', 'File Size in KBytes'] df['File Size in KBytes'] = (df['File Size in KBytes'] / 1024).astype(int) return df @st.cache def load_data(): data =
pd.read_feather('crashes.feather')
pandas.read_feather
''' dedup.py - Deduplicate reads that are coded with a UMI ========================================================= :Author: <NAME>, <NAME> :Release: $Id$ :Date: |today| :Tags: Python UMI Purpose ------- The purpose of this command is to deduplicate BAM files based on the first mapping co-ordinate and the UMI attached to the read. Selecting the representative read --------------------------------- The following criteria are applied to select the read that will be retained from a group of duplicated reads: 1. The read with the lowest number of mapping coordinates (see --multimapping-detection-method option) 2. The read with the highest mapping quality Otherwise a read is chosen at random. dedup-specific options ---------------------- --output-stats (string, filename_prefix) Output edit distance statistics and UMI usage statistics using this prefix. Output files are: "[prefix]_stats_per_umi_per_position.tsv" Histogram of counts per position per UMI pre- and post-deduplication "[prefix]_stats_per_umi_per.tsv" Table of stats per umi. Number of times UMI was observed, total counts and median counts, pre- and post-deduplication "[prefix]_stats_edit_distance.tsv" Edit distance between UMIs at each position. Positions with a single UMI are reported seperately. Pre- and post-deduplication and inluding null expectations from random sampling of UMIs from the UMIs observed across all positions. ''' import sys import collections import re import os # required to make iteritems python2 and python3 compatible from builtins import dict import pysam import pandas as pd import numpy as np import umi_tools.Utilities as U import umi_tools.network as network import umi_tools.umi_methods as umi_methods # add the generic docstring text __doc__ = __doc__ + U.GENERIC_DOCSTRING_GDC __doc__ = __doc__ + U.GROUP_DEDUP_GENERIC_OPTIONS def detect_bam_features(bamfile, n_entries=1000): ''' read the first n entries in the bam file and identify the tags available detecting multimapping ''' inbam = pysam.Samfile(bamfile) inbam = inbam.fetch(until_eof=True) tags = ["NH", "X0", "XT"] available_tags = {x: 1 for x in tags} for n, read in enumerate(inbam): if n > n_entries: break if read.is_unmapped: continue else: for tag in tags: if not read.has_tag(tag): available_tags[tag] = 0 return available_tags def aggregateStatsDF(stats_df): ''' return a dataframe with aggregated counts per UMI''' grouped = stats_df.groupby("UMI") agg_dict = {'counts': [np.median, len, np.sum]} agg_df = grouped.agg(agg_dict) agg_df.columns = ['median_counts', 'times_observed', 'total_counts'] return agg_df def main(argv=None): """script main. parses command line options in sys.argv, unless *argv* is given. """ if argv is None: argv = sys.argv # setup command line parser parser = U.OptionParser(version="%prog version: $Id$", usage=globals()["__doc__"]) group = U.OptionGroup(parser, "dedup-specific options") group.add_option("--output-stats", dest="stats", type="string", default=False, help="Specify location to output stats") parser.add_option_group(group) # add common options (-h/--help, ...) and parse command line (options, args) = U.Start(parser, argv=argv) U.validateSamOptions(options) if options.random_seed: np.random.seed(options.random_seed) if options.stdin != sys.stdin: in_name = options.stdin.name options.stdin.close() else: raise ValueError("Input on standard in not currently supported") if options.stdout != sys.stdout: if options.no_sort_output: out_name = options.stdout.name else: out_name = U.getTempFilename() sorted_out_name = options.stdout.name options.stdout.close() else: if options.no_sort_output: out_name = "-" else: out_name = U.getTempFilename() sorted_out_name = "-" if not options.no_sort_output: # need to determine the output format for sort if options.out_sam: sort_format = "sam" else: sort_format = "bam" if options.in_sam: in_mode = "r" else: in_mode = "rb" if options.out_sam: out_mode = "wh" else: out_mode = "wb" if options.stats and options.ignore_umi: raise ValueError("'--output-stats' and '--ignore-umi' options" " cannot be used together") infile = pysam.Samfile(in_name, in_mode) outfile = pysam.Samfile(out_name, out_mode, template=infile) if options.paired: outfile = umi_methods.TwoPassPairWriter(infile, outfile) nInput, nOutput, input_reads, output_reads = 0, 0, 0, 0 if options.detection_method: bam_features = detect_bam_features(infile.filename) if not bam_features[options.detection_method]: if sum(bam_features.values()) == 0: raise ValueError( "There are no bam tags available to detect multimapping. " "Do not set --multimapping-detection-method") else: raise ValueError( "The chosen method of detection for multimapping (%s) " "will not work with this bam. Multimapping can be detected" " for this bam using any of the following: %s" % ( options.detection_method, ",".join( [x for x in bam_features if bam_features[x]]))) gene_tag = options.gene_tag metacontig2contig = None if options.chrom: inreads = infile.fetch(reference=options.chrom) else: if options.per_contig and options.gene_transcript_map: metacontig2contig = umi_methods.getMetaContig2contig( infile, options.gene_transcript_map) metatag = "MC" inreads = umi_methods.metafetcher(infile, metacontig2contig, metatag) gene_tag = metatag else: inreads = infile.fetch() # set up ReadCluster functor with methods specific to # specified options.method processor = network.ReadDeduplicator(options.method) bundle_iterator = umi_methods.get_bundles( options, metacontig_contig=metacontig2contig) if options.stats: # set up arrays to hold stats data stats_pre_df_dict = {"UMI": [], "counts": []} stats_post_df_dict = {"UMI": [], "counts": []} pre_cluster_stats = [] post_cluster_stats = [] pre_cluster_stats_null = [] post_cluster_stats_null = [] topology_counts = collections.Counter() node_counts = collections.Counter() read_gn = umi_methods.random_read_generator( infile.filename, chrom=options.chrom, barcode_getter=bundle_iterator.barcode_getter) for bundle, key, status in bundle_iterator(inreads): nInput += sum([bundle[umi]["count"] for umi in bundle]) while nOutput >= output_reads + 10000: output_reads += 10000 U.info("Written out %i reads" % output_reads) while nInput >= input_reads + 1000000: input_reads += 1000000 U.info("Parsed %i input reads" % input_reads) if options.stats: # generate pre-dudep stats average_distance = umi_methods.get_average_umi_distance(bundle.keys()) pre_cluster_stats.append(average_distance) cluster_size = len(bundle) random_umis = read_gn.getUmis(cluster_size) average_distance_null = umi_methods.get_average_umi_distance(random_umis) pre_cluster_stats_null.append(average_distance_null) if options.ignore_umi: for umi in bundle: nOutput += 1 outfile.write(bundle[umi]["read"]) else: # dedup using umis and write out deduped bam reads, umis, umi_counts = processor( bundle=bundle, threshold=options.threshold) for read in reads: outfile.write(read) nOutput += 1 if options.stats: # collect pre-dudupe stats stats_pre_df_dict['UMI'].extend(bundle) stats_pre_df_dict['counts'].extend( [bundle[UMI]['count'] for UMI in bundle]) # collect post-dudupe stats post_cluster_umis = [bundle_iterator.barcode_getter(x)[0] for x in reads] stats_post_df_dict['UMI'].extend(umis) stats_post_df_dict['counts'].extend(umi_counts) average_distance = umi_methods.get_average_umi_distance(post_cluster_umis) post_cluster_stats.append(average_distance) cluster_size = len(post_cluster_umis) random_umis = read_gn.getUmis(cluster_size) average_distance_null = umi_methods.get_average_umi_distance(random_umis) post_cluster_stats_null.append(average_distance_null) outfile.close() if not options.no_sort_output: # sort the output pysam.sort("-o", sorted_out_name, "-O", sort_format, out_name) os.unlink(out_name) # delete the tempfile if options.stats: # generate the stats dataframe stats_pre_df = pd.DataFrame(stats_pre_df_dict) stats_post_df =
pd.DataFrame(stats_post_df_dict)
pandas.DataFrame
import os import pandas as pd import math import datetime from tqdm import tqdm from pathlib import Path from seg import seglosses from seg.config import config from seg.data import DataLoader from seg.architect.Unet import unet from seg.utils import time_to_timestr import tensorflow as tf from tensorflow.keras.optimizers import SGD, Adam, RMSprop from tensorflow.keras.callbacks import EarlyStopping, ReduceLROnPlateau, ModelCheckpoint, TensorBoard, LearningRateScheduler from tensorflow.keras.optimizers.schedules import InverseTimeDecay from tensorboard.plugins.hparams import api as hp tf.get_logger().setLevel("INFO") HP_FREEZE_AT = hp.HParam("freeze_at", hp.Discrete([16])) HP_DROPOUT = hp.HParam("dropout", hp.RealInterval(0.1, 0.2)) HP_OPTIMIZER = hp.HParam("optimizer", hp.Discrete(["sgd", "adam"])) HP_LOSS = hp.HParam("loss", hp.Discrete(["focal"])) HP_GAMMA = hp.HParam("focal_gamma", hp.Discrete([0.5, 1., 2., 5.])) HPARAMS = [ HP_FREEZE_AT, HP_DROPOUT, HP_OPTIMIZER, HP_LOSS, HP_GAMMA, ] METRICS = [ hp.Metric("epoch_jaccard_index", group="validation", display_name="Jaccard Index (val.)"), hp.Metric("epoch_dice_coeff", group="validation", display_name="Dice Coeff (val.)") ] def lr_step_decay(epoch, lr): """ Step decay lr: learning_rate = initial_lr * drop_rate^floor(epoch / epochs_drop) """ initial_learning_rate = config["learning_rate"] drop_rate = 0.5 epochs_drop = 10.0 return initial_learning_rate * math.pow(drop_rate, math.floor(epoch/epochs_drop)) def train(run_dir, hparams, train_gen, valid_gen): # define model model = unet(dropout_rate=hparams[HP_DROPOUT], freeze=config["freeze"], freeze_at=hparams[HP_FREEZE_AT]) print("Model: ", model._name) # optim optimizers = { "sgd": SGD(learning_rate=config["learning_rate"], momentum=config["momentum"], nesterov=True), "adam": Adam(learning_rate=config["learning_rate"], amsgrad=True), "rmsprop": RMSprop(learning_rate=config["learning_rate"], momentum=config["momentum"]) } optimizer = optimizers[hparams[HP_OPTIMIZER]] print("Optimizer: ", optimizer._name) # loss losses = { "jaccard": seglosses.jaccard_loss, "dice": seglosses.dice_loss, "bce": seglosses.bce_loss, "bce_dice": seglosses.bce_dice_loss, "focal": seglosses.focal_loss(gamma=hparams[HP_GAMMA]) } loss = losses[hparams[HP_LOSS]] model.compile(optimizer=optimizer, loss=[loss], metrics=[seglosses.jaccard_index, seglosses.dice_coeff, seglosses.bce_loss]) # callbacks lr_schedule = LearningRateScheduler(lr_step_decay, verbose=1) anne = ReduceLROnPlateau(monitor="loss", factor=0.2, patience=15, verbose=1, min_lr=1e-7) early = EarlyStopping(monitor="val_loss", patience=50, verbose=1) tensorboard_callback = TensorBoard(log_dir=run_dir, write_images=True) hparams_callback = hp.KerasCallback(run_dir, hparams) file_path = "../models/%s/%s/%s_%s_ep{epoch:02d}_bsize%d_insize%s.hdf5" % ( run_dir.split("/")[-2], run_dir.split("/")[-1], model._name, optimizer._name, config["batch_size"], config["image_size"] ) Path("../models/{}/{}".format(run_dir.split("/")[-2], run_dir.split("/")[-1])).mkdir(parents=True, exist_ok=True) checkpoint = ModelCheckpoint(file_path, verbose=1, save_best_only=True) callbacks_list = [ lr_schedule, early, anne, checkpoint, tensorboard_callback, hparams_callback ] print("="*100) print("TRAINING ...\n") history = model.fit(train_gen, batch_size=config["batch_size"], epochs=config["epochs"], callbacks=callbacks_list, validation_data=valid_gen, workers=8, use_multiprocessing=True) his =
pd.DataFrame(history.history)
pandas.DataFrame
from __future__ import division # brings in Python 3.0 mixed type calculation rules import datetime import inspect import numpy as np import numpy.testing as npt import os.path import pandas as pd import sys from tabulate import tabulate import unittest print("Python version: " + sys.version) print("Numpy version: " + np.__version__) from ..ted_exe import Ted test = {} class TestTed(unittest.TestCase): """ Unit tests for TED model. """ print("ted unittests conducted at " + str(datetime.datetime.today())) def setUp(self): """ Setup routine for ted unit tests. :return: """ pass def tearDown(self): """ Teardown routine for ted unit tests. :return: """ pass # teardown called after each test # e.g. maybe write test results to some text file def create_ted_object(self): # create empty pandas dataframes to create empty object for testing df_empty = pd.DataFrame() # create an empty ted object ted_empty = Ted(df_empty, df_empty) return ted_empty def test_daily_app_flag(self): """ :description generates a daily flag to denote whether a pesticide is applied that day or not (1 - applied, 0 - anot applied) :param num_apps; number of applications :param app_interval; number of days between applications :NOTE in TED model there are two application scenarios per simulation (one for a min/max exposure scenario) (this is why the parameters are passed in) :return: """ # create empty pandas dataframes to create empty object for this unittest ted_empty = self.create_ted_object() expected_results = pd.Series([], dtype='bool') result =
pd.Series([[]], dtype='bool')
pandas.Series
#!/usr/bin/env python3 import os import subprocess import tempfile from pathlib import Path import pandas as pd path_to_file = os.path.realpath(__file__) repo_root = Path(path_to_file).parent.parent INPUT_ZIP = repo_root / "downloaded-data" / "fine-grained-refactorings.zip" SAVE_TO = repo_root / "data" / "fine-grained-refactorings.csv" with tempfile.TemporaryDirectory() as dir: subprocess.run(["unzip", INPUT_ZIP, "-d", dir]) dfs = [ pd.read_csv(file) for file in (Path(dir) / "manualy_labeled_commits (goldset)").iterdir() ] concat_dfs =
pd.concat(dfs, axis=0, ignore_index=True)
pandas.concat
from src.sampling import outputs_given_z_c_y from scipy.spatial import distance import pandas as pd import torch import numpy as np from torch import nn def outputs_counterfact_given_y_c(model, y_c_list, center_z=False): ''' Samples from a list of target and condition given a model Parameters: Model: VariationalModel A fitted VariationalModel y_c_list: list of tensor A list of tuple of target and condition tensors center_z: bool Whether to sample from the origin of the latent space ''' n_sample = y_c_list[0][0].shape[0] if center_z: z = torch.zeros(n_sample, model.latent_shape) else: z = model.latent_distribution.sample((n_sample, )) counterfactuals = [outputs_given_z_c_y(model, z, c, y) for y, c in y_c_list] return counterfactuals def P_X_cat_counterfact_given_y_c(model, y_c_list, center_z=False): ''' Samples counterfactuals from a list of target and condition given a model. Parameters: Model: VariationalModel A fitted VariationalModel y_c_list: list of tensor A list of tuple of target and condition tensors center_z: bool Whether to sample from the origin of the latent space ''' counterfact_outputs = outputs_counterfact_given_y_c(model, y_c_list, center_z) counterfact_probas = torch.cat([nn.Softmax(dim=1)(el['X_logits']) for el in counterfact_outputs]).reshape(len(y_c_list), -1, model.X_categorical_n_classes, model.X_categorical_shape).permute(0, 1, 3, 2) return counterfact_probas def compute_categorical_average_effect(probas): ''' To be improved (for loop + nan problem + allow for choosing the similarity/distance) Pb with jensenshannon distance, some probas that are really close return nan instead of zeros. To allow for computation on other kinds of distance for continuous effects ''' if isinstance(probas, torch.Tensor): probas = probas.detach().numpy() ae = {} n_classes = probas.shape[0] for i in range(n_classes): for j in range(i + 1, n_classes): jsd = distance.jensenshannon(probas[i].T, probas[j].T, base=3) ae[f'ae {i}-{j}'] = np.nanmean(jsd, axis=1) # gets nan instead of 0 for proba that are really close return
pd.DataFrame(ae)
pandas.DataFrame
import numpy as np import pandas as pd from math import ceil from itertools import combinations, product from collections import Counter from scipy.stats import chi2_contingency, pointbiserialr from sklearn.preprocessing import LabelEncoder import matplotlib.pyplot as plt import seaborn as sns from wordcloud import WordCloud, STOPWORDS sns.set_style("darkgrid") class Vizard: """Vizard object holds the `DataFrame` along with its configurations including the `PROBLEM_TYPE`, `DEPENDENT_VARIABLE`, `CATEGORICAL_INDEPENDENT_VARIABLES`, `CONTINUOUS_INDEPENDENT_VARIABLES`, and `TEXT_VARIABLES`""" def __init__(self, data, config=None): self._data = data self._config = config @property def data(self): return self._data @property def config(self): return self._config @data.setter def data(self, data): self._data = data @config.setter def config(self, config): self._config = config def categorical(self, x): fig = plt.figure(figsize=(10, 4)) fig.suptitle(f"{x} Distribution", fontsize=24) ax = self.data[x].value_counts().plot.bar() for p in ax.patches: ax.annotate( str(p.get_height()), (p.get_x() * 1.005, p.get_height() * 1.005) ) return fig def continuous(self, x): fig = plt.figure(figsize=(20, 6)) fig.suptitle(f"{x} Distribution", fontsize=24) sns.histplot(self.data[x], kde=False) return fig def timeseries(self, x): fig, ax = plt.subplots(figsize=(20, 6)) self.data[x].plot(ax=ax) return fig def categorical_vs_continuous(self, x, y, return_fig=True): fig = plt.figure(figsize=(20, 8)) ax = [ plt.subplot2grid((2, 3), (0, 0), colspan=1), plt.subplot2grid((2, 3), (0, 1), colspan=2), plt.subplot2grid((2, 3), (1, 0), colspan=3), ] fig.suptitle(x, fontsize=18) self.data[x].value_counts().plot.pie(ax=ax[0], autopct="%1.1f%%") ax[0].legend() sns.histplot(data=self.data, x=y, hue=x, kde=False, ax=ax[1]) sns.boxplot(y=y, x=x, data=self.data, ax=ax[2]) return fig if return_fig else plt.show() if fig is not None else None def categorical_vs_categorical(self, x, y, return_fig=True): fig, ax = plt.subplots(1, 2, figsize=(20, 6)) fig.suptitle(x, fontsize=18) self.data[x].value_counts().plot.pie(ax=ax[0], autopct="%1.1f%%") ax[0].legend() sns.heatmap( pd.crosstab(index=self.data[y], columns=self.data[x]), ax=ax[1], cmap="Blues", annot=True, square=True, fmt="d", ) return fig if return_fig else plt.show() if fig is not None else None def continuous_vs_continuous(self, x, y, return_fig=True): fig, ax = plt.subplots(1, 2, figsize=(20, 6)) fig.suptitle(x, fontsize=18) sns.histplot(self.data[x], ax=ax[0], kde=False) sns.scatterplot(x=x, y=y, data=self.data, ax=ax[1]) return fig if return_fig else plt.show() if fig is not None else None def continuous_vs_categorical(self, x, y, return_fig=True): fig = plt.figure(figsize=(20, 12)) ax = [ plt.subplot2grid((3, 3), (0, 0), colspan=3), plt.subplot2grid((3, 3), (1, 0), colspan=3), plt.subplot2grid((3, 3), (2, 0)), plt.subplot2grid((3, 3), (2, 1), colspan=2), ] fig.suptitle(x, fontsize=18) sns.histplot(self.data[x], kde=False, ax=ax[0]) sns.histplot(x=x, hue=y, data=self.data, kde=False, ax=ax[1]) sns.boxplot(x=self.data[x], ax=ax[2]) sns.boxplot(x=y, y=x, data=self.data, ax=ax[3]) return fig if return_fig else plt.show() if fig is not None else None def check_missing(self, return_fig=True): """Plot a heatmap to visualize missing values in the DataFrame""" fig, ax = plt.subplots(figsize=(20, 6)) fig.suptitle("Missing Values", fontsize=24) sns.heatmap(self.data.isnull(), cbar=False, yticklabels=False) return fig if return_fig else plt.show() if fig is not None else None def count_missing(self, return_fig=True): """Plot to visualize the count of missing values in each column in the DataFrame""" fig = plt.figure(figsize=(20, 4)) fig.suptitle("Count of Missing Values", fontsize=24) ax = self.data.isna().sum().plot.bar() for p in ax.patches: ax.annotate( str(p.get_height()), (p.get_x() * 1.005, p.get_height() * 1.005) ) return fig if return_fig else plt.show() if fig is not None else None def count_missing_by_group(self, group_by=None, return_fig=True): """Plot to visualize the count of missing values in each column in the DataFrame, grouped by a categorical variable :param group_by: a column in the DataFrame""" fig, ax = plt.subplots(figsize=(20, 4)) fig.suptitle(f"Count of Missing Values Grouped By {group_by}", fontsize=24) self.data.drop(group_by, 1).isna().groupby( self.data[group_by], sort=False ).sum().T.plot.bar(ax=ax) for p in ax.patches: ax.annotate( str(p.get_height()), (p.get_x() * 1.005, p.get_height() * 1.005) ) return fig if return_fig else plt.show() if fig is not None else None def count_unique(self, return_fig=True): """Plot to visualize the count of unique values in each column in the DataFrame""" fig = plt.figure(figsize=(20, 4)) fig.suptitle("Count of Unique Values", fontsize=24) ax = self.data.nunique().plot.bar() for p in ax.patches: ax.annotate( str(p.get_height()), (p.get_x() * 1.005, p.get_height() * 1.005) ) return fig if return_fig else plt.show() if fig is not None else None def count_unique_by_group(self, group_by=None, return_fig=True): """Plot to visualize the count of unique values in each column in the DataFrame, grouped by a categorical variable :param group_by: a column in the DataFrame""" fig, ax = plt.subplots(figsize=(20, 4)) fig.suptitle(f"Count of Unique Values Grouped By {group_by}", fontsize=24) self.data.groupby(group_by).nunique().T.plot.bar(ax=ax) for p in ax.patches: ax.annotate( str(p.get_height()), (p.get_x() * 1.005, p.get_height() * 1.005) ) return fig if return_fig else plt.show() if fig is not None else None def dependent_variable(self, return_fig=True): """Based on the type of problem, plot a univariate visualization of target column""" if self.config.PROBLEM_TYPE == "regression": fig = self.continuous(self.config.DEPENDENT_VARIABLE) elif self.config.PROBLEM_TYPE == "classification": fig = self.categorical(self.config.DEPENDENT_VARIABLE) elif self.config.PROBLEM_TYPE == "time_series": fig = self.timeseries(self.config.DEPENDENT_VARIABLE) else: print("Invalid Problem Type") fig = None return fig if return_fig else plt.show() if fig is not None else None def pairwise_scatter(self, return_fig=True): """Plot pairwise scatter plots to visualize the continuous variables in the dataset""" cols = self.config.CONTINUOUS_INDEPENDENT_VARIABLES[:] if self.config.PROBLEM_TYPE == "regression": cols.append(self.config.DEPENDENT_VARIABLE) comb = list(combinations(cols, 2)) n_plots = len(comb) n_rows = ceil(n_plots / 2) fig = plt.figure(figsize=(20, 6 * n_rows)) for i, (x, y) in enumerate(comb): ax = fig.add_subplot(n_rows, 2, i + 1) sns.scatterplot(data=self.data, x=x, y=y, ax=ax) ax.set_title(f"{y} vs {x}", fontsize=18) return fig if return_fig else plt.show() if fig is not None else None def pairwise_violin(self, return_fig=True): """Plot pairwise violin plots to visualize the continuous variables grouped by the categorical variables in the dataset""" cat_cols = self.config.CATEGORICAL_INDEPENDENT_VARIABLES[:] if self.config.PROBLEM_TYPE == "classification": cat_cols.append(self.config.DEPENDENT_VARIABLE) comb = list(product(self.config.CONTINUOUS_INDEPENDENT_VARIABLES, cat_cols)) n_plots = len(comb) n_rows = ceil(n_plots / 2) fig = plt.figure(figsize=(20, 6 * n_rows)) for i, (x, y) in enumerate(comb): ax = fig.add_subplot(n_rows, 2, i + 1) sns.violinplot(data=self.data, x=y, y=x) ax.set_title(f"{y} vs {x}", fontsize=18) return fig if return_fig else plt.show() if fig is not None else None def pairwise_crosstabs(self, return_fig=True): """Plot pairwise crosstabs plots to visualize the categorical variables in the dataset""" cols = self.config.CATEGORICAL_INDEPENDENT_VARIABLES[:] if self.config.PROBLEM_TYPE == "classification": cols.append(self.config.DEPENDENT_VARIABLE) comb = list(combinations(cols, 2)) n_plots = len(comb) n_rows = ceil(n_plots / 2) fig = plt.figure(figsize=(20, 6 * n_rows)) for i, (x, y) in enumerate(comb): ax = fig.add_subplot(n_rows, 2, i + 1) sns.heatmap( pd.crosstab(index=self.data[y], columns=self.data[x]), ax=ax, cmap="Blues", annot=True, square=True, fmt="d", ) ax.set_title(f"{y} vs {x}", fontsize=18) return fig if return_fig else plt.show() if fig is not None else None def pair_plot(self, return_fig=True): """Plot a pairplot to vizualize the complete DataFrame""" if self.config.PROBLEM_TYPE == "regression": g = sns.pairplot( data=self.data[ self.config.CONTINUOUS_INDEPENDENT_VARIABLES + [self.config.DEPENDENT_VARIABLE] ] ) g.fig.suptitle("Pairplot", fontsize=24, y=1.08) return g if return_fig else plt.show() elif self.config.PROBLEM_TYPE == "classification": g = sns.pairplot( data=self.data[ self.config.CONTINUOUS_INDEPENDENT_VARIABLES + [self.config.DEPENDENT_VARIABLE] ], hue=self.config.DEPENDENT_VARIABLE, ) g.fig.suptitle("Pairplot", fontsize=24, y=1.08) return g if return_fig else plt.show() elif self.config.PROBLEM_TYPE == "unsupervised": g = sns.pairplot( data=self.data[ self.config.CONTINUOUS_INDEPENDENT_VARIABLES ] ) g.fig.suptitle("Pairplot", fontsize=24, y=1.08) return g if return_fig else plt.show() else: pass def categorical_variables(self): """Create bivariate visualizations for the categorical variables with the target variable or or univariate visualizations in case of unservised problems """ if self.config.PROBLEM_TYPE == "regression": for col in self.config.CATEGORICAL_INDEPENDENT_VARIABLES: self.categorical_vs_continuous(col, self.config.DEPENDENT_VARIABLE) elif self.config.PROBLEM_TYPE == "classification": for col in self.config.CATEGORICAL_INDEPENDENT_VARIABLES: self.categorical_vs_categorical(col, self.config.DEPENDENT_VARIABLE) elif self.config.PROBLEM_TYPE == 'unsupervised': for col in self.config.CATEGORICAL_INDEPENDENT_VARIABLES: self.categorical(col) else: pass def continuous_variables(self): """Create bivariate visualizations for the continuous variables with the target variable or univariate visualizations in case of unservised problems """ if self.config.PROBLEM_TYPE == "regression": for col in self.config.CONTINUOUS_INDEPENDENT_VARIABLES: self.continuous_vs_continuous(col, self.config.DEPENDENT_VARIABLE) elif self.config.PROBLEM_TYPE == "classification": for col in self.config.CONTINUOUS_INDEPENDENT_VARIABLES: self.continuous_vs_categorical(col, self.config.DEPENDENT_VARIABLE) elif self.config.PROBLEM_TYPE == 'unsupervised': for col in self.config.CONTINUOUS_INDEPENDENT_VARIABLES: self.continuous(col) else: pass def corr_plot(self, figsize=(10, 10), method="pearson", return_fig=True): """Plot a heatmap to vizualize the correlation between the various continuous columns in the DataFrame :param method: the method of correlation {'pearson', 'kendall', 'spearman'} """ fig, ax = plt.subplots(figsize=figsize) fig.suptitle("Correlation Plot", fontsize=24) corr = self.data.corr(method=method) mask = np.zeros_like(corr, dtype=np.bool) mask[np.triu_indices_from(mask)] = True mask[np.diag_indices_from(mask)] = True annot = True if len(corr) <= 10 else False sns.heatmap( corr, mask=mask, cmap="RdBu", ax=ax, annot=annot, square=True, center=0 ) return fig if return_fig else plt.show() if fig is not None else None def point_biserial_plot(self, figsize=(10, 10), return_fig=True): """Plot a heatmap to visualize point biserial correaltion between continuous and categorical variables""" num_cols = self.config.CONTINUOUS_INDEPENDENT_VARIABLES[:] if self.config.PROBLEM_TYPE == "regression": num_cols.append(self.config.DEPENDENT_VARIABLE) cat_cols = self.config.CATEGORICAL_INDEPENDENT_VARIABLES[:] if self.config.PROBLEM_TYPE == "classification": cat_cols.append(self.config.DEPENDENT_VARIABLE) fig, ax = plt.subplots(figsize=figsize) fig.suptitle("Point Biserial Plot", fontsize=24) pb_table = np.zeros((len(cat_cols), len(num_cols))) for i in range(len(cat_cols)): for j in range(len(num_cols)): df_ = self.data.dropna(subset=[cat_cols[i], num_cols[j]]) pb_table[i][j] = pointbiserialr( LabelEncoder().fit_transform(df_[cat_cols[i]]), df_[num_cols[j]] )[0] annot = True if max(pb_table.shape) <= 10 else False pb_table =
pd.DataFrame(pb_table, columns=num_cols, index=cat_cols)
pandas.DataFrame
"""Remotely control your Binance account via their API : https://binance-docs.github.io/apidocs/spot/en""" import re import json import hmac import hashlib import time import requests import base64 import sys import math import pandas as pd import numpy as np from numpy import floor from datetime import datetime, timedelta from requests.auth import AuthBase from requests import Request, Session from models.helper.LogHelper import Logger from urllib.parse import urlencode DEFAULT_MAKER_FEE_RATE = 0.0015 # added 0.0005 to allow for price movements DEFAULT_TAKER_FEE_RATE = 0.0015 # added 0.0005 to allow for price movements DEFAULT_TRADE_FEE_RATE = 0.0015 # added 0.0005 to allow for price movements DEFAULT_GRANULARITY = "1h" SUPPORTED_GRANULARITY = ["1m", "5m", "15m", "1h", "6h", "1d"] MULTIPLIER_EQUIVALENTS = [1, 5, 15, 60, 360, 1440] FREQUENCY_EQUIVALENTS = ["T", "5T", "15T", "H", "6H", "D"] DEFAULT_MARKET = "BTCGBP" class AuthAPIBase: def _isMarketValid(self, market: str) -> bool: p = re.compile(r"^[A-Z0-9]{5,12}$") if p.match(market): return True return False def convert_time(self, epoch: int = 0): if math.isnan(epoch) is False: epoch_str = str(epoch)[0:10] return datetime.fromtimestamp(int(epoch_str)) class AuthAPI(AuthAPIBase): def __init__( self, api_key: str = "", api_secret: str = "", api_url: str = "https://api.binance.com", order_history: list = [], recv_window: int = 5000, ) -> None: """Binance API object model Parameters ---------- api_key : str Your Binance account portfolio API key api_secret : str Your Binance account portfolio API secret api_url Binance API URL """ # options self.debug = False self.die_on_api_error = False valid_urls = [ "https://api.binance.com", "https://api.binance.us", "https://testnet.binance.vision", ] # validate Binance API if api_url not in valid_urls: raise ValueError("Binance API URL is invalid") # validates the api key is syntactically correct p = re.compile(r"^[A-z0-9]{64,64}$") if not p.match(api_key): self.handle_init_error("Binance API key is invalid") # validates the api secret is syntactically correct p = re.compile(r"^[A-z0-9]{64,64}$") if not p.match(api_secret): self.handle_init_error("Binance API secret is invalid") self._api_key = api_key self._api_secret = api_secret self._api_url = api_url # order history self.order_history = order_history # api recvWindow self.recv_window = recv_window def handle_init_error(self, err: str) -> None: if self.debug: raise TypeError(err) else: raise SystemExit(err) def _dispatch_request(self, method: str): session = Session() session.headers.update( { "Content-Type": "application/json; charset=utf-8", "X-MBX-APIKEY": self._api_key, } ) return { "GET": session.get, "DELETE": session.delete, "PUT": session.put, "POST": session.post, }.get(method, "GET") def createHash(self, uri: str = ""): return hmac.new( self._api_secret.encode("utf-8"), uri.encode("utf-8"), hashlib.sha256 ).hexdigest() def getTimestamp(self): return int(time.time() * 1000) def getAccounts(self) -> pd.DataFrame: """Retrieves your list of accounts""" # GET /api/v3/account try: resp = self.authAPI( "GET", "/api/v3/account", {"recvWindow": self.recv_window} ) # unexpected data, then return if len(resp) == 0 or "balances" not in resp: return
pd.DataFrame()
pandas.DataFrame
import math from typing import cast import pandas as pd import pytest from ete3 import Tree, ClusterTree from genomics_data_index.api.query.GenomicsDataIndex import GenomicsDataIndex from genomics_data_index.api.query.SamplesQuery import SamplesQuery from genomics_data_index.api.query.impl.DataFrameSamplesQuery import DataFrameSamplesQuery from genomics_data_index.api.query.impl.ExperimentalTreeSamplesQuery import ExperimentalTreeSamplesQuery from genomics_data_index.api.query.impl.MutationTreeSamplesQuery import MutationTreeSamplesQuery from genomics_data_index.api.query.impl.TreeSamplesQuery import TreeSamplesQuery from genomics_data_index.configuration.connector.DataIndexConnection import DataIndexConnection from genomics_data_index.storage.SampleSet import SampleSet from genomics_data_index.storage.io.mutation.NucleotideSampleDataPackage import NucleotideSampleDataPackage from genomics_data_index.storage.model.QueryFeatureHGVS import QueryFeatureHGVS from genomics_data_index.storage.model.QueryFeatureMLST import QueryFeatureMLST from genomics_data_index.storage.model.QueryFeatureMutationSPDI import QueryFeatureMutationSPDI from genomics_data_index.storage.model.db import Sample from genomics_data_index.test.integration import snippy_all_dataframes, data_dir, snpeff_tree_file # wrapper methods to simplify writing tests def query(connection: DataIndexConnection, **kwargs) -> SamplesQuery: return GenomicsDataIndex(connection=connection).samples_query(**kwargs) def test_initialized_query_default(loaded_database_connection: DataIndexConnection): initial_query = query(loaded_database_connection) assert len(initial_query) == 9 assert len(initial_query.universe_set) == 9 assert len(initial_query.sample_set) == 9 def test_initialized_query_mutations(loaded_database_connection_with_built_tree: DataIndexConnection): initial_query = query(loaded_database_connection_with_built_tree) assert len(initial_query) == 9 assert len(initial_query.sample_set) == 9 assert len(initial_query.universe_set) == 9 initial_query = query(loaded_database_connection_with_built_tree, universe='mutations', reference_name='genome') assert len(initial_query) == 3 assert len(initial_query.sample_set) == 3 assert len(initial_query.universe_set) == 3 assert isinstance(initial_query, TreeSamplesQuery) assert initial_query.tree is not None def test_empty_universe(loaded_database_connection: DataIndexConnection): query_result = query(loaded_database_connection).isin('empty') assert 0 == len(query_result) assert 0 == len(query_result.unknown_set) assert 9 == len(query_result.absent_set) assert 9 == len(query_result.universe_set) query_result = query_result.reset_universe() assert 0 == len(query_result) assert 0 == len(query_result.unknown_set) assert 0 == len(query_result.absent_set) assert 0 == len(query_result.universe_set) assert '<SamplesQueryIndex[' in str(query_result) assert 'selected=NA%' in str(query_result) assert 'unknown=NA%' in str(query_result) def test_query_isin_samples(loaded_database_connection: DataIndexConnection): db = loaded_database_connection.database sampleB = db.get_session().query(Sample).filter(Sample.name == 'SampleB').one() query_result = query(loaded_database_connection).isin('SampleB') assert 1 == len(query_result) assert {sampleB.id} == set(query_result.sample_set) assert 0 == len(query_result.unknown_set) assert 9 == len(query_result.universe_set) def test_query_isin_samples_no_exist(loaded_database_connection: DataIndexConnection): query_result = query(loaded_database_connection).isin('no_exist') assert 0 == len(query_result) assert 0 == len(query_result.unknown_set) assert 9 == len(query_result.universe_set) def test_query_isin_sample_set_single(loaded_database_connection: DataIndexConnection): db = loaded_database_connection.database sampleB = db.get_session().query(Sample).filter(Sample.name == 'SampleB').one() sampleBSet = SampleSet([sampleB.id]) query_result = query(loaded_database_connection).isin(sampleBSet) assert 1 == len(query_result) assert {sampleB.id} == set(query_result.sample_set) assert 0 == len(query_result.unknown_set) assert 9 == len(query_result.universe_set) def test_query_isin_samples_query_single(loaded_database_connection: DataIndexConnection): db = loaded_database_connection.database sampleB = db.get_session().query(Sample).filter(Sample.name == 'SampleB').one() query_result_B = query(loaded_database_connection).isin('SampleB') query_result = query(loaded_database_connection).isin(query_result_B) assert 1 == len(query_result) assert {sampleB.id} == set(query_result.sample_set) assert 0 == len(query_result.unknown_set) assert 9 == len(query_result.universe_set) def test_query_isin_samples_query_no_matches(loaded_database_connection: DataIndexConnection): query_result_empty = query(loaded_database_connection).isin('no_exist') query_result = query(loaded_database_connection).isin(query_result_empty) assert 0 == len(query_result) assert 0 == len(query_result.unknown_set) assert 9 == len(query_result.universe_set) def test_query_isin_samples_with_unknown(loaded_database_connection: DataIndexConnection): db = loaded_database_connection.database sampleA = db.get_session().query(Sample).filter(Sample.name == 'SampleA').one() sampleB = db.get_session().query(Sample).filter(Sample.name == 'SampleB').one() query_result = query(loaded_database_connection).hasa('reference:5061:G:A') assert {sampleB.id} == set(query_result.sample_set) assert {sampleA.id} == set(query_result.unknown_set) # case isin with present and unknown query_result_isin = query_result.isin(['SampleA', 'SampleB']) assert 1 == len(query_result_isin) assert {sampleB.id} == set(query_result_isin.sample_set) assert {sampleA.id} == set(query_result_isin.unknown_set) assert 9 == len(query_result_isin.universe_set) # isin with only unknown query_result_isin = query_result.isin('SampleA') assert 0 == len(query_result_isin) assert set() == set(query_result_isin.sample_set) assert {sampleA.id} == set(query_result_isin.unknown_set) assert 9 == len(query_result_isin.universe_set) # isin with only present query_result_isin = query_result.isin('SampleB') assert 1 == len(query_result_isin) assert {sampleB.id} == set(query_result_isin.sample_set) assert set() == set(query_result_isin.unknown_set) assert 9 == len(query_result_isin.universe_set) def test_query_and_or(loaded_database_connection: DataIndexConnection): db = loaded_database_connection.database sampleA = db.get_session().query(Sample).filter(Sample.name == 'SampleA').one() sampleB = db.get_session().query(Sample).filter(Sample.name == 'SampleB').one() sampleC = db.get_session().query(Sample).filter(Sample.name == 'SampleC').one() query_resultA = query(loaded_database_connection).isa('SampleA') assert 1 == len(query_resultA) assert {sampleA.id} == set(query_resultA.sample_set) assert 0 == len(query_resultA.unknown_set) assert 9 == len(query_resultA.universe_set) query_result_onlyA = query_resultA.reset_universe() assert 1 == len(query_result_onlyA) assert {sampleA.id} == set(query_result_onlyA.sample_set) assert 0 == len(query_result_onlyA.unknown_set) assert 1 == len(query_result_onlyA.universe_set) query_resultB = query(loaded_database_connection).isa('SampleB') assert 1 == len(query_resultB) assert {sampleB.id} == set(query_resultB.sample_set) assert 0 == len(query_resultB.unknown_set) assert 9 == len(query_resultB.universe_set) query_result_onlyB = query_resultB.reset_universe() assert 1 == len(query_result_onlyB) assert {sampleB.id} == set(query_result_onlyB.sample_set) assert 0 == len(query_result_onlyB.unknown_set) assert 1 == len(query_result_onlyB.universe_set) query_resultB_with_unknownA = query(loaded_database_connection).hasa('reference:5061:G:A') assert 1 == len(query_resultB_with_unknownA) assert {sampleB.id} == set(query_resultB_with_unknownA.sample_set) assert 1 == len(query_resultB_with_unknownA.unknown_set) assert {sampleA.id} == set(query_resultB_with_unknownA.unknown_set) assert 9 == len(query_resultB_with_unknownA.universe_set) query_result_onlyB_with_unknownA = query_resultB_with_unknownA.reset_universe(include_unknown=True) assert 1 == len(query_result_onlyB_with_unknownA) assert {sampleB.id} == set(query_result_onlyB_with_unknownA.sample_set) assert 1 == len(query_result_onlyB_with_unknownA.unknown_set) assert {sampleA.id} == set(query_result_onlyB_with_unknownA.unknown_set) assert 2 == len(query_result_onlyB_with_unknownA.universe_set) assert {sampleA.id, sampleB.id} == set(query_result_onlyB_with_unknownA.universe_set) query_resultC = query(loaded_database_connection).isa('SampleC') assert 1 == len(query_resultC) assert {sampleC.id} == set(query_resultC.sample_set) assert 9 == len(query_resultC.universe_set) query_result_onlyC = query_resultC.reset_universe() assert 1 == len(query_result_onlyC) assert {sampleC.id} == set(query_result_onlyC.sample_set) assert 1 == len(query_result_onlyC.universe_set) assert {sampleC.id} == set(query_result_onlyC.universe_set) query_resultAB = query(loaded_database_connection).isin(['SampleA', 'SampleB']) assert 2 == len(query_resultAB) assert {sampleA.id, sampleB.id} == set(query_resultAB.sample_set) assert 0 == len(query_resultC.unknown_set) assert 9 == len(query_resultAB.universe_set) # Test AND query_resultA_and_AB = query_resultA.and_(query_resultAB) assert 1 == len(query_resultA_and_AB) assert {sampleA.id} == set(query_resultA_and_AB.sample_set) assert 0 == len(query_resultA_and_AB.unknown_set) assert 9 == len(query_resultA_and_AB.universe_set) query_resultAB_and_A = query_resultAB.and_(query_resultA) assert 1 == len(query_resultAB_and_A) assert {sampleA.id} == set(query_resultAB_and_A.sample_set) assert 0 == len(query_resultAB_and_A.unknown_set) assert 9 == len(query_resultAB_and_A.universe_set) query_resultA_and_B = query_resultA.and_(query_resultB) assert 0 == len(query_resultA_and_B) assert 0 == len(query_resultA_and_B.unknown_set) assert 9 == len(query_resultA_and_B.universe_set) # Test AND with unknowns query_resultA_and_B_unknown_A = query_resultA.and_(query_resultB_with_unknownA) assert 0 == len(query_resultA_and_B_unknown_A) assert 1 == len(query_resultA_and_B_unknown_A.unknown_set) assert {sampleA.id} == set(query_resultA_and_B_unknown_A.unknown_set) assert 9 == len(query_resultA_and_B_unknown_A.universe_set) query_resultAB_and_B_unknown_A = query_resultAB.and_(query_resultB_with_unknownA) assert 1 == len(query_resultAB_and_B_unknown_A) assert {sampleB.id} == set(query_resultAB_and_B_unknown_A.sample_set) assert 1 == len(query_resultAB_and_B_unknown_A.unknown_set) assert {sampleA.id} == set(query_resultAB_and_B_unknown_A.unknown_set) assert 9 == len(query_resultAB_and_B_unknown_A.universe_set) query_resultB_unknown_A_and_AB = query_resultB_with_unknownA.and_(query_resultAB) assert 1 == len(query_resultB_unknown_A_and_AB) assert {sampleB.id} == set(query_resultB_unknown_A_and_AB.sample_set) assert 1 == len(query_resultB_unknown_A_and_AB.unknown_set) assert {sampleA.id} == set(query_resultB_unknown_A_and_AB.unknown_set) assert 9 == len(query_resultB_unknown_A_and_AB.universe_set) query_resultB_and_B_unknown_A = query_resultB.and_(query_resultB_with_unknownA) assert 1 == len(query_resultB_and_B_unknown_A) assert {sampleB.id} == set(query_resultB_and_B_unknown_A.sample_set) assert 0 == len(query_resultB_and_B_unknown_A.unknown_set) assert 9 == len(query_resultB_and_B_unknown_A.universe_set) query_resultB_unknown_A_and_B = query_resultB_with_unknownA.and_(query_resultB) assert 1 == len(query_resultB_unknown_A_and_B) assert {sampleB.id} == set(query_resultB_unknown_A_and_B.sample_set) assert 0 == len(query_resultB_unknown_A_and_B.unknown_set) assert 9 == len(query_resultB_unknown_A_and_B.universe_set) query_result_onlyB_and_onlyA = query_result_onlyB.and_(query_result_onlyA) assert 0 == len(query_result_onlyB_and_onlyA) assert 0 == len(query_result_onlyB_and_onlyA.unknown_set) assert {sampleA.id, sampleB.id} == set(query_result_onlyB_and_onlyA.absent_set) assert 2 == len(query_result_onlyB_and_onlyA.universe_set) assert {sampleA.id, sampleB.id} == set(query_result_onlyB_and_onlyA.universe_set) query_result_onlyB_unknown_A_and_onlyA = query_result_onlyB_with_unknownA.and_(query_result_onlyA) assert 0 == len(query_result_onlyB_unknown_A_and_onlyA) assert 1 == len(query_result_onlyB_unknown_A_and_onlyA.unknown_set) assert {sampleA.id} == set(query_result_onlyB_unknown_A_and_onlyA.unknown_set) assert 1 == len(query_result_onlyB_unknown_A_and_onlyA.absent_set) assert 2 == len(query_result_onlyB_unknown_A_and_onlyA.universe_set) assert {sampleA.id, sampleB.id} == set(query_result_onlyB_unknown_A_and_onlyA.universe_set) query_result_onlyB_unknown_A_and_onlyC = query_result_onlyB_with_unknownA.and_(query_result_onlyC) assert 0 == len(query_result_onlyB_unknown_A_and_onlyC) assert 0 == len(query_result_onlyB_unknown_A_and_onlyC.unknown_set) assert 3 == len(query_result_onlyB_unknown_A_and_onlyC.absent_set) assert 3 == len(query_result_onlyB_unknown_A_and_onlyC.universe_set) assert {sampleA.id, sampleB.id, sampleC.id} == set(query_result_onlyB_unknown_A_and_onlyC.universe_set) # Test Python & (bitwise and) operator query_result_onlyB_unknown_A_and_onlyA = query_result_onlyB_with_unknownA & query_result_onlyA assert 0 == len(query_result_onlyB_unknown_A_and_onlyA) assert 1 == len(query_result_onlyB_unknown_A_and_onlyA.unknown_set) assert {sampleA.id} == set(query_result_onlyB_unknown_A_and_onlyA.unknown_set) assert 1 == len(query_result_onlyB_unknown_A_and_onlyA.absent_set) assert 2 == len(query_result_onlyB_unknown_A_and_onlyA.universe_set) assert {sampleA.id, sampleB.id} == set(query_result_onlyB_unknown_A_and_onlyA.universe_set) query_result_onlyB_unknown_A_and_onlyC = query_result_onlyB_with_unknownA & query_result_onlyC assert 0 == len(query_result_onlyB_unknown_A_and_onlyC) assert 0 == len(query_result_onlyB_unknown_A_and_onlyC.unknown_set) assert 3 == len(query_result_onlyB_unknown_A_and_onlyC.absent_set) assert 3 == len(query_result_onlyB_unknown_A_and_onlyC.universe_set) assert {sampleA.id, sampleB.id, sampleC.id} == set(query_result_onlyB_unknown_A_and_onlyC.universe_set) # Test OR query_resultA_or_AB = query_resultA.or_(query_resultAB) assert 2 == len(query_resultA_or_AB) assert {sampleA.id, sampleB.id} == set(query_resultA_or_AB.sample_set) assert 7 == len(query_resultA_or_AB.absent_set) assert 0 == len(query_resultA_or_AB.unknown_set) assert 9 == len(query_resultA_or_AB.universe_set) query_resultAB_or_A = query_resultAB.or_(query_resultA) assert 2 == len(query_resultAB_or_A) assert {sampleA.id, sampleB.id} == set(query_resultAB_or_A.sample_set) assert 0 == len(query_resultAB_or_A.unknown_set) assert 7 == len(query_resultAB_or_A.absent_set) assert 9 == len(query_resultAB_or_A.universe_set) query_resultA_or_B = query_resultA.or_(query_resultB) assert 2 == len(query_resultA_or_B) assert {sampleA.id, sampleB.id} == set(query_resultA_or_B.sample_set) assert 0 == len(query_resultA_or_B.unknown_set) assert 7 == len(query_resultA_or_B.absent_set) assert 9 == len(query_resultA_or_B.universe_set) query_resultA_or_B_or_C = query_resultA.or_(query_resultB).or_(query_resultC) assert 3 == len(query_resultA_or_B_or_C) assert {sampleA.id, sampleB.id, sampleC.id} == set(query_resultA_or_B_or_C.sample_set) assert 0 == len(query_resultA_or_B_or_C.unknown_set) assert 6 == len(query_resultA_or_B_or_C.absent_set) assert 9 == len(query_resultA_or_B_or_C.universe_set) # Test OR with unknowns query_resultA_or_B_unknown_A = query_resultA.or_(query_resultB_with_unknownA) assert 2 == len(query_resultA_or_B_unknown_A) assert {sampleA.id, sampleB.id} == set(query_resultA_or_B_unknown_A.sample_set) assert 0 == len(query_resultA_or_B_unknown_A.unknown_set) assert 9 == len(query_resultA_or_B_unknown_A.universe_set) query_resultAB_or_B_unknown_A = query_resultAB.or_(query_resultB_with_unknownA) assert 2 == len(query_resultAB_or_B_unknown_A) assert {sampleA.id, sampleB.id} == set(query_resultAB_or_B_unknown_A.sample_set) assert 0 == len(query_resultAB_or_B_unknown_A.unknown_set) assert 9 == len(query_resultAB_or_B_unknown_A.universe_set) query_resultB_unknown_A_or_AB = query_resultB_with_unknownA.or_(query_resultAB) assert 2 == len(query_resultB_unknown_A_or_AB) assert {sampleA.id, sampleB.id} == set(query_resultB_unknown_A_or_AB.sample_set) assert 0 == len(query_resultB_unknown_A_or_AB.unknown_set) assert 9 == len(query_resultB_unknown_A_or_AB.universe_set) query_resultB_or_B_unknown_A = query_resultB.or_(query_resultB_with_unknownA) assert 1 == len(query_resultB_or_B_unknown_A) assert {sampleB.id} == set(query_resultB_or_B_unknown_A.sample_set) assert 1 == len(query_resultB_or_B_unknown_A.unknown_set) assert {sampleA.id} == set(query_resultB_or_B_unknown_A.unknown_set) assert 9 == len(query_resultB_or_B_unknown_A.universe_set) query_resultB_unknown_A_or_B = query_resultB_with_unknownA.or_(query_resultB) assert 1 == len(query_resultB_unknown_A_or_B) assert {sampleB.id} == set(query_resultB_unknown_A_or_B.sample_set) assert 1 == len(query_resultB_unknown_A_or_B.unknown_set) assert {sampleA.id} == set(query_resultB_unknown_A_or_B.unknown_set) assert 9 == len(query_resultB_unknown_A_or_B.universe_set) query_result_onlyB_or_onlyA = query_result_onlyB.or_(query_result_onlyA) assert 2 == len(query_result_onlyB_or_onlyA) assert 0 == len(query_result_onlyB_or_onlyA.unknown_set) assert {sampleA.id, sampleB.id} == set(query_result_onlyB_or_onlyA.sample_set) assert 2 == len(query_result_onlyB_or_onlyA.universe_set) assert {sampleA.id, sampleB.id} == set(query_result_onlyB_or_onlyA.universe_set) query_result_onlyB_unknown_A_or_onlyA = query_result_onlyB_with_unknownA.or_(query_result_onlyA) assert 2 == len(query_result_onlyB_unknown_A_or_onlyA) assert 0 == len(query_result_onlyB_unknown_A_or_onlyA.unknown_set) assert {sampleA.id, sampleB.id} == set(query_result_onlyB_unknown_A_or_onlyA.sample_set) assert 0 == len(query_result_onlyB_unknown_A_or_onlyA.absent_set) assert 2 == len(query_result_onlyB_unknown_A_or_onlyA.universe_set) assert {sampleA.id, sampleB.id} == set(query_result_onlyB_unknown_A_or_onlyA.universe_set) query_result_onlyB_unknown_A_or_onlyC = query_result_onlyB_with_unknownA.or_(query_result_onlyC) assert 2 == len(query_result_onlyB_unknown_A_or_onlyC) assert {sampleB.id, sampleC.id} == set(query_result_onlyB_unknown_A_or_onlyC.sample_set) assert 1 == len(query_result_onlyB_unknown_A_or_onlyC.unknown_set) assert {sampleA.id} == set(query_result_onlyB_unknown_A_or_onlyC.unknown_set) assert 0 == len(query_result_onlyB_unknown_A_or_onlyC.absent_set) assert 3 == len(query_result_onlyB_unknown_A_or_onlyC.universe_set) assert {sampleA.id, sampleB.id, sampleC.id} == set(query_result_onlyB_unknown_A_or_onlyC.universe_set) # Test Python | (bitwise or) operator query_result_onlyB_unknown_A_or_onlyA = query_result_onlyB_with_unknownA | query_result_onlyA assert 2 == len(query_result_onlyB_unknown_A_or_onlyA) assert 0 == len(query_result_onlyB_unknown_A_or_onlyA.unknown_set) assert {sampleA.id, sampleB.id} == set(query_result_onlyB_unknown_A_or_onlyA.sample_set) assert 0 == len(query_result_onlyB_unknown_A_or_onlyA.absent_set) assert 2 == len(query_result_onlyB_unknown_A_or_onlyA.universe_set) assert {sampleA.id, sampleB.id} == set(query_result_onlyB_unknown_A_or_onlyA.universe_set) query_result_onlyB_unknown_A_or_onlyC = query_result_onlyB_with_unknownA | query_result_onlyC assert 2 == len(query_result_onlyB_unknown_A_or_onlyC) assert {sampleB.id, sampleC.id} == set(query_result_onlyB_unknown_A_or_onlyC.sample_set) assert 1 == len(query_result_onlyB_unknown_A_or_onlyC.unknown_set) assert {sampleA.id} == set(query_result_onlyB_unknown_A_or_onlyC.unknown_set) assert 0 == len(query_result_onlyB_unknown_A_or_onlyC.absent_set) assert 3 == len(query_result_onlyB_unknown_A_or_onlyC.universe_set) assert {sampleA.id, sampleB.id, sampleC.id} == set(query_result_onlyB_unknown_A_or_onlyC.universe_set) def test_query_reset_universe(loaded_database_connection: DataIndexConnection): db = loaded_database_connection.database sampleA = db.get_session().query(Sample).filter(Sample.name == 'SampleA').one() sampleB = db.get_session().query(Sample).filter(Sample.name == 'SampleB').one() # No unknowns query_result = query(loaded_database_connection).isin('SampleB') assert 1 == len(query_result) assert {sampleB.id} == set(query_result.sample_set) assert 0 == len(query_result.unknown_set) assert 9 == len(query_result.universe_set) query_result = query_result.reset_universe() assert 1 == len(query_result) assert {sampleB.id} == set(query_result.sample_set) assert 0 == len(query_result.unknown_set) assert 1 == len(query_result.universe_set) # With unknowns query_result = query(loaded_database_connection).hasa('reference:5061:G:A') assert 1 == len(query_result) assert {sampleB.id} == set(query_result.sample_set) assert 1 == len(query_result.unknown_set) assert {sampleA.id} == set(query_result.unknown_set) assert 9 == len(query_result.universe_set) query_result = query_result.reset_universe() assert 1 == len(query_result) assert {sampleB.id} == set(query_result.sample_set) assert 1 == len(query_result.unknown_set) assert {sampleA.id} == set(query_result.unknown_set) assert 2 == len(query_result.universe_set) assert {sampleA.id, sampleB.id} == set(query_result.universe_set) # With unknowns but excluding them query_result = query(loaded_database_connection).hasa('reference:5061:G:A') assert 1 == len(query_result) assert {sampleB.id} == set(query_result.sample_set) assert 1 == len(query_result.unknown_set) assert {sampleA.id} == set(query_result.unknown_set) assert 9 == len(query_result.universe_set) query_result = query_result.reset_universe(include_unknown=False) assert 1 == len(query_result) assert {sampleB.id} == set(query_result.sample_set) assert 0 == len(query_result.unknown_set) assert 1 == len(query_result.universe_set) assert {sampleB.id} == set(query_result.universe_set) def test_query_set_universe(loaded_database_connection: DataIndexConnection): db = loaded_database_connection.database sampleA = db.get_session().query(Sample).filter(Sample.name == 'SampleA').one() sampleB = db.get_session().query(Sample).filter(Sample.name == 'SampleB').one() sampleC = db.get_session().query(Sample).filter(Sample.name == 'SampleC').one() # No unknowns query_result = query(loaded_database_connection).isin('SampleB') assert 1 == len(query_result) assert {sampleB.id} == set(query_result.sample_set) assert 0 == len(query_result.unknown_set) assert 8 == len(query_result.absent_set) assert 9 == len(query_result.universe_set) query_result_su = query_result.set_universe(SampleSet(sample_ids=[sampleA.id, sampleB.id])) assert 1 == len(query_result_su) assert {sampleB.id} == set(query_result_su.sample_set) assert 0 == len(query_result_su.unknown_set) assert 1 == len(query_result_su.absent_set) assert {sampleA.id} == set(query_result_su.absent_set) assert 2 == len(query_result_su.universe_set) assert {sampleA.id, sampleB.id} == set(query_result_su.universe_set) query_result_su = query_result.set_universe(SampleSet(sample_ids=[sampleB.id])) assert 1 == len(query_result_su) assert {sampleB.id} == set(query_result_su.sample_set) assert 0 == len(query_result_su.unknown_set) assert 0 == len(query_result_su.absent_set) assert 1 == len(query_result_su.universe_set) assert {sampleB.id} == set(query_result_su.universe_set) # With unknowns query_result = query(loaded_database_connection).hasa('reference:5061:G:A') assert 1 == len(query_result) assert {sampleB.id} == set(query_result.sample_set) assert 1 == len(query_result.unknown_set) assert {sampleA.id} == set(query_result.unknown_set) assert 7 == len(query_result.absent_set) assert 9 == len(query_result.universe_set) query_result_su = query_result.set_universe(SampleSet(sample_ids=[sampleA.id, sampleB.id])) assert 1 == len(query_result_su) assert {sampleB.id} == set(query_result_su.sample_set) assert 1 == len(query_result_su.unknown_set) assert 0 == len(query_result_su.absent_set) assert 2 == len(query_result_su.universe_set) assert {sampleA.id, sampleB.id} == set(query_result_su.universe_set) query_result_su = query_result.set_universe(SampleSet(sample_ids=[sampleB.id])) assert 1 == len(query_result_su) assert {sampleB.id} == set(query_result_su.sample_set) assert 0 == len(query_result_su.unknown_set) assert 0 == len(query_result_su.absent_set) assert 1 == len(query_result_su.universe_set) assert {sampleB.id} == set(query_result_su.universe_set) query_result_su = query_result.set_universe(SampleSet(sample_ids=[sampleA.id, sampleB.id, sampleC.id])) assert 1 == len(query_result_su) assert {sampleB.id} == set(query_result_su.sample_set) assert 1 == len(query_result_su.unknown_set) assert 1 == len(query_result_su.absent_set) assert 3 == len(query_result_su.universe_set) assert {sampleA.id, sampleB.id, sampleC.id} == set(query_result_su.universe_set) def test_query_isin_samples_multilple(loaded_database_connection: DataIndexConnection): db = loaded_database_connection.database sampleA = db.get_session().query(Sample).filter(Sample.name == 'SampleA').one() sampleB = db.get_session().query(Sample).filter(Sample.name == 'SampleB').one() query_result = query(loaded_database_connection).isin(['SampleA', 'SampleB']) assert 2 == len(query_result) assert {sampleA.id, sampleB.id} == set(query_result.sample_set) assert 9 == len(query_result.universe_set) def test_query_isin_samples_multilple_samples_query(loaded_database_connection: DataIndexConnection): db = loaded_database_connection.database sampleA = db.get_session().query(Sample).filter(Sample.name == 'SampleA').one() sampleB = db.get_session().query(Sample).filter(Sample.name == 'SampleB').one() query_result_AB = query(loaded_database_connection).isin(['SampleA', 'SampleB']) query_result = query(loaded_database_connection).isin(query_result_AB) assert 2 == len(query_result) assert {sampleA.id, sampleB.id} == set(query_result.sample_set) assert 9 == len(query_result.universe_set) def test_query_isa_sample_name(loaded_database_connection: DataIndexConnection): db = loaded_database_connection.database sampleB = db.get_session().query(Sample).filter(Sample.name == 'SampleB').one() query_result = query(loaded_database_connection).isa('SampleB') assert 1 == len(query_result) assert {sampleB.id} == set(query_result.sample_set) assert 9 == len(query_result.universe_set) assert not query_result.has_tree() # Test case where there is an unknown in the result query_result = query(loaded_database_connection).hasa('reference:1:1:T').isa('SampleB') assert 0 == len(query_result) assert {sampleB.id} == set(query_result.unknown_set) assert 8 == len(query_result.absent_set) assert 9 == len(query_result.universe_set) # Test case where there is a match and unknown in the result query_result = query(loaded_database_connection).hasa('reference:5061:G:A').isa('SampleB') assert 1 == len(query_result) assert {sampleB.id} == set(query_result.sample_set) assert 0 == len(query_result.unknown_set) assert 8 == len(query_result.absent_set) assert 9 == len(query_result.universe_set) # Test isa no exist query_result = query(loaded_database_connection).isa('no_exist') assert 0 == len(query_result) assert 9 == len(query_result.universe_set) assert 0 == len(query_result.unknown_set) # Test isa no exist with unknown query_result = query(loaded_database_connection).hasa('reference:5061:G:A').isa('no_exist') assert 0 == len(query_result) assert 0 == len(query_result.unknown_set) assert 9 == len(query_result.absent_set) assert 9 == len(query_result.universe_set) def test_query_isa_samples_query(loaded_database_connection: DataIndexConnection): db = loaded_database_connection.database sampleB = db.get_session().query(Sample).filter(Sample.name == 'SampleB').one() query_result_B = query(loaded_database_connection).isa('SampleB') query_result = query(loaded_database_connection).isa(query_result_B) assert 1 == len(query_result) assert {sampleB.id} == set(query_result.sample_set) assert 0 == len(query_result.unknown_set) assert 8 == len(query_result.absent_set) assert 9 == len(query_result.universe_set) # with unknown in result query_result = query(loaded_database_connection).hasa('reference:1:1:T').isa(query_result_B) assert 0 == len(query_result) assert 1 == len(query_result.unknown_set) assert {sampleB.id} == set(query_result.unknown_set) assert 8 == len(query_result.absent_set) assert 9 == len(query_result.universe_set) # with unknown that gets excluded query_result = query(loaded_database_connection).hasa('reference:5061:G:A').isa(query_result_B) assert 1 == len(query_result) assert {sampleB.id} == set(query_result.sample_set) assert 0 == len(query_result.unknown_set) assert 8 == len(query_result.absent_set) assert 9 == len(query_result.universe_set) def test_tolist_and_toset(loaded_database_connection: DataIndexConnection): conn = loaded_database_connection assert {'SampleA', 'SampleB'} == set(query(conn).isin(['SampleA', 'SampleB']).tolist()) assert {'SampleA', 'SampleB'} == query(conn).isin(['SampleA', 'SampleB']).toset() assert {'SampleB'} == set(query(conn).hasa('reference:5061:G:A').tolist()) assert {'SampleB'} == query(conn).hasa('reference:5061:G:A').toset() assert {'SampleA', 'SampleB'} == set(query(conn).hasa('reference:5061:G:A').tolist(include_unknown=True)) assert {'SampleA', 'SampleB'} == query(conn).hasa('reference:5061:G:A').toset(include_unknown=True) assert {'SampleA', 'SampleB', 'SampleC', '2014C-3598', '2014C-3599', '2014D-0067', '2014D-0068', 'CFSAN002349', 'CFSAN023463' } == set(query(conn).hasa('reference:5061:G:A').tolist(include_unknown=True, include_absent=True)) assert {'SampleA', 'SampleB', 'SampleC', '2014C-3598', '2014C-3599', '2014D-0067', '2014D-0068', 'CFSAN002349', 'CFSAN023463' } == query(conn).hasa('reference:5061:G:A').toset(include_unknown=True, include_absent=True) assert {'SampleA', 'SampleC', '2014C-3598', '2014C-3599', '2014D-0067', '2014D-0068', 'CFSAN002349', 'CFSAN023463' } == set(query(conn).hasa('reference:5061:G:A').tolist(include_present=False, include_unknown=True, include_absent=True)) assert {'SampleA', 'SampleC', '2014C-3598', '2014C-3599', '2014D-0067', '2014D-0068', 'CFSAN002349', 'CFSAN023463' } == query(conn).hasa('reference:5061:G:A').toset(include_present=False, include_unknown=True, include_absent=True) assert {'SampleC', '2014C-3598', '2014C-3599', '2014D-0067', '2014D-0068', 'CFSAN002349', 'CFSAN023463' } == set(query(conn).hasa('reference:5061:G:A').tolist(include_present=False, include_unknown=False, include_absent=True)) assert {'SampleC', '2014C-3598', '2014C-3599', '2014D-0067', '2014D-0068', 'CFSAN002349', 'CFSAN023463' } == query(conn).hasa('reference:5061:G:A').toset(include_present=False, include_unknown=False, include_absent=True) assert {'SampleA'} == set(query(conn).hasa('reference:5061:G:A').tolist(include_present=False, include_unknown=True, include_absent=False)) assert {'SampleA'} == query(conn).hasa('reference:5061:G:A').toset(include_present=False, include_unknown=True, include_absent=False) def test_query_isin_kmer(loaded_database_connection: DataIndexConnection): db = loaded_database_connection.database sampleA = db.get_session().query(Sample).filter(Sample.name == 'SampleA').one() sampleB = db.get_session().query(Sample).filter(Sample.name == 'SampleB').one() sampleC = db.get_session().query(Sample).filter(Sample.name == 'SampleC').one() query_result = query(loaded_database_connection).isin('SampleA', kind='distance', distance=1.0, units='kmer_jaccard') assert 3 == len(query_result) assert {sampleA.id, sampleB.id, sampleC.id} == set(query_result.sample_set) assert 0 == len(query_result.unknown_set) assert 9 == len(query_result.universe_set) assert "isin_kmer_jaccard('SampleA', dist=1.0, k=31)" == query_result.query_expression() # test with unknowns in query query_result = query(loaded_database_connection).hasa('reference:5061:G:A').isin( 'SampleA', kind='distance', distance=1.0, units='kmer_jaccard') assert 1 == len(query_result) assert {sampleB.id} == set(query_result.sample_set) assert {sampleA.id} == set(query_result.unknown_set) assert 9 == len(query_result.universe_set) assert "reference:5061:G:A AND isin_kmer_jaccard('SampleA', dist=1.0, k=31)" == query_result.query_expression() # test with unknowns in query, isin should remove unknowns query_result = query(loaded_database_connection).hasa('reference:5061:G:A').isin( 'SampleB', kind='distance', distance=0, units='kmer_jaccard') assert 1 == len(query_result) assert {sampleB.id} == set(query_result.sample_set) assert 0 == len(query_result.unknown_set) assert 9 == len(query_result.universe_set) assert "reference:5061:G:A AND isin_kmer_jaccard('SampleB', dist=0, k=31)" == query_result.query_expression() def test_query_isin_kmer_samples_query(loaded_database_connection: DataIndexConnection): db = loaded_database_connection.database sampleA = db.get_session().query(Sample).filter(Sample.name == 'SampleA').one() sampleB = db.get_session().query(Sample).filter(Sample.name == 'SampleB').one() sampleC = db.get_session().query(Sample).filter(Sample.name == 'SampleC').one() query_result_A = query(loaded_database_connection).isa('SampleA') query_result = query(loaded_database_connection).isin(query_result_A, kind='distance', distance=1.0, units='kmer_jaccard') assert 3 == len(query_result) assert {sampleA.id, sampleB.id, sampleC.id} == set(query_result.sample_set) assert 9 == len(query_result.universe_set) assert "isin_kmer_jaccard(<SamplesQueryIndex[selected=11% (1/9) samples, " \ "unknown=0% (0/9) samples]>, dist=1.0, k=31)" == query_result.query_expression() def test_query_isin_kmer_samples_set(loaded_database_connection: DataIndexConnection): db = loaded_database_connection.database sampleA = db.get_session().query(Sample).filter(Sample.name == 'SampleA').one() sampleB = db.get_session().query(Sample).filter(Sample.name == 'SampleB').one() sampleC = db.get_session().query(Sample).filter(Sample.name == 'SampleC').one() sample_set_a = SampleSet([sampleA.id]) query_result = query(loaded_database_connection).isin(sample_set_a, kind='distance', distance=1.0, units='kmer_jaccard') assert 3 == len(query_result) assert {sampleA.id, sampleB.id, sampleC.id} == set(query_result.sample_set) assert 9 == len(query_result.universe_set) assert "isin_kmer_jaccard(set(1 samples), dist=1.0, k=31)" == query_result.query_expression() def test_query_isin_kmer_samples_query_no_matches(loaded_database_connection: DataIndexConnection): query_result_empty = query(loaded_database_connection).isa('no_exist') query_result = query(loaded_database_connection).isin(query_result_empty, kind='distance', distance=1.0, units='kmer_jaccard') assert 0 == len(query_result) assert 9 == len(query_result.universe_set) assert "isin_kmer_jaccard(<SamplesQueryIndex[selected=0% (0/9) samples, " \ "unknown=0% (0/9) samples]>, dist=1.0, k=31)" == query_result.query_expression() def test_query_within_kmer_default(loaded_database_connection: DataIndexConnection): db = loaded_database_connection.database sampleA = db.get_session().query(Sample).filter(Sample.name == 'SampleA').one() sampleB = db.get_session().query(Sample).filter(Sample.name == 'SampleB').one() sampleC = db.get_session().query(Sample).filter(Sample.name == 'SampleC').one() query_result = query(loaded_database_connection).within('SampleA', distance=1.0) assert 3 == len(query_result) assert {sampleA.id, sampleB.id, sampleC.id} == set(query_result.sample_set) assert 9 == len(query_result.universe_set) assert "isin_kmer_jaccard('SampleA', dist=1.0, k=31)" == query_result.query_expression() def test_query_within_invalid_unit_with_no_tree(loaded_database_connection: DataIndexConnection): with pytest.raises(Exception) as execinfo: query(loaded_database_connection).within('SampleA', distance=1.0, units='substitutions') assert 'units=[substitutions] is not supported' in str(execinfo.value) def test_to_distances_kmer(loaded_database_connection: DataIndexConnection): query_result = query(loaded_database_connection).isin(['SampleA', 'SampleB', 'SampleC'], kind='samples') results_d, labels = query_result.to_distances(kind='kmer') assert (3, 3) == results_d.shape assert {'SampleA', 'SampleB', 'SampleC'} == set(labels) l = {element: idx for idx, element in enumerate(labels)} assert math.isclose(results_d[l['SampleA']][l['SampleA']], 0, rel_tol=1e-3) assert math.isclose(results_d[l['SampleA']][l['SampleB']], 0.522, rel_tol=1e-3) assert math.isclose(results_d[l['SampleA']][l['SampleC']], 0.5, rel_tol=1e-3) assert math.isclose(results_d[l['SampleB']][l['SampleA']], 0.522, rel_tol=1e-3) assert math.isclose(results_d[l['SampleB']][l['SampleB']], 0, rel_tol=1e-3) assert math.isclose(results_d[l['SampleB']][l['SampleC']], 0.3186, rel_tol=1e-3) assert math.isclose(results_d[l['SampleC']][l['SampleA']], 0.5, rel_tol=1e-3) assert math.isclose(results_d[l['SampleC']][l['SampleB']], 0.3186, rel_tol=1e-3) assert math.isclose(results_d[l['SampleC']][l['SampleC']], 0, rel_tol=1e-3) def test_query_isin_kmer_2_matches(loaded_database_connection: DataIndexConnection): db = loaded_database_connection.database sampleA = db.get_session().query(Sample).filter(Sample.name == 'SampleA').one() sampleC = db.get_session().query(Sample).filter(Sample.name == 'SampleC').one() query_result = query(loaded_database_connection).isin('SampleA', kind='distances', distance=0.5, units='kmer_jaccard') assert 2 == len(query_result) assert {sampleA.id, sampleC.id} == set(query_result.sample_set) assert 9 == len(query_result.universe_set) def test_query_isin_kmer_1_match(loaded_database_connection: DataIndexConnection): db = loaded_database_connection.database sampleA = db.get_session().query(Sample).filter(Sample.name == 'SampleA').one() query_result = query(loaded_database_connection).isin('SampleA', kind='distance', distance=0.49, units='kmer_jaccard') assert 1 == len(query_result) assert {sampleA.id} == set(query_result.sample_set) assert 9 == len(query_result.universe_set) assert "isin_kmer_jaccard('SampleA', dist=0.49, k=31)" == query_result.query_expression() def test_query_single_mutation_serial_processing(loaded_database_connection: DataIndexConnection): do_test_query_single_mutation(loaded_database_connection) def test_query_single_mutation_parallel_processing(loaded_database_connection_parallel_variants: DataIndexConnection): do_test_query_single_mutation(loaded_database_connection_parallel_variants) def do_test_query_single_mutation(loaded_database_connection: DataIndexConnection): db = loaded_database_connection.database sampleA = db.get_session().query(Sample).filter(Sample.name == 'SampleA').one() sampleB = db.get_session().query(Sample).filter(Sample.name == 'SampleB').one() all_sample_ids = {i for i, in db.get_session().query(Sample.id).all()} query_result = query(loaded_database_connection).hasa(QueryFeatureMutationSPDI('reference:5061:G:A')) assert 1 == len(query_result) assert {sampleB.id} == set(query_result.sample_set) assert {sampleA.id} == set(query_result.unknown_set) assert all_sample_ids - {sampleA.id} - {sampleB.id} == set(query_result.absent_set) assert 9 == len(query_result.universe_set) assert not query_result.has_tree() def test_query_single_mutation_then_add_new_genomes_and_query(loaded_database_connection: DataIndexConnection, snippy_data_package_2: NucleotideSampleDataPackage): db = loaded_database_connection.database sampleA = db.get_session().query(Sample).filter(Sample.name == 'SampleA').one() sampleB = db.get_session().query(Sample).filter(Sample.name == 'SampleB').one() all_sample_ids = {i for i, in db.get_session().query(Sample.id).all()} assert 9 == len(all_sample_ids) query_result = query(loaded_database_connection).hasa(QueryFeatureMutationSPDI('reference:5061:G:A')) assert 1 == len(query_result) assert {sampleB.id} == set(query_result.sample_set) assert {sampleA.id} == set(query_result.unknown_set) assert all_sample_ids - {sampleA.id} - {sampleB.id} == set(query_result.absent_set) assert 9 == len(query_result.universe_set) # Insert new data which should increase the number of matches I get loaded_database_connection.variation_service.insert(data_package=snippy_data_package_2, feature_scope_name='genome') sampleA_2 = db.get_session().query(Sample).filter(Sample.name == 'SampleA_2').one() sampleB_2 = db.get_session().query(Sample).filter(Sample.name == 'SampleB_2').one() all_sample_ids = {i for i, in db.get_session().query(Sample.id).all()} assert 12 == len(all_sample_ids) query_result = query(loaded_database_connection).hasa(QueryFeatureMutationSPDI('reference:5061:G:A')) assert 2 == len(query_result) assert {sampleB.id, sampleB_2.id} == set(query_result.sample_set) assert {sampleA.id, sampleA_2.id} == set(query_result.unknown_set) assert all_sample_ids - {sampleA.id, sampleA_2.id, sampleB.id, sampleB_2.id} == set(query_result.absent_set) assert 12 == len(query_result.universe_set) def test_select_unknown_absent_present(loaded_database_connection: DataIndexConnection): db = loaded_database_connection.database sampleA = db.get_session().query(Sample).filter(Sample.name == 'SampleA').one() sampleB = db.get_session().query(Sample).filter(Sample.name == 'SampleB').one() all_sample_ids = {i for i, in db.get_session().query(Sample.id).all()} query_result = query(loaded_database_connection).hasa('reference:5061:G:A') assert 1 == len(query_result) assert {sampleB.id} == set(query_result.sample_set) assert 1 == len(query_result.unknown_set) assert {sampleA.id} == set(query_result.unknown_set) assert 7 == len(query_result.absent_set) assert all_sample_ids - {sampleA.id, sampleB.id} == set(query_result.absent_set) assert 9 == len(query_result.universe_set) # Select unknown selected_result = query_result.select_unknown() assert 1 == len(selected_result) assert {sampleA.id} == set(selected_result.sample_set) assert 0 == len(selected_result.unknown_set) assert 8 == len(selected_result.absent_set) assert all_sample_ids - {sampleA.id} == set(selected_result.absent_set) assert 9 == len(selected_result.universe_set) # Select absent selected_result = query_result.select_absent() assert 7 == len(selected_result) assert all_sample_ids - {sampleA.id, sampleB.id} == set(selected_result.sample_set) assert 0 == len(selected_result.unknown_set) assert 2 == len(selected_result.absent_set) assert {sampleA.id, sampleB.id} == set(selected_result.absent_set) assert 9 == len(selected_result.universe_set) # Select present selected_result = query_result.select_present() assert 1 == len(selected_result) assert {sampleB.id} == set(selected_result.sample_set) assert 0 == len(selected_result.unknown_set) assert 8 == len(selected_result.absent_set) assert all_sample_ids - {sampleB.id} == set(selected_result.absent_set) assert 9 == len(selected_result.universe_set) def test_query_multiple_mutation_unknowns(loaded_database_connection: DataIndexConnection): db = loaded_database_connection.database sampleA = db.get_session().query(Sample).filter(Sample.name == 'SampleA').one() sampleB = db.get_session().query(Sample).filter(Sample.name == 'SampleB').one() sampleC = db.get_session().query(Sample).filter(Sample.name == 'SampleC').one() all_sample_ids = {i for i, in db.get_session().query(Sample.id).all()} # Initial query object query_result = query(loaded_database_connection) assert 9 == len(query_result) assert 0 == len(query_result.unknown_set) assert 9 == len(query_result.universe_set) assert 0 == len(query_result.absent_set) # Test order 'reference:5061:G:A' then 'reference:190:A:G' query_result = query(loaded_database_connection).hasa('reference:5061:G:A') assert 1 == len(query_result) assert {sampleB.id} == set(query_result.sample_set) assert {sampleA.id} == set(query_result.unknown_set) assert all_sample_ids - {sampleA.id, sampleB.id} == set(query_result.absent_set) assert 9 == len(query_result.universe_set) query_result = query_result.hasa('reference:190:A:G') assert 1 == len(query_result) assert {sampleB.id} == set(query_result.sample_set) assert {sampleA.id} == set(query_result.unknown_set) assert all_sample_ids - {sampleA.id, sampleB.id} == set(query_result.absent_set) assert 9 == len(query_result.universe_set) # Test order 'reference:190:A:G' then 'reference:5061:G:A' query_result = query(loaded_database_connection).hasa('reference:190:A:G') assert 1 == len(query_result) assert {sampleB.id} == set(query_result.sample_set) assert {sampleA.id, sampleC.id} == set(query_result.unknown_set) assert all_sample_ids - {sampleA.id, sampleB.id, sampleC.id} == set(query_result.absent_set) assert 9 == len(query_result.universe_set) query_result = query_result.hasa('reference:5061:G:A') assert 1 == len(query_result) assert {sampleB.id} == set(query_result.sample_set) assert {sampleA.id} == set(query_result.unknown_set) assert all_sample_ids - {sampleA.id, sampleB.id} == set(query_result.absent_set) assert 9 == len(query_result.universe_set) # Reset query query_result = query(loaded_database_connection).hasa('reference:190:A:G') assert {sampleB.id} == set(query_result.sample_set) assert {sampleA.id, sampleC.id} == set(query_result.unknown_set) assert all_sample_ids - {sampleA.id, sampleB.id, sampleC.id} == set(query_result.absent_set) # Empty query with no unknowns query_result_empty = query_result.hasa('reference:800:1:G') assert 0 == len(query_result_empty) assert set() == set(query_result_empty.sample_set) assert 0 == len(query_result_empty.unknown_set) assert 9 == len(query_result_empty.universe_set) assert 9 == len(query_result_empty.absent_set) # Empty query with all unknowns query_result_unknown = query_result.hasa('reference:5160:1:G') assert 0 == len(query_result_unknown) assert {sampleA.id, sampleB.id, sampleC.id} == set(query_result_unknown.unknown_set) assert 9 == len(query_result_unknown.universe_set) assert all_sample_ids - {sampleA.id, sampleB.id, sampleC.id} == set(query_result.absent_set) # Query for A,B then for mutation with B and verify A ends up in unknowns query_result = query(loaded_database_connection).isin(['SampleA', 'SampleB']) assert 2 == len(query_result) assert {sampleA.id, sampleB.id} == set(query_result.sample_set) assert 0 == len(query_result.unknown_set) assert 9 == len(query_result.universe_set) assert all_sample_ids - {sampleA.id, sampleB.id} == set(query_result.absent_set) query_result = query_result.hasa('reference:5061:G:A') assert 1 == len(query_result) assert {sampleB.id} == set(query_result.sample_set) assert {sampleA.id} == set(query_result.unknown_set) assert 9 == len(query_result.universe_set) assert all_sample_ids - {sampleA.id, sampleB.id} == set(query_result.absent_set) def test_query_intersect_sample_set(loaded_database_connection: DataIndexConnection): db = loaded_database_connection.database sampleA = db.get_session().query(Sample).filter(Sample.name == 'SampleA').one() sampleB = db.get_session().query(Sample).filter(Sample.name == 'SampleB').one() sampleC = db.get_session().query(Sample).filter(Sample.name == 'SampleC').one() query_result = query(loaded_database_connection).hasa('reference:5061:G:A') assert 1 == len(query_result) assert {sampleB.id} == set(query_result.sample_set) assert {sampleA.id} == set(query_result.unknown_set) assert 9 == len(query_result.universe_set) # Test intersect exclude unknown query_intersect = query_result.intersect(SampleSet(sample_ids=[sampleB.id])) assert 1 == len(query_intersect) assert {sampleB.id} == set(query_intersect.sample_set) assert 0 == len(query_intersect.unknown_set) assert 9 == len(query_intersect.universe_set) # Test intersect include unknown query_intersect = query_result.intersect(SampleSet(sample_ids=[sampleA.id, sampleB.id])) assert 1 == len(query_intersect) assert {sampleB.id} == set(query_intersect.sample_set) assert 1 == len(query_intersect.unknown_set) assert {sampleA.id} == set(query_intersect.unknown_set) assert 9 == len(query_intersect.universe_set) # Test intersect include unknown and sample not in query query_intersect = query_result.intersect(SampleSet(sample_ids=[sampleA.id, sampleB.id, sampleC.id])) assert 1 == len(query_intersect) assert {sampleB.id} == set(query_intersect.sample_set) assert 1 == len(query_intersect.unknown_set) assert {sampleA.id} == set(query_intersect.unknown_set) assert 9 == len(query_intersect.universe_set) # Test intersect only unknown and sample not in query query_intersect = query_result.intersect(SampleSet(sample_ids=[sampleA.id, sampleC.id])) assert 0 == len(query_intersect) assert 1 == len(query_intersect.unknown_set) assert {sampleA.id} == set(query_intersect.unknown_set) assert 9 == len(query_intersect.universe_set) # Test intersect only unknown query_intersect = query_result.intersect(SampleSet(sample_ids=[sampleA.id])) assert 0 == len(query_intersect) assert 1 == len(query_intersect.unknown_set) assert {sampleA.id} == set(query_intersect.unknown_set) assert 9 == len(query_intersect.universe_set) def test_query_mutation_hgvs(loaded_database_connection_annotations: DataIndexConnection): db = loaded_database_connection_annotations.database sample_sh14_001 = db.get_session().query(Sample).filter(Sample.name == 'SH14-001').one() sample_sh14_014 = db.get_session().query(Sample).filter(Sample.name == 'SH14-014').one() sample_sh10_014 = db.get_session().query(Sample).filter(Sample.name == 'SH10-014').one() # hgvs c (nucleotide) ## Test using QueryFeature object query_result = query(loaded_database_connection_annotations).hasa( QueryFeatureHGVS.create_from_id('hgvs:NC_011083:SEHA_RS04550:p.Ile224fs')) assert 2 == len(query_result) assert {sample_sh14_001.id, sample_sh14_014.id} == set(query_result.sample_set) assert 3 == len(query_result.universe_set) assert not query_result.has_tree() ## Test using string query_result = query(loaded_database_connection_annotations).hasa('hgvs:NC_011083:SEHA_RS04550:p.Ile224fs') assert 2 == len(query_result) assert {sample_sh14_001.id, sample_sh14_014.id} == set(query_result.sample_set) assert 3 == len(query_result.universe_set) assert not query_result.has_tree() # hgvs p (protein) ## Test using QueryFeature object query_result = query(loaded_database_connection_annotations).hasa( QueryFeatureHGVS.create_from_id('hgvs:NC_011083:SEHA_RS04550:c.670dupA')) assert 2 == len(query_result) assert {sample_sh14_001.id, sample_sh14_014.id} == set(query_result.sample_set) assert 3 == len(query_result.universe_set) assert not query_result.has_tree() ## Test using string query_result = query(loaded_database_connection_annotations).hasa('hgvs:NC_011083:SEHA_RS04550:c.670dupA') assert 2 == len(query_result) assert {sample_sh14_001.id, sample_sh14_014.id} == set(query_result.sample_set) assert 3 == len(query_result.universe_set) assert not query_result.has_tree() # hgvs n (nucleotide) ## Test using QueryFeature object query_result = query(loaded_database_connection_annotations).hasa( QueryFeatureHGVS.create_from_id('hgvs:NC_011083:n.882634G>A')) assert 1 == len(query_result) assert {sample_sh10_014.id} == set(query_result.sample_set) assert 3 == len(query_result.universe_set) assert not query_result.has_tree() ## Test using string query_result = query(loaded_database_connection_annotations).hasa('hgvs:NC_011083:n.882634G>A') assert 1 == len(query_result) assert {sample_sh10_014.id} == set(query_result.sample_set) assert 3 == len(query_result.universe_set) assert not query_result.has_tree() # Test find no results query_result = query(loaded_database_connection_annotations).hasa( QueryFeatureHGVS.create_from_id('hgvs:NC_011083:SEHA_RS04550:p.none')) assert 0 == len(query_result) def test_query_single_mutation_complement(loaded_database_connection: DataIndexConnection): db = loaded_database_connection.database sampleA = db.get_session().query(Sample).filter(Sample.name == 'SampleA').one() sampleB = db.get_session().query(Sample).filter(Sample.name == 'SampleB').one() all_sample_ids = {i for i, in db.get_session().query(Sample.id).all()} query_result = query(loaded_database_connection).hasa(QueryFeatureMutationSPDI('reference:5061:G:A')) assert 1 == len(query_result) assert {sampleB.id} == set(query_result.sample_set) assert {sampleA.id} == set(query_result.unknown_set) assert all_sample_ids - {sampleA.id, sampleB.id} == set(query_result.absent_set) assert 9 == len(query_result.universe_set) query_result_c = query_result.complement() assert 7 == len(query_result_c) assert all_sample_ids - {sampleA.id, sampleB.id} == set(query_result_c.sample_set) assert {sampleA.id} == set(query_result_c.unknown_set) assert {sampleB.id} == set(query_result_c.absent_set) assert 9 == len(query_result_c.universe_set) query_result_c = ~query_result assert 7 == len(query_result_c) assert all_sample_ids - {sampleA.id, sampleB.id} == set(query_result_c.sample_set) assert {sampleA.id} == set(query_result_c.unknown_set) assert {sampleB.id} == set(query_result_c.absent_set) assert 9 == len(query_result_c.universe_set) def test_query_single_mutation_two_samples_complement(loaded_database_connection: DataIndexConnection): db = loaded_database_connection.database sampleA = db.get_session().query(Sample).filter(Sample.name == 'SampleA').one() sampleB = db.get_session().query(Sample).filter(Sample.name == 'SampleB').one() sampleC = db.get_session().query(Sample).filter(Sample.name == 'SampleC').one() all_sample_ids = {i for i, in db.get_session().query(Sample.id).all()} query_result = query(loaded_database_connection).hasa(QueryFeatureMutationSPDI('reference:839:C:G')) assert 2 == len(query_result) assert {sampleB.id, sampleC.id} == set(query_result.sample_set) assert set() == set(query_result.unknown_set) assert all_sample_ids - {sampleB.id, sampleC.id} == set(query_result.absent_set) assert 9 == len(query_result.universe_set) query_result_c = query_result.complement() assert 7 == len(query_result_c) assert all_sample_ids - {sampleB.id, sampleC.id} == set(query_result_c.sample_set) assert set() == set(query_result_c.unknown_set) assert {sampleB.id, sampleC.id} == set(query_result_c.absent_set) assert 9 == len(query_result_c.universe_set) assert sampleB.id not in query_result_c.sample_set assert sampleC.id not in query_result_c.sample_set assert sampleA.id in query_result_c.sample_set query_result_c = ~query_result assert 7 == len(query_result_c) assert all_sample_ids - {sampleB.id, sampleC.id} == set(query_result_c.sample_set) assert set() == set(query_result_c.unknown_set) assert {sampleB.id, sampleC.id} == set(query_result_c.absent_set) assert 9 == len(query_result_c.universe_set) assert sampleB.id not in query_result_c.sample_set assert sampleC.id not in query_result_c.sample_set assert sampleA.id in query_result_c.sample_set def test_query_single_mutation_summary(loaded_database_connection: DataIndexConnection): df = query(loaded_database_connection).hasa('reference:5061:G:A', kind='mutation').summary() assert 1 == len(df) assert ['Query', 'Present', 'Absent', 'Unknown', 'Total', '% Present', '% Absent', '% Unknown'] == df.columns.tolist() assert 'reference:5061:G:A' == df.iloc[0]['Query'] assert 1 == df.iloc[0]['Present'] assert 7 == df.iloc[0]['Absent'] assert 1 == df.iloc[0]['Unknown'] assert 9 == df.iloc[0]['Total'] assert math.isclose((1 / 9) * 100, df.iloc[0]['% Present']) assert math.isclose((7 / 9) * 100, df.iloc[0]['% Absent']) assert math.isclose((1 / 9) * 100, df.iloc[0]['% Unknown']) def test_query_single_mutation_two_samples(loaded_database_connection: DataIndexConnection): db = loaded_database_connection.database sampleB = db.get_session().query(Sample).filter(Sample.name == 'SampleB').one() sampleC = db.get_session().query(Sample).filter(Sample.name == 'SampleC').one() query_result = query(loaded_database_connection).hasa(QueryFeatureMutationSPDI('reference:839:C:G')) assert 2 == len(query_result) assert {sampleB.id, sampleC.id} == set(query_result.sample_set) assert 9 == len(query_result.universe_set) def test_query_single_mutation_two_samples_kmer_one_sample(loaded_database_connection: DataIndexConnection): db = loaded_database_connection.database sampleB = db.get_session().query(Sample).filter(Sample.name == 'SampleB').one() sampleC = db.get_session().query(Sample).filter(Sample.name == 'SampleC').one() query_result = query(loaded_database_connection).hasa(QueryFeatureMutationSPDI('reference:839:C:G')) assert 2 == len(query_result) assert {sampleB.id, sampleC.id} == set(query_result.sample_set) assert 9 == len(query_result.universe_set) query_result = query_result.isin('SampleA', kind='distance', distance=0.5, units='kmer_jaccard') assert 1 == len(query_result) assert {sampleC.id} == set(query_result.sample_set) assert 9 == len(query_result.universe_set) def test_query_hasa_string_features(loaded_database_connection: DataIndexConnection): db = loaded_database_connection.database sampleB = db.get_session().query(Sample).filter(Sample.name == 'SampleB').one() sampleC = db.get_session().query(Sample).filter(Sample.name == 'SampleC').one() # Test default hasa SPDI query_result = query(loaded_database_connection).hasa('reference:839:C:G') assert 2 == len(query_result) assert {sampleB.id, sampleC.id} == set(query_result.sample_set) assert 0 == len(query_result.unknown_set) assert 9 == len(query_result.universe_set) # Test HGVS (should return no results since snpeff annotations don't exist) query_result = query(loaded_database_connection).hasa('hgvs:reference:n.839C>G') assert 0 == len(query_result) assert 0 == len(query_result.unknown_set) assert 9 == len(query_result.universe_set) def test_query_hasa_string_features_snpeff(loaded_database_connection_annotations: DataIndexConnection): db = loaded_database_connection_annotations.database sample_sh14_001 = db.get_session().query(Sample).filter(Sample.name == 'SH14-001').one() sample_sh14_014 = db.get_session().query(Sample).filter(Sample.name == 'SH14-014').one() sample_sh10_014 = db.get_session().query(Sample).filter(Sample.name == 'SH10-014').one() query_result = query(loaded_database_connection_annotations) # Test HGVS with amino acid notation query_result_test = query_result.hasa('hgvs:NC_011083:SEHA_RS04550:p.Ile224fs') assert 2 == len(query_result_test) assert {sample_sh14_001.id, sample_sh14_014.id} == set(query_result_test.sample_set) assert 0 == len(query_result_test.unknown_set) assert 3 == len(query_result_test.universe_set) # Test HGVS nucleotide coding notation query_result_test = query_result.hasa('hgvs:NC_011083:SEHA_RS04550:c.670dupA') assert 2 == len(query_result_test) assert {sample_sh14_001.id, sample_sh14_014.id} == set(query_result_test.sample_set) assert 0 == len(query_result_test.unknown_set) assert 3 == len(query_result_test.universe_set) # Test SPDI deletion sequence query_result_test = query_result.hasa('NC_011083:835147:C:CA') assert 2 == len(query_result_test) assert {sample_sh14_001.id, sample_sh14_014.id} == set(query_result_test.sample_set) assert 0 == len(query_result_test.unknown_set) assert 3 == len(query_result_test.universe_set) # Test SPDI deletion integer query_result_test = query_result.hasa('NC_011083:835147:1:CA') assert 2 == len(query_result_test) assert {sample_sh14_001.id, sample_sh14_014.id} == set(query_result_test.sample_set) assert 0 == len(query_result_test.unknown_set) assert 3 == len(query_result_test.universe_set) # Test HGVS, intergenic region query_result_test = query_result.hasa('hgvs:NC_011083:n.298943A>T') assert 3 == len(query_result_test) assert {sample_sh14_001.id, sample_sh14_014.id, sample_sh10_014.id} == set(query_result_test.sample_set) assert 0 == len(query_result_test.unknown_set) assert 3 == len(query_result_test.universe_set) # Test SPDI, sequence and intergenic region query_result_test = query_result.hasa('NC_011083:298943:A:T') assert 3 == len(query_result_test) assert {sample_sh14_001.id, sample_sh14_014.id, sample_sh10_014.id} == set(query_result_test.sample_set) assert 0 == len(query_result_test.unknown_set) assert 3 == len(query_result_test.universe_set) # Test SPDI, deletion integer and intergenic region query_result_test = query_result.hasa('NC_011083:298943:1:T') assert 3 == len(query_result_test) assert {sample_sh14_001.id, sample_sh14_014.id, sample_sh10_014.id} == set(query_result_test.sample_set) assert 0 == len(query_result_test.unknown_set) assert 3 == len(query_result_test.universe_set) # Test HGVS large deletion with amino acid notation query_result_test = query_result.hasa('hgvs:NC_011083:SEHA_RS15905:p.Asp140_His155del') assert 1 == len(query_result_test) assert {sample_sh10_014.id} == set(query_result_test.sample_set) assert 0 == len(query_result_test.unknown_set) assert 3 == len(query_result_test.universe_set) # Test HGVS large deletion with nucleotide coding notation query_result_test = query_result.hasa( 'hgvs:NC_011083:SEHA_RS15905:c.417_464delCGACCACGACCACGACCACGACCACGACCACGACCACGACCACGACCA') assert 1 == len(query_result_test) assert {sample_sh10_014.id} == set(query_result_test.sample_set) assert 0 == len(query_result_test.unknown_set) assert 3 == len(query_result_test.universe_set) # Test SPDI, large deletion sequence query_result_test = query_result.hasa('NC_011083:3167187:AACCACGACCACGACCACGACCACGACCACGACCACGACCACGACCACG:A') assert 1 == len(query_result_test) assert {sample_sh10_014.id} == set(query_result_test.sample_set) assert 0 == len(query_result_test.unknown_set) assert 3 == len(query_result_test.universe_set) # Test SPDI, large deletion integer query_result_test = query_result.hasa( f'NC_011083:3167187:{len("AACCACGACCACGACCACGACCACGACCACGACCACGACCACGACCACG")}:A') assert 1 == len(query_result_test) assert {sample_sh10_014.id} == set(query_result_test.sample_set) assert 0 == len(query_result_test.unknown_set) assert 3 == len(query_result_test.universe_set) # Test HGVS smaller deletion in same region with amino acid notation query_result_test = query_result.hasa('hgvs:NC_011083:SEHA_RS15905:p.Asp144_His155del') assert 2 == len(query_result_test) assert {sample_sh14_001.id, sample_sh14_014.id} == set(query_result_test.sample_set) assert 0 == len(query_result_test.unknown_set) assert 3 == len(query_result_test.universe_set) # Test HGVS smaller deletion in same region with nucleotide coding notation query_result_test = query_result.hasa( 'hgvs:NC_011083:SEHA_RS15905:c.429_464delCGACCACGACCACGACCACGACCACGACCACGACCA') assert 2 == len(query_result_test) assert {sample_sh14_001.id, sample_sh14_014.id} == set(query_result_test.sample_set) assert 0 == len(query_result_test.unknown_set) assert 3 == len(query_result_test.universe_set) # Test SPDI, smaller deletion in same region sequence query_result_test = query_result.hasa('NC_011083:3167187:AACCACGACCACGACCACGACCACGACCACGACCACG:A') assert 2 == len(query_result_test) assert {sample_sh14_001.id, sample_sh14_014.id} == set(query_result_test.sample_set) assert 0 == len(query_result_test.unknown_set) assert 3 == len(query_result_test.universe_set) # Test SPDI, smaller deletion in same region integer query_result_test = query_result.hasa(f'NC_011083:3167187:{len("AACCACGACCACGACCACGACCACGACCACGACCACG")}:A') assert 2 == len(query_result_test) assert {sample_sh14_001.id, sample_sh14_014.id} == set(query_result_test.sample_set) assert 0 == len(query_result_test.unknown_set) assert 3 == len(query_result_test.universe_set) # Test HGVSGN.c single mutation query_result_test = query_result.hasa('hgvs_gn:NC_011083:murF:c.497C>A') assert 3 == len(query_result_test) assert {sample_sh10_014.id, sample_sh14_001.id, sample_sh14_014.id} == set(query_result_test.sample_set) assert 0 == len(query_result_test.unknown_set) assert 3 == len(query_result_test.universe_set) # Test HGVSGN.p single mutation query_result_test = query_result.hasa('hgvs_gn:NC_011083:murF:p.Ala166Glu') assert 3 == len(query_result_test) assert {sample_sh10_014.id, sample_sh14_001.id, sample_sh14_014.id} == set(query_result_test.sample_set) assert 0 == len(query_result_test.unknown_set) assert 3 == len(query_result_test.universe_set) # Test HGVSGN.c single mutation 2 results query_result_test = query_result.hasa('hgvs_gn:NC_011083:oadA:c.609T>C') assert 2 == len(query_result_test) assert {sample_sh10_014.id, sample_sh14_001.id} == set(query_result_test.sample_set) assert 0 == len(query_result_test.unknown_set) assert 3 == len(query_result_test.universe_set) # Test HGVSGN.p single mutation 2 results query_result_test = query_result.hasa('hgvs_gn:NC_011083:oadA:p.Cys203Cys') assert 2 == len(query_result_test) assert {sample_sh10_014.id, sample_sh14_001.id} == set(query_result_test.sample_set) assert 0 == len(query_result_test.unknown_set) assert 3 == len(query_result_test.universe_set) # Test HGVS.c single mutation 2 results query_result_test = query_result.hasa('hgvs:NC_011083:SEHA_RS17780:c.609T>C') assert 2 == len(query_result_test) assert {sample_sh10_014.id, sample_sh14_001.id} == set(query_result_test.sample_set) assert 0 == len(query_result_test.unknown_set) assert 3 == len(query_result_test.universe_set) # Test HGVS.c single mutation 2 results query_result_test = query_result.hasa('hgvs:NC_011083:SEHA_RS17780:p.Cys203Cys') assert 2 == len(query_result_test) assert {sample_sh10_014.id, sample_sh14_001.id} == set(query_result_test.sample_set) assert 0 == len(query_result_test.unknown_set) assert 3 == len(query_result_test.universe_set) # Test equivalent SPDI identifier for above query_result_test = query_result.hasa('NC_011083:3535635:A:G') assert 2 == len(query_result_test) assert {sample_sh10_014.id, sample_sh14_001.id} == set(query_result_test.sample_set) assert 0 == len(query_result_test.unknown_set) assert 3 == len(query_result_test.universe_set) def test_query_hasa_string_features_snpeff_duplicate_genes( loaded_database_connection_annotations_duplicate_genes: DataIndexConnection): db = loaded_database_connection_annotations_duplicate_genes.database sample1 = db.get_session().query(Sample).filter(Sample.name == 'SH10-014-dup-gene-variant').one() sample2 = db.get_session().query(Sample).filter(Sample.name == 'SH10-014-dup-gene-variant-2').one() query_result = query(loaded_database_connection_annotations_duplicate_genes) # Test HGVSGN.c single mutation but there are two different copies of murF gene and so query should investigate both query_result_test = query_result.hasa('hgvs_gn:NC_011083:murF:c.497C>A') assert 2 == len(query_result_test) assert {sample1.id, sample2.id} == set(query_result_test.sample_set) assert 0 == len(query_result_test.unknown_set) assert 2 == len(query_result_test.universe_set) # Test HGVSGN.p single mutation but there are two different copies of murF gene and so query should investigate both query_result_test = query_result.hasa('hgvs_gn:NC_011083:murF:p.Ala166Glu') assert 2 == len(query_result_test) assert {sample1.id, sample2.id} == set(query_result_test.sample_set) assert 0 == len(query_result_test.unknown_set) assert 2 == len(query_result_test.universe_set) # Test HGVS.c single mutation which, because it's selecting by locus identifier which is unique, should give 1 result query_result_test = query_result.hasa('hgvs:NC_011083:SEHA_RS01180:c.497C>A') assert 1 == len(query_result_test) assert {sample1.id} == set(query_result_test.sample_set) assert 0 == len(query_result_test.unknown_set) assert 2 == len(query_result_test.universe_set) # Test HGVS.p single mutation which, because it's selecting by locus identifier which is unique, should give 1 result query_result_test = query_result.hasa('hgvs:NC_011083:SEHA_RS01180:p.Ala166Glu') assert 1 == len(query_result_test) assert {sample1.id} == set(query_result_test.sample_set) assert 0 == len(query_result_test.unknown_set) assert 2 == len(query_result_test.universe_set) def test_query_single_mutation_no_results_is_empty(loaded_database_connection: DataIndexConnection): # Test is_empty for something with unknown positions query_result = query(loaded_database_connection).hasa(QueryFeatureMutationSPDI('reference:1:1:A')) assert 0 == len(query_result) assert query_result.is_empty() assert 9 == len(query_result.universe_set) assert not query_result.is_empty(include_unknown=True) # Test is_empty for something without unknown positions query_result = query(loaded_database_connection).hasa(QueryFeatureMutationSPDI('reference:3000:1:A')) assert 0 == len(query_result) assert query_result.is_empty() assert 9 == len(query_result.universe_set) assert query_result.is_empty(include_unknown=True) def test_query_chained_mutation(loaded_database_connection: DataIndexConnection): db = loaded_database_connection.database sampleB = db.get_session().query(Sample).filter(Sample.name == 'SampleB').one() query_result = query(loaded_database_connection).hasa( QueryFeatureMutationSPDI('reference:839:C:G')).hasa( QueryFeatureMutationSPDI('reference:5061:G:A')) assert 1 == len(query_result) assert {sampleB.id} == set(query_result.sample_set) assert 9 == len(query_result.universe_set) def test_query_chained_mutation_has_mutation(loaded_database_connection: DataIndexConnection): db = loaded_database_connection.database sampleB = db.get_session().query(Sample).filter(Sample.name == 'SampleB').one() query_result = query(loaded_database_connection).hasa( 'reference:839:C:G', kind='mutation').hasa( 'reference:5061:G:A', kind='mutation') assert 1 == len(query_result) assert {sampleB.id} == set(query_result.sample_set) assert 9 == len(query_result.universe_set) def test_query_mlst_allele(loaded_database_connection: DataIndexConnection): db = loaded_database_connection.database sample_CFSAN002349 = db.get_session().query(Sample).filter(Sample.name == 'CFSAN002349').one() sample_CFSAN023463 = db.get_session().query(Sample).filter(Sample.name == 'CFSAN023463').one() sample_2014D_0067 = db.get_session().query(Sample).filter(Sample.name == '2014D-0067').one() sample_2014D_0068 = db.get_session().query(Sample).filter(Sample.name == '2014D-0068').one() sampleA = db.get_session().query(Sample).filter(Sample.name == 'SampleA').one() sampleB = db.get_session().query(Sample).filter(Sample.name == 'SampleB').one() sampleC = db.get_session().query(Sample).filter(Sample.name == 'SampleC').one() # No unknowns query_result = query(loaded_database_connection).hasa(QueryFeatureMLST('mlst:lmonocytogenes:abcZ:1')) assert 5 == len(query_result) assert {sample_CFSAN002349.id, sample_CFSAN023463.id, sampleA.id, sampleB.id, sampleC.id} == set( query_result.sample_set) assert 0 == len(query_result.unknown_set) assert 4 == len(query_result.absent_set) assert 9 == len(query_result.universe_set) assert {'CFSAN002349', 'CFSAN023463', 'SampleA', 'SampleB', 'SampleC'} == set(query_result.tolist()) assert {sample_CFSAN002349.id, sample_CFSAN023463.id, sampleA.id, sampleB.id, sampleC.id} == set( query_result.tolist(names=False)) # With unknown and present query_result = query(loaded_database_connection).hasa(QueryFeatureMLST('mlst:campylobacter:uncA:6')) assert 1 == len(query_result) assert {sample_2014D_0068.id} == set(query_result.sample_set) assert 1 == len(query_result.unknown_set) assert {sample_2014D_0067.id} == set(query_result.unknown_set) assert 7 == len(query_result.absent_set) assert 9 == len(query_result.universe_set) # With unknown and absent query_result = query(loaded_database_connection).hasa(QueryFeatureMLST('mlst:campylobacter:uncA:5')) assert 0 == len(query_result) assert 1 == len(query_result.unknown_set) assert {sample_2014D_0067.id} == set(query_result.unknown_set) assert 8 == len(query_result.absent_set) assert 9 == len(query_result.universe_set) # Direct from string query_result = query(loaded_database_connection).hasa('mlst:campylobacter:uncA:6') assert 1 == len(query_result) assert {sample_2014D_0068.id} == set(query_result.sample_set) assert 1 == len(query_result.unknown_set) assert {sample_2014D_0067.id} == set(query_result.unknown_set) assert 7 == len(query_result.absent_set) assert 9 == len(query_result.universe_set) def test_query_chained_mlst_alleles(loaded_database_connection: DataIndexConnection): db = loaded_database_connection.database sample1 = db.get_session().query(Sample).filter(Sample.name == 'CFSAN002349').one() query_result = query(loaded_database_connection).hasa( QueryFeatureMLST('mlst:lmonocytogenes:abcZ:1')).hasa( QueryFeatureMLST('mlst:lmonocytogenes:lhkA:4')) assert 1 == len(query_result) assert {sample1.id} == set(query_result.sample_set) assert 9 == len(query_result.universe_set) def test_query_chained_mlst_alleles_has_allele(loaded_database_connection: DataIndexConnection): db = loaded_database_connection.database sample1 = db.get_session().query(Sample).filter(Sample.name == 'CFSAN002349').one() query_result = query(loaded_database_connection) \ .hasa('mlst:lmonocytogenes:abcZ:1', kind='mlst') \ .hasa('mlst:lmonocytogenes:lhkA:4', kind='mlst') assert 1 == len(query_result) assert {sample1.id} == set(query_result.sample_set) assert 9 == len(query_result.universe_set) def test_query_chained_mlst_nucleotide(loaded_database_connection: DataIndexConnection): db = loaded_database_connection.database sampleA = db.get_session().query(Sample).filter(Sample.name == 'SampleA').one() sampleB = db.get_session().query(Sample).filter(Sample.name == 'SampleB').one() sampleC = db.get_session().query(Sample).filter(Sample.name == 'SampleC').one() all_sample_ids = {i for i, in db.get_session().query(Sample.id).all()} # Test query mutation then MLST query_result = query(loaded_database_connection) \ .hasa('reference:839:C:G', kind='mutation') \ .hasa('mlst:lmonocytogenes:cat:12', kind='mlst') assert 1 == len(query_result) assert {sampleC.id} == set(query_result.sample_set) assert 0 == len(query_result.unknown_set) assert 8 == len(query_result.absent_set) assert all_sample_ids - {sampleC.id} == set(query_result.absent_set) assert 9 == len(query_result.universe_set) assert ['SampleC'] == query_result.tolist() assert [sampleC.id] == query_result.tolist(names=False) # Test query MLST then mutation that will be switched to unknown query_result = query(loaded_database_connection) \ .hasa('mlst:lmonocytogenes:bglA:52', kind='mlst') \ .hasa('reference:3319:1:G', kind='mutation') assert 0 == len(query_result) assert 1 == len(query_result.unknown_set) assert {sampleB.id} == set(query_result.unknown_set) assert 8 == len(query_result.absent_set) assert all_sample_ids - {sampleB.id} == set(query_result.absent_set) assert 9 == len(query_result.universe_set) # Test query MLST (with unknown allele) then mutation that will be switched to unknown query_result = query(loaded_database_connection) \ .hasa('mlst:lmonocytogenes:ldh:5', kind='mlst') \ .hasa('reference:1:1:G', kind='mutation') assert 0 == len(query_result) assert 3 == len(query_result.unknown_set) assert {sampleA.id, sampleB.id, sampleC.id} == set(query_result.unknown_set) assert 6 == len(query_result.absent_set) assert all_sample_ids - {sampleA.id, sampleB.id, sampleC.id} == set(query_result.absent_set) assert 9 == len(query_result.universe_set) # Test the unknown allele of MLST with a mutation that will be switched to unknown query_result = query(loaded_database_connection) \ .hasa('mlst:lmonocytogenes:ldh:?', kind='mlst') \ .hasa('reference:3319:1:G', kind='mutation') assert 0 == len(query_result) assert 1 == len(query_result.unknown_set) assert {sampleB.id} == set(query_result.unknown_set) assert 8 == len(query_result.absent_set) assert all_sample_ids - {sampleB.id} == set(query_result.absent_set) assert 9 == len(query_result.universe_set) # Test query MLST (with unknown allele) then mutation (no issues with unknown/found overlap) query_result = query(loaded_database_connection) \ .hasa('mlst:lmonocytogenes:ldh:5', kind='mlst') \ .hasa('reference:839:C:G', kind='mutation') print(query_result.toframe(include_unknown=True)[['Sample Name', 'Status']]) assert 1 == len(query_result) assert {sampleC.id} == set(query_result.sample_set) assert 1 == len(query_result.unknown_set) assert {sampleB.id} == set(query_result.unknown_set) assert 7 == len(query_result.absent_set) assert all_sample_ids - {sampleB.id, sampleC.id} == set(query_result.absent_set) assert 9 == len(query_result.universe_set) # Test query mutation (no issues with unknown/found overlap) then MLST (with unknown allele) query_result = query(loaded_database_connection) \ .hasa('reference:839:C:G', kind='mutation') \ .hasa('mlst:lmonocytogenes:ldh:5', kind='mlst') assert 1 == len(query_result) assert {sampleC.id} == set(query_result.sample_set) assert 1 == len(query_result.unknown_set) assert {sampleB.id} == set(query_result.unknown_set) assert 7 == len(query_result.absent_set) assert all_sample_ids - {sampleB.id, sampleC.id} == set(query_result.absent_set) assert 9 == len(query_result.universe_set) def test_query_single_mutation_dataframe(loaded_database_connection: DataIndexConnection): db = loaded_database_connection.database sampleB = db.get_session().query(Sample).filter(Sample.name == 'SampleB').one() sampleC = db.get_session().query(Sample).filter(Sample.name == 'SampleC').one() # Case with no unknowns df = query(loaded_database_connection).hasa('reference:839:C:G', kind='mutation').toframe() assert 2 == len(df) assert ['Query', 'Sample Name', 'Sample ID', 'Status'] == df.columns.tolist() df = df.sort_values(['Sample Name']) assert ['SampleB', 'SampleC'] == df['Sample Name'].tolist() assert [sampleB.id, sampleC.id] == df['Sample ID'].tolist() assert {'reference:839:C:G'} == set(df['Query'].tolist()) assert ['Present', 'Present'] == df['Status'].tolist() # Case with no unknowns, exclude present df = query(loaded_database_connection).hasa('reference:839:C:G', kind='mutation').toframe(include_present=False) assert 0 == len(df) assert ['Query', 'Sample Name', 'Sample ID', 'Status'] == df.columns.tolist() # Case with some unknowns df = query(loaded_database_connection).hasa('reference:5061:G:A', kind='mutation').toframe() assert 1 == len(df) assert ['Query', 'Sample Name', 'Sample ID', 'Status'] == df.columns.tolist() df = df.sort_values(['Sample Name']) assert ['SampleB'] == df['Sample Name'].tolist() assert [sampleB.id] == df['Sample ID'].tolist() assert {'reference:5061:G:A'} == set(df['Query'].tolist()) assert ['Present'] == df['Status'].tolist() # Case with some unknowns, exclude present df = query(loaded_database_connection).hasa('reference:5061:G:A', kind='mutation').toframe(include_present=False) assert 0 == len(df) assert ['Query', 'Sample Name', 'Sample ID', 'Status'] == df.columns.tolist() def test_query_single_mutation_dataframe_include_all(loaded_database_connection: DataIndexConnection): # Case of no unknowns df = query(loaded_database_connection).hasa( 'reference:839:C:G', kind='mutation').toframe(include_absent=True, include_unknown=True) assert 9 == len(df) assert ['Query', 'Sample Name', 'Sample ID', 'Status'] == df.columns.tolist() df = df.sort_values(['Sample Name']) assert ['2014C-3598', '2014C-3599', '2014D-0067', '2014D-0068', 'CFSAN002349', 'CFSAN023463', 'SampleA', 'SampleB', 'SampleC'] == df['Sample Name'].tolist() assert ['Absent', 'Absent', 'Absent', 'Absent', 'Absent', 'Absent', 'Absent', 'Present', 'Present'] == df['Status'].tolist() assert {'reference:839:C:G'} == set(df['Query'].tolist()) # Case of no unknowns but 'include_unknown' is False df = query(loaded_database_connection).hasa( 'reference:839:C:G', kind='mutation').toframe(include_absent=True, include_unknown=False) assert 9 == len(df) assert ['Query', 'Sample Name', 'Sample ID', 'Status'] == df.columns.tolist() df = df.sort_values(['Sample Name']) assert ['2014C-3598', '2014C-3599', '2014D-0067', '2014D-0068', 'CFSAN002349', 'CFSAN023463', 'SampleA', 'SampleB', 'SampleC'] == df['Sample Name'].tolist() assert ['Absent', 'Absent', 'Absent', 'Absent', 'Absent', 'Absent', 'Absent', 'Present', 'Present'] == df['Status'].tolist() assert {'reference:839:C:G'} == set(df['Query'].tolist()) # Case of some unknowns df = query(loaded_database_connection).hasa( 'reference:5061:G:A', kind='mutation').toframe(include_absent=True, include_unknown=True) assert 9 == len(df) assert ['Query', 'Sample Name', 'Sample ID', 'Status'] == df.columns.tolist() df = df.sort_values(['Sample Name']) assert ['2014C-3598', '2014C-3599', '2014D-0067', '2014D-0068', 'CFSAN002349', 'CFSAN023463', 'SampleA', 'SampleB', 'SampleC'] == df['Sample Name'].tolist() assert ['Absent', 'Absent', 'Absent', 'Absent', 'Absent', 'Absent', 'Unknown', 'Present', 'Absent'] == df['Status'].tolist() assert {'reference:5061:G:A'} == set(df['Query'].tolist()) # Case of some unknowns excluding unknowns df = query(loaded_database_connection).hasa( 'reference:5061:G:A', kind='mutation').toframe(include_absent=True, include_unknown=False) assert 8 == len(df) assert ['Query', 'Sample Name', 'Sample ID', 'Status'] == df.columns.tolist() df = df.sort_values(['Sample Name']) assert ['2014C-3598', '2014C-3599', '2014D-0067', '2014D-0068', 'CFSAN002349', 'CFSAN023463', 'SampleB', 'SampleC'] == df['Sample Name'].tolist() assert ['Absent', 'Absent', 'Absent', 'Absent', 'Absent', 'Absent', 'Present', 'Absent'] == df['Status'].tolist() assert {'reference:5061:G:A'} == set(df['Query'].tolist()) # Case of some unknowns, excluding absent df = query(loaded_database_connection).hasa( 'reference:5061:G:A', kind='mutation').toframe(include_absent=False, include_unknown=True) assert 2 == len(df) assert ['Query', 'Sample Name', 'Sample ID', 'Status'] == df.columns.tolist() df = df.sort_values(['Sample Name']) assert ['SampleA', 'SampleB'] == df['Sample Name'].tolist() assert ['Unknown', 'Present'] == df['Status'].tolist() assert {'reference:5061:G:A'} == set(df['Query'].tolist()) # Case of some unknowns, only unknowns df = query(loaded_database_connection).hasa( 'reference:5061:G:A', kind='mutation').toframe(include_present=False, include_absent=False, include_unknown=True) assert 1 == len(df) assert ['Query', 'Sample Name', 'Sample ID', 'Status'] == df.columns.tolist() df = df.sort_values(['Sample Name']) assert ['SampleA'] == df['Sample Name'].tolist() assert ['Unknown'] == df['Status'].tolist() assert {'reference:5061:G:A'} == set(df['Query'].tolist()) # Case of some unknowns, only absent df = query(loaded_database_connection).hasa( 'reference:5061:G:A', kind='mutation').toframe(include_present=False, include_absent=True, include_unknown=False) assert 7 == len(df) assert ['Query', 'Sample Name', 'Sample ID', 'Status'] == df.columns.tolist() df = df.sort_values(['Sample Name']) assert ['2014C-3598', '2014C-3599', '2014D-0067', '2014D-0068', 'CFSAN002349', 'CFSAN023463', 'SampleC'] == df['Sample Name'].tolist() assert ['Absent', 'Absent', 'Absent', 'Absent', 'Absent', 'Absent', 'Absent'] == df['Status'].tolist() assert {'reference:5061:G:A'} == set(df['Query'].tolist()) def test_query_chained_allele_dataframe(loaded_database_connection: DataIndexConnection): db = loaded_database_connection.database sample1 = db.get_session().query(Sample).filter(Sample.name == 'CFSAN002349').one() df = query(loaded_database_connection) \ .hasa('mlst:lmonocytogenes:abcZ:1', kind='mlst') \ .hasa('mlst:lmonocytogenes:lhkA:4', kind='mlst').toframe() assert 1 == len(df) assert ['Query', 'Sample Name', 'Sample ID', 'Status'] == df.columns.tolist() df = df.sort_values(['Sample Name']) assert ['CFSAN002349'] == df['Sample Name'].tolist() assert [sample1.id] == df['Sample ID'].tolist() assert {'mlst:lmonocytogenes:abcZ:1 AND mlst:lmonocytogenes:lhkA:4'} == set(df['Query'].tolist()) def test_query_single_mutation_no_results_toframe(loaded_database_connection: DataIndexConnection): df = query(loaded_database_connection).hasa('reference:1:1:A', kind='mutation').toframe() assert 0 == len(df) assert ['Query', 'Sample Name', 'Sample ID', 'Status'] == df.columns.tolist() def test_query_single_mutation_all_unknown_summary(loaded_database_connection: DataIndexConnection): df = query(loaded_database_connection).hasa('reference:1:1:A', kind='mutation').summary() assert 1 == len(df) assert ['Query', 'Present', 'Absent', 'Unknown', 'Total', '% Present', '% Absent', '% Unknown'] == df.columns.tolist() assert 'reference:1:1:A' == df.iloc[0]['Query'] assert 0 == df.iloc[0]['Present'] assert 6 == df.iloc[0]['Absent'] assert 3 == df.iloc[0]['Unknown'] assert 9 == df.iloc[0]['Total'] assert math.isclose((0 / 9) * 100, df.iloc[0]['% Present']) assert math.isclose((6 / 9) * 100, df.iloc[0]['% Absent']) assert math.isclose((3 / 9) * 100, df.iloc[0]['% Unknown']) def test_query_single_mutation_all_absent_summary(loaded_database_connection: DataIndexConnection): df = query(loaded_database_connection).hasa('reference:3000:1:A', kind='mutation').summary() assert 1 == len(df) assert ['Query', 'Present', 'Absent', 'Unknown', 'Total', '% Present', '% Absent', '% Unknown'] == df.columns.tolist() assert 'reference:3000:1:A' == df.iloc[0]['Query'] assert 0 == df.iloc[0]['Present'] assert 9 == df.iloc[0]['Absent'] assert 0 == df.iloc[0]['Unknown'] assert 9 == df.iloc[0]['Total'] assert math.isclose((0 / 9) * 100, df.iloc[0]['% Present']) assert math.isclose((9 / 9) * 100, df.iloc[0]['% Absent']) assert math.isclose((0 / 9) * 100, df.iloc[0]['% Unknown']) def test_all_samples_summary(loaded_database_connection: DataIndexConnection): df = query(loaded_database_connection).summary() assert 1 == len(df) assert ['Query', 'Present', 'Absent', 'Unknown', 'Total', '% Present', '% Absent', '% Unknown'] == df.columns.tolist() assert '' == df.iloc[0]['Query'] assert 9 == df.iloc[0]['Present'] assert 0 == df.iloc[0]['Absent'] assert 0 == df.iloc[0]['Unknown'] assert 9 == df.iloc[0]['Total'] assert math.isclose((9 / 9) * 100, df.iloc[0]['% Present']) assert math.isclose((0 / 9) * 100, df.iloc[0]['% Absent']) assert math.isclose((0 / 9) * 100, df.iloc[0]['% Unknown']) def test_join_custom_dataframe_no_query(loaded_database_connection: DataIndexConnection): db = loaded_database_connection.database sampleA = db.get_session().query(Sample).filter(Sample.name == 'SampleA').one() sampleB = db.get_session().query(Sample).filter(Sample.name == 'SampleB').one() sampleC = db.get_session().query(Sample).filter(Sample.name == 'SampleC').one() df = pd.DataFrame([ [sampleA.id, 'red'], [sampleB.id, 'green'], [sampleC.id, 'blue'] ], columns=['Sample ID', 'Color']) query_result = query(loaded_database_connection, universe='dataframe', data_frame=df, sample_ids_column='Sample ID') assert 3 == len(query_result) assert 3 == len(query_result.universe_set) assert {sampleA.id, sampleB.id, sampleC.id} == set(query_result.sample_set) assert {'dataframe(ids_col=[Sample ID])'} == set(query_result.toframe()['Query'].tolist()) def test_query_custom_dataframe_isin_samples(loaded_database_connection: DataIndexConnection): db = loaded_database_connection.database sampleA = db.get_session().query(Sample).filter(Sample.name == 'SampleA').one() sampleB = db.get_session().query(Sample).filter(Sample.name == 'SampleB').one() sampleC = db.get_session().query(Sample).filter(Sample.name == 'SampleC').one() df = pd.DataFrame([ [sampleA.id, 'red'], [sampleB.id, 'green'], [sampleC.id, 'blue'] ], columns=['Sample ID', 'Color']) query_result = query(loaded_database_connection, universe='dataframe', data_frame=df, sample_ids_column='Sample ID') query_result = query_result.isin(['SampleA', 'SampleC']) assert 2 == len(query_result) assert 3 == len(query_result.universe_set) assert {sampleA.id, sampleC.id} == set(query_result.sample_set) assert {"dataframe(ids_col=[Sample ID]) AND isin_samples(['SampleA', 'SampleC'])"} == set( query_result.toframe()['Query'].tolist()) def test_query_custom_dataframe_isin_kmer_distance(loaded_database_connection: DataIndexConnection): db = loaded_database_connection.database sampleA = db.get_session().query(Sample).filter(Sample.name == 'SampleA').one() sampleB = db.get_session().query(Sample).filter(Sample.name == 'SampleB').one() sampleC = db.get_session().query(Sample).filter(Sample.name == 'SampleC').one() df = pd.DataFrame([ [sampleA.id, 'red'], [sampleB.id, 'blue'], [sampleC.id, 'blue'] ], columns=['Sample ID', 'Color']) main_query = query(loaded_database_connection, universe='dataframe', data_frame=df, sample_ids_column='Sample ID') # Test isin with sample name query_result = main_query.isin('SampleA', kind='distance', distance=0.5, units='kmer_jaccard') assert 2 == len(query_result) assert 3 == len(query_result.universe_set) assert {sampleA.id, sampleC.id} == set(query_result.sample_set) # Test isin with sample set query_result_A = main_query.isa('SampleA', kind='sample') query_result = main_query.isin(query_result_A, kind='distance', distance=0.5, units='kmer_jaccard') assert 2 == len(query_result) assert 3 == len(query_result.universe_set) assert {sampleA.id, sampleC.id} == set(query_result.sample_set) # Test query with series expression query_result = query_result.isin(df['Color'] == 'blue', kind='dataframe') assert 1 == len(query_result) assert 3 == len(query_result.universe_set) assert {sampleC.id} == set(query_result.sample_set) def test_query_custom_dataframe_kmer_to_distances(loaded_database_connection: DataIndexConnection): db = loaded_database_connection.database sampleA = db.get_session().query(Sample).filter(Sample.name == 'SampleA').one() sampleB = db.get_session().query(Sample).filter(Sample.name == 'SampleB').one() sampleC = db.get_session().query(Sample).filter(Sample.name == 'SampleC').one() df = pd.DataFrame([ [sampleA.id, 'red'], [sampleB.id, 'blue'], [sampleC.id, 'blue'] ], columns=['Sample ID', 'Color']) query_result = query(loaded_database_connection, universe='dataframe', data_frame=df, sample_ids_column='Sample ID') query_result = query_result.isin('SampleA', kind='distance', distance=0.5, units='kmer_jaccard') assert {sampleA.id, sampleC.id} == set(query_result.sample_set) results_d, labels = query_result.to_distances(kind='kmer') assert (2, 2) == results_d.shape assert {'SampleA', 'SampleC'} == set(labels) l = {element: idx for idx, element in enumerate(labels)} assert math.isclose(results_d[l['SampleA']][l['SampleA']], 0, rel_tol=1e-3) assert math.isclose(results_d[l['SampleA']][l['SampleC']], 0.5, rel_tol=1e-3) assert math.isclose(results_d[l['SampleC']][l['SampleA']], 0.5, rel_tol=1e-3) assert math.isclose(results_d[l['SampleC']][l['SampleC']], 0, rel_tol=1e-3) def test_join_custom_dataframe_single_query(loaded_database_connection: DataIndexConnection): db = loaded_database_connection.database sampleA = db.get_session().query(Sample).filter(Sample.name == 'SampleA').one() sampleB = db.get_session().query(Sample).filter(Sample.name == 'SampleB').one() sampleC = db.get_session().query(Sample).filter(Sample.name == 'SampleC').one() df = pd.DataFrame([ [sampleA.id, 'red'], [sampleB.id, 'green'], [sampleC.id, 'blue'] ], columns=['Sample ID', 'Color']) query_result = query(loaded_database_connection, universe='dataframe', data_frame=df, sample_ids_column='Sample ID') assert 3 == len(query_result) assert 3 == len(query_result.universe_set) query_result = query_result.hasa('reference:839:C:G', kind='mutation') assert 2 == len(query_result) assert 3 == len(query_result.universe_set) assert {sampleB.id, sampleC.id} == set(query_result.sample_set) df = query_result.toframe() assert 2 == len(df) assert {'Query', 'Sample Name', 'Sample ID', 'Status', 'Color'} == set(df.columns.tolist()) df = df.sort_values(['Sample Name']) assert ['SampleB', 'SampleC'] == df['Sample Name'].tolist() assert [sampleB.id, sampleC.id] == df['Sample ID'].tolist() assert ['green', 'blue'] == df['Color'].tolist() assert {'dataframe(ids_col=[Sample ID]) AND reference:839:C:G'} == set(df['Query'].tolist()) def test_join_custom_dataframe_query_reset_universe(loaded_database_connection: DataIndexConnection): db = loaded_database_connection.database sampleA = db.get_session().query(Sample).filter(Sample.name == 'SampleA').one() sampleB = db.get_session().query(Sample).filter(Sample.name == 'SampleB').one() sampleC = db.get_session().query(Sample).filter(Sample.name == 'SampleC').one() df = pd.DataFrame([ [sampleA.id, 'red'], [sampleB.id, 'green'], [sampleC.id, 'blue'] ], columns=['Sample ID', 'Color']) query_result = query(loaded_database_connection, universe='dataframe', data_frame=df, sample_ids_column='Sample ID') query_result = query_result.hasa('reference:839:C:G', kind='mutation') assert 2 == len(query_result) assert 3 == len(query_result.universe_set) assert {sampleB.id, sampleC.id} == set(query_result.sample_set) query_result = query_result.reset_universe() assert 2 == len(query_result) assert 2 == len(query_result.universe_set) def test_join_custom_dataframe_single_query_sample_names_with_unknowns(loaded_database_connection: DataIndexConnection): db = loaded_database_connection.database sampleA = db.get_session().query(Sample).filter(Sample.name == 'SampleA').one() sampleB = db.get_session().query(Sample).filter(Sample.name == 'SampleB').one() sampleC = db.get_session().query(Sample).filter(Sample.name == 'SampleC').one() df = pd.DataFrame([ ['SampleA', 'red'], ['SampleB', 'green'], ['SampleC', 'blue'] ], columns=['Samples', 'Color']) query_result = query(loaded_database_connection, universe='dataframe', data_frame=df, sample_names_column='Samples') assert 3 == len(query_result) assert 3 == len(query_result.universe_set) # No unknowns query_result_test = query_result.hasa('reference:839:C:G', kind='mutation') assert 2 == len(query_result_test) assert 0 == len(query_result_test.unknown_set) assert 3 == len(query_result_test.universe_set) assert {sampleB.id, sampleC.id} == set(query_result_test.sample_set) df = query_result_test.toframe() assert 2 == len(df) assert ['Query', 'Sample Name', 'Sample ID', 'Status', 'Samples', 'Color'] == df.columns.tolist() df = df.sort_values(['Sample Name']) assert ['SampleB', 'SampleC'] == df['Sample Name'].tolist() assert [sampleB.id, sampleC.id] == df['Sample ID'].tolist() assert ['green', 'blue'] == df['Color'].tolist() assert {'dataframe(names_col=[Samples]) AND reference:839:C:G'} == set(df['Query'].tolist()) # With one unknown and one present query_result_test = query_result.hasa('reference:5061:G:A', kind='mutation') assert 1 == len(query_result_test) assert 1 == len(query_result_test.unknown_set) assert 3 == len(query_result_test.universe_set) assert {sampleA.id} == set(query_result_test.unknown_set) assert {sampleB.id} == set(query_result_test.sample_set) df = query_result_test.toframe(include_unknown=True) assert 2 == len(df) assert ['Query', 'Sample Name', 'Sample ID', 'Status', 'Samples', 'Color'] == df.columns.tolist() df = df.sort_values(['Sample Name']) assert ['SampleA', 'SampleB'] == df['Sample Name'].tolist() assert ['Unknown', 'Present'] == df['Status'].tolist() assert [sampleA.id, sampleB.id] == df['Sample ID'].tolist() assert ['red', 'green'] == df['Color'].tolist() assert {'dataframe(names_col=[Samples]) AND reference:5061:G:A'} == set(df['Query'].tolist()) # With all unknown query_result_test = query_result.hasa('reference:1:1:T', kind='mutation') assert 0 == len(query_result_test) assert 3 == len(query_result_test.unknown_set) assert 3 == len(query_result_test.universe_set) assert {sampleA.id, sampleB.id, sampleC.id} == set(query_result_test.unknown_set) df = query_result_test.toframe(include_unknown=True) assert 3 == len(df) assert ['Query', 'Sample Name', 'Sample ID', 'Status', 'Samples', 'Color'] == df.columns.tolist() df = df.sort_values(['Sample Name']) assert ['SampleA', 'SampleB', 'SampleC'] == df['Sample Name'].tolist() assert ['Unknown', 'Unknown', 'Unknown'] == df['Status'].tolist() assert [sampleA.id, sampleB.id, sampleC.id] == df['Sample ID'].tolist() assert ['red', 'green', 'blue'] == df['Color'].tolist() assert {'dataframe(names_col=[Samples]) AND reference:1:1:T'} == set(df['Query'].tolist()) def test_join_custom_dataframe_extra_sample_names(loaded_database_connection: DataIndexConnection): db = loaded_database_connection.database sampleA = db.get_session().query(Sample).filter(Sample.name == 'SampleA').one() sampleB = db.get_session().query(Sample).filter(Sample.name == 'SampleB').one() sampleC = db.get_session().query(Sample).filter(Sample.name == 'SampleC').one() df = pd.DataFrame([ ['SampleA', 'red'], ['SampleB', 'green'], ['SampleC', 'blue'], ['Extra', 'purple'] ], columns=['Samples', 'Color']) query_result = query(loaded_database_connection, universe='dataframe', data_frame=df, sample_names_column='Samples') assert 3 == len(query_result) assert 3 == len(query_result.universe_set) # No unknowns query_result_test = query_result.hasa('reference:839:C:G', kind='mutation') assert 2 == len(query_result_test) assert 0 == len(query_result_test.unknown_set) assert 1 == len(query_result_test.absent_set) assert 3 == len(query_result_test.universe_set) df = query_result_test.toframe(include_unknown=True) assert 2 == len(df) assert ['Query', 'Sample Name', 'Sample ID', 'Status', 'Samples', 'Color'] == df.columns.tolist() df = df.sort_values(['Sample Name']) assert ['SampleB', 'SampleC'] == df['Sample Name'].tolist() assert ['Present', 'Present'] == df['Status'].tolist() assert [sampleB.id, sampleC.id] == df['Sample ID'].tolist() assert ['green', 'blue'] == df['Color'].tolist() assert {'dataframe(names_col=[Samples]) AND reference:839:C:G'} == set(df['Query'].tolist()) # With unknowns query_result_test = query_result.hasa('reference:5061:G:A', kind='mutation') assert 1 == len(query_result_test) assert 1 == len(query_result_test.unknown_set) assert 1 == len(query_result_test.absent_set) assert 3 == len(query_result_test.universe_set) df = query_result_test.toframe(include_unknown=True) assert 2 == len(df) assert ['Query', 'Sample Name', 'Sample ID', 'Status', 'Samples', 'Color'] == df.columns.tolist() df = df.sort_values(['Sample Name']) assert ['SampleA', 'SampleB'] == df['Sample Name'].tolist() assert ['Unknown', 'Present'] == df['Status'].tolist() assert [sampleA.id, sampleB.id] == df['Sample ID'].tolist() assert ['red', 'green'] == df['Color'].tolist() assert {'dataframe(names_col=[Samples]) AND reference:5061:G:A'} == set(df['Query'].tolist()) def test_join_custom_dataframe_missing_sample_names(loaded_database_connection: DataIndexConnection): db = loaded_database_connection.database sampleA = db.get_session().query(Sample).filter(Sample.name == 'SampleA').one() sampleC = db.get_session().query(Sample).filter(Sample.name == 'SampleC').one() df = pd.DataFrame([ ['SampleA', 'red'], ['SampleC', 'blue'], ], columns=['Samples', 'Color']) query_result = query(loaded_database_connection, universe='dataframe', data_frame=df, sample_names_column='Samples') assert 2 == len(df) assert 2 == len(query_result.universe_set) # No unknowns query_result_test = query_result.hasa('reference:839:C:G', kind='mutation') assert 2 == len(query_result_test.universe_set) assert 0 == len(query_result_test.unknown_set) assert 1 == len(query_result_test.absent_set) assert 1 == len(query_result_test) df = query_result_test.toframe(include_unknown=True).sort_values(['Sample Name']) assert ['Query', 'Sample Name', 'Sample ID', 'Status', 'Samples', 'Color'] == df.columns.tolist() assert 1 == len(df) assert ['SampleC'] == df['Sample Name'].tolist() assert ['Present'] == df['Status'].tolist() assert [sampleC.id] == df['Sample ID'].tolist() assert ['blue'] == df['Color'].tolist() assert {'dataframe(names_col=[Samples]) AND reference:839:C:G'} == set(df['Query'].tolist()) # One unknown, one present but it's missing from dataframe query_result_test = query_result.hasa('reference:5061:G:A', kind='mutation') assert 2 == len(query_result_test.universe_set) assert 1 == len(query_result_test.unknown_set) assert 1 == len(query_result_test.absent_set) assert 0 == len(query_result_test) df = query_result_test.toframe(include_unknown=True).sort_values(['Sample Name']) assert ['Query', 'Sample Name', 'Sample ID', 'Status', 'Samples', 'Color'] == df.columns.tolist() assert 1 == len(df) assert ['SampleA'] == df['Sample Name'].tolist() assert ['Unknown'] == df['Status'].tolist() assert [sampleA.id] == df['Sample ID'].tolist() assert ['red'] == df['Color'].tolist() assert {'dataframe(names_col=[Samples]) AND reference:5061:G:A'} == set(df['Query'].tolist()) def test_query_then_join_dataframe_single_query(loaded_database_connection: DataIndexConnection): db = loaded_database_connection.database sampleA = db.get_session().query(Sample).filter(Sample.name == 'SampleA').one() sampleB = db.get_session().query(Sample).filter(Sample.name == 'SampleB').one() sampleC = db.get_session().query(Sample).filter(Sample.name == 'SampleC').one() metadata_df = pd.DataFrame([ [sampleA.id, 'red'], [sampleB.id, 'green'], [sampleC.id, 'blue'] ], columns=['Sample ID', 'Color']) query_result = query(loaded_database_connection) assert 9 == len(query_result) assert 9 == len(query_result.universe_set) # Case: no unknowns query_result_test = query_result.hasa('reference:839:C:G', kind='mutation') assert 2 == len(query_result_test) assert 0 == len(query_result_test.unknown_set) assert 7 == len(query_result_test.absent_set) assert 9 == len(query_result_test.universe_set) assert {sampleB.id, sampleC.id} == set(query_result_test.sample_set) df = query_result_test.toframe() assert 2 == len(df) assert ['Query', 'Sample Name', 'Sample ID', 'Status'] == df.columns.tolist() assert {'reference:839:C:G'} == set(df['Query'].tolist()) # Now join data frame query_result_test = query_result_test.join(data_frame=metadata_df, sample_ids_column='Sample ID') assert 2 == len(query_result_test) assert 3 == len(query_result_test.universe_set) df = query_result_test.toframe(include_unknown=True) assert 2 == len(df) assert ['Query', 'Sample Name', 'Sample ID', 'Status', 'Color'] == df.columns.tolist() assert {'reference:839:C:G AND dataframe(ids_col=[Sample ID])'} == set(df['Query'].tolist()) df = df.sort_values(['Sample Name']) assert ['SampleB', 'SampleC'] == df['Sample Name'].tolist() assert ['Present', 'Present'] == df['Status'].tolist() assert [sampleB.id, sampleC.id] == df['Sample ID'].tolist() assert ['green', 'blue'] == df['Color'].tolist() # Case: some unknowns query_result_test = query_result.hasa('reference:5061:G:A', kind='mutation') assert 1 == len(query_result_test) assert 1 == len(query_result_test.unknown_set) assert 7 == len(query_result_test.absent_set) assert 9 == len(query_result_test.universe_set) df = query_result_test.toframe(include_unknown=True) assert 2 == len(df) assert ['Query', 'Sample Name', 'Sample ID', 'Status'] == df.columns.tolist() assert {'reference:5061:G:A'} == set(df['Query'].tolist()) # Now join data frame query_result_test = query_result_test.join(data_frame=metadata_df, sample_ids_column='Sample ID') assert 1 == len(query_result_test) assert 1 == len(query_result_test.unknown_set) assert 1 == len(query_result_test.absent_set) assert 3 == len(query_result_test.universe_set) df = query_result_test.toframe(include_unknown=True) assert 2 == len(df) assert ['Query', 'Sample Name', 'Sample ID', 'Status', 'Color'] == df.columns.tolist() assert {'reference:5061:G:A AND dataframe(ids_col=[Sample ID])'} == set(df['Query'].tolist()) df = df.sort_values(['Sample Name']) assert ['SampleA', 'SampleB'] == df['Sample Name'].tolist() assert ['Unknown', 'Present'] == df['Status'].tolist() assert [sampleA.id, sampleB.id] == df['Sample ID'].tolist() assert ['red', 'green'] == df['Color'].tolist() def test_query_join_dataframe_isa_dataframe_column(loaded_database_connection: DataIndexConnection): db = loaded_database_connection.database sampleA = db.get_session().query(Sample).filter(Sample.name == 'SampleA').one() sampleB = db.get_session().query(Sample).filter(Sample.name == 'SampleB').one() sampleC = db.get_session().query(Sample).filter(Sample.name == 'SampleC').one() metadata_df = pd.DataFrame([ [sampleA.id, 'red'], [sampleB.id, 'green'], [sampleC.id, 'blue'] ], columns=['Sample ID', 'Color']) query_result = query(loaded_database_connection).join(data_frame=metadata_df, sample_ids_column='Sample ID') assert 3 == len(query_result) assert 3 == len(query_result.universe_set) # By default, isa should select by 'sample' sub_result = query_result.isa('SampleB') assert 1 == len(sub_result) assert 3 == len(sub_result.universe_set) assert {sampleB.id} == set(sub_result.sample_set) df = sub_result.toframe() assert ['SampleB'] == df['Sample Name'].tolist() assert {"dataframe(ids_col=[Sample ID]) AND isa_sample('SampleB')"} == set(df['Query'].tolist()) # Make sure isa also works when we pass the kind sub_result = query_result.isa('SampleB', kind='sample') assert 1 == len(sub_result) assert 3 == len(sub_result.universe_set) assert {sampleB.id} == set(sub_result.sample_set) df = sub_result.toframe() assert ['SampleB'] == df['Sample Name'].tolist() assert {"dataframe(ids_col=[Sample ID]) AND isa_sample('SampleB')"} == set(df['Query'].tolist()) # If we explicitly pass kind='dataframe' should select by column in dataframe sub_result = query_result.isa('red', isa_column='Color', kind='dataframe') assert 1 == len(sub_result) assert 3 == len(sub_result.universe_set) assert {sampleA.id} == set(sub_result.sample_set) df = sub_result.toframe() assert ['SampleA'] == df['Sample Name'].tolist() assert {"dataframe(ids_col=[Sample ID]) AND isa('Color' is 'red')"} == set(df['Query'].tolist()) # If we pass default_isa_kind when joining, should be able to override defaults query_result = query(loaded_database_connection).join( data_frame=metadata_df, sample_ids_column='Sample ID', default_isa_kind='dataframe', default_isa_column='Color') sub_result = query_result.isa('red') assert 1 == len(sub_result) assert 3 == len(sub_result.universe_set) assert {sampleA.id} == set(sub_result.sample_set) df = sub_result.toframe() assert ['SampleA'] == df['Sample Name'].tolist() assert {"dataframe(ids_col=[Sample ID]) AND isa('Color' is 'red')"} == set(df['Query'].tolist()) # Setting regex=True should let me pass regexes sub_result = query_result.isa(r'^re', regex=True) assert 1 == len(sub_result) assert 3 == len(sub_result.universe_set) assert {sampleA.id} == set(sub_result.sample_set) df = sub_result.toframe() assert ['SampleA'] == df['Sample Name'].tolist() assert {"dataframe(ids_col=[Sample ID]) AND isa('Color' contains '^re')"} == set(df['Query'].tolist()) # Nothing should match this below regex sub_result = query_result.isa(r'^ed', regex=True) assert 0 == len(sub_result) assert 3 == len(sub_result.universe_set) def test_query_with_unknown_join_dataframe_isa_dataframe_column(loaded_database_connection: DataIndexConnection): db = loaded_database_connection.database sampleA = db.get_session().query(Sample).filter(Sample.name == 'SampleA').one() sampleB = db.get_session().query(Sample).filter(Sample.name == 'SampleB').one() sampleC = db.get_session().query(Sample).filter(Sample.name == 'SampleC').one() metadata_df = pd.DataFrame([ [sampleA.id, 'red', 'small'], [sampleB.id, 'red', 'big'], [sampleC.id, 'blue', 'big'] ], columns=['Sample ID', 'Color', 'Size']) query_result = query(loaded_database_connection).hasa('reference:5061:G:A').join(data_frame=metadata_df, sample_ids_column='Sample ID') assert 1 == len(query_result) assert 1 == len(query_result.unknown_set) assert 1 == len(query_result.absent_set) assert 3 == len(query_result.universe_set) # By default, isa should select by 'sample' sub_result = query_result.isa('SampleB') assert 1 == len(sub_result) assert 0 == len(sub_result.unknown_set) assert 2 == len(sub_result.absent_set) assert 3 == len(sub_result.universe_set) assert {sampleB.id} == set(sub_result.sample_set) # isa by sample where sample is unknown sub_result = query_result.isa('SampleA') assert 0 == len(sub_result) assert 1 == len(sub_result.unknown_set) assert 2 == len(sub_result.absent_set) assert 3 == len(sub_result.universe_set) assert {sampleA.id} == set(sub_result.unknown_set) # If we explicitly pass kind='dataframe' should select by column in dataframe sub_result = query_result.isa('red', isa_column='Color', kind='dataframe') assert 1 == len(sub_result) assert 1 == len(sub_result.unknown_set) assert 1 == len(sub_result.absent_set) assert 3 == len(sub_result.universe_set) assert {sampleA.id} == set(sub_result.unknown_set) assert {sampleB.id} == set(sub_result.sample_set) # isa where we exclude unknown sub_result = query_result.isa('big', isa_column='Size', kind='dataframe') assert 1 == len(sub_result) assert 0 == len(sub_result.unknown_set) assert 2 == len(sub_result.absent_set) assert 3 == len(sub_result.universe_set) assert {sampleB.id} == set(sub_result.sample_set) def test_query_join_dataframe_isin_dataframe_column(loaded_database_connection: DataIndexConnection): db = loaded_database_connection.database sampleA = db.get_session().query(Sample).filter(Sample.name == 'SampleA').one() sampleB = db.get_session().query(Sample).filter(Sample.name == 'SampleB').one() sampleC = db.get_session().query(Sample).filter(Sample.name == 'SampleC').one() metadata_df = pd.DataFrame([ [sampleA.id, 'red'], [sampleB.id, 'green'], [sampleC.id, 'blue'] ], columns=['Sample ID', 'Color']) query_result = query(loaded_database_connection).join(data_frame=metadata_df, sample_ids_column='Sample ID') assert not query_result.has_tree() assert 3 == len(query_result) assert 3 == len(query_result.universe_set) query_result = query_result.isin(metadata_df['Color'] == 'red', kind='dataframe') assert 1 == len(query_result) assert 3 == len(query_result.universe_set) df = query_result.toframe() assert ['SampleA'] == df['Sample Name'].tolist() assert {'dataframe(ids_col=[Sample ID]) AND isin(subset from series)'} == set(df['Query'].tolist()) def test_query_join_dataframe_isin_dataframe_column_select_two_samples(loaded_database_connection: DataIndexConnection): db = loaded_database_connection.database sampleA = db.get_session().query(Sample).filter(Sample.name == 'SampleA').one() sampleB = db.get_session().query(Sample).filter(Sample.name == 'SampleB').one() sampleC = db.get_session().query(Sample).filter(Sample.name == 'SampleC').one() metadata_df = pd.DataFrame([ [sampleA.id, 'red'], [sampleB.id, 'red'], [sampleC.id, 'blue'] ], columns=['Sample ID', 'Color']) query_result = query(loaded_database_connection).join(data_frame=metadata_df, sample_ids_column='Sample ID') assert 3 == len(query_result) assert 3 == len(query_result.universe_set) query_result = query_result.isin(metadata_df['Color'] == 'red', kind='dataframe') assert 2 == len(query_result) assert 3 == len(query_result.universe_set) df = query_result.toframe() df = df.sort_values(['Sample Name']) assert ['SampleA', 'SampleB'] == df['Sample Name'].tolist() assert {'dataframe(ids_col=[Sample ID]) AND isin(subset from series)'} == set(df['Query'].tolist()) def test_query_join_dataframe_isin_dataframe_column_invalid_series_index( loaded_database_connection: DataIndexConnection): db = loaded_database_connection.database sampleA = db.get_session().query(Sample).filter(Sample.name == 'SampleA').one() sampleB = db.get_session().query(Sample).filter(Sample.name == 'SampleB').one() sampleC = db.get_session().query(Sample).filter(Sample.name == 'SampleC').one() metadata_df = pd.DataFrame([ [sampleA.id, 'red'], [sampleB.id, 'green'], [sampleC.id, 'blue'] ], columns=['Sample ID', 'Color']) invalid_series_select = pd.Series([True, True], dtype=bool) query_result = query(loaded_database_connection).join(data_frame=metadata_df, sample_ids_column='Sample ID') with pytest.raises(Exception) as execinfo: query_result.isin(data=invalid_series_select, kind='dataframe') assert 'does not have same index as internal data frame' in str(execinfo.value) def test_query_and_build_mutation_tree(loaded_database_connection: DataIndexConnection): query_result = query(loaded_database_connection).hasa('reference:839:C:G', kind='mutation') assert 2 == len(query_result) assert 9 == len(query_result.universe_set) query_result = query_result.build_tree(kind='mutation', scope='genome', include_reference=True) assert 2 == len(query_result) assert 9 == len(query_result.universe_set) assert isinstance(query_result, MutationTreeSamplesQuery) query_result = cast(MutationTreeSamplesQuery, query_result) assert query_result.reference_included assert 'genome' == query_result.reference_name assert query_result.tree is not None assert {'SampleB', 'SampleC', 'genome'} == set(query_result.tree.get_leaf_names()) def test_build_mutation_tree_include_reference(loaded_database_connection: DataIndexConnection): query_result = query(loaded_database_connection) assert 9 == len(query_result) assert 9 == len(query_result.universe_set) query_result = query_result.build_tree(kind='mutation', scope='genome', include_reference=True) assert 3 == len(query_result) assert 9 == len(query_result.universe_set) assert isinstance(query_result, MutationTreeSamplesQuery) query_result = cast(MutationTreeSamplesQuery, query_result) assert query_result.reference_included assert 'genome' == query_result.reference_name assert query_result.tree is not None assert {'SampleA', 'SampleB', 'SampleC', 'genome'} == set(query_result.tree.get_leaf_names()) def test_build_mutation_tree_no_include_reference(loaded_database_connection: DataIndexConnection): query_result = query(loaded_database_connection) assert 9 == len(query_result) assert 9 == len(query_result.universe_set) query_result = query_result.build_tree(kind='mutation', scope='genome', include_reference=False) assert 3 == len(query_result) assert 9 == len(query_result.universe_set) assert isinstance(query_result, MutationTreeSamplesQuery) query_result = cast(MutationTreeSamplesQuery, query_result) assert not query_result.reference_included assert 'genome' == query_result.reference_name assert query_result.tree is not None assert {'SampleA', 'SampleB', 'SampleC'} == set(query_result.tree.get_leaf_names()) def test_query_build_tree_and_query(loaded_database_connection: DataIndexConnection): query_result = query(loaded_database_connection).hasa('reference:839:C:G', kind='mutation') assert 2 == len(query_result) assert 9 == len(query_result.universe_set) query_result = query_result.build_tree(kind='mutation', scope='genome', include_reference=True) assert 2 == len(query_result) assert 9 == len(query_result.universe_set) query_result = query_result.hasa('reference:5061:G:A', kind='mutation') assert 1 == len(query_result) assert 9 == len(query_result.universe_set) # Tree should still be complete assert {'SampleB', 'SampleC', 'genome'} == set(query_result.tree.get_leaf_names()) def test_query_build_tree_and_within_kmer(loaded_database_connection: DataIndexConnection): db = loaded_database_connection.database sampleB = db.get_session().query(Sample).filter(Sample.name == 'SampleB').one() sampleC = db.get_session().query(Sample).filter(Sample.name == 'SampleC').one() query_result = query(loaded_database_connection).hasa('reference:839:C:G', kind='mutation') \ .build_tree(kind='mutation', scope='genome', include_reference=True) assert 2 == len(query_result) assert 9 == len(query_result.universe_set) assert {sampleB.id, sampleC.id} == set(query_result.sample_set) assert query_result.has_tree() query_result = query_result.within('SampleA', distance=0.5, units='kmer_jaccard') assert 1 == len(query_result) assert 9 == len(query_result.universe_set) assert {sampleC.id} == set(query_result.sample_set) def test_query_build_tree_dataframe(loaded_database_connection: DataIndexConnection): db = loaded_database_connection.database sampleB = db.get_session().query(Sample).filter(Sample.name == 'SampleB').one() df = query(loaded_database_connection).hasa( 'reference:839:C:G', kind='mutation').build_tree( kind='mutation', scope='genome', include_reference=True).hasa( 'reference:5061:G:A', kind='mutation').toframe() assert 1 == len(df) assert ['Query', 'Sample Name', 'Sample ID', 'Status'] == df.columns.tolist() assert ['SampleB'] == df['Sample Name'].tolist() assert ['Present'] == df['Status'].tolist() assert [sampleB.id] == df['Sample ID'].tolist() assert ['reference:839:C:G AND mutation_tree(genome) AND reference:5061:G:A'] == df['Query'].tolist() def test_query_then_build_tree_then_join_dataframe(loaded_database_connection: DataIndexConnection): db = loaded_database_connection.database sampleA = db.get_session().query(Sample).filter(Sample.name == 'SampleA').one() sampleB = db.get_session().query(Sample).filter(Sample.name == 'SampleB').one() sampleC = db.get_session().query(Sample).filter(Sample.name == 'SampleC').one() metadata_df = pd.DataFrame([ [sampleA.id, 'red'], [sampleB.id, 'green'], [sampleC.id, 'blue'] ], columns=['Sample ID', 'Color']) query_result = query(loaded_database_connection).hasa('reference:839:C:G', kind='mutation') assert 2 == len(query_result) assert 9 == len(query_result.universe_set) query_result = query_result.build_tree(kind='mutation', scope='genome', include_reference=True) assert 2 == len(query_result) assert 9 == len(query_result.universe_set) assert isinstance(query_result, TreeSamplesQuery) df = query_result.toframe() assert 2 == len(df) assert ['Query', 'Sample Name', 'Sample ID', 'Status'] == df.columns.tolist() assert {'reference:839:C:G AND mutation_tree(genome)'} == set(df['Query'].tolist()) # Now join data frame query_result_join = query_result.join(data_frame=metadata_df, sample_ids_column='Sample ID') assert 2 == len(query_result_join) assert 3 == len(query_result_join.universe_set) assert isinstance(query_result_join, TreeSamplesQuery) df = query_result_join.toframe() assert 2 == len(df) assert ['Query', 'Sample Name', 'Sample ID', 'Status', 'Color'] == df.columns.tolist() assert {'reference:839:C:G AND mutation_tree(genome) AND dataframe(ids_col=[Sample ID])'} == set( df['Query'].tolist()) df = df.sort_values(['Sample Name']) assert ['SampleB', 'SampleC'] == df['Sample Name'].tolist() assert [sampleB.id, sampleC.id] == df['Sample ID'].tolist() assert ['green', 'blue'] == df['Color'].tolist() # I should still be able to perform within queries since I have a tree attached query_result = query_result_join.isin(['SampleB', 'SampleC'], kind='mrca') assert 2 == len(query_result) assert 3 == len(query_result.universe_set) assert {'SampleB', 'SampleC'} == set(query_result.tolist()) # mrca from samples query query_result_BC = query_result_join.isin(['SampleB', 'SampleC'], kind='samples') query_result = query_result_join.isin(query_result_BC, kind='mrca') assert 2 == len(query_result) assert 3 == len(query_result.universe_set) assert {'SampleB', 'SampleC'} == set(query_result.tolist()) # mrca from samples set sample_set_BC = SampleSet([sampleB.id, sampleC.id]) query_result = query_result_join.isin(sample_set_BC, kind='mrca') assert 2 == len(query_result) assert 3 == len(query_result.universe_set) assert {'SampleB', 'SampleC'} == set(query_result.tolist()) # mrca from samples query, empty result query_result_empty = query_result_join.isin([], kind='samples') query_result = query_result_join.isin(query_result_empty, kind='mrca') assert 0 == len(query_result) assert 3 == len(query_result.universe_set) # Resetting universe should work properly query_result_BC = query_result_join.isin(['SampleB', 'SampleC'], kind='samples') query_result = query_result_join.isin(query_result_BC, kind='mrca') assert 2 == len(query_result) assert 3 == len(query_result.universe_set) query_result = query_result.reset_universe() assert 2 == len(query_result) assert 2 == len(query_result.universe_set) def test_empty_universe_tree_query(prebuilt_tree: Tree, loaded_database_connection: DataIndexConnection): query_result = query(loaded_database_connection).join_tree( tree=prebuilt_tree, kind='mutation', reference_name='genome', alignment_length=5180) query_result = query_result.isa('invalid_name') assert 0 == len(query_result) assert 0 == len(query_result.unknown_set) assert 9 == len(query_result.absent_set) assert 9 == len(query_result.universe_set) query_result = query_result.reset_universe() assert 0 == len(query_result) assert 0 == len(query_result.unknown_set) assert 0 == len(query_result.absent_set) assert 0 == len(query_result.universe_set) assert '<MutationTreeSamplesQuery[' in str(query_result) assert 'selected=NA%' in str(query_result) assert 'unknown=NA%' in str(query_result) def test_query_tree_join_dataframe_isa_dataframe_column(loaded_database_connection: DataIndexConnection): db = loaded_database_connection.database sampleA = db.get_session().query(Sample).filter(Sample.name == 'SampleA').one() sampleB = db.get_session().query(Sample).filter(Sample.name == 'SampleB').one() sampleC = db.get_session().query(Sample).filter(Sample.name == 'SampleC').one() metadata_df = pd.DataFrame([ [sampleA.id, 'red'], [sampleB.id, 'green'], [sampleC.id, pd.NA] ], columns=['Sample ID', 'Color']) query_result = query(loaded_database_connection).hasa('reference:839:C:G', kind='mutation') assert 2 == len(query_result) assert {sampleB.id, sampleC.id} == set(query_result.sample_set) assert not query_result.has_tree() query_result = query_result.build_tree(kind='mutation', scope='genome', include_reference=True) assert 2 == len(query_result) assert isinstance(query_result, TreeSamplesQuery) assert query_result.has_tree() query_result = query_result.join(data_frame=metadata_df, sample_ids_column='Sample ID') assert 2 == len(query_result) assert query_result.has_tree() # Now try to do isa on tree + dataframe query query_result = query_result.isa('green', kind='dataframe', isa_column='Color') assert 1 == len(query_result) assert {sampleB.id} == set(query_result.sample_set) # Do isa with regex and an NA in the dataframe query_result = query_result.isa(r'^gr', kind='dataframe', isa_column='Color', regex=True) assert 1 == len(query_result) assert {sampleB.id} == set(query_result.sample_set) def test_query_join_tree_join_dataframe(prebuilt_tree: Tree, loaded_database_connection: DataIndexConnection): db = loaded_database_connection.database sampleA = db.get_session().query(Sample).filter(Sample.name == 'SampleA').one() sampleB = db.get_session().query(Sample).filter(Sample.name == 'SampleB').one() sampleC = db.get_session().query(Sample).filter(Sample.name == 'SampleC').one() metadata_df = pd.DataFrame([ [sampleA.id, 'red'], [sampleB.id, 'green'], [sampleC.id, 'blue'] ], columns=['Sample ID', 'Color']) query_result = query(loaded_database_connection).join_tree(tree=prebuilt_tree, kind='mutation', reference_name='genome', alignment_length=5180) assert 3 == len(query_result) assert 9 == len(query_result.universe_set) assert {sampleA.id, sampleB.id, sampleC.id} == set(query_result.sample_set) assert query_result.has_tree() query_result = query_result.join(data_frame=metadata_df, sample_ids_column='Sample ID') assert 3 == len(query_result) assert query_result.has_tree() # Now try to do isa on tree + dataframe query query_result_color = query_result.isa('green', kind='dataframe', isa_column='Color') assert 1 == len(query_result_color) assert {sampleB.id} == set(query_result_color.sample_set) # mrca A and B df = query_result.isin(['SampleA', 'SampleC'], kind='mrca').toframe().sort_values('Sample Name') assert 3 == len(df) assert ['Query', 'Sample Name', 'Sample ID', 'Status', 'Color'] == df.columns.tolist() assert ['SampleA', 'SampleB', 'SampleC'] == df['Sample Name'].tolist() assert ['red', 'green', 'blue'] == df['Color'].tolist() def test_query_tree_join_dataframe_hasa_snpeff(loaded_database_connection_annotations: DataIndexConnection): db = loaded_database_connection_annotations.database sample_sh14_001 = db.get_session().query(Sample).filter(Sample.name == 'SH14-001').one() sample_sh14_014 = db.get_session().query(Sample).filter(Sample.name == 'SH14-014').one() sample_sh10_014 = db.get_session().query(Sample).filter(Sample.name == 'SH10-014').one() metadata_df = pd.DataFrame([ [sample_sh14_001.id, 'red'], [sample_sh14_014.id, 'red'], [sample_sh10_014.id, 'blue'] ], columns=['Sample ID', 'Color']) tree = Tree(str(snpeff_tree_file)) # Query hasa with tree query query_result = query(loaded_database_connection_annotations).join_tree(tree, kind='mutation', alignment_length=4888768, reference_name='NC_011083') assert 3 == len(query_result) assert isinstance(query_result, TreeSamplesQuery) assert query_result.has_tree() query_result = query_result.hasa('hgvs:NC_011083:SEHA_RS04550:p.Ile224fs') assert 2 == len(query_result) assert {sample_sh14_001.id, sample_sh14_014.id} == set(query_result.sample_set) # Query hasa with database query query_result = query(loaded_database_connection_annotations).join(data_frame=metadata_df, sample_ids_column='Sample ID') assert 3 == len(query_result) assert isinstance(query_result, DataFrameSamplesQuery) assert not query_result.has_tree() query_result = query_result.hasa('hgvs:NC_011083:SEHA_RS04550:p.Ile224fs') assert 2 == len(query_result) assert {sample_sh14_001.id, sample_sh14_014.id} == set(query_result.sample_set) # Query hasa with tree joined to dataframe query_result = query(loaded_database_connection_annotations).join_tree(tree, kind='mutation', alignment_length=4888768, reference_name='NC_011083') query_result = query_result.join(data_frame=metadata_df, sample_ids_column='Sample ID') assert 3 == len(query_result) assert isinstance(query_result, TreeSamplesQuery) assert query_result.has_tree() query_result = query_result.hasa('hgvs:NC_011083:SEHA_RS04550:p.Ile224fs') assert 2 == len(query_result) assert {sample_sh14_001.id, sample_sh14_014.id} == set(query_result.sample_set) # Query hasa with experimental tree query query_result = query(loaded_database_connection_annotations).join_tree(tree, kind='mutation', alignment_length=4888768, reference_name='NC_011083') query_result = cast(MutationTreeSamplesQuery, query_result) query_result = ExperimentalTreeSamplesQuery.from_tree_query(query_result) assert 3 == len(query_result) assert isinstance(query_result, ExperimentalTreeSamplesQuery) assert query_result.has_tree() query_result = query_result.hasa('hgvs:NC_011083:SEHA_RS04550:p.Ile224fs') assert 2 == len(query_result) assert {sample_sh14_001.id, sample_sh14_014.id} == set(query_result.sample_set) def test_within_constructed_tree(loaded_database_connection: DataIndexConnection): query_result = query(loaded_database_connection).hasa( 'reference:839:C:G', kind='mutation').build_tree( kind='mutation', scope='genome', include_reference=True, extra_params='--seed 42 -m GTR') assert 2 == len(query_result) assert 9 == len(query_result.universe_set) # subs/site df = query_result.isin('SampleC', kind='distance', distance=0.005, units='substitutions/site').toframe().sort_values('Sample Name') assert 2 == len(df) assert ['Query', 'Sample Name', 'Sample ID', 'Status'] == df.columns.tolist() assert ['SampleB', 'SampleC'] == df['Sample Name'].tolist() assert {"reference:839:C:G AND mutation_tree(genome) AND within(0.005 substitutions/site of 'SampleC')" } == set(df['Query'].tolist()) # subs/site using within df = query_result.within('SampleC', distance=0.005, units='substitutions/site').toframe().sort_values('Sample Name') assert 2 == len(df) assert ['Query', 'Sample Name', 'Sample ID', 'Status'] == df.columns.tolist() assert ['SampleB', 'SampleC'] == df['Sample Name'].tolist() assert {"reference:839:C:G AND mutation_tree(genome) AND within(0.005 substitutions/site of 'SampleC')" } == set(df['Query'].tolist()) # subs df = query_result.isin('SampleC', kind='distance', distance=26, units='substitutions').toframe().sort_values( 'Sample Name') assert 2 == len(df) assert ['SampleB', 'SampleC'] == df['Sample Name'].tolist() assert {"reference:839:C:G AND mutation_tree(genome) AND within(26 substitutions of 'SampleC')" } == set(df['Query'].tolist()) # subs using samples query query_result_C = query_result.isin(['SampleC'], kind='samples') df = query_result.isin(query_result_C, kind='distance', distance=26, units='substitutions').toframe().sort_values( 'Sample Name') assert 2 == len(df) assert ['SampleB', 'SampleC'] == df['Sample Name'].tolist() assert {'reference:839:C:G AND mutation_tree(genome) AND within(26 substitutions of ' '<MutationTreeSamplesQuery[selected=11% (1/9) samples, unknown=0% (0/9) samples]>)' } == set(df['Query'].tolist()) # subs using samples query, empty result query_result_empty = query_result.isin([], kind='samples') df = query_result.isin(query_result_empty, kind='distance', distance=26, units='substitutions').toframe().sort_values( 'Sample Name') assert 0 == len(df) # should not include reference genome df = query_result.isin('SampleC', kind='distance', distance=100, units='substitutions').toframe().sort_values( 'Sample Name') assert 2 == len(df) assert ['SampleB', 'SampleC'] == df['Sample Name'].tolist() assert {"reference:839:C:G AND mutation_tree(genome) AND within(100 substitutions of 'SampleC')" } == set(df['Query'].tolist()) # should have only query sample df = query_result.isin('SampleC', kind='distance', distance=1, units='substitutions').toframe().sort_values( 'Sample Name') assert 1 == len(df) assert ['SampleC'] == df['Sample Name'].tolist() assert {"reference:839:C:G AND mutation_tree(genome) AND within(1 substitutions of 'SampleC')" } == set(df['Query'].tolist()) # should have only query sample, using samples query as input query_result_C = query_result.isin(['SampleC'], kind='samples') df = query_result.isin(query_result_C, kind='distance', distance=1, units='substitutions').toframe().sort_values( 'Sample Name') assert 1 == len(df) assert ['SampleC'] == df['Sample Name'].tolist() assert {"reference:839:C:G AND mutation_tree(genome) AND within(1 substitutions of " "<MutationTreeSamplesQuery[selected=11% (1/9) samples, unknown=0% (0/9) samples]>)" } == set(df['Query'].tolist()) # mrca df = query_result.isin(['SampleB', 'SampleC'], kind='mrca').toframe().sort_values('Sample Name') assert 2 == len(df) assert ['Query', 'Sample Name', 'Sample ID', 'Status'] == df.columns.tolist() assert ['SampleB', 'SampleC'] == df['Sample Name'].tolist() assert {"reference:839:C:G AND mutation_tree(genome) AND within(mrca of ['SampleB', 'SampleC'])" } == set(df['Query'].tolist()) # mrca of samples query query_result_BC = query_result.isin(['SampleB', 'SampleC'], kind='samples') df = query_result.isin(query_result_BC, kind='mrca').toframe().sort_values('Sample Name') assert 2 == len(df) assert ['Query', 'Sample Name', 'Sample ID', 'Status'] == df.columns.tolist() assert ['SampleB', 'SampleC'] == df['Sample Name'].tolist() assert {"reference:839:C:G AND mutation_tree(genome) AND within(mrca of " "<MutationTreeSamplesQuery[selected=22% (2/9) samples, unknown=0% (0/9) samples]>)" } == set(df['Query'].tolist()) # mrca of samples query, single sample as result query_result_B = query_result.isin(['SampleB'], kind='samples') df = query_result.isin(query_result_B, kind='mrca').toframe().sort_values('Sample Name') assert 1 == len(df) assert ['Query', 'Sample Name', 'Sample ID', 'Status'] == df.columns.tolist() assert ['SampleB'] == df['Sample Name'].tolist() assert {"reference:839:C:G AND mutation_tree(genome) AND within(mrca of " "<MutationTreeSamplesQuery[selected=11% (1/9) samples, unknown=0% (0/9) samples]>)" } == set(df['Query'].tolist()) # mrca of samples query, empty_results query_result_empty = query_result.isin([], kind='samples') df = query_result.isin(query_result_empty, kind='mrca').toframe().sort_values('Sample Name') assert 0 == len(df) assert ['Query', 'Sample Name', 'Sample ID', 'Status'] == df.columns.tolist() # Samples isin() df = query_result.isin(['SampleA', 'SampleC']).toframe().sort_values('Sample Name') assert 1 == len(df) assert ['Query', 'Sample Name', 'Sample ID', 'Status'] == df.columns.tolist() assert ['SampleC'] == df['Sample Name'].tolist() assert {"reference:839:C:G AND mutation_tree(genome) AND isin_samples(['SampleA', 'SampleC'])" } == set(df['Query'].tolist()) # Samples isin from samples query() query_result_AC = query_result.isin(['SampleA', 'SampleC'], kind='samples') df = query_result.isin(query_result_AC).toframe().sort_values('Sample Name') assert 1 == len(df) assert ['Query', 'Sample Name', 'Sample ID', 'Status'] == df.columns.tolist() assert ['SampleC'] == df['Sample Name'].tolist() assert { "reference:839:C:G AND mutation_tree(genome) AND " "isin_samples(<MutationTreeSamplesQuery[selected=11% (1/9) samples, unknown=0% (0/9) samples]>)" } == set(df['Query'].tolist()) # Sample isa() df = query_result.isa('SampleC').toframe().sort_values('Sample Name') assert 1 == len(df) assert ['Query', 'Sample Name', 'Sample ID', 'Status'] == df.columns.tolist() assert ['SampleC'] == df['Sample Name'].tolist() assert {"reference:839:C:G AND mutation_tree(genome) AND isa_sample('SampleC')" } == set(df['Query'].tolist()) # Sample isa() empty df = query_result.isa('SampleA').toframe().sort_values('Sample Name') assert 0 == len(df) assert ['Query', 'Sample Name', 'Sample ID', 'Status'] == df.columns.tolist() # kmer jaccard still works df = query_result.within('SampleA', distance=0.5, units='kmer_jaccard').toframe().sort_values('Sample Name') assert 1 == len(df) assert ['Query', 'Sample Name', 'Sample ID', 'Status'] == df.columns.tolist() assert ['SampleC'] == df['Sample Name'].tolist() assert {"reference:839:C:G AND mutation_tree(genome) AND isin_kmer_jaccard('SampleA', dist=0.5, k=31)" } == set(df['Query'].tolist()) def test_build_tree_experimental(loaded_database_connection: DataIndexConnection): query_result = query(loaded_database_connection).hasa( 'reference:839:C:G', kind='mutation').build_tree( kind='mutation_experimental', scope='genome', include_reference=True, extra_params='--seed 42 -m GTR') assert 2 == len(query_result) assert isinstance(query_result, ExperimentalTreeSamplesQuery) # isin should still work with ExperimentalTreeSamplesQuery df = query_result.isin('SampleC', kind='distance', distance=0.005, units='substitutions/site').toframe().sort_values('Sample Name') assert 2 == len(df) def test_within_constructed_tree_larger_tree(loaded_database_connection: DataIndexConnection): db = loaded_database_connection.database sampleA = db.get_session().query(Sample).filter(Sample.name == 'SampleA').one() sampleB = db.get_session().query(Sample).filter(Sample.name == 'SampleB').one() # Construct new tree with all the samples query_result = query(loaded_database_connection).build_tree( kind='mutation', scope='genome', include_reference=True, extra_params='--seed 42 -m GTR') assert 3 == len(query_result) # mrca B and C df = query_result.isin(['SampleB', 'SampleC'], kind='mrca').toframe().sort_values('Sample Name') assert 2 == len(df) assert ['Query', 'Sample Name', 'Sample ID', 'Status'] == df.columns.tolist() assert ['SampleB', 'SampleC'] == df['Sample Name'].tolist() assert {"mutation_tree(genome) AND within(mrca of ['SampleB', 'SampleC'])" } == set(df['Query'].tolist()) # mrca of B and C, samples query query_result_BC = query_result.isin(['SampleB', 'SampleC'], kind='samples') df = query_result.isin(query_result_BC, kind='mrca').toframe().sort_values('Sample Name') assert 2 == len(df) assert ['Query', 'Sample Name', 'Sample ID', 'Status'] == df.columns.tolist() assert ['SampleB', 'SampleC'] == df['Sample Name'].tolist() assert {"mutation_tree(genome) AND within(mrca of " "<MutationTreeSamplesQuery[selected=22% (2/9) samples, unknown=0% (0/9) samples]>)" } == set(df['Query'].tolist()) # mrca A and B df = query_result.isin(['SampleA', 'SampleC'], kind='mrca').toframe().sort_values('Sample Name') assert 3 == len(df) assert ['Query', 'Sample Name', 'Sample ID', 'Status'] == df.columns.tolist() assert ['SampleA', 'SampleB', 'SampleC'] == df['Sample Name'].tolist() assert {"mutation_tree(genome) AND within(mrca of ['SampleA', 'SampleC'])" } == set(df['Query'].tolist()) # mrca of A and B, samples query query_result_AB = query_result.isin(['SampleA', 'SampleB'], kind='samples') df = query_result.isin(query_result_AB, kind='mrca').toframe().sort_values('Sample Name') assert 3 == len(df) assert ['Query', 'Sample Name', 'Sample ID', 'Status'] == df.columns.tolist() assert ['SampleA', 'SampleB', 'SampleC'] == df['Sample Name'].tolist() assert {"mutation_tree(genome) AND within(mrca of " "<MutationTreeSamplesQuery[selected=22% (2/9) samples, unknown=0% (0/9) samples]>)" } == set(df['Query'].tolist()) # mrca of A and B, samples set sample_set_AB = SampleSet([sampleA.id, sampleB.id]) df = query_result.isin(sample_set_AB, kind='mrca').toframe().sort_values('Sample Name') assert 3 == len(df) assert ['Query', 'Sample Name', 'Sample ID', 'Status'] == df.columns.tolist() assert ['SampleA', 'SampleB', 'SampleC'] == df['Sample Name'].tolist() assert {"mutation_tree(genome) AND within(mrca of " "set(2 samples))" } == set(df['Query'].tolist()) # hasa putting all in unknown and then mrca of A and B, samples query query_result_AB = query_result.isin(['SampleA', 'SampleB'], kind='samples') df = query_result.hasa('reference:1:1:T').isin( query_result_AB, kind='mrca').toframe(include_unknown=True).sort_values('Sample Name') assert 3 == len(df) assert ['Query', 'Sample Name', 'Sample ID', 'Status'] == df.columns.tolist() assert ['SampleA', 'SampleB', 'SampleC'] == df['Sample Name'].tolist() assert ['Unknown', 'Unknown', 'Unknown'] == df['Status'].tolist() assert {"mutation_tree(genome) AND reference:1:1:T AND within(mrca of " "<MutationTreeSamplesQuery[selected=22% (2/9) samples, unknown=0% (0/9) samples]>)" } == set(df['Query'].tolist()) # hasa putting all in unknown and then mrca of A and B, by name df = query_result.hasa('reference:1:1:T').isin( ['SampleA', 'SampleB'], kind='mrca').toframe(include_unknown=True).sort_values('Sample Name') assert 3 == len(df) assert ['Query', 'Sample Name', 'Sample ID', 'Status'] == df.columns.tolist() assert ['SampleA', 'SampleB', 'SampleC'] == df['Sample Name'].tolist() assert ['Unknown', 'Unknown', 'Unknown'] == df['Status'].tolist() assert {"mutation_tree(genome) AND reference:1:1:T AND within(mrca of ['SampleA', 'SampleB'])" } == set(df['Query'].tolist()) # hasa mrca of A and B (by name) and then putting all in unknown df = query_result.isin( ['SampleA', 'SampleB'], kind='mrca').hasa( 'reference:1:1:T').toframe(include_unknown=True).sort_values('Sample Name') assert 3 == len(df) assert ['Query', 'Sample Name', 'Sample ID', 'Status'] == df.columns.tolist() assert ['SampleA', 'SampleB', 'SampleC'] == df['Sample Name'].tolist() assert ['Unknown', 'Unknown', 'Unknown'] == df['Status'].tolist() assert {"mutation_tree(genome) AND within(mrca of ['SampleA', 'SampleB']) AND reference:1:1:T" } == set(df['Query'].tolist()) # hasa only A in unknown and then mrca of A and B, samples query query_result_AB = query_result.isin(['SampleA', 'SampleB'], kind='samples') df = query_result.hasa('reference:5061:G:A').isin( query_result_AB, kind='mrca').toframe(include_unknown=True).sort_values('Sample Name') assert 2 == len(df) assert ['Query', 'Sample Name', 'Sample ID', 'Status'] == df.columns.tolist() assert ['SampleA', 'SampleB'] == df['Sample Name'].tolist() assert ['Unknown', 'Present'] == df['Status'].tolist() assert {"mutation_tree(genome) AND reference:5061:G:A AND within(mrca of " "<MutationTreeSamplesQuery[selected=22% (2/9) samples, unknown=0% (0/9) samples]>)" } == set(df['Query'].tolist()) # hasa only A in unknown and then mrca of A and B, by name df = query_result.hasa('reference:5061:G:A').isin( ['SampleA', 'SampleB'], kind='mrca').toframe(include_unknown=True).sort_values('Sample Name') assert 2 == len(df) assert ['Query', 'Sample Name', 'Sample ID', 'Status'] == df.columns.tolist() assert ['SampleA', 'SampleB'] == df['Sample Name'].tolist() assert ['Unknown', 'Present'] == df['Status'].tolist() assert {"mutation_tree(genome) AND reference:5061:G:A AND within(mrca of ['SampleA', 'SampleB'])" } == set(df['Query'].tolist()) # mrca of A and B (by name) and hasa putting only A in unknown (and matching B) df = query_result.isin( ['SampleA', 'SampleB'], kind='mrca').hasa( 'reference:5061:G:A').toframe(include_unknown=True).sort_values('Sample Name') assert 2 == len(df) assert ['Query', 'Sample Name', 'Sample ID', 'Status'] == df.columns.tolist() assert ['SampleA', 'SampleB'] == df['Sample Name'].tolist() assert ['Unknown', 'Present'] == df['Status'].tolist() assert {"mutation_tree(genome) AND within(mrca of ['SampleA', 'SampleB']) AND reference:5061:G:A" } == set(df['Query'].tolist()) # hasa only A in unknown and then mrca of A, by name df = query_result.hasa('reference:5061:G:A').isin( 'SampleA', kind='mrca').toframe(include_unknown=True).sort_values('Sample Name') assert 1 == len(df) assert ['Query', 'Sample Name', 'Sample ID', 'Status'] == df.columns.tolist() assert ['SampleA'] == df['Sample Name'].tolist() assert ['Unknown'] == df['Status'].tolist() assert {"mutation_tree(genome) AND reference:5061:G:A AND within(mrca of ['SampleA'])" } == set(df['Query'].tolist()) def test_within_joined_mutations_tree(prebuilt_tree: Tree, loaded_database_connection: DataIndexConnection): db = loaded_database_connection.database sampleA = db.get_session().query(Sample).filter(Sample.name == 'SampleA').one() sampleB = db.get_session().query(Sample).filter(Sample.name == 'SampleB').one() query_result = query(loaded_database_connection).join_tree(tree=prebuilt_tree, kind='mutation', reference_name='genome', alignment_length=5180) assert 3 == len(query_result) # mrca B and C df = query_result.isin(['SampleB', 'SampleC'], kind='mrca').toframe().sort_values('Sample Name') assert 2 == len(df) assert ['Query', 'Sample Name', 'Sample ID', 'Status'] == df.columns.tolist() assert ['SampleB', 'SampleC'] == df['Sample Name'].tolist() assert {"join_tree(4 leaves) AND within(mrca of ['SampleB', 'SampleC'])" } == set(df['Query'].tolist()) # mrca of B and C, samples query query_result_BC = query_result.isin(['SampleB', 'SampleC'], kind='samples') df = query_result.isin(query_result_BC, kind='mrca').toframe().sort_values('Sample Name') assert 2 == len(df) assert ['Query', 'Sample Name', 'Sample ID', 'Status'] == df.columns.tolist() assert ['SampleB', 'SampleC'] == df['Sample Name'].tolist() assert {"join_tree(4 leaves) AND within(mrca of " "<MutationTreeSamplesQuery[selected=22% (2/9) samples, unknown=0% (0/9) samples]>)" } == set(df['Query'].tolist()) # mrca A and B df = query_result.isin(['SampleA', 'SampleC'], kind='mrca').toframe().sort_values('Sample Name') assert 3 == len(df) assert ['Query', 'Sample Name', 'Sample ID', 'Status'] == df.columns.tolist() assert ['SampleA', 'SampleB', 'SampleC'] == df['Sample Name'].tolist() assert {"join_tree(4 leaves) AND within(mrca of ['SampleA', 'SampleC'])" } == set(df['Query'].tolist()) # mrca of A and B, samples query query_result_AB = query_result.isin(['SampleA', 'SampleB'], kind='samples') df = query_result.isin(query_result_AB, kind='mrca').toframe().sort_values('Sample Name') assert 3 == len(df) assert ['Query', 'Sample Name', 'Sample ID', 'Status'] == df.columns.tolist() assert ['SampleA', 'SampleB', 'SampleC'] == df['Sample Name'].tolist() assert {"join_tree(4 leaves) AND within(mrca of " "<MutationTreeSamplesQuery[selected=22% (2/9) samples, unknown=0% (0/9) samples]>)" } == set(df['Query'].tolist()) # mrca of A and B, samples set sample_set_AB = SampleSet([sampleA.id, sampleB.id]) df = query_result.isin(sample_set_AB, kind='mrca').toframe().sort_values('Sample Name') assert 3 == len(df) assert ['Query', 'Sample Name', 'Sample ID', 'Status'] == df.columns.tolist() assert ['SampleA', 'SampleB', 'SampleC'] == df['Sample Name'].tolist() assert {"join_tree(4 leaves) AND within(mrca of " "set(2 samples))" } == set(df['Query'].tolist()) # subs/site using samples query query_result_C = query_result.isin(['SampleC'], kind='samples') df = query_result.isin(query_result_C, kind='distance', distance=2, units='substitutions/site').toframe().sort_values( 'Sample Name') assert 2 == len(df) assert ['SampleB', 'SampleC'] == df['Sample Name'].tolist() assert {'join_tree(4 leaves) AND within(2 substitutions/site of ' '<MutationTreeSamplesQuery[selected=11% (1/9) samples, unknown=0% (0/9) samples]>)' } == set(df['Query'].tolist()) # hasa to put A, B, and C in unknown and then subs/site using samples query to only select B and C query_result_C = query_result.isin(['SampleC'], kind='samples') df = query_result.hasa('reference:1:1:T').isin(query_result_C, kind='distance', distance=2, units='substitutions/site').toframe( include_unknown=True).sort_values('Sample Name') assert 2 == len(df) assert ['SampleB', 'SampleC'] == df['Sample Name'].tolist() assert ['Unknown', 'Unknown'] == df['Status'].tolist() assert {'join_tree(4 leaves) AND reference:1:1:T AND within(2 substitutions/site of ' '<MutationTreeSamplesQuery[selected=11% (1/9) samples, unknown=0% (0/9) samples]>)' } == set(df['Query'].tolist()) # hasa to put A, B, and C in unknown and then subs/site using samples query to select A, B, and C query_result_C = query_result.isin(['SampleC'], kind='samples') df = query_result.hasa('reference:1:1:T').isin(query_result_C, kind='distance', distance=4, units='substitutions/site').toframe( include_unknown=True).sort_values('Sample Name') assert 3 == len(df) assert ['SampleA', 'SampleB', 'SampleC'] == df['Sample Name'].tolist() assert ['Unknown', 'Unknown', 'Unknown'] == df['Status'].tolist() assert {'join_tree(4 leaves) AND reference:1:1:T AND within(4 substitutions/site of ' '<MutationTreeSamplesQuery[selected=11% (1/9) samples, unknown=0% (0/9) samples]>)' } == set(df['Query'].tolist()) # hasa to put A, B, and C in unknown and then subs/site using sample names to only select B and C df = query_result.hasa('reference:1:1:T').isin(['SampleC'], kind='distance', distance=2, units='substitutions/site').toframe( include_unknown=True).sort_values('Sample Name') assert 2 == len(df) assert ['SampleB', 'SampleC'] == df['Sample Name'].tolist() assert ['Unknown', 'Unknown'] == df['Status'].tolist() assert {"join_tree(4 leaves) AND reference:1:1:T AND within(2 substitutions/site of ['SampleC'])" } == set(df['Query'].tolist()) # hasa to put A, B, and C in unknown and then subs/site using sample names to select A, B, and C df = query_result.hasa('reference:1:1:T').isin(['SampleA', 'SampleC'], kind='distance', distance=2, units='substitutions/site').toframe( include_unknown=True).sort_values('Sample Name') assert 3 == len(df) assert ['SampleA', 'SampleB', 'SampleC'] == df['Sample Name'].tolist() assert ['Unknown', 'Unknown', 'Unknown'] == df['Status'].tolist() assert {"join_tree(4 leaves) AND reference:1:1:T AND within(2 substitutions/site of ['SampleA', 'SampleC'])" } == set(df['Query'].tolist()) # hasa to put A in unknown, select B and then subs/site using sample names to select A, B, and C df = query_result.hasa('reference:5061:G:A').isin(['SampleA', 'SampleC'], kind='distance', distance=2, units='substitutions/site').toframe( include_unknown=True).sort_values('Sample Name') assert 2 == len(df) assert ['SampleA', 'SampleB'] == df['Sample Name'].tolist() assert ['Unknown', 'Present'] == df['Status'].tolist() assert {"join_tree(4 leaves) AND reference:5061:G:A AND within(2 substitutions/site of ['SampleA', 'SampleC'])" } == set(df['Query'].tolist()) # subs/site using sample names to select A, B, and C, and then hasa to put A in unknown, select B df = query_result.isin(['SampleA', 'SampleC'], kind='distance', distance=2, units='substitutions/site').hasa( 'reference:5061:G:A').toframe(include_unknown=True).sort_values('Sample Name') assert 2 == len(df) assert ['SampleA', 'SampleB'] == df['Sample Name'].tolist() assert ['Unknown', 'Present'] == df['Status'].tolist() assert {"join_tree(4 leaves) AND within(2 substitutions/site of ['SampleA', 'SampleC']) AND reference:5061:G:A" } == set(df['Query'].tolist()) # subs samples query df = query_result.isin(['SampleC'], kind='distance', distance=2 * 5180, units='substitutions').toframe().sort_values('Sample Name') assert 2 == len(df) assert ['SampleB', 'SampleC'] == df['Sample Name'].tolist() assert {f'join_tree(4 leaves) AND within({2 * 5180} substitutions of ' "['SampleC'])" } == set(df['Query'].tolist()) # kmer jaccard still works df = query_result.within('SampleA', distance=0.5, units='kmer_jaccard').toframe().sort_values('Sample Name') assert 2 == len(df) assert ['Query', 'Sample Name', 'Sample ID', 'Status'] == df.columns.tolist() assert ['SampleA', 'SampleC'] == df['Sample Name'].tolist() assert {"join_tree(4 leaves) AND isin_kmer_jaccard('SampleA', dist=0.5, k=31)" } == set(df['Query'].tolist()) def test_join_kmer_tree(prebuilt_tree: Tree, loaded_database_connection: DataIndexConnection): query_result = query(loaded_database_connection).join_tree(tree=prebuilt_tree, kind='kmer') assert 3 == len(query_result) assert 9 == len(query_result.universe_set) assert isinstance(query_result.tree, ClusterTree) assert {'SampleA', 'SampleB', 'SampleC'} == set(query_result.tree.get_leaf_names()) def test_summary_features_kindmutations(loaded_database_connection: DataIndexConnection): dfA = pd.read_csv(snippy_all_dataframes['SampleA'], sep='\t') dfB = pd.read_csv(snippy_all_dataframes['SampleB'], sep='\t') dfC = pd.read_csv(snippy_all_dataframes['SampleC'], sep='\t') expected_df = pd.concat([dfA, dfB, dfC]) expected_df = expected_df.groupby('Mutation').agg({ 'Sequence': 'first', 'Position': 'first', 'Deletion': 'first', 'Insertion': 'first', 'Type': 'first', 'Mutation': 'count', }).rename(columns={'Mutation': 'Count'}).sort_index() expected_df['Total'] = 9 expected_df['Percent'] = 100 * (expected_df['Count'] / expected_df['Total']) mutations_df = query(loaded_database_connection).features_summary(ignore_annotations=True) mutations_df = mutations_df.sort_index() assert len(expected_df) == len(mutations_df) assert list(expected_df.columns) == list(mutations_df.columns) assert list(expected_df.index) == list(mutations_df.index) assert list(expected_df['Count']) == list(mutations_df['Count']) assert list(expected_df['Total']) == list(mutations_df['Total']) assert list(expected_df['Type']) == list(mutations_df['Type']) assert math.isclose(100 * (2 / 9), mutations_df.loc['reference:619:G:C', 'Percent']) assert math.isclose(100 * (1 / 9), mutations_df.loc['reference:461:AAAT:G', 'Percent']) # Test including unknowns mutations_df = query(loaded_database_connection).features_summary(ignore_annotations=True, include_unknown_features=True) mutations_df['Percent'] = mutations_df['Percent'].astype(int) # Convert to int for easier comparison mutations_df = mutations_df.sort_index() assert 112 + 440 == len(mutations_df) assert list(expected_df.columns) == list(mutations_df.columns) assert 2 == mutations_df.loc['reference:619:G:C', 'Count'] assert 'SNP' == mutations_df.loc['reference:619:G:C', 'Type'] assert 2 == mutations_df.loc['reference:3063:A:ATGCAGC', 'Count'] assert 1 == mutations_df.loc['reference:1984:GTGATTG:TTGA', 'Count'] assert 1 == mutations_df.loc['reference:866:GCCAGATCC:G', 'Count'] assert 3 == mutations_df.loc['reference:90:T:?', 'Count'] assert 'UNKNOWN_MISSING' == mutations_df.loc['reference:90:T:?', 'Type'] assert 2 == mutations_df.loc['reference:190:A:?', 'Count'] assert 1 == mutations_df.loc['reference:210:C:?', 'Count'] # Test only include unknowns mutations_df = query(loaded_database_connection).features_summary(ignore_annotations=True, include_unknown_features=True, include_present_features=False) mutations_df['Percent'] = mutations_df['Percent'].astype(int) # Convert to int for easier comparison mutations_df = mutations_df.sort_index() assert 440 == len(mutations_df) assert list(expected_df.columns) == list(mutations_df.columns) assert 3 == mutations_df.loc['reference:90:T:?', 'Count'] assert 'UNKNOWN_MISSING' == mutations_df.loc['reference:90:T:?', 'Type'] assert 2 == mutations_df.loc['reference:190:A:?', 'Count'] assert 1 == mutations_df.loc['reference:210:C:?', 'Count'] assert 'reference:619:G:C' not in mutations_df def test_summary_features_kindmutations_unique(loaded_database_connection: DataIndexConnection): dfA = pd.read_csv(snippy_all_dataframes['SampleA'], sep='\t') dfB = pd.read_csv(snippy_all_dataframes['SampleB'], sep='\t') dfC = pd.read_csv(snippy_all_dataframes['SampleC'], sep='\t') # Unique to A expected_df = dfA expected_df = expected_df.groupby('Mutation').agg({ 'Sequence': 'first', 'Position': 'first', 'Deletion': 'first', 'Insertion': 'first', 'Type': 'first', 'Mutation': 'count', }).rename(columns={'Mutation': 'Count'}).sort_index() expected_df['Total'] = 1 expected_df['Percent'] = 100 * (expected_df['Count'] / expected_df['Total']) q = query(loaded_database_connection) mutations_df = q.isa('SampleA').features_summary(selection='unique', ignore_annotations=True) mutations_df = mutations_df.sort_index() assert len(expected_df) == len(mutations_df) assert 46 == len(mutations_df) # Check length against independently generated length assert list(expected_df.index) == list(mutations_df.index) assert list(expected_df['Count']) == list(mutations_df['Count']) assert list(expected_df['Total']) == list(mutations_df['Total']) assert list(expected_df['Type']) == list(mutations_df['Type']) assert math.isclose(100 * (1 / 1), mutations_df.loc['reference:3656:CATT:C', 'Percent']) # Unique to B dfAC = pd.concat([dfA, dfC]) expected_df = dfB[~dfB['Mutation'].isin(list(dfAC['Mutation']))] expected_df = expected_df.groupby('Mutation').agg({ 'Sequence': 'first', 'Position': 'first', 'Deletion': 'first', 'Insertion': 'first', 'Type': 'first', 'Mutation': 'count', }).rename(columns={'Mutation': 'Count'}).sort_index() expected_df['Total'] = 1 expected_df['Percent'] = 100 * (expected_df['Count'] / expected_df['Total']) mutations_df = q.isa('SampleB').features_summary(selection='unique', ignore_annotations=True) mutations_df = mutations_df.sort_index() assert len(expected_df) == len(mutations_df) assert list(expected_df.index) == list(mutations_df.index) assert list(expected_df['Count']) == list(mutations_df['Count']) assert list(expected_df['Type']) == list(mutations_df['Type']) assert list(expected_df['Total']) == list(mutations_df['Total']) assert math.isclose(100 * (1 / 1), mutations_df.loc['reference:349:AAGT:A', 'Percent']) # Unique to C dfAB = pd.concat([dfA, dfB]) expected_df = dfC[~dfC['Mutation'].isin(list(dfAB['Mutation']))] expected_df = expected_df.groupby('Mutation').agg({ 'Sequence': 'first', 'Position': 'first', 'Deletion': 'first', 'Insertion': 'first', 'Type': 'first', 'Mutation': 'count', }).rename(columns={'Mutation': 'Count'}).sort_index() expected_df['Total'] = 1 expected_df['Percent'] = 100 * (expected_df['Count'] / expected_df['Total']) mutations_df = q.isa('SampleC').features_summary(selection='unique', ignore_annotations=True) mutations_df = mutations_df.sort_index() assert len(expected_df) == len(mutations_df) assert list(expected_df.index) == list(mutations_df.index) assert list(expected_df['Count']) == list(mutations_df['Count']) assert list(expected_df['Total']) == list(mutations_df['Total']) assert list(expected_df['Type']) == list(mutations_df['Type']) assert math.isclose(100 * (1 / 1), mutations_df.loc['reference:866:GCCAGATCC:G', 'Percent']) # Unique to BC dfBC = pd.concat([dfB, dfC]) expected_df = dfBC[~dfBC['Mutation'].isin(list(dfA['Mutation']))] expected_df = expected_df.groupby('Mutation').agg({ 'Sequence': 'first', 'Position': 'first', 'Deletion': 'first', 'Insertion': 'first', 'Type': 'first', 'Mutation': 'count', }).rename(columns={'Mutation': 'Count'}).sort_index() expected_df['Total'] = 2 expected_df['Percent'] = 100 * (expected_df['Count'] / expected_df['Total']) mutations_df = q.isin(['SampleB', 'SampleC']).features_summary(selection='unique', ignore_annotations=True) mutations_df = mutations_df.sort_index() assert len(expected_df) == len(mutations_df) assert 66 == len(mutations_df) # Check length against independently generated length assert list(expected_df.index) == list(mutations_df.index) assert list(expected_df['Count']) == list(mutations_df['Count']) assert list(expected_df['Total']) == list(mutations_df['Total']) assert list(expected_df['Type']) == list(mutations_df['Type']) assert math.isclose(100 * (2 / 2), mutations_df.loc['reference:619:G:C', 'Percent']) assert math.isclose(100 * (1 / 2), mutations_df.loc['reference:866:GCCAGATCC:G', 'Percent']) assert math.isclose(100 * (1 / 2), mutations_df.loc['reference:349:AAGT:A', 'Percent']) # Unique to ABC (all with mutations) dfABC = pd.concat([dfA, dfB, dfC]) expected_df = dfABC expected_df = expected_df.groupby('Mutation').agg({ 'Sequence': 'first', 'Position': 'first', 'Deletion': 'first', 'Insertion': 'first', 'Type': 'first', 'Mutation': 'count', }).rename(columns={'Mutation': 'Count'}).sort_index() expected_df['Total'] = 3 expected_df['Percent'] = 100 * (expected_df['Count'] / expected_df['Total']) mutations_df = q.isin(['SampleA', 'SampleB', 'SampleC']).features_summary(selection='unique', ignore_annotations=True) mutations_df = mutations_df.sort_index() assert len(expected_df) == len(mutations_df) assert 112 == len(mutations_df) # Check length against independently generated length assert list(expected_df.index) == list(mutations_df.index) assert list(expected_df['Count']) == list(mutations_df['Count']) assert list(expected_df['Type']) == list(mutations_df['Type']) assert list(expected_df['Total']) == list(mutations_df['Total']) assert math.isclose(100 * (2 / 3), mutations_df.loc['reference:619:G:C', 'Percent']) assert math.isclose(100 * (1 / 3), mutations_df.loc['reference:866:GCCAGATCC:G', 'Percent']) assert math.isclose(100 * (1 / 3), mutations_df.loc['reference:349:AAGT:A', 'Percent']) assert math.isclose(100 * (1 / 3), mutations_df.loc['reference:3656:CATT:C', 'Percent']) # Unique to None mutations_df = q.isin([]).features_summary(selection='unique', ignore_annotations=True) mutations_df = mutations_df.sort_index() assert 0 == len(mutations_df) assert ['Sequence', 'Position', 'Deletion', 'Insertion', 'Type', 'Count', 'Total', 'Percent'] == list(mutations_df.columns) def test_summary_features_kindmutations_annotations(loaded_database_connection_annotations: DataIndexConnection): q = query(loaded_database_connection_annotations) # 1 sample mutations_df = q.isa('SH10-014').features_summary(ignore_annotations=False) assert ['Sequence', 'Position', 'Deletion', 'Insertion', 'Type', 'Count', 'Total', 'Percent', 'Annotation', 'Annotation_Impact', 'Gene_Name', 'Gene_ID', 'Feature_Type', 'Transcript_BioType', 'HGVS.c', 'HGVS.p', 'ID_HGVS.c', 'ID_HGVS.p', 'ID_HGVS_GN.c', 'ID_HGVS_GN.p'] == list(mutations_df.columns) assert 139 == len(mutations_df) ## Convert percent to int to make it easier to compare in assert statements mutations_df['Percent'] = mutations_df['Percent'].astype(int) ## missense variant assert ['NC_011083', 140658, 'C', 'A', 'SNP', 1, 1, 100, 'missense_variant', 'MODERATE', 'murF', 'SEHA_RS01180', 'transcript', 'protein_coding', 'c.497C>A', 'p.Ala166Glu', 'hgvs:NC_011083:SEHA_RS01180:c.497C>A', 'hgvs:NC_011083:SEHA_RS01180:p.Ala166Glu', 'hgvs_gn:NC_011083:murF:c.497C>A', 'hgvs_gn:NC_011083:murF:p.Ala166Glu'] == list( mutations_df.loc['NC_011083:140658:C:A']) ## inframe deletion assert ['NC_011083', 4465400, 'GGCCGAA', 'G', 'INDEL', 1, 1, 100, 'conservative_inframe_deletion', 'MODERATE', 'tyrB', 'SEHA_RS22180', 'transcript', 'protein_coding', 'c.157_162delGAAGCC', 'p.Glu53_Ala54del', 'hgvs:NC_011083:SEHA_RS22180:c.157_162delGAAGCC', 'hgvs:NC_011083:SEHA_RS22180:p.Glu53_Ala54del', 'hgvs_gn:NC_011083:tyrB:c.157_162delGAAGCC', 'hgvs_gn:NC_011083:tyrB:p.Glu53_Ala54del'] == list( mutations_df.loc['NC_011083:4465400:GGCCGAA:G']) ## Intergenic variant (with some NA values in fields) assert ['NC_011083', 4555461, 'T', 'TC', 'INDEL', 1, 1, 100, 'intergenic_region', 'MODIFIER', 'SEHA_RS22510-SEHA_RS26685', 'SEHA_RS22510-SEHA_RS26685', 'intergenic_region', 'NA', 'n.4555461_4555462insC', 'NA', 'hgvs:NC_011083:n.4555461_4555462insC', 'NA', 'hgvs_gn:NC_011083:n.4555461_4555462insC', 'NA'] == list( mutations_df.loc['NC_011083:4555461:T:TC'].fillna('NA')) # 3 samples mutations_df = q.isin(['SH10-014', 'SH14-001', 'SH14-014']).features_summary(ignore_annotations=False) ## Convert percent to int to make it easier to compare in assert statements mutations_df['Percent'] = mutations_df['Percent'].astype(int) assert ['Sequence', 'Position', 'Deletion', 'Insertion', 'Type', 'Count', 'Total', 'Percent', 'Annotation', 'Annotation_Impact', 'Gene_Name', 'Gene_ID', 'Feature_Type', 'Transcript_BioType', 'HGVS.c', 'HGVS.p', 'ID_HGVS.c', 'ID_HGVS.p', 'ID_HGVS_GN.c', 'ID_HGVS_GN.p'] == list(mutations_df.columns) assert 177 == len(mutations_df) ## missense variant (3/3) assert ['NC_011083', 140658, 'C', 'A', 'SNP', 3, 3, 100, 'missense_variant', 'MODERATE', 'murF', 'SEHA_RS01180', 'transcript', 'protein_coding', 'c.497C>A', 'p.Ala166Glu', 'hgvs:NC_011083:SEHA_RS01180:c.497C>A', 'hgvs:NC_011083:SEHA_RS01180:p.Ala166Glu', 'hgvs_gn:NC_011083:murF:c.497C>A', 'hgvs_gn:NC_011083:murF:p.Ala166Glu'] == list( mutations_df.loc['NC_011083:140658:C:A']) ## Intergenic variant (1/3) assert ['NC_011083', 4555461, 'T', 'TC', 'INDEL', 1, 3, 33, 'intergenic_region', 'MODIFIER', 'SEHA_RS22510-SEHA_RS26685', 'SEHA_RS22510-SEHA_RS26685', 'intergenic_region', 'NA', 'n.4555461_4555462insC', 'NA', 'hgvs:NC_011083:n.4555461_4555462insC', 'NA', 'hgvs_gn:NC_011083:n.4555461_4555462insC', 'NA'] == list( mutations_df.loc['NC_011083:4555461:T:TC'].fillna('NA')) # Test ignore annotations mutations_df = q.isin(['SH10-014', 'SH14-001', 'SH14-014']).features_summary(ignore_annotations=True) assert ['Sequence', 'Position', 'Deletion', 'Insertion', 'Type', 'Count', 'Total', 'Percent'] == list(mutations_df.columns) assert 177 == len(mutations_df) ## Test unique mutations_df = q.isa('SH10-014').features_summary(selection='unique', ignore_annotations=False) ## Convert percent to int to make it easier to compare in assert statements mutations_df['Percent'] = mutations_df['Percent'].astype(int) assert ['Sequence', 'Position', 'Deletion', 'Insertion', 'Type', 'Count', 'Total', 'Percent', 'Annotation', 'Annotation_Impact', 'Gene_Name', 'Gene_ID', 'Feature_Type', 'Transcript_BioType', 'HGVS.c', 'HGVS.p', 'ID_HGVS.c', 'ID_HGVS.p', 'ID_HGVS_GN.c', 'ID_HGVS_GN.p'] == list(mutations_df.columns) assert 60 == len(mutations_df) ## missense variant assert ['NC_011083', 2049576, 'A', 'C', 'SNP', 1, 1, 100, 'missense_variant', 'MODERATE', 'cutC', 'SEHA_RS10675', 'transcript', 'protein_coding', 'c.536T>G', 'p.Val179Gly', 'hgvs:NC_011083:SEHA_RS10675:c.536T>G', 'hgvs:NC_011083:SEHA_RS10675:p.Val179Gly', 'hgvs_gn:NC_011083:cutC:c.536T>G', 'hgvs_gn:NC_011083:cutC:p.Val179Gly'] == list( mutations_df.loc['NC_011083:2049576:A:C']) def test_summary_features_two(loaded_database_connection: DataIndexConnection): dfB = pd.read_csv(snippy_all_dataframes['SampleB'], sep='\t') dfC = pd.read_csv(snippy_all_dataframes['SampleC'], sep='\t') expected_df = pd.concat([dfB, dfC]) expected_df = expected_df.groupby('Mutation').agg({ 'Sequence': 'first', 'Position': 'first', 'Deletion': 'first', 'Insertion': 'first', 'Type': 'first', 'Mutation': 'count', }).rename(columns={'Mutation': 'Count'}).sort_index() expected_df['Total'] = 2 expected_df['Percent'] = 100 * (expected_df['Count'] / expected_df['Total']) mutations_df = query(loaded_database_connection).hasa( 'reference:839:C:G', kind='mutation').features_summary() mutations_df = mutations_df.sort_index() assert len(expected_df) == len(mutations_df) assert list(expected_df.index) == list(mutations_df.index) assert list(expected_df['Count']) == list(mutations_df['Count']) assert list(expected_df['Type']) == list(mutations_df['Type']) assert list(expected_df['Total']) == list(mutations_df['Total']) assert math.isclose(100 * (2 / 2), mutations_df.loc['reference:839:C:G', 'Percent']) def test_summary_features_kindmlst(loaded_database_connection: DataIndexConnection): # Test case of summary of single sample summary_df = query(loaded_database_connection).isa('SampleA').features_summary(kind='mlst') summary_df['Percent'] = summary_df['Percent'].astype(int) # Convert to int for easier comparison assert 7 == len(summary_df) assert {'lmonocytogenes'} == set(summary_df['Scheme'].tolist()) assert 'MLST Feature' == summary_df.index.name assert ['Scheme', 'Locus', 'Allele', 'Count', 'Total', 'Percent'] == list(summary_df.columns) assert ['lmonocytogenes', 'abcZ', '1', 1, 1, 100] == summary_df.loc['mlst:lmonocytogenes:abcZ:1'].tolist() assert ['lmonocytogenes', 'bglA', '51', 1, 1, 100] == summary_df.loc['mlst:lmonocytogenes:bglA:51'].tolist() # Test samples across multiple schemes summary_df = query(loaded_database_connection).isin(['SampleA', 'SampleB', 'CFSAN002349', '2014D-0067']).features_summary(kind='mlst') summary_df['Percent'] = summary_df['Percent'].astype(int) # Convert to int for easier comparison assert 15 == len(summary_df) assert {'lmonocytogenes', 'campylobacter'} == set(summary_df['Scheme'].tolist()) assert 'MLST Feature' == summary_df.index.name assert ['Scheme', 'Locus', 'Allele', 'Count', 'Total', 'Percent'] == list(summary_df.columns) assert ['lmonocytogenes', 'abcZ', '1', 3, 4, 75] == summary_df.loc['mlst:lmonocytogenes:abcZ:1'].tolist() assert ['lmonocytogenes', 'bglA', '51', 2, 4, 50] == summary_df.loc['mlst:lmonocytogenes:bglA:51'].tolist() assert ['lmonocytogenes', 'bglA', '52', 1, 4, 25] == summary_df.loc['mlst:lmonocytogenes:bglA:52'].tolist() assert ['lmonocytogenes', 'ldh', '5', 2, 4, 50] == summary_df.loc['mlst:lmonocytogenes:ldh:5'].tolist() assert ['lmonocytogenes', 'lhkA', '5', 2, 4, 50] == summary_df.loc['mlst:lmonocytogenes:lhkA:5'].tolist() assert ['lmonocytogenes', 'lhkA', '4', 1, 4, 25] == summary_df.loc['mlst:lmonocytogenes:lhkA:4'].tolist() assert ['campylobacter', 'aspA', '2', 1, 4, 25] == summary_df.loc['mlst:campylobacter:aspA:2'].tolist() assert ['campylobacter', 'glyA', '3', 1, 4, 25] == summary_df.loc['mlst:campylobacter:glyA:3'].tolist() assert 6 == len(summary_df[summary_df['Scheme'] == 'campylobacter']) # Missing one feature since it's unknown # Test only unknown summary_df = query(loaded_database_connection).isin( ['SampleA', 'SampleB', 'CFSAN002349', '2014D-0067']).features_summary( kind='mlst', include_present_features=False, include_unknown_features=True) summary_df['Percent'] = summary_df['Percent'].astype(int) # Convert to int for easier comparison assert 2 == len(summary_df) assert {'lmonocytogenes', 'campylobacter'} == set(summary_df['Scheme'].tolist()) assert 'MLST Feature' == summary_df.index.name assert ['Scheme', 'Locus', 'Allele', 'Count', 'Total', 'Percent'] == list(summary_df.columns) assert ['lmonocytogenes', 'ldh', '?', 1, 4, 25] == summary_df.loc['mlst:lmonocytogenes:ldh:?'].tolist() assert ['campylobacter', 'uncA', '?', 1, 4, 25] == summary_df.loc['mlst:campylobacter:uncA:?'].tolist() # Test only unknown, restrict scheme summary_df = query(loaded_database_connection).isin( ['SampleA', 'SampleB', 'CFSAN002349', '2014D-0067']).features_summary( kind='mlst', scheme='lmonocytogenes', include_present_features=False, include_unknown_features=True) summary_df['Percent'] = summary_df['Percent'].astype(int) # Convert to int for easier comparison assert 1 == len(summary_df) assert {'lmonocytogenes'} == set(summary_df['Scheme'].tolist()) assert 'MLST Feature' == summary_df.index.name assert ['Scheme', 'Locus', 'Allele', 'Count', 'Total', 'Percent'] == list(summary_df.columns) assert ['lmonocytogenes', 'ldh', '?', 1, 4, 25] == summary_df.loc['mlst:lmonocytogenes:ldh:?'].tolist() def test_features_comparison_kindmutations_annotations(loaded_database_connection_annotations: DataIndexConnection): q = query(loaded_database_connection_annotations) category_10 = q.isin('SH10-014') category_14 = q.isin(['SH14-001', 'SH14-014']) # Test 2 categories counts comparison_df = q.features_comparison(sample_categories=[category_10, category_14], category_prefixes=['10', '14'], unit='count') comparison_df = comparison_df.sort_index() assert comparison_df.index.name == 'Mutation' assert ['Sequence', 'Position', 'Deletion', 'Insertion', 'Type', 'Total', '10_count', '14_count', '10_total', '14_total', 'Annotation', 'Annotation_Impact', 'Gene_Name', 'Gene_ID', 'Feature_Type', 'Transcript_BioType', 'HGVS.c', 'HGVS.p', 'ID_HGVS.c', 'ID_HGVS.p', 'ID_HGVS_GN.c', 'ID_HGVS_GN.p'] == list(comparison_df.columns) assert 177 == len(comparison_df) assert {3} == set(comparison_df['Total'].tolist()) assert {1} == set(comparison_df['10_total'].tolist()) assert {2} == set(comparison_df['14_total'].tolist()) assert 1 == comparison_df.loc['NC_011083:140658:C:A', '10_count'] assert 'SNP' == comparison_df.loc['NC_011083:140658:C:A', 'Type'] assert 2 == comparison_df.loc['NC_011083:140658:C:A', '14_count'] assert 'hgvs_gn:NC_011083:murF:p.Ala166Glu' == comparison_df.loc[ 'NC_011083:140658:C:A', 'ID_HGVS_GN.p'] assert 1 == comparison_df.loc['NC_011083:4555461:T:TC', '10_count'] assert 0 == comparison_df.loc['NC_011083:4555461:T:TC', '14_count'] assert 'hgvs_gn:NC_011083:n.4555461_4555462insC' == comparison_df.loc[ 'NC_011083:4555461:T:TC', 'ID_HGVS_GN.c'] assert 0 == comparison_df.loc['NC_011083:630556:G:A', '10_count'] assert 2 == comparison_df.loc['NC_011083:630556:G:A', '14_count'] assert 'hgvs_gn:NC_011083:SEHA_RS03545:p.Trp295*' == comparison_df.loc[ 'NC_011083:630556:G:A', 'ID_HGVS_GN.p'] # Test 2 categories defaults comparison_df = q.features_comparison(sample_categories=[category_10, category_14]) comparison_df = comparison_df.sort_index() comparison_df['Category1_percent'] = comparison_df['Category1_percent'].astype( int) # Convert to int for easier comparison comparison_df['Category2_percent'] = comparison_df['Category2_percent'].astype( int) # Convert to int for easier comparison assert comparison_df.index.name == 'Mutation' assert ['Sequence', 'Position', 'Deletion', 'Insertion', 'Type', 'Total', 'Category1_percent', 'Category2_percent', 'Category1_total', 'Category2_total', 'Annotation', 'Annotation_Impact', 'Gene_Name', 'Gene_ID', 'Feature_Type', 'Transcript_BioType', 'HGVS.c', 'HGVS.p', 'ID_HGVS.c', 'ID_HGVS.p', 'ID_HGVS_GN.c', 'ID_HGVS_GN.p'] == list(comparison_df.columns) assert 177 == len(comparison_df) assert {3} == set(comparison_df['Total'].tolist()) assert {1} == set(comparison_df['Category1_total'].tolist()) assert {2} == set(comparison_df['Category2_total'].tolist()) assert 100 == comparison_df.loc['NC_011083:140658:C:A', 'Category1_percent'] assert 100 == comparison_df.loc['NC_011083:140658:C:A', 'Category2_percent'] assert 'hgvs_gn:NC_011083:murF:p.Ala166Glu' == comparison_df.loc[ 'NC_011083:140658:C:A', 'ID_HGVS_GN.p'] assert 100 == comparison_df.loc['NC_011083:4555461:T:TC', 'Category1_percent'] assert 0 == comparison_df.loc['NC_011083:4555461:T:TC', 'Category2_percent'] assert 'hgvs_gn:NC_011083:n.4555461_4555462insC' == comparison_df.loc[ 'NC_011083:4555461:T:TC', 'ID_HGVS_GN.c'] assert 0 == comparison_df.loc['NC_011083:630556:G:A', 'Category1_percent'] assert 100 == comparison_df.loc['NC_011083:630556:G:A', 'Category2_percent'] assert 'hgvs_gn:NC_011083:SEHA_RS03545:p.Trp295*' == comparison_df.loc[ 'NC_011083:630556:G:A', 'ID_HGVS_GN.p'] # Test 2 categories percents isin subset comparison_df = q.isin(['SH14-001', 'SH14-014']).features_comparison( sample_categories=[category_10, category_14], category_prefixes=['10', '14'], unit='percent' ) comparison_df = comparison_df.sort_index() comparison_df['14_percent'] = comparison_df['14_percent'].astype(int) # Convert to int for easier comparison assert comparison_df.index.name == 'Mutation' assert ['Sequence', 'Position', 'Deletion', 'Insertion', 'Type', 'Total', '10_percent', '14_percent', '10_total', '14_total', 'Annotation', 'Annotation_Impact', 'Gene_Name', 'Gene_ID', 'Feature_Type', 'Transcript_BioType', 'HGVS.c', 'HGVS.p', 'ID_HGVS.c', 'ID_HGVS.p', 'ID_HGVS_GN.c', 'ID_HGVS_GN.p'] == list(comparison_df.columns) assert 117 == len(comparison_df) assert {2} == set(comparison_df['Total'].tolist()) assert {0} == set(comparison_df['10_total'].tolist()) assert {2} == set(comparison_df['14_total'].tolist()) assert pd.isna(comparison_df.loc['NC_011083:140658:C:A', '10_percent']) assert 100 == comparison_df.loc['NC_011083:140658:C:A', '14_percent'] assert 'hgvs_gn:NC_011083:murF:p.Ala166Glu' == comparison_df.loc[ 'NC_011083:140658:C:A', 'ID_HGVS_GN.p'] assert pd.isna(comparison_df.loc['NC_011083:4482211:C:A', '10_percent']) assert 50 == comparison_df.loc['NC_011083:4482211:C:A', '14_percent'] assert 'hgvs_gn:NC_011083:siiE:p.Arg1263Ser' == comparison_df.loc[ 'NC_011083:4482211:C:A', 'ID_HGVS_GN.p'] assert pd.isna(comparison_df.loc['NC_011083:630556:G:A', '10_percent']) assert 100 == comparison_df.loc['NC_011083:630556:G:A', '14_percent'] assert 'hgvs_gn:NC_011083:SEHA_RS03545:p.Trp295*' == comparison_df.loc[ 'NC_011083:630556:G:A', 'ID_HGVS_GN.p'] def test_features_comparison_kindmlst(loaded_database_connection: DataIndexConnection): q = query(loaded_database_connection) category_lmonocytogenes = q.isin(['SampleA', 'SampleB', 'SampleC', 'CFSAN002349', 'CFSAN023463']) category_other = category_lmonocytogenes.complement() # Test two categories percent: one of lmonocytogenes and one of the rest comparison_df = q.features_comparison(sample_categories=[category_lmonocytogenes, category_other], category_prefixes=['lmonocytogenes', 'other'], unit='percent', kind='mlst') assert 24 == len(comparison_df) assert 'MLST Feature' == comparison_df.index.name assert ['Scheme', 'Locus', 'Allele', 'Total', 'lmonocytogenes_percent', 'other_percent', 'lmonocytogenes_total', 'other_total'] == list(comparison_df.columns) comparison_df['lmonocytogenes_percent'] = comparison_df['lmonocytogenes_percent'].astype( int) # Convert to int for easier comparison comparison_df['other_percent'] = comparison_df['other_percent'].astype(int) # Convert to int for easier comparison assert {9} == set(comparison_df['Total'].tolist()) assert {5} == set(comparison_df['lmonocytogenes_total'].tolist()) assert {4} == set(comparison_df['other_total'].tolist()) assert 100 == comparison_df.loc['mlst:lmonocytogenes:abcZ:1', 'lmonocytogenes_percent'] assert 0 == comparison_df.loc['mlst:lmonocytogenes:abcZ:1', 'other_percent'] assert 60 == comparison_df.loc['mlst:lmonocytogenes:bglA:51', 'lmonocytogenes_percent'] assert 0 == comparison_df.loc['mlst:lmonocytogenes:bglA:51', 'other_percent'] assert 40 == comparison_df.loc['mlst:lmonocytogenes:bglA:52', 'lmonocytogenes_percent'] assert 0 == comparison_df.loc['mlst:lmonocytogenes:bglA:52', 'other_percent'] assert 0 == comparison_df.loc['mlst:ecoli:adk:100', 'lmonocytogenes_percent'] assert 50 == comparison_df.loc['mlst:ecoli:adk:100', 'other_percent'] assert 0 == comparison_df.loc['mlst:ecoli:recA:7', 'lmonocytogenes_percent'] assert 50 == comparison_df.loc['mlst:ecoli:recA:7', 'other_percent'] assert 0 == comparison_df.loc['mlst:campylobacter:uncA:6', 'lmonocytogenes_percent'] assert 25 == comparison_df.loc['mlst:campylobacter:uncA:6', 'other_percent'] # Test two categories sample_set: one of lmonocytogenes and one of the rest comparison_df = q.features_comparison(sample_categories=[category_lmonocytogenes.sample_set, category_other.sample_set], category_prefixes=['lmonocytogenes', 'other'], unit='percent', kind='mlst') assert 24 == len(comparison_df) assert 'MLST Feature' == comparison_df.index.name assert ['Scheme', 'Locus', 'Allele', 'Total', 'lmonocytogenes_percent', 'other_percent', 'lmonocytogenes_total', 'other_total'] == list(comparison_df.columns) comparison_df['lmonocytogenes_percent'] = comparison_df['lmonocytogenes_percent'].astype( int) # Convert to int for easier comparison comparison_df['other_percent'] = comparison_df['other_percent'].astype(int) # Convert to int for easier comparison assert {9} == set(comparison_df['Total'].tolist()) assert {5} == set(comparison_df['lmonocytogenes_total'].tolist()) assert {4} == set(comparison_df['other_total'].tolist()) assert 100 == comparison_df.loc['mlst:lmonocytogenes:abcZ:1', 'lmonocytogenes_percent'] assert 0 == comparison_df.loc['mlst:lmonocytogenes:abcZ:1', 'other_percent'] assert 60 == comparison_df.loc['mlst:lmonocytogenes:bglA:51', 'lmonocytogenes_percent'] assert 0 == comparison_df.loc['mlst:lmonocytogenes:bglA:51', 'other_percent'] assert 40 == comparison_df.loc['mlst:lmonocytogenes:bglA:52', 'lmonocytogenes_percent'] assert 0 == comparison_df.loc['mlst:lmonocytogenes:bglA:52', 'other_percent'] assert 0 == comparison_df.loc['mlst:ecoli:adk:100', 'lmonocytogenes_percent'] assert 50 == comparison_df.loc['mlst:ecoli:adk:100', 'other_percent'] assert 0 == comparison_df.loc['mlst:ecoli:recA:7', 'lmonocytogenes_percent'] assert 50 == comparison_df.loc['mlst:ecoli:recA:7', 'other_percent'] assert 0 == comparison_df.loc['mlst:campylobacter:uncA:6', 'lmonocytogenes_percent'] assert 25 == comparison_df.loc['mlst:campylobacter:uncA:6', 'other_percent'] # Test two categories subset percent: one of lmonocytogenes and one of the rest q_subset = q.isin(['SampleA', 'SampleB', 'SampleC', '2014C-3598', '2014C-3599']) comparison_df = q_subset.features_comparison(sample_categories=[category_lmonocytogenes, category_other], category_prefixes=['lmonocytogenes', 'other'], unit='percent', kind='mlst') assert 16 == len(comparison_df) assert 'MLST Feature' == comparison_df.index.name assert ['Scheme', 'Locus', 'Allele', 'Total', 'lmonocytogenes_percent', 'other_percent', 'lmonocytogenes_total', 'other_total'] == list(comparison_df.columns) comparison_df['lmonocytogenes_percent'] = comparison_df['lmonocytogenes_percent'].astype( int) # Convert to int for easier comparison comparison_df['other_percent'] = comparison_df['other_percent'].astype(int) # Convert to int for easier comparison assert {5} == set(comparison_df['Total'].tolist()) assert {3} == set(comparison_df['lmonocytogenes_total'].tolist()) assert {2} == set(comparison_df['other_total'].tolist()) assert 100 == comparison_df.loc['mlst:lmonocytogenes:abcZ:1', 'lmonocytogenes_percent'] assert 0 == comparison_df.loc['mlst:lmonocytogenes:abcZ:1', 'other_percent'] assert 33 == comparison_df.loc['mlst:lmonocytogenes:bglA:51', 'lmonocytogenes_percent'] assert 0 == comparison_df.loc['mlst:lmonocytogenes:bglA:51', 'other_percent'] assert 66 == comparison_df.loc['mlst:lmonocytogenes:bglA:52', 'lmonocytogenes_percent'] assert 0 == comparison_df.loc['mlst:lmonocytogenes:bglA:52', 'other_percent'] assert 0 == comparison_df.loc['mlst:ecoli:adk:100', 'lmonocytogenes_percent'] assert 100 == comparison_df.loc['mlst:ecoli:adk:100', 'other_percent'] assert 0 == comparison_df.loc['mlst:ecoli:recA:7', 'lmonocytogenes_percent'] assert 100 == comparison_df.loc['mlst:ecoli:recA:7', 'other_percent'] def test_features_comparison_kindmutations_with_dataframe(loaded_database_connection_annotations: DataIndexConnection): db = loaded_database_connection_annotations.database sample_sh14_001 = db.get_session().query(Sample).filter(Sample.name == 'SH14-001').one() sample_sh14_014 = db.get_session().query(Sample).filter(Sample.name == 'SH14-014').one() sample_sh10_014 = db.get_session().query(Sample).filter(Sample.name == 'SH10-014').one() df = pd.DataFrame([ [sample_sh14_001.id, 'red'], [sample_sh14_014.id, 'red'], [sample_sh10_014.id, 'blue'] ], columns=['Sample ID', 'Color']) q = query(loaded_database_connection_annotations, universe='dataframe', data_frame=df, sample_ids_column='Sample ID') category_10 = q.isin('SH10-014') category_14 = q.isin(['SH14-001', 'SH14-014']) # Test 2 categories counts on dataframe query: dataframe column groupby comparison_df = q.features_comparison(sample_categories='Color', categories_kind='dataframe', unit='count') comparison_df = comparison_df.sort_index() assert comparison_df.index.name == 'Mutation' assert ['Sequence', 'Position', 'Deletion', 'Insertion', 'Type', 'Total', 'blue_count', 'red_count', 'blue_total', 'red_total', 'Annotation', 'Annotation_Impact', 'Gene_Name', 'Gene_ID', 'Feature_Type', 'Transcript_BioType', 'HGVS.c', 'HGVS.p', 'ID_HGVS.c', 'ID_HGVS.p', 'ID_HGVS_GN.c', 'ID_HGVS_GN.p'] == list(comparison_df.columns) assert 177 == len(comparison_df) assert {3} == set(comparison_df['Total'].tolist()) assert {2} == set(comparison_df['red_total'].tolist()) assert {1} == set(comparison_df['blue_total'].tolist()) assert 1 == comparison_df.loc['NC_011083:140658:C:A', 'blue_count'] assert 2 == comparison_df.loc['NC_011083:140658:C:A', 'red_count'] assert 'hgvs_gn:NC_011083:murF:p.Ala166Glu' == comparison_df.loc[ 'NC_011083:140658:C:A', 'ID_HGVS_GN.p'] assert 'SNP' == comparison_df.loc['NC_011083:140658:C:A', 'Type'] assert 1 == comparison_df.loc['NC_011083:4555461:T:TC', 'blue_count'] assert 0 == comparison_df.loc['NC_011083:4555461:T:TC', 'red_count'] assert 'hgvs_gn:NC_011083:n.4555461_4555462insC' == comparison_df.loc[ 'NC_011083:4555461:T:TC', 'ID_HGVS_GN.c'] assert 'INDEL' == comparison_df.loc['NC_011083:4555461:T:TC', 'Type'] assert 0 == comparison_df.loc['NC_011083:630556:G:A', 'blue_count'] assert 2 == comparison_df.loc['NC_011083:630556:G:A', 'red_count'] assert 'hgvs_gn:NC_011083:SEHA_RS03545:p.Trp295*' == comparison_df.loc[ 'NC_011083:630556:G:A', 'ID_HGVS_GN.p'] assert 'SNP' == comparison_df.loc['NC_011083:630556:G:A', 'Type'] # Test 2 categories counts on dataframe query: sample_query comparison_df = q.features_comparison(sample_categories=[category_10, category_14], category_prefixes=['10', '14'], unit='count') comparison_df = comparison_df.sort_index() assert comparison_df.index.name == 'Mutation' assert ['Sequence', 'Position', 'Deletion', 'Insertion', 'Type', 'Total', '10_count', '14_count', '10_total', '14_total', 'Annotation', 'Annotation_Impact', 'Gene_Name', 'Gene_ID', 'Feature_Type', 'Transcript_BioType', 'HGVS.c', 'HGVS.p', 'ID_HGVS.c', 'ID_HGVS.p', 'ID_HGVS_GN.c', 'ID_HGVS_GN.p'] == list(comparison_df.columns) assert 177 == len(comparison_df) assert {3} == set(comparison_df['Total'].tolist()) assert {1} == set(comparison_df['10_total'].tolist()) assert {2} == set(comparison_df['14_total'].tolist()) assert 1 == comparison_df.loc['NC_011083:140658:C:A', '10_count'] assert 2 == comparison_df.loc['NC_011083:140658:C:A', '14_count'] assert 'hgvs_gn:NC_011083:murF:p.Ala166Glu' == comparison_df.loc[ 'NC_011083:140658:C:A', 'ID_HGVS_GN.p'] assert 1 == comparison_df.loc['NC_011083:4555461:T:TC', '10_count'] assert 0 == comparison_df.loc['NC_011083:4555461:T:TC', '14_count'] assert 'hgvs_gn:NC_011083:n.4555461_4555462insC' == comparison_df.loc[ 'NC_011083:4555461:T:TC', 'ID_HGVS_GN.c'] assert 0 == comparison_df.loc['NC_011083:630556:G:A', '10_count'] assert 2 == comparison_df.loc['NC_011083:630556:G:A', '14_count'] assert 'hgvs_gn:NC_011083:SEHA_RS03545:p.Trp295*' == comparison_df.loc[ 'NC_011083:630556:G:A', 'ID_HGVS_GN.p'] # Test 2 categories counts on dataframe query: dataframe column groupby, lower threshold comparison_df = q.features_comparison(sample_categories='Color', categories_kind='dataframe', category_samples_threshold=1, unit='count') comparison_df = comparison_df.sort_index() assert comparison_df.index.name == 'Mutation' assert ['Sequence', 'Position', 'Deletion', 'Insertion', 'Type', 'Total', 'blue_count', 'red_count', 'blue_total', 'red_total', 'Annotation', 'Annotation_Impact', 'Gene_Name', 'Gene_ID', 'Feature_Type', 'Transcript_BioType', 'HGVS.c', 'HGVS.p', 'ID_HGVS.c', 'ID_HGVS.p', 'ID_HGVS_GN.c', 'ID_HGVS_GN.p'] == list(comparison_df.columns) assert 177 == len(comparison_df) assert {3} == set(comparison_df['Total'].tolist()) assert {2} == set(comparison_df['red_total'].tolist()) assert {1} == set(comparison_df['blue_total'].tolist()) assert 1 == comparison_df.loc['NC_011083:140658:C:A', 'blue_count'] assert 2 == comparison_df.loc['NC_011083:140658:C:A', 'red_count'] assert 'hgvs_gn:NC_011083:murF:p.Ala166Glu' == comparison_df.loc[ 'NC_011083:140658:C:A', 'ID_HGVS_GN.p'] assert 1 == comparison_df.loc['NC_011083:4555461:T:TC', 'blue_count'] assert 0 == comparison_df.loc['NC_011083:4555461:T:TC', 'red_count'] assert 'hgvs_gn:NC_011083:n.4555461_4555462insC' == comparison_df.loc[ 'NC_011083:4555461:T:TC', 'ID_HGVS_GN.c'] assert 0 == comparison_df.loc['NC_011083:630556:G:A', 'blue_count'] assert 2 == comparison_df.loc['NC_011083:630556:G:A', 'red_count'] assert 'hgvs_gn:NC_011083:SEHA_RS03545:p.Trp295*' == comparison_df.loc[ 'NC_011083:630556:G:A', 'ID_HGVS_GN.p'] # Test 2 categories counts on dataframe query: dataframe column groupby, higher threshold comparison_df = q.features_comparison(sample_categories='Color', categories_kind='dataframe', category_samples_threshold=2, unit='count') comparison_df = comparison_df.sort_index() assert comparison_df.index.name == 'Mutation' assert ['Sequence', 'Position', 'Deletion', 'Insertion', 'Type', 'Total', 'red_count', 'red_total', 'Annotation', 'Annotation_Impact', 'Gene_Name', 'Gene_ID', 'Feature_Type', 'Transcript_BioType', 'HGVS.c', 'HGVS.p', 'ID_HGVS.c', 'ID_HGVS.p', 'ID_HGVS_GN.c', 'ID_HGVS_GN.p'] == list(comparison_df.columns) assert 177 == len(comparison_df) assert {3} == set(comparison_df['Total'].tolist()) assert {2} == set(comparison_df['red_total'].tolist()) assert 2 == comparison_df.loc['NC_011083:140658:C:A', 'red_count'] assert 'hgvs_gn:NC_011083:murF:p.Ala166Glu' == comparison_df.loc[ 'NC_011083:140658:C:A', 'ID_HGVS_GN.p'] assert 0 == comparison_df.loc['NC_011083:4555461:T:TC', 'red_count'] assert 'hgvs_gn:NC_011083:n.4555461_4555462insC' == comparison_df.loc[ 'NC_011083:4555461:T:TC', 'ID_HGVS_GN.c'] assert 2 == comparison_df.loc['NC_011083:630556:G:A', 'red_count'] assert 'hgvs_gn:NC_011083:SEHA_RS03545:p.Trp295*' == comparison_df.loc[ 'NC_011083:630556:G:A', 'ID_HGVS_GN.p'] # Test 2 categories counts on dataframe query: sample_query with threshold comparison_df = q.features_comparison(sample_categories=[category_10, category_14], category_prefixes=['10', '14'], category_samples_threshold=2, unit='count') comparison_df = comparison_df.sort_index() assert comparison_df.index.name == 'Mutation' assert ['Sequence', 'Position', 'Deletion', 'Insertion', 'Type', 'Total', '14_count', '14_total', 'Annotation', 'Annotation_Impact', 'Gene_Name', 'Gene_ID', 'Feature_Type', 'Transcript_BioType', 'HGVS.c', 'HGVS.p', 'ID_HGVS.c', 'ID_HGVS.p', 'ID_HGVS_GN.c', 'ID_HGVS_GN.p'] == list(comparison_df.columns) assert 177 == len(comparison_df) assert {3} == set(comparison_df['Total'].tolist()) assert {2} == set(comparison_df['14_total'].tolist()) assert 2 == comparison_df.loc['NC_011083:140658:C:A', '14_count'] assert 'hgvs_gn:NC_011083:murF:p.Ala166Glu' == comparison_df.loc[ 'NC_011083:140658:C:A', 'ID_HGVS_GN.p'] assert 0 == comparison_df.loc['NC_011083:4555461:T:TC', '14_count'] assert 'hgvs_gn:NC_011083:n.4555461_4555462insC' == comparison_df.loc[ 'NC_011083:4555461:T:TC', 'ID_HGVS_GN.c'] assert 2 == comparison_df.loc['NC_011083:630556:G:A', '14_count'] assert 'hgvs_gn:NC_011083:SEHA_RS03545:p.Trp295*' == comparison_df.loc[ 'NC_011083:630556:G:A', 'ID_HGVS_GN.p'] # Test 3 categories counts on dataframe query: dataframe column groupby df = pd.DataFrame([ [sample_sh14_001.id, 'green'], [sample_sh14_014.id, 'red'], [sample_sh10_014.id, 'blue'] ], columns=['Sample ID', 'Color']) q = query(loaded_database_connection_annotations, universe='dataframe', data_frame=df, sample_ids_column='Sample ID') comparison_df = q.features_comparison(sample_categories='Color', categories_kind='dataframe', unit='count') comparison_df = comparison_df.sort_index() assert comparison_df.index.name == 'Mutation' assert ['Sequence', 'Position', 'Deletion', 'Insertion', 'Type', 'Total', 'blue_count', 'green_count', 'red_count', 'blue_total', 'green_total', 'red_total', 'Annotation', 'Annotation_Impact', 'Gene_Name', 'Gene_ID', 'Feature_Type', 'Transcript_BioType', 'HGVS.c', 'HGVS.p', 'ID_HGVS.c', 'ID_HGVS.p', 'ID_HGVS_GN.c', 'ID_HGVS_GN.p'] == list(comparison_df.columns) assert 177 == len(comparison_df) assert {3} == set(comparison_df['Total'].tolist()) assert {1} == set(comparison_df['red_total'].tolist()) assert {1} == set(comparison_df['green_total'].tolist()) assert {1} == set(comparison_df['blue_total'].tolist()) assert 1 == comparison_df.loc['NC_011083:140658:C:A', 'blue_count'] assert 1 == comparison_df.loc['NC_011083:140658:C:A', 'red_count'] assert 1 == comparison_df.loc['NC_011083:140658:C:A', 'green_count'] assert 'hgvs_gn:NC_011083:murF:p.Ala166Glu' == comparison_df.loc[ 'NC_011083:140658:C:A', 'ID_HGVS_GN.p'] assert 1 == comparison_df.loc['NC_011083:4555461:T:TC', 'blue_count'] assert 0 == comparison_df.loc['NC_011083:4555461:T:TC', 'red_count'] assert 0 == comparison_df.loc['NC_011083:4555461:T:TC', 'green_count'] assert 'hgvs_gn:NC_011083:n.4555461_4555462insC' == comparison_df.loc[ 'NC_011083:4555461:T:TC', 'ID_HGVS_GN.c'] assert 0 == comparison_df.loc['NC_011083:630556:G:A', 'blue_count'] assert 1 == comparison_df.loc['NC_011083:630556:G:A', 'red_count'] assert 1 == comparison_df.loc['NC_011083:630556:G:A', 'green_count'] assert 'hgvs_gn:NC_011083:SEHA_RS03545:p.Trp295*' == comparison_df.loc[ 'NC_011083:630556:G:A', 'ID_HGVS_GN.p'] # Test 3 categories counts on dataframe query: one category has NA df = pd.DataFrame([ [sample_sh14_001.id, 'green'], [sample_sh14_014.id, 'red'], [sample_sh10_014.id, pd.NA] ], columns=['Sample ID', 'Color']) q = query(loaded_database_connection_annotations, universe='dataframe', data_frame=df, sample_ids_column='Sample ID') comparison_df = q.features_comparison(sample_categories='Color', categories_kind='dataframe', unit='count') comparison_df = comparison_df.sort_index() assert comparison_df.index.name == 'Mutation' assert ['Sequence', 'Position', 'Deletion', 'Insertion', 'Type', 'Total', 'green_count', 'red_count', 'green_total', 'red_total', 'Annotation', 'Annotation_Impact', 'Gene_Name', 'Gene_ID', 'Feature_Type', 'Transcript_BioType', 'HGVS.c', 'HGVS.p', 'ID_HGVS.c', 'ID_HGVS.p', 'ID_HGVS_GN.c', 'ID_HGVS_GN.p'] == list(comparison_df.columns) assert 177 == len(comparison_df) assert {3} == set(comparison_df['Total'].tolist()) assert {1} == set(comparison_df['red_total'].tolist()) assert {1} == set(comparison_df['green_total'].tolist()) assert 1 == comparison_df.loc['NC_011083:140658:C:A', 'red_count'] assert 1 == comparison_df.loc['NC_011083:140658:C:A', 'green_count'] assert 'hgvs_gn:NC_011083:murF:p.Ala166Glu' == comparison_df.loc[ 'NC_011083:140658:C:A', 'ID_HGVS_GN.p'] assert 0 == comparison_df.loc['NC_011083:4555461:T:TC', 'red_count'] assert 0 == comparison_df.loc['NC_011083:4555461:T:TC', 'green_count'] assert 'hgvs_gn:NC_011083:n.4555461_4555462insC' == comparison_df.loc[ 'NC_011083:4555461:T:TC', 'ID_HGVS_GN.c'] assert 1 == comparison_df.loc['NC_011083:630556:G:A', 'red_count'] assert 1 == comparison_df.loc['NC_011083:630556:G:A', 'green_count'] assert 'hgvs_gn:NC_011083:SEHA_RS03545:p.Trp295*' == comparison_df.loc[ 'NC_011083:630556:G:A', 'ID_HGVS_GN.p'] def test_tofeaturesset_all(loaded_database_only_snippy: DataIndexConnection): dfA =
pd.read_csv(snippy_all_dataframes['SampleA'], sep='\t')
pandas.read_csv
#!/usr/bin/env python3.7 # Copyright [2020] EMBL-European Bioinformatics Institute # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pandas as pd import numpy as np import fnmatch #module for unix style pattern matching import glob #module is used to retrieve files/pathnames matching a specified pattern from yattag import Doc, indent import argparse, hashlib, os, subprocess, sys, time parser = argparse.ArgumentParser(prog='ena-metadata-xml-generator.py', formatter_class=argparse.RawDescriptionHelpFormatter, epilog=""" + =================================================================================================================================== + | European Nucleotide Archive (ENA) Analysis Submission Tool | | | | Tool to register study and sample metadata to an ENA project, mainly in the drag and drop tool context. | |example: python3 metadata_xml_generator.py -u Webin-### -p 'password' -f <dir to the spreadsheet> -a <add/modify> -t <for test server| + =================================================================================================================================== + """) parser.add_argument('-u', '--username', help='Webin submission account username (e.g. Webin-XXXXX)', type=str, required=True) parser.add_argument('-p', '--password', help='password for Webin submission account', type=str, required=True) parser.add_argument('-t', '--test', help='Specify whether to use ENA test server for submission', action='store_true') parser.add_argument('-f', '--file', help='path for the metadata spreadsheet', type=str, required=True) parser.add_argument('-a', '--action', help='Specify the type of action needed ( ADD or MODIFY)', type=str, required=True) args = parser.parse_args() os.listdir(".") #list files and dirs in wd - make sure you are in the one where the user metadata spreadsheet will be found files_xlsx = glob.glob(args.file) #should we accept other spreadsheet extensions? """ General trimming to the metadata in the spreadsheet and save it in a panda dataframe object """ def trimming_the_spreadsheet(df): trimmed_df = df.iloc[3: ,].copy() trimmed_df.insert(6,"submission_tool",'drag and drop uploader tool',allow_duplicates=True) #study #to inject constant into trimmed df trimmed_df.insert(24,"submission_tool",'drag and drop uploader tool',allow_duplicates=True) #sample trimmed_df.insert(26,"sample capture status",'active surveillance in response to outbreak',allow_duplicates=False) trimmed_df.rename(columns = {'collecting institute':'collecting institution'}, inplace = True) #####temp fix for collecting institute error trimmed_df.rename(columns={'collecting institute': 'collecting institution'}, inplace=True) trimmed_df["release_date"] = pd.to_datetime(trimmed_df["release_date"], errors='coerce').dt.strftime("%Y-%m-%d") trimmed_df["collection date"] = pd.to_datetime(trimmed_df["collection date"], errors='coerce').dt.strftime("%Y-%m-%d") trimmed_df["receipt date"] = pd.to_datetime(trimmed_df["receipt date"], errors='coerce').dt.strftime("%Y-%m-%d") trimmed_df['collection date'] = trimmed_df['collection date'].fillna('not provided') return trimmed_df """ Write pandas dataframe object to study xml file """ def study_xml_generator(df): doc, tag, text = Doc().tagtext() xml_header = '<?xml version="1.0" encoding="UTF-8"?>' df = df.loc[3: ,'study_alias':'release_date'] # trim the dataframe to the study section only df = df.iloc[:, :-1] modified_df = df.where(pd.notnull(df), None) # replace the nan with none values doc.asis(xml_header) with tag('STUDY_SET'): for item in modified_df.to_dict('records'): if item['study_alias'] != None: cleaned_item_dict = {k: v for k, v in item.items() if v not in [None, ' ']} # remove all the none and " " values with tag('STUDY', alias=cleaned_item_dict['study_alias']): with tag('DESCRIPTOR'): with tag("STUDY_TITLE"): text(cleaned_item_dict['study_name']) doc.stag('STUDY_TYPE', existing_study_type="Other") with tag('STUDY_ABSTRACT'): text(cleaned_item_dict['abstract']) with tag('CENTER_PROJECT_NAME'): text(cleaned_item_dict['short_description']) with tag('STUDY_ATTRIBUTES'): for header, object in cleaned_item_dict.items(): if header not in ['study_alias', 'email_address', 'center_name', 'study_name', 'short_description', 'abstract']: with tag("STUDY_ATTRIBUTE"): with tag("TAG"): text(header) with tag("VALUE"): text(object) result_study = indent( doc.getvalue(), indent_text=False ) with open("study.xml", "w") as f: f.write(result_study) """ Write pandas dataframe object to sample xml file """ def sample_xml_generator(df): doc, tag, text = Doc().tagtext() xml_header = '<?xml version="1.0" encoding="UTF-8"?>' df = df.loc[3:, 'sample_alias':'experiment_name'] # trim the dataframe to the sample section including the "experiment name" to include any user defined fields df = df.iloc[:, :-1] # remove the last column in the trimmed dataframe ( the "experiment name" column) modified_df = df.where(
pd.notnull(df)
pandas.notnull
# # Copyright 2020 Capital One Services, LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing out the datacompy functionality """ import io import logging import sys from datetime import datetime from decimal import Decimal from unittest import mock import numpy as np import pandas as pd import pytest from pandas.util.testing import assert_series_equal from pytest import raises import datacompy logging.basicConfig(stream=sys.stdout, level=logging.DEBUG) def test_numeric_columns_equal_abs(): data = """a|b|expected 1|1|True 2|2.1|True 3|4|False 4|NULL|False NULL|4|False NULL|NULL|True""" df = pd.read_csv(io.StringIO(data), sep="|") actual_out = datacompy.columns_equal(df.a, df.b, abs_tol=0.2) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) def test_numeric_columns_equal_rel(): data = """a|b|expected 1|1|True 2|2.1|True 3|4|False 4|NULL|False NULL|4|False NULL|NULL|True""" df = pd.read_csv(io.StringIO(data), sep="|") actual_out = datacompy.columns_equal(df.a, df.b, rel_tol=0.2) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) def test_string_columns_equal(): data = """a|b|expected Hi|Hi|True Yo|Yo|True Hey|Hey |False résumé|resume|False résumé|résumé|True 💩|💩|True 💩|🤔|False | |True | |False datacompy|DataComPy|False something||False |something|False ||True""" df = pd.read_csv(io.StringIO(data), sep="|") actual_out = datacompy.columns_equal(df.a, df.b, rel_tol=0.2) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) def test_string_columns_equal_with_ignore_spaces(): data = """a|b|expected Hi|Hi|True Yo|Yo|True Hey|Hey |True résumé|resume|False résumé|résumé|True 💩|💩|True 💩|🤔|False | |True | |True datacompy|DataComPy|False something||False |something|False ||True""" df = pd.read_csv(io.StringIO(data), sep="|") actual_out = datacompy.columns_equal(df.a, df.b, rel_tol=0.2, ignore_spaces=True) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) def test_string_columns_equal_with_ignore_spaces_and_case(): data = """a|b|expected Hi|Hi|True Yo|Yo|True Hey|Hey |True résumé|resume|False résumé|résumé|True 💩|💩|True 💩|🤔|False | |True | |True datacompy|DataComPy|True something||False |something|False ||True""" df = pd.read_csv(io.StringIO(data), sep="|") actual_out = datacompy.columns_equal( df.a, df.b, rel_tol=0.2, ignore_spaces=True, ignore_case=True ) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) def test_date_columns_equal(): data = """a|b|expected 2017-01-01|2017-01-01|True 2017-01-02|2017-01-02|True 2017-10-01|2017-10-10|False 2017-01-01||False |2017-01-01|False ||True""" df = pd.read_csv(io.StringIO(data), sep="|") # First compare just the strings actual_out = datacompy.columns_equal(df.a, df.b, rel_tol=0.2) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) # Then compare converted to datetime objects df["a"] = pd.to_datetime(df["a"]) df["b"] = pd.to_datetime(df["b"]) actual_out = datacompy.columns_equal(df.a, df.b, rel_tol=0.2) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) # and reverse actual_out_rev = datacompy.columns_equal(df.b, df.a, rel_tol=0.2) assert_series_equal(expect_out, actual_out_rev, check_names=False) def test_date_columns_equal_with_ignore_spaces(): data = """a|b|expected 2017-01-01|2017-01-01 |True 2017-01-02 |2017-01-02|True 2017-10-01 |2017-10-10 |False 2017-01-01||False |2017-01-01|False ||True""" df = pd.read_csv(io.StringIO(data), sep="|") # First compare just the strings actual_out = datacompy.columns_equal(df.a, df.b, rel_tol=0.2, ignore_spaces=True) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) # Then compare converted to datetime objects df["a"] = pd.to_datetime(df["a"]) df["b"] = pd.to_datetime(df["b"]) actual_out = datacompy.columns_equal(df.a, df.b, rel_tol=0.2, ignore_spaces=True) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) # and reverse actual_out_rev = datacompy.columns_equal(df.b, df.a, rel_tol=0.2, ignore_spaces=True) assert_series_equal(expect_out, actual_out_rev, check_names=False) def test_date_columns_equal_with_ignore_spaces_and_case(): data = """a|b|expected 2017-01-01|2017-01-01 |True 2017-01-02 |2017-01-02|True 2017-10-01 |2017-10-10 |False 2017-01-01||False |2017-01-01|False ||True""" df = pd.read_csv(io.StringIO(data), sep="|") # First compare just the strings actual_out = datacompy.columns_equal( df.a, df.b, rel_tol=0.2, ignore_spaces=True, ignore_case=True ) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) # Then compare converted to datetime objects df["a"] = pd.to_datetime(df["a"]) df["b"] = pd.to_datetime(df["b"]) actual_out = datacompy.columns_equal(df.a, df.b, rel_tol=0.2, ignore_spaces=True) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) # and reverse actual_out_rev = datacompy.columns_equal(df.b, df.a, rel_tol=0.2, ignore_spaces=True) assert_series_equal(expect_out, actual_out_rev, check_names=False) def test_date_columns_unequal(): """I want datetime fields to match with dates stored as strings """ df = pd.DataFrame([{"a": "2017-01-01", "b": "2017-01-02"}, {"a": "2017-01-01"}]) df["a_dt"] = pd.to_datetime(df["a"]) df["b_dt"] = pd.to_datetime(df["b"]) assert datacompy.columns_equal(df.a, df.a_dt).all() assert datacompy.columns_equal(df.b, df.b_dt).all() assert datacompy.columns_equal(df.a_dt, df.a).all() assert datacompy.columns_equal(df.b_dt, df.b).all() assert not datacompy.columns_equal(df.b_dt, df.a).any() assert not datacompy.columns_equal(df.a_dt, df.b).any() assert not datacompy.columns_equal(df.a, df.b_dt).any() assert not datacompy.columns_equal(df.b, df.a_dt).any() def test_bad_date_columns(): """If strings can't be coerced into dates then it should be false for the whole column. """ df = pd.DataFrame( [{"a": "2017-01-01", "b": "2017-01-01"}, {"a": "2017-01-01", "b": "217-01-01"}] ) df["a_dt"] = pd.to_datetime(df["a"]) assert not datacompy.columns_equal(df.a_dt, df.b).any() def test_rounded_date_columns(): """If strings can't be coerced into dates then it should be false for the whole column. """ df = pd.DataFrame( [ {"a": "2017-01-01", "b": "2017-01-01 00:00:00.000000", "exp": True}, {"a": "2017-01-01", "b": "2017-01-01 00:00:00.123456", "exp": False}, {"a": "2017-01-01", "b": "2017-01-01 00:00:01.000000", "exp": False}, {"a": "2017-01-01", "b": "2017-01-01 00:00:00", "exp": True}, ] ) df["a_dt"] = pd.to_datetime(df["a"]) actual = datacompy.columns_equal(df.a_dt, df.b) expected = df["exp"] assert_series_equal(actual, expected, check_names=False) def test_decimal_float_columns_equal(): df = pd.DataFrame( [ {"a": Decimal("1"), "b": 1, "expected": True}, {"a": Decimal("1.3"), "b": 1.3, "expected": True}, {"a": Decimal("1.000003"), "b": 1.000003, "expected": True}, {"a": Decimal("1.000000004"), "b": 1.000000003, "expected": False}, {"a": Decimal("1.3"), "b": 1.2, "expected": False}, {"a": np.nan, "b": np.nan, "expected": True}, {"a": np.nan, "b": 1, "expected": False}, {"a": Decimal("1"), "b": np.nan, "expected": False}, ] ) actual_out = datacompy.columns_equal(df.a, df.b) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) def test_decimal_float_columns_equal_rel(): df = pd.DataFrame( [ {"a": Decimal("1"), "b": 1, "expected": True}, {"a": Decimal("1.3"), "b": 1.3, "expected": True}, {"a": Decimal("1.000003"), "b": 1.000003, "expected": True}, {"a": Decimal("1.000000004"), "b": 1.000000003, "expected": True}, {"a": Decimal("1.3"), "b": 1.2, "expected": False}, {"a": np.nan, "b": np.nan, "expected": True}, {"a": np.nan, "b": 1, "expected": False}, {"a": Decimal("1"), "b": np.nan, "expected": False}, ] ) actual_out = datacompy.columns_equal(df.a, df.b, abs_tol=0.001) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) def test_decimal_columns_equal(): df = pd.DataFrame( [ {"a": Decimal("1"), "b": Decimal("1"), "expected": True}, {"a": Decimal("1.3"), "b": Decimal("1.3"), "expected": True}, {"a": Decimal("1.000003"), "b": Decimal("1.000003"), "expected": True}, {"a": Decimal("1.000000004"), "b": Decimal("1.000000003"), "expected": False}, {"a": Decimal("1.3"), "b": Decimal("1.2"), "expected": False}, {"a": np.nan, "b": np.nan, "expected": True}, {"a": np.nan, "b": Decimal("1"), "expected": False}, {"a": Decimal("1"), "b": np.nan, "expected": False}, ] ) actual_out = datacompy.columns_equal(df.a, df.b) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) def test_decimal_columns_equal_rel(): df = pd.DataFrame( [ {"a": Decimal("1"), "b": Decimal("1"), "expected": True}, {"a": Decimal("1.3"), "b": Decimal("1.3"), "expected": True}, {"a": Decimal("1.000003"), "b": Decimal("1.000003"), "expected": True}, {"a": Decimal("1.000000004"), "b": Decimal("1.000000003"), "expected": True}, {"a": Decimal("1.3"), "b": Decimal("1.2"), "expected": False}, {"a": np.nan, "b": np.nan, "expected": True}, {"a": np.nan, "b": Decimal("1"), "expected": False}, {"a": Decimal("1"), "b": np.nan, "expected": False}, ] ) actual_out = datacompy.columns_equal(df.a, df.b, abs_tol=0.001) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) def test_infinity_and_beyond(): df = pd.DataFrame( [ {"a": np.inf, "b": np.inf, "expected": True}, {"a": -np.inf, "b": -np.inf, "expected": True}, {"a": -np.inf, "b": np.inf, "expected": False}, {"a": np.inf, "b": -np.inf, "expected": False}, {"a": 1, "b": 1, "expected": True}, {"a": 1, "b": 0, "expected": False}, ] ) actual_out = datacompy.columns_equal(df.a, df.b) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) def test_mixed_column(): df = pd.DataFrame( [ {"a": "hi", "b": "hi", "expected": True}, {"a": 1, "b": 1, "expected": True}, {"a": np.inf, "b": np.inf, "expected": True}, {"a": Decimal("1"), "b": Decimal("1"), "expected": True}, {"a": 1, "b": "1", "expected": False}, {"a": 1, "b": "yo", "expected": False}, ] ) actual_out = datacompy.columns_equal(df.a, df.b) expect_out = df["expected"]
assert_series_equal(expect_out, actual_out, check_names=False)
pandas.util.testing.assert_series_equal
import pandas as pd from pandas import Period, offsets from pandas.util import testing as tm from pandas.tseries.frequencies import _period_code_map class TestFreqConversion(tm.TestCase): "Test frequency conversion of date objects" def test_asfreq_corner(self): val = Period(freq='A', year=2007) result1 = val.asfreq('5t') result2 = val.asfreq('t') expected = Period('2007-12-31 23:59', freq='t') self.assertEqual(result1.ordinal, expected.ordinal) self.assertEqual(result1.freqstr, '5T') self.assertEqual(result2.ordinal, expected.ordinal) self.assertEqual(result2.freqstr, 'T') def test_conv_annual(self): # frequency conversion tests: from Annual Frequency ival_A = Period(freq='A', year=2007) ival_AJAN = Period(freq="A-JAN", year=2007) ival_AJUN = Period(freq="A-JUN", year=2007) ival_ANOV = Period(freq="A-NOV", year=2007) ival_A_to_Q_start = Period(freq='Q', year=2007, quarter=1) ival_A_to_Q_end = Period(freq='Q', year=2007, quarter=4) ival_A_to_M_start = Period(freq='M', year=2007, month=1) ival_A_to_M_end = Period(freq='M', year=2007, month=12) ival_A_to_W_start = Period(freq='W', year=2007, month=1, day=1) ival_A_to_W_end = Period(freq='W', year=2007, month=12, day=31) ival_A_to_B_start = Period(freq='B', year=2007, month=1, day=1) ival_A_to_B_end = Period(freq='B', year=2007, month=12, day=31) ival_A_to_D_start = Period(freq='D', year=2007, month=1, day=1) ival_A_to_D_end = Period(freq='D', year=2007, month=12, day=31) ival_A_to_H_start = Period(freq='H', year=2007, month=1, day=1, hour=0) ival_A_to_H_end = Period(freq='H', year=2007, month=12, day=31, hour=23) ival_A_to_T_start = Period(freq='Min', year=2007, month=1, day=1, hour=0, minute=0) ival_A_to_T_end = Period(freq='Min', year=2007, month=12, day=31, hour=23, minute=59) ival_A_to_S_start = Period(freq='S', year=2007, month=1, day=1, hour=0, minute=0, second=0) ival_A_to_S_end = Period(freq='S', year=2007, month=12, day=31, hour=23, minute=59, second=59) ival_AJAN_to_D_end = Period(freq='D', year=2007, month=1, day=31) ival_AJAN_to_D_start = Period(freq='D', year=2006, month=2, day=1) ival_AJUN_to_D_end = Period(freq='D', year=2007, month=6, day=30) ival_AJUN_to_D_start = Period(freq='D', year=2006, month=7, day=1) ival_ANOV_to_D_end = Period(freq='D', year=2007, month=11, day=30) ival_ANOV_to_D_start = Period(freq='D', year=2006, month=12, day=1) self.assertEqual(ival_A.asfreq('Q', 'S'), ival_A_to_Q_start) self.assertEqual(ival_A.asfreq('Q', 'e'), ival_A_to_Q_end) self.assertEqual(ival_A.asfreq('M', 's'), ival_A_to_M_start) self.assertEqual(ival_A.asfreq('M', 'E'), ival_A_to_M_end) self.assertEqual(ival_A.asfreq('W', 'S'), ival_A_to_W_start) self.assertEqual(ival_A.asfreq('W', 'E'), ival_A_to_W_end) self.assertEqual(ival_A.asfreq('B', 'S'), ival_A_to_B_start) self.assertEqual(ival_A.asfreq('B', 'E'), ival_A_to_B_end) self.assertEqual(ival_A.asfreq('D', 'S'), ival_A_to_D_start) self.assertEqual(ival_A.asfreq('D', 'E'), ival_A_to_D_end) self.assertEqual(ival_A.asfreq('H', 'S'), ival_A_to_H_start) self.assertEqual(ival_A.asfreq('H', 'E'), ival_A_to_H_end) self.assertEqual(ival_A.asfreq('min', 'S'), ival_A_to_T_start) self.assertEqual(ival_A.asfreq('min', 'E'), ival_A_to_T_end) self.assertEqual(ival_A.asfreq('T', 'S'), ival_A_to_T_start) self.assertEqual(ival_A.asfreq('T', 'E'), ival_A_to_T_end) self.assertEqual(ival_A.asfreq('S', 'S'), ival_A_to_S_start) self.assertEqual(ival_A.asfreq('S', 'E'), ival_A_to_S_end) self.assertEqual(ival_AJAN.asfreq('D', 'S'), ival_AJAN_to_D_start) self.assertEqual(ival_AJAN.asfreq('D', 'E'), ival_AJAN_to_D_end) self.assertEqual(ival_AJUN.asfreq('D', 'S'), ival_AJUN_to_D_start) self.assertEqual(ival_AJUN.asfreq('D', 'E'), ival_AJUN_to_D_end) self.assertEqual(ival_ANOV.asfreq('D', 'S'), ival_ANOV_to_D_start) self.assertEqual(ival_ANOV.asfreq('D', 'E'), ival_ANOV_to_D_end) self.assertEqual(ival_A.asfreq('A'), ival_A) def test_conv_quarterly(self): # frequency conversion tests: from Quarterly Frequency ival_Q = Period(freq='Q', year=2007, quarter=1) ival_Q_end_of_year = Period(freq='Q', year=2007, quarter=4) ival_QEJAN = Period(freq="Q-JAN", year=2007, quarter=1) ival_QEJUN = Period(freq="Q-JUN", year=2007, quarter=1) ival_Q_to_A = Period(freq='A', year=2007) ival_Q_to_M_start = Period(freq='M', year=2007, month=1) ival_Q_to_M_end = Period(freq='M', year=2007, month=3) ival_Q_to_W_start = Period(freq='W', year=2007, month=1, day=1) ival_Q_to_W_end = Period(freq='W', year=2007, month=3, day=31) ival_Q_to_B_start = Period(freq='B', year=2007, month=1, day=1) ival_Q_to_B_end = Period(freq='B', year=2007, month=3, day=30) ival_Q_to_D_start = Period(freq='D', year=2007, month=1, day=1) ival_Q_to_D_end = Period(freq='D', year=2007, month=3, day=31) ival_Q_to_H_start = Period(freq='H', year=2007, month=1, day=1, hour=0) ival_Q_to_H_end = Period(freq='H', year=2007, month=3, day=31, hour=23) ival_Q_to_T_start = Period(freq='Min', year=2007, month=1, day=1, hour=0, minute=0) ival_Q_to_T_end = Period(freq='Min', year=2007, month=3, day=31, hour=23, minute=59) ival_Q_to_S_start = Period(freq='S', year=2007, month=1, day=1, hour=0, minute=0, second=0) ival_Q_to_S_end = Period(freq='S', year=2007, month=3, day=31, hour=23, minute=59, second=59) ival_QEJAN_to_D_start = Period(freq='D', year=2006, month=2, day=1) ival_QEJAN_to_D_end = Period(freq='D', year=2006, month=4, day=30) ival_QEJUN_to_D_start = Period(freq='D', year=2006, month=7, day=1) ival_QEJUN_to_D_end = Period(freq='D', year=2006, month=9, day=30) self.assertEqual(ival_Q.asfreq('A'), ival_Q_to_A) self.assertEqual(ival_Q_end_of_year.asfreq('A'), ival_Q_to_A) self.assertEqual(ival_Q.asfreq('M', 'S'), ival_Q_to_M_start) self.assertEqual(ival_Q.asfreq('M', 'E'), ival_Q_to_M_end) self.assertEqual(ival_Q.asfreq('W', 'S'), ival_Q_to_W_start) self.assertEqual(ival_Q.asfreq('W', 'E'), ival_Q_to_W_end) self.assertEqual(ival_Q.asfreq('B', 'S'), ival_Q_to_B_start) self.assertEqual(ival_Q.asfreq('B', 'E'), ival_Q_to_B_end) self.assertEqual(ival_Q.asfreq('D', 'S'), ival_Q_to_D_start) self.assertEqual(ival_Q.asfreq('D', 'E'), ival_Q_to_D_end) self.assertEqual(ival_Q.asfreq('H', 'S'), ival_Q_to_H_start) self.assertEqual(ival_Q.asfreq('H', 'E'), ival_Q_to_H_end) self.assertEqual(ival_Q.asfreq('Min', 'S'), ival_Q_to_T_start) self.assertEqual(ival_Q.asfreq('Min', 'E'), ival_Q_to_T_end) self.assertEqual(ival_Q.asfreq('S', 'S'), ival_Q_to_S_start) self.assertEqual(ival_Q.asfreq('S', 'E'), ival_Q_to_S_end) self.assertEqual(ival_QEJAN.asfreq('D', 'S'), ival_QEJAN_to_D_start) self.assertEqual(ival_QEJAN.asfreq('D', 'E'), ival_QEJAN_to_D_end) self.assertEqual(ival_QEJUN.asfreq('D', 'S'), ival_QEJUN_to_D_start) self.assertEqual(ival_QEJUN.asfreq('D', 'E'), ival_QEJUN_to_D_end) self.assertEqual(ival_Q.asfreq('Q'), ival_Q) def test_conv_monthly(self): # frequency conversion tests: from Monthly Frequency ival_M = Period(freq='M', year=2007, month=1) ival_M_end_of_year = Period(freq='M', year=2007, month=12) ival_M_end_of_quarter = Period(freq='M', year=2007, month=3) ival_M_to_A = Period(freq='A', year=2007) ival_M_to_Q = Period(freq='Q', year=2007, quarter=1) ival_M_to_W_start = Period(freq='W', year=2007, month=1, day=1) ival_M_to_W_end = Period(freq='W', year=2007, month=1, day=31) ival_M_to_B_start = Period(freq='B', year=2007, month=1, day=1) ival_M_to_B_end = Period(freq='B', year=2007, month=1, day=31) ival_M_to_D_start = Period(freq='D', year=2007, month=1, day=1) ival_M_to_D_end = Period(freq='D', year=2007, month=1, day=31) ival_M_to_H_start = Period(freq='H', year=2007, month=1, day=1, hour=0) ival_M_to_H_end = Period(freq='H', year=2007, month=1, day=31, hour=23) ival_M_to_T_start = Period(freq='Min', year=2007, month=1, day=1, hour=0, minute=0) ival_M_to_T_end = Period(freq='Min', year=2007, month=1, day=31, hour=23, minute=59) ival_M_to_S_start = Period(freq='S', year=2007, month=1, day=1, hour=0, minute=0, second=0) ival_M_to_S_end = Period(freq='S', year=2007, month=1, day=31, hour=23, minute=59, second=59) self.assertEqual(ival_M.asfreq('A'), ival_M_to_A) self.assertEqual(ival_M_end_of_year.asfreq('A'), ival_M_to_A) self.assertEqual(ival_M.asfreq('Q'), ival_M_to_Q) self.assertEqual(ival_M_end_of_quarter.asfreq('Q'), ival_M_to_Q) self.assertEqual(ival_M.asfreq('W', 'S'), ival_M_to_W_start) self.assertEqual(ival_M.asfreq('W', 'E'), ival_M_to_W_end) self.assertEqual(ival_M.asfreq('B', 'S'), ival_M_to_B_start) self.assertEqual(ival_M.asfreq('B', 'E'), ival_M_to_B_end) self.assertEqual(ival_M.asfreq('D', 'S'), ival_M_to_D_start) self.assertEqual(ival_M.asfreq('D', 'E'), ival_M_to_D_end) self.assertEqual(ival_M.asfreq('H', 'S'), ival_M_to_H_start) self.assertEqual(ival_M.asfreq('H', 'E'), ival_M_to_H_end) self.assertEqual(ival_M.asfreq('Min', 'S'), ival_M_to_T_start) self.assertEqual(ival_M.asfreq('Min', 'E'), ival_M_to_T_end) self.assertEqual(ival_M.asfreq('S', 'S'), ival_M_to_S_start) self.assertEqual(ival_M.asfreq('S', 'E'), ival_M_to_S_end) self.assertEqual(ival_M.asfreq('M'), ival_M) def test_conv_weekly(self): # frequency conversion tests: from Weekly Frequency ival_W = Period(freq='W', year=2007, month=1, day=1) ival_WSUN = Period(freq='W', year=2007, month=1, day=7) ival_WSAT = Period(freq='W-SAT', year=2007, month=1, day=6) ival_WFRI = Period(freq='W-FRI', year=2007, month=1, day=5) ival_WTHU = Period(freq='W-THU', year=2007, month=1, day=4) ival_WWED = Period(freq='W-WED', year=2007, month=1, day=3) ival_WTUE = Period(freq='W-TUE', year=2007, month=1, day=2) ival_WMON = Period(freq='W-MON', year=2007, month=1, day=1) ival_WSUN_to_D_start = Period(freq='D', year=2007, month=1, day=1) ival_WSUN_to_D_end = Period(freq='D', year=2007, month=1, day=7) ival_WSAT_to_D_start = Period(freq='D', year=2006, month=12, day=31) ival_WSAT_to_D_end = Period(freq='D', year=2007, month=1, day=6) ival_WFRI_to_D_start = Period(freq='D', year=2006, month=12, day=30) ival_WFRI_to_D_end = Period(freq='D', year=2007, month=1, day=5) ival_WTHU_to_D_start = Period(freq='D', year=2006, month=12, day=29) ival_WTHU_to_D_end = Period(freq='D', year=2007, month=1, day=4) ival_WWED_to_D_start = Period(freq='D', year=2006, month=12, day=28) ival_WWED_to_D_end = Period(freq='D', year=2007, month=1, day=3) ival_WTUE_to_D_start = Period(freq='D', year=2006, month=12, day=27) ival_WTUE_to_D_end = Period(freq='D', year=2007, month=1, day=2) ival_WMON_to_D_start = Period(freq='D', year=2006, month=12, day=26) ival_WMON_to_D_end = Period(freq='D', year=2007, month=1, day=1) ival_W_end_of_year = Period(freq='W', year=2007, month=12, day=31) ival_W_end_of_quarter = Period(freq='W', year=2007, month=3, day=31) ival_W_end_of_month = Period(freq='W', year=2007, month=1, day=31) ival_W_to_A = Period(freq='A', year=2007) ival_W_to_Q = Period(freq='Q', year=2007, quarter=1) ival_W_to_M = Period(freq='M', year=2007, month=1) if Period(freq='D', year=2007, month=12, day=31).weekday == 6: ival_W_to_A_end_of_year = Period(freq='A', year=2007) else: ival_W_to_A_end_of_year = Period(freq='A', year=2008) if Period(freq='D', year=2007, month=3, day=31).weekday == 6: ival_W_to_Q_end_of_quarter = Period(freq='Q', year=2007, quarter=1) else: ival_W_to_Q_end_of_quarter = Period(freq='Q', year=2007, quarter=2) if Period(freq='D', year=2007, month=1, day=31).weekday == 6: ival_W_to_M_end_of_month = Period(freq='M', year=2007, month=1) else: ival_W_to_M_end_of_month = Period(freq='M', year=2007, month=2) ival_W_to_B_start = Period(freq='B', year=2007, month=1, day=1) ival_W_to_B_end = Period(freq='B', year=2007, month=1, day=5) ival_W_to_D_start = Period(freq='D', year=2007, month=1, day=1) ival_W_to_D_end = Period(freq='D', year=2007, month=1, day=7) ival_W_to_H_start = Period(freq='H', year=2007, month=1, day=1, hour=0) ival_W_to_H_end = Period(freq='H', year=2007, month=1, day=7, hour=23) ival_W_to_T_start = Period(freq='Min', year=2007, month=1, day=1, hour=0, minute=0) ival_W_to_T_end = Period(freq='Min', year=2007, month=1, day=7, hour=23, minute=59) ival_W_to_S_start = Period(freq='S', year=2007, month=1, day=1, hour=0, minute=0, second=0) ival_W_to_S_end = Period(freq='S', year=2007, month=1, day=7, hour=23, minute=59, second=59) self.assertEqual(ival_W.asfreq('A'), ival_W_to_A) self.assertEqual(ival_W_end_of_year.asfreq('A'), ival_W_to_A_end_of_year) self.assertEqual(ival_W.asfreq('Q'), ival_W_to_Q) self.assertEqual(ival_W_end_of_quarter.asfreq('Q'), ival_W_to_Q_end_of_quarter) self.assertEqual(ival_W.asfreq('M'), ival_W_to_M) self.assertEqual(ival_W_end_of_month.asfreq('M'), ival_W_to_M_end_of_month) self.assertEqual(ival_W.asfreq('B', 'S'), ival_W_to_B_start) self.assertEqual(ival_W.asfreq('B', 'E'), ival_W_to_B_end) self.assertEqual(ival_W.asfreq('D', 'S'), ival_W_to_D_start) self.assertEqual(ival_W.asfreq('D', 'E'), ival_W_to_D_end) self.assertEqual(ival_WSUN.asfreq('D', 'S'), ival_WSUN_to_D_start) self.assertEqual(ival_WSUN.asfreq('D', 'E'), ival_WSUN_to_D_end) self.assertEqual(ival_WSAT.asfreq('D', 'S'), ival_WSAT_to_D_start) self.assertEqual(ival_WSAT.asfreq('D', 'E'), ival_WSAT_to_D_end) self.assertEqual(ival_WFRI.asfreq('D', 'S'), ival_WFRI_to_D_start) self.assertEqual(ival_WFRI.asfreq('D', 'E'), ival_WFRI_to_D_end) self.assertEqual(ival_WTHU.asfreq('D', 'S'), ival_WTHU_to_D_start) self.assertEqual(ival_WTHU.asfreq('D', 'E'), ival_WTHU_to_D_end) self.assertEqual(ival_WWED.asfreq('D', 'S'), ival_WWED_to_D_start) self.assertEqual(ival_WWED.asfreq('D', 'E'), ival_WWED_to_D_end) self.assertEqual(ival_WTUE.asfreq('D', 'S'), ival_WTUE_to_D_start) self.assertEqual(ival_WTUE.asfreq('D', 'E'), ival_WTUE_to_D_end) self.assertEqual(ival_WMON.asfreq('D', 'S'), ival_WMON_to_D_start) self.assertEqual(ival_WMON.asfreq('D', 'E'), ival_WMON_to_D_end) self.assertEqual(ival_W.asfreq('H', 'S'), ival_W_to_H_start) self.assertEqual(ival_W.asfreq('H', 'E'), ival_W_to_H_end) self.assertEqual(ival_W.asfreq('Min', 'S'), ival_W_to_T_start) self.assertEqual(ival_W.asfreq('Min', 'E'), ival_W_to_T_end) self.assertEqual(ival_W.asfreq('S', 'S'), ival_W_to_S_start) self.assertEqual(ival_W.asfreq('S', 'E'), ival_W_to_S_end) self.assertEqual(ival_W.asfreq('W'), ival_W) msg = pd.tseries.frequencies._INVALID_FREQ_ERROR with self.assertRaisesRegexp(ValueError, msg): ival_W.asfreq('WK') def test_conv_weekly_legacy(self): # frequency conversion tests: from Weekly Frequency msg = pd.tseries.frequencies._INVALID_FREQ_ERROR with self.assertRaisesRegexp(ValueError, msg): Period(freq='WK', year=2007, month=1, day=1) with self.assertRaisesRegexp(ValueError, msg): Period(freq='WK-SAT', year=2007, month=1, day=6) with self.assertRaisesRegexp(ValueError, msg): Period(freq='WK-FRI', year=2007, month=1, day=5) with self.assertRaisesRegexp(ValueError, msg): Period(freq='WK-THU', year=2007, month=1, day=4) with self.assertRaisesRegexp(ValueError, msg): Period(freq='WK-WED', year=2007, month=1, day=3) with self.assertRaisesRegexp(ValueError, msg): Period(freq='WK-TUE', year=2007, month=1, day=2) with self.assertRaisesRegexp(ValueError, msg): Period(freq='WK-MON', year=2007, month=1, day=1) def test_conv_business(self): # frequency conversion tests: from Business Frequency" ival_B = Period(freq='B', year=2007, month=1, day=1) ival_B_end_of_year = Period(freq='B', year=2007, month=12, day=31) ival_B_end_of_quarter = Period(freq='B', year=2007, month=3, day=30) ival_B_end_of_month = Period(freq='B', year=2007, month=1, day=31) ival_B_end_of_week = Period(freq='B', year=2007, month=1, day=5) ival_B_to_A = Period(freq='A', year=2007) ival_B_to_Q = Period(freq='Q', year=2007, quarter=1) ival_B_to_M = Period(freq='M', year=2007, month=1) ival_B_to_W = Period(freq='W', year=2007, month=1, day=7) ival_B_to_D = Period(freq='D', year=2007, month=1, day=1) ival_B_to_H_start = Period(freq='H', year=2007, month=1, day=1, hour=0) ival_B_to_H_end = Period(freq='H', year=2007, month=1, day=1, hour=23) ival_B_to_T_start = Period(freq='Min', year=2007, month=1, day=1, hour=0, minute=0) ival_B_to_T_end = Period(freq='Min', year=2007, month=1, day=1, hour=23, minute=59) ival_B_to_S_start = Period(freq='S', year=2007, month=1, day=1, hour=0, minute=0, second=0) ival_B_to_S_end = Period(freq='S', year=2007, month=1, day=1, hour=23, minute=59, second=59) self.assertEqual(ival_B.asfreq('A'), ival_B_to_A) self.assertEqual(ival_B_end_of_year.asfreq('A'), ival_B_to_A) self.assertEqual(ival_B.asfreq('Q'), ival_B_to_Q) self.assertEqual(ival_B_end_of_quarter.asfreq('Q'), ival_B_to_Q) self.assertEqual(ival_B.asfreq('M'), ival_B_to_M) self.assertEqual(ival_B_end_of_month.asfreq('M'), ival_B_to_M) self.assertEqual(ival_B.asfreq('W'), ival_B_to_W) self.assertEqual(ival_B_end_of_week.asfreq('W'), ival_B_to_W) self.assertEqual(ival_B.asfreq('D'), ival_B_to_D) self.assertEqual(ival_B.asfreq('H', 'S'), ival_B_to_H_start) self.assertEqual(ival_B.asfreq('H', 'E'), ival_B_to_H_end) self.assertEqual(ival_B.asfreq('Min', 'S'), ival_B_to_T_start) self.assertEqual(ival_B.asfreq('Min', 'E'), ival_B_to_T_end) self.assertEqual(ival_B.asfreq('S', 'S'), ival_B_to_S_start) self.assertEqual(ival_B.asfreq('S', 'E'), ival_B_to_S_end) self.assertEqual(ival_B.asfreq('B'), ival_B) def test_conv_daily(self): # frequency conversion tests: from Business Frequency" ival_D = Period(freq='D', year=2007, month=1, day=1) ival_D_end_of_year = Period(freq='D', year=2007, month=12, day=31) ival_D_end_of_quarter = Period(freq='D', year=2007, month=3, day=31) ival_D_end_of_month = Period(freq='D', year=2007, month=1, day=31) ival_D_end_of_week = Period(freq='D', year=2007, month=1, day=7) ival_D_friday = Period(freq='D', year=2007, month=1, day=5) ival_D_saturday = Period(freq='D', year=2007, month=1, day=6) ival_D_sunday = Period(freq='D', year=2007, month=1, day=7) # TODO: unused? # ival_D_monday = Period(freq='D', year=2007, month=1, day=8) ival_B_friday = Period(freq='B', year=2007, month=1, day=5) ival_B_monday = Period(freq='B', year=2007, month=1, day=8) ival_D_to_A = Period(freq='A', year=2007) ival_Deoq_to_AJAN = Period(freq='A-JAN', year=2008) ival_Deoq_to_AJUN = Period(freq='A-JUN', year=2007) ival_Deoq_to_ADEC = Period(freq='A-DEC', year=2007) ival_D_to_QEJAN = Period(freq="Q-JAN", year=2007, quarter=4) ival_D_to_QEJUN = Period(freq="Q-JUN", year=2007, quarter=3) ival_D_to_QEDEC = Period(freq="Q-DEC", year=2007, quarter=1) ival_D_to_M = Period(freq='M', year=2007, month=1) ival_D_to_W = Period(freq='W', year=2007, month=1, day=7) ival_D_to_H_start = Period(freq='H', year=2007, month=1, day=1, hour=0) ival_D_to_H_end = Period(freq='H', year=2007, month=1, day=1, hour=23) ival_D_to_T_start = Period(freq='Min', year=2007, month=1, day=1, hour=0, minute=0) ival_D_to_T_end = Period(freq='Min', year=2007, month=1, day=1, hour=23, minute=59) ival_D_to_S_start = Period(freq='S', year=2007, month=1, day=1, hour=0, minute=0, second=0) ival_D_to_S_end = Period(freq='S', year=2007, month=1, day=1, hour=23, minute=59, second=59) self.assertEqual(ival_D.asfreq('A'), ival_D_to_A) self.assertEqual(ival_D_end_of_quarter.asfreq('A-JAN'), ival_Deoq_to_AJAN) self.assertEqual(ival_D_end_of_quarter.asfreq('A-JUN'), ival_Deoq_to_AJUN) self.assertEqual(ival_D_end_of_quarter.asfreq('A-DEC'), ival_Deoq_to_ADEC) self.assertEqual(ival_D_end_of_year.asfreq('A'), ival_D_to_A) self.assertEqual(ival_D_end_of_quarter.asfreq('Q'), ival_D_to_QEDEC) self.assertEqual(ival_D.asfreq("Q-JAN"), ival_D_to_QEJAN) self.assertEqual(ival_D.asfreq("Q-JUN"), ival_D_to_QEJUN) self.assertEqual(ival_D.asfreq("Q-DEC"), ival_D_to_QEDEC) self.assertEqual(ival_D.asfreq('M'), ival_D_to_M) self.assertEqual(ival_D_end_of_month.asfreq('M'), ival_D_to_M) self.assertEqual(ival_D.asfreq('W'), ival_D_to_W) self.assertEqual(ival_D_end_of_week.asfreq('W'), ival_D_to_W) self.assertEqual(ival_D_friday.asfreq('B'), ival_B_friday) self.assertEqual(ival_D_saturday.asfreq('B', 'S'), ival_B_friday) self.assertEqual(ival_D_saturday.asfreq('B', 'E'), ival_B_monday) self.assertEqual(ival_D_sunday.asfreq('B', 'S'), ival_B_friday) self.assertEqual(ival_D_sunday.asfreq('B', 'E'), ival_B_monday) self.assertEqual(ival_D.asfreq('H', 'S'), ival_D_to_H_start) self.assertEqual(ival_D.asfreq('H', 'E'), ival_D_to_H_end) self.assertEqual(ival_D.asfreq('Min', 'S'), ival_D_to_T_start) self.assertEqual(ival_D.asfreq('Min', 'E'), ival_D_to_T_end) self.assertEqual(ival_D.asfreq('S', 'S'), ival_D_to_S_start) self.assertEqual(ival_D.asfreq('S', 'E'), ival_D_to_S_end) self.assertEqual(ival_D.asfreq('D'), ival_D) def test_conv_hourly(self): # frequency conversion tests: from Hourly Frequency" ival_H = Period(freq='H', year=2007, month=1, day=1, hour=0) ival_H_end_of_year = Period(freq='H', year=2007, month=12, day=31, hour=23) ival_H_end_of_quarter = Period(freq='H', year=2007, month=3, day=31, hour=23) ival_H_end_of_month = Period(freq='H', year=2007, month=1, day=31, hour=23) ival_H_end_of_week = Period(freq='H', year=2007, month=1, day=7, hour=23) ival_H_end_of_day = Period(freq='H', year=2007, month=1, day=1, hour=23) ival_H_end_of_bus = Period(freq='H', year=2007, month=1, day=1, hour=23) ival_H_to_A = Period(freq='A', year=2007) ival_H_to_Q = Period(freq='Q', year=2007, quarter=1) ival_H_to_M = Period(freq='M', year=2007, month=1) ival_H_to_W = Period(freq='W', year=2007, month=1, day=7) ival_H_to_D = Period(freq='D', year=2007, month=1, day=1) ival_H_to_B = Period(freq='B', year=2007, month=1, day=1) ival_H_to_T_start = Period(freq='Min', year=2007, month=1, day=1, hour=0, minute=0) ival_H_to_T_end = Period(freq='Min', year=2007, month=1, day=1, hour=0, minute=59) ival_H_to_S_start = Period(freq='S', year=2007, month=1, day=1, hour=0, minute=0, second=0) ival_H_to_S_end = Period(freq='S', year=2007, month=1, day=1, hour=0, minute=59, second=59) self.assertEqual(ival_H.asfreq('A'), ival_H_to_A) self.assertEqual(ival_H_end_of_year.asfreq('A'), ival_H_to_A) self.assertEqual(ival_H.asfreq('Q'), ival_H_to_Q) self.assertEqual(ival_H_end_of_quarter.asfreq('Q'), ival_H_to_Q) self.assertEqual(ival_H.asfreq('M'), ival_H_to_M) self.assertEqual(ival_H_end_of_month.asfreq('M'), ival_H_to_M) self.assertEqual(ival_H.asfreq('W'), ival_H_to_W) self.assertEqual(ival_H_end_of_week.asfreq('W'), ival_H_to_W) self.assertEqual(ival_H.asfreq('D'), ival_H_to_D) self.assertEqual(ival_H_end_of_day.asfreq('D'), ival_H_to_D) self.assertEqual(ival_H.asfreq('B'), ival_H_to_B) self.assertEqual(ival_H_end_of_bus.asfreq('B'), ival_H_to_B) self.assertEqual(ival_H.asfreq('Min', 'S'), ival_H_to_T_start) self.assertEqual(ival_H.asfreq('Min', 'E'), ival_H_to_T_end) self.assertEqual(ival_H.asfreq('S', 'S'), ival_H_to_S_start) self.assertEqual(ival_H.asfreq('S', 'E'), ival_H_to_S_end) self.assertEqual(ival_H.asfreq('H'), ival_H) def test_conv_minutely(self): # frequency conversion tests: from Minutely Frequency" ival_T = Period(freq='Min', year=2007, month=1, day=1, hour=0, minute=0) ival_T_end_of_year = Period(freq='Min', year=2007, month=12, day=31, hour=23, minute=59) ival_T_end_of_quarter = Period(freq='Min', year=2007, month=3, day=31, hour=23, minute=59) ival_T_end_of_month = Period(freq='Min', year=2007, month=1, day=31, hour=23, minute=59) ival_T_end_of_week = Period(freq='Min', year=2007, month=1, day=7, hour=23, minute=59) ival_T_end_of_day = Period(freq='Min', year=2007, month=1, day=1, hour=23, minute=59) ival_T_end_of_bus = Period(freq='Min', year=2007, month=1, day=1, hour=23, minute=59) ival_T_end_of_hour = Period(freq='Min', year=2007, month=1, day=1, hour=0, minute=59) ival_T_to_A = Period(freq='A', year=2007) ival_T_to_Q = Period(freq='Q', year=2007, quarter=1) ival_T_to_M = Period(freq='M', year=2007, month=1) ival_T_to_W = Period(freq='W', year=2007, month=1, day=7) ival_T_to_D = Period(freq='D', year=2007, month=1, day=1) ival_T_to_B = Period(freq='B', year=2007, month=1, day=1) ival_T_to_H = Period(freq='H', year=2007, month=1, day=1, hour=0) ival_T_to_S_start = Period(freq='S', year=2007, month=1, day=1, hour=0, minute=0, second=0) ival_T_to_S_end = Period(freq='S', year=2007, month=1, day=1, hour=0, minute=0, second=59) self.assertEqual(ival_T.asfreq('A'), ival_T_to_A) self.assertEqual(ival_T_end_of_year.asfreq('A'), ival_T_to_A) self.assertEqual(ival_T.asfreq('Q'), ival_T_to_Q) self.assertEqual(ival_T_end_of_quarter.asfreq('Q'), ival_T_to_Q) self.assertEqual(ival_T.asfreq('M'), ival_T_to_M) self.assertEqual(ival_T_end_of_month.asfreq('M'), ival_T_to_M) self.assertEqual(ival_T.asfreq('W'), ival_T_to_W) self.assertEqual(ival_T_end_of_week.asfreq('W'), ival_T_to_W) self.assertEqual(ival_T.asfreq('D'), ival_T_to_D) self.assertEqual(ival_T_end_of_day.asfreq('D'), ival_T_to_D) self.assertEqual(ival_T.asfreq('B'), ival_T_to_B) self.assertEqual(ival_T_end_of_bus.asfreq('B'), ival_T_to_B) self.assertEqual(ival_T.asfreq('H'), ival_T_to_H) self.assertEqual(ival_T_end_of_hour.asfreq('H'), ival_T_to_H) self.assertEqual(ival_T.asfreq('S', 'S'), ival_T_to_S_start) self.assertEqual(ival_T.asfreq('S', 'E'), ival_T_to_S_end) self.assertEqual(ival_T.asfreq('Min'), ival_T) def test_conv_secondly(self): # frequency conversion tests: from Secondly Frequency" ival_S = Period(freq='S', year=2007, month=1, day=1, hour=0, minute=0, second=0) ival_S_end_of_year = Period(freq='S', year=2007, month=12, day=31, hour=23, minute=59, second=59) ival_S_end_of_quarter = Period(freq='S', year=2007, month=3, day=31, hour=23, minute=59, second=59) ival_S_end_of_month = Period(freq='S', year=2007, month=1, day=31, hour=23, minute=59, second=59) ival_S_end_of_week = Period(freq='S', year=2007, month=1, day=7, hour=23, minute=59, second=59) ival_S_end_of_day = Period(freq='S', year=2007, month=1, day=1, hour=23, minute=59, second=59) ival_S_end_of_bus = Period(freq='S', year=2007, month=1, day=1, hour=23, minute=59, second=59) ival_S_end_of_hour = Period(freq='S', year=2007, month=1, day=1, hour=0, minute=59, second=59) ival_S_end_of_minute = Period(freq='S', year=2007, month=1, day=1, hour=0, minute=0, second=59) ival_S_to_A = Period(freq='A', year=2007) ival_S_to_Q = Period(freq='Q', year=2007, quarter=1) ival_S_to_M = Period(freq='M', year=2007, month=1) ival_S_to_W = Period(freq='W', year=2007, month=1, day=7) ival_S_to_D = Period(freq='D', year=2007, month=1, day=1) ival_S_to_B = Period(freq='B', year=2007, month=1, day=1) ival_S_to_H = Period(freq='H', year=2007, month=1, day=1, hour=0) ival_S_to_T = Period(freq='Min', year=2007, month=1, day=1, hour=0, minute=0) self.assertEqual(ival_S.asfreq('A'), ival_S_to_A) self.assertEqual(ival_S_end_of_year.asfreq('A'), ival_S_to_A) self.assertEqual(ival_S.asfreq('Q'), ival_S_to_Q) self.assertEqual(ival_S_end_of_quarter.asfreq('Q'), ival_S_to_Q) self.assertEqual(ival_S.asfreq('M'), ival_S_to_M) self.assertEqual(ival_S_end_of_month.asfreq('M'), ival_S_to_M) self.assertEqual(ival_S.asfreq('W'), ival_S_to_W) self.assertEqual(ival_S_end_of_week.asfreq('W'), ival_S_to_W) self.assertEqual(ival_S.asfreq('D'), ival_S_to_D) self.assertEqual(ival_S_end_of_day.asfreq('D'), ival_S_to_D) self.assertEqual(ival_S.asfreq('B'), ival_S_to_B) self.assertEqual(ival_S_end_of_bus.asfreq('B'), ival_S_to_B) self.assertEqual(ival_S.asfreq('H'), ival_S_to_H) self.assertEqual(ival_S_end_of_hour.asfreq('H'), ival_S_to_H) self.assertEqual(ival_S.asfreq('Min'), ival_S_to_T) self.assertEqual(ival_S_end_of_minute.asfreq('Min'), ival_S_to_T) self.assertEqual(ival_S.asfreq('S'), ival_S) def test_asfreq_mult(self): # normal freq to mult freq p = Period(freq='A', year=2007) # ordinal will not change for freq in ['3A', offsets.YearEnd(3)]: result = p.asfreq(freq) expected =
Period('2007', freq='3A')
pandas.Period
#This code will take the data scrapped from both Reddit API and Coingecko API, #transform and process it in order to get a unified dataframe which will be finally #processed by the LSTM neural network in order to make the predictions. #Import libraries import pandas as pd import transformers from transformers import pipeline # Importing Data # Importing Reddit posts df_posts = pd.read_csv( "C:/Users/rober/Desktop/MIS COSAS/DSTI MASTER/SUBJECTS/PYTHON LABS/Crypto Trading Bot/Crypto_Trading_Bot-main/Crypto_Trading_Bot-main/Reddit_Scrapper/subreddit-comments-dl/dataset/finals/concat_file.csv") #print(df_posts.head()) #print(df_posts.info()) # Importing financial data of cryptocurrencies (prices, volumes) df_prices =
pd.read_csv( "C:/Users/rober/Desktop/MIS COSAS/DSTI MASTER/SUBJECTS/PYTHON LABS/Crypto Trading Bot/prices.csv")
pandas.read_csv
# Arithmetic tests for DataFrame/Series/Index/Array classes that should # behave identically. # Specifically for datetime64 and datetime64tz dtypes from datetime import ( datetime, time, timedelta, ) from itertools import ( product, starmap, ) import operator import warnings import numpy as np import pytest import pytz from pandas._libs.tslibs.conversion import localize_pydatetime from pandas._libs.tslibs.offsets import shift_months from pandas.errors import PerformanceWarning import pandas as pd from pandas import ( DateOffset, DatetimeIndex, NaT, Period, Series, Timedelta, TimedeltaIndex, Timestamp, date_range, ) import pandas._testing as tm from pandas.core.arrays import ( DatetimeArray, TimedeltaArray, ) from pandas.core.ops import roperator from pandas.tests.arithmetic.common import ( assert_cannot_add, assert_invalid_addsub_type, assert_invalid_comparison, get_upcast_box, ) # ------------------------------------------------------------------ # Comparisons class TestDatetime64ArrayLikeComparisons: # Comparison tests for datetime64 vectors fully parametrized over # DataFrame/Series/DatetimeIndex/DatetimeArray. Ideally all comparison # tests will eventually end up here. def test_compare_zerodim(self, tz_naive_fixture, box_with_array): # Test comparison with zero-dimensional array is unboxed tz = tz_naive_fixture box = box_with_array dti = date_range("20130101", periods=3, tz=tz) other = np.array(dti.to_numpy()[0]) dtarr = tm.box_expected(dti, box) xbox = get_upcast_box(dtarr, other, True) result = dtarr <= other expected = np.array([True, False, False]) expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) @pytest.mark.parametrize( "other", [ "foo", -1, 99, 4.0, object(), timedelta(days=2), # GH#19800, GH#19301 datetime.date comparison raises to # match DatetimeIndex/Timestamp. This also matches the behavior # of stdlib datetime.datetime datetime(2001, 1, 1).date(), # GH#19301 None and NaN are *not* cast to NaT for comparisons None, np.nan, ], ) def test_dt64arr_cmp_scalar_invalid(self, other, tz_naive_fixture, box_with_array): # GH#22074, GH#15966 tz = tz_naive_fixture rng = date_range("1/1/2000", periods=10, tz=tz) dtarr = tm.box_expected(rng, box_with_array) assert_invalid_comparison(dtarr, other, box_with_array) @pytest.mark.parametrize( "other", [ # GH#4968 invalid date/int comparisons list(range(10)), np.arange(10), np.arange(10).astype(np.float32), np.arange(10).astype(object), pd.timedelta_range("1ns", periods=10).array, np.array(pd.timedelta_range("1ns", periods=10)), list(pd.timedelta_range("1ns", periods=10)), pd.timedelta_range("1 Day", periods=10).astype(object), pd.period_range("1971-01-01", freq="D", periods=10).array, pd.period_range("1971-01-01", freq="D", periods=10).astype(object), ], ) def test_dt64arr_cmp_arraylike_invalid( self, other, tz_naive_fixture, box_with_array ): tz = tz_naive_fixture dta = date_range("1970-01-01", freq="ns", periods=10, tz=tz)._data obj = tm.box_expected(dta, box_with_array) assert_invalid_comparison(obj, other, box_with_array) def test_dt64arr_cmp_mixed_invalid(self, tz_naive_fixture): tz = tz_naive_fixture dta = date_range("1970-01-01", freq="h", periods=5, tz=tz)._data other = np.array([0, 1, 2, dta[3], Timedelta(days=1)]) result = dta == other expected = np.array([False, False, False, True, False]) tm.assert_numpy_array_equal(result, expected) result = dta != other tm.assert_numpy_array_equal(result, ~expected) msg = "Invalid comparison between|Cannot compare type|not supported between" with pytest.raises(TypeError, match=msg): dta < other with pytest.raises(TypeError, match=msg): dta > other with pytest.raises(TypeError, match=msg): dta <= other with pytest.raises(TypeError, match=msg): dta >= other def test_dt64arr_nat_comparison(self, tz_naive_fixture, box_with_array): # GH#22242, GH#22163 DataFrame considered NaT == ts incorrectly tz = tz_naive_fixture box = box_with_array ts = Timestamp("2021-01-01", tz=tz) ser = Series([ts, NaT]) obj = tm.box_expected(ser, box) xbox = get_upcast_box(obj, ts, True) expected = Series([True, False], dtype=np.bool_) expected = tm.box_expected(expected, xbox) result = obj == ts tm.assert_equal(result, expected) class TestDatetime64SeriesComparison: # TODO: moved from tests.series.test_operators; needs cleanup @pytest.mark.parametrize( "pair", [ ( [Timestamp("2011-01-01"), NaT, Timestamp("2011-01-03")], [NaT, NaT, Timestamp("2011-01-03")], ), ( [Timedelta("1 days"), NaT, Timedelta("3 days")], [NaT, NaT, Timedelta("3 days")], ), ( [Period("2011-01", freq="M"), NaT, Period("2011-03", freq="M")], [NaT, NaT, Period("2011-03", freq="M")], ), ], ) @pytest.mark.parametrize("reverse", [True, False]) @pytest.mark.parametrize("dtype", [None, object]) @pytest.mark.parametrize( "op, expected", [ (operator.eq, Series([False, False, True])), (operator.ne, Series([True, True, False])), (operator.lt, Series([False, False, False])), (operator.gt, Series([False, False, False])), (operator.ge, Series([False, False, True])), (operator.le, Series([False, False, True])), ], ) def test_nat_comparisons( self, dtype, index_or_series, reverse, pair, op, expected, ): box = index_or_series l, r = pair if reverse: # add lhs / rhs switched data l, r = r, l left = Series(l, dtype=dtype) right = box(r, dtype=dtype) result = op(left, right) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "data", [ [Timestamp("2011-01-01"), NaT, Timestamp("2011-01-03")], [Timedelta("1 days"), NaT, Timedelta("3 days")], [Period("2011-01", freq="M"), NaT, Period("2011-03", freq="M")], ], ) @pytest.mark.parametrize("dtype", [None, object]) def test_nat_comparisons_scalar(self, dtype, data, box_with_array): box = box_with_array left = Series(data, dtype=dtype) left = tm.box_expected(left, box) xbox = get_upcast_box(left, NaT, True) expected = [False, False, False] expected = tm.box_expected(expected, xbox) if box is pd.array and dtype is object: expected = pd.array(expected, dtype="bool") tm.assert_equal(left == NaT, expected) tm.assert_equal(NaT == left, expected) expected = [True, True, True] expected = tm.box_expected(expected, xbox) if box is pd.array and dtype is object: expected = pd.array(expected, dtype="bool") tm.assert_equal(left != NaT, expected) tm.assert_equal(NaT != left, expected) expected = [False, False, False] expected = tm.box_expected(expected, xbox) if box is pd.array and dtype is object: expected = pd.array(expected, dtype="bool") tm.assert_equal(left < NaT, expected) tm.assert_equal(NaT > left, expected) tm.assert_equal(left <= NaT, expected) tm.assert_equal(NaT >= left, expected) tm.assert_equal(left > NaT, expected) tm.assert_equal(NaT < left, expected) tm.assert_equal(left >= NaT, expected) tm.assert_equal(NaT <= left, expected) @pytest.mark.parametrize("val", [datetime(2000, 1, 4), datetime(2000, 1, 5)]) def test_series_comparison_scalars(self, val): series = Series(date_range("1/1/2000", periods=10)) result = series > val expected = Series([x > val for x in series]) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "left,right", [("lt", "gt"), ("le", "ge"), ("eq", "eq"), ("ne", "ne")] ) def test_timestamp_compare_series(self, left, right): # see gh-4982 # Make sure we can compare Timestamps on the right AND left hand side. ser = Series(date_range("20010101", periods=10), name="dates") s_nat = ser.copy(deep=True) ser[0] = Timestamp("nat") ser[3] = Timestamp("nat") left_f = getattr(operator, left) right_f = getattr(operator, right) # No NaT expected = left_f(ser, Timestamp("20010109")) result = right_f(Timestamp("20010109"), ser) tm.assert_series_equal(result, expected) # NaT expected = left_f(ser, Timestamp("nat")) result = right_f(Timestamp("nat"), ser) tm.assert_series_equal(result, expected) # Compare to Timestamp with series containing NaT expected = left_f(s_nat, Timestamp("20010109")) result = right_f(Timestamp("20010109"), s_nat) tm.assert_series_equal(result, expected) # Compare to NaT with series containing NaT expected = left_f(s_nat, NaT) result = right_f(NaT, s_nat) tm.assert_series_equal(result, expected) def test_dt64arr_timestamp_equality(self, box_with_array): # GH#11034 ser = Series([Timestamp("2000-01-29 01:59:00"), Timestamp("2000-01-30"), NaT]) ser = tm.box_expected(ser, box_with_array) xbox = get_upcast_box(ser, ser, True) result = ser != ser expected = tm.box_expected([False, False, True], xbox) tm.assert_equal(result, expected) warn = FutureWarning if box_with_array is pd.DataFrame else None with tm.assert_produces_warning(warn): # alignment for frame vs series comparisons deprecated result = ser != ser[0] expected = tm.box_expected([False, True, True], xbox) tm.assert_equal(result, expected) with tm.assert_produces_warning(warn): # alignment for frame vs series comparisons deprecated result = ser != ser[2] expected = tm.box_expected([True, True, True], xbox) tm.assert_equal(result, expected) result = ser == ser expected = tm.box_expected([True, True, False], xbox) tm.assert_equal(result, expected) with tm.assert_produces_warning(warn): # alignment for frame vs series comparisons deprecated result = ser == ser[0] expected = tm.box_expected([True, False, False], xbox) tm.assert_equal(result, expected) with tm.assert_produces_warning(warn): # alignment for frame vs series comparisons deprecated result = ser == ser[2] expected = tm.box_expected([False, False, False], xbox) tm.assert_equal(result, expected) @pytest.mark.parametrize( "datetimelike", [ Timestamp("20130101"), datetime(2013, 1, 1), np.datetime64("2013-01-01T00:00", "ns"), ], ) @pytest.mark.parametrize( "op,expected", [ (operator.lt, [True, False, False, False]), (operator.le, [True, True, False, False]), (operator.eq, [False, True, False, False]), (operator.gt, [False, False, False, True]), ], ) def test_dt64_compare_datetime_scalar(self, datetimelike, op, expected): # GH#17965, test for ability to compare datetime64[ns] columns # to datetimelike ser = Series( [ Timestamp("20120101"), Timestamp("20130101"), np.nan, Timestamp("20130103"), ], name="A", ) result = op(ser, datetimelike) expected = Series(expected, name="A") tm.assert_series_equal(result, expected) class TestDatetimeIndexComparisons: # TODO: moved from tests.indexes.test_base; parametrize and de-duplicate def test_comparators(self, comparison_op): index = tm.makeDateIndex(100) element = index[len(index) // 2] element = Timestamp(element).to_datetime64() arr = np.array(index) arr_result = comparison_op(arr, element) index_result = comparison_op(index, element) assert isinstance(index_result, np.ndarray) tm.assert_numpy_array_equal(arr_result, index_result) @pytest.mark.parametrize( "other", [datetime(2016, 1, 1), Timestamp("2016-01-01"), np.datetime64("2016-01-01")], ) def test_dti_cmp_datetimelike(self, other, tz_naive_fixture): tz = tz_naive_fixture dti = date_range("2016-01-01", periods=2, tz=tz) if tz is not None: if isinstance(other, np.datetime64): # no tzaware version available return other = localize_pydatetime(other, dti.tzinfo) result = dti == other expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = dti > other expected = np.array([False, True]) tm.assert_numpy_array_equal(result, expected) result = dti >= other expected = np.array([True, True]) tm.assert_numpy_array_equal(result, expected) result = dti < other expected = np.array([False, False]) tm.assert_numpy_array_equal(result, expected) result = dti <= other expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize("dtype", [None, object]) def test_dti_cmp_nat(self, dtype, box_with_array): left = DatetimeIndex([Timestamp("2011-01-01"), NaT, Timestamp("2011-01-03")]) right = DatetimeIndex([NaT, NaT, Timestamp("2011-01-03")]) left = tm.box_expected(left, box_with_array) right = tm.box_expected(right, box_with_array) xbox = get_upcast_box(left, right, True) lhs, rhs = left, right if dtype is object: lhs, rhs = left.astype(object), right.astype(object) result = rhs == lhs expected = np.array([False, False, True]) expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) result = lhs != rhs expected = np.array([True, True, False]) expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) expected = np.array([False, False, False]) expected = tm.box_expected(expected, xbox) tm.assert_equal(lhs == NaT, expected) tm.assert_equal(NaT == rhs, expected) expected = np.array([True, True, True]) expected = tm.box_expected(expected, xbox) tm.assert_equal(lhs != NaT, expected) tm.assert_equal(NaT != lhs, expected) expected = np.array([False, False, False]) expected = tm.box_expected(expected, xbox) tm.assert_equal(lhs < NaT, expected) tm.assert_equal(NaT > lhs, expected) def test_dti_cmp_nat_behaves_like_float_cmp_nan(self): fidx1 = pd.Index([1.0, np.nan, 3.0, np.nan, 5.0, 7.0]) fidx2 = pd.Index([2.0, 3.0, np.nan, np.nan, 6.0, 7.0]) didx1 = DatetimeIndex( ["2014-01-01", NaT, "2014-03-01", NaT, "2014-05-01", "2014-07-01"] ) didx2 = DatetimeIndex( ["2014-02-01", "2014-03-01", NaT, NaT, "2014-06-01", "2014-07-01"] ) darr = np.array( [ np.datetime64("2014-02-01 00:00"), np.datetime64("2014-03-01 00:00"), np.datetime64("nat"), np.datetime64("nat"), np.datetime64("2014-06-01 00:00"), np.datetime64("2014-07-01 00:00"), ] ) cases = [(fidx1, fidx2), (didx1, didx2), (didx1, darr)] # Check pd.NaT is handles as the same as np.nan with tm.assert_produces_warning(None): for idx1, idx2 in cases: result = idx1 < idx2 expected = np.array([True, False, False, False, True, False]) tm.assert_numpy_array_equal(result, expected) result = idx2 > idx1 expected = np.array([True, False, False, False, True, False]) tm.assert_numpy_array_equal(result, expected) result = idx1 <= idx2 expected = np.array([True, False, False, False, True, True]) tm.assert_numpy_array_equal(result, expected) result = idx2 >= idx1 expected = np.array([True, False, False, False, True, True]) tm.assert_numpy_array_equal(result, expected) result = idx1 == idx2 expected = np.array([False, False, False, False, False, True]) tm.assert_numpy_array_equal(result, expected) result = idx1 != idx2 expected = np.array([True, True, True, True, True, False]) tm.assert_numpy_array_equal(result, expected) with tm.assert_produces_warning(None): for idx1, val in [(fidx1, np.nan), (didx1, NaT)]: result = idx1 < val expected = np.array([False, False, False, False, False, False]) tm.assert_numpy_array_equal(result, expected) result = idx1 > val tm.assert_numpy_array_equal(result, expected) result = idx1 <= val tm.assert_numpy_array_equal(result, expected) result = idx1 >= val tm.assert_numpy_array_equal(result, expected) result = idx1 == val tm.assert_numpy_array_equal(result, expected) result = idx1 != val expected = np.array([True, True, True, True, True, True]) tm.assert_numpy_array_equal(result, expected) # Check pd.NaT is handles as the same as np.nan with tm.assert_produces_warning(None): for idx1, val in [(fidx1, 3), (didx1, datetime(2014, 3, 1))]: result = idx1 < val expected = np.array([True, False, False, False, False, False]) tm.assert_numpy_array_equal(result, expected) result = idx1 > val expected = np.array([False, False, False, False, True, True]) tm.assert_numpy_array_equal(result, expected) result = idx1 <= val expected = np.array([True, False, True, False, False, False]) tm.assert_numpy_array_equal(result, expected) result = idx1 >= val expected = np.array([False, False, True, False, True, True]) tm.assert_numpy_array_equal(result, expected) result = idx1 == val expected = np.array([False, False, True, False, False, False]) tm.assert_numpy_array_equal(result, expected) result = idx1 != val expected = np.array([True, True, False, True, True, True]) tm.assert_numpy_array_equal(result, expected) def test_comparison_tzawareness_compat(self, comparison_op, box_with_array): # GH#18162 op = comparison_op box = box_with_array dr = date_range("2016-01-01", periods=6) dz = dr.tz_localize("US/Pacific") dr = tm.box_expected(dr, box) dz = tm.box_expected(dz, box) if box is pd.DataFrame: tolist = lambda x: x.astype(object).values.tolist()[0] else: tolist = list if op not in [operator.eq, operator.ne]: msg = ( r"Invalid comparison between dtype=datetime64\[ns.*\] " "and (Timestamp|DatetimeArray|list|ndarray)" ) with pytest.raises(TypeError, match=msg): op(dr, dz) with pytest.raises(TypeError, match=msg): op(dr, tolist(dz)) with pytest.raises(TypeError, match=msg): op(dr, np.array(tolist(dz), dtype=object)) with pytest.raises(TypeError, match=msg): op(dz, dr) with pytest.raises(TypeError, match=msg): op(dz, tolist(dr)) with pytest.raises(TypeError, match=msg): op(dz, np.array(tolist(dr), dtype=object)) # The aware==aware and naive==naive comparisons should *not* raise assert np.all(dr == dr) assert np.all(dr == tolist(dr)) assert np.all(tolist(dr) == dr) assert np.all(np.array(tolist(dr), dtype=object) == dr) assert np.all(dr == np.array(tolist(dr), dtype=object)) assert np.all(dz == dz) assert np.all(dz == tolist(dz)) assert np.all(tolist(dz) == dz) assert np.all(np.array(tolist(dz), dtype=object) == dz) assert np.all(dz == np.array(tolist(dz), dtype=object)) def test_comparison_tzawareness_compat_scalars(self, comparison_op, box_with_array): # GH#18162 op = comparison_op dr = date_range("2016-01-01", periods=6) dz = dr.tz_localize("US/Pacific") dr = tm.box_expected(dr, box_with_array) dz = tm.box_expected(dz, box_with_array) # Check comparisons against scalar Timestamps ts = Timestamp("2000-03-14 01:59") ts_tz = Timestamp("2000-03-14 01:59", tz="Europe/Amsterdam") assert np.all(dr > ts) msg = r"Invalid comparison between dtype=datetime64\[ns.*\] and Timestamp" if op not in [operator.eq, operator.ne]: with pytest.raises(TypeError, match=msg): op(dr, ts_tz) assert np.all(dz > ts_tz) if op not in [operator.eq, operator.ne]: with pytest.raises(TypeError, match=msg): op(dz, ts) if op not in [operator.eq, operator.ne]: # GH#12601: Check comparison against Timestamps and DatetimeIndex with pytest.raises(TypeError, match=msg): op(ts, dz) @pytest.mark.parametrize( "other", [datetime(2016, 1, 1), Timestamp("2016-01-01"), np.datetime64("2016-01-01")], ) # Bug in NumPy? https://github.com/numpy/numpy/issues/13841 # Raising in __eq__ will fallback to NumPy, which warns, fails, # then re-raises the original exception. So we just need to ignore. @pytest.mark.filterwarnings("ignore:elementwise comp:DeprecationWarning") @pytest.mark.filterwarnings("ignore:Converting timezone-aware:FutureWarning") def test_scalar_comparison_tzawareness( self, comparison_op, other, tz_aware_fixture, box_with_array ): op = comparison_op tz = tz_aware_fixture dti = date_range("2016-01-01", periods=2, tz=tz) dtarr = tm.box_expected(dti, box_with_array) xbox = get_upcast_box(dtarr, other, True) if op in [operator.eq, operator.ne]: exbool = op is operator.ne expected = np.array([exbool, exbool], dtype=bool) expected = tm.box_expected(expected, xbox) result = op(dtarr, other) tm.assert_equal(result, expected) result = op(other, dtarr) tm.assert_equal(result, expected) else: msg = ( r"Invalid comparison between dtype=datetime64\[ns, .*\] " f"and {type(other).__name__}" ) with pytest.raises(TypeError, match=msg): op(dtarr, other) with pytest.raises(TypeError, match=msg): op(other, dtarr) def test_nat_comparison_tzawareness(self, comparison_op): # GH#19276 # tzaware DatetimeIndex should not raise when compared to NaT op = comparison_op dti = DatetimeIndex( ["2014-01-01", NaT, "2014-03-01", NaT, "2014-05-01", "2014-07-01"] ) expected = np.array([op == operator.ne] * len(dti)) result = op(dti, NaT) tm.assert_numpy_array_equal(result, expected) result = op(dti.tz_localize("US/Pacific"), NaT) tm.assert_numpy_array_equal(result, expected) def test_dti_cmp_str(self, tz_naive_fixture): # GH#22074 # regardless of tz, we expect these comparisons are valid tz = tz_naive_fixture rng = date_range("1/1/2000", periods=10, tz=tz) other = "1/1/2000" result = rng == other expected = np.array([True] + [False] * 9) tm.assert_numpy_array_equal(result, expected) result = rng != other expected = np.array([False] + [True] * 9) tm.assert_numpy_array_equal(result, expected) result = rng < other expected = np.array([False] * 10) tm.assert_numpy_array_equal(result, expected) result = rng <= other expected = np.array([True] + [False] * 9) tm.assert_numpy_array_equal(result, expected) result = rng > other expected = np.array([False] + [True] * 9) tm.assert_numpy_array_equal(result, expected) result = rng >= other expected = np.array([True] * 10) tm.assert_numpy_array_equal(result, expected) def test_dti_cmp_list(self): rng = date_range("1/1/2000", periods=10) result = rng == list(rng) expected = rng == rng tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize( "other", [ pd.timedelta_range("1D", periods=10), pd.timedelta_range("1D", periods=10).to_series(), pd.timedelta_range("1D", periods=10).asi8.view("m8[ns]"), ], ids=lambda x: type(x).__name__, ) def test_dti_cmp_tdi_tzawareness(self, other): # GH#22074 # reversion test that we _don't_ call _assert_tzawareness_compat # when comparing against TimedeltaIndex dti = date_range("2000-01-01", periods=10, tz="Asia/Tokyo") result = dti == other expected = np.array([False] * 10) tm.assert_numpy_array_equal(result, expected) result = dti != other expected = np.array([True] * 10) tm.assert_numpy_array_equal(result, expected) msg = "Invalid comparison between" with pytest.raises(TypeError, match=msg): dti < other with pytest.raises(TypeError, match=msg): dti <= other with pytest.raises(TypeError, match=msg): dti > other with pytest.raises(TypeError, match=msg): dti >= other def test_dti_cmp_object_dtype(self): # GH#22074 dti = date_range("2000-01-01", periods=10, tz="Asia/Tokyo") other = dti.astype("O") result = dti == other expected = np.array([True] * 10) tm.assert_numpy_array_equal(result, expected) other = dti.tz_localize(None) result = dti != other tm.assert_numpy_array_equal(result, expected) other = np.array(list(dti[:5]) + [Timedelta(days=1)] * 5) result = dti == other expected = np.array([True] * 5 + [False] * 5) tm.assert_numpy_array_equal(result, expected) msg = ">=' not supported between instances of 'Timestamp' and 'Timedelta'" with pytest.raises(TypeError, match=msg): dti >= other # ------------------------------------------------------------------ # Arithmetic class TestDatetime64Arithmetic: # This class is intended for "finished" tests that are fully parametrized # over DataFrame/Series/Index/DatetimeArray # ------------------------------------------------------------- # Addition/Subtraction of timedelta-like @pytest.mark.arm_slow def test_dt64arr_add_timedeltalike_scalar( self, tz_naive_fixture, two_hours, box_with_array ): # GH#22005, GH#22163 check DataFrame doesn't raise TypeError tz = tz_naive_fixture rng = date_range("2000-01-01", "2000-02-01", tz=tz) expected = date_range("2000-01-01 02:00", "2000-02-01 02:00", tz=tz) rng = tm.box_expected(rng, box_with_array) expected = tm.box_expected(expected, box_with_array) result = rng + two_hours tm.assert_equal(result, expected) rng += two_hours tm.assert_equal(rng, expected) def test_dt64arr_sub_timedeltalike_scalar( self, tz_naive_fixture, two_hours, box_with_array ): tz = tz_naive_fixture rng = date_range("2000-01-01", "2000-02-01", tz=tz) expected = date_range("1999-12-31 22:00", "2000-01-31 22:00", tz=tz) rng = tm.box_expected(rng, box_with_array) expected = tm.box_expected(expected, box_with_array) result = rng - two_hours tm.assert_equal(result, expected) rng -= two_hours tm.assert_equal(rng, expected) # TODO: redundant with test_dt64arr_add_timedeltalike_scalar def test_dt64arr_add_td64_scalar(self, box_with_array): # scalar timedeltas/np.timedelta64 objects # operate with np.timedelta64 correctly ser = Series([Timestamp("20130101 9:01"), Timestamp("20130101 9:02")]) expected = Series( [Timestamp("20130101 9:01:01"), Timestamp("20130101 9:02:01")] ) dtarr = tm.box_expected(ser, box_with_array) expected = tm.box_expected(expected, box_with_array) result = dtarr + np.timedelta64(1, "s") tm.assert_equal(result, expected) result = np.timedelta64(1, "s") + dtarr tm.assert_equal(result, expected) expected = Series( [Timestamp("20130101 9:01:00.005"), Timestamp("20130101 9:02:00.005")] ) expected = tm.box_expected(expected, box_with_array) result = dtarr + np.timedelta64(5, "ms") tm.assert_equal(result, expected) result = np.timedelta64(5, "ms") + dtarr tm.assert_equal(result, expected) def test_dt64arr_add_sub_td64_nat(self, box_with_array, tz_naive_fixture): # GH#23320 special handling for timedelta64("NaT") tz = tz_naive_fixture dti = date_range("1994-04-01", periods=9, tz=tz, freq="QS") other = np.timedelta64("NaT") expected = DatetimeIndex(["NaT"] * 9, tz=tz) obj = tm.box_expected(dti, box_with_array) expected = tm.box_expected(expected, box_with_array) result = obj + other tm.assert_equal(result, expected) result = other + obj tm.assert_equal(result, expected) result = obj - other tm.assert_equal(result, expected) msg = "cannot subtract" with pytest.raises(TypeError, match=msg): other - obj def test_dt64arr_add_sub_td64ndarray(self, tz_naive_fixture, box_with_array): tz = tz_naive_fixture dti = date_range("2016-01-01", periods=3, tz=tz) tdi = TimedeltaIndex(["-1 Day", "-1 Day", "-1 Day"]) tdarr = tdi.values expected = date_range("2015-12-31", "2016-01-02", periods=3, tz=tz) dtarr = tm.box_expected(dti, box_with_array) expected = tm.box_expected(expected, box_with_array) result = dtarr + tdarr tm.assert_equal(result, expected) result = tdarr + dtarr tm.assert_equal(result, expected) expected = date_range("2016-01-02", "2016-01-04", periods=3, tz=tz) expected = tm.box_expected(expected, box_with_array) result = dtarr - tdarr tm.assert_equal(result, expected) msg = "cannot subtract|(bad|unsupported) operand type for unary" with pytest.raises(TypeError, match=msg): tdarr - dtarr # ----------------------------------------------------------------- # Subtraction of datetime-like scalars @pytest.mark.parametrize( "ts", [ Timestamp("2013-01-01"), Timestamp("2013-01-01").to_pydatetime(), Timestamp("2013-01-01").to_datetime64(), ], ) def test_dt64arr_sub_dtscalar(self, box_with_array, ts): # GH#8554, GH#22163 DataFrame op should _not_ return dt64 dtype idx = date_range("2013-01-01", periods=3)._with_freq(None) idx = tm.box_expected(idx, box_with_array) expected = TimedeltaIndex(["0 Days", "1 Day", "2 Days"]) expected = tm.box_expected(expected, box_with_array) result = idx - ts tm.assert_equal(result, expected) def test_dt64arr_sub_datetime64_not_ns(self, box_with_array): # GH#7996, GH#22163 ensure non-nano datetime64 is converted to nano # for DataFrame operation dt64 = np.datetime64("2013-01-01") assert dt64.dtype == "datetime64[D]" dti = date_range("20130101", periods=3)._with_freq(None) dtarr = tm.box_expected(dti, box_with_array) expected = TimedeltaIndex(["0 Days", "1 Day", "2 Days"]) expected = tm.box_expected(expected, box_with_array) result = dtarr - dt64 tm.assert_equal(result, expected) result = dt64 - dtarr tm.assert_equal(result, -expected) def test_dt64arr_sub_timestamp(self, box_with_array): ser = date_range("2014-03-17", periods=2, freq="D", tz="US/Eastern") ser = ser._with_freq(None) ts = ser[0] ser = tm.box_expected(ser, box_with_array) delta_series = Series([np.timedelta64(0, "D"), np.timedelta64(1, "D")]) expected = tm.box_expected(delta_series, box_with_array) tm.assert_equal(ser - ts, expected) tm.assert_equal(ts - ser, -expected) def test_dt64arr_sub_NaT(self, box_with_array): # GH#18808 dti = DatetimeIndex([NaT, Timestamp("19900315")]) ser = tm.box_expected(dti, box_with_array) result = ser - NaT expected = Series([NaT, NaT], dtype="timedelta64[ns]") expected = tm.box_expected(expected, box_with_array) tm.assert_equal(result, expected) dti_tz = dti.tz_localize("Asia/Tokyo") ser_tz = tm.box_expected(dti_tz, box_with_array) result = ser_tz - NaT expected = Series([NaT, NaT], dtype="timedelta64[ns]") expected = tm.box_expected(expected, box_with_array) tm.assert_equal(result, expected) # ------------------------------------------------------------- # Subtraction of datetime-like array-like def test_dt64arr_sub_dt64object_array(self, box_with_array, tz_naive_fixture): dti = date_range("2016-01-01", periods=3, tz=tz_naive_fixture) expected = dti - dti obj = tm.box_expected(dti, box_with_array) expected = tm.box_expected(expected, box_with_array) with tm.assert_produces_warning(PerformanceWarning): result = obj - obj.astype(object) tm.assert_equal(result, expected) def test_dt64arr_naive_sub_dt64ndarray(self, box_with_array): dti = date_range("2016-01-01", periods=3, tz=None) dt64vals = dti.values dtarr = tm.box_expected(dti, box_with_array) expected = dtarr - dtarr result = dtarr - dt64vals tm.assert_equal(result, expected) result = dt64vals - dtarr tm.assert_equal(result, expected) def test_dt64arr_aware_sub_dt64ndarray_raises( self, tz_aware_fixture, box_with_array ): tz = tz_aware_fixture dti = date_range("2016-01-01", periods=3, tz=tz) dt64vals = dti.values dtarr = tm.box_expected(dti, box_with_array) msg = "subtraction must have the same timezones or" with pytest.raises(TypeError, match=msg): dtarr - dt64vals with pytest.raises(TypeError, match=msg): dt64vals - dtarr # ------------------------------------------------------------- # Addition of datetime-like others (invalid) def test_dt64arr_add_dt64ndarray_raises(self, tz_naive_fixture, box_with_array): tz = tz_naive_fixture dti = date_range("2016-01-01", periods=3, tz=tz) dt64vals = dti.values dtarr = tm.box_expected(dti, box_with_array) assert_cannot_add(dtarr, dt64vals) def test_dt64arr_add_timestamp_raises(self, box_with_array): # GH#22163 ensure DataFrame doesn't cast Timestamp to i8 idx = DatetimeIndex(["2011-01-01", "2011-01-02"]) ts = idx[0] idx = tm.box_expected(idx, box_with_array) assert_cannot_add(idx, ts) # ------------------------------------------------------------- # Other Invalid Addition/Subtraction @pytest.mark.parametrize( "other", [ 3.14, np.array([2.0, 3.0]), # GH#13078 datetime +/- Period is invalid Period("2011-01-01", freq="D"), # https://github.com/pandas-dev/pandas/issues/10329 time(1, 2, 3), ], ) @pytest.mark.parametrize("dti_freq", [None, "D"]) def test_dt64arr_add_sub_invalid(self, dti_freq, other, box_with_array): dti = DatetimeIndex(["2011-01-01", "2011-01-02"], freq=dti_freq) dtarr = tm.box_expected(dti, box_with_array) msg = "|".join( [ "unsupported operand type", "cannot (add|subtract)", "cannot use operands with types", "ufunc '?(add|subtract)'? cannot use operands with types", "Concatenation operation is not implemented for NumPy arrays", ] ) assert_invalid_addsub_type(dtarr, other, msg) @pytest.mark.parametrize("pi_freq", ["D", "W", "Q", "H"]) @pytest.mark.parametrize("dti_freq", [None, "D"]) def test_dt64arr_add_sub_parr( self, dti_freq, pi_freq, box_with_array, box_with_array2 ): # GH#20049 subtracting PeriodIndex should raise TypeError dti = DatetimeIndex(["2011-01-01", "2011-01-02"], freq=dti_freq) pi = dti.to_period(pi_freq) dtarr = tm.box_expected(dti, box_with_array) parr = tm.box_expected(pi, box_with_array2) msg = "|".join( [ "cannot (add|subtract)", "unsupported operand", "descriptor.*requires", "ufunc.*cannot use operands", ] ) assert_invalid_addsub_type(dtarr, parr, msg) def test_dt64arr_addsub_time_objects_raises(self, box_with_array, tz_naive_fixture): # https://github.com/pandas-dev/pandas/issues/10329 tz = tz_naive_fixture obj1 = date_range("2012-01-01", periods=3, tz=tz) obj2 = [time(i, i, i) for i in range(3)] obj1 = tm.box_expected(obj1, box_with_array) obj2 = tm.box_expected(obj2, box_with_array) with warnings.catch_warnings(record=True): # pandas.errors.PerformanceWarning: Non-vectorized DateOffset being # applied to Series or DatetimeIndex # we aren't testing that here, so ignore. warnings.simplefilter("ignore", PerformanceWarning) # If `x + y` raises, then `y + x` should raise here as well msg = ( r"unsupported operand type\(s\) for -: " "'(Timestamp|DatetimeArray)' and 'datetime.time'" ) with pytest.raises(TypeError, match=msg): obj1 - obj2 msg = "|".join( [ "cannot subtract DatetimeArray from ndarray", "ufunc (subtract|'subtract') cannot use operands with types " r"dtype\('O'\) and dtype\('<M8\[ns\]'\)", ] ) with pytest.raises(TypeError, match=msg): obj2 - obj1 msg = ( r"unsupported operand type\(s\) for \+: " "'(Timestamp|DatetimeArray)' and 'datetime.time'" ) with pytest.raises(TypeError, match=msg): obj1 + obj2 msg = "|".join( [ r"unsupported operand type\(s\) for \+: " "'(Timestamp|DatetimeArray)' and 'datetime.time'", "ufunc (add|'add') cannot use operands with types " r"dtype\('O'\) and dtype\('<M8\[ns\]'\)", ] ) with pytest.raises(TypeError, match=msg): obj2 + obj1 class TestDatetime64DateOffsetArithmetic: # ------------------------------------------------------------- # Tick DateOffsets # TODO: parametrize over timezone? def test_dt64arr_series_add_tick_DateOffset(self, box_with_array): # GH#4532 # operate with pd.offsets ser = Series([Timestamp("20130101 9:01"), Timestamp("20130101 9:02")]) expected = Series( [Timestamp("20130101 9:01:05"), Timestamp("20130101 9:02:05")] ) ser = tm.box_expected(ser, box_with_array) expected = tm.box_expected(expected, box_with_array) result = ser + pd.offsets.Second(5) tm.assert_equal(result, expected) result2 = pd.offsets.Second(5) + ser tm.assert_equal(result2, expected) def test_dt64arr_series_sub_tick_DateOffset(self, box_with_array): # GH#4532 # operate with pd.offsets ser = Series([Timestamp("20130101 9:01"), Timestamp("20130101 9:02")]) expected = Series( [Timestamp("20130101 9:00:55"), Timestamp("20130101 9:01:55")] ) ser = tm.box_expected(ser, box_with_array) expected = tm.box_expected(expected, box_with_array) result = ser - pd.offsets.Second(5) tm.assert_equal(result, expected) result2 = -pd.offsets.Second(5) + ser tm.assert_equal(result2, expected) msg = "(bad|unsupported) operand type for unary" with pytest.raises(TypeError, match=msg): pd.offsets.Second(5) - ser @pytest.mark.parametrize( "cls_name", ["Day", "Hour", "Minute", "Second", "Milli", "Micro", "Nano"] ) def test_dt64arr_add_sub_tick_DateOffset_smoke(self, cls_name, box_with_array): # GH#4532 # smoke tests for valid DateOffsets ser = Series([Timestamp("20130101 9:01"), Timestamp("20130101 9:02")]) ser = tm.box_expected(ser, box_with_array) offset_cls = getattr(pd.offsets, cls_name) ser + offset_cls(5) offset_cls(5) + ser ser - offset_cls(5) def test_dti_add_tick_tzaware(self, tz_aware_fixture, box_with_array): # GH#21610, GH#22163 ensure DataFrame doesn't return object-dtype tz = tz_aware_fixture if tz == "US/Pacific": dates = date_range("2012-11-01", periods=3, tz=tz) offset = dates + pd.offsets.Hour(5) assert dates[0] + pd.offsets.Hour(5) == offset[0] dates = date_range("2010-11-01 00:00", periods=3, tz=tz, freq="H") expected = DatetimeIndex( ["2010-11-01 05:00", "2010-11-01 06:00", "2010-11-01 07:00"], freq="H", tz=tz, ) dates = tm.box_expected(dates, box_with_array) expected = tm.box_expected(expected, box_with_array) # TODO: sub? for scalar in [pd.offsets.Hour(5), np.timedelta64(5, "h"), timedelta(hours=5)]: offset = dates + scalar tm.assert_equal(offset, expected) offset = scalar + dates tm.assert_equal(offset, expected) # ------------------------------------------------------------- # RelativeDelta DateOffsets def test_dt64arr_add_sub_relativedelta_offsets(self, box_with_array): # GH#10699 vec = DatetimeIndex( [ Timestamp("2000-01-05 00:15:00"), Timestamp("2000-01-31 00:23:00"), Timestamp("2000-01-01"), Timestamp("2000-03-31"), Timestamp("2000-02-29"), Timestamp("2000-12-31"), Timestamp("2000-05-15"), Timestamp("2001-06-15"), ] ) vec = tm.box_expected(vec, box_with_array) vec_items = vec.iloc[0] if box_with_array is pd.DataFrame else vec # DateOffset relativedelta fastpath relative_kwargs = [ ("years", 2), ("months", 5), ("days", 3), ("hours", 5), ("minutes", 10), ("seconds", 2), ("microseconds", 5), ] for i, (unit, value) in enumerate(relative_kwargs): off = DateOffset(**{unit: value}) expected = DatetimeIndex([x + off for x in vec_items]) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(expected, vec + off) expected = DatetimeIndex([x - off for x in vec_items]) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(expected, vec - off) off = DateOffset(**dict(relative_kwargs[: i + 1])) expected = DatetimeIndex([x + off for x in vec_items]) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(expected, vec + off) expected = DatetimeIndex([x - off for x in vec_items]) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(expected, vec - off) msg = "(bad|unsupported) operand type for unary" with pytest.raises(TypeError, match=msg): off - vec # ------------------------------------------------------------- # Non-Tick, Non-RelativeDelta DateOffsets # TODO: redundant with test_dt64arr_add_sub_DateOffset? that includes # tz-aware cases which this does not @pytest.mark.parametrize( "cls_and_kwargs", [ "YearBegin", ("YearBegin", {"month": 5}), "YearEnd", ("YearEnd", {"month": 5}), "MonthBegin", "MonthEnd", "SemiMonthEnd", "SemiMonthBegin", "Week", ("Week", {"weekday": 3}), "Week", ("Week", {"weekday": 6}), "BusinessDay", "BDay", "QuarterEnd", "QuarterBegin", "CustomBusinessDay", "CDay", "CBMonthEnd", "CBMonthBegin", "BMonthBegin", "BMonthEnd", "BusinessHour", "BYearBegin", "BYearEnd", "BQuarterBegin", ("LastWeekOfMonth", {"weekday": 2}), ( "FY5253Quarter", { "qtr_with_extra_week": 1, "startingMonth": 1, "weekday": 2, "variation": "nearest", }, ), ("FY5253", {"weekday": 0, "startingMonth": 2, "variation": "nearest"}), ("WeekOfMonth", {"weekday": 2, "week": 2}), "Easter", ("DateOffset", {"day": 4}), ("DateOffset", {"month": 5}), ], ) @pytest.mark.parametrize("normalize", [True, False]) @pytest.mark.parametrize("n", [0, 5]) def test_dt64arr_add_sub_DateOffsets( self, box_with_array, n, normalize, cls_and_kwargs ): # GH#10699 # assert vectorized operation matches pointwise operations if isinstance(cls_and_kwargs, tuple): # If cls_name param is a tuple, then 2nd entry is kwargs for # the offset constructor cls_name, kwargs = cls_and_kwargs else: cls_name = cls_and_kwargs kwargs = {} if n == 0 and cls_name in [ "WeekOfMonth", "LastWeekOfMonth", "FY5253Quarter", "FY5253", ]: # passing n = 0 is invalid for these offset classes return vec = DatetimeIndex( [ Timestamp("2000-01-05 00:15:00"), Timestamp("2000-01-31 00:23:00"), Timestamp("2000-01-01"), Timestamp("2000-03-31"), Timestamp("2000-02-29"), Timestamp("2000-12-31"), Timestamp("2000-05-15"), Timestamp("2001-06-15"), ] ) vec = tm.box_expected(vec, box_with_array) vec_items = vec.iloc[0] if box_with_array is pd.DataFrame else vec offset_cls = getattr(pd.offsets, cls_name) with warnings.catch_warnings(record=True): # pandas.errors.PerformanceWarning: Non-vectorized DateOffset being # applied to Series or DatetimeIndex # we aren't testing that here, so ignore. warnings.simplefilter("ignore", PerformanceWarning) offset = offset_cls(n, normalize=normalize, **kwargs) expected = DatetimeIndex([x + offset for x in vec_items]) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(expected, vec + offset) expected = DatetimeIndex([x - offset for x in vec_items]) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(expected, vec - offset) expected = DatetimeIndex([offset + x for x in vec_items]) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(expected, offset + vec) msg = "(bad|unsupported) operand type for unary" with pytest.raises(TypeError, match=msg): offset - vec def test_dt64arr_add_sub_DateOffset(self, box_with_array): # GH#10699 s = date_range("2000-01-01", "2000-01-31", name="a") s = tm.box_expected(s, box_with_array) result = s + DateOffset(years=1) result2 = DateOffset(years=1) + s exp = date_range("2001-01-01", "2001-01-31", name="a")._with_freq(None) exp = tm.box_expected(exp, box_with_array) tm.assert_equal(result, exp) tm.assert_equal(result2, exp) result = s - DateOffset(years=1) exp = date_range("1999-01-01", "1999-01-31", name="a")._with_freq(None) exp = tm.box_expected(exp, box_with_array) tm.assert_equal(result, exp) s = DatetimeIndex( [ Timestamp("2000-01-15 00:15:00", tz="US/Central"), Timestamp("2000-02-15", tz="US/Central"), ], name="a", ) s = tm.box_expected(s, box_with_array) result = s + pd.offsets.Day() result2 = pd.offsets.Day() + s exp = DatetimeIndex( [ Timestamp("2000-01-16 00:15:00", tz="US/Central"), Timestamp("2000-02-16", tz="US/Central"), ], name="a", ) exp = tm.box_expected(exp, box_with_array) tm.assert_equal(result, exp) tm.assert_equal(result2, exp) s = DatetimeIndex( [ Timestamp("2000-01-15 00:15:00", tz="US/Central"), Timestamp("2000-02-15", tz="US/Central"), ], name="a", ) s = tm.box_expected(s, box_with_array) result = s + pd.offsets.MonthEnd() result2 = pd.offsets.MonthEnd() + s exp = DatetimeIndex( [ Timestamp("2000-01-31 00:15:00", tz="US/Central"), Timestamp("2000-02-29", tz="US/Central"), ], name="a", ) exp = tm.box_expected(exp, box_with_array) tm.assert_equal(result, exp) tm.assert_equal(result2, exp) @pytest.mark.parametrize( "other", [ np.array([pd.offsets.MonthEnd(), pd.offsets.Day(n=2)]), np.array([pd.offsets.DateOffset(years=1), pd.offsets.MonthEnd()]), np.array( # matching offsets [pd.offsets.DateOffset(years=1), pd.offsets.DateOffset(years=1)] ), ], ) @pytest.mark.parametrize("op", [operator.add, roperator.radd, operator.sub]) @pytest.mark.parametrize("box_other", [True, False]) def test_dt64arr_add_sub_offset_array( self, tz_naive_fixture, box_with_array, box_other, op, other ): # GH#18849 # GH#10699 array of offsets tz = tz_naive_fixture dti = date_range("2017-01-01", periods=2, tz=tz) dtarr = tm.box_expected(dti, box_with_array) other = np.array([pd.offsets.MonthEnd(), pd.offsets.Day(n=2)]) expected = DatetimeIndex([op(dti[n], other[n]) for n in range(len(dti))]) expected = tm.box_expected(expected, box_with_array) if box_other: other = tm.box_expected(other, box_with_array) with tm.assert_produces_warning(PerformanceWarning): res = op(dtarr, other) tm.assert_equal(res, expected) @pytest.mark.parametrize( "op, offset, exp, exp_freq", [ ( "__add__", DateOffset(months=3, days=10), [ Timestamp("2014-04-11"), Timestamp("2015-04-11"), Timestamp("2016-04-11"), Timestamp("2017-04-11"), ], None, ), ( "__add__", DateOffset(months=3), [ Timestamp("2014-04-01"), Timestamp("2015-04-01"), Timestamp("2016-04-01"), Timestamp("2017-04-01"), ], "AS-APR", ), ( "__sub__", DateOffset(months=3, days=10), [ Timestamp("2013-09-21"), Timestamp("2014-09-21"), Timestamp("2015-09-21"), Timestamp("2016-09-21"), ], None, ), ( "__sub__", DateOffset(months=3), [ Timestamp("2013-10-01"), Timestamp("2014-10-01"), Timestamp("2015-10-01"), Timestamp("2016-10-01"), ], "AS-OCT", ), ], ) def test_dti_add_sub_nonzero_mth_offset( self, op, offset, exp, exp_freq, tz_aware_fixture, box_with_array ): # GH 26258 tz = tz_aware_fixture date = date_range(start="01 Jan 2014", end="01 Jan 2017", freq="AS", tz=tz) date = tm.box_expected(date, box_with_array, False) mth = getattr(date, op) result = mth(offset) expected = DatetimeIndex(exp, tz=tz) expected = tm.box_expected(expected, box_with_array, False) tm.assert_equal(result, expected) class TestDatetime64OverflowHandling: # TODO: box + de-duplicate def test_dt64_overflow_masking(self, box_with_array): # GH#25317 left = Series([Timestamp("1969-12-31")]) right = Series([NaT]) left = tm.box_expected(left, box_with_array) right = tm.box_expected(right, box_with_array) expected = TimedeltaIndex([NaT]) expected = tm.box_expected(expected, box_with_array) result = left - right tm.assert_equal(result, expected) def test_dt64_series_arith_overflow(self): # GH#12534, fixed by GH#19024 dt = Timestamp("1700-01-31") td = Timedelta("20000 Days") dti = date_range("1949-09-30", freq="100Y", periods=4) ser = Series(dti) msg = "Overflow in int64 addition" with pytest.raises(OverflowError, match=msg): ser - dt with pytest.raises(OverflowError, match=msg): dt - ser with pytest.raises(OverflowError, match=msg): ser + td with pytest.raises(OverflowError, match=msg): td + ser ser.iloc[-1] = NaT expected = Series( ["2004-10-03", "2104-10-04", "2204-10-04", "NaT"], dtype="datetime64[ns]" ) res = ser + td tm.assert_series_equal(res, expected) res = td + ser tm.assert_series_equal(res, expected) ser.iloc[1:] = NaT expected = Series(["91279 Days", "NaT", "NaT", "NaT"], dtype="timedelta64[ns]") res = ser - dt tm.assert_series_equal(res, expected) res = dt - ser tm.assert_series_equal(res, -expected) def test_datetimeindex_sub_timestamp_overflow(self): dtimax = pd.to_datetime(["now", Timestamp.max]) dtimin = pd.to_datetime(["now", Timestamp.min]) tsneg = Timestamp("1950-01-01") ts_neg_variants = [ tsneg, tsneg.to_pydatetime(), tsneg.to_datetime64().astype("datetime64[ns]"), tsneg.to_datetime64().astype("datetime64[D]"), ] tspos = Timestamp("1980-01-01") ts_pos_variants = [ tspos, tspos.to_pydatetime(), tspos.to_datetime64().astype("datetime64[ns]"), tspos.to_datetime64().astype("datetime64[D]"), ] msg = "Overflow in int64 addition" for variant in ts_neg_variants: with pytest.raises(OverflowError, match=msg): dtimax - variant expected = Timestamp.max.value - tspos.value for variant in ts_pos_variants: res = dtimax - variant assert res[1].value == expected expected = Timestamp.min.value - tsneg.value for variant in ts_neg_variants: res = dtimin - variant assert res[1].value == expected for variant in ts_pos_variants: with pytest.raises(OverflowError, match=msg): dtimin - variant def test_datetimeindex_sub_datetimeindex_overflow(self): # GH#22492, GH#22508 dtimax = pd.to_datetime(["now", Timestamp.max]) dtimin = pd.to_datetime(["now", Timestamp.min]) ts_neg = pd.to_datetime(["1950-01-01", "1950-01-01"]) ts_pos = pd.to_datetime(["1980-01-01", "1980-01-01"]) # General tests expected = Timestamp.max.value - ts_pos[1].value result = dtimax - ts_pos assert result[1].value == expected expected = Timestamp.min.value - ts_neg[1].value result = dtimin - ts_neg assert result[1].value == expected msg = "Overflow in int64 addition" with pytest.raises(OverflowError, match=msg): dtimax - ts_neg with pytest.raises(OverflowError, match=msg): dtimin - ts_pos # Edge cases tmin = pd.to_datetime([Timestamp.min]) t1 = tmin + Timedelta.max + Timedelta("1us") with pytest.raises(OverflowError, match=msg): t1 - tmin tmax = pd.to_datetime([Timestamp.max]) t2 = tmax + Timedelta.min - Timedelta("1us") with pytest.raises(OverflowError, match=msg): tmax - t2 class TestTimestampSeriesArithmetic: def test_empty_series_add_sub(self): # GH#13844 a = Series(dtype="M8[ns]") b = Series(dtype="m8[ns]") tm.assert_series_equal(a, a + b) tm.assert_series_equal(a, a - b) tm.assert_series_equal(a, b + a) msg = "cannot subtract" with pytest.raises(TypeError, match=msg): b - a def test_operators_datetimelike(self): # ## timedelta64 ### td1 = Series([timedelta(minutes=5, seconds=3)] * 3) td1.iloc[2] = np.nan # ## datetime64 ### dt1 = Series( [ Timestamp("20111230"), Timestamp("20120101"), Timestamp("20120103"), ] ) dt1.iloc[2] = np.nan dt2 = Series( [ Timestamp("20111231"), Timestamp("20120102"), Timestamp("20120104"), ] ) dt1 - dt2 dt2 - dt1 # datetime64 with timetimedelta dt1 + td1 td1 + dt1 dt1 - td1 # timetimedelta with datetime64 td1 + dt1 dt1 + td1 def test_dt64ser_sub_datetime_dtype(self): ts = Timestamp(datetime(1993, 1, 7, 13, 30, 00)) dt = datetime(1993, 6, 22, 13, 30) ser = Series([ts]) result = pd.to_timedelta(np.abs(ser - dt)) assert result.dtype == "timedelta64[ns]" # ------------------------------------------------------------- # TODO: This next block of tests came from tests.series.test_operators, # needs to be de-duplicated and parametrized over `box` classes def test_operators_datetimelike_invalid(self, all_arithmetic_operators): # these are all TypeEror ops op_str = all_arithmetic_operators def check(get_ser, test_ser): # check that we are getting a TypeError # with 'operate' (from core/ops.py) for the ops that are not # defined op = getattr(get_ser, op_str, None) # Previously, _validate_for_numeric_binop in core/indexes/base.py # did this for us. with pytest.raises( TypeError, match="operate|[cC]annot|unsupported operand" ): op(test_ser) # ## timedelta64 ### td1 = Series([timedelta(minutes=5, seconds=3)] * 3) td1.iloc[2] = np.nan # ## datetime64 ### dt1 = Series( [Timestamp("20111230"), Timestamp("20120101"), Timestamp("20120103")] ) dt1.iloc[2] = np.nan dt2 = Series( [Timestamp("20111231"), Timestamp("20120102"), Timestamp("20120104")] ) if op_str not in ["__sub__", "__rsub__"]: check(dt1, dt2) # ## datetime64 with timetimedelta ### # TODO(jreback) __rsub__ should raise? if op_str not in ["__add__", "__radd__", "__sub__"]: check(dt1, td1) # 8260, 10763 # datetime64 with tz tz = "US/Eastern" dt1 = Series(date_range("2000-01-01 09:00:00", periods=5, tz=tz), name="foo") dt2 = dt1.copy() dt2.iloc[2] = np.nan td1 = Series(pd.timedelta_range("1 days 1 min", periods=5, freq="H")) td2 = td1.copy() td2.iloc[1] = np.nan if op_str not in ["__add__", "__radd__", "__sub__", "__rsub__"]: check(dt2, td2) def test_sub_single_tz(self): # GH#12290 s1 = Series([Timestamp("2016-02-10", tz="America/Sao_Paulo")]) s2 = Series([Timestamp("2016-02-08", tz="America/Sao_Paulo")]) result = s1 - s2 expected = Series([Timedelta("2days")]) tm.assert_series_equal(result, expected) result = s2 - s1 expected = Series([Timedelta("-2days")]) tm.assert_series_equal(result, expected) def test_dt64tz_series_sub_dtitz(self): # GH#19071 subtracting tzaware DatetimeIndex from tzaware Series # (with same tz) raises, fixed by #19024 dti = date_range("1999-09-30", periods=10, tz="US/Pacific") ser = Series(dti) expected = Series(TimedeltaIndex(["0days"] * 10)) res = dti - ser tm.assert_series_equal(res, expected) res = ser - dti tm.assert_series_equal(res, expected) def test_sub_datetime_compat(self): # see GH#14088 s = Series([datetime(2016, 8, 23, 12, tzinfo=pytz.utc), NaT]) dt = datetime(2016, 8, 22, 12, tzinfo=pytz.utc) exp = Series([Timedelta("1 days"), NaT]) tm.assert_series_equal(s - dt, exp) tm.assert_series_equal(s - Timestamp(dt), exp) def test_dt64_series_add_mixed_tick_DateOffset(self): # GH#4532 # operate with pd.offsets s = Series([Timestamp("20130101 9:01"), Timestamp("20130101 9:02")]) result = s + pd.offsets.Milli(5) result2 = pd.offsets.Milli(5) + s expected = Series( [Timestamp("20130101 9:01:00.005"), Timestamp("20130101 9:02:00.005")] ) tm.assert_series_equal(result, expected) tm.assert_series_equal(result2, expected) result = s + pd.offsets.Minute(5) + pd.offsets.Milli(5) expected = Series( [Timestamp("20130101 9:06:00.005"), Timestamp("20130101 9:07:00.005")] ) tm.assert_series_equal(result, expected) def test_datetime64_ops_nat(self): # GH#11349 datetime_series = Series([NaT, Timestamp("19900315")]) nat_series_dtype_timestamp = Series([NaT, NaT], dtype="datetime64[ns]") single_nat_dtype_datetime = Series([NaT], dtype="datetime64[ns]") # subtraction tm.assert_series_equal(-NaT + datetime_series, nat_series_dtype_timestamp) msg = "bad operand type for unary -: 'DatetimeArray'" with pytest.raises(TypeError, match=msg): -single_nat_dtype_datetime + datetime_series tm.assert_series_equal( -NaT + nat_series_dtype_timestamp, nat_series_dtype_timestamp ) with pytest.raises(TypeError, match=msg): -single_nat_dtype_datetime + nat_series_dtype_timestamp # addition tm.assert_series_equal( nat_series_dtype_timestamp + NaT, nat_series_dtype_timestamp ) tm.assert_series_equal( NaT + nat_series_dtype_timestamp, nat_series_dtype_timestamp ) tm.assert_series_equal( nat_series_dtype_timestamp + NaT, nat_series_dtype_timestamp ) tm.assert_series_equal( NaT + nat_series_dtype_timestamp, nat_series_dtype_timestamp ) # ------------------------------------------------------------- # Invalid Operations # TODO: this block also needs to be de-duplicated and parametrized @pytest.mark.parametrize( "dt64_series", [ Series([Timestamp("19900315"), Timestamp("19900315")]), Series([NaT, Timestamp("19900315")]), Series([NaT, NaT], dtype="datetime64[ns]"), ], ) @pytest.mark.parametrize("one", [1, 1.0, np.array(1)]) def test_dt64_mul_div_numeric_invalid(self, one, dt64_series): # multiplication msg = "cannot perform .* with this index type" with pytest.raises(TypeError, match=msg): dt64_series * one with pytest.raises(TypeError, match=msg): one * dt64_series # division with pytest.raises(TypeError, match=msg): dt64_series / one with pytest.raises(TypeError, match=msg): one / dt64_series # TODO: parametrize over box def test_dt64_series_add_intlike(self, tz_naive_fixture): # GH#19123 tz = tz_naive_fixture dti = DatetimeIndex(["2016-01-02", "2016-02-03", "NaT"], tz=tz) ser = Series(dti) other = Series([20, 30, 40], dtype="uint8") msg = "|".join( [ "Addition/subtraction of integers and integer-arrays", "cannot subtract .* from ndarray", ] ) assert_invalid_addsub_type(ser, 1, msg) assert_invalid_addsub_type(ser, other, msg) assert_invalid_addsub_type(ser, np.array(other), msg) assert_invalid_addsub_type(ser, pd.Index(other), msg) # ------------------------------------------------------------- # Timezone-Centric Tests def test_operators_datetimelike_with_timezones(self): tz = "US/Eastern" dt1 = Series(date_range("2000-01-01 09:00:00", periods=5, tz=tz), name="foo") dt2 = dt1.copy() dt2.iloc[2] = np.nan td1 = Series(pd.timedelta_range("1 days 1 min", periods=5, freq="H")) td2 = td1.copy() td2.iloc[1] = np.nan assert td2._values.freq is None result = dt1 + td1[0] exp = (dt1.dt.tz_localize(None) + td1[0]).dt.tz_localize(tz) tm.assert_series_equal(result, exp) result = dt2 + td2[0] exp = (dt2.dt.tz_localize(None) + td2[0]).dt.tz_localize(tz) tm.assert_series_equal(result, exp) # odd numpy behavior with scalar timedeltas result = td1[0] + dt1 exp = (dt1.dt.tz_localize(None) + td1[0]).dt.tz_localize(tz) tm.assert_series_equal(result, exp) result = td2[0] + dt2 exp = (dt2.dt.tz_localize(None) + td2[0]).dt.tz_localize(tz) tm.assert_series_equal(result, exp) result = dt1 - td1[0] exp = (dt1.dt.tz_localize(None) - td1[0]).dt.tz_localize(tz) tm.assert_series_equal(result, exp) msg = "(bad|unsupported) operand type for unary" with pytest.raises(TypeError, match=msg): td1[0] - dt1 result = dt2 - td2[0] exp = (dt2.dt.tz_localize(None) - td2[0]).dt.tz_localize(tz) tm.assert_series_equal(result, exp) with pytest.raises(TypeError, match=msg): td2[0] - dt2 result = dt1 + td1 exp = (dt1.dt.tz_localize(None) + td1).dt.tz_localize(tz) tm.assert_series_equal(result, exp) result = dt2 + td2 exp = (dt2.dt.tz_localize(None) + td2).dt.tz_localize(tz) tm.assert_series_equal(result, exp) result = dt1 - td1 exp = (dt1.dt.tz_localize(None) - td1).dt.tz_localize(tz) tm.assert_series_equal(result, exp) result = dt2 - td2 exp = (dt2.dt.tz_localize(None) - td2).dt.tz_localize(tz) tm.assert_series_equal(result, exp) msg = "cannot (add|subtract)" with pytest.raises(TypeError, match=msg): td1 - dt1 with pytest.raises(TypeError, match=msg): td2 - dt2 class TestDatetimeIndexArithmetic: # ------------------------------------------------------------- # Binary operations DatetimeIndex and int def test_dti_addsub_int(self, tz_naive_fixture, one): # Variants of `one` for #19012 tz = tz_naive_fixture rng = date_range("2000-01-01 09:00", freq="H", periods=10, tz=tz) msg = "Addition/subtraction of integers" with pytest.raises(TypeError, match=msg): rng + one with pytest.raises(TypeError, match=msg): rng += one with pytest.raises(TypeError, match=msg): rng - one with pytest.raises(TypeError, match=msg): rng -= one # ------------------------------------------------------------- # __add__/__sub__ with integer arrays @pytest.mark.parametrize("freq", ["H", "D"]) @pytest.mark.parametrize("int_holder", [np.array, pd.Index]) def test_dti_add_intarray_tick(self, int_holder, freq): # GH#19959 dti = date_range("2016-01-01", periods=2, freq=freq) other = int_holder([4, -1]) msg = "|".join( ["Addition/subtraction of integers", "cannot subtract DatetimeArray from"] ) assert_invalid_addsub_type(dti, other, msg) @pytest.mark.parametrize("freq", ["W", "M", "MS", "Q"]) @pytest.mark.parametrize("int_holder", [np.array, pd.Index]) def test_dti_add_intarray_non_tick(self, int_holder, freq): # GH#19959 dti = date_range("2016-01-01", periods=2, freq=freq) other = int_holder([4, -1]) msg = "|".join( ["Addition/subtraction of integers", "cannot subtract DatetimeArray from"] ) assert_invalid_addsub_type(dti, other, msg) @pytest.mark.parametrize("int_holder", [np.array, pd.Index]) def test_dti_add_intarray_no_freq(self, int_holder): # GH#19959 dti = DatetimeIndex(["2016-01-01", "NaT", "2017-04-05 06:07:08"]) other = int_holder([9, 4, -1]) msg = "|".join( ["cannot subtract DatetimeArray from", "Addition/subtraction of integers"] ) assert_invalid_addsub_type(dti, other, msg) # ------------------------------------------------------------- # Binary operations DatetimeIndex and TimedeltaIndex/array def test_dti_add_tdi(self, tz_naive_fixture): # GH#17558 tz = tz_naive_fixture dti = DatetimeIndex([Timestamp("2017-01-01", tz=tz)] * 10) tdi = pd.timedelta_range("0 days", periods=10) expected = date_range("2017-01-01", periods=10, tz=tz) expected = expected._with_freq(None) # add with TimdeltaIndex result = dti + tdi tm.assert_index_equal(result, expected) result = tdi + dti tm.assert_index_equal(result, expected) # add with timedelta64 array result = dti + tdi.values tm.assert_index_equal(result, expected) result = tdi.values + dti tm.assert_index_equal(result, expected) def test_dti_iadd_tdi(self, tz_naive_fixture): # GH#17558 tz = tz_naive_fixture dti = DatetimeIndex([Timestamp("2017-01-01", tz=tz)] * 10) tdi = pd.timedelta_range("0 days", periods=10) expected = date_range("2017-01-01", periods=10, tz=tz) expected = expected._with_freq(None) # iadd with TimdeltaIndex result = DatetimeIndex([Timestamp("2017-01-01", tz=tz)] * 10) result += tdi tm.assert_index_equal(result, expected) result = pd.timedelta_range("0 days", periods=10) result += dti tm.assert_index_equal(result, expected) # iadd with timedelta64 array result = DatetimeIndex([Timestamp("2017-01-01", tz=tz)] * 10) result += tdi.values tm.assert_index_equal(result, expected) result = pd.timedelta_range("0 days", periods=10) result += dti tm.assert_index_equal(result, expected) def test_dti_sub_tdi(self, tz_naive_fixture): # GH#17558 tz = tz_naive_fixture dti = DatetimeIndex([Timestamp("2017-01-01", tz=tz)] * 10) tdi = pd.timedelta_range("0 days", periods=10) expected = date_range("2017-01-01", periods=10, tz=tz, freq="-1D") expected = expected._with_freq(None) # sub with TimedeltaIndex result = dti - tdi tm.assert_index_equal(result, expected) msg = "cannot subtract .*TimedeltaArray" with pytest.raises(TypeError, match=msg): tdi - dti # sub with timedelta64 array result = dti - tdi.values tm.assert_index_equal(result, expected) msg = "cannot subtract a datelike from a TimedeltaArray" with pytest.raises(TypeError, match=msg): tdi.values - dti def test_dti_isub_tdi(self, tz_naive_fixture): # GH#17558 tz = tz_naive_fixture dti = DatetimeIndex([Timestamp("2017-01-01", tz=tz)] * 10) tdi = pd.timedelta_range("0 days", periods=10) expected = date_range("2017-01-01", periods=10, tz=tz, freq="-1D") expected = expected._with_freq(None) # isub with TimedeltaIndex result = DatetimeIndex([Timestamp("2017-01-01", tz=tz)] * 10) result -= tdi tm.assert_index_equal(result, expected) # DTA.__isub__ GH#43904 dta = dti._data.copy() dta -= tdi tm.assert_datetime_array_equal(dta, expected._data) out = dti._data.copy() np.subtract(out, tdi, out=out) tm.assert_datetime_array_equal(out, expected._data) msg = "cannot subtract .* from a TimedeltaArray" with pytest.raises(TypeError, match=msg): tdi -= dti # isub with timedelta64 array result = DatetimeIndex([Timestamp("2017-01-01", tz=tz)] * 10) result -= tdi.values tm.assert_index_equal(result, expected) msg = "cannot subtract DatetimeArray from ndarray" with pytest.raises(TypeError, match=msg): tdi.values -= dti msg = "cannot subtract a datelike from a TimedeltaArray" with pytest.raises(TypeError, match=msg): tdi._values -= dti # ------------------------------------------------------------- # Binary Operations DatetimeIndex and datetime-like # TODO: A couple other tests belong in this section. Move them in # A PR where there isn't already a giant diff. @pytest.mark.parametrize( "addend", [ datetime(2011, 1, 1), DatetimeIndex(["2011-01-01", "2011-01-02"]), DatetimeIndex(["2011-01-01", "2011-01-02"]).tz_localize("US/Eastern"), np.datetime64("2011-01-01"), Timestamp("2011-01-01"), ], ids=lambda x: type(x).__name__, ) @pytest.mark.parametrize("tz", [None, "US/Eastern"]) def test_add_datetimelike_and_dtarr(self, box_with_array, addend, tz): # GH#9631 dti = DatetimeIndex(["2011-01-01", "2011-01-02"]).tz_localize(tz) dtarr = tm.box_expected(dti, box_with_array) msg = "cannot add DatetimeArray and" assert_cannot_add(dtarr, addend, msg) # ------------------------------------------------------------- def test_dta_add_sub_index(self, tz_naive_fixture): # Check that DatetimeArray defers to Index classes dti = date_range("20130101", periods=3, tz=tz_naive_fixture) dta = dti.array result = dta - dti expected = dti - dti
tm.assert_index_equal(result, expected)
pandas._testing.assert_index_equal
""" Contains unit tests for the Metafeatures class. """ import inspect import json import jsonschema import os import random import time import unittest import pandas as pd import numpy as np from metalearn import Metafeatures, METAFEATURES_JSON_SCHEMA_PATH import metalearn.metafeatures.constants as consts from tests.config import CORRECTNESS_SEED, METADATA_PATH from tests.data.dataset import read_dataset from tests.data.compute_dataset_metafeatures import get_dataset_metafeatures_path FAIL_MESSAGE = "message" FAIL_REPORT = "report" TEST_NAME = "test_name" class MetafeaturesWithDataTestCase(unittest.TestCase): """ Contains tests for Metafeatures that require loading data first. """ def setUp(self): self.datasets = {} with open(METADATA_PATH, "r") as fh: dataset_descriptions = json.load(fh) for dataset_description in dataset_descriptions: X, Y, column_types = read_dataset(dataset_description) filename = dataset_description["filename"] known_dataset_metafeatures_path = get_dataset_metafeatures_path( filename ) if os.path.exists(known_dataset_metafeatures_path): with open(known_dataset_metafeatures_path) as fh: metafeatures = json.load(fh) self.datasets[filename] = { "X": X, "Y": Y, "column_types": column_types, "known_metafeatures": metafeatures, "known_metafeatures_path": known_dataset_metafeatures_path } else: raise FileNotFoundError(f"{known_dataset_metafeatures_path} does not exist") def tearDown(self): del self.datasets def _report_test_failures(self, test_failures, test_name): if test_failures != {}: report_path = f"./failures_{test_name}.json" with open(report_path, "w") as fh: json.dump(test_failures, fh, indent=4) message = next(iter(test_failures.values()))[FAIL_MESSAGE] self.fail( f"{message} Details have been written in {report_path}." ) def _check_correctness(self, computed_mfs, known_mfs, filename): """ Tests whether computed_mfs are close to previously computed metafeature values. This assumes that the previously computed values are correct and allows testing for changes in metafeature computation. Only checks the correctness of the metafeatures passed in--does not test that all computable metafeatures were computed. """ test_failures = {} fail_message = "Not all metafeatures matched previous results." for mf_id, result in computed_mfs.items(): computed_value = result[consts.VALUE_KEY] if not any(isinstance(computed_value, type_) for type_ in [str, float, int]): self.fail( 'computed {} has invalid value {} with type {}'.format(mf_id, computed_value, type(computed_value)) ) known_value = known_mfs[mf_id][consts.VALUE_KEY] correct = True if known_value is None: correct = False elif type(known_value) is str: correct = known_value == computed_value else: correct = np.array(np.isclose(known_value, computed_value, equal_nan=True)).all() if not correct: test_failures[mf_id] = { "known_value": known_value, "computed_value": computed_value } return self._format_check_report( "correctness", fail_message, test_failures, filename ) def _format_check_report( self, test_name, fail_message, test_failures, filename ): if test_failures == {}: return test_failures else: return { filename: { TEST_NAME: test_name, FAIL_MESSAGE: fail_message, FAIL_REPORT: test_failures } } def _check_compare_metafeature_lists(self, computed_mfs, known_mfs, filename): """ Tests whether computed_mfs matches the list of previously computed metafeature names as well as the list of computable metafeatures in Metafeatures.list_metafeatures """ test_failures = {} fail_message = "Metafeature lists do not match." master_mf_ids_set = set(Metafeatures.IDS) known_mf_ids_set = set({ x for x in known_mfs.keys() if "_Time" not in x }) computed_mf_ids_set = set(computed_mfs.keys()) intersect_mf_ids_set = master_mf_ids_set.intersection(known_mf_ids_set ).intersection(computed_mf_ids_set) master_diffs = master_mf_ids_set - intersect_mf_ids_set if len(master_diffs) > 0: test_failures["master_differences"] = list(master_diffs) known_diffs = known_mf_ids_set - intersect_mf_ids_set if len(known_diffs) > 0: test_failures["known_differences"] = list(known_diffs) computed_diffs = computed_mf_ids_set - intersect_mf_ids_set if len(computed_diffs) > 0: test_failures["computed_differences"] = list(computed_diffs) return self._format_check_report( "metafeature_lists", fail_message, test_failures, filename ) def _perform_checks(self, functions): check = {} for function, args in functions: check = function(*args) if check != {}: break return check def test_run_without_exception(self): try: for dataset_filename, dataset in self.datasets.items(): Metafeatures().compute( X=dataset["X"], Y=dataset["Y"], column_types=dataset["column_types"] ) except Exception as e: exc_type = type(e).__name__ self.fail(f"computing metafeatures raised {exc_type} unexpectedly") def test_correctness(self): """Tests that metafeatures are computed correctly, for known datasets. """ test_failures = {} test_name = inspect.stack()[0][3] for dataset_filename, dataset in self.datasets.items(): computed_mfs = Metafeatures().compute( X=dataset["X"], Y=dataset["Y"], seed=CORRECTNESS_SEED, column_types=dataset["column_types"] ) known_mfs = dataset["known_metafeatures"] required_checks = [ (self._check_correctness, [computed_mfs, known_mfs, dataset_filename]), (self._check_compare_metafeature_lists, [computed_mfs, known_mfs, dataset_filename]) ] test_failures.update(self._perform_checks(required_checks)) self._report_test_failures(test_failures, test_name) def test_individual_metafeature_correctness(self): test_failures = {} test_name = inspect.stack()[0][3] for dataset_filename, dataset in self.datasets.items(): known_mfs = dataset["known_metafeatures"] for mf_id in Metafeatures.IDS: computed_mfs = Metafeatures().compute( X=dataset["X"], Y=dataset["Y"], seed=CORRECTNESS_SEED, metafeature_ids=[mf_id], column_types=dataset["column_types"] ) required_checks = [ (self._check_correctness, [computed_mfs, known_mfs, dataset_filename]) ] test_failures.update(self._perform_checks(required_checks)) self._report_test_failures(test_failures, test_name) def test_no_targets(self): """ Test Metafeatures().compute() without targets """ test_failures = {} test_name = inspect.stack()[0][3] for dataset_filename, dataset in self.datasets.items(): metafeatures = Metafeatures() computed_mfs = metafeatures.compute( X=dataset["X"], Y=None, seed=CORRECTNESS_SEED, column_types=dataset["column_types"] ) known_mfs = dataset["known_metafeatures"] target_dependent_metafeatures = Metafeatures.list_metafeatures( consts.MetafeatureGroup.TARGET_DEPENDENT.value ) for mf_name in target_dependent_metafeatures: known_mfs[mf_name] = { consts.VALUE_KEY: consts.NO_TARGETS, consts.COMPUTE_TIME_KEY: 0. } required_checks = [ (self._check_correctness, [computed_mfs, known_mfs, dataset_filename]), (self._check_compare_metafeature_lists, [computed_mfs, known_mfs, dataset_filename]) ] test_failures.update(self._perform_checks(required_checks)) self._report_test_failures(test_failures, test_name) def test_numeric_targets(self): """ Test Metafeatures().compute() with numeric targets """ test_failures = {} test_name = inspect.stack()[0][3] for dataset_filename, dataset in self.datasets.items(): metafeatures = Metafeatures() column_types = dataset["column_types"].copy() column_types[dataset["Y"].name] = consts.NUMERIC computed_mfs = metafeatures.compute( X=dataset["X"], Y=pd.Series(np.random.rand(dataset["Y"].shape[0]), name=dataset["Y"].name), seed=CORRECTNESS_SEED, column_types=column_types ) known_mfs = dataset["known_metafeatures"] target_dependent_metafeatures = Metafeatures.list_metafeatures( consts.MetafeatureGroup.TARGET_DEPENDENT.value ) for mf_name in target_dependent_metafeatures: known_mfs[mf_name] = { consts.VALUE_KEY: consts.NUMERIC_TARGETS, consts.COMPUTE_TIME_KEY: 0. } required_checks = [ (self._check_correctness, [computed_mfs, known_mfs, dataset_filename]), (self._check_compare_metafeature_lists, [computed_mfs, known_mfs, dataset_filename]) ] test_failures.update(self._perform_checks(required_checks)) self._report_test_failures(test_failures, test_name) def test_request_metafeatures(self): SUBSET_LENGTH = 20 test_failures = {} test_name = inspect.stack()[0][3] for dataset_filename, dataset in self.datasets.items(): metafeature_ids = random.sample(Metafeatures.IDS, SUBSET_LENGTH) computed_mfs = Metafeatures().compute( X=dataset["X"],Y=dataset["Y"], seed=CORRECTNESS_SEED, metafeature_ids=metafeature_ids, column_types=dataset["column_types"] ) known_metafeatures = dataset["known_metafeatures"] required_checks = [ (self._check_correctness, [computed_mfs, known_metafeatures, dataset_filename]) ] test_failures.update(self._perform_checks(required_checks)) self.assertEqual( set(metafeature_ids), set(computed_mfs.keys()), "Compute did not return requested metafeatures" ) self._report_test_failures(test_failures, test_name) def test_exclude_metafeatures(self): SUBSET_LENGTH = 20 test_failures = {} test_name = inspect.stack()[0][3] for dataset_filename, dataset in self.datasets.items(): metafeature_ids = random.sample(Metafeatures.IDS, SUBSET_LENGTH) computed_mfs = Metafeatures().compute( X=dataset["X"], Y=dataset["Y"], seed=CORRECTNESS_SEED, exclude=metafeature_ids, column_types=dataset["column_types"] ) known_metafeatures = dataset["known_metafeatures"] required_checks = [ (self._check_correctness, [computed_mfs, known_metafeatures, dataset_filename]) ] test_failures.update(self._perform_checks(required_checks)) if any(mf_id in computed_mfs.keys() for mf_id in metafeature_ids): self.assertTrue(False, "Metafeatures computed an excluded metafeature") self._report_test_failures(test_failures, test_name) def test_request_metafeature_groups(self): SUBSET_LENGTH = 3 test_failures = {} test_name = inspect.stack()[0][3] for dataset_filename, dataset in self.datasets.items(): groups = random.sample([group.value for group in consts.MetafeatureGroup], SUBSET_LENGTH) computed_mfs = Metafeatures().compute( X=dataset["X"], Y=dataset["Y"], column_types=dataset["column_types"], seed=CORRECTNESS_SEED, groups=groups, ) known_metafeatures = dataset["known_metafeatures"] required_checks = [ (self._check_correctness, [computed_mfs, known_metafeatures, dataset_filename]) ] test_failures.update(self._perform_checks(required_checks)) metafeature_ids = set(mf_id for group in groups for mf_id in Metafeatures.list_metafeatures(group)) self.assertEqual( metafeature_ids, set(computed_mfs.keys()), 'Compute did not return requested metafeatures' ) self._report_test_failures(test_failures, test_name) def test_exclude_metafeature_groups(self): SUBSET_LENGTH = 3 test_failures = {} test_name = inspect.stack()[0][3] for dataset_filename, dataset in self.datasets.items(): groups = random.sample([group.value for group in consts.MetafeatureGroup], SUBSET_LENGTH) computed_mfs = Metafeatures().compute( X=dataset["X"], Y=dataset["Y"], column_types=dataset["column_types"], seed=CORRECTNESS_SEED, exclude_groups=groups, ) known_metafeatures = dataset["known_metafeatures"] required_checks = [ (self._check_correctness, [computed_mfs, known_metafeatures, dataset_filename]) ] test_failures.update(self._perform_checks(required_checks)) metafeature_ids = set(mf_id for group in groups for mf_id in Metafeatures.list_metafeatures(group)) if any(mf_id in computed_mfs.keys() for mf_id in metafeature_ids): self.fail('Metafeatures computed an excluded metafeature') self._report_test_failures(test_failures, test_name) def test_compute_effects_on_dataset(self): """ Tests whether computing metafeatures has any side effects on the input X or Y data. Fails if there are any side effects. """ for dataset in self.datasets.values(): X_copy, Y_copy = dataset["X"].copy(), dataset["Y"].copy() Metafeatures().compute( X=dataset["X"],Y=dataset["Y"], column_types=dataset["column_types"] ) if not ( X_copy.equals(dataset["X"]) and Y_copy.equals(dataset["Y"]) ): self.assertTrue( False, "Input data has changed after Metafeatures.compute" ) def test_compute_effects_on_compute(self): """ Tests whether computing metafeatures has any side effects on the instance metafeatures object. Fails if there are any side effects. """ required_checks = [] test_failures = {} test_name = inspect.stack()[0][3] for dataset_filename, dataset in self.datasets.items(): metafeatures_instance = Metafeatures() # first run metafeatures_instance.compute( X=dataset["X"],Y=dataset["Y"],seed=CORRECTNESS_SEED, column_types=dataset["column_types"] ) # second run computed_mfs = metafeatures_instance.compute( X=dataset["X"],Y=dataset["Y"],seed=CORRECTNESS_SEED, column_types=dataset["column_types"] ) known_mfs = dataset["known_metafeatures"] required_checks.append( (self._check_correctness, [computed_mfs, known_mfs, dataset_filename]) ) test_failures.update(self._perform_checks(required_checks)) self._report_test_failures(test_failures, test_name) def test_output_format(self): with open(METAFEATURES_JSON_SCHEMA_PATH) as f: mf_schema = json.load(f) for dataset_filename, dataset in self.datasets.items(): computed_mfs = Metafeatures().compute( X=dataset["X"],Y=dataset["Y"], column_types=dataset["column_types"] ) try: jsonschema.validate(computed_mfs, mf_schema) except jsonschema.exceptions.ValidationError as e: self.fail( f"Metafeatures computed from {dataset_filename} do not "+ "conform to schema" ) def test_output_json_compatibility(self): with open(METAFEATURES_JSON_SCHEMA_PATH) as f: mf_schema = json.load(f) for dataset_filename, dataset in self.datasets.items(): computed_mfs = Metafeatures().compute( X=dataset["X"],Y=dataset["Y"], column_types=dataset["column_types"] ) try: json_computed_mfs = json.dumps(computed_mfs) except Exception as e: self.fail( f"Failed to convert metafeature output to json: {str(e)}" ) def test_soft_timeout(self): """Tests Metafeatures().compute() with timeout set""" test_name = inspect.stack()[0][3] test_failures = {} for dataset_filename, dataset in self.datasets.items(): metafeatures = Metafeatures() start_time = time.time() metafeatures.compute( X=dataset["X"], Y=dataset["Y"], seed=CORRECTNESS_SEED, column_types=dataset["column_types"] ) full_compute_time = time.time() - start_time start_time = time.time() computed_mfs = metafeatures.compute( X=dataset["X"], Y=dataset["Y"], seed=CORRECTNESS_SEED, column_types=dataset["column_types"], timeout=full_compute_time/2 ) limited_compute_time = time.time() - start_time self.assertGreater( full_compute_time, limited_compute_time, f"Compute metafeatures exceeded timeout on '{dataset_filename}'" ) computed_mfs_timeout = {k: v for k, v in computed_mfs.items() if v[consts.VALUE_KEY] != consts.TIMEOUT} known_mfs = dataset["known_metafeatures"] required_checks = [ (self._check_correctness, [computed_mfs_timeout, known_mfs, dataset_filename]), (self._check_compare_metafeature_lists, [computed_mfs, known_mfs, dataset_filename]) ] test_failures.update(self._perform_checks(required_checks)) self._report_test_failures(test_failures, test_name) class MetafeaturesTestCase(unittest.TestCase): """ Contains tests for Metafeatures that can be executed without loading data. """ def setUp(self): self.dummy_features = pd.DataFrame(np.random.rand(50, 50)) self.dummy_target = pd.Series(np.random.randint(2, size=50), name="target").astype("str") self.invalid_requested_metafeature_message_start = "One or more requested metafeatures are not valid:" self.invalid_excluded_metafeature_message_start = "One or more excluded metafeatures are not valid:" self.invalid_metafeature_message_start_fail_message = "Error message indicating invalid metafeatures did not start with expected string." self.invalid_metafeature_message_contains_fail_message = "Error message indicating invalid metafeatures should include names of invalid features." def test_dataframe_input_error(self): """ Tests if `compute` gives a user-friendly error when a TypeError or ValueError occurs. """ expected_error_message1 = "X must be of type pandas.DataFrame" fail_message1 = "We expect a user friendly message when the features passed to compute is not a Pandas.DataFrame." expected_error_message2 = "X must not be empty" fail_message2 = "We expect a user friendly message when the features passed to compute are empty." expected_error_message3 = "Y must be of type pandas.Series" fail_message3 = "We expect a user friendly message when the target column passed to compute is not a Pandas.Series." expected_error_message4 = "Y must have the same number of rows as X" fail_message4 = "We expect a user friendly message when the target column passed to compute has a number of rows different than X's." # We don't check for the Type of TypeError explicitly as any other error would fail the unit test. with self.assertRaises(TypeError) as cm: Metafeatures().compute(X=None, Y=self.dummy_target) self.assertEqual(str(cm.exception), expected_error_message1, fail_message1) with self.assertRaises(TypeError) as cm: Metafeatures().compute(X=np.zeros((500, 50)), Y=pd.Series(np.zeros(500))) self.assertEqual(str(cm.exception), expected_error_message1, fail_message1) with self.assertRaises(ValueError) as cm: Metafeatures().compute(X=pd.DataFrame(np.zeros((0, 50))), Y=pd.Series(np.zeros(500))) self.assertEqual(str(cm.exception), expected_error_message2, fail_message2) with self.assertRaises(ValueError) as cm: Metafeatures().compute(X=pd.DataFrame(np.zeros((500, 0))), Y=pd.Series(np.zeros(500))) self.assertEqual(str(cm.exception), expected_error_message2, fail_message2) with self.assertRaises(TypeError) as cm: Metafeatures().compute(X=pd.DataFrame(np.zeros((500, 50))), Y=np.random.randint(2, size=500).astype("str")) self.assertEqual(str(cm.exception), expected_error_message3, fail_message3) with self.assertRaises(ValueError) as cm: Metafeatures().compute(X=pd.DataFrame(np.zeros((500, 50))), Y=pd.Series(np.random.randint(2, size=0), name="target").astype("str")) self.assertEqual(str(cm.exception), expected_error_message4, fail_message4) def _check_invalid_metafeature_exception_string(self, exception_str, expected_str, invalid_metafeatures): """ Checks if the exception message starts with the right string, and contains all of the invalid metafeatures expected. """ self.assertTrue( exception_str.startswith(expected_str), self.invalid_metafeature_message_start_fail_message ) for invalid_mf in invalid_metafeatures: self.assertTrue( invalid_mf in exception_str, self.invalid_metafeature_message_contains_fail_message ) def test_metafeatures_input_all_invalid(self): """ Test cases where all requested and excluded metafeatures are invalid. """ invalid_metafeatures = ["ThisIsNotValid", "ThisIsAlsoNotValid"] with self.assertRaises(ValueError) as cm: Metafeatures().compute(X=self.dummy_features, Y=self.dummy_target, metafeature_ids=invalid_metafeatures) self._check_invalid_metafeature_exception_string(str(cm.exception), self.invalid_requested_metafeature_message_start, invalid_metafeatures) with self.assertRaises(ValueError) as cm: Metafeatures().compute(X=self.dummy_features, Y=self.dummy_target, exclude=invalid_metafeatures) self._check_invalid_metafeature_exception_string(str(cm.exception), self.invalid_excluded_metafeature_message_start, invalid_metafeatures) def test_metafeatures_input_partial_invalid(self): """ Test case where only some requested and excluded metafeatures are invalid. """ invalid_metafeatures = ["ThisIsNotValid", "ThisIsAlsoNotValid"] valid_metafeatures = ["NumberOfInstances", "NumberOfFeatures"] with self.assertRaises(ValueError) as cm: Metafeatures().compute(X=self.dummy_features, Y=self.dummy_target, metafeature_ids=invalid_metafeatures + valid_metafeatures) self._check_invalid_metafeature_exception_string(str(cm.exception), self.invalid_requested_metafeature_message_start, invalid_metafeatures) with self.assertRaises(ValueError) as cm: Metafeatures().compute(X=self.dummy_features, Y=self.dummy_target, exclude=invalid_metafeatures + valid_metafeatures) self._check_invalid_metafeature_exception_string(str(cm.exception), self.invalid_excluded_metafeature_message_start, invalid_metafeatures) # Order should not matter with self.assertRaises(ValueError) as cm: Metafeatures().compute(X=self.dummy_features, Y=self.dummy_target, metafeature_ids=valid_metafeatures + invalid_metafeatures) self._check_invalid_metafeature_exception_string(str(cm.exception), self.invalid_requested_metafeature_message_start, invalid_metafeatures) with self.assertRaises(ValueError) as cm: Metafeatures().compute(X=self.dummy_features, Y=self.dummy_target, exclude=valid_metafeatures + invalid_metafeatures) self._check_invalid_metafeature_exception_string(str(cm.exception), self.invalid_excluded_metafeature_message_start, invalid_metafeatures) def test_request_and_exclude_metafeatures(self): expected_exception_string = "metafeature_ids and exclude cannot both be non-null" with self.assertRaises(ValueError) as cm: Metafeatures().compute(X=self.dummy_features, Y=self.dummy_target, metafeature_ids=[], exclude=[]) self.assertEqual(str(cm.exception), expected_exception_string) def test_request_and_exclude_metafeature_groups(self): with self.assertRaises(ValueError) as cm: Metafeatures().compute(X=self.dummy_features, Y=self.dummy_target, groups=[], exclude_groups=[]) with self.assertRaises(ValueError) as cm: Metafeatures().compute(X=self.dummy_features, Y=self.dummy_target, groups=['foobar']) with self.assertRaises(ValueError) as cm: Metafeatures().compute(X=self.dummy_features, Y=self.dummy_target, exclude_groups=['foobar']) def test_column_type_input(self): column_types = {col: consts.NUMERIC for col in self.dummy_features.columns} column_types[self.dummy_features.columns[2]] = consts.CATEGORICAL column_types[self.dummy_target.name] = consts.CATEGORICAL # all valid try: Metafeatures().compute( self.dummy_features, self.dummy_target, column_types ) except Exception as e: exc_type = type(e).__name__ self.fail(f"computing metafeatures raised {exc_type} unexpectedly") # some valid column_types[self.dummy_features.columns[0]] = "NUMBER" column_types[self.dummy_features.columns[1]] = "CATEGORY" with self.assertRaises(ValueError) as cm: Metafeatures().compute( self.dummy_features, self.dummy_target, column_types ) self.assertTrue( str(cm.exception).startswith( "Invalid column types:" ), "Some invalid column types test failed" ) # all invalid column_types = {feature: "INVALID_TYPE" for feature in self.dummy_features.columns} column_types[self.dummy_target.name] = "INVALID" with self.assertRaises(ValueError) as cm: Metafeatures().compute( self.dummy_features, self.dummy_target, column_types ) self.assertTrue( str(cm.exception).startswith( "Invalid column types:" ), "All invalid column types test failed" ) # invalid number of column types del column_types[self.dummy_features.columns[0]] with self.assertRaises(ValueError) as cm: Metafeatures().compute( self.dummy_features, self.dummy_target, column_types ) self.assertTrue( str(cm.exception).startswith( "Column type not specified for column" ), "Invalid number of column types test failed" ) def test_sampling_shape_no_exception(self): try: Metafeatures().compute( self.dummy_features, self.dummy_target, sample_shape=(10,10) ) except Exception as e: exc_type = type(e).__name__ self.fail(f"computing metafeatures raised {exc_type} unexpectedly") def test_sampling_shape_correctness(self): sample_shape = (7,13) metafeatures = Metafeatures() dummy_mf_df = metafeatures.compute( self.dummy_features, self.dummy_target, sample_shape=sample_shape ) X_sample = metafeatures._resources["XSample"]["value"] self.assertEqual( X_sample.shape, sample_shape, f"Sampling produced incorrect shape {X_sample.shape}; should have" + f" been {sample_shape}." ) def test_sampling_shape_invalid_input(self): error_tests = [ { "sample_shape": "bad_shape", "message": "`sample_shape` must be of type `tuple` or `list`" }, { "sample_shape": {0:"bad", 1:"shape"}, "message": "`sample_shape` must be of type `tuple` or `list`" }, { "sample_shape": (2,2,2), "message": "`sample_shape` must be of length 2" }, { "sample_shape": [1], "message": "`sample_shape` must be of length 2" }, { "sample_shape": (0,1), "message": "Cannot sample less than one row" }, { "sample_shape": (1,0), "message": "Cannot sample less than 1 column" }, { "sample_shape": (3,10), # 4 based on self.dummy_target "message": "Cannot sample less than 4 rows from Y" } ] for test in error_tests: with self.assertRaises(ValueError) as cm: Metafeatures().compute( self.dummy_features, self.dummy_target, sample_shape=test["sample_shape"] ) self.assertEqual( str(cm.exception), test["message"] ) def test_n_folds_invalid_input(self): tests = [ { "n_folds": 0, "message": "`n_folds` must be >= 2, but was 0" }, { "n_folds": 1, "message": "`n_folds` must be >= 2, but was 1" }, { "n_folds": 2.1, "message": "`n_folds` must be an integer, not 2.1" }, { "n_folds": "hello", "message": "`n_folds` must be an integer, not hello" }, { "n_folds": [3], "message": "`n_folds` must be an integer, not [3]" }, { "n_folds": {5:7}, "message": "`n_folds` must be an integer, not {5: 7}" } ] for test in tests: with self.assertRaises(ValueError) as cm: Metafeatures().compute( self.dummy_features, self.dummy_target, n_folds=test["n_folds"] ) self.assertEqual(str(cm.exception), test["message"]) def test_n_folds_with_small_dataset(self): # should raise error with small (few instances) dataset # unless not computing landmarking mfs X_small = pd.DataFrame(np.random.rand(3, 7)) Y_small = pd.Series([0,1,0], name="target").astype("str") metafeatures = Metafeatures() with self.assertRaises(ValueError) as cm: metafeatures.compute(X_small, Y_small, n_folds=2) self.assertEqual( str(cm.exception), "The minimum number of instances in each class of Y is n_folds=2." + " Class 1 has 1." ) def test_n_folds_with_small_dataset_no_landmarkers(self): # should raise error with small (few instances) dataset # unless not computing landmarking mfs X_small = pd.DataFrame(np.random.rand(3, 7)) Y_small =
pd.Series([0,1,0], name="target")
pandas.Series
import pandas as pd from sqlalchemy import create_engine, text from datetime import date, datetime, timedelta import concurrent.futures import requests as rq import time import config import traceback pd.set_option('display.max_columns', None) #pd.set_option('display.max_rows', None) # Key key = config.polygon_key # Input multiplier = 1 timespan = 'minute' adjusted = 'true' sort = 'desc' limit = 50000 # Database / Get list of tickers engine = create_engine(config.psql) symbols_df =
pd.read_sql_query('select ticker from companies where active = true', con=engine)
pandas.read_sql_query
from textwrap import dedent import numpy as np import pytest from pandas import ( DataFrame, MultiIndex, option_context, ) pytest.importorskip("jinja2") from pandas.io.formats.style import Styler from pandas.io.formats.style_render import ( _parse_latex_cell_styles, _parse_latex_css_conversion, _parse_latex_header_span, _parse_latex_table_styles, _parse_latex_table_wrapping, ) @pytest.fixture def df(): return DataFrame({"A": [0, 1], "B": [-0.61, -1.22], "C": ["ab", "cd"]}) @pytest.fixture def df_ext(): return DataFrame( {"A": [0, 1, 2], "B": [-0.61, -1.22, -2.22], "C": ["ab", "cd", "de"]} ) @pytest.fixture def styler(df): return Styler(df, uuid_len=0, precision=2) def test_minimal_latex_tabular(styler): expected = dedent( """\ \\begin{tabular}{lrrl} & A & B & C \\\\ 0 & 0 & -0.61 & ab \\\\ 1 & 1 & -1.22 & cd \\\\ \\end{tabular} """ ) assert styler.to_latex() == expected def test_tabular_hrules(styler): expected = dedent( """\ \\begin{tabular}{lrrl} \\toprule & A & B & C \\\\ \\midrule 0 & 0 & -0.61 & ab \\\\ 1 & 1 & -1.22 & cd \\\\ \\bottomrule \\end{tabular} """ ) assert styler.to_latex(hrules=True) == expected def test_tabular_custom_hrules(styler): styler.set_table_styles( [ {"selector": "toprule", "props": ":hline"}, {"selector": "bottomrule", "props": ":otherline"}, ] ) # no midrule expected = dedent( """\ \\begin{tabular}{lrrl} \\hline & A & B & C \\\\ 0 & 0 & -0.61 & ab \\\\ 1 & 1 & -1.22 & cd \\\\ \\otherline \\end{tabular} """ ) assert styler.to_latex() == expected def test_column_format(styler): # default setting is already tested in `test_latex_minimal_tabular` styler.set_table_styles([{"selector": "column_format", "props": ":cccc"}]) assert "\\begin{tabular}{rrrr}" in styler.to_latex(column_format="rrrr") styler.set_table_styles([{"selector": "column_format", "props": ":r|r|cc"}]) assert "\\begin{tabular}{r|r|cc}" in styler.to_latex() def test_siunitx_cols(styler): expected = dedent( """\ \\begin{tabular}{lSSl} {} & {A} & {B} & {C} \\\\ 0 & 0 & -0.61 & ab \\\\ 1 & 1 & -1.22 & cd \\\\ \\end{tabular} """ ) assert styler.to_latex(siunitx=True) == expected def test_position(styler): assert "\\begin{table}[h!]" in styler.to_latex(position="h!") assert "\\end{table}" in styler.to_latex(position="h!") styler.set_table_styles([{"selector": "position", "props": ":b!"}]) assert "\\begin{table}[b!]" in styler.to_latex() assert "\\end{table}" in styler.to_latex() @pytest.mark.parametrize("env", [None, "longtable"]) def test_label(styler, env): assert "\n\\label{text}" in styler.to_latex(label="text", environment=env) styler.set_table_styles([{"selector": "label", "props": ":{more §text}"}]) assert "\n\\label{more :text}" in styler.to_latex(environment=env) def test_position_float_raises(styler): msg = "`position_float` should be one of 'raggedright', 'raggedleft', 'centering'," with pytest.raises(ValueError, match=msg): styler.to_latex(position_float="bad_string") msg = "`position_float` cannot be used in 'longtable' `environment`" with pytest.raises(ValueError, match=msg): styler.to_latex(position_float="centering", environment="longtable") @pytest.mark.parametrize("label", [(None, ""), ("text", "\\label{text}")]) @pytest.mark.parametrize("position", [(None, ""), ("h!", "{table}[h!]")]) @pytest.mark.parametrize("caption", [(None, ""), ("text", "\\caption{text}")]) @pytest.mark.parametrize("column_format", [(None, ""), ("rcrl", "{tabular}{rcrl}")]) @pytest.mark.parametrize("position_float", [(None, ""), ("centering", "\\centering")]) def test_kwargs_combinations( styler, label, position, caption, column_format, position_float ): result = styler.to_latex( label=label[0], position=position[0], caption=caption[0], column_format=column_format[0], position_float=position_float[0], ) assert label[1] in result assert position[1] in result assert caption[1] in result assert column_format[1] in result assert position_float[1] in result def test_custom_table_styles(styler): styler.set_table_styles( [ {"selector": "mycommand", "props": ":{myoptions}"}, {"selector": "mycommand2", "props": ":{myoptions2}"}, ] ) expected = dedent( """\ \\begin{table} \\mycommand{myoptions} \\mycommand2{myoptions2} """ ) assert expected in styler.to_latex() def test_cell_styling(styler): styler.highlight_max(props="itshape:;Huge:--wrap;") expected = dedent( """\ \\begin{tabular}{lrrl} & A & B & C \\\\ 0 & 0 & \\itshape {\\Huge -0.61} & ab \\\\ 1 & \\itshape {\\Huge 1} & -1.22 & \\itshape {\\Huge cd} \\\\ \\end{tabular} """ ) assert expected == styler.to_latex() def test_multiindex_columns(df): cidx = MultiIndex.from_tuples([("A", "a"), ("A", "b"), ("B", "c")]) df.columns = cidx expected = dedent( """\ \\begin{tabular}{lrrl} & \\multicolumn{2}{r}{A} & B \\\\ & a & b & c \\\\ 0 & 0 & -0.61 & ab \\\\ 1 & 1 & -1.22 & cd \\\\ \\end{tabular} """ ) s = df.style.format(precision=2) assert expected == s.to_latex() # non-sparse expected = dedent( """\ \\begin{tabular}{lrrl} & A & A & B \\\\ & a & b & c \\\\ 0 & 0 & -0.61 & ab \\\\ 1 & 1 & -1.22 & cd \\\\ \\end{tabular} """ ) s = df.style.format(precision=2) assert expected == s.to_latex(sparse_columns=False) def test_multiindex_row(df_ext): ridx = MultiIndex.from_tuples([("A", "a"), ("A", "b"), ("B", "c")]) df_ext.index = ridx expected = dedent( """\ \\begin{tabular}{llrrl} & & A & B & C \\\\ \\multirow[c]{2}{*}{A} & a & 0 & -0.61 & ab \\\\ & b & 1 & -1.22 & cd \\\\ B & c & 2 & -2.22 & de \\\\ \\end{tabular} """ ) styler = df_ext.style.format(precision=2) result = styler.to_latex() assert expected == result # non-sparse expected = dedent( """\ \\begin{tabular}{llrrl} & & A & B & C \\\\ A & a & 0 & -0.61 & ab \\\\ A & b & 1 & -1.22 & cd \\\\ B & c & 2 & -2.22 & de \\\\ \\end{tabular} """ ) result = styler.to_latex(sparse_index=False) assert expected == result def test_multirow_naive(df_ext): ridx = MultiIndex.from_tuples([("X", "x"), ("X", "y"), ("Y", "z")]) df_ext.index = ridx expected = dedent( """\ \\begin{tabular}{llrrl} & & A & B & C \\\\ X & x & 0 & -0.61 & ab \\\\ & y & 1 & -1.22 & cd \\\\ Y & z & 2 & -2.22 & de \\\\ \\end{tabular} """ ) styler = df_ext.style.format(precision=2) result = styler.to_latex(multirow_align="naive") assert expected == result def test_multiindex_row_and_col(df_ext): cidx = MultiIndex.from_tuples([("Z", "a"), ("Z", "b"), ("Y", "c")]) ridx = MultiIndex.from_tuples([("A", "a"), ("A", "b"), ("B", "c")]) df_ext.index, df_ext.columns = ridx, cidx expected = dedent( """\ \\begin{tabular}{llrrl} & & \\multicolumn{2}{l}{Z} & Y \\\\ & & a & b & c \\\\ \\multirow[b]{2}{*}{A} & a & 0 & -0.61 & ab \\\\ & b & 1 & -1.22 & cd \\\\ B & c & 2 & -2.22 & de \\\\ \\end{tabular} """ ) styler = df_ext.style.format(precision=2) result = styler.to_latex(multirow_align="b", multicol_align="l") assert result == expected # non-sparse expected = dedent( """\ \\begin{tabular}{llrrl} & & Z & Z & Y \\\\ & & a & b & c \\\\ A & a & 0 & -0.61 & ab \\\\ A & b & 1 & -1.22 & cd \\\\ B & c & 2 & -2.22 & de \\\\ \\end{tabular} """ ) result = styler.to_latex(sparse_index=False, sparse_columns=False) assert result == expected @pytest.mark.parametrize( "multicol_align, siunitx, header", [ ("naive-l", False, " & A & &"), ("naive-r", False, " & & & A"), ("naive-l", True, "{} & {A} & {} & {}"), ("naive-r", True, "{} & {} & {} & {A}"), ], ) def test_multicol_naive(df, multicol_align, siunitx, header): ridx = MultiIndex.from_tuples([("A", "a"), ("A", "b"), ("A", "c")]) df.columns = ridx level1 = " & a & b & c" if not siunitx else "{} & {a} & {b} & {c}" col_format = "lrrl" if not siunitx else "lSSl" expected = dedent( f"""\ \\begin{{tabular}}{{{col_format}}} {header} \\\\ {level1} \\\\ 0 & 0 & -0.61 & ab \\\\ 1 & 1 & -1.22 & cd \\\\ \\end{{tabular}} """ ) styler = df.style.format(precision=2) result = styler.to_latex(multicol_align=multicol_align, siunitx=siunitx) assert expected == result def test_multi_options(df_ext): cidx = MultiIndex.from_tuples([("Z", "a"), ("Z", "b"), ("Y", "c")]) ridx = MultiIndex.from_tuples([("A", "a"), ("A", "b"), ("B", "c")]) df_ext.index, df_ext.columns = ridx, cidx styler = df_ext.style.format(precision=2) expected = dedent( """\ & & \\multicolumn{2}{r}{Z} & Y \\\\ & & a & b & c \\\\ \\multirow[c]{2}{*}{A} & a & 0 & -0.61 & ab \\\\ """ ) result = styler.to_latex() assert expected in result with option_context("styler.latex.multicol_align", "l"): assert " & & \\multicolumn{2}{l}{Z} & Y \\\\" in styler.to_latex() with option_context("styler.latex.multirow_align", "b"): assert "\\multirow[b]{2}{*}{A} & a & 0 & -0.61 & ab \\\\" in styler.to_latex() def test_multiindex_columns_hidden(): df = DataFrame([[1, 2, 3, 4]]) df.columns = MultiIndex.from_tuples([("A", 1), ("A", 2), ("A", 3), ("B", 1)]) s = df.style assert "{tabular}{lrrrr}" in s.to_latex() s.set_table_styles([]) # reset the position command s.hide([("A", 2)], axis="columns") assert "{tabular}{lrrr}" in s.to_latex() @pytest.mark.parametrize( "option, value", [ ("styler.sparse.index", True), ("styler.sparse.index", False), ("styler.sparse.columns", True), ("styler.sparse.columns", False), ], ) def test_sparse_options(df_ext, option, value): cidx = MultiIndex.from_tuples([("Z", "a"), ("Z", "b"), ("Y", "c")]) ridx = MultiIndex.from_tuples([("A", "a"), ("A", "b"), ("B", "c")]) df_ext.index, df_ext.columns = ridx, cidx styler = df_ext.style latex1 = styler.to_latex() with option_context(option, value): latex2 = styler.to_latex() assert (latex1 == latex2) is value def test_hidden_index(styler): styler.hide(axis="index") expected = dedent( """\ \\begin{tabular}{rrl} A & B & C \\\\ 0 & -0.61 & ab \\\\ 1 & -1.22 & cd \\\\ \\end{tabular} """ ) assert styler.to_latex() == expected @pytest.mark.parametrize("environment", ["table", "figure*", None]) def test_comprehensive(df_ext, environment): # test as many low level features simultaneously as possible cidx = MultiIndex.from_tuples([("Z", "a"), ("Z", "b"), ("Y", "c")]) ridx = MultiIndex.from_tuples([("A", "a"), ("A", "b"), ("B", "c")]) df_ext.index, df_ext.columns = ridx, cidx stlr = df_ext.style stlr.set_caption("mycap") stlr.set_table_styles( [ {"selector": "label", "props": ":{fig§item}"}, {"selector": "position", "props": ":h!"}, {"selector": "position_float", "props": ":centering"}, {"selector": "column_format", "props": ":rlrlr"}, {"selector": "toprule", "props": ":toprule"}, {"selector": "midrule", "props": ":midrule"}, {"selector": "bottomrule", "props": ":bottomrule"}, {"selector": "rowcolors", "props": ":{3}{pink}{}"}, # custom command ] ) stlr.highlight_max(axis=0, props="textbf:--rwrap;cellcolor:[rgb]{1,1,0.6}--rwrap") stlr.highlight_max(axis=None, props="Huge:--wrap;", subset=[("Z", "a"), ("Z", "b")]) expected = ( """\ \\begin{table}[h!] \\centering \\caption{mycap} \\label{fig:item} \\rowcolors{3}{pink}{} \\begin{tabular}{rlrlr} \\toprule & & \\multicolumn{2}{r}{Z} & Y \\\\ & & a & b & c \\\\ \\midrule \\multirow[c]{2}{*}{A} & a & 0 & \\textbf{\\cellcolor[rgb]{1,1,0.6}{-0.61}} & ab \\\\ & b & 1 & -1.22 & cd \\\\ B & c & \\textbf{\\cellcolor[rgb]{1,1,0.6}{{\\Huge 2}}} & -2.22 & """ """\ \\textbf{\\cellcolor[rgb]{1,1,0.6}{de}} \\\\ \\bottomrule \\end{tabular} \\end{table} """ ).replace("table", environment if environment else "table") result = stlr.format(precision=2).to_latex(environment=environment) assert result == expected def test_environment_option(styler): with option_context("styler.latex.environment", "bar-env"): assert "\\begin{bar-env}" in styler.to_latex() assert "\\begin{foo-env}" in styler.to_latex(environment="foo-env") def test_parse_latex_table_styles(styler): styler.set_table_styles( [ {"selector": "foo", "props": [("attr", "value")]}, {"selector": "bar", "props": [("attr", "overwritten")]}, {"selector": "bar", "props": [("attr", "baz"), ("attr2", "ignored")]}, {"selector": "label", "props": [("", "{fig§item}")]}, ] ) assert _parse_latex_table_styles(styler.table_styles, "bar") == "baz" # test '§' replaced by ':' [for CSS compatibility] assert _parse_latex_table_styles(styler.table_styles, "label") == "{fig:item}" def test_parse_latex_cell_styles_basic(): # test nesting cell_style = [("itshape", "--rwrap"), ("cellcolor", "[rgb]{0,1,1}--rwrap")] expected = "\\itshape{\\cellcolor[rgb]{0,1,1}{text}}" assert _parse_latex_cell_styles(cell_style, "text") == expected @pytest.mark.parametrize( "wrap_arg, expected", [ # test wrapping ("", "\\<command><options> <display_value>"), ("--wrap", "{\\<command><options> <display_value>}"), ("--nowrap", "\\<command><options> <display_value>"), ("--lwrap", "{\\<command><options>} <display_value>"), ("--dwrap", "{\\<command><options>}{<display_value>}"), ("--rwrap", "\\<command><options>{<display_value>}"), ], ) def test_parse_latex_cell_styles_braces(wrap_arg, expected): cell_style = [("<command>", f"<options>{wrap_arg}")] assert _parse_latex_cell_styles(cell_style, "<display_value>") == expected def test_parse_latex_header_span(): cell = {"attributes": 'colspan="3"', "display_value": "text", "cellstyle": []} expected = "\\multicolumn{3}{Y}{text}" assert _parse_latex_header_span(cell, "X", "Y") == expected cell = {"attributes": 'rowspan="5"', "display_value": "text", "cellstyle": []} expected = "\\multirow[X]{5}{*}{text}" assert _parse_latex_header_span(cell, "X", "Y") == expected cell = {"display_value": "text", "cellstyle": []} assert _parse_latex_header_span(cell, "X", "Y") == "text" cell = {"display_value": "text", "cellstyle": [("bfseries", "--rwrap")]} assert _parse_latex_header_span(cell, "X", "Y") == "\\bfseries{text}" def test_parse_latex_table_wrapping(styler): styler.set_table_styles( [ {"selector": "toprule", "props": ":value"}, {"selector": "bottomrule", "props": ":value"}, {"selector": "midrule", "props": ":value"}, {"selector": "column_format", "props": ":value"}, ] ) assert _parse_latex_table_wrapping(styler.table_styles, styler.caption) is False assert _parse_latex_table_wrapping(styler.table_styles, "some caption") is True styler.set_table_styles( [ {"selector": "not-ignored", "props": ":value"}, ], overwrite=False, ) assert _parse_latex_table_wrapping(styler.table_styles, None) is True def test_short_caption(styler): result = styler.to_latex(caption=("full cap", "short cap")) assert "\\caption[short cap]{full cap}" in result @pytest.mark.parametrize( "css, expected", [ ([("color", "red")], [("color", "{red}")]), # test color and input format types ( [("color", "rgb(128, 128, 128 )")], [("color", "[rgb]{0.502, 0.502, 0.502}")], ), ( [("color", "rgb(128, 50%, 25% )")], [("color", "[rgb]{0.502, 0.500, 0.250}")], ), ( [("color", "rgba(128,128,128,1)")], [("color", "[rgb]{0.502, 0.502, 0.502}")], ), ([("color", "#FF00FF")], [("color", "[HTML]{FF00FF}")]), ([("color", "#F0F")], [("color", "[HTML]{FF00FF}")]), ([("font-weight", "bold")], [("bfseries", "")]), # test font-weight and types ([("font-weight", "bolder")], [("bfseries", "")]), ([("font-weight", "normal")], []), ([("background-color", "red")], [("cellcolor", "{red}--lwrap")]), ( [("background-color", "#FF00FF")], # test background-color command and wrap [("cellcolor", "[HTML]{FF00FF}--lwrap")], ), ([("font-style", "italic")], [("itshape", "")]), # test font-style and types ([("font-style", "oblique")], [("slshape", "")]), ([("font-style", "normal")], []), ([("color", "red /*--dwrap*/")], [("color", "{red}--dwrap")]), # css comments ([("background-color", "red /* --dwrap */")], [("cellcolor", "{red}--dwrap")]), ], ) def test_parse_latex_css_conversion(css, expected): result = _parse_latex_css_conversion(css) assert result == expected @pytest.mark.parametrize( "env, inner_env", [ (None, "tabular"), ("table", "tabular"), ("longtable", "longtable"), ], ) @pytest.mark.parametrize( "convert, exp", [(True, "bfseries"), (False, "font-weightbold")] ) def test_parse_latex_css_convert_minimal(styler, env, inner_env, convert, exp): # parameters ensure longtable template is also tested styler.highlight_max(props="font-weight:bold;") result = styler.to_latex(convert_css=convert, environment=env) expected = dedent( f"""\ 0 & 0 & \\{exp} -0.61 & ab \\\\ 1 & \\{exp} 1 & -1.22 & \\{exp} cd \\\\ \\end{{{inner_env}}} """ ) assert expected in result def test_parse_latex_css_conversion_option(): css = [("command", "option--latex--wrap")] expected = [("command", "option--wrap")] result = _parse_latex_css_conversion(css) assert result == expected def test_styler_object_after_render(styler): # GH 42320 pre_render = styler._copy(deepcopy=True) styler.to_latex( column_format="rllr", position="h", position_float="centering", hrules=True, label="my lab", caption="my cap", ) assert pre_render.table_styles == styler.table_styles assert pre_render.caption == styler.caption def test_longtable_comprehensive(styler): result = styler.to_latex( environment="longtable", hrules=True, label="fig:A", caption=("full", "short") ) expected = dedent( """\ \\begin{longtable}{lrrl} \\caption[short]{full} \\label{fig:A} \\\\ \\toprule & A & B & C \\\\ \\midrule \\endfirsthead \\caption[]{full} \\\\ \\toprule & A & B & C \\\\ \\midrule \\endhead \\midrule \\multicolumn{4}{r}{Continued on next page} \\\\ \\midrule \\endfoot \\bottomrule \\endlastfoot 0 & 0 & -0.61 & ab \\\\ 1 & 1 & -1.22 & cd \\\\ \\end{longtable} """ ) assert result == expected def test_longtable_minimal(styler): result = styler.to_latex(environment="longtable") expected = dedent( """\ \\begin{longtable}{lrrl} & A & B & C \\\\ \\endfirsthead & A & B & C \\\\ \\endhead \\multicolumn{4}{r}{Continued on next page} \\\\ \\endfoot \\endlastfoot 0 & 0 & -0.61 & ab \\\\ 1 & 1 & -1.22 & cd \\\\ \\end{longtable} """ ) assert result == expected @pytest.mark.parametrize( "sparse, exp, siunitx", [ (True, "{} & \\multicolumn{2}{r}{A} & {B}", True), (False, "{} & {A} & {A} & {B}", True), (True, " & \\multicolumn{2}{r}{A} & B", False), (False, " & A & A & B", False), ], ) def test_longtable_multiindex_columns(df, sparse, exp, siunitx): cidx = MultiIndex.from_tuples([("A", "a"), ("A", "b"), ("B", "c")]) df.columns = cidx with_si = "{} & {a} & {b} & {c} \\\\" without_si = " & a & b & c \\\\" expected = dedent( f"""\ \\begin{{longtable}}{{l{"SS" if siunitx else "rr"}l}} {exp} \\\\ {with_si if siunitx else without_si} \\endfirsthead {exp} \\\\ {with_si if siunitx else without_si} \\endhead """ ) result = df.style.to_latex( environment="longtable", sparse_columns=sparse, siunitx=siunitx ) assert expected in result @pytest.mark.parametrize( "caption, cap_exp", [ ("full", ("{full}", "")), (("full", "short"), ("{full}", "[short]")), ], ) @pytest.mark.parametrize("label, lab_exp", [(None, ""), ("tab:A", " \\label{tab:A}")]) def test_longtable_caption_label(styler, caption, cap_exp, label, lab_exp): cap_exp1 = f"\\caption{cap_exp[1]}{cap_exp[0]}" cap_exp2 = f"\\caption[]{cap_exp[0]}" expected = dedent( f"""\ {cap_exp1}{lab_exp} \\\\ & A & B & C \\\\ \\endfirsthead {cap_exp2} \\\\ """ ) assert expected in styler.to_latex( environment="longtable", caption=caption, label=label ) @pytest.mark.parametrize("index", [True, False]) @pytest.mark.parametrize( "columns, siunitx", [ (True, True), (True, False), (False, False), ], ) def test_apply_map_header_render_mi(df_ext, index, columns, siunitx): cidx = MultiIndex.from_tuples([("Z", "a"), ("Z", "b"), ("Y", "c")]) ridx = MultiIndex.from_tuples([("A", "a"), ("A", "b"), ("B", "c")]) df_ext.index, df_ext.columns = ridx, cidx styler = df_ext.style func = lambda v: "bfseries: --rwrap" if "A" in v or "Z" in v or "c" in v else None if index: styler.applymap_index(func, axis="index") if columns: styler.applymap_index(func, axis="columns") result = styler.to_latex(siunitx=siunitx) expected_index = dedent( """\ \\multirow[c]{2}{*}{\\bfseries{A}} & a & 0 & -0.610000 & ab \\\\ \\bfseries{} & b & 1 & -1.220000 & cd \\\\ B & \\bfseries{c} & 2 & -2.220000 & de \\\\ """ ) assert (expected_index in result) is index exp_cols_si = dedent( """\ {} & {} & \\multicolumn{2}{r}{\\bfseries{Z}} & {Y} \\\\ {} & {} & {a} & {b} & {\\bfseries{c}} \\\\ """ ) exp_cols_no_si = """\ & & \\multicolumn{2}{r}{\\bfseries{Z}} & Y \\\\ & & a & b & \\bfseries{c} \\\\ """ assert ((exp_cols_si if siunitx else exp_cols_no_si) in result) is columns def test_repr_option(styler): assert "<style" in styler._repr_html_()[:6] assert styler._repr_latex_() is None with option_context("styler.render.repr", "latex"): assert "\\begin{tabular}" in styler._repr_latex_()[:15] assert styler._repr_html_() is None @pytest.mark.parametrize("option", ["hrules"]) def test_bool_options(styler, option): with
option_context(f"styler.latex.{option}", False)
pandas.option_context
import pandas as pd import fasttext import time import numpy as np import spacy import sys fmodel = fasttext.load_model('/mnt/dhr/CreateChallenge_ICC_0821/lid.176.bin') def delist_lang(lst): lang_lst=[] for i,lang in enumerate(lst): if not lang: lang_lst.append(None) else: lang_lst.append(lang[0]) return lang_lst def lang_tagger(parsed_sent): labels,confs=fmodel.predict(parsed_sent,k=-1,threshold=0.1) lang_list=delist_lang(labels) significance_list=significance(confs) assert len(lang_list)==len(significance_list) return lang_list,significance_list def significance(lst): significance_list=[] for l in lst: if len(l)>1: significance_list.append(abs(l[0]-l[1])/np.mean(l[0]+l[1])>0.1) #print(f'{conf[0]} {conf[1]} {abs(conf[0]-conf[1])/np.mean(conf[0]+conf[1])>0.1}') else: significance_list.append(True) return significance_list def post_to_five_grams(post): parsed_sent = nlp(post, disable=["parser", "ner"]) token_pos = [] for token in parsed_sent: token_pos.append(token.text+ "_" + token.pos_) if len(token_pos) < 4: return None # generate consecutive lists of 5 tokens five_grams = [] for i in range(0, len(token_pos)-4, 1): five_grams.append(" ".join(token_pos[i:i+5])) return five_grams def ner_lemma_reducer(sent): """ parses sentence with spacy :param sent: :return: list of NER entities, lemmas, POS tags, whether each token is part of a compound """ lemma = [] pos = [] is_comp = False ner_token = [] # could limit here which components of spacy are run? parsed_sent = nlp(sent) for token in parsed_sent: lemma.append(token.lemma_) pos.append(token.pos_) if token.ent_type_ == "": to_add = "NONNER" else: to_add = token.ent_type_ ner_token.append(to_add) if token.dep_ == "compound": is_comp = True lemma_sent = ' '.join(lemma) pos_sent = ' '.join(pos) ner_token_sent = ' '.join(ner_token) ner_length = 0 if parsed_sent.ents: for ent in parsed_sent.ents: ner_length += ent.end_char - ent.start_char return ner_token_sent, ner_length, lemma_sent, pos_sent, is_comp, len(lemma) fname = sys.argv[1] type = sys.argv[2] CHUNKSIZE = 500_000 dfs =
pd.read_json(fname, lines=True, chunksize=CHUNKSIZE)
pandas.read_json
import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import os plt.rcParams["svg.hashsalt"]=0 def mkdirs(pre_path,parm_name): try: os.makedirs("../figures/"+pre_path+parm_name) except: pass try: os.makedirs("../analysed_data/"+pre_path+parm_name) except: pass def timeseries(pre_path,parm_name,parm_array,parm_format='{:.2E}',post_path='',plot_Tpos=True,plot_Tpro=True,plot_Tneg=True,plot_o2=True,plot_test=True,plot_tot=False,custom_title=None,save=True): fig,ax=plt.subplots(len(parm_array),2,sharex=True,figsize=(10,3*len(parm_array))) i=0 for parm in parm_array: if isinstance(parm,(list,pd.core.series.Series,np.ndarray)): #If the parameter explored is multidimensional string=parm_format.format(parm[0]) for pp in parm[1:]: string+='-'+parm_format.format(pp) else: string=parm_format.format(parm) #print('../raw_output/'+pre_path+parm_name+'/'+post_path+string+'.csv') df=pd.read_csv('../raw_output/'+pre_path+parm_name+'/'+post_path+string+'.csv') ## Plotting Resources if plot_o2: ax[i,1].plot(df.t/24/60,df.o2,color="tab:cyan",label='o2') if plot_test: ax[i,1].plot(df.t/24/60,df.test,color="tab:orange",label='test') ax[i,1].set_ylabel("Resource (proportion)") ax[i,1].legend() ## Plotting Cell Number if plot_Tpos: ax[i,0].plot(df.t/24/60,df.Tpos,color="tab:green",label='T+') if plot_Tpro: ax[i,0].plot(df.t/24/60,df.Tpro,color="tab:blue",label='Tp') if plot_Tneg: ax[i,0].plot(df.t/24/60,df.Tneg,color="tab:red",label='T-') if plot_tot: ax[i,0].plot(df.t/24/60,df.Tpos+df.Tpro+df.Tneg,color="tab:grey",label='Total') ax[i,0].set_ylabel("No of Cells") ax[i,0].legend() if custom_title==None: ax[i,0].set_title(parm_name+'='+string) else: ax[i,0].set_title(custom_title[i]) i+=1 ## Add Xaxis label for the last row only ax[i-1,0].set_xlabel('Time (days)') ax[i-1,1].set_xlabel('Time (days)') fig.tight_layout() if save: fig.savefig('../figures/'+pre_path+parm_name+'/'+post_path+'timeseries.svg') fig.clf() plt.close(fig) def timeseries_split(no_fig,sub_arr_len,pre_path,parm_name,parm_array,parm_format='{:.2E}',post_path='',plot_Tpos=True,plot_Tpro=True,plot_Tneg=True,plot_o2=True,plot_test=True,save=True): if (sub_arr_len*no_fig!=len(parm_array)): print("Wrong Array Length") return for i in range(no_fig): timeseries(pre_path=pre_path,parm_name=parm_name,parm_array=parm_array[i*sub_arr_len:(i+1)*sub_arr_len],parm_format=parm_format,post_path=post_path) os.rename('../figures/'+pre_path+parm_name+'/'+post_path+'timeseries.svg','../figures/'+pre_path+parm_name+'/'+post_path+'timeseries-'+str(i)+'.svg') def eq_values(pre_path,parm_name,parm_array,parm_format='{:.2E}',post_path='',save=True,parm_name_array=None,ttp=False,limit=None): lis=[] eq_col=['o2_eq','test_eq','Tpos_eq','Tpro_eq','Tneg_eq'] ttp_col=['TTE_Tpro','TTP_{}'.format(limit)] if isinstance(parm_array[0],(list,pd.core.series.Series,np.ndarray)): #If the parameter explored is multidimensional for parm in parm_array: string=parm_format.format(parm[0]) for pp in parm[1:]: string+='-'+parm_format.format(pp) #print('../raw_output/'+pre_path+parm_name+'/'+post_path+string+'.csv') df=
pd.read_csv('../raw_output/'+pre_path+parm_name+'/'+post_path+string+'.csv')
pandas.read_csv
from collections import OrderedDict import pandas as pd pd.set_option('display.expand_frame_repr', False) import numpy as np # ****************************************** # helpers # ****************************************** def _set_values_series(dfs): return set(dfs[~
pd.isnull(dfs)
pandas.isnull
from selenium import webdriver from selenium.webdriver.chrome.options import Options from selenium.webdriver.common.keys import Keys import requests import time from datetime import datetime import pandas as pd from urllib import parse from config import ENV_VARIABLE from os.path import getsize fold_path = "./crawler_data/" page_Max = 100 def stripID(url, wantStrip): loc = url.find(wantStrip) length = len(wantStrip) return url[loc+length:] def Kklee(): shop_id = 13 name = 'kklee' options = Options() # 啟動無頭模式 options.add_argument('--headless') # 規避google bug options.add_argument('--disable-gpu') options.add_argument('--ignore-certificate-errors') options.add_argument('--no-sandbox') options.add_argument('--disable-dev-shm-usage') options.add_argument("--remote-debugging-port=5566") chrome = webdriver.Chrome( executable_path='./chromedriver', chrome_options=options) p = 1 df = pd.DataFrame() # 暫存當頁資料,換頁時即整併到dfAll dfAll = pd.DataFrame() # 存放所有資料 close = 0 while True: if (close == 1): chrome.quit() break url = "https://www.kklee.co/products?page=" + \ str(p) + "&sort_by=&order_by=&limit=24" # # 如果頁面超過(找不到),直接印出completed然後break跳出迴圈 try: chrome.get(url) except: break time.sleep(1) i = 1 while(i < 25): try: title = chrome.find_element_by_xpath( "//a[%i]/div[@class='Product-info']/div[1]" % (i,)).text except: close += 1 break try: page_link = chrome.find_element_by_xpath( "//div[@class='col-xs-12 ProductList-list']/a[%i]" % (i,)).get_attribute('href') make_id = parse.urlsplit(page_link) page_id = make_id.path page_id = page_id.lstrip("/products/") find_href = chrome.find_element_by_xpath( "//a[%i]/div[1]/div[1]" % (i,)) bg_url = find_href.value_of_css_property('background-image') pic_link = bg_url.lstrip('url("').rstrip(')"') except: i += 1 if(i == 25): p += 1 continue try: sale_price = chrome.find_element_by_xpath( "//a[%i]/div[@class='Product-info']/div[2]" % (i,)).text sale_price = sale_price.strip('NT$') sale_price = sale_price.split() sale_price = sale_price[0] ori_price = chrome.find_element_by_xpath( "//a[%i]/div[@class='Product-info']/div[3]" % (i,)).text ori_price = ori_price.strip('NT$') except: try: sale_price = chrome.find_element_by_xpath( "//a[%i]/div[@class='Product-info']/div[2]" % (i,)).text sale_price = sale_price.strip('NT$') sale_price = sale_price.split() sale_price = sale_price[0] ori_price = "" except: i += 1 if(i == 25): p += 1 continue i += 1 if(i == 25): p += 1 df = pd.DataFrame( { "title": [title], "page_link": [page_link], "page_id": [page_id], "pic_link": [pic_link], "ori_price": [ori_price], "sale_price": [sale_price] }) dfAll = pd.concat([dfAll, df]) dfAll = dfAll.reset_index(drop=True) save(shop_id, name, dfAll) upload(shop_id, name) def Wishbykorea(): shop_id = 14 name = 'wishbykorea' options = Options() # 啟動無頭模式 options.add_argument('--headless') # 規避google bug options.add_argument('--disable-gpu') options.add_argument('--ignore-certificate-errors') options.add_argument('--no-sandbox') options.add_argument('--disable-dev-shm-usage') options.add_argument("--remote-debugging-port=5566") chrome = webdriver.Chrome( executable_path='./chromedriver', chrome_options=options) p = 1 df = pd.DataFrame() # 暫存當頁資料,換頁時即整併到dfAll dfAll = pd.DataFrame() # 存放所有資料 close = 0 while True: if(close == 1): chrome.quit() break url = "https://www.wishbykorea.com/collection-727&pgno=" + str(p) # 如果頁面超過(找不到),直接印出completed然後break跳出迴圈 try: chrome.get(url) print(url) except: break time.sleep(1) i = 1 while(i < 17): try: title = chrome.find_element_by_xpath( "//div[@class='collection_item'][%i]/div/div/label" % (i,)).text except: close += 1 break try: page_link = chrome.find_element_by_xpath( "//div[@class='collection_item'][%i]/a[@href]" % (i,)).get_attribute('href') page_id = page_link.replace("https://www.wishbykorea.com/collection-view-", "").replace("&ca=727", "") find_href = chrome.find_element_by_xpath( "//div[@class='collection_item'][%i]/a/div" % (i,)) bg_url = find_href.value_of_css_property('background-image') pic_link = bg_url.lstrip('url("').rstrip('")') except: i += 1 if(i == 17): p += 1 continue try: sale_price = chrome.find_element_by_xpath( "//div[@class='collection_item'][%i]/div[@class='collection_item_info']/div[2]/label" % (i,)).text sale_price = sale_price.strip('NT$') ori_price = "" except: try: sale_price = chrome.find_element_by_xpath( "//div[@class='collection_item'][%i]/div[@class='collection_item_info']/div[2]" % (i,)).text sale_price = sale_price.strip('NT$') ori_price = "" except: i += 1 if(i == 17): p += 1 continue if(sale_price == "0"): i += 1 if(i == 17): p += 1 continue i += 1 if(i == 17): p += 1 df = pd.DataFrame( { "title": [title], "page_link": [page_link], "page_id": [page_id], "pic_link": [pic_link], "ori_price": [ori_price], "sale_price": [sale_price] }) dfAll = pd.concat([dfAll, df]) dfAll = dfAll.reset_index(drop=True) save(shop_id, name, dfAll) upload(shop_id, name) def Aspeed(): shop_id = 15 name = 'aspeed' options = Options() # 啟動無頭模式 options.add_argument('--headless') # 規避google bug options.add_argument('--disable-gpu') options.add_argument('--ignore-certificate-errors') options.add_argument('--no-sandbox') options.add_argument('--disable-dev-shm-usage') options.add_argument("--remote-debugging-port=5566") chrome = webdriver.Chrome( executable_path='./chromedriver', chrome_options=options) p = 1 df = pd.DataFrame() # 暫存當頁資料,換頁時即整併到dfAll dfAll = pd.DataFrame() # 存放所有資料 close = 0 while True: if(close == 1): chrome.quit() break url = "https://www.aspeed.co/products?page=" + \ str(p) + "&sort_by=&order_by=&limit=72" # 如果頁面超過(找不到),直接印出completed然後break跳出迴圈 try: chrome.get(url) except: break time.sleep(1) i = 1 while(i < 73): try: title = chrome.find_element_by_xpath( "//div[@class='product-item'][%i]/product-item/a/div[2]/div/div[1]" % (i,)).text except: close += 1 break try: page_link = chrome.find_element_by_xpath( "//div[@class='product-item'][%i]/product-item/a[@href]" % (i,)).get_attribute('href') make_id = parse.urlsplit(page_link) page_id = make_id.path page_id = page_id.lstrip("/products/") find_href = chrome.find_element_by_xpath( "//div[@class='product-item'][%i]/product-item/a/div[1]/div[1]" % (i,)) bg_url = find_href.value_of_css_property('background-image') pic_link = bg_url.lstrip('url("').rstrip(')"') except: i += 1 if(i == 73): p += 1 continue try: sale_price = chrome.find_element_by_xpath( "//div[@class='product-item'][%i]/product-item/a/div[2]/div/div[2]/div[1]" % (i,)).text sale_price = sale_price.strip('NT$') ori_price = chrome.find_element_by_xpath( "//div[@class='product-item'][%i]/product-item/a/div[2]/div/div[2]/div[2]" % (i,)).text ori_price = ori_price.strip('NT$') except: try: sale_price = chrome.find_element_by_xpath( "//div[@class='product-item'][%i]/product-item/a/div[2]/div/div[2]/div[1]" % (i,)).text sale_price = sale_price.strip('NT$') ori_price = "" except: i += 1 if(i == 73): p += 1 continue i += 1 if(i == 73): p += 1 df = pd.DataFrame( { "title": [title], "page_link": [page_link], "page_id": [page_id], "pic_link": [pic_link], "ori_price": [ori_price], "sale_price": [sale_price] }) dfAll = pd.concat([dfAll, df]) dfAll = dfAll.reset_index(drop=True) save(shop_id, name, dfAll) upload(shop_id, name) def Openlady(): shop_id = 17 name = 'openlady' options = Options() # 啟動無頭模式 options.add_argument('--headless') # 規避google bug options.add_argument('--disable-gpu') options.add_argument('--ignore-certificate-errors') options.add_argument('--no-sandbox') options.add_argument('--disable-dev-shm-usage') options.add_argument("--remote-debugging-port=5566") chrome = webdriver.Chrome( executable_path='./chromedriver', chrome_options=options) p = 1 df = pd.DataFrame() # 暫存當頁資料,換頁時即整併到dfAll dfAll = pd.DataFrame() # 存放所有資料 close = 0 while True: if (close == 1): chrome.quit() break url = "https://www.openlady.tw/item.html?&id=157172&page=" + \ str(p) # 如果頁面超過(找不到),直接印出completed然後break跳出迴圈 try: chrome.get(url) except: break time.sleep(1) i = 1 while(i < 17): try: title = chrome.find_element_by_xpath( "//li[@class='item_block item_block_y'][%i]/div[@class='item_text']/p[@class='item_name']/a[@class='mymy_item_link']" % (i,)).text page_link = chrome.find_element_by_xpath( "//li[@class='item_block item_block_y'][%i]/div[@class='item_text']/p[@class='item_name']/a[@href]" % (i,)).get_attribute('href') make_id = parse.urlsplit(page_link) page_id = make_id.query page_id = page_id.replace("&id=", "") except: close += 1 break try: pic_link = chrome.find_element_by_xpath( "//li[@class='item_block item_block_y'][%i]/div[@class='item_img']/a[@class='mymy_item_link']/img[@src]" % (i,)).get_attribute("src") except: i += 1 if(i == 17): p += 1 continue try: sale_price = chrome.find_element_by_xpath( "//li[@class='item_block item_block_y'][%i]/div[@class='item_text']/p[@class='item_amount']/span[2]" % (i,)).text sale_price = sale_price.strip('NT$ ') ori_price = chrome.find_element_by_xpath( "//li[@class='item_block item_block_y'][%i]/div[@class='item_text']/p[@class='item_amount']/span[1]" % (i,)).text ori_price = ori_price.strip('NT$ ') except: try: sale_price = chrome.find_element_by_xpath( "//li[@class='item_block item_block_y'][%i]/div[@class='item_text']/p[@class='item_amount']/span[1]" % (i,)).text sale_price = sale_price.strip('NT$ ') ori_price = "" except: i += 1 if(i == 17): p += 1 continue i += 1 if(i == 17): p += 1 df = pd.DataFrame( { "title": [title], "page_link": [page_link], "page_id": [page_id], "pic_link": [pic_link], "ori_price": [ori_price], "sale_price": [sale_price] }) dfAll = pd.concat([dfAll, df]) dfAll = dfAll.reset_index(drop=True) save(shop_id, name, dfAll) upload(shop_id, name) def Azoom(): shop_id = 20 name = 'azoom' options = Options() # 啟動無頭模式 options.add_argument('--headless') # 規避google bug options.add_argument('--disable-gpu') options.add_argument('--ignore-certificate-errors') options.add_argument('--no-sandbox') options.add_argument('--disable-dev-shm-usage') options.add_argument("--remote-debugging-port=5566") chrome = webdriver.Chrome( executable_path='./chromedriver', chrome_options=options) p = 1 df = pd.DataFrame() # 暫存當頁資料,換頁時即整併到dfAll dfAll = pd.DataFrame() # 存放所有資料 close = 0 while True: if(close == 1): chrome.quit() break url = "https://www.aroom1988.com/categories/view-all?page=" + \ str(p) + "&sort_by=&order_by=&limit=24" # 如果頁面超過(找不到),直接印出completed然後break跳出迴圈 try: chrome.get(url) except: break time.sleep(1) i = 1 while(i < 24): try: title = chrome.find_element_by_xpath( "//div[@class='product-item'][%i]/product-item/a/div[2]/div/div[1]" % (i,)).text except: close += 1 break try: page_link = chrome.find_element_by_xpath( "//div[@class='product-item'][%i]/product-item/a[@href]" % (i,)).get_attribute('href') make_id = parse.urlsplit(page_link) page_id = make_id.path page_id = page_id.strip("/products/") find_href = chrome.find_element_by_xpath( "//div[@class='product-item'][%i]/product-item/a/div[1]/div[1]" % (i,)) bg_url = find_href.value_of_css_property('background-image') pic_link = bg_url.lstrip('url("').rstrip('")') except: i += 1 if(i == 24): p += 1 continue try: sale_price = chrome.find_element_by_xpath( "//div[@class='product-item'][%i]/product-item/a/div[2]/div/div/div" % (i,)).text sale_price = sale_price.strip('NT$') ori_price = "" except: i += 1 if(i == 24): p += 1 continue i += 1 if(i == 24): p += 1 df = pd.DataFrame( { "title": [title], "page_link": [page_link], "page_id": [page_id], "pic_link": [pic_link], "ori_price": [ori_price], "sale_price": [sale_price] }) dfAll = pd.concat([dfAll, df]) dfAll = dfAll.reset_index(drop=True) save(shop_id, name, dfAll) upload(shop_id, name) def Roxy(): shop_id = 21 name = 'roxy' options = Options() # 啟動無頭模式 options.add_argument('--headless') # 規避google bug options.add_argument('--disable-gpu') options.add_argument('--ignore-certificate-errors') options.add_argument('--no-sandbox') options.add_argument('--disable-dev-shm-usage') options.add_argument("--remote-debugging-port=5566") chrome = webdriver.Chrome( executable_path='./chromedriver', chrome_options=options) p = 1 df = pd.DataFrame() # 暫存當頁資料,換頁時即整併到dfAll dfAll = pd.DataFrame() # 存放所有資料 close = 0 while True: if (close == 1): chrome.quit() break url = "https://www.roxytaiwan.com.tw/new-collection?p=" + \ str(p) # 如果頁面超過(找不到),直接印出completed然後break跳出迴圈 try: chrome.get(url) except: break time.sleep(1) i = 1 while(i < 65): try: title = chrome.find_element_by_xpath( "//div[@class='product-container product-thumb'][%i]/div[@class='product-thumb-info']/p[@class='product-title']/a" % (i,)).text page_link = chrome.find_element_by_xpath( "//div[@class='product-container product-thumb'][%i]/div[@class='product-thumb-info']/p[@class='product-title']/a[@href]" % (i,)).get_attribute('href') page_id = stripID(page_link, "default=") except: close += 1 break try: pic_link = chrome.find_element_by_xpath( "//div[@class='product-container product-thumb'][%i]/div[@class='product-img']/a[@class='img-link']/picture[@class='main-picture']/img[@data-src]" % (i,)).get_attribute("data-src") except: i += 1 if(i == 65): p += 1 continue try: sale_price = chrome.find_element_by_xpath( "//div[@class='product-container product-thumb'][%i]//span[@class='special-price']//span[@class='price-dollars']" % (i,)).text sale_price = sale_price.replace('TWD', "") ori_price = chrome.find_element_by_xpath( "//div[@class='product-container product-thumb'][%i]//span[@class='old-price']//span[@class='price-dollars']" % (i,)).text ori_price = ori_price.replace('TWD', "") except: try: sale_price = chrome.find_element_by_xpath( "//div[@class='product-container product-thumb'][%i]//span[@class='price-dollars']" % (i,)).text sale_price = sale_price.replace('TWD', "") ori_price = "" except: i += 1 if(i == 65): p += 1 continue i += 1 if(i == 65): p += 1 df = pd.DataFrame( { "title": [title], "page_link": [page_link], "page_id": [page_id], "pic_link": [pic_link], "ori_price": [ori_price], "sale_price": [sale_price] }) dfAll = pd.concat([dfAll, df]) dfAll = dfAll.reset_index(drop=True) save(shop_id, name, dfAll) upload(shop_id, name) def Shaxi(): shop_id = 22 name = 'shaxi' options = Options() # 啟動無頭模式 options.add_argument('--headless') # 規避google bug options.add_argument('--disable-gpu') options.add_argument('--ignore-certificate-errors') options.add_argument('--no-sandbox') options.add_argument('--disable-dev-shm-usage') options.add_argument("--remote-debugging-port=5566") chrome = webdriver.Chrome( executable_path='./chromedriver', chrome_options=options) p = 1 df = pd.DataFrame() # 暫存當頁資料,換頁時即整併到dfAll dfAll = pd.DataFrame() # 存放所有資料 close = 0 while True: if (close == 1): chrome.quit() break url = "https://www.shaxi.tw/products?page=" + str(p) try: chrome.get(url) except: break i = 1 while(i < 49): try: title = chrome.find_element_by_xpath( "//li[%i]/product-item/a/div[2]/div/div[1]" % (i,)).text except: close += 1 break try: page_link = chrome.find_element_by_xpath( "//li[%i]/product-item/a[@href]" % (i,)).get_attribute('href') make_id = parse.urlsplit(page_link) page_id = make_id.path page_id = page_id.lstrip("/products/") find_href = chrome.find_element_by_xpath( "//li[%i]/product-item/a/div[1]/div" % (i,)) bg_url = find_href.value_of_css_property('background-image') pic_link = bg_url.lstrip('url("').rstrip(')"') except: i += 1 if(i == 49): p += 1 continue try: sale_price = chrome.find_element_by_xpath( "//li[%i]/product-item/a/div/div/div[2]/div[2]" % (i,)).text sale_price = sale_price.strip('NT$') sale_price = sale_price.split() sale_price = sale_price[0] ori_price = chrome.find_element_by_xpath( "//li[%i]/product-item/a/div/div/div[2]/div[1]" % (i,)).text ori_price = ori_price.strip('NT$') except: try: sale_price = chrome.find_element_by_xpath( "//li[%i]/product-item/a/div/div/div[2]/div[1]" % (i,)).text sale_price = sale_price.strip('NT$') sale_price = sale_price.split() sale_price = sale_price[0] ori_price = "" except: i += 1 if(i == 49): p += 1 continue i += 1 if(i == 49): p += 1 df = pd.DataFrame( { "title": [title], "page_link": [page_link], "page_id": [page_id], "pic_link": [pic_link], "ori_price": [ori_price], "sale_price": [sale_price] }) dfAll = pd.concat([dfAll, df]) dfAll = dfAll.reset_index(drop=True) save(shop_id, name, dfAll) upload(shop_id, name) def Cici(): shop_id = 23 name = 'cici' options = Options() # 啟動無頭模式 options.add_argument('--headless') # 規避google bug options.add_argument('--disable-gpu') options.add_argument('--ignore-certificate-errors') options.add_argument('--no-sandbox') options.add_argument('--disable-dev-shm-usage') options.add_argument("--remote-debugging-port=5566") chrome = webdriver.Chrome( executable_path='./chromedriver', chrome_options=options) p = 1 df = pd.DataFrame() # 暫存當頁資料,換頁時即整併到dfAll dfAll = pd.DataFrame() # 存放所有資料 close = 0 while True: if (close == 1): chrome.quit() break url = "https://www.cici2.tw/products?page=" + str(p) try: chrome.get(url) except: break i = 1 while(i < 49): try: title = chrome.find_element_by_xpath( "//li[%i]/product-item/a/div[2]/div/div[1]" % (i,)).text except: close += 1 break try: page_link = chrome.find_element_by_xpath( "//li[%i]/product-item/a[@href]" % (i,)).get_attribute('href') make_id = parse.urlsplit(page_link) page_id = make_id.path page_id = page_id.lstrip("/products/") find_href = chrome.find_element_by_xpath( "//li[%i]/product-item/a/div[1]/div" % (i,)) bg_url = find_href.value_of_css_property('background-image') pic_link = bg_url.lstrip('url("').rstrip(')"') except: i += 1 if(i == 49): p += 1 continue try: sale_price = chrome.find_element_by_xpath( "//li[%i]/product-item/a/div/div/div[2]/div[2]" % (i,)).text sale_price = sale_price.strip('NT$') sale_price = sale_price.split() sale_price = sale_price[0] ori_price = chrome.find_element_by_xpath( "//li[%i]/product-item/a/div/div/div[2]/div[1]" % (i,)).text ori_price = ori_price.strip('NT$') except: try: sale_price = chrome.find_element_by_xpath( "//li[%i]/product-item/a/div/div/div[2]/div[1]" % (i,)).text sale_price = sale_price.strip('NT$') sale_price = sale_price.split() sale_price = sale_price[0] ori_price = "" except: i += 1 if(i == 49): p += 1 continue i += 1 if(i == 49): p += 1 df = pd.DataFrame( { "title": [title], "page_link": [page_link], "page_id": [page_id], "pic_link": [pic_link], "ori_price": [ori_price], "sale_price": [sale_price] }) dfAll = pd.concat([dfAll, df]) dfAll = dfAll.reset_index(drop=True) save(shop_id, name, dfAll) upload(shop_id, name) def Amesoeur(): shop_id = 25 name = 'amesour' options = Options() # 啟動無頭模式 options.add_argument('--headless') # 規避google bug options.add_argument('--disable-gpu') options.add_argument('--ignore-certificate-errors') options.add_argument('--no-sandbox') options.add_argument('--disable-dev-shm-usage') options.add_argument("--remote-debugging-port=5566") chrome = webdriver.Chrome( executable_path='./chromedriver', chrome_options=options) p = 1 df = pd.DataFrame() # 暫存當頁資料,換頁時即整併到dfAll dfAll = pd.DataFrame() # 存放所有資料 close = 0 while True: if (close == 1): chrome.quit() break url = "https://www.amesoeur.co/categories/%E5%85%A8%E9%83%A8%E5%95%86%E5%93%81?page=" + \ str(p) # 如果頁面超過(找不到),直接印出completed然後break跳出迴圈 try: chrome.get(url) except: break time.sleep(1) i = 1 while(i < 25): try: title = chrome.find_element_by_xpath( "//li[%i]/a/div[2]/div/div[1]" % (i,)).text except: close += 1 break try: page_link = chrome.find_element_by_xpath( "//div[2]/ul/li[%i]/a[@href]" % (i,)).get_attribute('href') page_id = chrome.find_element_by_xpath( "//div[2]/ul/li[%i]/a[@href]" % (i,)).get_attribute('product-id') find_href = chrome.find_element_by_xpath( "//li[%i]/a/div[1]/div" % (i,)) bg_url = find_href.value_of_css_property('background-image') pic_link = bg_url.lstrip('url("').rstrip(')"') except: i += 1 if(i == 25): p += 1 continue try: sale_price = chrome.find_element_by_xpath( "//li[%i]/a/div[2]/div/div[3]" % (i,)).text sale_price = sale_price.strip('NT$') sale_price = sale_price.split() sale_price = sale_price[0] ori_price = chrome.find_element_by_xpath( "//li[%i]/a/div[2]/div/div[2]" % (i,)).text ori_price = ori_price.strip('NT$') except: try: sale_price = chrome.find_element_by_xpath( "//li[%i]/a/div[2]/div/div[2]" % (i,)).text sale_price = sale_price.strip('NT$') sale_price = sale_price.split() sale_price = sale_price[0] ori_price = "" except: i += 1 if(i == 25): p += 1 continue i += 1 if(i == 25): p += 1 df = pd.DataFrame( { "title": [title], "page_link": [page_link], "page_id": [page_id], "pic_link": [pic_link], "ori_price": [ori_price], "sale_price": [sale_price] }) dfAll = pd.concat([dfAll, df]) dfAll = dfAll.reset_index(drop=True) save(shop_id, name, dfAll) upload(shop_id, name) def Singular(): shop_id = 27 name = 'singular' options = Options() # 啟動無頭模式 options.add_argument('--headless') # 規避google bug options.add_argument('--disable-gpu') options.add_argument('--ignore-certificate-errors') options.add_argument('--no-sandbox') options.add_argument('--disable-dev-shm-usage') options.add_argument("--remote-debugging-port=5566") chrome = webdriver.Chrome( executable_path='./chromedriver', chrome_options=options) p = 1 df = pd.DataFrame() # 暫存當頁資料,換頁時即整併到dfAll dfAll = pd.DataFrame() # 存放所有資料 close = 0 while True: if (close == 1): chrome.quit() break i = 1 offset = (p-1) * 50 url = "https://www.singular-official.com/products?limit=50&offset=" + \ str(offset) + "&price=0%2C10000&sort=createdAt-desc" # 如果頁面超過(找不到),直接印出completed然後break跳出迴圈 try: chrome.get(url) except: break time.sleep(1) while(i < 51): try: title = chrome.find_element_by_xpath( "//div[@class='rm<PASSWORD>1ca3'][%i]/div[2]" % (i,)).text except: close += 1 # print(i, "title") break try: page_link = chrome.find_element_by_xpath( "//div[@class='rmq-3ab81ca3'][%i]//a[@href]" % (i,)).get_attribute('href') make_id = parse.urlsplit(page_link) page_id = make_id.path page_id = page_id.lstrip("/product/") pic_link = chrome.find_element_by_xpath( "//div[@class='rm<PASSWORD>1ca3'][%i]//img" % (i,)).get_attribute('src') sale_price = chrome.find_element_by_xpath( "//div[@class='rmq-3ab81ca3'][%i]/div[3]/div[2]" % (i,)).text sale_price = sale_price.strip('NT$ ') ori_price = chrome.find_element_by_xpath( "//div[@class='rm<PASSWORD>3'][%i]/div[3]/div[1]/span/s" % (i,)).text ori_price = ori_price.strip('NT$ ') ori_price = ori_price.split() ori_price = ori_price[0] except: i += 1 if(i == 51): p += 1 continue i += 1 if(i == 51): p += 1 chrome.find_element_by_tag_name('body').send_keys(Keys.PAGE_DOWN) time.sleep(1) df = pd.DataFrame( { "title": [title], "page_link": [page_link], "page_id": [page_id], "pic_link": [pic_link], "ori_price": [ori_price], "sale_price": [sale_price] }) dfAll = pd.concat([dfAll, df]) dfAll = dfAll.reset_index(drop=True) save(shop_id, name, dfAll) upload(shop_id, name) def Folie(): shop_id = 28 name = 'folie' options = Options() # 啟動無頭模式 options.add_argument('--headless') # 規避google bug options.add_argument('--disable-gpu') options.add_argument('--ignore-certificate-errors') options.add_argument('--no-sandbox') options.add_argument('--disable-dev-shm-usage') options.add_argument("--remote-debugging-port=5566") chrome = webdriver.Chrome( executable_path='./chromedriver', chrome_options=options) p = 1 df = pd.DataFrame() # 暫存當頁資料,換頁時即整併到dfAll dfAll = pd.DataFrame() # 存放所有資料 close = 0 while True: if (close == 1): chrome.quit() break url = "https://www.folief.com/products?page=" + \ str(p) + "&sort_by=&order_by=&limit=24" # 如果頁面超過(找不到),直接印出completed然後break跳出迴圈 try: chrome.get(url) except: break time.sleep(1) i = 1 while(i < 25): try: title = chrome.find_element_by_xpath( "//div[%i]/product-item/a/div[2]/div/div[1]" % (i,)).text except: close += 1 break try: page_link = chrome.find_element_by_xpath( "//div[%i]/product-item/a[@href]" % (i,)).get_attribute('href') make_id = parse.urlsplit(page_link) page_id = make_id.path page_id = page_id.lstrip("/products/") find_href = chrome.find_element_by_xpath( "//div[%i]/product-item/a/div[1]/div[1]" % (i,)) bg_url = find_href.value_of_css_property('background-image') pic_link = bg_url.lstrip('url("').rstrip(')"') except: i += 1 if(i == 25): p += 1 continue try: sale_price = chrome.find_element_by_xpath( "//div[%i]/product-item/a/div/div/div[2]/div[1]" % (i,)).text sale_price = sale_price.strip('NT$') sale_price = sale_price.split() sale_price = sale_price[0] ori_price = chrome.find_element_by_xpath( "//div[%i]/product-item/a/div/div/div[2]/div[2]" % (i,)).text ori_price = ori_price.strip('NT$') except: try: sale_price = chrome.find_element_by_xpath( "//div[%i]/product-item/a/div/div/div[2]/div[1]" % (i,)).text sale_price = sale_price.strip('NT$') sale_price = sale_price.split() sale_price = sale_price[0] ori_price = "" except: i += 1 if(i == 25): p += 1 continue i += 1 if(i == 25): p += 1 df = pd.DataFrame( { "title": [title], "page_link": [page_link], "page_id": [page_id], "pic_link": [pic_link], "ori_price": [ori_price], "sale_price": [sale_price] }) dfAll = pd.concat([dfAll, df]) dfAll = dfAll.reset_index(drop=True) save(shop_id, name, dfAll) upload(shop_id, name) def Corban(): shop_id = 29 name = 'corban' options = Options() # 啟動無頭模式 options.add_argument('--headless') # 規避google bug options.add_argument('--disable-gpu') options.add_argument('--ignore-certificate-errors') options.add_argument('--no-sandbox') options.add_argument('--disable-dev-shm-usage') options.add_argument("--remote-debugging-port=5566") chrome = webdriver.Chrome( executable_path='./chromedriver', chrome_options=options) p = 1 df = pd.DataFrame() # 暫存當頁資料,換頁時即整併到dfAll dfAll = pd.DataFrame() # 存放所有資料 close = 0 while True: if (close == 1): chrome.quit() break i = 1 offset = (p-1) * 50 url = "https://www.corban.com.tw/products?limit=50&offset=" + \ str(offset) + "&price=0%2C10000&sort=createdAt-desc&tags=ALL%20ITEMS" try: chrome.get(url) except: break while(i < 51): try: title = chrome.find_element_by_xpath( "//div[@class='rmq-3ab81ca3'][%i]/div[2]" % (i,)).text except: close += 1 break try: page_link = chrome.find_element_by_xpath( "//div[@class='rmq-3ab81ca3'][%i]//a[@href]" % (i,)).get_attribute('href') make_id = parse.urlsplit(page_link) page_id = make_id.path page_id = page_id.lstrip("/product/") pic_link = chrome.find_element_by_xpath( "//div[@class='rm<PASSWORD>'][%i]//img" % (i,)).get_attribute('src') sale_price = chrome.find_element_by_xpath( "//div[@class='rm<PASSWORD>3'][%i]/div[3]/div[2]" % (i,)).text sale_price = sale_price.strip('NT$ ') ori_price = chrome.find_element_by_xpath( "//div[@class='rm<PASSWORD>3'][%i]/div[3]/div[1]/span/s" % (i,)).text ori_price = ori_price.strip('NT$ ') except: i += 1 if(i == 51): p += 1 continue i += 1 if(i == 51): p += 1 chrome.find_element_by_tag_name('body').send_keys(Keys.PAGE_DOWN) time.sleep(1) df = pd.DataFrame( { "title": [title], "page_link": [page_link], "page_id": [page_id], "pic_link": [pic_link], "ori_price": [ori_price], "sale_price": [sale_price] }) dfAll = pd.concat([dfAll, df]) dfAll = dfAll.reset_index(drop=True) save(shop_id, name, dfAll) upload(shop_id, name) def Gmorning(): shop_id = 30 name = 'gmorning' options = Options() # 啟動無頭模式 options.add_argument('--headless') # 規避google bug options.add_argument('--disable-gpu') options.add_argument('--ignore-certificate-errors') options.add_argument('--no-sandbox') options.add_argument('--disable-dev-shm-usage') options.add_argument("--remote-debugging-port=5566") chrome = webdriver.Chrome( executable_path='./chromedriver', chrome_options=options) p = 1 df = pd.DataFrame() # 暫存當頁資料,換頁時即整併到dfAll dfAll = pd.DataFrame() # 存放所有資料 close = 0 while True: if (close == 1): chrome.quit() break url = "https://www.gmorning.co/products?page=" + \ str(p) + "&sort_by=&order_by=&limit=24" # 如果頁面超過(找不到),直接印出completed然後break跳出迴圈 try: chrome.get(url) except: break time.sleep(1) i = 1 while(i < 25): try: title = chrome.find_element_by_xpath( "//div[%i]/product-item/a/div[2]/div/div[1]" % (i,)).text except: close += 1 break try: page_link = chrome.find_element_by_xpath( "//div[%i]/product-item/a[@href]" % (i,)).get_attribute('href') make_id = parse.urlsplit(page_link) page_id = make_id.path page_id = page_id.lstrip("/products/") find_href = chrome.find_element_by_xpath( "//div[%i]/product-item/a/div[1]/div[1]" % (i,)) bg_url = find_href.value_of_css_property('background-image') pic_link = bg_url.lstrip('url("').rstrip(')"') except: i += 1 if(i == 25): p += 1 continue try: sale_price = chrome.find_element_by_xpath( "//div[%i]/product-item/a/div/div/div[2]/div[1]" % (i,)).text sale_price = sale_price.strip('NT$') ori_price = chrome.find_element_by_xpath( "//div[%i]/product-item/a/div/div/div[2]/div[2]" % (i,)).text ori_price = ori_price.strip('NT$') except: try: sale_price = chrome.find_element_by_xpath( "//div[%i]/product-item/a/div/div/div[2]/div[1]" % (i,)).text sale_price = sale_price.strip('NT$') sale_price = sale_price.split() sale_price = sale_price[0] ori_price = "" except: i += 1 if(i == 25): p += 1 continue i += 1 if(i == 25): p += 1 df = pd.DataFrame( { "title": [title], "page_link": [page_link], "page_id": [page_id], "pic_link": [pic_link], "ori_price": [ori_price], "sale_price": [sale_price] }) dfAll = pd.concat([dfAll, df]) dfAll = dfAll.reset_index(drop=True) save(shop_id, name, dfAll) upload(shop_id, name) def July(): shop_id = 31 name = 'july' options = Options() # 啟動無頭模式 options.add_argument('--headless') # 規避google bug options.add_argument('--disable-gpu') options.add_argument('--ignore-certificate-errors') options.add_argument('--no-sandbox') options.add_argument('--disable-dev-shm-usage') options.add_argument("--remote-debugging-port=5566") chrome = webdriver.Chrome( executable_path='./chromedriver', chrome_options=options) p = 1 df = pd.DataFrame() # 暫存當頁資料,換頁時即整併到dfAll dfAll = pd.DataFrame() # 存放所有資料 close = 0 while True: if (close == 1): chrome.quit() break url = "https://www.july2017.co/products?page=" + str(p) # 如果頁面超過(找不到),直接印出completed然後break跳出迴圈 try: chrome.get(url) except: break time.sleep(1) i = 1 while(i < 25): try: title = chrome.find_element_by_xpath( "//li[%i]/product-item/a/div[2]/div/div[1]" % (i,)).text except: close += 1 break try: page_link = chrome.find_element_by_xpath( "//li[%i]/product-item/a[@href]" % (i,)).get_attribute('href') make_id = parse.urlsplit(page_link) page_id = make_id.path page_id = page_id.lstrip("/products/") find_href = chrome.find_element_by_xpath( "//li[%i]/product-item/a/div[1]/div" % (i,)) bg_url = find_href.value_of_css_property('background-image') pic_link = bg_url.lstrip('url("').rstrip(')"') except: i += 1 if(i == 25): p += 1 continue try: sale_price = chrome.find_element_by_xpath( "//li[%i]/product-item/a/div/div/div[2]/div[2]" % (i,)).text sale_price = sale_price.strip('NT$') sale_price = sale_price.split() sale_price = sale_price[0] ori_price = chrome.find_element_by_xpath( "//li[%i]/product-item/a/div/div/div[2]/div[1]" % (i,)).text ori_price = ori_price.strip('NT$') except: try: sale_price = chrome.find_element_by_xpath( "//li[%i]/product-item/a/div/div/div[2]/div[1]" % (i,)).text sale_price = sale_price.strip('NT$') sale_price = sale_price.split() sale_price = sale_price[0] ori_price = "" except: i += 1 if(i == 25): p += 1 continue i += 1 if(i == 25): p += 1 df = pd.DataFrame( { "title": [title], "page_link": [page_link], "page_id": [page_id], "pic_link": [pic_link], "ori_price": [ori_price], "sale_price": [sale_price] }) dfAll = pd.concat([dfAll, df]) dfAll = dfAll.reset_index(drop=True) save(shop_id, name, dfAll) upload(shop_id, name) def Per(): shop_id = 32 name = 'per' options = Options() # 啟動無頭模式 options.add_argument('--headless') # 規避google bug options.add_argument('--disable-gpu') options.add_argument('--ignore-certificate-errors') options.add_argument('--no-sandbox') options.add_argument('--disable-dev-shm-usage') options.add_argument("--remote-debugging-port=5566") chrome = webdriver.Chrome( executable_path='./chromedriver', chrome_options=options) p = 1 df = pd.DataFrame() # 暫存當頁資料,換頁時即整併到dfAll dfAll = pd.DataFrame() # 存放所有資料 close = 0 while True: if (close == 1): chrome.quit() break url = "https://www.perdot.com.tw/categories/all?page=" + str(p) # 如果頁面超過(找不到),直接印出completed然後break跳出迴圈 try: chrome.get(url) except: break time.sleep(1) i = 1 while(i < 25): try: title = chrome.find_element_by_xpath( "//li[%i]/product-item/a/div[2]/div/div[1]" % (i,)).text except: close += 1 break try: page_link = chrome.find_element_by_xpath( "//li[%i]/product-item/a[@href]" % (i,)).get_attribute('href') make_id = parse.urlsplit(page_link) page_id = make_id.path page_id = page_id.lstrip("/products/") find_href = chrome.find_element_by_xpath( "//li[%i]/product-item/a/div[1]/div" % (i,)) bg_url = find_href.value_of_css_property('background-image') pic_link = bg_url.lstrip('url("').rstrip(')"') except: i += 1 if(i == 25): p += 1 continue try: sale_price = chrome.find_element_by_xpath( "//li[%i]/product-item/a/div/div/div[2]/div[2]" % (i,)).text sale_price = sale_price.strip('NT$') ori_price = chrome.find_element_by_xpath( "//li[%i]/product-item/a/div/div/div[2]/div[1]" % (i,)).text ori_price = ori_price.strip('NT$') except: try: sale_price = chrome.find_element_by_xpath( "//li[%i]/product-item/a/div/div/div[2]/div[1]" % (i,)).text sale_price = sale_price.strip('NT$') sale_price = sale_price.split() sale_price = sale_price[0] ori_price = "" except: i += 1 if(i == 25): p += 1 continue i += 1 if(i == 25): p += 1 df = pd.DataFrame( { "title": [title], "page_link": [page_link], "page_id": [page_id], "pic_link": [pic_link], "ori_price": [ori_price], "sale_price": [sale_price] }) dfAll = pd.concat([dfAll, df]) dfAll = dfAll.reset_index(drop=True) save(shop_id, name, dfAll) upload(shop_id, name) def Cereal(): shop_id = 33 name = 'cereal' options = Options() # 啟動無頭模式 options.add_argument('--headless') # 規避google bug options.add_argument('--disable-gpu') options.add_argument('--ignore-certificate-errors') options.add_argument('--no-sandbox') options.add_argument('--disable-dev-shm-usage') options.add_argument("--remote-debugging-port=5566") chrome = webdriver.Chrome( executable_path='./chromedriver', chrome_options=options) p = 1 df = pd.DataFrame() # 暫存當頁資料,換頁時即整併到dfAll dfAll = pd.DataFrame() # 存放所有資料 close = 0 while True: if (close == 1): chrome.quit() break url = "https://www.cerealoutfit.com/new/page/" + str(p) + "/" # 如果頁面超過(找不到),直接印出completed然後break跳出迴圈 try: chrome.get(url) except: break time.sleep(1) try: chrome.find_element_by_xpath( "//button[@class='mfp-close']").click() except: pass i = 1 while(i < 25): try: title = chrome.find_element_by_xpath( "//div[@data-loop='%i']/h3/a" % (i,)).text if(title == ""): i += 1 if(i == 25): p += 1 continue except: close += 1 break try: page_link = chrome.find_element_by_xpath( "//div[@data-loop='%i']/div[1]/a[@href]" % (i,)).get_attribute('href') page_id = chrome.find_element_by_xpath( "//div[@data-loop='%i']" % (i,)).get_attribute('126-id') pic_link = chrome.find_element_by_xpath( "//div[@data-loop='%i']/div[1]/a/img" % (i,)).get_attribute('src') except: i += 1 if(i == 25): p += 1 continue try: sale_price = chrome.find_element_by_xpath( "//div[@data-loop='%i']//ins//bdi" % (i,)).text sale_price = sale_price.rstrip(' NT$') ori_price = chrome.find_element_by_xpath( "//div[@data-loop='%i']//del//bdi" % (i,)).text ori_price = ori_price.rstrip(' NT$') except: try: sale_price = chrome.find_element_by_xpath( "//div[@data-loop='%i']/div[2]//span[@class='woocommerce-Price-amount amount']" % (i,)).text sale_price = sale_price.rstrip(' NT$') ori_price = "" except: i += 1 if(i == 25): p += 1 continue i += 1 if(i == 25): p += 1 df = pd.DataFrame( { "title": [title], "page_link": [page_link], "page_id": [page_id], "pic_link": [pic_link], "ori_price": [ori_price], "sale_price": [sale_price] }) dfAll = pd.concat([dfAll, df]) dfAll = dfAll.reset_index(drop=True) save(shop_id, name, dfAll) upload(shop_id, name) def Jcjc(): shop_id = 35 name = 'jcjc' options = Options() # 啟動無頭模式 options.add_argument('--headless') # 規避google bug options.add_argument('--disable-gpu') options.add_argument('--ignore-certificate-errors') options.add_argument('--no-sandbox') options.add_argument('--disable-dev-shm-usage') options.add_argument("--remote-debugging-port=5566") chrome = webdriver.Chrome( executable_path='./chromedriver', chrome_options=options) p = 1 df = pd.DataFrame() # 暫存當頁資料,換頁時即整併到dfAll dfAll = pd.DataFrame() # 存放所有資料 close = 0 while True: if (close == 1): chrome.quit() break url = "https://www.jcjc-dailywear.com/collections/in-stock?limit=24&page=" + \ str(p) + "&sort=featured" # 如果頁面超過(找不到),直接印出completed然後break跳出迴圈 try: chrome.get(url) except: break time.sleep(1) i = 1 while(i < 25): try: title = chrome.find_element_by_xpath( "//div[@class='grid-uniform grid-link__container']/div[%i]/div/a/p[1]" % (i,)).text except: close += 1 break try: page_link = chrome.find_element_by_xpath( "//div[@class='grid-uniform grid-link__container']/div[%i]/div/a[1][@href]" % (i,)).get_attribute('href') pic_link = chrome.find_element_by_xpath( "//div[@class='grid-uniform grid-link__container']/div[%i]/div/span/a/img" % (i,)).get_attribute('src') page_id = pic_link[pic_link.find("i/")+2:pic_link.find(".j")] except: i += 1 if(i == 25): p += 1 continue try: sale_price = chrome.find_element_by_xpath( "//div[@class='grid-uniform grid-link__container']/div[%i]/div/a/p[2]/span" % (i,)).text sale_price = sale_price.strip('NT$ ') ori_price = chrome.find_element_by_xpath( "//div[@class='grid-uniform grid-link__container']/div[%i]/div/a/p[2]/s/span" % (i,)).text ori_price = ori_price.strip('NT$ ') except: try: sale_price = chrome.find_element_by_xpath( "//div[@class='grid-uniform grid-link__container']/div[%i]/div/a/p[2]/span" % (i,)).text sale_price = sale_price.strip('NT$ ') ori_price = "" except: i += 1 if(i == 25): p += 1 continue i += 1 if(i == 25): p += 1 df = pd.DataFrame( { "title": [title], "page_link": [page_link], "page_id": [page_id], "pic_link": [pic_link], "ori_price": [ori_price], "sale_price": [sale_price] }) dfAll = pd.concat([dfAll, df]) dfAll = dfAll.reset_index(drop=True) save(shop_id, name, dfAll) upload(shop_id, name) def Ccshop(): shop_id = 36 name = 'ccshop' options = Options() # 啟動無頭模式 options.add_argument('--headless') # 規避google bug options.add_argument('--disable-gpu') options.add_argument('--ignore-certificate-errors') options.add_argument('--no-sandbox') options.add_argument('--disable-dev-shm-usage') options.add_argument("--remote-debugging-port=5566") chrome = webdriver.Chrome( executable_path='./chromedriver', chrome_options=options) p = 1 df = pd.DataFrame() # 暫存當頁資料,換頁時即整併到dfAll dfAll = pd.DataFrame() # 存放所有資料 close = 0 while True: if (close == 1): chrome.quit() break url = "https://www.ccjshop.com/products?page=" + str(p) # 如果頁面超過(找不到),直接印出completed然後break跳出迴圈 try: chrome.get(url) except: break time.sleep(1) i = 1 while(i < 25): try: title = chrome.find_element_by_xpath( "//li[%i]/a/div[2]/div/div[1]" % (i,)).text except: close += 1 break try: page_link = chrome.find_element_by_xpath( "//div[2]/ul/li[%i]/a[@href]" % (i,)).get_attribute('href') make_id = parse.urlsplit(page_link) page_id = make_id.path page_id = page_id.lstrip("/products/") find_href = chrome.find_element_by_xpath( "//li[%i]/a/div[1]/div" % (i,)) bg_url = find_href.value_of_css_property('background-image') pic_link = bg_url.lstrip('url("').rstrip(')"') except: i += 1 if(i == 25): p += 1 continue try: sale_price = chrome.find_element_by_xpath( "//li[%i]/a/div[2]/div/div[2]" % (i,)).text sale_price = sale_price.strip('NT$') sale_price = sale_price.split() sale_price = sale_price[0] ori_price = "" except: try: sale_price = chrome.find_element_by_xpath( "//li[%i]/a/div/div/div[2]/div[1]" % (i,)).text sale_price = sale_price.strip('NT$') sale_price = sale_price.split() sale_price = sale_price[0] ori_price = "" except: i += 1 if(i == 25): p += 1 continue i += 1 if(i == 25): p += 1 df = pd.DataFrame( { "title": [title], "page_link": [page_link], "page_id": [page_id], "pic_link": [pic_link], "ori_price": [ori_price], "sale_price": [sale_price] }) dfAll = pd.concat([dfAll, df]) dfAll = dfAll.reset_index(drop=True) save(shop_id, name, dfAll) upload(shop_id, name) def Iris(): shop_id = 37 name = 'iris' options = Options() # 啟動無頭模式 options.add_argument('--headless') # 規避google bug options.add_argument('--disable-gpu') options.add_argument('--ignore-certificate-errors') options.add_argument('--no-sandbox') options.add_argument('--disable-dev-shm-usage') options.add_argument("--remote-debugging-port=5566") chrome = webdriver.Chrome( executable_path='./chromedriver', chrome_options=options) p = 1 df = pd.DataFrame() # 暫存當頁資料,換頁時即整併到dfAll dfAll = pd.DataFrame() # 存放所有資料 close = 0 while True: if (close == 1): chrome.quit() break url = "https://www.irisgarden.com.tw/products?page=" + str(p) # 如果頁面超過(找不到),直接印出completed然後break跳出迴圈 try: chrome.get(url) except: break time.sleep(1) i = 1 while(i < 25): try: title = chrome.find_element_by_xpath( "//li[%i]/a/div[2]/div/div[1]" % (i,)).text except: close += 1 break try: page_link = chrome.find_element_by_xpath( "//li[@class='boxify-item product-item ng-isolate-scope'][%i]/a[@href]" % (i,)).get_attribute('href') make_id = parse.urlsplit(page_link) page_id = make_id.path page_id = page_id.lstrip("/products/") find_href = chrome.find_element_by_xpath( "//li[%i]/a/div[1]/div" % (i,)) bg_url = find_href.value_of_css_property('background-image') pic_link = bg_url.lstrip('url("').rstrip(')"') except: i += 1 if(i == 25): p += 1 continue try: sale_price = chrome.find_element_by_xpath( "//li[%i]/a/div[2]/div/div[2]" % (i,)).text sale_price = sale_price.strip('NT$') sale_price = sale_price.split() sale_price = sale_price[0] ori_price = "" except: try: sale_price = chrome.find_element_by_xpath( "//li[%i]/a/div/div/div[2]/div[1]" % (i,)).text sale_price = sale_price.strip('NT$') sale_price = sale_price.split() sale_price = sale_price[0] ori_price = "" except: i += 1 if(i == 25): p += 1 continue i += 1 if(i == 25): p += 1 df = pd.DataFrame( { "title": [title], "page_link": [page_link], "page_id": [page_id], "pic_link": [pic_link], "ori_price": [ori_price], "sale_price": [sale_price] }) dfAll = pd.concat([dfAll, df]) dfAll = dfAll.reset_index(drop=True) save(shop_id, name, dfAll) upload(shop_id, name) def Nook(): shop_id = 39 name = 'nook' options = Options() # 啟動無頭模式 options.add_argument('--headless') # 規避google bug options.add_argument('--disable-gpu') options.add_argument('--ignore-certificate-errors') options.add_argument('--no-sandbox') options.add_argument('--disable-dev-shm-usage') options.add_argument("--remote-debugging-port=5566") chrome = webdriver.Chrome( executable_path='./chromedriver', chrome_options=options) p = 1 df = pd.DataFrame() # 暫存當頁資料,換頁時即整併到dfAll dfAll = pd.DataFrame() # 存放所有資料 close = 0 while True: if (close == 1): chrome.quit() break url = "https://www.nooknook.me/products?page=" + str(p) # 如果頁面超過(找不到),直接印出completed然後break跳出迴圈 try: chrome.get(url) except: break time.sleep(1) i = 1 while(i < 25): try: title = chrome.find_element_by_xpath( "//li[%i]/product-item/a/div[2]/div/div[1]" % (i,)).text except: close += 1 break try: page_link = chrome.find_element_by_xpath( "//li[%i]/product-item/a[@href]" % (i,)).get_attribute('href') make_id = parse.urlsplit(page_link) page_id = make_id.path page_id = page_id.lstrip("/products/") find_href = chrome.find_element_by_xpath( "//li[%i]/product-item/a/div[1]/div" % (i,)) bg_url = find_href.value_of_css_property('background-image') pic_link = bg_url.lstrip('url("').rstrip(')"') except: i += 1 if(i == 25): p += 1 continue try: sale_price = chrome.find_element_by_xpath( "//li[%i]/product-item/a/div/div/div[2]/div[2]" % (i,)).text sale_price = sale_price.strip('NT$') sale_price = sale_price.split() sale_price = sale_price[0] ori_price = chrome.find_element_by_xpath( "//li[%i]/product-item/a/div/div/div[2]/div[1]" % (i,)).text ori_price = ori_price.strip('NT$') except: try: sale_price = chrome.find_element_by_xpath( "//li[%i]/product-item/a/div/div/div[2]/div[1]" % (i,)).text sale_price = sale_price.strip('NT$') sale_price = sale_price.split() sale_price = sale_price[0] ori_price = "" except: i += 1 if(i == 25): p += 1 continue i += 1 if(i == 25): p += 1 df = pd.DataFrame( { "title": [title], "page_link": [page_link], "page_id": [page_id], "pic_link": [pic_link], "ori_price": [ori_price], "sale_price": [sale_price] }) dfAll = pd.concat([dfAll, df]) dfAll = dfAll.reset_index(drop=True) save(shop_id, name, dfAll) upload(shop_id, name) def Greenpea(): shop_id = 40 name = 'greenpea' options = Options() # 啟動無頭模式 options.add_argument('--headless') # 規避google bug options.add_argument('--disable-gpu') options.add_argument('--ignore-certificate-errors') options.add_argument('--no-sandbox') options.add_argument('--disable-dev-shm-usage') options.add_argument("--remote-debugging-port=5566") chrome = webdriver.Chrome( executable_path='./chromedriver', chrome_options=options) p = 1 df = pd.DataFrame() # 暫存當頁資料,換頁時即整併到dfAll dfAll = pd.DataFrame() # 存放所有資料 close = 0 while True: if (close == 1): chrome.quit() break url = "https://www.greenpea-tw.com/products?page=" + str(p) # 如果頁面超過(找不到),直接印出completed然後break跳出迴圈 try: chrome.get(url) except: break time.sleep(1) i = 1 while(i < 25): try: title = chrome.find_element_by_xpath( "//li[%i]/a/div[2]/div/div[1]" % (i,)).text except: close += 1 break try: page_link = chrome.find_element_by_xpath( "//div[2]/ul/li[%i]/a[@href]" % (i,)).get_attribute('href') make_id = parse.urlsplit(page_link) page_id = make_id.path page_id = page_id.lstrip("/products/") find_href = chrome.find_element_by_xpath( "//li[%i]/a/div[1]/div" % (i,)) bg_url = find_href.value_of_css_property('background-image') pic_link = bg_url.lstrip('url("').rstrip(')"') except: i += 1 if(i == 25): p += 1 continue try: sale_price = chrome.find_element_by_xpath( "//li[%i]/a/div[2]/div/div[3]" % (i,)).text sale_price = sale_price.strip('NT$') sale_price = sale_price.split() sale_price = sale_price[0] ori_price = chrome.find_element_by_xpath( "//li[%i]/a/div[2]/div/div[2]" % (i,)).text ori_price = ori_price.strip('NT$') except: try: sale_price = chrome.find_element_by_xpath( "//li[%i]/a/div[2]/div/div[2]" % (i,)).text sale_price = sale_price.strip('NT$') sale_price = sale_price.split() sale_price = sale_price[0] ori_price = "" except: i += 1 if(i == 25): p += 1 i += 1 if(i == 25): p += 1 df = pd.DataFrame( { "title": [title], "page_link": [page_link], "page_id": [page_id], "pic_link": [pic_link], "ori_price": [ori_price], "sale_price": [sale_price] }) dfAll = pd.concat([dfAll, df]) dfAll = dfAll.reset_index(drop=True) save(shop_id, name, dfAll) upload(shop_id, name) def Queen(): shop_id = 42 name = 'queen' options = Options() # 啟動無頭模式 options.add_argument('--headless') # 規避google bug options.add_argument('--disable-gpu') options.add_argument('--ignore-certificate-errors') options.add_argument('--no-sandbox') options.add_argument('--disable-dev-shm-usage') options.add_argument("--remote-debugging-port=5566") chrome = webdriver.Chrome( executable_path='./chromedriver', chrome_options=options) p = 1 df = pd.DataFrame() # 暫存當頁資料,換頁時即整併到dfAll dfAll = pd.DataFrame() # 存放所有資料 close = 0 while True: if (close == 1): chrome.quit() break url = "https://www.queenshop.com.tw/zh-TW/QueenShop/ProductList?item1=01&item2=all&Page=" + \ str(p) + "&View=4" # 如果頁面超過(找不到),直接印出completed然後break跳出迴圈 try: chrome.get(url) except: break i = 1 while(i < 17): try: title = chrome.find_element_by_xpath( "//ul[@class='items-list list-array-4']/li[%i]/a/p" % (i,)).text except: close += 1 break try: page_link = chrome.find_element_by_xpath( "//ul[@class='items-list list-array-4']/li[%i]/a[@href]" % (i,)).get_attribute('href') page_id = stripID(page_link, "SaleID=") pic_link = chrome.find_element_by_xpath( "//ul[@class='items-list list-array-4']/li[%i]/a/img[1]" % (i,)).get_attribute('data-src') except: i += 1 if(i == 17): p += 1 continue try: sale_price = chrome.find_element_by_xpath( "//ul[@class='items-list list-array-4']/li[%i]/p[2]/span[2]" % (i,)).text sale_price = sale_price.strip('NT. ') ori_price = chrome.find_element_by_xpath( "//ul[@class='items-list list-array-4']/li[%i]/p[2]/span[1]" % (i,)).text ori_price = ori_price.strip('NT. ') except: try: sale_price = chrome.find_element_by_xpath( "//ul[@class='items-list list-array-4']/li[%i]/p[2]/span[1]" % (i,)).text sale_price = sale_price.strip('NT. ') ori_price = "" except: i += 1 if(i == 17): p += 1 continue i += 1 if(i == 17): p += 1 df = pd.DataFrame( { "title": [title], "page_link": [page_link], "page_id": [page_id], "pic_link": [pic_link], "ori_price": [ori_price], "sale_price": [sale_price] }) dfAll = pd.concat([dfAll, df]) dfAll = dfAll.reset_index(drop=True) save(shop_id, name, dfAll) upload(shop_id, name) def Cozyfee(): shop_id = 48 name = 'cozyfee' options = Options() # 啟動無頭模式 options.add_argument('--headless') # 規避google bug options.add_argument('--disable-gpu') options.add_argument('--ignore-certificate-errors') options.add_argument('--no-sandbox') options.add_argument('--disable-dev-shm-usage') options.add_argument("--remote-debugging-port=5566") chrome = webdriver.Chrome( executable_path='./chromedriver', chrome_options=options) p = 1 df = pd.DataFrame() # 暫存當頁資料,換頁時即整併到dfAll dfAll = pd.DataFrame() # 存放所有資料 close = 0 while True: if (close == 1): chrome.quit() break url = "https://www.cozyfee.com/product.php?page=" + \ str(p) + "&cid=55#prod_list" # 如果頁面超過(找不到),直接印出completed然後break跳出迴圈 try: chrome.get(url) except: break time.sleep(1) i = 1 while(i < 41): try: title = chrome.find_element_by_xpath( "//li[%i]/div[2]/a" % (i,)).text except: close += 1 break try: page_link = chrome.find_element_by_xpath( "//li[%i]/div[2]/a[@href]" % (i,)).get_attribute('href') make_id = parse.urlsplit(page_link) page_id = make_id.query page_id = page_id.lstrip("action=detail&pid=") pic_link = chrome.find_element_by_xpath( "//li[%i]/div[1]/a/img[1]" % (i,)).get_attribute('data-original') sale_price = chrome.find_element_by_xpath( "//li[%i]/div[3]/span" % (i,)).text sale_price = sale_price.strip('NT.') ori_price = "" except: i += 1 if(i == 41): p += 1 continue i += 1 if(i == 41): p += 1 df = pd.DataFrame( { "title": [title], "page_link": [page_link], "page_id": [page_id], "pic_link": [pic_link], "ori_price": [ori_price], "sale_price": [sale_price] }) dfAll = pd.concat([dfAll, df]) dfAll = dfAll.reset_index(drop=True) save(shop_id, name, dfAll) upload(shop_id, name) def Reishop(): shop_id = 49 name = 'reishop' options = Options() # 啟動無頭模式 options.add_argument('--headless') # 規避google bug options.add_argument('--disable-gpu') options.add_argument('--ignore-certificate-errors') options.add_argument('--no-sandbox') options.add_argument('--disable-dev-shm-usage') options.add_argument("--remote-debugging-port=5566") chrome = webdriver.Chrome( executable_path='./chromedriver', chrome_options=options) p = 1 df = pd.DataFrame() # 暫存當頁資料,換頁時即整併到dfAll dfAll = pd.DataFrame() # 存放所有資料 close = 0 while True: if (close == 1): chrome.quit() break url = "https://www.reishop.com.tw/pdlist2.asp?item1=all&item2=&item3=&keyword=&ob=A&pagex=&pageno=" + \ str(p) # 如果頁面超過(找不到),直接印出completed然後break跳出迴圈 try: chrome.get(url) except: break time.sleep(1) i = 1 while(i < 31): try: title = chrome.find_element_by_xpath( "//figcaption[%i]/a/span[2]/span[1]" % (i,)).text except: close += 1 break try: page_link = chrome.find_element_by_xpath( "//figcaption[%i]/a[@href]" % (i,)).get_attribute('href') make_id = parse.urlsplit(page_link) page_id = make_id.query page_id = page_id.lstrip("yano=YA") page_id = page_id.replace("&color=", "") pic_link = chrome.find_element_by_xpath( "//figcaption[%i]/a/span/img[1]" % (i,)).get_attribute('src') sale_price = chrome.find_element_by_xpath( "//figcaption[%i]/a/span[2]/span[2]/span" % (i,)).text sale_price = sale_price.strip('NT.') ori_price = "" except: i += 1 if(i == 31): p += 1 continue i += 1 if(i == 31): p += 1 df = pd.DataFrame( { "title": [title], "page_link": [page_link], "page_id": [page_id], "pic_link": [pic_link], "ori_price": [ori_price], "sale_price": [sale_price] }) dfAll = pd.concat([dfAll, df]) dfAll = dfAll.reset_index(drop=True) save(shop_id, name, dfAll) upload(shop_id, name) def Yourz(): shop_id = 50 name = 'yourz' options = Options() # 啟動無頭模式 options.add_argument('--headless') # 規避google bug options.add_argument('--disable-gpu') options.add_argument('--ignore-certificate-errors') options.add_argument('--no-sandbox') options.add_argument('--disable-dev-shm-usage') options.add_argument("--remote-debugging-port=5566") chrome = webdriver.Chrome( executable_path='./chromedriver', chrome_options=options) p = 1 df = pd.DataFrame() # 暫存當頁資料,換頁時即整併到dfAll dfAll = pd.DataFrame() # 存放所有資料 close = 0 while True: if (close == 1): chrome.quit() break url = "https://www.yourz.com.tw/product/category/34/1/" + str(p) # 如果頁面超過(找不到),直接印出completed然後break跳出迴圈 try: chrome.get(url) except: break time.sleep(1) i = 1 while(i < 13): try: title = chrome.find_element_by_xpath( "//div[@class='pro_list'][%i]/div/table/tbody/tr/td/div/a" % (i,)).text except: close += 1 break try: page_link = chrome.find_element_by_xpath( "//div[@class='pro_list'][%i]/div/table/tbody/tr/td/div/a[@href]" % (i,)).get_attribute('href') make_id = parse.urlsplit(page_link) page_id = make_id.path page_id = page_id.lstrip("/product/detail/") pic_link = chrome.find_element_by_xpath( "//div[@class='pro_list'][%i]/div/a/img" % (i,)).get_attribute('src') sale_price = chrome.find_element_by_xpath( "//div[@class='pro_list'][%i]/div[4]/p/font" % (i,)).text sale_price = sale_price.replace('VIP價:NT$ ', '') sale_price = sale_price.rstrip('元') ori_price = chrome.find_element_by_xpath( "//div[@class='pro_list'][%i]/div[4]/p/br" % (i,)).text ori_price = ori_price.replace('NT$ ', '') ori_price = ori_price.rstrip('元') except: i += 1 if(i == 13): p += 1 continue i += 1 if(i == 13): p += 1 df = pd.DataFrame( { "title": [title], "page_link": [page_link], "page_id": [page_id], "pic_link": [pic_link], "ori_price": [ori_price], "sale_price": [sale_price] }) dfAll = pd.concat([dfAll, df]) dfAll = dfAll.reset_index(drop=True) save(shop_id, name, dfAll) upload(shop_id, name) def Seoulmate(): shop_id = 54 name = 'seoulmate' options = Options() # 啟動無頭模式 options.add_argument('--headless') # 規避google bug options.add_argument('--disable-gpu') options.add_argument('--ignore-certificate-errors') options.add_argument('--no-sandbox') options.add_argument('--disable-dev-shm-usage') options.add_argument("--remote-debugging-port=5566") chrome = webdriver.Chrome( executable_path='./chromedriver', chrome_options=options) p = 1 df = pd.DataFrame() # 暫存當頁資料,換頁時即整併到dfAll dfAll = pd.DataFrame() # 存放所有資料 close = 0 while True: if (close == 1): chrome.quit() break url = "https://www.seoulmate.com.tw/catalog.php?m=115&s=249&t=0&sort=&page=" + \ str(p) # 如果頁面超過(找不到),直接印出completed然後break跳出迴圈 try: chrome.get(url) except: break time.sleep(1) i = 1 while(i < 33): try: title = chrome.find_element_by_xpath( "//li[%i]/p[1]/a" % (i,)).text except: close += 1 break try: page_link = chrome.find_element_by_xpath( "//ul/li[%i]/p[1]/a[@href]" % (i,)).get_attribute('href') make_id = parse.urlsplit(page_link) page_id = make_id.query page_id = page_id.replace("m=115&s=249&t=0&id=", "") pic_link = chrome.find_element_by_xpath( "//ul/li[%i]/a/img[1]" % (i,)).get_attribute('src') if(pic_link == ""): i += 1 if(i == 33): p += 1 continue except: i += 1 if(i == 33): p += 1 continue try: ori_price = chrome.find_element_by_xpath( "//ul/li[%i]/p[3]/del" % (i,)).text ori_price = ori_price.strip('NT.') sale_price = chrome.find_element_by_xpath( "//ul/li[%i]/p[3]" % (i,)).text sale_price = sale_price.strip('NT.') sale_price = sale_price.strip('NT.') locate = sale_price.find("NT.") sale_price = sale_price[locate+3:len(sale_price)] except: try: sale_price = chrome.find_element_by_xpath( "//ul/li[%i]/p[3]" % (i,)).text sale_price = sale_price.strip('NT.') ori_price = "" except: i += 1 if(i == 33): p += 1 continue i += 1 if(i == 33): p += 1 df = pd.DataFrame( { "title": [title], "page_link": [page_link], "page_id": [page_id], "pic_link": [pic_link], "ori_price": [ori_price], "sale_price": [sale_price] }) dfAll = pd.concat([dfAll, df]) dfAll = dfAll.reset_index(drop=True) save(shop_id, name, dfAll) upload(shop_id, name) def Sweesa(): shop_id = 55 name = 'sweesa' options = Options() # 啟動無頭模式 options.add_argument('--headless') # 規避google bug options.add_argument('--disable-gpu') options.add_argument('--ignore-certificate-errors') options.add_argument('--no-sandbox') options.add_argument('--disable-dev-shm-usage') options.add_argument("--remote-debugging-port=5566") chrome = webdriver.Chrome( executable_path='./chromedriver', chrome_options=options) p = 1 df = pd.DataFrame() # 暫存當頁資料,換頁時即整併到dfAll dfAll = pd.DataFrame() # 存放所有資料 close = 0 while True: if (close == 1): chrome.quit() break url = "https://www.sweesa.com/Shop/itemList.aspx?&m=20&o=5&sa=1&smfp=" + \ str(p) try: chrome.get(url) except: break time.sleep(1) i = 1 while(i < 45): try: title = chrome.find_element_by_xpath( "//div[@class='itemListDiv'][%i]/div[2]/a" % (i,)).text except: close += 1 break try: page_link = chrome.find_element_by_xpath( "//div[@class='itemListDiv'][%i]/div[2]/a" % (i,)).get_attribute('href') make_id = parse.urlsplit(page_link) page_id = make_id.query page_id = page_id.replace("mNo1=", "") page_id = page_id.replace("&m=20", "") pic_link = chrome.find_element_by_xpath( "//div[@class='itemListDiv'][%i]//a/img[@src]" % (i,)).get_attribute("src") sale_price = chrome.find_element_by_xpath( "//div[@class='itemListDiv'][%i]/div[4]/span" % (i,)).text sale_price = sale_price.strip('TWD.') ori_price = "" except: i += 1 if(i == 45): p += 1 continue i += 1 if(i == 45): p += 1 df = pd.DataFrame( { "title": [title], "page_link": [page_link], "page_id": [page_id], "pic_link": [pic_link], "ori_price": [ori_price], "sale_price": [sale_price] }) dfAll = pd.concat([dfAll, df]) dfAll = dfAll.reset_index(drop=True) save(shop_id, name, dfAll) upload(shop_id, name) def Pazzo(): shop_id = 56 name = 'pazzo' options = Options() # 啟動無頭模式 options.add_argument('--headless') # 規避google bug options.add_argument('--disable-gpu') options.add_argument('--ignore-certificate-errors') options.add_argument('--no-sandbox') options.add_argument('--disable-dev-shm-usage') options.add_argument("--remote-debugging-port=5566") chrome = webdriver.Chrome( executable_path='./chromedriver', chrome_options=options) p = 1 df = pd.DataFrame() # 暫存當頁資料,換頁時即整併到dfAll dfAll = pd.DataFrame() # 存放所有資料 close = 0 while True: if (close == 1): chrome.quit() break url = "https://www.pazzo.com.tw/recent?P=" + str(p) # 如果頁面超過(找不到),直接印出completed然後break跳出迴圈 try: chrome.get(url) except: break time.sleep(1) i = 1 while(i < 41): try: title = chrome.find_element_by_xpath( "//li[%i]/div[2]/p/a" % (i,)).text except: close += 1 break try: page_link = chrome.find_element_by_xpath( "//li[%i]/div[2]/p/a[@href]" % (i,)).get_attribute('href') make_id = parse.urlsplit(page_link) page_id = make_id.query page_id = page_id.lstrip("c=") pic_link = chrome.find_element_by_xpath( "//li[@class='item'][%i]/div[@class='item__images']/a/picture/img[@class='img-fluid']" % (i,)).get_attribute('src') except: i += 1 if(i == 41): p += 1 continue try: sale_price = chrome.find_element_by_xpath( "//li[%i]/div[2]/p[2]/span[2]" % (i,)).text sale_price = sale_price.strip('NT.') ori_price = chrome.find_element_by_xpath( "//li[%i]/div[2]/p[2]/span[1]" % (i,)).text ori_price = ori_price.strip('NT.') except: sale_price = chrome.find_element_by_xpath( "//li[%i]/div[2]/p[2]/span" % (i,)).text sale_price = sale_price.strip('NT.') ori_price = "" i += 1 if(i == 41): p += 1 df = pd.DataFrame( { "title": [title], "page_link": [page_link], "page_id": [page_id], "pic_link": [pic_link], "ori_price": [ori_price], "sale_price": [sale_price] }) dfAll = pd.concat([dfAll, df]) dfAll = dfAll.reset_index(drop=True) save(shop_id, name, dfAll) upload(shop_id, name) def Meierq(): shop_id = 57 name = 'meierq' options = Options() # 啟動無頭模式 options.add_argument('--headless') # 規避google bug options.add_argument('--disable-gpu') options.add_argument('--ignore-certificate-errors') options.add_argument('--no-sandbox') options.add_argument('--disable-dev-shm-usage') options.add_argument("--remote-debugging-port=5566") chrome = webdriver.Chrome( executable_path='./chromedriver', chrome_options=options) df = pd.DataFrame() # 暫存當頁資料,換頁時即整併到dfAll dfAll = pd.DataFrame() # 存放所有資料 close = 0 page = 0 prefix_urls = [ "https://www.meierq.com/zh-tw/category/bottomclothing?P=", "https://www.meierq.com/zh-tw/category/jewelry?P=", "https://www.meierq.com/zh-tw/category/outerclothing?P=", "https://www.meierq.com/zh-tw/category/accessories?P=", ] for prefix in prefix_urls: page += 1 for i in range(1, page_Max): url = f"{prefix}{i}" try: print(url) chrome.get(url) chrome.find_element_by_xpath("//div[@class='items__image']") except: print("find_element_by_xpath_break", page) if(page == 4): chrome.quit() print("break") break break i = 1 while(i < 41): try: title = chrome.find_element_by_xpath( "//li[%i]/div/p/a" % (i,)).text except: break try: page_link = chrome.find_element_by_xpath( "//li[%i]/div/p/a[@href]" % (i,)).get_attribute('href') page_id = stripID(page_link, "n/") page_id = page_id[:page_id.find("?c")] pic_link = chrome.find_element_by_xpath( "//li[%i]/div/img" % (i,)).get_attribute('src') try: sale_price = chrome.find_element_by_xpath( "//li[%i]/div/p/span[2]" % (i,)).text sale_price = sale_price.strip('NT.') ori_price = chrome.find_element_by_xpath( "//li[%i]/div/p/span" % (i,)).text ori_price = ori_price.strip('NT.') except: sale_price = chrome.find_element_by_xpath( "//li[%i]/div/p/span" % (i,)).text sale_price = sale_price.strip('NT.') ori_price = "" except: i += 1 if(i == 41): p += 1 continue i += 1 if(i == 41): p += 1 df = pd.DataFrame( { "title": [title], "page_link": [page_link], "page_id": [page_id], "pic_link": [pic_link], "ori_price": [ori_price], "sale_price": [sale_price] }) dfAll = pd.concat([dfAll, df]) dfAll = dfAll.reset_index(drop=True) save(shop_id, name, dfAll) upload(shop_id, name) def Harper(): shop_id = 58 name = 'harper' options = Options() # 啟動無頭模式 options.add_argument('--headless') # 規避google bug options.add_argument('--disable-gpu') options.add_argument('--ignore-certificate-errors') options.add_argument('--no-sandbox') options.add_argument('--disable-dev-shm-usage') options.add_argument("--remote-debugging-port=5566") chrome = webdriver.Chrome( executable_path='./chromedriver', chrome_options=options) p = 1 df = pd.DataFrame() # 暫存當頁資料,換頁時即整併到dfAll dfAll = pd.DataFrame() # 存放所有資料 while True: url = "https://www.harper.com.tw/Shop/itemList.aspx?&m=13&smfp=" + \ str(p) if(p > 20): chrome.quit() break try: chrome.get(url) except: chrome.quit() break i = 1 while(i < 80): try: title = chrome.find_element_by_xpath( "//div[@class='itemListDiv'][%i]/div[2]/a" % (i,)).text except: p += 1 break try: page_link = chrome.find_element_by_xpath( "//div[@class='itemListDiv'][%i]/div[2]/a" % (i,)).get_attribute('href') page_id = stripID(page_link, "cno=") page_id = page_id.replace("&m=13", "") pic_link = chrome.find_element_by_xpath( "//div[@class='itemListDiv'][%i]//a/img[@src]" % (i,)).get_attribute("src") sale_price = chrome.find_element_by_xpath( "//div[@class='itemListDiv'][%i]/div[4]/span" % (i,)).text sale_price = sale_price.strip('NT.') ori_price = "" except: i += 1 if(i == 79): p += 1 continue i += 1 if(i == 79): p += 1 df = pd.DataFrame( { "title": [title], "page_link": [page_link], "page_id": [page_id], "pic_link": [pic_link], "ori_price": [ori_price], "sale_price": [sale_price] }) dfAll = pd.concat([dfAll, df]) dfAll = dfAll.reset_index(drop=True) save(shop_id, name, dfAll) upload(shop_id, name) def Lurehsu(): shop_id = 59 name = 'lurehsu' options = Options() # 啟動無頭模式 options.add_argument('--headless') # 規避google bug options.add_argument('--disable-gpu') options.add_argument('--ignore-certificate-errors') options.add_argument('--no-sandbox') options.add_argument('--disable-dev-shm-usage') options.add_argument("--remote-debugging-port=5566") chrome = webdriver.Chrome( executable_path='./chromedriver', chrome_options=options) p = 1 df = pd.DataFrame() # 暫存當頁資料,換頁時即整併到dfAll dfAll = pd.DataFrame() # 存放所有資料 close = 0 while True: if (close == 1): chrome.quit() break url = "https://www.lurehsu.com/zh-TW/lure/productList?item1=00&item2=16&page=" + \ str(p) # 如果頁面超過(找不到),直接印出completed然後break跳出迴圈 try: chrome.get(url) except: break i = 1 while(i < 28): try: title = chrome.find_element_by_xpath( "//div[@class='grid-item'][%i]/a/div[2]/p" % (i,)).text except: close += 1 break try: page_link = chrome.find_element_by_xpath( "//div[@class='grid-item'][%i]/a[@href]" % (i,)).get_attribute('href') make_id = parse.urlsplit(page_link) page_id = make_id.query page_id = page_id.lstrip("SaleID=") page_id = page_id[:page_id.find("&Color")] pic_link = chrome.find_element_by_xpath( "//div[@class='grid-item'][%i]/a/div/img" % (i,)).get_attribute('src') except: i += 1 if(i == 28): p += 1 continue try: sale_price = chrome.find_element_by_xpath( "//div[@class='grid-item'][%i]/a/div[2]/div/p/span[2]" % (i,)).text sale_price = sale_price.strip('NTD.') ori_price = chrome.find_element_by_xpath( "//div[@class='grid-item'][%i]/a/div[2]/div/p/span[1]" % (i,)).text ori_price = ori_price.strip('NTD.') except: try: sale_price = chrome.find_element_by_xpath( "//div[@class='grid-item'][%i]/a/div[2]/div/p" % (i,)).text sale_price = sale_price.strip('NTD.') ori_price = "" except: i += 1 if(i == 28): p += 1 continue i += 1 if(i == 28): p += 1 df = pd.DataFrame( { "title": [title], "page_link": [page_link], "page_id": [page_id], "pic_link": [pic_link], "ori_price": [ori_price], "sale_price": [sale_price] }) dfAll = pd.concat([dfAll, df]) dfAll = dfAll.reset_index(drop=True) save(shop_id, name, dfAll) upload(shop_id, name) def Pufii(): shop_id = 61 name = 'pufii' options = Options() # 啟動無頭模式 options.add_argument('--headless') # 規避google bug options.add_argument('--disable-gpu') options.add_argument('--ignore-certificate-errors') options.add_argument('--no-sandbox') options.add_argument('--disable-dev-shm-usage') options.add_argument("--remote-debugging-port=5566") chrome = webdriver.Chrome( executable_path='./chromedriver', chrome_options=options) p = 1 df = pd.DataFrame() # 暫存當頁資料,換頁時即整併到dfAll dfAll = pd.DataFrame() # 存放所有資料 close = 0 while True: if (close == 1): chrome.quit() break url = "https://www.pufii.com.tw/Shop/itemList.aspx?&m=6&smfp=" + str(p) # 如果頁面超過(找不到),直接印出completed然後break跳出迴圈 try: chrome.get(url) except: break time.sleep(1) i = 1 while(i < 37): try: title = chrome.find_element_by_xpath( "//div[@class='itemListDiv'][%i]/div[3]" % (i,)).text except: close += 1 break try: page_link = chrome.find_element_by_xpath( "//div[@class='itemListDiv'][%i]/div[1]/a" % (i,)).get_attribute('href') make_id = parse.urlsplit(page_link) page_id = make_id.query page_id = page_id.replace("mNo1=P", "") page_id = page_id.replace("&m=6", "") pic_link = chrome.find_element_by_xpath( "//div[@class='itemListDiv'][%i]//a/img[@src]" % (i,)).get_attribute("src") try: sale_price = chrome.find_element_by_xpath( "//div[@class='itemListDiv'][%i]/div[@class='pricediv']/span[2]" % (i,)).text sale_price = sale_price.strip('活動價NT') ori_price = chrome.find_element_by_xpath( "//div[@class='itemListDiv'][%i]/div[@class='pricediv']/span[1]" % (i,)).text ori_price = ori_price.strip('NT') except: sale_price = chrome.find_element_by_xpath( "//div[@class='itemListDiv'][%i]/div[@class='pricediv']/span[1]" % (i,)).text sale_price = sale_price.strip('NT') ori_price = "" except: i += 1 if(i == 37): p += 1 continue i += 1 if(i == 37): p += 1 df = pd.DataFrame( { "title": [title], "page_link": [page_link], "page_id": [page_id], "pic_link": [pic_link], "ori_price": [ori_price], "sale_price": [sale_price] }) dfAll = pd.concat([dfAll, df]) dfAll = dfAll.reset_index(drop=True) save(shop_id, name, dfAll) upload(shop_id, name) def Mouggan(): shop_id = 62 name = 'mouggan' options = Options() # 啟動無頭模式 options.add_argument('--headless') # 規避google bug options.add_argument('--disable-gpu') options.add_argument('--ignore-certificate-errors') options.add_argument('--no-sandbox') options.add_argument('--disable-dev-shm-usage') options.add_argument("--remote-debugging-port=5566") chrome = webdriver.Chrome( executable_path='./chromedriver', chrome_options=options) p = 1 df = pd.DataFrame() # 暫存當頁資料,換頁時即整併到dfAll dfAll = pd.DataFrame() # 存放所有資料 close = 0 while True: if (close == 1): chrome.quit() break url = "https://www.mouggan.com/zh-tw/category/ALL-ITEM?P=" + str(p) # 如果頁面超過(找不到),直接印出completed然後break跳出迴圈 try: chrome.get(url) except: break try: chrome.find_element_by_xpath( "//a[@class='close p-0']/i[@class='icon-popup-close']").click() except: pass i = 1 while(i < 19): try: title = chrome.find_element_by_xpath( "//div[2]/div[%i]/div[2]/a" % (i,)).text except: close += 1 break try: page_link = chrome.find_element_by_xpath( "//div[2]/div[%i]/div[2]/a[@href]" % (i,)).get_attribute('href') page_id = stripID(page_link, "c=") pic_link = chrome.find_element_by_xpath( "//div[2]/div[%i]/div[1]/div/a/img" % (i,)).get_attribute('src') except: i += 1 if(i == 19): p += 1 continue try: sale_price = chrome.find_element_by_xpath( "//div[2]/div[%i]/div[2]/div[1]/span[2]" % (i,)).text sale_price = sale_price.strip('NT$') ori_price = chrome.find_element_by_xpath( "//div[2]/div[%i]/div[2]/div[1]/span[1]" % (i,)).text ori_price = ori_price.strip('NT$') except: try: sale_price = chrome.find_element_by_xpath( "//div[2]/div[%i]/div[2]/div[1]/span[1]" % (i,)).text sale_price = sale_price.strip('NT$') ori_price = "" except: i += 1 if(i == 19): p += 1 continue i += 1 if(i == 19): p += 1 df = pd.DataFrame( { "title": [title], "page_link": [page_link], "page_id": [page_id], "pic_link": [pic_link], "ori_price": [ori_price], "sale_price": [sale_price] }) dfAll = pd.concat([dfAll, df]) dfAll = dfAll.reset_index(drop=True) save(shop_id, name, dfAll) upload(shop_id, name) def Mercci(): shop_id = 64 name = 'mercci' options = Options() # 啟動無頭模式 options.add_argument('--headless') # 規避google bug options.add_argument('--disable-gpu') options.add_argument('--ignore-certificate-errors') options.add_argument('--no-sandbox') options.add_argument('--disable-dev-shm-usage') options.add_argument("--remote-debugging-port=5566") chrome = webdriver.Chrome( executable_path='./chromedriver', chrome_options=options) p = 1 df = pd.DataFrame() # 暫存當頁資料,換頁時即整併到dfAll dfAll =
pd.DataFrame()
pandas.DataFrame
import types from functools import wraps import numpy as np import datetime import collections from pandas.compat import( zip, builtins, range, long, lzip, OrderedDict, callable ) from pandas import compat from pandas.core.base import PandasObject from pandas.core.categorical import Categorical from pandas.core.frame import DataFrame from pandas.core.generic import NDFrame from pandas.core.index import Index, MultiIndex, _ensure_index, _union_indexes from pandas.core.internals import BlockManager, make_block from pandas.core.series import Series from pandas.core.panel import Panel from pandas.util.decorators import cache_readonly, Appender import pandas.core.algorithms as algos import pandas.core.common as com from pandas.core.common import(_possibly_downcast_to_dtype, isnull, notnull, _DATELIKE_DTYPES, is_numeric_dtype, is_timedelta64_dtype, is_datetime64_dtype, is_categorical_dtype, _values_from_object) from pandas.core.config import option_context from pandas import _np_version_under1p7 import pandas.lib as lib from pandas.lib import Timestamp import pandas.tslib as tslib import pandas.algos as _algos import pandas.hashtable as _hash _agg_doc = """Aggregate using input function or dict of {column -> function} Parameters ---------- arg : function or dict Function to use for aggregating groups. If a function, must either work when passed a DataFrame or when passed to DataFrame.apply. If passed a dict, the keys must be DataFrame column names. Notes ----- Numpy functions mean/median/prod/sum/std/var are special cased so the default behavior is applying the function along axis=0 (e.g., np.mean(arr_2d, axis=0)) as opposed to mimicking the default Numpy behavior (e.g., np.mean(arr_2d)). Returns ------- aggregated : DataFrame """ # special case to prevent duplicate plots when catching exceptions when # forwarding methods from NDFrames _plotting_methods = frozenset(['plot', 'boxplot', 'hist']) _common_apply_whitelist = frozenset([ 'last', 'first', 'head', 'tail', 'median', 'mean', 'sum', 'min', 'max', 'cumsum', 'cumprod', 'cummin', 'cummax', 'cumcount', 'resample', 'describe', 'rank', 'quantile', 'count', 'fillna', 'mad', 'any', 'all', 'irow', 'take', 'idxmax', 'idxmin', 'shift', 'tshift', 'ffill', 'bfill', 'pct_change', 'skew', 'corr', 'cov', 'diff', ]) | _plotting_methods _series_apply_whitelist = \ (_common_apply_whitelist - set(['boxplot'])) | \ frozenset(['dtype', 'value_counts', 'unique', 'nunique', 'nlargest', 'nsmallest']) _dataframe_apply_whitelist = \ _common_apply_whitelist | frozenset(['dtypes', 'corrwith']) class GroupByError(Exception): pass class DataError(GroupByError): pass class SpecificationError(GroupByError): pass def _groupby_function(name, alias, npfunc, numeric_only=True, _convert=False): def f(self): self._set_selection_from_grouper() try: return self._cython_agg_general(alias, numeric_only=numeric_only) except AssertionError as e: raise SpecificationError(str(e)) except Exception: result = self.aggregate(lambda x: npfunc(x, axis=self.axis)) if _convert: result = result.convert_objects() return result f.__doc__ = "Compute %s of group values" % name f.__name__ = name return f def _first_compat(x, axis=0): def _first(x): x = np.asarray(x) x = x[notnull(x)] if len(x) == 0: return np.nan return x[0] if isinstance(x, DataFrame): return x.apply(_first, axis=axis) else: return _first(x) def _last_compat(x, axis=0): def _last(x): x = np.asarray(x) x = x[notnull(x)] if len(x) == 0: return np.nan return x[-1] if isinstance(x, DataFrame): return x.apply(_last, axis=axis) else: return _last(x) def _count_compat(x, axis=0): try: return x.size except: return x.count() class Grouper(object): """ A Grouper allows the user to specify a groupby instruction for a target object This specification will select a column via the key parameter, or if the level and/or axis parameters are given, a level of the index of the target object. These are local specifications and will override 'global' settings, that is the parameters axis and level which are passed to the groupby itself. Parameters ---------- key : string, defaults to None groupby key, which selects the grouping column of the target level : name/number, defaults to None the level for the target index freq : string / freqency object, defaults to None This will groupby the specified frequency if the target selection (via key or level) is a datetime-like object axis : number/name of the axis, defaults to None sort : boolean, default to False whether to sort the resulting labels additional kwargs to control time-like groupers (when freq is passed) closed : closed end of interval; left or right label : interval boundary to use for labeling; left or right convention : {'start', 'end', 'e', 's'} If grouper is PeriodIndex Returns ------- A specification for a groupby instruction Examples -------- >>> df.groupby(Grouper(key='A')) : syntatic sugar for df.groupby('A') >>> df.groupby(Grouper(key='date',freq='60s')) : specify a resample on the column 'date' >>> df.groupby(Grouper(level='date',freq='60s',axis=1)) : specify a resample on the level 'date' on the columns axis with a frequency of 60s """ def __new__(cls, *args, **kwargs): if kwargs.get('freq') is not None: from pandas.tseries.resample import TimeGrouper cls = TimeGrouper return super(Grouper, cls).__new__(cls) def __init__(self, key=None, level=None, freq=None, axis=None, sort=False): self.key=key self.level=level self.freq=freq self.axis=axis self.sort=sort self.grouper=None self.obj=None self.indexer=None self.binner=None self.grouper=None @property def ax(self): return self.grouper def _get_grouper(self, obj): """ Parameters ---------- obj : the subject object Returns ------- a tuple of binner, grouper, obj (possibly sorted) """ self._set_grouper(obj) return self.binner, self.grouper, self.obj def _set_grouper(self, obj, sort=False): """ given an object and the specifcations, setup the internal grouper for this particular specification Parameters ---------- obj : the subject object """ if self.key is not None and self.level is not None: raise ValueError("The Grouper cannot specify both a key and a level!") # the key must be a valid info item if self.key is not None: key = self.key if key not in obj._info_axis: raise KeyError("The grouper name {0} is not found".format(key)) ax = Index(obj[key],name=key) else: ax = obj._get_axis(self.axis) if self.level is not None: level = self.level # if a level is given it must be a mi level or # equivalent to the axis name if isinstance(ax, MultiIndex): if isinstance(level, compat.string_types): if obj.index.name != level: raise ValueError('level name %s is not the name of the ' 'index' % level) elif level > 0: raise ValueError('level > 0 only valid with MultiIndex') ax = Index(ax.get_level_values(level), name=level) else: if not (level == 0 or level == ax.name): raise ValueError("The grouper level {0} is not valid".format(level)) # possibly sort if (self.sort or sort) and not ax.is_monotonic: indexer = self.indexer = ax.argsort(kind='quicksort') ax = ax.take(indexer) obj = obj.take(indexer, axis=self.axis, convert=False, is_copy=False) self.obj = obj self.grouper = ax return self.grouper def _get_binner_for_grouping(self, obj): raise NotImplementedError @property def groups(self): return self.grouper.groups class GroupBy(PandasObject): """ Class for grouping and aggregating relational data. See aggregate, transform, and apply functions on this object. It's easiest to use obj.groupby(...) to use GroupBy, but you can also do: :: grouped = groupby(obj, ...) Parameters ---------- obj : pandas object axis : int, default 0 level : int, default None Level of MultiIndex groupings : list of Grouping objects Most users should ignore this exclusions : array-like, optional List of columns to exclude name : string Most users should ignore this Notes ----- After grouping, see aggregate, apply, and transform functions. Here are some other brief notes about usage. When grouping by multiple groups, the result index will be a MultiIndex (hierarchical) by default. Iteration produces (key, group) tuples, i.e. chunking the data by group. So you can write code like: :: grouped = obj.groupby(keys, axis=axis) for key, group in grouped: # do something with the data Function calls on GroupBy, if not specially implemented, "dispatch" to the grouped data. So if you group a DataFrame and wish to invoke the std() method on each group, you can simply do: :: df.groupby(mapper).std() rather than :: df.groupby(mapper).aggregate(np.std) You can pass arguments to these "wrapped" functions, too. See the online documentation for full exposition on these topics and much more Returns ------- **Attributes** groups : dict {group name -> group labels} len(grouped) : int Number of groups """ _apply_whitelist = _common_apply_whitelist _internal_names = ['_cache'] _internal_names_set = set(_internal_names) _group_selection = None def __init__(self, obj, keys=None, axis=0, level=None, grouper=None, exclusions=None, selection=None, as_index=True, sort=True, group_keys=True, squeeze=False): self._selection = selection if isinstance(obj, NDFrame): obj._consolidate_inplace() self.level = level if not as_index: if not isinstance(obj, DataFrame): raise TypeError('as_index=False only valid with DataFrame') if axis != 0: raise ValueError('as_index=False only valid for axis=0') self.as_index = as_index self.keys = keys self.sort = sort self.group_keys = group_keys self.squeeze = squeeze if grouper is None: grouper, exclusions, obj = _get_grouper(obj, keys, axis=axis, level=level, sort=sort) self.obj = obj self.axis = obj._get_axis_number(axis) self.grouper = grouper self.exclusions = set(exclusions) if exclusions else set() def __len__(self): return len(self.indices) def __unicode__(self): # TODO: Better unicode/repr for GroupBy object return object.__repr__(self) @property def groups(self): """ dict {group name -> group labels} """ return self.grouper.groups @property def ngroups(self): return self.grouper.ngroups @property def indices(self): """ dict {group name -> group indices} """ return self.grouper.indices def _get_index(self, name): """ safe get index, translate keys for datelike to underlying repr """ def convert(key, s): # possibly convert to they actual key types # in the indices, could be a Timestamp or a np.datetime64 if isinstance(s, (Timestamp,datetime.datetime)): return Timestamp(key) elif isinstance(s, np.datetime64): return Timestamp(key).asm8 return key sample = next(iter(self.indices)) if isinstance(sample, tuple): if not isinstance(name, tuple): raise ValueError("must supply a tuple to get_group with multiple grouping keys") if not len(name) == len(sample): raise ValueError("must supply a a same-length tuple to get_group with multiple grouping keys") name = tuple([ convert(n, k) for n, k in zip(name,sample) ]) else: name = convert(name, sample) return self.indices[name] @property def name(self): if self._selection is None: return None # 'result' else: return self._selection @property def _selection_list(self): if not isinstance(self._selection, (list, tuple, Series, Index, np.ndarray)): return [self._selection] return self._selection @cache_readonly def _selected_obj(self): if self._selection is None or isinstance(self.obj, Series): if self._group_selection is not None: return self.obj[self._group_selection] return self.obj else: return self.obj[self._selection] def _set_selection_from_grouper(self): """ we may need create a selection if we have non-level groupers """ grp = self.grouper if self.as_index and getattr(grp,'groupings',None) is not None and self.obj.ndim > 1: ax = self.obj._info_axis groupers = [ g.name for g in grp.groupings if g.level is None and g.name is not None and g.name in ax ] if len(groupers): self._group_selection = (ax-Index(groupers)).tolist() def _local_dir(self): return sorted(set(self.obj._local_dir() + list(self._apply_whitelist))) def __getattr__(self, attr): if attr in self._internal_names_set: return object.__getattribute__(self, attr) if attr in self.obj: return self[attr] if hasattr(self.obj, attr): return self._make_wrapper(attr) raise AttributeError("%r object has no attribute %r" % (type(self).__name__, attr)) def __getitem__(self, key): raise NotImplementedError('Not implemented: %s' % key) def _make_wrapper(self, name): if name not in self._apply_whitelist: is_callable = callable(getattr(self._selected_obj, name, None)) kind = ' callable ' if is_callable else ' ' msg = ("Cannot access{0}attribute {1!r} of {2!r} objects, try " "using the 'apply' method".format(kind, name, type(self).__name__)) raise AttributeError(msg) # need to setup the selection # as are not passed directly but in the grouper self._set_selection_from_grouper() f = getattr(self._selected_obj, name) if not isinstance(f, types.MethodType): return self.apply(lambda self: getattr(self, name)) f = getattr(type(self._selected_obj), name) def wrapper(*args, **kwargs): # a little trickery for aggregation functions that need an axis # argument kwargs_with_axis = kwargs.copy() if 'axis' not in kwargs_with_axis: kwargs_with_axis['axis'] = self.axis def curried_with_axis(x): return f(x, *args, **kwargs_with_axis) def curried(x): return f(x, *args, **kwargs) # preserve the name so we can detect it when calling plot methods, # to avoid duplicates curried.__name__ = curried_with_axis.__name__ = name # special case otherwise extra plots are created when catching the # exception below if name in _plotting_methods: return self.apply(curried) try: return self.apply(curried_with_axis) except Exception: try: return self.apply(curried) except Exception: # related to : GH3688 # try item-by-item # this can be called recursively, so need to raise ValueError if # we don't have this method to indicated to aggregate to # mark this column as an error try: return self._aggregate_item_by_item(name, *args, **kwargs) except (AttributeError): raise ValueError return wrapper def get_group(self, name, obj=None): """ Constructs NDFrame from group with provided name Parameters ---------- name : object the name of the group to get as a DataFrame obj : NDFrame, default None the NDFrame to take the DataFrame out of. If it is None, the object groupby was called on will be used Returns ------- group : type of obj """ if obj is None: obj = self._selected_obj inds = self._get_index(name) return obj.take(inds, axis=self.axis, convert=False) def __iter__(self): """ Groupby iterator Returns ------- Generator yielding sequence of (name, subsetted object) for each group """ return self.grouper.get_iterator(self.obj, axis=self.axis) def apply(self, func, *args, **kwargs): """ Apply function and combine results together in an intelligent way. The split-apply-combine combination rules attempt to be as common sense based as possible. For example: case 1: group DataFrame apply aggregation function (f(chunk) -> Series) yield DataFrame, with group axis having group labels case 2: group DataFrame apply transform function ((f(chunk) -> DataFrame with same indexes) yield DataFrame with resulting chunks glued together case 3: group Series apply function with f(chunk) -> DataFrame yield DataFrame with result of chunks glued together Parameters ---------- func : function Notes ----- See online documentation for full exposition on how to use apply. In the current implementation apply calls func twice on the first group to decide whether it can take a fast or slow code path. This can lead to unexpected behavior if func has side-effects, as they will take effect twice for the first group. See also -------- aggregate, transform Returns ------- applied : type depending on grouped object and function """ func = _intercept_function(func) @wraps(func) def f(g): return func(g, *args, **kwargs) # ignore SettingWithCopy here in case the user mutates with option_context('mode.chained_assignment',None): return self._python_apply_general(f) def _python_apply_general(self, f): keys, values, mutated = self.grouper.apply(f, self._selected_obj, self.axis) return self._wrap_applied_output(keys, values, not_indexed_same=mutated) def aggregate(self, func, *args, **kwargs): raise NotImplementedError @Appender(_agg_doc) def agg(self, func, *args, **kwargs): return self.aggregate(func, *args, **kwargs) def _iterate_slices(self): yield self.name, self._selected_obj def transform(self, func, *args, **kwargs): raise NotImplementedError def mean(self): """ Compute mean of groups, excluding missing values For multiple groupings, the result index will be a MultiIndex """ try: return self._cython_agg_general('mean') except GroupByError: raise except Exception: # pragma: no cover self._set_selection_from_grouper() f = lambda x: x.mean(axis=self.axis) return self._python_agg_general(f) def median(self): """ Compute median of groups, excluding missing values For multiple groupings, the result index will be a MultiIndex """ try: return self._cython_agg_general('median') except GroupByError: raise except Exception: # pragma: no cover self._set_selection_from_grouper() def f(x): if isinstance(x, np.ndarray): x = Series(x) return x.median(axis=self.axis) return self._python_agg_general(f) def std(self, ddof=1): """ Compute standard deviation of groups, excluding missing values For multiple groupings, the result index will be a MultiIndex """ # todo, implement at cython level? return np.sqrt(self.var(ddof=ddof)) def var(self, ddof=1): """ Compute variance of groups, excluding missing values For multiple groupings, the result index will be a MultiIndex """ if ddof == 1: return self._cython_agg_general('var') else: self._set_selection_from_grouper() f = lambda x: x.var(ddof=ddof) return self._python_agg_general(f) def sem(self, ddof=1): """ Compute standard error of the mean of groups, excluding missing values For multiple groupings, the result index will be a MultiIndex """ return self.std(ddof=ddof)/np.sqrt(self.count()) def size(self): """ Compute group sizes """ return self.grouper.size() sum = _groupby_function('sum', 'add', np.sum) prod = _groupby_function('prod', 'prod', np.prod) min = _groupby_function('min', 'min', np.min, numeric_only=False) max = _groupby_function('max', 'max', np.max, numeric_only=False) first = _groupby_function('first', 'first', _first_compat, numeric_only=False, _convert=True) last = _groupby_function('last', 'last', _last_compat, numeric_only=False, _convert=True) _count = _groupby_function('_count', 'count', _count_compat, numeric_only=False) def count(self, axis=0): return self._count().astype('int64') def ohlc(self): """ Compute sum of values, excluding missing values For multiple groupings, the result index will be a MultiIndex """ return self._apply_to_column_groupbys( lambda x: x._cython_agg_general('ohlc')) def nth(self, n, dropna=None): """ Take the nth row from each group. If dropna, will not show nth non-null row, dropna is either Truthy (if a Series) or 'all', 'any' (if a DataFrame); this is equivalent to calling dropna(how=dropna) before the groupby. Examples -------- >>> df = DataFrame([[1, np.nan], [1, 4], [5, 6]], columns=['A', 'B']) >>> g = df.groupby('A') >>> g.nth(0) A B 0 1 NaN 2 5 6 >>> g.nth(1) A B 1 1 4 >>> g.nth(-1) A B 1 1 4 2 5 6 >>> g.nth(0, dropna='any') B A 1 4 5 6 >>> g.nth(1, dropna='any') # NaNs denote group exhausted when using dropna B A 1 NaN 5 NaN """ self._set_selection_from_grouper() if not dropna: # good choice m = self.grouper._max_groupsize if n >= m or n < -m: return self._selected_obj.loc[[]] rng = np.zeros(m, dtype=bool) if n >= 0: rng[n] = True is_nth = self._cumcount_array(rng) else: rng[- n - 1] = True is_nth = self._cumcount_array(rng, ascending=False) result = self._selected_obj[is_nth] # the result index if self.as_index: ax = self.obj._info_axis names = self.grouper.names if self.obj.ndim == 1: # this is a pass-thru pass elif all([ n in ax for n in names ]): result.index = Index(self.obj[names][is_nth].values.ravel()).set_names(names) elif self._group_selection is not None: result.index = self.obj._get_axis(self.axis)[is_nth] result = result.sort_index() return result if (isinstance(self._selected_obj, DataFrame) and dropna not in ['any', 'all']): # Note: when agg-ing picker doesn't raise this, just returns NaN raise ValueError("For a DataFrame groupby, dropna must be " "either None, 'any' or 'all', " "(was passed %s)." % (dropna),) # old behaviour, but with all and any support for DataFrames. # modified in GH 7559 to have better perf max_len = n if n >= 0 else - 1 - n dropped = self.obj.dropna(how=dropna, axis=self.axis) # get a new grouper for our dropped obj if self.keys is None and self.level is None: # we don't have the grouper info available (e.g. we have selected out # a column that is not in the current object) axis = self.grouper.axis grouper = axis[axis.isin(dropped.index)] keys = self.grouper.names else: # create a grouper with the original parameters, but on the dropped object grouper, _, _ = _get_grouper(dropped, key=self.keys, axis=self.axis, level=self.level, sort=self.sort) sizes = dropped.groupby(grouper).size() result = dropped.groupby(grouper).nth(n) mask = (sizes<max_len).values # set the results which don't meet the criteria if len(result) and mask.any(): result.loc[mask] = np.nan # reset/reindex to the original groups if len(self.obj) == len(dropped) or len(result) == len(self.grouper.result_index): result.index = self.grouper.result_index else: result = result.reindex(self.grouper.result_index) return result def cumcount(self, **kwargs): """ Number each item in each group from 0 to the length of that group - 1. Essentially this is equivalent to >>> self.apply(lambda x: Series(np.arange(len(x)), x.index)) Parameters ---------- ascending : bool, default True If False, number in reverse, from length of group - 1 to 0. Example ------- >>> df = pd.DataFrame([['a'], ['a'], ['a'], ['b'], ['b'], ['a']], ... columns=['A']) >>> df A 0 a 1 a 2 a 3 b 4 b 5 a >>> df.groupby('A').cumcount() 0 0 1 1 2 2 3 0 4 1 5 3 dtype: int64 >>> df.groupby('A').cumcount(ascending=False) 0 3 1 2 2 1 3 1 4 0 5 0 dtype: int64 """ self._set_selection_from_grouper() ascending = kwargs.pop('ascending', True) index = self._selected_obj.index cumcounts = self._cumcount_array(ascending=ascending) return Series(cumcounts, index) def head(self, n=5): """ Returns first n rows of each group. Essentially equivalent to ``.apply(lambda x: x.head(n))``, except ignores as_index flag. Example ------- >>> df = DataFrame([[1, 2], [1, 4], [5, 6]], columns=['A', 'B']) >>> df.groupby('A', as_index=False).head(1) A B 0 1 2 2 5 6 >>> df.groupby('A').head(1) A B 0 1 2 2 5 6 """ obj = self._selected_obj in_head = self._cumcount_array() < n head = obj[in_head] return head def tail(self, n=5): """ Returns last n rows of each group Essentially equivalent to ``.apply(lambda x: x.tail(n))``, except ignores as_index flag. Example ------- >>> df = DataFrame([[1, 2], [1, 4], [5, 6]], columns=['A', 'B']) >>> df.groupby('A', as_index=False).tail(1) A B 0 1 2 2 5 6 >>> df.groupby('A').head(1) A B 0 1 2 2 5 6 """ obj = self._selected_obj rng = np.arange(0, -self.grouper._max_groupsize, -1, dtype='int64') in_tail = self._cumcount_array(rng, ascending=False) > -n tail = obj[in_tail] return tail def _cumcount_array(self, arr=None, **kwargs): """ arr is where cumcount gets its values from note: this is currently implementing sort=False (though the default is sort=True) for groupby in general """ ascending = kwargs.pop('ascending', True) if arr is None: arr = np.arange(self.grouper._max_groupsize, dtype='int64') len_index = len(self._selected_obj.index) cumcounts = np.zeros(len_index, dtype=arr.dtype) if not len_index: return cumcounts indices, values = [], [] for v in self.indices.values(): indices.append(v) if ascending: values.append(arr[:len(v)]) else: values.append(arr[len(v)-1::-1]) indices = np.concatenate(indices) values = np.concatenate(values) cumcounts[indices] = values return cumcounts def _index_with_as_index(self, b): """ Take boolean mask of index to be returned from apply, if as_index=True """ # TODO perf, it feels like this should already be somewhere... from itertools import chain original = self._selected_obj.index gp = self.grouper levels = chain((gp.levels[i][gp.labels[i][b]] for i in range(len(gp.groupings))), (original.get_level_values(i)[b] for i in range(original.nlevels))) new = MultiIndex.from_arrays(list(levels)) new.names = gp.names + original.names return new def _try_cast(self, result, obj): """ try to cast the result to our obj original type, we may have roundtripped thru object in the mean-time """ if obj.ndim > 1: dtype = obj.values.dtype else: dtype = obj.dtype if not np.isscalar(result): result = _possibly_downcast_to_dtype(result, dtype) return result def _cython_agg_general(self, how, numeric_only=True): output = {} for name, obj in self._iterate_slices(): is_numeric = is_numeric_dtype(obj.dtype) if numeric_only and not is_numeric: continue try: result, names = self.grouper.aggregate(obj.values, how) except AssertionError as e: raise GroupByError(str(e)) output[name] = self._try_cast(result, obj) if len(output) == 0: raise DataError('No numeric types to aggregate') return self._wrap_aggregated_output(output, names) def _python_agg_general(self, func, *args, **kwargs): func = _intercept_function(func) f = lambda x: func(x, *args, **kwargs) # iterate through "columns" ex exclusions to populate output dict output = {} for name, obj in self._iterate_slices(): try: result, counts = self.grouper.agg_series(obj, f) output[name] = self._try_cast(result, obj) except TypeError: continue if len(output) == 0: return self._python_apply_general(f) if self.grouper._filter_empty_groups: mask = counts.ravel() > 0 for name, result in compat.iteritems(output): # since we are masking, make sure that we have a float object values = result if is_numeric_dtype(values.dtype): values = com.ensure_float(values) output[name] = self._try_cast(values[mask], result) return self._wrap_aggregated_output(output) def _wrap_applied_output(self, *args, **kwargs): raise NotImplementedError def _concat_objects(self, keys, values, not_indexed_same=False): from pandas.tools.merge import concat if not not_indexed_same: result = concat(values, axis=self.axis) ax = self._selected_obj._get_axis(self.axis) if isinstance(result, Series): result = result.reindex(ax) else: result = result.reindex_axis(ax, axis=self.axis) elif self.group_keys: if self.as_index: # possible MI return case group_keys = keys group_levels = self.grouper.levels group_names = self.grouper.names result = concat(values, axis=self.axis, keys=group_keys, levels=group_levels, names=group_names) else: # GH5610, returns a MI, with the first level being a # range index keys = list(range(len(values))) result = concat(values, axis=self.axis, keys=keys) else: result = concat(values, axis=self.axis) return result def _apply_filter(self, indices, dropna): if len(indices) == 0: indices = [] else: indices = np.sort(np.concatenate(indices)) if dropna: filtered = self._selected_obj.take(indices) else: mask = np.empty(len(self._selected_obj.index), dtype=bool) mask.fill(False) mask[indices.astype(int)] = True # mask fails to broadcast when passed to where; broadcast manually. mask = np.tile(mask, list(self._selected_obj.shape[1:]) + [1]).T filtered = self._selected_obj.where(mask) # Fill with NaNs. return filtered @Appender(GroupBy.__doc__) def groupby(obj, by, **kwds): if isinstance(obj, Series): klass = SeriesGroupBy elif isinstance(obj, DataFrame): klass = DataFrameGroupBy else: # pragma: no cover raise TypeError('invalid type: %s' % type(obj)) return klass(obj, by, **kwds) def _get_axes(group): if isinstance(group, Series): return [group.index] else: return group.axes def _is_indexed_like(obj, axes): if isinstance(obj, Series): if len(axes) > 1: return False return obj.index.equals(axes[0]) elif isinstance(obj, DataFrame): return obj.index.equals(axes[0]) return False class BaseGrouper(object): """ This is an internal Grouper class, which actually holds the generated groups """ def __init__(self, axis, groupings, sort=True, group_keys=True): self.axis = axis self.groupings = groupings self.sort = sort self.group_keys = group_keys self.compressed = True @property def shape(self): return tuple(ping.ngroups for ping in self.groupings) def __iter__(self): return iter(self.indices) @property def nkeys(self): return len(self.groupings) def get_iterator(self, data, axis=0): """ Groupby iterator Returns ------- Generator yielding sequence of (name, subsetted object) for each group """ splitter = self._get_splitter(data, axis=axis) keys = self._get_group_keys() for key, (i, group) in zip(keys, splitter): yield key, group def _get_splitter(self, data, axis=0): comp_ids, _, ngroups = self.group_info return get_splitter(data, comp_ids, ngroups, axis=axis) def _get_group_keys(self): if len(self.groupings) == 1: return self.levels[0] else: comp_ids, _, ngroups = self.group_info # provide "flattened" iterator for multi-group setting mapper = _KeyMapper(comp_ids, ngroups, self.labels, self.levels) return [mapper.get_key(i) for i in range(ngroups)] def apply(self, f, data, axis=0): mutated = False splitter = self._get_splitter(data, axis=axis) group_keys = self._get_group_keys() # oh boy f_name = com._get_callable_name(f) if (f_name not in _plotting_methods and hasattr(splitter, 'fast_apply') and axis == 0): try: values, mutated = splitter.fast_apply(f, group_keys) return group_keys, values, mutated except (lib.InvalidApply): # we detect a mutation of some kind # so take slow path pass except (Exception) as e: # raise this error to the caller pass result_values = [] for key, (i, group) in zip(group_keys, splitter): object.__setattr__(group, 'name', key) # group might be modified group_axes = _get_axes(group) res = f(group) if not _is_indexed_like(res, group_axes): mutated = True result_values.append(res) return group_keys, result_values, mutated @cache_readonly def indices(self): """ dict {group name -> group indices} """ if len(self.groupings) == 1: return self.groupings[0].indices else: label_list = [ping.labels for ping in self.groupings] keys = [_values_from_object(ping.group_index) for ping in self.groupings] return _get_indices_dict(label_list, keys) @property def labels(self): return [ping.labels for ping in self.groupings] @property def levels(self): return [ping.group_index for ping in self.groupings] @property def names(self): return [ping.name for ping in self.groupings] def size(self): """ Compute group sizes """ # TODO: better impl labels, _, ngroups = self.group_info bin_counts = algos.value_counts(labels, sort=False) bin_counts = bin_counts.reindex(np.arange(ngroups)) bin_counts.index = self.result_index return bin_counts @cache_readonly def _max_groupsize(self): ''' Compute size of largest group ''' # For many items in each group this is much faster than # self.size().max(), in worst case marginally slower if self.indices: return max(len(v) for v in self.indices.values()) else: return 0 @cache_readonly def groups(self): """ dict {group name -> group labels} """ if len(self.groupings) == 1: return self.groupings[0].groups else: to_groupby = lzip(*(ping.grouper for ping in self.groupings)) to_groupby = Index(to_groupby) return self.axis.groupby(to_groupby.values) @cache_readonly def group_info(self): comp_ids, obs_group_ids = self._get_compressed_labels() ngroups = len(obs_group_ids) comp_ids = com._ensure_int64(comp_ids) return comp_ids, obs_group_ids, ngroups def _get_compressed_labels(self): all_labels = [ping.labels for ping in self.groupings] if self._overflow_possible: tups = lib.fast_zip(all_labels) labs, uniques = algos.factorize(tups) if self.sort: uniques, labs = _reorder_by_uniques(uniques, labs) return labs, uniques else: if len(all_labels) > 1: group_index = get_group_index(all_labels, self.shape) comp_ids, obs_group_ids = _compress_group_index(group_index) else: ping = self.groupings[0] comp_ids = ping.labels obs_group_ids = np.arange(len(ping.group_index)) self.compressed = False self._filter_empty_groups = False return comp_ids, obs_group_ids @cache_readonly def _overflow_possible(self): return _int64_overflow_possible(self.shape) @cache_readonly def ngroups(self): return len(self.result_index) @cache_readonly def result_index(self): recons = self.get_group_levels() return MultiIndex.from_arrays(recons, names=self.names) def get_group_levels(self): obs_ids = self.group_info[1] if not self.compressed and len(self.groupings) == 1: return [self.groupings[0].group_index] if self._overflow_possible: recons_labels = [np.array(x) for x in zip(*obs_ids)] else: recons_labels = decons_group_index(obs_ids, self.shape) name_list = [] for ping, labels in zip(self.groupings, recons_labels): labels = com._ensure_platform_int(labels) levels = ping.group_index.take(labels) name_list.append(levels) return name_list #------------------------------------------------------------ # Aggregation functions _cython_functions = { 'add': 'group_add', 'prod': 'group_prod', 'min': 'group_min', 'max': 'group_max', 'mean': 'group_mean', 'median': { 'name': 'group_median' }, 'var': 'group_var', 'first': { 'name': 'group_nth', 'f': lambda func, a, b, c, d: func(a, b, c, d, 1) }, 'last': 'group_last', 'count': 'group_count', } _cython_arity = { 'ohlc': 4, # OHLC } _name_functions = {} _filter_empty_groups = True def _get_aggregate_function(self, how, values): dtype_str = values.dtype.name def get_func(fname): # find the function, or use the object function, or return a # generic for dt in [dtype_str, 'object']: f = getattr(_algos, "%s_%s" % (fname, dtype_str), None) if f is not None: return f return getattr(_algos, fname, None) ftype = self._cython_functions[how] if isinstance(ftype, dict): func = afunc = get_func(ftype['name']) # a sub-function f = ftype.get('f') if f is not None: def wrapper(*args, **kwargs): return f(afunc, *args, **kwargs) # need to curry our sub-function func = wrapper else: func = get_func(ftype) if func is None: raise NotImplementedError("function is not implemented for this" "dtype: [how->%s,dtype->%s]" % (how, dtype_str)) return func, dtype_str def aggregate(self, values, how, axis=0): arity = self._cython_arity.get(how, 1) vdim = values.ndim swapped = False if vdim == 1: values = values[:, None] out_shape = (self.ngroups, arity) else: if axis > 0: swapped = True values = values.swapaxes(0, axis) if arity > 1: raise NotImplementedError out_shape = (self.ngroups,) + values.shape[1:] if is_numeric_dtype(values.dtype): values = com.ensure_float(values) is_numeric = True out_dtype = 'f%d' % values.dtype.itemsize else: is_numeric = issubclass(values.dtype.type, (np.datetime64, np.timedelta64)) if is_numeric: out_dtype = 'float64' values = values.view('int64') else: out_dtype = 'object' values = values.astype(object) # will be filled in Cython function result = np.empty(out_shape, dtype=out_dtype) result.fill(np.nan) counts = np.zeros(self.ngroups, dtype=np.int64) result = self._aggregate(result, counts, values, how, is_numeric) if self._filter_empty_groups: if result.ndim == 2: try: result = lib.row_bool_subset( result, (counts > 0).view(np.uint8)) except ValueError: result = lib.row_bool_subset_object( result, (counts > 0).view(np.uint8)) else: result = result[counts > 0] if vdim == 1 and arity == 1: result = result[:, 0] if how in self._name_functions: # TODO names = self._name_functions[how]() else: names = None if swapped: result = result.swapaxes(0, axis) return result, names def _aggregate(self, result, counts, values, how, is_numeric): agg_func, dtype = self._get_aggregate_function(how, values) comp_ids, _, ngroups = self.group_info if values.ndim > 3: # punting for now raise NotImplementedError elif values.ndim > 2: for i, chunk in enumerate(values.transpose(2, 0, 1)): chunk = chunk.squeeze() agg_func(result[:, :, i], counts, chunk, comp_ids) else: agg_func(result, counts, values, comp_ids) return result def agg_series(self, obj, func): try: return self._aggregate_series_fast(obj, func) except Exception: return self._aggregate_series_pure_python(obj, func) def _aggregate_series_fast(self, obj, func): func = _intercept_function(func) if obj.index._has_complex_internals: raise TypeError('Incompatible index for Cython grouper') group_index, _, ngroups = self.group_info # avoids object / Series creation overhead dummy = obj._get_values(slice(None, 0)).to_dense() indexer = _algos.groupsort_indexer(group_index, ngroups)[0] obj = obj.take(indexer, convert=False) group_index = com.take_nd(group_index, indexer, allow_fill=False) grouper = lib.SeriesGrouper(obj, func, group_index, ngroups, dummy) result, counts = grouper.get_result() return result, counts def _aggregate_series_pure_python(self, obj, func): group_index, _, ngroups = self.group_info counts = np.zeros(ngroups, dtype=int) result = None splitter = get_splitter(obj, group_index, ngroups, axis=self.axis) for label, group in splitter: res = func(group) if result is None: if (isinstance(res, (Series, Index, np.ndarray)) or isinstance(res, list)): raise ValueError('Function does not reduce') result = np.empty(ngroups, dtype='O') counts[label] = group.shape[0] result[label] = res result = lib.maybe_convert_objects(result, try_float=0) return result, counts def generate_bins_generic(values, binner, closed): """ Generate bin edge offsets and bin labels for one array using another array which has bin edge values. Both arrays must be sorted. Parameters ---------- values : array of values binner : a comparable array of values representing bins into which to bin the first array. Note, 'values' end-points must fall within 'binner' end-points. closed : which end of bin is closed; left (default), right Returns ------- bins : array of offsets (into 'values' argument) of bins. Zero and last edge are excluded in result, so for instance the first bin is values[0:bin[0]] and the last is values[bin[-1]:] """ lenidx = len(values) lenbin = len(binner) if lenidx <= 0 or lenbin <= 0: raise ValueError("Invalid length for values or for binner") # check binner fits data if values[0] < binner[0]: raise ValueError("Values falls before first bin") if values[lenidx - 1] > binner[lenbin - 1]: raise ValueError("Values falls after last bin") bins = np.empty(lenbin - 1, dtype=np.int64) j = 0 # index into values bc = 0 # bin count # linear scan, presume nothing about values/binner except that it fits ok for i in range(0, lenbin - 1): r_bin = binner[i + 1] # count values in current bin, advance to next bin while j < lenidx and (values[j] < r_bin or (closed == 'right' and values[j] == r_bin)): j += 1 bins[bc] = j bc += 1 return bins class BinGrouper(BaseGrouper): def __init__(self, bins, binlabels, filter_empty=False): self.bins = com._ensure_int64(bins) self.binlabels = _ensure_index(binlabels) self._filter_empty_groups = filter_empty @cache_readonly def groups(self): """ dict {group name -> group labels} """ # this is mainly for compat # GH 3881 result = {} for key, value in zip(self.binlabels, self.bins): if key is not tslib.NaT: result[key] = value return result @property def nkeys(self): return 1 def get_iterator(self, data, axis=0): """ Groupby iterator Returns ------- Generator yielding sequence of (name, subsetted object) for each group """ if isinstance(data, NDFrame): slicer = lambda start,edge: data._slice(slice(start,edge),axis=axis) length = len(data.axes[axis]) else: slicer = lambda start,edge: data[slice(start,edge)] length = len(data) start = 0 for edge, label in zip(self.bins, self.binlabels): if label is not tslib.NaT: yield label, slicer(start,edge) start = edge if start < length: yield self.binlabels[-1], slicer(start,None) def apply(self, f, data, axis=0): result_keys = [] result_values = [] mutated = False for key, group in self.get_iterator(data, axis=axis): object.__setattr__(group, 'name', key) # group might be modified group_axes = _get_axes(group) res = f(group) if not _is_indexed_like(res, group_axes): mutated = True result_keys.append(key) result_values.append(res) return result_keys, result_values, mutated @cache_readonly def indices(self): indices = collections.defaultdict(list) i = 0 for label, bin in zip(self.binlabels, self.bins): if i < bin: if label is not tslib.NaT: indices[label] = list(range(i, bin)) i = bin return indices @cache_readonly def ngroups(self): return len(self.binlabels) @cache_readonly def result_index(self): mask = self.binlabels.asi8 == tslib.iNaT return self.binlabels[~mask] @property def levels(self): return [self.binlabels] @property def names(self): return [self.binlabels.name] @property def groupings(self): # for compat return None def size(self): """ Compute group sizes """ base = Series(np.zeros(len(self.result_index), dtype=np.int64), index=self.result_index) indices = self.indices for k, v in compat.iteritems(indices): indices[k] = len(v) bin_counts = Series(indices, dtype=np.int64) result = base.add(bin_counts, fill_value=0) # addition with fill_value changes dtype to float64 result = result.astype(np.int64) return result #---------------------------------------------------------------------- # cython aggregation _cython_functions = { 'add': 'group_add_bin', 'prod': 'group_prod_bin', 'mean': 'group_mean_bin', 'min': 'group_min_bin', 'max': 'group_max_bin', 'var': 'group_var_bin', 'ohlc': 'group_ohlc', 'first': { 'name': 'group_nth_bin', 'f': lambda func, a, b, c, d: func(a, b, c, d, 1) }, 'last': 'group_last_bin', 'count': 'group_count_bin', } _name_functions = { 'ohlc': lambda *args: ['open', 'high', 'low', 'close'] } _filter_empty_groups = True def _aggregate(self, result, counts, values, how, is_numeric=True): agg_func, dtype = self._get_aggregate_function(how, values) if values.ndim > 3: # punting for now raise NotImplementedError elif values.ndim > 2: for i, chunk in enumerate(values.transpose(2, 0, 1)): agg_func(result[:, :, i], counts, chunk, self.bins) else: agg_func(result, counts, values, self.bins) return result def agg_series(self, obj, func): dummy = obj[:0] grouper = lib.SeriesBinGrouper(obj, func, self.bins, dummy) return grouper.get_result() class Grouping(object): """ Holds the grouping information for a single key Parameters ---------- index : Index grouper : obj : name : level : Returns ------- **Attributes**: * indices : dict of {group -> index_list} * labels : ndarray, group labels * ids : mapping of label -> group * counts : array of group counts * group_index : unique groups * groups : dict of {group -> label_list} """ def __init__(self, index, grouper=None, obj=None, name=None, level=None, sort=True): self.name = name self.level = level self.grouper = _convert_grouper(index, grouper) self.index = index self.sort = sort self.obj = obj # right place for this? if isinstance(grouper, (Series, Index)) and name is None: self.name = grouper.name if isinstance(grouper, MultiIndex): self.grouper = grouper.values # pre-computed self._was_factor = False self._should_compress = True # we have a single grouper which may be a myriad of things, some of which are # dependent on the passing in level # if level is not None: if not isinstance(level, int): if level not in index.names: raise AssertionError('Level %s not in index' % str(level)) level = index.names.index(level) inds = index.labels[level] level_index = index.levels[level] if self.name is None: self.name = index.names[level] # XXX complete hack if grouper is not None: level_values = index.levels[level].take(inds) self.grouper = level_values.map(self.grouper) else: self._was_factor = True # all levels may not be observed labels, uniques = algos.factorize(inds, sort=True) if len(uniques) > 0 and uniques[0] == -1: # handle NAs mask = inds != -1 ok_labels, uniques = algos.factorize(inds[mask], sort=True) labels = np.empty(len(inds), dtype=inds.dtype) labels[mask] = ok_labels labels[~mask] = -1 if len(uniques) < len(level_index): level_index = level_index.take(uniques) self._labels = labels self._group_index = level_index self.grouper = level_index.take(labels) else: if isinstance(self.grouper, (list, tuple)): self.grouper = com._asarray_tuplesafe(self.grouper) # a passed Categorical elif isinstance(self.grouper, Categorical): factor = self.grouper self._was_factor = True # Is there any way to avoid this? self.grouper = np.asarray(factor) self._labels = factor.codes self._group_index = factor.levels if self.name is None: self.name = factor.name # a passed Grouper like elif isinstance(self.grouper, Grouper): # get the new grouper grouper = self.grouper._get_binner_for_grouping(self.obj) self.obj = self.grouper.obj self.grouper = grouper if self.name is None: self.name = grouper.name # no level passed if not isinstance(self.grouper, (Series, Index, np.ndarray)): self.grouper = self.index.map(self.grouper) if not (hasattr(self.grouper, "__len__") and len(self.grouper) == len(self.index)): errmsg = ('Grouper result violates len(labels) == ' 'len(data)\nresult: %s' % com.pprint_thing(self.grouper)) self.grouper = None # Try for sanity raise AssertionError(errmsg) # if we have a date/time-like grouper, make sure that we have Timestamps like if getattr(self.grouper,'dtype',None) is not None: if is_datetime64_dtype(self.grouper): from pandas import to_datetime self.grouper = to_datetime(self.grouper) elif is_timedelta64_dtype(self.grouper): from pandas import to_timedelta self.grouper = to_timedelta(self.grouper) def __repr__(self): return 'Grouping(%s)' % self.name def __iter__(self): return iter(self.indices) _labels = None _group_index = None @property def ngroups(self): return len(self.group_index) @cache_readonly def indices(self): return _groupby_indices(self.grouper) @property def labels(self): if self._labels is None: self._make_labels() return self._labels @property def group_index(self): if self._group_index is None: self._make_labels() return self._group_index def _make_labels(self): if self._was_factor: # pragma: no cover raise Exception('Should not call this method grouping by level') else: labels, uniques = algos.factorize(self.grouper, sort=self.sort) uniques = Index(uniques, name=self.name) self._labels = labels self._group_index = uniques _groups = None @property def groups(self): if self._groups is None: self._groups = self.index.groupby(self.grouper) return self._groups def _get_grouper(obj, key=None, axis=0, level=None, sort=True): """ create and return a BaseGrouper, which is an internal mapping of how to create the grouper indexers. This may be composed of multiple Grouping objects, indicating multiple groupers Groupers are ultimately index mappings. They can originate as: index mappings, keys to columns, functions, or Groupers Groupers enable local references to axis,level,sort, while the passed in axis, level, and sort are 'global'. This routine tries to figure of what the passing in references are and then creates a Grouping for each one, combined into a BaseGrouper. """ group_axis = obj._get_axis(axis) # validate thatthe passed level is compatible with the passed # axis of the object if level is not None: if not isinstance(group_axis, MultiIndex): if isinstance(level, compat.string_types): if obj.index.name != level: raise ValueError('level name %s is not the name of the ' 'index' % level) elif level > 0: raise ValueError('level > 0 only valid with MultiIndex') level = None key = group_axis # a passed in Grouper, directly convert if isinstance(key, Grouper): binner, grouper, obj = key._get_grouper(obj) if key.key is None: return grouper, [], obj else: return grouper, set([key.key]), obj # already have a BaseGrouper, just return it elif isinstance(key, BaseGrouper): return key, [], obj if not isinstance(key, (tuple, list)): keys = [key] else: keys = key # what are we after, exactly? match_axis_length = len(keys) == len(group_axis) any_callable = any(callable(g) or isinstance(g, dict) for g in keys) any_arraylike = any(isinstance(g, (list, tuple, Series, Index, np.ndarray)) for g in keys) try: if isinstance(obj, DataFrame): all_in_columns = all(g in obj.columns for g in keys) else: all_in_columns = False except Exception: all_in_columns = False if (not any_callable and not all_in_columns and not any_arraylike and match_axis_length and level is None): keys = [com._asarray_tuplesafe(keys)] if isinstance(level, (tuple, list)): if key is None: keys = [None] * len(level) levels = level else: levels = [level] * len(keys) groupings = [] exclusions = [] for i, (gpr, level) in enumerate(zip(keys, levels)): name = None try: obj._data.items.get_loc(gpr) in_axis = True except Exception: in_axis = False if _is_label_like(gpr) or in_axis: exclusions.append(gpr) name = gpr gpr = obj[gpr] if isinstance(gpr, Categorical) and len(gpr) != len(obj): errmsg = "Categorical grouper must have len(grouper) == len(data)" raise AssertionError(errmsg) ping = Grouping(group_axis, gpr, obj=obj, name=name, level=level, sort=sort) groupings.append(ping) if len(groupings) == 0: raise ValueError('No group keys passed!') # create the internals grouper grouper = BaseGrouper(group_axis, groupings, sort=sort) return grouper, exclusions, obj def _is_label_like(val): return isinstance(val, compat.string_types) or np.isscalar(val) def _convert_grouper(axis, grouper): if isinstance(grouper, dict): return grouper.get elif isinstance(grouper, Series): if grouper.index.equals(axis): return grouper.values else: return grouper.reindex(axis).values elif isinstance(grouper, (list, Series, Index, np.ndarray)): if len(grouper) != len(axis): raise AssertionError('Grouper and axis must be same length') return grouper else: return grouper class SeriesGroupBy(GroupBy): _apply_whitelist = _series_apply_whitelist def aggregate(self, func_or_funcs, *args, **kwargs): """ Apply aggregation function or functions to groups, yielding most likely Series but in some cases DataFrame depending on the output of the aggregation function Parameters ---------- func_or_funcs : function or list / dict of functions List/dict of functions will produce DataFrame with column names determined by the function names themselves (list) or the keys in the dict Notes ----- agg is an alias for aggregate. Use it. Examples -------- >>> series bar 1.0 baz 2.0 qot 3.0 qux 4.0 >>> mapper = lambda x: x[0] # first letter >>> grouped = series.groupby(mapper) >>> grouped.aggregate(np.sum) b 3.0 q 7.0 >>> grouped.aggregate([np.sum, np.mean, np.std]) mean std sum b 1.5 0.5 3 q 3.5 0.5 7 >>> grouped.agg({'result' : lambda x: x.mean() / x.std(), ... 'total' : np.sum}) result total b 2.121 3 q 4.95 7 See also -------- apply, transform Returns ------- Series or DataFrame """ if isinstance(func_or_funcs, compat.string_types): return getattr(self, func_or_funcs)(*args, **kwargs) if hasattr(func_or_funcs, '__iter__'): ret = self._aggregate_multiple_funcs(func_or_funcs) else: cyfunc = _intercept_cython(func_or_funcs) if cyfunc and not args and not kwargs: return getattr(self, cyfunc)() if self.grouper.nkeys > 1: return self._python_agg_general(func_or_funcs, *args, **kwargs) try: return self._python_agg_general(func_or_funcs, *args, **kwargs) except Exception: result = self._aggregate_named(func_or_funcs, *args, **kwargs) index = Index(sorted(result), name=self.grouper.names[0]) ret = Series(result, index=index) if not self.as_index: # pragma: no cover print('Warning, ignoring as_index=True') return ret def _aggregate_multiple_funcs(self, arg): if isinstance(arg, dict): columns = list(arg.keys()) arg = list(arg.items()) elif any(isinstance(x, (tuple, list)) for x in arg): arg = [(x, x) if not isinstance(x, (tuple, list)) else x for x in arg] # indicated column order columns = lzip(*arg)[0] else: # list of functions / function names columns = [] for f in arg: if isinstance(f, compat.string_types): columns.append(f) else: # protect against callables without names columns.append(com._get_callable_name(f)) arg = lzip(columns, arg) results = {} for name, func in arg: if name in results: raise SpecificationError('Function names must be unique, ' 'found multiple named %s' % name) results[name] = self.aggregate(func) return DataFrame(results, columns=columns) def _wrap_aggregated_output(self, output, names=None): # sort of a kludge output = output[self.name] index = self.grouper.result_index if names is not None: return DataFrame(output, index=index, columns=names) else: name = self.name if name is None: name = self._selected_obj.name return Series(output, index=index, name=name) def _wrap_applied_output(self, keys, values, not_indexed_same=False): if len(keys) == 0: # GH #6265 return Series([], name=self.name) def _get_index(): if self.grouper.nkeys > 1: index = MultiIndex.from_tuples(keys, names=self.grouper.names) else: index = Index(keys, name=self.grouper.names[0]) return index if isinstance(values[0], dict): # GH #823 index = _get_index() return DataFrame(values, index=index).stack() if isinstance(values[0], (Series, dict)): return self._concat_objects(keys, values, not_indexed_same=not_indexed_same) elif isinstance(values[0], DataFrame): # possible that Series -> DataFrame by applied function return self._concat_objects(keys, values, not_indexed_same=not_indexed_same) else: # GH #6265 return Series(values, index=_get_index(), name=self.name) def _aggregate_named(self, func, *args, **kwargs): result = {} for name, group in self: group.name = name output = func(group, *args, **kwargs) if isinstance(output, (Series, Index, np.ndarray)): raise Exception('Must produce aggregated value') result[name] = self._try_cast(output, group) return result def transform(self, func, *args, **kwargs): """ Call function producing a like-indexed Series on each group and return a Series with the transformed values Parameters ---------- func : function To apply to each group. Should return a Series with the same index Examples -------- >>> grouped.transform(lambda x: (x - x.mean()) / x.std()) Returns ------- transformed : Series """ # if string function if isinstance(func, compat.string_types): return self._transform_fast(lambda : getattr(self, func)(*args, **kwargs)) # do we have a cython function cyfunc = _intercept_cython(func) if cyfunc and not args and not kwargs: return self._transform_fast(cyfunc) # reg transform dtype = self._selected_obj.dtype result = self._selected_obj.values.copy() wrapper = lambda x: func(x, *args, **kwargs) for i, (name, group) in enumerate(self): object.__setattr__(group, 'name', name) res = wrapper(group) if hasattr(res, 'values'): res = res.values # may need to astype try: common_type = np.common_type(np.array(res), result) if common_type != result.dtype: result = result.astype(common_type) except: pass indexer = self._get_index(name) result[indexer] = res result = _possibly_downcast_to_dtype(result, dtype) return self._selected_obj.__class__(result, index=self._selected_obj.index, name=self._selected_obj.name) def _transform_fast(self, func): """ fast version of transform, only applicable to builtin/cythonizable functions """ if isinstance(func, compat.string_types): func = getattr(self,func) values = func().values counts = self.count().values values = np.repeat(values, com._ensure_platform_int(counts)) # the values/counts are repeated according to the group index indices = self.indices # shortcut of we have an already ordered grouper if Index(self.grouper.group_info[0]).is_monotonic: result = Series(values, index=self.obj.index) else: index = Index(np.concatenate([ indices[v] for v in self.grouper.result_index ])) result = Series(values, index=index).sort_index() result.index = self.obj.index return result def filter(self, func, dropna=True, *args, **kwargs): """ Return a copy of a Series excluding elements from groups that do not satisfy the boolean criterion specified by func. Parameters ---------- func : function To apply to each group. Should return True or False. dropna : Drop groups that do not pass the filter. True by default; if False, groups that evaluate False are filled with NaNs. Example ------- >>> grouped.filter(lambda x: x.mean() > 0) Returns ------- filtered : Series """ if isinstance(func, compat.string_types): wrapper = lambda x: getattr(x, func)(*args, **kwargs) else: wrapper = lambda x: func(x, *args, **kwargs) # Interpret np.nan as False. def true_and_notnull(x, *args, **kwargs): b = wrapper(x, *args, **kwargs) return b and notnull(b) try: indices = [self._get_index(name) if true_and_notnull(group) else [] for name, group in self] except ValueError: raise TypeError("the filter must return a boolean result") except TypeError: raise TypeError("the filter must return a boolean result") filtered = self._apply_filter(indices, dropna) return filtered def _apply_to_column_groupbys(self, func): """ return a pass thru """ return func(self) class NDFrameGroupBy(GroupBy): def _iterate_slices(self): if self.axis == 0: # kludge if self._selection is None: slice_axis = self.obj.columns else: slice_axis = self._selection_list slicer = lambda x: self.obj[x] else: slice_axis = self.obj.index slicer = self.obj.xs for val in slice_axis: if val in self.exclusions: continue yield val, slicer(val) def _cython_agg_general(self, how, numeric_only=True): new_items, new_blocks = self._cython_agg_blocks(how, numeric_only=numeric_only) return self._wrap_agged_blocks(new_items, new_blocks) def _wrap_agged_blocks(self, items, blocks): obj = self._obj_with_exclusions new_axes = list(obj._data.axes) # more kludge if self.axis == 0: new_axes[0], new_axes[1] = new_axes[1], self.grouper.result_index else: new_axes[self.axis] = self.grouper.result_index # Make sure block manager integrity check passes. assert new_axes[0].equals(items) new_axes[0] = items mgr = BlockManager(blocks, new_axes) new_obj = type(obj)(mgr) return self._post_process_cython_aggregate(new_obj) _block_agg_axis = 0 def _cython_agg_blocks(self, how, numeric_only=True): data, agg_axis = self._get_data_to_aggregate() new_blocks = [] if numeric_only: data = data.get_numeric_data(copy=False) for block in data.blocks: values = block._try_operate(block.values) if block.is_numeric: values = com.ensure_float(values) result, _ = self.grouper.aggregate(values, how, axis=agg_axis) # see if we can cast the block back to the original dtype result = block._try_coerce_and_cast_result(result) newb = make_block(result, placement=block.mgr_locs) new_blocks.append(newb) if len(new_blocks) == 0: raise DataError('No numeric types to aggregate') return data.items, new_blocks def _get_data_to_aggregate(self): obj = self._obj_with_exclusions if self.axis == 0: return obj.swapaxes(0, 1)._data, 1 else: return obj._data, self.axis def _post_process_cython_aggregate(self, obj): # undoing kludge from below if self.axis == 0: obj = obj.swapaxes(0, 1) return obj @cache_readonly def _obj_with_exclusions(self): if self._selection is not None: return self.obj.reindex(columns=self._selection_list) if len(self.exclusions) > 0: return self.obj.drop(self.exclusions, axis=1) else: return self.obj @Appender(_agg_doc) def aggregate(self, arg, *args, **kwargs): if isinstance(arg, compat.string_types): return getattr(self, arg)(*args, **kwargs) result = OrderedDict() if isinstance(arg, dict): if self.axis != 0: # pragma: no cover raise ValueError('Can only pass dict with axis=0') obj = self._selected_obj if any(isinstance(x, (list, tuple, dict)) for x in arg.values()): new_arg = OrderedDict() for k, v in compat.iteritems(arg): if not isinstance(v, (tuple, list, dict)): new_arg[k] = [v] else: new_arg[k] = v arg = new_arg keys = [] if self._selection is not None: subset = obj if isinstance(subset, DataFrame): raise NotImplementedError for fname, agg_how in compat.iteritems(arg): colg = SeriesGroupBy(subset, selection=self._selection, grouper=self.grouper) result[fname] = colg.aggregate(agg_how) keys.append(fname) else: for col, agg_how in compat.iteritems(arg): colg = SeriesGroupBy(obj[col], selection=col, grouper=self.grouper) result[col] = colg.aggregate(agg_how) keys.append(col) if isinstance(list(result.values())[0], DataFrame): from pandas.tools.merge import concat result = concat([result[k] for k in keys], keys=keys, axis=1) else: result = DataFrame(result) elif isinstance(arg, list): return self._aggregate_multiple_funcs(arg) else: cyfunc = _intercept_cython(arg) if cyfunc and not args and not kwargs: return getattr(self, cyfunc)() if self.grouper.nkeys > 1: return self._python_agg_general(arg, *args, **kwargs) else: # try to treat as if we are passing a list try: assert not args and not kwargs result = self._aggregate_multiple_funcs([arg]) result.columns = Index(result.columns.levels[0], name=self._selected_obj.columns.name) except: result = self._aggregate_generic(arg, *args, **kwargs) if not self.as_index: if isinstance(result.index, MultiIndex): zipped = zip(result.index.levels, result.index.labels, result.index.names) for i, (lev, lab, name) in enumerate(zipped): result.insert(i, name, com.take_nd(lev.values, lab, allow_fill=False)) result = result.consolidate() else: values = result.index.values name = self.grouper.groupings[0].name result.insert(0, name, values) result.index = np.arange(len(result)) return result.convert_objects() def _aggregate_multiple_funcs(self, arg): from pandas.tools.merge import concat if self.axis != 0: raise NotImplementedError obj = self._obj_with_exclusions results = [] keys = [] for col in obj: try: colg = SeriesGroupBy(obj[col], selection=col, grouper=self.grouper) results.append(colg.aggregate(arg)) keys.append(col) except (TypeError, DataError): pass except SpecificationError: raise result = concat(results, keys=keys, axis=1) return result def _aggregate_generic(self, func, *args, **kwargs): if self.grouper.nkeys != 1: raise AssertionError('Number of keys must be 1') axis = self.axis obj = self._obj_with_exclusions result = {} if axis != obj._info_axis_number: try: for name, data in self: # for name in self.indices: # data = self.get_group(name, obj=obj) result[name] = self._try_cast(func(data, *args, **kwargs), data) except Exception: return self._aggregate_item_by_item(func, *args, **kwargs) else: for name in self.indices: try: data = self.get_group(name, obj=obj) result[name] = self._try_cast(func(data, *args, **kwargs), data) except Exception: wrapper = lambda x: func(x, *args, **kwargs) result[name] = data.apply(wrapper, axis=axis) return self._wrap_generic_output(result, obj) def _wrap_aggregated_output(self, output, names=None): raise NotImplementedError def _aggregate_item_by_item(self, func, *args, **kwargs): # only for axis==0 obj = self._obj_with_exclusions result = {} cannot_agg = [] errors=None for item in obj: try: data = obj[item] colg = SeriesGroupBy(data, selection=item, grouper=self.grouper) result[item] = self._try_cast( colg.aggregate(func, *args, **kwargs), data) except ValueError: cannot_agg.append(item) continue except TypeError as e: cannot_agg.append(item) errors=e continue result_columns = obj.columns if cannot_agg: result_columns = result_columns.drop(cannot_agg) # GH6337 if not len(result_columns) and errors is not None: raise errors return DataFrame(result, columns=result_columns) def _decide_output_index(self, output, labels): if len(output) == len(labels): output_keys = labels else: output_keys = sorted(output) try: output_keys.sort() except Exception: # pragma: no cover pass if isinstance(labels, MultiIndex): output_keys = MultiIndex.from_tuples(output_keys, names=labels.names) return output_keys def _wrap_applied_output(self, keys, values, not_indexed_same=False): from pandas.core.index import _all_indexes_same if len(keys) == 0: # XXX return DataFrame({}) key_names = self.grouper.names if isinstance(values[0], DataFrame): return self._concat_objects(keys, values, not_indexed_same=not_indexed_same) elif self.grouper.groupings is not None: if len(self.grouper.groupings) > 1: key_index = MultiIndex.from_tuples(keys, names=key_names) else: ping = self.grouper.groupings[0] if len(keys) == ping.ngroups: key_index = ping.group_index key_index.name = key_names[0] key_lookup = Index(keys) indexer = key_lookup.get_indexer(key_index) # reorder the values values = [values[i] for i in indexer] else: key_index = Index(keys, name=key_names[0]) # don't use the key indexer if not self.as_index: key_index = None # make Nones an empty object if com._count_not_none(*values) != len(values): v = next(v for v in values if v is not None) if v is None: return DataFrame() elif isinstance(v, NDFrame): values = [ x if x is not None else v._constructor(**v._construct_axes_dict()) for x in values ] v = values[0] if isinstance(v, (np.ndarray, Index, Series)): if isinstance(v, Series): applied_index = self._selected_obj._get_axis(self.axis) all_indexed_same = _all_indexes_same([ x.index for x in values ]) singular_series = (len(values) == 1 and applied_index.nlevels == 1) # GH3596 # provide a reduction (Frame -> Series) if groups are # unique if self.squeeze: # assign the name to this series if singular_series: values[0].name = keys[0] # GH2893 # we have series in the values array, we want to # produce a series: # if any of the sub-series are not indexed the same # OR we don't have a multi-index and we have only a # single values return self._concat_objects( keys, values, not_indexed_same=not_indexed_same ) # still a series # path added as of GH 5545 elif all_indexed_same: from pandas.tools.merge import concat return concat(values) if not all_indexed_same: return self._concat_objects( keys, values, not_indexed_same=not_indexed_same ) try: if self.axis == 0: # GH6124 if the list of Series have a consistent name, # then propagate that name to the result. index = v.index.copy() if index.name is None: # Only propagate the series name to the result # if all series have a consistent name. If the # series do not have a consistent name, do # nothing. names = set(v.name for v in values) if len(names) == 1: index.name = list(names)[0] # normally use vstack as its faster than concat # and if we have mi-columns if not _np_version_under1p7 or isinstance(v.index,MultiIndex) or key_index is None: stacked_values = np.vstack([np.asarray(x) for x in values]) result = DataFrame(stacked_values,index=key_index,columns=index) else: # GH5788 instead of stacking; concat gets the dtypes correct from pandas.tools.merge import concat result = concat(values,keys=key_index,names=key_index.names, axis=self.axis).unstack() result.columns = index else: stacked_values = np.vstack([np.asarray(x) for x in values]) result = DataFrame(stacked_values.T,index=v.index,columns=key_index) except (ValueError, AttributeError): # GH1738: values is list of arrays of unequal lengths fall # through to the outer else caluse return
Series(values, index=key_index)
pandas.core.series.Series
#/*########################################################################## # Copyright (C) 2020-2021 The University of Lorraine - France # # This file is part of the PyRecon toolkit developed at the GeoRessources # Laboratory of the University of Lorraine, France. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ # -*- coding: utf-8 -*- from pkgs.SpectraPreProcessing import * import pandas as pd import json import numpy as np ''' Once the object is built : Obj = Raman(AdressFolder, Name) Where : > AdressFolder : The path to the folder containing the files. > Name : the file name without the extension (ex : MesureR_2019 07 16_13h 49mn 38s L2C53.esp --> Name = MesureR_2019 07 16_13h 49mn 38s L2C53). We can : > Read headers from one file with the funtion "Read_Header" : df = Obj.Read_Header() > Read headers from more files in one DataFrame With the function "Read_Headers" : df = Obj.Read_Headers() We can leave the argument "Name" empty as folows: Name = " " > Read spectrum from one file with the funtion "Read_spectrum" : df = Obj.Read_spectrum() > Read spectrums from more files in one DataFrame With the function "Read_spectrums" : df = Obj.Read_spectrums() we can leave argument "Name" empty as folows: Name = " " > Save as .CSV, after having collected the data in "df" we can save them under a given name "name = "DataFrame" " with the following command : : Obj.Save_as_csv(df , name = "DataFrame") NOTE : * The folder must containe only the files. * The functions ended by "_" (example : Obj.Read_spectrum_()) used for extructing the integer portion from the NumberWaves. * Please move the .csv file generated by "Obj.Save_as_csv" elsewhere and delete it from the current folder. ''' class Raman(SpectraPreProcessing): def __init__(self, AdressFolder, Name): SpectraPreProcessing.__init__(self,AdressFolder) self.Name = Name def NameSpectrumColumns(self): ''' Returns List of tuples containing the names of each column Note : you can change the folowing argument "ColomnsName" for naming the columns. ''' ColomnsName = ["NumberWaves", "Intensity"] Name = [self.NameColumn(SampleName = self.Name, ColomnName = [w]) for w in ColomnsName] return Name def Header_to_Dict(self,NumberLine): ''' Returns the header lines as a dictionary ''' inputfile = open(self.FilePath(self.Name), 'r') Liste = list() for i in range(NumberLine): inputstr=inputfile.readline() inputspl=re.split("=",inputstr) Liste.append(json.loads(inputspl[1])) inputfile.close() return Liste def Read_Header(self): ''' Convertes the header lines in the file to data frame Note : In this case the header lines are recognized by the hashtags "#" : #exp_cfg and #proc_cfg ''' global df try : List = [self.Dict_to_Df(Element) for Element in self.Header_to_Dict(self.Count_Hachtags(self.Name))] # Add columns for the name : the name is also the name of the file "name.esp" df = self.Add_columns(List[0], "Sample", self.Name) # Join the laste two data frame in one data frame: for i in range(len(List)-1): df = self.Join_df(df , List[i+1]) except IndexError: print("Please check that your file contains headers") df = pd.DataFrame({'None' : [np.nan]}) return df def Read_Headers(self): ''' Returns DataFrame containing the header lines in all file exising in the folder Note : this function concatenates all header lines from one or more filesin the folder into one dataframe using Header_to_Df ''' df =
pd.DataFrame()
pandas.DataFrame
# -*- coding: utf-8 -*- import re import warnings from datetime import timedelta from itertools import product import pytest import numpy as np import pandas as pd from pandas import (CategoricalIndex, DataFrame, Index, MultiIndex, compat, date_range, period_range) from pandas.compat import PY3, long, lrange, lzip, range, u, PYPY from pandas.errors import PerformanceWarning, UnsortedIndexError from pandas.core.dtypes.dtypes import CategoricalDtype from pandas.core.indexes.base import InvalidIndexError from pandas.core.dtypes.cast import construct_1d_object_array_from_listlike from pandas._libs.tslib import Timestamp import pandas.util.testing as tm from pandas.util.testing import assert_almost_equal, assert_copy from .common import Base class TestMultiIndex(Base): _holder = MultiIndex _compat_props = ['shape', 'ndim', 'size'] def setup_method(self, method): major_axis = Index(['foo', 'bar', 'baz', 'qux']) minor_axis = Index(['one', 'two']) major_labels = np.array([0, 0, 1, 2, 3, 3]) minor_labels = np.array([0, 1, 0, 1, 0, 1]) self.index_names = ['first', 'second'] self.indices = dict(index=MultiIndex(levels=[major_axis, minor_axis], labels=[major_labels, minor_labels ], names=self.index_names, verify_integrity=False)) self.setup_indices() def create_index(self): return self.index def test_can_hold_identifiers(self): idx = self.create_index() key = idx[0] assert idx._can_hold_identifiers_and_holds_name(key) is True def test_boolean_context_compat2(self): # boolean context compat # GH7897 i1 = MultiIndex.from_tuples([('A', 1), ('A', 2)]) i2 = MultiIndex.from_tuples([('A', 1), ('A', 3)]) common = i1.intersection(i2) def f(): if common: pass tm.assert_raises_regex(ValueError, 'The truth value of a', f) def test_labels_dtypes(self): # GH 8456 i = MultiIndex.from_tuples([('A', 1), ('A', 2)]) assert i.labels[0].dtype == 'int8' assert i.labels[1].dtype == 'int8' i = MultiIndex.from_product([['a'], range(40)]) assert i.labels[1].dtype == 'int8' i = MultiIndex.from_product([['a'], range(400)]) assert i.labels[1].dtype == 'int16' i = MultiIndex.from_product([['a'], range(40000)]) assert i.labels[1].dtype == 'int32' i = pd.MultiIndex.from_product([['a'], range(1000)]) assert (i.labels[0] >= 0).all() assert (i.labels[1] >= 0).all() def test_where(self): i = MultiIndex.from_tuples([('A', 1), ('A', 2)]) def f(): i.where(True) pytest.raises(NotImplementedError, f) def test_where_array_like(self): i = MultiIndex.from_tuples([('A', 1), ('A', 2)]) klasses = [list, tuple, np.array, pd.Series] cond = [False, True] for klass in klasses: def f(): return i.where(klass(cond)) pytest.raises(NotImplementedError, f) def test_repeat(self): reps = 2 numbers = [1, 2, 3] names = np.array(['foo', 'bar']) m = MultiIndex.from_product([ numbers, names], names=names) expected = MultiIndex.from_product([ numbers, names.repeat(reps)], names=names) tm.assert_index_equal(m.repeat(reps), expected) with tm.assert_produces_warning(FutureWarning): result = m.repeat(n=reps) tm.assert_index_equal(result, expected) def test_numpy_repeat(self): reps = 2 numbers = [1, 2, 3] names = np.array(['foo', 'bar']) m = MultiIndex.from_product([ numbers, names], names=names) expected = MultiIndex.from_product([ numbers, names.repeat(reps)], names=names) tm.assert_index_equal(np.repeat(m, reps), expected) msg = "the 'axis' parameter is not supported" tm.assert_raises_regex( ValueError, msg, np.repeat, m, reps, axis=1) def test_set_name_methods(self): # so long as these are synonyms, we don't need to test set_names assert self.index.rename == self.index.set_names new_names = [name + "SUFFIX" for name in self.index_names] ind = self.index.set_names(new_names) assert self.index.names == self.index_names assert ind.names == new_names with tm.assert_raises_regex(ValueError, "^Length"): ind.set_names(new_names + new_names) new_names2 = [name + "SUFFIX2" for name in new_names] res = ind.set_names(new_names2, inplace=True) assert res is None assert ind.names == new_names2 # set names for specific level (# GH7792) ind = self.index.set_names(new_names[0], level=0) assert self.index.names == self.index_names assert ind.names == [new_names[0], self.index_names[1]] res = ind.set_names(new_names2[0], level=0, inplace=True) assert res is None assert ind.names == [new_names2[0], self.index_names[1]] # set names for multiple levels ind = self.index.set_names(new_names, level=[0, 1]) assert self.index.names == self.index_names assert ind.names == new_names res = ind.set_names(new_names2, level=[0, 1], inplace=True) assert res is None assert ind.names == new_names2 @pytest.mark.parametrize('inplace', [True, False]) def test_set_names_with_nlevel_1(self, inplace): # GH 21149 # Ensure that .set_names for MultiIndex with # nlevels == 1 does not raise any errors expected = pd.MultiIndex(levels=[[0, 1]], labels=[[0, 1]], names=['first']) m = pd.MultiIndex.from_product([[0, 1]]) result = m.set_names('first', level=0, inplace=inplace) if inplace: result = m tm.assert_index_equal(result, expected) def test_set_levels_labels_directly(self): # setting levels/labels directly raises AttributeError levels = self.index.levels new_levels = [[lev + 'a' for lev in level] for level in levels] labels = self.index.labels major_labels, minor_labels = labels major_labels = [(x + 1) % 3 for x in major_labels] minor_labels = [(x + 1) % 1 for x in minor_labels] new_labels = [major_labels, minor_labels] with pytest.raises(AttributeError): self.index.levels = new_levels with pytest.raises(AttributeError): self.index.labels = new_labels def test_set_levels(self): # side note - you probably wouldn't want to use levels and labels # directly like this - but it is possible. levels = self.index.levels new_levels = [[lev + 'a' for lev in level] for level in levels] def assert_matching(actual, expected, check_dtype=False): # avoid specifying internal representation # as much as possible assert len(actual) == len(expected) for act, exp in zip(actual, expected): act = np.asarray(act) exp = np.asarray(exp) tm.assert_numpy_array_equal(act, exp, check_dtype=check_dtype) # level changing [w/o mutation] ind2 = self.index.set_levels(new_levels) assert_matching(ind2.levels, new_levels) assert_matching(self.index.levels, levels) # level changing [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_levels(new_levels, inplace=True) assert inplace_return is None assert_matching(ind2.levels, new_levels) # level changing specific level [w/o mutation] ind2 = self.index.set_levels(new_levels[0], level=0) assert_matching(ind2.levels, [new_levels[0], levels[1]]) assert_matching(self.index.levels, levels) ind2 = self.index.set_levels(new_levels[1], level=1) assert_matching(ind2.levels, [levels[0], new_levels[1]]) assert_matching(self.index.levels, levels) # level changing multiple levels [w/o mutation] ind2 = self.index.set_levels(new_levels, level=[0, 1]) assert_matching(ind2.levels, new_levels) assert_matching(self.index.levels, levels) # level changing specific level [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_levels(new_levels[0], level=0, inplace=True) assert inplace_return is None assert_matching(ind2.levels, [new_levels[0], levels[1]]) assert_matching(self.index.levels, levels) ind2 = self.index.copy() inplace_return = ind2.set_levels(new_levels[1], level=1, inplace=True) assert inplace_return is None assert_matching(ind2.levels, [levels[0], new_levels[1]]) assert_matching(self.index.levels, levels) # level changing multiple levels [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_levels(new_levels, level=[0, 1], inplace=True) assert inplace_return is None assert_matching(ind2.levels, new_levels) assert_matching(self.index.levels, levels) # illegal level changing should not change levels # GH 13754 original_index = self.index.copy() for inplace in [True, False]: with tm.assert_raises_regex(ValueError, "^On"): self.index.set_levels(['c'], level=0, inplace=inplace) assert_matching(self.index.levels, original_index.levels, check_dtype=True) with tm.assert_raises_regex(ValueError, "^On"): self.index.set_labels([0, 1, 2, 3, 4, 5], level=0, inplace=inplace) assert_matching(self.index.labels, original_index.labels, check_dtype=True) with tm.assert_raises_regex(TypeError, "^Levels"): self.index.set_levels('c', level=0, inplace=inplace) assert_matching(self.index.levels, original_index.levels, check_dtype=True) with tm.assert_raises_regex(TypeError, "^Labels"): self.index.set_labels(1, level=0, inplace=inplace) assert_matching(self.index.labels, original_index.labels, check_dtype=True) def test_set_labels(self): # side note - you probably wouldn't want to use levels and labels # directly like this - but it is possible. labels = self.index.labels major_labels, minor_labels = labels major_labels = [(x + 1) % 3 for x in major_labels] minor_labels = [(x + 1) % 1 for x in minor_labels] new_labels = [major_labels, minor_labels] def assert_matching(actual, expected): # avoid specifying internal representation # as much as possible assert len(actual) == len(expected) for act, exp in zip(actual, expected): act = np.asarray(act) exp = np.asarray(exp, dtype=np.int8) tm.assert_numpy_array_equal(act, exp) # label changing [w/o mutation] ind2 = self.index.set_labels(new_labels) assert_matching(ind2.labels, new_labels) assert_matching(self.index.labels, labels) # label changing [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_labels(new_labels, inplace=True) assert inplace_return is None assert_matching(ind2.labels, new_labels) # label changing specific level [w/o mutation] ind2 = self.index.set_labels(new_labels[0], level=0) assert_matching(ind2.labels, [new_labels[0], labels[1]]) assert_matching(self.index.labels, labels) ind2 = self.index.set_labels(new_labels[1], level=1) assert_matching(ind2.labels, [labels[0], new_labels[1]]) assert_matching(self.index.labels, labels) # label changing multiple levels [w/o mutation] ind2 = self.index.set_labels(new_labels, level=[0, 1]) assert_matching(ind2.labels, new_labels) assert_matching(self.index.labels, labels) # label changing specific level [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_labels(new_labels[0], level=0, inplace=True) assert inplace_return is None assert_matching(ind2.labels, [new_labels[0], labels[1]]) assert_matching(self.index.labels, labels) ind2 = self.index.copy() inplace_return = ind2.set_labels(new_labels[1], level=1, inplace=True) assert inplace_return is None assert_matching(ind2.labels, [labels[0], new_labels[1]]) assert_matching(self.index.labels, labels) # label changing multiple levels [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_labels(new_labels, level=[0, 1], inplace=True) assert inplace_return is None assert_matching(ind2.labels, new_labels) assert_matching(self.index.labels, labels) # label changing for levels of different magnitude of categories ind = pd.MultiIndex.from_tuples([(0, i) for i in range(130)]) new_labels = range(129, -1, -1) expected = pd.MultiIndex.from_tuples( [(0, i) for i in new_labels]) # [w/o mutation] result = ind.set_labels(labels=new_labels, level=1) assert result.equals(expected) # [w/ mutation] result = ind.copy() result.set_labels(labels=new_labels, level=1, inplace=True) assert result.equals(expected) def test_set_levels_labels_names_bad_input(self): levels, labels = self.index.levels, self.index.labels names = self.index.names with tm.assert_raises_regex(ValueError, 'Length of levels'): self.index.set_levels([levels[0]]) with tm.assert_raises_regex(ValueError, 'Length of labels'): self.index.set_labels([labels[0]]) with tm.assert_raises_regex(ValueError, 'Length of names'): self.index.set_names([names[0]]) # shouldn't scalar data error, instead should demand list-like with tm.assert_raises_regex(TypeError, 'list of lists-like'): self.index.set_levels(levels[0]) # shouldn't scalar data error, instead should demand list-like with tm.assert_raises_regex(TypeError, 'list of lists-like'): self.index.set_labels(labels[0]) # shouldn't scalar data error, instead should demand list-like with tm.assert_raises_regex(TypeError, 'list-like'): self.index.set_names(names[0]) # should have equal lengths with tm.assert_raises_regex(TypeError, 'list of lists-like'): self.index.set_levels(levels[0], level=[0, 1]) with tm.assert_raises_regex(TypeError, 'list-like'): self.index.set_levels(levels, level=0) # should have equal lengths with tm.assert_raises_regex(TypeError, 'list of lists-like'): self.index.set_labels(labels[0], level=[0, 1]) with tm.assert_raises_regex(TypeError, 'list-like'): self.index.set_labels(labels, level=0) # should have equal lengths with tm.assert_raises_regex(ValueError, 'Length of names'): self.index.set_names(names[0], level=[0, 1]) with tm.assert_raises_regex(TypeError, 'string'): self.index.set_names(names, level=0) def test_set_levels_categorical(self): # GH13854 index = MultiIndex.from_arrays([list("xyzx"), [0, 1, 2, 3]]) for ordered in [False, True]: cidx = CategoricalIndex(list("bac"), ordered=ordered) result = index.set_levels(cidx, 0) expected = MultiIndex(levels=[cidx, [0, 1, 2, 3]], labels=index.labels) tm.assert_index_equal(result, expected) result_lvl = result.get_level_values(0) expected_lvl = CategoricalIndex(list("bacb"), categories=cidx.categories, ordered=cidx.ordered) tm.assert_index_equal(result_lvl, expected_lvl) def test_metadata_immutable(self): levels, labels = self.index.levels, self.index.labels # shouldn't be able to set at either the top level or base level mutable_regex = re.compile('does not support mutable operations') with tm.assert_raises_regex(TypeError, mutable_regex): levels[0] = levels[0] with tm.assert_raises_regex(TypeError, mutable_regex): levels[0][0] = levels[0][0] # ditto for labels with tm.assert_raises_regex(TypeError, mutable_regex): labels[0] = labels[0] with tm.assert_raises_regex(TypeError, mutable_regex): labels[0][0] = labels[0][0] # and for names names = self.index.names with tm.assert_raises_regex(TypeError, mutable_regex): names[0] = names[0] def test_inplace_mutation_resets_values(self): levels = [['a', 'b', 'c'], [4]] levels2 = [[1, 2, 3], ['a']] labels = [[0, 1, 0, 2, 2, 0], [0, 0, 0, 0, 0, 0]] mi1 = MultiIndex(levels=levels, labels=labels) mi2 = MultiIndex(levels=levels2, labels=labels) vals = mi1.values.copy() vals2 = mi2.values.copy() assert mi1._tuples is not None # Make sure level setting works new_vals = mi1.set_levels(levels2).values tm.assert_almost_equal(vals2, new_vals) # Non-inplace doesn't kill _tuples [implementation detail] tm.assert_almost_equal(mi1._tuples, vals) # ...and values is still same too tm.assert_almost_equal(mi1.values, vals) # Inplace should kill _tuples mi1.set_levels(levels2, inplace=True) tm.assert_almost_equal(mi1.values, vals2) # Make sure label setting works too labels2 = [[0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0]] exp_values = np.empty((6,), dtype=object) exp_values[:] = [(long(1), 'a')] * 6 # Must be 1d array of tuples assert exp_values.shape == (6,) new_values = mi2.set_labels(labels2).values # Not inplace shouldn't change tm.assert_almost_equal(mi2._tuples, vals2) # Should have correct values tm.assert_almost_equal(exp_values, new_values) # ...and again setting inplace should kill _tuples, etc mi2.set_labels(labels2, inplace=True) tm.assert_almost_equal(mi2.values, new_values) def test_copy_in_constructor(self): levels = np.array(["a", "b", "c"]) labels = np.array([1, 1, 2, 0, 0, 1, 1]) val = labels[0] mi = MultiIndex(levels=[levels, levels], labels=[labels, labels], copy=True) assert mi.labels[0][0] == val labels[0] = 15 assert mi.labels[0][0] == val val = levels[0] levels[0] = "PANDA" assert mi.levels[0][0] == val def test_set_value_keeps_names(self): # motivating example from #3742 lev1 = ['hans', 'hans', 'hans', 'grethe', 'grethe', 'grethe'] lev2 = ['1', '2', '3'] * 2 idx = pd.MultiIndex.from_arrays([lev1, lev2], names=['Name', 'Number']) df = pd.DataFrame( np.random.randn(6, 4), columns=['one', 'two', 'three', 'four'], index=idx) df = df.sort_index() assert df._is_copy is None assert df.index.names == ('Name', 'Number') df.at[('grethe', '4'), 'one'] = 99.34 assert df._is_copy is None assert df.index.names == ('Name', 'Number') def test_copy_names(self): # Check that adding a "names" parameter to the copy is honored # GH14302 multi_idx = pd.Index([(1, 2), (3, 4)], names=['MyName1', 'MyName2']) multi_idx1 = multi_idx.copy() assert multi_idx.equals(multi_idx1) assert multi_idx.names == ['MyName1', 'MyName2'] assert multi_idx1.names == ['MyName1', 'MyName2'] multi_idx2 = multi_idx.copy(names=['NewName1', 'NewName2']) assert multi_idx.equals(multi_idx2) assert multi_idx.names == ['MyName1', 'MyName2'] assert multi_idx2.names == ['NewName1', 'NewName2'] multi_idx3 = multi_idx.copy(name=['NewName1', 'NewName2']) assert multi_idx.equals(multi_idx3) assert multi_idx.names == ['MyName1', 'MyName2'] assert multi_idx3.names == ['NewName1', 'NewName2'] def test_names(self): # names are assigned in setup names = self.index_names level_names = [level.name for level in self.index.levels] assert names == level_names # setting bad names on existing index = self.index tm.assert_raises_regex(ValueError, "^Length of names", setattr, index, "names", list(index.names) + ["third"]) tm.assert_raises_regex(ValueError, "^Length of names", setattr, index, "names", []) # initializing with bad names (should always be equivalent) major_axis, minor_axis = self.index.levels major_labels, minor_labels = self.index.labels tm.assert_raises_regex(ValueError, "^Length of names", MultiIndex, levels=[major_axis, minor_axis], labels=[major_labels, minor_labels], names=['first']) tm.assert_raises_regex(ValueError, "^Length of names", MultiIndex, levels=[major_axis, minor_axis], labels=[major_labels, minor_labels], names=['first', 'second', 'third']) # names are assigned index.names = ["a", "b"] ind_names = list(index.names) level_names = [level.name for level in index.levels] assert ind_names == level_names def test_astype(self): expected = self.index.copy() actual = self.index.astype('O') assert_copy(actual.levels, expected.levels) assert_copy(actual.labels, expected.labels) self.check_level_names(actual, expected.names) with tm.assert_raises_regex(TypeError, "^Setting.*dtype.*object"): self.index.astype(np.dtype(int)) @pytest.mark.parametrize('ordered', [True, False]) def test_astype_category(self, ordered): # GH 18630 msg = '> 1 ndim Categorical are not supported at this time' with tm.assert_raises_regex(NotImplementedError, msg): self.index.astype(CategoricalDtype(ordered=ordered)) if ordered is False: # dtype='category' defaults to ordered=False, so only test once with tm.assert_raises_regex(NotImplementedError, msg): self.index.astype('category') def test_constructor_single_level(self): result = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux']], labels=[[0, 1, 2, 3]], names=['first']) assert isinstance(result, MultiIndex) expected = Index(['foo', 'bar', 'baz', 'qux'], name='first') tm.assert_index_equal(result.levels[0], expected) assert result.names == ['first'] def test_constructor_no_levels(self): tm.assert_raises_regex(ValueError, "non-zero number " "of levels/labels", MultiIndex, levels=[], labels=[]) both_re = re.compile('Must pass both levels and labels') with tm.assert_raises_regex(TypeError, both_re): MultiIndex(levels=[]) with tm.assert_raises_regex(TypeError, both_re): MultiIndex(labels=[]) def test_constructor_mismatched_label_levels(self): labels = [np.array([1]), np.array([2]), np.array([3])] levels = ["a"] tm.assert_raises_regex(ValueError, "Length of levels and labels " "must be the same", MultiIndex, levels=levels, labels=labels) length_error = re.compile('>= length of level') label_error = re.compile(r'Unequal label lengths: \[4, 2\]') # important to check that it's looking at the right thing. with tm.assert_raises_regex(ValueError, length_error): MultiIndex(levels=[['a'], ['b']], labels=[[0, 1, 2, 3], [0, 3, 4, 1]]) with tm.assert_raises_regex(ValueError, label_error): MultiIndex(levels=[['a'], ['b']], labels=[[0, 0, 0, 0], [0, 0]]) # external API with tm.assert_raises_regex(ValueError, length_error): self.index.copy().set_levels([['a'], ['b']]) with tm.assert_raises_regex(ValueError, label_error): self.index.copy().set_labels([[0, 0, 0, 0], [0, 0]]) def test_constructor_nonhashable_names(self): # GH 20527 levels = [[1, 2], [u'one', u'two']] labels = [[0, 0, 1, 1], [0, 1, 0, 1]] names = ((['foo'], ['bar'])) message = "MultiIndex.name must be a hashable type" tm.assert_raises_regex(TypeError, message, MultiIndex, levels=levels, labels=labels, names=names) # With .rename() mi = MultiIndex(levels=[[1, 2], [u'one', u'two']], labels=[[0, 0, 1, 1], [0, 1, 0, 1]], names=('foo', 'bar')) renamed = [['foor'], ['barr']] tm.assert_raises_regex(TypeError, message, mi.rename, names=renamed) # With .set_names() tm.assert_raises_regex(TypeError, message, mi.set_names, names=renamed) @pytest.mark.parametrize('names', [['a', 'b', 'a'], ['1', '1', '2'], ['1', 'a', '1']]) def test_duplicate_level_names(self, names): # GH18872 pytest.raises(ValueError, pd.MultiIndex.from_product, [[0, 1]] * 3, names=names) # With .rename() mi = pd.MultiIndex.from_product([[0, 1]] * 3) tm.assert_raises_regex(ValueError, "Duplicated level name:", mi.rename, names) # With .rename(., level=) mi.rename(names[0], level=1, inplace=True) tm.assert_raises_regex(ValueError, "Duplicated level name:", mi.rename, names[:2], level=[0, 2]) def assert_multiindex_copied(self, copy, original): # Levels should be (at least, shallow copied) tm.assert_copy(copy.levels, original.levels) tm.assert_almost_equal(copy.labels, original.labels) # Labels doesn't matter which way copied tm.assert_almost_equal(copy.labels, original.labels) assert copy.labels is not original.labels # Names doesn't matter which way copied assert copy.names == original.names assert copy.names is not original.names # Sort order should be copied assert copy.sortorder == original.sortorder def test_copy(self): i_copy = self.index.copy() self.assert_multiindex_copied(i_copy, self.index) def test_shallow_copy(self): i_copy = self.index._shallow_copy() self.assert_multiindex_copied(i_copy, self.index) def test_view(self): i_view = self.index.view() self.assert_multiindex_copied(i_view, self.index) def check_level_names(self, index, names): assert [level.name for level in index.levels] == list(names) def test_changing_names(self): # names should be applied to levels level_names = [level.name for level in self.index.levels] self.check_level_names(self.index, self.index.names) view = self.index.view() copy = self.index.copy() shallow_copy = self.index._shallow_copy() # changing names should change level names on object new_names = [name + "a" for name in self.index.names] self.index.names = new_names self.check_level_names(self.index, new_names) # but not on copies self.check_level_names(view, level_names) self.check_level_names(copy, level_names) self.check_level_names(shallow_copy, level_names) # and copies shouldn't change original shallow_copy.names = [name + "c" for name in shallow_copy.names] self.check_level_names(self.index, new_names) def test_get_level_number_integer(self): self.index.names = [1, 0] assert self.index._get_level_number(1) == 0 assert self.index._get_level_number(0) == 1 pytest.raises(IndexError, self.index._get_level_number, 2) tm.assert_raises_regex(KeyError, 'Level fourth not found', self.index._get_level_number, 'fourth') def test_from_arrays(self): arrays = [] for lev, lab in zip(self.index.levels, self.index.labels): arrays.append(np.asarray(lev).take(lab)) # list of arrays as input result = MultiIndex.from_arrays(arrays, names=self.index.names) tm.assert_index_equal(result, self.index) # infer correctly result = MultiIndex.from_arrays([[pd.NaT, Timestamp('20130101')], ['a', 'b']]) assert result.levels[0].equals(Index([Timestamp('20130101')])) assert result.levels[1].equals(Index(['a', 'b'])) def test_from_arrays_iterator(self): # GH 18434 arrays = [] for lev, lab in zip(self.index.levels, self.index.labels): arrays.append(np.asarray(lev).take(lab)) # iterator as input result = MultiIndex.from_arrays(iter(arrays), names=self.index.names) tm.assert_index_equal(result, self.index) # invalid iterator input with tm.assert_raises_regex( TypeError, "Input must be a list / sequence of array-likes."): MultiIndex.from_arrays(0) def test_from_arrays_index_series_datetimetz(self): idx1 = pd.date_range('2015-01-01 10:00', freq='D', periods=3, tz='US/Eastern') idx2 = pd.date_range('2015-01-01 10:00', freq='H', periods=3, tz='Asia/Tokyo') result = pd.MultiIndex.from_arrays([idx1, idx2]) tm.assert_index_equal(result.get_level_values(0), idx1) tm.assert_index_equal(result.get_level_values(1), idx2) result2 = pd.MultiIndex.from_arrays([pd.Series(idx1), pd.Series(idx2)]) tm.assert_index_equal(result2.get_level_values(0), idx1) tm.assert_index_equal(result2.get_level_values(1), idx2) tm.assert_index_equal(result, result2) def test_from_arrays_index_series_timedelta(self): idx1 = pd.timedelta_range('1 days', freq='D', periods=3) idx2 = pd.timedelta_range('2 hours', freq='H', periods=3) result = pd.MultiIndex.from_arrays([idx1, idx2]) tm.assert_index_equal(result.get_level_values(0), idx1) tm.assert_index_equal(result.get_level_values(1), idx2) result2 = pd.MultiIndex.from_arrays([pd.Series(idx1), pd.Series(idx2)]) tm.assert_index_equal(result2.get_level_values(0), idx1) tm.assert_index_equal(result2.get_level_values(1), idx2) tm.assert_index_equal(result, result2) def test_from_arrays_index_series_period(self): idx1 = pd.period_range('2011-01-01', freq='D', periods=3) idx2 = pd.period_range('2015-01-01', freq='H', periods=3) result = pd.MultiIndex.from_arrays([idx1, idx2]) tm.assert_index_equal(result.get_level_values(0), idx1) tm.assert_index_equal(result.get_level_values(1), idx2) result2 = pd.MultiIndex.from_arrays([pd.Series(idx1), pd.Series(idx2)]) tm.assert_index_equal(result2.get_level_values(0), idx1) tm.assert_index_equal(result2.get_level_values(1), idx2) tm.assert_index_equal(result, result2) def test_from_arrays_index_datetimelike_mixed(self): idx1 = pd.date_range('2015-01-01 10:00', freq='D', periods=3, tz='US/Eastern') idx2 = pd.date_range('2015-01-01 10:00', freq='H', periods=3) idx3 = pd.timedelta_range('1 days', freq='D', periods=3) idx4 = pd.period_range('2011-01-01', freq='D', periods=3) result = pd.MultiIndex.from_arrays([idx1, idx2, idx3, idx4]) tm.assert_index_equal(result.get_level_values(0), idx1) tm.assert_index_equal(result.get_level_values(1), idx2) tm.assert_index_equal(result.get_level_values(2), idx3) tm.assert_index_equal(result.get_level_values(3), idx4) result2 = pd.MultiIndex.from_arrays([pd.Series(idx1), pd.Series(idx2), pd.Series(idx3), pd.Series(idx4)]) tm.assert_index_equal(result2.get_level_values(0), idx1) tm.assert_index_equal(result2.get_level_values(1), idx2) tm.assert_index_equal(result2.get_level_values(2), idx3) tm.assert_index_equal(result2.get_level_values(3), idx4) tm.assert_index_equal(result, result2) def test_from_arrays_index_series_categorical(self): # GH13743 idx1 = pd.CategoricalIndex(list("abcaab"), categories=list("bac"), ordered=False) idx2 = pd.CategoricalIndex(list("abcaab"), categories=list("bac"), ordered=True) result = pd.MultiIndex.from_arrays([idx1, idx2]) tm.assert_index_equal(result.get_level_values(0), idx1) tm.assert_index_equal(result.get_level_values(1), idx2) result2 = pd.MultiIndex.from_arrays([pd.Series(idx1), pd.Series(idx2)]) tm.assert_index_equal(result2.get_level_values(0), idx1) tm.assert_index_equal(result2.get_level_values(1), idx2) result3 = pd.MultiIndex.from_arrays([idx1.values, idx2.values]) tm.assert_index_equal(result3.get_level_values(0), idx1) tm.assert_index_equal(result3.get_level_values(1), idx2) def test_from_arrays_empty(self): # 0 levels with tm.assert_raises_regex( ValueError, "Must pass non-zero number of levels/labels"): MultiIndex.from_arrays(arrays=[]) # 1 level result = MultiIndex.from_arrays(arrays=[[]], names=['A']) assert isinstance(result, MultiIndex) expected = Index([], name='A') tm.assert_index_equal(result.levels[0], expected) # N levels for N in [2, 3]: arrays = [[]] * N names = list('ABC')[:N] result = MultiIndex.from_arrays(arrays=arrays, names=names) expected = MultiIndex(levels=[[]] * N, labels=[[]] * N, names=names) tm.assert_index_equal(result, expected) def test_from_arrays_invalid_input(self): invalid_inputs = [1, [1], [1, 2], [[1], 2], 'a', ['a'], ['a', 'b'], [['a'], 'b']] for i in invalid_inputs: pytest.raises(TypeError, MultiIndex.from_arrays, arrays=i) def test_from_arrays_different_lengths(self): # see gh-13599 idx1 = [1, 2, 3] idx2 = ['a', 'b'] tm.assert_raises_regex(ValueError, '^all arrays must ' 'be same length$', MultiIndex.from_arrays, [idx1, idx2]) idx1 = [] idx2 = ['a', 'b'] tm.assert_raises_regex(ValueError, '^all arrays must ' 'be same length$', MultiIndex.from_arrays, [idx1, idx2]) idx1 = [1, 2, 3] idx2 = [] tm.assert_raises_regex(ValueError, '^all arrays must ' 'be same length$', MultiIndex.from_arrays, [idx1, idx2]) def test_from_product(self): first = ['foo', 'bar', 'buz'] second = ['a', 'b', 'c'] names = ['first', 'second'] result = MultiIndex.from_product([first, second], names=names) tuples = [('foo', 'a'), ('foo', 'b'), ('foo', 'c'), ('bar', 'a'), ('bar', 'b'), ('bar', 'c'), ('buz', 'a'), ('buz', 'b'), ('buz', 'c')] expected = MultiIndex.from_tuples(tuples, names=names) tm.assert_index_equal(result, expected) def test_from_product_iterator(self): # GH 18434 first = ['foo', 'bar', 'buz'] second = ['a', 'b', 'c'] names = ['first', 'second'] tuples = [('foo', 'a'), ('foo', 'b'), ('foo', 'c'), ('bar', 'a'), ('bar', 'b'), ('bar', 'c'), ('buz', 'a'), ('buz', 'b'), ('buz', 'c')] expected = MultiIndex.from_tuples(tuples, names=names) # iterator as input result = MultiIndex.from_product(iter([first, second]), names=names) tm.assert_index_equal(result, expected) # Invalid non-iterable input with tm.assert_raises_regex( TypeError, "Input must be a list / sequence of iterables."): MultiIndex.from_product(0) def test_from_product_empty(self): # 0 levels with tm.assert_raises_regex( ValueError, "Must pass non-zero number of levels/labels"): MultiIndex.from_product([]) # 1 level result = MultiIndex.from_product([[]], names=['A']) expected = pd.Index([], name='A') tm.assert_index_equal(result.levels[0], expected) # 2 levels l1 = [[], ['foo', 'bar', 'baz'], []] l2 = [[], [], ['a', 'b', 'c']] names = ['A', 'B'] for first, second in zip(l1, l2): result = MultiIndex.from_product([first, second], names=names) expected = MultiIndex(levels=[first, second], labels=[[], []], names=names) tm.assert_index_equal(result, expected) # GH12258 names = ['A', 'B', 'C'] for N in range(4): lvl2 = lrange(N) result = MultiIndex.from_product([[], lvl2, []], names=names) expected = MultiIndex(levels=[[], lvl2, []], labels=[[], [], []], names=names) tm.assert_index_equal(result, expected) def test_from_product_invalid_input(self): invalid_inputs = [1, [1], [1, 2], [[1], 2], 'a', ['a'], ['a', 'b'], [['a'], 'b']] for i in invalid_inputs: pytest.raises(TypeError, MultiIndex.from_product, iterables=i) def test_from_product_datetimeindex(self): dt_index = date_range('2000-01-01', periods=2) mi = pd.MultiIndex.from_product([[1, 2], dt_index]) etalon = construct_1d_object_array_from_listlike([(1, pd.Timestamp( '2000-01-01')), (1, pd.Timestamp('2000-01-02')), (2, pd.Timestamp( '2000-01-01')), (2, pd.Timestamp('2000-01-02'))]) tm.assert_numpy_array_equal(mi.values, etalon) def test_from_product_index_series_categorical(self): # GH13743 first = ['foo', 'bar'] for ordered in [False, True]: idx = pd.CategoricalIndex(list("abcaab"), categories=list("bac"), ordered=ordered) expected = pd.CategoricalIndex(list("abcaab") + list("abcaab"), categories=list("bac"), ordered=ordered) for arr in [idx, pd.Series(idx), idx.values]: result = pd.MultiIndex.from_product([first, arr]) tm.assert_index_equal(result.get_level_values(1), expected) def test_values_boxed(self): tuples = [(1, pd.Timestamp('2000-01-01')), (2, pd.NaT), (3, pd.Timestamp('2000-01-03')), (1, pd.Timestamp('2000-01-04')), (2, pd.Timestamp('2000-01-02')), (3, pd.Timestamp('2000-01-03'))] result = pd.MultiIndex.from_tuples(tuples) expected = construct_1d_object_array_from_listlike(tuples) tm.assert_numpy_array_equal(result.values, expected) # Check that code branches for boxed values produce identical results tm.assert_numpy_array_equal(result.values[:4], result[:4].values) def test_values_multiindex_datetimeindex(self): # Test to ensure we hit the boxing / nobox part of MI.values ints = np.arange(10 ** 18, 10 ** 18 + 5) naive = pd.DatetimeIndex(ints) aware = pd.DatetimeIndex(ints, tz='US/Central') idx = pd.MultiIndex.from_arrays([naive, aware]) result = idx.values outer = pd.DatetimeIndex([x[0] for x in result]) tm.assert_index_equal(outer, naive) inner = pd.DatetimeIndex([x[1] for x in result]) tm.assert_index_equal(inner, aware) # n_lev > n_lab result = idx[:2].values outer = pd.DatetimeIndex([x[0] for x in result]) tm.assert_index_equal(outer, naive[:2]) inner = pd.DatetimeIndex([x[1] for x in result]) tm.assert_index_equal(inner, aware[:2]) def test_values_multiindex_periodindex(self): # Test to ensure we hit the boxing / nobox part of MI.values ints = np.arange(2007, 2012) pidx = pd.PeriodIndex(ints, freq='D') idx = pd.MultiIndex.from_arrays([ints, pidx]) result = idx.values outer = pd.Int64Index([x[0] for x in result]) tm.assert_index_equal(outer, pd.Int64Index(ints)) inner = pd.PeriodIndex([x[1] for x in result]) tm.assert_index_equal(inner, pidx) # n_lev > n_lab result = idx[:2].values outer = pd.Int64Index([x[0] for x in result]) tm.assert_index_equal(outer, pd.Int64Index(ints[:2])) inner = pd.PeriodIndex([x[1] for x in result]) tm.assert_index_equal(inner, pidx[:2]) def test_append(self): result = self.index[:3].append(self.index[3:]) assert result.equals(self.index) foos = [self.index[:1], self.index[1:3], self.index[3:]] result = foos[0].append(foos[1:]) assert result.equals(self.index) # empty result = self.index.append([]) assert result.equals(self.index) def test_append_mixed_dtypes(self): # GH 13660 dti = date_range('2011-01-01', freq='M', periods=3, ) dti_tz = date_range('2011-01-01', freq='M', periods=3, tz='US/Eastern') pi = period_range('2011-01', freq='M', periods=3) mi = MultiIndex.from_arrays([[1, 2, 3], [1.1, np.nan, 3.3], ['a', 'b', 'c'], dti, dti_tz, pi]) assert mi.nlevels == 6 res = mi.append(mi) exp = MultiIndex.from_arrays([[1, 2, 3, 1, 2, 3], [1.1, np.nan, 3.3, 1.1, np.nan, 3.3], ['a', 'b', 'c', 'a', 'b', 'c'], dti.append(dti), dti_tz.append(dti_tz), pi.append(pi)]) tm.assert_index_equal(res, exp) other = MultiIndex.from_arrays([['x', 'y', 'z'], ['x', 'y', 'z'], ['x', 'y', 'z'], ['x', 'y', 'z'], ['x', 'y', 'z'], ['x', 'y', 'z']]) res = mi.append(other) exp = MultiIndex.from_arrays([[1, 2, 3, 'x', 'y', 'z'], [1.1, np.nan, 3.3, 'x', 'y', 'z'], ['a', 'b', 'c', 'x', 'y', 'z'], dti.append(pd.Index(['x', 'y', 'z'])), dti_tz.append(pd.Index(['x', 'y', 'z'])), pi.append(pd.Index(['x', 'y', 'z']))]) tm.assert_index_equal(res, exp) def test_get_level_values(self): result = self.index.get_level_values(0) expected = Index(['foo', 'foo', 'bar', 'baz', 'qux', 'qux'], name='first') tm.assert_index_equal(result, expected) assert result.name == 'first' result = self.index.get_level_values('first') expected = self.index.get_level_values(0) tm.assert_index_equal(result, expected) # GH 10460 index = MultiIndex( levels=[CategoricalIndex(['A', 'B']), CategoricalIndex([1, 2, 3])], labels=[np.array([0, 0, 0, 1, 1, 1]), np.array([0, 1, 2, 0, 1, 2])]) exp = CategoricalIndex(['A', 'A', 'A', 'B', 'B', 'B']) tm.assert_index_equal(index.get_level_values(0), exp) exp = CategoricalIndex([1, 2, 3, 1, 2, 3]) tm.assert_index_equal(index.get_level_values(1), exp) def test_get_level_values_int_with_na(self): # GH 17924 arrays = [['a', 'b', 'b'], [1, np.nan, 2]] index = pd.MultiIndex.from_arrays(arrays) result = index.get_level_values(1) expected = Index([1, np.nan, 2]) tm.assert_index_equal(result, expected) arrays = [['a', 'b', 'b'], [np.nan, np.nan, 2]] index = pd.MultiIndex.from_arrays(arrays) result = index.get_level_values(1) expected = Index([np.nan, np.nan, 2]) tm.assert_index_equal(result, expected) def test_get_level_values_na(self): arrays = [[np.nan, np.nan, np.nan], ['a', np.nan, 1]] index = pd.MultiIndex.from_arrays(arrays) result = index.get_level_values(0) expected = pd.Index([np.nan, np.nan, np.nan]) tm.assert_index_equal(result, expected) result = index.get_level_values(1) expected = pd.Index(['a', np.nan, 1]) tm.assert_index_equal(result, expected) arrays = [['a', 'b', 'b'], pd.DatetimeIndex([0, 1, pd.NaT])] index = pd.MultiIndex.from_arrays(arrays) result = index.get_level_values(1) expected = pd.DatetimeIndex([0, 1, pd.NaT]) tm.assert_index_equal(result, expected) arrays = [[], []] index = pd.MultiIndex.from_arrays(arrays) result = index.get_level_values(0) expected = pd.Index([], dtype=object) tm.assert_index_equal(result, expected) def test_get_level_values_all_na(self): # GH 17924 when level entirely consists of nan arrays = [[np.nan, np.nan, np.nan], ['a', np.nan, 1]] index = pd.MultiIndex.from_arrays(arrays) result = index.get_level_values(0) expected = pd.Index([np.nan, np.nan, np.nan], dtype=np.float64) tm.assert_index_equal(result, expected) result = index.get_level_values(1) expected = pd.Index(['a', np.nan, 1], dtype=object) tm.assert_index_equal(result, expected) def test_reorder_levels(self): # this blows up tm.assert_raises_regex(IndexError, '^Too many levels', self.index.reorder_levels, [2, 1, 0]) def test_nlevels(self): assert self.index.nlevels == 2 def test_iter(self): result = list(self.index) expected = [('foo', 'one'), ('foo', 'two'), ('bar', 'one'), ('baz', 'two'), ('qux', 'one'), ('qux', 'two')] assert result == expected def test_legacy_pickle(self): if PY3: pytest.skip("testing for legacy pickles not " "support on py3") path = tm.get_data_path('multiindex_v1.pickle') obj = pd.read_pickle(path) obj2 = MultiIndex.from_tuples(obj.values) assert obj.equals(obj2) res = obj.get_indexer(obj) exp = np.arange(len(obj), dtype=np.intp) assert_almost_equal(res, exp) res = obj.get_indexer(obj2[::-1]) exp = obj.get_indexer(obj[::-1]) exp2 = obj2.get_indexer(obj2[::-1]) assert_almost_equal(res, exp) assert_almost_equal(exp, exp2) def test_legacy_v2_unpickle(self): # 0.7.3 -> 0.8.0 format manage path = tm.get_data_path('mindex_073.pickle') obj = pd.read_pickle(path) obj2 = MultiIndex.from_tuples(obj.values) assert obj.equals(obj2) res = obj.get_indexer(obj) exp = np.arange(len(obj), dtype=np.intp) assert_almost_equal(res, exp) res = obj.get_indexer(obj2[::-1]) exp = obj.get_indexer(obj[::-1]) exp2 = obj2.get_indexer(obj2[::-1]) assert_almost_equal(res, exp) assert_almost_equal(exp, exp2) def test_roundtrip_pickle_with_tz(self): # GH 8367 # round-trip of timezone index = MultiIndex.from_product( [[1, 2], ['a', 'b'], date_range('20130101', periods=3, tz='US/Eastern') ], names=['one', 'two', 'three']) unpickled = tm.round_trip_pickle(index) assert index.equal_levels(unpickled) def test_from_tuples_index_values(self): result = MultiIndex.from_tuples(self.index) assert (result.values == self.index.values).all() def test_contains(self): assert ('foo', 'two') in self.index assert ('bar', 'two') not in self.index assert None not in self.index def test_contains_top_level(self): midx = MultiIndex.from_product([['A', 'B'], [1, 2]]) assert 'A' in midx assert 'A' not in midx._engine def test_contains_with_nat(self): # MI with a NaT mi = MultiIndex(levels=[['C'], pd.date_range('2012-01-01', periods=5)], labels=[[0, 0, 0, 0, 0, 0], [-1, 0, 1, 2, 3, 4]], names=[None, 'B']) assert ('C', pd.Timestamp('2012-01-01')) in mi for val in mi.values: assert val in mi def test_is_all_dates(self): assert not self.index.is_all_dates def test_is_numeric(self): # MultiIndex is never numeric assert not self.index.is_numeric() def test_getitem(self): # scalar assert self.index[2] == ('bar', 'one') # slice result = self.index[2:5] expected = self.index[[2, 3, 4]] assert result.equals(expected) # boolean result = self.index[[True, False, True, False, True, True]] result2 = self.index[np.array([True, False, True, False, True, True])] expected = self.index[[0, 2, 4, 5]] assert result.equals(expected) assert result2.equals(expected) def test_getitem_group_select(self): sorted_idx, _ = self.index.sortlevel(0) assert sorted_idx.get_loc('baz') == slice(3, 4) assert sorted_idx.get_loc('foo') == slice(0, 2) def test_get_loc(self): assert self.index.get_loc(('foo', 'two')) == 1 assert self.index.get_loc(('baz', 'two')) == 3 pytest.raises(KeyError, self.index.get_loc, ('bar', 'two')) pytest.raises(KeyError, self.index.get_loc, 'quux') pytest.raises(NotImplementedError, self.index.get_loc, 'foo', method='nearest') # 3 levels index = MultiIndex(levels=[Index(lrange(4)), Index(lrange(4)), Index( lrange(4))], labels=[np.array([0, 0, 1, 2, 2, 2, 3, 3]), np.array( [0, 1, 0, 0, 0, 1, 0, 1]), np.array([1, 0, 1, 1, 0, 0, 1, 0])]) pytest.raises(KeyError, index.get_loc, (1, 1)) assert index.get_loc((2, 0)) == slice(3, 5) def test_get_loc_duplicates(self): index = Index([2, 2, 2, 2]) result = index.get_loc(2) expected = slice(0, 4) assert result == expected # pytest.raises(Exception, index.get_loc, 2) index = Index(['c', 'a', 'a', 'b', 'b']) rs = index.get_loc('c') xp = 0 assert rs == xp def test_get_value_duplicates(self): index = MultiIndex(levels=[['D', 'B', 'C'], [0, 26, 27, 37, 57, 67, 75, 82]], labels=[[0, 0, 0, 1, 2, 2, 2, 2, 2, 2], [1, 3, 4, 6, 0, 2, 2, 3, 5, 7]], names=['tag', 'day']) assert index.get_loc('D') == slice(0, 3) with pytest.raises(KeyError): index._engine.get_value(np.array([]), 'D') def test_get_loc_level(self): index = MultiIndex(levels=[Index(lrange(4)), Index(lrange(4)), Index( lrange(4))], labels=[np.array([0, 0, 1, 2, 2, 2, 3, 3]), np.array( [0, 1, 0, 0, 0, 1, 0, 1]), np.array([1, 0, 1, 1, 0, 0, 1, 0])]) loc, new_index = index.get_loc_level((0, 1)) expected = slice(1, 2) exp_index = index[expected].droplevel(0).droplevel(0) assert loc == expected assert new_index.equals(exp_index) loc, new_index = index.get_loc_level((0, 1, 0)) expected = 1 assert loc == expected assert new_index is None pytest.raises(KeyError, index.get_loc_level, (2, 2)) index = MultiIndex(levels=[[2000], lrange(4)], labels=[np.array( [0, 0, 0, 0]), np.array([0, 1, 2, 3])]) result, new_index = index.get_loc_level((2000, slice(None, None))) expected = slice(None, None) assert result == expected assert new_index.equals(index.droplevel(0)) @pytest.mark.parametrize('level', [0, 1]) @pytest.mark.parametrize('null_val', [np.nan, pd.NaT, None]) def test_get_loc_nan(self, level, null_val): # GH 18485 : NaN in MultiIndex levels = [['a', 'b'], ['c', 'd']] key = ['b', 'd'] levels[level] = np.array([0, null_val], dtype=type(null_val)) key[level] = null_val idx = MultiIndex.from_product(levels) assert idx.get_loc(tuple(key)) == 3 def test_get_loc_missing_nan(self): # GH 8569 idx = MultiIndex.from_arrays([[1.0, 2.0], [3.0, 4.0]]) assert isinstance(idx.get_loc(1), slice) pytest.raises(KeyError, idx.get_loc, 3) pytest.raises(KeyError, idx.get_loc, np.nan) pytest.raises(KeyError, idx.get_loc, [np.nan]) @pytest.mark.parametrize('dtype1', [int, float, bool, str]) @pytest.mark.parametrize('dtype2', [int, float, bool, str]) def test_get_loc_multiple_dtypes(self, dtype1, dtype2): # GH 18520 levels = [np.array([0, 1]).astype(dtype1), np.array([0, 1]).astype(dtype2)] idx = pd.MultiIndex.from_product(levels) assert idx.get_loc(idx[2]) == 2 @pytest.mark.parametrize('level', [0, 1]) @pytest.mark.parametrize('dtypes', [[int, float], [float, int]]) def test_get_loc_implicit_cast(self, level, dtypes): # GH 18818, GH 15994 : as flat index, cast int to float and vice-versa levels = [['a', 'b'], ['c', 'd']] key = ['b', 'd'] lev_dtype, key_dtype = dtypes levels[level] = np.array([0, 1], dtype=lev_dtype) key[level] = key_dtype(1) idx = MultiIndex.from_product(levels) assert idx.get_loc(tuple(key)) == 3 def test_get_loc_cast_bool(self): # GH 19086 : int is casted to bool, but not vice-versa levels = [[False, True], np.arange(2, dtype='int64')] idx = MultiIndex.from_product(levels) assert idx.get_loc((0, 1)) == 1 assert idx.get_loc((1, 0)) == 2 pytest.raises(KeyError, idx.get_loc, (False, True)) pytest.raises(KeyError, idx.get_loc, (True, False)) def test_slice_locs(self): df = tm.makeTimeDataFrame() stacked = df.stack() idx = stacked.index slob = slice(*idx.slice_locs(df.index[5], df.index[15])) sliced = stacked[slob] expected = df[5:16].stack() tm.assert_almost_equal(sliced.values, expected.values) slob = slice(*idx.slice_locs(df.index[5] + timedelta(seconds=30), df.index[15] - timedelta(seconds=30))) sliced = stacked[slob] expected = df[6:15].stack() tm.assert_almost_equal(sliced.values, expected.values) def test_slice_locs_with_type_mismatch(self): df = tm.makeTimeDataFrame() stacked = df.stack() idx = stacked.index tm.assert_raises_regex(TypeError, '^Level type mismatch', idx.slice_locs, (1, 3)) tm.assert_raises_regex(TypeError, '^Level type mismatch', idx.slice_locs, df.index[5] + timedelta( seconds=30), (5, 2)) df = tm.makeCustomDataframe(5, 5) stacked = df.stack() idx = stacked.index with tm.assert_raises_regex(TypeError, '^Level type mismatch'): idx.slice_locs(timedelta(seconds=30)) # TODO: Try creating a UnicodeDecodeError in exception message with tm.assert_raises_regex(TypeError, '^Level type mismatch'): idx.slice_locs(df.index[1], (16, "a")) def test_slice_locs_not_sorted(self): index = MultiIndex(levels=[Index(lrange(4)), Index(lrange(4)), Index( lrange(4))], labels=[np.array([0, 0, 1, 2, 2, 2, 3, 3]), np.array( [0, 1, 0, 0, 0, 1, 0, 1]), np.array([1, 0, 1, 1, 0, 0, 1, 0])]) tm.assert_raises_regex(KeyError, "[Kk]ey length.*greater than " "MultiIndex lexsort depth", index.slice_locs, (1, 0, 1), (2, 1, 0)) # works sorted_index, _ = index.sortlevel(0) # should there be a test case here??? sorted_index.slice_locs((1, 0, 1), (2, 1, 0)) def test_slice_locs_partial(self): sorted_idx, _ = self.index.sortlevel(0) result = sorted_idx.slice_locs(('foo', 'two'), ('qux', 'one')) assert result == (1, 5) result = sorted_idx.slice_locs(None, ('qux', 'one')) assert result == (0, 5) result = sorted_idx.slice_locs(('foo', 'two'), None) assert result == (1, len(sorted_idx)) result = sorted_idx.slice_locs('bar', 'baz') assert result == (2, 4) def test_slice_locs_not_contained(self): # some searchsorted action index = MultiIndex(levels=[[0, 2, 4, 6], [0, 2, 4]], labels=[[0, 0, 0, 1, 1, 2, 3, 3, 3], [0, 1, 2, 1, 2, 2, 0, 1, 2]], sortorder=0) result = index.slice_locs((1, 0), (5, 2)) assert result == (3, 6) result = index.slice_locs(1, 5) assert result == (3, 6) result = index.slice_locs((2, 2), (5, 2)) assert result == (3, 6) result = index.slice_locs(2, 5) assert result == (3, 6) result = index.slice_locs((1, 0), (6, 3)) assert result == (3, 8) result = index.slice_locs(-1, 10) assert result == (0, len(index)) def test_consistency(self): # need to construct an overflow major_axis = lrange(70000) minor_axis = lrange(10) major_labels = np.arange(70000) minor_labels = np.repeat(lrange(10), 7000) # the fact that is works means it's consistent index = MultiIndex(levels=[major_axis, minor_axis], labels=[major_labels, minor_labels]) # inconsistent major_labels = np.array([0, 0, 1, 1, 1, 2, 2, 3, 3]) minor_labels = np.array([0, 1, 0, 1, 1, 0, 1, 0, 1]) index = MultiIndex(levels=[major_axis, minor_axis], labels=[major_labels, minor_labels]) assert not index.is_unique def test_truncate(self): major_axis = Index(lrange(4)) minor_axis = Index(lrange(2)) major_labels = np.array([0, 0, 1, 2, 3, 3]) minor_labels = np.array([0, 1, 0, 1, 0, 1]) index = MultiIndex(levels=[major_axis, minor_axis], labels=[major_labels, minor_labels]) result = index.truncate(before=1) assert 'foo' not in result.levels[0] assert 1 in result.levels[0] result = index.truncate(after=1) assert 2 not in result.levels[0] assert 1 in result.levels[0] result = index.truncate(before=1, after=2) assert len(result.levels[0]) == 2 # after < before pytest.raises(ValueError, index.truncate, 3, 1) def test_get_indexer(self): major_axis = Index(lrange(4)) minor_axis = Index(lrange(2)) major_labels = np.array([0, 0, 1, 2, 2, 3, 3], dtype=np.intp) minor_labels = np.array([0, 1, 0, 0, 1, 0, 1], dtype=np.intp) index = MultiIndex(levels=[major_axis, minor_axis], labels=[major_labels, minor_labels]) idx1 = index[:5] idx2 = index[[1, 3, 5]] r1 = idx1.get_indexer(idx2) assert_almost_equal(r1, np.array([1, 3, -1], dtype=np.intp)) r1 = idx2.get_indexer(idx1, method='pad') e1 = np.array([-1, 0, 0, 1, 1], dtype=np.intp) assert_almost_equal(r1, e1) r2 = idx2.get_indexer(idx1[::-1], method='pad') assert_almost_equal(r2, e1[::-1]) rffill1 = idx2.get_indexer(idx1, method='ffill') assert_almost_equal(r1, rffill1) r1 = idx2.get_indexer(idx1, method='backfill') e1 = np.array([0, 0, 1, 1, 2], dtype=np.intp) assert_almost_equal(r1, e1) r2 = idx2.get_indexer(idx1[::-1], method='backfill') assert_almost_equal(r2, e1[::-1]) rbfill1 = idx2.get_indexer(idx1, method='bfill') assert_almost_equal(r1, rbfill1) # pass non-MultiIndex r1 = idx1.get_indexer(idx2.values) rexp1 = idx1.get_indexer(idx2) assert_almost_equal(r1, rexp1) r1 = idx1.get_indexer([1, 2, 3]) assert (r1 == [-1, -1, -1]).all() # create index with duplicates idx1 = Index(lrange(10) + lrange(10)) idx2 = Index(lrange(20)) msg = "Reindexing only valid with uniquely valued Index objects" with tm.assert_raises_regex(InvalidIndexError, msg): idx1.get_indexer(idx2) def test_get_indexer_nearest(self): midx = MultiIndex.from_tuples([('a', 1), ('b', 2)]) with pytest.raises(NotImplementedError): midx.get_indexer(['a'], method='nearest') with pytest.raises(NotImplementedError): midx.get_indexer(['a'], method='pad', tolerance=2) def test_hash_collisions(self): # non-smoke test that we don't get hash collisions index = MultiIndex.from_product([np.arange(1000), np.arange(1000)], names=['one', 'two']) result = index.get_indexer(index.values) tm.assert_numpy_array_equal(result, np.arange( len(index), dtype='intp')) for i in [0, 1, len(index) - 2, len(index) - 1]: result = index.get_loc(index[i]) assert result == i def test_format(self): self.index.format() self.index[:0].format() def test_format_integer_names(self): index = MultiIndex(levels=[[0, 1], [0, 1]], labels=[[0, 0, 1, 1], [0, 1, 0, 1]], names=[0, 1]) index.format(names=True) def test_format_sparse_display(self): index = MultiIndex(levels=[[0, 1], [0, 1], [0, 1], [0]], labels=[[0, 0, 0, 1, 1, 1], [0, 0, 1, 0, 0, 1], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0]]) result = index.format() assert result[3] == '1 0 0 0' def test_format_sparse_config(self): warn_filters = warnings.filters warnings.filterwarnings('ignore', category=FutureWarning, module=".*format") # GH1538 pd.set_option('display.multi_sparse', False) result = self.index.format() assert result[1] == 'foo two' tm.reset_display_options() warnings.filters = warn_filters def test_to_frame(self): tuples = [(1, 'one'), (1, 'two'), (2, 'one'), (2, 'two')] index = MultiIndex.from_tuples(tuples) result = index.to_frame(index=False) expected = DataFrame(tuples) tm.assert_frame_equal(result, expected) result = index.to_frame() expected.index = index tm.assert_frame_equal(result, expected) tuples = [(1, 'one'), (1, 'two'), (2, 'one'), (2, 'two')] index = MultiIndex.from_tuples(tuples, names=['first', 'second']) result = index.to_frame(index=False) expected = DataFrame(tuples) expected.columns = ['first', 'second'] tm.assert_frame_equal(result, expected) result = index.to_frame() expected.index = index tm.assert_frame_equal(result, expected) index = MultiIndex.from_product([range(5), pd.date_range('20130101', periods=3)]) result = index.to_frame(index=False) expected = DataFrame( {0: np.repeat(np.arange(5, dtype='int64'), 3), 1: np.tile(pd.date_range('20130101', periods=3), 5)}) tm.assert_frame_equal(result, expected) index = MultiIndex.from_product([range(5), pd.date_range('20130101', periods=3)]) result = index.to_frame() expected.index = index tm.assert_frame_equal(result, expected) def test_to_hierarchical(self): index = MultiIndex.from_tuples([(1, 'one'), (1, 'two'), (2, 'one'), ( 2, 'two')]) result = index.to_hierarchical(3) expected = MultiIndex(levels=[[1, 2], ['one', 'two']], labels=[[0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1], [0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1]]) tm.assert_index_equal(result, expected) assert result.names == index.names # K > 1 result = index.to_hierarchical(3, 2) expected = MultiIndex(levels=[[1, 2], ['one', 'two']], labels=[[0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1], [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1]]) tm.assert_index_equal(result, expected) assert result.names == index.names # non-sorted index = MultiIndex.from_tuples([(2, 'c'), (1, 'b'), (2, 'a'), (2, 'b')], names=['N1', 'N2']) result = index.to_hierarchical(2) expected = MultiIndex.from_tuples([(2, 'c'), (2, 'c'), (1, 'b'), (1, 'b'), (2, 'a'), (2, 'a'), (2, 'b'), (2, 'b')], names=['N1', 'N2']) tm.assert_index_equal(result, expected) assert result.names == index.names def test_bounds(self): self.index._bounds def test_equals_multi(self): assert self.index.equals(self.index) assert not self.index.equals(self.index.values) assert self.index.equals(Index(self.index.values)) assert self.index.equal_levels(self.index) assert not self.index.equals(self.index[:-1]) assert not self.index.equals(self.index[-1]) # different number of levels index = MultiIndex(levels=[Index(lrange(4)), Index(lrange(4)), Index( lrange(4))], labels=[np.array([0, 0, 1, 2, 2, 2, 3, 3]), np.array( [0, 1, 0, 0, 0, 1, 0, 1]), np.array([1, 0, 1, 1, 0, 0, 1, 0])]) index2 = MultiIndex(levels=index.levels[:-1], labels=index.labels[:-1]) assert not index.equals(index2) assert not index.equal_levels(index2) # levels are different major_axis = Index(lrange(4)) minor_axis = Index(lrange(2)) major_labels = np.array([0, 0, 1, 2, 2, 3]) minor_labels = np.array([0, 1, 0, 0, 1, 0]) index = MultiIndex(levels=[major_axis, minor_axis], labels=[major_labels, minor_labels]) assert not self.index.equals(index) assert not self.index.equal_levels(index) # some of the labels are different major_axis = Index(['foo', 'bar', 'baz', 'qux']) minor_axis = Index(['one', 'two']) major_labels = np.array([0, 0, 2, 2, 3, 3]) minor_labels = np.array([0, 1, 0, 1, 0, 1]) index = MultiIndex(levels=[major_axis, minor_axis], labels=[major_labels, minor_labels]) assert not self.index.equals(index) def test_equals_missing_values(self): # make sure take is not using -1 i = pd.MultiIndex.from_tuples([(0, pd.NaT), (0, pd.Timestamp('20130101'))]) result = i[0:1].equals(i[0]) assert not result result = i[1:2].equals(i[1]) assert not result def test_identical(self): mi = self.index.copy() mi2 = self.index.copy() assert mi.identical(mi2) mi = mi.set_names(['new1', 'new2']) assert mi.equals(mi2) assert not mi.identical(mi2) mi2 = mi2.set_names(['new1', 'new2']) assert mi.identical(mi2) mi3 = Index(mi.tolist(), names=mi.names) mi4 = Index(mi.tolist(), names=mi.names, tupleize_cols=False) assert mi.identical(mi3) assert not mi.identical(mi4) assert mi.equals(mi4) def test_is_(self): mi = MultiIndex.from_tuples(lzip(range(10), range(10))) assert mi.is_(mi) assert mi.is_(mi.view()) assert mi.is_(mi.view().view().view().view()) mi2 = mi.view() # names are metadata, they don't change id mi2.names = ["A", "B"] assert mi2.is_(mi) assert mi.is_(mi2) assert mi.is_(mi.set_names(["C", "D"])) mi2 = mi.view() mi2.set_names(["E", "F"], inplace=True) assert mi.is_(mi2) # levels are inherent properties, they change identity mi3 = mi2.set_levels([lrange(10), lrange(10)]) assert not mi3.is_(mi2) # shouldn't change assert mi2.is_(mi) mi4 = mi3.view() # GH 17464 - Remove duplicate MultiIndex levels mi4.set_levels([lrange(10), lrange(10)], inplace=True) assert not mi4.is_(mi3) mi5 = mi.view() mi5.set_levels(mi5.levels, inplace=True) assert not mi5.is_(mi) def test_union(self): piece1 = self.index[:5][::-1] piece2 = self.index[3:] the_union = piece1 | piece2 tups = sorted(self.index.values) expected = MultiIndex.from_tuples(tups) assert the_union.equals(expected) # corner case, pass self or empty thing: the_union = self.index.union(self.index) assert the_union is self.index the_union = self.index.union(self.index[:0]) assert the_union is self.index # won't work in python 3 # tuples = self.index.values # result = self.index[:4] | tuples[4:] # assert result.equals(tuples) # not valid for python 3 # def test_union_with_regular_index(self): # other = Index(['A', 'B', 'C']) # result = other.union(self.index) # assert ('foo', 'one') in result # assert 'B' in result # result2 = self.index.union(other) # assert result.equals(result2) def test_intersection(self): piece1 = self.index[:5][::-1] piece2 = self.index[3:] the_int = piece1 & piece2 tups = sorted(self.index[3:5].values) expected = MultiIndex.from_tuples(tups) assert the_int.equals(expected) # corner case, pass self the_int = self.index.intersection(self.index) assert the_int is self.index # empty intersection: disjoint empty = self.index[:2] & self.index[2:] expected = self.index[:0] assert empty.equals(expected) # can't do in python 3 # tuples = self.index.values # result = self.index & tuples # assert result.equals(tuples) def test_sub(self): first = self.index # - now raises (previously was set op difference) with pytest.raises(TypeError): first - self.index[-3:] with pytest.raises(TypeError): self.index[-3:] - first with pytest.raises(TypeError): self.index[-3:] - first.tolist() with pytest.raises(TypeError): first.tolist() - self.index[-3:] def test_difference(self): first = self.index result = first.difference(self.index[-3:]) expected = MultiIndex.from_tuples(sorted(self.index[:-3].values), sortorder=0, names=self.index.names) assert isinstance(result, MultiIndex) assert result.equals(expected) assert result.names == self.index.names # empty difference: reflexive result = self.index.difference(self.index) expected = self.index[:0] assert result.equals(expected) assert result.names == self.index.names # empty difference: superset result = self.index[-3:].difference(self.index) expected = self.index[:0] assert result.equals(expected) assert result.names == self.index.names # empty difference: degenerate result = self.index[:0].difference(self.index) expected = self.index[:0] assert result.equals(expected) assert result.names == self.index.names # names not the same chunklet = self.index[-3:] chunklet.names = ['foo', 'baz'] result = first.difference(chunklet) assert result.names == (None, None) # empty, but non-equal result = self.index.difference(self.index.sortlevel(1)[0]) assert len(result) == 0 # raise Exception called with non-MultiIndex result = first.difference(first.values) assert result.equals(first[:0]) # name from empty array result = first.difference([]) assert first.equals(result) assert first.names == result.names # name from non-empty array result = first.difference([('foo', 'one')]) expected = pd.MultiIndex.from_tuples([('bar', 'one'), ('baz', 'two'), ( 'foo', 'two'), ('qux', 'one'), ('qux', 'two')]) expected.names = first.names assert first.names == result.names tm.assert_raises_regex(TypeError, "other must be a MultiIndex " "or a list of tuples", first.difference, [1, 2, 3, 4, 5]) def test_from_tuples(self): tm.assert_raises_regex(TypeError, 'Cannot infer number of levels ' 'from empty list', MultiIndex.from_tuples, []) expected = MultiIndex(levels=[[1, 3], [2, 4]], labels=[[0, 1], [0, 1]], names=['a', 'b']) # input tuples result = MultiIndex.from_tuples(((1, 2), (3, 4)), names=['a', 'b']) tm.assert_index_equal(result, expected) def test_from_tuples_iterator(self): # GH 18434 # input iterator for tuples expected = MultiIndex(levels=[[1, 3], [2, 4]], labels=[[0, 1], [0, 1]], names=['a', 'b']) result = MultiIndex.from_tuples(zip([1, 3], [2, 4]), names=['a', 'b']) tm.assert_index_equal(result, expected) # input non-iterables with tm.assert_raises_regex( TypeError, 'Input must be a list / sequence of tuple-likes.'): MultiIndex.from_tuples(0) def test_from_tuples_empty(self): # GH 16777 result = MultiIndex.from_tuples([], names=['a', 'b']) expected = MultiIndex.from_arrays(arrays=[[], []], names=['a', 'b']) tm.assert_index_equal(result, expected) def test_argsort(self): result = self.index.argsort() expected = self.index.values.argsort() tm.assert_numpy_array_equal(result, expected) def test_sortlevel(self): import random tuples = list(self.index) random.shuffle(tuples) index = MultiIndex.from_tuples(tuples) sorted_idx, _ = index.sortlevel(0) expected = MultiIndex.from_tuples(sorted(tuples)) assert sorted_idx.equals(expected) sorted_idx, _ = index.sortlevel(0, ascending=False) assert sorted_idx.equals(expected[::-1]) sorted_idx, _ = index.sortlevel(1) by1 = sorted(tuples, key=lambda x: (x[1], x[0])) expected = MultiIndex.from_tuples(by1) assert sorted_idx.equals(expected) sorted_idx, _ = index.sortlevel(1, ascending=False) assert sorted_idx.equals(expected[::-1]) def test_sortlevel_not_sort_remaining(self): mi = MultiIndex.from_tuples([[1, 1, 3], [1, 1, 1]], names=list('ABC')) sorted_idx, _ = mi.sortlevel('A', sort_remaining=False) assert sorted_idx.equals(mi) def test_sortlevel_deterministic(self): tuples = [('bar', 'one'), ('foo', 'two'), ('qux', 'two'), ('foo', 'one'), ('baz', 'two'), ('qux', 'one')] index = MultiIndex.from_tuples(tuples) sorted_idx, _ = index.sortlevel(0) expected = MultiIndex.from_tuples(sorted(tuples)) assert sorted_idx.equals(expected) sorted_idx, _ = index.sortlevel(0, ascending=False) assert sorted_idx.equals(expected[::-1]) sorted_idx, _ = index.sortlevel(1) by1 = sorted(tuples, key=lambda x: (x[1], x[0])) expected = MultiIndex.from_tuples(by1) assert sorted_idx.equals(expected) sorted_idx, _ = index.sortlevel(1, ascending=False) assert sorted_idx.equals(expected[::-1]) def test_dims(self): pass def test_drop(self): dropped = self.index.drop([('foo', 'two'), ('qux', 'one')]) index = MultiIndex.from_tuples([('foo', 'two'), ('qux', 'one')]) dropped2 = self.index.drop(index) expected = self.index[[0, 2, 3, 5]] tm.assert_index_equal(dropped, expected) tm.assert_index_equal(dropped2, expected) dropped = self.index.drop(['bar']) expected = self.index[[0, 1, 3, 4, 5]] tm.assert_index_equal(dropped, expected) dropped = self.index.drop('foo') expected = self.index[[2, 3, 4, 5]] tm.assert_index_equal(dropped, expected) index = MultiIndex.from_tuples([('bar', 'two')]) pytest.raises(KeyError, self.index.drop, [('bar', 'two')]) pytest.raises(KeyError, self.index.drop, index) pytest.raises(KeyError, self.index.drop, ['foo', 'two']) # partially correct argument mixed_index = MultiIndex.from_tuples([('qux', 'one'), ('bar', 'two')]) pytest.raises(KeyError, self.index.drop, mixed_index) # error='ignore' dropped = self.index.drop(index, errors='ignore') expected = self.index[[0, 1, 2, 3, 4, 5]] tm.assert_index_equal(dropped, expected) dropped = self.index.drop(mixed_index, errors='ignore') expected = self.index[[0, 1, 2, 3, 5]] tm.assert_index_equal(dropped, expected) dropped = self.index.drop(['foo', 'two'], errors='ignore') expected = self.index[[2, 3, 4, 5]] tm.assert_index_equal(dropped, expected) # mixed partial / full drop dropped = self.index.drop(['foo', ('qux', 'one')]) expected = self.index[[2, 3, 5]] tm.assert_index_equal(dropped, expected) # mixed partial / full drop / error='ignore' mixed_index = ['foo', ('qux', 'one'), 'two'] pytest.raises(KeyError, self.index.drop, mixed_index) dropped = self.index.drop(mixed_index, errors='ignore') expected = self.index[[2, 3, 5]] tm.assert_index_equal(dropped, expected) def test_droplevel_with_names(self): index = self.index[self.index.get_loc('foo')] dropped = index.droplevel(0) assert dropped.name == 'second' index = MultiIndex( levels=[Index(lrange(4)), Index(lrange(4)), Index(lrange(4))], labels=[np.array([0, 0, 1, 2, 2, 2, 3, 3]), np.array( [0, 1, 0, 0, 0, 1, 0, 1]), np.array([1, 0, 1, 1, 0, 0, 1, 0])], names=['one', 'two', 'three']) dropped = index.droplevel(0) assert dropped.names == ('two', 'three') dropped = index.droplevel('two') expected = index.droplevel(1) assert dropped.equals(expected) def test_droplevel_list(self): index = MultiIndex( levels=[Index(lrange(4)), Index(lrange(4)), Index(lrange(4))], labels=[np.array([0, 0, 1, 2, 2, 2, 3, 3]), np.array( [0, 1, 0, 0, 0, 1, 0, 1]), np.array([1, 0, 1, 1, 0, 0, 1, 0])], names=['one', 'two', 'three']) dropped = index[:2].droplevel(['three', 'one']) expected = index[:2].droplevel(2).droplevel(0) assert dropped.equals(expected) dropped = index[:2].droplevel([]) expected = index[:2] assert dropped.equals(expected) with pytest.raises(ValueError): index[:2].droplevel(['one', 'two', 'three']) with pytest.raises(KeyError): index[:2].droplevel(['one', 'four']) def test_drop_not_lexsorted(self): # GH 12078 # define the lexsorted version of the multi-index tuples = [('a', ''), ('b1', 'c1'), ('b2', 'c2')] lexsorted_mi = MultiIndex.from_tuples(tuples, names=['b', 'c']) assert lexsorted_mi.is_lexsorted() # and the not-lexsorted version df = pd.DataFrame(columns=['a', 'b', 'c', 'd'], data=[[1, 'b1', 'c1', 3], [1, 'b2', 'c2', 4]]) df = df.pivot_table(index='a', columns=['b', 'c'], values='d') df = df.reset_index() not_lexsorted_mi = df.columns assert not not_lexsorted_mi.is_lexsorted() # compare the results tm.assert_index_equal(lexsorted_mi, not_lexsorted_mi) with tm.assert_produces_warning(PerformanceWarning): tm.assert_index_equal(lexsorted_mi.drop('a'), not_lexsorted_mi.drop('a')) def test_insert(self): # key contained in all levels new_index = self.index.insert(0, ('bar', 'two')) assert new_index.equal_levels(self.index) assert new_index[0] == ('bar', 'two') # key not contained in all levels new_index = self.index.insert(0, ('abc', 'three')) exp0 = Index(list(self.index.levels[0]) + ['abc'], name='first') tm.assert_index_equal(new_index.levels[0], exp0) exp1 = Index(list(self.index.levels[1]) + ['three'], name='second') tm.assert_index_equal(new_index.levels[1], exp1) assert new_index[0] == ('abc', 'three') # key wrong length msg = "Item must have length equal to number of levels" with tm.assert_raises_regex(ValueError, msg): self.index.insert(0, ('foo2',)) left = pd.DataFrame([['a', 'b', 0], ['b', 'd', 1]], columns=['1st', '2nd', '3rd']) left.set_index(['1st', '2nd'], inplace=True) ts = left['3rd'].copy(deep=True) left.loc[('b', 'x'), '3rd'] = 2 left.loc[('b', 'a'), '3rd'] = -1 left.loc[('b', 'b'), '3rd'] = 3 left.loc[('a', 'x'), '3rd'] = 4 left.loc[('a', 'w'), '3rd'] = 5 left.loc[('a', 'a'), '3rd'] = 6 ts.loc[('b', 'x')] = 2 ts.loc['b', 'a'] = -1 ts.loc[('b', 'b')] = 3 ts.loc['a', 'x'] = 4 ts.loc[('a', 'w')] = 5 ts.loc['a', 'a'] = 6 right = pd.DataFrame([['a', 'b', 0], ['b', 'd', 1], ['b', 'x', 2], ['b', 'a', -1], ['b', 'b', 3], ['a', 'x', 4], ['a', 'w', 5], ['a', 'a', 6]], columns=['1st', '2nd', '3rd']) right.set_index(['1st', '2nd'], inplace=True) # FIXME data types changes to float because # of intermediate nan insertion; tm.assert_frame_equal(left, right, check_dtype=False) tm.assert_series_equal(ts, right['3rd']) # GH9250 idx = [('test1', i) for i in range(5)] + \ [('test2', i) for i in range(6)] + \ [('test', 17), ('test', 18)] left = pd.Series(np.linspace(0, 10, 11), pd.MultiIndex.from_tuples(idx[:-2])) left.loc[('test', 17)] = 11 left.loc[('test', 18)] = 12 right = pd.Series(np.linspace(0, 12, 13), pd.MultiIndex.from_tuples(idx)) tm.assert_series_equal(left, right) def test_take_preserve_name(self): taken = self.index.take([3, 0, 1]) assert taken.names == self.index.names def test_take_fill_value(self): # GH 12631 vals = [['A', 'B'], [pd.Timestamp('2011-01-01'), pd.Timestamp('2011-01-02')]] idx = pd.MultiIndex.from_product(vals, names=['str', 'dt']) result = idx.take(np.array([1, 0, -1])) exp_vals = [('A', pd.Timestamp('2011-01-02')), ('A', pd.Timestamp('2011-01-01')), ('B', pd.Timestamp('2011-01-02'))] expected = pd.MultiIndex.from_tuples(exp_vals, names=['str', 'dt']) tm.assert_index_equal(result, expected) # fill_value result = idx.take(np.array([1, 0, -1]), fill_value=True) exp_vals = [('A', pd.Timestamp('2011-01-02')), ('A', pd.Timestamp('2011-01-01')), (np.nan, pd.NaT)] expected = pd.MultiIndex.from_tuples(exp_vals, names=['str', 'dt']) tm.assert_index_equal(result, expected) # allow_fill=False result = idx.take(np.array([1, 0, -1]), allow_fill=False, fill_value=True) exp_vals = [('A', pd.Timestamp('2011-01-02')), ('A', pd.Timestamp('2011-01-01')), ('B', pd.Timestamp('2011-01-02'))] expected = pd.MultiIndex.from_tuples(exp_vals, names=['str', 'dt']) tm.assert_index_equal(result, expected) msg = ('When allow_fill=True and fill_value is not None, ' 'all indices must be >= -1') with tm.assert_raises_regex(ValueError, msg): idx.take(np.array([1, 0, -2]), fill_value=True) with tm.assert_raises_regex(ValueError, msg): idx.take(np.array([1, 0, -5]), fill_value=True) with pytest.raises(IndexError): idx.take(np.array([1, -5])) def take_invalid_kwargs(self): vals = [['A', 'B'], [pd.Timestamp('2011-01-01'), pd.Timestamp('2011-01-02')]] idx = pd.MultiIndex.from_product(vals, names=['str', 'dt']) indices = [1, 2] msg = r"take\(\) got an unexpected keyword argument 'foo'" tm.assert_raises_regex(TypeError, msg, idx.take, indices, foo=2) msg = "the 'out' parameter is not supported" tm.assert_raises_regex(ValueError, msg, idx.take, indices, out=indices) msg = "the 'mode' parameter is not supported" tm.assert_raises_regex(ValueError, msg, idx.take, indices, mode='clip') @pytest.mark.parametrize('other', [Index(['three', 'one', 'two']), Index(['one']), Index(['one', 'three'])]) def test_join_level(self, other, join_type): join_index, lidx, ridx = other.join(self.index, how=join_type, level='second', return_indexers=True) exp_level = other.join(self.index.levels[1], how=join_type) assert join_index.levels[0].equals(self.index.levels[0]) assert join_index.levels[1].equals(exp_level) # pare down levels mask = np.array( [x[1] in exp_level for x in self.index], dtype=bool) exp_values = self.index.values[mask] tm.assert_numpy_array_equal(join_index.values, exp_values) if join_type in ('outer', 'inner'): join_index2, ridx2, lidx2 = \ self.index.join(other, how=join_type, level='second', return_indexers=True) assert join_index.equals(join_index2) tm.assert_numpy_array_equal(lidx, lidx2) tm.assert_numpy_array_equal(ridx, ridx2) tm.assert_numpy_array_equal(join_index2.values, exp_values) def test_join_level_corner_case(self): # some corner cases idx = Index(['three', 'one', 'two']) result = idx.join(self.index, level='second') assert isinstance(result, MultiIndex) tm.assert_raises_regex(TypeError, "Join.*MultiIndex.*ambiguous", self.index.join, self.index, level=1) def test_join_self(self, join_type): res = self.index joined = res.join(res, how=join_type) assert res is joined def test_join_multi(self): # GH 10665 midx = pd.MultiIndex.from_product( [np.arange(4), np.arange(4)], names=['a', 'b']) idx = pd.Index([1, 2, 5], name='b') # inner jidx, lidx, ridx = midx.join(idx, how='inner', return_indexers=True) exp_idx = pd.MultiIndex.from_product( [np.arange(4), [1, 2]], names=['a', 'b']) exp_lidx = np.array([1, 2, 5, 6, 9, 10, 13, 14], dtype=np.intp) exp_ridx = np.array([0, 1, 0, 1, 0, 1, 0, 1], dtype=np.intp) tm.assert_index_equal(jidx, exp_idx) tm.assert_numpy_array_equal(lidx, exp_lidx) tm.assert_numpy_array_equal(ridx, exp_ridx) # flip jidx, ridx, lidx = idx.join(midx, how='inner', return_indexers=True) tm.assert_index_equal(jidx, exp_idx) tm.assert_numpy_array_equal(lidx, exp_lidx) tm.assert_numpy_array_equal(ridx, exp_ridx) # keep MultiIndex jidx, lidx, ridx = midx.join(idx, how='left', return_indexers=True) exp_ridx = np.array([-1, 0, 1, -1, -1, 0, 1, -1, -1, 0, 1, -1, -1, 0, 1, -1], dtype=np.intp) tm.assert_index_equal(jidx, midx) assert lidx is None tm.assert_numpy_array_equal(ridx, exp_ridx) # flip jidx, ridx, lidx = idx.join(midx, how='right', return_indexers=True) tm.assert_index_equal(jidx, midx) assert lidx is None tm.assert_numpy_array_equal(ridx, exp_ridx) def test_reindex(self): result, indexer = self.index.reindex(list(self.index[:4])) assert isinstance(result, MultiIndex) self.check_level_names(result, self.index[:4].names) result, indexer = self.index.reindex(list(self.index)) assert isinstance(result, MultiIndex) assert indexer is None self.check_level_names(result, self.index.names) def test_reindex_level(self): idx = Index(['one']) target, indexer = self.index.reindex(idx, level='second') target2, indexer2 = idx.reindex(self.index, level='second') exp_index = self.index.join(idx, level='second', how='right') exp_index2 = self.index.join(idx, level='second', how='left') assert target.equals(exp_index) exp_indexer = np.array([0, 2, 4]) tm.assert_numpy_array_equal(indexer, exp_indexer, check_dtype=False) assert target2.equals(exp_index2) exp_indexer2 = np.array([0, -1, 0, -1, 0, -1]) tm.assert_numpy_array_equal(indexer2, exp_indexer2, check_dtype=False) tm.assert_raises_regex(TypeError, "Fill method not supported", self.index.reindex, self.index, method='pad', level='second') tm.assert_raises_regex(TypeError, "Fill method not supported", idx.reindex, idx, method='bfill', level='first') def test_duplicates(self): assert not self.index.has_duplicates assert self.index.append(self.index).has_duplicates index = MultiIndex(levels=[[0, 1], [0, 1, 2]], labels=[ [0, 0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 0, 1, 2]]) assert index.has_duplicates # GH 9075 t = [(u('x'), u('out'), u('z'), 5, u('y'), u('in'), u('z'), 169), (u('x'), u('out'), u('z'), 7, u('y'), u('in'), u('z'), 119), (u('x'), u('out'), u('z'), 9, u('y'), u('in'), u('z'), 135), (u('x'), u('out'), u('z'), 13, u('y'), u('in'), u('z'), 145), (u('x'), u('out'), u('z'), 14, u('y'), u('in'), u('z'), 158), (u('x'), u('out'), u('z'), 16, u('y'), u('in'), u('z'), 122), (u('x'),
u('out')
pandas.compat.u
# coding=utf-8 # pylint: disable-msg=E1101,W0612 from datetime import datetime, timedelta from numpy import nan import numpy as np import pandas as pd from pandas.types.common import is_integer, is_scalar from pandas import Index, Series, DataFrame, isnull, date_range from pandas.core.index import MultiIndex from pandas.core.indexing import IndexingError from pandas.tseries.index import Timestamp from pandas.tseries.offsets import BDay from pandas.tseries.tdi import Timedelta from pandas.compat import lrange, range from pandas import compat from pandas.util.testing import assert_series_equal, assert_almost_equal import pandas.util.testing as tm from pandas.tests.series.common import TestData JOIN_TYPES = ['inner', 'outer', 'left', 'right'] class TestSeriesIndexing(TestData, tm.TestCase): _multiprocess_can_split_ = True def test_get(self): # GH 6383 s = Series(np.array([43, 48, 60, 48, 50, 51, 50, 45, 57, 48, 56, 45, 51, 39, 55, 43, 54, 52, 51, 54])) result = s.get(25, 0) expected = 0 self.assertEqual(result, expected) s = Series(np.array([43, 48, 60, 48, 50, 51, 50, 45, 57, 48, 56, 45, 51, 39, 55, 43, 54, 52, 51, 54]), index=pd.Float64Index( [25.0, 36.0, 49.0, 64.0, 81.0, 100.0, 121.0, 144.0, 169.0, 196.0, 1225.0, 1296.0, 1369.0, 1444.0, 1521.0, 1600.0, 1681.0, 1764.0, 1849.0, 1936.0], dtype='object')) result = s.get(25, 0) expected = 43 self.assertEqual(result, expected) # GH 7407 # with a boolean accessor df = pd.DataFrame({'i': [0] * 3, 'b': [False] * 3}) vc = df.i.value_counts() result = vc.get(99, default='Missing') self.assertEqual(result, 'Missing') vc = df.b.value_counts() result = vc.get(False, default='Missing') self.assertEqual(result, 3) result = vc.get(True, default='Missing') self.assertEqual(result, 'Missing') def test_delitem(self): # GH 5542 # should delete the item inplace s = Series(lrange(5)) del s[0] expected = Series(lrange(1, 5), index=lrange(1, 5)) assert_series_equal(s, expected) del s[1] expected = Series(lrange(2, 5), index=lrange(2, 5)) assert_series_equal(s, expected) # empty s = Series() def f(): del s[0] self.assertRaises(KeyError, f) # only 1 left, del, add, del s = Series(1) del s[0] assert_series_equal(s, Series(dtype='int64', index=Index( [], dtype='int64'))) s[0] = 1 assert_series_equal(s, Series(1)) del s[0] assert_series_equal(s, Series(dtype='int64', index=Index( [], dtype='int64'))) # Index(dtype=object) s = Series(1, index=['a']) del s['a'] assert_series_equal(s, Series(dtype='int64', index=Index( [], dtype='object'))) s['a'] = 1 assert_series_equal(s, Series(1, index=['a'])) del s['a'] assert_series_equal(s, Series(dtype='int64', index=Index( [], dtype='object'))) def test_getitem_setitem_ellipsis(self): s = Series(np.random.randn(10)) np.fix(s) result = s[...] assert_series_equal(result, s) s[...] = 5 self.assertTrue((result == 5).all()) def test_getitem_negative_out_of_bounds(self): s = Series(tm.rands_array(5, 10), index=tm.rands_array(10, 10)) self.assertRaises(IndexError, s.__getitem__, -11) self.assertRaises(IndexError, s.__setitem__, -11, 'foo') def test_pop(self): # GH 6600 df = DataFrame({'A': 0, 'B': np.arange(5, dtype='int64'), 'C': 0, }) k = df.iloc[4] result = k.pop('B') self.assertEqual(result, 4) expected =
Series([0, 0], index=['A', 'C'], name=4)
pandas.Series
""" Function and classes used to identify barcodes """ from typing import * import pandas as pd import numpy as np import pickle import logging from sklearn.neighbors import NearestNeighbors # from pynndescent import NNDescent from pathlib import Path from itertools import groupby from pysmFISH.logger_utils import selected_logger from pysmFISH.data_models import Output_models from pysmFISH.errors import Registration_errors class simplify_barcodes_reference(): """Utility Class use to convert excels files with codebook info in smaller size pandas dataframe/parquet files to pass to dask workers during the processing. This utility function must be run before running the experiment analysis. The pipeline require the output of this function. """ def __init__(self, barcode_fpath: str): """Class initialization Args: barcode_fpath (str): Path to the xlsx file with the codebook """ self.barcode_fpath = Path(barcode_fpath) self.barcode_fname = self.barcode_fpath.stem @staticmethod def format_codeword(codeword: str): """[summary] Args: codeword (str): codeword representing a gene Returns: byte: codeword converted in byte representation """ str_num = codeword.split('[')[-1].split(']')[0] converted_codeword = np.array([int(el) for el in list(str_num)]).astype(np.int8) converted_codeword = converted_codeword.tobytes() return converted_codeword def convert_codebook(self): used_gene_codebook_df = pd.read_excel(self.barcode_fpath) # used_gene_codebook_df = pd.read_parquet(self.barcode_fpath) self.codebook_df = used_gene_codebook_df.loc[:,['Barcode','Gene']] self.codebook_df.rename(columns = {'Barcode':'Code'}, inplace = True) self.codebook_df.Code = self.codebook_df.Code.apply(lambda x: self.format_codeword(x)) self.codebook_df.to_parquet(self.barcode_fpath.parent / (self.barcode_fname + '.parquet')) def dots_hoods(coords: np.ndarray,pxl: int)->np.ndarray: """Function that calculate the coords of the peaks searching neighborhood for identifying the barcodes. Args: coords (np.ndarray): coords of the identified peaks pxl (int): size of the neighborhood in pixel Returns: np.ndarray: coords that define the neighborhood (r_tl,r_br,c_tl,c_tr) """ r_tl = coords[:,0]-pxl r_br = coords[:,0]+pxl c_tl = coords[:,1]-pxl c_tr = coords[:,1]+pxl r_tl = r_tl[:,np.newaxis] r_br = r_br[:,np.newaxis] c_tl = c_tl[:,np.newaxis] c_tr = c_tr[:,np.newaxis] chunks_coords = np.hstack((r_tl,r_br,c_tl,c_tr)) chunks_coords = chunks_coords.astype(int) return chunks_coords def extract_dots_images(barcoded_df: pd.DataFrame,registered_img_stack: np.ndarray, experiment_fpath: str, metadata: dict): """Function used to extract the images corresponding to a barcode after running the decoding identification. It can save the images but to avoid increasing too much the space occupied by a processed experiment an array with the maximum intensity value of the pxl in each round is calculated and saved Args: barcoded_df (pd.DataFrame): Dataframe with decoded barcodes for a specific field of view. registered_img_stack (np.ndarray): Preprocessed image of a single field of view the imaging round correspond to the z-stack position experiment_fpath (str): Path to the folder of the experiment to process metadata (dict): Overall experiment info """ round_intensity_labels = ['bit_' + str(el) +'_intensity' for el in np.arange(1,int(metadata['total_rounds'])+1)] if isinstance(registered_img_stack, np.ndarray) and (barcoded_df.shape[0] >1): experiment_fpath = Path(experiment_fpath) barcodes_names = barcoded_df['barcode_reference_dot_id'].values coords = barcoded_df.loc[:, ['r_px_registered', 'c_px_registered']].to_numpy() barcodes_extraction_resolution = barcoded_df['barcodes_extraction_resolution'].values[0] chunks_coords = dots_hoods(coords,barcodes_extraction_resolution) chunks_coords[chunks_coords<0]=0 chunks_coords[chunks_coords>registered_img_stack.shape[1]]= registered_img_stack.shape[1] for idx in np.arange(chunks_coords.shape[0]): selected_region = registered_img_stack[:,chunks_coords[idx,0]:chunks_coords[idx,1]+1,chunks_coords[idx,2]:chunks_coords[idx,3]+1] if selected_region.size >0: max_array = selected_region.max(axis=(1,2)) barcoded_df.loc[barcoded_df.dot_id == barcodes_names[idx],round_intensity_labels] = max_array # for channel in channels: # all_regions[channel] = {} # all_max[channel] = {} # img_stack = registered_img_stack[channel] # trimmed_df_channel = trimmed_df.loc[trimmed_df.channel == channel] # if trimmed_df_channel.shape[0] >0: # barcodes_names = trimmed_df_channel['barcode_reference_dot_id'].values # coords = trimmed_df_channel.loc[:, ['r_px_registered', 'c_px_registered']].to_numpy() # barcodes_extraction_resolution = trimmed_df_channel['barcodes_extraction_resolution'].values[0] # chunks_coords = dots_hoods(coords,barcodes_extraction_resolution) # chunks_coords[chunks_coords<0]=0 # chunks_coords[chunks_coords>img_stack.shape[1]]= img_stack.shape[1] # for idx in np.arange(chunks_coords.shape[0]): # selected_region = img_stack[:,chunks_coords[idx,0]:chunks_coords[idx,1]+1,chunks_coords[idx,2]:chunks_coords[idx,3]+1] # if selected_region.size >0: # max_array = selected_region.max(axis=(1,2)) # # all_regions[channel][barcodes_names[idx]]= selected_region # all_max[channel][barcodes_names[idx]]= max_array # barcoded_df.loc[barcoded_df.dot_id == barcodes_names[idx],round_intensity_labels] = max_array # fpath = experiment_fpath / 'tmp' / 'combined_rounds_images' / (experiment_name + '_' + channel + '_img_dict_fov_' + str(fov) + '.pkl') # pickle.dump(all_regions,open(fpath,'wb')) # fpath = experiment_fpath / 'results' / (experiment_name + '_barcodes_max_array_dict_fov_' + str(fov) + '.pkl') # pickle.dump(all_max,open(fpath,'wb')) else: barcoded_df.loc[:,round_intensity_labels] = np.nan return barcoded_df def identify_flipped_bits(codebook: pd.DataFrame, gene: str, raw_barcode: ByteString)-> Tuple[ByteString, ByteString]: """Utility function used to identify the position of the bits that are flipped after the nearest neighbors and the definition of the acceptable hamming distance for a single dot. Args: codebook (pd.DataFrame): Codebook used for the decoding gene (str): Name of the gene identified raw_barcode (ByteString): identifide barcode from the images Returns: Tuple[ByteString, ByteString]: (flipped_position, flipping_direction) """ gene_barcode_str =codebook.loc[codebook.Gene == gene, 'Code'].values[0] gene_barcode = np.frombuffer(gene_barcode_str, np.int8) raw_barcode = np.frombuffer(raw_barcode, np.int8) flipped_positions = np.where(raw_barcode != gene_barcode)[0].astype(np.int8) flipping_directions = (gene_barcode[flipped_positions] - raw_barcode[flipped_positions]).astype(np.int8) # flipped_positions = flipped_positions.tobytes() # flipping_directions = flipping_directions.tobytes() return flipped_positions,flipping_directions def define_flip_direction(codebook_dict: dict,experiment_fpath: str, output_df: pd.DataFrame): """Function used to determinethe the position of the bits that are flipped after the nearest neighbors and the definition of the acceptable hamming distance for fov. Args: codebook (dict): Codebooks used for the decoding experiment_fpath (str): Path to the folder of the experiment to process output_df (pd.DataFrame): Dataframe with the decoded results for the specific fov. """ if output_df.shape[0] > 1: correct_hamming_distance = 0 selected_hamming_distance = 3 / output_df.iloc[0].barcode_length experiment_fpath = Path(experiment_fpath) experiment_name = experiment_fpath.stem channels = codebook_dict.keys() all_evaluated = [] for channel in channels: codebook = codebook_dict[channel] fov = output_df.fov_num.values[0] trimmed_df = output_df.loc[(output_df.dot_id == output_df.barcode_reference_dot_id) & (output_df.channel == channel) & (output_df['hamming_distance'] > correct_hamming_distance) & (output_df['hamming_distance'] < selected_hamming_distance), ['barcode_reference_dot_id', 'decoded_genes', 'raw_barcodes','hamming_distance']] trimmed_df = trimmed_df.dropna(subset=['decoded_genes']) trimmed_df.loc[:,('flip_and_direction')] = trimmed_df.apply(lambda x: identify_flipped_bits(codebook,x.decoded_genes,x.raw_barcodes),axis=1) trimmed_df['flip_position'] = trimmed_df['flip_and_direction'].apply(lambda x: x[0]) trimmed_df['flip_direction'] = trimmed_df['flip_and_direction'].apply(lambda x: x[1]) trimmed_df.drop(columns=['flip_and_direction'],inplace=True) all_evaluated.append(trimmed_df) all_evaluated = pd.concat(all_evaluated,axis=0,ignore_index=True,inplace=True) fpath = experiment_fpath / 'results' / (experiment_name + '_' + channel + '_df_flip_direction_fov' + str(fov) + '.parquet') all_evaluated.to_parquet(fpath) # return trimmed_df def chunk_dfs(dataframes_list: list, chunk_size: int): """ Functions modified from https://stackoverflow.com/questions/45217120/how-to-efficiently-join-merge-concatenate-large-data-frame-in-pandas yields n dataframes at a time where n == chunksize """ dfs = [] for f in dataframes_list: dfs.append(f) if len(dfs) == chunk_size: yield dfs dfs = [] if dfs: yield dfs def merge_with_concat(dfs: list)->pd.DataFrame: """Utility function used to merge dataframes Args: dsf (list): List with the dataframe to merge Returns: pd.DataFrame: Merged dataframe """ # dfs = (df.set_index(col, drop=True) for df in dfs) merged = pd.concat(dfs, axis=0, join='outer', copy=False) return merged """ Class used to extract the barcodes from the registered counts using nearest neighbour Parameters: ----------- counts: pandas.DataFrame pandas file with the fov counts after registration analysis_parameters: dict parameters for data processing codebook_df: pandas.DataFrame pandas file with the codebook used to deconvolve the barcode NB: if there is a problem with the registration the barcode assigned will be 0*barcode_length """ def extract_barcodes_NN_fast_multicolor(registered_counts_df: pd.DataFrame, analysis_parameters: Dict, codebook_df: pd.DataFrame, metadata:dict)-> Tuple[pd.DataFrame,pd.DataFrame]: """Function used to extract the barcodes from the registered counts using nearest neighbour. if there is a problem with the registration the barcode assigned will be 0*barcode_length Args: registered_counts_df (pd.Dataframe): Fov counts after registration analysis_parameters (Dict): Parameters for data processing codebook_df (pd.DataFrame): codebook used to deconvolve the barcode Returns: Tuple[pd.DataFrame,pd.DataFrame]: (barcoded_round, all_decoded_dots_df) """ logger = selected_logger() barcodes_extraction_resolution = analysis_parameters['BarcodesExtractionResolution'] RegistrationMinMatchingBeads = analysis_parameters['RegistrationMinMatchingBeads'] barcode_length = metadata['barcode_length'] registration_errors = Registration_errors() stitching_channel = metadata['stitching_channel'] registered_counts_df.dropna(subset=['dot_id'],inplace=True) # Starting level for selection of dots dropping_counts = registered_counts_df.copy(deep=True) all_decoded_dots_list = [] barcoded_round = [] if registered_counts_df['r_px_registered'].isnull().values.any(): all_decoded_dots_df = pd.DataFrame(columns = registered_counts_df.columns) all_decoded_dots_df['decoded_genes'] = np.nan all_decoded_dots_df['hamming_distance'] = np.nan all_decoded_dots_df['number_positive_bits'] = np.nan all_decoded_dots_df['barcode_reference_dot_id'] = np.nan all_decoded_dots_df['raw_barcodes'] = np.nan all_decoded_dots_df['barcodes_extraction_resolution'] = barcodes_extraction_resolution # Save barcoded_round and all_decoded_dots_df return registered_counts_df, all_decoded_dots_df else: for ref_round_number in np.arange(1,barcode_length+1): #ref_round_number = 1 reference_round_df = dropping_counts.loc[dropping_counts.round_num == ref_round_number,:] # Step one (all dots not in round 1) compare_df = dropping_counts.loc[dropping_counts.round_num!=ref_round_number,:] if (not reference_round_df.empty): if not compare_df.empty: nn = NearestNeighbors(n_neighbors=1, metric="euclidean") nn.fit(reference_round_df[['r_px_registered','c_px_registered']]) dists, indices = nn.kneighbors(compare_df[['r_px_registered','c_px_registered']], return_distance=True) # select only the nn that are below barcodes_extraction_resolution distance idx_distances_below_resolution = np.where(dists <= barcodes_extraction_resolution)[0] comp_idx = idx_distances_below_resolution ref_idx = indices[comp_idx].flatten() # Subset the dataframe according to the selected points # The reference selected will have repeated points comp_selected_df = compare_df.iloc[comp_idx] ref_selected_df = reference_round_df.iloc[ref_idx] # The size of ref_selected_df w/o duplicates may be smaller of reference_round_df if # some of the dots in reference_round_df have no neighbours # Test approach where we get rid of the single dots comp_selected_df.loc[:,'barcode_reference_dot_id'] = ref_selected_df['dot_id'].values ref_selected_df_no_duplicates = ref_selected_df.drop_duplicates() ref_selected_df_no_duplicates.loc[:,'barcode_reference_dot_id'] = ref_selected_df_no_duplicates['dot_id'].values # Collect singletons # Remeber that this method works only because there are no duplicates inside the dataframes # https://stackoverflow.com/questions/48647534/python-pandas-find-difference-between-two-data-frames if reference_round_df.shape[0] > ref_selected_df_no_duplicates.shape[0]: singletons_df = pd.concat([reference_round_df,ref_selected_df_no_duplicates]).drop_duplicates(keep=False) singletons_df.loc[:,'barcode_reference_dot_id'] = singletons_df['dot_id'].values barcoded_round = pd.concat([comp_selected_df, ref_selected_df_no_duplicates,singletons_df], axis=0,ignore_index=False) else: barcoded_round = pd.concat([comp_selected_df, ref_selected_df_no_duplicates], axis=0,ignore_index=False) # barcoded_round = pd.concat([comp_selected_df, ref_selected_df_no_duplicates,singletons_df], axis=0,ignore_index=False) barcoded_round_grouped = barcoded_round.groupby('barcode_reference_dot_id') compare_df = compare_df.drop(comp_selected_df.index) dropping_counts = compare_df else: # Collecting singleton of last bit reference_round_df.loc[:,'barcode_reference_dot_id'] = reference_round_df['dot_id'].values barcoded_round_grouped = reference_round_df.groupby('barcode_reference_dot_id') ref_selected_df_no_duplicates = reference_round_df for brdi, grp in barcoded_round_grouped: barcode = np.zeros([barcode_length],dtype=np.int8) barcode[grp.round_num.values.astype(np.int8)-1] = 1 #hamming_dist, index_gene = nn_sklearn.kneighbors(barcode.reshape(1, -1), return_distance=True) #gene= codebook_df.loc[index_gene.reshape(index_gene.shape[0]),'Gene'].tolist() barcode = barcode.tostring() if len(ref_selected_df_no_duplicates) != 0: ref_selected_df_no_duplicates.loc[ref_selected_df_no_duplicates.barcode_reference_dot_id == brdi,'raw_barcodes'] = barcode #ref_selected_df_no_duplicates.loc[ref_selected_df_no_duplicates.barcode_reference_dot_id == brdi,'decoded_gene_name'] = gene #ref_selected_df_no_duplicates.loc[ref_selected_df_no_duplicates.barcode_reference_dot_id == brdi,'hamming_distance'] = hamming_dist.flatten()[0] #fish_counts.loc[grp.index,'barcode_reference_dot_id'] = brdi #fish_counts.loc[grp.index,'raw_barcodes'] = barcode #dists, index = nn_sklearn.kneighbors(all_barcodes, return_distance=True) all_decoded_dots_list.append(ref_selected_df_no_duplicates) if all_decoded_dots_list: all_decoded_dots_df = pd.concat(all_decoded_dots_list,ignore_index=False) codebook_df = convert_str_codebook(codebook_df,'Code') codebook_array = make_codebook_array(codebook_df,'Code') nn_sklearn = NearestNeighbors(n_neighbors=1, metric="hamming") nn_sklearn.fit(codebook_array) all_barcodes = np.vstack(all_decoded_dots_df.raw_barcodes.map(lambda x: np.frombuffer(x, np.int8)).values) dists_arr, index_arr = nn_sklearn.kneighbors(all_barcodes, return_distance=True) genes=codebook_df.loc[index_arr.reshape(index_arr.shape[0]),'Gene'].tolist() all_decoded_dots_df.loc[:,'decoded_genes'] = genes all_decoded_dots_df.loc[:,'hamming_distance'] = dists_arr all_decoded_dots_df.loc[:,'number_positive_bits'] = all_barcodes.sum(axis=1) all_decoded_dots_df['barcodes_extraction_resolution'] = barcodes_extraction_resolution else: all_decoded_dots_df = pd.DataFrame(columns = registered_counts_df.columns) all_decoded_dots_df['decoded_genes'] = np.nan all_decoded_dots_df['hamming_distance'] = np.nan all_decoded_dots_df['number_positive_bits'] = np.nan all_decoded_dots_df['barcode_reference_dot_id'] = np.nan all_decoded_dots_df['raw_barcodes'] = np.nan all_decoded_dots_df['barcodes_extraction_resolution'] = barcodes_extraction_resolution # Save barcoded_round and all_decoded_dots_df return barcoded_round, all_decoded_dots_df # TODO Remove all the functions below ######## ------------------------------------------------------------------- class extract_barcodes_NN(): """ Class used to extract the barcodes from the registered counts using nearest neighbour Parameters: ----------- counts: pandas.DataFrame pandas file with the fov counts after registration analysis_parameters: dict parameters for data processing experiment_config: Dict dictionary with the experimental data codebook_df: pandas.DataFrame pandas file with the codebook used to deconvolve the barcode NB: if there is a problem with the registration the barcode assigned will be 0*barcode_length """ def __init__(self, counts, analysis_parameters:Dict,experiment_config:Dict,codebook_df,file_tags,status:str): self.barcodes_extraction_resolution = analysis_parameters['BarcodesExtractionResolution'] self.RegistrationMinMatchingBeads = analysis_parameters['RegistrationMinMatchingBeads'] self.barcode_length = experiment_config['Barcode_length'] self.counts = counts self.logger = selected_logger() self.codebook_df = codebook_df self.file_tags = file_tags self.status = status self.registration_errors = Registration_errors() @staticmethod def barcode_nn(counts_df, ref_round_number, barcodes_extraction_resolution): column_names = list(counts_df.columns.values) column_names = column_names.append('barcode_reference_dot_id') barcoded_df = pd.DataFrame(columns=column_names) reference_array = counts_df.loc[counts_df.round_num == ref_round_number, ['r_px_registered','c_px_registered']].to_numpy() reference_round_df = counts_df.loc[counts_df.round_num == ref_round_number,:].reset_index(drop=True) # Step one (all dots not in round 1) coords_compare = counts_df.loc[counts_df.round_num != ref_round_number, ['r_px_registered','c_px_registered']].to_numpy() compare_df = counts_df.loc[counts_df.round_num != ref_round_number,:].reset_index(drop=True) if (reference_array.shape[0] >0) and (coords_compare.shape[0] >0): # initialize network nn = NearestNeighbors(n_neighbors=1, metric="euclidean") nn.fit(reference_array) # Get the nn dists, indices = nn.kneighbors(coords_compare, return_distance=True) # select only the nn that are below barcodes_extraction_resolution distance idx_selected_coords_compare = np.where(dists <= barcodes_extraction_resolution)[0] compare_selected_df = compare_df.loc[idx_selected_coords_compare,:] compare_selected_df['barcode_reference_dot_id'] = np.nan # ref_idx = indices[idx_selected_coords_compare] # compare_selected_df.loc[compare_selected_df.index.isin(idx_selected_coords_compare),'barcode_reference_dot_id'] = reference_round_df.loc[ref_idx,'dot_id'].values[0] for idx in idx_selected_coords_compare: ref_idx = indices[idx] compare_selected_df.loc[idx,'barcode_reference_dot_id'] = reference_round_df.loc[ref_idx,'dot_id'].values[0] reference_round_df['barcode_reference_dot_id'] = reference_round_df.dot_id barcoded_df = barcoded_df.append([compare_selected_df, reference_round_df], ignore_index=True) compare_df = compare_df.drop(compare_selected_df.index) compare_df = compare_df.reset_index(drop=True) return compare_df, barcoded_df @staticmethod def convert_str_codebook(codebook_df,column_name): codebook_df[column_name] = codebook_df[column_name].map(lambda x: np.frombuffer(x, np.int8)) return codebook_df @staticmethod def make_codebook_array(codebook_df,column_name): codebook_array = np.zeros((len(codebook_df[column_name]),codebook_df[column_name][0].shape[0])) for idx, el in enumerate(codebook_df[column_name]): row = codebook_df[column_name][idx] row = row[np.newaxis,:] codebook_array[idx,:] = row return codebook_array def run_extraction(self): data_models = Output_models() registration_errors = Registration_errors() fov = self.file_tags['fov'] channel = self.file_tags['channel'] self.barcoded_fov_df = data_models.barcode_analysis_df self.barcoded_fov_df.attrs = self.counts.attrs if self.status == 'FAILED': error = self.counts['min_number_matching_dots_registration'].values[0] round_num = self.counts['round_num'].values[0] self.barcoded_fov_df = self.barcoded_fov_df.append({'min_number_matching_dots_registration':error, 'fov_num':int(fov),'dot_channel':channel,'round_num': round_num },ignore_index=True) elif self.status == 'SUCCESS': if (min(self.counts.loc[:,'min_number_matching_dots_registration']) < self.RegistrationMinMatchingBeads): round_num = self.counts['round_num'].values[0] self.barcoded_fov_df = self.barcoded_fov_df.append({'min_number_matching_dots_registration':registration_errors.registration_below_extraction_resolution, 'fov_num':int(fov),'dot_channel':channel,'round_num': round_num},ignore_index=True) self.status = 'FAILED' else: hd_2 = 2 / self.barcode_length hd_3 = 3 / self.barcode_length # barcode_length = len(self.counts['round_num'].unique()) rounds = np.arange(1,self.barcode_length+1) self.codebook_df = self.convert_str_codebook(self.codebook_df,'Code') codebook_array = self.make_codebook_array(self.codebook_df,'Code') nn_sklearn = NearestNeighbors(n_neighbors=1, metric="hamming") nn_sklearn.fit(codebook_array) # remove points with np.NAN # self.counts = self.counts.dropna() for round_num in rounds: compare_df, barcoded_df = self.barcode_nn(self.counts, round_num, self.barcodes_extraction_resolution) self.barcoded_fov_df = self.barcoded_fov_df.append(barcoded_df, ignore_index=True) self.counts = compare_df self.counts['barcode_reference_dot_id'] = self.counts.dot_id self.barcoded_fov_df = self.barcoded_fov_df.append(self.counts, ignore_index=True) self.barcoded_fov_df['barcodes_extraction_resolution'] = self.barcodes_extraction_resolution self.grpd = self.barcoded_fov_df.groupby('barcode_reference_dot_id') # self.all_barcodes = {} # for name, group in self.grpd: # rounds_num = group.round_num.values # dot_ids = group.dot_id.values # rounds_num = rounds_num.astype(int) # barcode = np.zeros([self.barcode_length],dtype=np.int8) # barcode[(rounds_num-1)] += 1 # dists_arr, index_arr = nn_sklearn.kneighbors(barcode.reshape(1, -1), return_distance=True) # gene=self.codebook_df.loc[index_arr.reshape(index_arr.shape[0]),'Gene'].tolist()[0] # self.barcoded_fov_df.loc[self.barcoded_fov_df.barcode_reference_dot_id == name,'raw_barcodes'] = barcode.tostring() # self.barcoded_fov_df.loc[self.barcoded_fov_df.barcode_reference_dot_id == name,'all_Hdistance_genes'] = gene # if dists_arr[0][0] == 0: # self.barcoded_fov_df.loc[self.barcoded_fov_df.barcode_reference_dot_id == name,'0Hdistance_genes'] = gene # elif dists_arr[0][0] < hd_2: # self.barcoded_fov_df.loc[self.barcoded_fov_df.barcode_reference_dot_id == name,'below2Hdistance_genes'] = gene # elif dists_arr[0][0] < hd_3: # self.barcoded_fov_df.loc[self.barcoded_fov_df.barcode_reference_dot_id == name,'below3Hdistance_genes'] = gene barcode_reference_dot_id_list = [] num_unique_dots = np.unique(self.barcoded_fov_df.loc[:,'barcode_reference_dot_id']).shape[0] # There are no dots is the df if num_unique_dots > 0: all_barcodes = np.zeros([num_unique_dots,self.barcode_length],dtype=np.int8) for idx, (name, group) in enumerate(self.grpd): barcode_reference_dot_id_list.append(name) barcode = np.zeros([self.barcode_length],dtype=np.int8) rounds_num = group.round_num.values rounds_num = rounds_num.astype(int) barcode[(rounds_num-1)] += 1 all_barcodes[idx,:] = barcode dists_arr, index_arr = nn_sklearn.kneighbors(all_barcodes, return_distance=True) genes=self.codebook_df.loc[index_arr.reshape(index_arr.shape[0]),'Gene'].tolist() for idx,name in enumerate(barcode_reference_dot_id_list): barcode = all_barcodes[idx,:] gene = genes[idx] hd = dists_arr[idx][0] cols = ['raw_barcodes','all_Hdistance_genes','number_positive_bits','hamming_distance'] # will add last column depending on hd writing_data = [barcode.tostring(),gene,barcode.sum(),hd] if hd == 0: cols = cols + ['zeroHdistance_genes'] writing_data = writing_data + [gene] if hd < hd_2: cols = cols + ['below2Hdistance_genes'] writing_data = writing_data + [gene] if hd < hd_3: cols = cols + ['below3Hdistance_genes'] writing_data = writing_data + [gene] self.barcoded_fov_df.loc[self.barcoded_fov_df.barcode_reference_dot_id == name,cols] = writing_data # self.barcoded_fov_df.loc[self.barcoded_fov_df.barcode_reference_dot_id == name,'raw_barcodes'] = barcode.tostring() # self.barcoded_fov_df.loc[self.barcoded_fov_df.barcode_reference_dot_id == name,'all_Hdistance_genes'] = gene # self.barcoded_fov_df.loc[self.barcoded_fov_df.barcode_reference_dot_id == name,'number_positive_bits'] = barcode.sum() # self.barcoded_fov_df.loc[self.barcoded_fov_df.barcode_reference_dot_id == name,'hamming_distance'] = hd # if hd == 0: # self.barcoded_fov_df.loc[self.barcoded_fov_df.barcode_reference_dot_id == name,'0Hdistance_genes'] = gene # elif hd < hd_2: # self.barcoded_fov_df.loc[self.barcoded_fov_df.barcode_reference_dot_id == name,'below2Hdistance_genes'] = gene # elif hd < hd_3: # self.barcoded_fov_df.loc[self.barcoded_fov_df.barcode_reference_dot_id == name,'below3Hdistance_genes'] = gene fname = self.file_tags['experiment_fpath'] / 'tmp' / 'registered_counts' / (self.file_tags['experiment_name'] + '_' + self.file_tags['channel'] + '_decoded_fov_' + self.file_tags['fov'] + '.parquet') self.barcoded_fov_df.to_parquet(fname,index=False) class extract_barcodes_NN_test(): """ Class used to extract the barcodes from the registered counts using nearest neighbour Parameters: ----------- counts: pandas.DataFrame pandas file with the fov counts after registration analysis_parameters: dict parameters for data processing experiment_config: Dict dictionary with the experimental data codebook_df: pandas.DataFrame pandas file with the codebook used to deconvolve the barcode NB: if there is a problem with the registration the barcode assigned will be 0*barcode_length """ def __init__(self, fov, channel, counts, analysis_parameters:Dict,experiment_config:Dict,codebook_df,status:str): self.barcodes_extraction_resolution = analysis_parameters['BarcodesExtractionResolution'] self.RegistrationMinMatchingBeads = analysis_parameters['RegistrationMinMatchingBeads'] self.barcode_length = experiment_config['Barcode_length'] self.fov = fov self.channel = channel self.counts = counts self.logger = selected_logger() self.codebook_df = codebook_df self.status = status self.registration_errors = Registration_errors() @staticmethod def barcode_nn(counts_df, ref_round_number, barcodes_extraction_resolution): column_names = list(counts_df.columns.values) column_names = column_names.append('barcode_reference_dot_id') barcoded_df = pd.DataFrame(columns=column_names) reference_array = counts_df.loc[counts_df.round_num == ref_round_number, ['r_px_registered','c_px_registered']].to_numpy() reference_round_df = counts_df.loc[counts_df.round_num == ref_round_number,:].reset_index(drop=True) # Step one (all dots not in round 1) coords_compare = counts_df.loc[counts_df.round_num != ref_round_number, ['r_px_registered','c_px_registered']].to_numpy() compare_df = counts_df.loc[counts_df.round_num != ref_round_number,:].reset_index(drop=True) if (reference_array.shape[0] >0) and (coords_compare.shape[0] >0): # initialize network nn = NearestNeighbors(n_neighbors=1, metric="euclidean") nn.fit(reference_array) # Get the nn dists, indices = nn.kneighbors(coords_compare, return_distance=True) # select only the nn that are below barcodes_extraction_resolution distance idx_selected_coords_compare = np.where(dists <= barcodes_extraction_resolution)[0] compare_selected_df = compare_df.loc[idx_selected_coords_compare,:] compare_selected_df['barcode_reference_dot_id'] = np.nan # ref_idx = indices[idx_selected_coords_compare] # compare_selected_df.loc[compare_selected_df.index.isin(idx_selected_coords_compare),'barcode_reference_dot_id'] = reference_round_df.loc[ref_idx,'dot_id'].values[0] for idx in idx_selected_coords_compare: ref_idx = indices[idx] compare_selected_df.loc[idx,'barcode_reference_dot_id'] = reference_round_df.loc[ref_idx,'dot_id'].values[0] reference_round_df['barcode_reference_dot_id'] = reference_round_df.dot_id barcoded_df = barcoded_df.append([compare_selected_df, reference_round_df], ignore_index=True) compare_df = compare_df.drop(compare_selected_df.index) compare_df = compare_df.reset_index(drop=True) return compare_df, barcoded_df @staticmethod def convert_str_codebook(codebook_df,column_name): codebook_df[column_name] = codebook_df[column_name].map(lambda x: np.frombuffer(x, np.int8)) return codebook_df @staticmethod def make_codebook_array(codebook_df,column_name): codebook_array = np.zeros((len(codebook_df[column_name]),codebook_df[column_name][0].shape[0])) for idx, el in enumerate(codebook_df[column_name]): row = codebook_df[column_name][idx] row = row[np.newaxis,:] codebook_array[idx,:] = row return codebook_array def run_extraction(self): data_models = Output_models() registration_errors = Registration_errors() self.barcoded_fov_df = data_models.barcode_analysis_df self.barcoded_fov_df.attrs = self.counts.attrs if self.status == 'FAILED': error = self.counts['min_number_matching_dots_registration'].values[0] round_num = self.counts['round_num'].values[0] self.barcoded_fov_df = self.barcoded_fov_df.append({'min_number_matching_dots_registration':error, 'fov_num':int(self.fov),'dot_channel':self.channel,'round_num': round_num },ignore_index=True) elif self.status == 'SUCCESS': if (min(self.counts.loc[:,'min_number_matching_dots_registration']) < self.RegistrationMinMatchingBeads): round_num = self.counts['round_num'].values[0] self.barcoded_fov_df = self.barcoded_fov_df.append({'min_number_matching_dots_registration':registration_errors.registration_below_extraction_resolution, 'fov_num':int(self.fov),'dot_channel':self.channel,'round_num': round_num},ignore_index=True) self.status = 'FAILED' else: hd_2 = 2 / self.barcode_length hd_3 = 3 / self.barcode_length # barcode_length = len(self.counts['round_num'].unique()) rounds = np.arange(1,self.barcode_length+1) self.codebook_df = self.convert_str_codebook(self.codebook_df,'Code') codebook_array = self.make_codebook_array(self.codebook_df,'Code') nn_sklearn = NearestNeighbors(n_neighbors=1, metric="hamming") nn_sklearn.fit(codebook_array) # remove points with np.NAN # self.counts = self.counts.dropna() for round_num in rounds: compare_df, barcoded_df = self.barcode_nn(self.counts, round_num, self.barcodes_extraction_resolution) self.barcoded_fov_df = self.barcoded_fov_df.append(barcoded_df, ignore_index=True) self.counts = compare_df self.counts['barcode_reference_dot_id'] = self.counts.dot_id self.barcoded_fov_df = self.barcoded_fov_df.append(self.counts, ignore_index=True) self.barcoded_fov_df['barcodes_extraction_resolution'] = self.barcodes_extraction_resolution self.grpd = self.barcoded_fov_df.groupby('barcode_reference_dot_id') barcode_reference_dot_id_list = [] num_unique_dots = np.unique(self.barcoded_fov_df.loc[:,'barcode_reference_dot_id']).shape[0] # There are no dots is the df if num_unique_dots > 0: all_barcodes = np.zeros([num_unique_dots,self.barcode_length],dtype=np.int8) for idx, (name, group) in enumerate(self.grpd): barcode_reference_dot_id_list.append(name) barcode = np.zeros([self.barcode_length],dtype=np.int8) rounds_num = group.round_num.values rounds_num = rounds_num.astype(int) barcode[(rounds_num-1)] += 1 all_barcodes[idx,:] = barcode dists_arr, index_arr = nn_sklearn.kneighbors(all_barcodes, return_distance=True) genes=self.codebook_df.loc[index_arr.reshape(index_arr.shape[0]),'Gene'].tolist() for idx,name in enumerate(barcode_reference_dot_id_list): barcode = all_barcodes[idx,:] gene = genes[idx] hd = dists_arr[idx][0] cols = ['raw_barcodes','all_Hdistance_genes','number_positive_bits','hamming_distance'] # will add last column depending on hd writing_data = [barcode.tostring(),gene,barcode.sum(),hd] if hd == 0: cols = cols + ['zeroHdistance_genes'] writing_data = writing_data + [gene] if hd < hd_2: cols = cols + ['below2Hdistance_genes'] writing_data = writing_data + [gene] if hd < hd_3: cols = cols + ['below3Hdistance_genes'] writing_data = writing_data + [gene] self.barcoded_fov_df.loc[self.barcoded_fov_df.barcode_reference_dot_id == name,cols] = writing_data class extract_barcodes_NN_new(): """ Class used to extract the barcodes from the registered counts using nearest neighbour Parameters: ----------- counts: pandas.DataFrame pandas file with the fov counts after registration analysis_parameters: dict parameters for data processing experiment_config: Dict dictionary with the experimental data codebook_df: pandas.DataFrame pandas file with the codebook used to deconvolve the barcode NB: if there is a problem with the registration the barcode assigned will be 0*barcode_length """ def __init__(self, registered_counts, analysis_parameters:Dict,experiment_config:Dict,codebook_df): self.counts_df = registered_counts self.analysis_parameters = analysis_parameters self.experiment_config = experiment_config self.codebook_df = codebook_df self.logger = selected_logger() self.barcodes_extraction_resolution = analysis_parameters['BarcodesExtractionResolution'] self.RegistrationMinMatchingBeads = analysis_parameters['RegistrationMinMatchingBeads'] self.barcode_length = self.counts_df.loc[0]['barcode_length'] self.registration_errors = Registration_errors() self.stitching_channel = self.counts_df['stitching_channel'].iloc[0] @staticmethod def convert_str_codebook(codebook_df,column_name): codebook_df[column_name] = codebook_df[column_name].map(lambda x: np.frombuffer(x, np.int8)) return codebook_df @staticmethod def make_codebook_array(codebook_df,column_name): codebook_array = np.zeros((len(codebook_df[column_name]),codebook_df[column_name][0].shape[0])) for idx, el in enumerate(codebook_df[column_name]): row = codebook_df[column_name][idx] row = row[np.newaxis,:] codebook_array[idx,:] = row return codebook_array @staticmethod def barcode_nn(counts_df, ref_round_number, barcodes_extraction_resolution): column_names = list(counts_df.columns.values) column_names = column_names.append('barcode_reference_dot_id') barcoded_df = pd.DataFrame(columns=column_names) reference_array = counts_df.loc[counts_df.round_num == ref_round_number, ['r_px_registered','c_px_registered']].to_numpy() reference_round_df = counts_df.loc[counts_df.round_num == ref_round_number,:].reset_index(drop=True) # Step one (all dots not in round 1) coords_compare = counts_df.loc[counts_df.round_num != ref_round_number, ['r_px_registered','c_px_registered']].to_numpy() compare_df = counts_df.loc[counts_df.round_num != ref_round_number,:].reset_index(drop=True) if (reference_array.shape[0] >0) and (coords_compare.shape[0] >0): # initialize network nn = NearestNeighbors(n_neighbors=1, metric="euclidean") nn.fit(reference_array) # Get the nn dists, indices = nn.kneighbors(coords_compare, return_distance=True) # select only the nn that are below barcodes_extraction_resolution distance idx_selected_coords_compare = np.where(dists <= barcodes_extraction_resolution)[0] compare_selected_df = compare_df.loc[idx_selected_coords_compare,:] compare_selected_df['barcode_reference_dot_id'] = np.nan for k,v in groupby(idx_selected_coords_compare): if len(list(v)) > 3: print("key: '{}'--> group: {}".format(k, len(list(v)))) # ref_idx = indices[idx_selected_coords_compare].squeeze() # compare_selected_df.loc[compare_selected_df.index.isin(idx_selected_coords_compare),'barcode_reference_dot_id'] = reference_round_df.loc[ref_idx,'dot_id'].values[0] for idx in idx_selected_coords_compare: ref_idx = indices[idx] compare_selected_df.loc[idx,'barcode_reference_dot_id'] = reference_round_df.loc[ref_idx,'dot_id'].values[0] reference_round_df['barcode_reference_dot_id'] = reference_round_df.dot_id barcoded_df = barcoded_df.append([compare_selected_df, reference_round_df], ignore_index=True) compare_df = compare_df.drop(compare_selected_df.index) compare_df = compare_df.reset_index(drop=True) return compare_df, barcoded_df def run_extraction(self): data_models = Output_models() registration_errors = Registration_errors() self.barcoded_spec = data_models.barcode_analysis_df if not self.counts_df[self.counts_df['dot_id'].isnull()].empty: print('shitty FOV') self.all_combine_df = pd.concat([self.counts_df,self.barcoded_spec],axis=1) elif (min(self.counts_df['min_number_matching_dots_registration']) < self.RegistrationMinMatchingBeads): self.counts_df['min_number_matching_dots_registration'] = registration_errors.registration_below_extraction_resolution self.all_combine_df = pd.concat([self.counts_df,self.barcoded_spec],axis=1) else: self.counts_df =
pd.concat([self.counts_df,self.barcoded_spec],axis=1)
pandas.concat
#!/usr/bin/env python # -*- coding: utf-8 -*- # ##-------- [PPC] Jobshop Scheduling --------- # * Author: <NAME> # * Date: Apr 30th, 2020 # * Description: # Using the event-driven scheuling method # to solve the JSS prob. Here is a sample # code with the style of OOP. Feel free to # modify it as you like. ##-------------------------------------------- # import os import numpy as np import pandas as pd from gantt_plot import Gantt #entity class Order: def __init__(self, ID, AT, DD, routing, PT): self.ID = ID self.AT = AT #AT: arrival time self.DD = DD #DD: due date self.PT = PT #PT: processing time self.routing = routing self.progress = 0 #resource in factory class Source: def __init__(self, order_info): self.order_info = order_info self.output = 0 def arrival_event(self, fac): raise NotImplementedError class Machine: def __init__(self, ID, DP_rule): self.ID = ID self.state = 'idle' self.buffer = [] self.wspace = [] #wspace: working space self.DP_rule = DP_rule def start_processing(self, fac): raise NotImplementedError def end_process_event(self, fac): raise NotImplementedError class Factory: def __init__(self, order_info, DP_rule): self.order_info = order_info self.DP_rule = DP_rule self.event_lst =
pd.DataFrame(columns=["event_type", "time"])
pandas.DataFrame
from rdkit import Chem import numpy as np import pandas as pd def mol2bit(MOLS): BIT = [] FP = [] for i, mol in enumerate(MOLS): if mol is not None: bit = {} fp = Chem.RDKFingerprint(mol, bitInfo=bit) BIT.append(bit) FP.append(fp) else: BIT.append(np.nan) FP.append(np.nan) print(i) return BIT def bit2df(BIT): df = pd.DataFrame(np.zeros((len(BIT),2048), dtype=int)) for i in range(len(BIT)): if type(BIT[i])==float: df.loc[i,:] = np.nan else: bit = list(BIT[i].keys()) df.loc[i,bit] = int(1) return df if __name__ == '__main__': path = './data' df =
pd.read_csv(f"{path}/SMILES.csv")
pandas.read_csv
import logging import time import json import requests import pytz from datetime import datetime, timedelta import tushare as ts import pandas as pd from decimal import Decimal from firestone_engine.Utils import Utils from bson.objectid import ObjectId class ConceptPick(object): _logger = logging.getLogger(__name__) UTC_8 = pytz.timezone('Asia/Shanghai') _BATCH_SIZE = 50 _MAX_SIZE = 150 def run(self, trade, config, db, is_mock): if(len(config['monitor_concept']) >= int(trade['params']['max_concept'])): ConceptPick._logger.info('exceed max concpets number, stop monitoring') return self.is_mock = is_mock self.db = db self.monitor_codes = [] today = datetime.now() self.today = '{}-{}-{}'.format(today.year,('0' + str(today.month))[-2:],('0' + str(today.day))[-2:]) self.trade = trade self.config = config if(not self.match_monitorTime()): return self.get_match_concepts() self.pick_all_match_stocks() if(len(self.monitor_codes) > 0): self.updateTrade({'result' : f'创建监控:{self.monitor_codes}'}) def match_monitorTime(self): start = datetime.strptime('{} {}:00'.format(self.today, self.trade['params']['monitorTime']['start']), '%Y-%m-%d %H:%M:%S') end = datetime.strptime('{} {}:00'.format(self.today, self.trade['params']['monitorTime']['end']), '%Y-%m-%d %H:%M:%S') now = datetime.now() return now >= start and now <= end def need_create_order(self): return False def get_match_concepts(self): try: load_time = datetime.now(tz=ConceptPick.UTC_8) - timedelta(minutes=2) hot_concepts = list(self.db['hot_concept'].find({'time' : {'$gte' : load_time}}).sort([('time', -1)]).limit(10)) if(len(hot_concepts) == 0): self.match_concepts = [] ConceptPick._logger.warning('failed to get hot concepts') return concepts = [] for concept in hot_concepts: if(float(concept['index_percent'][:-1]) < float(self.trade['params']['index_percent']) or float(concept['index_percent'][:-1]) >= float(self.trade['params']['index_max_percent']) or int(concept['company_count']) > int(self.trade['params']['company_count']) or float(concept['stock_percent'][:-1]) < float(self.trade['params']['stock_percent']) or float(concept['net_buy']) < float(self.trade['params']['net_buy'])): continue if(self.trade['params']['concepts'] != "" and self.trade['params']['concepts'].find(concept['name']) < 0): continue concepts.append(concept) self.match_concepts = concepts ConceptPick._logger.info(f'match hot concepts are {concepts}') except Exception as e: ConceptPick._logger.error(f'get match concept failed, e = {e}') self.match_concepts = [] def pick_all_match_stocks(self): if(len(self.match_concepts) == 0): ConceptPick._logger.warning(f'no match hot concepts') return for concept in self.match_concepts: try: if(concept['name'] not in self.config['monitor_concept']): zxs = list(self.db['zx'].find({"concept" : concept['name']})) if(len(zxs) > 0 and len(zxs[0]['codes']) > 0): select_codes = self.filter_select_codes(concept, zxs[0]['codes'])[:ConceptPick._BATCH_SIZE] if(len(select_codes) > 0): self.start_monitor(select_codes) self.pick_match_stocks(concept) except Exception as e: ConceptPick._logger.error(f"pick_match_stocks for concept {concept['name']} failed, e = {e}") def filter_select_codes(self, concept, codes): time.sleep(3) df = ts.get_realtime_quotes(codes) df['percent'] = (df['price'].astype(float) - df['pre_close'].astype(float)) / df['pre_close'].astype(float) * 100 index_percent = float(concept['index_percent'][:-1]) df = df[(~df['code'].str.startswith('688')) & (df['percent'] > index_percent) & (df['percent'] <= float(self.trade['params']['max_percent']))] if(len(df) == 0): ConceptPick._logger.warning(f"no match select stocks for concept {concept['name']}") return [] df = df.sort_values('percent') return list(df['code'])[0:int(self.trade['params']['monitor_count'])] def pick_match_stocks(self, concept): condition = [] for i in range(int(self.trade['params']['top_concept'])): condition.append({f'concepts.{i}' : concept['name']}) stocks = list(self.db['concepts'].find({'$or' : condition})) if(len(stocks) == 0): ConceptPick._logger.warning(f"no match stocks for concept {concept['name']}") return self.filter_stocks(stocks, concept) def rank_concept(self, stock, hot_concept): concepts = stock['concepts'] stock['rank_concept'] = [int(k) for k, concept in concepts.items() if concept == hot_concept['name']][0] def filter_stocks(self, stocks, concept): result = [] for stock in stocks: now = datetime.now() if(stock['type'] in ['大盘股','超大盘股']): continue if(stock['xsjj'] is not None and stock['xsjj'] != ''): xsjj = datetime.strptime(stock['xsjj'], '%Y-%m-%d') if(xsjj > now and (xsjj - now).days < 30): continue self.rank_concept(stock, concept) result.append(stock) if(len(result) == 0): ConceptPick._logger.warning(f"no match stocks for concept {concept['name']} after filter") return result.sort(key=lambda x: x['rank_concept']) self.get_top_rank_stocks(result, concept) def get_top_rank_stocks(self, stocks, concept): full_df =
pd.DataFrame()
pandas.DataFrame
import pandas as pd import numpy as np import covasim as cv # Version used in our study is 3.07 import random from causal_testing.specification.causal_dag import CausalDAG from causal_testing.specification.scenario import Scenario from causal_testing.specification.variable import Input, Output from causal_testing.specification.causal_specification import CausalSpecification from causal_testing.data_collection.data_collector import ExperimentalDataCollector from causal_testing.testing.causal_test_case import CausalTestCase from causal_testing.testing.causal_test_outcome import Positive, Negative, NoEffect from causal_testing.testing.intervention import Intervention from causal_testing.testing.causal_test_engine import CausalTestEngine from causal_testing.testing.estimators import LinearRegressionEstimator def experimental_causal_test_vaccinate_elderly(runs_per_test_per_config: int = 30, verbose: bool = False): """ Run the causal test case for the effect of changing vaccine to prioritise elderly. This uses the experimental data collector. :param runs_per_test_per_config: Number of times to run each input configuration (control and treatment) per test. Hence, the total number of runs per test will be twice this value. :param verbose: Whether to print verbose details (causal test results). :return results_dict: A dictionary containing ATE, 95% CIs, and Test Pass/Fail """ # 1. Read in the Causal DAG causal_dag = CausalDAG('dag.dot') # 2. Create variables pop_size = Input('pop_size', int) pop_infected = Input('pop_infected', int) n_days = Input('n_days', int) vaccine = Input('vaccine', int) cum_infections = Output('cum_infections', int) cum_vaccinations = Output('cum_vaccinations', int) cum_vaccinated = Output('cum_vaccinated', int) max_doses = Output('max_doses', int) # 3. Create scenario by applying constraints over a subset of the input variables scenario = Scenario(variables={pop_size, pop_infected, n_days, cum_infections, vaccine, cum_vaccinated, cum_vaccinations, max_doses}, constraints={pop_size.z3 == 50000, pop_infected.z3 == 1000, n_days.z3 == 50}) # 4. Construct a causal specification from the scenario and causal DAG causal_specification = CausalSpecification(scenario, causal_dag) # 5. Instantiate the experimental data collector for Covasim covasim_parameters_dict = {'pop_size': 50000, 'pop_type': 'hybrid', 'pop_infected': 1000, 'n_days': 50} control_input_configuration = {'covasim_parameters_dict': covasim_parameters_dict, 'target_elderly': False} treatment_input_configuration = {'covasim_parameters_dict': covasim_parameters_dict, 'target_elderly': True} data_collector = CovasimVaccineDataCollector(scenario, control_input_configuration, treatment_input_configuration, runs_per_test_per_config) # 6. Express expected outcomes expected_outcome_effects = {cum_infections: Positive(), cum_vaccinations: Negative(), cum_vaccinated: Negative(), max_doses: NoEffect() } results_dict = {'cum_infections': {}, 'cum_vaccinations': {}, 'cum_vaccinated': {}, 'max_doses': {} } for outcome_variable, expected_effect in expected_outcome_effects.items(): causal_test_case = CausalTestCase(control_input_configuration={vaccine: 0}, expected_causal_effect=expected_effect, treatment_input_configuration={vaccine: 1}, outcome_variables={outcome_variable}) # 7. Create an instance of the causal test engine causal_test_engine = CausalTestEngine(causal_test_case, causal_specification, data_collector) # 8. Obtain the minimal adjustment set for the causal test case from the causal DAG minimal_adjustment_set = causal_test_engine.load_data(index_col=0) # 9. Build statistical model linear_regression_estimator = LinearRegressionEstimator((vaccine.name,), 1, 0, minimal_adjustment_set, (outcome_variable.name,)) # 10. Execute test and save results in dict causal_test_result = causal_test_engine.execute_test(linear_regression_estimator, 'ate') if verbose: print(f"Causation:\n{causal_test_result}") results_dict[outcome_variable.name]['ate'] = causal_test_result.ate results_dict[outcome_variable.name]['cis'] = causal_test_result.confidence_intervals results_dict[outcome_variable.name]['test_passes'] = causal_test_case.expected_causal_effect.apply( causal_test_result) return results_dict class CovasimVaccineDataCollector(ExperimentalDataCollector): """A custom experimental data collector for the elderly vaccination Covasim case study. This experimental data collector runs covasim with a normal Pfizer vaccine and then again with the same vaccine but this time prioritising the elderly for vaccination. """ def run_system_with_input_configuration(self, input_configuration: dict) -> pd.DataFrame: """ Run the system with a given input configuration. :param input_configuration: A nested dictionary containing Covasim parameters, desired number of repeats, and a bool to determine whether elderly should be prioritised for vaccination. :return: A dataframe containing results for this input configuration. """ results_df = self.simulate_vaccine(input_configuration['covasim_parameters_dict'], self.n_repeats, input_configuration['target_elderly']) return results_df def simulate_vaccine(self, pars_dict: dict, n_simulations: int = 100, target_elderly: bool = False): """ Simulate observational data that contains a vaccine that is optionally given preferentially to the elderly. :param pars_dict: A dictionary containing simulation parameters. :param n_simulations: Number of simulations to run. :param target_elderly: Whether to prioritise vaccination for the elderly. :return: A pandas dataframe containing results for each run. """ simulations_results_dfs = [] for sim_n in range(n_simulations): print(f'Simulation {sim_n + 1}/{n_simulations}.') # Update simulation parameters with vaccine and optionally sub-target if target_elderly: print("Prioritising the elderly for vaccination") vaccine = cv.vaccinate_prob(vaccine="Pfizer", label="prioritise_elderly", subtarget=self.vaccinate_by_age, days=list(range(7, pars_dict['n_days']))) else: print("Using standard vaccination protocol") vaccine = cv.vaccinate_prob(vaccine="Pfizer", label="regular", days=list(range(7, pars_dict['n_days']))) pars_dict['interventions'] = vaccine pars_dict['use_waning'] = True # Must be set to true for vaccination sim_results_df = self.run_sim_with_pars(pars_dict=pars_dict, desired_outputs=['cum_infections', 'cum_deaths', 'cum_recoveries', 'cum_vaccinations', 'cum_vaccinated'], n_runs=1) sim_results_df['interventions'] = vaccine.label # Store label in results instead of vaccine object sim_results_df['target_elderly'] = target_elderly sim_results_df['vaccine'] = int(target_elderly) # 0 if standard vaccine, 1 if target elderly vaccine sim_results_df['max_doses'] = vaccine.p['doses'] # Get max doses for the vaccine simulations_results_dfs.append(sim_results_df) # Create a single dataframe containing a row for every execution obs_df = pd.concat(simulations_results_dfs, ignore_index=True) obs_df.rename(columns={'interventions': 'vaccine_type'}, inplace=True) return obs_df @staticmethod def run_sim_with_pars(pars_dict: dict, desired_outputs: [str], n_runs: int = 1, verbose: int = -1): """ Runs a Covasim COVID-19 simulation with a given dict of parameters and collects the desired outputs, which are given as a list of output names. :param pars_dict: A dictionary containing the parameters and their values for the run. :param desired_outputs: A list of outputs which should be collected. :param n_runs: Number of times to run the simulation with a different seed. :param verbose: Covasim verbose setting (0 for no output, 1 for output). :return results_df: A pandas df containing the results for each run """ results_dict = {k: [] for k in list(pars_dict.keys()) + desired_outputs + ['rand_seed']} for _ in range(n_runs): # For every run, generate and use a new a random seed. # This is to avoid using Covasim's sequential random seeds. random.seed() rand_seed = random.randint(0, 10000) pars_dict['rand_seed'] = rand_seed print(f"Rand Seed: {rand_seed}") sim = cv.Sim(pars=pars_dict) m_sim = cv.MultiSim(sim) m_sim.run(n_runs=1, verbose=verbose, n_cpus=1) for run in m_sim.sims: results = run.results # Append inputs to results for param in pars_dict.keys(): results_dict[param].append(run.pars[param]) # Append outputs to results for output in desired_outputs: if output not in results: raise IndexError(f'{output} is not in the Covasim outputs.') results_dict[output].append( results[output][-1]) # Append the final recorded value for each variable # Any parameters without results are assigned np.nan for each execution for param, results in results_dict.items(): if not results: results_dict[param] = [np.nan] * len(results_dict['rand_seed']) return
pd.DataFrame(results_dict)
pandas.DataFrame
"""Remove images in blacklist from all other datasets""" import argparse from pathlib import Path from typing import * import pandas as pd def parse_arguments(): parser = argparse.ArgumentParser() parser.add_argument('dataset_dir', type=str, default='data/datasets/') parser.add_argument('blacklist', type=str) return parser.parse_args() def load_dataset(path): return list(pd.read_csv(path, header=None, names=['image_name']).image_name) def save_dataset(image_names: List[str], path): images_df =
pd.DataFrame({'image_name': image_names})
pandas.DataFrame
import cv2 from pygame import mixer import pandas as pd from config import GameConfig import time config = GameConfig() def play_music(music_file, time=0.0): # music 함수 mixer.init() mixer.music.load(music_file) mixer.music.play(1, time) # clock = pygame.time.Clock() # clock.tick(10) def play_sound(sound_file): # sound effect 함수 mixer.init() sound = mixer.Sound(sound_file) mixer.Sound.play(sound) # 효과음 sound_effect1 = 'musics/sound1.wav' sound_effect2 = 'musics/sound2.wav' sound_applause = 'musics/applause.wav' sound_disappointed = 'musics/disappointed.wav' def main_menu(config, params): ''' :param config: initial configuration :param params: 이 중에 diff, exit 쓸 것 :return: None ''' diff = None # 뒤에서 'easy' or 'hard' exit = None # True or False # 메인메뉴 기본화면 bgImg = cv2.imread('images/main_menu.png') # bgImg = cv2.resize(bgImg, (1080, 720)) # 버튼 눌렀을 때의 메뉴화면 button1 = cv2.imread('./images/easy_preview.png') button2 = cv2.imread('./images/easy_start.png') button3 = cv2.imread('./images/hard_preview.png') button4 = cv2.imread('./images/hard_start.png') buttonQ = cv2.imread('./images/quit.png') # 버튼 눌린 상태 유지를 위해 while문 밖에 따로 변수 지정했음 key = 0 keyQ = 0 # 티저 음악들 불러오기 sunset_teaser = 'musics/sunset_glow_teaser.wav' bingo_teaser = 'musics/bingo_teaser.wav' # 처음 시작할 때는 기본메뉴화면으로 화면 설정 config.named_window = bgImg while True: a = cv2.waitKey(0) if a & 0xFF == ord('1'): # 1번 누르면 play_sound(sound_effect1) diff = 'easy' play_music(sunset_teaser) key = 1 config.named_window = button1 if a & 0xFF == ord('2'): play_sound(sound_effect2) diff = 'easy' key = 2 config.named_window = button2 if a & 0xFF == ord('3'): #play_sound(sound_effect1) diff = 'hard' play_music(bingo_teaser) key = 3 config.named_window = button3 if a & 0xFF == ord('4'): play_sound(sound_effect2) diff = 'hard' key = 4 config.named_window = button4 if a & 0xFF == ord('q'): exit = True key = 5 config.named_window = buttonQ # 바뀐 화면을 유지해주기 위해 while 밖에 if key == 1: config.named_window = button1 if key == 2: config.named_window = button2 if key == 3: config.named_window = button3 if key == 4: config.named_window = button4 if key == 5: config.named_window = buttonQ # 이미지 띄우기 cv2.imshow('McgBcg', config.named_window) if exit == True: print('Exit') break if params["exit"] is True: # main menu에서 종료 버튼 print('Exit') break if key == 2: print('Easy') break if key == 4: print('Hard') break params["diff"] = diff params["exit"] = exit print("diff = ", diff, "exit = ", exit) # ex) diff = easy exit = False params["restart"] = False params["menu"] = False params["resume"] = False cv2.destroyAllWindows() def get_number(list): ret_list = [] for i in range(len(list)): ret_list.append(list[i][0:11]) return ret_list def load_pattern(config, params): ''' :param config: :param params: 이 중에 diff, pattern 씀 :return: None ''' pattern = None # 여기부터 주석박스 전까지 짜는 코드! df = None # excel에서 한칸 data = None # excel에서 value 값 print("Choose easy / hard \n") diff = params["diff"] # def excel(diff): if diff == 'easy': df =
pd.read_excel('sunset_glow.xlsx', sheet_name='sunset')
pandas.read_excel
# -*- coding:utf-8 -*- # /usr/bin/env python """ Date: 2020/12/15 15:18 Desc: 东方财富网-数据中心-特色数据-一致行动人 http://data.eastmoney.com/yzxdr/ """ import demjson import pandas as pd import requests def stock_em_yzxdr(date: str = "20200930") -> pd.DataFrame: """ 东方财富网-数据中心-特色数据-一致行动人 http://data.eastmoney.com/yzxdr/ :param date: 每年的季度末时间点 :type date: str :return: 一致行动人 :rtype: pandas.DataFrame """ date = '-'.join([date[:4], date[4:6], date[6:]]) url = "http://datacenter.eastmoney.com/api/data/get" params = { "type": "RPTA_WEB_YZXDRINDEX", "sty": "ALL", "source": "WEB", "p": "1", "ps": "500", "st": "noticedate", "sr": "-1", "var": "mwUyirVm", "filter": f"(enddate='{date}')", "rt": "53575609", } r = requests.get(url, params=params) data_text = r.text data_json = demjson.decode(data_text[data_text.find("{"): -1]) total_pages = data_json['result']['pages'] big_df = pd.DataFrame() for page in range(1, total_pages+1): params = { "type": "RPTA_WEB_YZXDRINDEX", "sty": "ALL", "source": "WEB", "p": str(page), "ps": "500", "st": "noticedate", "sr": "-1", "var": "mwUyirVm", "filter": f"(enddate='{date}')", "rt": "53575609", } r = requests.get(url, params=params) data_text = r.text data_json = demjson.decode(data_text[data_text.find("{"): -1]) temp_df =
pd.DataFrame(data_json["result"]["data"])
pandas.DataFrame
"""The search module of elsapy. Additional resources: * https://github.com/ElsevierDev/elsapy * https://dev.elsevier.com * https://api.elsevier.com""" import xmltodict from . import log_util from urllib.parse import quote_plus as url_encode import pandas as pd, json from .utils import recast_df import string from pathlib import Path import os logger = log_util.get_logger(__name__) class ElsSearch(): """Represents a search to one of the search indexes accessible through api.elsevier.com. Returns True if successful; else, False.""" # static / class variables _base_url = u'https://api.elsevier.com/content/search/' _cursored_indexes = [ 'scopus', ] def __init__(self, query, index): """Initializes a search object with a query and target index.""" self.query = query self.index = index self.num_records = 25 self._cursor_supported = (index in self._cursored_indexes) self._uri = self._base_url + self.index + '?query=' + url_encode( self.query) + '&count=' + str(self.num_records) columns = ['@_fa','link','prism:url','dc:identifier','eid','dc:title','prism:aggregationType','subtype', 'subtypeDescription','citedby-count','prism:publicationName','prism:isbn','prism:issn', 'prism:volume','prism:issueIdentifier','prism:pageRange','prism:coverDate','prism:coverDisplayDate', 'prism:doi','pii','pubmed-id','orcid','dc:creator','openaccess','affiliation','author','dc:description', 'authkeywords','article-number','fund-acr','fund-no','fund-sponsor','prism:eIssn', 'abstract_text'] self.results_df = pd.DataFrame(columns=columns) self.max_file_size = 100 * 1000 # first number in KB # properties @property def query(self): """Gets the search query""" return self._query @query.setter def query(self, query): """Sets the search query""" self._query = query @property def index(self): """Gets the label of the index targeted by the search""" return self._index @index.setter def index(self, index): """Sets the label of the index targeted by the search""" self._index = index @property def results(self): """Gets the results for the search""" return self._results @property def tot_num_res(self): """Gets the total number of results that exist in the index for this query. This number might be larger than can be retrieved and stored in a single ElsSearch object (i.e. 5,000).""" return self._tot_num_res @property def num_res(self): """Gets the number of results for this query that are stored in the search object. This number might be smaller than the number of results that exist in the index for the query.""" return len(self.results) @property def uri(self): """Gets the request uri for the search""" return self._uri def _upper_limit_reached(self): """Determines if the upper limit for retrieving results from of the search index is reached. Returns True if so, else False. Upper limit is 5,000 for indexes that don't support cursor-based pagination.""" if self._cursor_supported: return False else: return self.num_res >= 5000 def execute(self, els_client = None, get_all = False): """Executes the search. If get_all = False (default), this retrieves the default number of results specified for the API. If get_all = True, multiple API calls will be made to iteratively get all results for the search, up to a maximum of 5,000.""" ## TODO: add exception handling api_response = els_client.exec_request(self._uri) abstracts_index = 0 self._tot_num_res = int(api_response['search-results']['opensearch:totalResults']) self._results = api_response['search-results']['entry'] self.add_abstracts(els_client, abstracts_index) self.results_df = self.results_df.append(recast_df(pd.DataFrame(self._results))) csv_filename_number = 0 csv_filename = "output/test"+ str(csv_filename_number) + ".csv" self.results_df.to_csv(csv_filename, mode='a', sep=',', index=False, encoding="utf-8", header=not os.path.exists(csv_filename)) if get_all is True: while (self.num_res < self.tot_num_res): #and not self._upper_limit_reached(): # breakpoint() for e in api_response['search-results']['link']: if e['@ref'] == 'next': next_url = e['@href'] # next_url = next_url.replace('scopus?start=', 'scopus?cursor=') api_response = els_client.exec_request(next_url) self._results = api_response['search-results']['entry'] self.add_abstracts(els_client, abstracts_index) self.results_df = self.results_df.append(recast_df(
pd.DataFrame(self._results)
pandas.DataFrame
import unittest import utils import datetime import pandas as pd import numpy as np from pandas.testing import * #sample datas and its expected outputs data1={'meta': {'currency': 'USD', 'symbol': 'TSM', 'exchangeName': 'NYQ', 'instrumentType': 'EQUITY', 'firstTradeDate': 876403800, 'regularMarketTime': 1616529601, 'gmtoffset': -14400, 'timezone': 'EDT', 'exchangeTimezoneName': 'America/New_York', 'regularMarketPrice': 114.89, 'chartPreviousClose': 77.92, 'priceHint': 2, 'currentTradingPeriod': {'pre': {'timezone': 'EDT', 'start': 1616572800, 'end': 1616592600, 'gmtoffset': -14400}, 'regular': {'timezone': 'EDT', 'start': 1616592600, 'end': 1616616000, 'gmtoffset': -14400}, 'post': {'timezone': 'EDT', 'start': 1616616000, 'end': 1616630400, 'gmtoffset': -14400}}, 'dataGranularity': '1d', 'range': '6mo', 'validRanges': ['1d', '5d', '1mo', '3mo', '6mo', '1y', '2y', '5y', '10y', 'ytd', 'max']}, 'events': {'dividends': {'1615987800': {'amount': 0.448, 'date': 1615987800}, '1608215400': {'amount': 0.442, 'date': 1608215400}}}} data2={'meta': {'currency': 'USD', 'symbol': 'TSM', 'exchangeName': 'NYQ', 'instrumentType': 'EQUITY', 'firstTradeDate': 876403800, 'regularMarketTime': 1616529601, 'gmtoffset': -14400, 'timezone': 'EDT', 'exchangeTimezoneName': 'America/New_York', 'regularMarketPrice': 114.89, 'chartPreviousClose': 77.92, 'priceHint': 2, 'currentTradingPeriod': {'pre': {'timezone': 'EDT', 'start': 1616572800, 'end': 1616592600, 'gmtoffset': -14400}, 'regular': {'timezone': 'EDT', 'start': 1616592600, 'end': 1616616000, 'gmtoffset': -14400}, 'post': {'timezone': 'EDT', 'start': 1616616000, 'end': 1616630400, 'gmtoffset': -14400}}, 'dataGranularity': '1d', 'range': '6mo', 'validRanges': ['1d', '5d', '1mo', '3mo', '6mo', '1y', '2y', '5y', '10y', 'ytd', 'max']}} data3={'meta': {'currency': 'EUR', 'symbol': 'UH7.F', 'exchangeName': 'FRA', 'instrumentType': 'EQUITY', 'firstTradeDate': 1140678000, 'regularMarketTime': 1584084000, 'gmtoffset': 3600, 'timezone': 'CET', 'exchangeTimezoneName': 'Europe/Berlin', 'regularMarketPrice': 0.0005, 'chartPreviousClose': 0.0005, 'priceHint': 4, 'currentTradingPeriod': {'pre': {'timezone': 'CET', 'end': 1616569200, 'start': 1616569200, 'gmtoffset': 3600}, 'regular': {'timezone': 'CET', 'end': 1616619600, 'start': 1616569200, 'gmtoffset': 3600}, 'post': {'timezone': 'CET', 'end': 1616619600, 'start': 1616619600, 'gmtoffset': 3600}}, 'dataGranularity': '1d', 'range': '6mo', 'validRanges': ['1d', '5d', '1mo', '3mo', '6mo', '1y', '2y', '5y', '10y', 'ytd', 'max']}, 'events': {'splits': {'1616482800': {'date': 1616482800, 'numerator': 1, 'denominator': 50, 'splitRatio': '1:50'}}}} data4={'meta': {'currency': 'USD', 'symbol': 'AAPL', 'exchangeName': 'NMS', 'instrumentType': 'EQUITY', 'firstTradeDate': 345479400, 'regularMarketTime': 1616616002, 'gmtoffset': -14400, 'timezone': 'EDT', 'exchangeTimezoneName': 'America/New_York', 'regularMarketPrice': 120.09, 'chartPreviousClose': 108.22, 'priceHint': 2, 'currentTradingPeriod': {'pre': {'timezone': 'EDT', 'start': 1616659200, 'end': 1616679000, 'gmtoffset': -14400}, 'regular': {'timezone': 'EDT', 'start': 1616679000, 'end': 1616702400, 'gmtoffset': -14400}, 'post': {'timezone': 'EDT', 'start': 1616702400, 'end': 1616716800, 'gmtoffset': -14400}}, 'dataGranularity': '1d', 'range': '6mo', 'validRanges': ['1d', '5d', '1mo', '3mo', '6mo', '1y', '2y', '5y', '10y', 'ytd', 'max']}, 'events': {'dividends': {'1604673000': {'amount': 0.205, 'date': 1604673000}, '1612535400': {'amount': 0.205, 'date': 1612535400}}}} data5='' data6={'meta': {'currency': 'USD', 'symbol': 'AAPL', 'exchangeName': 'NMS', 'instrumentType': 'EQUITY', 'firstTradeDate': 345479400, 'regularMarketTime': 1616616002, 'gmtoffset': -14400, 'timezone': 'EDT', 'exchangeTimezoneName': 'America/New_York', 'regularMarketPrice': 120.09, 'chartPreviousClose': 108.22, 'priceHint': 2, 'currentTradingPeriod': {'pre': {'timezone': 'EDT', 'start': 1616659200, 'end': 1616679000, 'gmtoffset': -14400}, 'regular': {'timezone': 'EDT', 'start': 1616679000, 'end': 1616702400, 'gmtoffset': -14400}, 'post': {'timezone': 'EDT', 'start': 1616702400, 'end': 1616716800, 'gmtoffset': -14400}}, 'dataGranularity': '1d', 'range': '6mo', 'validRanges': ['1d', '5d', '1mo', '3mo', '6mo', '1y', '2y', '5y', '10y', 'ytd', 'max']}, 'events': {'dividends': {'1604673000': {'amount': 0.205, 'date': 0}, '1612535400': {'amount': 0.205, 'date': 0}}}} output1=pd.DataFrame(columns=["Dividends"]) output1=pd.DataFrame(data=[{'amount': 0.448, 'date': 1615987800},{'amount': 0.442, 'date': 1608215400}]) output1.set_index("date",inplace=True) output1.index = pd.to_datetime(output1.index, unit="s") output1.sort_index(inplace=True) #dividends.index = dividends.index.tz_localize(tz) output1.columns=["Dividends"] class Test_parse_action(unittest.TestCase): """ test parse_actions function """ def test_dividend(self): """ Test if it can correctly return the dividends in the correct order and format(parsed correctly) """ output1=pd.DataFrame(columns=["Dividends"]) output1=pd.DataFrame(data=[{'amount': 0.448, 'date': 1615987800},{'amount': 0.442, 'date': 1608215400}]) output1.set_index("date",inplace=True) output1.index = pd.to_datetime(output1.index, unit="s") output1.sort_index(inplace=True) #dividends.index = dividends.index.tz_localize(tz) output1.columns=["Dividends"] #case1: when Data that contains two different dividends and contains no splits. result=utils.parse_actions(data1) self.assertNotEqual(result, None)#check if the returned result is None self.assertFalse(result[0].empty)#check if the returned dividents is not empty self.assertTrue(result[1].empty)#check if the returned splits returned is empty assert_frame_equal(result[0],output1)#check if the data frame returned match with expected output #case2: when data has no dividends and splits events result2=utils.parse_actions(data2) self.assertTrue(result2[0].empty) self.assertTrue(result2[1].empty) def test_split(self): """ Test if it can correctly parsr the data with splits. """ #mock dataframe containing a stock info with splits output = pd.DataFrame(data=[{'date': 1616482800, 'numerator': 1, 'denominator': 50, 'splitRatio': '1:50'}]) output.set_index("date",inplace=True) output.index = pd.to_datetime(output.index, unit="s") output.sort_index(inplace=True) output["Stock Splits"] = output["numerator"] / \ output["denominator"] output = output["Stock Splits"] #case3: data has only split event result=utils.parse_actions(data3) #call parse action function with the above data self.assertNotEqual(result, None) #Check if the result is None self.assertFalse(result[1].empty) #Check if the result contains splits self.assertTrue(result[0].empty) #Check if the result does not contain dividends assert_series_equal(result[1], output) #Check if the result matches the mock data def test_dateTime(self): """ Test if date and time are in correct format """ output = pd.DataFrame(columns=["Dividends"]) output = pd.DataFrame(data=[{'amount': 0.205, 'date': 1604673000}, {'amount': 0.205, 'date': 1612535400}]) output.set_index("date",inplace=True) output.index = pd.to_datetime(output.index, unit="s") dividends, splits = utils.parse_actions(data4) self.assertTrue(splits.empty) self.assertFalse(dividends.empty) self.assertEqual(dividends.index[0], output.index[0]) def test_emptyInput(self): """ Test if data can handle wrong input argument """ #output = pd.DataFrame(columns=["Dividends"]) #output = pd.DataFrame(data=[{'amount': 0.205, 'date': 1604673000}, {'amount': 0.205, 'date': 1612535400}]) output = pd.DataFrame(columns=["Dividends"]) output = pd.DataFrame(data=['']) output.index = pd.to_datetime(output.index, unit="s") result = utils.parse_actions(data5) self.assertTrue(result[0].empty) self.assertTrue(result[1].empty) def test_wrongDate(self): """ Test the date beyond the electronic stock market was created """ output = pd.DataFrame(columns=["Dividends"]) output = pd.DataFrame(data=[{'amount': 0.205, 'date': 1604673000}, {'amount': 0.205, 'date': 3308400}]) output.set_index("date",inplace=True) output.index =
pd.to_datetime(output.index, unit="s")
pandas.to_datetime
# -*- coding: utf-8 -*- import inspect import os # noqa: F401 import unittest import time import pandas as pd from configparser import ConfigParser from GenericsAPI.Utils.NetworkUtil import NetworkUtil from GenericsAPI.GenericsAPIImpl import GenericsAPI from GenericsAPI.GenericsAPIServer import MethodContext from GenericsAPI.authclient import KBaseAuth as _KBaseAuth from installed_clients.DataFileUtilClient import DataFileUtil from installed_clients.WorkspaceClient import Workspace as workspaceService class NetworkUtilTest(unittest.TestCase): @classmethod def setUpClass(cls): token = os.environ.get('KB_AUTH_TOKEN', None) config_file = os.environ.get('KB_DEPLOYMENT_CONFIG', None) cls.cfg = {} config = ConfigParser() config.read(config_file) for nameval in config.items('GenericsAPI'): cls.cfg[nameval[0]] = nameval[1] # Getting username from Auth profile for token authServiceUrl = cls.cfg['auth-service-url'] auth_client = _KBaseAuth(authServiceUrl) user_id = auth_client.get_user(token) # WARNING: don't call any logging methods on the context object, # it'll result in a NoneType error cls.ctx = MethodContext(None) cls.ctx.update({'token': token, 'user_id': user_id, 'provenance': [ {'service': 'GenericsAPI', 'method': 'please_never_use_it_in_production', 'method_params': [] }], 'authenticated': 1}) cls.wsURL = cls.cfg['workspace-url'] cls.wsClient = workspaceService(cls.wsURL) cls.serviceImpl = GenericsAPI(cls.cfg) cls.scratch = cls.cfg['scratch'] cls.callback_url = os.environ['SDK_CALLBACK_URL'] cls.dfu = DataFileUtil(cls.callback_url) cls.network_util = NetworkUtil(cls.cfg) suffix = int(time.time() * 1000) cls.wsName = "test_network_util_" + str(suffix) ret = cls.wsClient.create_workspace({'workspace': cls.wsName}) cls.wsId = ret[0] @classmethod def tearDownClass(cls): if hasattr(cls, 'wsName'): cls.wsClient.delete_workspace({'workspace': cls.wsName}) print('Test workspace was deleted') def getWsClient(self): return self.__class__.wsClient def getWsName(self): return self.__class__.wsName def getImpl(self): return self.__class__.serviceImpl def getContext(self): return self.__class__.ctx def getNetworkUtil(self): return self.__class__.network_util def loadCorrData(self): if hasattr(self.__class__, 'corr_data'): return self.__class__.corr_data corr_data = {'row_ids': ['WRI_RS00010_CDS_1', 'WRI_RS00015_CDS_1', 'WRI_RS00025_CDS_1'], 'values': [[1.0, 0.99, 0.91], [0.99, 1.0, 0.91], [0.91, 0.91, 1.0]], 'col_ids': ['WRI_RS00010_CDS_1', 'WRI_RS00015_CDS_1', 'WRI_RS00025_CDS_1']} self.__class__.corr_data = corr_data print('Loaded Correlation Data:\n{}\n'.format(corr_data)) return corr_data def loadGraphDF(self): if hasattr(self.__class__, 'graph_df'): return self.__class__.graph_df d = {'source': ['A', 'E', 'F', 'F', 'F', 'F', 'G', 'G', 'G', 'H', 'I', 'I', 'I', 'J', 'J', 'J'], 'target': ['E', 'A', 'G', 'H', 'I', 'J', 'F', 'I', 'J', 'F', 'F', 'G', 'J', 'F', 'G', 'I'], 'value': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 2, 3, 4, 5, 6]} graph_df =
pd.DataFrame(data=d)
pandas.DataFrame
""" A warehouse for constant values required to initilize the PUDL Database. This constants module stores and organizes a bunch of constant values which are used throughout PUDL to populate static lists within the data packages or for data cleaning purposes. """ import pandas as pd import sqlalchemy as sa ###################################################################### # Constants used within the init.py module. ###################################################################### prime_movers = [ 'steam_turbine', 'gas_turbine', 'hydro', 'internal_combustion', 'solar_pv', 'wind_turbine' ] """list: A list of the types of prime movers""" rto_iso = { 'CAISO': 'California ISO', 'ERCOT': 'Electric Reliability Council of Texas', 'MISO': 'Midcontinent ISO', 'ISO-NE': 'ISO New England', 'NYISO': 'New York ISO', 'PJM': 'PJM Interconnection', 'SPP': 'Southwest Power Pool' } """dict: A dictionary containing ISO/RTO abbreviations (keys) and names (values) """ us_states = { 'AK': 'Alaska', 'AL': 'Alabama', 'AR': 'Arkansas', 'AS': 'American Samoa', 'AZ': 'Arizona', 'CA': 'California', 'CO': 'Colorado', 'CT': 'Connecticut', 'DC': 'District of Columbia', 'DE': 'Delaware', 'FL': 'Florida', 'GA': 'Georgia', 'GU': 'Guam', 'HI': 'Hawaii', 'IA': 'Iowa', 'ID': 'Idaho', 'IL': 'Illinois', 'IN': 'Indiana', 'KS': 'Kansas', 'KY': 'Kentucky', 'LA': 'Louisiana', 'MA': 'Massachusetts', 'MD': 'Maryland', 'ME': 'Maine', 'MI': 'Michigan', 'MN': 'Minnesota', 'MO': 'Missouri', 'MP': 'Northern Mariana Islands', 'MS': 'Mississippi', 'MT': 'Montana', 'NA': 'National', 'NC': 'North Carolina', 'ND': 'North Dakota', 'NE': 'Nebraska', 'NH': 'New Hampshire', 'NJ': 'New Jersey', 'NM': 'New Mexico', 'NV': 'Nevada', 'NY': 'New York', 'OH': 'Ohio', 'OK': 'Oklahoma', 'OR': 'Oregon', 'PA': 'Pennsylvania', 'PR': 'Puerto Rico', 'RI': 'Rhode Island', 'SC': 'South Carolina', 'SD': 'South Dakota', 'TN': 'Tennessee', 'TX': 'Texas', 'UT': 'Utah', 'VA': 'Virginia', 'VI': 'Virgin Islands', 'VT': 'Vermont', 'WA': 'Washington', 'WI': 'Wisconsin', 'WV': 'West Virginia', 'WY': 'Wyoming' } """dict: A dictionary containing US state abbreviations (keys) and names (values) """ canada_prov_terr = { 'AB': 'Alberta', 'BC': 'British Columbia', 'CN': 'Canada', 'MB': 'Manitoba', 'NB': 'New Brunswick', 'NS': 'Nova Scotia', 'NL': 'Newfoundland and Labrador', 'NT': 'Northwest Territories', 'NU': 'Nunavut', 'ON': 'Ontario', 'PE': 'Prince Edwards Island', 'QC': 'Quebec', 'SK': 'Saskatchewan', 'YT': 'Yukon Territory', } """dict: A dictionary containing Canadian provinces' and territories' abbreviations (keys) and names (values) """ cems_states = {k: v for k, v in us_states.items() if v not in {'Alaska', 'American Samoa', 'Guam', 'Hawaii', 'Northern Mariana Islands', 'National', 'Puerto Rico', 'Virgin Islands'} } """dict: A dictionary containing US state abbreviations (keys) and names (values) that are present in the CEMS dataset """ # This is imperfect for states that have split timezones. See: # https://en.wikipedia.org/wiki/List_of_time_offsets_by_U.S._state_and_territory # For states that are split, I went with where there seem to be more people # List of timezones in pytz.common_timezones # Canada: https://en.wikipedia.org/wiki/Time_in_Canada#IANA_time_zone_database state_tz_approx = { "AK": "US/Alaska", # Alaska; Not in CEMS "AL": "US/Central", # Alabama "AR": "US/Central", # Arkansas "AS": "Pacific/Pago_Pago", # American Samoa; Not in CEMS "AZ": "US/Arizona", # Arizona "CA": "US/Pacific", # California "CO": "US/Mountain", # Colorado "CT": "US/Eastern", # Connecticut "DC": "US/Eastern", # District of Columbia "DE": "US/Eastern", # Delaware "FL": "US/Eastern", # Florida (split state) "GA": "US/Eastern", # Georgia "GU": "Pacific/Guam", # Guam; Not in CEMS "HI": "US/Hawaii", # Hawaii; Not in CEMS "IA": "US/Central", # Iowa "ID": "US/Mountain", # Idaho (split state) "IL": "US/Central", # Illinois "IN": "US/Eastern", # Indiana (split state) "KS": "US/Central", # Kansas (split state) "KY": "US/Eastern", # Kentucky (split state) "LA": "US/Central", # Louisiana "MA": "US/Eastern", # Massachusetts "MD": "US/Eastern", # Maryland "ME": "US/Eastern", # Maine "MI": "America/Detroit", # Michigan (split state) "MN": "US/Central", # Minnesota "MO": "US/Central", # Missouri "MP": "Pacific/Saipan", # Northern Mariana Islands; Not in CEMS "MS": "US/Central", # Mississippi "MT": "US/Mountain", # Montana "NC": "US/Eastern", # North Carolina "ND": "US/Central", # North Dakota (split state) "NE": "US/Central", # Nebraska (split state) "NH": "US/Eastern", # New Hampshire "NJ": "US/Eastern", # New Jersey "NM": "US/Mountain", # New Mexico "NV": "US/Pacific", # Nevada "NY": "US/Eastern", # New York "OH": "US/Eastern", # Ohio "OK": "US/Central", # Oklahoma "OR": "US/Pacific", # Oregon (split state) "PA": "US/Eastern", # Pennsylvania "PR": "America/Puerto_Rico", # Puerto Rico; Not in CEMS "RI": "US/Eastern", # Rhode Island "SC": "US/Eastern", # South Carolina "SD": "US/Central", # South Dakota (split state) "TN": "US/Central", # Tennessee "TX": "US/Central", # Texas "UT": "US/Mountain", # Utah "VA": "US/Eastern", # Virginia "VI": "America/Puerto_Rico", # Virgin Islands; Not in CEMS "VT": "US/Eastern", # Vermont "WA": "US/Pacific", # Washington "WI": "US/Central", # Wisconsin "WV": "US/Eastern", # West Virginia "WY": "US/Mountain", # Wyoming # Canada (none of these are in CEMS) "AB": "America/Edmonton", # Alberta "BC": "America/Vancouver", # British Columbia (split province) "MB": "America/Winnipeg", # Manitoba "NB": "America/Moncton", # New Brunswick "NS": "America/Halifax", # Nova Scotia "NL": "America/St_Johns", # Newfoundland and Labrador (split province) "NT": "America/Yellowknife", # Northwest Territories (split province) "NU": "America/Iqaluit", # Nunavut (split province) "ON": "America/Toronto", # Ontario (split province) "PE": "America/Halifax", # Prince Edwards Island "QC": "America/Montreal", # Quebec (split province) "SK": "America/Regina", # Saskatchewan (split province) "YT": "America/Whitehorse", # Yukon Territory } """dict: A dictionary containing US and Canadian state/territory abbreviations (keys) and timezones (values) """ ferc1_power_purchase_type = { 'RQ': 'requirement', 'LF': 'long_firm', 'IF': 'intermediate_firm', 'SF': 'short_firm', 'LU': 'long_unit', 'IU': 'intermediate_unit', 'EX': 'electricity_exchange', 'OS': 'other_service', 'AD': 'adjustment' } """dict: A dictionary of abbreviations (keys) and types (values) for power purchase agreements from FERC Form 1. """ # Dictionary mapping DBF files (w/o .DBF file extension) to DB table names ferc1_dbf2tbl = { 'F1_1': 'f1_respondent_id', 'F1_2': 'f1_acb_epda', 'F1_3': 'f1_accumdepr_prvsn', 'F1_4': 'f1_accumdfrrdtaxcr', 'F1_5': 'f1_adit_190_detail', 'F1_6': 'f1_adit_190_notes', 'F1_7': 'f1_adit_amrt_prop', 'F1_8': 'f1_adit_other', 'F1_9': 'f1_adit_other_prop', 'F1_10': 'f1_allowances', 'F1_11': 'f1_bal_sheet_cr', 'F1_12': 'f1_capital_stock', 'F1_13': 'f1_cash_flow', 'F1_14': 'f1_cmmn_utlty_p_e', 'F1_15': 'f1_comp_balance_db', 'F1_16': 'f1_construction', 'F1_17': 'f1_control_respdnt', 'F1_18': 'f1_co_directors', 'F1_19': 'f1_cptl_stk_expns', 'F1_20': 'f1_csscslc_pcsircs', 'F1_21': 'f1_dacs_epda', 'F1_22': 'f1_dscnt_cptl_stk', 'F1_23': 'f1_edcfu_epda', 'F1_24': 'f1_elctrc_erg_acct', 'F1_25': 'f1_elctrc_oper_rev', 'F1_26': 'f1_elc_oper_rev_nb', 'F1_27': 'f1_elc_op_mnt_expn', 'F1_28': 'f1_electric', 'F1_29': 'f1_envrnmntl_expns', 'F1_30': 'f1_envrnmntl_fclty', 'F1_31': 'f1_fuel', 'F1_32': 'f1_general_info', 'F1_33': 'f1_gnrt_plant', 'F1_34': 'f1_important_chg', 'F1_35': 'f1_incm_stmnt_2', 'F1_36': 'f1_income_stmnt', 'F1_37': 'f1_miscgen_expnelc', 'F1_38': 'f1_misc_dfrrd_dr', 'F1_39': 'f1_mthly_peak_otpt', 'F1_40': 'f1_mtrl_spply', 'F1_41': 'f1_nbr_elc_deptemp', 'F1_42': 'f1_nonutility_prop', 'F1_43': 'f1_note_fin_stmnt', # 37% of DB 'F1_44': 'f1_nuclear_fuel', 'F1_45': 'f1_officers_co', 'F1_46': 'f1_othr_dfrrd_cr', 'F1_47': 'f1_othr_pd_in_cptl', 'F1_48': 'f1_othr_reg_assets', 'F1_49': 'f1_othr_reg_liab', 'F1_50': 'f1_overhead', 'F1_51': 'f1_pccidica', 'F1_52': 'f1_plant_in_srvce', 'F1_53': 'f1_pumped_storage', 'F1_54': 'f1_purchased_pwr', 'F1_55': 'f1_reconrpt_netinc', 'F1_56': 'f1_reg_comm_expn', 'F1_57': 'f1_respdnt_control', 'F1_58': 'f1_retained_erng', 'F1_59': 'f1_r_d_demo_actvty', 'F1_60': 'f1_sales_by_sched', 'F1_61': 'f1_sale_for_resale', 'F1_62': 'f1_sbsdry_totals', 'F1_63': 'f1_schedules_list', 'F1_64': 'f1_security_holder', 'F1_65': 'f1_slry_wg_dstrbtn', 'F1_66': 'f1_substations', 'F1_67': 'f1_taxacc_ppchrgyr', 'F1_68': 'f1_unrcvrd_cost', 'F1_69': 'f1_utltyplnt_smmry', 'F1_70': 'f1_work', 'F1_71': 'f1_xmssn_adds', 'F1_72': 'f1_xmssn_elc_bothr', 'F1_73': 'f1_xmssn_elc_fothr', 'F1_74': 'f1_xmssn_line', 'F1_75': 'f1_xtraordnry_loss', 'F1_76': 'f1_codes_val', 'F1_77': 'f1_sched_lit_tbl', 'F1_78': 'f1_audit_log', 'F1_79': 'f1_col_lit_tbl', 'F1_80': 'f1_load_file_names', 'F1_81': 'f1_privilege', 'F1_82': 'f1_sys_error_log', 'F1_83': 'f1_unique_num_val', 'F1_84': 'f1_row_lit_tbl', 'F1_85': 'f1_footnote_data', 'F1_86': 'f1_hydro', 'F1_87': 'f1_footnote_tbl', # 52% of DB 'F1_88': 'f1_ident_attsttn', 'F1_89': 'f1_steam', 'F1_90': 'f1_leased', 'F1_91': 'f1_sbsdry_detail', 'F1_92': 'f1_plant', 'F1_93': 'f1_long_term_debt', 'F1_106_2009': 'f1_106_2009', 'F1_106A_2009': 'f1_106a_2009', 'F1_106B_2009': 'f1_106b_2009', 'F1_208_ELC_DEP': 'f1_208_elc_dep', 'F1_231_TRN_STDYCST': 'f1_231_trn_stdycst', 'F1_324_ELC_EXPNS': 'f1_324_elc_expns', 'F1_325_ELC_CUST': 'f1_325_elc_cust', 'F1_331_TRANSISO': 'f1_331_transiso', 'F1_338_DEP_DEPL': 'f1_338_dep_depl', 'F1_397_ISORTO_STL': 'f1_397_isorto_stl', 'F1_398_ANCL_PS': 'f1_398_ancl_ps', 'F1_399_MTH_PEAK': 'f1_399_mth_peak', 'F1_400_SYS_PEAK': 'f1_400_sys_peak', 'F1_400A_ISO_PEAK': 'f1_400a_iso_peak', 'F1_429_TRANS_AFF': 'f1_429_trans_aff', 'F1_ALLOWANCES_NOX': 'f1_allowances_nox', 'F1_CMPINC_HEDGE_A': 'f1_cmpinc_hedge_a', 'F1_CMPINC_HEDGE': 'f1_cmpinc_hedge', 'F1_EMAIL': 'f1_email', 'F1_RG_TRN_SRV_REV': 'f1_rg_trn_srv_rev', 'F1_S0_CHECKS': 'f1_s0_checks', 'F1_S0_FILING_LOG': 'f1_s0_filing_log', 'F1_SECURITY': 'f1_security' # 'F1_PINS': 'f1_pins', # private data, not publicized. # 'F1_FREEZE': 'f1_freeze', # private data, not publicized } """dict: A dictionary mapping FERC Form 1 DBF files(w / o .DBF file extension) (keys) to database table names (values). """ ferc1_huge_tables = { 'f1_footnote_tbl', 'f1_footnote_data', 'f1_note_fin_stmnt', } """set: A set containing large FERC Form 1 tables. """ # Invert the map above so we can go either way as needed ferc1_tbl2dbf = {v: k for k, v in ferc1_dbf2tbl.items()} """dict: A dictionary mapping database table names (keys) to FERC Form 1 DBF files(w / o .DBF file extension) (values). """ # This dictionary maps the strings which are used to denote field types in the # DBF objects to the corresponding generic SQLAlchemy Column types: # These definitions come from a combination of the dbfread example program # dbf2sqlite and this DBF file format documentation page: # http://www.dbase.com/KnowledgeBase/int/db7_file_fmt.htm # Un-mapped types left as 'XXX' which should obviously make an error... dbf_typemap = { 'C': sa.String, 'D': sa.Date, 'F': sa.Float, 'I': sa.Integer, 'L': sa.Boolean, 'M': sa.Text, # 10 digit .DBT block number, stored as a string... 'N': sa.Float, 'T': sa.DateTime, '0': sa.Integer, # based on dbf2sqlite mapping 'B': 'XXX', # .DBT block number, binary string '@': 'XXX', # Timestamp... Date = Julian Day, Time is in milliseconds? '+': 'XXX', # Autoincrement (e.g. for IDs) 'O': 'XXX', # Double, 8 bytes 'G': 'XXX', # OLE 10 digit/byte number of a .DBT block, stored as string } """dict: A dictionary mapping field types in the DBF objects (keys) to the corresponding generic SQLAlchemy Column types. """ # This is the set of tables which have been successfully integrated into PUDL: ferc1_pudl_tables = ( 'fuel_ferc1', # Plant-level data, linked to plants_steam_ferc1 'plants_steam_ferc1', # Plant-level data 'plants_small_ferc1', # Plant-level data 'plants_hydro_ferc1', # Plant-level data 'plants_pumped_storage_ferc1', # Plant-level data 'purchased_power_ferc1', # Inter-utility electricity transactions 'plant_in_service_ferc1', # Row-mapped plant accounting data. # 'accumulated_depreciation_ferc1' # Requires row-mapping to be useful. ) """tuple: A tuple containing the FERC Form 1 tables that can be successfully integrated into PUDL. """ table_map_ferc1_pudl = { 'fuel_ferc1': 'f1_fuel', 'plants_steam_ferc1': 'f1_steam', 'plants_small_ferc1': 'f1_gnrt_plant', 'plants_hydro_ferc1': 'f1_hydro', 'plants_pumped_storage_ferc1': 'f1_pumped_storage', 'plant_in_service_ferc1': 'f1_plant_in_srvce', 'purchased_power_ferc1': 'f1_purchased_pwr', # 'accumulated_depreciation_ferc1': 'f1_accumdepr_prvsn' } """dict: A dictionary mapping PUDL table names (keys) to the corresponding FERC Form 1 DBF table names. """ # This is the list of EIA923 tables that can be successfully pulled into PUDL eia923_pudl_tables = ('generation_fuel_eia923', 'boiler_fuel_eia923', 'generation_eia923', 'coalmine_eia923', 'fuel_receipts_costs_eia923') """tuple: A tuple containing the EIA923 tables that can be successfully integrated into PUDL. """ epaipm_pudl_tables = ( 'transmission_single_epaipm', 'transmission_joint_epaipm', 'load_curves_epaipm', 'plant_region_map_epaipm', ) """tuple: A tuple containing the EPA IPM tables that can be successfully integrated into PUDL. """ # List of entity tables entity_tables = ['utilities_entity_eia', 'plants_entity_eia', 'generators_entity_eia', 'boilers_entity_eia', 'regions_entity_epaipm', ] """list: A list of PUDL entity tables. """ xlsx_maps_pkg = 'pudl.package_data.meta.xlsx_maps' """string: The location of the xlsx maps within the PUDL package data.""" ############################################################################## # EIA 923 Spreadsheet Metadata ############################################################################## ############################################################################## # EIA 860 Spreadsheet Metadata ############################################################################## # This is the list of EIA860 tables that can be successfully pulled into PUDL eia860_pudl_tables = ( 'boiler_generator_assn_eia860', 'utilities_eia860', 'plants_eia860', 'generators_eia860', 'ownership_eia860' ) """tuple: A tuple enumerating EIA 860 tables for which PUDL's ETL works.""" # The set of FERC Form 1 tables that have the same composite primary keys: [ # respondent_id, report_year, report_prd, row_number, spplmnt_num ]. # TODO: THIS ONLY PERTAINS TO 2015 AND MAY NEED TO BE ADJUSTED BY YEAR... ferc1_data_tables = ( 'f1_acb_epda', 'f1_accumdepr_prvsn', 'f1_accumdfrrdtaxcr', 'f1_adit_190_detail', 'f1_adit_190_notes', 'f1_adit_amrt_prop', 'f1_adit_other', 'f1_adit_other_prop', 'f1_allowances', 'f1_bal_sheet_cr', 'f1_capital_stock', 'f1_cash_flow', 'f1_cmmn_utlty_p_e', 'f1_comp_balance_db', 'f1_construction', 'f1_control_respdnt', 'f1_co_directors', 'f1_cptl_stk_expns', 'f1_csscslc_pcsircs', 'f1_dacs_epda', 'f1_dscnt_cptl_stk', 'f1_edcfu_epda', 'f1_elctrc_erg_acct', 'f1_elctrc_oper_rev', 'f1_elc_oper_rev_nb', 'f1_elc_op_mnt_expn', 'f1_electric', 'f1_envrnmntl_expns', 'f1_envrnmntl_fclty', 'f1_fuel', 'f1_general_info', 'f1_gnrt_plant', 'f1_important_chg', 'f1_incm_stmnt_2', 'f1_income_stmnt', 'f1_miscgen_expnelc', 'f1_misc_dfrrd_dr', 'f1_mthly_peak_otpt', 'f1_mtrl_spply', 'f1_nbr_elc_deptemp', 'f1_nonutility_prop', 'f1_note_fin_stmnt', 'f1_nuclear_fuel', 'f1_officers_co', 'f1_othr_dfrrd_cr', 'f1_othr_pd_in_cptl', 'f1_othr_reg_assets', 'f1_othr_reg_liab', 'f1_overhead', 'f1_pccidica', 'f1_plant_in_srvce', 'f1_pumped_storage', 'f1_purchased_pwr', 'f1_reconrpt_netinc', 'f1_reg_comm_expn', 'f1_respdnt_control', 'f1_retained_erng', 'f1_r_d_demo_actvty', 'f1_sales_by_sched', 'f1_sale_for_resale', 'f1_sbsdry_totals', 'f1_schedules_list', 'f1_security_holder', 'f1_slry_wg_dstrbtn', 'f1_substations', 'f1_taxacc_ppchrgyr', 'f1_unrcvrd_cost', 'f1_utltyplnt_smmry', 'f1_work', 'f1_xmssn_adds', 'f1_xmssn_elc_bothr', 'f1_xmssn_elc_fothr', 'f1_xmssn_line', 'f1_xtraordnry_loss', 'f1_hydro', 'f1_steam', 'f1_leased', 'f1_sbsdry_detail', 'f1_plant', 'f1_long_term_debt', 'f1_106_2009', 'f1_106a_2009', 'f1_106b_2009', 'f1_208_elc_dep', 'f1_231_trn_stdycst', 'f1_324_elc_expns', 'f1_325_elc_cust', 'f1_331_transiso', 'f1_338_dep_depl', 'f1_397_isorto_stl', 'f1_398_ancl_ps', 'f1_399_mth_peak', 'f1_400_sys_peak', 'f1_400a_iso_peak', 'f1_429_trans_aff', 'f1_allowances_nox', 'f1_cmpinc_hedge_a', 'f1_cmpinc_hedge', 'f1_rg_trn_srv_rev') """tuple: A tuple containing the FERC Form 1 tables that have the same composite primary keys: [respondent_id, report_year, report_prd, row_number, spplmnt_num]. """ # Line numbers, and corresponding FERC account number # from FERC Form 1 pages 204-207, Electric Plant in Service. # Descriptions from: https://www.law.cornell.edu/cfr/text/18/part-101 ferc_electric_plant_accounts = pd.DataFrame.from_records([ # 1. Intangible Plant (2, '301', 'Intangible: Organization'), (3, '302', 'Intangible: Franchises and consents'), (4, '303', 'Intangible: Miscellaneous intangible plant'), (5, 'subtotal_intangible', 'Subtotal: Intangible Plant'), # 2. Production Plant # A. steam production (8, '310', 'Steam production: Land and land rights'), (9, '311', 'Steam production: Structures and improvements'), (10, '312', 'Steam production: Boiler plant equipment'), (11, '313', 'Steam production: Engines and engine-driven generators'), (12, '314', 'Steam production: Turbogenerator units'), (13, '315', 'Steam production: Accessory electric equipment'), (14, '316', 'Steam production: Miscellaneous power plant equipment'), (15, '317', 'Steam production: Asset retirement costs for steam production\ plant'), (16, 'subtotal_steam_production', 'Subtotal: Steam Production Plant'), # B. nuclear production (18, '320', 'Nuclear production: Land and land rights (Major only)'), (19, '321', 'Nuclear production: Structures and improvements (Major\ only)'), (20, '322', 'Nuclear production: Reactor plant equipment (Major only)'), (21, '323', 'Nuclear production: Turbogenerator units (Major only)'), (22, '324', 'Nuclear production: Accessory electric equipment (Major\ only)'), (23, '325', 'Nuclear production: Miscellaneous power plant equipment\ (Major only)'), (24, '326', 'Nuclear production: Asset retirement costs for nuclear\ production plant (Major only)'), (25, 'subtotal_nuclear_produciton', 'Subtotal: Nuclear Production Plant'), # C. hydraulic production (27, '330', 'Hydraulic production: Land and land rights'), (28, '331', 'Hydraulic production: Structures and improvements'), (29, '332', 'Hydraulic production: Reservoirs, dams, and waterways'), (30, '333', 'Hydraulic production: Water wheels, turbines and generators'), (31, '334', 'Hydraulic production: Accessory electric equipment'), (32, '335', 'Hydraulic production: Miscellaneous power plant equipment'), (33, '336', 'Hydraulic production: Roads, railroads and bridges'), (34, '337', 'Hydraulic production: Asset retirement costs for hydraulic\ production plant'), (35, 'subtotal_hydraulic_production', 'Subtotal: Hydraulic Production\ Plant'), # D. other production (37, '340', 'Other production: Land and land rights'), (38, '341', 'Other production: Structures and improvements'), (39, '342', 'Other production: Fuel holders, producers, and accessories'), (40, '343', 'Other production: Prime movers'), (41, '344', 'Other production: Generators'), (42, '345', 'Other production: Accessory electric equipment'), (43, '346', 'Other production: Miscellaneous power plant equipment'), (44, '347', 'Other production: Asset retirement costs for other production\ plant'), (None, '348', 'Other production: Energy Storage Equipment'), (45, 'subtotal_other_production', 'Subtotal: Other Production Plant'), (46, 'subtotal_production', 'Subtotal: Production Plant'), # 3. Transmission Plant, (48, '350', 'Transmission: Land and land rights'), (None, '351', 'Transmission: Energy Storage Equipment'), (49, '352', 'Transmission: Structures and improvements'), (50, '353', 'Transmission: Station equipment'), (51, '354', 'Transmission: Towers and fixtures'), (52, '355', 'Transmission: Poles and fixtures'), (53, '356', 'Transmission: Overhead conductors and devices'), (54, '357', 'Transmission: Underground conduit'), (55, '358', 'Transmission: Underground conductors and devices'), (56, '359', 'Transmission: Roads and trails'), (57, '359.1', 'Transmission: Asset retirement costs for transmission\ plant'), (58, 'subtotal_transmission', 'Subtotal: Transmission Plant'), # 4. Distribution Plant (60, '360', 'Distribution: Land and land rights'), (61, '361', 'Distribution: Structures and improvements'), (62, '362', 'Distribution: Station equipment'), (63, '363', 'Distribution: Storage battery equipment'), (64, '364', 'Distribution: Poles, towers and fixtures'), (65, '365', 'Distribution: Overhead conductors and devices'), (66, '366', 'Distribution: Underground conduit'), (67, '367', 'Distribution: Underground conductors and devices'), (68, '368', 'Distribution: Line transformers'), (69, '369', 'Distribution: Services'), (70, '370', 'Distribution: Meters'), (71, '371', 'Distribution: Installations on customers\' premises'), (72, '372', 'Distribution: Leased property on customers\' premises'), (73, '373', 'Distribution: Street lighting and signal systems'), (74, '374', 'Distribution: Asset retirement costs for distribution plant'), (75, 'subtotal_distribution', 'Subtotal: Distribution Plant'), # 5. Regional Transmission and Market Operation Plant (77, '380', 'Regional transmission: Land and land rights'), (78, '381', 'Regional transmission: Structures and improvements'), (79, '382', 'Regional transmission: Computer hardware'), (80, '383', 'Regional transmission: Computer software'), (81, '384', 'Regional transmission: Communication Equipment'), (82, '385', 'Regional transmission: Miscellaneous Regional Transmission\ and Market Operation Plant'), (83, '386', 'Regional transmission: Asset Retirement Costs for Regional\ Transmission and Market Operation\ Plant'), (84, 'subtotal_regional_transmission', 'Subtotal: Transmission and Market\ Operation Plant'), (None, '387', 'Regional transmission: [Reserved]'), # 6. General Plant (86, '389', 'General: Land and land rights'), (87, '390', 'General: Structures and improvements'), (88, '391', 'General: Office furniture and equipment'), (89, '392', 'General: Transportation equipment'), (90, '393', 'General: Stores equipment'), (91, '394', 'General: Tools, shop and garage equipment'), (92, '395', 'General: Laboratory equipment'), (93, '396', 'General: Power operated equipment'), (94, '397', 'General: Communication equipment'), (95, '398', 'General: Miscellaneous equipment'), (96, 'subtotal_general', 'Subtotal: General Plant'), (97, '399', 'General: Other tangible property'), (98, '399.1', 'General: Asset retirement costs for general plant'), (99, 'total_general', 'TOTAL General Plant'), (100, '101_and_106', 'Electric plant in service (Major only)'), (101, '102_purchased', 'Electric plant purchased'), (102, '102_sold', 'Electric plant sold'), (103, '103', 'Experimental plant unclassified'), (104, 'total_electric_plant', 'TOTAL Electric Plant in Service')], columns=['row_number', 'ferc_account_id', 'ferc_account_description']) """list: A list of tuples containing row numbers, FERC account IDs, and FERC account descriptions from FERC Form 1 pages 204 - 207, Electric Plant in Service. """ # Line numbers, and corresponding FERC account number # from FERC Form 1 page 219, ACCUMULATED PROVISION FOR DEPRECIATION # OF ELECTRIC UTILITY PLANT (Account 108). ferc_accumulated_depreciation = pd.DataFrame.from_records([ # Section A. Balances and Changes During Year (1, 'balance_beginning_of_year', 'Balance Beginning of Year'), (3, 'depreciation_expense', '(403) Depreciation Expense'), (4, 'depreciation_expense_asset_retirement', \ '(403.1) Depreciation Expense for Asset Retirement Costs'), (5, 'expense_electric_plant_leased_to_others', \ '(413) Exp. of Elec. Plt. Leas. to Others'), (6, 'transportation_expenses_clearing',\ 'Transportation Expenses-Clearing'), (7, 'other_clearing_accounts', 'Other Clearing Accounts'), (8, 'other_accounts_specified',\ 'Other Accounts (Specify, details in footnote):'), # blank: might also be other charges like line 17. (9, 'other_charges', 'Other Charges:'), (10, 'total_depreciation_provision_for_year',\ 'TOTAL Deprec. Prov for Year (Enter Total of lines 3 thru 9)'), (11, 'net_charges_for_plant_retired', 'Net Charges for Plant Retired:'), (12, 'book_cost_of_plant_retired', 'Book Cost of Plant Retired'), (13, 'cost_of_removal', 'Cost of Removal'), (14, 'salvage_credit', 'Salvage (Credit)'), (15, 'total_net_charges_for_plant_retired',\ 'TOTAL Net Chrgs. for Plant Ret. (Enter Total of lines 12 thru 14)'), (16, 'other_debit_or_credit_items',\ 'Other Debit or Cr. Items (Describe, details in footnote):'), # blank: can be "Other Charges", e.g. in 2012 for PSCo. (17, 'other_charges_2', 'Other Charges 2'), (18, 'book_cost_or_asset_retirement_costs_retired',\ 'Book Cost or Asset Retirement Costs Retired'), (19, 'balance_end_of_year', \ 'Balance End of Year (Enter Totals of lines 1, 10, 15, 16, and 18)'), # Section B. Balances at End of Year According to Functional Classification (20, 'steam_production_end_of_year', 'Steam Production'), (21, 'nuclear_production_end_of_year', 'Nuclear Production'), (22, 'hydraulic_production_end_of_year',\ 'Hydraulic Production-Conventional'), (23, 'pumped_storage_end_of_year', 'Hydraulic Production-Pumped Storage'), (24, 'other_production', 'Other Production'), (25, 'transmission', 'Transmission'), (26, 'distribution', 'Distribution'), (27, 'regional_transmission_and_market_operation', 'Regional Transmission and Market Operation'), (28, 'general', 'General'), (29, 'total', 'TOTAL (Enter Total of lines 20 thru 28)')], columns=['row_number', 'line_id', 'ferc_account_description']) """list: A list of tuples containing row numbers, FERC account IDs, and FERC account descriptions from FERC Form 1 page 219, Accumulated Provision for Depreciation of electric utility plant(Account 108). """ ###################################################################### # Constants from EIA From 923 used within init.py module ###################################################################### # From Page 7 of EIA Form 923, Census Region a US state is located in census_region = { 'NEW': 'New England', 'MAT': 'Middle Atlantic', 'SAT': 'South Atlantic', 'ESC': 'East South Central', 'WSC': 'West South Central', 'ENC': 'East North Central', 'WNC': 'West North Central', 'MTN': 'Mountain', 'PACC': 'Pacific Contiguous (OR, WA, CA)', 'PACN': 'Pacific Non-Contiguous (AK, HI)', } """dict: A dictionary mapping Census Region abbreviations (keys) to Census Region names (values). """ # From Page 7 of EIA Form923 # Static list of NERC (North American Electric Reliability Corporation) # regions, used for where plant is located nerc_region = { 'NPCC': 'Northeast Power Coordinating Council', 'ASCC': 'Alaska Systems Coordinating Council', 'HICC': 'Hawaiian Islands Coordinating Council', 'MRO': 'Midwest Reliability Organization', 'SERC': 'SERC Reliability Corporation', 'RFC': 'Reliability First Corporation', 'SPP': 'Southwest Power Pool', 'TRE': 'Texas Regional Entity', 'FRCC': 'Florida Reliability Coordinating Council', 'WECC': 'Western Electricity Coordinating Council' } """dict: A dictionary mapping NERC Region abbreviations (keys) to NERC Region names (values). """ # From Page 7 of EIA Form 923 EIA’s internal consolidated NAICS sectors. # For internal purposes, EIA consolidates NAICS categories into seven groups. sector_eia = { # traditional regulated electric utilities '1': 'Electric Utility', # Independent power producers which are not cogenerators '2': 'NAICS-22 Non-Cogen', # Independent power producers which are cogenerators, but whose # primary business purpose is the sale of electricity to the public '3': 'NAICS-22 Cogen', # Commercial non-cogeneration facilities that produce electric power, # are connected to the gird, and can sell power to the public '4': 'Commercial NAICS Non-Cogen', # Commercial cogeneration facilities that produce electric power, are # connected to the grid, and can sell power to the public '5': 'Commercial NAICS Cogen', # Industrial non-cogeneration facilities that produce electric power, are # connected to the gird, and can sell power to the public '6': 'Industrial NAICS Non-Cogen', # Industrial cogeneration facilities that produce electric power, are # connected to the gird, and can sell power to the public '7': 'Industrial NAICS Cogen' } """dict: A dictionary mapping EIA numeric codes (keys) to EIA’s internal consolidated NAICS sectors (values). """ # EIA 923: EIA Type of prime mover: prime_movers_eia923 = { 'BA': 'Energy Storage, Battery', 'BT': 'Turbines Used in a Binary Cycle. Including those used for geothermal applications', 'CA': 'Combined-Cycle -- Steam Part', 'CC': 'Combined-Cycle, Total Unit', 'CE': 'Energy Storage, Compressed Air', 'CP': 'Energy Storage, Concentrated Solar Power', 'CS': 'Combined-Cycle Single-Shaft Combustion Turbine and Steam Turbine share of single', 'CT': 'Combined-Cycle Combustion Turbine Part', 'ES': 'Energy Storage, Other (Specify on Schedule 9, Comments)', 'FC': 'Fuel Cell', 'FW': 'Energy Storage, Flywheel', 'GT': 'Combustion (Gas) Turbine. Including Jet Engine design', 'HA': 'Hydrokinetic, Axial Flow Turbine', 'HB': 'Hydrokinetic, Wave Buoy', 'HK': 'Hydrokinetic, Other', 'HY': 'Hydraulic Turbine. Including turbines associated with delivery of water by pipeline.', 'IC': 'Internal Combustion (diesel, piston, reciprocating) Engine', 'PS': 'Energy Storage, Reversible Hydraulic Turbine (Pumped Storage)', 'OT': 'Other', 'ST': 'Steam Turbine. Including Nuclear, Geothermal, and Solar Steam (does not include Combined Cycle).', 'PV': 'Photovoltaic', 'WT': 'Wind Turbine, Onshore', 'WS': 'Wind Turbine, Offshore' } """dict: A dictionary mapping EIA 923 prime mover codes (keys) and prime mover names / descriptions (values). """ # EIA 923: The fuel code reported to EIA.Two or three letter alphanumeric: fuel_type_eia923 = { 'AB': 'Agricultural By-Products', 'ANT': 'Anthracite Coal', 'BFG': 'Blast Furnace Gas', 'BIT': 'Bituminous Coal', 'BLQ': 'Black Liquor', 'CBL': 'Coal, Blended', 'DFO': 'Distillate Fuel Oil. Including diesel, No. 1, No. 2, and No. 4 fuel oils.', 'GEO': 'Geothermal', 'JF': 'Jet Fuel', 'KER': 'Kerosene', 'LFG': 'Landfill Gas', 'LIG': 'Lignite Coal', 'MSB': 'Biogenic Municipal Solid Waste', 'MSN': 'Non-biogenic Municipal Solid Waste', 'MSW': 'Municipal Solid Waste', 'MWH': 'Electricity used for energy storage', 'NG': 'Natural Gas', 'NUC': 'Nuclear. Including Uranium, Plutonium, and Thorium.', 'OBG': 'Other Biomass Gas. Including digester gas, methane, and other biomass gases.', 'OBL': 'Other Biomass Liquids', 'OBS': 'Other Biomass Solids', 'OG': 'Other Gas', 'OTH': 'Other Fuel', 'PC': 'Petroleum Coke', 'PG': 'Gaseous Propane', 'PUR': 'Purchased Steam', 'RC': 'Refined Coal', 'RFO': 'Residual Fuel Oil. Including No. 5 & 6 fuel oils and bunker C fuel oil.', 'SC': 'Coal-based Synfuel. Including briquettes, pellets, or extrusions, which are formed by binding materials or processes that recycle materials.', 'SGC': 'Coal-Derived Synthesis Gas', 'SGP': 'Synthesis Gas from Petroleum Coke', 'SLW': 'Sludge Waste', 'SUB': 'Subbituminous Coal', 'SUN': 'Solar', 'TDF': 'Tire-derived Fuels', 'WAT': 'Water at a Conventional Hydroelectric Turbine and water used in Wave Buoy Hydrokinetic Technology, current Hydrokinetic Technology, Tidal Hydrokinetic Technology, and Pumping Energy for Reversible (Pumped Storage) Hydroelectric Turbines.', 'WC': 'Waste/Other Coal. Including anthracite culm, bituminous gob, fine coal, lignite waste, waste coal.', 'WDL': 'Wood Waste Liquids, excluding Black Liquor. Including red liquor, sludge wood, spent sulfite liquor, and other wood-based liquids.', 'WDS': 'Wood/Wood Waste Solids. Including paper pellets, railroad ties, utility polies, wood chips, bark, and other wood waste solids.', 'WH': 'Waste Heat not directly attributed to a fuel source', 'WND': 'Wind', 'WO': 'Waste/Other Oil. Including crude oil, liquid butane, liquid propane, naphtha, oil waste, re-refined moto oil, sludge oil, tar oil, or other petroleum-based liquid wastes.' } """dict: A dictionary mapping EIA 923 fuel type codes (keys) and fuel type names / descriptions (values). """ # Fuel type strings for EIA 923 generator fuel table fuel_type_eia923_gen_fuel_coal_strings = [ 'ant', 'bit', 'cbl', 'lig', 'pc', 'rc', 'sc', 'sub', 'wc', ] """list: The list of EIA 923 Generation Fuel strings associated with coal fuel. """ fuel_type_eia923_gen_fuel_oil_strings = [ 'dfo', 'rfo', 'wo', 'jf', 'ker', ] """list: The list of EIA 923 Generation Fuel strings associated with oil fuel. """ fuel_type_eia923_gen_fuel_gas_strings = [ 'bfg', 'lfg', 'ng', 'og', 'obg', 'pg', 'sgc', 'sgp', ] """list: The list of EIA 923 Generation Fuel strings associated with gas fuel. """ fuel_type_eia923_gen_fuel_solar_strings = ['sun', ] """list: The list of EIA 923 Generation Fuel strings associated with solar power. """ fuel_type_eia923_gen_fuel_wind_strings = ['wnd', ] """list: The list of EIA 923 Generation Fuel strings associated with wind power. """ fuel_type_eia923_gen_fuel_hydro_strings = ['wat', ] """list: The list of EIA 923 Generation Fuel strings associated with hydro power. """ fuel_type_eia923_gen_fuel_nuclear_strings = ['nuc', ] """list: The list of EIA 923 Generation Fuel strings associated with nuclear power. """ fuel_type_eia923_gen_fuel_waste_strings = [ 'ab', 'blq', 'msb', 'msn', 'msw', 'obl', 'obs', 'slw', 'tdf', 'wdl', 'wds'] """list: The list of EIA 923 Generation Fuel strings associated with solid waste fuel. """ fuel_type_eia923_gen_fuel_other_strings = ['geo', 'mwh', 'oth', 'pur', 'wh', ] """list: The list of EIA 923 Generation Fuel strings associated with geothermal power. """ fuel_type_eia923_gen_fuel_simple_map = { 'coal': fuel_type_eia923_gen_fuel_coal_strings, 'oil': fuel_type_eia923_gen_fuel_oil_strings, 'gas': fuel_type_eia923_gen_fuel_gas_strings, 'solar': fuel_type_eia923_gen_fuel_solar_strings, 'wind': fuel_type_eia923_gen_fuel_wind_strings, 'hydro': fuel_type_eia923_gen_fuel_hydro_strings, 'nuclear': fuel_type_eia923_gen_fuel_nuclear_strings, 'waste': fuel_type_eia923_gen_fuel_waste_strings, 'other': fuel_type_eia923_gen_fuel_other_strings, } """dict: A dictionary mapping EIA 923 Generation Fuel fuel types (keys) to lists of strings associated with that fuel type (values). """ # Fuel type strings for EIA 923 boiler fuel table fuel_type_eia923_boiler_fuel_coal_strings = [ 'ant', 'bit', 'lig', 'pc', 'rc', 'sc', 'sub', 'wc', ] """list: A list of strings from EIA 923 Boiler Fuel associated with fuel type coal. """ fuel_type_eia923_boiler_fuel_oil_strings = ['dfo', 'rfo', 'wo', 'jf', 'ker', ] """list: A list of strings from EIA 923 Boiler Fuel associated with fuel type oil. """ fuel_type_eia923_boiler_fuel_gas_strings = [ 'bfg', 'lfg', 'ng', 'og', 'obg', 'pg', 'sgc', 'sgp', ] """list: A list of strings from EIA 923 Boiler Fuel associated with fuel type gas. """ fuel_type_eia923_boiler_fuel_waste_strings = [ 'ab', 'blq', 'msb', 'msn', 'obl', 'obs', 'slw', 'tdf', 'wdl', 'wds', ] """list: A list of strings from EIA 923 Boiler Fuel associated with fuel type waste. """ fuel_type_eia923_boiler_fuel_other_strings = ['oth', 'pur', 'wh', ] """list: A list of strings from EIA 923 Boiler Fuel associated with fuel type other. """ fuel_type_eia923_boiler_fuel_simple_map = { 'coal': fuel_type_eia923_boiler_fuel_coal_strings, 'oil': fuel_type_eia923_boiler_fuel_oil_strings, 'gas': fuel_type_eia923_boiler_fuel_gas_strings, 'waste': fuel_type_eia923_boiler_fuel_waste_strings, 'other': fuel_type_eia923_boiler_fuel_other_strings, } """dict: A dictionary mapping EIA 923 Boiler Fuel fuel types (keys) to lists of strings associated with that fuel type (values). """ # PUDL consolidation of EIA923 AER fuel type strings into same categories as # 'energy_source_eia923' plus additional renewable and nuclear categories. # These classifications are not currently used, as the EIA fuel type and energy # source designations provide more detailed information. aer_coal_strings = ['col', 'woc', 'pc'] """list: A list of EIA 923 AER fuel type strings associated with coal. """ aer_gas_strings = ['mlg', 'ng', 'oog'] """list: A list of EIA 923 AER fuel type strings associated with gas. """ aer_oil_strings = ['dfo', 'rfo', 'woo'] """list: A list of EIA 923 AER fuel type strings associated with oil. """ aer_solar_strings = ['sun'] """list: A list of EIA 923 AER fuel type strings associated with solar power. """ aer_wind_strings = ['wnd'] """list: A list of EIA 923 AER fuel type strings associated with wind power. """ aer_hydro_strings = ['hps', 'hyc'] """list: A list of EIA 923 AER fuel type strings associated with hydro power. """ aer_nuclear_strings = ['nuc'] """list: A list of EIA 923 AER fuel type strings associated with nuclear power. """ aer_waste_strings = ['www'] """list: A list of EIA 923 AER fuel type strings associated with waste. """ aer_other_strings = ['geo', 'orw', 'oth'] """list: A list of EIA 923 AER fuel type strings associated with other fuel. """ aer_fuel_type_strings = { 'coal': aer_coal_strings, 'gas': aer_gas_strings, 'oil': aer_oil_strings, 'solar': aer_solar_strings, 'wind': aer_wind_strings, 'hydro': aer_hydro_strings, 'nuclear': aer_nuclear_strings, 'waste': aer_waste_strings, 'other': aer_other_strings } """dict: A dictionary mapping EIA 923 AER fuel types (keys) to lists of strings associated with that fuel type (values). """ # EIA 923: A partial aggregation of the reported fuel type codes into # larger categories used by EIA in, for example, # the Annual Energy Review (AER).Two or three letter alphanumeric. # See the Fuel Code table (Table 5), below: fuel_type_aer_eia923 = { 'SUN': 'Solar PV and thermal', 'COL': 'Coal', 'DFO': 'Distillate Petroleum', 'GEO': 'Geothermal', 'HPS': 'Hydroelectric Pumped Storage', 'HYC': 'Hydroelectric Conventional', 'MLG': 'Biogenic Municipal Solid Waste and Landfill Gas', 'NG': 'Natural Gas', 'NUC': 'Nuclear', 'OOG': 'Other Gases', 'ORW': 'Other Renewables', 'OTH': 'Other (including nonbiogenic MSW)', 'PC': 'Petroleum Coke', 'RFO': 'Residual Petroleum', 'WND': 'Wind', 'WOC': 'Waste Coal', 'WOO': 'Waste Oil', 'WWW': 'Wood and Wood Waste' } """dict: A dictionary mapping EIA 923 AER fuel types (keys) to lists of strings associated with that fuel type (values). """ fuel_type_eia860_coal_strings = ['ant', 'bit', 'cbl', 'lig', 'pc', 'rc', 'sc', 'sub', 'wc', 'coal', 'petroleum coke', 'col', 'woc'] """list: A list of strings from EIA 860 associated with fuel type coal. """ fuel_type_eia860_oil_strings = ['dfo', 'jf', 'ker', 'rfo', 'wo', 'woo', 'petroleum'] """list: A list of strings from EIA 860 associated with fuel type oil. """ fuel_type_eia860_gas_strings = ['bfg', 'lfg', 'mlg', 'ng', 'obg', 'og', 'pg', 'sgc', 'sgp', 'natural gas', 'other gas', 'oog', 'sg'] """list: A list of strings from EIA 860 associated with fuel type gas. """ fuel_type_eia860_solar_strings = ['sun', 'solar'] """list: A list of strings from EIA 860 associated with solar power. """ fuel_type_eia860_wind_strings = ['wnd', 'wind', 'wt'] """list: A list of strings from EIA 860 associated with wind power. """ fuel_type_eia860_hydro_strings = ['wat', 'hyc', 'hps', 'hydro'] """list: A list of strings from EIA 860 associated with hydro power. """ fuel_type_eia860_nuclear_strings = ['nuc', 'nuclear'] """list: A list of strings from EIA 860 associated with nuclear power. """ fuel_type_eia860_waste_strings = ['ab', 'blq', 'bm', 'msb', 'msn', 'obl', 'obs', 'slw', 'tdf', 'wdl', 'wds', 'biomass', 'msw', 'www'] """list: A list of strings from EIA 860 associated with fuel type waste. """ fuel_type_eia860_other_strings = ['mwh', 'oth', 'pur', 'wh', 'geo', 'none', 'orw', 'other'] """list: A list of strings from EIA 860 associated with fuel type other. """ fuel_type_eia860_simple_map = { 'coal': fuel_type_eia860_coal_strings, 'oil': fuel_type_eia860_oil_strings, 'gas': fuel_type_eia860_gas_strings, 'solar': fuel_type_eia860_solar_strings, 'wind': fuel_type_eia860_wind_strings, 'hydro': fuel_type_eia860_hydro_strings, 'nuclear': fuel_type_eia860_nuclear_strings, 'waste': fuel_type_eia860_waste_strings, 'other': fuel_type_eia860_other_strings, } """dict: A dictionary mapping EIA 860 fuel types (keys) to lists of strings associated with that fuel type (values). """ # EIA 923/860: Lumping of energy source categories. energy_source_eia_simple_map = { 'coal': ['ANT', 'BIT', 'LIG', 'PC', 'SUB', 'WC', 'RC'], 'oil': ['DFO', 'JF', 'KER', 'RFO', 'WO'], 'gas': ['BFG', 'LFG', 'NG', 'OBG', 'OG', 'PG', 'SG', 'SGC', 'SGP'], 'solar': ['SUN'], 'wind': ['WND'], 'hydro': ['WAT'], 'nuclear': ['NUC'], 'waste': ['AB', 'BLQ', 'MSW', 'OBL', 'OBS', 'SLW', 'TDF', 'WDL', 'WDS'], 'other': ['GEO', 'MWH', 'OTH', 'PUR', 'WH'] } """dict: A dictionary mapping EIA fuel types (keys) to fuel codes (values). """ fuel_group_eia923_simple_map = { 'coal': ['coal', 'petroleum coke'], 'oil': ['petroleum'], 'gas': ['natural gas', 'other gas'] } """dict: A dictionary mapping EIA 923 simple fuel types("oil", "coal", "gas") (keys) to fuel types (values). """ # EIA 923: The type of physical units fuel consumption is reported in. # All consumption is reported in either short tons for solids, # thousands of cubic feet for gases, and barrels for liquids. fuel_units_eia923 = { 'mcf': 'Thousands of cubic feet (for gases)', 'short_tons': 'Short tons (for solids)', 'barrels': 'Barrels (for liquids)' } """dict: A dictionary mapping EIA 923 fuel units (keys) to fuel unit descriptions (values). """ # EIA 923: Designates the purchase type under which receipts occurred # in the reporting month. One or two character alphanumeric: contract_type_eia923 = { 'C': 'Contract - Fuel received under a purchase order or contract with a term of one year or longer. Contracts with a shorter term are considered spot purchases ', 'NC': 'New Contract - Fuel received under a purchase order or contract with duration of one year or longer, under which deliveries were first made during the reporting month', 'N': 'New Contract - see NC code. This abbreviation existed only in 2008 before being replaced by NC.', 'S': 'Spot Purchase', 'T': 'Tolling Agreement – Fuel received under a tolling agreement (bartering arrangement of fuel for generation)' } """dict: A dictionary mapping EIA 923 contract codes (keys) to contract descriptions (values) for each month in the Fuel Receipts and Costs table. """ # EIA 923: The fuel code associated with the fuel receipt. # Defined on Page 7 of EIA Form 923 # Two or three character alphanumeric: energy_source_eia923 = { 'ANT': 'Anthracite Coal', 'BFG': 'Blast Furnace Gas', 'BM': 'Biomass', 'BIT': 'Bituminous Coal', 'DFO': 'Distillate Fuel Oil. Including diesel, No. 1, No. 2, and No. 4 fuel oils.', 'JF': 'Jet Fuel', 'KER': 'Kerosene', 'LIG': 'Lignite Coal', 'NG': 'Natural Gas', 'PC': 'Petroleum Coke', 'PG': 'Gaseous Propone', 'OG': 'Other Gas', 'RC': 'Refined Coal', 'RFO': 'Residual Fuel Oil. Including No. 5 & 6 fuel oils and bunker C fuel oil.', 'SG': 'Synthesis Gas from Petroleum Coke', 'SGP': 'Petroleum Coke Derived Synthesis Gas', 'SC': 'Coal-based Synfuel. Including briquettes, pellets, or extrusions, which are formed by binding materials or processes that recycle materials.', 'SUB': 'Subbituminous Coal', 'WC': 'Waste/Other Coal. Including anthracite culm, bituminous gob, fine coal, lignite waste, waste coal.', 'WO': 'Waste/Other Oil. Including crude oil, liquid butane, liquid propane, naphtha, oil waste, re-refined moto oil, sludge oil, tar oil, or other petroleum-based liquid wastes.', } """dict: A dictionary mapping fuel codes (keys) to fuel descriptions (values) for each fuel receipt from the EIA 923 Fuel Receipts and Costs table. """ # EIA 923 Fuel Group, from Page 7 EIA Form 923 # Groups fossil fuel energy sources into fuel groups that are located in the # Electric Power Monthly: Coal, Natural Gas, Petroleum, Petroleum Coke. fuel_group_eia923 = ( 'coal', 'natural_gas', 'petroleum', 'petroleum_coke', 'other_gas' ) """tuple: A tuple containing EIA 923 fuel groups. """ # EIA 923: Type of Coal Mine as defined on Page 7 of EIA Form 923 coalmine_type_eia923 = { 'P': 'Preparation Plant', 'S': 'Surface', 'U': 'Underground', 'US': 'Both an underground and surface mine with most coal extracted from underground', 'SU': 'Both an underground and surface mine with most coal extracted from surface', } """dict: A dictionary mapping EIA 923 coal mine type codes (keys) to descriptions (values). """ # EIA 923: State abbreviation related to coal mine location. # Country abbreviations are also used in this category, but they are # non-standard because of collisions with US state names. Instead of using # the provided non-standard names, we convert to ISO-3166-1 three letter # country codes https://en.wikipedia.org/wiki/ISO_3166-1_alpha-3 coalmine_country_eia923 = { 'AU': 'AUS', # Australia 'CL': 'COL', # Colombia 'CN': 'CAN', # Canada 'IS': 'IDN', # Indonesia 'PL': 'POL', # Poland 'RS': 'RUS', # Russia 'UK': 'GBR', # United Kingdom of Great Britain 'VZ': 'VEN', # Venezuela 'OT': 'other_country', 'IM': 'unknown' } """dict: A dictionary mapping coal mine country codes (keys) to ISO-3166-1 three letter country codes (values). """ # EIA 923: Mode for the longest / second longest distance. transport_modes_eia923 = { 'RR': 'Rail: Shipments of fuel moved to consumers by rail \ (private or public/commercial). Included is coal hauled to or \ away from a railroad siding by truck if the truck did not use public\ roads.', 'RV': 'River: Shipments of fuel moved to consumers via river by barge. \ Not included are shipments to Great Lakes coal loading docks, \ tidewater piers, or coastal ports.', 'GL': 'Great Lakes: Shipments of coal moved to consumers via \ the Great Lakes. These shipments are moved via the Great Lakes \ coal loading docks, which are identified by name and location as \ follows: Conneaut Coal Storage & Transfer, Conneaut, Ohio; \ NS Coal Dock (Ashtabula Coal Dock), Ashtabula, Ohio; \ Sandusky Coal Pier, Sandusky, Ohio; Toledo Docks, Toledo, Ohio; \ KCBX Terminals Inc., Chicago, Illinois; \ Superior Midwest Energy Terminal, Superior, Wisconsin', 'TP': 'Tidewater Piers and Coastal Ports: Shipments of coal moved to \ Tidewater Piers and Coastal Ports for further shipments to consumers \ via coastal water or ocean. The Tidewater Piers and Coastal Ports \ are identified by name and location as follows: Dominion Terminal \ Associates, Newport News, Virginia; McDuffie Coal Terminal, Mobile, \ Alabama; IC Railmarine Terminal, Convent, Louisiana; \ International Marine Terminals, Myrtle Grove, Louisiana; \ Cooper/T. Smith Stevedoring Co. Inc., Darrow, Louisiana; \ Seward Terminal Inc., Seward, Alaska; Los Angeles Export Terminal, \ Inc., Los Angeles, California; Levin-Richmond Terminal Corp., \ Richmond, California; Baltimore Terminal, Baltimore, Maryland; \ Norfolk Southern Lamberts Point P-6, Norfolk, Virginia; \ Chesapeake Bay Piers, Baltimore, Maryland; Pier IX Terminal Company, \ Newport News, Virginia; Electro-Coal Transport Corp., Davant, \ Louisiana', 'WT': 'Water: Shipments of fuel moved to consumers by other waterways.', 'TR': 'Truck: Shipments of fuel moved to consumers by truck. \ Not included is fuel hauled to or away from a railroad siding by \ truck on non-public roads.', 'tr': 'Truck: Shipments of fuel moved to consumers by truck. \ Not included is fuel hauled to or away from a railroad siding by \ truck on non-public roads.', 'TC': 'Tramway/Conveyor: Shipments of fuel moved to consumers \ by tramway or conveyor.', 'SP': 'Slurry Pipeline: Shipments of coal moved to consumers \ by slurry pipeline.', 'PL': 'Pipeline: Shipments of fuel moved to consumers by pipeline' } """dict: A dictionary mapping primary and secondary transportation mode codes (keys) to descriptions (values). """ # we need to include all of the columns which we want to keep for either the # entity or annual tables. The order here matters. We need to harvest the plant # location before harvesting the location of the utilites for example. entities = { 'plants': [ # base cols ['plant_id_eia'], # static cols ['balancing_authority_code_eia', 'balancing_authority_name_eia', 'city', 'county', 'ferc_cogen_status', 'ferc_exempt_wholesale_generator', 'ferc_small_power_producer', 'grid_voltage_2_kv', 'grid_voltage_3_kv', 'grid_voltage_kv', 'iso_rto_code', 'latitude', 'longitude', 'service_area', 'plant_name_eia', 'primary_purpose_naics_id', 'sector_id', 'sector_name', 'state', 'street_address', 'zip_code'], # annual cols ['ash_impoundment', 'ash_impoundment_lined', 'ash_impoundment_status', 'datum', 'energy_storage', 'ferc_cogen_docket_no', 'water_source', 'ferc_exempt_wholesale_generator_docket_no', 'ferc_small_power_producer_docket_no', 'liquefied_natural_gas_storage', 'natural_gas_local_distribution_company', 'natural_gas_storage', 'natural_gas_pipeline_name_1', 'natural_gas_pipeline_name_2', 'natural_gas_pipeline_name_3', 'nerc_region', 'net_metering', 'pipeline_notes', 'regulatory_status_code', 'transmission_distribution_owner_id', 'transmission_distribution_owner_name', 'transmission_distribution_owner_state', 'utility_id_eia'], # need type fixing {}, ], 'generators': [ # base cols ['plant_id_eia', 'generator_id'], # static cols ['prime_mover_code', 'duct_burners', 'operating_date', 'topping_bottoming_code', 'solid_fuel_gasification', 'pulverized_coal_tech', 'fluidized_bed_tech', 'subcritical_tech', 'supercritical_tech', 'ultrasupercritical_tech', 'stoker_tech', 'other_combustion_tech', 'bypass_heat_recovery', 'rto_iso_lmp_node_id', 'rto_iso_location_wholesale_reporting_id', 'associated_combined_heat_power', 'original_planned_operating_date', 'operating_switch', 'previously_canceled'], # annual cols ['capacity_mw', 'fuel_type_code_pudl', 'multiple_fuels', 'ownership_code', 'owned_by_non_utility', 'deliver_power_transgrid', 'summer_capacity_mw', 'winter_capacity_mw', 'summer_capacity_estimate', 'winter_capacity_estimate', 'minimum_load_mw', 'distributed_generation', 'technology_description', 'reactive_power_output_mvar', 'energy_source_code_1', 'energy_source_code_2', 'energy_source_code_3', 'energy_source_code_4', 'energy_source_code_5', 'energy_source_code_6', 'energy_source_1_transport_1', 'energy_source_1_transport_2', 'energy_source_1_transport_3', 'energy_source_2_transport_1', 'energy_source_2_transport_2', 'energy_source_2_transport_3', 'startup_source_code_1', 'startup_source_code_2', 'startup_source_code_3', 'startup_source_code_4', 'time_cold_shutdown_full_load_code', 'syncronized_transmission_grid', 'turbines_num', 'operational_status_code', 'operational_status', 'planned_modifications', 'planned_net_summer_capacity_uprate_mw', 'planned_net_winter_capacity_uprate_mw', 'planned_new_capacity_mw', 'planned_uprate_date', 'planned_net_summer_capacity_derate_mw', 'planned_net_winter_capacity_derate_mw', 'planned_derate_date', 'planned_new_prime_mover_code', 'planned_energy_source_code_1', 'planned_repower_date', 'other_planned_modifications', 'other_modifications_date', 'planned_retirement_date', 'carbon_capture', 'cofire_fuels', 'switch_oil_gas', 'turbines_inverters_hydrokinetics', 'nameplate_power_factor', 'uprate_derate_during_year', 'uprate_derate_completed_date', 'current_planned_operating_date', 'summer_estimated_capability_mw', 'winter_estimated_capability_mw', 'retirement_date', 'utility_id_eia', 'data_source'], # need type fixing {} ], # utilities must come after plants. plant location needs to be # removed before the utility locations are compiled 'utilities': [ # base cols ['utility_id_eia'], # static cols ['utility_name_eia'], # annual cols ['street_address', 'city', 'state', 'zip_code', 'entity_type', 'plants_reported_owner', 'plants_reported_operator', 'plants_reported_asset_manager', 'plants_reported_other_relationship', 'attention_line', 'address_2', 'zip_code_4', 'contact_firstname', 'contact_lastname', 'contact_title', 'contact_firstname_2', 'contact_lastname_2', 'contact_title_2', 'phone_extension_1', 'phone_extension_2', 'phone_number_1', 'phone_number_2'], # need type fixing {'utility_id_eia': 'int64', }, ], 'boilers': [ # base cols ['plant_id_eia', 'boiler_id'], # static cols ['prime_mover_code'], # annual cols [], # need type fixing {}, ] } """dict: A dictionary containing table name strings (keys) and lists of columns to keep for those tables (values). """ epacems_tables = ("hourly_emissions_epacems") """tuple: A tuple containing tables of EPA CEMS data to pull into PUDL. """ files_dict_epaipm = { 'transmission_single_epaipm': '*table_3-21*', 'transmission_joint_epaipm': '*transmission_joint_ipm*', 'load_curves_epaipm': '*table_2-2_*', 'plant_region_map_epaipm': '*needs_v6*', } """dict: A dictionary of EPA IPM tables and strings that files of those tables contain. """ epaipm_url_ext = { 'transmission_single_epaipm': 'table_3-21_annual_transmission_capabilities_of_u.s._model_regions_in_epa_platform_v6_-_2021.xlsx', 'load_curves_epaipm': 'table_2-2_load_duration_curves_used_in_epa_platform_v6.xlsx', 'plant_region_map_epaipm': 'needs_v6_november_2018_reference_case_0.xlsx', } """dict: A dictionary of EPA IPM tables and associated URLs extensions for downloading that table's data. """ epaipm_region_names = [ 'ERC_PHDL', 'ERC_REST', 'ERC_FRNT', 'ERC_GWAY', 'ERC_WEST', 'FRCC', 'NENG_CT', 'NENGREST', 'NENG_ME', 'MIS_AR', 'MIS_IL', 'MIS_INKY', 'MIS_IA', 'MIS_MIDA', 'MIS_LA', 'MIS_LMI', 'MIS_MNWI', 'MIS_D_MS', 'MIS_MO', 'MIS_MAPP', 'MIS_AMSO', 'MIS_WOTA', 'MIS_WUMS', 'NY_Z_A', 'NY_Z_B', 'NY_Z_C&E', 'NY_Z_D', 'NY_Z_F', 'NY_Z_G-I', 'NY_Z_J', 'NY_Z_K', 'PJM_West', 'PJM_AP', 'PJM_ATSI', 'PJM_COMD', 'PJM_Dom', 'PJM_EMAC', 'PJM_PENE', 'PJM_SMAC', 'PJM_WMAC', 'S_C_KY', 'S_C_TVA', 'S_D_AECI', 'S_SOU', 'S_VACA', 'SPP_NEBR', 'SPP_N', 'SPP_SPS', 'SPP_WEST', 'SPP_KIAM', 'SPP_WAUE', 'WECC_AZ', 'WEC_BANC', 'WECC_CO', 'WECC_ID', 'WECC_IID', 'WEC_LADW', 'WECC_MT', 'WECC_NM', 'WEC_CALN', 'WECC_NNV', 'WECC_PNW', 'WEC_SDGE', 'WECC_SCE', 'WECC_SNV', 'WECC_UT', 'WECC_WY', 'CN_AB', 'CN_BC', 'CN_NL', 'CN_MB', 'CN_NB', 'CN_NF', 'CN_NS', 'CN_ON', 'CN_PE', 'CN_PQ', 'CN_SK', ] """list: A list of EPA IPM region names.""" epaipm_region_aggregations = { 'PJM': [ 'PJM_AP', 'PJM_ATSI', 'PJM_COMD', 'PJM_Dom', 'PJM_EMAC', 'PJM_PENE', 'PJM_SMAC', 'PJM_WMAC' ], 'NYISO': [ 'NY_Z_A', 'NY_Z_B', 'NY_Z_C&E', 'NY_Z_D', 'NY_Z_F', 'NY_Z_G-I', 'NY_Z_J', 'NY_Z_K' ], 'ISONE': ['NENG_CT', 'NENGREST', 'NENG_ME'], 'MISO': [ 'MIS_AR', 'MIS_IL', 'MIS_INKY', 'MIS_IA', 'MIS_MIDA', 'MIS_LA', 'MIS_LMI', 'MIS_MNWI', 'MIS_D_MS', 'MIS_MO', 'MIS_MAPP', 'MIS_AMSO', 'MIS_WOTA', 'MIS_WUMS' ], 'SPP': [ 'SPP_NEBR', 'SPP_N', 'SPP_SPS', 'SPP_WEST', 'SPP_KIAM', 'SPP_WAUE' ], 'WECC_NW': [ 'WECC_CO', 'WECC_ID', 'WECC_MT', 'WECC_NNV', 'WECC_PNW', 'WECC_UT', 'WECC_WY' ] } """ dict: A dictionary containing EPA IPM regions (keys) and lists of their associated abbreviations (values). """ epaipm_rename_dict = { 'transmission_single_epaipm': { 'From': 'region_from', 'To': 'region_to', 'Capacity TTC (MW)': 'firm_ttc_mw', 'Energy TTC (MW)': 'nonfirm_ttc_mw', 'Transmission Tariff (2016 mills/kWh)': 'tariff_mills_kwh', }, 'load_curves_epaipm': { 'day': 'day_of_year', 'region': 'region_id_epaipm', }, 'plant_region_map_epaipm': { 'ORIS Plant Code': 'plant_id_eia', 'Region Name': 'region', }, } glue_pudl_tables = ('plants_eia', 'plants_ferc', 'plants', 'utilities_eia', 'utilities_ferc', 'utilities', 'utility_plant_assn') """ dict: A dictionary of dictionaries containing EPA IPM tables (keys) and items for each table to be renamed along with the replacement name (values). """ data_sources = ( 'eia860', 'eia861', 'eia923', 'epacems', 'epaipm', 'ferc1', 'ferc714', # 'pudl' ) """tuple: A tuple containing the data sources we are able to pull into PUDL.""" # All the years for which we ought to be able to download these data sources data_years = { 'eia860': tuple(range(2001, 2020)), 'eia861': tuple(range(1990, 2020)), 'eia923': tuple(range(2001, 2020)), 'epacems': tuple(range(1995, 2021)), 'epaipm': (None, ), 'ferc1': tuple(range(1994, 2020)), 'ferc714': (None, ), } """ dict: A dictionary of data sources (keys) and tuples containing the years that we expect to be able to download for each data source (values). """ # The full set of years we currently expect to be able to ingest, per source: working_partitions = { 'eia860': { 'years': tuple(range(2004, 2020)) }, 'eia860m': { 'year_month': '2020-11' }, 'eia861': { 'years': tuple(range(2001, 2020)) }, 'eia923': { 'years': tuple(range(2001, 2020)) }, 'epacems': { 'years': tuple(range(1995, 2021)), 'states': tuple(cems_states.keys())}, 'ferc1': { 'years': tuple(range(1994, 2020)) }, 'ferc714': {}, } """ dict: A dictionary of data sources (keys) and dictionaries (values) of names of partition type (sub-key) and paritions (sub-value) containing the paritions such as tuples of years for each data source that are able to be ingested into PUDL. """ pudl_tables = { 'eia860': eia860_pudl_tables, 'eia861': ( "service_territory_eia861", "balancing_authority_eia861", "sales_eia861", "advanced_metering_infrastructure_eia861", "demand_response_eia861", "demand_side_management_eia861", "distributed_generation_eia861", "distribution_systems_eia861", "dynamic_pricing_eia861", "energy_efficiency_eia861", "green_pricing_eia861", "mergers_eia861", "net_metering_eia861", "non_net_metering_eia861", "operational_data_eia861", "reliability_eia861", "utility_data_eia861", ), 'eia923': eia923_pudl_tables, 'epacems': epacems_tables, 'epaipm': epaipm_pudl_tables, 'ferc1': ferc1_pudl_tables, 'ferc714': ( "respondent_id_ferc714", "id_certification_ferc714", "gen_plants_ba_ferc714", "demand_monthly_ba_ferc714", "net_energy_load_ba_ferc714", "adjacency_ba_ferc714", "interchange_ba_ferc714", "lambda_hourly_ba_ferc714", "lambda_description_ferc714", "description_pa_ferc714", "demand_forecast_pa_ferc714", "demand_hourly_pa_ferc714", ), 'glue': glue_pudl_tables, } """ dict: A dictionary containing data sources (keys) and the list of associated tables from that datasource that can be pulled into PUDL (values). """ base_data_urls = { 'eia860': 'https://www.eia.gov/electricity/data/eia860', 'eia861': 'https://www.eia.gov/electricity/data/eia861/zip', 'eia923': 'https://www.eia.gov/electricity/data/eia923', 'epacems': 'ftp://newftp.epa.gov/dmdnload/emissions/hourly/monthly', 'ferc1': 'ftp://eforms1.ferc.gov/f1allyears', 'ferc714': 'https://www.ferc.gov/docs-filing/forms/form-714/data', 'ferceqr': 'ftp://eqrdownload.ferc.gov/DownloadRepositoryProd/BulkNew/CSV', 'msha': 'https://arlweb.msha.gov/OpenGovernmentData/DataSets', 'epaipm': 'https://www.epa.gov/sites/production/files/2019-03', 'pudl': 'https://catalyst.coop/pudl/' } """ dict: A dictionary containing data sources (keys) and their base data URLs (values). """ need_fix_inting = { 'plants_steam_ferc1': ('construction_year', 'installation_year'), 'plants_small_ferc1': ('construction_year', 'ferc_license_id'), 'plants_hydro_ferc1': ('construction_year', 'installation_year',), 'plants_pumped_storage_ferc1': ('construction_year', 'installation_year',), 'hourly_emissions_epacems': ('facility_id', 'unit_id_epa',), } """ dict: A dictionary containing tables (keys) and column names (values) containing integer - type columns whose null values need fixing. """ contributors = { "catalyst-cooperative": { "title": "Catalyst Cooperative", "path": "https://catalyst.coop/", "role": "publisher", "email": "<EMAIL>", "organization": "Catalyst Cooperative", }, "zane-selvans": { "title": "<NAME>", "email": "<EMAIL>", "path": "https://amateurearthling.org/", "role": "wrangler", "organization": "Catalyst Cooperative" }, "christina-gosnell": { "title": "<NAME>", "email": "<EMAIL>", "role": "contributor", "organization": "Catalyst Cooperative", }, "steven-winter": { "title": "<NAME>", "email": "<EMAIL>", "role": "contributor", "organization": "Catalyst Cooperative", }, "alana-wilson": { "title": "<NAME>", "email": "<EMAIL>", "role": "contributor", "organization": "Catalyst Cooperative", }, "karl-dunkle-werner": { "title": "<NAME>", "email": "<EMAIL>", "path": "https://karldw.org/", "role": "contributor", "organization": "UC Berkeley", }, 'greg-schivley': { "title": "<NAME>", "role": "contributor", }, } """ dict: A dictionary of dictionaries containing organization names (keys) and their attributes (values). """ data_source_info = { "eia860": { "title": "EIA Form 860", "path": "https://www.eia.gov/electricity/data/eia860/", }, "eia861": { "title": "EIA Form 861", "path": "https://www.eia.gov/electricity/data/eia861/", }, "eia923": { "title": "EIA Form 923", "path": "https://www.eia.gov/electricity/data/eia923/", }, "eiawater": { "title": "EIA Water Use for Power", "path": "https://www.eia.gov/electricity/data/water/", }, "epacems": { "title": "EPA Air Markets Program Data", "path": "https://ampd.epa.gov/ampd/", }, "epaipm": { "title": "EPA Integrated Planning Model", "path": "https://www.epa.gov/airmarkets/national-electric-energy-data-system-needs-v6", }, "ferc1": { "title": "FERC Form 1", "path": "https://www.ferc.gov/docs-filing/forms/form-1/data.asp", }, "ferc714": { "title": "FERC Form 714", "path": "https://www.ferc.gov/docs-filing/forms/form-714/data.asp", }, "ferceqr": { "title": "FERC Electric Quarterly Report", "path": "https://www.ferc.gov/docs-filing/eqr.asp", }, "msha": { "title": "Mining Safety and Health Administration", "path": "https://www.msha.gov/mine-data-retrieval-system", }, "phmsa": { "title": "Pipelines and Hazardous Materials Safety Administration", "path": "https://www.phmsa.dot.gov/data-and-statistics/pipeline/data-and-statistics-overview", }, "pudl": { "title": "The Public Utility Data Liberation Project (PUDL)", "path": "https://catalyst.coop/pudl/", "email": "<EMAIL>", }, } """ dict: A dictionary of dictionaries containing datasources (keys) and associated attributes (values) """ contributors_by_source = { "pudl": [ "catalyst-cooperative", "zane-selvans", "christina-gosnell", "steven-winter", "alana-wilson", "karl-dunkle-werner", ], "eia923": [ "catalyst-cooperative", "zane-selvans", "christina-gosnell", "steven-winter", ], "eia860": [ "catalyst-cooperative", "zane-selvans", "christina-gosnell", "steven-winter", "alana-wilson", ], "ferc1": [ "catalyst-cooperative", "zane-selvans", "christina-gosnell", "steven-winter", "alana-wilson", ], "epacems": [ "catalyst-cooperative", "karl-dunkle-werner", "zane-selvans", ], "epaipm": [ "greg-schivley", ], } """ dict: A dictionary of data sources (keys) and lists of contributors (values). """ licenses = { "cc-by-4.0": { "name": "CC-BY-4.0", "title": "Creative Commons Attribution 4.0", "path": "https://creativecommons.org/licenses/by/4.0/" }, "us-govt": { "name": "other-pd", "title": "U.S. Government Work", "path": "http://www.usa.gov/publicdomain/label/1.0/", } } """ dict: A dictionary of dictionaries containing license types and their attributes. """ output_formats = [ 'sqlite', 'parquet', 'datapkg', ] """list: A list of types of PUDL output formats.""" keywords_by_data_source = { 'pudl': [ 'us', 'electricity', ], 'eia860': [ 'electricity', 'electric', 'boiler', 'generator', 'plant', 'utility', 'fuel', 'coal', 'natural gas', 'prime mover', 'eia860', 'retirement', 'capacity', 'planned', 'proposed', 'energy', 'hydro', 'solar', 'wind', 'nuclear', 'form 860', 'eia', 'annual', 'gas', 'ownership', 'steam', 'turbine', 'combustion', 'combined cycle', 'eia', 'energy information administration' ], 'eia923': [ 'fuel', 'boiler', 'generator', 'plant', 'utility', 'cost', 'price', 'natural gas', 'coal', 'eia923', 'energy', 'electricity', 'form 923', 'receipts', 'generation', 'net generation', 'monthly', 'annual', 'gas', 'fuel consumption', 'MWh', 'energy information administration', 'eia', 'mercury', 'sulfur', 'ash', 'lignite', 'bituminous', 'subbituminous', 'heat content' ], 'epacems': [ 'epa', 'us', 'emissions', 'pollution', 'ghg', 'so2', 'co2', 'sox', 'nox', 'load', 'utility', 'electricity', 'plant', 'generator', 'unit', 'generation', 'capacity', 'output', 'power', 'heat content', 'mmbtu', 'steam', 'cems', 'continuous emissions monitoring system', 'hourly' 'environmental protection agency', 'ampd', 'air markets program data', ], 'ferc1': [ 'electricity', 'electric', 'utility', 'plant', 'steam', 'generation', 'cost', 'expense', 'price', 'heat content', 'ferc', 'form 1', 'federal energy regulatory commission', 'capital', 'accounting', 'depreciation', 'finance', 'plant in service', 'hydro', 'coal', 'natural gas', 'gas', 'opex', 'capex', 'accounts', 'investment', 'capacity' ], 'ferc714': [ 'electricity', 'electric', 'utility', 'planning area', 'form 714', 'balancing authority', 'demand', 'system lambda', 'ferc', 'federal energy regulatory commission', "hourly", "generation", "interchange", "forecast", "load", "adjacency", "plants", ], 'epaipm': [ 'epaipm', 'integrated planning', ] } """dict: A dictionary of datasets (keys) and keywords (values). """ ENTITY_TYPE_DICT = { 'M': 'Municipal', 'C': 'Cooperative', 'R': 'Retail Power Marketer', 'I': 'Investor Owned', 'P': 'Political Subdivision', 'T': 'Transmission', 'S': 'State', 'W': 'Wholesale Power Marketer', 'F': 'Federal', 'A': 'Municipal Mktg Authority', 'G': 'Community Choice Aggregator', 'D': 'Nonutility DSM Administrator', 'B': 'Behind the Meter', 'Q': 'Independent Power Producer', 'IND': 'Industrial', 'COM': 'Commercial', 'PR': 'Private', # Added by AES for OD table (Arbitrary moniker) 'PO': 'Power Marketer', # Added by AES for OD table 'U': 'Unknown', # Added by AES for OD table 'O': 'Other' # Added by AES for OD table } # Confirm these designations -- educated guess based on the form instructions MOMENTARY_INTERRUPTION_DEF = { # Added by AES for R table 'L': 'Less than 1 minute', 'F': 'Less than or equal to 5 minutes', 'O': 'Other', } # https://www.eia.gov/electricity/data/eia411/#tabs_NERC-3 RECOGNIZED_NERC_REGIONS = [ 'BASN', # ASSESSMENT AREA Basin (WECC) 'CALN', # ASSESSMENT AREA California (WECC) 'CALS', # ASSESSMENT AREA California (WECC) 'DSW', # ASSESSMENT AREA Desert Southwest (WECC) 'ASCC', # Alaska 'ISONE', # ISO New England (NPCC) 'ERCOT', # lumped under TRE in 2017 Form instructions 'NORW', # ASSESSMENT AREA Northwest (WECC) 'NYISO', # ISO (NPCC) 'PJM', # RTO 'ROCK', # ASSESSMENT AREA Rockies (WECC) 'ECAR', # OLD RE Now part of RFC and SERC 'FRCC', # included in 2017 Form instructions, recently joined with SERC 'HICC', # Hawaii 'MAAC', # OLD RE Now part of RFC 'MAIN', # OLD RE Now part of SERC, RFC, MRO 'MAPP', # OLD/NEW RE Became part of MRO, resurfaced in 2010 'MRO', # RE included in 2017 Form instructions 'NPCC', # RE included in 2017 Form instructions 'RFC', # RE included in 2017 Form instructions 'SERC', # RE included in 2017 Form instructions 'SPP', # RE included in 2017 Form instructions 'TRE', # RE included in 2017 Form instructions (included ERCOT) 'WECC', # RE included in 2017 Form instructions 'WSCC', # OLD RE pre-2002 version of WECC 'MISO', # ISO unclear whether technically a regional entity, but lots of entries 'ECAR_MAAC', 'MAPP_WECC', 'RFC_SERC', 'SPP_WECC', 'MRO_WECC', 'ERCOT_SPP', 'SPP_TRE', 'ERCOT_TRE', 'MISO_TRE', 'VI', # Virgin Islands 'GU', # Guam 'PR', # Puerto Rico 'AS', # American Samoa 'UNK', ] CUSTOMER_CLASSES = [ "commercial", "industrial", "direct_connection", "other", "residential", "total", "transportation" ] TECH_CLASSES = [ 'backup', # WHERE Is this used? because removed from DG table b/c not a real component 'chp_cogen', 'combustion_turbine', 'fuel_cell', 'hydro', 'internal_combustion', 'other', 'pv', 'steam', 'storage_pv', 'all_storage', # need 'all' as prefix so as not to confuse with other storage category 'total', 'virtual_pv', 'wind', ] REVENUE_CLASSES = [ 'retail_sales', 'unbundled', 'delivery_customers', 'sales_for_resale', 'credits_or_adjustments', 'other', 'transmission', 'total', ] RELIABILITY_STANDARDS = [ 'ieee_standard', 'other_standard' ] FUEL_CLASSES = [ 'gas', 'oil', 'other', 'renewable', 'water', 'wind', 'wood', ] RTO_CLASSES = [ 'caiso', 'ercot', 'pjm', 'nyiso', 'spp', 'miso', 'isone', 'other' ] ESTIMATED_OR_ACTUAL = {'E': 'estimated', 'A': 'actual'} TRANSIT_TYPE_DICT = { 'CV': 'conveyer', 'PL': 'pipeline', 'RR': 'railroad', 'TK': 'truck', 'WA': 'water', 'UN': 'unknown', } """dict: A dictionary of datasets (keys) and keywords (values). """ column_dtypes = { "ferc1": { # Obviously this is not yet a complete list... "construction_year": pd.Int64Dtype(), "installation_year": pd.Int64Dtype(), "plant_id_ferc1": pd.Int64Dtype(), "plant_id_pudl": pd.Int64Dtype(), "report_date": "datetime64[ns]", "report_year": pd.Int64Dtype(), "utility_id_ferc1": pd.Int64Dtype(), "utility_id_pudl": pd.Int64Dtype(), }, "ferc714": { # INCOMPLETE "demand_mwh": float, "demand_annual_mwh": float, "eia_code": pd.Int64Dtype(), "peak_demand_summer_mw": float, "peak_demand_winter_mw": float, "report_date": "datetime64[ns]", "respondent_id_ferc714": pd.Int64Dtype(), "respondent_name_ferc714": pd.StringDtype(), "respondent_type": pd.CategoricalDtype(categories=[ "utility", "balancing_authority", ]), "timezone": pd.CategoricalDtype(categories=[ "America/New_York", "America/Chicago", "America/Denver", "America/Los_Angeles", "America/Anchorage", "Pacific/Honolulu"]), "utc_datetime": "datetime64[ns]", }, "epacems": { 'state': pd.StringDtype(), 'plant_id_eia': pd.Int64Dtype(), # Nullable Integer 'unitid': pd.StringDtype(), 'operating_datetime_utc': "datetime64[ns]", 'operating_time_hours': float, 'gross_load_mw': float, 'steam_load_1000_lbs': float, 'so2_mass_lbs': float, 'so2_mass_measurement_code': pd.StringDtype(), 'nox_rate_lbs_mmbtu': float, 'nox_rate_measurement_code': pd.StringDtype(), 'nox_mass_lbs': float, 'nox_mass_measurement_code': pd.StringDtype(), 'co2_mass_tons': float, 'co2_mass_measurement_code': pd.StringDtype(), 'heat_content_mmbtu': float, 'facility_id': pd.Int64Dtype(), # Nullable Integer 'unit_id_epa': pd.Int64Dtype(), # Nullable Integer }, "eia": { 'actual_peak_demand_savings_mw': float, # Added by AES for DR table 'address_2': pd.StringDtype(), # Added by AES for 860 utilities table 'advanced_metering_infrastructure': pd.Int64Dtype(), # Added by AES for AMI table # Added by AES for UD misc table 'alternative_fuel_vehicle_2_activity': pd.BooleanDtype(), 'alternative_fuel_vehicle_activity': pd.BooleanDtype(), 'annual_indirect_program_cost': float, 'annual_total_cost': float, 'ash_content_pct': float, 'ash_impoundment': pd.BooleanDtype(), 'ash_impoundment_lined': pd.BooleanDtype(), # TODO: convert this field to more descriptive words 'ash_impoundment_status': pd.StringDtype(), 'associated_combined_heat_power': pd.BooleanDtype(), 'attention_line': pd.StringDtype(), 'automated_meter_reading': pd.Int64Dtype(), # Added by AES for AMI table 'backup_capacity_mw': float, # Added by AES for NNM & DG misc table 'balancing_authority_code_eia': pd.CategoricalDtype(), 'balancing_authority_id_eia': pd.Int64Dtype(), 'balancing_authority_name_eia': pd.StringDtype(), 'bga_source': pd.StringDtype(), 'boiler_id': pd.StringDtype(), 'bunded_activity': pd.BooleanDtype(), 'business_model': pd.CategoricalDtype(categories=[ "retail", "energy_services"]), 'buy_distribution_activity': pd.BooleanDtype(), 'buying_transmission_activity': pd.BooleanDtype(), 'bypass_heat_recovery': pd.BooleanDtype(), 'caidi_w_major_event_days_minus_loss_of_service_minutes': float, 'caidi_w_major_event_dats_minutes': float, 'caidi_wo_major_event_days_minutes': float, 'capacity_mw': float, 'carbon_capture': pd.BooleanDtype(), 'chlorine_content_ppm': float, 'circuits_with_voltage_optimization': pd.Int64Dtype(), 'city': pd.StringDtype(), 'cofire_fuels': pd.BooleanDtype(), 'consumed_by_facility_mwh': float, 'consumed_by_respondent_without_charge_mwh': float, 'contact_firstname': pd.StringDtype(), 'contact_firstname_2': pd.StringDtype(), 'contact_lastname': pd.StringDtype(), 'contact_lastname_2': pd.StringDtype(), 'contact_title': pd.StringDtype(), 'contact_title_2': pd.StringDtype(), 'contract_expiration_date': 'datetime64[ns]', 'contract_type_code': pd.StringDtype(), 'county': pd.StringDtype(), 'county_id_fips': pd.StringDtype(), # Must preserve leading zeroes 'credits_or_adjustments': float, 'critical_peak_pricing': pd.BooleanDtype(), 'critical_peak_rebate': pd.BooleanDtype(), 'current_planned_operating_date': 'datetime64[ns]', 'customers': float, 'customer_class': pd.CategoricalDtype(categories=CUSTOMER_CLASSES), 'customer_incentives_cost': float, 'customer_incentives_incremental_cost': float, 'customer_incentives_incremental_life_cycle_cost': float, 'customer_other_costs_incremental_life_cycle_cost': float, 'daily_digital_access_customers': pd.Int64Dtype(), 'data_observed': pd.BooleanDtype(), 'datum': pd.StringDtype(), 'deliver_power_transgrid': pd.BooleanDtype(), 'delivery_customers': float, 'direct_load_control_customers': pd.Int64Dtype(), 'distributed_generation': pd.BooleanDtype(), 'distributed_generation_owned_capacity_mw': float, 'distribution_activity': pd.BooleanDtype(), 'distribution_circuits': pd.Int64Dtype(), 'duct_burners': pd.BooleanDtype(), 'energy_displaced_mwh': float, 'energy_efficiency_annual_cost': float, 'energy_efficiency_annual_actual_peak_reduction_mw': float, 'energy_efficiency_annual_effects_mwh': float, 'energy_efficiency_annual_incentive_payment': float, 'energy_efficiency_incremental_actual_peak_reduction_mw': float, 'energy_efficiency_incremental_effects_mwh': float, 'energy_savings_estimates_independently_verified': pd.BooleanDtype(), 'energy_savings_independently_verified': pd.BooleanDtype(), 'energy_savings_mwh': float, 'energy_served_ami_mwh': float, 'energy_source_1_transport_1': pd.CategoricalDtype(categories=TRANSIT_TYPE_DICT.values()), 'energy_source_1_transport_2': pd.CategoricalDtype(categories=TRANSIT_TYPE_DICT.values()), 'energy_source_1_transport_3': pd.CategoricalDtype(categories=TRANSIT_TYPE_DICT.values()), 'energy_source_2_transport_1': pd.CategoricalDtype(categories=TRANSIT_TYPE_DICT.values()), 'energy_source_2_transport_2': pd.CategoricalDtype(categories=TRANSIT_TYPE_DICT.values()), 'energy_source_2_transport_3': pd.CategoricalDtype(categories=TRANSIT_TYPE_DICT.values()), 'energy_source_code': pd.StringDtype(), 'energy_source_code_1': pd.StringDtype(), 'energy_source_code_2': pd.StringDtype(), 'energy_source_code_3': pd.StringDtype(), 'energy_source_code_4': pd.StringDtype(), 'energy_source_code_5': pd.StringDtype(), 'energy_source_code_6': pd.StringDtype(), 'energy_storage': pd.BooleanDtype(), 'entity_type': pd.CategoricalDtype(categories=ENTITY_TYPE_DICT.values()), 'estimated_or_actual_capacity_data': pd.CategoricalDtype(categories=ESTIMATED_OR_ACTUAL.values()), 'estimated_or_actual_fuel_data': pd.CategoricalDtype(categories=ESTIMATED_OR_ACTUAL.values()), 'estimated_or_actual_tech_data': pd.CategoricalDtype(categories=ESTIMATED_OR_ACTUAL.values()), 'exchange_energy_delivered_mwh': float, 'exchange_energy_recieved_mwh': float, 'ferc_cogen_docket_no': pd.StringDtype(), 'ferc_cogen_status': pd.BooleanDtype(), 'ferc_exempt_wholesale_generator': pd.BooleanDtype(), 'ferc_exempt_wholesale_generator_docket_no': pd.StringDtype(), 'ferc_small_power_producer': pd.BooleanDtype(), 'ferc_small_power_producer_docket_no': pd.StringDtype(), 'fluidized_bed_tech': pd.BooleanDtype(), 'fraction_owned': float, 'fuel_class': pd.StringDtype(), 'fuel_consumed_for_electricity_mmbtu': float, 'fuel_consumed_for_electricity_units': float, 'fuel_consumed_mmbtu': float, 'fuel_consumed_units': float, 'fuel_cost_per_mmbtu': float, 'fuel_group_code': pd.StringDtype(), 'fuel_group_code_simple': pd.StringDtype(), 'fuel_mmbtu_per_unit': float, 'fuel_pct': float, 'fuel_qty_units': float, # are fuel_type and fuel_type_code the same?? # fuel_type includes 40 code-like things.. WAT, SUN, NUC, etc. 'fuel_type': pd.StringDtype(), # from the boiler_fuel_eia923 table, there are 30 code-like things, like NG, BIT, LIG 'fuel_type_code': pd.StringDtype(), 'fuel_type_code_aer': pd.StringDtype(), 'fuel_type_code_pudl': pd.StringDtype(), 'furnished_without_charge_mwh': float, 'generation_activity': pd.BooleanDtype(), # this is a mix of integer-like values (2 or 5) and strings like AUGSF 'generator_id': pd.StringDtype(), 'generators_number': float, 'generators_num_less_1_mw': float, 'green_pricing_revenue': float, 'grid_voltage_2_kv': float, 'grid_voltage_3_kv': float, 'grid_voltage_kv': float, 'heat_content_mmbtu_per_unit': float, 'highest_distribution_voltage_kv': float, 'home_area_network': pd.Int64Dtype(), 'inactive_accounts_included': pd.BooleanDtype(), 'incremental_energy_savings_mwh': float, 'incremental_life_cycle_energy_savings_mwh': float, 'incremental_life_cycle_peak_reduction_mwh': float, 'incremental_peak_reduction_mw': float, 'iso_rto_code': pd.StringDtype(), 'latitude': float, 'liquefied_natural_gas_storage': pd.BooleanDtype(), 'load_management_annual_cost': float, 'load_management_annual_actual_peak_reduction_mw': float, 'load_management_annual_effects_mwh': float, 'load_management_annual_incentive_payment': float, 'load_management_annual_potential_peak_reduction_mw': float, 'load_management_incremental_actual_peak_reduction_mw': float, 'load_management_incremental_effects_mwh': float, 'load_management_incremental_potential_peak_reduction_mw': float, 'longitude': float, 'major_program_changes': pd.BooleanDtype(), 'mercury_content_ppm': float, 'merge_address': pd.StringDtype(), 'merge_city': pd.StringDtype(), 'merge_company': pd.StringDtype(), 'merge_date': 'datetime64[ns]', 'merge_state': pd.StringDtype(), 'mine_id_msha': pd.Int64Dtype(), 'mine_id_pudl': pd.Int64Dtype(), 'mine_name': pd.StringDtype(), 'mine_type_code': pd.StringDtype(), 'minimum_load_mw': float, 'moisture_content_pct': float, 'momentary_interruption_definition': pd.CategoricalDtype(categories=MOMENTARY_INTERRUPTION_DEF.values()), 'multiple_fuels': pd.BooleanDtype(), 'nameplate_power_factor': float, 'natural_gas_delivery_contract_type_code': pd.StringDtype(), 'natural_gas_local_distribution_company': pd.StringDtype(), 'natural_gas_pipeline_name_1': pd.StringDtype(), 'natural_gas_pipeline_name_2': pd.StringDtype(), 'natural_gas_pipeline_name_3': pd.StringDtype(), 'natural_gas_storage': pd.BooleanDtype(), 'natural_gas_transport_code': pd.StringDtype(), 'nerc_region': pd.CategoricalDtype(categories=RECOGNIZED_NERC_REGIONS), 'nerc_regions_of_operation': pd.CategoricalDtype(categories=RECOGNIZED_NERC_REGIONS), 'net_generation_mwh': float, 'net_metering': pd.BooleanDtype(), 'net_power_exchanged_mwh': float, 'net_wheeled_power_mwh': float, 'new_parent': pd.StringDtype(), 'non_amr_ami': pd.Int64Dtype(), 'nuclear_unit_id': pd.Int64Dtype(), 'operates_generating_plant': pd.BooleanDtype(), 'operating_date': 'datetime64[ns]', 'operating_switch': pd.StringDtype(), # TODO: double check this for early 860 years 'operational_status': pd.StringDtype(), 'operational_status_code': pd.StringDtype(), 'original_planned_operating_date': 'datetime64[ns]', 'other': float, 'other_combustion_tech': pd.BooleanDtype(), 'other_costs': float, 'other_costs_incremental_cost': float, 'other_modifications_date': 'datetime64[ns]', 'other_planned_modifications': pd.BooleanDtype(), 'outages_recorded_automatically': pd.BooleanDtype(), 'owned_by_non_utility': pd.BooleanDtype(), 'owner_city': pd.StringDtype(), 'owner_name': pd.StringDtype(), 'owner_state': pd.StringDtype(), 'owner_street_address': pd.StringDtype(), 'owner_utility_id_eia': pd.Int64Dtype(), 'owner_zip_code': pd.StringDtype(), # we should transition these into readable codes, not a one letter thing 'ownership_code': pd.StringDtype(), 'phone_extension_1': pd.StringDtype(), 'phone_extension_2': pd.StringDtype(), 'phone_number_1': pd.StringDtype(), 'phone_number_2': pd.StringDtype(), 'pipeline_notes': pd.StringDtype(), 'planned_derate_date': 'datetime64[ns]', 'planned_energy_source_code_1': pd.StringDtype(), 'planned_modifications': pd.BooleanDtype(), 'planned_net_summer_capacity_derate_mw': float, 'planned_net_summer_capacity_uprate_mw': float, 'planned_net_winter_capacity_derate_mw': float, 'planned_net_winter_capacity_uprate_mw': float, 'planned_new_capacity_mw': float, 'planned_new_prime_mover_code': pd.StringDtype(), 'planned_repower_date': 'datetime64[ns]', 'planned_retirement_date': 'datetime64[ns]', 'planned_uprate_date': 'datetime64[ns]', 'plant_id_eia': pd.Int64Dtype(), 'plant_id_epa': pd.Int64Dtype(), 'plant_id_pudl': pd.Int64Dtype(), 'plant_name_eia': pd.StringDtype(), 'plants_reported_asset_manager': pd.BooleanDtype(), 'plants_reported_operator': pd.BooleanDtype(), 'plants_reported_other_relationship': pd.BooleanDtype(), 'plants_reported_owner': pd.BooleanDtype(), 'point_source_unit_id_epa': pd.StringDtype(), 'potential_peak_demand_savings_mw': float, 'pulverized_coal_tech': pd.BooleanDtype(), 'previously_canceled': pd.BooleanDtype(), 'price_responsive_programes': pd.BooleanDtype(), 'price_responsiveness_customers': pd.Int64Dtype(), 'primary_transportation_mode_code': pd.StringDtype(), 'primary_purpose_naics_id': pd.Int64Dtype(), 'prime_mover_code': pd.StringDtype(), 'pv_current_flow_type': pd.CategoricalDtype(categories=['AC', 'DC']), 'reactive_power_output_mvar': float, 'real_time_pricing_program': pd.BooleanDtype(), 'rec_revenue': float, 'rec_sales_mwh': float, 'regulatory_status_code': pd.StringDtype(), 'report_date': 'datetime64[ns]', 'reported_as_another_company': pd.StringDtype(), 'retail_marketing_activity': pd.BooleanDtype(), 'retail_sales': float, 'retail_sales_mwh': float, 'retirement_date': 'datetime64[ns]', 'revenue_class': pd.CategoricalDtype(categories=REVENUE_CLASSES), 'rto_iso_lmp_node_id': pd.StringDtype(), 'rto_iso_location_wholesale_reporting_id': pd.StringDtype(), 'rtos_of_operation': pd.StringDtype(), 'saidi_w_major_event_dats_minus_loss_of_service_minutes': float, 'saidi_w_major_event_days_minutes': float, 'saidi_wo_major_event_days_minutes': float, 'saifi_w_major_event_days_customers': float, 'saifi_w_major_event_days_minus_loss_of_service_customers': float, 'saifi_wo_major_event_days_customers': float, 'sales_for_resale': float, 'sales_for_resale_mwh': float, 'sales_mwh': float, 'sales_revenue': float, 'sales_to_ultimate_consumers_mwh': float, 'secondary_transportation_mode_code': pd.StringDtype(), 'sector_id': pd.Int64Dtype(), 'sector_name':
pd.StringDtype()
pandas.StringDtype
import re import pandas as pd import numpy as np class Resampler(object): """Resamples time-series data from one frequency to another frequency. """ min_in_freqs = { 'MIN': 1, 'MINUTE': 1, 'DAILY': 1440, 'D': 1440, 'HOURLY': 60, 'HOUR': 60, 'H': 60, 'MONTHLY': 43200, 'M': 43200, 'YEARLY': 525600 } def __init__(self, data, freq, how='mean', verbosity=1): """ Arguments: data : data to use freq : frequency at which to transform/resample how : string or dictionary mapping to columns in data defining how to resample the data. """ data = pd.DataFrame(data) self.orig_df = data.copy() self.target_freq = self.freq_in_mins_from_string(freq) self.how = self.check_how(how) self.verbosity = verbosity def __call__(self, *args, **kwargs): if self.target_freq > self.orig_freq: # we want to calculate at higher/larger time-step return self.downsample() else: # we want to calculate at smaller time-step return self.upsamle() @property def orig_freq(self): return self.freq_in_mins_from_string(pd.infer_freq(self.orig_df.index)) @property def allowed_freqs(self): return self.min_in_freqs.keys() def check_how(self, how): if not isinstance(how, str): assert isinstance(how, dict) assert len(how) == len(self.orig_df.columns) else: assert isinstance(how, str) how = {col:how for col in self.orig_df.columns} return how def downsample(self): df =
pd.DataFrame()
pandas.DataFrame
import numpy as np import pytest from pandas import ( DataFrame, MultiIndex, Series, concat, date_range, ) import pandas._testing as tm from pandas.api.indexers import ( BaseIndexer, FixedForwardWindowIndexer, ) from pandas.core.window.indexers import ( ExpandingIndexer, FixedWindowIndexer, VariableOffsetWindowIndexer, ) from pandas.tseries.offsets import BusinessDay def test_bad_get_window_bounds_signature(): class BadIndexer(BaseIndexer): def get_window_bounds(self): return None indexer = BadIndexer() with pytest.raises(ValueError, match="BadIndexer does not implement"): Series(range(5)).rolling(indexer) def test_expanding_indexer(): s = Series(range(10)) indexer = ExpandingIndexer() result = s.rolling(indexer).mean() expected = s.expanding().mean() tm.assert_series_equal(result, expected) def test_indexer_constructor_arg(): # Example found in computation.rst use_expanding = [True, False, True, False, True] df = DataFrame({"values": range(5)}) class CustomIndexer(BaseIndexer): def get_window_bounds(self, num_values, min_periods, center, closed): start = np.empty(num_values, dtype=np.int64) end = np.empty(num_values, dtype=np.int64) for i in range(num_values): if self.use_expanding[i]: start[i] = 0 end[i] = i + 1 else: start[i] = i end[i] = i + self.window_size return start, end indexer = CustomIndexer(window_size=1, use_expanding=use_expanding) result = df.rolling(indexer).sum() expected = DataFrame({"values": [0.0, 1.0, 3.0, 3.0, 10.0]}) tm.assert_frame_equal(result, expected) def test_indexer_accepts_rolling_args(): df = DataFrame({"values": range(5)}) class CustomIndexer(BaseIndexer): def get_window_bounds(self, num_values, min_periods, center, closed): start = np.empty(num_values, dtype=np.int64) end = np.empty(num_values, dtype=np.int64) for i in range(num_values): if center and min_periods == 1 and closed == "both" and i == 2: start[i] = 0 end[i] = num_values else: start[i] = i end[i] = i + self.window_size return start, end indexer = CustomIndexer(window_size=1) result = df.rolling(indexer, center=True, min_periods=1, closed="both").sum() expected = DataFrame({"values": [0.0, 1.0, 10.0, 3.0, 4.0]}) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("constructor", [Series, DataFrame]) @pytest.mark.parametrize( "func,np_func,expected,np_kwargs", [ ("count", len, [3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 2.0, np.nan], {}), ("min", np.min, [0.0, 1.0, 2.0, 3.0, 4.0, 6.0, 6.0, 7.0, 8.0, np.nan], {}), ( "max", np.max, [2.0, 3.0, 4.0, 100.0, 100.0, 100.0, 8.0, 9.0, 9.0, np.nan], {}, ), ( "std", np.std, [ 1.0, 1.0, 1.0, 55.71654452, 54.85739087, 53.9845657, 1.0, 1.0, 0.70710678, np.nan, ], {"ddof": 1}, ), ( "var", np.var, [ 1.0, 1.0, 1.0, 3104.333333, 3009.333333, 2914.333333, 1.0, 1.0, 0.500000, np.nan, ], {"ddof": 1}, ), ( "median", np.median, [1.0, 2.0, 3.0, 4.0, 6.0, 7.0, 7.0, 8.0, 8.5, np.nan], {}, ), ], ) @pytest.mark.filterwarnings("ignore:min_periods:FutureWarning") def test_rolling_forward_window(constructor, func, np_func, expected, np_kwargs): # GH 32865 values = np.arange(10.0) values[5] = 100.0 indexer = FixedForwardWindowIndexer(window_size=3) match = "Forward-looking windows can't have center=True" with pytest.raises(ValueError, match=match): rolling = constructor(values).rolling(window=indexer, center=True) getattr(rolling, func)() match = "Forward-looking windows don't support setting the closed argument" with pytest.raises(ValueError, match=match): rolling = constructor(values).rolling(window=indexer, closed="right") getattr(rolling, func)() rolling = constructor(values).rolling(window=indexer, min_periods=2) result = getattr(rolling, func)() # Check that the function output matches the explicitly provided array expected = constructor(expected) tm.assert_equal(result, expected) # Check that the rolling function output matches applying an alternative # function to the rolling window object expected2 = constructor(rolling.apply(lambda x: np_func(x, **np_kwargs))) tm.assert_equal(result, expected2) # Check that the function output matches applying an alternative function # if min_periods isn't specified # GH 39604: After count-min_periods deprecation, apply(lambda x: len(x)) # is equivalent to count after setting min_periods=0 min_periods = 0 if func == "count" else None rolling3 = constructor(values).rolling(window=indexer, min_periods=min_periods) result3 = getattr(rolling3, func)() expected3 = constructor(rolling3.apply(lambda x: np_func(x, **np_kwargs))) tm.assert_equal(result3, expected3) @pytest.mark.parametrize("constructor", [Series, DataFrame]) def test_rolling_forward_skewness(constructor): values = np.arange(10.0) values[5] = 100.0 indexer =
FixedForwardWindowIndexer(window_size=5)
pandas.api.indexers.FixedForwardWindowIndexer
# import libraries import streamlit as st import pandas as pd import plotly.express as px import os from wordcloud import WordCloud, STOPWORDS import matplotlib.pyplot as plt # set title for the dashboard st.title('Sentiment Analysis of Tweets about US Airlines') # set title for the dashboard sidebar st.sidebar.title('Sentiment Analysis of Tweets about US Airlines') # add markdown text under the dashboard title st.markdown('This application is a Streamlit dashboard to analyze the sentiment\ of Tweets 🐦') # add markdown text under the dashboard sidebar title st.sidebar.markdown('This application is a Streamlit dashboard to analyze the\ sentiment of Tweets 🐦') # define the dataset location DATA_URL = os.path.join(os.getcwd(), 'tweets.csv') # use streamlit cache decorator to upload only the data that have been changed @st.cache(persist=True) # function to load data def load_data(): # load dataset data =
pd.read_csv(DATA_URL)
pandas.read_csv
import argparse import pandas as pd def parse_args(): parser = argparse.ArgumentParser() parser.add_argument("--annotations_file", type=str, required=True, help="CSV file of annotations.") parser.add_argument("--mrsty_file", type=str, required=True, help="Path to UMLS MRSTY.RRF") parser.add_argument("--semgroups_file", type=str, required=True, help="Path to UMLS semantic groups file.") parser.add_argument("--outfile", type=str, required=True, help="Where to save the summary.") return parser.parse_args() def main(annotations_file, mrsty_file, semgroups_file, outfile): anns =
pd.read_csv(annotations_file)
pandas.read_csv
import numpy as np from datetime import timedelta from distutils.version import LooseVersion import pandas as pd import pandas.util.testing as tm from pandas import to_timedelta from pandas.util.testing import assert_series_equal, assert_frame_equal from pandas import (Series, Timedelta, DataFrame, Timestamp, TimedeltaIndex, timedelta_range, date_range, DatetimeIndex, Int64Index, _np_version_under1p10, Float64Index, Index, tslib) from pandas.tests.test_base import Ops class TestTimedeltaIndexOps(Ops): def setUp(self): super(TestTimedeltaIndexOps, self).setUp() mask = lambda x: isinstance(x, TimedeltaIndex) self.is_valid_objs = [o for o in self.objs if mask(o)] self.not_valid_objs = [] def test_ops_properties(self): self.check_ops_properties(['days', 'hours', 'minutes', 'seconds', 'milliseconds']) self.check_ops_properties(['microseconds', 'nanoseconds']) def test_asobject_tolist(self): idx = timedelta_range(start='1 days', periods=4, freq='D', name='idx') expected_list = [Timedelta('1 days'), Timedelta('2 days'), Timedelta('3 days'), Timedelta('4 days')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) idx = TimedeltaIndex([timedelta(days=1), timedelta(days=2), pd.NaT, timedelta(days=4)], name='idx') expected_list = [Timedelta('1 days'), Timedelta('2 days'), pd.NaT, Timedelta('4 days')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) def test_minmax(self): # monotonic idx1 = TimedeltaIndex(['1 days', '2 days', '3 days']) self.assertTrue(idx1.is_monotonic) # non-monotonic idx2 = TimedeltaIndex(['1 days', np.nan, '3 days', 'NaT']) self.assertFalse(idx2.is_monotonic) for idx in [idx1, idx2]: self.assertEqual(idx.min(), Timedelta('1 days')), self.assertEqual(idx.max(), Timedelta('3 days')), self.assertEqual(idx.argmin(), 0) self.assertEqual(idx.argmax(), 2) for op in ['min', 'max']: # Return NaT obj = TimedeltaIndex([]) self.assertTrue(pd.isnull(getattr(obj, op)())) obj = TimedeltaIndex([pd.NaT]) self.assertTrue(pd.isnull(getattr(obj, op)())) obj = TimedeltaIndex([pd.NaT, pd.NaT, pd.NaT]) self.assertTrue(pd.isnull(getattr(obj, op)())) def test_numpy_minmax(self): dr = pd.date_range(start='2016-01-15', end='2016-01-20') td = TimedeltaIndex(np.asarray(dr)) self.assertEqual(np.min(td), Timedelta('16815 days')) self.assertEqual(np.max(td), Timedelta('16820 days')) errmsg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, errmsg, np.min, td, out=0) tm.assertRaisesRegexp(ValueError, errmsg, np.max, td, out=0) self.assertEqual(np.argmin(td), 0) self.assertEqual(np.argmax(td), 5) if not _np_version_under1p10: errmsg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, errmsg, np.argmin, td, out=0) tm.assertRaisesRegexp(ValueError, errmsg, np.argmax, td, out=0) def test_round(self): td = pd.timedelta_range(start='16801 days', periods=5, freq='30Min') elt = td[1] expected_rng = TimedeltaIndex([ Timedelta('16801 days 00:00:00'), Timedelta('16801 days 00:00:00'), Timedelta('16801 days 01:00:00'), Timedelta('16801 days 02:00:00'), Timedelta('16801 days 02:00:00'), ]) expected_elt = expected_rng[1] tm.assert_index_equal(td.round(freq='H'), expected_rng) self.assertEqual(elt.round(freq='H'), expected_elt) msg = pd.tseries.frequencies._INVALID_FREQ_ERROR with self.assertRaisesRegexp(ValueError, msg): td.round(freq='foo') with tm.assertRaisesRegexp(ValueError, msg): elt.round(freq='foo') msg = "<MonthEnd> is a non-fixed frequency" tm.assertRaisesRegexp(ValueError, msg, td.round, freq='M') tm.assertRaisesRegexp(ValueError, msg, elt.round, freq='M') def test_representation(self): idx1 = TimedeltaIndex([], freq='D') idx2 = TimedeltaIndex(['1 days'], freq='D') idx3 = TimedeltaIndex(['1 days', '2 days'], freq='D') idx4 = TimedeltaIndex(['1 days', '2 days', '3 days'], freq='D') idx5 = TimedeltaIndex(['1 days 00:00:01', '2 days', '3 days']) exp1 = """TimedeltaIndex([], dtype='timedelta64[ns]', freq='D')""" exp2 = ("TimedeltaIndex(['1 days'], dtype='timedelta64[ns]', " "freq='D')") exp3 = ("TimedeltaIndex(['1 days', '2 days'], " "dtype='timedelta64[ns]', freq='D')") exp4 = ("TimedeltaIndex(['1 days', '2 days', '3 days'], " "dtype='timedelta64[ns]', freq='D')") exp5 = ("TimedeltaIndex(['1 days 00:00:01', '2 days 00:00:00', " "'3 days 00:00:00'], dtype='timedelta64[ns]', freq=None)") with pd.option_context('display.width', 300): for idx, expected in zip([idx1, idx2, idx3, idx4, idx5], [exp1, exp2, exp3, exp4, exp5]): for func in ['__repr__', '__unicode__', '__str__']: result = getattr(idx, func)() self.assertEqual(result, expected) def test_representation_to_series(self): idx1 = TimedeltaIndex([], freq='D') idx2 = TimedeltaIndex(['1 days'], freq='D') idx3 = TimedeltaIndex(['1 days', '2 days'], freq='D') idx4 = TimedeltaIndex(['1 days', '2 days', '3 days'], freq='D') idx5 = TimedeltaIndex(['1 days 00:00:01', '2 days', '3 days']) exp1 = """Series([], dtype: timedelta64[ns])""" exp2 = """0 1 days dtype: timedelta64[ns]""" exp3 = """0 1 days 1 2 days dtype: timedelta64[ns]""" exp4 = """0 1 days 1 2 days 2 3 days dtype: timedelta64[ns]""" exp5 = """0 1 days 00:00:01 1 2 days 00:00:00 2 3 days 00:00:00 dtype: timedelta64[ns]""" with pd.option_context('display.width', 300): for idx, expected in zip([idx1, idx2, idx3, idx4, idx5], [exp1, exp2, exp3, exp4, exp5]): result = repr(pd.Series(idx)) self.assertEqual(result, expected) def test_summary(self): # GH9116 idx1 = TimedeltaIndex([], freq='D') idx2 = TimedeltaIndex(['1 days'], freq='D') idx3 = TimedeltaIndex(['1 days', '2 days'], freq='D') idx4 = TimedeltaIndex(['1 days', '2 days', '3 days'], freq='D') idx5 = TimedeltaIndex(['1 days 00:00:01', '2 days', '3 days']) exp1 = """TimedeltaIndex: 0 entries Freq: D""" exp2 = """TimedeltaIndex: 1 entries, 1 days to 1 days Freq: D""" exp3 = """TimedeltaIndex: 2 entries, 1 days to 2 days Freq: D""" exp4 = """TimedeltaIndex: 3 entries, 1 days to 3 days Freq: D""" exp5 = ("TimedeltaIndex: 3 entries, 1 days 00:00:01 to 3 days " "00:00:00") for idx, expected in zip([idx1, idx2, idx3, idx4, idx5], [exp1, exp2, exp3, exp4, exp5]): result = idx.summary() self.assertEqual(result, expected) def test_add_iadd(self): # only test adding/sub offsets as + is now numeric # offset offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] for delta in offsets: rng = timedelta_range('1 days', '10 days') result = rng + delta expected = timedelta_range('1 days 02:00:00', '10 days 02:00:00', freq='D') tm.assert_index_equal(result, expected) rng += delta tm.assert_index_equal(rng, expected) # int rng = timedelta_range('1 days 09:00:00', freq='H', periods=10) result = rng + 1 expected = timedelta_range('1 days 10:00:00', freq='H', periods=10) tm.assert_index_equal(result, expected) rng += 1 tm.assert_index_equal(rng, expected) def test_sub_isub(self): # only test adding/sub offsets as - is now numeric # offset offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] for delta in offsets: rng = timedelta_range('1 days', '10 days') result = rng - delta expected = timedelta_range('0 days 22:00:00', '9 days 22:00:00') tm.assert_index_equal(result, expected) rng -= delta tm.assert_index_equal(rng, expected) # int rng = timedelta_range('1 days 09:00:00', freq='H', periods=10) result = rng - 1 expected = timedelta_range('1 days 08:00:00', freq='H', periods=10) tm.assert_index_equal(result, expected) rng -= 1 tm.assert_index_equal(rng, expected) idx = TimedeltaIndex(['1 day', '2 day']) msg = "cannot subtract a datelike from a TimedeltaIndex" with tm.assertRaisesRegexp(TypeError, msg): idx - Timestamp('2011-01-01') result = Timestamp('2011-01-01') + idx expected = DatetimeIndex(['2011-01-02', '2011-01-03']) tm.assert_index_equal(result, expected) def test_ops_compat(self): offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] rng = timedelta_range('1 days', '10 days', name='foo') # multiply for offset in offsets: self.assertRaises(TypeError, lambda: rng * offset) # divide expected = Int64Index((np.arange(10) + 1) * 12, name='foo') for offset in offsets: result = rng / offset tm.assert_index_equal(result, expected, exact=False) # divide with nats rng = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') expected = Float64Index([12, np.nan, 24], name='foo') for offset in offsets: result = rng / offset tm.assert_index_equal(result, expected) # don't allow division by NaT (make could in the future) self.assertRaises(TypeError, lambda: rng / pd.NaT) def test_subtraction_ops(self): # with datetimes/timedelta and tdi/dti tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') dti = date_range('20130101', periods=3, name='bar') td = Timedelta('1 days') dt = Timestamp('20130101') self.assertRaises(TypeError, lambda: tdi - dt) self.assertRaises(TypeError, lambda: tdi - dti) self.assertRaises(TypeError, lambda: td - dt) self.assertRaises(TypeError, lambda: td - dti) result = dt - dti expected = TimedeltaIndex(['0 days', '-1 days', '-2 days'], name='bar') tm.assert_index_equal(result, expected) result = dti - dt expected = TimedeltaIndex(['0 days', '1 days', '2 days'], name='bar') tm.assert_index_equal(result, expected) result = tdi - td expected = TimedeltaIndex(['0 days', pd.NaT, '1 days'], name='foo') tm.assert_index_equal(result, expected, check_names=False) result = td - tdi expected = TimedeltaIndex(['0 days', pd.NaT, '-1 days'], name='foo') tm.assert_index_equal(result, expected, check_names=False) result = dti - td expected = DatetimeIndex( ['20121231', '20130101', '20130102'], name='bar') tm.assert_index_equal(result, expected, check_names=False) result = dt - tdi expected = DatetimeIndex(['20121231', pd.NaT, '20121230'], name='foo') tm.assert_index_equal(result, expected) def test_subtraction_ops_with_tz(self): # check that dt/dti subtraction ops with tz are validated dti = date_range('20130101', periods=3) ts = Timestamp('20130101') dt = ts.to_pydatetime() dti_tz = date_range('20130101', periods=3).tz_localize('US/Eastern') ts_tz = Timestamp('20130101').tz_localize('US/Eastern') ts_tz2 = Timestamp('20130101').tz_localize('CET') dt_tz = ts_tz.to_pydatetime() td = Timedelta('1 days') def _check(result, expected): self.assertEqual(result, expected) self.assertIsInstance(result, Timedelta) # scalars result = ts - ts expected = Timedelta('0 days') _check(result, expected) result = dt_tz - ts_tz expected = Timedelta('0 days') _check(result, expected) result = ts_tz - dt_tz expected = Timedelta('0 days') _check(result, expected) # tz mismatches self.assertRaises(TypeError, lambda: dt_tz - ts) self.assertRaises(TypeError, lambda: dt_tz - dt) self.assertRaises(TypeError, lambda: dt_tz - ts_tz2) self.assertRaises(TypeError, lambda: dt - dt_tz) self.assertRaises(TypeError, lambda: ts - dt_tz) self.assertRaises(TypeError, lambda: ts_tz2 - ts) self.assertRaises(TypeError, lambda: ts_tz2 - dt) self.assertRaises(TypeError, lambda: ts_tz - ts_tz2) # with dti self.assertRaises(TypeError, lambda: dti - ts_tz) self.assertRaises(TypeError, lambda: dti_tz - ts) self.assertRaises(TypeError, lambda: dti_tz - ts_tz2) result = dti_tz - dt_tz expected = TimedeltaIndex(['0 days', '1 days', '2 days']) tm.assert_index_equal(result, expected) result = dt_tz - dti_tz expected = TimedeltaIndex(['0 days', '-1 days', '-2 days']) tm.assert_index_equal(result, expected) result = dti_tz - ts_tz expected = TimedeltaIndex(['0 days', '1 days', '2 days']) tm.assert_index_equal(result, expected) result = ts_tz - dti_tz expected = TimedeltaIndex(['0 days', '-1 days', '-2 days']) tm.assert_index_equal(result, expected) result = td - td expected = Timedelta('0 days') _check(result, expected) result = dti_tz - td expected = DatetimeIndex( ['20121231', '20130101', '20130102'], tz='US/Eastern') tm.assert_index_equal(result, expected) def test_dti_tdi_numeric_ops(self): # These are normally union/diff set-like ops tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') dti = date_range('20130101', periods=3, name='bar') # TODO(wesm): unused? # td = Timedelta('1 days') # dt = Timestamp('20130101') result = tdi - tdi expected = TimedeltaIndex(['0 days', pd.NaT, '0 days'], name='foo') tm.assert_index_equal(result, expected) result = tdi + tdi expected = TimedeltaIndex(['2 days', pd.NaT, '4 days'], name='foo') tm.assert_index_equal(result, expected) result = dti - tdi # name will be reset expected = DatetimeIndex(['20121231', pd.NaT, '20130101']) tm.assert_index_equal(result, expected) def test_sub_period(self): # GH 13078 # not supported, check TypeError p = pd.Period('2011-01-01', freq='D') for freq in [None, 'H']: idx = pd.TimedeltaIndex(['1 hours', '2 hours'], freq=freq) with tm.assertRaises(TypeError): idx - p with tm.assertRaises(TypeError): p - idx def test_addition_ops(self): # with datetimes/timedelta and tdi/dti tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') dti = date_range('20130101', periods=3, name='bar') td = Timedelta('1 days') dt = Timestamp('20130101') result = tdi + dt expected = DatetimeIndex(['20130102', pd.NaT, '20130103'], name='foo') tm.assert_index_equal(result, expected) result = dt + tdi expected = DatetimeIndex(['20130102', pd.NaT, '20130103'], name='foo') tm.assert_index_equal(result, expected) result = td + tdi expected = TimedeltaIndex(['2 days', pd.NaT, '3 days'], name='foo') tm.assert_index_equal(result, expected) result = tdi + td expected = TimedeltaIndex(['2 days', pd.NaT, '3 days'], name='foo') tm.assert_index_equal(result, expected) # unequal length self.assertRaises(ValueError, lambda: tdi + dti[0:1]) self.assertRaises(ValueError, lambda: tdi[0:1] + dti) # random indexes self.assertRaises(TypeError, lambda: tdi + Int64Index([1, 2, 3])) # this is a union! # self.assertRaises(TypeError, lambda : Int64Index([1,2,3]) + tdi) result = tdi + dti # name will be reset expected = DatetimeIndex(['20130102', pd.NaT, '20130105']) tm.assert_index_equal(result, expected) result = dti + tdi # name will be reset expected = DatetimeIndex(['20130102', pd.NaT, '20130105']) tm.assert_index_equal(result, expected) result = dt + td expected = Timestamp('20130102') self.assertEqual(result, expected) result = td + dt expected = Timestamp('20130102') self.assertEqual(result, expected) def test_comp_nat(self): left = pd.TimedeltaIndex([pd.Timedelta('1 days'), pd.NaT, pd.Timedelta('3 days')]) right = pd.TimedeltaIndex([pd.NaT, pd.NaT, pd.Timedelta('3 days')]) for l, r in [(left, right), (left.asobject, right.asobject)]: result = l == r expected = np.array([False, False, True]) tm.assert_numpy_array_equal(result, expected) result = l != r expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(l == pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT == r, expected) expected = np.array([True, True, True]) tm.assert_numpy_array_equal(l != pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT != l, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(l < pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT > l, expected) def test_value_counts_unique(self): # GH 7735 idx = timedelta_range('1 days 09:00:00', freq='H', periods=10) # create repeated values, 'n'th element is repeated by n+1 times idx = TimedeltaIndex(np.repeat(idx.values, range(1, len(idx) + 1))) exp_idx = timedelta_range('1 days 18:00:00', freq='-1H', periods=10) expected = Series(range(10, 0, -1), index=exp_idx, dtype='int64') for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(), expected) expected = timedelta_range('1 days 09:00:00', freq='H', periods=10) tm.assert_index_equal(idx.unique(), expected) idx = TimedeltaIndex(['1 days 09:00:00', '1 days 09:00:00', '1 days 09:00:00', '1 days 08:00:00', '1 days 08:00:00', pd.NaT]) exp_idx = TimedeltaIndex(['1 days 09:00:00', '1 days 08:00:00']) expected = Series([3, 2], index=exp_idx) for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(), expected) exp_idx = TimedeltaIndex(['1 days 09:00:00', '1 days 08:00:00', pd.NaT]) expected = Series([3, 2, 1], index=exp_idx) for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(dropna=False), expected) tm.assert_index_equal(idx.unique(), exp_idx) def test_nonunique_contains(self): # GH 9512 for idx in map(TimedeltaIndex, ([0, 1, 0], [0, 0, -1], [0, -1, -1], ['00:01:00', '00:01:00', '00:02:00'], ['00:01:00', '00:01:00', '00:00:01'])): tm.assertIn(idx[0], idx) def test_unknown_attribute(self): # GH 9680 tdi = pd.timedelta_range(start=0, periods=10, freq='1s') ts = pd.Series(np.random.normal(size=10), index=tdi) self.assertNotIn('foo', ts.__dict__.keys()) self.assertRaises(AttributeError, lambda: ts.foo) def test_order(self): # GH 10295 idx1 = TimedeltaIndex(['1 day', '2 day', '3 day'], freq='D', name='idx') idx2 = TimedeltaIndex( ['1 hour', '2 hour', '3 hour'], freq='H', name='idx') for idx in [idx1, idx2]: ordered = idx.sort_values() self.assert_index_equal(ordered, idx) self.assertEqual(ordered.freq, idx.freq) ordered = idx.sort_values(ascending=False) expected = idx[::-1] self.assert_index_equal(ordered, expected) self.assertEqual(ordered.freq, expected.freq) self.assertEqual(ordered.freq.n, -1) ordered, indexer = idx.sort_values(return_indexer=True) self.assert_index_equal(ordered, idx) self.assert_numpy_array_equal(indexer, np.array([0, 1, 2]), check_dtype=False) self.assertEqual(ordered.freq, idx.freq) ordered, indexer = idx.sort_values(return_indexer=True, ascending=False) self.assert_index_equal(ordered, idx[::-1]) self.assertEqual(ordered.freq, expected.freq) self.assertEqual(ordered.freq.n, -1) idx1 = TimedeltaIndex(['1 hour', '3 hour', '5 hour', '2 hour ', '1 hour'], name='idx1') exp1 = TimedeltaIndex(['1 hour', '1 hour', '2 hour', '3 hour', '5 hour'], name='idx1') idx2 = TimedeltaIndex(['1 day', '3 day', '5 day', '2 day', '1 day'], name='idx2') # TODO(wesm): unused? # exp2 = TimedeltaIndex(['1 day', '1 day', '2 day', # '3 day', '5 day'], name='idx2') # idx3 = TimedeltaIndex([pd.NaT, '3 minute', '5 minute', # '2 minute', pd.NaT], name='idx3') # exp3 = TimedeltaIndex([pd.NaT, pd.NaT, '2 minute', '3 minute', # '5 minute'], name='idx3') for idx, expected in [(idx1, exp1), (idx1, exp1), (idx1, exp1)]: ordered = idx.sort_values() self.assert_index_equal(ordered, expected) self.assertIsNone(ordered.freq) ordered = idx.sort_values(ascending=False) self.assert_index_equal(ordered, expected[::-1]) self.assertIsNone(ordered.freq) ordered, indexer = idx.sort_values(return_indexer=True) self.assert_index_equal(ordered, expected) exp = np.array([0, 4, 3, 1, 2]) self.assert_numpy_array_equal(indexer, exp, check_dtype=False) self.assertIsNone(ordered.freq) ordered, indexer = idx.sort_values(return_indexer=True, ascending=False) self.assert_index_equal(ordered, expected[::-1]) exp = np.array([2, 1, 3, 4, 0]) self.assert_numpy_array_equal(indexer, exp, check_dtype=False) self.assertIsNone(ordered.freq) def test_getitem(self): idx1 = pd.timedelta_range('1 day', '31 day', freq='D', name='idx') for idx in [idx1]: result = idx[0] self.assertEqual(result, pd.Timedelta('1 day')) result = idx[0:5] expected = pd.timedelta_range('1 day', '5 day', freq='D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx[0:10:2] expected = pd.timedelta_range('1 day', '9 day', freq='2D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx[-20:-5:3] expected = pd.timedelta_range('12 day', '24 day', freq='3D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx[4::-1] expected = TimedeltaIndex(['5 day', '4 day', '3 day', '2 day', '1 day'], freq='-1D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) def test_drop_duplicates_metadata(self): # GH 10115 idx = pd.timedelta_range('1 day', '31 day', freq='D', name='idx') result = idx.drop_duplicates() self.assert_index_equal(idx, result) self.assertEqual(idx.freq, result.freq) idx_dup = idx.append(idx) self.assertIsNone(idx_dup.freq) # freq is reset result = idx_dup.drop_duplicates() self.assert_index_equal(idx, result) self.assertIsNone(result.freq) def test_drop_duplicates(self): # to check Index/Series compat base = pd.timedelta_range('1 day', '31 day', freq='D', name='idx') idx = base.append(base[:5]) res = idx.drop_duplicates() tm.assert_index_equal(res, base) res = Series(idx).drop_duplicates() tm.assert_series_equal(res, Series(base)) res = idx.drop_duplicates(keep='last') exp = base[5:].append(base[:5]) tm.assert_index_equal(res, exp) res = Series(idx).drop_duplicates(keep='last') tm.assert_series_equal(res, Series(exp, index=np.arange(5, 36))) res = idx.drop_duplicates(keep=False) tm.assert_index_equal(res, base[5:]) res = Series(idx).drop_duplicates(keep=False) tm.assert_series_equal(res, Series(base[5:], index=np.arange(5, 31))) def test_take(self): # GH 10295 idx1 =
pd.timedelta_range('1 day', '31 day', freq='D', name='idx')
pandas.timedelta_range
"""Create csv files with emotions in the first column and a column for every expanded body part. Usage: python generate_emotion2bodyparts.py <corpus metadata> <dir with input texts> <output file (.csv)> In addition to the output.csv, also files for each time period are written. """ import os import argparse from collections import Counter from embem.machinelearningdata.count_labels import load_data, corpus_metadata from embem.emotools.heem_utils import heem_body_part_labels, \ heem_emotion_labels import pandas as pd def get_emotion_body_part_pairs(file_name): # load data set X_data, Y_data = load_data(file_name) Y = [s.split('_') for s in Y_data] emotions2body = {} emotions = Counter() for labelset in Y: body_parts = [lb for lb in labelset if lb in heem_body_part_labels] emotion_lbls = [lb for lb in labelset if lb in heem_emotion_labels] if body_parts and emotion_lbls: for em in emotion_lbls: for bp in body_parts: if not emotions2body.get(em): emotions2body[em] = Counter() emotions2body[em][bp] += 1 emotions[em] += 1 return emotions, emotions2body if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('in_file', help='csv file containing corpus metadata') parser.add_argument('input_dir', help='the directory where the input text ' 'files can be found.') parser.add_argument('out_file', help='csv file containing corpus metadata') args = parser.parse_args() f_name = args.in_file input_dir = args.input_dir out_file = args.out_file text2period, text2year, text2genre, period2text, genre2text = \ corpus_metadata(f_name) # statistics for entire corpus global_emotions = Counter() emotion_body_pairs = Counter() period_counters = {} periods = set() # process texts text_files = [t for t in os.listdir(input_dir) if t.endswith('.txt')] for text_file in text_files: text_id = text_file.replace('.txt', '') in_file = os.path.join(input_dir, text_file) period = text2period.get(text_id) periods.add(period) emotions, emotions2body = get_emotion_body_part_pairs(in_file) global_emotions.update(emotions) for em, body_counter in emotions2body.iteritems(): if not emotion_body_pairs.get(em): emotion_body_pairs[em] = Counter() emotion_body_pairs[em].update(body_counter) if not period_counters.get(em): period_counters[em] = {} if not period_counters.get(em).get(period): period_counters[em][period] = Counter() period_counters[em][period].update(body_counter) df =
pd.DataFrame(columns=heem_body_part_labels, index=heem_emotion_labels)
pandas.DataFrame
""" MLTrace: A machine learning progress tracker ==================================================== This module provides some basic functionality to track the process of machine learning model development. It sets up a SQLite db-file and stores selected models, graphs, and data (for convenience) and recovers them as requested. ``mltrace`` uses `peewee <http://docs.peewee-orm.com/en/latest/>`_ and `pandas <https://pandas.pydata.org/>`_ for data manipulation. It also has built in capabilities to generate some typical plots and graph in machine learning. """ try: from peewee import * except ModuleNotFoundError: Model = type("Model", (object,), dict(Simple=lambda: 0.0)) SqliteDatabase = lambda x: None from datetime import datetime MLTRACK_DB = SqliteDatabase(None) class np2df(object): """ A class to convert numpy ndarray to a pandas DataFrame. It produces a callable object which returns a `pandas.DataFrame` :param data: `numpy.ndarray` data :param clmns: a list of titles for pandas DataFrame column names. If None, it produces `C{num}` where `num` changes as the index of the ndarray does. """ def __init__(self, data, clmns=None): self.data = data self.N = len(data[0]) if clmns is None: self.Columns = ["C%d" % (_) for _ in range(self.N)] else: self.Columns = clmns def __call__(self, *args, **kwargs): from pandas import DataFrame dct = {} for idx in range(self.N): dct[self.Columns[idx]] = list(self.data[:, idx]) return DataFrame(dct) class Task(Model): """ The class to generate the 'task` table in the SQLite db-file. This table keeps basic information about the task on hand, e.g., the task name, a brief description, target column, and columns to be ignored. """ try: task_id = IntegerField(primary_key=True, unique=True, null=False, default=1) name = CharField(null=True) description = TextField(null=True) target = CharField(null=True) ignore = CharField(null=True) init_date = DateTimeField(default=datetime.now, null=True) last_mod_date = DateTimeField(default=datetime.now, null=True) except: pass class Meta: database = MLTRACK_DB class MLModel(Model): """ The class to generate the 'mlmodel` table in the SQLite db-file. It stores the scikit-learn scheme of the model/pipeline, its parameters, etc. """ try: model_id = IntegerField(primary_key=True, unique=True, null=False) task_id = ForeignKeyField(Task) name = CharField(null=True) model_str = TextField(null=True) model_type = CharField(null=True) parameters = BareField(null=True) date_modified = DateTimeField(default=datetime.now, null=True) except: pass class Meta: database = MLTRACK_DB class Metrics(Model): """ The class to generate the 'metrics` table in the SQLite db-file. This table stores the calculated metrics of each stored model. """ try: metrics_id = IntegerField(primary_key=True, unique=True, null=False) model_id = ForeignKeyField(MLModel) accuracy = FloatField(null=True) auc = FloatField(null=True) precision = FloatField(null=True) recall = FloatField(null=True) f1 = FloatField(null=True) mcc = FloatField(null=True) logloss = FloatField(null=True) variance = FloatField(null=True) max_error = FloatField(null=True) mse = FloatField(null=True) mae = FloatField(null=True) r2 = FloatField(null=True) except: pass class Meta: database = MLTRACK_DB class Saved(Model): """ The class to generate the 'saved` table in the SQLite db-file. It keeps the pickled version of a stored model that can be later recovered. """ try: pickle_id = IntegerField(primary_key=True, unique=True, null=False) model_id = ForeignKeyField(MLModel) pickle = BareField(null=True) init_date = DateTimeField(default=datetime.now, null=True) except: pass class Meta: database = MLTRACK_DB class Plots(Model): """ The class to generate the 'plots` table in the SQLite db-file. This table stores `matplotlib` plots associated to each model. """ try: plot_id = IntegerField(primary_key=True, unique=True, null=False) model_id = ForeignKeyField(MLModel) title = CharField(null=True) plot = BareField(null=True) init_date = DateTimeField(default=datetime.now, null=True) except: pass class Meta: database = MLTRACK_DB class Data(Model): """ The class to generate the 'data` table in the SQLite db-file. This table stores the whole given data for convenience. """ class Meta: database = MLTRACK_DB class Weights(Model): """ The class to generate the 'weights` table in the SQLite db-file. Stores some sensitivity measures, correlations, etc. """ class Meta: database = MLTRACK_DB class mltrack(object): """ This class instantiates an object that tracks the ML activities and store them upon request. :param task: 'str' the task name :param task_is: the id of an existing task, if the name is not provided. :param db_name: a file name for the SQLite database :param cv: the default cross validation method, must be a valid cv based on `sklearn.model_selection`; default: `ShuffleSplit(n_splits=3, test_size=.25)` """ def __init__(self, task, task_id=None, db_name="mltrack.db", cv=None): self.db_name = db_name tables = [Task, MLModel, Metrics, Saved, Plots, Data, Weights] for tbl in tables: tbl._meta.database.init(self.db_name) MLTRACK_DB.create_tables(tables) res = Task.select().where((Task.name == task) | (Task.task_id == task_id)) if len(res) > 0: self.task = res[0].name self.task_id = res[0].task_id self.target = res[0].target else: new_task = Task.create(name=task, description="Initiated automatically") self.task_id = new_task.task_id import sqlite3 self.conn = sqlite3.connect(self.db_name) if cv is None: from sklearn.model_selection import ShuffleSplit self.cv = ShuffleSplit(n_splits=3, test_size=0.25) else: self.cv = cv self.X, self.y = None, None self.Updated, self.Loaded, self.Recovered = [], [], [] def UpdateTask(self, data): """ Updates the current task info. :param data: a dictionary that may include some the followings as its keys: + 'name': the corresponding value will replace the current task name + 'description': the corresponding value will replace the current description + 'ignore': the corresponding value will replace the current ignored columns :return: None """ task = Task.select().where(Task.task_id == self.task_id).get() if "name" in data: task.name = data["name"] if "description" in data: task.description = data["description"] if "ignore" in data: task.ignore = ",".join(data["ignore"]) task.last_mod_date = datetime.now() task.save() def UpdateModel(self, mdl, name): """ Updates an already logged model which has `mltrack_id` set. :param mdl: a scikit-learn compatible estimator/pipeline :param name: an arbitrary string to name the model :return: None """ from pickle import dumps if "mltrack_id" not in mdl.__dict__: return else: mltrack_id = mdl.mltrack_id model = MLModel.select().where(MLModel.model_id == mltrack_id).get() model.name = name model.model_str = str(mdl) model.parameters = dumps(mdl.get_params()) model.date_modified = datetime.now() model.save() if mltrack_id not in self.Updated: self.Updated.append(mltrack_id) def LogModel(self, mdl, name=None): """ Log a machine learning model :param mdl: a scikit-learn compatible estimator/pipeline :param name: an arbitrary string to name the model :return: modified instance of `mdl` which carries a new attribute `mltrack_id` as its id. """ from pickle import dumps if name is not None: mdl.mltrack_name = name else: mdl.mltrack_name = name if name is not None else str(mdl).split("(")[0] if "mltrack_id" not in mdl.__dict__: MLModel.create( task_id=self.task_id, name=mdl.mltrack_name, model_str=str(mdl), model_type=str(type(mdl)).split("'")[1], parameters=dumps(mdl.get_params()), ) mdl.mltrack_id = ( MLModel.select(MLModel.model_id).order_by(MLModel.model_id.desc()).get() ) else: res = MLModel.select().where(MLModel.model_id == mdl.mltrack_id)[0] res.name = mdl.mltrack_name res.model_str = str(mdl) res.parameters = dumps(mdl.get_params()) res.date_modified = datetime.now() res.save() # TBM Tskres = Task.select().where(Task.task_id == self.task_id)[0] Tskres.last_mod_date = datetime.now() Tskres.save() return mdl def RegisterData(self, source_df, target): """ Registers a pandas DataFrame into the SQLite database. Upon a call, it also sets `self.X` and `self.y` which are numpy arrays. :param source_df: the pandas DataFrame to be stored :param target: the name of the target column to be predicted :return: None """ # TBM res = Task.select().where(Task.task_id == self.task_id)[0] res.target = target res.last_mod_date = datetime.now() res.save() self.target = target clmns = list(source_df.columns) if target not in clmns: raise BaseException("`%s` is not a part of data source." % target) source_df.to_sql("data", self.conn, if_exists="replace", index=False) clmns.remove(target) self.X = source_df[clmns].values self.y = source_df[target].values def get_data(self): """ Retrieves data in numpy format :return: numpy arrays X, y """ from pandas import read_sql df = read_sql("SELECT * FROM data", self.conn) clmns = list(df.columns) clmns.remove(self.target) self.X = df[clmns].values self.y = df[self.target].values return self.X, self.y def get_dataframe(self): """ Retrieves data in pandas DataFrame format :return: pandas DataFrame containing all data """ from pandas import read_sql df = read_sql("SELECT * FROM data", self.conn) return df def LogMetrics(self, mdl, cv=None): """ Logs metrics of an already logged model using a cross validation methpd :param mdl: the model to be measured :param cv: cross validation method :return: a dictionary of all measures with their corresponding values for the model """ if cv is not None: self.cv = cv if self.X is None: self.get_data() if "mltrack_id" not in mdl.__dict__: mdl = self.LogModel(mdl) mdl_id = mdl.mltrack_id mdl_type = mdl._estimator_type ####################################################### prds = [] prbs = [] for train_idx, test_idx in self.cv.split(self.X, self.y): X_train, y_train = self.X[train_idx], self.y[train_idx] X_test, y_test = self.X[test_idx], self.y[test_idx] mdl.fit(X_train, y_train) prds.append((mdl.predict(X_test), y_test)) try: prbs.append(mdl.predict_proba(X_test)[:, 1]) except AttributeError: try: prbs.append(mdl.decision_function(X_test)) except AttributeError: pass ####################################################### acc = None f_1 = None prs = None rcl = None aur = None mcc = None lgl = None vrn = None mxe = None mse = None mae = None r2 = None n_ = float(len(prbs)) if mdl_type == "classifier": from sklearn.metrics import ( accuracy_score, f1_score, precision_score, recall_score, roc_curve, auc, log_loss, matthews_corrcoef, ) acc = sum([accuracy_score(y_tst, y_prd) for y_prd, y_tst in prds]) / n_ f_1 = sum([f1_score(y_tst, y_prd) for y_prd, y_tst in prds]) / n_ prs = sum([precision_score(y_tst, y_prd) for y_prd, y_tst in prds]) / n_ rcl = sum([recall_score(y_tst, y_prd) for y_prd, y_tst in prds]) / n_ mcc = sum([matthews_corrcoef(y_tst, y_prd) for y_prd, y_tst in prds]) / n_ lgl = sum([log_loss(y_tst, y_prd) for y_prd, y_tst in prds]) / n_ aur = 0.0 for i in range(int(n_)): fpr, tpr, _ = roc_curve(prds[i][1], prbs[i]) aur += auc(fpr, tpr) aur /= n_ elif mdl_type == "regressor": from sklearn.metrics import ( explained_variance_score, median_absolute_error, mean_squared_error, mean_absolute_error, r2_score, ) vrn = ( sum([explained_variance_score(y_tst, y_prd) for y_prd, y_tst in prds]) / n_ ) mxe = ( sum([median_absolute_error(y_tst, y_prd) for y_prd, y_tst in prds]) / n_ ) mse = sum([mean_squared_error(y_tst, y_prd) for y_prd, y_tst in prds]) / n_ mae = sum([mean_absolute_error(y_tst, y_prd) for y_prd, y_tst in prds]) / n_ r2 = sum([r2_score(y_tst, y_prd) for y_prd, y_tst in prds]) / n_ Metrics.create( model_id=mdl_id, accuracy=acc, auc=aur, precision=prs, f1=f_1, recall=rcl, mcc=mcc, logloss=lgl, variance=vrn, max_error=mxe, mse=mse, mae=mae, r2=r2, ) # TBM res = Task.select().where(Task.task_id == self.task_id)[0] res.last_mod_date = datetime.now() res.save() return dict( accuracy=acc, auc=aur, precision=prs, f1=f_1, recall=rcl, mcc=mcc, logloss=lgl, variance=vrn, max_error=mxe, mse=mse, mae=mae, r2=r2, ) def LoadModel(self, mid): """ Loads a model corresponding to an id :param mid: the model id :return: an unfitted model """ from importlib import import_module from pickle import loads res = MLModel.select().where(MLModel.model_id == mid) if len(res) == 0: raise BaseException("No model with id '%d' were found" % (mid)) detail = res[0].model_type.split(".") module_str = ".".join(detail[:-1]) clss = detail[-1] module = import_module(module_str) params = loads(res[0].parameters) mdl = module.__getattribute__(clss)() mdl.set_params(**params) mdl.mltrack_id = mid if mid not in self.Loaded: self.Loaded.append(mid) return mdl @staticmethod def getBest(metric): """ Finds the model with the best metric. :param metric: the metric to find the best stored model for :return: the model wiith the best `metric` """ res = ( Metrics.select() .order_by(Metrics.__dict__[metric].__dict__["field"].desc()) .dicts() ) return res[0] def allTasks(self): """ Lists all tasks as a pandas DataFrame :return: a pandas DataFrame """ from pandas import read_sql return read_sql("SELECT * FROM task", self.conn) def allModels(self): """ Lists all logged models as a pandas DataFrame :return: a pandas DataFrame """ from pandas import read_sql return read_sql( "SELECT model_id, task_id, name, model_str, model_type, date_modified FROM mlmodel WHERE task_id=%d" % (self.task_id), self.conn, ) def allPreserved(self): """ Lists all pickled models as a pandas DataFrame :return: a pandas DataFrame """ from pandas import read_sql return read_sql("SELECT pickle_id, model_id, init_date FROM saved", self.conn) def PreserveModel(self, mdl): """ Pickles and preserves an already logged model :param mdl: a logged model :return: None """ from sklearn.externals import joblib if "mltrack_id" not in mdl.__dict__: mdl = self.LogModel(mdl) mdl_id = mdl.mltrack_id file = open("track_ml_tmp_mdl.joblib", "wb") joblib.dump(mdl, file) file.close() file = open("track_ml_tmp_mdl.joblib", "rb") str_cntnt = file.read() Saved.create(model_id=mdl_id, pickle=str_cntnt) file.close() import os os.remove("track_ml_tmp_mdl.joblib") def RecoverModel(self, mdl_id): """ Recovers a pickled model :param mdl_id: a valid `mltrack_id` :return: a fitted model """ from sklearn.externals import joblib res = ( Saved.select() .where(Saved.model_id == mdl_id) .order_by(Saved.init_date.desc()) .dicts() ) file = open("track_ml_tmp_mdl.joblib", "wb") file.write(res[0]["pickle"]) file.close() file = open("track_ml_tmp_mdl.joblib", "rb") mdl = joblib.load(file) file.close() import os os.remove("track_ml_tmp_mdl.joblib") if mdl_id not in self.Recovered: self.Recovered.append(mdl_id) return mdl def allPlots(self, mdl_id): """ Lists all stored plots for a model with `mdl_id` as a pandas DataFrame :param mdl_id: a valid `mltrack_id` :return: a pandas DataFrame """ from pandas import read_sql return read_sql( "SELECT plot_id, model_id, title, init_date FROM plots WHERE model_id=%d" % (mdl_id), self.conn, ) @staticmethod def LoadPlot(pid): """ Loads a `matplotlib` plot :param pid: the id of the plot :return: a `matplotlib` figure """ from pickle import loads # ax = plt.subplot(111) res = Plots.select().where(Plots.plot_id == pid).dicts() fig = loads(res[0]["plot"]) return fig def plot_learning_curve( self, mdl, title, ylim=None, cv=None, n_jobs=1, train_sizes=None, **kwargs ): """ Generate a simple plot of the test and training learning curve. :param mdl: object type that implements the "fit" and "predict" methods; An object of that type which is cloned for each validation. :param title: string; Title for the chart. :param measure: string, a performance measure; must be one of hte followings: `accuracy`, `f1`, `precision`, `recall`, `roc_auc` :param ylim: tuple, shape (ymin, ymax), optional; Defines minimum and maximum yvalues plotted. :param cv: int, cross-validation generator or an iterable, optional; Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 3-fold cross-validation, - integer, to specify the number of folds. - An object to be used as a cross-validation generator. - An iterable yielding train/test splits. For integer/None inputs, if ``y`` is binary or multiclass, :class:`StratifiedKFold` used. If the mdl is not a classifier or if ``y`` is neither binary nor multiclass, :class:`KFold` is used. :param n_jobs: integer, optional; Number of jobs to run in parallel (default 1). :return: a `matplotlib` plot """ import matplotlib.pyplot as plt import numpy as np from sklearn.model_selection import learning_curve if cv is not None: self.cv = cv if self.X is None: self.get_data() if "mltrack_id" not in mdl.__dict__: mdl = self.LogModel(mdl) mdl_id = mdl.mltrack_id meas = kwargs.get("measure", "accuracy") if meas not in ["accuracy", "f1", "precision", "recall", "roc_auc"]: meas = "accuracy" if train_sizes is None: train_sizes = np.linspace(0.1, 1.0, 5) plt.subplot(111) fig = plt.figure() plt.title(title) if ylim is None: ylim = (-0.05, 1.05) plt.ylim(*ylim) plt.xlabel("Training size") plt.ylabel("Score (%s)" % (meas)) train_sizes, train_scores, test_scores = learning_curve( mdl, self.X, self.y, cv=self.cv, n_jobs=n_jobs, train_sizes=train_sizes, scoring=meas, ) xlbls = np.array( [str(round(_ * 100, 1)) + " %" for _ in train_sizes / len(self.y)] ) train_scores_mean = np.mean(train_scores, axis=1) train_scores_std = np.std(train_scores, axis=1) test_scores_mean = np.mean(test_scores, axis=1) test_scores_std = np.std(test_scores, axis=1) plt.grid() plt.fill_between( xlbls, train_scores_mean - train_scores_std, train_scores_mean + train_scores_std, alpha=0.1, color="r", ) plt.fill_between( xlbls, test_scores_mean - test_scores_std, test_scores_mean + test_scores_std, alpha=0.1, color="g", ) plt.plot(xlbls, train_scores_mean, "o-", color="r", label="Training score") plt.plot( xlbls, test_scores_mean, "o-", color="g", label="Cross-validation score" ) plt.legend(loc="best") from pickle import dumps pckl = dumps(fig) Plots.create(model_id=mdl_id, title=meas, plot=pckl) return plt def split_train(self, mdl): from sklearn.model_selection import train_test_split if "mltrack_id" not in mdl.__dict__: mdl = self.LogModel(mdl) mdl_id = mdl.mltrack_id if self.X is None: self.get_data() X_train, X_test, y_train, y_test = train_test_split( self.X, self.y, train_size=0.75 ) from sklearn.exceptions import NotFittedError x_ = X_test[0] try: mdl.predict([x_]) except NotFittedError as _: mdl.fit(X_train, y_train) return mdl, mdl_id, X_train, X_test, y_train, y_test def plot_calibration_curve(self, mdl, name, fig_index=1, bins=10): """ Plots calibration curves. :param mdl: object type that implements the "fit" and "predict" methods; An object of that type which is cloned for each validation. :param name: string; Title for the chart. :param bins: number of bins to partition samples :return: a `matplotlib` plot """ import matplotlib.pyplot as plt from sklearn.calibration import calibration_curve fig = plt.figure(fig_index, figsize=(10, 10)) ax1 = plt.subplot2grid((3, 1), (0, 0), rowspan=2) ax2 = plt.subplot2grid((3, 1), (2, 0)) ax1.plot([0, 1], [0, 1], "k:", label="Perfectly calibrated") mdl, mdl_id, _, X_test, _, y_test = self.split_train(mdl) if hasattr(mdl, "predict_proba"): prob_pos = mdl.predict_proba(X_test)[:, 1] else: # use decision function prob_pos = mdl.decision_function(X_test) prob_pos = (prob_pos - prob_pos.min()) / (prob_pos.max() - prob_pos.min()) fraction_of_positives, mean_predicted_value = calibration_curve( y_test, prob_pos, n_bins=bins ) ax1.plot(mean_predicted_value, fraction_of_positives, "s-", label="%s" % (name)) ax2.hist(prob_pos, range=(0, 1), bins=bins, label=name, histtype="step", lw=2) ax1.set_ylabel("Fraction of positives") ax1.set_ylim([-0.05, 1.05]) ax1.legend(loc="lower right") ax1.set_title("Calibration plots (reliability curve)") ax2.set_xlabel("Mean predicted value") ax2.set_ylabel("Count") ax2.legend(loc="upper center", ncol=2) plt.tight_layout() from pickle import dumps pckl = dumps(fig) Plots.create(model_id=mdl_id, title="calibration", plot=pckl) return plt def plot_roc_curve(self, mdl, label=None): """ The ROC curve, modified from Hands-On Machine learning with Scikit-Learn. :param mdl: object type that implements the "fit" and "predict" methods; An object of that type which is cloned for each validation. :param label: string; label for the chart. :return: a `matplotlib` plot """ import matplotlib.pyplot as plt from numpy import arange from sklearn.metrics import roc_curve mdl, mdl_id, _, X_test, _, y_test = self.split_train(mdl) _ = plt.subplot(111) fig = plt.figure(figsize=(8, 8)) plt.title("ROC Curve") try: y_score = mdl.predict_proba(X_test)[:, 1] except: y_score_ = mdl.decision_function(X_test) y_score = (y_score_ - y_score_.min()) / (y_score_.max() - y_score_.min()) fpr, tpr, _ = roc_curve(y_test, y_score) plt.plot(fpr, tpr, linewidth=2, label=label) plt.plot([0, 1], [0, 1], "k--") plt.axis([-0.005, 1, 0, 1.005]) plt.xticks(arange(0, 1, 0.05), rotation=90) plt.xlabel("False Positive Rate") plt.ylabel("True Positive Rate (Recall)") plt.legend(loc="best") from pickle import dumps pckl = dumps(fig) Plots.create(model_id=mdl_id, title="roc curve", plot=pckl) return plt def plot_cumulative_gain( self, mdl, title="Cumulative Gains Curve", figsize=None, title_fontsize="large", text_fontsize="medium", ): """ Generates the Cumulative Gains Plot from labels and scores/probabilities The cumulative gains chart is used to determine the effectiveness of a binary classifier. A detailed explanation can be found at `http://mlwiki.org/index.php/Cumulative_Gain_Chart <http://mlwiki.org/index.php/Cumulative_Gain_Chart>`_. The implementation here works only for binary classification. :param mdl: object type that implements the "fit" and "predict" methods; An object of that type which is cloned for each validation. :param title: (string, optional): Title of the generated plot. Defaults to "Cumulative Gains Curve". :param figsize: (2-tuple, optional): Tuple denoting figure size of the plot e.g. (6, 6). Defaults to ``None``. :param title_fontsize: (string or int, optional): Matplotlib-style fontsizes. Use e.g., "small", "medium", "large" or integer-values. Defaults to "large". :param text_fontsize: (string or int, optional): Matplotlib-style fontsizes. Use e.g. "small", "medium", "large" or integer-values. Defaults to "medium". :return: ax (:class:`matplotlib.axes.Axes`): The axes on which the plot was drawn. """ from numpy import array, unique import matplotlib.pyplot as plt mdl, mdl_id, _, X_test, _, y_test = self.split_train(mdl) y_true = array(y_test) try: y_probas = mdl.predict_proba(X_test) y_probas = array(y_probas) prob_pos0 = y_probas[:, 0] prob_pos1 = y_probas[:, 1] except: prob_pos = mdl.decision_function(X_test) prob_pos1 = (prob_pos - prob_pos.min()) / (prob_pos.max() - prob_pos.min()) prob_pos0 = (prob_pos.max() - prob_pos) / (prob_pos.max() - prob_pos.min()) classes = unique(y_true) if len(classes) != 2: raise ValueError( "Cannot calculate Cumulative Gains for data with " "{} category/ies".format(len(classes)) ) # Compute Cumulative Gain Curves percentages, gains1 = self.cumulative_gain_curve(y_true, prob_pos0, classes[0]) percentages, gains2 = self.cumulative_gain_curve(y_true, prob_pos1, classes[1]) fig, ax = plt.subplots(1, 1, figsize=figsize) ax.set_title(title, fontsize=title_fontsize) ax.plot(percentages, gains1, lw=3, label="Class {}".format(classes[0])) ax.plot(percentages, gains2, lw=3, label="Class {}".format(classes[1])) ax.set_xlim([0.0, 1.0]) ax.set_ylim([0.0, 1.0]) ax.plot([0, 1], [0, 1], "k--", lw=2, label="Baseline") ax.set_xlabel("Percentage of sample", fontsize=text_fontsize) ax.set_ylabel("Gain", fontsize=text_fontsize) ax.tick_params(labelsize=text_fontsize) ax.grid(True) ax.legend(loc="lower right", fontsize=text_fontsize) from pickle import dumps pckl = dumps(fig) Plots.create(model_id=mdl_id, title="cumulative gain", plot=pckl) return ax @staticmethod def cumulative_gain_curve(y_true, y_score, pos_label=None): """ This function generates the points necessary to plot the Cumulative Gain Note: This implementation is restricted to the binary classification task. :param y_true: (array-like, shape (n_samples)): True labels of the data. :param y_score: (array-like, shape (n_samples)): Target scores, can either be probability estimates of the positive class, confidence values, or non-thresholded measure of decisions (as returned by decision_function on some classifiers). :param pos_label: (int or str, default=None): Label considered as positive and others are considered negative :return: percentages (numpy.ndarray): An array containing the X-axis values for plotting the Cumulative Gains chart. gains (numpy.ndarray): An array containing the Y-axis values for one curve of the Cumulative Gains chart. :raise: ValueError: If `y_true` is not composed of 2 classes. The Cumulative Gain Chart is only relevant in binary classification. """ from numpy import asarray, array_equal, cumsum, arange, insert, unique, argsort y_true, y_score = asarray(y_true), asarray(y_score) # ensure binary classification if pos_label is not specified classes = unique(y_true) if pos_label is None and not ( array_equal(classes, [0, 1]) or array_equal(classes, [-1, 1]) or array_equal(classes, [0]) or array_equal(classes, [-1]) or array_equal(classes, [1]) ): raise ValueError("Data is not binary and pos_label is not specified") elif pos_label is None: pos_label = 1.0 # make y_true a boolean vector y_true = y_true == pos_label sorted_indices = argsort(y_score)[::-1] y_true = y_true[sorted_indices] gains = cumsum(y_true) percentages = arange(start=1, stop=len(y_true) + 1) gains = gains / float(sum(y_true)) percentages = percentages / float(len(y_true)) gains = insert(gains, 0, [0]) percentages = insert(percentages, 0, [0]) return percentages, gains def plot_lift_curve( self, mdl, title="Lift Curve", figsize=None, title_fontsize="large", text_fontsize="medium", ): """ Generates the Lift Curve from labels and scores/probabilities The lift curve is used to determine the effectiveness of a binary classifier. A detailed explanation can be found at `http://www2.cs.uregina.ca/~dbd/cs831/notes/lift_chart/lift_chart.html <http://www2.cs.uregina.ca/~dbd/cs831/notes/lift_chart/lift_chart.html>`_. The implementation here works only for binary classification. :param mdl: object type that implements the "fit" and "predict" methods; An object of that type which is cloned for each validation. :param title: (string, optional): Title of the generated plot. Defaults to "Lift Curve". :param figsize: (2-tuple, optional): Tuple denoting figure size of the plot e.g. (6, 6). Defaults to ``None``. :param title_fontsize: (string or int, optional): Matplotlib-style fontsizes. Use e.g. "small", "medium", "large" or integer-values. Defaults to "large". :param text_fontsize: (string or int, optional): Matplotlib-style fontsizes. Use e.g. "small", "medium", "large" or integer-values. Defaults to "medium". :return: ax (:class:`matplotlib.axes.Axes`): The axes on which the plot was drawn. """ import matplotlib.pyplot as plt from numpy import array, unique mdl, mdl_id, _, X_test, _, y_test = self.split_train(mdl) y_true = array(y_test) try: y_probas = mdl.predict_proba(X_test) y_probas = array(y_probas) prob_pos0 = y_probas[:, 0] prob_pos1 = y_probas[:, 1] except: prob_pos = mdl.decision_function(X_test) prob_pos1 = (prob_pos - prob_pos.min()) / (prob_pos.max() - prob_pos.min()) prob_pos0 = (prob_pos.max() - prob_pos) / (prob_pos.max() - prob_pos.min()) classes = unique(y_true) if len(classes) != 2: raise ValueError( "Cannot calculate Lift Curve for data with " "{} category/ies".format(len(classes)) ) # Compute Cumulative Gain Curves percentages, gains1 = self.cumulative_gain_curve(y_true, prob_pos0, classes[0]) percentages, gains2 = self.cumulative_gain_curve(y_true, prob_pos1, classes[1]) percentages = percentages[1:] gains1 = gains1[1:] gains2 = gains2[1:] gains1 = gains1 / percentages gains2 = gains2 / percentages fig, ax = plt.subplots(1, 1, figsize=figsize) ax.set_title(title, fontsize=title_fontsize) ax.plot(percentages, gains1, lw=3, label="Class {}".format(classes[0])) ax.plot(percentages, gains2, lw=3, label="Class {}".format(classes[1])) ax.plot([0, 1], [1, 1], "k--", lw=2, label="Baseline") ax.set_xlabel("Percentage of sample", fontsize=text_fontsize) ax.set_ylabel("Lift", fontsize=text_fontsize) ax.tick_params(labelsize=text_fontsize) ax.grid(True) ax.legend(loc="lower right", fontsize=text_fontsize) from pickle import dumps pckl = dumps(fig) Plots.create(model_id=mdl_id, title="lift curve", plot=pckl) return ax def heatmap( self, corr_df=None, sort_by=None, ascending=False, font_size=3, cmap="gnuplot2", idx_col="feature", ignore=(), ): """ Plots a heatmap from the values of the dataframe `corr_df` :param corr_df: value container :param idx_col: the column whose values will be used as index :param sort_by: dataframe will be sorted descending by values of this column. If None, the first column is used :param font_size: font size, defalut 3 :param cmap: color mapping. Must be one of the followings 'viridis', 'plasma', 'inferno', 'magma', 'cividis', 'Greys', 'Purples', 'Blues', 'Greens', 'Oranges', 'Reds', 'YlOrBr', 'YlOrRd', 'OrRd', 'PuRd', 'RdPu', 'BuPu', 'GnBu', 'PuBu', 'YlGnBu', 'PuBuGn', 'BuGn', 'YlGn', 'binary', 'gist_yarg', 'gist_gray', 'gray', 'bone', 'pink', 'spring', 'summer', 'autumn', 'winter', 'cool', 'Wistia', 'hot', 'afmhot', 'gist_heat', 'copper', 'PiYG', 'PRGn', 'BrBG', 'PuOr', 'RdGy', 'RdBu', 'RdYlBu', 'RdYlGn', 'Spectral', 'coolwarm', 'bwr', 'seismic', 'twilight', 'twilight_shifted', 'hsv', 'Pastel1', 'Pastel2', 'Paired', 'Accent', 'Dark2', 'Set1', 'Set2', 'Set3', 'tab10', 'tab20', 'tab20b', 'tab20c', 'flag', 'prism', 'ocean', 'gist_earth', 'terrain', 'gist_stern', 'gnuplot', 'gnuplot2', 'CMRmap', 'cubehelix', 'brg', 'gist_rainbow', 'rainbow', 'jet', 'nipy_spectral', 'gist_ncar' :return: matplotlib pyplot instance """ import matplotlib.pyplot as plt from numpy import arange, amin, amax from pandas import read_sql ax = plt.gca() idx_col = idx_col if corr_df is None: df = read_sql("SELECT * FROM weights", self.conn) clmns = list(df.columns) df = df.sort_values( by=clmns[0] if sort_by is None else sort_by, ascending=ascending ) if idx_col is None: idx_col = clmns[0] clmns.remove(idx_col) else: df = corr_df clmns = list(df.columns) # df = df.sort_values(by=clmns[0] if sort_by is None else sort_by, ascending=ascending) if idx_col is not None: # idx_col = clmns[0] clmns.remove(idx_col) for itm in ignore: clmns.remove(itm) data = df[clmns].values mn, mx = amin(data), amax(data) im = ax.imshow(data, cmap=cmap, interpolation="bilinear") # ax.set_adjustable(adjustable='box', share=False) ax.autoscale(False) cbar_kw = { "fraction": 0.2, "ticks": [mn, 0.0, (mn + mx) / 2.0, mx], "drawedges": False, } cbar = ax.figure.colorbar(im, ax=ax, aspect=max(20, len(df)), **cbar_kw) cbarlabel = "" cbar.ax.set_ylabel(cbarlabel, rotation=-90, va="bottom") cbar.ax.tick_params(labelsize=font_size + 1) ax.set_xticks(arange(data.shape[1])) ax.set_yticks(arange(data.shape[0])) ax.set_xticklabels(clmns, fontdict={"fontsize": font_size}) if idx_col is not None: ax.set_yticklabels(list(df[idx_col]), fontdict={"fontsize": font_size}) else: ax.set_yticklabels(list(df.index), fontdict={"fontsize": font_size}) # Let the horizontal axes labeling appear on top. ax.tick_params(top=True, bottom=False, labeltop=True, labelbottom=False) # Rotate the tick labels and set their alignment. plt.setp( ax.get_xticklabels(), rotation=-305, ha="left", va="top", rotation_mode="anchor", ) # Turn spines off and create white grid. for _, spine in ax.spines.items(): spine.set_visible(False) ax.set_xticks(arange(data.shape[1] + 1) - 0.5, minor=True) ax.set_yticks(arange(data.shape[0] + 1) - 0.5, minor=True) ax.grid(which="minor", color="w", linestyle="-", linewidth=0) ax.tick_params(which="minor", bottom=False, left=False) return plt def FeatureWeights(self, weights=("pearson", "variance"), **kwargs): """ Calculates the requested weights and log them :param weights: a list of weights, a subset of {'pearson', 'variance', 'relieff', 'surf', 'sobol', 'morris', 'delta_mmnt', 'info-gain'} :param kwargs: all input acceptable by ``skrebate.ReliefF``, ``skrebate.surf``, ``sensapprx.SensAprx`` :return: None """ from pandas import DataFrame, read_sql self.data = read_sql("SELECT * FROM data", self.conn) features = list(self.data.columns) features.remove(self.target) weights_df = read_sql("SELECT * FROM weights", self.conn) if len(weights_df) == 0: weights_df = DataFrame({"feature": features}) X = self.data[features].values y = self.data[self.target].values n_features = kwargs.get("n_features", int(len(features) / 2)) domain = None probs = None regressor = kwargs.get("regressor", None) reduce = kwargs.get("reduce", True) num_smpl = kwargs.get("num_smpl", 700) W = {"feature": features} for factor in weights: if factor == "pearson": Res = dict(self.data.corr(method="pearson").fillna(0)[self.target]) W["pearson"] = [Res[v] for v in features] elif factor == "variance": Res = dict(self.data.var()) W["variance"] = [Res[v] for v in features] elif factor == "relieff": from skrebate import ReliefF n_neighbors = kwargs.get("n_neighbors", 80) RF = ReliefF(n_features_to_select=n_features, n_neighbors=n_neighbors) RF.fit(X, y) W["relieff"] = [ RF.feature_importances_[features.index(v)] for v in features ] elif factor == "surf": from skrebate import SURF RF = SURF(n_features_to_select=n_features) RF.fit(X, y) W["surf"] = [ RF.feature_importances_[features.index(v)] for v in features ] elif factor == "sobol": from .sensapprx import SensAprx SF = SensAprx( method="sobol", domain=domain, probs=probs, regressor=regressor, reduce=reduce, num_smpl=num_smpl, ) SF.fit(X, y) domain = SF.domain probs = SF.probs W["sobol"] = [SF.weights_[features.index(v)] for v in features] elif factor == "morris": from .sensapprx import SensAprx SF = SensAprx( method="morris", domain=domain, probs=probs, regressor=regressor, reduce=reduce, num_smpl=num_smpl, ) SF.fit(X, y) domain = SF.domain probs = SF.probs W["morris"] = [SF.weights_[features.index(v)] for v in features] elif factor == "delta-mmnt": from .sensapprx import SensAprx SF = SensAprx( method="delta-mmnt", domain=domain, probs=probs, regressor=regressor, reduce=reduce, num_smpl=num_smpl, ) SF.fit(X, y) domain = SF.domain probs = SF.probs W["delta_mmnt"] = [SF.weights_[features.index(v)] for v in features] elif factor == "info-gain": from sklearn.feature_selection import mutual_info_classif Res = mutual_info_classif(X, y, discrete_features=True) W["info_gain"] = [Res[features.index(v)] for v in features] new_w_df = DataFrame(W) merged = weights_df.merge(new_w_df, on="feature") merged.fillna(0.0) merged.to_sql("weights", self.conn, if_exists="replace", index=False) def TopFeatures(self, num=10): """ Returns `num` of top features in the data based on calculated weights :param num: number of top features to return :return: an OrderedDict of top features """ from pandas import read_sql from collections import OrderedDict weights_df =
read_sql("SELECT * FROM weights", self.conn)
pandas.read_sql
import pandas as pd import os import numpy as np import gc import copy import datetime import warnings from tqdm import tqdm from scipy import sparse from numpy import array from scipy.sparse import csr_matrix from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer from sklearn.decomposition import LatentDirichletAllocation from sklearn.decomposition import TruncatedSVD from sklearn.feature_extraction.text import TfidfTransformer ############################################### #########数据加载 ############################################### user_app = pd.read_csv('../../data/processed_data/user_app.csv', dtype={'uId':np.int32, 'appId':str}) app_info = pd.read_csv('../../data/processed_data/app_info.csv', dtype={'appId':str, 'category':int}) ############################################### ########## 压缩函数 ############################################### # 对数据进行类型压缩,节约内存 from tqdm import tqdm_notebook class _Data_Preprocess: def __init__(self): self.int8_max = np.iinfo(np.int8).max self.int8_min = np.iinfo(np.int8).min self.int16_max = np.iinfo(np.int16).max self.int16_min = np.iinfo(np.int16).min self.int32_max = np.iinfo(np.int32).max self.int32_min = np.iinfo(np.int32).min self.int64_max = np.iinfo(np.int64).max self.int64_min = np.iinfo(np.int64).min self.float16_max = np.finfo(np.float16).max self.float16_min = np.finfo(np.float16).min self.float32_max = np.finfo(np.float32).max self.float32_min = np.finfo(np.float32).min self.float64_max = np.finfo(np.float64).max self.float64_min = np.finfo(np.float64).min ''' function: _get_type(self,min_val, max_val, types) get the correct types that our columns can trans to ''' def _get_type(self, min_val, max_val, types): if types == 'int': if max_val <= self.int8_max and min_val >= self.int8_min: return np.int8 elif max_val <= self.int16_max <= max_val and min_val >= self.int16_min: return np.int16 elif max_val <= self.int32_max and min_val >= self.int32_min: return np.int32 return None elif types == 'float': if max_val <= self.float16_max and min_val >= self.float16_min: return np.float16 if max_val <= self.float32_max and min_val >= self.float32_min: return np.float32 if max_val <= self.float64_max and min_val >= self.float64_min: return np.float64 return None ''' function: _memory_process(self,df) column data types trans, to save more memory ''' def _memory_process(self, df): init_memory = df.memory_usage().sum() / 1024 ** 2 / 1024 print('Original data occupies {} GB memory.'.format(init_memory)) df_cols = df.columns for col in tqdm_notebook(df_cols): try: if 'float' in str(df[col].dtypes): max_val = df[col].max() min_val = df[col].min() trans_types = self._get_type(min_val, max_val, 'float') if trans_types is not None: df[col] = df[col].astype(trans_types) elif 'int' in str(df[col].dtypes): max_val = df[col].max() min_val = df[col].min() trans_types = self._get_type(min_val, max_val, 'int') if trans_types is not None: df[col] = df[col].astype(trans_types) except: print(' Can not do any process for column, {}.'.format(col)) afterprocess_memory = df.memory_usage().sum() / 1024 ** 2 / 1024 print('After processing, the data occupies {} GB memory.'.format(afterprocess_memory)) return df memory_preprocess = _Data_Preprocess() # 用法: # baseSet=memory_preprocess._memory_process(baseSet) ############################################### ########## 统计用户安装app的数量和占比 ############################################### app_counts = user_app[['appId']].drop_duplicates().count() userSub = user_app.groupby('uId')['appId'].nunique().reset_index().rename(columns={'appId': 'user_app_active_counts'}) userSub['user_app_active_ratio'] = userSub['user_app_active_counts'].apply(lambda x: x/app_counts) del app_counts user_app_active_counts = userSub.copy() ############################################### ########统计用户每个年龄段安装的app ############################################### age_train = pd.read_csv('../../data/processed_data/age_train.csv',dtype={'uId':np.int32, 'age_group':np.int8}) userSub = pd.merge(age_train, user_app, how='left', on='uId') userSub=pd.pivot_table(userSub, values='uId', index=['appId'],columns=['age_group'],aggfunc='count', fill_value=0) userSub['sum']=userSub.sum(axis=1) userSub= userSub.reset_index() userSub.rename(columns={1:'age_1',2:'age_2',3:'age_3',4:'age_4',5:'age_5',6:'age_6'},inplace=True) userSub.drop(axis=0, index=0, inplace=True) userSub['age1_%']= userSub.apply(lambda x: round(x['age_1']/x['sum'],2),axis=1) userSub['age2_%']= userSub.apply(lambda x: round(x['age_2']/x['sum'],2),axis=1) userSub['age3_%']= userSub.apply(lambda x: round(x['age_3']/x['sum'],2),axis=1) userSub['age4_%']= userSub.apply(lambda x: round(x['age_4']/x['sum'],2),axis=1) userSub['age5_%']= userSub.apply(lambda x: round(x['age_5']/x['sum'],2),axis=1) userSub['age6_%']= userSub.apply(lambda x: round(x['age_6']/x['sum'],2),axis=1) age1 = userSub[(userSub['age1_%'] >= 0.3)][['appId']].copy() age1['age_num1'] = 1 age2 = userSub[(userSub['age2_%'] >= 0.6)][['appId']].copy() age2['age_num2'] = 1 age3 = userSub[(userSub['age3_%'] >= 0.6)][['appId']].copy() age3['age_num3'] = 1 age4 = userSub[(userSub['age4_%'] >= 0.6)][['appId']].copy() age4['age_num4'] = 1 age5 = userSub[(userSub['age5_%'] >= 0.3)][['appId']].copy() age5['age_num5'] = 1 age6 = userSub[(userSub['age6_%'] >= 0.3)][['appId']].copy() age6['age_num6'] = 1 userSub = pd.merge(user_app, age1, how='left', on='appId').fillna(0) userSub = pd.merge(userSub, age2, how='left', on='appId').fillna(0) userSub = pd.merge(userSub, age3, how='left', on='appId').fillna(0) userSub = pd.merge(userSub, age4, how='left', on='appId').fillna(0) userSub = pd.merge(userSub, age5, how='left', on='appId').fillna(0) userSub = pd.merge(userSub, age6, how='left', on='appId').fillna(0) userSub = userSub.groupby('uId').sum().reset_index() user_active_app_age = userSub.copy() ############################################### ########## 用户安装各app类型的数量 ############################################### userSub = pd.merge(user_app, app_info, how='left', on='appId').fillna(method='pad') userSub = pd.pivot_table(userSub, values='appId', index=['uId'],columns=['category'], aggfunc='count', fill_value=0).reset_index() userSub['use_app_cate_nums']=0 for i in range(25): userSub['use_app_cate_nums']+=userSub[float(i)] for i in range(26,30): userSub['use_app_cate_nums']+=userSub[float(i)] for i in range(34,36): userSub['use_app_cate_nums']+=userSub[float(i)] for i in range(25): userSub[str(float(i))+ '_ratio']=userSub[float(i)]/userSub['use_app_cate_nums'] for i in range(26,30): userSub[str(float(i))+ '_ratio']=userSub[float(i)]/userSub['use_app_cate_nums'] for i in range(34,36): userSub[str(float(i))+ '_ratio']=userSub[float(i)]/userSub['use_app_cate_nums'] user_active_category_counts = userSub.copy() ############################################### ########## 用户安装了多少种app类型 ############################################### userSub = pd.merge(user_app, app_info, how='left', on='appId').fillna(method='pad') userSub = userSub[['uId', 'category']].groupby('uId')['category'].nunique().reset_index() userSub.rename(columns={'category': 'active_cate_nums'}, inplace=True) user_active_cate_nums = userSub.copy() ############################################### ########## 计算每个app的目标客户年龄指数 ############################################### age_train = pd.read_csv('../../data/processed_data/age_train.csv',dtype={'uId':np.int32, 'age_group':np.int8}) userSub = pd.merge(age_train, user_app, how='left', on='uId') userSub=pd.pivot_table(userSub, values='uId', index=['appId'],columns=['age_group'], aggfunc='count', fill_value=0) userSub['sum']=userSub.sum(axis=1) userSub= userSub.reset_index() userSub.rename(columns={1:'age_1',2:'age_2',3:'age_3',4:'age_4',5:'age_5',6:'age_6'},inplace=True) userSub.drop(axis=0, index=0, inplace=True) userSub['age1_%']= userSub.apply(lambda x: round(x['age_1']/x['sum'],2),axis=1) userSub['age2_%']= userSub.apply(lambda x: round(x['age_2']/x['sum'],2),axis=1) userSub['age3_%']= userSub.apply(lambda x: round(x['age_3']/x['sum'],2),axis=1) userSub['age4_%']= userSub.apply(lambda x: round(x['age_4']/x['sum'],2),axis=1) userSub['age5_%']= userSub.apply(lambda x: round(x['age_5']/x['sum'],2),axis=1) userSub['age6_%']= userSub.apply(lambda x: round(x['age_6']/x['sum'],2),axis=1) # 计算每个app的目标客户年龄指数(计算方法 :sum(app在该年龄段N安装比例 * 年龄段数值N * 10 / 对应年龄段样本比例)) userSub['age_weight']=userSub.apply(lambda x:(10*x['age1_%']/0.03 +20*x['age2_%']/0.2 +30*x['age3_%']/0.3 +40*x['age4_%']/0.25 +50*x['age5_%']/0.15 +60*x['age6_%']/0.075) ,axis=1) userSub=userSub[['appId','age_weight']] userSub=pd.merge(user_app,userSub,how='left',on='appId') userSub=userSub.groupby('uId')['age_weight'].agg({'mean','min','max','median','std','var'}).reset_index() userSub['sqrt_of_mean']=userSub['mean']**2 userSub=round(userSub) feature_activated_app_age_weight = userSub.copy() ############################################### ########## 计算每个app的在每个年龄组的概率 ############################################### age_train = pd.read_csv('../../data/processed_data/age_train.csv',dtype={'uId':np.int32, 'age_group':np.int8}) userSub = pd.merge(age_train, user_app, how='inner', on='uId') userSub=
pd.pivot_table(userSub, values='uId', index=['appId'],columns=['age_group'],aggfunc='count', fill_value=0)
pandas.pivot_table
from __future__ import print_function import os import pandas as pd import xgboost as xgb import time import shutil from sklearn import preprocessing from sklearn.cross_validation import train_test_split import numpy as np from sklearn.utils import shuffle from sklearn import metrics def archive_results(filename,results,algo,script): """ :type algo: basestring :type script: basestring :type results: DataFrame """ #assert results == pd.DataFrame now=time.localtime()[0:5] dirname='../archive' subdirfmt='%4d-%02d-%02d-%02d-%02d' subdir=subdirfmt %now if not os.path.exists(os.path.join(dirname,str(algo))): os.mkdir(os.path.join(dirname,str(algo))) dir_to_create=os.path.join(dirname,str(algo),subdir) if not os.path.exists(dir_to_create): os.mkdir(dir_to_create) os.chdir(dir_to_create) results.to_csv(filename,index=False,float_format='%.6f') shutil.copy2(script,'.') return ############################################################################################### def preprocess_data(train,test): id_test=test['patient_id'] train=train.drop(['patient_id'],axis=1) test=test.drop(['patient_id' ],axis=1) y=train['is_screener'] train=train.drop(['is_screener'],axis=1) for f in train.columns: if train[f].dtype == 'object': print(f) lbl = preprocessing.LabelEncoder() lbl.fit(list(train[f].values) + list(test[f].values)) train[f] = lbl.transform(list(train[f].values)) test[f] = lbl.transform(list(test[f].values)) return id_test,test,train,y os.chdir(os.getcwd()) train_file = '../features/train_big_table.csv.gz' test_file = '../features/test_big_table.csv.gz' train =
pd.read_csv(train_file,low_memory=False)
pandas.read_csv
import os import sys import pickle import pandas as pd import numpy as np import sys from sklearn.feature_selection import chi2, SelectKBest, f_regression from sklearn.decomposition import PCA, TruncatedSVD from sklearn.manifold import Isomap, LocallyLinearEmbedding import settings as project_settings target_data_folder = project_settings.target_data_folder features_data_folder = project_settings.features_data_folder class_folder = project_settings.class_folder result_folder = project_settings.result_folder algorithm_len = project_settings.algorithm_len sys.path.append(class_folder) from decision_tree_singletarget import DecisionTree_Single from decision_tree_multitarget import DecisionTree_Multi from random_forest_singletarget import RandomForestRegressor_Single from random_forest_multitarget import RandomForestRegressor_Multi from dnn_model import DNN from dnn_single_model import DNN_Single labels =pd.read_csv(f"{target_data_folder}labels.txt",sep=';',index_col=False) sys_min = sys.float_info.min def create_data(df,df_perf,labels): df2 = df_perf.assign(label = labels['x']) df2 = df2.rename(columns={'1' : 'Precision'}) data = df.join(df2.set_index('label')) return data def clean_dataset(df): assert isinstance(df, pd.DataFrame), "df needs to be a pd.DataFrame" df.dropna(inplace=True) indices_to_keep = ~df.isin([np.nan, np.inf, -np.inf]).any(1) df = df[df.replace([-np.inf], sys.float_info.min).notnull().all(axis=1)] return df[indices_to_keep].astype(np.float32) def get_data_for_algorith(algorithm, no_fold): df_perf = pd.read_csv(f"{target_data_folder}performance_0_I{algorithm}.txt",sep='\t') df_train = pd.read_csv(f"{features_data_folder}train_{no_fold}_fused.csv",sep='\t', index_col=0) df_test = pd.read_csv(f"{features_data_folder}test_{no_fold}_fused.csv",sep='\t', index_col=0) df_perf = df_perf.iloc[:,2:3] rez_test = create_data(df_test,df_perf,labels) rez_train = create_data(df_train,df_perf,labels) return rez_train, rez_test # Check valid data def valid_data(df): if len(df[df.isin([np.nan, np.inf, -np.inf]).any(1)]) == 0: return True else: return False def add_log_performance(df): df['log_Precision'] = np.log10(df.iloc[:, -1] + 1) return df def get_features(X_train, y_train): selected_features = [] for i in range(0, len(y_train.columns)): selector = SelectKBest(f_regression, k=10) selector.fit(X_train, y_train.iloc[:,i]) #selected_features.append(list(selector.scores_)) cols = selector.get_support(indices=True) selected_features.append(cols) features = set() for array in selected_features: for feature in array: features.add(feature) return list(features) def get_data(algorithm_no, fold): if not isinstance(algorithm_no, list) and not isinstance(algorithm_no, tuple): train_df, test_df = get_data_for_algorith(algorithm_no, fold) train_df_with_log = add_log_performance(train_df) test_df_with_log = add_log_performance(test_df) train_df_with_log_clean = clean_dataset(train_df_with_log) test_df_with_log_clean = clean_dataset(test_df_with_log) if valid_data(train_df_with_log_clean) and valid_data(test_df_with_log_clean): X_train = train_df_with_log_clean.iloc[:, :-2] y_train_labels = train_df_with_log_clean.iloc[:, -2:] X_test = test_df_with_log_clean.iloc[:, :-2] y_test_labels = test_df_with_log_clean.iloc[:, -2:] return X_train, y_train_labels, X_test, y_test_labels else: raise Exception("Invalid Data") else: data_train, data_test = [], [] for alg in algorithm_no: d_train, d_test = get_data_for_algorith(alg, fold) data_train.append(d_train) data_test.append(d_test) merged_good_train = data_train[0] merged_good_test = data_test[0] for i in range(1, len(algorithm_no)): merged_train = pd.merge(merged_good_train, data_train[i], how='inner', left_index=True, right_index=True, suffixes=(f'_x{i}', f'_y{i}')) merged_test = pd.merge(merged_good_test, data_test[i], how='inner', left_index=True, right_index=True, suffixes=(f'_x{i}', f'_y{i}')) merged_good_train = merged_train[list(merged_train.columns[0:(100+i-1)]) + [merged_train.columns[-1]]] merged_good_test = merged_test[list(merged_test.columns[0:(100+i-1)]) + [merged_test.columns[-1]]] # Fix the column names index = pd.Index(list(data_train[0].columns[:99]) + [f'Precision_alg{alg}' for alg in algorithm_no]) merged_good_train.columns = index merged_good_test.columns = index X_train = merged_good_train.iloc[:, :-len(algorithm_no)] y_train_labels = merged_good_train.iloc[:, -len(algorithm_no):] X_test = merged_good_test.iloc[:, :-len(algorithm_no)] y_test_labels = merged_good_test.iloc[:, -len(algorithm_no):] def get_model(X_train, y_train, X_test, y_test, model_name, model_kwargs=None, single_output=True, target=None): if model_kwargs is None: model_kwargs = {} if single_output: if model_name == 'Xgboost': return Xgboost_Single(X_train, y_train, X_test, y_test, model_kwargs, target) elif model_name == 'nn': return DNN_Single(X_train, y_train, X_test, y_test, target) elif model_name == 'decision_tree': return DecisionTree_Single(X_train, y_train, X_test, y_test, model_kwargs, target) elif model_name == 'linear_regression': return LinearRegression_Single(X_train, y_train, X_test, y_test, model_kwargs, target) elif model_name == 'k_neighbors': return KNeighborsRegressor_Single(X_train, y_train, X_test, y_test, model_kwargs, target) elif model_name == 'random_forest': return RandomForestRegressor_Single(X_train, y_train, X_test, y_test, model_kwargs, target) else: pass else: if model_name == 'Xgboost': return Xgboost_Multi(X_train, y_train, X_test, model_kwargs, y_test) elif model_name == 'nn': return DNN(X_train, y_train, X_test, y_test) elif model_name == 'decision_tree': return DecisionTree_Multi(X_train, y_train, X_test, y_test, model_kwargs) elif model_name == 'linear_regression': return LinearRegression_Multi(X_train, y_train, X_test, y_test, model_kwargs) elif model_name == 'k_neighbors': return KNeighborsRegressor_Multi(X_train, y_train, X_test, y_test, model_kwargs) elif model_name == 'random_forest': return RandomForestRegressor_Multi(X_train, y_train, X_test, y_test, model_kwargs) else: pass def dimension_reduction(x, n, dim_reduction_alg): alg = dim_reduction_alg.lower() alg_dict = { 'pca': PCA, 'svd': TruncatedSVD, 'isomap': Isomap, 'lle': LocallyLinearEmbedding } model = alg_dict[alg] return model(n_components=n).fit_transform(x) def run_50_folds_on_algorithm_multi_target(algorithm_no, feature_selection = False, model_name='Xgboost', model_kwargs=None, dim_reduction_n=None, dim_reduction_alg='None', fold_range=None): model_name_folder = model_name if dim_reduction_alg and dim_reduction_n: model_name_folder += f'_{dim_reduction_alg}_n_{dim_reduction_n}' if model_kwargs: model_name_folder += '_' + '_'.join(f'{k}={v}'for k, v in model_kwargs.items()) model_kwargs_str = '_'.join(f'{k}={v}'for k, v in model_kwargs.items()) if not isinstance(algorithm_no, list) and not isinstance(algorithm_no, tuple): labels = ['Precision', 'log_Precision'] algorithm_name = str(algorithm_no) else: labels = [f'Precision_alg{i}' for i in algorithm_no] algorithm_name = '_'.join(map(str, algorithm_no)) predictions_folder = f"{result_folder}predictions/predictions_alg_no_{algorithm_name}/multi_target_output/{model_name_folder}/" mae_folder = f"{result_folder}mae/multi_target_output/{model_name_folder}/" models_folder = f'{result_folder}models/multi_target_output/{model_name_folder}/' os.makedirs(predictions_folder, exist_ok=True) os.makedirs(mae_folder, exist_ok=True) os.makedirs(models_folder, exist_ok=True) output_mae = [] if fold_range is None: fold_range = range(0, 50) for i in fold_range: # try: X_train, y_train, X_test, y_test = get_data(algorithm_no, i) if feature_selection: features = get_features(X_train, y_train) X_train = X_train.iloc[:, features] X_test = X_test.iloc[:, features] if dim_reduction_alg and dim_reduction_n: X_train = dimension_reduction(X_train, dim_reduction_n, dim_reduction_alg) X_test = dimension_reduction(X_test, dim_reduction_n, dim_reduction_alg) model = get_model(X_train, y_train, X_test, y_test, model_name, model_kwargs, False, None) model.train_model() print(f"PRINTING RESULTS FOR: fold number{i+1} and algorithm {algorithm_name}\n") print("Testing score: \n") y_pred = model.get_predictions() precision_mae = model.get_mae_precision() print(f"Precision MAE: {precision_mae:.4f}") log_precision_mae = model.get_mae_log_precision() print(f"Log Precision MAE: {log_precision_mae:.4f}") fold_algorithm_mae = [i, algorithm_name, precision_mae, log_precision_mae] output_mae.append(fold_algorithm_mae) real_pred_df = model.get_df_with_predictions_for_csv(algorithm_name, i, labels) real_pred_df.to_csv(f"{predictions_folder}predictions_fold_no_{i}_alg_no_{algorithm_name}.csv") model_name_location = f'{models_folder}model_fold_no_{i}_alg_no_{algorithm_name}.pkl' if model_name == 'nn': model_name_location = f'{models_folder}model_fold_no_{i}_alg_no_{algorithm_name}' model.save_model(model_name_location) else: with open(model_name_location, 'wb') as file: pickle.dump(model, file) output_mae_df =
pd.DataFrame(data=output_mae, columns=['Fold', 'Algorithm', 'Precision_mae', 'log_Precision_mae'])
pandas.DataFrame
import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from web3 import Web3 import time import json import io plt.rc('figure', titleweight='bold') plt.rc('axes', grid='True', linewidth=1.2, titlepad=20) plt.rc('font', weight='bold', size=16) plt.rc('lines', linewidth=3.5) eXRD_rewards = '0xDF191bFbdE2e3E178e3336E63C18DD20d537c421' with open('./infura.json') as f: INFURA_URL = json.load(f)['url'] w3 = Web3(Web3.HTTPProvider(INFURA_URL)) with open('./eXRD_rewards.json') as f: ABI = json.load(f)['result'] rewardsContract = w3.eth.contract(address=eXRD_rewards, abi=ABI) emissionTimestamps = np.array([1605629336, 1608221336, 1608221858, 1610813858]) class RewardTrender(): baseIndex =
pd.date_range(start='17-11-2020 17:00', periods=180*4, freq='6H')
pandas.date_range
# Importações import sqlalchemy import pandas as pd import numpy as np # Criação da engine do sql alchemy para a tabela db_connection = sqlalchemy.create_engine( 'postgresql+pg8000://postgres:123456@localhost:5433/folhadb', client_encoding='utf8', ) # 1. Extract # Extração da tabela cargos para dataframe do pandas cargos_df = pd.read_sql('SELECT * FROM folha.cargos', db_connection) # Extração da tabela carreiras para dataframe do pandas carreiras_df = pd.read_sql('SELECT * FROM folha.carreiras', db_connection) # Extração da tabela unidades para dataframe do pandas unidades_df = pd.read_sql('SELECT * FROM folha.unidades', db_connection) # Extração da tabela setores para dataframe do pandas setores_df = pd.read_sql('SELECT * FROM folha.setores', db_connection) # Extração da tabela evolucoes_funcionais para dataframe do pandas evolucoes_funcionais_df = pd.read_sql( 'SELECT * FROM folha.evolucoes_funcionais', db_connection ) # Extração da tabela colaboradores para dataframe do pandas colaboradores_df = pd.read_sql( 'SELECT * FROM folha.colaboradores', db_connection ) # Extração da tabela lancamentos para dataframe do pandas lancamentos_df = pd.read_sql('SELECT * FROM folha.lancamentos', db_connection) # Extração da tabela folhas_pagamentos para dataframe do pandas folhas_pagamentos_df = pd.read_sql( 'SELECT * FROM folha.folhas_pagamentos', db_connection ) # Extração da tabela rubricas para dataframe do pandas rubricas_df = pd.read_sql('SELECT * FROM folha.rubricas', db_connection) # Extração da tabela grupos_rubricas para dataframe do pandas grupos_rubricas_df = pd.read_sql( 'SELECT * FROM folha.grupos_rubricas', db_connection ) # 2. Transform ## dm_cargos # Merge de cargos e carreiras dm_cargos_df = pd.merge( left=cargos_df, right=carreiras_df, how='left', on='cod_carreira' ) # Remoção da linha cod_carreira dm_cargos_df.drop(columns=['cod_carreira'], inplace=True) ## dm_setores # Merge de setores e unidades dm_setores_df = pd.merge( left=setores_df, right=unidades_df, how='left', on='cod_und' ) # Renomeando colunas dm_setores_df.rename( columns={ 'dsc_und': 'dsc_unidade', 'cid_und': 'cidade_unidade', 'uf_und': 'uf_unidade', }, inplace=True, ) # Remoção das linhas cod_und e cod_colab_chefe dm_setores_df.drop(columns=['cod_und', 'cod_colab_chefe'], inplace=True) ## dm_rubricas # Merge de rubricas e grupos_rubricas dm_rubricas_df = pd.merge( left=rubricas_df, right=grupos_rubricas_df, how='left', on='cod_grupo' ) # Remoção da linha cod_grupo dm_rubricas_df.drop(columns=['cod_grupo'], inplace=True) ## dm_faixas_etarias # Criação do dataframe dm_faixas_etárias dm_faixas_etarias_df = pd.DataFrame( { 'cod_faixa': [1, 2, 3, 4], 'dsc_faixa': [ 'até 21 anos', 'de 21 a 30 anos', 'de 31 a 45 anos', 'acima de 45 anos', ], 'idade_inicial': [0, 22, 31, 45], 'idade_final': [21, 30, 45, 100], } ) ## dm_tempos_servicos # Criação da do dataframe dm_tempo_servicos dm_tempos_servicos_df = pd.DataFrame( { 'cod_tempo_serv': [1, 2, 3, 4, 5], 'dsc_tempo_serv': [ 'até 1 ano', 'de 1 a 10 anos', 'de 11 a 20 anos', 'de 21 a 30 anos', 'acima de 31 anos', ], 'ano_inicial': [0, 1, 11, 21, 31], 'ano_final': [0, 10, 20, 30, 100], } ) ## dm_tempos_folhas # Criação da do dataframe dm_tempos_folhas a partir de folhas_pagamentos, removendo as linha tpo_folha e dsc_folha dm_tempos_folhas_df = folhas_pagamentos_df.drop( columns=['tpo_folha', 'dsc_folha'], inplace=False ) # Criação da coluna id_ano_mes a partir de ano e mês dm_tempos_folhas_df['id_ano_mes'] = ( dm_tempos_folhas_df['ano'].astype(str) + dm_tempos_folhas_df['mes'].astype(str) ).astype(int) ## ft_lancamentos # Merge das tabelas lancamentos, folhas_pagamento, colaboradores e evoluções funcionais ft_lancamentos_df = pd.merge( left=lancamentos_df, right=folhas_pagamentos_df, how='left', on=['ano', 'mes', 'tpo_folha'], ) ft_lancamentos_df = pd.merge( left=ft_lancamentos_df, right=colaboradores_df, how='left', on='cod_colab' ) ft_lancamentos_df = pd.merge( left=ft_lancamentos_df, right=evolucoes_funcionais_df, how='right', on='cod_colab', ) # Criação da coluna id_ano_mes a partir de ano e mês ft_lancamentos_df['id_ano_mes'] = ( ft_lancamentos_df['ano'].astype(str) + ft_lancamentos_df['mes'].astype(str) ).astype(int) # Coluna cod_faixa # Criação da coluna idade_colab a partir da data de nascimento do colaborador e data do lançamento ft_lancamentos_df['idade_colab'] = ( pd.to_datetime(ft_lancamentos_df['dat_lanc']) - pd.to_datetime(ft_lancamentos_df['dat_nasc']) ) // np.timedelta64(1, 'Y') # Função para obter o cod_faixa a partir da idade_colab def get_cod_faixa(idade_colab): list_cod_faixa = [] for idade in idade_colab: if idade < 21: list_cod_faixa.append(1) elif idade <= 30: list_cod_faixa.append(2) elif idade <= 45: list_cod_faixa.append(3) else: list_cod_faixa.append(4) return list_cod_faixa ft_lancamentos_df['cod_faixa'] = get_cod_faixa( ft_lancamentos_df['idade_colab'] ) # Coluna cod_tempo_serv # Criação da coluna tempo_serv a partir da data de admissão do colaborador e data do lançamento ft_lancamentos_df['tempo_serv'] = ( pd.to_datetime(ft_lancamentos_df['dat_lanc']) -
pd.to_datetime(ft_lancamentos_df['dat_admissao'])
pandas.to_datetime
"""Command line interface.""" from argparse import ( Action, ArgumentParser, ) from datetime import datetime from datetime import date import pandas from pandas import DataFrame from penn_chime.constants import CHANGE_DATE from penn_chime.model.parameters import Parameters, Disposition from penn_chime.model.sir import Sir as Model from clienv import ChimeCLIEnvironment from sys import stdout from logging import INFO, basicConfig, getLogger import shlex import unicodedata import os from pdfgenerator.chime_pdf_generator import generate_pdf basicConfig( level=INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s", stream=stdout, ) logger = getLogger(__name__) VERBOSE = False OPEN_PDF = True class FromFile(Action): """From File.""" def __call__(self, parser, namespace, values, option_string=None): with values as f: parser.parse_args(f.read().split(), namespace) def cast_date(string): return datetime.strptime(string, '%Y-%m-%d').date() def validator(arg, cast, min_value, max_value, required, default ): """Validator.""" def validate(string): """Validate.""" if string == '' and cast != str: if required: raise AssertionError('%s is required.') return None value = cast(string) if min_value is not None: assert value >= min_value if max_value is not None: assert value <= max_value return value return validate def parse_args(args): """Parse args.""" parser = ArgumentParser(description="penn_chime: {CHANGE_DATE}") parser.add_argument("--file", type=open, action=FromFile) parser.add_argument( "--location", type=str, default="no location" ) parser.add_argument( "--scenario-id", type=str, default="no id", ) parser.add_argument("--hosp-capacity", type=int, help="MedSurg Capacity", default=0) parser.add_argument("--icu-capacity", type=int, help="ICU Capacity", default=0) parser.add_argument("--vent-capacity", type=int, help="Ventilators", default=0) parser.add_argument("--hosp-occupied", type=int, help="Non-COVID19 MedSurg Occupancy", default=0) parser.add_argument("--icu-occupied", type=int, help="Non-COVID19 ICU Occupancy", default=0) parser.add_argument("--vent-occupied", type=int, help="Non-COVID19 Ventilators in Use", default=0) parser.add_argument("--current-precautionary", type=int, help="Currently Hospitalized Precautionary COVID-19 Patients (>= 0)", default=0 ), # generate_pdf: 0 = None, 1=PDF for each scenario, 2=One PDF for with all scenarios, 3=Both parser.add_argument("--generate-pdf", type=int, help="Generate PDF Report", default=1) parser.add_argument("--actuals-date", type=cast_date, help="Actuals Date", default=cast_date('1980-01-01') ) parser.add_argument("--mitigation-date", type=cast_date, help="Mitigation Start Date", default=None) for arg, cast, min_value, max_value, help, required, default in ( ("--current-hospitalized", int, 0, None, "Currently Hospitalized COVID-19 Patients (>= 0)", True, None ), ("--date-first-hospitalized", cast_date, None, None, "Date of First Hospitalization", False, None ), ("--doubling-time-low", float, 0.0, None, "Doubling time (lower) before social distancing (days)", True, None ), ("--doubling-time-observed", float, 0.0, None, "Doubling time (observed) before social distancing (days)", True, None ), ("--doubling-time-high", float, 0.0, None, "Doubling time (upper) before social distancing (days)", True, None ), ("--hospitalized-days", int, 0, None, "Average Hospital Length of Stay (days)", True, None ), ("--hospitalized-rate", float, 0.00001, 1.0, "Hospitalized Rate: 0.00001 - 1.0", True, None ), ("--icu-days", int, 0, None, "Average Days in ICU", True, None), ("--icu-rate", float, 0.0, 1.0, "ICU Rate: 0.0 - 1.0", True, None), ("--market-share", float, 0.00001, 1.0, "Hospital Market Share (0.00001 - 1.0)", True, None ), ("--infectious-days", float, 0.0, None, "Infectious days", True, None), ("--n-days", int, 0, None, "Number of days to project >= 0", True, 200 ), ("--relative-contact-rate", float, 0.0, 1.0, "Social Distancing Reduction Rate: 0.0 - 1.0", True, None ), ("--relative-contact-rate-0", float, 0.0, 1.0, "Social Distancing Reduction Rate (0): 0.0 - 1.0", True, None ), ("--relative-contact-rate-1", float, 0.0, 1.0, "Social Distancing Reduction Rate (1): 0.0 - 1.0", True, None ), ("--population", int, 1, None, "Regional Population >= 1", True, None), ("--ventilated-days", int, 0, None, "Average Days on Ventilator", True, None), ("--ventilated-rate", float, 0.0, 1.0, "Ventilated Rate: 0.0 - 1.0", True, None), ("--current-date", cast_date, None, None, "Current Date", True, date.today() ), ("--start-day", int, None, None, "Start day for model output", False, None), ("--data-key", str, None, None, "Key for linking for displays", False, None), ): parser.add_argument( arg, type=validator(arg, cast, min_value, max_value, required, default), help=help, ) return parser.parse_args(shlex.split(args)) def main(): """Main.""" data = DataFrame() head = DataFrame() computed_data = DataFrame() cenv = ChimeCLIEnvironment() f = open(cenv.parameters_file, "r") for x in f: x = "".join(ch for ch in x if unicodedata.category(ch)[0]!="C") a = parse_args(x) logger.info("Processing %s", a.location) # funky date issue # if a.current_date is None : # a.current_date = date.today() p = Parameters( current_hospitalized=a.current_hospitalized, doubling_time=a.doubling_time_low, infectious_days=a.infectious_days, market_share=a.market_share, n_days=a.n_days, relative_contact_rate=a.relative_contact_rate, population=a.population, hospitalized=Disposition(a.hospitalized_days, a.hospitalized_rate), icu=Disposition(a.icu_days, a.icu_rate), ventilated=Disposition(a.ventilated_days, a.ventilated_rate), mitigation_date=a.mitigation_date, current_date = a.current_date, recovered=0, # this will need to be fixed when CHIME catches up ) fndata = cenv.output_dir + "/chime-projection-" + a.scenario_id + ".csv" fncdata = cenv.output_dir + "/chime-computed-data-" + a.scenario_id + ".csv" fnhead = cenv.output_dir + "/chime-parameters-" + a.scenario_id + ".csv" doubling_rates = [ [a.doubling_time_low, "dt-low"], [a.doubling_time_high, "dt-high"], [a.doubling_time_observed, "dt-observed"]] #, [ None, "dt-computed"]] contact_rates = [ [a.relative_contact_rate, "sd-norm"], [a.relative_contact_rate_0, "sd-0"], [a.relative_contact_rate_1, "sd-1"] ] m = [] zi = 0 for d in ( doubling_rates ): mr = [] for r in ( contact_rates ) : p.relative_contact_rate = r[0] # if d[0] is None : # p.doubling_time = None # p.date_first_hospitalized = a.date_first_hospitalized # else : p.doubling_time = d[0] p.date_first_hospitalized = None if p.doubling_time is None and p.date_first_hospitalized is None: p.doubling_time = doubling_rates[2][0] zi = zi + 1 ds = Model (p) suffix = ' ' + d[1] + ' ' + r[1] ds.dispositions_df.rename( columns = { 'ever_hospitalized':'disp-hosp' + suffix, 'ever_icu':'disp-icu' + suffix, 'ever_ventilated':'disp-vent' + suffix }, inplace = True) ds.census_df.rename( columns = { 'census_hospitalized':'census-hosp' + suffix, 'census_icu':'census-icu' + suffix, 'census_ventilated':'census-vent' + suffix }, inplace = True) ds.admits_df.rename( columns = { 'admits_hospitalized':'new-hosp' + suffix, 'admits_icu':'new-icu' + suffix, 'admits_ventilated':'new-vent' + suffix }, inplace = True) ds.raw_df = ds.raw_df[[ "day", "susceptible", "infected", "recovered" ]] ds.raw_df.rename( columns = { 'susceptible':'susceptible' + suffix, 'infected':'infected' + suffix, 'recovered':'infected' + suffix }, inplace = True) mr.append( ds ) m.append(mr) # # assemble and merge datasets for output # # the second day column is to assist with a lookup function in Excel rf = DataFrame( m[0][0].census_df[['day']] ) df = DataFrame( m[0][0].census_df[['day']] ) rf['Location'] = a.location rf["MedSurg Capacity"] = a.hosp_capacity rf["ICU Capacity"] = a.icu_capacity rf["Ventilators"] = a.vent_capacity rf["Non-COVID19 MedSurg Occupancy"] = a.hosp_occupied rf["Non-COVID19 ICU Occupancy"] = a.icu_occupied rf["Non-COVID19 Ventilators in Use"] = a.vent_occupied if a.data_key is not None: rf['data key'] = a.data_key df['day-r'] = rf['day'] for mr in ( m ) : for ds in ( mr ) : rf = rf.merge(ds.census_df).merge(ds.admits_df).merge(ds.raw_df ).merge(ds.dispositions_df) rf = rf.merge( df ) if a.start_day is not None : rf = rf[rf['day'] >= a.start_day] rf.to_csv(fndata, index=False) if len(data.columns) == 0 : data = rf.copy() else : data = pandas.concat([data, rf]) # Report out the parameters used to run the model for reference param = { 'Scenario ID' : [ a.scenario_id ], 'Currently Hospitalized COVID-19 Patients (>= 0)' : [ a.current_hospitalized ], 'Currently Precautionary Hospitalized Patients (>= 0)' : [ a.current_precautionary ], 'Doubling Time (low)' : [ a.doubling_time_low ], 'Doubling Time (observed)' : [ a.doubling_time_observed ], 'Doubling Time (high)' : [ a.doubling_time_high ], 'Infectious days' : [ a.infectious_days ], 'Market Share' : [ a.market_share ], 'Social Distancing Reduction Rate: 0.0 - 1.0' : [ a.relative_contact_rate ], 'Social Distancing Reduction Rate (0): 0.0 - 1.0' : [ a.relative_contact_rate_0 ], 'Social Distancing Reduction Rate (1): 0.0 - 1.0' : [ a.relative_contact_rate_1 ], 'Population' : [ a.population ], 'Hospitalized Rate: 0.00001 - 1.0' : [ a.hospitalized_rate ], 'Average Hospital Length of Stay (days)' : [ a.hospitalized_days ], 'ICU Rate: 0.0 - 1.0' : [ a.icu_rate ], 'Average Days in ICU' : [ a.icu_days ], 'Ventilated Rate: 0.0 - 1.0' : [ a.ventilated_rate ], 'Average Days on Ventilator' : [ a.ventilated_days ], 'Date of First Hospitalization' : [ a.date_first_hospitalized ], 'Mitigation Start Date' : [ a.mitigation_date ], 'Location Code' : [ a.location ], 'Start day for model output' : [ a.start_day ], 'MedSurg Capacity' : [ a.hosp_capacity ], 'ICU Capacity' : [ a.icu_capacity ], 'Ventilator Capacity' : [ a.vent_capacity ], # 'Non-COVID19 MedSurg Occupancy' : [ a.hosp_occupied ], # 'Non-COVID19 ICU Occupancy' : [ a.icu_occupied ], # 'Non-COVID19 Ventilators in Use' : [ a.vent_occupied ], 'Days to Project' : [ a.n_days ], 'Report Generated' : cenv.run_datetime.strftime("%m/%d/%Y %H:%M:%S"), 'Actuals as of' : [a.actuals_date.strftime("%m/%d/%Y")] } if a.data_key is not None: param.update({ 'Data Key': [ a.data_key ], }) finfo = DataFrame( param ) finfo.to_csv(fnhead, index=False) if len(head.columns) == 0 : head = finfo.copy() else : head =
pandas.concat([head, finfo])
pandas.concat
import numpy as np import pandas as pd from imblearn.over_sampling import SMOTE from sklearn import preprocessing from sklearn.decomposition import PCA from sklearn.model_selection import train_test_split from sklearn.neighbors import LocalOutlierFactor from sklearn.preprocessing import StandardScaler train_data_path = "train_data.csv" labels_path = "train_labels.csv" test_data_path = "test_data.csv" def load_data_train_test_data(): genres_labels = np.array(pd.read_csv(labels_path, index_col=False, header=None)) genres = range(1, 11) training_data_set = np.array(pd.read_csv(train_data_path, index_col=False, header=None)) pca = PCA(79) scaler = StandardScaler() training_data_set = scaler.fit_transform(training_data_set) training_data_set = pca.fit_transform(training_data_set) training_data_set = np.append(training_data_set, genres_labels, 1) number_of_cols = training_data_set.shape[1] train, test = train_test_split(training_data_set, test_size=0.25, random_state=12, stratify=training_data_set[:, number_of_cols - 1]) train_x = train[:, :number_of_cols - 1] train_y = train[:, number_of_cols - 1] # sm = SMOTE() # x_train_res, y_train_res = sm.fit_resample(train_x, train_y) # train_x = preprocessing.normalize(train_x, norm='l2') test_x = test[:, :number_of_cols - 1] test_y = test[:, number_of_cols - 1] return train_x, train_y, test_x, test_y, genres, scaler, pca def load_train_data_rythym_only(): genres_labels = np.array(pd.read_csv(labels_path, index_col=False, header=None)) genres = range(1, 11) training_data_set = np.array(pd.read_csv(train_data_path, index_col=False, header=None))[:, :168] pca = PCA(100) scaler = StandardScaler() training_data_set = scaler.fit_transform(training_data_set) # training_data_set = preprocessing.normalize(training_data_set, norm='l2') training_data_set = pca.fit_transform(training_data_set) training_data_set = np.append(training_data_set, genres_labels, 1) number_of_cols = training_data_set.shape[1] train, test = train_test_split(training_data_set, test_size=0.25, random_state=12, stratify=training_data_set[:, number_of_cols - 1]) train_x = train[:, :number_of_cols - 1] train_y = train[:, number_of_cols - 1] sm = SMOTE() # x_train_res, y_train_res = sm.fit_resample(train_x, train_y) # train_x = preprocessing.normalize(train_x, norm='l2') test_x = test[:, :number_of_cols - 1] test_y = test[:, number_of_cols - 1] return train_x, train_y, test_x, test_y, genres, scaler, pca def load_train_data_chroma_only(): genres_labels = np.array(pd.read_csv(labels_path, index_col=False, header=None)) genres = range(1, 11) training_data_set = np.array(pd.read_csv(train_data_path, index_col=False, header=None))[:, 169:216] pca = PCA(40) scaler = StandardScaler() training_data_set = scaler.fit_transform(training_data_set) training_data_set = pca.fit_transform(training_data_set) training_data_set = np.append(training_data_set, genres_labels, 1) number_of_cols = training_data_set.shape[1] train, test = train_test_split(training_data_set, test_size=0.25, random_state=12, stratify=training_data_set[:, number_of_cols - 1]) train_x = train[:, :number_of_cols - 1] train_y = train[:, number_of_cols - 1] # sm = SMOTE() # x_train_res, y_train_res = sm.fit_resample(train_x, train_y) # train_x = preprocessing.normalize(train_x, norm='l2') test_x = test[:, :number_of_cols - 1] test_y = test[:, number_of_cols - 1] return train_x, train_y, test_x, test_y, genres, scaler, pca def load_train_data_MFCC_only(): genres_labels = np.array(
pd.read_csv(labels_path, index_col=False, header=None)
pandas.read_csv
import pandas as pd import numpy as np import tests.mocks.operations as mockops from trumania.core import operations from trumania.core.util_functions import build_ids def test_apply_should_delegate_to_single_col_dataframe_function_correctly(): # some function that expect a dataframe as input => must return # dataframe with "result" column def f(df): return pd.DataFrame({"result": df["A"] + df["D"] - df["C"]}) tested = operations.Apply(source_fields=["A", "C", "D"], named_as="r", f=f, f_args="dataframe") story_data = pd.DataFrame( np.random.rand(10, 5), columns=["A", "B", "C", "D", "E"]) result = tested.build_output(story_data) assert result["r"].equals(story_data["A"] + story_data["D"] - story_data[ "C"]) def test_apply_should_delegate_to_multi_col_dataframe_function_correctly(): # now f returns several columns def f(df): return pd.DataFrame({ "r1": df["A"] + df["D"] - df["C"], "r2": df["A"] + df["C"], "r3": df["A"] * df["C"], }) tested = operations.Apply(source_fields=["A", "C", "D"], named_as=["op1", "op2", "op3"], f=f, f_args="dataframe") story_data = pd.DataFrame( np.random.rand(10, 5), columns=["A", "B", "C", "D", "E"]) result = tested.transform(story_data) assert result.columns.tolist() == ["A", "B", "C", "D", "E", "op1", "op2", "op3"] assert result["op1"].equals( story_data["A"] + story_data["D"] - story_data["C"]) assert result["op2"].equals( story_data["A"] + story_data["C"]) assert result["op3"].equals( story_data["A"] * story_data["C"]) def test_apply_should_delegate_to_columns_function_correctly(): """ same as the above, but this time f input and output arguments are pandas Series """ def f(ca, cc, cd): return ca + cd - cc tested = operations.Apply(source_fields=["A", "C", "D"], named_as="r", f=f, f_args="series") story_data = pd.DataFrame( np.random.rand(10, 5), columns=["A", "B", "C", "D", "E"]) result = tested.build_output(story_data) assert result["r"].equals( story_data["A"] + story_data["D"] - story_data["C"]) def test_one_execution_should_merge_empty_data_correctly(): # empty previous prev_df = pd.DataFrame(columns=[]) prev_log = {} nop = operations.Operation() output, logs = operations.Chain._execute_operation((prev_df, prev_log), nop) assert logs == {} assert output.equals(prev_df) def test_one_execution_should_merge_one_op_with_nothing_into_one_result(): # empty previous prev = pd.DataFrame(columns=[]), {} cdrs = pd.DataFrame(np.random.rand(12, 3), columns=["A", "B", "duration"]) input = pd.DataFrame(np.random.rand(10, 2), columns=["C", "D"]) op = mockops.FakeOp(input, logs={"cdrs": cdrs}) output, logs = operations.Chain._execute_operation(prev, op) assert logs == {"cdrs": cdrs} assert input.equals(output) def test_one_execution_should_merge_2_ops_correctly(): # previous results init =
pd.DataFrame(columns=[])
pandas.DataFrame
import requests import pandas as pd from dateutil.parser import parse # 在Facebook Graph API Exploer取得token token = '<KEY>' # 在Facebook Graph API Exploer取得粉絲專頁的id與名稱,並將其包成字典dic fanpage = {'137698833067234': '資料視覺化 / Data Visualization', '1703467299932229': 'Data Man 的資料視覺化筆記'} # 建立一個空的list information_list = [] # 使用for迴圈依序讀取粉絲頁的資訊,並使用format將id與token傳入{}裡 for ele in fanpage: res = requests.get('https://graph.facebook.com/v2.9/{}/posts?limit=100&access_token={}'.format(ele, token)) # API最多一次呼叫100筆資料,因此使用while迴圈去翻頁取得所有的資料 while 'paging' in res.json(): for information in res.json()['data']: if 'message' in information: information_list.append( [fanpage[ele], information['message'], parse(information['created_time']).date()]) if 'next' in res.json()['paging']: res = requests.get(res.json()['paging']['next']) else: break # 最後將list轉換成dataframe,並輸出成csv檔 information_df =
pd.DataFrame(information_list, columns=['粉絲專頁', '發文內容', '發文時間'])
pandas.DataFrame
""" test parquet compat """ import datetime from distutils.version import LooseVersion import os from warnings import catch_warnings import numpy as np import pytest import pandas.util._test_decorators as td import pandas as pd import pandas._testing as tm from pandas.io.parquet import ( FastParquetImpl, PyArrowImpl, get_engine, read_parquet, to_parquet, ) try: import pyarrow # noqa _HAVE_PYARROW = True except ImportError: _HAVE_PYARROW = False try: import fastparquet # noqa _HAVE_FASTPARQUET = True except ImportError: _HAVE_FASTPARQUET = False pytestmark = pytest.mark.filterwarnings( "ignore:RangeIndex.* is deprecated:DeprecationWarning" ) # setup engines & skips @pytest.fixture( params=[ pytest.param( "fastparquet", marks=pytest.mark.skipif( not _HAVE_FASTPARQUET, reason="fastparquet is not installed" ), ), pytest.param( "pyarrow", marks=pytest.mark.skipif( not _HAVE_PYARROW, reason="pyarrow is not installed" ), ), ] ) def engine(request): return request.param @pytest.fixture def pa(): if not _HAVE_PYARROW: pytest.skip("pyarrow is not installed") return "pyarrow" @pytest.fixture def fp(): if not _HAVE_FASTPARQUET: pytest.skip("fastparquet is not installed") return "fastparquet" @pytest.fixture def df_compat(): return pd.DataFrame({"A": [1, 2, 3], "B": "foo"}) @pytest.fixture def df_cross_compat(): df = pd.DataFrame( { "a": list("abc"), "b": list(range(1, 4)), # 'c': np.arange(3, 6).astype('u1'), "d": np.arange(4.0, 7.0, dtype="float64"), "e": [True, False, True], "f": pd.date_range("20130101", periods=3), # 'g': pd.date_range('20130101', periods=3, # tz='US/Eastern'), # 'h': pd.date_range('20130101', periods=3, freq='ns') } ) return df @pytest.fixture def df_full(): return pd.DataFrame( { "string": list("abc"), "string_with_nan": ["a", np.nan, "c"], "string_with_none": ["a", None, "c"], "bytes": [b"foo", b"bar", b"baz"], "unicode": ["foo", "bar", "baz"], "int": list(range(1, 4)), "uint": np.arange(3, 6).astype("u1"), "float": np.arange(4.0, 7.0, dtype="float64"), "float_with_nan": [2.0, np.nan, 3.0], "bool": [True, False, True], "datetime": pd.date_range("20130101", periods=3), "datetime_with_nat": [ pd.Timestamp("20130101"), pd.NaT, pd.Timestamp("20130103"), ], } ) def check_round_trip( df, engine=None, path=None, write_kwargs=None, read_kwargs=None, expected=None, check_names=True, check_like=False, repeat=2, ): """Verify parquet serializer and deserializer produce the same results. Performs a pandas to disk and disk to pandas round trip, then compares the 2 resulting DataFrames to verify equality. Parameters ---------- df: Dataframe engine: str, optional 'pyarrow' or 'fastparquet' path: str, optional write_kwargs: dict of str:str, optional read_kwargs: dict of str:str, optional expected: DataFrame, optional Expected deserialization result, otherwise will be equal to `df` check_names: list of str, optional Closed set of column names to be compared check_like: bool, optional If True, ignore the order of index & columns. repeat: int, optional How many times to repeat the test """ write_kwargs = write_kwargs or {"compression": None} read_kwargs = read_kwargs or {} if expected is None: expected = df if engine: write_kwargs["engine"] = engine read_kwargs["engine"] = engine def compare(repeat): for _ in range(repeat): df.to_parquet(path, **write_kwargs) with catch_warnings(record=True): actual = read_parquet(path, **read_kwargs) tm.assert_frame_equal( expected, actual, check_names=check_names, check_like=check_like ) if path is None: with tm.ensure_clean() as path: compare(repeat) else: compare(repeat) def test_invalid_engine(df_compat): with pytest.raises(ValueError): check_round_trip(df_compat, "foo", "bar") def test_options_py(df_compat, pa): # use the set option with pd.option_context("io.parquet.engine", "pyarrow"): check_round_trip(df_compat) def test_options_fp(df_compat, fp): # use the set option with pd.option_context("io.parquet.engine", "fastparquet"): check_round_trip(df_compat) def test_options_auto(df_compat, fp, pa): # use the set option with pd.option_context("io.parquet.engine", "auto"): check_round_trip(df_compat) def test_options_get_engine(fp, pa): assert isinstance(get_engine("pyarrow"), PyArrowImpl) assert isinstance(get_engine("fastparquet"), FastParquetImpl) with pd.option_context("io.parquet.engine", "pyarrow"): assert isinstance(get_engine("auto"), PyArrowImpl) assert isinstance(get_engine("pyarrow"), PyArrowImpl) assert isinstance(get_engine("fastparquet"), FastParquetImpl) with pd.option_context("io.parquet.engine", "fastparquet"): assert isinstance(get_engine("auto"), FastParquetImpl) assert isinstance(get_engine("pyarrow"), PyArrowImpl) assert isinstance(get_engine("fastparquet"), FastParquetImpl) with pd.option_context("io.parquet.engine", "auto"): assert isinstance(get_engine("auto"), PyArrowImpl) assert isinstance(get_engine("pyarrow"), PyArrowImpl) assert isinstance(get_engine("fastparquet"), FastParquetImpl) def test_get_engine_auto_error_message(): # Expect different error messages from get_engine(engine="auto") # if engines aren't installed vs. are installed but bad version from pandas.compat._optional import VERSIONS # Do we have engines installed, but a bad version of them? pa_min_ver = VERSIONS.get("pyarrow") fp_min_ver = VERSIONS.get("fastparquet") have_pa_bad_version = ( False if not _HAVE_PYARROW else LooseVersion(pyarrow.__version__) < LooseVersion(pa_min_ver) ) have_fp_bad_version = ( False if not _HAVE_FASTPARQUET else LooseVersion(fastparquet.__version__) < LooseVersion(fp_min_ver) ) # Do we have usable engines installed? have_usable_pa = _HAVE_PYARROW and not have_pa_bad_version have_usable_fp = _HAVE_FASTPARQUET and not have_fp_bad_version if not have_usable_pa and not have_usable_fp: # No usable engines found. if have_pa_bad_version: match = f"Pandas requires version .{pa_min_ver}. or newer of .pyarrow." with pytest.raises(ImportError, match=match): get_engine("auto") else: match = "Missing optional dependency .pyarrow." with pytest.raises(ImportError, match=match): get_engine("auto") if have_fp_bad_version: match = f"Pandas requires version .{fp_min_ver}. or newer of .fastparquet." with pytest.raises(ImportError, match=match): get_engine("auto") else: match = "Missing optional dependency .fastparquet." with pytest.raises(ImportError, match=match): get_engine("auto") def test_cross_engine_pa_fp(df_cross_compat, pa, fp): # cross-compat with differing reading/writing engines df = df_cross_compat with tm.ensure_clean() as path: df.to_parquet(path, engine=pa, compression=None) result = read_parquet(path, engine=fp) tm.assert_frame_equal(result, df) result = read_parquet(path, engine=fp, columns=["a", "d"]) tm.assert_frame_equal(result, df[["a", "d"]]) def test_cross_engine_fp_pa(df_cross_compat, pa, fp): # cross-compat with differing reading/writing engines if ( LooseVersion(pyarrow.__version__) < "0.15" and LooseVersion(pyarrow.__version__) >= "0.13" ): pytest.xfail( "Reading fastparquet with pyarrow in 0.14 fails: " "https://issues.apache.org/jira/browse/ARROW-6492" ) df = df_cross_compat with tm.ensure_clean() as path: df.to_parquet(path, engine=fp, compression=None) with catch_warnings(record=True): result = read_parquet(path, engine=pa) tm.assert_frame_equal(result, df) result = read_parquet(path, engine=pa, columns=["a", "d"]) tm.assert_frame_equal(result, df[["a", "d"]]) class Base: def check_error_on_write(self, df, engine, exc): # check that we are raising the exception on writing with tm.ensure_clean() as path: with pytest.raises(exc): to_parquet(df, path, engine, compression=None) class TestBasic(Base): def test_error(self, engine): for obj in [ pd.Series([1, 2, 3]), 1, "foo", pd.Timestamp("20130101"), np.array([1, 2, 3]), ]: self.check_error_on_write(obj, engine, ValueError) def test_columns_dtypes(self, engine): df = pd.DataFrame({"string": list("abc"), "int": list(range(1, 4))}) # unicode df.columns = ["foo", "bar"] check_round_trip(df, engine) def test_columns_dtypes_invalid(self, engine): df = pd.DataFrame({"string": list("abc"), "int": list(range(1, 4))}) # numeric df.columns = [0, 1] self.check_error_on_write(df, engine, ValueError) # bytes df.columns = [b"foo", b"bar"] self.check_error_on_write(df, engine, ValueError) # python object df.columns = [ datetime.datetime(2011, 1, 1, 0, 0), datetime.datetime(2011, 1, 1, 1, 1), ] self.check_error_on_write(df, engine, ValueError) @pytest.mark.parametrize("compression", [None, "gzip", "snappy", "brotli"]) def test_compression(self, engine, compression): if compression == "snappy": pytest.importorskip("snappy") elif compression == "brotli": pytest.importorskip("brotli") df = pd.DataFrame({"A": [1, 2, 3]}) check_round_trip(df, engine, write_kwargs={"compression": compression}) def test_read_columns(self, engine): # GH18154 df = pd.DataFrame({"string": list("abc"), "int": list(range(1, 4))}) expected = pd.DataFrame({"string": list("abc")}) check_round_trip( df, engine, expected=expected, read_kwargs={"columns": ["string"]} ) def test_write_index(self, engine): check_names = engine != "fastparquet" df = pd.DataFrame({"A": [1, 2, 3]}) check_round_trip(df, engine) indexes = [ [2, 3, 4], pd.date_range("20130101", periods=3), list("abc"), [1, 3, 4], ] # non-default index for index in indexes: df.index = index if isinstance(index, pd.DatetimeIndex): df.index = df.index._with_freq(None) # freq doesnt round-trip check_round_trip(df, engine, check_names=check_names) # index with meta-data df.index = [0, 1, 2] df.index.name = "foo" check_round_trip(df, engine) def test_write_multiindex(self, pa): # Not supported in fastparquet as of 0.1.3 or older pyarrow version engine = pa df = pd.DataFrame({"A": [1, 2, 3]}) index = pd.MultiIndex.from_tuples([("a", 1), ("a", 2), ("b", 1)]) df.index = index check_round_trip(df, engine) def test_write_column_multiindex(self, engine): # column multi-index mi_columns = pd.MultiIndex.from_tuples([("a", 1), ("a", 2), ("b", 1)]) df = pd.DataFrame(np.random.randn(4, 3), columns=mi_columns) self.check_error_on_write(df, engine, ValueError) def test_multiindex_with_columns(self, pa): engine = pa dates = pd.date_range("01-Jan-2018", "01-Dec-2018", freq="MS") df = pd.DataFrame(np.random.randn(2 * len(dates), 3), columns=list("ABC")) index1 = pd.MultiIndex.from_product( [["Level1", "Level2"], dates], names=["level", "date"] ) index2 = index1.copy(names=None) for index in [index1, index2]: df.index = index check_round_trip(df, engine) check_round_trip( df, engine, read_kwargs={"columns": ["A", "B"]}, expected=df[["A", "B"]] ) def test_write_ignoring_index(self, engine): # ENH 20768 # Ensure index=False omits the index from the written Parquet file. df =
pd.DataFrame({"a": [1, 2, 3], "b": ["q", "r", "s"]})
pandas.DataFrame
import composeml as cp import numpy as np import pandas as pd import pytest from dask import dataframe as dd from woodwork.column_schema import ColumnSchema from woodwork.logical_types import NaturalLanguage from featuretools.computational_backends.calculate_feature_matrix import ( FEATURE_CALCULATION_PERCENTAGE ) from featuretools.entityset import EntitySet, Timedelta from featuretools.exceptions import UnusedPrimitiveWarning from featuretools.primitives import ( GreaterThanScalar, Max, Mean, Min, Sum, make_agg_primitive, make_trans_primitive ) from featuretools.synthesis import dfs from featuretools.tests.testing_utils import to_pandas from featuretools.utils.gen_utils import Library @pytest.fixture def datetime_es(): cards_df = pd.DataFrame({"id": [1, 2, 3, 4, 5]}) transactions_df = pd.DataFrame({"id": [1, 2, 3, 4, 5], "card_id": [1, 1, 5, 1, 5], "transaction_time": pd.to_datetime([ '2011-2-28 04:00', '2012-2-28 05:00', '2012-2-29 06:00', '2012-3-1 08:00', '2014-4-1 10:00']), "fraud": [True, False, False, False, True]}) datetime_es = EntitySet(id="fraud_data") datetime_es = datetime_es.add_dataframe( dataframe_name="transactions", dataframe=transactions_df, index="id", time_index="transaction_time") datetime_es = datetime_es.add_dataframe( dataframe_name="cards", dataframe=cards_df, index="id") datetime_es = datetime_es.add_relationship("cards", "id", "transactions", "card_id") datetime_es.add_last_time_indexes() return datetime_es def test_passing_strings_to_logical_types_dfs(): teams = pd.DataFrame({ 'id': range(3), 'name': ['Breakers', 'Spirit', 'Thorns'] }) games = pd.DataFrame({ 'id': range(5), 'home_team_id': [2, 2, 1, 0, 1], 'away_team_id': [1, 0, 2, 1, 0], 'home_team_score': [3, 0, 1, 0, 4], 'away_team_score': [2, 1, 2, 0, 0] }) dataframes = {'teams': (teams, 'id', None, {'name': 'natural_language'}), 'games': (games, 'id')} relationships = [('teams', 'id', 'games', 'home_team_id')] features = dfs(dataframes, relationships, target_dataframe_name="teams", features_only=True) name_logical_type = features[0].dataframe['name'].ww.logical_type assert isinstance(name_logical_type, NaturalLanguage) def test_accepts_cutoff_time_df(dataframes, relationships): cutoff_times_df = pd.DataFrame({"instance_id": [1, 2, 3], "time": [10, 12, 15]}) feature_matrix, features = dfs(dataframes=dataframes, relationships=relationships, target_dataframe_name="transactions", cutoff_time=cutoff_times_df) feature_matrix = to_pandas(feature_matrix, index='id', sort_index=True) assert len(feature_matrix.index) == 3 assert len(feature_matrix.columns) == len(features) def test_warns_cutoff_time_dask(dataframes, relationships): cutoff_times_df = pd.DataFrame({"instance_id": [1, 2, 3], "time": [10, 12, 15]}) cutoff_times_df = dd.from_pandas(cutoff_times_df, npartitions=2) match = "cutoff_time should be a Pandas DataFrame: " \ "computing cutoff_time, this may take a while" with pytest.warns(UserWarning, match=match): dfs(dataframes=dataframes, relationships=relationships, target_dataframe_name="transactions", cutoff_time=cutoff_times_df) def test_accepts_cutoff_time_compose(dataframes, relationships): def fraud_occured(df): return df['fraud'].any() lm = cp.LabelMaker( target_dataframe_name='card_id', time_index='transaction_time', labeling_function=fraud_occured, window_size=1 ) transactions_df = to_pandas(dataframes['transactions'][0]) labels = lm.search( transactions_df, num_examples_per_instance=-1 ) labels['time'] = pd.to_numeric(labels['time']) labels.rename({'card_id': 'id'}, axis=1, inplace=True) feature_matrix, features = dfs(dataframes=dataframes, relationships=relationships, target_dataframe_name="cards", cutoff_time=labels) feature_matrix = to_pandas(feature_matrix, index='id') assert len(feature_matrix.index) == 6 assert len(feature_matrix.columns) == len(features) + 1 def test_accepts_single_cutoff_time(dataframes, relationships): feature_matrix, features = dfs(dataframes=dataframes, relationships=relationships, target_dataframe_name="transactions", cutoff_time=20) feature_matrix = to_pandas(feature_matrix, index='id') assert len(feature_matrix.index) == 5 assert len(feature_matrix.columns) == len(features) def test_accepts_no_cutoff_time(dataframes, relationships): feature_matrix, features = dfs(dataframes=dataframes, relationships=relationships, target_dataframe_name="transactions", instance_ids=[1, 2, 3, 5, 6]) feature_matrix = to_pandas(feature_matrix, index='id') assert len(feature_matrix.index) == 5 assert len(feature_matrix.columns) == len(features) def test_ignores_instance_ids_if_cutoff_df(dataframes, relationships): cutoff_times_df = pd.DataFrame({"instance_id": [1, 2, 3], "time": [10, 12, 15]}) instance_ids = [1, 2, 3, 4, 5] feature_matrix, features = dfs(dataframes=dataframes, relationships=relationships, target_dataframe_name="transactions", cutoff_time=cutoff_times_df, instance_ids=instance_ids) feature_matrix = to_pandas(feature_matrix, index='id') assert len(feature_matrix.index) == 3 assert len(feature_matrix.columns) == len(features) def test_approximate_features(pd_dataframes, relationships): # TODO: Update to use Dask dataframes when issue #985 is closed cutoff_times_df = pd.DataFrame({"instance_id": [1, 3, 1, 5, 3, 6], "time": [11, 16, 16, 26, 17, 22]}) # force column to BooleanNullable pd_dataframes['transactions'] += ({'fraud': "BooleanNullable"},) feature_matrix, features = dfs(dataframes=pd_dataframes, relationships=relationships, target_dataframe_name="transactions", cutoff_time=cutoff_times_df, approximate=5, cutoff_time_in_index=True) direct_agg_feat_name = 'cards.PERCENT_TRUE(transactions.fraud)' assert len(feature_matrix.index) == 6 assert len(feature_matrix.columns) == len(features) truth_values =
pd.Series(data=[1.0, 0.5, 0.5, 1.0, 0.5, 1.0])
pandas.Series
# -*- coding: utf-8 -*- # # License: This module is released under the terms of the LICENSE file # contained within this applications INSTALL directory """ Defines the ForecastModel class, which encapsulates model functions used in forecast model fitting, as well as their number of parameters and initialisation parameters. """ # -- Coding Conventions # http://www.python.org/dev/peps/pep-0008/ - Use the Python style guide # http://sphinx.pocoo.org/rest.html - Use Restructured Text for # docstrings # -- Public Imports import itertools import logging import numpy as np import pandas as pd from pandas.tseries.holiday import Holiday, AbstractHolidayCalendar, \ MO, nearest_workday, next_monday, next_monday_or_tuesday, \ GoodFriday, EasterMonday, USFederalHolidayCalendar from pandas.tseries.offsets import DateOffset from datetime import datetime # -- Private Imports from anticipy import model_utils # -- Globals logger = logging.getLogger(__name__) # Fourier model configuration _dict_fourier_config = { # Default configuration for fourier-based models 'period': 365.25, # days in year 'harmonics': 10 # TODO: evaluate different harmonics values } _FOURIER_PERIOD = 365.25 _FOURIER_HARMONICS = 10 # TODO: evaluate different harmonics values _FOURIER_K = (2.0 * np.pi / _FOURIER_PERIOD) _FOURIER_I = np.arange(1, _FOURIER_HARMONICS + 1) _FOURIER_DATE_ORIGIN = datetime(1970, 1, 1) # -- Functions # ---- Utility functions def logger_info(msg, data): # Convenience function for easier log typing logger.info(msg + '\n%s', data) def _get_f_init_params_default(n_params): # Generate a default function for initialising model parameters: use # random values between 0 and 1 return lambda a_x=None, a_y=None, a_date=None, is_mult=False:\ np.random.uniform(low=0.001, high=1, size=n_params) def _get_f_bounds_default(n_params): # Generate a default function for model parameter boundaries. Default # boundaries are (-inf, inf) return lambda a_x=None, a_y=None, a_date=None: ( n_params * [-np.inf], n_params * [np.inf]) def _get_f_add_2_f_models(forecast_model1, forecast_model2): # Add model functions of 2 ForecastModels def f_add_2_f_models(a_x, a_date, params, is_mult=False, **kwargs): params1 = params[0:forecast_model1.n_params] params2 = params[forecast_model1.n_params:] return ( forecast_model1.f_model( a_x, a_date, params1, is_mult=False, **kwargs) + forecast_model2.f_model( a_x, a_date, params2, is_mult=False, **kwargs)) return f_add_2_f_models def _get_f_mult_2_f_models(forecast_model1, forecast_model2): # Multiply model functions of 2 ForecastModels def f_mult_2_f_models(a_x, a_date, params, is_mult=False, **kwargs): params1 = params[0:forecast_model1.n_params] params2 = params[forecast_model1.n_params:] return ( forecast_model1.f_model( a_x, a_date, params1, is_mult=True, **kwargs) * forecast_model2.f_model( a_x, a_date, params2, is_mult=True, **kwargs)) return f_mult_2_f_models def _get_f_add_2_f_init_params(f_init_params1, f_init_params2): # Compose parameter initialisation functions of 2 ForecastModels, using # addition def f_add_2_f_init_params(a_x, a_y, a_date=None, is_mult=False): return np.concatenate( [f_init_params1(a_x, a_y, a_date, is_mult=False), f_init_params2(a_x, a_y, a_date, is_mult=False)]) return f_add_2_f_init_params def _get_f_mult_2_f_init_params(f_init_params1, f_init_params2): # Compose parameter initialisation functions of 2 ForecastModels, using # multiplication def f_mult_2_f_init_params(a_x, a_y, a_date=None, is_mult=False): return np.concatenate( [f_init_params1(a_x, a_y, a_date, is_mult=True), f_init_params2(a_x, a_y, a_date, is_mult=True)]) return f_mult_2_f_init_params def _get_f_concat_2_bounds(forecast_model1, forecast_model2): # Compose parameter boundary functions of 2 ForecastModels def f_add_2_f_bounds(a_x, a_y, a_date=None): return np.concatenate( (forecast_model1.f_bounds( a_x, a_y, a_date), forecast_model2.f_bounds( a_x, a_y, a_date)), axis=1) return f_add_2_f_bounds def _f_validate_input_default(a_x, a_y, a_date): # Default input validation function for a ForecastModel. Always returns # True return True def _as_list(l): return l if isinstance(l, (list,)) else [l] # Functions used to initialize cache variables in a ForecastModel def _f_init_cache_a_month(a_x, a_date): return a_date.month - 1 def _f_init_cache_a_weekday(a_x, a_date): return a_date.weekday def _f_init_cache_a_t_fourier(a_x, a_date): # convert to days since epoch t = (a_date - _FOURIER_DATE_ORIGIN).days.values i = np.arange(1, _FOURIER_HARMONICS + 1) a_tmp = _FOURIER_K * i.reshape(i.size, 1) * t y = np.concatenate([np.sin(a_tmp), np.cos(a_tmp)]) return y # Dictionary to store functions used to initialize cache variables # in a ForecastModel # This is shared across all ForecastModel instances _dict_f_cache = dict( a_month=_f_init_cache_a_month, a_weekday=_f_init_cache_a_weekday, a_t_fourier=_f_init_cache_a_t_fourier ) # -- Classes class ForecastModel: """ Class that encapsulates model functions for use in forecasting, as well as their number of parameters and functions for parameter initialisation. A ForecastModel instance is initialized with a model name, a number of model parameters, and a model function. Class instances are callable - when called as a function, their internal model function is used. The main purpose of ForecastModel objects is to generate predicted values for a time series, given a set of parameters. These values can be compared to the original series to get an array of residuals:: y_predicted = model(a_x, a_date, params) residuals = (a_y - y_predicted) This is used in an optimization loop to obtain the optimal parameters for the model. The reason for using this class instead of raw model functions is that ForecastModel supports function composition:: model_sum = fcast_model1 + fcast_model2 # fcast_model 1 and 2 are ForecastModel instances, and so is model_sum a_y1 = fcast_model1( a_x, a_date, params1) + fcast_model2(a_x, a_date, params2) params = np.concatenate([params1, params2]) a_y2 = model_sum(a_x, a_date, params) a_y1 == a_y2 # True Forecast models can be added or multiplied, with the + and * operators. Multiple levels of composition are supported:: model = (model1 + model2) * model3 Model composition is used to aggregate trend and seasonality model components, among other uses. Model functions have the following signature: - f(a_x, a_date, params, is_mult) - a_x : array of floats - a_date: array of dates, same length as a_x. Only required for date-aware models, e.g. for weekly seasonality. - params: array of floats - model parameters - the optimisation loop updates this to fit our actual values. Each model function uses a fixed number of parameters. - is_mult: boolean. True if the model is being used with multiplicative composition. Required because some model functions (e.g. steps) have different behaviour when added to other models than when multiplying them. - returns an array of floats - with same length as a_x - output of the model defined by this object's modelling function f_model and the current set of parameters By default, model parameters are initialized as random values between 0 and 1. It is possible to define a parameter initialization function that picks initial values based on the original time series. This is passed during ForecastModel creation with the argument f_init_params. Parameter initialization is compatible with model composition: the initialization function of each component will be used for that component's parameters. Parameter initialisation functions have the following signature: - f_init_params(a_x, a_y, is_mult) - a_x: array of floats - same length as time series - a_y: array of floats - time series values - returns an array of floats - with length equal to this object's n_params value By default, model parameters have no boundaries. However, it is possible to define a boundary function for a model, that sets boundaries for each model parameter, based on the input time series. This is passed during ForecastModel creation with the argument f_bounds. Boundary definition is compatible with model composition: the boundary function of each component will be used for that component's parameters. Boundary functions have the following signature: - f_bounds(a_x, a_y, a_date) - a_x: array of floats - same length as time series - a_y: array of floats - time series values - a_date: array of dates, same length as a_x. Only required for date-aware models, e.g. for weekly seasonality. - returns a tuple of 2 arrays of floats. The first defines minimum parameter boundaries, and the second the maximum parameter boundaries. As an option, we can assign a list of input validation functions to a model. These functions analyse the inputs that will be used for fitting a model, returning True if valid, and False otherwise. The forecast logic will skip a model from fitting if any of the validation functions for that model returns False. Input validation functions have the following signature: - f_validate_input(a_x, a_y, a_date) - See the description of model functions above for more details on these parameters. Our input time series should meet the following constraints: - Minimum required samples depends on number of model parameters - May include null values - May include multiple values per sample - A date array is only required if the model is date-aware Class Usage:: model_x = ForecastModel(name, n_params, f_model, f_init_params, l_f_validate_input) # Get model name model_name = model_x.name # Get number of model parameters n_params = model_x.n_params # Get parameter initialisation function f_init_params = model_x.f_init_params # Get initial parameters init_params = f_init_params(t_values, y_values) # Get model fitting function f_model = model_x.f_model # Get model output y = f_model(a_x, a_date, parameters) The following pre-generated models are available. They are available as attributes from this module: # noqa .. csv-table:: Forecast models :header: "name", "params", "formula","notes" :widths: 20, 10, 20, 40 "model_null",0, "y=0", "Does nothing. Used to disable components (e.g. seasonality)" "model_constant",1, "y=A", "Constant model" "model_linear",2, "y=Ax + B", "Linear model" "model_linear_nondec",2, "y=Ax + B", "Non decreasing linear model. With boundaries to ensure model slope >=0" "model_quasilinear",3, "y=A*(x^B) + C", "Quasilinear model" "model_exp",2, "y=A * B^x", "Exponential model" "model_decay",4, "Y = A * e^(B*(x-C)) + D", "Exponential decay model" "model_step",2, "y=0 if x<A, y=B if x>=A", "Step model" "model_two_steps",4, "see model_step", "2 step models. Parameter initialization is aware of # of steps." "model_sigmoid_step",3, "y = A + (B - A) / (1 + np.exp(- D * (x - C))) ", "Sigmoid step model" "model_sigmoid",3, "y = A + (B - A) / (1 + np.exp(- D * (x - C)))", " Sigmoid model" "model_season_wday",7, "see desc.", "Weekday seasonality model. Assigns a constant value to each weekday" "model_season_wday",6, "see desc.", "6-param weekday seasonality model. As above, with one constant set to 0." "model_season_wday_2",2, "see desc.", "Weekend seasonality model. Assigns a constant to each of weekday/weekend" "model_season_month",12, "see desc.", "Month seasonality model. Assigns a constant value to each month" "model_season_fourier_yearly",10, "see desc", "Fourier yearly seasonality model" """ def __init__( self, name, n_params, f_model, f_init_params=None, f_bounds=None, l_f_validate_input=None, l_cache_vars=None, dict_f_cache=None, ): """ Create ForecastModel :param name: Model name :type name: basestring :param n_params: Number of parameters for model function :type n_params: int :param f_model: Model function :type f_model: function :param f_init_params: Parameter initialisation function :type f_init_params: function :param f_bounds: Boundary function :type f_bounds: function """ self.name = name self.n_params = n_params self.f_model = f_model if f_init_params is not None: self.f_init_params = f_init_params else: # Default initial parameters: random values between 0 and 1 self.f_init_params = _get_f_init_params_default(n_params) if f_bounds is not None: self.f_bounds = f_bounds else: self.f_bounds = _get_f_bounds_default(n_params) if l_f_validate_input is None: self.l_f_validate_input = [_f_validate_input_default] else: self.l_f_validate_input = _as_list(l_f_validate_input) if l_cache_vars is None: self.l_cache_vars = [] else: self.l_cache_vars = _as_list(l_cache_vars) if dict_f_cache is None: self.dict_f_cache = dict() else: self.dict_f_cache = dict_f_cache # TODO - REMOVE THIS - ASSUME NORMALIZED INPUT def _get_f_init_params_validated(f_init_params): # Adds argument validation to a parameter initialisation function def f_init_params_validated( a_x=None, a_y=None, a_date=None, is_mult=False): if a_x is not None and pd.isnull(a_x).any(): raise ValueError('a_x cannot have null values') return f_init_params(a_x, a_y, a_date, is_mult) return f_init_params_validated # Add logic to f_init_params that validates input self.f_init_params = _get_f_init_params_validated(self.f_init_params) def __call__(self, a_x, a_date, params, is_mult=False, **kwargs): # assert len(params)==self.n_params return self.f_model(a_x, a_date, params, is_mult, **kwargs) def __str__(self): return self.name def __repr__(self): return 'ForecastModel:{}'.format(self.name) def __add__(self, forecast_model): # Check for nulls if self.name == 'null': return forecast_model if forecast_model.name == 'null': return self name = '({}+{})'.format(self.name, forecast_model.name) n_params = self.n_params + forecast_model.n_params f_model = _get_f_add_2_f_models(self, forecast_model) f_init_params = _get_f_add_2_f_init_params( self.f_init_params, forecast_model.f_init_params) f_bounds = _get_f_concat_2_bounds(self, forecast_model) l_f_validate_input = list( set(self.l_f_validate_input + forecast_model.l_f_validate_input)) # Combine both dicts dict_f_cache = self.dict_f_cache.copy() dict_f_cache.update(forecast_model.dict_f_cache) l_cache_vars = list( set(self.l_cache_vars + forecast_model.l_cache_vars)) return ForecastModel( name, n_params, f_model, f_init_params, f_bounds=f_bounds, l_f_validate_input=l_f_validate_input, l_cache_vars=l_cache_vars, dict_f_cache=dict_f_cache ) def __radd__(self, other): return self.__add__(other) def __mul__(self, forecast_model): if self.name == 'null': return forecast_model if forecast_model.name == 'null': return self name = '({}*{})'.format(self.name, forecast_model.name) n_params = self.n_params + forecast_model.n_params f_model = _get_f_mult_2_f_models(self, forecast_model) f_init_params = _get_f_mult_2_f_init_params( self.f_init_params, forecast_model.f_init_params) f_bounds = _get_f_concat_2_bounds(self, forecast_model) l_f_validate_input = list( set(self.l_f_validate_input + forecast_model.l_f_validate_input)) # Combine both dicts dict_f_cache = self.dict_f_cache.copy() dict_f_cache.update(forecast_model.dict_f_cache) l_cache_vars = list( set(self.l_cache_vars + forecast_model.l_cache_vars)) return ForecastModel( name, n_params, f_model, f_init_params, f_bounds=f_bounds, l_f_validate_input=l_f_validate_input, l_cache_vars=l_cache_vars, dict_f_cache=dict_f_cache ) def __rmul__(self, other): return self.__mul__(other) def __eq__(self, other): if isinstance(self, other.__class__): return self.name == other.name return NotImplemented def __ne__(self, other): x = self.__eq__(other) if x is not NotImplemented: return not x return NotImplemented def __hash__(self): return hash(self.name) def __lt__(self, other): return self.name < other.name def validate_input(self, a_x, a_y, a_date): try: l_result = [f_validate_input(a_x, a_y, a_date) for f_validate_input in self.l_f_validate_input] except AssertionError: return False return True def init_cache(self, a_x, a_date): dict_cache_vars = dict() for k in self.l_cache_vars: f = _dict_f_cache.get(k) if f: dict_cache_vars[k] = f(a_x, a_date) else: logger.warning('Cache function not found: %s', k) # Search vars defined in internal cache function dictionary for k in self.dict_f_cache: f = self.dict_f_cache.get(k) if f: dict_cache_vars[k] = f(a_x, a_date) else: logger.warning('Cache function not found: %s', k) return dict_cache_vars # - Null model: 0 def _f_model_null(a_x, a_date, params, is_mult=False, **kwargs): # This model does nothing - used to disable model components # (e.g. seasonality) when adding/multiplying multiple functions return float(is_mult) # Returns 1 if multiplying, 0 if adding model_null = ForecastModel('null', 0, _f_model_null) # - Constant model: :math:`Y = A` def _f_model_constant(a_x, a_date, params, is_mult=False, **kwargs): [A] = params y = np.full(len(a_x), A) return y def _f_init_params_constant(a_x=None, a_y=None, a_date=None, is_mult=False): if a_y is None: return np.random.uniform(0, 1, 1) else: return np.nanmean(a_y) + np.random.uniform(0, 1, 1) model_constant = ForecastModel( 'constant', 1, _f_model_constant, _f_init_params_constant) # - Naive model: Y = Y(x-1) # Note: This model requires passing the actuals data - it is not fitted by # regression. We still pass it to forecast.fit_model() for consistency # with the rest of the library def _f_model_naive(a_x, a_date, params, is_mult=False, df_actuals=None): if df_actuals is None: raise ValueError('model_naive requires a df_actuals argument') df_out_tmp = pd.DataFrame({'date': a_date, 'x': a_x}) df_out = ( # This is not really intended to work with multiple values per sample df_actuals.drop_duplicates('x') .merge(df_out_tmp, how='outer') .sort_values('x') ) df_out['y'] = ( df_out.y.shift(1) .fillna(method='ffill') .fillna(method='bfill') ) df_out = df_out.loc[df_out.x.isin(a_x)] # df_out = df_out_tmp.merge(df_out, how='left') # TODO: CHECK THAT X,DATE order is preserved # TODO: df_out = df_out.merge(df_out_tmp, how='right') return df_out.y.values model_naive = ForecastModel('naive', 0, _f_model_naive) # - Seasonal naive model # Note: This model requires passing the actuals data - it is not fitted by # regression. We still pass it to forecast.fit_model() for consistency # with the rest of the library def _fillna_wday(df): """ In a time series, shift samples by 1 week and fill gaps with data from same weekday """ def add_col_y_out(df): df = df.assign(y_out=df.y.shift(1).fillna(method='ffill')) return df df_out = ( df .assign(wday=df.date.dt.weekday) .groupby('wday', as_index=False).apply(add_col_y_out) .sort_values(['x']) .reset_index(drop=True) ) return df_out def _f_model_snaive_wday(a_x, a_date, params, is_mult=False, df_actuals=None): """Naive model - takes last valid weekly sample""" if df_actuals is None: raise ValueError('model_snaive_wday requires a df_actuals argument') # df_actuals_model - table with actuals samples, # adding y_out column with naive model values df_actuals_model = _fillna_wday(df_actuals.drop_duplicates('x')) # df_last_week - table with naive model values from last actuals week, # to use in extrapolation df_last_week = ( df_actuals_model # Fill null actual values with data from previous weeks .assign(y=df_actuals_model.y.fillna(df_actuals_model.y_out)) .drop_duplicates('wday', keep='last') [['wday', 'y']] .rename(columns=dict(y='y_out')) ) # Generate table with extrapolated samples df_out_tmp = pd.DataFrame({'date': a_date, 'x': a_x}) df_out_tmp['wday'] = df_out_tmp.date.dt.weekday df_out_extrapolated = ( df_out_tmp .loc[~df_out_tmp.date.isin(df_actuals_model.date)] .merge(df_last_week, how='left') .sort_values('x') ) # Filter actuals table - only samples in a_x, a_date df_out_actuals_filtered = ( # df_actuals_model.loc[df_actuals_model.x.isin(a_x)] # Using merge rather than simple filtering to account for # dates with multiple samples df_actuals_model.merge(df_out_tmp, how='inner') .sort_values('x') ) df_out = ( pd.concat( [df_out_actuals_filtered, df_out_extrapolated], sort=False, ignore_index=True) ) return df_out.y_out.values model_snaive_wday = ForecastModel('snaive_wday', 0, _f_model_snaive_wday) # - Spike model: :math:`Y = A`, when x_min <= X < x_max def _f_model_spike(a_x, a_date, params, is_mult=False, **kwargs): [A, x_min, x_max] = params if is_mult: c = 1 else: c = 0 y = np.concatenate(( np.full(int(x_min), c), np.full(int(x_max - x_min), A), np.full(len(a_x) - int(x_max), c) )) return y def _f_init_params_spike(a_x=None, a_y=None, a_date=None, is_mult=False): """ params are spike height, x start, x end """ # if not a_y.any(): if a_y is None: return [1] + np.random.uniform(0, 1, 1) + [2] else: diffs = np.diff(a_y) # if diffs: if True: diff = max(diffs) x_start = np.argmax(diffs) x_end = x_start + 1 return np.array([diff, x_start, x_end]) model_spike = ForecastModel('spike', 3, _f_model_spike, _f_init_params_spike) # - Spike model for dates - dates are fixed for each model def _f_model_spike_date( a_x, a_date, params, date_start, date_end, is_mult=False): [A] = params mask_spike = (a_date >= date_start) * (a_date < date_end) if is_mult: y = mask_spike * A + ~mask_spike else: y = mask_spike * A return y def _f_init_params_spike(a_x=None, a_y=None, a_date=None, is_mult=False): """ params are spike height, x start, x end """ if a_y is None: return np.concatenate([np.array([1]) + np.random.uniform(0, 1, 1)]) else: diffs = np.diff(a_y) # if diffs: if True: diff = max(diffs) return np.array([diff]) # else: # rand = np.random.randint(1, len(a_y) - 1) # return [1] def get_model_spike_date(date_start, date_end): f_model = ( lambda a_x, a_date, params, is_mult=False, **kwargs: _f_model_spike_date(a_x, a_date, params, date_start, date_end, is_mult) ) model_spike_date = ForecastModel( 'spike_date[{},{}]'.format( pd.to_datetime(date_start).date(), pd.to_datetime(date_end).date()), 1, f_model, _f_init_params_spike) return model_spike_date # - Linear model: :math:`Y = A*x + B` def _f_model_linear(a_x, a_date, params, is_mult=False, **kwargs): (A, B) = params y = A * a_x + B return y def _f_init_params_linear(a_x=None, a_y=None, a_date=None, is_mult=False): if a_y is None: return np.random.uniform(low=0, high=1, size=2) else: # TODO: Improve this if a_x is not None: a_x_size = np.unique(a_x).size - 1 else: a_x_size = a_y.size - 1 A = (a_y[-1] - a_y[0]) / a_x_size B = a_y[0] # Uniform low= 0*m, high = 1*m return np.array([A, B]) model_linear = ForecastModel( 'linear', 2, _f_model_linear, _f_init_params_linear) def f_init_params_linear_nondec( a_x=None, a_y=None, a_date=None, is_mult=False): params = _f_init_params_linear(a_x, a_y, a_date) if params[0] < 0: params[0] = 0 return params def f_bounds_linear_nondec(a_x=None, a_y=None, a_date=None): # first param should be between 0 and inf return [0, -np.inf], [np.inf, np.inf] model_linear_nondec = ForecastModel('linear_nondec', 2, _f_model_linear, f_init_params=f_init_params_linear_nondec, f_bounds=f_bounds_linear_nondec) # - QuasiLinear model: :math:`Y = A t^{B} + C` def _f_model_quasilinear(a_x, a_date, params, is_mult=False, **kwargs): (A, B, C) = params y = A * np.power(a_x, B) + C return y model_quasilinear = ForecastModel('quasilinear', 3, _f_model_quasilinear) # - Exponential model: math:: Y = A * B^t # TODO: Deprecate - not safe to use def _f_model_exp(a_x, a_date, params, is_mult=False, **kwargs): (A, B) = params y = A * np.power(B, a_x) return y model_exp = ForecastModel('exponential', 2, _f_model_exp) # - Exponential decay model: math:: Y = A * e^(B*(x-C)) + D def _f_model_decay(a_x, a_date, params, is_mult=False, **kwargs): (A, B, D) = params y = A * np.exp(B * (a_x)) + D return y def _f_validate_input_decay(a_x, a_y, a_date): assert (a_y > 0).all() def f_init_params_decay(a_x=None, a_y=None, a_date=None, is_mult=False): if a_y is None: return np.array([0, 0, 0]) A = a_y[0] - a_y[-1] B = np.log(np.min(a_y) / np.max(a_y)) / (len(a_y) - 1) if B > 0 or B == -np.inf: B = -0.5 C = a_y[-1] return np.array([A, B, C]) def f_bounds_decay(a_x=None, a_y=None, a_date=None): return [-np.inf, -np.inf, -np.inf], [np.inf, 0, np.inf] model_decay = ForecastModel('decay', 3, _f_model_decay, f_init_params=f_init_params_decay, f_bounds=f_bounds_decay, l_f_validate_input=_f_validate_input_decay) # - Step function: :math:`Y = {0, if x < A | B, if x >= A}` # A is the time of step, and B is the step def _f_step(a_x, a_date, params, is_mult=False, **kwargs): (A, B) = params if is_mult: y = 1 + (B - 1) * np.heaviside(a_x - A, 1) else: y = B * np.heaviside(a_x - A, 1) return y # TODO: Implement initialisation for multiplicative composition def _f_init_params_step(a_x=None, a_y=None, a_date=None, is_mult=False): if a_y is None: return np.random.uniform(0, 1, 2) else: if a_y.ndim > 1: a_y = a_y[:, 0] df = pd.DataFrame({'b': a_y}) # max difference between consecutive values df['diff'] = df.diff().abs() # if is_mult, replace above line with something like # np.concatenate([[np.NaN],a_y[:-1]/a_y[1:]]) a = df.nlargest(1, 'diff').index[0] b = df['diff'].iloc[a] return np.array([a, b * 2]) # TODO: Add boundaries for X axis model_step = ForecastModel('step', 2, _f_step, _f_init_params_step) # - Spike model for dates - dates are fixed for each model def _f_model_step_date(a_x, a_date, params, date_start, is_mult=False): [A] = params mask_step = (a_date >= date_start).astype(float) if is_mult: # y = mask_step*A + ~mask_step y = mask_step * (A - 1) + 1 else: y = mask_step * A return y # TODO: Implement initialisation for multiplicative composition def _f_init_params_step_date(a_x=None, a_y=None, a_date=None, is_mult=False): if a_y is None: return np.random.uniform(0, 1, 1) else: if a_y.ndim > 1: a_y = a_y[:, 0] df = pd.DataFrame({'b': a_y}) # max difference between consecutive values df['diff'] = df.diff().abs() # if is_mult, replace above line with something like # np.concatenate([[np.NaN],a_y[:-1]/a_y[1:]]) a = df.nlargest(1, 'diff').index[0] b = df['diff'].iloc[a] return np.array([b * 2]) def get_model_step_date(date_start): date_start = pd.to_datetime(date_start) f_model = ( lambda a_x, a_date, params, is_mult=False, **kwargs: _f_model_step_date(a_x, a_date, params, date_start, is_mult) ) model_step_date = ForecastModel('step_date[{}]'.format(date_start.date()), 1, f_model, _f_init_params_step_date) return model_step_date # Two step functions def _f_n_steps(n, a_x, a_date, params, is_mult=False): if is_mult: y = 1 else: y = 0 for i in range(0, n + 1, 2): A, B = params[i: i + 2] if is_mult: y = y * _f_step(a_x, a_date, (A, B), is_mult) else: y = y + _f_step(a_x, a_date, (A, B), is_mult) return y def _f_two_steps(a_x, a_date, params, is_mult=False, **kwargs): return _f_n_steps( n=2, a_x=a_x, a_date=a_date, params=params, is_mult=is_mult) def _f_init_params_n_steps( n=2, a_x=None, a_y=None, a_date=None, is_mult=False): if a_y is None: return np.random.uniform(0, 1, n * 2) else: # max difference between consecutive values if a_y.ndim > 1: a_y = a_y[:, 0] df = pd.DataFrame({'b': a_y}) df['diff'] = df.diff().abs() # if is_mult, replace above line with something like # np.concatenate([[np.NaN],a_y[:-1]/a_y[1:]]) a = df.nlargest(n, 'diff').index[0:n].values b = df['diff'].iloc[a].values params = [] for i in range(0, n): params += [a[i], b[i]] return np.array(params) def _f_init_params_two_steps(a_x=None, a_y=None, a_date=None, is_mult=False): return _f_init_params_n_steps( n=2, a_x=a_x, a_y=a_y, a_date=a_date, is_mult=is_mult) model_two_steps = ForecastModel( 'two_steps', 2 * 2, _f_two_steps, _f_init_params_two_steps) # - Sigmoid step function: `Y = {A + (B - A) / (1 + np.exp(- D * (a_x - C)))}` # Spans from A to B, C is the position of the step in x axis # and D is how steep the increase is def _f_sigmoid(a_x, a_date, params, is_mult=False, **kwargs): (B, C, D) = params if is_mult: A = 1 else: A = 0 # TODO check if a_x is negative y = A + (B - A) / (1 + np.exp(- D * (a_x - C))) return y def _f_init_params_sigmoid_step( a_x=None, a_y=None, a_date=None, is_mult=False): if a_y is None: return np.random.uniform(0, 1, 3) else: if a_y.ndim > 1: a_y = a_y[:, 0] df = pd.DataFrame({'y': a_y}) # max difference between consecutive values df['diff'] = df.diff().abs() c = df.nlargest(1, 'diff').index[0] b = df.loc[c, 'y'] d = b * b return b, c, d def _f_init_bounds_sigmoid_step(a_x=None, a_y=None, a_date=None): if a_y is None: return [-np.inf, -np.inf, 0.], 3 * [np.inf] if a_y.ndim > 1: a_y = a_y[:, 0] if a_x.ndim > 1: a_x = a_x[:, 0] diff = max(a_y) - min(a_y) b_min = -2 * diff b_max = 2 * diff c_min = min(a_x) c_max = max(a_x) d_min = 0. d_max = np.inf return [b_min, c_min, d_min], [b_max, c_max, d_max] # In this model, parameter initialization is aware of number of steps model_sigmoid_step = ForecastModel( 'sigmoid_step', 3, _f_sigmoid, _f_init_params_sigmoid_step, f_bounds=_f_init_bounds_sigmoid_step) model_sigmoid = ForecastModel('sigmoid', 3, _f_sigmoid) # Ramp functions - used for piecewise linear models # example : model_linear_pw2 = model_linear + model_ramp # example 2: model_linear_p23 = model_linear + model_ramp + model_ramp # - Ramp function: :math:`Y = {0, if x < A | B, if x >= A}` # A is the time of step, and B is the step def _f_ramp(a_x, a_date, params, is_mult=False, **kwargs): (A, B) = params if is_mult: y = 1 + (a_x - A) * (B) * np.heaviside(a_x - A, 1) else: y = (a_x - A) * B * np.heaviside(a_x - A, 1) return y def _f_init_params_ramp(a_x=None, a_y=None, a_date=None, is_mult=False): # TODO: set boundaries: a_x (0.2, 0.8) if a_y is None: if a_x is not None: nfirst_last = int(np.ceil(0.15 * a_x.size)) a = np.random.uniform(a_x[nfirst_last], a_x[-nfirst_last - 1], 1) else: a = np.random.uniform(0, 1, 1) b = np.random.uniform(0, 1, 1) return np.concatenate([a, b]) else: # TODO: FILTER A_Y BY 20-80 PERCENTILE IN A_X df = pd.DataFrame({'b': a_y}) if a_x is not None: # df['x'] = a_x # Required because we support input with multiple samples per x # value df = df.drop_duplicates('x') df = df.set_index('x') # max difference between consecutive values -- this assumes no null # values in series df['diff2'] = df.diff().diff().abs() # We ignore the last 15% of the time series skip_samples = int(np.ceil(df.index.size * 0.15)) a = (df.head(-skip_samples).tail( -skip_samples).nlargest(1, 'diff2').index[0] ) b = df['diff2'].loc[a] # TODO: replace b with estimation of slope in segment 2 # minus slope in segment 1 - see init_params_linear return np.array([a, b]) def _f_init_bounds_ramp(a_x=None, a_y=None, a_date=None): if a_x is None: a_min = -np.inf a_max = np.inf else: # a_min = np.min(a_x) nfirst_last = int(np.ceil(0.15 * a_x.size)) a_min = a_x[nfirst_last] a_max = a_x[-nfirst_last] # a_min = np.percentile(a_x, 15) # a_max = np.percentile(a_x,85) if a_y is None: b_min = -np.inf b_max = np.inf else: # TODO: FILTER A_Y BY 20-80 PERCENTILE IN A_X # df = pd.DataFrame({'b': a_y}) # #max_diff2 = np.max(df.diff().diff().abs()) # max_diff2 = np.max(np.abs(np.diff(np.diff(a_y)))) # # b_min = -2*max_diff2 # b_max = 2*max_diff2 b_min = -np.inf b_max = np.inf # logger_info('DEBUG: BOUNDS:',(a_min, b_min,a_max, b_max)) return ([a_min, b_min], [a_max, b_max]) model_ramp = ForecastModel( 'ramp', 2, _f_ramp, _f_init_params_ramp, _f_init_bounds_ramp) # - Weekday seasonality def _f_model_season_wday( a_x, a_date, params, is_mult=False, # cache variables a_weekday=None, **kwargs): # Weekday seasonality model, 6 params # params_long[0] is default series value, params_long = np.concatenate([[float(is_mult)], params]) if a_weekday is None: a_weekday = _f_init_cache_a_weekday(a_x, a_date) return params_long[a_weekday] def _f_validate_input_season_wday(a_x, a_y, a_date): assert a_date is not None assert a_date.weekday.drop_duplicates().size == 7 model_season_wday = ForecastModel( 'season_wday', 6, _f_model_season_wday, l_f_validate_input=_f_validate_input_season_wday, l_cache_vars=['a_weekday'] ) # - Month seasonality def _f_init_params_season_month( a_x=None, a_y=None, a_date=None, is_mult=False): if a_y is None or a_date is None: return np.random.uniform(low=-1, high=1, size=11) else: # TODO: Improve this l_params_long = [np.mean(a_y[a_date.month == i]) for i in np.arange(1, 13)] l_baseline = l_params_long[-1] l_params = l_params_long[:-1] if not is_mult: l_params_add = l_params - l_baseline return l_params_add else: l_params_mult = l_params / l_baseline return l_params_mult def _f_model_season_month( a_x, a_date, params, is_mult=False, # cache variables a_month=None, **kwargs): # Month of December is taken as default level, has no parameter # params_long[0] is default series value params_long = np.concatenate([[float(is_mult)], params]) if a_month is None: a_month = _f_init_cache_a_month(a_x, a_date) return params_long[a_month] model_season_month = ForecastModel( 'season_month', 11, _f_model_season_month, _f_init_params_season_month, l_cache_vars=['a_month'] ) model_season_month_old = ForecastModel( 'season_month_old', 11, _f_model_season_month) def _f_model_yearly_season_fourier( a_x, a_date, params, is_mult=False, # cache params a_t_fourier=None, **kwargs): if a_t_fourier is None: a_t_fourier = _f_init_cache_a_t_fourier(None, a_date) y = np.matmul(params, a_t_fourier) return y def _f_init_params_fourier_n_params( n_params, a_x=None, a_y=None, a_date=None, is_mult=False): if a_y is None: params = np.random.uniform(0.001, 1, n_params) else: # max difference in time series diff = a_y.max() - a_y.min() params = diff * np.random.uniform(0.001, 1, n_params) return params def _f_init_params_fourier(a_x=None, a_y=None, a_date=None, is_mult=False): n_params = 2 * _dict_fourier_config['harmonics'] return _f_init_params_fourier_n_params( n_params, a_x=a_x, a_y=a_y, a_date=a_date, is_mult=is_mult) def _f_init_bounds_fourier_nparams(n_params, a_x=None, a_y=None, a_date=None): return n_params * [-np.inf], n_params * [np.inf] def _f_init_bounds_fourier_yearly(a_x=None, a_y=None, a_date=None): n_params = 2 * _dict_fourier_config['harmonics'] return _f_init_bounds_fourier_nparams(n_params, a_x, a_y, a_date) model_season_fourier_yearly = ForecastModel( name='season_fourier_yearly', n_params=2 * _dict_fourier_config.get('harmonics'), f_model=_f_model_yearly_season_fourier, f_init_params=_f_init_params_fourier, f_bounds=_f_init_bounds_fourier_yearly, l_cache_vars='a_t_fourier' ) def get_fixed_model(forecast_model, params_fixed, is_mult=False): # Generate model with some fixed parameters if forecast_model.n_params == 0: # Nothing to do return forecast_model if len(params_fixed) != forecast_model.n_params: err = 'Wrong number of fixed parameters' raise ValueError(err) return ForecastModel( forecast_model.name + '_fixed', 0, f_model=lambda a_x, a_date, params, is_mult=is_mult, **kwargs: forecast_model.f_model( a_x=a_x, a_date=a_date, params=params_fixed, is_mult=is_mult)) def get_iqr_thresholds(s_diff, low=0.25, high=0.75): # Get thresholds based on inter quantile range q1 = s_diff.quantile(low) q3 = s_diff.quantile(high) iqr = q3 - q1 thr_low = q1 - 1.5 * iqr thr_hi = q3 + 1.5 * iqr return thr_low, thr_hi # TODO: Add option - estimate_outl_size # TODO: Add option - sigmoid steps # TODO: ADD option - gaussian spikes def get_model_outliers(df, window=3): """ Identify outlier samples in a time series :param df: Input time series :type df: pandas.DataFrame :param window: The x-axis window to aggregate multiple steps/spikes :type window: int :return: | tuple (mask_step, mask_spike) | mask_step: True if sample contains a step | mask_spike: True if sample contains a spike :rtype: tuple of 2 numpy arrays of booleans TODO: require minimum number of samples to find an outlier """ dfo = df.copy() # dfo - df for outliers # If df has datetime index, use date logic in steps/spikes with_dates = 'date' in df.columns x_col = 'date' if with_dates else 'x' if df[x_col].duplicated().any(): raise ValueError('Input cannot have multiple values per sample') # Get the differences dfo['dif'] = dfo.y.diff() # We consider as outliers the values that are # 1.5 * IQR (interquartile range) beyond the quartiles. # These thresholds are obtained here thr_low, thr_hi = get_iqr_thresholds(dfo.dif) # Now identify the changes dfo['ischange'] = ((dfo.dif < thr_low) | (dfo.dif > thr_hi)).astype(int) # Whenever there are two or more consecutive changes # (that is, within `window` samples), we group them together dfo['ischange_group'] = ( dfo.ischange.rolling(window, win_type=None, center=True).max().fillna( 0).astype(int) ) # We now have to calculate the difference within the # same group in order to identify if the consecutive changes # result in a step, a spike, or both. # We get the filtered difference dfo['dif_filt'] = (dfo.dif * dfo.ischange).fillna(0) # And the absolute value of that dfo['dif_filt_abs'] = dfo.dif_filt.abs() dfo['change_group'] = dfo.ischange_group.diff( ).abs().fillna(0).astype(int).cumsum() # this gets us the average difference of the outliers within each change # group df_mean_gdiff = ( dfo.loc[dfo.ischange.astype(bool)].groupby('change_group')[ 'dif_filt'].mean().rename('mean_group_diff').reset_index()) # this gets us the average absolute difference of the outliers within each # change group df_mean_gdiff_abs = ( dfo.loc[dfo.ischange.astype(bool)].groupby('change_group')[ 'dif_filt_abs'].mean().rename( 'mean_group_diff_abs').reset_index() ) # Merge the differences with the original dfo dfo = dfo.merge( df_mean_gdiff, how='left').merge( df_mean_gdiff_abs, how='left') # Fill missing values with zero -> no change dfo.mean_group_diff = dfo.mean_group_diff.fillna(0) dfo.mean_group_diff_abs = dfo.mean_group_diff_abs.fillna(0) # the change group is a step if the mean_group_diff exceeds the thresholds dfo['is_step'] = dfo['ischange_group'] & ( ((dfo.mean_group_diff < thr_low) | (dfo.mean_group_diff > thr_hi))) # the change group is a spike if the difference between the # mean_group_diff_abs and the average mean_group_diff exceeds # the average threshold value dfo['is_spike'] = (dfo.mean_group_diff_abs - dfo.mean_group_diff.abs()) > (thr_hi - thr_low) / 2 # Get the outlier start and end points for each group df_outl = ( dfo.loc[dfo.ischange.astype(bool)].groupby('change_group').apply( lambda x: pd.Series( {'outl_start': x[x_col].iloc[0], 'outl_end': x[x_col].iloc[-1]})).reset_index() ) if df_outl.empty: # No outliers - nothing to do return np.full(dfo.index.size, False), np.full(dfo.index.size, False) dfo = dfo.merge(df_outl, how='left') # Get the start and end points in dfo if with_dates: # Convert to datetime, if we are using dates dfo['outl_start'] = pd.to_datetime(dfo.outl_start) dfo['outl_end'] = pd.to_datetime(dfo.outl_end) # Create the mask for spikes and steps dfo['mask_spike'] = (dfo['is_spike'] & (dfo.date >= pd.to_datetime(dfo.outl_start)) & (dfo.date < pd.to_datetime(dfo.outl_end))) dfo['mask_step'] = (dfo['is_step'] & (dfo.date >= pd.to_datetime(dfo.outl_start)) & (dfo.date <= pd.to_datetime(dfo.outl_end))) else: # For non-date x values, we fill na's and convert to int dfo['outl_start'] = dfo.outl_start.fillna(0).astype(int) dfo['outl_end'] = dfo.outl_end.fillna(0).astype(int) # Create the mask for spikes and steps dfo['mask_spike'] = (dfo['is_spike'] & (dfo.x >= dfo.outl_start) & (dfo.x < dfo.outl_end)) dfo['mask_step'] = (dfo['is_step'] & (dfo.x >= dfo.outl_start) & (dfo.x <= dfo.outl_end)) return dfo.mask_step.values, dfo.mask_spike.values def create_fixed_step(diff, x): # Generate a fixed step model fixed_params = [x, diff] return get_fixed_model(model_step, fixed_params) def create_fixed_spike(diff, x, duration): # Generate a fixed spike model fixed_params = [diff, x, x + duration] return get_fixed_model(model_spike, fixed_params) def create_fixed_spike_ignored(x, duration): # Generate a fixed spike ignored model fixed_params = [0, x, x + duration] return get_fixed_model(model_spike, fixed_params, is_mult=True) # Dummy variable models def _validate_f_dummy(f_dummy): # Ensures that behaviour of f_dummy matches specs # Must return array of floats, same length as a_x, with values either 0. # or 1. def validate_for_dummy(a_dummy): assert isinstance(a_dummy, np.ndarray) assert np.setdiff1d(a_dummy, np.array([0., 1.])).size == 0 # validate_for_dummy(f_dummy(np.arange(0, 10), None)) # Crashes with # f_dummy 's that require dates validate_for_dummy( f_dummy( np.arange( 0, 10), pd.date_range( '2018-01-01', '2018-01-10'))) def _get_f_dummy(dummy): """ Get a function that generates a mask array from a dummy variable :param dummy: dummy variable, that can be used to generate a mask array :type dummy: function, pandas Holiday/Calendar, or list-like of numerics or dates :return: model function based on dummy variable, to use on a ForecastModel :rtype: function """ if callable(dummy): # If dummy is a function, use it f_dummy = dummy elif isinstance(dummy, Holiday): f_dummy = _get_f_dummy_from_holiday(dummy) elif isinstance(dummy, AbstractHolidayCalendar): f_dummy = _get_f_dummy_from_calendar(dummy) else: # If dummy is a list, convert to function f_dummy = _get_f_dummy_from_list(dummy) return f_dummy def _get_f_dummy_from_list(list_check): """ Generate a f_dummy function that defines a dummy variable, can be used for dummy models :param list_check: Input list :type list_check: list-like of numerics or datetime-likes :return: f_dummy :rtype: function """ # Generate a f_dummy function that defines a dummy variable, can be used # for dummy models s_check = pd.Series(list_check) assert s_check.size, 'Input list cannot be empty' if pd.api.types.is_numeric_dtype(s_check): list_check_numeric = s_check def f_dummy_list_numeric(a_x, a_date): # return a_x in check_numeric return np.isin(a_x, list_check_numeric).astype(float) return f_dummy_list_numeric else: try: list_check_date =
pd.to_datetime(s_check)
pandas.to_datetime
# -*- coding: utf-8 -*- """ Evaluation of trained models. """ import io import pathlib from typing import Dict, List, Optional, Union, Tuple from dateutil.relativedelta import relativedelta import matplotlib.pyplot as plt import numpy as np import pandas as pd from PIL import Image, ImageOps import seaborn as sns import scipy.stats as scs import sklearn.metrics as sklm from perceptree.common.cache import update_dict_recursively from perceptree.common.configuration import Config from perceptree.common.configuration import Configurable from perceptree.common.file_saver import FileSaver from perceptree.common.graph_saver import GraphSaver from perceptree.common.logger import Logger from perceptree.common.util import parse_bool_string from perceptree.common.util import reshape_scalar from perceptree.data.predict import Prediction from perceptree.model.base import BaseModel class EvaluationProcessor(Logger, Configurable): """ Evaluation of trained models. """ COMMAND_NAME = "Evaluate" """ Name of this command, used for configuration. """ def __init__(self, config: Config): super().__init__(config=config) self._set_instance() self.__l.info("Initializing evaluation system...") @classmethod def register_options(cls, parser: Config.Parser): """ Register configuration options for this class. """ parser.add_argument("--evaluate-current", action="store_true", default=False, dest=cls._add_config_parameter("evaluate_current"), help="Perform evaluation of all current model predictions?") parser.add_argument("--export-evaluations", action="store", default=None, type=str, metavar=("PATH/TO/EVALUATIONS.csv"), dest=cls._add_config_parameter("export_evaluations"), help="Export evaluations data-frame to given csv.") parser.add_argument("--export-images", action="store", default=None, type=str, metavar=("PATH/TO/OUTPUT/"), dest=cls._add_config_parameter("export_images"), help="Export annotated images with score bars to given location.") parser.add_argument("--export-images-text", action="store", default=True, type=parse_bool_string, metavar=("True/False"), dest=cls._add_config_parameter("export_images_text"), help="Draw text in annotated images?") parser.add_argument("--export-images-side", action="store", default="l", type=str, metavar=("r|l"), dest=cls._add_config_parameter("export_images_side"), help="Which side to display the bar on annotated images") parser.add_argument("--export-images-transparent", action="store", default=False, type=parse_bool_string, metavar=("True/False"), dest=cls._add_config_parameter("export_images_transparent"), help="Should bars on annotated images be transparent?") parser.add_argument("--export-images-show", action="store", default=False, type=parse_bool_string, metavar=("True/False"), dest=cls._add_config_parameter("export_images_show"), help="Display the annotated images through Matplotlib?") def _evaluate_prediction_score(self, prediction: Prediction) -> [ dict ]: """ Perform evaluation of tree scoring. """ if prediction.score_prediction is None: self.__l.error("Failed to evaluate tree score, no prediction available!") return [ ] if prediction.score_expected is not None: ground_truth_score = prediction.score_expected ground_truth_available = True else: ground_truth_score = prediction.score_prediction ground_truth_available = False predicted_score = prediction.score_prediction if len(ground_truth_score) != len(predicted_score) and len(ground_truth_score) == 1: ground_truth_score = np.repeat(ground_truth_score, len(predicted_score)) if len(ground_truth_score) != len(predicted_score): self.__l.error(f"Failed to evaluate tree score, GT and predicted don't match up " f"({ground_truth_score} vs {predicted_score})!") return [ { "tree_id": prediction.tree_id, "view_id": view_id, "score_gt": reshape_scalar(gt["jod"])[0], "score_p": reshape_scalar(pred["jod"])[0], "mse": sklm.mean_squared_error([ gt["jod"] ], [ pred["jod"] ]), "source": prediction.data_source, "true_gt": ground_truth_available, "tree_file": prediction.tree_file, "view_files": prediction.tree_views[view_id] if view_id in prediction.tree_views else { }, } for view_id in ground_truth_score.keys() for gt, pred in [ ( ground_truth_score[view_id], predicted_score[view_id] ) ] ] def _process_evaluations(self, evaluations: pd.DataFrame): """ Process evaluation results. """ evaluations = evaluations.drop([ "tree_file", "view_files" ], axis=1) if self.c.export_evaluations: evaluations.to_csv(self.c.export_evaluations, sep=";") evaluations_test = evaluations[evaluations["source"] != "train"] evaluations_desc = { } evaluation_stats = { } evaluation_text = { } for model_name in evaluations.model_name.unique(): model_eval = evaluations.loc[evaluations.model_name == model_name] model_eval_test = evaluations_test.loc[evaluations_test.model_name == model_name] evaluations_desc[model_name] = f"Description: \n" + str( model_eval[["score_gt", "score_p", "mse"]].describe().to_string() ) mse_a = evaluations["mse"].mean() mse_t = evaluations_test["mse"].mean() if len(model_eval) > 1: pear_a = tuple(scs.pearsonr(model_eval["score_p"], model_eval["score_gt"])) spea_a = tuple(scs.spearmanr(model_eval["score_p"], model_eval["score_gt"])) else: pear_a = tuple(( 1.0, 0.0 )) spea_a = tuple(( 1.0, 0.0 )) if len(model_eval_test) > 1: pear_t = tuple(scs.pearsonr(model_eval_test["score_p"], model_eval_test["score_gt"])) spea_t = tuple(scs.spearmanr(model_eval_test["score_p"], model_eval_test["score_gt"])) else: pear_t = tuple(( 1.0, 0.0 )) spea_t = tuple(( 1.0, 0.0 )) evaluation_stats[model_name] = \ f"Statistics: \n" \ f"\tMSE_a: {mse_a}\n" \ f"\tMSE_t: {mse_t}\n" \ f"\tPear_a: {pear_a}\n" \ f"\tPear_t: {pear_t}\n" \ f"\tSpea_a: {spea_a}\n" \ f"\tSpea_t: {spea_t}" evaluation_text[model_name] = f"{evaluations_desc[model_name]}\n" \ f"{evaluation_stats[model_name]}" model_evaluation_text = "\n".join([ f"Evaluation for model \"{model_name}\": \n" + model_text for model_name, model_text in evaluation_text.items() ]) all_evaluation_text = f"{str(evaluations.to_string())}\n{model_evaluation_text}" self.__l.info(f"Evaluation Results: \n{all_evaluation_text}") FileSaver.save_string("EvaluationResults", all_evaluation_text) FileSaver.save_csv("EvaluationResults", evaluations) fig, ax = plt.subplots() g = sns.lineplot(ax=ax, data=evaluations, x="score_gt", y="score_gt", color="red") plt.setp(g.lines, alpha=0.6) g = sns.lineplot(ax=ax, data=evaluations, x="score_gt", y="score_p") plt.setp(g.lines, alpha=0.3) all_sources = evaluations.source.unique() source_order = [ source for source in [ "train", "valid", "test", "external", "unknown" ] if source in all_sources ] g = sns.scatterplot(ax=ax, data=evaluations, x="score_gt", y="score_p", hue="source", hue_order=source_order) logging_name = self.config["logging.logging_name"] or "Model" g.set_title( f"{logging_name} | MSE: {mse_a:.2} / {mse_t:.2} | " f"PE: {pear_a[0]:.2} / {pear_t[0]:.2} | " f"SP: {spea_a[0]:.2} / {spea_t[0]:.2}", fontsize=8 ) GraphSaver.save_graph("EvaluationResults") def _prepare_annotated_image(self, tree_id: tuple, view_id: tuple, annotation: dict, do_text: bool, bar_side: str, transparent: bool, show: bool) -> (Image, str): """ Prepare annotated image from given specification. """ views = annotation["views"] if "base" in views: view_data = views["base"] elif len(views) > 0: view_data = views[list(views.keys())[0]] else: return None, None full_path = view_data.description or None if full_path is not None and pathlib.Path(full_path).exists(): view_image = Image.open(full_path) name = pathlib.Path(full_path).with_suffix(".png").name else: full_path = None view_image = Image.fromarray(view_data.data) name = f"tree{tree_id[0]}_{tree_id[1]}_view_{view_id[0]}_{view_id[1]}.png" data = [ ] colors = [ ] if "score_gt" in annotation: data.append({ "name": "t", "value": annotation["score_gt"] }) colors.append("#e03a3a") if "score_feature" in annotation: data.append({ "name": "f", "value": annotation["score_feature"] }) colors.append("#88d962") if "score_image" in annotation: data.append({ "name": "i", "value": annotation["score_image"] }) colors.append("#127331") if len(data) > 0: data = pd.DataFrame(data=data) colors = sns.set_palette(sns.color_palette(colors)) fig, ax = plt.subplots(figsize=(2, 16)) plt.ylim(-0.01, 6.0) g = sns.barplot(ax=ax, x="name", y="value", data=data, orient="v", color=colors) ax.tick_params(axis="both", which="both", length=0) g.set(xticklabels=[ ]) g.set(xlabel=None) g.set(yticklabels=[ ]) g.set(ylabel=None) max_value = np.max([ row[ "value" ] for index, row in data.iterrows() ]) label_height = max_value + 0.01 if do_text: for index, row in data.iterrows(): g.text(row.name, label_height, round(row[ "value" ], 2), color='black', ha="center", fontsize=30) # Blue, red, green bar_data = io.BytesIO() fig.savefig(bar_data, format="png", transparent=transparent) plt.close("all") bar_image = Image.open(bar_data) view_image = view_image.convert("RGBA") bar_image_size = bar_image.size tree_image_size = view_image.size size_mult = tree_image_size[1] / bar_image_size[1] new_bar_image_size = (int(bar_image_size[0] * size_mult), int(bar_image_size[1] * size_mult)) annotated_image = Image.new("RGB", tree_image_size, "WHITE") bar_image = bar_image.resize(size=new_bar_image_size) if bar_side == "r": annotated_image.paste(view_image, (0, 0), view_image) annotated_image.paste(bar_image, (view_image.size[0] - bar_image.size[0], 0), bar_image) else: annotated_image.paste(view_image, (0, 0), view_image) annotated_image.paste(bar_image, (0, 0), bar_image) if show: plt.imshow(np.asarray(annotated_image)) plt.axis("off") plt.show() else: annotated_image = view_image return annotated_image, name def _export_images(self, evaluations: pd.DataFrame, output_path: Optional[str], do_text: bool, bar_side: str, transparent: bool, show: bool): """ Export images with score bars if requested. """ if output_path is None: return output_path = pathlib.Path(output_path) output_path.mkdir(parents=True, exist_ok=True) annotations = { } for idx, evaluation in evaluations.iterrows(): if evaluation.model_name.lower().startswith("image"): model_type = "image" elif evaluation.model_name.lower().startswith("feature"): model_type = "feature" else: continue new_data = { } new_data[f"score_{model_type}"] = evaluation.score_p if evaluation.true_gt: new_data["score_gt"] = evaluation.score_gt new_data["views"] = evaluation.view_files update_dict_recursively( annotations, { ( evaluation.tree_id, evaluation.view_id ): new_data }, create_keys=True ) for ( tree_id, view_id ), annotation in annotations.items(): if len(annotation["views"]) == 0: continue annotated_image, name = self._prepare_annotated_image( tree_id=tree_id, view_id=view_id, annotation=annotation, do_text=do_text, bar_side=bar_side, transparent=transparent, show=show, ) if annotated_image is None: continue annotated_path = output_path / name annotated_image.save(annotated_path, "PNG") def _evaluate_scores(self, predictions: Dict[str, Tuple[BaseModel, List[Prediction]]]) -> pd.DataFrame: """ Perform evaluation of score precision on given predictions. """ evaluations = [ ] for model_idx, (model_name, (model, model_predictions)) in enumerate(predictions.items()): self.__l.info(f"Evaluating mode \"{model_name}\" ({model_idx + 1} / {len(predictions)}") for prediction_idx, prediction in enumerate(model_predictions): self.__l.info(f"\tEvaluation {prediction_idx + 1}/{len(model_predictions)}") prediction_evaluations = self._evaluate_prediction_score(prediction=prediction) prediction_evaluations = [ update_dict_recursively(evaluation, { "model_idx": model_idx, "model_name": model_name, "eval_idx": idx, }, create_keys=True) for idx, evaluation in enumerate(prediction_evaluations) ] evaluations += prediction_evaluations self.__l.info(f"\t\tEvaluation {prediction_idx + 1}/{len(model_predictions)} Completed!") evaluations =
pd.DataFrame(data=evaluations)
pandas.DataFrame
import os from pathlib import Path import flywheel import numpy as np import pandas as pd import pytest import sys sys.path.append(str(Path(__file__).parents[2].resolve())) from tests.BIDS_popup_curation.acquisitions import acquistions_object from tests.BIDS_popup_curation.sessions import session_object from utils.bids_pre_curate import (data2csv, handle_acquisitions, handle_sessions, handle_subjects, keep_specified_keys) from utils.deep_dict import nested_get test_data = [ { 'code': 'sub-13 test', 'firstname': None, '_id': '5db0845e69d4f3002d16ee05', 'label': 'sub-13 test', 'lastname': None, 'parents': { 'group': 'scien', 'project': '5db0759469d4f3001f16e9c1', 'session': { 'session_no': 1, 'session_info': None }, 'subject': None}, 'permissions': { 'perm-01': 'nate-has-access' }, }, { 'code': 'sub-14', 'firstname': None, '_id': '5db0845e69d4f3002d16ee05', 'label': 'sub-14', 'lastname': 'hello', 'parents': { 'group': 'Nate', 'project': '5db0759469d4f3001f16e9c1', 'session': { 'session_no': None, 'session_info': None }, 'subject': None }, 'permissions': {} } ] def test_data2csv_rename(): proj_label = 'test_proj' keep_keys = ['label'] column_renames = ['existing_subject_label'] user_columns = ['new_subject_label'] remap = [0, 1] allows = ['.-_', '._-', '._ -', '', '.', '-', '_'] expected = [['sub-13test', 'sub-14'], ['sub-13 test', 'sub-14'], ['sub-13 test', 'sub-14'], ['sub13test', 'sub14'], ['sub-13test', 'sub-14'], ['sub13test', 'sub14']] def test_invalid_regex(): with pytest.raises(SystemExit): path, df = data2csv(test_data, proj_label, keep_keys, 'sub', column_renames, user_columns, old_new_index=remap, no_print=True, allows=allows[0]) def test_valid_regex(): for allow, exp in zip(allows[1:], expected): path, df = data2csv(test_data, proj_label, keep_keys, 'sub', column_renames, user_columns, old_new_index=remap, no_print=True, allows=allow) assert df.columns == ['existing_subject_label', 'new_subject_label'] assert df.iloc[0,1] == expected[0] assert df.iloc[1,1] == expected[1] def test_data2csv_dummy_data(): proj_label = 'test_proj' keep_keys = [['label'], ['label', ['parents', 'group']], ['label', ['parents', 'subject'], 'label']] column_renames = [['existing_acquisition_label'], ['existing_session_label', 'subject_group'], ['existing_session_label', 'subject_label']] remap = [[0, 1], [0, 2], [0, 2]] prefixes = ['acq', 'sub', 'sess'] user_columns = [['new_session_label'], ['new_session_label'], ['new_session_label', 'test2']] for keep_key, column_rename, prefix, user_column, remap in zip(keep_keys, column_renames, prefixes, user_columns, remap): path, df = data2csv(test_data, proj_label, keep_key, prefix, '[^A-Za-z0-9]', column_rename, user_column, old_new_index=remap, no_print=True) assert (df.columns == [*column_rename, *user_column]).all() assert df['new_session_label'][0] == 'sub13test' assert df['new_session_label'][1] == 'sub14' def test_data2csv_acq_duplicate(group='scien', project='Nate-BIDS-pre-curate'): fw = flywheel.Client() proj = fw.lookup(f'{group}/{project}') acqs = [acq.to_dict() for acq in fw.get_project_acquisitions(proj.id)] path, df = data2csv(acqs, project, keep_keys=['label'], prefix='acquisition_labels', regex='[^A-Za-z0-9]', column_rename=['existing_acquisition_label'], user_columns=['new_acquisition_label', 'modality', 'task', 'run', 'ignore'], unique=['label'], no_print=True) supposedly_unique = np.sort(df['existing_acquisition_label'].values) unique = np.unique(
pd.DataFrame.from_records(acquistions_object)
pandas.DataFrame.from_records
import requests import pandas as pd import numpy as np from credential import API_KEY target_dir = '../csv_data/' movies = pd.read_csv(f'{target_dir}movies.csv') df_genres = pd.read_csv(f'{target_dir}genres.csv') df_genre_info = pd.read_csv(f'{target_dir}genre_info.csv') df_companies = pd.read_csv(f'{target_dir}companies.csv') df_company_info = pd.read_csv(f'{target_dir}company_info.csv') df_countries = pd.read_csv(f'{target_dir}countries.csv') df_country_info = pd.read_csv(f'{target_dir}country_info.csv') df_spoken_languages =
pd.read_csv(f'{target_dir}spoken_languages.csv')
pandas.read_csv
import logging import math import pandas as pd from sklearn.model_selection import train_test_split from .tokenizer import WordTokenizer from .utils import load_obj from typing import Dict, Optional from overrides import overrides from nltk.tree import Tree from allennlp.common.file_utils import cached_path from allennlp.common.checks import ConfigurationError from allennlp.data import DatasetReader, Instance, Vocabulary from allennlp.data.tokenizers import PretrainedTransformerTokenizer from allennlp.data.token_indexers import PretrainedTransformerIndexer from allennlp.data.fields import LabelField, TextField, Field logger = logging.getLogger(__name__) @DatasetReader.register("CR") class SentimentDatasetReader(DatasetReader): def __init__( self, dataset_params: Dict, **kwargs, ) -> None: super().__init__(**kwargs) self._indexers = { "tokens": PretrainedTransformerIndexer( dataset_params["transformer_model_name"] ) } self.transformer_tokenizer = PretrainedTransformerTokenizer( dataset_params["transformer_model_name"] ) self.transformer_vocab = Vocabulary.from_pretrained_transformer( dataset_params["transformer_model_name"] ) self.detokenizer = WordTokenizer() self.max_length = dataset_params["max_length"] @overrides def _read(self, file_path): corpus = pd.read_csv( file_path ) reviews, labels = list(corpus.sentence), list(corpus.label) for review, label in zip(reviews, labels): if type(review) != str: if math.isnan(review): review = "." instance = self.text_to_instance(review, str(label)) if instance is not None: yield instance else: pass @overrides def text_to_instance( self, text: str, sentiment: str = None ) -> Optional[Instance]: tokens = self.transformer_tokenizer.tokenize(text) text_field = TextField( tokens, token_indexers=self._indexers ) fields: Dict[str, Field] = { "text": text_field } if sentiment is not None: fields["label"] = LabelField(sentiment) else: pass return Instance(fields) def get_token_indexers(self): return self._token_indexers @DatasetReader.register("sst_tokens") class StanfordSentimentTreeBankDatasetReader(DatasetReader): """ Reads tokens and their sentiment labels from the Stanford Sentiment Treebank. The Stanford Sentiment Treebank comes with labels from 0 to 4. `"5-class"` uses these labels as is. `"3-class"` converts the problem into one of identifying whether a sentence is negative, positive, or neutral sentiment. In this case, 0 and 1 are grouped as label 0 (negative sentiment), 2 is converted to label 1 (neutral sentiment) and 3 and 4 are grouped as label 2 (positive sentiment). `"2-class"` turns it into a binary classification problem between positive and negative sentiment. 0 and 1 are grouped as the label 0 (negative sentiment), 2 (neutral) is discarded, and 3 and 4 are grouped as the label 1 (positive sentiment). Expected format for each input line: a linearized tree, where nodes are labeled by their sentiment. The output of `read` is a list of `Instance` s with the fields: tokens : `TextField` and label : `LabelField` Registered as a `DatasetReader` with name "sst_tokens". # Parameters token_indexers : `Dict[str, TokenIndexer]`, optional (default=`{"tokens": SingleIdTokenIndexer()}`) We use this to define the input representation for the text. See :class:`TokenIndexer`. use_subtrees : `bool`, optional, (default = `False`) Whether or not to use sentiment-tagged subtrees. granularity : `str`, optional (default = `"5-class"`) One of `"5-class"`, `"3-class"`, or `"2-class"`, indicating the number of sentiment labels to use. """ def __init__( self, sst_params: Dict, **kwargs, ) -> None: super().__init__(**kwargs) self._indexers = { "tokens": PretrainedTransformerIndexer( sst_params["transformer_model_name"] ) } self.transformer_tokenizer = PretrainedTransformerTokenizer( sst_params["transformer_model_name"] ) self.transformer_vocab = Vocabulary.from_pretrained_transformer( sst_params["transformer_model_name"] ) self._use_subtrees = sst_params["use_subtrees"] self.detokenizer = WordTokenizer() self.max_length = sst_params["max_length"] self.robust_test = False if sst_params["noise_datapath"] != "none": self.noise_data = load_obj(sst_params["noise_datapath"]) else: self.noise_data = None allowed_granularities = ["5-class", "3-class", "2-class"] if sst_params["granularity"] not in allowed_granularities: raise ConfigurationError( "granularity is {}, but expected one of: {}".format( sst_params["granularity"], allowed_granularities ) ) self._granularity = sst_params["granularity"] @overrides def _read(self, file_path): sentences = [] labels = [] with open(cached_path(file_path), "r") as data_file: logger.info("Reading instances from lines in file at: %s", file_path) for idx, line in enumerate(data_file.readlines()): line = line.strip("\n") if not line: continue parsed_line = Tree.fromstring(line) if self._use_subtrees: for subtree in parsed_line.subtrees(): instance = self.text_to_instance( self.detokenizer.detokenize(subtree.leaves()), subtree.label() ) if instance is not None: yield instance else: if self.robust_test is True and self.noise_data is not None: text = self.noise_data[idx] else: text = self.detokenizer.detokenize(parsed_line.leaves()) instance = self.text_to_instance( text, parsed_line.label() ) if self._granularity == "2-class": label = int(parsed_line.label()) if label > 2: label = "1" sentences.append(text) labels.append(label) elif label < 2: label = "0" sentences.append(text) labels.append(label) else: pass else: sentences.append(text) labels.append(parsed_line.label()) if instance is not None: yield instance input_df = pd.DataFrame({"sentence": sentences, "label": labels}, dtype=object) input_df.to_csv(file_path+".csv", index=False) @overrides def text_to_instance( self, text: str, sentiment: str = None ) -> Optional[Instance]: tokens = self.transformer_tokenizer.tokenize(text) text_field = TextField( tokens[:self.max_length], token_indexers=self._indexers ) fields: Dict[str, Field] = { "text": text_field } if sentiment is not None: if self._granularity == "3-class": if int(sentiment) < 2: sentiment = "0" elif int(sentiment) == 2: sentiment = "1" else: sentiment = "2" elif self._granularity == "2-class": if int(sentiment) < 2: sentiment = "0" elif int(sentiment) == 2: return None else: sentiment = "1" fields["label"] = LabelField(sentiment) else: pass return Instance(fields) def get_token_indexers(self): return self._token_indexers def get_sst_ds( sst_params: Dict, train_data_path="data/sst/train.txt", valid_data_path="data/sst/dev.txt", test_data_path="data/sst/test.txt", ): sst_dataset_reader = StanfordSentimentTreeBankDatasetReader( sst_params ) train_ds = sst_dataset_reader.read(train_data_path) if sst_params["proportion"] != 1: import random random.seed(2003) train_ds.instances = random.sample( train_ds.instances, int(len(train_ds.instances) * sst_params["proportion"]) ) else: pass valid_ds = sst_dataset_reader.read(valid_data_path) sst_dataset_reader.robust_test = True test_ds = sst_dataset_reader.read(test_data_path) return train_ds, valid_ds, test_ds, sst_dataset_reader def split_dataset( all_data_path: str ): corpus =
pd.read_pickle(all_data_path)
pandas.read_pickle
""" This module contains a collection of functions which make plots (saved as png files) using matplotlib, generated from some model fits and cross-validation evaluation within a MAST-ML run. This module also contains a method to create python notebooks containing plotted data and the relevant source code from this module, to enable the user to make their own modifications to the created plots in a straightforward way (useful for tweaking plots for a presentation or publication). """ import math import statistics import os import copy import pandas as pd import itertools import warnings import logging from collections import Iterable from os.path import join from collections import OrderedDict from math import log, floor, ceil from sklearn.linear_model import LinearRegression from sklearn.metrics import r2_score from sklearn.ensemble._forest import _generate_sample_indices, _get_n_samples_bootstrap from mpl_toolkits.axes_grid1 import make_axes_locatable # Ignore the harmless warning about the gelsd driver on mac. warnings.filterwarnings(action="ignore", module="scipy", message="^internal gelsd") # Ignore matplotlib deprecation warning (set as all warnings for now) warnings.filterwarnings(action="ignore") import numpy as np from sklearn.metrics import confusion_matrix, roc_curve, auc, precision_recall_curve import matplotlib from matplotlib import pyplot as plt from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas from matplotlib.figure import Figure, figaspect from matplotlib.animation import FuncAnimation from matplotlib.font_manager import FontProperties from scipy.stats import gaussian_kde, norm from mpl_toolkits.axes_grid1.inset_locator import mark_inset from mpl_toolkits.axes_grid1.inset_locator import zoomed_inset_axes # Needed imports for ipynb_maker #from mastml.utils import nice_range #from mastml.metrics import nice_names import inspect import textwrap from pandas import DataFrame, Series import nbformat from functools import wraps import forestci as fci from forestci.calibration import calibrateEB import copy matplotlib.rc('font', size=18, family='sans-serif') # set all font to bigger matplotlib.rc('figure', autolayout=True) # turn on autolayout # adding dpi as a constant global so it can be changed later DPI = 250 #logger = logging.getLogger() # only used inside ipynb_maker I guess # HEADERENDER don't delete this line, it's used by ipynb maker logger = logging.getLogger('mastml') # the real logger def ipynb_maker(plot_func): """ This method creates Jupyter Notebooks so user can modify and regenerate the plots produced by MAST-ML. Args: plot_func: (plot_helper method), a plotting method contained in plot_helper.py which contains the @ipynb_maker decorator Returns: (plot_helper method), the same plot_func as used as input, but after having written the Jupyter notebook with source code to create plot """ from mastml import plot_helper # Strange self-import but it works, as had cyclic import issues with ipynb_maker as its own module @wraps(plot_func) def wrapper(*args, **kwargs): # convert everything to kwargs for easier display # from geniuses at https://stackoverflow.com/a/831164 #kwargs.update(dict(zip(plot_func.func_code.co_varnames, args))) sig = inspect.signature(plot_func) binding = sig.bind(*args, **kwargs) all_args = binding.arguments # if this is an outdir style function, fill in savepath and delete outdir if 'savepath' in all_args: ipynb_savepath = all_args['savepath'] knows_savepath = True basename = os.path.basename(ipynb_savepath) # fix absolute path problem elif 'outdir' in all_args: knows_savepath = False basename = plot_func.__name__ ipynb_savepath = os.path.join(all_args['outdir'], basename) else: raise Exception('you must have an "outdir" or "savepath" argument to use ipynb_maker') readme = textwrap.dedent(f"""\ This notebook was automatically generated from your MAST-ML run so you can recreate the plots. Some things are a bit different from the usual way of creating plots - we are using the [object oriented interface](https://matplotlib.org/tutorials/introductory/lifecycle.html) instead of pyplot to create the `fig` and `ax` instances. """) # get source of the top of plot_helper.py header = "" with open(plot_helper.__file__) as f: for line in f.readlines(): if 'HEADERENDER' in line: break header += line core_funcs = [plot_helper.stat_to_string, plot_helper.plot_stats, plot_helper.make_fig_ax, plot_helper.get_histogram_bins, plot_helper.nice_names, plot_helper.nice_range, plot_helper.nice_mean, plot_helper.nice_std, plot_helper.rounder, plot_helper._set_tick_labels, plot_helper._set_tick_labels_different, plot_helper._nice_range_helper, plot_helper._nearest_pow_ten, plot_helper._three_sigfigs, plot_helper._n_sigfigs, plot_helper._int_if_int, plot_helper._round_up, plot_helper.prediction_intervals] func_strings = '\n\n'.join(inspect.getsource(func) for func in core_funcs) plot_func_string = inspect.getsource(plot_func) # remove first line that has this decorator on it (!!!) plot_func_string = '\n'.join(plot_func_string.split('\n')[1:]) # put the arguments and their values in the code arg_assignments = [] arg_names = [] for key, var in all_args.items(): if isinstance(var, DataFrame): # this is amazing arg_assignments.append(f"{key} = pd.read_csv(StringIO('''\n{var.to_csv(index=False)}'''))") elif isinstance(var, Series): arg_assignments.append(f"{key} = pd.Series(pd.read_csv(StringIO('''\n{var.to_csv(index=False)}''')).iloc[:,0])") else: arg_assignments.append(f'{key} = {repr(var)}') arg_names.append(key) args_block = ("from numpy import array\n" + "from collections import OrderedDict\n" + "from io import StringIO\n" + "from sklearn.gaussian_process import GaussianProcessRegressor # Need for error plots\n" + "from sklearn.gaussian_process.kernels import * # Need for error plots\n" + "from sklearn.ensemble import RandomForestRegressor # Need for error plots\n" + '\n'.join(arg_assignments)) arg_names = ', '.join(arg_names) if knows_savepath: if '.png' not in basename: basename += '.png' main = textwrap.dedent(f"""\ import pandas as pd from IPython.display import Image, display {plot_func.__name__}({arg_names}) display(Image(filename='{basename}')) """) else: main = textwrap.dedent(f"""\ import pandas as pd from IPython.display import Image, display plot_paths = plot_predicted_vs_true(train_quad, test_quad, outdir, label) for plot_path in plot_paths: display(Image(filename=plot_path)) """) nb = nbformat.v4.new_notebook() readme_cell = nbformat.v4.new_markdown_cell(readme) text_cells = [header, func_strings, plot_func_string, args_block, main] cells = [readme_cell] + [nbformat.v4.new_code_cell(cell_text) for cell_text in text_cells] nb['cells'] = cells nbformat.write(nb, ipynb_savepath + '.ipynb') return plot_func(*args, **kwargs) return wrapper def make_train_test_plots(run, path, is_classification, label, model, train_X, test_X, groups=None): """ General plotting method used to execute sequence of specific plots of train-test data analysis Args: run: (dict), a particular split_result from masml_driver path: (str), path to save the generated plots and analysis of split_result designated in 'run' is_classification: (bool), whether or not the analysis is a classification task label: (str), name of the y data variable being fit model: (scikit-learn model object), a scikit-learn model/estimator train_X: (numpy array), array of X features used in training test_X: (numpy array), array of X features used in testing groups: (numpy array), array of group names Returns: None """ y_train_true, y_train_pred, y_test_true = \ run['y_train_true'], run['y_train_pred'], run['y_test_true'] y_test_pred, train_metrics, test_metrics = \ run['y_test_pred'], run['train_metrics'], run['test_metrics'] train_groups, test_groups = run['train_groups'], run['test_groups'] if is_classification: # Need these class prediction probabilities for ROC curve analysis y_train_pred_proba = run['y_train_pred_proba'] y_test_pred_proba = run['y_test_pred_proba'] title = 'train_confusion_matrix' plot_confusion_matrix(y_train_true, y_train_pred, join(path, title+'.png'), train_metrics, title=title) title = 'test_confusion_matrix' plot_confusion_matrix(y_test_true, y_test_pred, join(path, title+'.png'), test_metrics, title=title) title = 'train_roc_curve' plot_roc_curve(y_train_true, y_train_pred_proba, join(path, title+'png')) title = 'test_roc_curve' plot_roc_curve(y_test_true, y_test_pred_proba, join(path, title+'png')) title = 'train_precision_recall_curve' plot_precision_recall_curve(y_train_true, y_train_pred_proba, join(path, title+'png')) title = 'test_precision_recall_curve' plot_precision_recall_curve(y_test_true, y_test_pred_proba, join(path, title + 'png')) else: # is_regression plot_predicted_vs_true((y_train_true, y_train_pred, train_metrics, train_groups), (y_test_true, y_test_pred, test_metrics, test_groups), path, label=label) title = 'train_residuals_histogram' plot_residuals_histogram(y_train_true, y_train_pred, join(path, title+'.png'), train_metrics, title=title, label=label) title = 'test_residuals_histogram' plot_residuals_histogram(y_test_true, y_test_pred, join(path, title+'.png'), test_metrics, title=title, label=label) def make_error_plots(run, path, is_classification, label, model, train_X, test_X, rf_error_method, rf_error_percentile, is_validation, validation_column_name, validation_X, groups=None): y_train_true, y_train_pred, y_test_true = \ run['y_train_true'], run['y_train_pred'], run['y_test_true'] y_test_pred, train_metrics, test_metrics = \ run['y_test_pred'], run['train_metrics'], run['test_metrics'] train_groups, test_groups = run['train_groups'], run['test_groups'] if is_validation: y_validation_pred, y_validation_true, prediction_metrics = \ run['y_validation_pred'+'_'+str(validation_column_name)], \ run['y_validation_true'+'_'+str(validation_column_name)], \ run['prediction_metrics'] if is_classification: logger.debug('There is no error distribution plotting for classification problems, just passing through...') else: # is_regression #title = 'train_normalized_error' #plot_normalized_error(y_train_true, y_train_pred, join(path, title+'.png'), model, error_method, percentile, # X=train_X, Xtrain=train_X, Xtest=test_X) title = 'test_normalized_error' plot_normalized_error(y_test_true, y_test_pred, join(path, title+'.png'), model, rf_error_method, rf_error_percentile, X=test_X, Xtrain=train_X, Xtest=test_X) #title = 'train_cumulative_normalized_error' #plot_cumulative_normalized_error(y_train_true, y_train_pred, join(path, title+'.png'), model, error_method, # percentile, X=train_X, Xtrain=train_X, Xtest=test_X) title = 'test_cumulative_normalized_error' plot_cumulative_normalized_error(y_test_true, y_test_pred, join(path, title+'.png'), model, rf_error_method, rf_error_percentile, X=test_X, Xtrain=train_X, Xtest=test_X) # HERE, add your RMS residual vs. error plot function if model.__class__.__name__ in ['RandomForestRegressor', 'ExtraTreesRegressor', 'GaussianProcessRegressor', 'GradientBoostingRegressor', 'EnsembleRegressor']: y_all_data = np.concatenate([y_test_true, y_train_true]) plot_real_vs_predicted_error(y_all_data, path, model, data_test_type='test') if is_validation: title = 'validation_cumulative_normalized_error' plot_cumulative_normalized_error(y_validation_true, y_validation_pred, join(path, title+'.png'), model, rf_error_method, rf_error_percentile, X=validation_X, Xtrain=train_X, Xtest=test_X) title = 'validation_normalized_error' plot_normalized_error(y_validation_true, y_validation_pred, join(path, title + '.png'), model, rf_error_method, rf_error_percentile, X=validation_X, Xtrain=train_X, Xtest=test_X) if model.__class__.__name__ in ['RandomForestRegressor', 'ExtraTreesRegressor', 'GaussianProcessRegressor', 'GradientBoostingRegressor', 'EnsembleRegressor']: y_all_data = np.concatenate([y_test_true, y_train_true]) plot_real_vs_predicted_error(y_all_data, path, model, data_test_type='validation') @ipynb_maker def plot_confusion_matrix(y_true, y_pred, savepath, stats, normalize=False, title='Confusion matrix', cmap=plt.cm.Blues): """ Method used to generate a confusion matrix for a classification run. Additional information can be found at: http://scikit-learn.org/stable/auto_examples/model_selection/plot_confusion_matrix.html Args: y_true: (numpy array), array containing the true y data values y_pred: (numpy array), array containing the predicted y data values savepath: (str), path to save the plotted confusion matrix stats: (dict), dict of training or testing statistics for a particular run normalize: (bool), whether or not to normalize data output as truncated float vs. double title: (str), title of the confusion matrix plot cmap: (matplotlib colormap), the color map to use for confusion matrix plotting Returns: None """ # calculate confusion matrix and lables in correct order cm = confusion_matrix(y_true, y_pred) #classes = sorted(list(set(y_true).intersection(set(y_pred)))) classes = sorted(list(set(y_true).union(set(y_pred)))) x_align = 0.64 fig, ax = make_fig_ax(x_align=x_align) #ax.set_title(title) # create the colorbar, not really needed but everyones got 'em mappable = ax.imshow(cm, interpolation='nearest', cmap=cmap) #fig.colorbar(mappable) # set x and y ticks to labels tick_marks = range(len(classes)) ax.set_xticks(tick_marks) ax.set_xticklabels(classes, rotation='horizontal', fontsize=18) ax.set_yticks(tick_marks) ax.set_yticklabels(classes, rotation='horizontal', fontsize=18) # draw number in the boxes fmt = '.2f' if normalize else 'd' thresh = cm.max() / 2. for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): ax.text(j, i, format(cm[i, j], fmt), horizontalalignment="center", color="white" if cm[i, j] > thresh else "black") # plots the stats plot_stats(fig, stats, x_align=0.60, y_align=0.90) ax.set_ylabel('True label') ax.set_xlabel('Predicted label') fig.savefig(savepath, dpi=DPI, bbox_inches='tight') @ipynb_maker def plot_roc_curve(y_true, y_pred, savepath): """ Method to calculate and plot the receiver-operator characteristic curve for classification model results Args: y_true: (numpy array), array of true y data values y_pred: (numpy array), array of predicted y data values savepath: (str), path to save the plotted ROC curve Returns: None """ #TODO: have work when probability=False in model params. Suggest user set probability=True!! #classes = sorted(list(set(y_true).union(set(y_pred)))) #n_classes = y_pred.shape[1] classes = list(np.unique(y_true)) fpr = dict() tpr = dict() roc_auc = dict() for i in range(len(classes)): fpr[i], tpr[i], _ = roc_curve(y_true, y_pred[:, i]) roc_auc[i] = auc(fpr[i], tpr[i]) x_align = 0.95 fig, ax = make_fig_ax(aspect_ratio=0.66, x_align=x_align, left=0.15) colors = ['blue', 'red'] #for i in range(len(classes)): # ax.plot(fpr[i], tpr[i], color=colors[i], lw=2, label='ROC curve class '+str(i)+' (area = %0.2f)' % roc_auc[i]) ax.plot(fpr[1], tpr[1], color=colors[0], lw=2, label='ROC curve' + ' (area = %0.2f)' % roc_auc[1]) ax.plot([0, 1], [0, 1], color='black', label='Random guess', lw=2, linestyle='--') ax.set_xticks(np.linspace(0, 1, 5)) ax.set_yticks(np.linspace(0, 1, 5)) _set_tick_labels(ax, maxx=1, minn=0) ax.set_xlabel('False Positive Rate', fontsize='16') ax.set_ylabel('True Positive Rate', fontsize='16') ax.legend(loc="lower right", fontsize=12) #plot_stats(fig, stats, x_align=0.60, y_align=0.90) fig.savefig(savepath, dpi=DPI, bbox_to_inches='tight') @ipynb_maker def plot_precision_recall_curve(y_true, y_pred, savepath): """ Method to calculate and plot the precision-recall curve for classification model results Args: y_true: (numpy array), array of true y data values y_pred: (numpy array), array of predicted y data values savepath: (str), path to save the plotted precision-recall curve Returns: None """ # Note this only works with probability predictions of the classifier labels. classes = list(np.unique(y_true)) precision = dict() recall = dict() #roc_auc = dict() for i in range(len(classes)): precision[i], recall[i], _ = precision_recall_curve(y_true, y_pred[:, i]) x_align = 0.95 fig, ax = make_fig_ax(aspect_ratio=0.66, x_align=x_align, left=0.15) colors = ['blue', 'red'] #for i in range(len(classes)): # ax.plot(fpr[i], tpr[i], color=colors[i], lw=2, label='ROC curve class '+str(i)+' (area = %0.2f)' % roc_auc[i]) ax.step(recall[1], precision[1], color=colors[0], lw=2, label='Precision-recall curve') #ax.fill_between(recall[1], precision[1], alpha=0.4, color=colors[0]) ax.set_xticks(np.linspace(0, 1, 5)) ax.set_yticks(np.linspace(0, 1, 5)) _set_tick_labels(ax, maxx=1, minn=0) ax.set_xlabel('Recall', fontsize='16') ax.set_ylabel('Precision', fontsize='16') ax.legend(loc="upper right", fontsize=12) #plot_stats(fig, stats, x_align=0.60, y_align=0.90) fig.savefig(savepath, dpi=DPI, bbox_to_inches='tight') return @ipynb_maker def plot_residuals_histogram(y_true, y_pred, savepath, stats, title='residuals histogram', label='residuals'): """ Method to calculate and plot the histogram of residuals from regression model Args: y_true: (numpy array), array of true y data values y_pred: (numpy array), array of predicted y data values savepath: (str), path to save the plotted precision-recall curve stats: (dict), dict of training or testing statistics for a particular run title: (str), title of residuals histogram label: (str), label used for axis labeling Returns: None """ # make fig and ax, use x_align when placing text so things don't overlap x_align = 0.64 fig, ax = make_fig_ax(x_align=x_align) #ax.set_title(title) # do the actual plotting residuals = y_true - y_pred #Output residuals data and stats to spreadsheet path = os.path.dirname(savepath) pd.DataFrame(residuals).describe().to_csv(os.path.join(path,'residual_statistics.csv')) pd.DataFrame(residuals).to_csv(path+'/'+'residuals.csv') #Get num_bins using smarter method num_bins = get_histogram_bins(y_df=residuals) ax.hist(residuals, bins=num_bins, color='b', edgecolor='k') # normal text stuff ax.set_xlabel('Value of '+label, fontsize=16) ax.set_ylabel('Number of occurences', fontsize=16) # make y axis ints, because it is discrete #ax.yaxis.set_major_locator(MaxNLocator(integer=True)) plot_stats(fig, stats, x_align=x_align, y_align=0.90) plot_stats(fig, pd.DataFrame(residuals).describe().to_dict()[0], x_align=x_align, y_align=0.60) fig.savefig(savepath, dpi=DPI, bbox_inches='tight') @ipynb_maker def plot_target_histogram(y_df, savepath, title='target histogram', label='target values'): """ Method to plot the histogram of true y values Args: y_df: (pandas dataframe), dataframe of true y data values savepath: (str), path to save the plotted precision-recall curve title: (str), title of residuals histogram label: (str), label used for axis labeling Returns: None """ # make fig and ax, use x_align when placing text so things don't overlap x_align = 0.70 fig, ax = make_fig_ax(aspect_ratio=0.5, x_align=x_align) #ax.set_title(title) #Get num_bins using smarter method num_bins = get_histogram_bins(y_df=y_df) # do the actual plotting try: ax.hist(y_df, bins=num_bins, color='b', edgecolor='k')#, histtype='stepfilled') except: print('Could not plot target histgram') return # normal text stuff ax.set_xlabel('Value of '+label, fontsize=16) ax.set_ylabel('Number of occurences', fontsize=16) # make y axis ints, because it is discrete #ax.yaxis.set_major_locator(MaxNLocator(integer=True)) plot_stats(fig, dict(y_df.describe()), x_align=x_align, y_align=0.90, fontsize=14) # Save input data stats to csv savepath_parse = savepath.split('target_histogram.png')[0] y_df.describe().to_csv(savepath_parse+'/''input_data_statistics.csv') fig.savefig(savepath, dpi=DPI, bbox_inches='tight') @ipynb_maker def plot_predicted_vs_true(train_quad, test_quad, outdir, label): """ Method to create a parity plot (predicted vs. true values) Args: train_quad: (tuple), tuple containing 4 numpy arrays: true training y data, predicted training y data, training metric data, and groups used in training test_quad: (tuple), tuple containing 4 numpy arrays: true test y data, predicted test y data, testing metric data, and groups used in testing outdir: (str), path to save plots to label: (str), label used for axis labeling Returns: None """ filenames = list() y_train_true, y_train_pred, train_metrics, train_groups = train_quad y_test_true, y_test_pred, test_metrics, test_groups = test_quad # make diagonal line from absolute min to absolute max of any data point # using round because Ryan did - but won't that ruin small numbers??? TODO this #max1 = max(y_train_true.max(), y_train_pred.max(), # y_test_true.max(), y_test_pred.max()) max1 = max(y_train_true.max(), y_test_true.max()) #min1 = min(y_train_true.min(), y_train_pred.min(), # y_test_true.min(), y_test_pred.min()) min1 = min(y_train_true.min(), y_test_true.min()) max1 = round(float(max1), rounder(max1-min1)) min1 = round(float(min1), rounder(max1-min1)) for y_true, y_pred, stats, groups, title_addon in \ (train_quad+('train',), test_quad+('test',)): # make fig and ax, use x_align when placing text so things don't overlap x_align=0.64 fig, ax = make_fig_ax(x_align=x_align) # set tick labels # notice that we use the same max and min for all three. Don't # calculate those inside the loop, because all the should be on the same scale and axis _set_tick_labels(ax, max1, min1) # plot diagonal line ax.plot([min1, max1], [min1, max1], 'k--', lw=2, zorder=1) # do the actual plotting if groups is None: ax.scatter(y_true, y_pred, color='blue', edgecolors='black', s=100, zorder=2, alpha=0.7) else: handles = dict() unique_groups = np.unique(np.concatenate((train_groups, test_groups), axis=0)) unique_groups_train = np.unique(train_groups) unique_groups_test = np.unique(test_groups) #logger.debug(' '*12 + 'unique groups: ' +str(list(unique_groups))) colors = ['blue', 'red', 'green', 'purple', 'orange', 'black'] markers = ['o', 'v', '^', 's', 'p', 'h', 'D', '*', 'X', '<', '>', 'P'] colorcount = markercount = 0 for groupcount, group in enumerate(unique_groups): mask = groups == group #logger.debug(' '*12 + f'{group} group_percent = {np.count_nonzero(mask) / len(groups)}') handles[group] = ax.scatter(y_true[mask], y_pred[mask], label=group, color=colors[colorcount], marker=markers[markercount], s=100, alpha=0.7) colorcount += 1 if colorcount % len(colors) == 0: markercount += 1 colorcount = 0 if title_addon == 'train': to_delete = [k for k in handles.keys() if k not in unique_groups_train] for k in to_delete: del handles[k] elif title_addon == 'test': to_delete = [k for k in handles.keys() if k not in unique_groups_test] for k in to_delete: del handles[k] ax.legend(handles.values(), handles.keys(), loc='lower right', fontsize=12) # set axis labels ax.set_xlabel('True '+label, fontsize=16) ax.set_ylabel('Predicted '+label, fontsize=16) plot_stats(fig, stats, x_align=x_align, y_align=0.90) filename = 'predicted_vs_true_'+ title_addon + '.png' filenames.append(filename) fig.savefig(join(outdir, filename), dpi=DPI, bbox_inches='tight') df = pd.DataFrame({'y_pred': y_pred, 'y_true': y_true}) df.to_csv(join(outdir, 'predicted_vs_true_' + title_addon + '.csv')) return filenames def plot_scatter(x, y, savepath, groups=None, xlabel='x', label='target data'): """ Method to create a general scatter plot Args: x: (numpy array), array of x data y: (numpy array), array of y data savepath: (str), path to save plots to groups: (list), list of group labels xlabel: (str), label used for x-axis labeling label: (str), label used for y-axis labeling Returns: None """ # Set image aspect ratio: fig, ax = make_fig_ax() # set tick labels max_tick_x = max(x) min_tick_x = min(x) max_tick_y = max(y) min_tick_y = min(y) max_tick_x = round(float(max_tick_x), rounder(max_tick_x-min_tick_x)) min_tick_x = round(float(min_tick_x), rounder(max_tick_x-min_tick_x)) max_tick_y = round(float(max_tick_y), rounder(max_tick_y-min_tick_y)) min_tick_y = round(float(min_tick_y), rounder(max_tick_y-min_tick_y)) #divisor_y = get_divisor(max(y), min(y)) #max_tick_y = round_up(max(y), divisor_y) #min_tick_y = round_down(min(y), divisor_y) _set_tick_labels_different(ax, max_tick_x, min_tick_x, max_tick_y, min_tick_y) if groups is None: ax.scatter(x, y, c='b', edgecolor='darkblue', zorder=2, s=100, alpha=0.7) else: colors = ['blue', 'red', 'green', 'purple', 'orange', 'black'] markers = ['o', 'v', '^', 's', 'p', 'h', 'D', '*', 'X', '<', '>', 'P'] colorcount = markercount = 0 for groupcount, group in enumerate(np.unique(groups)): mask = groups == group ax.scatter(x[mask], y[mask], label=group, color=colors[colorcount], marker=markers[markercount], s=100, alpha=0.7) ax.legend(loc='lower right', fontsize=12) colorcount += 1 if colorcount % len(colors) == 0: markercount += 1 colorcount = 0 ax.set_xlabel(xlabel, fontsize=16) ax.set_ylabel('Value of '+label, fontsize=16) #ax.set_xticklabels(rotation=45) fig.savefig(savepath, dpi=DPI, bbox_inches='tight') def plot_keras_history(model_history, savepath, plot_type): # Set image aspect ratio: fig, ax = make_fig_ax() keys = model_history.history.keys() for k in keys: if 'loss' not in k and 'val' not in k: metric = k accuracy = model_history.history[str(metric)] loss = model_history.history['loss'] if plot_type == 'accuracy': ax.plot(accuracy, label='training '+str(metric)) ax.set_ylabel(str(metric)+' (Accuracy)', fontsize=16) try: validation_accuracy = model_history.history['val_'+str(metric)] ax.plot(validation_accuracy, label='validation '+str(metric)) except: pass if plot_type == 'loss': ax.plot(loss, label='training loss') ax.set_ylabel(str(metric)+' (Loss)', fontsize=16) try: validation_loss = model_history.history['val_loss'] ax.plot(validation_loss, label='validation loss') except: pass ax.legend(loc='upper right', fontsize=12) #_set_tick_labels_different(ax, max_tick_x, min_tick_x, max_tick_y, min_tick_y) ax.set_xlabel('Epochs', fontsize=16) fig.savefig(savepath, dpi=DPI, bbox_inches='tight') return @ipynb_maker def plot_best_worst_split(y_true, best_run, worst_run, savepath, title='Best Worst Overlay', label='target_value'): """ Method to create a parity plot (predicted vs. true values) of just the best scoring and worst scoring CV splits Args: y_true: (numpy array), array of true y data best_run: (dict), the best scoring split_result from mastml_driver worst_run: (dict), the worst scoring split_result from mastml_driver savepath: (str), path to save plots to title: (str), title of the best_worst_split plot label: (str), label used for axis labeling Returns: None """ # make fig and ax, use x_align when placing text so things don't overlap x_align = 0.64 fig, ax = make_fig_ax(x_align=x_align) maxx = max(y_true) # TODO is round the right thing here? minn = min(y_true) maxx = round(float(maxx), rounder(maxx-minn)) minn = round(float(minn), rounder(maxx-minn)) ax.plot([minn, maxx], [minn, maxx], 'k--', lw=2, zorder=1) # set tick labels _set_tick_labels(ax, maxx, minn) # do the actual plotting ax.scatter(best_run['y_test_true'], best_run['y_test_pred'], c='red', alpha=0.7, label='best test', edgecolor='darkred', zorder=2, s=100) ax.scatter(worst_run['y_test_true'], worst_run['y_test_pred'], c='blue', alpha=0.7, label='worst test', edgecolor='darkblue', zorder=3, s=60) ax.legend(loc='lower right', fontsize=12) # set axis labels ax.set_xlabel('True '+label, fontsize=16) ax.set_ylabel('Predicted '+label, fontsize=16) #font_dict = {'size' : 10, 'family' : 'sans-serif'} # Duplicate the stats dicts with an additional label best_stats = OrderedDict([('Best Run', None)]) best_stats.update(best_run['test_metrics']) worst_stats = OrderedDict([('worst Run', None)]) worst_stats.update(worst_run['test_metrics']) plot_stats(fig, best_stats, x_align=x_align, y_align=0.90) plot_stats(fig, worst_stats, x_align=x_align, y_align=0.60) fig.savefig(savepath + '.png', dpi=DPI, bbox_inches='tight') df_best = pd.DataFrame({'best run pred': best_run['y_test_pred'], 'best run true': best_run['y_test_true']}) df_worst = pd.DataFrame({'worst run pred': worst_run['y_test_pred'], 'worst run true': worst_run['y_test_true']}) df_best.to_csv(savepath + '_best.csv') df_worst.to_csv(savepath + '_worst.csv') @ipynb_maker def plot_best_worst_per_point(y_true, y_pred_list, savepath, metrics_dict, avg_stats, title='best worst per point', label='target_value'): """ Method to create a parity plot (predicted vs. true values) of the set of best and worst CV scores for each individual data point. Args: y_true: (numpy array), array of true y data y_pred_list: (list), list of numpy arrays containing predicted y data for each CV split savepath: (str), path to save plots to metrics_dict: (dict), dict of scikit-learn metric objects to calculate score of predicted vs. true values avg_stats: (dict), dict of calculated average metrics over all CV splits title: (str), title of the best_worst_per_point plot label: (str), label used for axis labeling Returns: None """ worsts = [] bests = [] new_y_true = [] for yt, y_pred in zip(y_true, y_pred_list): if len(y_pred) == 0 or np.nan in y_pred_list or yt == np.nan: continue worsts.append(max(y_pred, key=lambda yp: abs(yp-yt))) bests.append( min(y_pred, key=lambda yp: abs(yp-yt))) new_y_true.append(yt) worst_stats = OrderedDict([('Worst combined:', None)]) best_stats = OrderedDict([('Best combined:', None)]) for name, (_, func) in metrics_dict.items(): worst_stats[name] = func(new_y_true, worsts) best_stats[name] = func(new_y_true, bests) # make fig and ax, use x_align when placing text so things don't overlap x_align = 15.5/24 #mmm yum fig, ax = make_fig_ax(x_align=x_align) # gather max and min #all_vals = [val for val in worsts+bests if val is not None] max1 = max(y_true) min1 = min(y_true) # draw dashed horizontal line ax.plot([min1, max1], [min1, max1], 'k--', lw=2, zorder=1) # set axis labels ax.set_xlabel('True '+label, fontsize=16) ax.set_ylabel('Predicted '+label, fontsize=16) # set tick labels #maxx = max((max(bests), max(worsts), max(new_y_true))) #minn = min((min(bests), min(worsts), min(new_y_true))) #maxx, minn = recursive_max_and_min([bests, worsts, new_y_true]) maxx = round(float(max1), rounder(max1-min1)) minn = round(float(min1), rounder(max1-min1)) _set_tick_labels(ax, maxx, minn) ax.scatter(new_y_true, bests, c='red', alpha=0.7, label='best test', edgecolor='darkred', zorder=2, s=100) ax.scatter(new_y_true, worsts, c='blue', alpha=0.7, label='worst test', edgecolor='darkblue', zorder=3, s=60) ax.legend(loc='lower right', fontsize=12) plot_stats(fig, avg_stats, x_align=x_align, y_align=0.51, fontsize=10) plot_stats(fig, worst_stats, x_align=x_align, y_align=0.73, fontsize=10) plot_stats(fig, best_stats, x_align=x_align, y_align=0.95, fontsize=10) fig.savefig(savepath + '.png', dpi=DPI, bbox_inches='tight') df = pd.DataFrame({'y true': new_y_true, 'best per point': bests, 'worst per point': worsts}) df.to_csv(savepath + '.csv') @ipynb_maker def plot_predicted_vs_true_bars(y_true, y_pred_list, avg_stats, savepath, title='best worst with bars', label='target_value', groups=None): """ Method to calculate parity plot (predicted vs. true) of average predictions, averaged over all CV splits, with error bars on each point corresponding to the standard deviation of the predicted values over all CV splits. Args: y_true: (numpy array), array of true y data y_pred_list: (list), list of numpy arrays containing predicted y data for each CV split avg_stats: (dict), dict of calculated average metrics over all CV splits savepath: (str), path to save plots to title: (str), title of the best_worst_per_point plot label: (str), label used for axis labeling Returns: None """ means = [nice_mean(y_pred) for y_pred in y_pred_list] standard_error_means = [nice_std(y_pred)/np.sqrt(len(y_pred)) for y_pred in y_pred_list] standard_errors = [nice_std(y_pred) for y_pred in y_pred_list] # make fig and ax, use x_align when placing text so things don't overlap x_align = 0.64 fig, ax = make_fig_ax(x_align=x_align) # gather max and min max1 = max(np.nanmax(y_true), np.nanmax(means)) min1 = min(np.nanmin(y_true), np.nanmin(means)) # draw dashed horizontal line ax.plot([min1, max1], [min1, max1], 'k--', lw=2, zorder=1) # set axis labels ax.set_xlabel('True '+label, fontsize=16) ax.set_ylabel('Predicted '+label, fontsize=16) # set tick labels #maxx, minn = recursive_max_and_min([means, y_true]) maxx = max(y_true) minn = min(y_true) maxx = round(float(maxx), rounder(maxx-minn)) minn = round(float(minn), rounder(maxx-minn)) #print(maxx, minn, rounder(maxx - minn)) _set_tick_labels(ax, maxx, minn) if groups is None: ax.errorbar(y_true, means, yerr=standard_errors, fmt='o', markerfacecolor='blue', markeredgecolor='black', markersize=10, alpha=0.7, capsize=3) else: colors = ['blue', 'red', 'green', 'purple', 'orange', 'black'] markers = ['o', 'v', '^', 's', 'p', 'h', 'D', '*', 'X', '<', '>', 'P'] colorcount = markercount = 0 handles = dict() unique_groups = np.unique(groups) for groupcount, group in enumerate(unique_groups): mask = groups == group # logger.debug(' '*12 + f'{group} group_percent = {np.count_nonzero(mask) / len(groups)}') handles[group] = ax.errorbar(y_true[mask], np.array(means)[mask], yerr=np.array(standard_errors)[mask], marker=markers[markercount], markerfacecolor=colors[colorcount], markeredgecolor=colors[colorcount], ecolor=colors[colorcount], markersize=10, alpha=0.7, capsize=3, fmt='o') colorcount += 1 if colorcount % len(colors) == 0: markercount += 1 colorcount = 0 ax.legend(handles.values(), handles.keys(), loc='lower right', fontsize=10) plot_stats(fig, avg_stats, x_align=x_align, y_align=0.90) fig.savefig(savepath + '.png', dpi=DPI, bbox_inches='tight') df = pd.DataFrame({'y true': y_true, 'average predicted values': means, 'error bar values': standard_errors}) df.to_csv(savepath + '.csv') @ipynb_maker def plot_metric_vs_group(metric, groups, stats, avg_stats, savepath): """ Method to plot the value of a particular calculated metric (e.g. RMSE, R^2, etc) for each data group Args: metric: (str), name of a calculation metric groups: (numpy array), array of group names stats: (dict), dict of training or testing statistics for a particular run avg_stats: (dict), dict of calculated average metrics over all CV splits savepath: (str), path to save plots to Returns: None """ # make fig and ax, use x_align when placing text so things don't overlap x_align = 0.64 fig, ax = make_fig_ax(x_align=x_align) # do the actual plotting ax.scatter(groups, stats, c='blue', alpha=0.7, edgecolor='darkblue', zorder=2, s=100) # set axis labels ax.set_xlabel('Group', fontsize=16) ax.set_ylabel(metric, fontsize=16) ax.set_xticklabels(labels=groups, fontsize=14) plot_stats(fig, avg_stats, x_align=x_align, y_align=0.90) # Save data stats to csv savepath_parse = savepath.split(str(metric)+'_vs_group.png')[0] pd.DataFrame(groups, stats).to_csv(os.path.join(savepath_parse, str(metric)+'_vs_group.csv')) fig.savefig(savepath, dpi=DPI, bbox_inches='tight') return @ipynb_maker def plot_metric_vs_group_size(metric, groups, stats, avg_stats, savepath): """ Method to plot the value of a particular calculated metric (e.g. RMSE, R^2, etc) as a function of the size of each group. Args: metric: (str), name of a calculation metric groups: (numpy array), array of group names stats: (dict), dict of training or testing statistics for a particular run avg_stats: (dict), dict of calculated average metrics over all CV splits savepath: (str), path to save plots to Returns: None """ # make fig and ax, use x_align when placing text so things don't overlap x_align = 0.64 fig, ax = make_fig_ax(x_align=x_align) # Get unique groups from full group array unique_groups = np.unique(groups) # Get the size of each group group_lengths = list() for group in unique_groups: group_lengths.append(len(np.concatenate(np.where(groups==group)).tolist())) # do the actual plotting ax.scatter(group_lengths, stats, c='blue', alpha=0.7, edgecolor='darkblue', zorder=2, s=100) # set axis labels ax.set_xlabel('Group size', fontsize=16) ax.set_ylabel(metric, fontsize=16) #ax.set_xticklabels(labels=group_lengths, fontsize=14) plot_stats(fig, avg_stats, x_align=x_align, y_align=0.90) # Save data stats to csv savepath_parse = savepath.split(str(metric)+'_vs_group_size.png')[0] pd.DataFrame(group_lengths, stats).to_csv(os.path.join(savepath_parse, str(metric)+'_vs_group_size.csv')) fig.savefig(savepath, dpi=DPI, bbox_inches='tight') return # Credit to: http://contrib.scikit-learn.org/forest-confidence-interval/_modules/forestci/forestci.html def calc_inbag_modified(n_samples, forest, is_ensemble): """ Derive samples used to create trees in scikit-learn RandomForest objects. Recovers the samples in each tree from the random state of that tree using :func:`forest._generate_sample_indices`. Parameters ---------- n_samples : int The number of samples used to fit the scikit-learn RandomForest object. forest : RandomForest Regressor or Classifier object that is already fit by scikit-learn. Returns ------- Array that records how many times a data point was placed in a tree. Columns are individual trees. Rows are the number of times a sample was used in a tree. """ if not forest.bootstrap: e_s = "Cannot calculate the inbag from a forest that has " e_s = " bootstrap=False" raise ValueError(e_s) n_trees = forest.n_estimators inbag = np.zeros((n_samples, n_trees)) sample_idx = [] n_samples_bootstrap = _get_n_samples_bootstrap( n_samples, n_samples ) for t_idx in range(n_trees): if not is_ensemble: sample_idx.append( _generate_sample_indices(forest.estimators_[t_idx].random_state, n_samples, n_samples_bootstrap)) inbag[:, t_idx] = np.bincount(sample_idx[-1], minlength=n_samples) else: sample_idx = forest.bootstrapped_idxs[t_idx] inbag[:, t_idx] = np.bincount(sample_idx, minlength=n_samples) return inbag # Credit to: http://contrib.scikit-learn.org/forest-confidence-interval/_modules/forestci/forestci.html def random_forest_error_modified(forest, is_ensemble, X_train, X_test, basic_IJ=False,inbag=None, calibrate=True, memory_constrained=False, memory_limit=None): """ Calculate error bars from scikit-learn RandomForest estimators. RandomForest is a regressor or classifier object this variance can be used to plot error bars for RandomForest objects Parameters ---------- forest : RandomForest Regressor or Classifier object. X_train : ndarray An array with shape (n_train_sample, n_features). The design matrix for training data. X_test : ndarray An array with shape (n_test_sample, n_features). The design matrix for testing data basic_IJ : boolean, optional Return the value of basic infinitesimal jackknife or Monte Carlo corrected infinitesimal jackknife. inbag : ndarray, optional The inbag matrix that fit the data. If set to `None` (default) it will be inferred from the forest. However, this only works for trees for which bootstrapping was set to `True`. That is, if sampling was done with replacement. Otherwise, users need to provide their own inbag matrix. calibrate: boolean, optional Whether to apply calibration to mitigate Monte Carlo noise. Some variance estimates may be negative due to Monte Carlo effects if the number of trees in the forest is too small. To use calibration, Default: True memory_constrained: boolean, optional Whether or not there is a restriction on memory. If False, it is assumed that a ndarry of shape (n_train_sample,n_test_sample) fits in main memory. Setting to True can actually provide a speed up if memory_limit is tuned to the optimal range. memory_limit: int, optional. An upper bound for how much memory the itermediate matrices will take up in Megabytes. This must be provided if memory_constrained=True. Returns ------- An array with the unbiased sampling variance (V_IJ_unbiased) for a RandomForest object. See Also ---------- :func:`calc_inbag` Notes ----- The calculation of error is based on the infinitesimal jackknife variance, as described in [Wager2014]_ and is a Python implementation of the R code provided at: https://github.com/swager/randomForestCI .. [Wager2014] <NAME>, <NAME>, <NAME>. "Confidence Intervals for Random Forests: The Jackknife and the Infinitesimal Jackknife", Journal of Machine Learning Research vol. 15, pp. 1625-1651, 2014. """ if inbag is None: inbag = calc_inbag_modified(X_train.shape[0], forest, is_ensemble) if not is_ensemble: pred = np.array([tree.predict(X_test) for tree in forest]).T else: pred = np.array([tree.predict(X_test) for tree in forest.model]).T pred = pred[0] pred_mean = np.mean(pred, 0) pred_centered = pred - pred_mean n_trees = forest.n_estimators V_IJ = fci._core_computation(X_train, X_test, inbag, pred_centered, n_trees, memory_constrained, memory_limit) V_IJ_unbiased = fci._bias_correction(V_IJ, inbag, pred_centered, n_trees) # Correct for cases where resampling is done without replacement: if np.max(inbag) == 1: variance_inflation = 1 / (1 - np.mean(inbag)) ** 2 V_IJ_unbiased *= variance_inflation if basic_IJ: return V_IJ if not calibrate: return V_IJ_unbiased if V_IJ_unbiased.shape[0] <= 20: print("No calibration with n_samples <= 20") return V_IJ_unbiased if calibrate: calibration_ratio = 2 n_sample = np.ceil(n_trees / calibration_ratio) new_forest = copy.deepcopy(forest) if not is_ensemble: new_forest.estimators_ =\ np.random.permutation(new_forest.estimators_)[:int(n_sample)] else: new_forest.model =\ np.random.permutation(new_forest.model)[:int(n_sample)] new_forest.n_estimators = int(n_sample) results_ss = random_forest_error_modified(new_forest, is_ensemble, X_train, X_test, calibrate=False, memory_constrained=memory_constrained, memory_limit=memory_limit) # Use this second set of variance estimates # to estimate scale of Monte Carlo noise sigma2_ss = np.mean((results_ss - V_IJ_unbiased)**2) delta = n_sample / n_trees sigma2 = (delta**2 + (1 - delta)**2) / (2 * (1 - delta)**2) * sigma2_ss # Use Monte Carlo noise scale estimate for empirical Bayes calibration V_IJ_calibrated = fci.calibration.calibrateEB(V_IJ_unbiased, sigma2) return V_IJ_calibrated def prediction_intervals(model, X, rf_error_method, rf_error_percentile, Xtrain, Xtest): """ Method to calculate prediction intervals when using Random Forest and Gaussian Process regression models. Prediction intervals for random forest adapted from https://blog.datadive.net/prediction-intervals-for-random-forests/ Args: model: (scikit-learn model/estimator object), a scikit-learn model object X: (numpy array), array of X features method: (str), type of error bar to formulate (e.g. "stdev" is standard deviation of predicted errors, "confint" is error bar as confidence interval percentile: (int), percentile for which to form error bars Returns: err_up: (list), list of upper bounds of error bars for each data point err_down: (list), list of lower bounds of error bars for each data point """ err_down = list() err_up = list() nan_indices = list() indices_TF = list() X_aslist = X.values.tolist() if model.__class__.__name__ in ['RandomForestRegressor', 'GradientBoostingRegressor', 'ExtraTreesRegressor', 'EnsembleRegressor']: if rf_error_method == 'jackknife_calibrated': if 'EnsembleRegressor' in model.__class__.__name__: rf_variances = random_forest_error_modified(model, True, X_train=Xtrain, X_test=Xtest, basic_IJ=False, calibrate=True) else: rf_variances = random_forest_error_modified(model, False, X_train=Xtrain, X_test=Xtest, basic_IJ=False, calibrate=True) rf_stdevs = np.sqrt(rf_variances) nan_indices = np.where(np.isnan(rf_stdevs)) nan_indices_sorted = np.array(sorted(nan_indices[0], reverse=True)) for i, val in enumerate(list(rf_stdevs)): if i in nan_indices_sorted: indices_TF.append(False) else: indices_TF.append(True) rf_stdevs = rf_stdevs[~np.isnan(rf_stdevs)] err_up = err_down = rf_stdevs elif rf_error_method == 'jackknife_uncalibrated': if 'EnsembleRegressor' in model.__class__.__name__: rf_variances = random_forest_error_modified(model, True, X_train=Xtrain, X_test=Xtest, basic_IJ=False, calibrate=False) else: rf_variances = random_forest_error_modified(model, False, X_train=Xtrain, X_test=Xtest, basic_IJ=False, calibrate=False) rf_stdevs = np.sqrt(rf_variances) nan_indices = np.where(np.isnan(rf_stdevs)) nan_indices_sorted = np.array(sorted(nan_indices[0], reverse=True)) for i, val in enumerate(list(rf_stdevs)): if i in nan_indices_sorted: indices_TF.append(False) else: indices_TF.append(True) rf_stdevs = rf_stdevs[~np.isnan(rf_stdevs)] err_up = err_down = rf_stdevs elif rf_error_method == 'jackknife_basic': if 'EnsembleRegressor' in model.__class__.__name__: rf_variances = random_forest_error_modified(model, True, X_train=Xtrain, X_test=Xtest, basic_IJ=True, calibrate=False) else: rf_variances = random_forest_error_modified(model, False, X_train=Xtrain, X_test=Xtest, basic_IJ=True, calibrate=False) rf_stdevs = np.sqrt(rf_variances) nan_indices = np.where(np.isnan(rf_stdevs)) nan_indices_sorted = np.array(sorted(nan_indices[0], reverse=True)) for i, val in enumerate(list(rf_stdevs)): if i in nan_indices_sorted: indices_TF.append(False) else: indices_TF.append(True) rf_stdevs = rf_stdevs[~np.isnan(rf_stdevs)] err_up = err_down = rf_stdevs else: for x in range(len(X_aslist)): preds = list() if model.__class__.__name__ == 'RandomForestRegressor': for pred in model.estimators_: preds.append(pred.predict(np.array(X_aslist[x]).reshape(1,-1))[0]) elif model.__class__.__name__ == 'GradientBoostingRegressor': for pred in model.estimators_.tolist(): preds.append(pred[0].predict(np.array(X_aslist[x]).reshape(1,-1))[0]) elif model.__class__.__name__ == 'EnsembleRegressor': for pred in model.model: preds.append(pred.predict(np.array(X_aslist[x]).reshape(1,-1))[0]) if rf_error_method == 'confint': #e_down = np.percentile(preds, (100 - int(rf_error_percentile)) / 2.) #e_up = np.percentile(preds, 100 - (100 - int(rf_error_percentile)) / 2.) e_down = np.percentile(preds, float(rf_error_percentile)) e_up = np.percentile(preds, float(rf_error_percentile)) elif rf_error_method == 'stdev': e_down = np.std(preds) e_up = np.std(preds) elif rf_error_method == 'False' or rf_error_method is False: # basically default to stdev e_down = np.std(preds) e_up = np.std(preds) else: raise ValueError('rf_error_method must be one of ["stdev", "confint", "jackknife_basic", "jackknife_calibrated", "jackknife_uncalibrated"]') #if e_up == 0.0: # e_up = 10 ** 10 #if e_down == 0.0: # e_down = 10 ** 10 err_down.append(e_down) err_up.append(e_up) nan_indices = np.where(np.isnan(err_up)) nan_indices_sorted = np.array(sorted(nan_indices[0], reverse=True)) for i, val in enumerate(list(err_up)): if i in nan_indices_sorted: indices_TF.append(False) else: indices_TF.append(True) if model.__class__.__name__=='GaussianProcessRegressor': preds = model.predict(X, return_std=True)[1] # Get the stdev model error from the predictions of GPR err_up = preds err_down = preds nan_indices = np.where(np.isnan(err_up)) nan_indices_sorted = np.array(sorted(nan_indices[0], reverse=True)) for i, val in enumerate(list(err_up)): if i in nan_indices_sorted: indices_TF.append(False) else: indices_TF.append(True) return err_down, err_up, nan_indices, np.array(indices_TF) @ipynb_maker def plot_normalized_error(y_true, y_pred, savepath, model, rf_error_method, rf_error_percentile, X=None, Xtrain=None, Xtest=None): """ Method to plot the normalized residual errors of a model prediction Args: y_true: (numpy array), array containing the true y data values y_pred: (numpy array), array containing the predicted y data values savepath: (str), path to save the plotted normalized error plot model: (scikit-learn model/estimator object), a scikit-learn model object X: (numpy array), array of X features avg_stats: (dict), dict of calculated average metrics over all CV splits Returns: None """ path = os.path.dirname(savepath) # Here: if model is random forest or Gaussian process, get real error bars. Else, just residuals model_name = model.__class__.__name__ # TODO: also add support for Gradient Boosted Regressor models_with_error_predictions = ['RandomForestRegressor', 'GaussianProcessRegressor', 'GradientBoostingRegressor', 'EnsembleRegressor'] has_model_errors = False y_pred_ = y_pred y_true_ = y_true if model_name in models_with_error_predictions: has_model_errors = True err_down, err_up, nan_indices, indices_TF = prediction_intervals(model, X, rf_error_method=rf_error_method, rf_error_percentile=rf_error_percentile, Xtrain=Xtrain, Xtest=Xtest) # Correct for nan indices being present if has_model_errors: y_pred_ = y_pred_[indices_TF] y_true_ = y_true_[indices_TF] x_align = 0.64 fig, ax = make_fig_ax(x_align=x_align) mu = 0 sigma = 1 residuals = (y_true_ - y_pred_) normalized_residuals = (y_true_-y_pred_)/np.std(y_true_-y_pred_) density_residuals = gaussian_kde(normalized_residuals) x = np.linspace(mu - 5 * sigma, mu + 5 * sigma, y_true_.shape[0]) ax.plot(x, norm.pdf(x, mu, sigma), linewidth=4, color='blue', label="Analytical Gaussian") ax.plot(x, density_residuals(x), linewidth=4, color='green', label="Model Residuals") maxx = 5 minn = -5 if has_model_errors: err_avg = [(abs(e1)+abs(e2))/2 for e1, e2 in zip(err_up, err_down)] err_avg = np.asarray(err_avg) err_avg[err_avg==0.0] = 0.0001 err_avg = err_avg.tolist() model_errors = (y_true_-y_pred_)/err_avg density_errors = gaussian_kde(model_errors) maxy = max(max(density_residuals(x)), max(norm.pdf(x, mu, sigma)), max(density_errors(x))) miny = min(min(density_residuals(x)), min(norm.pdf(x, mu, sigma)), max(density_errors(x))) ax.plot(x, density_errors(x), linewidth=4, color='purple', label="Model Errors") # Save data to csv file data_dict = {"Y True": y_true_, "Y Pred": y_pred_, "Plotted x values": x, "error_bars_up": err_up, "error_bars_down": err_down, "error_avg": err_avg, "analytical gaussian (plotted y blue values)": norm.pdf(x, mu, sigma), "model residuals": residuals, "model normalized residuals (plotted y green values)": density_residuals(x), "model errors (plotted y purple values)": density_errors(x)} pd.DataFrame(data_dict).to_csv(savepath.split('.png')[0]+'.csv') else: # Save data to csv file data_dict = {"Y True": y_true, "Y Pred": y_pred, "x values": x, "analytical gaussian": norm.pdf(x, mu, sigma), "model residuals": density_residuals(x)} pd.DataFrame(data_dict).to_csv(savepath.split('.png')[0]+'.csv') maxy = max(max(density_residuals(x)), max(norm.pdf(x, mu, sigma))) miny = min(min(density_residuals(x)), min(norm.pdf(x, mu, sigma))) ax.legend(loc=0, fontsize=12, frameon=False) ax.set_xlabel(r"$\mathrm{x}/\mathit{\sigma}$", fontsize=18) ax.set_ylabel("Probability density", fontsize=18) _set_tick_labels_different(ax, maxx, minn, maxy, miny) fig.savefig(savepath, dpi=DPI, bbox_inches='tight') return @ipynb_maker def plot_cumulative_normalized_error(y_true, y_pred, savepath, model, rf_error_method, rf_error_percentile, X=None, Xtrain=None, Xtest=None): """ Method to plot the cumulative normalized residual errors of a model prediction Args: y_true: (numpy array), array containing the true y data values y_pred: (numpy array), array containing the predicted y data values savepath: (str), path to save the plotted cumulative normalized error plot model: (scikit-learn model/estimator object), a scikit-learn model object X: (numpy array), array of X features avg_stats: (dict), dict of calculated average metrics over all CV splits Returns: None """ # Here: if model is random forest or Gaussian process, get real error bars. Else, just residuals model_name = model.__class__.__name__ models_with_error_predictions = ['RandomForestRegressor', 'GaussianProcessRegressor', 'GradientBoostingRegressor', 'EnsembleRegressor'] has_model_errors = False y_pred_ = y_pred y_true_ = y_true if model_name in models_with_error_predictions: has_model_errors = True err_down, err_up, nan_indices, indices_TF = prediction_intervals(model, X, rf_error_method=rf_error_method, rf_error_percentile=rf_error_percentile, Xtrain=Xtrain, Xtest=Xtest) # Need to remove NaN's before plotting. These will be present when doing validation runs. Note NaN's only show up in y_pred_ # Correct for nan indices being present if has_model_errors: y_pred_ = y_pred_[indices_TF] y_true_ = y_true_[indices_TF] y_true_ = y_true_[~np.isnan(y_pred_)] y_pred_ = y_pred_[~np.isnan(y_pred_)] x_align = 0.64 fig, ax = make_fig_ax(x_align=x_align) analytic_gau = np.random.normal(0, 1, 10000) analytic_gau = abs(analytic_gau) n_analytic = np.arange(1, len(analytic_gau) + 1) / np.float(len(analytic_gau)) X_analytic = np.sort(analytic_gau) residuals = y_true_-y_pred_ normalized_residuals = abs((y_true_-y_pred_)/np.std(y_true_-y_pred_)) n_residuals = np.arange(1, len(normalized_residuals) + 1) / np.float(len(normalized_residuals)) X_residuals = np.sort(normalized_residuals) #r"$\mathrm{Predicted \/ Value}, \mathit{eV}$" ax.set_xlabel(r"$\mathrm{x}/\mathit{\sigma}$", fontsize=18) ax.set_ylabel("Fraction", fontsize=18) ax.step(X_residuals, n_residuals, linewidth=3, color='green', label="Model Residuals") ax.step(X_analytic, n_analytic, linewidth=3, color='blue', label="Analytical Gaussian") ax.set_xlim([0, 5]) if has_model_errors: err_avg = [(abs(e1)+abs(e2))/2 for e1, e2 in zip(err_up, err_down)] err_avg = np.asarray(err_avg) err_avg[err_avg==0.0] = 0.0001 err_avg = err_avg.tolist() model_errors = abs((y_true_-y_pred_)/err_avg) n_errors = np.arange(1, len(model_errors) + 1) / np.float(len(model_errors)) X_errors = np.sort(model_errors) ax.step(X_errors, n_errors, linewidth=3, color='purple', label="Model Errors") # Save data to csv file data_dict = {"Y True": y_true, "Y Pred": y_pred, "Analytical Gaussian values": analytic_gau, "Analytical Gaussian (sorted, blue data)": X_analytic, "model residuals": residuals, "Model normalized residuals": normalized_residuals, "Model Residuals (sorted, green data)": X_residuals, "error_bars_up": err_up, "error_bars_down": err_down, "Model error values (r value: (ytrue-ypred)/(model error avg))": model_errors, "Model errors (sorted, purple values)": X_errors} # Save this way to avoid issue with different array sizes in data_dict df = pd.DataFrame.from_dict(data_dict, orient='index') df = df.transpose() df.to_csv(savepath.split('.png')[0]+'.csv', index=False) else: # Save data to csv file data_dict = {"Y True": y_true, "Y Pred": y_pred, "x analytical": X_analytic, "analytical gaussian": n_analytic, "x residuals": X_residuals, "model residuals": n_residuals} # Save this way to avoid issue with different array sizes in data_dict df = pd.DataFrame.from_dict(data_dict, orient='index') df = df.transpose() df.to_csv(savepath.split('.png')[0]+'.csv', index=False) ax.legend(loc=0, fontsize=14, frameon=False) xlabels = np.linspace(2, 3, 3) ylabels = np.linspace(0.9, 1, 2) axin = zoomed_inset_axes(ax, 2.5, loc=7) axin.step(X_residuals, n_residuals, linewidth=3, color='green', label="Model Residuals") axin.step(X_analytic, n_analytic, linewidth=3, color='blue', label="Analytical Gaussian") if has_model_errors: axin.step(X_errors, n_errors, linewidth=3, color='purple', label="Model Errors") axin.set_xticklabels(xlabels, fontsize=8, rotation=90) axin.set_yticklabels(ylabels, fontsize=8) axin.set_xlim([2, 3]) axin.set_ylim([0.9, 1]) maxx = 5 minn = 0 maxy = 1.1 miny = 0 _set_tick_labels_different(ax, maxx, minn, maxy, miny) mark_inset(ax, axin, loc1=1, loc2=2) fig.savefig(savepath, dpi=DPI, bbox_inches='tight') return @ipynb_maker def plot_average_cumulative_normalized_error(y_true, y_pred, savepath, has_model_errors, err_avg=None): """ Method to plot the cumulative normalized residual errors of a model prediction Args: y_true: (numpy array), array containing the true y data values y_pred: (numpy array), array containing the predicted y data values savepath: (str), path to save the plotted cumulative normalized error plot model: (scikit-learn model/estimator object), a scikit-learn model object X: (numpy array), array of X features avg_stats: (dict), dict of calculated average metrics over all CV splits Returns: None """ x_align = 0.64 fig, ax = make_fig_ax(x_align=x_align) analytic_gau = np.random.normal(0, 1, 10000) analytic_gau = abs(analytic_gau) n_analytic = np.arange(1, len(analytic_gau) + 1) / np.float(len(analytic_gau)) X_analytic = np.sort(analytic_gau) residuals = y_true-y_pred residuals = residuals[~np.isnan(residuals)] normalized_residuals = abs((y_true-y_pred)/np.std(y_true-y_pred)) n_residuals = np.arange(1, len(normalized_residuals) + 1) / np.float(len(normalized_residuals)) X_residuals = np.sort(normalized_residuals) #r"$\mathrm{Predicted \/ Value}, \mathit{eV}$" ax.set_xlabel(r"$\mathrm{x}/\mathit{\sigma}$", fontsize=18) ax.set_ylabel("Fraction", fontsize=18) ax.step(X_residuals, n_residuals, linewidth=3, color='green', label="Model Residuals") ax.step(X_analytic, n_analytic, linewidth=3, color='blue', label="Analytical Gaussian") ax.set_xlim([0, 5]) if has_model_errors: err_avg = np.asarray(err_avg) err_avg[err_avg==0.0] = 0.0001 err_avg = err_avg.tolist() model_errors = abs((y_true-y_pred)/err_avg) model_errors = model_errors[~np.isnan(model_errors)] n_errors = np.arange(1, len(model_errors) + 1) / np.float(len(model_errors)) X_errors = np.sort(model_errors) ax.step(X_errors, n_errors, linewidth=3, color='purple', label="Model Errors") # Save data to csv file data_dict = {"Y True": y_true, "Y Pred": y_pred, "Analytical Gaussian values": analytic_gau, "Analytical Gaussian (sorted, blue data)": X_analytic, "model residuals": residuals, "Model normalized residuals": normalized_residuals, "Model Residuals (sorted, green data)": X_residuals, "Model error values (r value: (ytrue-ypred)/(model error avg))": model_errors, "Model errors (sorted, purple values)": X_errors} # Save this way to avoid issue with different array sizes in data_dict df = pd.DataFrame.from_dict(data_dict, orient='index') df = df.transpose() df.to_csv(savepath.split('.png')[0]+'.csv', index=False) else: # Save data to csv file data_dict = {"Y True": y_true, "Y Pred": y_pred, "x analytical": X_analytic, "analytical gaussian": n_analytic, "x residuals": X_residuals, "model residuals": n_residuals} # Save this way to avoid issue with different array sizes in data_dict df =
pd.DataFrame.from_dict(data_dict, orient='index')
pandas.DataFrame.from_dict
import pandas as pd from sklearn.linear_model import LinearRegression from sklearn.svm import SVR from sklearn.tree import DecisionTreeRegressor from sklearn.preprocessing import PolynomialFeatures from sklearn.ensemble import AdaBoostRegressor from sklearn.metrics import mean_squared_error as mae from sklearn.model_selection import RepeatedKFold import numpy as np data =
pd.read_csv('C:\\Users\\<NAME>\\Documents\\Research Projects\\Forecast of Rainfall Quantity and its variation using Envrionmental Features\\Data\\Normalized & Combined Data\\All Districts.csv')
pandas.read_csv
import pandas as pd import numpy as np from datetime import datetime ############### # SELECT DATA # ############### print("Selecting attributes...") # GIT_COMMITS gitCommits = pd.read_csv("../../data/raw/GIT_COMMITS.csv") attributes = ['projectID', 'commitHash', 'author', 'committer', 'committerDate'] gitCommits = gitCommits[attributes] gitCommits.to_csv('../../data/interim/DataPreparation/SelectData/GIT_COMMITS_select.csv', header=True) # GIT_COMMITS_CHANGES gitCommitsChanges = pd.read_csv("../../data/raw/GIT_COMMITS_CHANGES.csv") attributes = ['projectID', 'commitHash', 'changeType', 'linesAdded', 'linesRemoved'] gitCommitsChanges = gitCommitsChanges[attributes] gitCommitsChanges.to_csv('../../data/interim/DataPreparation/SelectData/GIT_COMMITS_CHANGES_select.csv', header=True) # JIRA_ISSUES jiraIssues = pd.read_csv("../../data/raw/JIRA_ISSUES.csv") attributes = ['projectID', 'key', 'creationDate', 'resolutionDate', 'type', 'priority', 'assignee', 'reporter'] jiraIssues = jiraIssues[attributes] jiraIssues.to_csv('../../data/interim/DataPreparation/SelectData/JIRA_ISSUES_select.csv', header=True) # REFACTORING_MINER refactoringMiner = pd.read_csv("../../data/raw/REFACTORING_MINER.csv") attributes = ['projectID', 'commitHash', 'refactoringType'] refactoringMiner = refactoringMiner[attributes] refactoringMiner.to_csv('../../data/interim/DataPreparation/SelectData/REFACTORING_MINER_select.csv', header=True) # SONAR_ISSUES sonarIssues = pd.read_csv("../../data/raw/SONAR_ISSUES.csv") attributes = ['projectID', 'creationDate', 'closeDate', 'creationCommitHash', 'closeCommitHash', 'type', 'severity', 'debt', 'author'] sonarIssues = sonarIssues[attributes] sonarIssues.to_csv('../../data/interim/DataPreparation/SelectData/SONAR_ISSUES_select.csv', header=True) # SONAR_MEASURES sonarMeasures = pd.read_csv("../../data/raw/SONAR_MEASURES.csv") attributes = ['commitHash', 'projectID', 'functions', 'commentLinesDensity', 'complexity', 'functionComplexity', 'duplicatedLinesDensity', 'violations', 'blockerViolations', 'criticalViolations', 'infoViolations', 'majorViolations', 'minorViolations', 'codeSmells', 'bugs', 'vulnerabilities', 'cognitiveComplexity', 'ncloc', 'sqaleIndex', 'sqaleDebtRatio', 'reliabilityRemediationEffort', 'securityRemediationEffort'] sonarMeasures = sonarMeasures[attributes] sonarMeasures.to_csv('../../data/interim/DataPreparation/SelectData/SONAR_MEASURES_select.csv', header=True) # SZZ_FAULT_INDUCING_COMMITS szzFaultInducingCommits = pd.read_csv("../../data/raw/SZZ_FAULT_INDUCING_COMMITS.csv") attributes = ['projectID', 'faultFixingCommitHash', 'faultInducingCommitHash', 'key'] szzFaultInducingCommits = szzFaultInducingCommits[attributes] szzFaultInducingCommits.to_csv('../../data/interim/DataPreparation/SelectData/SZZ_FAULT_INDUCING_COMMITS_select.csv', header=True) print("Attributes selected.") ############## # CLEAN DATA # ############## print("Cleaning data...") def intersection(l1, l2): temp = set(l2) l3 = [value for value in l1 if value in temp] return l3 def difference(li1, li2): return (list(list(set(li1)-set(li2)) + list(set(li2)-set(li1)))) # GIT_COMMITS gitCommits = pd.read_csv("../../data/interim/DataPreparation/SelectData/GIT_COMMITS_select.csv") authorNan = list(np.where(gitCommits.author.isna()))[0] committerNan = list(np.where(gitCommits.committer.isna()))[0] inters = intersection(authorNan, committerNan) gitCommits = gitCommits.drop(inters) gitCommits.to_csv('../../data/interim/DataPreparation/CleanData/GIT_COMMITS_clean.csv', header=True) # GIT_COMMITS_CHANGES gitCommitsChanges = pd.read_csv("../../data/interim/DataPreparation/SelectData/GIT_COMMITS_CHANGES_select.csv").iloc[:,1:] gitCommitsChanges.to_csv('../../data/interim/DataPreparation/CleanData/GIT_COMMITS_CHANGES_clean.csv', header=True) # JIRA_ISSUES jiraIssues = pd.read_csv("../../data/interim/DataPreparation/SelectData/JIRA_ISSUES_select.csv").iloc[:,1:] resolutionDate_nan = list(np.where(jiraIssues.resolutionDate.isna()))[0] jiraIssues_notresolved = jiraIssues.iloc[resolutionDate_nan,:] gitCommits = pd.read_csv("../../data/interim/DataPreparation/SelectData/GIT_COMMITS_select.csv").iloc[:,[1,-1]] lastTimestamp = gitCommits.groupby(['projectID']).max() jiraIssues_notresolved = pd.merge(jiraIssues_notresolved, lastTimestamp, how='left', on='projectID') jiraIssues_notresolved = jiraIssues_notresolved.iloc[:,[0,1,2,4,5,6,7,8]].rename(columns={'committerDate': 'resolutionDate'}) jiraIssues_resolved = jiraIssues.drop(resolutionDate_nan) jiraIssues = pd.concat([jiraIssues_resolved, jiraIssues_notresolved], sort=False).sort_index().reset_index().iloc[:,1:] priority_nan = list(np.where(jiraIssues.priority.isna()))[0] jiraIssues = jiraIssues.drop(priority_nan) assignee_nan = list(np.where(jiraIssues.assignee.isna()))[0] jiraIssues.assignee = jiraIssues.assignee.fillna('not-assigned') jiraIssues.to_csv('../../data/interim/DataPreparation/CleanData/JIRA_ISSUES_clean.csv', header=True) # REFACTORING_MINER refactoringMiner = pd.read_csv("../../data/interim/DataPreparation/SelectData/REFACTORING_MINER_select.csv") commitHashNan = list(np.where(refactoringMiner.commitHash.isna()))[0] refactoringTypeNan = list(np.where(refactoringMiner.refactoringType.isna()))[0] inters = intersection(commitHashNan, refactoringTypeNan) refactoringMiner = refactoringMiner.drop(inters) refactoringMiner.to_csv('../../data/interim/DataPreparation/CleanData/REFACTORING_MINER_clean.csv', header=True) # SONAR_ISSUES sonarIssues = pd.read_csv("../../data/interim/DataPreparation/SelectData/SONAR_ISSUES_select.csv").iloc[:,1:] closeDateNan = list(np.where(sonarIssues.closeDate.isna()))[0] closeCommitHashNan = list(np.where(sonarIssues.closeCommitHash.isna()))[0] debtNan = list(np.where(sonarIssues.debt.isna()))[0] authorNan = list(np.where(sonarIssues.author.isna()))[0] inter = intersection(closeDateNan, closeCommitHashNan) diff = difference(closeCommitHashNan, closeDateNan) debtNan = list(np.where(sonarIssues.debt.isna())[0]) sonarIssues = sonarIssues.drop(debtNan).reset_index() sonarIssues = sonarIssues.fillna({'closeCommitHash': 'not-resolved'}) gitCommits = pd.read_csv("../../data/interim/DataPreparation/CleanData/GIT_COMMITS_clean.csv").iloc[:,1:] lastTimestamp = gitCommits.loc[:,['projectID', 'committerDate']].groupby(['projectID']).max() closeDateNan = list(np.where(sonarIssues.closeDate.isna()))[0] sonarIssues_notresolved = sonarIssues.iloc[closeDateNan,:] sonarIssues_notresolved = pd.merge(sonarIssues_notresolved, lastTimestamp, how='left', on='projectID') sonarIssues_notresolved = sonarIssues_notresolved.loc[:,['projectID', 'creationDate', 'creationCommitHash', 'closeCommitHash', 'type', 'severity', 'debt', 'author', 'committerDate']].rename(columns={'committerDate': 'closeDate'}) sonarIssues_resolved = sonarIssues.drop(closeDateNan) sonarIssues =
pd.concat([sonarIssues_resolved, sonarIssues_notresolved], sort=False)
pandas.concat
# --- imports from python standard library ------------------------------------- from abc import ABC, abstractmethod from typing import Any, Generator, List # --- external imports --------------------------------------------------------- import pandas as pd # --- imports own packages and modules ----------------------------------------- # ------------------------------------------------------------------------------ REQUIRED_FIELDS = [ "title", "year" ] class MetaDataLibraryBase(ABC): @abstractmethod def _get_data(self, movie_id: Any, field: str) -> Any: pass @abstractmethod def _set_data(self, movie_id: Any, field: str, value: Any) -> None: pass @abstractmethod def _append_data(self, movie_id: Any, field: str, value: Any) -> None: pass @abstractmethod def add_movie(self, movie_id: Any, title: str, year: int, **fields) -> None: pass @abstractmethod def delete_movie(self, movie_id: Any) -> None: pass @abstractmethod def iter_ids(self) -> Generator[Any, None, None]: pass @abstractmethod def nmovies(self) -> int: pass @property def fields(self) -> List[str]: return REQUIRED_FIELDS.copy() def get_data(self, movie_id: Any, field: str) -> Any: if field not in self.fields: raise ValueError(f"{self} has no field {field}") return self._get_data(movie_id, field) def set_data(self, movie_id: Any, field: str, value: Any) -> None: if field not in self.fields: raise ValueError(f"{self} has no field {field}") return self._set_data(movie_id, field, value) def append_data(self, movie_id: Any, field: str, value: Any) -> None: if field not in self.fields: raise ValueError(f"{self} has no field {field}") return self._append_data(movie_id, field, value) def title(self, movie_id: Any) -> str: return self._get_data(movie_id, "title") def year(self, movie_id: Any) -> int: return self._get_data(movie_id, "year") def to_pandas(self): data = { field: [self._get_data(mid, field) for mid in self.iter_ids()] for field in self.fields } index = pd.Index(list(self.iter_ids), name='movie_id') return
pd.DataFrame(data=data, index=index)
pandas.DataFrame
# Copyright (c) 2018-2021, NVIDIA CORPORATION. import array as arr import datetime import io import operator import random import re import string import textwrap from copy import copy import cupy import numpy as np import pandas as pd import pyarrow as pa import pytest from numba import cuda import cudf from cudf.core._compat import PANDAS_GE_110, PANDAS_GE_120 from cudf.core.column import column from cudf.tests import utils from cudf.tests.utils import ( ALL_TYPES, DATETIME_TYPES, NUMERIC_TYPES, assert_eq, assert_exceptions_equal, does_not_raise, gen_rand, ) def test_init_via_list_of_tuples(): data = [ (5, "cats", "jump", np.nan), (2, "dogs", "dig", 7.5), (3, "cows", "moo", -2.1, "occasionally"), ] pdf = pd.DataFrame(data) gdf = cudf.DataFrame(data) assert_eq(pdf, gdf) def _dataframe_na_data(): return [ pd.DataFrame( { "a": [0, 1, 2, np.nan, 4, None, 6], "b": [np.nan, None, "u", "h", "d", "a", "m"], }, index=["q", "w", "e", "r", "t", "y", "u"], ), pd.DataFrame({"a": [0, 1, 2, 3, 4], "b": ["a", "b", "u", "h", "d"]}), pd.DataFrame( { "a": [None, None, np.nan, None], "b": [np.nan, None, np.nan, None], } ), pd.DataFrame({"a": []}), pd.DataFrame({"a": [np.nan], "b": [None]}), pd.DataFrame({"a": ["a", "b", "c", None, "e"]}), pd.DataFrame({"a": ["a", "b", "c", "d", "e"]}), ] @pytest.mark.parametrize("rows", [0, 1, 2, 100]) def test_init_via_list_of_empty_tuples(rows): data = [()] * rows pdf = pd.DataFrame(data) gdf = cudf.DataFrame(data) assert_eq( pdf, gdf, check_like=True, check_column_type=False, check_index_type=False, ) @pytest.mark.parametrize( "dict_of_series", [ {"a": pd.Series([1.0, 2.0, 3.0])}, {"a": pd.Series([1.0, 2.0, 3.0], index=[4, 5, 6])}, { "a": pd.Series([1.0, 2.0, 3.0], index=[4, 5, 6]), "b": pd.Series([1.0, 2.0, 4.0], index=[1, 2, 3]), }, {"a": [1, 2, 3], "b": pd.Series([1.0, 2.0, 3.0], index=[4, 5, 6])}, { "a": pd.Series([1.0, 2.0, 3.0], index=["a", "b", "c"]), "b": pd.Series([1.0, 2.0, 4.0], index=["c", "d", "e"]), }, { "a": pd.Series( ["a", "b", "c"], index=pd.MultiIndex.from_tuples([(1, 2), (1, 3), (2, 3)]), ), "b": pd.Series( ["a", " b", "d"], index=pd.MultiIndex.from_tuples([(1, 2), (1, 3), (2, 3)]), ), }, ], ) def test_init_from_series_align(dict_of_series): pdf = pd.DataFrame(dict_of_series) gdf = cudf.DataFrame(dict_of_series) assert_eq(pdf, gdf) for key in dict_of_series: if isinstance(dict_of_series[key], pd.Series): dict_of_series[key] = cudf.Series(dict_of_series[key]) gdf = cudf.DataFrame(dict_of_series) assert_eq(pdf, gdf) @pytest.mark.parametrize( ("dict_of_series", "expectation"), [ ( { "a": pd.Series(["a", "b", "c"], index=[4, 4, 5]), "b": pd.Series(["a", "b", "c"], index=[4, 5, 6]), }, pytest.raises( ValueError, match="Cannot align indices with non-unique values" ), ), ( { "a": pd.Series(["a", "b", "c"], index=[4, 4, 5]), "b": pd.Series(["a", "b", "c"], index=[4, 4, 5]), }, does_not_raise(), ), ], ) def test_init_from_series_align_nonunique(dict_of_series, expectation): with expectation: gdf = cudf.DataFrame(dict_of_series) if expectation == does_not_raise(): pdf = pd.DataFrame(dict_of_series) assert_eq(pdf, gdf) def test_init_unaligned_with_index(): pdf = pd.DataFrame( { "a": pd.Series([1.0, 2.0, 3.0], index=[4, 5, 6]), "b": pd.Series([1.0, 2.0, 3.0], index=[1, 2, 3]), }, index=[7, 8, 9], ) gdf = cudf.DataFrame( { "a": cudf.Series([1.0, 2.0, 3.0], index=[4, 5, 6]), "b": cudf.Series([1.0, 2.0, 3.0], index=[1, 2, 3]), }, index=[7, 8, 9], ) assert_eq(pdf, gdf, check_dtype=False) def test_series_basic(): # Make series from buffer a1 = np.arange(10, dtype=np.float64) series = cudf.Series(a1) assert len(series) == 10 np.testing.assert_equal(series.to_array(), np.hstack([a1])) def test_series_from_cupy_scalars(): data = [0.1, 0.2, 0.3] data_np = np.array(data) data_cp = cupy.array(data) s_np = cudf.Series([data_np[0], data_np[2]]) s_cp = cudf.Series([data_cp[0], data_cp[2]]) assert_eq(s_np, s_cp) @pytest.mark.parametrize("a", [[1, 2, 3], [1, 10, 30]]) @pytest.mark.parametrize("b", [[4, 5, 6], [-11, -100, 30]]) def test_append_index(a, b): df = pd.DataFrame() df["a"] = a df["b"] = b gdf = cudf.DataFrame() gdf["a"] = a gdf["b"] = b # Check the default index after appending two columns(Series) expected = df.a.append(df.b) actual = gdf.a.append(gdf.b) assert len(expected) == len(actual) assert_eq(expected.index, actual.index) expected = df.a.append(df.b, ignore_index=True) actual = gdf.a.append(gdf.b, ignore_index=True) assert len(expected) == len(actual) assert_eq(expected.index, actual.index) def test_series_init_none(): # test for creating empty series # 1: without initializing sr1 = cudf.Series() got = sr1.to_string() expect = "Series([], dtype: float64)" # values should match despite whitespace difference assert got.split() == expect.split() # 2: Using `None` as an initializer sr2 = cudf.Series(None) got = sr2.to_string() expect = "Series([], dtype: float64)" # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_basic(): np.random.seed(0) df = cudf.DataFrame() # Populate with cuda memory df["keys"] = np.arange(10, dtype=np.float64) np.testing.assert_equal(df["keys"].to_array(), np.arange(10)) assert len(df) == 10 # Populate with numpy array rnd_vals = np.random.random(10) df["vals"] = rnd_vals np.testing.assert_equal(df["vals"].to_array(), rnd_vals) assert len(df) == 10 assert tuple(df.columns) == ("keys", "vals") # Make another dataframe df2 = cudf.DataFrame() df2["keys"] = np.array([123], dtype=np.float64) df2["vals"] = np.array([321], dtype=np.float64) # Concat df = cudf.concat([df, df2]) assert len(df) == 11 hkeys = np.asarray(np.arange(10, dtype=np.float64).tolist() + [123]) hvals = np.asarray(rnd_vals.tolist() + [321]) np.testing.assert_equal(df["keys"].to_array(), hkeys) np.testing.assert_equal(df["vals"].to_array(), hvals) # As matrix mat = df.as_matrix() expect = np.vstack([hkeys, hvals]).T np.testing.assert_equal(mat, expect) # test dataframe with tuple name df_tup = cudf.DataFrame() data = np.arange(10) df_tup[(1, "foobar")] = data np.testing.assert_equal(data, df_tup[(1, "foobar")].to_array()) df = cudf.DataFrame(pd.DataFrame({"a": [1, 2, 3], "c": ["a", "b", "c"]})) pdf = pd.DataFrame(pd.DataFrame({"a": [1, 2, 3], "c": ["a", "b", "c"]})) assert_eq(df, pdf) gdf = cudf.DataFrame({"id": [0, 1], "val": [None, None]}) gdf["val"] = gdf["val"].astype("int") assert gdf["val"].isnull().all() @pytest.mark.parametrize( "pdf", [ pd.DataFrame({"a": range(10), "b": range(10, 20), "c": range(1, 11)}), pd.DataFrame( {"a": range(10), "b": range(10, 20), "d": ["a", "v"] * 5} ), ], ) @pytest.mark.parametrize( "columns", [["a"], ["b"], "a", "b", ["a", "b"]], ) @pytest.mark.parametrize("inplace", [True, False]) def test_dataframe_drop_columns(pdf, columns, inplace): pdf = pdf.copy() gdf = cudf.from_pandas(pdf) expected = pdf.drop(columns=columns, inplace=inplace) actual = gdf.drop(columns=columns, inplace=inplace) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) @pytest.mark.parametrize( "pdf", [ pd.DataFrame({"a": range(10), "b": range(10, 20), "c": range(1, 11)}), pd.DataFrame( {"a": range(10), "b": range(10, 20), "d": ["a", "v"] * 5} ), ], ) @pytest.mark.parametrize( "labels", [[1], [0], 1, 5, [5, 9], pd.Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])], ) @pytest.mark.parametrize("inplace", [True, False]) def test_dataframe_drop_labels_axis_0(pdf, labels, inplace): pdf = pdf.copy() gdf = cudf.from_pandas(pdf) expected = pdf.drop(labels=labels, axis=0, inplace=inplace) actual = gdf.drop(labels=labels, axis=0, inplace=inplace) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) @pytest.mark.parametrize( "pdf", [ pd.DataFrame({"a": range(10), "b": range(10, 20), "c": range(1, 11)}), pd.DataFrame( {"a": range(10), "b": range(10, 20), "d": ["a", "v"] * 5} ), ], ) @pytest.mark.parametrize( "index", [[1], [0], 1, 5, [5, 9], pd.Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])], ) @pytest.mark.parametrize("inplace", [True, False]) def test_dataframe_drop_index(pdf, index, inplace): pdf = pdf.copy() gdf = cudf.from_pandas(pdf) expected = pdf.drop(index=index, inplace=inplace) actual = gdf.drop(index=index, inplace=inplace) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) @pytest.mark.parametrize( "pdf", [ pd.DataFrame( {"a": range(10), "b": range(10, 20), "d": ["a", "v"] * 5}, index=pd.MultiIndex( levels=[ ["lama", "cow", "falcon"], ["speed", "weight", "length"], ], codes=[ [0, 0, 0, 1, 1, 1, 2, 2, 2, 1], [0, 1, 2, 0, 1, 2, 0, 1, 2, 1], ], ), ) ], ) @pytest.mark.parametrize( "index,level", [ ("cow", 0), ("lama", 0), ("falcon", 0), ("speed", 1), ("weight", 1), ("length", 1), pytest.param( "cow", None, marks=pytest.mark.xfail( reason="https://github.com/pandas-dev/pandas/issues/36293" ), ), pytest.param( "lama", None, marks=pytest.mark.xfail( reason="https://github.com/pandas-dev/pandas/issues/36293" ), ), pytest.param( "falcon", None, marks=pytest.mark.xfail( reason="https://github.com/pandas-dev/pandas/issues/36293" ), ), ], ) @pytest.mark.parametrize("inplace", [True, False]) def test_dataframe_drop_multiindex(pdf, index, level, inplace): pdf = pdf.copy() gdf = cudf.from_pandas(pdf) expected = pdf.drop(index=index, inplace=inplace, level=level) actual = gdf.drop(index=index, inplace=inplace, level=level) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) @pytest.mark.parametrize( "pdf", [ pd.DataFrame({"a": range(10), "b": range(10, 20), "c": range(1, 11)}), pd.DataFrame( {"a": range(10), "b": range(10, 20), "d": ["a", "v"] * 5} ), ], ) @pytest.mark.parametrize( "labels", [["a"], ["b"], "a", "b", ["a", "b"]], ) @pytest.mark.parametrize("inplace", [True, False]) def test_dataframe_drop_labels_axis_1(pdf, labels, inplace): pdf = pdf.copy() gdf = cudf.from_pandas(pdf) expected = pdf.drop(labels=labels, axis=1, inplace=inplace) actual = gdf.drop(labels=labels, axis=1, inplace=inplace) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) def test_dataframe_drop_error(): df = cudf.DataFrame({"a": [1], "b": [2], "c": [3]}) pdf = df.to_pandas() assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([], {"columns": "d"}), rfunc_args_and_kwargs=([], {"columns": "d"}), expected_error_message="column 'd' does not exist", ) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([], {"columns": ["a", "d", "b"]}), rfunc_args_and_kwargs=([], {"columns": ["a", "d", "b"]}), expected_error_message="column 'd' does not exist", ) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=(["a"], {"columns": "a", "axis": 1}), rfunc_args_and_kwargs=(["a"], {"columns": "a", "axis": 1}), expected_error_message="Cannot specify both", ) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([], {"axis": 1}), rfunc_args_and_kwargs=([], {"axis": 1}), expected_error_message="Need to specify at least", ) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([[2, 0]],), rfunc_args_and_kwargs=([[2, 0]],), expected_error_message="One or more values not found in axis", ) def test_dataframe_drop_raises(): df = cudf.DataFrame( {"a": [1, 2, 3], "c": [10, 20, 30]}, index=["x", "y", "z"] ) pdf = df.to_pandas() assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=(["p"],), rfunc_args_and_kwargs=(["p"],), expected_error_message="One or more values not found in axis", ) # label dtype mismatch assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([3],), rfunc_args_and_kwargs=([3],), expected_error_message="One or more values not found in axis", ) expect = pdf.drop("p", errors="ignore") actual = df.drop("p", errors="ignore") assert_eq(actual, expect) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([], {"columns": "p"}), rfunc_args_and_kwargs=([], {"columns": "p"}), expected_error_message="column 'p' does not exist", ) expect = pdf.drop(columns="p", errors="ignore") actual = df.drop(columns="p", errors="ignore") assert_eq(actual, expect) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([], {"labels": "p", "axis": 1}), rfunc_args_and_kwargs=([], {"labels": "p", "axis": 1}), expected_error_message="column 'p' does not exist", ) expect = pdf.drop(labels="p", axis=1, errors="ignore") actual = df.drop(labels="p", axis=1, errors="ignore") assert_eq(actual, expect) def test_dataframe_column_add_drop_via_setitem(): df = cudf.DataFrame() data = np.asarray(range(10)) df["a"] = data df["b"] = data assert tuple(df.columns) == ("a", "b") del df["a"] assert tuple(df.columns) == ("b",) df["c"] = data assert tuple(df.columns) == ("b", "c") df["a"] = data assert tuple(df.columns) == ("b", "c", "a") def test_dataframe_column_set_via_attr(): data_0 = np.asarray([0, 2, 4, 5]) data_1 = np.asarray([1, 4, 2, 3]) data_2 = np.asarray([2, 0, 3, 0]) df = cudf.DataFrame({"a": data_0, "b": data_1, "c": data_2}) for i in range(10): df.c = df.a assert assert_eq(df.c, df.a, check_names=False) assert tuple(df.columns) == ("a", "b", "c") df.c = df.b assert assert_eq(df.c, df.b, check_names=False) assert tuple(df.columns) == ("a", "b", "c") def test_dataframe_column_drop_via_attr(): df = cudf.DataFrame({"a": []}) with pytest.raises(AttributeError): del df.a assert tuple(df.columns) == tuple("a") @pytest.mark.parametrize("axis", [0, "index"]) def test_dataframe_index_rename(axis): pdf = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6], "c": [7, 8, 9]}) gdf = cudf.DataFrame.from_pandas(pdf) expect = pdf.rename(mapper={1: 5, 2: 6}, axis=axis) got = gdf.rename(mapper={1: 5, 2: 6}, axis=axis) assert_eq(expect, got) expect = pdf.rename(index={1: 5, 2: 6}) got = gdf.rename(index={1: 5, 2: 6}) assert_eq(expect, got) expect = pdf.rename({1: 5, 2: 6}) got = gdf.rename({1: 5, 2: 6}) assert_eq(expect, got) # `pandas` can support indexes with mixed values. We throw a # `NotImplementedError`. with pytest.raises(NotImplementedError): gdf.rename(mapper={1: "x", 2: "y"}, axis=axis) def test_dataframe_MI_rename(): gdf = cudf.DataFrame( {"a": np.arange(10), "b": np.arange(10), "c": np.arange(10)} ) gdg = gdf.groupby(["a", "b"]).count() pdg = gdg.to_pandas() expect = pdg.rename(mapper={1: 5, 2: 6}, axis=0) got = gdg.rename(mapper={1: 5, 2: 6}, axis=0) assert_eq(expect, got) @pytest.mark.parametrize("axis", [1, "columns"]) def test_dataframe_column_rename(axis): pdf = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6], "c": [7, 8, 9]}) gdf = cudf.DataFrame.from_pandas(pdf) expect = pdf.rename(mapper=lambda name: 2 * name, axis=axis) got = gdf.rename(mapper=lambda name: 2 * name, axis=axis) assert_eq(expect, got) expect = pdf.rename(columns=lambda name: 2 * name) got = gdf.rename(columns=lambda name: 2 * name) assert_eq(expect, got) rename_mapper = {"a": "z", "b": "y", "c": "x"} expect = pdf.rename(columns=rename_mapper) got = gdf.rename(columns=rename_mapper) assert_eq(expect, got) def test_dataframe_pop(): pdf = pd.DataFrame( {"a": [1, 2, 3], "b": ["x", "y", "z"], "c": [7.0, 8.0, 9.0]} ) gdf = cudf.DataFrame.from_pandas(pdf) # Test non-existing column error with pytest.raises(KeyError) as raises: gdf.pop("fake_colname") raises.match("fake_colname") # check pop numeric column pdf_pop = pdf.pop("a") gdf_pop = gdf.pop("a") assert_eq(pdf_pop, gdf_pop) assert_eq(pdf, gdf) # check string column pdf_pop = pdf.pop("b") gdf_pop = gdf.pop("b") assert_eq(pdf_pop, gdf_pop) assert_eq(pdf, gdf) # check float column and empty dataframe pdf_pop = pdf.pop("c") gdf_pop = gdf.pop("c") assert_eq(pdf_pop, gdf_pop) assert_eq(pdf, gdf) # check empty dataframe edge case empty_pdf = pd.DataFrame(columns=["a", "b"]) empty_gdf = cudf.DataFrame(columns=["a", "b"]) pb = empty_pdf.pop("b") gb = empty_gdf.pop("b") assert len(pb) == len(gb) assert empty_pdf.empty and empty_gdf.empty @pytest.mark.parametrize("nelem", [0, 3, 100, 1000]) def test_dataframe_astype(nelem): df = cudf.DataFrame() data = np.asarray(range(nelem), dtype=np.int32) df["a"] = data assert df["a"].dtype is np.dtype(np.int32) df["b"] = df["a"].astype(np.float32) assert df["b"].dtype is np.dtype(np.float32) np.testing.assert_equal(df["a"].to_array(), df["b"].to_array()) @pytest.mark.parametrize("nelem", [0, 100]) def test_index_astype(nelem): df = cudf.DataFrame() data = np.asarray(range(nelem), dtype=np.int32) df["a"] = data assert df.index.dtype is np.dtype(np.int64) df.index = df.index.astype(np.float32) assert df.index.dtype is np.dtype(np.float32) df["a"] = df["a"].astype(np.float32) np.testing.assert_equal(df.index.to_array(), df["a"].to_array()) df["b"] = df["a"] df = df.set_index("b") df["a"] = df["a"].astype(np.int16) df.index = df.index.astype(np.int16) np.testing.assert_equal(df.index.to_array(), df["a"].to_array()) def test_dataframe_to_string(): pd.options.display.max_rows = 5 pd.options.display.max_columns = 8 # Test basic df = cudf.DataFrame( {"a": [1, 2, 3, 4, 5, 6], "b": [11, 12, 13, 14, 15, 16]} ) string = str(df) assert string.splitlines()[-1] == "[6 rows x 2 columns]" # Test skipped columns df = cudf.DataFrame( { "a": [1, 2, 3, 4, 5, 6], "b": [11, 12, 13, 14, 15, 16], "c": [11, 12, 13, 14, 15, 16], "d": [11, 12, 13, 14, 15, 16], } ) string = df.to_string() assert string.splitlines()[-1] == "[6 rows x 4 columns]" # Test masked df = cudf.DataFrame( {"a": [1, 2, 3, 4, 5, 6], "b": [11, 12, 13, 14, 15, 16]} ) data = np.arange(6) mask = np.zeros(1, dtype=cudf.utils.utils.mask_dtype) mask[0] = 0b00101101 masked = cudf.Series.from_masked_array(data, mask) assert masked.null_count == 2 df["c"] = masked # check data values = masked.copy() validids = [0, 2, 3, 5] densearray = masked.to_array() np.testing.assert_equal(data[validids], densearray) # valid position is corret for i in validids: assert data[i] == values[i] # null position is correct for i in range(len(values)): if i not in validids: assert values[i] is cudf.NA pd.options.display.max_rows = 10 got = df.to_string() expect = """ a b c 0 1 11 0 1 2 12 <NA> 2 3 13 2 3 4 14 3 4 5 15 <NA> 5 6 16 5 """ # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_to_string_wide(monkeypatch): monkeypatch.setenv("COLUMNS", "79") # Test basic df = cudf.DataFrame() for i in range(100): df["a{}".format(i)] = list(range(3)) pd.options.display.max_columns = 0 got = df.to_string() expect = """ a0 a1 a2 a3 a4 a5 a6 a7 ... a92 a93 a94 a95 a96 a97 a98 a99 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 ... 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 ... 2 2 2 2 2 2 2 2 [3 rows x 100 columns] """ # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_empty_to_string(): # Test for printing empty dataframe df = cudf.DataFrame() got = df.to_string() expect = "Empty DataFrame\nColumns: []\nIndex: []\n" # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_emptycolumns_to_string(): # Test for printing dataframe having empty columns df = cudf.DataFrame() df["a"] = [] df["b"] = [] got = df.to_string() expect = "Empty DataFrame\nColumns: [a, b]\nIndex: []\n" # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_copy(): # Test for copying the dataframe using python copy pkg df = cudf.DataFrame() df["a"] = [1, 2, 3] df2 = copy(df) df2["b"] = [4, 5, 6] got = df.to_string() expect = """ a 0 1 1 2 2 3 """ # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_copy_shallow(): # Test for copy dataframe using class method df = cudf.DataFrame() df["a"] = [1, 2, 3] df2 = df.copy() df2["b"] = [4, 2, 3] got = df.to_string() expect = """ a 0 1 1 2 2 3 """ # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_dtypes(): dtypes = pd.Series( [np.int32, np.float32, np.float64], index=["c", "a", "b"] ) df = cudf.DataFrame( {k: np.ones(10, dtype=v) for k, v in dtypes.iteritems()} ) assert df.dtypes.equals(dtypes) def test_dataframe_add_col_to_object_dataframe(): # Test for adding column to an empty object dataframe cols = ["a", "b", "c"] df = pd.DataFrame(columns=cols, dtype="str") data = {k: v for (k, v) in zip(cols, [["a"] for _ in cols])} gdf = cudf.DataFrame(data) gdf = gdf[:0] assert gdf.dtypes.equals(df.dtypes) gdf["a"] = [1] df["a"] = [10] assert gdf.dtypes.equals(df.dtypes) gdf["b"] = [1.0] df["b"] = [10.0] assert gdf.dtypes.equals(df.dtypes) def test_dataframe_dir_and_getattr(): df = cudf.DataFrame( { "a": np.ones(10), "b": np.ones(10), "not an id": np.ones(10), "oop$": np.ones(10), } ) o = dir(df) assert {"a", "b"}.issubset(o) assert "not an id" not in o assert "oop$" not in o # Getattr works assert df.a.equals(df["a"]) assert df.b.equals(df["b"]) with pytest.raises(AttributeError): df.not_a_column @pytest.mark.parametrize("order", ["C", "F"]) def test_empty_dataframe_as_gpu_matrix(order): df = cudf.DataFrame() # Check fully empty dataframe. mat = df.as_gpu_matrix(order=order).copy_to_host() assert mat.shape == (0, 0) df = cudf.DataFrame() nelem = 123 for k in "abc": df[k] = np.random.random(nelem) # Check all columns in empty dataframe. mat = df.head(0).as_gpu_matrix(order=order).copy_to_host() assert mat.shape == (0, 3) @pytest.mark.parametrize("order", ["C", "F"]) def test_dataframe_as_gpu_matrix(order): df = cudf.DataFrame() nelem = 123 for k in "abcd": df[k] = np.random.random(nelem) # Check all columns mat = df.as_gpu_matrix(order=order).copy_to_host() assert mat.shape == (nelem, 4) for i, k in enumerate(df.columns): np.testing.assert_array_equal(df[k].to_array(), mat[:, i]) # Check column subset mat = df.as_gpu_matrix(order=order, columns=["a", "c"]).copy_to_host() assert mat.shape == (nelem, 2) for i, k in enumerate("ac"): np.testing.assert_array_equal(df[k].to_array(), mat[:, i]) def test_dataframe_as_gpu_matrix_null_values(): df = cudf.DataFrame() nelem = 123 na = -10000 refvalues = {} for k in "abcd": df[k] = data = np.random.random(nelem) bitmask = utils.random_bitmask(nelem) df[k] = df[k].set_mask(bitmask) boolmask = np.asarray( utils.expand_bits_to_bytes(bitmask)[:nelem], dtype=np.bool_ ) data[~boolmask] = na refvalues[k] = data # Check null value causes error with pytest.raises(ValueError) as raises: df.as_gpu_matrix() raises.match("column 'a' has null values") for k in df.columns: df[k] = df[k].fillna(na) mat = df.as_gpu_matrix().copy_to_host() for i, k in enumerate(df.columns): np.testing.assert_array_equal(refvalues[k], mat[:, i]) def test_dataframe_append_empty(): pdf = pd.DataFrame( { "key": [1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4], "value": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], } ) gdf = cudf.DataFrame.from_pandas(pdf) gdf["newcol"] = 100 pdf["newcol"] = 100 assert len(gdf["newcol"]) == len(pdf) assert len(pdf["newcol"]) == len(pdf) assert_eq(gdf, pdf) def test_dataframe_setitem_from_masked_object(): ary = np.random.randn(100) mask = np.zeros(100, dtype=bool) mask[:20] = True np.random.shuffle(mask) ary[mask] = np.nan test1_null = cudf.Series(ary, nan_as_null=True) assert test1_null.nullable assert test1_null.null_count == 20 test1_nan = cudf.Series(ary, nan_as_null=False) assert test1_nan.null_count == 0 test2_null = cudf.DataFrame.from_pandas( pd.DataFrame({"a": ary}), nan_as_null=True ) assert test2_null["a"].nullable assert test2_null["a"].null_count == 20 test2_nan = cudf.DataFrame.from_pandas( pd.DataFrame({"a": ary}), nan_as_null=False ) assert test2_nan["a"].null_count == 0 gpu_ary = cupy.asarray(ary) test3_null = cudf.Series(gpu_ary, nan_as_null=True) assert test3_null.nullable assert test3_null.null_count == 20 test3_nan = cudf.Series(gpu_ary, nan_as_null=False) assert test3_nan.null_count == 0 test4 = cudf.DataFrame() lst = [1, 2, None, 4, 5, 6, None, 8, 9] test4["lst"] = lst assert test4["lst"].nullable assert test4["lst"].null_count == 2 def test_dataframe_append_to_empty(): pdf = pd.DataFrame() pdf["a"] = [] pdf["b"] = [1, 2, 3] gdf = cudf.DataFrame() gdf["a"] = [] gdf["b"] = [1, 2, 3] assert_eq(gdf, pdf) def test_dataframe_setitem_index_len1(): gdf = cudf.DataFrame() gdf["a"] = [1] gdf["b"] = gdf.index._values np.testing.assert_equal(gdf.b.to_array(), [0]) def test_empty_dataframe_setitem_df(): gdf1 = cudf.DataFrame() gdf2 = cudf.DataFrame({"a": [1, 2, 3, 4, 5]}) gdf1["a"] = gdf2["a"] assert_eq(gdf1, gdf2) def test_assign(): gdf = cudf.DataFrame({"x": [1, 2, 3]}) gdf2 = gdf.assign(y=gdf.x + 1) assert list(gdf.columns) == ["x"] assert list(gdf2.columns) == ["x", "y"] np.testing.assert_equal(gdf2.y.to_array(), [2, 3, 4]) @pytest.mark.parametrize("nrows", [1, 8, 100, 1000]) def test_dataframe_hash_columns(nrows): gdf = cudf.DataFrame() data = np.asarray(range(nrows)) data[0] = data[-1] # make first and last the same gdf["a"] = data gdf["b"] = gdf.a + 100 out = gdf.hash_columns(["a", "b"]) assert isinstance(out, cupy.ndarray) assert len(out) == nrows assert out.dtype == np.int32 # Check default out_all = gdf.hash_columns() np.testing.assert_array_equal(cupy.asnumpy(out), cupy.asnumpy(out_all)) # Check single column out_one = cupy.asnumpy(gdf.hash_columns(["a"])) # First matches last assert out_one[0] == out_one[-1] # Equivalent to the cudf.Series.hash_values() np.testing.assert_array_equal(cupy.asnumpy(gdf.a.hash_values()), out_one) @pytest.mark.parametrize("nrows", [3, 10, 100, 1000]) @pytest.mark.parametrize("nparts", [1, 2, 8, 13]) @pytest.mark.parametrize("nkeys", [1, 2]) def test_dataframe_hash_partition(nrows, nparts, nkeys): np.random.seed(123) gdf = cudf.DataFrame() keycols = [] for i in range(nkeys): keyname = "key{}".format(i) gdf[keyname] = np.random.randint(0, 7 - i, nrows) keycols.append(keyname) gdf["val1"] = np.random.randint(0, nrows * 2, nrows) got = gdf.partition_by_hash(keycols, nparts=nparts) # Must return a list assert isinstance(got, list) # Must have correct number of partitions assert len(got) == nparts # All partitions must be DataFrame type assert all(isinstance(p, cudf.DataFrame) for p in got) # Check that all partitions have unique keys part_unique_keys = set() for p in got: if len(p): # Take rows of the keycolumns and build a set of the key-values unique_keys = set(map(tuple, p.as_matrix(columns=keycols))) # Ensure that none of the key-values have occurred in other groups assert not (unique_keys & part_unique_keys) part_unique_keys |= unique_keys assert len(part_unique_keys) @pytest.mark.parametrize("nrows", [3, 10, 50]) def test_dataframe_hash_partition_masked_value(nrows): gdf = cudf.DataFrame() gdf["key"] = np.arange(nrows) gdf["val"] = np.arange(nrows) + 100 bitmask = utils.random_bitmask(nrows) bytemask = utils.expand_bits_to_bytes(bitmask) gdf["val"] = gdf["val"].set_mask(bitmask) parted = gdf.partition_by_hash(["key"], nparts=3) # Verify that the valid mask is correct for p in parted: df = p.to_pandas() for row in df.itertuples(): valid = bool(bytemask[row.key]) expected_value = row.key + 100 if valid else np.nan got_value = row.val assert (expected_value == got_value) or ( np.isnan(expected_value) and np.isnan(got_value) ) @pytest.mark.parametrize("nrows", [3, 10, 50]) def test_dataframe_hash_partition_masked_keys(nrows): gdf = cudf.DataFrame() gdf["key"] = np.arange(nrows) gdf["val"] = np.arange(nrows) + 100 bitmask = utils.random_bitmask(nrows) bytemask = utils.expand_bits_to_bytes(bitmask) gdf["key"] = gdf["key"].set_mask(bitmask) parted = gdf.partition_by_hash(["key"], nparts=3, keep_index=False) # Verify that the valid mask is correct for p in parted: df = p.to_pandas() for row in df.itertuples(): valid = bool(bytemask[row.val - 100]) # val is key + 100 expected_value = row.val - 100 if valid else np.nan got_value = row.key assert (expected_value == got_value) or ( np.isnan(expected_value) and np.isnan(got_value) ) @pytest.mark.parametrize("keep_index", [True, False]) def test_dataframe_hash_partition_keep_index(keep_index): gdf = cudf.DataFrame( {"val": [1, 2, 3, 4], "key": [3, 2, 1, 4]}, index=[4, 3, 2, 1] ) expected_df1 = cudf.DataFrame( {"val": [1], "key": [3]}, index=[4] if keep_index else None ) expected_df2 = cudf.DataFrame( {"val": [2, 3, 4], "key": [2, 1, 4]}, index=[3, 2, 1] if keep_index else range(1, 4), ) expected = [expected_df1, expected_df2] parts = gdf.partition_by_hash(["key"], nparts=2, keep_index=keep_index) for exp, got in zip(expected, parts): assert_eq(exp, got) def test_dataframe_hash_partition_empty(): gdf = cudf.DataFrame({"val": [1, 2], "key": [3, 2]}, index=["a", "b"]) parts = gdf.iloc[:0].partition_by_hash(["key"], nparts=3) assert len(parts) == 3 for part in parts: assert_eq(gdf.iloc[:0], part) @pytest.mark.parametrize("dtype1", utils.supported_numpy_dtypes) @pytest.mark.parametrize("dtype2", utils.supported_numpy_dtypes) def test_dataframe_concat_different_numerical_columns(dtype1, dtype2): df1 = pd.DataFrame(dict(x=pd.Series(np.arange(5)).astype(dtype1))) df2 = pd.DataFrame(dict(x=pd.Series(np.arange(5)).astype(dtype2))) if dtype1 != dtype2 and "datetime" in dtype1 or "datetime" in dtype2: with pytest.raises(TypeError): cudf.concat([df1, df2]) else: pres = pd.concat([df1, df2]) gres = cudf.concat([cudf.from_pandas(df1), cudf.from_pandas(df2)]) assert_eq(cudf.from_pandas(pres), gres) def test_dataframe_concat_different_column_types(): df1 = cudf.Series([42], dtype=np.float64) df2 = cudf.Series(["a"], dtype="category") with pytest.raises(ValueError): cudf.concat([df1, df2]) df2 = cudf.Series(["a string"]) with pytest.raises(TypeError): cudf.concat([df1, df2]) @pytest.mark.parametrize( "df_1", [cudf.DataFrame({"a": [1, 2], "b": [1, 3]}), cudf.DataFrame({})] ) @pytest.mark.parametrize( "df_2", [cudf.DataFrame({"a": [], "b": []}), cudf.DataFrame({})] ) def test_concat_empty_dataframe(df_1, df_2): got = cudf.concat([df_1, df_2]) expect = pd.concat([df_1.to_pandas(), df_2.to_pandas()], sort=False) # ignoring dtypes as pandas upcasts int to float # on concatenation with empty dataframes assert_eq(got, expect, check_dtype=False) @pytest.mark.parametrize( "df1_d", [ {"a": [1, 2], "b": [1, 2], "c": ["s1", "s2"], "d": [1.0, 2.0]}, {"b": [1.9, 10.9], "c": ["s1", "s2"]}, {"c": ["s1"], "b": [None], "a": [False]}, ], ) @pytest.mark.parametrize( "df2_d", [ {"a": [1, 2, 3]}, {"a": [1, None, 3], "b": [True, True, False], "c": ["s3", None, "s4"]}, {"a": [], "b": []}, {}, ], ) def test_concat_different_column_dataframe(df1_d, df2_d): got = cudf.concat( [cudf.DataFrame(df1_d), cudf.DataFrame(df2_d), cudf.DataFrame(df1_d)], sort=False, ) expect = pd.concat( [pd.DataFrame(df1_d), pd.DataFrame(df2_d), pd.DataFrame(df1_d)], sort=False, ) # numerical columns are upcasted to float in cudf.DataFrame.to_pandas() # casts nan to 0 in non-float numerical columns numeric_cols = got.dtypes[got.dtypes != "object"].index for col in numeric_cols: got[col] = got[col].astype(np.float64).fillna(np.nan) assert_eq(got, expect, check_dtype=False) @pytest.mark.parametrize( "ser_1", [pd.Series([1, 2, 3]), pd.Series([], dtype="float64")] ) @pytest.mark.parametrize("ser_2", [pd.Series([], dtype="float64")]) def test_concat_empty_series(ser_1, ser_2): got = cudf.concat([cudf.Series(ser_1), cudf.Series(ser_2)]) expect = pd.concat([ser_1, ser_2]) assert_eq(got, expect) def test_concat_with_axis(): df1 = pd.DataFrame(dict(x=np.arange(5), y=np.arange(5))) df2 = pd.DataFrame(dict(a=np.arange(5), b=np.arange(5))) concat_df = pd.concat([df1, df2], axis=1) cdf1 = cudf.from_pandas(df1) cdf2 = cudf.from_pandas(df2) # concat only dataframes concat_cdf = cudf.concat([cdf1, cdf2], axis=1) assert_eq(concat_cdf, concat_df) # concat only series concat_s = pd.concat([df1.x, df1.y], axis=1) cs1 = cudf.Series.from_pandas(df1.x) cs2 = cudf.Series.from_pandas(df1.y) concat_cdf_s = cudf.concat([cs1, cs2], axis=1) assert_eq(concat_cdf_s, concat_s) # concat series and dataframes s3 = pd.Series(np.random.random(5)) cs3 = cudf.Series.from_pandas(s3) concat_cdf_all = cudf.concat([cdf1, cs3, cdf2], axis=1) concat_df_all = pd.concat([df1, s3, df2], axis=1) assert_eq(concat_cdf_all, concat_df_all) # concat manual multi index midf1 = cudf.from_pandas(df1) midf1.index = cudf.MultiIndex( levels=[[0, 1, 2, 3], [0, 1]], codes=[[0, 1, 2, 3, 2], [0, 1, 0, 1, 0]] ) midf2 = midf1[2:] midf2.index = cudf.MultiIndex( levels=[[3, 4, 5], [2, 0]], codes=[[0, 1, 2], [1, 0, 1]] ) mipdf1 = midf1.to_pandas() mipdf2 = midf2.to_pandas() assert_eq(cudf.concat([midf1, midf2]), pd.concat([mipdf1, mipdf2])) assert_eq(cudf.concat([midf2, midf1]), pd.concat([mipdf2, mipdf1])) assert_eq( cudf.concat([midf1, midf2, midf1]), pd.concat([mipdf1, mipdf2, mipdf1]) ) # concat groupby multi index gdf1 = cudf.DataFrame( { "x": np.random.randint(0, 10, 10), "y": np.random.randint(0, 10, 10), "z": np.random.randint(0, 10, 10), "v": np.random.randint(0, 10, 10), } ) gdf2 = gdf1[5:] gdg1 = gdf1.groupby(["x", "y"]).min() gdg2 = gdf2.groupby(["x", "y"]).min() pdg1 = gdg1.to_pandas() pdg2 = gdg2.to_pandas() assert_eq(cudf.concat([gdg1, gdg2]), pd.concat([pdg1, pdg2])) assert_eq(cudf.concat([gdg2, gdg1]), pd.concat([pdg2, pdg1])) # series multi index concat gdgz1 = gdg1.z gdgz2 = gdg2.z pdgz1 = gdgz1.to_pandas() pdgz2 = gdgz2.to_pandas() assert_eq(cudf.concat([gdgz1, gdgz2]), pd.concat([pdgz1, pdgz2])) assert_eq(cudf.concat([gdgz2, gdgz1]), pd.concat([pdgz2, pdgz1])) @pytest.mark.parametrize("nrows", [0, 3, 10, 100, 1000]) def test_nonmatching_index_setitem(nrows): np.random.seed(0) gdf = cudf.DataFrame() gdf["a"] = np.random.randint(2147483647, size=nrows) gdf["b"] = np.random.randint(2147483647, size=nrows) gdf = gdf.set_index("b") test_values = np.random.randint(2147483647, size=nrows) gdf["c"] = test_values assert len(test_values) == len(gdf["c"]) assert ( gdf["c"] .to_pandas() .equals(cudf.Series(test_values).set_index(gdf._index).to_pandas()) ) def test_from_pandas(): df = pd.DataFrame({"x": [1, 2, 3]}, index=[4.0, 5.0, 6.0]) gdf = cudf.DataFrame.from_pandas(df) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) s = df.x gs = cudf.Series.from_pandas(s) assert isinstance(gs, cudf.Series) assert_eq(s, gs) @pytest.mark.parametrize("dtypes", [int, float]) def test_from_records(dtypes): h_ary = np.ndarray(shape=(10, 4), dtype=dtypes) rec_ary = h_ary.view(np.recarray) gdf = cudf.DataFrame.from_records(rec_ary, columns=["a", "b", "c", "d"]) df = pd.DataFrame.from_records(rec_ary, columns=["a", "b", "c", "d"]) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) gdf = cudf.DataFrame.from_records(rec_ary) df = pd.DataFrame.from_records(rec_ary) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) @pytest.mark.parametrize("columns", [None, ["first", "second", "third"]]) @pytest.mark.parametrize( "index", [ None, ["first", "second"], "name", "age", "weight", [10, 11], ["abc", "xyz"], ], ) def test_from_records_index(columns, index): rec_ary = np.array( [("Rex", 9, 81.0), ("Fido", 3, 27.0)], dtype=[("name", "U10"), ("age", "i4"), ("weight", "f4")], ) gdf = cudf.DataFrame.from_records(rec_ary, columns=columns, index=index) df = pd.DataFrame.from_records(rec_ary, columns=columns, index=index) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) def test_dataframe_construction_from_cupy_arrays(): h_ary = np.array([[1, 2, 3], [4, 5, 6]], np.int32) d_ary = cupy.asarray(h_ary) gdf = cudf.DataFrame(d_ary, columns=["a", "b", "c"]) df = pd.DataFrame(h_ary, columns=["a", "b", "c"]) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) gdf = cudf.DataFrame(d_ary) df = pd.DataFrame(h_ary) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) gdf = cudf.DataFrame(d_ary, index=["a", "b"]) df = pd.DataFrame(h_ary, index=["a", "b"]) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) gdf = cudf.DataFrame(d_ary) gdf = gdf.set_index(keys=0, drop=False) df = pd.DataFrame(h_ary) df = df.set_index(keys=0, drop=False) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) gdf = cudf.DataFrame(d_ary) gdf = gdf.set_index(keys=1, drop=False) df = pd.DataFrame(h_ary) df = df.set_index(keys=1, drop=False) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) def test_dataframe_cupy_wrong_dimensions(): d_ary = cupy.empty((2, 3, 4), dtype=np.int32) with pytest.raises( ValueError, match="records dimension expected 1 or 2 but found: 3" ): cudf.DataFrame(d_ary) def test_dataframe_cupy_array_wrong_index(): d_ary = cupy.empty((2, 3), dtype=np.int32) with pytest.raises( ValueError, match="Length mismatch: Expected axis has 2 elements, " "new values have 1 elements", ): cudf.DataFrame(d_ary, index=["a"]) with pytest.raises( ValueError, match="Length mismatch: Expected axis has 2 elements, " "new values have 1 elements", ): cudf.DataFrame(d_ary, index="a") def test_index_in_dataframe_constructor(): a = pd.DataFrame({"x": [1, 2, 3]}, index=[4.0, 5.0, 6.0]) b = cudf.DataFrame({"x": [1, 2, 3]}, index=[4.0, 5.0, 6.0]) assert_eq(a, b) assert_eq(a.loc[4:], b.loc[4:]) dtypes = NUMERIC_TYPES + DATETIME_TYPES + ["bool"] @pytest.mark.parametrize("nelem", [0, 2, 3, 100, 1000]) @pytest.mark.parametrize("data_type", dtypes) def test_from_arrow(nelem, data_type): df = pd.DataFrame( { "a": np.random.randint(0, 1000, nelem).astype(data_type), "b": np.random.randint(0, 1000, nelem).astype(data_type), } ) padf = pa.Table.from_pandas( df, preserve_index=False ).replace_schema_metadata(None) gdf = cudf.DataFrame.from_arrow(padf) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) s = pa.Array.from_pandas(df.a) gs = cudf.Series.from_arrow(s) assert isinstance(gs, cudf.Series) # For some reason PyArrow to_pandas() converts to numpy array and has # better type compatibility np.testing.assert_array_equal(s.to_pandas(), gs.to_array()) @pytest.mark.parametrize("nelem", [0, 2, 3, 100, 1000]) @pytest.mark.parametrize("data_type", dtypes) def test_to_arrow(nelem, data_type): df = pd.DataFrame( { "a": np.random.randint(0, 1000, nelem).astype(data_type), "b": np.random.randint(0, 1000, nelem).astype(data_type), } ) gdf = cudf.DataFrame.from_pandas(df) pa_df = pa.Table.from_pandas( df, preserve_index=False ).replace_schema_metadata(None) pa_gdf = gdf.to_arrow(preserve_index=False).replace_schema_metadata(None) assert isinstance(pa_gdf, pa.Table) assert pa.Table.equals(pa_df, pa_gdf) pa_s = pa.Array.from_pandas(df.a) pa_gs = gdf["a"].to_arrow() assert isinstance(pa_gs, pa.Array) assert pa.Array.equals(pa_s, pa_gs) pa_i = pa.Array.from_pandas(df.index) pa_gi = gdf.index.to_arrow() assert isinstance(pa_gi, pa.Array) assert pa.Array.equals(pa_i, pa_gi) @pytest.mark.parametrize("data_type", dtypes) def test_to_from_arrow_nulls(data_type): if data_type == "longlong": data_type = "int64" if data_type == "bool": s1 = pa.array([True, None, False, None, True], type=data_type) else: dtype = np.dtype(data_type) if dtype.type == np.datetime64: time_unit, _ = np.datetime_data(dtype) data_type = pa.timestamp(unit=time_unit) s1 = pa.array([1, None, 3, None, 5], type=data_type) gs1 = cudf.Series.from_arrow(s1) assert isinstance(gs1, cudf.Series) # We have 64B padded buffers for nulls whereas Arrow returns a minimal # number of bytes, so only check the first byte in this case np.testing.assert_array_equal( np.asarray(s1.buffers()[0]).view("u1")[0], gs1._column.mask_array_view.copy_to_host().view("u1")[0], ) assert pa.Array.equals(s1, gs1.to_arrow()) s2 = pa.array([None, None, None, None, None], type=data_type) gs2 = cudf.Series.from_arrow(s2) assert isinstance(gs2, cudf.Series) # We have 64B padded buffers for nulls whereas Arrow returns a minimal # number of bytes, so only check the first byte in this case np.testing.assert_array_equal( np.asarray(s2.buffers()[0]).view("u1")[0], gs2._column.mask_array_view.copy_to_host().view("u1")[0], ) assert pa.Array.equals(s2, gs2.to_arrow()) def test_to_arrow_categorical(): df = pd.DataFrame() df["a"] = pd.Series(["a", "b", "c"], dtype="category") gdf = cudf.DataFrame.from_pandas(df) pa_df = pa.Table.from_pandas( df, preserve_index=False ).replace_schema_metadata(None) pa_gdf = gdf.to_arrow(preserve_index=False).replace_schema_metadata(None) assert isinstance(pa_gdf, pa.Table) assert pa.Table.equals(pa_df, pa_gdf) pa_s = pa.Array.from_pandas(df.a) pa_gs = gdf["a"].to_arrow() assert isinstance(pa_gs, pa.Array) assert pa.Array.equals(pa_s, pa_gs) def test_from_arrow_missing_categorical(): pd_cat = pd.Categorical(["a", "b", "c"], categories=["a", "b"]) pa_cat = pa.array(pd_cat, from_pandas=True) gd_cat = cudf.Series(pa_cat) assert isinstance(gd_cat, cudf.Series) assert_eq( pd.Series(pa_cat.to_pandas()), # PyArrow returns a pd.Categorical gd_cat.to_pandas(), ) def test_to_arrow_missing_categorical(): pd_cat = pd.Categorical(["a", "b", "c"], categories=["a", "b"]) pa_cat = pa.array(pd_cat, from_pandas=True) gd_cat = cudf.Series(pa_cat) assert isinstance(gd_cat, cudf.Series) assert pa.Array.equals(pa_cat, gd_cat.to_arrow()) @pytest.mark.parametrize("data_type", dtypes) def test_from_scalar_typing(data_type): if data_type == "datetime64[ms]": scalar = ( np.dtype("int64") .type(np.random.randint(0, 5)) .astype("datetime64[ms]") ) elif data_type.startswith("datetime64"): scalar = np.datetime64(datetime.date.today()).astype("datetime64[ms]") data_type = "datetime64[ms]" else: scalar = np.dtype(data_type).type(np.random.randint(0, 5)) gdf = cudf.DataFrame() gdf["a"] = [1, 2, 3, 4, 5] gdf["b"] = scalar assert gdf["b"].dtype == np.dtype(data_type) assert len(gdf["b"]) == len(gdf["a"]) @pytest.mark.parametrize("data_type", NUMERIC_TYPES) def test_from_python_array(data_type): np_arr = np.random.randint(0, 100, 10).astype(data_type) data = memoryview(np_arr) data = arr.array(data.format, data) gs = cudf.Series(data) np.testing.assert_equal(gs.to_array(), np_arr) def test_series_shape(): ps = pd.Series([1, 2, 3, 4]) cs = cudf.Series([1, 2, 3, 4]) assert ps.shape == cs.shape def test_series_shape_empty(): ps = pd.Series(dtype="float64") cs = cudf.Series([]) assert ps.shape == cs.shape def test_dataframe_shape(): pdf = pd.DataFrame({"a": [0, 1, 2, 3], "b": [0.1, 0.2, None, 0.3]}) gdf = cudf.DataFrame.from_pandas(pdf) assert pdf.shape == gdf.shape def test_dataframe_shape_empty(): pdf = pd.DataFrame() gdf = cudf.DataFrame() assert pdf.shape == gdf.shape @pytest.mark.parametrize("num_cols", [1, 2, 10]) @pytest.mark.parametrize("num_rows", [1, 2, 20]) @pytest.mark.parametrize("dtype", dtypes) @pytest.mark.parametrize("nulls", ["none", "some", "all"]) def test_dataframe_transpose(nulls, num_cols, num_rows, dtype): pdf = pd.DataFrame() null_rep = np.nan if dtype in ["float32", "float64"] else None for i in range(num_cols): colname = string.ascii_lowercase[i] data = pd.Series(np.random.randint(0, 26, num_rows).astype(dtype)) if nulls == "some": idx = np.random.choice( num_rows, size=int(num_rows / 2), replace=False ) data[idx] = null_rep elif nulls == "all": data[:] = null_rep pdf[colname] = data gdf = cudf.DataFrame.from_pandas(pdf) got_function = gdf.transpose() got_property = gdf.T expect = pdf.transpose() assert_eq(expect, got_function) assert_eq(expect, got_property) @pytest.mark.parametrize("num_cols", [1, 2, 10]) @pytest.mark.parametrize("num_rows", [1, 2, 20]) def test_dataframe_transpose_category(num_cols, num_rows): pdf = pd.DataFrame() for i in range(num_cols): colname = string.ascii_lowercase[i] data = pd.Series(list(string.ascii_lowercase), dtype="category") data = data.sample(num_rows, replace=True).reset_index(drop=True) pdf[colname] = data gdf = cudf.DataFrame.from_pandas(pdf) got_function = gdf.transpose() got_property = gdf.T expect = pdf.transpose() assert_eq(expect, got_function.to_pandas()) assert_eq(expect, got_property.to_pandas()) def test_generated_column(): gdf = cudf.DataFrame({"a": (i for i in range(5))}) assert len(gdf) == 5 @pytest.fixture def pdf(): return pd.DataFrame({"x": range(10), "y": range(10)}) @pytest.fixture def gdf(pdf): return cudf.DataFrame.from_pandas(pdf) @pytest.mark.parametrize( "data", [ {"x": [np.nan, 2, 3, 4, 100, np.nan], "y": [4, 5, 6, 88, 99, np.nan]}, {"x": [1, 2, 3], "y": [4, 5, 6]}, {"x": [np.nan, np.nan, np.nan], "y": [np.nan, np.nan, np.nan]}, {"x": [], "y": []}, {"x": []}, ], ) @pytest.mark.parametrize( "func", [ lambda df, **kwargs: df.min(**kwargs), lambda df, **kwargs: df.max(**kwargs), lambda df, **kwargs: df.sum(**kwargs), lambda df, **kwargs: df.product(**kwargs), lambda df, **kwargs: df.cummin(**kwargs), lambda df, **kwargs: df.cummax(**kwargs), lambda df, **kwargs: df.cumsum(**kwargs), lambda df, **kwargs: df.cumprod(**kwargs), lambda df, **kwargs: df.mean(**kwargs), lambda df, **kwargs: df.sum(**kwargs), lambda df, **kwargs: df.max(**kwargs), lambda df, **kwargs: df.std(ddof=1, **kwargs), lambda df, **kwargs: df.var(ddof=1, **kwargs), lambda df, **kwargs: df.std(ddof=2, **kwargs), lambda df, **kwargs: df.var(ddof=2, **kwargs), lambda df, **kwargs: df.kurt(**kwargs), lambda df, **kwargs: df.skew(**kwargs), lambda df, **kwargs: df.all(**kwargs), lambda df, **kwargs: df.any(**kwargs), ], ) @pytest.mark.parametrize("skipna", [True, False, None]) def test_dataframe_reductions(data, func, skipna): pdf = pd.DataFrame(data=data) gdf = cudf.DataFrame.from_pandas(pdf) assert_eq(func(pdf, skipna=skipna), func(gdf, skipna=skipna)) @pytest.mark.parametrize( "data", [ {"x": [np.nan, 2, 3, 4, 100, np.nan], "y": [4, 5, 6, 88, 99, np.nan]}, {"x": [1, 2, 3], "y": [4, 5, 6]}, {"x": [np.nan, np.nan, np.nan], "y": [np.nan, np.nan, np.nan]}, {"x": [], "y": []}, {"x": []}, ], ) @pytest.mark.parametrize("func", [lambda df: df.count()]) def test_dataframe_count_reduction(data, func): pdf = pd.DataFrame(data=data) gdf = cudf.DataFrame.from_pandas(pdf) assert_eq(func(pdf), func(gdf)) @pytest.mark.parametrize( "data", [ {"x": [np.nan, 2, 3, 4, 100, np.nan], "y": [4, 5, 6, 88, 99, np.nan]}, {"x": [1, 2, 3], "y": [4, 5, 6]}, {"x": [np.nan, np.nan, np.nan], "y": [np.nan, np.nan, np.nan]}, {"x": [], "y": []}, {"x": []}, ], ) @pytest.mark.parametrize("ops", ["sum", "product", "prod"]) @pytest.mark.parametrize("skipna", [True, False, None]) @pytest.mark.parametrize("min_count", [-10, -1, 0, 1, 2, 3, 10]) def test_dataframe_min_count_ops(data, ops, skipna, min_count): psr = pd.DataFrame(data) gsr = cudf.DataFrame(data) if PANDAS_GE_120 and psr.shape[0] * psr.shape[1] < min_count: pytest.xfail("https://github.com/pandas-dev/pandas/issues/39738") assert_eq( getattr(psr, ops)(skipna=skipna, min_count=min_count), getattr(gsr, ops)(skipna=skipna, min_count=min_count), check_dtype=False, ) @pytest.mark.parametrize( "binop", [ operator.add, operator.mul, operator.floordiv, operator.truediv, operator.mod, operator.pow, operator.eq, operator.lt, operator.le, operator.gt, operator.ge, operator.ne, ], ) def test_binops_df(pdf, gdf, binop): pdf = pdf + 1.0 gdf = gdf + 1.0 d = binop(pdf, pdf) g = binop(gdf, gdf) assert_eq(d, g) @pytest.mark.parametrize("binop", [operator.and_, operator.or_, operator.xor]) def test_bitwise_binops_df(pdf, gdf, binop): d = binop(pdf, pdf + 1) g = binop(gdf, gdf + 1) assert_eq(d, g) @pytest.mark.parametrize( "binop", [ operator.add, operator.mul, operator.floordiv, operator.truediv, operator.mod, operator.pow, operator.eq, operator.lt, operator.le, operator.gt, operator.ge, operator.ne, ], ) def test_binops_series(pdf, gdf, binop): pdf = pdf + 1.0 gdf = gdf + 1.0 d = binop(pdf.x, pdf.y) g = binop(gdf.x, gdf.y) assert_eq(d, g) @pytest.mark.parametrize("binop", [operator.and_, operator.or_, operator.xor]) def test_bitwise_binops_series(pdf, gdf, binop): d = binop(pdf.x, pdf.y + 1) g = binop(gdf.x, gdf.y + 1) assert_eq(d, g) @pytest.mark.parametrize("unaryop", [operator.neg, operator.inv, operator.abs]) def test_unaryops_df(pdf, gdf, unaryop): d = unaryop(pdf - 5) g = unaryop(gdf - 5) assert_eq(d, g) @pytest.mark.parametrize( "func", [ lambda df: df.empty, lambda df: df.x.empty, lambda df: df.x.fillna(123, limit=None, method=None, axis=None), lambda df: df.drop("x", axis=1, errors="raise"), ], ) def test_unary_operators(func, pdf, gdf): p = func(pdf) g = func(gdf) assert_eq(p, g) def test_is_monotonic(gdf): pdf = pd.DataFrame({"x": [1, 2, 3]}, index=[3, 1, 2]) gdf = cudf.DataFrame.from_pandas(pdf) assert not gdf.index.is_monotonic assert not gdf.index.is_monotonic_increasing assert not gdf.index.is_monotonic_decreasing def test_iter(pdf, gdf): assert list(pdf) == list(gdf) def test_iteritems(gdf): for k, v in gdf.iteritems(): assert k in gdf.columns assert isinstance(v, cudf.Series) assert_eq(v, gdf[k]) @pytest.mark.parametrize("q", [0.5, 1, 0.001, [0.5], [], [0.005, 0.5, 1]]) @pytest.mark.parametrize("numeric_only", [True, False]) def test_quantile(q, numeric_only): ts = pd.date_range("2018-08-24", periods=5, freq="D") td = pd.to_timedelta(np.arange(5), unit="h") pdf = pd.DataFrame( {"date": ts, "delta": td, "val": np.random.randn(len(ts))} ) gdf = cudf.DataFrame.from_pandas(pdf) assert_eq(pdf["date"].quantile(q), gdf["date"].quantile(q)) assert_eq(pdf["delta"].quantile(q), gdf["delta"].quantile(q)) assert_eq(pdf["val"].quantile(q), gdf["val"].quantile(q)) if numeric_only: assert_eq(pdf.quantile(q), gdf.quantile(q)) else: q = q if isinstance(q, list) else [q] assert_eq( pdf.quantile( q if isinstance(q, list) else [q], numeric_only=False ), gdf.quantile(q, numeric_only=False), ) def test_empty_quantile(): pdf = pd.DataFrame({"x": []}) df = cudf.DataFrame({"x": []}) actual = df.quantile() expected = pdf.quantile() assert_eq(actual, expected) def test_from_pandas_function(pdf): gdf = cudf.from_pandas(pdf) assert isinstance(gdf, cudf.DataFrame) assert_eq(pdf, gdf) gdf = cudf.from_pandas(pdf.x) assert isinstance(gdf, cudf.Series) assert_eq(pdf.x, gdf) with pytest.raises(TypeError): cudf.from_pandas(123) @pytest.mark.parametrize("preserve_index", [True, False]) def test_arrow_pandas_compat(pdf, gdf, preserve_index): pdf["z"] = range(10) pdf = pdf.set_index("z") gdf["z"] = range(10) gdf = gdf.set_index("z") pdf_arrow_table = pa.Table.from_pandas(pdf, preserve_index=preserve_index) gdf_arrow_table = gdf.to_arrow(preserve_index=preserve_index) assert pa.Table.equals(pdf_arrow_table, gdf_arrow_table) gdf2 = cudf.DataFrame.from_arrow(pdf_arrow_table) pdf2 = pdf_arrow_table.to_pandas() assert_eq(pdf2, gdf2) @pytest.mark.parametrize("nrows", [1, 8, 100, 1000, 100000]) def test_series_hash_encode(nrows): data = np.asarray(range(nrows)) # Python hash returns different value which sometimes # results in enc_with_name_arr and enc_arr to be same. # And there is no other better way to make hash return same value. # So using an integer name to get constant value back from hash. s = cudf.Series(data, name=1) num_features = 1000 encoded_series = s.hash_encode(num_features) assert isinstance(encoded_series, cudf.Series) enc_arr = encoded_series.to_array() assert np.all(enc_arr >= 0) assert np.max(enc_arr) < num_features enc_with_name_arr = s.hash_encode(num_features, use_name=True).to_array() assert enc_with_name_arr[0] != enc_arr[0] @pytest.mark.parametrize("dtype", NUMERIC_TYPES + ["bool"]) def test_cuda_array_interface(dtype): np_data = np.arange(10).astype(dtype) cupy_data = cupy.array(np_data) pd_data = pd.Series(np_data) cudf_data = cudf.Series(cupy_data) assert_eq(pd_data, cudf_data) gdf = cudf.DataFrame() gdf["test"] = cupy_data pd_data.name = "test" assert_eq(pd_data, gdf["test"]) @pytest.mark.parametrize("nelem", [0, 2, 3, 100]) @pytest.mark.parametrize("nchunks", [1, 2, 5, 10]) @pytest.mark.parametrize("data_type", dtypes) def test_from_arrow_chunked_arrays(nelem, nchunks, data_type): np_list_data = [ np.random.randint(0, 100, nelem).astype(data_type) for i in range(nchunks) ] pa_chunk_array = pa.chunked_array(np_list_data) expect = pd.Series(pa_chunk_array.to_pandas()) got = cudf.Series(pa_chunk_array) assert_eq(expect, got) np_list_data2 = [ np.random.randint(0, 100, nelem).astype(data_type) for i in range(nchunks) ] pa_chunk_array2 = pa.chunked_array(np_list_data2) pa_table = pa.Table.from_arrays( [pa_chunk_array, pa_chunk_array2], names=["a", "b"] ) expect = pa_table.to_pandas() got = cudf.DataFrame.from_arrow(pa_table) assert_eq(expect, got) @pytest.mark.skip(reason="Test was designed to be run in isolation") def test_gpu_memory_usage_with_boolmask(): ctx = cuda.current_context() def query_GPU_memory(note=""): memInfo = ctx.get_memory_info() usedMemoryGB = (memInfo.total - memInfo.free) / 1e9 return usedMemoryGB cuda.current_context().deallocations.clear() nRows = int(1e8) nCols = 2 dataNumpy = np.asfortranarray(np.random.rand(nRows, nCols)) colNames = ["col" + str(iCol) for iCol in range(nCols)] pandasDF = pd.DataFrame(data=dataNumpy, columns=colNames, dtype=np.float32) cudaDF = cudf.core.DataFrame.from_pandas(pandasDF) boolmask = cudf.Series(np.random.randint(1, 2, len(cudaDF)).astype("bool")) memory_used = query_GPU_memory() cudaDF = cudaDF[boolmask] assert ( cudaDF.index._values.data_array_view.device_ctypes_pointer == cudaDF["col0"].index._values.data_array_view.device_ctypes_pointer ) assert ( cudaDF.index._values.data_array_view.device_ctypes_pointer == cudaDF["col1"].index._values.data_array_view.device_ctypes_pointer ) assert memory_used == query_GPU_memory() def test_boolmask(pdf, gdf): boolmask = np.random.randint(0, 2, len(pdf)) > 0 gdf = gdf[boolmask] pdf = pdf[boolmask] assert_eq(pdf, gdf) @pytest.mark.parametrize( "mask_shape", [ (2, "ab"), (2, "abc"), (3, "ab"), (3, "abc"), (3, "abcd"), (4, "abc"), (4, "abcd"), ], ) def test_dataframe_boolmask(mask_shape): pdf = pd.DataFrame() for col in "abc": pdf[col] = np.random.randint(0, 10, 3) pdf_mask = pd.DataFrame() for col in mask_shape[1]: pdf_mask[col] = np.random.randint(0, 2, mask_shape[0]) > 0 gdf = cudf.DataFrame.from_pandas(pdf) gdf_mask = cudf.DataFrame.from_pandas(pdf_mask) gdf = gdf[gdf_mask] pdf = pdf[pdf_mask] assert np.array_equal(gdf.columns, pdf.columns) for col in gdf.columns: assert np.array_equal( gdf[col].fillna(-1).to_pandas().values, pdf[col].fillna(-1).values ) @pytest.mark.parametrize( "mask", [ [True, False, True], pytest.param( cudf.Series([True, False, True]), marks=pytest.mark.xfail( reason="Pandas can't index a multiindex with a Series" ), ), ], ) def test_dataframe_multiindex_boolmask(mask): gdf = cudf.DataFrame( {"w": [3, 2, 1], "x": [1, 2, 3], "y": [0, 1, 0], "z": [1, 1, 1]} ) gdg = gdf.groupby(["w", "x"]).count() pdg = gdg.to_pandas() assert_eq(gdg[mask], pdg[mask]) def test_dataframe_assignment(): pdf = pd.DataFrame() for col in "abc": pdf[col] = np.array([0, 1, 1, -2, 10]) gdf = cudf.DataFrame.from_pandas(pdf) gdf[gdf < 0] = 999 pdf[pdf < 0] = 999 assert_eq(gdf, pdf) def test_1row_arrow_table(): data = [pa.array([0]), pa.array([1])] batch = pa.RecordBatch.from_arrays(data, ["f0", "f1"]) table = pa.Table.from_batches([batch]) expect = table.to_pandas() got = cudf.DataFrame.from_arrow(table) assert_eq(expect, got) def test_arrow_handle_no_index_name(pdf, gdf): gdf_arrow = gdf.to_arrow() pdf_arrow = pa.Table.from_pandas(pdf) assert pa.Table.equals(pdf_arrow, gdf_arrow) got = cudf.DataFrame.from_arrow(gdf_arrow) expect = pdf_arrow.to_pandas() assert_eq(expect, got) @pytest.mark.parametrize("num_rows", [1, 3, 10, 100]) @pytest.mark.parametrize("num_bins", [1, 2, 4, 20]) @pytest.mark.parametrize("right", [True, False]) @pytest.mark.parametrize("dtype", NUMERIC_TYPES + ["bool"]) @pytest.mark.parametrize("series_bins", [True, False]) def test_series_digitize(num_rows, num_bins, right, dtype, series_bins): data = np.random.randint(0, 100, num_rows).astype(dtype) bins = np.unique(np.sort(np.random.randint(2, 95, num_bins).astype(dtype))) s = cudf.Series(data) if series_bins: s_bins = cudf.Series(bins) indices = s.digitize(s_bins, right) else: indices = s.digitize(bins, right) np.testing.assert_array_equal( np.digitize(data, bins, right), indices.to_array() ) def test_series_digitize_invalid_bins(): s = cudf.Series(np.random.randint(0, 30, 80), dtype="int32") bins = cudf.Series([2, None, None, 50, 90], dtype="int32") with pytest.raises( ValueError, match="`bins` cannot contain null entries." ): _ = s.digitize(bins) def test_pandas_non_contiguious(): arr1 = np.random.sample([5000, 10]) assert arr1.flags["C_CONTIGUOUS"] is True df = pd.DataFrame(arr1) for col in df.columns: assert df[col].values.flags["C_CONTIGUOUS"] is False gdf = cudf.DataFrame.from_pandas(df) assert_eq(gdf.to_pandas(), df) @pytest.mark.parametrize("num_elements", [0, 2, 10, 100]) @pytest.mark.parametrize("null_type", [np.nan, None, "mixed"]) def test_series_all_null(num_elements, null_type): if null_type == "mixed": data = [] data1 = [np.nan] * int(num_elements / 2) data2 = [None] * int(num_elements / 2) for idx in range(len(data1)): data.append(data1[idx]) data.append(data2[idx]) else: data = [null_type] * num_elements # Typecast Pandas because None will return `object` dtype expect = pd.Series(data, dtype="float64") got = cudf.Series(data) assert_eq(expect, got) @pytest.mark.parametrize("num_elements", [0, 2, 10, 100]) def test_series_all_valid_nan(num_elements): data = [np.nan] * num_elements sr = cudf.Series(data, nan_as_null=False) np.testing.assert_equal(sr.null_count, 0) def test_series_rename(): pds = pd.Series([1, 2, 3], name="asdf") gds = cudf.Series([1, 2, 3], name="asdf") expect = pds.rename("new_name") got = gds.rename("new_name") assert_eq(expect, got) pds = pd.Series(expect) gds = cudf.Series(got) assert_eq(pds, gds) pds = pd.Series(expect, name="name name") gds = cudf.Series(got, name="name name") assert_eq(pds, gds) @pytest.mark.parametrize("data_type", dtypes) @pytest.mark.parametrize("nelem", [0, 100]) def test_head_tail(nelem, data_type): def check_index_equality(left, right): assert left.index.equals(right.index) def check_values_equality(left, right): if len(left) == 0 and len(right) == 0: return None np.testing.assert_array_equal(left.to_pandas(), right.to_pandas()) def check_frame_series_equality(left, right): check_index_equality(left, right) check_values_equality(left, right) gdf = cudf.DataFrame( { "a": np.random.randint(0, 1000, nelem).astype(data_type), "b": np.random.randint(0, 1000, nelem).astype(data_type), } ) check_frame_series_equality(gdf.head(), gdf[:5]) check_frame_series_equality(gdf.head(3), gdf[:3]) check_frame_series_equality(gdf.head(-2), gdf[:-2]) check_frame_series_equality(gdf.head(0), gdf[0:0]) check_frame_series_equality(gdf["a"].head(), gdf["a"][:5]) check_frame_series_equality(gdf["a"].head(3), gdf["a"][:3]) check_frame_series_equality(gdf["a"].head(-2), gdf["a"][:-2]) check_frame_series_equality(gdf.tail(), gdf[-5:]) check_frame_series_equality(gdf.tail(3), gdf[-3:]) check_frame_series_equality(gdf.tail(-2), gdf[2:]) check_frame_series_equality(gdf.tail(0), gdf[0:0]) check_frame_series_equality(gdf["a"].tail(), gdf["a"][-5:]) check_frame_series_equality(gdf["a"].tail(3), gdf["a"][-3:]) check_frame_series_equality(gdf["a"].tail(-2), gdf["a"][2:]) def test_tail_for_string(): gdf = cudf.DataFrame() gdf["id"] = cudf.Series(["a", "b"], dtype=np.object_) gdf["v"] = cudf.Series([1, 2]) assert_eq(gdf.tail(3), gdf.to_pandas().tail(3)) @pytest.mark.parametrize("drop", [True, False]) def test_reset_index(pdf, gdf, drop): assert_eq( pdf.reset_index(drop=drop, inplace=False), gdf.reset_index(drop=drop, inplace=False), ) assert_eq( pdf.x.reset_index(drop=drop, inplace=False), gdf.x.reset_index(drop=drop, inplace=False), ) @pytest.mark.parametrize("drop", [True, False]) def test_reset_named_index(pdf, gdf, drop): pdf.index.name = "cudf" gdf.index.name = "cudf" assert_eq( pdf.reset_index(drop=drop, inplace=False), gdf.reset_index(drop=drop, inplace=False), ) assert_eq( pdf.x.reset_index(drop=drop, inplace=False), gdf.x.reset_index(drop=drop, inplace=False), ) @pytest.mark.parametrize("drop", [True, False]) def test_reset_index_inplace(pdf, gdf, drop): pdf.reset_index(drop=drop, inplace=True) gdf.reset_index(drop=drop, inplace=True) assert_eq(pdf, gdf) @pytest.mark.parametrize( "data", [ { "a": [1, 2, 3, 4, 5], "b": ["a", "b", "c", "d", "e"], "c": [1.0, 2.0, 3.0, 4.0, 5.0], } ], ) @pytest.mark.parametrize( "index", [ "a", ["a", "b"], pd.CategoricalIndex(["I", "II", "III", "IV", "V"]), pd.Series(["h", "i", "k", "l", "m"]), ["b", pd.Index(["I", "II", "III", "IV", "V"])], ["c", [11, 12, 13, 14, 15]], pd.MultiIndex( levels=[ ["I", "II", "III", "IV", "V"], ["one", "two", "three", "four", "five"], ], codes=[[0, 1, 2, 3, 4], [4, 3, 2, 1, 0]], names=["col1", "col2"], ), pd.RangeIndex(0, 5), # corner case [pd.Series(["h", "i", "k", "l", "m"]), pd.RangeIndex(0, 5)], [ pd.MultiIndex( levels=[ ["I", "II", "III", "IV", "V"], ["one", "two", "three", "four", "five"], ], codes=[[0, 1, 2, 3, 4], [4, 3, 2, 1, 0]], names=["col1", "col2"], ), pd.RangeIndex(0, 5), ], ], ) @pytest.mark.parametrize("drop", [True, False]) @pytest.mark.parametrize("append", [True, False]) @pytest.mark.parametrize("inplace", [True, False]) def test_set_index(data, index, drop, append, inplace): gdf = cudf.DataFrame(data) pdf = gdf.to_pandas() expected = pdf.set_index(index, inplace=inplace, drop=drop, append=append) actual = gdf.set_index(index, inplace=inplace, drop=drop, append=append) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) @pytest.mark.parametrize( "data", [ { "a": [1, 1, 2, 2, 5], "b": ["a", "b", "c", "d", "e"], "c": [1.0, 2.0, 3.0, 4.0, 5.0], } ], ) @pytest.mark.parametrize("index", ["a", pd.Index([1, 1, 2, 2, 3])]) @pytest.mark.parametrize("verify_integrity", [True]) @pytest.mark.xfail def test_set_index_verify_integrity(data, index, verify_integrity): gdf = cudf.DataFrame(data) gdf.set_index(index, verify_integrity=verify_integrity) @pytest.mark.parametrize("drop", [True, False]) @pytest.mark.parametrize("nelem", [10, 200, 1333]) def test_set_index_multi(drop, nelem): np.random.seed(0) a = np.arange(nelem) np.random.shuffle(a) df = pd.DataFrame( { "a": a, "b": np.random.randint(0, 4, size=nelem), "c": np.random.uniform(low=0, high=4, size=nelem), "d": np.random.choice(["green", "black", "white"], nelem), } ) df["e"] = df["d"].astype("category") gdf = cudf.DataFrame.from_pandas(df) assert_eq(gdf.set_index("a", drop=drop), gdf.set_index(["a"], drop=drop)) assert_eq( df.set_index(["b", "c"], drop=drop), gdf.set_index(["b", "c"], drop=drop), ) assert_eq( df.set_index(["d", "b"], drop=drop), gdf.set_index(["d", "b"], drop=drop), ) assert_eq( df.set_index(["b", "d", "e"], drop=drop), gdf.set_index(["b", "d", "e"], drop=drop), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_0(copy): # TODO (ptaylor): pandas changes `int` dtype to `float64` # when reindexing and filling new label indices with NaN gdf = cudf.datasets.randomdata( nrows=6, dtypes={ "a": "category", # 'b': int, "c": float, "d": str, }, ) pdf = gdf.to_pandas() # Validate reindex returns a copy unmodified assert_eq(pdf.reindex(copy=True), gdf.reindex(copy=copy)) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_1(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate labels are used as index when axis defaults to 0 assert_eq(pdf.reindex(index, copy=True), gdf.reindex(index, copy=copy)) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_2(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate labels are used as index when axis=0 assert_eq( pdf.reindex(index, axis=0, copy=True), gdf.reindex(index, axis=0, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_3(copy): columns = ["a", "b", "c", "d", "e"] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate labels are used as columns when axis=0 assert_eq( pdf.reindex(columns, axis=1, copy=True), gdf.reindex(columns, axis=1, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_4(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate labels are used as index when axis=0 assert_eq( pdf.reindex(labels=index, axis=0, copy=True), gdf.reindex(labels=index, axis=0, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_5(copy): columns = ["a", "b", "c", "d", "e"] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate labels are used as columns when axis=1 assert_eq( pdf.reindex(labels=columns, axis=1, copy=True), gdf.reindex(labels=columns, axis=1, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_6(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate labels are used as index when axis='index' assert_eq( pdf.reindex(labels=index, axis="index", copy=True), gdf.reindex(labels=index, axis="index", copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_7(copy): columns = ["a", "b", "c", "d", "e"] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate labels are used as columns when axis='columns' assert_eq( pdf.reindex(labels=columns, axis="columns", copy=True), gdf.reindex(labels=columns, axis="columns", copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_8(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate reindexes labels when index=labels assert_eq( pdf.reindex(index=index, copy=True), gdf.reindex(index=index, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_9(copy): columns = ["a", "b", "c", "d", "e"] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate reindexes column names when columns=labels assert_eq( pdf.reindex(columns=columns, copy=True), gdf.reindex(columns=columns, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_10(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] columns = ["a", "b", "c", "d", "e"] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate reindexes both labels and column names when # index=index_labels and columns=column_labels assert_eq( pdf.reindex(index=index, columns=columns, copy=True), gdf.reindex(index=index, columns=columns, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_change_dtype(copy): if PANDAS_GE_110: kwargs = {"check_freq": False} else: kwargs = {} index = pd.date_range("12/29/2009", periods=10, freq="D") columns = ["a", "b", "c", "d", "e"] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate reindexes both labels and column names when # index=index_labels and columns=column_labels assert_eq( pdf.reindex(index=index, columns=columns, copy=True), gdf.reindex(index=index, columns=columns, copy=copy), **kwargs, ) @pytest.mark.parametrize("copy", [True, False]) def test_series_categorical_reindex(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata(nrows=6, dtypes={"a": "category"}) pdf = gdf.to_pandas() assert_eq(pdf["a"].reindex(copy=True), gdf["a"].reindex(copy=copy)) assert_eq( pdf["a"].reindex(index, copy=True), gdf["a"].reindex(index, copy=copy) ) assert_eq( pdf["a"].reindex(index=index, copy=True), gdf["a"].reindex(index=index, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_series_float_reindex(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata(nrows=6, dtypes={"c": float}) pdf = gdf.to_pandas() assert_eq(pdf["c"].reindex(copy=True), gdf["c"].reindex(copy=copy)) assert_eq( pdf["c"].reindex(index, copy=True), gdf["c"].reindex(index, copy=copy) ) assert_eq( pdf["c"].reindex(index=index, copy=True), gdf["c"].reindex(index=index, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_series_string_reindex(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata(nrows=6, dtypes={"d": str}) pdf = gdf.to_pandas() assert_eq(pdf["d"].reindex(copy=True), gdf["d"].reindex(copy=copy)) assert_eq( pdf["d"].reindex(index, copy=True), gdf["d"].reindex(index, copy=copy) ) assert_eq( pdf["d"].reindex(index=index, copy=True), gdf["d"].reindex(index=index, copy=copy), ) def test_to_frame(pdf, gdf): assert_eq(pdf.x.to_frame(), gdf.x.to_frame()) name = "foo" gdf_new_name = gdf.x.to_frame(name=name) pdf_new_name = pdf.x.to_frame(name=name) assert_eq(pdf.x.to_frame(), gdf.x.to_frame()) name = False gdf_new_name = gdf.x.to_frame(name=name) pdf_new_name = pdf.x.to_frame(name=name) assert_eq(gdf_new_name, pdf_new_name) assert gdf_new_name.columns[0] is name def test_dataframe_empty_sort_index(): pdf = pd.DataFrame({"x": []}) gdf = cudf.DataFrame.from_pandas(pdf) expect = pdf.sort_index() got = gdf.sort_index() assert_eq(expect, got) @pytest.mark.parametrize("axis", [0, 1, "index", "columns"]) @pytest.mark.parametrize("ascending", [True, False]) @pytest.mark.parametrize("ignore_index", [True, False]) @pytest.mark.parametrize("inplace", [True, False]) @pytest.mark.parametrize("na_position", ["first", "last"]) def test_dataframe_sort_index( axis, ascending, inplace, ignore_index, na_position ): pdf = pd.DataFrame( {"b": [1, 3, 2], "a": [1, 4, 3], "c": [4, 1, 5]}, index=[3.0, 1.0, np.nan], ) gdf = cudf.DataFrame.from_pandas(pdf) expected = pdf.sort_index( axis=axis, ascending=ascending, ignore_index=ignore_index, inplace=inplace, na_position=na_position, ) got = gdf.sort_index( axis=axis, ascending=ascending, ignore_index=ignore_index, inplace=inplace, na_position=na_position, ) if inplace is True: assert_eq(pdf, gdf) else: assert_eq(expected, got) @pytest.mark.parametrize("axis", [0, 1, "index", "columns"]) @pytest.mark.parametrize( "level", [ 0, "b", 1, ["b"], "a", ["a", "b"], ["b", "a"], [0, 1], [1, 0], [0, 2], None, ], ) @pytest.mark.parametrize("ascending", [True, False]) @pytest.mark.parametrize("ignore_index", [True, False]) @pytest.mark.parametrize("inplace", [True, False]) @pytest.mark.parametrize("na_position", ["first", "last"]) def test_dataframe_mulitindex_sort_index( axis, level, ascending, inplace, ignore_index, na_position ): pdf = pd.DataFrame( { "b": [1.0, 3.0, np.nan], "a": [1, 4, 3], 1: ["a", "b", "c"], "e": [3, 1, 4], "d": [1, 2, 8], } ).set_index(["b", "a", 1]) gdf = cudf.DataFrame.from_pandas(pdf) # ignore_index is supported in v.1.0 expected = pdf.sort_index( axis=axis, level=level, ascending=ascending, inplace=inplace, na_position=na_position, ) if ignore_index is True: expected = expected got = gdf.sort_index( axis=axis, level=level, ascending=ascending, ignore_index=ignore_index, inplace=inplace, na_position=na_position, ) if inplace is True: if ignore_index is True: pdf = pdf.reset_index(drop=True) assert_eq(pdf, gdf) else: if ignore_index is True: expected = expected.reset_index(drop=True) assert_eq(expected, got) @pytest.mark.parametrize("dtype", dtypes + ["category"]) def test_dataframe_0_row_dtype(dtype): if dtype == "category": data = pd.Series(["a", "b", "c", "d", "e"], dtype="category") else: data = np.array([1, 2, 3, 4, 5], dtype=dtype) expect = cudf.DataFrame() expect["x"] = data expect["y"] = data got = expect.head(0) for col_name in got.columns: assert expect[col_name].dtype == got[col_name].dtype expect = cudf.Series(data) got = expect.head(0) assert expect.dtype == got.dtype @pytest.mark.parametrize("nan_as_null", [True, False]) def test_series_list_nanasnull(nan_as_null): data = [1.0, 2.0, 3.0, np.nan, None] expect = pa.array(data, from_pandas=nan_as_null) got = cudf.Series(data, nan_as_null=nan_as_null).to_arrow() # Bug in Arrow 0.14.1 where NaNs aren't handled expect = expect.cast("int64", safe=False) got = got.cast("int64", safe=False) assert pa.Array.equals(expect, got) def test_column_assignment(): gdf = cudf.datasets.randomdata( nrows=20, dtypes={"a": "category", "b": int, "c": float} ) new_cols = ["q", "r", "s"] gdf.columns = new_cols assert list(gdf.columns) == new_cols def test_select_dtype(): gdf = cudf.datasets.randomdata( nrows=20, dtypes={"a": "category", "b": int, "c": float, "d": str} ) pdf = gdf.to_pandas() assert_eq(pdf.select_dtypes("float64"), gdf.select_dtypes("float64")) assert_eq(pdf.select_dtypes(np.float64), gdf.select_dtypes(np.float64)) assert_eq( pdf.select_dtypes(include=["float64"]), gdf.select_dtypes(include=["float64"]), ) assert_eq( pdf.select_dtypes(include=["object", "int", "category"]), gdf.select_dtypes(include=["object", "int", "category"]), ) assert_eq( pdf.select_dtypes(include=["int64", "float64"]), gdf.select_dtypes(include=["int64", "float64"]), ) assert_eq( pdf.select_dtypes(include=np.number), gdf.select_dtypes(include=np.number), ) assert_eq( pdf.select_dtypes(include=[np.int64, np.float64]), gdf.select_dtypes(include=[np.int64, np.float64]), ) assert_eq( pdf.select_dtypes(include=["category"]), gdf.select_dtypes(include=["category"]), ) assert_eq( pdf.select_dtypes(exclude=np.number), gdf.select_dtypes(exclude=np.number), ) assert_exceptions_equal( lfunc=pdf.select_dtypes, rfunc=gdf.select_dtypes, lfunc_args_and_kwargs=([], {"includes": ["Foo"]}), rfunc_args_and_kwargs=([], {"includes": ["Foo"]}), ) assert_exceptions_equal( lfunc=pdf.select_dtypes, rfunc=gdf.select_dtypes, lfunc_args_and_kwargs=( [], {"exclude": np.number, "include": np.number}, ), rfunc_args_and_kwargs=( [], {"exclude": np.number, "include": np.number}, ), ) gdf = cudf.DataFrame( {"A": [3, 4, 5], "C": [1, 2, 3], "D": ["a", "b", "c"]} ) pdf = gdf.to_pandas() assert_eq( pdf.select_dtypes(include=["object", "int", "category"]), gdf.select_dtypes(include=["object", "int", "category"]), ) assert_eq( pdf.select_dtypes(include=["object"], exclude=["category"]), gdf.select_dtypes(include=["object"], exclude=["category"]), ) gdf = cudf.DataFrame({"a": range(10), "b": range(10, 20)}) pdf = gdf.to_pandas() assert_eq( pdf.select_dtypes(include=["category"]), gdf.select_dtypes(include=["category"]), ) assert_eq( pdf.select_dtypes(include=["float"]), gdf.select_dtypes(include=["float"]), ) assert_eq( pdf.select_dtypes(include=["object"]), gdf.select_dtypes(include=["object"]), ) assert_eq( pdf.select_dtypes(include=["int"]), gdf.select_dtypes(include=["int"]) ) assert_eq( pdf.select_dtypes(exclude=["float"]), gdf.select_dtypes(exclude=["float"]), ) assert_eq( pdf.select_dtypes(exclude=["object"]), gdf.select_dtypes(exclude=["object"]), ) assert_eq( pdf.select_dtypes(include=["int"], exclude=["object"]), gdf.select_dtypes(include=["int"], exclude=["object"]), ) assert_exceptions_equal( lfunc=pdf.select_dtypes, rfunc=gdf.select_dtypes, ) gdf = cudf.DataFrame( {"a": cudf.Series([], dtype="int"), "b": cudf.Series([], dtype="str")} ) pdf = gdf.to_pandas() assert_eq( pdf.select_dtypes(exclude=["object"]), gdf.select_dtypes(exclude=["object"]), ) assert_eq( pdf.select_dtypes(include=["int"], exclude=["object"]), gdf.select_dtypes(include=["int"], exclude=["object"]), ) def test_select_dtype_datetime(): gdf = cudf.datasets.timeseries( start="2000-01-01", end="2000-01-02", freq="3600s", dtypes={"x": int} ) gdf = gdf.reset_index() pdf = gdf.to_pandas() assert_eq(pdf.select_dtypes("datetime64"), gdf.select_dtypes("datetime64")) assert_eq( pdf.select_dtypes(np.dtype("datetime64")), gdf.select_dtypes(np.dtype("datetime64")), ) assert_eq( pdf.select_dtypes(include="datetime64"), gdf.select_dtypes(include="datetime64"), ) def test_select_dtype_datetime_with_frequency(): gdf = cudf.datasets.timeseries( start="2000-01-01", end="2000-01-02", freq="3600s", dtypes={"x": int} ) gdf = gdf.reset_index() pdf = gdf.to_pandas() assert_exceptions_equal( pdf.select_dtypes, gdf.select_dtypes, (["datetime64[ms]"],), (["datetime64[ms]"],), ) def test_array_ufunc(): gdf = cudf.DataFrame({"x": [2, 3, 4.0], "y": [9.0, 2.5, 1.1]}) pdf = gdf.to_pandas() assert_eq(np.sqrt(gdf), np.sqrt(pdf)) assert_eq(np.sqrt(gdf.x), np.sqrt(pdf.x)) @pytest.mark.parametrize("nan_value", [-5, -5.0, 0, 5, 5.0, None, "pandas"]) def test_series_to_gpu_array(nan_value): s = cudf.Series([0, 1, None, 3]) np.testing.assert_array_equal( s.to_array(nan_value), s.to_gpu_array(nan_value).copy_to_host() ) def test_dataframe_describe_exclude(): np.random.seed(12) data_length = 10000 df = cudf.DataFrame() df["x"] = np.random.normal(10, 1, data_length) df["x"] = df.x.astype("int64") df["y"] = np.random.normal(10, 1, data_length) pdf = df.to_pandas() gdf_results = df.describe(exclude=["float"]) pdf_results = pdf.describe(exclude=["float"]) assert_eq(gdf_results, pdf_results) def test_dataframe_describe_include(): np.random.seed(12) data_length = 10000 df = cudf.DataFrame() df["x"] = np.random.normal(10, 1, data_length) df["x"] = df.x.astype("int64") df["y"] = np.random.normal(10, 1, data_length) pdf = df.to_pandas() gdf_results = df.describe(include=["int"]) pdf_results = pdf.describe(include=["int"]) assert_eq(gdf_results, pdf_results) def test_dataframe_describe_default(): np.random.seed(12) data_length = 10000 df = cudf.DataFrame() df["x"] = np.random.normal(10, 1, data_length) df["y"] = np.random.normal(10, 1, data_length) pdf = df.to_pandas() gdf_results = df.describe() pdf_results = pdf.describe() assert_eq(pdf_results, gdf_results) def test_series_describe_include_all(): np.random.seed(12) data_length = 10000 df = cudf.DataFrame() df["x"] = np.random.normal(10, 1, data_length) df["x"] = df.x.astype("int64") df["y"] = np.random.normal(10, 1, data_length) df["animal"] = np.random.choice(["dog", "cat", "bird"], data_length) pdf = df.to_pandas() gdf_results = df.describe(include="all") pdf_results = pdf.describe(include="all") assert_eq(gdf_results[["x", "y"]], pdf_results[["x", "y"]]) assert_eq(gdf_results.index, pdf_results.index) assert_eq(gdf_results.columns, pdf_results.columns) assert_eq( gdf_results[["animal"]].fillna(-1).astype("str"), pdf_results[["animal"]].fillna(-1).astype("str"), ) def test_dataframe_describe_percentiles(): np.random.seed(12) data_length = 10000 sample_percentiles = [0.0, 0.1, 0.33, 0.84, 0.4, 0.99] df = cudf.DataFrame() df["x"] = np.random.normal(10, 1, data_length) df["y"] = np.random.normal(10, 1, data_length) pdf = df.to_pandas() gdf_results = df.describe(percentiles=sample_percentiles) pdf_results = pdf.describe(percentiles=sample_percentiles) assert_eq(pdf_results, gdf_results) def test_get_numeric_data(): pdf = pd.DataFrame( {"x": [1, 2, 3], "y": [1.0, 2.0, 3.0], "z": ["a", "b", "c"]} ) gdf = cudf.from_pandas(pdf) assert_eq(pdf._get_numeric_data(), gdf._get_numeric_data()) @pytest.mark.parametrize("dtype", NUMERIC_TYPES) @pytest.mark.parametrize("period", [-1, -5, -10, -20, 0, 1, 5, 10, 20]) @pytest.mark.parametrize("data_empty", [False, True]) def test_shift(dtype, period, data_empty): if data_empty: data = None else: if dtype == np.int8: # to keep data in range data = gen_rand(dtype, 100000, low=-2, high=2) else: data = gen_rand(dtype, 100000) gdf = cudf.DataFrame({"a": cudf.Series(data, dtype=dtype)}) pdf = pd.DataFrame({"a": pd.Series(data, dtype=dtype)}) shifted_outcome = gdf.a.shift(period).fillna(0) expected_outcome = pdf.a.shift(period).fillna(0).astype(dtype) if data_empty: assert_eq(shifted_outcome, expected_outcome, check_index_type=False) else: assert_eq(shifted_outcome, expected_outcome) @pytest.mark.parametrize("dtype", NUMERIC_TYPES) @pytest.mark.parametrize("period", [-1, -5, -10, -20, 0, 1, 5, 10, 20]) @pytest.mark.parametrize("data_empty", [False, True]) def test_diff(dtype, period, data_empty): if data_empty: data = None else: if dtype == np.int8: # to keep data in range data = gen_rand(dtype, 100000, low=-2, high=2) else: data = gen_rand(dtype, 100000) gdf = cudf.DataFrame({"a": cudf.Series(data, dtype=dtype)}) pdf = pd.DataFrame({"a": pd.Series(data, dtype=dtype)}) expected_outcome = pdf.a.diff(period) diffed_outcome = gdf.a.diff(period).astype(expected_outcome.dtype) if data_empty: assert_eq(diffed_outcome, expected_outcome, check_index_type=False) else: assert_eq(diffed_outcome, expected_outcome) @pytest.mark.parametrize("df", _dataframe_na_data()) @pytest.mark.parametrize("nan_as_null", [True, False, None]) def test_dataframe_isnull_isna(df, nan_as_null): gdf = cudf.DataFrame.from_pandas(df, nan_as_null=nan_as_null) assert_eq(df.isnull(), gdf.isnull()) assert_eq(df.isna(), gdf.isna()) # Test individual columns for col in df: assert_eq(df[col].isnull(), gdf[col].isnull()) assert_eq(df[col].isna(), gdf[col].isna()) @pytest.mark.parametrize("df", _dataframe_na_data()) @pytest.mark.parametrize("nan_as_null", [True, False, None]) def test_dataframe_notna_notnull(df, nan_as_null): gdf = cudf.DataFrame.from_pandas(df, nan_as_null=nan_as_null) assert_eq(df.notnull(), gdf.notnull()) assert_eq(df.notna(), gdf.notna()) # Test individual columns for col in df: assert_eq(df[col].notnull(), gdf[col].notnull()) assert_eq(df[col].notna(), gdf[col].notna()) def test_ndim(): pdf = pd.DataFrame({"x": range(5), "y": range(5, 10)}) gdf = cudf.DataFrame.from_pandas(pdf) assert pdf.ndim == gdf.ndim assert pdf.x.ndim == gdf.x.ndim s = pd.Series(dtype="float64") gs = cudf.Series() assert s.ndim == gs.ndim @pytest.mark.parametrize( "decimals", [ -3, 0, 5, pd.Series([1, 4, 3, -6], index=["w", "x", "y", "z"]), cudf.Series([-4, -2, 12], index=["x", "y", "z"]), {"w": -1, "x": 15, "y": 2}, ], ) def test_dataframe_round(decimals): pdf = pd.DataFrame( { "w": np.arange(0.5, 10.5, 1), "x": np.random.normal(-100, 100, 10), "y": np.array( [ 14.123, 2.343, np.nan, 0.0, -8.302, np.nan, 94.313, -112.236, -8.029, np.nan, ] ), "z": np.repeat([-0.6459412758761901], 10), } ) gdf = cudf.DataFrame.from_pandas(pdf) if isinstance(decimals, cudf.Series): pdecimals = decimals.to_pandas() else: pdecimals = decimals result = gdf.round(decimals) expected = pdf.round(pdecimals) assert_eq(result, expected) # with nulls, maintaining existing null mask for c in pdf.columns: arr = pdf[c].to_numpy().astype("float64") # for pandas nulls arr.ravel()[np.random.choice(10, 5, replace=False)] = np.nan pdf[c] = gdf[c] = arr result = gdf.round(decimals) expected = pdf.round(pdecimals) assert_eq(result, expected) for c in gdf.columns: np.array_equal(gdf[c].nullmask.to_array(), result[c].to_array()) @pytest.mark.parametrize( "data", [ [0, 1, 2, 3], [-2, -1, 2, 3, 5], [-2, -1, 0, 3, 5], [True, False, False], [True], [False], [], [True, None, False], [True, True, None], [None, None], [[0, 5], [1, 6], [2, 7], [3, 8], [4, 9]], [[1, True], [2, False], [3, False]], pytest.param( [["a", True], ["b", False], ["c", False]], marks=[ pytest.mark.xfail( reason="NotImplementedError: all does not " "support columns of object dtype." ) ], ), ], ) def test_all(data): # Pandas treats `None` in object type columns as True for some reason, so # replacing with `False` if np.array(data).ndim <= 1: pdata = cudf.utils.utils._create_pandas_series(data=data).replace( [None], False ) gdata = cudf.Series.from_pandas(pdata) else: pdata = pd.DataFrame(data, columns=["a", "b"]).replace([None], False) gdata = cudf.DataFrame.from_pandas(pdata) # test bool_only if pdata["b"].dtype == "bool": got = gdata.all(bool_only=True) expected = pdata.all(bool_only=True) assert_eq(got, expected) else: with pytest.raises(NotImplementedError): gdata.all(bool_only=False) with pytest.raises(NotImplementedError): gdata.all(level="a") got = gdata.all() expected = pdata.all() assert_eq(got, expected) @pytest.mark.parametrize( "data", [ [0, 1, 2, 3], [-2, -1, 2, 3, 5], [-2, -1, 0, 3, 5], [0, 0, 0, 0, 0], [0, 0, None, 0], [True, False, False], [True], [False], [], [True, None, False], [True, True, None], [None, None], [[0, 5], [1, 6], [2, 7], [3, 8], [4, 9]], [[1, True], [2, False], [3, False]], pytest.param( [["a", True], ["b", False], ["c", False]], marks=[ pytest.mark.xfail( reason="NotImplementedError: any does not " "support columns of object dtype." ) ], ), ], ) @pytest.mark.parametrize("axis", [0, 1]) def test_any(data, axis): if np.array(data).ndim <= 1: pdata = cudf.utils.utils._create_pandas_series(data=data) gdata = cudf.Series.from_pandas(pdata) if axis == 1: with pytest.raises(NotImplementedError): gdata.any(axis=axis) else: got = gdata.any(axis=axis) expected = pdata.any(axis=axis) assert_eq(got, expected) else: pdata = pd.DataFrame(data, columns=["a", "b"]) gdata = cudf.DataFrame.from_pandas(pdata) # test bool_only if pdata["b"].dtype == "bool": got = gdata.any(bool_only=True) expected = pdata.any(bool_only=True) assert_eq(got, expected) else: with pytest.raises(NotImplementedError): gdata.any(bool_only=False) with pytest.raises(NotImplementedError): gdata.any(level="a") got = gdata.any(axis=axis) expected = pdata.any(axis=axis) assert_eq(got, expected) @pytest.mark.parametrize("axis", [0, 1]) def test_empty_dataframe_any(axis): pdf = pd.DataFrame({}, columns=["a", "b"]) gdf = cudf.DataFrame.from_pandas(pdf) got = gdf.any(axis=axis) expected = pdf.any(axis=axis) assert_eq(got, expected, check_index_type=False) @pytest.mark.parametrize("indexed", [False, True]) def test_dataframe_sizeof(indexed): rows = int(1e6) index = list(i for i in range(rows)) if indexed else None gdf = cudf.DataFrame({"A": [8] * rows, "B": [32] * rows}, index=index) for c in gdf._data.columns: assert gdf._index.__sizeof__() == gdf._index.__sizeof__() cols_sizeof = sum(c.__sizeof__() for c in gdf._data.columns) assert gdf.__sizeof__() == (gdf._index.__sizeof__() + cols_sizeof) @pytest.mark.parametrize("a", [[], ["123"]]) @pytest.mark.parametrize("b", ["123", ["123"]]) @pytest.mark.parametrize( "misc_data", ["123", ["123"] * 20, 123, [1, 2, 0.8, 0.9] * 50, 0.9, 0.00001], ) @pytest.mark.parametrize("non_list_data", [123, "abc", "zyx", "rapids", 0.8]) def test_create_dataframe_cols_empty_data(a, b, misc_data, non_list_data): expected = pd.DataFrame({"a": a}) actual = cudf.DataFrame.from_pandas(expected) expected["b"] = b actual["b"] = b assert_eq(actual, expected) expected = pd.DataFrame({"a": []}) actual = cudf.DataFrame.from_pandas(expected) expected["b"] = misc_data actual["b"] = misc_data assert_eq(actual, expected) expected = pd.DataFrame({"a": a}) actual = cudf.DataFrame.from_pandas(expected) expected["b"] = non_list_data actual["b"] = non_list_data assert_eq(actual, expected) def test_empty_dataframe_describe(): pdf = pd.DataFrame({"a": [], "b": []}) gdf = cudf.from_pandas(pdf) expected = pdf.describe() actual = gdf.describe() assert_eq(expected, actual) def test_as_column_types(): col = column.as_column(cudf.Series([])) assert_eq(col.dtype, np.dtype("float64")) gds = cudf.Series(col) pds = pd.Series(pd.Series([], dtype="float64")) assert_eq(pds, gds) col = column.as_column(cudf.Series([]), dtype="float32") assert_eq(col.dtype, np.dtype("float32")) gds = cudf.Series(col) pds = pd.Series(pd.Series([], dtype="float32")) assert_eq(pds, gds) col = column.as_column(cudf.Series([]), dtype="str") assert_eq(col.dtype, np.dtype("object")) gds = cudf.Series(col) pds = pd.Series(pd.Series([], dtype="str")) assert_eq(pds, gds) col = column.as_column(cudf.Series([]), dtype="object") assert_eq(col.dtype, np.dtype("object")) gds = cudf.Series(col) pds = pd.Series(pd.Series([], dtype="object")) assert_eq(pds, gds) pds = pd.Series(np.array([1, 2, 3]), dtype="float32") gds = cudf.Series(column.as_column(np.array([1, 2, 3]), dtype="float32")) assert_eq(pds, gds) pds = pd.Series([1, 2, 3], dtype="float32") gds = cudf.Series([1, 2, 3], dtype="float32") assert_eq(pds, gds) pds = pd.Series([], dtype="float64") gds = cudf.Series(column.as_column(pds)) assert_eq(pds, gds) pds = pd.Series([1, 2, 4], dtype="int64") gds = cudf.Series(column.as_column(cudf.Series([1, 2, 4]), dtype="int64")) assert_eq(pds, gds) pds = pd.Series([1.2, 18.0, 9.0], dtype="float32") gds = cudf.Series( column.as_column(cudf.Series([1.2, 18.0, 9.0]), dtype="float32") ) assert_eq(pds, gds) pds = pd.Series([1.2, 18.0, 9.0], dtype="str") gds = cudf.Series( column.as_column(cudf.Series([1.2, 18.0, 9.0]), dtype="str") ) assert_eq(pds, gds) pds = pd.Series(pd.Index(["1", "18", "9"]), dtype="int") gds = cudf.Series( cudf.core.index.StringIndex(["1", "18", "9"]), dtype="int" ) assert_eq(pds, gds) def test_one_row_head(): gdf = cudf.DataFrame({"name": ["carl"], "score": [100]}, index=[123]) pdf = gdf.to_pandas() head_gdf = gdf.head() head_pdf = pdf.head() assert_eq(head_pdf, head_gdf) @pytest.mark.parametrize("dtype", NUMERIC_TYPES) @pytest.mark.parametrize("as_dtype", NUMERIC_TYPES) def test_series_astype_numeric_to_numeric(dtype, as_dtype): psr = pd.Series([1, 2, 4, 3], dtype=dtype) gsr = cudf.from_pandas(psr) assert_eq(psr.astype(as_dtype), gsr.astype(as_dtype)) @pytest.mark.parametrize("dtype", NUMERIC_TYPES) @pytest.mark.parametrize("as_dtype", NUMERIC_TYPES) def test_series_astype_numeric_to_numeric_nulls(dtype, as_dtype): data = [1, 2, None, 3] sr = cudf.Series(data, dtype=dtype) got = sr.astype(as_dtype) expect = cudf.Series([1, 2, None, 3], dtype=as_dtype) assert_eq(expect, got) @pytest.mark.parametrize("dtype", NUMERIC_TYPES) @pytest.mark.parametrize( "as_dtype", [ "str", "category", "datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]", ], ) def test_series_astype_numeric_to_other(dtype, as_dtype): psr = pd.Series([1, 2, 3], dtype=dtype) gsr = cudf.from_pandas(psr) assert_eq(psr.astype(as_dtype), gsr.astype(as_dtype)) @pytest.mark.parametrize( "as_dtype", [ "str", "int32", "uint32", "float32", "category", "datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]", ], ) def test_series_astype_string_to_other(as_dtype): if "datetime64" in as_dtype: data = ["2001-01-01", "2002-02-02", "2000-01-05"] else: data = ["1", "2", "3"] psr = pd.Series(data) gsr = cudf.from_pandas(psr) assert_eq(psr.astype(as_dtype), gsr.astype(as_dtype)) @pytest.mark.parametrize( "as_dtype", [ "category", "datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]", ], ) def test_series_astype_datetime_to_other(as_dtype): data = ["2001-01-01", "2002-02-02", "2001-01-05"] psr = pd.Series(data) gsr = cudf.from_pandas(psr) assert_eq(psr.astype(as_dtype), gsr.astype(as_dtype)) @pytest.mark.parametrize( "inp", [ ("datetime64[ns]", "2011-01-01 00:00:00.000000000"), ("datetime64[us]", "2011-01-01 00:00:00.000000"), ("datetime64[ms]", "2011-01-01 00:00:00.000"), ("datetime64[s]", "2011-01-01 00:00:00"), ], ) def test_series_astype_datetime_to_string(inp): dtype, expect = inp base_date = "2011-01-01" sr = cudf.Series([base_date], dtype=dtype) got = sr.astype(str)[0] assert expect == got @pytest.mark.parametrize( "as_dtype", [ "int32", "uint32", "float32", "category", "datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]", "str", ], ) def test_series_astype_categorical_to_other(as_dtype): if "datetime64" in as_dtype: data = ["2001-01-01", "2002-02-02", "2000-01-05", "2001-01-01"] else: data = [1, 2, 3, 1] psr = pd.Series(data, dtype="category") gsr = cudf.from_pandas(psr) assert_eq(psr.astype(as_dtype), gsr.astype(as_dtype)) @pytest.mark.parametrize("ordered", [True, False]) def test_series_astype_to_categorical_ordered(ordered): psr = pd.Series([1, 2, 3, 1], dtype="category") gsr = cudf.from_pandas(psr) ordered_dtype_pd = pd.CategoricalDtype( categories=[1, 2, 3], ordered=ordered ) ordered_dtype_gd = cudf.CategoricalDtype.from_pandas(ordered_dtype_pd) assert_eq( psr.astype("int32").astype(ordered_dtype_pd).astype("int32"), gsr.astype("int32").astype(ordered_dtype_gd).astype("int32"), ) @pytest.mark.parametrize("ordered", [True, False]) def test_series_astype_cat_ordered_to_unordered(ordered): pd_dtype = pd.CategoricalDtype(categories=[1, 2, 3], ordered=ordered) pd_to_dtype = pd.CategoricalDtype( categories=[1, 2, 3], ordered=not ordered ) gd_dtype = cudf.CategoricalDtype.from_pandas(pd_dtype) gd_to_dtype = cudf.CategoricalDtype.from_pandas(pd_to_dtype) psr = pd.Series([1, 2, 3], dtype=pd_dtype) gsr = cudf.Series([1, 2, 3], dtype=gd_dtype) expect = psr.astype(pd_to_dtype) got = gsr.astype(gd_to_dtype) assert_eq(expect, got) def test_series_astype_null_cases(): data = [1, 2, None, 3] # numerical to other assert_eq(cudf.Series(data, dtype="str"), cudf.Series(data).astype("str")) assert_eq( cudf.Series(data, dtype="category"), cudf.Series(data).astype("category"), ) assert_eq( cudf.Series(data, dtype="float32"), cudf.Series(data, dtype="int32").astype("float32"), ) assert_eq( cudf.Series(data, dtype="float32"), cudf.Series(data, dtype="uint32").astype("float32"), ) assert_eq( cudf.Series(data, dtype="datetime64[ms]"), cudf.Series(data).astype("datetime64[ms]"), ) # categorical to other assert_eq( cudf.Series(data, dtype="str"), cudf.Series(data, dtype="category").astype("str"), ) assert_eq( cudf.Series(data, dtype="float32"), cudf.Series(data, dtype="category").astype("float32"), ) assert_eq( cudf.Series(data, dtype="datetime64[ms]"), cudf.Series(data, dtype="category").astype("datetime64[ms]"), ) # string to other assert_eq( cudf.Series([1, 2, None, 3], dtype="int32"), cudf.Series(["1", "2", None, "3"]).astype("int32"), ) assert_eq( cudf.Series( ["2001-01-01", "2001-02-01", None, "2001-03-01"], dtype="datetime64[ms]", ), cudf.Series(["2001-01-01", "2001-02-01", None, "2001-03-01"]).astype( "datetime64[ms]" ), ) assert_eq( cudf.Series(["a", "b", "c", None], dtype="category").to_pandas(), cudf.Series(["a", "b", "c", None]).astype("category").to_pandas(), ) # datetime to other data = [ "2001-01-01 00:00:00.000000", "2001-02-01 00:00:00.000000", None, "2001-03-01 00:00:00.000000", ] assert_eq( cudf.Series(data), cudf.Series(data, dtype="datetime64[us]").astype("str"), ) assert_eq( pd.Series(data, dtype="datetime64[ns]").astype("category"), cudf.from_pandas(pd.Series(data, dtype="datetime64[ns]")).astype( "category" ), ) def test_series_astype_null_categorical(): sr = cudf.Series([None, None, None], dtype="category") expect = cudf.Series([None, None, None], dtype="int32") got = sr.astype("int32") assert_eq(expect, got) @pytest.mark.parametrize( "data", [ ( pd.Series([3, 3.0]), pd.Series([2.3, 3.9]), pd.Series([1.5, 3.9]), pd.Series([1.0, 2]), ), [ pd.Series([3, 3.0]), pd.Series([2.3, 3.9]), pd.Series([1.5, 3.9]), pd.Series([1.0, 2]), ], ], ) def test_create_dataframe_from_list_like(data): pdf = pd.DataFrame(data, index=["count", "mean", "std", "min"]) gdf = cudf.DataFrame(data, index=["count", "mean", "std", "min"]) assert_eq(pdf, gdf) pdf = pd.DataFrame(data) gdf = cudf.DataFrame(data) assert_eq(pdf, gdf) def test_create_dataframe_column(): pdf = pd.DataFrame(columns=["a", "b", "c"], index=["A", "Z", "X"]) gdf = cudf.DataFrame(columns=["a", "b", "c"], index=["A", "Z", "X"]) assert_eq(pdf, gdf) pdf = pd.DataFrame( {"a": [1, 2, 3], "b": [2, 3, 5]}, columns=["a", "b", "c"], index=["A", "Z", "X"], ) gdf = cudf.DataFrame( {"a": [1, 2, 3], "b": [2, 3, 5]}, columns=["a", "b", "c"], index=["A", "Z", "X"], ) assert_eq(pdf, gdf) @pytest.mark.parametrize( "data", [ [1, 2, 4], [], [5.0, 7.0, 8.0], pd.Categorical(["a", "b", "c"]), ["m", "a", "d", "v"], ], ) def test_series_values_host_property(data): pds = cudf.utils.utils._create_pandas_series(data=data) gds = cudf.Series(data) np.testing.assert_array_equal(pds.values, gds.values_host) @pytest.mark.parametrize( "data", [ [1, 2, 4], [], [5.0, 7.0, 8.0], pytest.param( pd.Categorical(["a", "b", "c"]), marks=pytest.mark.xfail(raises=NotImplementedError), ), pytest.param( ["m", "a", "d", "v"], marks=pytest.mark.xfail(raises=NotImplementedError), ), ], ) def test_series_values_property(data): pds = cudf.utils.utils._create_pandas_series(data=data) gds = cudf.Series(data) gds_vals = gds.values assert isinstance(gds_vals, cupy.ndarray) np.testing.assert_array_equal(gds_vals.get(), pds.values) @pytest.mark.parametrize( "data", [ {"A": [1, 2, 3], "B": [4, 5, 6]}, {"A": [1.0, 2.0, 3.0], "B": [4.0, 5.0, 6.0]}, {"A": [1, 2, 3], "B": [1.0, 2.0, 3.0]}, {"A": np.float32(np.arange(3)), "B": np.float64(np.arange(3))}, pytest.param( {"A": [1, None, 3], "B": [1, 2, None]}, marks=pytest.mark.xfail( reason="Nulls not supported by as_gpu_matrix" ), ), pytest.param( {"A": [None, None, None], "B": [None, None, None]}, marks=pytest.mark.xfail( reason="Nulls not supported by as_gpu_matrix" ), ), pytest.param( {"A": [], "B": []}, marks=pytest.mark.xfail(reason="Requires at least 1 row"), ), pytest.param( {"A": [1, 2, 3], "B": ["a", "b", "c"]}, marks=pytest.mark.xfail( reason="str or categorical not supported by as_gpu_matrix" ), ), pytest.param( {"A": pd.Categorical(["a", "b", "c"]), "B": ["d", "e", "f"]}, marks=pytest.mark.xfail( reason="str or categorical not supported by as_gpu_matrix" ), ), ], ) def test_df_values_property(data): pdf = pd.DataFrame.from_dict(data) gdf = cudf.DataFrame.from_pandas(pdf) pmtr = pdf.values gmtr = gdf.values.get() np.testing.assert_array_equal(pmtr, gmtr) def test_value_counts(): pdf = pd.DataFrame( { "numeric": [1, 2, 3, 4, 5, 6, 1, 2, 4] * 10, "alpha": ["u", "h", "d", "a", "m", "u", "h", "d", "a"] * 10, } ) gdf = cudf.DataFrame( { "numeric": [1, 2, 3, 4, 5, 6, 1, 2, 4] * 10, "alpha": ["u", "h", "d", "a", "m", "u", "h", "d", "a"] * 10, } ) assert_eq( pdf.numeric.value_counts().sort_index(), gdf.numeric.value_counts().sort_index(), check_dtype=False, ) assert_eq( pdf.alpha.value_counts().sort_index(), gdf.alpha.value_counts().sort_index(), check_dtype=False, ) @pytest.mark.parametrize( "data", [ [], [0, 12, 14], [0, 14, 12, 12, 3, 10, 12, 14], np.random.randint(-100, 100, 200), pd.Series([0.0, 1.0, None, 10.0]), [None, None, None, None], [np.nan, None, -1, 2, 3], ], ) @pytest.mark.parametrize( "values", [ np.random.randint(-100, 100, 10), [], [np.nan, None, -1, 2, 3], [1.0, 12.0, None, None, 120], [0, 14, 12, 12, 3, 10, 12, 14, None], [None, None, None], ["0", "12", "14"], ["0", "12", "14", "a"], ], ) def test_isin_numeric(data, values): index = np.random.randint(0, 100, len(data)) psr = cudf.utils.utils._create_pandas_series(data=data, index=index) gsr = cudf.Series.from_pandas(psr, nan_as_null=False) expected = psr.isin(values) got = gsr.isin(values) assert_eq(got, expected) @pytest.mark.parametrize( "data", [ [], pd.Series( ["2018-01-01", "2019-04-03", None, "2019-12-30"], dtype="datetime64[ns]", ), pd.Series( [ "2018-01-01", "2019-04-03", None, "2019-12-30", "2018-01-01", "2018-01-01", ], dtype="datetime64[ns]", ), ], ) @pytest.mark.parametrize( "values", [ [], [1514764800000000000, 1577664000000000000], [ 1514764800000000000, 1577664000000000000, 1577664000000000000, 1577664000000000000, 1514764800000000000, ], ["2019-04-03", "2019-12-30", "2012-01-01"], [ "2012-01-01", "2012-01-01", "2012-01-01", "2019-04-03", "2019-12-30", "2012-01-01", ], ], ) def test_isin_datetime(data, values): psr = cudf.utils.utils._create_pandas_series(data=data) gsr = cudf.Series.from_pandas(psr) got = gsr.isin(values) expected = psr.isin(values) assert_eq(got, expected) @pytest.mark.parametrize( "data", [ [], pd.Series(["this", "is", None, "a", "test"]), pd.Series(["test", "this", "test", "is", None, "test", "a", "test"]), pd.Series(["0", "12", "14"]), ], ) @pytest.mark.parametrize( "values", [ [], ["this", "is"], [None, None, None], ["12", "14", "19"], pytest.param( [12, 14, 19], marks=pytest.mark.xfail( not PANDAS_GE_120, reason="pandas's failure here seems like a bug(in < 1.2) " "given the reverse succeeds", ), ), ["is", "this", "is", "this", "is"], ], ) def test_isin_string(data, values): psr = cudf.utils.utils._create_pandas_series(data=data) gsr = cudf.Series.from_pandas(psr) got = gsr.isin(values) expected = psr.isin(values) assert_eq(got, expected) @pytest.mark.parametrize( "data", [ [], pd.Series(["a", "b", "c", "c", "c", "d", "e"], dtype="category"), pd.Series(["a", "b", None, "c", "d", "e"], dtype="category"), pd.Series([0, 3, 10, 12], dtype="category"), pd.Series([0, 3, 10, 12, 0, 10, 3, 0, 0, 3, 3], dtype="category"), ], ) @pytest.mark.parametrize( "values", [ [], ["a", "b", None, "f", "words"], ["0", "12", None, "14"], [0, 10, 12, None, 39, 40, 1000], [0, 0, 0, 0, 3, 3, 3, None, 1, 2, 3], ], ) def test_isin_categorical(data, values): psr = cudf.utils.utils._create_pandas_series(data=data) gsr = cudf.Series.from_pandas(psr) got = gsr.isin(values) expected = psr.isin(values) assert_eq(got, expected) @pytest.mark.parametrize( "data", [ [], pd.Series( ["this", "is", None, "a", "test"], index=["a", "b", "c", "d", "e"] ), pd.Series([0, 15, 10], index=[0, None, 9]), pd.Series( range(25), index=pd.date_range( start="2019-01-01", end="2019-01-02", freq="H" ), ), ], ) @pytest.mark.parametrize( "values", [ [], ["this", "is"], [0, 19, 13], ["2019-01-01 04:00:00", "2019-01-01 06:00:00", "2018-03-02"], ], ) def test_isin_index(data, values): psr = cudf.utils.utils._create_pandas_series(data=data) gsr = cudf.Series.from_pandas(psr) got = gsr.index.isin(values) expected = psr.index.isin(values) assert_eq(got, expected) @pytest.mark.parametrize( "data", [ pd.MultiIndex.from_arrays( [[1, 2, 3], ["red", "blue", "green"]], names=("number", "color") ), pd.MultiIndex.from_arrays([[], []], names=("number", "color")), pd.MultiIndex.from_arrays( [[1, 2, 3, 10, 100], ["red", "blue", "green", "pink", "white"]], names=("number", "color"), ), ], ) @pytest.mark.parametrize( "values,level,err", [ (["red", "orange", "yellow"], "color", None), (["red", "white", "yellow"], "color", None), ([0, 1, 2, 10, 11, 15], "number", None), ([0, 1, 2, 10, 11, 15], None, TypeError), (pd.Series([0, 1, 2, 10, 11, 15]), None, TypeError), (pd.Index([0, 1, 2, 10, 11, 15]), None, TypeError), (pd.Index([0, 1, 2, 8, 11, 15]), "number", None), (pd.Index(["red", "white", "yellow"]), "color", None), ([(1, "red"), (3, "red")], None, None), (((1, "red"), (3, "red")), None, None), ( pd.MultiIndex.from_arrays( [[1, 2, 3], ["red", "blue", "green"]], names=("number", "color"), ), None, None, ), ( pd.MultiIndex.from_arrays([[], []], names=("number", "color")), None, None, ), ( pd.MultiIndex.from_arrays( [ [1, 2, 3, 10, 100], ["red", "blue", "green", "pink", "white"], ], names=("number", "color"), ), None, None, ), ], ) def test_isin_multiindex(data, values, level, err): pmdx = data gmdx = cudf.from_pandas(data) if err is None: expected = pmdx.isin(values, level=level) if isinstance(values, pd.MultiIndex): values = cudf.from_pandas(values) got = gmdx.isin(values, level=level) assert_eq(got, expected) else: assert_exceptions_equal( lfunc=pmdx.isin, rfunc=gmdx.isin, lfunc_args_and_kwargs=([values], {"level": level}), rfunc_args_and_kwargs=([values], {"level": level}), check_exception_type=False, expected_error_message=re.escape( "values need to be a Multi-Index or set/list-like tuple " "squences when `level=None`." ), ) @pytest.mark.parametrize( "data", [ pd.DataFrame( { "num_legs": [2, 4], "num_wings": [2, 0], "bird_cats": pd.Series( ["sparrow", "pigeon"], dtype="category", index=["falcon", "dog"], ), }, index=["falcon", "dog"], ), pd.DataFrame( {"num_legs": [8, 2], "num_wings": [0, 2]}, index=["spider", "falcon"], ), pd.DataFrame( { "num_legs": [8, 2, 1, 0, 2, 4, 5], "num_wings": [2, 0, 2, 1, 2, 4, -1], } ), ], ) @pytest.mark.parametrize( "values", [ [0, 2], {"num_wings": [0, 3]}, pd.DataFrame( {"num_legs": [8, 2], "num_wings": [0, 2]}, index=["spider", "falcon"], ), pd.DataFrame( { "num_legs": [2, 4], "num_wings": [2, 0], "bird_cats": pd.Series( ["sparrow", "pigeon"], dtype="category", index=["falcon", "dog"], ), }, index=["falcon", "dog"], ), ["sparrow", "pigeon"], pd.Series(["sparrow", "pigeon"], dtype="category"), pd.Series([1, 2, 3, 4, 5]), "abc", 123, ], ) def test_isin_dataframe(data, values): pdf = data gdf = cudf.from_pandas(pdf) if cudf.utils.dtypes.is_scalar(values): assert_exceptions_equal( lfunc=pdf.isin, rfunc=gdf.isin, lfunc_args_and_kwargs=([values],), rfunc_args_and_kwargs=([values],), ) else: try: expected = pdf.isin(values) except ValueError as e: if str(e) == "Lengths must match.": pytest.xfail( not PANDAS_GE_110, "https://github.com/pandas-dev/pandas/issues/34256", ) if isinstance(values, (pd.DataFrame, pd.Series)): values = cudf.from_pandas(values) got = gdf.isin(values) assert_eq(got, expected) def test_constructor_properties(): df = cudf.DataFrame() key1 = "a" key2 = "b" val1 = np.array([123], dtype=np.float64) val2 = np.array([321], dtype=np.float64) df[key1] = val1 df[key2] = val2 # Correct use of _constructor (for DataFrame) assert_eq(df, df._constructor({key1: val1, key2: val2})) # Correct use of _constructor (for cudf.Series) assert_eq(df[key1], df[key2]._constructor(val1, name=key1)) # Correct use of _constructor_sliced (for DataFrame) assert_eq(df[key1], df._constructor_sliced(val1, name=key1)) # Correct use of _constructor_expanddim (for cudf.Series) assert_eq(df, df[key2]._constructor_expanddim({key1: val1, key2: val2})) # Incorrect use of _constructor_sliced (Raises for cudf.Series) with pytest.raises(NotImplementedError): df[key1]._constructor_sliced # Incorrect use of _constructor_expanddim (Raises for DataFrame) with pytest.raises(NotImplementedError): df._constructor_expanddim @pytest.mark.parametrize("dtype", NUMERIC_TYPES) @pytest.mark.parametrize("as_dtype", ALL_TYPES) def test_df_astype_numeric_to_all(dtype, as_dtype): if "uint" in dtype: data = [1, 2, None, 4, 7] elif "int" in dtype or "longlong" in dtype: data = [1, 2, None, 4, -7] elif "float" in dtype: data = [1.0, 2.0, None, 4.0, np.nan, -7.0] gdf = cudf.DataFrame() gdf["foo"] = cudf.Series(data, dtype=dtype) gdf["bar"] = cudf.Series(data, dtype=dtype) insert_data = cudf.Series(data, dtype=dtype) expect = cudf.DataFrame() expect["foo"] = insert_data.astype(as_dtype) expect["bar"] = insert_data.astype(as_dtype) got = gdf.astype(as_dtype) assert_eq(expect, got) @pytest.mark.parametrize( "as_dtype", [ "int32", "float32", "category", "datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]", ], ) def test_df_astype_string_to_other(as_dtype): if "datetime64" in as_dtype: # change None to "NaT" after this issue is fixed: # https://github.com/rapidsai/cudf/issues/5117 data = ["2001-01-01", "2002-02-02", "2000-01-05", None] elif as_dtype == "int32": data = [1, 2, 3] elif as_dtype == "category": data = ["1", "2", "3", None] elif "float" in as_dtype: data = [1.0, 2.0, 3.0, np.nan] insert_data = cudf.Series.from_pandas(pd.Series(data, dtype="str")) expect_data = cudf.Series(data, dtype=as_dtype) gdf = cudf.DataFrame() expect = cudf.DataFrame() gdf["foo"] = insert_data gdf["bar"] = insert_data expect["foo"] = expect_data expect["bar"] = expect_data got = gdf.astype(as_dtype) assert_eq(expect, got) @pytest.mark.parametrize( "as_dtype", [ "int64", "datetime64[s]", "datetime64[us]", "datetime64[ns]", "str", "category", ], ) def test_df_astype_datetime_to_other(as_dtype): data = [ "1991-11-20 00:00:00.000", "2004-12-04 00:00:00.000", "2016-09-13 00:00:00.000", None, ] gdf = cudf.DataFrame() expect = cudf.DataFrame() gdf["foo"] = cudf.Series(data, dtype="datetime64[ms]") gdf["bar"] = cudf.Series(data, dtype="datetime64[ms]") if as_dtype == "int64": expect["foo"] = cudf.Series( [690595200000, 1102118400000, 1473724800000, None], dtype="int64" ) expect["bar"] = cudf.Series( [690595200000, 1102118400000, 1473724800000, None], dtype="int64" ) elif as_dtype == "str": expect["foo"] = cudf.Series(data, dtype="str") expect["bar"] = cudf.Series(data, dtype="str") elif as_dtype == "category": expect["foo"] = cudf.Series(gdf["foo"], dtype="category") expect["bar"] = cudf.Series(gdf["bar"], dtype="category") else: expect["foo"] = cudf.Series(data, dtype=as_dtype) expect["bar"] = cudf.Series(data, dtype=as_dtype) got = gdf.astype(as_dtype) assert_eq(expect, got) @pytest.mark.parametrize( "as_dtype", [ "int32", "float32", "category", "datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]", "str", ], ) def test_df_astype_categorical_to_other(as_dtype): if "datetime64" in as_dtype: data = ["2001-01-01", "2002-02-02", "2000-01-05", "2001-01-01"] else: data = [1, 2, 3, 1] psr = pd.Series(data, dtype="category") pdf = pd.DataFrame() pdf["foo"] = psr pdf["bar"] = psr gdf = cudf.DataFrame.from_pandas(pdf) assert_eq(pdf.astype(as_dtype), gdf.astype(as_dtype)) @pytest.mark.parametrize("ordered", [True, False]) def test_df_astype_to_categorical_ordered(ordered): psr = pd.Series([1, 2, 3, 1], dtype="category") pdf = pd.DataFrame() pdf["foo"] = psr pdf["bar"] = psr gdf = cudf.DataFrame.from_pandas(pdf) ordered_dtype_pd = pd.CategoricalDtype( categories=[1, 2, 3], ordered=ordered ) ordered_dtype_gd = cudf.CategoricalDtype.from_pandas(ordered_dtype_pd) assert_eq( pdf.astype(ordered_dtype_pd).astype("int32"), gdf.astype(ordered_dtype_gd).astype("int32"), ) @pytest.mark.parametrize( "dtype,args", [(dtype, {}) for dtype in ALL_TYPES] + [("category", {"ordered": True}), ("category", {"ordered": False})], ) def test_empty_df_astype(dtype, args): df = cudf.DataFrame() kwargs = {} kwargs.update(args) assert_eq(df, df.astype(dtype=dtype, **kwargs)) @pytest.mark.parametrize( "errors", [ pytest.param( "raise", marks=pytest.mark.xfail(reason="should raise error here") ), pytest.param("other", marks=pytest.mark.xfail(raises=ValueError)), "ignore", pytest.param( "warn", marks=pytest.mark.filterwarnings("ignore:Traceback") ), ], ) def test_series_astype_error_handling(errors): sr = cudf.Series(["random", "words"]) got = sr.astype("datetime64", errors=errors) assert_eq(sr, got) @pytest.mark.parametrize("dtype", ALL_TYPES) def test_df_constructor_dtype(dtype): if "datetime" in dtype: data = ["1991-11-20", "2004-12-04", "2016-09-13", None] elif dtype == "str": data = ["a", "b", "c", None] elif "float" in dtype: data = [1.0, 0.5, -1.1, np.nan, None] elif "bool" in dtype: data = [True, False, None] else: data = [1, 2, 3, None] sr = cudf.Series(data, dtype=dtype) expect = cudf.DataFrame() expect["foo"] = sr expect["bar"] = sr got = cudf.DataFrame({"foo": data, "bar": data}, dtype=dtype) assert_eq(expect, got) @pytest.mark.parametrize( "data", [ cudf.datasets.randomdata( nrows=10, dtypes={"a": "category", "b": int, "c": float, "d": int} ), cudf.datasets.randomdata( nrows=10, dtypes={"a": "category", "b": int, "c": float, "d": str} ), cudf.datasets.randomdata( nrows=10, dtypes={"a": bool, "b": int, "c": float, "d": str} ), cudf.DataFrame(), cudf.DataFrame({"a": [0, 1, 2], "b": [1, None, 3]}), cudf.DataFrame( { "a": [1, 2, 3, 4], "b": [7, np.NaN, 9, 10], "c": [np.NaN, np.NaN, np.NaN, np.NaN], "d": cudf.Series([None, None, None, None], dtype="int64"), "e": [100, None, 200, None], "f": cudf.Series([10, None, np.NaN, 11], nan_as_null=False), } ), cudf.DataFrame( { "a": [10, 11, 12, 13, 14, 15], "b": cudf.Series( [10, None, np.NaN, 2234, None, np.NaN], nan_as_null=False ), } ), ], ) @pytest.mark.parametrize( "op", ["max", "min", "sum", "product", "mean", "var", "std"] ) @pytest.mark.parametrize("skipna", [True, False]) def test_rowwise_ops(data, op, skipna): gdf = data pdf = gdf.to_pandas() if op in ("var", "std"): expected = getattr(pdf, op)(axis=1, ddof=0, skipna=skipna) got = getattr(gdf, op)(axis=1, ddof=0, skipna=skipna) else: expected = getattr(pdf, op)(axis=1, skipna=skipna) got = getattr(gdf, op)(axis=1, skipna=skipna) assert_eq(expected, got, check_exact=False) @pytest.mark.parametrize( "op", ["max", "min", "sum", "product", "mean", "var", "std"] ) def test_rowwise_ops_nullable_dtypes_all_null(op): gdf = cudf.DataFrame( { "a": [1, 2, 3, 4], "b": [7, np.NaN, 9, 10], "c": [np.NaN, np.NaN, np.NaN, np.NaN], "d": cudf.Series([None, None, None, None], dtype="int64"), "e": [100, None, 200, None], "f": cudf.Series([10, None, np.NaN, 11], nan_as_null=False), } ) expected = cudf.Series([None, None, None, None], dtype="float64") if op in ("var", "std"): got = getattr(gdf, op)(axis=1, ddof=0, skipna=False) else: got = getattr(gdf, op)(axis=1, skipna=False) assert_eq(got.null_count, expected.null_count) assert_eq(got, expected) @pytest.mark.parametrize( "op,expected", [ ( "max", cudf.Series( [10.0, None, np.NaN, 2234.0, None, np.NaN], dtype="float64", nan_as_null=False, ), ), ( "min", cudf.Series( [10.0, None, np.NaN, 13.0, None, np.NaN], dtype="float64", nan_as_null=False, ), ), ( "sum", cudf.Series( [20.0, None, np.NaN, 2247.0, None, np.NaN], dtype="float64", nan_as_null=False, ), ), ( "product", cudf.Series( [100.0, None, np.NaN, 29042.0, None, np.NaN], dtype="float64", nan_as_null=False, ), ), ( "mean", cudf.Series( [10.0, None, np.NaN, 1123.5, None, np.NaN], dtype="float64", nan_as_null=False, ), ), ( "var", cudf.Series( [0.0, None, np.NaN, 1233210.25, None, np.NaN], dtype="float64", nan_as_null=False, ), ), ( "std", cudf.Series( [0.0, None, np.NaN, 1110.5, None, np.NaN], dtype="float64", nan_as_null=False, ), ), ], ) def test_rowwise_ops_nullable_dtypes_partial_null(op, expected): gdf = cudf.DataFrame( { "a": [10, 11, 12, 13, 14, 15], "b": cudf.Series( [10, None, np.NaN, 2234, None, np.NaN], nan_as_null=False, ), } ) if op in ("var", "std"): got = getattr(gdf, op)(axis=1, ddof=0, skipna=False) else: got = getattr(gdf, op)(axis=1, skipna=False) assert_eq(got.null_count, expected.null_count) assert_eq(got, expected) @pytest.mark.parametrize( "op,expected", [ ( "max", cudf.Series([10, None, None, 2234, None, 453], dtype="int64",), ), ("min", cudf.Series([10, None, None, 13, None, 15], dtype="int64",),), ( "sum", cudf.Series([20, None, None, 2247, None, 468], dtype="int64",), ), ( "product", cudf.Series([100, None, None, 29042, None, 6795], dtype="int64",), ), ( "mean", cudf.Series( [10.0, None, None, 1123.5, None, 234.0], dtype="float32", ), ), ( "var", cudf.Series( [0.0, None, None, 1233210.25, None, 47961.0], dtype="float32", ), ), ( "std", cudf.Series( [0.0, None, None, 1110.5, None, 219.0], dtype="float32", ), ), ], ) def test_rowwise_ops_nullable_int_dtypes(op, expected): gdf = cudf.DataFrame( { "a": [10, 11, None, 13, None, 15], "b": cudf.Series( [10, None, 323, 2234, None, 453], nan_as_null=False, ), } ) if op in ("var", "std"): got = getattr(gdf, op)(axis=1, ddof=0, skipna=False) else: got = getattr(gdf, op)(axis=1, skipna=False) assert_eq(got.null_count, expected.null_count) assert_eq(got, expected) @pytest.mark.parametrize( "data", [ { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]" ), "t2": cudf.Series( ["1940-08-31 06:00:00", "2020-08-02 10:00:00"], dtype="<M8[ms]" ), }, { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]" ), "t2": cudf.Series( ["1940-08-31 06:00:00", "2020-08-02 10:00:00"], dtype="<M8[ns]" ), "t3": cudf.Series( ["1960-08-31 06:00:00", "2030-08-02 10:00:00"], dtype="<M8[s]" ), }, { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]" ), "t2": cudf.Series( ["1940-08-31 06:00:00", "2020-08-02 10:00:00"], dtype="<M8[us]" ), }, { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]" ), "t2": cudf.Series( ["1940-08-31 06:00:00", "2020-08-02 10:00:00"], dtype="<M8[ms]" ), "i1": cudf.Series([1001, 2002], dtype="int64"), }, { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]" ), "t2": cudf.Series(["1940-08-31 06:00:00", None], dtype="<M8[ms]"), "i1": cudf.Series([1001, 2002], dtype="int64"), }, { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]" ), "i1": cudf.Series([1001, 2002], dtype="int64"), "f1": cudf.Series([-100.001, 123.456], dtype="float64"), }, { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]" ), "i1": cudf.Series([1001, 2002], dtype="int64"), "f1": cudf.Series([-100.001, 123.456], dtype="float64"), "b1": cudf.Series([True, False], dtype="bool"), }, ], ) @pytest.mark.parametrize("op", ["max", "min"]) @pytest.mark.parametrize("skipna", [True, False]) def test_rowwise_ops_datetime_dtypes(data, op, skipna): gdf = cudf.DataFrame(data) pdf = gdf.to_pandas() got = getattr(gdf, op)(axis=1, skipna=skipna) expected = getattr(pdf, op)(axis=1, skipna=skipna) assert_eq(got, expected) @pytest.mark.parametrize( "data,op,skipna", [ ( { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]", ), "t2": cudf.Series( ["1940-08-31 06:00:00", None], dtype="<M8[ms]" ), }, "max", True, ), ( { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]", ), "t2": cudf.Series( ["1940-08-31 06:00:00", None], dtype="<M8[ms]" ), }, "min", False, ), ( { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]", ), "t2": cudf.Series( ["1940-08-31 06:00:00", None], dtype="<M8[ms]" ), }, "min", True, ), ], ) def test_rowwise_ops_datetime_dtypes_2(data, op, skipna): gdf = cudf.DataFrame(data) pdf = gdf.to_pandas() got = getattr(gdf, op)(axis=1, skipna=skipna) expected = getattr(pdf, op)(axis=1, skipna=skipna) assert_eq(got, expected) @pytest.mark.parametrize( "data", [ ( { "t1": pd.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ns]", ), "t2": pd.Series( ["1940-08-31 06:00:00", pd.NaT], dtype="<M8[ns]" ), } ) ], ) def test_rowwise_ops_datetime_dtypes_pdbug(data): pdf = pd.DataFrame(data) gdf = cudf.from_pandas(pdf) expected = pdf.max(axis=1, skipna=False) got = gdf.max(axis=1, skipna=False) if PANDAS_GE_120: assert_eq(got, expected) else: # PANDAS BUG: https://github.com/pandas-dev/pandas/issues/36907 with pytest.raises(AssertionError, match="numpy array are different"): assert_eq(got, expected) @pytest.mark.parametrize( "data", [ [5.0, 6.0, 7.0], "single value", np.array(1, dtype="int64"), np.array(0.6273643, dtype="float64"), ], ) def test_insert(data): pdf = pd.DataFrame.from_dict({"A": [1, 2, 3], "B": ["a", "b", "c"]}) gdf = cudf.DataFrame.from_pandas(pdf) # insertion by index pdf.insert(0, "foo", data) gdf.insert(0, "foo", data) assert_eq(pdf, gdf) pdf.insert(3, "bar", data) gdf.insert(3, "bar", data) assert_eq(pdf, gdf) pdf.insert(1, "baz", data) gdf.insert(1, "baz", data) assert_eq(pdf, gdf) # pandas insert doesn't support negative indexing pdf.insert(len(pdf.columns), "qux", data) gdf.insert(-1, "qux", data) assert_eq(pdf, gdf) def test_cov(): gdf = cudf.datasets.randomdata(10) pdf = gdf.to_pandas() assert_eq(pdf.cov(), gdf.cov()) @pytest.mark.xfail(reason="cupy-based cov does not support nulls") def test_cov_nans(): pdf = pd.DataFrame() pdf["a"] = [None, None, None, 2.00758632, None] pdf["b"] = [0.36403686, None, None, None, None] pdf["c"] = [None, None, None, 0.64882227, None] pdf["d"] = [None, -1.46863125, None, 1.22477948, -0.06031689] gdf = cudf.from_pandas(pdf) assert_eq(pdf.cov(), gdf.cov()) @pytest.mark.parametrize( "gsr", [ cudf.Series([4, 2, 3]), cudf.Series([4, 2, 3], index=["a", "b", "c"]), cudf.Series([4, 2, 3], index=["a", "b", "d"]), cudf.Series([4, 2], index=["a", "b"]), cudf.Series([4, 2, 3], index=cudf.core.index.RangeIndex(0, 3)), pytest.param( cudf.Series([4, 2, 3, 4, 5], index=["a", "b", "d", "0", "12"]), marks=pytest.mark.xfail, ), ], ) @pytest.mark.parametrize("colnames", [["a", "b", "c"], [0, 1, 2]]) @pytest.mark.parametrize( "op", [ operator.add, operator.mul, operator.floordiv, operator.truediv, operator.mod, operator.pow, operator.eq, operator.lt, operator.le, operator.gt, operator.ge, operator.ne, ], ) def test_df_sr_binop(gsr, colnames, op): data = [[3.0, 2.0, 5.0], [3.0, None, 5.0], [6.0, 7.0, np.nan]] data = dict(zip(colnames, data)) gsr = gsr.astype("float64") gdf = cudf.DataFrame(data) pdf = gdf.to_pandas(nullable=True) psr = gsr.to_pandas(nullable=True) expect = op(pdf, psr) got = op(gdf, gsr).to_pandas(nullable=True) assert_eq(expect, got, check_dtype=False) expect = op(psr, pdf) got = op(gsr, gdf).to_pandas(nullable=True) assert_eq(expect, got, check_dtype=False) @pytest.mark.parametrize( "op", [ operator.add, operator.mul, operator.floordiv, operator.truediv, operator.mod, operator.pow, # comparison ops will temporarily XFAIL # see PR https://github.com/rapidsai/cudf/pull/7491 pytest.param(operator.eq, marks=pytest.mark.xfail()), pytest.param(operator.lt, marks=pytest.mark.xfail()), pytest.param(operator.le, marks=pytest.mark.xfail()), pytest.param(operator.gt, marks=pytest.mark.xfail()), pytest.param(operator.ge, marks=pytest.mark.xfail()), pytest.param(operator.ne, marks=pytest.mark.xfail()), ], ) @pytest.mark.parametrize( "gsr", [cudf.Series([1, 2, 3, 4, 5], index=["a", "b", "d", "0", "12"])] ) def test_df_sr_binop_col_order(gsr, op): colnames = [0, 1, 2] data = [[0, 2, 5], [3, None, 5], [6, 7, np.nan]] data = dict(zip(colnames, data)) gdf = cudf.DataFrame(data) pdf = pd.DataFrame.from_dict(data) psr = gsr.to_pandas() expect = op(pdf, psr).astype("float") out = op(gdf, gsr).astype("float") got = out[expect.columns] assert_eq(expect, got) @pytest.mark.parametrize("set_index", [None, "A", "C", "D"]) @pytest.mark.parametrize("index", [True, False]) @pytest.mark.parametrize("deep", [True, False]) def test_memory_usage(deep, index, set_index): # Testing numerical/datetime by comparing with pandas # (string and categorical columns will be different) rows = int(100) df = pd.DataFrame( { "A": np.arange(rows, dtype="int64"), "B": np.arange(rows, dtype="int32"), "C": np.arange(rows, dtype="float64"), } ) df["D"] = pd.to_datetime(df.A) if set_index: df = df.set_index(set_index) gdf = cudf.from_pandas(df) if index and set_index is None: # Special Case: Assume RangeIndex size == 0 assert gdf.index.memory_usage(deep=deep) == 0 else: # Check for Series only assert df["B"].memory_usage(index=index, deep=deep) == gdf[ "B" ].memory_usage(index=index, deep=deep) # Check for entire DataFrame assert_eq( df.memory_usage(index=index, deep=deep).sort_index(), gdf.memory_usage(index=index, deep=deep).sort_index(), ) @pytest.mark.xfail def test_memory_usage_string(): rows = int(100) df = pd.DataFrame( { "A": np.arange(rows, dtype="int32"), "B": np.random.choice(["apple", "banana", "orange"], rows), } ) gdf = cudf.from_pandas(df) # Check deep=False (should match pandas) assert gdf.B.memory_usage(deep=False, index=False) == df.B.memory_usage( deep=False, index=False ) # Check string column assert gdf.B.memory_usage(deep=True, index=False) == df.B.memory_usage( deep=True, index=False ) # Check string index assert gdf.set_index("B").index.memory_usage( deep=True ) == df.B.memory_usage(deep=True, index=False) def test_memory_usage_cat(): rows = int(100) df = pd.DataFrame( { "A": np.arange(rows, dtype="int32"), "B": np.random.choice(["apple", "banana", "orange"], rows), } ) df["B"] = df.B.astype("category") gdf = cudf.from_pandas(df) expected = ( gdf.B._column.cat().categories.__sizeof__() + gdf.B._column.cat().codes.__sizeof__() ) # Check cat column assert gdf.B.memory_usage(deep=True, index=False) == expected # Check cat index assert gdf.set_index("B").index.memory_usage(deep=True) == expected def test_memory_usage_list(): df = cudf.DataFrame({"A": [[0, 1, 2, 3], [4, 5, 6], [7, 8], [9]]}) expected = ( df.A._column.offsets._memory_usage() + df.A._column.elements._memory_usage() ) assert expected == df.A.memory_usage() @pytest.mark.xfail def test_memory_usage_multi(): rows = int(100) deep = True df = pd.DataFrame( { "A": np.arange(rows, dtype="int32"), "B": np.random.choice(np.arange(3, dtype="int64"), rows), "C": np.random.choice(np.arange(3, dtype="float64"), rows), } ).set_index(["B", "C"]) gdf = cudf.from_pandas(df) # Assume MultiIndex memory footprint is just that # of the underlying columns, levels, and codes expect = rows * 16 # Source Columns expect += rows * 16 # Codes expect += 3 * 8 # Level 0 expect += 3 * 8 # Level 1 assert expect == gdf.index.memory_usage(deep=deep) @pytest.mark.parametrize( "list_input", [ pytest.param([1, 2, 3, 4], id="smaller"), pytest.param([1, 2, 3, 4, 5, 6], id="larger"), ], ) @pytest.mark.parametrize( "key", [ pytest.param("list_test", id="new_column"), pytest.param("id", id="existing_column"), ], ) def test_setitem_diff_size_list(list_input, key): gdf = cudf.datasets.randomdata(5) with pytest.raises( ValueError, match=("All columns must be of equal length") ): gdf[key] = list_input @pytest.mark.parametrize( "series_input", [ pytest.param(cudf.Series([1, 2, 3, 4]), id="smaller_cudf"), pytest.param(cudf.Series([1, 2, 3, 4, 5, 6]), id="larger_cudf"), pytest.param(cudf.Series([1, 2, 3], index=[4, 5, 6]), id="index_cudf"), pytest.param(pd.Series([1, 2, 3, 4]), id="smaller_pandas"), pytest.param(pd.Series([1, 2, 3, 4, 5, 6]), id="larger_pandas"), pytest.param(pd.Series([1, 2, 3], index=[4, 5, 6]), id="index_pandas"), ], ) @pytest.mark.parametrize( "key", [ pytest.param("list_test", id="new_column"), pytest.param("id", id="existing_column"), ], ) def test_setitem_diff_size_series(series_input, key): gdf = cudf.datasets.randomdata(5) pdf = gdf.to_pandas() pandas_input = series_input if isinstance(pandas_input, cudf.Series): pandas_input = pandas_input.to_pandas() expect = pdf expect[key] = pandas_input got = gdf got[key] = series_input # Pandas uses NaN and typecasts to float64 if there's missing values on # alignment, so need to typecast to float64 for equality comparison expect = expect.astype("float64") got = got.astype("float64") assert_eq(expect, got) def test_tupleize_cols_False_set(): pdf = pd.DataFrame() gdf = cudf.DataFrame() pdf[("a", "b")] = [1] gdf[("a", "b")] = [1] assert_eq(pdf, gdf) assert_eq(pdf.columns, gdf.columns) def test_init_multiindex_from_dict(): pdf = pd.DataFrame({("a", "b"): [1]}) gdf = cudf.DataFrame({("a", "b"): [1]}) assert_eq(pdf, gdf) assert_eq(pdf.columns, gdf.columns) def test_change_column_dtype_in_empty(): pdf = pd.DataFrame({"a": [], "b": []}) gdf = cudf.from_pandas(pdf) assert_eq(pdf, gdf) pdf["b"] = pdf["b"].astype("int64") gdf["b"] = gdf["b"].astype("int64") assert_eq(pdf, gdf) def test_dataframe_from_table_empty_index(): df = cudf.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]}) odict = df._data tbl = cudf._lib.table.Table(odict) result = cudf.DataFrame._from_table(tbl) # noqa: F841 @pytest.mark.parametrize("dtype", ["int64", "str"]) def test_dataframe_from_dictionary_series_same_name_index(dtype): pd_idx1 = pd.Index([1, 2, 0], name="test_index").astype(dtype) pd_idx2 = pd.Index([2, 0, 1], name="test_index").astype(dtype) pd_series1 = pd.Series([1, 2, 3], index=pd_idx1) pd_series2 = pd.Series([1, 2, 3], index=pd_idx2) gd_idx1 = cudf.from_pandas(pd_idx1) gd_idx2 = cudf.from_pandas(pd_idx2) gd_series1 = cudf.Series([1, 2, 3], index=gd_idx1) gd_series2 = cudf.Series([1, 2, 3], index=gd_idx2) expect = pd.DataFrame({"a": pd_series1, "b": pd_series2}) got = cudf.DataFrame({"a": gd_series1, "b": gd_series2}) if dtype == "str": # Pandas actually loses its index name erroneously here... expect.index.name = "test_index" assert_eq(expect, got) assert expect.index.names == got.index.names @pytest.mark.parametrize( "arg", [slice(2, 8, 3), slice(1, 20, 4), slice(-2, -6, -2)] ) def test_dataframe_strided_slice(arg): mul = pd.DataFrame( { "Index": [1, 2, 3, 4, 5, 6, 7, 8, 9], "AlphaIndex": ["a", "b", "c", "d", "e", "f", "g", "h", "i"], } ) pdf = pd.DataFrame( {"Val": [10, 9, 8, 7, 6, 5, 4, 3, 2]}, index=pd.MultiIndex.from_frame(mul), ) gdf = cudf.DataFrame.from_pandas(pdf) expect = pdf[arg] got = gdf[arg] assert_eq(expect, got) @pytest.mark.parametrize( "data,condition,other,error", [ (pd.Series(range(5)), pd.Series(range(5)) > 0, None, None), (pd.Series(range(5)), pd.Series(range(5)) > 1, None, None), (pd.Series(range(5)), pd.Series(range(5)) > 1, 10, None), ( pd.Series(range(5)), pd.Series(range(5)) > 1, pd.Series(range(5, 10)), None, ), ( pd.DataFrame(np.arange(10).reshape(-1, 2), columns=["A", "B"]), ( pd.DataFrame(np.arange(10).reshape(-1, 2), columns=["A", "B"]) % 3 ) == 0, -pd.DataFrame(np.arange(10).reshape(-1, 2), columns=["A", "B"]), None, ), ( pd.DataFrame({"a": [1, 2, np.nan], "b": [4, np.nan, 6]}), pd.DataFrame({"a": [1, 2, np.nan], "b": [4, np.nan, 6]}) == 4, None, None, ), ( pd.DataFrame({"a": [1, 2, np.nan], "b": [4, np.nan, 6]}), pd.DataFrame({"a": [1, 2, np.nan], "b": [4, np.nan, 6]}) != 4, None, None, ), ( pd.DataFrame({"p": [-2, 3, -4, -79], "k": [9, 10, 11, 12]}), [True, True, True], None, ValueError, ), ( pd.DataFrame({"p": [-2, 3, -4, -79], "k": [9, 10, 11, 12]}), [True, True, True, False], None, ValueError, ), ( pd.DataFrame({"p": [-2, 3, -4, -79], "k": [9, 10, 11, 12]}), [[True, True, True, False], [True, True, True, False]], None, ValueError, ), ( pd.DataFrame({"p": [-2, 3, -4, -79], "k": [9, 10, 11, 12]}), [[True, True], [False, True], [True, False], [False, True]], None, None, ), ( pd.DataFrame({"p": [-2, 3, -4, -79], "k": [9, 10, 11, 12]}), cuda.to_device( np.array( [[True, True], [False, True], [True, False], [False, True]] ) ), None, None, ), ( pd.DataFrame({"p": [-2, 3, -4, -79], "k": [9, 10, 11, 12]}), cupy.array( [[True, True], [False, True], [True, False], [False, True]] ), 17, None, ), ( pd.DataFrame({"p": [-2, 3, -4, -79], "k": [9, 10, 11, 12]}), [[True, True], [False, True], [True, False], [False, True]], 17, None, ), ( pd.DataFrame({"p": [-2, 3, -4, -79], "k": [9, 10, 11, 12]}), [ [True, True, False, True], [True, True, False, True], [True, True, False, True], [True, True, False, True], ], None, ValueError, ), ( pd.Series([1, 2, np.nan]), pd.Series([1, 2, np.nan]) == 4, None, None, ), ( pd.Series([1, 2, np.nan]), pd.Series([1, 2, np.nan]) != 4, None, None, ), ( pd.Series([4, np.nan, 6]), pd.Series([4, np.nan, 6]) == 4, None, None, ), ( pd.Series([4, np.nan, 6]), pd.Series([4, np.nan, 6]) != 4, None, None, ), ( pd.Series([4, np.nan, 6], dtype="category"), pd.Series([4, np.nan, 6], dtype="category") != 4, None, None, ), ( pd.Series(["a", "b", "b", "d", "c", "s"], dtype="category"), pd.Series(["a", "b", "b", "d", "c", "s"], dtype="category") == "b", None, None, ), ( pd.Series(["a", "b", "b", "d", "c", "s"], dtype="category"), pd.Series(["a", "b", "b", "d", "c", "s"], dtype="category") == "b", "s", None, ), ( pd.Series([1, 2, 3, 2, 5]), pd.Series([1, 2, 3, 2, 5]) == 2, pd.DataFrame( { "a": pd.Series([1, 2, 3, 2, 5]), "b": pd.Series([1, 2, 3, 2, 5]), } ), NotImplementedError, ), ], ) @pytest.mark.parametrize("inplace", [True, False]) def test_df_sr_mask_where(data, condition, other, error, inplace): ps_where = data gs_where = cudf.from_pandas(data) ps_mask = ps_where.copy(deep=True) gs_mask = gs_where.copy(deep=True) if hasattr(condition, "__cuda_array_interface__"): if type(condition).__module__.split(".")[0] == "cupy": ps_condition = cupy.asnumpy(condition) else: ps_condition = np.array(condition).astype("bool") else: ps_condition = condition if type(condition).__module__.split(".")[0] == "pandas": gs_condition = cudf.from_pandas(condition) else: gs_condition = condition ps_other = other if type(other).__module__.split(".")[0] == "pandas": gs_other = cudf.from_pandas(other) else: gs_other = other if error is None: expect_where = ps_where.where( ps_condition, other=ps_other, inplace=inplace ) got_where = gs_where.where( gs_condition, other=gs_other, inplace=inplace ) expect_mask = ps_mask.mask( ps_condition, other=ps_other, inplace=inplace ) got_mask = gs_mask.mask(gs_condition, other=gs_other, inplace=inplace) if inplace: expect_where = ps_where got_where = gs_where expect_mask = ps_mask got_mask = gs_mask if pd.api.types.is_categorical_dtype(expect_where): np.testing.assert_array_equal( expect_where.cat.codes, got_where.cat.codes.astype(expect_where.cat.codes.dtype) .fillna(-1) .to_array(), ) assert_eq(expect_where.cat.categories, got_where.cat.categories) np.testing.assert_array_equal( expect_mask.cat.codes, got_mask.cat.codes.astype(expect_mask.cat.codes.dtype) .fillna(-1) .to_array(), ) assert_eq(expect_mask.cat.categories, got_mask.cat.categories) else: assert_eq( expect_where.fillna(-1), got_where.fillna(-1), check_dtype=False, ) assert_eq( expect_mask.fillna(-1), got_mask.fillna(-1), check_dtype=False ) else: assert_exceptions_equal( lfunc=ps_where.where, rfunc=gs_where.where, lfunc_args_and_kwargs=( [ps_condition], {"other": ps_other, "inplace": inplace}, ), rfunc_args_and_kwargs=( [gs_condition], {"other": gs_other, "inplace": inplace}, ), compare_error_message=False if error is NotImplementedError else True, ) assert_exceptions_equal( lfunc=ps_mask.mask, rfunc=gs_mask.mask, lfunc_args_and_kwargs=( [ps_condition], {"other": ps_other, "inplace": inplace}, ), rfunc_args_and_kwargs=( [gs_condition], {"other": gs_other, "inplace": inplace}, ), compare_error_message=False, ) @pytest.mark.parametrize( "data,condition,other,has_cat", [ ( pd.DataFrame( { "a": pd.Series(["a", "a", "b", "c", "a", "d", "d", "a"]), "b": pd.Series(["o", "p", "q", "e", "p", "p", "a", "a"]), } ), pd.DataFrame( { "a": pd.Series(["a", "a", "b", "c", "a", "d", "d", "a"]), "b": pd.Series(["o", "p", "q", "e", "p", "p", "a", "a"]), } ) != "a", None, None, ), ( pd.DataFrame( { "a": pd.Series( ["a", "a", "b", "c", "a", "d", "d", "a"], dtype="category", ), "b": pd.Series( ["o", "p", "q", "e", "p", "p", "a", "a"], dtype="category", ), } ), pd.DataFrame( { "a": pd.Series( ["a", "a", "b", "c", "a", "d", "d", "a"], dtype="category", ), "b": pd.Series( ["o", "p", "q", "e", "p", "p", "a", "a"], dtype="category", ), } ) != "a", None, True, ), ( pd.DataFrame( { "a": pd.Series( ["a", "a", "b", "c", "a", "d", "d", "a"], dtype="category", ), "b": pd.Series( ["o", "p", "q", "e", "p", "p", "a", "a"], dtype="category", ), } ), pd.DataFrame( { "a": pd.Series( ["a", "a", "b", "c", "a", "d", "d", "a"], dtype="category", ), "b": pd.Series( ["o", "p", "q", "e", "p", "p", "a", "a"], dtype="category", ), } ) == "a", None, True, ), ( pd.DataFrame( { "a": pd.Series( ["a", "a", "b", "c", "a", "d", "d", "a"], dtype="category", ), "b": pd.Series( ["o", "p", "q", "e", "p", "p", "a", "a"], dtype="category", ), } ), pd.DataFrame( { "a": pd.Series( ["a", "a", "b", "c", "a", "d", "d", "a"], dtype="category", ), "b": pd.Series( ["o", "p", "q", "e", "p", "p", "a", "a"], dtype="category", ), } ) != "a", "a", True, ), ( pd.DataFrame( { "a": pd.Series( ["a", "a", "b", "c", "a", "d", "d", "a"], dtype="category", ), "b": pd.Series( ["o", "p", "q", "e", "p", "p", "a", "a"], dtype="category", ), } ), pd.DataFrame( { "a": pd.Series( ["a", "a", "b", "c", "a", "d", "d", "a"], dtype="category", ), "b": pd.Series( ["o", "p", "q", "e", "p", "p", "a", "a"], dtype="category", ), } ) == "a", "a", True, ), ], ) def test_df_string_cat_types_mask_where(data, condition, other, has_cat): ps = data gs = cudf.from_pandas(data) ps_condition = condition if type(condition).__module__.split(".")[0] == "pandas": gs_condition = cudf.from_pandas(condition) else: gs_condition = condition ps_other = other if type(other).__module__.split(".")[0] == "pandas": gs_other = cudf.from_pandas(other) else: gs_other = other expect_where = ps.where(ps_condition, other=ps_other) got_where = gs.where(gs_condition, other=gs_other) expect_mask = ps.mask(ps_condition, other=ps_other) got_mask = gs.mask(gs_condition, other=gs_other) if has_cat is None: assert_eq( expect_where.fillna(-1).astype("str"), got_where.fillna(-1), check_dtype=False, ) assert_eq( expect_mask.fillna(-1).astype("str"), got_mask.fillna(-1), check_dtype=False, ) else: assert_eq(expect_where, got_where, check_dtype=False) assert_eq(expect_mask, got_mask, check_dtype=False) @pytest.mark.parametrize( "data,expected_upcast_type,error", [ ( pd.Series([random.random() for _ in range(10)], dtype="float32"), np.dtype("float32"), None, ), ( pd.Series([random.random() for _ in range(10)], dtype="float16"), np.dtype("float32"), None, ), ( pd.Series([random.random() for _ in range(10)], dtype="float64"), np.dtype("float64"), None, ), ( pd.Series([random.random() for _ in range(10)], dtype="float128"), None, NotImplementedError, ), ], ) def test_from_pandas_unsupported_types(data, expected_upcast_type, error): pdf = pd.DataFrame({"one_col": data}) if error == NotImplementedError: with pytest.raises(error): cudf.from_pandas(data) with pytest.raises(error): cudf.Series(data) with pytest.raises(error): cudf.from_pandas(pdf) with pytest.raises(error): cudf.DataFrame(pdf) else: df = cudf.from_pandas(data) assert_eq(data, df, check_dtype=False) assert df.dtype == expected_upcast_type df = cudf.Series(data) assert_eq(data, df, check_dtype=False) assert df.dtype == expected_upcast_type df = cudf.from_pandas(pdf) assert_eq(pdf, df, check_dtype=False) assert df["one_col"].dtype == expected_upcast_type df = cudf.DataFrame(pdf) assert_eq(pdf, df, check_dtype=False) assert df["one_col"].dtype == expected_upcast_type @pytest.mark.parametrize("nan_as_null", [True, False]) @pytest.mark.parametrize("index", [None, "a", ["a", "b"]]) def test_from_pandas_nan_as_null(nan_as_null, index): data = [np.nan, 2.0, 3.0] if index is None: pdf = pd.DataFrame({"a": data, "b": data}) expected = cudf.DataFrame( { "a": column.as_column(data, nan_as_null=nan_as_null), "b": column.as_column(data, nan_as_null=nan_as_null), } ) else: pdf = pd.DataFrame({"a": data, "b": data}).set_index(index) expected = cudf.DataFrame( { "a": column.as_column(data, nan_as_null=nan_as_null), "b": column.as_column(data, nan_as_null=nan_as_null), } ) expected = cudf.DataFrame( { "a": column.as_column(data, nan_as_null=nan_as_null), "b": column.as_column(data, nan_as_null=nan_as_null), } ) expected = expected.set_index(index) got = cudf.from_pandas(pdf, nan_as_null=nan_as_null) assert_eq(expected, got) @pytest.mark.parametrize("nan_as_null", [True, False]) def test_from_pandas_for_series_nan_as_null(nan_as_null): data = [np.nan, 2.0, 3.0] psr = pd.Series(data) expected = cudf.Series(column.as_column(data, nan_as_null=nan_as_null)) got = cudf.from_pandas(psr, nan_as_null=nan_as_null) assert_eq(expected, got) @pytest.mark.parametrize("copy", [True, False]) def test_df_series_dataframe_astype_copy(copy): gdf = cudf.DataFrame({"col1": [1, 2], "col2": [3, 4]}) pdf = gdf.to_pandas() assert_eq( gdf.astype(dtype="float", copy=copy), pdf.astype(dtype="float", copy=copy), ) assert_eq(gdf, pdf) gsr = cudf.Series([1, 2]) psr = gsr.to_pandas() assert_eq( gsr.astype(dtype="float", copy=copy), psr.astype(dtype="float", copy=copy), ) assert_eq(gsr, psr) gsr = cudf.Series([1, 2]) psr = gsr.to_pandas() actual = gsr.astype(dtype="int64", copy=copy) expected = psr.astype(dtype="int64", copy=copy) assert_eq(expected, actual) assert_eq(gsr, psr) actual[0] = 3 expected[0] = 3 assert_eq(gsr, psr) @pytest.mark.parametrize("copy", [True, False]) def test_df_series_dataframe_astype_dtype_dict(copy): gdf = cudf.DataFrame({"col1": [1, 2], "col2": [3, 4]}) pdf = gdf.to_pandas() assert_eq( gdf.astype(dtype={"col1": "float"}, copy=copy), pdf.astype(dtype={"col1": "float"}, copy=copy), ) assert_eq(gdf, pdf) gsr = cudf.Series([1, 2]) psr = gsr.to_pandas() assert_eq( gsr.astype(dtype={None: "float"}, copy=copy), psr.astype(dtype={None: "float"}, copy=copy), ) assert_eq(gsr, psr) assert_exceptions_equal( lfunc=psr.astype, rfunc=gsr.astype, lfunc_args_and_kwargs=([], {"dtype": {"a": "float"}, "copy": copy}), rfunc_args_and_kwargs=([], {"dtype": {"a": "float"}, "copy": copy}), ) gsr = cudf.Series([1, 2]) psr = gsr.to_pandas() actual = gsr.astype({None: "int64"}, copy=copy) expected = psr.astype({None: "int64"}, copy=copy) assert_eq(expected, actual) assert_eq(gsr, psr) actual[0] = 3 expected[0] = 3 assert_eq(gsr, psr) @pytest.mark.parametrize( "data,columns", [ ([1, 2, 3, 100, 112, 35464], ["a"]), (range(100), None), ([], None), ((-10, 21, 32, 32, 1, 2, 3), ["p"]), ((), None), ([[1, 2, 3], [1, 2, 3]], ["col1", "col2", "col3"]), ([range(100), range(100)], ["range" + str(i) for i in range(100)]), (((1, 2, 3), (1, 2, 3)), ["tuple0", "tuple1", "tuple2"]), ([[1, 2, 3]], ["list col1", "list col2", "list col3"]), ([range(100)], ["range" + str(i) for i in range(100)]), (((1, 2, 3),), ["k1", "k2", "k3"]), ], ) def test_dataframe_init_1d_list(data, columns): expect = pd.DataFrame(data, columns=columns) actual = cudf.DataFrame(data, columns=columns) assert_eq( expect, actual, check_index_type=False if len(data) == 0 else True ) expect = pd.DataFrame(data, columns=None) actual = cudf.DataFrame(data, columns=None) assert_eq( expect, actual, check_index_type=False if len(data) == 0 else True ) @pytest.mark.parametrize( "data,cols,index", [ ( np.ndarray(shape=(4, 2), dtype=float, order="F"), ["a", "b"], ["a", "b", "c", "d"], ), ( np.ndarray(shape=(4, 2), dtype=float, order="F"), ["a", "b"], [0, 20, 30, 10], ), ( np.ndarray(shape=(4, 2), dtype=float, order="F"), ["a", "b"], [0, 1, 2, 3], ), (np.array([11, 123, -2342, 232]), ["a"], [1, 2, 11, 12]), (np.array([11, 123, -2342, 232]), ["a"], ["khsdjk", "a", "z", "kk"]), ( cupy.ndarray(shape=(4, 2), dtype=float, order="F"), ["a", "z"], ["a", "z", "a", "z"], ), (cupy.array([11, 123, -2342, 232]), ["z"], [0, 1, 1, 0]), (cupy.array([11, 123, -2342, 232]), ["z"], [1, 2, 3, 4]), (cupy.array([11, 123, -2342, 232]), ["z"], ["a", "z", "d", "e"]), (np.random.randn(2, 4), ["a", "b", "c", "d"], ["a", "b"]), (np.random.randn(2, 4), ["a", "b", "c", "d"], [1, 0]), (cupy.random.randn(2, 4), ["a", "b", "c", "d"], ["a", "b"]), (cupy.random.randn(2, 4), ["a", "b", "c", "d"], [1, 0]), ], ) def test_dataframe_init_from_arrays_cols(data, cols, index): gd_data = data if isinstance(data, cupy.core.ndarray): # pandas can't handle cupy arrays in general pd_data = data.get() # additional test for building DataFrame with gpu array whose # cuda array interface has no `descr` attribute numba_data = cuda.as_cuda_array(data) else: pd_data = data numba_data = None # verify with columns & index pdf = pd.DataFrame(pd_data, columns=cols, index=index) gdf = cudf.DataFrame(gd_data, columns=cols, index=index) assert_eq(pdf, gdf, check_dtype=False) # verify with columns pdf = pd.DataFrame(pd_data, columns=cols) gdf = cudf.DataFrame(gd_data, columns=cols) assert_eq(pdf, gdf, check_dtype=False) pdf = pd.DataFrame(pd_data) gdf = cudf.DataFrame(gd_data) assert_eq(pdf, gdf, check_dtype=False) if numba_data is not None: gdf = cudf.DataFrame(numba_data) assert_eq(pdf, gdf, check_dtype=False) @pytest.mark.parametrize( "col_data", [ range(5), ["a", "b", "x", "y", "z"], [1.0, 0.213, 0.34332], ["a"], [1], [0.2323], [], ], ) @pytest.mark.parametrize( "assign_val", [ 1, 2, np.array(2), cupy.array(2), 0.32324, np.array(0.34248), cupy.array(0.34248), "abc", np.array("abc", dtype="object"), np.array("abc", dtype="str"), np.array("abc"), None, ], ) def test_dataframe_assign_scalar(col_data, assign_val): pdf = pd.DataFrame({"a": col_data}) gdf = cudf.DataFrame({"a": col_data}) pdf["b"] = ( cupy.asnumpy(assign_val) if isinstance(assign_val, cupy.ndarray) else assign_val ) gdf["b"] = assign_val assert_eq(pdf, gdf) @pytest.mark.parametrize( "col_data", [ 1, 2, np.array(2), cupy.array(2), 0.32324, np.array(0.34248), cupy.array(0.34248), "abc", np.array("abc", dtype="object"), np.array("abc", dtype="str"), np.array("abc"), None, ], ) @pytest.mark.parametrize( "assign_val", [ 1, 2, np.array(2), cupy.array(2), 0.32324, np.array(0.34248), cupy.array(0.34248), "abc", np.array("abc", dtype="object"), np.array("abc", dtype="str"), np.array("abc"), None, ], ) def test_dataframe_assign_scalar_with_scalar_cols(col_data, assign_val): pdf = pd.DataFrame( { "a": cupy.asnumpy(col_data) if isinstance(col_data, cupy.ndarray) else col_data }, index=["dummy_mandatory_index"], ) gdf = cudf.DataFrame({"a": col_data}, index=["dummy_mandatory_index"]) pdf["b"] = ( cupy.asnumpy(assign_val) if isinstance(assign_val, cupy.ndarray) else assign_val ) gdf["b"] = assign_val assert_eq(pdf, gdf) def test_dataframe_info_basic(): buffer = io.StringIO() str_cmp = textwrap.dedent( """\ <class 'cudf.core.dataframe.DataFrame'> StringIndex: 10 entries, a to 1111 Data columns (total 10 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 0 10 non-null float64 1 1 10 non-null float64 2 2 10 non-null float64 3 3 10 non-null float64 4 4 10 non-null float64 5 5 10 non-null float64 6 6 10 non-null float64 7 7 10 non-null float64 8 8 10 non-null float64 9 9 10 non-null float64 dtypes: float64(10) memory usage: 859.0+ bytes """ ) df = pd.DataFrame( np.random.randn(10, 10), index=["a", "2", "3", "4", "5", "6", "7", "8", "100", "1111"], ) cudf.from_pandas(df).info(buf=buffer, verbose=True) s = buffer.getvalue() assert str_cmp == s def test_dataframe_info_verbose_mem_usage(): buffer = io.StringIO() df = pd.DataFrame({"a": [1, 2, 3], "b": ["safdas", "assa", "asdasd"]}) str_cmp = textwrap.dedent( """\ <class 'cudf.core.dataframe.DataFrame'> RangeIndex: 3 entries, 0 to 2 Data columns (total 2 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 a 3 non-null int64 1 b 3 non-null object dtypes: int64(1), object(1) memory usage: 56.0+ bytes """ ) cudf.from_pandas(df).info(buf=buffer, verbose=True) s = buffer.getvalue() assert str_cmp == s buffer.truncate(0) buffer.seek(0) str_cmp = textwrap.dedent( """\ <class 'cudf.core.dataframe.DataFrame'> RangeIndex: 3 entries, 0 to 2 Columns: 2 entries, a to b dtypes: int64(1), object(1) memory usage: 56.0+ bytes """ ) cudf.from_pandas(df).info(buf=buffer, verbose=False) s = buffer.getvalue() assert str_cmp == s buffer.truncate(0) buffer.seek(0) df = pd.DataFrame( {"a": [1, 2, 3], "b": ["safdas", "assa", "asdasd"]}, index=["sdfdsf", "sdfsdfds", "dsfdf"], ) str_cmp = textwrap.dedent( """\ <class 'cudf.core.dataframe.DataFrame'> StringIndex: 3 entries, sdfdsf to dsfdf Data columns (total 2 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 a 3 non-null int64 1 b 3 non-null object dtypes: int64(1), object(1) memory usage: 91.0 bytes """ ) cudf.from_pandas(df).info(buf=buffer, verbose=True, memory_usage="deep") s = buffer.getvalue() assert str_cmp == s buffer.truncate(0) buffer.seek(0) int_values = [1, 2, 3, 4, 5] text_values = ["alpha", "beta", "gamma", "delta", "epsilon"] float_values = [0.0, 0.25, 0.5, 0.75, 1.0] df = cudf.DataFrame( { "int_col": int_values, "text_col": text_values, "float_col": float_values, } ) str_cmp = textwrap.dedent( """\ <class 'cudf.core.dataframe.DataFrame'> RangeIndex: 5 entries, 0 to 4 Data columns (total 3 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 int_col 5 non-null int64 1 text_col 5 non-null object 2 float_col 5 non-null float64 dtypes: float64(1), int64(1), object(1) memory usage: 130.0 bytes """ ) df.info(buf=buffer, verbose=True, memory_usage="deep") actual_string = buffer.getvalue() assert str_cmp == actual_string buffer.truncate(0) buffer.seek(0) def test_dataframe_info_null_counts(): int_values = [1, 2, 3, 4, 5] text_values = ["alpha", "beta", "gamma", "delta", "epsilon"] float_values = [0.0, 0.25, 0.5, 0.75, 1.0] df = cudf.DataFrame( { "int_col": int_values, "text_col": text_values, "float_col": float_values, } ) buffer = io.StringIO() str_cmp = textwrap.dedent( """\ <class 'cudf.core.dataframe.DataFrame'> RangeIndex: 5 entries, 0 to 4 Data columns (total 3 columns): # Column Dtype --- ------ ----- 0 int_col int64 1 text_col object 2 float_col float64 dtypes: float64(1), int64(1), object(1) memory usage: 130.0+ bytes """ ) df.info(buf=buffer, verbose=True, null_counts=False) actual_string = buffer.getvalue() assert str_cmp == actual_string buffer.truncate(0) buffer.seek(0) df.info(buf=buffer, verbose=True, max_cols=0) actual_string = buffer.getvalue() assert str_cmp == actual_string buffer.truncate(0) buffer.seek(0) df = cudf.DataFrame() str_cmp = textwrap.dedent( """\ <class 'cudf.core.dataframe.DataFrame'> RangeIndex: 0 entries Empty DataFrame""" ) df.info(buf=buffer, verbose=True) actual_string = buffer.getvalue() assert str_cmp == actual_string buffer.truncate(0) buffer.seek(0) df = cudf.DataFrame( { "a": [1, 2, 3, None, 10, 11, 12, None], "b": ["a", "b", "c", "sd", "sdf", "sd", None, None], } ) str_cmp = textwrap.dedent( """\ <class 'cudf.core.dataframe.DataFrame'> RangeIndex: 8 entries, 0 to 7 Data columns (total 2 columns): # Column Dtype --- ------ ----- 0 a int64 1 b object dtypes: int64(1), object(1) memory usage: 238.0+ bytes """ ) pd.options.display.max_info_rows = 2 df.info(buf=buffer, max_cols=2, null_counts=None) pd.reset_option("display.max_info_rows") actual_string = buffer.getvalue() assert str_cmp == actual_string buffer.truncate(0) buffer.seek(0) str_cmp = textwrap.dedent( """\ <class 'cudf.core.dataframe.DataFrame'> RangeIndex: 8 entries, 0 to 7 Data columns (total 2 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 a 6 non-null int64 1 b 6 non-null object dtypes: int64(1), object(1) memory usage: 238.0+ bytes """ ) df.info(buf=buffer, max_cols=2, null_counts=None) actual_string = buffer.getvalue() assert str_cmp == actual_string buffer.truncate(0) buffer.seek(0) df.info(buf=buffer, null_counts=True) actual_string = buffer.getvalue() assert str_cmp == actual_string @pytest.mark.parametrize( "data1", [ [1, 2, 3, 4, 5, 6, 7], [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0], [ 1.9876543, 2.9876654, 3.9876543, 4.1234587, 5.23, 6.88918237, 7.00001, ], [ -1.9876543, -2.9876654, -3.9876543, -4.1234587, -5.23, -6.88918237, -7.00001, ], [ 1.987654321, 2.987654321, 3.987654321, 0.1221, 2.1221, 0.112121, -21.1212, ], [ -1.987654321, -2.987654321, -3.987654321, -0.1221, -2.1221, -0.112121, 21.1212, ], ], ) @pytest.mark.parametrize( "data2", [ [1, 2, 3, 4, 5, 6, 7], [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0], [ 1.9876543, 2.9876654, 3.9876543, 4.1234587, 5.23, 6.88918237, 7.00001, ], [ -1.9876543, -2.9876654, -3.9876543, -4.1234587, -5.23, -6.88918237, -7.00001, ], [ 1.987654321, 2.987654321, 3.987654321, 0.1221, 2.1221, 0.112121, -21.1212, ], [ -1.987654321, -2.987654321, -3.987654321, -0.1221, -2.1221, -0.112121, 21.1212, ], ], ) @pytest.mark.parametrize("rtol", [0, 0.01, 1e-05, 1e-08, 5e-1, 50.12]) @pytest.mark.parametrize("atol", [0, 0.01, 1e-05, 1e-08, 50.12]) def test_cudf_isclose(data1, data2, rtol, atol): array1 = cupy.array(data1) array2 = cupy.array(data2) expected = cudf.Series(cupy.isclose(array1, array2, rtol=rtol, atol=atol)) actual = cudf.isclose( cudf.Series(data1), cudf.Series(data2), rtol=rtol, atol=atol ) assert_eq(expected, actual) actual = cudf.isclose(data1, data2, rtol=rtol, atol=atol) assert_eq(expected, actual) actual = cudf.isclose( cupy.array(data1), cupy.array(data2), rtol=rtol, atol=atol ) assert_eq(expected, actual) actual = cudf.isclose( np.array(data1), np.array(data2), rtol=rtol, atol=atol ) assert_eq(expected, actual) actual = cudf.isclose( pd.Series(data1), pd.Series(data2), rtol=rtol, atol=atol ) assert_eq(expected, actual) @pytest.mark.parametrize( "data1", [ [ -1.9876543, -2.9876654, np.nan, -4.1234587, -5.23, -6.88918237, -7.00001, ], [ 1.987654321, 2.987654321, 3.987654321, 0.1221, 2.1221, np.nan, -21.1212, ], ], ) @pytest.mark.parametrize( "data2", [ [ -1.9876543, -2.9876654, -3.9876543, -4.1234587, -5.23, -6.88918237, -7.00001, ], [ 1.987654321, 2.987654321, 3.987654321, 0.1221, 2.1221, 0.112121, -21.1212, ], [ -1.987654321, -2.987654321, -3.987654321, np.nan, np.nan, np.nan, 21.1212, ], ], ) @pytest.mark.parametrize("equal_nan", [True, False]) def test_cudf_isclose_nulls(data1, data2, equal_nan): array1 = cupy.array(data1) array2 = cupy.array(data2) expected = cudf.Series(cupy.isclose(array1, array2, equal_nan=equal_nan)) actual = cudf.isclose( cudf.Series(data1), cudf.Series(data2), equal_nan=equal_nan ) assert_eq(expected, actual, check_dtype=False) actual = cudf.isclose(data1, data2, equal_nan=equal_nan) assert_eq(expected, actual, check_dtype=False) def test_cudf_isclose_different_index(): s1 = cudf.Series( [-1.9876543, -2.9876654, -3.9876543, -4.1234587, -5.23, -7.00001], index=[0, 1, 2, 3, 4, 5], ) s2 = cudf.Series( [-1.9876543, -2.9876654, -7.00001, -4.1234587, -5.23, -3.9876543], index=[0, 1, 5, 3, 4, 2], ) expected = cudf.Series([True] * 6, index=s1.index) assert_eq(expected, cudf.isclose(s1, s2)) s1 = cudf.Series( [-1.9876543, -2.9876654, -3.9876543, -4.1234587, -5.23, -7.00001], index=[0, 1, 2, 3, 4, 5], ) s2 = cudf.Series( [-1.9876543, -2.9876654, -7.00001, -4.1234587, -5.23, -3.9876543], index=[0, 1, 5, 10, 4, 2], ) expected = cudf.Series( [True, True, True, False, True, True], index=s1.index ) assert_eq(expected, cudf.isclose(s1, s2)) s1 = cudf.Series( [-1.9876543, -2.9876654, -3.9876543, -4.1234587, -5.23, -7.00001], index=[100, 1, 2, 3, 4, 5], ) s2 = cudf.Series( [-1.9876543, -2.9876654, -7.00001, -4.1234587, -5.23, -3.9876543], index=[0, 1, 100, 10, 4, 2], ) expected = cudf.Series( [False, True, True, False, True, False], index=s1.index ) assert_eq(expected, cudf.isclose(s1, s2)) def test_dataframe_to_dict_error(): df = cudf.DataFrame({"a": [1, 2, 3], "b": [9, 5, 3]}) with pytest.raises( TypeError, match=re.escape( r"cuDF does not support conversion to host memory " r"via `to_dict()` method. Consider using " r"`.to_pandas().to_dict()` to construct a Python dictionary." ), ): df.to_dict() with pytest.raises( TypeError, match=re.escape( r"cuDF does not support conversion to host memory " r"via `to_dict()` method. Consider using " r"`.to_pandas().to_dict()` to construct a Python dictionary." ), ): df["a"].to_dict() @pytest.mark.parametrize( "df", [ pd.DataFrame({"a": [1, 2, 3, 4, 5, 10, 11, 12, 33, 55, 19]}), pd.DataFrame( { "one": [1, 2, 3, 4, 5, 10], "two": ["abc", "def", "ghi", "xyz", "pqr", "abc"], } ), pd.DataFrame( { "one": [1, 2, 3, 4, 5, 10], "two": ["abc", "def", "ghi", "xyz", "pqr", "abc"], }, index=[10, 20, 30, 40, 50, 60], ), pd.DataFrame( { "one": [1, 2, 3, 4, 5, 10], "two": ["abc", "def", "ghi", "xyz", "pqr", "abc"], }, index=["a", "b", "c", "d", "e", "f"], ), pd.DataFrame(index=["a", "b", "c", "d", "e", "f"]), pd.DataFrame(columns=["a", "b", "c", "d", "e", "f"]), pd.DataFrame(index=[10, 11, 12]), pd.DataFrame(columns=[10, 11, 12]), pd.DataFrame(), pd.DataFrame({"one": [], "two": []}), pd.DataFrame({2: [], 1: []}), pd.DataFrame( { 0: [1, 2, 3, 4, 5, 10], 1: ["abc", "def", "ghi", "xyz", "pqr", "abc"], 100: ["a", "b", "b", "x", "z", "a"], }, index=[10, 20, 30, 40, 50, 60], ), ], ) def test_dataframe_keys(df): gdf = cudf.from_pandas(df) assert_eq(df.keys(), gdf.keys()) @pytest.mark.parametrize( "ps", [ pd.Series([1, 2, 3, 4, 5, 10, 11, 12, 33, 55, 19]), pd.Series(["abc", "def", "ghi", "xyz", "pqr", "abc"]), pd.Series( [1, 2, 3, 4, 5, 10], index=["abc", "def", "ghi", "xyz", "pqr", "abc"], ), pd.Series( ["abc", "def", "ghi", "xyz", "pqr", "abc"], index=[1, 2, 3, 4, 5, 10], ), pd.Series(index=["a", "b", "c", "d", "e", "f"], dtype="float64"), pd.Series(index=[10, 11, 12], dtype="float64"), pd.Series(dtype="float64"), pd.Series([], dtype="float64"), ], ) def test_series_keys(ps): gds = cudf.from_pandas(ps) if len(ps) == 0 and not isinstance(ps.index, pd.RangeIndex): assert_eq(ps.keys().astype("float64"), gds.keys()) else: assert_eq(ps.keys(), gds.keys()) @pytest.mark.parametrize( "df", [ pd.DataFrame(), pd.DataFrame(index=[10, 20, 30]), pd.DataFrame({"first_col": [], "second_col": [], "third_col": []}), pd.DataFrame([[1, 2], [3, 4]], columns=list("AB")), pd.DataFrame([[1, 2], [3, 4]], columns=list("AB"), index=[10, 20]), pd.DataFrame([[1, 2], [3, 4]], columns=list("AB"), index=[7, 8]), pd.DataFrame( { "a": [315.3324, 3243.32432, 3232.332, -100.32], "z": [0.3223, 0.32, 0.0000232, 0.32224], } ), pd.DataFrame( { "a": [315.3324, 3243.32432, 3232.332, -100.32], "z": [0.3223, 0.32, 0.0000232, 0.32224], }, index=[7, 20, 11, 9], ), pd.DataFrame({"l": [10]}), pd.DataFrame({"l": [10]}, index=[100]), pd.DataFrame({"f": [10.2, 11.2332, 0.22, 3.3, 44.23, 10.0]}), pd.DataFrame( {"f": [10.2, 11.2332, 0.22, 3.3, 44.23, 10.0]}, index=[100, 200, 300, 400, 500, 0], ), ], ) @pytest.mark.parametrize( "other", [ pd.DataFrame([[5, 6], [7, 8]], columns=list("AB")), pd.DataFrame([[5, 6], [7, 8]], columns=list("BD")), pd.DataFrame([[5, 6], [7, 8]], columns=list("DE")), pd.DataFrame(), pd.DataFrame( {"c": [10, 11, 22, 33, 44, 100]}, index=[7, 8, 9, 10, 11, 20] ), pd.DataFrame({"f": [10.2, 11.2332, 0.22, 3.3, 44.23, 10.0]}), pd.DataFrame({"l": [10]}), pd.DataFrame({"l": [10]}, index=[200]), pd.DataFrame([]), pd.DataFrame({"first_col": [], "second_col": [], "third_col": []}),
pd.DataFrame([], index=[100])
pandas.DataFrame
from collections import defaultdict import numpy as np import pandas as pd import basty.utils.misc as misc class AnnotationInfo: def __init__(self): self._inactive_annotation = None self._noise_annotation = None self._arouse_annotation = None self._label_to_behavior = None self._behavior_to_label = None self._mask_annotated = None # no annotation by default self.has_annotation = False self.use_annotations_to_mask = {} @property def noise_annotation(self): if self._noise_annotation is None: raise ValueError("'noise_annotation' is not set.") return self._noise_annotation @noise_annotation.setter def noise_annotation(self, value): if not isinstance(value, str): raise ValueError("'noise_annotation' must have type 'str'.") self._noise_annotation = value @property def inactive_annotation(self): if self._inactive_annotation is None: raise ValueError("'inactive_annotation' is not set.") return self._inactive_annotation @inactive_annotation.setter def inactive_annotation(self, value): if not isinstance(value, str): raise ValueError("'inactive_annotation' must have type 'str'.") self._inactive_annotation = value @property def arouse_annotation(self): if self._arouse_annotation is None: raise ValueError("'arouse_annotation' is not set.") return self._arouse_annotation @arouse_annotation.setter def arouse_annotation(self, value): if not isinstance(value, str): raise ValueError("'arouse_annotation' must have type 'str'.") self._arouse_annotation = value @property def mask_annotated(self): if self._mask_annotated is None: raise ValueError("'mask_annotated' is not set.") return self._mask_annotated @mask_annotated.setter def mask_annotated(self, value): if not isinstance(value, np.ndarray) and value.ndim == 1: raise ValueError("'mask_annotated' must have type '1D numpy.ndarray'.") self._mask_annotated = value @property def label_to_behavior(self): if self._label_to_behavior is None: raise ValueError("'label_to_behavior' is not set.") return self._label_to_behavior @property def behavior_to_label(self): if self._behavior_to_label is None: raise ValueError("'behavior_to_label' is not set.") return self._behavior_to_label @label_to_behavior.setter def label_to_behavior(self, value): if not isinstance(value, dict): raise ValueError("'label_to_behavior' must have type 'dict'.") self._label_to_behavior = misc.sort_dict(value) self._behavior_to_label = misc.reverse_dict(self._label_to_behavior) @behavior_to_label.setter def behavior_to_label(self, value): if not isinstance(value, dict): raise ValueError("'behavior_to_label' must have type 'dict'.") self._behavior_to_label = misc.sort_dict(value) self._label_to_behavior = misc.reverse_dict(self._behavior_to_label) class ExptInfo: def __init__(self, fps): self.fps = fps self.expt_frame_count = None self._part_to_frame_count = None self._mask_dormant = None self._mask_active = None self._mask_noise = None self._ftname_to_snapft = None self._ftname_to_deltaft = None self._snapft_to_ftname = None self._deltaft_to_ftname = None @property def part_to_frame_count(self): if self._part_to_frame_count is None: raise ValueError("'part_to_frame_count' is not set.") return self._part_to_frame_count @part_to_frame_count.setter def part_to_frame_count(self, value): if not isinstance(value, dict): raise ValueError("'part_to_frame_count' must have type 'dict'.") self.expt_frame_count = sum(value.values()) self._part_to_frame_count = value @property def mask_noise(self): if self._mask_noise is None: raise ValueError("'mask_noise' is not set.") return self._mask_noise @mask_noise.setter def mask_noise(self, value): if not isinstance(value, np.ndarray) and value.ndim == 1: raise ValueError("'mask_noise' must have type '1D numpy.ndarray'.") self._mask_noise = value @property def mask_dormant(self): if self._mask_dormant is None: raise ValueError("'mask_dormant' is not set.") return self._mask_dormant @mask_dormant.setter def mask_dormant(self, value): if not isinstance(value, np.ndarray) and value.ndim == 1: raise ValueError("'mask_dormant' must have type '1D numpy.ndarray'.") self._mask_dormant = value @property def mask_active(self): if self._mask_active is None: raise ValueError("'mask_active' is not set.") if self._mask_noise is not None: mask_active = np.logical_and( self._mask_active, np.logical_not(self._mask_noise) ) else: mask_active = self._mask_active return mask_active @mask_active.setter def mask_active(self, value): if not isinstance(value, np.ndarray) and value.ndim == 1: raise ValueError("'mask_active' must have type '1D numpy.ndarray'.") self._mask_active = value @property def ftname_to_snapft(self): if self._ftname_to_snapft is None: raise ValueError("'ftname_to_snapft' is not set.") return self._ftname_to_snapft @property def snapft_to_ftname(self): if self._snapft_to_ftname is None: raise ValueError("'snapft_to_ftname' is not set.") return self._snapft_to_ftname @property def ftname_to_deltaft(self): if self._ftname_to_deltaft is None: raise ValueError("'ftname_to_deltaft' is not set.") return self._ftname_to_deltaft @property def deltaft_to_ftname(self): if self._deltaft_to_ftname is None: raise ValueError("'deltaft_to_ftname' is not set.") return self._deltaft_to_ftname @snapft_to_ftname.setter def snapft_to_ftname(self, value): if not isinstance(value, dict): raise ValueError("'snapft_to_ftname' must have type 'dict'.") self._snapft_to_ftname = misc.sort_dict(value) self._ftname_to_snapft = misc.reverse_dict(self._snapft_to_ftname) @ftname_to_snapft.setter def ftname_to_snapft(self, value): if not isinstance(value, dict): raise ValueError("'ftname_to_snapft' must have type 'dict'.") self._ftname_to_snapft = misc.sort_dict(value) self._snapft_to_ftname = misc.reverse_dict(self._ftname_to_snapft) @deltaft_to_ftname.setter def deltaft_to_ftname(self, value): if not isinstance(value, dict): raise ValueError("'deltaft_to_ftname' must have type 'dict'.") self._deltaft_to_ftname = misc.sort_dict(value) self._ftname_to_deltaft = misc.reverse_dict(self._deltaft_to_ftname) @ftname_to_deltaft.setter def ftname_to_deltaft(self, value): if not isinstance(value, dict): raise ValueError("'ftname_to_deltaft' must have type 'dict'.") self._ftname_to_deltaft = misc.sort_dict(value) self._deltaft_to_ftname = misc.reverse_dict(self._ftname_to_deltaft) def _get_sec(self, idx): sec_total = idx // self.fps second = sec_total % 60 return sec_total, second def get_hour_stamp(self, idx): if idx is np.nan: stamp = np.nan else: sec_total, second = self._get_sec(idx) minute = (sec_total // 60) % 60 hour = sec_total // 3600 stamp = str(int(hour)) + ":" + str(int(minute)) + ":" + str(int(second)) return stamp def get_minute_stamp(self, idx): if idx is np.nan: stamp = np.nan else: sec_total, second = self._get_sec(idx) minute = sec_total // 60 stamp = str(int(minute)) + ":" + str(int(second)) return stamp class ExptRecord(ExptInfo, AnnotationInfo): def __init__(self, name, data_path, expt_path, fps=30): self.name = name self.data_path = data_path self.expt_path = expt_path ExptInfo.__init__(self, fps) AnnotationInfo.__init__(self) def generate_report(self, labels, is_behavior=False, use_time_stamps=False): assert isinstance(labels, np.ndarray) assert np.issubdtype(labels.dtype, np.integer) intvls = misc.cont_intvls(labels) if is_behavior: try: labels = [self.label_to_behavior[lbl] for lbl in labels] except KeyError: raise ValueError( "Given labels are not defined for label to behavior mapping." ) report_dict = defaultdict(list) for i in range(intvls.shape[0] - 1): dur = intvls[i + 1] - intvls[i] if use_time_stamps: report_dict["Duration"].append(self.get_minute_stamp(dur)) report_dict["Beginning"].append(self.get_hour_stamp(intvls[i])) report_dict["End"].append(self.get_hour_stamp(intvls[i + 1])) else: report_dict["Duration"].append(dur) report_dict["Beginning"].append(intvls[i]) report_dict["End"].append(intvls[i + 1]) report_dict["Label"].append(labels[intvls[i]]) df_report =
pd.DataFrame.from_dict(report_dict)
pandas.DataFrame.from_dict
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Feb 21 11:12:24 2018 @author: benjamin """ from fastText import train_supervised, load_model from sklearn.base import BaseEstimator, ClassifierMixin from sklearn.utils.multiclass import unique_labels from tempfile import NamedTemporaryFile import numpy as np import pandas as pd class sk_Fasttext(BaseEstimator, ClassifierMixin): ''' This a scikit wrapper for fastText, and thus the attributes below are almost the same as in the original libary - Thus most of the text is ripped from: github.com/facebookresearch/fastText/ - Since this is wrapper all line Breakes (\n) will be removed in the input data. - Thus if you want those to count replace them with another character The following arguments are mandatory: - None as of now The following arguments are optional: -verbose verbosity level [2] - not implemented -mkTemp use a tempoary file for trainning [True] -not implemented -train_file filename of trainning file nb. only used id mkTemp == False The following arguments for the dictionary are optional: -minCount minimal number of word occurences [1] -minCountLabel minimal count of word occurences [0] -wordNgrams max length of word ngram [1] -bucket number of buckets [2000000] -minn min length of char ngram[0] -maxn max length of char ngram[0] -t sampling threshold [0.0001] -label labels prefix [__label__] The following arguments for the trainning are optional: - lr learning rate[0.1] - lrUpdateRate change the rate of updates for the learning rate [100] - dim size of word vectors [100] - ws size of the context window [5] - epoch number of epochs [5] - neg number of negatives sampled - loss loss function {ns, hs, softmax} [softmax] - thread number of threads [12] ''' def __init__(self, label = "__label__", verbose = 2, mkTemp = True, train_file = "ft_temp", minCount = 1, minCountLabel = 0, wordNgrams = 1, bucket = 2000000, minn = 0, maxn = 0, t = 0.0001, lr = 0.1, lrUpdateRate = 100, dim = 100, ws = 5, epoch = 5, neg = 5, loss = "softmax", thread = 12 ): self.label = label self.verbose = verbose self.mkTemp = mkTemp self.train_file = train_file self.minCount = minCount self.minCountLabel = minCountLabel self.wordNgrams = wordNgrams self.bucket = bucket self.minn = minn self.maxn = maxn self.t = t self.lr = lr self.lrUpdateRate = lrUpdateRate self.dim = dim self.ws = ws self.epoch = epoch self.neg = neg self.loss = loss self.thread = thread self.type = str def fit(self, X, y): # Checks that dimensions are correct if type(X) == type(pd.DataFrame()): X = X.values y = list(y) self.type = type(y[0]) X = [x[0] for x in X] # initiated the class variables self.classes_ = unique_labels(y) ### First we need to create the tempoary file for trainning if self.mkTemp == True: f = NamedTemporaryFile(mode="w") else: f = open(self.train_file, "w") for i in range(len(X)): textToWrite = self.label + str(y[i]) + " " textToWrite += X[i].replace("\n", " ") f.write(textToWrite + "\n") self.classifier = train_supervised(f.name, label=self.label, verbose=self.verbose, minCount = self.minCount, minCountLabel = self.minCountLabel, wordNgrams = self.wordNgrams, bucket = self.bucket, minn = self.minn, maxn = self.maxn, t = self.t, lr = self.lr, lrUpdateRate = self.lrUpdateRate, dim = self.dim, ws = self.ws, epoch = self.epoch, neg = self.neg, loss = self.loss, thread = self.thread) self.X_ = X self.y_ = y # Closes and destroys temp file f.close() # Return Classifier return self def predict(self, X): # transforms pandas til numpy if type(X) == type(
pd.DataFrame()
pandas.DataFrame
# SPDX-License-Identifier: Apache-2.0 # Licensed to the Ed-Fi Alliance under one or more agreements. # The Ed-Fi Alliance licenses this file to you under the Apache License, Version 2.0. # See the LICENSE and NOTICES files in the project root for more information. import os from typing import Tuple import pandas as pd import pytest from unittest.mock import Mock import sqlalchemy from edfi_schoology_extractor import usage_analytics_facade from edfi_schoology_extractor.mapping import usage_analytics as usageMap from edfi_schoology_extractor.helpers import csv_reader from edfi_schoology_extractor.helpers import sync INPUT_DIRECTORY = "./input" def _setup_empty_filesystem(fs): fs.path_separator = "/" fs.is_windows_fs = False fs.is_macos = False fs.create_dir(INPUT_DIRECTORY) def _setup_filesystem(fs): fs.path_separator = "/" fs.is_windows_fs = False fs.is_macos = False fs.create_dir(INPUT_DIRECTORY) contents = """role_name,user_building_id,user_building_name,username,email,schoology_user_id,unique_user_id,action_type,item_type,item_id,item_name,course_name,course_code,section_name,last_event_timestamp,event_count,role_id,user_building_code,last_name,first_name,device_type,item_building_id,item_building_name,item_building_code,item_parent_type,group_id,group_name,course_id,section_id,section_school_code,section_code,month,date,timestamp,time spent (seconds) Student,2908525646,Ed-Fi Alliance - Grand Bend High school,kyle.hughes,<EMAIL>,100032891,604874,CREATE,SESSION,,,,,,2020-11-04 17:28:43.097,1,796380,,Hughes,Kyle,WEB,2908525646,Ed-Fi Alliance - Grand Bend High school,,USER,,,,,,,11,11/04/2020,17:28, """ fs.create_file(os.path.join(INPUT_DIRECTORY, "input.csv"), contents=contents) def describe_when_getting_system_activities(): def describe_given_no_usage_analytics_provided(): @pytest.fixture def system(fs): _setup_empty_filesystem(fs) csv_reader.load_data_frame = Mock(return_value=
pd.DataFrame(["one"])
pandas.DataFrame
""" Integrated Label Preparation Code Created on 4/25/2019 @author: RH """ #CPTAC initial prep import pandas as pd imlist = pd.read_excel('../S043_CPTAC_UCEC_Discovery_Cohort_Study_Specimens_r1_Sept2018.xlsx', header=4) imlist = imlist[imlist['Group'] == 'Tumor '] cllist = pd.read_csv('../UCEC_V2.1/waffles_updated.txt', sep='\t', header = 0) cllist = cllist[cllist['Proteomics_Tumor_Normal'] == 'Tumor'] joined = pd.merge(imlist, cllist, how='inner', on=['Participant_ID']) joined.to_csv('../joined_PID.csv', index = False) #CPTAC prep import pandas as pd import shutil import os import csv def flatten(l, a): for i in l: if isinstance(i, list): flatten(i, a) else: a.append(i) return a # Get all images in the root directory def image_ids_in(root_dir, ignore=['.DS_Store', 'dict.csv']): ids = [] for id in os.listdir(root_dir): if id in ignore: print('Skipping ID:', id) else: dirname = id.split('_')[-2] ids.append((id, dirname)) return ids PID = pd.read_csv("../joined_PID.csv", header = 0) temp = [] ls = [] for idx, row in PID.iterrows(): if "," in row["Parent Sample ID(s)"]: m = row["Parent Sample ID(s)"].split(',') for x in m: w = row ls.append(x) temp.append(w) PID = PID.drop(idx) temp = pd.DataFrame(temp) temp["Parent Sample ID(s)"] = ls PID = PID.append(temp, ignore_index=True) PID = PID.sort_values(["Parent Sample ID(s)"], ascending=1) PID.to_csv("../new_joined_PID.csv", header = True, index = False) PID = pd.read_csv("../new_joined_PID.csv", header = 0) ref_list = PID["Parent Sample ID(s)"].tolist() imids = image_ids_in('../CPTAC_img') inlist = [] outlist = [] reverse_inlist = [] try: os.mkdir('../CPTAC_img/inlist') except FileExistsError: pass try: os.mkdir('../CPTAC_img/outlist') except FileExistsError: pass for im in imids: if im[1] in ref_list: inlist.append(im[0]) reverse_inlist.append(im[1]) shutil.move('../CPTAC_img/'+str(im[0]), '../CPTAC_img/inlist/'+str(im[0])) else: outlist.append(im[0]) shutil.move('../CPTAC_img/' + str(im[0]), '../CPTAC_img/outlist/' + str(im[0])) csvfile = "../CPTAC_inlist.csv" with open(csvfile, "w") as output: writer = csv.writer(output, lineterminator='\n') for val in inlist: writer.writerow([val]) csvfile = "../CPTAC_outlist.csv" with open(csvfile, "w") as output: writer = csv.writer(output, lineterminator='\n') for val in outlist: writer.writerow([val]) filtered_PID = PID[PID["Parent Sample ID(s)"].isin(reverse_inlist)] tpdict = {'CN-High': 'Serous-like', 'CN-Low': 'Endometrioid', 'MSI-H': 'MSI', 'POLE': 'POLE', 'Other': 'Other'} a = filtered_PID['TCGA_subtype'] filtered_PID['Subtype'] = a filtered_PID.Subtype = filtered_PID.Subtype.replace(tpdict) filtered_PID = filtered_PID[filtered_PID.Subtype != 'Other'] filtered_PID.to_csv("../filtered_joined_PID.csv", header=True, index=False) #TCGA prep import pandas as pd def flatten(l, a): for i in l: if isinstance(i, list): flatten(i, a) else: a.append(i) return a image_meta =
pd.read_csv('../TCGA_Image_meta.tsv', sep='\t', header=0)
pandas.read_csv
import streamlit as st import pandas as pd import seaborn as sns import numpy as np from matplotlib import pyplot as plt from sklearn.neighbors import NearestNeighbors import random import missingno as msno import ppscore as pps from sklearn.neighbors import NearestNeighbors from sklearn.preprocessing import StandardScaler import base64 from io import BytesIO pd.set_option('display.max_columns', 500) @st.cache def readcsv(csv): df=pd.read_csv(csv) return df def load_data(): DATA_URL = ('https://raw.githubusercontent.com/guireis1/Codenation-Final-Project/master/estaticos_portfolio1.csv') data = pd.read_csv(DATA_URL) return data def head(dataframe): if len(dataframe) > 1000: lenght = 1000 else: lenght = len(dataframe) slider = st.slider('Linhas exibidas:', 10, lenght) st.dataframe(dataframe.head(slider)) def vis(data): for i in data.columns: if i == 'setor': sns.set(style="whitegrid") plt.figure(figsize=(20,10)) sns.countplot(x="setor", data=data, palette="Reds_r",saturation=0.5) plt.title('Contagem dos Setores',fontsize=20) plt.xlabel('') plt.ylabel('') st.pyplot() if i == 'natureza_juridica_macro': sns.set(style="whitegrid") plt.figure(figsize=(20,10)) sns.countplot(x="natureza_juridica_macro", data=data, palette="Reds_r",saturation=0.5) plt.title('Contagem da natureza jurídica',fontsize=20) plt.xlabel('') plt.ylabel('') st.pyplot() if i == 'de_faixa_faturamento_estimado_grupo': sns.set(style="whitegrid") plt.figure(figsize=(20,20)) sns.countplot(y="de_faixa_faturamento_estimado_grupo",hue='setor', data=data, palette="Reds_r",saturation=0.5) plt.title('Contagem do faturamento por setor',fontsize=20) plt.xlabel('') plt.ylabel('') st.pyplot() if i == 'nm_meso_regiao': sns.set(style="whitegrid") plt.figure(figsize=(20,20)) sns.countplot(y="nm_meso_regiao", data=data, palette="Reds_r",saturation=0.5) plt.title('Contagem Meso Região',fontsize=20) plt.xlabel('') plt.ylabel('') st.pyplot() @st.cache def descritiva(dataframe): desc = dataframe.describe().T desc['column'] = desc.index exploratory = pd.DataFrame() exploratory['NaN'] = dataframe.isnull().sum().values exploratory['NaN %'] = 100 * (dataframe.isnull().sum().values / len(dataframe)) exploratory['NaN %'] = exploratory['NaN %'].apply(lambda x: str(round(x,2)) + " %") exploratory['column'] = dataframe.columns exploratory['dtype'] = dataframe.dtypes.values exploratory = exploratory.merge(desc, on='column', how='left') exploratory.loc[exploratory['dtype'] == 'object', 'count'] = len(dataframe) - exploratory['NaN'] exploratory.set_index('column', inplace=True) return exploratory def missing(data,nome): #plt.figure(figsize=(10,15)) msno.bar(data,sort='descending') plt.title(nome,fontsize=30) st.pyplot() def missing_dendo(data,nome): msno.dendrogram(data) plt.title(nome,fontsize=30) st.pyplot() def geoloc(data,coord): coordenadas = [] null_count= 0 for local in data['nm_micro_regiao']: coords=coord[coord['nome']==local][['latitude','longitude']] if not coords.empty: coordenadas.append([coords['latitude'].values[0]-random.uniform(0,0.25), coords['longitude'].values[0]-random.uniform(0,0.25)]) else: null_count += 1 print(null_count) return coordenadas # st.map(coordenadas) #for mark in coordenadas: # folium.Marker([mark[0],mark[1]],icon=folium.Icon(icon='exclamation',color='darkred',prefix='fa')).add_to(m) # print(null_count_port) def recommend(port_pre,slider_nn,market_col_select_scaled,market): valor_nn = slider_nn nn= NearestNeighbors(n_neighbors=valor_nn,metric='cosine') nn.fit(market_col_select_scaled) nn_port_list = {} for row in range(port_pre.shape[0]): nn_port_list[row] = nn.kneighbors(port_pre.iloc[[row]].values) nn_size = len(nn_port_list) nn_num = len(nn_port_list[0][1][0]) nn_index = nn_port_list[0][1][0] nn_distance = nn_port_list[0][0][0] np.delete(nn_index, [0,1]) np.delete(nn_distance, [0,1]) for i in range(1,nn_size): nn_index = np.concatenate((nn_index,nn_port_list[i][1][0]),axis=None) nn_distance = np.concatenate((nn_distance,nn_port_list[i][0][0]),axis=None) if len(nn_index) != nn_size*nn_num: print ('Erro') id_origin = {} for idx,ind in zip(nn_index,range(len(nn_index))): id_origin[ind] = (port_pre.iloc[int(ind/valor_nn)].name , market.iloc[idx].name, (nn_distance[ind])) recommend = pd.DataFrame.from_dict(id_origin,orient='index') recommend.rename(columns={0:'id_origin',1:'id',2:'distance'},inplace=True) recommend=recommend[recommend['id'].isin(port_pre.index)==0] #tirando os conflitos recommend.set_index('id',inplace=True) suggestion = recommend.merge(market, how='left', left_index=True,right_index=True) ##unindo com o market suggestion = suggestion.loc[~suggestion.index.duplicated(keep='first')] ##tirando os duplicados return suggestion def get_table_download_link(df): """Generates a link allowing the data in a given panda dataframe to be downloaded in: dataframe out: href string """ csv = df.to_csv(index=False) b64 = base64.b64encode(csv.encode()).decode() # some strings <-> bytes conversions necessary here return f'<a href="data:file/csv;base64,{b64}" download="recomendacao.csv">Download csv file</a>' # def main(): st.image('img/gui_logo.jpeg', use_column_width=True) st.header('Bem vindo!') st.subheader('**Você está no sistema de recomendação de clientes**') st.markdown('O sistema recomendará novos clientes baseado em comparações com os seus atuais clientes de forma customizada a partir das características desejadas.') st.markdown('### Precisamos que você nos forneça o **portifólio de seus clientes!**') st.markdown(' *Obs.: Caso você não tenha um portifólio para usar, escolha um [desses](https://github.com/guireis1/Codenation-Final-Project/tree/master/data). *') file3= st.file_uploader('Upload clientes.csv',type='csv') if file3 is not None: market_pre = pd.read_csv('data/data_preprocess.csv') market = pd.read_csv('data/market.csv') #market = pd.DataFrame(readcsv(file2)) #market= pd.read_csv(file2) #market_pre = pd.DataFrame(readcsv(file1)) #market_pre = pd.read_csv(file1) port = pd.DataFrame(readcsv(file3)) st.text('Loading data...done!') #Començando o processamento #market = pd.read_csv('market.csv') #market_pre = pd.read_csv('data_preprocess.csv') #port = pd.read_csv('data/estaticos_portfolio1.csv') market_pre.set_index('id',inplace=True) market.set_index(market_pre.index,inplace=True) market.drop('Unnamed: 0',axis=1,inplace=True) port= port.set_index('id') port.drop(port.columns,axis=1,inplace=True) port_market = market.merge(port,how='right',left_index=True,right_index=True) port_market_pre = market_pre.merge(port,how='right',left_index=True,right_index=True) st.markdown('DataFrame do Portofólio:') head(port_market) #Todos datasets prontos #st.sidebar.image(st.image('img/logo.png', use_column_width=True)) st.sidebar.header('Opções de análise do Portifólio:') sidemulti = st.sidebar.multiselect('Escolha: ',('Visualização','Descritiva','Geolocalização')) if ('Visualização' in sidemulti): st.markdown('## **Visualização do Portifólio**') st.markdown('Perfil de clientes considerando features importantes') vis(port_market) st.markdown('*Para melhor visualização clique na imagem*') if ('Descritiva' in sidemulti): st.markdown('## **Análise Descritiva do Portifólio**') st.dataframe(descritiva(port_market)) missing(port_market,'Visualização dos nulos do Portifólio') missing_dendo(port_market,'Dendograma dos nulos do Portifólio') st.markdown('*Para melhor visualização clique na imagem*') if ('Geolocalização' in sidemulti): coordenadas = pd.read_csv('https://raw.githubusercontent.com/guireis1/Codenation-Final-Project/master/data/coordenadas') coordenadas.drop('Unnamed: 0',axis=1,inplace=True) st.markdown('## **Geolocalização do Portifólio**') st.markdown('Localização das empresas contidas no portifólio') cord_port = geoloc(port_market,coordenadas) cord_port_df=pd.DataFrame(cord_port,columns=('lat','lon')) st.map(cord_port_df) st.sidebar.header('Opções de análise do mercado:') sidemulti_market = st.sidebar.multiselect('Escolha: ',('Visualização','Descritiva','Correlação','Análise dos Nulos','Colunas excluídas')) if ('Visualização' in sidemulti_market): st.markdown('## **Visualização do Mercado**') vis(market) st.markdown('*Para melhor visualização clique na imagem*') if ('Descritiva' in sidemulti_market): st.markdown('## **Análise Descritiva do Mercado**') st.dataframe(descritiva(market)) #missing(market,'Visualização dos nulos') #missing_dendo(market,'Dendograma nulos') if ('Correlação' in sidemulti_market): st.markdown('## **Correlações do Mercado**') st.markdown('Correlação padrão') st.image('img/corr_matrix.png', use_column_width=True) st.markdown('Correlação usando PPS') st.image('img/corr_pps.png', use_column_width=True) if ('Análise dos Nulos' in sidemulti_market): st.markdown('## **Análise dos nulos **') st.markdown('### **Colunas Numéricas:**') st.image('img/valores20.png', use_column_width=True) st.image('img/valores60.png', use_column_width=True) st.image('img/valores80.png', use_column_width=True) st.image('img/dendo_90.png', use_column_width=True) st.image('img/dendo100.png', use_column_width=True) st.markdown('### **Colunas Categoricas:**') st.image('img/valores_nulos.png', use_column_width=True) st.image('img/dendo_cat.png', use_column_width=True) if ('Colunas excluídas' in sidemulti_market): col_excluidas=[ 'sg_uf', 'idade_emp_cat', 'fl_me', 'fl_sa', 'fl_epp', 'fl_ltda', 'dt_situacao', 'fl_st_especial', 'nm_divisao', 'nm_segmento', 'fl_spa', 'vl_total_tancagem', 'vl_total_veiculos_antt', 'fl_optante_simples', 'qt_art', 'vl_total_veiculos_pesados_grupo', 'vl_total_veiculos_leves_grupo', 'vl_total_tancagem_grupo', 'vl_total_veiculos_antt_grupo', 'vl_potenc_cons_oleo_gas', 'fl_optante_simei', 'sg_uf_matriz', 'de_saude_rescencia', 'nu_meses_rescencia', 'de_indicador_telefone', 'fl_simples_irregular', 'vl_frota', 'qt_socios_pf', 'qt_socios_pj', 'idade_maxima_socios', 'idade_minima_socios', 'qt_socios_st_regular', 'qt_socios_st_suspensa', 'qt_socios_masculino', 'qt_socios_feminino', 'qt_socios_pep', 'qt_alteracao_socio_total', 'qt_alteracao_socio_90d', 'qt_alteracao_socio_180d', 'qt_alteracao_socio_365d', 'qt_socios_pj_ativos', 'qt_socios_pj_nulos', 'qt_socios_pj_baixados', 'qt_socios_pj_suspensos', 'qt_socios_pj_inaptos', 'vl_idade_media_socios_pj', 'vl_idade_maxima_socios_pj', 'vl_idade_minima_socios_pj', 'qt_coligados', 'qt_socios_coligados', 'qt_coligados_matriz', 'qt_coligados_ativo', 'qt_coligados_baixada', 'qt_coligados_inapta', 'qt_coligados_suspensa', 'qt_coligados_nula', 'idade_media_coligadas', 'idade_maxima_coligadas', 'idade_minima_coligadas', 'coligada_mais_nova_ativa', 'coligada_mais_antiga_ativa', 'idade_media_coligadas_ativas', 'coligada_mais_nova_baixada', 'coligada_mais_antiga_baixada', 'idade_media_coligadas_baixadas', 'qt_coligados_sa', 'qt_coligados_me', 'qt_coligados_mei', 'qt_coligados_ltda', 'qt_coligados_epp', 'qt_coligados_norte', 'qt_coligados_sul', 'qt_coligados_nordeste', 'qt_coligados_centro', 'qt_coligados_sudeste', 'qt_coligados_exterior', 'qt_ufs_coligados', 'qt_regioes_coligados', 'qt_ramos_coligados', 'qt_coligados_industria', 'qt_coligados_agropecuaria', 'qt_coligados_comercio', 'qt_coligados_serviço', 'qt_coligados_ccivil', 'qt_funcionarios_coligados', 'qt_funcionarios_coligados_gp', 'media_funcionarios_coligados_gp', 'max_funcionarios_coligados_gp', 'min_funcionarios_coligados_gp', 'vl_folha_coligados', 'media_vl_folha_coligados', 'max_vl_folha_coligados', 'min_vl_folha_coligados', 'vl_folha_coligados_gp', 'media_vl_folha_coligados_gp', 'max_vl_folha_coligados_gp', 'min_vl_folha_coligados_gp', 'faturamento_est_coligados', 'media_faturamento_est_coligados', 'max_faturamento_est_coligados', 'min_faturamento_est_coligados', 'faturamento_est_coligados_gp', 'media_faturamento_est_coligados_gp', 'max_faturamento_est_coligados_gp', 'min_faturamento_est_coligados_gp', 'total_filiais_coligados', 'media_filiais_coligados', 'max_filiais_coligados', 'min_filiais_coligados', 'qt_coligados_atividade_alto', 'qt_coligados_atividade_medio', 'qt_coligados_atividade_baixo', 'qt_coligados_atividade_mt_baixo', 'qt_coligados_atividade_inativo', 'qt_coligadas', 'sum_faturamento_estimado_coligadas', 'de_faixa_faturamento_estimado', 'vl_faturamento_estimado_aux', 'vl_faturamento_estimado_grupo_aux', 'qt_ex_funcionarios', 'qt_funcionarios_grupo', 'percent_func_genero_masc', 'percent_func_genero_fem', 'idade_ate_18', 'idade_de_19_a_23', 'idade_de_24_a_28', 'idade_de_29_a_33', 'idade_de_34_a_38', 'idade_de_39_a_43', 'idade_de_44_a_48', 'idade_de_49_a_53', 'idade_de_54_a_58', 'idade_acima_de_58', 'grau_instrucao_macro_analfabeto', 'grau_instrucao_macro_escolaridade_fundamental', 'grau_instrucao_macro_escolaridade_media', 'grau_instrucao_macro_escolaridade_superior', 'grau_instrucao_macro_desconhecido', 'total', 'meses_ultima_contratacaco', 'qt_admitidos_12meses', 'qt_desligados_12meses', 'qt_desligados', 'qt_admitidos', 'media_meses_servicos_all', 'max_meses_servicos_all', 'min_meses_servicos_all', 'media_meses_servicos', 'max_meses_servicos', 'min_meses_servicos', 'qt_funcionarios_12meses', 'qt_funcionarios_24meses', 'tx_crescimento_12meses', 'tx_crescimento_24meses'] st.markdown('## **Colunas excluídas**') st.markdown('Decidimos não utiliza-las por quantidade de linhas não preenchidas, grandes correlações com outrar variáveis, pouca importância para o modelo ou redundância!') st.markdown('**São elas:**') st.write(col_excluidas) st.sidebar.header('Sistema de recomendação') start_model = st.sidebar.checkbox('Aperte para começarmos a modelagem do sistema!') st.sidebar.markdown('**Desenvolvido por,**') st.sidebar.markdown('*<NAME>*') st.sidebar.markdown('[LinkedIn](https://www.linkedin.com/in/guilherme-reis-2862ab153/)') st.sidebar.markdown('[GitHub](https://github.com/guireis1/)') if start_model: st.header('**Modelagem**') st.subheader('**Primeiro selecione as features que gostaria de usar**') st.markdown('*Essas serão as colunas que serão utilizadas no sistema de recomendação!*') st.markdown('**Colunas que recomendamos:**') col_select=[] ramo = st.checkbox('de_ramo') idade = st.checkbox('idade_emp_cat') meso = st.checkbox('nm_meso_regiao') juridica = st.checkbox('natureza_juridica_macro') faturamento = st.checkbox('de_faixa_faturamento_estimado_grupo') filiais = st.checkbox('qt_filiais') mei = st.checkbox('fl_mei') rm = st.checkbox('fl_rm') st.markdown('**Colunas opcionais:**') setor = st.checkbox('setor') rotatividade = st.checkbox('tx_rotatividade') idade_socios = st.checkbox('idade_media_socios') socios = st.checkbox('qt_socios') renda = st.checkbox('empsetorcensitariofaixarendapopulacao') leve = st.checkbox('vl_total_veiculos_leves_grupo') pesado = st.checkbox('vl_total_veiculos_pesados_grupo') iss = st.checkbox('fl_passivel_iss') atividade = st.checkbox('de_nivel_atividade') saude = st.checkbox('de_saude_tributaria') veiculo = st.checkbox('fl_veiculo') antt = st.checkbox('fl_antt') telefone = st.checkbox('fl_telefone') email = st.checkbox('fl_email') matriz = st.checkbox('fl_matriz') if ramo: col_select.append('de_ramo') if idade: col_select.append('idade_emp_cat') if meso: col_select.append('nm_meso_regiao') meso_ohe=pd.get_dummies(market_pre['nm_meso_regiao'],drop_first=True) if faturamento: col_select.append('de_faixa_faturamento_estimado_grupo') if juridica: col_select.append('natureza_juridica_macro') juridico_ohe=
pd.get_dummies(market_pre['natureza_juridica_macro'],drop_first=True)
pandas.get_dummies
import json import pandas as pd from tqdm import tqdm from curami.commons import file_utils from curami.preprocess.clean import AttributeCleaner def generate_features_file(from_file_no, to_file_no): pd_unique_attributes =
pd.read_csv(file_utils.unique_attributes_file_final)
pandas.read_csv
import numpy as _np from scipy.stats import sem as _sem import pandas as _pd import matplotlib.pyplot as _plt from nicepy import format_fig as _ff, format_ax as _fa class TofData: """ General class for TOF data """ def __init__(self, filename, params, norm=True, noise_range=(3, 8), bkg_range=(3, 8), fluor=True, factor=0.92152588, offset=-0.36290086): """ :param filename: :param params: :param norm: :param noise_range: :param bkg_range: :param fluor: :param factor: :param offset: """ self.filename = filename self.idx = False self.norm = norm self.noise_range = noise_range self.bkg_range = bkg_range self.factor = factor self.offset = offset self.fluor = fluor self._get_data(filename) self._subtract_bkg() self._get_noise() self._get_params(filename, params) self.peaks = None def _get_data(self, filename): """ :param filename: :return: """ dat = list(_np.loadtxt(filename)) fluor = dat.pop() if self.fluor is False: fluor = 1 center = int(len(dat) / 2) time = _np.array([s for s in dat[:center]]) mass = self._time_to_mass(time, self.factor, self.offset) raw = _np.array([-i / fluor for i in dat[center:]]) / fluor raw = _pd.DataFrame({'Time': time, 'Mass': mass, 'Volts': raw}) if self.norm is True: tot = raw['Volts'].sum() raw['Volts'] = raw['Volts']/tot self.raw = raw def _subtract_bkg(self): """ :return: """ temp = self._select_range('Mass', self.bkg_range[0], self.bkg_range[1])['Volts'] m = temp.mean() self.raw['Volts'] = self.raw['Volts'] - m def _get_noise(self): """ :return: """ temp = self._select_range('Mass', self.noise_range[0], self.noise_range[1])['Volts'] n = temp.std() self.noise = n def _get_params(self, filename, params): """ :param filename: :param params: :return: """ listed = filename.replace('.txt', '').split('_') temp = {key: listed[val] for key, val in params.items()} self.params = {} for key, val in temp.items(): if key.lower() == 'version': val = val.lower() val = val.replace('v', '') else: pass if '.' in val or 'e' in val: try: val = float(val) except ValueError: pass else: try: val = int(val) except ValueError: val = val.lower() self.params[key] = val self.params = _pd.Series(self.params) def _select_range(self, column, lower, upper): """ Selects part of data that is between values upper and lower in column :param column: column name to rate_constants used to bound :param lower: lower value in column :param upper: upper value in column :return: parsed data frame """ temp = self.raw[(self.raw[column] <= upper) & (self.raw[column] >= lower)] return temp def _get_closest(self, column, value): """ :param column: :param value: :return: """ temp = self.raw.loc[(self.raw[column] - value).abs().idxmin()] return temp def _get_range(self, mass, pk_range=(-80, 80)): """ :param mass: :param pk_range: :return: """ idx = self._get_closest('Mass', mass).name lower = idx + pk_range[0] if lower < 0: lower = 0 upper = idx + pk_range[1] if upper > self.raw.index.max(): upper = self.raw.index.max() return lower, upper def _get_peak(self, lower, upper): """ :param lower: :param upper: :return: """ temp = self.raw.loc[range(lower, upper + 1)] p = temp['Volts'].sum() if p < self.noise: p = 0 return p def get_peaks(self, masses, **kwargs): """ :param masses: :param kwargs: :return: """ self.peaks = {} self.idx = {} for key, val in masses.items(): lower, upper = self._get_range(val, **kwargs) self.peaks[key] = self._get_peak(lower, upper) self.idx[key] = (lower, val, upper) self.peaks = _pd.Series(self.peaks) self.idx = _pd.Series(self.idx) @staticmethod def _time_to_mass(time, factor, offset): mass = [(t - factor) ** 2 + offset for t in time] return mass def show(self, x='Mass', shade=True, **kwargs): """ :param x: :param shade: :param kwargs: :return: """ fig, ax = _plt.subplots() title = {key: val for key, val in self.params.items()} self.raw.plot.line(x=x, y='Volts', title='%s' % title, color='black', ax=ax, **kwargs) if shade is True: if self.idx is not False: for key, val in self.idx.items(): idx_range = self.raw.loc[range(val[0], val[2] + 1)] ax.fill_between(idx_range[x], idx_range['Volts'], label=key, alpha=0.5) ax.legend(loc=0) else: pass else: pass ax.legend(loc=0) return fig, ax class TofSet: def __init__(self, filenames, params, **kwargs): """ :param filenames: :param params: :param kwargs: """ self.filenames = filenames self.params = params self._get_tofs(**kwargs) self._get_raw() self.idx = False self.peaks = None def _get_tofs(self, **kwargs): """ :param kwargs: :return: """ tof_list = [] for filename in self.filenames: t = TofData(filename, self.params, **kwargs) tof_list.append(t) tof_objs = [] for t in tof_list: temp = t.params.copy() temp['tof'] = t tof_objs.append(temp) temp = _pd.DataFrame(tof_objs) temp.set_index(list(self.params.keys()), inplace=True) self.tof_objs = temp.sort_index() def _get_raw(self): """ :return: """ # temp = self.tof_objs.copy() # temp['raw'] = [t.raw for t in temp['tof']] # self.raw = temp.drop('tof', axis=1) temp = self.tof_objs.copy() raw = [] for tof in temp['tof']: t = tof.raw for key, val in tof.params.items(): t[key] = val raw.append(t) self.raw = _pd.concat(raw) self.raw.set_index(list(self.params.keys()), inplace=True) self.raw.sort_index(inplace=True) def _get_tof_peaks(self, masses, **kwargs): """ :param masses: :param kwargs: :return: """ for t in self.tof_objs['tof']: t.get_peaks(masses, **kwargs) self.idx = t.idx def get_peaks(self, masses, **kwargs): """ :param masses: :param kwargs: :return: """ self._get_tof_peaks(masses, **kwargs) temp_list = [] for t in self.tof_objs['tof']: temp = _pd.concat([t.peaks, t.params]) temp_list.append(temp) temp = _pd.concat(temp_list, axis=1) self.peaks = temp.transpose() self.peaks.set_index(list(self.params.keys()), inplace=True) self.peaks.sort_index(inplace=True) # self.peaks['total'] = self.peaks.sum(axis=1) def get_raw_means(self, levels=None): if levels is None: levels = [] for key in ['version', 'delay']: if key in self.params.keys(): levels.append(key) else: pass self.levels = levels grouped = self.tof_objs.groupby(levels) temp_mean = [] temp_error = [] for indices, group in grouped: times = _np.mean([tof.raw['Time'] for tof in group['tof']], axis=0) masses = _np.mean([tof.raw['Mass'] for tof in group['tof']], axis=0) volts = _np.mean([tof.raw['Volts'] for tof in group['tof']], axis=0) errors = _sem([tof.raw['Volts'] for tof in group['tof']], axis=0) df_mean = _pd.DataFrame({'Time': times, 'Mass': masses, 'Volts': volts}) df_error =
_pd.DataFrame({'Time': times, 'Mass': masses, 'Volts': errors})
pandas.DataFrame
#!/usr/bin/env python """ Name: Filter and Convert Fetched Data from OpenSky Network Author: <NAME> Copyright: University of Liverpool © 2021 License: MIT Version: 1.0 Status: Operational Description: The source code performs a filter and conversion of data ready for analysis. """ import sys, csv, pytz import pandas as pd import tkinter as tk from tkinter import filedialog import time import numpy as np import pyproj import fileinput root = tk.Tk() root.withdraw() v = tk.StringVar(root) class data(): def filter(): file_path = filedialog.askopenfilename() v.set(file_path) rows = [] with open(file_path, 'r') as f: for row in csv.reader(f): # Check each row then strip whitespaces and blanks row = [col.strip() for col in row] rows.append(row) df = pd.DataFrame(rows) df.columns = df.iloc[0] df = df[1:] df = df.drop(df.columns[[10, 13, 14, 15]], axis = 1, inplace=False) df = df.drop_duplicates(keep=False) df = df.set_index('time', inplace=False) df.to_csv('test01.csv') df = pd.read_csv('test01.csv') df = df[df['onground'] == False] df = df[df['alert'] == False] df = df[df['baroaltitude'] >= 2590] #df['time'] = pd.to_datetime(df['time'],unit='s').dt.time df['hour'] = pd.to_datetime(df['hour'],unit='s') df = df.set_index('time', inplace=False) df.to_csv('test01.csv') filter_msg = print("\n Noise Data is removed successfully") return filter_msg def convert(): # Load the data and convert lat/lon to Eastings/Northings (UK zone 30) df = pd.read_csv('test01.csv') p = pyproj.Proj(proj='utm', zone=30, ellps='WGS84', preserve_units=False) x,y = p(df["lon"].values, df["lat"].values) # Create columns for x and y and store the generated data df = df.assign(eastings = x, northings = y) # Convert velocity from [m/s] to [knots], vertical speed to [FT/s] and altitude from [m] to [FT] df['velocity'] = round(df['velocity']*1.943844) df['vertrate'] = round(df['vertrate']/0.3048) df['baroaltitude'] = round(df['baroaltitude']*3.28084) df['heading'] = round(df['heading']) # get constant values for direction df['icao24'] = df['icao24'].str.upper() # Classifying in their Airspace classes conditions = [ (18050 <= df['baroaltitude']) & (df['baroaltitude'] <= 60000), # Class A (8550 <= df['baroaltitude']) & (df['baroaltitude'] <= 18000), # Class C (8500 <= df['baroaltitude']) & (df['baroaltitude'] <= 12500), # Class E ] classes = ['Class A', 'Class C', 'Class E'] df['airspace'] = np.select(conditions, classes) df = df.set_index('time', inplace=False) df = df.sort_index() df.to_csv('test01.csv') # save the file # Load data to save flights as their callsign in seperate csv. files df =
pd.read_csv('test01.csv')
pandas.read_csv
# Copyright 2018 IBM Corp. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import pandas as pd import numpy as np import matplotlib.pyplot as plt import matplotlib.colors as pltcolors import matplotlib.cm as cmx import click from ciml import listener from ciml import gather_results import datetime import itertools import os import queue import re import sys import warnings warnings.filterwarnings("ignore") try: from ciml import nn_trainer from ciml import svm_trainer from ciml import tf_trainer except ImportError: print("Warning: could not import CIML trainers") from mpl_toolkits.mplot3d import Axes3D # noqa: F401 unused import try: import tensorflow.compat.v1 as tf tf.disable_eager_execution() from tensorflow.python.training import adagrad from tensorflow.python.training import adam from tensorflow.python.training import ftrl from tensorflow.python.training import gradient_descent from tensorflow.python.training import rmsprop from tensorflow.python.training import proximal_adagrad _OPTIMIZER_CLS_NAMES = { 'Adagrad': adagrad.AdagradOptimizer, 'Adam': adam.AdamOptimizer, 'Ftrl': ftrl.FtrlOptimizer, 'RMSProp': rmsprop.RMSPropOptimizer, 'SGD': gradient_descent.GradientDescentOptimizer, 'ProximalAdagrad': proximal_adagrad.ProximalAdagradOptimizer } except ImportError: print("Warning: could not import Tensorflow") _OPTIMIZER_CLS_NAMES = {} default_db_uri = ('mysql+pymysql://query:<EMAIL>@logstash.<EMAIL>/' 'subunit2sql') def fixed_lenght_example(result, normalized_length=5500, aggregation_functions=None): """Normalize one example. Normalize one example of data to a fixed length (L). The input is s x d. To achieve fixed lenght: - if aggregation functions are provided, apply them, or else - if s > L, cut each dstat column data to L - if s < L, pad with zeros to reach L The output is a pd.DataFrame with shape (L, d) """ # Fix length of dataset example = result['dstat'] init_len = len(example) dstat_keys = example.keys() if aggregation_functions: # Run all aggregation functions on each DataFrame column in the example agg_dict = {column: [x(example[column]) for x in aggregation_functions] for column in example.columns} example =
pd.DataFrame.from_dict(agg_dict)
pandas.DataFrame.from_dict
""" Pandas(2) """ ## 5. Data Aggregation(데이터 수집) import pandas as pd from numpy.random import seed, rand, randint import numpy as np # 넘파이의 무작위 함수 seed(42) df = pd.DataFrame({ 'Weather': ['cold', 'hot', 'cold', 'hot', 'cold', 'hot', 'cold'], 'Food': ['soup', 'soup', 'icecream', 'chocolate', 'icecream', 'icecream', 'soup'], 'Price': 10 * rand(7), 'Number': randint(1, 9) }) print(df) # weather 열로 그룹화(2개 그룹) weather_group = df.groupby('Weather') i = 0 for name, group in weather_group: i = i + 1 print("Group", i, name) print(group) # 첫번째 열, 마지막 열, 각 그룹의 평균값 print("Weather group first\n", weather_group.first()) print("Weather group last\n", weather_group.last()) print("Weather group mean\n", weather_group.mean()) # 여러 열을 그룹화하고 새로운 그룹을 생성 wf_group = df.groupby(['Weather', 'Food']) print("WF Groups", wf_group.groups) # 넘파이 함수를 리스트 방식으로 적용 print("WF Aggregated\n", wf_group.agg([np.mean, np.median])) ## 6. Concatenating and appending DataFrames(행의 결합과 추가) print("df :3\n", df[:3]) # 첫번째 세 개의 열 print("Concat Back together\n", pd.concat([df[:3], df[3:]])) print("Appending rows\n", df[:3].append(df[5:])) ## 7. joining DataFrames - 판다스.merge(), 데이터프레임.join() path = 'D:\\1.Workspace\\1.Python\\part2.data_analysis\\pythonDataAnalysis2nd\\' # 택시회사 직원번호와 목적지 데이터 dests = pd.read_csv(path + 'ch3-2.dest.csv') print("Dests\n", dests) # 택시운전기사의 팁 데이터 tips = pd.read_csv(path +'ch3-2.tips.csv') print("Tips\n", tips) print("Merge() on key\n", pd.merge(dests, tips, on='EmpNr')) print("Dests join() tips\n", dests.join(tips, lsuffix='Dest', rsuffix='Tips')) print("Inner join with merge()\n", pd.merge(dests, tips, how='inner')) print("Outer join with merge()\n", pd.merge(dests, tips, how='outer')) ## 8. Handlng missing Values(누락된 데이터 다루기) path = 'D:\\1.Workspace\\1.Python\\part2.data_analysis\\pythonDataAnalysis2nd\\' df = pd.read_csv(path + 'ch3-1.WHO_first9cols.csv') # country and Net primary school enrolment ratio male(%)의 헤더가 포함된 앞 세 개 열 df = df[['Country', df.columns[-2]]][:2] print("New df\n", df) print("Null Values\n", pd.isnull(df)) print("Total Null Values\n", pd.isnull(df).sum()) # Nan 값의 총 갯수(True = 1) print("Not Null Values\n", df.notnull()) print("Last Column Doubled\n", 2 * df[df.columns[-1]]) # Nan 값을 곱하거나 더해도 Nan print("Last Column plus NaN\n", df[df.columns[-1]] + np.nan) print("Zero filled\n", df.fillna(0)) ## 9. dealing with dates(날짜 다루기) print("Date range", pd.date_range('1/1/1900', periods=42, freq='D')) import sys try: print("Date range", pd.date_range('1/1/1677', periods=4, freq='D')) except: etype, value, _ = sys.exc_info() print("Error encountered", etype, value) # pd.DateOffset으로 허용되는 날짜 범위 offset = pd.DateOffset(seconds=2 ** 33/10 ** 9) mid = pd.to_datetime('1/1/1970') print("Start valid range", mid - offset) print("End valid range", mid + offset) # 문자열을 날짜로 변환 print("With format", pd.to_datetime(['19021112', '19031230'], format='%Y%m%d')) # 날짜가 아닌 문자열(둰째 열)은 변환되지 않음 print("Illegal date", pd.to_datetime(['1902-11-12', 'not a date'])) print("Illegal date coerced",
pd.to_datetime(['1902-11-12', 'not a date'], errors='coerce')
pandas.to_datetime
# This Python 3 environment comes with many helpful analytics libraries installed # It is defined by the kaggle/python docker image: https://github.com/kaggle/docker-python # For example, here's several helpful packages to load in import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import classification_report # Input data files are available in the "../input/" directory. # For example, running this (by clicking run or pressing Shift+Enter) will list the files in the input directory from subprocess import check_output print(check_output(["ls", "../input"]).decode("utf8")) # Any results you write to the current directory are saved as output. data_frame_train = pd.read_csv('../input/train.csv') data_frame_test = pd.read_csv("../input/test.csv") print(data_frame_train.shape) print(data_frame_train.head(5)) print(data_frame_train.dtypes) print(data_frame_train.describe()) class_count = data_frame_train.groupby('type').size() print(class_count) sns.set() sns.pairplot(data_frame_train,hue="type") print(data_frame_test.columns) df = data_frame_train["type"] indexes_test = data_frame_test["id"] data_frame_train = data_frame_train.drop(["type","color","id"],axis=1) data_frame_test = data_frame_test.drop(["color","id"],axis=1) data_frame_train =
pd.get_dummies(data_frame_train)
pandas.get_dummies
""" Tests for scalar Timedelta arithmetic ops """ from datetime import datetime, timedelta import operator import numpy as np import pytest import pandas as pd from pandas import NaT, Timedelta, Timestamp, offsets import pandas._testing as tm from pandas.core import ops class TestTimedeltaAdditionSubtraction: """ Tests for Timedelta methods: __add__, __radd__, __sub__, __rsub__ """ @pytest.mark.parametrize( "ten_seconds", [ Timedelta(10, unit="s"), timedelta(seconds=10), np.timedelta64(10, "s"), np.timedelta64(10000000000, "ns"), offsets.Second(10), ], ) def test_td_add_sub_ten_seconds(self, ten_seconds): # GH#6808 base = Timestamp("20130101 09:01:12.123456") expected_add = Timestamp("20130101 09:01:22.123456") expected_sub = Timestamp("20130101 09:01:02.123456") result = base + ten_seconds assert result == expected_add result = base - ten_seconds assert result == expected_sub @pytest.mark.parametrize( "one_day_ten_secs", [ Timedelta("1 day, 00:00:10"), Timedelta("1 days, 00:00:10"), timedelta(days=1, seconds=10), np.timedelta64(1, "D") + np.timedelta64(10, "s"), offsets.Day() + offsets.Second(10), ], ) def test_td_add_sub_one_day_ten_seconds(self, one_day_ten_secs): # GH#6808 base = Timestamp("20130102 09:01:12.123456") expected_add = Timestamp("20130103 09:01:22.123456") expected_sub = Timestamp("20130101 09:01:02.123456") result = base + one_day_ten_secs assert result == expected_add result = base - one_day_ten_secs assert result == expected_sub @pytest.mark.parametrize("op", [operator.add, ops.radd]) def test_td_add_datetimelike_scalar(self, op): # GH#19738 td = Timedelta(10, unit="d") result = op(td, datetime(2016, 1, 1)) if op is operator.add: # datetime + Timedelta does _not_ call Timedelta.__radd__, # so we get a datetime back instead of a Timestamp assert isinstance(result, Timestamp) assert result == Timestamp(2016, 1, 11) result = op(td, Timestamp("2018-01-12 18:09")) assert isinstance(result, Timestamp) assert result == Timestamp("2018-01-22 18:09") result = op(td, np.datetime64("2018-01-12")) assert isinstance(result, Timestamp) assert result == Timestamp("2018-01-22") result = op(td, NaT) assert result is NaT @pytest.mark.parametrize("op", [operator.add, ops.radd]) def test_td_add_td(self, op): td = Timedelta(10, unit="d") result = op(td, Timedelta(days=10)) assert isinstance(result, Timedelta) assert result == Timedelta(days=20) @pytest.mark.parametrize("op", [operator.add, ops.radd]) def test_td_add_pytimedelta(self, op): td = Timedelta(10, unit="d") result = op(td, timedelta(days=9)) assert isinstance(result, Timedelta) assert result == Timedelta(days=19) @pytest.mark.parametrize("op", [operator.add, ops.radd]) def test_td_add_timedelta64(self, op): td = Timedelta(10, unit="d") result = op(td, np.timedelta64(-4, "D")) assert isinstance(result, Timedelta) assert result == Timedelta(days=6) @pytest.mark.parametrize("op", [operator.add, ops.radd]) def test_td_add_offset(self, op): td = Timedelta(10, unit="d") result = op(td, offsets.Hour(6)) assert isinstance(result, Timedelta) assert result == Timedelta(days=10, hours=6) def test_td_sub_td(self): td = Timedelta(10, unit="d") expected = Timedelta(0, unit="ns") result = td - td assert isinstance(result, Timedelta) assert result == expected def test_td_sub_pytimedelta(self): td = Timedelta(10, unit="d") expected = Timedelta(0, unit="ns") result = td - td.to_pytimedelta() assert isinstance(result, Timedelta) assert result == expected result = td.to_pytimedelta() - td assert isinstance(result, Timedelta) assert result == expected def test_td_sub_timedelta64(self): td = Timedelta(10, unit="d") expected = Timedelta(0, unit="ns") result = td - td.to_timedelta64() assert isinstance(result, Timedelta) assert result == expected result = td.to_timedelta64() - td assert isinstance(result, Timedelta) assert result == expected def test_td_sub_nat(self): # In this context pd.NaT is treated as timedelta-like td = Timedelta(10, unit="d") result = td - NaT assert result is NaT def test_td_sub_td64_nat(self): td = Timedelta(10, unit="d") td_nat = np.timedelta64("NaT") result = td - td_nat assert result is NaT result = td_nat - td assert result is NaT def test_td_sub_offset(self): td = Timedelta(10, unit="d") result = td - offsets.Hour(1) assert isinstance(result, Timedelta) assert result == Timedelta(239, unit="h") def test_td_add_sub_numeric_raises(self): td = Timedelta(10, unit="d") for other in [2, 2.0, np.int64(2), np.float64(2)]: with pytest.raises(TypeError): td + other with pytest.raises(TypeError): other + td with pytest.raises(TypeError): td - other with pytest.raises(TypeError): other - td def test_td_rsub_nat(self): td = Timedelta(10, unit="d") result = NaT - td assert result is NaT result = np.datetime64("NaT") - td assert result is NaT def test_td_rsub_offset(self): result = offsets.Hour(1) - Timedelta(10, unit="d") assert isinstance(result, Timedelta) assert result == Timedelta(-239, unit="h") def test_td_sub_timedeltalike_object_dtype_array(self): # GH#21980 arr = np.array([Timestamp("20130101 9:01"), Timestamp("20121230 9:02")]) exp = np.array([Timestamp("20121231 9:01"), Timestamp("20121229 9:02")]) res = arr - Timedelta("1D") tm.assert_numpy_array_equal(res, exp) def test_td_sub_mixed_most_timedeltalike_object_dtype_array(self): # GH#21980 now = Timestamp.now() arr = np.array([now, Timedelta("1D"), np.timedelta64(2, "h")]) exp = np.array( [ now - Timedelta("1D"), Timedelta("0D"), np.timedelta64(2, "h") - Timedelta("1D"), ] ) res = arr - Timedelta("1D") tm.assert_numpy_array_equal(res, exp) def test_td_rsub_mixed_most_timedeltalike_object_dtype_array(self): # GH#21980 now = Timestamp.now() arr = np.array([now, Timedelta("1D"), np.timedelta64(2, "h")]) with pytest.raises(TypeError): Timedelta("1D") - arr @pytest.mark.parametrize("op", [operator.add, ops.radd]) def test_td_add_timedeltalike_object_dtype_array(self, op): # GH#21980 arr = np.array([Timestamp("20130101 9:01"), Timestamp("20121230 9:02")]) exp = np.array([Timestamp("20130102 9:01"), Timestamp("20121231 9:02")]) res = op(arr, Timedelta("1D")) tm.assert_numpy_array_equal(res, exp) @pytest.mark.parametrize("op", [operator.add, ops.radd]) def test_td_add_mixed_timedeltalike_object_dtype_array(self, op): # GH#21980 now = Timestamp.now() arr = np.array([now, Timedelta("1D")]) exp = np.array([now + Timedelta("1D"), Timedelta("2D")]) res = op(arr, Timedelta("1D")) tm.assert_numpy_array_equal(res, exp) # TODO: moved from index tests following #24365, may need de-duplication def test_ops_ndarray(self): td = Timedelta("1 day") # timedelta, timedelta other = pd.to_timedelta(["1 day"]).values expected = pd.to_timedelta(["2 days"]).values tm.assert_numpy_array_equal(td + other, expected) tm.assert_numpy_array_equal(other + td, expected) msg = r"unsupported operand type\(s\) for \+: 'Timedelta' and 'int'" with pytest.raises(TypeError, match=msg): td + np.array([1]) msg = r"unsupported operand type\(s\) for \+: 'numpy.ndarray' and 'Timedelta'" with pytest.raises(TypeError, match=msg): np.array([1]) + td expected = pd.to_timedelta(["0 days"]).values tm.assert_numpy_array_equal(td - other, expected) tm.assert_numpy_array_equal(-other + td, expected) msg = r"unsupported operand type\(s\) for -: 'Timedelta' and 'int'" with pytest.raises(TypeError, match=msg): td - np.array([1]) msg = r"unsupported operand type\(s\) for -: 'numpy.ndarray' and 'Timedelta'" with pytest.raises(TypeError, match=msg): np.array([1]) - td expected = pd.to_timedelta(["2 days"]).values tm.assert_numpy_array_equal(td * np.array([2]), expected) tm.assert_numpy_array_equal(np.array([2]) * td, expected) msg = ( "ufunc '?multiply'? cannot use operands with types" r" dtype\('<m8\[ns\]'\) and dtype\('<m8\[ns\]'\)" ) with pytest.raises(TypeError, match=msg): td * other with pytest.raises(TypeError, match=msg): other * td tm.assert_numpy_array_equal(td / other, np.array([1], dtype=np.float64)) tm.assert_numpy_array_equal(other / td, np.array([1], dtype=np.float64)) # timedelta, datetime other = pd.to_datetime(["2000-01-01"]).values expected = pd.to_datetime(["2000-01-02"]).values tm.assert_numpy_array_equal(td + other, expected) tm.assert_numpy_array_equal(other + td, expected) expected = pd.to_datetime(["1999-12-31"]).values tm.assert_numpy_array_equal(-td + other, expected) tm.assert_numpy_array_equal(other - td, expected) class TestTimedeltaMultiplicationDivision: """ Tests for Timedelta methods: __mul__, __rmul__, __div__, __rdiv__, __truediv__, __rtruediv__, __floordiv__, __rfloordiv__, __mod__, __rmod__, __divmod__, __rdivmod__ """ # --------------------------------------------------------------- # Timedelta.__mul__, __rmul__ @pytest.mark.parametrize( "td_nat", [NaT, np.timedelta64("NaT", "ns"), np.timedelta64("NaT")] ) @pytest.mark.parametrize("op", [operator.mul, ops.rmul]) def test_td_mul_nat(self, op, td_nat): # GH#19819 td = Timedelta(10, unit="d") with pytest.raises(TypeError): op(td, td_nat) @pytest.mark.parametrize("nan", [np.nan, np.float64("NaN"), float("nan")]) @pytest.mark.parametrize("op", [operator.mul, ops.rmul]) def test_td_mul_nan(self, op, nan): # np.float64('NaN') has a 'dtype' attr, avoid treating as array td = Timedelta(10, unit="d") result = op(td, nan) assert result is NaT @pytest.mark.parametrize("op", [operator.mul, ops.rmul]) def test_td_mul_scalar(self, op): # GH#19738 td = Timedelta(minutes=3) result = op(td, 2) assert result == Timedelta(minutes=6) result = op(td, 1.5) assert result == Timedelta(minutes=4, seconds=30) assert op(td, np.nan) is NaT assert op(-1, td).value == -1 * td.value assert op(-1.0, td).value == -1.0 * td.value with pytest.raises(TypeError): # timedelta * datetime is gibberish op(td, Timestamp(2016, 1, 2)) with pytest.raises(TypeError): # invalid multiply with another timedelta op(td, td) # --------------------------------------------------------------- # Timedelta.__div__, __truediv__ def test_td_div_timedeltalike_scalar(self): # GH#19738 td = Timedelta(10, unit="d") result = td / offsets.Hour(1) assert result == 240 assert td / td == 1 assert td / np.timedelta64(60, "h") == 4 assert np.isnan(td / NaT) def test_td_div_numeric_scalar(self): # GH#19738 td = Timedelta(10, unit="d") result = td / 2 assert isinstance(result, Timedelta) assert result == Timedelta(days=5) result = td / 5.0 assert isinstance(result, Timedelta) assert result == Timedelta(days=2) @pytest.mark.parametrize("nan", [np.nan, np.float64("NaN"), float("nan")]) def test_td_div_nan(self, nan): # np.float64('NaN') has a 'dtype' attr, avoid treating as array td = Timedelta(10, unit="d") result = td / nan assert result is NaT result = td // nan assert result is NaT # --------------------------------------------------------------- # Timedelta.__rdiv__ def test_td_rdiv_timedeltalike_scalar(self): # GH#19738 td = Timedelta(10, unit="d") result = offsets.Hour(1) / td assert result == 1 / 240.0 assert np.timedelta64(60, "h") / td == 0.25 # --------------------------------------------------------------- # Timedelta.__floordiv__ def test_td_floordiv_timedeltalike_scalar(self): # GH#18846 td = Timedelta(hours=3, minutes=4) scalar = Timedelta(hours=3, minutes=3) assert td // scalar == 1 assert -td // scalar.to_pytimedelta() == -2 assert (2 * td) // scalar.to_timedelta64() == 2 def test_td_floordiv_null_scalar(self): # GH#18846 td = Timedelta(hours=3, minutes=4) assert td // np.nan is NaT assert np.isnan(td // NaT) assert np.isnan(td // np.timedelta64("NaT")) def test_td_floordiv_offsets(self): # GH#19738 td = Timedelta(hours=3, minutes=4) assert td // offsets.Hour(1) == 3 assert td // offsets.Minute(2) == 92 def test_td_floordiv_invalid_scalar(self): # GH#18846 td = Timedelta(hours=3, minutes=4) with pytest.raises(TypeError): td // np.datetime64("2016-01-01", dtype="datetime64[us]") def test_td_floordiv_numeric_scalar(self): # GH#18846 td = Timedelta(hours=3, minutes=4) expected = Timedelta(hours=1, minutes=32) assert td // 2 == expected assert td // 2.0 == expected assert td // np.float64(2.0) == expected assert td // np.int32(2.0) == expected assert td // np.uint8(2.0) == expected def test_td_floordiv_timedeltalike_array(self): # GH#18846 td = Timedelta(hours=3, minutes=4) scalar = Timedelta(hours=3, minutes=3) # Array-like others assert td // np.array(scalar.to_timedelta64()) == 1 res = (3 * td) // np.array([scalar.to_timedelta64()]) expected = np.array([3], dtype=np.int64) tm.assert_numpy_array_equal(res, expected) res = (10 * td) // np.array([scalar.to_timedelta64(), np.timedelta64("NaT")]) expected = np.array([10, np.nan]) tm.assert_numpy_array_equal(res, expected) def test_td_floordiv_numeric_series(self): # GH#18846 td = Timedelta(hours=3, minutes=4) ser = pd.Series([1], dtype=np.int64) res = td // ser assert res.dtype.kind == "m" # --------------------------------------------------------------- # Timedelta.__rfloordiv__ def test_td_rfloordiv_timedeltalike_scalar(self): # GH#18846 td = Timedelta(hours=3, minutes=3) scalar = Timedelta(hours=3, minutes=4) # scalar others # x // Timedelta is defined only for timedelta-like x. int-like, # float-like, and date-like, in particular, should all either # a) raise TypeError directly or # b) return NotImplemented, following which the reversed # operation will raise TypeError. assert td.__rfloordiv__(scalar) == 1 assert (-td).__rfloordiv__(scalar.to_pytimedelta()) == -2 assert (2 * td).__rfloordiv__(scalar.to_timedelta64()) == 0 def test_td_rfloordiv_null_scalar(self): # GH#18846 td = Timedelta(hours=3, minutes=3) assert np.isnan(td.__rfloordiv__(NaT)) assert np.isnan(td.__rfloordiv__(np.timedelta64("NaT"))) def test_td_rfloordiv_offsets(self): # GH#19738 assert offsets.Hour(1) // Timedelta(minutes=25) == 2 def test_td_rfloordiv_invalid_scalar(self): # GH#18846 td = Timedelta(hours=3, minutes=3) dt64 = np.datetime64("2016-01-01", "us") with pytest.raises(TypeError): td.__rfloordiv__(dt64) def test_td_rfloordiv_numeric_scalar(self): # GH#18846 td = Timedelta(hours=3, minutes=3) assert td.__rfloordiv__(np.nan) is NotImplemented assert td.__rfloordiv__(3.5) is NotImplemented assert td.__rfloordiv__(2) is NotImplemented with pytest.raises(TypeError): td.__rfloordiv__(np.float64(2.0)) with pytest.raises(TypeError): td.__rfloordiv__(np.uint8(9)) with pytest.raises(TypeError, match="Invalid dtype"): # deprecated GH#19761, enforced GH#29797 td.__rfloordiv__(np.int32(2.0)) def test_td_rfloordiv_timedeltalike_array(self): # GH#18846 td = Timedelta(hours=3, minutes=3) scalar = Timedelta(hours=3, minutes=4) # Array-like others assert td.__rfloordiv__(np.array(scalar.to_timedelta64())) == 1 res = td.__rfloordiv__(np.array([(3 * scalar).to_timedelta64()])) expected = np.array([3], dtype=np.int64) tm.assert_numpy_array_equal(res, expected) arr = np.array([(10 * scalar).to_timedelta64(), np.timedelta64("NaT")]) res = td.__rfloordiv__(arr) expected = np.array([10, np.nan]) tm.assert_numpy_array_equal(res, expected) def test_td_rfloordiv_numeric_series(self): # GH#18846 td = Timedelta(hours=3, minutes=3) ser = pd.Series([1], dtype=np.int64) res = td.__rfloordiv__(ser) assert res is NotImplemented with pytest.raises(TypeError, match="Invalid dtype"): # Deprecated GH#19761, enforced GH#29797 # TODO: GH-19761. Change to TypeError. ser // td # ---------------------------------------------------------------- # Timedelta.__mod__, __rmod__ def test_mod_timedeltalike(self): # GH#19365 td = Timedelta(hours=37) # Timedelta-like others result = td % Timedelta(hours=6) assert isinstance(result, Timedelta) assert result == Timedelta(hours=1) result = td % timedelta(minutes=60) assert isinstance(result, Timedelta) assert result == Timedelta(0) result = td % NaT assert result is NaT def test_mod_timedelta64_nat(self): # GH#19365 td = Timedelta(hours=37) result = td % np.timedelta64("NaT", "ns") assert result is NaT def test_mod_timedelta64(self): # GH#19365 td = Timedelta(hours=37) result = td % np.timedelta64(2, "h") assert isinstance(result, Timedelta) assert result == Timedelta(hours=1) def test_mod_offset(self): # GH#19365 td = Timedelta(hours=37) result = td % offsets.Hour(5) assert isinstance(result, Timedelta) assert result == Timedelta(hours=2) def test_mod_numeric(self): # GH#19365 td = Timedelta(hours=37) # Numeric Others result = td % 2 assert isinstance(result, Timedelta) assert result == Timedelta(0) result = td % 1e12 assert isinstance(result, Timedelta) assert result == Timedelta(minutes=3, seconds=20) result = td % int(1e12) assert isinstance(result, Timedelta) assert result == Timedelta(minutes=3, seconds=20) def test_mod_invalid(self): # GH#19365 td = Timedelta(hours=37) with pytest.raises(TypeError): td % Timestamp("2018-01-22") with pytest.raises(TypeError): td % [] def test_rmod_pytimedelta(self): # GH#19365 td = Timedelta(minutes=3) result = timedelta(minutes=4) % td assert isinstance(result, Timedelta) assert result == Timedelta(minutes=1) def test_rmod_timedelta64(self): # GH#19365 td = Timedelta(minutes=3) result = np.timedelta64(5, "m") % td assert isinstance(result, Timedelta) assert result == Timedelta(minutes=2) def test_rmod_invalid(self): # GH#19365 td = Timedelta(minutes=3) with pytest.raises(TypeError): Timestamp("2018-01-22") % td with pytest.raises(TypeError): 15 % td with pytest.raises(TypeError): 16.0 % td with pytest.raises(TypeError): np.array([22, 24]) % td # ---------------------------------------------------------------- # Timedelta.__divmod__, __rdivmod__ def test_divmod_numeric(self): # GH#19365 td = Timedelta(days=2, hours=6) result = divmod(td, 53 * 3600 * 1e9) assert result[0] == Timedelta(1, unit="ns") assert isinstance(result[1], Timedelta) assert result[1] == Timedelta(hours=1) assert result result = divmod(td, np.nan) assert result[0] is NaT assert result[1] is NaT def test_divmod(self): # GH#19365 td = Timedelta(days=2, hours=6) result = divmod(td, timedelta(days=1)) assert result[0] == 2 assert isinstance(result[1], Timedelta) assert result[1] == Timedelta(hours=6) result = divmod(td, 54) assert result[0] == Timedelta(hours=1) assert isinstance(result[1], Timedelta) assert result[1] == Timedelta(0) result = divmod(td, NaT) assert np.isnan(result[0]) assert result[1] is NaT def test_divmod_offset(self): # GH#19365 td = Timedelta(days=2, hours=6) result = divmod(td, offsets.Hour(-4)) assert result[0] == -14 assert isinstance(result[1], Timedelta) assert result[1] == Timedelta(hours=-2) def test_divmod_invalid(self): # GH#19365 td = Timedelta(days=2, hours=6) with pytest.raises(TypeError): divmod(td, Timestamp("2018-01-22")) def test_rdivmod_pytimedelta(self): # GH#19365 result = divmod(timedelta(days=2, hours=6), Timedelta(days=1)) assert result[0] == 2 assert isinstance(result[1], Timedelta) assert result[1] == Timedelta(hours=6) def test_rdivmod_offset(self): result = divmod(offsets.Hour(54), Timedelta(hours=-4)) assert result[0] == -14 assert isinstance(result[1], Timedelta) assert result[1] == Timedelta(hours=-2) def test_rdivmod_invalid(self): # GH#19365 td = Timedelta(minutes=3) with pytest.raises(TypeError): divmod(Timestamp("2018-01-22"), td) with pytest.raises(TypeError): divmod(15, td) with pytest.raises(TypeError): divmod(16.0, td) with pytest.raises(TypeError): divmod(np.array([22, 24]), td) # ---------------------------------------------------------------- @pytest.mark.parametrize( "op", [operator.mul, ops.rmul, operator.truediv, ops.rdiv, ops.rsub] ) @pytest.mark.parametrize( "arr", [ np.array([Timestamp("20130101 9:01"),
Timestamp("20121230 9:02")
pandas.Timestamp
# -*- coding: utf-8 -*- from warnings import catch_warnings import numpy as np from datetime import datetime from pandas.util import testing as tm import pandas as pd from pandas.core import config as cf from pandas.compat import u from pandas._libs.tslib import iNaT from pandas import (NaT, Float64Index, Series, DatetimeIndex, TimedeltaIndex, date_range) from pandas.core.dtypes.dtypes import DatetimeTZDtype from pandas.core.dtypes.missing import ( array_equivalent, isnull, notnull, na_value_for_dtype) def test_notnull(): assert notnull(1.) assert not notnull(None) assert not notnull(np.NaN) with cf.option_context("mode.use_inf_as_null", False): assert notnull(np.inf) assert notnull(-np.inf) arr = np.array([1.5, np.inf, 3.5, -np.inf]) result = notnull(arr) assert result.all() with cf.option_context("mode.use_inf_as_null", True): assert not notnull(np.inf) assert not notnull(-np.inf) arr = np.array([1.5, np.inf, 3.5, -np.inf]) result = notnull(arr) assert result.sum() == 2 with cf.option_context("mode.use_inf_as_null", False): for s in [tm.makeFloatSeries(), tm.makeStringSeries(), tm.makeObjectSeries(), tm.makeTimeSeries(), tm.makePeriodSeries()]: assert (isinstance(isnull(s), Series)) class TestIsNull(object): def test_0d_array(self): assert isnull(np.array(np.nan)) assert not isnull(np.array(0.0)) assert not isnull(np.array(0)) # test object dtype assert isnull(np.array(np.nan, dtype=object)) assert not isnull(np.array(0.0, dtype=object)) assert not isnull(np.array(0, dtype=object)) def test_empty_object(self): for shape in [(4, 0), (4,)]: arr = np.empty(shape=shape, dtype=object) result = isnull(arr) expected = np.ones(shape=shape, dtype=bool) tm.assert_numpy_array_equal(result, expected) def test_isnull(self): assert not isnull(1.) assert isnull(None) assert isnull(np.NaN) assert float('nan') assert not isnull(np.inf) assert not isnull(-np.inf) # series for s in [tm.makeFloatSeries(), tm.makeStringSeries(), tm.makeObjectSeries(), tm.makeTimeSeries(), tm.makePeriodSeries()]: assert isinstance(isnull(s), Series) # frame for df in [tm.makeTimeDataFrame(),
tm.makePeriodFrame()
pandas.util.testing.makePeriodFrame
"""This file contains utility functions used for numpy data manipulation""" import json import logging try: import dicom except: import pydicom as dicom import matplotlib.pylab as plt import numpy as np import pandas as pd import os import SimpleITK as sitk logging.basicConfig(level=logging.INFO, format='%(asctime)s %(message)s') class NumpyEncoder(json.JSONEncoder): """This is a Encoder used to dump numpy arrays to json files. It also converts np.int64 (not python serializable) to python int Example: a = np.array([1, 2, 3]) print(json.dumps({'aa': [2, (2, 3, 4), a], 'bb': [2]}, cls=NumpyEncoder)) Output: {"aa": [2, [2, 3, 4], [1, 2, 3]], "bb": [2]} """ def default(self, obj): if isinstance(obj, np.ndarray): return obj.tolist() if isinstance(obj, np.integer): return int(obj) if isinstance(obj, np.float32) or isinstance(obj, np.float16): return float(obj) return json.JSONEncoder.default(self, obj) def convert_to_unit8(pixel_array, from_bit=16, to_bit=8): """ Convert dicom dataset to an uint8 numpy array Args: pixel_array: a numpy array from_bit: bit to convert from to_bit: bit to convert to Returns: pixel_array: a converted pixel_array """ if from_bit == to_bit: return pixel_array # TODO: this is not exactly right. As 0-255 only has 2**8-1 scales pixel_array = pixel_array * (2 ** (to_bit - from_bit)) if to_bit == 8: pixel_array = pixel_array.astype(np.uint8) else: raise ValueError('Unsupported bit type {}-bit!'.format(to_bit)) return pixel_array def get_new_dimensions(orig_shapes, min_dimension, max_dimension): """Get new dimensions based on the target shape limits The output size can be described by two cases: 1. If the image can be rescaled so its minimum dimension is equal to the provided value without the other dimension exceeding max_dimension, then do so. 2. Otherwise, resize so the largest dimension is equal to max_dimension. Args: orig_shapes: min_dimension: max_dimension: Returns: new_shapes: a tuple of new dimensions """ min_target = min(orig_shapes) max_target = max(orig_shapes) if max_target * min_dimension / min_target < max_dimension: ratio = min_dimension / min_target else: ratio = max_dimension / max_target new_shapes = tuple(int(shape * ratio) for shape in orig_shapes) return new_shapes def get_pixel_array_from_dicom_path(filepath, mismatch=1, to_bit=8, floor=None, ceiling=None): """ Read image from dicom file and conver to numpy array. Args: filepath: dicom filepath mismatch: number of pixels to drop in pixel_array in case of a shape mismatch to_bit: bit to convert to, 8 and 16 supported. Return raw array if set to -1. floor: manually override bit conversion ceiling: manually override bit conversion Returns: pixel_array: a numpy array containing the image stored in dicom file """ # read dicom files ds = dicom.read_file(filepath) # Get image numpy array # Image dicom file is in 16 bit and needs to be converted try: try: pixel_array = ds.pixel_array except: # pydicom cannot handle lossless jpeg reader = sitk.ImageSeriesReader() reader.SetFileNames([filepath]) sitk_img = reader.Execute() pixel_array = sitk.GetArrayFromImage(sitk_img)[0, ...] try: if ds.PresentationLUTShape == 'INVERSE': pixel_array = pixel_array.max() - pixel_array except: logging.debug('PresentationLUTShape is INVERSE!') if to_bit == -1: # return the raw image return pixel_array if floor is not None and ceiling is not None: pixel_array = np.clip(ds.pixel_array, a_min=floor, a_max=ceiling) pixel_array = (pixel_array.astype(float) - floor) / (ceiling - floor) * (2 ** to_bit - 1) if to_bit == 8: pixel_array = pixel_array.astype(np.uint8) elif to_bit == 16: pixel_array = pixel_array.astype(np.uint16) else: raise ValueError('Unsupported bit type {}-bit!'.format(to_bit)) elif ds.BitsStored != to_bit: print('Converting from {}-bit to {}-bit'.format(ds.BitsStored, to_bit)) pixel_array = convert_to_unit8(pixel_array, to_bit=to_bit) except: # Some mask has size mismatch of exactly one, then manually discard one element try: # all masks are stored in uint8 format pixel_array = np.fromstring(ds.PixelData, dtype=np.uint8) pixel_array = pixel_array[mismatch:].reshape((ds.Rows, ds.Columns)) except: raise ValueError('The img size mismatches in {} and is not {}'.format(filepath, mismatch)) return pixel_array def gen_single_input(single_image_path): """Read from image path and return a 3 channel color image in the format of numpy array Args: single_image_path: Returns: img_color: a 3 channel numpy array """ filepath = single_image_path img = plt.imread(filepath) * 255 img = img.astype(np.float32) # shenzhen dataset has 3 channels if len(img.shape) == 3: img_color = img # some nih png file has four channels RGBA # e.g., '/data/dataset/images/images_003/00006074_000.png' # use first 3 channels RGB only if img.shape[-1] == 4: img_color = img[:, :, :3] # most nih dataset has single grayscale channel elif len(img.shape) == 2: img_color = np.dstack([img] * 3) return img_color def input_generator(filepath_list=[], dirname=None): """ Yield a generator of image numpy array and the corresponding filepath Args: filepath_list: dirname: Yields: img_color: filepath """ if not filepath_list and dirname: print('******* dirname specified!') filepath_list = [os.path.join(dirname, filename) for filename in os.listdir(dirname) if filename.endswith('.png')] for filepath in filepath_list: img_color = gen_single_input(filepath) img_color = np.reshape(img_color, [-1]) print('************* Input image array:') print([pix for pix in img_color[:100]]) yield img_color, filepath def diff_df(df1, df2): """Identify differences between two pandas DataFrames""" assert (df1.columns == df2.columns).all(), "DataFrame column names are different" if any(df1.dtypes != df2.dtypes): "Data Types are different, trying to convert" df2 = df2.astype(df1.dtypes) if df1.equals(df2): return None else: # need to account for np.nan != np.nan returning True diff_mask = (df1 != df2) & ~(df1.isnull() & df2.isnull()) ne_stacked = diff_mask.stack() changed = ne_stacked[ne_stacked] changed.index.names = ['id', 'col'] difference_locations = np.where(diff_mask) changed_from = df1.values[difference_locations] changed_to = df2.values[difference_locations] return pd.DataFrame({'from': changed_from, 'to': changed_to}, index=changed.index) def concat_df(input_csv_path_list, output_csv_path=None): """Concatenate csv files and return the combined dataframe Args: input_csv_path_list: output_csv_path: Returns: """ df_all = None for csv_path in input_csv_path_list: df = pd.read_csv(csv_path) print('{}: length {}'.format(csv_path, len(df))) try: df_all =
pd.concat([df_all, df])
pandas.concat
# Copyright 2019 Elasticsearch BV # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # File called _pytest for PyCharm compatability import pandas as pd import pytest from eland.dataframe import DEFAULT_NUM_ROWS_DISPLAYED from eland.tests.common import TestData, assert_pandas_eland_series_equal class TestDataFrameRepr(TestData): @classmethod def setup_class(cls): # conftest.py changes this default - restore to original setting pd.set_option("display.max_rows", 60) """ to_string """ def test_simple_lat_lon(self): """ Note on nested object order - this can change when note this could be a bug in ES... PUT my_index/doc/1 { "location": { "lat": "50.033333", "lon": "8.570556" } } GET my_index/_search "_source": { "location": { "lat": "50.033333", "lon": "8.570556" } } GET my_index/_search { "_source": "location" } "_source": { "location": { "lon": "8.570556", "lat": "50.033333" } } Hence we store the pandas df source json as 'lon', 'lat' """ pd_dest_location = self.pd_flights()["DestLocation"].head(1) ed_dest_location = self.ed_flights()["DestLocation"].head(1) assert_pandas_eland_series_equal(pd_dest_location, ed_dest_location) def test_num_rows_to_string(self): # check setup works assert pd.get_option("display.max_rows") == 60 # Test eland.DataFrame.to_string vs pandas.DataFrame.to_string # In pandas calling 'to_string' without max_rows set, will dump ALL rows # Test n-1, n, n+1 for edge cases self.num_rows_to_string(DEFAULT_NUM_ROWS_DISPLAYED - 1) self.num_rows_to_string(DEFAULT_NUM_ROWS_DISPLAYED) with pytest.warns(UserWarning): # UserWarning displayed by eland here (compare to pandas with max_rows set) self.num_rows_to_string( DEFAULT_NUM_ROWS_DISPLAYED + 1, None, DEFAULT_NUM_ROWS_DISPLAYED ) # Test for where max_rows lt or gt num_rows self.num_rows_to_string(10, 5, 5) self.num_rows_to_string(100, 200, 200) def num_rows_to_string(self, rows, max_rows_eland=None, max_rows_pandas=None): ed_flights = self.ed_flights()[["DestLocation", "OriginLocation"]] pd_flights = self.pd_flights()[["DestLocation", "OriginLocation"]] ed_head = ed_flights.head(rows) pd_head = pd_flights.head(rows) ed_head_str = ed_head.to_string(max_rows=max_rows_eland) pd_head_str = pd_head.to_string(max_rows=max_rows_pandas) # print("\n", ed_head_str) # print("\n", pd_head_str) assert pd_head_str == ed_head_str def test_empty_dataframe_string(self): ed_ecom = self.ed_ecommerce() pd_ecom = self.pd_ecommerce() ed_ecom_s = ed_ecom[ed_ecom["currency"] == "USD"].to_string() pd_ecom_s = pd_ecom[pd_ecom["currency"] == "USD"].to_string() assert ed_ecom_s == pd_ecom_s """ repr """ def test_num_rows_repr(self): self.num_rows_repr( pd.get_option("display.max_rows") - 1, pd.get_option("display.max_rows") - 1 ) self.num_rows_repr( pd.get_option("display.max_rows"), pd.get_option("display.max_rows") ) self.num_rows_repr( pd.get_option("display.max_rows") + 1, pd.get_option("display.min_rows") ) def num_rows_repr(self, rows, num_rows_printed): ed_flights = self.ed_flights() pd_flights = self.pd_flights() ed_head = ed_flights.head(rows) pd_head = pd_flights.head(rows) ed_head_str = repr(ed_head) pd_head_str = repr(pd_head) if num_rows_printed < rows: # add 1 for ellipsis num_rows_printed = num_rows_printed + 1 # number of rows is num_rows_printed + 3 (header, summary) assert (num_rows_printed + 3) == len(ed_head_str.splitlines()) assert pd_head_str == ed_head_str def test_empty_dataframe_repr(self): ed_ecom = self.ed_ecommerce() pd_ecom = self.pd_ecommerce() ed_ecom_r = repr(ed_ecom[ed_ecom["currency"] == "USD"]) pd_ecom_r = repr(pd_ecom[pd_ecom["currency"] == "USD"]) assert ed_ecom_r == pd_ecom_r """ to_html """ def test_num_rows_to_html(self): # check setup works assert pd.get_option("display.max_rows") == 60 # Test eland.DataFrame.to_string vs pandas.DataFrame.to_string # In pandas calling 'to_string' without max_rows set, will dump ALL rows # Test n-1, n, n+1 for edge cases self.num_rows_to_html(DEFAULT_NUM_ROWS_DISPLAYED - 1) self.num_rows_to_html(DEFAULT_NUM_ROWS_DISPLAYED) with pytest.warns(UserWarning): # UserWarning displayed by eland here self.num_rows_to_html( DEFAULT_NUM_ROWS_DISPLAYED + 1, None, DEFAULT_NUM_ROWS_DISPLAYED ) # Test for where max_rows lt or gt num_rows self.num_rows_to_html(10, 5, 5) self.num_rows_to_html(100, 200, 200) def num_rows_to_html(self, rows, max_rows_eland=None, max_rows_pandas=None): ed_flights = self.ed_flights() pd_flights = self.pd_flights() ed_head = ed_flights.head(rows) pd_head = pd_flights.head(rows) ed_head_str = ed_head.to_html(max_rows=max_rows_eland) pd_head_str = pd_head.to_html(max_rows=max_rows_pandas) # print(ed_head_str) # print(pd_head_str) assert pd_head_str == ed_head_str def test_empty_dataframe_to_html(self): ed_ecom = self.ed_ecommerce() pd_ecom = self.pd_ecommerce() ed_ecom_h = ed_ecom[ed_ecom["currency"] == "USD"].to_html() pd_ecom_h = pd_ecom[pd_ecom["currency"] == "USD"].to_html() assert ed_ecom_h == pd_ecom_h """ _repr_html_ """ def test_num_rows_repr_html(self): # check setup works assert
pd.get_option("display.max_rows")
pandas.get_option
import argparse import requests ## for working with data in lots of formats ## python3 -m pip install pandas import pandas ITEMURL = "http://pokeapi.co/api/v2/item/" def main(): # Make HTTP GET request using requests # and decode JSON attachment as pythonic data structure # Also, append the URL ITEMURL with a parameter to return 1000 # items in one response items = requests.get(f"{ITEMURL}?limit=1000") items = items.json() # create a list to store items with the word searched on matchedwords = [] # Loop through data, and print pokemon names # item.get("results") will return the list # mapped to the key "results" for item in items.get("results"): # check to see if the current item's VALUE mapped to item["name"] # contains the search word if args.searchword in item.get("name"): # if TRUE, add that item to the end of list matchedwords matchedwords.append(item.get("name")) finishedlist = matchedwords.copy() ## map our matchedword list to a dict with a title matchedwords = {} matchedwords["matched"] = finishedlist ## list all words containing matched word print(f"There are {len(finishedlist)} words that contain the word '{args.searchword}' in the Pokemon Item API!") print(f"List of Pokemon items containing '{args.searchword}': ") print(matchedwords) ## export to excel with pandas # make a dataframe from our data itemsdf =
pandas.DataFrame(matchedwords)
pandas.DataFrame